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Abstract

This thesis studies two applications of stochastic control in quantitative finance and in-

surance, namely one problem of optimal entry decision making and dynamic consumption

with habit formation and one problem of optimal dividend payment for an insurance group

in face of external default risk. By using dynamic programming argument and some del-

icate partial differential equation (PDE) analysis, we can characterize the value function

of each control problem as the solution to the associated Hamilton-Jacobi-Bellman (HJB)

variational inequality in a classical sense or in a viscosity sense.

In the first project, we consider a composite problem to choose an optimal entry time

from complete market information to incomplete information bearing information costs.

Starting from the chosen time, the investor no longer pays the fee for acquiring the extra

market information and chooses dynamic investment and consumption strategies through

partial observations of the public stock price. In addition, the habit formation preference is

considered for the dynamic consumption problem. By employing the stochastic Perron’s

method, the value function of this composite problem is proved to be a viscosity solution of

the HJB variational inequality. For the interior optimal investment-consumption problem,

the feedback control policies are obtained. The numerical illustration of the continuation

region and stopping region is also presented.

In the second project, a multi-dimensional optimal dividend problem for an insurance

group is formulated and studied. The novelty of our work is to incorporate the systemic

risk modelled by the contagious credit default risk among subsidiaries. That is, each sub-
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sidiary of the insurance group runs a product line and all subsidiaries suffer from the exter-

nal credit risk from the financial market. The default contagion is considered in the sense

that one default event may increase the default probabilities of all surviving subsidiaries.

By studying the recursive system of the Hamilton-Jacobi-Bellman variational inequalities

(HJBVIs), the optimal singular dividend of each subsidiary satisfies a barrier type and the

optimal barrier is dynamically modulated by the current default state. In the case of two

subsidiaries, the value function and optimal barriers are given in analytical forms, allowing

us to conclude that the optimal barrier of one subsidiary decreases if the other subsidiary

defaults.
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Chapter 1

Introduction

The aim of this chapter is to briefly review some applications of stochastic control

and dynamic programming approach based on HJB variational inequality. The existing

literature is far-reaching, thus, we will only refer to a small portion of the abundant work

that is closely related to our models and mathematical methods. The outline of this thesis

is given at the end.

1.1 Optimal Control Problem and Variational Inequali-
ties

Mathematical finance attaches great importance to optimal control problems as a con-

sequence of the comfort and convenience that they bring in the real world, especially the

optimal entry and consumption problem and the optimal dividend problem. Those prob-

lems address a basic model that can be described as HJB variational inequality to meet

the increasing demands and requirements of detailed considerations, for example, optimal

entry time, habit formation preference and contagious credit default risk.

Variational inequalities are important mathematical tools in vast research on stochas-

tic singular control, impulse control and optimal stopping problems. We refer the com-

prehensive review of this approach in financial applications in [72]. HJB variational in-

equalities have been theoretically elaborated from those that relate to control problems
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in [10, 16]. Specifically, HJB variational inequalities have been used in optimal con-

sumption and portfolio optimization in [32, 83] and optimal dividend control problems

in [61, 84, 88]. The combined optimal stopping and stochastic control problem has been

investigated in [26, 55]. The variational inequalities that formulate the optimal stopping

problem was used in [16], and then developed in [50] in diffusion models for Ameri-

can options, and then further applied in [71] to the optimal stopping, free boundary, and

American options in a jump-diffusion model. The optimal insurance demand problem

with marked point processes shocks were analyzed through HJB variational inequality in

[62, 63]. The relationship between optimal risk control and dividend distribution policies

with the excess-of-loss reinsurance risk control method was explored in [64]. Although

the same problem was studied in [82], they considered the diffusion model with a terminal

value. The swing option has been discussed as another application in [15, 31].

The majority of research relating to the background of optimal control problems in this

thesis has been carried out in previous studies. However, with reference to the difference of

opinions regarding the impact of information costs on optimal investment [1, 51, 53, 74],

we assume that investors need to afford higher information costs during the waiting time.

Additionally, we employ the habit formation preference as the habit formation is illustrated

to depict preferences on consumption rate, which has been investigated in both complete

[35, 38, 66] and incomplete [86, 87] market models. A large body of work has considered

various aspects of the optimal dividend payment, a necessary signal for both companies

and shareholders [3, 6, 7, 8, 9, 27, 34, 43, 47, 56, 59, 68, 69, 70, 78]. It is also interesting

to take default contagion into account, as studied by [4, 33, 80].

1.2 Outline of the Thesis

In this thesis, we discuss the optimal entry and consumption problem and the opti-

mal dividend problem. Detailed introductions are given in each chapter to provide better
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background to the model, the mathematical challenges, and our contributions. Each value

function of the corresponding control problem can be formulated as the solution to an HJB

variational inequality, in a classical sense or in a viscosity sense using different mathemat-

ical arguments.

Chapter 2 analyzes a composite optimal control problem, that is, a portfolio and con-

sumption optimization problem under habit formation, together with choosing an optimal

entry time. First, the interior utility maximization problem with habit formation under par-

tial observations are explicitly solved. The explicit interior value function then allows us to

regard exterior optimal stopping as an optimization problem over the renewed input of the

drift process using Kalman-Bucy filtering and a linear information cost function. Finally,

using the stochastic Perron’s method with a linear cost function for the exterior optimal

entry problem, we prove that the value function of this composite control problem is the

unique viscosity solution to some HJB variational inequality. The numerical example of

the sensitivity analysis of the free boundary curve is also given.

Chapter 3 studies the optimal dividend strategy for a multi-line insurance group whose

subsidiaries are exposed to some external credit default risk. As opposed to Chapter 2, a

multi-dimensional control problem is considered, which creates some new mathematical

hindrances. Firstly, an HJB variational inequality for two subsidiaries is derived and then

a closed-form solution of this value function is solved completely. Moreover, the current

default state modulates the optimal barrier of the dividend policy, which is a consequence

of the recursive system of the HJBVIs and the smooth-fit principle. Furthermore, these

results are generalized to a multi-line insurance group using mathematical induction. We

also present the numerical example of two subsidiaries to show the change of the optimal

barrier when default occurs.

Chapter 4 summarizes the main results and contributions of this thesis. In addition, it

also gives a brief introduction to some future work.

3



4



Chapter 2

Optimal Entry and Consumption Under
Habit Formation

In this chapter 1, we formulate a composite problem involving the decision making of

the optimal entry time and dynamic consumption afterwards. In stage-1, the investor has

access to full market information, subject to some information costs, and needs to choose

an optimal stopping time to initiate stage-2. In stage-2, starting from the chosen stopping

time, the investor terminates the costly full information acquisition and starts dynamic

investment and consumption under partial observations of free public stock prices. The

habit formation preference is employed, in which past consumption affects the investor’s

current decisions. The value function of the composite problem is proved to be the unique

viscosity solution of some variational inequalities.

2.1 Introduction

We consider a basic model to incorporate information costs in a continuous-time finite

horizon portfolio-consumption problem. In particular, we study a two-stage composite

problem under complete and incomplete filtrations, sequentially. The drift process of the

stock price is assumed to be of the Ornstein-Uhlenbeck type. In the first stage, from the

1 A version of this chapter has been submitted to Advances in Applied Probability, which is currently under
review.
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initial time, the investor needs to pay information costs to access the full information filtra-

tion generated by both drift and stock price processes to update their dynamic distributions

and decide the optimal time to enter the second stage. The information costs for full mar-

ket information may refer to search cost and storage cost to obtain data generated by the

stochastic drift process, as well as communication cost, investor’s attention cost, and other

service costs. We consider linear information costs in the present chapter, which have a

constant cost rate per unit of time and are subtracted directly from the investor’s initial

wealth as time moves on. Therefore, the longer the first stage is, the higher information

costs the investor needs to afford. Some previous work has addressed impacts of informa-

tion costs to optimal investment from different perspectives (see [51], [74], [1] and [53]).

In our first stage, the mathematical problem becomes an optimal stopping problem under

the complete market information filtration. The second stage starts from the chosen entry

time and the investor terminates the full observations of the drift process. Instead, the in-

vestor starts to choose the investment and consumption policy dynamically, based on the

prior data inputs and the free partial observations of public stock prices, which corresponds

to an optimal control problem under incomplete information filtration. As the value func-

tion of the interior control problem depends on the stopping time and data inputs of wealth

and drift processes at the chosen stopping time, the exterior problem can be equivalently

understood as to choose to wait in an optimal way, subjecting to some waiting costs for

the input values to achieve certain levels in order to maximize the interior function.

Portfolio optimization under partial observations have been actively studied in past

decades (see a few examples among [18, 21, 23, 57, 65, 81]) with different financial mo-

tivations. As illustrated in these works, the value function under incomplete information

filtration is strictly lower than the counterpart under full information filtration, and this gap

is usually regarded as the loss of information. The present chapter attempts to contribute

to the study of partial observations from the perspective that the full market information

is available, but costly, because more data, services and personal attentions are involved.
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The information cost may significantly change the investor’s attitude towards the usage of

full observations because it is no longer true that the more information he observes, the

higher profit he can attain. Moreover, from some previous work on partial observations,

we know that the value function eventually depends on the given initial input of random

factors, such as the drift process. As in [23, 57], it is conventionally assumed that the

initial data of the unobservable drift is a Gaussian random variable so that the Kalman-

Bucy filtering can be applied. We take this input into account and consider a model that

the investor can wait on and dynamically update the distribution of inputs using the full

market information, subjecting to information costs. We can show that starting sharp from

the initial time to invest and consume under incomplete information is not necessarily the

optimal decision. The optimal solution suggests that the investor can be better off if he

delays his dynamic decisions and waits until the observed drift process hits a certain level.

On the other hand, the habit formation has become a new paradigm for modelling

preferences on consumption rate in recent years, which can better match with some empir-

ical observations (see [29, 60]). The literature suggests that the past consumption pattern

may enforce a continuing impact on the individual’s current consumption decisions and

therefore the preference should depend on the consumption path. In particular, the linear

habit formation preference has been widely accepted, in which there exists an index term

that stands for the accumulative consumption history. This habit formation preference has

been well studied in [35, 38, 66] in complete market models and in [86, 87] in incomplete

market models. It is noted that the utility function is decreasing in the habit level. In the

present chapter, we assume that there is no consumption during stage-1 and the investor

starts to form consumption habits only in stage-2. Therefore, it may yield that an early

entry time to stage-2 may not be the optimal decision because the investor has a longer

time to develop a much higher habit level. This is our second motivation to investigate the

exterior optimal entry time problem in order to see whether longer waiting and updating

inputs can benefit the investor more as the resulting habit level can be much lower and lead
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to a higher interior value function.

We show that the value function of the composite problem is the unique viscosity so-

lution to some variational inequalities. To this end, we can choose to apply either the

classical Perron’s method or the stochastic version of Perron’s method introduced in [11].

For the classical Perron’s method, in order to establish the equivalence between the value

function and the viscosity solution, we must either prove the dynamic programming prin-

ciple or upgrade the global regularity of the solution and prove the verification theorem.

The convexity of the value function with respect to the state variable is usually crucial

in some standard arguments to improve global regularity. However, the convexity is not

clear in our composite problem. The global regularity of the value function along the free

boundaries is not guaranteed, and the direct verification proof for the exterior problem

becomes difficult. Instead, we choose the stochastic Perron’s method, which allows us to

show the equivalence between the value function and the viscosity solution without global

regularity. For some related literature on optimal stopping using the viscosity solution,

we refer to [76] and [71] (see also some recent work on stochastic control problems us-

ing the stochastic Perron’s method, e.g. [11, 12, 13, 14, 58, 79]). One important step to

complete the argument of the stochastic Perron’s method is the comparison principle of

the associated variational inequalities, which is also established in the present chapter.

The rest of the chapter is organized as follows. Section 2.2 introduces the market

model and the habit formation preference and formulates the 2-stage optimization prob-

lem. Section 2.3 not only gives the main result of the interior utility maximization problem

with habit formation and partial observations, but studies the exterior optimal entry prob-

lem with linear information costs as well. Using the stochastic Perron’s method, we show

that the value function of the composite problem is the unique viscosity solution of some

variational inequalities. Some auxiliary results are reported in Appendix A.
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2.2 Mathematical Model and Preliminaries

2.2.1 Market Model

Given the probability space (Ω,F,P) with full information filtration F = (Ft)0≤t≤T

that satisfies the usual conditions, we consider the market with one risk-free bond and one

risky asset over a finite time horizon [0, T ]. It is assumed that the bond process satisfies

S0
t ≡ 1, for t ∈ [0, T ], which amounts to the standard change of numéraire.

The stock price St satisfies

dSt = µtStdt+ σSStdWt, 0 ≤ t ≤ T, (2.1)

with S0 = s > 0. Some empirical studies such as [24, 25, 40, 75] have observed that

the drift process of many risky assets follows the so-called mean reverting diffusion. This

structure has been widely used not only due to the financial evidence, but also in view of

its advantage to make the mathematical problem tractable. We therefore consider that the

drift process µt in (2.1) satisfies the Ornstein-Uhlenbeck SDE as

dµt = −λ(µt − µ̄)dt+ σµdBt, 0 ≤ t ≤ T. (2.2)

Here, (Wt)0≤t≤T and (Bt)0≤t≤T are Ft-adapted Brownian motions with correlation coef-

ficient ρ ∈ [−1, 1]. For simplicity, the initial value µ0 of the drift is a given constant. We

assume that market coefficients σS , λ, µ̄ and σµ are given non-negative constants based on

calibrations from historical data.

It is assumed that the investor starts with initial wealth x(0) = x0 > 0 at time t = 0.

Also, starting from the initial time t = 0, the access to the full market information Ft

generated by W and B incurs information costs κt, where κ > 0 is the constant cost rate

per unit time. The information costs may refer to storage cost, search cost, communication

cost, investor’s attention cost or other service costs to fully observe the market information

Ft. Moreover, to simplify the mathematical problem, it is assumed that starting from t = 0

to a chosen stopping time τ , the investor purely waits and updates dynamic distributions of
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processes µt and St and does not invest and consume at all. This assumption makes sense

as long as the value of the optimal entry time τ is short in the model. The dynamic wealth

process after the information costs at time t is simply given by a deterministic function

x(t) = x0 − κt for any t ≤ τ .

As the full market information filtration is costly, the investor needs to choose opti-

mally choose an Ft-adapted stopping time τ to terminate the full information acquisition

and enter the second stage. From the chosen stopping time τ , he switches to the partial

observations filtration FSt = Fτ
∨
σ(Su : τ ≤ u ≤ t) for τ ≤ t ≤ T , which is the union

of the sigma algebra Fτ and the natural filtration generated by the stock price S up to time

t. Moreover, for any time τ ≤ t ≤ T , the investor chooses a dynamic consumption rate

ct ≥ 0 and decides the amounts πt of his wealth to invest in the risky asset and the rest

in the bond. Without paying information costs, the drift process µt and Brownian motions

Wt andBt are no longer observable for t ≥ τ . Therefore, the investment-consumption pair

(πt, ct) is only assumed to be adapted to the partial observation filtrationFSt for τ ≤ t ≤ T .

Recall that at the entry time τ , the investor only has wealth x(τ) = x0 − κτ left. Under

the incomplete filtration FSt , the investor’s total wealth process X̂t can be written as

dX̂t = (πtµt − ct)dt+ σSπtdWt, τ ≤ t ≤ T, (2.3)

with the initial value X̂τ = x(τ) = x0 − κτ > 0. Note that Wt is no longer a Brownian

motion under the partial observations filtration FSt , we have to apply the Kalman-Bucy

filtering and consider the Innovation Process defined by

dŴt :=
1

σS

[
(µt − µ̂t)dt+ σSdWt

]
=

1

σS

(dSt
St
− µ̂tdt

)
, τ ≤ t ≤ T,

which becomes a Brownian motion under FSt . The best estimation of the unobservable

drift process µt under FSt is the conditional expectation process µ̂t = E
[
µt

∣∣∣FSt ], for

τ ≤ t ≤ T with the initial input µ̂τ = µτ at the stopping time τ where µτ is determined

via (2.2) by paying information costs up to τ . By standard Kalman-Bucy filtering, µ̂t
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satisfies the SDE

dµ̂t = −λ(µ̂t − µ̄)dt+

(
Σ̂(t) + σSσµρ

σS

)
dŴt, τ ≤ t ≤ T,

with µ̂τ = µτ . The conditional variance Σ̂(t) = E
[
(µt − µ̂t)2

∣∣∣FSt ] satisfies the determin-

istic Riccati ODE

dΣ̂(t)

dt
= − 1

σ2
S

Σ̂2(t) +
(
− 2σµρ

σS
− 2λ

)
Σ̂(t) + (1− ρ2)σ2

µ, τ ≤ t ≤ T,

with the initial value Σ̂(τ) = E
[
(µτ − µ̂τ )2

∣∣∣FSt ] = 0 in view of µ̂τ = µτ , P-a.s.. It can be

solved explicitly as

Σ̂(t) =
√
kσS

k1 exp(2(
√
k

σS
)t) + k2

k1 exp(2(
√
k

σS
)t)− k2

−
(
λ+

σµρ

σS

)
σ2
S, τ ≤ t ≤ T,

where

k = λ2σ2
S + 2σSσµλρ+ σ2

µ,

k1 =
√
kσS + (λσ2

S + σSσµρ),

k2 = −
√
kσS + (λσ2

S + σSσµρ).

For the second stage dynamic control problem, we employ the habit formation prefer-

ence. In particular, we denote Zt := Z(ct) as habit formation process or the standard of

living process, which describes the consumption habits level. It is assumed conventionally

that the accumulative reference Zt satisfies the recursive equation (see [35]) that

dZt = (δ(t)ct − α(t)Zt)dt, τ ≤ t ≤ T,

where Zτ = z0 ≥ 0 is called the initial consumption habit of the investor. Equivalently,

we have

Zt = z0e
−

∫ t
τ α(u)du +

∫ t

τ

δ(u)e−
∫ t
u α(s)dscudu, τ ≤ t ≤ T,
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which is the exponentially weighted average of the initial habit and the past consumption.

Here, the deterministic discount factors α(t) ≥ 0 and δ(t) ≥ 0 measure, respectively, the

persistence of the past level and the intensity of consumption history. We are interested

in addictive habits in the present chapter, namely it is required that the investor’s current

consumption strategies shall never fall below the level of standard of living that ct ≥ Zt

a.s., for τ ≤ t ≤ T .

Under the partial observation filtration (FSt )τ≤t≤T , the stock price dynamics (2.1) can

be rewritten by

dSt = µ̂tStdt+ σSStdŴt,

and the wealth dynamics (2.3) can be rewritten as

dX̂t = (πtµ̂t − ct)dt+ σSπtdŴt, τ ≤ t ≤ T.

To facilitate the formulation of the stochastic control problem and the derivation of the

dynamic programming equation, for any t ∈ [0, T ], we denote At(y) the time-modulated

admissible set of the pair of investment and consumption process (πs, cs)t≤s≤T with the

initial wealth X̂t = y, which is FSs -progressively measurable and satisfies the integrability

conditions ∫ T

t

π2
sds < +∞, P− a.s.,

∫ T

t

csds < +∞, P− a.s.,

with the addictive habit formation constraint that cs ≥ Zs, P-a.s., t ≤ s ≤ T . Moreover,

no bankruptcy is allowed, i.e., the investor’s wealth remains nonnegative, i.e. X̂s ≥ 0,

P-a.s., t ≤ s ≤ T .

2.2.2 Problem Formulation

The two-stage optimal decision making problem is formulated as the composite prob-

lem involving the optimal stopping and the stochastic control afterwards, which is defined

12



by

Ṽ (0, µ0;x0, z0) := sup
τ≥0

E

[
esssup

(π,c)∈Aτ (x0−κτ)

E
[∫ T

τ

(cs − Zs)p

p
ds
∣∣∣FSτ ]

]
. (2.4)

In particular, starting from the chosen stopping time τ , we are interested in the utility

maximization on consumption with habit formation, in which the power utility function

U(x) = xp/p is defined on the difference ct − Zt. To simplify the presentation, we only

consider in the present paper that the risk aversion coefficient p < 0. The indirect utility

process of the interior control problem is denoted by

V̂ (t, x0 − κt, z0, µt; 0) := esssup
(π,c)∈At(x0−κt)

E
[∫ T

t

(cs − Zs)p

p
ds
∣∣∣FSt ]

= esssup
(π,c)∈At(x0−κt)

E
[∫ T

t

(cs − Zs)p

p
ds
∣∣∣X̂t = x0 − κt, µ̂t = µt, Zt = z0; Σ̂(t) = 0

]
.

To determine the exterior optimal stopping time, we need to maximize over the inputs

of values τ , X̂τ , Zτ and µ̂τ . Recall that the investor does not manage his investment and

consumption before τ , it follows that X̂τ = x0 − κτ , Zτ = z0 and Σ̂(τ) = 0 can all be

taken as parameters instead of variables. That is, µτ = µ̂τ is the only random input and

we can regard µt as the only underlying state process. Therefore, the dynamic counterpart

of (2.4) is defined by

Ṽ (t, η;x0 − κt, z0) := esssup
τ≥t

E

[
esssup

(π,c)∈Aτ (x0−κτ)

E
[∫ T

τ

(cs − Zs)p

p
)ds
∣∣∣FSτ ]

∣∣∣∣∣µt = η

]
.

(2.5)

Remark 2.1. We focus on the case p < 0 in the present chapter because functions A(t, s),

B(t, s) and C(t, s) as solutions to some future ODEs (2.13), (2.14) and (2.15) are all

bounded and the utility U(x) is also bounded from above, which can significantly sim-

plify the proof of the verification result Theorem 2.3 and the proof of comparison results

Proposition 2.1. The other case 0 < p < 1 can essentially be handled in a similar way.
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However, as the process µ̂t is unbounded and functionsA(t, s),B(t, s) andC(t, s) may ex-

plode at some t ∈ [0, T ], one needs some additional parameter assumptions to guarantee

integrability conditions and martingale properties in the proofs of some main results.

Assumption 2.1. According to Remark 2.3 for the interior control problem, it is assumed

from this point onwards that x0 − κt > z0m(t) for any 0 ≤ t ≤ T , i.e. the initial wealth

is sufficiently large to support that the interior control problem is always well defined for

any 0 ≤ t ≤ T , where m(t) is defined by

m(t) :=

∫ T

t

exp

(∫ s

t

(δ(v)− α(v))dv

)
ds, 0 ≤ t ≤ T. (2.6)

Here m(t) in (2.6) represents the cost of subsistence consumption per unit of standard of

living at time t because the interior control problem is solvable if and only if X̂∗t ≥ m(t)Zt,

0 ≤ t ≤ T , see Proposition 3.4.1 in [85].

The function V̂ can be solved in the explicit form given in (2.12) later. The process

Ṽ (t, µt;x0−κt, z0) with the function Ṽ defined in (2.5) is the Snell envelope of the process

V̂ (t, x0 − κt, z0, µt) above. The function Ṽ in (2.5) can therefore be written as

Ṽ (t, η;x0 − κt, z0) = esssup
τ≥t

E
[
V̂ (τ, x0 − κτ, z0, µτ )

∣∣∣µt = η
]
.

The continuation region, interpreted as the continuation of full information observa-

tions to update the input value, is denoted by

C = {(t, η) ∈ [0, T )× R : Ṽ (t, η;x0 − κt, z0) > V̂ (t, x0 − κt, z0, η)},

and the free boundary is

∂C = {(t, η) ∈ [0, T )× R : Ṽ (t, η;x0 − κt, z0) = V̂ (t, x0 − κt, z0, η)}.

Let us denote Ṽ (t, η;x0 − κt, z0) by Ṽ (t, η) for short when there is no confusion. By

some heuristic arguments, we can write the HJB variational inequalities with the terminal
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condition Ṽ (T, η) = 0, η ∈ R, by

min

{
Ṽ (t, η)− V̂ (t, x0 − κt, z0, η), −∂Ṽ (t, η)

∂t
− LṼ (t, η)

}
= 0, (2.7)

where LṼ (t, η) = −λ(η − µ̄)∂Ṽ
∂η

(t, η) + 1
2
σ2
µ
∂2Ṽ
∂η2

(t, η). To simplify notations in the fol-

lowing sections, we shall rewrite (2.7) by{
F (t, η, Ṽ , Ṽt, Ṽη, Ṽηη) = 0, on [0, T )× R,
v(T, η) = 0, for η ∈ R, (2.8)

where F (t, η, v, vt, vη, vηη) := min
{
v − V̂ , −∂v

∂t
− Lv

}
.

Remark 2.2. The second term−∂Ṽ
∂t
−LṼ = 0 in (2.7) is a linear parabolic PDE and does

not depend on the interior control (π, c). The comparison part Ṽ − V̂ in (2.7) depends

on the optimal control (π, c) as the V̂ is the value function of the interior control problem

provided the input X̂t = x0 − κt, Zt = z0 and µ̂t = µt = η.

The next theorem is the main result of this chapter.

Theorem 2.1. Ṽ (t, η) defined in (2.5) is the unique bounded and continuous viscosity

solution to variational inequalities (2.7). In addition, the optimal entry time for the com-

posite problem (2.5) is given by the Ft-adapted stopping time

τ ∗ := T ∧ inf
{
t ≥ 0 : Ṽ (t, µt;x0 − κt, z0) = V̂ (t, x0 − κt, z0, µt)

}
. (2.9)

We also have that the process Ṽ (t, µt;x0 − κt, z0) is a martingale with respect to the full

information filtration Ft, 0 ≤ t ≤ τ ∗.

The proof will be provided in Section 2.3.

2.2.3 Numerical Example

We present here some numerical results of sensitivity analysis of the free boundary

curve, i.e. the shape of the continuation region and stopping region, with respect to
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changes of the parameter δ. In particular, we want to illustrate that waiting in the full

information filtration can benefit the investor more and it is optimal for the drift process to

achieve certain thresholds that gives the optimal entry time for the interior control problem

under habit formation and partial observations. We choose parameters T = 12.5, p = −1,

ρ = 0.2, σS = 0.5, x0 = 1000000, z0 = 0.5, σµ = 0.4, λ = 0.1, α = 0.04, µ̄ = 0.25

and the information cost rate κ = 5000, and plot free boundary curves with respect to the

parameter δ = 0.05, 0.25, 0.45, 0.55, 0.75 respectively. The shaded regions correspond to

the continuation regions, which should be understood as the region to purely update the

input by observing the costly full information generated by both µt and St.

Figure 2.1: Sensitivity analysis of the free boundary curve

For each time t, we can first identify the barrier level for the input of the drift process

µt such that it is optimal to terminate the full observations of the drift process and initiate

the investment and consumption under partial observations only when the observed |µt|

is large enough. From Figure 1, we can see that if the discount factor δ increases in the

habit formation preference, the free boundary barrier also increases so that the optimal

stopping time increases. This can be understood that if the weighting intensity of the past
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consumption is larger, the trigger level (absolute value of η) to start consumption is lifted

up and the investor would prefer to wait longer in the first stage and delay his consumption

in order to maximize his total profit.

Moreover, we can also easily verify the following sensitivity results of the composite

value function.

Lemma 2.1. If the information cost rate κ increases, the value function Ṽ (t, η) decreases

for any t < T .

Proof. By the definition of Ṽ (t, η) and the explicit form of V̂ (t, x0−κt, z0, η) in (2.12)

and explicit form of m(t) in (2.6), V̂ (t, x0 − κt, z0, η) decreases if x0 − κt decrease, then

it clearly follows that Ṽ (t, η) is decreasing in κ.

Lemma 2.2. We have the following sensitivity properties of the value function Ṽ (t, η):

(i) Suppose that α > and δ > 0 are both constants in the definition of habit formation

process such that δ > α. We have that Ṽ (t, η;α, δ) is decreasing in δ and increasing

in α.

(ii) If the initial habit z0 increases, the value function Ṽ (t, η) decreases.

Proof. By the definition of Ṽ (t, η) and the explicit form of V̂ (t, x0−κt, z0, η) in (2.12)

and explicit form of m(t) in (2.6), for constants δ > α, it is clear that V̂ (t, x0 − κt, z0, η)

is decreasing in δ and increasing in α, which implies that Ṽ (t, η) has the same sensitivity

property. Similarly, it is clear that V̂ (t, x0 − κt, z0, η) decreases while z0 increases, and

hence Ṽ (t, η) is decreasing in z0.

2.3 Exterior Optimal Stopping Problem

This section mainly aims to solve the exterior optimal entry problem. To determine the

optimal stopping time, we need to maximize over the inputs of values τ , X̂τ , Zτ and µ̂τ .
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We recall that the investor does not manage his investment and consumption before τ , it

follows that X̂τ = x0 − κτ , Zτ = z0 and Σ̂(τ) = 0 can all be taken as parameters. The

mathematical problem corresponds to an optimal stopping problem in which µt becomes

the only underlying state process. To this end, we choose to apply the stochastic Perron’s

method to verify that the value function of the composite problem corresponds to the

unique viscosity solution of some variational inequality.

The proof can be summarized as follows: we first introduce sets of stochastic semi-

solutions V+ and V− and prove that v− ≤ Ṽ ≤ v+, where v− and v+ are defined later

in (2.17) and (2.18). By using the stochastic Perron’s method, we can get that v+ is a

bounded and upper semi-continuous (u.s.c.) viscosity subsolution and v− is a bounded and

lower semi-continuous (l.s.c.) viscosity supersolution. At last, we prove the comparison

principle, namely if we have any bounded and u.s.c. viscosity subsolution u and bounded

and l.s.c. viscosity supersolution v of (2.8), we must have u ≤ v. It follows that v+ ≤ v−,

which leads to the desired conclusion that v− = Ṽ = v+ and the value function is the

unique viscosity solution.

First, the similar result in [85] with respect to the interior utility maximization under

partial observations will be showed. For some fixed time 0 ≤ k ≤ T , the dynamic interior

stochastic control problem under habit formation is defined by

V̂ (k, x, z, η; θ)

:= sup
(π,c)∈Ak(x)

E
[∫ T

k

(cs − Zs)p

p
ds
∣∣∣FSk ]

= sup
(π,c)∈Ak(x)

E
[∫ T

k

(cs − Zs)p

p
ds
∣∣∣X̂k = x, Zk = z, µ̂k = η; Σ̂(k) = θ

]
,

(2.10)

where Ak(x) denotes the admissible control space starting from time k. Here, as the

conditional variance Σ̂(t) is a deterministic function of time, we set θ as a parameter

instead of a state variable. We only consider in the present chapter that the risk aversion

coefficient p < 0.
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By using the optimality principle and Itô’s formula, we can heuristically obtain the

HJB equation as

Vt − α(t)zVz − λ(η − µ̄)Vη +

(
Σ̂(t) + σSσµρ

)2

2σ2
S

Vηη

+ max
(π,c)∈A

[
−cVx + cδ(t)Vz +

(c− z)p

p

]

+ max
(π,c)∈A

[
πηVx +

1

2
σ2
Sπ

2Vxx + Vxη

(
Σ̂(t) + σSσµρ

)
π

]
= 0, k ≤ t ≤ T,

(2.11)

with the terminal condition V (T, x, z, η) = 0.

The following results are part of discussions in section 3.3.2 by [85]. We present them

for the completeness.

Theorem 2.2. For fixed t ∈ [k, T ], we can define the effective domain for the pair (x, z)

by Dt := {(x′, z′) ∈ (0,+∞) × [0,+∞); x′ ≥ m(t)z′}, where k ≤ t ≤ T . The HJB

equation (2.11) admits a classical solution on [k, T ]× Dt × R that

V (t, x, z, η) =
[ ∫ T

t

(
1 + δ(s)m(s)

) p
p−1

exp
(
A(t, s)η2 +B(t, s)η + C(t, s)

)
ds
]1−p

× [(x−m(t)z)]p

p
,

(2.12)

where A(t, s), B(t, s) and C(t, s) satisfy the following ODEs:

At(t, s) +
p

2(1− p)2σ2
S

+ 2

[
−λ+

p(Σ̂(t) + σSσµρ)

σ2
S(1− p)

]
A(t, s)

+
2(Σ̂(t) + σSσµρ)2

σ2
S

A2(t, s) = 0,

(2.13)

Bt(t, s) +

[
−λ+

p(Σ̂(t) + σSσµρ)

σ2
S(1− p)

]
B(t, s) + 2λµ̄A(t, s)

+
2(Σ̂(t) + σSσµρ)2

σ2
S

A(t, s)B(t, s) = 0,

(2.14)
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Ct(t, s) + λµ̄B(t, s) +

(
Σ̂(t) + σSσµρ

)2

2σ2
S

(
B2(t, s) + 2A(t, s)

)
= 0, (2.15)

with terminal conditions A(s, s) = B(s, s) = C(s, s) = 0. The explicit solutions of ODEs

(2.13), (2.14), (2.15) are reported in Appendix A.

Remark 2.3. The effective domain of V (t, x, z, η) mandates some constraints on the op-

timal wealth process X̂∗t and habit formation process Z∗t such that X̂∗t ≥ m(t)Z∗t for

t ∈ [k, T ]. In particular, we have to enforce the initial wealth-habit budget constraint that

X̂k ≥ m(k)Zk at time k.

The following results is Theorem 3.3.3. in [85].

Theorem 2.3. (The Verification Theorem) If the initial budget constraint X̂k ≥ m(k)Zk

holds at time k, the unique solution (2.12) of HJB equation equals the value function

defined in (2.10), i.e., V (k, x, z, η) = V̂ (k, x, z, η). Moreover, the optimal investment

policy π∗t and optimal consumption policy c∗t are given in the feedback form by π∗t =

π∗(t, X̂∗t , Z
∗
t , µ̂t) and c∗t = c∗(t, X̂∗t , Z

∗
t , µ̂t), k ≤ t ≤ T . The function π∗(t, x, z, η) :

[k, T ]× Dt × R→ R is given by

π∗(t, x, z, η) =

 η

(1− p)σ2
S

+

(
Σ̂(t) + σSσµρ

)
σ2
S

Nη(t, η)

N(t, η)

 (x−m(t)z),

and the function c∗(t, x, z, η) : [k, T ]× Dt × R→ R+ is given by

c∗(t, x, z, η) = z +
(x−m(t)z)(

1 + δ(t)m(t)
) 1

1−p
N(t, η)

.

The optimal wealth process X̂∗t , k ≤ t ≤ T , is given by

X̂∗t =(x−m(k)z)
N(t, µ̂t)

N(k, η)
exp

(∫ t

k

(µ̂u)
2

2(1− p)σ2
S

du+

∫ t

k

µ̂u
(1− p)σS

dŴu

)
+m(t)Z∗t .
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Remark 2.4. Recall that the interior value function V̂ is of the form in (2.12). Moreover,

by Remark A.1, functions A(t, s) ≤ 0 and B(t, s) ≤ 0 in (2.12) due to p < 0. That is,

if we take V̂ (τ, µ̂τ ) as a functional of the input µ̂τ , it is not globally convex or concave

in µ̂τ ∈ R because the function exp (A(t, s)η2 +B(t, s)η + C(t, s)) is not globally con-

vex or concave in the variable η ∈ R, which depends on values of A(t, s) and B(t, s).

Therefore, the composite value function Ṽ (t, η) in (2.5) is not globally convex or concave

in η ∈ R, which depends on all model parameters.

The proof of the above theorem can be found in [85]. Let us then give the following

definitions similar to [11, 13].

Definition 2.1. The set of stochastic super-solutions for the PDE (2.8), denoted by V+, is

the set of functions v : [0, T ]× R −→ R which have the following properties:

(i) v is u.s.c. and bounded on [0, T ]×R and v(t, η) ≥ V̂ (t, x0− κt, z0, η) for any (t, η) ∈

[0, T ]× R.

(ii) for each (t, η) ∈ [0, T ] × R and any stopping time t ≤ τ1 ∈ T , we have v(τ1, µτ1) ≥

E[v(τ2, µτ2)|Fτ1 ], P − a.s. for any τ2 ∈ T and τ2 ≥ τ1. That is to say, the function v

along the solution of the SDE (2.2) is a super-martingale with respect to full information

filtration (Ft)t∈[0,T ] between τ1 and T .

Definition 2.2. The set of stochastic sub-solutions for the PDE (2.8), denoted by V−, is

the set of functions v : [0, T ]× R −→ R which have the following properties:

(i) v is l.s.c. and bounded on [0, T ]× R and v(T, η) ≤ 0 for any η ∈ R.

(ii) for each (t, η) ∈ [0, T ] × R and any stopping time t ≤ τ1 ∈ T , we have v(τ1, µτ1) ≤

E[v(τ2 ∧ ζ, µτ2∧ζ)|Fτ1 ], P − a.s. for any τ2 ∈ T and τ2 ≥ τ1. Hence, the function v

along the solution to (2.2) is a sub-martingale with respect to full information filtration

(Ft)t∈[0,T ] between τ1 and ζ , where

ζ := inf{t ∈ [τ1, T ] : v(t, µt;x0 − κt, z0) ≥ V̂ (t, x0 − κt, z0, µt)}. (2.16)
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Remark 2.5. We note that the definitions of stochastic super-solutions and stochastic sub-

solutions for the optimal stopping problem are not symmetric, which are consistent with

the similar definitions in [13]. The main reason for these differences comes from the

natural supermartingale property of the Snell envelop process and its martingale property

between the initial time and the first hitting time ζ in (2.16). That is, we naturally need

v(t, η) ≥ V̂ (t, x0−κt, z0, η) for all (t, η) ∈ [0, T ]×R including the terminal time T in item

(i) of Definition 2.1 of stochastic super-solution, but we only require v(T, η) ≤ V̂ (T, x0−

κt, z0, η) = 0 at the terminal time T in item (i) of Definition 2.2 for stochastic sub-solution.

These comparison results and the supermartingale and submartingale properties will play

important roles to establish the desired sandwich result v− ≤ Ṽ ≤ v+ in Lemma 2.6.

Lemma 2.3. V̂ (t, x0 − κt, z0, η; 0) is bounded and continuous for (t, η) ∈ [0, T ]× R.

Proof. For fixed x0 and z0, it is clear that V̂ (t, x0 − κt, z0, η) in the explicit form in

Theorem 2.3 is continuous and V̂ (t, x0 − κt, z0, η) ≤ 0. So we only show that V̂ is lower

bounded. By Appendix A, we know that A(u) ≤ 0, B(u) ≤ 0 and C(u) ≤ K for some

K ≥ 0 by using p < 0. We deduce that
(
A(u)η2 + B(u)η + C(u)

)
≤ K1 for some

K1 > 0 and it follows that V̂ (t, x0 − κt, z0, η) is lower bounded by some constant for

(t, η) ∈ [0, T ]× R as p < 0.

As it is trivial to see that 0 ∈ V− and 0 ∈ V+, we have the following result.

Lemma 2.4. V+ and V− are nonempty.

Definition 2.3. We define

v− := sup
p∈V−

p; (2.17)

v+ := inf
q∈V+

q. (2.18)

Similar to Lemma 2.2. of [11], the next result holds.
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Lemma 2.5. We have v− ∈ V− and v+ ∈ V+.

Next, we have the following comparison result.

Lemma 2.6. We have v− ≤ Ṽ ≤ v+.

Proof. For each v ∈ V+, let us consider τ1 = t ≥ 0 in Definition 2.1. For any τ ≥ t,

we have

v(t, η) ≥ E[v(τ, µτ )|Ft] ≥ E[V̂ (τ, x0 − κτ, z0, µτ )|Ft],

because of the sup-martingale property in Definition 2.1. It readily follows that

v(t, η) ≥ esssupt≤τ E[V̂ (τ, x0 − κτ, z0, µτ )|Ft].

This implies that v(t, η) ≥ Ṽ (t, η) in view of the definition of Ṽ (t, η) and hence Ṽ ≤ v+

by the Definition (2.18). On the other hand, for each v ∈ V−, by taking τ1 = t ≥ 0

in the Definition 2.2, we have v(t, η) ≤ E[v(τ ∧ ζ, µτ∧ζ)|Ft] for any τ ≥ t because of

the sub-martingale property in Definition 2.2. In particular, using the definition of ζ , we

further have

v(t, η) ≤ E[v(τ ∧ ζ, µτ∧ζ)|Ft]

≤ E[V̂ (τ ∧ ζ, x0 − f(τ ∧ ζ), z0, µτ∧ζ)|Ft]

≤ esssupτ≥t E[V̂ (τ, x0 − κτ, z0, µτ )|Ft] = Ṽ (t, η).

Thus, it follows that Ṽ ≥ v− because of (2.17). In conclusion, we have the inequality

v− ≤ Ṽ ≤ v+.

Theorem 2.4. (Stochastic Perron’s Method) v− in Definition 2.3 is a bounded and l.s.c.

viscosity super-solution of{
F (t, η, v, vt, vη, vηη) ≥ 0, on [0, T )× R,
v(T, η) ≥ 0, for any η ∈ R,

and v+ in Definition 2.3 is a bounded and u.s.c. viscosity sub-solution of{
F (t, η, v, vt, vη, vηη) ≤ 0, on [0, T )× R,
v(T, η) ≤ 0, for any η ∈ R. (2.19)
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Proof. We follow similar arguments as in [11, 13].

(i) The sub-solution property of v+. First, definition in (2.18) and Lemma 2.5 im-

ply that v+ is bounded and upper semi-continuous. Suppose v+ is not a viscosity sub-

solution, there exists some interior point (t̄, η̄) ∈ (0, T ) × R and a C1,2-test function

ϕ : [0, T ] × R → R such that v+ − ϕ attains a strict local maximum that is equal to zero

and F (t̄, η̄, v, vt̄, vη̄, vη̄η̄) > 0. It follows that{
v+(t̄, η̄)− V̂ (t̄, x0 − f(t̄), z0, η̄) > 0,

−∂ϕ
∂t

(t̄, η̄)− Lϕ(t̄, η̄) > 0.

As coefficients of the variational inequality are continuous, there exists a ball B(t̄, η̄, ε)

small enough that {
−∂ϕ

∂t
− Lϕ > 0 on B(t̄, η̄, ε),

ϕ > v+ on B(t̄, η̄, ε)\(t̄, η̄).

In addition, as ϕ(t̄, η̄) = v+(t̄, η̄) > V̂ (t̄, x0 − f(t̄), z0, η̄), ϕ is continuous and V̂ is

continuous, we can derive that for some ε small enough, we have ϕ− ε ≥ V̂ on B(t̄, η̄, ε).

Because v+ − ϕ is upper semi-continuous and B(t̄, η̄, ε)\B(t̄, η̄, ε
2
) is compact, it then

follows that there exists a δ > 0 such that ϕ− δ ≥ v+ on B(t̄, η̄, ε)\B(t̄, η̄, ε
2
).

If we choose 0 < ξ < δ ∧ ε, the function ϕξ = ϕ − ξ will satisfy the following

properties: 
−∂ϕξ

∂t
− Lϕξ > 0 on B(t̄, η̄, ε),

ϕξ > v+ on B(t̄, η̄, ε)\B(t̄, η̄, ε
2
),

ϕξ ≥ V̂ on B(t̄, η̄, ε),

and ϕξ(t̄, η̄) = v+(t̄, η̄)− ξ.

Let us define an auxiliary function by

vξ :=

{
v+ ∧ ϕξ on B(t̄, η̄, ε),

v+ outside B(t̄, η̄, ε).

It is easy to check that vξ is upper semi-continuous and vξ(t̄, η̄) = ϕξ(t̄, η̄) < v+(t̄, η̄). We

claim that vξ satisfies the terminal condition. To this end, we pick some ε > 0 that satisfies
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T > t̄ + ε and recall that v+ satisfies the terminal condition. We then continue to show

that vξ ∈ V+ to obtain a contradiction.

Let us fix (t, η) and recall that ((µs)t≤s≤T , (Ws, Bs)t≤s≤T ,Ω,F ,P, (Fs)t≤s≤T ) ∈ χ,

where χ is the nonempty set of all weak solutions. We need to show that the process

(vξ(s, µs))t≤s≤T is a super-martingale on (Ω,P) with respect to (Fs)t≤s≤T . We first assume

that (v+(s, µs))t≤s≤T has right continuous paths. In this case, vξ is a super-martingale

locally in the region [t, T ] × R\B(t̄, η̄, ε
2
) because it equals the right continuous super-

martingale (v+(s, µs))t≤s≤T . As the process (vξ(s, µs))t≤s≤T is the minimum between

two local super-martingales in the region B(t̄, η̄, ε), it is a local super-martingale. As two

regions [t, T ] × R\B(t̄, η̄, ε
2
) and B(t̄, η̄, ε) overlap over an open region, (vξ(s, µs))t≤s≤T

is actually a super-martingale.

If the process (v+(s, µs))t≤s≤T is not right continuous, we can consider its right con-

tinuous limit over rational times to transform it to the special case discussed above. In

particular, for a given rational number r and fixed 0 ≤ t ≤ r ≤ s ≤ T and η ∈ R, it

remains to show the process (Yu)t≤u≤T := (vξ(u, µu))t≤u≤T between r and s is a super-

martingale, which is equivalent to show Yr ≥ E[Ys|Fr].

Let us denote Gu := v+(u, µu), r ≤ u ≤ s and stop the process G after time s, i.e.

Gu := v+(s, µs), s ≤ u ≤ T . As (Gu)r≤u≤T may not be right continuous, by Proposition

1.3.14 in [52], we can define its right continuous modification as

G+
u (ω) := lim

u′→u, u′>u, u′∈Q
Gu′(ω), r ≤ u ≤ T.

Note that G+ is a right continuous super-martingale with respect to F which satisfies the

usual conditions. Because v+ is upper semi-continuous and the process remains the same

after s, we conclude that Gr ≥ G+
r , Gs = G+

s . Recall that v+ < ϕ− δ in the open region

B(t̄, η̄, ε)\B(t̄, η̄, ε
2
), if we take right limits inside this region and use continuous function

ϕ, we have

G+
u < ϕξ(u, µu), if (u, µu) ∈ B(t̄, η̄, ε)\B(t̄, η̄,

ε

2
).
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Thus, if we consider the process

Y +
u :=

{
G+
u , (u, µu) 6∈ B(t̄, η̄, ε

2
),

G+
u ∧ ϕξ(u, µu), (u, µu) ∈ B(t̄, η̄, ε),

we also have Yr ≥ Y +
r , Ys = Y +

s .

Because G+ has right continuous paths, we can conclude that Y is a super-martingale

such that

Yr ≥ Y +
r ≥ E[Y +

s |Fr] = E[Ys|Fr].

(ii) The terminal condition of v+.

For some η0 ∈ R, we assume that v+(T, η0) > 0 and will show a contradiction. As V̂

is continuous on R, we can choose an ε > 0 such that 0 ≤ v+(T, η0)− ε and |η− η0| ≤ ε.

On the compact set (B(T, η0, ε)\B(T, η0,
ε
2
)) ∩ ([0, T ]× R), v+ is bounded above by the

definition of V+ and that v+ ∈ V+. Moreover, as v+ is upper semi-continuous on this

compact set, we can find δ > 0 small enough such that

v+(T, η0) +
ε2

4δ
≥ ε+ sup

(t,η)∈(B(T,η0,ε)\B(T,η0,
ε
2

))∩([0,T ]×R)

v+(t, η). (2.20)

Next, for k > 0, we define the function ϕδ,ε,k(t, η) := v+(T, η0) + |η−η0|2
δ

+ k(T − t).

For k large enough, we derive that −ϕδ,ε,kt − Lϕδ,ε,k > 0 on B(T, η0, ε). Moreover, we

have the following result in view of (2.20)

ϕδ,ε,k ≥ ε+ v+ on (B(T, η0, ε)\B(T, η0,
ε

2
)) ∩ ([0, T ]× R),

and ϕδ,ε,k(T, η) ≥ v+(T, η0) ≥ 0 + ε for |η − η0| ≤ ε.

Now, we can find ξ < ε and define the function as follows,

vδ,ε,k,ξ :=

{
v+ ∧ (ϕδ,ε,k − ξ) on B(T, η0, ε),

v+ outside B(T, η0, ε).

By following similar argument in Step (i), one can obtain that vδ,ε,k,ξ ∈ V+, but vδ,ε,k,ξ(T, η0) =

v+(T, η0)− ξ, which leads to a contradiction.
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(iii) The super-solution property of v−.

Let us only provide a sketch of the proof as it is essentially similar to Step (i). Sup-

pose that v− is not a viscosity super-solution, then there exist some interior point (t̄, η̄) ∈

(0, T ) × R and a C1,2-test function ψ : [0, T ] × R → R such that v− − ψ attains a strict

local minimum that is equal to zero. As F (t̄, η̄, v, vt̄, vη̄, vη̄η̄) < 0, there are two separate

cases to check.

case(i) v−(t̄, η̄)− V̂ (t̄, x0−f(t̄), z0, η̄) < 0. This already leads to a contradiction with

v−(t̄, η̄) ≥ V̂ (t̄, x0 − f(t̄), z0, η̄) by the definition of v−.

case(ii) −∂ψ
∂t

(t̄, η̄) − Lψ(t̄, η̄) < 0. We can find a small enough ball B(t̄, η̄, ε) such

that −∂ψ
∂t
− Lψ < 0 on B(t̄, η̄, ε). Moreover, as v− − ψ is lower semi-continuous

and B(t̄, η̄, ε)\B(t̄, η̄, ε
2
) is compact, there exists a δ > 0 such that ψ + δ ≤ v− on

B(t̄, η̄, ε)\B(t̄, η̄, ε
2
). We can then choose ξ ∈ (0, δ

2
) small such that ψξ = ψ + ξ sat-

isfies the following three properties: (i) −∂ψξ

∂t
− Lψξ < 0 on B(t̄, η̄, ε); (ii) we have

v− ≥ ψ + δ > ψ + ξ = ψξ on B(t̄, η̄, ε)\B(t̄, η̄, ε
2
); (iii) ψξ(t̄, η̄) = ψ(t̄, η̄) + ξ =

v−(t̄, η̄) + ξ > v−(t̄, η̄). Thus, we can define an auxiliary function as

vξ :=

{
v− ∨ ψξ on B(t̄, η̄, ε),

v− outside B(t̄, η̄, ε).

By repeating similar argument in Step (i), we have that vξ ∈ V− by showing that

(vξ(s, µs))t≤s≤T is a sub-martingale. If v− has right continuous paths, then the proof is

trivial. In general, by Proposition 1.3.14 in [52], we can define the right continuous sub-

martingale G+
u (ω) := limu′→u, u′>u, u′∈QGu′(ω), ω ∈ Ω∗, r ≤ u ≤ T , where Gu :=

v−(u, µu), r ≤ u ≤ s and we stop it at time t, that is to say, Gu := v−(s, µs), s ≤ u ≤ T ,

given fixed 0 ≤ t ≤ r ≤ s ≤ T and η ∈ R. Similar to Step (i), we note that G+

is the right continuous sub-martingale and therefore Gr ≤ G+
r , Gs = G+

s . As G+
u >

ψξ(u, µu), if (u, µu) ∈ B(t̄, η̄, ε)\B(t̄, η̄, ε
2
), we can define the process

Y +
u :=

{
G+
u , (u, µu) 6∈ B(t̄, η̄, ε

2
),

G+
u ∨ ψξ(u, µu), (u, µu) ∈ B(t̄, η̄, ε

2
).
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We can conclude that Yr ≤ Y +
r , Ys = Y +

s and Y is a sub-martingale that Yr ≤ Y +
r ≤

E[Y +
s |Fr] = E[Ys|Fr], which completes the proof.

(iv) The terminal condition of v−.

For some η0 ∈ R, suppose that v−(T, η0) < 0 and we will show a contradiction. As V̂

is continuous on R, we can choose an ε > 0 such that 0 ≥ v−(T, η0) + ε and |η− η0| ≤ ε.

Similar to Step (ii), we can find δ > 0 small enough so that

v−(T, η0)− ε2

4δ
≤ inf

(t,η)∈(B(T,η0,ε)\B(T,η0,
ε
2

))∩([0,T ]×R)
v−(t, η)− ε. (2.21)

Then, for k > 0, we consider ψδ,ε,k(t, η) := v−(T, η0) − |η−η0|
2

δ
− k(T − t). For k large

enough, we have that−ψδ,ε,kt −Lψδ,ε,k < 0 onB(T, η0, ε). Furthermore, in view of (2.21),

we have

ψδ,ε,k ≤ v− − ε on (B(T, η0, ε)\B(T, η0,
ε

2
)) ∩ ([0, T ]× R),

and ψδ,ε,k(T, η) ≤ v−(T, η0) ≤ −ε for |η − η0| ≤ ε.

Next, we can find ξ < ε and define the function by

vδ,ε,k,ξ :=

{
v− ∨ (ψδ,ε,k + ξ) on B(T, η0, ε),

v− outside B(T, η0, ε).

Similar to Step (iii), we obtain that vδ,ε,k,ξ ∈ V−, but vδ,ε,k,ξ(T, η0) = v−(T, η0)+ξ, which

gives a contradiction.

Let us then reverse the time and consider s := T − t. However, for the simplicity

of presentation, let us continue to use t in the place of s if there is no confusion. The

variational inequalities can be rewritten as

min

{
Ṽ (t, η;x0 − f(T − t), z0)− V̂ (t, x0 − f(T − t), z0, η),

∂Ṽ (t, η)

∂t
− LṼ (t, η)

}
= 0, (2.22)
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where LṼ (t, η) = −λ(η − µ̄)∂Ṽ
∂η

(t, η) + 1
2
σ2
µ
∂2Ṽ
∂η2

(t, η) and also Ṽ (0, η) = 0.

Let us denote it equivalently as{
F (t, η, v, vt, vη, vηη) = 0, on (0, T ]× R,
v(0, η) = V̂ (0, x0 − f(0), z0, η), for any η ∈ R, (2.23)

where F (t, η, v, vt, vη, vηη) := min
{
v − V̂ , ∂v

∂t
− Lv

}
. We also have the continuation

region as C = {(t, η) ∈ (0, T ]×R : Ṽ (t, η;x0−f(T−t), z0) > V̂ (t, x0−f(T−t), z0, η)}.

Proposition 2.1. (Comparison Principle) Let u, v be u.s.c viscosity subsolution and l.s.c.

viscosity supersolution of (2.23), respectively. If u(0, η) ≤ v(0, η) on R, then we have

u ≤ v on (0, T ]× R.

Proof. We will follow similar arguments in [14, 72] with modifications to fit into our

framework. We suppose that u(0, η) ≤ v(0, η) on R, then, we try to prove that u ≤ v on

[0, T ] × R. We first construct the strict supersolution to the system (2.23) with suitable

perturbations of v. Let us recall that A ≤ 0, B ≤ 0 and C is bounded above by some

constant, which are shown in Appendix A. Moreover, V̂ (t, x0 − κt, z0, η) ≤ 0. Let us fix

a constant C2 > 0 small enough such that λ > C2σ
2
µ and set ψ(t, η) = C0e

t + eC2η2 with

some C0 > 1. Thus, we have the following inequality:

∂ψ

∂t
− Lψ =C0e

t + C2

[
2(λ− C2σ

2
µ)η2 − 2λµ̄η − σ2

µ

]
eC2η2

≥C0e
t + C2

−2(λ− C2σ
2
µ)σ2

µ − λ2µ̄2

2(λ− C2σ2
µ)

>C0 + C2

−2(λ− C2σ
2
µ)σ2

µ − λ2µ̄2

2(λ− C2σ2
µ)

.

We can then choose C0 > 1 large enough such that C0 +C2
−2(λ−C2σ2

µ)σ2
µ−λ2µ̄2

2(λ−C2σ2
µ)

> 1, which

guarantees that

∂ψ

∂t
− Lψ > 1. (2.24)
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We define vΛ := (1− Λ)v + Λψ on [0, T ]× R for any Λ ∈ (0, 1). It follows that

vΛ − V̂ = (1− Λ)v + Λψ − V̂ = (1− Λ)v + Λ(C0e
t + eC2η2)− V̂

≥ (1− Λ)v + Λ(C0e
t + eC2η2) + ΛV̂ − V̂

> (1− Λ)(v − V̂ ) + ΛC0 > Λ,

(2.25)

where we used v − V̂ ≥ 0 in the last inequality. From (2.24) and (2.25), we can deduce

that for Λ ∈ (0, 1), vΛ is a supersolution to

min
{
vΛ − V̂ , ∂vΛ

∂t
− LvΛ

}
≥ Λ. (2.26)

In order to prove the comparison principle, it suffices to show the claim that sup(u −

vΛ) ≤ 0 for all Λ ∈ (0, 1), as the required result is obtained by letting Λ go to 0. To

this end, we will prove the claim by showing a contradiction and suppose that there exists

some Λ ∈ (0, 1) such that M := sup(u− vΛ) > 0.

It is clear that u, v and V̂ have the same growth conditions: in view of the explicit

forms of A,B,C and V̂ , it follows that V̂ has growth condition in t as eeK1t for some

K1 < 0 and has growth condition in η as eK2η2 for some K2 < 0; on the other hand, ψ

has growth condition in t as et and has growth condition in η as eC2η2 . Thus, we have

that u(t, η) − vΛ(t, η) = (u − (1 − Λ)v − Λψ)(t, η) goes to −∞ as t → T, η → ∞.

Consequently, the u.s.c. function (u− vΛ) attains its maximum M .

Let us consider the u.s.c. function Φε(t, t
′, η, η′) = u(t, η)− vΛ(t′, η′)−φε(t, t′, η, η′),

where φε(t, t′, η, η′) = 1
2ε

((t − t′)2 + (η − η′)2), ε > 0 and (tε, t
′
ε, ηε, η

′
ε) attains the

maximum of Φε. We have

Mε = max Φε = Φε(tε, t
′
ε, ηε, η

′
ε)→M and φε(tε, t′ε, ηε, η

′
ε)→ 0 when ε→ 0. (2.27)

We give an equivalent definition of viscosity solutions in terms of superjets and subjets.

In particular, we define P̄2,+u(t̄, η̄) as the set of elements (q̄, k̄, M̄) ∈ R×R×R satisfying

u(t, η) ≤ u(t̄, η̄) + q̄(t− t̄) + k̄(η − η̄) + 1
2
M̄(η − η̄)2 + o((t− t̄) + (η − η̄)2). We define

P̄2,−vΛ(t̄, η̄) similarly.

30



Thanks to Crandall-Ishii’s lemma, we can find Aε, Bε ∈ R such that

(
tε − t′ε
ε

,
ηε − η′ε
ε

, Aε) ∈ P̄2,+u(tε, ηε),

(
tε − t′ε
ε

,
ηε − η′ε
ε

, Bε) ∈ P̄2,−vΛ(t′ε, η
′
ε),

σ2(ηε)Aε − σ2(η′ε)Bε ≤
3

ε
(σ(ηε)− σ(η′ε))

2.

By combining the viscosity subsolution property (2.19) of u and the viscosity strict

supersolution property (2.26) of vΛ, we have the following inequalities

min
{
u(tε, ηε)− V̂ (tε, x0 − f(tε), z0, ηε),

tε − t′ε
ε
− ηε − η′ε

ε
b(tε, ηε)−

1

2
σ2(ηε)Aε

}
≤ 0, (2.28)

min
{
vΛ(t′ε, η

′
ε)− V̂ (t′ε, x0 − f(t′ε), z0, η

′
ε),

tε − t′ε
ε
− ηε − η′ε

ε
b(t′ε, η

′
ε)−

1

2
σ2(η′ε)Bε

}
≥ Λ, (2.29)

where b(tε, ηε) = −λ(ηε − µ̄), σ2(ηε) = σ2
µ, b(t′ε, η

′
ε) = −λ(η′ε − µ̄) and σ2(η′ε) = σ2

µ.

If u − V̂ ≤ 0 in (2.28), then because vΛ − V̂ ≥ Λ in (2.29), we obtain that u − vΛ ≤

−Λ < 0 by contradiction with sup(u− vΛ) = M > 0. On the other hand, if u− V̂ > 0 in

(2.28), then we have {
tε−t′ε
ε
− ηε−η′ε

ε
b(tε, ηε)− 1

2
σ2(ηε)Aε ≤ 0,

tε−t′ε
ε
− ηε−η′ε

ε
b(t′ε, η

′
ε)− 1

2
σ2(η′ε)Bε ≥ Λ.

Furthermore, after mixing these two inequalities above, we derive that

ηε − η′ε
ε

(b(tε, ηε)− b(t′ε, η′ε)) +
3

2ε
(σ(ηε)− σ(η′ε))

2

≥ηε − η
′
ε

ε
(b(tε, ηε)− b(t′ε, η′ε)) +

1

2
(σ2(ηε)Aε − σ2(η′ε)Bε) ≥ Λ.
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The first inequality holds due to the Crandall-Ishii’s lemma. Moreover, by letting ε → 0,

we get ηε−η′ε
ε

(b(tε, ηε) − b(t′ε, η′ε)) + 3
2ε

(σ(ηε) − σ(η′ε))
2 = 0 thanks to (2.27). It follows

that we have 0 ≥ Λ > 0, which leads to a contradiction and therefore our claim holds.

Lemma 2.7. For all (t, η) ∈ C in the continuation region, Ṽ in (2.5) has Hölder continuous

derivatives.

Proof. The proof follows closely the argument in Section 6.3 of [41]. First, let us recall

that

∂Ṽ

∂t
(t, η) + λ(η − µ̄)

∂Ṽ

∂η
(t, η)− 1

2
σ2
µ

∂2Ṽ

∂η2
(t, η) = 0 on C. (2.30)

The definition of viscosity solution of Ṽ to (2.22) gives that Ṽ is a supersolution to (2.30).

On the other hand, for any (t̄, η̄) ∈ C, let ϕ be a C2 test function such that (t̄, η̄) is a

maximum of Ṽ − ϕ with Ṽ (t̄, η̄) = ϕ(t̄, η̄). By definition of C, we have Ṽ (t̄, η̄) >

V̂ (t̄, x0 − f(t̄), z0, η̄), so that

∂ϕ

∂t
(t̄, η̄) + λ(η − µ̄)

∂ϕ

∂η
(t̄, η̄)− 1

2
σ2
µ

∂2ϕ

∂η2
(t̄, η̄) ≤ 0,

due to the viscosity sub-solution property of Ṽ to (2.22). It follows that Ṽ is a viscosity

subsolution and therefore viscosity solution to (2.30).

Let us consider an initial boundary value problem:

−∂w
∂t

(t, η)− λ(η − µ̄)
∂w

∂η
(t, η) +

1

2
σ2
µ

∂2w

∂η2
(t, η) = 0 on Q ∪BT ,

w(0, η) = 0 on B,

w(t, η) = V̂ (t, x0 − κt, z0, η) on S.

(2.31)

Here, Q is an arbitrary bounded open region in C, Q lies in the strip 0 < t < T .

B̃ = Q̄ ∩ {t = 0}, B̃T = Q̄ ∩ {t = T}, BT denotes the interior of B̃T , B denotes the

interior of B̃, S0 denotes the boundary of Q lying in the strip 0 ≤ t ≤ T and S = S0\BT .
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Theorem 3.6 in [41] provides the existence and uniqueness of a solution w on Q ∪ BT to

(2.31), and the solution w has Hölder continuous derivatives wt, wη and wηη. Because the

solution w is a viscosity solution to (2.30) on Q∪BT , from standard uniqueness results on

viscosity solution, we know that Ṽ = w on Q ∪BT . As Q ⊂ C is arbitrary, it follows that

Ṽ has the same property in the continuation region C. Therefore, Ṽ has Hölder continuous

derivatives Ṽt, Ṽη and Ṽηη.

We can finally prove our main result Theorem 2.1.

Proof. We have shown the inequality v− = supp∈V− p ≤ Ṽ ≤ v+ = infq∈V+ q in Lemma

2.6. By using the comparison result in Proposition 2.1, we also have v+ ≤ v−. Putting

all pieces together, we conclude that v+ = Ṽ (t, η) = v− and therefore the value function

Ṽ (t, η) is the unique viscosity solution of the HJB variational inequality (2.7). By follow-

ing similar argument for Theorem 1 in [36], fix the Ft-adapted stopping time τ ∗ defined in

(2.9), Itô-Tanaka’s formula (see Theorem IV.1.5, Corollary IV.1.6 of [77]) can be applied

to Ṽ (t, µt) in view of Hölder continuous derivatives of Ṽ (t, η) and we get that

V̂ (τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, µτ∗∧τn)

=Ṽ (t, µt) +
[
V̂ (τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, µτ∗∧τn)− Ṽ (τ ∗ ∧ τn, µτ∗∧τn)

]
+

∫ τ∗∧τn

t

σµ
∂Ṽ

∂η
(s, µs)dBs +

∫ τ∗∧τn

t

[
∂Ṽ (s, µs)

∂t
+ LṼ (s, µs)

]
ds,

where τn ↑ T is the localizing sequence. As Ṽ (t, η) satisfies HJB variational inequality

(2.7), by taking conditional expectations and the definition of τ ∗ in (2.9), we obtain that

Et
[
V̂ (τ ∗ ∧ τn, x0 − κτ ∗ ∧ τn, z0, µτ∗∧τn)1{τ∗≤τn}

]
+ Et

[
Ṽ (τn, µτn)1{τ∗>τn}

]
= Ṽ (t, µt).

By taking the limit of τn and dominated convergence theorem, we can verify that

Et
[
V̂ (τ ∗, x0 − κτ ∗, z0, µτ∗)

]
= Ṽ (t, µt),
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and therefore τ ∗ is the optimal entry time.

At last, the martingale property between t = 0 and τ ∗ follows from the definition of

stochastic subsolution and stochastic supersolution.
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Chapter 3

Optimal Dividend Strategy for an
Insurance Group with Contagious
Default Risk

This chapter 1 studies the optimal dividend for a multi-line insurance group, in which

each subsidiary runs a product line and is exposed to some external credit risk. The default

contagion is considered such that one default event may increase the default probabilities

of all surviving subsidiaries. The total dividend problem for the insurance group is investi-

gated and we find that the optimal dividend strategy is still of the barrier type. Furthermore,

we show that the optimal barrier of each subsidiary is modulated by the default state. That

is, how many and which subsidiaries have defaulted will determine the dividend threshold

of each surviving subsidiary. These conclusions are based on the analysis of the associ-

ated recursive system of Hamilton-Jacobi-Bellman variational inequalities (HJBVIs). The

existence of the classical solution is established and the verification theorem is proved. In

the case of two subsidiaries, the value function and optimal barriers are given in analytical

forms, allowing us to conclude that the optimal barrier of one subsidiary decreases if the

other subsidiary defaults.

1 A version of this chapter has been accepted by Scandinavian Actuarial Journal, which is forthcoming.
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3.1 Introduction

Dividend payment is always a focused issue in insurance and corporate finance, which

is regarded as an important signal of the company’s future growth opportunities and has

direct impact on the wealth of shareholders. Meanwhile, insurance companies also dy-

namically invest money in the financial market in order to pay future claims. The pioneer

work [34] solves the optimal dividend problem up to the financial ruin time when the

surplus process follows a simple random walk. Later, vast research has been devoted to

finding optimal dividend strategies in various discrete and continuous time risk models,

see a short list of related work in [6, 8, 9, 27, 43, 47, 56, 59, 68, 69, 70, 78] and references

therein. We refer to [3] and [7] for some comprehensive surveys on the topic of dividend

optimization.

The present chapter has a particular interest in a multi-line insurance group, which is

a parent insurer consisting of multiple subsidiaries in the market where each subsidiary

runs a product line such as life insurance, auto insurance, income protection insurance,

housing insurance and etc. Each product line is subject to bankruptcy separately and has

its own premiums and losses with very distinctive claim frequency, which motivates some

recent academic studies on multi-line insurance business. In a multi-line insurance group

framework, the insurance pricing model by line is studied in [73]. The capital allocation

strategy for a multi-line insurance company is investigated in [67], which reveals that

allocations depend on the uncertainty of each line’s losses and the marginal contribution

of each line. Under the assumption that losses from all product lines follow a sharing rule,

some premiums problems are examined in [48].

What is missing in the literature is the investigation of external systemic risk for the

insurance group. Our work enriches the study of the insurance group by considering the

group dividend optimization problem in which each subsidiary may go default due to some

contagious default risk. In practice, many subsidiaries share the same reserves pool from
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the parent group company. It is reasonable to assume that all subsidiaries are exposed to

some common credit risk. Our model can depict some real life situations that the group

manager collects cash reserves from different subsidiaries and invests them into some

financial credit instruments such as defaultable Bonds, CDS, equity default swaps and etc.

The insolvency and termination of one subsidiary business caused by the market credit

risk may quickly spread to all other subsidiaries if they share the same underlying credit

assets. Some empirical studies find that defaults are indeed contagious in certain cases and

exhibit the so-called default-clustering phenomenon, see [33]. In particular, a dependent

credit risk model is studied in [80], which analyzes the contagious defaults affected by a

common macroeconomic factor. A financial network model is later developed in [4], in

which the contagious defaults are caused by a macroeconomic shock. In the context of

insurance, it is also reasonable to consider the investment of net-reserves in some credit

assets and the default risk in the financial market may lead to some massive domino effects

in surplus management and subsidiaries operations.

It is worth noting that some recent work such as [2], [46] and [45] consider the col-

laborating dividend problem between multiple insurance companies, in which the credit

default and default contagion are again not concerned. Instead, they consider some inde-

pendent insurance companies and assume that one insurance company can inject capital

into other companies whenever their financial ruins occur. The optimal dividend for two

collaborating insurance companies in compound Poisson and diffusion models are studied

in [2] and [46] respectively. The extension to different solvency criteria is considered later

in [45]. Although these work differ substantially from the present chapter, we confront

similar challenges from the multi-dimensional singular control problem and some new

mathematical methods are required.

To ensure the tractability, we work in the interacting intensity framework to model

default contagion, which allows sequential defaults and assumes that the credit default

of one subsidiary can affect other surviving names by increasing their default intensities.
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This type of default contagion has been actively studied recently in the context of portfo-

lio management, see among [17, 19, 20, 21, 22] and many others. The key observation

in these work is that the system of HJB partial differential equations (PDEs) is recursive

and the depth of the recursion equals the number of risky assets. The system of PDEs can

therefore be analyzed using a backward recursion from the state in which all assets are de-

faulted towards the state that all assets are alive. As opposed to portfolio optimization, we

confront a singular control problem that stems from the dividend payment, and we conse-

quently need to handle variational inequalities instead of PDE problems. To the best of our

knowledge, our work appears as the first one attempting to introduce the default contagion

to the insurance group dividend control framework. In particular, we distinguish the ruin

caused by insurance claims (i.e. the surplus process diffuses to zero) and the termination

caused by credit default jump. It is observed in this chapter that the optimal group dividend

is of the barrier type and the optimal barrier for each subsidiary is default-state-modulated,

i.e., the optimal barrier of each surviving subsidiary will be adjusted whenever some sub-

sidiaries go default. In the simple case of two subsidiaries, we can rigorously prove that

the group manager lowers the dividend barrier of the surviving subsidiary and forces it to

pay dividend soon, see Corollary 3.1.

Our mathematical contribution is the study of the recursive system of HJBVIs (3.36),

which differs from some conventional PDE problems in portfolio optimization. We adopt

the core idea in [17, 19, 20, 22] and follow the backward recursion based on the number of

defaulted subsidiaries. In addition, we take the full advantage of the risk neutral valuation

of the group control and simplify the multi-dimensional value function into a separation

form. Our arguments can be outlined as follows. Firstly, we start from the case when there

is only one surviving subsidiary and work inductively to the case when all subsidiaries

are alive. The classical solution in the step with k surviving subsidiaries will appear as

variable coefficients in the step with k + 1 surviving subsidiaries, and we can continue to

show the existence of classical solution with k + 1 names. Secondly, to show the exis-
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tence of classical solution in each step with a fixed number of subsidiaries, we conjecture

a separation form of the value function, and split the variational inequality from the group

control into a subsystem of auxiliary variational inequalities. To tackle each auxiliary vari-

ational inequality, we first obtain the existence of a classical solution to the ODE problem.

By applying the smooth-fit principle, we deduce the existence of a free boundary point

depending on the default state and construct the desired classical solution to the auxiliary

variational inequality. The rigorous proof of the verification theorem is provided to show

that the value function coincides with the classical solution to the recursive system of HJB-

VIs (3.36). As a byproduct, the optimal dividend is proved to be a reflection strategy with

the barrier depending on the default state indicator process, see (3.6) in Theorem 3.1.

The rest of the chapter is organized as follows. Section 3.2 introduces the model of

the multi-line insurance group with external credit default contagion. The optimal group

dividend problem for all subsidiaries is formulated and the main theorem is presented

therein. In Section 3.3, we derive the HJBVI (3.9) for two subsidiaries and solve the value

function in an explicit manner. The optimal barriers of the dividend are constructed using

the smooth-fit principle. Section 3.4 generalizes the results to a multi-line insurance group.

The proof of the verification theorem is given in Section 3.5. The derivation of the HJBVI

(3.9) for two subsidiaries is reported in Appendix B.

3.2 Model Formulation

Let (Ω,F ,F,P) be a complete filtered probability space where F := {Ft} is a right-

continuous, P-completed filtration. We consider an insurance group consisting of N sub-

sidiary business units and each business unit is managed independently within the group.

In particular, the decision maker in the present chapter is the insurance group manager,

who collects the premiums and contributes shares of the dividend for the whole group of

subsidiaries.

39



After the pioneer work [49], the diffusion-approximation of the classical Cramér-

Lundberg model has been popular in the study of optimal dividend and reinsurance thanks

to its tractability and allowance of explicit control strategies, see among [37], [44], [5],

[28], [42] and many others. Following their setting, it is assumed in this chapter that all

subsidiaries have the same form of surplus processes with different drifts and insurance

claim distributions and the pre-default surplus process X̂i(t) for each subsidiary satisfies

the diffusion model that

dX̂i(t) = aidt− bidWi(t),

where constants ai > 0 and bi > 0 represent the mean and the volatility of the surplus

process respectively, and each Wi(t) is a standard P-Brownian motion. For 1 ≤ i, j ≤ N ,

the correlation coefficient between Wi and Wj is denoted by the constant −1 ≤ ρij ≤ 1

and the correlation coefficient matrix is denoted by Σ = (ρij)N×N . The model covers

correlated insurance claims from different subsidiaries including possible scenarios that

some subsidiaries are running product lines that depend on other product lines and some

subsidiaries serve certain overlapping customers.

We consider in this chapter that each subsidiary allocates a large proportion of its net-

reserves in some credit assets. Each subsidiary is exposed to some external credit risk in

the financial market, and a wave of defaults in these credit assets may lead to large loss

of net-reserves in all subsidiaries. One example is the collapse of AIG, which is exposed

to substantial credit risk in its balance sheet in the 2008 financial crisis. To make our

multi-dimensional dividend control problem tractable and facilitate the backward induc-

tion method, we consider the extreme case in the present chapter that the external default

will terminate the operation of the subsidiary and no salvage value can be paid as divi-

dend at the moment of default. To model these extreme and irreparable default events,

we choose the so-called default indicator process that is described by an N-dimensional

F-adapted process Z(t) = (Z1(t), . . . , ZN(t)) taking values on {0, 1}N . For each i,

40



Zi(t) = 1 indicates that the i-th subsidiary has defaulted up to time t, while Zi(t) = 0

indicates that the i-th subsidiary is still alive at time t. The process Z(t) is assumed to be

independent of all Brownian motions Wi(t), i = 1, . . . , N , to reflect that these external

default events stem from the credit assets and they do not depend on the claims of each

subsidiary’s insurance products.

For each i = 1, . . . , N , the default time σi for the i-th subsidiary is given by

σi := inf {t ≥ 0;Zi(t) = 1} .

The stochastic intensity of σi is modeled by (1− Zi(·))λi (Z(·)), where λi maps {0, 1}N

to (0,+∞) and the process

Mi(t) := Zi(t)−
∫ t∧σi

0

λi (Z(s)) ds, (3.1)

is a martingale with respect to the filtration generated by Z. Note that this processZi(t) can

also be viewed as a Cox process truncated above by constant 1, whose intensity process is

(1− Zi(t))λi(Z(t)) + Zi(t).

Let us take N = 2 as an example and consider the default state Z(t) = (0, 0) at time

t. The values λ1(0, 0) and λ2(0, 0) give the default intensity of subsidiary 1 and subsidiary

2 at time t respectively. Suppose that subsidiary 1 has already defaulted before time t

and only subsidiary 2 is alive, then λ2(1, 0) represents the default intensity of subsidiary

2 at time t. Similarly, if the subsidiary 2 has already defaulted before time t and only

subsidiary 1 is alive, then λ1(0, 1) represents the default intensity of subsidiary 1 at time

t. Moreover, we consider the default contagion in the sense that λ1(0, 0) ≤ λ1(0, 1) and

λ2(0, 0) ≤ λ2(1, 0) such that the default intensity of one subsidiary increases after the

other subsidiary defaults.

For the general case with N subsidiaries, the default indicator process at time t may

jump from a state

Z(t) = (Z1(t), . . . , Zi−1(t), Zi(t), Zi+1(t), . . . , ZN),
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in which the subsidiary i is alive (Zi(t) = 0) to the neighbour state

(Z1(t), . . . , Zi−1(t), 1− Zi(t), Zi+1(t), . . . , ZN),

in which the subsidiary i has defaulted with the stochastic rate λi(Z(t)). It is assumed

from this point on that Zi, i = 1, . . . , N , will not jump simultaneously in the sense that

∆Zi(t)∆Zj(t) = 0, 1 ≤ i < j ≤ N, t ≥ 0. (3.2)

Note that the default intensity of the i-th subsidiary λi(Z(t)) depends on the whole vector

process Z(t), and it is assumed that λi(Z(t)) increases if any other subsidiary defaults.

This is what we mean by default contagion for multiple subsidiaries. Let us denote the

vector λ(z) = (λi(z); i = 1, . . . , N)T , for the given default vector z ∈ {0, 1}N .

The actual surplus process of subsidiary i after the incorporation of external credit risk

is denoted by X̃i(t), where i = 1, 2, . . . , N, and it is defined as

X̃i(t) := (1− Zi(t)) X̂i(t).

Given the surplus process X̃i(t), for each subsidiary i, we can then introduce the div-

idend policy. A dividend strategy Di(·) is an Ft-adapted process representing the accu-

mulated amount of dividend paid up to time t. That is, Di(t) is a nonnegative and nonde-

creasing stochastic process that is right continuous and have left limits with Di(0
−) = 0.

The jump size of Di at time t ≥ 0 is denoted by ∆Di(t) := Di(t) − Di(t
−), and

Dc
i (t) := Di(t)−

∑
0≤s≤t ∆Di(s) denotes the continuous part of Di(t).

For the i-th subsidiary, the resulting surplus process in the presence of dividend pay-

ments can be written as

Xi(t) :=
(
1− Zi(t)

)(
X̃i(t)−Di(t)

)
, Xi(0) = xi ≥ 0,

where xi stands for the initial surplus of the i-th subsidiary. We denote the vector process

X(t) := (X1(t), . . . , XN(t)).
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The objective function for the insurance group is formulated as a corporative singular

control of total dividend strategy

D(t) = (D1(t), . . . , DN(t)),

under the expected value of discounted future dividend payments up to the ruin time

J(x, z,D(·)) := E

(
N∑
i=1

αi

∫ τi

0

e−rtdDi(t)

)
,

where the weight parameter satisfies α1 +α2 + . . .+αN = 1. The parameter αi represents

the relative weight of the subsidiary in the insurance group, and they add up to 1 after

scaling. r > 0 is a given discount rate. Recall that the insurance group manager is the

decision maker, the surplus process of each subsidiary is therefore completely observable

to the decision maker. The ruin time τi of the subsidiary i is defined by

τi := inf{t ≥ 0 : Xi(t) = 0}, i = 1, . . . , N.

The initial surplus level is denoted by Xi(0) = xi and the initial default state is denoted

by Zi(0) = zi, i = 1, . . . , N . We also denote

X(0) = x := (x1, . . . , xN),

Z(0) = z := (z1, . . . , zN).

It is assumed henceforth that each admissible control process Di(t) can not jump simulta-

neously with Zi(t) in the sense that, for t ≥ 0,

∆Di(t)∆Zi(t) = 0, 1 ≤ i ≤ N. (3.3)

That is, the dividend for the subsidiary i can not be paid right at the moment when the

subsidiary i goes default due to external credit risk. The assumption (3.3) is by no means

restrictive because the processDi(t) is càdlàg and the default time σi is totally inaccessible

due to the existence of default intensity λi. In Appendix B, assumptions (3.2) and (3.3) are
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needed to derive the associated HJBVI. Moreover, it is assumed throughout the chapter

that

∆Di(t) ≤ Xi(t−),

Di(t) = Di(t ∧ τi),

where the first condition dictates that the subsidiary i can not pay dividend more than its

currently available fund and the second condition means that the subsidiary i won’t pay

any dividend after its ruin time.

Remark 3.1. In most cases, we simply choose αi = 1
N

, that is, every subsidiary shares

the same percentage of the insurance group. In special cases, the product line of some

subsidiary i is the key business of the insurance group, in which weight αi is a little bit

bigger than other subsidiaries.

Our goal is to find the optimal dividend strategy D∗ such that the value function can

be attained that

f(x, z) := sup
D
J(x, z,D) = J(x, z,D∗). (3.4)

In particular, we are interested in the case that all subsidiaries are alive at the initial time,

i.e., the value function f(x,0) can be characterized, where 0 = (0, . . . , 0) is the zero

vector.

A barrier dividend strategy is to pay dividend whenever the surplus process excesses

over the barrier. The optimal dividend for a single insurance company has been shown to

fit this type of barrier control in various risk models. In our setting with default contagion,

the optimal dividend for the insurance group also fits this barrier control. Nevertheless,

the optimal barrier for each subsidiary is no longer a fixed level as in the model of a

single insurance company. Instead, we identify that the optimal barrier is dynamically

modulated by the defaulted subsidiaries and surviving ones. The dependence on the default

state leads to some distinctive phenomena that the dividend barrier will be adjusted in the
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observation of sequential defaults. Furthermore, the change of the barrier for subsidiary i,

i.e. the change of mi(Z(t)) in (3.6), is complicated and depends on all market parameters.

In the case of two subsidiaries, we can prove in Corollary 3.1 that the default event of

one subsidiary will stimulate the surviving one to pay dividend, albeit with less amount,

because the dividend threshold decreases.

For any vectors x ∈ [0,+∞)N and z ∈ {0, 1}N , let us denote

x(l) := (x1, . . . , xl−1, 0, xl+1, . . . , xN),

zl := (z1, . . . , zl−1, 1, zl+1, . . . , zN).

The next theorem is the main result of this chapter.

Theorem 3.1. Let us consider the initial surplus level X(0) = x ∈ [0,+∞)N and the

initial default state Z(0) = z := (z1, . . . , zN) = 0 that all subsidiaries are alive at the

initial time. The value function f(x,0) defined in (3.4) is the unique classical solution to

the variational inequalities

max
1≤i≤N

{
Lf(x, z) +

N∑
l=1

λl(z)f(x(l), zl), αi − ∂if(x, z)

}
= 0, (3.5)

in which the operator is defined by

Lf(x, z) := −

(
r +

N∑
k=1

λk(z)

)
f(x, z) +

N∑
k=1

(
ak∂kf(x, z) +

1

2
b2
k∂kkf(x, z)

)

+
N∑

i,j=1
i>j

bibjρij∂
2
ijf(x, z),

where ∂kf := ∂f
∂xk

and ∂kkf := ∂2f
∂x2k

.

Moreover, for each i = 1, . . . , N , there exists a mapping mi : {0, 1}N 7→ (0,+∞)

such that the optimal dividend D∗ for the i-th subsidiary is given by the reflection strategy

D∗i (t) := max

{
0, sup

0≤s≤t

{
X̃i(s)−mi (Z(s))

}}
, i = 1, . . . , N, (3.6)
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and mi(Z(t)) represents the optimal barrier for the i-th subsidiary modulated by the N-

dimensional default state indicator Z(t) at time t.

From the form of HJBVI (3.5), we can see that the solution f(x, z) actually depends

on the value function f(x, zl) with the initial default state zl indicating that one subsidiary

has already defaulted. Therefore, to show the existence of classical solution to HJBVI

(3.5) with z = 0, we have to analyze the existence of the classical solution of the entire

system of HJBVIs with all different values of z ∈ {0, 1}N . To this end, we follow a

recursive scheme that is based on default states of subsidiaries. The proof of Theorem 3.1

is postponed to Section 3.5.

3.3 Analysis of HJBVIs: Two Subsidiaries

To make our recursive arguments more readable, we first present the main result for

only 2 subsidiaries. As one can see, the associated HJB variational inequalities can be

solved explicitly for 2 initial subsidiaries and the optimal barriers of dividend for each

subsidiary at time t can be derived that depends on the default state Z(t). The recursive

scheme to analyze the variational inequalities has a hierarchy feature, which is operated in

a backward manner. To be more precise, we first solve a standard optimal dividend prob-

lem when only one subsidiary survives initially, and the associated value function appears

as variable coefficients in the top level of HJBVI when both subsidiaries are initially alive.

We can then continue to tackle the top level HJBVI with two subsidiaries by employing a

separation form of its solution and the smooth-fit principle.

3.3.1 One Surviving Subsidiary

In this subsection, it is assumed that there is only one subsidiary at the initial time.

That is, we need to consider default states z1 := (0, 1) and z2 := (1, 0). Here, the default

state zi, i = 1, 2, indicates that subsidiary i is alive initially while the other subsidiary has
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already defaulted due to the external credit risk.

For each i, let us consider the default state zi, and let xi ≥ 0 be the initial surplus level

for the subsidiary i. The associated HJBVI for the default state (0, 1) and (1, 0) can be

derived as

max

{
Lzif(xi, zi), αi −

∂f

∂xi
(xi, zi)

}
= 0, i = 1, 2, (3.7)

where the operator is defined by

Lzif := − (r + λi(zi)) f +

(
ai
∂f

∂xi
+

1

2
b2
i

∂2f

∂x2
i

)
.

Here, we recall that λi(zi) stands for the default intensity for subsidiary i given that the

other subsidiary has already defaulted.

We can follow some standard results in [6], which solves the stochastic control problem

for a single insurance company. The positive discount rate r > 0 ensures that

1

2
b2
i s

2 + ais− (r + λi(zi)) = 0,

admits two real roots. Let θ̂i1, −θ̂i2 denote the positive and negative root respectively that

θ̂i1 :=
−ai +

√
a2
i + 2b2

i (r + λi(zi))

b2
i

, i = 1, 2,

−θ̂i2 :=
−ai −

√
a2
i + 2b2

i (r + λi(zi))

b2
i

, i = 1, 2.

According to results in [6], for i = 1, 2, the solution to the HJBVI (3.7) is

f(xi, zi) =

 αiCi(zi)(e
θ̂i1xi − e−θ̂i2xi), 0 ≤ xi ≤ mi(zi),

αiCi(zi)(e
θ̂i1mi(zi) − e−θ̂i2mi(zi)) + αi(xi −mi(zi)), xi ≥ mi(zi),

(3.8)

47



where

mi(zi) :=
2

θ̂i1 + θ̂i2
log

(
θ̂i2

θ̂i1

)

=
b2
i√

a2
i + 2b2

i (r + λi(zi))
log

(√
a2
i + 2b2

i (r + λi(zi)) + ai√
a2
i + 2b2

i (r + λi(zi))− ai

)
,

Ci(zi) :=
1

θ̂i1eθ̂i1mi(zi) + θ̂i2e−θ̂i2mi(zi)
, i = 1, 2.

3.3.2 Auxiliary Results for Two Subsidiaries

We continue to consider the case that both subsidiaries are alive at time t = 0 with the

initial surplus x = (x1, x2) and initial default state z = (0, 0). Using heuristic arguments

in Appendix B, the associated HJBVI for the value function can be written by

max
{
L(0,0)f(x, (0, 0)), α1 − ∂1f(x, (0, 0)), α2 − ∂2f(x, (0, 0))

}
= 0, (3.9)

with the operator

L(0,0)f(x, (0, 0)) :=− (r + λ1(0, 0) + λ2(0, 0))f(x, (0, 0)) + b1b2ρ12∂12f(x, (0, 0))

+

(
a1∂1f(x, (0, 0)) +

1

2
b2

1∂
2
11f(x, (0, 0))

)

+

(
a2∂2f(x, (0, 0)) +

1

2
b2

2∂
2
22f(x, (0, 0))

)
+ λ1(0, 0)f(x2, (1, 0)) + λ2(0, 0)f(x1, (0, 1)), (3.10)

where functions f(x1, (0, 1)) and f(x2, (1, 0)) are given explicitly in (3.8), and

∂if(x, (0, 0)) :=
∂f(x, (0, 0))

∂xi
, and ∂ijf(x, (0, 0)) :=

∂2f(x, (0, 0))

∂xixj
, i, j = 1, 2.

To show the existence of a classical solution to HJBVI (3.9), we first conjecture that the

solution f(x, (0, 0)) with x = (x1, x2) ∈ [0,+∞)2 admits a key separation form that

f(x, (0, 0)) = f1(x1, (0, 0)) + f2(x2, (0, 0)), x1, x2 ≥ 0, (3.11)
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for some smooth functions f1 and f2, i.e., functions of x1 and x2 can be decoupled. The

rigorous proof of this separation form will be given in the next subsection.

With the aid of the separation form (3.11), to solve HJBVI (3.9) is equivalent to solve

two auxiliary variational inequalities with one dimensional variable x ∈ [0,+∞) defined

by

max

{
Aifi(x, (0, 0)) +

λ1(0, 0)λ2(0, 0)

λi(0, 0)
f(x, zi), (3.12)

αi − f ′i(x, (0, 0))

}
= 0, i = 1, 2, x ≥ 0, (3.13)

where the operators are defined as

Aif(x, (0, 0)) :=
1

2
b2
i f
′′(x, (0, 0)) + aif

′(x, (0, 0))

−(r + λ1(0, 0) + λ2(0, 0))f(x, (0, 0)), i = 1, 2,

and the boundary condition fi(0, (0, 0)) = 0, i = 1, 2.

Remark 3.2. When two subsidiaries are alive, the function f1(x1, (0, 0)) from the de-

composition relationship (3.33) satisfies variational inequalities (3.12). It is worth noting

that this function f1(x1, (0, 0)) can not be simplify interpreted as the value function of the

optimal dividend problem for the single subsidiary 1 without considering all other sub-

sidiaries. As one can observe from (3.12), f1(x1, (0, 0)) depends on the coefficient λ2(0, 0)

that is the default intensity of the subsidiary 2 and also depends on the value function

f1(x, (0, 1)). However, as pointed out later in Remark 3.4, our mathematical approach can

eventually verify that f1(x1, (0, 0)) equals the expected value of the discounted dividend

using the dividend control policy D∗1(t) for subsidiary 1, where D∗(t) = (D∗1(t), D∗2(t)) is

the optimal dividend for the whole group.

By symmetry, for the existence of classical solution to the auxiliary variational inequal-

ity (3.12), for i = 1, 2, it is sufficient to study the general form of variational inequality
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with one dimensional variable x ∈ [0,+∞) defined by

max {Af(x) + h(x), γ − f ′(x)} = 0, (3.14)

where γ > 0,

Af(x) := −µf(x) + νf ′(x) +
1

2
σ2f ′′(x), µ, ν, σ > 0, (3.15)

and the function h is a C2 function satisfying h(0) = 0, limu→+∞ h(u) = +∞, h(x) ≥ 0,

h′(x) > 0, and h′′(x) ≤ 0, for x ≥ 0.

To tackle the general variational inequality (3.14), we propose to examine the solution

to the ODE part at first in the next lemma.

Lemma 3.1. Let us consider the ODE problem

Ag(x) + h(x) = 0, x ≥ 0, (3.16)

with the boundary condition g(0) = 0 and the operator A is defined in (3.15), h is the

same as that in (3.14). The classical solution g to (3.16) admits the form

g(x) = φ1(x) + Cφ2(x),

where C is a parameter in R, and

φ1(x) := − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(eθ1(x−u) − e−θ2(x−u))du, x ≥ 0, (3.17)

φ2(x) := eθ1x − e−θ2x, x ≥ 0. (3.18)

Here θ1, −θ2 are the roots of the equation 1
2
σ2θ2 + νθ − µ = 0.

Proof. We first rewrite the ODE (3.16) in a vector form as

d

dx

(
g(x)
g′(x)

)
= A

(
g(x)
g′(x)

)
+ β(x),

where

A :=

(
0 1

2σ−2µ −2σ−2ν

)
, β(x) :=

(
0

−2σ−2h(x)

)
.
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One can solve it as (
g(x)
g′(x)

)
= eAx

∫ x

0

e−Auβ(u)du+ eAxβ0.

The boundary condition g(0) = 0 then yields that β0 = (0, g′(0))> and

eAxβ0 =
(
C(eθ1x − e−θ2x), C(θ1e

θ1x + θ2e
−θ2x)

)>
,

for some constant C. Note also that β(x) =
(
0,−2σ−2h(x)

)
, hence it follows that

eAx
∫ x

0

e−Auβ(u)du = −2σ−2

∫ x

0

eA(x−u)

(
0

h(u)

)
du

= −2σ−2

∫ x

0

h(u)eA(x−u)

(
0
1

)
du.

Let
(
y1(t)
y2(t)

)
= eAt

(
0
1

)
, we get that d

dt

(
y1(t)
y2(t)

)
= A

(
y1(t)
y2(t)

)
, y1(0) = 0, y2(0) =

1. Then y′1(t) = y2(t) implies that y1(t) = C1e
θ1t + C2e

−θ2t, y1(0) = 0, y′1(0) = 1. We

then deduce that C1 = −C2 = 1
θ1+θ2

. Therefore, we have

eAx
∫ x

0

e−Auβ(u)du = −2σ−2

∫ x

0

h(u)eA(x−u)

(
0
1

)
du

= − 2

σ2(θ1 + θ2)

∫ x

0

(
h(u)(eθ1(x−u) − e−θ2(x−u))

h(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))

)
du,

and also

g(x, (0, 0)) = − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(eθ1(x−u) − e−θ2(x−u))du+ C(eθ1x − e−θ2x)

= φ1(x) + Cφ2(x),

where C is a parameter, and φ1(x) and φ2(x) satisfy (3.17) and (3.18) respectively.

Back to the variational inequality (3.14), we plan to apply the smooth-fit principle to

mandate the solution to be smooth at the free boundary point. The next technical result

becomes an important step to prove the main theorem.
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Lemma 3.2. Under the conditions in Lemma 3.1, we have ζ > 0 and there exist positive

constants (C,m) such that φ
′
1(m) + Cφ′2(m) = γ,

φ′′1(m) + Cφ′′2(m) = 0.

Proof. Let us start with some identities of derivatives by direct calculations that

φ′1(x) = − 2

σ2(θ1 + θ2)

∫ x

0

h(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))du ≤ 0, (3.19)

φ′′1(x) = − 2

σ2(θ1 + θ2)

∫ x

0

h′(u)(θ1e
θ1(x−u) + θ2e

−θ2(x−u))du ≤ 0, (3.20)

where the second inequality holds thanks to h(0) = 0, and

φ′′1(x) = − 2

σ2(θ1 + θ2)
h(x)φ′2(0)− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du

= − 2

σ2(θ1 + θ2)
(h(x)φ′2(0)− h(0)φ′2(x))− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du

=
2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du− 2

σ2(θ1 + θ2)

∫ x

0

h′(u)φ′2(x− u)du

− 2

σ2(θ1 + θ2)

∫ x

0

h(u)φ′′2(x− u)du

= − 2

σ2(θ1 + θ2)

∫ x

0

h′(u)φ′2(x− u)du.

Note that φ′′2(0) = θ2
1 − θ2

2 < 0. As φ′2(x) > 0, the existence of m ∈ (0,+∞) boils down

to the existence of root x ∈ (0,+∞), to the following equation

q(x) := φ′′1(x) +
γ − φ′1(x)

φ′2(x)
φ′′2(x) = 0.

As φ′1(0) = φ′′1(0) = 0 by (3.19) and (3.20), we obtain that q(0) =
γφ′′2 (0)

φ′2(0)
< 0.

Plugging (3.19) and (3.20) into the definition of q above, we obtain that

q(x) =γ
φ′′2(x)

φ′2(x)
+

2

σ2(θ1 + θ2)

∫ x

0

[
φ′′2(x)

φ′2(x)
h(u)− h′(u)

]
(θ1e

θ1(x−u) + θ2e
−θ2(x−u))du.

(3.21)
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As h′′ ≤ 0, h′ > 0, it follows that h′ is bounded. Noting that limx→+∞
φ′′2 (x)

φ′2(x)
= θ1 > 0,

as well as that limu→+∞ h(u) = +∞, we deduce from (3.21) that limx→+∞ q(x) = +∞.

Therefore q admits at least one root x ∈ (0,+∞). We then define

m := inf {u : q(u) = 0} ∈ (0,+∞), (3.22)

and choose

C :=
γ − φ′1(m)

φ′2(m)
≥ γ

φ′2(m)
> 0. (3.23)

With the parameters (C,m) obtained in (3.23) and (3.22) in the proof of Lemma 3.2,

we can turn to the construction of a classical solution to the general variational inequality.

Proposition 3.1. The variational inequality

max {Af(x) + h(x), γ − f ′(x)} = 0, x ≥ 0, (3.24)

with the boundary condition f(0) = 0 admits a C2 solution, which has the form of

f(x) =

 φ1(x) + Cφ2(x), x ∈ [0,m],

φ1(m) + Cφ2(m) + γ(x−m), x ∈ [m,+∞).
(3.25)

Here φ1(x) and φ2(x), x ≥ 0, are defined in (3.17) and (3.18) respectively and parameters

C and m are determined in (3.23) and (3.22).

In particular, we haveAf(x) + h(x) = 0, x ∈ [0,m],

γ − f ′(x) = 0, x ∈ [m,+∞),
(3.26)

and f(0) = 0, f ′ > 0, f ′′ ≤ 0, limx→+∞ f(x) = +∞.

Proof of Proposition 3.1. Let g(x) be the classical solution to the ODE (3.16). We have

that f(x) coincides with g(x) in Lemma 3.1, for x ≤ m and the function is a linear

53



function, for x > m. We aim to prove that the function f is the desired C2 solution

to the variational inequality (3.24). Thanks to Lemma 3.2, we deduce that f ′(m) = γ,

f ′′(m) = 0. In view of its definition, it is straightforward to see that f belongs to C2. On

the other hand, Lemma 3.1 and (3.25) give the validity of (3.26). Therefore (3.24) holds

once we show that

f ′(x) = φ′1(x) + Cφ′2(x) ≥ γ, for x ∈ [0,m],

as well as

Af(x) + h(x) ≤ 0, for x ≥ m.

Define the elliptic operator

Lf := −1

2
σ2f ′′ − νf ′ + µf,

and consider g(x) in Lemma 3.1 with C in (3.23). Then we have

Lg(x) = h(x), x ∈ (0,m).

Note that h is twice differentiable, and that h′′ ≤ 0. It therefore follows that

Lg′′(x) = h′′(x) ≤ 0, x ∈ (0,m).

Since µ > 0, according to the weak maximum principle (see Theorem 2 in §6.4 of [39]),

we have

max
x∈[0,m]

g′′(x) ≤ max
{[
g′′(0)

]+
,
[
g′′(m)

]+}
= 0.

Therefore, we have

φ′1(x) + Cφ′2(x) ≥ φ′1(m) + Cφ′2(m) = γ, for x ∈ [0,m].

In other words,

φ′′1(x) + Cφ′′2(x) ≤ 0, x ∈ [0,m]. (3.27)
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We next show thatAf ′(x) +h′(x) ≤ 0, for x ≥ m. In our previous argument, we have

shown that φ′′1(x) + Cφ′′2(x) ≤ 0, x ∈ [0,m], i.e., f ′′(x) ≤ 0, x ∈ [0,m]. It follows that

f ′′′(m−) = lim
x→m−

f ′′(m)− f ′′(x)

m− x
= − lim

x→m−

f ′′(x)

m− x
≥ 0. (3.28)

Thanks to the definition of f , we have thatAf ′(x) + h′(x) = 0 on x ∈ [0,m). By sending

x→ m−, we get

Af ′(m−) + h′(m) = 0.

That is,

−µγ + h′(m) = −1

2
σ2f ′′′(m−) ≤ 0.

For x > m, we have f ′′(x) = 0, f ′(x) = γ, and h′(x) ≤ h′(m) as h′′ ≤ 0. Hence, we

have

Af ′(x) + h′(x) = −µf ′(x) + h′(x) ≤ −µγ + h′(m) ≤ 0.

Then for x ≥ m, we arrive at

Af(x) + h(x) ≤ Af(m) + h(m) = 0.

Putting all the pieces together, we can conclude that f is the desired C2 solution to the

variational inequality (3.24).

To complete the proof, it remains to show that

f(0) = 0, f ′(x) > 0, f ′′(x) ≤ 0, x ≥ 0.

In view of (3.17), (3.18) and (3.25), it holds that f(0) = 0. Note that the variational

inequality (3.24) gives f ′(x) > 0, x ≥ 0. Moreover, in view of (3.27) and the fact that f(x)

is linear on x ∈ [m,+∞), we obtain that f ′′(x) ≤ 0, x ≥ 0, limx→+∞ f(x) = +∞.
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3.3.3 Main Results for Two Subsidiaries

In view of the explicit solution of the auxiliary variational inequality (3.24), for i =

1, 2, we can derive the explicit solution fi(xi, (0, 0)) to the variational inequality (3.12) by

setting A = Ai, h(xi) = λ1(0,0)λ2(0,0)
λi(0,0)

fi(xi, zi) and γ = αi.

Moreover, for i = 1, 2, let us denote the constant m and C for variational inequality

(3.12) by mi(0, 0) and Ci(0, 0), because we can verify later that the constant mi(0, 0) is

the optimal barrier of the dividend strategy for the subsidiary i.

Let us define

Ki := αiCi(zi)(e
θ̂i1mi(zi) − e−θ̂i2mi(zi))− αimi(zi), i = 1, 2,

and we will construct the explicit solution of the variational inequality (3.12) in the fol-

lowing steps.

For i = 1, 2, let us denote θi1, −θi2 as the positive and negative roots of the equation

1
2
b2
i θ

2 + aiθ − (r + λ1(0, 0) + λ2(0, 0)) = 0 respectively that

θi1 :=
−ai +

√
a2
i + 2b2

i (r + λ1(0, 0) + λ2(0, 0))

b2
i

,

−θi2 :=
−ai −

√
a2
i + 2b2

i (r + λ1(0, 0) + λ2(0, 0))

b2
i

.

56



Let us first define for i = 1, 2 and the variable x ≥ 0 that

fi1(x, (0, 0)) :=



fi11(x) := − 2

σ2

αiλ1(0, 0)λ2(0, 0)Ci(zi)

λi(0, 0)(θi1 + θi2)

×

[
(θi1 + θi2)eθ̂i1x

(θ̂i1 − θi1)(θ̂i1 + θi2)
+

(θi1 + θi2)e−θ̂i2x

(θ̂i2 + θi1)(−θ̂i2 + θi2)

− (θ̂i1 + θ̂i2)eθi1x

(θ̂i1 − θi1)(θ̂i2 + θi1)
− (θ̂i1 + θ̂i2)e−θi2x

(θ̂i1 + θi2)(−θ̂i2 + θi2)

]
,

0 ≤ x ≤ mi(zi),

fi12(x) := − 2

σ2

αiλ1(0, 0)λ2(0, 0)Ci(zi)

λi(0, 0)(θi1 + θi2)

×

[
eθi1x

θ̂i1 − θi1

(
e(θ̂i1−θi1)mi(zi) − 1

)
+

e−θi2x

θ̂i1 + θi2

(
− e(θ̂i1+θi2)mi(zi) + 1

)

+
eθi1x

θ̂i2 + θi1

(
e−(θ̂i2+θi1)mi(zi) − 1

)

+
e−θi2x

−θ̂i2 + θi2

(
e(−θ̂i2+θi2)mi(zi) − 1

)]

− 2

σ2

Kiλ1(0, 0)λ2(0, 0)

λi(0, 0)(θi1 + θi2)

×

[
1

θi1

(
eθi1x−θi1mi(zi) − 1

)
+

1

θi2

(
e−θi2x+θi2mi(zi) − 1

)]

− 2

σ2

αiλ1(0, 0)λ2(0, 0)

λi(0, 0)(θi1 + θi2)

×

[
1

(θi1)2

(
− θi1x− 1 + (θi1mi(zi) + 1)eθi1x−θi1mi(zi)

)

+
1

(θi2)2

(
− θi2x+ 1 + (θi2mi(zi)− 1)e−θi2x+θi2mi(zi)

)]
,

mi(zi) ≤ x,

(3.29)
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fi2(x, (0, 0)) = eθi1x − e−θi2x, x ≥ 0. (3.30)

In view of Lemma 3.2 and Proposition 3.1, we can define the constant

mi(0, 0) := inf{s : qi(s) = 0}, i = 1, 2,

where

qi(x) := f ′′i1(x, (0, 0)) +
αi − f ′i1(x, (0, 0))

f ′i2(x, (0, 0))
f ′′i2(x, (0, 0)), i = 1, 2.

We also define Ci(0, 0) :=
αi−f ′i1(mi(0,0))

f ′i2(mi(0,0))
, i = 1, 2.

To illustrate the change of the optimal barrier when one subsidiary defaults, let us

choose the model parameters: a1 = 0.1, b1 = 0.07, a2 = 0.15, b2 = 0.06, λ1(0, 0) = 0.02,

λ1(0, 1) = 0.04, λ2(0, 0) = 0.01, λ2(1, 0) = 0.04, r = 0.05 and α1 = 0.4. We can see

from Figure 1 that the comparison results m1(0, 0) > m1(0, 1) and m2(0, 0) > m2(1, 0)

hold. That is, both subsidiaries decrease the optimal barriers for dividend payment after

the other subsidiary defaults. These observations are consistent with our intuition that the

default contagion effect forces the surviving subsidiary to take into account that itself will

go default very soon because of the increased default intensity. Therefore the surviving

one prefers to pay dividend as soon as possible by setting a lower dividend threshold before

the unexpected default happens.

We actually have the next theoretical result on the change of the optimal barrier when

one subsidiary defaults.

Corollary 3.1. For the case of two subsidiaries, as we have λ1(0, 1) ≥ λ1(0, 0) and

λ2(1, 0) ≥ λ2(0, 0), we always have the orders that m1(0, 0) ≥ m1(0, 1) and m2(0, 0) ≥

m2(1, 0).

Proof. It suffices to show that m1(0, 0) ≥ m1(0, 1). We first show that f1(x, (0, 0)) ≥

f1(x, (0, 1)), x ≥ 0. Define fδ(x) := e−δxf1(x, (0, 0)), f̂δ(x) := e−δxf1(x, (0, 1)). Here,
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Figure 3.1: The change of the optimal barrier when default occurs

we choose the constant δ > 0 small enough such that r+λ1(0, 0)+λ2(0, 0)−δa1− 1
2
δ2b2

1 >

0. We can verify by direct calculation that fδ(x) satisfies

max
{
Aδ1fδ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxfδ(x)

)′}
= 0, x ≥ 0,

with fδ(0) = 0 and the operator Aδ1 defined by

Aδ1f :=
1

2
b2

1

(
eδxf(x)

)′′
+ a1

(
eδxf(x)

)′ − (r + λ1(0, 0) + λ2(0, 0)
)
eδxf(x).

On the other hand, we have that

max
{
Âδ1f̂δ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxf̂δ(x)

)′}
= 0, x ≥ 0,

with f̂δ(0) = 0 and the operator Âδ1 defined by

Âδ1f :=
1

2
b2

1

(
eδxf(x)

)′′
+ a1

(
eδxf(x)

)′ − (r + λ̂1(0, 0) + λ2(0, 0)
)
eδxf(x),

and λ̂1(0, 0) := λ1(0, 1). Noting that λ̂1(0, 0) ≥ λ1(0, 0) and f̂δ ≥ 0, we thus have that

max
{
Aδ1f̂δ(x) + λ2(0, 0)f1(x, (0, 1)), α1 −

(
eδxf̂δ(x)

)′} ≥ 0, x ≥ 0.
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The comparison result of viscosity solutions (see e.g. Section 5B in [30]) yields that, for

each M > 0,

f̂δ(x)− fδ(x) ≤ max
{

0, f̂δ(M)− fδ(M)
}
, x ∈ [0,M ].

Note that M > 0 is arbitrary and limM→+∞ |f̂δ(M)− fδ(M)| = 0. Letting M → +∞ in

the inequality above, we obtain that

fδ(x)− f̂δ(x) ≥ 0, x ≥ 0.

This gives that f1(x, (0, 0)) ≥ f1(x, (0, 1)), x ≥ 0.

Next, let us define g(x1) := f ′1(x1, (0, 0)). We claim that g is the viscosity solution of

max {A1g(x1) + λ2(0, 0)f ′1(x1, (0, 1)), α1 − g(x1)} = 0, (3.31)

with g(0) = f ′1(0, (0, 0)) and g(M) = α1, where the constant M is sufficiently large that

M > m1(0, 1) ∨m1(0, 0). Indeed, on (0,+∞) \ {m1(0, 1)}, g is C2 and satisfies (3.31).

On the other hand, similar to (3.28), we can derive that

lim
x↑m1(0,1)

g′′(x) = lim
x↑m1(0,1)

f ′′′1 (x, (0, 1)) ≥ 0,

as well as that limx↓m1(0,1) g
′′(x) = 0. Hence

D+(2)g(m1(0, 1)) =

{
(0, p) : p ≥ lim

x↑m1(0,1)
f ′′′1 (x, (0, 1))

}
,

D−(2)g(m1(0, 1)) = {(0, p) : p ≤ 0} .

Here, we denote D+(2) and D−(2) the second order Super-Jet and Sub-Jet respectively. For

(0, p) ∈ D+(2)g(m1(0, 1)), we have that

max

{
1

2
b2

1 · p+ a1 · 0− (r + λ1(0, 0) + λ2(0, 0))g(m1(0, 1)), α1 − g(m1(0, 1))

}
≥ 0,

while for (0, p) ∈ D−(2)g(m1(0, 1)), we have

max

{
1

2
b2

1 · p+ a1 · 0− (r + λ1(0, 0) + λ2(0, 0))g(m1(0, 1)), α1 − g(m1(0, 1))

}
≤ 0.
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Therefore g is the viscosity solution of (3.31).

Let us define ĝ(x) := f ′1(x, (0, 1)). Following the same arguments above, we have that

ĝ is the viscosity supersolution to (3.31), or equivalently, the viscosity solution to

max {A1ĝ(x1) + λ2(0, 0)f ′1(x1, (0, 1)), α1 − ĝ(x1)} ≥ 0,

with ĝ(0) = f ′1(0, (0, 1)) and ĝ(M) = α1.

Because we have shown that

f1(x, (0, 0)) ≥ f1(x, (0, 1)), f1(0, (0, 0)) = f1(0, (0, 1)) = 0,

it follows that f ′1(0, (0, 0)) ≥ f ′1(0, (0, 1)), i.e., g(0) ≥ ĝ(0). Moreover, g(M) = ĝ(M) =

α1. The comparison result of viscosity solutions gives that g(x) ≥ ĝ(x), x ∈ [0,M ]. That

is, f ′1(x, (0, 0)) ≥ f ′1(x, (0, 1)). We thus deduce that

α1 = f ′1(m1(0, 0), (0, 0)) ≥ f ′1(m1(0, 0), (0, 1)) ≥ α1,

which implies that f ′1(m1(0, 0), (0, 1)) = α1. As f ′1(x, (0, 1)) > α1, for x ∈ (0,m1(0, 1)),

we can obtain the desired order that m1(0, 1) ≤ m1(0, 0).

Based on solution forms in (3.29) and (3.30) and Corollary 3.1, we have mi(0, 0) ≥

mi(zi), i = 1, 2, and the solution of the auxiliary variational inequality (3.12) satisfies

the piecewise form that

fi(xi, (0, 0)) =



fi11(xi) + Ci(0, 0)fi2(xi, (0, 0)), 0 ≤ xi < mi(zi),

fi12(xi) + Ci(0, 0)fi2(xi, (0, 0)), mi(zi) ≤ xi ≤ mi(0, 0),

fi12(mi(0, 0)) + Ci(0, 0)fi2(mi(0, 0), (0, 0))

+αi(xi −mi(0, 0)), xi > mi(0, 0).

(3.32)

We can continue to verify the important conjecture f(x, (0, 0)) = f1(x1, (0, 0)) +

f2(x2, (0, 0)) in (3.11) and prove the existence of a classical solution to HJBVI (3.9) in the

next theorem.
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Theorem 3.2. There exists a C2 solution to HJBVI (3.9) that admits the form

f(x, (0, 0)) := f1(x1, (0, 0)) + f2(x2, (0, 0)), (3.33)

where fi(xi, (0, 0)) given in (3.32) is the C2 solution to the auxiliary variational inequality

(3.12), i = 1, 2.

Proof. Thanks to Proposition 3.1, the auxiliary variational inequality (3.12) admits C2

solution, for i = 1, 2. Let fi be the solution to (3.12), i = 1, 2. By setting f(x, (0, 0)) :=

f1(x1, (0, 0)) + f2(x2, (0, 0)) and plugging into (3.10), we have

L(0,0)f(x, (0, 0)) =− rf1(x1, (0, 0))− rf2(x2, (0, 0))

+

(
a1∂1f1(x1, (0, 0)) +

1

2
b2

1∂
2
11f1(x1, (0, 0))

)
−
(
λ1(0, 0) + λ2(0, 0)

)
f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1))

+

(
a2∂2f2(x2, (0, 0)) +

1

2
b2

2∂
2
22f2(x2, (0, 0))

)
−
(
λ1(0, 0) + λ2(0, 0)

)
f2(x2, (0, 0)) + λ2(0, 0)f(x1, (0, 1)).

It readily yields that

L(0,0)f(x, (0, 0)) = A1f1(x1, (0, 0)) + λ2(0, 0)f1(x1, (0, 1))

+A2f2(x2, (0, 0)) + λ1(0, 0)f2(x2, (1, 0)),

α1 − ∂1f(x, (0, 0)) = α1 − f ′1(x1, (0, 0)),

α2 − ∂2f(x, (0, 0)) = α2 − f ′2(x2, (0, 0)).

As fi solves the variational inequality (3.12), i = 1, 2, we have that

max
{
L(0,0)f(x, (0, 0)), α1 − ∂1f(x, (0, 0)), α2 − ∂2f(x, (0, 0))

}
≤ 0.

Moreover, if L(0,0)f(x, (0, 0)) < 0, we get that

A1f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1)) < 0,
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or

A2f2(x2, (0, 0)) + λ1(0, 0)f(x2, (1, 0)) < 0.

Without loss of generality, we assume that A1f1(x1, (0, 0)) + λ2(0, 0)f(x1, (0, 1)) < 0.

By (3.12), we have that α− ∂1f(x, (0, 0)) = α− f ′1(x1, (0, 0)) = 0, and hence

max
{
L(0,0)f(x, (0, 0)), α− ∂1f(x, (0, 0)), 1− α− ∂2f(x, (0, 0))

}
= 0.

This shows that f(x, (0, 0)) in (3.33) is the solution of the HJBVI (3.9).

3.4 Analysis of HJBVIs: Multiple Subsidiaries

This section generalizes the previous results to the case with N ≥ 3 subsidiaries by

employing mathematical induction. To this end, let us start to focus on the case that there

are k ≤ N subsidiaries defaulted at the initial time and show the existence of classical

solution to the associated variational inequality. The final verification proof of the optimal

reflection dividend strategy for N initial subsidiaries is given in the next section.

For 0 ≤ k ≤ N , let us consider the initial default state that k subsidiaries have de-

faulted and denote z = 0j1,...,jk as the N dimensional vector that j1, . . ., jk components are

1 and all other components are 0 if k ≥ 1 and denote z = 0j1,...,jk as the N-dimensional

zero vector 0 if k = 0. We also denote by {jk+1, . . . , jN} := {1, 2, . . . , N} \ {j1, . . . , jk}.

For example, if (j1, . . . , jk) = (1, 2, . . . , k), then (jk+1, · · · , jN) = (k + 1, . . . , N).

Consider z = 01,...,k, x = (0, . . . , 0, xk+1, . . . , xN), and define the operator

Lzf(x, z) :=−

(
r +

N∑
i=k+1

λi(z)

)
f(x, z) +

N∑
i=k+1

(
ai∂if(x, z) +

1

2
b2
i∂

2
iif(x, z)

)
(3.34)

+
N∑

i,l=k+1
i<l

biblρil∂
2
ilf(x, z).
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With the notation above, we introduce the recursive system of HJBVIs

max
k+1≤i≤N

{
Lzf(x, z) +

N∑
l=k+1

λl(z)f(x(l), zl), αi − ∂if(x, z)

}
= 0.

Similar to the previous section, we seek for the solution in the separation form

f(x, z) =
N∑

i=k+1

fi(xi, z),

so that xk+1, . . ., xN are decoupled, where we define, for any x ≥ 0, that

fi(x, z) =

 fi,1(x, z) + Ci(z)fi,2(x, z), 0 ≤ x ≤ mi(z),

fi,1(mi(z), z) + Ci(z)fi,2(mi(z), z) + αi(x−mi(z)), x ≥ mi(z).

In particular, for k + 1 ≤ i ≤ N ,
αi − ∂if(x, z) = 0, x ∈ Ui(z),

Lzf(x, z) +
N∑

l=k+1

λl(z)f(x(l), zl) = 0, x ∈ U(z),

where we have introduced

Ui(z) :=
{
xi ≥ mi(z)

}
, and U(z) :=

N⋂
i=k+1

U c
i (z). (3.35)

For z = 0j1,...,jk and x = (x1, . . . , xN) with xji = 0, 1 ≤ i ≤ k, we can define Ui(z),

U(z) and the operator Lz in the same manner as (3.35) and (3.34), except that the notation

i and l in the expression, satisfying k + 1 ≤ i, l ≤ N , is replaced with ji and jl, satisfying

k + 1 ≤ i, l ≤ N .

With the discussion and notations above, we now proceed to prove by induction that

the following statement (Sn) holds, for 1 ≤ n ≤ N :
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(Sn) For N − n ≤ k ≤ N and z = 0j1,...,jk , there exists a solution f to HJBVI

max
k+1≤i≤N

{
Lzf(x, z) +

N∑
l=k+1

λjl(z)f(x(jl), zjl), αji − ∂jif(x, z)

}
= 0, (3.36)

where f admits the form f(x, z) =
∑N

i=k+1 fji(xji , z), satisfying

fji(x, z) =


fji,1(x, z) + Cji(z)fji,2(x, z), 0 ≤ x ≤ mji(z),

fji,1(mji(z), z) + Cji(z)fji,2(mji(z), z)

+ αji(x−mji(z)), x ≥ mji(z).

(3.37)

In particular, for k + 1 ≤ i ≤ N ,
αji − ∂jif(x, z) = 0, x ∈ Ui(z),

Lzf(x, z) +
N∑

l=k+1

λjl(z)f(x(jl), zjl) = 0, x ∈ U(z),
(3.38)

and fji(0, z) = 0, fji ≥ 0, f ′ji > 0, f ′′ji ≤ 0, limx→+∞ fji(x, z) = +∞.

The expressions of (3.8) and (3.25), Proposition 3.1 and Theorem 3.2 in the previous

section imply that (Sn) holds when n = 1, 2.

Let n be any fixed integer satisfying 1 ≤ n < N . Assuming that statement (Sn)

holds true, we continue to show by induction that statement (Sn+1) is also true. Due to

symmetry, it suffices to show that HJBVI (3.36) admits a solution f(x, z), for z = 01,...,k

when k = N −n− 1, as well as that f(x, z) should admit the form specified in (3.37) and

(3.38). In the case where z = 01,...,k and k = N − n− 1, the previous HJBVI (3.36) turns

out to be

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
l=N−n

(∑
j 6=l

λl(z)fj(xj, z
l)

)
, αi − ∂if(x, z)

}
= 0. (3.39)

In the same fashion of the previous section with two subsidiaries, it is sufficient to

study the auxiliary variational inequality, for N − n ≤ i ≤ N , with one dimensional
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variable x ≥ 0 that

max

Az,ifi(x, z) +

 N∑
l=N−n
l 6=i

λl(z)fi(x, z
l)

 , αi − f ′i(x, z)

 = 0. (3.40)

Here, we define the operator

Az,if := −
(
r + λ̃(z)

)
f + aif

′ +
1

2
b2
i f
′′,

where λ̃(z) :=
∑N

l=N−n λl(z).

Lemma 3.3. Suppose that statement (Sn) is true, then the auxiliary variational inequality

(3.40) with the boundary condition f(0, z) = 0 admits a C2 solution fi(x, z), N − n ≤

i ≤ N , where z = 01,...,N−n−1, and

fi(x, z) =

 fi,1(x, z) + Ci(z)fi,2(x, z), 0 ≤ x ≤ mi(z),

fi,1(mi(z), z) + Ci(z)fi,2(mi(z), z) + αi(x−mi(z)), x > mi(z).

(3.41)

Moreover, for x ≥ 0 and N − n ≤ i ≤ N , it holds that
Az,ifi(x, z) +

 N∑
l=N−n
l 6=i

λl(z)fi(x, z
l)

 = 0, x ∈ [0,mi(z)],

αi − f ′i(x, z) = 0, x ∈ [mi(z),+∞),

(3.42)

as well as that fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0, and limx→+∞ fi(x, z) = +∞.

Proof. Note that for any N − n ≤ l ≤ N , zl = 01,...,N−n−1,l. Our induction assumption

(Sn) gives the boundary condition
∑

l 6=i λl(z)fi(0, z
l) = 0 as well as the results

∑
l 6=i

λl(z)fi(x, z
l) ≥ 0,

(∑
l 6=i

λl(z)fi(x, z
l)

)′
> 0,

(∑
l 6=i

λl(z)fi(x, z
l)

)′′
≤ 0,
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for N − n ≤ i ≤ N . Therefore, for N − n ≤ i ≤ N , we can conclude the existence of

C2 solution fi(x, z) by using the same argument in the proof of Proposition 3.1 and obtain

the existence of free boundary points mi(z) with z = 01,...,N−n−1 such that (3.42) holds.

Moreover, we have fi(0, z) = 0, f ′i(x, z) > 0, f ′′i (x, z) ≤ 0, x ≥ 0. In view of (3.41), we

also have limx→+∞ fi(x, z) = +∞.

Lemma 3.4. Suppose that statement (Sn) is true, then the variational inequality (3.39)

admits a C2 solution, which is in the separation form of

f(x, z) =
N∑

i=N−n

fi(xi, z), (3.43)

where each fi(x, z) defined in (3.41) is the solution to the auxiliary variational inequality

(3.40). In particular, for x ≥ 0, fi(x, z) satisfies (3.42), fi(0, z) = 0, f ′i(x, z) > 0,

f ′′i (x, z) ≤ 0, and limx→+∞ fi(x, z) = +∞. Therefore statement (Sn+1) is also true.

Proof. It suffices to investigate the C2 solution of the variational inequality (3.39). Let f

be the function defined in (3.43). It is then obvious that f is C2. In view of (3.40), we have

Lzf(x, z) +
N∑

i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)

=
N∑

i=N−n

Az,ifi(xi, z) +
N∑

i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)

=
N∑

i=N−n

(
Az,ifi(xi, z) +

(∑
l 6=i

λl(z)fi(xi, z
l)

))
≤ 0.

Furthermore, αi − ∂if(x, z) = αi − f ′i(xi, z) ≤ 0, i = N − n, . . . , N . It follows that

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
, αi − ∂if(x, z)

}
≤ 0.

Now we claim that

max
N−n≤i≤N

{
Lzf(x, z) +

N∑
i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
, αi − ∂if(x, z)

}
= 0.
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Fix xi ≥ 0, N − n ≤ i ≤ N and z = 01,...,N−n−1. If

Lzf(x, z) +
N∑

i=N−n

(∑
l 6=i

λl(z)fi(xi, z
l)

)
= 0,

then the equality trivially holds. If Lzf(x, z) +
∑N

i=N−n

(∑
l 6=i λl(z)fi(xi, z

l)
)
< 0 , it

follows that Az,ifi(xi, z) +
(∑

l 6=i λl(z)fi(xi, z
l)
)
< 0, for some i. As fi is chosen to

solve (3.40), it holds that αi − ∂if(x, z) = αi − f ′i(xi, z) = 0. Therefore, our claim holds

that f(x, z) is the C2 solution to the variational inequality (3.39). Moreover, for x ≥ 0,

we have by Lemma 3.3 that fi(x, z) defined in (3.41) satisfies fi(0, z) = 0, f ′i(x, z) > 0,

f ′′i (x, z) ≤ 0 and limx→+∞ fi(x, z) = +∞. Meanwhile, (3.42) in Lemma 3.3 yields the

desired property in (3.38).

Given the results above, we conclude that, for z = 01,...,N−n−1, HJBVI (3.36) has a

solution f(x, z), which admits the form in (3.37) and (3.38). This completes the proof of

the statement (Sn+1).

By mathematical induction, we can present the following main result.

Theorem 3.3. Statement (SN ) is true. In particular, for 0 ≤ k ≤ N and z = 01,...,k, the

recursive system of HJBVI (3.36) admits a C2 solution in the separation form of

f(x, z) =
N∑

i=k+1

fi(xi, z), (3.44)

where each fi(x, z) is defined in (3.41), with n = N − 1, i.e., fi(x, z) is the solution to the

auxiliary variational inequality (3.40) and satisfies (3.42), k + 1 ≤ i ≤ N .

Remark 3.3. It can be observed from (3.40) that each function fi(xi, z) in the separation

form (3.43) is actually independent of the correlation coefficient matrix Σ. Therefore,

the solution f(x, z) to the recursive system of HJBVI (3.36), for 0 ≤ k ≤ N , is also

independent of the correlation coefficient matrix Σ = (ρij)N×N .

68



3.5 Proof of Verification Theorem

In this section, we construct the optimal dividend strategy using the C2 solution of the

recursive system HJBVI (3.36) and complete the proof of the main theorem.

Proof of Theorem 3.1.

Thanks to Theorem 3.3, we can readily conclude that variational inequality (3.5) for the

case k = 0 (i.e. z = 0 and N subsidiaries are alive) also admits the C2 solution in

the separation form (3.44). Moreover, as statement (SN ) holds, the existence of mapping

mji(z) : {0, 1}N 7→ (0,+∞) is also guaranteed, for any z = 0j1,...,jk , 1 ≤ i ≤ k as well as

z = 0.

Let τ be an arbitrary stopping time, and D(t) = (D1(t), . . . , DN(t)) be an arbitrary

admissible strategy. By using Itô’s formula, we first get

N∑
i=1

αi

∫ τ

0

e−rsdDi(s) + e−rτf (X(τ),Z(τ))− f(x, z)

=

∫ τ

0

e−rs

[
LZ(s)f(X(s),Z(s)) +

N∑
l=k+1

λl(Z(s))f(X(l)(s),Zl(s))

]
ds

+
N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X(s),Z(s))] dDc
i (s)

+
∑

0<s≤τ,∆Z(s)6=0

e−rs
N∑
j=1

∆Zj(s)

[
f
(
X(j)(s−)−∆Dj(s),Zj(s−)

)

− f
(
X(j)(s−),Zj(s−)

)
+

N∑
i=1
i 6=j

αi∆Di(s)

]

+
∑

0<s≤τ,∆Z(s)=0

e−rs

[
f (X(s)−∆D(s),Z(s−))− f (X(s−),Z(s−))

+
N∑
i=1

αi∆Di(s)

]
+Mτ
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=:I + II + III + IV +Mτ . (3.45)

As f solves (3.36), we have that I, II, IV ≤ 0. Moreover, by noting that f(x, zj) also

solves (3.36), we deduce that III ≤ 0. Note thatMt∧τ is a local martingale. There exists

a sequence of stopping times {Tn}∞n=1 satisfying Tn ↑ ∞, and

E

[
N∑
i=1

αi

∫ τ

0

e−rsdDi(s)

]

≤ lim
n→∞

E

[
N∑
i=1

αi

∫ τ∧Tn

0

e−rsdDi(s) + e−r(τ∧Tn)f(X(τ ∧ Tn),Z(τ ∧ Tn))

]

≤f(x, z) + lim
n→∞

E[Mτ∧Tn ] = f(x, z). (3.46)

In view that D(t) is arbitrary, we obtain by sending τ in (3.46) to +∞ that

sup
D
J(x, z,D) ≤ f(x, z). (3.47)

Let us continue to prove that “=” holds in (3.47). Consider the càdlàg strategy

D∗i (t) := max

{
0, sup

0≤s≤t

{
X̃i(s)−mi (Z(s))

}}
,

X∗i (t) = X̃i(t)−D∗i (t).

We set Ai(t) := 1{D∗i (t)=X̃i(t)−mi(Z(t))}. It follows that

X∗i (t) = X̃i(t)−D∗i (t) ≤ mi (Z(t)) , (3.48)

dD∗i (t) = Ai(t)dD
∗
i (t).

On
{
D∗i (t) = X̃i(t)−mi (Z(t))

}
, we have that

X∗i (t) = X̃i(t)−D∗i (t) = mi (Z(t)) ,

and vise versa. It then follows that

dD∗i (t) = Ai(t)dD
∗
i (t) = 1{X∗i (t)=mi(Z(t))}dD

∗
i (t).
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Furthermore, we have on {X∗i (t) = mi (Z(t))} that

X∗i (t−) = X∗i (t) + ∆D∗i (t) ≥ X∗i (t) = mi (Z(t)) . (3.49)

In view of (3.48), (3.38), we have that

LZ(s)f(X∗(s),Z(s)) +
N∑

l=k+1

λl(Z(s))f((X∗)(l)(s),Zl(s)) = 0. (3.50)

Note that for xi ≥ mi (z), ∂if(x, z) = f ′i(xi, z) = αi. Hence, it holds that ∂if(X∗(s),Z(s)) =

αi on {X∗i (t) = mi (Z(t))}, which then entails that

N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X∗(s),Z(s))] (D∗i )
c(s)

=
N∑
i=1

∫ τ

0

e−rs [αi − ∂if(X∗(s),Z(s))]1{X∗i (t)=mi(Z(t))}d(D∗i )
c(s) = 0. (3.51)

By virtue of (3.49), we can see that whenever ∆D∗i (s) 6= 0, it holds that X∗i (s−) >

X∗i (s−)−∆D∗i (s) = X∗i (s) = mi (Z(s)). By using the fact that ∂if(x, z) = f ′i(xi, z) =

αi, for xi ≥ mi (z), again, we obtain that

N∑
j=1

∆Zj(s)

[
f
(

(X∗)(j)(s−)−∆(D∗)(j)(s),Zj(s−)
)

− f
(

(X∗)(j)(s−),Zj(s−)
)

+
N∑
i=1
i 6=j

αi∆D
∗
i (s)

]

=

N∑
j=1

∆Zj(s)

[
f
(

(X∗)(j)(s−)−∆(D∗)(j)(s),Z(s)
)

− f
(

(X∗)(j)(s−),Z(s)
)

+
N∑
i=1
i 6=j

αi∆D
∗
i (s)

]

=0. (3.52)
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Similarly, we obtain the equality that∑
0<s≤τ,∆Z(s)=0

e−rs
[
f (X∗(s−)−∆D∗(s),Z(s−))

− f (X∗(s−),Z(s−)) +
N∑
i=1

αi∆D
∗
i (s)

]

=
∑

0<s≤τ,∆Z(s)=0

e−rs
[
f (X∗(s−)−∆D∗(s),Z(s))

− f (X∗(s−),Z(s)) +
N∑
i=1

αi∆D
∗
i (s)

]
=0.

(3.53)

Putting all the pieces together, we conclude from (3.45) and (3.50)-(3.53) that

N∑
i=1

αi

∫ τ

0

e−rsdD∗i (s) + e−rτf (X∗(τ),Z(τ))− f(x, z) =Mτ , τ ≥ 0, (3.54)

whereMτ is a local martingale. Hence, there exists a sequence of stopping times {Tn}∞n=1

satisfying Tn ↑ ∞, and

E

[
N∑
i=1

αi

∫ τ∧Tn

0

e−rsdD∗i (s) + e−r(τ∧Tn)f (X∗(τ ∧ Tn),Z(τ ∧ Tn))

]
− f(x, z)

=E [Mτ∧Tn ] = 0. (3.55)

In view of (3.48), we have 0 ≤ X∗i (τ) ≤ mi (Z(τ)), τ ≥ 0, which entails that X∗i (τ) is a

bounded process. It follows that f (X∗(τ),Z(τ)) is also bounded. Note that

lim
n→∞

e−r(τ∧Tn)f (X∗(τ ∧ Tn),Z(τ ∧ Tn)) = e−rτf (X∗(τ),Z(τ)) a.s..

By passing the limit in (3.55), we arrive at

E

[
N∑
i=1

αi

∫ τ

0

e−rsdD∗i (s) + e−rτf (X∗(τ),Z(τ))

]
− f(x, z) = 0. (3.56)
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Note that limτ→+∞ e
−rτf (X∗(τ),Z(τ)) = 0 a.s.. Sending τ to +∞ in (3.56) yields that

E

[
N∑
i=1

αi

∫ τi

0

e−rsdD∗i (s)

]
− f(x, z) = 0, (3.57)

which completes the proof.

Remark 3.4. Similar to the derivation of (3.54), for i = 1, . . . , N , if we extend the defi-

nition of fi in such a way that fi(xi, z) = 0 whenever the i-th component of z is 1, then,

following the proof of Theorem 3.1 and using (3.40), we can show

αi

∫ τ

0

e−rsdD∗i (s) + e−rτfi (X
∗
i (τ),Z(τ))− fi(xi, z) = M̃(i)

τ , i = 1, . . . , N,

where M̃(i)
τ are local martingales, for xi ∈ [0,+∞), i = 1, . . . , N, and z = 0. In the

same fashion to obtain (3.57), one can also get

E
[
αi

∫ τi

0

e−rsdD∗i (s)

]
− fi(xi, z) = 0, i = 1, . . . , N.

This equality implies a natural linear separation form of f(x, z) in (3.43) because we can

see that

f(x, z) = E

(
N∑
i=1

αi

∫ τi

0

e−rtdD∗i (t)

)
=

N∑
i=1

E
[
αi

∫ τi

0

e−rtdD∗i (t)

]
,

and each fi(xi, z) stands for the expected value that fi(xi, z) = E
[
αi
∫ τi

0
e−rtdD∗i (t)

]
given the optimal dividend policy D∗i for the subsidiary i. However, we also point out that

D∗i is the i-th component of the optimal control D∗ which solves the group dividend prob-

lem. One can not simply interpret that fi(xi, z) is the value function or D∗i is the optimal

control when we purely solve a dividend optimization problem for the single subsidiary i

without taking account all other subsidiaries. The vector process D∗ is the solution that

is optimal for a whole group and it has a coupled nature because the variational inequal-

ity (3.40) or the solution form (3.41) for each fi(xi, z) depends on the default intensities

of all surviving subsidiaries and the value functions given that one more subsidiary has

defaulted.
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Chapter 4

Conclusion

This thesis aims to investigate the applications of stochastic control in one optimal en-

try and investment-consumption problem and one optimal dividend problem. Employing

dynamic programming arguments and PDE analysis, the value function of each problem

is related to the HJB variational inequality. In this Chapter, we provide a summary of the

main contributions stemming from this thesis and related future work.

4.1 Main Contributions

The first project on investment and consumption extends existing work by considering

the optimal entry time and consumption with habit formation preference. This composite

problem can be analyzed in two stages. In stage-1, the exterior problem is an optimal stop-

ping problem under the complete market information filtration, where the investor needs

to pay information costs and decides the initial time of the interior control problem. In

stage-2, the interior problem is an optimal control problem under incomplete informa-

tion filtration, where the investor selects a dynamic optimal investment and consumption

strategy. Mathematically, with the help of the stochastic Perron’s method and comparison

principle of variational inequality, the value function of this composite problem is proved

to be the unique viscosity solution to some HJB variational inequality. A numerical exam-

ple is given to illustrate the free boundary curve.
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The second project formulates and investigates an optimal dividend problem for a

multi-line insurance group. Each subsidiary within the group runs a product line and

all subsidiaries are exposed to some external contagious default risk. Using the backward

recursive scheme and the smooth-fit principle, the associated recursive system of HJBVIs

is studied and the value function of the expected total dividend is proved to be its classical

solution that has a separation form. We verify that the optimal dividend fits the type of

barrier control and the barrier for each surviving subsidiary is dynamically modulated by

the default state. The numerical analysis for the change of the optimal barrier when one

subsidiary defaults is also provided.

4.2 Future Work

As this thesis focuses on two different applications of optimal control problems in the

background of mathematical finance, there remain some interesting open problems that

deserve further studies.

For the first problem, information acquisition can be analyzed from a different per-

spective for future research. From the beginning time 0, it is assumed that the investor

can only observe stock prices instead of underlying Brownian motions. Then, the in-

vestor is allowed to choose the unknown drift from a confidence interval estimated using

Kalman-Bucy filtering to solve the path-dependent optimal investment and consumption

control problem with partial observations. Information acquisition comes into play when

the investor can update the confidence interval dynamically by using new updated data so

that the confidence interval shrinks over time. This leads to a non-standard robust control

problem when the uncertainty of the model can be improved dynamically. One can try

to study the corresponding Hamilton-Jacobi-Bellman-Isaacs equation and prove that the

value function is the unique viscosity solution of this equation.

For the second problem, some future research can be conducted along different di-
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rections. Firstly, one can consider the more general model of X̂i with jumps such as the

classical Cramér-Lundberg model or other jump-diffusion models. Secondly, we note that

the real life default events from credit assets can hurt the surplus management but may not

lead to domino bankruptcies of subsidiaries due to strict regulations of the whole insurance

sector. It is more realistic to consider the problem when Zi(t) can take values in [0, 1] so

that the default event only leads to a large size downward jump of the surplus process and

certain recovery rate can be incorporated. Moreover, the default intensity λi (Z(t), Xi(t))

of Zi(t) may also depend on the surplus level Xi(t) of the i-th subsidiary to depict the

situation that a larger surplus level guarantees a smaller default probability. The inclusion

of these factors will complicate the analysis of HJBVIs significantly because the backward

induction can not be applied in a simple way and it is an open problem whether the opti-

mal dividend of each subsidiary is still of the barrier type. It will be interesting to study

these model extensions by applying some distinctive PDE arguments. Another appealing

future work is to accommodate the collaborating bail-out dividend (see [2], [46] and [45])

in the present setting with contagious default risk so that each subsidiary can perform cap-

ital injection to other subsidiaries within the group whenever their financial ruins or credit

default events happen. Finally, we can consider other types of ruin in the future research

such as the ruin time when the total surplus of the insurance group hits zero or the first

ruin time among different subsidiaries.

77



78



Appendix A

Fully Explicit Solutions to The Auxiliary
ODEs in Chapter 2

Lemma A.1. For k ≤ t ≤ s ≤ T , consider the following auxiliary ODEs for a(t, s),

b(t, s), l(t, s), w(t, s) and g(t, s):

at =− 2(1− p+ pρ2)

1− p
σ2
µa

2 +

(
2λ− 2pρσµ

(1− p)σS

)
a− p

2(1− p)σ2
S

, (A.1)

bt =− 2(1− p+ pρ2)

1− p
σ2
µab− 2λµ̄a+

(
λ− pρσµ

(1− p)σS

)
b, (A.2)

lt =− σ2
µa−

(1− p+ pρ2)σ2
µ

2(1− p)
b2 − λµ̄b, (A.3)

wt =− 2(1− ρ2)σ2
µw

2 + 2
λσS + ρσµ

σS
w +

1

2σ2
S

, (A.4)

gt =σ2
µ(1− ρ2)(w − a), (A.5)

with the terminal conditions a(s, s) = b(s, s) = l(s, s) = w(s, s) = g(s, s) = 0. If we

adopt the convention 0
0

= 0, the solutions of ODEs (2.13), (2.14), (2.15) are given by:

A(t, s) :=
a(t, s)

(1− p)
(

1− 2a(t, s)Σ̂(t)
) ,

B(t, s) :=
b(t, s)

(1− p)
(

1− 2a(t, s)Σ̂(t)
) ,
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C(t, s) :=
1

1− p

[
l(t, s) +

Σ̂(t)(
1− 2a(t, s)Σ̂(t)

)b2(t, s)− 1− p
2

log
(

1− 2a(t, s)Σ̂(t)
)

− p

2
log
(

1− 2w(t, s)Σ̂(t)
)
− pg(t, s)

]
.

By [54], we can solve auxiliary ODEs (A.1), (A.2), (A.3), (A.4) and (A.5) explicitly

by

a(t, s) =
p(1− e2ξ(t−s))

2(1− p)σ2
S

[
2ξ − (ξ + γ2)(1− e2ξ(t−s))

] ,
b(t, s) =

pλµ̄(1− eξ(t−s))2

(1− p)σ2
Sξ
[
2ξ − (ξ + γ2)(1− e2ξ(t−s))

] ,
l(t, s) =

p

2(1− p)σ2
S

(
λ2µ̄2

ξ2
−

σ2
µγ2

γ2
2 − ξ2

)
(s− t)

+
pλ2µ̄2

[
(ξ + 2γ2)e2ξ(t−s) − 4γ2e

ξ(t−s) + 2γ2 − ξ
]

2(1− p)σ2
Sξ

3 [2ξ − (ξ + γ2)(1− e2ξ(t−s))]

+
pσ2

µ

2(1− p)σ2
S(ξ2 − γ2

2)
log

∣∣∣∣2ξ − (ξ + γ2)(1− e2ξ(t−s))

2ξeξ(t−s)

∣∣∣∣ ,
w(t, s) =− 1

2σS

1− e2ξ1(t−s)

(σSξ1 + λσS + ρσµ) + (σSξ1 − λσS − ρσµ)e2ξ1(t−s) ,

g(t, s) =
1

2
log

(
(σSξ1 + λσS + ρσµ) + (σSξ1 − λσS − ρσµ)e2ξ1(t−s)

2σSξ1eξ1(t−s)

)

− (1− p)(1− ρ2)

2(1− p+ pρ2)
log

(
(σSξ + λσS − ρσµp

1−p ) + (σSξ − λσS + ρσµp

1−p )e2ξ(t−s)

2σSξeξ(t−s)

)

− ρ2λ(s− t)
2(1− p+ pρ2)

− ρσµ(s− t)
2(1− p+ pρ2)σS

,

where

∆ := λ2 − 2λpρσµ
(1− p)σS

−
pσ2

µ

(1− p)σ2
S

> 0, (A.6)
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and

ξ :=
√

∆ =
√
γ2

2 − γ1γ3, ξ1 :=

√
(1− ρ2)σ2

µ + (λσS + ρσµ)2

σS
,

γ1 :=
(1− p+ pρ2)

1− p
σ2
µ, γ2 := −λ+

pρσµ
(1− p)σS

, γ3 :=
p

(1− p)σ2
S

.

The condition for the bounded Normal solution is γ3 > 0, or γ1 > 0, or γ2 < 0.

Remark A.1. If p < 0, (A.6) clearly holds and we have γ2 < 0, therefore a(t, s) ≤ 0

is a bounded solution as well as 1 − 2a(t, s)Σ̂(t) > 1 and 1 − w(t, s)Σ̂(t) > 1. Hence

solutions of ODEs (2.13), (2.14), (2.15) are bounded on k ≤ t ≤ s ≤ T . We also note that

A(t, s) = a(t,s)

(1−p)(1−2a(t,s)Σ̂(t))
≤ 0, on k ≤ t ≤ s ≤ T .
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Appendix B

Derivation of (3.9) in Chapter 3

For the default process starting from Z(0) = z = (0, 0), we present here the argument

to derive the associated HJBVI using Itô’s lemma. For a given function ψ(·, z) ∈ C2(R2),

let us rewrite

α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s) + e−rτψ (X(τ),Z(τ))− ψ(x, z)

=

∫ τ

0

e−rsL̃(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s)

+

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)

+ α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s)

+
∑

0<s≤τ

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))] +Mτ

=

∫ τ

0

e−rsL̃(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s)

+

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)

+ α1

∫ τ

0

e−rsdD1(s) + α2

∫ τ

0

e−rsdD2(s)

+
∑

0<s≤τ,∆Z(s) 6=0

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]
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+
∑

0<s≤τ,∆Z(s)=0

e−rs [ψ (X(s) + ∆D(s),Z(s−))− ψ (X(s−),Z(s−))] +Mτ

=

∫ τ

0

e−rsL(0,0)ψ(s)ds+

∫ τ

0

e−rs [α1 − ∂1ψ(s)] dDc
1(s)

+

∫ τ

0

e−rs [α2 − ∂2ψ(s)] dDc
2(s)

+
∑

0<s≤τ,∆Z(s)6=0

e−rs∆Z1(s)

× [ψ (0, X2(s−)−∆D2(s), (1, 0))− ψ (X(s−), (0, 0)) + α2∆D2(s)]

+
∑

0<s≤τ,∆Z(s)6=0

e−rs∆Z2(s)

× [ψ (X1(s−)−∆D1(s), 0, (0, 1))− ψ (X(s−), (0, 0)) + α1∆D1(s)]

+
∑

0<s≤τ,∆Z(s)=0

e−rs
[
ψ (X(s)−∆D(s),Z(s−))− ψ (X(s−),Z(s−))

+ α1∆D1(s) + α2∆D2(s)
]

+Mτ ,

whereMτ is a local martingale.

Let us turn to the jump terms. According to assumptions that no simultaneous jumps

can occur in the sense of (3.2) and (3.3), it follows that

∆Z1(s)∆D1(s) = ∆Z2(s)∆D2(s) = ∆Z1(s)∆Z2(s) = 0.

On {∆Z(s) 6= 0}, let us consider Z(s−) = (0, 0). We have

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]

=e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (X(s−), (0, 0))]

+ e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X(s−), (0, 0))] ,

as well as

e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (X(s−), (0, 0))]

=e−rs∆Z1(s) [ψ ((0, X2(s−)−∆D2(s)), (1, 0))− ψ (0, X2(s−), (1, 0))]
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+ e−rs∆Z1(s) [ψ ((0, X2(s−)), (1, 0))− ψ (X(s−), (0, 0))] .

Similarly, one can get

e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X(s−), (0, 0))]

=e−rs∆Z2(s) [ψ ((X1(s−)−∆D1(s), 0), (0, 1))− ψ (X1(s−), 0, (0, 1))]

+ e−rs∆Z2(s) [ψ ((X1(s−), 0), (0, 1))− ψ (X(s−), (0, 0))] .

On {∆Z(s) = 0}, we have

e−rs [ψ (X(s),Z(s))− ψ (X(s−),Z(s−))]

=e−rs [ψ (X(s−)−∆D(s),Z(s−))− ψ (X(s−),Z(s−))] ,

and also

αi

∫ τ

0

e−rsdDi(s) =
∑

0<s≤τ,∆Z2(s)6=0

αie
−rs∆Di(s) +

∑
0<s≤τ,∆Z2(s)=0

αie
−rs∆Di(s).

Thanks to the martingale property in (3.1) and the fact that, for any h ∈ C1(R) and

y ∈ R,

h(y −∆Di(s))− h(y) = −
∫ ∆Di(s)

0

h′(y − u)du,

we obtain the desired HJBVI (3.9).
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