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Abstract

In nature, soils are spatially variable. In the context of soil spatial variability,

anisotropic spatial variation of soils is a significant topic, which has been widely

investigated for horizontally deposited soils. However, rotated transverse anisotropy

can often be observed in natural slopes with tilted stratification. Previous studies

mainly considered rotated transverse anisotropy in two-dimensional (2D) probabilistic

slope stability analyses using stationary random field (RF). However, in-situ

observations usually show the non-stationarity of soils, where the trends of soil

properties are not constant. Besides, the three-dimensional (3D) rotated transverse

anisotropy of soil spatial variability has not been considered in probabilistic slope

stability analyses up to the present. In practice, three-dimensional slope models often

exhibit rotated transverse anisotropy associated with various stratigraphic occurrences,

which can significantly influence the slope stability. The sampling effect is another

important topic considering soil spatial variability, as the spatial uncertainty can be

reduced by sampling points (i.e., known points) in a domain. Previous probabilistic

slope stability analyses only considered the sampling effect in soils with horizontal

bedding, while most of the studies were based on 2D slope models. In the few

existing 3D studies related to the sampling effect, the influences of end boundary

conditions and slope length (L) have not been investigated. This thesis aims to

investigate those issues in probabilistic slope stability analyses and provide guidelines

for engineering practice.
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The influence of rotated transverse anisotropy is first investigated in 2D probabilistic

slope stability analyses, where the non-stationarity in soil property is also considered.

In the study, two soil scenarios are simulated, where the undrained shear strength

increases along depth or the direction perpendicular to bedding. The results show that

when considering soil strength with an increasing trend with depth, the slope

reliability is higher than that considering stationary random field. Meanwhile, when

undrained shear strength increases along the direction perpendicular to bedding, the

estimated slope reliability and sliding consequence are sensitive to the change of dip

angle of strata (α). The rotated transverse anisotropy is then investigated in 3D

probabilistic slope stability analyses, associated with three slope scenarios (i.e.,

cross-dip slope, reverse-dip slope and dip slope). In a cross-dip slope, the

observations on the changes of slope reliability and failure patterns with spatial

autocorrelation distance (θ) are different from those considering horizontally

deposited soils. On the other hand, the changes of slope reliability with θ for a dip

slope or a reverse-dip slope are similar to those under horizontal transverse

anisotropy.

In 2D probabilistic slope stability analyses considering the sampling effect, two

conditional RF models are considered with various sampling strategies and dip angles

of strata, the residual parts of which are simulated by Kriging interpolation and

decomposing the conditional autocorrelation matrix, respectively. The method based
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on Sobol sensitivity index is also adopted. It is found that the conditional random field

simulation method based on Kriging interpolation may result in higher standard

deviation (σ) of factor of safety (FS) than that by unconditional random field

simulation method. This issue may occur when sample points are distributed sparsely

or the angle of the drilling direction of the borehole is near the dip angle of the strata,

while such a problem cannot be found when using the conditional RF simulation

method by decomposing conditional autocorrelation matrix and the Sobol index

method. Besides, it is observed that the magnitude of uncertainty reduction by the

various methods would decrease when the angle of the drilling direction of the

borehole approaches the dip angle of the strata. For 3D probabilistic slope stability

analyses considering the sampling effect, the computation effort would be quite

demanding using conditional random field simulation method, as many trial sampling

patterns need to be considered. Therefore, the Sobol index method is adopted to

quantify the sampling efficiency. It is found that when the ratio of θ / L increases, the

sampling efficiency increases. In the meantime, the optimal sampling efficiency for

slopes with fixed end boundary condition would be higher than that with smooth end

boundary condition, except for the cross-dip slope, where the smooth end boundary

condition would indicate higher optimal sampling efficiency. This study reveals the

significance of characteristics in 3D slope model [e.g., slope length (L) and end

boundary conditions] in the reliability evaluation incorporating sampling effects,

which cannot be explicitly considered in the 2D slope model.
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CHAPTER 1 Introduction

1.1 Research Motivation

From 2008 to 2016, the average number of landslide incidents reported by the local

authorities in Hong Kong is around 250 per year (Table 1.1), which caused severe

economic losses and even consequences to human lives. In order to assess the safety

of slopes, deterministic slope stability analysis is commonly used, which is well

established for engineers and the authorities. However, in Hong Kong, landslides

occasionally happen on slopes that are assessed to be ‘safe’ by the deterministic slope

stability analysis. As shown in Table 1.1, the average number of such events is around

13 per year from 2008 to 2016. One of the reasons for this phenomenon is that the

conventional deterministic slope stability analysis techniques assume homogeneous

soil properties within each soil profile. Such an assumption does not consider the soil

spatial variability, which is a significant source of geotechnical uncertainty. Inherent

soil spatial variability has been found to be influential to slope reliability and the

failure mechanism in many previous studies. For example, Griffiths et al. (2004) and

Griffiths et al. (2009a) proposed that in probabilistic slope stability analysis, the

simplified probabilistic analysis, where soil spatial variability is ignored by assuming

perfect autocorrelation, can result in much higher probability of failure (Pf) than that
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obtained considering soil spatial variability.

In recent years, soil spatial variability has been considered in probabilistic slope

stability analyses using random field (RF) theory (Griffiths and Fenton 2004; Griffiths

et al. 2009a; Griffiths et al. 2009b; Griffiths et al. 2009c; Cho 2010; Wang et al. 2011;

Hicks and Spencer 2010; Huang et al. 2010; Li et al. 2013; Jha and Ching 2013; Jiang

et al. 2014; Hicks et al. 2014; Jiang et al. 2015; Li et al. 2015; Li and Chu 2015; Jiang

and Huang 2016; Jiang and Huang 2018; Li et al. 2016a; Liu et al. 2017a; Liu et al.

2017b; Liu et al. 2018; Zhu et al. 2019; Varkey et al. 2019). In these studies, soils that

display isotropic spatial variability features or anisotropic horizontal fabric patterns

were considered. However, in nature, various fabric patterns of soils are often

observed. Figure 1.1 shows five typical patterns of soil spatial variability presented by

Zhu and Zhang (2013), including isotropy, horizontal transverse anisotropy, rotated

transverse anisotropy, general anisotropy and general rotated anisotropy. Herein, the

rotated transverse anisotropy of soil spatial variability can usually be found for natural

slopes, where the two principal directions of spatial autocorrelation distance (θ) are

orthogonal and rotate by an angle to the coordinate axes. Griffiths et al. (2009c)

considered rotated transverse anisotropy in two-dimensional (2D) probabilistic slope

stability analysis, but the spatial autocorrelation distance in one of the orthogonal

directions is assumed to be infinite. This means the one-dimensional random field is

essentially considered. Meanwhile, Zhu et al. (2019) used a 2D random field to

investigate the effects of rotated transverse anisotropy on the reliability and failure
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pattern of a slope. Although the rotated transverse anisotropy is considered in

probabilistic slope stability analyses in these studies, the random field is assumed to

be stationary and only two-dimensional slope problems are investigated.

Many observations revealed that the spatial variation of soil property highly depends

on depth (Asaoka and A-Grivas 1982; Kulatilake and Um 2003; Foye et al. 2004;

Sivakumar et al. 2006; Ching et al. 2010). Usually, soil shear strength tends to

increase with depth, and increasing trend functions are often adopted in modelling

spatially variable soils (Phoon et al. 1999; Phoon et al. 2003; Li et al. 2014).

Therefore, a stationary random field with a constant mean and standard deviation (σ)

may not always be applicable to simulate in-situ soils. A non-stationary random field

was used by Li et al. (2014) in the probabilistic stability analyses of an infinite slope,

and the non-stationarity was found to be influential to slope reliability and the depth

of critical slip surfaces. Meanwhile, Jiang and Huang (2018) compared the

performance of different non-stationary random field models (Table 2.5) in slope

reliability analysis, where the assumptions on the soil property at the top surface and

the increasing rate of soil strength are different between different non-stationary RF

models. In these studies, the soils are assumed to be horizontally deposited. For a

more realistic simulation of spatially variable soils, other patterns of anisotropic

spatial variation should be investigated.

In practice, 2D slope stability analysis is usually considered as a more conservative
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approach than the three-dimensional (3D) analyses (Hutchinson and Sarma 1985;

Hungr 1987). Thus, engineers are often reluctant to use the more time-consuming 3D

methods. However, some investigators have observed that sometimes 3D slope

stability analysis may result in a more critical factor of safety (FS), in certain cases of

slopes with cohesion-less soils (Chen and Chameau 1982). That is because in

cohesion-less soils, the unit weight of the soils, shear forces on the ends and sides of

each column, pore-water pressures and slope geometry would have significant

influences on the resisting force. Therefore, the end effects of the ellipsoidal sliding

mass might indicate a negative change in FS, resulting in FS by 3D analysis less than

that by 2D analysis. Considering soil spatial variability, Griffiths et al. (2009b) found

that 3D slope reliability analysis would result in a higher probability of failure than

that by 2D analysis when the slope length (L) or the spatial correlation distance are

large enough. Therefore, for more realistic assessments of slope reliability, the use of

3D approach is desirable. Although there are many existing studies that are related to

the effects of soil spatial variability on the slope reliability and failure pattern in 3D

probabilistic slope stability analyses, only isotropic spatial variation of soils or

horizontal transverse anisotropy have been considered (Griffiths et al. 2009a; Hicks

and Spencer 2010; Hicks et al. 2014; Hicks and Li 2018).

In probabilistic slope stability analyses considering soil spatial variability, another

issue that needs to be investigated further is the effect of sampling strategy on slope

reliability. This corresponds to the known points in the random field and their effects
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on reducing uncertainty. In engineering practice, discrete soil samples are usually

obtained from site investigation, which can be adopted as known points to simulate

conditional random fields. After conditioning, the performance uncertainty will

reduce, while the probability of failure would also be affected. For example, Kim and

Sitar (2013) found that the conditional random field simulation method can result in

lower Pf compared with that by the unconditional random field simulation method. Liu

et al. (2017b) studied the sampling effects on the uncertainty reduction and

probability of failure of a c - φ slope in 2D probabilistic slope stability analyses using

a conditional random field. They found that the ratio of the sample distance to the

autocorrelation distance is a significant factor for effective reduction in the

performance uncertainty. These previous studies only considered horizontal transverse

anisotropy of soils. However, the sampling effects are expected to be affected by

anisotropic spatial variation of soils. This is because the orientation of the principal

axes under anisotropy is changed, as shown in Figure 1.1, and thus the lag distance in

the direction of the spatial autocorrelation distance would be changed in the rotated

coordinate system.

Sampling effects are seldom investigated in 3D probabilistic slope stability analyses.

In the literature, Li et al. (2016b) is the only one to consider the sampling effects in

3D probabilistic slope stability analyses up to the present. They found that the

performance uncertainty in relation to FS can be effectively reduced by the

conditional random field simulation method, and they also identified an optimal
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sampling distance of half of the horizontal autocorrelation distance (θh) along the

slope length. However, some limitations should be noted in their research. First, they

used the conditional random field simulation method to determine the optimal sample

locations with the best sampling efficiency. When simulating the conditional random

field, the locations of known points should be given as prior information. This means,

to determine an optimal distributed pattern of sampling points, trial patterns should be

used in the simulation to cover all the possible sampling locations, and each trial

pattern indicates hundreds to thousands of realisations under the Monte Carlo

framework. In this case, the computational effort would be significantly increased in

3D problems not only because the computational effort of a 3D program is demanding,

but also because the larger geometry of a 3D slope can lead to a large increase in the

number of trial sampling patterns. When multiple boreholes need to be considered, the

computational demands would be dramatically increased, as the number of trial

patterns is based on permutation. Therefore, in Li et al. (2016b), the best sampling

pattern is selected from a number of sampling patterns defined by the authors, which

is not obtained by an optimal search. Second, the effect of ratio of autocorrelation

distance to slope length (θ / L) on the sampling efficiency is not resolved, as the

length of the slope investigated is fixed at 100 m by Li et al. (2016b). However, it is

well recognised that in 3D probabilistic slope stability analyses, the slope length is

influential to slope reliability (Griffiths et al. 2009b; Hicks and Li 2018). The

influences of boundary conditions at the two end sections on sampling efficiency are

also not resolved by Li et al. (2016b). As shown in Figure 1.2, the boundary
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conditions at the end sections can influence the shape and location of the critical

failure zone in a slope with spatially variable soils. This may affect the location of the

best sampling point (i.e., the point with the maximum uncertainty reduction

magnitude), as the optimal sampling location corresponds to the location of critical

failure zone.

The research motivation of this thesis is to resolve the limitations mentioned above in

the previous studies. In the current study, through combining the non-stationary

random field with rotated transverse anisotropy, slope reliability and failure

mechanisms are investigated. In addition, the effects of 3D rotated transverse

anisotropy on slope reliability are studied in consideration of the dip angle of the

strata. Besides, the sampling effects are studied in 2D probabilistic slope stability

analyses using conditional random field simulation methods and the method based on

the Sobol sensitivity index (Lo and Leung 2018), considering various sampling

strategies and rotated transverse anisotropy. Regarding the sampling effects in 3D

probabilistic slope stability analyses, the Sobol sensitivity index is adopted to quantify

the sampling efficiency. With the use of the Sobol index method, trial sampling

patterns are not necessary when determining the optimal sampling pattern, as the

optimal sampling strategy can be obtained by finding the sampling pattern with the

maximum Sobol index value. This would significantly decrease the computational

effort for the 3D problem, and thus various slope lengths and the boundary conditions

at the two end sections are considered in the 3D probabilistic slope stability analyses
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considering sampling effects.

1.2 Research Objectives

The main research objectives of this thesis are presented in this section:

1. To incorporate a non-stationary random field with a rotated transverse anisotropy in

slope reliability evaluation. In this case, three scenarios of spatially variable soils (i.e.,

stationary RF, RF with increasing trend with depth, and RF with increasing trend

along the direction perpendicular to the bedding) are considered, while the effects of

these scenarios on slope reliability and failure mechanisms are investigated and

compared.

2. To study the effects of 3D rotated transverse anisotropy on slope reliability and

failure patterns. Through considering the 3D rotated transverse anisotropy of soils,

three slope scenarios are considered (i.e., dip slope, reverse-dip slope and cross-dip

slope). As the orientation of bedding is no longer horizontal, previous findings

regarding the change of slope reliability and failure pattern with θ under 3D

horizontal transverse anisotropy may not be valid. These are discussed under rotated

transverse anisotropy.
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3. To study the sampling effects in 2D probabilistic slope stability analyses

considering various sampling strategies and rotated transverse anisotropy. Three slope

reliability analysis methods (i.e., two conditional random field simulation methods

and Sobol index method) that can incorporate sample points under the context of soil

spatial variability are used. The influence of rotated transverse anisotropy on the

sampling efficiency is investigated. In addition, a comparative study on the three

methods is conducted.

4. To study the sampling effects in 3D probabilistic slope stability analyses using

Sobol index method. Various combinations of slope length L and autocorrelation

distance θ are considered to find the relation between θ / L ratio and the sampling

efficiency. Different boundary conditions at the end sections are considered in this

study. In addition, sampling patterns with one borehole and two boreholes are both

considered.

1.3 Thesis Outline

There are seven chapters in this thesis:

CHAPTER 1 is a general introduction of the proposed research including the research

motivation and research objectives.
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CHAPTER 2 reviews previous studies in the literature that are related to the present

research. Both deterministic slope stability analysis approaches and probabilistic slope

stability analysis approaches are reviewed. Previous findings on soil spatial variability

are reviewed and discussed. In addition, reviews on the conditional random field and

Sobol sensitivity index are also presented.

CHAPTER 3 presents the investigation on the effects of rotated transverse anisotropy

on slope reliability and failure pattern using 2D non-stationary random field. Three

scenarios of spatially variable soils are considered combining non-stationarity with

rotated transverse anisotropy of soils: (1) the mean and standard deviation of

undrained shear strength (su) are constant (i.e., stationary random field); (2) the mean

and standard deviation of undrained shear strength increase with depth; (3) the mean

and standard deviation of undrained shear strength increase along the direction

perpendicular to the bedding. Slope reliability is investigated under three scenarios of

soil spatial variability, while the distributions of slip surfaces obtained by Monte

Carlo simulations are also presented.

CHAPTER 4 presents the investigation on 3D probabilistic slope stability analyses

considering rotated transverse anisotropy of soils. Three slope scenarios (i.e., dip

slope, reverse-dip slope and cross-dip slope) are constructed through random field

simulation considering rotated transverse anisotropy. In addition, previous findings on
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the 3D failure modes under isotropy and horizontal transverse anisotropy are

presented and compared with the current findings considering rotated transverse

anisotropy. The statistical characteristics of FS, slope reliability and mean of slide

length are also investigated in this chapter.

CHAPTER 5 presents the investigation on sampling effects in 2D probabilistic slope

stability analysis. In this chapter, a comparative study is conducted among two

conditional random field simulation methods and the Sobol index method, through

investigating the sampling efficiency under various sampling patterns and rotational

angles of the strata. The influence of rotated transverse anisotropy on the sampling

efficiency is also investigated and discussed.

CHAPTER 6 presents the investigation on sampling effects in 3D probabilistic slope

stability analyses by the Sobol index method. In consideration of various θ and L, the

influences of θ / L ratio on the sampling efficiency and optimal sampling pattern are

investigated. In addition, three types of boundary conditions at the two end sections

are considered. In this chapter, the investigations are conducted considering sampling

strategies with one borehole and two boreholes.

CHAPTER 7 summarises the main findings of this thesis and proposes

recommendations for future works.
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Table 1.1 Number of landslide incidents from 2008 to 2016 in Hong Kong.

Year
No. of landslides involving
slopes that are assessed to

be safe and stabilized

Total no. of reported
landslides References

2008 29 863 Li et al. (2012)

2009 12 101 Li et al. (2013)

2010 8 206 Li et al. (2014)

2011 7 77 Lam et al. (2014)

2012 17 163 Lee et al. (2015)

2013 14 241 Lee and Lo (2017)

2014 8 237 Lee et al. (2017)

2015 9 161 Wai et al. (2018a)

2016 13 226 Wai et al. (2018b)

Average 13 253
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Figure 1.1 Typical patterns of soil spatial variability in nature: (a) isotropy; (b)
horizontal transverse anisotropy; (c) rotated transverse anisotropy; (d) general

anisotropy (the direction of the minor autocorrelation distance, θ1 , is horizontal); (e)
general rotated transverse anisotropy (the direction of the minor autocorrelation

distance is not horizontal); (f) combination (Zhu and Zhang 2013).
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(a)

(b)

Figure 1.2 Displacement contours at failure of a slope in spatially variable soils
under different boundary conditions at the two end sections: (a) preventing the
movement in y - direction; (b) preventing the movement in (x, y, z) - direction.
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CHAPTER 2 Literature Review

2.1 Introduction

An overview of the literature relevant to this thesis is presented in this chapter, which

in particular concentrates on slope stability analysis and soil spatial variability.

Probabilistic slope stability analysis is the main focus of this thesis. When conducting

probabilistic slope stability analyses, deterministic slope stability analysis techniques

are usually combined with probability theories. Therefore, this chapter firstly presents

a review of the conventional deterministic slope stability analysis methods. The

review of probabilistic slope stability analysis methods are subsequently presented in

Section 2.3, where the reliability index and probability of failure are also introduced.

Another important topic of this thesis is the soil spatial variability. In Section 2.4,

previous studies on soil spatial variability are reviewed, and the formulations related

to soil spatial variability are discussed. Subsequently, the parameters describing the

spatial variation of soils (i.e., autocorrelation distance and autocorrelation function)

are demonstrated in Section 2.5. Random field theory is often used to simulate

spatially variable soils, which is discussed in Section 2.6. In engineering practice, soil

samples are usually obtained from a site investigation, which can provide known

information for simulating spatially variable soils and thus reduce the spatial

uncertainty. In Section 2.7, the methods that can incorporate the sampling effects in

probabilistic slope stability analysis are discussed.
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2.2 Deterministic Slope Stability Analysis

Soils are assumed to be homogeneous within each soil layer in traditional

deterministic slope stability analyses, where geotechnical uncertainties are not

explicitly modeled. A deterministic FS is usually adopted to assess the safety of a

slope in the deterministic method. In this section, different definitions for FS are

presented, while methods for determining FS are reviewed.

2.2.1 Factor of Safety (FS)

Generally, FS can be defined by the the following two formulations (Cheng and Lau

2008) :

d

r
M
M

mFS (2.1)

Eq. (2.1) is based on moment equilibrium, where Mr represents the resisting moment

and Md denotes the driving moment.

d

r
f F

F
FS (2.2)

Eq. (2.2) is based on force equilibrium, where Fr represents the resisting force and Fd

denotes the driving force.
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These two definitions may result in slightly different FS values, and it is often

difficult to satisfy both definitions simultaneously using the method of slices, since

the inter-slice force function, f(x), is not uniquely defined. Actually, most design

codes do not have a clear requirement for the selection of these two equations, and a

single definition for FS is usually specified in many design codes (Cheng and Lau

2008). An extremum method developed by Cheng et al. (2010) can give a FS

considering the force and moment equilibrium simultaneously. In the extremum

method, a range of f(x) is considered into the two equations for FS. A global

optimization method is then implemented to the find the minimum and maximum

extremum values for FS that can satisfy both the force and moment equilibrium with a

unique f(x). Cheng et al. (2010) proved that the maximum values of FS is acceptable

to describe the safety of a slope by numerical analyses.

Theoretically, FS < 1.0 indicates failure of a slope, but sufficient safety margin has to

be considered in practice. For example, Table 2.1 shows the required FS of slopes in

Hong Kong (GEO, 1984). This table is based on a groundwater table for a ten-year

return period rainfall. It should be noted that when the safety of a slope is assessed

under the predicted worst groundwater conditions, the recommended FS can be

decreased. Statistical characteristics of FS are significant indicators in slope reliability

evaluation. For example, the cumulative distribution function of FS is usually adopted

to assess the slope performance for different safety margins in reliability analysis.

Besides, the probability of failure of a slope is usually given by the percentage of FS
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< 1 in a suite of FS obtained by Monte Carlo simulations.

2.2.2 Limit Equilibrium Method

The limit equilibrium method (LEM) is commonly used to obtain the FS in

engineering practice. In LEM, slope problems are statically indeterminate, while the

sliding mass is divided into slices. The Mohr-Coulomb failure criterion is used in

LEM, and progressive failure is not considered. In the early implementation of LEM,

the shape and location of the slip surface were fixed, meaning that the minimum FS

and the most critical slip surface may not be correctly obtained. With the use of

modern optimization techniques, the shape and location of slip surface do not have to

be restricted. The "Entry and Exit" method (Figure 2.1) is incorporated in many

commercial software packages to search for the critical failure surface [e.g.,

SLOPE/W (GEO-SLOPE International Ltd. 2012)]. In the “Entry and Exit” method

(GEO-SLOPE International Ltd. 2012), the locations where the trial slip surfaces will

enter the slope body and where they are likely to exit are specified, as shown in

Figure 2.1 by the two red lines. Usually, the number of entry and exit points is

determined as the number of increments along the two lines. For the circular failure

surface, many trial slip surfaces are formed by connecting the entry and exit points

through arc lines. The trial slip surface with the minimum FS can then be determined

as the critical failure surface. For a non-circular failure surface, an optimization
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method named “segmental technique” (GEO-SLOPE International Ltd. 2012) can be

adopted. In the segmental technique, the circular critical failure surface is first

determined, and then the slip surface is divided into many line segments. After that,

the end points of those segments will move to probe lower values of FS. This process

starts from the entry point of the predetermined circular surface. The entry point

would randomly move backwards and forwards on the ground surface to find a

position in relation to the lowest value of FS. Such a process is repeated for all the end

points of line segments, one by one, and a new pattern of slip surface with many line

segments can be obtained (the end points of line segments in the slope body can move

in every direction within a range). After that, the longest line segment within the slip

surface will be divided into two portions by adding a new point to the middle, and

then the added point will move randomly to probe a new solution. This process would

be repeated until the final critical slip surface is found with an acceptable tolerance.

Assumptions of static equilibrium between inter-slice forces are required in LEM, and

many approaches related to LEM were developed based on the different assumptions

(Fellenius 1936; Bishop 1955; Janbu 1956; Lowe and Karafiath 1960; Morgenstern

and Price 1965; Spencer 1967; Fan et al. 1986; Corps of Engineers 2003). The Bishop

method (Bishop 1955) is often used in engineering practice, as the computational cost

is low and the result is close to that obtained by more advanced LEMs. The failure

surface is assumed to be circular in the Bishop method, while the vertical inter-slice

force is assumed to be zero, and the horizontal force equilibrium is not considered. In
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the Bishop method, the moment equilibrium about the center of the circle is often

used to determine FS. However, this method can only satisfy the global moment

equilibrium, and the local moment equilibrium is not enforced. The Janbu simplified

method (Janbu 1957) adopts the force equilibrium definition for FS, and the failure

surface can be non-circular. Usually, FS obtained by the Janbu simplified method

would be smaller than that by the Bishop and Morgenstern-Price methods

(Morgenstern and Price 1965). In addition, FS by the Bishop method can yield better

agreement with FS by the Morgenstern-Price method than that by the Janbu simplified

method. Janbu (1973) proposed a correction factor, f0, for the simplified method,

which can be given as follows (Cheng and Lau 2008) :
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0 l

D
l
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In the above equations, l denotes the distance between the left and right exit points of

the slip surface, and D denotes the maximum thickness of the failure mass with

reference to the line connecting the entry and exit points, as shown in Figure 2.2. With

the use of the correction factor, f0, FS by the Janbu simplified method can yield better

agreement with FS obtained by the Bishop and Morgenstern-Price methods. The

inter-slice force function, f(x), should be used in the Morgenstern-Price method, while

the inter-slice force is equal to λ0f(x)E0., where E0 is the inter-slice normal force and λ0

is a directional factor. Assumptions on f(x) are usually made. Some commonly used

types of f(x) are represented in Table 2.2. The functions of f(x) = 1 and f(x) = sin(x) are
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popular in engineering practice, and when f(x) = 1, the Morgenstern-Price method is

equivalent to the Spencer method (Spencer 1967). Using these two functions, the

force equilibrium and global moment equilibrium are satisfied in the

Morgenstern-Price method, but the local moment equilibrium equation is not

considered. Alternatively, other more complex types of f(x) can also be adopted. The

trapezoidal shape function shown in Figure 2.3 can be reduced to f(x) =1, but this

function is seldom adopted in practice. The Fredlund-Wilson-Fan force function [(f(x)

= Ψexp(-0.5vnκn ) (Figure 2.3)] is obtained by an elastic finite element stress analysis

(Fan et al. 1986), where Ψ, v, and κ are defined by the users, and κ is a normalised

dimensional factor. Since the LEM is based on the ultimate condition, which is

different from the elastic stress analysis by Fan et al. (1986), this inter-slice force

function cannot be justified using elastic analysis (Cheng and Lau 2008). In addition,

for a slope with soil nails, water table and external loading, the parameters in the

Fredlund-Wilson-Fan force function are difficult to define (Cheng and Lau 2008). The

Corps of Engineers method (Corps of Engineers 2003) assumes that λ0f(x) is the value

of the slope angle, while in the Lowe-Karafiath method (Lowe and Karafiath 1960),

λ0f(x) is equal to the average of the angle of the slice top (ground surface) and the base

inclination. These two methods cannot satisfy moment equilibrium, since λ0f(x) is

prescribed.
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2.2.3 Finite Element Method

Compared with LEM, the finite element method (FEM) has the following advantages

when obtaining FS and the critical failure surface (Griffiths and Lane 1999): (a)

assumption on inter-slice force function, f(x), is unnecessary; (b) it is possible to

consider the progressive failure; and (c) deformation can be given. Although the stress

and strain of soils in a slope domain can be obtained using finite element method, FS

cannot be directly determined. In slope stability analysis, the strength reduction

method (SRM) is often used to determine FS in the context of FEM (Ugai and

Leshchinsky 1995; Griffiths and Lane 1999; Dawson et al. 1999; Zheng et al. 2005).

In SRM, FS is represented by the strength reduction factor F which is given as

follows:

F
φ'σ'c'

F
τ' tan


F

(2.4)

which can also be expressed by

*φσ'*c
F
τ' tan

(2.5)

where τ’ = effective shear strength; σ' = effective normal stress; c' = effective

cohesion; φ' = effective friction angle;
F
c'c*  and )tanarctan(

F
φ'φ*  . The

procedure for obtaining FS in SRM can be summarised as follows: (1) compute the

stress and strain of soils in the slope domain based on the original input parameters; (2)

increase the strength reduction factor, while Eq. (2.4) or Eq. (2.5) are implemented to

reduce the shear strength (new stress and strain conditions are obtained in this stage);

(3) repeat step (2) until the slope failure occurs, while the strength reduction factor F
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can be considered as FS for the slope. The definition of slope failure is discussed in

the following paragraph.

In SRM, FS should be determined when slope failure occurs. For the definition of

slope failure in SRM, there are mainly three criteria (Cheng and Lau 2008): (1) a

sudden increase in the nodal displacement; (2) non-convergence of the finite element

solution; and (3) a plastic zone, indicating the potential failure surface, is formed

continuously (Figure 2.4). Xiao et al. (2014) discussed the applicability of the above

criteria in probabilistic slope stability analysis under the framework of Monte Carlo

simulation. In general, among these criteria, the physical significance of (1) and (3)

are clear, but sometimes they are not very practical, especially in probabilistic slope

stability analysis. For example, the continuous plastic zone should be decided

manually, which cannot be realistically implemented when using Monte Carlo

simulation associated with hundreds to thousands of models. Also, the nodal

displacement needs to be observed on some feature points, but the feature points are

difficult to select. In 3D probabilistic slope stability analysis with spatially variable

soils, some selected feature points may not involve information for displacements, as

localised and discrete failures can occur. In contrast, criterion (2) is relatively easy to

implement in both 2D and 3D probabilistic slope stability analyses, which is often

incorporated in many commercial software packages (e.g., FLAC and FLAC3D).

However, the results obtained by criterion (2) may be slightly affected by the solver

setting in the SRM procedure.
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Zienkiewicz et al. (1970) was the first to use FEM in slope analyses. SRM was

subsequently developed by Naylor (1982) in the finite element framework to obtain

FS. After that, many attempts have been made to further investigate SRM. For

example, nodal strains have been used to determine FS by Donald and Giam (1988).

Matsui and San (1992) used the stress condition to determine the critical failure

surface and FS. Griffiths and Lane (1999) investigated many slope models using LEM

and SRM, including a homogeneous soil slope without a foundation, a slope with a

thin weak layer under undrained conditions, two side earth embankment, etc. It was

found that SRM is a more powerful alternative to LEM, as the failure surface

determined by SRM is naturally formed without defining the shape of slip surface

prior to the analyses. This advantage of SRM is particularly significant in

probabilistic slope stability analyses with spatially variable soils, as the spatially

heterogeneous distribution of the soil properties would indicate the pronounced

non-circular failure mechanism of the slope. Using the modern optimization technique,

it is unnecessary to assume the shape of slip surface in LEM, but only one slip surface

can be determined in a slope. That means when it comes to a slope failure with more

than one slip surfaces (Figure 2.5), the performance of LEM may not be adequate.

2.2.4 Other Slope Stability Analysis Methods

For simple estimation of slope stability, Taylor´s stability chart (Taylor 1937) (Figure
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2.6) can be used. Taylor´s stability chart is formed by considering the relation between

slope stability, the soil parameters and slope geometry. Therefore, given the soil

parameters and slope geometry, the slope stability number can be readily estimated

using the stability chart. Duncan (1996) suggested that within a total stress analysis

framework, the accuracy of the slope stability number obtained from Taylor’s stability

chart is generally acceptable.

Apart from LEM and FEM, limit analysis (Druker and Prager 1952) is also a popular

method for slope stability analysis, where soils are assumed to be elastic-perfectly

plastic with the use of the associated flow rule (Chen 1970). This method can consider

the soil stress associated with soil strain, but it is necessary to define the shape of the

sliding mass prior to the analyses. To randomly search for the slip surface based on

limit analysis, Smith and Gilbert (2007) developed a method named “Discontinuity

Layout Optimization” (DLO). In the DLO method, many discontinuities are formed

by connecting the discrete points in a domain, after which many potential slip paths

can be formed through combining the discontinuities. The path with the minimum

energy dissipation is considered as the critical failure surface. The procedure for the

implementation of DLO is shown in Figure 2.7 [Smith and Gilbert (2010)].

In addition, the rigid element method (Zhang and Qian 1993) and the distinct (or

discrete) element method (Chang 1992; Itasca 1999) can also be adopted to calculate

FS and estimate the failure mechanism. Unlike LEM and FEM, the material is
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discontinuous in the rigid element and distinct element methods. In the rigid element

method, the elements are assumed to be rigid, and the problem domain is divided into

a number of rigid bodies that are connected at inter-surfaces. The solution and

processing procedures for the rigid element method resemble that used in FEM. In

recent distinct element method implementations (Itasca 1999), soils are represented

by circular particles in 2D problems or spherical particles in 3D problems. The

elements in the distinct element method interact through frictional sliding contacts.

The main disadvantage of the distinct element method is the high computational cost

compared with LEM and SRM when performing slope stability analysis. However,

this method is more suitable to simulate progressive slope failure and the flow of a

failed mass after the initiation of slope failure.

2.2.5 3D Slope Stability Analysis

Slope stability is generally a three-dimensional phenomenon. In engineering practice,

2D slope stability techniques are popular due to their low computational costs.

Another reason for the common use of 2D slope stability analysis is that conservative

results of FS are obtained in most cases. However, Griffiths and Marquez (2008)

found that some cross-sections within a 3D slope may give higher two-dimensional

FS than the three-dimensional FS, which can occur on a slope with an oblique layer of

weak soil intersecting with the slope section. Therefore, it should be noted that
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although the three-dimensional slope stability analysis usually results in a higher FS

due to the support from the boundary, the slope failure mechanism might be more

critical in 3D slope stability analysis under some unusual geological settings (e.g.,

non-uniform loading, spatially variable soils, irregular geometry) (Griffiths et al.

2009b).

Earlier investigations on 3D LEM were based on a simple extension of the 2D

approaches (Baligh and Azzouz 1975; Leshchinsky et al. 1985; Hungr et al. 1987).

During recent decades, more advanced 3D LEMs were developed considering the

sliding direction and asymmetric failure mechanism (Jiang and Yamagami 1999;

Huang and Tsai 2000; Cheng et al. 2005; Cheng and Yip 2007). Jiang and Yamagami

(1999) was the first to develop the 3D LEM method to consider an asymmetric failure

mechanism, where the sliding direction is not incorporated in the classical LEM

equations. In their study, the sliding direction is obtained by rotating the axes until the

minimum FS is found. Huang and Tsai (2000) derived the equations incorporating the

sliding direction for a 3D Bishop method, which can consider the asymmetrical

problem. Cheng et al. (2005) proposed a method for determining an arbitrary failure

mechanism for 3D slope problems. Later, Cheng and Yip (2007) proposed the 3D

LEM equations for the Bishop, Janbu simplified and Morgenstern-Price methods,

where the sliding direction is obtained from the 3D force/moment equilibrium

function.
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The finite element investigations on 3D slope stability analysis were usually based on

SRM (Griffiths and Marquez 2007; Wei et al. 2009; Detournay et al. 2011; Stianson

et al. 2011; Gharti et al. 2012; Nian et al. 2012; Zhang et al. 2013). In 3D finite

element analysis of slope stability, boundary conditions of the two end sections along

the y - direction (Figure 2.8) are significant. Generally, the following three kinds of

boundary conditions are usually adopted in practice (Chugh 2003; Shen and Karakus

2014): (1) only preventing movement in the y – direction, which is adopted when

there is no side shear resistance of a contact (i.e., smooth boundary); (2) preventing

movement in the (x, y) – directions that considers the side shear resistance in the x -

direction [i.e., boundary is fixed in the (x, y) – directions]; (3) preventing movement

in the (x, y, z) – directions that represents a contact without movements (i.e., fully

fixed boundary). The smooth boundary condition is analogous to the implicit

boundary condition in 3D limit equilibrium method (Chugh 2003), as in the 3D LEM

the slope body is divided into rigid columns and there is no shear force on the side at

the boundary. For the boundary condition preventing movement in the (x, y) –

directions, it has been used by Arellano and Stark (2000) to simulate side shear

resistance in 3D slope stability analysis. The fully fixed boundary condition is often

adopted in 3D finite element analysis of slopes. That is because considering

homogeneous soils and symmetrical 3D slope geometry, only half of a slope needs to

be simulated using the fixed boundary condition, and hence the computing time can

be reduced (Jian and Chan 2014). In addition, Griffiths (2009b) pointed out that the

fixed boundary condition would be the most appropriate boundary condition for the
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abutment of an earth dam.

On the other hand, some investigators have different opinions towards the selection of

the end boundary condition. Ji and Chan (2014) pointed out that the slope failure

would be affected by the boundary condition, and the portion of a 3D slope

investigated is often cut from a long slope. Therefore, the use of a fixed boundary

condition may not be appropriate, and a smooth boundary condition would be better.

However, in the context of spatially variable soil properties, Spencer (2007) found

that slope failures tend to occur around the two end sections with a smooth boundary

condition, and thus biases may occur at this situation. Based on theses considerations,

Hicks and Spencer (2010) proposed that the boundary condition without movements

in the (x, y) – directions would be a better choice in 3D probabilistic slope stability

analysis. Meanwhile, the validation of this boundary condition was also implemented

in an investigation analysing slopes of different lengths. Hicks and Spencer (2010)

conducted comparative studies are conducted between the numerical method with the

boundary condition fixed in the (x, y) - directions and the method based on simple

probability theory, where the probability of failure of a long slope is a function of that

of a shorter slope. As shown in Figure 2.9, considering spatially variable soils and

various slope lengths, the results by the numerical method are in good agreement with

the results by the method based on the probability theory. Considering soil spatial

variability, Griffiths et al. (2009b) found that the boundary conditions are influential

to the estimated Pf. Generally, under the fixed boundary condition, the estimated Pf is
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increased with a larger slope length. However, under the smooth boundary condition,

the Pf would generally decrease with an increase in the slope length, when the slope

length is less than the “average preferred failure mechanism width”, which is equal to

the average of the widths of the sliding masses in the out -of-plane direction over a

suite of Monte Carlo simulations. By contrast, when the slope length is larger than

that, the Pf would increase with larger slope lengths.

2.3 Probabilistic Slope Stability Analysis

Deterministic slope stability analysis does not explicitly model the geotechnical

uncertainties when assessing the safety of a slope. In order to consider geotechnical

uncertainties in slope stability analysis, probabilistic slope stability analysis was

developed. The probability of failure Pf or reliability index β are often adopted to

assess the reliability of a slope in the context of probabilistic slope stability analysis.

The definitions for Pf and β are presented in this section. Moreover, some

probabilistic approaches are reviewed.

2.3.1 Probability of Failure and Reliability Index

In probabilistic slope stability analysis, the probability of failure Pf is usually adopted

to assess the safety margin of a slope. Theoretically, the Pf is given by
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where fX(X0) denotes the joint probability density function of X0 that represents a set

of random variables, and g(X0) is the performance function defined as
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where FSi(X0) is FS of the ith potential slip surface. The integration in Eq. (2.7) is

difficult to obtain, but following Monte Carlo process, Pf can be easily estimated as
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where fs is the threshold value for defining the failure of a slope, which is usually

taken as 1; NT is the number of simulations in Monte Carlo process; and I(.) is an

indicator function that is equal to 1 when the failure of a slope occurs, and 0 otherwise.

In Monte Carlo simulation, the sampling size influences the accuracy of Pf. Usually,

for achieving a desired level of accuracy, the NT is suggested to be larger than 10

times the reciprocal of Pf of interest (Roberts and Casella 1999). The coefficient of

variation (COV) of Pf can be given as follows in consideration of the sampling size

NT :
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f
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The reliability index β can also be used to express the safety of a slope in probabilistic

slope stability analysis. For simplicity, assuming the evaluated factors of safety are

normally distributed, β can be given as follows (Chowdhury and Xu 1993; Christian

et al. 1994) :
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If FS is assumed to be log-normally distributed, the reliability index is given by
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In Eqs. (2.10) and (2.11), μ(FS) denotes the mean of FS; σ(FS) represents the standard

deviation of FS; and V(FS) = σ(FS) / μ(FS). Low (2014) proposed various

computational approaches for determining the reliability index, while a comparative

study was also implemented in the investigation. The approximate methods

corresponding to different definitions of the reliability index are reviewed in the

following section. The expected performance levels of a structure under different

values of β and corresponding Pf are shown in Table 2.3.

2.3.2 Approximate Method

Methods for obtaining probability of failure and reliability index can generally be

divided into two categories (Ji et al. 2012): (1) approximate methods including

first-order reliability method (FORM), second-order reliability method (SORM) and

first-order second moment method (FOSM); and (2) simulation methods based on

Monte Carlo simulation. Compared with the Monte Carlo simulation based methods,

the computational costs for the approximate methods are lower.
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FORM is a commonly used approximate method, and the Hasofer - Lind (Hasofer and

Lind 1974) reliability index is often adopted in FORM. The main advantage of the

Hasofer - Lind reliability index is its invariance with respect to different formulations

of performance function (Ji 2012). However, this method assumes the performance

function is linear, meaning that errors would occur when the actual performance

function or the failure criteria are non-linear. Physically, the Hasofer-Lind reliability

index indicates the minimum distance between the design point for the mean value of

the random variables and the limit state surface (Figure 2.10). The formulation of

Hasofer-Lind reliability index can be given as follows:
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In Eq. (2.12), x0 is a vector containing a set of random variables; V denotes the

covariance matrix; μ represents the mean of x0; and Ω denotes the failure domain.

FORM has been extensively studied considering correlated normal random variables

(Hasofer and Lind 1974; Ditlevsen 1981; Shinozuka 1983; Ang and Tang 1984;

Melchers 1999; Haldar and Mahadevan 1999; Baecher and Christian 2003). In these

studies, the soils are assumed to be homogeneous. To consider the spatial variability

of soil properties, some researchers combined random field theory with FORM (Ji et

al. 2012; Low 2014). In their studies, LEM is used, and x0 is considered as

autocorrelated random variables of soil properties along the failure surface, where the

number of random variables in x0 is equal to the number of slices. At the same time,

FORM had also been developed to consider the system reliability of slopes (Zhang et
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al. 2011; Cho 2013). Since using FORM is less time-consuming than using Monte

Carlo simulation based methods, such methods are often adopted in 3D probabilistic

slope stability analysis (Auvinet and Gonzalez 2000; Vanmarcke 2011; Ji 2014; Ji and

Chan 2014), where soil spatial variability is considered.

On the other hand, FOSM uses another definition of reliability index, where the first

two moments of FS (i.e., mean and standard deviation of FS) are used to compute the

reliability index [i.e., Eq. (2.10)]. The mean-value first order second moment method

is often adopted to calculate the reliability index, where the performance functions

and limit states are considered. The formulation for mean-value FOSM is given as

follows (Hassan and Wolff 1999):
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In Eq. (2.13), np denotes the number of soil parameters; Xi is the ith soil parameter;

σ[Xi] and σ[Xj] represent the standard deviation of the ith and jth soil parameter,

respectively; μ[Xi] represents the mean of the ith soil parameter; and ρX denotes the

correlation between the ith and jth soil parameters. FOSM has also been widely

studied in slope stability problems (Wu and Kraft 1970; Cornell 1971; Alnoso 1976;

Tang et al. 1976; Vanmarcke 1977; Samui et al. 2011; Samui et al. 2013). When using

FOSM to estimate the reliability of a slope, the performance function should be given.

Samui et al. (2011) considered the relevance vector machine in FOSM, where the
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relevance machine was used to construct the implicit performance function.

Meanwhile, the response surface method (Wong 1985; Bucher and Bourgund 1990)

and artificial neutral network technique (Gomes and Awruch 2004; Deng et al. 2005;

Deng 2006) can also be used to predict the performance function in FOSM.

2.3.3 Probabilistic Method Assuming Perfect

Autocorrelation

The probabilistic methods assuming infinite autocorrelation distance are discussed in

this section. That means soils within each layer are assumed to be homogeneous,

while values of soil parameters are selected randomly from a probability distribution

(e.g., normal distribution and lognormal distribution). When considering a slope with

single layer under undrained conditions, Pf can be simply obtained using the

following equation, where the undrained shear strength is normally distributed:
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In Eq. (2.14), su = undrained shear strength; 1fss = shear strength indicating FS=1;

and Φ(.) = cumulative standard normal distribution function. When the undrained

shear strength is log-normally distributed, the equation is given by:
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where usln = mean of logarithm of su ; and usln = standard deviation of
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logarithm of su.

When there are multiple soil profiles within a slope or more than one soil property is

assumed to vary random variably, Eqs. (2.14) and (2.15) cannot be used. In these

cases, Monte Carlo simulation can be used in the probabilistic method assuming

perfect autocorrelation (Ji and Low 2012; Zhang et al. 2013a; Zhang et al. 2013b; Liu

and Cheng 2016; Liu et al. 2017c), which is actually equivalent to the random field

based approach with an infinite spatial autocorrelation distance. Herein, the spatial

autocorrelation distance represents the distance within which the correlation between

the spatially random variables is significant. Griffiths et al. (2004) and Griffiths et al.

(2009a) conducted comparative studies between the method assuming perfect

autocorrelation and the method considering soil spatial variability. The results show

that the method assuming perfect autocorrelation would overestimate Pf when COV of

soil property < 1, which would be more pronounced with a smaller mean of the soil

property. That is because the stronger parts of the spatially variable soils would make

it difficult to form a continuous weak path for a critical failure surface.

2.3.4 Random Field Based Method

Soils are spatially variable in reality, which is not explicitly modeled in the

probabilistic method discussed in Section 2.3.3. Random field theory (Vanmarcke
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1984) can be adopted to simulate the spatially variable soils of a slope, where the soil

properties at any locations are considered random variables following a specific

probability distribution and correlated spatially. The simulated random fields can then

be mapped onto slope stability models, while within a Monte Carlo framework, the

probability of slope can be obtained using Eq. (2.8). The slope stability model can be

constructed using different slope stability techniques (e.g., LEM and FEM). Based on

the adopted slope stability technique, the random field based approaches are presented

as follows: (a) random limit equilibrium method (RLEM) that combines traditional

limit equilibrium method with a random field (Cho 2010; Wang et al. 2011; Li et al.

2013; Jiang et al. 2015; Li et al. 2015; Li and Chu 2015; Jiang and Huang 2016; Liu

et al. 2018); (b) random finite element method that combines traditional finite element

method with a random field (RFEM) (Griffiths and Fenton 2004; Griffiths et al.

2009a; Griffiths et al. 2009b; Griffiths et al. 2009c; Hicks and Spencer 2010; Huang

et al. 2010; Jha and Ching 2013; Jiang et al. 2014; Hicks et al. 2014; Li et al. 2016b);

(c) random finite difference method (RFDM) that combines traditional finite

difference method (FDM) with a random field (Lo and Leung 2017, 2018). These

methods are usually implemented in a non-intrusive manner, where the existing slope

stability analysis procedures do not have to be modified. As a result, many

commercial software packages (e.g., FLAC, ABAQUS, and SLOPE/W) can be used.

The implementation procedure for the non-intrusive RFEM is summarised as follows,

while RLEM and RFDM are conducted in a similar manner (Jiang et al. 2014):

Step 1: Define the statistical characteristics for the soil property (e.g., mean, standard
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deviation and probability distribution), and determine the autocorrelation function and

autocorrelation distance of the spatially variable soils.

Step 2: Build the slope stability model through finite element procedure (e.g.,

ABAQUS). Discretise the domain into elements and extract the coordinates for each

element (e.g., centroid coordinate for each element).

Step 3: The extracted coordinates are adopted to generate NT random fields.

Step 4: Map the NT random fields onto the slope stability model to generate NT slope

models with spatially variable soils.

Step 5: Compute the FS of each of the NT slope model, and calculate the probability of

failure using Eq. (2.8) or reliability index using Eqs. (2.10) and (2.11).

Tabarroki et al. (2013) compared the performance of random limit equilibrium

method (RLEM) with that of RFDM in probabilistic slope stability analysis. In the

study, various LEMs (e.g, Bishop, Spencer and Morgenstern-Price methods) are

considered. It was found that the non-circular LEM may encounter two main issues

with random fields: (a) the global optimization search of the critical slip surface is

difficult; and (b) solutions may fail to converge. The reason for the convergence

problem is that the assumption on inter-slice force function f(x) is made for all the

slope stability models with spatially variable soils, but each of the slope models

should correspond to a specified f(x) for ensuring the convergence of the FS solution.

Although a unique definition of f(x) can be obtained by the extremum method by

Cheng et al. (2010) for each Monte Carlo simulation, the computational effort would
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be quite demanding with hundreds to thousands of calculations. When the

convergence issue occurs, the actual critical failure surface may not be properly

considered. The Bishop method would not have such a problem, but the failure

surface cannot be represented by a circular slip surface in some cases in reality (e.g.,

failure of slopes in sandy soil). Considering an inter-slice force function of f(x) = 1/2

sin(x) in the Morgenstern-Price method, the influence of the convergence issue on the

resulting Pf is modest. On the contrary, the methods considering SRM can yield

reliable results without the above issues, and the failure mechanism can be obtained

naturally in each Monte Carlo simulation (Griffiths et al. 2004; Griffiths et al. 2009a).

However, the computational effort is relatively extensive. On the other hand, Cheng et

al. (2007) identified the limitations of SRM when analysing a slope with a thin weak

layer, and such problems need to be investigated considering soil spatial variability in

the future, as this scenario can occur in spatially soils simulated by an anisotropic

random field. Furthermore, Cheng et al. (2007) proposed that the settings of the

tolerance for stress analysis and the maximum number of iterations in the SRM

procedures might have significant influences on the FS, when the geological

conditions are complex.

Due to the low computational cost, the Bishop method is often used in probabilistic

slope stability analysis considering random fields (Cho 2010; Li et al. 2013; Jiang et

al. 2015; Li et al. 2015; Li and Chu 2015; Jiang and Huang 2016; Liu et al. 2017a;

Liu et al. 2017b; Jiang and Huang 2018). Cho (2010) proposed that, for a cohesive
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slope with spatially variable soils under undrained conditions, the accuracy for the use

of circular slip surface is acceptable. The failure mechanism and FS of slopes in

spatially variable soils by LEM and SRM are shown in Figures (2.11) and (2.12) by

Cho (2010). Javankhoshdel et al. (2017) conducted the comparative studies of RLEM

(the Bishop method) and RFEM considering cohesive soil slopes with the depth factor

= 2. They found that when considering isotropic random fields, the results of Pf

obtained by RLEM and RFEM can yield good agreements for the slope with a small

angle (slope angle = 27º), and the influence of the cross-correlation between the

undrained soil strength and unit weight is insignificant. However, when the slope is

steep (slope angle = 67º), the results obtained by RFEM would be significantly

different from those obtained by RLEM. On the other hand, when considering

anisotropic random fields, the influence of the cross-correlation between the

undrained soil strength and unit weight would be significant. Herein, when the

magnitude of the cross-correlation increases, the differences between the results

obtained by RFEM and RLEM would generally increase. Li and Chu (2019)

conducted the comparative studies between the LEMs (the Bishop, Spencer and

Morgenstern-Price methods), FDM and FEM in calculating FS considering a cohesive

soil slope with spatially variable soils. They found that the FS and failure mechanism

obtained by the Bishop method are close to those obtained by FDM and FEM. In

addition, they also pointed out the global optimization and convergence issues in the

Spencer and Morgenstern-Price methods, which echos the previous findings proposed

by Tabarroki et al. (2013). To obtain the non-circular failure surface accurately in
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RLEM, Mafi et al. (2020) proposed a novel optimization method termed surface

altering optimization, which can indicate accurate results of FS and failure mechanism

in comparison to those obtained by RFEM with less computational tine. Besides, Lo

and Leung (2017) conducted the comparison analyses between RLEM (the Bishop

method) and RFDM considering a slope under drained conditions. They found that

the results of Pf obtained by RFDM are higher than those obtained by RLEM, because

the non-circular slip surface determined by FDM can represent the actual failure

surface better and indicate the smaller FS in each MCS simulation. The author of this

thesis also conducted comparison analyses between RLEM and RFEM incorporating

the Bishop and Janbu methods, where the slope under undrained conditions

investigated in Cho (2010) (Figures 2.11 and 2.12) was considered. The RFEM

procedure used in the analyses was developed by Griffiths and Fenton (2004), which

is open-source and can be downloaded at http://courses.engmath.dal.ca/rfem/. The

comparison results are shown in Table 2.4. It can be found that the results obtained by

RLEM with the Bishop method and RFEM yield good agreements, while the results

obtained by RLEM with the Janbu method are significantly higher. As proposed by

Cheng and Lau (2008), the Janbu method can produce the significantly smaller FS

than that by the Bishop and Morgenstern - Price methods in cohesive soils, which

may indicate the higher value of Pf.

When it comes to 3D problems, the computational cost would be a significant

problem for RFDM and RFEM. Besides, Cheng and Lau (2008) pointed out that 3D

http://courses.engmath.dal.ca/rfem/.
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SRM by FLAC3D may lead to inaccurate results when considering soil nails, and they

suggested that 3D SRM may not be mature for engineering use. 3D RLEM may be an

alternative approach in 3D probabilistic slope stability analysis considering spatially

variable soils, and lower computational cost can be achieved using a spherical failure

surface. However, 3D RLEM is seldom investigated up to now. Furthermore, the

random search of the arbitrary failure shape using 3D LEM is time-consuming even

for a single deterministic analysis (Cheng et al. 2005), meaning that it may not be

applicable within a Monte Carlo framework with hundreds to thousands of slope

stability models.

2.3.5 Surrogate Model

The large computational demand is a significant issue in probabilistic slope stability

analysis using Monte Carlo simulation. To save computation time, surrogate models

are often adopted. The surrogate model can be used to define the functional relation

between the system response and the input parameters. The accuracy of a surrogate

model heavily relies on the process of experiment design. In the stage of experiment

design, sampling techniques (e.g., Monte Carlo simulation and Latin hyper-cube

sampling) are often adopted to generate training samples for developing the surrogate

model. Usually, when the number of training samples increases, the accuracy of a

surrogate model improves. However, to obtain additional training samples, more
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simulations need to be conducted, increasing its computational effort. Therefore, a

balance between the accuracy and computational effort should be considered when

developing a surrogate model.

In probabilistic slope stability analysis, the response surface method is often adopted

to construct the surrogate model (Ying 2012; Li and Chu 2015; Jiang and Huang 2016;

Li et al. 2016c; Li and Chu 2016). Li et al. (2016c) reviewed the recent developments

of the response surface methods. To construct the response surface, quadratic

functions [Eq. (2.16)] (Bucher and Bourgund 1990; Zhang et al. 2013b) are usually

adopted:

 
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where nt denotes the number of input random variables, and a0p, bi and ci are the

unknown coefficients. In order to determine these coefficients, regression methods are

often adopted in consideration of (2nt+1) points: (μx1, μx2, ..., μxn), (μx1, μx2 ± kσx2, ...,

μxn),...(μx1, μx2 , ..., μxn± kσxn), where k is usually taken as 2 (Li et al. 2016c).

Meanwhile, the 2nd order polynomial chaos expansion (PCE) function is also popular

(e.g., Huang et al. 2009; Jiang et al. 2014, 2015), which is given as follows:
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where ( 0a , ia , 21iia ) are the PCE coefficients, which can also be determined through

a regression analysis based on the simulated FS, and ξ denotes the independent

components representing the random field; and 21iiδ is the Kronecker delta. Li et al.

(2016c) proposed that, for a single layer slope with soils assuming perfect
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autocorrelation, the accuracy of Pf by Eq. (2.16) is sufficient. Since the computational

cost using Eq. (2.16) is lower than that using Eq. (2.17), Eq. (2.16) is suggested to be

used in this scenario. However, when considering a slope with multiple soil layers or

a slope with spatially variable soils, the accuracy by Eq. (2.16) is significantly worse

than that by Eq. (2.17), and Eq. (2.17) is suggested to be adopted.

In addition, the Kriging method (Zhang et al. 2013a; Yi et al. 2015; Liu et al. 2017c),

artificial neural networks (e.g., Cho 2009) and support vector machines (Samui et al.

2011; Samui et al. 2013; Kang and Li 2016; Kang et al. 2016) can also be used to

generate surrogate models. Zhang et al. (2013a) proposed that the Kriging method

would yield better performance than the response surface method with the quadratic

function when considering system reliability of a soil slope. Samui et al. (2013)

compared the least square support vector machine method with the artificial neural

network method for constructing the surrogate model in slope reliability analysis. The

comparative results showed that when the performance function is non-linear, the

least square support vector machine performs better than the artificial neural network

method.

2.4 Spatial Variability in Soils

Soil spatial variability is a significant source of uncertainties in probabilistic slope
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stability analysis. As mentioned in the previous section, random field theory is often

used to simulate spatially variable soils. In this section, previous studies on

characterising soil spatial variability are reviewed, while the model representing

spatially correlated random variables is discussed. This section also presents and

discusses the formulations for simulating spatially correlated random variables with

increasing trend by depth (i.e., non-stationary random field).

2.4.1 Characterisation of Spatial Variability

Soil properties (e.g., cohesion, friction angle, undrained shear strength and coefficient

of permeability) are spatially variable in nature. To characterise soil spatial variability,

geostatistical methods can be adopted (Georgakakos et al. 1990; Mateu et al. 2007;

Shahid et al. 2013; Liu et al. 2017d; Liu and Leung 2018). For example, Georgakakos

et al. (1990) presented a number of geostatistical approaches, and then used those

approaches to predict the spatially variable soil properties. Liu et al. (2017d) proposed

an integrated framework to characterise spatially correlated variables for

two-dimensional problems, where the stationary assumptions are checked and the

trend order is determined in a data-driven manner. To characterise the spatially

anisotropic soils for three-dimensional problems, the framework is further extended

by Liu and Leung (2018).
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The procedure for characterising soil spatial variability mainly includes the following

steps (Liu 2018): (1) obtaining known samples and determining the autocorrelation

structure; (2) predicting the soil properties at unsampled locations considering the

autocorrelation structure; and (3) checking the prediction accuracy. Kriging

interpolation techniques are often used to predict spatially variable soil properties (the

formulations for Kriging interpolation are presented in Section 2.7.1). Generally,

larger number of sample values can result in more accurate predictions using the

Kriging methods. However, the sample values by site investigation are usually limited,

especially when the sample values need to be obtained by laboratory experiments.

With limited sample values, the accuracy of soil characterisation is difficult to

guarantee. In this case, the spatially variable soil properties can be simulated as

spatially correlated random variables, where the autocorrelation structure obtained in

the soil characterisation stage can also be adopted. The simulation of spatially

correlated random variables is treated in the following sections.

2.4.2 Spatially Correlated Random Variables

Generally, spatially correlated random variables can be represented by the following

linear function with a deterministic trend structure plus a residual:

eμz  (2.18)

In Eq. (2.18), z denotes a vector for spatially random variables in various locations;
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and μ represents the deterministic trend. When the prevalent trend cannot be found in

the data μ, the trend structure is often assumed to be constant. The parameter e

represents the residual, which is a random vector with a constant variance under

second-order stationarity assumptions. The mean of e is 0, while the covariance

matrix V of e can be factored as V=σ2R. The parameter R represents the spatial

autocorrelation matrix formed by correlation coefficient between any two points,

which is discussed in Section 2.6. The random variable at a specified location j can

also be represented by the following equation:

)(2)( i
jj σi

j εμz  (2.19)

where )(i
jz = spatially correlated random variables at location j corresponding to the

ith realisation; jμ = value of the trend at location j; σ = standard deviation of the

Gaussian random field; and )(i
jε = an element in the ith realisation of standard

Gaussian random field at location j. The parameter ε can be obtained using random

field generators, which are presented in Section 2.6.

2.4.3 Spatial Variability in Soils with Increasing Trend

A constant trend structure may not be appropriate to simulate in-situ soils in some

cases, as the soil strength usually increases with depth (Jaksa et al. 1997; Phoon and

Kulhawy 1999; Hicks and Samy 2002; Elkateb et al. 2003; Kulatilake and Um 2003;

Wu et al. 2012; Wilson et al. 2013). In-situ overburden stress is the main cause for the
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increasing trend, while other geotechnical processes (e.g., desiccation, tectonic

movements, deltaic deposits and soil deposition) can also affect the trend structure.

The equation proposed by Li et al. (2014) is presented as follows:

00)( zdazn  x (2.20)

where zn = spatially variable soil property with increasing trend at a certain location;

a(x) = rate of change of zn at a location with spatial coordinates x, which can be

simulated using Eq. (2.19); γ = unit weight of soil; d0 = depth below the ground

surface; and z0 = soil property at the ground surface. The mean and standard deviation

of zn are corresponding to the depth, which are given as follows:

an μdγzdμ 000 )(  (2.21)

an σdγdσ 00 )(  (2.22)

In the above equations, )( 0dμn and )( 0dσn denote the mean and standard

deviation of zn in the depth d0, respectively, while aμ and aσ are the mean and

standard deviation of a, respectively.

It should be noted that z0 is assumed to be constant in Eq. (2.20). However, due to

rainfalls, vegetation, traffic loading, etc., uncertainties should be considered in z0.

Table 2.5 presents various models for simulating non-stationary random fields

summarised by Jiang and Huang (2018). To modify the limitation of the model by Li

et al. (2014), z0 is simulated as a lognormal random variable in Eq. (2.20) (Model 3).

For Model 2 proposed by Griffiths et al. (2015), the soil property at ground surface, z0,

is simulated as a 1D lognormal random field, while the rate of increase a is assumed
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to be constant. This formulation ignores the uncertainty in the rate of increase. To

consider the uncertainty of a in the formulation by Griffiths et al. (2015), a is

assumed to be a lognormal random variable in a modified model (Model 4). However,

it is clear that the above models do not incorporate the uncertainty of the trend

component of zn. To consider the uncertainty in the trend component, Jiang and Huang

(2018) developed a new formulation, where a fluctuating component wn is explicitly

considered and simulated as a stationary Gaussian random field. Comparative studies

were also conducted among the non-stationary random field models in Table 2.5 in

slope reliability analysis by Jiang and Huang (2018). It was found that considering the

uncertainty in the trend component, Pf of the slope is marginally influenced by the

vertical autocorrelation distance θv, while the influences of θv on Pf are more

pronounced when using other non-stationary RF models without considering the

fluctuation of trend.

2.5 Spatial Autocorrelation

When simulating spatially variable soils, spatial autocorrelation of soils should be

considered. The spatial autocorrelation can be represented by the autocorrelation

function. In the meantime, the autocorrelation distance involved in the autocorrelation

function denotes the distance over which the spatially random values would be

significantly correlated. In this section, spatial autocorrelation distances for different

shear strength parameters of soils are summarised from literature. Some widely used
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theoretical autocorrelation functions and autocorrelation functions indicating

anisotropic spatial variation are also presented.

2.5.1 Autocorrelation Distance

The autocorrelation distance θ is an essential parameter for simulating spatially

variable soils. The correlation between spatial variables at different locations relies on

the separation distance. Generally, with larger separation distance, the correlation

between spatial variables at any two locations would decrease. As the distance

exceeds a threshold, the correlation can be negligible. Such a threshold distance is

named “autocorrelation distance” (Vanmarcke 1977). The autocorrelation distance can

be obtained using the traditional space average method, where the variance reduction

function is considered (Vanmarcke 1977). The formulation for the space average

method is given as follows:

)(Γlim 2 




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where  denotes the average sample separation distance; and )(Γ2  represents the

variance reduction function, which is given by
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where  is the lag distance between two points; and )( is the autocorrelation

function, which is discussed in Section 2.5.2. Meanwhile, many modern techniques

[e.g., maximum likelihood method (Santra et al. 2012) and restricted maximum
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likelihood method (Liu et al. 2017d; Liu and Leung 2018)] have been developed to

obtain more accurate results with small sampling data-sets. For a random field, a

larger autocorrelation distance indicates a smoother field. With a smaller

autocorrelation distance, the random field would be more ragged. Figure 2.13 shows

two typical realisations of isotropic random field with different autocorrelation

distances. In Figure 2.13, the darker elements indicate smaller values, while the

lighter elements indicate larger values.

The autocorrelation distance of soil properties has been estimated by many

researchers (Phoon and Kulhawy 1999; Hicks and Samy 2002; Ching et al. 2011),

where various methods [e.g., vane shear test (VST); direct shear test (DST); cone

penetration test (CPT); and laboratory test] have been used to obtain the sampling

values for different soil types. Associated with this, when determining the

autocorrelation distance, various theoretical autocorrelation functions are adopted

[e.g., single exponential (SNX); squared exponential (SQX); second-order Markov

(SMX); cosine exponential (CSX); binary noise (BINX)]. The discussions on

autocorrelation function are presented in Section 2.5.2. In this section, the

autocorrelation distances for various shear strength parameters [e.g., undrained shear

strength (su), cohesion (c), friction angle (φ), and cone tip resistance (qc)] are

summarised from literature and presented in Table 2.6 (Li et al. 2015; Liu 2018). As

can be seen in the table, the horizontal autocorrelation distance for each soil parameter

is much higher than the vertical autocorrelation distance, while the vertical
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autocorrelation distance is generally in the range of 0.1 m - 6.0 m. This is because the

depositional direction of in situ soils is often horizontal, leading to smoother

variations of the soil properties in the horizontal direction.

2.5.2 Autocorrelation Function

The autocorrelation function is often adopted to express the autocorrelation between

spatially variable soils, which can be obtained from site investigation data using site

characterisation techniques [e.g., method of moments (Phoon and Kulhawy 1999a;

Baecher and Christian 2003), maximum likelihood method (DeGroot and Baecher

1993), and restricted maximum likelihood method (Lark 2000; Liu et al. 2017d)]. The

Method of moments is a traditional technique for obtaining the autocorrelation

structure of spatially variable soils, the formulation of which is given by
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where )(ˆ kC  denotes covariance at k , and the correlation coefficient

)0(ˆ/)(ˆ)(ˆ CC kk   ; kN represents the number of pairs of the observed samples;

)( im xz denotes the sample value at location ix ; and k is the lag distance of the

observed samples. When the sample points are distributed irregularly, a binning

process can be used, where the separation distance is partitioned into a series of

intervals. In this case, an appropriate bin size, k , can be given by
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The sample size is influential to the estimation of autocorrelation function. Lark (2000)

proposed that with a small sample size, the estimated autocorrelation function would

be significantly different from the actual one. Especially, as proposed by Kerry and

Oliver (2007), when using the method of moments, the required sampling size would

be demanding. Besides, in the method of moments, the semivariogram can be

influenced by the bin size, which would be more pronounced when the sampling

points are irregularly distributed (Liu 2018).

In order to obtain a more accurate autocorrelation structure with a smaller sampling

size and irregular sampling space, Liu and Leung (2017d) proposed a framework,

where a stationarity check and treatment of site-specific data are implemented. In the

framework by Liu and Leung (2017d), the autocorrelation structure is represented by

a Matérn autocorrelation model (Matérn 1960), which is a flexible form of

autocorrelation function. The Matérn function can be interpreted as an autocorrelation

function with a flexible form, where the shape of the function is controlled by a shape

parameter v. For example, when v = 0.5, the Matérn autocorrelation function would

be equivalent to an exponential function, while when v approaches infinity, a

Gaussian function can be obtained (Liu et al. 2017d). The parameters in the Matérn

autocorrelation function are then obtained by using the restricted maximum likelihood

method by Liu and Leung (2017d), the formulation of which is given as follows:
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In Eq. (2.27), W = XV-1X and Q = I - XW-1XTV-1, in which I is the identity matrix

and X is the matrix that contains information on spatial coordinates; θp represents the

parameters in Matérn function; 0n denotes the number of sample points, and p

represents the number of coefficients in the trend; and mzXXXXIy ))(( T1T  is

considered for filtering out the trend components so that the covariance estimates of

restricted maximum likelihood method are separated from the estimates of the trend

structure.

This section also presents some theoretical autocorrelation functions. The theoretical

autocorrelation functions can be adopted in geotechnical designs, when the correlation

coefficient of the site investigation data by Eq. (2.26) can show an approximate form

to a certain theoretical function. Li et al. (2015) compared the performance of various

theoretical autocorrelation functions in estimating Pf of slopes, where the same

settings of autocorrelation distances were considered in every autocorrelation function.

They found that the difference of the resulting Pf is small. Table 2.7 shows different

2D theoretical autocorrelation functions, and Figure 2.14 shows different 2D random

field patterns generated using various autocorrelation functions. In addition, Table 2.8

shows some 3D theoretical autocorrelation functions, and Figure 2.15 presents

different 3D random field patterns. In these figures, the elements indicating higher

values are lighter, while the elements indicating smaller values are darker. Li et al.

(2015a) proposed that the patterns of random fields simulated by exponential function
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[Figures 2.14(a) and 2.15(a)], separated single exponential function [Figures 2.14(b)

and 2.15(b)], cosine exponential function, and binary noise function are relatively

rough, especially in the vertical direction. In contrast, the random fields generated by

the Gaussian function [Figures 2.14(c) and 2.15(c)] and the second order Markov

function are smoother. The patterns of random fields by different autocorrelation

functions can generally reflect the different scenarios of spatially variable soils on

site.

2.5.3 Anisotropic Spatial Variation

An isotropic random field is one where the spatial variation patterns in different

directions are the same. Such an assumption may not always be realistic, as layered

fabric patterns are often observed in natural soils. The autocorrelation distance for

anisotropic random fields varies in different directions, which can generally be shown

by an ellipse and ellipsoid [Figures 2.16(a) and (b)] for 2D and 3D anisotropy,

respectively (Liu 2018). Herein, the autocorrelation represented by the ellipse (or

ellipsoid) indicates that anisotropic fields can be obtained through stretching and

rotating the coordinates axes of isotropic fields [the autocorrelation can be represented

by a circle in two dimensions (or sphere in three dimensions) for isotropic fields].

.

The autocorrelation functions presented in Tables 2.7 and 2.8 are based on
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horizontally deposited soils. However, in nature, soils often exhibit various anisotropy

patterns of spatial variability. This means, when simulating spatially variable soils,

other anisotropy patterns should be considered. As shown previously in Figures 1.1

(b)-(e), there are mainly four types of anisotropic patterns (i.e., horizontal transverse

anisotropy, rotated transverse anisotropy, general anisotropy, and general rotated

transverse anisotropy). Zhu and Zhang (2013) discussed the significance for

considering anisotropic spatial variation of soils and rocks. In their study, the spatial

autocorrelation distance was developed as a function of directional angle by

modifying the coordinate system, and the 3D autocorrelation functions associated

with different anisotropy patterns were then derived. For example, through rotating

the coordinate system, the directional spatial autocorrelation distance and the

corresponding autocorrelation function can be obtained for rotated transverse

anisotropy. The procedures and details in deriving the autocorrelation functions are

given by Zhu and Zhang (2013). The 2D exponential autocorrelation functions and

Gaussian autocorrelation functions for various anisotropy patterns derived by Zhu and

Zhang (2013) are presented in Tables 2.9 and 2.10, respectively. Those formulations

have been implemented through random field generation by Zhu and Zhang (2013).

For the 3D anisotropic autocorrelation function, the formulation should be extended

from an expression of ellipses to expression of ellipsoids, while the anisotropic

autocorrelation function can also be obtained through modification of the coordinate

system (Liu 2018). Details for the derivation of 3D anisotropic autocorrelation
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functions are given by Liu (2018) and Liu and Leung (2018).

2.6 Random Field Generation

When simulating spatially correlated random variables, ε in Eq. (2.19) can be

generated using many random field generation techniques [e.g., Cholesky

decomposition (e.g., Deodatis 1996), the local average subdivision (LAS) method

(Fenton and Vanmarcke 1990), the Karhunen - Loeve expansion method (Sudret and

Der Kiureghian 2002), and the fast Fourier transform method (Cooley and Tukey

1965)]. In this thesis, the Cholesky decomposition and local average subdivision

methods are discussed, as these methods have been adopted in the present research.

2.6.1 Cholesky Decomposition Method

Covariance matrix decomposition methods (e.g., eigen decomposition and Cholesky

decomposition) can be used to simulate random fields. The Cholesky decomposition

method is a popular method for random field generation in slope reliability analysis

(Li et al. 2015; Jiang and Huang 2016; Liu et al. 2017a; Liu et al. 2017b). In the

Cholesky decomposition method, the spatial autocorrelation matrix R is decomposed

into a lower triangular matrix and an upper triangular matrix:
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TLLR  (2.28)

isLε  (2.29)

where L is the Cholesky factor of R; and si denotes an independent standard Gaussian

random vector corresponding to the ith random field realisation. The spatial

autocorrelation matrix can be obtained as follows:
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where d denotes the number of elements in a random field, and ρ12 is the spatial

correlation coefficient between locations 1 and 2. The correlation coefficient can be

obtained by the autocorrelation function, which was discussed in Section 2.5 and

shown in Tables 2.7 - 2.10.

The Cholesky decomposition method is relatively simple to implement, especially

when anisotropic spatial variation needs to be considered (Zhu et al. 2019). That is

because using the Cholesky decomposition method, the spatial autocorrelation matrix

can be directly involved in random field generation. However, this method may suffer

from a computational effort issue when generating a very large spatial autocorrelation

matrix with a large domain with many elements (e.g., a very large 3D slope model

with a large section and a long slope length).
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2.6.2 Local Average Subdivision

The LAS method was first developed by Fenton and Vanmarcke (1990), which is

extensively used to simulate random fields in probabilistic slope stability analysis

(Griffiths et al. 2004; Griffiths et al. 2009a; Griffiths et al. 2009b; Hicks and Spencer

2010; Hicks et al. 2014). LAS can be adopted when the element averaging effect

(Griffiths et al. 2004) needs to be considered. A subdivision process, in a top-down

recursive fashion (Fenton 1990), is involved in LAS, which is simply expressed in

Figure 2.17. As shown in the figure, each cell in the domain is divided into two parts

at every stage. During the process of LAS, the average of the values of sub-cells is the

same to that of the parent cell, meaning that the statistical mean of the random field is

maintained. The general procedure for LAS is presented as follows (Fenton and

Vanmarcke 1990):

1. Define the global statistics of the global cell 0
1Z , where the mean is usually set to

zero and variance is obtained using local averaging theory (Fenton and Vanmarcke

1990).

2. Divide 0
1Z into two equal parts (i.e., 1

1Z and 1
2Z ). The mean and variance of the

two parts should follow three criteria: (a) local averaging theory should be adopted to

obtain the variance for each cell; (b) the two parts need to be correlated; (c) the
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average of the two parts is equal to 0
1Z (i.e., 0

1

1
2

1
1

2
)( ZZZ


 ).

3. Divide the two cells obtained in the above step into four equal parts (i.e., 2
1Z , 2

2Z ,

2
3Z , and 2

4Z ). The mean and variance of these cells should follow four criteria: (a)

local averaging theory should be adopted to obtain the variance of each cell; (b) the

two sub-cells from a parent cell need to be correlated; (c) the average of the two

sub-cells is equal the parent cell (i.e., 1
1

2
2

2
1

2
)( ZZZ


 and 1
2

2
4

2
3

2
)( ZZZ


 ); (d)

2
1Z and 2

2Z should be correlated to 2
3Z and 2

4Z .

4. Subdivide each cell, until the desired number of elements for the random field is

achieved.

Compared with the Cholesky decomposition method, LAS is performed more

efficiently when it comes to a very large problem domain with a large covariance

matrix. In addition, in LAS, the statistics (e.g., mean and standard deviation) are

consistent with the field resolution, while the local averaging effect can be considered.

However, the subdivision algorithm itself in LAS is unable to preserve anisotropy,

and the directional scales of fluctuation tend to be the minimum for the field during

the subdivision process. Therefore, although global anisotropy can be achieved for the

field, small neighborhoods of cells tend to be correlated in an isotropic manner at the

final resolution of the field (Fenton 1994). This problem can be solved with no loss of
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efficiency through extending, compressing or rotating a isotropic field to obtain an

anisotropic field (Spencer 2007). The details of LAS is given by Fenton and

Vanmarcke (1990), where the formulations for LAS in one, two and three dimensions

are presented.

2.6.3 Cross-correlated Random Field

In slope design, many soil properties need to be incorporated, meaning that

cross-correlation between different soil properties should be considered. In the

literature, the cross-correlation coefficient of cohesion and friction angle, ρc,φ,

observed by Lumb (1970) is in the range of -0.7 < ρc,φ < -0.37. Yucemen et al. (1973),

observed it to be -0.49 < ρc,φ < -0.24, whereas Rackwitz (2000) suggested it around

-0.5. Cross-correlation needs to be incorporated in generating a c - φ random field.

The corresponding equation is given as follows (Fenton and Griffiths 2003):
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where x represents spatial coordinates; cz and z denote the cross-correlated

random fields for cohesion and friction angle, respectively; and
0cz and 0z

represent the two independent random fields for cohesion and friction angle,

respectively. The details of the procedure for generating cross-correlated random

fields is given by Fenton and Griffiths (2003). Figure 2.18 shows a typical example of

cross-correlated random fields of cohesion and friction angle with negative
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cross-correlation, where a portion with higher values of cohesion tends to correlate

with a portion with lower values of friction angle. The influence of cross-correlation

between cohesion and friction angle on probabilistic slope stability analyses has been

investigated previously (Cho 2010; Jiang et al. 2015; Liu et al. 2017b; Lo and Leung

2017), and it was found that the probability of failure would increase when the

negative cross-correlation coefficient approaches zero.

2.7 Conditional Random Field Simulation and Sobol Index

Method

The previous sections have mainly discussed the simulation of unconditional random

fields, where the sample values are not considered. In ground investigation, sample

values of soil properties are usually obtained. Those sample points can be adopted to

generate conditional random fields in probabilistic slope stability analysis. Using such

a random field simulation method, the performance uncertainty (e.g., the uncertainty

of FS of slopes, footing settlement, and displacement of retaining walls) can be

reduced. The performance uncertainty reduction caused by sampling effects is a

popular topic in the geotechnical profession in recent years (Li et al. 2016; Lo and

Leung 2017, 2018). In this section, two conditional random field models are discussed.

In addition, a recently developed technique using the Sobol sensitivity index is

presented, where the formulations of the traditional Sobol sensitivity index are
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extended to consider soil spatial variability by Lo and Leung (2018). Formulations for

conditional random field modelling and the Sobol index method are presented, while

the benefits and limitations of each method are discussed.

2.7.1 Conditional Random Field

In recent years, many researchers have considered conditional random fields in

geotechnical reliability analysis (Lloret-Cabot et al. 2012; Kim and Sitar 2013;

Lloret-Cabot et al. 2014; Li et al. 2016b; Liu et al. 2017b; Lo and Leung 2017). Kim

and Sitar (2013) compared the performance of the conditional random field

simulation method with other two methods in slope reliability analysis (i.e., the

random value approach that assumes perfect autocorrelation in soils and the

unconditional random field simulation method), and found that the conditional

random field simulation method can result in lower probabilities of failure than that

by the unconditional methods. Li et al. (2016b) used the conditional random field

simulation method to quantify the magnitude of uncertainty reduction considering

different sampling patterns in a 3D slope model, where each of the sampling patterns

contains a number of sampling boreholes. It was found that the performance

uncertainty can reduce after conditioning, as the known points can provide

information to the random field generation and thus reduce the spatial uncertainty.
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In this section, two conditional random field models are discussed. The first one is

proposed by Frimpong and Achireko (1998), where the Kriging interpolation

technique is employed to predict the soil properties at each spatial point, and the

corresponding prediction error is simulated by Monte Carlo simulation. Liu et al.

(2017b) pointed out that, when using this conditional random field model, the relation

between sampling space and autocorrelation distance is significant for reduction in

performance uncertainty. In some cases, uncertainty reduction may not be achieved

with an improper combination of sampling space and autocorrelation distance. This

problem is discussed in details in Section 2.7.3. The second conditional random field

model was proposed by Lo and Leung (2017) that is based on the matrix

decomposition technique, where the spatial autocorrelation matrix after conditioning

is considered.

Conditional random field model 1

The conditional random field model proposed by Frimpong and Achireko (1998) is

commonly used in geotechnical reliability analyses (Fenton and Griffiths 2008;

Lloret-Cabot et al. 2012; Lloret-Cabot et al. 2014; Li et al. 2016b; Liu et al. 2017b),

which is given as follows:

)( ksurkmcr zzzz  (2.32)

where zcr = simulated conditional random field; zkm = Kriging field based on the

measured values (known values) at sampling locations; zur = simulated unconditional

random field; and zks = Kriging field based on the simulated values of the
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unconditional random field, zur, at sampling locations.

Kriging interpolation techniques can provide unbiased predictions for the unknown

spatial points. In Kriging interpolation, the spatial autocorrelation of soil properties

can be represented by the autocorrelation function (Tables 2.7 - 2.10). Equations for

determining the Kriging predictor in a specific location, jkr,z , are as follows (Odeh

et al. 1995):


































10

)()(

T

i
su

is

λ
Vβ

l
lV

(2.33)
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0,kr )()( m

j
kkj βμ-zμz  x (2.34)

In the above equations, sV denotes the covariance matrix between sampled points; l

is a column vector of all ones; )(iβ represents the vector of weights of the known

data to the ith element with 1
1

)(  

n

j
i
jβ , and λ is a Lagrange multiplier; suV is

the spatial covariance matrix between sampled points and unsampled points; mz is a

vector containing the values of sampled points; k0μ represents the expected values

of the trend at the sampled locations; and )( xkμ is the trend structure with spatial

coordinates x. Within the framework of regression Kriging, the trend structure is

determined through regression analysis. When the trend structure is assumed to be a

constant value, Eq. (2.34) can be reduced as follows, which is the formulation of

ordinary Kriging (OK):

)(T
m,kr

i
j βzz  (2.35)
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Conditional random field model 2

The conditional random field model proposed by Lo and Leung (2017) is based on the

matrix decomposition method. In this thesis, the Cholesky decomposition method [i.e.,

Eqs. (2.28) and (2.29)] is adopted. When the random field z is conditioned into zcr, the

conditional covariance matrix Vcond and the conditional spatial autocorrelation matrix

Rcond can be given as follows:

su
1

s
T
suucrcond ]|cov[ VVVVzzV  (2.36)

1/2
cond

1/2
cond

 DVDR (2.37)

In Eq. (2.36), Vu represents the covariance matrix between unsampled points. Within

the framework of OK, the diagonal term of Vcond, 2
zσ , represents Kriging prediction

variance at unsampled points. In Eq. (2.37), D is a nu × nu diagonal matrix formed by

the nu terms in 2
zσ (nu denotes the number of unsampled locations). When simulating

a conditional random field by this model, R in Eq. (2.28) is replaced by Rcond, jμ in

Eq. (2.19) is replaced by the Kriging predictor, zkm,j, and 2σ in Eq. (2.19) is

replaced by 2
,z jσ . The difference between the two conditional random field

simulation methods will be elaborated upon Chapter 5.

2.7.2 Sobol Sensitivity Index

The contribution of each input parameter to the variance of system response can be
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quantified using the Sobol sensitivity index (Sobol 2001) in a physical model, where

each input is considered as a random variable (Lo and Leung; Lo 2019). In recent

years, the Sobol sensitivity index has been adopted in geotechnical probabilistic

analysis (Mollon et al. 2011; Houmadi et al. 2012; Miro et al. 2014). In these studies,

soils are assumed to be homogeneous in each profile, meaning that the spatial

variability of soil property is not considered. Since the original Sobol index

formulation should be based on independent random variables, soil spatial variability

cannot be incorporated. To solve this issue, Lo and Leung (2018) extended the

original formulation of the Sobol index to consider the cross-correlation between

random variables, where the response surface method is adopted to represent the

model response. Using the Sobol index method by Lo and Leung (2018), the spatially

variable soil properties can be represented by cross-correlated random variables at

different spatial points. Based on this concept, the Sobol index value at each location

can then be calculated, leading to a Sobol index map in a problem domain. In a Sobol

index map, the location associated with the maximum Sobol index value indicates the

most influential point to the variance of the system response (i.e., the optimal sampled

location). Furthermore, with the use of Sobol index, the magnitude of uncertainty

reduction associated with a certain sampling pattern can be obtained, while the mean

and standard deviation of the system response can also be calculated (Lo and Leung

2018; Lo 2019).
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Definition of Sobol index

In the context of geotechnical engineering, the Sobol index can quantify the

contribution of soil properties at certain locations to the variance of a system response

(e.g., FS of slopes). In slope reliability analysis, the definition of the Sobol index,

S(X), is ( Sobol 2001; Lo and Leung 2018; Lo 2019):

)FS(Var
)]|FS(Var[E

1
)FS(Var

)]|FS(E[Var
)( nn nnnnS

ee
X eeee   (2.38)

where )e,,e,e( 21 nn e is a vector of residual values corresponding to soil samples

from n locations; and ),,( 21 nxxx X represents the spatial coordinates of n

sample locations. S(X) can be defined as the variance reduction of system response,

when the n sample points are given. Subsequently, the reduction is averaged

considering all the possible values of soil properties in the n sample locations.

Based on S(X), the magnitude of uncertainty reduction can be given by (Lo and

Leung 2018; Lo 2019):

)(1
)FS(

)FS(
uncond

cond XS

 (2.39)

where σuncond(FS) denotes the standard deviation of FS by unconditional random field

simulation method; and σcond(FS) denotes the standard deviation of FS after

conditioning.
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Eigen decomposition

By the formulation of Lo and Leung (2018), the residual e should be transformed to

independent components (denoted by ξ ) that represent the random field. This step is

necessary because ξ is used to construct the response surface for the system

response. The transformation can be achieved through eigen decomposition of the

spatial autocorrelation matrix (Lo and Leung 2018). The autocorrelation matrix R is

built using Eq. (2.30). Through eigen decomposition of R, d eigenvectors and positive

eigenvalues could be obtained (the obtained eigenvalues are in descending order in

this case), where d is the total number of elements in a random field mesh:

T
ddd HΛHR  (2.40)

where Hd is a matrix of d eigenvectors, and Λ is a diagonal matrix of d eigenvalues.

In practice, only M << d eigenvectors are retained, which depends on the percentage

of total variance that needs to be preserved. e is related to ξ by the following

equation:

ξξ2
1

EHΛe  (2.41)

where H is a matrix of retained eigenvectors; and Λ is a diagonal matrix of retained

eigenvalues. E is a (d × M) matrix, where each row of E corresponds to all the

elements in a random field mesh.

Model response

In order to consider the soil spatial variability, the response surface method is adopted

to represent the model response of Lo and Leung (2018). For each setting (slope
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geometry, spatial autocorrelation distance, mean and standard deviation of soil

property, etc.), hundreds of realisations of random fields are simulated, with the

corresponding FS evaluated. The system FS is then represented through a response

surface based on the soil strength variation. A 2nd order PCE function [Eq. (2.17)] can

be adopted as the response surface. From the PCE coefficients ( 0a , ia ,
21iia ) in Eq.

(2.17), the variance of FS is given by:
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Variance after conditioning

Through representing the system FS as a 2nd order PCE, the conditional mean

response can be evaluated as a quadratic function ( Lo and Leung 2018; Lo 2019):
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In Eq. (2.43), ( 0a , ia ,
21iia ) are coefficients of the 2nd order PCE. Es is a (n × M)
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matrix consisting of n rows of E, which corresponds to sample locations. Rs is a (n ×

n) matrix of autocorrelation between sample locations. The variance of the conditional

mean is given by:
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where Rij is the ijth element of Rs. The Sobol index, S(X), is then determined by

)]|FS(E[Var ee dividing Var(FS) [Eq. (2.38)].

2.7.3 Discussion on Methods Considering Sampling effect

The conditional random field simulation and Sobol index methods can be used to

quantify the uncertainty reduction after conditioning for a given sampling pattern. The

main disadvantage of the conditional random field simulation method is the

demanding computational effort when determining the optimal sampling strategy.

That is because Monte Carlo simulation should be conducted for all the possible trial

sampling patterns in the conditional random field simulation method, and each trial

sampling pattern corresponds to hundreds to thousands of calculations. The issue of

extensive computational effort would be more pronounced when considering multiple

sampling boreholes, as permutations need to be considered. In 3D problems, the

computational effort would further increase, due to the long computation time of a 3D

slope stability analysis procedure and the larger geometry which results in far more
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trial sampling patterns. The Sobol index method by Lo and Leung (2018) is more

efficient than the conditional random field simulation method when determining the

optimal sampling pattern, especially when more than one sampling borehole or a large

problem domain need to be considered. Also, the mean and standard deviation of FS

after conditioning can be obtained easily using the Sobol index method. With the

mean and standard deviation of FS, the reliability index can be simply estimated using

Eqs. (2.10) and (2.11). However, such a method cannot be adopted to obtain the

probability of failure and investigate the failure scale and failure mechanism directly,

since the response surface involved in the method is constructed by unconditional

random field simulation. In engineering practice, quantifying the failure scale is

essential in risk assessment, which corresponds to the estimation of potential failure

consequence (Li et al. 2016a; Liu et al. 2017a). In addition, estimating the failure

mechanism is significant in controlling the risk caused by landslides (Zhu et al. 2015).

In this aspect, the conditional random field simulation method is a better option.

On the other hand, Liu et al, (2017b) observed that, when the sampling points are

quite sparse with small autocorrelation distance (θv = 2 m in their study) in a c - φ

slope (Figure 2.19), the standard deviation of FS by the conditional random field

model proposed by Frimpong and Achireko (1998) would be higher than that by the

unconditional approach. This problem is shown in Figure 2.20, where Nd denotes the

number of sampling points, and Nd = 0 means the unconditional random field is used.

When Nd = 2 (points A and E in Figure 2.19), the standard deviation of FS by the
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conditional random field simulation method is larger than that by the unconditional

random field simulation method. As illustrated by Liu et al. (2017b), the reason for

this issue is that the Kriging interpolation used in the conditional random field model

[Eq. (2.32)] is effective only when at least two known points can be adopted to predict

other unknown points within the range of autocorrelation distance. Therefore, as

presented in Table 2.11, when the vertical autocorrelation distance increases, the

standard deviation of FS by the conditional random field simulation method

considering Nd = 2 would be smaller than that by the unconditional random field

simulation method (Nd = 0). This is because with a higher vertical autocorrelation

distance, more unknown points can be predicted effectively by the known points.

Hence, Liu et al. (2017b) concluded that the problem of σcond(FS) > σuncond(FS) by the

conditional random field model (Eq. 2.32) is caused by the improper establishment of

the sample distance to autocorrelation distance. Liu et al. (2017b) did not investigate

this issue systematically, and the reasons for such a problem were not discussed in

detail. The horizontal transverse anisotropy and single exponential autocorrelation

function were considered in their research. It is expected that other patterns of soil

spatial variability may affect the sampling effects and thus their conclusions. Besides,

other reliability analysis methods that can consider sampling effects should be

conducted to find out whether this issue can only occur when using the conditional

random field model by Frimpong and Achireko (1998). Theoretically, if the

conditioning effect is not effective, there should be no uncertainty reduction of system

response, meaning that the standard deviation of FS by conditional random field
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simulation method would be equal to that by the unconditional random field

simulation method. The issue of σcond(FS) > σuncond(FS) by the conditional random

field model proposed by Frimpong and Achireko (1998) will be further investigated

and discussed in Chapter 5.

2.8 Summary

Geotechnical uncertainty is a well known topic in the civil engineering profession,

which cannot be explicitly modeled in traditional deterministic slope stability analysis.

In order to consider the uncertainties, probabilistic slope stability analysis methods

have been developed by combining probability theories with slope stability analysis

techniques. Soil spatial variability is a significant source of geotechnical uncertainties,

and its influence on slope reliability has been extensively investigated. To simulate

spatially variable soils, unconditional random fields are widely used in the literature

(Griffiths and Fenton 2004; Griffiths et al. 2009a; Griffiths et al. 2009b; Griffiths et al.

2009c; Cho 2010; Hicks and Spencer 2010; Huang et al. 2010; Li et al. 2013; Jha and

Ching 2013; Jiang et al. 2014; Hicks et al. 2014; Jiang et al. 2015; Jiang and Huang

2016; Li et al. 2016a; Liu et al. 2017a; Liu et al. 2017b; Liu et al. 2018; Varkey et al.

2019). In addition, conditional random fields and the sampling effect have been

considered in slope reliability analysis in recent years (Kim and Sitar 2013; Li et al.

2016b; Liu et al. 2017b, etc.).
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Non-stationarity and anisotropic spatial variation of soils are often observed.

Non-stationary random field models proposed by Li et al. (2014), Griffiths et al.

(2015) and Jiang and Huang (2018) can be adopted to simulate spatially variable soils

with an increasing trend with depth. For anisotropic spatial variation of soils, Zhu and

Zhang (2013) proposed formulations for various 2D patterns of anisotropic soil spatial

variability. Later, Liu (2018) proposed that the 3D anisotropic autocorrelation

structure can be obtained through modifying the coordinate system.

To incorporate sampling data in slope reliability analysis, the conditional random field

simulation and Sobol index methods can be used. However, both methods have their

limitations. For example, the computational effort of the conditional random field

simulation method is extensive when determining the optimal sampling pattern. Such

an issue would be more pronounced for a 3D slope problem or a problem considering

multiple sampling boreholes. In these situations, the Sobol index method is a more

efficient alternative. However, the Sobol index method cannot indicate the probability

of failure and information on the failure mass after conditioning. Therefore, the

selection of methods should be based on different objectives. The previous study (Liu

et al. 2017b) observed that the conditional random field simulation method [Eq.

(2.32)] may produce the standard deviation of FS higher than that by the

unconditional random field simulation method. This finding is contrary to the

theoretical basis of conditional random field simulation, and thus it should be further

investigated using other methods that can consider sampling effects.
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Table 2.1 Recommended thresholds of FS in Hong Kong (GEO, Hong Kong 1984;

Cheng and Lau 2008).

Potential human
losses

Potential economic
losses

Negligible Average High

Negligible 1.1 1.2 1.4

Average 1.2 1.3 1.4

High 1.4 1.4 1.5

Table 2.2 Various types of f(x) (Cheng and Lau 2008).
Type No. f(x)

1 1
2 sin(x)

3 Trapezoidal shape function

4 Fredlund-Wilson-Fan inter-slice force function (Fan et al. 1986)

5 Corps of Engineering inter-slice force function (Corps of Engineering 2003)

6 Lowe-Karafiath inter-slice force function (Lowe and Karafiath 1960)
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Table 2.3 Reliability index β, probability of failure Pf and corresponding expected
performance level (U.S. Army Corps of Engineers 1997).

Reliability index β Probability of failure Pf
Expected performance

level

1.0 0.16 Hazardous

1.5 0.07 Unsatisfactory

2.0 0.023 Poor

2.5 0.006 Below average

3.0 0.001 Above average

4.0 0.00003 Good

5.0 0.0000003 High
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Table 2.4 Pf by RLEM and RFEM with mean and COV of su equal 25 kPa and 0.7
respectively considering isotropic random fields by 1,000 Monte Carlo simulations.

θ
(m)

RLEM
(Bishop method)

RLEM
(Janbu method)

RFEM

Difference between
RLEM (Bishop

method) and
RFEM

Difference between
RLEM (Janbu
method) and

RFEM

3 0.4140 0.5530 0.4380 5.8 % 20.8 %

6 0.4195 0.5210 0.4110 2.0 % 21.1 %

10 0.4120 0.4850 0.4050 1.7 % 16. 5 %

50 0.3960 0.4490 0.4070 2.8 % 9.4 %
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Table 2.5 Non-stationary random field models (Jiang and Huang 2018).

Model

No.
Formulations Parameters Assumption on parameters References

1 00 dγazzn 
z0

a

Constant

Stationary random field
Li et al. (2014)

2
0

0 0
0

z

z
n μ

dγaμ
zz




z0

a

Stationary random field

Constant
Griffiths et al. (2015)

3 00 dγazzn 
z0

a

Random variable

Stationary random field

Modified from

Li et al. (2014)

4
0

0 0
0

z

z
n μ

dγaμ
zz




z0

a

Stationary random field

Random variable

Modified from

Griffiths et al. (2015)

5 )exp(00 nn wdγazz 

z0

a

wn

Random variable

Random variable

Stationary Gaussian random

field

Jiang and Huang (2018)
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Table 2.6 Autocorrelation distance for shear strength parameters (part 1) (Li et al.
2015; Liu 2018).

Soil property Soil type

Horizontal
Autocorrelation

distance
θh (m)

Vertical
Autocorrelation

distance
θv (m)

References

su

Marine clay, Japan - 1.3 - 2.7 Matsuo (1976)

New Liskeard varved caly 46 5 Vanmarcke (1977)

Clay - 0.25 - 2.5 Hicks and Samy (2002)

Sensitive clay, soft clay 20 - 80 2.0 - 6.0 El-Ramly et al. (2003)

Chicago clay - 0.79 - 1.25 Xie (2009)

Saturated clay, Japan - 1.25 - 2.86 Xie (2009)

Ankara Clay - 1.0 - 3.0 Akbas and Kulhawy (2010)

In situ soils 30 - 60 1.0 - 6.0 Ji et al. (2012)

su by DST Clay 92.4 1.19 - 1.23 Ronold (1990)

su by VST

Marine clay 46 - DeGroot and Baecher (1993)

Clay 46 - 60 2.0 - 6.2 Phoon and Kulhawy (1999)

Clay 46 - 60 2.0 - 6.2 Ching et al. (2011)

Desiccated Clay 5.83 0.27 Stuedlein et al. (2012b)

qc

North sea clay 60 - Hoeg and Tang (1977)

Sand and Clay 3.0 - 80.0 - Phoon and Kulhawy (1999)

Sandy soil - 0.1 - 1.0 Cheng et al. (2000)

Clay - 0.1 - 1.8 Cheng et al. (2000)

Soft clay - 0.2 - 2.0 Cheng et al. (2000)

Taranto clay - 0.287 - 0.401 Cafaro and Cherubini (2002)

Sand, clay - 0.13 - 1.11 Uzielli et al. (2005)

Tianjin port clay 8.37 0.132 - 0.322 Yan et al. (2009)

Tianjin port silty clay 9.65 0.095 - 0.426 Yan et al. (2009)

Tianjin port silt 12.7 0.140 - 1.0 Yan et al. (2009)

Desiccated Clay 2.97 - 9.90 0.16 - 1.17 Stuedlein et al. (2012a)

Silty clay - 0.8 - 6.1 Haldar and Sivakumar Babu (2009)

Silty clay 1.2 - 2.0 0.45 - 0.5 Firouzianbandpey et al. (2014)

Clay 10 - 62 1.3 - 4.0 Salgado and Kim (2014)

Sand 35 - 75 2.2 - 3.0 Salgado and Kim (2014)
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Table 2.6 Autocorrelation distance for shear strength parameters (part 2) (Li et al.
2015; Liu 2018).

Soil property Soil type

Horizontal
Autocorrelation

distance
θh (m)

Vertical
Autocorrelation

distance
θv (m)

References

c
Yan’an silty clay - 1.47

Ni et al. (2002)
Jiangzhang silty clay - 6.47

Tongguan silt - 7.19

c by DST

Taiyuan silty clay 36.2 - 41.7 0.37 - 0.58

Li et al. (2003)Taiyuan silt 41.5 - 45.1 0.6 - 0.84

Hangzhou silty clay 40.5 - 45.4 0.52 - 0.75

Hangzhou clay - 0.5 - 0.77

φ

Yan’an silty clay - 1.44
Ni et al. (2002)

Jiangzhang silty clay - 2.96

Tongguan silt 1.2

φ by DST

Taiyuan silty clay 36 - 41.4 0.35 - 0.49

Li et al. (2003)Taiyuan silt 41.8 - 45.5 0.54 - 0.92

Hangzhou silty clay 40.4 - 45.2 0.49 - 0.71

Hangzhou clay - 0.59 - 0.73

Note: c and φ represent the cohesion and friction angle under total stress, respectively.
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Table 2.7 Theoretical 2D autocorrelation functions (Li et al. 2015).
Name Autocorrelation function

Exponential function 












 2

2

2

2
2exp),(

z

z

x

x
zx










Separated single exponential function





















z

z

x

x
zx 





 2exp),(

Gaussian function (squared exponential
function) 






















 2

2

2

2
exp),(

z

z

x

x
zx










Second order Markov 







































z

z

x

x

z

z

x

x
zx 












4

1
4

14exp),(

Cosine exponential 





































z

z

x

x

z

z

x

x
zx 











 coscosexp),(

Binary noise





























otherwise0

and11
),( zzxx

z

zx

xx z










Note: τx= lag distance between any two points in x - direction; τz = lag distance between any two
points in z - direction; θx = autocorrelation distance in x - direction; θz = autocorrelation distance
in z - direction
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Table 2.8 Theoretical 3D autocorrelation functions.
Name Autocorrelation function

Exponential function















 2

2

2

2

2

2
2exp),,(

z

z

y

y

x

x
zyx











Separated single exponential function





























z

z

y

y

x

x
zyx θ

τ
θ

τ

θ
τ

τττρ 2exp),,(

Partly separated single exponential function




































v

z

h

yx
zyx θ

τ

θ

ττ
τττρ

22

2exp),,(

Gaussian function



























 2

2

2

2

2

2
exp),,(

z

z

y

y

x

x
zyx

θ
τ

θ

τ

θ
ττττρ

Note: τy = lag distance between any two points in y - direction; θy = autocorrelation distance in
y - direction
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Table 2.9 Exponential autocorrelation functions for anisotropic spatial variation of
soils (Zhu and Zhang 2013).

Patterns Autocorrelation function

Isotropy












 
 2

22

2exp),(
θ

ττ
ττρ yx
yx

Horizontal
transverse
anisotropy 















 2

2

2

2
1

2
2exp),(







 yx
yx

Rotated transverse
anisotropy 














 



 2

2

2

2
1

2 )sincos()sincos(
2exp),(








 yxyx
yx

General anisotropy















 2
2

2

2
1

2)]2/tan([
2exp),(








 yyx
yx

General rotated
transverse
anisotropy











 




 2
2

2
1

sin]cos)2/tan([sin]cos)2/tan([
2exp),(








 yyxyyx
yx

Note: θ1 represents the major autocorrelation distance, the direction of which is along the bedding
orientation. θ2 represents the minor autocorrelation distance, the direction of which is perpendicular to
the bedding. α denotes the rotational angle of strata. η denotes angle between the two principal scales
of fluctuation.
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Table 2.10 Gaussian autocorrelation functions for anisotropic spatial variation of
soils (Zhu and Zhang 2013).

Patterns Autocorrelation function

Isotropy 











 
 2

22

exp),(
θ

ττ
ττρ yx
yx

Horizontal
transverse
anisotropy 



























 2

2

2

2
1

2
exp),(








 yx
yx

Rotated transverse
anisotropy 


























 



 2

2

2

2
1

2 )sincos()sincos(
exp),(








 yxyx
yx

General anisotropy















 2
2

2

2
1

2)]2/tan([
exp),(








 yyx
yx

General rotated
transverse
anisotropy











 




 2
2

2
1

sin]cos)2/tan([sin]cos)2/tan([
exp),(








 yyxyyx
yx
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Table 2.11 Standard deviation of FS after conditioning when Nd = 2 (Liu et al.
2017b).

θh (m) θv (m) Nd = 0 Nd = 2

20 2 0.1033 0.1549
20 12 0.1527 0.1128
20 20 0.1584 0.1025
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Figure 2.1 Areas for the entry and exit points (GEO-SLOPE International Ltd.
2012).

Entry area for the trial slip surfaces

Exit area for the trial slip surfaces
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Figure 2.2 Definitions of D and l for the correction factor f0 (Janbu 1972; Cheng
and Lau 2008).

Figure 2.3 Various shapes of f(x) (Cheng and Lau 2008).

x1
0

1

f(x) = Ψexp(-0.5vnκn)

f(x) = sin(x)

Trapezoidal

f(x)
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(a)

(b)

(c)

Figure 2.4 Progressive formation of the continuous plastic zone.
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(a)

(b)

Figure 2.5 (a) Multiple failure surfaces in a slope with think weak layer under
undrained conditions by SRM; (b) multiple failure surfaces in a slope with weak
foundation layer under undrained conditions by SRM (Griffiths and Lane 1999).
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Figure 2.6 Taylor’s stability chart for cohesive slope (Taylor 1937; Barnes 1995).
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(a) (b)

(c) (d)

Figure 2.7 Implementation procedure of DLO: (a) define problem domain; (b)
discretise the domain by nodes; (c) interconnect the nodes to produce discontinuities;
(d) find the critical mechanism with the minimum energy dissipation by optimization

(Smith and Gilbert 2010).
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Figure 2.8 The end sections in a 3D slope model.

Figure 2.9 Slope reliability versus slope length using random finite element method
(RFEM) and the method based on the probability theory (Hicks and Spencer 2010).

Slope length (m)

End section

End section

Z

Y

X
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(a)

(b)

Figure 2.10 Limit state surface and design point in FORM: (a) in the normal space;
(b) in the space of original variable (Ji et al. 2019).

(Design point)

(Design point)
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Figure 2.11 Typical realisations of random fields in a slope under undrained
conditions and the analysis results by Bishop method (θh = 20 m and θv = 2 m): (a) FS

= 0.905; (b) FS=0.927; (c) FS=0.834; (d) FS=0.983 (Cho 2010).

Figure 2.12 Analysis results for the same realisations of random fields in Figure
2.11 by SRM using FLAC: (a) FS = 0.881; (b) FS = 0.889; (c) FS = 0.811; (d) FS =

0.9575 (Cho 2010).

Cohesion (kPa) Cohesion (kPa)
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Figure 2.13 Isotropic random fields in a square domain of length = 20 m with
different spatial autocorrelation distances: (a) θ = 15 m; (b) θ = 0.5 m.
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(c)

Figure 2.14 Typical realisations of 2D random fields using different autocorrelation
functions with θx = 20 m and θz = 2 m: (a) exponential function; (b) separated single

exponential function; (d) Gaussian function.

X

Z
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(a) (b)

(c)

Figure 2.15 Typical realisations of 3D random fields using different autocorrelation
functions with θx = θy = 20 m and θz = 1 m: (a) exponential function; (b) separated

single exponential function; (d) Gaussian function.

Z

X

Y
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(a)

(b)

Figure 2.16 Spatial autocorrelation structure: (a) ellipse for 2D soil anisotropy; (b)
ellipsoid for 3D soil anisotropy (Liu 2018).
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Figure 2.17 Subdivision process in LAS (Fenton and Vanmarcke 1990).
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Figure 2.18 Realisations of cross-correlated random fields by Gaussian function
with ρc,φ = -0.5: (a) cohesion; (b) friction angle.
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Figure 2.19 A slope under drained conditions and layout of the sampling points (Liu
et al. 2017b).

Figure 2.20 Standard deviation of FS by conditional random field simulation
method and unconditional random field simulation method versus various

cross-correlation coefficients ρc,φ (Liu et al. 2017b).

Cross-correlation coefficient
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CHAPTER 3 2D Probabilistic Slope Stability

Analyses with Rotated Transverse Anisotropy and

Non-stationarity in Soil Properties

3.1 Introduction

Due to various geological processes (soil deposition, tectonic movement, etc.), rotated

soil strata are often observed in natural slopes (Zhu and Zhang 2013). The influences

of rotated transverse anisotropy on slope reliability considering 2D slope models have

been investigated previously (Griffiths et al. 2009c; Zhu et al. 2019), and slopes with

a dip direction of strata being opposite to the dip direction of the slope (i.e., reverse

slope) were found to have a higher reliability than slopes with a dip direction of the

strata being along the dip direction of the slope (i.e., dip slope). Such a finding is

consistent with engineering experiences, and the rationale behind that was illustrated

through the 2D slope failure mechanism by Griffiths et al. (2009c), where the slope

failure that occurs along the bedding orientation would result in a smaller FS. Zhu et

al. (2019) found that the dip angle of strata is influential to the potential failure

mechanism of a c - φ slope, and the change of failure mechanism would be sensitive

to the dip angle of the strata in dip slopes. In the previous studies, a stationary RF was

adopted to simulate spatially variable soils with a rotated transverse anisotropy, where

the mean and variance of a soil property are assumed to be constant. However, in-situ
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soil measurements usually show increasing trends of soil properties for natural soils

(Jaksa et al. 1997; Hicks and Samy 2002; Elkateb et al. 2003; Kulatilake and Um

2003; Wu et al. 2012; Wilson et al. 2013).

For more realistic simulation of spatially variable soil properties, it is desirable to

consider both rotated transverse anisotropy and non-stationarity of soils (i.e., the mean

and variance of a soil property vary spatially). To this end, two scenarios are

considered in this chapter combining the rotated transverse anisotropy and

non-stationarity in soil properties, where the orientations of the increasing trends are

different (Figure 3.1). For the type 1 [Figure 3.1(a)], the trend of soil property

increases vertically with depth. This usually occurs on originally inclined soil strata,

where the soil accumulation is inclined from the beginning. For example, on the edge

of sedimentary basin, soils may be deposited obliquely. Also, such a scenario can be

found in residual, alluvial, aeolian, and glacial soils, while lava and volcanic debris

around a crater are usually found to accumulate in an inclined direction originally. In

this case, the increasing trend is caused by in-situ overburden stress. For the type 2

[Figure 3.1(b)], the trend of soil property increases along the direction perpendicular

to the bedding, which can be observed in rotated strata caused by tectonic movement

or deltaic deposit. For example, the soil bedding was originally in a horizontal

orientation and then rotated due to tectonic movements. In this chapter, the two

scenarios are considered to estimate the slope reliability. A slope model under

undrained conditions is considered (Figure 3.2). Besides, the slope failure mechanism
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is investigated by quantifying the depth of slip surface (hc) under a Monte Carlo

framework, where hc in each Monte Carlo realisation is measured from the slope crest

to the rupture surface, as shown in Figure 3.2. Meanwhile, the distributions of slip

surfaces obtained in the Monte Carlo process are presented.

3.2 Methodology

3.2.1 Random Limit Equilibrium Method (RLEM)

As mentioned in Section 2.3.4, the random equilibrium method (RLEM) is a

probabilistic slope stability analysis approach that combines the traditional limit

equilibrium method with a random field. The computational cost of RLEM is lower

than that of RFEM, and information in relation to the failure mechanism can be easily

obtained by RLEM. When a considering non-circular failure surface, RLEM may

suffer from the difficulty in searching the slip surface by global optimization, and

convergence problems would arise (Section 2.3.4). Therefore, the Bishop method is

used in this chapter. The justification for the use of Bishop method in probabilistic

slope stability analysis was discussed previously in Section 2.3.4.

In this chapter, the non-intrusive RLEM is conducted by Slope/W, where the slope

stability analysis model can be output by the “.xml” file. That means the random
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fields of material properties can be assigned into the slope stability model, by

generating and processing “.xml” files in batches. In the current work, the random

field is generated by a MATLAB code. The flowchart of the RLEM is shown in

Figure 3.3.

3.2.2 Non-stationarity and Rotated Transverse Anisotropy

The random field for rotated transverse anisotropy can be simulated by incorporating

the autocorrelation function that represents anisotropic spatial variation of soils. Zhu

et al. (2019) used the following autocorrelation function to simulate the spatially

variable soils under rotated transverse anisotropy. Such an autocorrelation function is

also considered in this chapter, where a positive α indicates anti-clockwise rotation

and a negative α indicates clockwise rotation:















 



 2

2

2

2
1

2 )sincos()sincos(
2exp),(








 yxyx
yx (3.1)

The non-stationary RF model by Li et al. (2014) [Eq. (2.20)] is adopted in this chapter.

When soil strength increases with depth, the non-stationary random field considering

rotated transverse anisotropy can be directly simulated using Eq. (2.20) coupled with

Eq. (3.1), which is named RF Type 1. In addition, soils can be originally deposited in

the horizontal orientation and then rotated, leading to a new anisotropy pattern of soil

spatial variability. In this situation, the direction of the increasing trend is changed,
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and the non-stationary RF Type 2 can be simulated by rotating the non-stationary

random field under horizontal transverse anisotropy, the equation of which is derived

as Eqs. (3.2a) and (3.2b) for clockwise or anti-clockwise rotations, respectively:

]cossin)[( 0000  dxWazzn  (3.2a)

)cossin( 0000  dxazzn  (3.2b)

In the above equations, W denotes the slope width (Figure 3.2), α0 is the rotational

angle of the direction of the increasing trend (0º ≤ α0 ≤ 90º). Figures 3.4(a), (b) and (c)

show typical realisations of a stationary RF, RF Type 1 and RF Type 2, respectively.

The non-stationary random field models presented in Table 2.5 are all based on a

linearly increasing trend. The Eq. (2.20) derived by Li et al. (2014) is based on an

empirical function proposed by Kulhawy and Mayne (1999), where the undrained

shear strengths for low plasticity and medium plasticity soils increase linearly with

depth. Asaoka and A-Grivas (1982) observed that undrained shear strength of an

over-consolidated soil can increase linearly with depth.

3.2.3 Implementation Procedure of Non-stationary Random

Field Generation

In this chapter, the soil properties are simulated considering rotated transverse

anisotropy and non-stationarity. One-thousand Monte Carlo simulations are conducted



108

for each parametric group (e.g., θ1, θ2, and α), where the Latin hyper-cube sampling

technique is adopted. The procedures for generating the stationary and non-stationary

random fields are summarised as follows:

Step 1: Define the inputs for the non-stationary random field, such as probability

distribution, mean and standard deviation of a in Eqs. (3.2a) and (3.2b), spatial

autocorrelation function, etc.

Step 2: Construct the slope stability model using Slope/W and discretise the domain

into elements (Figure 3.2).

Step 3: Extract the mid-point coordinates of each element in the slope domain.

Step 4: Perform stationary random field simulation for a by Eq. (2.19) using the

coordinate information obtained in the above step, where Eq. (3.1) is used to represent

the spatial autocorrelation.

Step 5: Use Eqs. (3.2a) or (3.2b) to generate NT non-stationary random fields.
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3.3 Case Description

Figure 3.2 shows the slope model investigated in this chapter. The slope height is 15

m, and the slope angle is 45°. To map the random field, the slope domain is

discretised into 1365 elements that are mainly squares with 0.5 m length or truncated

into triangles along the slope face. This slope is analysed under undrained conditions

with the undrained shear strength characterised statistically by a log-normal

distribution. When considering a non-stationary RF, the mean and COV of a in Eqs.

(3.2a) and (3.2b) are equal to 0.3 and 0.4, respectively (Cao et al. 2016). As reported

by Rackwitz (2000), the undrained shear strength at the ground face (i.e., z0 ) was

observed to be in the range of 10 - 20 kPa for soft inorganic plastic cohesive soils.

Therefore, z0 is set to 15 kPa. For the purpose of comparison, the mean and standard

deviation of the undrained shear strength in the stationary RF are set to be the same as

μn(d0) and σn(d0) of RF Type 1 in the mid-height of slope [Eqs. (2.21) and (2.22)],

respectively. Such a way to obtain the statistical characteristics for stationary RF is

also adopted in Li et al. (2014) and Jiang and Huang (2018) when conducting

comparative studies between the stationary RF and non-stationary RF. The reason for

using such statistical characteristics in the stationary RF is that if the linearly

increasing mean of RF Type 1, μn(d0), is averaged by depth, the averaged result will

be equal to the μn(d0) at mid-depth (Li et al. 2014). Therefore, the statistical

characteristics at the mid-depth of RF Type 1 seems to be a reasonable assumption

with respect to the mean and standard deviation in stationary RF.
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The unit weight is assumed to be constant and set as 20 kN/m3, as the COV is usually

small (Phoon and Kulhawy 1999). For the spatial autocorrelation distance, the major

autocorrelation distance is often observed to be much larger than the minor

autocorrelation distance. Meanwhile, the minor autocorrelation distance (i.e., vertical

autocorrelation distance in horizontally deposited soils) for undrained shear strength is

generally in the range of 0.1 – 6 m (Table 2.6). Therefore, in this study, θ1 varies as

{10 m, 15 m, 20 m, 25 m, 30 m}, while θ2 varies as {1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0

m, 3.5 m, 4.0 m}. The autocorrelation distances θ1 = 20 m and θ2 = 2 m are taken as

the base set. The deterministic slope stability analysis is implemented using the

Bishop method within Slope/W, with the input shear strength equal to the mean value

in the stationary RF (i.e., 60 kPa). The deterministic factor of safety is 1.211. For

probabilistic slope stability analysis, the non-intrusive RLEM is adopted, which was

presented in Section 3.2.1 above.

3.4 Results

3.4.1 Slope Reliability and Sliding Area

In this chapter, the reliability of the slope is expressed by the reliability index β, which

can be estimated using Eqs. (2.10) and (2.11). Since the undrained shear strength is
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the only parameter modeled as a random variable, and is assumed to be log-normally

distributed, Eq. (2.11) is adopted to determine β.

Figures 3.5 and 3.6 show the change of slope reliability by Eq. (2.11) with θ1 and θ2,

respectively. Three dip angles of strata are considered, where α = 0° [Figures. 3.5(a)

and 3.6(a)] represents a slope with horizontal bedding; α = 45° [Figures. 3.5(b) and

3.6(b)] represents a dip slope; and α = -45° [Figures. 3.5(c) and 3.6(c)] represents a

reverse slope. As can be observed from the figures, the slope reliability marginally

changes with major autocorrelation distance for all the slope scenarios, whereas it

changes more significantly with minor autocorrelation distance. The possible reason

for these observations is that generally a slip surface would pass through several soil

strata, and with higher minor autocorrelation distance, a continuous weak zone is

easier to be formed through various soil bedding planes. By contrast, a slip surface

seldom passes through only one soil bedding especially in the reverse slope and slope

with horizontal bedding. Although it is possible for the dip slope to display slip

surfaces mainly passing through a single bedding, the major autocorrelation distance

is large compared to the 2D slope dimension, and thus its influence on slope

reliability is relatively insignificant. According to Table 2.3, the expected performance

levels of the slope are significantly different under different RF models, as shown in

Figure 3.6 (thresholds for different expected performance levels are indicated by the

dashed lines). In addition, it can be noted that for each α the slope reliability under RF

Type 1 is higher than that for the stationary RF for all the slope scenarios. Li et al.
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(2014) found a similar phenomenon when investigating a slope with horizontally

deposited soils. For the dip slope (α = 45º), the reliability estimated for RF Type 1 is

higher than that for RF Type 2. Conversely, for the reverse slope (α = -45º), it can be

found that RF Type 2 would indicate higher slope reliability than that for RF Type 1.

That is, because in the dip slope with RF Type 2, the weak soil layers are close and

generally parallel to the slope face, meaning that a slip surface readily forms through

the weak zone. By contrast, in the reverse slope with RF Type 2, the strong soil layers

are close to the slope toe and the direction of the strata is generally perpendicular to

the slope face. That means a slip surface has to pass through several strong soil strata.

Figure 3.7 shows the change of slope reliability with the strata dip angle. Figure 3.8

shows the change in mean of the sliding area (i.e., area of the 2D sliding block) with

various dip angles of strata. Generally, in 2D slope stability analyses, the sliding area

can be used to represent sliding consequence (Li et al. 2016a), which is significant for

slope risk assessment. In this work, the major autocorrelation distance is 20 m, and

the minor autocorrelation distance is 2 m. As shown in Figure 3.7, considering various

dip angles of strata, slope reliability for the reverse slopes (i.e., α < 0º) with respect to

RF Type 2 is higher than that relevant RF Type 1, while for the dip slopes the

reliability for RF Type 1 is higher than that for RF Type 2 in most cases. Such an

observation echos the previous findings shown by Figures 3.5 and 3.6. Figure 3.7 also

shows that the reliability of the reverse slope is higher than that of the dip slope for

each RF scenario. In addition, it can be observed that both the slope reliability and
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sliding consequence estimated in RF Type 2 are sensitive to α (Figures 3.7 and 3.8).

For a dip slope under RF Type 2, the slip surface would mostly pass through the

bedding with the weakest soil strength, meaning that the change of the dip angle of

the strata would have a significant influence on the location of the slip surface.

Although the slip surface for a reverse slope would pass through several strata, the

location of the slip surface can also be significantly influenced by the dip angle under

RF Type 2, since the strata with different dip angles would indicate significantly

different weak paths of soil strength. As the failure mechanism can be significantly

influenced by the dip angle of strata under RF Type 2, the slope reliability and sliding

consequence would be sensitive to α. In this case, a slight change in the dip angle of

the strata can result in a significant change of slope reliability and sliding

consequence, indicating that an accurate estimation for the dip angle of the strata is

critical in this scenario. However, the accuracy in estimating the dip angle of the strata

is difficult to guarantee for several reasons. For example, when the dip angle of the

strata is obtained by geological survey, sometimes the dip angle of the exposed strata

may not be the real dip angle of the strata within the slope body. Site characterisation

techniques (Section 2.4) can be used to obtain the spatial autocorrelation structure of

soils with α, but limited sampling data from drilling boreholes may cause inaccurate

estimations. Therefore, when it comes to the soil scenario of RF Type 2, the data set

of soil samples needs to be large enough for an accurate estimation of the dip angle of

the strata using site characterisation techniques. From Figure 3.8, it can be found that

the mean sliding area of a stationary RF is larger than that for RF type 1. With respect
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to RF Type 1, soils are weaker in the upper part of slope, leading to slope failures that

tend to occur in the upper part. The mean sliding area for RF Type 2 is larger than that

for RF Type 1 when α < 0° (i.e., reverse slope) and smaller than that for RF Type 1

when α > 0° (i.e., dip slope). In a reverse slope with respect to RF Type 2, a slip

surface must pass through several bedding planes, which usually indicates a large area

of sliding mass. On the contrary, in a reverse slope for RF Type 1, weak soils tend to

occur in the upper part of the slope, which usually indicates a smaller scale of the

sliding mass. For a dip slope with respect to RF Type 2, a slip surface mainly passes

through single bedding close to the slope face. In this situation, the scale of the sliding

mass would be small. It is also interesting to observe that the critical rotational angles

related to the slope reliability are different under different soil scenarios (Figure 3.7).

When the undrained shear strength increases along the direction perpendicular to the

bedding, the critical angle of rotation is equal to the slope angle (45º).

3.4.2 Depth and Distribution of Slip Surface

The depth of slip surface hc is investigated using 1000 Monte Carlo simulations.

Figure 3.9 shows the histograms and probability distributions of hc, while Table 3.1

presents the percentage of hc within each depth range. The multiple slip surfaces

obtained by Monte Carlo simulations are presented in Figures 3.11, 3.12, and 3.13. As

shown in Figure 3.2, the critical failure surface obtained in the deterministic slope
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stability analysis goes deep and passes through the slope toe. However, it is likely that

shallow slope failure can occur on a single-layer slope under undrained conditions

considering a non-stationary random field, as the weak zone of the soil property could

exist in the upper part of slope. Also, rotated transverse anisotropy may lead to

shallow slope failures, since the location of the slip surface can be influenced by the

dip angle of the strata. For example, in a dip slope for RF Type 2, the slip surface may

mainly pass through a single weak soil bedding that is close to the slope face, and thus

a shallow slope failure occurs. In this section, the statistical characteristics of hc are

adopted to quantify the occurrence probability of a shallow failure in a single-layer

slope under undrained conditions.

For a stationary RF, the deep failure mechanism (i.e., hc ≥ 10 m) still mainly

dominates, as presented in Figure 3.9(a) and Table 3.1. However, for a non-stationary

RF, the probability of occurrence for a shallow failure increases, except for the reverse

slope (α = -45°) with RF Type 2. For the reverse slope, when RF Type 2 is considered,

the deep failure mechanism dominates [Figure 3.9(h) and Table 3.1]. On the contrary,

for the dip slope (α = 45°), considering RF Type 2 leads to a significant increase in

shallow failure [Figure 3.9(e) and Table 3.1]. Generally, the occurrence probability for

shallow failure with respect to RF Type 1 is higher than that in a stationary RF for

each slope scenario. On the other hand, for RF Type 2 and a stationary RF, it can be

observed that shallow failure is more likely to occur on dip slopes, while it is less

likely to occur on reverse slopes. Results of hc by deterministic slope stability analysis
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and probabilistic slope stability analysis considering stationary RFs cannot indicate

the significant occurrence of shallow slope failures. When considering the

non-stationarity of soils, the number of shallow slope failures would significantly

increase, especially in a dip slope involving RF Type 2.

Although, the occurrence probability of shallow slope failure in each RF scenario can

be obtained by analysing hc, the different types of shallow slip surfaces cannot be

observed by only quantifying the depth of slip surface, as shown in Figure 3.10. In

Figure 3.10, the three types of shallow slip surfaces have the same hc, but their

features are different and associated with different locations of entry and exit points

(Figure 3.2), which may indicate different formation mechanisms for shallow

landslides. Locating the potential slip surface of a slope is significant in risk

management, as the slip surfaces passing through the slope face and slope toe would

result in significantly different consequences (failure scales), as shown in Figure 3.10.

Soil samples from site investigation would be more useful around the location of the

potential slip surface. In this work, the entry and exit points of the slip surfaces

obtained by Monte Carlo simulations are investigated. Figures 3.11, 3.12 and 3.13

show the distributions of slip surfaces for the slope with horizontal bedding (α = 0º),

the dip slope (α = 45º) and the reverse slope (α = -45º), respectively. As shown in

Figures 3.11(a) and (b), when the soil bedding is horizontal, the exit points of the slip

surfaces are near the slope toe considering a stationary RF, while the exit points are

distributed more diffusely along the slope face under a non-stationary RF. For the
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entry points of the slip surfaces, there are more entry points close to the slope crest for

a non-stationary RF [Figure 3.11(b)] compared with those in a stationary RF [Figure

3.11(a)]. As shown in Figure 3.12, a number of slip surfaces passing through the slope

face can be observed for the dip slope, when soil strength increases with depth

vertically. By contrast, when undrained shear strength increases along the direction

perpendicular to the bedding in a dip slope, exit points of the slip surfaces would

concentrate around the slope toe. Generally, entry points of slip surfaces for the dip

slope are distributed diffusely on the slope crest under each soil scenario. For the

reverse slope (Figure 3.13), the exit points of slip surfaces are centralised at the slope

toe for a stationary RF [Figure 3.13(a)], while the entry points of slip surface tend to

recede from the slope crest. This observation is similar to that for RF Type 2 [Figure

3.13 (c)]. By contrast, there are more entry points close to the slope crest of RF type 1

in the reverse slope [Figure 3. 13 (b)].

The results of the distributions of slip surfaces show that, when the soil strength

increases with depth vertically, a number of slip surfaces passing through the slope

surface can be observed. However, when the soil strength increases in the

perpendicular direction to the soil strata in the dip slope, most of the slip surfaces still

pass through the slope toe. These results indicate the mechanisms of shallow slope

failures are different between slopes of RF Type 1 and the dip slopes of RF Type 2.

The shallow slip surfaces of RF Type 1 would pass through several soil layers with

the exit points generally located on the slope face, which is caused by the existence of
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weak soils at shallow depth. For the dip slope of RF Type 2, the shallow slip surfaces

mainly pass through a single layer close and parallel to the slope face with weak soil

strength, and the exit points are close to the slope toe.

3.5 Summary

In this chapter, the rotated transverse anisotropy is combined with a non-stationary

random field to investigate the reliability and failure pattern of a slope under

undrained conditions. Two scenarios of non-stationary RF are considered: (a) the

trend of the soil property increases with depth; and (b) the trend increases along the

direction perpendicular to the soil bedding. A stationary RF is also implemented to

simulate spatially variable soils. Performance of the different RF models using

probabilistic slope stability analyses is investigated. In addition, different slope

scenarios (i.e., slope with horizontal bedding, dip slope, and reverse slope) are

considered when estimating the slope reliability and sliding consequence, while the

failure mechanism is investigated by analysing the depth and distribution of the slip

surfaces. The main findings are summarised as follows:

(1) In slope reliability analysis, the expected performance levels of a slope are

significantly different under the different scenarios of RF. Generally, for each α,

considering RF Type 1 results in higher slope reliability than that considering a

stationary RF. For the dip slope, the reliability of a slope of RF Type 1 is higher than
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that for RF Type 2. Conversely, for the reverse slope the slope reliability for RF Type

1 is smaller than that for RF Type 2. In addition, it was found that under RF Type 2,

slope reliability and sliding consequence are sensitive to α. When it comes to a slope

with soil strength increasing in the direction perpendicular to bedding, the estimation

of the dip angle of the strata should be accurate enough for reliable assessments of

slope reliability and failure scale. However, the dip angle of the strata obtained from a

geological survey may not always be accurate enough, as the dip angle of the exposed

strata may not be the dip angle of the strata within the slope body. Site

characterisation techniques can be alternatives to obtain the dip angle of the strata, but

the accuracy of α obtained by these methods would be affected by limited sampling

data. Therefore, for an accurate estimation of the dip angle of the strata the sampling

size of the soil samples should be large enough when using site characterisation

techniques.

(2) Considering non-stationarity and anisotropic spatial variation of soils, the minor

autocorrelation distance is more influential to slope reliability than the major

autocorrelation distance in the various scenarios examined. In addition, the reverse

slope is found to have a higher reliability than the dip slope under the different RF

models treated.

(3) When considering RF Type 1, the percentage of shallow slope failures would

increase compared with that in a stationary RF. When RF Type 2 is considered in a



120

dip slope, the occurrence probability for shallow failure would be high. On the

contrary, the deep failure mechanism is dominant in the reverse slope of RF Type 2.

The results for the depth of slip surface show that, considering non-stationarity and

rotated transverse anisotropy, the number of shallow slope failures can also be

significant in a single-layer slope under undrained conditions. By contrast, the

potential slip surface of a single-layer slope under undrained conditions can only be

deep-seated in the traditional slope stability analysis.

(4) As indicated in the distributions of slip surfaces, a number of slip surfaces passing

through the slope surface can be observed of RF Type 1 for each slope scenario,

meaning that the reason for shallow failures in slopes under RF Type 1 is the

existence of weak soils in the upper section of the slopes. Meanwhile, most of the slip

surfaces pass through the slope toe in the dip slope of RF Type 2. This means the

reason for shallow failures in the dip slope of RF Type 2 is that the slip surface mainly

passes through a single weak soil layer close to the slope face.
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Table 3.1 Proportion of hc within each depth range with θ1 = 20 m and θ2 = 2 m.
α (°) RF type hc < 5 m 5 m ≤ hc < 10 m hc ≥ 10 m

0
Stationary RF 0 % 3.8% 96.2%

Non-stationary RF 0.8 % 42.4% 56.8%

45
Stationary RF 0 % 12.7% 87.3%

RF Type 1 1% 39% 60%
RF Type 2 10.1% 71% 18.9%

-45
Stationary RF 0% 0% 100%

RF Type 1 0.3% 29.2% 70.5%
RF Type 2 0% 0.6% 99.4%



122

 

 

20 40 60 80 100 120

(a)

 

 

30 60 90 120 150

(b)

Figure 3.1 Two orientations of the trend for mean shear strength with rotational
angle of soil bedding = 45° : (a) Type 1; (b) Type 2.
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Figure 3.2 Geometry of the slope model.
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Figure 3.3 Flowchart of non-intrusive RLEM.
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Figure 3.4 Typical realisations of random fields with α = 30°: (a) stationary RF; (b)
RF Type 1; (c) RF Type 2.
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Figure 3.5 Reliability index versus major autocorrelation distance by Eq. (2.11)
with θ2 = 2 m: (a) α = 0°; (b) α = 45°; (c) α = -45°.
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Figure 3.6 Reliability index versus minor autocorrelation distance by Eq. (2.11)
with θ1 = 20 m: (a) α = 0°; (b) α = 45°; (c) α = -45°.
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Figure 3.7 Reliability index versus rotational angle of soil bedding using Eq. (2.11).



129

-60 -40 -20 0 20 40 60
100

120

140

160

180

200

220

240

Angle of rotation (degree)

M
ea

n 
of

 sl
id

in
g 

ar
ea

 (m
2 )

 

 
Stationary RF
RF Type 1
RF Type 2

Figure 3.8 Mean of sliding area versus rotational angle of soil bedding.
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Figure 3.9 Histograms and probability distributions of hc: (a) stationary RF (α = 0°);
(b) non-stationary RF (α = 0°); (c) stationary RF (α = 45°); (d) RF Type 1 (α = 45°);

(e) RF Type 2 (α = 45°); (f) stationary RF (α = -45°); (g) RF Type 1 (α = -45°); (h) RF
Type 2 (α = -45°).
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Figure 3.10 Consequences (failure scales) caused by shallow slip surfaces passing
through slope face and slope toe, respectively.
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(a)

(b)

Figure 3.11 1000 slip surfaces within the slope in horizontally deposited soils (α =
0°): (a) stationary RF; (b) non-stationary RF.
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(a)

(b)

(c)

Figure 3.12 1000 slip surfaces within the dip slope (α = 45°): (a) stationary RF; (b)
RF Type 1; (c) RF Type 2.
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(b)

(c)

Figure 3.13 1000 slip surfaces within the reverse slope (α = -45°): (a) stationary RF;
(b) RF Type 1; (c) RF Type 2.
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CHAPTER 4 3D Probabilistic Slope Stability

Analyses with Rotated Transverse Anisotropy in Soil

Properties

4.1 Introduction

Chapter 3 investigated the influence of rotated transverse anisotropy and

non-stationarity of soils on slope reliability and the failure mechanism in 2D

probabilistic slope stability analyses, where various 2D scenarios of slope section

were considered, including slopes with horizontal bedding, reverse slopes and dip

slopes. When it comes to 3D slope models, slope scenarios can generally be divided

into four categories based on stratigraphic occurrence [i.e., strike direction, dip

direction and dip angle (Figure 4.1)]: (a) cross-dip slope (i.e., dip direction of strata is

perpendicular to that of the slope) [Figure 4.1(a)]; (b) dip slope (i.e., dip direction of

strata is the same as that of the slope) [Figure 4.1(b)]; (c) reverse-dip slope (i.e., dip

direction of strata is in the opposite direction to that of the slope) [Figure 4.1(c)]; and

(d) slope with horizontal bedding. In engineering practice, cross-dip and reverse-dip

slopes are often considered as favorable scenarios for slope safety, whereas the dip

slope usually constitutes adverse conditions. Despite the previous investigations

involving 2D probabilistic slope stability analyses, the influence of 3D rotated

transverse anisotropy on slope reliability has not yet been investigated or reported in
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detail.

Horizontal transverse anisotropy (i.e., where soils display a horizontally deposited

fabric pattern) has been considered in 3D probabilistic slope stability analyses in a

number of studies (e.g., Hicks and Spencer 2010; Hicks et al. 2014; Hicks and Li

2018; and Varkey et al. 2019). In general, three failure modes can be observed,

depending on the ratio of the horizontal autocorrelation distance [i.e., major

autocorrelation distance (θ1)] to the slope length (L) and slope height (H): (a) when

the ratio is small, e.g., θ1 < H as suggested by Hicks and Spencer (2010), the result of

3D probabilistic slope stability analysis is similar to conventional 2D deterministic

analysis, and this is referred to failure mode 1; (b) when the ratio falls within an

intermediate range of H < θ1 < L/2, discrete failure zones can be observed along the

slope length, and this is known as failure mode 2; (c) when the ratio is large enough,

e.g., θ1 > L/2, the soil properties are similar among different locations along the

horizontal direction, and this leads to failure mode 3, where the 3D probabilistic slope

stability analyses tend to produce similar results to the 2D counterparts under plane

strain conditions. However, the 3D slope scenarios shown in Figure 4.1 cannot be

considered by assuming horizontally deposited soil strata, which are influential to

slope reliability. In addition, the findings regarding the three failure modes in 3D

probabilistic slope stability analyses may be different when considering rotated

transverse anisotropy, since the soil bedding planes are no longer in the horizontal

orientation.
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This chapter considers three categories of 3D rotated transverse anisotropy: (1) where

the strike direction of the strata is perpendicular to the out-of-plane direction of the

slope [“rotated anisotropy around the x axis” as shown in Figure 4.1(a)]; (2) where the

strike direction of strata is along the out-of-plane direction of the slope [“rotated

anisotropy around the y axis” as shown in Figures 4.1(b) and (c)]; and (3) “rotated

anisotropy around the z axis” as shown in Figure 4.1(d). Also, slopes with horizontal

bedding are investigated. Compared to categories (1) and (2), category (3) may be less

common, but can be found in saprolitic soils which originates from preferential

weathering of rocks (Liu and Leung 2018). In this chapter, 3D slope stability analyses

are conducted considering the soil idealised as a Tresca material. Effects of soil

variability are investigated using the 3D random finite element method which

combines the finite element method with random field modelling under a Monte Carlo

framework.

4.2 Methodology

4.2.1 3D Random Finite Element Method

As discussed in Section 2.3.4, soil spatial variability can be considered in probabilistic

slope stability analyses by RFEM, RFDM and RLEM. However, there are few studies

using 3D RLEM in the literature. That is possibly because limited mature 3D LEM
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procedures can be used for coupling with random fields. By contrast, some

commercial procedures using 3D SRM (e.g., ABAQUS and FLAC3D) can be adopted

to couple with random fields. In this chapter, 3D RFEM is adopted to conduct

probabilistic slope stability analyses using the commercial finite element software (i.e.

ABAQUS). In ABAQUS, the slope stability model can be constructed and then output

as a “.inp” file. The “.inp” file contains information regarding the finite element mesh,

slope geometry, boundary conditions, and material properties. The random fields can

be assigned the elements of the finite element mesh, through processing and

generating the “.inp” files in batches. The implementation procedure of RFEM is

show by a flowchart in Figure 4.2.

4.2.2 Soil Spatial Variability Considering 3D Rotated

Transverse Anisotropy

In this chapter, spatially variable soils are simulated using the Cholesky

decomposition method, where the autocorrelation function considering 3D rotated

transverse anisotropy can be directly incorporated into random field generation. The

mid-point method is considered for random field discretisation, where the mid-point

coordinates are used to evaluate representative properties for the element. Under

rotated transverse anisotropy, the autocorrelation structure can be derived through

rotation of the coordinate system (Zhu and Zhang 2013; Liu and Leung 2018). For
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instance, for rotated anisotropy around the x axis, the autocorrelation function is

expressed as:
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For rotated anisotropy around the y axis, the autocorrelation function is given by:
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For rotated anisotropy around the z axis, the autocorrelation function is given by:
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Some typical realisations of random fields of the rotated transverse anisotropy around

the x and y axes are shown in Figures 4.3 and 4.4, respectively.

4.3 Case Description

Figure 4.5(a) shows a cross-section of the 3D slope model. The slope has a height of

5 m and a slope angle of 45°. The base case involves slope length of 60 m, while

various other slope lengths are also considered later. As shown in Figure 4.5(b), the

finite element mesh with slope length of 60 m contains 9,300 elements, and each

element size is 0.5 m × 0.5 m × 1 m (y - direction). Griffiths and Marquez (2007)
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suggested that a finer mesh would always result in a smaller FS in 3D finite element

analysis of slopes, but the difference is slight. Meanwhile, for random field generation,

a smaller element size would lead to a more realistic simulation of spatially variable

soils. Huang and Griffiths (2015) recommended that the element size in RFEM should

be less than half of the spatial autocorrelation distance using the element-level

averaging method. However, they also pointed out that only a 2D random field of

undrained shear strength (su) was simulated in their research, and the

recommendations on element size could be different in more general cases (e.g., 3D

model). Besides, their study only considered an isotropic random field. In contrast,

Ching and Phoon (2013) considered both isotropic and anisotropic random fields to

investigate the influence of element size on the mobilised shear strength, which is

defined by the yield stress recorded before FEM fails to converge. They found that

when discretising the random field with a single exponential autocorrelation structure,

the element size should be smaller than 0.05θ2 to avoid excessive spatial averaging in

the element-level averaging method, and a similar element size requirement also

applied for the mid-point method. Since θ2 is usually small in practice, this

requirement would be computationally demanding for RFEM, especially for 3D

problems where the requirement may not be realistic. Although the element size

adopted in this study is larger than 0.05θ2, Ching and Phoon (2013) described that in

such cases, the mid-point method leads to conservative estimates of the mobilised

shear strength than reality when assigning shear strengths to elements, while the

element-level averaging method would produce unconservative estimates. Therefore,
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the mid-point method is suggested for engineering practice.

In the RFEM analyses, the base of the model is fully fixed, and the back face is

prevented to move in the x - direction through roller boundaries (Figure 4.5). For the

two end sections along the y - direction, three kinds of boundary conditions are

usually adopted (Chugh 2003; Shen and Karakus 2014), which are discussed in

Section 2.2.5. Hicks and Spencer (2010) discussed that when smooth boundaries are

adopted, the two end conditions would tend to exaggerate the failure zones over a

suite of Monte Carlo simulations, and biases would occur in these areas. Therefore,

they adopted the boundary condition with movements fixed in the x and y directions.

This boundary condition is also adopted in this chapter.

In this chapter, the soil is modeled as an elastic-perfectly plastic Tresca material. The

undrained shear strength su is characterized statistically by a log-normal distribution

with the mean and coefficient of variation being 19 kPa and 0.3, respectively. The unit

weight, Young’s modulus (E) and Poisson’s ratio (ν) are 20 kN/m3, 100 MPa and 0.3,

respectively. For slope stability analysis under undrained conditions, ν = 0.5 is more

appropriate for total stress analysis. This study considers a combination of E = 100

MPa and ν = 0.3, as this was used in many previous studies of probabilistic slope

stability analyses (Hicks and Spencer 2010; Hicks et al. 2014; Xiao et al. 2016; Hicks

and Li 2018). Indeed, E and v have little influences on the FS results by finite element
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analysis with the strength reduction method (Griffiths and Lane 1999; Griffiths and

Marquez 2007). For comparison, simulations of a 60 m long slope (θ1 = 12 m) are

performed using E = 20 MPa and ν = 0.495, and the results for the standard deviation

of FS are almost identical to the corresponding cases with E = 100 MPa and ν = 0.3,

as shown in Figure 4.6. In addition, the results of mean FS under the two settings (i.e.,

E = 20 MPa; ν = 0.495, and E = 100 MPa; ν = 0.3) are very close (not shown). In this

study, the minor autocorrelation distance is fixed to 1 m, while the major

autocorrelation distance varies from {2 m, 12 m, 24 m, 60 m}. The dip angle of the

strata varies from {-30°, -60°, 0°, 30°, 60°, 90°}, where the negative values represent

a clockwise rotation, while the positive rotational angle represents an anticlockwise

rotation. For each parametric setting (i.e., α, θ1, and L), 500 realisations are generated

by the Monte Carlo approach with the Latin hyper-cube sampling technique.

Generally, 500 Monte Carlo simulations are sufficient for determining the statistical

characteristics of FS (i.e., mean and standard deviation of FS) (Tabarroki et al. 2013;

Li et al. 2016b; Liu et al. 2017b), but when determining Pf, more simulations are

usually needed.

Deterministic slope stability analysis is first conducted as a benchmark using SRM.

For the definition of slope failure in SRM, there are mainly three criteria (Cheng and

Lau 2008), which were discussed previously in Section 2.2.3. In the current work,

under the Monte Carlo framework, option (3) (i.e., formation of a continuous plastic

zone) is not applicable, since the plastic strain contour of each simulation needs to be
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checked manually. For option (1) (i.e., a sudden increase in the nodal displacement),

the nodal displacement should be obtained from some feature points, but it is difficult

to select those points especially in a 3D slope problem. Therefore, option (2) (i.e.,

non-convergence of the finite element solution) is adopted in this study. More details

about the non-convergence option is given by Griffiths and Lane (1999). A

deterministic slope stability analysis is first conducted as a benchmark, using the

strength reduction method with the non-convergence criteria. The undrained shear

strength is set to be the mean value (i.e. su = 19 kPa), and the deterministic FS is 1.214

for the 2D model and 1.244 for the 3D model. It is deemed to be reasonable that the

FS by 3D analysis is slightly larger than that by 2D analysis, due to the additional

constraints imposed by the boundary conditions in the 3D model.

4.4 Results

4.4.1 Statistical Characteristics of FS

Figures 4.6 and 4.7 show the standard deviation and mean of FS for various scenarios

of strata rotation, respectively. Considering the rotation around the x and z axes, the

statistical characteristics of FS tend to be symmetrical about α = 0°. This is expected,

as the same angles with opposite directions of rotation would lead to scenarios that are

mirror images of each other, around the plane parallel to the slope cross-section
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[Figures 4.8(a) and (b)]. Besides, Figures 4.7(a) and (c) show that the mean of FS

decreases with larger major autocorrelation distances, for rotated anisotropies around

the x and z axes (except with α = 90º around the z axis, which is equivalent to α = 90º

around the y axis, and α = 0º around the x axis, which indicates horizontal transverse

anisotropy). This phenomenon can be explained by the influence of θ1 on the failure

mechanism, which will be discussed in later sections.

For rotated anisotropy around the y axis, a maximum value of standard deviation

(Figure 4.6) and a minimum value of the mean FS [Figure 4.7(b)] can be observed for

all θ1 when the rotational angle is 30°. This indicates that the critical angle of rotation

would be around 30o, considering the slope angle of 45o in this study. In contrast, the

negative angles of rotation would lead to smaller standard deviations and higher mean

FS, which correspond to a lower risk level. For dip slopes with positive angles of

rotation around the y axis, failure through a weak zone occurs more easily (compared

to cross-dip or reverse-dip slope) since it would pass through fewer bedding planes, or

mainly one bedding plane in some cases. Therefore, a dip slope generally constitutes

to an adverse condition for slope stability. This is also consistent with the observations

from 2D probabilistic slope stability analyses reported in Chapter 3 and Zhu et al.

(2019).

When θh = 1.5 m and 2 m, the means and standard deviations of FS show small

differences at various rotational angles and among the three scenarios of rotated
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transverse anisotropy. With a small value of θh, a continuous weak zone is more

difficult to develop, and the potential failure surface would pass through both weak

and strong zones alike. Therefore, there would be significant averaging effects on the

soil property over the large 3D failure surface, and the average su over the failure

surface would be close to the mean value over the entire soil mass (i.e., 19 kPa in this

study). Consequently, there are smaller dispersions of FS estimates, with the 3D

probabilistic results approaching those of the deterministic analyses. In addition,

when the value of θh approaches θv (i.e., 1 m), the spatially variability pattern

becomes similar to the isotropic pattern, and this is also reflected in the trends of the

statistics of FS as θh decreases (Figures 4.6 and 4.7). This explains why the different

scenarios of rotated transverse anisotropy lead to similar results at small values of θh.

Figure 4.7 shows that the means of FS for small θh values (i.e., θh = 1 m, 1.5 m and 2

m) are slightly below the FS from 3D deterministic analyses, with the differences

generally less than 4%. Despite the averaging of su over the failure surface, the sliding

mass would still pass through the weakest path in each realization of the probabilistic

analyses, leading to lower FS values than the deterministic estimates. Similar

phenomena are also observed in various probabilistic assessments of geotechnical

systems (e.g., Cho 2010; Kasama and Whittle 2011; Xiao et al. 2016).
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4.4.2 Reliability Index

This section investigates the influences of major autocorrelation distance and the

length of the slope model on the results of reliability assessments, through the

reliability index (β). The 3D results are also compared with those by 2D probability

analyses, to shed insights on the potential limitations of plane strain assumptions. As

the only random variable (i.e., su) is assumed to be log-normally distributed, the

reliability index is calculated by Eq. (2.11).

Effects of major autocorrelation distance

Figure 4.9 (a) shows the reliability index versus various rotational angles when θ1 = 2

m, and the values of β are found to be very high (β > 6) in the 3D analyses for all

scenarios of rotated transverse anisotropy. When β > 5, the corresponding probability

of failure is smaller than 3 × 10-7, and the expected performance level of a structure

can be defined as “High” (Table 2.3). This is consistent with the previous discussions

that 3D probabilistic slope stability analyses would resemble deterministic analyses

when θ1 and θ2 are small enough, and with the deterministic FS exceeding 1.2, there is

a very small chance of slope failure. In contrast, the β values estimated by 2D

probabilistic slope stability analyses are much smaller. For both 2D and 3D slope

model geometries, failure through a weak zone is difficult to develop when spatial

autocorrelation distances are small, as the soil properties vary rapidly among adjacent
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elements. Such averaging effects are more pronounced within the failure surface of a

3D slope geometry, compared to that of the corresponding 2D cross-section, since the

3D rupture surface involves a much larger area (arising from the additional dimension)

than the 2D slip line. Hence, when θ1 is small, the response of 3D probabilistic slope

stability analysis is similar to that by deterministic analysis.

Figures 4.9(b), (c) and (d) show that, when θ1 ≥ 12 m and considering rotated

anisotropy around the x and z axes, two slopes yield similar β values when the same

degrees of strata rotation are involved with opposite rotational directions (i.e.,

symmetrical about α = 0). For rotated anisotropy around the y axis, the results of β, by

3D probabilistic slope stability analyses, approach those of the corresponding 2D

probabilistic analysis results when θ1 is large. This is because when θ1 is large, the soil

strata would appear as a continuous layer. Considering rotated anisotropy around the y

axis, slope failures tend to occur along the entire slope length (y - direction) through

weak layers, and therefore become similar to those by 2D probabilistic slope stability

analyses (Hicks and Spencer 2010) (i.e., failure mode 3). In contrast, considering

rotated anisotropy around the x and z axes, the β values estimated by 3D probabilistic

slope stability analyses are significantly larger than those by 2D slope analyses,

showing no tendency to approach the 2D results, even with large θ1 values.

In practice, and as mentioned above, the cross-dip slope [Figure 4.1(a)] and

reverse-dip slope [Figure 4.1(c)] are generally favorable scenarios in slope stability
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assessment, while the dip slope [Figure 4.1(b)] constitutes an adverse condition.

Figure 4.10 also shows that the reliability indices for dip slopes are smaller than those

in reverse-dip and cross-dip slopes. Meanwhile, it can be seen from Figure 4.9 that

when θ1 ≥ 12 m, for a given α the reliability of a cross-dip slope is higher than the dip

and reverse-dip slopes. Also, for most of the cases shown in Figure 4.10, for a given

θ1, cross-dip slopes generally have higher reliability than reverse-dip slopes.

Effects of slope length

In 3D probabilistic slope stability analysis considering isotropy and horizontal

transverse anisotropy in soil spatial variability, slope reliability was found to be

sensitive to the length of slope model (in the y - direction). Generally, the increase of

slope length would lead to a reduction in slope reliability, due to the diminished

constraining effects from the boundaries and the increased probability of occurrence

of a critical weak zone (Griffiths et al. 2009a; Hicks and Spencer 2010). In this

chapter, various slope lengths are considered with θ1 = 24 m, as shown in Figures

4.11(a) and (b). According to Figure 4.11(a), with horizontal soil strata (i.e. α = 0°)

and rotated anisotropy around the y axis, the reliability index decreases as the slope

length increases, and β values from 3D analyses would eventually fall below the

results from 2D analyses. In contrast, β values estimated by 3D analysis under rotated

anisotropy around the x axis are much larger than those by 2D analysis even when the

slope length is large, and the change of β with various slope lengths is more modest.
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4.4.3 Mean of Slide Length

Figure 4.12 illustrates the definition of the length of the sliding mass (or slide length),

while its mean value can be obtained over a suite of Monte Carlo simulations. In this

study, a slide length in each realization is obtained by the total number of elements

along the y - direction, located in the row immediately above the slope toe, that have

an average nodal x - displacement exceeding a threshold value. To determine this

threshold value, an approach conceptually similar to that by Hicks et al. (2014) is

adopted. A 3D slope model is first constructed with homogeneous soil properties (su =

19 kPa), and the cross-section at mid-length (L/2) is considered in the 3D analyses.

Making use of the displacement response at this mid-length cross-section, a

relationship (Figure 4.13) can be established between a certain displacement δ0

(expressed as percentage of the maximum nodal x-displacement) and the number of

elements (or percentage of elements in the cross-section) with average x-displacement

exceeding δ0.

Meanwhile, the volume of the sliding mass in this cross-section can be defined as the

volume (or area in 2D) of soil above the slip surface. Herein, the slip surface is

determined by a polynomial curve fitting the points of maximum plastic strain in each

column of the strain contour. In this case, as shown in Figure 4.14, the volume of the
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sliding mass is estimated to be 58.9% of the entire mesh volume. According to Figure

4.13, this volume corresponds to the value of δ0 which is 32% of the maximum

displacement in the model. This δ0 value is then treated as the threshold when

determining the length of the sliding mass.

The mean slide lengths estimated by this approach are compared against previous

studies by Li et al. (2015b) for horizontally deposited soils, as shown in Table 4.1.

Apart from the homogeneous benchmark model, additional simulations are performed

with spatially variable soils of different α values. For these cases, 2D slope models are

adopted since the cross-sections of the 3D models at mid-length may not always

provide representative information of the slip surface due to the spatially variable and

uncertain nature of the soil properties. Using these 2D models of different α values, it

is found that the thresholds for various cases are within the range of 31% - 34% of the

maximum nodal displacement. This means that in general, adopting the calibrated

threshold value (32%) would not affect the trends of slide length variations under

different α.

Under horizontal transverse anisotropy, Hicks et al. (2014) proposed that when θ1 is

large relative to slope height H, the mean of slide length is positively correlated to θ1.

This is because in this case, a sliding mass is attracted to a pocket of weak soils, and a

large value of θ1 usually indicates a larger extent of a weak zone (Griffiths et al.

2009a). In this study, the mean estimates of slide length and influences of θ1 and �
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are investigated under rotated transverse anisotropy.

Figures 4.15(a), (b), and (c) show the mean estimates of slide length with various

rotational angles under rotated anisotropy around the x, y, and z axes, respectively.

Similar to previous results of reliability indices, under rotated anisotropy around the x

and z axes, the mean of the slide length is similar between two slopes having the same

degrees of strata rotation but in opposite rotational directions. Considering rotated

anisotropy around the y axis, the rotation of strata (i.e., α ≠ 0°) can result in larger

mean values for the slide length. Figure 4.15 also shows the changes in slide lengths

with different major autocorrelation distances. It can be seen from Figure 4.15(b) that

under rotated anisotropy around the y axis, when θ1 ≥ 12 m (i.e., failure modes 2 and

3), the mean of slide length increases with larger major autocorrelation distance,

which is consistent with the above-mentioned observations for a horizontal fabric

pattern. A similar pattern is also observed with α = 0º around the x axis in Figure

4.15(a) and α = 90º around the z axis in Figure 4.15(c). In these cases, the soil

variations along the y - direction are controlled by θ1, and a larger value of θ1 leads to

a longer mean slide length. On the contrary, when considering other cases of rotated

anisotropy around the x and z axes [Figures 4.15(a) and (c)], an increase in major

autocorrelation distance would lead to smaller mean estimates of slide length. In these

cases, soil variability along the y - direction is controlled by θ2. As θ2 is usually too

small for a continuous weak zone to develop along the direction of slide length, the

formation of a potential sliding mass would be mainly controlled by the cumulative
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effects of a weak paths from all the cross-sections within the sliding mass. In this case,

a larger major autocorrelation distance would usually result in easier formation of

weak path for each cross-section, and hence fewer cross-sections may be involved to

form a sliding mass. Consequently, for cases of strata rotation around the x and z axes,

the mean value of the slide length usually decreases modestly as θ1 increases.

Moreover, as the formation of a rupture surface is generally easier with larger θ1, the

reliability of the slope tends to decrease, manifested as lower mean estimates of FS

shown in Figures 4.7(a) and (c).

4.5 Discussion

In engineering practice, the safety of a slope is usually estimated by 2D slope stability

analysis. The main reason is that the estimated results of slope safety by the 2D

method would usually be conservative. Therefore, when the difference between the

2D and 3D estimates of FS is not large, the 2D slope stability analysis method can be

adopted. Otherwise, the use of the 2D method is undesirable due to the economic

losses, when FS is significantly underestimated. The results in this chapter reveal that,

when the major autocorrelation distance is very small (i.e., failure mode 1) or the 3D

slope model is a cross-dip slope (Figure 4.9), the 2D probabilistic slope stability

analyses would significantly underestimate the slope reliability. By contrast, when one

considers reverse and dip slopes, and slopes with horizontal bedding, 2D probabilistic

slope stability analyses would result in similar estimations of slope reliability to those
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by the 3D method with large autocorrelation distances.

Furthermore, reverse-dip and cross-dip slopes are usually regarded as favourable

scenarios for road construction and alignment. In this chapter, considering soil spatial

variability, a cross-dip slope is found to be a more favourable scenario regarding slope

reliability than a reverse-dip slope. Meanwhile, a slope with horizontally deposited

soils is observed to be a more adverse scenario than a cross-dip slope and a

reverse-dip slope (Figure 4.10). Therefore, the cross-dip slope would be a better

scenario, when constructing roads and selecting road routes. These conclusions can

assist engineers make primary decisions when assessing slope stability and

performing engineering designs.

4.6 Summary

Previous probabilistic slope stability analyses considering rotated transverse

anisotropy of soils only focused on 2D problems. Meanwhile, the influence of soil

variability on 3D slope reliability evaluation has only been investigated for soils that

display isotropic spatial variability features or anisotropic horizontal fabric patterns.

However, the plane-strain condition or horizontal transverse anisotropy are extreme

cases of a whole spectrum of slope problems. In this chapter, 3D rotated transverse

anisotropy is considered to constitute to a more comprehensive perspective of slope
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reliability, considering various possible scenarios of spatially variable soils. Herein,

three categories of 3D rotated transverse anisotropy are considered (i.e., rotated

anisotropy around the x, y and z axes, respectively) together with three slope scenarios

(i.e., dip, reverse-dip and cross-dip slopes). It was found that the rotated transverse

anisotropy is an important factor that can affect the 3D slope reliability evaluation in

spatially variable soils. More specific conclusions can be made in the following:

(1) When the major autocorrelation distance (θ1) is small compared to the slope

dimensions, the potential slip surface would pass through weak and strong elements

and it is more difficult for a continuous weak zone to emerge. Consequently, the soil

properties, when averaged over a large rupture surface, would approach their mean

value. Meanwhile, the spatial variability pattern also approaches the isotropic pattern,

and hence the effects of rotated transverse anisotropy are mitigated.

(2) As θ1 increases, a continuous, or semi-continuous, weak zone of soils can form

within a slope. For rotated anisotropy around the x and z axes, the reliability indices of

two slopes are similar if their soil strata are rotated to the same angles but in opposite

directions. The slope reliability revealed by 3D analyses shows no tendency to

approach that of the 2D analyses. Besides, under these scenarios, when the major

autocorrelation distance increases, the mean value of the slide length would slightly

decrease. These findings differ from those for horizontal transverse anisotropy

reported in previous studies.
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(3) For rotated anisotropy around the y axis, the slope reliability by 3D analyses tends

to be similar to that of 2D analyses with large values of θ1. The mean slide length in

this case would increase with the major autocorrelation distance. These observations

are similar to previous studies considering horizontal transverse anisotropy. In

addition, at this situation, when the dip angle of the strata increases, the mean slide

length would be increased.

(4) Considering rotated anisotropy around the x axis, the changes in the slope

reliability are relatively insensitive to the length of the slope in the out-of-plane

direction. Conversely, the reliability of a slope would reduce significantly with slope

length, when soils display a horizontally deposited fabric pattern or with pronounced

rotated anisotropy around the y axis.

(5) Cross-dip and reverse-dip slopes are usually regarded as favorable features for

slope stability. In this chapter, it is found that in general, cross-dip slopes could be

more favorable scenarios for slope reliability, when spatial variability of soil

properties in various directions are considered.
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Table 4.1 Comparison of mean slide lengths of slopes in horizontally deposited
soils under undrained conditions with θ2 = 1 m.

θ1

(m)

Current study

of a 60 m slope

(% of total slope length)

Li et al. (2015b)

of a 50 m slope

(% of total slope length)

2 60.84 Around 60

12 38.97 Around 38

24 41.7 Around 40
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(a)

(b)

(c)

(d)

Figure 4.1 (a) Strata rotating around the x axis (cross-dip slope); (b) strata rotating
around the y axis (dip slope); (c) strata rotating around the y axis (reverse-dip slope);

(d) strata rotating around the z axis.
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Coupling random fields with slope stability
model through processing and generating a

number of “.inp” files

Compute each of “.inp” file, and obtain a number
of “.odb” files

Output FS from all the “.odb” files

Compute statistical characteristics of FS

Stop

Construct slope stability
model using ABAQUS and

output it as a “.inp” file

Generate the random fields
using MATLAB

Figure 4.2 Flowchart of non-intrusive 3D RFEM using ABAQUS.
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Figure 4.3 Typical realisations of random fields of undrained shear strength under
rotation around the x axis: (a) α = 30°; (b) α = 90°.
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Figure 4.4 Typical realisations of random fields of undrained shear strength under
rotation around the y axis: (a) α = 45°; (b) α = 90°.
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(a)

(b)

Figure 4.5 Slope geometry and finite element mesh: (a) cross-section through mesh;
(b) finite element mesh for a 3D slope model.
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Figure 4.6 Standard deviation of FS versus angle of rotation.
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Figure 4.7 Mean of FS versus angle of rotation under: (a) rotated anisotropy around
the x axis; (b) rotated anisotropy around the y axis; (c) rotated anisotropy around the z

axis.
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(a)

(b)

Figure 4.8 (a) Two slopes under rotated anisotropy around the x axis with the same
degrees of rotation and opposite rotational directions; (b) two slopes under rotated

anisotropy around the z axis with the same degrees of rotation and opposite rotational
directions.
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Figure 4.9 Reliability index versus angle of rotation: (a) θ1 = 2 m; (b) θ1 = 12 m; (c)
θ1 = 24 m; (d) θ1 = 60 m.
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Figure 4.10 Reliability index β versus major autocorrelation distance.
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Figure 4.11 Reliability index β with θ1 = 24 m versus: (a) slope length; (b) angle of
rotation.
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Figure 4.12 Slide length of a slope.
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Figure 4.13 Relationship between displacement δ0 and the volume of soil mass with
displacements exceeding δ0.

Figure 4.14 Slip surface and plastic strain contour (darker parts indicate higher
shear strain).
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Figure 4.15 Mean of slide length versus angle of rotation considering the threshold
of 32 % of the maximum computed displacement: (a) rotated anisotropy around the x
axis; (b) rotated anisotropy around the y axis; (c) rotated anisotropy around the z axis.
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CHAPTER 5 Sampling Effects in 2D Probabilistic

Slope Stability Analyses

5.1 Introduction

The previous chapters investigated the slope reliability using unconditional random

fields. In engineering practice, sampling points with known soil properties are usually

obtained in geotechnical site investigations. The use of unconditional random fields

cannot consider those known points in slope reliability analysis. To incorporate the

sampling effects in geotechnical reliability analyses, conditional random field can be

adopted (Lloret-Cabot et al. 2014; Li et al. 2016b; Liu et al. 2017b, etc.). In these

studies, the conditional random field model reported by Frimpong and Achireko (1998)

was adopted [i.e., Eq. (2.32)], where ordinary Kriging is employed and the prediction

error at each spatial point is simulated by Monte Carlo simulation (i.e., conditional RF

model 1). The effects of sampling strategy on the variance of system response can be

quantified by the magnitude of uncertainty reduction, σcond(FS) / σuncond(FS), where a

smaller value of σcond(FS) / σuncond(FS) indicates a higher magnitude of uncertainty

reduction. However, Liu et al. (2017b) found that when using the conditional RF

model 1, the standard deviation of FS after conditioning, σcond(FS), may be estimated

to be higher than that obtained by the unconditional random field simulation method,

σuncond(FS). Such an issue may occur when the sampling points are quite sparse with
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small spatial autocorrelation distances. Liu et al. (2017b) did not systematically study

the issue of σcond(FS) > σuncond(FS) by conditional RF model 1, and the reason for this

problem was not discussed in detail. Moreover, Liu et al. (2017b) only considered

horizontally deposited soils with a separated single exponential function. It is

worthwhile to investigate the sampling effects and the problem of σcond(FS) >

σuncond(FS) associated with other patterns of soil spatial variability.

Lo and Leung (2017) proposed a conditional random field model that is based on

covariance matrix decomposition technique, where the spatial autocorrelation matrix

after conditioning is considered (i.e., conditional RF Model 2) [Eqs. (2.36) and (2.37)].

Both conditional random field simulation methods can be used to quantify the

uncertainty reduction of system response after conditioning for a given sampling

pattern. However, as discussed in Section 2.7.3, when determining the sampling

pattern with the maximum magnitude of uncertainty reduction (i.e., optimal sampling

pattern), the computational effort would be extensive by conditional random field

simulation methods. In order to determine the optimal sampling pattern in an efficient

way, Lo and Leung (2018) proposed a method based on the Sobol sensitivity index,

which can consider spatially correlated random variables. Using the extended Sobol

index formulation, the Sobol index for each sampling pattern can be obtained, where a

higher Sobol index indicates higher sampling efficiency. The optimal sampling pattern

can then be defined as sampling pattern with the maximum Sobol index value.
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In this chapter, the methods mentioned in the previous paragraphs (i.e., conditional

RF models 1 and 2, Sobol index method) are adopted in 2D probabilistic slope

stability analyses. The random limit equilibrium method associated with the Bishop

method is used under the Monte Carlo framework, due to the low computational cost

and acceptable accuracy in probabilistic slope stability analysis, as discussed in

Section 2.3.4. A slope under undrained conditions is considered, together with various

sampling strategies and spatial correlations in soil properties. Also, rotated transverse

anisotropy in the soil properties is considered associated with various rotational

angles of the strata. Based on the comparison of the results, the merits and limitations

of each method are discussed.

5.2 Methodology

5.2.1 Conditional Random Field Modelling and Stationarity

Assumptions

The conditional RF model 1 by Frimpong and Achireko (1998) is based on Kriging

interpolation. For the Kriging interpolation method, stationarity is an essential

precondition. Meanwhile, in the conditional RF model 2, the use of Eqs. (2.36) and

(2.37) should also be based on stationarity assumptions. That means the original

formulations for conditional RF models 1 and 2 can only be adopted to simulate the
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random field based on a normal distribution. However, if a normal distribution is

considered in simulating soil properties, meaninglessly negative values can be

obtained. In order to simulate a log-normal random by the conditional RF model 1,

where negative values are not possible, a simple transformation can be made as

follows:

 logkslogurlogkmlogcr z-zzz  (5.1)

 logcrcr exp zz  (5.2)

In Eq. (5.1), logcrz is the conditional random field under log-transformation; logurz

is the logarithm of the unconditional random field, while logkmz and logksz are the

Kriging fields based on the logarithm of the measured values and the Kriging field

based on the simulated values of logurz at the sampling locations, respectively. The

implementation of Eq. (5.1) indicates the random field is first generated using a

logarithmic transformation, which can then be back-transformed to the original space

through exponential transformation by Eq. (5.2). Similar to the conditional RF model

1, the conditional RF model 2 is also generated first under the log-transformation,

where the soil properties at the sampling locations are transformed to the logarithmic

form and the variance under log-transformation is considered. After that, the random

fields in the log-space are also transformed to the original space through exponential

transformation [Eq. (5.2)].

5.2.2 Polynomial Chaos Expansion

In this chapter, the model response incorporated in the Sobol index method is
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constructed by the response surface method, where the 2nd order PCE function [Eq.

(2.17)] is adopted. The PCE function is used to approximate the complex

deterministic model representing the relation between FS and spatially variable soil

properties (i.e., spatially correlated random variables of a random field). As the

number of spatially correlated random variables for a random field is usually large, if

all the random variables are incorporated, the required number of training samples for

determining the PCE coefficients would significantly increase. That would indicate

the significant increase in the number of calls of the slope stability analysis. As

proposed by Lo and Leung (2017), considering the significant terms in PCE can lead

to sufficient accuracy for predicting model response. In this chapter, only the elements

corresponding to the first M terms in the diagonal matrix Λd. [Eq. (2.40)] are

considered, which is determined by (Lo and Leung 2017):

dp
M

i
i

M
 

1

min (5.3)

where νp is the preserved percentage of total variance; and λi is the ith eigenvalue in

the diagonal matrix Λd. [Eq. (2.40)]. In this chapter, νp > 90 % is considered. The 2nd

order PCE coefficient vector a can be obtained by regression analysis as follows:

ηa T1T )( ΘΘΘ  (5.4)

where Θ is a matrix containing polynomials constructed by ξ [Eqs. (2.17) and (2.41)],

corresponding to NT random field realisations. In this chapter, η is a vector containing

NT values of FS by slope stability analysis under Monte Carlo simulation, and NT

should result in the coefficient of determination Q2 > 0.95. The Q2 is based on

leave-one-out cross validation, which can indicate better prediction capability of PCE
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than the traditional R2 in linear regression (Blatman and Sudret 2010).

5.2.3 Sobol Index Method

The extended formulations of the Sobol index method by Lo and Leung (2018) that

can consider spatially correlated random variables were reported previously in Section

2.7.2. This section will discuss the implementation procedure for the Sobol index

method.

In the Sobol index method, the performance function between the model response (i.e.,

FS) and spatially variable soil properties should be constructed using the training

samples by the unconditional random field simulation method. For reducing the

number of random variables in the performance function, sparse polynomial chaos

expansion is adopted. Firstly, the eigenvectors and eigenvalues of the spatial

autocorrelation matrix can be obtained through eigen decomposition [Eq. (2.40)]. The

PCE coefficient can be determined through Eq. (5.4), considering a number of

training samples by Monte Carlo simulation. The Sobol index can then be obtained

and used to quantify the magnitude of uncertainty reduction, σcond(FS) / σuncond(FS),

using Eq. (2.39). The implementation procedure for the Sobol index method can be

summarised as follows:

Step 1: Define the settings for generating the unconditional random field (e.g., mean
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and standard deviation of the soil properties, probability distribution, and

autocorrelation structure).

Step 2: Conduct eigen decomposition of spatial autocorrelation matrix using Eq. (2.40)

and then determine the number of significant items, M, in the PCE using Eq. (5.3).

Step 3: Generate the unconditional random fields, and conduct RLEM to obtain a

number of training samples.

Step 4: Construct the model response through the 2nd order PCE function [Eq. (2.17)]

considering M significant random variables, and the PCE coefficients are obtained by

Eq. (5.4).

Step 5: Determine the original variance of the model response (i.e., FS) by Eq. (2.42),

and the variance after conditioning for a given sampling pattern by Eq. (2.44).

Step 6: Sobol index S(X) for a given sampling pattern is determined by Eq. (2.38),

while the magnitude of uncertainty reduction can be obtained by Eq. (2.39).

5.3 Case Description

A slope under undrained conditions is investigated (Figure 5.1). The height of the
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slope is 5 m with a firm base at 10 m below the top of the slope, and the slope

gradient is 1:2. For coupling with random fields, this slope is discretised into 910

elements, which are mainly 0.5 m × 0.5 m square with the elements along the slope

face truncated to fit the geometry. The undrained shear strength su is assumed to be

statistically characterised by a log-normal distribution, and the mean and COV of su

are equal to 23 kPa and 0.3, respectively. The saturated unit weight γsat is assumed to

be a constant value equal of 20 kN/m3, as the COV of the unit weight is usually small.

A Gaussian autocorrelation function is considered in this chapter, where a rotational

angle of strata, α, is incorporated for simulating rotated transverse anisotropy, which

is given as follows:



























 



 2

2

2

2

21

)sincos()sincos(
exp),(








 yxyx
yx (5.5)

As discussed in Section 3.3, θ2 for undrained shear strength is generally in the range

of 0.1 - 6 m, and θ1 is far larger than θ2, according to the literature. In this chapter, θ1

= 20 m and θ2 = 2 m are taken as the base set, while various θ2 in {1 m, 1.5 m, 2 m,

2.5 m, 3 m} are also considered. It should be noted that measured values at known

points should be used in simulating the conditional RF. In the current work, the mean

soil property is assigned to the sampling locations. That is because there is no real

measurement data, and investigated results by different methods should be compared

considering various sampling strategies. It should be noted that since the conditional

RF simulations are implemented under a log-transformation first, the adopted mean

values should be the mean of the logarithm of the soil property. The mean and
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standard deviation of the soil properties (e.g., su) in log space can be given as follows

(Griffiths et al. 2004):

)1ln(ln usus COV (5.6)

2
lnln 2

1ln
ususus   (5.7)

The slope stability analysis is implemented by the Bishop method considering the

mean shear strength, and the FS is found to be 1.358 which is close to the result by

Cho (2010) (FS = 1.356). For the probabilistic slope stability analysis, the

non-intrusive approach (Section 3.2.1) that combines the random field with the limit

equilibrium method (i.e., the Bishop method) is used.

5.4 Results

In this section, comparative studies are conducted on the methods that can consider

sampling effects (i.e., conditional RF models 1 and 2, Sobol index method). In

Section 5.4.1, the magnitude of uncertainty reduction is investigated by the various

methods, considering various sampling strategies under horizontal transverse

anisotropy (i.e., α = 0º). Meanwhile, the influences of rotated transverse anisotropy on

the standard deviation of FS after conditioning and ratio of σcond(FS) / σuncond(FS) are

investigated in Section 5.4.2. The rotational angle of soil bedding is varied in the

range of -90º < α < 90°. It should be noted that the strata with α = -90º is equivalent to
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that with α = 90º in this chapter, since stationary RF is considered. The advantages

and disadvantages of each method are discussed in Section 5.4.3.

In order to obtain the magnitude of uncertainty reduction [σcond(FS) / σuncond(FS)],

2,000 Monte Carlo simulations are considered for the unconditional random field

simulation method and the conditional random field simulation methods. When using

the Sobol index method, the model response is constructed considering 2,000 Monte

Carlo simulations with the use of the unconditional random field, and σcond(FS) /

σuncond(FS) can be obtained by Eq. (2.39). Generally, σcond(FS) / σuncond(FS) < 1 is

expected, which means the performance uncertainty is reduced through considering

sample points.

5.4.1 Influence of Sampling Strategy on Magnitude of Uncertainty

Reduction

In this section, sampling strategies with various sampling densities are considered to

investigate the influence of the sampling pattern on the performance of the methods in

slope reliability evaluation.

Firstly, sampling strategies with different numbers of sample points along the inclined

direction are considered, where n = 2, 3 and 5 denotes that the soil samples are taken

from {A, E}, {A, C, E} and {A, B, C, D, E}, respectively, in Figure 5.1. In site
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investigations, a number of boreholes can be drilled, but limited samples are usually

taken from the boreholes due to the relatively high cost of laboratory. Figures 5.2(a),

(b), and (c) show the ratio of σcond(FS) / σuncond(FS) versus the minor autocorrelation

distance θ2 for n = 2, 3, and 5, respectively. As can be observed from Figure 5.2, the

results from the conditional RF model 2 and the Sobol index method are close, and

the σcond(FS) / σuncond(FS) is overestimated by the conditional RF model 1. When n = 2

with θ2 = 1 to 3 m and n = 3 with θ2 = 1 m, σcond(FS) / σuncond(FS) is larger than 1 by the

conditional RF model 1. The issue of σcond(FS) / σuncond(FS) > 1 cannot be observed

when using the conditional RF model 2 and the Sobol index method. When n = 5,

σcond(FS) / σuncond(FS) is smaller than 1 by all the methods. These results show that the

sparse distribution of sample points may be a cause of the issue of σcond(FS) /

σuncond(FS) > 1 by conditional RF model 1, but Figure 5.2(b) also shows that with

higher minor autocorrelation distance, such a problem may disappear. Table 5.1

presents the results of σcond(FS) / σuncond(FS) with θ2 = 10 m. It can be seen that with a

large minor autocorrelation distance, the ratio of σcond(FS) / σuncond(FS) would be

smaller than 1 under n = 2 by conditional RF model 1, and the differences of σcond(FS)

/ σuncond(FS) are small using the various methods. Besides, as shown in Figure 5.2, the

σcond(FS) / σuncond(FS) decreases with higher minor autocorrelation distance. That is

because, when the autocorrelation distance increases, the Kriging variance [i.e., zur -

zks in conditional RF model 1 and 2
zσ in conditional RF model 2 (Section 2.7.1)]

would decrease, which indicates the larger reduction effects on the spatial uncertainty

and thus the smaller σcond(FS) (Li et al. 2016b).
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Secondly, vertical boreholes at various locations are considered, with different

numbers of sample points taken from each borehole. The best sampling location

among the various borehole positions can be obtained through finding the borehole

position with the smallest σcond(FS) / σuncond(FS). Figure 5.3 shows the magnitude of

uncertainty reduction for each borehole location shown in Figure 5.1 (the borehole

position numbers are from 1 to 10), with θ1 = 20 m and θ2 = 2 m. Two sampling

strategies are considered in each borehole, where n = 2 [Figure 5.3(a)] indicates the

sampling points are taken at the elevations of a and e in Figure 5.1, and n = 5 [Figure

5.3(b)] indicates the sampling points are taken at the five elevation levels. As shown

in Figure 5.3(a), when taking sparse sampling points within each borehole, the ratio of

σcond(FS) / σuncond(FS) by conditional RF model 1 is larger than 1 and much higher than

the results estimated by conditional RF model 2 and the Sobol index method. By

contrast, the ratio of σcond(FS) / σuncond(FS) by conditional RF model 2 is smaller than 1

considering each sampling location, and close to that by the Sobol index method. Also,

it can be observed that the magnitudes of uncertainty reduction by conditional RF

model 2 and the Sobol index method would become smaller (i.e., σcond(FS) / σuncond(FS)

becomes higher) when the borehole position recedes from the slope crest, but such a

tendency cannot be shown by the curve of conditional RF model 1 when n = 2. When

five sampling points are taken within each borehole [Figure 5.3(b)], the ratios of

σcond(FS) / σuncond(FS) estimated by the various methods are close. Meanwhile, in this

situation, all the curves can show gradually increasing tendencies when the sampling
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position recedes from the slope crest, meaning that the optimal sampling location

among the 10 borehole positions is around the slope crest. Therefore, findings from

Figure 5.3 also indicate that under a sparse sampling pattern, conditional RF model 1

may produce inaccurate estimation of the best sampling location.

The results in this section show that the difference between σcond(FS) / σuncond(FS) by

conditional RF model 2 and that by the Sobol index method is slight, considering

various sampling strategies and spatial correlations in soil property. By contrast, the

conditional RF model 1 would generally produce higher σcond(FS) / σuncond(FS) ratios

than those by the other methods. When considering sparse sampling patterns with

small θ2, the results by conditional RF model 1 would be significantly different from

those by the other methods, while with sufficient sampling points or a large θ2, the

difference would be small. Besides, the issue of σcond(FS) > σuncond(FS) may occur

when using conditional RF model 1 under a sparse sampling pattern with a small θ2,

while such a problem cannot be observed when using conditional RF model 2 and the

Sobol index method. The reasons why conditional RF model 1 would produce higher

ratios of σcond(FS) / σuncond(FS) than those by the other methods and may indicate

σcond(FS) / σuncond(FS) > 1, will be discussed later in Section 5.4.3, so as to integrate

the findings considering rotated transverse anisotropy, which is examined in the

following section.
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5.4.2 Influence of Rotated Transverse Anisotropy on

Magnitude of Uncertainty Reduction

In this section, the influence of rotated transverse anisotropy on the slope reliability

evaluation is investigated by the various methods, where various rotational angles of

the strata, α, and two sampling patterns (Figure 5.4) are considered with θ1 = 20 m

and θ2 = 2 m. The vertical sampling pattern can often be encountered in engineering

practice when a single vertical borehole is drilled, while a inclined borehole can also

be found in some engineering cases (He et al. 2010; Wei and Liu 2015).

The standard deviation of FS can be used to quantify the performance uncertainty of

the system response in slope reliability analysis (Li et al. 2016b; Liu et al. 2017b),

where a higher standard deviation of FS means a higher performance uncertainty.

Figures 5.5(a) and (b) show the results of standard deviation of FS by the various

methods under the vertical sampling pattern and inclined sampling pattern,

respectively. Figure 5.5 shows that changes in the standard deviation of FS with

rotational angle are different under different sampling patterns. It can be noted that for

each sampling pattern, the highest standard deviation of FS occurs when the layout of

sample points is along the orientation of the soil bedding. The standard deviation of

FS generally becomes higher when α approaches 90° and 45° for vertical sampling

pattern and inclined sampling, respectively. It should be noted that, as the rotations

under α = -90° and α = 90º are equivalent in this chapter, in the horizontal axes of the

figures, α also approaches 45º from 0° to -90º to 45º (i.e., in an opposite direction to
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the horizontal axis). That means the performance uncertainty of the slope would

increase when the angle of the drilling direction of the borehole approaches the dip

angle of the strata.. As discussed in Sections 2.5.3 and 5.3, rotated transverse

anisotropy of soil spatial variability is simulated by rotating the horizontally

rectangular coordinate system for horizontal transverse anisotropy. With the rotation

of the coordinate system, the lag distance in the direction of θ2 between any two

points would become smaller (Figure 5.6). This is equivalent to the sampling points

gathering to a spot gradually. Since the reduction effects on the spatial uncertainty of

soil properties are more pronounced near the known points, the gathering of the

sampling points would indicate the higher spatial uncertainty of the total domain, and

thus the higher performance uncertainty. Figures 5.5(a) and (b) also show that the

results by conditional RF model 2 and the Sobol index method are close, considering

various rotational angles of strata. By contrast, conditional RF model 1 would

significantly overestimate the standard deviation of FS after conditioning in most

cases considering rotated transverse anisotropy (i.e., α ≠ 0º). The difference between

the results by conditional RF model 1 and the other methods would be more

pronounced when the angle of the drilling direction of the borehole approaches the

dip angle of the strata. The reason for this phenomenon will be discussed in Section

5.4.3.

Figures 5.7(a) and (b) show the change of σcond(FS) / σuncond(FS) with rotational angle

of strata from -90º to 90º under the vertical sampling pattern and inclined sampling
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pattern, respectively. As can be observed from the figures, σcond(FS) / σuncond(FS) by

the various methods would become higher when the dip angle of the strata approaches

the angle of the drilling direction of the borehole. As the sampling points are

distributed along the bedding orientation, the magnitude of uncertainty reduction is

the smallest. As discussed in the above paragraph, the rotation of the strata would

indicate the decrease of the lag distance in the direction of θ2, which is equivalent to

the sampling points gathering to a spot gradually. Consequently, the constraining

effects on the spatial uncertainty imposed by the sampling points would gradually

reduce, which cause the increase of σcond(FS) / σuncond(FS). Such a finding indicates

that the angle of the drilling direction of the boreholes should not be along or near the

dip angle of the strata. From these figures, it can also be seen that σcond(FS) / σuncond(FS)

ratios by conditional RF model 2 and the Sobol index method are close and smaller

than 1 with various angles of rotation. By contrast, conditional RF model 1 would

significantly overestimate σcond(FS) / σuncond(FS) ratio and result in σcond(FS) /

σuncond(FS) > 1, when the angle of the drilling direction of the borehole is near the dip

angle of the strata, the reason for which will be discussed in the following section.

5.4.3 Discussion

In this section, the reason why σcond(FS) estimated by conditional RF model 1 might

be larger than σuncond(FS) is examined. Besides, the advantages and limitations of each

of the methods that can consider sampling effects are discussed.
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The issue of σcond(FS) / σuncond(FS) > 1 is unexpected in slope reliability evaluation.

Theoretically, the sampling points would provide known information in simulating

spatially variable soils and thus reduce the spatial uncertainty. However, results in this

chapter show that σcond(FS) may be estimated to be larger than σuncond(FS) by

conditional RF model 1, when considering a sparse sampling pattern with a small θ2

or rotated transverse anisotropy of soils. The cause of this problem can be

demonstrated through the rationale of the formulation of conditional RF model 1 [i.e.,

Eq. (2.32)]. In Eq. (2.32), the deterministic component of the random field is

represented by zkm, which is determined by Kriging interpolation of the sample points.

In addition, the fluctuation component of the random field is denoted by zur - zks,

which indicates the Kriging prediction error for zkm simulated in each random field

realisation. Herein, zur represents a field predicted by zks using Kriging interpolation of

the simulated values at the sample locations. Hence, the better accuracy of the Kriging

interpolation in zur - zks would indicate a smaller Kriging prediction error for zkm in

each random field realisation, which results in the smaller fluctuation of the random

field and the higher magnitude of uncertainty reduction. However, Kriging

interpolation can only be effective with a reasonable layout of the sampling points in

consideration of autocorrelation distance. In some cases, there is generally no benefit

derived from Kriging interpolation from known points to unknown points. Figure 5.8

shows such cases, including scenarios for a single sample point [Figure 5.8(b)], two

very close sample points [Figure 5.8(c)] and two very sparse sample points [Figure
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5.8(d)]. The scenario for a single sample point is actually equivalent to the situation

when the drill angle of the borehole is the same as that of the dip angle of the strata. In

Figure 5.8, the zones where the prediction is ineffective are highlighted by dashed

lines. In these zones, the correlations between the unknown and known points cannot

act effectively using the Kriging interpolation, indicating that the efficacy of those

unknown points is negligible. That means in this situation, the Kriging interpolation

performs poorly. Herein, the standard deviation of the resulting conditional random

fields with those zones may be higher than that of the unconditional random fields.

That is because in those zones, the soil properties at the corresponding elements in zks

are generally the same in each random field realisation. However, for different

random field realisations the value of the soil properties will change, depending on the

simulated soil properties at the sample locations. Therefore, when the area of the zone

without effective prediction is large enough, the performance uncertainty by

conditional RF model 1 can be larger than that by the unconditional RF simulation

method. In addition, due to the existence of the zone, estimates of the standard

deviation of FS by conditional RF model 1 would generally be larger than those by

conditional RF model 2 and the Sobol index method [indicating larger σcond(FS) /

σuncond(FS) by conditional RF model 1]. When the number of sample points increases

and the distribution of the sample points is set properly considering the dip angle of

the strata, the area of the zone would reduce, meaning that the differences between the

estimated results by conditional RF model 1 and the other methods would decrease.
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The conditional RF model 1 may result in σcond(FS) / σuncond(FS) > 1 under a sparse

sampling strategy with a small θ2 or rotated transverse anisotropy. In these cases, the

σcond(FS) / σuncond(FS) would be significantly overestimated. By contrast, the results of

σcond(FS) / σuncond(FS) by conditional RF model 2 and the Sobol index method have

good agreement under various sampling patterns and rotational angles of the strata.

The limitation of conditional RF model 2 is that such a method can only be coupled

with the matrix decomposition technique, while under some circumstances (e.g., a

very large slope model) other random field generation techniques (e.g., LAS) may

indicate less computational time for generating random fields (Section 2.6).

Nevertheless, in general, the computational effort for generating random fields is

relatively insignificant in geotechnical reliability analysis, when compared to that for

thousands of Monte Carlo simulation runs. The Sobol index method is an efficient

way to estimate the magnitude of uncertainty reduction for each sampling pattern and

thus determine the optimal sampling strategy. However, Pf and the failure scale of the

slopes after conditioning cannot be determined by the Sobol index method. That

means the Sobol index method is unable to be used in slope risk assessment, where

the risk is estimated by the probability of failure multiplied by the failure consequence

(i.e., volume of the failure mass) (Liu et al. 2017a; Li et al. 2016a). Therefore, in

general, conditional RF model 2 is suggested to be adopted in slope reliability

evaluation and risk assessment, when sampling effects need to be incorporated in

engineering practice.
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5.5 Summary

In this chapter, sampling effects have been investigated in 2D probabilistic slope

stability analyses. The magnitude of uncertainty reduction [σcond(FS) / σuncond(FS)] has

been investigated considering various sampling strategies and rotated transverse

anisotropy. Comparative studies have been conducted using various methods (i.e.,

conditional RF models 1 and 2, the Sobol index method), while the merits and

limitations of each method have been discussed.

Generally, the difference between σcond(FS) / σuncond(FS) by conditional RF model 2

and that by the Sobol index method is small, considering various sampling patterns

and rotational angles of the strata. When the sampling pattern is sparse with a small θ2

or the angle of the drilling direction of the borehole is near the dip angle of the strata,

σcond(FS) / σuncond(FS) by conditional RF model 1 would be significantly larger than

that by the other methods. In addition, when the sample points are sparsely distributed

or the angle of the drilling direction of the borehole is near the dip angle of the strata,

σcond(FS) may be estimated to be larger than σuncond(FS) by conditional RF model 1,

which is unexpected in slope reliability evaluation. This issue is not observed when

using conditional RF model 2 and the Sobol index method.

Furthermore, when the distribution orientation of the sample points approaches the

dip angle of the strata, σcond(FS) would increase, and σcond(FS) / σuncond(FS) would also
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increase. This is because the lag distance between the sampling points in the direction

of θ2 would change in the rotated coordinate system. As the distribution orientation of

the sample points approaches the bedding orientation, the lag distance between the

sampling points tends to zero in the direction of θ2, and thus the constraining effects

imposed by the known points on the spatial uncertainty would reduce gradually.

As conditional RF model 1 may be inaccurate under sparse sampling patterns or

rotated transverse anisotropies, conditional RF model 2 and the Sobol index method

are better alternatives when conducting slope reliability analysis. However, the Sobol

index method cannot produce the probability of failure and the failure scale after

conditioning. In conclusion, when compared against conditional RF model 1 and the

Sobol index method, conditional RF model 2 provides superior performance in slope

risk assessment when considering sampling effects.
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Table 5.1 σcond(FS) / σuncond(FS) by the various methods considering sampling
effects with θ2 = 10 m.

n Methods σcond(FS) / σuncond(FS) Difference of
σcond(FS) / σuncond(FS)

2

Conditional RF model 1 0.5848
-2.34%

Conditional RF model 2 0.5714
-4.17%

Sobol index method 0.5952

3

Conditional RF model 1 0.3058
-1.23%

Conditional RF model 2 0.3021
2.91%

Sobol index method 0.2933

5

Conditional RF model 1 0.3106
-4.05%

Conditional RF model 2 0.2985

3.18%
Sobol index method 0.2890
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Figure 5.1 Geometry of the slope model and random field discretisation.
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(a) (b)

(c)

Figure 5.2 σcond(FS) / σuncond(FS) versus minor autocorrelation distance: (a) n = 2; (b)
n = 3; (c) n = 5.
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(a)

(b)

Figure 5.3 Magnitude of uncertainty reduction for each borehole location: (a) n = 2;
(b) n = 5.
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Figure 5.4 The two sampling patterns.
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(a)

(b)

Figure 5.5 Standard deviation of FS versus angle of rotation of strata under: (a)
vertical sampling pattern; (b) inclined sampling pattern.
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Figure 5.6 Original vertical lag distance τy, and lag distance in the rotated
coordinate system τyα.
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(a)

(b)

Figure 5.7 σcond(FS) / σuncond(FS) versus angle of rotation of strata under: (a) vertical
sampling pattern; (b) inclined sampling pattern.
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(d)

Figure 5.8 The unconditional random field zur and the prediction field by ordinary
Kriging zkr with θ1 = 20 m and θ2 = 2 m (the sample points are marked by black

circles): (a) the field zur; (b) the prediction field considering single sample point; (c)
the prediction field considering two very close sample points; (d) the prediction field

considering two sparse sample points.
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CHAPTER 6 Sampling Effects in 3D Probabilistic

Slope Stability Analyses

6.1 Introduction

Chapter 5 investigated the influence of sampling strategy on 2D slope reliability

evaluation. Also, previous studies of sampling effects in probabilistic slope stability

analyses were mainly based on 2D models, where the spatial variability along the

slope length was unaccounted for. For more realistic designs and assessments of

slopes, sampling effects in 3D slope reliability analysis should be investigated.

Previous investigations on 3D probabilistic slope stability analyses revealed failure

modes that cannot be captured in 2D slope models (Hicks et al. 2010; Hicks et al.

2014; Hicks et al. 2018). The failure mode of a 3D slope was found to be associated

with the relation between the spatial autocorrelation distance (θ) and slope geometry

[i.e., slope height (H) and length (L)]. The thresholds for different failure modes in 3D

probabilistic slope stability analyses were discussed previously in Section 4.1.

Generally, when failure mode 1 occurs in a slope with spatially variable soils, the 3D

slope failure is analogous to the slope failure in a deterministic analysis based on the

mean shear strength. Under failure mode 2, a slope would fail in a discrete and

localised sliding mass in 3D probabilistic slope stability analysis. In relation to failure
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mode 3, the soil properties at different locations are similar in the direction of the

major autocorrelation distance. In this situation, the 3D probabilistic slope stability

analyses would be similar to single random variable probabilistic analyses considering

isotropic spatial variation of soils (Griffiths et al. 2009b) or 2D stochastic slope

stability analyses in reverse-dip and dip slopes, and those with horizontal bedding

(Chapter 4; Hicks et al. 2010). Although, the influence of the failure mode on slope

reliability has been reported previously, it has not yet been considered in 3D

probabilistic slope stability analyses that consider sampling effects.

Furthermore, in 3D slope models with spatially variable shear strength, the boundary

conditions of the two end sections can affect the shape and location of the critical

failure zone, which in turn affect the optimal sampling strategy. The end boundary

conditions in 3D slope stability analysis have been previously discussed in detail in

Section 2.2.5, which are summarised as follows: (1) only preventing movement in the

y – direction (smooth boundary), which can be adopted when the investigated slope is

a portion of a longer slope (Ji and Chan 2014); (2) preventing movement in the (x, y)

– direction [boundary fixed in the (x, y) - direction], which is adopted to consider the

side shear resistance; and (3) preventing movement in the (x, y, z) – direction (fully

fixed boundary), which means no movement at the two ends. The influences of the

end boundary condition on the failure mode and deterministic FS of a slope were

shown previously in Figure 1.2. Under the same profile of spatially variable undrained

shear strength, boundary conditions (1) and (3) would lead to markedly different
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failure zones and FS values.

Despite the importance of failure modes and boundary conditions, there have been

limited discussions on their effects on sampling strategies. Li et al. (2016b) was the

first to study the three-dimensional sampling efficiency in probabilistic slope stability

analyses by integrating conditional random field simulation and the random finite

element method. However, the effects of failure modes and boundary conditions have

not been addressed in detail, possibly due to the large computational demand

associated with the conditional random field simulation method. Under conditional

random field simulation, the sample locations must be specified prior to the slope

analyses (Lo and Leung 2018; Lo 2019). That means, in order to obtain a sampling

pattern with the best sampling efficiency, many trial sampling patterns are necessary

to consider all of the possible options, and each sampling pattern involves hundreds of

realisations. If more than one borehole needs to be considered, the number of the trial

sampling patterns will be compounded. In three-dimensional finite element analysis,

the computation would be further increased due to the high computational cost and

the large geometry of a 3D slope model.

In this chapter, various combinations of spatial autocorrelation distances, slope

lengths, and the end boundary conditions are considered to investigate the sampling

effects in 3D probabilistic slope stability analyses. A slope under undrained conditions

is considered, while the random finite element method is used within a Monte Carlo
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framework.

6.2 Methodology

6.2.1 Quantification on Sampling Efficiency in

Three-dimensional Problem

Sections 2.7 and 5.2 discussed the methods that can be used to quantify sampling

efficiency in slope reliability analysis. For the conditional random field simulation

methods, hundreds of simulation runs are needed to quantify the magnitude of

uncertainty reduction for a given sampling pattern. In this chapter, a number of

analyses need to be conducted considering various borehole locations and parametric

settings (e.g., slope geometries, autocorrelation distances, and end boundary

conditions) in 3D problems. In addition, the optimal sampling pattern should be

determined. The computational effort will be quite extensive if conditional random

field simulation methods are used. Therefore, the Sobol index method discussed in

Sections 2.7.2 and 5.2.3 is adopted.

When using the Sobol index method, the performance function between the model

response and spatially variable soil properties should be constructed using the training

samples by the unconditional random field simulation method (Section 2.7.2). In this



206

chapter, the 3D slope failure modes and the corresponding thresholds (Section 4.1)

proposed by Hicks and Spencer (2010) and Hicks et al. (2014) are considered in the

investigation of sampling effects. The form of the autocorrelation function may affect

the thresholds, as it corresponds to the pattern of soil spatial variability (Section 2.5.2).

Therefore, this chapter uses the same autocorrelation function used by Hicks and

Spencer (2010):
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In addition, and consistent with Hicks and Spencer (2010), the random field is

generated by LAS considering element averaging effects, which is also used in this

chapter when considering various ratios of θ / L and failure modes. As discussed in

Section 2.6.2, the subdivision algorithm itself in LAS is unable to preserve anisotropy.

Hicks and Spencer (2010) proposed that the thresholds for the 3D slope failure modes

are applicable under both isotropic and horizontally anisotropic random fields.

Therefore, the spatially variable undrained shear strength, su, is simulated with θ = θh

= θv, when investigating the influences of ratio of θ / L and the corresponding failure

modes.

In addition, influences of anisotropic patterns of soil spatial variability are also

studied in this chapter, considering various end boundary conditions. When

considering anisotropic patterns of soil spatial variability, the Cholesky decomposition

method is adopted to generate the random fields. The value of M in Eq. (5.3) is large
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when considering a single exponential function for a 3D problem, which indicates

quite demanding computational efforts in obtaining PCE coefficients; therefore, the

Gaussian autocorrelation function is used, which results from rotation of the

coordinate system for horizontal transverse anisotropy, as discussed in Section 2.5.3.

6.2.2 Differential Evolution

In this chapter, if only one borehole is considered, the sample location X can be

represented as (x1, y1)T, while the depths of the samples are described in Table 6.1. As

shown in Table 6.1, 4 samples will be obtained from each borehole, and the depths of

the samples depend on the borehole location. If the borehole is drilled behind the

slope crest (Figure 6.1), the samples will be spaced at 1 m intervals. Otherwise, the

samples will be more closely spaced. By evaluating the Sobol index, S(X), for all

possible borehole locations, the optimal location is identified as the location with the

maximum S(X).

If two or three boreholes are considered, then the sample location X can be

represented as the locations of the two [(x1, y1 )T, (x2, y2)T] or three boreholes [(x1, y1 )T,

(x2, y2)T, (x3, y3)T], respectively. In a 3D problem, a direct search for the maximum

S(X) would be tedious and infeasible, as there are a large number of possible

combinations for the multiple borehole locations due to the large geometry of a 3D



208

model. Therefore, a global optimization algorithm known as Differential Evolution

(Storn and Price 1997) can be adopted to maximize S(X). When conducting

Differential Evolution, an initial population is generated first:

  )(1,0,0 jjjji random plpuplPAR  (6.2)

In Eq. (6.2), PAR0 is a matrix containing the initial population. i = (1, 2, ..., Npop) and j

= (1, 2, ..., Nde), where Npop denotes the size of the initial population (Npop = 50 in this

chapter) and Nde denotes the dimension of the variable. The parameters puj and plj are

the upper limit and lower limit of the population, respectively.

After generating the initial population, a new generation of the population will be

created by mutation and crossover in the existing population:
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In the above equations, PARM(i) denotes the ith row of the matrix containing the

mutated population; mu is a vector containing three random samples, which range

from 1 to Npop; Fa is a mutation amplification factor taken from 0 to 2; PARC

represents a matrix containing the population by crossover; Rand is a matrix

containing random samples taken from 0 to 1; CR is a crossover constant taken from 0

to 1; and Ir is a identity matrix that makes sure the crossover can occur on each

individual in the existing population.

After the mutation and crossover, the fitness value of each individual in PARC will be
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calculated by an objective function, and then compared to that in the initial population

PAR0. The individual in PARC with an improved fitness value will be retained in the

population, otherwise it will be discarded. The procedures are iterated until the fitness

values of every individuals in the population converge to the global maximum, and

hence the optimal solution can be obtained. In this chapter, the code of Differential

Evolution is written using MATLAB. The number of iterations is set to 1,000, while

Fa and CR are set to 1 and 0.5, respectively. When determining the optimal sampling

pattern by Differential Evolution, the fitness value is denoted by the Sobol index of

each sampling pattern, and the population is represented by various combinations of

borehole locations.

6.3 Case Description

In the current study, the finite element analysis software ABAQUS is used to model

the slope. The strength reduction method is adopted to determine the FS, considering

the non-convergence criteria (Griffiths and Lane 1999). The geometry of the slope is

shown in Figure 6.1. The slope is 45° with slope height H = 5 m, while the slope

length L is varied from 20 m to 100 m. The soil is modeled as an elastic-perfectly

plastic Tresca material. The undrained shear strength is treated as a spatial variable

and assumed to be log-normally distributed to avoid simulating negative values, with

the mean and COV equal to 22.54 kPa and 0.5, respectively. The deterministic FS
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with the soil strength equal to the mean undrained shear strength is 1.4. The

autocorrelation distance θ is varied across a wide range (from θ / L = 0.05 to 1.125).

The mesh comprises of brick elements of dimensions 0.5 m × 0.5 m × 1 m (y -

direction), while the elements along the slope face are truncated to fit the geometry

[Figure 6.1(b)]. In the finite element analysis, the base of the slope model is fully

fixed, while the back face is only fixed in the x – direction. For the boundary

conditions of the two end sections, the three boundary conditions [i.e., smooth

boundary, boundary fixed in the (x, y) direction and fully fixed boundary conditions]

are considered.

6.4 Results

In the current work, various combinations of θ and L are considered, as shown in

Table 6.2. Three types of end boundary conditions are investigated for each

combination, resulting in a total of 24 cases. Table 6.2 also presents the x – coordinate

of the optimal sample location for each parametric setting under different end

boundary conditions. It is observed that the optimal sampling borehole is generally

around the slope crest in the x – direction (i.e., x / W = 0.5 for the slope model in

Figure 6.1). Such an observation is consistent with the finding by Li et al. (2016b). As

shown in Table 6.2, when the x – coordinate of the sampling borehole is fixed on the

slope crest, the change of the Sobol index is slight for the fully fixed boundary
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condition. Other boundary conditions also indicate a negligible change in the Sobol

index in most cases (not shown). Therefore, to provide simple guidelines on the

sampling borehole locations, in Sections 6.4.2, 6.4.3 and 6.4.4, the x – coordinate of

all the boreholes are fixed at the slope crest.

Figure 6.2 shows the Sobol index along the slope length using two sampling sizes

(1,000 and 2,000) for constructing PCE, with L = 40 m, θ / L = 0.5, and end

boundaries fixed in the (x, y) direction. In Figure 6.2, the sampling location is

represented by Δy / L, where Δy denotes the distance between the borehole location

and the end section in the y – direction [Figure 6.1(a)]. Meanwhile, Table 6.3 presents

the difference of the Sobol index between any two symmetrical locations in Figure 6.2.

Theoretically, since the geometry and the end boundary condition of the slope are

both symmetrical about the middle of the slope length, the values of the Sobol index

should also be symmetrical. However, when the simulation size is small, the curve of

the Sobol index would be obviously asymmetric (Figure 6.2), possibly due to the

under-representation of the response surface when evaluating the Sobol index. With

larger simulation size, nearly symmetrical results can be obtained, as can be seen in

Figure 6.2 and Table 6.3. Therefore, a sufficient number of realisations are ensured in

each setting to produce a symmetric Sobol index map, which is presented in Table 6.4.
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6.4.1 Sampling Strategies Considering Two and Three

Boreholes

In this section, the sampling strategies with two and three boreholes are investigated

considering isotropic soil spatial variability. When two sampling boreholes are

considered, the optimal sampling pattern is determined by two different approaches.

In Approach 1, the two optimal locations are randomly searched throughout the whole

domain. In Approach 2, the x - coordinate is fixed at the crest of the slope with the

two borehole locations being symmetrical about the middle of the slope length. The

Differential Evolution method outlined in Section 6.2.2 is adopted in the two

approaches. Five combinations of θ and L are considered, and the differences between

the Sobol index by Approaches 1 and 2 are presented in Table 6.5. It can be observed

that the differences are small (all the differences are under 10 %). That suggests that

obtaining optimal samples that are along the slope crest and symmetrical around the

middle of the slope can lead to a similar magnitude of uncertainty reduction by a

randomised search of the samples throughout the whole domain.

Figure 6.3 shows the change of Δy0 / θ with θ / L using Approach 2 considering two

sampling boreholes, where Δy0 represents the distance between one of the

symmetrical boreholes and the nearer boundary. As can be noted from Figure 6.3,

generally, with the increase of θ / L the normalised distance (Δy0 / θ) would decrease,
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and the results of the boundary which is fixed in the (x, y) direction are close to the

results of the fully fixed boundary. In relation to three sampling boreholes, one of the

boreholes is fixed at the middle of the slope length, and the other two boreholes are

symmetrical around the middle. The change of Δy0 / θ with θ / L considering three

sampling boreholes is shown in Figure 6.4. As indicated in the figure, when three

sampling boreholes are considered, the normalised distance (Δy0 / θ) would also

decrease with the higher value of θ / L. Besides, the results under the boundary

condition fixed in the (x, y) direction and the fully fixed boundary condition yield

good agreements in most cases.

6.4.2 Sampling Efficiency Considering Single Borehole

In this section, the sampling efficiency considering one borehole is investigated. The

Sobol index values for different locations along the slope length under the three

boundary conditions are presented in Figure 6.5. It can be observed from Figures

6.5(a), (b) and (c) that in general, the Sobol index, and hence sampling efficiency

increases with larger θ / L. That means the ratio of θ / L mainly contributes to the

sampling efficiency. In general, with a higher value of θ, more areas of the domain in

the direction of slope length would be significantly influenced by the conditioning

effects imposed by the sampling points. Hence, for a given sampling pattern and slope

length, the higher value of θ can indicate the smaller spatial uncertainty of soil
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properties, and thus result in the higher sampling efficiency. On the other hand, with a

higher slope length, there would be more areas that cannot be significantly influenced

by the conditioning effects. Therefore, the proportion of the domain under significant

conditioning effects is controlled by the ratio of θ / L. Herein, the higher value of θ / L

would indicate the higher proportion, and thus the higher sampling efficiency. Such a

finding corroborates the previous observation by Li et al. (2016b) that the sampling

efficiency is positively associated with the horizontal autocorrelation distance in 3D

probabilistic slope stability analyses.

Figure 6.6 further compares the sampling efficiency under different failure modes and

end boundary conditions. The slope length is fixed at 40 m, while three different

autocorrelation distances (i.e. 2 m, 15 m and 45 m) are considered corresponding to

the failure modes 1, 2 and 3, respectively. It is found that under failure mode 1, the

Sobol index values for all the three boundary conditions are very small and negligible.

That is because in this situation, the autocorrelation distance is so small that the

sampling effects are insignificant. For failure modes 2 and 3, the Sobol index values

under the smooth boundary condition are larger than those under the fully fixed

boundary condition near the boundary, and smaller than those near the middle.

Meanwhile, the Sobol index values under the boundary condition fixed in the (x, y)

direction are close to those under the fully fixed boundary condition. As proposed by

Spencer (2007), slope failures tend to be attracted to the end boundaries under the

smooth boundary condition in spatially variable soils, leading to the higher sampling
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efficiency near the end sections. In contrast, preventing movements at the end sections

tends to push the sliding mass to the middle and hence results in higher sampling

efficiency.

6.4.3 Optimal Sampling Location and Uncertainty

Reduction Considering Single Borehole

In this section, the optimal sampling location and the corresponding magnitude of

uncertainty reduction are discussed. In Figure 6.7, the location of the optimal borehole

is represented by y0 / L, where y0 denotes the distance between the borehole location

and the nearer end section in the y – direction. As can be observed from the figure,

when the two end sections are fully fixed and preventing movement in the (x, y) -

direction, the optimal sampling boreholes are around the middle of the slope in most

failure modes. By contrast, for the slope with the smooth boundary condition, the

optimal locations display a trend with θ / L: the optimal locations are near the middle

of the slope when θ / L is larger than 0.5 corresponding to the failure mode 3, while

with other values of θ / L the optimal locations are near the ends [For the smooth end

boundary condition with θ / L = 1.125, the optimal sampling location is around y0 / L

= 0.68, as shown in Figure 6.7, the Sobol index value of which (0.576) is quite close

to that at y0 / L = 0.51 (0.571).]. The reasons behind those results are associated with

the failure modes and boundary effects. Under fixed boundary conditions, the effect
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of the end boundary condition would push the failure to the middle of the slope.

Under smooth boundary conditions, the slope will fail in a discrete mass for failure

mode 2 (θ / L < 0.5), and the failure tends to occur at the mesh ends (Spencer 2007).

On the other hand, when θ / L > 0.5 (failure mode 3), the slope failure tends to occur

along the whole slope length, leading to the optimal sampling location in the middle

for both the fixed boundary and smooth boundary conditions.

It should also be noted that when θ / L = 0.125, two different settings of slope length

and autocorrelation distance are considered (i.e., [L = 100 m, θ = 12.5 m] and [L = 40

m and θ = 5 m]), which result in two significantly different optimal sampling

strategies for slopes with fully fixed boundaries. As proposed by Hicks et al. (2014),

at the transition from failure mode 1 to failure mode 2, multiple potential sliding

masses (Figure 6.8) are more likely to occur in a slope. That means there would be

more than one critical zone of a slope, and it may cause two optimal locations

distributed around the two ends. When θ = 5 m (i.e., value of the slope height H), the

slope failure mode is closer to the transition point, because the threshold for the

failure mode 1 is based on the height of a slope. By contrast, when θ = 12.5 m, the

possibility for the occurrence of the multiple potential sliding masses would reduce,

and the fixed boundary condition would push the failures to the middle.

Figure 6.9 shows the magnitude of uncertainty reduction [i.e. σcond(FS) / σuncond(FS) ]

corresponding to the optimal sampling borehole. As can be noted from the figure,
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with the increase of θ / L the σcond(FS) / σuncond(FS) would decrease (higher magnitude

of performance uncertainty reduction), due to the larger conditioning effect of the soil

samples. It is interesting to note that when θ / L = 0.125, under the fully fixed

boundary condition, the difference in σcond(FS) / σuncond(FS) between the two cases (i.e.,

[L = 100 m, θ = 12.5 m] and [L = 40 m and θ = 5 m]) is small, although their optimal

sampling locations are different. That is because, as discussed in the previous sections,

the same θ / L ratios can be associated with similar sampling efficiencies.

6.4.4 Sampling Effects under Rotated Transverse Anisotropy

Considering Single Borehole

In this section, rotated transverse anisotropy is considered under various end boundary

conditions with θ1 = 15 m and θ2 = 1 m. Figures 6.10 (a), (b), (c) and (d) show the

variations of the Sobol index value along the slope length for a slope with horizontal

bedding, a dip slope, a reverse-dip slope and a cross-dip slope, respectively.

Meanwhile, Table 6.6 presents the magnitude of uncertainty reduction, σcond(FS) /

σuncond(FS), considering the optimal sampling location for each slope scenario. In this

section, 2,000 simulations are considered for each slope scenario.

As shown in Figures 6.10 (a) (b) and (c), the Sobol index values are generally

symmetrical about the middle of slope length for the slope with horizontal bedding,

dip slope and reverse-dip slope. Also, the observations on the influences of end
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boundary conditions on the variation of the Sobol index are similar to those

considering the isotropic soil spatial variability with θ = 15 m shown in Figure 6.6.

That is, the Sobol index values under the boundary condition which is fixed in the (x,

y) direction are close to those with the fully fixed boundary condition. The Sobol

index values under the smooth boundary condition are larger than those under the

fully fixed boundary condition near the boundary, and smaller than those near the

middle. However, when considering the cross-dip slope, the symmetrical feature

cannot be observed when examining the variation of the Sobol index values under the

smooth boundary condition and the boundary condition which is fixed in (x, y)

direction. That is because the strata orientation in cross-dip slope leads to the

asymmetrical feature of soil spatial variability. Besides, the variation of the Sobol

index values along slope length under the fixed boundary condition in the (x, y)

direction is significantly different from that under the fully fixed boundary condition

for the cross-dip slope. As can be seen from Table 6.6, the fully fixed boundary

conditions can lead to the maximum magnitude of uncertainty reduction (i.e., the

smallest σcond(FS) / σuncond(FS)) among various boundary conditions for the slope with

horizontal bedding, dip slope, and reverse-dip slope. Such an observation is consistent

with that considering the isotropic random field. By contrast, the σcond(FS) / σuncond(FS)

considering optimal sampling location is the smallest under the smooth boundary

condition for the cross-dip slope.
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6.5 Discussion

In this chapter, the ratio of spatial autocorrelation distance (θ) to slope length (L) and

the boundary condition at the end sections are found to be influential to sampling

efficiency. Both factors cannot be explicitly incorporated in probabilistic slope

stability analyses when a 2D slope model is adopted. In addition, the sampling

efficiency and optimal sampling strategy are influenced by the failure modes in 3D

probabilistic slope stability analyses. These findings reveal the significance of

considering 3D models when performing probabilistic slope stability analysis

incorporating sampling effects.

In engineering practice, a slope being analysed is usually taken from a longer slope or

a part of a region. That means historical data of ground investigation may be available

from neighbouring sites, which can be used to obtain the autocorrelation distance for

the region in general. When the autocorrelation distance is obtained, some findings in

this chapter can help engineers to make primary decisions in ground investigation and

engineering designs. The suggestions for engineering practice are presented as

follows: (1) as the sampling efficiency is positively correlated with the θ / L ratio, an

engineer can decide whether it is worthwhile to drill sampling boreholes based on the

θ / L ratio of a slope considering economic benefits; (2) when two boreholes need to

be drilled, it is suggested to drill two symmetrical boreholes along the slope crest, and

the distance between the borehole location and boundary, Δy0, can generally be
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obtained referring to the results shown in Figure 6.3; (3) when failure mode 2 is

decided to be the potential failure mode of a slope, a single sampling borehole is

suggested to be drilled near the boundary of a slope along crest, if the end boundary

condition can be assumed to the smooth. On the other hand, if the end boundary

condition can be assumed to the fixed, then the borehole should be drilled near the

middle. However, when the potential failure mode is failure mode 3, it is suggested to

drill a borehole in the middle of a slope, regardless of the end boundary condition.

In engineering practice, a number of boreholes (usually more than 3 boreholes) are

usually drilled in the ground investigation for a slope project. That means the

scenarios of considering one or two boreholes might not be practical. Although more

than 3 boreholes are usually taken in the site investigation stage, some of them may be

used to characterize the soil type and profile. Therefore, the smaller number of

boreholes may be considered to obtain the soil parameters, which are needed in

simulating spatially variable soils in slope reliability evaluation. Especially, when

laboratory tests (e.g., triaxial tests) are used to obtain the soil parameters, the limited

number of boreholes may be considered due to the high cost of the tests.

6.6 Summary

This chapter investigated the sampling efficiency using 3D probabilistic slope



221

stability analyses considering soil spatial variability by the Sobol sensitivity index.

Compared with the conditional random field simulation method, the use of the Sobol

index method significantly reduces the computational effort in 3D problems. Various

slope lengths L, autocorrelation distances θ and end boundary conditions have been

considered. The slope stability analyses were conducted using 3DRFEM under

different boundary conditions of the end sections. In consideration of the various

slope dimensions and autocorrelation distances, the following observations are

obtained:

(1) If two boreholes are adopted, searching two symmetrical locations about the

middle of slope length along the slope crest can lead to similar results by a

randomised search of the optimal sampling pattern within the whole slope domain.

Therefore, when it is needed to consider two sampling boreholes, for simplicity, two

symmetrical boreholes around the middle of slope can be drilled along the slope crest.

In addition, it is found that when considering the two symmetrical locations, the

normalised distance (Δy0 / θ) tends to decrease with larger θ / L ratio. Such a

phenomenon can also be observed, when considering three sampling boreholes with

one of the boreholes fixed at the middle of the slope length and the other two

boreholes being symmetrical around the middle. Hence, if the autocorrelation distance

can be obtained from the neighbouring sites, the distance between the borehole

location and the nearer end boundary can be generally determined based on the

relation between Δy0 / θ and θ / L shown in Figures 6.3 and 6.4.
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(2) Considering one borehole, the end boundary conditions and potential failure

modes of a slope can affect the optimal sampling location. Generally, the optimal

sampling location for a slope with boundary conditions preventing movement in the (x,

y, z ) - direction is near the middle of slope length, while for a slope with a smooth

boundary condition the optimal sampling location is near the middle under failure

mode 3 and near the boundaries in the other situations. In addition, the ratio of θ / L is

found to influence the sampling efficiency. In general, with an increase of the ratio,

the sampling efficiency increases. Also, the boundary conditions can affect the

sampling efficiency. Under failure modes 2 and 3, sampling locations around the ends

with smooth boundary conditions can indicate higher sampling efficiency than those

of sampling locations with fixed boundary conditions. However, for the sampling

locations around the middle, the sampling efficiency with fixed boundary conditions

is higher. The slope length in the out-of-plane direction and the boundary condition of

the end sections cannot be explicitly considered in probabilistic slope stability

analyses when using a 2D slope model, which reveals the significance for using 3D

slope model in slope reliability evaluation considering sampling effects. When

considering anisotropic patterns of soil spatial variability, observations on the

variation of the Sobol index along the slope length and the influence of the end

boundary condition for the slope with horizontal bedding, dip slope and reverse-dip

slope are similar to those considering isotropic soil spatial variability. However, such

observations are significantly different when considering the cross-dip slope, due to

the asymmetrical nature of the soil spatial variability in the cross-dip slope.
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Table 6.1 Depth of samples according to the borehole location.

x - coordinate of borehole
(m)

z - coordinate of samples
(m)

5 (4, 3, 2, 1)

4 (3.5, 2.5, 1.5, 0.5)

3.5 (3, 2.5, 1.5, 0.5)

3 (2.5, 2, 1.5, 0.5)

2.5 (2, 1.5, 1, 0.5)
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Table 6.2 Parametric settings, the optimal sampling location and the optimal Sobol
index value.

L
(m)

θ
(m) θ / L

x / W of
the

optimal
sampling
location

Smooth
boundary

x / W of
the

optimal
sampling
location

Boundary
fixed in (x,
y) direction

x / W of
the

optimal
sampling
location

Fully fixed
boundary

Sobol index with
x - coordinate
by randomised

search

Fully fixed
boundary

Sobol index with x
- coordinate fixed
in the slope crest

Fully fixed
boundary

40 2 0.05 0.6 0.4 0.4 0.0366 0.0347

100 12.5 0.125 0.55 0.5 0.4 0.0858 0.0836

40 5 0.125 0.5 0.55 0.5 0.0920 0.0920

60 15 0.25 0.55 0.5 0.55 0.2390 0.2388

40 15 0.375 0.45 0.55 0.55 0.3810 0.3801

40 20 0.5 0.55 0.55 0.5 0.4360 0.4360

20 15 0.75 0.5 0.45 0.45 0.6580 0.6585

40 45 1.125 0.5 0.5 0.5 0.6960 0.6960
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Table 6.3 Difference of Sobol index for any two symmetrical boreholes considering
two different simulation sizes in Figure 6.2.

Borehole
group No.

Difference for the 1,000
simulations

(%)

Difference for the 2,000
simulations

(%)
1 9.10 0.86
2 8.84 1.63
3 8.82 2.26
4 8.93 2.43
5 9.01 2.28
6 9.23 1.94
7 9.90 1.31
8 10.85 0.38
9 11.52 0.64
10 11.48 1.47
11 10.85 2.02
12 9.87 2.15
13 8.54 1.67
14 6.81 0.71
15 5.00 0.25
16 3.63 0.83
17 2.71 1.10
18 1.90 1.20
19 1.07 1.00
20 0.33 0.39
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Table 6.4 Simulation size for each setting.

L
(m)

θ
(m)

Number of
realisations

Smooth boundary

Number of
realisations

Boundary fixed in
(x, y) direction

Number of
realisations

Fully fixed
boundary

40 2 1,000 1,000 1,000

100 12.5 1,000 1,000 1,000

40 5 1,000 1,000 1,000

60 15 2,000 1,000 1,000

40 15 2,000 1,000 1,000

40 20 2,000 2,000 2,000

20 15 500 500 500

40 45 1,000 500 500
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Table 6.5 Difference of Sobol index by the two approaches.

L
(m)

θ
(m)

Difference of Sobol
index

(Approach 1 and
Approach 2, %)

Smooth boundary

Difference of Sobol
index

(Approach 1 and
Approach 2, %)

Boundary fixed in (x, y)
direction

Difference of Sobol
index

(Approach 1 and
Approach 2, %)

Fully fixed boundary

20 15 1.96 1.43 1.63

40 15 3.60 2.12 4.66

40 20 7.34 0.14 0.43

40 45 3.32 0.36 1.18

60 15 5.86 2.91 3.60

Note: The difference = [(Sobol index by Appoach 1 - Sobol index by Approach 2) / (Sobol index by
Approach 1)] × 100%.
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Table 6.6 Magnitude of uncertainty reduction, σcond(FS) / σuncond(FS), considering
the optimal sampling pattern under different slope scenarios.

Slope type Smooth boundary Boundary fixed in
(x, y) direction

Fully fixed
boundary

Slope with
horizontal bedding 0.77 0.71 0.69

Dip slope
(α = 30º) 0.68 0.56 0.54

Reverse-dip slope
(α = -30º) 0.86 0.82 0.81

Cross-dip slope
(α = 30º) 0.85 0.88 0.89
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(a)

(b)

Figure 6.1 (a) Geometry of the 3D slope model; (b) the cross-section of finite
element mesh.

X

Y

Z

Slope crest
End section

End section

H
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Figure 6.2 Sobol index using 1,000 simulations and 2,000 simulations for
constructing PCE.
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Figure 6.3 Distance between the optimal borehole location and the nearer end
boundary divided by θ versus θ / L considering two sampling boreholes.
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Figure 6.4 Distance between the optimal borehole location and the nearer end
boundary divided by θ versus θ / L considering three sampling boreholes.
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(a) (b)

(c)

Figure 6.5 Sobol index along the slope length under different boundary conditions:
(a) smooth boundary; (b) boundary fixed in (x, y) direction; (c) fully fixed boundary.
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Figure 6.6 Comparison of Sobol index under the three boundary conditions with L
= 40 m.
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Figure 6.7 Optimal sampling location with one borehole.
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Figure 6.8 Multiple potential sliding volumes.
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Figure 6.9 Magnitude of uncertainty reduction considering the optimal sampling
pattern versus θ / L.
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Figure 6.10 Sobol index along the slope length considering anisotropic patterns of
soil spatial variability under different end boundary conditions: (a) slope with
horizontal bedding; (b) dip slope (α = 30º); (c) reverse-dip slope (α = -30º); (d)

cross-dip slope (α = 30º) .

(a) (b)

(c) (d)
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CHAPTER 7 Conclusion and Recommendations

7.1 Conclusion

In this thesis, the influences of anisotropic spatial variation of soils and sampling

strategy were investigated in slope reliability evaluation. Non-stationary random

fields considering rotated transverse anisotropy was adopted to simulate the spatially

variable soils in the 2D probabilistic slope stability analyses. In addition, the 3D

probabilistic slope stability analyses were conducted considering rotated transverse

anisotropy of the soil properties. Investigations of sampling effects were also

implemented in 2D and 3D problems. In the 2D study, various sampling strategies and

rotated transverse anisotropies were considered, while comparative studies were

conducted on three methods that can incorporate sampling effects in slope reliability

analysis. For the 3D problem, various end boundary conditions and ratios of spatial

autocorrelation distance to slope length were considered. Main findings of this thesis

are presented in this section.
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7.1.1 Influence of Non-stationarity and Rotated Transverse

Anisotropy in Slope Reliability Evaluation

In nature, soil properties usually display non-stationarity features. Through combining

non-stationarity with rotated transverse anisotropy of the soil properties, two

scenarios of soils were simulated in the 2D probabilistic slope stability analyses,

where the soil strength increases with depth or along the direction perpendicular to the

bedding. A Stationary random field was also adopted to simulate the spatially variable

soils. In this study, a saturated fine-grained slope under undrained conditions is

considered, and it was found that the direction of the increasing trend has significant

effects on the estimation of slope reliability and the failure mechanism considering

rotated transverse anisotropy. For slope reliability analysis, the safety levels of a slope

are significantly different under the different soil scenarios. When soil strength

increases with depth, the slope reliability is usually higher than that considering a

stationary random field. In addition, in a dip slope, the slope reliability under soil

strength increasing with depth is higher than that with soil strength increasing along

the perpendicular direction to the bedding. However, in the reverse slope, soil strength

increasing along the direction perpendicular to the bedding would lead to higher

reliability than that under soil strength increasing with depth. Furthermore, when the

undrained shear strength increases along the direction perpendicular to the bedding,

the slope reliability and potential failure consequence are sensitive to the dip angle of

the strata. In this case, an accurate estimation of the dip angle of the strata is crucial in
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slope reliability analysis and risk assessment. However, due to the complexity of the

geological conditions in most engineering cases, obtaining an accurate dip angle of

the strata may be difficult in normal geological surveys. For example, the bedding

exposed may not display the actual orientation of the bedding within the slope body,

which may cause inaccurate estimation of the dip angle of the strata. Site

characterisation techniques (Section 2.4.1) can also be used to determine the dip angle

of the strata through estimating the spatial autocorrelation structure of the soil

properties. However, for an accurate estimation, a large number of site investigation

data are needed.

Regarding the failure mechanism, it was found that when soil strength increases with

depth, the probability of occurrence of a shallow slope failure would increase

compared with that in a stationary random field. When the soil strength increases

along the direction perpendicular to the bedding, the probability of occurrence of a

shallow failure would be high in dip slopes. On the contrary, such a scenario of soils

would lead to a deep failure mechanism being dominant in reverse slopes. After

investigating the locations of multiple slip surfaces obtained by Monte Carlo

simulations, it is found that the shallow slip surfaces occurring on slopes with soil

strength increasing with depth mainly pass through the slope surface. By contrast, the

shallow slip surfaces in the dip slope (α = 45º), with soil strength increasing

perpendicularly to the bedding, mainly pass through the slope toe. These two

scenarios of shallow slip surface can indicate significantly different consequences



242

(Figure 3.10). Generally, when the slip surface passes through the slope toe, the

consequence caused by the landslide would be more severe.

7.1.2 Influence of 3D Rotated Transverse Anisotropy in

Slope Reliability Evaluation

The effects of 3D rotated transverse anisotropy on slope reliability and failure

mechanisms were investigated considering the slope under undrained conditions.

Three kinds of 3D rotated transverse anisotropy [i.e., “rotated transverse anisotropy

around the x axis”, “rotated transverse anisotropy around the y axis”, and “rotated

transverse anisotropy around the z axis” (Figure 4.1)] were considered, associated

with three slope scenarios [i.e., dip slope, reverse-dip slope and cross-dip slope

(Figure 4.1)]. When the major autocorrelation distance is small relative to the slope

length and height, the influence of the rotated transverse anisotropy is mitigated. That

is because in this situation, the solution of the 3D probabilistic slope stability analysis

is similar to that of the deterministic analysis, and the spatially variability pattern also

approaches the isotropic case. When considering rotated anisotropy around the x and z

axes, the same dip angles of the strata would lead to similar results of slope reliability

and the mean slide length regardless of the rotational direction. In addition, in these

cases, the mean FS and mean slide length decrease with higher major autocorrelation

distance. On the other hand, in the cross-dip slope, the slope reliability is relatively
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insensitive to the change of slope length. Those findings in relation to the cross-dip

slope are different from previous findings in relation to the slope reliability and failure

mechanism in 3D probabilistic slope stability analyses based on horizontal transverse

anisotropy.

In relation to “rotated transverse anisotropy around the y axis” (i.e., dip and

reverse-dip slopes), a critical dip angle of the strata corresponding to the lowest slope

reliability can be found, and a reverse-dip slope usually has a higher reliability than

that of a dip slope. When the major autocorrelation distance is large enough, the 3D

estimates of the reliability of the dip slope or reverse-dip slope would be close to that

estimated in the plane strain condition. However, such a phenomenon cannot be

observed in a cross-dip slope. For mean slide lengths, when the major autocorrelation

distance is larger than the slope height, the higher major autocorrelation distance can

result in an increase in the mean slide length in a dip slope and a reverse-dip slope.

These observations in relation to the slope reliability and mean slide length are similar

to the findings in previous studies, where the soil bedding is assumed to be horizontal.

7.1.3 Influence of Sampling Strategies in 2D Slope Reliability

Evaluation

For the investigations on sampling effects in 2D probabilistic slope stability analyses,



244

various sampling strategies and rotated transverse anisotropies were considered. The

conditional random field simulation methods and the Sobol index method were

adopted to calculate the magnitude of uncertainty reduction. It was found that when

the distribution of sample points is sparse with small θ2 or the angle of the drilling

direction of the borehole is near the dip angle of the strata, the magnitudes of

uncertainty reduction estimated by conditional RF model 1 are significantly smaller

than those estimated using the other methods. By contrast, the estimated results by

conditional RF model 2 and the Sobol index method are close. In those situations, the

issue of σcond(FS) > σuncond(FS) may occur using conditional RF model 1. Theoretically,

such an issue is unexpected in slope reliability evaluation, because sample points can

provide known information on simulating the spatially variable soils and thus reduce

the spatial uncertainty. The cause of this problem is the inaccurate Kriging

interpolation involved in the formulation [Eq. (2.32)] of conditional RF model 1

(Section 5.4.3). By contrast, this problem is not found when using the conditional RF

model 2 and the Sobol index method. Generally, when sample points are distributed

properly considering the autocorrelation distance and the dip angle of the strata, the

differences in the magnitude of uncertainty reduction by the three methods are small.

In addition, rotated transverse anisotropy has a significant influence on the sampling

efficiency, as the lag distance in the direction of the minor autocorrelation distance

between sample points would change in the rotated coordinate system. When the dip

angle of the strata approaches the angle of the layout of the sample points, the lag
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distance between the sample points in the direction of the minor autocorrelation

distance would reduce. That means the range for effective prediction with smaller

error by Kriging interpolation tends to be narrowed. Therefore, the magnitude of

uncertainty reduction would decrease with the angle of the drilling direction of the

borehole approaching the dip angle of the strata. When the dip angle of the strata is

the same to the drilling direction of the borehole, the lag distance between the sample

points in the direction of the minor autocorrelation distance is zero, which results in

the highest standard deviation of FS after conditioning and the smallest magnitude of

uncertainty reduction.

7.1.4 Influence of Sampling Strategies in 3D Slope Reliability

Evaluation

In 3D probabilistic slope stability analyses considering sampling effects, the Sobol

sensitivity index was adopted to quantify the sampling efficiency, while the optimal

sampling strategy is also investigated. Compared with the conditional random field

simulation methods, the method based on the Sobol index does not require given

sampling points, and thus the computational effort can be significantly reduced. This

is particularly significant when 3D analyses need to be performed or more than one

borehole should be considered. Through considering different end boundary

conditions, together with varied combinations of spatial autocorrelation distance θ and
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slope length L, the sampling efficiency, optimal sampling strategy and the magnitude

of uncertainty reduction are investigated.

Sampling strategies with two and three boreholes were firstly discussed. When

considering two sampling boreholes, two approaches for selecting the two optimal

sampling locations were considered. Approach 1 considered a randomised search of

the two sampling locations throughout the whole domain, while Approach 2

considered the two locations along the slope crest being symmetrical around the

middle of the slope length. It was observed that the difference in the sampling

efficiency using the two approaches is small. In addition, considering Approach 2, the

ratio of the distance between the sampling point and the nearer end section to the

spatial autocorrelation distance generally decreases with higher ratio of θ / L. Such a

phenomenon can also be found, when considering three sampling boreholes with one

of the boreholes fixed at the slope middle and the other two boreholes being

symmetrical around the middle.

When considering a single sampling borehole, it was found that with the increase of

ratio of θ / L, the sampling efficiency for each borehole location along the slope crest

increases. Also, the sampling efficiency can be affected by the end boundary

conditions. Near the end sides of a slope the sampling efficiency considering the

smooth boundary condition is higher than that considering the fully fixed boundary

condition, whereas the observations are contrary near the middle of a slope. On the
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other hand, for a slope with end boundary conditions preventing the movement in (x, y,

z) direction, the optimal sampling location is around the middle of slope length in

most cases. With respect to, under the smooth boundary condition, the optimal

sampling location is near the middle of slope length under failure mode 3, but near the

ends under failure mode 2. When considering anisotropic spatial variation of soils,

observations on the variation of the Sobol index along the slope length and the

influence of end boundary conditions for a slope with horizontal bedding, dip slope

and reverse-dip slope are similar to those considering isotropic soil spatial variability.

However, when considering cross-dip slopes, such observations are significantly

different from those considering an isotropic random field.

7.1.5 Suggestions for Engineering Practice

In this thesis, both 2D and 3D probabilistic slope stability analyses were conducted.

Findings in the investigations on 3D slope problems revealed the significance for

considering 3D slope models in slope reliability evaluation. For example, the results

in Chapter 4 showed that when the autocorrelation distance is small or the strata rotate

around the x and z axes, the slope reliability would be significantly underestimated

considering 2D slope models. That is because in these situations, the 3D slope

features or failure modes cannot be explicitly considered in 2D slope model. In

addition, the results in Chapter 6 showed that the ratio of the autocorrelation distance
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to the slope length and the end boundary condition have a significant influence on

slope reliability evaluation considering sampling effects. However, the slope length

and end boundary conditions cannot be modeled in 2D probabilistic slope stability

analyses.

Based on the findings using the unconditional simulation methods in Chapters 3 and 4,

there are some points that should be noted for engineering practice. Rotated transverse

anisotropy should be carefully considered with non-stationarity of soil properties, as

the trend direction has a significant influence on the estimation of slope reliability. In

addition, it should be noted that, when the soil strength increases along the direction

perpendicular to the bedding, a slight change of the dip angle of the strata can cause a

significant change in the slope reliability and potential sliding consequence. That

means an accurate estimation of the dip angle of the strata is significant in this case.

In this situation, advanced site characterisation techniques (e.g., Liu and Leung 2018)

are suggested to be used with a large number of sampling data to assure the accurate

estimation of the autocorrelation structure. In the 3D probabilistic slope stability

analyses, results by comparing the slope reliability of dip, reverse-dip, cross-dip

slopes and those with horizontal bedding show that the cross-dip slope can be the

optimal scenario when conducting road construction and alignment. That is because

the reliability of the cross-dip slope is generally the highest among these slope

scenarios. Findings for the investigations on the 3D problems also showed that when

the strata rotate around the y axis (i.e., dip and reverse-dip slopes), the reliability
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estimated by 2D stochastic slope stability analyses would be similar to that

considering the 3D slope model, if the major autocorrelation distance is large enough.

However, in relation to slopes under rotated anisotropy around the x and z axes, the

3D slope model should be adopted. Otherwise, the slope reliability would be

significantly underestimated, and thus economic benefits would reduce.

In addition, suggestions for engineering practice can also be given from the findings

in Chapters 5 and 6. When it is needed to obtain soil samples from slopes with rotated

transverse anisotropies, the borehole orientation should not be close to the bedding

orientation. In addition, the issue of σcond(FS) > σuncond(FS) may occur in conditional

RF model 1, when the sampling pattern is sparse or the angle of the drilling direction

of the borehole is near the dip angle of the strata. In these situations, conditional RF

model 1 would also produce a significantly higher standard deviation of FS than that

by conditional RF model 2 and the Sobol index method. Estimated results of the

magnitude of uncertainty reduction by conditional RF model 2 and the Sobol index

method are close, but the Sobol index method cannot be used to compute the

probability of failure and failure consequence after conditioning. Therefore, in slope

reliability analysis and risk assessment, conditional RF model 2 is suggested to be

adopted. In 3D probabilistic slope stability analyses considering sampling effects, the

results of sampling efficiency by a randomised search of two optimal borehole

locations is close to the result by selecting two symmetrical locations (about the

middle) on the slope crest. If the spatial autocorrelation distance can be obtained from
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historical site investigation data in the neighbouring sites, the locations of the two

symmetrical boreholes can be primarily determined based on the relation between Δy0

/ θ and θ / L. Also, as θ / L value is positively proportional to sampling efficiency,

engineers can decide whether it is worthwhile to drill boreholes and conduct

conditional simulations based on θ / L, considering economic benefits.

7.2 Recommendations

7.2.1 Recommendations on Study of Non-stationarity in Soil

Properties

Formulations for modelling non-stationary random fields have been developed by Li

et al. (2014), Griffiths et al. (2015) and Jiang and Huang (2018), as shown in Table

2.5. In this thesis, the formulation by Li et al. (2014) was used to generate

non-stationary random fields in the 2D probabilistic slope stability analyses. However,

all the formulations in Table 2.5 are based on linearly increasing trends of the soil

property. The justification for using a linearly increasing trend to simulate shear

strength parameters has been discussed in Li et al. (2014). Also, a linearly increasing

trend for soil strength parameters can be found in site characterisation (Asaoka and

A-Grivas 1982; Liu and Leung 2018). However, non-linearly increasing trend can
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often be observed in undrained shear strength through CPT data (e.g., Jaksa et al.

1999; Stuedlein et al. 2012a). Therefore, formulations for non-stationary random

fields with a higher-order trend structure are desirable to be derived.

In addition, the non-stationary random field is seldom adopted in three-dimensional

probabilistic slope stability analysis. When considering the 3D problem, the spatial

variation of soil property in the planar orientation (i.e., x and y directions in Figure 1.2)

should be involved in the trend structure. That is because the spatial autocorrelation

along the slope length is significant in three-dimensional probabilistic slope stability

analysis, whereas the change of the major autocorrelation distance has a little effect

on the slope reliability in the 2D problem. Also, the direction of the increasing trend

(i.e., increasing trend with depth and the direction perpendicular to the bedding ) can

be combined with the three 3D slope scenarios (i.e., cross-dip, reverse-dip and dip

slopes) to investigate the reliability and failure pattern of a slope.

7.2.2 Recommendations on Study of Anisotropic Patterns of

Soil Spatial Variability

This thesis only considered the anisotropic patterns of soil spatial variability for shear

strength parameters. However, since most landslides are induced by rainfalls,

parameters in relation to unsaturated soil parameters are also significant for slope
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reliability. The permeability coefficient and saturated water content are significant to

the stability of a slope, as those parameters can affect the matric suction of soils and

hence the unsaturated soil strength. Considering the 3D features of slopes (e.g.,

cross-dip, reverse-dip and dip slopes), the rotation of the strata is expected to

influence the processes of rainfall infiltration and seepage, which can result in

different performance levels of slope reliability. Therefore, the spatially variable soils

under rotated transverse anisotropy should be simulated considering the spatial

variations of the permeability coefficient and saturated water content in probabilistic

slope stability analyses. Also, the difference between the results using 2D and 3D

models is worthwhile to be discussed.

Furthermore, only rotated transverse anisotropy of soil properties is investigated in

this thesis. In nature, there are many anisotropic patterns of soil spatial variability [i.e.,

horizontal transverse anisotropy, rotated transverse anisotropy, general anisotropy,

general rotated transverse anisotropy, and combinations of these (Figure 1.1)]. Zhu

and Zhang (2013) have derived the autocorrelation functions for the various 2D

anisotropic patterns. The autocorrelation function for 3D anisotropic patterns of soil

spatial variability was also studied by Liu and Leung (2018) and Liu (2018). Based on

these findings, the slope reliability and failure mechanism can be investigated

considering the different patterns of anisotropy. In 3D analyses, the relation between

the strike direction of the strata and the direction of the slope length should be

involved in probabilistic slope stability analysis considering the different anisotropic
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patterns. In addition, various slope lengths, α and η (Tables 2.9 and 2.10) should be

considered together with the spatial autocorrelation distance.

7.2.3 Recommendations on Study of Sampling Effects in

Probabilistic Slope Stability Analyses

In the 2D probabilistic slope stability analyses considering sampling effects and

rotated transverse anisotropy, the sampling patterns were given in the current work.

Herein, the optimal sampling strategy was not studied considering rotated transverse

anisotropy. As the rotation of the soil bedding was found to be influential to the slope

failure mechanism (Chapter 3), it is expected that the optimal sampling strategy can

be affected by rotated transverse anisotropy of the soil properties. To determine the

optimal sampling strategy, the computational efforts for conditional random field

simulation methods are extensive. Therefore, the Sobol index method is suggested to

be adopted.

The investigation on sampling effects in the 3D probabilistic slope stability analysis

only focused on situations of the small number of boreholes. The situation for a large

number of sampling boreholes can also be considered using the Sobol index method

and Differential Evolution methods. With respect to a larger number of sampling

boreholes, apart from the maximum sampling efficiency, the economic benefit should
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also be considered when determining the optimal sampling strategy. That is because,

when the number of sampling boreholes exceeds a threshold, the increase in sampling

efficiency may be slight by adding more boreholes, while the cost of performing site

investigations is usually high. Therefore, an optimal combination of the magnitude of

uncertainty reduction and the economic benefit is desirable.

7.2.4 Recommendations on Study of the Influence of

Groundwater Level in Probabilistic Slope Stability Analyses

In the present study, the groundwater effects are not considered. However, in

engineering practice, the groundwater level is a significant factor in slope stability

analysis. The increase of the groundwater level is usually the trigger of slope failure.

In probabilistic slope stability analyses, the influence of soil spatial variability on

slope reliability might be masked by the groundwater effects. Therefore, the influence

of groundwater level is desirable to be investigated considering slopes with spatially

variable soils.

In relation to the studies considering the groundwater effects, the unsaturated soil

characteristics should be incorporated. When generating random fields, the spatial

variability of the unsaturated soil characteristics should be considered for the soils

above the groundwater level. Also, various spatial autocorrelations of soil properties
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should be considered in the probabilistic slope stability analyses. In addition, it is

interesting to find how high the groundwater level is can mask the influence of soil

spatial variability.
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