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Abstract

In many countries and territories, public hospitals play a major role in coping with

the COVID-19 pandemic. For public hospital managers, on the one hand, they must

best utilize their hospital beds to serve the COVID-19 patients immediately. On the

other hand, they need to consider the need of bed resources from non-COVID-19

patients, including emergency and elective patients. In this work, we consider two

control mechanisms for public hospital managers to maximize the overall utility of

patients. One is the dynamic allocation of bed resources according to the evolution

process of the COVID-19 pandemic. The other is the usage of a subsidy scheme to

move elective patients from the public to private hospitals. We develop a dynamic

programming model to study the effect of bed allocation and patient subsidization

in serving three types of patients, COVID-19, emergency, and elective-care. We first

demonstrate the multimodularity of the total expected cost function on the number

of isolation beds and the length of waiting list, which assures the monotonicity of

the optimal allocation decision (i.e., how many beds should be transferred between

isolation beds and ordinary beds) and the optimal subsidization decision (i.e., how

many elective patients should be moved to private hospitals) in the state variables

in each period. We then show that the dynamic allocation between isolation and

ordinary beds can provide a better utilization of bed resources, by cutting down at

least 33.5% of the total cost compared with the static policy (i.e., keeping a fixed

number of isolation beds) when facing a medium pandemic alert. Furthermore, we

present that subsidizing elective patients and moving them to private hospitals is an

efficient way to ease the overcrowded situation in public hospitals, as we numerically

show that it could reduce the length of waiting list and the total expected cost at

the same time.
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Chapter 1

Introduction

The coronavirus disease 2019 (COVID-19) has struck the world in a fast speed, af-

fecting 222 countries, areas or territories in months; until 31st December 2020, there

have been 80,773,033 confirmed cases (WHO, 2020). In coping with the COVID-

19 pandemic, public hospitals play a major role in many counties and territories.

For example, in Hong Kong (HK), COVID-19 patients are only treated by public

hospitals appointed by the government. The public hospital managers are facing a

significant challenge. On the one hand, with a surging number of COVID-19 pa-

tients, they are facing massive shortages of isolation beds. On the other hand, they

still need to consider the need from the non-COVID-19 patients with other diseases

such as cancer and leukemia. During the pandemic period, many non-COVID-

19 patients, particular those emergency ones, still require hospitalization in public

hospitals. How to optimally allocate the limited amount of hospital beds between

COVID-19 and non-COVID-19 patients is a very critical management problem.

The inpatient beds for two types of patients are different. Since COVID-19 is

very contagious, one person with COVID-19 can infect two or two-and-a-half healthy

people (ABC News, 2020). Thus, to avoid cross-infection in a healthcare facility,

the COVID-19 patients must be provided with the isolation beds under a negative

pressure environment. In contrast, non-COVID 19 patients only need ordinary beds.

Two types of beds (i.e., isolation and ordinary beds) need to be separately prepared

to satisfy different demands from COVID-19 and non-COVID-19 patients. The

two types of beds can be transformed into each other, after taking certain steps of

modification work. In this work, we not only consider the bed reservation issue on
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two types of beds, but also consider the transformation possibilities between them.

Different types of patients have different urgency levels on bed request. To

prevent further spread of coronavirus, the adequate capacity of isolation beds should

be prepared so that confirmed COVID-19 patients can be admitted immediately.

The non-COVID-19 patients can be further divided into two classes, emergency

non-COVID-19 patients (hereafter referred to emergency patients) and elective non-

COVID-19 patients (hereafter referred to elective patients). The emergency patients

must be admitted immediately upon their arrival, while the elective patients can

wait. Therefore, ordinary beds shall be first allocated for emergency patients and

the extra ones can be used to admit elective patients.

Upon the outbreak of COVID-19, the surging number of COVID-19 patients can

cause big pressure to the public hospitals. Elective patients are often been put on

waiting list, since reducing elective surgery is one of essential manners to utilize the

limited medical capacity to cope with COVID-19 (7NEWS, 2020). For example,

millions of operations in the UK had been postponed by National Health Service

(NHS) to tackle the COVID-19 pandemic (The Guardian, 2020). Waiting in the

queue can cause a deterioration in elective patients’ health condition and a wait-

ing cost is incurred for them. Therefore, besides serving the COVID-19 patients

and emergency patients, reducing waiting time for elective patients is also a key

issue for the public hospital managers. One effective way to reduce the waiting line

is to subsidize elective patients and refer them to private hospitals for treatment.

Even without pandemic, the subsidy mechanism has been widely adopted to relieve

the pressure of the public hospitals by many countries and areas such as England,

Australia and Hong Kong; see Qian et al. (2017). There are multiple merits by

conducting this mechanism during the COVID-19 pandemic. One, elective patients

can obtain faster treatment in private hospitals, without worrying about the expen-

sive payment and the infection from COVID-19. Two, the overcrowded situation in

public hospitals can be eased and the bed resource can be utilized to cope with the

COVID-19 patients. Three, private hospitals may face a thinned patient flow in the

pandemic period because some of their regular patients are afraid of going to hos-

2



pitals during pandemic. It is good for them to serve these subsidized patients, even

with some price discounts. Indeed, between late February and April 15, 2020, the

Hong Kong government subsidized part of non-COVID-19 patients, e.g., 66 babies,

5 cancer patients, and 15 pregnant women, and referred them to private hospitals

for treatment (Cheung, 2020). However, subsidy scheme is not perfect because the

government budget is limited and governments have to adopt some requirements on

patients so that the subsidy is appropriately applied; see Qian et al. (2017) for the

discussions of pros and cons of different types of subsidy schemes. We do not con-

sider the detailed format of subsidy scheme here but instead we consider a general

cost function associated with the number of subsidized patients. The policy makers

concern about the following question: how many elective patients in public hospitals

should be subsidized and be referred to the private hospitals during different phases

of the COVID-19 pandemic?

We develop a dynamic programming model to find optimal decisions on bed

allocation and patient subsidization in different time periods, by considering the

evolution process of the COVID-19 pandemic. Compared with the literature re-

sults, our dynamic programming model has the following unique features. First, we

take a more holistic approach by jointly considering the hospital bed allocation and

waiting list management while past studies consider these two problems separately.

Second, we consider three types of patients (COVID-19, emergency and elective pa-

tients) in our study while past studies normally consider two types (emergency and

elective patients). Furthermore, the arrival processes of different type of patients are

time-dependent, while they are often assumed to be stationary in the past studies.

This time-dependence feature is driven by the evolution process of pandemic and

its big impact on patients’ behavior. In the outbreak phase of the pandemic, an

increasing number of COVID-19 patients are presenting at public hospitals and the

number of arrived elective patients are decreasing because they are worried being

infected by the virus. In the post-peak phase, the number of COVID-19 patients

is decreasing and more elective patients will seek medical care in public hospitals.

Third, our bed allocation decision considers two types of bed reservation issues: iso-
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lation beds and ordinary beds. Furthermore, we also consider the bed conversion

issue: converting ordinary beds to isolation beds during the outbreak phase and

converting the isolation beds back into ordinary beds during the post-peak phase,

which provide a better utilization of bed resource.

Our results are helpful for hospital managers. First, we demonstrate the multi-

modularity of the total expected cost function on the number of reserved isolation

beds and the length of waiting list. The multimodularity assures the monotonic-

ity of the optimal allocation decision (i.e., how many beds should be transferred

between isolation beds and ordinary beds) and the optimal subsidization decision

(i.e., how many elective patients should be moved to private hospitals) in the state

variables (i.e., the number of reserved isolation beds and the length of waiting list

) in each period. Second, we show that our dynamic allocation rule can provide a

better utilization of isolation and ordinary beds in coping with an infectious disease.

Compared with the static policy (i.e., keeping a fixed number of isolation beds),

our approach can greatly cut down the total expected cost. Furthermore, we find

that our dynamic allocation rule works best under conditions when a region facing

a medium pandemic situation, in which our approach can reduce the total expected

cost by at least 33.5%. Third, our results show that subsidizing elective patients

and referring them to private hospitals is an efficient way to ease the overcrowded

situation in public hospitals. Specifically, by comparing the experiment outcomes

with and without a subsidy scheme, we show that a subsidy scheme can shorten the

length of waiting list by 58% and reduce the total expected cost by 38% . We also

find that the cost saving effect of a subsidy scheme is convex in the hospital bed

capacity. In short, these useful results are critical to hospital managers for deter-

mining the best strategies for serving multiple types of patients through the course

of a pandemic.

The remainder of this paper is organized as follows. The related literature is

reviewed in chapter 2. The basic setting of the hospital bed allocation and patient

subsidization model is introduced in chapter 3. The research problem is formu-

lated as a finite-horizon Markov decision process. And in chapter 4, we analyze
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the structure properties of dynamic programming model, which establishes funda-

mental insights on the optimal scheduling rule. In chapter 5, numerical studies are

conducted to validate our analytical results. Finally, conclusions and implications

are discussed in chapter 6. All proofs can be found in Appendix A.
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Chapter 2

Literature Review

This paper focuses on the dynamic hospital bed allocation and patient subsidization

problem, which is related to the following streams of literature: infectious disease

management, capacity planning in a healthcare system and dynamic multiproduct

inventoty control problem.

2.1 Infectious disease management

Our work is related to the literature on infectious disease management. The alloca-

tion of scarce resources is a key issue to cope with infectious diseases, e.g., SARS,

MERS, H1N1, and COVID-19. For example, Mamani et al. (2013) examine a con-

tractual mechanism to increase vaccine supplies in advance of seasonal influenza

rather than in response to a pandemic. Ekici et al. (2014) develop a facility location

and resource allocation model to analyze food distribution when facing a severe in-

fluenza pandemic. Deo and Sohoni (2015) build an optimization model to study the

allocation of point-of-care HIV diagnostic devices to mitigate the potential of long

diagnostic delays. Long et al. (2018) formulate an optimization model to forecast the

occurrence of new infections and to analyze spatial resource allocation. Blackmon

et al. (2021) develop a decision support system to assist food distribution.

More recently, in response to COVID-19 epidemic, many researches are con-

ducted to address various issues from rapid diagnosis to clinical management (see

Phua et al. (2020) for review). In the operations management field, Kaplan (2020)

develops scratch models to help support local level decisions. That work documents
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problem faced, models developed, and advice offered during real-time response to

the COVID-19 crisis at the local level. These problems include restricting the size of

university events, stress testing COVID-19 intensive care capacity, university tim-

ing decisions, and tracking the outbreak and intervention scenarios. Therein, the

most relevant part to our study is “stress test” of the hospital’s Intensive Care Unit

(ICU) capacity. They focus on determining the maximum arrival rates of COVID-

19 patients the hospital could handle based on standard Erlang loss models. In

their approach, they study different arrival scenarios for COVID-19 patients and

non-COVID-19 patients and give sample findings that if the existing ICU capac-

ity is enough to cope with such arrivals. Our work also studies the hospital beds

capacity decision problem in face of COVID-19 and non-COVID-19 patients. We

mainly focus on the dynamic isolation beds reservation decision with the progression

of COVID-19.

2.2 Capacity planning in a healthcare system

Our work is also related to capacity planning in a healthcare system. Driven by the

insufficient capacity in many hospitals, this stream of studies aim at fully utilizing

the limited capacities to achieve the highest utility for hospitals. Considerable work

has been done on various aspects, e.g., surgical scheduling (Cardoen et al., 2010;

Gupta, 2007; Liu et al., 2019; Naderi et al., 2021), admission control (Helm and Van

Oyen, 2014; Kim et al., 2015; Samiedaluie et al., 2017), beds configuration decision

(Izady and Mohamed, 2019; Pinker and Tezcan, 2013); beds allocation strategy

(Best et al., 2015; Thompson et al., 2009), and discharge decision (Chan et al.,

2012). In these studies, patients are usually divided into several classes according

to their characteristics, then limited capacities will be allocated to corresponding

patients. For example, Liu et al. (2019) study a two-stage scheduling problem in

which two classes of patients ( i.e., emergency patients and elective patients) compete

for the OR (Operating rooms) time and the beds capacity. They study the problem

by dynamically deciding the number of elective patients to admit in each period.

Samiedaluie et al. (2017) consider multiple types of patients with different medical
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characteristics who demand for the insufficient neurology wards. They focus on the

problem of patient admissions from the emergency department (ED) , developing

rules for the allocation of inpatient beds among multiple types of patients. They

formulate an infinite-horizon average cost dynamic program (DP) with the objective

of minimizing the average opportunity cost of waiting and transferring. Izady and

Mohamed (2019) propose a new beds configuration strategy to alleviate the shortage

of inpatient beds, which is named clustered overflow configuration. Patients are

partitioned into multiple types according to their medical characteristics and are

allocated certain number of dedicated wards. In addition to dedicated wards, those

patients who cannot be accommodated can also be admitted into the overflow wards,

which are shared by all types of patients. They propose two different formulations

for partitioning and bed allocation: one minimizing the sum of average daily costs,

and another minimizing the number of patients turned away.

Among those studies, capacity reservation for a particular class of patients is

the issue mostly related to our study. Gerchak et al. (1996) consider emergency

cases and elective cases, and reserve capacity for emergency patients. They propose

a dynamic programing model to decide how many of the additional request for

elective surgery to assign for each day under the advance scheduling setting. Huh

et al. (2013) study a multi-source allocation problem with two classes of patients

(emergency patients and elective patients), the optimal amount of capacity reserved

for emergency patients was decided through a dynamic programing model. Our

work differs from this stream in two aspects. First, previous studies examine the

optimal decisions of a single type of medical resources, e.g., hospital diagnostic

facilities, intensive care unit capacity, and staff. Our work instead considers two

types of hospital beds. Specifically, we investigate isolation beds reservation given

the limited capacity and the transformation possibilities between two types of beds

during different phases of the COVID-19 pandemic. Second, previous studies assume

patients arrive according to a stochastic process, e.g., a Poison process, that is

exogenous and independent of the current state of the system, see, Samiedaluie et

al. (2017), and Liu et al. (2019). In contrast, we consider two arrival settings
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for the COVID-19 and elective patients, which are assumed to be time-dependent

according to the epidemiology features of the COVID-19 pandemic. In our model,

due to the existing of COVID-19 patients, the capacity planning has to consider

infection among patients, and hospital beds have to be separated into two types,

which is more challenging in analysis.

2.3 Dynamic multiproduct inventory control prob-

lem

Our work is also related to the dynamic multiproduct inventory control problem

which has been well studied in operations management literatures ( Aviv and Fed-

ergruen, 2001; DeCroix and Arreola-Risa, 1998; Veinott, 1965). This stream of

literature addresses the problem of finding the optimal production and inventory

policy for periodic review, in a multiproduct, infinite or finite horizon production

inventory systems, where the production of products share a limited capacity in

each period due to the constrained resource. At the beginning of each decision pe-

riod, the remaining inventory level of each product is observed and the production

quantity for each product is decided with limited shared resources. Within each

period, demand for each product is satisfied based on the replenished inventory level

of the product. Holding costs and shortage costs are incurred in each period, and

the excess demand is backordered (DeCroix and Arreola-Risa, 1998). Similar to this

stream of literature, our hospital beds allocation problem considers isolation beds

and ordinary beds with shared capacity, which is analogous to the shared production

capacity of two products in the multiproduct inventory control problem. Moreover,

COVID-19 patients and non-COVID-19 patients are distinct groups demanding for

the two type of beds. If there is no spare capacity, patients waiting in a queue to

be admitted into public hospitals can be regarded as backlogged demand. However,

this dynamic scheme may not perform perfectly under the scenario of allocating beds

to cope with COVID-19. Hence, different from the dynamic multiproduct inventory

control problem, we propose a new dynamic scheme to further addresses the special

features of healthcare delivery in face of a pandemic. For example, in our work, the
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bed allocation presents a time-dependent feature. In the outbreak phase of the pan-

demic, we only transform ordinary beds into isolation beds. In the post-peak phase

of the pandemic, we transform isolation beds back into ordinary beds. While in

the dynamic multiproduct inventory problem, the production of multiple products

is not related to time, but is only limited by the total capacity.

11
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Chapter 3

The Model

In this chapter, we describe the model setting of a discrete-time dynamic program-

ming model and introduce notation used throughout the paper. We consider the

allocation of the limited bed capacity, i.e., isolation and ordinary beds, to ad-

mit both COVID-19 and non-COVID-19 patients in a finite time horizon t, where

t = 1, . . . , T . The summary of notation used in our paper is attached in Appendix

B.

Demands of COVID-19, emergency, and elective patients over a period t are

nonnegative integer-valued random variables, denoted by εt, λt, and δt, respectively,

where εt, λt, δt ∈ Z (Z denotes the set of nonnegative integers). We assume the de-

mand of emergency (non-COVID-19) patients, λt, is an independent and identically

distributed (i.i.d.) random variable for t = 1, . . . , T . In reality, all inpatients stay

in the public system for a random number of days before being discharged from

the public system. We assume random fractions ξct and ξnt of COVID-19 and non-

COVID-19 inpatients exit the public system at the end of period t, respectively,

where ξjt ∈ (0, 1) and ξjt is i.i.d. for j ∈ {c, n}. This assumption is in line with the

literature, for example, Liu et al. (2019).

We denote by xt the number of available ordinary beds at the beginning of period

t, after non-COVID-19 inpatients discharged from the public system; yt the number

of available isolation beds (created in a negative pressure environment) for serving

COVID-19 patients. Let wt be the number of elective patients on the waiting list

to receive public healthcare. The triplet (xt, yt, wt) is the vector of state variables

observable before any decision made in period t.

13



3.1 The dynamic of flow

In our model, the arrival processes of COVID-19 and elective patients are assumed

to be time-dependent according to the epidemiology features of COVID-19 pan-

demic. Both COVID-19 patients and emergency patients are admitted immediately,

whereas elective patients should join a waiting list if ordinary beds are unavailable.

Meanwhile, to relieve the congested public health care system, elective patients can

be removed from the waiting list by being offered with a financial subsidy. The

patient flow, bed transformation and allocation are illustrated in Figure 3.1.

Serving 
єt 

Discharge rate

Discharge rate 

λt 

δt 

n4,t 

n3,t 

n2,t

n1,t

COVID-19 
Patients 

 Elective Patients
Waiting List

 wt

Elective 
Patients  

Reserved Beds 
(Isolation Beds) 

yt

Ordinary 
Beds 
xt

  

Elective patients 
removed with the 
financial subsidy 

  
Emergency 

Patients + 

Non-COVID-19 patients in the system 

COVID-19 patients 
in the system 

Figure 3.1: The illustration of patient flow and bed allocation

In each period, the decisions of the hospital manager are summarized as follows.

1. The hospital manager needs to transform a number of ordinary beds to isola-

tion beds, n1,t, to cope with COVID-19 patients, and allocate the remaining ordinary

beds, n2,t = xt − n1,t, to admit non-COVID-19 patients.

2. The hospital manager decides to remove a number of elective patients on the

waiting list, n3,t, to private hospitals, with a financial subsidy.

3. The hospital manager decides to transform some of excessively reserved isola-

tion beds back into ordinary beds, n4,t , to admit elective patients, in the post-peak

phase.
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In summary, there are three decision variables for the manager, (n1,t, n3,t, n4,t).

As it is not cost-efficient to reserve the isolation beds and reallocate the reserved

isolation beds to admit non-COVID-19 patients simultaneously, n1,t · n4,t = 0 holds

in any period t.

The sequence of events in any period is summarized as follows.

1. At the beginning of period t, there are wt elective patients on the waiting

list and a waiting cost Mt(wt) is incurred. We assume Mt(wt) is an increasing

convex function of the queue length, which is in line with the literature, for example,

Mandelbaum and Stolyar (2004). The hospital manager obtains the number of

available isolation and ordinary beds, yt and xt, respectively.

2. The hospital manager retrofits a number of ordinarily beds n1,t into isolation

beds to admit COVID-19 patients. The unit retrofitting cost is denoted as cb.

The remaining capacity, n2,t = xt − n1,t, can be allocated to admit non-COVID-19

patients, with emergency patients to be served first. The unit treatment cost for

admitting a non-COVID-19 patient is denoted by cn. If isolation beds are excessively

reserved, the manager needs to determine how many of them, n4,t, can be transferred

back to ordinary beds to serve non-COVID-19 patients. The unit transferring cost

is denoted as cd.

3. The number of COVID-19 patients, emergency patients, and elective patients,

represented by (εt, λt, δt), is realized. The COVID-19 patients must be admitted

immediately using the reserved isolation beds, yt. And non-COVID-19 patients are

allocated with the available ordinary beds, n2,t. New incoming elective patients join

the waiting list if there is no available beds for them. If too many non-COVID-19

patients are admitted, the limited isolation beds are unable to meet the demand

of COVID-19 patients, which may cause big hazard for the society. We denote cp

as the unit penalty cost for the public hospital if COVID-19 patients cannot be

served immediately. If too few non-COVID-19 patients are admitted, the waiting

time of elective patients increases. Besides, if the excessively reserved isolation beds

cannot be fully utilized, this is a waste of medical resource. There is an idling cost,

co, inured for each reserved isolation bed. At the end of a period, we denote by

15



Ft(yt, wt) the penalty/idling and waiting costs, where Ft(yt, wt) = Lt(yt) + Mt(wt)

and Lt(yt) = cpy
−
t + coy

+
t , where x− = min(0, x), x+ = max(0, x). Note that we

ignore the penalty cost for unmet emergency non-COVID-19 patients because we

consider the penalty cost for an unmet COVID-19 patient is significantly higher

than the penalty cost for an unmet emergency patient. There are normally multiple

hospitals and if one public hospital is full, the emergency patient can be sent to

another hospital via ambulance diversion (Allon et al. 2013).

4. If the waiting list is too long, the manager can offer an amount of financial

subsidy, cs(n3,t), to some elective patients and refer them to private hospitals for

treatment. This subsidy cost function is assumed to be increasing and convex in

the number of subsidized elective patients n3,t. The subsidy discipline is first-come-

first-serve, which prioritizes patients based on their arrival times.

5. At the end of period t, the COVID-19 and non-COVID-19 patients are dis-

charged from the public hospital with random proportions ξct and ξnt , respectively,

where ξjt ∈ (0, 1), j ∈ {c, n}. Emptied beds are cleaned following cleaning and

disinfecting procedures before admitting new patients.

The objective of the hospital manager is to identify a bed allocation rule and

financial subsidy rule, to minimize the overall cost of the whole system.

3.2 Dynamic programming formulation

We now formulate the manager’s decision problem as a Markov decision process

(MDP). Based on the above analysis, we consider a finite planning horizon of T

periods. The hospital manager reviews the system states and makes decisions in

each period. Since the number of hospital beds and patients are integer, all the

states in our model are assumed to be integer. The dynamic of states observed at

the beginning of period t evolves into period t+ 1 are formulated as follows.

The arrival of COVID-19 patients evolves following the equation:

εt+1 = αcεt + ut, (3.1)

where the coefficient αc indicates the increase of COVID-19 patients with time and

u1, · · · , uT are independent random variables representing the noisy terms with mean
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zero. As discussed in the introduction chapter, we denote by αc > 1 to describe the

widespread human infection in the outbreak phase, and denote by αc < 1 to represent

the post-peak phase with few human infections.

The number of COVID-19 patients in the system is updated by:

lct+1 = (1− ξct )lct + εt. (3.2)

The state of available isolation beds evolves following the equation:

yt+1 = yt + ξct l
c
t − εt + n1,t − n4,t. (3.3)

The arrival of elective patients evolves following the equation:

δt+1 = αnδt + kt, (3.4)

where the coefficient αn indicates the time-dependent feature of the arrival process

for elective patients, and k1, · · · , kT are independent random variables representing

the noisy terms with mean zero. Fearing cross-infections in the public hospital, the

arrival of elective patients presents a negative correlation to the arrival of COVID-19

patients. Thus, we denote by αn < 1 to show outbreak phase, and denote by αn > 1

to represent the post-peak phase.

The number of non-COVID-19 patients in the system is updated by:

lnt+1 = (1− ξnt )lnt + λt + min{(n2,t + n4,t − λt)+, wt}. (3.5)

The number of available ordinary beds in the system is updated by:

xt+1 = xt + ξnt l
n
t − n1,t − n2,t. (3.6)

The state of elective patients on the waiting list evolves following the equation:

wt+1 = (wt + δt − (n2,t + n4,t − λt)+ − n3,t)
+. (3.7)

Let Vt(xt, yt, wt,dt) be the total discounted cost incurred from periods t to T

given the state variables (xt, yt, wt,dt), where dt denotes the nonnegative vector
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consisting of εt, λt, and δt. Thus, the Bellman equation can be established as follows:

Vt(xt, yt, wt,dt) = min
n1,t,n2,t,
n3,t,n4,t>0

{cbn1,t + cnn2,t + cs(n3,t) + cdn4,t + EFt(yt − εt + nc1,t − n4,t

+ ξct l
c
t , wt + δt − (n2,t + n4,t − λt)+ − n3,t) + γEVt+1(xt+1, yt+1, wt+1,dt+1)}

(3.8)

where n2,t = xt − n1,t , the expectation is taken over random variables, and the ter-

mination function VT+1 = 0. Note that on the right hand side of Equation (3.8), the

first term in the brackets, cbn1,t, is the cost of retrofitting ordinary beds as isolation

beds to cope with COVID-19 patients in period t; the second term, cnn2,t, is the

treatment cost by admitting non-COVID-19 patients using ordinary beds in period

t; the third term, cs(n3,t), is the financial subsidy offered to remove elective pa-

tients; the fourth term, cdn4,t, is the transferring cost by using the reserved isolation

beds to serve non-COVID-19 patients; the fifth term, EFt(·, ·), is the expectation

of penalty/idling and waiting costs; the last term, γEVt+1(·, ·, ·, ·), is the minimum

expected total discounted cost from period t+ 1 to T .

In the following chapters, we first analyze the structure properties of this problem

and then find the optimal decisions on bed allocation and waiting list management.
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Chapter 4

Structure Properties Analysis

In this chapter, we examine the characteristics of the total expected cost function in

Equation (3.8). We adopt modularity analysis to obtain some structure properties

of our decision problem. In our study, we jointly study the bed allocation issue and

the waitlist management issue by considering three types of patients (i.e., COVID-19

patients, elective patients, emergency patients) and two types of beds (i.e., isolation

beds, ordinary beds), which makes the modularity more challenging to analyze.

We first provide definitions and preliminaries analysis of modularity. Interested

readers can refer to Topkis (1998), Murota (2005), and Li and Yu (2014) for com-

prehensive introduction of modularity analysis and its properties.

A partially ordered set X = {x′, x′′} that contains the join (x′ ∨ x′′) and the

meet (x′ ∧ x′′) of each pair of its elements is a lattice. If X ′ is a subset of a lattice

X and X ′ contains the join and the meet of each pair of elements of X ′, then, X ′

is a sublattice of X. Suppose that f(x) is a real-valued function on a lattice X. A

function f(x) is submodular if f(x′) + f(x′′) > f(x′ ∨ x′′) + f(x′ ∧ x′′). Similarly, if

−f(x) is submodular, then f(x) is supermodular. If f(x) and g(x) are supermodular

on X, then f(x) + g(x) is supermodular on X (Topkis 1998).

Let X ∈ Rn and Y ∈ R be polyhedral satisfying that the nonzero components

of ai are either consecutive ones or consecutive negative ones, where X = {x ∈

Rn|ai · x > bi, i = 1, . . . ,m}, bi ∈ R. A function f : X → R is multimodular if

g(x, y) = h(x1 − y, x2 − x1, . . . , xn − xn−1) is submodular on a lattice S = {(x, y) ∈

Rn × R| y ∈ Y, (x1 − y, x2 − x1, . . . , xn − xn−1) ∈ X}. (i) Suppose that g(v) is

multimodular, g(v) has increasing differences; (ii) if g(v, d) is multimodular in v,
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for any given d and D is a random variable, then Eg(v, D) is multimodular in v (Li

and Yu, 2014).

Proposition 1. For t = 1, · · · , T , Vt(xt, yt, wt) is increasing in wt and jointly convex

in (yt, wt).

Proposition 1 shows that the optimal expected operations cost is greater if elec-

tive patients cannot be admitted to the public hospital but only waiting for treat-

ment. Also, the convexity of Vt(xt, yt, wt) in yt implies that increasing marginal

effect of reserving one more isolation bed. Besides, the convexity of Vt(xt, yt, wt) in

wt implies increasing marginal effect associated with adding one more elective pa-

tient to the waiting list. The joint convexity implies that there exists a state status

of (yt, wt) corresponding to a minimal cost-to-go function Vt.

Recall that we have three decision variables for each period. To obtain some

structure properties of the optimal decisions, we take a sequential optimization ap-

proach on finding the optimal solutions of the three decision variables. First, the

hospital manager determines n1,t, namely the number of isolation beds reserved for

admitting COVID-19 patients. Second, the hospital manager determines n3,t, the

number of elective patients subsidized from the waiting list and n4,t, the number

of excessively reserved isolation beds transferred back into ordinary bed for admit-

ting non-COVID-19 patients. Following the backward induction, We first find the

optimal subsidization and reallocation decisions given the reserved isolation beds

in section 4.1; and then we find the optimal number of isolation beds reserved for

COVID-19 patients in section 4.2.

4.1 Managing non-COVID-19 patients

Here, the hospital manager faces the decisions of managing elective patients given the

reserved isolation beds. He can manage the ‘demand’ by subsidizing n3,t patients

and move them away from the waiting list. He can also manage the ‘supply’ by

increasing the supply of the ordinary beds through transferring n4,t isolation beds

into ordinary beds. The optimal solutions can be recursively solved through the
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following Bellman equation, for t = 1, · · · , T ,

H∗t (xt, yt, wt,dt) = min
06n3,t6wt

06n4,t6yt

{cs(n3,t) + cdn4,t + EFt(yt − εt − n4,t + ξct l
c
t , wt + δt

− n3,t − n4,t) + γEVt+1(xt+1, yt+1, wt+1,dt)},
(4.1)

Proposition 2. If Ft(yt, wt) is multimodular in (yt, wt) and Vt+1 is multimodular in

(yt+1, wt+1), we have H∗t (xt, yt, wt) is multimodular in (yt, wt).

Proposition 2 shows that the property of multimodularity can be preserved under

the minimization operation of two decision variables, n3,t and n4,t, which also assures

the increasing monotonicity of the optimal solutions (n∗3,t, n
∗
4,t) in state variables yt

and wt (Topkis 1998, Gong et al. 2014). This is quite reasonable: if the number of

reserved isolation beds, yt, is larger, then the manager shall subsidize more patients

to move them to the private system (i.e., increasing n∗3,t) and also it is more likely

to transfer some isolation beds back into ordinary beds (i.e., increasing n∗4,t). Also,

if the waiting list, wt, is longer, it is better for the manager to move away some

patients from the waiting list and transfer some isolation beds back into ordinary

beds.

The multimodularity property implies the joint convexity of H∗t in (yt, wt). It also

implies the diagonal dominance, i.e.,
∂2H∗t
∂y2t
≥ ∂2H∗t

∂yt∂wt
≥ 0 and

∂2H∗t
∂w2

t
≥ ∂2H∗t

∂yt∂wt
≥ 0. This

shows that marginal impact on H∗t due to a unit increase on yt is more sensitive to the

change in itself than the change in wt and similar explanation holds for the change

in wt. We shall investigate the influence of yt and wt on the dynamic allocation

policy, which is discussed in section 4.4.

4.2 Reserving isolation beds for COVID-19 pa-

tients

After obtaining the optimal demand- and supply-side decisions on managing elec-

tive patients, we now consider the optimal bed reservation decision for COVID-19

patients.

At the beginning of period t, non-COVID-19 patients are discharged from the

public hospital system and the total number of ordinary beds, xt, can then be
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obtained. The hospital manager needs to determine n1,t, namely the number of or-

dinary beds to be retrofitted into isolation beds, to cope with COVID-19 patients.

The remaining ordinary beds, n2,t = (xt − n1,t)
+, will be first allocated for emer-

gency non-COVID-19 patients and only the extra ones can be used to admit elective

patients.

The optimality equation for t = 1, · · · , T can be written as follows,

Vt(xt, yt, wt,dt) = min
06n1,t6xt−λt

{cbn1,t+cn(xt−n1,t)+H∗t (xt, yt+n1,t, wt−xt+n1,t,dt)}.

(4.2)

We have the following property of the total expected cost function Vt.

Proposition 3. If H∗t (xt, yt, wt) is multimodular in (yt, wt), we have Vt is multi-

modular in (yt, wt) for any xt > 0.

Propositions 2 and 3 yield the following corollary.

Corollary 1. For t = 1, · · · , T , Vt is multimodular in (yt, wt) for any xt > 0.

This result establishes the existence of global minimizers of (yt, wt) for Vt. The

multimodularity of Vt shows that the marginal change on the total cost of reserving

one more isolation bed is increasing in the waiting list wt. This implies that a

longer waiting list of elective patients makes it harder for the manager to reserve

more isolation beds. In addition, when facing too many reserved isolation beds, the

hospital manager can manage the ‘supply’ side by transforming isolation beds back

into ordinary beds to admit more elective patients.

4.3 Monotonicity of optimal decisions

With the above properties of the Bellman equation, we analyze the detailed charac-

terizations of the optimal decisions. Since it is not cost-efficient to reserve isolation

beds and reallocate the reserved isolation beds simultaneously, n1,t · n4,t = 0. To

achieve efficient bed allocation and patient subsidization with the minimum cost,

we then analyze the impacts of number of elective patients on waiting list, wt, and

the number of available isolation beds, yt, on the manager’s optimal allocation and

subsidization decisions. The results are summarized in the following proposition.
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Proposition 4. For t = 1, · · · , T , suppose (xt, yt, wt,dt) is the initial state in period

t,

(i) the optimal number of ordinary beds transformed into isolation beds, n∗1,t, is de-

creasing in yt and wt;

(ii) the optimal number of subsidized elective patients, n∗3,t, is increasing in yt and

wt;

(iii) the optimal number of excessively reserved isolation beds transformed into ordi-

nary beds, n∗4,t, is increasing in yt and wt.

Proposition 4 shows that the optimal decisions in beds allocation and waiting

list management behave the monotonicity of state variables. The decreasing mono-

tonicity of n∗1,t in yt implies that less isolation beds should be reserved when there

are more available isolation beds; the decreasing monotonicity of n∗1,t in wt indicates

that, if a waiting list is longer, it’s harder to reserve more isolation beds. The part

(ii) and (iii) show that if the number of reserved isolation beds, yt, is larger and

the waiting list, wt, is longer, it is better to transfer more isolation beds back into

ordinary beds and also to use subsidy to remove more elective patients from the

waiting list.

In the following section, we will illustrate the bed allocation and patient subsi-

dization decisions more specifically by analyzing the marginal cost of two decisions.

4.4 Decision analysis and implications

By characterizing the properties of the objective function, we now present a more

straightforward way to show the optimal decisions. Facing the limited bed capacity

and the COVID-19 pandemic , the hospital manager should manage the situation

from both demand- and supply-side. In the outbreak phase, on the supply side,

the manager can retrofit some ordinary beds into isolation beds facing the surging

demand of COVID-19 patients. On the demand side, the manager can remove some

elective patients from the waiting list by subsidy. In the post-peak phase, on the

supply side, the hospital manager can transfer excessively reserved isolation beds

into ordinary beds. While on the demand side, the manager can also use subsidy to
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remove some elective patients from the waiting list if the waiting list is too long. For

both outbreak phase and post-peak phases, we conduct comparison analysis of the

marginal cost incurred by two decisions (allocating beds or moving patients away

using subsidy) to investigate the optimal operational rule.

By Proposition 3, we learn that these decisions can be found recursively by

solving the following equation, for t = 1, · · · , T ,

Vt(xt, yt, wt,dt) = min
06n1,t6xt−λt

{cbn1,t+cn(xt−n1,t)+H∗t (xt, yt+n1,t, wt−xt+n1,t,dt)},

(4.3)

where

H∗t (xt, yt, wt,dt) = min
n3,t,n4,t>0

{cs(n3,t) + cdn4,t + ht(yt, wt, xt)}

and

ht(yt, wt, xt) = EFt(yt−εt−n4,t+ξtlt, wt+δt−n3,t−n4,t)+γEVt+1(xt+1, yt+1, wt+1,dt+1).

We discuss the marginal costs incurred by of bed allocation and subsidization

decisions. For the outbreak phase, our decisions variables are n1,t (or n2,t) and

n3,t. Given state variables (xt, yt, wt) in period t, the marginal cost of retrofitting

an ordinary bed into an isolation bed to cope with COVID-19 patients is cb +

∂ht(xt, yt, wt)/∂yt. If cb + ∂ht(xt, yt, wt)/∂yt < 0, it indicates that transferring one

more ordinary bed into isolation bed is cost saving. According to Lemma 1 (Li

& Yu, 2014), cb + ∂ht(xt, yt, wt)/∂yt is increasing in yt and wt. The marginal cost

of subsidizing an elective patients from the waiting list is cs − ∂ht(xt, yt, wt)/∂wt.

If cs − ∂ht(xt, yt, wt)/∂wt < 0, it indicates that subsiding one more elective pa-

tient from the waiting list is cost saving (i.e., reducing the length of waiting list

by removing one more elective patient). To analyze the difference between the

marginal cost of reserving isolation beds and subsidizing elective patients, we exam-

ine cb− cs + ∂ht(xt, yt, wt)/∂yt + ∂ht(xt, yt, wt)/∂wt. If cb− cs + ∂ht(xt, yt, wt)/∂yt +

∂ht(xt, yt, wt)/∂wt < 0, it indicates that retrofitting an ordinary bed to an isolation

bed from the supply side can achieve a better cost saving effect than the strategy

of subsiding an elective patient away. This cost difference is increasing in yt and wt.

Next, we define three curves in (yt, wt) plane to illustrate the optimization process.

We use superscript ‘o’ to denote the marginal costs incurred in the outbreak phase.
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Y o
t (wt, xt) = sup{yt : cb + ∂ht(xt, yt, wt)/∂yt < 0},

Wt(yt, xt) = inf{wt : cs − ∂ht(xt, yt, wt)/∂wt < 0},

Zo
t (wt, xt) = sup{yt : cb − cs + ∂ht(xt, yt, wt)/∂yt + ∂ht(xt, yt, wt)/∂wt < 0}.

Here, Y o
t (wt, xt) is the largest yt which satisfies the requirement that increasing

isolation beds is cost effective in the outbreak phase; Wt(yt, xt) is the smallest wt

which satisfies the condition that reducing the length of waiting list by subsidy is

cost effective; Zo
t (wt, xt) is the largest yt which satisfies the condition that retrofitting

an ordinary bed to an isolation bed can achieve a better cost saving effect than the

strategy of subsiding an elective patient away.

We adopt the same logic to analyze decisions made in the post-peak phase. For

this phase, our decisions variables are n3,t and n4,t. Given state variables (xt, yt, wt)

in period t, the marginal cost of transferring an isolation bed to an ordinary bed to

admit a non-COVID-19 patient is cn+cb−∂ht(xt, yt, wt)/∂yt−∂ht(xt, yt, wt)/∂wt. If

cn+cb−∂ht(xt, yt, wt)/∂yt−∂ht(xt, yt, wt)/∂wt < 0, it indicates that reducing yt (i.e.,

transferring an isolation bed into an ordinary bed) is cost saving. The marginal cost

of subsidizing an elective patients from the waiting list is cs− ∂ht(xt, yt, wt)/∂wt. If

cs−∂ht(xt, yt, wt)/∂wt < 0, it indicates that subsiding one more elective patient from

the waiting list is cost saving (i.e., reducing the length of waiting list by removing

one more elective patient away). The cost difference of these two decisions is cn +

cb − cs − ∂ht(xt, yt, wt)/∂yt, which is decreasing in yt. Similarly, we define three

curves in (yt, wt) plane to illustrate the optimization process. We use superscript ‘p’

to denote the marginal costs incurred in the post-peak phase.

Y p
t (wt, xt) = inf{yt : cn + cb − ∂ht(xt, yt, wt)/∂yt − ∂ht(xt, yt, wt)/∂wt < 0},

Wt(yt, xt) = inf{wt : cs − ∂ht(xt, yt, wt)/∂wt < 0},

Zp
t (wt, xt) = inf{yt : cn + cb − cs − ∂ht(xt, yt, wt)/∂yt < 0}.

Here, similarly, Y p
t (wt, xt) is the smallest yt which satisfies the requirement that

transferring isolation beds to ordinary beds is cost effective in the outbreak phase;

Wt(yt, xt) is the smallest wt which satisfies the condition that reducing the length of

waiting list by subsidy is cost effective; Zo
t (wt, xt) is the smallest yt which satisfies
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the condition that transferring an isolation bed into an ordinary bed can achieve a

better cost saving effect than the strategy of subsiding an elective patient away.

Let (ŷt, ŵt) ((ỹt, w̃t), resp.) denote the minimizer of Vt in the outbreak phase

(the post-peak phase, resp.). Since the analyze of decisions in the post-peak phase

is similar to the ones in the outbreak phase, we only show the main results in

the outbreak phase. As the pandemic progresses, the hospital manager can make

dynamic adjustments to minimize the total expected cost.

Proposition 5. In period t, we have

(i) As ht(xt, yt, wt) is multimodular in (yt, wt) for xt > 0, then Y o
t (wt, xt) and

Zo
t (wt, xt) are decreasing in the number of elective patients on the waiting list;

(ii) If yt 6 ŷt, Z
o
t (wt, xt) is located to the left of Y o

t (wt, xt) and above Wt(yt, xt);

if yt > ŷt, the curve Zo
t (wt, xt) is located under Wt(yt, xt) and to the right of

Y o
t (yt, xt).

Proposition 5(i) shows that, in outbreak phase, the maximum number of isolation

beds subjects to the cost saving condition is sensitive to the number of elective

patients on the waiting list. That is, when is waiting list is long, to be cost effective,

we cannot retrofit a large number of ordinary beds into isolation beds. While if there

is less elective patients on the waiting list, we can retrofit more ordinary beds into

isolation beds, which is still cost effective.

Furthermore, Proportion 5 reveals the monotone property of three curves in

the (yt, wt) plane which is presented in Figure 4.1. Because both yt and wt are

non-negative, these curves locate on the first quadrant of the (yt, wt) plane. We

divide the first quadrant of the (yt, wt) plane into six regions. For a state located

in different regions, we have the following decision guidelines, which can help the

hospital managers make decisions.

In region I , hospital manager should retrofit more ordinary beds into isolation

beds to cope with COVID-19 patients. For any point in this area, e.g., p1(y1, w1),

we draw a horizontal line that intersects with Y o
t (wt, xt). The intersection point is

denoted by (yo1, w1). The hospital manager should retrofit yo1−y1 ordinary beds into

26



𝑦!

𝑤!
𝑊! 𝑦!, 𝑥!𝑌!" 𝑤!,𝑥!𝑍!" 𝑤!, 𝑥!

𝑦"! ,𝑤%!

𝑝"
I

II

III IV

VI

V

VI

𝑝#

𝑝$ 𝑝% 𝑝&

𝑝'

Figure 4.1: The changes of marginal costs on wt and yt

isolation beds to achieve a cost saving effect. Because p1(y1, w1) is located under the

line Wt(yt, xt), it’s not cost saving to further subsidy patients away.

In region II, hospital manager should primarily retrofit more ordinary beds into

isolation beds and then follow the line of Zo
t (wt, xt) until it reaches the state (ŷt, ŵt).

For example, for a state p2(y2, w2), since it is located at the left side of Y o
t (wt, xt)

and above the line of Wt(yt, xt), increasing yt and reducing wt are both cost saving

strategies. Furthermore, p2(y2, w2) is located at the left side of Zo
t (wt, xt), thus,

increasing isolation beds can achieve a better cost saving effect than reducing the

length of waiting list. Until it reaches the line Zo
t (wt, xt), it can further follow the

line Zo
t (wt, xt) downwards until it reaches (ŷt, ŵt). Note that we only provide a

possible way to reach the optimal state (ŷt, ŵt) . Other ways also work only if it can

reach the state (ŷt, ŵt). It holds for other regions as well.

In region III, hospital manager should primarily subsidize patients away and then

follow the line of Zo
t (wt, xt) until it reaches the state (ŷt, ŵt). For example, for

a state p3(y3, w3), since it is located at the left side of Y o
t (wt, xt) and above the

line of Wt(yt, xt), increasing yt and reducing wt are both cost saving strategies.

Furthermore, p3(y3, w3) is located at the right side of Zo
t (wt, xt), thus, reducing the

length of waiting list can achieve a better cost saving effect than increasing isolation
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beds. Until it reaches the line Zo
t (wt, xt), it can further follow the line Zo

t (wt, xt)

downwards until it reaches (ŷt, ŵt).

In region IV, hospital manager should retrofit more ordinary beds into isolation

beds and subsidize patients away at the same time until it reaches the state (ŷt, ŵt).

For any point in this region, it can not reach the line of Zo
t (wt, xt), thus, the hospital

manage can adopt any optimization process to reach the state Zo
t (wt, xt).

In region V, hospital manager should subsidize patients away to reduce the length

of waiting list. For any point in this area, e.g., p5(y5, w5), we draw a vertical line

that intersects with Wt(yt, xt). The intersection point is denoted by (y5, w
o
5). The

hospital manager should subsidize t w5 − wo5 patients and move them from the

waiting list to achieve a cost saving effect. Because p5(y5, w5) is located at the right

side of the line Y o
t (wt, xt) , it’s not cost saving to further creating more isolation

beds. Furthermore, in the outbreak phase, hospital managers also cannot transfer

excessive isolation beds back into ordinary beds, thus, they should just keep those

isolation beds.

In region VI, hospital manager should keep the current state and do nothing.

For any point in this area, e.g., p6(y6, w6), it is located at the right side of the

line Y o
t (wt, xt) , it’s not cost saving to further creating more isolation beds. In the

outbreak phase, hospital managers also cannot transfer excessive isolation beds back

into ordinary beds, thus, they should just keep those isolation beds. Also, p6(y6, w6)

is located below the line Wt(yt, xt), it is not cost saving to further reduce the length

of waiting list by subsidy.

In summary, applying Proportion 5 we conclude that the hospital manager should

dynamically adjust the number of isolation beds by retrofitting and manage the

length of waiting list by subsidy to reduce the total expected cost.

28



Chapter 5

Numerical Studies

In this chapter, we conduct numerical experiments to illustrate theoretical outcomes

and to investigate the performance of the dynamic allocation rule. In reality, the

COVID-19 situation varies in different countries and regions. (Han et al. 2020).

In some countries and regions, the situation is very serious, where the transmission

of virus is so fast that large amount of people get infected in a short time (e.g.

Wuhan in China). Under such scenario, high-level pandemic alert is implemented in

response to the serious outbreak of COVID-19. While in some countries and regions,

the number of confirmed cases is increasing at a low speed, under which scenario, a

low-level pandemic alert is enough to cope with the pandemic.

In numerical experiments, we classify the pandemic alerts of different countries

and regions into three categories, namely weak, medium, and serious. Under each

scenario, we show the proposed dynamic allocation rule numerically. Then, to val-

idate the effectiveness of our dynamic allocation rule, we compare the expected

operation cost between the static policy (i.e., keeping a fixed number of isolation

beds) and our proposed dynamic allocation rule. We are particularly interested in

under which scenario the dynamic allocation rule works the best when compared

with static policy. In addition, to examine the effect of subsidy schemes, we com-

pare the experiment outcomes with and without subsidy schemes. In the end, we

conduct the robust analysis, investigating the impacts of hospital beds capacity and

the unit waiting cost on the total operation cost.
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The parameter settings are summarized in Table 5.1. In numerical experiments,

we assume the number of time periods is 16, and each period lasts for one week.

We make such an assumption since the first wave and second wave of COVID-19

pandemic in Hong Kong both lasted about 3 months. In practice, the duration for

the outbreak of COVID-19 in certain region can be estimated by experts.

5.1 Numerical outcomes of three examples

In this section, we use three examples to present the optimal outcomes of our dy-

namic beds allocation and patients subsidization rule under three pandemic alerts.

Recall that we consider two phases (i.e., outbreak phase and post-peak phase) in the

progression of COVID-19 pandemic. To describe different level of pandemic alerts,

in the outbreak phase, we assume αc = 1.4 for the weak pandemic alert; αc = 1.7

for the medium pandemic alert; αc = 2 for the serious pandemic alert. Regarding

the post-peak phase, we assume αc = 0.8 for all the three scenarios. The results of

the simulation under three scenarios are summarized as follows:

5.1.1 Scenario under a weak pandemic alert

Figure 5.1 shows the beds allocation results under a weak pandemic alert (αc = 1.4).
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Figure 5.1: Bed allocation under a weak pandemic alert (αc = 1.4)
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As we can see from Figure 5.1, when the outbreak of pandemic is mild, holding

a certain number of isolation beds is able to cope with emerging COVID-19 patients

in the first few periods. With the increase of COVID-19 patients, a small amount of

ordinary beds need to be transformed into isolation beds. Specifically, total number

of 10 ordinary beds are retrofitted into the isolation beds given the total number of

beds is 120. After the peak phase, given the increasing demand of elective patients

and more vacated isolation beds, a total number of 29 isolation beds are transformed

back into ordinary beds to admit the elective patients.

Figure 5.2 shows how the length of waitlist changes with the progression of

pandemic. At the beginning, the length of waitlist is quite long (which is 50 given

the total waitlist capacity is 70) in a public hospital, which incurs a high waiting cost.

Thanks to the subsidization scheme, some elective patients are given an amount of

subsidy and go to private hospital for a quicker healthcare service, which leads to the

waitlist gets shorter and shorter. In the later periods, since there are more ordinary

beds to admit elective patients, the number of elective patients on the waitlist is

almost zero.
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Figure 5.2: The length of waitlist at each period (αc = 1.4)
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5.1.2 Scenario under a medium pandemic alert

Figure 5.3 shows bed allocation results when a region is facing a medium pandemic

alert (αc = 1.7). In the first 4 periods, the initial reserved isolation beds can cope

with those newly arrived COVID-19 patients. Thus, there is no significant change in

terms of the number of two types of beds. However, with more confirmed COVID-

19 cases arising in the following periods, more ordinary beds are transformed into

isolation beds to admit those COVID-19 patients. Since period 11, the excessively

reserved isolation beds are gradually transformed back into ordinary beds to admit

non-COVID patients. Also, we note that the number of reserved isolation beds

does not decline immediately after the peak phase. The reason is that, to avoid

the potential risk of the second wave of the COVID-19 pandemic, it is necessary

to ensure the adequate number of isolation beds within several time periods. In

this case, 80 isolation beds are used to cope with the potential second wave of the

COVID-19 pandemic.
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Figure 5.3: Bed allocation under a weak pandemic alert (αc = 1.7)

Figure 5.4 shows the change of the length of waitlist when a region is facing the

medium pandemic situation. The length of waiting list first decreases, due to the

subsidy scheme and the decreasing number of arrivals from elective patients. In the

following periods, the length increases again. The reason may be that the number of
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Figure 5.4: The length of waitlist at each period (αc = 1.7)

ordinary beds gets smaller, and fewer elective patients are admitted, which lengthens

the waiting list. After some periods, the waiting list gets shorter. This can be caused

by the increasing number of ordinary beds as shown in Figure 5.3. In periods 14-16,

the waiting list gets slightly longer, due to the increasing arrivals of elective patients

in the post-peak phase.

5.1.3 Scenario under a serious pandemic alert

Figure 5.5 presents optimal bed allocation results when facing a serious pandemic

alert. Compared to the medium case, this scenario shows a different trend, especially

during the outbreak phase. As we can see from Figure 5.5, there exists a sharp

increase since the 4th period. This is because that the COVID-19 appears highly

contagious in a short time. Therefore, the hospital manager must take immediate

action, i.e., creating more isolation beds by retrofitting the ordinary beds, to deal

with a surging number of COVID-19 patients. This experiment result shows that

96 ordinary beds are retrofitted as isolation beds. Similarly, a total of 116 isolation

beds are reserved within three periods to avoid the potential risk of second wave.

When facing a stabilized situation in the post-peak phase, the excessively reserved

reservation beds are transformed back to admit the elective patients.

Figure 5.6 shows the change of the length of waitlist when a region is facing a
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Figure 5.5: Bed allocation under a serious pandemic alert (αc = 2.0)

serious pandemic situation. The trend of the change is similar to the one under

medium alert. What’s the difference is that the overall length under a serious alert

is longer than that under a medium alert. For instance, at period 11, the length

of waitlist under a serious scenario is over 60, which is longer than the peak point

which is 50 under the scenario with a medium alert.
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Figure 5.6: The length of waitlist at each period (αc = 2.0)
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5.2 Performance comparison with a static bed al-

location policy

In this experiment, we consider a benchmark case with a fixed number of isolation

beds over the whole planning periods and with subsidy scheme provided. We define

a ratio V d
c /V

s
c , where V s

c (V d
c , resp.) is the expected cost incurred using the static

policy (the dynamic scheduling rule, resp.). The smaller the cost ratio, the better our

dynamic allocation rule performs, when compared with the static rule. Under each

scenario (i.e., αc = 1.4, 1.7, 2.0), we compute the cost ratio with the number of fixed

isolation beds changing from 10 to 120. The numerical outcomes are summarized

in Table 5.2. From the Table 5.2 we can see that all the cost ratios are less then 1,

which demonstrates that our dynamic approach always predominates over the static

policy.

Table 5.2: The cost ratio between the static policy and the dynamic scheduling rule

Fixed
Isolation

Beds
10 20 30 40 50 60 70 80 90 100 110 120

αc = 1.4 0.284 0.814 0.725 0.575 0.439 0.343 0.272 0.218 0.179 0.160 0.157 0.156

αc = 1.7 0.269 0.336 0.418 0.497 0.583 0.653 0.665 0.628 0.525 0.471 0.460 0.458

αc = 2.0 0.297 0.342 0.387 0.436 0.485 0.530 0.579 0.621 0.664 0.701 0.776 0.872

What’s more, if we observe each row in Table 5.2, we can see that for scenarios

αc = 1.4 and αc = 1.7, the cost ratio is firstly increasing and then decreasing in

the number of isolation beds under static policy, and for the scenario αc = 2, the

cost ratio is increasing in the number of isolation beds under static policy. We find

that the optimal fixed number of isolation beds are 20, 70, 120, respectively, which

achieve the biggest cost ratio under each scenario. In addition, the peak number of

COVID-19 patients in the public hospital system under three scenarios are 23, 80

and 142. It shows that if a public hospital has to adopt a static policy, it’s optimal to

reserve a fixed number of isolation beds that can almost deal with the peak number

of expected COVID-19 patients.

Even comparing our dynamic policy with best static policy under each scenario,

we still obtain good cost ratios, which are 0.814 for scenario αc = 1.4, 0.665 for sce-
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nario αc = 1.7, and 0.872 for scenario αc = 2. It indicates that our dynamic approach

can at least cut down the expected cost by 19.6%, 33.5%, and 12.8%. Furthermore,

the three ratios also show that our dynamic policy has the best performance under

the scenario αc = 1.7 when compared with static policy. The underlying reason may

be as follows. For a region facing a weak pandemic alert (e.g., αc = 1.4), reserving

a fixed and smaller number is enough to cope with the COVID-19 patients. If us-

ing dynamic approach, the number of beds transformed between two types of beds

in each period is quite small. Therefore, the dynamic approach will not lead to a

significant cost cutting effect under this scenario. For a region facing a serious pan-

demic alert (e.g., αc = 2), even though putting aside all the beds as isolation beds,

the public hospital still cannot handle the surging number of COVID-19 patients.

In such a serious situation, holding a large amount of isolation beds through the

whole horizon is a reasonable manner to cope with COVID-19 pandemic. Similarly,

if using dynamic policy, it still needs to quickly allocate large amount of beds as iso-

lation beds and hold those isolation beds for periods, which performs slightly better

than the static policy. However, for a region facing a medium pandemic alert (e.g.,

αc = 1.7), dynamically allocating isolation beds according to the evaluation process

of COVID-19 can effectively cut down the total cost by reserving enough isolation

beds for admitting COVID-19 patients in the outbreak phase and transforming ex-

cessive isolation beds to ordinary beds for admitting non-COVID-19 patients in the

post-peak phase, which cannot be achieved by a static policy. Therefore, under this

scenario, our dynamic policy performs best by significantly reducing 33.5% of the

total expected cost.

5.3 Performance comparison of different subsidy

schemes

In this section, we compare the experiment outcomes with and without subsidy

schemes. The results are listed in Table 5.3. For the subsidy scheme, we assume the

subsidy amount offered for each patient is a linear function of the patient’s position

in the waiting list. For example, if the subsidy rule is s = 20 + 2(wt − position),
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it means that each patient can get at least a subsidy amount of 20 units, and the

patient at the head of the queue can obtain 2 more units than the following one.

We then design four subsidy rules listed in Table 5.3: all have a fixed part of 20,

and their linear slopes are 2, 4, 6, and 8, respectively. In all these subsidy schemes,

the total subsidy amount the system needs to pay is an increasing convex function

of the number of subsidized patients, which is in line with our original assumption.

Table 5.3: The effects of the subsidy scheme (αc = 2)

Subsidy Rule Total Cost Average Queue Length

Value ∆c Value ∆q

Without Subsidy - 120,108 - 67.9 -

Subsidy Rule 1 cs = n23,t + 19n3,t 36,897 0.31 11.3 0.17

Subsidy Rule 2 cs = 2n23,t + 18n3,t 50,294 0.42 17.9 0.26

Subsidy Rule 3 cs = 3n23,t + 17n3,t 62,987 0.52 23.6 0.35

Subsidy Rule 4 cs = 4n23,t + 16n3,t 75,080 0.62 28.5 0.42

To measure the differences with and without subsidy, we use two ratios ∆c =

V s
c /V

n
c and ∆q = Ls/Ln, where V s

c (V n
c , resp.) is the total expected cost with a

subsidy scheme (without a subsidy scheme, resp.), and Ls (Ln, resp.) is the average

queue length with a subsidy scheme (without a subsidy scheme, resp.). As we can see

from Table 5.3, subsidy scheme yields a lower total cost and a shorter queue length.

By comparison of four subsidy schemes, the value of ∆c is decreasing when a more

generous amount of subsidy is offered to an elective patient. That is, because subsidy

cost gets higher when transferring the same number of patients in the waiting list;

the effect of subsidy scheme gets less significant. However, even under the most

generous subsidy rule (i.e., subsidy rule 4) , the existence of subsidy scheme can still

significantly cut down the total expected cost by 38% and reduce the queue length by

58% compared with the experiment outcome without subsidy. Furthermore, patients

waiting on the list are more likely to accept a relatively smaller amount of subsidy

and go to a private hospital because they are fear of being infected by virus in a

public hospital during the COVID-19 pandemic. Therefore, the subsidy scheme can

be extremely effective when facing COVID-19 pandemic.

In addition, we also investigate the impact of hospital bed capacity on the ef-
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fectiveness of a subsidy scheme. This sensitivity analysis result can help managers

to consider whether or not to do capacity expansion. In the previous experiments,

we set the bed capacity as 120. We are interested in under what bed capacity can

a subsidy scheme work best. We change the bed capacity from 100 to 240 in in-

crements of 20, under which capacity the cost ratio V s
c /V

n
c is calculated based on

subsidy rule 4 (i.e., cs = 4n2
3,t + 16n3,t) . The results are showed in Figure 5.7.
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Figure 5.7: The cost ratio under different bed capacity

The numerical result shows the subsidy scheme works best with a moderate size

of bed capacity. In this example, it is 180 and the total cost reduced by 57% due to

subsidy scheme. In a scenario with ample bed capacity, the subsidy scheme does not

work that well because elective patients can be directly admitted into the system.

Also, when bed capacity is scarce, relying on subsidy scheme is not enough as the

waiting list is too long. In that situation, the manager may have to consider to solve

the problem in another approach such as building mobile cabin hospitals.
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Chapter 6

Conclusion

In this paper, we study the issue of hospital bed allocation and waiting list manage-

ment to serve three classes of patients: COVID-19, emergency and elective patients.

Our work is motivated by problems in capacity planning given a number of pan-

demics in the 21st century, especially the most recent COVID-19 pandemic. We

consider the two-way bed allocation decisions on the supply side and managing the

waiting list of elective patients on the demand side. In the outbreak phase, facing

the surging number of COVID-19 patients, the manager can consider to retrofit or-

dinary beds into isolation beds with negative pressure facilities; in the post-peak

phase, the manager can transfer some excessively reserved isolation beds back into

ordinary beds. The extensive numerical examples are conducted to gain insights on

managing the system.

We demonstrate the multimodularity of the total expected cost function on the

number of reservation beds and the length of waiting list. We show that a longer

waiting list makes it harder to reserve more isolation beds. Hence it is better to use

subsidy scheme to shorten the waiting list. By characterizing the marginal costs of

key decisions in our model, we also graphically demonstrate the optimal decisions

on bed allocation and patient subsidy, facing different combinations of the number

of reserved isolation beds and the length of waiting list.

We conduct some numerical experiments to compare the effects of our dynamic

allocation policy with that of a static policy (namely, a policy with a fixed number of

isolation beds). We find that our dynamic allocation policy works best when facing a

medium-alert pandemic situation and it can reduce the total cost by at least 33.5%.
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In a serious-alert situation, beds are all reserved for COVID-19 patients and hence

there is little room left for dynamic adjustment of bed capacities. In a weak-alert

situation, demand for isolation bed is small and hence dynamic allocation also does

not work well.

Through our numerical studies, we find that a subsidy scheme can greatly reduce

the total cost and shorten the waiting list of elective patients, in comparing with the

scenario without subsidy. Our numerical study shows that, with subsidy, the total

cost can be reduced by 38% and the waiting list of elective patients can be reduced

by 58% compared to the outcome without a subsidy scheme. We also find that the

subsidy scheme works best when facing moderate bed capacity.

Our work presents a stepping stone to further study questions associated with

dynamic medical resource allocation facing the COVID-19 pandemic. It would be

interesting to use real data to identify the time-dependent arrival rates of COVID-19

and elective patients in different phases of pandemic. Another research question is to

study the coordination issues between public and private hospitals in the pandemic.
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Appendix A

Proofs for Chapter 4

Proof of Proposition 1

The results of this proposition is proved by induction on t. Given VT+1 = 0, the

results obviously hold for t = T + 1. We assume the proposition holds for period

t+ 1 and we prove that it also holds for period t.

We first prove Vt(xt, yt, wt,dt) is jointly convex in (yt, wt). Based on the opti-

mality equation 3.8, we have Lt(yt − εt + n1,t − n4,t + ξct l
c
t ) = cp(yt − εt + n1,t −

n4,t + ξct l
c
t )
− + co(yt − εt + n1,t − n4,t + ξct l

c
t )

+. Since Lt(·) is a convex function, it

is easy to verify that Lt(yt − εt + n1,t − n4,t + ξct l
c
t ) is jointly convex in (yt, n1,t)

(Theorem 5.7 in Rockafellar, 1972). Due to the convexity can be hold for the linear

transformation and Mt(·) is a convex function, Ft is jointly convex in (yt, wt), where

Ft = Lt + Wt. As we assume Vt+1 is jointly convex in its arguments, we know that

EVt+1(xt+1, yt+1, wt+1,dt+1) is also convex (Theorem 5.7 of Rockafellar, 1972). In

addition, the first two and the fourth terms in equation 3.8 are linear functions;

thus, these three terms are convex. Due to Vt(xt, yt, wt,dt) is minimized by a linear

transformation of four convex functions, the convexity of Vt also holds; it follows

from Theorem A.4 in Porteus (2002). By induction, the results hold for all periods.

In what follows, we prove Vt(xt, yt, wt,dt) increases in the length of waiting list

wt. Define wt > w
′
t. Since Vt+1(xt+1, yt+1, wt+1) > Vt+1(xt+1, yt+1, w

′
t+1) and Mt(wt)

is increasing convex function, we have Ft(yt, wt) > Ft(yt, w
′
t). Thus, it follows from

Equation (3.8) that Vt(xt, yt, wt) > Vt(xt, yt, w
′
t). Q.E.D.
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Proof of Proposition 2

The local optimality condition for global optimality is rectified by Murota (2005)

for multimodular functions. Based on our assumptions, we know that Ft(yt, wt) +

γVt+1(xt+1, yt+1, wt+1,dt+1) is multimodular in (yt, wt) for any xt,dt > 0; since mul-

timodular is preserved by taking expectation (Lemma 2 (iv), Li and Yu, 2014), thus,

EFt(yt− εt+ξtlt, wt)+γEVt+1(xt+1, yt+1− εt+1 +ξct+1l
c
t+1, wt+1,dt+1) is multimodular

in (yt, wt). In what follows, it is sufficient to prove that H∗t (xt, yt − µ,wt − yt) is

submodular in (yt, wt, µ) subject to wt > yt for any xt > 0. For convenience, we

define

ht(yt, wt, xt) = EFt(yt− εt + ξtlt, wt) +γEVt+1(xt+1, yt+1− εt+1 + ξct+1l
c
t+1, wt+1,dt+1).

(A.1)

Then, the optimality equation (4.1) can be rewritten as, for t = 1, · · · , T ,

H∗t (xt, yt−µ,wt−yt)=min{cs(n3,t)+cdn4,t+ht(yt−µ−n4,t, wt − n3,t − n4,t − yt, xt)}

= min{cs(n3,t) + cdn4,t + ht(ȳt − µ̄, wt − ȳt)},
(A.2)

where ȳt = yt + n3,t + n4,t and µ̄ = µ+ n3,t + 2n4,t. It is note that cs(n3,t) + cdn4,t +

ht(ȳt − µ̄, wt − ȳt) is submodular in (ȳt, µ̄, wt, n3,t, n4,t) for any xt, δt, εt > 0 in a

sublattice formed by ȳt > wt, n3,t > 0, and n4,t > 0; since yt = ȳt − n3,t − n4,t and

µ = µ̄−n3,t−2n4,t, by applying Corollary 1 (Chen et al., 2013), H∗t (xt, yt−µ,wt−yt)

is submodular in (yt, µ). In addition, H∗t (xt, yt− µ,wt− yt) can be re-formulated as

follows:

H∗t (xt, yt − µ,wt − yt) = min{cs(n3,t) + cdn4,t + ht(yt − µ̄, w̄t − yt, xt)}, (A.3)

where w̄t = wt−n3,t−n4,t and µ̄ = µ+n4,t. Here, cs(n3,t)+cdn4,t+ht(yt−µ̄, w̄t−yt, xt)

is submodular in (w̄t, µ̄, yt, n3,t, n4,t) for any xt, δt, εt > 0 in a sublattice formed by

yt > w̄t, n3,t > 0, and n4,t > 0; since wt = w̄t + n3,t + n4,t and µ = µ̄ − n4,t, thus

H∗t (xt, yt−µ,wt−yt) is submodular in (wt, µ). Now, we approve H∗t (xt, yt−µ,wt−yt)

is submodular in (yt, wt). With fixed µ, for θi, i = 1, 2, let (n′3,t, n
′
4,t) and (n′′3,t, n

′′
4,t)

respectively represent the optimizers at ((yt + θ1) − µ, (wt + θ2) − (yt + θ1)) and
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((yt + θ1)− µ,wt − (yt + θ1)). Then, we have

H∗t (xt, (yt + θ1)− µ, (wt + θ2)− (yt + θ1))−H∗t (xt, (yt + θ1)− µ,wt − (yt + θ1))

= cs(n
′
3,t) + cdn

′
4,t + ht(yt + θ1 − µ− n′4,t, (wt + θ2)− (yt + θ1)− n′3,t − n′4,t, xt)

− [cs(n
′′
3,t) + cdn

′′
4,t + ht(yt + θ1 − µ− n′′4,t, wt − (yt + θ1)− n′′3,t − n′′4,t, xt)]

= cs(n
′
3,t)+cd(n

′
4,t+θ1)+ht(yt−µ−(n′4,t + θ1), (wt + θ2)− yt − n′3,t − (n′4,t + θ1), xt)

− [cs(n
′′
3,t) + cd(n

′′
4,t + θ1) + ht(yt − µ− (n′′4,t + θ1), wt − yt − n′′3,t − (n′′4,t + θ1), xt)]

= H∗t (xt, yt − µ,wt + θ2 − yt)−H∗t (xt, yt − µ,wt − yt)
(A.4)

where the last equality holds due to (n′3,t, n
′
4,t) and (n′′3,t, n

′′
4,t) are optimizers. The

result indicates H∗t (xt, yt − µ,wt − yt) is decreasing difference of (yt, wt). By Topkis

(1998), H∗t (xt, yt − µ,wt − yt) is submodular in (yt, wt). We obtain that H∗t (xt, yt −

µ,wt−yt) is submodular in (yt, µ), (wt, µ) and (yt, wt), respectively; thus, H∗t (xt, yt−

µ,wt − yt) is submodular in (yt, wt, µ), which implies H∗t (xt, yt, wt) is multimodular

in (yt, wt). Q.E.D.

Proof of Proposition 3

By replacing yt and wt with yt = yt − µ and wt = wt − yt, the optimality equation

(4.2) can be rewritten as, for t = 1, · · · , T ,

Vt(xt, yt − µ,wt − yt,dt)

= min
06n1,t6xt−λt

{cbn1,t + cn(xt − n1,t) +H∗t (yt − µ+ n1,t, wt − yt + λt − xt + n1,t, xt)}

= min
06n1,t6xt−λt

{cnxt + (cb − cn)n1,t +H∗t (ȳt − µ,wt − ȳt + λt − xt, xt)},

(A.5)

where wt > yt and ȳt = yt+n1,t. Given cnxt+(cb− cn)n1,t+H∗t (ȳt−µ,wt− ȳt+λt−

xt, xt) is submodular in (yt, wt, ȳt, µ) for xt > 0 in a sublattice formed by yt > wt

and 0 6 n1,t 6 xt − λt, Vt(xt, yt − µ,wt − yt,dt) is multimodular in (yt, wt) for any

xt > 0. Therefore, Vt is multimodular in (yt, wt) for any xt > 0. Q.E.D.

Proof of Proposition 4

By Corollary 1, we have Vt(xt, yt, wt) is multimodular in (yt, wt). According to

Lemma 1 (Li & Tu, 2014), Vt(xt, yt, wt) is submodular in (yt, wt). Thus, by applying
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Theorem 2.8.2 in Topkis (1998), n∗1,t is decreasing in yt and wt; n
∗
3,t and n∗4,t are both

increasing in yt and wt. Q.E.D.

Proof of Proposition 5

For a differential function f(x1, · · · , xi, · · · , xn) on Rn, the partial derivative of

a function f with respect to variable xi is denoted by f i(x1, · · · , xi, · · · , xn) =

∂f(x1,··· ,xi,··· ,xn)
∂xi

. Thus, we define h2t (xt, yt, wt) = ∂ht(xt,yt,wt)
∂yt

and h3t (xt, yt, wt) =

∂ht(xt,yt,wt)
∂wt

.

The outbreak phase:

(i) We first prove the monotonicity of Y o
t (wt, xt) and Zo

t (wt, xt) with respect to

wt. Suppose w
′
t > wt > 0, for any xt > 0, we have

cb + h2t (xt, Y
o
t (w

′

t, xt), wt) 6 cb + h2t (xy, Y
o
t (w

′

t, xt), w
′

t), (A.6)

where the inequality holds as ht(xt, yt, wt) is multimodular in (yt, wt).

Since cb + h2t (xt, yt, wt) is increasing in yt, we have Y o
t (w

′
t, xt) 6 Y o

t (wt, xt), and

Y o
t (wt, xt) is decreasing in wt. Similarly, we have

cb − cs + h2t (xt, Z
o
t (w

′

t, xt), wt) + h3t (xt, Z
o
t (w

′

t, xt), wt) 6 cb − cs + h2t (xt, Zt(w
′

t, xt), w
′

t)

+h3t (xt, Zt(w
′

t, xt), w
′

t),

the inequality holds since ht(xt, yt, wt) is convex and multimodular in (yt, wt).

In addition, due to cb − cs + h2t (xt, yt, wt) + h3t (xt, yt, wt) is increasing in yt, we

have Zo
t (w

′
t, xt) 6 Zo

t (wt, xt), and thus Zo
t (wt, xt) is decreasing in wt for any xt > 0.

(ii) We now prove the monotone properties of three curves. Considering the

outbreak of COVID-19 pandemic, more ordinary beds are reserved as isolation beds

which results in inadequate capacity to admit elective patients. That is, more elective

patients have to join the waiting list. In addition, some elective patients could be

subsidized from the waiting list. Thus, Wt(yt, xt) may not display the monotone

trend. Nevertheless, Wt(yt, xt) must cross over the intersection of Y o
t (wt, xt) and

Zo
t (wt, xt). It is critical to analyze the property of these curves, i.e., how the curves

are entering into and leaving from the intersection.

More specifically, we aim to analyze how Y o
t (wt, xt) and Zo

t (wt, xt) behave to

the left (or right) of Wt(yt, xt) when Wt(yt, xt) cross over the intersection point of
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Y o
t (wt, xt) and Zo

t (wt, xt). The positional information discloses the optimal rules of

reservation and subsidization policy in the initial and outbreak phases (i.e., before

the peak phase).

Let (ŷt, ŵt) be the intersection point, i.e., ŷt = Y o
t (ŵt, xt) = Zo

t (ŵt, xt). Since

Y o
t (wt, xt) and Zo

t (wt, xt) are decreasing in wt, when they approach (ŷt, ŵt) from the

left side of ŷt, the corresponding wt are going down to approach ŵt. For any wt > ŵt,

it is note that both Y o
t (wt, xt) and Zo

t (wt, xt) locate on the left of vertical line yt = ŷt

and Y o
t (wt, xt) 6 Y o

t (ŵt, xt) = ŵt.

Thus, we have h2t (xt, Y
o
t (wt, xt), wt) + h3t (xt, Y

o
t (wt, xt), wt) > h2t (xt, ŷt, ŵt) +

h3t (xt, ŷt, ŵt), where the inequality holds since h2t (xt, yt, wt) + h3t (xt, yt, wt) is in-

creasing in wt and decreasing in yt. In addition, since wt > Wt(Yt(wt, xt), xt) and

h2t (xt, yt, wt) + h3t (xt, yt, wt) is decreasing in wt, we have

cb − cs + h2t (xt, Y
o
t (wt, xt), wt) + h3t (xt, Y

o
t (wt, xt), wt) >

cb − cs + h2t (xt, Y
o
t (wt, xt),Wt(Y

o
t (wt, xt), xt)) + h3t (xt, Y

o
t (wt, xt),Wt(Y

o
t (wt, xt), xt)).

It shows that Y o
t (wt, xt) > Zo

t (wt, xt); that is, if wt > ŵt, curve Y o
t (wt, xt) is

above curve Zo
t (wt, xt). Based on these analysis, we have

cs − h3t (xt, Zo
t (wt, xt), wt)

= cs + h2t (xt, Z
o
t (wt, xt), wt)− [h2t (xt, Z

o
t (wt, xt), wt) + h3t (xt, Z

o
t (wt, xt), wt)]

= cb + h2t (xt, Z
o
t (wt, xt), wt) 6 cb + h2t (xt, Y

o
t (wt, xt), wt).

Thus, wt > Wt(Z
o
t (wt, xt), xt). Based on the analysis above, curve Wt(yt, xt) is

below curve Zo
t (wt, xt) if wt > ŵt. By the same logic, we can show Wt(yt, xt) is

above curve Zo
t (wt, xt) when wt < ŵt. For wt < ŵt, we know that both Y o

t (wt, xt)

and Zo
t (wt, xt) are greater than or equal to ŷt. We have h2t (xt, Y

o
t (wt, xt), wt) +

h3t (xt, Y
o
t (wt, xt), wt) 6 h2t (xt, ŷt, ŵt) +h3t (xt, ŷt, ŵt), where the inequality holds since

h2t (xt, yt, wt) + h3t (xt, yt, wt) is increasing in wt and decreasing in yt. Therefore, we

have wt 6 Wt(Y
o(wt, xt), xt), then,

cb − cs + h2t (xt, Y
o
t (wt, xt), wt) + h3t (xt, Y

o
t (wt, xt), wt) 6

cb − cs + h2t (xt, Y
o
t (wt, xt),Wt(Y

o
t (wt, xt), xt)) + h3t (xt, Y

o
t (wt, xt),Wt(Y

o
t (wt, xt), xt)).

By definition, Y o
t (wt, xt) 6 Zo

t (wt, xt) and curve Y o
t (wt, xt) is below curve Zo

t (wt, xt)
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when wt < ŵt. In addition,

cs − h3t (xt, Zo
t (wt, xt), wt)

= cs + h2t (xt, Z
o
t (wt, xt), wt)− [h2t (xt, Z

o
t (wt, xt), wt) + h3t (xt, Z

o
t (wt, xt), wt)]

= cb + h2t (xt, Z
o
t (wt, xt), wt) > cb + h2t (xt, Y

o
t (wt, xt), wt).

(A.7)

Thus, wt < Wt(Z
o(wt, xt), xt) and curve Wt(yt, xt) is above curve Zt(wt, xt).

The post-peak phase:

We adopt the similar logic to prove the monotone property of three curves in the

post-peak phase.

(i) We first prove the monotonicity of Y p
t (wt, xt) and Zp

t (wt, xt) with respect to

wt. Suppose w
′
t > wt > 0, for any xt > 0, we have

cn + cd − h2t (xt, Y
p
t (w

′

t, xt), wt)− h3t (xt, Y
p
t (w

′

t, xt), wt)

6 cn + cd − h2t (xt, Y
p
t (w

′

t, xt), w
′
t)− h3t (xt, Y

p
t (w

′

t, xt), w
′
t)

(A.8)

where the inequality holds as ht(xt, yt, wt) is multimodular in (yt, wt). Since cn +

cd− h2t (xt, yt, wt)− h3t (xt, yt, wt) is increasing in yt, we have Y p
t (w

′
t, xt) 6 Y p

t (wt, xt),

and Y p
t (wt, xt) is decreasing in wt. Similarly, we have

cn + cb − cs − h2t (xt, Z
p
t (w

′

t, xt), wt) 6 cn + cb − cs − h2t (xt, Z
p
t (w

′

t, xt), wt) (A.9)

the inequality holds since ht(xt, yt, wt) is convex and multimodular in (yt, wt). In

addition, due to cn + cb − cs − h2t (xt, yt, wt) is increasing in yt, we have Zp
t (w

′
t, xt) 6

Zp
t (wt, xt), and thus Zp

t (wt, xt) is decreasing in wt for any xt > 0.

(ii) As addressed above, Wt(yt, xt) may not display the monotone trend. Never-

theless, Wt(yt, xt) must cross over the intersection of Y p
t (wt, xt) and Zp

t (wt, xt). It

is critical to analyze the property of these curves, i.e., how the curves are entering

into and leaving from the intersection.

We aim to analyze how Y p
t (wt, xt) and Zp

t (wt, xt) behave to the left (or right)

of Wt(yt, xt) when Wt(yt, xt) cross over the intersection point of Y p
t (wt, xt) and

Zp
t (wt, xt). The positional information discloses the optimal rules of reservation

and subsidization policy in post-peak phase.
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Let (ỹt, w̃t) be the intersection point, i.e., ỹt = Y p
t (w̃t, xt) = Zp

t (w̃t, xt). Since

Y p
t (wt, xt) and Zp

t (wt, xt) are decreasing in wt, when they approach (ỹt, w̃t) from the

left side of ỹt, the corresponding wt are going down to approach w̃t. For any wt > w̃t,

it is note that both Y p
t (wt, xt) and Zp

t (wt, xt) locate on the left of vertical line yt = ỹt

and Y p
t (wt, xt) 6 Y p

t (w̃t, xt) = w̃t.

Thus, we have h2t (xt, Y
p
t (wt, xt), wt) + h3t (xt, Y

p
t (wt, xt), wt) > h2t (xt, ỹt, w̃t) +

h3t (xt, ỹt, w̃t), where the inequality holds since h2t (xt, yt, wt) + h3t (xt, yt, wt) is in-

creasing in wt and decreasing in yt. In addition, since wt > Wt(Y
p
t (wt, xt), xt) and

h2t (xt, yt, wt) + h3t (xt, yt, wt) is decreasing in wt, we have

cn+cd−cs−h2t (xt, Y
p
t (wt, xt), wt) > cn+cd−cs−h2t (xt, Y

p
t (wt, xt),Wt(Y

p
t (wt, xt), xt)).

(A.10)

It shows that Y p
t (wt, xt) > Zp

t (wt, xt); that is, if wt > w̃t, curve Y p
t (wt, xt) is

above curve Zp
t (wt, xt). Based on these analysis, we have

cs − h3t (xt, Z
p
t (wt, xt), wt)

= cs + h2t (xt, Z
p
t (wt, xt), wt) + h3t (xt, Z

p
t (wt, xt), wt)− h2t (xt, Z

p
t (wt, xt), wt)

= cn + cd + h3t (xt, Z
p
t (wt, xt), wt)− h2t (xt, Z

p
t (wt, xt), wt)

6 cn + cd + h3t (xt, Y
p
t (wt, xt), wt)− h2t (xt, Y

p
t (wt, xt), wt).

(A.11)

Thus, wt > Wt(Z
p
t (wt, xt), xt). Based on the analysis above, curve Wt(yt, xt) is

below curve Zp
t (wt, xt) if wt > w̃t. By the same logic, we can show Wt(yt, xt) is

above curve Zp
t (wt, xt) when wt < w̃t. For wt < w̃t, we know that both Y p

t (wt, xt)

and Zp
t (wt, xt) are greater than or equal to ỹt. We have h2t (xt, Y

p
t (wt, xt), wt) +

h3t (xt, Y
p
t (wt, xt), wt) 6 h2t (xt, ỹt, w̃t) +h3t (xt, ỹt, w̃t), where the inequality holds since

h2t (xt, yt, wt) + h3t (xt, yt, wt) is increasing in wt and decreasing in yt. Therefore, we

have wt 6 Wt(Y
p(wt, xt), xt), then,

cn+cd−cs−h2t (xt, Y
p
t (wt, xt), wt) 6 cn+cd−cs−h2t (xt, Y

p
t (wt, xt),Wt(Y

p
t (wt, xt), xt))

(A.12)

By definition, Y p
t (wt, xt) 6 Zp

t (wt, xt) and curve Y p
t (wt, xt) is below curve Zp

t (wt, xt)
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when wt < w̃t. In addition,

cs − h3t (xt, Z
p
t (wt, xt), wt)

= cs + h2t (xt, Z
p
t (wt, xt), wt) + h3t (xt, Z

p
t (wt, xt), wt)− h2t (xt, Z

p
t (wt, xt), wt)

= cn + cd + h3t (xt, Z
p
t (wt, xt), wt)− h2t (xt, Z

p
t (wt, xt), wt)

> cn + cd + h3t (xt, Y
p
t (wt, xt), wt)− h2t (xt, Y

p
t (wt, xt), wt).

(A.13)

Thus, wt < Wt(Z
p(wt, xt), xt) and curve Wt(yt, xt) is above curve Zt(wt, xt).

Q.E.D.
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Appendix B

Summery of Notation

Table B.1: Summary of Notation

Description

t The index of planning horizon, t ∈ {1, 2, ..., T}
xt The number of ordinary beds in period t
yt The number of reserved isolation beds in period t
wt The number of elective patients on the waiting list in period t
εt The demand of COVID-19 patients in period t
δt The demand of elective patients in period t
λt The demand of emergency patients in period t
n1,t The number of retrofitted ordinary beds into isolation beds in period t
n2,t The number of ordinary beds allocated to serve non-COVID-19 patients

in period t
n3,t The number of subsidized elective patients from the waiting list in period t
n4,t The number of isolation beds transformed back into ordinary beds in period t
ξct The number of COVID-19 patients being discharged from the system

in period t
ξnt The number of non-COVID-19 patients being discharged from the system

in period t
lct The number of COVID-19 patients in the public hospital in period t
lnt The number of non-COVID-19 patients in the public hospital in period t
co The unit idling cost of an isolation bed
cb The unit cost of retrofitting an ordinary bed into an isolation bed
cn The unit cost for admission a non-COVID-19 patient
cp The unit penalty cost if a COVID-19 patient is not timely admitted
cd The unit transferring cost of using an isolation bed to admit

non-COVID-19 patients
cs(·) The financial subsidy offered to the elective patients
M(·) The waiting cost incurred if elective patients are on the waiting list
γ The discount factor
Vt The total expected cost incurred from periods t to T
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