
Copyright Undertaking 

This thesis is protected by copyright, with all rights reserved. 

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk



DEEP LEARNING-BASED FASHION ADVISING 

DING YUJUAN 

PhD 

The Hong Kong Polytechnic University 

2021 



The Hong Kong Polytechnic University

Institute of Textiles & Clothing

Deep Learning-based Fashion Advising

Yujuan DING

A thesis
submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

September 2020



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written,
nor material that has been accepted for the award of any other degree or diploma,
except where due acknowledgement has been made in the text.

(Signed)

Yujuan DING (Name of student)

ii



Abstract

Fashion advising provides proper fashion suggestions to facilitate the decision-

making processes, which is helpful for both ordinary people and fashion business.

In the recent years, with the accumulation of fashion-related data and the de-

velopment of deep learning technologies, data-driven fashion analysis based on

deep learning has attracted great research attention. This thesis focuses on the

deep learning-based fashion advising for ordinary users/individuals, to which

personalization and fashionability are two key perspectives. The two perspectives

correspond to two basic standards in making desired fashion suggestions, to

cater to the user preference/taste in fashion, to offer fashionable guidance and

improve their aesthetic ability in fashion. In accordance with personalization and

fashionability in fashion advising, this thesis works on two specific tasks which

are personalized fashion recommendation and fashion trend foresting.

Existing works on personalized fashion recommendation limited to leverage

more characteristic attributes or enhance the visual information of fashion items.

However, the shopping patterns in user behaviors and the short-term behavior

transition in fashion shopping were overlooked in developing the recommender

systems. In the field of fashion trend forecasting, the research of data-driven

fashion forecasting is still at its early stage. On the one hand, the fashion elements

focused in previous studies are not specific, fine-grained and comprehensive to

reveal real fashion trends. On the other hand, the proposed models were still

based on statistical models which fall shorts in handling complicated fashion
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trend signals. To address the limitations in existing studies, this thesis proposes

three main objectives and fulfills them with three deep learning-based approaches

accordingly.

First, to effectively capture the user preference in fashion and thus facilitate

the performance of fashion recommendation, this thesis proposes to model the

underlying shopping patterns in fashion shopping behaviors, which imply the

diverse user preferences under specific aspects, such as style, brand or print

pattern. For such goal, a Field-aware Graph Collaborative Filtering (FGCF)

method is proposed to capture the fined-grained user shopping patterns which

have been widely ignored in previous research. Specifically, the proposed FGCF

method is able to model the factor field-level interactions and make overall

recommendation prediction by aggregating the field-level results. It not only

predicts the holistic user-item preference, but also infers the specific fashion

preferences in different factor fields. Extensive experiments on real-life fashion

purchase data demonstrate the effectiveness of the proposed FGCF method.

Second, to effectively model the short-term transition of user behaviors in fashion

shopping and develop better sequential fashion recommender system, this thesis

proposes an Attentional Content-level Translation-based Fashion Recommender

(ACTR). Specifically, the ACTR leverages the item-item relationships (indicating

the short-term intentions) in modeling the item-item interactions. To tackle the

sparsity problem in item-item interactions, it introduces the content-level item

transition modeling which decomposes the overall item-item interaction into

different fashion aspects. Moreover, a user-aware content attention mechanism

is devised in the ACTR to properly aggregate the content-level modeling results

and generate the final recommendation results. Extensive experiments on real-

life fashion shopping data demonstrate the effectiveness of the proposed ACTR

method.



Third, towards meaningful fashion trend forecasting, this thesis aims to analyze

fine-grained fashion elements which can effectively reveal fashion trends, in

specific, to model and forecast the fashion trend of specific fashion elements for

specific user groups. To this end, a large-scale fashion trend dataset (FIT) is

firstly collected from Instagram and the time series popularity records of fashion

elements as well as user information are extracted. To effectively model the time

series data of fashion elements with rather complex patterns, a Relation Enhanced

Attention Recurrent (REAR) network is proposed, which takes advantage of the

capability of deep recurrent neural networks in modeling time-series data and

connects specific fashion trends through the relations between user groups and

fashion elements. Extensive experiments have demonstrated that REAR can make

solid and meaningful fashion trend forecasting for a period of time in the future.

In summary, this thesis works on the deep learning-based fashion advising prob-

lem from two different key perspectives and studies three specific sub-tasks. With

the output of the three studies, the personalized and fashionable fashion advice

are able to be generated for specific users based on the specific approaches pro-

posed. The research problems extracted and addressed in this thesis promote the

development of personalized fashion recommendation and fashion trend forecast-

ing. Moreover, the output of the thesis has a strong impact on the entire fashion

industry which can specifically benefit the process of design, manufacturing and

retailing.
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1Introduction

1.1 Background

Fashion is an essential aspect of culture and life, and the fashion industry is one

of the most important parts of the global economy. At present, fashion industry

accounts for 4% of the global economy, with a market value of $406 billion 1.

Driven by social demand and large profit potential, fashion has always been a

hot research topic in academia. The fashion industry has been undergoing a

digital transformation with the growing influence of social networks and the

prosperity of e-commerce over the years. Such transformation can benefit the

whole industry, but also requires strong technical support. In recent years, with

the rapid development of artificial intelligence (AI), deep learning (DL) particular,

researchers attempt to seek computational solutions to address various tasks in

the fashion domain to meet technical demands from the industry. Meanwhile,

the fashion industry is inclined to embrace new technologies, understand the

science and engineering for new production methods and recognise the potential

to innovate in the design of new systems and processes. It is reported that by

2023, 50% of large global companies will be using AI, advanced analytics and

the Internet of Things in supply chain operations 2. With such an industrial

background, computational fashion studies have attracted increasing attention in

computer vision, machine learning and multimedia communities.

The main reason that fashion has become an important application domain for

DL is that many tools and innovative solutions based on DL can truly contribute

to the industry, for example, by enabling businesses to improve their operations

1https://fashionunited.com/global-fashion-industry-statistics/
2https://www.gartner.com/smarterwithgartner/gartner-predicts-2019-for-supply-chain-

operations/
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and shopper experience. The studies that can produce top-level applicable so-

lutions are usually grouped as high-level fashion applications. Compared with

low-level research topics on fundamental computer vision problems in fashion,

such as clothing parsing [188, 38, 108, 106, 173, 186] or fashion attribute

recognition [127, 74, 13, 26, 148], high-level application studies are more task-

oriented in seeking an applicable value to the industry [151]. Representative

high-level fashion applications include fashion retrieval [104], fashion recom-

mendation [193, 49], fashion synthesis [129, 24], visual try-on [25, 50], and

others [110, 113].

One kind of fashion application research aims to acquire valuable insights or

relevant information from large amounts of fashion-related data by proper an-

alytics, thereby providing specific fashion advice. Such kind of research can be

considered as data-driven fashion advising. For example, with the browsing and

shopping records of customers, fashion retailers can analyze customers’ shopping

preference and therefore provide personalized and diverse services. In most cases,

consumers can also benefit from those research outcomes for making better fash-

ion choices and shopping decisions. Such fashion advising research has gained

much research attention for its great significance to academia and industry, which

brings technical challenges at the same time.

1.1.1 Fashion Advising

Fashion advising, which refers to the task of providing proper fashion suggestions

to facilitate the decision-making process, is important in terms of helping ordinary

people and the fashion business. Although technological change has infiltrated

every aspect of modern life, people’s desire to convey a sense of self through

their appearance has not changed [10]. However, not everyone is a master of

fashion, and those who lack the sense of fashion may need proper fashion advice

in daily life. In other words, fashion advising technologies can benefit ordinary

users in providing useful fashion suggestions such as personalized fashion item

2



Data-driven fashion advising

Individuals 

Companies  
Predictive analytics  

Styling suggestion

Shopping guidance 

Personalized fashion recommendation

Compatibility modeling

Outfit recommendation

Fashion trend forecasting

Sales forecasting

Relevant research topic Applicable target

Figure 1.1: Illustration of data-based fashion advising, relevant research topics and its
applicable targets

recommendation, mix-and-match guidance, or potential trend inspiration. In the

business aspects, precise recommendation for users enables the fashion retailers,

especially e-commerce retailers, to attract more customers, keep them longer

in the platform and therefore increase the volumes of transactions. Meanwhile,

fashion companies also directly benefit from fashion advising technologies which

can act as consultants in establishing business strategies at any stage.

Fashion advising has been pervasive across the fashion business as well as the daily

fashion-related lives of people. For example, fashion companies may consult with

forecasting companies when formulating business strategies. Also, when shopping

fashion, offline or online, people commonly receive advice from salespeople or the

systems. Traditionally, fashion advice, for business or individuals, are generated

by certain fashion experts based on their professional experience, knowledge and

analytics. At present, the accumulation of huge amounts of fashion-related data

with the advent of digital age has provided an alternative data-driven way for

conducting fashion advising. This thesis attempts to employ advanced DL tech-

nologies to effectively generate fashion advice based on large-scale cross-media

fashion data, which is classified under high-level fashion application research.

3



Fashion advising is a wide subject that can be divided into small research direc-

tions according to various application scenarios. As shown in Figure 1.1, the

three main directions are styling suggestion, shopping guidance, and predictive

analytics. Specifically, style suggestion aims to help individuals in styling by

providing an effective matching and styling knowledge. Compatibility modeling

is the topic that mostly focuses on styling suggestion. In addition, style suggestion

can also be sub-objective in other research topics such as personalized fashion

recommendation and outfit recommendation. The second direction, shopping

guidance, is a specific application in fashion shopping scenario, which aims to

help shoppers find their desired fashion items as well as retailers attract more

buyers. Providing effective shopping guidance is the practical objective for most

fashion recommendation studies. The third direction, predictive analytics, is more

helpful in facilitating the business operations of fashion companies, while also

inspiring individuals with predicted fashion trends. Figure 1.1 illustrates several

important specific research topics in the field of computational fashion which are

highly correlated to the topic of data-driven fashion advising. All listed research

topics in Figure 1.1 focus on various aspects and try to partially address the task

of fashion advising.

The main focus of this thesis is fashion advising for individuals, and mostly for

online shopping scenarios. Specifically, this study aims to apply the powerful DL

tools and develop effective models that can generate useful fashion advice based

on available relevant fashion data. Three aspects are important in data-driven

fashion advising.

(1) Users’ personal fashion preference. Undoubtedly, personalization is one of

the most important issues in fashion. In fashion advising, effective advice should

cater to specific fashion tastes of target users. For example, if Sandy prefers street-

style clothing, suggesting sexy items is not suitable for her. Therefore, the basic

requirement for fashion advising is to effectively model users’ personal preference

from any forms of personalization-aware fashion data, such as purchase records.

4



(2) Users’ short-term taste and behavior transition. The personal fashion prefer-

ence pointed out above is usually a static, long-term standard to provide advice

to different users. However, in some specific application scenarios, such as online

browsing for fashion shopping, the user’s temporary fashion taste swiftly changes,

which usually happens along with his/her fashion selection behaviors. Such

short-term patterns in their behavior, which is called behavior transition, also

matters in capturing the user’s real overall preference at a specific period.

(3) Fashion trend. The aforementioned two points are mainly from the personal-

ization perspective, which aims to explore important personalized patterns from

user behaviors. Besides personalization, fashionability is another key factor in

making effective fashion suggestions. As discussed above, people tend to pick

pretty, trendy pieces when making fashion choices. However, as fashion trends

are constantly changing, in most cases, ordinary people experience difficulty in

catching up with trends on their own. Under the circumstance, introducing the

latest fashion trends is important in providing solid fashion advice.

The above three points are main perspectives to study the data-based fashion

advising problem, which belong to two specific research topics: fashion recom-

mendation and fashion trend forecasting.

Fashion recommendation generally refers to suggensting fashion items (mostly

in e-commerce scenarios), while fashion trend forecasting focuses on mastering

fashion trends and predicting the ups and downs of specific fashion elements.

The two tasks explore different angles for solving the fashion advising problem.

First, fashion appeals to everyone in the world on some level, but different people

have different preferences and tastes. Fashion recommendations, therefore,

aims to capture the various user preference so as to make more customized

and personalized fashion suggestions. Second, as fashion constantly evolves,

regardless of the difference between personal tastes, the fashionability of specific

fashion elements (such as the color white or the pattern stripe) changes over time.
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As people are naturally after fashionability in making fashion choices, fashion

trend forecasting plays a significant role in offering preferable options, especially

for those who are less fashion-conscious. Overall, an effective fashion adviser

needs to simultaneously master the user’s taste and the general fashion trend

to make proper suggestions, which requires focusing on the techniques of both

sides.

1.1.2 Personalized Fashion Recommendation

Fashion recommendations have been widely applied in fashion online shopping,

from online store of fashion brands such as Nike 3 to multi-brand retailing plat-

forms such as Amazon 4. It is not an edge but an essential component in modern

online systems. The potential commercial benefit of fashion recommendation

has attracted a lot of research attention. According to different recommending

targets, fashion recommendations can be further grouped into item-level [193]

and outfit-level recommendations [66]. Based on the requirement, it can make

recommendations based on a given fashion item [145] or user [14]. The outfit

recommendation and item-based recommendations are reverent to but not the

focus of this thesis, which are briefly reviewed in the next chapter. As the im-

portance of personalization is widely acknowledged in fashion as claimed above,

personalized fashion recommendations (recommending for users) are one main

research target in this thesis.

Personalized recommendations aim to model the user preference based on user

interaction feedback, such as click or purchase records [143]. These personalized

recommendations in general domain or specific domains such as movies, books,

music and news have been widely studied [175, 178, 101]. The basic rationale is

to train the recommendation model to fit the user-item interaction history data

and hopefully the users’ future behavior can be effectively predicted by the trained

3https://www.nike.com/
4https://www.amazon.com/
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model. Personalized fashion recommendation can be considered as a special

application of general personalized recommendation problems. In the fashion

domain, classic personalized recommendation strategies, such as collaborative

filtering (CF) [144], have also been applied to tackle the personalized fashion

recommendation problems [66, 193]. In most existing works, the user-item

interactions are simply modeled in a classic and implicit manner [193], usually

with the inner product (or MLP layer) of user and item representations [57].

Although a large number of general recommender systems are available, they can

not necessarily be directly applied in the fashion domain perfectly. When studying

the recommendation in the fashion domain, the unique characteristics of the

fashion domain should be respected, which are mainly in the following aspects.

First, fashion items are usually with abundant attributes and many of specific

attributes can influence the users’ appreciation of the items greatly. Important

attributes, such as styles, colors, have been explored in previous studies and

found effective in helping improve the recommendation performance. [133, 119].

Second, the aesthetic attributes matter more in the fashion domain. That is to say,

the visual information may be more important for describing the recommending

candidates, i.e., fashion items, than in any other domains [193]. Third, the

number of fashion items is extremely huge. Each item may have only been

chosen by very few or even no users. Therefore, CF methods that only use

user-item associations to characterize items may not be sufficient in the fashion

domain [66].

Some effort has been made to develop personalized recommender systems that

adapt to the fashion domain and respect the domain characteristics. One direction

is to leverage more characteristic attributes [133]. The second direction is to

enhance the visual information [193]. However, as we can see, most existing item-

level personalized fashion recommendations are still based on the CF framework

with minor revisions. Some of them might have leveraged more side information

that is important in the fashion domain to enhance the entire model, but few dig
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deep into the characteristics of shopping behaviors in fashion. Two important

aspects that have been overlooked in previous fashion recommendation research

are summarised as follows:

(1) Shopping patterns in long-term behavior. Jannach et al. [72] investigated the

user’s browsing behavior in online fashion shopping and observed that on average,

users inspected about 9 different items from 2.7 (of more than 330 available)

categories, and considered 2.5 different colors and 3.6 brands in one session.

Such a discovery suggests that users indeed often have specific shopping patterns

when buying fashion items. Therefore, recommending items in accordance with

their shopping patterns seems promising.

(2) Short-term behavior transitions and user intentions. Previous works on person-

alized fashion recommendations have attempted to model user’s general fashion

taste mainly, but neglected their short-term intentions. As we known, the key of

recommendation is to master the users’ preference. Although a user’s fashion taste

may be relatively stable, his/her preference evolves frequently in the real fashion

shopping process as the short-term intention changes. Such phenomenon are

obvious when users are browsing through fashion items. Therefore, to effectively

explore users’ preference, both long-term static and short-term dynamic parts

should be involved.

1.1.3 Fashion Trend Forecasting

Compared with fashion recommendations that have been an active research topic,

the data-driven fashion trend forecasting is still at its nascent stage [29]. Undoubt-

edly, fashion trend forecasting is of great demand for both fashion companies and

users. Traditional fashion forecasting is mostly human-based, relying on fashion

experts to examine artistic viewpoints, culture, societal attitudes and current

events to predict the future [42]. In the recent decade, technological innovations

such as the Internet has accelerated the changing rate of fashion, which makes
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fashion trend forecasting even more difficult. However, the advent of the digital

age has also facilitated the accumulation of huge amounts of fashion related data,

which provides an alternative data-driven way of addressing the fashion trend

forecasting task [110].

The literature includes a few exiting data-driven fashion trend forecasting works,

and most of them have twofold limitations. First, as preliminary attempts, only

limited fashion elements with highly seasonal or simple patterns are investigated.

The problem is that some elements can hardly reveal the real fashion trends. For

example in two previous works [113, 3], wearing jacket was studied as the target

fashion element, which is season-related rather than fashion-related. Second,

as the fashion forecasting task is usually formulated as a time-series prediction

problem, existing works still use statistical models [113]. Classic statistical models

might be effective when modeling time-series signals with simple patterns, but

for many fashion trend signals which are more complex and less cyclic, they can

hardly achieve preferable performance in fashion trend forecasting.

Apparently, to conduct insightful trend forecasting with practical significance to

the whole fashion industry, the research target should be specific and meaningful.

It can be detailed design element such as dotted pattern or a general fashion style

such as sporty. From the perspective of techniques, deep neural networks (DNNs)

have shown their superiority in modeling sequential data in recent years [90,

116]. In particular, recurrent neural networks (RNNs) [62, 18] have achieved

superior performance in relevant applications [33, 31]. These accomplishments

have inspired us to develop more advanced fashion trend forecasting models

based on DNNs.

Although personalized fashion recommendations and fashion trend forecasting

are different tasks in terms of having different application purposes, both of

them rely on effectively exploring historical data for making proper predictions.

As mentioned, they are the two most important parts in the research area of
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fashion advising that aims to provide fashion advice from two perspectives,

yet both benefit the fashion business and ordinary people simultaneously. By

properly analyzing the current research status in the literature and considering

the application demand, this thesis extracts three important research problems

on the two tasks as the main research objectives.

1.2 Objectives and Challenges

This thesis seeks to employ deep learning technologies for effective fashion

advising to help consumers or fashion lovers with their fashion choices as well

as fashion companies with their businesses. Briefly, the research focus of this

study lies in two perspectives: 1) develop more advanced personalized fashion

recommender systems to enhance the personalization of fashion advising and

2) develop effective fashion trend forecasting models to ensure fashionability

of fashion advising. More specifically, three specific research objectives and

corresponding challenges are introduced as follows:

(1) To develop a recommendation approach that can model user shopping patterns

in fashion shopping and therefore enhance the personalized fashion recommen-

dation performance. Rather than leveraging more visual information or assistant

features (such as aesthetic features), this study aims to go a step further in per-

sonalized fashion recommendations by exploiting users’ interaction histories and

analyzing the fashion shopping behaviors combined with the characteristic of

the fashion domain. Certain shopping patterns are assumed to exist underneath

these fashion shopping behaviors. For example, a user who loves shoes tend to

buy shoes often, and a user who loves white is likely to buy more white items.

The challenge is how to explore such shopping patterns from the users’ historical

behaviors and then boost the recommendation performance.
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(2) To model content-level user behavior transitions in fashion shopping and

accordingly develop a better sequential fashion recommendation approach. On

top of the long-term preference of users (fashion taste in general), users’ short-

term intentions, which are usually implied in user behaviors, also play important

roles in making their fashion decisions. To further improve the personalized

fashion recommendation approach, both long-term preference and short-term

intentions should be explored when modeling the users’ interaction behaviors

in fashion. In other words, the short-term transition in user behavior, which

has been neglected in previous studies on fashion recommendations, should

be respected and properly modeled. Such behavior transitions are especially

important in some application scenarios such as instant recommendation when

users randomly browse fashion items online. The main challenge in technique

is how to leverage the effective model of such short-term patterns in the data

along with the long-term user-item interactions considering the characteristics of

fashion.

(3) To study fashion trend from the data perspective and effectively model the

fashion trends and perform forecasting based on available relevant data. Towards

meaningful fashion trend analysis, the first goal is to define specific fashion

trends as research targets, which should have fashion significance and truly reveal

fashion trends. Second, effective models should be designed to analyze fashion

trend data, capture underlying important patterns and therefore enable solid

forecasting.

1.3 Methodology

This study aims to improve the data-driven fashion advising from three aspects,

resulting three research objectives as listed above. The specific approaches

proposed corresponding to the three objectives are introduced as follows.
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(1) A graph-based fashion recommendation method called Field-aware Graph

Collaborative Filtering (FGCF) is developed to capture the fine-grained user

shopping patterns. Specifically, all categorical factors (e.g., black, elegant) are

grouped into multiple fields (e.g., color, style) and the interactions of factors at

the field level [78] are modeled through factor field-level embedding propagation

and aggregation on a fully-connected graph. Then, the field-aware interaction

scores of user-item pairs in different factor fields are predicted, based on which

the holistic score is further aggregated and used for pairwise training.

(2) An Attentional Content-level Translation-based Fashion Recommender (ACTR)

is proposed to model both the user-item compatibility and the sequential dynamics

among items. To effectively model the transition process of the user’s behavior,

that is, the interaction sequences of items, the content-level translation operation

based on specific item-item relationships (substitution and mix-ant-match) is

introduced in ACTR. In other words, it models the item-item relational interaction

from different fashion aspects (also called factor field, such as color or style). The

final recommendation results are generated based on the mixture of content-level

translation models by an attentional combination, and the general user-item

interaction model.

(3) A Relation Enhanced Attention Recurrent (REAR) network, which takes

advantage of the capability of RNNs in modeling time-series data with the help of

the sliding temporal attention, is proposed to address the time-series fashion trend

forecasting task. To conduct insightful fashion trend forecasting with practical

value in terms of the forecasting targets, this study focuses on fine-grained fashion

element trends for specific user groups. To this end, it first contributes a large-scale

fashion trend dataset (FIT) collected from Instagram with extracted time-series

fashion element records and user information. Furthermore, to effectively model

the time-series data of fashion elements with rather complex patterns, this study

proposes the REAR model. It connects specific fashion trends through the relations

between user groups and fashion elements rather than treating each fashion trend
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signal in an isolated manner. Such relation leveraging is able to facilitate the deep

learning model to capture the patterns of specific fashion elements.

1.4 Significance

The research in this thesis is important to both academia and industry. To

academia, it extracts the key research problems from different aspects of fashion

advising. Considering these various technical challenges, this study proposes

three novel solutions to address the specific tasks. For industry, the research

outcome of this thesis is applicable in several processes in the fashion value chain,

thereby assisting the fashion business.

1.4.1 Significance to Academia

This study represents the first attempt to focus on the underlying pattern in

fashion shopping behaviors at the first time. Instead of directly applying general

recommendation algorithms to fashion domain, this study respects the character-

istics of the fashion domain and the uniqueness of fashion shopping compared

with other domains. A novel graph-based model is proposed to effectively explore

specific shopping patterns with regard to various factors. With the proposed

method, not only can the holistic user-item preference be predicted, but also

the specific fashion preferences in different factor fields can be inferred. Exten-

sive experiments demonstrate the effectiveness of the proposed approach which

achieves better recommendation accuracy than existing recommender models.

This study explores users’ short-term behavior transitions in the process of fash-

ion shopping and aims to model both the user-item interaction and item-item

interaction to further facilitate the fashion recommendation performance. This

is first time in the fashion domain that the item-item relationships are lever-

aged in modeling the item-item transition. More importantly, a content-level
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translation-based approach for the item-item transition modeling is proposed,

which is able to specify the item-item relationships from different aspects of fash-

ion items. Such an improvement can alleviate the sparsity problem of item-item

interaction when only applying item IDs [80], effectively explores transition rela-

tions between adjacent items and therefore provides more preferable next-item

recommendations.

This study goes further into the fashion trend forecasting task and applies DNN-

based technologies in modeling fashion trend signals. To facilitate the fashion

trend forecasting research, this study contributes a large-scale dataset based on

the social media platform Instagram, which contains the trend data of specific

fashion elements and specific groups of people. The dataset spans five years and

covers around 200 specific fashion elements and over 70 user groups based on

over 680,000 raw images and other meta-data. Furthermore, a novel RNN-based

model is proposed to effectively model the historical trends and thereby make

solid trend predictions. Specifically, this study proposes to leverage multiple

relations between different fashion trends, as well as apply temporal attention

mechanism to improve the fashion trend forecasting performance. Extensive

experiments have shown that our proposed model outperforms all baselines in

terms of forecasting precision. Furthermore, the fashion trends predicted by our

model are aligned with some professional human-based predictions.

1.4.2 Significance to Industry

Undoubtedly, the research task of fashion advising has a strong impact on the

entire fashion industry throughout the fashion supply chain. In particular, fashion

advising has the potential to benefit the process of design, manufacturing and

retailing.
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The fashion design and manufacturing process can use fashion advising to their ad-

vantage 5. Traditionally, designers are those who present, create and lead fashion

trends through the new items they produce. However, such traditional designer-

leading mode involves high business risk because of designers’ over-reliance on

their artistic vision and too little input from a commercial perspective [70]. In

this study, fashion trends can be effectively predicted based on big fashion data

through DL models, which offer designers another view from the market, and

therefore help them create products that are more appealing to consumers. In

the manufacturing aspect, this study can help the manufacturers and developers

make wiser business operations as well as reduce excess inventory [71].

The significance is greater in the retail process. First, brands such as Zara, H&M,

TopShop, and Forever 21 have built their businesses on speed and agility. Once

these retailers spot a new trend, they can deploy their hyper-rapid design and

supply chain systems to bring the trends to market as quickly as possible. Sec-

ond, every marketer knows that personalization is key to creating a marketing

campaign, particularly in fashion. Retail companies, brands, or e-commerce plat-

forms can attract more customers through well-designed recommender systems.

Moreover, by analyzing the data of users’ shopping behavior, they can better

understand their consumers, master their shopping patterns, fashion taste, and

even their instant short-term intentions. A promising direction for digital retailers

is to improve conversion rates and boosts engagement if facilitated with effective

recommender systems.

1.5 Thesis Structure

The rest of the thesis is structured as follows:

5https://www.cgsinc.com/blog/how-big-data-impacting-fashion-industry
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Chapter 2 makes a comprehensive literature review on topics related to the

personalized fashion advising from different aspects. First, from the technical

perspective, several typical deep learning technologies that are relevant to this

thesis in the development of new solutions are reviewed. Thereafter, the chapter

briefly summarizes the different levels of computational fashion research in

the literature. Finally, the chapter reviews in detail the research progress on

the relevant tasks of personalized fashion recommendation and fashion trend

forecasting, and summarizes the limitations of the current research on the two

topics.

Chapter 3 illustrates the overall methodology of this thesis, which provides

an overall picture of how the research problem is analyzed and handled. Fur-

thermore, the chapter introduces the approach developed for each objective

specifically and how these novel approaches address the sub-tasks and further

fulfill the research purpose of this thesis.

Chapter 4 works on the task of modeling shopping patterns for personalized

fashion recommendation. It first introduces the motivation that exploring shop-

ping patterns for recommendation is important in the fashion domain as it can

benefit the model preference modeling. A novel approach Field-aware Graph

Collaborative Filtering (FGCF) is proposed for addressing the specific task. Ex-

tensive experiments prove the effectiveness of the model and demonstrate that

the proposed FGCF can provide better fashion recommendation in terms of both

accuracy and interpretibility.

Chapter 5 aims to model content-level relational transition in user interaction

behaviors to facilitate the personalized fashion recommendation. It proposes to

leverage the item-item relationships into the transition modeling to improve the

model capability and explicability. A novel Attentional Content-level Translation-

based Fashion Rcommender (ACTR) method is proposed to effectively model the

relational item-item transitions combining characteristics of the fashion domain.
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Preferable recommendation results are achieved by the proposed ACTR in exten-

sive experiments based on real-world fashion shopping data, which validate the

effectiveness of proposed method.

Chapter 6 focuses on the data-driven fashion trend forecasting problem based on

social media. The chapter aims to explore effective patterns in the fashion trend

of specific fashion elements for a certain group of people and perform future

prediction based on history. A novel Relation-Enhanced Attentional Recurrent

network (REAR) is proposed to model the fashion trend signals and make fore-

casting. Experimental results demonstrate the effectiveness of the proposed REAR

method in terms of making solid long-period fashion trend forecasting.

Chapter 7 summarizes the whole thesis, emphasizes the contributions and points

out the limitations. It also provides possible research directions in the future.
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2Literature Review

This thesis studies the personalized fashion advising problem, aiming to develop

deep-learning-based solutions for solving specific tasks that relates to fashion

advising from different aspects. This chapter first reviews several important deep

learning advances that are involved in developing novel solutions in this thesis,

including convolutional neural network (CNN), recurrent neural network (RNN),

graph neural network (GCN) and knowledge graph (KG). It then introduces

the development in computational fashion [151] analysis briefly to provide

readers the whole picture at macro level, clarify the position of our research

focus, i.e., fashion advising, in the whole computational fashion field and how it

relates with other computational research in the fashion domain. Thereafter, two

specific topics closely related of this thesis, namely, fashion recommendation and

fashion trend forecasting, are reviewed in detail. The overall research status on

personalized fashion advising as well as the current limitations are summarized

in the end.

2.1 Deep Learning Advances

Deep learning (DL) is a powerful technology which can discover intricate struc-

tures in large data sets by using the backpropagation algorithm to indicate how a

machine should change its internal parameters [90, 39, 156]. In the past decade,

deep learning, as well as artificial intelligence (AI), has achieved huge success

and showed superior performance in many applications, from computer vision

(CV), natural language processing (NLP) to acoustic modeling. In this part, the

author reviews several important topics in the area of deep learning, including

convolutional neural network (CNN), recurrent neural network (RNN) and graph
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neural network (GNN). All of these reviewed topics are highly related to this

thesis and applied when we develop our own models for specific tasks.

CNNs are designed to process data in the form of multiple arrays, for example,

a colour image composed of three 2D arrays containing pixel intensities in the

three colour channels. CNNs are special type of deep feedforward network that

are much easier to train and generalized much better than networks with full

connectivity between adjacent layers [90]. It has achieved great success in the

computer vision community and brought back people’s confidence in neural

networks. According to Lecun et al. [90], there are four key ideas behind CNN:

local connections, shared weights, pooling and the use of many layers. The

first deep CNN architecture was LeNet [91] proposed by Lecun early in 1998,

which is composed of all CNN essentials including convolution, subsampling

and fully connected layers. LeNet has a groundbreaking significance for the

development of deep CNNs, but it did not attract enough attention at that time

due to the insufficient hardware computing and data [172]. Five years later,

in 2012, as the computer hardware developed and the amount of available

data increased, another newly proposed deep CNN architecture, AlexNet [87],

achieved amazing results in the ILSVRC-2012 image classification competition.

The success of AlexNet attracted an increasing number of researchers and the

CNN was in high-speed growth in the following years. Some famous CNN

architectures were subsequently proposed, such as VGG [147], GoogLeNet [157]

and ResNets [51]. To date, CNN has been well-developed and widely applied

to extract visual features in many high-level applications for its exceptional

ability in image analysis. As visual information is extremely important in the

fashion domain, visual feature extraction is an essential technical aspect of fashion

recommendation and fashion trend forecasting.

RNNs are the main tools to handle sequential data involving variable length inputs

or outputs, such as natural language and speech signals [140, 39]. The early

RNN models suffered for the gradient vanish problem until a better model called
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Long-Short Term Memory (LSTM) [62] was proposed in 2000. Another LSTM

variation, Gated Recurrent Unit (GRU) [18] was proposed in 2014 and became

popular in the research community for its lower computation cost and simplicity.

So far, RNNs, mainly referring to LSTM and GRU, have been successfully applied

in NLP [171, 155], time series analysis [89], speech and audio processing [150,

141] and traffic tracking and monitoring [5, 95]. RNNs have been successfully

applied in recommender systems for developing sequence-aware recommendation

algorithms [60, 28, 132]. RNNs are also powerful in modeling time-series data

which are naturally sequential. They have achieved state-of-the-art performance

in time series prediction [31, 97, 130] and have been successfully applied in

specific tasks such as stock prediction [33] and sales forecasting [6]. In fashion

trend forecasting, available data are usually in a time series, making them suitable

to be processed by RNNs. However, few attempts have been made to study the

fashion trend forecasting problem with RNNs so far.

GNNs are deep learning-based methods that operate in the graph domain [198].

Graph is a powerful tool to model a set of objects (nodes) and their relation-

ships (edges), which has attracted increasing attention in the deep learning

community for its great expressive ability. It shows great applicable value for

modeling data in non-Euclidean structure across various areas such as social

science (social networks) [48, 142], natural science (physical systems) [7, 35],

knowledge graphs [47], and others [81]. In recommender systems, GNNs has

been applied in various ways. Not only can they model graph data that widely

exist in recommendation problems, but they can also model the information

transformation and aggregation which is extremely important for representation

learning in recommender systems. For example, in social recommendations, the

social relations can be effectively exploited with the help of GNNs [32]. The

graph can also model the high-order connectivity of users and items and make

the traditional collaborative filtering recommendation model to become more

expressive [177]. In session-based recommendation, GNNs can be helpful for

exploring rich transitions among items and generate accurate latent vectors of
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items [184]. Another special graph, knowledge graph (KG), has been applied

to incorporating richer relations between users and items, as well as other side

information such as attributes [175, 170, 11].

KG Embedding is an important research direction which aims to embed com-

ponents of a KG such as entities and relations into continuous vector spaces to

simplify the manipulation while preserving the inherent structure of the KG [170].

This task has attracted massive research attention since it was proposed several

years ago for its great significance in many high-level tasks in KG [8, 120, 179,

181]. The research on KG embedding also benefits the recommendation domain

by providing another idea to model the historical data of user behaviors for

the development of the recommender system. Except for incorporating addi-

tional relations as mentioned, KG embedding approaches, such as TransE [8] and

TransR [98], model the users, items and their basic interactions in a translation

manner [52, 37, 80, 160], which has achieved superior performance in various

recommendation tasks.

Other deep learning technologies such as Generative Adversarial Net (GAN) [40],

Transformer (self attention) [164], Autoencoder (AE) [12], Reinforcement Learn-

ing (RL) [117] are also frequently explored in recommendation systems. However,

these technologies are not involved in the approach development in this thesis,

and therefore are not reviewed in detail.

2.2 Computational Fashion

Deep learning-based fashion advising, the research target of this thesis, is a part

of computational fashion research. Computational fashion [151, 45] refers to

applying advanced computational methods, such as DL and AI, to address the

specific application problems in the fashion domain. Based on the reviews on

computational fashion developments [151, 45, 16], the tasks of fashion analysis
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in the literature can be roughly categorized into three groups: 1) low-level

fashion recognition, 2) mid-level fashion understanding, and 3) high-level fashion

analysis. The research in this thesis can be categorised under the last group.

The related works in fashion advising, specifically, fashion recommendation and

fashion trend forecasting, are discussed in detail in the following sections. In this

section, the rest of computational fashion works that belong to different research

levels are reviewed first.

The pixel-level fashion recognition tries to categorize each pixel in the fashion

images into specific fashion categories, such as skirt or t-shirt. This task remains

challenging due to the very fine-grained and wide range of fashion categories, as

well as the combination and layers of fashion pieces in the image. Undoubtedly,

pixel-level recognition is the foundation of the rest of fashion tasks for handling

visual data. The specific tasks of pixel-level fashion recognition include clothing

parsing and landmark detection. Researchers have applied various techniques,

such as graphic, CNN and adversarial models, for addressing the pixel-level fash-

ion recognition problems and obtaining pixelwise labels for fashion images [188,

38, 108, 106, 173, 186].

The pixelwise labels further facilitate the mid-level fashion understanding such as

clothing detection, attribute and style recognition. For fashion attribute recogni-

tion, even the most basic and fundamental problem: fashion attribute definition,

has been very tricky. Effort has been made in the literature to define the fine-

grained fashion attribute professionally [23, 200] and employ various machine

learning methods to conduct attribute classification [127, 74, 13, 26, 148]. Style

classification is another widely studied mid-level fashion understanding task due

to the significance of style in the fashion domain. When it comes to fashion

style classification, the very basic issue, namely, the definition of style, is also a

key issue. To apply deep learning methods, we have to define fashion styles in

a definite manner. However, as fashion style is a subjective concept, providing

explicit definitions is almost impossible. Despite the difficulties, researchers have
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also made some attempts, including defining basic fashion styles and linking them

with handcrafted features [82], building fashion semantic space for describing

clothing fashion styles[109], training polylingual topic models on outfit data to

learn correspondences between fashion element and styles [162], and others [76,

75].

Based on lower-level fashion techniques, more higher-level applicable studies

in fashion can be conducted. On top of fashion recommendation and trend

forecasting, high-level fashion analysis includes fashion retrieval, fashion synthesis

and others. Cross-scenario retrieval has attracted much research attention for

having more practical significance. One representative cross-scenario retrieval

task is the street-to-shop retrieval. To find the similar items from different

domains, i.e., street and shop, various solutions have been proposed in previous

research based on metric learning, human pose estimation, sparse coding, and

others [68, 96]. Some studies even aimed to retrieve the exact same item in the

street photo from the online shop [104]. Whichever retrieval standard used, the

key problem of street-to-shop retrievals is to train the model to learn similarities

between the street and shop domains. A large number of works have studied on

the street-to-shop retrieval task and proposed different solutions. For example,

Wong et al. [174] proposed the Siamese Inception Network, Jiang et al. [77]

proposed the Bi-directional cross-triplet embedding algorithm, and others [17].

Fashion synthesis has been a rapidly evolving topic in recent years with the great

development of generative models such as GAN [40]. Among fashion synthesis

research, one of the most eye-catching tasks is virtual try-on, in which some

fascinating outputs have been produced [25, 192, 50, 169].

Both the low-level and mid-level fashion analysis are closely related to fashion

advising research and many of them are important technical foundations. For

example, accurate recognition of fine-grained fashion attributes can enhance the

item representation greatly, thereby improving the recommendation performance.

In some studies, fashion recommendation is directly based on visual analysis.
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For instance, Zhou et al. [199] formulated the fashion recommendation as a

cross-model retrieval problem and leveraged a human parsing model to enhance

the visual feature extraction.

2.3 Fashion Recommendation

Fashion recommendation is an important application field for recommender sys-

tems, it has special challenges as well as significance due to the characteristics of

fashion domain. According to different recommending targets, fashion recommen-

dation can be grouped into item-level and outfit-level recommendations. Based

on the recommending standard, it includes similarity-based and compatibility-

based recommendations. The former is very similar to the task of similar fashion

retrieval mentioned above. The latter, which is also known as mix-and-match

task, focuses on discovering the fashion compatibility rules from fashion matching

data. Based on whether personalization is involved in the recommender system

or not, we have the personalized fashion recommendation and non-personalized

one. In the rest of this section, we review several topics related to this thesis,

including personalized recommendation, fashion compatibility modeling, outfit

recommendation and personalized fashion recommendation.

2.3.1 Personalized Recommendation

Personalized recommender systems have been playing a vital and indispensable

role in various information access systems to boost business and facilitate the

decision-making process and are pervasive across numerous web domains such

as e-commence and/or media websites [196, 73]. They try to estimate users’

preferences on items based on historical user-item interactions, as well as the

side information from both user and item sides. The recommendation methods

are usually classified into three categories: collaborative filtering (CF), content-

based and hybrid [1]. CF usually explores user preferences on specific items from
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historical user-item interaction records, which can be browsing history or purchase

history. Content-based methods, instead, try to recommend an item to a user

based on the description of the item and the profile of the user’s interests [128].

CF methods can be further grouped into memory-based and model-based. The

idea of memory-based CF methods is to make the estimation of user-item interac-

tion directly from the user-item similarity matrix [22]. However, memory-based

methods are not applicable when the size of the item set is extremely large but

the interaction data is sparse. Comparatively, model-based CF methods are better

in generalization and representation ability. Among model-based CF methods, ma-

trix factorization (MF) is simple yet effective, and almost one of the most widely

applied methods in industry. Despite the effectiveness, MF still lacks expressive-

ness in using inner product operation to model the user-item interaction. He et

al. [58] proposed Neural Collaborative Filtering (NCF) which uses multilayer

perceptron (MLP) to model the user-item interaction. However, the MLPs are not

necessarily better than dot product for being the similarity function [138].

Another direction to improve the MF is to leverage more side information from

both user and item sides rather than only using IDs. To this end, Factorization

Machine (FM) [137] was proposed to model the feature interactions between an

arbitrary number of entities. It achieved great success as it models second-order

or even higher-order correlations between features to facilitate the user-item

interaction model. Recently, the neural version of FM, NFM, was also proposed

which applies the bilinear interaction pooling operation and stacks MLP to capture

the non-linear relationship of users and items [55]. In real-world scenarios, rich

heterogeneous side information is available, especially in the fashion domain,

where abundant item attributes can be obtained by fundamental fashion attributes

recognition tools. Studies have been conducted to incorporate user meta-data

such as age, occupation and gender, and item meta-data such as price and

categories through different latent factor models [154, 121, 176, 126]. However,

few existing methods are able to dig into detailed user preference in terms of
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specific aspects of items such as a certain brand or style. This kind of specific

user preference naturally exists in users’ fashion shopping behaviors, which is

important and would be helpful for overall user fashion taste modeling.

Another main stream of personalized recommendation research respects the

order of the user behaviors, and tries to predict the next item that the user

might be interested in. Compared with the non-sequential methods we have

introduced above, the sequential recommendation methods are able to model the

user-specific transition of interaction with items to master both the users’ general

interest and short-term preference [86, 131, 118]. A typical type is hybrid method

which combines the sequence-learning methods with factorization-based matrix-

completion techniques. The first hybrid sequential recommendation method is

Factorized Personalized Markov Chain (FPMC) [136], which can be considered

as a first-order Markov Chain whose transition matrix is jointly factorized with

a standard two-dimensional user-item matrix factorization approach. In recent

years, many deep learning-based methods have been proposed as well [191, 60,

59]. However, such sequence-aware recommendation studies has not attracted

enough research focus in the fashion domain yet.

2.3.2 Fashion Compatibility Learning and Outfit

Recommendation

Fashion compatibility learning is a domain-specific task which is also popularly

studied in recent years. It is also termed as mix-and-match relationship modeling,

cross-category fashion recommendation [190]. Some studies have focused on

item-item compatibility modeling and cast it as a metric learning problem. In

general, they try to project the fashion items into a latent space in which the

representations of compatible items are close to each other [54, 165, 163]. To this

end, different interaction functions were applied as pairwise compatibility metric,

including data-independent functions such as inner product [153], Euclidean
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distance [115], data-dependent ones such as category-aware conditional similarity

measures [163, 190] and others [189, 20]. Based on pairwise compatibility

modeling, the compatibility of the whole outfit can be obtained accordingly [152].

Another group of outfit compatibility modeling approaches takes the whole

fashion outfit as a set or an ordered sequence. Han et al. [49] employed the

bidirectional LSTM to model the items in the outfit and explore the compatible

relations between items in the matching outfit. However, such an approach was

argued not reasonable to model items in order. To overcome this limitation, Chen

et al. [14] proposed to use transformer [164] to model the item combinations,

which achieved preferable performance. Cui [21] used the graph representation

for the outfit modeling, which was also non-ordered and claimed to be more

suitable to reflect the dense and complex relations among multiple items in an

outfit.

Recently, outfit recommendation has attracted considerable attention in the area

of fashion recommendation. The most common idea is to model the interaction

between user and whole outfit under the condition that items in each outfit

are compatible. Hu et al. [66] proposed a tensor factorization approach for the

personalized outfit recommendation. Lin et al. [99] emphasised importance of

visual analysis in fashion recommendation and employed the generative model

to improve the visual understanding in outfit recommendation. Chen et al. [14]

used user browsing history to model the user preference and addressed the

outfit compatibility modeling and personalized outfit recommendation tasks all

together with a transformer model. Lin et al. [100] formulated the fashion outfit

recommendation as a multiple-instance-learning problem and proposed a two-

stage neural network model, OutfitNet, to learn the compatibility between fashion

items and users’ taste for fashion outfits in two stages. Li et al. [94] proposed

a hierarchical fashion graph network to integrate the information of the items

composing the outfit to facilitate the representation of the fashion outfit, and then

deployed the CF framework for the personalized outfit recommendation.
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Capsule wardrobe creation is a special case of fashion outfit recommendation,

which aims to maximize the mix-and-match popularity with minimum collection

of fashion items in the wardrobe. This interesting task proposed by Hsiao et

al. [65] can be regarded as an outfit compatibility evaluation problem which

essentially tries to increase the compatibility of each fashion mix-and-match from

the created capsule wardrobe. Further research on capsule wardrobe creation

leveraged more attributes of people, such as body shape and personal prefer-

ence [27]. The difference between capsule wardrobe creation and general outfit

compatibility modeling is that the former needs to maximize the compatibility of

multiple outfits simultaneously from the same group of item candidates whereas

the latter evaluates each outfit independently.

2.3.3 Personalized Fashion Recommendation

Outfit recommendation has practical value in the fashion domain because it

can offer a package of fashion suggestions and the mix-and-match advice. The

item-level personalized fashion recommendation is also important especially for

retailers. In most applicable scenarios, such as online shopping, users do not

usually buy the whole outfit at a time. In previous works, researchers have

realized that personalized fashion recommendation is not only applying available

personalized recommender systems in the fashion domain but also considering

the characteristics of the fashion domain [193]. The uniqueness of fashion

recommendation lies in several aspects. First, the purpose of the recommendation

is not only help users in their decision making for shopping, it can also provide

styling suggestions to improve other people’s taste in fashion. Second, compared

with other domains such as books, music or video, the number of fashion items is

extremely large while the interaction between user and fashion items can be very

sparse. Third, specific characteristics in the fashion domain make some factors

more important in fashion recommendation rather than others, such as aesthetics

and popularity.
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Kang et al. [79] built a visually-aware personalized recommender system based

upon Bayesian Personalized Ranking (BPR) [135] and Siamese networks [46].

They further combined GAN to synthesize new item images to maximize personal

objective value. Hwangbo et al. [69] built a recommender system for a real-world

fashion e-commence platform based on typical item- and CF-based algorithm.

They reflected several fashion domain characteristics such as seasonal preference

change, complementary purchase. To help users search and find fashion products

matching their taste among an increasing number of items, Ok et al. [122]

proposed to derive implicit ratings from user log data and generated predicted

ratings for item clusters through user-based CF. Zhang et al. [197] considered

the influence of fashion bloggers on users’ fashion purchase and proposed a

model to learn personal implicit visual influence funnel from fashion bloggers

to users for fashion recommendations. Liu et al. [102] emphasised style in

their recommendation method. They proposed the DeepStyle method which

extracted style features from item images and then incorporated them in the

Visual BPR (VBPR) framework for personalized recommendation. Considering the

importance of aesthetics in fashion, Yu et al. [193] proposed an aesthetic-based

clothing recommendation method which employed another aesthetic evaluation

model to extract aesthetic features from clothing images and further leveraged

the feature in a CF-based frameworks.

The proceding review of existing works shows that even though visual informa-

tion has been emphasised, most of the existing item-level personalized fashion

recommendation approaches are still based on the CF framework. The improve-

ments are limited in leveraging extra fashion-related features. None of them

dig deep to analyze the fashion shopping behavior and the underlying fashion

shopping patterns. Furthermore, most previous works assume that the user pref-

erence/taste in fashion to be static and few of them try to consider that the users’

interests changing with time as in a practical situation. These works also do not

take advantage of characteristics of fashion domain to enhance the sequential

continuity modeling of user behavior to better explore user preference.
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2.4 Fashion Trend Forecasting

Conventionally, fashion trends are envisioned and forecasted by fashion experts

who examine the world around them - from culture, business, and arts to science

and technology [36]. However, human-centric methods are usually inefficient,

expensive, labor-intensive, highly dependent on the experts’ background and may

be biased because of personal preference. Due to the limitation of human-centric

methods, in recent years, researchers have started to seek alternative data-driven

method of fashion trend forecasting. Compared with other computational fashion

tasks, fashion trend forecasting has not attracted as much research attention.

Despite its research significance, fashion trend forecasting based on big data and

DL technologies is still at its early stage and worth of exploration.

Hidayati et al. [61] studied runway fashion and tried to discover trendy patterns

from fashion shows, the top fashion of which is far away from ordinary people’s

fashion preference. However, the problem is that most items shown in fashion

shows did not become popular among the masses of people, which means they did

not necessarily become trendy eventually. Vittayakorn et al. [167] later extended

the task to a larger dataset and studied both runway and real-world fashion to

produce quantitative analysis of fashion and trends. Al-Halah et al. [3] proposed

of forecasting the fashion trends of specific styles based on Amazon’s online

shopping records. However, the online shopping activities may not reflect the

real fashion trends as the purchase decisions are affected by multiple factors.

Thereafter, Mall et al.proposed to forecast the fashion trends based on Instagram

data by crawling millions of Instagram posts from 44 cities from around the

world and analyzing the data with statistical models [113]. They modeled the

fashion trend signals of each target element with a basic combination of linear

and cyclical components, which were capable of capturing both coarse-level

trends and fine-scale spikes. However, the limitation is that they only targeted a

limited number of fashion elements which showed simple patterns in their trend
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signals (such as wearing hats or not) and did not include fine-grained fashion

elements.

Moreover, statistical models are still the mainstream methods in current fashion

trend modeling. However, in most cases, fashion trend signals can be very complex

and with complicated patterns which are not easy to capture using traditional

statistical methods such as linear regression or exponential smoothing [3, 113].

In the meantime, deep neural networks, especially recurrent neural networks,

have shown superior performance in many time-series prediction tasks such as

stock price prediction [33], sales forecasting [6] and others [31, 97, 130]. RNNs

are promising to achieve preferable performance in fashion trend forecasting task

but has not been studied.

2.5 Summary

The current research status and the main limitations of personalized fashion

recommendation and fashion trend forecasting in the literature are summarized

as follows.

Personalized Fashion Recommendation

(1) Personalized fashion recommendation has not attracted as much research

attention as other recommendation tasks in the fashion domain such as outfit

recommendation or compatibility modeling. Previous works on personalized

fashion recommendation have not sufficiently combined the characteristics of

fashion.

(2) Previous research on personalized fashion recommendation was limited to

leveraging extra fashion-related features. None of them dig deep to analyze

fashion shopping behaviors and the underlying patterns.
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(3) The dynamic sequential continuity is rarely explored in the research on

recommendation in the fashion domain. Majority of existing related works

studied the non-sequential fashion commendation problem, which only focused

on the static long-term user preference but neglected the interest drift of users

over time.

Fashion Trend Forecasting

(1) Data-driven fashion trend forecasting is still at its nascent stage and has not

attracted much research attention so far.

(2) The research targets in most existing works are not qualified to reveal the

real fashion trends. Some studies were based on e-commence data, in which the

popularity of fashion items are not mostly determined by the fashionability of

items or the fashion trends. Some studies focused on the trends of specific fashion

elements but with very simple and cyclic trend patterns, which are usually not

related to fashionability, but related to seasonality instead.

(3) Existing works still applied traditional statistical approaches to analyze the

time-series fashion trend signals. These approaches might have achieved prefer-

able performance in modeling trends with simple patterns, but they fall short in

making sound predictions for more complex trends.
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3Research Methodology

Towards effective fashion advising, two key perspectives are considered in this

thesis: personalization and fashionability. Two specific research tasks are studied

corresponding to the two perspectives, the personalized fashion recommendation

task to explore the personalization, and the fashion trend forecasting task to

explore the fashionability. As illustrated in Figure 3.1, for personalized fashion

recommendation task, two specific aspects are emphasized, which are user pref-

erence modeling based on long-range fashion purchase data and content-level

relational transition modeling for user behavior based on short-range fashion

browsing data. The fashion trend forecasting research focuses on developing

effective fashion trend modeling methods to predict the trends based on social

media fashion-related data.

The study of fashion advising in this thesis is totally data-driven, and so are all the

sub-tasks. Therefore, the main technical challenges are twofold. The first one is

to choose proper and valid data for the specific research purpose. The second is to

develop an effective deep learning-based approach to analyze the available data

and mine effective information to address the corresponding research tasks. In the

following part, the specific methodology for each sub-research task is introduced

from the perspectives of tackling the two challenges.

3.1 Shopping Pattern Modeling for

Personalized Fashion Recommendation

User preference is the main research focus for all personalized recommendation

tasks which determines the decisions and behaviors of the user in purchasing.
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Data-drive Fashion Advising with Deep Learning

Personalization

Personalized fashion recommendation

User preference 
modeling based on 
long-range fashion 

purchase data

Content-level 
relational transition 
modeling based on 
short-range fashion 

browsing data 

Fashionability

Fashion trend 
forecasting

Time-series fashion 
trend modeling based 

on social media 
fashion data

Figure 3.1: Research structure of data-driven fashion advising task with deep learning.
The task has two key research perspectives and can be investigated from
three important directions.

Different from other domains, user decisions in the fashion domain could be more

diverse [107, 85], and more dependent on specific aspects of products, such as

style, price or brand. Through observing real-world fashion shopping data, it

has been found that diverse user preferences and specific shopping patterns are

prevalent in the fashion domain. As a result, effectively modeling the diverse user

preferences is key to fashion recommendation systems. In other words, we have to

understand the shopping behaviors of different users, discover various shopping

patterns and then derive preferable recommendation strategies. Therefore, the

first research goal of this thesis is to discover personalized shopping patterns

from historical user behavior for fashion recommendation. Specifically, beyond

modeling the holistic user preference, it aims to predict fine-grained user fashion

preferences in different factor fields [78], such as brand, price, style, color, which

reflect specific user shopping patterns.
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3.1.1 Data Preparing

Data on fashion shopping is used in the the study of user fashion preference and

shopping patterns in developing a personalized fashion recommender system.

The fashion shopping records contain information on users and items as well

as user interaction feedback. It is the basic data usually used to analyze the

user preference in developing recommender systems. Additional information is

needed to investigate the detailed shopping patterns, which are related to specific

attributes of items.

Different groups of influential attributes are defined as factor field in this study,

which contains attributes describing the item from certain aspects (defined as

factor). Considering the characteristics of fashion shopping, five factor fields are

considered in analyzing the shopping patterns, which are Color, Style, Brand,

Price and Category. In the data preparation, the factor information is obtained by

analyzing the textual descriptions and images of the fashion item.

3.1.2 Approach

The Field-aware Graph Collaborative Filtering (FGCF) model is proposed to dis-

cover fine-grained personalized shopping patterns from historical user behaviors

by considering the factor-field-level interactions for fashion recommendation.

Compared with factor-based methods, such as FM [137], the factor field-based

methods consider the difference between fields rather than treating all factors

the same, which is therefore more promising to capture the underlying shop-

ping pattern [78, 123]. The proposed model embraces three main parts: (1) a

factor embedding layer for initializing factor embeddings and generating initial

embeddings for factor fields, (2) factor field embedding propagation on a fully-

connected graph, and (3) prediction layers for producing factor field-level and

holistic interaction scores.
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Specifically, the users and items are firstly represented as a set of factors from

multiple influential factor fields in the factor embedding layer. To enable the

higher-order embedding interaction between different factor fields, FGCF intro-

duces a fully-connected graph G = {V , E} whose nodes correspond to the factor

fields of users and items, respectively. Each edge connects two different factor

fields. The message passing is then conducted along the graph structure to model

factor-field level embedding interaction. FGCF stacks multiple embedding prop-

agation layers to explore the higher-order interaction between different factor

fields. The node embeddings in the last layer are utilized as the final represen-

tation of each factor field. Finally, the aggregated holistic prediction is used to

calculate the loss to train the entire recommendation model.

3.2 Content-level Relational Transition

Modeling for Sequential Fashion

Recommendation

Besides the user-item interaction modeling (main purpose in 3.1), capturing

transition relationships between pairs of adjacent items in sequences (i.e., se-

quential dynamics) is also important in predicting users’ subsequent actions.

The importance of transition modeling has been demonstrated in many existing

sequence-aware recommendation works [28, 131]. However, such sequential

dynamics modeling has not attracted much research attention in fashion recom-

mendation yet. This type of modeling is important in fashion recommendation

research, especially for application scenarios such as random browsing in online

fashion shopping.

One typical sequential recommendation method, TransRec [52], proposes to

employ a personalized translation operation to model the third-order interaction

between user u, the previous interacted item i and the next item j. It has been
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validated to be effective and shown superiority in many cases than other basic

methods which models user preference and sequential continuity of user behavior

separately [52, 92]. Although existing sequential recommendation methods, such

as TransRec, can be directly applied in the fashion domain, they cannot achieve

preferable performance for two main reasons. On the one hand, the existing

methods can be further improved technically. On the other hand, in the fashion

domain, effective methods should incorporate the characteristics of fashion.

3.2.1 Data Preparing

For the study of sequential fashion recommendation in this section, short-range

online fashion shopping data (randomly browsing) is applied. As the research

focus of this part aims to effectively capture the sequential dynamics of the user

behavior, it is more significant for continuous behaviors. Comparatively, purchase

data has less continuous patterns compared with browsing data which record

a short period of user behavior and in which the short-term dynamic patterns

are more important to capture. A large-scale fashion shopping dataset POG from

e-commence platform Taobao [14] is specifically adopted. This dataset contains

the ordered interaction records of users with different items in a short period,

which provides the basic sequential recommendation data for this study.

To generate a benchmark dataset for fairly evaluating different sequential fash-

ion recommendation methods, sliding window strategy is applied in the origi-

nal dataset to generate more short user-item interaction sequences with fixed

sequence length. Moreover, to support the content-level item-item transition

modeling in the proposed method, the associated attributes for each item are also

extracted. A commercial fashion tagging tool1 is specifically applied to extract

three types of fashion elements (category, attribute and style) from the item

images. A total of 225 different fashion element values (such as dress, red and

others) are extracted in the entire dataset, which can be categorized into 24

1visenze.com
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element groups based on a certain fashion taxonomy2. Element groups include

category, style and specific attribute groups such as color, pattern, neckline style

and dress shape.

3.2.2 Approach

To enhance the item-item transition modeling and further improve the per-

formance of sequential fashion recommendation, the Attentive Content-level

Translation-based Fashion Recommender (ACTR) is proposed. The proposed

ACTR model is original from TransRec but innovatively combines the characteris-

tics of fashion domain and leverages the content-level relational transitions. It

contains three key components: item relationship prediction, content-level item-

item transition modeling and recommendation based on mixture of transition.

It firstly leverages external relationships between fashion items to enhance the

item-item transition modeling by predicting the next item relationship based on

the user and previous item and based on that to model the relational item-item

interaction. Inspired by the idea of factor field feature interaction [78], given the

predicted relationship, the item-item transition is modeled by the combination

of the sub-transition of specific fashion attribute field (such as category, color

and others) between two items. A user-aware attention mechanism [166] is

further introduced to organically combine different sub-transitions regarding

different fashion content. Such a design is able to model the different levels that

indicate the different fashion content which users are interested in. The final

recommendation results are based on the mixture of the user-item transition

modeling and relational context-level item-item transition modeling.

2ViSenze taxonomy is used here.
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3.3 Fashion Trend Modeling Based on Social

Media Data

Data-driven fashion trend forecasting is still at its nascent stage. At this stage, two

main challenges have to be addressed for this task. First, although fashion trends

can be an abstract topic which covers a wide range of fashion-related concept, in

the forecasting task, the research target, that is, the specific fashion trends should

be well defined. In previous works, the trend of some fashion elements that are

less fashion-related are studied, such as wearing jacket. Such research objects are

actually more season-sensible rather than fashion-sensible, which cannot truly

reveal the fashion trend. Towards meaningful fashion trend forecasting, this work

proposes to study the fashion trend of fine-grained fashion elements in specific

groups of people. For example, the trend of pattern:stripe among New York women

aged 18-25.

The second challenge is how to effectively model historical fashion trend signals

and conduct forecasting accordingly. This problem can be grouped as a time-series

modeling and prediction problem, which is usually addressed by some classic

statistical models. However, the fashion trend signals can have highly complex

patterns that are not easy to capture by traditional methods. Some fashion trends

may be seasonal (such as neckline style: turtleneck) while some are not (such as

color: blue). Moreover, meaningful fashion trend forecasting requires predicting

trends for a certain period, not only for one time point, which makes the task

even more challenging. To properly address these challenges, a more powerful

model is necessary.
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3.3.1 Data Preparing

Selecting the data source choosing is important part in fashion trend forecasting.

Social media data are finally selected as the research target for two main reasons.

First, it sensitively and extensively records the fashion development with massive

uploaded fashion-related images and comments everyday from multiple sources

of end users, fashion bloggers and brands, etc. Second, rich information for both

users and fashion items can be extracted from the images, metadata and other

source data through well-developed computer vision or other machine learning

techniques. As existing datasets cannot support this research, either from other

data source (e-commence) or with less meaningful research targets, a new dataset

called Fashion Instagram Trend (FIT) is contributed which is based on the widely

used social platform Instagram.

To build the FIT dataset, user accounts from 14 main cities across the world are

crowded, of which all pictures in the posts that uploaded from July 2014 to June

2019 are downloaded. The dataset spans five years, which is long enough for the

fashion trend analysis. The information from the user and fashion item sides is

properly extracted from images as well as metadata. The popularity of certain

fashion elements for certain user groups over the time generates a specific fashion

trend signal. In the end, the whole dataset generate around 8000 specific fashion

element signals corresponding to fine-grained fashion elements and user groups.

All generated fashion trend signals in FIT are regarded meaningful to reveal the

real trends followed by large groups of people. The research goal is to effectively

model these trend signals, explore important patterns with the proper approach,

and therefore make accurate predictions.
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3.3.2 Approach

To perform accurate data-driven fashion trend forecasting, we have to capture

the underlying patterns in the historical fashion trend time series. Although

traditional models such as exponential smoothing or linear regression have been

effectively applied to model simple time-series data [3, 113], they fall short of

hands in making sound predictions for more complex trends. Recent advances in

deep learning have provided great solutions for many tasks [90]. In particular,

recurrent neural networks (RNNs) have demonstrated its superiority in modeling

time-series data [19, 180, 31]. However, such approaches have not been em-

ployed in the area of fashion trend analysis yet. From another perspective, most

existing works model the pieces of fashion trend signals independently. However,

according to both commonsense and fashion theories, the fashion trends are not

independent but well-correlated with each other. For example, the fashion ele-

ment turtleneck is an affiliated attribute to the fashion element sweater, therefore,

the trends of these two elements should be closely related to each other. Similar

relations also exist among user groups. These relations can be helpful for the

forecast of the trends, yet were ignored in most existing models.

The solution proposed in this thesis is to employ the LSTM encoder-decoder as the

basic model for the fashion trend forecasting task which leverages fashion element

information and user group information. Two message passing modules are

introduced in the model to explore the influence of correlated fashion elements or

user groups in trend modeling. As the task is to forecast a period of time of future

trend, it is more challenging than only one-step-ahead estimation. To effectively

capture temporal patterns on future horizons, the proposed model is equipped

with a sliding temporal attention module [31]. Specifically, at each time step, the

decoder hidden state is taken to attend to several different periods of the history

and generate the attention vector individually. The representation of the decoder

hidden state is then updated by combining the attention results of all periods of

the history. Therefore, the combined features can better describe the current time
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step as it incorporates both historical and future contextual information. The

proposed model is called Relation Enhanced Attention Recurrent network, short

in REAR.

3.4 Summary

This chapter presents the methodology of applying deep learning methods to

address the data-driven fashion advising task. Specifically, towards three spe-

cific research objectives illustrated in Section 1.2, three deep learning-based

models are proposed, namely, FGCF model for personalized fashion recommenda-

tion, ACTR for sequential fashion recommendation, and REAR for fashion trend

forecasting.
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4Learning Personalized Shopping

Patterns for Fashion

Recommendation

4.1 Introduction

The fashion industry, ranging from global discount retailers to exclusive lux-

ury brands, drives a significant part of global economy. It is now undergoing

large-scale digital transformation, creating a growing demand for supportive tech-

nologies in online fashion retails, such as personalized fashion recommendation.

Fashion recommendation system aims to recommend the suitable fashion items

to users by modeling users’ shopping preference based on historical behavior,

which has received increasing research attention [14, 15, 64, 161] from both the

industry and academic community in recent years.

Different from other domains, user decisions in the fashion domain could be more

diverse [107, 85] and more dependent on some specific aspects of products, such

as style, price or brand. Goswami and Khan [41] investigated the influence of

consumer-decision making on online apparel shopping and stated that shoppers

who are highly fashion and brand conscious are more inclined to buy stylish

clothes, whereas value-conscious buyers would look for price benefits and best

offers. For a better illustration, the upper part of Figure 4.1 provides an example

in the fashion domain from the Amazon dataset [88]. The example reveals three

representative shopping patterns from a given user’s purchase history with regard

to three user-specific aspects: category (i.e., shoes), color (i.e., black) and style

(i.e., elegant). Such diverse user preferences and specific shopping patterns are
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Figure 4.1: Illustration of diverse fashion shopping patterns and predicted user fashion
preferences in various aspects of fashion recommendation

prevalent in the fashion domain. As a result, effectively modeling the diverse

user preferences is key to fashion recommendation systems. In other words,

understanding the shopping behaviors of different users is important for deriving

preferable recommendation strategies.

Most existing efforts have primarily leveraged the visual appearance of fashion

items to derive visually-aware fashion item representation, such as global image

embedding [161, 53] and region-aware local representation [15, 64], before

modeling the user-item interactions based on the inner product of user and item

embeddings or some data-dependent interaction functions [56, 55]. Despite the

progress, most existing fashion recommendation methods directly model the holis-

tic user preference but do not reveal the diverse user preferences under different

aspects of fashion items. Such operation leads to less convincing recommendation

results because of the lack of interpretability.

To fill the research gap, this work develops a novel graph-based fashion recom-

mendation method, named Field-aware Graph Collaborative Filtering (FGCF),
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which aims to capture fine-grained user shopping patterns. As influential fac-

tors in fashion shopping are categorical, these factors (e.g., black, elegant) are

grouped into several factor fields (e.g., color, style) and field-level operations are

further conducted, such as interaction modeling. Compared with factor-based

methods, i.e., FM [137], the factor field-based methods consider the difference

between fields rather than treating all factors the same, which is a more promising

approach to capture the underlying shopping pattern [78, 123].

As shown in the lower part of Figure 4.1, our goal is not only to predict the

holistic user preference but also to infer the specific user fashion preferences in

different factor fields. To achieve this, three main components are equipped in the

proposed FGCF model: (1) a factor embedding layer that offers an initialization

of low-dimensional embeddings of different user and item factors, and composes

the embeddings of multiple predefined factor fields; (2) multiple factor field

embedding propagation layers that refine the embeddings of factor fields on a

fully-connected graph whose nodes are different factor fields of users and items;

and (3) multiple prediction layers that aggregate the refined embeddings of factor

fields, output the field-specific interaction scores next, and finally integrate the

field-specific scores into the holistic score for pairwise training. By the proposed

model, fine-grained user shopping patterns from diverse user historical behaviors

are expected to be disentangled and therefore better fashion recommendations

can be achieved. Extensive experiments on the large-scale dataset Amazon have

demonstrated the effectiveness of our method.

4.2 Related Work

Most of user-preference based fashion recommendation works are based on

general recommendation models. The most classical model, CF make recommen-

dations by learning from user-item historical interactions, works based on CF

and its family models include [67, 193, 44], such as previous shopping records.
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FM is another effective basic recommendation model, which learns implicit la-

tent representation for each feature and then considers all single and pairwise

interactions of features to model the predictions of the user-item interactions.

Unlike CF models which only exploit information from user and item IDs, FM can

handle multiple tags or features, so that more side information is exploited and

the recommendation performance can be improved. However, the FM model only

considers the first-order interaction between features, which cannot fully exploit

the rich information in real-world data with complex structures. The extension

of FM, including attentional FM (AFM) [185] and neural FM (NFM) [55] have

made improvements in this perspective, but they do not consider the effect across

different features, which degrades the expressiveness of the model. Moreover,

the nonlinear projection process is implicit, which causes the model to lack inter-

pretability. Being capable of modeling high-order connective between users and

items, graph network [84] has also been applied in personal recommendation.

Combined with CF models, the graph model takes the users and items as the

nodes in the graph and the high-order connectives can be modeled [177, 175].

However, existing works are limited in expanding connectives between users and

items, and few studies have considered the connectives beyond user and item, for

example, the specific attributes of items.

4.3 Problem Formulation

The goal of this work is to discover personalized shopping patterns from historical

user behaviors for fashion recommendation. Specifically, beyond modeling the

holistic user preference, we aim to predict fine-grained user fashion preferences

in different factor fields [78], such as brand, price, style and color, which reflect

specific user shopping patterns. For easy understanding, the specific task in this

work is defined in this section.
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Let u denotes a user from the entire user set U = {ut}Nu
t=1 and i denotes an item

from the whole item set I = {it}Ni
t=1. The interaction set between the users and

items is defined asR = {(u, i)}, which describes the historical shopping behaviors

of users. In addition to the ID or dense visual features that distinguish a user or a

fashion item, the associated influential factors in different factor fields [78] are

exploited to represent the fashion items and users for the purpose of capturing fine-

grained user fashion preferences. Formally, x, X f = {xf
t }V f

t=1, and X = {X fk}M
k=1

denote a factor, the factor set of a factor field f , and the whole factor field

set respectively. A user and an item, with the associated factors are denoted

as Xu = {X fk
u }

MU
k=1 = {xfk

1 , · · · , x
fk

V k
u
}MU

k=1 and Xi = {X fk
i }

MI
k=1 = {xfk

1 , · · · , x
fk

V k
i
}MI

k=1

respectively. Note that a factor field could be one-hot or multi-hot. For example,

the factor field Color usually has only one factor (i.e., value) for each fashion

item, wheres the factor field History could have multiple factors for each user.

Both the user ID and item ID can be treated as specific factor fields to capture the

collaborative signal. Thus, the the problem is formulated as follows:

• Input: The user factor sets XU = {Xut}Nu
t=1, the item factor sets XI =

{Xit}Ni
t=1, and the user-item interactions R.

• Output: A predictive model which outputs not only the overall interaction

score yui for a given user-item pair (u, i), but also specific interaction scores

{yfk
ui} in multiple influential factor fields of fashion products.

4.4 Approach

In this section, a Field-aware Graph Collaborative Filtering (FGCF) model is pro-

posed to discover personalized shopping patterns from historical user behaviors

for fashion recommendation. As illustrated in Figure 4.2, the proposed model

embraces three main parts: (1) a factor embedding layer for initializing factor

embeddings and generating initial embeddings for factor fields, (2) factor field
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Figure 4.2: FGCF consists three main parts: factor embedding initialization, factor field
embedding propagation on the graph and fashion preference prediction. The
orange dots denote the MLPs for prediction.

embedding propagation on a fully-connected graph and (3) prediction layers for

producing factor field-level and holistic interaction scores.

4.4.1 Factor Embedding Layer

Factor Embeddings: As mentioned in section 4.3, the users and items are rep-

resented as a set of factors from multiple influential factor fields. Following

the strategies of mainstream recommendation models [185, 55, 177], a factor

xf ∈ X f in a factor field f of a user u ∈ U (or an item i ∈ I) is described by a

low-dimensional dense embedding vector ef
u ∈ Rd (ef

i ∈ Rd), where d denotes the

embedding size. This idea can be easily implemented by an embedding look-up

table: E = [EU ,EI ],

where EU = {Efk
U }

MU
k=1 and EI = {Efk

I }
MI
k=1 denote the factor embeddings in MU

user factor fields and MI item factor fields, respectively.
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Factor Field Embeddings: After initializing the factor embeddings of users and

items, the next step is to obtain the initial representations of the user and item

factor fields. One-hot factor fields, such as color, are represented directly as the

embedding of the activated (nonzero) factor in this factor field. Multi-hot factor

fields, such as history, are represented by the aggregation of the embeddings

of the activated (nonzero) factors in this factor field with the average-pooling

operation.

Based on the aforementioned solution, given a user-item pair (u, i), MU user

factor field embeddings {fk
u}

MU
k=1 and MI item factor field embeddings {fk

i }
MI
k=1

can be obtained, which are denoted as Fui = {fk
ui}M

k=1 for simplicity, where

M = MU +MI . Thereafter, the Fui will be fed into a fully connected graph for

propagation, as described in section 4.4.2.

4.4.2 Factor Field Embedding Propagation on Graph

Graph: To enable the higher-order embedding interaction between different

factor fields, FGCF introduces a fully-connected graph G = {V , E} whose nodes

correspond to the MU +MI factor fields of users and items, respectively. Each

edge connects two different factor fields. Motivated by the message-passing

mechanism of GNN [198], FGCF performs message passing along the graph

structure for factor-field level embedding interaction and updated from first-order

propagation to higher-order propagation.

Layer-wise Embedding Propagation: The input to the graph G is a set of initial

node (factor field) embeddings Fui = {fk
ui ∈ Rd}M

k=1. The embedding propagation

layer updates the node embeddings as F (1)
ui , which tasks the following propagation

rule as follows:

fk(l+1)
ui =σ

λW′(l)fk
ui+(1−λ) 1

M

M∑
j=1

W(l)(fk
ui � f j

ui)

, (4.1)
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where the λ is a trade-off hyperparameter to balance the first-order and second-

order signals. The W(l) ∈ Rdl+1×dl and W′(l) ∈ Rdl+1×dl are layer-specific trainable

linear transformation matrices to distill useful information for propagation and

dl is the transformation size in the l-th layer. The σ denotes an element-wise

activation function, such as Sigmoid(·) or Relu(·). Different from conventional

graph convolutional networks which only consider the node-level embedding

transformations W′(l)fk
ui, this method additionally leverages the interaction be-

tween two connected factor field nodes fk
ui � f j

ui for message propagation and

aggregation, where � denotes the element-wise product.

Higher-order Embedding Propagation: FGCF stacks multiple embedding prop-

agation layers to explore the higher-order interaction between different factor

fields. Such high-order interactions are crucial to capture the factor field-aware

user fashion preferences.

Compared with the classic factor-based methods, such as FM [137], the factor

field embeddings updated by Eq. (4.1) represents the factor field-specific high-

order interactions of the given user-item pair (u, i). According to a previous

work [55], better modeling high-order interactions effectively helps capture the

underlying nonlinear structure of data and mine more useful information. With

multi-layer message propagation, higher-order interactions between factor fields

are exploited, thereby effectively boosting the expressiveness of the model.

The node embeddings in the last layer are utilized as the final representation

of each factor field, which are denoted by {Fk
ui ∈ Rd′}M

k=1 where the d′ are the

embedding size of the final node embeddings.
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4.4.3 Fashion Preference Prediction

Field-specific Preference: Given the final representation of each factor field after

layer-wise embedding propagation on the graph, we can now predict the factor

field-specific user fashion preferences.

Specifically, MI predictors hk(·) (only for item fields) are employed, which can be

implemented by an MLP, to transform the final representation of each item factor

field to a predictive field-specific preference prediction: ŷfk
ui = hk(Fk

ui), where

1 ≤ k ≤MI .

Holistic Preference: After obtaining the factor field-specific preference predic-

tions, the holistic user preference ŷui is modeled as the aggregation of factor

field-specific preference predictions: ŷui = 1/MI
∑MI

k=1 ŷ
fk
ui , where ŷui is leveraged

for pairwise training because the holistic supervision is available.

4.4.4 Model Training

Following previous works [135, 53], the pairwise Bayesian personalized ranking

(BPR) loss is adopted in our approach to optimize the model parameters under

the assumption that the observed interaction should have higher predictive score

than unobserved interactions. The entire model is optimized by minimizing the

following objective:

min
(u,i,j)∈O

∑
− ln s(ŷui − ŷuj) + η ‖Θ‖, (4.2)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the pairwise training

triples. R+ andR− denote observed and unobserved interaction sets, respectively.

Θ denotes all the trainable parameters and s(·) is the Sigmoid function. L2

regularization is applied to avoid over-fitting.
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4.5 Experiments

This section introduces the conducted extensive experiments on the real-world

datasets to evaluate the effectiveness of the proposed FGCF model.

4.5.1 Dataset

A dataset is collected for this task based on the Amazon (Clothing, Shoes and

Jewelry) dataset [88] and split into two sub-datasets: Men and Women1. The

attributes (i.e., factors) of items are mainly extracted from the Color, Style, Brand,

Price and Category factor fields using their textual descriptions and product images.

Specifically, brand and price information are directly extracted from the meta-data

of the dataset.

The other attributes are extracted through the following processes:

• Category factor extraction Although category information is provided in

the meta-data, it is of low quality with noise and coarse definition. In

comparison, the category extracted from the product description is better

defined and more accurate. As a result, the hierarchical keywords match-

ing strategy is utilized to extract two levels of categories of items, coarse

category and detailed category (denoted as Cate-C and Cate-D). Thereafter,

manually check is conducted to further remove the noise in the extracted

category information.

• Color and style extraction The color information of items is obtained by a

commonly used tool called ColorThief 2, which can extract the dominant

1https://jmcauley.ucsd.edu/data/amazon/
2https://github.com/lokesh/color-thief
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Table 4.1: Statistic of the two datasets

Dataset #Interaction #User #Item

Amazon-Women 457,375 57,523 207,721

Amazon-Men 96,822 13,913 48,618

Table 4.2: Statistic of number of factors in each factor field in our datasets. Cate-C
stands for coarse category and cate-D stands for fine-grained category.

Fields Color Style Brand Price Cate-C Cate-D

#Factor 30 11 1940 8 7/4∗ 51/24∗

The former number is for Women dataset and the later is for Men dataset.

colors from the images of items. The style information is obtained by

commercial fashion annotation tool ViSenze. 3

Users with low interactions (those who purchased and reviewed less than 5 items)

are further removed for the sake of data quality considering the interaction density.

Table 4.1 lists the statistics of the two datasets, showing the number of users, items

and interactions in each dataset. Table 4.2 presents the statistic of item factor

collections. For both the Women and Men datasets, 80% of historical interactions

of each user are randomly selected for training and 20% for evaluation. Each

observed user-item interaction is treated as a positive instance, and paired with

one random negative item that the user does not interact with. Two factor

fields are employed for user representation: user ID and user History and seven

factor fields for items: item ID, Color, Style, Brand, Price, coarse category Cate-

C, and fine-grained category Cate-D. This work only considers the user fashion

preferences in different item factor fields. The user factor field embeddings are

only used for propagation and would not be applied for prediction.

3visenze.com
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4.5.2 Experimental Settings

Baselines: Five representative recommendation models are selected as the

baselines including MF [135], FM [137], NFM [55], AFM [185] and VBPR [53].

All baselines are reimplemented on our datasets and carefully tuned for the best

performance, and are introduced in detail as follows:

• Matrix Factorization (MF) [135]: This is the basic Matrix Factorization

model using BPR loss.

• Factorization Machine (FM) [137]: The factorization machine method

takes all user and item information as features of an input interaction

and can predict the score of the input by modeling second-order feature

interactions.

• Neural Factorization Machine (NFM) [55]: Neural FM method is the

state-of-the-art factorization method, which implements the FM with neural

network.

• Attentional Factorization Machine (AFM) [185]: FM method with an

attention mechanism.

• Visual Bayesian Personalized Ranking (VBPR) [53]: A state-of-the-art

visual-based recommendation model which exploits extra visual features

compared with the basic MF model.

Implementation Details: The proposed FGCF model and all baselines are

implemented in Tensorflow. For all models, the optimizer is set to Adam optimizer,

the batch size is set to 512, the embedding size is set to 64 and the Xavier

initializer is selected to initialize all parameters.

54



Grid search strategy is applied to select the hyper-parameters for our FGCF model.

The learning rate is searched in {0.00001,0.0005,0.0001,0.005}, and finally set

to 0.0005 for both datasets. The l2 regularization coefficient is set to 4e−6 for

embedding, and 1e− 4 for other model parameters. The dropout ratio is set to

0.8 for both datasets. The default setting for depth of graph is two.

Evaluation Matrices: For evaluation, 99 negative items are sampled for each

user in the test set [30, 58] from the candidate negative item pools which con-

tain all unobserved items for the certain user. Five commonly used evaluation

metrics are adopted to comprehensively evaluate the effectiveness of top-K recom-

mendation and preference ranking [175, 58]: precision@K, recall@K, MAP@K,

NDCG@K and MRR@K. K is set to 10 by default. The results for all matrices are

reported averagely.

4.5.3 Overall Recommendation Performance

Tables 4.3 and 4.4 report the overall performance of the proposed FGCF model

and baselines on two datasets, from which the following observations can be

found:

(1) MF shows the worst performances on both datasets because it uses limited

information, specifically user ID and item ID. VBPR is slightly better than MF for

taking advantage of visual information.

(2) Comparatively, FM-family methods achieve better results because they exploit

more attributes information. In particular, the NFM shows desired performance

because it models the non-linear high-order feature interactions, and the attention

mechanism adopted in AFM also helps improve the performance to identify the

informative factor interactions.
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Table 4.3: Overall Performance Comparison (Women)

Precision Recall MAP NDCG MRR

MF 0.0390 0.3729 0.2136 0.2527 0.1540

VBPR 0.0424 0.4067 0.2179 0.264 0.1459

FM 0.0456 0.4367 0.2402 0.2841 0.1556

NFM 0.0457 0.4378 0.2405 0.2889 0.1625

AFM 0.0453 0.4332 0.2362 0.2844 0.1596

FGCF 0.0471 0.4491 0.2473 0.2969 0.1688

%Improv. 3.06 2.58 2.83 2.77 3.88

%Improv. denotes the percentage of the improvement compared to most competitive baseline.

Table 4.4: Overall Performance Comparison (Men)

Precision Recall MAP NDCG MRR

MF 0.0274 0.2694 0.1371 0.1686 0.0886

VBPR 0.0343 0.3376 0.1699 0.2100 0.1054

FM 0.0367 0.3609 0.1868 0.2287 0.1185

NFM 0.0376 0.3695 0.1891 0.2324 0.1183

AFM 0.0371 0.3645 0.1876 0.2301 0.1177

FGCF 0.0383 0.3764 0.1945 0.2381 0.1236

%Improv. 1.86 1.87 2.86 2.45 4.30

(3) The proposed FGCF model consistently yields the best performance on both

datasets evaluated. Compared with NFM that models the feature-level high-order

interactions, FGCF captures more explicit high-order interactions in different item

factor fields and then enables better expressiveness.
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4.5.4 Effects of Embedding Propagation in FGCF

To investigate the effectiveness of embedding propagation (EP) and the effect of

the graph depth on the overall performance, this section compares the perfor-

mance of the FGCF model with different numbers of the embedding propagation

layers, denoted by FGCF-K (K ∈ {0, 1, 2, 3}), as shown in Figure 4.3. In particular,

K = 0 means predicting the field-specific user preferences using the original

factor field embeddings. Figure 4.3 show the following observations:

(1) EP can significantly improve the performance because it helps enhance factor

field representation by information exchange. It is reasonable because the field-

specific user preference could not solely depend on the corresponding factor field,

and is helpful to aggregate the second-order interactions between the factor field

and other factor fields into the representation of this factor field by Eq. (4.1).

(2) Compared with the one-layer model, FGCF-2 achieves higher improvement

because it models more higher-order factor field interaction, through which useful

information from highly nonlinear data can be effectively exploited.

(3) The performance of FGCF-3 is worse compared with other settings, which

shows that using too many EP layers might cause the over-smoothness of the

node representation and performance degradation.

4.5.5 Analysis of Field-specific Fashion Preferences

This study aims to predict the factor field-specific fashion preferences from diverse

user shopping behaviors. Each field-specific fashion preference is dominated by

a latent user fashion shopping pattern. Detailed discussion is provided in this

section to clearly illustrate the effectiveness of the proposed method. First, the

performance of fashion recommendation in different factor fields of items is

listed in Table 4.5, from which the following observations can be obtained: (1)
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Figure 4.3: Performance comparison (NDCG) of FGCF-K model with different numbers
(K) of embedding propagation layers in FGCF.

Overall, different item factor fields show diverse recommendation performance.

Among the seven item factor fields, the ID field yields the highest performance.

The result is reasonable because the ID embedding, which is widely applied in

existing personalized recommendation works, has strong representation ability,

which can effectively capture the collaborative filtering signal. (2) The Brand

field performs the worst because more than 1,900 are in this field, and thus, the

user preference in the field would be too diverse to capture. (3) Except the ID

field, the Cate-C field yields the best performance on the Men dataset, whereas

on the Women dataset, the Style and Color fields hit the top-2 best performance.

This result shows that the consumers’ shopping style could vary in gender, and

usually, women are much more fashion-conscious than the men.

Then, two cases of disentangled factor field-based recommendation results (Top

10) are illustrated in Figure 4.4. The items in each row are ranked according to

the corresponding factor field-level prediction scores. The first observation is that

the ranking results in different factor fields are diverse and each ranking result

shows distinct patterns (marked with squares in the same color). In the first case,

the shopping pattern with regard to the factor field-Style (second row) is rather

marked as 7 out of 10 items have the style Casual. A similar phenomenon can
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Table 4.5: Performance of user preference prediction in different item factor fields. The
performance of Overall prediction is listed at the bottom of the table as a
baseline.

Men Women

Recall NDCG Recall NDCG

ID 0.3545 0.2102 0.3846 0.2413

Color 0.1919 0.102 0.2821 0.1418

Style 0.2379 0.1263 0.2987 0.1632

Brand 0.1257 0.0735 0.0819 0.0572

Price 0.1640 0.0886 0.1664 0.0964

Cate-C 0.2608 0.1409 0.2132 0.1079

Cate-D 0.1775 0.0842 0.1981 0.1188

Overall 0.3764 0.2381 0.4491 0.2969

be observed from the factor field Price and Cate-C. Specifically, most top-ranking

items based on price are in the price range [50-100] and [30-50], and are shoes

and bags if based on course category. Notably, the shopping pattern about color is

not so obvious for this particular user, which implies that this user might not have

a specific color preference. The second user, on the contrary, has preferred colors,

which are black and beige according to the color-based ranking results. Our model

also predicts that this user prefers Casual and Feminine fashion items. The most

likely items he/she would buy are Clothing and Underwear, particularly Pumps or

Skirt. From the preceding two cases and discussion, we can observe that certain

shopping patterns related to specific factor fields are effectively mined by the

proposed model. Another important observation is that most top-ranked items

showing various shopping patterns are positive to the user, consistent with the

true preference of the users (marked with a red tick), which demonstrates that

our method can discover not only shopping patterns but also discover effective

patterns.
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Figure 4.4: Examples of top 10 recommendations based on factor field-level scores.
Colorful squares show underlying patterns with regard to certain factor field.
Ticked items are positive to the user.

4.6 Summary

This chapter focuses on the task of learning personalized shopping patterns

for fashion recommendation, aiming not only to predict the historical fashion

preference of users but also to reveal the diverse fashion preference with respect

to specific aspects such as style, brand or price, that is, learn specific fashion

shopping patterns. A novel graph-based model FGCF is proposed, which applies a

fully-connected graph to effectively model the interaction of user and item related

to specific factors through factor-field embedding propagation and aggregation.

Extensive experiments on two datasets were conducted to evaluate the proposed

approach for the specific task and the results show that the proposed FGCF model

achieves better recommendation performance compared with baselines. More
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importantly, it effectively captures diverse fined-grain fashion shopping patterns

from complex user purchasing behaviors.
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5Modeling Content-level Relational

Transition for Sequential Fashion

Recommendation

5.1 Introduction

The basic idea of most classic recommender systems is to model the compatibility

between user-item pairs (i.e., user preference), such as MF [135] and its vari-

ants [53]. However, studies have shown that capturing transition relationships

between pairs of adjacent items in sequences (i.e., sequential dynamics) is also

important in predicting user’s next actions, such as purchasing or clicking [136,

52]. To explore sequential dynamics for better recommendation performance,

researchers have devoted considerable efforts to sequential recommendation in

recent years. A majority of sequential recommendation methods aim to model

the relations between the user u, the item i that u recently picked and the item

j, which would be picked next. A typical method, TransRec [52], proposes to

employ a personalized translation operation to model the third-order interaction

between u, i, and j. This method has been validated to be effective and has

shown superiority in many cases than other basic methods which models user

preference and sequential continuity of user behavior separately [52, 92].

The key idea behind TransRec is to model the transition process of user behaviors.

Specifically, each user u acts as a translation vector, through which the previous

item i is ‘translated into’ the next item j. However, such translation is determined

by the user-item relations/interactions only and overlook the item-item relations,

as illustrated in Figure 5.1 (a). Existing research has demonstrated that exploring
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Figure 5.1: Instead of solely modeling single-component user-item-item transition as the
basic translation-based sequential recommendation method does (showing
in (a)), this study proposes to leverage item-item relationships (matching
or substitution), which also indicate the user’s intention for the next action.
Based on the predicted relationship, the content-level transition is modeled
to enhance the item-item interaction modeling, which accordingly improves
the overall recommendation performance.

heterogeneous item relationships can help the item-to-item interaction model and

facilitate the sequential recommendation results [80]. Particularly in the fashion

domain, abundant contextual relationships exist between items. For example,

two clothes with similar design details or the same style. Such item-to-item

transition is particularly important in situations where the user behavior is highly

continuous. For example, when doing online fashion shopping, most people click

on items they find attractive continuously. In such circumstance, the users can

been easily affected by the items he/she recently visited for their next click.

As we known, two common application scenarios exist for fashion recommen-

dation: to recommend items for substitution and to recommend them for mix-
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and-match. These two recommenders are widely equipped by most fashion

e-commence platforms, which reminds us of two most important relationships

between fashion items, substitution and mix-and-match. Inspired by the idea of

leveraging item-item relations in recommender system, this work aims to incor-

porate the two most common yet important relationships between fashion items

into fashion recommendation, which can be helpful from two aspects. First, it

is promising to improve the recommendation accuracy. Second, it makes the

recommendation results more explainable by linking the recommendation item

with the previous ones with a certain explicit relationships.

Kang et al. [80] proposed a general-purpose approach which is able to leverage

heterogeneous item relationships and make recommendations based on the mix-

ture of multiple relationships. The recommendation results in this method consist

of two parts, general user-item translation and specific relationship-item transla-

tion, and both parts are modeled by TransE [8], the same as in the basic TransRec

model. However, such general translation operation might not be effective enough

to model relational item-item transition in this fashion recommendation task for

two reasons. First, the number of fashion items is extremely huge, and many items

only have a minor difference, which causes the sparsity problem when trying

to model the item-item interactions. Second, unlike other utility-domain items,

such as electronic devices, of which the the relationships are mainly determined

by their functional properties, the relationships between fashion items are more

sophisticated and specific. Even if we consider only the most basic relationships,

i.e., substitution and mix-and-match, the item-item transition can be different

when focusing on various aspects. For example, two items may be able to match

in terms of their categories, such as top and pants, but they do not necessarily

hold the mix-and-match relationship as they can be not matching in terms of

color, or style, or other design details.

In this chapter, to enhance the item-item transition modeling and further improve

the recommendation performance, it is proposed to combine the characteristics of
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fashion domain and leverage the content-level relational transitions. Specifically,

inspired by the idea of factor field feature interaction [78], the sub-transition

of specific fashion attribute field (such as category, color and others) between

two items is modeled. Such content-level transition modeling is promising to

handle the item-item interaction sparsity problem and enhance the item transition

modeling. A user-aware attention mechanism is further introduced to organically

combine different sub-transitions regarding different fashion content. Such

design is able to model the different levels that users care about with regard to

different content [166]. The proposed model is called Attentional Content-level

Translation-based Fashion Recommender (ACTR).

The contributions of this chapter are summarized as follows:

1) It proposes to incorporate item-item contextual relationships, specifically,

substitution and mix-and-match, in the sequential recommendation models to

improve the fashion recommendation performance in terms of recommendation

accuracy and interpretability.

2) Considering the domain characteristics of fashion, a novel content-level inter-

action method is proposed in modeling the relational translation to take better

advantage of rich associated information of fashion items, as well as alleviate the

item-item sparsity problem. A attention mechanism is further devised to deter-

mine the importance of different attribute fields to different users and combine

all content-level transitions into the overall recommendation results.

3) Extensive experiments on real-world e-commence fashion dataset iFashion

under two settings demonstrate the effectiveness of the proposed method in mak-

ing preferable personalized fashion recommendation. With the introduction of

basic relationships between fashion items, the proposed model also aims to make

relational recommendation that is suitable for various applicable scenarios.
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5.2 Related Work

Two main types of sequential recommendation methods focus on sequence mod-

eling of the ordered historical observations, Markov model-based and RNN-based.

The Markov-based methods assume that the next user actions depend only on

a limited number of the most recent preceding actions [131], or just the very

last one. Factorized Personalized Markov Chain (FPMC) [136] is a highly rep-

resentative sequential recommendation method, which can be considered as

a first-order Markov Chain whose transition matrix is jointly factorized with a

standard two-dimensional user-item matrix factorization approach. PRME [34]

is another representative Markov-based method that shows better performance

than FPMC. Inspired by translational metric embeddings [8] in modeling the tran-

sition of the user behaviors, many translation-based sequential recommendation

methods have been developed in recent years. Specifically, TransRec [52] unifies

item-item transition and user-item interaction to predict the next item user might

be interested. MoHR [80] proposes to leverage heterogeneous item relationships

in the transE-based translation framework and achieved preferable recommenda-

tion performance. CKE [194] utilizes another translation model transR [98] and

incorporates multimedia knowledge to further boost the performance.

As RNNs are designed to process sequential data, they are suitable to handle the

sequential recommendation problem. RNNs can model the dynamics of interac-

tions and sequential patterns of user behaviors, as well as various multi-media side

information along with the sequential signal. Variants of RNNs such as LSTM [43]

and GRU [18] have been widely applied for developing a sequential recommender.

Typical solutions include GRU4REC [60], NARM [93], STAMP [103] and oth-

ers [158, 132, 183]. CNN-based methods also show competitive performance on

sequential and session-based recommendation [159].

In the fashion domain, sequence modeling has been included in many tasks

already. For example, in compatibility learning, Han et al. [49]employed the
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bidirectional LSTM to model the items in the outfit and exploit the compatible

relations between items in the matching outfit. However, the sequence-aware

fashion recommendation has barely been explored in literature. Most existing

studies on fashion recommendation are non-sequential personalized fashion rec-

ommendation or fashion matching recommendation. For example, Yu et al. [193]

proposed a aesthetic-based clothing recommendation method which leverage

aesthetic features to enhance the fashion recommendation performance based on

the CF frameworks. Hu et al. [66] proposed a tensor factorization approach for

the personalized outfit recommendation. Although sequential recommendation

in the general domain has been widely studied for its great practical value as

reviewed above, in the fashion domain such a task is of exploration and faces

new challenges and possible solutions.

5.3 Problem Formulation

Let U = {u} denote the whole user set and I = {i} denote the whole item set, all

items that u has interacted with generate an item sequence Su. Given a user u

and the item i, which he/her previously interacted with, this study aims to predict

the interaction probability between u and item j for the next action of u, and

generate the recommendation lists based on the probability scores. This task is

formulated as a ranking problem, which requires the probability scores of positive

next items to rank higher than that of negative items.

On top of user ID u and item ID i, associated information in the fashion domain

(category, attribute, and style) is also leveraged in the proposed methods for

modeling the content-level item-item transition. Each unique associated informa-

tion is defined as a factor (such as red, casual), and the group containing factors

describing the same aspect of the item as factor field (such as color), similar as

defined in Chapter 4. A factor, the factor set of a factor filed f , and the whole
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factor field set are denoted by x, X f = {xf
t }V f

t=1, and X = {X fk}M
k=1 respectively.

V f is the number of factors in the field f , and M is the number of factor field.

5.4 Approach

A novel Attentional Content-level Translation-based Fashion Recommender (ACTR)

model is proposed in this study to address the sequential fashion recommenda-

tion problem. The ACTR model is original from TransRec which applies single

translation operation to effectively model third-order interaction between u, i

and j. This model consists of three important parts: item relationship predic-

tion, content-level item-item transition modeling, and recommendation based on

mixture of transition.

5.4.1 Item Relationship Modeling and Prediction

Item-item relationships have been demonstrated effective in helping the next

item prediction and have been explored in several works previously [80, 125,

187]. However, no attempt has ever been made in the fashion domain to employ

fashion item relationships into fashion recommendations. Moreover, existing

works in the general recommendation domain are limited to explore the external

relationships, such as "also-viewed". By contrast, this work seeks to leverage the

domain-specific relationships between fashion items, starting with the two most

basic ones: substitution and mix-and-match.

From another aspect, such a relationship between adjacent items also reflects the

temporal intention of users behind their actions. For example, if a user picks a

T-shirt after the pick of pants, he/she is trying to find something for matching.

To predict the next item-item relationship, we predict the intention of the user

in his next action. The user intention is assumed to be determined by the user

himself and his previous picks, and the next item is always related to his previous

68



interacted items, implicitly or explicitly. The transnational operation [8] is applied

to model the interaction between u, i and the specific relationship r inspired by

knowledge graph-embedding techniques:

R(r|u, i) = br − d(θθθu + θ̂̂θ̂θi, θθθr), (5.1)

where θθθu, θ̂̂θ̂θi, θθθr ∈ Rc are the embeddings of u, i, r respectively and f is the

embedding size. d() denotes distance measurement, which uses L2 distance in

the specific implement of this work. br is the bias term. To obtain the interacted

probability of different relationships under the condition of certain user u and

historical interaction(s) i, a probability function P over all relationships is defined

as follows:

P (r|u, i) = exp(R(r|u, i))∑
r′∈R exp(R(r′|u, i)) , (5.2)

where R denotes the set of all relationships, in this case three relationships:

substitution, mix-and-match, and others. The specific P (r|u, i) can be interpreted

as the possibility that the user u wants the next item to be related to i under the

relationship r.

5.4.2 Content-level Relational Item Transition

Modeling

Given a relationship between i and next item j, previous works model the rela-

tional item-item transition with a simple translation operation as described in

sub-section 5.1. However, in our case, it is not effective enough because that

item set is large and therefore item-item interaction is sparse. To enhance the

item-item interaction, it is necessary to leverage more context information of

the fashion items rather than using item IDs only. In fact, compared with other

utility-oriented items, fashion items can be described by more details. Meanwhile,

two items can be related with each other in many dimensions. For example, A,

B and C are interchangeable in the same category, but A and B may be more
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similar to B and C if they have common details, such as the same color or same

material.

Therefore, the relationship r between two items i and j should be applicable

not only at the item-level, but also at the detailed content-level. Previous works

usually represent the item with a latent embedding without considering any

context information, which is the ID-based embedding. In contrast, this study

aims to leverage more descriptive information on the fashion items. For clarity

and consistency with the previous chapter, each piece of descriptive information

is defined as a factor. As introduced above, each factor describes the item from

one certain angle (for example, red describes color), each ‘description angle’ is

defined as a factor field (color is a factor field in the case). As a result, for an item

i, we have a factor set consisting of factor value of all factor fields Xi = {xf
i }f∈F .

The item ID is treated as a special factor field, which means each specific item ID

is one factor. The relational interaction between items i and j in specific factor

field f is therefore modeled as:

R(jf |if , r) = bj − d(θθθf
i + θθθr, θθθ

f
j ), (5.3)

where θθθf
i , θθθ

f
j ∈ Rc×c denote the representation of factor field f for items i and j.

5.4.3 Attentional Content-level Transition

Aggregation

Several solutions can be applied to aggregate the transition results of different

factor fields, such as average, sum or max pooling. Each operation represents

an approach to treat different fields. For example, if we apply average or sum

pooling, we assume that factors that belong to different fields contribute equally

to the item transition modeling. In comparison, max pooling only respects the

dominant factor field and ignore less influential fields in the process of transition
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modeling. Instead of using straightforward operations, this work proposes a

user-aware attention mechanism for the content-level transition aggregation.

The relational item-item transition R(jf |if , r) of factor field f actually measures

the interaction probability of item i and j under the relationship r in the aspect

f . Intuitively, the importance of different aspects should be different, and also,

it would be affected by the specific user u who actually interacts with the two

items. For example, when seeking for a mix-and-match item for the previous

picked one, u might care more about the style but less about the detailed patterns.

Based on such consideration, we have to consider the user and previous item

information to determine importance coefficients of different factor fields in the

specific transition process. Specifically, inspired by graph attention network [166],

the user-item-aware importance of factor field f is designed to be calculated as:

ef = aaaT [WWWθθθu,WWWθθθf
i ], (5.4)

where WWW ∈ Rc×c is the trainable weight matrix, aaa ∈ Rc is the trainable mapping

vector. [, ] denotes the concatenation operation of two vectors. The final impor-

tance coefficient of f is calculated by applying a probability function over all

factor fields:

αf = exp(ef )∑
f ′∈F exp(ef ′)

. (5.5)

Then, the overall relational item-item transition is modeled as:

R(j|i, r) =
∑
f∈F

αfR(jf |if , r). (5.6)

5.4.4 Sequential Recommendation

The sequential recommender is finally designed as the combination of the gen-

eral third-order interaction modeling between u, i and j which emphasizes the

long-term user preference, and the relational item-item interaction which focuses
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on the short-term sequential transition of the user behaviors. Specifically, the gen-

eral user preference-based third-order interaction is captured by a personalized

translation operation as follows:

R(j|u, i) = bj − d(θθθu + θθθi, θθθj). (5.7)

Note that the item ID is the only factor field applied in modeling the user-item

interaction, which means θθθi = θθθid
i . Moreover, the embedding of θθθi is from

different embedding sets as θ̂̂θ̂θi in Eq. 5.1. All relational item-item transitions are

probabilistically mixed based on the predicted relationship probability determined

by user u and the previous item i as introduced in Eq. 5.2. The final recommender

is designed as:

R∗(j|u, i) = R(j|u, i) + γ
∑
r∈R

P (r|u, i)×R(j|i, r), (5.8)

where γ is the hyper-parameter that balances the importance of two terms.

5.4.5 Model Training

As introduced in the last section, the sequential fashion recommendation is

formulated as a ranking problem in this study. Therefore, the final goal is to rank

the ground truth next-item j higher than irrelevant item j−. The S-BPR [136]

loss is used as the sequential recommender loss, which is finally defined as:

Ls = −
∑

(u,i,j,j−)∈Ds

ln(σ(R∗(j|u, i)−R∗(j−|u, i))), (5.9)

where Ds = {(u,Su
k ,Su

k+1, j
−)|u ∈ U ∩ k ∈ [|Su| − 1] ∩ j− ∈ I − Su}. As the item-

item relationships is predicted in the process of user-item interaction modeling,

the relationship learning is also involved in the overall model learning with a

similar ranking loss specifically for item-item relationships, which aims to increase
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the probability of ground truth relationships. The loss for the relationship learning

is:

Lr = −
∑

(u,i,r,r−)∈Dr

ln(σ(P (r|u, i)− P (r−|u, i))), (5.10)

where Dr = {(u,Su
k , r, r

−)|u ∈ U ∩ k ∈ [|Su| − 1] ∩ r = rel(Su
k ,Su

k+1) ∩ r− ∈

R− r}. rel(a, b) means the relationship of a, b. Similarly, the item-relation-item

interaction loss is introduced in the objective loss to model the pairs of relational

items:

Li = −
∑

(i,r,j,j−)∈Di

ln(σ(R(j|i, r)−R(j−|i, r))), (5.11)

where Di = {(i, r, j, j−)|i ∈ I ∩ j ∈ Ii,r ∩ j− ∈ I − Ii,r}. Ii,r denotes the item

set that consists of items having relationship r with item i. Finally, the problem

becomes a multi-task learning problem, with the overall loss as:

L = Ls + αLr + βLi, (5.12)

where α and β are hyper-parameters that balance the importance of different

tasks.

5.4.6 Discussion

The proposed ACTR model is similar to the MoHR [80] model in terms of

translation-based interaction modeling and the basic multi-task learning frame-

work. It is actually inspired by MoHR to a certain extent in relationship modeling.

However, ACTR is also different from MoHR, mainly in three aspects. First,

MoHR uses the same item embedding to predict the next relation and to model

the user-item interaction. In other words, with the same user representation

θθθu and item representation θθθi, the model tries to predict the next item j and

next relationship r in the same manner, which is unreasonable and limits the

ability of the entire model. In ACTR, to avoid this problem, two different item

representations are employed for different tasks respectively (θ̂̂θ̂θi for predicting

relationship in Eq. 5.1 and θθθi for predicting next item in Eq. 5.7). Second, the
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content-level item-item transition is modeled in ACTR to alleviate the sparsity

problem in item-item interaction in the fashion domain. Moreover, an attention

mechanism is introduced in content-level transition aggregation through which

the importance of different factor fields are determined by the interacted user

and previous item. The MoHR method is included as one of the baselines in this

study; in the later experiment part, the experimental results show the different

performance of the proposed ACTR and MoHR methods.

5.5 Experiments

5.5.1 Dataset

The dataset for the research in this study is derived from the large-scale fashion

shopping dataset i from the well-known e-commence platform Taobao [chen2019iFashion].

The original iFashion dataset is composed of two parts: one is the user clicking

records in a short session, in which each record contains the user and item list he

interacted with in order. Another part of iFashion is the user-outfit interaction

data, which contains the information of the user, the outfit he interacted with,

and the items in the outfit. Only the first part is employed in this study, aka, the

user clicking records of fashion items. It needs to explain that we do not use

the Amazon dataset in the last study for several reasons. First, iFashion dataset

contains successively clicking records of users in a fixed period of time, in which

behaviors are more continues and suitable for the user intent exploring. Second,

the sequence length of iFashion data is much longer than that of Amazon, which

is better for the study of sequential fashion recommendation. Third, the new

proposed iFashion dataset provides higher-quality product images, which reduces

the noise in fashion element extraction.

As the original dataset is extremely large (with over 3M users and over 4M items),

a subset dataset is generated for this study, which is termed as iFashion-Sequential
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Recommendation (iFashion-SR). To become a benchmark for fairly evaluation

of all sequential recommendation methods, the dataset should be applicable

for different sequential recommendation methods. Considering that most deep

learning sequential recommendation methods takes fixed length of historical

interaction sequence as model input, very short sequences in the original dataset

is abandoned.

Specifically, two settings of sub dataset are designed with the minimal sequence

length being 7 and 10. Approximately 50,000 qualified (sequence longer than

minimal length) user-item interaction sequences are picked under both settings.

The sliding window strategy is further applied to generate short user-item se-

quences with fixed length (the length of sliding window). The window length

of two settings are set to five and eight respectively, which means each long

sequence can generate three short sequences at least. The last short sequences

of all long sequences are used for validation and the second last ones are for

testing. All the remaining short sequences are used for training. The specific data

statistics of two settings are shown in table 5.1. Note that the preprocessing of

the data in this work does not filter items based on their interaction frequency

as some previous recommendation studies did, which means that small-sample

items are still included in the processed dataset. Such a process is appropriate

as in practical scenarios, small-sample items are important components in the

whole item set, which should not be abandoned easily to reduce the challenge of

the recommendation problem. As shown in Table 5.1, the scale of item set for

both settings are clearly larger than that of the user set, which shows that the

item-item sparsity problem aforementioned in the above sections literally exist in

real-life dataset.

After settling two basic datasets, images of all interacted items are downloaded

and then a commercial fashion tagging tool1 is applied on these images to extract

three types of fashion elements (category, attribute and style). A total of 225

1visenze.com

75



Table 5.1: Dataset Statistics

Seq Length Five Eight

#User 36,752 36,797

#Item 458,642 460,596

#Train sample 1,324,637 1,188,988

#Test sample 50,001 50,002

#Valid sample 50,001 50,002

different fashion element values (such as dress, red) are found in the entire

dataset, which belong to 24 element groups based on a certain fashion taxonomy2.

Element groups include category, style, and specific attribute groups such as color,

pattern, neckline style and dress shape.

5.5.2 Experimental Settings

Baselines: Several competitive baselines are selected to be compared with the

proposed method, which are specifically introduced as follows:

• Matrix Factorization (MF) [135]: This is the basic Matrix Factorization

model using BPR loss. MF is the classic non-sequential recommendation

model, which is easy to use but effective in certain applications.

• Factorized Markov Chain (FMC) [136]: It focuses on modeling the se-

quential dynamics by factorizing the item-item transition matrix, which

ignores the personalization in the sequence modeling.

• Factorized Personalized Markov Chain (FPMC) [136]: Compared with

FMC, FPMC models both personalized user-item transitions and the ‘global’

2ViSenze taxonomy is used here.
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item-item transitions by MF and factorized Markov Chains respectively,

which therefore captures the personalized Markov behavior.

• Hierarchical Representation Model (HRM) [171]: This method extends

FPMC by using aggregation operations such as max pooling to model more

complex interactions. Here, we specifically use the max pooling as the

performance is more competitive than average pooling according to the

experimental results.

• Personalized Ranking Metric Embedding (PRME) [34]: It models the

personalized Markov behavior by the summation of two Euclidean distances

rather than the inner product used in FPMC.

• Convolutional Sequence Embedding Recommendation (Caser) [159]:

Caser treats the embedding of fixed length of historical interacted items as

an ‘image’ and proposes to use CNN to capture both personalized preference

and sequential patterns.

• Session-based Recommendation with RNN (GRU4REC) [60]: This is an

RNN-based sequential recommendation method. It also processes fixed

length of historical items and applies GRU to handle the sequential data.

It does not model user information, which therefore can only explore the

sequential signal of the session behavior yet ignores personalized preference.

• Translation-based Recommendation (TransRec) [52]: This is the basic

translation-based recommendation approach which unifies user preferences

and sequential dynamics in a single translation operation.

• Mixtures of Heterogeneous Recommenders (MoHR) [80]: MoHR uses

various recommenders to capture long-term preferences and item transitions

in a unified transnational metric space.
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In summary, all baselines can be classified into three groups, matrix factorization-

based methods, translation-based methods and typical deep learning-based meth-

ods. MF, FMC, FPMC, HRM, PRME are matrix factorization-based methods,

which are also the mainstream directions of recommender systems. They model

the user preference component and sequential continuity component (if appli-

cable) separately, which has been criticized as less inherent of the two parts.

Caser and GUR4REC are two most representative deep learning-based recom-

menders that employ CNN and RNN respectively. TransRec and MoHR are both

translation-based methods which are close to the proposed ACTR model. Specifi-

cally, TransRec can be considered as the basic framework of the ACTR model, and

MoHR is the most similar model to ACTR as both are based on TransRec and both

leverage item-item relationships to enhance the sequential dynamics modeling.

Implementation Details: For fair comparison, the last item of each sequence is

treated as the target item for recommendation in the proposed ACTR method and

all baselines. For all translation-based and matrix factorization-based methods,

including ACTR, only the last two items in the sequence are used as the previous

and next items, as well as the user in the model training. For two deep learning-

based methods, i.e., Caser and GRU4REC, all items in the sequence are used.

Specifically, all items except the last are used as the historical input, and the last

item is the next item to recommend, similar to all other compared methods. Such

implementation ensures that the quantity of training data and prediction targets

are the same for all comparable methods. Hyper-parameters α, β and γ are set

to 0.1, 0.1 and 0.5 by fine-tuning the model and referring to the MoHR. The

embedding size is set to 10 for all types of embeddings. For the training process,

the learning rate is set to 0.005 for the ACTR method, and the batch size is set

to 5000. The maximum training epoch for ACTR, as well as all ablated models,

is set to 4000, which is enough for all models to convergent. All baselines are

carefully tuned with different training settings including the learning rate, batch

size and weight decay for achieving preferable performance.
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Table 5.2: Recommendation performance of ACTR model and baselines on iFashion-SR
(sequence length=5)

MRR NDCG Recall

MF 0.3602 0.4023 0.5377

FMC 0.2934 0.3259 0.4313

FPMC 0.3615 0.4037 0.5396

PRME 0.3306 0.3661 0.4804

HRM 0.3425 0.3842 0.5185

GRU4REC 0.3586 0.4021 0.5418

Caser 0.2596 0.2931 0.4011

TransRec 0.2921 0.3137 0.3843

MoHR 0.4177 0.4519 0.5629

ACTR 0.4844 0.5229 0.6468

%Improv. 15.97 15.71 14.90

Evaluation Metrics: For evaluation, 99 negative items are randomly sampled

for each sample in the test and validation sets [30, 58] for the sake of reducing

the computational cost in evaluation. All negative items are not interacted by

the corresponding user. To comprehensively evaluate the effectiveness of top-K

recommendation, three common evaluation matrices are employed: RECALL@K,

NDCG@K and MRR@K. Specifically, k is set to 10 by default. Results for all

matrices are reported averagely.

5.5.3 Recommendation Performance

Tables 5.2 and 5.3 show the overall recommendation performance of the proposed

ACTR method as well as all baselines on the iFashion-SR dataset for two settings.

The observations from the results are as follows:
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Table 5.3: Recommendation performance of ACTR model and baselines on iFashion-SR
(sequence length=8)

MRR NDCG Recall

MF 0.3519 0.3934 0.5266

FMC 0.2895 0.3215 0.4253

FPMC 0.3540 0.3952 0.5277

PRME 0.3210 0.3556 0.4672

HRM 0.3369 0.3789 0.5131

GRU4REC 0.3574 0.4010 0.5413

Caser 0.2554 0.2885 0.3952

TransRec 0.2898 0.3106 0.3791

MoHR 0.4082 0.4415 0.5495

ACTR 0.4751 0.5122 0.6314

%Improv. 16.39 16.01 14.90

(1) The proposed ACTR outperforms all compared baselines in a large margin

under all evaluation metrics for both experimental settings. In particular, the

MRR and NDCG results are improved more significantly compared with Recall,

which illustrates that the ACTR model is better at ranking correct recommender

items in high positions.

(2) Comparing the results of MF, FMC and FPMC, we can discover that the

performance of FMC is worse than that of MF, moreover. Moreover, although

FPMC achieves the best performance among the three, it is very close to MF. Recall

that FMC only models the item-item interactions while MF only models user-item

interactions. Such experimental results show that item-item interactions are more

difficult to model, which is probably due to the sparsity problem pointed out

in the above analysis. That is also why FPMC only outperforms MF by a slight

margin although it models both item-item and user-item interactions. These
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results also justify the motivation of ACTR which is to enhance the item-item

interaction modeling by leveraging the interaction in the factor-field level.

(3) Comparing the result of TransRec and MoHR, we can see that by incorpo-

rating item-item relationships and relational item-item transition modeling, the

recommendation performance can be improved significantly. The TransRec shows

the worst performance in the experiments, which indicate the very simple single

component translation model might not be effective enough to model complex

interactions. This also explains why the introduction of the relationships is neces-

sary, as well as the content-level transitions. The experimental result shows such

technical improvements are able to improve the expressiveness and effectiveness

of the very basic translation model.

(4) Almost all methods perform better in the first experimental setting (sequence

length=5) comparing two settings (Tables 5.2 and 5.3), although the perfor-

mance difference is very minor. The first reason for such difference might be the

difference in the number of training samples. From the dataset statistics shown

in Table 5.1, we can see the first setting has approximately 150k more training

samples than the second setting. Meanwhile, a smaller number of users and

items makes the data distribution more dense and reduce the challenge. It is also

notable the GRU4REC achieves close performance on two settings, which might

imply that inputting more historical items can help capture the sequential patterns

behind the user behavior and improve the recommendation performance.

5.5.4 Ablation Study

In this part, several ablation studies are conducted to validate the effectiveness

of the different parts of the ACTR model. Three technical parts are important

to investigate. First, compared with the design in MoHR, how does it help

by applying two different sets of item embeddings for predicting relationships

and modeling user-item interactions respectively. Second, whether the content-
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Table 5.4: Ablation experiments (sequence length=5)

MRR NDCG Recall

Vanilla 0.4177 0.4519 0.5629

V + T 0.4272 0.4600 0.5661

V + C 0.4399 0.4761 0.5935

V + T + C 0.4449 0.4791 0.5897

ACTR 0.4844 0.5229 0.6468

Table 5.5: Ablation experiments (sequence length=8)

MRR NDCG Recall

Vanilla 0.4082 0.4415 0.5495

V + T 0.4155 0.4474 0.5508

V + C 0.4258 0.4609 0.5752

V + T + C 0.4311 0.4652 0.5758

ACTR 0.4751 0.5122 0.6314

level relational item-item transition indeed helps improve the recommendation

performance as expected. Last, whether the attention mechanism designed to

determine the importance of different factor fields to different users further

improve the recommendation performance.

The results of the ablation study for two experimental settings are shown in

Tables 5.4 and 5.5. Vanilla denotes the basic ACTR model that only uses one

set of item embeddings, no content-level transition modeling, and no attention

mechanism applied. V+T denotes the Vanilla model with two sets of item em-

beddings, V+C denotes the Vanilla model with content-level transition modeling

and V+T+C denotes the model that has both components (refer to section 5.4.6

for a clearer introduction). The final ACTR model has both T and C, and also

the attention mechanism for the content-level transition aggregation. The results
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show that all technical components specifically designed in the ACTR model work

and improve the recommendation performance on both experimental settings.

Specifically, two components innovatively introduced in the relational item-item

transition process, the content-level transition modeling and the user-aware at-

tention mechanism, greatly help the performance of the fashion recommendation

model. Such observation demonstrates the effectiveness of the two technical

components, which also reflects that enhancing the item-item interaction is im-

portant in sequential recommendation. in the fashion domain, such relational

item-item interaction modeling can be improved by specifying and leveraging

detailed information from different fashion aspects.

5.5.5 Qualitative Analysis

More detailed qualitative analysis and discussion on the proposed ACTR model for

fashion recommendation is presented in this section. Figure 5.2 firstly illustrates

six recommendation cases based on the ACTR model. To be clear, the user,

previous item (on the left of the item pair) are input to the model, the user

intention for next item (item-item relationship for the previous and next item) and

the next item to recommend are both generated by the trained ACTR model. In all

presented cases, the user intentions are correctly predicted and the recommended

item is the target item the user would choose (ground truth), which demonstrates

the effectiveness of the proposed ACTR model. Moreover, by clarifying the next

intention, the recommendation results become more reasonable and therefore

more convincing.

Note that the final ranking list for each user is based on the mixed result of long-

term user preference and the relational short-term item-item transition, referring

to Eq. 5.8. However, the recommendation list can be manipulated manually

to only recommend the items that are in accordance with the predicted user’s

intention. For example in Figure 5.3, the user in the first case is predicted by

the ACTR model that he wants items to match with his previous pick. Therefore,
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03273bad45998c4bd279d4b90ae03379 e189d921a3c0cdb8771715546618b52e

User: 0000716a71f001456a2a89028622748e

Matching

User: 0007febcaf23798ef125d93466bfda15

Substitute 

ecf8406dae52168645bbe8ec9c15612881689fb9e8493b4723676257f70aea4d

User: 00082d5e850f937e88c8013254a99d2e 

78c9409e96c18e34530b120fc329f7fd 4b55bfd1229ebbbd987a1b23261ead64

Substitute 

User: 000079da8f78e9705272f796f9183583 

ba0ab2cddedebf347955d0e221b28c4f 5b27ddccf4a98306eeea8546f62ea505

Matching

User: 000ffb51ff95c10859c237ad63d090fc 

9b5629def29011f4333d4429fa5c87d7 55c897df2eb503a5d6f27f740614645b

Matching

User: 00100da56aed494d46d8ada909d21909 

10580bb9671ca4975a308ad25a2507cd 37a771d42855ae1eeed20238442cdfe5

Substitute 

Figure 5.2: Six cases of successful recommendations. Each case shows the user name,
item pairs containing the previous clicked item (in the left) and the recom-
mended item (in the right), as well as the predicted user intention, which is
the corresponding relationship of the item pair (indicated by the arrow in
the middle of item pairs).
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Previous item: 

ba0ab2cddedebf347955d0e221b28c4f

Previous item: 

78c9409e96c18e34530b120fc329f7fd

User: 000079da8f78e9705272f796f9183583 , Predict intension: matching

User: 00082d5e850f937e88c8013254a99d2e, Predict intension: substituting
Recommended top five

Recommended top five

Figure 5.3: Two recommendation examples for two users for specific intentions, which
are also predicted by the model.

the final recommendation list contains matching proposals only. Likewise, in the

second case, the user intention for the next item is predicted to be a substitute.

As a result, a recommendation list full of similar items is presented to him/her.

5.6 Summary

This chapter works on the sequential fashion recommendation task, aiming to

model the content-level relational item-item transition to enhance the recom-

mendation performance, as well as to bring more intrepretability. The item-item

relationships are leveraged, which facilitates the item transition modeling and also

suggests the user intention behind the action to some extent. An ACTR method is

proposed to address the target task. Specifically, the relationship-aware item-item

transition is specified into content-level and then obtained by aggregating the

content-level transition results.

Extensive experiments have been conducted to evaluate the effectiveness of

the proposed method. The experimental results show that the proposed ACTR

model outperforms all competitive baseline methods in terms of recommendation

accuracy, which demonstrates the effectiveness of all technical improvements
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in ACTR. Moreover, the qualitative analysis shows that the ACTR method can

provide the user intention prediction along with the recommendation results, and

also be able to provide special recommendation results given certain intentions.
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6Leveraging Multiple Relations for

Fashion Trend Forecasting

6.1 Introduction

Fashion trend forecasting, aiming to master the changeability in fashion, is an

increasingly important research field. Although rapid technological change has

infiltrated every aspect of modern life, people’s desire to convey a sense of self

through their appearance has not changed. They need fashion guidance to develop

good taste and catch up with the trends [10]. Additionally, for the fashion industry,

valid forecasting enables fashion companies to establish marketing strategies

wisely and continuously anticipate and fulfill their consumers’ wants and needs.

Traditionally, fashion experts need to travel and conduct surveys to determine

people’s real fashion tastes based on local culture and tradition, which usually

affects the world’s fashion trends [83]. However, such approaches are inefficient,

expensive, highly dependent on the experts’ background and are usually biased

because of the expert’s personal preference. Meanwhile, great progress on the

Internet, big data, and artificial intelligence provides an alternative way to solve

this challenging problem: automatically forecasting fashion trends based on

fashion data.

In fact, fashion trend forecasting or analysis has attracted some research interests

in the computing field, but is still at its nascent stage. One popular data source

for fashion trend analysis are purchase records on either online or offline retail

platforms [3]. However, purchase records directly reflect people’s buying decisions

which are influenced by many factors except real fashion preferences such as

retailers’ promotions, buying clothes for others (e.g., family), and never wearing
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10 upper body clothes (sweater, shirt, …)
4 lower body clothes (pants, skirt, …)
3 full body clothes (dress, jumpsuit, …)
6 outwear (jacket, suit, …)
4 shoes (pumps, flat shoes, …)
2 sneakers (lifestyle, performance)
4 sandals (flat, heeled, …)
4 boots (ankle, knee high, …)
12 shoulder bag totes (crossbody, bucket, …)
4 clutch wallet (clutch, punch, …)
17 colors (white, red, …)
13 patterns (stripes, text, …)
24 necklines (v neck, turtleneck, … )
6 upper-body lengths (crop, below knee, …)
6 lower-body lengths (extra short, full, …)
6 dress shapes (pencil, a line, …)
4 sleeve lengths (short, sleeveless, …)
10 sleeve styles (flared, puff, …)
3 pants fit types (skinny, wide leg, …)
3 coat styles (straight, a line, …)
4 sweater styles (ruffle, plain, …)
3 rise types (high, low, …)
3 denim wash colors (light, dark, …)
5 closure types (button, zip, …)
10 shoe types (loafer, boat, …)
……

Fashion elements

User groups

[New York Female 
@ Dress]

[New York Female 18-25 years old 
@ Dress]

New York Female New York Female 18-25 years old New York Female 25-40 years old 

[New York Female 25-40 years old 
@ Dress]

[New York Female 
@ Pencil dress]

[New York Female 
@ Pencil dress]

Fashion trend 
Forecasting 

model  

Group Affiliation

Element Affiliation

Historical fashion trend

Relation enhanced 
content information

Fashion trend to predict

Trend Relations

…

Figure 6.1: The fashion trend forecasting task aims to forecast the trends of meaningful
fashion elements for specific user groups. Multiple relations (group and
fashion element affiliations) between the time series are leveraged to enhance
the prediction.

after buying. Thus, the real fashion taste of consumers cannot be properly

captured solely based on retailing records. Social media now records daily life

of people from all over the world and has turned into a platform for a growing

number of users to show their fashion taste and opinions, which becomes a

natural research basis for fashion trend analysis. Moreover, data from social

media are massive, diverse, highly related to fashion and cover a long time span,

which makes them applicable for insightful large-scale fashion trend analysis.

One recent state-of-the-art study of fashion trends based on social media was

conducted by Mall et al. [113]. They extracted fashion attributes from social

media images with a CNN model and investigated the trend of specific attributes

for each city. Compared with other works which target at implicit fashion styles

by visual clustering [114, 2], the fashion trends demonstrated in Mall’s work were

more specific. However, the study has several limitations. First, the investigated

fashion attributes are coarse-grained and of less significance, and most of the

trends show simple seasonal patterns, such as wearing jacket. Second, they
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investigated the fashion trends with regard to cities, which actually attempts to

distinguish fashion trends based on the locations of target user groups. However,

only using city to categorize people is not enough, and more attributes from the

aspect of users should be explored such as age and gender.

Similar to previous work [113], this chapter investigates fashion trends of specific

fashion elements for various user groups. Towards more meaningful fashion trend

analysis, three types of fashion elements are main targets, including category (e.g.,

dress, jeans, playsuit), fashion style (e.g., feminine, sophisticated) and detailed

attributes (e.g., color, pattern, neckline, skirt shape). More user profile information

are explored and users are accordingly categorized into specific groups. In

summary, a new dataset with extensive fine-grained fashion elements and user

information is introduced for the purpose of this study. The time series in this

dataset spans over five years from which the change and evolution of specific

fashion trends in a long time horizon can be observed.

To perform accurate data-driven fashion trend forecasting, we have to capture

the underlying patterns in the historical fashion trend time series. Although

traditional models such as exponential smoothing or linear regression have been

effectively applied to model simple time-series data [3, 113], they fall short in

making sound predictions for more complicated trends. Recent advances in deep

learning have provided great solutions for many tasks [90]. In particular, RNNs

have demonstrated its superiority in modeling time series data [19, 180, 31].

However, such approaches have not been employed in the area of fashion trend

analysis yet. From another perspective, most existing works model the pieces of

fashion trend signals independently. However, according to both commonsense

and fashion theories, the fashion trends are not independent but well-correlated

with each other. For example, the fashion element turtleneck is an affiliated

attribute to the fashion element sweater; therefore, the trends of these two

elements should be closely related with each other. Al-Halahet al. [2] explored

fashion influences between different cities, the conclusions of which to some
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extent coincide and support our hypothesis that the fashion trends of different

user groups are also not independent. Specifically in our task, it is natural to

consider that the trends of any fashion elements for the group New York Female

can be affected by the corresponding trends for the group New York Female 25-40.

As shown in Figure 6.1, each fashion trend should be connected to others based

on the relation between the user groups and fashion elements. These relations

are non-trivial to model yet can be helpful for the forecast of the trends. Most

existing models failed to incorporate any kind of relations.

This chapter proposes to employ the LSTM encoder-decoder as the basic model

for the fashion trend forecasting task which leverages fashion element and user

group information. Two message-passing modules are introduced in the model

to explore the influence of correlated fashion elements or user groups in trend

modeling. As the task is to forecast a period of future trend, it is more challenging

than only one-step-ahead estimation. To better capture temporal patterns on

future horizons, the proposed model is equipped with a sliding temporal attention

module [31]. Specifically, at each time step the decoder hidden state is attended

to several different periods of the history and generate the attention vector

individually, and then all periods of the history are combined to predict the

current time step. The combined features therefore can better describe the current

time step as it incorporates both historical information and future contextual

information. The proposed model is named as Relation Enhanced Attention

Recurrent network (REAR).

The contributions of this chapter are summarized as follows:

1) A new large-scale dataset for fashion trend forecasting based on Instagram,

named Fashion Instagram Trending (FIT). The dataset is annotated with rich

fashion elements and user information, which can benefit the research community

towards specific and meaningful fashion trend forecasting.
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2) REAR is proposed for addressing the fashion trend forecasting problem. The

REAR model applies two message passing modules to leverage the relations

between fashion elements and groups that affect the corresponding fashion trends.

Also, a sliding temporal attention mechanism is devised to further improve the

prediction capability for long-horizon forecasting.

3) Extensive experiments are conducted on the proposed FIT and the GeoStyle

datasets [113]. Experimental results demonstrate that the REAR model is capable

of capturing the complex patterns in time-series fashion trend data, and achieves

preferable accuracy in fashion trend forecasting. Furthermore, qualitative analysis

demonstrates that fashion trends generated by the REAR model based on the

proposed dataset is consistent with the trends provided by authoritative fashion

agencies.

6.2 Related Work

6.2.1 Fashion Trend Forecasting

Fashion trend forecasting, as an up-stream research task in the field of com-

putational fashion analysis, is attracting increasing research attention. It is

usually studied based on some fundamental related tasks such as fashion recog-

nition, detection, retrieval and segmentation [105, 173, 104]. For example,

Simo-Serra [146] studied the semantic outfit descriptions based on (non-visual)

clothing meta-data which mainly consisted of color and coarse categories. They

proposed the Fashion144k dataset for the research based on the fashion website

chictopia.com which mainly explored meta-data. The descriptive words in the

dataset to determine fashion trends are very sparse and less meaningful to some

extent because they are edited casually by users. Al-Halah et al. [3] studied

fashion trends based on fashion styles. To obtain fashion styles, they represented

all fashion images with detected semantic attributes through a pre-trained deep
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attribute detection model, and then applied the nonnegative matrix factoriza-

tion on all predicted attributes. They built a dataset based on the e-commence

platform Amazon to support their research which consists of images and text of

the purchased items for a fairly long period of time. First, the research target

they chose, the fashion styles, were implicit and actually the clustering of images

conditioned with attributes. Such lack of explanation causes the trend analysis

to be less effective and convincing. Second, the e-commence data are not suit-

able for the fashion trend analysis because the purchase decision was affected

by various factors, and fashionability of the item is only one of them. Another

recent study [2] also adopted a similar strategy that it trains a neural network

model to detect fashion attributes and then learns a set of fashion styles based

on attributes through Gaussian mixture model. The dataset they adopted is the

GeoStyle dataset proposed by Matzen et al. [114, 113]. In this dataset, more

specific fashion attributes such as neckline shape or sleeve length are explored.

However, although the attributes they investigated are more detailed, they are

of less significance in terms of indicating real fashion and effectively revealing

fashion trends. For instance, one fashion element in the dataset is wearing jacket,

which apparently does not show the evolution of fashion but the change of sea-

sons. In summary, existing fashion trend forecasting datasets are generally with

less significance that cannot support the study of practical fashion trend and

forecast. To address this research gap, this chapter proposes a large-scale fashion

trend dataset based on Instagram, showing very specific, detailed and realistic

fashion trends with respect to a large number of fine-grained fashion elements.

The dataset collected in this chapter also contains rich user information so that

the fashion trends among specific group of people can be further analyzed.
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6.2.2 Time-series Prediction for Fashion Trend

Forecasting

Fashion trend forecasting aims to predict the future value based on historical time

series records, which is quite close to the time series prediction problem. Some

classic and state-of-the-art time series prediction solutions are reviewed here.

Autoregrassive (AR) [168] is a traditional, simple yet effective statistical model

to address the time-series prediction problem. Based on AR, several advanced

models are developed and also widely used to solve similar tasks, including

moving averages (MA) [149], improved autoregressive integrated moving average

(ARIMA) [9] and others [63, 182]. Although statistical models have achieved

great success, they are still limited to modeling simple or cyclic patterns. In

many real-life applications, such as the fashion trend forecasting in this paper, the

data patterns are notorious for being highly volatile and are too complex to be

captured by statistical models.

Recently, Neural Networks (NNs) have gradually become powerful techniques for

many essential tasks. Specifically, RNNs, especially its variant LSTM [62], have

achieved state-of-the-art performance in time series prediction [31, 97, 130] and

have been successfully applied in many specific tasks such as stock prediction [33]

and sales forecasting [6]. Even though fashion trend forecasting is also a type of

time series prediction tasks, it is a domain-specific task, such that good solutions

should be exclusive and leverage specific and beneficial knowledge in the specific

domain. Such idea has also been proposed and implemented in other time

series prediction tasks. In stock prediction, Feng et al. [33] incorporated domain

knowledge of stocks and effectively improved stock price forecasting. However,

in fashion trend forecasting, no such attempt has been made so far.
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Table 6.1: Statistical Comparison between FIT and GeoStyle datasets

Dataset City Gender Age group Fashion Element Time span

GeoStyle 44 N/A N/A 46 3 years

FIT 14 2 4 197 5 years

6.3 Problem Formulation and Dataset

This chapter focuses on the fashion trend forecasting problem, which aims to

make prediction of future popularity with regard to each fashion element (e.g.,

white, dress, off-shoulder and others) for each user group (e.g., London female

of age between 18 and 25). Given a fashion element f ∈ F and a user group

g ∈ G, the temporal popularity of f for g is defined as a time series denoted as

yyyf
g = (y1, · · · , yt, · · · ), where F is the set of all fashion elements; and G is the set

of all user groups. The value of the time series at each time step t is defined as

yt = N g,f
t /N g

t , where N g,f
t is the number of the fashion elements f at time point t

for group g; N g
t is the number of all fashion items (e.g, clothing, bags, shoes and

others) observed at time point t for group g. Given the historical inputs within the

time span of [1, T ], the aim of this chapter is to forecast the future values of time

[T + 1, T + T ′], where T is the historical sequence length or time span, and T ′ is

called the forecast horizon (the number of steps ahead to forecast, T ′ > 1).

As most of the existing datasets are limited for this type of study, a new dataset

based on the popular social media platform Instagram1 is contributed, called FIT.

Table 6.1 show the statistical comparison between FIT and Geostyle [113]. It

shows that the FIT dataset has more user information, richer fashion elements

and a longer time span.

Specifically, millions of posts uploaded by users were crowded from all over the

world. To guarantee the quality of the crawled data, automated and manual

1instagram.com
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2015-01 2016-01 2017-01 2018-01 2019-01

2015-01 2016-01 2017-01 2018-01 2019-01

Shirt
Stripes
Grey …
Skirt
Brown 
Casual …

Dress 
Stripes
Casual 
…

t
Time Time

New York Female

……

Index(Stripes, t)

Fashion trend of [stripes] for 
[New York Female]

Whole database

User grouping Image tagging with fashion elements

Fashion element counting for each time step Fashion trend generation

(a)

(b)

Playsuit 

Off shoulder 

Figure 6.2: (a) An illustration of procedures of building the FIT dataset. (b) Two exam-
ples of the FIT dataset, where RED curves are from the FIT dataset and BLUE
curves are from Google Trends (both examples belong to the group [New
York, Female]).
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filtering are conducted on the collected data, similar to that in [112, 111]. First,

the pre-trained object detection model was applied to detect person body [134]

and face [195]. Images without face or body, or with abnormal-sized face or

body are filtered out. Then, images with "wrong people" are dropped, in which

the bounding boxes containing people that are not the corresponding account

owner by a majority vote mechanism over the predicted age and gender(see more

details below). Finally, about 680K images are kept in total. The annotation

of the dataset is from two aspects: users and fashion elements, which will are

introduced in detail below.

For users, three types of user information (i.e., age, gender and location) are

collected. Based on these information, users are separated into different groups.

To obtain this information, the off-the-shelf age and gender detector tools [139, 4,

124] are firstly applied on each person (face) bounding box of all posts (images)

of the users, and then the dominant gender and average age are selected as the

final gender and age. Person bounding boxes are detected as the opposite gender

and with age differing from the detected age by over five years are dropped.

Four age groups are defined: 0 to 18, 18 to 25, 25 to 40, and above 40. The

information of location is based on the longitude and latitude data that comes

with the post, and choose the most frequent one as the location of the user.

Finally, 14 main cities across the world are included in the proposed dataset. The

combination of the three types of user attributes forms a group, resulting in 74

groups in the whole dataset.

A commercial fashion tagging tool2 is applied on the dataset to extract three types

of fashion elements (category, attribute and style) from the images, resulting

in a total 197 of different fashion elements for the whole dataset. Each image

is labelled with user group, time, and fashion elements after the annotation in

the end. After the information extraction process, the popularity of each fashion

element for each user group for every half month is calculated and the popularity

2visenze.com
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for the whole time span generates a time series data. The post time of FIT dataset

ranges from July 2014 to June 2019, spanning five years, which means that each

time series has 120 data points. To ensure the data quality, sparse time series

with over 50% of time points empty are further dropped. Finally, around 8000

time series are obtained in total. The main procedures of generating the specific

fashion trends in FIT are illustrated in Figure 6.2 (a) Note that the tags (element

information) come from an existing tagging tool, which might contain some noise

and result in a small bias of real fashion trends. However, the recognition results

were manually checked partly and found to have relatively satisfying average

accuracy. More importantly, as each time series data is a statistical ensemble of

a group of users’ data, the noise of each user on the final time series is hugely

weakened. Besides, the author comprehensively analyzes fashion trends in FIT

and compares some of them with that from Google Trends3, and observes highly

similar patterns, which further validate the credibility of the FIT dataset (see

examples in Figure 6.2) (b). It should be noted that the Google Trends is used

to justify the reliability of the contributed dataset in certain cases. It is notable

that Google Trends can only be used for certain popularly searched rough-level

fashion elements, and it is unable to provide trends of most fine-grained fashion

elements and specific groups of users.

6.4 Approach

This chapter aims to develop an end-to-end model to forecast the fashion trends

given the historical input. The LSTM encoder-decoder is adopted as the basic

framework, which is able to incorporate both time series inputs and the associated

sequence information into a unified model and make multi-horizon forecasting.

To leverage the multiple relations among sequences, the message passing mech-

anism is used. It is able to propagate information among related sequences

thus obtain relation-enhanced representations for each sequence. Moreover, a

3trends.google.com
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sliding temporal attention mechanism is deviced to enhance the forecasting per-

formance in long-horizon scenario. The proposed attention mechanism adaptively

attends to the historical sequences, thereby countering the error accumulation

effects during decoding. The proposed framework is named as REAR as shown in

Figure 6.3.

6.4.1 Relation Enhanced Historical Trend Encoding

Sequence Feature Embedding: Given a time series (y1, · · · , yT ) indicating the

past trend of fashion element f for group g within time period [1, T ], the task

is to forecast the future values of the trend (yT +1, · · · , yT +T ′). The group g is

defined by the combination of three attributes g = [c, a, n], where c ∈ C is the

city, a ∈ A is the age group (C, A denote all cities and all age groups) and n ∈

{male, female} is gender. Each of the group features c, a, and n is converted into

into embedding (randomly initialized) ccc ∈ RD, aaa ∈ RD, and nnn ∈ RD separately

to obtain the group representation, where D is the dimensionality of sequence

feature embedding. All three group embeddings are then aggregated into one

unified group representation via a linear layer:

ggg = WWW g[ccc,aaa,nnn] + bbbg (6.1)

where WWW g ∈ RD×3D, bbbg ∈ RD, and ggg ∈ RD. The fashion element f is directly

converted into an embedding fff ∈ RD.

Multiple Relation Modeling: As discussed in subsection 6.1, fashion trend

signals are not independent but correlated with and influence each other via

multiple relations. Such time-series correlations have also been emphasized in

other time series modeling tasks such as stock price prediction [33] and water

and air quality monitoring [97]. In terms of fashion trend, various complex

relations exist, for example, the lead-lag influential patterns across different big

cities [2]. However, such complex relations are difficult to specify and explore.
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Figure 6.3: The Relation Enhanced Attention Recurrent network (REAR) framework. It
is based on the LSTM encoder-decoder framework and incorporates relations
between groups and fashion elements (shown in the green and blue dashed
line boxes respectively). Moreover, a sliding temporal attention module
(shown in the black dashed line box) is used at the decoder stage to enhance
long-horizon forecasting performance.
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In this work, the relation incorporation is started from the direct, intuitive but

important relations among fashion trends: the affiliation relations determined by

sequence features, i.e., the group and fashion element.

(1) Relations between fashion elements: Each piece of time series data of fashion

trend describes the specific trend of one fashion element, such as dress shape:

A_line. There are three types of fashion elements considered in this study, namely

category, attribute and style. Two of them (category and attribute) can be

naturally organized with a tree-structured taxonomy. As part of the taxonomy

shown in the blue dashed box in Figure 6.3, the category Dress has several

attributes (e.g., Pattern, Shape, Color) and the attribute Shape has several values

(e.g., Pencil, A_line, High_low). It is easy to understand that because many

attributes are affiliated to certain categories, the corresponding attribute values

(i.e., A_line) are produced fully or partially based on one category (i.e., dress).

This relation indicates that the trends of the affiliated fashion attributes can

reflect the trend of the related category to a certain extent. With such relations

between categories and attributes, the child nodes are designed to affect the

parent nodes.

The normalized portion of each child node out of its parent node is denoted in

the edge of the taxonomy in Figure 6.3. Apparently, the trends of parent nodes

will be consistent with the sum of the children nodes. For example, if the trend

of the attribute peplum goes up, it is highly probable that the category dress also

goes up. Note that this correlation of time series trends is directed, which only

holds from children to parents and does not hold vice versa. For example, if the

number of Shape goes up, the number of Pencil is not definitely goes up because

it may be caused by the increasing of other attribute values like A_line.

The message passing mechanism is applied, which is called affiliation relation.

Specifically, there are three types of nodes in this tree: category, attribute and

attribute value, and the affiliation relations are between attribute and category,
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attribute value and attribute. As mentioned above, each fashion element f is

converted into a vector representation fff . The message passing is conducted

between those embeddings, i.e., passing messages from child nodes to their

parent nodes. The message passing for node i is as follows:

sssi =
∑
j∈Ei

αi
jfff j, (6.2)

where αi
j is the weight which is proportional to the impact of element j on

element i. During implementation, αi
j is set to the normalized portion of each

child node w.r.t its parent node. Ei denotes the set of fashion elements that affect

i, i.e., elements affiliated to i. Therefore, sssi ∈ RD is the message passed from

all affiliated child nodes. The propagated information is finally aggregated with

the original node representation using a linear layer and the relation enhanced

fashion element embedding is generated therefore.

fff ∗i = WWW e[fff i, sssi] + bbbe. (6.3)

where [, ] denotes the concatenation operation of two vectors, WWW e ∈ RD×2D and

bbbe ∈ RD are the parameters of this liner layer.

(2) Relations between user groups: Each time series data describes the fashion

trend of a certain user group, which is defined by two required attributes (city and

gender) and one optional attribute (age group). The groups with the attribute

of age group are naturally more fine-grained than their corresponding groups

without the attribute (but with same city and gender). The fine-grained groups

can be treated as affiliations of their corresponding coarse-grained groups. As

shown in Figure 6.1, there are three groups [New York Female 25-40 years old],

[New York Female 18-25 years old] and [New York Female]. Apparently, the two

fine-grained groups [New York Female 25-40 years old] and [New York Female

18-25 years old] are affiliations (subsets) of the coarse-grained group [New York
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Female]. Message passing is conducted between group embeddings to leverage

such relation, similarly as between fashion elements:


rrri =

∑
j∈Gi

βi
jgggj

ggg∗i = WWW g[gggi, rrri] + bbbg.

(6.4)

rrri is the propagated information from group i′s affiliated groups Gi, βi
j is message

passing weight between two groups, which is initiated to 1 for all affiliation

relations and 0 else. WWW g is the trainable parameter.

LSTM Encoder: The LSTM is adopted to encode the historical fashion trend

sequence as well as the enhanced sequence features. Specifically, the input

of the encoder network at timestep t is generated by concatenating the group

representation ggg∗, the fashion element representation fff ∗, the timestep feature mmmt

(the position of each point within one year, converted to vector representation

thus mmmt ∈ RD):

vvve
t = [ggg∗, fff ∗,mmmt, yt], (6.5)

where vvve
t ∈ R3D+1. The output of the encoder LSTM is the hidden representations

for the input sequence at timestep t, denoted as:

hhhe
t = LSTM e(vvve

t ;hhhe
t−1), (6.6)

where hhhe
t−1,hhh

e
t ∈ RH , and H is the size of the hidden state. hhhe

t−1 is the encoder

hidden state at timestep t− 1,

6.4.2 Attended Future Trend Decoding

Bi-directional LSTM Decoder: The decoder network is a bi-directional LSTM

(BiLSTM), of which the initial hidden state is hhhe
T , i.e., the last hidden state of

the encoder. At each decoding step, it takes the input features and outputs

the forecasting value. The input feature of the decoder network at timestep
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t is vvvd
t = [ggg∗, fff ∗,mmmt], which is different from vvve

t by removing the trend value

yt and thus vvvd
t ∈ R3D. The BiLSTM can propagate information from forward

and backward directions, and the final prediction should be made after the

information propagation of BiLSTM [31]. Formally, the hidden state from forward

LSTM is denoted as
−→
hhhd

t and from backward as
←−
hhhd

t . The final hidden state hhhd
t by is

the concatenation of them as follows:



−→
hhhd

t =
−−−−−→
LSTMd(vvvd

t ;
−−→
hhhd

t−1)
←−
hhhd

t =
←−−−−−
LSTMd(vvvd

t ;
←−−
hhhd

t+1)

hhhd
t = [

−→
hhhd

t ,
←−
hhhd

t ],

(6.7)

where
−→
hhhd

t ,
−−→
hhhd

t−1,
←−
hhhd

t ,
←−−
hhhd

t+1 ∈ RH , and hhhd
t ∈ R2H .

Sliding Temporal Attention: Even though the LSTM encoder-decoder frame-

work is able to model time series data, its performance deteriorates when the

sequence length increases due to the memory update mechanism. Various tempo-

ral attention mechanisms have been tried before [19, 31] to address this problem.

For example, Cinar et al. [19] proposed the position-based attention model over

the entire history to capture pseudo-periods in the history. However, this model

can be significantly diluted when applied over a long history. To counter this

problem, Fan et al. [31] proposed to use the hidden state in each decoding step

to attend to different parts of the history data, and utilized a multimodal fusion

scheme to combine the attended results. The purposes of separating the whole

history into parts are two-fold: (1) Better attention scores are learned on shorter

sequences; (2) Each part of the history mimics the period in the sequence such

as business cycles (one month or one quarter) [31]. However, since there are

no overlaps between any two adjacent parts, some important time spans may be

inappropriately separated into two attention parts. To address this problem, a

sliding attention scheme is devised, which performs attention over the parts of

the history generated by a sliding window.
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Specifically, at the decoding stage, a window with fixed length (shorter than

the history length) slides over the encoding history with a specific sliding step,

thereby generating a list of sub-sequences. Let hhhm
i denote the i-th hidden states

in m-th encoder sub-sequence, the temporal attention weights of hhhm
i for the t-th

decoder step is computed as

pt
mi = vvvT

p tanh(WWW phhh
d
t + VVV phhh

m
i + bbbp), (6.8)

γt
mi = exp(pt

mi)∑Ta
j=1 exp(pt

mj)
, (6.9)

where Ta is the length of temporal attention window. Then the attended content

vectors ccct and the transformed dddt of sub-sequence m are:

ccct
m =

Ta∑
ti=1

γt
mihhh

m
i (6.10)

dddt
m = ReLU(WWW dccc

t
m + bbbd) (6.11)

As shown in the right-top in Figure 6.3, the temporal attention of each sliding

window performs independently on the encoded history and the results of which

are fused together with the multimodal attention [31]. The fusing weights φt
1...M

is specifically obtained as follows:

qt
m = vvvT

q tanh(WWW qhhh
d
t + VVV qddd

t
m + bbbq), (6.12)

φt
m = exp(qt

m)∑M
k=1 exp(qt

k)
. (6.13)

Note that M indicates the number of sub-sequences generated by sliding window,

which is determined by Ta and the sliding step l. Finally, the overall information

obtained by the sliding attention from the history encoding is:

xxxt =
M∑

m=1
φt

mddd
t
m. (6.14)
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The hidden states of the BiLSTM decoder and the attention information are then

concatenated and generate the final enhanced hidden state at each decoding step

as follows:

hhhd∗
t = WWW x[hhhd

t ,xxxt] + bbbx. (6.15)

All WWW , VVV are corresponding weight matrices with proper dimensions and all bbb are

the bias.

6.4.3 Model Training

The prediction is made based on the final hidden state at each step for both

encoder and decoder stages during training. However, for testing, predictions

only happen at the decoder stage. Particularly, linear layers are applied to make

predictions in the encoder and decoder respectively:


ye

t = WWW ehhh
e
t + be

yd
t = WWW dhhh

d∗
t + bd,

(6.16)

where WWW e,WWW d ∈ R1×2H and be, bd ∈ R are the parameters for the linear layer;

ye
t , y

d
t ∈ R are the forecasting value at each time step for the encoder and decoder

respectively. L1 loss is used to train the whole model, including the encoder loss

Le(·) and decoder loss Ld(·):

L = Le(yyye, yyy
∗
e, θθθe) + Ld(yyyd, yyy

∗
d, θθθd), (6.17)

where θθθe, θθθd are the model parameters for encoder and decoder respectively;

yyye, yyy
∗
e ∈ R(T−1) are the prediction and ground truth of the encoder sequence; and

yyyd, yyy
∗
d ∈ RT ′ are the prediction and ground truth of the decoder sequence.
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6.5 Experiments

To verify the effectiveness of the proposed REAR model, extensive experiments

are conducted on two datasets. In particular, the following research questions are

concerned:

• RQ1: Can the REAR model make better fashion trend forecasting compared

with the current state-of-the-art models in terms of forecasting accuracy?

• RQ2: Can the introduced modules of incorporating multiple relations and

sliding attention mechanism improve the performance?

• RQ3: How does the REAR model perform in trend forecasting in terms of

specific fashion elements, and based on that, how can the model produce

insightful fashion trend forecasting?

6.5.1 Experimental Settings

Experimental Setup: The proposed REAR model is evaluated on two fashion

trend forecasting datasets, the proposed FIT dataset and the GeoStyle dataset [113].

Each time series in GeoStyle spans over three years and each week has one data

point, while FIT dataset spans over five years and has one data point for every

half month. Because of the different timespans and granularities of the two

datasets, different schema is set to form the data samples. For GeoStyle, one

year’s historical time series are taken as input and the following half year’s trends

are forecasting target. For FIT, two year’s historical time series are taken as input

and two settings are set for the forecasting length: the following 9 months and 12

months. The sliding window strategy is applied on both datasets to generate the

aforementioned data samples. As the timespan of GeoStyle is shorter than that of

FIT, only the last sample of each full sequence is kept as the testing sample on

GeoStyle, while the last 6 samples of each full sequence are kept as the testing
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samples on FIT. Note that the parts for prediction in all testing samples will not be

included in training process. The Mean Absolute Error (MAE) and Mean Absolute

Percentage Error (MAPE) are used as the evaluation metrics [113] as majority

time-series prediction works do, which are specifically calculated as follows:

MAE = 1
m

m∑
i=1
‖y∗i − yi‖ (6.18)

MAPE = 1
m

m∑
i=1
‖y
∗
i − yi

y∗i
‖ (6.19)

Implementation Details: The embedding size of all feature embeddings is

set to 10, including user attributes (including the embeddings of city, age, and

gender), fashion elements and timestep. The hidden state size of both encoder

and decoder LSTM network is set to 50. Since each sequence in GeoStyle only

has one attribute (city) and does not have any user attributes of age and gender,

the group embedding is solely composed by the city embedding. The hyper

parameters Ta is selected from {12, 24} on both datasets and l is selected from

{1, 2, 5, 10, 20} on GeoStyle and {1, 2, 4, 8, 12, 24} on FIT. Ta and l are

finally set to [12, 20], [24, 2], [24, 4] respectively for three experimental settings:

[GeoStyle, 6-month prediction], [FIT, 9-month prediction], and [FIT, 12-month

prediction].

Compared with the statistical models such as AR, VAR, and ES, which learn one

model for each time series, deep learning based models learn a unified model for

all the time series in the dataset. Thus the varying magnitudes of different time

series will hugely affect the deep learning based models. To counter this problem,

practical min-max normalization is applied on both datasets. For GeoStyle, to have

a fair comparison with the previous methods which is based on the dataset without

any normalization, the min-max normalization is firstly conducted before feeding

data into the model (all deep learning-based methods), and after prediction,

the predicted values are converted back to the original magnitudes using the
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pre-saved min and max values (i.e., a min-max de-normalization operation).

For FIT, the min-max normalization is conducted over the whole dataset and

all the training and prediction for both baselines and the proposed model are

based on the normalized dataset. During training, a batch of 400 different time

series are randomly sampled for each iteration. For the evaluation of the REAR

model, a validation set is curated by further separating the testing data: using

the data points with odd indexes as the test set, and those with even indexes as

the validation set.

To make the evaluation result more robust and convincing (to avoid the case that

superb performance is achieved by chance), the model is evaluated in every epoch

when it starts to converge. For each evaluation, the average validation results of

the last 10 evaluation steps are calculated (starting from the 10th evaluation).

When the average validation result achieves the best, the corresponding average

testing results are taken as the final performance.

Baselines: The REAR model with several methods introduced as follows:

• Mean and Last: They use the mean value or the value of last point of the

input historical data as the forecasting value.

• Autoregression (AR): It is a linear regressor which uses the linear combi-

nation of last few observed values as the forecasting value.

• Vector Autoregression (VAR): It is another stochastic process model which

generalizes the univariate AR model by allowing for more than one evolving

variable.
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• Exponential Smoothing (ES) [3]: It aggregates all the historical values

with an exponential decayed weight, and the more recent values have higher

impact on the forecast.

• Linear and Cyclic [113]: They are linear or cyclical parametric models

which let historical values to fit the specific predefined model.

• Geostyle [113]: It is a parametric model combining a linear component

and a cyclical component. It is the state-of-the-art fashion trend forecasting

method on Geostyle dataset.

• MM-ATT [31]: An LSTM-based encoder-decoder framework, which utilizes

multimodal attention during decoding. It achieved the state-of-the-art

performance for multi-horizon time series forecasting in several tasks not

related to fashion.

6.5.2 Overall Performance on Fashion Trend

Forecasting

The overall performance of the proposed REAR model for fashion trend forecasting

is firstly evaluated by comparing it to that of baselines. The overall results on FIT

and GeoStyle are shown in Tables 6.2 and 6.3 respectively. Based on the results,

the following observations can be obtained:

(1) The proposed REAR model yields the best performance on both datasets

under two evaluation metrics, especially on the FIT dataset where the REAR

method outperforms all other competitors by a large margin. For the nine-month

prediction, REAR is the only method that achieves MAE lower than 0.09 and
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Table 6.2: Performance of REAR and baseline models for fashion trend forecasting on
FIT (the lower is better)

Method
Nine months Twelve months

MAE MAPE MAE MAPE

Mean 0.1131 51.50 0.1205 54.99

Last 0.1531 62.20 0.1392 52.85

AR 0.1143 45.44 0.1186 46.69

VAR 0.1042 45.29 0.1021 41.41

ES 0.1531 62.20 0.1392 52.85

Linear 0.1749 58.11 0.1948 64.56

Cyclic 0.1626 56.76 0.1746 60.65

GeoStyle 0.1582 54.93 0.1735 60.20

MM-ATT 0.0898 32.79 0.0976 37.02

REAR 0.0864 29.45 0.0951 32.26

Table 6.3: Performance of REAR and baseline models for fashion trend forecasting on
GeoStyle(the lower is better)

Method
Six months

MAE MAPE

Mean 0.0292 25.79

Last 0.0226 21.04

AR 0.0211 20.69

VAR 0.0150 17.95

ES 0.0228 20.59

Linear 0.0365 24.40

Cyclic 0.0165 16.64

GeoStyle 0.0149 16.03

MM-ATT 0.0137 15.31

REAR 0.0134 14.360

MAPE lower than 30. For the longer prediction of 12 months, REAR outperforms

the most competitive baseline (MM-ATT) by over 10% in MAPE. As the FIT dataset

covers much more fine-grained fashion elements, more user information, and
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fashion trend time series with more realistic and complex patterns, it is more

challenging to model. Therefore, the baseline methods do not perform well. The

proposed REAR method achieves better performance because it is able to more

effectively model nonlinearity in data and leverage various relations between

different fashion trends.

(2) For the GeoStyle dataset, the proposed REAR still achieves best MAE and

MAPE results. However, the difference in performance of various methods is

not as significant as for FIT. The possible reasons for such results are manifold.

First, GeoStyle is an easier fashion trend dataset as most fashion trend signals

in it are highly seasonal. As a result, traditional statistical models such as Cyclic

can also achieve preferable prediction accuracy. Second, the prediction length

(six months) is relatively shorter, which further lowers the difficulty of the trend

forecasting. Moreover, the strength of the REAR method is that it leverages

multiple relations to enhance the individual fashion trend forecasting. In the

GeoStyle, there are no group relations nor element relations to exploit, which

therefore limits the performance of the REAR method. Nevertheless, the basic

model of REAR is still quite effective, which helps achieve the best performance,

especially outperforming another LSTM-based model MM-ATT.

(3) Overall, most methods perform better for nine-month prediction than one-

year prediction on the FIT dataset, including the REAR model. Such results are

reasonable because of two reasons. First, the one-year prediction requires to

forecast data with longer time horizon, which is apparently more difficult. Second,

such setting reduces the quantity of training data. Comparatively, the REAR can

achieve more desired performance for the long-period prediction compared to

MM-ATT, which shows the strategy of considering trend relations and the sliding

temporal attention mechanism especially helpful in more challenging cases.

111



33.715 

36.477 

34.427 
35.209 

29.232 

32.858 

30.788 30.414 

22

24

26

28

30

32

34

36

38

all w/o ele w/o group w/o time

12-month prediction 9-month prediction

(a)

14.373 
14.502 

14.364 

14.531 

13

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

15

all w/o ele w/o group w/o time

(b)

Figure 6.4: Performance of REAR model with and without three types embeddings
(MAPE result, the lower the better) on two datasets, (a) FIT and (b) GeoStyle.

6.5.3 Ablation Study

In this section, several ablation experiments are conducted to validate the detailed

parts in the proposed model. The effectiveness of three types of content embed-

dings used as the input in the sequential model are firstly evaluated, i.e., time

embedding, group embedding and element embedding (explained in Eq. 6.5).

The MAPE results of four models for three experimental settings on two datasets

are illustrated in Figure 6.4. The all is the model with all three types of em-

beddings in the basic LSTM encoder-decoder framework, while the remaining

three models, i.e., w/o ele, w/o grp, w/o time, represent removing the element

embedding, group embedding and time embedding respectively. From the experi-

mental results we can see that for FIT, removing any sequence feature embedding

can degrade the overall performance. On GeoStyle, we can discover that both

element and time embeddings are effective in improving the performance, yet the

group embedding is not. As the group information in GeoStyle is limited, only

with the city information, it is not enough to help the model. It is also notable that

overall, the element embedding is more significant for the fashion trend modeling

compared to the other two, which is probably because the fashion element is still

the deterministic factor for fashion trending.
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denotes element relation. Results on FIT dataset.

The effectiveness of incorporating multiple relations in the fashion trend forecast-

ing model is discussed next. Specifically, two types of relations, element relations

and group relations, are exploited in the proposed model. The experimental

results of models with/without each type of relations are shown in Figure 6.5.

The MAE results of V+G and V+E are better than that of Vanilla (no relation

leveraged) for the 12-month fashion trend prediction. Such improvement is not

quite marked in the 9-month prediction case. However, it is clear that leverag-

ing both relations effectively improves the prediction performance. This proves

the effectiveness of introducing relations in helping the sequence modeling of

fashion trend signals and the trend prediction. In addition, the more significant

improvement for the 12-month prediction concludes that the relation knowledge

is particularly helpful for more challenging longer-distance prediction cases.

We discuss in detail the sliding attention mechanism in the REAR model. Specifi-

cally, the effectiveness of employing the attention mechanism and the effect of

varying sliding steps on the performance of the whole model is analyzed. The per-

formance of the models (MAE results) with varying sliding steps of the temporal

attention on two experimental settings on the FIT dataset was reported in Ta-

ble 6.4. From the results we can see that first, introducing the temporal attention
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Table 6.4: Performance of models with temporal attention in different sliding steps.
Results on FIT dataset.

sliding steps Nine months Twelve months

No Att 0.08692 0.09606

2 0.08644 0.09532

4 0.08646 0.09514

8 0.08674 0.09571

12 0.09685 0.09712

24 0.08742 0.09615

with sliding steps clearly reduce the MAE for both the 9-month prediction and

12-month prediction in most cases. The difference is that when the sliding step

is two, the model performs best for the 9-month prediction while for 12-month

prediction, the best setting is four sliding steps. For both prediction settings, the

performance worsens when the sliding step becomes large. However, another

noteworthy point is that the small sliding step causes large computational cost,

which should be considered in comprehensive model evaluation.

6.5.4 Fashion Trend Analysis

This part shows some visualization results of the fashion trend prediction, as well

as some in-depth performance analysis to further discuss the effectiveness of the

REAR model, especially the multiple relations explored. Figure 6.6 illustrates

five examples which are fashion trends of different fashion elements for different

groups. To depict the whole picture of data, the entire fashion trend signals

are shown and the prediction parts are highlighted in the colored square in the

right part. The first two rows compare the prediction results of Vanilla model

and models leveraging element relations. It is clear from the comparison that

taking advantage of element relations makes the prediction of future trend more

precise. In the third and fourth cases, we can see the difference of prediction

results brought by leveraging group relations. Similar to the first two cases, the
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Figure 6.6: Fashion trend forecasting results of models w/o two kinds of relations.

Vanilla model is not good enough to make solid trend predictions, while the

models incorporating relations perform better. Last case shows all four prediction

results from models without relations, which validates the effectiveness of our

assumptions about incorporating multiple relations to boost the fashion trend

prediction performance. Such observations from the visualization results are

consistent to the results of quantitative analysis in the ablation study part.

5A/W means the Fall/Winter season, which starts around late July and ends in December. S/S
means the Spring/Summer season, which usually goes from January to June each year.
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Figure 6.7: Performance improvement (relative improvement on MAE) by applying
relations on specific groups and fashion elements. (a) Top 8 groups in
terms of performance improvement by leveraging group relations; (b) Top
5 fashion elements in terms of performance improvement by leveraging
element relations. Results on 9-month prediction on FIT dataset.

The importance of incorporation of two kinds of relations in fashion trend pre-

diction is analyzed in a more detailed manner in this section. Specifically, the

performance change of fashion trends belonging to different groups made by

considering and modeling the group relations is investigated, with the top eight

groups whose fashion trend prediction is improved the most shown in Figure 6.7

(a). From the result we can see that the most significantly improved groups

with the help of group relation incorporation are those of coarse-grained (such

116



red

black

pink

gold

blue

beige

grey

New YorkParis London Milan

06/18 Top 5 color prediction

(a) (b)
A/W 18/19

white

beige

4 4

3

2

1

2

3 3

4

08/2018 09/2018 10/2018 11/2018

Sport style ranking (among 11 styles)

Figure 6.8: Trend prediction of the fashion style sporty. top: predicted ranking of sporty
by REAR model; bottom: professional trendy style prediction produced by
WSGN for A/W 18/19. 5

as Rio de Janeiro Female, without age group). Such a result is reasonable as

in REAR model, the coarse-grained groups adsorb the information from their

affiliating groups, therefore the representation of these groups is enhanced. The

impact of element relations on trends of different fashion elements is also

investigated and similar results have been found. Figure 6.7 (b) illustrates the

five most improved fashion elements in terms of fashion trend prediction. Most

of these fashion elements belong to the higher-level node in the taxonomy (e.g.,

category). Recall that the groups or elements relations are incorporated in REAR

by effectively passing information from the fined-grained affiliation nodes to their
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Figure 6.9: Color trend prediction. top: predicted top 5 colors among four major fash-
ion metropolis in June 2018; bottom: professional trendy color prediction
produced by WSGN for S/S 2018.

parent nodes. In practice, the parent nodes are exactly those wider covering

groups and higher-level fashion elements. As discussed above, these parent nodes

adsorb more information, and thus are better modeled to achieve more preferable

performance.

The proposed REAR model is able to make fashion trend predictions regarding

specific fashion elements for a wide range of time. Figures 6.8 and 6.9 show two

cases of fashion trend prediction from the proposed REAR model and compare that

with the corresponding future trends made by the professional fashion forecasting

118



agency WGSN 4. The trend forecasting from WGSN is expert-based while our

forecasting is data-based. The chart on top in Figure 6.8 shows the ranking result

of the style sporty based on the prediction result of REAR, from which we can see

that the sporty style is predicted to become more popular since September 2018.

Such forecasting results show consistency with WGSN, which forecasts that the

sport style is the key trend in the A/W 18/19 season. Figure 6.9 shows the color

forecasting results. Specifically, on the top, the top five popular colors in June

2018 for four major fashion cities predicted by the REAR model is shown, and

the major cities are Paris, New York, London and Milan. We can see that based

on REAR model, the most trendy colors in June 2018 include black, red, blue,

and beige, while grey and pink are also popular in some cities. Meanwhile, the

WGSN produces the S/S 18 street color trend, it is clear that most of them are in

the top popular color list produced by REAR(matching predictions are marked

by ticks). From the two cases, we can see that the proposed REAR model not

only predicts the future trend, but also generates the forecasting results that are

similar to the old-fashion expert-based fashion forecasting results produced by

professional fashion forecasting agencies.

6.6 Summary

This chapter addresses the fashion trend forecasting problem based on social

media data, aiming to mine the complex patterns in the historical time series

records of fashion elements and accordingly predict the future trends. Specifically,

over 190 fashion elements are studied and three types of user information are

involved towards meaningful fashion trend forecasting. An effective model, REAR,

is proposed to leverage multiple relations between specific fashion trends and

therefore capture the complex patterns in the time-series data and effectively

forecast fashion trends.

4WGSN is one of the most acknowledged professional fashion forecasting agency. The results
of WGSN forecasting are obtained based on the fashion forecasting reports from the WSGN
website, https://www.wgsn.com/fashion/
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7Conclusion and Future Work

This thesis works on the data-driven fashion advising task based on deep learning

technologies. Targeting at two key perspectives of fashion advising, personaliza-

tion and fashionability, it focuses on two research tasks, which are personalized

fashion recommendation and fashion trend forecasting. Specific conclusions,

the limitation of this thesis and the potential future directions are given in this

chapter.

7.1 Conclusion

Three main research objectives are extracted from the two tasks: 1) model-

ing shopping patterns in fashion shopping to enhance the personalized fashion

recommendation, 2) modeling content-level relational item-item transition for se-

quential fashion recommendation, and 3) fashion trend modeling and forecasting

based on social media data. The following three works are specifically conducted

in this thesis:

(1) A graph-based Field-aware Graph Collaborative Filtering (FGCF) method

is developed to capture the fine-grained user shopping patterns. Leveraging

associated fashion factors, which are grouped into different factor fields, the

field-level interactions between the user and items are effectively modeled. Such

operation specifies the user’s preference and enhance the modeling of it, which

further improves the performance of the fashion recommendation model. Based

on the Amazon review data, we construct two fashion datasets: Amazon-women

and Amazon-men for the evaluation of the proposed method. Through extensive

experiments on the two datasets, our FGCF model is demonstrated effective in
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making personalized fashion recommendation. It also able to discover some

shopping patterns from user historical behaviors.

(2) An Attentional Content-level Translation-based Fashion Recommender (ACTR)

is proposed to model both the user-item compatibility and sequential dynamics

among items. To enhance the item-item transition modeling, the proposed

method leverages the item-item relationships and model the content-level item

interactions from different fashion aspects. The final recommendation results

are obtained by aggregating the content-level transitions with the attention

mechanism, as well as the long-term user preference. To facilitate this study,

we apply the iFashion dataset and prepare two settings based on it with various

sequence lengths. Extensive experiments on the two settings demonstrate the

effectiveness of the proposed method.

(3) An RNN-based Relational Enhanced Attention Recurrent (REAR) network is

proposed to model the specific fashion trends of fine-grained fashion element

trends and specific user groups, which are deemed effective to reveal the real

fashion trend. The proposed model takes advantage of the capability of deep

recurrent neural networks in modeling time-series data and connects the fashion

trends signals with multiple relations to further enhance the trend modeling. We

collect a new FIT dataset based on Instagram and set different input for this

study and forecasting lengths for different experimental settings. Experimental

results on our FIT dataset and another GeoStyle dataset show the Superity of the

proposed REAR method in fashion trend forecasting.

In summary, the first two models well address the personalized fashion recom-

mendation problem in non-sequential and sequential manners respectively. The

two methods focus on different aspects to improve the performance for personal-

ized fashion recommendation, but both incorporate the characteristics of fashion

domain. The third model focuses on the perspective of fashionability in fashion

advising, which is able to effectively forecast a period of fashion trend in the
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future, with regard to specific fashion elements and user groups. All three meth-

ods address the corresponding tasks effectively and contribute to the research

of data-driven fashion advising based on deep learning from two different key

perspectives.

7.2 Future Work

Despite of the achievement of this thesis, there still exist limitations and several

potential directions for future work.

(1) In the first work to model the user shopping patterns, only six main fashion

domain factor fields are considered, which means that only the fashion patterns

related to the involved factor fields can be modeled. In real-life applications,

the shopping patterns of users can be also determined by external factors, such

as promotions. Therefore, the shopping patterns in fashion domain can be

investigated in-depth and comprehensively by leveraging more influential factors

and therefore enhance the exploration of user preference.

(2) In the second work, only two simple relationships between fashion items

are incorporated, namely, the substitution and mix-and-match, which are mostly

defined from the functional perspective. Further improvement can be made by

specifying the item relationships from fashion perspective, such as considering

more aesthetic factors. Moreover, the proposed model is based on the translation-

based sequential recommendation model, which has shown much improvement

in performance with several technical contributions. In the future work, the main

technical improvement in the proposed model, i.e., the content-level relational

transition modeling, can be applied in other basic sequential recommendation

models and evaluated for the effectiveness.

(3) In the third work, the study on fashion trends is solely based on the social me-

dia data, which reveal the fashion trends among ordinary people. The forecasting
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of the fashion trends are only based on modeling and analyzing the historical

trend records among ordinary people. However, according to the fashion diffusion

theory [10], fashion trends for masses can be largely affected by users with higher

fashion-conscious and the marketing activities from fashion brands. If these

exogenous influential factors which can lead the fashion trends to a certain extent

can be explored, the forecasting of fashion trends would be further improved.

(4) In this thesis, the personalization and fashionability in fashion advising are

studied as two independent research topics separately, which is the main limitation

of this study. In the future work, the fashion trend forecasting results can be

leveraged into the personalized fashion recommendation models to generate

better recommendation results for users which not only cater to their personal

fashion taste, but also provide them new and inspiring fashion suggestions.
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