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Abstract

This thesis is concerned with novel statistical approaches for integrative genomic analysis,

particularly methods that incorporate interactions between features from different data

types into regression models. Recent technological advancements have enabled the

collection of different molecular data types on the same patient. Extensive research efforts

have been made towards integrating such comprehensive data set to study the biological

mechanisms involved in disease development. While existing integrative approaches

mainly focus on accounting for the difference in prognostic power across data types,

there are relatively few works engaged in incorporating the interaction effects between

different types of biological features on disease prognosis. As many chronic diseases are

known to be affected by certain molecular features interacting with clinical factors, it

is crucial to identify the relevant risk factors along with their interaction effects. In

genomic studies, the major challenges of interaction analysis lie in the high dimensionality

of the data and heterogeneity across data types. In order to decipher the association

between the molecular interplays and a disease outcome, we propose to use the varying-

coefficient models to characterize the interaction effects between the genomic features and

a set of effect modifiers. We adopt a class of single-index varying-coefficient models to

accommodate the potential interaction effects, and we propose a penalized spline-based

estimation method for selecting important features with constant or varying effects. In

an ongoing study, we consider a varying-coefficient additive hazards model and propose a

kernel-based method to estimate the constant and varying effects.
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Chapter 1

Introduction

1.1 Background

Biostatistics is an important branch of statistical science with its primary focus on the

applications of statistical approaches to a wide range of biological sciences areas. Among

many interesting applications, genomics research is an area where statistical approaches

have become popular tools in revealing the genetic basis underlying complex diseases

such as cancer. The major goals of cancer genomics include identifying risk factors

associated with the progression of cancer and predicting disease outcomes, such as time

to tumor progression or death since initial diagnosis or treatment. In conventional cancer

studies, clinical factors such as age, gender, and tumor stage are routinely studied and

used as prognostic factors. While tumor progression is a dynamic biological process that

involves gene mutation and alteration, clinical factors can only explain a proportion of

the observed variation in tumor progression. To develop a deeper understanding of the

underlying disease mechanisms in cancer and improve outcomes prediction, there has

been a growing interest in studying the association between genomic features with cancer

development.

Over the past few decades, the field of cancer genomics has been advancing due to
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the developments in high-throughput technologies, such as microarrays, single nucleotide

polymorphism arrays, proteomics, and RNA sequencing. Such progress in genomic profil-

ing has facilitated the generation of large-scale omics data, which refer to the molecular

data measured on the same individuals. For example, in The Cancer Genome Atlas

(TCGA), clinical and omics data, including copy number alteration, DNA methylation,

mutation, and the expressions of mRNA, microRNA, and protein, were collected from

more than 11000 cancer patients across 33 tumor types. Also, in the Molecular Taxonomy

of Breast Cancer International Consortium (Curtis et al., 2012), clinical data along

with copy number alteration, mutation, and mRNA expression data were collected from

about 2000 breast cancer patients. The emergence of these massive data has featured

the development of statistical approaches for genomic analysis and provided many key

insights into the biological mechanisms underlying cancer progression.

1.1.1 Conventional regression models

Among various statistical approaches, regression analysis is perhaps the most widely used

technique with its primary focus to infer the relationships between the predictors and

the outcomes of interest. In genomic analyses, regression models are frequently used for

identifying relevant biological features that influence disease outcomes and predicting

disease outcomes in new observations. Regression models, including the generalized linear

models and the survival models, are commonly used to predict certain types of outcome

variables, such as continuous, categorical, and survival outcomes.

The linear model is by far the most fundamental form of regression analysis, which

investigates the linear relationship between a set of predictors and a continuous outcome

variable. Let Y denote the outcome variable and X denote a vector of predictors. The

linear model takes the following form:

Y = XTβ + ε,
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where β is a vector of regression coefficients indicating the (constant) effects of X on Y

and ε is a random error with mean zero. This model assumes that the mean of Y is a

linear combination of X. As an extension to the linear model, a class of generalized linear

models, introduced by Nelder and Wedderburn (1972), allows the mean of Y to depend

on XTβ through a non-linear link function, and the probability distribution of Y can

be any member of the exponential family. The generalized linear model is particularly

useful in real applications due to its flexibility to map the predictors with many types

of outcome variables. For example, the logistic regression model is a standard tool for

fitting binary outcomes, such as disease diagnosis and classification of risk levels. Also,

the Poisson regression is often used for modeling count data, such as the number of times

an event occurs.

Apart from the continuous and categorical outcomes, survival outcomes such as time

to death or time to relapse are usually available for disease subjects in genomic studies.

Survival analysis, or more generally, time-to-event analysis studies the time lapsed to a

particular event. In genomic studies, survival analysis is commonly used to assess the

influence of risk factors on survival and build a prognostic model for survival prediction

in new observations. A common feature specific to survival analysis is right-censoring,

which refers to the phenomenon that only some subjects will have experienced the event

by the end of the study. Right-censoring usually occurs when the subject is still alive at

the end of the study or the subject is lost to follow-up during the period of study. In this

case, we cannot follow up on the exact event time for some subjects. Statistical modeling

for the right-censored survival data has been extensively studied to assess the association

between risk factors and survival outcomes (Klein and Moeschberger, 2003; Kalbfleisch

and Prentice, 2011).

Semi-parametric models have been effectively used when the association of survival

time with various risk factors is the main interest. We consider two popular semi-

parametric models, namely the Cox proportional hazards model (Cox, 1972) and the
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additive hazards model (Aalen, 1989; Lin and Ying, 1994). The Cox model is probably

the most widely used model describing the association between risk factors and survival

time. The hazard function that measures the risk of failure takes the following form:

λ(t |X) = λ0(t) exp(XTβ),

where λ0 is an unspecified baseline hazard function. This model relies on a key assumption

that each predictor has a multiplicative effect on the hazard function. As an alternative to

the proportional hazards model, the additive hazards model assumes that each predictor

has an additive effect on the hazard function. The additive hazards model was first

introduced by Aalen (1989), which concerns time-dependent covariates and coefficients.

Lin and Ying (1994) studied the model with time-independent coefficients and the hazard

function has the following form:

λ(t |X) = λ0(t) +XTβ.

In this thesis, we focus on the semi-parametric survival models with time-independent

coefficients as we are interested in the varying coefficients that depend on a set of

predictors other than time. We will provide further discussion about the choice of

survival model in Chapter 3.

In most problems, least-squares or maximum likelihood estimation can be applied

for parameter estimation. Under a linear model, the distribution of Y is assumed to be

normal and the score function is linear in β, so we can readily obtained the estimator

β̂ by minimizing the sum of squared errors. Under a generalized linear model, the

distribution of Y can be any member of the exponential family, and the corresponding

score function is usually non-linear in β. In this case, the maximizer of the loss function

cannot be solved explicitly. Accordingly, iterative computational techniques such as the

Newton-Raphson algorithm can be adopted to solve for β.
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Since the semi-parametric survival models involve an infinite-dimensional nuisance

parameter λ0, maximum likelihood estimation cannot be used directly to estimate β. Cox

(1972) developed an estimation method for β based on the notion of partial-likelihood for

the proportional hazards model. Suppose there are n observations that are potentially

right-censored. For the i-th subject, let Ci be the censoring time, Ỹi = min(Yi, Ci) be

the observed time, and ∆i = I(Yi ≤ Ci) be the event indicator for i = 1, . . . , n. The

partial-likelihood function is defined as:

n∏
i=1

{
exp(XT

i β)∑
h:Ỹh≥Ỹi exp(XT

hβ)

}∆i

.

A distinguishing feature of the partial-likelihood is that it depends only on the order rather

than the exact times in which the events occur. Since the partial-likelihood does not

involve λ0, β can be estimated by maximizing the partial-likelihood. Cox (1975) described

the asymptotic inference theory for the partial-likelihood estimator and suggested that

the resulting estimator is consistent and asymptotically normal. Tsiatis et al. (1981)

and Andersen and Gill (1982) showed that the partial-likelihood estimator possesses

asymptotic properties similar to those of the standard maximum likelihood estimator.

Lin and Ying (1994) considered a similar technique to estimate the time-independent

coefficients for the additive hazards model.

1.1.2 Penalized regression methods

In genomic studies, we often encounter data set whose number of features is larger than

the sample size. Such data is referred to as high-dimensional data and is becoming

increasingly available as data collection technologies evolve. For example, over 20000

gene expressions were measured for each TCGA patient but the effective sample size for a

tumor type is usually only in the order of hundreds. The so-called curse of dimensionality

makes the maximum likelihood inference infeasible. For analyzing high-dimensional data,
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various penalized regression methods have been investigated to avoid possible degeneracy

and infeasibility of the maximum likelihood estimation.

The past two decades have been a remarkable era for the study of penalized regression

methods. Penalized regression, also known as regularization or shrinkage, generally refers

to the estimation of regression coefficients under some constraint or penalty. Penalty

functions that serve different purposes in penalized regression have been studied and

frequently applied to high-dimensional data analysis. At an early stage, penalized

regression methods were designed for improving prediction accuracy by balancing the

bias-variance trade-off. Hoerl and Kennard (1970a,b) introduced the ridge regression in

a linear model, which minimizes the residual sum of squares (RSS) subject to a multiple

of ‖β‖2. Frank and Friedman (1993) discussed a generalization of ridge regression and

subset selection through a penalty function of the form ‖β‖q for q > 0. This so-called

bridge regression includes the ridge regression with q = 2 as a special case.

To achieve better model interpretability, penalty functions that induce variable

selection have been studied, examples include the convex penalties (Tibshirani, 1996;

Knight and Fu, 2000) and the non-convex penalties (Fan and Li, 2001; Zhang, 2007).

These penalization techniques rely on a sparsity assumption that only a few variables

have important implications on the outcome. The sparse penalization techniques attempt

to shrink the regression coefficients for the less contributive variables to exactly zero,

and thus the corresponding features are not included in the selected model. Furthermore,

these sparse penalization techniques can help reduce overfitting if irrelevant features

exist.

The least absolute shrinkage and selection operator (lasso), introduced by Tibshirani

(1996), is probably the most popular penalized regression method for analyzing high-

dimensional data due to its computational efficiency and ability to explore sparsity.

Tibshirani (1996) considered a linear regression model and defined the lasso estimator

as a minimizer of an objective function that consists of the RSS and an L1-penalty as
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follows:

arg min
β

RSS(β) + λ‖β‖1,

where λ > 0 is a tuning parameter controlling the degree of shrinkage applied to the

regression coefficients in β. The L1-penalization technique has been implemented to a

broad range of models, such as other generalized linear models (Tibshirani, 1996) and

survival models (Tibshirani, 1997; Ma and Huang, 2005), by replacing the RSS with a

(negative) log-likelihood in the objective function. While imposing the L1-penalty results

in sparse solutions, the estimation bias can be large because the same degree of shrinkage

is applied to all coefficients. To deal with this inadequacy, various modifications have

been proposed, such as the adaptive lasso (Zou, 2006) and non-convex penalties including

the smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) and the minimax

concave penalty (MCP, Zhang, 2007). These penalties were shown to possess the oracle

property, which means the estimator performs as well as if the true underlying model

was given in advance.

Another class of lasso extensions for data with a group structure has been studied.

Yuan and Lin (2006) proposed the group lasso to select a subset among the predefined

groups of variables. The group lasso estimator is defined as the solution to the following

problem:

arg min
β

1

2
RSS(β) + λ

J∑
j=1

(βT
j Kjβj)

1/2,

where βj denotes the coefficients corresponding to the j-th group and Kj is some positive

definite matrix for j = 1, . . . , J . By imposing a group-wise L2-penalty, the variables are

selected in groups, and all the coefficients in the selected groups are non-zero. If each

group is of size 1, then the group lasso penalty reduces to the lasso penalty. Breheny

and Huang (2009) extended the SCAD and MCP to the group selection problems. In

genomic analyses, the group penalty is convenient when building a prognostic model

based on functionally related gene sets or pathways.
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1.1.3 Varying-coefficient models

We are often interested in exploring the non-linear relationships between the predictors

and the outcomes of interest. The varying-coefficient model appears to be a useful

alternative to the classical linear models when one wishes to examine the change of

regression coefficient over different groups characterized by the effect modifiers. Hastie

and Tibshirani (1993) introduced a generic form of the varying-coefficient model. Suppose

that the distribution of Y depends on η in the following form:

η = XTg(U),

where g is a vector of varying coefficients that are modified by an effect modifier U . In

contrast to the classical linear model with constant regression coefficients, the varying-

coefficient model assumes that each regression coefficient varies as a function of another

predictor U , which permits an interaction between each component of X with U . The

idea of the varying coefficient is often used in conjunction with survival models. For

example, Martinussen et al. (2002), Tian et al. (2005), and Chen et al. (2012) studied the

proportional hazards models where the coefficient is a function of time or an exposure

variable. Also, additive hazards models with varying coefficients have been studied by

McKeague and Sasieni (1994) and Yin et al. (2008).

We review two popular classes of non-parametric estimation techniques for estimating

the varying coefficients, namely spline and kernel. The spline-based estimation method is

based on piecewise polynomial fitting, which approximates the underlying non-parametric

function using piecewise polynomials. A spline curve can be expressed conveniently as

a linear combination of the basis functions. Upon specifying the degree of the basis

functions and the location of knots, g(·) can be estimated by maximizing the likelihood

over all possible linear combinations of the basis functions. On the other hand, the

kernel-based estimation method is based on local linear fitting, which estimates g(u)
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using data in the neighborhood of u. The basic idea underlying kernel methods is to

use a likelihood function that includes not only subjects taken at the target point u but

includes (usually with decreasing weights) subjects taken in the neighborhood of u.

These non-parametric estimation techniques have been extensively studied for uni-

variate effect modifiers. When one wishes to incorporate multivariate effect modifiers

into the regression model, the single-index varying-coefficient model appears to be a

convenient choice. The single-index varying-coefficient model is a combination of the

varying-coefficient model and the single-index model (Hardle et al., 1993). It assumes

that the distribution of Y depends on η in the following form:

η = XTg(UTβ),

where β is a vector of index parameters. In this model, the effect of each component in

X can vary flexibly with a linear combination of U . As the multivariate effect modifiers

are collapsed into an index, conventional non-parametric estimation techniques can be

applied to estimate the varying coefficients. In the literature, Fan et al. (2003) explored

a class of single-index varying-coefficient linear models by considering U = X. Xue

and Pang (2013) and Zhao et al. (2019) considered the single-index varying-coefficient

models for continuous outcomes and proposed kernel-based methods to estimate the index

parameters and varying coefficients. Lin et al. (2016) studied a proportional hazards

model with single-index varying-coefficient components for censored outcomes.

1.2 Integrative approaches for genomic analysis

In practical applications, clinical and genomic data are commonly used to construct

regression models for disease prognosis. Numerous genomic analyses have been conducted

to identify the risk factors involved in disease development and make predictions through

analyzing the clinical or genomic data separately. As the underlying disease mechanisms
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are influenced by a variety of factors, the integration of different data types appears to

be more comprehensive. Many studies have shown that the integrative analysis of clinical

and genomic data confers greater prognostic power than the analysis of clinical data

alone (Li, 2006; Shedden et al., 2008; Bøvelstad et al., 2009; Fan et al., 2011; Zhao et al.,

2015). To facilitate information borrowing among multiple data types, it is crucial to

study statistical approaches for integrative genomic analysis.

Over the past two decades, integrative analyses for multiple data types have been

extensively conducted to improve predictions over the analyses for a single data type.

Existing integrative approaches can be predominantly classified into two classes, namely

parallel integration and hierarchical integration. In parallel integration, the direct effects

of features from each data type on the outcome are assessed. Whereas in hierarchical

integration, the indirect regulatory or interaction effects between different data types on

the outcome are of interest.

1.2.1 Parallel integration

A straightforward integration strategy is to combine different types of data into a single

data set, on which conventional analyses are performed. Bøvelstad et al. (2009) applied the

principal component analysis to project the high-dimensional genomic features into a low-

dimensional space and then combined the projected data with clinical factors to predict

survival outcomes. Fan et al. (2011) combined clinical factors and high-dimensional gene

expression modules of breast cancer patients into a data set and built prognostic models

using lasso regression. In a more comprehensive study, Zhao et al. (2015) evaluated the

predictive powers of clinical and omics data along with their combinations across different

cancer types by building prognostic models using principal component analysis, partial

least squares, and lasso regression. Although these studies have demonstrated that direct

combinations of clinical factors and genomic features improves risk prediction in some of

the cancer types, this naive method probably neglects heterogeneity across data types as
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each data type appears to have a distinct level of association with the outcome.

Alternatively, one may take into account the difference in prognostic power across

different data types through some weighting approach. There are many applications that

attempt to integrate heterogeneous data types using the weighted kernel-based methods.

The kernel-based integration approach primarily consists of two steps. In the first step, a

kernel matrix is constructed for each data type by mapping the data to a feature space

using a non-linear feature map. Next, different kernel matrices are combined using some

learning methods such as support vector machine. Daemen et al. (2007) proposed a

weighted kernel-based method to integrate clinical and microarray data for classification.

They demonstrated that models that account for the distinction between clinical and

genomic data yield better prediction accuracy over models that treat these data types

equally. To fully utilize all available information, weighted kernel-based methods for more

than two data types have also been investigated (Lanckriet et al., 2004; Daemen et al.,

2009; Seoane et al., 2014). Despite that the kernel-based integration approach improves

predictive power, it transforms the data into another structure and makes interpretation

difficult.

Methods that incorporate regularized constraints on multiple data types are more

appealing for interpreting the effects of individual features on the outcome. Boulesteix

et al. (2017) extended the idea of the lasso to an integrative lasso with penalty factors,

which assigns distinct penalties to different data types for variable selection. Wong et al.

(2019) proposed an integrative boosting approach that leverages the omics data sets with

clinical information to predict survival outcomes by learning weights for heterogeneous

data types using an iterative procedure. In each iteration, a prediction rule is constructed

for different data types, and distinct penalties are assigned to the coefficients for features

from different data types. The resulting models obtained using penalized estimation

methods are relatively easier to understand than those obtained using the kernel-based

methods.
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1.2.2 Hierarchical integration

Though accounting for the prognostic difference across multiple data types, the parallel

integrative approaches do not consider the interrelationship between features from different

data types. To facilitate the understanding of the genetic basis of complex diseases,

one may consider a class of hierarchical integrative approaches that accommodates the

biological relationship between different types of data when building the prognostic

models. Wang et al. (2013) and Zhu et al. (2016) incorporated prior knowledge of the

regulatory relationship between different types of genomic data to the regression models.

Wang et al. (2013) proposed an integrative Bayesian analysis of genomics data to model

the regulatory effects by DNA methylation that are mediated through gene expression for

predicting prognostic outcomes. They first considered a mechanistic model to infer the

direct effects of DNA methylation on gene expression. With this information, a clinical

model was constructed to assess the association between gene expression and survival

outcome. Zhu et al. (2016) proposed a different approach to describe the regulation

across different types of genomic data through constructing linear regulatory modules,

and their proposed approach can accommodate the direct effects of regulators on the

prognostic outcomes.

Apart from the regulatory relationship, we are often interested in studying the

interaction effects between features from different data types. Many chronic diseases are

complex and are caused by genes interacting with clinical factors. In cancer genomics, the

effects of genomic features on cancer progression are often modified by clinical factors. For

example, Landi et al. (2008) demonstrated that the effects of some gene expressions on

the risk of lung cancer mortality vary with tobacco consumption. Also, Chen et al. (2017)

and Relli et al. (2018) showed that the molecular mechanisms of carcinogenesis exhibit

a high level of heterogeneity between two subtypes of non-small-cell lung carcinoma

(NSCLC), and the same set of features could have distinct effects on disease outcome

across different subtypes. As the effects of genomic features can vary across different
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clinical characteristics, the integrative approaches that account for the differences and

regulations across data types are insufficient to uncover the intricate interactions. This

emerges the need for integrative approaches that analyze the clinical and genomic data

compositely in the form of interaction.

To incorporate interaction effects between clinical and genomic variables in regression

analyses, one may take a conventional approach that includes pairwise product terms of

the variables into the regression model. Consider a simple linear model with pairwise

interaction terms,

Y = a+
∑
j

bjXj +
∑
k

ckUk +
∑
j,k

djkXjUk + ε,

where a is an intercept term, bj , ck, and djk are the regression coefficients for the j-th

component of X, k-th component of U , and their product, respectively. Despite the

simplicity of the form of interaction, this model may not be ideal for analyzing the

interactions between clinical and genomic data. First, inclusion of product terms may

greatly expand the model complexity and aggravate the high dimensionality issue. Even

though the separate data set consists of a moderate number of variables, the size can

grow substantially as all possible product terms between clinical and genomic variables

are considered. Second, the scales of (quantitative) clinical and genomic variables are

generally incomparable, and modeling interaction effects using pairwise product terms

may not be appropriate.

Several integrative approaches that allow for interactions between different features

have been proposed. Nevins et al. (2003) and Pittman et al. (2004) developed tree-based

classification methods to evaluate the effects of clinical and genomic data on (binary)

disease outcomes, allowing for potential interactions among multiple risk factors. However,

the estimated model does not have simple interpretations, and the methods may not

accommodate a large number of variables. In a recent study, Li et al. (2020) proposed a
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penalized framework to select important gene-gene interaction effects on disease outcomes.

However, the interactions between features from different data types were not considered.

Towards this end, the varying-coefficient model emerges as a promising approach for

characterizing flexible interaction effects between different data types. As mentioned in

the preceding section of this chapter, the varying-coefficient model allows the coefficients

to vary over the groups stratified by certain effect modifiers, which permits interactions be-

tween features from different data types. In particular, the single-index varying-coefficient

model has received much attention due to its ability to accommodate multivariate effect

modifiers. In genomic analyses, the single-index varying-coefficient model can be used

to describe the modifications of the effects of genomic features by clinical factors and

introduce interaction effects between each genomic feature and a set of clinical factors.

There are two major advantages of using the single-index varying-coefficient model to

examine the potential interaction effects between clinical and genomic features. First,

this model avoids the curse of dimensionality by projecting the clinical factors to an index

so that the number of parameters only increases linearly with the number of genomic

features. Second, this model accommodates the difference in scales between clinical and

genomic data since the effects of genomic features are formulated as non-parametric

functions of the index.

Some estimation methods have been developed to estimate the varying coefficients

and index parameters of the single-index varying-coefficient models (see Section 1.1.3).

While these methods show relevance, they possess several limitations. First, most of

the existing works assume that the covariate effects are generally non-constant. In real

applications, the model structure is usually unknown, and misspecifying constant effects

as non-constant will probably reduce the estimation efficiency. Huang (2012) constructed

a generalized likelihood ratio statistic to test if the coefficient is a constant. However,

this approach can be computationally expensive as it requires estimating all possible

sub-models. Another limitation is that most existing estimation methods for single-index
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varying-coefficient models are proposed for low-dimensional data.

Penalized estimation methods have been developed for model selection and structure

identification in single-index varying-coefficient models. Feng and Xue (2013) proposed

a penalized estimation method to select and estimate important index parameters and

coefficient functions based on spline approximation and the SCAD penalty (Fan and

Li, 2001). As an extension, Feng and Xue (2015) imposed an additional penalty to the

derivatives of the coefficient functions so as to identify the zero, constant, and varying

effects. With the same purpose to distinguish constant and varying covariate effects, Guan

(2017) proposed an alternative penalization method using the MCP and extended the

penalization framework to a class of generalized linear models in a low-dimensional setting.

All existing penalization methods are developed for continuous or binary outcomes, and

models for censored event time have not been considered. It is unclear whether existing

methods can be extended to accommodate right-censored outcomes, especially under a

semi-parametric outcome model with an infinite-dimensional nuisance parameter.

1.3 Organisation of thesis

To address the aforementioned issues, it is highly desirable to develop a penalized

regression method to identify the true model structure and estimate the varying coefficients

for the censored survival outcomes. We adopt a single-index varying-coefficient model to

accommodate the potential interaction effects between two sets of predictors. We propose

a penalized estimation method to allow separate selection of constant and varying effects.

In an ongoing study, we consider a different approach to accommodate the interaction

effects based on a varying-coefficient additive hazards model. We propose a kernel-based

estimation method to estimate the constant and varying effects.

This thesis is organized as follows. In Chapter 2, we introduce a novel penalized

estimation method for a class of single-index varying-coefficient models. We describe the
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model and estimation procedures and provide applications to a motivating cancer genomic

study. In Chapter 3, we discuss some practical issues about the integrative approach

considered in this thesis and suggest some related directions for further investigation.
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Chapter 2

Penalized estimation in

single-index varying-coefficient

models

2.1 Preliminaries

We propose a penalized (sieve) maximum likelihood estimation method for variable

selection and estimation for a class of single-index varying-coefficient models, which

accommodates continuous and censored outcomes. We adopt a novel two-part penalty

that allows for separate selection of genomic features with non-zero constant effect and

those with effects modified by clinical factors. The proposed penalty functions are

weighted to unify the degree of shrinkage imposed to the constant and varying effects

of a predictor. A coordinate-wise algorithm for computing the penalized estimators is

developed. Unlike existing methods, our method accommodates right-censored survival

outcomes, which are common in cancer genomic studies. Also, the proposed method is

based on convex penalties, which tends to be more computationally stable compared

with the existing methods based on the non-convex penalties.
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2.2 Methodology

2.2.1 Model, data, and sieve likelihood

Let Y be an outcome of interest, U and Z be two sets of low-dimensional predictors that

may overlap, and X ≡ (X0, . . . , Xp)
T be a set of potentially high-dimensional predictors

with X0 = 1. We are interested in the effect of (X,Z) on Y , where the effect of X is

allowed to depend on U . In genomic studies, Y can be a disease outcome such as time

to death, X can be a set of gene expressions, and U and Z can be clinical factors. We

assume the following partial linear single-index varying-coefficient model:

Y | (U ,X,Z) ∼ f
{
· ;

p∑
j=0

gj(U
Tβ)Xj +ZTψ

}
,

where f is a density function, β and ψ are regression parameters, and g0, . . . , gp are

unspecified smooth functions. For model identifiability, we set ‖β‖ = 1, and if U is a

subset of Z, then we set the component of ψ that corresponds to the last component of U

to be 0. This model assumes that the effect of each component of X is characterized by

a non-parametric transformation of an index UTβ. If each gj (j = 0, . . . , p) is constant,

then the model contains only linear effects of (X,Z). If gj is a linear function, then the

model contains the linear effect of Xj and the interaction effect of UTβ and Xj . The

proposed model accommodates many different types of outcomes. For continuous or

categorical outcomes, we set f to be a density from the exponential family. For survival

outcomes, we set f to be the density under the Cox proportional hazards model. Under

the Cox model, the conditional hazard function of survival time T given (U ,X,Z) takes

the form of h(t) exp{
∑p

j=0 gj(U
Tβ)Xj + ZTψ} for t ≥ 0, where h(·) is an unspecified

baseline hazard function.

Suppose there are n observations. For uncensored outcomes, the observed data consist
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of (Yi,U i,Xi,Zi) for i = 1, . . . , n. The log-likelihood function is

`n(β,ψ,G) =
n∑
i=1

log f

{
Yi;

p∑
j=0

gj(U
T
i β)Xij +ZT

i ψ

}
,

where G = (g0, . . . , gp). For a potentially right-censored outcome, let Ci be the censoring

time for the i-th subject, Ỹi = min(Yi, Ci), and ∆i = I(Yi ≤ Ci). The observed data

consist of (Ỹi,∆i,U i,Xi,Zi) for i = 1, . . . , n. We set `n to be the log-partial-likelihood

function, such that

`n(β,ψ,G) =
n∑
i=1

∆i

( p∑
j=0

gj(U
T
i β)Xij+Z

T
i ψ−log

[ ∑
h:Ỹh≥Ỹi

exp

{ p∑
j=0

gj(U
T
hβ)Xhj+Z

T
hψ

}])
.

Because the likelihood involves the non-parametric functions (g0, . . . , gp), maximum

likelihood estimation is not feasible. There are many choices of basis functions, including

the Fourier, spline, and wavelet basis functions, for approximating the non-parametric

functions. We adopt B-splines for ease of interpretation and efficient computations. We

propose to approximate gj by B-spline functions. Let (B1, . . . , Bd) be a set of B-spline

functions on a pre-specified set of grid points, such that each function passes through

the origin; the construction of the B-spline functions are discussed in the Appendix.

For j = 0, . . . , p, we approximate gj by γj +
∑d

k=1 αjkBk, where (γj , αj1, . . . , αjd) are

regression parameters. For right-censored outcomes, we set γ0 = 0 for identifiability.

Since the number of regression coefficients increases linearly with the number of knots,

choosing too many knot points may lead to unstable estimation or overfitting. Thus, we

consider a quadratic B-splines with 3 knots in this work.

2.2.2 Penalized sieve likelihood

When p is large, the total number of parameters may be larger than the sample size,

and penalization on γ ≡ (γ0, . . . , γp)
T and α ≡ (αjk)j=0,...,p;k=1,...,d could be adopted
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for stable estimation and variable selection. We propose to estimate the parameters by

maximizing the following penalized log-likelihood function:

p`n(β,ψ,γ,α) = `n

{
β,ψ,

(
γj +

d∑
k=1

αjkBk

)
j=0,...,p

}
−

p∑
j=1

ρ1(γj ;λ1)−
p∑
j=1

ρ2(αj ;λ2),

where ρ1 and ρ2 are penalty functions, λ1 and λ2 are tuning parameters, and αj =

(αj1, . . . , αjd)
T for j = 1, . . . , p. This formulation allows separate selection of constant

and non-constant effects of Xj by separate penalization on γj and αj . Let β̂, γ̂j , and

α̂j denote the penalized estimator of β, γj , and αj , respectively (j = 0, . . . , p). For

j = 1, . . . , p, if γ̂j = 0 and α̂j = 0, then Xj does not have an effect on the outcome in the

estimated model. If only α̂j = 0, then Xj has a constant effect of γ̂j . If α̂j is non-zero,

then Xj has a non-constant effect indexed by UTβ̂.

Many choices of penalty functions, such as the (group) lasso (Tibshirani, 1996;

Yuan and Lin, 2006), SCAD (Fan and Li, 2001; Breheny and Huang, 2009), and MCP

(Zhang, 2007; Breheny and Huang, 2009) are possible. In this work, we propose to set

ρ1(γj ;λ1) = λ1wj |γj | and ρ2(αj ;λ2) = λ2wj(α
T
j Kjαj)

1/2, where wj is a weight for the

j-th predictor, and Kj is some (d× d)-symmetric matrix; the first penalty is similar to

the adaptive lasso penalty (Zou, 2006), and the second penalty is a weighted version of

the group lasso.

There are two advantages of the adaptive-lasso type penalty over other commonly used

penalty functions. First, the adaptive-lasso type penalty can reduce the estimation bias

while retaining the convexity of the regularization term. Although lasso is computationally

efficient, the shrinkage introduced by lasso may result in substantial biases for large

regression coefficients. Non-convex penalties, such as SCAD and MCP, are designed to

diminish this bias while achieving selection consistency. However, this class of penalty

functions tends to possess multiple local optima. To preserve stability, we suggest using a

weighted convex penalty function. Second, the weighted penalty utilizes the information
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that the constant and non-constant effects correspond to the same predictor. Although

conventional choices of penalty functions for ρ1 and ρ2 can produce sparse estimation of

the constant and non-constant effects, they fail to take into account the fact that γj and

αj (j = 1, . . . , p) correspond to the same predictor Xj . The weight wj is introduced to

capture the overall signal strength of gj and unify the degree of shrinkage of γj and αj .

In particular, we set wj = (γ̃2
j + ‖α̃j‖2)−1/2, where γ̃j and α̃j are estimates of γj and αj

obtained from maximizing the penalized log-likelihood with wj = 1 for j = 1, . . . , p. If

the initial estimates γ̃j and α̃j are accurate in that variables with stronger signal receive

smaller weights, then the weighted estimators would yield better variable selection and

estimation accuracy than unweighted estimators.

2.2.3 Estimation

We propose to compute the estimates of (β,ψ,γ,α) using an alternating algorithm.

In particular, we initialize β as some unit vector such that ‖β‖ = 1 and update the

parameter estimates of (γ,α,ψ) and β alternatively until convergence. The algorithm is

as follows:

Step 1: Initialize β̂
(0)

as some unit vector such that
∥∥β̂(0)∥∥ = 1. Set m = 1.

Step 2: Update (γ,α,ψ) by

(
γ̂(m), α̂(m), ψ̂

(m))
≡ arg max

(γ,α,ψ)
p`n
(
β̂

(m−1)
,γ,α,ψ

)
.

For fixed β, the objective function p`n(β,ψ,γ,α) is essentially a penalized

log-likelihood function for a conventional regression model under a group lasso

penalty, and (γ,α,ψ) can be updated using existing algorithms for the group

lasso (Breheny and Huang, 2009).
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Step 3: Update β by

β̂
(m)
≡ arg max

‖β‖=1
`n

{
β, ψ̂

(m)
,

(
γ̂

(m)
j +

d∑
k=1

α̂
(m)
jk Bk

)
j=0,...,p

}
.

For fixed (γ,α,ψ), β can be updated using the Lagrange multiplier method,

and β̂ is defined as the solution of the equations:


∂
∂β `n

{
β,ψ,

(
γj +

∑d
k=1 αjkBk

)
j=0,...,p

}
+ cβ = 0

‖β‖2 − 1 = 0,

where c is the Lagrange multiplier. We can solve for β and c simultaneously

using the Newton-Raphson algorithm.

Step 4: Set m = m+ 1. Repeat Steps 2–4 until convergence.

The performance of the proposed methods depends critically on the choice of tuning

parameters. We propose to select the tuning parameters λ1 and λ2 using a version of the

Bayesian information criterion (BIC), defined as

−2`n(β̂, ψ̂, Ĝ) + q log(n∗),

where Ĝ = (γ̂j +
∑d

k=1 α̂jkBk)j=0,...,p, q is the effective degrees of freedom, and n∗ is the

effective sample size. Specifically, n∗ = n for uncensored outcomes, and n∗ is the number

of uncensored observations for right-censored outcomes. Following Breheny and Huang

(2009), we define the effective degrees of freedom as

q =

p∑
j=1

(
γ̂j
γ̂∗j

+

d∑
k=1

α̂jk
α̂∗jk

)
,

where (γ̂j , α̂jk) denote the estimated value of (γj , αjk), γ̂
∗
j denote the maximizer of the

unpenalized log-likelihood function with respect to γj with other parameters fixed at the
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estimated value, and α̂∗jk denote the maximizer of the unpenalized log-likelihood function

with respect to αjk with other parameters fixed at the estimated value. We select (λ1, λ2)

that yield the minimum modified BIC value.

In conventional group lasso problems, the predictor matrix of the j-th group, de-

noted by W j , is typically transformed such that WT
jW j is a diagonal matrix with

equal diagonal elements. This is equivalent to setting Kj to be (a scaled version of)

WT
jW j . In the current problem, however, the “predictor matrix,” which consists of rows

(Xij , B1(UT
i β)Xij , . . . , Bd(U

T
i β)Xij) (i = 1, . . . , n), depends on the unknown parameter

β. One estimation strategy is to set Kj based on the predictor matrix evaluated at

some initial estimator of β, such as that obtained under Kj = I. Another strategy is

to update Kj with β after each iteration; this can be thought of as setting Kj based

on the converged value of β. Another difficulty that arises from the unknown β is that

the converged estimates may vary with the initial value of β. We propose to consider

multiple initial values and select the final estimates that yield the smallest modified BIC.

In the simulation studies, we considered 5 initial values of β and updated K along with

β at each iteration, and the algorithm converged at almost all replicates.

2.3 Simulation studies

We set the dimension of U to be 4 and generated components of U as i.i.d. standard

normal variables. We set Z = U and generated X from the p-variate standard normal dis-

tribution. We set β = (0.4,−0.4, 0.2,−0.8)T, ψ = (0.2,−0.2, 0.5,−0.5)T, and g1, . . . , g20

to be non-zero constant, linear, or non-linear functions; the functions are plotted in

Figure 2.3. We set g0 and g21, . . . , gp to be constant at 0. We considered a continuous

outcome variable and a right-censored outcome variable. For the continuous outcome,

we set f(y;µ) = (2π)−1/2 exp{−(y − µ)2/2}, so that conditional on (U ,X,Z), Y follows

the normal distribution with unit variance. For the right-censored outcome, we set
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f(y;µ) = h(y) exp(µ) exp
{
− exp(µ)

∫ y
0 h(t) dt

}
, where h is the baseline hazard function

with h(t) = t. The censoring time was generated from an exponential distribution with

the mean chosen to yield a censoring rate of about 30%. In each setting, we considered a

sample size of 500 and p = 20, 50, and 100.

We compare the proposed methods with conventional regression models with or

without interaction terms. For the proposed methods, we simply set the degree of

the B-spline functions to be 2 and the knots at −maxi ‖U i‖2, 0, and maxi ‖U i‖2. We

considered the proposed weighted approach and an unweighted approach with wj = 1

(j = 1, . . . , p). We also considered the lasso regression on the linear predictors (X,Z)

and the lasso regression on X, Z, and pairwise interactions between components of X

and U ; in both cases, coefficients of Z were not penalized. In addition, we considered

adaptive lasso for the models with or without interactions, where the weights are the

inverse of the absolute value of the corresponding lasso estimates. In all methods, the

tuning parameters were selected using the modified BIC.

We evaluate the performance of each method in terms of variable selection and

prediction. For variable selection, we report the sensitivity and the false discovery rate

(FDR). Sensitivity is the proportion of correctly identified signal variables among all true

signal variables. FDR is the proportion of noise variables that are incorrectly identified

as signal variables among all selected variables. For the proposed methods, a variable Xj

is selected if either γj or αj is estimated as non-zero (j = 1, . . . , p). For the proposed

methods and lasso with interactions, we also report the sensitivity and FDR with respect

to the selection of non-constant effects, where for the proposed methods, the non-constant

effect of Xj is selected if α̂j 6= 0, and for lasso with interactions, the non-constant effect

is selected if the coefficient of the product of Xj and any component of U is non-zero.

In addition, we report the total numbers of the selected variables and the number of

variables identified to have non-constant effects.

For prediction, we report the mean-squared error (MSE), defined as E(η̂−η0)2, where
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η0 = η(β0,G0,ψ0), η(β,G,ψ) ≡
∑p

j=1 gj(U
Tβ)Xj +ZTψ, and (β0,G0,ψ0) denote the

true parameter values. For the proposed methods, η̂ = η(β̂, Ĝ, ψ̂), where (β̂, Ĝ, ψ̂)

denote the estimated parameter values. For lasso with and without interaction effects,

η̂ =
∑

j b̂jXj +
∑

k ĉkZk +
∑

j,l d̂jlXjUl and η̂ =
∑

j b̃jXj +
∑

k c̃kZk, respectively, where

b̂j , ĉk, d̂jl, b̃j , and c̃k are the corresponding estimated regression parameters. For the

right-censored outcome, we also compute the concordance index (C-index) (Harrell et al.,

1982), defined as P(ηi > ηj | Ỹi < Ỹj) for two generic independent subjects indexed

by i and j. C-index typically takes values between 0.5 and 1, where a value of 0.5

indicates no discrimination and a value of 1 indicates perfect discrimination. We compute

the MSE and C-index on a set of independently generated data set of size 5000. For

the proposed methods, we also report the absolute inner product |βTβ̂| to assess the

estimation accuracy of β̂. The simulation results for the continuous and right-censored

outcomes based on 100 replicates are summarized in Tables 2.1 and 2.2, respectively.

Figures 2.1 – 2.6 show the average estimated values of g1, . . . , g20 under different settings.
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Table 2.1: Simulation results for the continuous outcome.
p = 20 p = 50 p = 100

Proposed Main Interaction Proposed Main Interaction Proposed Main Interaction

Unweighted

SEN Overall 0.990 0.800 0.978 0.978 0.776 0.966 0.962 0.754 0.960
Non-constant 0.999 - 0.949 0.987 - 0.917 0.983 - 0.912

FDR Overall 0 0 0 0.377 0.295 0.504 0.543 0.479 0.706
Non-constant 0.253 - 0.426 0.436 - 0.718 0.530 - 0.833

NS Overall 19.80 16.01 19.57 31.57 22.21 39.13 42.44 29.30 65.60
Non-constant 13.48 0 16.65 17.70 0 32.84 21.17 0 54.84

|βTβ̂| 0.997 - - 0.996 - - 0.996 - -
MSE 0.378 1.583 0.990 0.569 1.754 1.160 0.698 1.764 1.206

Weighted

SEN Overall 0.948 0.657 0.908 0.915 0.649 0.900 0.898 0.638 0.897
Non-constant 0.979 - 0.848 0.951 - 0.826 0.915 - 0.834

FDR Overall 0 0 0 0.155 0.096 0.324 0.247 0.200 0.540
Non-constant 0.069 - 0.243 0.154 - 0.552 0.222 - 0.709

NS Overall 18.96 13.14 18.15 21.79 14.47 26.90 24.11 16.19 39.43
Non-constant 10.57 0 11.36 11.33 0 18.83 11.93 0 29.19

|βTβ̂| 0.998 - - 0.997 - - 0.997 - -
MSE 0.313 1.602 1.008 0.408 1.724 1.135 0.544 1.730 1.198

NOTE: “SEN” represents sensitivity; “NS” represents number of selected variables; “Main” represents lasso regression
model without interactions; “Interaction” represents lasso regression model with interactions; “Overall” gives values
of corresponding measures concerning all components of X; “Non-constant” gives values of corresponding measures
concerning components of X with non-constant effects on the outcome.
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Figure 2.1: Estimated coefficients for the continuous outcome under p = 20.
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Figure 2.2: Estimated coefficients for the continuous outcome under p = 50.
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Figure 2.3: Estimated coefficients for the continuous outcome under p = 100.
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Table 2.2: Simulation results for the right-censored outcome.
p = 20 p = 50 p = 100

Proposed Main Interaction Proposed Main Interaction Proposed Main Interaction

Unweighted

SEN Overall 0.962 0.795 0.948 0.909 0.737 0.914 0.856 0.689 0.874
Non-constant 0.916 - 0.895 0.805 - 0.852 0.702 - 0.794

FDR Overall 0 0 0 0.319 0.297 0.446 0.477 0.480 0.629
Non-constant 0.176 - 0.392 0.283 - 0.661 0.386 - 0.776

NS Overall 19.24 15.90 18.97 26.95 21.11 33.28 33.06 26.78 48.24
Non-constant 11.28 0 14.91 11.42 0 25.51 11.84 0 36.66

|βTβ̂| 0.993 - - 0.974 - - 0.957 - -
MSE 0.843 1.873 1.419 1.357 2.142 1.701 1.518 2.134 1.746
C-index 0.772 0.716 0.743 0.758 0.716 0.738 0.745 0.708 0.727

Weighted

SEN Overall 0.883 0.631 0.864 0.831 0.615 0.832 0.763 0.580 0.787
Non-constant 0.806 - 0.780 0.708 - 0.732 0.593 - 0.687

FDR Overall 0 0 0 0.136 0.139 0.303 0.239 0.273 0.489
Non-constant 0.073 - 0.238 0.148 - 0.518 0.217 - 0.658

NS Overall 17.66 12.62 17.27 19.35 14.39 24.13 20.37 16.19 31.22
Non-constant 8.78 0 10.40 8.42 0 15.60 7.64 0 21.03

|βTβ̂| 0.994 - - 0.991 - - 0.982 - -
MSE 0.691 1.822 1.209 0.929 1.983 1.414 1.166 1.947 1.528
C-index 0.773 0.714 0.743 0.766 0.716 0.740 0.754 0.710 0.726

NOTE: See NOTE to Table 2.1.
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In terms of prediction, both the weighted and unweighted versions of the proposed

methods correctly identify the interaction structure between X and U and yield higher

prediction accuracy than other methods. In particular, they yield lower MSE in all

settings and higher C-index for the right-censored outcome. In addition, the estimated

value of β is close to the true value, indicating that the proposed methods can correctly

identify the composition of the index. The weighted estimators are generally accurate,

whereas the unweighted estimators tend to be biased towards zero due to the uniform

shrinkage imposed on all parameters. Lasso with interaction terms generally yields smaller

MSE than lasso with main effects alone, suggesting that a varying-coefficient model can

be approximated by a conventional regression model with pairwise interaction terms.

Nevertheless, possibly due to the complexity of the interaction model, the performance

of lasso with interaction is substantially worse than that of the proposed methods.

In terms of variable selection, both the proposed methods and lasso with interactions

have substantially higher sensitivity than lasso with main effects alone. The FDR is lower

under the proposed methods than lasso with interactions, indicating that the proposed

methods tend to yield more interpretable models. The FDR for the proposed methods is

higher than those for lasso with main effects alone under some settings, possibly because

lasso with main effects alone generally selects much fewer variables. For all methods,

the weighted estimators yield substantially lower FDR than the unweighted estimators.

By setting higher penalty for noise variables and lower penalty for signal variables, the

weighted method yields higher variable selection accuracy.

2.4 Real data examples

2.4.1 TCGA NSCLC data set

We demonstrate the application of the proposed methods using a set of NSCLC patients

from TCGA. The data set consists of two subtypes of lung cancer, namely lung adeno-
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Figure 2.4: Estimated coefficients for the right-censored outcome under p = 20.
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Figure 2.5: Estimated coefficients for the right-censored outcome under p = 50.
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Figure 2.6: Estimated coefficients for the right-censored outcome under p = 100.
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carcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We are interested in the

potential risk factors associated with pulmonary function, measured by the percentage of

expiratory volume in one second (FEV1); a higher FEV1 represents larger lung capacity,

and patients with severely impaired lung function have an increased risk of mortality

(Hole et al., 1996). In particular, we investigated the effects of gene expressions and

clinical variables on FEV1, allowing for interactions between the two types of variables.

We fit the proposed model with U consisting of age, number of packs of cigarettes smoked

per year or pack-year smoked (PYS), cancer subtype, tumor stage, and gender; tumor

stage is dichotomized into stage I versus stage II or above. This formulation allows the

effects of genomic factors to be modified by clinical variables. We set Z = U to allow

linear effects of clinical variables on FEV1. After discarding genes with zero expressions

for 30% or more subjects, the data set consists of 17148 gene expressions and the number

of gene expressions is substantially greater than the sample size. For stable estimation,

we performed screening to filter out the gene expressions that appear to contribute

little signal to the variations in FEV1. We set X to consist of 300 gene expressions

that have the most significant marginal association with FEV1 (adjusted for clinical

variables). After removing subjects with missing data, the sample size is 353, with 185

and 168 LUAD and LUSC patients, respectively. Following the simulation studies, we

set the degree of the B-spline functions to be 2 and the knots at −maxi ‖U i‖2, 0, and

maxi ‖U i‖2. We adopted the weighted penalty approach. We standardized all variables

to have zero mean and unit variance.

We identified 17 gene expressions to be associated with FEV1. The selected gene

expressions and their estimated coefficients are shown in Table 2.3. Among the selected

gene expressions, EIF4A3 was known to be involved in the development of NSCLC, and

KCNK2 and N4BP1 were known as prognostic factors in some cancer types (Innamaa

et al., 2013; Xu et al., 2017; Lin et al., 2018; Li et al., 2019). The effects of CDK11A and

LRRC29 were identified to vary with the clinical variables; CDK11A has previously been
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Table 2.3: Selected gene expressions for TCGA NSCLC analysis.
Gene Coefficient

ANKRD13D 0.143
CDK11A (varying)
CRELD2 1.671
C12orf56 −1.611
C8orf38 2.008
C8orf58 2.348
EIF4A3 −0.069
KCNK2 −2.506
LOC642826 1.233
LRRC29 (varying)
LRRTM2 −1.168
NRN1L 1.553
N4BP1 1.449
PLEKHG4B 0.724
RNF122 −3.429
THAP4 1.591
ZNF75D 2.656

NOTE: “varying” represents a varying coefficient. The estimated coefficient functions
are given in Figure 2.7.

shown to be associated with many cancer types (Zhou et al., 2016). The estimated index

parameters β for age, PYS, gender, tumor stage, and cancer subtype are 0.199, 0.637,

0.157, −0.548, and −0.479, respectively. The index is dominated by PYS, tumor stage,

and cancer subtype, suggesting that the effects of CDK11A and LRRC29 mainly depend

on these three clinical factors. Figure 2.7 displays the estimated values of g0 and the g

functions for CDK11A and LRRC29 under different index values.
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Figure 2.7: Estimated coefficients for TCGA NSCLC analysis.

2.4.2 TCGA LGG data set

We also applied the proposed methods to identify potential risk factors associated with

the survival of patients diagnosed with lower-grade glioma (LGG) in TCGA. The data set

consists of grade II and grade III tumors. Instead of integrating clinical and a single type

of genomic variables, we investigated the effects of protein expressions, gene expressions,

and clinical variables on time to death since initial diagnosis, allowing for interactions

between protein and gene expressions. After discarding genes with zero expressions for

30% or more subjects, the data set consists of 17238 gene expressions. We set the overall

survival time to be the outcome of interest, which is potentially right-censored. We

reduced the dimension of gene expressions using principal component analysis and set U

to be the first 7 principal components, which account for over 50% of the total variability.

The set of linear predictors Z consists of U , age, histological grade, and gender. The

set of predictors X includes the expressions of 209 proteins or phospho-proteins. After

removing subjects with missing data, the sample size is 423. The median time to censoring

or death is 630 days, and the censoring rate is 76.83%.

We identified 7 important protein expressions to be associated with overall survival.

The selected protein expressions and their estimated coefficients are shown in Table 2.4.

Some of the selected proteins, including FoxM1, HSP70, and Cyclin B1, have previously
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Table 2.4: Selected protein expressions for TCGA LGG analysis.
Protein Coefficient

Cyclin B1 (varying)
FoxM1 −0.001
HER3 −0.149
HSP70 −0.393
MRE11 −0.241
Stathmin 0.251
ERCC5 0.257

NOTE: “varying” represents a varying coefficient. The estimated coefficient functions
are given in Figure 2.8.

been shown to be associated with the survival of glioma patients (Chen et al., 2008;

Beaman et al., 2014; Zhang et al., 2017). The effect of Cyclin B1 was identified to vary

with the gene expressions. The estimated index parameters β correspond to the first 7

principal components are 0.192, 0.224, −0.320, 0.059, 0.343, 0.114, and 0.823 respectively.

Figure 2.8 displays the estimated values of g0 and the g function for Cyclin B1 under

different index values.
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Figure 2.8: Estimated coefficients for TCGA LGG analysis.
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2.5 Discussion and future work

In this chapter, we considered a single-index varying-coefficient model for the integration

of clinical and genomic features, where the effects of genomic features are allowed to vary

with clinical factors. The effects of genomic features are set as non-parametric functions

of (a projection of) the clinical factors to accommodate intrinsically different scales

of measurements between clinical and genomic data. Unlike most existing estimation

methods for varying-coefficient models, our penalized approach separately selects for

predictors with constant effects and those with varying effects. Numerical studies illustrate

that the proposed methods effectively distinguish zero, constant, and non-constant effects

and yield accurate predictions.

The proposed methods are general and can be applied with different choices of penalty

functions, basis functions, or outcome distributions. As shown in the simulation studies,

the adaptive-lasso-type estimators are generally more accurate than the lasso estimators.

Nevertheless, the weighted method is computationally expensive as it requires model

estimation twice. Other penalties that attempt to reduce the estimation bias, including

SCAD and MCP, can be chosen for the constant or varying effects. But these non-convex

penalties tend to possess multiple local optima and result in non-convergence. Also,

different families of splines, such as integrated B-splines (Ramsay, 1988) and convex

splines (Meyer, 2008), can be used to approximate the non-parametric functions. For

example, we may adopt the integrated B-splines to enforce the monotonicity of splines.

However, the estimation of regression coefficients may be challenging since the associated

regression coefficients should be with the same sign (except for the constant term).

Furthermore, different outcome models, such as the accelerated failure time model or

additive hazards model, can be adopted.

There are several possible directions for future research. First, we may be interested

in the interaction between two types of high-dimensional predictors, in which case the
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predictor vector U is high-dimensional. One possible approach is to project U to a

low-dimensional space prior to fitting the proposed model. For example, as in the analysis

of the LGG data, the projection can be performed by principal component analysis.

However, the projected features may not have simple interpretations because it turns the

original features into components that are combinations of different features. Another

possible approach is to perform variable selection on U by introducing an extra penalty on

β (Peng and Huang, 2011; Feng and Xue, 2013, 2015; Radchenko, 2015). This approach

would involve substantial computational difficulty due to the introduction of an extra

penalty term. Second, it is of interest to consider more than two data types. A possibility

is to introduce extra indices that correspond to the extra data types so that the effect of

a variable may be a function of multiple indices. This approach, however, faces enormous

computational challenges because it involves multivariate non-parametric functions.

2.6 Appendix: Construction of basis functions

We discuss the construction of 2-degree basis functions that pass through the origin and

are continuously differentiable; basis functions of a general degree can be constructed

analogously. Let (k1, . . . , kd) be an ordered set of grid points, where the number of grid

points d is odd and is larger than 2, and k(d+1)/2 = 0. Let d′ = (d+ 1)/2, (L̃1, . . . , L̃d′)

be a set of 2-degree B-spline functions on (0,−kd′−1, . . . ,−k1), and (R1, . . . , Rd′) be a set

of 2-degree B-spline functions on (0, kd′+1, . . . , kd). All B-spline functions do not have an

intercept, such that L̃1(0) = · · · = L̃d′(0) = R1(0) = · · · = Rd′(0) = 0. Let Lj = L̃j(−x)

for j = 1, . . . , d′. The set of continuously differentiable spline functions spanned by these

B-spline functions is therefore

{
f =

d′∑
j=1

cjLj +
d′∑
j=1

cj+d′Rj : (c1, . . . , c2d′) ∈ R2d′ ,
d′∑
j=1

cjL
(1)
j (0) =

d′∑
j=1

cj+d′R
(1)
j (0)

}
,
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where h(1) denotes the first derivative of the function h. We can then construct the basis

function as (
L1 +

kd′+1

kd′−1
R1, L2, . . . , Ld′ , R2, . . . , Rd′

)
.
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Chapter 3

Parameter estimation in the

varying-coefficient additive

hazards model

3.1 Preliminaries

In the previous chapter, we have discussed an integrative approach to characterize the

interaction effects between two data types by mapping the features from one data type

(known as the effect modifiers) linearly into an index and allowing the covariate effects

of the features from another data type to vary with the index. This approach is based

on the assumption that a unique index can be used to describe the varying covariate

effects of different covariates. Through summarizing the effect modifiers in an index, the

resulting model is easy to interpret because we can visualize the variation of the covariate

effects at different index values. However, in some applications, it is not appropriate to

assume that all covariate effects are modified by a unique index. For example, in cancer

genomics, a gene mutation can affect the behavior of genes as well as their effects on

tumor progression in many ways. In this case, it is rigid to use the same composition
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of gene mutations as the index to describe the changes of covariate effects for different

genes.

Apart from the single-index varying-coefficient model, other forms of varying-coefficient

models have been explored and used to accommodate the potential interaction effects

between two heterogeneous data types. For example, Ni et al. (2019) studied a varying-

sparsity accelerated failure time model and proposed a Bayesian framework to identify

relevant protein-gene interactions on cancer progression. While allowing for the effect

of proteins on patients’ survival to be modified by different gene sets, their method

requires prior knowledge on the coding genes specific to each protein. Also, Ma and Song

(2015) considered a varying index coefficient model that allows the covariate effects to be

modified by distinct index values. However, incorporating multiple indices faces enormous

computational challenges, and it is even infeasible when the number of covariates is large.

On top of the computational challenges, summarizing the effect modifiers linearly can

also be restrictive.

We may consider an alternative way to accommodate multivariate effect modifiers

instead of mapping them into an index. As reviewed in Chapter 1, spline and kernel

are two popular non-parametric estimation techniques that can be used to estimate

the varying coefficients. Indeed, these techniques have been extended to accommodate

multivariate variables for density estimation and can be generalized to approximate the

varying coefficients. In spline regression, a (multivariate) spline is determined by a given

grid configuration. For example, a univariate spline is a piecewise polynomial separated

by the knots, a bivariate spline is a piecewise polynomial in two variables separated by a

grid of curves, and so on. In kernel regression, the basic difference between multivariate

kernel from its univariate analog is the bandwidth estimator. Silverman (1986) considered

a multivariate kernel and defined the bandwidth estimator as a diagonal matrix with

size depending on the number of effect modifiers. In our context, the multivariate kernel

is preferred to the multivariate spline for involving fewer hyperparameters. For the
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multivariate spline, we need to specify a set of grid points in each dimension. Whereas

for the multivariate kernel, we only need to specify a bandwidth in each dimension.

Therefore, we focus on the multivariate kernel smoothing technique to estimate the

varying coefficients characterized by multivariate effect modifiers.

In this ongoing study, we consider a varying-coefficient model for the right-censored

survival outcomes, which is of most practical interest in genomic studies. We adopt

our idea on an additive hazards model by Lin and Ying (1994) with time-independent

covariate effects. The additive hazards model is a useful alternative to the proportional

hazards model when the proportionality assumption is in doubt. With the purpose

to derive a computationally efficient estimator for the varying covariate effects, the

additive hazards model is more appealing than the proportional hazards model for several

reasons. First, the additive hazards model with time-independent covariate effects has

an explicit closed-form solution that may lower the incurred computational cost for

estimation. Second, the estimator from the additive hazards model is relatively easier to

study theoretically as its asymptotic covariance matrix does not depend on the regression

parameter (see Lin and Ying, 1994).

3.2 Models and estimations

3.2.1 Lin and Ying’s additive hazards model

Before introducing the proposed model, we briefly review Lin and Ying’s (1994) additive

hazards model. For an event time T and a vector of possibly time-dependent covariates

X with corresponding parameter β, Lin and Ying (1994) considered the following hazard

function:

λ(t |X) = λ0(t) + βTX(t),

where λ0 is an unspecified baseline hazard function. In the following discussion, we

assume X is time-independent and drop the time factor t. Since the likelihood function
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is difficult to work with owing to the non-parametric baseline hazard function, Lin and

Ying (1994) considered a least-squares argument based on the counting process and

martingale theory.

We introduce the usual notation for the counting process. For a sample of size n,

suppose that we observe (Ti,∆i,Xi), where Ti is the observed time, ∆i is an event

indicator with ∆i = 1 for failure and ∆i = 0 for right-censoring, and Xi is a vector

of p-dimensional covariates for i = 1, . . . , n. We denote Ni(t) = ∆iI(Ti ≤ t) and

Yi(t) = I(Ti ≥ t) as the observed event process and the at-risk process for the i-th

subject, respectively. By the Doob–Meyer decomposition, the observed event process

Ni(t) can be uniquely decomposed that for every i and t,

Ni(t) = Mi(t) +

∫ t

0
Yi(s) dΛ(s |Xi),

where Λ(t) =
∫ t

0 λ(s) ds. Lin and Ying (1994) proposed to estimate the cumulative

baseline hazard, Λ0(t) =
∫ t

0 λ0(s) ds, by solving
∑n

i=1 dMi(t) = 0. Thus, the estimator

for the cumulative baseline hazard can be expressed as

Λ̂0(β̂, t) =

∫ t

0

∑n
i=1{dNi(s)− Yi(s)β̂

T
Xi ds}∑n

i=1 Yi(s)
.

To estimate β, they introduced the following semi-parametric estimating function:

n∑
i=1

∫ τ

0
{Xi − X̄(t)}{dNi(t)− Yi(t)βTXi dt}, (3.1)

where τ is the maximum follow-up time and X̄(t) =
∑n

i=1XiYi(t)/
∑n

i=1 Yi(t) is the

average covariate vector for the subjects at risk at time t with the convention that 0/0 = 0.

Solving (3.1) equals to zero yields the following closed-form solution for β:

β̂ =

[
n∑
i=1

∫ τ

0
Yi(t){Xi − X̄(t)}⊗2 dt

]−1 n∑
i=1

∫ τ

0
{Xi − X̄(t)} dNi(t),
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where a⊗2 = aaT. With the standard martingale theory, Lin and Ying (1994) have

shown that β̂ is consistent and asymptotically normal with a covariance matrix that does

not depend on β. Through some algebraic manipulation, we can write (3.1) as b− V β

with

b =
1

n

n∑
i=1

∫ τ

0
{Xi − X̄(t)}dNi(t),

V =
1

n

n∑
i=1

∫ τ

0
Yi(t){Xi − X̄(t)}⊗2 dt.

Since V is positive semidefinite, integrating −(b − V β) with respect to β leads to a

least-squares-type loss function given by βTV β/2− bTβ.

3.2.2 Varying-coefficient additive hazards model

To allow the covariate effects of X to be modified by another predictor, we study a

varying-coefficient additive hazard model. We introduce a set of q-dimensional covariates

U into the model, which characterizes the effect of X on the hazard rate. Also, we

consider a set of r-dimensional covariates Z that is assumed to have a constant effect α

on the hazard rate. The covariates U and Z may overlap. In genomic studies, X can be

a set of gene expressions, U can be gene mutations, and Z can be clinical factors. We

consider the following partial linear varying-coefficient additive hazards model:

λ(t | U ,X,Z) = λ0(t) + β(U)TX +αTZ,

where β(U) ≡ (β1(U), . . . , βp(U))T is a vector of unknown coefficient functions that

allows the effect of each component of X to vary with U . In the following discussion,

we introduce a naive kernel estimation method and a proposed method to estimate the

covariate effects.
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Naive kernel estimation method

A naive approach to estimate β(·) and α is to treat α as varying and then combine the

estimates by taking weighted average. Let W ≡ (XT,ZT)T and θ(·) ≡ (β(·)T,α(·)T)T.

For any vector u in the support of U , the varying covariate effect θ(u) can be estimated

by minimizing the following kernel-weighted loss function:

`{θ(u)} =
1

2
θ(u)TV (u)θ(u)− b(u)Tθ(u),

with

b(u) =
1

n

n∑
i=1

∫ τ

0
{W i − W̄ (u, t)}KH(U i − u) dNi(t),

V (u) =
1

n

n∑
i=1

∫ τ

0
Yi(t){W i − W̄ (u, t)}⊗2KH(U i − u) dt,

W̄ (u, t) =

∑n
i=1 Yi(t)W iKH(U i − u)∑n
i=1 Yi(t)KH(U i − u)

,

where KH(x) ≡ |H|−1/2K(H−1/2x) is a kernel function with bandwidth matrix H . The

estimator of θ evaluated at u is given by θ̂(u) = V (u)−1b(u).

A possible way to estimate α is to compute the weighted average of α̂(u) over the

support of U (Yin et al., 2008). After obtaining θ̂(u) at different values of u, we can

form a global estimate of α̂ given by

α̂w =

∫
U
w(v)α̂(v) dv,

where U denotes the support of U and w(v) is a weight matrix satisfying
∫
U w(v) dv =

Ir×r as an identity matrix. A natural choice of the weight matrix is the standardized

inverse covariance matrix of α̂(u), that is, w(u) = {
∫
U J(v) dv}−1J(u), where J(u) is

the inverse of the sub-matrix of the asymptotic covariance matrix that corresponding to
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α.

In fact, the naive kernel estimation method is based on an assumption that the

baseline hazard function is a function of time t and effect modifier U . Consider a special

case that the bandwidth is a matrix with all zeros, then the estimation of β(u) will

only based on the subjects taken at a target point u. In this case, the hazard rate at u

is estimated individually without borrowing the information from the neighborhood of

u. This naive method will probably leads to loss of efficiency as it does not utilize the

information that the λ0 is the same over different values of U .

Proposed method

To motivate an estimation method that accounts for the fact that λ0 is the same over

different values of U , we consider a modification of the kernel estimation method based

on a block-wise formulation. We first consider the model without constant covariate effect

for simple illustration. Suppose that U is discrete and the subjects can be stratified into

K non-overlapping groups based on the values of U , so that we can partition X into(
X(1)T, . . . ,X(K)T

)T
and there are nk subjects in the k-th block for k = 1, . . . ,K. As it

was assumed that the effects of X vary over different values of U , we consider a block-

wise formulation to separate the effects across strata. Let B ≡ diag
(
X(1)T, . . . ,X(K)T

)
denote a block diagonal matrix and β(k) denote the covariate effect corresponding to the

subjects in the k-th block. The covariate effects over the K blocks, (β(1)T, . . . ,β(K)T)T,

can be estimated using the estimation procedures for Lin and Ying’s (1994) additive

hazards model by replacing X with B.

Let N
(k)
i (t) and Y

(k)
i (t) denote the event process and at-risk process for the i-th

subject in the k-th block at time t, respectively. We can rewrite the estimating function

in the following block-wise expression:

B̄(t) =

∑n
i=1 Yi(t)Bi∑n
i=1 Yi(t)
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=

(∑n1
i=1 Y

(1)
i (t)X

(1)T
i∑n

i=1 Yi(t)
, . . . ,

∑nK
i=1 Y

(K)
i (t)X

(K)T
i∑n

i=1 Yi(t)

)T

=
(
X̄

(1)
(t)T, . . . , X̄

(K)
(t)T

)T
.

Hence, b ≡ n−1
∑n

i=1

∫ τ
0 {Bi − B̄(t)} dNi(t) is a vector with the k-th element given by

1

n

nk∑
i=1

∫ τ

0
X

(k)
i dN

(k)
i (t)− 1

n

K∑
j=1

nj∑
i=1

∫ τ

0
X̄

(k)
(t) dN

(j)
i (t),

and V ≡ n−1
∑n

i=1

∫ τ
0 Yi(t){Bi − B̄(t)}⊗2 dt is a block matrix with the k-th diagonal

block given by

1

n

∫ τ

0

{
nk∑
i=1

Y
(k)
i (t)X

(k)
i X

(k)T
i

}
dt− 1

n

∫ τ

0

1∑n
i=1 Yi(t)

{
nk∑
i=1

Y
(k)
i (t)X

(k)
i

}⊗2

dt

and the (k, k′)-th off-diagonal element (k 6= k′) given by

− 1

n

∫ τ

0

1∑n
i=1 Yi(t)

{
nk∑
i=1

Y
(k)
i (t)X

(k)
i

}{ nk′∑
i=1

Y
(k′)
i (t)X

(k′)T
i

}
dt.

In contrast to building separate model for each block using the naive method, estimating

the covariate effects among finite number of groups in a block-wise manner allows us to

take into account the fact that λ0 is the same among subjects regardless of their values

of U .

To accommodate continuous U , we mimic this block-wise formulation and consider a

set of modified kernel-weighted functions. Let u1, . . . ,uM be a set of grid points. The

covariate effects evaluated at the grid points, β(u1), . . . ,β(uM ), can be estimated simulta-

neously by Ṽ
−1
b̃, where Ṽ is a block matrix with V (um,um) as the m-th diagonal block

and V (um,um′) as the (m,m′)-th off-diagonal block and b̃ ≡ (b(u1)T, . . . , b(uM )T)T
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with

b(um) =
1

n

n∑
i=1

∫ τ

0

XiKH(U i − um)

n̂1
dNi(t)

− 1

n

∫ τ

0

1∑n
i=1 Yi(t)

∑n
i=1 Yi(t)XiKH(U i − um)

n̂1

n∑
i=1

dNi(t),

V (um,um) =
1

n

∫ τ

0

n∑
i=1

Yi(t)XiX
T
i KH(U i − um)

n̂1
dt

− p̂1

∫ τ

0

1∑n
i=1 Yi(t)

{∑n
i=1 Yi(t)XiKH(U i − um)

n̂1

}⊗2

dt,

V (um,um′) =− p̂1

∫ τ

0

1∑n
i=1 Yi(t)

{∑n
i=1 Yi(t)XiKH(U i − um)

n̂1

}
×
{∑n

i=1 Yi(t)X
T
i KH(U i − um′)

n̂1

}
dt,

p̂1 =

∑n
i=1KH(U i − u1)∑M

m=1

∑n
i=1KH(U i − um)

,

n̂1 =
n∑
i=1

KH(U i − u1).

The term n̂1 can be viewed as an estimate of the aggregated weight indicating the

contribution of subjects over a neighborhood of u1. If all the components in H are set

to be 0, then this formulation reduces to the estimating function under the block-wise

formulation.

In analogy with the kernel-weighted functions motivated by the block-wise for-

mulation for estimating the varying covariate effect, we propose to estimate β ≡

(β(u1)T, . . . ,β(uM )T)T and α simultaneously by

 β̂

α̂

 =

 Ṽ Ṽ α

Ṽ
T

α V α,α


−1 b̃

bα

 ,
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where Ṽ α = (V α(u1)T, . . . ,V α(uM )T)T with

bα =
1

n2

1

p̂1

n∑
i=1

∫ τ

0
{Zi − Z̄(t)} dNi(t),

V α,α =
1

n2

1

p̂1

n∑
i=1

∫ τ

0
Yi(t){Zi − Z̄(t)}⊗2 dt,

V α(um) =
1

n

n∑
i=1

∫ τ

0
Yi(t)

[
{XiZ

T
i −XiZ̄(t)T}KH(U i − um)

n̂1
− X̄(um, t)Z

T
i

+ X̄(um, t)Z̄(t)T

]
dt,

X̄(um, t) =

∑n
i=1Xi(t)Yi(t)KH(U i − um)

n̂1
∑n

i=1 Yi(t)
,

Z̄(t) =

∑n
i=1 Yi(t)Zi∑n
i=1 Yi(t)

.

3.3 Simulation studies

We assessed the performance of the proposed method in estimating the constant and

varying covariate effects. For simplicity, we considered a univariate X, and its effect

on the outcome is modified by a univariate U with q = 1 and bivariate U with q = 2,

respectively. The components of X and U were generated independently from a uniform

distribution on (0, 1). Also, we considered a univariate linear predictor Z that was

generated from a Bernoulli distribution with probability 0.5. We used the following two

examples to illustrate the performance of our method:

Model 1: β(u) = 3ū3,

Model 2: β(u) = 3{1− sin(ūπ)},

where ū is the sample mean of the components of u. The varying-coefficient functions

β(u) under Model 1 and 2 are plotted in Figure 3.1. In both models, we set α to be

0.5. In the following simulations, we set λ0(t) = t, and the censoring time follows an

exponential distribution with the mean chosen to yield a censoring rate of about 30%. In
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each setting, we considered sample sizes n = 200, 500, and 1000.
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Figure 3.1: Varying-coefficient functions under Model 1 and 2.

In addition to the proposed method, we considered two alternative methods: the

regression model on linear predictors X and Z, and the varying-coefficient model, on

which the naive kernel estimation method is adopted. For the kernel-weighted methods, we

adopted a Gaussian kernel function given by K(x) = (2π)−q/2 exp{−xTx/2}. Following

Silverman (1986), the bandwidth estimator was approximated by H1/2 = diag(h1, . . . , hq)

with hj = σ̂j [4/{n(q + 2)}]1/(q+4) and σ̂j is the empirical standard deviation of U ·j , for

j = 1, . . . , q.

We assess the prediction performance of each method using an independent test

sample of size 1000. For the naive kernel estimation method, we adopted a two-step

estimation procedure to obtain the estimates for α and β(·). We first obtain the

estimates α̂ over the support of U and compute the weighted average of α̂w using

the training data. Given the information of α̂wZ, we can then estimate the varying

covariate effect β(u) on the validation data. For the proposed method, we adopted the

linear interpolation to obtain the estimates for the points off the grid using the local

estimates β(u1), . . . , β(uM ). For a univariate U , we obtained the local estimate β̂ at

u = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1} and used linear interpolation to obtain

the estimates for the points off the grid. Similarly, for a bivariate U , we obtained the
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local estimate β̂ by considering {0, 0.25, 0.5, 0.75, 1} on each dimension of u, and we used

bilinear interpolation to obtain the estimates for the points off the grid.

The prediction performance of each method is assessed using the following measures.

We report the mean-squared error (MSE), defined as E[{β̂(U)− β0(U)}X + (α̂−α0)Z]2,

where β̂(U) and β0(U) denote the estimated and true values of β evaluated at U ,

respectively; α̂ and α0 denote the estimated and true values of α, respectively. To

evaluate the ability of β̂(·) and α̂ in discriminating individual risk, we compute the

C-index (Harrell et al., 1982) by comparing ηi = β̂(U i)Xi + α̂Zi for i = 1, . . . , 1000. Also,

we report the biases and standard deviations of the estimates of α and the estimates of

β at some grids. The mean of each measure over 100 replicates under different settings

are summarized in Tables 3.1–3.6.

Table 3.1: Simulation results under Model 1.

n = 200 n = 500 n = 1000

q = 1

MSE
Constant 0.326 0.305 0.287

Varying 0.157 0.074 0.042
Proposed 0.086 0.045 0.022

C-index
Constant 0.575 0.578 0.579

Varying 0.614 0.621 0.624
Proposed 0.623 0.626 0.628

q = 2

MSE
Constant 0.166 0.125 0.115

Varying 0.332 0.139 0.087
Proposed 0.129 0.044 0.027

C-index
Constant 0.593 0.598 0.600

Varying 0.581 0.601 0.610
Proposed 0.611 0.623 0.627

NOTE: “Constant” represents regression model on
linear predictors X and Z; “Varying” represents the
varying-coefficient model where the naive kernel es-
timation method is adopted; “Proposed” represents
the varying-coefficient model where the modified ker-
nel estimation method is adopted.
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Table 3.2: Biases under Model 1 with q = 1 (Standard deviations in parentheses).

u Constant Varying Proposed

n = 200

α - 0.032 (0.188) 0.011 (0.182) 0.026 (0.183)

β(u)

0.2 0.481 (0.302) −0.005 (0.417) 0.036 (0.320)
0.4 0.313 (0.302) 0.060 (0.441) 0.053 (0.316)
0.6 −0.143 (0.302) −0.038 (0.480) 0.027 (0.394)
0.8 −1.031 (0.302) −0.004 (0.702) −0.013 (0.479)

n = 500

α - 0.001 (0.119) −0.004 (0.115) −0.002 (0.122)

β(u)

0.2 0.464 (0.220) 0.047 (0.300) 0.029 (0.234)
0.4 0.296 (0.220) −0.023 (0.323) 0.031 (0.238)
0.6 −0.160 (0.220) 0.009 (0.344) 0.020 (0.242)
0.8 −1.048 (0.220) −0.023 (0.482) −0.017 (0.300)

n = 1000

α - 0.007 (0.075) 0.004 (0.076) 0.007 (0.075)

β(u)

0.2 0.476 (0.152) 0.028 (0.223) 0.013 (0.168)
0.4 0.308 (0.152) 0.046 (0.249) 0.040 (0.170)
0.6 −0.148 (0.152) 0.012 (0.268) 0.051 (0.206)
0.8 −1.036 (0.152) 0.009 (0.360) 0.007 (0.222)

NOTE: See NOTE to Table 3.1.
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Table 3.3: Biases under Model 1 with q = 2 (Standard deviations in parentheses).

u Constant Varying Proposed

n = 200

α - −0.007 (0.187) −0.033 (0.179) 0.008 (0.183)

β(u)

(0.25,0.25) 0.460 (0.349) 0.137 (0.720) 0.182 (0.485)
(0.25,0.75) 0.132 (0.349) −0.033 (0.832) 0.127 (0.508)
(0.75,0.25) 0.132 (0.349) 0.092 (0.723) 0.182 (0.506)
(0.75,0.75) −0.759 (0.349) 0.121 (0.969) 0.084 (0.612)

n = 500

α - −0.004 (0.112) −0.023 (0.112) 0.003 (0.114)

β(u)

(0.25,0.25) 0.376 (0.205) −0.041 (0.449) 0.046 (0.251)
(0.25,0.75) 0.048 (0.205) 0.079 (0.520) 0.046 (0.336)
(0.75,0.25) 0.048 (0.205) −0.042 (0.511) 0.077 (0.303)
(0.75,0.75) −0.842 (0.205) −0.047 (0.695) −0.006 (0.419)

n = 1000

α - 0.012 (0.072) 0 (0.073) 0.015 (0.072)

β(u)

(0.25,0.25) 0.379 (0.125) 0.041 (0.374) 0.019 (0.201)
(0.25,0.75) 0.051 (0.125) −0.040 (0.412) 0.035 (0.232)
(0.75,0.25) 0.051 (0.125) −0.060 (0.382) 0.008 (0.247)
(0.75,0.75) −0.839 (0.125) 0.065 (0.482) 0.082 (0.321)

NOTE: See NOTE to Table 3.1.
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Table 3.4: Simulation results under Model 2.

n = 200 n = 500 n = 1000

q = 1

MSE
Constant 0.419 0.391 0.374

Varying 0.214 0.106 0.064
Proposed 0.130 0.077 0.044

C-index
Constant 0.588 0.589 0.589

Varying 0.624 0.636 0.640
Proposed 0.636 0.642 0.643

q = 2

MSE
Constant 0.202 0.172 0.163

Varying 0.378 0.154 0.094
Proposed 0.141 0.052 0.032

C-index
Constant 0.599 0.603 0.605

Varying 0.584 0.600 0.612
Proposed 0.611 0.621 0.626

NOTE: See NOTE to Table 3.1.
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Table 3.5: Biases under Model 2 with q = 1 (Standard deviations in parentheses).

u Constant Varying Proposed

n = 200

α - 0.025 (0.204) 0.005 (0.199) 0.021 (0.198)

β(u)

0.2 −0.463 (0.330) −0.221 (0.603) −0.185 (0.415)
0.4 0.627 (0.330) 0.149 (0.480) 0.097 (0.340)
0.6 0.627 (0.330) 0.063 (0.430) 0.071 (0.374)
0.8 −0.463 (0.330) −0.101 (0.616) −0.148 (0.434)

n = 500

α - −0.002 (0.130) −0.007 (0.121) −0.001 (0.131)

β(u)

0.2 −0.463 (0.225) −0.052 (0.446) −0.093 (0.316)
0.4 0.627 (0.225) 0.028 (0.328) 0.059 (0.253)
0.6 0.627 (0.225) 0.069 (0.299) 0.052 (0.233)
0.8 −0.463 (0.225) −0.097 (0.438) −0.118 (0.279)

n = 1000

α - 0.005 (0.088) 0.003 (0.084) 0.007 (0.088)

β(u)

0.2 −0.455 (0.173) −0.028 (0.335) −0.055 (0.246)
0.4 0.634 (0.173) 0.081 (0.256) 0.079 (0.184)
0.6 0.634 (0.173) 0.050 (0.234) 0.079 (0.191)
0.8 −0.455 (0.173) −0.043 (0.331) −0.057 (0.218)

NOTE: See NOTE to Table 3.1.
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Table 3.6: Biases under Model 2 with q = 2 (Standard deviations in parentheses).

u Constant Varying Proposed

n = 200

α - −0.004 (0.180) −0.024 (0.186) 0.010 (0.179)

β(u)

(0.25,0.25) −0.397 (0.315) 0.113 (0.962) 0.156 (0.657)
(0.25,0.75) 0.482 (0.315) 0.041 (0.756) 0.182 (0.446)
(0.75,0.25) 0.482 (0.315) 0.185 (0.658) 0.228 (0.434)
(0.75,0.75) −0.397 (0.315) 0.073 (0.852) 0.047 (0.534)

n = 500

α - −0.004 (0.113) −0.024 (0.110) 0.003 (0.116)

β(u)

(0.25,0.25) −0.474 (0.192) −0.076 (0.576) 0.031 (0.346)
(0.25,0.75) 0.405 (0.192) 0.114 (0.468) 0.083 (0.301)
(0.75,0.25) 0.405 (0.192) 0.021 (0.454) 0.117 (0.264)
(0.75,0.75) −0.474 (0.192) −0.074 (0.621) −0.031 (0.361)

n = 1000

α - 0.007 (0.071) −0.003 (0.071) 0.011 (0.069)

β(u)

(0.25,0.25) −0.479 (0.120) 0.025 (0.515) 0.006 (0.259)
(0.25,0.75) 0.400 (0.120) −0.008 (0.361) 0.067 (0.195)
(0.75,0.25) 0.400 (0.120) −0.005 (0.329) 0.049 (0.212)
(0.75,0.75) −0.479 (0.120) 0.033 (0.441) 0.047 (0.287)

NOTE: See NOTE to Table 3.1.
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Overall, the proposed method yields higher prediction accuracy than the alternatives.

In all simulation scenarios, the proposed method has indicated desirable prediction

performance for the lowest MSE and highest C-index values. The proposed method

outperforms the naive method, possibly because the proposed method can account for the

fact that all subjects share the same baseline hazard function. Also, it can be seen that

the proposed method yields much higher predictive power than the naive method when

the sample size is small. This demonstrates the importance of utilizing the information of

the baseline hazard function from the neighborhoods in parameter estimation especially

when sample size is limited. The biases under the two kernel-based estimation methods

are similar, but the standard deviations of the estimates under the proposed method are

less than those under the naive method.

3.4 Discussion and future work

In this chapter, we considered a varying-coefficient additive hazards model to accom-

modate the interaction effects between two sets of predictors. We investigated two

kernel-based methods for estimating the varying covariate effects. We first considered

an intuitive way that simply multiplies a kernel weight to each term associated with an

observation before computing the weighted average. Thus, both the varying covariate

effects and the baseline hazards function evaluated at a target point are estimated in a

local sense. This naive method suffers a loss of efficiency because it does not account for

the fact that the underlying baseline hazard functions are the same among all subjects.

To overcome this inadequacy, we proposed a modified kernel estimating function that

utilizes the information of the baseline hazard function from all subjects rather than

the observations near the target point. Preliminary results illustrated that the proposed

method indeed yields better prediction accuracy than the naive method.

The proposed method can be applied to integrative genomic analyses by specifying each
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component of U to represent the information of a data type, thereby accommodating the

interaction effect of Xj with multiple data types for j = 1, . . . , p. Since the (multivariate)

kernel-based method allows each component of U to modify the covariate effect flexibly,

it may accommodate the difference in scales among multiple data types.

There are several directions for future research. First, it is desirable to study the

asymptotic properties of the proposed estimators under appropriate choices of bandwidth

and grid points. In particular, we will examine the asymptotic properties for the case

when the number of covariates p increases with the sample size n. The asymptotic

properties can be developed using the counting process and martingale theories. Second,

we will allow penalization on the constant and varying covariate effects to accommodate

high-dimensional covariates. Third, we will study methods for identifying covariates

whose effects on the hazard rate can be reasonably assumed to be constant. It is desirable

to develop a method that identifies which feature should be fitted as a linear predictor.

3.5 Appendix: Additional simulations

To evaluate the sensitivity of the number of grids on the model fit, we conducted additional

simulations to assess the performance of the the proposed method under different number

of grids for a univariate U . We considered to estimate β̂(u1), . . . , β̂(uM ) simultaneously

for M = 5, 9, and 13. The additional simulation results are summarized in Tables

3.7–3.10.

Under Model 1, where β is monotonically increasing for 0 ≤ u ≤ 1, the MSE and

C-index values are almost the same over different choices of grids. When we increase the

number of grid points, the biases reduce in nearly all settings as more interpolation grids

can generally capture the curvilinear structure of the true function and improve model

fit. Nevertheless, the improvement in prediction accuracy is not substantial under Model

1. If the true function is steadily increasing or decreasing, then a small number of grid
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Table 3.7: Additional simulation results under Model 1 with q = 1.

n = 200 n = 500 n = 1000

MSE

Constant 0.326 0.305 0.287
Varying 0.157 0.074 0.042

Proposed (M = 5) 0.089 0.046 0.023
Proposed (M = 9) 0.086 0.045 0.022

Proposed (M = 13) 0.087 0.045 0.022

C-index

Constant 0.575 0.578 0.579
Varying 0.614 0.621 0.624

Proposed (M = 5) 0.624 0.627 0.628
Proposed (M = 9) 0.623 0.626 0.628

Proposed (M = 13) 0.622 0.626 0.627

NOTE: See NOTE to Table 3.1.

Table 3.8: Additional simulation results: Biases under Model 1 with q = 1 (Standard
deviations in parentheses).

u Constant Varying
Proposed

M = 5 M = 9 M = 13

n = 200

α - 0.032 (0.188) 0.011 (0.182) 0.027 (0.183) 0.026 (0.183) 0.025 (0.188)

β(u)

0.2 0.481 (0.302) −0.005 (0.417) 0.059 (0.323) 0.036 (0.320) 0.020 (0.323)
0.4 0.313 (0.302) 0.060 (0.441) 0.096 (0.313) 0.053 (0.316) 0.040 (0.321)
0.6 −0.143 (0.302) −0.038 (0.480) 0.122 (0.356) 0.027 (0.394) 0.010 (0.402)
0.8 −1.031 (0.302) −0.004 (0.702) −0.019 (0.476) −0.013 (0.479) −0.023 (0.488)

n = 500

α - 0.001 (0.119) −0.004 (0.115) −0.003 (0.122) −0.002 (0.122) −0.002 (0.122)

β(u)

0.2 0.464 (0.220) 0.047 (0.300) 0.045 (0.242) 0.029 (0.234) 0.017 (0.236)
0.4 0.296 (0.220) −0.023 (0.323) 0.074 (0.231) 0.031 (0.238) 0.017 (0.242)
0.6 −0.160 (0.220) 0.009 (0.344) 0.099 (0.234) 0.020 (0.242) 0.003 (0.246)
0.8 −1.048 (0.220) −0.023 (0.482) −0.032 (0.287) −0.017 (0.300) −0.025 (0.310)

n = 1000

α - 0.007 (0.075) 0.004 (0.076) 0.006 (0.076) 0.007 (0.075) 0.007 (0.075)

β(u)

0.2 0.476 (0.152) 0.028 (0.223) 0.034 (0.168) 0.013 (0.168) 0.001 (0.173)
0.4 0.308 (0.152) 0.046 (0.249) 0.092 (0.169) 0.040 (0.170) 0.027 (0.172)
0.6 −0.148 (0.152) 0.012 (0.268) 0.123 (0.187) 0.051 (0.206) 0.039 (0.211)
0.8 −1.036 (0.152) 0.009 (0.360) −0.009 (0.209) 0.007 (0.222) −0.004 (0.236)

NOTE: See NOTE to Table 3.1.
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Table 3.9: Additional simulation results under Model 2 with q = 1.

n = 200 n = 500 n = 1000

MSE

Constant 0.419 0.391 0.374
Varying 0.214 0.106 0.064

Proposed (M = 5) 0.129 0.082 0.050
Proposed (M = 9) 0.130 0.077 0.044

Proposed (M = 13) 0.136 0.081 0.046

C-index

Constant 0.588 0.589 0.589
Varying 0.624 0.636 0.640

Proposed (M = 5) 0.636 0.642 0.643
Proposed (M = 9) 0.636 0.642 0.643

Proposed (M = 13) 0.635 0.641 0.643

NOTE: See NOTE to Table 3.1.

Table 3.10: Additional simulation results: Biases under Model 2 with q = 1 (Standard
deviations in parentheses).

u Constant Varying
Proposed

M = 5 M = 9 M = 13

n = 200

α - 0.025 (0.204) 0.005 (0.199) 0.020 (0.198) 0.021 (0.198) 0.021 (0.198)

β(u)

0.2 −0.463 (0.330) −0.221 (0.603) −0.126 (0.399) −0.185 (0.415) −0.234 (0.428)
0.4 0.627 (0.330) 0.149 (0.480) 0.271 (0.332) 0.097 (0.340) 0.047 (0.347)
0.6 0.627 (0.330) 0.063 (0.430) 0.283 (0.340) 0.071 (0.374) 0.018 (0.382)
0.8 −0.463 (0.330) −0.101 (0.616) −0.104 (0.433) −0.148 (0.434) −0.189 (0.444)

n = 500

α - −0.002 (0.130) −0.007 (0.121) −0.003 (0.130) −0.001 (0.131) −0.001 (0.130)

β(u)

0.2 −0.463 (0.225) −0.052 (0.446) −0.070 (0.325) −0.093 (0.316) −0.133 (0.324)
0.4 0.627 (0.225) 0.028 (0.328) 0.254 (0.247) 0.059 (0.253) 0.008 (0.258)
0.6 0.627 (0.225) 0.069 (0.299) 0.247 (0.228) 0.052 (0.233) 0.002 (0.238)
0.8 −0.463 (0.225) −0.097 (0.438) −0.103 (0.270) −0.118 (0.279) −0.154 (0.289)

n = 1000

α - 0.005 (0.088) 0.003 (0.084) 0.007 (0.091) 0.007 (0.088) 0.007 (0.088)

β(u)

0.2 −0.455 (0.173) −0.028 (0.335) −0.043 (0.232) −0.055 (0.246) −0.091 (0.256)
0.4 0.634 (0.173) 0.081 (0.256) 0.279 (0.188) 0.079 (0.184) 0.033 (0.185)
0.6 0.634 (0.173) 0.050 (0.234) 0.272 (0.188) 0.079 (0.191) 0.035 (0.197)
0.8 −0.455 (0.173) −0.043 (0.331) −0.052 (0.208) −0.057 (0.218) −0.092 (0.231)

NOTE: See NOTE to Table 3.1.
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points may be sufficient to explain the variation in β and the prediction performance

is not very sensitive to the number of grids. Under Model 2, where β is quadratic for

0 ≤ u ≤ 1, there is a slight improvement in MSE and considerable improvement in bias

when we increase the number of grids from 5 to 9. If the true function is fluctuating,

then more grid points are required to capture the variation of β over different values of u.

Since the computational costs increase with the number of grids, appropriate choices of

grids is essential to balance the trade-off between prediction accuracy and computational

efficiency.
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Chapter 4

Conclusion

In this thesis, we have studied varying-coefficient models to characterize the interaction

effects among features from different data types. In Chapter 2, we have proposed a

penalized integrative regression framework based on the single-index varying-coefficient

model to select clinically relevant genomic features. Our method allows flexible modeling

of clinical-genomic interactions as well as inducing sparsity in the single-index varying-

coefficient models. The proposed method is generic and can accommodate various types

of outcome variables, such as continuous and censored outcomes. One potential limitation

of this method is that the model suffers a lack of flexibility as we need to summarize the

multivariate effect modifiers linearly into a unique index for all covariate effects.

In Chapter 3, we have studied a varying-coefficient additive hazards model to accom-

modate the interaction effects on the censored outcome. We have considered a more

versatile approach to incorporate multivariate effect modifiers based on the kernel smooth-

ing technique. This approach overcomes the limitation of restricting all covariate effects to

be modified by a unique composition of effect modifiers. We have proposed a kernel-based

estimation method to estimate the constant and varying covariate effects simultane-

ously. Further investigation is needed for penalized estimation methods to accommodate

high-dimensional covariates that are frequently encountered in genomic studies.
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