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Abstract

With the fast development of camera devices and social media, images are nowadays

one of the most widely used media in our daily life. However, during the acqui-

sition, formation and transmission processes, images are prone to various types of

corruptions, leading to degradation in image quality. The on-camera image signal

processing (ISP) algorithms and the image enhancement methods are too crucial to

ensure and improve the quality of camera output images. Plenty of efforts have been

devoted to the research of ISP and image enhancement, and the recently developed

deep learning technique has achieved prominent results in these areas. In this thesis,

we leverage deep learning for several fundamental tasks in camera ISP pipeline and

image enhancement.

Color constancy is the foremost unit in ISP to correct the color bias of the cap-

tured images to cater to the human vision system. In chapter 2, we introduce a

multi-domain learning strategy for color constancy to relief from lacking training

data by leveraging cross-device datasets. Our method achieves state-of-art perfor-

mance on the commonly used benchmark datasets. Particularly, our model is capable

of transferring to a new device with merely a few training samples, which largely re-

duces the cost of time-consuming data acquisition stage for camera manufacturers

when developing color constancy models for new devices.

Image diffraction blurring is another type of deterioration which blurs the im-

age and degrades the image quality. In chapter 3, we conduct a pioneer work by
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constructing a real-world diffraction blur dataset. With the constructed real-world

dataset, we further design a progressive learning strategy and a robust loss function

to train a deep convolutional neural network for diffraction blur removal. Our model

can effectively recover more textures and details from images with diffraction blur

than the general image deblurring methods.

Single image super-resolution (SISR) is a fundamental task in image enhance-

ment, which aims to increase the resolution of given images. In this thesis, we focus

on the more challenging real-world SISR task, where the image degradation process is

much more complicated and unknown. In chapter 4, we learn the degradation model

from existing real-world SISR datasets, and use the learned degradation model to

synthesize large scale realistic training image pairs. By using the generated realistic

SISR image pairs, more robust SISR models can be trained, which exhibit higher

generalization performance than previous SISR models, presenting promising visual

quality for real-world images.

In chapter 5, we further investigate the real-world SISR problem. We work from

another perspective, i.e., designing blind super-resolution models. Specifically, we

first estimate the pixel-wise degradation map of the given image, and then utilize

a deep CNN whose local filters are dependent on estimated degradation to achieve

super-resolution. Our method is able to handle complex non-uniform image degra-

dations in real-world scenarios and achieves leading performance on a wide variety

of real-world images with good runtime efficiency.

In summary, in this thesis we tackle several important tasks in camera ISP and

image enhancement by leveraging deep learning techniques. Our methods demon-

strate state-of-art performances on these tasks.

Keywords: Color constancy, Single image super-resolution, Image diffraction

removal, Deep convolutional neural network
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Chapter 1

Introduction

With the fast development and increasing popularity of digital camera devices, stor-

age device, and social media, images are becoming the main media in our daily life

with the mission of recording commemorable moments, information dissemination,

and etc. However, during the acquisition, formation and transmission of images,

they inevitably undergo various kinds of deteriorations, leading to the degradation

in visual quality and loss of information. As a result, it is highly desired to develop

camera image processing pipeline and image enhancement methods to improve the

image quality to present better perceptual experience and recover information for

the subsequent image understanding tasks.

The camera processing pipeline takes the signal captured by camera sensor as

input, and aims to output the captured image which well adapt for human vision

system. It embeds a series of modules, such as de-mosaicking, white balance, color

transform, color rendering and etc. On the other hand, due to the limited in-camera

computational budget, images produced by camera pipeline can still be in bad qual-

ity. Consequently, image enhancement methods are developed to complement the

camera pipeline to deliver high quality images. The common practical image en-

hancement applications includes super-resolution (increase the image resolution),

denoising (recover the clean image from noisy one) and deblurring (restore the sharp

1



image from blurry one).

Plenty of efforts had been done toward developing advanced camera pipeline al-

gorithms, and effective and efficient image enhancement methods. Very recently, the

deep learning based methods have achieved prominent results in various computer

vision applications. In this thesis, inspired by the powerful representation ability of

deep learning, we leverage deep convolutional neural networks for color constancy

and several image enhancement tasks. In the remaining of this chapter, we first

introduce the principle of image formation in camera system in 1.1. We then intro-

duce the background of image enhancement in Section 1.2. We finally summarize

the contributions and organization of this thesis in Section 1.3.

1.1 Image Formation in Camera System

The formation of a digital image in camera consists of roughly three steps: first

camera lens focuses light, then sensor captures convert light to digital signal, and

finally image signal processor (ISP) processes the captured signal to an image subject

to human vision system (HVS). The overview of such a process is illustrated in Fig.

1.1. In the following, we introduce the details of these three steps, and illustrate how

they influence the quality of the captured images.

1.1.1 Camera Lens

Camera lens is an optical lens or an assemble of lenses used to focus light to the

sensor. There are two fundamental parameters of the camera lens: focal length and

aperture size.

Focal length measures how strongly the lens converges light. Shorter focal length

has a wider angle of view and captures a greater extent of the scene; longer focal

length has a narrower angle of view and therefore shows less of the scene. Mean-

while, the object size in the captured image (i.e., resolution of the captured image)
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Figure 1.1: An illustration of image formation process in digital camera.

decreases as the focal length gets shorter and increases as the focal length gets longer.

This feature is exploited by researchers to constitute the pairwise dataset for super-

resolution by collecting a series of images with different resolutions by using varying

focal lengths.

Aperture measures how big the opening is for the optical lens to let light in, and

is denoted using f-number. The larger the f-number, the smaller the aperture size

is. Aperture affects the depth of field (DoF) and the number of photons hit the

sensor. In some circumstance, small aperture is necessary, e.g., to endow large DoF

for landscape or macro photography, to enable less light for long exposure and to

produce starburst effect. However small aperture triggers the light diffraction, lead-

ing to unpleasant diffraction blur of captured images. In chapter 3 we introduce our

framework for diffraction blur removal.

Despite the significant technological advances in the manufacture and design of

camera lens over several decades, there remains imperfections in lens when focusing

light to a single point on the image sensor. For example, chromatic aberration usually

exists in the high contrast region and causes color fringing; vignetting appears as

a gradual variation in intensity along the radial direction from the image center;

and distortion appears as straight lines bending inwards or outwards. Accordingly,

the camera ISP usually embeds lens correction module to correct some types of

distortions.
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1.1.2 Sensor

Digital camera uses sensor to convey the captured photons into electronic signal

and further the digital signal to make an image. The two main types of electronic

image sensors are the charge-coupled device (CCD) and the complementary metal

oxide semiconductor sensor (CMOS sensor). One of the main feature of sensor is

the spectral sensitivity. Spectral sensitivity characterizes the relative efficiency of

detection of light as a function of the light wavelength. We use Cpλnq to denote the

sensor spectral sensitivity, and λn for n “ 1, 2, ...N represents the discrete sample

of wavelength λ. Denote Rpλnq as the surface reflectance of the captured scene,

and denote Ipλnq as the spectral power distribution of scene illuminant, the image

formation can be formulated as:

Y “ ΣN
n“1CpλnqIpλnqRpλnq (1.1)

where Y is the captured image on the camera raw color space.

The human retina uses three kinds of cone cells to conceive color. Theoretically

to form a colorimetric image, sensors with at least three spectral bands Cc with

c P tr, g, bu at each pixel are required. In practice, for the consideration of cost and

portability, most digital cameras place color filter array (CFA) on top of the sensor

pixels, to capture a spatially undersampled images where each pixel contains only

one color component. To recover the full color image with color triples at each pixel,

the de-mosaicking algorithm is further embedded in ISP.

Sensor Noise Sensor noise is inevitable during the capturing of light photons.

There are several different types of sensor noise. Among these, read noise and shot

noise are the most distinct ones. The sensor read noise is created during the readout

process of the captured electrons, e.g., the analog to digital conversion, the ampli-

fication and etc. It is independent of signal level or temperature of the sensor, and

4



Figure 1.2: An illustration of the typical camera ISP pipeline (adapted from [68,
101]). The detailed implementation of different manufactures may vary.

is larger for faster readout rates. Shot noise originates from the discrete nature of

electrons, caused by the arrival process of light photons on the sensor. The shot

noise can be modeled by Poisson distribution, with the standard deviation equals

the square root of the mean signal level. Apart from these two sensor noise, other

types of noise exist. For example the dark current noise and fixed-pattern noise.

Image noise leads to deteriorated visual image quality and loss of image de-

tails, adversely affecting the subsequent tasks such as classification and segmentation.

Modern digital camera usually embeds noise reduction unit in their ISP to remove

sensor noise from raw image signal. Image denoising is also a classic yet active topic

in image enhancement area to compensate for the limited in-camera computational

resource for noise removal.

1.1.3 Camera Image Processing Pipeline

Different camera manufacturer employs different image signal processor (ISP) to

process the raw signal from camera sensor to generate the final image. A typical

flowchart of camera ISP is illustrated in Fig. 1.2.
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Black Level Correction Most sensors employ a offset when converting photons

to voltage and further the digital value, aiming to improve the converting precision

when dealing with small signals. As a result, black level correction is important

in ISP to remove the non-zeros black level since it would hamper the subsequent

processing. Another reason to use black level correction is due to the dark current

noise. It is a thermal phenomenon and exists even when no photons are incident on

the sensor.

Lens Correction Lens correction aims to correct the distortions presented in the

captured images due to lens imperfections. Many cameras provide a calibration

matrix to compensate for lens distortion. The calibration matrix is scaled or in-

terpolated to the image size, and then multiplied to the captured image to achieve

spatially variant correction.

De-mosaicking As mentioned in section 1.1.2, digital cameras usually employ a

single sensor with a color filter array (CFA) to capture color information. The CFA

is a single and alternating color filter at each pixel in sensor, and therefore results

color subsampling in the captured image, namely the mosaic image. Among all the

CFA settings, Bayer pattern is the most common one. It has twice as many green

filters as red or blue ones, catering to the human vision system which has higher

sensitivity to green light over red and blue. To restore a full color image from the

mosaic one, de-mosaicking algorithm is embedded in camera ISP to interpolate the

missing colors at each pixel according to the neighborhood information.

Automatic White Balance From the image formation process in Eq. (1.1), one

can find out that the color of the image captured by camera is biased due to the

scene illumination I. Without the white balance algorithm, the captured image

6



would appear “blueish” under sunlight and “yellowish” under indoor incandescent

light. However, human vision system naturally has the ability to compensate for

different illuminants to a scene, named color constancy. To cater to our human

vision, automatic white balance is developed and is an important unit in camera

ISP aiming at estimating the scene illuminant from the captured image and further

correcting the color bias of captured images.

Color Space Transform When a scene is captured by a digital camera, it is

represented using the device and scene specific color space, relating to the sensor

spectral sensitively as illustrated in Eq. (1.1). To enable the usage of common color

manipulation algorithms, the sensor space images are required to transform to the

unrendered color space, to represent the scene’s color under a device-independent

color space. Examples of such unrendered color spaces are CIE XYZ, CIE RGB

and etc. The transformation is usually achieved by applying a 3ˆ 3 transformation

matrix, correlating to the scene illumination. Typical ISP calibrates two matrixes

under two extreme illuminations respectively. And the transformation matrix of a

given image is derived by interpolating the two pre-defined matrixes according to the

illuminant estimated in white balance unit.

Color Rendering This procedure usually applies non-linear function to the color

image intensity to improve the color quality of images. The color rendering methods

vary among different manufacturers. It generally involves the modification of hue,

saturation and exposure, and is usually implemented using look up table (LUT).

Output Color Space Transform After a series of color manipulation modules,

the images are transformed to the final output color space for display. Similarly,

the transformation is achieved by applying a 3 ˆ 3 matrix which correlates to the
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unrendered color space used. The standard RGB (sRGB) and Adobe RGB are widely

used output device color spaces. Usually, the sRGB images will be compressed, e.g.,

using Jpeg, to save cost for storage and transmission.

1.2 Image Enhancement

Above we introduce the image formation process in a typical camera system, and how

the image signal processor (ISP) generates an image from the raw signal. Despite

the fast development of camera systems and the ISP, the generated images can still

be in bad quality, originating from the complex scene conditions (e.g., extreme low

light, moving objects), imperfections in camera hardware, and limited in-camera

computational budget. As a result, image enhancement algorithms are developed

to further enhance the captured images to deliver pleasant visual quality. In the

following, we introduce several important tasks in image enhancement area, i.e.,

image deblurring, super-resolution and denoising.

1.2.1 Image Deblurring

Image deblurring is an important task in image processing, which aims to recover a

sharp latent image with clear edges and details from the given blurry one.

Existing image deblurring algorithms [128, 35, 127, 94, 125, 79, 144, 110, 107]

are mainly focused on removing motion-blur or focal-blur, caused by camera shake,

object motion or out-of-focus. Traditional methods focus on designing various priors

to model the characteristics of blur kernel and natural image priors to regularize

the solution space. The recent learning-based methods implicitly exploit priors from

external training dataset, and learn a mapping function (either in an end-to-end

manner or following the traditional framework) from the blurry images to the clear

one. These methods achieve promising results in image deblurring.

Apart from these two classic blurring types, the diffraction blur also severely

8



deteriorates the image quality however achieves relatively less attention in the com-

munity, as mentioned in Sec. 1.1. Moreover, the characteristic of diffraction blur

kernel is significantly different from those in motion and out-of-focus blur, making

these deblurring models ineffective on removing diffraction blur. To study the prob-

lem of diffraction blurring, in chapter 3 we construct a real-world dataset with paired

images and leverage the deep learning technique for diffraction blur removal.

1.2.2 Image Super-Resolution

With the fast growth of display devices, memory and network bandwidth, high res-

olution (HR) images, e.g., 1080p and even 4K, become increasingly prevalent in our

daily life. The HR images offer higher pixel density and thereby present vivid details

about the original scene. Unfortunately, there is still a great number of low resolution

images, due to the limitation of camera devices or compression effects during trans-

mission. Therefore, single image super-resolution (SISR) is developed to recover the

high resolution (HR) image from its low resolution (LR) observation. It is a highly

valuable technique for improving the quality of images, and is widely used in many

practical applications, e.g., the recovery of old pictures, the surveillance, medical and

satellite imaging systems.

SISR is a classic yet still active topic in low-level vision, and a plenty of works have

been proposed in the past several decades. The traditional methods [85, 34, 119, 57,

132, 36] generally utilize powerful image priors, e.g., the total variation prior, sparse

model and nonlocally self-similarity prior, to regularize the solution space for SISR.

These methods have made remarkable progresses. While when it comes to complex

scenes, these prior based methods generally have limited performance. Besides, the

optimization process involved in these methods is time-consuming and infeasible for

practical usage.

Recently, the deep learning based SISR methods have shown great advantages

9



in learning image representations and leveraging external datasets, and consequently

improved much the SISR performance [33, 70, 77, 81, 80, 141]. Various SISR networks

with specially designed architectures have been proposed. Despite the great success,

the task of real-world SISR is still challenging, due to the fact that real-world scenario

is much more complicated than the widely used benchmark SISR training datasets.

In this thesis, we proposed two learning based methods for the complex real-world

SISR task. Compared to existing SISR methods, our methods generate more vivid

details with less artifacts on real-world applications.

1.2.3 Image Denoising

Due to the physical limitations of digital cameras, images are prone to various types

of noise, e.g., read noise, shot noise and dark current noise, as mentioned in Sec.

1.1.2. The image noise not only deteriorates the image quality, but also hampers

the subsequent image understanding tasks, e.g., classification and detection. Image

denoising aims to recover the underlying clean image x from its noisy observation y,

where the image degradation process is modeled as y “ x` v.

Similar to SISR, traditional image denoising methods [86, 38, 126, 56] employ

the Bayesian framework and work on designing natural image priors. The nonlocally

self-similarity prior, total variation prior and sparse prior have also been widely used

for image denoising. Recently with the overall great success of convolutional neural

networks (CNNs) in computer vision community, the image denoising performance

has also been largely improved by employing CNNs [135, 54, 58, 65].

Before training a denoising-CNN, large scale clean-noisy image pairs are required

for supervised learning. The noisy images with real sensor noise can be easily col-

lected, however the construction of corresponding clean images is not straightforward.

Consequently, early learning based methods assume the noise distribution as additive

white Gaussian noise (AWGN) and synthesize clean-noisy image pairs by adding syn-
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thetic noise to clean images. However the task of real-world denoising is still difficult

due to the domain gap between AWGN and real sensor noise. To remedy this issue,

sophisticated sensor noise model has been proposed. Several works [58, 91] use the

Poission-Gaussian distribution to model sensor shot and read noise. There are also

efforts focusing on constructing real-world clean-noisy image pairs. They proposed

to use digital cameras to capture noisy images, and collect the clean counterparts

by capturing the same static scene using low-ISO [98], long exposure time or the

averaging of multiple frames. These methods have largely bridge the gap between

the distribution of synthetic and real-world noise.

1.3 Organization and Contributions of the Thesis

This thesis consists of four works I have done in my PhD career. During this period,

I focus on designing deep convolutional neural networks (CNNs) for improving the

image quality. Specifically, we investigate several topics in camera ISP and image

enhancement area, i.e., color constancy, diffraction blur removal and single image

super-resolution. The organization of the thesis is illustrated in Figure 1.3.

In the first work, we focus on leveraging deep learning technique for color

constancy, also referred to as automatic white-balance (AWB) in camera industry.

One of the challenges in employing deep CNN for color constancy lies in the costly

data acquisition process for each camera device. In chapter 2, we start a pioneer

work by introducing the idea of multi-domain learning to color constancy area to

leverage the cross-device training data. For different camera devices, we train a

branch of networks with shared feature extractor and illuminant estimator, and only

employ a camera-specific channel re-weighting module to adapt to the camera-specific

characteristics. Our method achieved state-of-the-art performance on the commonly

used benchmark datasets. Moreover, given a new unseen device with limited number
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Figure 1.3: The organization of this thesis.

of training samples, our method is capable of delivering accurate color constancy

performance.

In our second work, we focus on the task of image diffraction blur removal.

little attention has been paid to investigating this practical problem using a learn-

ing based method. In chapter 3, we first discuss in detail the characteristics of

diffraction blur. To facilitate the research on this important real-world problem, we

construct the first real-world diffraction blur dataset. It provides a good benchmark

for studying the problem of diffraction blur removal. Moreover, we design a progres-

sive learning architecture and an effective loss function to train a CNN model for

diffraction blur removal. Our trained models can recover more textures and details

from diffraction blurred image than existing image deblurring methods.

In our third work, we focus on the task of real-world single image super-

resolution (SISR). Despite the fast growth of CNN based SISR methods, the real-
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world SISR task remains challenging. One of the reason in degrading most SISR

methods for real-world low-resolution (LR) images lies in the domain gap between

the synthetic LR images used for training, and those real-world LR images dur-

ing the testing stage. To remedy this issue, In chapter 4, we propose to learn the

degradation model from the existing real-world SISR datasets, and use the learned

degradation model to synthesize realistic training image pairs. By using the learned

degradation model to generate realistic SISR image pairs, more robust SISR models

can be trained, which exhibit higher generalization performance than previous SISR

models and produce promising visual quality for real-world images.

In our last work, we work on the task of real-world SISR from another perspec-

tive. Different from the degradation model learning method in chapter 4, in chapter

5 we design a novel blind super-resolution method toward real-world SISR. we pro-

pose to first estimate the pixel-wise degradations in a one-step manner, and then

perform super-resolution using a deep CNN, whose local filters are adaptive to the

estimated degradations. Specifically, we leverage the image edge map to guide the

degradation estimation, and design a pyramid U-shaped sub-network to constrain

the smoothness of estimated degradation map, with which a hyper-parameter net-

work is trained to generate the adaptive filters to perform blind SR. Our method is

able to handle complex non-uniform image degradations in real-world scenarios and

achieves leading results on benchmark datasets as well as real-world LR images with

good runtime efficiency.
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Chapter 2

Multi-Domain Learning for Color

Constancy

In this chapter, we leverage the learning based method to investigate the foremost

unit in camera processing pipeline: color constancy, also referred to as automatic

white balance in camera industry. Color constancy aims to remove the color bias of

captured image caused by scene illumination. Recently, with the great success of deep

learning in various applications, significant improvements have also been achieved in

color constancy accuracy by using deep neural networks (DNNs). However, existing

DNN-based color constancy methods learn distinct mappings for different cameras,

which require a costly data acquisition process for each camera device. In this chap-

ter, we start a pioneer work to introduce multi-domain learning to color constancy

area. For different camera devices, we train a branch of networks which share the

same feature extractor and illuminant estimator, and only employ a camera-specific

channel re-weighting module to adapt to the camera-specific characteristics. Such a

multi-domain learning strategy enables us to take benefit from cross-device training

data. The proposed multi-domain learning color constancy method achieved state-

of-the-art performance on three commonly used benchmark datasets. Furthermore,

we also validate the proposed method in a few-shot color constancy setting. Given

a new unseen device with limited number of training samples, our method is ca-
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Figure 2.1: Overview of our proposed multi-domain learning color constancy method.
We train color constancy networks for different devices simultaneously. Different net-
works share the same feature extractor and illuminant estimator with shared param-
eter θ0, and only have their individual channel re-weighting module with parameters
θA, θB and θK , respectively.

pable of delivering accurate color constancy by merely learning the camera-specific

parameters from the few-shot dataset.

2.1 Introduction

2.1.1 Color Constancy

Human vision system naturally has the ability to compensate for different illuminants

to a scene, named color constancy. The color of images captured by cameras, however

are easily affected by different illuminants, and might appear “blueish” under sunlight

and “yellowish” under indoor incandescent light. Aiming at estimating the scene

illuminant from the captured image, color constancy is an important unit in camera

pipeline to correct the color of captured images.

Classical color constancy methods utilize image statistics or physical properties
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to estimate illuminant of the scene. The performance of these approaches is highly

dependent on the assumptions and these methods falter in cases where assumptions

fail to hold [89]. In the last decade, another category of methods, i.e., the learning-

based methods, have become more popular. Early learning-based methods [44, 28]

adopt hand-crafted features and only learn the estimating function from the training

data. Inspired by the success of deep neural networks (DNN) in other low-level vision

tasks [55, 53, 32, 111], recently proposed DNN based approaches [15, 106, 62] learn

image representation as well as the estimating function jointly, and have achieved

state-of-the-art estimation accuracy.

DNN-based methods directly learn a mapping function between the input image

and ground truth illuminant label. Given enough training data, they are able to use

highly complex nonlinear function to capture the relationship between input images

and the corresponding illuminants. However, the acquisition of data for training

color constancy network is often costly: firstly, images, each contains the physical

calibration objects, in a large variety of scenes under various illuminants must be

collected; and then, ground-truth illuminant in each image needs to be estimated

through the corresponding calibration object. In addition, as raw data from dif-

ferent cameras exhibit distinct distributions, existing DNN-based color constancy

approaches assume each camera has an independent network, and therefore require

a large amount of labelled images for each camera. Due to the above reasons, the

capacity of existing DNN-based color constancy methods are largely limited by the

scale of training dataset. Great attempts have been made to improve the performance

of color constancy models under insufficient training data.

2.1.2 Motivation

In this chapter, we proposed multi-domain learning color constancy (MDLCC) method

to leverage labelled color constancy data from different datasets and devices. In-
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spired by conventional imaging pipelines, which employ camera-specific estimation

functions to estimate the illuminant from common low-level features, MDLCC adopts

the same feature extractor to extract low-level features from input raw data, and use

a camera-specific channel re-weighting module to transform device-specific features

to a common feature space for adapting to different cameras. The common feature

extractor is trained using data from different devices, and we train device-specific

channel re-weighting module with data from different domains for domain adap-

tation. Such a strategy enables us to address the CSS difference among different

cameras while leveraging different datasets to train a more powerful deep feature

extractor. The proposed MDLCC framework learns most of the network parameters

in each network with a much larger dataset, which significantly improves the color

constancy accuracy of each camera.

Besides improving the color constancy performance of well established devices

which already have a considerable amount of labelled data, our multi-domain net-

work architecture also enables us to adapt our network to new cameras easily. Given

insufficient number of labelled samples from a new camera device, MDLCC only

needs to learn the device-specific parameters, and most of the network parameters

are inherited from the meta-model which was trained on large scale dataset. Such

a few-shot color constancy problem has been investigated in a recent chapter [89].

McDonagh et al . [89] utilized the meta-learning technique [42] to learn a color con-

stancy network which is easier to adapt to new cameras. However, as [89] still needs

to fine-tune all the network parameters on the few-shot dataset, it has only achieved

limited illuminant estimation performance in the few-shot setting. In contrast, the

proposed MDLCC approach only needs to learn a small number of parameters from

the few-show dataset, and is able to achieve higher few-shot estimation accuracy.
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2.2 Literature Review

In this section, we firstly provide an overview of color constancy methods and then

introduce previous work in handling insufficient training data. Lastly, we present

a brief introduction to the multi-domain methods, which is closely related to our

contributions.

2.2.1 Color Constancy: An Overview

Existing color constancy methods can be divided into two categories: the statistics-

based methods [18, 17, 41, 115] and the learning-based methods [28, 44, 14, 106, 62,

10, 11]. Based on different priors of the ’true’ white-balanced image, statistics-based

methods use statistics of the observed image to estimate the illuminant. Despite

its fast estimating speed, the simple assumptions adopted in these approaches may

not fit well the complex scenes, and thus limited the estimation performance of the

statistics-based methods. The learning-based methods learn color constancy models

from training data. Early works along this branch used handcraft features, followed

by decision tree [28] or support vector regression approach [44] to regress the scene

illuminants. To take full advantage of training data, recent works have started to

learn features from data for color constancy. In [14], Bianco et al . used a 3 layer

convolutional network to estimate local illuminants for image patches. Shi et al .

[106] designed two sub-networks to adapt to the ambiguity of local estimates. In

[62], Hu et al . proposed the FC4 approach which introduced a confidence-weighted

pooling layer in a fully convolutional network to estimate illuminants from images

with arbitrary sizes. Besides extracting features from the raw image, [10, 11] con-

structed histograms in log-chromatic space, and then apply a learned conv filter to

the histograms to estimate illuminant. In spite of the strong performances, learning-

based color constancy methods often require a large amount of training data and
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have limited generalization capacity to new devices.

2.2.2 Color Constancy with Insufficient Training Data

Since the construction of large scale datasets with enough variety and manual annota-

tions is often laborious and costly, a large number of approaches have been proposed

to remedy the insufficiency of training data.

Data augmentation Data augmentation is a commonly used strategy for training

models with insufficient data. Currently, most of the learning-based color constancy

works have utilized the data augmentation strategy for improving the estimation ac-

curacy. Specifically, random cropping [62] and image relighting [62, 15] are the most

commonly used data augmentation schemes. However, as such simple augmentation

schemes can not increase the diversity of scenes, they can only bring marginal im-

provement to the learned color constancy model. Recently, Banić et al . [7] designed

a image generator to simulate images under various illuminants which however, is

faced with the gap between synthetic and real data.

Pre-training Besides data augmentation, another strategy for improving color

constancy performance is pre-training. FC4 [62] started with the AlexNet, which is

pre-trained on ImageNet dataset as feature extractor. A smaller learning rate is then

used to fine-tune these parameters.

Weakly supervised learning Several works also resorted to unsupervised learn-

ing methods. In [112], Tieu et al . proposed to learn a linear statistical model on a sin-

gle device from video frame observations. Banić et al . [8] utilize statistical approach

to approximate the unknown ground-truth illumination of the training images, and

learn color constancy model from approximated illumination values. Currently, the
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unsupervised learning approach has achieved better performance than conventional

statistical-based methods, but is still not on par with supervised state-of-the-arts.

Inter-camera transformation Due to the distinction among raw images by

different devices, large scale dataset needs to be collected for each device. Several

work also focused on reducing the workload of constructing camera-specific dataset.

Gao et al . [45] attempt to discount the variation among different devices by learning a

transformation matrix based on camera spectral sensitivity. Banić et al . [8] proposed

to learn transformation matrix among ground truth distributions of two cameras,

before inter-camera experiments. The existing inter-camera approaches only study

pairs of sensors and there has not been any works which could leverage data from a

large number of devices.

Few-shot learning Recently, McDonagh et al . [89] have formulated the color

constancy of different cameras and color temperature as a few-shot learning problem.

The model-agnostic meta-learning method [42] has been adopted to learn a meta

model which is capable of adapting to new cameras using only a small number of

training samples. However, as McDonagh et al . did not exploit domain knowledge of

color constancy and only rely on the adaptation capacity of MAML algorithm [89],

only achieved limited performance in the few-shot setting.

2.3 Multi-Domain Learning Color Constancy Net-

work

In this section, we introduce our proposed multi-domain learning color constancy

(MDLCC) method. We start with the formulation of color constancy problem and

the target of our MDLCC model. Then, we introduce the network architecture

of MDLCC as well as how MDLCC could be utilized to solve the few-shot color
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Figure 2.2: The proposed multi-domain color constancy network architecture. We
used shared layers among multiple devices for feature extraction. A camera-specific
channel re-weighting module was then used to adapt to each device. The illuminant
estimation stage finally predicted the scene illuminant.

constancy problem.

2.3.1 Problem Formulation

We focus on the single illuminant color constancy problem which assumes the scene

illuminant is global and uniform. Under the Lambertian assumption, the image

formation can be simplified as:

Yc “ ΣN
n“1CcpλnqIpλnqRpλnq, c P tr, g, bu (2.1)

where Y is the observed raw image. λn for n “ 1, 2, ...N represents the discrete

sample of wavelength λ. Ccpλnq represents the camera spectral sensitivity (CSS) of

color channel c. Ipλnq is the spectral power distribution of illuminant, and Rpλnq

denotes the surface reflectance of the scene. Color constancy aims to estimate the

illuminant L “ rLr, Lg, Lbs given the observed image Y. The latent ’white-balanced’

image W can then be derived according to the von Kries model [116] by

Wc “ Yc{Lc, c P tr, g, bu. (2.2)

Since different cameras use distinct CSS, raw image Y by different camera oc-

cupies different color subspaces. Existing learning based methods generally train
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independent model for each device. In this work we combine raw images by different

devices to jointly learn a color constancy model. Denote the training data from de-

vice k as Dk “ tYk,i,Lk,iu
Nk
i“1, where the superscript k, i denote the device index and

sample index, respectively, and Nk is the number of samples for Dk. The proposed

multi-domain learning color constancy aims to learn a branch of networks which take

raw images from different domains as inputs to estimate the illuminant of the scene:

tθ˚0 , θ
˚
ku “ arg min

θ0,θk

K
ÿ

k“1

Nk
ÿ

i“1

L pLk,i, fpYk,i; θ0, θkqq , (2.3)

where the same network architecture fp¨q is adopted for all the devices, and θ0 and

θk are the shared and device-specific parameters in the networks, respectively. L is

the loss function which measures the difference between ground truth and estimated

illuminants.

2.3.2 Architecture

As introduced in the previous section, we proposed to utilize the same network

architecture and only use partial device-specific parameters to adapt to different

devices. In order to validate our idea of using multi-domain learning to improve

color constancy performance for different devices, we do not investigate new network

architecture and utilize FC4 (SqueezeNet model) as our backbone. Specifically,

we assume FC4 can be divided into two stages: 1) the first 10 layers of network,

which gradually reduce the spatial resolution of feature maps, constitute a low-

level feature extractor; 2) the last 2 layers of network constitute an estimator which

summarizes the extracted feature to estimate the illuminant. Inspired by previous

inter-camera approaches [45] which proposed to learn a transformation matrix to

correlate different cameras, we propose a device-specific channel re-weighting module

and apply different transforms, in the high dimensional feature space, for features
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extracted from different devices.

An illustration of our network architecture is presented in Fig. 5.1. For different

devices, we employ the same feature extraction module to extract features from input

images; and then use the device-specific channel re-weighting module to transform

the features; finally, the same estimator is utilized to generate the final illuminant

estimation. The details of the feature extraction, channel re-weighting and illuminant

estimation modules are introduced as follows.

Feature extraction. We use the first 10 layers in FC4 as our feature extractor.

For the first layer, stride 2 convolution with 64 filters of size 3ˆ3 is used to generate

64 feature maps. Then, 3 blocks, each consists of a max pooling layer and two

fire blocks [63] are followed to increase receptive field and further reduce the spatial

resolution of feature map by factor 8. The channel dimension of feature maps after

each block is 128, 256 and 384 respectively. The ReLU [93] is used as activation

function following each conv layer.

Channel re-weighting module. In order to adapt the low-level features from dif-

ferent domains to a common space, we propose a device-specific channel re-weighting

module to transform features. Concretely, we derive the scaling factors from statistic

of extracted features and device-specific parameters. Denote the output of feature

extractor for image Yk,i as Fk,i, we use a global average pooling layer to calculate

the mean values for each channel of Fk,i. Then, the channel-wise scaling vector ωk,i

can be obtained by:

ωk,i “ gsigmoidpWk,b ˚ gReLUpWk,a ˚ zk,iqq, (2.4)

where zk,i is the mean values of Fk,i, tWk,a,Wk,bu are device-specific parameters, ˚

is the convolution operator, gReLU and gsigmoid are the ReLU and sigmoid functions,

respectively. Eq. (2.4) utilizes two device-specific fully connected layers to generate
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the channel scaling factors from the statistics of input feature map. Having ωk,i, the

transformed feature Gk,i can be obtained by:

Gk,i “ ωk,i b Fk,i, (2.5)

where b represents the channel-wise multiplication.

Illuminant estimation. With the transformed feature Gk,i, we utilize two convo-

lution layers to estimate local illuminants and the final global illuminant value L̂k,i

is achieved by a subsequent global average pooling layer.

During the training phase, all the training samples contribute to the training

of feature extraction and illuminant estimation modules, while only the samples

from device k affect the device-specific parameters tWk,a,Wk,bu in the channel re-

weighting module.

2.3.3 Few-Shot Color Constancy

MDLCC learns shared and device-specific parameters to leverage the labelled data

from different devices. Most of the parameters are shared by different devices and

only a small portion (6.7%) of parameters are device-specific. Such a property of

MDLCC makes it an ideal architecture for few-shot color constancy. Specifically,

given limited number of training samples from a new unseen device, we only need to

learn the device-specific parameters from these samples and the shared parameters

can be inherited from existing MDLCC models. More details of our few-shot color

constancy settings will be introduced in section 2.4.2.

2.4 Experimental Results

In this section, we provide experimental results to show the advantage of our pro-

posed MDLCC. We first present the experimental settings, including training and
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testing datasets, as well as implementing details. We then conduct the ablation study

to verify the effectiveness of the multi-domain learning strategy and the proposed

camera-specific re-weighting module. Furthermore, we compare our MDLCC with

state-of-the-art color constancy methods on benchmark datasets. Finally, we evalu-

ate our MDLCC under few-shot setting to validate the capacity of our method for

few-shot color constancy problem.

2.4.1 Datasets

We evaluate our proposed method using three widely-used color constancy datasets:

the reprocessed [104] Gehler-Shi dataset [46], the NUS 8-camera dataset [27] and

the Cube+ dataset [8]. The Gehler-Shi dataset was collected using two cameras, i.e.,

Canon 1D and Canon 5D. It contains both indoor and outdoor scenes, and comprises

568 scenes in total. The NUS dataset contains 1,736 images which were collected

using 8 cameras in about 260 scenes. While the Cube+ dataset is a recently released

large scale color constancy dataset. It contains 1,365 outdoor scenes and 342 in-

door scenes. And all the images were captured by a Canon 550D camera. For each

dataset, we follow previous work [10, 11, 62] to use the linear RGB images for exper-

iments. The linear RGB images were obtained by applying a simple down-sample

de-mosaicking operation to the raw images, followed by black-level subtraction and

saturation pixel removal.

We follow previous works [11, 62, 27] to use 3-fold cross validation for each dataset.

Specifically, for the Gehler-Shi dataset, we used the cross validation splits provided

in the author’s homepage. The subsets for each camera in NUS dataset contain

images from the same scene. To ensure that the same scene would not be in both

training and testing sets when combining multiple subsets in the NUS dataset, we

split the training and testing set for NUS dataset according to scene content. As for

the cube+, we randomly split the testing set into 3 folds for cross validation. We
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use the angular error in degree as quantitative measure, which has been utilized in

previous methods [10, 11, 62, 27]. In all of our experiments, we report 5 metrics of

the angular errors, i.e., the mean, median, tri-mean of all errors, mean of the lowest

25% of errors, and mean of the highest 25% of errors.

2.4.2 Implementing Details

We train our networks with the angular loss:

LpL, L̂q “ cos´1p
L̂d L

||L̂|| ˆ ||L||
q, (2.6)

where d represents the inner product, and cos´1p¨q is the inverse of cosine function.

Our framework is implemented based on TensorFlow [3] with CUDA support.

For both the multi-domain setting and few-shot setting, we train our networks with

inputs of size 384 ˆ 384 ˆ 3. Image random cropping and relighting [62] are used

as data augmentations. We employ the Adam solver [72] as optimizer and set the

learning rate as 1ˆ 10´4. The weight decay value is set as 0.0001 and momentum is

set as 0.9. For the experiments with all the training samples, we train our model for

750,000 iterations with batch size 8. While for few-shot experiments, we train our

model for 15,000 iterations with batch size 8.

For the multi-domain setting, we train all the parameters from scratch and ini-

tialize them with normal distribution. For the few-shot setting, the shareable weights

are directly inherited from the meta-model (more details of meta model will be intro-

duced in section 2.4.5) and we only train camera-specific parameters. The camera-

specific parameters are initialized with normal distribution.

2.4.3 Ablation Study and Analysis

In this section, we carry out ablation study to evaluate the effectiveness of multi-

domain learning as well as our proposed camera-specific channel re-weighting module.

26



T
ab

le
2.

1:
A

b
la

ti
on

st
u
d
y

b
y

co
m

p
ar

in
g

S
in

gl
e

D
ev

ic
e

m
o
d
el

,
M

u
lt

i-
d
ev

ic
e

C
om

b
in

at
io

n
m

o
d
el

an
d

ou
r

p
ro

p
os

ed
M

D
L

C
C

m
o
d
el

,
u
n
d
er

d
iff

er
en

t
co

m
b
in

at
io

n
s

of
ca

m
er

as
.

T
h
e

b
es

t
is

sh
ow

n
in

re
d
.

D
a
ta

se
t

M
et

h
o
d

S
in

gl
e

D
ev

ic
e

C
ol

or
C

on
st

an
cy

M
u

lt
i-

d
ev

ic
e

C
om

b
in

at
io

n
M

D
L

C
C

M
ea

n
M

ed
.

T
ri

.
B

es
t

25
%

W
or

st
25

%
M

ea
n

M
ed

.
T

ri
.

B
es

t
25

%
W

or
st

25
%

M
ea

n
M

ed
.

T
ri

.
B

es
t

2
5%

W
or

st
25

%

G
eh

le
r-

S
h

i
1.

66
1
.1

4
1
.2

4
0.

38
3.

86
1.

91
1.

34
1.

41
0.

42
4.

47
1
.6

2
1.

1
0

1.
1
7

0.
3
6

3
.7

9

N
U

S
-C

6
00

D
1.

97
1
.3

9
1
.5

4
0.

47
4.

37
1.

92
1.

34
1.

47
0.

44
4.

26
1
.8

2
1
.2

6
1
.3

9
0.

4
4

4.
1
5

G
eh

le
r-

S
h

i
1.

66
1
.1

4
1
.2

4
0.

38
3.

86
1.

89
1.

35
1.

46
0.

41
4.

45
1
.6

1
0
.9

9
1
.1

1
0.

3
7

3.
7
9

N
U

S
-C

1
2.

04
1
.4

5
1
.6

0
0.

50
4.

55
1.

98
1.

42
1.

54
0.

48
4.

35
1
.8

7
1
.3

3
1
.4

8
0.

4
6

4.
1
9

C
u

b
e+

1.
35

0
.9

5
1
.0

2
0.

32
3.

04
1.

35
0.

93
1.

00
0.

31
3.

10
1
.2

4
0
.8

3
0
.9

6
0.

2
6

2.
9
7

N
U

S
-F

u
j.

2.
08

1
.5

9
1
.7

3
0.

50
4.

45
2.

04
1.

54
1.

66
0.

49
4.

32
1
.9

7
1
.3

9
1
.5

1
0.

4
5

4.
4
3

N
U

S
-N

52
2.

33
1
.6

5
1
.8

2
0.

50
5.

34
2.

21
1.

53
1.

73
0.

45
4.

89
2
.0

0
1
.4

7
1
.5

3
0.

4
5

4.
5
9

C
u

b
e+

1.
35

0
.9

5
1
.0

2
0.

32
3.

04
1.

35
0.

92
1.

01
0.

31
3.

08
1
.2

6
0
.8

4
0
.9

4
0.

2
5

2.
9
7

G
eh

le
r-

S
h

i
1.

66
1
.1

4
1
.2

4
0.

38
3.

86
1.

87
1.

33
1.

46
0.

43
4.

40
1
.5

9
0
.9

5
1
.1

1
0.

3
7

3.
7
7

N
U

S
-C

1
2.

04
1
.4

5
1
.6

0
0.

50
4.

55
2.

00
1.

43
1.

55
0.

45
4.

39
1
.8

6
1
.3

5
1
.4

9
0.

4
6

4.
1
1

N
U

S
-C

6
00

D
1.

97
1
.3

9
1
.5

4
0.

47
4.

37
1.

93
1.

35
1.

45
0.

44
4.

33
1
.6

5
1
.1

6
1
.2

9
0.

3
5

3.
7
3

N
U

S
-F

u
j.

2.
08

1
.5

9
1
.7

3
0.

50
4.

45
2.

03
1.

55
1.

67
0.

47
4.

36
1
.8

7
1
.3

7
1
.4

8
0.

4
5

4.
1
8

N
U

S
-N

52
2.

33
1
.6

5
1
.8

2
0.

50
5.

34
2.

25
1.

66
1.

79
0.

44
5.

01
1
.9

6
1
.3

8
1
.5

2
0.

4
4

4.
5
4

N
U

S
-O

ly
.

1.
86

1
.3

7
1
.5

1
0.

47
4.

08
1.

80
1.

34
1.

48
0.

46
3.

97
1
.6

8
1
.1

5
1
.3

0
0.

3
4

3.
8
5

N
U

S
-P

a
n

.
1.

98
1
.4

1
1
.4

8
0.

41
4.

52
1.

90
1.

38
1.

46
0.

42
4.

37
1
.6

9
1
.2

0
1
.3

3
0.

4
5

3.
7
3

N
U

S
-S

am
.

2.
18

1
.6

6
1
.7

5
0.

54
4.

79
2.

13
1.

52
1.

69
0.

52
4.

62
1
.7

8
1
.3

3
1
.4

2
0.

4
1

3.
9
5

N
U

S
-S

on
.

1.
91

1
.5

1
1
.5

6
0.

55
4.

05
1.

86
1.

47
1.

54
0.

53
3.

89
1
.7

4
1
.3

6
1
.4

4
0.

4
6

3.
7
0

C
u

b
e+

1.
35

0
.9

5
1
.0

2
0.

32
3.

04
1.

36
0.

92
1.

05
0.

33
3.

15
1
.2

4
0
.8

4
0
.9

5
0.

2
7

2.
9
5

27



Input from Single device MD-combination MDLCC
GT

Gehler-Shi Dataset (6.04˝) (8.80˝) (3.39˝)

Input from Single device MD-combination MDLCC
GT

Cube Dataset (6.19˝) (10.62˝) (5.25˝)

Figure 2.3: Visualization of color constancy results by single device color constancy
model, multiple device combination model, and our proposed MDLCC model. Im-
ages are converted to sRGB for visualization.

To validate the effectiveness of multi-domain color constancy, we implement two

variants: 1) single device color constancy and 2) multi-device combination model.

Concretely, the single device color constancy model utilizes our network architec-

ture and trains independently network for each device; the multi-device combination

method collects training data from all devices and trains a unique network to pro-

cess images from different devices. For fair comparison, all the hyper parameters are

kept the same as in our MDLCC approach. Furthermore, in order to analyze the

effect of device number for our multi-domain learning model, we present 4 groups

of experiments which utilize images from different numbers of cameras for training.

The details of the combined cameras are listed in Table 2.1. In the last group, we

combine all the cameras from Gehler-Shi, NUS and Cube+ dataset, which contain

11 different cameras in total. The quantitative performances are listed in Table 2.1.

Multi-domain learning Compared with single device approach which learns

distinct network on each dataset, our method achieves better performance on all the

sub-datasets. Even for the large scale Cube+ dataset which contains 1707 training

samples, data from related domains is beneficial. This clearly demonstrates the
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effectiveness of multi-domain learning in the color constancy area.

Camera-specific channel re-weighting module By comparing single device

results and multi-device combination results, we found that directly combining sev-

eral datasets without the camera-specific module can not constantly improve the

color constancy performance. It might lead to improved performance for one camera

but degrades severely for the others. For example, when combining Gehler-Shi with

NUS-C600D, the performance on Gehler-Shi dataset degrades dramatically from 1.66

to 1.91 in mean error. This reveals that directly combining multiple dataset without

device-specific module can not take full advantage of the cross-device training data.

While, by adopting the camera-specific channel re-weighting module, our MDLCC

approach significantly outperforms the multi-device combination baseline.

Number of devices From Table 2.1 we also observed that by increasing the

number of devices in MDLCC, the performance can be further improved. This

is because more training samples comprise more scenes and illuminants, and are

beneficial for learning more generalized representations. For example, the mean

error of MDLCC on NUS-600D is 1.82 when combining with Gehler-Shi, which can

be further decreased to 1.65 when combining with all the other cameras. This also

demonstrates the effectiveness of our proposed camera-specific channel re-weighting

module. Our model is still effective in handling 11 devices.

2.4.4 Comparison with State-of-the-art

In this section, we compare our proposed multi-domain color constancy approach

with other color constancy algorithms. We compare our approach with competing

methods on the Gehler-Shi [104], NUS [27] and Cube+ [8] datasets. For the NUS

dataset, we follow previous work [11, 62] and take the geometric mean of each metric

over 8 cameras. We train our model by combining all the devices in the three datasets.

The results of comparison methods on the Gehler-Shi dataset and NUS dataset are
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Table 2.3: Comparison of few-shot color constancy models.

Test set

Method
Single device

FMLCC [89] MDLCC

K=10 K=20 K=1 K=5 K=10 K=20

NUS-C1

Mean 2.04 – – 2.93 2.36 2.27 2.18

Median 1.45 – – 2.27 1.72 1.61 1.59

Tri-mean 1.60 – – 2.40 1.87 1.81 1.75

Best 25% 0.50 – – 0.95 0.60 0.57 0.51

Worst 25% 4.55 – – 6.05 5.08 4.97 4.80

Cube

Mean 1.21 1.63 1.59 2.02 1.63 1.56 1.47

Median 0.85 1.08 1.02 1.75 1.20 1.14 1.06

Tri-mean 0.90 1.20 1.15 1.83 1.30 1.24 1.14

Best 25% 0.23 0.31 0.30 0.85 0.50 0.43 0.39

Worst 25% 2.85 3.89 3.85 3.67 3.46 3.33 3.27

Gehler-Shi

Mean 1.66 2.66 2.57 3.00 2.43 2.32 2.26

Median 1.14 1.91 1.84 2.32 1.76 1.68 1.60

Tri-mean 1.24 1.99 1.94 2.49 1.94 1.83 1.75

Best 25% 0.38 0.49 0.47 0.88 0.59 0.57 0.56

Worst 25% 3.86 6.20 6.11 6.24 5.33 5.17 5.08

Input from K “ 1 K “ 5 K “ 10 K “ 20
GT

Cube Dataset (1.68˝) (0.64˝) (0.48˝) (0.31˝)

Input from K “ 1 K “ 5 K “ 10 K “ 20)
GT

Gehler-Shi (3.83˝) (0.93˝) (0.54˝) (0.39˝)

Figure 2.4: Visualization of few-shot color constancy results. Images are converted to
sRGB for visualization. The two input images are taken from Cube and Gehler-Shi
dataset respectively. We present the few-shot color constancy results with different
training sample K. The angular error in degree is also given.

31



collected from [11, 62]. While, for the Cube+ dataset, we present the results using

open source codes from the authors’ webpages. We retrain the FFCC [11] and FC4

[62] models on the Cube+ dataset, and the hyper-parameters have been carefully

tuned to achieve the best performance.

The experimental results are listed in Table 2.2. Except the state-of-the-art FFCC

approach, the proposed MDLCC outperforms all competing approaches in all metrics.

Specifically, our model constantly outperforms our backbone architecture, i.e., the

FC4 approach, this clearly validates the effectiveness of multi-domain learning for

color constancy. Compared to the FFCC approach, our model generally outperforms

the base FFCC model which only exploits image content for color constancy, and is

comparable to the full FFCC model which additionally takes the camera metadata

(exposure setting and camera info) and semantic information as inputs. Concretely,

our model shows better performance in terms of mean error and the worst 25% of

mean errors, while inferior performances in the other three metrics. A possible reason

is that our loss function has the tendency to reduce the average error over all training

samples, which better fits the mean error and worst 25% metrics.

2.4.5 Few-shot Evaluations

In this section, we conduct experiments to validate the capacity of the proposed

model for few-shot color constancy problem. We used the Gehler-Shi, Cube dataset

and one subset from NUS (NUS-C1) as the few-shot testing datasets. Note that Cube

dataset is a subset from Cube+ which contains only the outdoor scenes. We choose

Cube instead of Cube+ for the purpose of directly comparing our method with the

recently proposed Few-shot Meta-Learning Color Constancy method (FMLCC) [89].

For training our model, we use the remaining 7 datasets, i.e., 7 subsets from NUS

dataset, as the training set and only finetune those device-specific parameters on the

few-shot dataset. Specifically, we vary the number of few-shot sample K as 1, 5, 10
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and 20 respectively, for thoroughly validating our method. We split each test dataset

into three folds. For each fold, we randomly chose K samples from the remaining

folds to construct the training samples, which were used to learn the camera-specific

parameters. To avoid the randomness and disturbance by the selection of K training

samples, we repeated the few-shot experiments for 10 times, each with different

random choices of K images. We then present the average of each metric over 10

runs. The few-shot performances are listed in Table 2.3. We choose FMLCC [89]

for comparison and the results of FMLCC are copied from the original chapter [89].

The performance of the single device color constancy, which used the whole dataset

for training, is also provided for reference.

Compared with previous few-shot color constancy approach FMLCC [89], our

model achieved much better results in most of metrics. In addition, as FMLCC

needs to fine-tune all the network weights, they might not be able to deliver good

results for extreme few-shot cases, for example K “ 1. While, as our model only re-

quires retraining the camera-specific weights, we can still obtain good color constancy

performance. From Table 2.3 and Table 2.2, one can see that with only single shot

(K “ 1), our model outperforms most of statistical-based approaches. Moreover,

when using K “ 20 training samples, our model achieves comparable performance

with single device model, which used the whole dataset for training. Some visual

examples of our few shot color constancy results are provided in Fig. 2.4.

2.5 Conclusion

Deep networks can largely improve the color constancy accuracy with large scale

annotated dataset. However, the acquisition of such dataset is laborious and costly,

especially for color constancy problem which requires independent dataset for each

camera due to the distinction in devices. In this chapter, we start a pioneer work
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to leverage the multi-domain learning method for color constancy problem. Specifi-

cally, we utilized training data by different devices to train a single model, to learn

complementary representations and improve generalization capability. Experimental

results show that with the proposed shareable modules and camera-specific module,

our model achieves much better results than training independent model for each

device, and also achieves state-of-the-art performance on three benchmark datasets.

We also tested the color constancy performances under few-shot setting. Experimen-

tal results show that the proposed model can effectively adapt to a new device with

only a few, e.g., 20, training samples.
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Chapter 3

Learning to Remove Diffraction

Blur in Real-World Photography

In this chapter, we investigate another factor leading to image quality deterioration:

image diffraction blurring. As mentioned in Chapter 1.1.1, diffraction is the nature

of light when passing through small holes, e.g., the small apertures in camera lens.

The diffraction blur deteriorates the image details and hinders the further improve-

ment of image resolution under restricted sensor size. The existing physical or optical

solutions for overcoming diffraction blur are infeasible for consumer camera devices,

and the general image deblurring methods cannot effectively remove the diffraction

blur. To the best of our knowledge, little attention has been paid to investigating this

practical problem using a learning based method. In order to facilitate the research

on this important problem, in this chapter we make the first attempt to remove the

diffraction blur in real-world photography using a learning based approach. Specif-

ically, we first discuss in detail the characteristics of diffraction blur as well as its

differences from the general image blurs caused by motion or defocus. We then con-

struct a real-world diffraction blur (ReDB) dataset, which consists of 333 image pairs

with and without diffraction. We further design a progressive learning strategy and

a robust loss function to train a neural network for diffraction blur removal. Exper-

imental results show that our model achieves much better diffraction blur removal
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results than existing image deblurring algorithms.

3.1 Introduction

3.1.1 Diffraction Blur Removal

The aperture size plays a key role in taking photos [122]. Small aperture is necessary

to endow large depth-of-field (DoF [97]) when framing a front-to-back clear spectacle

landscape or exhibiting details in macro or product photography. Because of the wave

nature of light [123], however, small aperture inevitably triggers the diffraction of

light, leading to unpleasant diffraction blur of captured images. An example image

with diffraction blur captured by a Nikon D810 is shown in Fig. 3.1(b). As will be

discussed later in Sec. 3.3, the diffraction blur becomes severer with the decrease

of aperture size and pixel size in camera sensors. Given the fact that the sensor

size is usually limited in consumer camera devices, diffraction becomes one of the

most important constraints to further improve the image quality of consumer camera

devices.

Physical and optical solutions for overcoming diffraction blur usually needs new

material, e.g., super-lenses, immersion technique, to enlarge numerical aperture. Un-

fortunately, these solutions are too expensive and inconvenient for consumer camera

devices. Existing image deblurring algorithms are mainly focused on removing blurs

caused by motion and defocus [128, 35, 127, 94, 125, 79, 144, 110, 107], whose patterns

are significantly different from diffraction blur. As shown in Fig. 3.1(c), directly ap-

plying existing deblurring algorithms cannot effectively remove the diffraction blur,

and employing the general sharpening algorithms can hardly recover the lost details.

It is highly desirable to develop new diffraction blur removal method to address this

issue, which however has attracted little attention in the computer vision community.
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(a) Image captured by Nikon D810

f/22 f/18 f/14 f/7.1

(b) Details of images taken at different aperture sizes

SRN [110] ECP [130] PS USM Ours

(c) Diffraction removal results by different methods

Figure 3.1: Illustration of (a) an image captured by Nikon D810, (b) the details
of the same scene captured using different aperture sizes and (c) diffraction blur
removal results (on image taken using f/22 aperture size) obtained by general image
deblurring models SRN [110], ECP [130], the PhotoShop sharpening algorithm and
our model.
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3.1.2 Motivation

In order to facilitate the research towards diffraction blur removal, in this chapter

we make the first attempt to solve this problem using a learning approach. The

non-uniform property of diffraction blur makes it difficult to simulate the realistic

degradation of diffraction blur. We thus construct the first real-world diffraction blur

(ReDB) dataset to enable training and evaluation of diffraction blur removal models.

Specifically, we use different aperture sizes to capture a set of images of the same

scenes. The clear in-focus region of images taken at an appropriate aperture are used

as the groundtruth while images taken at smaller aperture sizes suffer from different

degrees of diffraction blur. We conduct image registration to obtain globally aligned

image pairs to enable pairwise training. Our ReDB dataset consists of 333 different

scenes captured by two digital single-lens reflex (DSLR) cameras.

The constructed ReDB dataset enables us to train a convolutional neural network

(CNN) to remove the diffraction blur. Training a model that directly maps from the

severely diffraction blurred images to the clear counterparts, is a typical ill-posed

problem due to the heavy loss of details. To promote the recovery of textures,

we propose a progressive learning strategy to progressively recover the details by

leveraging the guidance of images captured at increasingly wider apertures in our

ReDB. Meanwhile, the widely-used Mean Square Error (MSE) loss function gives

equal emphasis on both image smooth and texture regions. We thus design a new loss

function aiming at recovering edges and textures. Combining these two strategies,

our model can recover better image quality from the diffraction blurred image, as

shown in Fig. 3.1(c).
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3.2 Literature Review

Diffraction is a principle limit to the resolution of any optical system. Considerable

efforts have been made to break the diffraction limits and improve the resolution

of optical systems in microscope or telescope. The immersion technique [87, 114],

superlenses [138, 69, 39] and the differential interference contrast microscopy [6, 5]

have been invented to enlarge the numerical aperture and improve the resolving

ability of microscope. The near-field technique [134, 99] is developed to capture extra

information contained in the evanescent wave which is unlimited by diffraction and

can propagate to the sensor. However, all these physical techniques require complex

fabrication or enormous cost, which are infeasible for consumer camera devices.

Several work also proposed to use digital image processing techniques to recover

information from diffraction limited imagery. HARRIS et al. [60] analyzed the

diffraction-limited optical system and further proposed to use digital shift of diffrac-

tion images to extract information. Wang et al. [117] proposed a support vector

machine based classifier to discriminate cancel cells from diffraction images. How-

ever, the restoration of diffraction blurred images remains an open problem. In this

chapter, we attempt to remove diffraction blur and improve image quality using a

cost-effective learning based method.

Traditional blind image deblurring methods focus on incorporating priors of the

degradation kernel and natural image into an optimization framework. The sparse

or gradient sparse prior [127, 143, 76] and spectral prior [49] have been proposed to

regularize the estimation of blur kernels. The sparse prior [128, 144, 35, 96], nonlocal

self-similarity prior [71], dark and bright channel prior [94, 130] have been exploited as

natural image priors to maximize a posterior framework for image deblurring. These

prior based methods generally have limited performance when handling complex

scenes, and their optimization process is time-consuming especially on high resolution
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images.

Recently, training CNN models for image deblurring has obtained promising per-

formance. Earlier work followed the traditional scheme to iteratively update the es-

timated blur kernel and clear image [107, 103]. Specifically, Sun et al. [107] trained

a CNN to explicitly estimate the blur kernel of each patch, which were then used to

deconvolve the blurred image. Schuler et al. [103] further combined kernel estima-

tion and image estimation in an end-to-end framework. Li et al. [39] trained a CNN

to distinguish between clear and blury images. The network was then embedded

as image priors into the maximization of a posterior framework. Tao et al. [110]

proposed a scale recurrent network to directly output clear images via a multi-scale

strategy, which can effectively solve large motion blur. Most of these models were

trained and evaluated on images with motion blur. However, the characteristics of

diffraction blur are significantly different from motion blur, making these deblurring

models ineffective on removing diffraction blur. To study the problem of diffraction

blur removal, we construct a real-world dataset with paired images. A deep learning

based method was then proposed for diffraction blur removal.

It is worth mentioning that there are also many other sources of blur caused by

different elements including lens aberration, lens imperfection, light integration and

anti-aliasing filter in an imaging system. These blurs may also correlate with the

diffraction blur. In this chapter, we mainly focus on the diffraction blur which is

most significant when using small aperture.

3.3 Diffraction Blur in Optical Imaging Systems

Diffraction comes from the wave nature of light, defined as the bending of waves

when passing through an aperture. In a camera system, since the lens has the

ability to focus parallel rays to a point, the equivalent distance between aperture
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Figure 3.2: Illustration of the diffraction effect in a camera system.

and observation plane is infinite. The diffraction of an ideal point source light in a

camera system can be modelled by the Fraunhofer equation [16].

As illustrated in Fig. 3.2, a point light source with intensity I0 travels into the

camera lens and diffracts by a small aperture, forming an alternating light and dark

rings, namely the diffraction pattern. According to the Fraunhofer equation [16], the

angular distribution of intensity Ipθq of light diffracted by a circular aperture is:

Ipθq “ I0p
2J1pρq

ρ
q
2 with ρ “

πD sin θ

λ
, (3.1)

where λ denotes the wavelength, D is the diameter of the circular aperture, θ is the

angular between direction of diffracted light and incident light, and J1pρq is the 1st

kind and 1st order Bessel function. Usually, the outer rings are not apparent and can

be ignored. The bright central region is the so-called Airy disk [124]. The diffraction

blur occurs when the diameter of the Airy disk is larger than the sensor pixel size, and

becomes severer with the decrease of aperture and pixel size. For a certain camera

sensor with pixel size d, the diffraction limit aperture (DLA), at which diffraction

becomes distinct, can be derived according to the Rayleigh criterion [31] as:

DLA “ d{1.22λ. (3.2)

Two characteristics of diffraction blur can be observed from the above analyses.

First, diffraction blur is non-uniform since the diameter of Airy disk is characterized
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Table 3.1: Information of the ReDB dataset and the employed cameras devices.

Canon 5D3 Nikon D810

Lens 35mm prime 24-105mm zoom

Sensor type full frame full frame

Resolution 5760ˆ 3840 7360ˆ 4912

Pixel size 6.3um 4.9um

DLA f{11 f{9.0

Apertures f{22, f{18, f{14 f{22, f{18, f{14

Total scenes 167 166

Image fotmat TIFF TIFF

by the wavelength of incident light. Second, the degree of diffraction blur is correlated

to both the aperture size and pixel size in camera sensor. These two properties

distinguish diffraction blur from those blurs caused by motion and defocus.

3.4 Real-world Diffraction Blur Dataset

In order to leverage the learning approach for diffraction blur removal, we propose

to construct a diffraction blur dataset. The diffraction process of a practical scene

is much more complex than an ideal point source based model described in Eqs. 3.1

and 3.2, and thus it is very difficult to simulate realistic diffraction blurred images.

We instead construct a real-world diffraction blur dataset to learn diffraction removal

models.

3.4.1 Image collection

Eq. 3.2 reveals that using aperture larger than the DLA can avoid diffraction blur.

This motivates us to capture a set of images of the same scenes using different aper-

ture sizes to produce diffraction blurred images and their clear counterparts. Two

DSLR cameras with different pixel sizes are employed for data collection: Canon 5D3

and Nikon D810. Each scene is captured using 4 typical apertures: f{22, f{18, f{14

and f{7.1 Images captured at the former three small apertures suffer from different
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Figure 3.3: Example images in our ReDB dataset.

degrees of diffraction blur while images captured at f{7.1 are used to generate the

groundtruth clear images. We choose f{7.1 since it presents the optimal resolution

for the given lens and simultaneously provides large enough DoF.

We set the camera to aperture priority mode. The focal length is fixed as 35mm

for both cameras. Small ISO (e.g., 100) is used to alleviate noise. The focus, white

balance and exposure are set to automatic mode. To minimize the camera movement,

we use a tripod to stabilize camera and use a remote shutter release to avoid camera

shake when pressing the shutter button. We also use the mirror up (MUP) mode in

DSLR to reduce tiny camera movement when the mirror is raised.

Scenes having abundant textures are preferred for our dataset. To avoid object

motion in sequential image capturing, we capture static indoor and outdoor scenes.

For each scene, we first shoot using f{7.1 aperture, then keep the camera unmoved

and manually change the aperture to f{14, f{18, and f{22 to capture the diffrac-

tion blurred images. After collection, images containing local motion or illuminant

changes are abandoned. In total, 333 scenes are captured, including 167 from the

Nikon D810 and 166 from the Canon 5D3. The images are taken in several cities, cov-

ering various indoor and outdoor scenes and illuminations. The information about

our dataset and employed camera devices are summarized in Table 3.1, and several

examples from the dataset are shown in Fig. 3.3.
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3.4.2 Image Pair Registration

The image pairs collected are not pixel-wise aligned since images taken at different

apertures have different DoF. Besides, color and spatial misalignment also exist due

to the changing of aperture. Image pair registration is necessary to obtain pixel-wise

aligned image pairs for modeling training. Our three-step registration procedure is

illustrated in Fig. 3.4.

In-focus region cropping. A wider aperture has shallower DoF compared with

smaller apertures, leading to depth blur in out-of-focus region. Benefiting from the

fact that the current commonly-used DSLR cameras have very high-resolution, we

simply crop the in-focus region of images taken at f{7.1 aperture as the clear ground

truth. The same area of images taken at other smaller apertures are cropped to

construct the image pairs. After cropping, most images still have a resolution higher

than 1000ˆ 2000.

It is worth mentioning that cropping the in-focus regions to construct image

pairs does not affect the generalization capability of diffraction blur removal models

trained on our dataset, since diffraction blur only appears when using small aperture

which has sufficiently large DoF to avoid out-of-focus blur.

Color matching. The different apertures used in image pairs capturing result

in different amount of light reaching the sensor. Though the auto exposure mode

in DSLR would automatically adjust shutter speed to ensure normal exposure, the

exposure and color of an image pair are not strictly matched. Considering that the

color change among image pairs is global, we apply linear transform to the diffraction

blurred images to transfer the channel-wise mean vector and covariance matrix to

coincide with those of clear images. The linear transformation matrix is derived

according to the 3D color matching algorithm in [61].
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Figure 3.4: The image registration procedure to obtain aligned image pairs.

Spatial alignment. Despite the usage of tripod, MUP mode and remote shutter,

image pairs may not be precisely aligned due to the camera movement when adjusting

the aperture or slight shocking of soft ground. Fortunately, the spatial shift among

image pairs is generally global and not severe in our dataset. We simply use the

SURF features [12] based image registration algorithm, which is robust to rotation

and illuminant change, to obtain spatially aligned image pairs.

3.5 Learn to Remove Diffraction Blur

The constructed ReDB dataset enables us to train a deep CNN model for diffraction

blur removal. However, directly learning the transform from severely blurred images

to clear ones is a difficult ill-posed task. We propose a progressive learning archi-

tecture to progressively recover more details with the guidance of images taken at

increasingly larger apertures. We also design a new loss function to enhance textures

and details in real-world photography.

3.5.1 Progressive Learning Loss

The overview of our progressive learning architecture is shown in Fig. 5.1. Our

diffraction removal model contains several stages of convolutions to progressively

recover image details. Each stage outputs an intermediate result, which is supervised

45



Figure 3.5: Overview of the proposed progressive learning architecture for diffraction
blur removal. Our model outputs several intermediate results as well as a LoG
response map, which are used as supervisions to progressively recover image details.

by the aligned image captured at a larger aperture. We consider two types of designs

for the basic convolutional blocks in our model: a lightweight version following the

VDSR [70] and a deeper version following the RCAN [141]. More details will be

discussed in the experimental section.

Let fi represent the feature extractor at the i-th stage. Denote the diffraction

blurred images captured at aperture f{22, f{18, f{14, f{7.1 of the same scene by

X22, X18, X14 and X7.1, respectively, where X7.1 is taken as the ground truth. Given

the blurred input image X22, the progressive diffraction removal process is as follows:

F1 “ f1pX22q, X̂18 “ X22 `w1 ˚ F1;

F2 “ f2pF1q, X̂14 “ X22 `w2 ˚ F2;

F3 “ f3pF2q, X̂7.1 “ X22 `w3 ˚ F3;

(3.3)

where Fi is the extracted feature at the i-th stage, X̂18, X̂14 and X̂7.1 are the predicted

images at aperture f{18, f{14 and f{7.1, respectively, wi denotes the additional

convolution layer at the i-th stage to transform the high-dimensional feature map Fi

into an image, and ˚ represents the convolution operation.
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The loss function of our progressive learning is:

Lprog “ λs1||X̂18 ´X18||
2
2 ` λs2||X̂14 ´X14||

2
2 ` ||X̂7.1 ´X7.1||

2
2, (3.4)

where λs1 and λs2 are two constant parameters, which are fixed as 0.01 and 0.1,

respectively. We choose smaller weights for the losses at earlier stages since the

corresponding gradients have larger influence to the earlier convolutional blocks.

Now we have introduced the three-stage progressive learning process for images

captured at aperture f{22. Regarding images captured at aperture f{18, the process

naturally degrades to two stages, with only the X14 as the intermediate guidance.

The loss function consequently consists of the last two terms in Eq. 4.4, and the

associated constant parameter is fixed at 0.1. Regarding aperture f{14, since the

diffraction blur is not as severe as that at aperture f{22 and f{18, we thus train a

model directly mapping from input to ground truth. The loss function is defined as

the L2-norm between network outputs and ground truth labels.

3.5.2 LoG based Loss

Diffraction blur removal aims at recovering fine-grained edges and textures whereas

MSE loss gives equal emphasis on both image smooth content and edges. The Lapla-

cian of Gaussian (LoG) [88] filter is a simple and computationally efficient edge de-

tector. It can effectively detect edges with reduced sensitivities to noise, since in

practical image capturing the camera sensor receives different photons at different

time and there exists certain inevitable random noise. Moreover, early psychophysical

experiments [37, 92] have shown that LoG filter matches well with the discriminabil-

ity in human vision system. We thus employ the LoG filter as a robust edge detector

and design a LoG based loss function to further enhance the details.

The LoG filter is designed as the Laplacian operator following a Gaussian smooth

filter. The embedded Gaussian kernel can effectively suppress the small noise and
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the Laplacian kernel detects the edges. As shown in Fig. 5.1, we apply the LoG

filter to the output image and put supervision on the response maps to recover

more textures. The LoG filter has explicit numerical form when the kernel size and

standard deviation are given. In this work, we employ a 7ˆ7 LoG filter with standard

deviation σ “ 0.6. Denote by k the LoG filter. The LoG loss is defined as:

LLoG “ ||k ˚ X̂7.1 ´ k ˚X7.1||
2
2, (3.5)

where X̂7.1 and X7.1 are the output image and ground truth image, respectively.

The final loss function in our method is:

L “ Lprog ` λLoG ˚ LLoG, (3.6)

where λLoG is a constant weight and we set λLoG “ 0.5 in all experiments.

3.6 Experiments

3.6.1 Implementing Details

As mentioned in Sec. 3.5.1, we train two versions of our progressive diffraction

removal (PDR) model. The lightweight version (denoted by PDR L) uses the convo-

lutional blocks in VDSR [70] which is a representative architecture in image restora-

tion area. The deep model (denoted by PDR D) employs the convolutional blocks of

RCAN [141] which is proved to be effective for training very deep networks. When

processing images captured at f{22, the three-stage PDR L and PDR D contain

t5, 5, 10u and t30, 30, 40u convolutional layers for each stage, respectively. Regarding

images captured at f{18, PDR L and PDR D have two equally partitioned stages

with 10 and 50 convolutional layers for each stage, respectively. As for images cap-

tured at f{14, PDR L and PDR D have only one stage with 20 and 100 convolutional

layers, respectively.
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Since the diffraction degree is related to both the aperture and sensor pixel size, we

trained an independent model for each aperture of each camera. Both the Nikon and

Canon datasets were randomly split into 140 scenes for training and the remaining

scenes were used for testing. In the training stage, images were cropped into 128 ˆ

128 ˆ 3 patches. Left-right and up-down flips were used for data augmentation.

The network parameters were initialized using the Xavier initializer [48]. The Adam

optimizer [72] with the default parameter setting (β1 “ 0.9, β2 “ 0.999) was used

to optimize our models for 100 epochs. The learning rate was fixed as 1e´4 for

all models. The batch size was set as 16 and 8 for training PDR L and PDR D,

respectively. PSNR and SSIM [120] are employed to evaluate performance.

3.6.2 Ablation Study

In this section, we conduct ablation study on the two major designs of our diffraction

removal model: the progressive learning strategy and the LoG based loss function

for detail enhancement. The lightweight model PDR L was employed to evaluate the

effectiveness of these two designs. Four variants of models are compared: a baseline

model using the VDSR architecture and the MSE loss, our progressive model using

the MSE loss, the baseline model plus our LoG based loss and our progressive model

plus the LoG based loss. All the hyper parameters were kept the same for fair

comparison. The PSNR and SSIM metrics obtained by all variant methods are

listed in Table 5.1 and the visual quality comparison is shown in Fig. 5.3.

From Table 5.1, one can observe that employing the progressive architecture

achieves consistently better PSNR (more than 0.12 dB in all cases) compared with

the baseline model. Engaging the LoG based loss improves the PSNR by 0.13 dB on

average among all cases over the baseline. Combining both the progressive method

and LoG based loss achieves the best performance in most cases, with an average

improvement of 0.25 dB among all cases. The visual comparison can be observed
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Table 3.2: PSNR and SSIM results of variants of our proposed network. The best in
each column is shown in red. For aperture f{14 we train a model directly mapping
from input to ground truth, thus the progressive learning is not applicable (N.A.).

Nikon D810 Canon 5D3

Method f{22 f{18 f{14 f{22 f{18 f{14

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

MSE 34.40/0.9740 35.78/0.9802 37.25/0.9854 35.37/0.9787 36.78/0.9838 37.93/0.9871

MSE+Prog. 34.52/0.9749 35.92/0.9815 N.A./N.A. 35.50/0.9798 36.91/0.9837 N.A./N.A.

MSE+LoG 34.53/0.9750 35.93/0.9818 37.40/0.9861 35.51/0.9800 36.93/0.9843 38.06/0.9875

MSE+Prog.+LoG 34.65/0.9755 36.04/0.9817 N.A./N.A. 35.62/0.9801 37.05/0.9846 N.A./N.A.

Image taken by Canon 5D3 f{18

Input Baseline LoG

Prog Prog + LoG GT

Figure 3.6: Visual result comparison of variants of our model. The input image is
taken by Canon 5D3 at f{18. One can see that the progressive learning method and
the LoG based loss help recover more details.

from Fig. 5.3. The result obtained by the baseline model is still blurry. Employing

either the progressive learning or the LoG loss can help recover more textures, and

utilizing both of them achieves the best visual quality. Both the quantitative metrics

and the visual quality comparison validate that our progressive learning method and

LoG based loss function can help recover more details from diffraction blur.
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3.6.3 Comparison with Other Methods

In this section we compare the proposed diffraction blur removal models with other

image deblurring methods. The existing image deblurring methods can be generally

divided into two categories: the traditional prior based methods and the learning

based methods. Regarding the prior based methods, we choose Xu et al. [128],

Xu et al. [127], GST [144], DCP [94], ECP [130] for comparison. The sharpening

results obtained by the Photoshop USM (denoted as PS USM) are also included

for comparison. As for the learning based methods, we choose two representatives:

Sun et al. [107] and SRN [110]. In addition, we compare with two representative

super resolution models VDSR [70] and RCAN [141] which can also enhance image

details. For all learning based methods, we compare with both their original version

provided by the authors (if applicable) and the retrained version on our ReDB dataset

(denoted using superscript ˚). We did not retrain Sun et al. [107] since the training

code is unavailable. The PSNR and SSIM results of all competing methods are listed

in Table 3.3.

As can be seen, most traditional prior based deblurring methods perform poorly

on the diffraction blur removal task, with a gap of about 3 dB compared with our

PDR L model. This is because most of these methods assume the blur kernel to be

uniform while the blur kernel is non-uniform in our ReDB dataset. The Photoshop

sharpening algorithm is not qualified on removing diffraction blur, either. As for the

learning based methods, we can see that directly applying their pre-trained models

on our ReDB dataset obtain unsatisfied results. The PSNR results are at least 2.5

dB inferior to our PDR L model. These results again validate the difference between

diffraction blur removal and general image deblurring or super resolution. The re-

trained version of SRN [110] and VDSR [70] obtain much better performance than

their original version, which validates the effectiveness and value of our constructed
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Table 3.3: Comparison of various methods on ReDB dataset. The best, second and
third are shown in red, blue and green respectively. The superscript ˚ denotes the
re-trained model on our ReDB dataset.

Dataset Nikon D810 Canon 5D3

Aperture Size f/22 f/18 f/14 f/22 f/18 f/14

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Xu et al. [127] 30.56 0.8921 31.92 0.9164 32.69 0.9256 30.78 0.8709 30.71 0.8615 31.72 0.8839

GST [144] 30.97 0.9032 32.67 0.9333 33.67 0.9471 33.05 0.9329 33.92 0.9458 33.94 0.9513

DCP [94] 31.44 0.9228 32.82 0.9453 32.37 0.9452 32.10 0.9241 32.00 0.9269 31.17 0.9238

Xu et al. [128] 31.87 0.9248 32.78 0.9369 32.41 0.9398 31.55 0.8923 31.42 0.8992 30.46 0.8869

ECP [130] 31.93 0.9224 33.37 0.9470 33.49 0.9542 33.51 0.9402 33.88 0.9480 33.04 0.9478

PS USM 31.27 0.9080 32.76 0.9384 33.36 0.9550 33.10 0.9312 34.80 0.9515 35.38 0.9640

Sun et al. [107] 27.58 0.8171 28.03 0.8340 28.49 0.8503 28.76 0.8420 29.35 0.8582 29.86 0.8721

SRN [110] 30.04 0.8920 31.49 0.9209 32.99 0.9404 31.15 0.9103 32.20 0.9263 33.06 0.9369

VDSR [70] 32.07 0.9247 33.47 0.9470 33.40 0.9503 33.30 0.9401 33.75 0.9475 33.15 0.9464

SRN˚ 34.23 0.9729 35.50 0.9799 36.76 0.9837 34.99 0.9757 36.41 0.9832 37.62 0.9864

VDSR˚ 34.45 0.9745 35.90 0.9808 37.31 0.9857 35.44 0.9790 36.86 0.9841 37.93 0.9871

RCAN˚ [141] 34.85 0.9760 36.21 0.9821 37.56 0.9865 35.70 0.9795 37.23 0.9842 38.21 0.9873

PDR L 34.65 0.9755 36.04 0.9817 37.40 0.9861 35.62 0.9801 37.05 0.9846 38.06 0.9875

PDR D 34.97 0.9765 36.35 0.9831 37.67 0.9868 35.83 0.9802 37.32 0.9855 38.32 0.9881

ReDB dataset. However, they are still inferior to our PDR L, which demonstrates

the effectiveness of our designs for removing diffraction blur. Compared with PDR L,

PDR D further improves the PSNR by at least 0.2 dB in all cases, which indicates

that employing deeper architecture can further improve the performance. In ad-

dition, PDR D also outperforms its baseline variant, i.e., the retrained version of

RCAN in all cases. This again proves the effectiveness of our model designs for

diffraction removal even under much deeper architecture.

The visual results of all competing algorithms on several examples are shown in

Fig. 3.5. As can be seen, many prior based methods, e.g., DCP [94], ECP [130]

and GST [144], can only mildly recover the details but result in obvious artifacts.

Xu et al.’s method [128] over-sharpens edges with obvious ringing artifacts. Some
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methods including the two learning based deblurring methods [127, 107, 110] even

makes the images more blurry. The photoshop USM operator can only moderately

enhance the details. The results of VDSR are not stable. In contrast, our PDR L

model can effectively recover the textures without generating artifacts, presenting

the best visual quality.

3.6.4 Cross Camera Evaluations

In this section we conduct cross camera evaluation to study the generalization ability

of our model. As mentioned before, the degree of diffraction blur is not only related

to the aperture size but also affected by the sensor pixel size. As shown in Table 3.1,

the two cameras we employed have different pixel size. To provide a more explicit

index indicating the degrees of diffraction blur, we define a new index δ “ N{d as

the ratio of aperture f-number N (N “ 22 for aperture f{22) to sensor pixel size d.

Larger δ implies severer diffraction blur.

Canon 5D3 vs. Nikon D810. We then conduct cross camera evaluations between

the Canon 5D3 and Nikon D810 cameras using the PDR L model. Specifically, on

each aperture of one camera, we evaluate the three models trained on the other

camera and list the cross camera results in Table 3.6. The in-camera results on

each aperture and the diffraction blur degree index δ are also provided for reference.

We can observe that when diffraction blur degree δ of two datasets are close, the

model trained on one camera obtains better results when applying to the other. For

example, when testing on f{22 on Canon 5D3 (δ “ 3.49), the PDR L model trained

for aperture f{18 of Nikon (δ “ 3.67), exhibis better metrics than PDR L trained for

aperture f{22 of Nikon (δ “ 4.49). We also observed that models trained on Canon

dataset exhibit better cross camera performances compared with models trained on

Nikon. This probably because the image pairs in Canon dataset are of relatively

larger size than those in Nikon dataset. The more training patches leads to better
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Table 3.6: Quantitative results of our PDR L model on cross camera experiments.
The in-camera results are shown in red for reference and the best cross camera results
are shown in blue. The number in bracket is the diffraction blur index δ.

Train set

Test set

Canon 5D3 Nikon D810

f{22 f{18 f{14 f{22 f{18 f{14

(3.49) (2.86) (2.22) (4.49) (3.67) (2.86)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Canon
5D3

f{22 (3.49) 35.62/0.9801 –/– –/– 33.69/0.9700 35.86/0.9816 36.76/0.9851

f{18 (2.86) –/– 37.05/0.9846 –/– 32.78/0.9628 35.75/0.9808 37.31/0.9859

f{14 (2.22) –/– –/– 38.06/0.9875 32.06/0.9564 34.95/0.9768 37.28/0.9859

Nikon
D810

f{22 (4.49) 34.79/0.9749 35.51/0.9752 33.36/0.9682 34.65/0.9755 –/– –/–

f{18 (3.67) 35.03/0.9776 36.25/0.9816 37.28/0.9853 –/– 36.04/0.9817 –/–

f{14 (2.86) 34.20/0.9710 36.48/0.9824 37.53/0.9857 –/– –/– 37.40/0.9861

generalized representations of PDR L model trained on Canon dataset.

Other cameras. To further validate the cross camera tendency, we also evaluate the

trained models on images taken by other cameras. The visual results on five images

out of our ReDB dataset are shown in Fig. 3.7. The five images were taken by Sony

A77 f{16, Sony A77 f{14, Nikon D5200 f{14, Olympus E-520 f{14 and Fujifilm X-

T20 f{18 respectively. The sensor pixel size of Sony A77, Nikon D5200 and Fijufilm

X-T20 is 3.9um, and is 4.7um for Olympus E-520. And the diffraction blur degree

δ of the five images are 4.10, 3.89, 3.89, 2.98 and 4.61 respectively. We apply the

PDR L model trained on Nikon D810 with δ “ 4.49, 3.67, 3.67, 2.86, 4.49 respectively

to the five testing images. One can see that our model can effectively recover details

from the blurry input and present pleasant visual quality, which demonstrates that

our model is still effective when applied to another camera.

3.7 Conclusions

In this chapter, we studied the practical diffraction blur removal problem, for the first

time, using a learning based method. We analyzed the special properties of diffraction
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Sony A77 f{16 (a) (b) (c) (d)

Sony A77 f{14 (a) (b) (c) (d)

Nikon D5200 f{14 (a) (b) (c) (d)

Olympus E-520 f{14 (a) (b) (c) (d)

Fujifilm XT20 f{18 (a) (b) (c) (d)

Figure 3.7: Visual results obtained by applying PDR L model trained on our Nikon
D810 dataset, to images out of our ReDB dataset. (a) and (c) are the zoomed input
patches. (b) and (d) are the results obtained by diffraction removal model.
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blur and clarified its difference from other types of image blurring problems. A real-

world diffraction blur dataset with aligned image pairs was constructed for training

and evaluating diffraction blur removal models. A progressive learning method and

a robust loss function were designed to train a diffraction blur removal model, which

achieved significantly better performance than existing image deblurring methods

on both quantitative metrics and visual quality. We also studied the generalization

capability of trained model and defined a diffraction blur degree index for use in

practical applications. In the future, we will extend the database and study training

one single model to handle various degrees of diffraction blur to further improve the

generalization performance.
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Chapter 4

Degradation Model Learning for

Real-World Single Image

Super-resolution

In this chapter, we focus on the task of real-world single image super-resolution

(SISR). Despite the fast growth of deep learning based SISR methods, the real-world

SISR task remains challenging. It is well-known that the SISR models trained on

those synthetic datasets, where a low-resolution (LR) image is generated by applying

a simple degradation operator (e.g., bicubic downsampling) to its high-resolution

(HR) counterpart, have limited generalization capability on real-world LR images,

whose degradation process is much more complex. Several real-world SISR datasets

have been constructed to reduce this gap; however, their scale is relatively small due

to laborious and costly data collection process. To remedy this issue, we propose to

learn a realistic degradation model from the existing real-world datasets, and use the

learned degradation model to synthesize realistic HR-LR image pairs. Specifically,

we learn a group of basis degradation kernels, and simultaneously learn a weight

prediction network to predict the pixel-wise spatially variant degradation kernel as

the weighted combination of the basis kernels. With the learned degradation model,

a large number of realistic HR-LR pairs can be easily generated to train a more robust
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SISR model. Extensive experiments are performed to quantitatively and qualitatively

validate the proposed degradation learning method and its effectiveness in improving

the generalization performance of SISR models in practical scenarios.

4.1 Introduction

4.1.1 Single Image Super-Resolution

Single image super-resolution (SISR) aims to recover a high-resolution (HR) image

from its low-resolution (LR) observation, which is a highly valuable technique for

improving the resolution and quality of digital photography. As a typical ill-posed

inverse problem, SISR has been widely studied during the past decades [131, 95, 133,

113, 20, 83], yet it is still a challenging and active research topic. The traditional

methods generally utilize powerful image priors [85, 34, 119, 57, 132, 36] for SISR,

and have made remarkable progresses. However these handcrafted image priors are

limited in representing the complex image textures.

Benefitting from the rapid development and great success of deep convolutional

neural networks (CNNs) [50], recently SISR has witnessed significant progresses by

employing deep CNNs [33, 70, 136, 105, 109, 81, 30, 142, 78, 141, 80]. Most of the

existing CNN based SISR models are trained on synthetic HR-LR image pairs, which

are generated by applying a simple degradation model (e.g., bicubic downsampling)

to the HR images [33, 70, 109, 81, 142, 141, 80]. However, the authentic HR to

LR image degradation process is much more complicated than these simple uniform

downsample operators. As a result, the SISR networks trained on such synthetic

datasets have low generalization capability to real-world LR images, largely limiting

their value in practical applications.

Efforts have been made to address the generalization problem of SISR models

[136, 139, 25, 21]. Zhang et al. [136] proposed to use multiple Gaussian kernels to-
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gether with additive white Gaussian noise to increase the diversity of HR-LR pairs,

yet the selection and combination of these kernels are very sensitive. Very recently,

researchers have started to construct real-world datasets by using digital cameras to

capture images of the same scene under different focal lengths [139, 25, 21]. Partic-

ularly, Cai et al. [21] carefully designed a registration algorithm to obtain pixel-wise

aligned HR-LR image pairs. The so-called RealSR dataset enables supervised learn-

ing of SISR models, and the learned models demonstrate better performance than

previous ones on real-world scenarios. However, constructing such datasets of real-

world HR-LR pairs is laborious and costly, and the existing datasets of this kind

[139, 25, 21] are all limited in number of image pairs, diversity of scenes and illu-

minating conditions. For example, the RealSR dataset contains only 559 scenes in

total, limiting the generalization capability of trained SISR models to a wider range

of scenarios.

While constructing real-world datasets of HR-LR image pairs, researchers have

also proposed to learn the image degradation process from unpaired HR and LR

images, and use the learned degradation model to generate HR-LR image pairs for

SISR model learning [43, 19, 59, 82]. All these methods employ the Generative

Adversarial Network (GAN) [51] to learn the degradation process by differentiating

the distribution between generated LR and real LR images. Unfortunately, training

such a GAN with unpaired data is very difficult and may not converge to the desired

result. Moreover, using a network to model the degradation from HR to LR images

makes it hard to interpret the degradation process, ignoring some prior knowledge

on the image formation.

4.1.2 Motivation

In this chapter, we model the image degradation process by using spatially variant

degradation kernels instead of a network, and propose to learn this model from
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the HR-LR image pairs in the RealSR dataset instead of the unpaired HR and

LR images. It is widely agreed in literature [95, 131, 102, 136, 133] that the LR

image formation process can be formulated as first blurring the HR image with

a degradation kernel, followed by downsampling and noise addition, while in real

scenarios the degradation kernel is spatially variant, relating to the depth and local

content in the scene. Clearly, the pixel-wise degradation kernels are the key to model

the degradation process. One may propose to learn a network to directly map the HR

image to LR image, or propose to learn a network to directly predict the pixel-wise

degradation kernel. However, the learning space of those two proposals can be too big

for modeling the degradation process, while they ignore the common knowledge of

image degradation. Considering the fact that blurring kernels in an optical imaging

system can be generally described as bell-shaped smooth functions [23], we argue

that the plausible degradation kernels distribute in a small subspace, which can be

approximated as a linear combination of a group of basis kernels. Therefore, we

propose to learn a group of basis kernels as well as a weight prediction network to

predict the combination coefficients at each pixel.

An end-to-end learning scheme is designed to learn the basis kernels and the

weight prediction network from the RealSR dataset [21]. Once learned, our degrada-

tion model takes an HR image as input, predicts the spatially variant kernels at each

location, and outputs the degraded LR image. In this way, we can easily generate

a large amount of realistic HR-LR image pairs using the HR images on hand. Fi-

nally, we can train SISR models by using these synthetic yet realistic HR-LR pairs.

Experimental results show that the trained SISR models achieve better generaliza-

tion performance than the models trained only on the RealSR dataset, owing to the

enlarged training data of realistic HR-LR image pairs.
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4.2 Literature Review

4.2.1 Single Image Super-resolution

Single image super-resolution (SISR) is an active topic in low-level vision, and a

plenty of works have been proposed in the past decades, including interpolation-

based [137], model-based [36, 57] and learning-based methods [33, 70, 105, 109, 81,

30, 142, 141, 80]. Traditional methods are usually limited in representing the complex

image local structures, while the recently developed deep CNN have shown great

advantages in image structure representation and consequently improved much the

SISR performance [33, 70, 77, 81, 80, 141]. For example, Kim et al. [70] employed the

residual learning strategy to design the VDSR model with 20 convolutional layers.

Liu et al. [81] proposed to utilize contextual information by exploiting the image

non-locally correlation. Zhang et al. [141] proposed a very deep CNN with over 400

layers, and improved much the SISR performance. Despite the great success, most of

the CNN based SISR models are trained on synthetic datasets, where the LR images

are generated by applying simple operators such as bicubic downsampling to the HR

images [33, 70, 105, 109, 81, 30, 142, 141, 80]. Unfortunately, the real-world image

degradation process is far more complex than bicubic downsampling. Such a gap

between synthetic data and real data makes the trained deep SISR models hardly be

generalized to real-world LR images.

4.2.2 Real-world SISR

To solve the problem of real-world SISR, one intuitive way is to use a more complex

degradation process to simulate LR images. Zhang et al. [136] proposed to use mul-

tiple Gaussian kernels with additive white Gaussian noise to simulate LR images,

whereas the selection of suitable kernels is difficult and ad hoc for practical appli-

cations. Another recently popular solution is to employ the generative adversarial
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network (GAN) [51] with unsupervised learning. E.g., SRGAN [78] is proposed to

utilize adversarial loss to improve the perceptual quality of images. While the GAN-

based methods show some interesting results on SISR, their results are not stable

and often exhibit some unnatural visual artifacts.

Instead of simulating HR-LR image pairs, recently efforts have been devoted to

construct real-world SISR datasets. Qu et al. [100] proposed to use a beam splitter to

acquire paired HR-LR images. Kóhler et al. [74] used hardware binning on camera

sensor to generate LR images. However, these two datasets contain very limited

scenes, 31 in [100] and 14 in [74]. Very recently, DSLR cameras have been used to

construct real-world SISR datasets by capturing the same scene under different focal

lengths. Chen et al. [25] collected 100 image pairs of printed postcards. Zhang et al.

[139] constructed the SR-RGB dataset with 500 scenes, whereas the image pairs are

not strictly aligned. To enable pairwise learning, an image registration algorithm is

proposed in [21] to carefully handle the misalignment between HR and LR images

caused in the data collection process. The so-called RealSR dataset contains a set of

aligned real-world HR-LR image pairs, which allow direct pairwise training of SISR

models. However, the collection and processing of such a dataset is laborious and

costly, and the scale and diversity of RealSR dataset is relatively limited (559 scenes

in total).

4.3 Degradation Model Learning for SISR

In this section, we first formulate the LR image degradation model based on the

real-world LR image formation process. We then present how to learn the pixel-wise

degradation models. Finally, we present how to use the learned degradation models

to generate realistic HR-LR datasets for training real-world SISR models.
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4.3.1 Formulation of Image Degradation Model

Denote by IH an HR image and by IL its LR counterpart. In literature [95, 131, 102,

136, 133], the image degradation from an HR image to an LR image can be generally

represented as

IL “ pIH ˚ kqÓd ` v, (4.1)

where “˚” is the convolution operator, k is the degradation kernel, Ód is the down-

sampling operator, and v is the random observation noise. The goal of SISR is to

recover the underlying HR image IH given its LR observation IL.

Most of existing SISR works [33, 70, 109, 81, 142, 141, 80] assumes that the

degradation kernel k is uniform, i.e., spatially invariant, over the whole image. Par-

ticularly, they apply the bicubic kernel to HR images to simulate the HR-LR image

pairs, and then use those pairs to train SISR models. Whereas in real-world SISR

problems, the degradation kernel is much more complex, correlating with the depth

and local content of the scene [21]. Therefore, the degradation kernel is typically

non-uniform and spatially variant. At each location pi, jq, the kernel may vary, and

we use ki,j to denote the per-pixel degradation kernel. The spatially variant image

degradation from HR to LR can be formulated as:

ILpi, jq “ IHi,j d ki,j ` vpi, jq, (4.2)

where IHi,j denotes a local image window centered at pi, jq with the same size as kernel

ki,j, and “d” is the inner product operator.

From Eq. (4.2), one can see that the key to model the real-world image degra-

dation process is how to predict the pixel-wise degradation kernel ki,j. One intuitive

idea is to learn a CNN from the available HR-LR pairs (e.g., the RealSR dataset

[21]) to predict the kernel ki,j; however, the learning space of a CNN can be too big

for the kernels and the network can be over-fitted by the limited training data. On
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Figure 4.1: Overview of the proposed approach for degradation model learning. A
group of basis kernels Φ are learned together with a weight prediction network F,
which are used to generate the pixel-wise degradation kernels. The LR image is
obtained by applying the pixel-wise degradation kernels to the HR image.

the other hand, the predicted kernel may have poor interpretability since they may

not accord with our prior knowledge on the image degradation process (please refer

to our ablation study in Sec. 4.4.3 for more discussions). It is commonly agreed that

the degradation kernels in an optical imaging system can be generally described as

bell-shaped smooth functions [23]. This means that the plausible degradation ker-

nels are not arbitrary but actually fall into a small subspace, which can be spanned

by a group of basis kernels. Denote by Φ “ tφ1, . . . ,φMu the set of M basis ker-

nels. We propose to approximate the pixel-wise degradation kernel ki,j as a weighted

combination of Φ as follows:

ki,j «
ÿM

m“1
Ci,jpmqφm, (4.3)

where φm is the mth basis kernel and Ci,j represents the combination weight vector at

location pi, jq. The above formulation constrains the kernels in a subspace which can

be more easily learned, especially when the available training dataset (e.g., RealSR)

is not very big.
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4.3.2 Degradation Model Learning

From Eq. (4.3), one can see that the learning of pixel-wise kernels ki,j is turned into

the learning of basis kernels Φ and the weight vectors Ci,j. The basis kernels are

global to all image regions, while the weights depend on the image local contents.

We propose to use a network to predict the weights and learn it simultaneously with

the basis kernels from some real-world HR-LR dataset.

Our degradation model learning (DML) approach is illustrated in Fig. 5.1. With

the HR image IH as input, a CNN F with parameters Θ is learned to predict the

weights, i.e., C “ FpIH |Θq, where C is the set of weight vectors Ci,j. The basis

kernels φm are also learned so that the kernels ki,j can be predicted according to

Eq. (4.3). The predicted degradation kernels are applied to the HR image IH to

output the predicted LR image, denoted by Î
L
. Suppose there are N pairs of HR-LR

training images, the learning objective can be formulated as

min
Φ,Θ

ÿN

n“1
||Î

L

n ´ ILn ||
2
2. (4.4)

We learn the basis kernels Φ and weight prediction network F in an end-to-end

manner by using the RealSR dataset [21].

We design the weight prediction network F following an encoder-decoder struc-

ture. It takes an HR image as input and outputs a weight vector at each location. To

embrace large receptive field, we use a max pooling layer for feature down-sampling,

and employ the bilinear upsampling layer to increase the feature resolution and en-

sure pixel-wise outputs. Convolutional layer with filters of size 3 ˆ 3 is used, and

ReLU is used as the activation function. To output the per-pixel weights, we use

sigmoid function after the last convolutional layer for normalization. The whole net-

work can be easily optimized by the SGD or ADAM optimizer. Examples of the

learned kernels, the visualization of the predicted weight maps and more discussions

67



will be provided in the ablation study (see Section 4.4.3).

4.3.3 SISR Model Learning

Once the basis kernels Φ and the weight prediction network F are learned by using

the DML approach presented in Section 4.3.2, we can use them to synthesize HR-LR

image pairs by using a set of collected HR images as inputs. However, directly using

the synthesized LR images to train SISR models is problematic. As described in Eqs.

(4.1) and (4.2), the real-world LR images are usually corrupted by a certain amount

of noise. However, the training objective in Eq. (4.4) encourages to generate a noise-

free LR image since the random noise is hard to predict. If we use the synthesized

clean LR images to train the SISR model and then apply the model to real-world

noisy LR data, the noise will be exaggerated and lead to unpleasant visual artifacts.

To address this issue and further diminish the gap between synthetic and real LR

images, we add random noise to the synthesized LR image Î
L

n according to the LR

image formulation process described in Eq. (4.1). Without additional information on

the imaging system (e.g., sensors, lens), we simply assume additive white Gaussian

noise (AWGN) and empirically set the noise level as σ “ 5.

Finally, we collect a set of high quality images as the HR set, and use the learned

degradation model together with AWGN to generate synthetic yet realistic HR-LR

image pairs. These image pairs are used to train the SISR model. In this chapter, we

adopt two representative SISR network architectures, a lightweight network VDSR

[70] and a deeper network RCAN [141], to validate the proposed DML method.
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4.4 Experimental Results

4.4.1 Experiment setup

We carry out both quantitative and qualitative experiments to demonstrate the ef-

fectiveness of our proposed DML method for SISR model training. Considering that

there are a few issues to be validated and explained, here we summarize how we set

up the experiments for a better understanding of our work.

• In Section 4.4.2, we introduce the training dataset and the testing dataset in

our experiments, as well as some implementation details of our algorithm.

• Section 4.4.3 conducts some ablation studies. First, we discuss the selection of

the number of basis kernels in DML. Then we compare our DML with another

two potential solutions to synthesize HR-LR pairs. One is to learn a CNN to

directly map an HR image to an LR one, and another is to learn a CNN to

predict the pixel-wise degradation kernel.

• In Section 4.4.4 we demonstrate that our DML can result in more robust real-

world SISR performance. We first use the RealSR dataset [21], where aligned

real-world HR-LR pairs are available so that PSNR/SSIM/LPIPS indices can

be computed, to perform quantitative experiments. We then use other real-

world data out of the training dataset to perform qualitative experiments,

which are to demonstrate that our DML can improve the robustness and gen-

eralization performance of real-world SISR models.

4.4.2 Datasets and Implementation Details

Datasets. There are three types of datasets required to validate the performance of

DML in degradation process learning and SISR model training.
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• The first one is the RealSR [21] dataset (version 2), which contains aligned HR-

LR image pairs of 559 scenes collected by two cameras with 3 zooming factors:

ˆ2, ˆ3 and ˆ4. We follow [21] to split the RealSR dataset into 459 scenes for

training and the remaining 100 for testing. We use the training part of this

dataset to train our degradation model by the method described in Section

4.3.2, and use the testing part to quantitatively evaluate the performance of

DML and its application to real-world SISR.

• Once the degradation model is learned, we can apply it to an HR image dataset

to generate synthetic HR-LR pairs. We construct an HR dataset by combin-

ing the Flickr2K dataset [80] and Internet images, containing 3150 images in

total. The Flickr2k dataset has 2650 high quality images of various scenes,

whose resolution is mostly 1500ˆ 2000. To diminish the effect of compression

artifacts, we downsample those Flickr2k images by a factor of 2 after Gaussian

smoothing (with scale σ “ 1). We also download 500 raw images of 4K reso-

lution from [121], and then apply the PhotoShop CameraRaw tool to them so

that uncompressed high quality RGB images of 4K resolution are obtained.

• The third dataset is to validate the effectiveness of DML for real-world SISR.

We use the SR-RGB dataset [139] which consists of real-world LR images and

their unaligned HR counterparts obtained by optical zoom of DSLR. Since

the HR and LR images are not aligned, the PSNR/SSIM/LPIPS measures

can not be calculated but the HR images can be used as references for visual

comparison.

Implemention Details. We set the size of basis kernels to be learned as 15ˆ15 for

all zooming scales ˆ2, ˆ3, and ˆ4. The basis kernels are randomly initialized, and

then normalized to have summation 1 for further updating. The weight prediction

network is initialized using the Xavier initializer [48]. In the training of both DML
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Table 4.1: Evaluation of the quality of generated LR images and super-resolved HR
images by using the RealSR [21] dataset. The best and second results are highlighted
in red and blue, respectively.

Method

Generated LR Super-resolved HR

ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DML (N=4) 37.82 0.9862 36.46 0.9848 35.61 0.9840 33.23 0.9544 30.09 0.9150 28.50 0.8856

DML (N=8) 37.93 0.9864 36.54 0.9850 35.75 0.9842 33.32 0.9552 30.18 0.9157 28.60 0.8864

DML (N=16) 37.90 0.9863 36.51 0.9849 35.73 0.9841 33.28 0.9548 30.16 0.9153 28.58 0.8859

DirectNet 37.70 0.9864 36.33 0.9843 35.50 0.9838 33.13 0.9539 30.01 0.9144 28.42 0.8853

DirectKPN 37.77 0.9863 36.35 0.9844 35.56 0.9836 33.16 0.9545 30.06 0.9147 28.48 0.8860

and SISR networks, we convert the RGB images to YCbCr color space, and train or

test on the Y channel. Images are cropped into 192ˆ 192 patches for training of all

models. Left-right and up-down flips are used for data augmentation. The Adam

optimizer [72] with the default parameter setting (β1 “ 0.9, β2 “ 0.999) is used as

the optimizer. We train DML and SISR models using fixed learning rate of 1e´4 for

100K and 300K iterations, respectively. The batch size is set as 16 in DML training.

As for SISR models, we adopt two representative network architectures: VDSR [70]

and RCAN [141]. We implement RCAN with 100 convolutional layers. The batch

size is set as 16 and 2, respectively, for training VDSR and RCAN models.

4.4.3 Ablation study

We conduct ablation studies to investigate the following two issues of DML: (1)

selection of the number of basis kernels in DML; and (2) comparison of DML with

the other two potential HR-LR pair synthesis approaches. We train our DML and

its variants on the training set (459 image pairs) of RealSR [21], and use the testing

set of RealSR to evaluate the quality of generated LR images and the quality of

super-resolved HR images. PSNR and SSIM are used as the quantitative metrics.

Number of basis kernels. We first study the suitable number of basis kernels in
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our DML. By using the training part of the RealSR dataset, we learn N=4, 8, 16

basis kernels and their associated weight predict networks. We then apply the learned

models to the HR images in the testing part of the RealSR dataset to generate LR

images. By comparing the synthesized and real LR images, we compute and list

the PSNR/SSIM results in Table 4.1. One can see that by increasing the number

from N=4 to N=8, better LR generation performances can be achieved, whereas the

performance of using N=16 basis kernels is slightly worse than N=8. This means

that the underlying degradation process can be well approximated by using N=8

basis kernels.

We visualize the learned 8 basis kernels for different zooming factors in Fig. 4.2.

One can see that with the increase of zooming factor from 2 to 4, the kernels becomes

more dispersed and complex, which are in accordance with our common knowledge

of image degradation process. We also visualize the basis coefficients predicted by

our weight prediction network in Fig. 4.3. One can see that the learned network can

adaptively assign different weights to the kernels according to the scene content and

image local structure to generate realistic LR images.

Since our final goal is to improve the SISR performance via DML, it is also

necessary to test the effect of N on the final SISR results. We apply the learned

DML models to our collected HR image dataset (see Sec. 4.2) to synthesize 3150

HR-LR images pairs, which are then used to train a VDSR super-resolution model.

By applying the trained VDSR model to the LR images in the RealSR testing set,

we compute the PSNR/SSIM indices of the super-resolved HR images. Table 4.1

lists the results. One can see that N=8 again achieves the best results for real-world

SISR. Therefore, we set N=8 for DML in our experiments.

Comparison with other HR-LR pair synthesis strategies. Besides the pro-

posed DML, there are two other intuitive strategies to synthesize HR-LR image pairs.

One is to learn a CNN that directly maps an HR image to an LR one, denoted as
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Figure 4.2: Visualization of the learned degradation basis kernels by our DML (N=8)
model. The left, middle and right 4 columns represent the basis kernels for SR
zooming factors ˆ2, ˆ3 and ˆ4, respectively.

Figure 4.3: Visualization of the predicted combination weights of the basis kernels
by our DML method for zooming factor ˆ2. The leftmost image is the input HR
image, and the right 8 images visualize the predicted weights corresponding to each
basis kernels (refer to Fig. 4.2 for the 8 kernels). The brighter intensity denotes
larger weight. One can see that our weight prediction network can adaptively assign
different weights according to the scene content and local structures.

DirectNet, and the other is to learn a kernel prediction network [91] to predict the

degradation kernel, denoted as DirectKPN. To validate the advantages of our pro-

posed DML method, we implement these two strategies by using the same backbone

(with the same hyper-parameters) of the weight prediction network in our DML for

fair comparison. For DirectNet, we implement it using the residual learning strategy

[70] for better convergence. All the three competitors are trained on the training set

of RealSR [21], and tested on the RealSR testing set. PSNR and SSIM are used as

quantitative measures.

We first evaluate the performance of the three strategies on LR image generation.

The results are listed in Table 4.1. One can see that DML performs constantly better

than DirectNet or DirectKPN on all the three zooming factors, with an improvement

of 0.23dB and 0.20dB in PSNR, respectively. This shows that DML can generate

more realistic LR images, owing to our proposed strategy of learning basis kernels and
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predicting pixel-wise combination weights. Besides, it is observed that DirectKPN

performs slightly better than DirectNet. This shows that by taking into account the

image degradation process, better LR generation performance can be achieved by

learning to predict pixel-wise kernels than directly predicting LR image pixels.

We then evaluate their effectiveness on improving SISR. We apply the three LR

image generation models to the collected HR image dataset, synthesizing 3150 HR-

LR images pairs by each model. We add small AWGN to those HR-LR pairs (refer

to Section 4.3.3 for details), and train three VDSR models. Finally, we apply these

three VDSR models to the LR images in the testing part of the RealSR dataset,

and obtain the super-resolved HR images. The PSNR/SSIM results are listed in

Table 4.1. One can see that the VDSR network trained on synthetic HR-LR pairs

generated by our DML method, performs constantly better (around 0.15dB in PSNR)

than those trained on pairs generated by DirectNet or DirectKPN. This validates the

superiority of DML to DirectNet and DirectKPN on improving SISR performance.

Our DML method can generate realistic LR images with a smaller gap to real-world

LR images, therefore leading to better SISR results than DirectNet and DirectKPN.

We visualize the pixel-wise degradation kernels predicted by our DML and Direc-

tKPN in Fig. 4.4 (note that DirectNet does not predict kernels). One can see that

predicted degradation kernels by DML vary with the image local content, whereas the

degradation kernels predicted by DirectKPN are simple and rather uniform across the

whole image. This is probably because when we directly learn the pixel-wise degra-

dation kernel, the solution space is too large so that DirectKPN can only converge to

a simple solution, resulting in uniform kernels for an input image. In contrast, our

DML strategy can effectively reduce the kernel space and thus result in a more robust

adaptive degradation kernel prediction model. We also visualize the SISR results by

the three degradation models in Fig. 4.4. It can be seen that our DML based SISR

method exhibits better visual quality with more details and less artifacts.
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Kernels by DML

Kernels by DirectKPN

Kernels by DML

Kernels by DirectKPN

DirectNet DirectKPN DML HR (ˆ2) DirectNet DirectKPN DML HR (ˆ4)

Figure 4.4: Visualization of predicted degradation kernels by DML and DirectKPN.
One can see that the degradation kernels predicted by DML vary with the image
local content, whereas the kernels predicted by DirectKPN are simple and rather
uniform across the whole image. We also show the SISR results of the VDSR models
trained on the synthetic HR-LR pairs by DML, DirectNet and DirectKPN. One can
see that the model based on DML can recover more details with less artifacts.

4.4.4 Experiments on Real-World SISR

As discussed in the Introduction section in this chapter, the goal of our DML is to

synthesize realistic HR-LR image pairs to supplement the limited number of real-

world HR-LR pairs so that more robust SISR models can be trained. To validate

whether this goal is achieved by our DML method, in this section we use VDSR

[70] (20 layers) and RCAN [141] (100 layers) as two representative SISR models to

perform extensive SISR experiments. By using the HR image dataset we collected, we

synthesized 3150 HR-LR pairs via the learned DML model, and denote this dataset

by Syn-DML. Note that recently a GAN based HR-LR pair synthesis method called

DSGAN [43] was developed. We finetuned this model on the RealSR dataset, and

applied it to our HR image dataset to synthesize another dataset of HR-LR pairs,

denoted by Syn-DSGAN. Therefore, we can train variants of VDSR/RCAN models

by using: only RealSR, only Syn-DSGAN, only Syn-DML, the combination of RealSR

and DSGAN, and the combination of RealSR and Syn-DML dataset, resulting in a
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Table 4.2: Evaluation of SISR performances on the RealSR [21] dataset by models
trained using different training data. The best, second and third results for each
SISR network architecture are highlighted in red, blue and green, respectively.

SISR
Training dataset

LPIPS Ó PNSR Ò SSIM Ò

model ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4

VDSR

RealSR 0.141 0.224 0.291 33.60 30.53 28.92 0.957 0.919 0.887

Syn-DSGAN 0.145 0.240 0.309 32.47 29.57 27.20 0.949 0.908 0.851

Syn-DML 0.137 0.218 0.284 33.32 30.18 28.60 0.955 0.916 0.886

RealSR+Syn-DSGAN 0.151 0.234 0.289 33.35 30.13 28.56 0.954 0.915 0.885

RealSR+Syn-DML 0.124 0.198 0.267 33.50 30.37 28.86 0.957 0.918 0.889

RCAN

RealSR 0.141 0.227 0.283 33.91 30.86 29.26 0.960 0.924 0.896

Syn-DSGAN 0.148 0.239 0.319 32.45 29.78 27.95 0.948 0.916 0.877

Syn-DML 0.131 0.210 0.265 33.38 30.29 28.66 0.956 0.918 0.887

RealSR+Syn-DSGAN 0.143 0.230 0.288 33.50 30.56 28.80 0.956 0.920 0.888

RealSR+Syn-DML 0.123 0.195 0.242 33.73 30.61 28.99 0.958 0.921 0.891

total of 10 SISR models.

We evaluate the 10 VDSR/RCAN models on two real-world datasets. One is the

testing set of RealSR [21]. Since the aligned HR-LR pair are available, we can com-

pute the PSNR/SSIM/LPIPS indices to perform quantitative evaluation. Another

is the SR-RGB dataset [139], which consists of many LR images and their unaligned

HR counterparts. Qualitative visual comparisons can be made on it for the different

SISR models. We’d like to stress that the testing on the second dataset is more im-

portant (though qualitative) because it is independent of the RealSR dataset, part

of whose samples are used to train the DML and VDSR/RCAN models. The testing

results on the SR-RGB [139] dataset can more faithfully reflect the generalization

capability of competing SISR models than those on the RealSR dataset.

Results on the RealSR dataset [21]. We apply the competing VDSR/RCAN

models to the testing set of RealSR, and the PSNR/SSIM/LPIPS indices are shown

in Table 4.2. Note that LPIPS is a perceptual index that measures the perceptual

quality of images (lower the better). We can have the following findings. First, the

VDSR/RCAN models trained on Syn DML achieve better LPIPS score in all cases
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Figure 4.5: Visual comparison of the competing SISR models on RealSR [21] dataset with SR
scale ˆ4.
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than the models trained on RealSR. This validates the effectiveness of our model in

improving perceptual quality by synthesizing realistic HR-LR image pairs. Second,

the VDSR/RCAN models trained on the Syn-DML dataset achieve comparable but

slightly inferior PSNR/SSIM indices to the models trained on RealSR. This is not a

surprise because the training and testing data for the latter model are from the same

source. Third, SISR models trained on Syn-DML perform significantly better (about

1dB) than those trained on Syn-DSGAN, which demonstrates the superiority of our

DML method to the GAN based DSGAN [43]. Last, by combining RealSR with

the synthetic dataset for training, better quantitative results can be achieved than

training using only synthetic dataset. Particularly, the VDSR model (ˆ4) trained

on RealSR+Syn-DML achieves even high SSIM scores than the model trained on

RealSR.

In Fig. 4.5, we compare the visual quality of super-resolved HR images by the ten

SISR models. One can see that models trained on Syn-DML and RealSR+Syn-DML

can effectively recover more image details with more pleasant perceptual quality

than the trained using only the RealSR dataset. In particular, the models trained

on RealSR+Syn-DML achieve the best visual quality. This validates that our DML

method can largely improve the generalization performance of real-world SISR mod-

els by synthesizing realistic HR-LR pairs for training.

Results on the SR-RGB dataset [139]. The SR-RGB dataset contains real-world

HR and LR images of the same scene, which are however not well aligned. Though it

is hard to compute PSNR/SSIM metrics, the HR images in this dataset can be well

used a reference for visual comparison of SISR methods. Since the SR-RGB dataset

was constructed independently of the RealSR dataset by using different cameras and

lens, the results can more fairly demonstrate the generalization capability of an SISR

model to real-world scenarios.

In Fig. 4.6, we visualized the super-resolved HR images on SR-RGB dataset
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Figure 4.6: Qualitative comparison of competing SISR methods on the SR-RGB [139]
dataset with SR scale ˆ4.
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[139] by the ten VDSR/RCAN models trained on different training datasets. One

can see that models trained on RealSR dataset can only moderately recover some

details. Models trained on Syn-DSGAN produce severe artifacts. Benefitting from

the enlarged realistic training data, SISR models trained on Syn-DML can produce

visually pleasing results with more fine-grained details. Particularly, the models

trained on combined RealSR+Syn-DML deliver the best perceptual quality of super-

resolved HR images. The experiments on SR-RGB dataset demonstrate that the

SISR models trained by our DML method can be effectively generalized to real-world

applications.

4.5 Conclusions

In this chapter we proposed to tackle the generalization problem of real-world SISR

models by synthesizing realistic HR-LR pairs. To achieve this goal, we first learned

an image degradation model from real-world HR-LR image pairs. Specifically, we

learned a set of basis degradation kernels together with a weight prediction network.

The degradation kernel at any location was estimated as the linear combination of

the basis kernels using the weights predicted by the weight prediction network. The

learned degradation model was then used to synthesize 3150 HR-LR image pairs

covering various scenes for SISR model training. Our extensive analyses and experi-

ments showed that the proposed degradation model learning method can effectively

improve the generalization performance of SISR models to real-world applications.
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Chapter 5

Blind Super-Resolution for

Real-World Images

In this chapter, we keep on working on the task of real-world single image super-

resolution (SISR). As illustrated in chapter 4, despite the prominent results brought

by the recent deep learning based SISR methods, most of them assume a certain type

of degradation, and therefore struggle to generalize to real-world scenarios where the

authentic degradation is complicated and unknown. In this chapter, different from

the degradation model learning based framework as used in chapter 4, we address

the task of real-world SISR by proposing a blind super-resolution (BSR) method for

spatially variant and complex degradations.

Different from the time-consuming iterative updating scheme used in previous

BSR methods, we propose to estimate the pixel-wise degradations in a one-step

manner, and perform BSR using a deep CNN, whose local filters are adaptive to the

estimated degradations. Specifically, we leverage the image edge map to guide the

degradation estimation, and design a pyramid U-shaped sub-network to constrain the

smoothness of estimated degradation map, with which a hyper-parameter network

is trained to generate the adaptive filters to perform BSR. Extensive experiments

are carried out on synthetic benchmark datasets and real-world images, and the

results show that our BSR method achieves leading performance both quantitatively
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and qualitatively. It also has better runtime efficiency compared to existing BSR

methods.

5.1 Introduction

In section 4.1 of the previous chapter, we have thoroughly introduced the background

of single image super-resolution (SISR). Here, we briefly retrospect the background

and challenge of SISR, and focus on the introduction of the sub-field of SISR, i.e.,

blind image super-resolution. Finally, we give the motivation of the proposed method

in this section. For the detailed background of SISR, please refer to section 4.1 in

chapter 4.

SISR aims to recover a high-resolution (HR) image from its low-resolution (LR)

observation, which is a highly valuable technique for improving the resolution of

digital images. Despite the great success brought by deep convolutional neural net-

works (CNNs) based SISR methods, the real-world SISR task is still challenging.

This is mainly due to that most CNN based SISR models are trained for a fixed

type of degradation, e.g., bicubic downsampling, whereas the degradation in real-

world scenarios is much more complicated. Therefore these SISR models have poor

generalization ability to real-world LR images.

Several works proposed to bridge the domain gap between realistic degradation

type and the synthetic ones by constructing real-world SISR datasets [21, 140, 24,

108, 75], to characterize the authentic degradations in real-world scenarios. However,

datasets of this kind are often limited in the number of images and degradation types.

To overcome this, in chapter 4 we proposed to learn the degradation model from these

datasets, and then generate large scale synthetic but realistic training image pairs.

In this chapter, instead of relying on these RealSR dataset, we work on another line,

i.e., blind image super-resolution, to tackle the task of real-world SISR.
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5.1.1 Blind Image Super-Resolution

Apart from collecting realistic HR/LR image pairs, efforts have also been made to

design blind super-resolution (BSR) models [13, 29, 52, 90, 118] for images with

unknown degradation. They generally first estimate the degradation model of the

given image, and then utilize a non-blind SISR model to adapt to the estimated

degradation.

Existing BSR methods can be grouped into two categories. The first category

of methods iteratively and alternately estimate the degradation kernel and the HR

image. For example, Wang et al. [118] employed the maximum a-posterior frame-

work and modeled the prior of HR image patches using Markov random field. They

then alternatively updated the HR patches and the degradation kernel. Based on

the observation that an incorrect degradation would cause either over-smoothing or

over-sharpening of the HR image, a corrector was trained in IKC [52] to gradually

correct the estimated degradation from the estimated HR image. To handle spatially

variant degradation, a discriminator was trained in BSRSVD [29] to estimate the im-

age artifacts caused by mismatched degradation kernel. This category of methods

have achieved nice SISR performance for simple uniform degradations, whereas the

iterative updating scheme is very costly, impeding their usage in real applications.

Another category of BSR methods however directly estimate the degradation

from the given LR image only by exploiting natural image priors. Inspired by the

similarity of image patches across scales, Michaeli & Irani [90] proposed to extract

the nearest-neighbor patches to estimate the degradation kernel. They further pro-

posed KernelGAN [13] using deep CNN by assuming that the correct degradation

kernel could generate a downsampled version of the LR image that follows similar

distribution to the LR image itself. These methods consider only the degradation

type of blurring, and can easily fail on images with complex degradations, e.g., noise
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and compression.

However, existing BSR methods have several limitations. First, most of them

can only estimate the global degradation of an image, whereas the degradation of

a real-world image is generally non-uniform and spatially variant. Second, these

methods adopt a simple blur+downsampling degradation model, whereas real-world

images often suffer from complex degradations involving noise and compression ar-

tifacts. Third, most existing BSR methods employ an iterative scheme to estimate

the degradation hyper-parameters, which is time-consuming and hard to be used

in practical systems. These limitations motivate us to propose a BSR method for

real-world SISR, which is capable to process spatially variant complex degradations

with fast speed.

5.1.2 Motivation

In this chapter, we address the above issues by proposing a fast BSR method for real-

world images, namely BSR-RW. The proposed BSR-RW method learns to handle

real-world LR images with spatially variant and complex degradations of various

types of blurring, noise, compression, etc., and the combination of them. Specifically,

our model consists of two branches of networks: one branch estimates the pixel-

wise degradations from the given LR image, while another branch performs super-

resolution, whose local filters are adaptive to the estimated pixel-wise degradations.

In order to achieve high processing speed, we adopt a one-step degradation estimation

strategy which is free of the time-consuming iterative updating process in previous

BSR methods. However, directly estimating the non-uniform degradation from an

LR image is a non-trivial job. Considering the fact that the edge region provides

stronger hint of the underlying degradation than the flat region [129, 26], we utilize

the image edge map to guide the degradation estimation. Furthermore, a pyramid

U-shaped sub-network is designed to regularize the smoothness of the estimated
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pixel-wise degradation map. With the estimated spatially variant degradation map,

we employ a hyper-parameter network to generate degradation-adaptive filters, which

are used to extract image features and perform image super-resolution.

We evaluate the effectiveness of our BSR-RW method on both synthetic datasets

with uniform and non-uniform degradations and real-world images. Experimental

results show that our method achieves state-of-art performance, and greatly im-

proves the runtime efficiency over existing BSR methods. We also used the RealSR

dataset [21] for evaluation, where the HR/LR image pairs were collected by using

lens zooming of digital cameras. By fine-tuning our model on the RealSR datasets,

it can easily adapt to the degradation type of lens zooming, and achieves highly

competitive results on RealSR dataset. Furthermore, we collect a set of real-world

images, whose underlying HR counterparts are unavailable, from various sources for

evaluation. Our proposed BSR-RW method exhibits best qualitative results among

the competing methods, owing to its capability of degradation estimation and the

degradation-adaptive super-resolution filters.

5.2 Blind Super-Resolution for Real-World Images

Most existing SISR methods [13, 52, 29] consider only blurring and downsampling in

the degradation formulation from an HR image to the LR image. Such degradation

modeling ignores the effects of noise and JPEG compression. To better describe the

degradation process in real-world images, we adopt the following model:

IL “ fJpegppI
H
d kq Ód `Nq, (5.1)

where IH and IL denote the HR and LR images, respectively, k is the blur kernel,

Ód is the bicubic downsampling operator, fJpeg is the function of JPEG compression,

and N is the random noise. Please note that the JPEG compression artifacts are

image content dependent and spatially variant.
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Figure 5.1: Overview of our proposed network architecture. Given an LR image,
our method first estimates the pixel-wise degradation with the guidance of edge map
and the designed pyramid U-shaped module. The estimated degradation then goes
through the HPP-net to generate degradation-aware filters, which are finally used in
the SISR network for super-resolution.

To achieve fast inference time, we propose a one-stage degradation estimation

module, followed by an SISR network for adaptive super-resolution. The overview of

our network architecture is illustrated in Figure 5.1. Our network, namely BSR-RW,

consists of three major parts: a one-stage degradation estimation module to predict

the pixel-wise degradation, a hyper-parameter network which takes the estimated

degradation as input, and a degradation-aware SISR network whose convolutional

filters are based on the hyper-parameter network outputs. These three parts are

trained jointly. Note that the SISR network can be implemented with different struc-

tures and depths to balance between performance and efficiency. In the following,

we present the design of these three parts in detail.

5.2.1 Degradation estimation network

The degradation estimation network (DEN) takes the LR image IL as input to es-

timate the pixel-wise degradation. To meet the demand of practical applications, a

fast and accurate one-stage degradation estimation is desired. Considering that the

86



large bulk of image flat region contributes little to the degradation estimation since

degradations occur more distinctly in image edge region, we leverage the edge map

to generate a spatial attention mask to guide the feature extraction for degradation

estimation.

Guidance of edge map. We stack 6 conv layers for feature extraction from the

given LR image. The extracted feature map F is then multiplied with the spatial

mask Medge to draw attention on the edge region. Considering that Laplacian of

Gaussian (LoG) filter is an efficient edge detector with robustness to noise, we ex-

plicitly compute the edge map Iedge by applying the LoG filter on the LR image.

The edge map Iedge is further encoded via two conv layers and the sigmoid function

is used to generate the mask Medge. The final feature map, denoted as Fs, can be

formulated as:

Fs “ F ˚ SpfepI
edge
qq, (5.2)

where fe denotes the encoding function for the edge map, and S is the sigmoid

function.

Pyramid U-shaped module. With the extracted feature map Fs, one may use a

conv layer to directly map it to the degradation map. Unfortunately, such a direct

mapping would lead to an unstable estimation of the degradation map. Actually, for

most of the natural images, the degradations vary locally but smoothly. Therefore,

the degradation map should be locally smooth. Taking this prior knowledge into

consideration, we design a U-shaped structure to first downsample the feature Fs

using an average pooing layer, then resize it to the original resolution by bilinear

upsampling. The average pooling layer perceives contextual information from a

larger receptive field, and the upsampling ensures the smoothness of the estimated

degradation. Furthermore, to exploit the information across multiple image scales,

we use a pyramid of four U-shaped units and sum up the feature maps, as shown
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in Figure 5.1. The pooling strides of the first three units are empirically set as 7,

15 and 31, respectively. Global average pooling is used in the last U-shaped unit to

leverage the global degradation.

Loss function. With the features output by the pyramid U-shaped module, we

use a single conv layer to predict the pixel-wise degradation, denoted as rd P Rh˚w˚l,

where h,w are the height and width of the input LR image, and l is the dimension

of the estimated degradation vector. Unlike methods in [136, 52], which predict the

low-dimensional representation of degradation using pre-computed PCA basis, we

learn the latent representation to improve the generalization ability of our model to

complex degradations. This is accomplished by adopting a reconstruction loss on rd.

By feeding rd into a shallow CNN, denoted as Frec, the groundtruth degradation h

can be estimated. The loss function is given as:

lDEN “ ||Frecprdq ´ h||1. (5.3)

We use two conv layers to constitute the CNN Frec. We concatenate the vectorized

blur kernel k, noise variance σ and JPEG compression quality to constitute the

groundtruth degradation vector h.

5.2.2 Degradation-aware SISR network

With the estimated pixel-wise degradation rd, we then design a degradation-aware

network for super-resolution. To improve the robustness of our SISR network to

inaccurate rd, we add slight Gaussian noise to rd during training. Different from

[136, 52] which concatenate the estimated degradation with either the input image

or the extracted features, we design a degradation-aware residual (DAR) block to

adapt to different degradations.

The proposed SISR network is illustrated in Figure 5.1. We use the architecture of

EDSR [80] as our backbone, and place the DAR block after each ResBlock. The DAR
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Figure 5.2: Illustration of our DAC layer.

block is composed of several degradation-aware convolutional (DAC) layers, which

are similar to the dynamic local convolutional layer [66], but their filters depend

on the estimated degradation map. The local filters in DAC layer are generated

via the hyper-parameter network (HPP-net), which will be discussed in Sec. 5.2.3.

Given the input feature F P Rh˚w˚c, the HPP-net first generates the pixel-wise filters

wi,j P R
k˚k˚c˚c, where i, j denote the spatial coordinates, and k, c are the filter size

and channel dimension, respectively. As illustrated in Figure 5.2, wi,j is then applied

on the local region centered at i, j of feature map F to obtain the filtered results.

To balance between performance and efficiency, we split the input features along the

channel dimension into two parts. One part is the common conv layer, and the other

goes through the DAC layer for transformation with regard to the degradation. We

then concatenate the two parts, and use the shortcut connection to obtain the final

output of the DAR block.

The input LR image first goes through a single conv layer to increase the channel

dimension to 128. We then stack several groups of Resblocks and DAR blocks to

build our adaptive feature extraction module. The extracted deep features are finally

passed through the shuffle upsampling layer and the subsequent two conv layers to

generate the super-resolved image IS. All the conv filters are of size 3 ˆ 3. We use
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ReLU as the activation function. The loss function is defined as the L2 norm between

the recovered image IS and groundtruth HR image IH :

lSR “ ||I
S
´ IH ||22. (5.4)

5.2.3 Hyper-parameter network

The HPP-net takes the estimated degradation rd as input and produces a bunch of

filters for the DAC layers. We first stack 4 conv layers to encode the latent repre-

sentation of estimated degradation rd. The channel of the encoded degradation is

set as 32. We then use one conv layer for each DAC layer to generate the pixel-wise

degradation-aware filters.

We jointly train the three branches, i.e., DEN, HPP-net and degradation-aware

SISR network, from scratch. The final loss function is the combination of lDEN and

lSR:

l “ lDEN ` lSR. (5.5)

By using different backbones, in this chapter we implement two models: BSR-RW

light and BSR-RW, which contain 4 and 8 groups of Resblocks and DAR blocks,

respectively. Details will be introduced in next section.

5.3 Experiments

5.3.1 Experimental setting

We conduct experiments on synthetic and real-world super-resolution datasets. We

use the training set of [136], which comprises 800 images from the DIV2K [4] dataset

and 4,744 images from the WED [84] dataset, to generate our training data. Except

in Sec. 5.3.3, where we follow the setting in existing BSR methods [13, 29, 52] to

fairly compare with them, in all the other experiments we generate our training data
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by Eq. (5.1) to better model the degradation process of real-world data. We follow

[52] to model the blurring kernel as anisotropic Gaussian kernel of size 15ˆ 15 with

the kernel width ranging in [0.2, 2.0], [0.2, 3.0] and [0.2, 4.0] for zooming factors

2, 3 and 4, respectively. As for the noise and JPEG compression artifacts, we use

the additive white Gaussian noise (AWGN) with variance from 0 to 15, and sample

the JPEG compression factor within the range of [70, 100]. More details about the

experiment settings will be introduced in the corresponding sections.

We crop HR patches of size 192 ˆ 192 from the HR images, and generate the

corresponding LR patches of sizes 96ˆ 96, 64ˆ 64, and 48ˆ 48 for zooming factors

ˆ2, ˆ3 and ˆ4, respectively. As in [52, 29, 136], we train our model in the RGB

space, and evaluate on the Y channel in the YCbCr space. We train our model by

using the Adam optimizer [73] with the default setting (β1 = 0.9, β2 = 0.999). The

batch size is set as 16. We train our models for 500K iterations in total. The learning

rate is set as 1e´4 for the first 300K iterations and the learning rate for the remaining

200K iterations is 1e´5.

5.3.2 Ablation study

We first perform ablation experiments to demonstrate the role of different com-

ponents of our BSR-RW network. Specifically, we implement four variants of our

BSR-RW model: BSR-RW w/o edge and BSR-RW w/o U-shape by removing the

guidance of edge map and the pyramid U-shaped module from our full BSR-RW

model; BSR-RW uniform by considering only spatially invariant degradation and

replacing the pyramid U-shaped module in BSR-RW with a global average pooling

layer; BSR-RW w/o DEN is the non-blind baseline of BSR-RW without estimating

the degradation model, which simply utilizes a unified network to deal with different

kinds of degraded images. As BSR-RW w/o edge, BSR-RW w/o U-shape and BSR-

RW uniform have a degradation estimation component, for fair comparison we add
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Table 5.1: The PSNR/SSIM results of BSR-RW and its variants on synthetic non-
uniform degradation. The zooming factor is ˆ4.

Method
Set5 Set14 BSD100

PSNR SSIM PSNR SSIM PSNR SSIM

BSR-RW w/o DEN 29.06 0.9025 26.61 0.8232 26.08 0.7847

BSR-RW uniform 29.06 0.9064 26.71 0.8254 26.20 0.7914

BSR-RW w/o edge 29.25 0.9101 26.82 0.8279 26.20 0.7919

BSR-RW w/o U-shape 29.28 0.9098 26.84 0.8267 26.22 0.7921

BSR-RW 29.35 0.9112 26.93 0.8301 26.32 0.7947

five more ResBlocks to the BSR-RW w/o DEN to make the four variants to have

similar number of parameters and model complexity.

We first use Set5, Set14 and BSD100 for quantitative evaluation, and synthesize

non-uniformly degraded LR images by applying Gaussian blurring on the HR images

with gradually increased kernel width (increase from 0.2 to 2 from left to right),

followed by ˆ4 downsampling, AWGN with σ “ 5 and JPEG compression with

factor 90. The PSNR/SSIM results of our BSR-RW and its variants are shown in

Table 5.1. We can see that BSR-RW uniform achieves slightly better PSNR indexes

over BSR-RW w/o DEN. By considering spatially variant degradation maps, BSR-

RW w/o edge and BSR-RW w/o U-shape achieve better results than BSR-RW w/o

DEN and BSR-RW uniform. This clearly demonstrates the importance of estimating

spatially variant degradation maps. Moreover, BSR-RW further improves BSR-RW

w/o U-shape and BSR-RW w/o edge, which validates the effectiveness of the proposed

edge map guidance strategy and the pyramid U-shaped module.

In addition to the quantitative study by using synthetic LR images, we also

evaluate qualitatively BSR-RW and its variants on real-world images. We take the

original images in City100 [24] and BSD100 datasets as input and use the five models

to enlarge the input images with zooming factor ˆ4. The SR results by different

methods are shown in Figure 5.3. One can see that both BSR-RW w/o DEN and
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City100 [24] dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

City100 [24] dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

City100 [24] dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

BSD100 dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

BSD100 dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

BSD100 dataset w/o DEN uniform w/o edge w/o U-shape BSR-RW

Figure 5.3: Visual comparison of blind SISR results by BSR-RW and its variants on
real-world images. The input images are from City100 [24] and BSD100 datasets,
respectively.
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BSR-RW uniform fail to recover the edges and detailed textures, resulting in blurry

SR images. BSR-RW w/o edge and BSR-RW w/o U-shape deliver better quality

SR images by estimating the spatially variant degradation map. By leveraging the

edge map and the pyramid U-shaped module, BSR-RW presents more fine-grained

details than BSR-RW w/o edge and BSR-RW w/o U-shape, exhibiting the best visual

quality.

5.3.3 Comparison with the state-of-arts

In this section, we compare the proposed BSR-RW with state-of-the-art BSR meth-

ods. The recently developed KernelGAN [13], IKC [52] and BSRSVD [29] are em-

ployed for the comparison. Since the source codes of IKC and BSRSVD are not

released by the original authors, we use the pre-trained models from the third-party

implementation in [1] and [2] for evaluation. For KernelGAN, we use the source codes

from authors’ homepage to estimate the blur kernel, and then use the non-blind SISR

method SRMD [136] to obtain the final SR images. We also report the results of

representative non-blind SISR approaches, EDSR [80] and RCAN [141], for refer-

ence. The models of EDSR and RCAN are obtained from the authors’ homepages,

which are trained using bicubically downsampled HR/LR pairs. In addition to our

full BSR-RW model, we also provide the results of its non-blind baseline BSR-RW

w/o DEN and a light-weight version BSR-RW light.

We conduct experiments on two different settings. In our first experiment, we

follow the experimental setting of existing blind SR works [52, 13] which only take

uniform degradation into consideration. While in our second experiment, we evaluate

different algorithms on the more challenging non-uniform degradation.

Uniform degradation. We follow the experimental setting of existing blind SISR

methods to evaluate different methods on uniformly degraded images. Specifically, we
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Table 5.2: The PSNR results of competing methods on benchmark datasets with
synthetic uniform degradation. The best, second and third results are highlighted in
red, blue and green, respectively. “-” means the result is not available.

Method
Set5 Set14 BSD100

ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4

bicubic downsampling

EDSR [80] 38.11 34.65 32.46 33.92 30.52 28.80 32.32 29.25 27.71

RCAN [141] 38.27 34.74 32.63 34.12 30.65 28.87 32.41 29.32 27.77

KernelGAN [13] 17.78 21.97 26.07 16.82 20.13 23.83 16.55 20.74 22.97

BSRSVD [29] 28.24 - - 26.27 - - 26.40 - -

IKC [52] - - 32.00 - - 28.41 - - 27.51

w/o DEN 37.55 33.99 31.84 32.86 30.04 28.36 31.88 28.91 27.46

uniform light 37.67 34.16 31.98 33.12 30.17 28.46 31.97 28.99 27.55

BSR-RW uniform 37.84 34.35 32.26 33.43 30.21 28.66 32.09 29.08 27.65

Gaussian kernel with width 1.3

EDSR [80] 30.63 28.64 29.97 27.84 25.14 25.04 26.71 26.66 25.46

RCAN [141] 30.62 28.65 29.88 27.83 25.14 25.08 26.72 26.65 25.48

KernelGAN [13] 28.51 32.21 29.07 27.17 27.68 26.32 26.11 27.08 25.60

BSRSVD [29] 28.34 - - 26.33 - - 26.46 - -

IKC [52] - - 31.63 - - 28.27 - - 27.36

w/o DEN 37.24 33.99 31.81 32.99 30.01 28.33 31.65 28.86 27.40

uniform light 37.45 34.13 32.05 33.01 30.02 28.47 31.77 28.98 27.56

BSR-RW uniform 37.53 34.22 32.21 33.13 30.16 28.63 31.87 29.01 27.61

Gaussian kernel with width 2.6

EDSR [80] 26.37 25.84 26.32 24.65 24.16 24.33 24.76 24.84 24.69

RCAN [141] 26.37 25.84 26.32 24.66 24.16 24.33 24.77 24.86 24.70

KernelGAN [13] 27.63 25.43 27.63 25.53 24.29 24.95 25.65 25.22 24.74

BSRSVD [29] 26.40 - - 24.29 - - 24.57 - -

IKC [52] - - 30.48 - - 27.96 - - 27.17

w/o DEN 36.12 33.13 31.67 32.26 28.95 28.19 31.19 28.35 27.41

uniform light 36.26 33.42 32.05 32.27 29.11 28.21 31.17 28.45 27.55

BSR-RW uniform 36.48 33.51 32.26 32.48 29.17 28.33 31.40 28.60 27.59
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synthesize LR images as in [136] by applying isotropic Gaussian blurring kernel with

width {0.2, 1.3, 2.6} on the HR images, followed by bicubic downsampling. Please

note that the kernel with width 0.2 is actually an impulse signal, and this degradation

is equivalent to bicubic downsampling. For fair comparison, we use the version of

BSR-RW uniform in this experiment, which adopts the global average pooling layer

to estimate the global degradation. The testing sets include the commonly used

benchmark datasets: Set5, Set14 and BSD100.

The PSNR results of the competing methods are listed in Table 5.2. EDSR and

RCAN achieve better results for degradation type of bicubic downsampling because

their models are specifically trained for this simple degradation; however, their per-

formances deteriorate severely on the other degradation types. Compared with other

blind SISR methods, the proposed BSR-RW uniform achieves consistently better re-

sults on all the three zooming factors. Moreover, our lightweight version, BSR-RW

uniform light, also shows superior results with better efficiency (please refer to Table

5.4 for the FLOPs and runtime). This verifies that BSR-RW is a robust framework

which is able to deliver stable BSR results with different backbone networks.

Non-uniform degradation. We then evaluate different methods on the more

challenging non-uniform degradation setting. We first apply Gaussian blurring (from

left to right) to HR images with gradually increased kernel width in [0.2, 2], and then

utilize bicubic downsampling to generate LR images. The same testing sets, i.e., Set5,

Set14 and BSD100, are adopted to compare different methods.

The SISR results by different methods are shown in Table 5.3. As KernelGAN

and IKC are designed for uniformly degraded images, they fail to generate satisfac-

tory SISR results. The non-blind SISR models EDSR and RCAN cannot achieve

good results either. Comparing with BSRSVD, which is designed for non-uniform

degradations, the proposed BSR-RW achieves significantly better results.
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Table 5.3: The PSNR results of competing methods on benchmark datasets with
synthetic non-uniform degradation. The best results are highlighted in bold. “–”
means the result is not available.

Method
Set5 Set14 BSD100

ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4 ˆ2 ˆ3 ˆ4

EDSR [80] 29.45 28.89 28.13 26.92 26.23 25.54 26.98 26.18 25.45

RCAN [141] 29.47 28.93 28.30 26.96 26.31 25.66 27.02 26.24 25.56

KernelGAN [13] 22.72 27.65 26.91 20.91 24.43 25.43 20.46 23.57 24.42

IKC [52] - - 28.73 - - 25.94 - - 25.74

BSRSVD [29] 27.44 - - 25.50 - - 25.61 - -

w/o DEN 34.81 32.83 31.17 31.24 29.44 27.83 30.44 28.46 27.11

light 35.01 32.74 31.20 31.35 29.25 27.99 30.36 28.37 27.22

BSR-RW 35.08 32.97 31.27 31.55 29.55 28.05 30.52 28.60 27.27

Table 5.4: The FLOPs and runtime of competing methods. The FLOPs and runtime
are tested on 128ˆ 128 color image for ˆ4 SISR with an Nvidia 2080Ti GPU.

Method FLOPs (G) params (M) runtime (s)

EDSR [80] 1277 43 0.0765

RCAN [141] 543 15.56 0.0594

KernelGAN [13] N/A N/A 53.2528

IKC [52] 876 5.21 0.3553

BSRSVD [29] N/A 1.10 13.0611

BSR-RW w/o DEN 485 10.32 0.0453

BSR-RW light 233 7.06 0.0298

BSR-RW 470 9.87 0.0514

We also provide the FLOPs, no. of parameters and runtime of the competing BSR

methods in Table 5.4. Our method achieves largely improved runtime efficiency over

KernelGAN, IKC and BSRSVD. The superior PSNR performance and the smaller

computational burden make our BSR-RW framework with one-stage degradation

estimation a very attractive choice for BSR in real applications.
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Table 5.5: The PSNR/SSIM results of competing methods on the RealSR [21]
dataset. The superscripts : and * denote fine-tuning and training from scratch using
the RealSR training set, respectively. The best results are shown in bold. “–” means
the result is not available.

Method
ˆ2 ˆ3 ˆ4

PSNR SSIM PSNR SSIM PSNR SSIM

KernelGAN [13] 26.23 0.7579 26.97 0.7669 25.92 0.7284

IKC [52] - - - - 27.18 0.7839

BSRSVD [29] 27.27 0.8028 – – - -

BSR-RW 31.33 0.9412 28.72 0.9054 27.38 0.8738

LP-KPN [21] 33.35 0.9562 33.30 0.9190 28.65 0.8858

BSR-RW w/o DEN* 33.38 0.9567 30.22 0.9175 28.53 0.8849

BSR-RW uniform: 33.45 0.9570 30.28 0.9188 28.69 0.8861

BSR-RW: 33.59 0.9587 30.45 0.9217 28.83 0.8907

5.3.4 Evaluation on RealSR dataset [21]

In this section, we evaluate our method on real-world LR images by using the Re-

alSR [21] testing set (version 3), where aligned HR/LR pairs are provided to enable

quantitative comparison. Considering that the degradation model in Eq. (5.1) is

general but not optimal to specific type of degradations, we fine-tune a little our

models using the RealSR training set to adapt to the degradation of lens zooming

in RealSR. The learning rate is fixed as 1e´5 for 100K iterations. We use “:” to

denote the fine-tuned models. The results of LP-KPN in [21] are also provided for

comparison. As LP-KPN was trained on the Y channel of YCbCr space, for fair

comparison we retrained LP-KPN in RGB space. We also trained an SISR model

from scratch by using the network of BSR-RW w/o DEN on the RealSR training

set, namely BSR-RW w/o DEN*.

The PSNR/SSIM results of competing methods on RealSR dataset are listed in

Table 5.5. We can see that BSR-RW without fine-tuning still achieves acceptable

results, much higher than KernelGAN [13], IKC [52] and BSRSVD [29]. With fine-
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ˆ2 KernelGAN BSRSVD BSR-RW LP-KPN w/o DEN* uniform: BSR-RW : HR

ˆ3 KernelGAN BSR-RW LP-KPN w/o DEN* uniform: BSR-RW : HR

ˆ4 KernelGAN IKC BSR-RW LP-KPN w/o DEN* uniform: BSR-RW : HR

Figure 5.4: Visual comparison of competing SISR methods on RealSR [21] dataset
with SR factor ˆ2 and ˆ4.
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tuning, our BSR-RW : method can quickly adapt to the degradation type of lens

zooming, and achieves better performance than BSR-RW w/o DEN* and LP-KPN,

which are fully trained using the RealSR training set.

Fig. 5.4 shows the super-resolved images on RealSR [21] dataset with zooming

factorsˆ2, ˆ3 andˆ4, respectively. One can observe that both KernelGAN [13], IKC

[52] and BSRSVD [29] produce either over-smoothed results, or shaper edges with

severe artifacts. LP-KPN and BSR-RW w/o DEN*, which are trained using RealSR

[21] training set, can effectively reduce artifacts, however still can not recover fine-

grained textures, partially because of the limited training data in RealSR training

set. Our BSR-RW, trained using synthetic image pairs with the degradation model

in Eq. (1), delivers sharper edges and finer textures with less artifacts. By fine-

tuning our BSR-RW on the RealSR training set, our BSR-RW : delivers the best

visual quality.

5.3.5 Visual comparison on real-world images

Finally, we collect real-world images from various sources to validate the effectiveness

of our method. Specifically, we use the images from SRRGB [140], City100 [24] and

Zurich [64] datasets for evaluation, which were captured using different devices under

various scenes. We compare our BSR-RW with the BSR methods KernelGAN and

IKC. We also provide the results of BSR-RW w/o DEN*, RCAN [141] and EDSR

[80] for reference. Since there are no ground-truth HR counterparts for the testing

images, we compare the visual quality of the SISR results by different methods.

The visual results of competing SISR methods are shown in Figure 5.5 „ 5.7.

One can see that EDSR/RCAN produce rather smoothed results with blurry edges.

KernelGAN generates sharper edges but introduces much artifacts at the same time.

IKC generates smoothed images with some ringing artifacts. BSR-RW w/o DEN*

generates sharper edge as well as noticeable artifacts, partially because it is over-
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fitted to the lens zooming degradation type in the RealSR dataset. The proposed

BSR-RW can effectively and stably recover sharp image edges with little artifacts.

5.4 Conclusions

In this chapter we proposed a novel blind super-resolution (BSR) method for real-

world images, namely BSR-RW, which is capable of handling unknown and spatially

variant image degradations. Different from the costly iterative scheme in previ-

ous BSR methods, we designed a one-stage degradation estimation branch and a

degradation-aware SISR branch for adaptive super-resolution. We also leveraged the

guidance of edge map and used a pyramid U-shaped sub-network for fast and sta-

ble degradation estimation. Extensive experiments on both synthetic and real-world

datasets showed that our BSR-RW achieved leading performance quantitatively and

qualitatively, recovering sharp edges and details without introducing much artifacts.

101



City100 dataset [24]

EDSR RCAN KernelGAN BSRSVD w/o DEN* BSR-RW

City100 dataset [24]

EDSR RCAN KernelGAN BSRSVD w/o DEN* BSR-RW

SRRGB dataset [140]

EDSR RCAN KernelGAN BSRSVD w/o DEN* BSR-RW

Zurich dataset [64]
EDSR RCAN KernelGAN BSRSVD w/o DEN* BSR-RW

Figure 5.5: Visual comparison of competing methods for ˆ2 SR on real-world images.
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City100 dataset [24]

EDSR RCAN KernelGAN BSR-RW w/o DEN* BSR-RW

SRRGB dataset [140]

EDSR RCAN KernelGAN BSR-RW w/o DEN* BSR-RW

Zurich dataset [64]

EDSR RCAN KernelGAN BSR-RW w/o DEN* BSR-RW

Zurich dataset [64]

EDSR RCAN KernelGAN BSR-RW w/o DEN* BSR-RW

Figure 5.6: Visual comparison of competing methods for ˆ3 SR on real-world images.
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SRRGB dataset [140]
EDSR RCAN KernelGAN IKC w/o DEN* BSR-RW

SRRGB dataset [140]

EDSR RCAN KernelGAN IKC w/o DEN* BSR-RW

Zurich dataset [64]

EDSR RCAN KernelGAN IKC w/o DEN* BSR-RW

City100 dataset [24]

EDSR RCAN KernelGAN IKC w/o DEN* BSR-RW

Figure 5.7: Visual comparison of competing methods for ˆ4 SR on real-world images.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Color constancy and image enhancement play a significant role in image process-

ing area, to reconstruct the original scene and further deliver high quality images.

Recently both these two fields have been largely improved by leveraging deep con-

volutional neural network (CNN), owing to its powerful representation ability in

exploiting the latent priors from large scale external datasets. Despite the great suc-

cess achieved, challenges still exist. In this thesis, we investigate the task of color

constancy, diffraction blur removal and single image super-resolution, and design effi-

cient and robust algorithms by leveraging deep CNNs to improve their performances.

As the foremost unit in camera signal processing pipeline, color constancy aims to

estimate the scene illumination and correct the color bias of the captured images. In

the past several years, deep networks largely improve the color constancy accuracy by

leveraging its powerful representation ability and annotated dataset. However, the

acquisition of large scale annotated dataset is laborious and costly. This is especially

true for color constancy which operates on the camera color space and as a result

requires independent dataset for each camera due to the distinction in devices. In

chapter 2, we start a pioneer work to leverage the multi-domain learning method for

color constancy problem. Specifically, we utilized training data by different devices to
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train a single model, to learn complementary representations and improve generaliza-

tion capability. Experimental results show that with the proposed shareable modules

and camera-specific module, our model achieves much better results than training

independent model for each device, and also achieves state-of-the-art performance on

three benchmark datasets. We also evaluate the color constancy performances under

few-shot setting. Experimental results show that the proposed model can effectively

adapt to a new device with only a few, e.g., 20, training samples.

General image deblurring (motion- and focal-blur) is a long-standing task in

image enhancement area and has been widely studied for several decades. On the

contrary, image diffraction blur removal receives relatively less study which however is

a practical problem, largely degrading the image perceptual quality. In chapter 3, we

studied the diffraction blur removal problem, for the first time, using a learning based

method. We analyzed the characteristic of diffraction blur and clarified its difference

from other types of image blurring problems. A real-world diffraction blur dataset

with aligned image pairs was constructed for training and evaluating diffraction blur

removal models. As far as we know, this is the first dataset of this kind. We

also designed a progressive learning method and a robust loss function to train a

diffraction blur removal model, which achieved significantly better performance than

the general image deblurring methods in removing f diffraction blur. Lastly, we

studied the generalization capability of trained model to other cameras and aperture

sizes for use in practical applications.

Finally, we work on one of the fundamental task in image enhancement: single

image super-resolution (SISR) task. By using the deep learning techniques, the SISR

performance has been significantly improved. However, their generalization ability to

real-world scenario is still limited, due to its high complexity. To tackle the real-world

SISR problem, we develop two methods for in chapter 4 and chapter 5 respectively,

from two different perspectives.
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In chapter 4, we tackle the generalization problem of real-world SISR models

by synthesizing realistic training image pairs, to diminish the domain gap between

synthetic and authentic degradation models in SISR. To achieve this goal, we first

learned an image degradation model from real-world SISR image pairs. Specifically,

we learned a set of basis degradation kernels together with a weight prediction net-

work. The degradation kernel at any location was estimated as the linear combination

of the basis kernels using the weights predicted by the weight prediction network.

The learned degradation model was then used to synthesize a large number of realistic

image pairs covering various scenes for SISR model training. Our extensive analy-

ses and experiments showed that the proposed degradation model learning method

can effectively improve the generalization performance of SISR models to real-world

applications.

In chapter 5 we handle the complex real-world SISR from a different angle. Dif-

ferent from the strategy of synthesizing realistic training dataset used in chapter 4,

we design a novel blind super-resolution (BSR) method which is capable of handling

unknown and spatially variant image degradations, although trained on merely syn-

thetic dataset. This is achieved by the idea of first estimating local degradation of

the given image, and then adaptively performing SISR, and the complex degradation

model used, including blurring, noise and compression. Specifically, different from

the costly iterative scheme in previous BSR methods, we designed a one-stage degra-

dation estimation branch and a degradation-aware SISR branch for adaptive super-

resolution. The fast and robust degradation estimation is achieved by leveraging

the guidance of edge map and a pyramid U-shaped branch. Extensive experiments

on both synthetic and real-world datasets showed that our method achieved lead-

ing performance quantitatively and qualitatively, recovering sharp edges and details

without introducing much artifacts.
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6.2 Future Work

The proposed methods in this thesis advance much the performance of color con-

stancy and image enhancement. In future work, we will expand our study from the

following perspectives:

• Due to the distinctions in spectral sensitivities of different sensors, the cap-

tured raw images are in different camera color spaces. To convert them to the

common color space for display, current camera processing pipeline uses two

successive units, i.e., first applying white balance and then color space trans-

formation (CST). Such a divide-and-conquer strategy neglects the correlations

between these two tasks and accumulates errors. In the future, we will study to

tackle these two tasks in a unified framework, to take benefits from end-to-end

training and reduce the introduction of cumulative errors.

• Our collected real-world diffraction blur dataset consists only 333 scenes and

are captured by merely two digital cameras. In the future, we will extend the

database by collecting more image pairs covering more scene varieties and using

more types of cameras. And currently we use different models for different

aperture sizes. We will study training one single model to handle various

degrees of diffraction blur to further improve the generalization performance.

• Video super-resolution (VSR) is another important application, which also suf-

fers from the deviation in degradation model between training and real-world

scenarios. Unfortunately, unlike SISR, the aligned real-world VSR dataset is

difficult to collect due to the motion among multiple frames. In the future,

we plan to apply our degradation model learned from SISR on video sequence

to generate realistic SISR videos. We will then train VSR-CNN using realistic

dataset to improve the generalization ability on real-world VSR task.
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• Currently, our methods are trained using the L2 norm as loss function to

decrease the distance between super-resolved images and the corresponding

ground truth ones. The L2 loss achieves a prominent PSNR index however

can hardly generate hallucinated high-frequency details. In the future, we will

study the using of perceptual loss or Generative Adversarial network (GAN)

to generate more vivid realistic textures to improve the visual quality.

We will investigate these research directions in our future work.
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