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Abstract

The topology of chiral materials is attractive because a wider parameter space

can be provided by the coupling of electric and magnetic fields in their constitutive

relations. Parity inversion symmetry is already broken without applying external

magnetic fields due to left-handed and right-handed circular polarization of optical

activity; however, the time reversal symmetries can still be preserved. Optical ac-

tivities has been gradually taken into consideration when developing the topological

theories of bi-anisotropic materials. In this study, the techniques of transformation

optics have been used to design one-dimensional chiral photonic crystals. Trans-

formation optics is a theory based on the invariance of Maxwell’s equations under

coordinate transformation. Due to the flexibility of Jacobian matrix, the trajectory

of a light beam can be controlled so that some “unrealistic” phenomena in conven-

tional view can be easily achieved, for example, illusion optics. However, coordinate

transformation is not valid to predict electromagnetic properties in bi-anisotropic

medium via simple anisotropic medium since the constitutive relations of the media

are different. Other transformation method is also investigated such that there exists

a conformal mapping between two spaces. Instead of the trajectory, optical activity

attributed to chirality can be controlled owing to the flexibility of the transformation
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matrix. The designed chiral materials will act as a unit cell of a photonic crystal

such that a chiral photonic crystal can be constructed. Topological features, Zak

phases and topological edge states, of the designed chiral photonic crystals are ex-

amined. The eigenmodes, TE and TM modes, are no longer degenerated because of

anisotropy and existence of chirality. Zak phases calculated by these coupled eigen-

states are briefly discussed. With choosing suitable electromagnetic tensors, two

independent modes can be decoupled such that the topological theories developed

from simple isotropic layered photonic crystals can be totally applied.
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Chapter 1

Introduction

1.1 Overview and objectives

The theory of transformation optics has been raised up since two independent

studies proposed by Pendry et. al. [1] and Leonhardt [2] in 2006. This theory can

provide more information on the electromagnetic parameters for achieving specific

physical phenomena [3]. On the basis of the invariances of Maxwell’s equations

and Helmholz equation under coordinate transformation, the electromagnetic (EM)

waves and electromagnetic tenors in the original and transformed spaces have a

one-to-one mapping method, which is called conformal or quasi-conformal mapping

[2–7]. The idea is similar to general relativity [8]. The wave properties in flat space

will be used to predict the properties in curve spaces. Rather than first considering

the structure of the materials, the trajectory of EM waves can be easily controlled

by the flexibility of the Jacobian matrix; therefore, some physical phenomena being

hardly achieved in conventional ways can be easily overcome [1–7]. Famous examples
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are matematerials, illusion optics [2–4], polarization splitters [5], extreme plasmon-

ics [6] and antenna [7]. Although recent studies are mainly focusing on controlling

the path of light to achieve particular phenomena, the techniques of transformation

optics are also able to transform simple anisotropic media to bi-anisotropic media.

Bi-anisotropic materials are attractive because optical activities can occur in bi-

anisotropic medium without applying external magnetic fields [9]. Because of the

differences of the constitutive relations between two media, other transformation

methods should be considered instead of coordinate transformation [8]. In this the-

sis, the transformation between one-dimensional (1D) simple anisotropic media and

1D anisotropic media with isotropic chirality is investigated. Instead of the trajec-

tory, optical activity can be controlled owing to the flexibility of the transformation

matrix; on the other hand, the theories developed from 1D simple anisotropic ma-

terials can be totally applied since there is a mapping between simple and chiral

media.

Transformation optics can achieve some physical phenomena, and some prop-

erties can still be retained after continuous spatial deformation, for example, topo-

logical features [10]. Topological photonics becomes attractive since Haldane and

Raghu [11] had transformed the ideas from quantum electronic systems to photonic

crystals in 2005 [10]. It has been gradually confirmed by the recent experimental

results [12–16]. The analogy of topological system between quantum electric sys-

tem and photonic system is widely discussed in recent studies [10, 17]. Due to the

coupling of electric and magnetic fields, bi-anisotropic materials can provide a wider

parameter space for the realization of different topological phases compared to sim-

ple anisotropic materials [10, 18]. Furthermore, parity inversion symmetry of chiral
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materials is broken due to natural optical activities [9, 10, 19–21], whereas the time-

reversal symmetry can still be preserved [10, 19]. In some studies, left-handed and

right-handed circular polarization (LCP and RCP) of optical activities contributed

by chirality (“spin” of photons) is taken into consideration, and chiral matematerials

are used to design photonic topological insulators [18, 19]. Non-trivial topological

phases of chiral metamaterials have been theoretically demonstrated in recent stud-

ies [21, 22]. In this study, the concept of “spin” of photons is not required and only

the topological theories of simple isotropic binary photonic crystals are applied. By

treating the designed 1D chiral material as a unit cell of a photonic crystal, a 1D

chiral photonic crystal can be constructed. Zak phases and topological edge states

of the designed chiral photonic crystals are investigated.

In chapter 1, some fundamental concepts of chiral materials, ideas of transfor-

mation optics and topological theories of photonic systems are reviewed. In chapter

2, the details of the transformation between 1D simple anisotropic medium and 1D

anisotropic medium with isotropic chirality are discussed. The band structures of

the designed chiral photonic crystals are also investigated. Zak phases of the chiral

photonic crystals and the topological properties are examined in chapter 3.

1.2 Reviews on chiral materials

Chiral materials are composed of the particles, especially molecules, which

cannot superimposed on their mirror images (enantiomer) [23, 24]. The discovery of

optical actvities caused by chirality can be traced back to early 19th century [9, 23].

In 1811, Arago discovered rotatory dispersion occurred in quartz crystals [9]. Few
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Table 1.1: Classification of bi-anisotropic media. [9]

κ = 0 κ 6= 0

χ = 0 Simple anisotropic medium Anisotropic chiral medium

χ 6= 0 Tellegen medium General bi-anisotropic medium

years later, Biot proposed the optical rotation should be attributed to the molecules

rather than their aggregates in solid state since optical rotation can occur in liquid

and gases [9, 23]. This phenomenon is named to be natural optical activity and the

materials which can induce this effect are called chiral materials. Before reviewing

the constitutive relations, we should clarify the distinction between natural and

magnetic optical activities. Natural optical activity is caused by the chiral molecules

and the phenomenon is reciprocal. For instance, by assuming the position of the

observer is unchanged, if the direction of optical rotation is anticlockwise , the

rotation will be clockwise when the light is propagating from the opposite direction.

In contrast, magnetic optical activity (or called Faradays rotation) is non-reciprocal,

which is induced via applying external magnetic field to particular achiral media so

that the media become anisotropic. More details of the differences can be found in

Refs. [24, 25].

Electromagnetic waves in materials are governed by the Maxwell’s equations

and the constitutive relations. The constitutive relations of general bi-anisotropic

media can be written as [26]

D = ε0εE−
√
ε0µ0 (χT − iκT )H, B =

√
ε0µ0 (χ+ iκ)E + µ0µH, (1.1)

where E and B are electric and magnetic fields respectively; also, D and H are
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macroscopic electromagnetic fields. ε and µ are relative dielectric permittivity and

magnetic permeability tensors. ε0 and µ0 are permittivity and permeability in free

space. The magneto-electric material tensors χ and κ are called non-reciprocity and

chirality tensors respectively. Noted that the magneto-electric material tensors are

dimensionless and they are pesudotensors [27]. i.e.,

P{χ(r)} = −χ(−r), P{κ(r)} = −κ(−r), (1.2)

where P is spatial–inversion operator. Table 1.1 shows the classification of bi-

anisotropic media according to the coupling of χ and κ. In this study, non-reciprocal

properties of materials, magneto-electric effects, are not included and thereby χ is

assumed to be 0. Although chiral materials are not uncommon in nature, the values

of chirality parameters of nature materials are usually small [9, 24]; nevertheless,

strong chiral effects can be produced by resonant or artificial fabrication [9, 24, 28].

According to the properties of matrices, chirality tensor can be decomposed in the

form [26]:

κ = κI + N + J, (1.3)

where I, N and J are identity, symmetric and anti-symmetric matrices respectively.

Hence, as shown in Table 1.2, chiral media can be further classified into 7 types

according to the coupling of the matrices. For the sake of simplicity, isotropic chiral

medium is mainly focused in this thesis.

In the past 20 years, chiral metamaterial was one of the famous research topics

in matter physics. Metamaterials require the permittivity and permeability are both

smaller than 0 such that the refractive index can be negative. In chiral materials, the
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Table 1.2: Classification of chiral media. [26]

Coupling parameters Classes

κ 6= 0, N = 0, J = 0 Isotropic chiral medium (Pasteur medium)

κ 6= 0, N 6= 0, J = 0 Anisotropic chiral medium

κ = 0, N 6= 0, J = 0 Pseudochiral medium

κ = 0, N = 0, J 6= 0 Omega medium

κ 6= 0, N = 0, J 6= 0 Chiral omega medium

κ = 0, N 6= 0, J 6= 0 Pseudochiral omega medium

κ 6= 0, N 6= 0, J 6= 0 General reciprocal bi-anisotropic medium

handedness of chirality results in different refractive indices in opposite directions.

The refractive index of isotropic chiral materials can be written as [23, 29]

n± =
√
εµ± κ. (1.4)

Negative refractive index can be achieved without requiring ε and µ both smaller

than 0. The studies on chiral metamaterials are still ongoing, whereas the objectives

are different from the past. Most studies focus on using metamaterials to achieve

particular physical phenomena rather than investigating its properties nowadays, for

examples, original target of transformation optics — illusion effects [1–6] and non-

trivial topological phase of chiral metamaterials [19, 21, 22]. Chiral metamaterials

are commonly not included in the topic of transformation optics because coordinate

transformation is not valid for transforming a simple anisotropic medium to a bi-

anisotropic medium [8]. In the following sections and chapters, the ideas of the

transforming simple anisotropic media to bi-anisotropic media are discussed, such

that chiral metamaterials may be able to take into consideration.
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1.3 Reviews on Transformation optics

1.3.1 Ideas of transformation optics

The main idea of transformation optics is based on the invariances of Maxwell’s

equations and Helmholz equation under coordinate transformation [1–8]. The Fara-

day’s and Ampere’s laws in macroscopic scale are

∇× E + iωB = 0, ∇×H− iωD = Jf , (1.5)

where free electrical current Jf is assumed to be 0. As mentioned in previous section,

the macroscopic fields are following the constitutive relations corresponding to the

types of materials. The constitutive relations of simple anisotropic materials are

D = ε0εE, B = µ0µH, (1.6)

In the coordinate space x, Maxwell’s equations in simple anisotropic materials are

∇× E(x) + iωµ(x)H(x) = 0, ∇×H(x)− iωε(x)E(x) = 0. (1.7)

If there is a transformation from space x to x′, where x′ = x′(x), the relations of

the macroscopic EM fields between two spaces are

E′(x′) = (AT )−1E(x), H′(x′) = (AT )−1H(x), (1.8)

where A is a Jacobian matrix with components Aij = ∂x′i/∂xj. The transformation

is according to contravariant bases rather than covariant bases. The details can be
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found in Appendix A.1. Due to the invariance of Maxwell’s equations, equation

(1.7) in the transformed space should be maintained but all symbols and operators

are following with prime(′) to emphasize the symbols are in the transformed space.

i.e.,

∇′× E′(x′) + iωµ′(x′)H′(x′) = 0, ∇′×H′(x′)− iωε′(x′)E′(x′) = 0. (1.9)

As shown in Fig. 1.1, the light beam in the transformed space still follows the

original trajectory corresponding to its original coordinates [1–8]; in other words,

the trajectory of the light beam can be controlled by adjusting the Jacobian matrix

such that some “unrealistic” physical phenomena in conventional views can be easily

achieved. The permittivity and permeability tensors in the transformed space are

ε′(x′) =
Aε(x)AT

detA
, µ′(x′) =

Aµ(x)AT

detA
, (1.10)

which will be the physical parameters when the materials are constructed in reality.

The mathematical foundations of transformation optics are shown in Appendix A.2.

Such relations was simply regraded as a mathematical techniques to solve the wave

equations before Pendry et. al. [1] and Leonhardt [2] proposed engineering the invis-

ibility cloaks, super-scatters and super-absorbers by guiding the trajectory of light

[3, 4]. This theory has become one of the famous theoretical designing tools now.

The success in experimental demonstration of invisibility cloaks has also confirmed

the validity of this theory [7].
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(a) (b)
𝒙 space 𝒙′ space

Light beamLight beam

Figure 1.1: (a) The trajectory of the light beam in the original space. The original space

is chosen to be vacuum due to simplicity. (b) The trajectory of the light beam in the

transformed space. The path of the light beam is changed after coordinate transformation,

but it still follows its original trajectory in the original space.

1.3.2 Transformation optics meets chirality

As mentioned before, the constitutive relations of bi-anisotropic and sim-

ple anisotropic materials are different due to the occurrence of optical activities

in bi-anisotropic medium. Since non-reciprocity is not included in this study, the

constitutive relations of chiral materials are

D = ε0εE− i
√
ε0µ0 κ

TH, B = i
√
ε0µ0 κE + µ0µH, (1.11)

where κ(x) is the chirality tensor. Maxwell’s equations (1.7) should be modified as:

∇× E(x)− ω
√
ε0µ0 κ(x)E(x) + iωµ(x)H(x) = 0,

∇×H(x)− ω
√
ε0µ0 κ

T (x)H(x)− iωε(x)E(x) = 0.

(1.12)
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Because it is expected that there is a conformal mapping between simple anisotropic

medium and general reciprocal bi-anisotropic medium, Maxwell’s equations (1.9) in

the transformed space should be maintained. Clearly, Maxwell’s equations in two

spaces are no longer invariant, and thereby other transformation methods should be

considered such that the transformation matrix can eliminate the chirality tensor.

Thus, different from normal approaches of transformation optics, the transformation

matrix is also an unknown in this situation. There is a remark that although A will

still be used to represent the transformation matrix, it will no longer be a Jacobian

matrix. i.e., Aij 6= ∂x′i/∂xj. After some mathematical calculations (see Appendix

B), a contradiction appears during the transformation:

εijk[(∂jA
α
k)E

′
α]− ω√ε0µ0κ

ijAαjE
′
α = 0 (1.13)

and

εijk[(∂jA
α
k)H

′
α]− ω√ε0µ0κ

jiAαjH
′
α = 0, (1.14)

where α and i, j, k are 1, 2, 3, and εijk is the Levi-Civita symbol. Here, Einstein

notation is implied. In order to resolve this contradiction, different transformation

matrices of E and H fields should be applied. In general, this idea is valid for 3-

dimensional structures; however, for the sake of simplicity, only isotropic chirality

(κij = κδij) and 1D systems are considered in this study. The transformation matrix

can be independent of the fields by choosing suitable parameters; hence, the trans-

formations of the fields and tensors, equations (1.8) and (1.10), can be maintained.

The mathematical details of transformation from simple anisotropic medium to gen-

eral reciprocal bi-anisotropic medium are shown in Appendix B. Also, it is trivial

10



that the transformation matrix is dependent on frequency because optical activi-

ties are frequency-dependent phenomena in general. For instance, optical rotatory

dispersion is owing to different rotation angles of different colours of visible light

[30]. If transformations of E and H between two spaces are achieved, the theories of

simple anisotropic materials can be totally applied in chiral materials; furthermore,

chiral materials which are new, complicated and having an analytical wave solution

can be easily designed when simple anisotropic materials which have an analytical

wave solution are considered as reference structures.

1.4 Reviews on topological theories in 1D phon-

tonic system

1.4.1 Zak phase

In 1983, Berry [31] realized a geometric phase in quantum mechanics which

can give observable effects. One of the famous examples is Aharonov-Bohm effect

[32]. In 1989, Zak [33] had picked up the theory of Berry’ s phase and applied it in

1D electronic periodic systems. Because of the similarity of Schrödinger’s equation

and Maxwell’s equations, Hadlane and Raghu [11] had successfully transferred the

topological theories from electronic systems to photonic crystals in 2005 [14], and

this idea had been confirmed by experimental results in 2008 [12]. A new phases

of matter called topological insulators is discovered from this theory. Photonic

topological insulator can transmit EM waves without back-reflection [14]. Thus, this

theory—topological photonics had been rapidly developed and become a popular

realm in photonics. In this section, the topological theories related to my study are

11



going to be reviewed.

The Zak phase of the nth isolated band can be numerically calculated by

ΦZak
n = i

∑
m

ln〈Ψm|Ψm+1〉+ i ln〈Ψf |Ψi〉, (1.15)

where |Ψm〉 is the normalized eigenstate at the mth Bloch wave vector km; |Ψi〉

and |Ψf〉 are the initial and final eigenstates of the nth isolated band such that the

path in k space is a close loop. In general, the Zak phase of an isolated band can

be an arbitrary complex number [34]. It can be quantized if certained symmetries

existed in the system and the point of the symmetry is picked up. An isotropic

binary photonic crystal is taken as an example. The edge of a white slab is chosen

as an origin in Fig. 1.2(a), whereas the center of a white slab, the inversion center,

is chosen as an origin in Fig. 1.2(c). Figs. 1.2(b) and (d) show that the band

structures are not affected by the positions of the origin; however, Zak phases do

depend on it since the eigenvectors will be changed by the choices of origin. In this

example, the eigenvectors of the system shown in Fig 1.2(a) are complex values; in

contrast, the eigenvectors of the system Fig. 1.2(c) are real, and thereby the Zak

phases can be quantized to 0 or π.

Zak phase is a topological invariance, which is unchanged when the system

undergoes continuous deformation. The reason will be briefly explained here. Ac-

cording to the transformation law, the relation of the numerical eigenvectors between

two position spaces is

|Ψ′m(x′)〉 = A(x)|Ψm(x)〉, (1.16)
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Figure 1.2: (a) and (c) are the structures of the photonic crystals. Double-headed arrows

mark the chosen unit cells, and Λ is the width of a unit cell. The dielectric and magnetic

parameters of the white slab are given by ε = 4 and µ = 1, and the width is 0.3Λ. The

black slab is vacuum slab and the width is 0.7Λ. (b) and (d) are the band structures of

the photonic crystals shown in (a) and (c) respectively. The Zak phase of each isolated

band is labelled. The Zak phases can be quantized when the center of white (or black)

slab is chosen as the origin, the structure shown in (c). The Zak phase of the lowest band

cannot be determined by equation (1.15) due to existence of degenerated point at ω = 0.
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where A is a transformation operator. Because |Ψ′m(x′)〉 and |Ψm(x)〉 are normalized

bases and A(x) is assumed to be real, the inverse of A(x) is equal to its transpose.

Thus,

ln〈Ψ′m|Ψ′m+1〉 = ln〈Ψm|Ψm+1〉. (1.17)

In principle, according to equation (1.13) or (1.14), the transformation matrix for

eliminating the chirality parameter should be dependent on frequency and thereby

〈Ψm|A†m∇kAm|Ψm〉δk should be added in equation (1.17). In practice, the pe-

riod of the transformed structure cannot be determined if the transformation is

frequency-dependent. Mathematically speaking, we first suppose the transformation

operators at frequencies ω1 and ω2 are A(x, ω1) and A(x, ω2) respectively. Despite

of A(x + a1, ω1) = A(x, ω1) and A(x + a2, ω2) = A(x, ω2), it cannot be ensured

a1 = a2. Therefore, adjustments to the chirality parameter are needed when the

designed chiral material acts as a unit cell of a photonic crystal. Examples will be

shown in chapter 2.

1.4.2 Existence of topological edge states in 1D photonic

crystals

Interface states can exist between two connected photonic crystals. If the

interface states can be predicted by some topological invariances, it is possible to say

the interface states are topological protected by certain symmetries. The interface

states of a system composed of two 1D isotropoic binary photonic crystals can be
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predicted by the sign of the surface impedance in the photonic band gap [35, 36]:

sgn
[
ζ(n)
]

= (−1)n+l exp
(
i
n−1∑
p=0

ΦZak
p

)
, (1.18)

where the integer l is the number of degenerated points below the nth photonic

band gap. Interface state appears if sgn
[
ζ(n)
]

of two connected photonic crystals is

opposite in a common gap. Due to existence of a degenerated point at the lowest

frequency (ω = 0), the Zak phase of the lowest band (0th band) is determined by

[35, 36]

exp
(

ΦZak
0

)
= sgn

[
1− εAµB

εBµA

]
. (1.19)

To ensure the Zak phase of each band can be quantized to 0 or π, a point of sym-

metries should be taken as an origin of the system. By supposing the propagation

direction of light along z-axis, this type of binary photonic crystals obeys z-inversion

symmetry and the inversion centers are at the center of each slab [35]. For clear

explanation, the first and second slabs are named as A and B slabs respectively. “a

half of slab A - slab B - a half of slab A” is chosen as the composition of a unit cell of

a photonic crystal, which is the same structure shown in Fig. 1.2(c). To guarantee

the mid-gap positions of two binary photonic crystals are the same, optical path

lengths nAdA + nBdB of the photonc crystals should be kept [35, 36] as the same,

where n and d are the refractive index and the width of a slab respectively; also,

the width of a unit cell is Λ = dA + dB. The transmission spectrum of a system

composed of 10 unit cells of two 1D isotropic binary photonic crystals is shown in

Fig. 1.3(a), and the band structures of photonic crystals 1 and 2 are respectively

shown in Figs. 1.3(b) and (c). The parameters of photonic crystal 1 are given by
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Figure 1.3: (a) The transmission spectrum of a system composed of 10 unit cells of isotropic

binary photonic crystal 1 on the left side and 10 unit cells of isotropic binary photonic

crystal 2 on the right side. The parameters of photonic crystal 1 are given by εA = 3.2,

εB = µA = µB = 1, dA = 0.51Λ and dB = 0.49Λ, and the parameters of photonic crystal

2 are given by εA = 2.868, εB = µA = µB = 1, dA = 0.58Λ and dB = 0.42Λ. (b) and (c)

are the band structures of photonic crystal 1 and 2 respectively. In both band structures,

the Zak phase of each band are denoted near the band and the number in the brackets

are the sum of the Zak phases below the gaps; also, the magenta and cyan strips represent

the gaps with ζ > 0 and ζ < 0 respectively.

εA = 3.2, εB = µA = µB = 1, dA = 0.51Λ and dB = 0.49Λ. The parameters of

photonic crystal 2 are given by εA = 2.868, εB = µA = µB = 1, dA = 0.58Λ and

dB = 0.42Λ. The interface states appear in the 3rd, 6th and 9th gaps, in which ζ of

the photonic crystals are opposite signs. This theory can also be generalized to 1D

isotropic multilayered structures [37]. If a material is designed via transformation

optics, it is usually anisotropic and inhomogenuous; thus, equation (1.18) may not

be directly applied. Specific parameters will be chosen and “second transformation”

will be considered so that equation (1.18) is still suitable to predicting the interface

states.
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1.5 Conclusions

In this chapter, the concepts of chiral materials, general ideas of transforma-

tion optics and topological theories of 1D photonic crystals are briefly reviewed. Due

to occurrence of natural optical activities in chiral materials, the parity inversion

symmetry is broken, and D and B fields depend on both E and H fields. Thus,

a wider parameter space can be provided for the realization of different topological

phases. The applications of chiral materials have been briefly introduced also. On

the other hand, the ideas of transformation optics have been illustrated. Transfor-

mation optics is a mathematical technique based on coordinate transformation. The

paths of light can be controlled by the Jacobian matrix so that some “unrealistic”

phenomena in conventional view can be easily achieved. Although most studies focus

on the transformation between simple anisotropic materials, a conformal mapping

between simple anisotropic materials and chiral materials can also be achieved. Be-

cause of invariance of Maxwell’s equations under coordinate transformation, other

transformation methods should be considered so that the chirality tensor can be

eliminated during the space transformation. Instead of the trajectory, optical ac-

tivity can be controlled by the flexibility of the transformation matrix. The general

idea of the transformation is introduced. Finally, the concepts of topology in 1D

photonic systems are reviewed. Zak phase is one of the topological invariances in 1D

photonic systems, which can be retained after continuous spatial deformation. If a

system contains certain symmetries and a point of the symmetries is picked up, the

Zak phase of each isolated band can be quantized to 0 or π. The existence of inter-

face states of a system composed of two 1D isotropic binary photonic crystals can

be predicted by the signs of surface impedance in the nth gap, sgn[ζ(n)]. Interface
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states must exist if ζ of the photonic crystals in common gaps are opposite signs.
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Chapter 2

Transformation optics and chiral

photonic crystals

The theory of transformation optics is based on the invariance of Maxwell’s

equations under coordinate transformation [1–6]. Despite of spatial transformation,

the light beam still follows the original trajectory corresponding to its original coor-

dinates; in order words, the paths of light in the transformed space can be controlled

by Jocobian matrix. Thus, such “unrealistic” effects in conventional views as invis-

ibility cloaks can be easily achieved. In this study, a conformal mapping between

1D isotropic chiral medium and 1D simple medium is mainly considered. Because

of the differences in the constitutive relations, other transformation methods should

be considered instead of coordinate transformation such that a gauge field can be

raising for eliminating the chirality tensor. In this chapter, the details of transfor-

mation between 1D simple anisortropic medium and 1D anisotropic medium with

isotropic chirality are discussed. Instead of the trajectory, optical rotation can be
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controlled by the transformation matrix. Then, by choosing different parameters,

the dispersion relations of the 1D chiral photonic crystals composed of the designed

chiral materials are examined.

2.1 Transformation from isotropic chiral medium

to simple medium

To ensure the chirality parameter can be erased, a transformation from

anisotropic medium with isotropic chirality to simple anisotropic medium is con-

sidered. Because the chiral materials are expected to construct in reality, the chiral

medium is named to be “physical space” (x, y, z) and the simple medium is named

to be “virtual space” (x′, y′, z′). In order words, the transformation from the phys-

ical space (x, y, z) to the virtual space (x′, y′, z′) is first considered for finding out

the transformation matrix; then, the wave properties in the physical space will be

predicted by the properties in the virtual space. Electromagnetic waves are gov-

erned by Maxwell’s equations and the constitutive relations of the medium. By

supposing the EM waves are propagating along z-axis and the time component is

harmonic, the transverse components of the fields in 1D system can be written as

F(ω, z)exp(−iωt) =
(
Ex(ω, z)Ey(ω, z)Z0Hx(ω, z)Z0Hy(ω, z)

)T
exp(−iωt), where Z0

is the impedance in vacuum and ω is the angular frequency of the EM waves. After

combining with the constitutive relations of isotropic chiral medium, Faraday’s and

Ampere’s laws can be expressed as

d

dz
F(ω, z) =

iω

c

[
M(ω, z) + iK(ω, z) + L(ω, z)

]
F(ω, z), (2.1)
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where the 4× 4 matrices are

M(ω, z) =



0 0 µ21 µ22

0 0 −µ11 −µ12

−ε21 −ε22 0 0

ε11 ε12 0 0


(2.2)

,

K(ω, z) = κ



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


(2.3)

and

L(ω, z) =
1

ε33µ33 − κ2



0 0 −µ23µ31ε33 −µ23µ32ε33

0 0 µ13µ31ε33 µ13µ32ε33

ε23ε31µ33 ε23ε32µ33 0 0

−ε13ε31µ33 −ε13ε32µ33 0 0



+
iκ

ε33µ33 − κ2



−ε31µ23 −ε32µ23 0 0

ε31µ13 ε32µ13 0 0

0 0 ε23µ31 ε23µ32

0 0 −ε13µ31 −ε13µ32


.

(2.4)

εij and µij represent the elements of relative dielectric permittivity and magnetic

permeability tensors, which are dispersive and inhomogeneous along z-axis in gen-

eral. c is the speed of light in vacuum. The differential matrix equation in the
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virtual space can be easily found by substituting κ = 0 into equation (2.1) and add

prime(′) to all symbols. i.e.,

d

dz′
F′(ω, z′) =

iω

c

[
M′(ω, z′) + L′(ω, z′)

]
F′(ω, z′). (2.5)

Since a conformal mapping between the physical and virtual spaces is expected, the

relation of the wave solutions in two spaces should be F′(ω, z′) = R(ω, z) F(ω, z),

where R(ω, z) is a transformation matrix. As mentioned in chapter 1, it is trivial that

the transformation matrix is dependent on frequency because optical activities are

frequency-dependent phenomena. Consequently, the fields with different frequencies

are belongs to different virtual spaces. In general, the transformation is extremely

complicated if L is included, whereas the case of µ31 = µ32 = µ13 = µ23 = 0 and

ε31 = ε32 = ε13 = ε23 = 0 is chosen here for reducing the complexity. Hence,

a simpler transformation can be obtained because of Ez = Hz = 0 and L = 0.

According to equation (1.8), the transformation matrix R(ω, z) is equal to I2×2 ⊗

[[(AT )−1]ab], where I is an identity matrix and a, b = 1, 2. The differential matrix in

the transformed space becomes:

d

dz′
F′(z′) =

1

A33

[iω
c

R(z)M(z)R−1(z)

−
(ω
c

R(z)K(z)R−1(z) + R(z)
[ d
dz

R−1(z)
])]

F′(z′),

(2.6)

where A33 = 1 is chosen due to its arbitrariness. The expressions of ω in the matrices

are omitted in this step. The transformation is supposed to eliminate the chirality

parameter, so the second term in the square bracket should be vanished. A famous
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Figure 2.1: x and x′ spaces at particular z. The virtual space is rotating the x-y planes

along z-axis in the physical space.

transformation called Oseen transformation [38] can be obtained:

R(ω, z) = I2×2 ⊗ [Rab]

= I2×2 ⊗

 cos θ sin θ

−sin θ cos θ

 ,

(2.7)

where

θ(ω, z) =
ω

c

∫ z

z0

κ(ω, u) du (2.8)

and Rab = [(AT )−1]ab (a, b = 1, 2). The transformation is a rotation of rotating

the x-y planes along z-axis, and the angle of rotation is dependent on frequency

in general. A schematic diagram of the transformation is shown in Fig. 2.1. This

result agrees with the phenomena occurred in isotropic chiral materials, optical

rotation and optical rotatory dispersion. The angle of optical rotation at particular

frequency can be controlled by the transformation matrix. I should emphasize that

Oseen transformation is not the only transformation. If L 6= 0, the transformation

will become more complicated. More details can be found in Appendix C. Second,
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θ(z) still follows reciprocity. Because a minus sign should be inserted when the

incident light propagates from the opposite direction, the directions of rotation is

reversed if the position of the observer is assumed to be unchanged.

After the transformation, finding the wave solution in the virtual space be-

comes a matter of course. Although the differential equation (2.5) can be solved by

numerical integration, it will be more attractive if the system has an analytically

solvable wave solution in the virtual space. This idea is the same as the normal

approach of transformation optics. Vacuum are usually considered as a reference

space so that EM waves in the transformed space can be easily guided. The di-

electric permittivity and magnetic permeability tensors in the virtual space (achiral

medium) are assumed to be homogeneous and non-dispersive so that EM waves in

the virtual space are just plane waves. The wave solution in the virtual space is

F′(ω, z) = exp
[iω∆z

c
M′
]
F′(ω, z0), (2.9)

where ∆z = z − z0 and M′ is now a constant matrix. The wave solution in the

physical space (isotropic chiral medium) is

F(ω, z) = R−1(ω, z) F′(ω, z)

= R−1(ω, z) exp
[iω∆z

c
M′
]
F(ω, z0).

(2.10)

Note that R(ω, z0) is a 4×4 identity matrix. In Figs. 2.2 (a) and (b), the schematic

diagrams of the electric fields in the physical and virtual spaces are shown respec-

tively. In the physical space, the field is rotating along z-axis, but it is just a

plane wave in the virtual space. For convenience, the permittivity and permeabil-
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z'

Figure 2.2: (a) Electric field propagating in an isotropic chiral medium (physical space) at

a particular time. The electric field is rotating along z-axis. (b) Electric field propagating

in a transformed simple medium (virtual space) at a particular time. The electric field

becomes a plane wave.
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ity tensors in the virtual space are further supposed to be diag(ε′11, ε
′
22, ε

′
33) and

diag(µ′11, µ
′
22, µ

′
33) respectively. The transformation laws of the tensors still follow

equation (1.10). The permittivity tensor in the physical space can be found by

ε′ =
1

detA
Aε(z)AT

⇒ ε(z) =


ε′11+ε′22

2
+

ε′11−ε′22
2

cos 2θ
ε′11−ε′22

2
sin 2θ 0

ε′11−ε′22
2

sin 2θ
ε′11+ε′22

2
− ε′11−ε′22

2
cos 2θ 0

0 0 ε′33

 .

(2.11)

The permeability tensor can be found by simply replacing ε′ij to µ′ij. It should be

careful that the permittivity and permeability tensors include unphysical functions,

cos 2θ and sin 2θ, where θ is a function of z and ω. Again, the reason of appearing

these unphysical functions is that optical activities are frequency-dependent phe-

nomena in general. This also leads to the period cannot be well-defined when

the material acts as a unit cell of a photonic crystal. For instance, despite of

ε(z + a1, ω1) = ε(z, ω1) and ε(z + a2, ω2) = ε(z, ω2), it cannot be ensured a1 = a2,

so do µ and κ. There are two methods for resolving this problem. First, the fre-

quency of the incident light is fixed during the transformation (say ω1), so that

the transformation matrix R only depends on position z. As a result, there is an

analytical wave solution to the designed chiral material only when the frequency of

the incident light equals ω1. The idea is also similar to normal approaches of trans-

formation optics. The designed materials via transformation optics usually have

a condition ε = µ, which is usually valid at a particular frequency only. Second,

an adjustment to the chirality parameter is made so that the transformation and

the analytical solutions are valid for a wider frequency range. Second idea is taken
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Figure 2.3: A schematic diagram of layer-by-layer method. The designed chiral material

contains n layers and the width of the chiral material is a. Continuous functions ε, µ and

κ can be obtained by connecting multiple layers. Each layer has different ε, µ and κ.

into consideration in the following sections and chapters. There is a remark that

the major objective of the methods is to make the structure angle θ independent of

frequency, i.e., θ(ω, z)→ θ(z).

The designed chiral material can be fabricated in reality via layer-by-layer

method. We can consider the chiral material is constructed by multiple layers, and

each layer has different ε, µ and κ. Mathematically speaking, by supposing the

designed chiral material contains n layers and the width of the chiral material is a,

the permittivity tensor of the ith layer is ε(zi), where zi = z0 + ia/n. A schematic

diagram is shown in Fig 2.3.
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2.2 1D chiral photonic crystals

The techniques of transformation optics were used to design a chiral material.

Instead of the trajectory, the angle of rotation can be controlled by the transforma-

tion matrix. A chiral photonic crystal can be constructed by repeating the designed

material; however, as mentioned in previous section, the permittivity and perme-

ability tensor in the physical space consist of unphysical functions. In order the

result can be appropriate for a wider frequency range, the chirality parameter is

reasonably chosen as κ(ω, z) → κ0(z)/ω so that θ(ω, z) → θ(z). There is a remark

that the value of κ0 should be large (∼ 107). Furthermore, θ(z) will not necessarily

be a continuous function through whole space when the designed material acts as a

unit cell of a photonic crystal. Modifications of the wave solution (2.10) and θ(z) are

expected. In this section, by choosing suitable parameters, the dispersion relations

of the chiral photonic crystals are examined.

Due to discontinuity of the electromagnetic tensors, the wave solution of the

chiral photonic crystal composed of the designed chiral materials can be found by

transfer-matrix method:

F(ω, z) = R−1(z −Na) exp
[iω(z −Na)

c
M′
][

R−1(a) exp
[iωa
c

M′
]]N

F(ω, 0),

(2.12)

where a is the width of a unit cell and N is a number of unit cells that the light

passed through. i.e., N = bz/ac. z0 = 0 is chosen as an origin of the photonic

crystal. The dispersion relation of the chiral photonic crystals can be found by
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Bloch’s theorem:

R−1(a) exp
(iωa
c

M′
)
F(ω, 0) = eikzaF(ω, 0), (2.13)

where kz is the Bloch wave vector. If the permittivity and permeability parameters

in the virtual space are fixed, the dispersion relation will be dependent on the angle

θ(a) (mod 2π) only. No matter what functions θ(z) they are, the band structures

will still be the same if θ(a) (mod 2π) are the same. On the basis of this lemma,

κ0(z) can be considered as a constant so that θ(z) becomes a linear function in a

unit cell. For z > 0, the structural “twisted” angle of the chiral photonic crystal

can be expressed as

θ(z) =


θmax

(z
a
−
⌊z
a

⌋)
, bz/ac ∈ N

θmax , bz/ac /∈ N

(2.14)

where θmax = θ(a) and θ(0) = 0. Floor function is included because θ is reset to

initial value after a unit cell. i.e., θ(z + a) = θ(z). There is a remark that θ(z)

is directional, which means a minus sign should be added when the incident light

propagates from opposite direction. The photonic band structures of θ(a) = 0,

0.25π, 0.5π, 0.75π, π and 1.25π are shown in Fig. 2.4. The permittivity and

permeability tensors in the virtual space are given by diag(4, 1, ε′33) and identity

respectively, where ε′33 can be arbitrary because of L(z) = 0. When θ(a) = 0, the

structure is simple anisotropic and homogeneous, so there is no difference from the

band structure in the virtual space. When θ(a) increases, the bands are splitting

and photonic band gaps appear. The bands are splitting can be attributed to the
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existence of chirality [28, 39], while the appearance of band gaps is due to the

discontinuity of the dielectric permittivity tensors. At the lowest frequency, kz

is not equal to 0 may be due to the validity of the chosen chiral model at low

frequency. According to one-resonance Condon model, the chirality parameter with

single resonant frequency can be expressed as [9]

κ(ω, z) =
ω

ω2 − ω0
2
κ0(z), (2.15)

where ω0 is the resonant frequency of chiraliy. In my chosen chiral model, ω � ω0

has been considered so that κ ∝ 1/ω. When θ(a) increases to 0.5π, there appears the

largest number of complete photonic band gaps. When θ(a) further increases, the

gaps are closing and the bands are further splitting. When θ(a) = π, the photonic

band gaps are completely closed and the band structure is shifted to left (or right)

by 1 compared to Fig. 2.4(a). When θ(a) further increases, the band structure

starts returning back to the band structure of θ(a) = 0. There are some properties

of the band structures which can be further illustrated. The band structures of

θ(a) and π + θ(a) can be overlapped by shifting either one of them to the left (or

right) by 1, and the eigenvectors also follow the shifting, for example, Figs. 2.4(b)

and (f). It should be careful that the similar results is also shown in the regions

of θ(a) ∈ [0, 0.5π) and (0.5π, π], for example, Figs. 2.4(b) and (d). Nevertheless,

although the band structures found in θ(a) ∈ (0.5π, π] can overlap with the band

structure of π − θ(a) by shifting either one of them to the left (or right) by 1, the

eigenvectors are not following the shifting. Due to these reasons, it is adequate that

only θ(a) ∈ [0, π] is considered. The Mathematical details can be found in Appendix

D. θ(a) = π/2 will be mainly focused in the following chapters because there appears
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: The band structures of the chiral photonics crystals. θ(a) is supposed to

be θmax, the maximum value of the structural “twisted” angles. The parameters in the

virtual space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1, where ε′33 can be arbitrary

due to L(z) = 0. (a), (b), (c), (d), (e) and (f) are the band structures of θ(a) equal to 0,

0.25π, 0.5π, 0.75π, π and 1.25π respectively. (a) can overlap with (e) if either one of them

is shifted to left or right by 1, so do (b) and (f).
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the largest number of complete photonic band gaps.

2.3 Conclusions

In this chapter, the techniques of transformation optics have been applied to

reduce 1D isotropic chiral materials to simple anisotropic materials. Because the

Maxwell’s equations combined with the constitutive relations of two spaces are not

invariant, coordinate transformation is not a valid transformation in this situation.

By choosing suitable parameters, Oseen transformation can be obtained. Instead of

the path of light, optical rotation contributed by chirality can be controlled by the

transformation matrix. The transformation method is also valid for other electro-

magnetic parameters, and other transformation matrix can be obtained so that more

chiral media can be designed. The chiral material then acts as a unit cell of a chiral

photonic crystal. Since the permittivity and permeability tensors in the physical

space consist of unphysical functions, an adjustment to the chirality parameter is

made so that a wider frequency range can be considered. By choosing different θ(a)

but fixing ε′ and µ′, the dispersion relations and their properties are examined. The

case of θ(a) = π/2 will be mainly considered in the following chapters since there

appears the largest number of complete photonic band gaps.
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Chapter 3

Topological properties of the

chiral photonic crystal

Topological photonics has become one of the most famous topics since Hal-

dane and Raghu [11] successfully transferred the topological theories from quantum

electronic systems to photonic crystals [10]. The idea has been also confirmed by

experimental results [12]. Topological theories of simple anisotropic materials has

been widely developed, but the theories of bi-anisotropic media are still an uncharted

territory. Due to the coupling of E and H fields in the constitutive relations, bi-

anisotropic materials can provide a wider parameter space for realizing different

topological phases [10], for example, the “spin” of photons [19]. In this study, the

concept of “spin” of photons is not required, and only the theories of 1D simple

isotropic binary photonic crystals are applied. Because of anisotropy and existence

of chirality, two independent modes are no longer degenerated. The Zak phases of

isolated bands calculated by the coupled modes are discussed in this section; how-
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ever, the usages of this type of Zak phase are not widely discussed nowadays. In

order to observe the topological properties, by choosing suitable parameters in the

virtual space, the eigenstates can be decoupled so that the topological theories of 1D

simple isotropic binary photonic crystals can be totally applied. Topological edge

states of a system composed of the designed chiral photonic crystal and a simple

isotropic binary photonic crystal are also investigated.

3.1 Zak phase

3.1.1 Coupled eigenstates

Zak phase is one of the important topological invariances in 1D photonic

systems. The Zak phase of the nth isolated band can be numerically calculated by

equation (1.15), where the eigenstates |Ψ〉 are the eigenvectors obtained in equation

(2.13) in principle, and the dual eigenstates 〈Ψ| are the conjugate transpose of the

eigenstates |Ψ〉 although the operator is not Hermitian. The analytical eigenstates

of the system will not be discussed because the solutions are too cumbersome. As

mentioned in chapter 1, Zak phases can be affected by the position of the origin, and

it can be quantized only when a point of symmetry is picked up. Due to existence of

chirality and the “spiral” structure, the parity inversion symmetry of the designed

chiral photonic crystal is broken. Although the symmetry is still not clear, the Zak

phases of the isolated bands can still be quantized by choosing certain positions as
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origins. On the basis of the lemma (2.14), the structural “twisted” angle becomes

θ(z) =


θmax

(z
a

+
a− d
a
−
⌊
z

a
+
a− d
a

⌋)
, b(z + a− d)/ac ∈ N

θmax , b(z + a− d)/ac /∈ N

(3.1)

where d and a are the distance from θ(0) to θmax and the width of a unit cell

respectively. As θ(z) exists step jumps at z = d, the dispersion relation (2.13)

should be modified to

eikzaF(ω,0) =

R−1(a) exp
(iωa
c

(
1− d

a

)
M′
)
R−1(d) exp

(iωa
c

(d
a

)
M′
)
R(0)F(ω, 0),

(3.2)

where θ(d) = θmax now. Because the transformation matrix is real and R(a) = R(0),

the only variable which can affect the Zak phase is d/a if the permittivity and

permeability tensors in the virtual space are fixed (see Appendix E). The structures

of the chiral photonic crystal, the band structures and the Zak phase of each isolated

band with choosing different d/a are shown in Fig. 3.1. The parameters in the virtual

space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1. θmax = π/2 is considered

because there appears the largest number of complete photonic band gaps. Figs.

3.1(a), (c), (e) and (g) show the structures of the chiral photonic crystal when d/a

respectively equals 1, 0.7, 0.5, 0.3, where red dashed frames indicate the unit cell.

The corresponding band structures and the Zak phases of the isolated bands are

shown in Figs. 3.1 (b), (d), (f), (h). The band structures are the same because of

independence of the positions of origins; however, the Zak phases of the same band

are different. Figs. 3.1(b) and (f) show that the Zak phases of all isolated bands

can be quantized to π and 0 when d/a = 1 and 0.5 respectively. This property is
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(e) (f)

𝑎

……

0

0

0

0

(g) (h)

𝑎

……

−0.42729

−1.08883

−0.27463

−1.08883

Figure 3.1: (a), (c), (e) and (g) are the same chiral photonic crystal but the methods of

choosing a unit cell are different, where θmax = π/2. d is the distance from the origin to

the point that θ(z) reaches it first maximum value. Faded colour is used to represent the

dielectric parameters are gradually changed along z-direction. (b), (d), (f) and (h) when

θ(0) equals 0, 0.15π, 0.25π and 0.35π respectively. The dielectric and magnetic parameters

in the virtual space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1. The Zak phases of the

isolated bands are labelled near the bands.
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(a) (b)

0

0

0

0𝜋

𝜋

𝜋

𝜋

Figure 3.2: (a) and (b) are the band structures calculated by respectively choosing d/a = 1

and 0.5 of the chiral photonic crystal with θmax = π/4. The Zak phases are labelled near

the corresponding isolated bands. The dielectric and magnetic parameters in the virtual

space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1.

not only valid for this situation. The Zak phases of the isolated bands can also be

quantized despite of θmax 6= π/2. The band structures of θmax = 0.25π with choosing

d/a = 1 and 0.5 are shown in Figs. 3.2(a) and (b), where the parameters in the

virtual space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1. The Zak phases of all

isolated bands equal π and 0 when d/a = 1 and 0.5 respectively. This can be held

even though different parameters in the virtual space are chosen. The case of the

permittivity and permeability parameters in the virtual space equal to ε′11 = 5.2 and

ε′22 = µ′11 = µ′22 = 1 is taken to be an example. The band structures with θmax = π/2

and the Zak phases are shown in Fig. 3.3. The Zak phases are still equal to π and 0

when d/a = 1 and 0.5 respectively. Thus, it is possible to say d/a = 1 and d/a = 0.5

are the points of symmetry since the Zak phases can be quantized at these points.

At this time, the symmetries in the system and the reasons of the Zak phases of all

isolated bands equal to π or 0 are still unclear. On the other hand, the Zak phases
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Figure 3.3: (a) and (b) are the band structures calculated by respectively choosing θ(0) = 0

and 0.125π of the chiral photonic crystal with θmax = π/2. The Zak phases are labelled

near the corresponding isolated bands. The dielectric and magnetic parameters in the

virtual space are given by ε′11 = 5.2 and ε′22 = µ′11 = µ′22 = 1.

calculated by the coupled modes have not been widely discussed nowadays. In order

to investigate the topological properties of the chiral photonic crystals, the method

of decoupling two modes is explored so that the topological theories developed from

1D simple isotropic binary photonic crystals can be totally applied.

3.1.2 Decoupling two modes

Two independent modes, (Ex, Hy) and (Ey, Hx) modes, are the same in sim-

ple isotropic layered photonic crystals, and thereby only either one needs considering

(see Appendix F.2). However, (Ex, Hy) and (Ey, Hx) modes are different and even

coupled in bi-anisotropic layered photonic crystals. Furthermore, the Zak phases

calculated by the coupled eigenmodes have not been widely discussed nowadays.

Fortunately, by choosing ε′ and µ′ are both diagonal and θmax = π/2, two indepen-

dent modes of the designed chiral photonic crystal can be decoupled after “second”
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Table 3.1: Notation of tensors in the virtual space, physical and transformed struc-
tures.

Tensors Virtual space Physical structure Transformed structure

Dielectric ε′(z′) ε(z) ε′′(z)

Magnetic µ′(z′) µ(z) µ′′(z)

Chiral 0 κ(z)I/ω 0

transformation such that the topological theories of 1D simple isotropic layered

photonic crystals can be totally applied.

Topological invariances can be maintained after continuous deformation. In-

stead of discontinuous function θ(z), a similar but a continuous function φ(z) is

considered for “second” transformation, which means the designed chiral photonic

crystal undergoes another transformation to become another structure. On the basis

of the lemma (2.14), the function can be expressed as

φ(z) = θmax
z

a
. (3.3)

The transformation matrix is the same as equation (2.7) but θ(z) is replaced by φ(z).

In order to distinguish the parameters in the physical space and in the transformed

structure, the symbols with double primes(′′) are used to emphasize the parameters

in the transformed structure. The notation of the tensors in different spaces are

shown in Table 3.1. The dielectric permittivity tensor in the transformed structure

is

ε′′(z) =
1

detA
Aε(z)AT =


diag(ε′11, ε

′
22, ε

′
33), if bz/ac is odd

diag(ε′22, ε
′
11, ε

′
33), if bz/ac is even

. (3.4)

The magnetic permeability tensor in the transformed structure (µ′′) can be found by
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simply replacing ε′ij to µ′ij. The chirality parameter κ′′ in the transformed structure

returns to 0 (see Appendix F.1). From above equation, it is clear that the trans-

formed structure is a simple anisotropic bi-layered structure shown in Fig. 3.4(a),

where the permittivity and permeability parameters of white and black slabs are

given by equation (3.4) when bz/ac is odd and even respectively. In this trans-

formed structure, the width of a unit cell (Λ) is doubled to be 2a and z-inversion

symmetry exists, where the inversion centers are at the center in each slab. To en-

sure the Zak phases can be quantized in following calculation, the center of a white

slab is chosen as an origin of the system. The dispersion relation can be calculated

by transfer-matrix method:

eik
′′
z ΛF′′(ω, 0) = exp

(iωa
2c

M′′
w

)
exp
(iωa
c

M′′
b

)
exp
(iωa

2c
M′′

w

)
F′′(ω, 0), (3.5)

where M′′
w and M′′

b are the constant matrices following equation (2.2). The lower

indices w and b represent white and black slabs respectively. k′′z is the Bloch wave

vector in the transformed structure. The band structure is shown in Fig. 3.4(b),

where the parameters in the virtual space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 =

1. The band structure shows that two independent eigenmodes are degenerated.

In order to compare the original structure with the transformed structure, two unit

cells of the designed chiral photonic crystal are considered as a period (Λ = 2a)

and the center of a unit cells is chosen as an origin of the system. The structure

of the chiral photonic crystal and the band structure are shown in Fig. 3.5. The

band structure calculated by using single unit cell as a period is already shown in

Fig. 2.4(c). Due to double unit cells being regarded as a period, Fig. 3.5(b) can be

imagined as the bands in Fig. 2.4(c) folding in the region kza/π ∈ [−0.5, 0.5]. By
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Λ = 2𝑎

……

(a)

𝜿′′ 𝑧 = 𝟎

𝟎 𝝅

𝟎 𝝅

𝟎 𝝅

𝟎 𝝅

𝝅 𝟎

(b)

′′

Figure 3.4: (a) The transformed structure, a simple anisotropic binary photonic crystal by

choosing θ(a) = 0.5π. The permittivity (and permeability) parameters of white and black

slabs are given by equation (3.4) when bz/ac is odd and even respectively. The center of

a white slab is chosen as an origin of the system and the width of a unit cell Λ equals

2a. (b) The band structure of the transformed anisotropic binary photonic crystal. The

permittivity and permeability parameters in the virtual space are given by ε′11 = 4 and

ε′22 = µ′11 = µ′22 = 1. The Zak phases calculated by |ψx′′〉 (|ψy′′〉) are labelled near the

corresponding isolated bands.
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(a) (b)

……

Λ = 2𝑎

Figure 3.5: (a) The structure of the chiral photonic crystal by choosing θ(a) = 0.5π. Two

unit cells are regarded as a period and the center of a unit cell is chosen as an origin for

fear losing the generality. Faded color is used to represent the parameters are gradually

changing along z-direction. (b) The band structure of the chiral photonic crystal by

considering 2 unit cells as a period. The permittivity and permeability parameters in the

virtual space are given by ε′11 = 4 and ε′22 = µ′11 = µ′22 = 1.
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comparing Fig. 3.4(b) with Fig. 3.5(b), the band structures can be overlapped by

shifting either one to the left (or right) by 1. i.e.,

kzΛ

π
=
k′′zΛ

π
+ (2s− 1), (3.6)

where s is an integer for controlling the normalized wave vector within the region

[−1, 1]. The eigenstate at kzΛ/π (in original structure) is the same as at k′′zΛ/π +

(2s−1) (in transformed structure) (see Appendix F.3). Therefore, the Zak phases of

the corresponding bands in two band structures are the same. If the eigenvectors are

rearranged in the from F′′ =
(
E ′′x′′ Z0H

′′
y′′ E

′′
y′′ − Z0H

′′
x′′

)T
, the operator in equation

(3.5) becomes a block-diagonal matrix, which is composed of two 2 × 2 matrices.

In other words, the eigenstates in the transformed structure can be decoupled to

(E ′′x′′ Z0H
′′
y′′)

T and (E ′′y′′ −Z0H
′′
x′′)

T , which are denoted as |ψx′′〉 and |ψy′′〉 respectively

for clear presentation. Similarly, |ψx〉 and |ψy〉 will be used to represent the same

modes in the original structure.

In simple isotropic layered photonic crystals, only either one of the modes

needs considering because |ψx〉 is equivalent to |ψy〉. However, in simple anisotropic

binary layered photonic crystals, both of them have to be considered since |ψx〉 is

not equivalent to |ψy〉. If |ψx′′〉 (or |ψy′′〉) mode is considered only, the transformed

structure can be further regarded as a simple isotropic AB (or BA) layered photonic

crystal, where the parameters are given by εA = ε′11, εB = ε′22, µA = µ′22 and

µB = µ′11. Thus, the topological theories of simple isotropic binary photonic crystals

can be totally applied. The inversion centers of binary photonic crystal are at the

center of each slab. For example, in Fig. 3.5(a), the inversion centers are at the
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center of each white and black slabs. In simple isotropic binary photonic crystal, if

the Zak phase of an isolated band is 0(π) by choosing one of the inversion centers

as an origin, the Zak phase of the same band must be π(0) when another inversion

center is chosen [35]. Consequently, in my transformed simple anisotropic binary

photonic crystal, if the Zak phase calculated by |ψx′′〉 mode is 0(π), the Zak phase of

the same band calculated by |ψy′′〉 mode will be π(0). In other words, one isolated

band has two different quantized Zak phases. The Zak phases of the bands are also

shown in Fig. 3.4(b).

3.2 Existence of interface states

The idea of “second transformation” has been introduced in previous section.

When |ψx′′〉 or |ψy′′〉 mode is considered, the transformed structure can be regarded

as a simple isotropic AB or BA layered structure respectively. Hence, the topological

theories of simple isotropic binary photonic crystals can be totally applied. In this

section, topological edge states of a system composed of my chiral photonic crystal

and a simple isotropic binary photonic crystal are going to investigated. In order to

guarantee the mid-gap positions of the photonic crystals are the same, the optical

path lengths should be equivalent [35, 36]. i.e.,

(
√
ε′11 +

√
ε′22)a = nAdA + nBdB, (3.7)

where nA and nB are the refractive indices of the slabs A and B; dA and dB are

the widths of slabs A and B respectively. Without loss of generality, the method of

choosing a unit cell is the same as Figs. 3.4(a) and 3.5(a). The system is composed
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of 20 unit cells of my chiral photonic crystal on the left and 10 unit cells of a

simple isotropic binary photonic crystal on the right. The widths of unit cells of

my chiral photonic crystal and the simple isotropic binary photonic crystal are a

and 2a respectively. The transmission spectra of the system calculated by |ψx〉 and

|ψy〉 are shown in Figs. 3.6(a) and (b) respectively. The parameters of the chiral

photonic crystal in the virtual space are given by ε′11 = 3.23 and ε′22 = µ′11 =

µ′22 = 1, and the parameters of the simple isotropic binary photonic crystal are

given by εA = 4.2 and εB = µA = µB = 1. The transmission spectra are the

same and interface states appear in the 1st, 3rd, 5th, 7th, 8th, 10th, 11th and

12th gaps. The reason of the same transmission spectra can be explained by the

transformed anisotropic binary photonic crystal, and the positions of interface states

can also be predicted. Although the permittivity and permeability tensors in the

original structure are complicated, there is a conformal mapping to the transformed

structure. Therefore, the system can be regraded as a composition of 10 unit cells

of the transformed anisotropic binary photonic crystal on the left and 10 unit cells

of the simple isotropic binary photonic crystal on the right. Since a center of a

unit cell has been chosen as an origin, the incident fields |ψx〉 or |ψy〉 can always

be decomposed into a linear combination of |ψx′′〉 and |ψy′′〉. Consequently, the

transmission spectrum of |ψx〉 or |ψy〉 is the sum of the transmission spectra of

|ψx′′〉 and |ψy′′〉, which is the reason why the transmission spectra are the same.

Second, the transformed anisotropic binary photonic crystal can be further regarded

as a simple isotropic binary photonic crystal when either |ψx′′〉 or |ψy′′〉 mode is

considered; thus, the system can be further regarded as a composition of 10 unit

cells of a simple isotropic binary photonic crystal on the left and 10 unit cells of
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(a) (b)

Figure 3.6: The transmission spectra of a system composed of 20 unit cells of my designed

chiral photonic crystal on the left side and 10 unit cells of the simple isotropic binary

photonic crystal on the right side. The parameters of the chiral photonic crystal in the

virtual space are given by ε′11 = 3.23 and ε′22 = µ′11 = µ′22 = 1. The parameters of the

simple isotropic binary photonic crystal are given by εA = 4.2, εB = µA = µB = 1 and

dA = 0.76a and dB = 1.24a. (a) and (b) are the transmission spectra of |ψx〉 and |ψy〉
modes respectively, where the spectra are the same.
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a simple isotropic binary photonic crystal on the right. The existence of interface

states of a system composed of two simple isotropic binary photonic crystals can

be predicted by the signs of the surface impedance ζ(n). Interface states appear

when sgn
[
ζ(n)
]

of two connected photonic crystals are opposite in a common gap.

The transmission spectra calculated by |ψx′′〉 and |ψy′′〉 are shown in Figs. 3.7(a)

and (d). The band structures of the transformed anisotropic binary and simple

isotropic binary photonic crystals are shown in (b) and (e) (also in (e) and (f))

respectively. The parameters of the anisotropic binary photonic crystal and of the

simple isotropic binary photonic crystal are the parameters used in Fig. 3.6. The

band structures shown in Figs. 3.7(b) and (e) are the same but the Zak phases

are different by π. Magenta strip represents sgn
[
ζ(n)
]
> 0; otherwise, the strip

is cyan. The interface state exists if sgn[ζ(n)] in a common gap are opposite. In

Fig. 3.7(a), the interface states exist in the 5th , 7th, 8th, 10th, 11th and 12th

gaps; in Fig. 3.7(d), the interface states exist in 1st, 3rd, 8th, 10th and 12th gaps.

Therefore, in the transmission spectrum of |ψx〉 or |ψy〉 mode, interface states of a

system composed of my designed chiral photonic crystal and the simple isotropic

binary photonic crystal will exist in the 1st, 3rd, 5th, 7th, 8th, 10th, 11th and 12th

gaps. The prediction is consistent with the transmission spectra shown in Fig. 3.6.

3.3 Conclusions

In this chapter, some topological features of my designed chiral photonic crys-

tal are discussed. Because of anisotropy and existence of chirality, two independent

eigenstates, (Ex, Hy) and (Ey, Hx) modes, are no longer degenerated and even cou-

pled. The Zak phases calculated by the coupled eigenstates has been investigated.
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Figure 3.7: (a) and (d) are the transmission spectra calculated by |ψx〉 and |ψy〉 modes

respectively. The system is composed of 10 unit cells of the transformed anisotropic binary

photonic crystal on the left and 10 unit cells of the simple isotropic binary photonic

crystal on the right. The parameters in the virtual space are given by ε′11 = 3.23 and

ε′22 = µ′11 = µ′22 = 1, and the parameters of the simple isotropic binary photonic crystal

are given by εA = 4.2, εB = µA = µB = 1 and dA = 0.76a and dB = 1.24a. (b) and (e)

are the band structures of the transformed anisotropic binary photonic crystal, and (c)

and (f) are the band structure of the simple isotropic binary photonic crystal. In both

band structures, the magenta and cyan strips represent the gaps with ζ > 0 and ζ < 0

respectively. The Zak phase of each band are labelled near the band and the number in

the brackets are the sum of the Zak phases below the gaps.
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The Zak phases of all isolated bands can be quantized to π and 0 when the d/a = 1

and 0.5 respectively. Because the symmetries in the system and the usages of these

Zak phases are still unknown at this time, the method of decoupling two indepen-

dent modes is introduced. By choosing diagonal ε′ and µ′ and θmax = π/2, the

chiral photonic crystal can “secondly” transform to an simple anisotropic binary

photonic crystal, in which parity inversion symmetry appears. If either (E ′′x , H
′′
y )

or (E ′′y , H
′′
x) is considered, the transformed structures can be further regarded as a

simple isotropic AB or BA layered structure respectively. Hence, the topological

theories of simple isotropic binary photonic crystals can be totally applied. Differ-

ent from simple isotropic layered structures, one isolated band contains two different

quantized Zak phases (0 and π). Furthermore, topological edge states of a system

composed of 20 unit cells of my chiral photonic crystal and 10 unit cells of a simple

isotropic binary photonic crystal has been examined. Because (Ex, Hy) and (Ey, Hx)

modes can be decomposed in terms of (E ′′x , H
′′
y ) and (E ′′y , H

′′
x), the positions of inter-

face states of a system composed of the chiral photonic crystal and a simple isotropic

binary photonic crystal is the sum of the positions of (a) a system composed of 10

unit cells of the transformed AB isotropic binary photonic crystal and 10 unit cells

of a simple isotropic binary photonic crystal and (b) a system composed of 10 unit

cells of the transformed BA isotropic binary photonic crystal and 10 unit cells of a

simple isotropic binary photonic crystal.
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Chapter 4

Summary

Transformation optics is a useful theory for giving more information of per-

mittivity and permeability parameters to guide the paths of light in materials for

achieving certain phenomena. The ideas are based on the invariances of Maxwell’s

equations and Helmholz equation under coordinate transformation so that there is

a conformal or quasi-conformal mapping between two spaces. Because of difference

of constitutive relations between simple and bi-anisotropic media, other transforma-

tion matrix should be considered in order to eliminate the chirality parameters. A

chiral photonic crystal can be composed of repeating the designed chiral material.

Some physical properties of the designed photonic crystals are also examined.

In chapter 1, the concepts of chiral materials, mathematical foundation of

transformation optics and the topological theories of 1D photonic systems are briefly

reviewed. Chiral materials are composed of the particles which cannot superimposed

on their mirror images. The properties of natural optical activities occurred in chiral

materials are attractive in topological photonics since a wider parameter space can
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be provided for realization of different topological phases. Second, the foundation

of transformation optics and the general idea of transformation between simple and

chiral media are also introduced. Because of different constitutive relations between

simple and chiral media, other transformation methods need considering instead of

coordinate transformation. Finally, the topology related to this study are reviewed.

Zak phases of isolated bands can be numerically found by the summation of all inner

products of the neighbouring eigenstates, and they can even be quantized to 0 or

π if a point of symmetry is picked up. The theory for predicting topological edge

states of a system composed of two simple isotropic binary photonic crystals has

also been reviewed.

In chapter 2, the details of transforming 1D anisotropic medium with isotropic

chirality to 1D simple anisotropic medium is discussed. The transformation function

θ(ω, z) can be easily obtained by choosing suitable permittivity and permeability

tensors. The transformation matrix is a rotation matrix along the axis of prop-

agation. Instead of the trajectory, optical rotation attributed to chirality can be

controlled by the transformation matrix. In order that the analytical wave solu-

tion is available for a wider frequency range, the chirality parameter is adjusted

to κ(ω, z) → κ0(z)/ω. The band structures of the chiral photonic crystals with

different structural angles θ(a) are examined.

In chapter 3, some topological features of the chiral photonic crystal are

investigated. Because of anisotropy and existence of chirality, two independent

eigenmodes, (Ex, Hy) and (Ey, Hx), are no longer degenerated and even coupled. The

Zak phases of isolated bands calculated by these coupled eigenstates are examined.

Although the symmetry in the designed chiral photonic crystal is still unclear, the
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Zak phases can still be quantized when certain positions are chosen as origins. In

order to observe the topological features, the method of decoupling two modes is

explored. By choosing diagonal permittivity and permeability tensors in the virtual

space and θmax = π/2, the chiral photonic crystal can “secondly” transform to a

simple anisotropic binary photonic crystal. Furthermore, it can even be regarded as

simple isotropic AB and BA photonic crystals if (E ′′x′′ Z0H
′′
y′′)

T and (E ′′y′′ −Z0H
′′
x′′)

T

modes are considered individually. Therefore, the topological theories of 1D simple

isotropic binary photonic crystals can be totally applied. The interface states of

a system composed of my chiral photonic crystal and a simple isotropic binary

photonic crystal are also examined.

In this thesis, the electromagnetic tensors in the physical space are simpli-

fied so that the Oseen transformation is obtained. If more general chirality tensor

or L(ω, z) is taken into consideration, the transformation will become more com-

plicated and more systems can be designed. Furthermore, the parameters in the

virtual space are not necessarily physical so that more systems can be designed.

The techniques (Appendix B) can actually be generalized to 3-dimensional systems;

however, the processes will be totally different and more complicated due to tackling

the complicated tensorial differential equations.
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Appendix A

Mathematical foundation of

transformation optics

A.1 Transformation of electromagnetic fields

The main idea of transformation optics is to control the paths of light. The

propagation direction of EM waves can take use of the direction of Poynting vector

S. Instead of considering the transformation of electric and magnetic fields, the

transformation of the Poynting vector is first considered. Because the Poynting

vector is a pseudovector, the transformation should be

S′ = aAS 7→ S ′ α = aAαi S
i, (A.1)

where A is a Jacobian matrix with components Aαi = ∂x′ α/∂xi and summation

convention is implied. Greek symbols are also equal to 1, 2, 3. The coefficient a is

inserted in the equation due to the transformation rule of pesudovectors. Originally a
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is defined by the transformation matrix of polar vectors, but now the transformation

matrix of polar vectors is unknown and thus a cannot be well defined in this moment.

Suppose the unknown transformation matrix of E and H is J. The cross product

of the electric and magnetic fields are

E′ ×H′
.
= εαβγE ′βH

′
γ = εαβγJ i

β EiJ
j
γ Hj, (A.2)

where εαβγ is the Levi-Civita symbol. By combining the above equations and mul-

tiplying J k
α on both sides, it becomes

aJ k
α A

α
iS

i = εαβγJ k
α J

i
β J

j
γ EiHj = (detJ)εkijEiHj

Therefore,

aJTA = (detJ)I⇒ J = (A−1)T = (AT )−1 and a =
1

detA
, (A.3)

where I is an identity matrix. In this process, we can understand the transformation

is corresponding to covariant transformations of electric and magnetic fields.

A.2 Invariance of Maxwell’s equations under co-

ordinate transformation

In original space, the Faraday’ s law in a simple medium can be expressed as

∇× E = −iωµH 7→ εijk∂jEk = −iωµijHj. (A.4)
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By mapping the spaces from x to x′, the transformations of polar vectors (E and

H) are

E ′α =
[
(AT )−1

] j
i
Ej, H

′
α =

[
(AT )−1

] j
α
Hi, (A.5)

where A is a Jacobian matrix with the following relations

Aαi =
∂x′ α

∂xi
≡ ∂ix

′ α, [A−1]i α =
∂xi

∂x′ α
≡ ∂′αx

i. (A.6)

By substituting (A.5) to (A.4), left-hand side of the equation should be

εijk∂jEk = εijk∂j(A
α
kE
′
α) = εijk

[
(∂j∂kx

′ α)E ′α + (∂kx
′ α)∂jE

′ α],
The first term in the bracket is vanished by swapping the dummy indices j and k.

Therefore,

εijk∂kx
′ α∂jE

′
α = εijk∂kx

′ α∂jx
′ β∂′βE

′
α = −iωµij∂jx′ αH ′α,

and after multiplying ∂ix
′ γ on both sides, we get

εijk∂ix
′ γ∂kx

′ α∂jx
′ β∂′βE

′
α = −iω∂ix′ γµij∂jx′ αH ′α = −iωAγiµijAαjH ′α. (A.7)

Because of

εijk∂ix
′ γ∂kx

′ α∂jx
′ β = εγαβ(detA), (A.8)

we get

εγαβ(detA)∂′βE
′
α = −iωAγiµijAαjH ′α ⇒ ∇′× E′(x′) = −iωµ′(x′)H′(x′) (A.9)
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if I assume

µ′(x′) =
Aµ(x)AT

detA
. (A.10)

It is easy to prove that Ampere’ s law is also invariant under coordinate transfor-

mation, and the permittivity tensor is

ε′(x′) =
Aε(x)AT

detA
. (A.11)

.
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Appendix B

Raising chirality via

non-coordinate transformation

In chiral medium, one of the Maxwell’s equations combined with the consti-

tutive relation is

∇× E(x)− ω
√
ε0µ0 κ(x)E(x) = −iωµ(x)H(x)

7→ εijk∂jEk − ω
√
ε0µ0κ

ijEj = −iωµijHj.

(B.1)

The aim is to transform a chiral medium to a simple medium, so the Faraday’s law

in transformed space should be

∇′× E′(x′) = −iωµ′(x′)H′(x′) 7→ εαβγ∂′βE
′
γ = −iωµ′ αβH ′β (B.2)

Due to the invariance of Maxwell’s equations under coordinate transformation, other

transformation matrix A should be found in order to eliminate the chirality. i.e.,
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Aαi 6= ∂x′ α/∂xi. The transformation of polar vectors is supposed to be the same as

equation (A.5) for consistency. By substituting equation (A.5) into equation (B.1),

we get

εijk∂jEk − ω
√
ε0µ0κ

ijEj = εijk∂j(A
α
kE
′
α)− ω√ε0µ0κ

ijAαjE
′
α

= εijk
[
(∂jA

α
k)E

′
α + Aαk∂jE

′
α

]
− ω√ε0µ0κ

ijAαjE
′
α

= −iωµijAαjH ′α.

If εijk[(∂jA
α
k)E

′
α]− ω√ε0µ0κ

ijAαjE
′
α = 0, the equation becomes

εijkAαk∂jE
′
α = −iωµijAαjH ′α (B.3)

In Appendix A, chain rule is applied such that the partial derivative can change

from ∂ to ∂ ′. i.e.

∂E ′ α

∂xj
=
∂x′ β

∂xj
∂E ′ α

∂x′ β
= Aβj

∂

∂x′ β
E ′α.

Therefore, it is possible to regard the transformation of the derivative as ∂j =

Aβj∂
′
β in coordinate transformation. If the same idea is drawn and applied in my

transformation, equation (B.3) becomes

εijkAαkA
β
j∂
′
βE
′
α = −iωµijAαjH ′α

εijkAγiA
α
kA

β
j∂
′
βE
′
α = −iωAγiµijAαjH ′α

εγβα(detA)∂′βE
′
α = −iωAγiµijAαjH ′α

⇒ µ′(x′) =
Aµ(x)AT

detA
. (B.4)

59



Although A is not a Jacobian matrix, the transformation law of tensors are still

valid; however, we should be more careful that another Maxwell’s equation have not

yet been considered, which is

∇×H(x)− ω
√
ε0µ0 κ

T (x)H(x) = iωε(x)E(x)

7→ εijk∂jHk − ω
√
ε0µ0κ

jiEj = iωεijEj

. (B.5)

If the same procedures are followed, the condition of the transformation matrix is

εijk[(∂jA
α
k)H

′
α]−ω√ε0µ0κ

jiAαjH
′
α = 0, which contradicts with the condition stated

above, εijk[(∂jA
α
k)E

′
α]−ω√ε0µ0κ

ijAαjE
′
α = 0. To resolve this contradiction, differ-

ent transformations of E and H are applied. Noted that the transformation is not

limited in coordinate transformation, so the freedom of choosing the transformation

is more flexible. i.e.

E′ = (AT )−1E, H′ = (BT )−1H, (B.6)

where A and B are the transformation matrices. The conditions of the transforma-

tion matrices become


εijk[(∂jAαk)E ′α]− ω√ε0µ0κ

ijAαjE ′α = 0

εijk[(∂jBαk)H ′α]− ω√ε0µ0κ
jiBαjH ′α = 0

. (B.7)

There is a remark that the equations show the transformation matrices are depen-

dent on the E and H fields in general. Equation (B.3) becomes

εijkAαk∂jE ′α = −iωµijBαjH ′α (B.8)
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After repeating the same procedures introduced in above, we can obtain the mag-

netic tensor in the transformed space,

εγβα(detA)∂′βE
′
α = −iωAγiµijBαjH ′α ⇒ µ′(x′) =

Aµ(x)BT

detA . (B.9)

Similarly, the dielectric permittivity tensor in the transformed space is

ε′(x′) =
Bε(x)AT

detB (B.10)

Note that the transformations (B.9) and (B.10) are reducing the chiral medium to

a simple medium, i.e., from complex parameters to simple parameters; however, the

normal approach of transformation optics (equation (A.10)) is from simple param-

eters to complex parameters.
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Appendix C

Wave equations in 1D

inhomogeneous and anisotropic

materials

C.1 Differential matrix equations of 1D isotropic

chiral materials

The constitutive relations of isotropic chiral materials are still following linear

theories. By supposing EM waves are propagating along z-axis and the time com-

ponent is harmonic, the macroscopic electric and magnetic fields can be expressed

as E(ω, z)e−iωt and B(ω, z)e−iωt respectively. Thus, the constitutive relations of 1D
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materials can be expressed as

D(ω, z) = ε0ε(ω, z)E(ω, z)− i√µ0ε0 κ(ω, z)H(ω, z)

B(ω, z) = µ0µ(ω, z)H(ω, z) + i
√
µ0ε0 κ(ω, z)E(ω, z)

. (C.1)

On the other hand, Maxwell’s equations are

∇× E + iωB = 0, ∇×H− iωD = 0. (C.2)

Thus, Faraday’s law can be written as

− d

dz


Ey

Ex

0

 e−iωt = iω[µ0µH + i
√
µ0ε0 κE]e−iωt. (C.3)

After some mathematical calculation, two sets of equations can be obtained:

d

dz

Ex
Ey

 = iωµ0

 µ21Hx + µ22Hy + µ23Hz

−µ11Hx − µ12Hy − µ13Hz

 − ωκ

c

 Ey

−Ex

 (C.4)

and

Hz +
iκ

µ33

√
ε0

µ0

Ez = − 1

µ33

[µ31Hx + µ32Hy], (C.5)

where c is light speed in vacuum. Similarly, Ampere’s law can be written as

d

dz

Hx

Hy

 = iωε0

−ε21Ex − ε22Ey − ε23Ez

ε11Ex + ε12Ey + ε13Ez

 +
ωκ

c

−Hy

Hx

 (C.6)
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and

Hz −
√
ε0

µ0

ε33

iκ
Ez =

√
ε0

µ0

1

iκ
[ε31Ex + ε32Ey]. (C.7)

By combining equations (C.5) and (C.7) to express Ez and Hz in terms of the x and

y components of E and H fields, differential matrix equation (2.1) can be obtained

after Ez and Hz are substituted into equations (C.4) and (C.6).

C.2 Transformation matrix of 1D isotropic chiral

medium and simple medium

Since a mapping between the chiral and simple media is expected, the relation

of the wave solution between the virtual and physical spaces should be F′ = R F +

G
(
Ez Ez Z0Hz Z0Hz

)T
=RF, where transformation matrix R(ω, z) = [[(AT )−1]ab]

⊕ [[(BT )−1]ab] (a, b = 1, 2) and G(ω, z) is the transformation matrix related to the

z-components of EM fields. The symbol ⊕ is the direct sum, for example, A⊕B =

diag(A,B). The most direct way to find out the transformation matrixR is to solve

the differential equation (B.7); fortunately, because of isotropic chirality, matrix

calculation is enough to handle this problem instead of tackling the complicated

tensor calculation. As the propagation direction of EM waves is parallel to z-axis

and the medium are homogeneous in x and y directions, it is not necessary to take

the transformation direction different from the propagation direction. As a result, I

can immediately say A13 = A23 = A31 = A32 = 0 (B is also the same), so R = R.

The differential matrices in two spaces are

d

dz
F(ω, z) =

iω

c

[
M(ω, z) + iK(ω, z) + L(ω, z)

]
F(ω, z), (C.8)
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and

d

dz′
F′(ω, z′) =

iω

c

[
M′(ω, z′) + L′(ω, z′)

]
F′(ω, z′). (C.9)

By substituting the relation of solutions into (C.8), the equation becomes

[ d
dz

R−1(z)
]
F′(z′) + R−1(z)

[ d
dz

F′(z′)
]

=
iω

c

[
M(z) + iK(z) + L(z)

]
R−1(z)F′(z′),

where ω is omitted in this step. According to equation (2.4), L can be further

expressed as L = L1 + iL2, where L1 is an anti-block diagonal matrix and L2 is a

block diagonal matrix. The differential matrix equation can be expressed as

d

dz
F′(z) =

[iω
c

R(z)
(
M(z) + L1(z)

)
R−1(z)

−
(ω
c

R(z)
(
K(z) + L2(z)

)
R−1(z) + R(z)

[ d
dz

R−1(z)
])]

F′(z).

(C.10)

By comparing equations (C.8) to (C.9), the block diagonal matrices are related to

the chirality, which should be eliminated during the transformation. If I further

assume the space is independent of x and y components of EM fields, the second

term in the square bracket vanishes. Thus,

d

dz



A11

A12

A21

A22


= −ω

c
κI2×2⊗

 µ23ε31
ε33µ33−κ2 1 + µ23ε32

ε33µ33−κ2

−(1 + µ13ε31
ε33µ33−κ2 ) − µ13ε32

ε33µ33−κ2





A11

A12

A21

A22


, (C.11)

where I is an identity matrix. The system of differential equations of Bab is similar

but interchanging µ and ε. There is no analytical solution of equation (C.11) in
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general. If µ31 = µ32 = µ13 = µ23 = 0, equation (C.11) will be

d

dz



A11

A12

A21

A22


=
ω

c
κ



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0





A11

A12

A21

A22


. (C.12)

The transformation of E and H fields are the same, i.e., A = B, so the transforma-

tion matrix will be denoted as A. After the above systems of differential equations

have been solved and applied the condition of fixed surface, A(z0) = I, we can get

[Aab] =

 cos θ sin θ

−sin θ cos θ

 , (C.13)

where

θ(ω, z) =
ω

c

∫ z

z0

κ(ω, u) du. (C.14)

On the other hand, the remained parts in equation (C.10) are related to the tensors in

the transformed space. The transformation of differential operator is ∂j = Aβj∂
′
β ⇒

d/dz = A33(d/dz′). Equation (C.10) becomes

d

dz′
F′(z′) =

1

A33

[iω
c

R(z)
(
M(z) + L1(z)

)
R−1(z)

]
F′(z′). (C.15)
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As the transformations of dielectric and magnetic tensors should follow equations

(B.10) and (B.9) respectively. i.e.

ε′(x′) =
Aε(x)AT

detA

=


ε11(A11)2+(ε12+ε21)A11A12+ε22(A12)2

A33

ε12(A11)2−(ε11−ε22)A11A12−ε21(A12)2

A33
ε13A11 + ε23A12

ε21(A11)2−(ε11−ε22)A11A12−ε12(A12)2

A33

ε22(A11)2−(ε12+ε21)A11A12+ε11(A12)2

A33
ε23A11 − ε13A12

ε31A11 + ε32A12 ε32A11 − ε31A12 ε33A33

 ,

(C.16)

where A21 = −A12, A11 = A22 and (A11)2 + (A22)2 = 1. Again, the magnetic tensor

can be found by replacing ε to µ. After comparing the terms in equation (C.9) one

by one, it is not difficult to notice they match with (C.16) except ε′33 and µ′33. i.e.,


ε′33 = A33(ε33 − κ2

µ33
)

µ′33 = A33(µ33 − κ2

ε33
)

. (C.17)

It seems contradicting with (C.16); the reason can be contributed to the transfor-

mation limited in the form of (B.6). However, this contradiction can be resolved if

a gradient of scalar fields are inserted in the transformation. i.e., E = AT (E′−∇′φ)

and H = BT (H′ − ∇′ψ), the electric and magnetic tensors in the virtual space

become

ε′(x′)→ ε′(x′) + ∆ε′(x′) and µ′(x′)→ µ′(x′) + ∆µ′(x′), (C.18)

where

∆ε′33 = −A33
κ2

µ33

, ∆µ′33 = −A33
κ2

ε33

(C.19)
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and the other elements are all equal to 0 in this situation. The analogy of inserted

scalar fields is difficult, which can even be extended to another research topic. Here, I

will not cover the details here. In this study, diagonal permittivity and permeability

tensors in the virtual space are chosen, which results in L = 0 such that this problem

can be neglected.
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Appendix D

Properties of the dispersion

relations of the chiral photonic

crystals

The dispersion relation of the original chiral photonic crystal can be found by

equation (2.12). By supposing φ(a) = θ(a)− π, where θ(a) ∈ [π, 2π), the dispersion

relation is

eivπF(ω, 0) = R−1
(
θ(a)

)
exp
(iωa
c

M′
)
F(ω, 0)

= −R−1
(
φ(a)

)
exp
(iωa
c

M′
)
F(ω, 0)

= ei(u±1)πF(ω, 0),

where v and u are the normalized Bloch’s vector when the structural “twisted”

angles are θ(a) and φ(a) respectively. It is clear that the band structure of θ(a) can

overlap with the band structure of φ(a) by shifting either one to the left (or right) by

1; also the eigenvectors follow the shifting. The similar results can be found in the
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region [0, π/2) and [π/2, π); nevertheless, the eigenvectors do not follow the shifting.

Let φ(a) = π − θ(a), where θ(a) ∈ (π/2, π]. The dispersion relation is

eivπF(ω, 0) = R−1
(
θ(a)

)
exp
(iωa
c

M′
)
F(ω, 0)

= −R
(
φ(a)

)
exp
(iωa
c

M′
)
F(ω, 0)

6= −R−1
(
φ(a)

)
exp
(iωa
c

M′
)
F(ω, 0)

= ei(u±1)πF(ω, 0).

Although the results do show the normalized Bloch vectors u ± 1 equals v, this

cannot ensure the eigenvectors are the same. Therefore, the region θ(a) ∈ [0, π] is

mainly considered in this study.
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Appendix E

Dispersion relations and Zak

phases calculated by choosing

different origins

By Bloch’s theorem, the dispersion relation of the designed chiral photonic

crystal is

R−1(a) exp
(iωa
c

M′
)
F(ω, 0) = eikzaF(ω, 0), (E.1)

where the dielectric and magnetic tensors in the virtual space are supposed to be

diag(ε′11, ε
′
22, ε

′
33) and diag(µ′11, µ

′
22, µ

′
33). The dispersion relation and eigenstates only

depend on θ(a) if the frequency and electromagnetic tensors in the virtual space are

fixed. In other words, no matter what functions θ(z) they are, the band structures

and eigenstates are the same if θ(a) are the same. In chapter 2, constant chirality

is chosen due to convenience, whereas it can be any functions of z in general. Thus,
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θ(z) in a unit cell should be expressed as

θ(z) = θmaxf(z). (E.2)

where f(z) is an arbitrary function and its maximum is 1. As mentioned in chapter

1, the eigenstates and Zak phases of isolated bands are dependent on the choice of

origin. The dispersion relation has to be modified when different origins are chosen.

The modified equation is

eikzaF(ω, 0) =

R−1(a) exp
(iωa
c

(
1− d

a

)
M′
)
R−1(d) exp

(iωa
c

(d
a

)
M′
)
R(0)F(ω, 0),

(E.3)

where d is the distance from the origin to the position that θ(z) reaches its maximum

value. i.e., f(d) = 1. Due to R(a) = R(0), the dispersion relation can be further

expressed as

eikzaG(ω, 0) = exp
(iωa
c

(
1− d

a

)
M′
)
R−1(d) exp

(iωa
c

(d
a

)
M′
)
G(ω, 0), (E.4)

where G(ω, 0) = R−1(0)F(ω, 0). It is clear that the eigenvalues of equations (E.3)

and (E.4) are equivalent. Zak phase of an isolated band can be calculated numeri-

cally by

ΦZak
n = i

∑
m

ln(F †m Fm+1) + i ln(F †f Fi), (E.5)

where Fm is the normalized eigenstate at the mth Bloch wave vector kz,m. Owing

to the relation G(ω, 0) = R−1(0)F(ω, 0) and R−1(0) = R†(0), the Zak phases

calculated by F and G are equivalent. As a result, the value of θ(0), which is
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related to the choices of origin, will not affect the band structure and the values of

Zak phases.

73



Appendix F

Separating two modes of the

transformed photonic crystals

F.1 Electromagnetic tensors in the transformed

structures

According to equation (C.10), the transformation is according to following

relation:

d

dz
F′′(z) =

[iω
c

R(z)
(
M(z) + L1(z)

)
R−1(z)

−
(ω
c

R(z)
(
K(z) + L2(z)

)
R−1(z) + R(z)

[ d
dz

R−1(z)
])]

F′′(z),

(F.1)

where ω is omitted in this step due to tidiness. R(z) is a continuous transfor-

mation matrix here because θ(z) is replaced by φ(z). The second term in the

square bracket on the right hand side is contributed by the chirality. By choos-
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ing ε′ = diag(ε′11, ε
′
22, ε

′
33) and µ′ = diag(µ′11, µ

′
22, µ

′
33), the chirality parameter in

the transformed structure is

κ′′ =
dφ

dz
− ω

c
κ(ω, z) =

dφ

dz
− θmax

a
,

where θmax = θ(a). Because of φ(z) = θmaxz/a according to the lemma (2.14), the

above equation becomes

κ′′ =
dφ

dz
− θmax

a
= 0. (F.2)

Therefore, the chirality returns to zero in the transformed structure. The remaining

parts in equation (F.1) stands for the dielectric and magnetic parameters in the

transformed structure, which are expressed in equation (3.4) if θ(a) = π/2 is chosen.

The proof is trivial and omitted.

F.2 Dispersion relation of the transformed struc-

ture

The structural “twisted” angle θ(a) equal to π/2 is mainly considered in this

study since there is the largest number of complete photonic band gaps. Again,

the permittivity and permeability tensors in the virtual space are supposed to be

diag(ε′11, ε
′
22, ε

′
33) and diag(µ′11, µ

′
22, µ

′
33) so that L(z) = 0. The transformed structure

is a simple anisotropic binary photonic crystal, which is shown in Fig. 3.4, where

the permittivity and permeability tensors are expressed in equation (3.4). If F′′ is

rearranged in the form
(
E ′′x′′ Z0H

′′
y′′ E

′′
y′′ −Z0H

′′
x′′

)T
=
(
|ψx′′〉 |ψy′′〉

)T
and the white

and black slabs are named as A and B slabs respectively (where w and b are used
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in chapter 3), the matrices M′′ of two slabs are

M′′
A =



0 µ′22 0 0

ε′11 0 0 0

0 0 0 µ′11

0 0 ε′22 0


≡ X⊕Y (F.3)

and

M′′
B =



0 µ′11 0 0

ε′22 0 0 0

0 0 0 µ′22

0 0 ε′11 0


≡ Y ⊕X. (F.4)

|ψx′′〉 and |ψy′′〉 can be considered individually because the operator is block-diagonal

now. The dispersion relations of |ψx′′〉 and |ψy′′〉 modes are


eik

′′
z Λ|ψx′′〉 = exp

(iωa
c

Y
)

exp
(iωa
c

X
)
|ψx′′〉

eik
′′
z Λ|ψy′′〉 = exp

(iωa
c

X
)

exp
(iωa
c

Y
)
|ψy′′〉

. (F.5)

There is a remark that the matrices M in isotropic binary photonic crystals are

MA = X ⊕ X and MB = Y ⊕ Y so the eigenvectors of |ψx〉 and |ψy〉 are the

same. From equations (F.3) and (F.4), the structure can be regarded as XY and YX

isotropic layered structures if |ψx′′〉 and |ψy′′〉 are individually considered respectively.

Even though the dispersion relations of |ψx′′〉 and |ψy′′〉 modes are the same, the

eigenvectors of the same isolated band are different.
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F.3 Relation of the Bloch vectors in two struc-

tures

In the original chiral photonic crystal, the dispersion relation can be found

by equation (2.13). If the eigenvector rearranged in the form F =
(
|ψx〉 |ψy〉

)T
, the

operator can be expressed as

R−1(θ) exp
(iωa
c

M′
)

=

[
I2×2 ⊗

cos θ −sin θ

sin θ cos θ


]

exp
(iωa
c

(
X⊕Y

))
. (F.6)

The dispersion relations of |ψx〉 and |ψy〉 modes are


eikza|ψx〉 = cos θ exp

(iωa
c

X
)
|ψx〉 − sin θ exp

(iωa
c

Y
)
|ψy〉

eikza|ψy〉 = sin θ exp
(iωa
c

X
)
|ψx〉+ cos θ exp

(iωa
c

Y
)
|ψy〉

. (F.7)

Furthermore, when θ(a) = π/2, the dispersion relation can be simplified as


e2ikza|ψx〉 = −exp

(iωa
c

Y
)

exp
(iωa
c

X
)
|ψx〉

e2ikza|ψy〉 = −exp
(iωa
c

X
)

exp
(iωa
c

Y
)
|ψy〉

⇒


e2ikza±π|ψx〉 = exp

(iωa
c

Y
)

exp
(iωa
c

X
)
|ψx〉

e2ikza±π|ψy〉 = exp
(iωa
c

X
)

exp
(iωa
c

Y
)
|ψy〉

. (F.8)
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Therefore, the eigenvectors |ψx(kzΛ/π±1)〉 and |ψy(kzΛ/π±1)〉 equal |ψx′′(k′′z )〉 and

|ψy′′(k′′z )〉 respectively, and the relation of the eigenvalue is

kzΛ

π
=
k′′zΛ

π
+ (2s− 1), (F.9)

where Λ = 2a and s is an integer for controlling the normalized wave vector within

the range of −1 and 1.
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