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ABSTRACT 

This dissertation consists of two essays on corporate innovation. In the first essay, I 

exploit an exogenous policy shock to investigate whether and how the policy push affects 

firm innovation. The Chinese 12th Five-Year Plan sets a target to double the invention 

patents per 10,000 people over 2011-2015, which I show stimulates less innovative 

provinces to catch up with their peers, thus provoking more government actions. Using a 

difference-in-differences approach, I find that firms in less innovative provinces file more 

patent applications, but the increased patents receive few citations and have little 

economic value. This effect is more pronounced among SOEs and for firms with large 

employee size. Additional tests reveal that the policy push has no impact on R&D 

expenditures. In contrast, it is positively related to the labor inputs in innovation activities. 

Finally, I find that the government reciprocates treated firms, especially SOEs, with more 

subsidies.  

The second essay investigates the impact of local inventors on corporate innovation. 

Using a sample of publicly listed firms in China, a country featured with concentrated 

corporate R&D activity and a household registration system restraining inventor mobility, 

I document that firms surrounded by more inventors produce high-quality patents and 

breakthrough innovations. Skilled labor supply and the escape of competition are two 

possible channels through which local inventors stimulate firm innovation. Further 

analyses show that inventor quality strengthens local inventors’ impact, and the human 

capital accumulation is positively related to local inventors. Surprisingly, remote 

inventors significantly decrease patent quality.  



 

IV 

 

These two studies shed new light on the role government and local inventors played 

in corporate innovation. The findings show that firms adopt a strategy to trade quality for 

quantity under government pressure. Given no technological breakthroughs in the policy-

induced patents, the potential gain in economic development and firm growth could be 

less than desired. Besides, government officials allocate subsidies on the condition that 

firms respond to their appeal to boost patent counts, which may lead to the misallocation 

of innovation resource. On the other hand, firms could enhance their innovation 

performance by establishing research and development facilities in regions with rich 

talents. Alternatively, the government can loosen inventor mobility restriction, thus 

reducing the adverse effect of firm headquarter location on innovation activities.  
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Chapter 1 Policy Push and Firm Innovation 

1.1 Introduction 

Technological innovation is the primary source of new knowledge and long-term 

economic growth (Solow, 1957; Arrow, 1962). In a competitive market, it is difficult for 

innovators to gain from innovative success due to knowledge spillovers. As a result, 

society underinvests in research and development (R&D), resulting a market failure that 

necessitates government intervention (e.g., subsidies, R&D tax credit, and IPR 

protection). Furthermore, one of the macroeconomic policy objectives is to promote long-

term economic growth. The government, without a doubt, sees innovation as a critical 

step in achieving this aim. This logic indicates that government action promotes corporate 

innovation.  

However, government interventions in technological innovation do not always work 

and may even lead to unintended consequences for many reasons. The literature on 

politicians and firms claims that politicians frequently pursue private interests at the 

expense of shareholders (see Shleifer and Vishny, 1994; Shleifer and Vishny, 1998; 

Djankov et al., 2003). Moreover, government officials are often information-constrained, 

lack the intention or ability to implement appropriate policy analysis, suffer from conflict 

of different interest groups, and are undoubtedly subject to bureaucracies (e.g., Nelson 

and Winter, 1982). According to these views, government intervention could impede 

innovation and even drive businesses to respond strategically. 

In this study, I use a new and specific policy, Chinese 12th Five-Year Plan that sets 

a target on the number of invention patents per 10,000 people over 2011-2015, as a quasi-
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natural experiment to study whether and how the policy push affects firm innovation1. In 

2011, the 12th Five-Year Plan, for the first time, sets a target on the number of invention 

patents per 10,000 people 2 , an indicator that reflects country and province-level 

innovation performance. The national plan’s goal is to double this measure from 1.7 (the 

national average in 2010) to 3.3 by 2015, and many provincial governments adopt the 

same or similar goal in their plans. Such a “per capita” policy target was particularly 

challenging for lagging provinces (i.e., provinces that lagged behind the national average 

of that indicator), given their low innovative capacity and lack of infrastructure for 

science and technology. Nonetheless, some provinces that were lagging the national 

average still set ambitious targets. For example, Anhui had 0.66 invention patents per 

10,000 people in 2010 and planned to raise that indicator to 3.4 in 2015, while Guangxi 

planned to increase that indicator from 0.29 to 3.0 in five years. At the end of 2015, central 

and many provincial governments overshoot the planned targets. The national average 

reaches 6.3 in 2015, which almost quadruples the figure in 2010. A similar surge can also 

be found at the provincial level, with Anhui’s and Guangxi’s numbers increasing to 4.3 

and 2 in 2015, respectively.  

This exogenous policy shock of Chinese 12th Five-Year Plan offers a quasi-natural 

experiment to investigate government intervention on innovation. This policy shock 

allows us to conquer some common identification challenges including omitted variables 

                                                           
1 Originating from the Soviet Union, the planning system acts as a mechanism to govern resource allocations. It was 

introduced to China in the early 1950s. Except for the central planner, the Chinese government decentralized the 

planning system to create planning commissions at provincial and lower-government levels (see Perkins, 1973). This 

top-down and multilayer structure has existed ever since. Since the reform and opening-up in 1978, the Chinese 

government has embraced the market economy and abandoned short-term plans. The Five-Year Plan for the National 

Economic and Social Development  (hereafter, Five-Year Plan or FYP) is still alive, although its role has transited from 

economic planning to public affairs governance planning (Hu, 2013). 
2 This measure is known in Chinese as “每万人口发明专利拥有量”, and it is defined as total amount of invention 

patents (in force) divided by population.  
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and reverse causality. The first one is how to capture government intervention on firm 

innovation. Prior studies have used state ownership and political connections to proxy for 

government intervention, assuming that politicians significantly influence state-owned 

enterprises (SOEs) and connected managers (see, e.g., Fan et al., 2007; Chen et al., 2011). 

Although these measures reflect government involvement to some degree, they tell us 

little about the direct interference on innovation activities. Considering the state 

ownership, it could provide SOEs protection against expiration in the absence of legal 

protection on intellectual property (Fang et al., 2017). Second, Regions with weaker 

property rights institutions could have fewer innovation activities and more government 

intervention simultaneously. Third, even if we observe a positive correlation between 

government intervention and corporate innovation, it could be subject to reverse causality 

concern. For example, less innovative firms may turn to the government for support 

because they are more likely to lose the technology competition and go bankrupt 

(Eisdorfer and Hsu, 2011).  

To examine this policy shock, I compare the growth rate in the number of patents in 

lagging provinces in the 11th FYP and 12th FYP periods. I find that during the 11th FYP 

period (2006-2010), the province-level growth rates in the number of patents filed by 

industrial enterprises are unrelated to the difference between a province’s invention 

patents per 10,000 people and the national average. In contrast, I find that during the 12th 

FYP period (2011-2015) the provincial-level growth rates in patents filed by industrial 

enterprises are significantly and positively correlated with the increasing differences 

between a province’s per-capita rate and the national average. This suggests that 

provinces that lag the national averaged in the 11th FYP period exert greater efforts during 
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the 12th FYP period to catch up with the national average. I find a similar trend if we 

compare a provinces’ patent growth to adjacent provinces rather than the national average. 

On the other hand, I also examine province-level R&D investment. Compared to the 

provinces leading in innovation, less innovative provinces in fact report lower R&D 

investment after 2011. It is thus plausible for us to assume that firms located in less 

innovative provinces face more policy push following the 12th Five-Year Plan. 

I construct a sample using firms listed in the Chinese A-share market between 2007 

and 2016. To gain a complete picture of firm innovation, I require audited R&D 

expenditures, and so the sample period started in 2007, as listed firms are required to 

disclose this item since then. Following existing literature (e.g., Fang et al., 2017; Tan et 

al., 2020), I use invention patents and utility model patents to measure innovation outputs. 

In the spirit of Balsmeier et al. (2017) and Bhattacharya et al. (2017), I distinguish 

incremental innovations from breakthrough ones by the distribution of forward citations 

and economic value of patents, respectively.  

Using a panel of 14,613 firm-year observations from 2,140 unique firms for the 

2007-2016 period, I first implement univariate difference-in-differences (DiD) analyses 

to examine the impact of the per-capita policy target on firm innovation. The univariate 

DiD tests show that after the enactment of the 12th Five-Year Plan, firms in the lagging 

provinces exhibit a 31.72% increase in the number of patents than that of firms in leading 

provinces. When I look at the change in incremental versus breakthrough innovations, 

the DiD estimates are only significantly positive for less-cited patents and low value 

patents. In other words, the increased patents by treated firms are mainly from 

incremental innovations, as they receive very few citations and trigger weak stock market 
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reactions. According to the results, 95.41% of the increased patents are low-value ones 

that fall into the bottom 30th percentile of the value distribution within their type-

technology class-year. 

We also estimate full DiD regressions that include firm fixed effects, year fixed 

effects, and an extensive list of control variables that may affect firm innovation. 

Consistent with the univariate results, I find that government intervention strongly affects 

patent counts and low-quality patents, but has no effect on the number of high-quality 

patents. The implementation of the 12th Five-Year Plan results in a 28.68% larger increase 

in the number of patents among firms in less innovative provinces when compared to 

those in more innovative provinces. Moreover, the application of less cited patents (low-

value) patents is more active by 23.38% (30.09%) among firms exposed to the policy 

push. For highly cited and high-value patents, I find no significant difference between the 

treated and control firms. In the robustness check, I obtain similar results after controlling 

for local business conditions and using different definitions of incremental and 

breakthrough innovations.  

The validity of DiD analysis depends on the outcome variables’ parallel trends prior 

to the exogenous shock, as Imbens and Wooldridge (2009) explained. To verify this 

assumption, I follow Bertrand and Mullainathan (2003) and Atanassov (2013) to test the 

dynamics of innovation around the 12th Five-Year Plan passage in 2011. The results 

confirm the pre-treatment trends assumption, as there is no increasing innovation in the 

treatment group before 2011. I only find the positive and persistent impact of policy push 

on patent counts and incremental innovations in the post-policy period. Moreover, the 

dynamic regression shows an immediate and long-lasting effect of the 12th Five-Year 
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Plan. This pattern is at odds with prior studies 3 . Usually, any changes in inputs or 

incentives would take time to affect corporate innovation because technological change 

is a long-term process (Holmstrom, 1989; Manso, 2011).  

The DiD approach assumes the before-after changes in control firms’ innovation to 

be the counterfactual outcome of treated firms. To address the concern that these two 

groups may not be comparable, I employ the Propensity Score Matching method to 

construct a matched sample. Following Fang et al. (2017) and Tan et al. (2020), I require 

the treated firm and its matched firm to have a similar patent growth rate before the policy 

shock. After addressing the sample selection issue, the treatment effects are still 

considerable in this alternative sample. Specifically, firms from less innovative provinces 

have 33.91% more patent applications following the 12th Five-Year Plan. By comparison, 

it is only 28.68% in the baseline study. Besides, I find a positive relationship between 

policy push and incremental innovations but not impactful ones.  

My identification strategy relies on a single shock to government intervention, which 

may raise the concern that potential omitted variables coinciding with other policy shocks 

or economic conditions directly affect firm innovation. I try to alleviate this concern from 

two aspects: (1) implementing a falsification test using the 11th Five-Year Plan that did 

not specify patent output targets; (2) performing a placebo test by randomly assign treated 

firms. I find no significant results in these tests, suggesting that my baseline findings are 

specific to the 12th Five-Year Plan and cannot be simply attributed to luck.  

                                                           
3 If the risk-taking incentive were behind the patent surge, the impact of policies, such as privatization, antitakeover 

laws, and smoke-free laws, mostly occur two years after the implementation. (see Fang et al., 2017; Atanassov, 2013; 

Gao et al., 2019).  
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I also examine sample firms’ innovative activities in other dimensions: R&D 

expenditures and labor inputs. I find that treated firms did not increase R&D spending 

relative to that of control firms following the 12th Five-Year Plan. This result is robust to 

different measures of R&D inputs, namely the natural logarithm of 1 plus R&D 

expenditure, R&D expenditure scaled by total assets, R&D expenditures per employee, 

and R&D expenditures per inventor. Conversely, treated firms indeed have more 

employees as inventors than control firms do in the post-policy period, and their 

employees are more capable of patenting. The economic magnitude is sizable. Compared 

to control firms, treated firms have 23% higher percentage of inventors in 1,000 

employees and 15% larger increase in the number of patents per 1,000 employees relative 

to the control firms, all other things being equal. Given the findings that more employees 

in treated firms become inventors to file for patents, the increase in (low-quality) patents 

should be positively correlated with employee size4. To test this implication, I partition 

the whole sample into two groups by the median of employees each year and then re-

estimate the baseline DiD regression. I find that the increase in patent counts and low-

quality patents only appear in treated firms with more employees. We have two possible 

explanations for these findings: first, Chinese firms may prefer keeping their innovation 

as business secrets before the 12th Five-Year Plan, and become more aggressive in 

patenting their innovation after. Second, treated firms are reluctant to increase R&D 

spending; instead they trade quality for quantity to help bureaucrats meet patent target 

quickly5.  

                                                           
4 Note that I already control log total assets, so the difference is not due to firm size. 

5 As Manso (2011) points out, the commitment of resource and early failure tolerance is essential for exploration. In 

my setting, government officials count on patents that are viewed as successful discovery outcome, and firms exploit 
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The baseline results and further tests suggest that government officials intervene in 

firm innovation to achieve the planned patent targets, which points to the “grabbing hand” 

story. To provide more evidence on this argument, I conduct a subsample analysis based 

on ownership. Theoretical and empirical studies suggest that government intervention is 

more common among state-owned enterprises (see, e.g., Shleifer and Vishny, 1994; Chen 

et al., 2011; Gu et al., 2020). Besides, SOEs dominate the Chinese stock market in terms 

of market capitalization. The effect of policy push on innovation is expected to be 

stronger for SOEs than non-SOEs. Indeed, when the dependent variables are patent counts 

and less cited patents, the treatment effect is only statistically significant in the SOEs 

group. For low-value patents, the treatment effect is larger and more influential among 

SOEs than that of non-SOEs.  

Finally, I examine firms’ incentives to comply with government intervention, 

especially whether they receive any political favors, as politicians who obtain private 

benefits from firms would reward them by tax deductions, bank loan preference, or 

subsidy (see, e.g., Chen et al., 2020; Gu et al., 2020). In this study, I focus on government 

subsidies for two reasons. First, firms need to disclose the details of government subsidies 

received. Second, the subsidy has been an important policy tool used by the Chinese 

government to advance technological innovation6. Using subsidies data from CSMAR, I 

find a significant positive relationship between the patents owned by treated firms and 

government subsidies (𝑡-statistics = 3.88). Our result thus reveals  that the reciprocal 

                                                           
their workers’ tacit knowledge. Consequently, the increase in patents mainly reflects incremental progress instead of 

groundbreaking innovations.  
6 Fang et al. (2018) show that R&D subsidies make up around 1% of Chinese GDP over 2005-2015. 
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relationship between local governments and corporate managers may be a potential 

source of resource misallocation. 

My study contributes to the literature in four ways. First, I present novel findings on 

the effect of government initiatives on innovation. In this line of research, most studies 

document that government regulations and laws, such as IPR protection, privatization of 

state-owned enterprises, and anti-corruption campaigns, have a real effect on corporate 

innovation (see Ang, Cheng, and Wu, 2014; Fang, Lerner, and Wu, 2017; Xu and Yano, 

2017). I use a DiD approach to draw causal inferences on the effect of a new per-capita 

policy target imposed in China’s 12th Five-Year Plan on innovation activities.  

Second, my findings add novel evidence to the emerging literature on the real effects 

of China’s Five-Year Plans. Prior studies have documented the positive effects of these 

plans on emissions (Shi and Xu, 2018), corporate social responsibilities (Li and Lu, 2020), 

and industry expansion (Cen et al., 2020)7. While I find that the plan has stimulated the 

firm patenting intensity, I also question its real impact by documenting the deterioration 

of the quality of new patents and highlight the potential resource distortion or indicator 

manipulation triggered by the rigid policy targets. 

Third, my work complements the nascent literature on the adverse effects of policy 

uncertainties on firm-level innovation, which requires long-term investment 

                                                           
7 Using the target of reducing SO2 emission by 10% in the 11th Five-Year Plan as a shock, Shi and Xu (2018) find that 

environmental regulation significantly reduces firm export in pollution-intensive industries. Li and Lu (2020) use more 

social indicators in the 12th Five-Year Plan as an exogenous shock to the government CSR initiative. They document 

that the plan has a positive influence on firm CSR performance. However, the effect varies with the incentives of 

government officials and corporate CEOs. Cen et al. (2020) find an adverse effect of China’s industry growth on the 

number of establishments and employees of the same industry in the United States. They identify a causal relation 

using China’s Five-Year Plans as a shock to industry expansion. 
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(Bhattacharya et al., 2018; Liu and Ma, 2020; Cong and Howell, 2021) 8 . I present 

empirical evidence on how a sudden change in policy targets can distort firms’ innovation 

activities and choices, and encourage their rent-seeking behaviors.  

Lastly, my work offers new, broad perspectives on the unintended consequences of 

government intervention. The literature on politicians and firms propose two 

countervailing effects of government intervention. The grabbing hand hypothesis states 

that government officials expropriate shareholder wealth from public firms (Shleifer and 

Vishny, 1994; Shleifer and Vishny, 1998). The helping hand hypothesis argues that 

shareholders gain from a close connection with politicians (Faccio, 2001). My findings 

provide novel evidence for the “grabbing hand” hypothesis: that is, the implementation 

of 12th Five-Year Plan does not increase levels of corporate R&D; instead, it encourages 

firms to trade quality for quantity in their innovation activities, which may adversely 

affect China’s long-term development.  

The remainder of this paper is structured as follows. The next section provides the 

background information on the Five-Year Plans and patent target. Sections 1.3 describes 

the variables, data sources, and summary statistics. In section 1.4, I present the main 

empirical results and validation tests for DiD analysis. Section 1.5 provides additional 

tests and Section 1.6 includes several extensions and robustness checks. I conclude the 

paper in Section 1.7. 

                                                           
8 Bhattacharya et al. (2017) find that innovation activities are not affected by policies that are in place but decrease 

significantly in the presence of high policy uncertainty. Cong and Howell (2021) exploit occasional initial public 

offering interventions in China to study how policy uncertainty affects firm innovation. They show that temporary 

listing delays reduce innovation, as measured by patenting activity. Liu and Ma (2020) find that China’s accession to 

the World Trade Organization alleviated trade policy uncertainty and promoted firm innovation. 
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1.2 Institutional Background  

1.2.1 Government goal on technological innovation 

Although China’s innovation strategy centers on acquiring and absorbing foreign 

technologies in the early days, the focus gradually moves to advance indigenous science 

and technology9. In the 16th National Congress of the Communist Party of China held in 

November 2002, the then-president Jiang Zeming stated, "We must encourage scientific 

and technological innovation and acquire key technology and independent intellectual 

property rights in key areas." 10 Following this appeal, the State Council expends more 

than three years to compile the National Median- and Long-Term Science and 

Technology Development Plan (2006-2020). One primary goal of this plan is to expedite 

the inputs and outcomes of technological innovation. By 2020, the R&D expenditures to 

GDP are expected to be 2.5% or above, and China would be among the top five countries 

in the world regarding the invention patents granted to residents. For comparison, World 

Bank statistics show that R&D expenditure made up 1.31% of Chinese GDP in 2005.  

The central government initiated a series of policies subsequently, including linking 

government procurements to innovation developed in China and various government-

guided funds. Aside from these new policies, the central government has an established 

way to achieve its objectives: the Five-Year Plan for National Economic and Social 

Development (hereafter, Five-Year Plan or FYP). 

                                                           
9 Several studies analyze the evolvement of China’s innovation policies since 1978. In particular, Liu et al. (2011) 

conduct a quantitative analysis of 336 innovation policies issued by the central government agencies over 1980-2008, 

which covers a portfolio of S&T, industrial, financial, tax, and fiscal measures. Fu et al. (2016) discuss the innovative 

strategy in China after 1978, especially on the change from imported technologies to the domestic innovation. 
10 Details of the report by Mr. Jiang Zeming can be accessed through 

http://www.china.org.cn/english/features/49007.htm (accessed December 20, 2020) 

http://www.china.org.cn/english/features/49007.htm
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1.2.2 Five-Year Plan and target setting 

The Soviet Union first developed the Five-Year Plan in 1928, which served as a 

strategic blueprint to guide and coordinate economic activities in the planned economy. 

After establishing the People’s Republic of China, the Chinese government also built up 

a similar planning apparatus with the help of Soviet experts. In the earlier days, the Five-

Year Plan’s role mainly concentrates on setting overall goals for the economy and 

translating them into specific targets for all sectors and key industries (Perkins, 1973). 

For example, in the First Five-Year Plan covering 1953-1957, the tasks include 

constructing 694 large- and medium-sized industrial projects. Since the reform and 

opening-up, China has embraced the market economy and gradually transformed the 

Five-Year Plan from economic planning to public affairs governance planning (Hu, 2013).  

As a top-down system, the State Council is responsible for formulating the national 

plan, which the National People’s Congress then approves. Accordingly, the local plan 

(usually at the provincial and municipal level) is developed by the local government and 

approved by the local people’s congress. Even though local governments can set goals 

and targets in accommodating local conditions, it has mostly followed the national plan. 

Hu (2013) finds that 74.9% of the Twelfth Five-Year Plan indicators are consistent 

between the provincial and central government. Wu et al. (2019) show that the central 

government’s preference is crucial for the local Five-Year Plans.  

Perkins (1973) argues that a long-term plan looking for five years ahead would 

quickly be ignored by private enterprises in the market economy, even by government 

agencies themselves. To avoid this dilemma, the central government has strengthened the 

monitoring. Specifically, in 2006, the Law of the People’s Republic of China on 
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Supervision by the Standing Committee of the People’s Congress at All Levels was 

promulgated11, under which the government at various levels shall submit a mid-term 

assessment report on the implementation of the plan to the standing committee of the 

People’s Congress for deliberation. The law also stipulates that any mid-term adjustments 

have to receive approval from the People’s Congress. In addition, the central government 

controls over personnel, and the subnational government runs the bulk of the economy in 

the Chinese regionally decentralized authoritarian system (Xu, 2011). In this scheme, 

target is one of the incentive mechanisms for local officials to compete in the promotion 

tournament (Li et al., 2019).  

1.2.3 Target on invention patents per 10,000 people 

We list the policy targets for science and technology in the 11th and 12th Five-Year 

Plans in Table 1.112. The 11th Five-Year Plan has only one target: a R&D-to-GDP ratio 

of 2%. The realized R&D-to-GDP ratio was 1.75% in 2006-2010. There are two policy 

targets in the 12th Five-Year Plan: a R&D-to-GDP ratio of 2.2% and 3.3 invention patents 

per 10,000 people. Specifically, in the 12th Five-Year Plan, the Chinese central 

government for the first time sets a target of doubling this measure from 1.7 (the national 

average in 2010) to 3.313.  

To verify whether provincial plans also adopt the same target, I manually check 31 

provincial 12th Five-Year Plans for their respective targets and presents them in Table 1.2. 

                                                           
11 For details, please see the document at the official website of Nation People’s Congress: 

http://www.npc.gov.cn/zgrdw/englishnpc/Law/2008-01/02/content_1388018.htm 

12 Data source: http://www.gov.cn/2011lh/content_1825838_2.htm 
13 This policy is reported to exert a remarkable effect on domestic patent applications. For example, see “China’s patent 

targets mask weak innovation: Study” Reuters, August 21, 2012, and “Patent fiction: Are ambitious bureaucrats 

fomenting or feigning innovation?” The Economist, December 13, 2014. We acknowledge that CNIPA also sets its 

own target for patent numbers in the FYP for National Patent Work, but this plan applies only to the intellectual property 

administration at various levels. 

http://www.npc.gov.cn/zgrdw/englishnpc/Law/2008-01/02/content_1388018.htm
http://www.gov.cn/2011lh/content_1825838_2.htm
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The FYPs of 13 provinces state the intention to double the number of invention patents 

per 10,000 people: Anhui, Guangxi, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, 

Liaoning, Shandong, Sichuan, Tianjin, and Xinjiang. 11 other provinces use a different 

measure of innovation: Beijing, Chongqing, Fujian, Guangdong, Inner Mongolia, Jiangsu, 

Ningxia, Shanghai, Shaanxi, Shanxi, Yunan. Finally, 7 provinces do not report a target: 

Gansu, Guizhou, Jiangxi, Jilin, Qinghai, Tibet, and Zhejiang. 

In Table 1.3, I tabulate the regional distribution of invention patent per 10,000 people 

in 2010, as a benchmark for the 12th FYP data. Several interesting patterns emerge. First, 

this statistics vary greatly by locations, ranging from 19.89 in Beijing to 0.2 in Tibet. 

Second, the economically developed regions have more patents, such as Beijing, 

Shanghai, and Guangdong. Third, most provinces lag behind the national average, and 

the invention patents per ten thousand people in 18 provinces is less than 1, especially in 

those provinces with a large population (e.g., Henan and Sichuan).  

To examine how firms in different provinces react to the 12th FYP, in Figure 1.1, I 

plot the average province-level growth rates in the number of patents by industrial firms 

in the lagging provinces (i.e., provinces that lagged behind the national average of 

innovation activities). Panel A demonstrates the average growth rate during the 11th FYP 

(2006-2010) of provinces that lagged behind the national average of 4.9 invention patents 

per 10,000 people at the end of 2006 (the earlies data for which this statistic is available). 

The fitted line shows that there are no differences between the patent growth rates of 

different provinces, and thus patent growth rates during this period is unrelated to whether 

a province’s patents lag behind the national average. In contrast, Panel B demonstrates 

the average growth rate during the 12th FYP (2011-2015) of provinces lagging behind the 
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national average at the end of 2010 of 1.7 invention patents per 10,000 people. Its trend 

line has a negative slope, showing a significant difference between the patent growth rates 

of different provinces in the 12th FYP period. In particular, firms in provinces that lag 

further behind the national average have higher patent growth rates during this period, 

and these rates are consistent with the per-capita target of the 12th FYP. 

 [Insert Figure 1.1 here] 

Chen et al. (2020) argue that adjacent provinces share the same economic conditions 

and the provincial officials compete for promotion. Hence, the incentive to facilitate 

innovation activities may be correlated among a province and its nearby regions. In Figure 

1.2, I examine each province’s “excess” patent growth, which is its patent growth rate 

minus the average patent growth of its neighboring provinces. In this way, we remove the 

effects of co-movement in economic development and of differences in support from the 

central government. Again, I find a flat trend line during the 11th FYP period, but a 

strongly negative sloped trend line during the 12th FYP period. All of these patterns 

presented in Figure 1.2 suggest that firms in lagging province become more innovative in 

the 12th FYP period cannot be attributed to common economic trends. By the end of 2015, 

not only the national target but also all provincial targets are exceeded. The invention 

patents per ten thousand in China was 6.3 in 2015, almost doubling the original national 

target.  

[Insert Figure 1.2 here] 
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1.3 Data and Summary Statistics 

1.3.1 Measuring policy push 

I define the policy push by a dummy variable equal to one for firms located in the 

lagging province after 2010 and zero otherwise14. The lagging region here refers to 

provinces that had fewer invention patents per 10,000 people in 2010 than the national 

average. As discussed above, governments in these lagging provinces would have a 

stronger incentive to stimulate innovation activities. Prior studies also observe a similar 

pattern. Hu et al. (2017) suggest that the urge to boost patent counts is likely to be stronger 

in regions that had lagged in innovation and patenting. Fei (2018) finds a stronger 

response to the National InnoFund VC Program in less developed areas.  

To check the validity of this measure, I compare innovation inputs and outcomes 

between the innovatively leading and lagging provinces around the 12th Five-Year Plan. 

Table 1.4 presents the results of difference-in-difference regression at the provincial level. 

After implementing the 12th Five-Year Plan, I find that the lagging provinces have lower 

R&D expenditures but faster growth in the number of patents (utility model and design 

patents) than the leading regions, and there is no difference in the growth rate of invention 

patents. Such a finding is in line with the notion that policy push is behind the innovation 

activities.  

                                                           
14 Following existing literature (i.e., Chen et al., 2018; Gu et al., 2020), we use the registration address rather than the 

headquarter address to locate the firm. Chen et al. (2018) find that a firm’s factories are located near its registration 

city. It is reasonable to expect that provincial government has more influence on the factories than the headquarter. We 

verify in untabulated results that the baseline results are robust to the choice of location.  
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1.3.2 Measuring firm innovation 

I construct five patent measures to capture firm innovation. The China National 

Intellectual Property Administration (CNIPA) issues three types of patents: invention 

patents, utility model patents, and design patents. The invention patent is equivalent to 

the utility patent in the U.S., which requires substantial examination and provides 20 years 

of protection from the date of application. Utility model and design patent share the same 

protection period with ten years, with the exception that the former has more technical 

components than the latter. Following existing studies (see Fang et al., 2017; Tan et al., 

2020), I only use invention and utility model patents. I construct the first measure by the 

patent counts-𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡, which equals the natural logarithm of one plus the number of 

invention and utility model patents filed by (and eventually granted to) firm 𝑖 in year 𝑡. 

Patents vary significantly in technological and economic value (Trajtenberg, 1990; 

Kogan et al., 2017). Meanwhile, simple patent counts cannot distinguish breakthrough 

discoveries from incremental innovations (Trajtenberg, 1990). To capture the variation in 

patent quality, I follow Balsmeier et al. (2017) and Bhattacharya et al. (2017) to construct 

four measures using the patent’s distribution of citations and economic value. In 

particular, I generate the 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑𝑖,𝑡 as the logarithm of one plus the number of 

patents that were not cited or fall into the bottom 30th percentile of the citation distribution 

among all patents in the same patent type, three-digit IPC class, and application year. I 

create the 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 by changing the sorting variable to the economic value of 

patents. Since impactful patents tend to receive more citations and trigger stronger market 

reaction, I calculate them by the number of patents that fall into the top tenth percentile 

of the citation (value) distribution among all patents in the same patent type, three-digit 
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IPC class, and application year. 𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝐶𝑖𝑡𝑒𝑑𝑖,𝑡 (𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑖,𝑡) is then defined 

as the logarithm of one plus the impactful patents in citation counts (economic value).  

I collect all of the patent information from the data project assembled by Lin and Yu 

(2020). They match all patents in CNIPA to publicly traded companies and their 

subsidiaries by a name-matching algorithm. This data set has two unique advantages. 

First, Lin and Yu (2020) have managed to retrieve patent citations from the State 

Intellectual Property Operating Platform, an organization affiliated with CNIPA. Second, 

they adapt Kogan et al. (2017)’s paradigm for estimating patent value to accommodate 

the three patent categories in China, providing an ex-ante assessment of patent quality.  

As shown in Hall et al. (2001), patent data suffers two truncation biases: one is with 

the patent application and the other is with citations, because it takes several years to find 

out the outcome in both cases. Following Hall et al. (2001) suggestions, I only consider 

successful applications until 2016, given the patent data ends in 2018, and it generally 

takes 2 to 3 years (half a year) for an invention patent (utility model patent) application 

to be approved. In addition, I divide the raw number of citations by the average number 

of citations received by patents applied for in the same technology class-year to address 

the citation truncation problem. Notice that the 12th Five-Year Plan was enacted in 2011, 

far from the patent data’s end dates. Therefore, the truncation bias is less likely to affect 

our findings (see Dass et al., 2017).  

1.3.3 Control variables 

I incorporate a set of firm characteristics identified in the prior studies that affect 

innovation outputs (e.g., Fang et al., 2017; Tan et al., 2020). The logarithm of total assets 

measures firm size. Book-to-Market is the ratio of book equity divided by equity’s market 
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value at the fiscal year-end. Leverage is the total liabilities divided by total assets. R&D 

is the ratio of R&D expenditure over total assets (missing values are replaced with zero). 

Cash is the cash and cash equivalents divided by total assets. Tangibility is the net fixed 

assets divided by total assets. ROA is the ratio of net income over total assets. Firm age 

is the logarithm of the number of months from the listing date to the fiscal year-end.  

Aghion et al. (2013) show that institutional investors can ease managerial career 

concerns and promote corporate innovation. I thus incorporate the institutional ownership, 

computed as the percentage of shares outstanding held by professional investors. Apart 

from firm-level controls, I also consider the product market competition. Aghion et al. 

(2005) document an inverted-U relationship between competition and innovation in 

British firms. However, Lin et al. (2010) find that corporate R&D among Chinese firms 

is negatively related to product market competition. I define competition as one minus 

the Herfindahl index in each industry and add the squared term of competition into the 

control variables15.  

1.3.4 Sample and summary statistics 

I begin my sample selection by looking at all A-share listed firms from 2007 to 2016. 

The rationale is that the Chinese Generally Accepted Accounting Principles in 2006 

requires public firms to disclose R&D expense in financial statements since then. To 

generate the sample for empirical investigation, a set of screening criteria is applied. 

Firstly, I remove firm-year observations if the firm is under ST (Special Treatment) status 

                                                           
15 We adopt the Guidelines for the Industry Classification of Listed Companies issued by China Securities Regulatory 

Commission (CSRC) in 2012. We group manufacturing firms by the first two digits of the CSRC industry code and 

identify the industry to which other firms belong by the first digit of their code. In total, there are 20 unique industries. 
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due to ST firms face a higher delisting risk. Secondly, I exclude firms from the financial 

services (industry code: D) and utilities (industry code: J) industry. Thirdly, I discard 

companies during the entire sample period without successful patent applications. In this 

regard, I want to ensure that the innovation activities across firms are comparable. As 

noted in Atanassov (2013), patenting might not be a good measure of innovation for firms 

that do not have patents. Finally, we have 14,613 firm-year observations from 2,140 

unique firms based on these screening criteria.  

I extract financial information and registration address from the China Stock Market 

& Accounting Research Database (CSMAR). Information about the ultimate controller 

and R&D expenditures are hand-collected from the annual reports. A firm is categorized 

as a state-owned enterprise (SOE) if its ultimate controller is a government agency. 

Appendix A.1 provides a detailed description of the variable definition. To mitigate the 

impact of outliers, I winsorize all continuous variables at the 1st and 99th percentiles. 

[Insert Table 1.5 here] 

Table 1.5 reports the summary statistics of variables in the baseline analysis. On 

average, a firm has filed around 30.79 patents each year. Among them, 17.83 patents 

either get zero citations until the end of 2018 or fall into the bottom 30th percentile of the 

citation distribution. Since the estimation of economic value requires non-missing price 

data, the sample size used to rank patent value is reduced by 10%. Consequently, the 

mean value of 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒𝑖,𝑡  and 𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑖,𝑡  are relatively smaller. A 

typical firm has 2.51 patents in the top tenth percentile of the value distribution. 33.7% 

of the observations are subject to more policy pressure or incentives. The average R&D 

intensity is 1.57%, and the institutional ownership is 7.18%. Overall, the descriptive 
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statistics are comparable with existing studies (see, e.g., Fang et al., 2017; Tan et al., 

2020).  

1.4 Empirical Analyses 

1.4.1 Univariate tests 

This section performs a univariate difference-in-differences (DiD) analysis to 

understand a per-capita policy target on firms’ innovation outputs. In particular, I 

compare the firms’ innovation outputs from 2007-2010 to 2011-2016 and examine 

whether the change in patenting outputs is associated with their location (in lagging or 

leading provinces). Table 1.6 presents the results. As shown in Panel A, firms from the 

leading regions have more patents both before and after the 12th Five-Year Plan. However, 

the increase in the total number of patents is 31.72% (0.814/0.618-1) higher in firms from 

lagging regions than firms from leading regions after the policy shock.  

Panels B and C show the change in the total number of less-cited patents and low-

value patents, respectively. Consistent with the results in Panel A, the DiD estimates of 

both measures are significantly positive, which indicates that firms in lagging regions 

generate more low-quality patents in the post-policy period. More importantly, these low-

quality patents make up the majority of increased innovation. For instance, the DiD 

estimate of low-value patents is 0.187, accounting for 95.41% of the total patent counts 

(0.196). On the other hand, neither highly cited patents nor high-value patents, as shown 

in Panel D and E, see more rise in the treatment group.  

 [Insert Table 1.6 here] 
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1.4.2 Multivariate tests 

To formally identify the causal effects of policy push on corporate innovation, I 

perform a standard difference-in-differences analysis by estimating the following 

regression: 

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽𝑇𝑟𝑒𝑎𝑡𝑖,𝑡 + 𝛾𝑋𝑖,𝑡−1 + 𝜀𝑖,𝑡. (1) 

Where 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 is one of the five innovation measures described in Section 

3.2, which captures the quantity and quality of patents applied by (and ultimately granted 

to) firm 𝑖  in year 𝑡 .  𝛼𝑖  and 𝛼𝑡  denote the firm fixed effects and year fixed effects 

separately. 𝑇𝑟𝑒𝑎𝑡𝑖,𝑡 is our variable of interest, which equals one for firm 𝑖 in the 2011-

2016 period if firm 𝑖 is located in a lagging province (i.e., one with fewer invention 

patents per 10,000 people than the national average in 2010), and zero otherwise. 𝑋𝑖,𝑡−1 

is a vector of control variables measured at the end of year 𝑡 − 1: firm size (Size), book-

to-market ratio (BTM), R&D expenditures over total assets (R&D), total debts scaled by 

total assets (Leverage), cash holdings over total assets (Cash), asset tangibility 

(Tangibility), institutional ownership (IO), profitability (ROA), log value of firm age 

(Age), product market competition (Competition), and the squared term of competition 

(Competition^2). I cluster standard errors by province because the  treatment is defined 

at the provincial level (see Atanassov, 2013; Fang et al., 2017). 

I present the estimated coefficients of the DiD regression in Table 1.7. In Column 

(1), for which the dependent variable is 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡, the coefficient estimate on the dummy 

indicator 𝑇𝑟𝑒𝑎𝑡 is 0.245 and significant at the 1% level, indicating that the policy push 

has a positive effect on firm innovation after the passage of 12th Five-Year Plan. In terms 
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of economic magnitude, the enactment of the 12th Five-Year Plan leads to a16 28.68%  

larger increase in the number of patents among firms in lagging provinces compared to 

firms in leading provinces.  

In Columns (2) to (4), I examine the relationship between the policy push and 

innovation quality. Consistent with the results in univariate tests, the policy pressure 

increases the number of low-quality patents. When the dependent variable is 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑 (𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒), the coefficient on the dummy indicator 𝑇𝑟𝑒𝑎𝑡 is 

0.200 (0.234) and significant at the 1% level, which means that the application of less 

cited patents (low-value patents) is more active by 23.38% (30.09%) among firms in high 

government intervention regions. In contrast, the effect of government intervention on 

breakthrough innovation (measured by 𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝐶𝑖𝑡𝑒𝑑  and 𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒) is not 

significant at the conventional level. 

[Insert Table 1.7 here] 

When I look at the control variables, I find that firm size, R&D intensity, and return 

on assets are positively related to the innovation outputs, which is consistent with the 

prior research (see Pakes and Griliches, 1980; Hall and Ziedonis, 2001). Although 

institutional ownership is unrelated to patent counts, it positively affects the number of 

                                                           
16 We use the formula [1 + 𝑀𝑒𝑎𝑛(𝑃𝑎𝑡𝑒𝑛𝑡)] × (𝑒𝑥𝑝(𝛽) − 1) to determine the change in patent number for a 

treated firm. Given the DiD model specification: 𝐿𝑛(1 + 𝑃𝑎𝑡𝑒𝑛𝑡) = 𝛽𝑇𝑟𝑒𝑎𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠, the number of 

patents for a treated firm can be denoted as 𝑒𝑥𝑝(𝛽 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠) − 1, while that of the control firm is 

𝑒𝑥𝑝(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠) − 1.We derive the size of the treatment effect by taking the differences of the two equations 

above and get: 𝑒𝑥𝑝(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) × [𝑒𝑥𝑝(𝛽) − 1].  Consider the case in which 𝑇𝑟𝑒𝑎𝑡 = 0 , then 1 +
𝑀𝑒𝑎𝑛(𝑃𝑎𝑡𝑒𝑛𝑡) = 𝑒𝑥𝑝(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠). As a result, we may estimate the magnitude of treatment effect using 

[1 + 𝑀𝑒𝑎𝑛(𝑃𝑎𝑡𝑒𝑛𝑡)] × (𝑒𝑥𝑝(𝛽) − 1). When we plug the value into the equation, we get: (1 + 30.79) ×
(𝑒0.245 − 1) = 8.83, which corresponds to 28.68% of the sample mean of Patent. 
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high-value patents, suggesting that institutional investors are better at discovering 

innovation that generates economic profits. In agreement with Lin et al. (2010), there is 

a negative relation between firm innovation and product market competition. Although 

the squared term of competition is positive, the U-shaped relation between competition 

and firm innovation is only statistically significant for the number of low-value patents 

and highly cited patents.  

1.4.3 The Pre-treatment trends assumption  

The DiD approach, as explained by Imbens and Woodridge (2009), assumes parallel 

trends in the outcome variable prior to the exogenous shock. That is, in the absence of the 

12th Five-Year Plan, firm innovation should evolve in a similar way between the treatment 

and control groups. To test this assumption, I follow Bertrand and Mullainathan (2003) 

and Atanassov (2013) and test the dynamics of innovation surrounding the enactment of 

the 12th Five-Year Plan by the following Equation:  

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽1𝐵𝑒𝑓𝑜𝑟𝑒𝑖,𝑡
−2 + 𝛽2𝐵𝑒𝑓𝑜𝑟𝑒𝑖,𝑡

−1 + 𝛽3𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖,𝑡 +

𝛽4𝐴𝑓𝑡𝑒𝑟𝑖,𝑡
1 + 𝛽5𝐴𝑓𝑡𝑒𝑟𝑖,𝑡

2 + 𝛽6𝐴𝑓𝑡𝑒𝑟𝑖,𝑡
3 + 𝛽7𝐴𝑓𝑡𝑒𝑟𝑖,𝑡

4+ + 𝛾𝑋𝑖,𝑡−1 + 𝜀𝑖,𝑡 . (2) 

Where 𝐵𝑒𝑓𝑜𝑟𝑒𝑖,𝑡
−𝑛 is a dummy variable that takes the value of one in 𝑛𝑡ℎ year before 

2011 if firm 𝑖 is in a lagging province and zero otherwise. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖,𝑡 is a dummy variable 

equal to one in 2011 if an observation is from the treatment group and zero otherwise. 

𝐴𝑓𝑡𝑒𝑟𝑖,𝑡
𝑛  is a dummy variable that equals one for treated firms in 𝑛𝑡ℎ year after 2011 and 

zero otherwise. 𝐴𝑓𝑡𝑒𝑟𝑖,𝑡
4+ is equal to one for treated firms in the fourth year and beyond 

and zero otherwise. All other control variables are identical to that in Equation (1). 
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If the pre-treatment trends assumption is valid, I expect 𝛽1 and 𝛽2 to be small in 

magnitude and insignificant. In addition, coefficients on dummies indicating the post-

policy years should be statistically significant for the number of patents, the number of 

less cited patents, and the number of low-value patents, as I only document a significant 

impact of government intervention on these three measures in the baseline DiD regression.  

[Insert Table 1.8 here] 

The results presented in Table 1.8 confirm our predictions. First, there is no trend of 

increasing innovation before the passage of the 12th Five-Year Plan. The coefficient of 𝛽1 

and 𝛽2 are statistically insignificant across all regressions. Second, there is no change in 

the radical innovations captured by highly cited patents and high-value patents in the post-

policy period. Third, government intervention has a persistent and positive impact on 

patent counts and incremental innovations, as shown by the significant and large 

coefficients of 𝛽3 to 𝛽7 in Columns (1) to (3).  

Interestingly, the magnitude of 𝛽3 to 𝛽7 are almost the same in magnitude for which 

the dependent variables are 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡 , 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑 , and 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒 , 

suggesting an immediate and long-lasting effect of the 12th Five-Year Plan. The 

significant coefficient on 𝛽3 for 2011, however, warrants further discussion. Such a surge 

in 2011 seems to be against a common belief that it takes time for any changes in inputs 

or incentives to be converted into corresponding changes in outputs. For example, Fang 

et al. (2017) find the differences in innovation between the treated firms and control firms 

become significant two years after privatizations. Atanassov (2013) find that antitakeover 

laws affect U.S. firms’ innovation two or more years after passing. Given technological 

change is a long-term process (Holmstrom 1989; Manso, 2011; Cong and Howell, 2021), 
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my findings indicate that government pressure rather than the risk-taking incentive is 

behind the patent surge of firms located in less innovative regions after the 12th Five-Year 

Plan.  

1.4.4 Propensity score matching analysis 

My identification strategy treats the before-after changes in control firms’ 

innovation as the counterfactual outcome of treated firms. One concern is the 

comparability between these two groups, owing to the fact that control firms are more 

innovative, as evidenced by the univariate tests. To address this concern, I apply the 

Propensity Score Matching method to construct a matched sample. More specifically, I 

first estimate a logistic regression to model the probability of being a treatment firm 

before the policy shock. Aside from the control variables in Equation (1), I also include 

the patent growth rate as a predictor to ensure the parallel trend of DiD approach (see 

Fang et al., 2017; Tan et al., 2020). Here the patent growth rate is defined as the mean 

value of (𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡-𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡−1) in the prior 4-year. Next, I match every treatment 

firm to a control firm with the closest score estimated from the logit regression (without 

replacement), using a caliper distance of 0.005.  

[Insert Table 1.9 here] 

I present the covariate balance test in Panel A of Table 1.9. As shown, the firm 

characteristics between the treated firms and control firms are almost identical, with none 

of the t-statistics of mean difference test significant at the 10% level. After assessing the 

matching quality, I then re-estimate the baseline DiD regression using this matched 

sample. Panel B of Table 1.9 presents the results. The coefficient on the dummy indicator 
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𝑇𝑟𝑒𝑎𝑡 is statistically and economically significant in Columns (1) to (3) with 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡, 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑, and 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒 as the dependent variable, separately. Even after 

accounting for sample selection issues, the per-capita policy target has a considerable 

impact on corporate innovation. For example, the treatment effect on the number of 

patents is 33.91% in this alternative sample, whereas it is only 28.68% in the baseline 

sample. Further, the dummy variable 𝑇𝑟𝑒𝑎𝑡 is statistically insignificant in Columns (4) 

and (5), which indicates that the policy push does not influence highly cited and high-

value patents.  

1.4.5 Placebo tests 

Although the 12th Five-Year Plan is the first to propose a specific target for patents, 

it also covers a wide range of socio-economic issues (Hu, 2013). Every Five-Year Plan’s 

particular focus is industry policies. Cen et al. (2020) find that industries encouraged and 

supported in the Five-Year Plans expand faster. If treatment firms in my study mainly 

from the Five-Year Plans’ targeted industries, industrial preference could potentially 

drive the increased innovations. Meanwhile, I rely on a single shock that happened in 

2011 to establish causality, which may raise the concern that potential omitted variables 

coinciding with the shock directly affect firm innovation. To rule out these explanations, 

I conduct two placebo tests: one is exploiting the Eleventh Five-Year Plan’s enactment, 

and the other is randomly assigning treated firms to construct pseudo samples.  

As most of the industries supported in the Five-Year Plans are emerging and high-

tech industries, two consecutive plans would have considerable overlap in the industry 

policies. Suppose the industry policies or other planned targets are the driving forces of 

our baseline results. In that case, I should observe a similar effect to the 11th Five-Year 
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Plan. To test this proposition, I select a sample following the procedures listed in Section 

3.4. The treated firms are defined as those registered in provinces that lag behind the 

national level in terms of invention patents per 10,000 people in 2006, the year 11th Five-

Year Plan passed. I restrict the sample period to 2000-2011, so the 12th Five-Year Plan 

does not affect the findings. Panel A of Table 1.10 presents estimates from the baseline 

DiD regression. As shown, none of coefficients on the dummy variable 𝑃𝑠𝑒𝑢𝑑𝑜 𝑇𝑟𝑒𝑎𝑡 

are statistically different from zero, implying the shared features of Five-Year Plans do 

not have a systematic influence on firms’ innovation outcomes.  

[Insert Table 1.10 here] 

If other concurrent events in 2011 are the underlying causes of baseline results, I 

should detect the treatment effect even in pseudo treatment firms. Following prior studies 

(see Tan et al., 2020), I run simulations that artificially assign the sample firms to the 

treatment and control groups. For each simulation, I randomly draw 24 provinces as 

regions with weak innovation capacity in 201017, so firms located there suffer increased 

policy pressure and fall into the pseudo treatment group. Then, I assign firms in the 

remaining seven provinces to the pseudo control group. Next, I define a dummy indicator 

of policy push in the same way as described in Section 3.1 and estimate the baseline DiD 

regression in this simulated sample. Finally, I repeat this procedure 5,000 times. 

[Insert Table 1.11 here] 

                                                           
17 In 2010, only seven provinces are above the national level in terms of invention patents per 10,000 people: Beijing, 

Shanghai, Tianjin, Guangdong, Zhejiang, Jiangsu, and Liaoning. The other 24 provinces lag behind the national level, 

and so their government are more likely to intervene in innovation activities following the 12th Five-Year Plan in 2011.  
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In Table 1.11, I summarize the coefficient estimate of dummy variable 𝑇𝑟𝑒𝑎𝑡 and 

the corresponding t-statistics. I only report the mean, 5th percentile, 25th percentile, 

median, 75th percentile, and 95th percentile for brevity. As shown in the table, the mean 

and median of simulated DiD estimates are all near to zero and statistically negligible. 

Moreover, the actual DiD estimate is above the 95th percentile of the simulated DiD 

estimate when the dependent variables are the patent counts, less cited patents, and low-

value patents, respectively. This finding suggests that shocks other than the Twelfth FYP 

are very unlikely to provoke government intervention in firm innovation during our 

sample period. Thus, the baseline results reported in Table 1.7 are not purely driven by 

chance. 

1.5 Additional Tests 

1.5.1 R&D expenditures 

The findings reported so far suggest that the per-capita policy target stimulates 

technological innovation measured by patent counts. However, increased innovations 

mainly reflect incremental progress rather than technological breakthroughs. To study the 

channel through which the policy push affects corporate innovation, I look at firm 

investment in innovation activities. According to Pakes and Griliches (1980), there is a 

high correlation between the number of patents and R&D spending. Because of 

government intervention, firms may invest more capital in R&D activities.  

I construct four measures of R&D inputs, with missing values set to zero. The first 

one is natural logarithm of 1 plus a firm’s R&D expenditure in a year. The second one is 

R&D intensity, defined as R&D expenditures divided by total assets. In the third measure, 

I replace the scaling variable from total assets to the total number of employees. Hall 
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(2002) mentions that more than half of R&D spending is used to compensate the highly 

educated scientists and engineers. Therefore, I measure R&D inputs by R&D 

expenditures per inventor18. To examine the relationship between policy push and R&D 

inputs, I re-estimate the baseline specification with the above four measures as the 

dependent variable.  

[Insert Table 1.12 here] 

Column (1) of Table 1.12 shows the impact of government intervention on the size 

of R&D investment. Although the coefficient on 𝑇𝑟𝑒𝑎𝑡 is positive, it is not significant at 

the conventional level. Columns (2) to (4) also find insignificant coefficients on the 

dummy variable 𝑇𝑟𝑒𝑎𝑡. Overall, the treated firms did not increase their R&D spending 

relative to that of control firms after the 12th Five-Year Plan. Besides, I find that the lagged 

R&D intensity has a strong positive relationship with all measures of R&D inputs, 

consistent with the idea that innovation projects are multi-stage and long-term (see 

Holmstrom, 1989; Manso, 2011; Cong and Howell, 2021).  

The lack of significant positive relationship between the policy push and firm’s 

R&D expenditure warrants further discussion. Our results suggest that government 

policies aiming to promote innovation could offset by other factors, such as managers’ 

choices and firms’ rent-seeking behaviors. Specifically, managers under short-term 

earnings pressure are unwilling to increase their R&D investment because of its high 

                                                           
18 Although the data on inventors is publicly available in the U.S., this is not the case in China. Moreover, the rigorous 

disambiguation of patent inventors is beyond the scope of this research. Hence, I apply a straightforward but 

conservative method to count the number of inventors in each firm. Specifically, I collect the inventors’ Chinese name 

for patents applied by a firm in a given year. Then, I define the number of inventors as the total amount of unique name 

in a firm. A potential issue is the duplication of Chinese name, i.e., two or more inventors have the same name. Without 

other information, I cannot fully solve this problem. Nonetheless, each firm, on average, has 79 inventors every year 

during our sample period, so the probability of this case is arguably low.  
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adjustment cost (Hall, 2002). The misaligned incentives between bureaucrats and 

managers is another impediment to R&D investment. Since government officials are 

concerned about meeting their patent targets, they may not use the net present value rile 

to evaluate R&D projects as managers do. Furthermore, The Intellectual Property Rights 

protection index in Fang et al. (2017) shows that the bottom 14 provinces are in our 

treatment group19, while the top 3 regions are all in the control group. Consequently, firms 

in less innovative regions face a higher risk of piracy and imitation, which could reduce 

their motivation to pursue R&D.  

1.5.2 Labor inputs 

Labor and human capital are critical inputs of innovation. Holmstrom (1989) points 

out that all stages of innovation projects involve intensive human efforts. Bhaskarabhatla 

et al. (2021) compare the relative importance of firm capabilities and the inventor’s 

human capital in firm innovation. They find that inventor-specific skills are 5 to 10 times 

more important than firm-specific capabilities. Therefore, even without any material 

changes to R&D investments, manager can encourage more employees to apply for 

patents. This can prevent companies from reducing their reported income while at the 

same time acquiring more patents.  

To test this proposition, I examine the impact of policy push on the number of 

inventors and inventor productivity. In particular, I calculate the natural logarithm of one 

plus the number of inventors who applied for a patent at the firm in the current year. In 

                                                           
19 See the Table 1: summary statistics on IPR protection index in Fang et al. (2017). Among the provinces ranked in 

the bottom 14 in terms of average IPR score, only Liaoning has the invention patents (in force) per 10,000 residents 

exceeding the national average in 2010.  
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addition, I scale the number of inventors with the total number of employees (in thousands) 

to ensure the change is not driven by firm size. Following Mukherjee et al. (2017), I 

generate two measures of inventor productivity. The first one is defined as a logarithm of 

one plus the number of patents per 1,000 firm employees. The other is the logarithm of 

one plus the number of patents per inventor.  

[Insert Table 1.13 here] 

In Columns (1) and (2) of Table 1.13, I find that treated firms indeed have more 

employees as inventors than control firms do in the post-policy period. Furthermore, 

Columns (3) and (4) show that each employee produces more patents in the treated firms, 

and inventors’ average innovative productivity is statistically different between the 

treated and control firms. The economic magnitude of these effects is large. Following 

the 12th Five-Year Plan, treated firms had a 23% higher percentage of inventors per 1,000 

employees and a 15% greater rise in the number of patents per 1,000 employees than 

control firms did.  

These findings corroborate our claim that under government pressure, managers 

encourage employees to apply for more patents. This, together with the results of R&D 

expenditures, suggests that firms prefer to trade quality for quantity, thereby increasing 

the total number of patents to help government officials meet the target. However, 

because this strategy relies more on employees’ tacit knowledge, the increased patents 

are primarily reflective of incremental innovation. Manso (2011) suggests that 

breakthrough innovation origins from exploring unknown areas that are likely to fail. The 

commitment of resource and tolerance of early failure is vital to motivate exploration. In 

my setting, treated firms are reluctant to invest more in R&D activities. The government 
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sets targets on patents that are often seen as successful discovery outcomes. As a result, 

managers and employees have little incentive to pursue risky R&D projects.  

1.6 Extensions and Robustness Check 

1.6.1 SOEs vs non-SOEs 

Although less innovative provinces are more likely to interfere with corporate 

innovation as a result of the 12th Five-Year Plan, this intervention should vary with the 

ownership. In China’s stock market, state-owned enterprises (SOEs) account for around 

two-thirds of the market capitalization (Jiang et al., 2020). Moreover, state ownership 

allows the government to influence firm behavior for political reasons, such as vote and 

social stability (see, e.g., Shleifer and Vishny, 1994; Djankov et al., 2003). Existing 

studies find that Chinese SOEs are more likely than their private counterparts to comply 

with government incentives20. Given the theoretical and empirical evidence that SOEs 

contribute to government goals, I expect the baseline results to be stronger for SOEs than 

non-SOEs. 

Following the suggestions of Jiang et al. (2020), who argue that the government’s 

mechanisms to intervene in SOEs and non-SOEs are entirely different, I perform the 

baseline regression in two subsamples. In particular, the SOEs group comprises all firm-

year observations in which government entities are the ultimate controller, while the non-

SOEs group includes all other observations. To be consistent with the baseline results, I 

                                                           
20 Chen et al. (2011) show that the investment efficiency is lower among SOEs because government intervenes in them 

for social and political reasons. Gu et al. (2020) document that the labor cost is stickier in SOEs due to government’s 

concern on unemployment. Chen et al. (2020) find that SOEs are more likely to manage earnings in response to the 

GDP growth incentives of provincial government. 
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only include three dependent variables: 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡 , 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑 , and 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒. Table 1.14 reports the coefficient estimates.  

 [Insert Table 1.14 here] 

Column (1) shows that the dummy indicator 𝑇𝑟𝑒𝑎𝑡 is only statistically significant in 

SOEs’ subsample, indicating that government pressure has a greater impact on SOEs’ 

patenting decision than private firms. Interestingly, the coefficient on  𝑇𝑟𝑒𝑎𝑡 is 0.299 and 

significant at 1% level, which means treated SOEs apply for 34% more patents than 

control firms do in less innovative provinces during the 12th Five-Year Plan. In 

untabulated results, I verify that this pattern exists for both local and central SOEs.  

As shown in Columns (2) and (3), most SOEs’ increased innovation is of low quality. 

When the dependent variable is 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑, the coefficient on the dummy variable 

𝑇𝑟𝑒𝑎𝑡 is 0.249 and significant in the SOEs group, but it is not statistically different from 

zero in the non-SOEs group. This result suggests that around 82.97% 

(=(𝑒0.254 − 1) (𝑒0.299 − 1)⁄ ) of the additional patents filed by SOEs receive very few 

citations. After I change the dependent variable to 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒, the coefficient on 

𝑇𝑟𝑒𝑎𝑡 is larger and more significant among SOEs than that of non-SOEs. Overall, these 

results are consistent with our expectation that government interferes with SOEs to file 

for more patents. 

1.6.2 The size of employees 

In the additional tests, I find that firms commit greater labor force to firm innovation 

in response to the policy push. Furthermore, there appears to be no major improvement 

in the quality of R&D personnel for two reasons. First, the analysis in Section 5.1 reveals 
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that treated firms did not raise the R&D expenditures per inventor following the 12th Five-

Year Plan. Since the remuneration of highly educated scientists and engineers makes up 

more than half of R&D spending (Hall, 2002), it is less likely that firms hire more talents 

to perform R&D while keeping per capita expenses constant. Second, the inventor’s 

productivity seems differ a little between the treatment and control group in the post-

policy period, as shown in Section 5.2.  

To further distinguish between the quality and quantity of labor contributions, I 

conduct a subsample analysis based on the size of employees. Every year, I divide all 

firms into two groups by the median of employees, as recorded in CSMAR. Assume that 

in companies under government pressure, more employees are encouraged to apply for 

patents. In that situation, I should only find the baseline results in firms with a huge 

workforce. I rerun the baseline DiD regression in these two subsamples and present the 

estimates in Table 1.15. 

Consistent with my predictions, the surge in patents counts and low-quality patents 

only appears in treated firms with more employees following the 12th Five-Year Plan. In 

particular, the coefficient on the dummy indicator 𝑇𝑟𝑒𝑎𝑡 is significant at the 1% level in 

all subsamples with large employee size but not in firms with fewer employees. Note that 

I already control log total assets, so this difference is not due to firm size. Meanwhile, the 

economic magnitude is comparable with the baseline results. Take 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡  as an 

example, firms with more employees file for 40% more patents in less innovative 

provinces during the 12th FYP period.  

[Insert Table 1.15 here] 
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1.6.3 Benefits of more patent application 

So far, the findings suggest that firms, especially SOEs, favor government officials 

in patents. The natural question is whether these firms benefit from doing so. Several 

studies find that government frequently rewards compliant firms with tax deductions, 

bank loan preferences, and subsidies21. In this study, I focus on government subsidy for 

two reasons. Starting from 2007, all publicly traded companies need to disclose the details 

of government subsidies they have received. Moreover, the subsidy has been an important 

policy tool used by the Chinese government to promote technological innovation. Fang 

et al. (2018) show that R&D subsidies make up around 1% of Chinese GDP over 2005-

2015. I collect information on government subsidies from CSMAR and then examine 

whether treated firms receive more grants using the following regression model: 

𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽1𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑖,𝑡 + 𝛽2𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑖,𝑡 +

𝛾′𝑋𝑖,𝑡−1 + 𝜀𝑖,𝑡. (3) 

Where 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖,𝑡 is the natural logarithm of government subsidies divided by total 

assets and the missing value is set to zero. The definition of dependent variables is similar 

to Equation (1). The variable of interest is the interaction term, which captures the extra 

government subsidies granted to treated firms with more patent applications. In addition, 

I undertake a subsample analysis by ownership to examine whether this relationship 

varies between SOEs and non-SOEs. 

[Insert Table 1.16 here] 

                                                           
21 Gu et al. (2020) show that government officials subsidize SOEs with more asymmetric labor cost adjustment to sales 

changes, i.e., firms increase labor faster when the business expands and reduce the labor slower when business shrinks. 

Chen et al. (2020) find that provincial governments give higher subsidies and allot more loans to firms with boosted 

earnings that helps officials to meet GDP growth targets.  
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Table 1.16 reports the regression results. In the pooled sample, I find that the 

interaction term is significantly positive (t-statistics=3.88), suggesting that treated firms 

indeed receive more subsidies for their increased patenting. When I divide the sample 

into two groups, the documented positive relationship is positive and statically significant 

among SOEs. For non-SOEs, there is a positive relationship, although it is not statistically 

significant.  

These findings shed new light on the allocation of innovation resources in China. 

Wei et al. (2017) show that state-owned firms get more subsidies yet are less effective in 

innovation activities than private firms, which they point to the government’s discretion 

in subsidies for research and development. My study further suggests that the reciprocal 

relationship between government officials and firm managers in SOEs is a potential 

source of resource misallocation. Consistent with this idea, Fang et al. (2018) document 

that the anticorruption campaign begun in 2012 has reduced the distortions in government 

subsidies for innovation, as the influence of innovative efficiency (defined as the ratio of 

patent counts to R&D expenditures) on government subsidies increased following the 

campaign. Nonetheless, in response to the government intervention outlined in 12th Five-

Year Plan, some firms have increased their number of patent filings, while keeping their 

R&D inputs relatively unchanged, which naturally results in more low-quality patent 

outputs. The fact these firms are able to receive more government subsidies than others 

suggests that the per-capita policy target has not only shifted firms’ patenting activities 

toward low-quality outputs but has also led to a misallocation of government funding. 
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1.6.4 Robustness checks 

In this section, I undertake several robustness tests to demonstrate that our primary 

conclusions are not affected by other confounding factors. First, lagging provinces with 

rapid economic growth and a large number of research institutes may see greater 

innovation activity, which could be the driving forces behind the patterns we observe.  I 

consider several additional control variables related to provincial economic conditions: 

GDP per capita, GDP growth rate, population, and university density. I estimate the 

baseline DiD specification by including these additional control variables and present the 

results in Table 1.17. After considering the variations in local business conditions, my 

major conclusions remain mostly intact. In particular, the coefficients on dummy variable 

𝑇𝑟𝑒𝑎𝑡 are positive and highly significant, for which the dependent variable is 𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡, 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑, and 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒, respectively. These results indicate that policy 

push caused by the patent target in 12th Five-Year Plan is per se a significant factor driving 

the increased firm innovation. 

In the second robustness check, I change the cutoffs used to rank patents. Given the 

scarcity of technology breakthroughs, prior studies only use the top 1% of most-cited 

patents to measure breakthrough innovation (see, e.g., Balsmeier et al., 2017; Byun et al., 

2021). Therefore, we redefine the 𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝐶𝑖𝑡𝑒𝑑 (𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒) as the logarithm 

of one plus the number of patents falls into the 99th percentile of the citation (value) 

distribution within their type-technology class-year. I also use a lower cutoff-the bottom 

20%-to construct the measures of incremental innovation: 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑  and 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒. Notice that 𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑 includes patents never received forward 
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citations until 2018. Using these four newly developed measures, I find that the baseline 

results remain the same, as shown in Table 1.18.  

In the last check for robustness, I consider a different notion of policy push. In the 

baseline analysis, I characterize policy push as a dummy variable of one for firms located 

in lagging provinces that were behind the national average (1.72) in invention patents per 

10,000 people in 2010. As the per capita policy target puts more pressure on provinces 

that lack infrastructure and human capital for science and technology, government 

incentives to increase patent counts should be stronger among more lagging regions. In 

this test, I define the policy push for firms located in lagging provinces that had fewer 

invention patents per 10,000 people than the national median (0.89) in 2010. Table 1.19 

gives the empirical results using this modified definition of treatment and the findings are 

the same as in the baseline study.  

1.7 Conclusions 

This paper exploits an exogenous shock to establish a causal relationship between 

policy push and corporate innovation. The Chinese 12th Five-Year Plan, which was 

enacted in 2011, sets a target to double the invention patents per 10,000 people by 2015, 

encouraging less innovative provinces to catch up with their peers. I posit and verify that 

the incentive to fulfil planned targets increases government intervention in firms’ 

innovation activities. Using a DiD approach, I find a positive and sizable increases in the 

number of patents generated by Chinese firms in lagging provinces. However, the 

majority of these increased patents are incremental innovations rather than technological 

breakthroughs. A more intriguing pattern is that firms do not increase their R&D 

investment but devote more workforce to file patent applications. The subsample analyses 
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reveal that the baseline results are more pronounced among SOEs and firms with more 

employees. Finally, I show that treated firms, especially SOEs, receive more government 

subsidies. 

Given the critical role of technological innovation in economic development and the 

positive externalities of R&D investment, it is unsurprising that central and local 

governments are responsible for science and technology policies. However, some specific 

policy targets may be ill-designed and trigger unintended consequences, because 

government officials perform insufficient policy analysis and are subject to bureaucracies 

and corruption. My findings suggest that firms adapt their innovation activities to help 

local official meet the planned targets and earn rewards from local governments. Given 

the absence of influential patents generated by these policy inducements, Chinese 

government’s goal to stimulate indigenous innovation and economic growth may turn out 

leading local leaders and businesses in the wrong direction. More importantly, when 

government officials allocate subsidies based on firms’ patent counts, they may 

misallocate resources and distort the distribution of human capital.  
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Chapter 2 Local Inventors and Corporate Innovation 

2.1 Introduction 

Corporate innovation is vital to companies’ long-term growth and competitive 

advantage (Solow, 1957; Porter, 1992). In the risky and multi-stage process of innovation 

projects, inventors’ human capital contributes far greater to innovation performance than 

firm capabilities, such as organizational capital (Liu et al., 2017; Bhaskarabhatla et al., 

2021). As a result, a firm’s innovativeness depends on its ability to access and hire 

talented workers (see Bhaskarabhatla et al., 2021). Throughout 1975-2000, a typical 

private firm in the U.S. has inventors located in only 1.5 commuting zones22, while public 

firms, on average, have inventors located in 12 different commuting zones (Matray, 2021). 

This sharp contrast suggests that, for firms with less geographically diversified R&D 

activities, the headquarter location would affect their ability to screen and attract 

inventors. 

Extant literature often implicitly assumes that there is a national market for talents, 

and so labor mobility can eliminate the effect of firm location. However, inventors are 

inclined to stay in the same geographical region when they change jobs, and this tendency 

further accelerates the localization of knowledge spillovers (Carlino and Kerr, 2015; 

Lychagin et al., 2016). The clusters of innovation also complicate the impact of location. 

Notably, the geographical concentration of innovation activities intensifies the pressure 

for innovation production within a cluster (Porter and Stern, 2001). If firms have no R&D 

                                                           
22 A commuting zone is a cluster of counties with strong commuting ties. It is the lowest level of geography for local 

labor markets. In 2000, there were 709 commuting zones delineated for the U.S. See Matray (2021) for more 

information about the Commuting Zone.  
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facilities elsewhere, they would be more sensitive to innovation inputs contest like 

inventors both within and outside of a cluster. Overall, regarding the role of headquarter 

location on inventors and firm innovation, the ambiguous theoretical predictions warrant 

a thorough empirical investigation.  

Given the challenge to collect the financial and patenting information of U.S. private 

firms, I turn to public firms in China. According to the data, Chinese public firms have a 

mean value of 1.5 provinces23 to host their inventors over 2000-2012, compared to the 31 

provinces in mainland China. The concentrated R&D activity among Chinese listed firms 

is analogous to that of U.S. private firms in the early days. Furthermore, the inventor 

mobility is restricted by the household registration (hukou) system that attaches most 

social welfare to a person’s hukou status instead of the psychical location. As a result, an 

inventor who changes job to another place may risk losing public services, including 

education benefits, health care, housing subsidies, and social security coverage (Song, 

2014). This kind of policy is prevalent in many developing countries but is less common 

in developed nations, where the immigration policy may affect the flow of foreign 

inventors 24 . Combining the two unique features mentioned above, I believe China 

provides a desirable context to explore the influence of location on inventors and firm 

innovation.  

I assemble two newly developed datasets to construct a sample for the empirical 

analysis. The geographic location for inventors is retrieved from the Geocoding of 

                                                           
23 A province is equivalent to a state in the U.S. Usually, a province encompasses prefectures and counties, but the four 

provincial-level municipalities-Beijing, Tianjin, Shanghai and Chongqing-only have district-level divisions. As of 2020, 

mainland China has 31 provinces. 

24 See Kerr and Kerr (2020) for a discussion about the immigration policy and U.S. innovation. 
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Worldwide Patent Data (GWPD) project. de Rassenfosse et al. (2019) devise a uniform 

algorithm to identify inventors’ address from the patent documents in nine national, 

regional, and international patent databases and then use it to allocate the precise 

geographic coordinates. Their approach only counts the first filing of a patent family that 

protects the same invention in many jurisdictions. In doing so, inventors’ patenting 

activity is not limited within their homeland, and the information of inventor location 

strictly corresponds to the unique invention. Compared to the U.S. patent inventor 

database (Li et al., 2014), the GWPD project does not disambiguate individual inventors 

over time. Instead, it contains the information on individual inventors shown on the 

original patent documents. The patent information of Chinese public firms is collected 

from Lin and Yu (2020). Their data project covers all invention and utility model patents 

granted to listed firms and their subsidiaries from 1990 to 2018. This dataset’s advantages 

are twofold: First, it includes the number of inventors and citation counts for all patents, 

both backward and forward. Second, Lin and Yu (2020) estimate each patent’s economic 

value, which offers an ex-ante measure of a new invention’s quality. 

To link the firm location with inventors, I calculate the number of inventors around 

the corporate headquarter. Specifically, I construct a new variable by taking the natural 

logarithm of one plus the number of local inventors, defined as those located within a 

100-km radius centered on the corporate headquarter in a given year. Inventors from the 

focal firm are excluded so that this measure only reflects the pool of skilled labor out of 

the firm. In this work, I focus on innovation measured by the patent quality because of its 
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widespread interest25, yet my results hold even if raw patent counts model innovation26. 

Following Almeida et al. (2021), I construct the first measure of patent quality, which is 

calculated by summing up the value of invention and utility model patents filed by (and 

eventually granted) a firm in the year then scaled by lagged total assets. The second 

measure of patent quality is the logarithm of one plus the total number of citations 

received by these patents. I also use the fixed-effects approach recommended by Hall et 

al. (2001) to alleviate citations’ truncation bias.  

During the sample period of 2000-2013, a representative firm has around 2,500 

inventors nearby, and there is a wide variation of local inventors across provinces. The 

economically developed regions, their neighbors, and several inland provinces have more 

local inventors, but Guangdong is the exception. Its five neighboring provinces, including 

the coastal one-Fujian, all fall into the bottom half in terms of local inventors, suggesting 

the existence of an innovation cluster and competition for talents. I then adopt the pooled 

OLS model to examine the effect of local inventors on firm innovation. The baseline 

results show that local inventors’ coefficients are positive and significant after controlling 

for a vector of covariates, meaning more inventors near headquarters enhance patent 

quality. Not only is this relationship statistically significant at the 1% level, but the 

economic magnitude is also sizeable. Specifically, a one-standard-deviation increase in 

local inventors is associated with a 20% (14.6%) increases in the patent value (patent 

citations). Furthermore, I verify that neither industrial-technological breakthroughs nor 

                                                           
25 China’s official news agency, China Daily, published an article titled “High quantity, low quality: China’s patent 

boom” on June 23, 2014. Meanwhile, the 2014 U.S. Special 301 Report claimed that the large numbers of Chinese 

utility model/design patents are of low quality. In 2018, a Bloomberg news article contended that most Chinese patents 

are worthless despite China holds the largest number of patents in the world. 

26 The empirical results is attached in the Table 2.12 for reference. 
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government policies cause the documented positive effect, even after considering the 

location’s fixed effects. 

I also examine the effect of local inventors on a firm’s innovative search strategy 

captured by the breakthrough innovation. Compared to incremental innovations, 

breakthrough innovations involves more exploration and a combination of diverse ideas, 

so firms pursuing them face a greater risk of failure and need long-term commitment of 

resources (e.g., Manso, 2011, Acemoglu et al., 2020). By providing professional services 

and facilitating knowledge flows, local inventors can decrease these adverse effects and 

stimulate breakthroughs. I measure breakthrough innovation by the number of patents 

that fall into the top 1 (10) percentile of the citations distribution in the same type-

technology class-year (see Bhattacharya et al.,2017; Balsmeier et al., 2017; Byun et al., 

2021). Consistent with my conjecture, the results from pooled OLS and Poisson 

regressions show a significant positive effect of local inventors on the number of 

impactful patents. Meanwhile, I find that mature firms produce fewer breakthrough 

innovations.  

To establish the causality, I implement a two-stage least squares regression by 

instrumenting local inventors with per capita mining output in each province. Chinitz 

(1961) argues that areas endowed with rich mineral and coal deposits often lack 

entrepreneurship. This argument receives empirical support from Glaeser et al. (2015), 

who find that cities close to historical mining deposits experience diminished 

entrepreneurship in industries unrelated to mining. In a recent study, Guo et al. (2020) 

show that per capita mining output is negatively correlated with industrial clusters and 

private firms’ portion in the clusters. Because most inventors are employees of firms, I 
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expect the number of outside inventors should relate to per capita mining output. Besides, 

each province’s mining deposits are geographically determined, so they are exogenous to 

firm innovation. Consistent with the notion that the mining industry dampens 

entrepreneurship and innovation, the first stage regression demonstrates a significantly 

negative correlation between local inventors and per capita mining output. In the second 

stage, I find similar results as the baseline study. Particularly, the coefficient on 

instrumented local inventors is 0.023 (t-statistics = 2.41) for patent value and 0.269 (t-

statistics = 3.63) for patent citations. In terms of breakthrough innovations, the 

coefficients on instrumented local inventors are significant at the 1 per cent level.  

I propose two possible channels to justify the baseline findings: skilled labor supply 

and the escape of market competition. Carlino and Kerr (2015) suggest that inventors’ 

spatial cluster improves the match between inventors and firms. I expect the labor supply 

is more critical for firms in industries demanding skilled workers. To test this proposition, 

I partition the baseline sample into two groups based on the status of innovative firms and 

the number of inventors in the industry. The subsample analysis reveals that the baseline 

results are more robust and pronounced for firms from innovative sectors, and the Chi-

square test significantly refuses the equivalence of coefficients in the innovative- and 

non-innovative group. The second channel is the escape of market competition. Firms 

can invest more in R&D to alleviate the competitive threats (Aghion et al., 2005; Hombert 

and Matray, 2018), and so via which local inventors can promote innovation. I use two 

measures of product market competition (HHI index and the four-firm concentration ratio) 

to split the baseline sample. If my conjecture is true, the baseline result should be 

significant among subsamples with more market competition. Indeed, the positive 



 

47 

 

relationship between local inventors and firm innovation mainly exist in these groups, 

suggesting that the spatial cluster of inventors help firms to escape innovation through 

R&D.  

In the robustness checks, I conduct a battery of tests to address the sample selection 

and model specification concerns. The baseline results between local inventors and firm 

innovation remain significant and valid across these tests. To shed more light on local 

inventors’ effect, I take advantage of the patent family data to gauge inventor quality. 

Prior studies point out that inventor quality is an essential determinant of firm innovation 

(see Liu et al., 2017; Bhaskarabhatla et al., 2021; Yoon, 2020). Putnam (1996) finds that 

applicants often protect their valuable inventions in foreign countries. In line with this 

finding, I define inventors with first filing abroad as high-quality ones. For robustness, I 

restrict the high-quality inventors to those who made the first filing in the U.S. Patent and 

Trademark Office (USPTO) or World Intellectual Property Organization (WIPO) because 

they are the major destinations of the foreign application. I then use the proportion of 

high-quality local inventors to examine the effect of inventor quality on firm innovation. 

The empirical results demonstrate that inventor quality significantly strengthens the effect 

of local inventors on firm innovation. For example, with a one-standard-deviation 

increase in the proportion of high-quality inventors, the effect of local inventors on patent 

value rises by 50%.  

A natural implication of my findings is that firms should accumulate more talents to 

benefit from local inventors. Ultimately, it is R&D personnel inside the firm who invent 

and develop the patents. On the one hand, a sufficient supply of local inventors allows 

firms to choose the best match for innovation projects. On the other hand, to absorb 
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knowledge spillovers from local inventors, firms need to hire more workers that are 

educated. Using the proportion and number of innovators (educated employees) to reflect 

human capital accumulation, I find that firms indeed have more innovators and workers 

with a bachelor’s degree or above if surrounded by more outside inventors. This result 

lends support to my argument at the beginning that firm location affects their access to 

inventors.  

I also compare local inventors’ effect with that of remote inventors, who are those 

situated 100-200 km (200-300 km) away from the corporate headquarter. Interestingly, 

the average number of remote inventors is less than that of local inventors, regardless of 

the broader spatial coverage of the former. Given that firms benefit from local inventors 

through the regional labor market for inventors and the localization of knowledge 

spillovers while suffering from competition for innovation production, I expect a different 

impact of remote inventors. This expectation receives empirical support, as firm 

innovation is negatively correlated with remote inventors located in 100-200 km, but this 

relationship is insignificant when I change the definition of remote inventors to those 

located in 200-300 km. These findings imply that the competition for innovation 

production dominates knowledge spillovers and job matching among remote inventors, 

while the sparsity of inventors in distant area weakens this competitive threat. 

To get more insights on the overall effect of local inventors, I finally examine 

whether and how the economic value of patents transforms into operating performance, 

which is measured by the earnings before interest, tax, depreciation, and amortization 

(EBITDA). I document a positive association between patent value and earnings growth. 

Furthermore, after decomposing the EBITDA change to the changes in market share, 
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market size, and profit margin, I find that the underlying driving forces are the increased 

market share and profit margin. These results indicate that less local inventors could 

indirectly undermine firm performance and market share through the innovation channel. 

Because firms rarely relocate their headquarters, the geographical diversification of a 

firm’s R&D facilities helps overcome the disadvantage of location. 

This study contributes to several strands of the literature. First, my work belongs to 

a growing body of research that examines the impact of human capital, especially 

inventors, on firm innovation. Liu et al. (2017) and Bhaskarabhatla et al. (2021) compare 

the relative importance of inventors’ human capital and firm capabilities on corporate 

innovation. They find that inventors’ effect is 5-10 times larger than that of firms in 

accounting for the difference in innovation performance. Yoon (2020) study how the loss 

of inventors caused by the WWI draft affects firm innovation and finds that the loss of 

high-quality inventors decreases the knowledge production within the focal firm and 

other firms in the same county. Islam and Zein (2020) examine CEOs’ role with 

experience as inventors in a firm’s innovation activities. Their results show that firms 

generate high-quality innovation if led by inventor CEOs. Chemmanur et al. (2019) show 

that top management quality positively affects firm innovation and exploration. These 

studies have uncovered various interplays between innovation and insiders’ human 

capital, but I extend this line of investigation beyond the firm boundary. By looking at 

external inventors, I reveal that local inventors enhance the patent quality and spur 

breakthrough innovation, while their effect varies with the geographical distance. 

Second, my findings add new evidence to the existing literature on geography’s 

relevance for firm behaviour. In particular, I show that, for firms with concentrated R&D 
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facilities, the headquarter location might limit their access to inventors and impede firm 

innovation. In a related paper, Jia and Tian (2018) find that the headquarter location 

affects a firm’s access to the United State Patent and Trademark Office, further delays 

the time-to-grant-patent and materialization of the innovation output. Lychagin et al. 

(2016) demonstrate that geographic location matters to a firm’s productivity and R&D 

spillovers. Nonetheless, its researchers’ location is more important than the headquarter 

location because large firms often have research labs in many regions. Chen et al. (2020) 

explore the impact of headquarter relocation in China and show that firm productivity 

and innovation improve after moving to Shanghai and Shenzhen but worsen after 

relocating to Beijing.  

Third, this study offers a new perspective to understand the impact of labor on the 

rise of China’s innovation. “The advantage for companies pursuing innovation in China 

is the abundance of young, relatively cheap talent,” said a report by Financial Times in 

2013. This viewpoint echoes the finding by Kong et al. (2020). They show that the higher 

education expansion policy in 1999 pumped out college-educated labors and increased 

firm innovation in skilled sectors. However, I demonstrate that the distribution of 

inventors is uneven across the country so that the benefits may be concentrated among a 

small group of firms. Besides, Chen et al. (2020) examine the effect of rural-urban 

migration on innovation by exploiting the staggered loosening of the city-level household 

registration system. They show that the migration of low-skilled labors from rural areas 

to urban centers hurts firm innovation. On the contrary, my findings imply that the 

relaxation of the household registration system could facilitate the mobility of high-

skilled inventors and improve innovation quality.  
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The rest of the paper is organized as follows. The next section introduces data and 

presents descriptive statistics. Section 2.3 reports the main empirical results. In section 

2.4, I examine the possible channels through which local inventors affect firm innovation. 

Section 2.5 provides a series of robustness checks and further analysis. The last section 

concludes the paper.  

2.2 Data and Descriptive Statistics 

2.2.1 Measuring local inventors 

I collect the geographic coordinates for inventors from the “Geocoding of 

Worldwide Patent Data” (GWPD) at the Harvard Dataverse repository27 (de Rassenfosse 

et al., 2019). This dataset contains the location information of 7 million inventors and 

applicants for 18.8 million first filing of invention patents across 46 countries between 

1980 and 2014. de Rassenfosse et al. (2019) collect the data from nine major patent 

databases in the world, such as the PATSTAT, WIPO, and REGPAT.  

Because of the restriction on accessing the official database in China, they resort to 

another data source28 for the first applicant’s address and use it to locate inventors if the 

first filing is in China. Notice that the Chinese patent office does not require the applicants 

to declare the address of inventors, so most inventors share the location with their 

applicant. For those patents invented in China but file the first application in foreign 

countries, the address information of inventors is available in PATSTAT and REGPAT. 

                                                           
27 The data can be accessed through 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OTTBDX 

28 Yin. D. Y., Motohashi, K., Dang, J. W. (2020). Large-scale Name Disambiguation of Chinese Patent Inventors 

(1985-2016), Scientometrics, 122, 765–790. 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OTTBDX
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The coverage of this dataset is quite extensive, as 91% of the first filings by Chinese 

inventors during 2000-2009 has detailed location information.  

Since the data generation process relies on the address information shown on the 

original patent document, each observation represents an inventor who contributes to the 

patent rather than the innovator per se. In other words, an inventor who appears in ten 

patent documents would be recorded in ten observations. Equivalently, a patent document 

with ten inventors would also generate ten observations. As a result, I can regard each 

observation as a quality-adjusted measure of inventors.  

To construct a proxy for local inventors (used interchangeably with the number of 

local inventors), I focus on those inventors located near the firm’s headquarter. We 

retrieve the latitude and longitude of headquarters from CSMAR. The geodesic distance 

between inventors and the corporate headquarter is calculated using the Vincenty 

equations (Vincenty, 1975). Empirically, I define a local inventor as one whose location 

is within a 100-km radius centered on the corporate headquarter in a given year 29 . 

Furthermore, I deduct innovators of invention patents in the focal firm from local 

inventors so that this measure merely reflect the pool of skilled labor out of the firm. I 

then take a natural logarithm transformation to make it closer to a normal distribution.  

[Insert Figure 2.1 here] 

Figure 2.1 shows a provincial map of China and demonstrates regional variations of 

local inventors. I use the raw number of local inventors averaged across the sample period 

for all firms with headquarter in the same province for ease of presentation. The 

                                                           
29 My results are robust to the choice of length of radius. For example, the results are robust if I shrink the radius to 80-

km. 
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differences across provinces are considerable, despite that local inventors’ definition does 

not rest on the administrative border. Consistent with the perception that economically 

developed regions attract talents, the number of local inventors is much higher in 

Guangdong, Shanghai, Jiangsu, Beijing, and Tianjin. Provinces near these regions and 

some inland provinces also have more inventors. One exception is Guangdong, four 

neighboring provinces including the coastal one-Fujian, all fall into the bottom half in 

terms of local inventors.  

2.2.2 Measuring innovation 

Existing studies mainly use patent counts to measure corporate innovation in China 

(see Fang et al., 2017, Tan et al., 2020). In this work, I am more interested in the patent 

quality, which has been a pressing issue as it has attracted much attention at home and 

abroad. To this end, I use two standard indicators of patent quality, namely, patent value 

and patent citations.  

In particular, I follow Almeida et al. (2021) to construct a measure of patent value-

 𝑃𝑎𝑡𝑉𝑎𝑙𝑖,𝑡, which is calculated by summing up the value of invention and utility model 

patents filed by (and eventually granted to) firm 𝑖 in year 𝑡 and then scaled by lagged total 

assets. I generate another metric using citation count- 𝐿𝑛𝐶𝑖𝑡𝑖,𝑡, which is defined as the 

logarithm of one plus the total number of citations received by these patents. Since patent 

accumulates citations for a long time, the latest patent cohort is inevitably getting smaller 

citations and thus suffering a truncation problem. To address this bias, I divide the raw 

number of citations by the average number of citations received by patents in the same 

technology class and application year (see Hall et al., 2001).  
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The patent information used in this work is retrieved from the data project developed 

by Lin and Yu (2020), who merge Chinese listed firms and their subsidiaries with patent 

data from two official sources: the CNIPA and SIPOP30. This dataset covers all patents 

granted to public firms from 1990 to 2018 and contains rich information about patents, 

such as backward and forward citations. One unique feature of this dataset is the 

economic value of invention and utility model patents, which they estimate, in the same 

spirit of Kogan et al. (2017), by the appreciation of market value around patent grants.  

2.2.3 Other variables 

Following Almeida et al. (2021), I construct a set of firm-level control variables, 

with all data from the China Stock Market & Accounting Research Database (CSMAR). 

Size is the natural logarithm of total assets. Book-to-Market is the book value of equity 

divided by the market value of equity at the end of each fiscal year. R&D is research and 

development expenditure scaled by total assets (missing values are replaced with zero). 

Leverage is the book debt divided by total assets. Cash is the ratio of cash and cash 

equivalents to total assets. Tangibility is the net fixed assets divided by total assets. ROA 

is net income divided by total assets. Firm age is the natural logarithm of the number of 

months since it has been listed on the exchange. Moreover, I include two additional 

factors affecting the innovation outputs: institutional ownership and product market 

competition (see Aghion et al. 2005; Aghion et al., 2013). I incorporate several province-

level variables in the regression analysis to control the regional difference in social-

economic features, such as the university density and GDP growth rate.  

                                                           
30 CNIPA stands for the National Intellectual Property Administration, which is the official intellectual property 

administrator in China. SIPOP is the State Intellectual Property Operating Platform, a website sponsored by CNIPA to 

facilitate the IP rights trading, which can be accessed through http://www.sipop.cn/.  

http://www.sipop.cn/
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2.2.4 Sample selection and descriptive statistics 

I select the sample period based on the coverage of the inventor location. As 

mentioned earlier, the inventor location is widely available since 2000, so I start from this 

year. Meanwhile, given the examination of invention patent applications in China 

involves two rounds lasting for 18 to 36 months (see Fang et al., 2017), I assume it takes 

two years on average to grant an invention patent. Indeed, the number of inventor 

locations in the GWPD database drops dramatically after 2012. Since all explanatory 

variables are lagged by one year, the sample period ended in 2013.  

Following prior studies, I drop firms with ST (special treatment) status as they bear 

the risk of delisting. Firms from financial service and utilities are also obsoleted, which I 

identify using the industry classification implemented by the China Security Regulatory 

Commission (CSRC) in 2012 31 . After the sample selection, I get 17,211 firm-year 

observations from 2,428 unique firms over 2000-2013.  

[Insert Table 2.1 here] 

Table 2.1 gives the summary statistics of the variables used in the baseline analysis. 

I winsorize all continuous variables at the 1st and 99th percentile to alleviate the impact of 

outliers. On average, the patent value is equivalent to 6.4% of total assets. A typical firm 

has roughly 2,500 (exp(7.824)) inventors within 100-km of its headquarter, and local 

inventors’ distribution is well balanced as the mean is close to the median. Since listed 

firms are required to disclose the R&D expenses only after 2006, and I replace the missing 

                                                           
31 The industry classification of listed companies promulgated by CSRC in 2012 contains 17 industries, which is coded 

with Latin letters A, B, C… Each industry is further decomposed into different classes that are indicated by two-digit 

Arabic numerals like 01. I use the first digit to identify the industry. For example, letter “D” and “J” represent the 

financial service and utility industry respectively. Because most firms are in the manufacturing industry, I use the first 

two digits of the CSRC industry code for these firms to keep the industry size comparable.  
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value with zero, the average R&D-to-assets is only 0.58% for the whole sample, while 

this value has increased to 1% during 2007 to 2012.  

2.3 Main Empirical Results 

2.3.1 Patent quality 

I begin the empirical analysis by exploring how firm innovation varies with local 

inventors. In the next section, I examine the effect of local inventors on the innovative 

search strategy. Finally, I solve the endogeneity problem with an instrumental variable 

approach. The baseline model specification is as follows. 

𝑌𝑖,𝑡+1 = 𝛼 + 𝛽𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖,𝑡 + γ′𝐶𝑜𝑛𝑡𝑜𝑟𝑙𝑠𝑖,𝑡 + Λ𝑖,𝑡 + 𝜀𝑖,𝑡+1. (4) 

In which 𝑖 indicates a firm, and 𝑡 indicates the year. 𝑌𝑖,𝑡+1 is one of the two measures 

of innovation. The variable of interest is 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖,𝑡, the log number of inventors near 

the corporate headquarter. 𝐶𝑜𝑛𝑡𝑜𝑟𝑙𝑠𝑖,𝑡  is a vector of control variables, including firm 

characteristics as well as two provincial socio-economic features. In the baseline 

regression, Λ𝑖,𝑡 includes the year, industry, and province fixed effects. To mitigate the 

concern of omitted variables, I also include two other sets of fixed effects in varying 

specifications.  

[Insert Table 2.2 here] 

Table 2.2 reports the estimated results. In Column (1), I find that the coefficient of 

local inventors is significantly positive at the 1% level, indicating more inventors near 

headquarter enhance patent value. The magnitude of this effect is sizable, as a one-

standard-deviation change of local inventors increases the patent value by 0.013 

(0.006*2.154), which accounts for about 20% of the sample mean (0.064). When I set the 
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dependent variable to patent citations in column (4), the positive effect of local inventors 

is still significant and large. A one-standard-deviation increase of local inventors is 

accompanied by 0.15 (0.068*2.154) additional forward citations, 14.6% of the sample 

mean (1.029).  

The above results reveal a positive relationship between local inventors and the 

quality of firm’s innovation outputs. However, industrial-technological breakthroughs 

could attract skilled labors to conduct R&D, and the resulted innovative outcomes could 

worth more. Alternatively, local governments may stimulate specific industries through 

policies such as tax breaks, subsidy, or preferential treatment. Therefore, these industries 

would experience a change in both inventors and patents. To rule out these possibilities, 

I include year by industry and year by province fixed effects in the second specification. 

The results in Columns (2) and (5) suggest that they do not drive the documented effect. 

In the third specification, I further control time-invariant firm attributes by firm fixed 

effects, and the baseline results still hold.  

Among the control variables, the estimated results are generally consistent with 

existing studies. For example, there is a positive relationship between institutional 

ownership and firm innovation, which is similar to Aghion et al. (2013). Moreover, I 

document an inverted-U relationship between patent value (patent citations) and product 

market competition, which is firstly reported by Aghion et al. (2005).  

2.3.2 Innovative search strategy 

In this section, I examine the impact of local inventors on a firm’s innovative search 

strategy. In particular, I investigate whether local inventors promote breakthrough 

innovation. This type of innovation breaks new ground for future innovation and thus is 
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critical to firm growth and economic development. Unlike the incremental innovation 

that exploits existing knowledge, breakthrough innovation involves more exploration into 

new areas and a combination of diverse ideas (see Benner and Tushman, 2002; Manso et 

al., 2011; Acemoglu et al., 2020). Accordingly, firms pursuing it face a greater risk of 

failure and need a long-term commitment of resources. Local inventors could play a 

significant role in mitigating these adverse effects by providing professional services and 

facilitating knowledge flows.  

As breakthrough innovation opens new avenues for future research, the 

corresponding patents would frequently get citations. Following Balsmeier et al. (2017) 

and Bhattacharya et al. (2017), I measure breakthrough innovation by the number of 

radical patents that fall into the top 1st (10th) percentile of the citations distribution in the 

same patent type, 3-digit IPC class, and application year. I adopt the baseline specification 

to estimate the relationship between local inventors and breakthrough innovation. The 

dependent variable is the natural logarithm of one plus the impactful patents (LnPatTop1 

and LnPatTop10). To ensure the results are not sensitive to the skewness of patent counts’ 

distribution, I estimate the regression using both the pooled OLS and Poisson models.  

[Insert Table 2.3 here] 

Table 2.3 presents the empirical results. I find that the number of radical patents is 

positively correlated with local inventors in all specifications, suggesting that local 

inventors promote breakthrough innovation. Among the control variables, firm size, R&D 

expenditure, and institutional ownership all positively affect breakthrough innovation. 

However, firms with more tangible assets and cash holding and older firms have less 

radical patents, indicating that mature firms undertake less risky R&D projects.  
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2.3.3 Identification strategy 

Although the number of local inventors is largely exogenous to firm innovation, the 

usual endogenous concerns may impede us from establishing a causal relationship. First, 

other firms located nearby hire most outside inventors, and these firms may have a 

supplier-customer link with the focal firm. Chu et al. (2019) document that supplier-

customer geographic proximity has a positive effect on supplier innovation. As the 

connection between the focal firm and their neighboring corporations is unobservable, 

the results may suffer the omitted variable problem. Second, inventors in the 

neighborhood could be talents whom focal firms cultivated with valuable technological 

opportunities, so reverse causality surfaces.  

I implement a two-stage least squares regression by instrumenting local inventors 

with per capita mining output in each province to address these issues. The idea behinds 

this IV can be traced back to Chinitz (1961), who argues that areas endowed with rich 

mineral and coal deposits often lack entrepreneurship. Glasser et al. (2015) empirically 

test this hypothesis and find that cities close to historical mining deposits experience 

diminished entrepreneurship in industries unrelated to mining. Furthermore, Guo et al. 

(2020) show that per capita mining output is negatively correlated with industrial clusters 

and private firms’ portion in the clusters. Since most inventors are employees of firms, 

the number of outside inventors should also relate to per capita mining output. By contrast, 

a province’s mining deposits are geographically determined and thus are exogenous to 

firm innovation. 
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I retrieve the mining output of each province from the China Mining Yearbook, 

which publishes this data since 2001, so the sample period is from 2001 to 2013. I 

estimate the following 2SLS model. 

[1st stage]  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖𝑗𝑝𝑡 =  𝛼 + 𝛽𝑃𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑚𝑖𝑛𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑡 + 𝛾′𝑍𝑖𝑗𝑝𝑡 + 𝜆′𝐾𝑝𝑡 +

 𝜇𝑗 + 𝜐𝑡 + 𝜀𝑖𝑗𝑝𝑡, 

[2nd stage] 𝑌𝑖𝑗𝑝𝑡+1 = 𝛼 + 𝛽𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠 (𝐼𝑉)
𝑖𝑗𝑝𝑡

+ 𝛾′𝑍𝑖𝑗𝑝𝑡 + 𝜆′𝐾𝑝𝑡 + 𝜇𝑗 + 𝜐𝑡 + 𝜀𝑖𝑗𝑝𝑡+1. (5) 

Where 𝑖 indicates a firm, 𝑗 indicates the industry, 𝑝 indicates the province where the 

corporate headquarter locates, and 𝑡 indicates the year. I include the same set of firm-

level control variables as the baseline regression. Since the identification relies on the 

continuous variation in mining deposits, I do not control for province fixed effects. 

Instead, I add two additional provincial variables-population and GDP per capita- to 

account for time-varying socio-economic factors that may affect firm innovation.  

[Insert Table 2.4 here] 

Panel A of Table 2.4 gives the results of the first-stage regression. I find that the 

number of local inventors has a strong and negative relationship with per capita mining 

output in each province, supporting the notion that the mining industry dampens 

entrepreneurship and innovation. The Kleibergen-Paap Wald F-test for instrument 

strength is highly significant (F-statistic = 103.80, p-value < 0.001), so the weak 

identification is refused. In panel B of Table 4, I estimate the second-stage regression. 

The results show that the coefficient on instrumented number of local inventors is 0.023 

(t-statistics = 2.41) for patent value and 0.269 (t-statistics = 3.63) for patent citations. The 

positive relationship between the instrumented local inventors and breakthrough 
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innovations is also significant at the 1 per cent level. Collectively, these findings are 

consistent with the baseline results, confirming that the number of local inventors has a 

significantly positive influence on the patent quality and exploratory patents. 

2.4 Possible Channels 

2.4.1 Skilled labor supply 

Intuitively, the spatial cluster of inventors generates a thicker labor market around 

corporate headquarters, which would improve the match between inventors and firms (see 

Carlino and Kerr, 2015). On the one hand, inventors can easily find new jobs in local 

companies, avoiding the loss of the family’s hukou and the need to relocate. On the other 

hand, a rich pool of talent allows firms to hire competent inventors at lower costs, 

especially for these firms in the knowledge-intensive industry. In a recent study, Kong et 

al. (2020) find that the expansion of higher education in China increases the supply of 

educated workers, which significantly affects firm innovation in skilled industries. If 

labor supply is a channel through which local inventors affect firm innovation, I should 

expect a more robust baseline result among firms in industries demanding skilled workers. 

To test this conjecture, I conduct a subsample analysis on innovative industry and 

industries with more inventors, respectively. In particular, I follow Fang et al. (2018) to 

select innovative firms from the following sectors (industry code from the 2012 CSRC 

industrial classification guideline is in parentheses): petro-chemicals (C25-C26), 

pharmaceuticals (C27), metals and materials (C28-C33), machinery and equipment (C34-

C37), electronics (C38-C40), and information technology (I63-I65). Thus, firms not in 

these sectors fall into the non-innovative industries. The process of identifying industries 

with more inventors is divided into three stages. First, due to the patent document records 
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each inventor’s Chinese name, I define the number of inventors as the total amount of 

unique name in a firm every year32. Second, I calculate the average number of inventors 

across all firms (within an industry) as a proxy for the industry’s inventor counts. At last, 

I partition all industries into two groups by the median of this measure per year and 

estimate the baseline specification for each of these subsamples.  

 [Insert Table 2.5 here] 

In Panel A of Table 2.5, where the grouping variable is the innovative industry, I 

find that local inventors positively affect patent quality, but only for firms from innovative 

sectors. The coefficient on local inventors is significant at the 1% level in the innovative 

group. Yet, it is insignificantly different from zero in the non-innovative group. Moreover, 

the difference in the magnitude of coefficients is remarkable. For example, the coefficient 

in Column (1) is 0.008, while it is only 0.001 in Column (2), and the Chi-square test 

refuses the equivalence of them at the 5% level. Panel B of Table 2.5 gives the results of 

subsample analysis based on industry’s inventor counts. Similarly, I document a strong 

positive relationship between local inventors and firm innovation in groups with more 

inventors. Overall, the empirical results provide evidence to the conjecture that increased 

supply of skilled labor helps firms to benefit from more local inventors.  

2.4.2 Escape-competition 

Despite the comparative advantages provided by successful innovation, firms could 

underinvest in R&D for other reasons and thus reducing the importance of local inventors. 

                                                           
32 A potential issue is the duplication of Chinese name, i.e., two or more inventors with a same name. Without other 

information available, I cannot distinguish inventors with the identical name. However, each firm, on average, has 26 

inventors every year over the sample period, so the probability of this case is arguably low.  
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When faced with severe product market rivalry, this type of underinvestment may have 

negative effects. For example, Hombert and Matray (2018) find that US firms that have 

invested less amounts in R&D are more vulnerable to the rising import competition from 

China. Aghion et al. (2005) argue that firms can innovate more to escape competition and 

gain greater profits. If this is the case, local inventors should have a bigger role to play 

among firms under greater competitive pressure. Therefore, I propose that the second 

avenue via which local inventors promote firm innovation is by escaping competition.  

Following the industrial organization literature, I develop two commonly accepted 

indices of product market competition. The first one is the Herfindahl-Hirschman Index, 

computed by squaring the market share of each firm competing in the same industry and 

then summing the numbers. The second one is the four-firm concentration ratio, which is 

the sum of the market shares of the top four companies in a given industry. Both measures 

reflect the degree of market concentration, so a larger value means that the market is less 

competitive33. To test my proposition, I split the whole sample into two groups by the 

median of each indicator per year and then estimate the baseline regression in the 

subsamples.  

I expect a more pronounced relationship between local inventors and firm innovation 

in subsamples with more market competition, because the spatial cluster of inventors help 

firms to escape competition through R&D. Indeed, I find that the baseline results are more 

substantial and significant among firms that fall into the group with greater market 

                                                           
33 I acknowledge that these two measures only capture competitive pressure in the product market. As Porter and Stern 

(2001) point out, firms within a cluster face various pressure to innovate, such as the peer pressure, customer pressure 

and constant comparison. In other words, these factors could also be the channel through which local inventors 

stimulate firm innovation.  



 

64 

 

competition. When the dependent variable is patent value, local inventors’ coefficient is 

around 0.008 and significant at the 1% level in both panels. A similar pattern appears 

when the dependent variable changes to patent citations, and I find the coefficient of local 

inventors is 0.074 and significant at the 1% level. Furthermore, the Chi-square test 

indicates that these results become weaker among firms face less competition. Overall, 

the empirical findings support my claim that local inventors stimulate firm innovation 

through competitive pressure.  

2.5 Robustness and Further Analyses 

2.5.1 Robustness checks 

In this section, I conduct a battery of test to check the robustness of my findings. 

First, I change the screening criteria of the baseline sample to address the sample selection 

problem. Second, I check whether the baseline results are robust to different model 

specifications. Table 2.7 presents the estimated results, where I only list the coefficient 

of local inventors on the patent quality and its t-statistics. All regressions are based on 

the model in Column (1) of Table 2.2. I cluster the standard errors at the firm level and 

report results from the baseline study to facilitate comparison.  

In Row (1) of Table 2.7, I consider the impact of leading technology and innovation 

hubs in China: Beijing, Shanghai, and Shenzhen. Arguably, firms located in these cities 

are more innovative and surrounded by plenty of innovators. To ensure firms in these 

three cities do not drive the baseline results, I exclude them from the sample and find that 

the baseline results still hold. Firms may relocate their headquarters for the desired 

resources. For example, Chen et al. (2020) find that firms with headquarter relocated to 

Beijing receive increased political favors. Likewise, the relocation can help firms access 
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the skilled labor market. To deal with this self-selection bias, I drop firms with 

headquarter moved across cities during the sample period. Results in Row (2) of Table 

2.7 show that the prior finding is robust to this concern.  

The baseline sample involves firms without patents, which may raise the concern 

that these firms adopt other mechanisms to protect inventions, such as secrecy and lead-

time (see Cohen et al., 2000). Thus, the baseline results may overestimate the effect of 

local inventors. I address this concern by removing firms never patented during the 

sample period, and the results in Row (3) of Table 2.7 reveal that the effect of local 

inventors does not change.  

Due to the lack of patent citations and patent value, prior studies capture patent 

quality difference by distinguishing invention and utility model patents (see Fang et al., 

2017; Tan et al., 2020). Even though my study measures patent quality directly, I re-

estimate the baseline model using invention (utility model) patents for robustness check. 

Row (4) and (5) show that the baseline findings exist regardless of the patent type. In the 

last check of sample selection, I deal with the R&D expenses required to disclose since 

2007. After I restrict the sample period to 2007-2013, the sample size drops by around 

40%, yet the coefficient of local inventors is still significant in Row (6) of Table 2.7.  

[Insert Table 2.7 here] 

Next, I show that the baseline results are robust to a series of model specifications. 

Prior studies suggest that the geographic distribution and incentive for innovation differ 

between state-owned enterprises and private firms (see Fang et al., 2017). In the baseline 

regression, the control variables do not include a dummy variable of state ownership. In 
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Row (7) of Table 2.7, I include the state ownership34 in controls and find a consistent 

result with the baseline study.  

It is well documented that innovation and production activities are clustered spatially 

(Audretsch and Feldman, 1996), while this clustering may mean a correlation of R&D 

activity geographically. As Petersen (2009) points out, the residuals correlated across a 

particular direction would underestimate the standard errors of OLS estimation, and the 

clustered standard errors can correct this bias. Following his suggestion, I check the 

robustness of the baseline result by clustering the standard errors at the firm- and city-

level. Results in Row (8) of Table 2.7 show that the baseline finding is robust to this 

clustering.  

Since the industrial cluster affects the number of local inventors and the focal firm’s 

innovation through knowledge spillovers (Audretsch and Feldman, 1996), I consider its 

effects in Row (9) of Table 2.7. In particular, I follow Engelberg et al. (2018) to identify 

clustered-firm with a dummy variable, which equals one if the city includes five or more 

firms in the same industry and zero otherwise35. I find that controlling for industrial 

cluster does not alter the results.  

Finally, I present results for different definitions of the primary explanatory variable. 

To reflect the extent of a firm’s exposure to local inventors, I generate a dummy variable 

by partitioning local inventors into two groups using the sample median. Row (10) of 

Table 2.7 shows that the coefficients of the dummy indicator are significant at 5% or 

                                                           
34 The sample size decreases because the data is only available in CSMAR since 2003.  

35 Engelberg et al. (2018) identify the clustered-firm using a binary variable, which takes a value of 1 if a firm’s MSA 

includes 10 or more firms with the same 3-digit SIC, and 0 otherwise. I do not choose 10 as threshold because the 

number of Chinese listed firm is around 2,000 during 2000-2013. 
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better. Moreover, the size of the coefficient suggests that having a large number of local 

inventors boosts the patent value by 1.9 percent, which is about one-quarter of the sample 

mean. I also change the geodesic distance from 100-km to 80-km when calculating the 

number of local inventors, and the results in the last row of Table 2.7 remain equally 

strong.  

2.5.2 The Effect of local inventors’ quality 

Innovation is a process mainly driven by a few inventors’ talents and inherent 

characteristics (Liu et al., 2017). Bhaskarabhatla et al. (2021) find that the importance of 

inventors’ human capital is 5-10 times larger than firm capabilities in accounting for the 

difference in inventor output. Yoon (2020) show that the innovation rates of firms suffer 

more from losing high-quality inventors than the loss of other inventors. In this study, I 

document the positive effect of local inventors on firm innovation. Since the primary 

explanatory variable only measures the number of inventor-patent pairs outside the firm, 

the baseline results shed little light on the effect of inventor quality. 

In addition, the dearth of information about inventors prevents us from constructing 

conventional proxies, which relies on the idea that citations per patent are a good indicator 

of innovation quality. For example, Byun et al. (2021) define a U.S. inventor as a 

superstar inventor if her patents receive an average number of citations per patent that fall 

into the 99th percentile among all inventors. Chemmanur et al. (2019) directly measure 

inventors’ quality by the citations per patent for the patents filed by (and eventually 

granted to) them.  

Fortunately, the GWPD database collects geographic coordinates for every inventor 

who appeared in the first filing of a patent family, including all patents granted to the 
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same invention from different jurisdictions. In the innovation literature, the patent family 

size is one of the widely used patent quality measures because patents that are more 

valuable tend to seek protection in many countries (see Putnam, 1996, Lanjouw et al., 

1998). Although the GWPD database does not provide information about the patent 

family size, it shows the jurisdiction where the first filing is made. I exploit this feature 

to construct two measures of inventor quality by the following procedures.  

Firstly, I count the number of inventors whose first filing is not in China’s National 

Intellectual Property Administration but placed within 100-km around the corporate 

headquarter. Similarly, I compute the number of inventors whose first filing is made to 

the U.S. Patent and Trademark Office (USPTO) or World Intellectual Property 

Organization (WIPO), as they are the major destinations. Secondly, to remove the double-

counting bias from foreign applications by the firm per se, I deduct the number of 

inventors who locate within 10-km of the corporate headquarter. Thirdly, I define the first 

measure of inventor quality-Foreign-as the ratio of inventors with first filing abroad to 

total outside local inventors. The second measure is defined as inventors with first filing 

in USPTO or WIPO scaled by total outside local inventors, and I denote it by US&WIPO. 

I believe these two measures capture inventor quality because filing the first application 

in the foreign patent office means the patent is comparable with its counterparts in 

technologically advanced countries like the U.S.  

To examine the effect of local inventors’ quality on firm innovation, I create an 

interaction term between local inventors and the above two measures. Specifically, I 

estimate the following model. 
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𝑌𝑖,𝑡+1 = 𝛼 + 𝛽𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖,𝑡 + 𝛾𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖,𝑡 + 𝜇𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖,𝑡 × 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖,𝑡 + ρ′𝐶𝑜𝑛𝑡𝑜𝑟𝑙𝑠𝑖,𝑡 + Λ𝑖,𝑡 +

𝜀𝑖,𝑡+1. (6) 

Where 𝑌𝑖,𝑡+1  is either the patent value or patent citations, 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖,𝑡  is the 

logarithm of one plus the number of local inventors. 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖,𝑡 is the measure of inventor 

quality, yet I also change it to US&WIPO in the empirical tests. All the control variables 

and fixed effects are identical to the baseline specification.  

[Insert Table 2.8 here] 

Table 2.8 reports the estimated results. The dependent variable is patent value in 

Columns (1) and (2), while it changes to patent citations in Columns (3) and (4). I find 

that the interaction term is all positive and significant at the 1% level except for two 

specification, indicating that the inventor quality enhances the effect of local inventors on 

firm innovation. Moreover, when I restrict the inventors to those files for the first 

application in USPTO or WIPO, the marginal effect of inventor quality becomes even 

larger. This comparison is evident with the patent value as an instance. During the sample 

period, the mean value of Foreign and US&WIPO are 0.025 and 0.022, respectively. The 

coefficients of 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠 and the 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠 × 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 interaction term indicate that 

the average effect of local inventors is 0.006 (0.003+0.111*0.025). With a one-standard-

deviation increase in 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 (0.027), the effect of local inventors increases to 0.009 

(0.003+0.111*(0.025+0.027)), which is equal to a 50% rise in the magnitude. By contrast, 

with a one-standard-deviation increase in US&WIPO (0.024), the effect of local inventors 

would increase by 66%. As US&WIPO is a refined measure of inventor quality, this 

comparison means that improving the quality of local inventors matters to the firm 

innovation. Although the detailed computation is not reported for patent citations, a 
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similar pattern exists as well. Taken together, I conclude that inventor quality strengthens 

the effect of local inventors.  

2.5.3 Local inventors and human capital accumulation 

Although I document a positive relationship between firm innovation and local 

inventors in the baseline, it is R&D personnel inside the firm invent and develop the 

patent36. Moreover, during the long process of innovation projects, intensive labor inputs 

are indispensable for all stages, including invention, development, and completion 

(Holmstrom, 1989). Hall (2002) mention that half or more of R&D expenditure is the 

compensation to highly educated scientists and engineers. Given the importance of skilled 

labor in firm innovation, I expect a firm’s human capital accumulation has a positive 

relationship with the number of local inventors.  

As discussed in the channel tests, firms can screen local inventors to choose the 

matched personnel for innovation projects, which would lead to more inventor mobility. 

At the same time, they can hire educated workers who can join the R&D group and learn 

from local inventors. Ideally, I can capture inventors’ movement if I know their 

employment history, just like the net inflow of inventors used by Chemmunar et al. (2019). 

However, the GWPD database does not provide inventors’ working experience, and the 

disambiguating inventors are out of the scope of this study. Therefore, following Kong et 

al. (2020), I use employees’ education level and inventors to reflect the human capital 

accumulation of firms.  

                                                           
36 Some firms could outsource the R&D activities to other agencies nearby. This possibility may bias us from finding 

significant relationship between local inventors and firm’s human capital accumulation.  
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In particular, I collect the employees’ education background from the Resset 

database, which is also the source used by Kong et al. (2020). I set the value as missing 

if the data is not available for a given firm in a year. The total number of employees of 

each firm is collected from CSMAR, which has a more exhaustive coverage than Resset. 

I then calculate the number (Bachelor) and share (Bportion) of employees with a bachelor 

degree or above, as well as the number (Innovator) and share (Iportion) of innovators. To 

examine the relationship between local inventors and firms’ human capital accumulation, 

I re-estimate the baseline regression but change the dependent variable to one of these 

four measures.  

[Insert Table 2.9 here] 

Table 2.9 reports the empirical results. In all four specifications, the coefficient on 

local inventors is positive and significant at the 1% level, confirming my conjecture that 

firms tend to benefit from local inventors by recruiting more talents. I also find that R&D 

intensity has a significantly positive effect on the employee’s education level and 

innovators, which indicates that skilled workers are the critical driver of firm innovation.  

2.5.4 Local inventors versus remote inventors 

It is interesting to compare the effect of local inventors with that of remote inventors, 

as this comparison would further uncover the impact of firm location. There are several 

reasons for a remarkable difference. First, the inventor mobility is more likely to occur 

locally. Lychagin et al. (2016) suggest that inventors tend to find new jobs in the same 

geographical region. This phenomenon is especially prevailing in China, where the 

residence registration (hukou) system binds the residential address with social welfare, 

including housing, health care, and education benefit (Song et al., 2014). Second, the 
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localization of knowledge spillovers rests on local inventors rather than remote ones. 

Third, these two groups may compete for innovation production. Consequently, the 

competition in technological opportunities and skilled labors, such as college graduates, 

would undermine the focal firm’s innovation.  

I generate two measures of remote inventors. The first one is equal to the natural 

logarithm of one plus the number of inventors located between 100-km and 200-km 

around the firm headquarter. The second one is equal to the natural logarithm of one plus 

the number of inventors located between 200-km and 300-km. Following the same 

procedure in measuring local inventors, I compute the number of inventors within 200-

km and 300-km of corporate headquarters separately. It is worthwhile to mention that I 

count inventors in circles of different radius, so the spatial coverage of remote inventors 

is more extensive than that of local inventors. Interestingly, the average number of 

inventors located within 100-200 km (200-300 km) from headquarters is 1,825 (1,789), 

while the number of local inventors is around 2,500. This stark disparity indicates a 

concentration of inventors.  

[Insert Table 2.10 here] 

I use the baseline model to test the effect of remote inventors on firm innovation, 

and the empirical results are shown in Table 2.10. Columns (1) and (4) compare local 

inventors with remote inventors based on 100-200 km. I find a negative and highly 

significant relationship between remote inventors and patent value, which is opposite to 

the relationship between local inventors and firm innovation. A similar relationship exists 

between patent citations and remote inventors, though it is marginally significant at the 

10% level. To test whether the adverse effect hold in longer distance, I change the 



 

73 

 

definition of remote inventors to those situated in 200-300 km. As shown in Columns (2) 

and (5), the negative relationship between remote inventors and firm innovation is 

statistically insignificant. In sum, these findings show that the competition for innovation 

production dominates the supply of skilled labor and the escape of market competition 

among remote inventors, who undermine the innovation quality of focal firms. 

Nonetheless, the sparsity of inventors in distant area weakens this competitive threat.  

2.5.5 Innovation and firm operating performance 

Thus far, my findings show that local inventors, even though they are external to the 

firm, can increase both the economic and scientific value of patents. A further question is 

whether the economic value of patents transforms into operating performance. The 

answer to this question is important in two aspects. By linking patent value with 

performance, I provide more evidence to the argument that the headquarter location 

matters to a firm because of its exposure to local inventors. Besides, this work uses the 

newly developed patent value to measure innovation quality. Lin and Yu (2020) have 

established a strong correlation between patent value and forward citation counts, but 

they do not examine whether patent value affects firm performance. The results here can 

supplement their estimation and add confidence to my argument.  

I use earnings before interest, tax, depreciation, and amortization (EBITDA) to 

measure firm performance. To figure out the driving force of performance changes, I 

follow Becker and Ivashina (2019) to decompose EBITDA into three components as 

follows. 

Δ𝐸𝐵𝐼𝑇𝐷𝐴𝑖𝑗𝑡 =  Δ(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑗𝑡 × 𝑀𝑎𝑟𝑔𝑖𝑛𝑖𝑗𝑡) =  Δ(𝑀𝑎𝑟𝑘𝑒𝑡 𝑆𝑖𝑧𝑒𝑖𝑗𝑡 × 𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒𝑖𝑗𝑡 ×

𝑀𝑎𝑟𝑔𝑖𝑛𝑖𝑗𝑡)  ≈ Δ𝑀𝑎𝑟𝑘𝑒𝑡 𝑆𝑖𝑧𝑒𝑖𝑗𝑡 + Δ𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒𝑖𝑗𝑡 + Δ𝑀𝑎𝑟𝑔𝑖𝑛𝑖𝑗𝑡. (7) 
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Where 𝑖  indicates the firm, 𝑗  indicates the industry, and 𝑡  indicate the year. 

𝑀𝑎𝑟𝑘𝑒𝑡 𝑆𝑖𝑧𝑒𝑖𝑗𝑡 is the sum of operating income of all firms in the same industry, and 

𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒𝑖𝑗𝑡 is the share of a firm’s revenue in its industry. I adopt a new model 

specification to identify the effect. 

Δ𝑌𝑖𝑡+1 = 𝛼 + 𝛽𝑃𝑎𝑡𝑉𝑎𝑙𝑖𝑡 + 𝛾′𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝜇𝑖 + 𝜐𝑡 + 𝜀𝑖𝑡+1. (8) 

Where 𝑌 is one of the four measures of firm performance, and 𝑃𝑎𝑡𝑣𝑎𝑙 is the sum of 

patent value scaled by lagged assets. All regression models include the lagged dependent 

variable in the controls to account for the serial correlation. Table 2.11 gives the empirical 

results.  

[Insert Table 2.11 here] 

In Column (1), I find a significant positive association between patent value and 

earnings growth, indicating that firms achieve better performance from high-quality 

innovation. The results in Columns (2) to (4) further show that the increase in market 

share and profit margin are the main drivers of this positive relationship. Surprisingly, I 

find that patent value is negatively related to the change in market size, although the 

relation is not statistically significant. This result could happen when most patents 

comprise process innovation that helps the firm to reduce production costs. Even without 

market expansion, innovative firms can occupy a broader market and earn more profits. 

Accordingly, based on these results, local inventors could have a far-reaching effect on 

firm performance through the innovation channel.  
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2.6 Concluding Remarks 

This study investigates the relationship between firm innovation and local inventors, 

defined as the ones located near the corporate headquarter. My research focuses on China-

the largest developing country, with institutional barriers to labor mobility and 

concentrated corporate R&D activities. Exploiting a unique dataset on inventors’ 

geographic coordinates and newly developed measure of patent value, I find that the 

quality of firm innovation outputs is positively correlated with the number of local 

inventors, indicating that they enhance the focal firm’s R&D activity. Moreover, this 

result is robust to a battery of tests, and the instrumental variable regression using per 

capita mining output in each province suggests that this positive relationship is causal. In 

the channel test, I reveal that the baseline results mainly exist among innovative and 

competitive industries. Further analysis also finds compatible results in several extensions 

of the baseline study. In conclusion, this paper contributes to our understanding of the 

role of local inventors in corporate innovation as well as how the location of a firm’s 

headquarter influences its creativity.  

The findings of this paper also has several implications for firms and governments. 

First, R&D-intensive firms could enhance their innovation performance by establishing 

research and development facilities in regions with more inventors, thus maximizing the 

benefits of accessing talents. Second, to counteract the negative impact of hukou system 

on inventor mobility, the government might provide subsidies to firms to help them attract 

high-skilled workers. Lastly, the government can encourage firms to utilize local human 

capital by increasing market competition.  
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Appendices 

Appendix. 1. A Variable Definition 

Variable Definition and data source 

Panel A: Dependent variables 

LnPatent Natural logarithm of one plus the number of utility models and invention patents filed by (and eventually 

granted to) firm 𝑖 in year 𝑡. Source: CNIPA. 

LnPatLowCited Natural logarithm of one plus the number of patents with zero forward citation or in the bottom 30th percentile 

of the adjusted nonself-citation distribution among all patents with the same 3-digit IPC technology class, 

patent category, and application year. Source: SIPOP. 

LnPatLowValue Natural logarithm of one plus the number of patents that fall into the bottom 30th percentile of the economic 

value distribution among all patents with the same 3-digit IPC technology class, patent category, and 

application year. Source: Lin and Yu (2020). 

LnPatTopCited Natural logarithm of one plus the number of patents in the top 10th percentile of the adjusted nonself-citation 

distribution among all patents with the same 3-digit IPC technology class, patent category, and application 

year. Patents with zero citations are excluded. Source: SIPOP. 

LnPatTopValue Natural logarithm of one plus the number of patents that fall into the top 10th  of the economic value 

distribution among all patents with the same 3-digit technology class, patent category, and application year. 

Source: Lin and Yu (2020). 

Inventors Natural logarithm of one plus inventors appeared in the patent documents filed in a given year. Source: CNIPA 

Iportion The proportion of inventors among the whole employees of a firm (in thousands). Source: CNIPA and Resset.  

Ln(1+R&D) Natural logarithm of one plus the research and development (R&D) expenditure (in millions of RMB) of firm 

𝑖 in year 𝑡. Source: Annual Reports and CSMAR. 

R&D per Inventor The ratio of R&D expenditures to inventors. I set the missing variable into zero. Source: CNIPA and CSMAR. 

R&D per Employee The ratio of R&D expenditure to employees. I set the missing variable into zero. Source: CSMAR and Resset. 

Patent per Inventor The ratio of total number of utility model and invention patents over the number of inventors. Source: CNIPA 
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Patent per Employee The ratio of total number of utility model and invention patents over the number of employees (in thousands). 

Source: CNIPA and CSMAR. 

Subsidy Natural logarithm of the ratio of government subsidy to total assets. I set the missing variable to zero. Source: 

CSMAR. 

R&D/GDP The ratio of R&D expenditure in a given province divided by the gross domestic product (GDP). Source: 

China Statistical Yearbook. 

ΔPatent The growth rate of patent applied and provided with a material examination in a province. Source: China 

Statistical Yearbook. 

ΔInvention The growth rate of invention patent applied and provided with a material examination in a province. Source: 

China Statistical Yearbook. 

ΔUtility The growth rate of utility models applied and provided with a material examination in a province. Source: 

China Statistical Yearbook. 

ΔDesign The growth rate of design patent applied and provided with a material examination in a province. Source: 

China Statistical Yearbook. 

Panel B: Independent variables 

Treat Dummy variable that equals one in 2011-2016 if a firm is registered in provinces with fewer invention patents 

per 10,000 people than the national average in 2010, and zero otherwise. Source: China Statistical Yearbook 

and CSMAR. 

Size Natural logarithm of total assets. Source: CSMAR. 

BTM The book value of equity divided by the market value of equity at the end of each fiscal year. Source: CSMAR. 

R&D The ratio of R&D expenditure to total assets (missing values are set to zero). Source: Annual Reports and 

CSMAR. 

Leverage Total liabilities over total assets. Source: CSMAR. 

Cash Cash and cash equivalents divided by book assets. Source: CSMAR. 

Tangibility Property, plant, and equipment divided by book assets. Source: CSMAR. 

IO The percentage of shares outstanding owned by institutional investors at the end of the fiscal year. Source: 

CSMAR. 

ROA Return on assets is defined as net income divided by total assets for each fiscal year in percentage. Source: 

CSMAR. 

SOE Dummy variable that is equal to one if the ultimate controller of a firm is a government-owned entity or a 

government agency, and zero otherwise. Source: Annual Reports and CSMAR. 
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Age The natural logarithm of one plus the number of months the firm has been listed on the exchanges. Source: 

CSMAR. 

Competition One minus the Herfindahl index by total sales within the firm’s CSRC (2012) industry classification. Source: 

CSMAR. 

GDP growth rate The nominal growth rate of gross domestic product (GDP) of each province. Source: China Statistical 

Yearbook. 

Population Natural logarithm of the resident population in each province, where the unit of the resident population is 

100,000. Source: China Statistical Yearbook. 

GDP per capita Natural logarithm of the ratio of GDP to the number of residents. Source: China Statistical Yearbook. 

University density The ratio of four-year universities to the number of residents. Source: China Statistical Yearbook. 

Industrial output/GDP The ratio of industrial output to GDP. Source: China Statistical Yearbook. 

 
 

Appendix. 2. A Variable Definition 

Variable Definition and data source 

Panel A: Dependent variables 

PatVal Sum of the economic value of patents filed in year t (eventually granted) scaled by lagged total assets. Source: 

Yu and Lin (2020). 

LnCit Natural logarithm of one plus the sum of citation counts across all patents filed in year t. I adjust the forward 

citations by removing the technology-year fixed effects. Source: SIPOP. 

LnTop1 Natural logarithm of one plus the number of patents falls into the top 1st percentile of the citation distribution 

among all patents within the same patent type, 3-digit technology class, and application year. 

Lntop10 Natural logarithm of one plus the number of patents falls into the top 10th percentile of the citation distribution 

among all patents within the same patent type, 3-digit technology class and application year. 

Bachelor Natural logarithm of employees with a bachelor degree or above. I set the value as missing if the data is not 

available. Source: Resset. 

Bportion The proportion of employees with a bachelor degree or above. I set the value as missing if the data is not 

available. 

Innovator The natural logarithm of inventors appeared in the patent documents filed in a given year. 
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Iportion The proportion of inventors among the whole employees of a firm. 

Chg_ebitda The growth rate of earnings before interest, tax, depreciation and amortization from year t-1 to year t. Source: 

CSMAR. 

Chg_mktsize The growth rate of EBITDA in the industry that the focal firm belongs to. Source: CSMAR. 

Chg_share The growth rate of the market share of the focal firm in the industry that it belongs to. Source: CSMAR. 

Chg_margin The growth rate of the profit margin of the focal firm from year t-1 to year t. Source: CSMAR. 

Panel B: Independent variables 

Inventors The difference between the number of inventors around 100KM of the corporate headquarter and the number of 

inventor in the focal firm. I then take the natural logarithm of it plus one. Source: de Rassenfosse et al. (2019). 

Inventors_dummy I sort the number of inventors into two groups by the sample median and set the dummy variable equal to one 

for the top half and zero for the bottom half. 

Inventors (100-200km) The difference between the number of inventors around 100KM of the corporate headquarter and that of 

inventors around 200KM of the corporate headquarter. I then take the natural logarithm of it plus one. Source: 

de Rassenfosse et al. (2019). 

Inventors (200-300km) The difference between the number of inventors around 200KM of the corporate headquarter and that of 

inventors around 300KM of the corporate headquarter. I then take the natural logarithm of it plus one. Source: 

de Rassenfosse et al. (2019). 

Size The natural logarithm of total assets. Source: CSMAR 

BTM The book value of equity divided by the market value of equity at the end of each fiscal year. Source: CSMAR. 

R&D The ratio of R&D expenditure over total assets and the missing value is replaced with zero. Source: CSMAR.  

Leverage Total liabilities over total assets. Source: CSMAR. 

Cash Cash and cash equivalents divided by book assets. Source: CSMAR. 

Tangibility Property, plant, and equipment divided by book assets. Source: CSMAR. 

IO The percentage of shares outstanding owned by institutional investors at the end of the fiscal year. Source: 

CSMAR. 

ROA Return on assets is defined as net income divided by total assets for each fiscal year in percentage. Source: 

CSMAR. 

Firm age The natural logarithm of one plus the number of months the firm has been listed on the exchange. Source: 

CSMAR. 

SOE A dummy variable that equals one if the ultimate controller of a firm is a government-owned entity or a 

government agency, and zero otherwise. The government agency includes the central government, local 

government at the provincial, municipal, county, and other institutions. Source: CSMAR. 
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Competition One minus the Herfindahl index by total sales within the firm’s CSRC(2012) industry. Source: CSMAR. 

Population The natural logarithm of the resident population in each province and the resident population unit is 100,000. 

Source: China Statistical Yearbook. 

GDP growth The nominal growth rate of gross domestic product (GDP) of each province. Source: China Statistical Yearbook 

GDP per capita Natural logarithm of the ratio of GDP to the number of residents. Source: China Statistical Yearbook. 

University density The number of four-year colleges divided by the number of the resident population. Source: China Statistical 

Yearbook 

Per capita mining outputs The per capita mining outputs in each province and the unit is 100. Source: China Mining Yearbook. 
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Figure 1.1 Gap to the National Average and Growth Rate of Patent Application 

The following two graphs display the relationship between the growth rates in the number of 

all patents filed by industrial enterprises in each province during the 11th Five Year Plan (FYP) 

and the 12th FYP periods. We only include provinces that lag behind the national average in 

the number of invention patents per 10,000 people in 2006 (Panel A) and 2010 (Panel B). The 

x-axis denotes each province’s invention patents per 10,000 people relative to national 

average (0.49 and 1.7) in 2006 and 2010 in Panel A and Panel B, respectively. The following 

outlier provinces are excluded: Panel A [Hainan (173.89%) and Tibet (-25.84%)]; and Panel 

B ([Tibet (386.89%)]. Data source: China Statistical Yearbook of Science and Technology. 

Panel A. Growth Rates in Numbers of All Patents in 2006-2010 

 

Panel B. Growth Rates in Numbers of All Patents in 2011-2015 
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Figure 1.2 Gap to the National Average and Excess Growth Rate of Patent Application 

The following two graphs display the relationship between the excess growth rates in the 

number of all patents filed by industrial enterprises in each province during the 11th Five-Year 

Plan (FYP) and the 12th FYP periods. We only include provinces that lag behind the national 

average in the number of invention patents per 10,000 people in 2006 (Panel A) and 2010 

(Panel B). We first calculate the patent growth rates for each province in 2006-2010 (2011-

2015) in the 11th (12th) FYP period, and then calculate the difference between each province’s 

growth rate and those of its adjacent provinces. The x-axis denotes each province’s invention 

patents per 10,000 people relative to national average (0.49 and 1.7) in 2006 and 2010 in 

Panels A and B, respectively. Both panels exclude one outlier (Tibet). Data source: China 

Statistical Yearbook of Science and Technology. 

Panel A. Excess Growth Rates in the Number of All Patents in 2006-2010 

 

Panel B. Excess Growth Rates in the Number of All Patents in 2011-2015 
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Figure 2.1 The Distribution of Local Inventors across China 

The following provincial map demonstrates the distribution of local inventors across the 

country from 2000 to 2012. Local inventors are defined as outside inventors located within 

100-km of the corporate headquarter. I first calculate the annual average of local inventors for 

all listed firms headquartered in the same province and then graph the time-series averages of 

each province. Notice that the sample only includes firms listed on the Shanghai and 

Shenzhen stock exchanges, and the province-level results are divided into four groups that 

are based on quartiles. 
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Table 1.1 Policy Targets Related to Science and Technology in the Five-Year Plans 

This table lists the policy targets related to the development of science and technology in the 

11th and 12th Five-Year Plans (FYPs). The 11th FYP has one target: a specific R&D 

expenditure-to-GDP ratio. In contrast, the 12th FYP also sets a certain number of invention 

patents per 10,000 people as a target. The targets and achieved values in this table are those 

for the end of each plan, i.e., 2010 and 2015, respectively. The data are retrieved from the 

official documents of each FYP, and “-” indicates a missing value. 

 
R&D expenditure to 

GDP ratio 

Number of invention patents 

per 10,000 people 

Panel A: 11th FYP (2006-2010)  

Target 2% - 

Achieved 1.75% 1.7 

Panel B: 12th FYP (2011-2015)  

Target 2.2% 3.3 

Achieved 2.1% 6.3 
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Table 1.2 Patent-related Policy Targets in Provincial 12th Five-Year Plan 

This table shows patent-related policy targets in the provincial 12th Five-Year Plans. All data 

are retrieved from the official documents, and “-” indicates a missing value. The benchmark 

value for 2010 and the target value for 2015 are from the provincial 12th FYPs, whereas the 

corresponding achieved value is from the provincial 13th FYPs, as they summarize the 

achievements of the 12th FYPs. The 2010 benchmark number of invention patents per 10,000 

people may differ from that in the China Statistical Yearbook of Science and Technology 

(2011 edition), because some provincial governments used estimated values when they 

compiled their 12th FYP. 

No. Indicator Province 
2010  2015 

Benchmark  Target Achieved 

1 

Number of invention patents per 10,000 

people 

Anhui 0.66  3.4 4.3 

2 Guangxi 0.29  3 2 

3 Hainan 0.22  0.44 2.2 

4 Hebei 0.4  0.77 1.65 

5 Heilongjiang 1.15  2.1 3.3 

6 Henan 0.4  1 1.88 

7 Hubei 0.7  1.5 4.3 

8 Hunan 0.8  1.6 2.8 

9 Liaoning 0.5  0.8 5 

10 Shandong 0.4  0.8 4.9 

11 Sichuan 0.62  1.24 3.5 

12 Tianjin 5.1  9 10 

13 Xinjiang 0.54   1.09 1.32 

14 

Number of new invention patents per 

10,000 people in an FYP period 

Beijing -  8 - 

15 Fujian 0.3  0.6 - 

16 Inner Mongolia 0.11  1.5 0.32 

17 Shaanxi 0.5  2.5 1.5 

18 Yunnan 0.47  0.53 1.61 

19 
Number of invention patent applications 

per 100,000 people 
Shanxi 23.1   35 39.6 

20 
Number of invention patent applications 

per million people 
Guangdong 380  520 846 

21 Number of invention patents granted Chongqing 1000   4000 - 

22 
Number of invention patents granted per 

10 billion GDP 
Jiangsu 346 

  
400 341 

23 Number of invention patents granted per 

million people 

Ningxia 9.6  15 67 

24 Shanghai -   600 - 

25 

Nil 

Gansu -  - - 

26 Guizhou -  - - 

27 Jiangxi -  - - 

28 Jilin -  - - 

29 Qinghai -  - - 

30 Tibet -  - - 

31 Zhejiang -   - - 
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Table 1.3 Distribution of Invention Patents per 10,000 People in 2010 

This table presents the number of invention patents in each province in 2010. Patent data are 

from the China Statistical Yearbook of Science and Technology (2011 edition), and 

population data are from the China Statistical Yearbook (2011 edition). Here, the total number 

of invention patents represents the number of invention patents in force in each province at 

the end of 2010. The lagging province column indicates whether a province’s number of 

invention patents per 10,000 people is less than the national average (1.72). 

Province 
Total Number of 

Invention Patents 

Population 

(10,000) 

Invention Patents 

per 10,000 People 

Lagging 

Province (Y/N) 

Beijing 38,996 1,961 19.89 N 

Shanghai 23,843 2,302 10.36 N 

Tianjin 6,516 1,294 5.04 N 

Guangdong 41,891 10,430 4.02 N 

Zhejiang 17,955 5,443 3.30 N 

Jiangsu 19,682 7,866 2.50 N 

Liaoning 8,155 4,375 1.86 N 

Shaanxi 5,604 3,733 1.50 Y 

Shandong 11,080 9,579 1.16 Y 

Heilongjiang 4,362 3,831 1.14 Y 

Hubei 6,315 5,724 1.10 Y 

Chongqing 3,136 2,885 1.09 Y 

Jilin 2,954 2,746 1.08 Y 

Hunan 6,289 6,568 0.96 Y 

Fujian 3,295 3,689 0.89 Y 

Sichuan 6,533 8,042 0.81 Y 

Shanxi 2,473 3,571 0.69 Y 

Hainan 446 867 0.51 Y 

Yunnan 2,344 4,597 0.51 Y 

Anhui 2,972 5,950 0.50 Y 

Henan 4,501 9,402 0.48 Y 

Guizhou 1,616 3,475 0.47 Y 

Gansu 1,143 2,558 0.45 Y 

Hebei 3,122 7,185 0.43 Y 

Ningxia 256 630 0.41 Y 

Inner Mongolia 838 2,471 0.34 Y 

Xinjiang 665 2,181 0.30 Y 

Jiangxi 1,322 4,457 0.30 Y 

Guangxi 1,332 4,603 0.29 Y 

Qinghai 159 563 0.28 Y 

Tibet 60 300 0.20 Y 
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Table 1.4 12th Five-Year Plan and Provincial Innovation Activity 

This table reports the results from regressing provincial-level innovation inputs and outputs 

on the dummy variable-Treat, which is equal to one in 2011-2016 if a province is lagged 

behind the national level in terms of the invention patents per 10,000 people in 2010 and zero 

otherwise. All provincial and firm characteristics are lagged by one year. Appendix 1.A gives 

the details of variable definition. All regressions include the province and year fixed effects. 

The t-statistics reported in parentheses are based on standard errors clustered at the provincial 

level. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1) (2) (3) (4) (5) 

 R&D/GDP ΔPatent ΔInvention ΔUtility ΔDesign 

Treat -0.359** 0.133** 0.051 0.105** 0.316*** 

 (-2.14) (2.19) (0.69) (2.27) (2.90) 

GDP per capita -0.446 0.052 0.206 0.138 -0.189 

 (-1.59) (0.33) (0.82) (1.12) (-0.72) 

GDP growth -0.005 0.008 -0.002 0.022** -0.002 

 (-0.53) (1.67) (-0.24) (2.12) (-0.16) 

Population 0.684 0.232 -0.674 0.786** 0.345 

 (0.94) (1.02) (-1.53) (2.16) (0.59) 

University density 0.240 -0.004 -0.191 0.077 0.150 

 (1.25) (-0.03) (-1.29) (1.24) (0.63) 

Industrial output/GDP -0.004 0.004 0.001 0.005 0.001 

 (-0.51) (1.45) (0.28) (1.29) (0.07) 

Constant -0.272 -2.473 4.262 -8.226* -1.250 

 (-0.04) (-1.06) (0.94) (-2.02) (-0.25) 
      

Province fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 494 494 494 494 494 

R-squared 0.970 0.206 0.147 0.325 0.107 
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Table 1.5 Summary Statistics 

This table presents the summary statistics of the variables used in the baseline analysis. I 

construct five firm innovation measures: LnPatent equals the natural logarithm of one plus 

the utility model and invention patents. LnPatLowCited (LnPatLowValue) equals the natural 

logarithm of one plus the number of patents with zero forward citation or in the bottom 30th 

percentile of adjusted nonself-citations (economic value) of all patents within the same 3-digit 

IPC class, patent category, and application year. I also measure the number of patents that fall 

into the top 10th percentile of the citation distribution (LnPatTopCited) or the value 

distribution (LnPatTopValue). A set of control variables identified by prior literature is 

incorporated. The sample contains 14,613 firm-year observations from 2,140 unique firms 

that successfully filed at least one patent from 2007 to 2016. Appendix 1.A gives the details 

of variable definition. All continuous variables are winsorized at the 1st and 99th percentiles.  

Variables Obs. Mean S.D. P10 P25 Median P75 P90 

Patent 14,613 30.790 75.890 0 1 8 24 69 

LnPatent 14,613 2.147 1.590 0 0.693 2.197 3.219 4.248 

PatLowCited 14,613 17.830 44.830 0 0 4 14 40 

LnPatLowCited 14,613 1.691 1.474 0 0 1.609 2.708 3.714 

PatLowValue 14,613 7.079 20.970 0 0 0 4 16 

LnPatLowValue 14,613 0.908 1.272 0 0 0 1.609 2.833 

PatTopCited 14,613 4.842 12.380 0 0 1 4 11 

LnPatTopCited 14,613 0.951 1.082 0 0 0.693 1.609 2.485 

PatTopValue 14,613 2.505 7.663 0 0 0 1 6 

LnPatTopValue 14,613 0.515 0.932 0 0 0 0.693 1.946 

Treat 14,613 0.337 0.473 0 0 0 1 1 

Size 14,613 1.290 1.234 -0.127 0.400 1.105 1.971 2.981 

BTM 14,611 0.404 0.264 0.138 0.214 0.341 0.523 0.755 

R&D 14,613 1.565 1.699 0 0.107 1.177 2.337 3.676 

Leverage 14,613 0.435 0.206 0.155 0.272 0.433 0.595 0.712 

Cash 14,613 0.190 0.134 0.059 0.095 0.153 0.247 0.376 

Tangibility 14,613 0.230 0.155 0.052 0.110 0.201 0.324 0.459 

IO 14,613 7.176 7.788 0.226 1.208 4.552 10.480 18.220 

ROA 14,613 0.039 0.052 0.001 0.013 0.035 0.065 0.099 

SOE 14,601 0.427 0.495 0 0 0 1 1 

Age 14,613 4.489 0.785 3.320 3.946 4.633 5.164 5.393 

Competition 14,613 0.939 0.103 0.824 0.954 0.984 0.985 0.988 

Competition^2 14,613 0.892 0.166 0.678 0.910 0.968 0.971 0.975 
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Table 1.6 Univariate Analysis 

This table reports the results of univariate DiD analysis designed for investigating the impact 

of policy push on firm innovation. Appendix 1.A gives detailed variable definitions. The 

numbers tabulated are the average patent number in the four years before and the six years 

after the enactment of the 12th Five-Year Plan in 2011. A lagging (leading) province indicates 

that a province’s invention patents per 10,000 people are below (above) the national average 

in 2010. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

A. Total number of utility and invention patent (𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡)     

  Treatment  Control Difference  Diff-in-Diff 

  (lagging provinces)  (leading provinces) (treatment-control)   

Before 1.397  1.773 -0.376***   

After 2.211 2.391 -0.180***   

After-before 0.814*** 0.618***   0.196*** 

B. Total number of less cited patent (𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑)     

  Treatment  Control Difference  Diff-in-Diff 

  (lagging provinces)  (leading provinces) (treatment-control)   

Before 0.898 1.182 -0.284***   

After 1.806 1.942 -0.135***   

After-before 0.908*** 0.760***   0.149*** 

C. Total number of low-value patent (𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒)     

  Treatment  Control Difference  Diff-in-Diff 

  (lagging provinces)  (leading provinces) (treatment-control)   

Before 0.503 0.698 -0.195***   

After 0.993 1.001 -0.008**   

After-before 0.490*** 0.303***   0.187*** 

D. Total number of highly cited patent (𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝐶𝑖𝑡𝑒𝑑)     

  Treatment  Control Difference  Diff-in-Diff 

  (lagging provinces)  (leading provinces) (treatment-control)   

Before 0.501 0.702 -0.201***   

After 0.974 1.116 -0.142***   

After-before 0.473*** 0.414***   0.059 

E. Total number of high-value patent (𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒)     

  Treatment  Control Difference  Diff-in-Diff 

  (lagging provinces)  (leading provinces) (treatment-control)   

Before 0.310 0.493 -0.183***   

After 0.477 0.603 -0.126***   

After-before 0.167*** 0.110***   0.057 
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Table 1.7 Multivariate Regression Analysis 

This table reports multivariate DiD analysis results for investigating the impact of government 

intervention on firm innovation. Treat is an indicator equals to one for firms registered in a 

lagging provinces (that had fewer invention patents per 10,000 people than the national 

average in 2010) in the 2011-2016 period, and zero otherwise. Firm characteristics are lagged 

by one year. Appendix 1.A reports the variable definition. All regressions include firm and 

year fixed effects. The t-statistics reported in parentheses are based on standard errors 

clustered at the provincial level. *, **, *** indicate statistical significance at the 10%, 5%, 

and 1% level, respectively. 

  (1) (2) (3) (4) (5) 

  LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Treat 0.245*** 0.200*** 0.234*** 0.078 0.024 

 (3.86) (3.09) (3.50) (1.60) (0.94) 

Size 0.338*** 0.360*** 0.181*** 0.225*** 0.237*** 

 (8.20) (8.63) (4.81) (7.40) (7.34) 

BTM -0.040 -0.041 0.150** 0.021 -0.049 

 (-0.46) (-0.50) (2.56) (0.32) (-0.89) 

R&D 0.060*** 0.073*** 0.058*** 0.054*** 0.026*** 

 (4.75) (6.08) (5.33) (5.26) (2.85) 

Leverage -0.046 -0.026 -0.016 -0.084 0.007 

 (-0.39) (-0.21) (-0.14) (-1.12) (0.12) 

Cash 0.063 0.052 -0.175 0.044 0.045 

 (0.41) (0.36) (-1.46) (0.50) (0.78) 

Tangibility 0.335* 0.398** 0.287** 0.140 0.192** 

 (1.74) (2.53) (2.23) (1.09) (2.44) 

IO 0.002 0.001 -0.003 0.002 0.005*** 

 (0.99) (0.40) (-1.51) (1.31) (3.21) 

ROA 1.076*** 0.993*** 0.596*** 0.576** 0.536*** 

 (4.33) (4.27) (3.67) (2.68) (3.37) 

Age 0.049* 0.069*** -0.139*** 0.030* 0.063*** 

 (1.75) (2.77) (-5.68) (1.96) (5.07) 

Competition -1.955 -1.098 -4.048** -2.831** -1.444 

 (-1.02) (-0.55) (-2.18) (-2.49) (-1.54) 

Competition^2 1.586 0.987 2.773** 1.849** 0.901 

 (1.27) (0.76) (2.21) (2.44) (1.49) 

Constant 1.691** 0.844 2.367*** 1.421*** 0.389 

 (2.62) (1.25) (4.08) (3.60) (1.05) 

      
Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 14,613 

R-squared 0.802 0.791 0.641 0.755 0.787 
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Table 1.8 Dynamic Regression Analysis 

This table reports the results of the dynamic DID analysis designed for testing the parallel 

pre-treatment trends assumption. Firm characteristics are lagged by one year. Appendix 1.A 

reports the variable definitions. All regressions include firm and year fixed effects. 

Coefficients on the similar control variables of the baseline study are omitted for brevity. The 

t-statistics reported in parentheses are based on standard errors clustered at the provincial 

level. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1) (2) (3) (4) (5) 

  LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

𝐵𝑒𝑓𝑜𝑟𝑒−2 0.049 0.043 0.009 -0.022 -0.032 

 (1.08) (1.17) (0.18) (-0.83) (-1.19) 

𝐵𝑒𝑓𝑜𝑟𝑒−1 0.109 0.096 0.056 -0.007 -0.035 

 (1.50) (1.51) (1.34) (-0.15) (-1.44) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 0.274*** 0.261*** 0.217*** 0.036 0.019 

 (3.48) (3.91) (3.80) (0.72) (0.56) 

𝐴𝑓𝑡𝑒𝑟1 0.236** 0.215** 0.223*** 0.062 -0.009 

 (2.70) (2.51) (3.20) (1.09) (-0.23) 

𝐴𝑓𝑡𝑒𝑟2 0.293*** 0.252** 0.277*** 0.088 -0.010 

 (3.00) (2.74) (3.42) (1.42) (-0.31) 

𝐴𝑓𝑡𝑒𝑟3 0.282*** 0.217** 0.272*** 0.046 -0.009 

 (3.12) (2.29) (3.54) (0.88) (-0.29) 

𝐴𝑓𝑡𝑒𝑟4+ 0.360*** 0.273** 0.277*** 0.093 0.009 

 (3.44) (2.47) (2.90) (1.09) (0.27) 

      
Controls Yes Yes Yes Yes Yes 

Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 14,613 

R-squared 0.803 0.792 0.641 0.755 0.787 
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Table 1.9 Propensity Score Matching Analysis 

This table presents the propensity score matching analysis over the effect of policy push on 

firm innovation. Panel A compares the mean differences in firm characteristics of treatment 

firms and control firms. Panel B presents the multivariate analysis results based on the 

matched sample using the propensity score matching approach. Control variables in Table 1.7 

are also included in the regression, but their coefficients are unreported for brevity. All 

regressions include firm and year fixed effects. The t-statistics reported in parentheses are 

based on standard errors clustered at the provincial level. *, **, *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Covariate balance test 
 Treatment Control Diff. T-test P-value 

Size 1.019 1.003 0.016 0.490 0.622 

BTM 0.480 0.469 0.011 1.090 0.277 

R&D 0.328 0.348 -0.020 -0.740 0.458 

Leverage 0.508 0.505 0.003 0.540 0.587 

Cash 0.158 0.158 0.000 0.120 0.902 

Tangibility 0.279 0.281 -0.002 -0.460 0.646 

ROA 0.032 0.031 0.001 0.290 0.771 

IO 6.568 6.856 -0.288 -1.000 0.318 

Age 4.699 4.700 -0.001 -0.120 0.901 

Patent growth 0.129 0.126 0.003 0.310 0.757 

Panel B: DiD test using the matched sample 
 (1) (2) (3) (4) (5) 
 LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Treat 0.284*** 0.233*** 0.258*** 0.095 0.032 
 (4.63) (3.62) (3.10) (1.60) (1.00) 
      

Controls Yes Yes Yes Yes Yes 

Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 7,772 7,772 7,772 7,772 7,772 

R-squared 0.818 0.805 0.646 0.768 0.769 
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Table 1.10 Placebo Shock using the 11th Five-Year Plan 

This table reports the placebo tests for DiD analysis by changing the treatment year to 2006 

when the 11th Five-Year Plan was promulgated. The sample contains firms with at least one 

successful patent application during 2000-2011. Pseudo Treat is a dummy variable equals 

one in years 2006-2011 if a firm locates in provinces that lag behind the national level in 

invention patents per 10,000 people in 2006 and zero otherwise. All continuous variables are 

winsorized at the 1st and 99th percentile to alleviate the impact of outliers. Appendix 1.A gives 

detailed variable definitions. All regressions include firm and year fixed effects. The t-

statistics reported in parentheses are based on standard errors clustered at the provincial level. 

*, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1) (2) (3) (4) (5) 

  LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Pseudo Treat 0.014 0.012 0.024 -0.017 -0.05 

 (0.20) (0.22) (0.34) (-0.48) (-1.32) 

Size 0.403*** 0.345*** 0.109** 0.240*** 0.301*** 

 (6.02) (6.22) (2.18) (5.98) (9.75) 

BTM -0.070 -0.052 0.113 -0.054 -0.159*** 

 (-0.82) (-0.76) (1.32) (-0.97) (-3.44) 

R&D 0.134*** 0.120*** 0.039** 0.082*** 0.059*** 

 (7.17) (6.70) (2.13) (4.71) (3.45) 

Leverage -0.189 -0.189 0.103 -0.108 -0.312*** 

 (-1.28) (-1.53) (0.70) (-1.27) (-3.72) 

Cash 0.025 0.032 0.031 0.045 -0.084 

 (0.16) (0.28) (0.21) (0.65) (-0.98) 

Tangibility 0.315* 0.219 0.183* 0.182 0.143 

 (1.77) (1.53) (1.77) (1.61) (1.22) 

IO -0.000 -0.000 -0.004 0.001 0.005*** 

 (-0.01) (-0.13) (-1.69) (0.41) (3.13) 

ROA 0.698*** 0.466* 0.393* 0.137 -0.010 

 (3.14) (2.04) (1.72) (0.98) (-0.06) 

Age 0.015 0.001 -0.036 -0.006 -0.009 

 (0.50) (0.02) (-1.21) (-0.38) (-0.79) 

Competition 0.129 0.296 0.055 -0.584 1.316 

 (0.05) (0.15) (0.05) (-0.54) (0.50) 

Competition^2 -0.359 -0.402 -0.087 0.273 -1.031 

 (-0.23) (-0.31) (-0.11) (0.39) (-0.59) 

Constant 1.037 0.608 0.433 0.592 -0.041 

 (1.22) (0.83) (1.12) (1.37) (-0.05) 
      
Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 9,598 9,598 9,598 9,598 9,598 

R-squared 0.741 0.712 0.595 0.684 0.691 
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Table 1.11 Placebo Tests with Random Treatment 

This table summarizes the coefficients' distribution and the corresponding t-statistics on the 

dummy indicator Treat, estimated by the baseline DiD regression on the simulated sample. I 

first randomly chose 24 provinces as regions with weak innovation capacity in 2010, and 

firms registered in there receive the pseudo treatment. I then assign firms in the remaining 

seven provinces to the pseudo control group. Next, I define a dummy variable of policy push 

and perform the DiD regression in this simulated sample. Finally, I repeat this process 5,000 

times. For comparative purposes, I present the coefficient estimates of the actual effect in the 

first column. 

  Actual Mean P5 P25 Median P75 P95 

𝐿𝑛𝑃𝑎𝑡𝑒𝑛𝑡𝑖,𝑡 0.245*** -0.013 -0.214 -0.078 -0.002 0.065 0.140 

 (3.86) (-0.01) (-1.92) (-0.79) (-0.02) (0.80) (1.90) 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝐶𝑖𝑡𝑒𝑑𝑖,𝑡 0.200*** -0.010 -0.192 -0.068 0.000 0.060 0.132 

 (3.09) (-0.03) (-1.76) (-0.75) (0.01) (0.81) (1.88) 

𝐿𝑛𝑃𝑎𝑡𝐿𝑜𝑤𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 0.234*** -0.013 -0.216 -0.085 -0.005 0.072 0.156 

 (3.50) (-0.06) (-2.03) (-0.97) (-0.05) (0.76) (1.98) 

𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝐶𝑖𝑡𝑒𝑑𝑖,𝑡 0.078 -0.003 -0.129 -0.041 0.008 0.043 0.086 

 (1.60) (0.17) (-1.51) (-0.62) (0.15) (0.89) (2.03) 

𝐿𝑛𝑃𝑎𝑡𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 0.024 -0.002 -0.060 -0.022 0.000 0.021 0.049 

 (0.94) (-0.02) (-1.52) (-0.64) (0.01) (0.67) (1.64) 
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Table 1.12 Effect on R&D Expenditures 

This table reports the results of the relationship between policy push and R&D expenditure. 

Treat is an indicator equals to one for firms registered in a lagging provinces (that had fewer 

invention patents per 10,000 people than the national average in 2010) in the 2011-2016 

period, and zero otherwise. Firm characteristics are lagged by one year. Appendix 1.A reports 

the variable definition. All regressions include the firm and year fixed effects. The t-statistics 

reported in parentheses are based on standard errors clustered at the provincial level. *, **, 

*** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1) (2) (3) (4) 

  Ln(1+R&D) R&D to Assets R&D per Employee R&D per Inventor 

Treat 0.116 0.040 -0.002 -0.081 
 (1.11) (0.66) (-1.24) (-0.43) 

Size 0.522*** -0.014 0.006*** 1.118*** 
 (8.17) (-0.40) (7.17) (5.03) 

BTM 0.146 -0.193*** -0.006*** -0.050 
 (1.31) (-3.38) (-3.70) (-0.08) 

R&D 0.301*** 0.415*** 0.006*** 0.560*** 
 (12.08) (26.49) (13.26) (6.81) 

Leverage 0.060 0.019 -0.004 -0.676 
 (0.26) (0.11) (-0.98) (-0.59) 

Cash -0.038 0.078 0.001 -1.797** 
 (-0.34) (0.73) (0.24) (-2.51) 

Tangibility 0.463** 0.226* -0.001 0.319 
 (2.44) (1.90) (-0.18) (0.30) 

IO -0.000 -0.001 -0.000 0.002 
 (-0.22) (-0.40) (-1.01) (0.27) 

ROA 1.196*** 0.697*** 0.004 0.238 
 (4.16) (3.23) (0.81) (0.19) 

Age -0.232*** -0.131*** -0.001* -0.433*** 
 (-7.50) (-5.94) (-1.79) (-3.16) 

Competition 0.613 -3.531* 0.033 14.844 
 (0.24) (-1.72) (0.59) (0.94) 

Competition^2 -0.348 2.086 -0.021 -9.632 
 (-0.21) (1.57) (-0.60) (-0.97) 

Constant 2.436** 2.946*** 0.006 -2.071 
 (2.36) (3.67) (0.25) (-0.34) 
     

Firm fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 

R-squared 0.813 0.827 0.761 0.451 
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Table 1.13 Effect on Labor Inputs 

This table reports the results of the relationship between policy push and labor inputs in 

innovative activities. Treat is an indicator equals to one for firms registered in a lagging 

provinces (that had fewer invention patents per 10,000 people than the national average in 

2010) in the 2011-2016 period, and zero otherwise. Firm characteristics are lagged by one 

year. Appendix 1.A reports the variable definition. All regressions include the firm and year 

fixed effects. The t-statistics reported in parentheses are based on standard errors clustered at 

the provincial level. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. 

  (1) (2) (3) (4) 

  Inventors Iportion Patent per Employee Patent per Inventor 

Treat 0.318*** 0.208*** 0.151*** 0.026* 

 (5.21) (4.27) (3.07) (1.75) 

Size 0.338*** -0.040 -0.007 0.026** 

 (7.89) (-1.01) (-0.19) (2.73) 

BTM 0.043 0.012 -0.083 -0.028 

 (0.47) (0.14) (-1.16) (-1.13) 

R&D 0.059*** 0.030*** 0.028*** -0.001 

 (5.30) (3.03) (3.04) (-0.29) 

Leverage -0.047 -0.066 -0.089 -0.001 

 (-0.40) (-0.49) (-0.74) (-0.01) 

Cash -0.061 0.125 0.210* 0.050 

 (-0.38) (1.05) (1.76) (1.17) 

Tangibility 0.437* 0.061 -0.007 0.001 

 (1.72) (0.34) (-0.05) (0.03) 

IO 0.002 0.003 0.003 0.000 

 (0.89) (1.29) (1.24) (0.29) 

ROA 0.762** 0.166 0.384* 0.145* 

 (2.72) (0.75) (1.90) (1.76) 

Age 0.035 0.032 0.039 0.000 

 (1.33) (1.61) (1.69) (0.04) 

Competition -1.020 -0.062 -1.420 -0.807 

 (-0.72) (-0.04) (-0.74) (-1.39) 

Competition^2 1.074 0.231 1.028 0.577 

 (1.15) (0.21) (0.81) (1.47) 

Constant 1.711*** 1.503** 1.693** 0.598*** 

 (3.40) (2.47) (2.68) (3.15) 

     

Firm fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 

R-squared 0.793 0.718 0.727 0.571 
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Table 1.14 Subsample Analysis of State-Owned Enterprises 

This table reports the subsample analysis on the ownership. I partition the whole sample into 

two groups each year: state-owned enterprises and non-state-owned enterprises. Treat is an 

indicator equals to one for firms registered in a lagging provinces (that had fewer invention 

patents per 10,000 people than the national average in 2010) in the 2011-2016 period, and 

zero otherwise. Firm characteristics are lagged by one year. Appendix 1.A reports the variable 

definition. All regressions include the firm and year fixed effects. The t-statistics reported in 

parentheses are based on standard errors clustered at the provincial level. *, **, *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1)   (2)   (3) 

 LnPatent  LnPatLowCited  LnPatLowValue 

  SOE NSOE   SOE NSOE   SOE NSOE 

Treat 0.299*** 0.091  0.254*** 0.064  0.266** 0.133* 

 (3.34) (1.32)  (3.01) (0.89)  (2.56) (1.93) 

Size 0.324*** 0.329***  0.360*** 0.355***  0.249*** 0.208*** 

 (4.79) (4.57)  (5.62) (4.56)  (3.96) (3.97) 

BTM -0.078 -0.159  -0.116 -0.109  0.043 0.022 

 (-0.81) (-1.33)  (-1.12) (-1.05)  (0.53) (0.20) 

R&D 0.039** 0.039*  0.065*** 0.048**  0.064** 0.044** 

 (2.11) (1.88)  (3.60) (2.51)  (2.14) (2.34) 

Leverage -0.126 -0.138  -0.110 -0.090  -0.455** 0.015 

 (-0.56) (-0.65)  (-0.53) (-0.47)  (-2.16) (0.07) 

Cash -0.248 0.250  -0.241 0.384*  -0.366* -0.191 

 (-1.27) (1.09)  (-1.35) (1.77)  (-1.79) (-0.97) 

Tangibility 0.252 0.417*  0.369* 0.466**  0.163 0.310 

 (1.00) (1.89)  (2.01) (2.25)  (0.84) (1.30) 

IO 0.002 0.003  0.000 0.001  -0.003 -0.003 

 (0.61) (1.12)  (0.05) (0.51)  (-0.89) (-1.58) 

ROA 0.972 1.096***  0.864* 1.221***  -0.113 0.714** 

 (1.69) (3.37)  (1.89) (4.05)  (-0.25) (2.17) 

Age 0.205** 0.149*  0.226** 0.258***  -0.195 -0.135** 

 (2.06) (1.93)  (2.45) (3.63)  (-1.44) (-2.16) 

Competition -6.492 -0.400  -5.487 -0.173  -4.478* -7.581** 

 (-1.67) (-0.13)  (-1.42) (-0.05)  (-1.93) (-2.42) 

Competition^2 4.611* 0.506  3.792 0.442  3.155** 5.092** 

 (1.79) (0.24)  (1.48) (0.21)  (2.13) (2.36) 

Constant 2.538* 1.036  1.703 -0.113  2.869** 3.704*** 

 (1.76) (0.93)  (1.21) (-0.10)  (2.69) (3.77) 

         
Firm fixed effects Yes Yes  Yes Yes  Yes Yes 

Year fixed effects Yes Yes  Yes Yes  Yes Yes 

Observations 5,197 6,992  5,197 6,992  5,197 6,992 

R-squared 0.858 0.786   0.851 0.775   0.712 0.623 
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Table 1.15 Subsample Analysis of the Size of Employee  

This table reports the subsample analysis of the employee size. I partition the whole sample 

into two groups by the sample median each year. Treat is an indicator equals to one for firms 

registered in a lagging provinces (that had fewer invention patents per 10,000 people than the 

national average in 2010) in the 2011-2016 period, and zero otherwise. Firm characteristics 

are lagged by one year. Appendix 1.A reports the variable definition. All regressions include 

the firm and year fixed effects. The t-statistics reported in parentheses are based on standard 

errors clustered at the provincial level. *, **, *** indicate statistical significance at the 10%, 

5%, and 1% level, respectively. 

  (1)   (2)   (3) 

 LnPatent  LnPatLowCited  LnPatLowValue 

  Large Small   Large Small   Large Small 

Treat 0.338*** 0.107  0.259*** 0.140  0.353*** 0.093 

 (4.61) (1.14)  (3.71) (1.39)  (4.35) (0.99) 

Size 0.331*** 0.236***  0.357*** 0.281***  0.294*** 0.120** 

 (6.25) (4.08)  (6.01) (4.22)  (4.27) (2.18) 

BTM -0.109 -0.130  -0.139 -0.165  0.019 -0.041 

 (-1.06) (-1.03)  (-1.36) (-1.60)  (0.19) (-0.28) 

R&D 0.039** 0.035*  0.052*** 0.054***  0.070*** 0.019 

 (2.31) (1.84)  (2.76) (3.16)  (3.37) (1.33) 

Leverage -0.230 0.028  -0.194 0.049  -0.517*** 0.148 

 (-1.20) (0.13)  (-1.09) (0.25)  (-2.91) (0.73) 

Cash -0.071 0.210  -0.056 0.264  -0.530** -0.081 

 (-0.28) (0.83)  (-0.22) (1.05)  (-2.35) (-0.39) 

Tangibility 0.295 0.078  0.383* 0.212  0.271 0.020 

 (1.15) (0.34)  (1.97) (0.80)  (1.10) (0.13) 

IO 0.002 0.003  0.001 -0.000  -0.004 -0.003 

 (0.61) (0.86)  (0.37) (-0.07)  (-1.33) (-0.97) 

ROA 1.015** 0.645  1.216** 0.532  0.479 0.168 

 (2.39) (1.62)  (2.71) (1.58)  (1.06) (0.65) 

Age 0.108 0.122*  0.182** 0.255***  -0.252** -0.132 

 (1.63) (1.72)  (2.27) (3.66)  (-2.39) (-1.61) 

Competition -2.357 -0.748  -0.650 -0.776  -5.890** -5.464* 

 (-0.88) (-0.23)  (-0.25) (-0.29)  (-2.06) (-1.90) 

Competition^2 1.906 0.696  0.803 0.644  4.309** 3.482* 

 (1.11) (0.33)  (0.48) (0.37)  (2.27) (1.84) 

Constant 1.906* 1.019  0.399 0.043  3.389** 3.185*** 

 (1.79) (0.81)  (0.38) (0.04)  (2.74) (2.82) 

         
Firm fixed effects Yes Yes  Yes Yes  Yes Yes 

Year fixed effects Yes Yes  Yes Yes  Yes Yes 

Observations 6,333 5,693  6,333 5,693  6,333 5,693 

R-squared 0.858 0.741   0.848 0.724   0.706 0.618 
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Table 1.16 Benefits of More Patent Applications 

This table reports the OLS regression of government subsidies on the interaction term of 

government intervention and patent counts. Treat is an indicator equals to one for firms 

registered in a lagging provinces (that had fewer invention patents per 10,000 people than the 

national average in 2010) in the 2011-2016 period, and zero otherwise. Firm characteristics 

are lagged by one year. Appendix 1.A reports the variable definition. All regressions include 

the firm and year fixed effects. The t-statistics reported in parentheses are based on standard 

errors clustered at the provincial level. *, **, *** indicate statistical significance at the 10%, 

5%, and 1% level, respectively. 

  (1) (2) (3) 

 Full sample SOE sample Non-SOE sample 

Treat× LnPatent 0.121*** 0.138*** 0.065 

 (3.88) (2.87) (1.68) 

Treat -0.278** -0.389* -0.045 

 (-2.42) (-1.98) (-0.32) 

LnPatent 0.007 0.004 0.002 

 (0.25) (0.11) (0.07) 

Size -0.158* -0.154 -0.125 

 (-1.75) (-1.34) (-1.34) 

BTM -0.199 -0.262 -0.279* 

 (-1.49) (-1.20) (-1.92) 

Leverage -0.055 -0.578 0.214 

 (-0.21) (-1.21) (0.87) 

Cash -0.019 -0.112 -0.106 

 (-0.09) (-0.20) (-0.62) 

R&D 0.046*** 0.046 0.044** 

 (3.48) (1.41) (2.65) 

Tangibility 0.582 0.888 0.474 

 (1.56) (1.43) (1.33) 

IO -0.002 -0.001 -0.003 

 (-0.81) (-0.31) (-0.97) 

ROA -0.077 -0.637 0.024 

 (-0.16) (-0.66) (0.05) 

Age -0.016 0.081 -0.011 

 (-0.35) (0.80) (-0.25) 

Constant  -5.484*** -5.710*** -5.553*** 

 (-22.87) (-9.89) (-24.92) 

    
Firm fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

Observations 14,613 6,065 8,497 

R-squared 0.500 0.508 0.507 
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Table 1.17 Robustness – Confounding Local Business Conditions 

This table reports the results of the robustness check for DiD analysis by controlling for local 

business conditions. I include four measures: the logarithm of GDP per capita, GDP growth 

rate, the logarithm of population, and the university density. All provincial and firm 

characteristics are lagged by one year. Appendix 1.A reports the variable definition. 

Coefficients on the similar control variables of the baseline study are omitted for brevity. All 

regressions include firm and year fixed effects. The t-statistics reported in parentheses are 

based on standard errors clustered at the provincial level. *, **, *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

 (1) (2) (3) (4) (5) 

 LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Treat 0.226*** 0.193*** 0.203*** 0.056 0.029 

 (3.95) (3.45) (3.51) (1.23) (0.81) 

GDP per capita -0.071 -0.111 0.016 0.003 -0.108 

 (-0.40) (-0.61) (0.10) (0.03) (-1.06) 

GDP growth 0.013 0.012 0.012 0.008 0.000 

 (1.51) (1.36) (1.35) (1.12) (0.04) 

Population 0.185 0.200 -0.014 0.059 0.172 

 (0.92) (1.07) (-0.10) (0.44) (1.39) 

University density 1.794 1.674* 1.009 1.049 1.355* 

 (1.60) (1.80) (1.22) (1.59) (1.94) 

Constant 0.780 0.310 1.945 0.702 0.166 

 (0.36) (0.15) (1.30) (0.56) (0.16) 

      
Controls Yes Yes Yes Yes Yes 

Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 14,613 

R-squared 0.803 0.792 0.641 0.755 0.787 
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Table 1.18 Robustness – Ranking Patent by Different Cutoffs 

This table reports the robustness check results where I change the cutoff to 20th percentile and 

99th percentile. LnPatLowCited (LnPatLowValue) is defined as the logarithm of one plus the 

number of patents with zero forward citation or in the bottom 20th percentile of the adjusted 

nonself-citations (economic value) of all patents within the same patent category, 3-digit IPC 

class, and application year. LnPatTopCited (LnPatTopValue) is defined as the logarithm of 

one plus the number of patents that fall into the 99th percentile of all adjusted nonself-citations 

(economic value) patents within the patent category, 3-digit IPC class, and application year. 

All firm characteristics are lagged by one year. Appendix 1.A gives detailed variable 

definitions. All regressions include firm and year fixed effects. The t-statistics reported in 

parentheses are based on standard errors clustered at the provincial level. *, **, *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. 

  (1) (2) (3) (4) 

  LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Treat 0.193*** 0.164*** 0.019 0.014 

 (3.07) (2.78) (0.95) (1.34) 

Size 0.373*** 0.166*** 0.114*** 0.039** 

 (8.72) (4.54) (6.86) (2.36) 

BTM -0.053 0.107** 0.044 0.006 

 (-0.63) (2.14) (1.02) (0.18) 

R&D 0.081*** 0.053*** 0.019*** 0.005 

 (6.56) (5.59) (3.61) (1.08) 

Leverage -0.060 -0.043 -0.029 0.008 

 (-0.48) (-0.40) (-0.72) (0.25) 

Cash 0.020 -0.145* -0.042 0.065** 

 (0.14) (-1.76) (-1.01) (2.46) 

Tangibility 0.411** 0.215** -0.006 0.048 

 (2.60) (2.19) (-0.10) (1.34) 

IO 0.001 -0.004** -0.000 0.001 

 (0.24) (-2.19) (-0.41) (1.19) 

ROA 0.979*** 0.359** 0.427*** 0.201* 

 (4.43) (2.43) (6.14) (1.92) 

Age 0.064** -0.144*** 0.006 0.019*** 

 (2.72) (-6.35) (0.75) (2.85) 

Competition -1.544 -2.937 -2.532*** -0.749* 

 (-0.81) (-1.53) (-2.78) (-1.91) 

Competition^2 1.294 2.016 1.632*** 0.491* 

 (1.06) (1.56) (2.85) (1.71) 

Constant 0.975 1.863*** 0.975*** 0.181 

 (1.52) (3.10) (2.77) (1.49) 

     
Firm fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 

R-squared 0.792 0.595 0.605 0.703 
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Table 1.19 Robustness – Alternative Definition of Treatment Group 

This table reports multivariate DiD analysis results for investigating the impact of per capita 

policy target on firm innovation. Treat is an indicator equals to one for firms located in a 

lagging province (that had fewer invention patents per 10,000 people than the national median 

in 2010) in the 2011-2016 period, and zero otherwise. Firm characteristics are lagged by one 

year. Appendix 1.A reports the variable definition. All regressions include firm and year fixed 

effects. The t-statistics reported in parentheses are based on standard errors clustered at the 

provincial level. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. 

  (1) (2) (3) (4) (5) 

  LnPatent LnPatLowCited LnPatLowValue LnPatTopCited LnPatTopValue 

Treat 0.270*** 0.230*** 0.197** 0.100 0.031 

 (3.36) (2.86) (2.12) (1.35) (0.86) 

Size 0.336*** 0.358*** 0.181*** 0.224*** 0.237*** 

 (8.40) (8.80) (4.84) (7.48) (7.35) 

BTM -0.044 -0.044 0.148** 0.019 -0.049 

 (-0.51) (-0.55) (2.59) (0.30) (-0.90) 

R&D 0.061*** 0.074*** 0.059*** 0.054*** 0.026*** 

 (4.87) (6.16) (5.49) (5.23) (2.86) 

Leverage -0.030 -0.013 -0.003 -0.078 0.009 

 (-0.26) (-0.11) (-0.02) (-1.05) (0.15) 

Cash 0.059 0.049 -0.178 0.042 0.045 

 (0.38) (0.33) (-1.51) (0.48) (0.77) 

Tangibility 0.345* 0.406** 0.295** 0.144 0.194** 

 (1.76) (2.55) (2.27) (1.12) (2.44) 

IO 0.002 0.001 -0.003 0.002 0.005*** 

 (0.93) (0.35) (-1.56) (1.29) (3.20) 

ROA 1.076*** 0.995*** 0.586*** 0.578** 0.536*** 

 (4.33) (4.29) (3.49) (2.70) (3.37) 

Age 0.044 0.065** -0.144*** 0.028* 0.063*** 

 (1.59) (2.65) (-5.96) (1.85) (4.97) 

Competition -1.874 -1.029 -3.990** -2.801** -1.435 

 (-0.96) (-0.51) (-2.13) (-2.44) (-1.53) 

Competition^2 1.514 0.925 2.718** 1.823** 0.893 

 (1.19) (0.70) (2.14) (2.38) (1.47) 

Constant 1.731** 0.873 2.424*** 1.429*** 0.392 

 (2.64) (1.27) (4.15) (3.56) (1.06) 

      
Firm fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

Observations 14,613 14,613 14,613 14,613 14,613 

R-squared 0.802 0.792 0.640 0.755 0.787 
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Table 2.1 Summary Statistics 

This table presents the summary statistics of variables used in the empirical analysis. I 

construct two measures of firm innovation: the sum of patent value scaled by lagged assets 

(PatVal) and the natural logarithm of one plus the adjusted citations received by all patents of 

a given firm (LnCit). The primary variable of interest is the local inventors (Inventors), which 

is defined as the number of outside inventors located within 100-km of the corporate 

headquarter. Bunches of control variables identified by prior literature are also incorporated. 

The sample contains 2,428 unique firms from 2000 to 2013. Variable definitions are in 

Appendix A.2. All continuous variables are winsorized at the 1st and 99th percentiles.  

  

Variables Obs. Mean S.D. P10 P25 Median P75 P90 

PatVal 17,211  0.064 0.169 0 0 0 0.040 0.178 

LnCit 17,211  1.045 1.404 0 0 0 1.982 3.180 

Inventors 17,211  7.824 2.154 4.754 6.335 8.027 9.562 10.68 

Inventors_dummy 17,211  0.504 0.500 0 0 1 1 1 

Size 17,211  0.771 1.101 -0.469 -0.005 0.612 1.371 2.231 

BTM 17,211  0.437 0.270 0.155 0.234 0.375 0.570 0.808 

R&D 17,211  0.580 1.189 0 0 0 0.562 2.186 

Leverage 17,211  0.447 0.195 0.169 0.303 0.457 0.597 0.696 

Cash 17,211  0.201 0.153 0.054 0.093 0.157 0.265 0.425 

Tangibility 17,211  0.259 0.173 0.054 0.124 0.228 0.369 0.512 

IO 17,211  5.213 7.770 0 0.148 1.713 6.931 16.020 

ROA 17,211  0.040 0.049 0.003 0.016 0.038 0.064 0.095 

Firm age 17,211  4.095 1.071 2.571 3.570 4.395 4.891 5.166 

Competition 17,211  0.936 0.103 0.832 0.939 0.977 0.985 0.987 

Competition^2 17,211  0.886 0.163 0.691 0.882 0.955 0.971 0.975 

University density 17,211  0.190 0.105 0.093 0.125 0.155 0.211 0.317 

GDP growth rate 17,211  11.670 2.213 8.500 10.000 11.800 13.400 14.800 

Population 17,211  6.091 0.688 5.174 5.478 6.256 6.675 6.866 

GDP per capita 17,211  10.170 0.776 9.026 9.581 10.270 10.840 11.130 

SOE 14,308  0.558 0.497 0 0 1 1 1 

PCM 16,286  4.848 7.223 0.487 1.105 2.458 5.559 12.130 
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Table 2.2 The Effects of Local Inventors on Firm Innovation 

The table reports the pooled OLS regression results of the relationship between local inventors 

and firm innovation. The dependent variables are two measures built on patent value and 

patent citations, respectively. The main explanatory variable is the proxy for local inventors. 

Variable definitions are provided in the Appendix A.2, and all dependent variables are lagged 

by one year. I include a different set of fixed effects to control for common trend and other 

time-invariant firm, industry, and provincial characteristics. I denote the year, firm, industry, 

and provincial fixed effects by Y, F, I, and P, separately. The t-statistics based on standard 

errors clustered at the firm level are reported in parentheses. *, **, and *** denote statistical 

significance at the 10%, 5%, and 1% level, respectively.  

  

  

Dep.Var. = PatVal   Dep.Var. = LnCit 

(1) (2) (3)   (4) (5) (6) 

Inventors 0.006*** 0.006*** 0.009***  0.068*** 0.059*** 0.035 

 (3.30) (2.82) (2.69)  (4.73) (3.91) (1.45) 

Size 0.012*** 0.013*** -0.017***  0.408*** 0.409*** 0.329*** 

 (3.76) (4.01) (-2.86)  (13.50) (13.12) (8.95) 

BTM -0.102*** -0.111*** -0.033***  -0.077 -0.039 -0.107* 

 (-10.09) (-10.18) (-3.77)  (-0.84) (-0.40) (-1.68) 

R&D 0.053*** 0.046*** 0.035***  0.292*** 0.243*** 0.182*** 

 (13.84) (11.27) (9.18)  (17.51) (13.65) (11.00) 

Leverage -0.071*** -0.071*** -0.006  -0.231** -0.186 -0.173 

 (-4.93) (-4.71) (-0.33)  (-2.00) (-1.56) (-1.51) 

Cash -0.025 -0.028 -0.032**  -0.453*** -0.451*** -0.015 

 (-1.27) (-1.36) (-2.00)  (-3.31) (-3.23) (-0.13) 

Tangibility -0.041*** -0.053*** 0.039***  -0.493*** -0.606*** 0.530*** 

 (-3.05) (-3.76) (2.87)  (-3.97) (-4.75) (5.06) 

IO 0.003*** 0.003*** 0.002***  0.008*** 0.008*** 0.002 

 (6.58) (6.67) (5.08)  (3.31) (3.38) (1.01) 

ROA 0.161*** 0.189*** 0.104***  0.794*** 1.049*** 0.092 

 (3.70) (4.22) (3.46)  (2.68) (3.49) (0.44) 

Firm age 0.009*** 0.011*** 0.020***  -0.045** -0.035* 0.041* 

 (3.90) (4.37) (5.65)  (-2.53) (-1.93) (1.91) 

Competition 0.939***  0.276  8.484***  -0.764 

 (2.61)  (0.87)  (3.23)  (-0.40) 

Competition^2 -0.659***  -0.180  -6.012***  0.620 

 (-2.79)  (-0.89)  (-3.46)  (0.50) 

University density -0.321***  -0.041  -0.240  0.012 

 (-2.97)  (-0.54)  (-0.37)  (0.03) 

GDP growth 0.000  -0.001  0.024***  0.020** 

 (0.31)  (-0.52)  (2.98)  (2.48) 

Constant -0.209 0.036* -0.161  -2.222** 0.658*** 0.267 

 (-1.56) (1.69) (-1.26)  (-2.33) (3.92) (0.35) 

        
Fixed effects Y Y×I Y  Y Y×I Y 

 I Y×P F  I Y×P F 

 P    P   

Observations 17,211 17,209 17,041  17,211 17,209 17,041 

R-squared 0.313 0.342 0.684   0.476 0.507 0.766 
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Table 2.3 The Effect of Local Inventors on Innovative Search Strategy 

The table reports estimated results of the effect of local inventors on innovative search 

strategy captured by breakthrough innovation. The dependent variable is LnTop1 (LnTop10), 

which is defined as the number of patent that falls into the top 1th (10th) percentile of the 

citation distribution. Variable of interest is the proxy for local inventors. I run both the pooled 

OLS and Poisson regression to accommodate the skewness of the patent number. All 

explanatory variables are lagged by one year, and their definitions are given in the Appendix. 

Y, I, and P denote the year, industry, and provincial fixed effects separately. The t-statistics 

based on standard errors clustered at the firm level are reported in the parentheses. *, **, *** 

represent the statistical significance at the 10%, 5%, and 1% level, respectively. 

  

  Pooled OLS   Poisson 
 LnTop1 LnTop10  Top1 Top10 

  (1) (2)   (3) (4) 

Inventors 0.010*** 0.035***  0.066** 0.084*** 

 (2.73) (4.43)  (2.13) (2.89) 

Size 0.099*** 0.248***  0.545*** 0.602*** 

 (9.57) (12.51)  (15.44) (16.41) 

BTM 0.018 -0.041  0.414*** 0.230* 

 (0.61) (-0.71)  (3.01) (1.67) 

R&D 0.041*** 0.162***  0.117*** 0.134*** 

 (7.67) (14.85)  (4.23) (4.59) 

Leverage -0.003 -0.074  0.052 -0.190 

 (-0.09) (-1.13)  (0.22) (-0.79) 

Cash -0.088** -0.233***  -0.772*** -0.643*** 

 (-2.10) (-2.83)  (-2.76) (-2.73) 

Tangibility -0.117*** -0.285***  -1.406*** -1.316*** 

 (-3.32) (-3.94)  (-4.87) (-4.22) 

IO 0.002*** 0.004***  0.018*** 0.016*** 

 (2.65) (2.67)  (4.89) (4.86) 

ROA 0.171** 0.293*  2.586*** 2.045*** 

 (2.08) (1.74)  (3.36) (2.74) 

Firm age -0.008 -0.019*  -0.094*** -0.070** 

 (-1.42) (-1.71)  (-2.85) (-2.37) 

Competition 1.000 6.495***  -3.262 -1.813 

 (1.29) (4.15)  (-0.59) (-0.21) 

Competition^2 -0.746 -4.573***  1.555 0.119 

 (-1.46) (-4.47)  (0.41) (0.02) 

University density -0.019 -0.336  3.411** 2.550 

 (-0.11) (-0.87)  (2.42) (1.61) 

GDP growth 0.003 0.008*  0.044** 0.072*** 

 (1.27) (1.68)  (2.17) (3.36) 

Constant -0.279 -1.912***  -2.528 -2.328 

 (-1.01) (-3.35)  (-1.30) (-0.72) 

Fixed effects Y Y  Y Y 

 I I  I I 

 P P  P P 

Observations 17,211 17,211  17,211 17,211 

R-squared 0.195 0.392       
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Table 2.4 Instrumental Variables Regression 

This table presents the two-stage least squares regression results for local inventors’ effect on 

focal firm’s innovation. Due to the data availability of per capita mining output, the sample 

period is from 2001 to 2013. The empirical model is: 

[1st stage]:  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠𝑖𝑗𝑝𝑡 =  𝛼𝑃𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑚𝑖𝑛𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑡 + 𝛽𝑍𝑖𝑗𝑝𝑡 +  𝛾𝐾𝑝𝑡 +  𝜆𝜇𝑗 +

𝜑𝜐𝑡 + 𝜀𝑖𝑗𝑝𝑡   

[2nd stage]: 𝑌𝑖𝑗𝑝𝑡+1 = 𝛼𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠 (𝐼𝑉)
𝑖𝑗𝑝𝑡

+ 𝛽𝑍𝑖𝑗𝑝𝑡 +  𝛾𝐾𝑝𝑡 +  𝜆𝜇𝑗 + 𝜑𝜐𝑡 + 𝜀𝑖𝑗𝑝𝑡+1 

Where 𝑍𝑖𝑗𝑝𝑡 is a vector of firm-specific variables, which I do not report the coefficients for 

brevity.  𝐾𝑝𝑡 is a set of provincial characteristics, including population, GDP per capita, GDP 

growth rate, and university density. 𝜇𝑗 and 𝜐𝑡 are industry and year fixed effects, respectively. 

The t-statistics based on standard errors adjusting for heteroscedasticity and within-firm 

clustering are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 

5%, and 1% level, separately.  

 

A. First-stage results         

Dep. Var. =        Inventors 

Per capita mining output    -0.038*** 

    (-10.19) 

Population    1.105*** 

    (19.46) 

GDP per capita    1.724*** 

    (25.59) 

GDP growth    -0.088*** 

    (-9.60) 

University density    5.919*** 

    (15.50) 

Observations    16,286 

R-squared    0.695 

Kleibergen-Paap Wald F statistic    103.8 

        (P=0.000) 

B. Second-stage results      

 (1) (2) (3) (4) 

  PatVal LnCit LnTop1 LnTop10 

Inventors (IV) 0.023** 0.269*** 0.080*** 0.155*** 

 (2.41) (3.63) (4.68) (3.69) 

     

Observations 16,286 16,286 16,286 16,286 

R-squared 0.151 0.157 0.065 0.148 
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Table 2.5 Labor Supply and the Effect of Local Inventors 

This table presents the result of subsample analyses based on the innovative industry and the 

number of industry inventors, which are used to reflect the demand of skilled workers. I 

partition the whole sample into two groups each year and then adopt the baseline specification 

to identify the effect. The dependent variables are two measures built on patent value and 

patent citations, respectively. Variable of interest is a proxy for local inventors within 100km 

of the corporate headquarter. All dependent variables are lagged by one year, and their 

coefficients are omitted for brevity. Panel A gives the result of subsample analysis based on 

innovative industry, while panel B reports that of industry inventors. Y, I, and P denote the 

year, industry, and provincial fixed effects separately. The t-statistics based on standard errors 

clustered at the firm level are reported in the parentheses. *, **, *** represent the statistical 

significance at the 10%, 5%, and 1% level, respectively.  

 

  

 PatVal PatVal LnCit LnCit 
 (1) (2) (3) (4) 
 Panel A: Innovative Industry 

 Yes No Yes No 

Inventors 0.008*** 0.001 0.081*** 0.011 

 (2.68) (0.51) (4.16) (0.67) 

     
Controls Included Included Included Included 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 9,800 7,402 9,800 7,402 

R-squared 0.300 0.234 0.451 0.407 

χ2 test 4.11 7.42 

P-Value 0.043 0.007 
 Panel B: Industry's Inventor Counts 

 More Less More Less 

Inventors 0.008*** 0.001 0.078*** 0.029* 
 (3.12) (0.51) (4.02) (1.85) 
     

Controls Included Included Included Included 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 10,292 6,910 10,292 6,910 

R-squared 0.306 0.276 0.464 0.381 

χ2 test 5.85 4.19 

P-Value 0.016 0.041 
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Table 2.6 Competitive Pressure and the Effect of Local Inventors 

This table presents the result of subsample analyses based on the product market competition, 

which I measure by the Herfindahl Hirschman Index and the four-firm concentration ratio. I 

then partition the whole sample into two groups – low and high group – by the sample median 

each year and adopt the baseline specification to identify the effect. The dependent variable 

are two measures built on patent value and patent citations, respectively. Variable of interest 

is a proxy for local inventors within 100km of the corporate headquarter. All dependent 

variables are lagged by one year, and their coefficients are omitted for brevity. Panel A gives 

the result of subsample analysis based on the Herfindahl Hirschman Index, while panel B 

reports that of four-firm concentration ratio. Y, I, and P denote the year, industry, and 

provincial fixed effects separately. The t-statistics based on standard errors clustered at the 

firm level are reported in the parentheses. *, **, *** represent the statistical significance at 

the 10%, 5%, and 1% level, respectively.  

  

 PatVal PatVal LnCit LnCit 
 (1) (2) (3) (4) 
 Panel A: Herfindahl Hirschman Index 

 Low High Low High 

Inventors 0.008*** 0.000 0.074*** 0.025 

 (2.98) (0.21) (4.02) (1.34) 

     
Controls Included Included Included Included 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 9,584 7,627 9,584 7,627 

R-squared 0.323 0.276 0.473 0.394 

χ2 test 4.88 3.56 

P-Value 0.027 0.059 
 Panel B: Four-Firm Concentration Ratio 

 Low High Low High 

Inventors 0.008*** 0.000 0.074*** 0.021 
 (3.04) (0.15) (4.13) (1.06) 
     

Controls Included Included Included Included 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 9,957 7,254 9,957 7,254 

R-squared 0.327 0.275 0.481 0.4 

χ2 test 4.68 

0.031 

4.28 

P-Value 0.039 
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Table 2.7 Robustness Checks 

This table reports the results of several tests performed on the regressions of PatVal and LnCit. 

The main specification shows the estimate from the regression on the full sample. For brevity, 

this table only reports the coefficient on local inventors. Unless otherwise stipulated, the 

regressions include year, industry, and provincial fixed effects, and standard errors are 

corrected for clustering of observations at the firm level.  

  

  Dependent Variable 

 PatVal  LnCit 

  Coeff. t-Stat No. of Obs. R2   Coeff. t-Stat No. of Obs. R2 

Main specification 0.006 3.30 17211 0.31  0.068 4.73 17211 0.48 

General robustness          

(1) Exclude firms in 

Beijing, Shanghai and 

Shenzhen 

0.005 2.66 12859 0.3  0.063 4.46 12859 0.46 

(2) Exclude firms with 

headquarter moved across 

cities 

0.007 3.34 15325 0.31  0.069 4.46 15325 0.47 

(3) Exclude firms never 

patented during the sample 

period 

0.007 2.89 13903 0.31  0.068 4.24 13903 0.45 

(4) Use the invention 

patents only 
0.004 2.59 17211 0.28  0.042 3.70 17211 0.36 

(5) Use the utility model 

patent only 
0.003 3.81 17211 0.28  0.058 4.28 17211 0.45 

(6) Change the sample 

period from 2007 to 2013 
0.007 2.48 9924 0.3  0.058 3.20 9924 0.47 

Model specification          

(7) Control for the state 

ownership 
0.007 3.01 14308 0.3  0.066 4.21 14308 0.47 

(8) Cluster the standard 

error at the firm and city 

level 

0.006 2.82 17211 0.31  0.068 4.73 17211 0.47 

(9) Control for the industry 

cluster effect 
0.006 3.30 17211 0.31  0.062 4.24 17211 0.48 

(10) Dummy indicator of 

local inventors 
0.019 2.65 17211 0.31  0.143 3.42 17211 0.47 

(11) Change the geodesic 

distance to 80-km 
0.006 3.37 17186 0.31   0.075 5.57 17186 0.48 
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Table 2.8 The Effect of Inventor Quality on Firm Innovation 

This table shows the results of the test on the relationship between inventor quality and firm 

innovation. I construct two measures to calibrate the ratio of inventors who file for the first 

application in foreign patent offices among the total number of local inventors: foreign and 

US&WIPO. The dependent variables are two measures of firm innovation built on patent 

value and patent citations, respectively. Variables of interest are the intersection term of 

inventors and inventor quality. All control variables are lagged by one year, and their 

coefficients are omitted for brevity. Y, I, and P denote the year, industry, and provincial fixed 

effects separately. The t-statistics based on standard errors clustered at the firm level are 

reported in the parentheses. *, **, *** represent the statistical significance at the 10%, 5%, 

and 1% level, respectively.  

  

  PatVal PatVal LnCit LnCit 

  (1) (2) (3) (4) 

Inventors 0.003 0.002 0.060*** 0.057*** 

 (1.32) (1.09) (3.66) (3.55) 

Inventors × Foreign 0.111***  0.253  

 (3.64)  (1.23)  
Foreign -0.553***  -1.327  

 (-3.39)  (-1.04)  

Inventors × US&WIPO  0.140***  0.361 

  (4.02)  (1.56) 

US&WIPO  -0.777***  -2.168 

  (-3.84)  (-1.37) 

     

Controls Included Included Included Included 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 17,211 17,211 17,211 17,211 

R-squared 0.315 0.315 0.476 0.476 
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Table 2.9 Local Inventors and Firm Employee Structure 

This table gives the empirical results of the relationship between local inventors and firm 

employee structure. I construct two measures to reflect employees’ education background and 

the other two measures to capture the size and proportion of inventors in the employees. The 

dependent variable in column (1) and (2) represent the number and proportion of employees 

with a bachelor degree or above. The dependent variable in column (3) and (4) is the number 

and proportion of inventors respectively. All explanatory variables are lagged by one year, 

and their definitions are given in the Appendix. Y, I, and P denote the year, industry, and 

provincial fixed effects separately. The t-statistics based on standard errors clustered at the 

firm level are reported in the parentheses. *, **, *** represent the statistical significance at 

the 10%, 5%, and 1% level, respectively. 

  

  Bachelor Bportion Innovator Iportion 

  (1) (2) (3) (4) 

Inventors 0.056*** 0.007*** 0.049*** 0.060*** 

 (3.18) (3.51) (2.77) (4.50) 

Size 0.817*** 0.007* 0.506*** 0.016 

 (30.71) (1.82) (15.14) (0.57) 

BTM -0.237*** -0.046*** -0.139 -0.151* 

 (-2.72) (-3.63) (-1.35) (-1.82) 

R&D 0.148*** 0.023*** 0.326*** 0.280*** 

 (11.37) (8.55) (18.77) (10.30) 

Leverage 0.148 -0.022 -0.206 -0.314** 

 (1.07) (-1.09) (-1.51) (-2.47) 

Cash 0.233 0.089*** -0.566*** 0.061 

 (1.55) (3.63) (-3.68) (0.35) 

Tangibility -0.149 -0.218*** -0.458*** -0.828*** 

 (-0.96) (-8.94) (-3.22) (-6.53) 

IO 0.012*** 0.000 0.008*** 0.006** 

 (4.77) (0.68) (2.81) (2.09) 

ROA 1.124*** -0.011 0.966*** -0.129 

 (3.54) (-0.22) (2.86) (-0.38) 

Firm age 0.033* 0.010*** -0.001 -0.033 

 (1.84) (3.40) (-0.07) (-1.64) 

Competition 3.006 0.097 6.363** 5.685** 

 (1.16) (0.25) (2.05) (2.10) 

Competition^2 -2.356 -0.031 -4.577** -4.089** 

 (-1.34) (-0.12) (-2.23) (-2.26) 

University density -2.752*** -0.366*** -0.108 -0.343 

 (-3.61) (-3.04) (-0.14) (-0.44) 

GDP growth 0.015 0.004*** 0.040*** 0.033*** 

 (1.43) (3.26) (4.28) (3.51) 

Constant 3.662*** 0.113 -1.545 -1.416 

 (3.87) (0.75) (-1.37) (-1.44) 

Fixed effects Y Y Y Y 

 I I I I 

 P P P P 

Observations 13,121 13,121 17,156 17,156 

R-squared 0.510 0.380 0.479 0.241 



 

112 

 

Table 2.10 The Effect of Local versus Remote Inventors on Firm Innovation 

This table shows the empirical results of the relationship between remote inventors and firm 

innovation. I calculate the number of inventors located within 200-km, but 100-km away from 

the corporate headquarter and then take the natural logarithm of one plus it. Similarly, I get 

the number of inventors located 200-300 km away from the corporate headquarter. The 

dependent variables are two proxies built on patent value and patent citations, respectively. 

All explanatory variables are lagged by one year, and their definitions are given in the 

Appendix A.2. Y, I, and P denote the year, industry, and provincial fixed effects separately. 

The t-statistics based on standard errors clustered at the firm level are reported in the 

parentheses. *, **, *** represent the statistical significance at the 10%, 5%, and 1% level, 

respectively.  
 Dep.Var. = PatVal  Dep. Var. = LnCit 

 (1) (2) (3)  (4) (5) (6) 

Inventors 0.006*** 0.006*** 0.005***  0.066*** 0.066*** 0.064*** 

 (3.08) (3.03) (2.72)  (4.58) (4.43) (4.22) 

Inventors (100-200km) -0.008***  -0.008***  -0.035*  -0.036* 

 (-3.01)  (-3.09)  (-1.85)  (-1.91) 

Inventors (200-300km)  -0.002 -0.003   -0.010 -0.014 

  (-0.74) (-1.09)   (-0.47) (-0.67) 

        

Controls  Included Included Included  Included Included Included 

Fixed effects Y Y Y  Y Y Y 

 I I I  I I I 

 P P P  P P P 

Observations 17,211 17,211 17,211  17,211 17,211 17,211 

R-squared 0.314 0.313 0.314   0.477 0.476 0.477 
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Table 2.11 Patent Value and Firm Performance 

This table shows the empirical results of the relationship between patent value and the focal 

firm’s performance. The main dependent variable is the percentage change of earnings before 

interest, taxes, depreciation and amortization (EBITDA). I then decompose the change in 

EBITDA to changes in market size, market share, and profit margin. The lagged dependent 

variable is included in each specification, but its coefficient are not reported for brevity. All 

independent variables are lagged by one year, and their definitions are in the Appendix A.2. 

I include the year (Y) and firm (F) fixed effects to control common trends and time-invariant 

firm characteristics. The t-statistics based on standard errors clustered at the firm level are 

reported in the parentheses. *, **, *** denote the statistical significance at the 10%, 5%, and 

1% level.  

  Chg_ebitda Chg_mktsize Chg_share Chg_margin 

 (1) (2) (3) (4) 

PatVal 0.508*** -0.058 0.307*** 0.189*** 

 (5.21) (-1.61) (5.74) (2.79) 

Size -0.273*** -0.033** -0.105*** -0.113*** 

 (-6.75) (-2.38) (-5.91) (-2.99) 

Book-to-market -0.190** -0.015 -0.128*** -0.100 

 (-2.26) (-0.51) (-3.94) (-1.26) 

R&D -0.020 -0.009 -0.017** -0.010 

 (-1.17) (-1.62) (-2.35) (-0.77) 

Leverage 0.893*** 0.052 0.176** 0.645*** 

 (5.69) (1.11) (2.32) (4.50) 

Cash -0.095 0.030 -0.132* 0.104 

 (-0.59) (0.51) (-1.79) (0.65) 

Tangibility -0.183 0.051 -0.154** 0.072 

 (-1.21) (0.91) (-2.41) (0.48) 

Institutional ownership 0.001 0.001 0.001 -0.002 

 (0.75) (1.33) (1.09) (-1.04) 

ROA 1.213** -0.084 -0.038 2.210*** 

 (2.56) (-0.81) (-0.26) (4.87) 

Firm age -0.155*** -0.030* -0.074*** -0.103** 

 (-3.47) (-1.76) (-4.07) (-2.44) 

Competition -0.002 0.149 0.055 0.032 

 (-0.00) (0.59) (0.33) (0.10) 

Constant 0.602 0.283 0.395** -0.043 

 (1.61) (1.17) (2.37) (-0.12) 

     
Fixed effects Y Y Y Y 

 F F F F 

Observations 15,636 15,636 15,636 15,636 

R-squared 0.193 0.205 0.154 0.190 
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Table 2.12 The Effects of Local Inventors on Patent Counts 

This table presents the results from pooled OLS regression of the relationship between local 

inventors and firm innovation measured by raw patent counts. The dependent variables are 

three measures built on the number of patents that a firm filed for (eventually granted) in a 

given year. I consider only invention and utility model patents. Variable of interest is the 

proxy for local inventors. Variable definitions are provided in the Appendix A.2, and all 

dependent variables are lagged by one year. I include a different set of fixed effects to control 

for common trend and other time-invariant firm, industry, and provincial characteristics. I 

denote the year, firm, industry, and provincial fixed effects by Y, F, I, and P separately. The 

t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, 

**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.  

  

  Ln(1+Patent) Ln(1+Invention) Ln(1+Utility)   Ln(1+Patent) Ln(1+Invention) Ln(1+Utility) 

  (1) (2) (3)   (4) (5) (6) 

Inventors 0.063*** 0.044*** 0.055***  0.040 0.040** 0.029 

 (4.44) (3.95) (3.96)  (1.60) (2.22) (1.25) 

Size 0.406*** 0.371*** 0.367***  0.354*** 0.260*** 0.366*** 

 (13.64) (11.99) (12.21)  (9.63) (7.82) (9.73) 

BTM -0.052 -0.234*** 0.074  -0.122* -0.044 -0.133** 

 (-0.58) (-2.86) (0.84)  (-1.92) (-0.83) (-2.13) 

R&D 0.288*** 0.250*** 0.216***  0.187*** 0.157*** 0.178*** 

 (18.03) (14.86) (12.67)  (11.55) (11.89) (11.54) 

Leverage -0.209* -0.343*** -0.031  -0.206* -0.149 -0.240** 

 (-1.85) (-3.57) (-0.29)  (-1.80) (-1.59) (-2.11) 

Cash -0.366*** -0.331*** -0.284**  0.054 -0.010 0.133 

 (-2.75) (-2.78) (-2.22)  (0.48) (-0.12) (1.22) 

Tangibility -0.440*** -0.330*** -0.326***  0.532*** 0.470*** 0.392*** 

 (-3.59) (-3.11) (-2.80)  (5.21) (5.65) (4.11) 

IO 0.007*** 0.006*** 0.003  0.001 0.003** -0.001 

 (3.06) (2.88) (1.37)  (0.42) (2.21) (-0.67) 

ROA 0.833*** 0.174 0.695**  0.075 -0.029 -0.041 

 (2.88) (0.71) (2.56)  (0.37) (-0.19) (-0.21) 

Firm age -0.033* -0.006 -0.036**  0.051** 0.013 0.041** 

 (-1.90) (-0.40) (-2.13)  (2.40) (0.71) (2.02) 

Competition 8.127*** 3.861 11.840***  -0.668 -1.642 2.119 

 (3.09) (1.64) (5.03)  (-0.36) (-1.08) (1.12) 

Competition^2 -5.720*** -2.735* -8.219***  0.525 1.166 -1.303 

 (-3.29) (-1.78) (-5.28)  (0.43) (1.19) (-1.06) 

University density -0.127 -1.543*** 0.301  0.095 -0.484 0.091 

 (-0.20) (-2.76) (0.49)  (0.21) (-1.50) (0.22) 

GDP growth 0.025*** 0.022*** 0.011  0.023*** 0.010 0.017** 

 (3.20) (3.47) (1.42)  (2.78) (1.51) (2.19) 

Constant -2.204** -0.814 -3.647***  0.172 0.496 -0.842 

 (-2.31) (-0.95) (-4.29)  (0.23) (0.82) (-1.12) 

        
Fixed effects Y Y Y  Y Y Y 

 I I I  I I I 

 P P P  P P P 

Observations 17,211 17,202 17,202  17,041 17,032 17,032 

R-squared 0.503 0.393 0.469   0.784 0.753 0.775 
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