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Abstract

Survival analysis is an essential branch of statistics, which focuses on analyzing

the duration time until one or more events happen. It is applied widely to medicine,

economics, engineering, and sociology. Despite the rapid development during the

past several decades, there are still many interesting researches to study in this area.

This thesis considers two topics: subgroup analysis for the heterogeneous Cox model

and statistical inference for panel count data with an informative terminal event.

In survival analysis, Cox model is commonly used to study the covariate effects.

Nevertheless, the homogeneous effect assumption in the classical Cox model is usually

not satisfied in many applications due to the differences among underlying groups

of individuals. Then the homogeneous model will lead to inaccurate estimation

results. To remove the bias, we conduct the subgroup analysis and build the Cox

model with individual-specific coefficients. We introduce the pairwise fusion penalty

function and minimize the penalized criterion function by the majorized alternating

direction method of multipliers (ADMM) algorithm. Then our estimation procedure

automatically clusters individuals having similar treatment effects into the same

subgroup and estimates the treatment effects simultaneously. For the asymptotic

theory, we first verify that the oracle estimator, the estimator with prior information

about the subgroup structure, is asymptotically consistent and has the asymptotic

normal distribution. Then we prove that under some mild conditions, the oracle

estimator is a local minimizer of our criterion function with high probability. This
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implies the asymptotic consistency and normality of our estimator. We show the

finite sample estimation results by the simulation studies. Furthermore, we use

our method to analyze the breast cancer data collected by the Netherlands Cancer

Institute (NKI).

In the long-term follow-up study of recurrent events, panel count data occurs

when the observations of individuals are some discrete time points such that only

the occurrence numbers of recurrent events between the adjacent time points are

available. In general, the follow-up study often ends with some events having intri-

cate interactions with the recurrent events, which motivates us to study the statistical

inference approaches for panel count data with an informative terminal event. This

thesis builds the nonparametric and semiparametric models for this problem with the

least squares-based loss functions. Treating the distribution of terminal event time

as a nuisance functional parameter, we consider the two-stage estimation procedures.

We approximate the nonparametric function by the monotone I-spline function be-

cause the spline estimation converges faster than the estimation approximated by the

step function. Using the empirical process theories, we verify the asymptotic proper-

ties for the proposed estimators. We also conduct the two-sample hypothesis test for

the mean function in the nonparametric model. Our simulation studies demonstrate

that the proposed estimations perform well. Finally, we use our methods to analyze

the dataset of the Chinese Longitudinal Healthy Longevity Survey (CLHLS).

Key Words: Survival analysis; Subgroup analysis; Cox model; Penalization; Ma-

jorized ADMM; Panel count data; Terminal event; Two-stage estimation; Monotone

I-spline; Empirical process.
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Chapter 1

Introduction

This thesis studies two topics in survival analysis. That is the subgroup analysis

for the heterogeneous Cox model and the statistical inference for panel count data

with an informative terminal event. In this chapter, we first introduce the research

area and some common concepts of survival analysis, such as right censoring, Cox

model, and recurrent events. Then we demonstrate some existing studies closely

related to the two topics in this thesis. Finally, we show the organization of this

thesis.

1.1 Background

The purpose of survival analysis is to investigate the duration time from a starting

point to the occurrences of one or more events. When the event of interest only

happens once for each individual, the duration time is referred to as survival time,

which is usually denoted by a non-negative continuous random variable U . Then the

behavior of survival time is determined by its distribution function F (u) = P (U ≤ u)

(or equivalently the probability density function f(u) = F ′(u)). In survival analysis,

we usually adopt three other quantities to describe the behavior of survival time.

That is the survival function S(u) = 1 − F (u), the cumulative hazard function

H(u) = −ln(1− F (u)) (or equivalently the hazard function h(u) = H ′(u)), and the
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mean residual life function mrl(u) =
∫∞
u
S(t)dt/S(u). Because there are some one-

to-one maps among the above four quantities, we can focus on any one of them for

statistical inference. The relationships between F (u), S(u), H(u) and mrl(u) were

summarized in Theoretical Notes 2 in Section 2.4 of Klein and Moeschberger (2006).

In applications, the survival time is sometimes partly observed. For example, in

the right-censored data, because of some censoring events such as loss-of-connection,

drop-out of participants, and the end of study, the remainder of survival time after

the censoring events is not observed. Hence, taking the censoring time to be C, the

right-censored data is recorded as (Y,∆), where Y = U ∧ C is the right-censored

survival time and ∆ = 1{U≤C} is the indicator of uncensored. Due to the loss of

information from the partial observation of survival time in right-censored data, we

need special approaches to analyze the behavior of U . Based on the right-censored

data, Kaplan and Meier (1958) proposed the Kaplan-Meier (KM) estimator for the

survival function of U . The asymptotic consistency and normality of the KM esti-

mator were established by Breslow and Crowley (1974), and the estimations for the

variance of the KM estimator were studied by Aalen and Johansen (1978) and Klein

(1991). Using the idea of the KM estimator, Nelson (1972) provided the Nelson-Aalen

estimator for the cumulative hazard function of U with right-censored data. Aalen

(1978) restudied the Nelson-Aalen estimator using the counting process theory. The

estimations for the density function of U with right-censored data were investigated

by Földes, Rejtő, and Winter (1981), Mielniczuk (1986), and McNichols and Padgett

(1986). Gehan (1965), Breslow (1970), Tarone and Ware (1977), and Harrington and

Fleming (1982) considered two- or multiple-sample tests for the distributions of the

survival time.

Many semiparametric models, such as the Cox model (Cox, 1972; Cox, 1975;

Breslow, 1972), the additive hazard model (Aranda-Ordaz, 1983; Buckley, 1984; Lin

and Ying, 1994), and the accelerated failure time model (Buckley and James, 1979;
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Wei, 1992) were developed to analyze the covariate effects in survival analysis. The

Cox model, which is the most popular model among them, is also known as the

proportional hazard model because it supposes that a unit change on the covariate

generates the exponential paces of changes on the hazard function. Cox (1972, 1975)

proposed the partial likelihood estimation for the coefficients of the covariates. Bres-

low (1972) provided the Breslow estimator for the baseline hazard function. Using

counting process theory, Andersen and Gill (1982) investigated the Cox model with

time-dependent covariates and verified the asymptotic properties of their estimation.

Christensen et al. (1986) further estimated the baseline hazard function for the Cox

model with the time-dependent covariates. There were also many statistical studies

based on other important topics on the Cox model, for example, the Cox model with

covariates measured with error (Prentice, 1982; Hu, Tsiatis, and Davidian, 1998; Hu

and Lin, 2002), variable selection approaches for the Cox model (Fan and Li, 2002;

Zhang and Lu, 2007; Zhao et al., 2020), asymptotic properties of estimators for high

dimensional Cox model (Bradic, Fan, and Jiang, 2011; Huang et al., 2013; Fang,

Ning, and Liu, 2017), and functional Cox model (Chen et al., 2011; Qu, Wang, and

Wang, 2016; Kong et al., 2018).

Most studies mentioned before considered the situation that the event of interest

happened only once. Another situation is that one individual may experience the

same type of events many times, and such events are referred to as recurrent events.

Based on the idea of the KM estimator, Gill (1980) proposed a nonparametric model

for the recurrent event, and Gill (1981) verified the asymptotic consistency. Sellke

(1988) extended the Nelson–Aalen estimator and investigated the estimation for the

intensity function when the recurrent events were observed in an infinite interval.

Aalen and Husebye (1991) provided a renewal process model and studied the wait-

ing time between two adjacent events. Ignoring the last event time, Wang and Chang

(1999) considered a weighed moment estimation for the marginal survival function

3



of the time between two adjacent events. For the semiparametric model of recurrent

events, based on the Poisson process assumption, Andersen and Gill (1982) studied

the proportional intensity model. Lin, Wei, and Ying (1998) investigated the accel-

erated failure time model for the counting process. Fleming and Harrington (1991)

summarized the nonparametric and semiparametric estimations for survival analysis

using the counting process and martingale techniques.

1.2 Literature Review

In this section, we introduce some existing researches about the two topics this

thesis focusing on.

1.2.1 Subgroup Analysis

The classical models presented in Section 1.1 supposed that the treatment effects

were homogeneous for all the individuals. However, in clinical trials, the treatment

effects might be different among patients with different characters, which causes the

homogeneous effect model to be misleading. (Sorensen, 1996; Kravitz, Duan, and

Braslow; 2004) Precision medicine focuses on investigating the treatment heterogene-

ity, and the corresponding methods are referred to as subgroup analysis.

Early subgroup analysis methods supposed that the treatment heterogeneity only

depends on the observed covariates, and the patients were clustered by the descrip-

tive statistics. (Kravitz, Duan, and Braslow, 2004; Rothwell, 2005; Lagakos, 2006)

Due to the lack of statistical frameworks, these approaches were inaccurate. The

finite mixture model (Everitt and Hand, 1981) was one of the most popular statis-

tical model in classification. In particular, Banfield and Raftery (1993), Hastie and

Tibshirani (1996), and McNicholas (2010) studied the gaussian mixture model, and

Wong and Li (2001), Muthén and Shedden (1999), and Muthén and Asparouhov

(2009) investigated the logistic mixture model. Shen and He (2015) first applied the

4



logistic mixture model to test the existence of subgroups and estimate the treatment

effects in the linear regression model. Wu Zheng and Yu (2016) extended the ap-

proach of Shen and He (2015) to the subgroup analysis in the Cox model. Although

the coefficient estimation in the finite mixture model for subgroup analysis performs

well, we need to specify the number of subgroups before the analysis, which is a

challenge in reality. Furthermore, the selected model in the finite mixture model

supposes that the subgroup structure is only dependent on the observed covariates,

which may be also not satisfied.

Recently, Ma and Huang (2017) and Ma et al. (2019) considered the model with

individual-specific coefficients and proposed a data-driven subgroup identification

procedure for the linear model. Introducing the pairwise fusion penalty, their meth-

ods clustered the individuals and estimated the coefficients simultaneously. Yan,

Yin, and Zhao (2020) and Zhang, Wang, and Zhu (2019) extended this subgroup

analysis method to the accelerated failure time model and the quantile regression

model, respectively.

1.2.2 Panel Count Data Analysis

In long-term follow-up studies, when the observation time is discontinuous and

only the occurrence numbers of the events of interest between two adjacent observa-

tion time points are available, such data is referred to as panel count data. Due to

the missing information caused by the discontinuous observation time, the methods

for survival analysis mentioned before are not applicable. Therefore, we need to

develop the statistical inference approaches for panel count data specifically.

Some early studies assumed that the event only happened once for each indi-

vidual, so they applied the methods for interval-censored data to analyze the panel

count data. (Diamond, McDonald, and Shah, 1986; Sun and Kalbfleisch, 1993) For

the studies of recurrent events, Kalbfleisch and Lawless (1985) investigated the panel
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count data under the Markov assumption. Sun and Kalbfleisch (1995) built a model

on the mean function of counting processes with panel count data and considered the

isotonic regression to obtain the estimation. Using monotone step function approx-

imation, Wellner and Zhang (2000) provided the maximum pseudo-likelihood and

maximum likelihood estimations for the mean function of counting processes with

panel count data.

Considering the covariate effects, Sun and Wei (2000), Hu, Sun, and Wei (2003),

and Zhang (2002) constructed the semiparametric model for panel count data. Well-

ner and Zhang (2007) studied the maximum pseudo-likelihood and maximum likeli-

hood estimations under the proportional mean model with panel count data. Using

the empirical process theory, they verified the convergence rate and the asymptotic

normality of the estimations. Lu, Zhang, and Huang (2007, 2009) further investi-

gated the model in Wellner and Zhang (2007) and improved the convergence rate of

the estimations by the monotone spline approximation. There were also some studies

focusing on the variable selection problem in the semiparametric model with panel

count data. For example, Tong et al. (2009) and Zhang, Sun, and Wang (2013)

proposed the penalized estimations for the coefficients using the nonconcave penalty

function and the seamless-L0 (SELO) penalty function, respectively.

For the hypothesis test with panel count data, Sun and Fang (2003) conducted the

k-sample log-rank test for the mean function of counting processes with treatment

indicator. Based on the maximum pseudo-likelihood and likelihood estimations in

Wellner and Zhang (2000), Zhang (2006) and Balakrishnan and Zhao (2009) estab-

lished the asymptotic normality for some functions of the estimators and proposed

k-sample test statistics. Zhao and Sun (2011) studied the k-sample nonparamet-

ric hypothesis test when the distribution of observation processes were not equal in

different groups. Following Lu, Zhang, and Huang (2007, 2009), Zhao and Zhang

(2017) considered the B-spline approximation and conducted the two-sample test for
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the mean function of counting processes with panel count data.

The researches for panel count data were summarized in Sun and Zhao (2013).

1.2.3 Terminal Event

In survival analysis, the observation of individuals may be stopped by some ter-

minal events which potentially affect the survival time. In some early studies, the

terminal event was treated as dependent censoring, and the models were built under

the repeated measure desine. (De Gruttola and Tu, 1994; Little, 1995; Sun and Song

2001) Based on this idea, two types of models for the analysis of recurrent events with

the terminal event were developed, i.e. the marginal model and the frailty model.

The marginal model focuses on the marginal distribution of the rate function of

the recurrent events given the condition of the terminal event time. Based on the

marginal model of Wei, Lin, and Weissfeld (1989), Li and Lagakos (1997) studied

the marginal model for recurrent events with the terminal event. Cook and Law-

less (1997) proposed an estimation for the conditional mean function of the recurrent

event using the marginal model. Ghosh and Lin (2002) investigated the semiparamet-

ric marginal effect model by the inverse probability censoring weight and the inverse

probability survival weight methods. Ghosh and Lin (2003) combined the marginal

model with the accelerated failure time model when the terminal event existed. Zhao,

Zhou, and Sun (2011) considered the marginal model for the semiparametric regres-

sion with time-varying coefficients and an informative terminal event. Using the idea

of the marginal model, Zhao, Li, and Sun (2013a, 2013b) provided semiparametric

statistical analysis for panel count data with the terminal event.

The frailty model introduces a latent variable to describe the correlation be-

tween the recurrent events and the terminal event. It supposes that the recurrent

event and the terminal event are conditionally independent given the latent variable.

Under the Poisson process assumption, Lancaster and Intrator (1998) studied the
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joint distribution of the recurrent events and the terminal event. Wang, Qin, and

Chiang (2001) proposed the frailty model under the assumption that the recurrent

events were from the nonstationary Poisson process. Huang and Wang (2004) and

Liu, Wolfe, and Huang (2004) investigated the extension of the proportional hazard

model for recurrent events with an informative terminal event. Ye, Kalbfleisch, and

Schaubel (2007) developed a time-varying coefficient model when an informative ter-

minal event exists. Zeng and Cai (2010) applied the frailty model and the additive

rate model to estimate the rate function of recurrent events. Sun, Tong, and He

(2007) and Zhou et al. (2017) considered the frailty model for panel count data with

the terminal event.

Both of the above two methods, however, are failed to explain the explicit inter-

actions between the recurrent events and the terminal event. The marginal model

is appropriate only when the recurrent events are not observed but indeed occur

after the terminal event, and the frailty model describes the relationship between

the recurrent events and the terminal event indirectly through the latent variable.

(Kong et al., 2018) Recently, to detect the explicit interactions, Chan and Wang

(2010) considered the situation that the terminal event stops the occurrences of re-

current events and built a time-backward model describing the occurrence rate of

recurrent events before the terminal event. Treating the terminal event time as a

fixed effect covariate, Kong et al. (2018) extended the time-backward model in Chan

and Wang (2010) and developed the mixed effect model for longitudinal data with

an informative terminal event.

1.3 Motivation and Outline

For the first topic, as mentioned in Section 1.2, the existing methods for the

subgroup analysis with the Cox model are based on the logistic-Cox mixture model
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(Wu Zheng and Yu, 2016), which still needs to be improved. This motivates us

to consider the pairwise fusion function in Ma and Huang (2017) and Ma et al.

(2019) to do the subgroup analysis with the Cox model. The proposed subgroup

analysis procedure clusters the individuals with similar treatment effects into the

same group, which not only does not need to specify the total number of subgroups

but also clusters the individuals according to their latent characters. The majorized

ADMM algorithm (Li, Sun, and Toh, 2016) considered in this thesis is implemented

more easily and more accurately than the standard ADMM algorithm suggested by

Ma and Huang (2017) and Ma et al. (2019).

For the analysis of panel count data with an informative terminal event, we con-

sider the time backward model to study the explicit effect from the terminal event

with the least squares-based loss function. Since it is difficult to minimize the loss

function with respect to all the unknown parameters and functions, we treat the

distribution function of the terminal event as a nuisance functional parameter and

proposed a two-stage estimation. Furthermore, using the monotone I-spline approx-

imation, the overall convergence rate of our estimation is slower than n1/2, and the

classical approach for the asymptotic normality is not applicable. Hence, we establish

two general theorems for the asymptotic normality of M-estimation with nuisance

parameter under the nonparametric model and the semiparametric model, respec-

tively. In the two-sample hypothesis test for the nonparametric model, it is difficult

to construct the statistics when the latent distribution functions of the terminal event

are different in two groups. Based on the techniques introduced by Zhao and Sun

(2011), we overcome this challenge which is by no means a straightforward extension

from the asymptotic normality theorem.

The remainder of this thesis is organized as follows.

Chapter 2 proposes the subgroup analysis for the Cox model, which identifies the

subgroup structure and estimates the coefficients simultaneously. We introduce the
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individual-specific parameter to represent the heterogeneous treatment effects. The

individuals with similar treatment effects are clustered into the same subgroup by

the concave pairwise fusion penalty function. To minimize the penalized criterion

function, we introduce the majorized ADMM algorithm. Using the oracle estimation

as a bridge, we verified the asymptotic consistency and the asymptotic normality of

the proposed estimator. The finite sample performances of our estimator are demon-

strated by the simulation studies. Finally, we applied our approach to analyzing the

treatment effects in the breast cancer data.

Chapter 3 studies the nonparametric model for the panel count data with an infor-

mative terminal event. Based on the least squares-based loss function and treating

the distribution function of the terminal event as a nuisance parameter, we con-

sider the two-stage estimation procedure. Under some mild conditions, we prove the

asymptotic consistency and the convergence rate of our estimation. We establish a

general theorem for the asymptotic normality of M-estimation with nuisance param-

eter and verify the asymptotic normality for the proposed estimation based on this

general theorem. Then the two-sample test statistics is constructed for comparison.

We also use the simulation studies to show the finite sample performances of our esti-

mation and the test statistics. At the end of Chapter 3, we use our method to analyze

the rate of occurrences of severe diseases by the data of the Chinese Longitudinal

Healthy Longevity Survey (CLHLS).

As a straightforward extension of Chapter 3, Chapter 4 investigates the semi-

parametric model for the panel count data with an informative terminal event. The

estimation is still based on the least squares-based loss function with a two-stage

estimation procedure. The asymptotic consistency and the convergence rate are ver-

ified under some mild conditions, and we also establish a general theorem for the

asymptotic normality of M-estimation with nuisance parameter for the semipara-

metric model. We conduct simulation studies to show the finite sample estimation
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results. In the real data analysis, we further study the occurrence rate of severe

diseases by the CLHLS data.

In Chapter 5, we summarise the research results in this thesis and provide some

researches for future study.
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Chapter 2

Subgroup Analysis in the Cox

Model

2.1 Introduction

In this chapter, we consider the subgroup analysis in the heterogenous Cox model

under the assumption of sparsity subgroup structure. Based on the objective function

constructed through combining the negative logarithmic partial likelihood function

and a concave fusion penalty function, we can identify the subgroup structure and

estimate treatment effects simultaneously without any prior knowledge about the

group structure. The likelihood-based regularization approaches make the statisti-

cal inference of identifying the subgroup structure and estimating treatment effects

become an automated procedure and so it is easy to implement.

To overcome the computational difficulties caused from the complicated nature

of the likelihood-based objective function, we borrow the ideas of the majorized

alternating direction method of multipliers (ADMM) algorithm. (Li, Sun, and Toh;

2016) Compared to the classical ADMM algorithm suggested by Ma and Huang

(2017), this algorithm is able to efficiently handle large scale problems to get more

accurate solutions by transforming an objective function into a majorized convex

function with a pairwise fusion penalty. We take the ridge solution of the negative
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log-likelihood function as the initial solution of the algorithm, and find that the

initial solution performs well in identifying the subgroup structure in our simulation

studies.

Using the oracle estimator as a bridge, we obtain the oracle property of the

proposed estimator. Concretely, we obtain the consistency and asymptotic normality

of the oracle estimator at first. Then we show that the oracle estimator and the

proposed estimator are asymptotically equivalent. Thus, the latter is consistent and

possesses the asymptotic normality. This property also illustrates that the proposed

method can identify the subgroup structure of the model as if we knew it in advance.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the

heterogenous Cox model with right censored data and propose a penalized estimation

approach. Section 2.3 presents the majorized ADMM algorithm for computing the

proposed estimators. In Section 2.4, we establish the consistency and the asymptotic

normality of the proposed estimator. We then conduct simulation studies to demon-

strate the performance of the proposed method in Section 2.5, and use the method

to analyze a real data example in Section 2.6. The proofs of the theoretical results

are relegated to the Appendix.

2.2 Heterogenous Cox Model and Estimation Pro-

cedure

Consider a survival study containing n independent subjects. For subject i,

let Ui and Ci denote the failure time and the censoring time, respectively. Then

the observed data consist of {(Ti,∆i) : i = 1, · · · , n}, where Ti = Ui ∧ Ci and

∆i = 1{Ui≤Ci}. Let Xi and Zi denote covariates with dimensions p and q, respectively.

Let λ(t|Xi, Zi) be the conditional hazard rate function of U given Xi and Zi. Then
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the homogeneous Cox model is

λ(t|Xi, Zi) = λ0(t) exp(ZT
i η +XT

i β), i = 1, · · · , n, (2.1)

where λ0(t) is the baseline hazard function, η and β are unknown regression pa-

rameters denoting the average effects. However, the homogeneous assumption about

covariate effects is not satisfied when the effects of Xi are different among subjects.

To describe the treatment heterogeneity, we propose the heterogeneous Cox model

as follows:

λ(t|Xi, Zi) = λ0(t) exp(ZT
i η +XT

i βi), i = 1, · · · , n, (2.2)

where βi is subject-specific effect of Xi on the hazard function. We suppose that n

subjects are divided into K potential subgroups according to set G = (G1, . . . ,GK),

and βi ≡ αk for all i ∈ Gk, k = 1, · · · , K. For this model, we focus on identifying the

subgroup set G and estimating parameters {α1, · · · , αK} and η.

For the coefficient of X, define α = (αT1 , . . . , α
T
K)T and β = (βT1 , . . . , β

T
n )T . The

negative partial log-likelihood function is

`n(η,β) = −
n∑
i=1

∆i(Z
T
i η +XT

i βi) +
n∑
i=1

∆i log
( ∑
j∈R(Ti)

exp(ZT
j η +XT

j βj)
)
, (2.3)

where R(Ti) = {j : Tj ≥ Ti} is the risk set. For the purpose of identifying the

subgroup structure, we use a concave pairwise penalty pγ(||βi − βj||, λ) to shrink

small value of ||βi − βj|| to 0, where || · || is the L2-norm of a vector. Then the

criterion function is

Qn(η,β) = `n(η,β) +
∑
i<j

pγ(||βi − βj||, λ), (2.4)

where λ ≥ 0 is a tuning parameter. Thus, we can obtain the estimator (η̂(λ), β̂(λ)) by

minimizing the objective function (2.4) with a given turning parameter λ. Finally, the
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estimator for α is the distinct value of β̂(λ), denoted by α̂(λ) = (α̂T1 (λ), . . . , α̂T
K̂

(λ))T .

The identified subgroup structure is Ĝk(λ) = {i : β̂i(λ) = α̂k(λ), 1 ≤ i ≤ n}, where

1 ≤ k ≤ K̂(λ).

The penalty function can be naively chosen as the L1 penalty function pγ(t, λ) =

λ|t|, but L1 penalty tends to choose too many subgroups. Following Ma and Huang

(2017), a better choice of the penalty function is the smoothly clipped absolute

deviation (SCAD) (Fan and Li, 2001) with

pγ(t, λ) = λ

∫ |t|
0

min{1, (γ − x/λ)+/(γ − 1)}dx,

or the minimax concave penalty (MCP) (Zhang, 2010) with

pγ(t, λ) = λ

∫ |t|
0

(1− x/(γλ))+dx.

2.3 Majorized ADMM Algorithm

In this section, we present the algorithm to find the solution path (η̂(λ), β̂(λ)).

Introducing a new set of parameters uij = βi − βj, we can reformulate the criterion

function Qn(η,β) as

Qn(η,β,u) = `n(η,β) +
∑
i<j

pγ(||uij||, λ)

subject to βi − βj − uij = 0, where u = (uTij, i < j)T . Following Ma et al. (2019),

we can solve this minimization problem using the standard ADMM algorithm by

approximating `n(η,β) as the quadratic function

`n(η,β) ≈ `n(η(m−1),β(m−1)) +∇`n(η(m−1),β(m−1))T
(
(η,β)− (η(m−1),β(m−1))

)
+

1

2

(
(η,β)T − (η(m−1),β(m−1))T

)
∇2`n(η(m−1),β(m−1))

(
(η,β)− (η(m−1),β(m−1))

)
,
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where (η(m−1),β(m−1)) is the value of parameter in the mth iteration step. However,

the quadratic approximation is only accurate when (η,β) is close to (η(m−1),β(m−1)),

and the calculation of the second order derivative ∇2`n(η,β) is time consuming.

Hence, it motivates us to utilize the idea of the majorized ADMM algorithm. (Li,

Sun and Toh, 2016)

Introduce another set of parameters Yi = ZT
i η+XT

i βi, and let Y = (Y1, . . . , Yn)T .

The negative log partial-likelihood function ln(η,β) can be rewritten as

g(Y ) = −
n∑
i=1

∆iYi +
n∑
i=1

∆i log
( ∑
j∈R(Ti)

exp(Yj)
)
.

Then we need to minimize

Qn(η,β,u,Y ) = g(Y ) +
∑
i<j

pγ(||uij||, λ) (2.5)

subject to βi − βj − uij = 0 and Yi = ZT
i η + XT

i βi. Since ∇2g(Y ) � G̃ for G̃ =

1
2
diag{g̃1, . . . , g̃n} and g̃j =

n∑
i=1

∆iIj∈R(Ti), we have

g(Y ) ≤ g̃(Y ;Y ′) := g(Y ′) + 〈Y − Y ′,∇g(Y ′)〉+
1

2
‖Y − Y ′‖2

G̃

for any Y and Y ′ with ‖x‖2
G̃

= 〈x, G̃x〉. The objective function (2.5) is then

transformed to the majorized augmented Lagrangian function as follows

Q′n(η,β,Y ,u;w,v,Y ′) = g̃(Y ;Y ′) +
∑
i<j

pγ(‖uij‖, λ) +
n∑
i=1

〈wi, Yi − ZT
i η −XT

i βi〉

+
∑
i<j

〈vij, βi − βj − uij〉+
ϑ

2

n∑
i=1

(Yi − ZT
i η −XT

i βi)
2 +

ϑ

2

∑
i<j

||βi − βj − uij||2,

where the dual variables w = (wi, i = 1, . . . , n)T and v = (vTij, i < j)T are the La-

grange multipliers, and ϑ is the penalty parameter. We then compute the estimators

β̂ and η̂ through the following majorized ADMM algorithm.
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At the mth iteration, for a given value of parameter

(η(m−1), β(m−1),Y (m−1),u(m−1);w(m−1),v(m−1),Y ′
(m−1)

),

cluster size K(m−1), and subgroup set G(m−1), the iteration goes as follows:

Step 1. Update (η(m),β(m)) by minimizing

Q′n(η,β,Y (m−1),u(m−1);w(m−1),v(m−1),Y ′
(m−1)

);

Step 2. Update (Y (m),u(m)) by minimizing

Q′n(η(m),β(m),Y ,u;w(m−1),v(m−1),Y ′
(m−1)

)

and update

Y
′(m)
i = ZT

i η
(m) +XT

i β
(m)
i (2.6)

for i = 1, . . . , n;

Step 3. Update w(m) and v(m) by

w
(m)
i =w

(m−1)
i + %ϑ(Y

(m)
i − ZT

i η
(m) −XT

i β
(m)
i ),

v
(m)
ij =v

(m−1)
ij + %ϑ(β

(m)
i − β(m)

j − u(m)
ij ),

(2.7)

where the constant % ∈ (0, (1 +
√

5)/2);

Step 4. Update K(m) and G(m) by clustering β(m).

At Step 1, for fixed (Y ,u,w,v,Y ′), it suffices to minimize the following objective

function in order to update β and η:

n∑
i=1

〈wi, Yi − ZT
i η −XT

i βi〉+
∑
i<j

〈vij, βi − βj − uij〉

+
ϑ

2

n∑
i=1

(Yi − ZT
i η −XT

i βi)
2 +

ϑ

2

∑
i<j

||βi − βj − uij||2.

(2.8)
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Define Z = (Z1, . . . , Zn)T , X = diag(XT
1 , . . . ,X

T
n ) and A = D ⊗ Ip, where D =

{(ei − ej), i < j}T with ei being an n × 1 vector whose ith entry is 1 and the

remaining ones are 0, Ip is a p × p identity matrix, and ⊗ is a Kronecker product.

For given K and G, let WG = {ωik} be an n×K matrix, where the entry ωik takes

1 if i ∈ Gk and 0 otherwise. In addition, we define W̃G = WG ⊗ Ip, X̃ = XW̃G and

Ã = AW̃G. Thus, after removing the terms irrelevant to β and η, the minimal point

of (2.8) is obtained equivalently by minimizing

1

2
‖Y −Zη − X̃α+

w

ϑ
‖2 +

1

2
‖Ãα− u+

v

ϑ
‖2.

At the mth iteration, setting QZ = In−Z(ZTZ)−1ZT , the parameters β and η are

updated through the following equations

α(m) =H−1
G S

(m−1)
G ,

β(m) =W̃Gα
(m),

η(m) =(ZTZ)−1ZT (Y (m−1) −Xβ(m) + ϑ−1w(m−1)),

(2.9)

where HG = X̃TQZX̃ + ÃT Ã, and S
(m−1)
G = X̃TQZ(Y (m−1) + ϑ−1w(m−1)) +

ÃT (u(m−1)−ϑ−1v(m−1)). It deserves to note that the updated solution of parameter

β(m) includes the integrated information of α(m), G(m−1) and K(m−1).

At Step 2, for fixed (η, β,w,v,Y ′), we need to get the minimal points

arg min
Y

〈Y ,∇g(Y ′)〉+
1

2
‖Y − Y ′‖2

G̃
(2.10)

+
n∑
i=1

〈wi, Yi − ZT
i η −XT

i βi〉+
ϑ

2

n∑
i=1

(Yi − ZT
i η −XT

i βi)
2,

arg min
uij

1

2
‖βi − βj +

vij
ϑ
− uij‖2 +

1

ϑ
pγ(‖uij‖, λ). (2.11)
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At the mth iteration, for (2.10), it can be solved that for i = 1, . . . , n,

Y
(m)
i = (g̃i+ϑ)−1

[
−∇ig(Y ′(m−1))+g̃iY

′(m−1)
i −w(m−1)

i +ϑ(ZT
i η

(m)+XT
i β

(m)
i )

]
. (2.12)

For (2.11), we can get the closed form of u
(m)
ij for some commonly used penalties,

such as group MCP and group SCAD. For the group SCAD penalty with parameter

γ, i.e.,

p′γ(‖uij‖, λ) = λI(‖uij‖ ≤ λ) +
(γλ− ‖uij‖)+

γ − 1
I(‖uij‖ > λ),

we have

u
(m)
ij =


S(c

(m−1)
ij ;λ/ϑ), ‖c(m−1)

ij ‖ ≤ λ+ λ/ϑ,(
ϑ(γ−1)−λγ/‖c(m−1)

ij ‖
)
c
(m−1)
ij

ϑγ−ϑ−1
, λ+ λ/ϑ < ‖c(m−1)

ij ‖ ≤ λγ,

c
(m−1)
ij , ‖c(m−1)

ij ‖ > λγ,

(2.13)

where c
(m−1)
ij = β

(m)
i − β(m)

j +
v
(m−1)
ij

ϑ
and S(c;λ) = (1 − λ/‖c‖)+c. For group MCP

penalty with parameter γ, i.e.,

p′γ(‖uij‖, λ) =
(γλ− ‖uij‖)+

γ
,

we have

u
(m)
ij =

 S
(
ϑc

(m−1)
ij

ϑ−1/γ
; λ
ϑ−1/γ

)
, ‖c(m−1)

ij ‖ ≤ λγ,

c
(m−1)
ij , ‖c(m−1)

ij ‖ > λγ.
(2.14)

At Step 4, we first solve the following optimization problem

ũ
(m)
ij = arg min

ũij

1

2
‖β(m)

i − β(m)
j − ũij‖2 + pγ(‖ũij‖, λ), (2.15)

and then update K(m) and G(m) by clustering individuals i and j into the same group

if ũij = 0. This step is critical to clustering analysis of the regression coefficient β so

that Step 1 can be carried out smoothly in the recursive process. The performance of
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the algorithm depends on the choice of the penalty function and the tuning parameter

λ.

The initial points in the algorithm are taken as follows. Since covariate Z has

no subgroup effect, we simply take the estimator η̂ as η(0) by treating the hazard

function as a homogeneous effect model. As a reasonable initial point of parameter

β, it should reflect not only the form of the assumed hazard function but also the

subgroup relation among different individuals. So we consider the ridge solution of

the negative log-likelihood function as β(0). Concretely, we define

β(0) = arg min
β
ln(η(0),β) +

λ∗

2

∑
i<j

‖βi − βj‖2,

where tuning parameter λ∗ is taken as 0.001 in our simulation studies, and utilize a

majorized algorithm to find the solution of β(0) through (2.5). We take K(0) = b
√
nc

to ensure that there are enough groups at the beginning of the iteration. A cluster

analysis method can then be applied to β(0) for determining G(0) = (G(0)
1 , . . . ,G(0)

K(0)).

Take Y (0) = Y ′(0) = Zη(0) +Xβ(0), u(0) = Aβ(0) and w(0) = v(0) = 0
¯
.

Denote the primal residual as

r(m) =
n∑
i=1

(y
(m)
i − zTi η

(m) − xTi β
(m)
i )2 +

∑
i<j

||β(m)
i − β(m)

j − u
(m)
ij ||2. (2.16)

We stop the iteration when r(m) is small enough.

We summarize the above descriptions in Algorithm 1.

2.4 Asymptotic Results

Let Ni(t) = 1(Ti≤t,∆i=1), Yi(t) = 1(Ti≥t), and τ be the end time of study. Suppose

that
∫ τ

0
λ0(t)dt < ∞. The negative partial log-likelihood function can be rewritten
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Algorithm 1 Majorized ADMM algorithm

Initialize (η(0),β(0),Y (0),u(0);w(0),v(0),Y ′(0)), K(0), and G(0)

for m = 1, 2, · · · do
Update (β(m),η(m)) using (2.9)
Update (Y (m),u(m)) using (2.12) (2.13), and (2.14)
Update Y ′(m) using (2.6)
Update (w(m),v(m)) using (2.7)

Compute ũ
(m)
ij using (2.15), and update (K(m),G(m)) according to ũ

(m)
ij

Compute r(m) using (2.16)
if r(m) is small enough then

Stop and denote the last iteration by (β̂, η̂)
end if

end for

as

`n(η,β) = −
n∑
i=1

∫ τ

0

[(
ZT
i η +XT

i βi
)
− log

{
n∑
j=1

Yj(t) exp(ZT
j η +XT

j βj)

}]
dNi(t).

The objective function is Qn(η,β) = `n(η,β)+Pn(β), where Pn(β) =
∑

i<j pγ(||βi−

βj||, λ). Denote the true subgroup set as G0 = (G0,1, · · · ,G0,K0). Define W̃G0 =

WG0 ⊗ Ip, X̃G0 = XW̃G0 , B = (Z, X̃G0), and let Bi be the i-th column of BT . Let

θ = (ηT ,αT )T , and S(0)(θ,B, t) = n−1
∑n

i=1 Yi(t) exp(BT
i θ). Thus, with the prior

information of G0, we write the negative partial log-likelihood function as

˜̀
n(θ) = −

n∑
i=1

∫ τ

0

[
BT
i θ − log[nS(0)(θ,B, t)]

]
dNi(t).

Then the oracle estimator θ̂or = (η̂or, α̂or) is the minimizer of ˜̀
n(θ).

Now we present the asymptotic results of the proposed estimators.

Theorem 2.1. Suppose that Conditions (C1)-(C3) given in the Appendix hold. Let

θ0 be the true value of parameter θ. Then

(i) θ̂or
p−→ θ0;
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(ii)
√
n(θ̂or−θ0) converges in distribution to the multivariate normal distribution

with zero mean and covariance matrix Σ−1(θ0), where Σ(θ0) is given in the Appendix.

Theorem 2.1 shows that when the grouping structure is known, the oracle esti-

mator is consistent and asymptotically normal. Next, when the true subgroup set

G0 is known, we define the oracle parameter space of β as

MG0 = {β ∈ Rnp : βi = βj = αk, for any i, j ∈ G0,k, 1 ≤ k ≤ K0}.

Define (η̂or, β̂or) as the minimizer of `n(η,β) with subject to β ∈ MG0 . Set β0 and

α0 to be the true parameter. We first consider the case of K0 ≥ 2 and have the

following result.

Theorem 2.2. Suppose that Conditions (C1)-(C4) given in the Appendix hold. Let

b = mini∈G0,k,j∈G0,k′ ,k 6=k′ ||β0i − β0j|| = mink 6=k′ ||α0k − α0k′||. Assume that b > aλ for

constant a in Condition (C4). Then there exists a local minimizer (η̂(λ), β̂(λ)) of

the objective function Qn(η,β;λ) satisfying P
(
(η̂(λ), β̂(λ)) = (η̂or, β̂or)

)
→ 1.

Next, we consider the case of a homogeneous model in which K0 = 1 and β01 =

· · · = β0n ≡ α0.

Theorem 2.3. Suppose that Conditions (C1)-(C4) given in the Appendix hold. When

there is only one group, we define the oracle parameter space of β as M = {β ∈

Rnp : βi ≡ α, i = 1, · · · , n}, and the oracle estimator (η̂or, β̂or) as the minimizer

of `n(η,β) with β ∈ M. Then there exists a local minimizer (η̂(λ), β̂(λ)) of the

objective function Qn(η,β;λ) satisfying P
(
(η̂(λ), β̂(λ)) = (η̂or, β̂or)

)
→ 1.

Let α̂(λ) be the distinct value of β̂(λ) and α̂or be the distinct value of β̂or. By

Theorems 2.1–2.3, we conclude that n1/2(θ̂(λ)− θ0) converges in distribution to the

multivariate normal distribution with mean 0 and covariance matrix Σ−1(θ0).
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2.5 Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed

method. The data were generated from model (2.2) with censoring rate 0.20, where

λ0(t) = 1, η = (−1, 1)T , and Zi = (Zi1, Zi2)T was generated from multivariate normal

with mean 0, variance 1 and correlation 0.4. We considered four examples: (i)

one treatment variable with two latent subgroups of equal size; (ii) multi-treatment

variable with two subgroups of unequal size; (iii) one treatment variable with three

latent subgroups of equal size; (iv) one treatment variable with a homogeneous effect.

Two penalties, group SCAD and group MCP, were used in the examples to compare

their performance with oracle estimators. The parameter γ was taken as 3.7 and 2.5

for SCAD and MCP, respectively. We set sample size n = 100 or 200 in Examples

1, 2 and 4 and n = 150 or 300 in Example 3, and let ϑ = 1 in the majorized ADMM

algorithm.

To implement the algorithm, we adopt the warm start to update the solution

path of β and η along different values of λ, and use the modified BIC criterion in

Lee, Noh, and Park (2014) to select the optimal tuning parameter λ by minimizing

BIC(λ) = ln(η̂(λ), β̂(λ)) + Cn
log n

n
(K̂(λ)p+ q),

where Cn = log(nK̂(λ) + q). The simulation results are based on 100 replications.

Example 1. We first generated Xi from Bernoulli(0.5)+1. Let G1 = {1, . . . , n/2}

and G2 = {n/2 + 1, . . . , n}, and the effects of variable X on the survival time were

divided into 2 groups with equal size. We considered the following two cases to inves-

tigate the effect of the size of the difference between the subgroup-specific treatment

effects:

Case 1: βi = −1.5 for i ∈ G1 and βi = 1.5 for i ∈ G2, that is, α = (−1.5, 1.5)T .

Case 2: βi = −3 for i ∈ G1 and βi = 3 for i ∈ G2, that is α = (−3, 3)T .
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We also compared our approach with the subgroup analysis approach under the

logistic-Cox mixture model (Wu, Zheng and Yu, 2016) in Example 1.

(a) Fusiongram based on one dataset
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(b) Fusiongram based on 100 replications
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Figure 2.1: Fusiongram for estimation of parameter β for GMCP in Example 1 when
n = 100.

The simulation results for Exapmle 1 are summarized in Tables 2.1 and 2.2 and

Figure 2.1. Figure 2.1 includes two kinds of fusiongrams for GMCP when n = 100,
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Table 2.1: Simulation results for estimation of group size K in Example 1.

n METHOD MEAN MEDIAN SD TPR
Case 1: α = (−1.5, 1.5) and η = (−1, 1)

100 GMCP 2.10 2 0.333 0.911
GSCAD 2.09 2 0.321 0.909

200 GMCP 2.13 2 0.367 0.922
GSCAD 2.08 2 0.273 0.923

Case 2: α = (−3, 3) and η = (−1, 1)
100 GMCP 2 2 0 0.978

GSCAD 2 2 0 0.979
200 GMCP 2 2 0 0.980

GSCAD 2 2 0 0.984

The true value of K is K = 2. SD represents standard deviation; TPR represents rate of

individuals selected into the subgroups correctly.

where one is from one simulated dataset and the other is based on the median

estimate of 100 replications for each fixed tuning parameter. The plots from one

dataset show how the group size and estimates change as the tuning parameter value

increases. It is clear that regression coefficients will be estimated as one group for

large enough value of the tuning parameter. As a comparison, the estimates in the

fusiongram based on 100 replications are more concentrated. This implies that our

ridge initial solution can statistically subgroup the regression coefficients to some

degree. The fusiongram for GSCAD and the fusiongram for n = 200 are similar

and so omitted here. Table 2.1 reports the estimates of group size K in Example

1. The means and medians of K̂ under both GMCP and GSCAD selectors are close

to the true value. When the difference of treatment effects between two subgroups

increases, the true positive rate (TPR) becomes larger and are closer to 1, indicating

identification of the subgroup structure more accurate. Table 2.2 further shows the

estimates of regression coefficients. We can see that the MEANs and MEDIANs are

close to the true values of the parameters, and the standard deviations reduce as the

sample size increases. Noting that the logistic-Cox mixture model assumes that the
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Table 2.2: Simulation results for estimation of regression coefficients in Example 1.

n PARAMETER METHOD MEAN MEDIAN SD
Case 1: α = (−1.5, 1.5) and η = (−1, 1)

100 α GMCP (−1.760, 1.773) (−1.782, 1.789) (0.413, 0.421)
GSCAD (−1.735, 1.791) (−1.773, 1.778) (0.409, 0.406)

MIXTURE (−1.545, 1.543) (−1.520, 1.570) (0.500, 0.487)
Oracle (−1.518, 1.586) (−1.505, 1.594) (0.339, 0.287)

η GMCP (−0.850, 0.844) (−0.869, 0.854) (0.232, 0.236)
GSCAD (−0.843, 0.841) (−0.859, 0.852) (0.229, 0.234)

MIXTURE (−1.021, 1.013) (−1.020, 1.026) (0.235, 0.242)
Oracle (−1.025, 1.027) (−1.015, 1.012) (0.175, 0.168)

200 α GMCP (−1.704, 1.667) (−1.715, 1.698) (0.299, 0.287)
GSCAD (−1.750, 1.625) (−1.773, 1.671) (0.307, 0.328)

MIXTURE (−1.521, 1.550) (−1.516, 1.554) (0.271, 0.256)
Oracle (−1.532, 1.538) (−1.531, 1.522) (0.215, 0.215)

η GMCP (−0.924, 0.925) (−0.917, 0.910) (0.158, 0.149)
GSCAD (−0.918, 0.910) (−0.916, 0.903) (0.162, 0.162)

MIXTURE (−1.032, 1.033) (−1.031, 1.033) (0.140, 0.137)
Oracle (−1.020, 1.019) (−1.014, 1.013) (0.112, 0.113)

Case 2: α = (−3, 3) and η = (−1, 1)
100 α GMCP (−2.969, 3.171) (−3.013, 3.175) (0.642, 0.471)

GSCAD (−2.976, 3.175) (−3.019, 3.175) (0.645, 0.475)
MIXTURE (−2.846, 2.879) (−2.944, 3.109) (0.896, 1.124)

Oracle (−3.077, 3.167) (−3.013, 3.137) (0.545, 0.450)
η GMCP (−0.957, 0.965) (−0.932, 0.969) (0.217, 0.215)

GSCAD (−0.960, 0.968) (−0.936, 0.969) (0.215, 0.218)
MIXTURE (−0.965, 0.968) (−0.975, 1.004) (0.281, 0.296)

Oracle (−1.025, 1.028) (−1.015, 1.015) (0.178, 0.172)
200 α GMCP (−2.815, 2.931) (−2.831, 2.955) (0.493, 0.436)

GSCAD (−2.856, 2.944) (−2.897, 2.987) (0.487, 0.464)
MIXTURE (−3.002, 3.013) (−3.008, 3.058) (0.538, 0.572)

Oracle (−3.077, 3.069) (−3.081, 3.040) (0.339, 0.328)
η GMCP (−0.977, 0.966) (−1.000, 1.006) (0.186, 0.199)

GSCAD (−0.994, 0.976) (−1.005, 1.006) (0.171, 0.186)
MIXTURE (−1.012, 1.015) (−1.024, 1.020) (0.158, 0.164)

Oracle (−1.021, 1.018) (−1.018, 1.009) (0.114, 0.114)

SD represents standard deviation

parameter K = 2 is given and the grouping membership satisfies a logistic model,

its parameter space is much smaller than our model. Table 2.2 shows the biases and
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standard errors of our estimators are comparable to those obtained by fitting the

logistic-Cox mixture model.

Table 2.3: Simulation results for estimation of group size K in Example 2.

n METHOD MEAN MEDIAN SD TPR
100 GMCP 2.10 2 0.362 0.982

GSCAD 2.08 2 0.339 0.984
200 GMCP 2.07 2 0.256 0.991

GSCAD 2.07 2 0.256 0.991

The true value of K is K = 2. SD represents standard deviation; TPR represents rate of

individuals selected into the subgroups correctly.

Table 2.4: Simulation results for estimation of regression coefficients in Example 2.

n PARAMETER METHOD MEAN MEDIAN SD
Truth: α1 = (−2, 0.5), α2 = (2, 3), η = (−1, 1)

100 α1 GMCP (−2.062, 0.496) (−1.996, 0.507) (0.558, 0.475)
GSCAD (−2.059, 0.497) (−1.996, 0.507) (0.555, 0.474)

Oracle (−2.108, 0.486) (−2.064, 0.529) (0.606, 0.453)
α2 GMCP (2.110, 2.995) (2.107, 3.004) (0.465, 0.755)

GSCAD (2.108, 3.012) (2.120, 3.004) (0.463, 0.727)
Oracle (2.111, 3.244) (2.058, 3.247) (0.351, 0.470)

η GMCP (−0.942, 0.957) (−0.972, 0.978) (0.279, 0.283)
GSCAD (−0.946, 0.959) (−0.977, 0.978) (0.271, 0.274)

Oracle (−1.058, 1.060) (−1.053, 1.071) (0.150, 0.173)
200 α1 GMCP (−1.989, 0.485) (−1.976, 0.479) (0.389, 0.329)

GSCAD (−1.989, 0.485) (−1.976, 0.479) (0.389, 0.329)
Oracle (−2.108, 0.516) (−2.095, 0.501) (0.413, 0.273)

α2 GMCP (1.973, 2.929) (1.974, 2.981) (0.250, 0.456)
GSCAD (1.973, 2.929) (1.974, 2.981) (0.250, 0.456)

Oracle (2.070, 3.090) (2.065, 3.066) (0.249, 0.275)
η GMCP (−0.984, 1.003) (−0.989, 1.024) (0.163, 0.165)

GSCAD (−0.984, 1.003) (−0.989, 1.024) (0.163, 0.165)
Oracle (−1.021, 1.009) (−1.001, 0.996) (0.123, 0.114)

SD represents standard deviation

Example 2. Suppose Xi = (Xi1, Xi2)T , where Xi1 and Xi2 were generated from

Bernoulli(0.5) + 1 and Uniform(1, 3), respectively. Set βi = (−2, 0.5)T for i ∈ G1,
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(a) Fusiongram based on one dataset
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(b) Fusiongram based on 100 replications
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Figure 2.2: Fusiongram for estimation of parameter β by GMCP selector in Example
2 when n = 200.

and βi = (2, 3)T for i ∈ G2, where G1 = {1, . . . , 2n/5}, and G2 = {2n/5 + 1, . . . , n}.

Thus, α = (αT1 , α
T
2 )T with α1 = (−2, 0.5)T and α2 = (2, 3)T .

Example 3. Suppose that Xi was generated from Bernoulli(0.5) + 1. Set G1 =

{1, . . . , n/3}, G2 = {n/3 + 1, . . . , 2n/3}, and G3 = {2n/3 + 1, . . . , n}. We set βi = −3

for i ∈ G1, βi = 0 for i ∈ G2, and βi = 3 for i ∈ G3. That is α = (−3, 0, 3)T .

Example 4. Consider the homogeneous model where Xi was generated from
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(a) Fusiongram based on one dataset
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(b) Fusiongram based on 100 replications
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Figure 2.3: Fusiongram for estimation of parameter β by GSCAD selector in Example
2 when n = 200.

Bernoulli(0.5) + 1, and βi ≡ 1 for all i.

The simulation results for Examples 2–4 are summarized in Tables 2.3–2.7 and

Figures 2.2–2.5 in the online supplementary material. The figures show the fusion-

gram for estimation in Examples 2–4, respectively. Tables 2.3, 2.5 and 2.7 display the

estimates of group size K and the TPR in Examples 2–4, respectively. The means

and medians of K̂ under both GMCP and GSCAD selectors are close to the true
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(a) Fusiongram based on one dataset
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Figure 2.4: Fusiongram for estimation of parameter β for GMCP in Example 3 when
n = 150.

(a) Fusiongram based on one dataset
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Figure 2.5: Fusiongram for estimation of parameter β for GMCP in Example 4 when
n = 200.
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Table 2.5: Simulation results for estimation of group size K in Example 3.

n METHOD MEAN MEDIAN SD TPR
150 GMCP 2.99 3 0.225 0.866

GSCAD 3.03 3 0.264 0.866
300 GMCP 3.01 3 0.100 0.874

GSCAD 3 3 0 0.876

The true value of K is K = 3. SD represents standard deviation; TPR represents rate of

individuals selected into the subgroups correctly.

Table 2.6: Simulation results for estimation of regression coefficients in Example 3.

n PARAMETER METHOD MEAN MEDIAN SD
Truth: α = (−3, 0, 3), η = (−1, 1)

150 α1 GMCP −3.422 −3.453 0.556
GSCAD −3.429 −3.387 0.553

Oracle −3.087 −3.043 0.429
α2 GMCP 0.062 0.074 0.393

GSCAD 0.033 0.041 0.420
Oracle −0.007 0.001 0.233

α3 GMCP 3.309 3.219 0.552
GSCAD 3.280 3.204 0.578

Oracle 3.076 3.040 0.364
η GMCP (−0.747, 0.727) (−0.777, 0.720) (0.228, 0.224)

GSCAD (−0.716, 0.713) (−0.714, 0.716) (0.234, 0.233)
Oracle (−1.033, 1.024) (−1.029, 1.016) (0.129, 0.133)

300 α1 GMCP −3.283 −3.289 0.388
GSCAD −3.288 −3.283 0.411

Oracle −3.065 −3.031 0.298
α2 GMCP −0.068 −0.067 0.314

GSCAD −0.068 −0.072 0.298
Oracle −0.007 −0.007 0.152

α3 GMCP 3.088 3.016 0.525
GSCAD 3.133 3.158 0.523

Oracle 3.033 3.038 0.238
η GMCP (−0.775, 0.788) (−0.797, 0.816) (0.182, 0.186)

GSCAD (−0.785, 0.790) (−0.795, 0.805) (0.183, 0.185)
Oracle (−1.012, 1.017) (−1.009, 1.013) (0.099, 0.094)

SD represents standard deviation.
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Table 2.7: Simulation results for estimation of K and regression coefficients in Ex-
ample 4.

n PARAMETER METHOD MEAN MEDIAN SD
100 K GMCP 1.08 1 0.273

GSCAD 1.09 1 0.288
Oracle − − −

α GMCP 1.022 0.999 0.221
GSCAD 1.017 0.995 0.221

Oracle 1.042 1.026 0.245
η GMCP (−1.004, 0.999) (−0.995, 0.991) (0.178, 0.171)

GSCAD (−1.000, 0.997) (−0.990, 0.988) (0.180, 0.170)
Oracle (−1.026, 1.026) (−1.017, 1.008) (0.170, 0.170)

200 K GMCP 1.04 1 0.197
GSCAD 1.01 1 0.100

Oracle − − −
α GMCP 1.022 1.021 0.184

GSCAD 1.024 1.023 0.183
Oracle 1.020 1.019 0.172

η GMCP (−1.029, 1.030) (−1.039, 1.027) (0.114, 0.118)
GSCAD (−1.029, 1.030) (−1.032, 1.024) (0.113, 0.117)

Oracle (−1.019, 1.018) (−1.015, 1.008) (0.109, 0.111)

SD represents standard deviation.

value, and the TPR are close to 1, which reflect that our methods can identify the

group structure correctly with high probability. As the sample size increases, the

standard deviation of K̂ decreases and the TPR increases, which demonstrate the

good performances of our approaches. Furthermore, Tables 2.4, 2.6 and 2.7 report

the estimates of the regression coefficients. The MEAN and MEDIAN of estimators

are very close to the true value, and standard deviation (SD) for parameters reduce

as the sample size increases.

2.6 Real Data Analysis

We applied the proposed method to analyzing the breast cancer data (van de

Vijver et al., 2002; van’t Veer el al., 2002), which can be found in the “nki” data
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set in the R package “dynpred”. This trail was carried out in the Dutch Cancer

Institute, where 295 patients with breast cancer were put into two treatment groups

by the type of surgery (excision and mastectomy), some of them accompanying with

two kinds of adjuvant therapies, chemotherapy or hormonal therapy. The main goal

is to investigate effects of different surgical treatments on patients’ hazard. Hence

we focused on the observed data from 255 patients who were not treated with the

hormonal therapy for the analysis. Let Ui and Ci be survival and censoring times

for the ith patient, i = 1, . . . , n where n = 255. Let X denote the treatment group

indicator defined as 1 for patients treated with excision and 0 for patients treated

with mastectomy. According to the iterative sure independence screening result (Fan

and Lv, 2008), we took 5 additional baseline covariates Z1, · · · , Z5 into considera-

tion, including age (age), the logarithmic intensity ratio for estrogen-receptor status

(mlratio), histological grade (histolgrade = 1 if well differentiated; 0 otherwise),

vascular invasion (vasc.inv = 1 for more than 3 vessels; 0 otherwise), and the cross-

validated version of the prognostic index (PICV ). All the continuous covariates

were standardized for convenience.

To check for the possible heterogeneity of treatment effects, we first fitted the

homogeneous Cox model based on the excision treatment group. Figure 2.6 displays

the plot of the kernel density estimate of the martingale residual. We observed

that the distribution has multiple modes, indicating the existence of heterogeneous

treatment effects.

To demonstrate the heterogeneity of treatment effects, we fitted the proposed

heterogeneous Cox model in (2.2) using our subgroup analysis procedure with group

MCP and group SCAD penalties, where the optimal tuning parameter was deter-

mined by the modified BIC criterion. Figure 2.7 displays the fusiongram for the

estimate of β. The grouping and parameter estimation results with GMCP are sum-

marized in Table 2.8, while the results with GSCAD are similar and so are omitted.
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Figure 2.6: The kernel density plot of the residuals after controlling for the effects
of the 5 covariates for the patients treated with excision in the Breast Cancer data.

For comparison, we also provide the estimation results by fitting both the homoge-

neous Cox model and the logistic-Cox mixture model in the table. It can be seen

from the table that the fitted homogenous Cox model could not detect any signifi-

cant treatment effect, while both the logistic-Cox mixture approach and the proposed

subgroup analysis approach identified the significant subgroup-specific treatment ef-

fects.

Furthermore, we present the grouping result in Table 2.9 according to the type of

surgery. It can be seen from the table that our subgroup analysis approach identifies

90% of the patients with the excision and 4% of the patients with the mastectomy as

one subgroup and 96% of the patients with the mastectomy and 10% of the patients

with excision as another subgroup. For the patients in subgroup 1, the excision
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Figure 2.7: Fusiongram for estimation of parameter β in Breast Cancer Data analysis.

Table 2.8: Analysis results for Breast Cancer Data.

PL MIXTURE GMCP
Covariate Estimate(ESE)p−valueEstimate(ESE)p−valueEstimate(ESE)p−value

typesurgery1 −0.311(0.244) .203 −1.571(0.409) < .001∗ −3.981(0.575) < .001∗

typesurgery2 −(−) − 1.374(0.425) .001∗ 1.917(0.343) < .001∗

age −0.323(0.110) .003∗ −0.058(0.146) .689 −0.320(0.109) .003∗

mlratio −0.285(0.152) .060 −0.347(0.179) .053 −0.420(0.155) .006∗

histolgrade −1.110(0.542) .041∗ −1.004(0.587) .087 −1.289(0.551) .019∗

vasc.inv 0.642(0.250) .010∗ 0.046(0.324) .889 1.081(0.274) < .001∗

PICV 0.421(0.165) .011∗ 0.534(0.166) .001∗ 0.505(0.171) .003∗

PL represents partial likelihood estimators; MIXTURE represents the logistic-Cox mix-

ture estimators; typesurgery1, typesurgery2 represent the different subgroup variables of

typesurgery; ∗ represents significant at 0.05 level.

can reduce the hazard and prolong the lifetime significantly; while for the patients

in subgroup 2, the mastectomy is better than the excision. The subgroup analysis

approach (Wu, Zheng and Yu, 2016) provides the estimates of the probabilities that

patients belong to each subgroup under the logistic model.

The key difference between our approach and the subgroup analysis approach

(Wu, Zheng and Yu, 2016) is that the number of the potential subgroups K and the
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grouping structure are left completely unspecified in our proposed model, while Wu,

Zheng, and Yu (2016) assumed that K = 2 and the subgroup membership satisfies

a logistic model. Our subgroup analysis method is more flexible and applicable.

Table 2.9: The number of patients with different type of surgery and subgroups.

Subgroup 1 Subgroup 2 Total
Excision 128 15 143

Mastectomy 5 107 112
Total 133 122 255

2.7 Appendix: Proofs of Theorems

To establish the asymptotic properties of the proposed estimator, we need the

following regularity conditions.

(C1) The end time of study τ satisfies that
∫ τ

0
λ0(t)dt <∞.

(C2) The covariates Xi and Zi satisfy that ||Xi|| ≤ c1 and ||Zi|| ≤ c2 with

probability 1.

(C3) The dimension of covariates p, q and the true cluster size K0 are constants.

The sizes of G0,k satisfy that |G0,k|/n→ pk for k = 1, · · · , K0 when n goes to infinity.

(C4) Set the penalty function ργ(t) = λ−1pγ(t, λ). Suppose that ργ(t) is symmet-

ric, non-decreasing and concave on [0,∞). ργ(t) is constant when t ≥ aλ, where a

is a positive constant. Furthermore, ργ(0) = 0 and the derivative ρ′γ(t) satisfies that

ρ′γ(0
+) = 1.

We introduce more notation before proving the theorems.

Let S(l)(θ,B, t) = n−1
∑n

i=1 Yi(t)B
⊗l
i exp(BT

i θ), where a⊗l = 1, a, aaT for l =
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0, 1, 2. Define the score function

Ũn(θ) = −
n∑
i=1

∫ τ

0

[
Bi −

S(1)(θ,B, t)

S(0)(θ,B, t)

]
dNi(t),

and the Hessian matrix

H̃n(θ) =
n∑
i=1

∫ τ

0

[
S(2)(θ,B, t)

S(0)(θ,B, t)
−
{
S(1)(θ,B, t)

S(0)(θ,B, t)

}⊗2
]
dNi(t).

Let S(k,l)(θ,B, t) = 1
|G0,k|

∑
i∈G0,k Yi(t)B

⊗l
i exp(BT

i θ), where l = 0, 1, 2 and k =

1, · · · , K0. Then we have

S(l)(θ,B, t) =
1

n

n∑
i=1

Yi(t)B
⊗l
i exp(BT

i θ) =

K0∑
k=1

|G0,k|
n

S(k,l)(θ,B, t).

Note that Bi, i ∈ G0,k are independent and identically distributed random vectors.

Denote the expectation of S(k,l)(θ,B, t) by s(k,l)(θ, t), and s(l)(θ, t) =
∑K

k=1 pks
(k,l)(θ, t),

where |G0,k|/n→ pk when n→∞. Then we have

sup
t∈[0,τ ]

|S(k,l)(θ,B, t)− s(k,l)(θ, t)|∞
p−→ 0,

and supt∈[0,τ ] |S(l)(θ,B, t)−s(l)(θ, t)|∞
p−→ 0, where | · |∞ denotes the maximum norm.

Define

Σ(θ0) =

∫ τ

0

{
s(2)(θ0, t)

s(0)(θ0, t)
−
(
s(1)(θ0, t)

s(0)(θ0, t)

)⊗2
}
s(0)(θ0, t)λ0(t)dt.

2.7.1 Proof of Theorem 2.1

(i) The proof of the first part is based on the techniques for the consistency of

the M-estimator. Note that

1

n

(
˜̀
n(θ)− ˜̀

n(θ0)
)

= − 1

n

n∑
i=1

∫ τ

0

[
BT
i (θ − θ0)− log

S(0)(θ,B, t)

S(0)(θ0,B, t)

]
dNi(t).
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Define

An(θ) = − 1

n

n∑
i=1

∫ τ

0

[
BT
i (θ − θ0)− log

S(0)(θ,B, t)

S(0)(θ0,B, t)

]
Yi(t) exp(BT

i θ0)λ0(t)dt

= −
∫ τ

0

[
S(1)(θ0,B, t)

T (θ − θ0)− log

{
S(0)(θ,B, t)

S(0)(θ0,B, t)

}
S(0)(θ0,B, t)

]
λ0(t)dt

as the compensator of 1
n

(
˜̀
n(θ)−˜̀

n(θ0)
)
, andMi(t) = Ni(t)−

∫ t
0
Yi(u) exp(BT

i θ0)λ0(u)du.

Since Mi(t) is a locally square integrable martingale, then

1

n

(
˜̀
n(θ)− ˜̀

n(θ0)
)
− An(θ) = − 1

n

n∑
i=1

∫ τ

0

[
BT
i (θ − θ0)− log

S(0)(θ,B, t)

S(0)(θ0,B, t)

]
dMi(t)

is also a locally square integrable martingale. Hence 1
n

(
˜̀
n(θ)− ˜̀

n(θ0)
)
− An(θ) has

a predictable variation process

〈 1

n

(
˜̀
n(θ)− ˜̀

n(θ0)
)
− An(θ),

1

n

(
˜̀
n(θ)− ˜̀

n(θ0)
)
− An(θ)

〉
=

1

n2

n∑
i=1

∫ τ

0

[{
BT
i (θ − θ0)− log

∑n
i=1 Yi(t) exp(BT

i θ)∑n
i=1 Yi(t) exp(BT

i θ)

}2

Yi(t) exp(BT
i θ0)λ0(t)

]
dt

=
1

n

∫ τ

0

[
(θ − θ0)TS(2)(θ,B, t)(θ − θ0)− 2(θ − θ0)TS(1)(θ,B, t) log

S(0)(θ,B, t)

S(0)(θ0,B, t)

+

{
log

S(0)(θ,B, t)

S(0)(θ0,B, t)

}2
]
λ0(t)dt.

By Conditions (C2) and (C3), for any k and l, s(k,l)(θ, t) and s(l)(θ, t) are bounded.

Then, by Condition (C1), the predictable variation process has a finite limit. This

gives that limn→∞
1
n

(
˜̀
n(θ)− ˜̀

n(θ0)
)

= A(θ), where

A(θ) = lim
n→∞

An(θ) = −
∫ τ

0

[
s(1)(θ0, t)

T (θ − θ0)− log

{
s(0)(θ, t)

s(0)(θ0, t)

}
s(0)(θ0, t)

]
λ0(t)dt.
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Noting that θ̂or is the global minimizer of ˜̀
n(θ), it is also the global minimizer of

1
n

(
˜̀
n(θ)− ˜̀

n(θ0)
)
. Since A(θ) is a convex function about θ and has a global minimizer

θ0, it follows that θ̂or
p−→ θ0.

(ii) To prove this part, it suffices to show that 1√
n
Ũn(θ0) converges to a zero mean

multivariate normal distribution with covariance matrix Σ(θ0), and | 1
n
H̃n(θ̂or) −

Σ(θ0)|∞
p−→ 0. For this, we only need to verify the conditions of Theorem 8.2.1 of

Fleming and Harrington (1991). Recall that

sup
0≤t≤τ

|S(l)(θ0,B, t)− s(l)(θ0, t)|∞
p−→ 0.

Noting that ∂
∂θ
S(k,0)(θ,B, t) = S(k,1)(θ,B, t) and ∂

∂θ
S(k,1)(θ,B, t) = S(k,2)(θ,B, t), we

have ∂
∂θ
s(k,0)(θ, t) = s(k,1)(θ, t) and ∂

∂θ
s(k,1)(θ, t) = s(k,2)(θ, t), k = 1, · · · , K. Since

s(l)(θ, t) is a linear combination of s(k,l)(θ, t), it follows that ∂
∂θ
s(0)(θ, t) = s(1)(θ, t)

and ∂
∂θ
s(1)(θ, t) = s(2)(θ, t). By Condition (C2), s(l)(θ, t) is bounded. In addition,

as the composition of continuous functions is continuous, we then get that s(l)(θ0, t),

0 < t < τ are equicontinuous for l = 0, 1, 2.

Condition (C2) gives that ||Bi|| ≤
√
c2

1 + c2
2 with probability 1. Noting that Yi is

a decreasing counting process from 1 to 0, and BT
i θ0 > −||Bi|| · ||θ0||, we have

n−1/2 sup
1≤i≤n,0≤t≤τ

||Bi||Yi(t)1{BTi θ0>−||Bi||·||θ0||}
p−→ 0.

Finally, the convexity of negative partial log-likelihood ensures that 1
n
H̃n(θ0) is

positive definite and so its limit is

Σ(θ0) =

∫ τ

0

{
s(2)(θ0, t)

s(0)(θ0, t)
−
(
s(1)(θ0, t)

s(0)(θ0, t)

)⊗2
}
s(0)(θ0, t)λ0(t)dt.

By Theorem 8.2.1 in Fleming and Harrington(1991), we conclude the asymptotic

normality of 1√
n
Ũn(θ0) and | 1

n
H̃n(θ̂or)− Σ(θ0)|∞

p−→ 0.
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By the Taylor’s expansion, we get that Ũn(θ̂or) = Ũn(θ0)−H̃n(θ̃)(θ̂or−θ0), where

θ̃ is a vector between θ̂or and θ0. Noting that Ũn(θ̂or) = 0, we have

1

n
H̃n(θ̃)

√
n(θ̂or − θ0) =

1√
n
Ũn(θ0).

Using the fact that both 1
n
H̃n(θ̂or) and 1

n
H̃n(θ0) converge to Σ(θ0) in probability,

H̃n(θ̃) also converges to Σ(θ0) in probability. Besides, as 1√
n
Ũn(θ0) converges to

a zero mean normal distribution with covariance matrix Σ(θ0), we conclude that

√
n(θ̂or − θ0) converges to a normal distribution with zero mean and covariance

matrix Σ−1(θ0).

2.7.2 Proof of Theorem 2.2

Define the mapping T ∗ : Rnp → RK0p as

T ∗(β) = {|G0,k|−1
∑
i∈G0,k

βTi , k = 1, · · · , K0}T ,

and let the one-to-one mapping T :MG0 → RK0p satisfying T (β) = T ∗(β). For any

vector β ∈ Rnp, set α = T ∗(β) and β∗ = T−1(T ∗(β)) = T−1(α). Noting that for

any vector η ∈ Rq and β∗ ∈ MG0 , we have `n(η,β∗) = ˜̀
n((ηT ,αT )T ). Hence, θ̂or

defined in Theorem 2.1 equals to
(
(η̂or)T , T (β̂or)T

)T
. Consider the neighbourhood

of (η0,β0), i.e.,

Θ = {η ∈ Rq,β ∈ Rnp : ||η − η0|| ≤ φn,max
i
||βi − β0i|| ≤ φn},

where φn → 0 as n goes to infinity. To conclude the theorem, it suffices to verify the

following two steps.

(i) For any (ηT ,βT )T ∈ Θ, if (ηT , (β∗)T )T 6= ((η̂or)T , (β̂or)T )T , then Qn(η,β∗) >

Qn(η̂or, β̂or).
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(ii) For any (ηT ,βT )T ∈ Θ and large enough n, Qn(η,β) ≥ Qn(η,β∗).

In fact, by Theorem 2.1, we have P
(
(η̂or, β̂or) ∈ Θ

)
→ 1. If (i) and (ii) hold,

for any (ηT ,βT )T ∈ Θ satisfying (ηT , (β∗)T )T 6= ((η̂or)T , (β̂or)T )T and large enough

n, we have Qn(η,β) > Qn(η̂or, β̂or). That means that there is a local minimizer of

Qn(η,β;λ) satisfying that (η̂(λ), β̂(λ)) = (η̂or, β̂or) with probability tend to 1.

For (i), since `n(η,β∗) = ˜̀
n

(
(ηT ,αT )T

)
> ˜̀

n

(
((η̂or)T , (α̂or)T )T

)
= `n(η̂or, β̂or),

we only need to consider the penalty function Pn(β) = λ
∑

i<j ργ(||βi − βj||). Note

that β∗i = β∗j when subjects i and j are from the same group. Thus,

Pn(β∗) = λ
∑

i<j,i∈G0,k,j∈G0,k′

ργ(||β∗i − β∗j ||) = λ
∑
k 6=k′

|G0,k||G0,k′|
2

ργ(||αk − αk′ ||).

For any (ηT ,βT )T ∈ Θ, we have maxi ||βi − β0i|| ≤ φn. Then for any k 6= k′,

||αk − αk′||

≥||α0k − α0k′ || − ||αk − α0k|| − ||α0k′ − αk′ || ≥ ||α0k − α0k′ || − 2 max
k
||αk − α0k||

≥b− 2 max
k

∣∣∣∣∣∣
∣∣∣∣∣∣|G0,k|−1

∑
i∈G0,k

(βi − β0i)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≥ b− 2|G0,k|−1 max

k

∑
i∈G0,k

||(βi − β0i)||

≥b− 2 max
i
||βi − β0i|| ≥ b− 2φn > aλ.

(2.17)

The last inequality follows since b > aλ and b � φn. By Condition (C4), ργ(||αk −

αk′ ||) is a constant, and Pn(β∗) is only dependent on sample size n for any (ηT ,βT )T ∈

Θ, which can be denoted as Cn. By the fact that (η̂or, α̂or) is the unique global

minimizer of ˜̀
n(η,α), we get

Qn(η,β∗) = `n(η,β∗) + Cn > `n(η̂or, β̂or) + Cn = Qn(η̂or, β̂or)

when (ηT , (β∗)T )T 6= ((η̂or)T , (β̂or)T )T . Thus, (i) is concluded.
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For (ii), by the Taylor’s expansion, we have

Qn(η,β)−Qn(η,β∗) =
∂`n(η,β)

∂βT

∣∣∣∣
β=β̃

(β − β∗) +
∂Pn(β)

∂βT

∣∣∣∣
β=β̃

(β − β∗) =: Γ1 + Γ2,

where β̃ is a vector between β and β∗.

We first consider the second term Γ2. Note that Pn(β) = λ
∑

i<j,i∈G0,k,j∈G0,k′
ργ(||βi−

βj||). Then

Γ2 =
∂Pn(β)

∂βT

∣∣∣∣
β=β̃

(β − β∗)

=λ
∑

n≥j>i≥1

ρ′γ(||β̃i − β̃j||)
(β̃i − β̃j)T

||β̃i − β̃j||
(βi − β∗i )

+λ
∑

1≤j<i≤n

ρ′γ(||β̃j − β̃i||)
−(β̃j − β̃i)T

||β̃j − β̃i||
(βi − β∗i )

=λ
∑

1≤i<j≤n

ρ′γ(||β̃i − β̃j||)
(β̃i − β̃j)T

||β̃i − β̃j||
{

(βi − β∗i )− (βj − β∗j )
}
.

On one hand, when subjects i and j are from different groups, that is i ∈ G0,k and

j ∈ G0,k′ , k 6= k′, we have

||β̃i − β̃j|| ≥ ||β0i − β0j|| − 2 max
i
||β̃i − β0i|| = ||α0k − α0k′ || − 2 max

i
||β̃i − β0i||.

Since (η,β) ∈ Θ, we can see that maxi ||βi−β0i|| ≤ φn. By (2.17), we have maxk ||αk−

α0k|| ≤ φn for α = T ∗(β). Then β∗ satisfies that maxi ||β∗i − β0i|| ≤ φn. By the

definition of β̃, we have maxi ||β̃i − β0i|| ≤ φn, and ||β̃i − β̃j|| ≥ b − 2φn > aλ. By

Condition (C4), ργ(t) is a constant when t > aλ and ρ′γ(t) ≡ 0 when t > aλ. Thus,

when subjects i and j are from different groups, ρ′γ(||β̃i − β̃j||) ≡ 0. On the other

hand, β∗i = β∗j when i and j are from the same group. Hence
(β̃i−β̃j)T

||β̃i−β̃j ||
=

(βi−βj)T
||βi−βj || and

ρ′γ(||β̃i − β̃j||)
(β̃i − β̃j)T

||β̃i − β̃j||
{

(βi − β∗i )− (βj − β∗j )
}

= ρ′γ(||β̃i − β̃j||)||β̃i − β̃j||.
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Note that

max
k

max
i,j∈G0,k

||β̃i − β̃j|| = max
k

max
i,j∈G0,k

||β̃i − β∗i + β∗i − β∗j + β∗j − β̃j||

≤2 max
i
||β̃i − β∗i || ≤ 2 max

i
(||β̃i − β0i||+ ||β∗i − β0i||) ≤ 4φn.

By Condition (C4), we have

Γ2 =

K0∑
k=1

∑
{i,j∈G0,k,i<j}

λρ′γ(||β̃i − β̃j||)||βi − βj|| ≥
K0∑
k=1

∑
{i,j∈G0,k,i<j}

λρ′γ(4φn)||βi − βj||.

Now we turn to the first term Γ1. Let

Ui =
∂`n(η,β)

∂βi

∣∣∣∣
β=β̃

= −
∫ τ

0

XidNi(t) +

∫ τ

0

Yi(t)Xi exp(ZT
i η +XT

i β̃i)
1
n

∑n
j=1 Yj(t) exp(ZT

j η +XT
j β̃j)

dN̄(t),

(2.18)

where N̄(t) = 1
n

∑n
i=1 Ni(t). Then after some calculation, we have

Γ1 =
n∑
i=1

UT
i (βi − β∗i ) =

K0∑
k=1

∑
i∈G0,k

UT
i (βi − β∗i )

=

K0∑
k=1

∑
i,j∈G0,k

UT
i (βi − βj)
|G0,k|

=

K0∑
k=1

∑
i,j∈G0,k

UT
i (βi − βj)
2|G0,k|

+

K0∑
k=1

∑
i,j∈G0,k

UT
j (βj − βi)
2|G0,k|

=

K0∑
k=1

∑
i,j∈G0,k

(Ui −Uj)
T (βi − βj)

2|G0,k|
=

K0∑
k=1

∑
{i,j∈G0,k,i<j}

(Ui −Uj)
T (βi − βj)

|G0,k|

≥ −
K0∑
k=1

∑
{i,j∈G0,k,i<j}

2 maxi ||Ui|| · ||βi − βj||
|Gmin|

,

where |Gmin| = mink=1,··· ,K0 |G0,k|. Following the same clues as before, for any (η,β) ∈

Θ, we have (η, β̃) ∈ Θ. Then, by Condition (C2) and (2.18), we can find a constant

CU such that maxi ||Ui|| ≤ CU with probability 1.
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Note that limn→∞ ρ
′
γ(4φn) = 1 and |Gmin| goes to infinity as n → ∞. For large

enough n, we can get that

Qn(η,β)−Qn(η,β∗) = Γ1+Γ2 ≥
K0∑
k=1

∑
{i,j∈G0,k,i<j}

||βi−βj||
[
λρ′γ(4φn)−2CU/|Gmin|

]
≥ 0.

Thus, (ii) is concluded.

2.7.3 Proof of Theorem 2.3

Proof. Similar to the proof of Theorem 2.2, we define the mapping T and T ∗ when

K0 = 1 and MG0 = M. For any vector β ∈ Rnp, set α = T ∗(β) ∈ Rp and

β∗ = T−1(α) ∈ M. The neighbourhood of true parameter Θ and φn are the same

as those in Theorem 2.2. Then we only need to show the following two steps.

(i) For any (ηT ,βT )T ∈ Θ, if (ηT , (β∗)T )T 6= ((η̂or)T , (β̂or)T )T , then Qn(η,β∗) >

Qn(η̂or, β̂or).

(ii) For any (ηT ,βT )T ∈ Θ and large enough n, Qn(η,β) ≥ Qn(η,β∗).

For (i), when there is only one group, we have β∗i ≡ α and so Pn(β∗) = Pn(β̂or) ≡

0. Since `n(η,β∗) = `n(η̂or, β̂or), it follows that Qn(η,β∗) > Qn(η̂or, β̂or).

For (ii),

Qn(η,β)−Qn(η,β∗) =
∂`n(η,β)

∂βT

∣∣∣∣
β=β̃

(β − β∗) +
∂Pn(β)

∂βT

∣∣∣∣
β=β̃

(β − β∗) =: Γ1 + Γ2,

where β̃ is a vector between β and β∗. We first consider the second term

Γ2 =
∂Pn(β)

∂βT

∣∣∣∣
β=β̃

(β−β∗) = λ
∑

1≤i<j≤n

ρ′γ(||β̃i−β̃j||)
(β̃i − β̃j)T

||β̃i − β̃j||
{

(βi−β∗i )−(βj−β∗j )
}
.

Since i and j are from the same group, we have β∗i = β∗j and
(β̃i−β̃j)T

||β̃i−β̃j ||
=

(βi−βj)T
||βi−βj || .

44



Furthermore, maxi,j ||β̃i − β̃j|| ≤ 4φn. Then by Condition (C4), we get that

Γ2 = λ
∑

1≤i<j≤n

ρ′γ(||β̃i − β̃j||)||β̃i − β̃j|| ≥ λ
∑

1≤i<j≤n

ρ′γ(4φn)||β̃i − β̃j||.

For the first term Γ1, we have

Ui =
∂`n(η,β)

∂βi

∣∣∣∣
β=β̃

= −
∫ τ

0

XidNi(t) +

∫ τ

0

Yi(t)Xi exp(ZT
i η +XT

i β̃i)
1
n

∑n
j=1 Yj(t) exp(ZT

j η +XT
j β̃j)

dN̄(t),

where N̄(t) = 1
n

∑n
i=1Ni(t). Since there is a constant CU such that maxi ||Ui|| ≤ CU

with probability 1, it yields that

Γ1 ≥ −
∑

1≤i<j≤n

2 maxi ||Ui|| · ||βi − βj||
|n|

≥ −
∑

1≤i<j≤n

2CU ||βi − βj||
|n|

.

Noting that limn→∞ ρ
′
γ(4φn) = 1, we obtain that for large enough n,

Qn(η,β)−Qn(η,β∗) = Γ1 + Γ2 ≥
∑

1≤i<j≤n

||βi − βj||
[
λρ′γ(4φn)− 2CU/|n|

]
≥ 0.

Hence, (ii) is concluded.
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Chapter 3

Nonparametric Statistical

Inference for Panel Count Data
with Terminal Event

3.1 Introduction

The main contributions of this chapter are fourfold. First, we propose a reversed

nonparametric mean model for panel count data with a right-censored terminal event,

where the nonparametric mean function is increasingly dependent on the terminal

event time. Thus, the proposed model provides an intuitive interpretation of effects

of terminal events on recurrent event processes. Second, we develop a two-stage sieve-

based nonparametric estimation procedure by treating the distribution function of

the terminal event time as a nuisance functional parameter. Third, we establish the

asymptotic properties of the proposed estimator. In particular, we develop a general

theorem for the asymptotic normality of nonparametric M-estimators with nuisance

parameter when estimators have a convergence rate slower than the standard rate

n−1/2. Fourth, we develop a class of nonparametric tests for nonparametric compar-

ison of mean functions of reversed recurrent event processes with panel count data

in the presence of informative terminal event.

The remainder of this chapter is organized as follows. In Section 3.2, we present a
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reversed mean model anchoring at a terminal event and propose a two-stage nonpara-

metric sieve-based estimation procedure. In Section 3.3, we establish the asymptotic

properties of the proposed estimator. We first show the consistency and the conver-

gence rate of the proposed estimators. Then we provide a general theorem for the

asymptotic normality of nonparametric M-estimators with nuisance parameter. Sec-

tion 3.4 presents a class of new test statistics for two sample test and establish their

asymptotic normality. In Section 3.5, we conduct simulation studies to demonstrate

the finite-sample performance of the proposed methods. In Section 3.6, we use the

proposed methods to a set of panel count data from Chinese Longitudinal Healthy

Longevity study. The proofs of the main results are given in the Appendix.

3.2 Model Setting and Estimation Procedure

Suppose that a counting process {N(t) : 0 ≤ t ≤ τ} denotes the number of

recurrent events occurring up to time t, where τ is fixed time point. Let T =

(T1, T2, · · · , TK) be the observation times of N(t), where K represents the total

number of observation times. Then the observed counting process is

N = (N1, N2, · · · , NK) = (N(T1), N(T2), · · · , N(TK)).

Let U and C be the terminal event time and the censoring times, respectively. The

observed right censored terminal event time is Y = U ∧C and the indicator whether

the terminal time is uncensored is ∆ = 1{U≤C}. The observed data for subject i

consists of Xi = (Yi,∆i, Ki, Ti, Ni), i = 1, · · · , n, where Ti = (Ti1, Ti2, · · · , TiKi) and

Ni = (N(Ti1), N(Ti2), · · · , N(TiKi)) with sample size n.

To investigate the effect of the terminal event on the recurrent event process, we

consider a counting process Ñ(t;U) denoting the event counts from time t to the

terminal event U , and propose a reversed nonparametric mean model anchoring at
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the terminal event:

E(Ñ(t;U)|U = u) = Λ(u− t), (3.1)

where Λ(·) is an unknown nondecreasing function with Λ(0) = 0 to ensure the iden-

tifiability of this model. This model implies that

E(Ñ(t1;U)|U = u)− E(Ñ(t2;U)|U = u) = Λ(u− t1)− Λ(u− t2),

where 0 ≤ t1 ≤ t2 ≤ u. Noting that N(t2) − N(t1) = Ñ(t1;U) − Ñ(t2;U) and

N(0) = 0, we obtain E(N(t)|U = u) = Λ(u)− Λ(u− t).

Let F denote the underlying distribution function of U . To make a valid inference

on our model, we need the following basic conditions: (i) U and C are independent;

(ii) The censoring event time C is noninformative to Λ. (iii) Given (Y,∆), the

distribution of (K,T ) is non-informative to Λ. Define 4Nj = N(Tj)−N(Tj−1) and

4Λj(u) = Λ(u− Tj−1)− Λ(u− Tj) for j = 1, · · · , K with T0 = 0. Motivated by

E

[
K∑
j=1

{4Nj −4Λj(U)}2|Y,∆, K, T ,N

]

=
K∑
j=1

∆{4Nj −4Λj(Y )}2 +
K∑
j=1

(1−∆)

∫∞
Y
{4Nj −4Λj(u)}2dF (u)

1− F (Y )
,

with X = (Y,∆, K, T ,N), we propose a least squares-based loss function

`n(Λ, F ;X) =
1

n

n∑
i=1

Ki∑
j=1

[
∆i{4Ni,j −4Λi,j(Yi)}2

+ (1−∆i)

∫∞
Yi
{4Ni,j −4Λi,j(u)}2dF (u)

1− F (Yi)

]
,

(3.2)

where 4Ni,j = Ni(Tij) −Ni(Ti(j−1)) and 4Λi,j(u) = Λ(u − Ti(j−1)) − Λ(u − Tij). A

natural idea is to take the minimizer of ln(Λ, F ;X) defined in (3.2) as the estimator

of the parameter. However, since the loss function involves an unknown distribution
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function F , it is difficult to estimate Λ and F simultaneously. To tackle the problem,

we propose a two-stage approach. Concretely, in stage 1, we estimate F by using

the Kaplan-Meier (KM) estimator F̂n(u) (Kaplan and Meier, 1958). In stage 2, Λ̂n

is obtained by minimizing the loss function ln(Λ, F̂n;X) with respect to Λ. Since the

observed data of (Y,∆) is used in both stages 1 and 2, to distinguish them, we use

the notation (Ỹ , ∆̃) to represent the data when we obtain the KM estimator in stage

1 without any ambiguity.

We adapt spline sieve estimator to estimate Λ since it converges fast and is

easy to implement according to Lu, Zhang, and Huang (2007, 2009). Let {ti : i =

1, · · · ,mn + 2d} be a sequence of knots that partition [0, τ ] into mn + 1 subintervals,

where

0 = t1 = · · · = td < td+1 < · · · < tmn+d < tmn+d+1 = · · · = tmn+2d = τ.

Let qn = mn + d and {Il(s), l = 1, · · · , qn} be the I-spline basis functions of order d

(Ramsay, 1988). We then define the functional space of the estimator for Λ to be

Φn =

{
qn∑
l=1

αlIl(s) : αl ≥ 0, l = 1, · · · , qn

}
.

Usually, we take d = 3 corresponding to the cubic I-spline. Since F̂n is a mono-

tone step function, as shown in the Appendix 3.7.1, minimizing the loss function

ln(Λ, F̂n;X) is a quadratic programming with the constraint that αl ≥ 0 for l =

1, · · · , qn. Let I(s) = (I1(s), · · · , Iqn(s))T , α = (α1, · · · , αqn)T , and the solution of

quadratic programming be α̂ = (α̂1, · · · , α̂qn)T . Then the spline estimator of Λ(s) is

Λ̂n(s) = I(s)T α̂.
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3.3 Asymptotic Properties of the Estimator

To present the asymptotic results, we introduce some notations. Let g(r) be the

rth derivative. For r ≥ 1, define

Hr =
{
g : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all 0 ≤ s, t ≤ τ

}
,

Φ ={Λ ∈ Hr : Λ is a nondecreasing continuous function on [0, τ ] with Λ(0) = 0},

F ={F : F is a distribution function on [0,∞)}.

Denote the true value of (Λ, F ) to be (Λ0, F0) ∈ Φ × F . For B1, B2 ∈ B[0,τ ] =:

{B ∩ [0, τ ] : B ∈ B}, where B denotes the collection of Borel sets, set

µ1(B1 ×B2) =

∫ ∞∑
k=1

P (K = k|U = u)

×
k∑
j=1

P
(
(u− Tj) ∈ B1, (u− Tj−1) ∈ B2|K = k, U = u

)
dF0(u),

µ2(B1 ×B2) =

∫ ∞∑
k=1

P (K = k|U = u)

× P
(
(u− TK) ∈ B1, u ∈ B2|K = k, U = u

)
dF0(u).

(3.3)

For any functions Λ1,Λ2 ∈ Φ, we define the metric as

d1(Λ1,Λ2)2 = ||4Λ1(s1, s2)−4Λ2(s1, s2)||2L2(µ1) = E

 K∑
j=1

(
4Λ1,j(U)−4Λ2,j(U)

)2



=E

 K∑
j=1

∆
(
4Λ1,j(Y )−4Λ2,j(Y )

)2
+ (1−∆)

∫∞
Y

(
4Λ1,j(u)−4Λ2,j(u)

)2
dF0(u)

1− F0(Y )


 ,

where 4Λ(s1, s2) = Λ(s2)− Λ(s1). For any F1, F2 ∈ F , we define the metric as

d2(F1, F2) = ||F1 − F2||∞,
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where || · ||∞ represents the L∞ norm. Write Fδ = {F ∈ F : d2(F, F0) ≤ δ} for small

δ > 0.

To establish the asymptotic properties of the proposed estimator, we need the

following conditions.

(C1) 0 < Λ0(τ) <∞.

(C2) 0 < F0(τ) < 1. F0 is absolutely continuous with respect to Lebesgue

measure. Moreover, the density function f0(s) has a uniform positive lower bound

for all s ∈ [M1, τ ], where M1 is a constant representing the minimum value of the

support of F0.

(C3) E
[∑K

j=1{4Nj −4Λ0,j(U)}2
]
<∞.

(C4) The probability of censoring % = P (Y < U) satisfies that 0 < % < 1.

(C5) The number of subinterval in [0, τ ] satisfies mn = O(nν) for 0 < ν < 1/2.

Moreover, we suppose that

max
d+1≤i≤mn+d+1

|ti − ti−1| = O(n−ν),

and there is a constant M2 > 0 such that

maxd+1≤i≤mn+d+1 |ti − ti−1|
mind+1≤i≤mn+d+1 |ti − ti−1|

≤M2

uniformly for n.

(C6) There is a constant M3 > 0 such that P (K ≤M3) = 1.

(C7) P (Tj − Tj−1 ≥M4 for all j = 1, · · · , K) = 1 with some constant M4 > 0.

Remark 1. Condition (C1) is standard in the literature of nonparametric estima-

tion. Condition (C2) holds for the most cumulated distribution functions of con-

tinuous random variables. Condition (C3) demands that
K∑
j=1

4Nj has finite second

order central moment. Condition (C4) is regular in survival analysis to ensure the

censoring rate between 0 and 1. Condition (C5) is required to guarantee a monotone
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spline approximation for a monotone function, see Lu, Zhang, and Huang (2007,

2009). Condition (C6) is similar to Condition (C2) in Wellner and Zhang (2007),

which indicates that the number of observations is bounded. According to Wellner

and Zhang (2007), Condition (C7) is common in practice, which requires that the

adjacent observation times are separable.

Theorem 3.1 (Consistency for Two-Stage Estimator). Suppose that Conditions

(C1)–(C7) hold. Then, for every 0 ≤ b1 ≤ b2 ≤ τ satisfying µ2([0, b1] × [b2, τ ]) > 0,

we have

||4Λ̂n(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]} −4Λ0(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]}||2L2(µ1) = op(1).

In particular, if µ2({0} × {τ}) > 0, then d1(Λ̂n,Λ0) = op(1).

To establish the rate of convergence and the asymptotic normality, we need the

following additional conditions.

(C8) µ1 is absolutely continuous with respect to Lebesgue measure with a deriva-

tive µ̇1, and µ̇1 has a uniform positive lower bound.

(C9) There is a positive constant M5 such that 1/M5 < Λ′0(s) < M5 for all

s ∈ [τ ′, τ ] with 0 < τ ′ ≤ τ such that Λ0(τ ′) > 0.

(C10) P (U ≥ τ) = ω1 > 0 and P (C ≥ τ) = ω2 > 0.

(C11) E(ecN(t)) is uniformly bounded for t ∈ [0, τ ] and some constant c.

Remark 2. Condition (C8) implies that the metric µ1 defined in (3.3) has a strictly

positive intensity. Condition (C9) requires the true conditional mean function being

absolutely continuous with bounded intensity function, which is reasonable as ex-

plained in Wellner and Zhang (2007). (C10) is used as a technical condition in the

proof of the uniform weak convergence rate of the KM estimator according to Kong

et al. (2018). Condition (C11) holds when N(t) is from a Poisson-type process or is

uniformly bounded conditional on terminal event time, which is often true in clinical

trials.
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Theorem 3.2 (Rate of Convergence). Suppose that Conditions (C1)–(C11) hold and

µ2({0} × {τ}) > 0. Taking ν = 1/(1 + 2r), we have d1(Λ̂n,Λ0) = Op(n
−r/(1+2r)).

By Theorem 3.2, the convergence rate of Λn is slower than n1/2. Thus, the classic

approach used for asymptotic normality of estimator with nuisance parameter is not

applicable anymore. Here we build a general theorem for the asymptotic normality

of a function of nonparametric M-estimator with nuisance parameter.

We write the loss function ln(Λ, F ;X) defined in (3.2) as Pnm(Λ, F ;X). Suppose

that Λη is a parameter path satisfying Λη ∈ Φ, and Λη|η=0 = Λ0. Set H = {h : h =

∂Λη
∂η
|η=0} and ψ(Λ, F ;X)[h] = ∂

∂η
m(Λη, F ;X)|η=0. For h ∈ H, we define Qn and Q

by Qn(Λ, F )[h] = Pnψ(Λ, F ;X)[h] and Q(Λ, F )[h] = Pψ(Λ, F ;X)[h], respectively.

To establish the asymptotic normality, we need the following conditions:

(B1) Q(Λ0, F0)[h] = 0 and Qn(Λ̂n, F̂n)[h] = op(n
−1/2).

(B2)
√
n(Qn −Q)(Λ̂n, F̂n)[h]−

√
n(Qn −Q)(Λ0, F0)[h] = op(1).

(B3) Q(Λ, F )[h] is Fréchet-differentiable with respect to Λ at (Λ0, F̂n) with a

continuous derivative Q̇
(1)

Λ0,F̂n
[h]; Q(Λ, F )[h] is Fréchet-differentiable with respect to

F at θ0 = (Λ0, F0) with a continuous derivative Q̇
(2)
Λ0,F0

[h].

(B3’) Q(Λ, F )[h] is Fréchet-differentiable with respect to Λ at (Λ0, F0) with a

continuous derivative Q̇
(1)
Λ0,F0

[h].

(B4) Q(Λ̂n, F̂n)[h] − Q(Λ0, F0)[h] − Q̇
(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] − Q̇

(2)
Λ0,F0

(F̂n − F0)[h] =

op(n
−1/2).

(B4’) Q(Λ̂n, F̂n)[h] − Q(Λ0, F0)[h] − Q̇
(1)
Λ0,F0

(Λ̂n − Λ0)[h] − Q̇
(2)
Λ0,F0

(F̂n − F0)[h] =

op(n
−1/2).

(B5)
√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nQn(Λ0, F0)[h] converges into a tight Gaussian

progress.

Remark 3. (B1), (B3) and (B5) are the analytical conditions required in Theorem
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3.3.1 of van de Vaart and Wellner (1996). Conditions (B2) and (B4) imply that the

remainders of the corresponding Taylor expansions are negligible. (B3’) and (B4’)

are similar to the first part of Condition (B3) and Condition (B4), respectively.

Theorem 3.3 (Asymptotic Normality). Suppose that Conditions (B1)–(B5) hold.

Then

−
√
nQ̇

(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] =

√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nQn(Λ0, F0)[h] + op(1)

converges into a tight Gaussian process. Replacing the first part of (B3) and (B4) by

(B3’) and (B4’), we have

−
√
nQ̇

(1)
Λ0,F0

(Λ̂n − Λ0)[h] =
√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nQn(Λ0, F0)[h] + op(1)

converges into a tight Gaussian process.

Remark 4. The proof clues of Theorem 3.3 mainly follow from multivariate func-

tional delta method. Theorem 3.3 establishes the asymptotic normality of the statis-

tics about two-stage estimator Λ̂n, whose convergence rate is not required to be n1/2.

It can be used to derive the asymptotic normality of nonparametric estimators with

a nuisance parameter. As a result, it can be adapted to more general situations

compared with Theorem 1 in Zhao and Zhang (2017).

For panel count data, ignoring constant factors, for all h ∈ Hr we have

ψ(Λ, F ;X)[h] =
K∑
j=1

[
∆
{
4Nj −4Λj(Y )

}
4hj(Y )

+ (1−∆)

∫∞
Y
{4Nj −4Λj(u)}4hj(u)dF (u)

1− F (Y )

]
,

where 4hj(u) = h(u− Tj−1)− h(u− Tj), j = 1, · · · , K.
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Theorem 3.4 (Application to Panel Count Data). Suppose that Conditions (C1)–

(C11) hold and µ2({0} × {τ}) > 0.

(i) Then for any bounded function h ∈ Hr, we have

√
nPς(Λ̂n, F̂n;X)[h] =

√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nQn(Λ0, F0)[h] + op(1),

where

ς(Λ, F ;X)[h] =

K∑
j=1

[
∆{4Λj(Y )−4Λ0,j(Y )}4hj(Y )

+ (1−∆)

∫∞
Y {4Λj(u)−4Λ0,j(u)}4hj(u)dF (u)

1− F (Y )

]
.

(ii) Moreover,
√
nPς(Λ̂n, F̂n;X)[h]

d−→ N(0, σ2
0), where

σ2
0 = E

[
{Pϕ(Λ0, F0;X; Ỹ , ∆̃)[h] + ψ(Λ0, F0;X)[h]}2

]
,

and ϕ(Λ, F ;X; Ỹ , ∆̃)[h] is defined as in the Appendix.

3.4 Two-Sample Test

Suppose that n subjects are from two groups with sample sizes n1 and n2, where

n1 + n2 = n. Denote the observed data of the lth group as {X(l)
i : i = 1, · · · , nl} =

{(Y (l)
i ,∆

(l)
i , K

(l)
i , Ti

(l), Ni
(l)) : i = 1, · · · , nl}, for l = 1, 2. Given the terminal event

time U (l) = u, the conditional mean function of Ñ (l)(t) is Λl(u− t).

3.4.1 Terminal Events with Equal Distribution

In this subsection, we assume that terminal event times share the same distri-

bution function F0 for all the subjects so that its estimator F̂n can be obtained

based on the pooled data. We investigate two-sample test with the null hypothesis

H0 : Λ1 = Λ2 = Λ0. Denote Λ̂l and Λ̂n as the estimates of Λl and Λ0 based on the

data set of group l and the pooled data, respectively.
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Theorem 3.5. Besides of the conditions in Theorem 3.4, we suppose that hn(·) is a

bounded weight process, and there is a bounded function h ∈ Hr such that

d2
1(hn, h) = E

[
K∑
j=1

{
4hn,j(U)−4hj(U)}2

]
= op(n

−1/(1+2r)).

Assume that n1/n→ p as n→∞, where 0 < p < 1. Then under H0 : Λ1 = Λ2,

Un =
√
nPn

(
ς(Λ̂1, F̂n;X)[hn]− ς(Λ̂2, F̂n;X)[hn]

)
converges in distribution to N(0, (1/p+1/(1−p))σ̌2

0), where σ̌2
0 = E[ψ2(Λ0, F0;X)[h]].

Moreover, σ̌2
0 can be consistently estimated by σ̂2

n = Pn[ψ2(Λ̂n, F̂n;X)[hn]].

Remark 5. Theorem 3.5 states the asymptotic normality of a new statistics Un and

gives a consistent estimator of its asymptotic variance. Setting Tn(hn) = Un/σ̂n to

be the statistics with different weight processes hn, we then can use them to conduct

the two-sample hypothesis test. A natural choice is to take hn = Λ̂n. Other possible

choices of the weight processes can be found in the simulation studies. It deserves to

note that the weight process is only required to be bounded, which is more flexible

compared with the monotone condition in Zhang (2006) and Balakrishnan and Zhao

(2009).

3.4.2 Terminal Events with Unequal Distributions

In this subsection, we assume the distribution and density functions of U (l), l =

1, 2 to be Fl and fl, which may be different for two groups. Let F̂l and Λ̂l be the

estimator of Fl and Λl, respectively. Given a partition 0 = t
(l)
0 < t

(l)
1 < · · · < t

(l)
νnl

= τ ,

we define the histogram-type estimators of fl as f̂l(u) = (F̂l(t
(l)
il

) − F̂l(t(l)il−1))/(t
(l)
i −

t
(l)
i−1) for t

(l)
il−1 ≤ u < t

(l)
il

following Földes, Rejtő, and Winter (1981). Set fT (u) =
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p1f1(u) + p2f2(u),

wl(u− t1)− wl(u− t2) =(h(u− t1)− h(u− t2))fT (u)/fl(u),

w(l)
n (u− t1)− w(l)

n (u− t2) =(hn(u− t1)− hn(u− t2))

(
nl
n

+
nr
n

f̂r(u)

f̂l(u)

)
,

where pl = limn→∞ nl/n for l, r = 1, 2, l 6= r.

Theorem 3.6. Suppose that the conditions in Theorem 3.5 hold for each group and

fl’s are Lipschitz continuous. Then for Λ0 ∈ Hr, r ≥ 2, under the null hypothesis

H0 : Λ1 = Λ2 = Λ0 we have

(i) Ũn = 1√
n

∑2
l=1

∑nl
i=1(ς(Λ̂1, F̂l;X

(l)
i )[hn] − ς(Λ̂2, F̂l;X

(l)
i )[hn]) converges in dis-

tribution to N(0, (σ2
1/p1 + σ2

2/p2)), where σ2
l = E[{Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[wl] +

ψ(Λ0, Fl;X
(l))[wl]}2] with ϕl(Λ, F ;X; Ỹ , ∆̃)[w] defined as in the Appendix.

(ii) In addition, suppose the knots of partition satisfy

max
i=1,··· ,νnl (l)

{|t(l)i − t
(l)
i−1|} → 0 and

(
n

log n

)1/4

min
i=1,··· ,νnl (l)

{∣∣∣t(l)i − t(l)i−1

∣∣∣}→∞
as n→∞. Then σ2

l can be consistently estimated by σ̂2
l , and the asymptotic variance

of Ũn can be consistently estimated by σ̃2
n = n(σ̂2

1/n1 + σ̂2
2/n2), where

σ̂2
l = Pnl

[{
Pnlϕ

(l)
n (Λ̂l, F̂l;X

(l); Ỹ (l), ∆̃(l))[w(l)
n ] + ψ(Λ̂l, F̂l;X

(l))[w(l)
n ]
}2
]

with ϕ
(l)
n (Λ, F ;X; Ỹ , ∆̃)[w] defined as in the Appendix.

According to Theorem 3.6, we could use the statistics T̃n(hn) = Ũn/σ̃n to test the

two sample hypothesis for the mean function of reversed counting processes under

the case of different distributions of terminal events.
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3.5 Simulation Studies

3.5.1 Two-Stage Estimation for Mean Function

We conducted simulation studies to demonstrate the finite-sample performance

of the two-stage estimator Λ̂n. The sample size were n = 50 and 100, respectively.

For subject i, the observation Xi = (Yi,∆i, Ki, Ti, Ni) was generated as below. The

latent terminal event time Ui was from 6 + exp(1), and the censoring time Ci was

from 6 + κ exp(3), where τ = 10 represented the end time of study. The constant

κ was taken such that the censoring rate reached 20% and 40%, respectively. Took

Yi = Ui∧Ci and ∆i = 1{Ui≤Ci}. The number of observationKi was taken from integers

between 1 to 6 with equal probability. Given the censored terminal event time

Yi, observation time Ti = (Ti1, Ti2, · · · , TiKi) was an ordered sample from uniform

distribution Unif(0, Yi). Let Ni be a Poisson process with E(Ni(t)|U = u) = Λ0(u)−

Λ0(u − t) and Λ0(s) = 10s/(s + 1), which means that Ni(Ti1) was from Poisson

distribution with mean 10Ui/(Ui + 1) − 10(Ui − Ti1)/(Ui − Ti1 + 1), and Ni(Tij) −

Ni(Ti(j−1)) was from Poisson distribution with mean 10(Ui − Ti(j−1))/(Ui − Ti(j−1) +

1) − 10(Ui − Tij)/(Ui − Tij + 1). For the knots of spline, took d = mn = 3 and let

td+1, td+2, td+3 be quartiles of {Yi − Tij : i = 1, · · · , n; j = 1, · · · , Ki}. All simulation

studies were based on 1000 replications.

Figure 3.1 shows the results of two-stage estimators for the conditional mean

functions. The solid line represents the true mean function, and dashed line rep-

resents the average of estimated mean function based on 1000 replications. From

(a)-(d) in Figure 1, we can see that the fitted mean functions are very close to the

true ones, which means the proposed nonparametric estimator is nearly unbiased.
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(a) n = 50 and censoring rate = 20%
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Figure 3.1: Estimates of the mean functions.

59



3.5.2 Two-Sample Test with the Same Terminal Events

We conducted two sample test for two groups sharing the same distribution of

terminal event. We generated two groups of independent and identically distributed

sample {X(l)
i : i = 1, · · · , nl} the same way as in Subsection 3.5.1 for l = 1, 2,

with sample size n1 = n2 = 50, 100, 150 or 200. Let N (l) be a Poisson process with

E(N (l)(t)|U (l) = u) = Λl(u)−Λl(u−t) for the lth group. We considered the following

two cases:

Case 1 : Λ1(s) = s, Λ2(s) = βs;

Case 2 : Λ1(s) = s, Λ2(s) =
10s

s+ β
.

We took β = 1, 1.1, 1.2, 1.3 in Case 1 and β = 1, 3, 5 in Case 2.

Figure 3.2 displays the graphs of the true mean functions for the two cases with

different values of β. It can be seen that the conditional mean functions of two

groups in Case 1 do not overlap but they cross over in Case 2. The weight processes

h
(j)
n (t), j = 1, 2, 3 in Theorem 3.5 are chosen to be

h(1)
n (t) = t, h(2)

n (t) =
1

n

n∑
i=1

1(t≥TiKi ), h
(3)
n (t) = Λ̂n(t).

The simulation studies are based on 1000 replications.

Figure 3.3 presents the quantile plots of the test statistics against the standard

normal distribution in Case 1 with n1 = n2 = 200, β = 1 and censoring rate 20% for

three weight processes. They reveal that the asymptotic normality given in Theorem

3.5 is satisfied in finite sample size. Similar plots are obtained for other situations

and they are omitted here.

Tables 3.1 and 3.2 report the sizes and powers of the proposed statistics Tn(h
(j)
n )

at significance level 0.05 in Cases 1 and 2 for different values of β, where Tn(h
(j)
n )
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Figure 3.2: The plots of mean functions for Cases 1 and 2.
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(c) Q−Q Plot for Tn(h
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Figure 3.3: Q-Q plots for n1=n2=200, β=1, and censoring rate = 20% when the
distribution functions of the terminal events are equal in the two groups.

represents the test statistics with the jth weight process for j = 1, 2, 3. The simula-

tion results in Tables 3.1 and 3.2 demonstrate that the proposed test possesses good

properties: (i) Table 3.1 shows the sizes are all around the significance level of 0.05

and they are closer to 0.05 as the sample size increases; (ii) for fixed values of β in

both cases, the power increases when the sample size increases; (iii) power values are

closer to 1 when the parameter β takes values farer away from the null hypotheses;

(iv) power performance relies on the choice of the weight processes.

3.5.3 Two-Sample Test with Different Terminal Events

We then conducted two-sample test for two groups with different distributions

of terminal events, where the sample size n1 = n2 = 50, 100, 150 or 200. The data

sets were generated similar to Subsection 3.5.2 except that the latent terminal event

time U
(1)
i and U

(2)
i were from 6 + exp(1) and 6 + exp(2), and the censoring time C

(1)
i

and C
(2)
i were from 6 +κ1 exp(3) and 6 +κ2 exp(3), where κ1 and κ2 were taken such

that the censoring rates reached 20% or 40%. We also considered Cases 1 and 2 in

Subsection 3.5.2 for the poisson process. The weight processes h
(j)
n (t), j = 1, · · · , 3
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Table 3.1: Simulation results of two-sample tests with different weights for Case 1 when
the distribution functions of the terminal events are equal in the two groups.

Censoring rate 20% Censoring rate 40%

β Tn(h
(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n ) Tn(h

(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n )

n1=n2=50
1 0.045 0.053 0.043 0.056 0.053 0.054

1.1 0.165 0.153 0.166 0.172 0.156 0.171
1.2 0.464 0.417 0.465 0.453 0.419 0.454
1.3 0.776 0.720 0.775 0.763 0.725 0.761

n1=n2=100
1 0.051 0.047 0.052 0.052 0.048 0.051

1.1 0.242 0.229 0.243 0.258 0.240 0.255
1.2 0.728 0.703 0.728 0.715 0.690 0.717
1.3 0.967 0.956 0.967 0.962 0.956 0.960

n1=n2=150
1 0.048 0.047 0.048 0.049 0.048 0.048

1.1 0.359 0.344 0.361 0.355 0.338 0.354
1.2 0.873 0.851 0.873 0.877 0.859 0.878
1.3 0.996 0.989 0.996 0.995 0.991 0.995

n1=n2=200
1 0.039 0.050 0.038 0.043 0.051 0.043

1.1 0.472 0.453 0.475 0.467 0.433 0.467
1.2 0.960 0.948 0.959 0.954 0.939 0.954
1.3 0.999 0.997 0.999 0.999 0.998 0.999

were chosen to be

h(1)
n (t) = t, h(2)

n (t) =
1

n

n∑
i=1

1(t≥TiKi ), h
(3)
n (t) =

Λ̂1(t) + Λ̂2(t)

2
.

To calculate the histogram-type estimators of fl, we divided [6, τ ] into 5 intervals

with equal length. The simulation studies were based on 1000 replications.

Figure 3.4 shows the quantile plots of the test statistics against the standard nor-

mal distribution with n1 = n2 = 200, β = 1 and censoring rate 20% for three weight

processes in Case 1, which demonstrates the normality of the proposed statistics in

finite sample size. The plots for other situations are similar and omitted here. Tables

3.3 and 3.4 summarize the sizes and powers of proposed statistics T̃n(h
(j)
n ), j = 1, 2, 3
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Table 3.2: Simulation results of two-sample tests with different weights for Case 2 when
the distribution functions of the terminal events are equal in the two groups.

Censoring rate 20% Censoring rate 40%

β Tn(h
(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n ) Tn(h

(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n )

n1=n2=50
1 0.954 0.999 0.512 0.972 1.000 0.601
3 0.801 0.972 0.563 0.852 0.971 0.604
5 0.934 0.986 0.865 0.942 0.984 0.880

n1=n2=100
1 0.999 1.000 0.752 1.000 1.000 0.868
3 0.982 0.971 0.859 0.987 1.000 0.892
5 0.998 1.000 0.991 0.999 1.000 0.991

n1=n2=150
1 1.000 1.000 0.900 1.000 1.000 0.960
3 0.998 1.000 0.949 0.998 1.000 0.970
5 1.000 1.000 0.998 1.000 1.000 0.999

n1=n2=200
1 1.000 1.000 0.941 1.000 1.000 0.977
3 1.000 1.000 0.986 1.000 1.000 0.989
5 1.000 1.000 1.000 1.000 1.000 1.000

in Cases 1 and 2 at significant level 0.05. From Tables 3.3 and 3.4, we could draw

the same conclusion as those in Subsection 3.5.2.

3.6 Real Data Analysis

In this section, we applied our method to analyze the dataset from Chinese Lon-

gitudinal Healthy Longevity Survey (CLHLS) during the period from 1998 to 2014,

which was published in Zeng et al. (2017). This survey was conducted by the Center

for Healthy Aging and Development Studies (CHADS) of National School of Devel-

opment at Peking University and Chinese Center for Disease Control and Prevention

(CDC) to shed light on the determinants of healthy human longevity and the oldest-

old mortality. The data set was obtained from the seven waves (1998, 2000, 2002,

2005, 2008, 2011 and 2014), collecting the information on 9093 respondents elder
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(c) Q−Q Plot for T̃n(h
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Figure 3.4: Q-Q plots for n1=n2=200, β=1, and censoring rate = 20% when the
distribution functions of the terminal events are different in the two groups.

than 77-years-old interviewed in the 1998 baseline survey. On each wave, the re-

spondents were asked to provide their information including health, socioeconomic

characteristics, family, lifestyle and demographic profile at a random date.

In this study, more than 30% interviewees at least once suffered from serious

illness during the survey, and some of them were even bedridden all the time. To

analyze the occurrence rate of serious illness among elderly people living in different

areas (urban or rural) in the survey, we considered 3050 samples after removing 4262

individuals who were deceased or lost to follow-up in 2000, 1312 individuals who lived

in both areas during this period and 469 individuals with missing or typo records.

Among them, 1489 lived in the urban and 1561 stayed in the rural. We then took

Tij as the number of months that the jth follow-up survey lasted from the baseline

survey for the ith individual, N(t) as the times that the respondent suffered from

serious illness up to time t and Ki as the total number of follow-up surveys for the

ith individual. We took death as terminal event and loss-of-connection as censoring

event, and τ = 197, the largest follow-up month. The censoring rate was 27.28%.

Suppose that the recurrent serious illness process follows model (1). To estimate
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Table 3.3: Simulation results of two-sample tests with different weights for Case 1 when
the distribution functions of the terminal events are different in the two groups.

Censoring rate 20% Censoring rate 40%

β T̃n(h
(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n ) T̃n(h

(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n )

n1=n2=50
1 0.070 0.063 0.067 0.077 0.075 0.087

1.1 0.175 0.162 0.171 0.193 0.164 0.192
1.2 0.469 0.416 0.471 0.489 0.439 0.484
1.3 0.753 0.721 0.755 0.789 0.758 0.779

n1=n2=100
1 0.056 0.061 0.061 0.068 0.056 0.072

1.1 0.231 0.221 0.231 0.260 0.241 0.260
1.2 0.688 0.664 0.693 0.721 0.687 0.717
1.3 0.960 0.956 0.960 0.956 0.951 0.955

n1=n2=150
1 0.043 0.049 0.041 0.056 0.052 0.054

1.1 0.338 0.311 0.341 0.352 0.330 0.348
1.2 0.863 0.835 0.865 0.872 0.851 0.869
1.3 0.993 0.992 0.994 0.994 0.985 0.992

n1=n2=200
1 0.046 0.048 0.045 0.058 0.057 0.060

1.1 0.447 0.427 0.450 0.469 0.451 0.469
1.2 0.951 0.933 0.953 0.952 0.941 0.954
1.3 1.000 0.998 1.000 0.999 0.999 0.998

the mean function of the reversed recurrent event process on serious illness and make

a comparison between elderly people living in urban and rural, we took the order

of I-spline d = 3 and mn = 3 to divide [0, τ ] into 4 subintervals, and let the knots

of splines td+1 = τ/4, td+2 = τ/2, td+3 = 3τ/4. The estimated mean functions

were displayed in Figure 3.5. The solid line in Figure 3.5 plots the estimated mean

function based on the whole dataset. It shows that the times of serious illness tend

to increase at the end of lifetime, which is reasonable since the physical function of

the elder people would decline as their age increases. The dash and dotted-dash lines

in Figure 3.5 display the mean function estimates for two groups living in the urban

area and the rural area. It can be seen that people living in the former area tend to
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Table 3.4: Simulation results of two-sample tests with different weights for Case 2 when
the distribution functions of the terminal events are different in the two groups.

Censoring rate 20% Censoring rate 40%

β T̃n(h
(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n ) T̃n(h

(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n )

n1=n2=50
1 0.980 1.000 0.622 0.988 1.000 0.751
3 0.860 0.981 0.653 0.921 0.988 0.755
5 0.950 0.987 0.892 0.969 0.992 0.933

n1=n2=100
1 1.000 1.000 0.834 1.000 1.000 0.926
3 0.986 1.000 0.884 0.999 1.000 0.947
5 0.997 1.000 0.987 1.000 1.000 0.996

n1=n2=150
1 1.000 1.000 0.940 1.000 1.000 0.985
3 0.998 1.000 0.976 0.999 1.000 1.000
5 1.000 1.000 0.999 1.000 1.000 0.999

n1=n2=200
1 1.000 1.000 0.972 1.000 1.000 0.990
3 1.000 1.000 0.994 1.000 1.000 0.995
5 1.000 1.000 1.000 1.000 1.000 1.000

experience more serious illnesses than those living in the latter.

We then used the same three weight functions as those in the simulation studies to

test the null hypothesis H0: ΛU(s) = ΛR(s), where ΛU and ΛR are the corresponding

mean functions for people living in the urban area and the rural area, respectively.

To conduct the test, we first draw that the survival functions of people living in

urban and rural were significantly different by adopting the rank test (Harrington

and Fleming, 1982) with p-value 3×10−6. We divided [0, τ ] into 8 intervals with equal

length to obtain the histogram-type estimators, and used the statistics in Theorem

3.6 to compare the mean functions. The test results were summarized in Table 3.5,

which suggests that the null hypothesis is rejected significantly at the level 0.05 for

all three weights.
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Figure 3.5: Estimates of the mean functions for the CLHLS data.
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Table 3.5: Two-sample test results with three weights for the CLHLS data.

h
(1)
n h

(2)
n h

(3)
n

Ũn 287.788 3.982 4.357
σ̃n 84.445 1.151 1.252

T̃n 3.408∗ 3.460∗ 3.481∗

T̃n(h) represents the observated value of the test statistic with different weight functions;
∗ represents significance level of 0.05

3.7 Appendix

3.7.1 Calculation of Loss Function

For the first part of `n(Λ, F̂n;X), replacing Λ(s) by IT (s)α, we have

1

n

n∑
i=1

Ki∑
j=1

∆i

{
4Ni,j −4Ij(Yi)Tα

}2

=
1

n

n∑
i=1

Ki∑
j=1

∆i

{
αT4Ij(Yi)4Ij(Yi)Tα− 24Ni,j4Ij(Yi)Tα+4N2

i,j

}

=αT

 1

n

n∑
i=1

Ki∑
j=1

∆i4Ij(Yi)4Ij(Yi)T
α−

 1

n

n∑
i=1

Ki∑
j=1

∆i4Ni,j4Ij(Yi)


T

α

+
1

n

n∑
i=1

Ki∑
j=1

∆i4N2
i,j

= : αTA1α− 2BT
1 α+ C1.

For the second part, the KM estimator is nondecreasing step function

F̂n(u) =
L∑
l=1

fl1[tl,tl+1)(u),

where t1 = 0, tL+1 = τ , and {[tl, tl+1) : l = 1, · · · , L} is a partition of [0, τ).

Furthermore, for each subject, we assume Yi to be in the interval [tli , tli+1), and
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take fL+1 = fL. Then we have

1

n

n∑
i=1

Ki∑
j=1

(1−∆i)

∫∞
Yi
{4Ni,j −4Ij(u)Tα}2dF̂n(u)

1− F̂n(Yi)

=
1

n

n∑
i=1

Ki∑
j=1

(1−∆i)

∑L
l=li

[
(fl+1 − fl)

{
4Ni,j −4Ij(t(1)

l+1)Tα
}2
]

1− F̂n(Yi)

=

n∑
i=1

1−∆i

n(1− F̂n(Yi))

Ki∑
j=1

L∑
l=li

[(
fl+1 − fl

){
αT4Ij(t(1)

l+1)4Ij(t(1)
l+1)Tα

−24Ni,j4Ij(t(1)
l+1)Tα+4N2

i,j

}]

=αT

 n∑
i=1

1−∆i

n(1− F̂n(Yi))

Ki∑
j=1

L∑
l=li

{
(fl+1 − fl)4Ij(t

(1)
l+1)4Ij(t(1)

l+1)T
}α

−2

 n∑
i=1

1−∆i

n(1− F̂n(Yi))

Ki∑
j=1

4Ni,j

L∑
l=li

(fl+1 − fl)4Ij(t
(1)
l+1)T


T α

+
n∑
i=1

(1−∆i)(fL+1 − fli)
n(1− F̂n(Yi))

Ki∑
j=1

4N2
i,j =: αTA2α− 2BT

2 α+ C2.

Thus, to obtain the estimator Λ̂n, we should minimize αTAα − 2BTα + C under

the constraints that αl ≥ 0 for l = 1, · · · , qn, where A = A1 +A2, B = B1 +B2

and C = C1 + C2.

3.7.2 Lemmas

Lemma 3.1. (i) Suppose that Condition (C2) holds. For sufficiently small δ, any

F ∈ Fδ and any differentiable function g, we have

P

[
(1−∆)

K∑
j=1

∣∣∣∣
∫∞
Y
g(u− Tj)dF (u)

1− F (Y )
−
∫∞
Y
g(u− Tj)dF0(u)

1− F0(Y )

∣∣∣∣
]

.

(
E

[
K∑
j=1

|g′(U − Tj)|

]
+ E

[
K∑
j=1

|g(U − Tj)|

])
||F − F0||∞.

(3.4)
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(ii) In addition, suppose that Conditions (C1) and (C3) hold. It follows that for

all Λ ∈ Φ,

|Pm(Λ, F ;X)− Pm(Λ, F0;X)| . d2(F, F0).

Thus, we have Pm(Λ, F̂n;X)− Pm(Λ, F0;X) = op(1) for all Λ ∈ Φ.

Proof. (i) By direct calculations, we have

P

(1−∆)
K∑
j=1

∣∣∣∣
∫∞
Y g(u− Tj)dF0(u)

1− F0(Y )
−
∫∞
Y g(u− Tj)dF (u)

1− F (Y )

∣∣∣∣


=P

 1−∆

(1− F0(Y ))(1− F (Y ))

K∑
j=1

∣∣(1− F0(Y ))

∫ ∞
Y

g(u− Tj)d(F0(u)− F (u))

+ (F0(Y )− F (Y ))

∫ ∞
Y

g(u− Tj)dF0(u)
∣∣]

≤P

(1−∆)

K∑
j=1

|
∫∞
Y g(u− Tj)d(F0(u)− F (u))|

1− F (Y )



+P

(1−∆)
K∑
j=1

∫∞
Y |g(u− Tj)|dF0(u)

(1− F0(Y ))(1− F (Y ))

 ||F − F0||∞.

Using integration by parts, we have

P

(1−∆)

K∑
j=1

|
∫∞
Y g(u− Tj)d(F0(u)− F (u))|

1− F (Y )



=P

(1−∆)
K∑
j=1

∣∣−(F0(Y )− F (Y )
)
g(Y − Tj)−

∫∞
Y g′(u− Tj)(F0(u)− F (u))du

∣∣
1− F (Y )



≤P

(1−∆)

K∑
j=1

|g(Y − Tj)|
1− F (Y )

 ||F − F0||∞ + P

(1−∆)

K∑
j=1

∫∞
Y |g

′(u− Tj)|du
1− F (Y )

 ||F − F0||∞.

Condition (C2) implies that 1−F0(Y ) is larger than a positive constant. Hence, for

sufficiently small δ and any F ∈ Fδ, 1−F (Y ) is also larger than a positive constant.
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It follows that

P

[
(1−∆)

K∑
j=1

|g(Y − Tj)|
1− F (Y )

]
. P

[
∆

K∑
j=1

|g(Y − Tj)|

]
≤ P

[
K∑
j=1

|g(U − Tj)|

]

and

P

(1−∆)

K∑
j=1

∫∞
Y |g(u− Tj)|dF0(u)

(1− F0(Y ))(1− F (Y ))



.P

(1−∆)
K∑
j=1

∫∞
Y |g(u− Tj)|dF0(u)

1− F0(Y )

 ≤ P
 K∑
j=1

|g(U − Tj)|

 .
Moreover, by the second part of Condition (C2), we obtain

P

(1−∆)
K∑
j=1

∫∞
Y |g

′(u− Tj)|du
1− F (Y )

 . P
(1−∆)

K∑
j=1

∫∞
Y |g

′(u− Tj)|/f0(u)dF0(u)

1− F0(Y )



.P

(1−∆)

K∑
j=1

∫∞
Y |g

′(u− Tj)|dF0(u)

1− F0(Y )

 ≤ P
 K∑
j=1

∣∣g′(U − Tj)∣∣
 .

Thus, (3.4) holds.

(ii) By the first part of the Lemma, Conditions (C1) and (C3), we have

|P[m(Λ, F ;X)−m(Λ, F0;X)]|

≤P

 K∑
j=1

(1−∆)

∣∣∣∣∣
∫∞
Y

(
4Nj −4Λj(u)

)2
dF (u)

1− F (Y )
−
∫∞
Y

(
4Nj −4Λj(u)

)2
dF0(u)

1− F0(Y )

∣∣∣∣∣


.

E
 K∑
j=1

{∣∣Λ′j(U)
(
4Nj −4Λj(U)

)∣∣+
(
4Nj −4Λj(U)

)2} ||F − F0||∞

.d2(F, F0).
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Lemma 3.2. Suppose that Conditions (C2), (C4) and (C6) hold. Then for suffi-

ciently small δ, {m(Λ, F ;X) : Λ ∈ Φ, F ∈ Fδ, Λ is uniformly bounded} is Donsker,

where

m(Λ, F ;X) =

K∑
j=1

∆{4Nj −4Λj(Y )}2 +

K∑
j=1

(1−∆)

∫∞
Y {4Nj −4Λj(u)}2dF (u)

1− F (Y )
.

Proof. Note that functions in Fδ and Φ are monotone and uniformly bounded. It

follows from Section 3 of van der Vaart (1996) that {Λ ∈ Φ : Λ is uniformly bounded}

and Fδ are Donsker. Since {4Nj−4Λj(Y )}2 is Lipschitz for Λ, by Theorem 2.10.6 of

van der Vaart and Wellner (1996),
{

[4Nj−4Λj(Y )]2 : Λ ∈ Φ is uniformly bounded
}

is Donsker. Note that{∫ ∞
Y

[
4Nj −4Λj(u)

]2
dF (u) : Λ ∈ Φ is uniformly bounded

}

is a subset of the convex combinations of functions in{
[4Nj −4Λj(Y )]2 : Λ ∈ Φ is uniformly bounded

}
.

By Theorem 2.10.1 and Theorem 2.10.3 of van der Vaart and Wellner (1996),{∫ ∞
Y

[4Nj −4Λj(u)]2dF (u) : Λ ∈ Φ is uniformly bounded

}
is Donsker. Since 1−F (Y ) and K are bounded from Conditions (C2), (C4) and (C6),

{m(Λ, F ;X) : Λ ∈ Φ, F ∈ Fδ, Λ is uniformly bounded} is Donsker by Theorem

2.10.6 of van der Vaart and Wellner (1996).

Lemma 3.3 (Rate of Convergence of M-estimator with Nuisance Parameter). Sup-

pose that for every Λ ∈ Φn, sufficiently large n and sufficiently small η,

P(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) . −d1(Λ,Λ0)2 + d1(Λ,Λ0)d2(F̂n, F0) + d2(F̂n, F0)2

and

E sup
{Λ∈Φn:d1(Λ,Λ0)<η}

|(Pn − P)(m(Λ0, F̂n;X)−m(Λ, F̂n;X))| . φn(η)√
n
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hold, where φn(η) satisfies that η 7→ φn(η)/ηα is decreasing for some α < 2. Let

rn > 0 satisfy φn(rn) .
√
nr2

n. If the sequence Λ̂n satisfies Pnm(Λ0, F̂n;X) ≥

Pnm(Λ̂n, F̂n;X) − Op(r
2
n) and converges in probability to Λ0, then d1(Λ̂n,Λ0) =

Op(rn + d2(F̂n, F0)).

Proof. This Lemma is similar to Theorem 5.55 of van der Vaart (1998). In order to

verify d1(Λ̂n,Λ0) = Op(rn + d2(F̂n, F0)), we need to prove that for sufficiently large

n, limM→∞ P (Λ̂n ∈ Φn : d1(Λ̂n,Λ0) ≥ 2M(d2(F̂n, F0) + rn)) = 0. Then we divide Φn

into shells Sn,j,M = {Λ ∈ Φn : 2jrn ≤ d1(Λ,Λ0) < 2j+1rn, 2
Md2(F̂n, F0) ≤ d1(Λ,Λ0)}.

For any Λ ∈ Sn,j,M , we have 2d1(Λ,Λ0) ≥ 2Md2(F̂n, F0) + 2jrn. Hence,

{
Λ̂n ∈ Φn : 2d1(Λ̂n,Λ0) ≥ 2M(d2(F̂n, F0) + rn)

}
⊆
⋃
j≥M

{Λ̂n ∈ Sn,j,M}.

It follows that

P
(

Λ̂n ∈ Φn : d1(Λ̂n,Λ0) ≥ 2M−1(d2(F̂n, F0) + rn)
)
≤ P

(
Λ̂n ∈

⋃
j≥M

Sn,j,M

)
. (3.5)

Furthermore, since Λ̂n satisfies that Pnm(Λ0, F̂n;X) ≥ Pnm(Λ̂n, F̂n;X)−Op(r
2
n), for

Λ̂n ∈ Sn,j,M we can find a variable Rn = Op(r
2
n) such that

sup
Λ∈Sn,j,M

Pn(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ Pn(m(Λ0, F̂n;X)−m(Λ̂n, F̂n;X)) ≥ −Rn.

Then for any constant κ, we have

P

(
Λ̂n ∈

⋃
j≥M

Sn,j,M

)
≤ P

(
sup

Λ∈
⋃
j≥M Sn,j,M

Pn(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ −κr2
n

)

+ P (Rn ≥ κr2
n).

(3.6)
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By (3.5) and (3.6), we obtain

P
(

Λ̂n ∈ Φn : d1(Λ̂n,Λ0) ≥ 2M (d2(F̂n, F0) + rn)
)
≤ P (d1(Λ̂n,Λ0) ≥ η) + P (Rn ≥ κr2

n)

+
∑

j≥M+1,2j+1≤η/rn

P

(
sup

Λ∈Sn,j,M
Pn(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ −κr2

n

)
.

Since Λ̂n is consistent and Rn = Op(r
2
n), P (d1(Λ̂n,Λ0) ≥ η) and P (Rn ≥ κr2

n) can

be arbitrarily small for sufficiently large n by the choice of η and κ. Thus, we need

to prove the limitation of the summation on the right hand side is 0 as M goes to

infinity.

Note that for any positive integer M , 1/4 ≤ 1 − 2−M − 2−2M < 1. Then for all

Λ ∈ Sn,j,M ,

P(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) . −d1(Λ,Λ0)2 + d1(Λ,Λ0)d2(F̂n, F0) + d2(F̂n, F0)2

≤ −(1− 2−M − 2−2M)d1(Λ,Λ0)2 ≤ −22jr2
n.

Hence, P(m(Λ0, F̂n;X) − m(Λ, F̂n;X)) ≤ −c122jr2
n for some constant c1. Taking

M with M ≥ 1
2

log2(2κ/c1), then by the Markov’s inequality, for j ≥ M + 1 and

sufficiently large n with rn ≤ 2−(j+1)η, we have

P

(
sup

Λ∈Sn,j,M
Pn(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ −κr2

n

)

≤P

(
sup

Λ∈Sn,j,M
(Pn − P)(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ c1

2
22jr2

n

)

≤ 2

c122jr2
n

E sup
Λ∈Sn,j,M

∣∣∣(Pn − P)(m(Λ0, F̂n;X)−m(Λ, F̂n;X))
∣∣∣ . φn(2(j+1)rn)

22jr2
n

√
n

.

Since φn(η)/ηα is decreasing for some α < 2, we have φn(cη) ≤ cαφn(η) for any c > 1.

Then φn(rn) .
√
nr2

n ensures that φn(2(j+1)rn)
22jr2n

√
n
. 2α(j+1)√nr2n

22jr2n
√
n

= 1
2(2−α)j−α

. Thus,

∑
j≥M+1,2j+1≤η/rn

P

(
sup

Λ∈Sn,j,M
Pn(m(Λ0, F̂n;X)−m(Λ, F̂n;X)) ≥ 0

)
.

∑
j≥M+1

1

2(2−α)j−α .
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Noting that
∑

j≥M+1
1

2(2−α)j−α
tends to 0 as M approaches to infinity, this lemma is

concluded.

Lemma 3.4. Suppose that Conditions (C1), (C2), (C4)–(C6), (C8), (C9) and (C11)

hold. Define the classMη(F ) = {m(Λ, F ;X)−m(Λ0, F ;X) : Λ ∈ Φn, d1(Λ,Λ0) ≤ η}

for each F ∈ Fδ. For any ε < η and sufficiently small δ, we have

logN[](ε,Mη(F ), || · ||P,B) . qn log(η/ε),

where the Bernstein norm is defined as ||f ||P,B = {2P (e|f | − 1− |f |)}1/2.

Proof. By the calculation in Shen and Wong (1994, page 597), under Condition (C5),

for any ε < η, there is a set of brackets

{
[ΛL

i ,Λ
U
i ] : ||4ΛU

i (s1, s2)−4ΛL
i (s1, s2)||L2(µ1) ≤ ε, i = 1, · · · , (η/ε)c0qn

}
such that for all Λ ∈ {Λ ∈ Φn : d1(Λ,Λ0) ≤ η}, we can find an interval [4ΛL

i ,4ΛU
i ]

satisfying 4Λ(s1, s2) ∈ [4ΛL
i (s1, s2),4ΛU

i (s1, s2)]. This implies that ||4Λ(s1, s2) −

4ΛL
i (s1, s2)||L2(µ1) ≤ ε and ||4Λ(s1, s2) − 4ΛU

i (s1, s2)||L2(µ1) ≤ ε. Noting that

||4Λ(s1, s2) −4Λ0(s1, s2)||L2(µ1) ≤ η, we have ||4ΛL
i (s1, s2) −4Λ0(s1, s2)||L2(µ1) ≤

(ε2 + η2)1/2 and ||4ΛU
i (s1, s2)−4Λ0(s1, s2)||L2(µ1) ≤ (ε2 + η2)1/2. By Lemma 7.1 of

Wellner and Zhang (2007), under Conditions (C8) and (C9), for any4Λ(s1, s2) satis-

fying ||4Λ(s1, s2)−4Λ0(s1, s2)||L2(µ1) ≤ ε∗, we have ||4Λ(s1, s2)−4Λ0(s1, s2)||∞ ≤

(ε∗/c1)2/3 for some constant c1. Hence,

0 ∨
(
4Λ0(s1, s2)− ((ε2 + η2)1/2/c1)2/3

)
≤ 4ΛLi (s1, s2)

≤ 4ΛUi (s1, s2) ≤ 4Λ0(s1, s2) + ((ε2 + η2)1/2/c1)2/3,

which implies that 4ΛU
i (s1, s2) − 4ΛL

i (s1, s2) are uniformly bounded by 2((ε2 +

η2)1/2/c1)2/3.

76



We turn to consider the ε-bracket of m(Λ, F ;X)−m(Λ0, F ;X). Note that

m(Λ, F ;X)−m(Λ0, F ;X) =
K∑
j=1

∆
[

(4Nj −4Λj(Y ))2 − (4Nj −4Λ0,j(Y ))2
]

+
K∑
j=1

(1−∆)

[∫∞
Y (4Nj −4Λj(u))2 − (4Nj −4Λ0,j(u))2 dF (u)

1− F (Y )

]

=
K∑
j=1

∆
[
{4Λj(Y )}2 − 24Nj4Λj(Y )− {4Λ0,j(Y )}2 + 24Nj4Λ0,j(Y )

]

+

K∑
j=1

(1−∆)

∫∞
Y

[
{4Λj(u)}2 − 24Nj4Λj(u)− {4Λ0,j(u)}2 + 24Nj4Λ0,j(u)

]
dF (u)

1− F (Y )
.

By Conditions (C2) and (C4), 1−F (Y ) is positive and has uniform upper and lower

bounds. Hence, mL
i (ΛL

i ,Λ
U
i , F ;X) ≤ m(Λ, F ;X)−m(Λ0, F ;X) ≤ mU

i (ΛL
i ,Λ

U
i , F ;X),

where

mL
i (ΛLi ,Λ

U
i , F ;X)

=
K∑
j=1

∆
[
{4ΛLi,j(Y )}2 − 24Nj4ΛUi,j(Y )− {4Λ0,j(Y )}2 + 24Nj4Λ0,j(Y )

]

+

K∑
j=1

(1−∆)

∫∞
Y

[
{4ΛLi,j(u)}2 − 24Nj4ΛUi,j(u)− {4Λ0,j(u)}2 + 24Nj4Λ0,j(u)

]
dF (u)

1− F (Y )

and

mU
i (ΛLi ,Λ

U
i , F ;X)

=

K∑
j=1

∆
[
{4ΛUi,j(Y )}2 − 24Nj4ΛLi,j(Y )− {4Λ0,j(Y )}2 + 24Nj4Λ0,j(Y )

]

+

K∑
j=1

(1−∆)

∫∞
Y

[
{4ΛUi,j(u)}2 − 24Nj4ΛLi,j(u)− {4Λ0,j(u)}2 + 24Nj4Λ0,j(u)

]
dF (u)

1− F (Y )

for i = 1, · · · , (η/ε)c0qn .
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We also need to verify ||mL
i (ΛL

i ,Λ
U
i , F ;X)−mU

i (ΛL
i ,Λ

U
i , F ;X)||2P,B . ε2. Accord-

ing to

||f ||2P,B = 2P (e|f | − 1− |f |) = 2P

(
∞∑
n=2

|f |n

n!

)
≤ 2P

(
|f |2e|f |

)
,

||f ||2P,B . ε2 is followed from P (|f |2e|f |) . ε2. Note that

{4ΛU
i,j(u)}2 − {4ΛL

i,j(u)}2 + 24Nj(4ΛU
i,j(u)−4ΛL

i,j(u))

=
(
4ΛU

i,j(u) +4ΛL
i,j(u) + 24Nj

) (
4ΛU

i,j(u)−4ΛL
i,j(u)

)
.4Nj

(
4ΛU

i,j(u)−4ΛL
i,j(u)

)
+
(
4ΛU

i,j(u)−4ΛL
i,j(u)

)
.

Since ΛL
i , ΛU

i and 1− F (Y ) are uniformly bounded, we have

e|m
U
i (ΛLi ,Λ

U
i ,F ;X)−mLi (ΛLi ,Λ

U
i ,F ;X)| . ecN(TK)

with some constant c. By Cauchy-Schwarz inequality and Condition (C11), we obtain

P
(
|mU

i (ΛLi ,Λ
U
i , F ;X)−mL

i (ΛLi ,Λ
U
i , F ;X)|2e|mUi (ΛLi ,Λ

U
i ,F ;X)−mLi (ΛLi ,Λ

U
i ,F ;X)|

)
.P

(
ecN(TK)

∣∣mU
i (ΛLi ,Λ

U
i , F ;X)−mL

i (ΛLi ,Λ
U
i , F ;X)

∣∣2)

.P

∆
K∑
j=1

(4Nj + 1)
(
4ΛUi,j(Y )−4ΛLi,j(Y )

)

+ (1−∆)

K∑
j=1

∫∞
Y (4Nj + 1)

(
4ΛUi,j(u)−4ΛLi,j(u)

)
dF (u)

1− F (Y )


2


.P

 K∑
j=1

∆
(
4ΛUi,j(Y )− ΛLi,j(Y )

)2
+ (1−∆)

∫∞
Y

(
4ΛUi,j(u)−4ΛLi,j(u)

)2
dF (u)

1− F (Y )




.δ + ||4ΛUi (s1, s2)−4ΛLi (s1, s2)||2L2(µ1) . ε
2.

(3.7)

This implies that ||mL
i −mU

i ||2P,B . ε2. That means N[](ε,Mη(F ), ||·||P,B) ≤ (η/ε)c0qn

and logN[](ε,Mη(F ), || · ||P,B) . qn log(η/ε).
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3.7.3 Proof of Theorem 3.1

Proof. First, for any Λ ∈ Φ, we have

Pm(Λ, F0;X)− Pm(Λ0, F0;X)

=P

 K∑
j=1

∆{(4Nj −4Λj(Y ))2 − (4Nj −4Λ0,j(Y ))2}

+

K∑
j=1

(1−∆)

∫∞
Y {(4Nj −4Λj(u))2 − (4Nj −4Λ0,j(u))2}dF0(u)

1− F0(Y )



=P

 K∑
j=1

∆ (24Nj −4Λj(Y )−4Λ0,j(Y )) (4Λ0,j(Y )−4Λj(Y ))

+

K∑
j=1

(1−∆)

∫∞
Y (24Nj −4Λj(u)−4Λ0,j(u)) (4Λ0,j(u)−4Λj(u)) dF0(u)

1− F0(Y )



=P

 K∑
j=1

∆
{
4Λ0,j(Y )−4Λj(Y )

}2
+

K∑
j=1

(1−∆)

∫∞
Y

{
4Λ0,j(u)−4Λj(u)

}2
dF0(u)

1− F0(Y )


=d1(Λ,Λ0)2.

Thus, to draw the conclusion, we only need to consider Pm(Λ, F0;X)−Pm(Λ0, F0;X).

Since Λ̂n is the minimizer of Pnm(Λ, F̂n;X) with respect to Λ ∈ Φn, for any

direction function h ∈ Φn, we obtain

0 = lim
ε→0

PnL(Λ̂n + εh, F̂n;X)− PnL(Λ̂n, F̂n;X)

ε

= −2Pn

 K∑
j=1

{
∆
(
4Nj −4Λ̂n,j(Y )

)
4hj(Y )

+ (1−∆)

∫∞
Y

(
4Nj −4Λ̂n,j(u)

)
4hj(u)dF̂n(u)

1− F̂n(Y )

}]
.

(3.8)
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Taking h(s) = s, by Conditions (C1) and (C6), it follows that

Pn

 K∑
j=1

{
(Tj − Tj−1)

(
∆4Λ̂n,j(Y ) + (1−∆)

∫∞
Y 4Λ̂n,j(u)dF̂n(u)

1− F̂n(Y )

)}

=Pn

 K∑
j=1

{4Nj(Tj − Tj−1)}

 a.s.−−→ E

 K∑
j=1

4Λ0,j(U)(Tj − Tj−1)

 ≤M3Λ0(τ)τ,

where the almost surely convergence follows from the strong law of large number.

Moreover, for the left hand side, by Condition (C7), we have

lim sup
n→∞

Pn

 K∑
j=1

{
(Tj − Tj−1)

(
∆4Λ̂n,j(Y ) + (1−∆)

∫∞
Y 4Λ̂n,j(u)dF̂n(u)

1− F̂n(Y )

)}

& lim sup
n→∞

Pn

[
∆{Λ̂n(Y )− Λ̂n(Y − TK)}+ (1−∆)

∫∞
Y {Λ̂n(u)− Λ̂n(u− TK)}dF̂n(u)

1− F̂n(Y )

]

≥ lim sup
n→∞

4Λ̂n(b1, b2)Pn

[
∆1{Y−TK∈[0,b1],Y ∈[b2,τ ]} + (1−∆)

∫∞
Y 1{u−TK∈[0,b1],u∈[b2,τ ]}dF̂n(u)

1− F̂n(Y )

]

= lim sup
n→∞

4Λ̂n(b1, b2)E
[
1{U−TK∈[0,b1],U∈[b2,τ ]}

]
= lim sup

n→∞
4Λ̂n(b1, b2)µ2([0, b1]× [b2, τ ]).

Hence, for every 0 ≤ b1 ≤ b2 ≤ τ satisfying µ2([0, b1]× [b2, τ ]) > 0, we have

4Λ̂n(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]}

is uniformly bounded. In particular, if µ2({0} × {τ}) > 0, then Λ̂n(s) is uniformly

bounded.

By Lemma A1 of Lu, Zhang, and Huang (2007), under Condition (C5), there is

Λ∗n ∈ Φn such that ||Λ∗n − Λ0||∞ = O(n−νr). This implies that

Pm(Λ∗n, F0;X)− Pm(Λ0, F0;X)

=P

 K∑
j=1

∆
(
4Λ0,j(Y )−4Λ∗n,j(Y )

)2
+

K∑
j=1

(1−∆)

∫∞
Y

(
4Λ0,j(u)−4Λ∗n,j(u)

)2
dF0(u)

1− F0(Y )


.||Λ∗n − Λ0||2∞ = O(n−2νr) = o(1).

80



Note that

0 ≤ Pm(Λ̂n, F0;X)− Pm(Λ0, F0;X) = Pm(Λ̂n, F0;X)− Pm(Λ̂n, F̂n;X)

+Pm(Λ̂n, F̂n;X)− Pnm(Λ̂n, F̂n;X) + Pnm(Λ̂n, F̂n;X)− Pnm(Λ∗n, F̂n;X)

+Pnm(Λ∗n, F̂n;X)− Pm(Λ∗n, F̂n;X) + Pm(Λ∗n, F̂n;X)− Pm(Λ∗n, F0;X)

+Pm(Λ∗n, F0;X)− Pm(Λ0, F0;X).

By Lemma 3.1, we have

Pm(Λ̂n, F̂n;X)− Pm(Λ̂n, F0;X) = op(1)

and

Pm(Λ∗n, F̂n;X)− Pm(Λ∗n, F0;X) = op(1).

By Lemma 3.2, the class of functions {m(Λ, F ;X) : Λ ∈ Φn, F ∈ Fδ} is Donsker.

Hence it is Glivenko-Cantelli, and we have

(Pn − P)m(Λ∗n, F̂n;X) = op(1) and (Pn − P)m(Λ̂n, F̂n;X) = op(1)

since Λ̂n is uniformly bounded. According to the definition of Λ̂n, Pnm(Λ̂n, F̂n;X)−

Pnm(Λ∗n, F̂n;X) ≤ 0. Hence, d1(Λ̂n,Λ0) = Pm(Λ̂n, F0;X)− Pm(Λ0, F0;X) = op(1).

3.7.4 Proof of Theorem 3.2

Proof. To apply Lemma 3.3, we need to verify that for every Λ ∈ Φn and sufficiently

large n, the inequalities

P
(
m(Λ0, F̂n;X)−m(Λ, F̂n;X)

)
. −d1(Λ,Λ0)2 + d1(Λ,Λ0)d2(F̂n, F0) + d2(F̂n, F0)2

and

E sup
{Λ∈Φn:d1(Λ,Λ0)<η}

∣∣∣(Pn − P)(m(Λ0, F̂n;X)−m(Λ, F̂n;X)
)∣∣∣ . φn(η)√

n
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hold. By some calculations,

P
(
m(Λ0, F ;X)−m(Λ, F ;X)

)
=P

[
K∑
j=1

∆
{(
4Nj −4Λ0,j(Y )

)2 −
(
4Nj −4Λj(Y )

)2
}

+
K∑
j=1

(1−∆)

{∫∞
Y

(
4Nj −4Λ0,j(u)

)2 −
(
4Nj −4Λj(u)

)2
dF (u)

1− F (Y )

}]

=P

[
K∑
j=1

∆
{

24Nj −4Λ0,j(Y )−4Λj(Y )
}{
4Λj(Y )−4Λ0,j(Y )

}

+
K∑
j=1

(1−∆)

∫∞
Y

{
24Nj −4Λ0,j(u)−4Λj(u)

}{
4Λj(u)−4Λ0,j(u)

}
dF (u)

1− F (Y )

]

=− P

[
K∑
j=1

{
∆(4Λj(Y )−4Λ0,j(Y ))2 + (1−∆)

∫∞
Y

(4Λj(u)−4Λ0,j(u))2dF (u)

1− F (Y )

}]

=− d1(Λ,Λ0)2 + P

[
K∑
j=1

(1−∆)

{∫∞
Y

(4Λj(u)−4Λ0,j(u))2dF0(u)

1− F0(Y )

−
∫∞
Y

(4Λj(u)−4Λ0,j(u))2dF (u)

1− F (Y )

}]
.

Moreover, by the first part of Lemma 3.1, under Condition (C1), we have

P

 K∑
j=1

(1−∆)

{∫∞
Y (4Λj(u)−4Λ0,j(u))2dF0(u)

1− F0(Y )
−
∫∞
Y (4Λj(u)−4Λ0,j(u))2dF (u)

1− F (Y )

}

.P

 K∑
j=1

2
∣∣{4Λ′j(U)−4Λ′0,j(U)}{4Λj(U)−4Λ0,j(U)}

∣∣ ||F − F0||∞

+P

 K∑
j=1

{4Λj(U)−4Λ0,j(U)}2
 ||F − F0||∞

.d1(Λ,Λ0)d2(F, F0) + d1(Λ,Λ0)2d2(F, F0).
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This implies that

Pm(Λ0, F̂n;X)−Pm(Λ, F̂n;X) . −d1(Λ,Λ0)2+d1(Λ,Λ0)d2(F̂n, F0)+d1(Λ,Λ0)2d2(F̂n, F0).

Second, we need to find a φn(η) such that

E sup
{Λ∈Φn:d1(Λ,Λ0)<η}

|(Pn − P)(m(Λ, F̂n;X)−m(Λ0, F̂n;X))| . φn(η)√
n
.

By Lemma 3.4, we have logN[](ε,Mη(F̂n), || · ||P,B) . qn log(η/ε), where

Mη(F̂n) = {m(Λ, F̂n;X)−m(Λ0, F̂n;X) : Λ ∈ Φn, d1(Λ,Λ0) ≤ η}.

For all Λ satisfying that Λ ∈ Φn, d1(Λ,Λ0) ≤ η, note that

|m(Λ, F̂n;X)−m(Λ0, F̂n;X)|

=

K∑
j=1

∆
∣∣(4Λj(Y )−4Λ0,j(Y )

)(
4Λj(Y ) +4Λ0,j(Y )− 24Nj

)∣∣

+

K∑
j=1

(1−∆)

∣∣∣∣∣
∫∞
Y

(
4Λj(u)−4Λ0,j(u)

)(
4Λj(u) +4Λ0,j(u)− 24Nj

)
dF̂n(u)

1− F̂n(Y )

∣∣∣∣∣
.

K∑
j=1

[
(4Nj + 1)

{
∆|4Λj(Y )−4Λ0,j(Y )|+ (1−∆)

∫∞
Y |4Λj(u)−4Λ0,j(u)|dF̂n(u)

1− F̂n(Y )

}]
.

Similar to the proof of (3.7), since Λ̂n is uniformly bounded, it follows that

e|m(Λ̂n,F̂n;X)−m(Λ0,F̂n;X)| . ecN(TK)

and

P
[
e|m(Λ̂n,F̂n;X)−m(Λ0,F̂n;X)||m(Λ̂n, F̂n;X)−m(Λ0, F̂n;X)|2

]
.P

[
ecN(TK)

K∑
j=1

{
∆(4Nj + 1)2(4Λj(Y )−4Λ0,j(Y ))2

+ (1−∆)(4Nj + 1)2

∫∞
Y

(4Λj(u)−4Λ0,j(u))2dF̂n(u)

1− F̂n(Y )

}]
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.P

[
K∑
j=1

{
∆(4Λj(Y )−4Λ0,j(Y ))2 + (1−∆)

∫∞
Y

(4Λj(u)−4Λ0,j(u))2dF̂n(u)

1− F̂n(Y )

}]

.d2
1(Λ̂n,Λ0) + d1(Λ̂n,Λ0)d2(F̂n, F0).

That means that for sufficiently large n with d2(F̂n, F0) . η, we have

||m(Λ̂n, F̂n;X)−m(Λ0, F̂n;X)||2P,B . η2.

Then Lemma 3.4.3 of van der Vaart and Wellner (1996) yields that

E||n1/2(Pn − P)||Mη(F̂n) . J[](η,Mη(F̂n), || · ||P,B)

{
1 +

J[](η,Mη(F̂n), || · ||P,B)

η2n1/2

}
,

where J[](η,Mη(F̂n), || · ||P,B) :=
∫ η

0
{1 + logN[](ε,Mη(F̂n), || · ||P,B)}1/2dε . q

1/2
n η. It

follows that

E sup
{Λ∈Φn:d1(Λ,Λ0)<η}

√
n|(Pn − P)(m(Λ, F̂n;X)−m(Λ0, F̂n;X))| . q1/2

n η + qnn
−1/2.

Set φn(η) = q
1/2
n η+qnn

−1/2. It is clear that φn(η)/η is decreasing about η. Moreover,

r2
nφ(1/rn) = q

1/2
n rn + n−1/2qnr

2
n, where rn = O(na). Note that qn = O(nν) with

0 < ν < 1/2. It follows that

r2
nφ(

1

rn
) = O(na+ ν

2 + n2a+ν− 1
2 ).

Thus, a ≤ (1− ν)/2 ensures r2
nφ(1/rn) . n1/2. This implies that rn = O(n(1−ν)/2).

According to the proof of Theorem 3.1 and the definition of Λ̂n, we have

Pnm(Λ̂n, F̂n;X)− Pnm(Λ0, F̂n;X)

=Pnm(Λ̂n, F̂n;X)− Pnm(Λ∗n, F̂n;X) + Pnm(Λ∗n, F̂n;X)− Pm(Λ∗n, F̂n;X)

+Pm(Λ∗n, F̂n;X)− Pm(Λ0, F̂n;X) + Pm(Λ0, F̂n;X)− Pnm(Λ0, F̂n;X)

≤n−νr+ε(Pn − P)

(
m(Λ∗n, F̂n;X)−m(Λ0, F̂n;X)

n−νr+ε

)
+Op(n

−2νr)
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for any 0 < ε < 1/2− νr. Set the class

M̃n =

{
m(Λ, F̂n;X)−m(Λ0, F̂n;X)

n−νr+ε
: Λ ∈ Φn, ||Λ− Λ0||∞ = O(n−νr)

}
.

Similar to the proof of Theorem 2 in Lu, Zhang, and Huang (2009), under Conditions

(C2) and (C5), we have M̃n is Donsker, and Pm̃2 → 0 as n→∞ for any m̃ ∈ M̃n.

Hence,

n−νr+ε(Pn − P)

(
m(Λ∗n, F̂n;X)−m(Λ0, F̂n;X)

n−νr+ε

)
= op(n

−νr+ε−1/2) = op(n
−2νr).

This implies that Pnm(Λ̂n, F̂n;X)− Pnm(Λ0, F̂n;X) ≤ Op(n
−2νr). Noting that Λ̂n is

needed to satisfy Pnm(Λ0, F̂n;X) ≥ Pnm(Λ̂n, F̂n;X)− Op(r
−2
n ), so we should take ν

such that Op(n
−2νr) ≤ Op(r

−2
n ). Since rn = O(n(1−ν)/2), it follows that ν ≥ 1/(1+2r).

Taking ν = 1/(1 + 2r) and by Lemma 3.3, we have d1(Λ̂n,Λ0) = Op(n
−r/(1+2r) +

n−1/2) = Op(n
−r/(1+2r)).

3.7.5 Proof of Theorem 3.3

Proof. Under (B1), (B3) and (B4), we have

Q(Λ̂n, F̂n)[h]− Q̇(1)

Λ0,F̂n
(Λ̂n − Λ0)[h]− Q̇(2)

Λ0,F0
(F̂n − F0)[h] = op(n

−1/2).

According to (B1) and (B2), we have −Q(Λ̂n, F̂n)[h] = Qn(Λ0, F0)[h] + op(n
−1/2).

Combining the above two equations, it follows that

−Q̇(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] = Q̇

(2)
Λ0,F0

(F̂n − F0)[h] +Qn(Λ0, F0)[h] + op(n
−1/2).

Similarly, replacing the first part of (B3) and (B4) by (B3’) and (B4’), we obtain

−Q̇(1)
Λ0,F0

(Λ̂n − Λ0)[h] = Q̇
(2)
Λ0,F0

(F̂n − F0)[h] +Qn(Λ0, F0)[h] + op(n
−1/2).
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3.7.6 Proof of Theorem 3.4

Proof. (i) To prove this part, we need to verify (B1)–(B4).

For (B1), since E(Ñ(t)|U = u) = Λ0(u − t), we have Q(Λ0, F0)[h] = 0. Note

that Λ̂n is obtained by minimizing the loss function Pnm(Λ, F̂n;X). By (3.8), we

have Qn(Λ̂n, F̂n)[hn] = 0 for all hn ∈ Φn. According to Lemma A1 of Lu, Zhang,

and Huang (2007) and the properties of spline functions, for any h ∈ Hr, there is an

hn ∈ Φn such that ||hn − h||∞ = O(n−rν) = O(n−r/(1+2r)) and ||h′n − h′||∞ = o(1),

where h′ is the derivative of h. Next, to prove Qn(Λ̂n, F̂n)[h] = op(n
−1/2), we need to

show that Qn(Λ̂n, F̂n)[h− hn] = Pnψ(Λ̂n, F̂n;X)[h− hn] = op(n
−1/2). Note that

Qn(Λ̂n, F̂n)[h− hn] =
[
Qn(Λ̂n, F̂n)[h− hn]−Qn(Λ̂n, F0)[h− hn]

]
+
[
Qn(Λ̂n, F0)[h− hn]−Qn(Λ0, F0)[h− hn]

]
+Qn(Λ0, F0)[h− hn] = I1n + I2n + I3n.

For the first term, by Lemma 3.1, we have

P|I1n| = P|Qn(Λ̂n, F̂n)[h− hn]−Qn(Λ̂n, F0)[h− hn]|

≤P

 K∑
j=1

(1−∆)

∣∣∣∣∣
∫∞
Y

(
4Nj −4Λ̂n,j(u)

)
· (4hj(u)−4hn,j(u))dF0(u)

1− F0(Y )

−
∫∞
Y

(
4Nj −4Λ̂n,j(u)

)
· (4hj(u)−4hn,j(u))dF̂n(u)

1− F̂n(Y )

∣∣∣∣∣
]

.d2(F̂n, F0)(||h− hn||∞ + ||h′ − h′n||∞) = op(n
−1/2).

For I2n, by the Cauchy-Schwarz inequality, we have

P|I2n| = P|Qn(Λ̂n, F0)[h− hn]−Qn(Λ0, F0)[h− hn]|

≤P

[
K∑
k=1

∣∣∣∆{4Λ0,j(Y )−4Λ̂n,j(Y )} · {4hj(Y )−4hn,j(Y )}

+ (1−∆)

∫∞
Y {4Λ0,j(u)−4Λ̂n,j(u)} · {4hj(u)−4hn,j(u)}dF0(u)

1− F0(Y )

∣∣∣∣∣
]
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.P

 K∑
k=1

∆|4Λ0,j(Y )−4Λ̂n,j(Y )|+ (1−∆)

∫∞
Y

∣∣∣4Λ0,j(u)−4Λ̂n,j(u)
∣∣∣ dF0(u)

1− F0(Y )




×||h− hn||∞

≤d1(Λ̂n,Λ0)||h− hn||∞ = op(n
−1/2).

For the third term, note that Pψ(Λ0, F0;Xi)[h − hn] = 0. By the independence

between Xi and Xj when i 6= j, we obtain

PI2
3n = P

(
1

n

n∑
i=1

ψ(Λ0, F0;Xi)[h− hn]

)2

=
1

n
P

(
1

n

n∑
i=1

ψ2(Λ0, F0;Xi)[h− hn]

)

.
1

n
P

 K∑
j=1

[
∆|4Nj −4Λ0,j(Y )|+ (1−∆)

∫∞
Y |4Nj −4Λ0,j(u)| dF0(u)

1− F0(Y )

]2

||h− hn||2∞

.
1

n
||h− hn||2∞.

Thus, Qn(Λ̂n, F̂n)[h− hn] = op(n
−1/2).

For (B2), note that

√
n(Qn −Q)(Λ̂n, F̂n)[h]−

√
n(Qn −Q)(Λ0, F0)[h]

=
√
n(Pn − P)(ψ(Λ̂n, F̂n;X)[h]− ψ(Λ0, F0;X)[h]).

For a bounded function h ∈ Hr, define

Ψ̄η(h) = {ψ(Λ, F ;X)[h]− ψ(Λ0, F0;X)[h] : Λ ∈ Φn, F ∈ F

d1(Λ,Λ0) < η, d2(F, F0) < η,Λ is uniformly bounded}.

Similar to the proof of Lemma 3.2, Ψ̄η(h) is Donsker. According to Condition (C6)
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and Lemma 3.1, we obtain

P(ψ(Λ, F ;X)[h]− ψ(Λ0, F0;X)[h])2

=P

 K∑
j=1

{
∆(4Λ0,j(Y )−4Λj(Y ))4hj(Y ) + (1−∆)

∫∞
Y (4Λ0,j(u)−4Λj(u))4hj(u)dF0(u)

1− F0(Y )

+ (1−∆)

(∫∞
Y {4Nj −4Λj(u)}4hj(u)dF (u)

1− F (Y )
−
∫∞
Y {4Nj −4Λj(u)}4hj(u)dF0(u)

1− F0(Y )

)}]2

.P

 K∑
j=1

{
∆(4Λ0,j(Y )−4Λj(Y ))24h2

j (Y ) + (1−∆)

∫∞
Y (4Λ0,j(u)−4Λj(u))24h2

j (u)dF0(u)

1− F0(Y )

}

+P

 K∑
j=1

(1−∆)

∣∣∣∣
∫∞
Y {4Nj −4Λj(u)}4hj(u)dF (u)

1− F (Y )
−
∫∞
Y {4Nj −4Λj(u)}4hj(u)dF0(u)

1− F0(Y )

∣∣∣∣2


.d1(Λ,Λ0)2 + d2(F, F0)2.

It follows that for any function ψ̄ ∈ Ψ̄η(h), supψ̄∈Ψ̄η(h) ρP(ψ̄) ≤ supψ̄∈Ψ̄η(h)P(ψ̄2)
1/2
.

η → 0 as η → 0 for the seminorm ρP(ψ̄) = {P(ψ̄ − Pψ̄)2}1/2. Then by Corollary

2.3.12 of van der Vaart and Wellner (1996), we have

√
n(Pn − P)(ψ(Λ̂n, F̂n;X)[h]− ψ(Λ0, F0;X)[h]) = op(1), (3.9)

and (B2) holds.

For (B3), by the smoothness of Qn(Λ, F )[h] with respect to Λ, we have the Fréchet

derivative

Q̇
(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] =

d

dε

{
Q(Λ0 + ε(Λ̂n − Λ0), F̂n)[h]

}∣∣∣∣
ε=0

=
d

dε

P
 K∑
j=1

[
∆
{
4Nj −4Λ0,j(Y )− ε(4Λ̂n,j(Y )−4Λ0,j(Y ))

}
4hj(Y )

+ (1−∆)

∫∞
Y

{
4Nj −4Λ0,j(u)− ε(4Λ̂n,j(u)−4Λ0,j(u))

}
4hj(u)dF̂n(u)

1− F̂n(Y )

]]}∣∣∣∣∣
ε=0

=− Pς(Λ̂n, F̂n;X)[h].
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Similarly, noting that for any integrable function g,

d

∫∞
Y
g(u− Tj)d(F0 + ε(F̂n − F0))(u)

1− F0(Y )− ε(F̂n − F0)(Y )
/dε

∣∣∣∣∣
ε=0

=
(1− F0(Y ))

∫∞
Y
g(u− Tj)d(F̂n − F0)(u) + (F̂n − F0)(Y )

∫∞
Y
g(u− Tj)dF0(u)

(1− F0(Y ))2

=

∫∞
Y

{
g(u− Tj)−

∫∞
Y

g(s−Tj)
1−F0(Y )

dF0(s)
}
d(F̂n − F0)(u)

1− F0(Y )

holds, then the Fréchet derivative with respect to F is

Q̇
(2)
Λ0,F0

(F̂n − F0)[h] =
d

dε

{
Q(Λ0, F0 + ε(F̂n − F0))[h]

}∣∣∣∣
ε=0

=
d

dε

{
P

[
K∑
j=1

(1−∆)

∫∞
Y

(
4Nj −4Λ0,j(u)

)
· 4hj(u)d(F0 + ε(F̂n − F0))(u)

1− F0(Y )− ε(F̂n − F0)(Y )

]}∣∣∣∣∣
ε=0

=P
[∫ ∞

Y

ϕ̄Λ0,F0(u;X)[h]d(F̂n − F0)(u)

]
,

where

ϕ̄Λ,F (u;X)[h]

=
1−∆

1− F (Y )

K∑
j=1

{(
4Nj −4Λj(u)

)
· 4hj(u)−

∫∞
Y

(
4Nj −4Λj(s)

)
· 4hj(s)dF (s)

1− F (Y )

}
.

Next, we verify (B4). Note that

Q̇
(2)
Λ0,F0

(F̂n − F0)[h] =P

[
(1−∆)

1− F̂n(Y )

1− F0(Y )

K∑
j=1

{∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF̂n(u)

1− F̂n(Y )

−
∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF0(u)

1− F0(Y )

}]
.
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By the conclusion of Lemma 3.1, we have

|Q(Λ0, F̂n)[h]−Q(Λ0, F0)[h]− Q̇(2)
Λ0,F0

(F̂n − F0)[h]|

=

∣∣∣∣∣P
[

(1−∆)
F̂n(Y )− F0(Y )

1− F0(Y )

K∑
j=1

{∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF̂n(u)

1− F̂n(Y )

−
∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF0(u)

1− F0(Y )

}]∣∣∣∣
.||F̂n − F0||∞P

[
(1−∆)

K∑
j=1

∣∣∣∣∣
∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF̂n(u)

1− F̂n(Y )

−
∫∞
Y
{4Nj −4Λ0,j(u)}4hj(u)dF0(u)

1− F0(Y )

∣∣∣∣] . ||F̂n − F0||2∞ = op(n
−1/2).

Moreover, Q(Λ̂n, F̂n)[h]−Q(Λ0, F̂n)[h]− Q̇(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] = 0. It follows that

Q(Λ̂n, F̂n)[h]−Q(Λ0, F0)[h]− Q̇(1)

Λ0,F̂n
(Λ̂n − Λ0)[h]− Q̇(2)

Λ0,F0
(F̂n − F0)[h] = op(n

−1/2).

Thus, (B1)-(B4) are satisfied. By Theorem 3.3, we have

−
√
nQ̇

(1)

Λ0,F̂n
(Λ̂n − Λ0)[h] =

√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nQn(Λ0, F0)[h] + op(1).

(ii) To prove the second part, we need to rewrite Q̇
(2)
Λ0,F0

(F̂n−F0)[h]+Qn(Λ0, F0)[h]

and verify (B5). Let

ϕ̃Λ,F (u, a;X)[h] = (1− F (u))ϕ̄Λ,F (u;X)[h]−
∫ a

u

ϕ̄Λ,F (s;X)[h]dF (s).

Note that F̂n is the KM estimator based on the data {(Ỹi, ∆̃i) : i = 1, · · · , n}. Setting

G0(s) = P1{Ỹ≥s}, then for any constant a, by Propositions 3 and 4 of Akritas (2000),

we have

∫ a

0

ϕ̄Λ0,F0(u;X)[h]d(F̂n − F0)(u) =
1

n

n∑
i=1

∫ a

0

ϕ̃Λ0,F0(u, a;X)[h]

G0(u)
dM̃i(u) + op(n

−1/2),
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where

M̃i(u) = 1{Ỹi≤u,∆̃i=1} −
∫ u

−∞

1{Ỹi≥s}
1− F0(s)

dF0(s).

It follows that∫ ∞
Y

ϕ̄Λ0,F0(u;X)[h]d(F̂n − F0)(u)

=
1

n

n∑
i=1

{∫ ∞
0

ϕ̃Λ0,F0(u,∞;X)[h]

G0(u)
dM̃i(u)−

∫ Y

0

ϕ̃Λ0,F0(u, Y ;X)[h]

G0(u)
dM̃i(u)

}
+ op(n

−1/2)

=
1

n

n∑
i=1

{
1{∆̃i=1}

ϕ̃Λ0,F0(Ỹi,∞;X)[h]

G0(Ỹi)
−
∫ Ỹi

0

ϕ̃Λ0,F0(u,∞;X)[h]

G0(u)(1− F0(u))
dF0(u)

+

∫ Ỹi∧Y

0

ϕ̃Λ0,F0(u, Y ;X)[h]

G0(u)(1− F0(u))
dF0(u)− 1{∆̃i=1,Y≥Ỹi}

ϕ̃Λ0,F0(Ỹi, Y ;X)[h]

G0(Ỹi)

}
+ op(n

−1/2).

Hence, we obtain Q̇
(2)
Λ0,F0

(F̂n−F0)[h] = Pn{Pϕ(Λ0, F0;X; Ỹ , ∆̃)[h]}+op(n−1/2), where

ϕ(Λ, F ;X; Ỹ , ∆̃)[h] = 1{∆̃=1}
ϕ̃Λ,F (Ỹ ,∞;X)[h]

G0(Ỹ )
−
∫ Ỹ

0

ϕ̃Λ,F (u,∞;X)[h]

G0(u)(1− F0(u))
dF (u)

+

∫ Ỹ ∧Y

0

ϕ̃Λ,F (u, Y ;X)[h]

G0(u)(1− F0(u))
dF (u)− 1{∆̃=1,Y≥Ỹ }

ϕ̃Λ,F (Ỹ , Y ;X)[h]

G0(Ỹ )
.

Noting that Qn(Λ0, F0)[h] = Pnψ(Λ0, F0;X)[h], we have

−
√
nQ̇

(1)

Λ0,F̂n
(Λ̂n − Λ0)[h]

d−→ N(0, σ2
0),

where σ2
0 = E[{Pϕ(Λ0, F0;X; Ỹ , ∆̃)[h] + ψ(Λ0, F0;X)[h]}2].

3.7.7 Proof of Theorem 3.5

Proof. Setting U
(l)
n =

√
nPnς(Λ̂l, F̂n;X)[hn] for l = 1, 2, we have Un = U

(1)
n − U (2)

n

and U
(l)
n = U

(l)
1n + U

(l)
2n + U

(l)
3n , where

U
(l)
1n =

√
n(Pn − P)ς(Λ̂l, F̂n;X)[hn],

U
(l)
2n =

√
nPς(Λ̂l, F̂n;X)[hn − h],
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and

U
(l)
3n =

√
nPς(Λ̂l, F̂n;X)[h].

For U
(l)
1n , similar to the proof of (3.9), we have

√
n(Pn − P)(ψ(Λ̂l, F̂n;X)[hn]− ψ(Λ0, F0;X)[hn]) = op(1)

and
√
n(Pn − P)(ψ(Λ0, F̂n;X)[hn]− ψ(Λ0, F0;X)[hn]) = op(1).

Noting that ς(Λ, F ;X)[hn] = ψ(Λ0, F ;X)[hn]−ψ(Λ, F ;X)[hn], it follows that U
(l)
1n =

op(1).

For U
(l)
2n , by Cauchy-Schwarz inequality, we obtain

U
(l)
2n

≤
√
nP

 K∑
j=1

{
∆
(
4Λ̂l,j(Y )−4Λ0,j(Y )

)2
+ (1−∆)

∫∞
Y

(
4Λ̂l,j(u)−4Λ0,j(u)

)2
dF̂n(u)

1− F̂n(Y )

}1/2

×P

 K∑
j=1

{
∆
(
4hn,j(Y )−4hj(Y )

)2
+ (1−∆)

∫∞
Y

(
4hn,j(u)−4hj(u)

)2
dF̂n(u)

1− F̂n(Y )

}1/2

.

By Lemma 3.1, similar to the proof of the first inequality in Theorem 3.2, we have

P

[
K∑
j=1

{
∆
(
4Λ̂l,j(Y )−4Λ0,j(Y )

)2
+ (1−∆)

∫∞
Y

(
4Λ̂l,j(u)−4Λ0,j(u)

)2
dF̂n(u)

1− F̂n(Y )

}]

.d1(Λ̂l,Λ0)2 + d1(Λ̂l,Λ0)d2(F̂n, F0) = Op(n
−2r/(1+2r))

and

P

[
K∑
j=1

{
∆
(
4hn,j(Y )−4hj(Y )

)2
+ (1−∆)

∫∞
Y

(
4hn,j(u)−4hj(u)

)2
dF̂n(u)

1− F̂n(Y )

}]

.d1(hn, h)2 + d1(hn, h)d2(F̂n, F0) = op(n
−1/(1+2r)).
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Hence, U
(l)
2n = op(1).

For U
(l)
3n , by Theorem 3.4, we have

U
(l)
3n =

√
nQ̇

(2)
Λ0,F0

(F̂n − F0)[h] +
√
nPnlψ(Λ0, F0;X)[h] + op(1),

where Pnl is the empirical measure based on group l. Thus,

Un =U
(1)
3n − U

(2)
3n + op(1)

=

√
n

n1

√
n1Pn1ψ(Λ0, F0;X)[h]−

√
n

n2

√
n2Pn2ψ(Λ0, F0;X)[h] + op(1).

Note that Pn1 and Pn2 are independent, and
√
nlPnlψ(Λ0, F0;X)[h]

d−→ N(0, σ̌2
0).

Thus, we have Un
d−→ N(0, (1

p
+ 1

1−p)σ̌2
0).

Finally, we need to prove that σ̂2
n− σ̌2

0 = op(1). Note that σ̌2
0 = Pψ2(Λ0, F0;X)[h]

and σ̂2
n = Pnψ2(Λ̂n, F̂n;X)[hn]. Thus, we have

σ̂2
n − σ̌2

0 =Pn{ψ2(Λ̂n, F̂n;X)[hn]− ψ2(Λ0, F0;X)[hn]}

+Pn{ψ2(Λ0, F0;X)[hn]− ψ2(Λ0, F0;X)[h]}+ (Pn − P)ψ2(Λ0, F0;X)[h].

By the consistency of (Λ̂n, F̂n) and the law of large numbers, we have

Pn{ψ2(Λ̂n, F̂n;X)[hn]− ψ2(Λ0, F0;X)[hn]} = op(1)

and

(Pn − P)ψ2(Λ0, F0;X)[h] = op(1).

Then we only need to consider Pn{ψ2(Λ0, F0;X)[hn] − ψ2(Λ0, F0;X)[h]}. Since Λ0,

F0, h and hn are bounded functions, we have

|ψ(Λ0, F0;X)[hn] + ψ(Λ0, F0;X)[h]| = |ψ(Λ0, F0;X)[hn + h]|

.

∣∣∣∣∣
K∑
j=1

[
∆{4Nj −4Λ0,j(Y )}+ (1−∆)

∫∞
Y
{(4Nj −4Λ0,j(u))}dF0(u)

1− F0(Y )

]∣∣∣∣∣
.(N(TK) + Λ0(τ))
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with probability 1. Thus, by Cauchy-Schwarz inequality, we have

P
∣∣ψ2(Λ0, F0;X)[hn]− ψ2(Λ0, F0;X)[h]

∣∣
.P

[∣∣ψ(Λ0, F0;X)[hn]− ψ(Λ0, F0;X)[h]
∣∣(N(TK) + Λ0(τ))

]
.P

[
(N(TK) + Λ0(τ))

K∑
j=1

{
∆|4Nj −4Λ0,j(Y )||4hn,j(Y )−4hj(Y )|

+ (1−∆)

∫∞
Y
|4Nj −4Λ0,j(u)||4hn,j(u)−4hj(u)|dF0(u)

1− F0(Y )

}]

.P

[
(N(TK) + Λ0(τ))2

K∑
j=1

{∆|4hn,j(Y )−4hj(Y )|

+ (1−∆)

∫∞
Y
|4hn,j(u)−4hj(u)|dF0(u)

1− F0(Y )

}]

≤P

[
K∑
j=1

{
∆
(
4hn,j(Y )−4hj(Y )

)2
+ (1−∆)

∫∞
Y

(
4hn,j(u)−4hj(u)

)2
dF0(u)

1− F0(Y )

}] 1
2

×P
[
(N(TK) + Λ0(τ))4

] 1
2 . d1(hn, h) = o(1).

Therefore, Pn{ψ2(Λ0, F0;X)[hn]−ψ2(Λ0, F0;X)[h]} = op(1) and σ̂2
n−σ2

0 = op(1).

3.7.8 Proof of Theorem 3.6

Proof. (i) First we write Ũn =
∑2

l=1(nl/
√
n)Pnl(ς(Λ̂1, F̂l;X

(l))[hn]−ς(Λ̂2, F̂l;X
(l))[hn])

for l = 1, 2. Note that

Pnl(ς(Λ, F̂l;X
(l))[hn]) =(Pnl − Pl)ς(Λ, F̂l;X(l))[hn] + Plς(Λ, F̂l;X(l))[hn − h]

+Pl(ς(Λ, F̂l;X(l))[h]− ς(Λ, Fl;X(l))[h]) + Plς(Λ, Fl;X(l))[h].

We next show that

Pnl(ς(Λ̂1, F̂l;X
(l))[hn]) = Plς(Λ̂1, Fl;X

(l))[h] + op(n
−1/2) (3.10)

94



and

Pnl(ς(Λ̂2, F̂l;X
(l))[hn]) = Plς(Λ̂2, Fl;X

(l))[h] + op(n
−1/2). (3.11)

According to the proof of Theorem 3.5, we have

√
nl(Pnl − Pl)ς(Λ̂l, F̂l;X

(l))[hn] = op(1) and
√
nlPlς(Λ̂l, F̂l;X

(l))[hn − h] = op(1).

Moreover, according to Lemma 3.1, this implies that

∣∣∣Pl (ς(Λ̂l, F̂l;X
(l))[h]− ς(Λ̂l, Fl;X

(l))[h]
)∣∣∣

.

Pl
K(l)∑
j=1

∣∣∣4Λ̂l,j(U
(l))−4Λ0,j(U

(l))
∣∣∣
+ Pl

K(l)∑
j=1

∣∣∣4Λ̂′l,j(U
(l))−4Λ′0,j(U

(l))
∣∣∣


×||F̂l − Fl||∞

.(||Λ̂l − Λ0||L2(µl) + ||Λ̂′l − Λ′0||L2(µl))||F̂l − Fl||∞.

(3.12)

Applying Lemma 3.5 and Corollary 2.1 of He and Shi (1994), we have ||Λ̂′l−Λ′0||L2(µl) =

Op(n
−(r−1)/(1+2r)) = op(1). This gives Pl(ς(Λ̂l, F̂l;X

(l))[h] − ς(Λ̂l, Fl;X
(l))[h]) =

op(n
−1/2). Thus, (3.10) and (3.11) hold.

Moreover, we have

Pl

K(l)∑
j=1

4hj(U (l))

 =

∫
E

K(l)∑
j=1

4hj(u)

∣∣∣∣∣∣U (l) = u

 dFl(u)

=

∫
E

K(r)∑
j=1

4hj(u)

∣∣∣∣∣∣U (r) = u

 fl(u)

fr(u)
dFr(u) = Pr

K(r)∑
j=1

4hj(U (r))
fl(U

(r))

fr(U (r))

 .
(3.13)

Hence, (3.10), (3.11) and (3.13) yield

Ũn =
2∑
l=1

nl√
n
Pl
(
ς(Λ̂1, Fl;X

(l))[h]− ς(Λ̂2, Fl;X
(l))[h]

)
+ op(1)
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=
√
n

2∑
l=1

Plς(Λ̂1, Fl;X
(l))[plh]−

√
n

2∑
l=1

Plς(Λ̂2, Fl;X
(l))[plh] + op(1)

=

√
n1√
p1

P1ς(Λ̂1, F1;X(1))[w1]−
√
n2√
p2

P2ς(Λ̂2, F2;X(2))[w2] + op(1).

Set Gl(s) = Pl1{Ỹ (l)≥s} and

ϕl(Λ, F ;X; Ỹ , ∆̃)[w] = 1{∆̃=1}
ϕ̃Λ,F (Ỹ ,∞;X)[w]

Gl(Ỹ )
−
∫ Ỹ

0

ϕ̃Λ,F (u,∞;X)[w]

Gl(u)(1− F (u))
dF (u)

+

∫ Ỹ ∧Y

0

ϕ̃Λ,F (u, Y ;X)[w]

Gl(u)(1− F (u))
dF (u)− 1{∆̃=1,Y >Ỹ }

ϕ̃Λ,F (Ỹ , Y ;X)[w]

Gl(Ỹ )
.

By Theorem 3.4 and (3.12), we can get

√
nlPlς(Λ̂l, Fl;X

(l))[wl] =
√
nlPlς(Λ̂l, F̂l;X

(l))[wl] + op(1) N(0, σ2
l ).

Since Λ̂1 and Λ̂2 are independent, it then follows that Ũn  N(0, (σ2
1/p1 + σ2

2/p2)).

(ii) Set

ϕ(l)
n (Λ, F ;X; Ỹ , ∆̃)[w] = 1{∆̃=1}

ϕ̃Λ,F (Ỹ ,∞;X)[w]

G
(l)
n (Ỹ )

−
∫ Ỹ

0

ϕ̃Λ,F (u,∞;X)[w]

G
(l)
n (u)(1− F (u))

dF (u)

+

∫ Ỹ ∧Y

0

ϕ̃Λ,F (u, Y ;X)[w]

G
(l)
n (u)(1− F (u))

dF (u)− 1{∆̃=1,Y >Ỹ }
ϕ̃Λ,F (Ỹ , Y ;X)[w]

G
(l)
n (Ỹ )

,

where G
(l)
n (s) = Pnl1{Ỹ (l)≥s}. Then

σ̂2
l − σ2

l =Pnl

[{
Pnϕ(l)

n (Λ̂l, F̂l;X
(l); Ỹ (l), ∆̃(l))[w(l)

n ] + ψ(Λ̂l, F̂l;X
(l))[w(l)

n ]
}2

−
{
Pϕl(Λ̂l, F̂l;X

(l); Ỹ (l), ∆̃(l))[w(l)
n ] + ψ(Λ̂l, F̂l;X

(l))[w(l)
n ]
}2
]

+Pnl
[
Pϕl(Λ̂l, F̂l;X

(l); Ỹ (l), ∆̃(l))[w(l)
n ] + ψ(Λ̂l, F̂l;X

(l))[w(l)
n ]
]2

−P
[
Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[wl] + ψ(Λ0, Fl;X
(l))[wl]

]2

.
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Note that

Pnl

[{
Pnϕ(l)

n (Λ̂l, F̂l;X
(l); Ỹ (l), ∆̃(l))[w(l)

n ] + ψ(Λ̂l, F̂l;X
(l))[w(l)

n ]
}2

−
{
Pϕl(Λ̂l, F̂l;X

(l); Ỹ (l), ∆̃(l))[w(l)
n ] + ψ(Λ̂l, F̂l;X

(l))[w(l)
n ]
}2
]

=
1

n

n∑
i=1

[{
Pnϕ(l)

n (Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]− Pϕl(Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]
}

×
{
Pnϕ(l)

n (Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ] + Pϕl(Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]

+ 2ψ(Λ̂l, F̂l;X
(l)
i )[w(l)

n ]
}]

.

For each i, we obtain

Pnϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ
(l)
i , ∆̃

(l)
i )[w(l)

n ]− Pϕl(Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]

=(Pn − P)ϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ
(l)
i , ∆̃

(l)
i )[w(l)

n ]

+P
(
ϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ
(l)
i , ∆̃

(l)
i )[w(l)

n ]− ϕl(Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]
)
.

Since sups∈[0,τ ] |G
(l)
n (s)−Gl(s)| = Op(n

−1/2), we get

P
(
ϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ
(l)
i , ∆̃

(l)
i )[w(l)

n ]− ϕl(Λ̂l, F̂l;X
(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ]
)

= op(1).

Similar to the proof of Lemma 3.2, under Conditions (C2), (C4), (C6) and (C10),

{ϕ(l)
n (Λ, F ;X(l); Ỹ

(l)
i , ∆̃

(l)
i )[w(l)

n ] : Λ ∈ Φ, F ∈ F , d2(F, Fl) ≤ δ, Λ is uniformly bounded}

is Donsker and it is Glivenko-Cantelli. It follows that

(Pn − P)ϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ
(l)
i , ∆̃

(l)
i )[w(l)

n ] = op(1)

and the first term of σ̂2
l − σ2

l is op(1). Denote

υl(Λ, F ; Ỹ , ∆̃, X)[w] = Pϕl(Λ, F ;X(l); Ỹ , ∆̃)[w] + ψ(Λ, F ;X)[w].
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To verify that the second term of σ̂2
l − σ2

l is op(1), we only need to prove

E[|υ2
l (Λ0, Fl; Ỹ

(l), ∆̃(l), X(l))[w(l)
n ]− υ2

l (Λ0, Fl; Ỹ
(l), ∆̃(l), X(l))[wl]|] = o(1).

By the definition of w
(l)
n (u, t), we obtain

∣∣{w(l)
n (u− t1)− w(l)

n (u− t2)
}
− {wl(u− t1)− wl(u− t2)}

∣∣
=

∣∣∣∣∣{(hn(u− t1)− h(u− t1))− (hn(u− t2)− h(u− t2))}

(
nl
n

+
nr
n

f̂r(u)

f̂l(u)

)

+ {h(u− t1)− h(u− t2)}

(
nl
n

+
nr
n

f̂r(u)

f̂l(u)
− pr

fr(u)

fl(u)
− pl

)∣∣∣∣∣
≤|(hn(u− t1)− h(u− t1))− (hn(u− t2)− h(u− t2))|

∣∣∣∣∣nln +
nr
n

f̂r(u)

f̂l(u)

∣∣∣∣∣
+|h(u− t1)− h(u− t2)|

∣∣∣∣∣nln +
nr
n

f̂r(u)

f̂l(u)
− pr

fr(u)

fl(u)
− pl

∣∣∣∣∣
≤c

{
|hn(u− t1)− h(u− t1)|+ |hn(u− t2)− h(u− t2)|+

∣∣∣∣∣ f̂r(u)

f̂l(u)
− fr(u)

fl(u)

∣∣∣∣∣
}

(3.14)

with probability 1 for some constant c, where l, r = 1, 2 and l 6= r. According to

Theorem 2.2 of Földes, Rejtő, and Winter (1981), we have

sup
u

∣∣∣∣∣ f̂r(u)

f̂l(u)
− fr(u)

fl(u)

∣∣∣∣∣ a.s.−−→ 0. (3.15)

Moreover, by the definition of ϕl(Λ, F ;X;Y,∆)[w], ϕ̄Λ,F (u;X)[w] and ϕ̃Λ,F (u, a;X)[w],

after some calculations, we have

|υl(Λ0, Fl; Ỹ
(l), ∆̃(l), X(l))[w(l)

n + wl]| . N (l)(T
(l)

K(l)) + Λ0(0)
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and

|υl(Λ0, Fl; Ỹ
(l), ∆̃(l), X(l))[w(l)

n − wl]|

.
(
N (l)(T

(l)

K(l)) + Λ0(τ)
) K(l)∑
j=1

[
∆(l)

∣∣∣4w(l)
n,j(Y

(l))−4wl,j(Y (l))
∣∣∣

+ (1−∆(l))

∫∞
Y (l)

∣∣∣4w(l)
n,j(u)−4wl,j(u)

∣∣∣ dFl(u)

1− Fl(Y (l))


+|Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[w(l)
n − wl]|

(3.16)

with probability 1. Combining (3.14)–(3.16) and using the Cauchy-Schwarz inequal-

ity, we obtain

E|υ2
l (Λ0, Fl; Ỹ

(l), ∆̃(l);X(l))[w(l)
n ]− υ2

l (Λ0, Fl; Ỹ
(l), ∆̃(l);X(l))[wl]|

.E

(N (l)(T
(l)
K ) + Λ0(τ)

)2
K(l)∑
j=1

{
∆(l)

∣∣∣4w(l)
n,j(Y

(l))−4wl,j(Y (l))
∣∣∣

+ (1−∆(l))

∫∞
Y (l)

∣∣∣4w(l)
n,j(u)−4wl,j(u)

∣∣∣ dFl(u)

1− Fl(Y (l))




+E
[(
N (l)(τ) + Λ0(τ)

)
|Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[w(l)
n − wl]|

]
.E

[
|Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[w(l)
n − wl]|

]
+ ||h(l)

n − hl||L2(µl)

.||h(l)
n − hl||L2(µl) → 0.
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Chapter 4

Semiparametric Statistical

Inference for Panel Count Data
with Terminal Event

4.1 Introduction

In this chapter, we extend the nonparametric model in Chapter 3 to a semi-

parametric model. We still use the monotone I-spline functions to approximate the

nonparametric function and propose a least squares-based two-stage estimation by

treating the distribution of the terminal event as a nuisance functional parameter.

We assume that the distribution of the right-censored terminal event satisfies the

Cox model (Cox, 1972) with the baseline hazard function estimated by the Breslow

estimator (Breslow, 1972) and the coefficient of covariates estimated by the partial

likelihood estimator (Cox, 1972). For the asymptotic properties, we prove that the

estimator of the mean function is consistent and the convergence rate is between

n1/3 and n1/2, depending on the smoothness of the mean function. We also establish

the asymptotic normality for the proposed estimator and provide the asymptotic

variance. After demonstrating the finite sample performance of our method by the

simulation studies, we use the method to analyze the rate of severe illness for elder

people in the dataset of CLHLS.
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The rest of this chapter is organized as follows. In Section 4.2, we introduce

the semiparametric model and the loss function for our estimation. Under some

basic conditions, Section 4.3 verifies the asymptotic consistency, the convergence

rate, and the asymptotic normality of the proposed estimation. We demonstrate the

performance of our method by the simulation studies in Section 4.4. Section 4.5 is

the analysis of CLHLS data. Finally, we show the proofs of the theoretical results in

the Appendix.

4.2 Model Setting and Estimation Procedure

We define the notation U , C, Y , ∆, K, T and N the same way as in Chapter

3. Let the time-independent covariate vector be Z. Then we consider a study

containing n subjects with the sample of subject i being Xi = (Yi,∆i, Ki, Ti, Ni,Zi)

for i = 1, · · · , n, where Ti = (Ti1, Ti2, · · · , TiKi) and Ni = {Ni(Ti1), · · · , Ni(TiKi)}.

For the occurrence number of recurrent events from time t to the terminal event,

Ñ(t;U), our model supposes that given the covariate and terminal event time, the

conditional expectation of Ñ(t;U) is

E(Ñ(t;U)|U = u,Z = z) = exp(βTz)Λ(u− t), 0 ≤ t ≤ u ≤ τ, (4.1)

where Λ is a non-negative and non-decreasing baseline mean function with Λ(0) = 0.

Suppose that the conditional distribution function of U given Z satisfies the Cox

model

F (u|Z = z) = P (U ≤ u|Z = z) = 1− exp{−H(u) exp(γTz)}, (4.2)

where H(u) is the baseline cumulative hazard function of U . Then the unknown pa-

rameters and functions to be estimated under models (4.1) and (4.2) are (β,Λ, Fγ,H).

We assume the following basic conditions before the analysis: (i) Given Z, C and

U are conditional independent; (ii) Given Z, C is noninformative to Λ; (iii) Given
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(Y,∆,Z), (K,T ) is noninformative to Λ. Taking 4Nj = N(Tj) − N(Tj−1) and

4Λj(u) = Λ(u−Tj−1)−Λ(u−Tj) for j = 1, · · · , K with T0 = 0, according to model

(4.1), we have

E

[
K∑
j=1

{
4Nj − exp(βTZ)4Λj(U)

}2|Y,∆, K, T ,N,Z

]

=
K∑
j=1

[
∆
{
4Nj − exp(βTZ)4Λj(Y )

}2

+
1−∆

1− F (Y |Z)

∫ ∞
Y

{
4Nj − exp(βTZ)4Λj(u)

}2
dF (u|Z)

]
.

Correspondingly, the least squares-based loss function should be

`n(β,Λ, F ;X)

=
1

n

n∑
i=1

Ki∑
j=1

∆i

{
4Ni,j − exp(βTZi)4Λi,j(Yi)

}2

+
1

n

n∑
i=1

Ki∑
j=1

1−∆i

1− F (Yi|Zi)

∫ ∞
Yi

{
4Ni,j − exp(βTZi)4Λi,j(u)

}2
dF (u|Zi),

(4.3)

where X = (Y,∆, K, T ,N,Z), 4Ni,j = Ni(Ti,j)−Ni(Ti,j−1), and 4Λi,j(Yi) = Λ(Yi−

Ti,j−1)−Λ(Yi−Ti,j). Replacing F (u|Zi) by 1−exp{−H(u) exp(γTZi)}, a reasonable

estimator is the minimizer of the loss function (4.3) with respect to (β,Λ, Fγ,H).

Since it is difficult to minimize (4.3) directly, we consider the two-stage estimation

by treating F as the nuisance functional parameter. In stage 1, we calculate the

partial likelihood estimator γ̂n and the Breslow estimator Ĥn (Breslow, 1972). Then

we have F̂n(u|z) = 1 − exp{−Ĥn(u) exp(γ̂Tn z)}. In stage 2, (β̂n, Λ̂n) is obtained by
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minimizing

`n(β,Λ, F̂n;X) =
1

n

n∑
i=1

Ki∑
j=1

∆i

{
4Ni,j − exp(βTZi)4Λi,j(Yi)

}2

+
1

n

n∑
i=1

Ki∑
j=1

1−∆i

1− F̂n(Yi|Zi)

∫ ∞
Yi

{
4Ni,j − exp(βTZi)4Λi,j(u)

}2
dF̂n(u|Zi)

(4.4)

with respect to (β,Λ). To distinguish with the sample (Y,∆,Z) used in stage 2, we

denote the sample used in stage 1 by (Ỹ , ∆̃, Z̃).

We still consider the monotone I-spline functions to approximate Λ on [0, τ ]. We

divide [0, τ ] into mn + 1 subintervals

0 = t1 = · · · = td < td+1 < · · · < tmn+d < tmn+d+1 = · · · = tmn+2d = τ

with knots {ti : i = 1, · · · ,mn+2d}, where d represents the order of I-spline functions.

Let the I-spline basis functions be {Il(s), l = 1, · · · , qn}, where qn = mn + d. Then

we define the functional space of the sieve estimator for Λ to be

Φn =

{
qn∑
l=1

αlIl(s) : αl ≥ 0, l = 1, · · · , qn

}
.

Define I(s) = (I1(s), · · · , Iqn(s))T and α = (α1, · · · , αqn)T , and replace Λ(s) by

I(s)Tα in (4.4). Then we can minimize the loss function (4.4) by the constrained

BFGS algorithm (Lange, 2001). Setting the minimizer of (4.4) to be (β̂n, α̂n), the

spline estimator of Λ(s) is Λ̂n(s) = I(s)T α̂n.
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4.3 Asymptotic Properties of the Estimator

In this section, we establish the asymptotic properties of (β̂n, Λ̂n). First, we

define the following parametric spaces

Hr =
{
g : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all 0 ≤ s, t ≤ τ

}
,

Φ ={Λ ∈ Hr : Λ is nondecreasing continuous function on [0, τ ] with Λ(0) = 0},

F ={F : F is a distribution function on [0,∞)},

where g(r) is the rth derivative of g for r ≥ 1. For a bounded and convex set R ⊂ Rd,

denote the interior of R by R◦. Set FZ to be the distribution function of Z with a

bounded support Z ⊂ Rd, and (β0,Λ0, F0(·|z)) ∈ R◦ × Φ × F to be the true value

of (β,Λ, F ) for all z ∈ Z. Rewrite `n(β,Λ, F̂n;X) = Pnm(β,Λ, F̂n;X) with

m(β,Λ, F ;X) =
K∑
j=1

[
∆
{
4Nj − exp(βTZ)4Λj(Y )

}2

+
1−∆

1− F (Y |Z)

∫ ∞
Y

{
4Nj − exp(βTZ)4Λj(u)

}2
dF (u|Z)

]
.

Let B and Bd be the collection of Borel sets in R and Rd, respectively. Then for

B1, B2 ∈ B[0,τ ] =: {B ∩ [0, τ ] : B ∈ B} and C ∈ Bd, we define

µ1(B1 ×B2 × C) =

∫
C

∫ ∞∑
k=1

P (K = k|U = u,Z = z)

×
k∑
j=1

P
(
(u− Tj) ∈ B1, (u− Tj−1) ∈ B2|K = k, U = u,Z = z

)
dF0(u|z)dFZ(z),

µ2(B1 ×B2) = µ1(B1 ×B2 × Rd),

µ3(B1 ×B2) =

∫
Rd

∫ ∞∑
k=1

P (K = k|U = u,Z = z)

×P
(
(u− TK) ∈ B1, u ∈ B2|K = k, U = u,Z = z

)
dF0(u|z)dFZ(z).
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Setting 4Λ(s1, s2) = Λ(s2) − Λ(s1), for any functions Λ1,Λ2 ∈ Φ, we define the

metric

d2
1(Λ1,Λ2) = ||4Λ1(s1, s2)−4Λ2(s1, s2)||2L2(µ2) = E

[
K∑
j=1

(
4Λ1,j(U)−4Λ2,j(U)

)2

]

=E

[
K∑
j=1

{
∆(4Λ1,j(Y )−4Λ2,j(Y ))2 + (1−∆)

∫∞
Y

(4Λ1,j(u)−4Λ2,j(u))2dF0(u|Z)

1− F0(Y |Z)

}]
.

For any functions F1, F2 such that F1(·|z) ∈ F and F2(·|z) ∈ F , we define the metric

d2(F1, F2) = sup
u,z
|F1(u|z)− F2(u|z)|.

For any (β1,Λ1) and (β2,Λ2) in the space R× Φ, we define the metric

d3((β1,Λ1), (β2,Λ2)) = {||β1 − β2||22 + d2
1(Λ1,Λ2)}1/2.

We need the following conditions to establish the asymptotic properties.

(C1) 0 < Λ0(τ) <∞.

(C2) 0 < F0(τ |Z = 0) < 1. F0 is absolutely continuous with respect to Lebesgue

measure. Furthermore, the density function f0(s|Z = 0) has a uniform positive lower

bound for all s ∈ [M1, τ ], where M1 is a constant representing the minimum value of

the support of F0.

(C3) E
[∑K

j=1{4Nj − exp(βT0 Z)4Λ0,j(U)}2
]
<∞.

(C4) The probability of censoring % = P (Y < U) satisfies that 0 < % < 1.

(C5) The measure µ2 ×Z is absolutely continuous with respect to µ1.

(C6) P (aTZ 6= c) > 0, ∀a 6= 0 ∈ Rd and ∀c ∈ R.

(C7) There is a constant M2 > 0 such that P (K ≤M2) = 1.

(C8) The number of subinterval in [0, τ ] satisfies mn = O(nν) for 0 < ν < 1/2.

Furthermore,

max
d+1≤i≤mn+d+1

|ti − ti−1| = O(n−ν),
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and there is a constant M3 > 0 such that

maxd+1≤i≤mn+d+1 |ti − ti−1|
mind+1≤i≤mn+d+1 |ti − ti−1|

≤M3

uniformly for n.

(C9) P (Tj − Tj−1 ≥M4 for all j = 1, · · · , K) = 1 with some constant M4 > 0.

Remark 1. Condition (C1) is common on the baseline mean function. Condition

(C2) holds when the end time of study is smaller than the maximum value of the sup-

port of F0. Condition (C3) assumes a finite second order for the counting processes,

which is necessary for the least squares-based estimation. Condition (C4) is common

in right-censored data analysis, meaning that the censoring rate is between 0 to 1.

According to Wellner and Zhang (2007), Conditions (C5) and (C6) are necessary

for the identifiability of the semiparametric model. Condition (C7) holds in many

applications for panel count data. Condition (C8) is a regular assumption for the

spline approximation by Lu, Zhang, and Huang (2007, 2009). By Wellner and Zhang

(2007), Condition (C9) meaning that the adjacent observation times are separable is

regular in applications of panel count data.

Theorem 4.1 (Consistency for Two-Stage Estimator). Suppose that Conditions

(C1)–(C9) hold. Then for 0 ≤ b1 ≤ b2 ≤ τ satisfying µ3([0, b1] × [b2, τ ]) > 0, we

have

||4Λ̂n(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]} −4Λ0(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]}||2L2(µ2)

+||β1 − β2||22 = op(1).

In particular, when µ3({0} × {τ}) > 0, we have d3((β̂n, Λ̂n), (β0,Λ0)) = op(1).

Besides Conditions (C1)–(C9), we need the following additional conditions to

establish the convergence rate and the asymptotic normality.
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(C10) infz∈Z P (U ≥ τ |Z = z) = ω1 > 0 and P (C ≥ τ) = ω2 > 0 for some

constants ω1 and ω2.

(C11) µ2 is absolutely continuous with respect to Lebesgue measure with a deriva-

tive µ̇2, and µ̇2 has a uniform positive lower bound.

(C12) There is a positive constant M5 such that 1/M5 < Λ′0(s) < M5 for all

s ∈ [τ ′, τ ], where 0 < τ ′ ≤ τ such that Λ0(τ ′) > 0.

(C13) E(ecN(t)) is uniformly bounded for t ∈ [0, τ ] and some constant c.

(C14) For all a ∈ Rd, there is a constant η ∈ (0, 1) such that

aTV ar(Z|S1, S2)a ≥ ηaTE(ZZT |S1, S2)a a.e.

for (S1, S2,Z) having the distribution µ1.

Remark 2. By Kong et al. (2018), Condition (C10) is necessary for the uniform

weak convergence rate of F̂n on a finite interval. According to Wellner and Zhang

(2007) and Lu, Zhang, and Huang (2009), Conditions (C11)–(C14) are common in

the analysis of panel count data. Condition (C11) supposes that the total observation

time of counting processes has a positive density. Condition (C12) assumes that the

derivative of the mean function has a uniform positive upper and lower bound, and

it may be stronger than necessary. Condition (C13) holds when N(t) is uniformly

bounded or from a Poisson-type process. By Remark 3.4 of Wellner and Zhang

(2007), Condition (C14) is satisfied in many applications.

Theorem 4.2 (Rate of Convergence). Suppose that Conditions (C1)–(C14) hold,

and µ3({0} × {τ}) > 0. Taking ν = 1/(1 + 2r), we have d3((β̂n, Λ̂n), (β0,Λ0)) =

Op(n
−r/(1+2r)).

Remark 3. Although the overall convergence rate of (β̂n, Λ̂n) is slower than n1/2, the

convergence rate of β̂n is still n1/2, and we can also find a function of Λ̂n having the

convergence rate n1/2. The following theorem establishes the asymptotic normality

of β̂n and a function of Λ̂n.
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Theorem 4.3 (Asymptotic Normality). Suppose that Conditions (C1)–(C14) hold,

and Λ0 ∈ Hr with r ≥ 2.

(i) For all h1 ∈ R and h2 ∈ Hr, the estimators β̂n and Λ̂n satisfy that

√
nR1(h1, h2)(β̂n − β0) +

√
nR2(h1, h2)(Λ̂n − Λ0) N(0, σ0[h1, h2]2),

where R1(h1, h2)(β̂n − β0), R2(h1, h2)(Λ̂n − Λ0) and σ0[h1, h2]2 are defined in the

Appendix.

(ii) Furthermore, we have

√
n(β̂n − β0) N(0, (A∗)−1B∗((A∗)−1)T ),

√
nP

[
K∑
j=1

{(
4h2,j(U) +4Λ0,j(U)R∗∗(h2)TZ

)
exp(2βT0 Z)(4Λ̂n,j(U)−4Λ0,j(U))

}]

 N(0, σ̃0[h2]2)

for all h2 ∈ Hr, where 4h2,j(U) = h2(U − Tj−1)− h2(U − Tj), and A∗, B∗, R∗∗(h2),

and σ̃0[h2] are defined in the Appendix.

4.4 Simulation Studies

In this section, we conducted the simulation studies to demonstrate the perfor-

mance of our method. We generated the covariate vector Zi = (Zi1, Zi2, Zi3)T by

the following scheme: Zi1 ∼ Unif(0, 1), Zi2 ∼ N(0, 1) and Zi3 ∼ Bernoulli(0.5).

Given the covariate vector Zi, the terminal event Ui satisfied model (4.2) with

γ0 = (γ1, γ2, γ3)T = (−1, 1, 1)T and H0(u) = u − 5 for u ∈ [5,∞). The censor-

ing time Ci was from 5 + κ exp(1), where κ was selected to yield 20% and 40%

censoring rate, respectively. Then we had Yi = Ui ∧ Ci and ∆i = 1{Ui≤Ci}. Took the

end time of study to be τ = 10, and the total number of observation Ki to be from

{1, 2, 3, 4, 5, 6} with equal probability. Given Yi and Ki, the observation time points
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Ti = (Ti1, · · · , TiKi) were Ki ordered random variables from Unif(0, Yi). Under model

(4.1), we considered the following two different cases of Λ0:

Case 1 : Λ0(s) = s, and Case 2 : Λ0(s) =
10s

s+ 1
,

to generate the counting process Ni = {Ni(Ti1), · · · , Ni(TiKi)} from the Poisson

process with β0 = (β1, β2, β3)T = (−1, 0.5, 0.5)T . That is in Case 1, Ni(Ti1) was from

the Poisson distribution with mean Ti1e
βT0 Zi , and Ni(Tij) − Ni(Ti(j−1)) was from

the Poisson distribution with mean (Tij − Ti(j−1))e
βT0 Zi for j = 2, · · · , Ki; in Case 2,

Ni(Ti1) was from the Poisson distribution with mean 10{Ui/(Ui+1)−(Ui−Ti1)/(Ui−

Ti1 +1)}eβT0 Zi , and Ni(Tij)−Ni(Ti(j−1)) was from the Poisson distribution with mean

10{(Ui−Ti(j−1))/(Ui−Ti(j−1) + 1)− (Ui−Tij)/(Ui−Tij + 1)}eβT0 Zi for j = 2, · · · , Ki.

For the knots of I-spline, we took td+1, td+2, td+3 to be the 25%, 50% and 75%

quantiles of {Yi − Tij : j = 1, · · · , Ki; i = 1, · · · , n} with d = mn = 3. Since it

was difficult to obtain σ2
0 directly, the standard error of our estimator was estimated

based on 100 bootstrap samples. The initial value of the BFGS iteration was taken

as α = (1, 1, 1, 1, 1, 1)T and β = 0. The sample size was n = 50 and n = 100,

respectively. The simulation results were summarized based on 1000 replications.

The dash lines in Figures 4.1–4.2 display the mean of the estimation, and the

solid lines in this figure are the true value Λ0 for comparison. In these Figures, the

estimation functions are close to the true value Λ0, meaning that our estimator Λ̂n

is consistent. The simulation results for the regression parameter β are summarized

in Table 4.1 and Table 4.2. Both of the two tables demonstrate that our estimations

are close to the true value of β, and the biases tend to decrease as the sample size

increases and the censoring rate decreases. The tables also show that the sample

standard errors (SSE) are close to the corresponding estimation of standard errors

(ESE). Both of them are decreasing when the sample size increases and the censoring

rate decreases. The 95% empirical coverage probabilities (CP) are close to 0.95.
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Figure 4.1: Simulation results for the baseline mean function in Case 1. The solid
lines are the true functions, and the dash lines are the estimates.
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Figure 4.2: Simulation results for the baseline mean function in Case 2. The solid
lines are the true functions, and the dash lines are the estimates.
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Table 4.1: Simulation results of the estimates of parameter β in Case 1.

Censoring rate = 20% Censoring rate = 40%
β1 β2 β3 β1 β2 β3

n=50
Estimates -1.029 0.511 0.519 -1.032 0.514 0.524

SSE 0.352 0.107 0.194 0.375 0.116 0.204
ESE 0.353 0.112 0.200 0.380 0.125 0.217
CP 0.974 0.948 0.938 0.972 0.964 0.950

n=100
Estimates -1.016 0.508 0.509 -1.016 0.509 0.510

SSE 0.242 0.078 0.142 0.257 0.082 0.148
ESE 0.230 0.071 0.134 0.242 0.076 0.141
CP 0.961 0.909 0.935 0.964 0.922 0.931

Table 4.2: Simulation results of the estimates of parameter β in Case 2.

Censoring rate = 20% Censoring rate = 40%
β1 β2 β3 β1 β2 β3

n=50
Estimates -1.054 0.525 0.536 -1.078 0.541 0.564

SSE 0.456 0.135 0.249 0.491 0.150 0.275
ESE 0.459 0.147 0.257 0.524 0.171 0.291
CP 0.979 0.961 0.952 0.976 0.966 0.944

n=100
Estimates -1.028 0.511 0.517 -1.040 0.525 0.534

SSE 0.287 0.090 0.172 0.307 0.099 0.189
ESE 0.275 0.086 0.161 0.299 0.095 0.176
CP 0.960 0.945 0.928 0.959 0.933 0.927

4.5 Real Data Analysis

In this section, we applied the proposed semiparametric approach to analyze the

occurrence rate of serious diseases for elder people in China based on the datasets of

the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in the period 1998 to

2014. Similar to Chapter 3, we denoted the terminal event and the censoring event

by the death and loss-of-connection, respectively. Then Y = U ∧C was the follow-up

time, and ∆ = 1{U≤C} was the indicator of death. Took the number of months from
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the baseline survey in 1998 to the jth follow-up wave of survey to be Tj. Then the

observation time points were T = {Tj : j = 1, · · · , K}, where K ≤ 6 represented the

total number of follow-up surveys. Let τ = 197 be the largest number of follow-up

months. Set the occurrence numbers of serious diseases before the jth follow-up

survey to be N(Tj), and the occurrence numbers of serious diseases from the jth

follow-up survey to death to be Ñ(Tj). For the semiparametric model, we chose

6 covariates in our analysis, including the gender (Z1 = 1 for male and Z1 = 0 for

female), the living area from 1998 to 2000 (Z2 = 1 for urban and Z2 = 0 for rural), the

number of children (Z3), the systolic blood pressure (Z4), the heart rates (Z5), and

the lung capacities (Z6). All the continuous covariates were standardized before the

analysis. 4831 individuals were interviewed in both of the surveys in 1998 and 2000.

After removing 1099 individuals with missing or typo records and 1160 individuals

living in different areas in 1998 and 2000, we focused on 2572 individuals with the

censoring rate of 26.36%. We considered the cubic I-spline with order d = 3, and

we divided [0, τ ] by the knots td+1 = τ/4, td+2 = τ/2 and td+1 = 3τ/4 to calculate

the I-spline basis function I(s). We chose the initial value α = (1, 1, 1, 1, 1, 1)T and

β = 0 to start the BFGS algorithm. Similar to Section 4.4, we applied the bootstrap

procedure with 100 replications to estimate the asymptotic variance of the proposed

estimator.

Table 4.3: Inference results for the CLHLS data.

Z1 Z2 Z3 Z4 Z5 Z6

Estimates −0.176 0.260 −0.081 −0.101 0.069 0.140
ESE 0.092 0.098 0.041 0.057 0.031 0.053
p-value 0.055∗ 0.008∗∗ 0.047∗∗ 0.077∗ 0.023∗∗ 0.009∗∗

∗ represents significance level of 0.1; ∗∗ represents significance level of 0.05.

In Figure 4.3, the solid line represents the estimate of the baseline mean function

Λ0, and the dash lines represent the 2.5- and 97.5- percentiles based on the 100
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Figure 4.3: Estimate, 2.5-percentile and 97.5-percentile of the baseline mean function
for the CLHLS data.

bootstrap samples, respectively. Table 4.3 shows the parameter estimation results,

in which all the covariates have significant effects on the occurrence rate of serious

diseases. Specifically, Z1 and Z4 are significant at the 0.1 level, and Z2, Z3, Z5, and

Z6 are significant at the 0.05 level. Furthermore, Z2, Z5, and Z6 have positive effects

on the occurrence rate of serious diseases, meaning that elder people living in urban

or having higher heart rates or having larger lung capacities tend to suffer from more

serious diseases before death. In contrast, Z1, Z3 and Z4 have negative effects on the

occurrence rate of serious diseases, which implies that elder females or elder people

having fewer children or elder people having lower systolic blood pressure are likely

to suffer from more serious diseases before death.
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4.6 Appendix

4.6.1 Lemmas

Lemma 4.1. Suppose that Conditions (C1) and (C7) hold. Then we have

E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]
. d2

3((β,Λ), (β0,Λ0)).

In addition, if Condition (C14) holds, then

E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]
& d2

3((β,Λ), (β0,Λ0)).

Proof. First, by the Cauchy–Schwarz inequality, under Conditions (C1) and (C7),

we have

E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]

=E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βTZ)4Λ0,j(U)

)2

]

+E

[
K∑
j=1

(
exp(βTZ)4Λ0,j(U)− exp(βT0 Z)4Λ0,j(U)

)2

]

+2E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βTZ)4Λ0,j(U)

)
×
(

exp(βTZ)4Λ0,j(U)− exp(βT0 Z)4Λ0,j(U)
)]

.E

[
K∑
j=1

(
4Λj(U)−4Λ0,j(U)

)2

]
+ E

[
K∑
j=1

(
exp(βTZ)− exp(βT0 Z)

)2

]

+2

{
E

[
K∑
j=1

(
4Λj(U)−4Λ0,j(U)

)2

]} 1
2
{
E

[
K∑
j=1

(
exp(βTZ)− exp(βT0 Z)

)2

]} 1
2

115



.E

[
K∑
j=1

(
4Λj(U)−4Λ0,j(U)

)2

]
+ E

[(
exp(βTZ)− exp(βT0 Z)

)2
]
.

By the mean value theorem, there exists a βξ1 ∈ R such that

E
[(

exp(βTZ)− exp(βT0 Z)
)2
]

= E
[
exp(2βTξ1Z){ZT (β − β0)}2

]
. ||β − β0||22.

It follows that

E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]

.||β − β0||22 + d2
1(Λ,Λ0) = d2

3((β,Λ), (β0,Λ0)).

The proof of the second inequality is similar to the proof in Theorem 3.2 of

Wellner and Zhang (2007). For Λ ∈ Φ, β ∈ Rd and (S1, S2,Z) ∼ µ1, let g(ξ) =

exp(βTξ Z)4Λξ(S1, S2), where 4Λξ(S1, S2) = ξ4Λ(S1, S2) + (1− ξ)4Λ0(S1, S2) and

βξ = ξβ + (1 − ξ)β0 with ξ ∈ (0, 1). Then we have exp(βTZ)4Λ(S1, S2) −

exp(βT0 Z)4Λ0(S1, S2) = g(1) − g(0). By the mean value theorem, there is a ξ2 ∈

(0, 1) such that

g(1)− g(0) = g′(ξ2)

= exp(βTξ2Z)[(4Λ(S1, S2)−4Λ0(S1, S2)) +4Λξ2(S1, S2)(β − β0)TZ]

= exp(βTξ2Z)

[{
1 +

ξ2

(
4Λ(S1, S2)−4Λ0(S1, S2)

)
4Λ0(S1, S2)

}
(β − β0)TZ4Λ0(S1, S2)

+(4Λ(S1, S2)−4Λ0(S1, S2))
]
,

where g′ is the derivative of g. Setting g1 = (β−β0)TZ4Λ0(S1, S2), g2 = (4Λ(S1, S2)−

4Λ0(S1, S2)) and g3 = 1 + ξ2

(
4Λ(S1, S2) − 4Λ0(S1, S2)

)
/4Λ0(S1, S2), we have
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g(1)− g(0) = exp(βTξ2Z)(g1g3 + g2). This yields that

E

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]
= Eµ1

[(
g(1)− g(0)

)2
]

=Eµ1
[
exp(2βTξ2Z) (g1g3 + g2)2] & Eµ1

[
(g1g3 + g2)2] .

Similar to the proof of Theorem 3.2 in Wellner and Zhang (2007), Condition (C14)

implies that

E2
µ1

[g1g2] ≤ (1− η)Eµ1
[
(g1)2]Eµ1 [(g2)2] .

According to Lemma 8.8 of van der Vaart (2002), we have

Eµ1
[
(g1g3 + g2)2] & Eµ1

[
(g1)2]+ Eµ1

[
(g2)2] & d2

3((β,Λ), (β0,Λ0)).

Define

s(0)(γ, t) = E
[
1{Ỹ≥t} exp(γT Z̃)

]
, s(1)(γ, t) = E

[
Z̃1{Ỹ≥t} exp(γT Z̃)

]
,

s(2)(γ, t) = E
[
Z̃⊗21{Ỹ≥t} exp(γT Z̃)

]
, ς(γ, t,z) = H0(t)z −

∫ t

0

s(1)(γ, u)

s(0)(γ, u)
dH0(u),

I(γ) =

∫ ∞
0

[
s(2)(γ, t)

s(0)(γ, t)
−
{
s(1)(γ, t)

s(0)(γ, t)

}⊗2
]
s(0)(γ, t)dH0(t),

e(γ, t,z) = I−1(γ)

[
z − s

(1)(γ, t)

s(0)(γ, t)

]
,

and

M̃i(t) = 1{Ỹi≤t,∆̃i=1} − exp(γT0 Z̃i)

∫ t

−∞
1{Ỹi≥u}dH0(u).

Then we have the following lemma.
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Lemma 4.2. Suppose that Condition (C10) holds. Then we have

F̂n(t|z)− F0(t|z) = PnΩ(t, z; Ỹ , ∆̃, Z̃) + op(n
−1/2),

where

Ω(t, z; Ỹ , ∆̃, Z̃)

=(1− F0(t|z))eγ
T
0 z

[
ς(γ0, t,z)T

{
∆̃e(γ0, Ỹ , Z̃)−

∫ Ỹ

0

e(γ0, u, Z̃)eγ
T
0 Z̃dH0(u)

}

+ 1(t≥Ỹ )∆̃
1

s(0)(γ0, Ỹ )
−
∫ Ỹ ∧t

0

eγ
T
0 Z̃

s(0)(γ0, u)
dH0(u)

]
.

Hence, d2(F̂n, F0) = Op(n
−1/2).

Proof. Define the Breslow estimator of H(t) as

Ĥn(t) =

∫ t

0

n∑
i=1

1{Ỹi≥u} exp(Z̃T
i γ̂n)d

{
n∑
i=1

1{Ỹi≤u,∆̃i=1}

}
.

According to the proof of Lemma A.3. of Kong et al. (2018), we have

γ̂n − γ0 =
1

n

n∑
i=1

∫ ∞
0

e(γ0, t, Z̃i)dM̃i(t) + op(n
−1/2),

Ĥn(t)−H0(t)

=

{
−
∫ t

0

s(1)(γ0, u)

s(0)(γ0, u)
dH0(u)

}T
(γ̂n − γ0) +

1

n

n∑
i=1

∫ t

0

1

s(0)(γ0, u)
dM̃i(u) + op(n

−1/2),

and

F̂n(t|z)− F0(t|z)

=(1− F0(t|z)) · eγT0 z
{
H0(t)zT (γ̂n − γ0) + (Ĥn(t)−H0(t))

}
+ op(n

−1/2).
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It follows that

F̂n(t|z)− F0(t|z) = (1− F0(t|z))eγ
T
0 z

1

n

n∑
i=1

{
ς(γ0, t,z)T

∫ ∞
0

e(γ0, u, Z̃i)dM̃i(u)

+

∫ t

0

1

s(0)(γ0, u)
dM̃i(u)

}
+ op(n

−1/2) = PnΩ(t, z; Ỹ , ∆̃, Z̃) + op(n
−1/2).

Lemma 4.3. Suppose that Conditions (C1), (C4), (C7), (C8) and (C11)–(C13) hold.

Define the class

Mη(F ) = {m(β,Λ, F ;X)−m(β0,Λ0, F ;X) : β ∈ R, Λ ∈ Φn, d3((β,Λ), (β0,Λ0)) ≤ η},

for a fixed F satisfying d2(F, F0) ≤ δ. For sufficiently small δ and any ε < η, we

have

logN[](ε,Mη(F ), || · ||P,B) . qn log(η/ε),

where the Bernstein norm is defined as ||f ||P,B = {2P (e|f | − 1− |f |)}1/2.

Proof. By the definition of d2
3((β,Λ), (β0,Λ0)), d2

3((β,Λ), (β0,Λ0)) ≤ η2 yields that

d1(Λ,Λ0) ≤ η. By Condition (C8), according to Shen and Wong (1994, page 597),

for all Λ ∈ Φn, d1(Λ,Λ0) ≤ η and ε < η, we can find a set of brackets

{[4ΛL
i ,4ΛU

i ] : ||4ΛU
i (s1, s2)−4ΛL

i (s1, s2)||L2(µ2) ≤ ε, i = 1, · · · , (η/ε)c1qn}

such that 4Λ(s1, s2) ∈ [4ΛL
i (s1, s2),4ΛU

i (s1, s2)] for all s1, s2 ∈ [0, τ ]. Similar to

the proof of Theorem 3.2 of Wellner and Zhang (2007), under Conditions (C11) and

(C12), we have 0 ≤ 4ΛL
i (s1, s2) ≤ 4ΛU

i (s1, s2) ≤ 4Λ0(s1, s2)+ε∗ and4ΛU
i (s1, s2)−

4ΛL
i (s1, s2) ≤ 2ε∗ for all s1, s2 ∈ [0, τ ], where ε∗ = ((ε2 + η2)1/2/c0)2/3 for some

constant c0. Furthermore, since Z is bounded and R is a compact set in Rd, we can

construct an ε-net {βs : s = 1, · · · , d(c2η/ε)
de} such that for all β ∈ R, there is a
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βs satisfying |βTZ−βTs Z| ≤ ε and | exp(βTZ)− exp(βTs Z)| ≤ cε for some constant

c.

Next we consider the ε-bracket of m(β,Λ, F ;X) −m(β0,Λ0, F ;X). After some

algebraic calculations,

m(β,Λ, F ;X)−m(β0,Λ0, F ;X)

=∆
K∑
j=1

{
exp(βTZ)24Λj(Y )2 − 2 exp(βTZ)4Λj(Y )4Nj +4N2

j

}

+
1−∆

1− F (Y |Z)

K∑
j=1

∫ ∞
Y

{
exp(βTZ)24Λj(u)2 − 2 exp(βTZ)4Λj(u)4Nj

+4N2
j

}
dF (u|Z)−m(β0,Λ0, F ;X).

Hence, the ε-brackets can be chosen as [mL
i,s,m

U
i,s], where

mL
i,s =∆

K∑
j=1

[{(
exp(βTs Z)− cε

)2(4ΛL
i,j(Y )

)2 − 2
(

exp(βTs Z) + cε
)
4ΛU

i,j(Y )4Nj

+4N2
j

}
+

1−∆

1− F (Y |Z)

∫ ∞
Y

{(
exp(βTs Z)− cε

)2(4ΛL
i,j(u)

)2

−2
(

exp(βTs Z) + cε
)
4ΛU

i,j(u)4Nj +4N2
j

}
dF (u|Z)

]
−m(β0,Λ0, F ;X)

and

mU
i,s =∆

K∑
j=1

[{(
exp(βTs Z) + cε

)2(4ΛU
i,j(Y )

)2 − 2
(

exp(βTs Z)− cε
)
4ΛL

i,j(Y )4Nj

+4N2
j

}
+

1−∆

1− F (Y |Z)

∫ ∞
Y

{(
exp(βTs Z) + cε

)2(4ΛU
i,j(u)

)2

−2
(

exp(βTs Z)− cε
)
4ΛL

i,j(u)4Nj +4N2
j

}
dF (u|Z)

]
−m(β0,Λ0, F ;X).

Then for all β ∈ R, Λ ∈ Φn satisfying d2
3((β,Λ), (β0,Λ0)) ≤ η2, we have

m(β,Λ, F ;X)−m(β0,Λ0, F ;X) ∈ [mL
i,s,m

U
i,s]
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for i = 1, · · · , (η/ε)c1qn and m = 1, · · · , d(c2η/ε)
de.

We also need to prove that ||mL
i,s−mU

i,s||2P,B . ε2. Noting that ||f ||2P,B is bounded

by 2P(|f |2 exp(|f |)), we need to consider P(|mL
i,s −mU

i,s|2 exp(|mL
i,s −mU

i,s|)). After

some algebraic calculations,

mU
i,s −mL

i,s

=
K∑
j=1

∆
[{

exp(βTs Z)2 + c2ε2
}{(
4ΛU

i,j(Y )
)2 −

(
4ΛL

i,j(Y )
)2}

+2cε exp(βTs Z)
{(
4ΛU

i,j(Y )
)2

+
(
4ΛL

i,j(Y )
)2}

+ 2 exp(βTs Z)
(
4ΛU

i,j(Y )−4ΛL
i,j(Y )

)
4Nj

+2cε
(
4ΛU

i,j(Y ) +4ΛL
i,j(Y )

)
4Nj

]
+

K∑
j=1

1−∆

1− F (Y |Z)

∫ ∞
Y

[{
exp(βTs Z)2 + c2ε2

}{(
4ΛU

i,j(u)
)2 −

(
4ΛL

i,j(u)
)2}

+2cε exp(βTs Z)
{(
4ΛU

i,j(u)
)2

+
(
4ΛL

i,j(u)
)2}

+ 2 exp(βTs Z)
(
4ΛU

i,j(u)−4ΛL
i,j(u)

)
4Nj

+2cε
(
4ΛU

i,j(u) +4ΛL
i,j(u)

)
4Nj

]
dF (u|Z).

Since4ΛL
i (s),4ΛU

i (s) and 1−F (Y ) are uniformly bounded functions, and exp(βTs Z)

is also bounded, we have exp(|mL
i,s −mU

i,s|) . exp(cN(TK)). Note that d2(F, F0) ≤ δ

and δ is sufficiently small. Then Conditions (C7) and (C13) imply that

P(|mL
i,s −mU

i,s|2 exp(|mL
i,s −mU

i,s|)) . P
[
|mL

i,s −mU
i,s|2 exp (cN(TK))

]
.P

[∣∣∣∣∣
K∑
j=1

∆
[{(
4ΛU

i,j(Y )
)2 −

(
4ΛL

i,j(Y )
)2}

+ ε+
(
4ΛU

i,j(Y )−4ΛL
i,j(Y )

)
4Nj

+ε4Nj

]
+

K∑
j=1

1−∆

1− F (Y |Z)

∫ ∞
Y

{(
4ΛU

i,j(u)
)2 −

(
4ΛL

i,j(u)
)2

+ ε

+
(
4ΛU

i (u)−4ΛL
i (u)

)
4Nj + ε4Nj

}
dF (u|Z)

∣∣∣]
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.P

[∣∣∣∣∣
K∑
j=1

∆
{(
4ΛU

i,j(Y )−4ΛL
i,j(Y ) + ε

)
(4Nj + 1)

}

+
K∑
j=1

1−∆

1− F (Y |Z)

∫ ∞
Y

{(
4ΛU

i,j(u)−4ΛL
i,j(u) + ε

)
(4Nj + 1)

}
dF (u|Z)

∣∣∣∣∣
2


.P

[
∆

K∑
j=1

(
4ΛU

i,j(Y )−4ΛL
i,j(Y )

)2

+
1−∆

1− F (Y |Z)

K∑
j=1

∫ ∞
Y

(
4ΛU

i,j(u)−4ΛL
i,j(u)

)2
dF (u|Z)

]
+ ε2

.||4ΛU
i (s1, s2)−4ΛL

i (s1, s2)||2L2(µ2) + d2(F, F0) + ε2 . ε2.

Thus, ||mL
i,s − mU

i,s||2P,B . ε2 and N[](ε,Mη(F ), || · ||P,B) ≤ cd2(η/ε)c1qn+d. Noting

that qn goes to infinity as n goes to infinity, we obtain logN[](ε,Mη(F ), || · ||P,B) .

qn log(η/ε).

Lemma 4.4. Suppose that Condition (C2) holds. For sufficiently small δ, any F

satisfying d2(F, F0) ≤ δ, and any differentiable function g, we have

P

[
(1−∆)

K∑
j=1

∣∣∣∣
∫∞
Y
g(u− Tj)dF (u|Z)

1− F (Y |Z)
−
∫∞
Y
g(u− Tj)dF0(u|Z)

1− F0(Y |Z)

∣∣∣∣
]

.

(
E

[
K∑
j=1

|g′(U − Tj)|

]
+ E

[
K∑
j=1

|g(U − Tj)|

])
d2(F, F0).

Lemma 4.5. Suppose that Conditions (C2) and (C4) hold. Then for sufficiently

small δ, {m(β,Λ, F ;X) : β ∈ R, Λ ∈ Φ, Λ is uniformly bounded, d2(F, F0) ≤ δ} is

Donsker.

Lemma 4.6. Suppose that for every β ∈ R, Λ ∈ Φn, sufficiently large n and suffi-
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ciently small η,

P(m(β0,Λ0, F̂n;X)−m(β,Λ, F̂n;X))

. −d2
3((β,Λ), (β0,Λ0)) + d3((β,Λ), (β0,Λ0))d2(F̂n, F0) + d2

2(F̂n, F0)

and

E sup
{Λ∈Φn:d3((β,Λ),(β0,Λ0))<η}

|(Pn − P)(m(β0,Λ0, F̂n;X)−m(β,Λ, F̂n;X))| . φn(η)√
n

hold, where φn(η) satisfies that η 7→ φn(η)/ηα is decreasing for some α < 2. Let

rn > 0 satisfy φn(rn) .
√
nr2

n. If the sequence Λ̂n satisfies

Pnm(β0,Λ0, F̂n;X) ≥ Pnm(β̂n, Λ̂n, F̂n;X)−Op(r
2
n)

and converges in outer probability to Λ0, then d1(Λ̂n,Λ0) = Op(rn + d2(F̂n, F0)).

4.6.2 A General Theorem for the Asymptotic Normality of
Semiparametric M-estimation with Nuisance Parame-
ter

In this section, we establish a general theorem for the asymptotic normality of

semiparametric M-estimator with nuisance parameter overcoming the difficulty that

the overall convergence rate is slower than n1/2. Consider the two-stage semipara-

metric M-estimator (β̂n, Λ̂n), which is obtained by minimizing the objective function

Pnm(β,Λ, F̂n;X) with respect to (β,Λ) ∈ R×Φn. For a parameter path Λη ∈ Φ sat-

isfying Λη|η=0 = Λ, define H = {h : h = ∂Λη
∂η
|η=0}, H̃ = {(h1, h2) : h1 ∈ R, h2 ∈ Hr}

and

ψ(β,Λ, F ;X)[h1, h2] =
∂

∂η
m(β + ηh1,Λ + ηh2, F ;X)|η=0
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for (h1, h2) ∈ H̃. In particular, in the case of semiparametric estimation for panel

count data with an informative terminal event, ignoring constant factor, we have

ψ(β,Λ, F ;X)[h1, h2] =
K∑
j=1

[
∆
{
4Nj − exp(βTZ)4Λj(Y )

}
× exp(βTZ)

{
4Λj(Y )hT1Z +4h2,j(Y )

}
+

1−∆

1− F (Y |Z)

×
∫ ∞
Y

{
4Nj − exp(βTZ)4Λj(u)

}
exp(βTZ)

{
4Λj(u)hT1Z +4h2,j(u)

}
dF (u|Z)

]
.

Set

Qn(β,Λ, F )[h1, h2] = Pnψ(β,Λ, F ;X)[h1, h2]

and

Q(β,Λ, F )[h1, h2] = Pψ(β,Λ, F ;X)[h1, h2].

According to Theorem 1 of Zhao and Zhang (2017), we need the following conditions

to establish the asymptotic normality.

(B1) Q(β0,Λ0, F0)[h1, h2] = 0 and Qn(β̂n, Λ̂n, F̂n)[h1, h2] = op(n
−1/2).

(B2)
√
n(Qn −Q)(β̂n, Λ̂n, F̂n)[h1, h2]−

√
n(Qn −Q)(β0,Λ0, F0)[h1, h2] = op(1).

(B3)Q(β,Λ, F )[h1, h2] is Fréchet-differentiable with respect to (β,Λ) at (β0,Λ0, F0)

with a continuous derivative Q̇1,β0,Λ0,F0 [h1, h2]; Q(β,Λ, F )[h1, h2] is Fréchet-differentiable

with respect to F at (β0,Λ0, F0) with a continuous derivative Q̇2,β0,Λ0,F0 [h1, h2].

(B4)Q(β̂n, Λ̂n, F̂n)[h1, h2]−Q(β0,Λ0, F0)[h1, h2]−Q̇1,β0,Λ0,F0(β̂n−β0, Λ̂n−Λ0)[h1, h2]−

Q̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] = op(n
−1/2).

(B5)
√
nQn(β0,Λ0, F0)[h1, h2] +

√
nQ̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] converges in dis-

tribution to a tight Gaussian progress.

Lemma 4.7 (General Theorem for the Asymptotic Normality). Suppose that Con-
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ditions (B1)–(B5) hold. Then we have

−
√
nQ̇1,β0,Λ0,F0(β̂n − β0, Λ̂n − Λ0)[h1, h2]

=
√
nQn(β0,Λ0, F0)[h1, h2] +

√
nQ̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] + op(1)

converges in distribution to a tight Gaussian process.

Proof. By the relations in (B1), (B3) and (B4),

Q(β̂n, Λ̂n, F̂n)[h1, h2]− Q̇1,β0,Λ0,F0(β̂n − β0, Λ̂n − Λ0)[h1, h2]

−Q̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] = op(n
−1/2).

According to (B1) and (B2), we have−Q(β̂n, Λ̂n, F̂n)[h1, h2] = Qn(β0,Λ0, F0)[h1, h2]+

op(n
−1/2). Combining the above two equations, it follows that

− Q̇1,β0,Λ0,F0(β̂n − β0, Λ̂n − Λ0)[h1, h2]

=Qn(β0,Λ0, F0)[h1, h2] + Q̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] + op(n
−1/2).

4.6.3 Proof of Theorem 4.1

Proof. We first prove that Λ̂n is uniformly bounded. Since (β̂n, Λ̂n) minimizes

Pnm(β,Λ, F̂n;X) with respect to (β,Λ) ∈ R×Φn, for any direction function h ∈ Φn,

we have

0 = lim
ε→0

Pnm(β̂n, Λ̂n + εh, F̂n;X)− Pnm(β̂n, Λ̂n, F̂n;X)

ε

=− 2Pn

[
K∑
j=1

{
∆
(
(4Nj − exp(β̂TnZ)4Λ̂n,j(Y )) exp(β̂TnZ)4hj(Y )

)
+

1−∆

1− F̂n(Y |Z)

×
∫ ∞
Y

(
(4Nj − exp(β̂TnZ)4Λ̂n,j(u)) exp(β̂TnZ)4hj(u)

)
dF̂n(u|Z)

}]
.

(4.5)
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Taking h(s) = s, by Condition (C8), it follows that

Pn

[
exp(2β̂TnZ)

K∑
j=1

{
(Tj − Tj−1)

(
∆4Λ̂n,j(Y )

+
1−∆

1− F̂n(Y |Z)

∫ ∞
Y

4Λ̂n,j(u)dF̂n(u|Z)

)}]

= Pn

[
exp(β̂TnZ)

K∑
j=1

{4Nj(Tj − Tj−1)}

]
≤ c1Pn

[
K∑
j=1

{4Nj(Tj − Tj−1)}

]

a.s.−−→ c1E

[
exp(βT0 Z)

K∑
j=1

4Λ0,j(U)(Tj − Tj−1)

]
≤ c2,

for some constant c1 and c2. Furthermore, by Condition (C9),

lim sup
n→∞

Pn

[
exp(2β̂TnZ)

K∑
j=1

{
(Tj − Tj−1)

(
∆4Λ̂n,j(Y )

+
1−∆

1− F̂n(Y |Z)

∫ ∞
Y

4Λ̂n,j(u)dF̂n(u|Z)

)}]

& lim sup
n→∞

Pn

[
K∑
j=1

{
(Tj − Tj−1)

(
∆4Λ̂n,j(Y )

+
1−∆

1− F̂n(Y |Z)

∫ ∞
Y

4Λ̂n,j(u)dF̂n(u|Z)

)}]

& lim sup
n→∞

Pn
[
∆
{

Λ̂n(Y )− Λ̂n(Y − TK)
}

+
1−∆

1− F̂n(Y |Z)

∫ ∞
Y

{
Λ̂n(u)− Λ̂n(u− TK)

}
dF̂n(u|Z)

]

≥ lim sup
n→∞

4Λ̂n(b1, b2)Pn
[
∆1{Y−TK∈[0,b1],Y ∈[b2,τ ]}

+
1−∆

1− F̂n(Y |Z)

∫ ∞
Y

1{u−TK∈[0,b1],u∈[b2,τ ]}dF̂n(u|Z)

]
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= lim sup
n→∞

4Λ̂n(b1, b2)E
[
1{U−TK∈[0,b1],U∈[b2,τ ]}

]
= lim sup

n→∞
4Λ̂n(b1, b2)µ3([0, b1]× [b2, τ ]).

According to the above two inequalities, we have lim supn→∞4Λ̂n(b1, b2)µ3([0, b1]×

[b2, τ ]) ≤ c2. Then for all 0 ≤ b1 ≤ s1 ≤ s2 ≤ b2 ≤ τ with µ3([0, b1]×[b2, τ ]) > 0, since

4Λ̂n(s1, s2) = Λ̂n(s2)− Λ̂n(s1) ≤ Λ̂n(b2)− Λ̂n(b1) = 4Λ̂n(b1, b2), we have 4Λ̂n(s1, s2)

is uniformly bounded. In particular, when µ3({0} × {τ}) > 0, Λ̂n(s) is uniformly

bounded on [0, τ ].

We next consider the minimal point of Pm(β,Λ, F0;X). After some algebraic

calculations, we have

Pm(β,Λ, F0;X)− Pm(β0,Λ0, F0;X)

=P

[
∆

K∑
j=1

{(
4Nj − exp(βTZ)4Λj(Y )

)2 −
(
4Nj − exp(βT0 Z)4Λ0,j(Y )

)2
}

+
1−∆

1− F0(Y |Z)

K∑
j=1

∫ ∞
Y

{(
4Nj − exp(βTZ)4Λj(u)

)2

−
(
4Nj − exp(βT0 Z)4Λ0,j(u)

)2
}
dF0(u|Z)

]
=P

[
K∑
j=1

∆
{

24Nj − exp(βTZ)4Λj(Y )− exp(βT0 Z)4Λ0,j(Y )
}

×
{

exp(βT0 Z)4Λ0,j(Y )− exp(βTZ)4Λj(Y )
}

+
K∑
j=1

1−∆

1− F0(Y |Z)

∫ ∞
Y

{
24Nj − exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

}
×
{

exp(βT0 Z)4Λ0,j(u)− exp(βTZ)4Λj(u)
}
dF0(u|Z)

]
=P

[
K∑
j=1

(
exp(βT0 Z)4Λ0,j(U)− exp(βTZ)4Λj(U)

)2

]
≥ 0.
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It follows that

Pm(β,Λ, F0;X) ≥ Pm(β0,Λ0, F0;X),

and Pm(β,Λ, F0;X) = Pm(β0,Λ0, F0;X) if and only if 4Λ(s1, s2) exp(βTz) =

4Λ0(s1, s2) exp(βT0 z) a.e. with respect to µ1. By conditions (C5) and (C6), similar to

the proof in Theorem 3.1 of Wellner and Zhang (2007), we have Pm(β,Λ, F0;X) =

Pm(β0,Λ0, F0;X) if and only if β = β0 and 4Λ(s1, s2) = 4Λ0(s1, s2) a.e. with

respect to µ2. Hence, for every δ > 0, we have

sup
d3((β,Λ),(β0,Λ0))>δ

Pm(β,Λ, F0;X) > Pm(β0,Λ0, F0;X),

which yields that

{d3((β̂n, Λ̂n), (β0,Λ0)) > δ} ⊂ {Pm(β̂n, Λ̂n, F0;X) > Pm(β0,Λ0, F0;X)}.

By Lemma A1 of Lu, Zhang, and Huang (2007), under Condition (C8), there is

a Λ∗n ∈ Φn such that ||Λ∗n − Λ0||∞ = O(n−νr). Note that

0 ≤Pm(β̂n, Λ̂n, F0;X)− Pm(β0,Λ0, F0;X)

=Pm(β̂n, Λ̂n, F0;X)− Pm(β̂n, Λ̂n, F̂n;X) + Pm(β̂n, Λ̂n, F̂n;X)

−Pnm(β̂n, Λ̂n, F̂n;X) + Pnm(β̂n, Λ̂n, F̂n;X)− Pnm(β0,Λ
∗
n, F̂n;X)

+Pnm(β0,Λ
∗
n, F̂n;X)− Pm(β0,Λ

∗
n, F̂n;X) + Pm(β0,Λ

∗
n, F̂n;X)

−Pm(β0,Λ
∗
n, F0;X) + Pm(β0,Λ

∗
n, F0;X)− Pm(β0,Λ0, F0;X).

(4.6)

According to Conditions (C2) and (C7),

0 ≤ Pm(β0,Λ
∗
n, F0;X)− Pm(β0,Λ0, F0;X) . ||Λ∗n − Λ0||2∞ = o(1).

The definition of (β̂n, Λ̂n) yields that Pnm(β̂n, Λ̂n, F̂n;X) ≤ Pnm(β0,Λ
∗
n, F̂n;X). By

Lemma 4.4, we have

Pm(β̂n, Λ̂n, F̂n;X)− Pm(β̂n, Λ̂n, F0;X) = op(1)
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and

Pm(β0,Λ
∗
n, F̂n;X)− Pm(β0,Λ

∗
n, F0;X) = op(1).

By Lemma 4.5, {m(β,Λ, F ;X) : β ∈ R, Λ ∈ Φ, F ∈ F} is Donsker, meaning

that it is Glivenko-Cantelli, and we have (Pn − P)m(β̂n, Λ̂n, F̂n;X) = op(1) and

(Pn − P)m(β0,Λ
∗
n, F̂n;X) = op(1). Combining them with (4.6), we have

0 ≤ Pm(β̂n, Λ̂n, F0;X)− Pm(β0,Λ0, F0;X) ≤ op(1). (4.7)

According to (4.7), {Pm(β̂n, Λ̂n, F0;X) > Pm(β0,Λ0, F0;X)} goes into a null set

as n → ∞. According to the argument in Theorem A.2.3. of Kong el al. (2018)

and Theorem 5.8 in van der Vaart (2002), it follows that (β̂n, Λ̂n)→ (β0,Λ0) almost

surely. Thus, d3((β̂n, Λ̂n), (β0,Λ0)) = op(1).

4.6.4 Proof of Theorem 4.2

Proof. We use Lemma 4.6 to prove the rate of convergence.

According to the second part of Lemma 4.1, we have

P
(
m(β0,Λ0, F ;X)−m(β,Λ, F ;X)

)
=− P

[
K∑
j=1

∆
(

exp(βTZ)4Λj(Y )− exp(βT0 Z)4Λ0,j(Y )
)2

+
K∑
j=1

1−∆

1− F (Y |Z)

∫ ∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF (u|Z)

]

.− d2
3((β,Λ), (β0,Λ0))

+P

[
K∑
j=1

1−∆

1− F0(Y |Z)

∫ ∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF0(u|Z)

−
K∑
j=1

1−∆

1− F (Y |Z)

∫ ∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF (u|Z)

]
.
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By Conditions (C1), (C2) and (C7), Cauchy–Schwarz inequality and Lemma 4.4,

∣∣∣∣∣P
[

K∑
j=1

(1−∆)

{∫∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF0(u|Z)

1− F0(Y |Z)

−
∫∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF (u|Z)

1− F (Y |Z)

}]∣∣∣∣∣
.P

[
K∑
j=1

(
exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

)2

]
d2(F, F0)

+P

[
K∑
j=1

2
∣∣ exp(βTZ)4Λj(U)− exp(βT0 Z)4Λ0,j(U)

∣∣
×
∣∣ exp(βTZ)4Λ′j(U)− exp(βT0 Z)4Λ′0,j(U)

∣∣]d2(F, F0)

.d3((β,Λ), (β0,Λ0))d2(F, F0) + d2
3((β,Λ), (β0,Λ0))d2(F, F0).

This yields that

P
(
m(β0,Λ0, F̂n;X)−m(β̂n, Λ̂n, F̂n;X)

)
. −d2

3((β̂n, Λ̂n), (β0,Λ0))

+d3((β̂n, Λ̂n), (β0,Λ0))d2(F̂n, F0) + d2
3((β̂n, Λ̂n), (β0,Λ0))d2(F̂n, F0).

Second, we need to find a φn(η) such that

E sup
{(β,Λ)∈R×Φn:d3((β,Λ),(β0,Λ0))<η}

|(Pn − P)(m(β,Λ, F̂n;X)−m(β0,Λ0, F̂n;X))| . φn(η)√
n
.

By Lemma 4.3, for sufficiently large n, we have logN[](ε,Lη(F̂n), ||·||P,B) . qn log(η/ε),

where

Mη(F̂n) = {m(β,Λ, F̂n;X)−m(β0,Λ0, F̂n;X) :

β ∈ R, Λ ∈ Φn, d
2
3((β,Λ), (β0,Λ0)) ≤ η2}.

For (β,Λ) ∈ R×Φn satisfying d3((β,Λ), (β0,Λ0)) < η, similar to the proof of Lemma
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4.3, we have

|m(β,Λ, F̂n;X)−m(β0,Λ0, F̂n;X)|

.
K∑
j=1

[
(4Nj + 1)

{
∆
∣∣ exp(βTZ)4Λj(Y )− exp(βT0 Z)4Λ0,j(Y )

∣∣
+

1−∆

1− F̂n(Y |Z)

K∑
j=1

∫ ∞
Y

∣∣ exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)
∣∣dF̂n(u|Z)

}]
.

Furthermore, since exp(βTZ),4Λj, exp(βT0 Z) and4Λ0,j are bounded and d2(F̂n, F0) =

op(1), we have e|m(β,Λ,F̂n;X)−m(β0,Λ0,F̂n;X)| . eCN(TK). The above two inequalities yield

that

P
[
e|m(β,Λ,F̂n;X)−m(β0,Λ0,F̂n;X)||m(β,Λ, F̂n;X)−m(β0,Λ0, F̂n;X)|2

]
.P

[
K∑
j=1

∆
(

exp(βTZ)4Λj(Y )− exp(βT0 Z)4Λ0,j(Y )
)2

+
K∑
j=1

1−∆

1− F̂n(Y |Z)

∫ ∞
Y

(
exp(βTZ)4Λj(u)− exp(βT0 Z)4Λ0,j(u)

)2
dF̂n(u|Z)

]

.d2
3((β,Λ), (β0,Λ0)) + d3((β,Λ), (β0,Λ0))d2(F̂n, F0).

That means for sufficiently large n, ||m(β,Λ, F̂n;X) − m(β0,Λ0, F̂n;X)||2P,B . η2.

By Lemma 3.4.3 of van der Vaart and Wellner (1996),

E||n1/2(Pn − P)||Mη(F̂n) . J[](η,Mη(F̂n), || · ||P,B)

{
1 +

J[](η,Mη(F̂n), || · ||P,B)

η2n1/2

}
,

where J[](η,Mη(F̂n), || · ||P,B) :=
∫ η

0
{1 + logN[](ε,Mη(F̂n), || · ||P,B)}1/2dε . q

1/2
n η. It

follows that

E sup
{(β,Λ)∈R×Φn:d3((β,Λ),(β0,Λ0))<η}

√
n|(Pn − P)(m(β,Λ, F̂n;X)−m(β0,Λ0, F̂n;X))|

.q1/2
n η + qnn

−1/2.
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Setting φn(η) = q
1/2
n η + qnn

−1/2 such that φn(η)/η decreases about η, for a sequence

rn = O(na), we have r2
nφ( 1

rn
) = q

1
2
n rn + n−

1
2 qnr

2
n. Note that qn = O(nν), 0 < ν < 1/2.

This yields that

r2
nφ(

1

rn
) = O(na+ ν

2 + n2a+ν− 1
2 ).

Since a ≤ (1− ν)/2 ensures r2
nφ(1/rn) . n1/2, we choose rn = O(n(1−ν)/2).

Finally, we calculate ν satisfying Pn
(
m(β̂n, Λ̂n, F̂n;X) − m(β0,Λ0, F̂n;X)

)
≤

Op(r
−2
n ). Note that for Λ0 ∈ Hr, there is a Λ∗n ∈ Φn such that ||Λ∗n−Λ0||∞ = O(n−νr).

By the definition of (β̂n, Λ̂n) and 0 ≤ Pm(β0,Λ
∗
n, F̂n;X) − Pm(β0,Λ0, F̂n;X) .

||Λ∗n − Λ0||2∞, we have

Pn
(
m(β̂n, Λ̂n, F̂n;X)−m(β0,Λ0, F̂n;X)

)
=Pnm(β̂n, Λ̂n, F̂n;X)− Pnm(β0,Λ

∗
n, F̂n;X) + Pnm(β0,Λ

∗
n, F̂n;X)− Pm(β0,Λ

∗
n, F̂n;X)

+Pm(β0,Λ
∗
n, F̂n;X)− Pm(β0,Λ0, F̂n;X) + Pm(β0,Λ0, F̂n;X)− Pnm(β0,Λ0, F̂n;X)

≤n−νr+ε(Pn − P)

(
m(β0,Λ

∗
n, F̂n;X)−m(β0,Λ0, F̂n;X)

n−νr+ε

)
+Op(n

−2νr).

According to Lemma 4.3, Mη(F ) is Donsker. After some algebraic calculations,

P(m(β0,Λ
∗
n, F̂n;X)−m(β0,Λ0, F̂n;X))2 . ||Λ∗n − Λ0||2∞.

Hence for any f ∈ Mη(F ), we have P (f/n−νr+ε)2 → 0 as n → 0 for any ε > 0.

Using Corollary 2.3.12 of van der Vaart and Wellner (1996), we have

(Pn − P)(m(β0,Λ
∗
n, F̂n;X)−m(β0,Λ0, F̂n;X)) = op(n

−νr+ε−1/2).

Taking 0 < ε ≤ 1/2 − rν, we have Pn
(
m(β̂n, Λ̂n, F̂n;X) − m(β0,Λ0, F̂n;X)

)
≤

Op(n
−2νr), meaning that ν ≥ 1/(1+2r) ensures Pn

(
m(β̂n, Λ̂n, F̂n;X)−m(β0,Λ0, F̂n;X)

)
≤

Op(r
−2
n ). Thus, taking ν = 1/(1 + 2r), we have d3((β̂n, Λ̂n), (β0,Λ0)) = Op(n

− r
1+2r ).
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4.6.5 Proof of Theorem 4.3

Proof. (i) We verify Conditions (B1)–(B5) presented in Lemma 4.7 to prove this

theorem.

For (B1), under model (4.1), we have Q(β0,Λ0, F0)[h1, h2] = 0. By the definition

of (β̂n, Λ̂n), for all (h1, h2) ∈ R× Φn, we obtain

lim
η→0

Pnm(β̂n + ηh1, Λ̂n + ηh2, F ;X)− Pnm(β̂n, Λ̂n, F̂n;X)

η
= 0.

This implies that Qn(β̂n, Λ̂n, F̂n)[h1, h2] = 0 for all (h1, h2) ∈ R × Φn. By Lemma

A1 of Lu, Zhang, and Huang (2007) and the properties of spline functions (Schu-

maker, 2007), for any h2 ∈ Hr, we can find an h2,n ∈ Φn satisfying ||h2,n − h2||∞ =

O(n−r/(1+2r)) and ||h′2,n − h′2||∞ = o(1), where h′2 is the derivative of h2. Thus, for

each h2 ∈ Hr, we need to prove Qn(β̂n, Λ̂n, F̂n)[0, h2−h2,n] = Pnψ(β̂n, Λ̂n, F̂n)[0, h2−

h2,n] = op(n
−1/2) to verify Qn(β̂n, Λ̂n, F̂n)[h1, h2] = op(n

−1/2). Note that

Qn(β̂n, Λ̂n, F̂n)[0, h2 − h2,n]

=
{
Qn(β̂n, Λ̂n, F̂n)[0, h2 − h2,n]−Qn(β̂n, Λ̂n, F0)[0, h2 − h2,n]

}
+
{
Qn(β̂n, Λ̂n, F0)[0, h2 − h2,n]−Qn(β0,Λ0, F0)[0, h2 − h2,n]

}
+Qn(β0,Λ0, F0)[0, h2 − h2,n] =: I1n + I2n + I3n.

For the first term I1n, Lemma 4.4 yields that

P|I1n| = P
∣∣∣Qn(β̂n, Λ̂n, F̂n)[0, h2 − h2,n]−Qn(β̂n, Λ̂n, F0)[0, h2 − h2,n]

∣∣∣
≤P

[
K∑
j=1

(1−∆)

∣∣∣∣∣
∫∞
Y

{
4Nj − exp(β̂TnZ)4Λ̂n,j(u)

}
(4h2,j(u)−4h2,n,j(u))dF̂n(u)

1− F̂n(Y )

−
∫∞
Y

{
4Nj − exp(β̂TnZ)4Λ̂n,j(u)

}
(4h2,j(u)−4h2,n,j(u))dF0(u)

1− F0(Y )

∣∣∣∣∣ exp(β̂TnZ)

]

.d2(F̂n, F0)(||h2 − h2,n||∞ + ||h′2 − h′2,n||∞) = op(n
−1/2).
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For the second term I2n, after some algebraic calculations, we have

P|I2n| = P
∣∣∣Qn(β̂n, Λ̂n, F0)[0, h2 − h2,n]−Qn(β0,Λ0, F0)[0, h2 − h2,n]

∣∣∣
≤P

[
K∑
k=1

∆
∣∣∣{4Nj − exp(β̂TnZ)4Λ̂nj(Y )

}
exp(β̂TnZ)

−
{
4Nj − exp(βT0 Z)4Λ0,j(Y )

}
exp(βT0 Z)

∣∣∣
+

1−∆

1− F0(Y )

∫ ∞
Y

∣∣∣{4Nj − exp(β̂TnZ)4Λ̂n,j(u)
}

exp(β̂TnZ)

−
{
4Nj − exp(βT0 Z)4Λ0,j(u)

}
exp(βT0 Z)

∣∣∣dF0(u)
]
||h2 − h2,n||∞

.
{
||β̂n − β0||2 + d3((2β̂n, Λ̂n), (2β0,Λ0))

}
||h− hn||∞ = op(n

−1/2).

For the third term I3n, note that Q(β0,Λ0, F0;X)[0, h2 − h2,n] = 0. By the indepen-

dence of Xi and Xj, it follows that

PI2
3n = P

(
1

n

n∑
i=1

ψ(β0,Λ0, F0;Xi)[0, h2 − h2,n]

)2

=n−1P

(
1

n

n∑
i=1

ψ2(β0,Λ0, F0;Xi)[0, h2 − h2,n]

)

.n−1P

[
K∑
j=1

{
∆
∣∣4Nj − exp(βTZ)4Λ0,j(Y )

∣∣ exp(βTZ)

+
1−∆

1− F0(Y )

∫ ∞
Y

∣∣4Nj − exp(βTZ)4Λ0,j(Y )
∣∣ exp(βTZ)dF0(u)

}]2

||h2 − h2,n||2∞

.n−1||h2 − h2,n||2∞.

Then we have Qn(β̂n, Λ̂n, F̂n)[0, h2 − h2,n] = op(n
−1/2), and (B1) holds.
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For (B2), after some algebraic calculations, we have

√
n(Qn −Q)(β̂n, Λ̂n, F̂n)[h1, h2]−

√
n(Qn −Q)(β0,Λ0, F0)[h1, h2]

=
√
n(Pn − P)(ψ(β̂n, Λ̂n, F̂n;X)[h1, h2]− ψ(β0,Λ0, F0;X)[h1, h2]).

For each fixed bounded (h1, h2) ∈ H̃, set

Ψ̄η(h1, h2) = {ψ(β,Λ, F ;X)[h1, h2]− ψ(β0,Λ0, F0;X)[h1, h2] : β ∈ R, Λ ∈ Φn, F ∈ F

d3((β,Λ), (β0,Λ0)) < η, d2(F, F0) < η, Λ is uniformly bounded}.

Similar to Lemma 4.5, it follows that Ψ̄η(h1, h2) is Donsker. By Condition (C6) and

Lemma 4.4, after some algebraic calculations, we obtain

P(ψ(β,Λ, F ;X)[h1, h2]− ψ(β0,Λ0, F0;X)[h1, h2])2 . d3((β,Λ), (β0,Λ0))2 + d2(F, F0)2.

Then Corollary 2.3.12 of van der Vaart and Wellner (1996) implies that

√
n(Pn − P)(ψ(β̂n, Λ̂n, F̂n;X)[h1, h2]− ψ(β0,Λ0, F0;X)[h1, h2]) = op(1),

and (B2) holds.

For (B3), since Q(β,Λ, F )[h1, h2] is a smooth function with respect to (β,Λ, F ),

Q(β,Λ, F )[h1, h2] is Fréchet-differentiable with respect to (β,Λ) at (β0,Λ0, F0). Sim-

ilarly, Q(β,Λ, F )[h1, h2] is Fréchet-differentiable with respect to F at (β0,Λ0, F0).

Setting

R1(h1, h2)(β̂n − β0) = −P

[
K∑
j=1

{
∆
(
4Nj − 2 exp(βT0 Z)4Λ0,j(Y )

)
exp(βT0 Z)

×
(
4h2,j(Y ) +4Λ0,j(Y )hT1Z

)
+

1−∆

1− F0(Y |Z)

∫ ∞
Y

(
4Nj − 2 exp(βT0 Z)4Λ0,j(u)

)
× exp(βT0 Z)

(
4h2,j(u) +4Λ0,j(u)hT1Z

)
dF0(u|Z)

}
ZT
]

(β̂n − β0)

(4.8)
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and

R2(h1, h2)(Λ̂n − Λ0) = −P

[
K∑
j=1

{
∆ exp(βT0 Z)(4Λ̂n,j(Y )−4Λ0,j(Y ))

×
(
4Njh

T
1Z − 2 exp(βT0 Z)4Λ0,j(Y )hT1Z − exp(βT0 Z)4h2,j(Y )

)
+

1−∆

1− F̂n(Y |Z)

∫ ∞
Y

exp(βT0 Z)(4Λ̂n,j(u)− Λ0,j(u))

×
(
4Njh

T
1Z − 2 exp(βT0 Z)4Λ0,j(u)hT1Z − exp(βT0 Z)4h2,j(u)

)
dF̂n(u|Z)

}]
,

(4.9)

we obtain

Q̇1,β0,Λ0,F0(β̂n − β0, Λ̂n − Λ0)[h1, h2]

=
d

dε

{
P

[
K∑
j=1

{
∆
(
4h2,j(Y ) +

(
4Λ0,j(Y ) + ε(4Λ̂n,j(Y )−4Λ0,j(Y ))

)
hT1Z

)

×
(
4Nj −

(
4Λ0,j(Y ) + ε(4Λ̂n,j(Y )−4Λ0,j(Y ))

)
exp

(
(β0 + ε(β̂n − β0))TZ

))
× exp

(
(β0 + ε(β̂n − β0))TZ

)
+

1−∆

1− F0(Y )

∫ ∞
Y

exp
(
(β0 + ε(β̂n − β0))TZ

)
×
(
4Nj −

(
4Λ0,j(u) + ε(4Λ̂n,j(u)−4Λ0,j(u))

)
exp

(
(β0 + ε(β̂n − β0))TZ

))
×
(
4h2,j(u) +

(
4Λ0,j(u) + ε(4Λ̂n,j(u)−4Λ0,j(u))

)
hT1Z

)
dF0(u)

}]}∣∣∣
ε=0

=−R1(h1, h2)(β̂n − β0)−R2(h1, h2)(Λ̂n − Λ0).

Since the equation

d

∫∞
Y
g(u− Tj)d(F0 + ε(F̂n − F0))(u|Z)

1− F0(Y |Z)− ε(F̂n − F0)(Y |Z)
/dε

∣∣∣∣∣
ε=0

=

∫∞
Y
g(u− Tj)d(F̂n − F0)(u|Z)

1− F0(Y |Z)
+

(F̂n − F0)(Y |Z)
∫∞
Y
g(u− Tj)dF0(u|Z)

(1− F0(Y |Z))2
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=
1

1− F0(Y |Z)

∫ ∞
Y

{
g(u− Tj)−

∫ ∞
Y

g(s− Tj)
1− F0(Y |Z)

dF0(s|Z)

}
d(F̂n − F0)(u|Z)

holds for any differentiable function g, we obtain

Q̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] =
d

dε

{
Q(β0,Λ0, F0 + ε(F̂n − F0))[h1, h2]

}∣∣∣∣
ε=0

=
d

dε

{
P

[
K∑
j=1

1−∆

1− F0(Y |Z)− ε(F̂n − F0)(Y |Z)

∫ ∞
Y

{
4Nj − exp(βT0 Z)4Λ0,j(u)

}
× exp(βT0 Z)

{
4h2,j(u) +4Λ0,j(u)hT1Z

}
d(F0 + ε(F̂n − F0))(u|Z)

]}∣∣∣
ε=0

=P
[∫ ∞

Y

ϕ̄β0,Λ0,F0(u;X)[h1, h2]d(F̂n − F0)(u|Z)

]
,

where

ϕ̄β0,Λ0,F0(u;X)[h1, h2]

=
1−∆

1− F0(Y |Z)

K∑
j=1

{
ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]−

∫ ∞
Y

ϕ̃j,β0,Λ0,F0(s;X)[h1, h2]

1− F0(Y |Z)
dF0(s|Z)

}

and

ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]

=
{
4Nj − exp(βT0 Z)4Λ0,j(u)

}
exp(βT0 Z)

{
4h2,j(u) +4Λ0,j(u)hT1Z

}
.

Then (B3) is verified.

For (B4), since ||β̂n − β0||2 = Op(n
−1/2) and by the Taylor expansion, we have

exp(β̂TnZ) = exp(βT0 Z) + exp(βT0 Z)ZT (β̂n − β0) + op(n
−1/2).

By the above equation and Lemma 4.4, after some algebraic calculations, we obtain

Q(β̂n, Λ̂n, F0)[h1, h2]−Q(β0, Λ̂n, F0)[h1, h2] = R1(h1, h2)(β̂n − β0) + op(n
−1/2).

(4.10)
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Noting that

Q(β0, Λ̂n, F0)[h1, h2]−Q(β0,Λ0, F0)[h1, h2]

=P

[
K∑
j=1

{
∆
(

exp(2βT0 Z)
(
4Λ̂n,j(Y )2 −4Λ0,j(Y )2

)
hT1Z

+
(
4Λ̂n,j(Y )−4Λ0,j(Y )

)(
4Nj exp(βT0 Z)hT1Z − exp(2βT0 Z)4h2,j(Y )

))
+

1−∆

1− F0(Y |Z)

∫ ∞
Y

(
exp(2βT0 Z)

(
4Λ̂n,j(u)2 −4Λ0,j(u)2

)
hT1Z

+
(
4Λ̂n,j(u)−4Λ0,j(u)

)(
4Nj exp(βT0 Z)hT1Z − exp(2βT0 Z)4h2,j(u)

))
dF0(u|Z)

}]
=R2(h1, h2)(Λ̂n − Λ0)− P

[
K∑
j=1

{
∆ exp(2βT0 Z)(4Λ̂n,j(Y )−4Λ0,j(Y ))2hT1Z

+
1−∆

1− F0(Y |Z)

∫ ∞
Y

(
exp(2βT0 Z)(4Λ̂n,j(u)−4Λ0,j(u))2hT1Z

)
dF0(u|Z)

}]
=R2(h1, h2)(Λ̂n − Λ0) + op(n

−1/2),

and by (4.10), it follows that

Q(β̂n, Λ̂n, F0)[h1, h2]−Q(β0,Λ0, F0)[h1, h2]

=R1(h1, h2)(β̂n − β0) +R2(h1, h2)(Λ̂n − Λ0) + op(n
−1/2)

=Q̇1,β0,Λ0,F0(β̂n − β0, Λ̂n − Λ0)[h1, h2] + op(n
−1/2).

(4.11)

By Lemma 4.4,

|Q(β0,Λ0, F̂n)[h1, h2]−Q(β0,Λ0, F0)[h1, h2]− Q̇2,β0,Λ0,F0(F̂n − F0)[h1, h2]|

=

∣∣∣∣∣P
[

(1−∆)
F̂n(Y )− F0(Y )

1− F0(Y )

K∑
j=1

{∫∞
Y
ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]dF̂n(u)

1− F̂n(Y )

−
∫∞
Y
ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]dF0(u)

1− F0(Y )

}]∣∣∣∣
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.||F̂n − F0||∞P

[
(1−∆)

K∑
j=1

∣∣∣∣∣
∫∞
Y
ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]dF̂n(u)

1− F̂n(Y )

−
∫∞
Y
ϕ̃j,β0,Λ0,F0(u;X)[h1, h2]dF0(u)

1− F0(Y )

∣∣∣∣] . ||F̂n − F0||2∞ = op(n
−1/2).

(4.12)

Furthermore, since Λ0 ∈ Hr with r ≥ 2, we have d1(Λ̂′n,Λ
′
0) = op(1). By Lemma 4.4,

∣∣∣(Q(β̂n, Λ̂n, F̂n)[h1, h2]−Q(β0,Λ0, F̂n)[h1, h2]
)

−
(
Q(β̂n, Λ̂n, F0)[h1, h2]−Q(β0,Λ0, F0)[h1, h2]

)∣∣∣
.(d1(Λ̂n,Λ0) + d1(Λ̂′n,Λ

′
0) + ||β̂n − β0||2)d2(F̂n, F0) = op(n

−1/2).

Thus, according to (4.11), (4.12) and the above inequality, (B4) holds.

Finally, we consider (B5). Note that

√
nQn(β0,Λ0, F0)[h1, h2] +

√
nQ̇2,β0,Λ0,F0(F̂n − F0)[h1, h2]

=
√
nPnψ(β0,Λ0, F0;X)[h1, h2] +

√
nP
[∫ ∞

Y

ϕ̄β0,Λ0,F0(u;X)[h1, h2]d(F̂n − F0)(u|Z)

]
.

According to Lemma 4.2, we have

P
[∫ ∞

Y

ϕ̄β0,Λ0,F0(u;X)[h1, h2]d(F̂n(u|Z)− F0(u|Z))

]

=P
[∫ ∞

Y

∂ϕ̄β0,Λ0,F0(u;X)[h1, h2]

∂u
(F̂n(u|Z)− F0(u|Z))du

− ϕ̄β0,Λ0,F0(Y ;X)[h1, h2](F̂n(Y |Z)− F0(Y |Z))
]

=P

[
1

n

n∑
i=1

{∫ ∞
Y

∂ϕ̄β0,Λ0,F0(u;X)[h1, h2]

∂u
Ω(u,Z; Ỹi, ∆̃i, Z̃i)du

− ϕ̄β0,Λ0,F0(Y ;X)[h1, h2]Ω(Y,Z; Ỹi, ∆̃i, Z̃i)
}]

=:Pnϕ(β0,Λ0, F0; Ỹ , ∆̃, Z̃)[h1, h2],
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where

ϕ(β0,Λ0, F0; Ỹ , ∆̃, Z̃)[h1, h2] =PX
[{∫ ∞

Y

∂ϕ̄β0,Λ0,F0(u;X)[h1, h2]

∂u
Ω(u,Z; Ỹ , ∆̃, Z̃)du

− ϕ̄β0,Λ0,F0(Y ;X)[h1, h2]Ω(Y,Z; Ỹ , ∆̃, Z̃)
}]

.

By the central limit theorem, it follows that

√
nQn(β0,Λ0, F0)[h1, h2] +

√
nQ̇2,β0,Λ0,F0(F̂n − F0)[h1, h2] N(0, σ0[h1, h2]2),

where

σ0[h1, h2]2 = E

[{
ψ(β0,Λ0, F0;X)[h1, h2] + ϕ(β0,Λ0, F0; Ỹ , ∆̃, Z̃)[h1, h2]

}2
]
.

(4.13)

By Lemma 4.7,
√
nR1(h1, h2)(β̂n−β0)+

√
nR2(h1, h2)(Λ̂n−Λ0) N(0, σ0[h1, h2]2).

(ii) To prove the asymptotic normality of β̂n, we need to find an (h∗1, h
∗
2) such

that R2(h∗1, h
∗
2)(Λ̂n − Λ0) = 0. After some algebraic calculations, we obtain

R2(h∗1, h
∗
2)(Λ̂n − Λ0) = P

[
K∑
j=1

{
(4Λ̂n,j(U)−4Λ0,j(U))

× E
[(
4h∗2,j(U) +4Λ0,j(U)h∗T1 Z

)
exp(2βT0 Z)|U,K, T

] }]
.

This implies that

4h∗2,j(U) =
−h∗T1 E[exp(2βT0 Z)Z|U,K, T ]

E[exp(2βT0 Z)|U,K, T ]
4Λ0,j(U) = −h∗T1 R∗(U,K, T )4Λ0,j(U),

whereR∗(U,K, T ) = E[exp(2βT0 Z)Z|U,K, T ]/E[exp(2βT0 Z)|U,K, T ]. Then we have

4Λj(U)h∗T1 Z +4h∗2,j(U) = 4Λj(U)h∗T1 (Z −R∗(U,K, T )). (4.14)
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It follows that

R1(h∗1, h
∗
2)(β̂n − β0)

=h∗T1 P

[
K∑
j=1

{
exp(2βT0 Z)4Λ0,j(U)2

(
Z −R∗(U,K, T )

)}
ZT

]
(β̂n − β0)

=h∗T1 A
∗(β̂n − β0),

where A∗ = P
[∑K

j=1{exp(2βT0 Z)4Λ0,j(U)2(Z − R∗(U,K, T ))⊗2}
]
. Furthermore,

by (4.14), we obtain

ψ(β0,Λ0, F0;X)[h∗1, h
∗
2]

=h∗T1

K∑
j=1

[
∆
{
4Nj − exp(βTZ)4Λj(Y )

}
exp(βTZ)4Λj(Y )(Z −R∗(Y,K, T ))

+
1−∆

1− F (Y |Z)

∫ ∞
Y

{
4Nj − exp(βTZ)4Λj(u)

}
exp(βTZ)4Λj(u)

×(Z −R∗(u,K, T ))dF (u|Z)
]

=: h∗T1 ψ∗(β0,Λ0, F0;X)

and

ϕ(β0,Λ0, F0; Ỹ , ∆̃, Z̃)[h∗1, h
∗
2]

=h∗T1 PX
[{∫ ∞

Y

∂ϕ̄∗β0,Λ0,F0
(u;X)

∂u
Ω(u,Z; Ỹ , ∆̃, Z̃)du

− ϕ̄∗β0,Λ0,F0
(Y ;X)Ω(Y,Z; Ỹ , ∆̃, Z̃)

}]
= : h∗T1 ϕ∗(β0,Λ0, F0; Ỹ , ∆̃, Z̃),

where

ϕ̄∗β0,Λ0,F0
(u;X)

1−∆

1− F0(Y |Z)

K∑
j=1

{
ϕ̃∗j,β0,Λ0,F0

(u;X)−
∫ ∞
Y

ϕ̃∗j,β0,Λ0,F0
(s;X)

1− F0(Y |Z)
dF0(s|Z)

}

and ϕ̃∗j,β0,Λ0,F0
(u;X) = {4Nj−exp(βT0 Z)4Λ0,j(u)} exp(βT0 Z)4Λj(u)(Z−R∗(u,K, T )).
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After some algebraic calculations, we have

σ0[h∗1, h
∗
2]2 = E

[{
ψ(β0,Λ0, F0;X)[h∗1, h

∗
2] + ϕ(β0,Λ0, F0; Ỹ , ∆̃, Z̃)[h∗1, h

∗
2]
}2
]

=h∗T1 E

[{
ψ∗(β0,Λ0, F0;X) + ϕ∗(β0,Λ0, F0; Ỹ , ∆̃, Z̃)

}2
]
h∗1 =: h∗T1 B

∗h∗1.

It follows that
√
nh∗T1 A

∗(β̂n−β0) N(0,h∗T1 B
∗h∗1) for all h∗1 ∈ R. Then we obtain

√
n(β̂n − β0) N(0, (A∗)−1B∗((A∗)−1)T ).

Finally, we turn to consider (h∗∗1 , h
∗∗
2 ) such that R1(h∗∗1 , h

∗∗
2 )(β̂n−β0) = 0, which

implies h∗∗1 = R∗∗(h∗∗2 ) with

R∗∗(h2) =−

{
E

[
K∑
j=1

{
4Λ0,j(U)2 exp(2βT0 Z)Z⊗2

}]}−1

×E

[
K∑
j=1

{
4h2,j(U)4Λ0,j(U) exp(2βT0 Z)Z

}]
.

Then we have

R2(h∗∗1 , h
∗∗
2 )(Λ̂n − Λ0) =P

[
K∑
j=1

{(
4h∗∗2,j(U) +4Λ0,j(U)R∗∗(h∗∗2 )TZ

)

× exp(2βT0 Z)(4Λ̂n,j(U)−4Λ0,j(U))
}]

.

Taking σ̃0[h2]2 = σ0[R∗∗(h2), h2]2 for all h2 ∈ Hr, it follows that

√
nP

[
K∑
j=1

{(
4h2,j(U) +4Λ0,j(U)R∗∗(h2)TZ

)
exp(2βT0 Z)(4Λ̂n,j(U)−4Λ0,j(U))

}]

converges in distribution to N(0, σ̃0[h2]2).
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Chapter 5

Concluding Remarks

In this thesis, we study two topics in the area of survival analysis.

In Chapter 2, we conduct the subgroup analysis for the heterogenous Cox model

using the concave fusion penalized partial likelihood approach. The proposed ap-

proach can identify the grouping structure and estimate the heterogeneous covariate

effects involved in the model simultaneously and automatically. To obtain an effi-

cient solution to the objective function, we apply the majorized ADMM algorithm

which not only converges faster but also calculates more accurately than the local

quadratic approximated ADMM algorithm suggested by Ma et al. (2019). Our sim-

ulation and real data analysis demonstrate that the proposed method performs well.

We expect that the proposed approach can be extensively used for subgroup analysis

with survival data.

Based on the residual time between observation and the terminal event, Chapter

3 builds a conditional nonparametric mean functional model to study the explicit

effects of the terminal events on the occurrence rate of panel count data. We propose

a two-stage estimation procedure and obtain the consistency and the convergence rate

of the nonparametric estimator by extending modern empirical process theories. In

addition, we establish the asymptotic normality of the nonparametric estimator and

conduct the two-sample hypothesis test based on the theoretical results. At last, we
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use the proposed method to analyze the CLHLS data and draw some reasonable and

practical conclusions.

Chapter 4 considers the effect of the covariates and studies the intricate inter-

action between the terminal event and the recurrent event with panel count data

more efficiently and accurately. We propose a semiparametric two-stage estimation

for the baseline conditional mean function and the parameter of covariates, and we

also establish the asymptotic properties for the estimator. Our simulation study

demonstrates that the proposed estimation has satisfactory performance with the

finite sample size. Finally, we use the approach to analyze the CLHLS data and

obtain some practical conclusions.

There still exist some interesting questions for future researches.

For the subgroup analysis, after the identification of the subgroup structure,

we can utilize this result for the prediction purpose. Considering the statistical

methods for classification, such as the support vector machines, we can divide a

new individual into existing subgroups. Based on the estimate for the coefficient

of this subgroup, we can predict the treatment effect. Next, we can consider the

algorithm based on second-order optimization techniques instead of the majorized

ADMM algorithm because the ADMM-based algorithm converges slowly. Since the

performances of the proposed estimation highly depend on the choice of the initial

value in the algorithm, we can improve our estimation by taking a better initial

value. Further, the proposed method can be extended to handling the case where

the unknown number of subgroups and the dimension of covariates can increase with

sample size in the proposed heterogenous Cox model. For this situation, we propose

to use the criterion function

Qn(η,β) = `n(η,β) +
∑
i<j

p(1)
γ (||βi − βj||, λ1) +

q∑
j=1

p(2)
γ (ηj, λ2).
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With the penalty functions p
(1)
γ (·, λ1) and p

(2)
γ (·, λ2), we can conduct subgroup anal-

ysis and variable selection simultaneously. In subgroup analysis, a common problem

of interest is to test the existence of a subgroup with an enhanced treatment effect.

We can use our subgroup analysis method to study the signs of coefficients rather

than the values of coefficients to solve the problem.

For the panel count data with an informative terminal event, we may first consider

the test for goodness-of-fit by using the coefficient of determination or the Pearson’s

chi-squared test. Similar to the techniques using in the nonparametric model, we can

conduct the hypothesis test in the semiparametric model to identify the differences

between two groups. Instead of using the least squares-based two-stage estimation,

it is natural to adapt the maximum-likelihood-based two-stage approach to enhance

the efficiency of the estimation. To study the maximum-likelihood-based two-stage

approach, we need to overcome the challenges brought by the difficulties of theoretical

proofs. We can also extend our model to

E(Ñ(t;U)|U = u) = Λ(u, t).

Using a two-dimensional function, this model has a more widespread application.

Another straightforward improvement is that we can consider the variable selec-

tion problem by introducing a penalized function such as SCAD (Fan and Li, 2001)

or MCP (Zhang, 2010). Furthermore, in this thesis, the observation progress of

the recurrent event T is independent of the covariates, and the covariates are also

time-independent. As these assumptions are usually not satisfied in many applica-

tions, our model will be more accurate when we consider the effect of T and the

time-dependent covariates. Finally, subgroup analysis is also applicable to the semi-

parametric regression model for panel count data when the treatment heterogeneity

exists.
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Theory and Statistics. École d’Eté de Probabilités de Saint-Flour XXIX—1999.
Lecture Notes in Math. 1781 331—457. Springer, New York.

[91] van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Em-
pirical Processes. New York: Springer-Verlag.

[92] van’t Veer, L. J., Dai, H., van de Vijver, M. J., et al. (2002) Gene expression
profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.

[93] Wang, M. C., and Chang, S. H. (1999). Nonparametric estimation of a recurrent
survival function. Journal of the American Statistical Association 94, 146—
153.

[94] Wang, M., Qin, J., and Chiang, C. (2001). Analyzing recurrent event data
with informative censoring. Journal of the American Statistical Association
96, 1057—1065.

[95] Wei, L. J. (1992). The accelerated failure time model: A useful alternative
to the cox regression model in survival analysis. Statistics in Medicine 11,
1871—1879.

[96] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivari-
ate incomplete failure time data by modeling marginal distributions. Journal
of the American Statistical Association 84, 1065—1073.

[97] Wellner, J. A., and Zhang, Y. (2000). Two estimator of the mean of a counting
process with panel count data. The Annals of Statistics 28, 779–814.

[98] Wellner, J. A., and Zhang, Y. (2007). Two likelihood-based semiparametric es-
timation methods for panel count data with covariates. The Annals of Statistics
35, 2106–2142.

[99] Wong, C. S., and Li, W. K. (2001). On a logistic mixture autoregressive model.
Biometrika 88, 833-–846.

153



[100] Wu, R., Zheng, M., and Yu, W. (2016). Subgroup analysis with time-to-event
data under a logistic-Cox mixture model. Scandinavian Journal of Statistics
43, 863–878.

[101] Yan, X., Yin, G., and Zhao, X. (2020). Subgroup analysis in censored linear
regression. Statistica Sinica Perprint

[102] Ye, Y., Kalbfleisch, J. D., and Schaubel, D. E. (2007). Semiparametric analysis
of correlated recurrent and terminal events. Biometrics 63, 78—87.

[103] Zeng, D., and Cai, J. W. (2010). A semiparametric additive rate model for
recurrent events with an informative terminal event. Biometrika 97, 699—712.

[104] Zeng, Y., Vaupel, J., Xiao, Z., Liu, Y., and Zhang, C. Chinese Longitudi-
nal Healthy Longevity Survey (CLHLS), 1998–2014. Ann Arbor, MI: Inter-
university Consortium for Political and Social Research [distributor], 2017-04-
11. https://doi.org/10.3886/ICPSR36692.v1

[105] Zhang, C. (2010). Nearly unbiased variable selection under minimax concave
penalty. The Annals of Statistics 38, 894–942.

[106] Zhang, H., Sun, J., and Wang, D. (2013). Variable selection and estimation for
multivariate panel count data via the seamless-L0 penalty. Canadian Journal
of Statistics 41, 368–385.

[107] Zhang, H. H., and Lu, W. (2007). Adaptive Lasso for Cox’s proportional haz-
ards model. Biometrika 94, 691–703.

[108] Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for
panel count data. Biometrika 89, 39-–48.

[109] Zhang, Y. (2006). Nonparametric k-sample tests for panel count data.
Biometrika 93, 777–790.

[110] Zhang, Y., Wang, J. H., and Zhu, Z. (2019). Robust subgroup identification.
Statistica Sinica 29, 1873–1889.

[111] Zhao, H., Li, Y., and Sun, J. (2013a). Analyzing panel count data with a depen-
dent observation process and a terminal event. Canadian Journal of Statistics
41, 174–191.

154



[112] Zhao, H., Li, Y., and Sun, J. (2013b). Semiparametric analysis of multivariate
panel count data with dependent observation processes and a terminal event.
Journal of Nonparametric Statistics 25, 379–394.

[113] Zhao, H., Wu, Q., Li, G., and Sun, J. (2020). Simultaneous estimation and vari-
able selection for interval-censored data with broken adaptive ridge regression.
Journal of the American Statistical Association 115, 204–216.

[114] Zhao, X., and Sun, J. (2011). Nonparametric comparison for panel count data
with unequal observation processes. Biometrics 67, 770–779.

[115] Zhao, X., and Zhang, Y. (2017). Asymptotic normality of nonparametrix M-
estimators with aplications to hypothesis testing for panel count data. Statistica
Sinica 27, 931–950.

[116] Zhao, X., Zhou, J., and Sun, L. (2011). Semiparametric transformation models
with time-varying coefficients for recurrent and terminal events. Biometrics
67, 404–414.

[117] Zhou, J., Zhang, H., Sun, L., and Sun, J. (2017). Joint analysis of panel count
data with an informative observation process and a dependent terminal event.
Lifetime Data Analysis 23, 560–584.

155


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Notations
	1 Introduction
	1.1 Background
	1.2 Literature Review
	1.2.1 Subgroup Analysis
	1.2.2 Panel Count Data Analysis
	1.2.3 Terminal Event

	1.3 Motivation and Outline

	2 Subgroup Analysis in the Cox Model
	2.1 Introduction
	2.2 Heterogenous Cox Model and Estimation Procedure
	2.3 Majorized ADMM Algorithm
	2.4 Asymptotic Results
	2.5 Simulation Studies
	2.6 Real Data Analysis
	2.7 Appendix: Proofs of Theorems
	2.7.1 Proof of Theorem 2.1
	2.7.2 Proof of Theorem 2.2
	2.7.3 Proof of Theorem 2.3


	3 Nonparametric Statistical Inference for Panel Count Data with Terminal Event
	3.1 Introduction
	3.2 Model Setting and Estimation Procedure
	3.3 Asymptotic Properties of the Estimator
	3.4 Two-Sample Test
	3.4.1 Terminal Events with Equal Distribution
	3.4.2 Terminal Events with Unequal Distributions

	3.5 Simulation Studies
	3.5.1 Two-Stage Estimation for Mean Function
	3.5.2 Two-Sample Test with the Same Terminal Events
	3.5.3 Two-Sample Test with Different Terminal Events

	3.6 Real Data Analysis
	3.7 Appendix
	3.7.1 Calculation of Loss Function
	3.7.2 Lemmas
	3.7.3 Proof of Theorem 3.1
	3.7.4 Proof of Theorem 3.2
	3.7.5 Proof of Theorem 3.3
	3.7.6 Proof of Theorem 3.4
	3.7.7 Proof of Theorem 3.5
	3.7.8 Proof of Theorem 3.6


	4 Semiparametric Statistical Inference for Panel Count Data with Terminal Event
	4.1 Introduction
	4.2 Model Setting and Estimation Procedure
	4.3 Asymptotic Properties of the Estimator
	4.4 Simulation Studies
	4.5 Real Data Analysis
	4.6 Appendix
	4.6.1 Lemmas
	4.6.2 A General Theorem for the Asymptotic Normality of Semiparametric M-estimation with Nuisance Parameter
	4.6.3 Proof of Theorem 4.1
	4.6.4 Proof of Theorem 4.2
	4.6.5 Proof of Theorem 4.3


	5 Concluding Remarks
	Bibliography

