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Abstract 

Human-Aware AI Systems are able to provide timely support to humans in 

different situations, based on the understanding of their mental state and intentions. 

As a step towards developing such systems, this thesis focuses on understanding 

humans' affective state and cognitive process when interacting with computers. 

For the affective state understanding, this thesis focuses on studying mental 

stress, one of the most prevalent negative affective states encountered by users 

when interacting with computers. Mental stress can affect both users' mental health 

and the quality of user experience. Previous work often detects mental stress based 

on bio-signals and physical information collected via intrusive devices, which is 

not feasible in daily life. Other studies have recently focused on non-intrusive 

stress detection approaches relying on behavioral signals, especially gaze and 

mouse behaviors. However, the consistency of users' behavioral patterns has 

seldom been investigated by previous studies. Our approach proposes a stress 

detection method that considers the consistency of gaze and mouse behaviors. 

Based on the result of the analysis on the subjects' behaviors during the experiment, 

we discover that when a user is stressed, his/her eye gaze behavior patterns are 

more consistent, and the proposed stress detection method can detect stress 

efficiently in a common e-Learning evaluation task. To take one step further, we 

find that most of the previous stress detection methods rely on the knowledge of 

user interface (UI) layout information, limiting their methods' generalizability, 

especially for tasks with dynamic UIs. Therefore, MGAttraction, a rotation- and 

translation-invariant coordinate system, is proposed to model the relative 

movement between gaze and mouse in this thesis. Based on that, a UI-agnostic 

stress detection method is proposed, which is able to work in the dynamic UI 



 

V 

 

environment. We evaluate the performance of our method on a web searching task 

with dynamic UI. With the gaze location tracked by a commercial eye-tracker, the 

proposed UI-agnostic stress detection method can successfully detect stress and 

outperform the performance of state-of-the-art methods. To further generalizability, 

we explore the feasibility of substituting webcam video in place of eye-tracker 

gaze locations. The resulting system, using the webcam to estimate the gaze 

locations, is able to detect mental stress without sacrificing too much accuracy. 

For the cognitive process understanding, this thesis studies the process of 

writing, which is one of the most common activities undertaken on a computer. 

Given that writing is an intensively cognitive process, it makes sense that users' 

age and the genre of writing that is being produced would affect the user behaviors. 

However, only a few studies have explored this relationship. In this thesis, the eye 

gaze behaviors and the typing dynamics in different writing stages are investigated 

for subjects in different age-groups: child, college, and the elderly, producing 

original articles in different genres: reminiscent, logical, and creative. We design 

both statistics-based features and sequence-based features to infer the cognitive 

process of writing. Statistics-based features focus on modeling the overall gaze-

typing behaviors during the entire writing period, and sequence-based features 

focus on the transition of the gaze-typing behaviors with the development of the 

writing. Evaluation results illustrate that both the age-factors and article genres 

affect the writing behaviors, and our statistics-based and sequence-based features 

can successfully capture the differences in writing behaviors.  

Besides the writing process, this thesis also investigates the process of 

summarizing. Summarizing is a multitasking process requiring subjects to perform 

the reading/understanding process and writing process iteratively. In this thesis, 

we analyze users' cognitive process when carrying out summarizing tasks, as 
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evidenced through their eye gaze and typing features, to obtain insight into 

different difficulty levels. Multimodal features are extracted from different 

summary writing phases, including reading and understanding the source, 

referring to content from the sources, rereading the already-generated text, typing 

the generated texts into the computer, and reviewing the already-generated texts. 

Each phase is determined based on the characteristics of gaze behaviors and typing 

dynamics. A classifier is constructed based on the multimodal features, which can 

discriminate the difficulty level of each summary writing in a decent performance 

and outperforms other models constructed on the part of modalities or a single 

modality. The potential reasons for the decent performance of multimodal features 

are also investigated. 

Experimental results in this thesis show success in detecting mental stress and 

writing cognitive process based on gaze and hands behaviors, which implies the 

effectiveness of behavioral signals used by human-aware AI systems to understand 

users' affective state and cognitive process. 
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1 Introduction 

Human-Computer Interaction (HCI) has progressed from simply designing 

an interface that fits between humans and computers to taking on a more human-

centered perspective [10]. Human-centered computing is an upcoming research 

field that focuses on designing and developing intelligent systems that can 

understand human beings through multimodal inputs. Human beings can be 

understood from different prospects, such as affective state and cognitive process. 

The affective state is the emotional response of interaction, and the cognitive 

process reflects the stage of information processing. Once a system is able to infer 

the affective state and cognitive process of a user, it can intelligently provide 

corresponding assistance for specific purposes, including improving productivity, 

healthcare concerns, etc. For example, some studies [8, 98, 106] proposed the 

cognitive load sense e-learning systems to keep learners' cognitive load is in the 

ideal range to optimize the learning outcomes. Also, some studies [22, 108, 118] 

constructed healthcare systems based on the multimodal signals collected from 

smartphone sensors to continuously track their health condition. 

In human-centered computing, the affective state and cognitive process can 

be accessed through subjects' physiological signals and behavioral signals. 

Physiological signals include electrodermal activity signal (EDA), heart activity 

(ECG), blood activity (BVP), and pupil dilation signal (PD). Methods based on 

the physiological signals focus on extracting features to describe the indicative 

patterns of signals in different affective states or cognitive processes. Extracted 

features are then utilized for training a machine learning model, which can 

discriminate among different affective states and cognitive processes. Usually, 

methods based on the physiological signals can achieve high performance, but 
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they use intrusive devices to access users' bio-signals, making them impractical in 

daily life. Therefore, this thesis focuses on understanding users' affective state and 

cognitive process via the behavioral signals, especially their gaze behaviors, hands 

behaviors, and gaze-hand coordination behaviors. The reason for choosing gaze 

and hands as two primary modalities is that gaze and hands play essential roles 

during human-computer interaction, where the gaze is used to obtain the screen's 

information, and hands perform corresponding actions. 

We first explore the approaches for inferring users' affective states based on 

gaze and mouse behaviors. In our work, we focus mainly on a special kind of 

affective state: mental stress. Although some stress detection approaches exist 

based on the behavioral signals and achieve good performance in their evaluations, 

not all of them can be directly utilized in real-world scenarios due to various 

limitations. One of the prevalent limitations is that most previous approaches rely 

on the user interface (UI) related information. However, extracting UI-related 

information in a dynamic UI environment in real-time is computationally 

consuming, as it often involves using computer vision techniques to recognize 

different UI components such as menus, buttons, captions and so on, which makes 

these approaches not practical. Another limitation of many previous approaches is 

that they require special equipment to collect behavior signals, which hinders their 

generalizability from being widely exploited by common users. Therefore, three 

significant challenges we are facing are 1) how to model gaze and mouse behaviors 

without relying on UI related information, 2) how to infer the affective state of 

stress based on gaze and mouse behaviors, and 3) how to access the gaze signal 

modality without relying on any special equipment. We believe this study will 

open up a new avenue for affective-aware user interfaces and numerous advanced 

HCI studies. 
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In addition, we also investigate approaches to infer users' cognitive process 

based on gaze and typing behaviors. In this part of the study, we focus on 

understanding the cognitive process in writing and summarizing tasks. To the best 

of our knowledge, most of the previous studies focus on investigating typing 

behaviors and gaze behaviors on copy-typing tasks – i.e., each subject is only 

required to type words from a source prepared in advance, rather than formulating 

his/her original writing thoughts. However, the type of behaviors in a copy-typing 

task can be expected to be quite different from daily usage, where the user is 

generating the content cognitively at the same time as he/she is typing the 

generated content into the computer. To fill in the gap, we, therefore, focus on 

exploring the writing/summarizing cognitive process when users are generating 

their own texts from three perspectives. The first perspective is to explore how 

age-factors of subjects affect the cognitive process of writing. The second 

perspective is to explore the influence of the writing cognitive process when 

subjects are writing different genres of texts based on gaze and typing behaviors, 

and the third is to investigate the effect of difficulty levels when subjects are 

performing summary writing. The challenge of understanding users' writing 

cognitive process is that the cognitive process keeps changing throughout the 

writing period. Segmenting the writing process so that different types of the 

cognitive process can be isolated as possible in each segmentation is important for 

further analysis and feature extraction. Meanwhile, compared with general writing, 

the cognitive process for summary writing is more complex, as it involves the 

reading comprehension process, the writing cognitive process, and the typing 

process. Therefore, this study would also help us understand how gaze and hands 

behave during a multitasking process involving reading and writing. 
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1.1 Background and Motivation 

1.1.1 Inferring Users' Affective State Based on Gaze and Mouse 

Behaviors 

Human-centered computing is a relatively novel research area to make the 

computer be able to recognize users' emotions and respond intelligently to help 

users recover from the negative affective states [130]. To understand the users' 

affective state when interacting with computers, we focus on detecting mental 

stress in our work. Stress can be induced from both environmental sources and 

user-centric sources, where environmental sources include time pressure, noise 

level, etc., which are related to the physical environment, social environment, and 

computational environment. User-centric sources are associated with a user's 

background and the type of task he/she is performing [19]. Mental stress 

frequently occurs during interaction with computers. Since when a human 

interacts with a computer, especially with multimedia interfaces, a high volume of 

information in various formats can easily result in a high cognitive load, which 

causes mental stress [46]. A previous study illustrates that psychological stress 

responses often contain negative emotions, including annoyance, depressed [27]. 

Constantly exposed to stressful environments links to many health problems such 

as high blood pressure, diabetes, and cardiovascular problems [8]. In HCI, high-

level stress may cause frustration in interacting with computer interfaces and 

reduce the effectiveness of interacting and the quality of user experience. 

Therefore, an automatic and intelligent stress detection method, which can 

continuously and implicitly monitor users' mental stress levels while users are 

interacting with computers, is valuable and compelling. Only if mental stress can 

be detected effectively first, a variety of cognitive load alleviation approaches can 
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further be applied to reduce mental stress. 

Conventional stress detection methods rely on the processing of human 

physiological signals and physical information. EDA, ECG, BVP, and PD signal 

are often exploited as input modalities to detect mental stress [42, 103, 110, 119]. 

Although physiological signals-based approaches yield high performance on 

stress detection, they always require intrusive devices to access users' bio-signals. 

For example, to measure the EDA signal, two electrically conductive plates are 

needed to attach on the index and middle fingers, and it is no longer convenient to 

control the mouse and type on the keyboard with two plated attracted. Hence, such 

requirements make physiological signals-based approaches impractical in daily 

life. Moreover, bio-signals are also affected by other factors, including stimulus 

specificity and initial mental state level [84], which may result in the 

measurements of bio-signals are inconsistent. Compared with physiological 

signals-based approaches, non-intrusive stress detection draws more attention. 

Facial expression/facial cues [42, 81, 113], body postures [57, 63], voice of speech 

[40, 41], voice of environment [77], and social media engagement [72, 73] have 

been explored for stress inference. For facial expression and facial cues, these 

signals are sensitive to the noise and are greatly influenced by the initial state. 

Gaze and hands are two primary channels to interact with the computer, and their 

behaviors are often exploited to infer mental stress [44, 49, 55, 109, 114, 116, 120]. 

However, there are some downsides to these approaches. One of the major 

downsides is that methods proposed in some of these studies [109] rely on the 

prior knowledge of UI information to provide the context of interaction, which 

cannot work in the dynamic UI environment. Also, many of these approaches [49, 

55] are only evaluated by simple UI layout tasks with relatively simple operations, 

so they are not certain about whether they can work effectively in the dynamic UI 



 

6 

 

environment, where most of the actual applications are carried out. Another 

downside is that some of these approaches [44, 114, 120] rely on special 

equipment, such as the force transducer, electromyography system, or capacitive 

pad, which reduces the generalizability of their methods.  

Also, we find that gaze and hands behaviors are considered separately for 

most of the prior approaches, except StressClick [49]. However, gaze behaviors 

and hands behaviors are not independent of each other. Many previous studies 

illustrate that there exists a strong correlation between gaze movements and mouse 

movements during the interaction, named as the gaze-hand coordination, which 

depicts the relationship from the information received through the eyes to control, 

guide, and direct the hands in accomplishing a given task [23]. Therefore, in this 

thesis, we would like to propose an innovative UI-agnostic stress detection method 

based on gaze and mouse behaviors and gaze-hand coordination. Moreover, we 

construct our own dataset to evaluate the performance of our approach of detecting 

stress in the wild when a user is searching for information online in a dynamic UI 

environment. 

1.1.2 Inferring Users' Cognitive Process Based on Gaze and 

Typing Behaviors 

The cognitive process refers to the mental action or stage to accomplish a 

task, which involves thinking, knowing, remembering, judging, and problem-

solving [37]. In different stages of the cognitive process, users may need different 

assistance from the computers. Therefore, it is essential for having a system, which 

is able to infer the cognitive process of users during the interaction. In this thesis, 

we focus on understanding users' cognitive process of writing, which forms a large 

proportion of daily computer usage. The cognitive process of writing has been well 
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explored in the psychology field. One of the popular writing cognitive process 

models proposed by Flower et al. [30] asserts that the writing process contains 

three major stages: planning, translating, and reviewing. In the planning stage, 

subjects are mainly generating and organizing writing ideas. During the planning 

stage, relevant writing material is retrieved from the long-term memory. In the 

translating stage, the writing ideas are converted into sentences. Formulated 

sentences are evaluated and revised in the reviewing stage. During the writing, 

users will substantially interact with the task environment by rereading previously 

generated texts and typing on the keyboard, and these interactions are the essential 

clues to infer the cognitive process. For example, there are some previous works 

that explored the relationship between the complexity of the writing task and the 

rereading behaviors [111, 118] and keyboard dynamics [71, 121]. Also, some 

works investigated the influence of typing skills on the gaze movement behaviors 

traveling between the screen and keyboard [29, 53, 89]. It is obvious that the 

cognitive process is different while writing different genres of articles. For 

instance, when a user is writing a diary, most sentences in the article are narrative 

to describe happened events. On the other hand, when composing a scientific 

journal, sentences are usually more logical and formal. Considering these cases by 

Flower's writing cognitive model, when writing a diary, a user will spend more 

time on the planning stage to recall the memory, but the scientific journal 

translating stage may take more time to explain it explicitly. However, to the best 

of our knowledge, there is no work exploring whether or how different writing 

genres affect the writing cognitive process. Therefore, in this thesis, we focus on 

understanding how writing genres affect the writing cognitive process and whether 

we can determine the differences in the writing cognitive process via gaze and 

typing behaviors. 
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In addition, most of the previous studies in writing are conducted in the 

English language. But English is unique in the sense that there is a direct mapping 

between the user's actions, which are keys that are typed, and the desired output, 

which is the texts to be generated. In other words, English texts can be directly 

inputted letter by letter, which is not the same for some languages such as Chinese, 

Kanji in Japanese, and Hindi. In these languages, words cannot directly input on a 

standard keyboard, and they usually need a two-step process: generating and 

committing. In the generating step, users need to type the phonetic reading of the 

words on a keyboard to approximate the target words, and in the committing step, 

users select the target from a group of word candidates with the same phonetic. 

Even though language modeling algorithms are utilized to adaptively shuffle the 

most likely options to the front of the candidate list, it is still reasonable to expect 

that the cognitive process of writing in Chinese would be different from writing in 

English. 

One limitation of previous studies is that most of them focus on investigating 

gaze and typing behaviors in the copy-typing tasks. In the copy-typing task, 

subjects just need to type the sentences from a source prepared in advance into the 

computer without the process of formulating their own writing ideas and 

converting ideas into sentences. Thus, it can be expected that the gaze and typing 

behaviors of copy-typing tasks are quite different from the behaviors that subjects 

generate their own articles. We also notice that typing skill has a great impact on 

the gaze and typing behaviors of writing [89], which may overshadow the impact 

of the writing cognitive process. To address those limitations and challenges, we 

construct two datasets for both touch typists and non-touch typists by asking them 

to compose an article under a broad topic without any more constraints. 

Besides investigating gaze and typing behaviors when users are composing 
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their own articles, we also explore gaze and typing behaviors when users 

summarize a document. Summarizing is a complex multitask composed of reading 

and writing processes, which frequently occur in daily computer interaction. As 

two common tasks for daily computer interaction, reading and writing's human 

behaviors are well investigated. However, it is less known how human behaviors 

change when these two processes are interleaved. Although some previous studies 

[122, 123] explore the cognitive process of summary writing, analyses in these 

studies are based on think-aloud protocols or retrospective questionnaires. Both 

methods are deficient. For example, think-aloud protocols require subjects to 

verbalize their concurrent thinking process. Such a requirement needs subjects to 

aware of their mind thinking during writing, which will increase their cognitive 

load and affect their writing process [51]. Retrospective questionnaires relying on 

self-reporting after the experiment to ask subjects to recall all the thinking process 

details is not possible. Therefore, learning from the experience of investigating the 

writing cognitive process, we describe an investigation into the cognitive process 

of summary writing via analysis of subjects' gaze and typing behaviors. We hope 

that the proposed method could infer the cognitive process in an unobtrusive 

manner in as natural an environment as possible. 
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1.2 Study Overview 

 

Figure 1-1 The flow of this thesis. This thesis explores non-intrusive stress detection 

methods in both (a) the static UI environment and (b) the dynamic UI environment; and 

understanding users' cognitive process in (c) writing and (d) summarizing tasks. 

In this thesis, we study both users' affective state and cognitive process. The 

flow of this thesis is shown in Figure 1-1. In order to understand users' affective 

state, we focus on inferring the stress state based on gaze and mouse behaviors and 

their coordination during the interaction with the computer. The study starts from 

detecting stress in a simple interactive task with static UI. The MGAttraction 

(mouse-gaze attraction) coordinate system is proposed, which will be introduced 

comprehensively in Section 3.2.1. MGAttraction allows gaze and mouse 

behaviors to be modeled without relying on any UI information. An innovative 

UI-agnostic stress detection approach is designed based on the MGAttraction 

coordinate system. Finally, we extend our UI-agnostic stress detection approach 

by substituting the eye-tracker with the webcam to obtain the eye gaze positions 

on the screen. Another essential part of the content is to understand users' cognitive 

processes for both writing and summarizing. In our study, we mainly explore how 

the writing cognitive process is affected by the age-factors and genres of articles 

shown by the gaze and typing behaviors, also, how the cognitive process is 
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different when summarizing documents with different difficulty levels. 

1.2.1 Detecting Mental Stress via Gaze and Mouse Behaviors 

To infer the mental stress state when users are interacting with the computers, 

we first propose a non-intrusive stress detection method by extracting features 

from the gaze and mouse movement patterns with regard to UI layout. The features 

include the consistency of gaze and mouse movement patterns and the gaze-mouse 

coordination such as the correlation of the position, time of delay, and speed 

between gaze and mouse as features. Gaze and mouse movement patterns are 

modeled by the transition sequence of UI components that a user draws attention 

to, and the similarity among the transition sequences measures the consistency of 

gaze and mouse movement patterns. As far as we know, there is not too much work 

in affective computing that thoroughly investigates the consistency of attention 

transition sequences, and we hope the findings in our work could bring new 

knowledge to the community. 

Since the gaze and mouse movement patterns are constructed based on UI 

layout, the proposed method can only work in a static UI environment which 

allows us to obtain the position of each UI component. By considering such a 

requirement, we build a simple interactive system based on a computerized 

multiple-choice math quiz. Our interface displays a math question, potential 

answer choice options, and performance statistics. Stress is induced through 

environmental means by imposing a time limit for each question and adding 

background noise. Our method yields an overall performance of mental stress 

recognition of around 66.4% accuracy on the question level and 82.9% on the 

session level, where each session contains 25 questions, over 9 different subjects. 

The ground truth of whether a subject is stressed is achieved through self-reporting. 
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One obvious limitation of the above method is that it relies on the prior 

knowledge of UI information to model gaze and mouse behaviors, making the 

method hardly works in a dynamic UI environment. Because extracting accurate 

UI related information in a dynamic UI environment is always highly 

computational consuming. In fact, a UI-agnostic stress detection method, which is 

able to work in a dynamic UI environment, is highly valuable and necessary since 

most of the actual applications are carried out with dynamic UIs. To overcome the 

limitation, we construct a new coordinate system, and in that system, gaze and 

mouse movements are no longer modeled based on the gaze and mouse on-screen 

locations relative to the application context. Inspired by previous studies of gaze-

hand coordination, the relative movements between gaze and mouse are utilized 

to model their behaviors, and the mental stress could be inferred via their relative 

movements. 

In order to better formulate the relative movement between gaze and mouse, 

we propose a new coordinate system, mouse-gaze attraction, or MGAttraction. As 

the name implies, MGAttraction measures the 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 between the gaze and 

mouse. This novel measurement considers both relative speed, position, and 

moving direction between gaze and mouse. The coordinate system of 

MGAttraction also has rotation- and translation-invariant characteristics. 

Therefore, MGAttraction coordinate system can be completely agnostic to the UI 

layout and invariant to the location and movement direction of the gaze and mouse. 

To infer mental stress based on the gaze and mouse attraction measured by 

MGAttraction coordinate system, we first divide the MGAttraction signal into 

multiple segments and then categorize them into different types based on the shape 

of the signal. Segment-level features are extracted from different types of 

segments to describe the changing of attraction between gaze and mouse inside 
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each segment period. Session-level features are extracted to augment the segment-

level features as well as model the overall behaviors during the whole session. 

Both segment-level and session-level features are learned by the classifier to detect 

mental stress. To evaluate our agnostic stress detection method's performance, we 

conduct our human experiment by recruiting subjects to search for information 

online without considering UIs. Totally, there are 15 subjects recruited in the 

experiment. Stress is induced by imposing a time limit and adding background 

noise, and our method achieves 78.8% accuracy of detecting mental stress in the 

wild, beating the state-of-the-art around 20%, which fully illustrates the 

effectiveness of our method. Similarly, the ground truth of whether a subject is 

stressed is achieved by self-reporting. 

For the method evaluated above, the gaze modality information is collected 

by an eye-tracker. However, eye-tracker is still considered as special equipment, 

which is not popular among common users. Relying on special equipment will 

significantly reduce the generalizability of our method. Therefore, a more 

consumer-friendly webcam-based approach with gaze locations estimated and 

pupil movement features is proposed. Our webcam-based approach achieves an 

accuracy of 73.7% in correct classification rate (CCR), which closes to the 

performance of using eye-tracker. 

1.2.2 Inferring Cognitive process of Writing and Summarizing 

via Gaze and Typing Behaviors 

Writing tasks form a large proportion of daily computer usage. As shown by 

Chukharev-Khudilaynen et al. [21], the activity of writing is composed of the 

cognitive process and the generative (typing) process. During the cognitive 

process, a writer formulates his writing ideas and converts writing ideas into 
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contextual sentences. When a writer is in the typing process, he/she inputs 

sentences into the computer through the keyboard. These two processes are carried 

on alternately, and the final output is a piece of text that can be categorized into 

different genres. The cognitive process of writing has indeed been well studied in 

psychology. One of the most popular writing models is proposed by Flower et al. 

[30]. In their model, the writing cognitive process can be further divided into three 

major parts: planning, translating, reviewing, which can be utilized as a reference 

in our study. 

In order to comprehensively explore gaze and typing behaviors in different 

stages of writing cognitive process as well as overcome the limitations of previous 

works, we construct our datasets by conducting human experiments and build 

datasets fulfill characteristics including: (1) subjects producing their own original 

articles in different genres, (2) subjects recruited are from different age groups, (3) 

subjects have different typing skill levels and (4) subjects typing in Chinese. To 

the best of our knowledge, our datasets are the first datasets in the community with 

those characteristics simultaneously, and all the following investigations are 

performed on these datasets. 

We first explore whether and how age-factors affect the writing cognitive 

process shown by gaze and typing behaviors. Inspired by previous findings of 

Chukharev-Khudilaynen et al. [21], we divide a whole writing period into several 

thinking-windows and typing-windows, where a thinking-window is a continuous 

period of time of mainly formulating writing ideas and reviewing generated texts. 

A typing-window is a continuous period of time of inputting sentences into a 

computer. We then extract different groups of multimodal features for different 

time windows to describe gaze and typing behaviors during the time window 

period to detect the age groups that a subject belongs to. By learning from these 



 

15 

 

multimodal features, the classifier is able to achieve an age group detection 

accuracy of 83.3% utilizing a leave-one-subject-out cross-validation evaluation, 

which is 43% higher than baselines. 

In addition to investigating the impact of age-factors, we further explore 

whether and how writing genres affect the writing cognitive process illustrated by 

gaze and typing behaviors. Similar to the process of analyzing the age-factors 

effect, we first divide the whole writing period into thinking-windows and typing-

windows. But compared with the impact of age-factors, the effect of writing genres 

is more complicated and harder to be captured. Therefore, we refine both thinking- 

and typing-windows by further differentiating them into sub-categories based on 

the gaze and typing activities. Statistics-based gaze-typing features are then 

extracted from different time windows, which are multimodal features considering 

both gaze and typing behaviors in temporal and spatial domains. The purpose of 

statistical features is to model the macro behaviors of a subject during the writing 

activity. Besides statistics-based gaze-typing features, we also extract sequence-

based gaze-typing features, which capture the change in subject behaviors as the 

writing activity progresses. Finally, a machine learning model is developed to 

distinguish the writing genres based on the statistics-based and sequence-based 

gaze-typing features. Evaluated by the leave-one-subject-out cross-validation, our 

final model is able to achieve the overall performance of 88.4% correctness of 

writing genres detection. 

Besides writing, summarizing a document is also a common task for daily 

computer usage, but without being thoroughly investigated. In this thesis, we focus 

on analyzing whether and how the difficulty levels affect the cognitive process of 

summarizing shown by gaze and typing behaviors. Summarizing can be 

considered as a complex task that requires a person to multitask between reading 
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and writing. Compared with simple writing, more processes need to be considered, 

including reading and comprehending the document's key points and referencing 

the summarized document during writing. Therefore, we first identify the different 

cognitive stages based on eye gaze scanpath and keyboard typing activities, where 

the cognitive stages include understanding the document to be summarized, 

referencing the document while summarizing, rereading generated texts as typing. 

Then, features that model reading and writing behaviors in different cognitive 

processes are extracted. We then exploit these features to construct a classifier to 

predict the difficulty level of the summarization task. The performance of the 

classifiers is evaluated in our summary writing dataset. Finally, our classifiers are 

able to achieve 91.0% accuracy at determining difficulty levels. 

In order to better model reading and writing behaviors, the multimodal 

approach [133] has been applied in this study. The input signals include eye-

tracker signal, keyboard event signal, and screen video recording. Evaluation 

results illustrate that the multimodal approach outperforms other models that use 

only a single modality. For this finding, we also explore potential reasons for the 

performance improvement of the multimodal approach so that the knowledge can 

be generalized to other related problems. 

1.3 Thesis Aims and Outline 

The aims of this thesis, as outlined in the study overview, are as follows:  

• To propose a non-intrusive stress detection method by using the 

consistency of gaze and mouse behaviors and investigate how mental stress 

influence the consistency of gaze and mouse behaviors 

• To propose an innovative MGAttraction coordinate system to quantify 

the gaze and mouse movements without depending on any UI related information 
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and propose a UI-agnostic stress detection approach based on the MGAttraction 

coordinate system, which can detect stress in a dynamic UI environment 

• To explore the cognitive process of writing by investigating how age-

factors and writing genres affect gaze and typing behaviors during a writing 

process and identify a set of statistical- and sequence-based gaze-typing features, 

which can be used to discriminate different age-groups and writing genres 

• To investigate the cognitive process of the summary writing task through 

gaze and typing behaviors and build multimodal features fusing information from 

different input channels, which are able to determine the difficulty level of the 

summary task 

Chapter 2 presents the literature reviews on the research works about gaze-

hand coordination, stress detection, the cognitive process of writing, and 

summarizing. 

Chapter 3 introduces two stress detection approaches for both the static and 

dynamic UI environment as well as MGAttraction, a rotation- and translation- 

invariance coordinate system to measure the attraction between gaze and mouse. 

This study shows that the proposed approaches can successfully detect mental 

stress based on gaze and mouse behaviors. At the end of this chapter, a webcam-

based stress detection without relying on any special equipment such as the eye-

tracker is proposed to further improve our stress detection approach's 

generalizability. 

Chapter 4 investigates how the age-factors and writing genres affect the 

writing cognitive process based on gaze-typing behaviors. Statistics-based and 

sequence-based gaze-typing features are designed to capture the differences in 

writing behaviors in different writing phases. The evaluation results illustrate that 

both age-factors and writing genres affect the writing cognitive process in different 
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ways, and the classifiers constructed based on the extracted features can 

discriminate the age group of a subject and the genre of the article being written 

by a subject. 

Chapter 5 explores the cognitive process of a user when performing the 

summarization task in different difficulty levels. Multimodal features are extracted 

from both the reading/understanding phase and the writing phase to model the 

user's eye-gaze behaviors and typing dynamics with the development of summary 

writing and successfully capture the differences of behaviors when summarizing 

texts in different difficulty levels. 

Chapter 6 presents the discussion of this thesis and chapter 7 shows the 

limitations of this thesis and the potential future work. 
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2 Literature Review 

This thesis aims to understand the users' affective state and cognitive process 

when interacting with computers via gaze and hands behaviors. More specifically, 

we focus on understanding a special kind of affective state: stress state and the 

cognitive processes of writing and summarizing. Therefore, this chapter begins 

with a literature review about gaze and hands coordination during the interaction. 

To better understand the stress state and the stress detection approaches, we first 

review the studies about background knowledge about stress and the risk of stress 

followed by the stress detection approaches based on the physiological signals, the 

behavioral signals, and the continuous daily stress detection approaches. This 

chapter also reviews the studies about the cognitive process of writing, the gaze 

and typing behaviors during the writing, and how typing skills affect the gaze and 

the mouse behaviors while writing. At the end of the chapter, the previous works 

about the cognitive process of summary writing are presented. Based on that, this 

chapter outlines the rationales for the proposed studies. 

2.1 Gaze and Hands Coordination 

Gaze and hands coordination captures the relationship between eye gaze 

movements and hands movements when a user interacts with a computer, which 

is essential for daily human-computer interaction. The reason for eye gaze 

movements and hands movements are correlated to each other is that a user first 

receives the on-screen information through his/her eyes, and then hands are 

controlled, guided, and directed in accomplishing a given task based on the 

processed information [23]. Gaze and hands coordination generally can be divided 

into gaze and type coordination and gaze and cursor coordination. For the gaze 

and type coordination, Inhoff et al. [50] point out that the gaze is expected to be 
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four characters to the right of (leading) the typed character in the copy-type task 

based on the 19000 observations. Xu et al. [124] use the gaze and type 

coordination to predict users' visual attention on the graphical user interfaces with 

windows, icons, menus, and pointer. One of the frequent behavior patterns they 

find in their experiment is that a user's eye gaze always focuses near the caret when 

he/she is editing texts. Papoutsaki et al. [89] extend findings by divide subjects 

into touch typists and non-touch typists, and they find that the average distance 

between the caret and the gaze position is 192 𝑝𝑖𝑥𝑒𝑙𝑠  across all subjects. For 

touch typists, the average distance is 160 𝑝𝑖𝑥𝑒𝑙𝑠 , smaller than the average 

distance of non-touch typists, which is 352 𝑝𝑖𝑥𝑒𝑙𝑠 . In their study, they also 

examine that the closest distance between the caret and the gaze position is 210 

𝑚𝑠 after the keypress for touch typists compared with 540 𝑚𝑠 after the keypress 

for non-touch typists. Jiang et al. [52] further expand the scope of gaze and type 

coordination from the computer interaction to the smartphone interaction. In their 

experiment, they observe that touch typists spend around 60% of the time focusing 

on the touchscreen keyboard, which is significantly larger than the percentage of 

time of focusing on the physical keyboard, which is about 20% of the time. Also, 

they find that the frequency of gaze shifts from the content area to the keyboard 

area is much higher in mobile typing, which is about 3.8 times more frequent than 

physical keyboard typing.  

For the gaze and cursor coordination, Bieget al. [16] find that there are two 

main gaze and cursor coordination strategies that serve for different scenarios in 

the search and selection tasks. First, if a subject wants to select a target whose 

approximate location is known, he/she moves the mouse directly to the target 

without gaze guidance. Second, if the target's approximate location is unknown, 

he/she parallelizes searching and pointer movements to minimize the amplitude of 
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the acquisition movement. Rodden et al. [97] analyze the gaze and cursor 

coordination on the web searching result pages. They report that mouse moving is 

mainly for click for most cases, but 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑦𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑙𝑦  and 

ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑟𝑒𝑠𝑢𝑙𝑡 indicates that a user is processing the content. 

Liebling et al. [29] investigated the gaze and cursor coordination in realistic task 

settings, and they illustrate that the gaze is leading the mouse for about 60% of the 

cases, which is affected by the kind of target interacted with and the pre-experience 

of the task. They also explore the coordination of the gaze and cursor at different 

moments before the click and show that the largest distance between the gaze and 

cursor is 171 pixels appears at 1000 𝑚𝑠 before the click, and then the distance 

keeps decreasing to 74 pixels until 250 𝑚𝑠 before the click. Finally, the distance 

expands to 89 pixels at the click moment. Deng et al. [25] illustrate a similar 

finding that the gaze movements lead the cursor about 2.96 ± 1.94 (mean ± STD) 

degrees in the tracing task, and the distance between gaze and cursor shows no 

significant difference among different shapes of trajectories. Weill-Tessier et al. 

[123] extend the gaze and cursor coordination to the tablet interaction and show 

that gaze leads the finger about 356 𝑚𝑠 to the touching target, and the distance 

between gaze and finger is around 159 pixels.  

2.2 Automatic Stress Detection 

Stress is first documented by Selye [60] in 1956 that stress can be considered 

as a response of the body to external stimulus. External stimulus, also known as 

stressors, leads to the internal body's chemical and hormonal changes to produce 

the stress response. Stressors can be divided into two categories: environmental 

stressors and user-centric stressors, where environmental stressors include the time, 

temperature, luminance, noise level, etc. and user-centric stressors contain the 
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user's profile, such as age, gender, social status, and the kinds of activities are 

performed by the user [19]. From a high-level point of perspective, stress can be 

categorized into two types: acute stress [65], which is a short-term response to a 

stressful event, and chronic stress [91], which is a response to pressure for a 

chronic period of time. Both types of stress can lead to various emotional and 

physical health problems [7, 104]. Hence, it is valuable to explore automatic stress 

detection methods. This section starts with an overview of the stress detection 

approaches based on the physiological signals followed by the approaches based 

on the behavioral signals and the continuous daily stress detection approaches. 

2.2.1 Physiological Signals Based Stress Detection 

Conventional stress detection is based on the analysis of physiological signals 

and physical information. The prevalent input modalities include electrodermal 

activity signals, heart activity, blood activity, pupil dilation, and the multimodal 

approach to achieve better performance. Healey et al. [42] detected stress during 

a driving task by continuously processing electrocardiogram, electromyogram, 

skin conductance, and respiration signals taken over 5-minute windows. Statistical 

features, spectral power features, and features to characterize orienting responses 

were extracted to construct the model, which achieves over 97% accuracy in real-

world driving tasks. Wagner et al. [119] exploit the same physiologic modalities 

to infer four classes of emotion: joy, anger, sadness, and pleasure, which is 

triggered by music. They explore a variety of feature selection methods and feature 

reduction methods with different machine learning models. They achieve up to 

92% accuracy, which is around 12% improvement compared with the performance 

achieved without using any feature selection or reduction methods. Sun et al. [110] 

present the activity-aware mental stress detection based on electrocardiogram, 
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galvanic skin response, and accelerometer signals. Stress in their study is induced 

by mental arithmetic tasks with time limit pressure, while subjects are in different 

activities: sitting, standing, and walking, and they obtain 80.9% accuracy without 

requiring the controlled laboratory setting. In their work, they also point out that 

the accelerometer signal is essential in stress detection to help determine different 

physical activity conditions, which has a strong impact on spectrum features of 

physiological signals. Sierra et al. [103] propose a fuzzy expert system to 

determine an individual's stress level by analyzing galvanic skin response and 

heart rate signals. In their experiment, stress is induced through hyperventilation 

and talk preparation. Their system achieves over 90% accuracy for the 3-5 seconds 

signals acquisition period and 99.5% accuracy for the 10-second period. Barreto 

et al. [11] and Ren et al. [96] show that the pupil diameter, which is controlled by 

the autonomic nervous system, provides a strong indication of stress. They show 

that after involving the pupil dilation signal into stress recognition, the 

performance of detection can be improved significantly compared with only used 

physiological signals. It is obvious that most of the physiological signals based 

stress detection methods can achieve decent performance around 90% accuracy of 

recognizing stress, but one significant drawback always inherited by these 

methods is that they are intrusive methods and special equipment is required to 

attach to the users, which may cause psychological side effects. 

For non-intrusive stress detection, facial expressions are one of the prevailing 

modalities for stress detection. Bosch et al. [67] detect affective states, including 

boredom, confusion, delight, engagement, and frustration when interacting with 

the educational game. Facial action units and head pose are extracted from the 

video as features and achieve an accuracy of 65% for the overall classification of 

affect. In their study, they note that the length of the time window, which is used 
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to extract features, needs to be various for different affective states to achieve 

optimal performance. For example, confusion detection works better with a larger 

window length comparing with delighted. Viegas et al. [113] build a dataset 

contains 114 different subjects. Each subject accomplishes three typing phases 

before the stressor, after the stressor, and after relaxation, and each phase lasts 15-

minute. The stressor is a multitasking exercise with social evaluation. They extract 

18 facial action units and build a random forest classifier to determine different 

phases from videos and obtain an average accuracy of over 97% and 50% accuracy 

for the subject dependent and independent models. Abouelenien et al. [1] detect 

acute stress through thermal imaging. They extract thermal features from thermal 

facial images of each subject. Thermal features are used to describe the distribution 

of colors in the Hue Saturation Value space. Their experiment results illustrate that 

by fusing with thermal features, the relative accuracy can improve 26.6% 

performance over the heart rate and skin conductance features and 38.2% 

performance over the respiration rate features. 

2.2.2 Behavioral Signals Based Stress Detection 

Besides physiological signals and physical information, human behaviors are 

also linked to the level of stress. Haak et al. [39] observe that when a human is in 

stressful situations, he/she tends to show a higher frequency of eye blinks. With 

further investigation, they discover that the occipital lobe, a specific brain area, is 

highly activated while blinking. Hernandez et al. [44] show that under the stressed 

condition, most of the users (>79%) in their experiments consistently type the 

keyboard with more forceful typing pressure and click the mouse with a greater 

amount of mouse contact. Ciman et al. [22] measure the differences in smartphone 

interaction between users' relaxed and stressed states. In their study, they mainly 



 

25 

 

investigate four kinds of smartphone interactions, including 𝑠𝑐𝑟𝑜𝑙𝑙 , 𝑠𝑤𝑖𝑝𝑒 , 

𝑡𝑜𝑢𝑐ℎ  and 𝑡𝑒𝑥𝑡 𝑖𝑛𝑝𝑢𝑡 , Where scroll, swipe and text input behaviors can be 

utilized for stress classification. They find that scroll features, such as the length, 

the duration, the speed, and the delta speed of scrolling and swipe features, such 

as the length, the duration, touch size, and touch pressure have week correlations 

with the stress state, but the stress assessment model built based on these features 

can achieve decent performance, where F-measure of the scroll is 0.79 and F-

measure of the swipe is 0.85. For text input features as writing speed and the error 

rate show significant correlations with stress level. Paredes et al. [90] model the 

human arm while driving by using the mass spring damper (MSD) model and find 

that when people are driving under stress, the arm's muscle tension is significantly 

higher than the calm state. A similar finding is also found by Sun et al. [109]. They 

apply the MSD model to the arm while holding the mouse. After analyzing the 

mouse trajectories for 𝑝𝑜𝑖𝑛𝑡 − 𝑎𝑛𝑑 − 𝑐𝑙𝑖𝑐𝑘 , 𝑑𝑟𝑎𝑔 − 𝑎𝑛𝑑 − 𝑑𝑟𝑜𝑝,  and 

𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 mouse operations, they suggest that the arm muscle is stiff under the 

stressed condition. 

StressClick, proposed by Huang et al. [49], is the closest work to our study. 

StressClick detects stress based on the mouse and gaze behaviors around each 

mouse click. They illustrate that when a subject clicks a target, the closest fixation 

duration preceding/during a click and the reaction latency after a click are 

negatively correlated to whether under the stressed condition, since under the 

stressed condition, a subject tends to conduct operation more rapidly. A stress 

detection system is constructed based on the findings, which achieves 74.0% 

accuracy. However, StressClick is only evaluated under a static UI environment, 

which may not be effective in the dynamic UI environment. Another drawback of 

StressClick is that it only considers a small time window around each click but 
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ignores other time periods. It means that most of the information is discarded 

without being utilized by their method, which results in their method may not be 

robust enough to work efficiently in the task with complex interactions. 

2.2.3 Continuous Daily Stress Detection Approaches 

As mentioned at the beginning of this section, stress can be categorized into 

acute stress and chronic stress from a high-level perspective. Methods overviewed 

above are closer to detect acute stress during a specific task. However, there is 

another research direction, which is continuous daily stress detection. For 

continuous daily stress detection, the optimal goal is to detect stress levels of every 

period of time for individuals in their non-restricted daily life. Data is collected 

from non-intrusive wearable devices or smartphones integrated with different 

sensors. Labels of each segment are determined by assessment prompts, and the 

stress level is detected based on the data in each segment. Gjoreski et al. [33, 34] 

propose a context-based stress detection method, which is composed of three 

machine learning components: lab stress detector, activity recognizer, and context-

based stress detector. The lab stress detector is used for detecting short-term stress 

(every 2 min) trained by laboratory data. The activity recognizer is designed for 

continuously determining the user's activity. Input data is first fed into the lab 

stress detector and activity recognizer to achieve the prediction of current stress 

level and current user's activity. The bio-signals, stress level, and activity are then 

fed into the context-based stress detector to discriminate between stress in real life 

and many other situations, which have similar physiological arousal. In their 

experiment, they collect 55 days of real-life data from 5 subjects, and their method 

achieves 70% accuracy of stress detection. Hovsepian et al. [47] present a 

continuous stress assessment, namely cStress, and they collect respiration and 
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electrocardiogram signals from a chest belt and successfully detect daily stress. 

cStress obtains a recall of 89% accuracy of stress detection with only 5% false-

positive rate in the lab environment and 72% accuracy of stress detection in the 

real-life environment. Adams et al. [2] collect various signals from a small group 

of subjects during their real-life activities. In their study, they focus on 

understanding and comparing different types of signals whether they are effective 

or not in multiple contexts and find that EDA-based signals are not effective in 

physical discomfort context and voice-based signals are ineffective in quiet or 

noisy spaces. By utilizing EDA- and voice-based signals together can provide less 

invasive and reasonably robust stress detection in real-world environments. 

2.3 Cognitive Process of Writing and Gaze and Typing 

Behaviors in Writing 

Writing on the computer is a complex task, which is composed of both 

cognitive and physical processes. Both eye gaze and hand movements are involved 

in the writing task. In this section, we will first review some relative works of 

writing cognitive process followed by the related studies of gaze and typing 

behaviors while writing on the computer. 

In the 1980s, Flower et al. [30] propose the first cognitive process model of 

writing, shifting from the traditional sequential models to the hierarchical models 

to represent the recursive nature of writing. Their model can be divided into three 

main parts: the writing process, the long-term memory, and the writing 

environment, where the writing process contains three major phases: planning, 

translating, and reviewing. The planning phase involves recalling to access the 

long-term memory to retrieve writing information and creative thinking to 

formulate writing ideas. The translating phase is mainly converting the writing 
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ideas into sentences based on the context logic, and the reviews phase is mainly 

evaluating and revising the generated texts. During writing, three phases of writing 

processes are conducted alternately. Bereiter et al. [14] focus on analyzing the 

writing cognitive process for compare, diagnose and operate (CDO) procedure, 

and they find that subjects' diagnostic skills will be improved if they are provided 

with evaluative comments or tactical cues for revision work. They also try to 

provide some cues to the subjects in the planning phase and observe that these 

cues will help them increase reflective thinking. Kellogg et al. [59] interpret the 

basic parts of their writing model in three parts of the process. In the first part of 

the process, subjects mainly formulate, involves planning and translate rhetorical 

goals into texts; In the second part, subjects generate the text, either by hand or 

typing into computers. And in the final part of the process, subjects reread and 

revise the generated texts. All processes are operated simultaneously, which 

greatly affects the capacity of working memory. They also point out that expert 

writers always have a larger overall capacity of working memory. Alamargot et al. 

[5] show that maturity and practice are able to develop expertise in writing. 

Through the practices, writers may become more familiar with the writing topics, 

which can help them retrieve the writing information more easily from the long-

term memory and construct it into an effective structure. Also, maturity enables 

writers to covert writing ideas into sentences more fluently and more automatically. 

Therefore, the working memory space during writing can be utilized more 

efficiently.  

When it comes to eye gaze and hand movements in the writing task, there has 

been some previous work along this line. Butsch et al. [18] contribute the first 

study to investigate the eye-hand behaviors of typewriting. They find that the gaze 

is always approximately 5–7 characters ahead of hands. Inhoff et al. [50] also 
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illustrate a related observation that the eye gaze location is always three character-

spaces before the actual character, which is being currently typed. Logan et al. [76] 

expand the findings by determining three kinds of 𝑠𝑝𝑎𝑛, or attention of foci in 

typing: stopping, eye-hand, and copying. The stopping span is for committing text 

and the eye-hand span is the temporal or pixel difference between the locations of 

the eye gaze and hand execution for activities such as mouse movements and 

keypresses. A special case of the eye-hand span when 40-odd characters were 

involved is also identified and named the copying span. However, all these 

findings are obtained from copy-typing tasks in which a subject simply copies 

words from a pre-prepared source. Compared with producing original texts on the 

computer, the copy-typing task omits the cognitive process of producing 

contextual sentences based on the writing goal, which would be expected to affect 

gaze and hand behaviors. 

Feit et al. [29], Johansson et al. [53], and Papoutsaki et al. [89] take another 

step in investigating the differences of gaze and typing behaviors across touch 

typists and non-touch typists while producing their own texts. Feit et al. [29] place 

26 anatomical landmarks on each hand to track hands movements and explore the 

motor of typing and gaze deployment based on each finger's movement during 

writing. They illustrate that even non-touch typists who spend significantly more 

time fixating at the keyboard but there is no significant performance (average entry 

rate and uncorrected error rates) difference between touch typists and non-touch 

typists, which is conflicted with previous findings. For the motion analysis, they 

find that touch typists utilize a greater number of fingers than non-touch typists. 

Specifically, touch typists input by using different fingers of the same hand 

compared with non-typists, who prefer inputting by using the same finger for 

successive keystrokes. Johansson et al. [53] further divide the writers into three 
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groups based on the interplay between typing texts and rereading texts that already 

generated, including monitor gazers (spend more percentage of time looking at the 

screen), keyboard gazers (spend more percentage of time looking at the keyboard) 

and mixed-strategy writers (spend a similar percentage of time on the keyboard 

and the screen). By analyzing 28 subjects writing data, they discover that monitor 

gazers are more productive writers with better typing skills. They always reread 

the generated texts in parallel with typing. Keyboard gazers use left and right 

cursor keys significantly frequently to revise their texts sequentially. Papoutsaki 

et al. [89] also investigate how gaze movement behaviors are different between 

the touch typists and non-touch typists. They also develop a classifier to 

discriminate between touch typists and non-touch typists based on the gaze 

behaviors and achieve the performance of 74.5% accuracy by using the eye tracker 

and 62.5% accuracy by using a webcam. They also encode their findings into the 

webcam-based gaze estimation method: WebGazer [88] by adding typing as a cue 

to help predict the on-screen gaze positions, improving the tracking accuracy for 

both touch typists and non-touch typists. 

There are also some studies that explore the relationship between gaze and 

typing behaviors with the complexity and the quality of writing tasks. Torrance et 

al. [111] discover that subjects will spend more time rereading previously 

generated material while producing complex texts, and their fixation duration 

becomes longer for lexical processing. Waes et al. [118] conduct an experimental 

writing task in which subjects are asked to correct an embedded error and also 

complete a sentence. As the task increases in complexity, subjects tend to complete 

the sentence and then correct errors, even though sometimes they have already 

noticed the presence of the error. The cognitive load of subjects also increases, and 

they fixate less on the partial sentence while reading. Likens et al. [71] use fractal 
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analysis to model the inter-keystroke intervals as a time series. Their findings 

suggest that writing pieces with higher quality are generated by typing processes 

with a higher degree of autocorrelation in the inter-keystroke intervals. 

Most previous studies investigating writer's typing behaviors have been done 

in the context of English typing and relatively little attention has been paid to non-

English typing. Zheng et al. [132] collected over 54 million error-correction 

operations in Chinese typing with Pinyin input method. and discovered that the 

errors caused by omitting some letters are always (around 50%) corrected by 

deletions (re-typing). Common errors include transposition errors caused by 

messing the typing order of the left and right hands, and substitution errors caused 

by mistyping phonic representations which are similar to and close to the correct 

ones on the keyboard, such as "m vs. n", and "z vs. c vs. s". Meena et al. [85] and 

Joshi et al. [54] focused on Hindi typing. They found that the large number of 

letters, complex characters in Hindi language, and special structure of Indic scripts 

increase the difficulty of typing Hindi on QWERTY keyboards. Users thus need 

much more training to type Hindi. Samura et al. [102] explored keyboard 

dynamics of typing free texts in Japanese. Their results suggested that keypress 

duration is an important feature for individual identification. our study focuses on 

gaze-typing behaviors in Chinese typing, through which we use to determine the 

genre of the article which is being written. To the best of our knowledge, this is 

the first time that this problem has been investigated. 

2.4 Gaze and Typing Behaviors in Summarizing 

Summary writing is a multitasking process requiring reading comprehension, 

content acquisition, and writing [126]. Most of the related work is done in the 

linguistics field. Keck [58] illustrates that summarizing writing can be divided into 
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four levels: near copy, minimal revision, moderate revision, and substantial 

revision. Among these four levels, novel writers are more willing to produce the 

summary in the near copy level compared with expert writers. Brown et al. [17] 

show similar findings in their results that skilled writers tend to rearrange material 

in the original text when summarizing text. Kirkland et al. [61] investigate the 

relationship between cognitive load and summary writing, and they point out that 

cognitive load is determined by the internal and external constraints, where 

external constraints include familiarity with the genre of the document, the 

complexity of the document and the length of the document need to be summarized. 

Internal constraints contain the reading skills, writing skills, comprehension level, 

and critical thinking skills of writers. Yu et al. [129] compare the performances 

and perceptions of summarization in both Chinese and English. In their study, they 

recruit 157 Chinese undergraduate students to complete summary writings in both 

English and Chinese, and all the subjects have been learned English at least for 

eight years. They illustrate that the type of language greatly influences the 

performance of summary: 1) subjects produce significantly longer summaries in 

Chinese (their first language) because of their proficiency in Chinese; 2) Chinese 

summarization can be better reflect the reading abilities of subjects. Based on these 

findings, they conclude that the summarization performance is only determined by 

the reading comprehension, which may disaccord with common sense. Similar 

findings are also discovered by Li [70]. In his study, he examines the 

summarization procedure of 64 Chinese college students, and regression analysis 

results show that English writing ability can significantly contribute to the 

prediction of summary writing performance, but English reading ability cannot. Li 

[69] also investigates how genres (narrative and expository) of documents impact 

the performance and perception of summary writing. The questionnaire surveys 
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collected by 86 undergraduate students indicate that subjects show better 

performance on narrative text summarization. However, most subjects consider 

that the narrative text summarization is more difficult than the expository text 

summarization. Such perceived contradiction associates with the factors of 

internal constraints of subjects. 

Yang et al. [127], Yang [126], Yi [128] investigate the cognitive process of 

summary writing. Yang et al. [127] use the thinking aloud method to access the 

subjects' cognitive process. They request the subjects to verbalize their mental 

process while summarizing. Five different cognitive stages are defined by them, 

including planning content, referring to sources, generating texts, rereading, and 

reviewing the generated texts. They also find that subjects in different writing 

levels spend different portions of time on each cognitive stage. Yang [126] applies 

the exploratory factor analysis and builds the latent variable model to predict the 

final outcome of summarizing according to the performance of each cognitive 

stage. Yi et al. [128] construct a dataset covering 50 subjects' gaze trajectory data 

collected by the eye-tracker for automatic text summarization. According to the 

gaze movement behaviors, they find that gaze movement patterns of reading 

significantly differ from gaze movement patterns of summaries. 
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3 Inferring Users' Affective State Based on Gaze and 

Mouse Behaviors 

We start our study of understanding users' affective state based on gaze and 

mouse behaviors. We focus on detecting mental stress when users are interacting 

with computers. This chapter first presents our non-intrusive stress detection 

approach based on gaze and mouse behaviors with regard to UI layout. Compared 

with other stress detection approaches based on behavioral signals, we are the first 

work to investigate the relationship between the consistency of gaze and mouse 

behavioral patterns and the stress state. Our approach is evaluated in the static UI 

environment by doing mental math calculations. From the results, our approach 

shows decent performance in recognizing mental stress in the static UI 

environment, and we also understand how the stress state impacts the consistency 

of the gaze and mouse behaviors when interacting with computers. 

However, for most real applications, they are executed in a dynamic UIs 

environment. That may limit the generalizability of our proposed stress detection 

approach. To address this challenge, we propose the MGAttraction coordinate 

system to model gaze and mouse behaviors without relying on the UI related 

information. Also, a UI-agnostic stress detection method is proposed, which is 

built based on the MGAttraction coordinate system. We conduct human 

experiments to recognize mental stress in the wild while searching for information 

online without considering UI. Details of our methods and results of evaluations 

are presented in Section 3.2.  

To further improve our UI-agnostic stress detection method's generalizability, 

we decide to use the webcam to substitute for the eye-tracker by estimating the 

gaze locations from the webcam video. Combining with the pupil movement 
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features proposed by us, the performance of the webcam-based stress detection 

method is close to the performance of using the eye-tracker. Section 3.3 presents 

the details of how to estimate the gaze locations from the webcam video, as well 

as the evaluation procedures. 

The rest of this chapter is organized as follows. Section 3.1 describes the non-

intrusive stress detection approach adopted for the static UI environment stress 

detection, its evaluation experiments, as well as exploring the relationship between 

mental stress and the consistency of gaze and mouse behaviors. Section 3.2 

introduces the MGAttraction coordinate system and the UI-agnostic stress 

detection method with its evaluation experiments. Section 3.3 describes 

procedures of how we estimate the gaze locations from the webcam video and 

extract the pupil movement features and build a webcam-based stress detection 

approach. Finally, this chapter is concluded in Section 3.4. 

3.1 Stress Detection in Static UI Environment 

 

Figure 3-1 From signals to prediction: The system flow chart of feature extraction 

Many prior studies have shown that affective states can influence gaze and 

mouse behaviors. We believe that mental stress as a kind of mental state can impact 

gaze and mouse behaviors as well. Therefore, we want to extract features to 
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describe the gaze movement patterns, mouse movement patterns, and gaze-mouse 

coordination as indicators of mental stress. Figure 3-1 shows the whole feature 

extraction procedure from input data: gaze raw data, mouse raw data, and UI 

component information to the final stress prediction model. The stress prediction 

model is built based on the gaze movement patterns, mouse movement patterns, 

and gaze-mouse coordination, where gaze and mouse movement patterns can be 

considered as the indicative gaze and mouse attention transition sequences with 

regard to UI layout that is representative of stressed or relaxed conditions and 

gaze-mouse coordination describes the correlation between gaze and mouse in the 

space, time and speed domains. Before introducing the gaze and mouse movement 

patterns and gaze-mouse coordination deeply, we start with input signal 

preprocessing. 

3.1.1 Input Signals Preprocessing 

According to the procedure shown in Figure 3-1, input signals contain the 

eye gaze data, the mouse data, and the UI component information. In this study, 

Tobii EyeX is utilized to obtain the eye gaze data, which encodes the user's gaze 

on-screen locations with corresponding timestamps. To eliminate the impulse 

noise, the two-phase heuristic filter [107] is used on the eye gaze data. From the 

preprocessed eye gaze data, fixations and saccades can be detected easier, where 

a fixation refers to a period of time that the user's gaze maintains within a single 

area, and a saccade stands for a short and quick movement between two successive 

fixations. Then, the Dispersion-Threshold Identification (I-DT) algorithm [101] is 

utilized to detect fixations with the dispersion set to 35 pixels and the minimum 

time of fixation as 170 𝑚𝑠. Data between every two fixations were considered as 

saccades. The mouse data is obtained by a C++ script developed by us to log the 
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mouse coordinates in every 10 𝑚𝑠  and the linear interpolation is utilized to 

resample the mouse data to align with the gaze data. 

 

Figure 3-2 Experiment interface and UI components 

To better model gaze and mouse behaviors, we extract UI component 

information from the current UI interface. The screen area is first divided into 

components according to the user interfaces' functionalities, shown in Figure 3-2. 

Then we construct a gaze transition sequence by mapping each fixation inside the 

gaze point sequence into a UI component, and the UI component area is the area 

that the fixation location belongs to. For example, a gaze transition sequence 

8→ 1→ 2 indicates that the subject first looks at component 8 (start button), 

component 1 (left stats), then on component 2 (right stats), where each type of UI 

component with its corresponding label is presented in Figure 3-2. If a user fixates 

at a screen region without being labeled as any particular components, then that 

fixation is mapped to 0. We can also generate the mouse transition sequence by 

following the same procedure as the gaze transition sequence. Therefore, after the 

data preprocessing, we achieve the following information for each mental math 

question: 1) timestamped gaze coordinates; 2) a gaze transition sequence; 3) 

timestamped mouse coordinates and mouse events (clicking, scrolling, and 

dragging) and 4) a mouse transition sequence. 
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3.1.2 Feature Extraction 

3.1.2.1 Modelling Gaze and Mouse Movement Patterns 

In this part, we first introduce the procedures to model the gaze and mouse 

movement patterns based on the transition sequences and identify the indicative 

movement patterns that represent stressed or relaxed conditions. Then, the way we 

are modeling the gaze-mouse coordination is presented based on the timestamped 

gaze and mouse coordinates, followed by the behavioral consistency features. 

Our gaze and mouse movement patterns are extracted from the gaze transition 

sequences and the mouse transition sequences, respectively. For generalizability, 

we break down the transition sequences into n-gram subsequences by following 

the procedure in Algorithm 3-1. For instance, when 𝑛 = 3, a transition sequence 

3 → 4 → 5 → 6 → 2 will be broken into three subsequences, which are 3 → 4 →

5 , 4 → 5 → 6  and 5 → 6 → 2 , and movement patterns are the subsequences 

representing stressed or relaxed conditions so that they can be used to be the 

indicators of mental stress. 

function Seqs2grams(seqs, n)             % seqs are all the transition sequences                 

{ potential_grams  [ ]  % n is the length of the gram 

 for seq in seqs                % iterate all the transition sequences 

  for i = n to len(seq) step 1 do  

   g  seq[i-n…i])                   % extract sub-sequence              

   if g is not in potential_grams   

    potential_grams.append(g) 

   end if 

  end for 

 end for 

 return potential_grams 

} 

 
Algorithm 3-1 Generating potential N-grams from transition sequences 
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The aim of involving movement patterns is that we want to differentiate 

whether a given transition sequence is engendered under the stress condition. To 

be more specific, we want the selected patterns to be abundant in one category but 

seldom appear in other categories. In order to satisfy such a requirement, the 𝑡𝑓 ∙

𝜒2weighting scheme [24] is applied to calculate the weighting of a subsequence, 

where the value of 𝑡𝑓 ∙ 𝜒2 weight can reflect the representativeness of the 

subsequence. A subsequence with a large weighting means that the number of 

occurrences for that subsequence is significantly different between the stressed 

and relaxed groups. 𝑡𝑓 ∙ 𝜒2weighting of a subsequence can be calculated by the 

multiplication between 𝑡𝑓  term and 𝜒2 term. 𝑡𝑓  term is the subsequence 

frequency in the considered condition and 𝜒2 term can be computed in the 

following manner: 

𝜒2 = 𝑁𝑠𝑒𝑞 ∙
(𝑛𝑟 ∙ 𝑛𝑠̅ − 𝑛𝑠 ∙ 𝑛𝑟̅)

(𝑛𝑟 + 𝑛𝑠) + (𝑛𝑠̅ + 𝑛𝑟̅) + (𝑛𝑟 + 𝑛𝑟̅) + (𝑛𝑠 + 𝑛𝑠̅)
                                      3-1 

Where: 

• 𝑛𝑟: the number of transition sequences contains the given subsequence in the 

relaxed condition  

• 𝑛𝑟̅: the number of transition sequences does not contain the given subsequence 

in the relaxed condition  

• 𝑛𝑠: the number of transition sequences contains the given subsequence in the 

stressed condition 

• 𝑛𝑠̅: the number of transition sequences does not contain the given subsequence 

in the stressed condition 

• 𝑁𝑠𝑒𝑞: total number of transition sequences 

We calculate 𝑡𝑓 ∙ 𝜒2  weighting of each subsequence (n-gram) generated 

from all transition sequences for both stressed and relaxed conditions. After sorting 
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all the weightings in descending order, we select the top 𝐾 (𝐾 = 5) 

subsequences for both conditions to be the movement patterns, and the number of 

times each selected movement pattern appears in the transition sequence is 

counted. The movement pattern features are the count of each movement pattern 

normalized by the length of the transition sequence. This whole procedure of 

extracting movement pattern features is shown in Figure 3-3.  

 

Figure 3-3 Procedure of extracting movement pattern features 

3.1.2.2 Modelling Gaze-Mouse Coordination 

Besides the movement pattern features, we also extract features to model 

gaze-mouse coordination. As shown by the previous studies introduced in Section 

2.1, that gaze and mouse movements are strongly correlated with each other, and 

their relationship can be used to infer the affective and cognitive state of users. 

This study also attempts to explore whether the relative movements between gaze 

and mouse is able to reflect metal stress. Therefore, our gaze-mouse coordination 

trajectory
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features are computed based on the correlation between the gaze and mouse 

movements in the spatial, time, and speed domains. 

 

Figure 3-4 An illustrative example of the gaze-mouse coordination extraction 

Figure 3-4 presents the process of extracting the gaze-mouse coordination 

features in an illustrative case. In the figure, the distances between the target of the 

mouse click and the gaze position and mouse cursor position for each timestamp 

are shown by the red and blue curves, respectively. 𝑡𝑐is the moment of the click. 

𝑡 and 𝑡  are the moments that gaze and mouse start to move toward the mouse 

clicking target and 𝑡2and 𝑡 are the moments that gaze and mouse reach the mouse 

clicking target.  

For each question, we consider the click event that answers the question – i.e., 

the click event on one of the choices ">", "<" or "=". First, we check whether a 

click occurred inside a fixation. If this is the case, then the beginning of the fixation 

is marked as 𝑡2. If not, we mark the moment of click as 𝑡2. Then, we find the last 

fixation right before the click and the ending moment of that fixation as 𝑡 . The 

interval between 𝑡  and 𝑡2 is a saccade between two fixations.  



 

42 

 

Feature Meaning Formulation 

 𝟏
𝑮𝑴𝑪 Average distance in pixel between mouse 

cursor and gaze point 

𝑀𝑒𝑎𝑛(𝐷𝐺𝑀
𝑡𝑖 ) 

  
𝑮𝑴𝑪 Time difference of gaze and mouse start 

moving (positive for gaze leading mouse) 

𝑡 − 𝑡  

 𝟑
𝑮𝑴𝑪 Time difference of gaze and mouse end 

moving (positive for gaze leading mouse) 

𝑡 − 𝑡2 

 𝟒
𝑮𝑴𝑪 Total time of feature extraction interval 𝑀𝑎𝑥(𝑡2, 𝑡 ) − 𝑀𝑖𝑛(𝑡 , 𝑡 ) 

 𝟓
𝑮𝑴𝑪 Average speed of gaze 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑃𝐺

𝑡1 , 𝑃𝐺
𝑡2)

𝑡2 − 𝑡 
 

 𝟔
𝑮𝑴𝑪 Average speed of mouse 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑃𝑀

𝑡3 , 𝑃𝑀
𝑡4)

𝑡2 − 𝑡 
 

Table 3-1 Gaze-mouse coordination features 

We use similar procedures to identify 𝑡  and 𝑡 , which correspond to the interval 

of mouse movement surrounding a mouse click -i.e., the period between the two 

mouse hovers before and after the click. The gaze and mouse coordination features 

are extracted from the time interval  𝑀𝑖𝑛( 𝑡 , 𝑡 ),𝑀𝑎𝑥( 𝑡2, 𝑡 ) , which contains 

a totally of 6 features. Meanings and formulations are shown in Table 3-1, where 

𝐷𝐺𝑀
𝑡𝑖 is the distance between gaze position and mouse cursor position at 𝑡𝑖 and 

𝑃𝐺
𝑡𝑖 , 𝑃𝑀

𝑡𝑖are the positions of gaze and mouse cursor respectively at 𝑡𝑖. According to 

the gaze-mouse coordination features shown in Table 3-1,  𝟏
𝑮𝑴𝑪  captures the 

average distance that gaze leading/catching the mouse in the space domain,   
𝑮𝑴𝑪, 

  
𝑮𝑴𝑪  capture the relationship in the time domain and  5

𝑮𝑴𝑪 ,  6
𝑮𝑴𝑪 capture the 

speed information for both of gaze and mouse. 

Both movement pattern features and gaze-mouse coordination features are 

designed to model gaze and mouse behaviors, and we hope these features are able 

to capture the differences of gaze and mouse behaviors when a user is in relaxed 

and stressed conditions. Besides exploring the differences of gaze and mouse 

behaviors, we are also interested in investigating whether the consistency of uses' 
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behavioral patterns is different when they are in the different affective states: stress 

and relax. 

A prior study [32] shows that when a user is under stress, his/her alertness 

may also be increased, which results in that they are more concentrated on their 

current works. Therefore, we hypothesize that when a user is in a stressed 

condition, he/she will be more motivated to stay on the task, and their behaviors 

will be more close-ended and consistent, which will manifest itself in more similar 

behaviors. 

3.1.2.3 Modeling Consistency of Gaze and Mouse Movement Behaviors 

In this study, the consistency of behaviors is measured by the similarity of 

transition sequences. We use Dynamic time wrapping (DTW) [100] to measure the 

average distance among transition sequences with regard to UI components for the 

same channel, including gaze and mouse movements. If the average distance 

among transition sequences is small, it means that the behaviors in the periods of 

these transition sequences are consistent and vice versa. The cost function between 

the UI component 𝑢𝑖𝑐  and 𝑢𝑖𝑐2 are defined as below (eq. 3-2), where UI 

components marked in the same color belong to the same component group as 

presented in Figure 3-2. 

𝑐𝑜𝑠𝑡(𝑢𝑖𝑐 , 𝑢𝑖𝑐2) = {
0, 𝑖𝑓 𝑢𝑖𝑐 𝑎𝑛𝑑 𝑢𝑖𝑐2 𝑎𝑟𝑒 𝑠𝑎𝑚𝑒

1, 𝑖𝑓𝑢𝑖𝑐 𝑎𝑛𝑑 𝑢𝑖𝑐2 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝 
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                     3-2 

We prefer DTW over Euclidean distance is because DTW is more robust to 

noise and the missing or irrelevant patterns, which is particularly useful for gaze 

behaviors since surrounding factors can easily influence gaze movements. 

Finally, the whole feature vector extracted for recognizing the mental stress 

includes movement pattern features, gaze-mouse coordination features, and 
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behavioral consistency features. We use the random forest algorithm as the 

classifier constructed on the extracted feature vector. Normally, the random forest 

algorithm, as one of the ensemble algorithms, has the characters of fast training, 

good generalized accuracy, and robustness to overfitting. 

3.1.3 Construct Dataset for Stress Detection in Static UI 

Environment 

In order to evaluate the mental stress detection method, we build a simple 

interactive system based on computerized multiple-choice math quizzes. The 

system's interface is displayed on a 22'' monitor at 1680×1050 resolution in the 

full-screen mode. Previous studies prove that recursive mental math calculations 

[3, 78, 109, 116] and setting a time limit for the task [19, 63, 120] can efficiently 

induce mental stress. Therefore, our study utilizes recursive mental math 

calculation as a common stress factor and uses time pressure and noise to adjust 

the stress level, which belong to user-centric sources (relate to a user's background 

and the type of task a user is doing) and environmental sources 

(physical/social/computational environment), respectively. 

Figure 3-3 presents the graphic interface of our experiment system. On the 

top of the screen, there were two math expressions in the form of 𝐴 𝑜𝑝 𝐵, where 

𝐴 and 𝐵 were two numbers, either 1-digit or 2-digit, and 𝑜𝑝 is an operation that 

could either be "+,−,×,÷ ". Subjects were expected to mentally compute the 

results for both left and right expressions and decide if the outcome of the left 

expression is "> ", "< " or "= " relative to the outcome of the right expression. 

Subjects had to press the start button labeled as Component 8, which allowed the 

choice components to be shown, and then subjects could make their choices by 

pressing. For each question, the order of choices was assigned arbitrarily. The 
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subject's current scores were presented in Component 1 and 2 in respect of the 

number of correct answers and incorrect answers. 

In the experiment, every subject was expected to complete two sessions 

conducted under relaxed and stressed conditions, respectively, and for each session, 

there were 25 questions. Compared with the relaxed condition sessions, questions 

in the stressed condition sessions were more difficult (1-digit problems were used 

in the relaxed sessions, and 2-digit problems were used in the stressed sessions). 

We also imposed a time limit for each question with a countdown bar shown at the 

bottom of the screen. Background noise was also utilized in the stressed sessions 

to further induce stress. Subjects were asked to answer the question within the 

allocated time limit as possible. Otherwise, the system would immediately proceed 

to the next question, and the unanswered question was considered as a wrong 

answer. 

 To prevent frustration, the duration of each session was kept short, which 

was about 5 minutes. In order to alleviate adaption to experiment conditions, the 

number of experiments that each subject could participate in one day was also 

constrained. A pre-experiment was carried out for each subject to determine an 

appropriate time limit. Otherwise, either stress could not be induced successfully, 

or the subject could not have adequate time to solve the question. The first question 

was served as a warm-up question, and data was collected starting from the second 

question. 

As previous studies have shown that individuals generally stay in a consistent 

mental state when given similar tasks [49], we consider the stress level constant 

across all questions in the same session. The question is then whether our methods 

to induce stress were indeed successful. To ensure that stress was indeed induced, 

the subjects were asked to complete a brief report on his/her stress level on a 5-
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point Likert scale after each session. We believe that self-reporting is a feasible 

way to achieve the ground truth that whether a subject is stressed, as self-reporting 

has been used in many previous works as an efficient way to access the stress level 

[49, 90]. As, when a user is stressed, the heartbeat rate of that user may increase, 

or he/she may become more alert and more focused on the task, therefore we 

presume that it is not hard for him/her to be aware that he/she is under stress.  

Data in the constructed dataset were collected from 9 subjects (𝐴𝑔𝑒 18-32). 

After removing the questions that subjects failed to answer within the allocated 

time (less than 10%) and the stressed sessions whose reported stress levels were 

less than 3, we totally achieved 836 questions in 37 sessions, where 17 of them 

were labeled as being conducted under the stress condition. 

3.1.4 Question-level Stress Detection 

We first evaluate the performance of our approach to detecting mental stress 

on the question-level.  

The wrapper method is adopted with the best-first search. Final selected 

features are determined when there is no improvement for 10 consecutive searches. 

Our feature extraction process gives us one instance per question, where each 

instance is represented by a feature vector containing 26 features, where 10 of 

them are the gaze movement pattern features, 10 features are mouse movement 

pattern features, and 6 of them are gaze-mouse coordination features. We do not 

extract behavioral consistency feature at this stage since at the question level, each 

instance only contains one gaze and mouse transition sequence, meaning that 

consistency features would be meaningless. 

In real applications, a user-independent model is highly valuable, since a 

user-independent model would presumably be able to detect the mental stress for 
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a new user who has never been seen before, as contrasted to a user-dependent 

model, which can only work for a specific user for whom the behavior is known. 

Therefore, leave-one-subject-out cross-validation is applied to evaluate the 

performance of our model. Specifically, we iteratively select one subject and use 

his/her data as the testing data to evaluate the stress detection model, which is 

trained on the data from other subjects. We repeat this process until all the subjects 

have been selected to test the model, and the average correct classification rate 

(CCR) are reported as the overall evaluation performance. 

Table 3-2 presents the detailed performance of our approach for question-

level stress detection. Based on the results shown in Table 3-2, It is obvious that 

the mouse movement pattern features alone have no contribution to the stress  

Table 3-2 Performance of stress detection at question-level 

detection since the model built based on the mouse movement pattern features 

tends to classify all the instances into majority class, which is 𝑟𝑒𝑙𝑎𝑥 in this study. 

One possible reason that the mouse movement pattern features are not effective is 

that most subjects do not move the mouse until they know the answer, and then 

 Gaze Moment 

Patterns 

Mouse 

Moment 

Patterns 

Gaze-mouse 

Coordination 

Features 

All Features 

Accuracy 59.7% 52.8% 59.6% 66.4% 

Precision 

(Relax) 

0.62 0.55 0.62 0.69 

Precision 

(Stress) 

0.57 0.53 0.59 0.64 

Recall 

(Relax) 

0.61 0.21 0.61 0.67 

Recall 

(Stress) 

0.59 0.83 0.56 0.66 
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the mouse is directly moved to the location of the correct answer. This is unlike 

the gaze movements, which are complex since the gaze will travel among the 

positions of the questions and answers. Since mouse movements are simple and 

straightforward, that is why they are not affected by user stress. The contribution 

of the gaze movement pattern features and gaze-mouse coordination features are 

also presented. The best performance is achieved when these two sets of features 

are utilized together. 

 

Figure 3-5 Trends of CCR across different 𝑙𝑒𝑛𝑔𝑟𝑎𝑚 

We also investigate the impact of the length of the gaze movement patterns 

on the performance. Figure 3-5 illustrates the CCR curves for different pattern 

lengths (𝑙𝑒𝑛𝑔𝑟𝑎𝑚). According to the results, we find that CCR curves consistently 

above the baseline performance of 52.8%, which is achieved by the zeroR 

classifier, which simply classifies every instance into the majority class. With the 

increase of 𝑙𝑒𝑛𝑔𝑟𝑎𝑚 (2 to 6), the performances of models built on gaze movement 

pattern features only and on gaze movement pattern along with gaze-mouse 

coordination features are both increasing first and then dropping. The best 

performance is achieved when 𝑙𝑒𝑛𝑔𝑟𝑎𝑚 = 3 𝑜𝑟 4 . This is in line with our 

expectations. When 𝑙𝑒𝑛𝑔𝑟𝑎𝑚  is too small, each pattern is too short and hard 
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general to be representative, but when 𝑙𝑒𝑛𝑔𝑟𝑎𝑚  becomes larger, the longer 

movement patterns may contain too much information, which is not clear. The 

generalizability is also affected as longer movement patterns are too specific to 

appear in multiple instances. 

In order to investigate how gaze movement patterns capture the difference of 

gaze movements under different conditions, the selected gaze movement patterns 

are analyzed, and we find most of them can be categorized into two groups. The 

first group is 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑜𝑐𝑢𝑠𝑒𝑠 – subjects fixate on the same UI component 

repeatedly. For example, a gaze movement pattern 4 → 0 → 4 → 0 indicates that 

a subject reads the question many times. It can be understood that when a subject 

is relaxed, he/she may not focus entirely on the task, and to remember the content, 

he/she needs to view each component repeatedly. Patterns in the second group are 

blended with the UI components, which are not relevant to solve the question, such 

as the start button (component 8) or stats labels (component 1 and 2). Such 

behavior can be understood by the fact that only if a subject is relaxed, it is 

acceptable for him/her to be distracted and drawn by the less important 

components. 

For the gaze-mouse coordination features, we apply a t-test for each of them, 

and results show that   
𝑮𝑴𝑪,  5

𝑮𝑴𝑪,  𝟔
𝑮𝑴𝑪are statistically significantly different 

between relaxed and stressed conditions (p-value is less than 0.05). It suggests that 

the subjects move their gaze and mouse quickly, and saccades and mouse moves 

tend to end simultaneously when they are under the stress condition. 

3.1.5 Session-level Stress Detection 

The above evaluation results illustrate that the movement pattern features and 

the gaze-mouse coordination features can effectively detect mental stress for the 
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question-level. We then evaluate our model's performance at the session-level. 

Totally, there are 37 instances from 9 subjects and 17 of them are labeled as stress, 

where each instance stands for a process during which the subject completes 24 

questions in a row.  

The session-level feature extraction procedure is shown in Figure 3-6. The 

session-level features can be divided into two groups. The first group is the 

statistical feature, which is built based on question-level stress detection results. 

For example, for a session 𝑠𝑒𝑠𝑠𝑖, which contains 24 questions, can be represented 

as 𝑠𝑒𝑠𝑠𝑖 ={𝑄𝑗
𝑠𝑒𝑠𝑠𝑖| 𝑗 ∈ [1,24]}. For each question 𝑄𝑗

𝑠𝑒𝑠𝑠𝑖 in the 𝑠𝑒𝑠𝑠𝑖, we can 

achieve the predicted result by processing through the question-level mental stress  

 

Figure 3-6 Procedure of extracting session-level features 

detection model, which is either 0 (predicted as 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 class) or 1 (predicted as 

𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 class). Then statistical feature is the percentage of questions predicted 

as the stressed class. Another group of session-level features contains gaze and 

mouse behavioral consistency features, which measure the consistencies of gaze 

transition sequences and mouse transition sequences among 24 questions. As same 
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as the question-level model, the leave-one-subject-out cross-validation is applied 

to evaluate the session-level stress detection model, and the detailed results are 

presented in Table 3-3, where BCF stands for the behavioral consistency features. 

Results shown in Table 3-3 suggest that the behavioral consistency features, 

especially the gaze behavioral consistency features, are helpful to detect mental 

stress. Therefore, we further investigate how the consistencies of gaze and mouse 

behaviors are different between relaxed and stressed conditions. For each subject, 

we compute the average DTW distances of gaze and mouse transition sequences 

for both conditions. Averaging across all subjects, we achieve the mean distance 

of gaze transition sequences across all the subjects for both relaxed and stressed 

conditions, which are 21.1 and 14.5, respectively. We also compute the mean 

distance of mouse transition sequences for both relaxed and stressed conditions in 

the same manner, which are 4.2 and 4.1, respectively. The Wilcoxon signed-rank 

test result illustrates that the difference in the DTW distances between relax and 

stress is significant for the gaze channel, and the p-value is 0.002. This indicates 

that when a user is stressed, his/her gaze behaviors tend to be more similar and 

consistent. 

 All 

Features 

Stat 

 

Gaze + 

Mouse 

BCF 

Gaze 

BCF 

Mouse 

BCF 

Stat + 

Gaze 

BCF 

Stat + 

Mouse 

BCF 

Stress-

Click 

Accuracy 80.0% 77.1% 77.1% 72.2% 57.1% 82.9% 74.3% 65.7% 

Precision 

(Relax) 

0.83 0.76 0.79 0.77 0.56 0.84 0.75 0.66 

Precision 

(Stress) 

0.77 0.79 0.75 0.67 0.56 0.81 0.73 0.64 

Recall 

(Relax) 

0.79 0.84 0.79 0.68 0.79 0.84 0.79 0.67 

Recall 

(Stress) 

0.81 0.69 0.75 0.75 0.31 0.81 0.69 0.62 
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Table 3-3 Performance of stress detection at session-level 

It is promising to note that except for the model constructed exclusively on 

the mouse movement distance features, all other models significantly outperform 

the baseline, which is 52.8% achieved by the ZeroR classifier. 

3.2 Stress Detection in Dynamic UIs Environment 

In the last section, we propose a non-intrusive stress detection method based 

on gaze and mouse behaviors. The proposed method takes advantage of the 

features to describe representative attention transition sequences with regard to the 

UI components and the features relate to the gaze and mouse coordination to 

successfully detect mental stress in an interactive task with the static UI. However, 

this method inherits a limitation, which is that it cannot be simply applied to the 

tasks with dynamic UIs, since it is hard to model the UI component transition 

sequence when the UI layout keeps changing. Therefore, the MGAttraction, a 

coordinate system to model gaze and mouse behaviors with regard to their relative 

movement without relying on UI related information, is proposed to overcome that 

limitation. Then a new UI-agnostic mental stress detection approach built based 

on the MGAttraction system will be introduced in this section. 

3.2.1 MGAttraction: Modeling Mouse and Gaze Relative 

Movement 

The name of the MGAttraction stands for the mouse-gaze attraction, which 

is to model the relative movement between gaze and mouse in the dynamic UIs 

environment. Hence, the proposed coordinate system is needed to be rotation- and 

translation-invariant. To achieve rotation- and translation-invariant properties, we 

first transform the movement signals from the screen coordinate to the attraction 
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coordinate system. 

 

Figure 3-7 Attraction coordinate system showing displacement (dotted arrow), velocity 

(solid arrow), mouse (blue), and gaze (red) information; solid points are real positions, and 

hollow points are projections. (a) shows an example of mouse and gaze trajectories. (b) 

illustrates the origin identification of the coordinate system. (c) shows mouse and gaze velocity 

decomposition based on attraction coordinate 

As the name suggests, the MGAttraction coordinate system measures the 

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 between the gaze and mouse, which can be interpreted as the intensity 

and tendency of the gaze and mouse's relative movement, which is measured from 

consecutive samples in the gaze and mouse modality streams. The gaze and mouse 

modality streams are the sequences of on-screen coordinates of the gaze attention 

location and the mouse location, respectively. The attraction is a scalar quantity, 

which can be either positive or negative, where a positive attraction indicates the 

tendency of approaching and a negative attraction means the tendency of departing. 

For instance, if the gaze is moving toward the mouse direction at high speed, then 

at this moment, the attraction of the gaze relative to the mouse is in a large positive 

value. On the other hand, if the gaze is leaving the mouse at high speed, then at 

this moment, the attraction of the gaze relative to the mouse is in a large negative 

value. 

In our experimental setup, the sequence of on-screen mouse positions is 
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collected by a C++ program at 100 𝐻𝑧 , and the sequence of on-screen gaze 

positions is captured by the eye-tracker Tobii EyeX at 60 𝐻𝑧 . Similar to the 

preprocessing procedures for mental stress detection in the static UI environment, 

we first apply a two-phase heuristic filter [107] to remove the impulse noise from 

the gaze signal to remove artifacts from eye blinks. Then, the mouse signal is 

downsampled to 60 𝐻𝑧 and synchronized with the gaze signal by using the linear 

interpolation approach. After signal preprocessing, we obtain the sequence of on-

screen mouse locations M = < 𝑃𝑀
(0)

, 𝑃𝑀
( )

,  , 𝑃𝑀
(𝑛)

>  and the sequence of on-

screen gaze locations G = < 𝑃𝑀
(0)

, 𝑃𝑀
( )

,  , 𝑃𝑀
(𝑛)

> , which can be illustrated in 

Figure 3-7(a). The relative movement of gaze and mouse is then modeled via the 

midpoint of each successive pair of coordinates. 𝑚𝐺
(𝑖)

= 
 

2
(𝑃𝐺

(𝑖)
− 𝑃𝐺

(𝑖− )
) and 

𝑚𝑀
(𝑖)

= 
 

2
(𝑃𝑀

(𝑖)
− 𝑃𝑀

(𝑖− )
) , respectively (Figure 3-7(b)). We then construct the 

attraction coordinate system, whose x-axis is the vector 𝑚𝑀
(𝑖)

𝑚𝐺
(𝑖)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

 and y-axis is the 

orthogonal vector to 𝑚𝑀
(𝑖)

𝑚𝐺
(𝑖)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

. The origin is the midpoint of 𝑚𝐺
(𝑖)

and 𝑚𝑀
(𝑖)

(Figure 

3-7(c)). This attraction coordinate system is constructed based on the relative 

movement of the gaze and mouse and is independent of the screen UI layout. 

The attraction encodes the intensity of the relative movement between gaze 

and mouse, inspired by the gravity measurement, which should be negatively 

correlated with their distance and positively to their movement speed. The overall 

idea is to leverage the relative velocity to delineate the attraction between gaze and 

mouse over time. For example, if gaze and mouse cursor locations are close and 

approaching each other at high speed, they exhibit a strong positive attraction. If 

the mouse 𝑐ℎ𝑎𝑠𝑒𝑠  the gaze at a higher velocity than the velocity of the gaze 

𝑒𝑠𝑐𝑎𝑝𝑖𝑛𝑔 from the mouse, then the mouse exerts a larger positive attraction while 
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the gaze experiences a smaller negative attraction. If the gaze and mouse are 

departing from each other at high speed, then both of them have a strong negative 

attraction. 

Specifically, the overall attraction between gaze and mouse consists of the 

attractions exerted by the gaze, 𝑎𝑡𝑡𝑟𝐺  , and exerted by the mouse, 𝑎𝑡𝑡𝑟𝑀 . We 

resolve the velocities of gaze and mouse in vector form into the 𝑥- and 𝑦-

components (or horizontal (ℎ) and vertical (𝑣) components). 𝑎𝑡𝑡𝑟𝐺   and 𝑎𝑡𝑡𝑟𝑀 

can be formulated in a symmetric manner: 

𝑎𝑡𝑡𝑟𝐺 = 
𝛼𝐺𝑉𝐺|𝑀

ℎ |𝑉𝐺
ℎ|

𝐷
+ 

𝛽𝐺𝑉𝐺|𝑀
𝑣 |𝑉𝐺

𝑣|

𝐷
                                 3-3 

𝑎𝑡𝑡𝑟𝑀 = 
𝛼𝑀𝑉𝑀|𝐺

ℎ |𝑉𝑀
ℎ|

𝐷
+ 

𝛽𝑀𝑉𝑀|𝐺
𝑣 |𝑉𝑀

𝑣|

𝐷
                                3-4 

Where 𝐷(𝑖) is the Euclidean distance between 𝑚𝐺
(𝑖)

 and 𝑚𝑀
(𝑖)

 . 𝑉𝐺
ℎ , 𝑉𝐺

𝑣 , 𝑉𝐺
ℎ , 

and 𝑉𝐺
𝑣are the horizontal and vertical component velocities of gaze and mouse in 

the attraction coordinate. 𝑉𝐺|𝑀
ℎ  and 𝑉𝐺|𝑀

𝑣  indicate velocity components of gaze 

relative to mouse and 𝑉𝑀|𝐺
ℎ  and 𝑉𝑀|𝐺

𝑣  indicate those of mouse relative to gaze. 

The relative velocity components can be computed as: 

𝑉𝐺|𝑀
ℎ = 𝑉𝐺

ℎ − 𝑉𝑀
ℎ;   𝑉𝐺|𝑀

𝑣 = 𝑉𝐺
𝑣 − 𝑉𝑀

𝑣                                   3-5 

𝑉𝑀|𝐺
ℎ = 𝑉𝑀

ℎ − 𝑉𝐺
ℎ;   𝑉𝑀|𝐺

𝑣 = 𝑉𝑀
𝑣 − 𝑉𝐺

𝑣                                  3-6 

Finally, 𝛼 and 𝛽denote the signs of the attraction components: 

𝛼𝐺 = 𝑠𝑔𝑛 (𝑉𝐺|𝑀
ℎ (ℎ𝑀 − ℎ𝐺)) ; 𝛽𝐺 = 𝑠𝑔𝑛 (𝑉𝐺|𝑀

𝑣 (𝑣𝑀 − 𝑣𝐺))         3-7, 3-8 

𝛼𝑀 = 𝑠𝑔𝑛 (𝑉𝑀|𝐺
ℎ (ℎ𝐺 − ℎ𝑀)) ; 𝛽𝑀 = 𝑠𝑔𝑛 (𝑉𝑀|𝐺

𝑣 (𝑣𝐺 − 𝑣𝑀))      3-9, 3-10 
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Where ℎ𝐺  , 𝑣𝐺  ,  ℎ𝑀  and 𝑣𝑀  are the current gaze and mouse location 

projected on the two axes. In other words, the sign of a component is positive, 

while the mouse and gaze are moving relatively towards each other. Otherwise, it 

is negative. 

3.2.2 Preprocessing MGAttraction Signals 

The purpose of the MGAttraction coordinate system is to transform the gaze 

and mouse movement signals from the screen coordinate to the MGAttraction 

signals. The method aims to detect mental stress based on the relative movement 

between gaze and mouse. Therefore, we are more interested in the periods that 

both gaze and mouse can be detected. While the position of the mouse can always 

be detected during the experiment, the gaze cannot be detected by the eye-tracker 

during eye blinks, and when the user's gaze is off-screen. 

We handle off-screen eye periods in two ways. Since it is known that a human 

eye-blink is usually shorter than 150 𝑚𝑠 [20], we discard time periods longer 

than 150 𝑚𝑠 during which the gaze cannot be captured by the eye-tracker. For 

the remaining time periods, we estimate missing gaze locations using linear 

interpolation. We then compute the MGAttraction signals 𝐴𝑡𝑡𝑟𝐺 and 𝐴𝑡𝑡𝑟𝑀 and 

they can be represented as 𝐴𝑡𝑡𝑟𝐺 = [𝑎𝑡𝑡𝑟𝐺
  ,  𝑎𝑡𝑡𝑟𝐺

2 ,… , 𝑎𝑡𝑡𝑟𝐺
𝑛 ] and 𝐴𝑡𝑡𝑟𝑀 = 

[𝑎𝑡𝑡𝑟𝑀
  ,  𝑎𝑡𝑡𝑟𝑀

2  ,… , 𝑎𝑡𝑡𝑟𝑀
𝑛 ], where 𝑎𝑡𝑡𝑟𝐺

𝑖   and 𝑎𝑡𝑡𝑟𝑀
𝑖   stands for the 𝑖𝑡ℎ  gaze 

attraction value and the 𝑖𝑡ℎ mouse attraction value in that period, respectively.  

Based on the definition of 𝑎𝑡𝑡𝑟𝐺and 𝑎𝑡𝑡𝑟𝑀are positively correlated to the 

magnitude of gaze and mouse velocity. However, the speed of gaze is normally 

much faster than the mouse, which leads to a much larger range for 𝑎𝑡𝑡𝑟𝐺  than 

𝑎𝑡𝑡𝑟𝑀. To facilitate the following analysis, we normalize the magnitude of 𝑎𝑡𝑡𝑟𝐺  

and 𝑎𝑡𝑡𝑟𝑀 to bring them into the range  −1,1 . Specifically, for 𝐴𝑡𝑡𝑟, which can 
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either be 𝐴𝑡𝑡𝑟𝐺  and 𝐴𝑡𝑡𝑟𝑀, we first find the maximum value of all positive 𝑎𝑡𝑡𝑟 

values in 𝐴𝑡𝑡𝑟  as 𝑚𝑎𝑥𝑝  and the minimum value of all negative 𝑎𝑡𝑡𝑟  values 

in 𝐴𝑡𝑡𝑟 as 𝑚𝑖𝑛𝑛. Then for each 𝑎𝑡𝑡𝑟 in 𝐴𝑡𝑡𝑟, if 𝑎𝑡𝑡𝑟 is larger than 0, 𝑎𝑡𝑡𝑟 is 

transformed into 𝑎𝑡𝑡𝑟 max𝑝⁄  . If 𝑎𝑡𝑡𝑟  is smaller than 0, then 𝑎𝑡𝑡𝑟  is 

transformed into -1(𝑎𝑡𝑡𝑟 min𝑛⁄ ) and 𝑎𝑡𝑡𝑟 keeps the same when 𝑎𝑡𝑡𝑟 equals 0. 

3.2.3 Inferring Mental Stress from MGAttraction Signals 

 

Figure 3-8 Overall pipeline of feature extraction to infer mental stress from MGAttraction 

signal 

Figure 3-8 illustrates the overall pipeline of feature extraction from 

MGAttraction signals. The final session-level feature vector is composed of two 

parts: 𝜙 and 𝑆. 𝜙 contains the segment-level features extracted from each type 

of MGAttraction signal segment, which will be used to describe the relative 

movement between gaze and mouse during the segment periods. On the other hand, 

𝑆 contains the statistical features extracted from the preprocessed session-level 

MGAttraction signals 𝐴𝑡𝑡𝑟𝐺 and 𝐴𝑡𝑡𝑟𝑀, which will be used to model the macro 

behaviors of gaze and mouse over the session period. In the following parts of this 

section, we will introduce the way of signals segmentation and how we extract 

features in 𝜙 and 𝑆, respectively. 
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Figure 3-9 Two example periods of gaze attraction and mouse attraction with a Type P 

segment (red) and a Type B segment (yellow) and a Type N segment (blue) 

Figure 3-9 illustrates two example time periods. We observe that the shape of 

𝐴𝑡𝑡𝑟𝑀resembles that of a pulse signal, in that the amplitude of a signal changes 

intensively from a baseline value to a higher or a lower value, accompanied by a 

fast return to the baseline value. The baseline value of 𝐴𝑡𝑡𝑟𝑀 is 0, which is 

measured when the mouse is at rest. A positive pulse period indicates that the 

mouse is approaching the gaze and a negative pulse indica journal articlestes the 

opposite (mouse departing from gaze). In the example shown in Figure 3-9(a), 

both the gaze and mouse are stable with no relative movement before Time 𝑡 . At 

𝑡 , the gaze starts to move to a new target, thus leaving the mouse. The mouse 

starts moving at Time 𝑡2 to catch up with the gaze. After Time 𝑡 , the intensity 

of the relative movement between the gaze and mouse decreases till Time 𝑡  , 

when both gaze and mouse are stable again. A similar interpretation can be made 

for the example period shown in Figure 3-9(b).  

To better model the relative behaviors of gaze and mouse behaviors in a time 

period, we segment the period based on the behavior pattern exhibited by 𝐴𝑡𝑡𝑟𝑀. 

Three types of segments are defined. A Type P segment is a period during which 

𝐴𝑡𝑡𝑟𝑀 shows a positive pulse, a Type B segment is a period during which the 



 

59 

 

magnitude of 𝐴𝑡𝑡𝑟𝑀stays around the baseline value, and a Type N segment is a 

period during which 𝐴𝑡𝑡𝑟𝑀 shows a negative pulse. Examples of Type P, B, and 

N segments are shown in Figure 3-9. 

 

 

Algorithm 3-2 presents the procedures to identify the segments in Type P and 

function Signal_Segmentation(𝐴𝑡𝑡𝑟𝑀)      % 𝐴𝑡𝑡𝑟𝑀 : mouse MGAttraction signal 

{ Ps  [ ]                % initialization 

 Ns  [ ] 

 𝐴𝑡𝑡𝑟𝑀
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 {e∈ 𝐴𝑡𝑟𝑟𝑀|𝑒>0} % Get all positive values in 𝐴𝑡𝑟𝑟𝑀 

 𝐴𝑡𝑡𝑟𝑀
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 {e∈ 𝐴𝑡𝑟𝑟𝑀|𝑒<0}   % Get all Negative values in 𝐴𝑡𝑟𝑟𝑀 

   % Get the threshold of peaks 

    𝑡ℎ𝑟𝑒𝑠𝑝  mean(𝐴𝑡𝑡𝑟𝑀
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

) + 3× std(𝐴𝑡𝑡𝑟𝑀
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

)          

      𝑡ℎ𝑟𝑒𝑠𝑛  mean(𝐴𝑡𝑡𝑟𝑀
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

) + 3× std(𝐴𝑡𝑡𝑟𝑀
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

)        

% Get the threshold of valleys 

 𝑖𝑠𝑝  [idx|𝐴𝑡𝑡𝑟𝑀 𝑖𝑑𝑥 == 𝑡ℎ𝑟𝑒𝑠𝑝] 

 𝑖𝑠𝑛  [idx|𝐴𝑡𝑡𝑟𝑀 𝑖𝑑𝑥 == 𝑡ℎ𝑟𝑒𝑠𝑛] 

 for every two consecutive values i and j in 𝑖𝑠𝑝 

  if 𝐴𝑡𝑡𝑟𝑀 𝑣  ≥ 𝑡ℎ𝑟𝑒𝑠𝑝 for ∀𝑣 ∈  𝑖, 𝑗  

   𝑠  first index that 𝐴𝑡𝑡𝑟𝑀 𝑠 == 0 and 𝑠 ≤ 𝑣 

     𝑒  first index that 𝐴𝑡𝑡𝑟𝑀 𝑒 == 0 and 𝑒 ≥ 𝑣 

     Ps.insert(𝐴𝑡𝑡𝑟𝑀 𝑠: 𝑒 )      % 𝐴𝑡𝑡𝑟𝑀 [𝑠 : 𝑒] is in Type P 

  end if 

 end for 

 for every two consecutive values i and j in 𝑖𝑠𝑛 

  if 𝐴𝑡𝑡𝑟𝑀 𝑣  ≤ 𝑡ℎ𝑟𝑒𝑠𝑛 for ∀𝑣 ∈  𝑖, 𝑗  

   𝑠  first index that 𝐴𝑡𝑡𝑟𝑀 𝑠 == 0 and 𝑠 ≤ 𝑣 

     𝑒  first index that 𝐴𝑡𝑡𝑟𝑀 𝑒 == 0 and 𝑒 ≥ 𝑣 

     Ns.insert(𝐴𝑡𝑡𝑟𝑀 𝑠: 𝑒 )      % 𝐴𝑡𝑡𝑟𝑀 [𝑠 : 𝑒] is in Type N 

  end if 

 end for 

 return Ps, Ns 

} 

 Algorithm 3-2 Automatic MGAttraction signal segmentation for Type P and N 
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N segments. By definition, Type B segments are the time periods that mouse is at 

rest. Specifically, mouse speed is less than 75 pixels/sec, and the cursor is within 

a circle with a radius of 10 pixels for more than 1.2 seconds [117]. 

The second step of the feature extraction process is the segment-level feature 

extraction. As shown in Figure 3-8, segments with the same type are considered 

together. For each segment type, we then extract segment-level features 

(𝐹𝑃, 𝐹𝐵, 𝐹𝑁) to describe the relative movement behaviors between gaze and mouse 

in the Type P, B, and N segments. 

Type P segments mainly involve behavior exhibited when a subject moves 

the mouse towards the gaze point. The segment-level features 𝐹𝑃  quantifies 

behaviors such as how vigorously the mouse approaches the gaze and how much 

the gaze leads the mouse. Both of these behaviors have been shown to be indicative 

of different mental states [49]. 

Table 3-4 shows the extracted features from the segment in Type P. 𝑓 
𝑝 −

𝑓 
𝑝
quantify the overall MGAttraction level for both gaze and mouse, and 𝑓5

𝑝 −

𝑓6
𝑝
describe the time needed for the gaze and mouse to reach the largest attraction. 

When a user is stressed, the speed of movement for both gaze and mouse tend to 

increase (this phenomenon is found when we detect the stress in a static UI 

environment), which can be reflected by features 𝑓 
𝑝 − 𝑓6

𝑝
. 

𝑓5
𝑝 − 𝑓8

𝑝
  capture the latency information in the coordination between the 

gaze and mouse movements, such as the time difference between when the gaze 

and mouse start moving and when they reach their largest attraction value. Figure 

3-10 gives an example of what these features would look like in a sample Type P 

segment, where the x-axis indicates the timeline, and the y-axis indicates the 

attraction of gaze and mouse. 
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Feature Meaning Formulation 

 𝟏
𝑷,   

𝑷 Mean, max of mouse 

attraction 

Mean and max of 𝑎𝑡𝑡𝑟𝑀in the segment 

period 

 𝟑
𝑷,  𝟒

𝑷 Mean, max of gaze 

attraction 

Mean and max of 𝑎𝑡𝑡𝑟𝐺  in the segment 

period 

 𝟓
𝑷 Time that mouse has the 

largest absolute attraction 

Time of 𝑎𝑡𝑡𝑟𝑀 shows the maximum 

absolute value 

 𝟔
𝑷 Time that gaze has the 

largest absolute attraction 

Time of 𝑎𝑡𝑡𝑟𝐺 shows the maximum 

absolute value 

 𝟕
𝑷 Gaze attraction at the 

beginning 

𝑎𝑡𝑡𝑟𝐺  at the beginning of the segment 

period 

 𝟖
𝑷 Latency of peaks Time difference between the maximum 

absolute value of 𝑎𝑡𝑡𝑟𝐺  and the maximum 

absolute value of 𝑎𝑡𝑡𝑟𝑀 

 𝟗
𝑷 Duration of the segment Total time duration of the segment 

Table 3-4 𝐹𝑃: Features extracted from the P segment 

 

Figure 3-10 Illustration of features extracted in 𝐹𝑃 

Compared to the Type P segment, the Type N segment describes a time period 

during which the mouse departs from the gaze. It can be seen as the upside-down 

version of the Type P segment. Therefore, we extract the same features 𝐹𝑁 as 𝐹𝑃 

from the Type N segment, shown in Table 3-4. 
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Feature Meaning Formulation 

 𝟏
𝑩,   

𝑩, 

 𝟑
𝑩 

Mean, max, min of gaze 

attraction 

Mean, max, min of 𝑎𝑡𝑡𝑟𝐺 in the 

segment period 

 𝟒
𝑩,  𝟓

𝑩 Mean of positive gaze 

attraction 

Mean of all positive and negative 

values of 𝑎𝑡𝑡𝑟𝐺 in the segment period 

 𝟔
𝑩,  𝟕

𝑩 Duration of gaze shows a 

positive and negative 

attraction 

Accumulated sum of time duration that 

𝑎𝑡𝑡𝑟𝐺 is positive and negative in the 

segment period 

 𝟖
𝑩,  𝟗

𝑩 Power of positive and 

negative gaze attraction 

Accumulated power of positive and 

negative gaze attraction 

 𝟏𝟎
𝑩  Duration of the segment Total time duration of the segment 

* Power stands for integral of attraction over time 

Table 3-5  𝐹𝐵: Features extracted from the B segment 

Type B segments are those where the mouse is stationary for the entire 

segment period. Hence, we only extract features from 𝑎𝑡𝑡𝑟𝐺  , and detailed 

meaning and formulation of extracted features are presented in Table 3-5. 𝑓 
𝐵 −

𝑓 
𝐵 depict the overall intensity of gaze movement attraction, and 𝑓 

𝐵 − 𝑓9
𝐵  are 

designed to model the movement by which gaze is approaching or departing from 

the mouse. When a user has a clear idea about the next target and moves the mouse 

purposefully toward it, then 𝐴𝑡𝑡𝑟𝐺  should show only one negative pulse with a 

large amplitude. However, if a user does not have a clear idea about the next target, 

he/she likely to look around, which will generate a couple of negative and positive 

pulses with a small amplitude. 

According to the feature extraction pipeline from Figure 3-8, the final 

session-level feature vector is constructed by concatenating the 𝜙  and 𝑆 

components. 𝜙 contains the aggregated features constructed from segment-level 

feature vectors, and 𝑆 consists of statistical features that model the overall trend 

of 𝑎𝑡𝑡𝑟𝐺  and 𝑎𝑡𝑡𝑟𝑀 for the entire session. 
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The first part of the session-level feature vector 𝜙 contains two statistical 

features extracted from the generated segment-level feature vectors. The first 

feature is the average behavior among all the segments and the second one captures 

the variation of behavior among all the segments. Specifically, suppose a session 

𝑆𝑒𝑠𝑠 consists of 𝑘 segments in Type P. For the 𝑖𝑡ℎ Type P segment in 𝑆𝑒𝑠𝑠, we 

can extract a segment-level future vector 𝐹𝑖
𝑃 , where 𝑖 ∈  1, 𝑘  . 𝜙𝑃  is the 

aggregated feature vector extracted from 𝐹𝑖
𝑃  and 𝑖 ∈  1, 𝑘   by computing the 

mean value and the standard deviation of each 𝑓𝑗
𝑃 and 𝑗 ∈  1,9 . By following 

the same procedure, we can also generate 𝜙𝐵, 𝜙𝑁 and 𝜙 by concatenating 𝜙𝑃, 

𝜙𝐵 and 𝜙𝑁 together. 

For the second part of the session-level feature vector 𝑆, we extract statistical 

features from the session-level 𝑎𝑡𝑡𝑟𝐺   and 𝑎𝑡𝑡𝑟𝑀  signals, including mean, 

standard deviation, max, min, cross zero rate (per second) (i.e., the number of 

times per second that the signal moves from positive to negative, and vice versa) 

and 𝑁𝑃𝑟𝑎𝑡𝑖𝑜, where NPratio is computed as the accumulative duration that the 

signal is negative divided by the accumulative duration which the signal is positive. 

Our expectation is that these statistical features can capture the overall trend of 

signals for the whole session. Therefore, the final session-level feature vector is 

built by concatenating 𝜙 and 𝑆. 

 

3.2.4 Construct Dataset for Stress Detection in Dynamic UIs 

Environment 
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Figure 3-11 Experiment interface for stress detection in dynamic UIs environment: (a) 

Question page (b) Searching results page and (c) Potential answer page 

The purpose of constructing this dataset is to detect stress in a real-world 

scenario. Hence, the constructed dataset should satisfy requirements, including 1) 

the task used to evaluate should be a commonly-encountered computer interaction 

task 2) with dynamic UIs. Given that web searching is one of the most ubiquitous 

activities, we use a web search task for our study. In our experiment, subjects were 

required to answer some questions randomly selected from the question-answering 

game "A Google a Day".  

Figure 3-11(a) shows the question-answering interface. We first confirmed 

that the subject did not know the answer to the posed question in advance. If the 

subject already knew the answer, a new question was re-selected. Subjects were 

asked to type their answers in the input area. The submit button was used to check 

the correctness of the inputted answers. Subjects could repeatedly submit attempts 

until they found the correct answer, or (in stress sessions) they reached the 5-

minute time limit. The time limit for each session was determined through multiple 

pre-experiments and we found 5 minute an efficient setting to balance between 

inducing stress and having adequate time to answer a question.   

The questions in the "A Google A Day" task were formulated such that it was 

not allowed to find the answer by simply copying and pasting the question into the 
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search query. This means that subjects had to iteratively rephrase and refine the 

searching keywords according to the question and the information they achieved 

from previous searches. Throughout this process, subjects would be led to different 

webpages, which they might browse through or even follow links off, to obtain 

the final answer. Since these webpages would have different UI layouts, and it was 

impossible for us to forecast which keywords would be used and which websites 

would be visited. This gives us a dynamically changing UI environment. Some 

example webpages are presented in Figure 3-11(b) and Figure 3-11(c). 

In the experiment, each subject was required to accomplish 12 sessions. Each 

session required the subject to find the correct answer to one "A Google A Day" 

question, where 6 of them, we termed as 𝑟𝑒𝑙𝑎𝑥𝑒𝑑, did not have a time constraint, 

and subjects could take as long as they liked to finish the task. The other six 

sessions subjected the experiment subjects to a 5-minute time limit per session to 

induce stress. Many previous works [64, 79] show that time pressure and 

background noise are effective ways to induce the mental state. To further ensure 

that the stress level is indeed increased, a sound cue countdown was included. 

The order of the relaxed and stressed sessions was determined randomly to 

even out the fatigue factor. The experiment started with one warm-up session to 

familiarize the subject with the experimental procedure and the experimental 

settings. After each session, subjects were required to report their stress level on a 

5-point Likert scale, with 1 being 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑛𝑜𝑡 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 to 5, 𝑓𝑢𝑙𝑙𝑦 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑. 

A 15-minute break was introduced between every two sessions to allow subjects 

to relax and recalibrate the eye-tracker.  

Totally, there were 15 subjects involved in this experiment. Stress sessions 

during which the subject self-reported a stress score lower than 3 were discarded. 

Our final dataset contains 175 sessions, 90 of which were labeled as stress. 
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Figure 3-12 Experimental environment for stress detection in dynamic UIs environment 

The experiment was conducted in a conventional office setting, which is 

shown in Figure 3-12. The setup was composed of a 22'' LCD monitor at 

1600× 1000 resolution, a full-size QWERTY keyboard, and a standard optical 

mouse. Subjects sit around 60 cm away from the screen with their preferable chair 

heights and screen heights. Three different modalities of data were collected 

during the experiment: 1) Eye gaze location data captured by the Tobii EyeX eye-

tracker at 60 𝐻𝑧 , which was attached to the bottom of the display, 2) mouse 

location data captured by a C++ program at 120 𝐻𝑧 and 3) video of subjects' face 

and upper body captured by a standard webcam fixed on the top of the at 30 Hz. 

All the data collecting programs were running in the background without 

disturbing subjects' interactions.  

3.2.5 Experimental Evaluation of Stress Detection on 

MGAttraction Signals 

This section will evaluate the performance of detecting mental stress via the 

gaze and mouse behaviors modeled by the MGAttraction coordinate system on the 

dataset constructed for stress detection in the dynamic UIs environment. In real 
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applications, a model should be able to detect stress for a new user never seen 

before. Hence, the leave-one-subject-out mechanism is utilized to evaluate our 

method in the dynamic UIs environment. Specifically, we iteratively select one 

subject and his/her data to be the testing data to evaluate the stress detection model, 

which is trained on the data from other subjects. We repeat this process until all 

the subjects have been selected to test the model and report the average correct 

classification rate (CCR) as the overall evaluation performance. 

We follow the procedures shown in 3.2.3 to extract 66 features (12 features 

in 𝑆 and 54 features in ∅) for each session. A Random Forest (RF) is used to 

discriminate between the stressed session and relaxed session based on the 

extracted features. RF has been used in many similar contexts [28, 113, 125, 131] 

and has the advantages that it is able to 1) handle non-linear data, 2) be somewhat 

robust to outliers, 3) produce a low bias and moderate variance result, and 4) 

quantify the relative importance of the features, which helps with interpreting the 

model.  

      Performance 

Class 

Precision Recall F-measure 

Relax 0.82 0.73 0.77 

Stress 0.77 0.84 0.80 

Weighted Average 0.79 0.79 0.79 

Table 3-6 Classification performance for stress detection based on MGAttraction signals in 

dynamic UIs environment 
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Predicted as 

 

Ground truth 

Relax Stress Total 

Relax 62 23 85 

Stress 14 76 90 

Total 76 99 175 

Table 3-7 Confusion matrix for stress detection based on MGAttraction signals in dynamic 

UIs environment 

Table 3-6 shows the method's detailed performance, and the confusion matrix 

is presented in Table 3-7. The average CCR achieved for two classes is 78.8%, 

which is significantly higher than the baseline of 51.4% achieved by classifying 

every instance as the majority class (Stress). The false alarm rate of our approach 

is less than 0.25, which suggests that our approach can balance between over-

reporting possible stress and the danger of missing reporting. Moreover, our 

approach's weighted average F-measure is close to the weighted average precision 

and recall, which indicates that our approach does not sacrifice either one of 

precision or recall for the other. Overall, the results indicate that our approach can 

successfully detect stress in a real-world scenario based on the MGAttraction 

signals. 

We further study the achieved performance by comparing it with other state-

of-the-art, dynamic UI-based approaches in the web search task, in contexts where 

the experiment subject is required to complete an entire task, and the stress level 

is measured on the level of the overall task. However, some state-of-the-art 

approaches rely on UI related features, such as the dwell duration of gaze and 

mouse within a particular UI area or the speed and frequency of gaze and mouse 

travel between each UI component and gaze and mouse transition sequence among 

UI components. In order to evaluate these methods on our dataset, we implement 
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a module to extract the UI information from the current webpage, which is 

provided to the approaches that we are comparing ours against. We experiment 

with two methods for extracting the UI component information dynamically: 

heuristic and content-based. 

 

Figure 3-13 Dynamic UIs component detection methods: (a) Heuristic-based and (b) 

Content-based 

The heuristic-based method divides the whole UI interface into several sub-

area based on the heuristic knowledge of browsers' standard UI design. As shown 

in Figure 3-13(a), We first extract the top and bottom sub-areas and then further 

evenly divided the middle area into 4×4 sub-areas. Different UI components will 

appear in each sub-area with different frequencies. For example, in the Google 

result page, links in the text form often appear in two left columns of the sub-areas, 

and users always pay more attention to the top two rows of the sub-areas. On the 

Wikipedia page, pictures often appear in the right two columns.  

The content-based method extracts UI information based on computer vision 

techniques. The canny edge detection algorithm is adopted to segment different 

UI component areas, including button area, input area, text-content area, and 

picture-content area. An example of the UI components division result is presented 

in Figure 3-13(b). 
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Performance 

Method 

Accuracy 

(CCR) 

Precision 

(Stress) 

Recall 

(Stress) 

StressClick  58.9% 0.60 0.62 

Movement patterns + 

Heuristic-based UI 

62.8% 0.62 0.71 

Movement patterns + 

Content-based UI 

67.1% 0.64 0.82 

UI-agnostic Stress 

Detection on 

MGAttraction 

78.8% 0.77 0.84 

* Movement patterns include movement features and gaze-mouse coordination features 

Table 3-8 Performance of different approaches in dynamic UIs task 

With the help of the dynamic UIs information extraction module, the gaze 

and mouse transition sequences can be constructed in the form of transition among 

different extracted areas. The state-of-the-art approach: StressClick [49], the 

movement pattern based stress detection method proposed by us for the static UI 

environment with heuristic-based and content-based dynamic UIs component 

detection methods and our new UI-agnostic stress detection method are evaluated 

on the web search task dataset, and the performance of each approach is presented 

in Table 3-8. 

The results suggest that our UI-agnostic stress detection approach achieves 

the best performance, which is around 20% improvement over the state-of-the-art: 

StressClick and more than 10% improvement from the movement pattern based 

stress detection method with the content-based UI extraction module. One possible 

reason that StressClick does not perform as well as our method is that StressClick 

only considers the gaze behaviors relative to the mouse within a small time-

window around each mouse click, which may not be sufficient enough to detect 
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the mental state in a complex task with dynamic UIs. Our hypothesis is borne out 

by the observations that the movement pattern based stress detection method 

yields better performance than StressClick, especially when it is provided with 

detailed UI information (with content-based dynamic UIs component detection 

method), which allows it to take into account more information related to the gaze 

and mouse movement behaviors. However, it also tends to generate many false 

positive (stress) instances and is fairly sensitive to the quality of extracted UI 

information. This can be seen from the fact that when the heuristic-based module, 

which is not able to accurately analyze the UI, is used, the performance drops to a 

CCR of 62.8%. This is a limitation of these kinds of methods, as real-time 

extraction of UI components in dynamic UIs tasks is expensive since it usually 

requires heavy image processing computation. In conclusion, our results illustrate 

that our UI-agnostic stress detection method based on the MGAttraction signals 

can successfully detect mental stress in a real-world scenario with balanced 

precision and recall and a low false alarm rate with less computation cost. 

To better understand the features and how they work to detect stress, we 

output the top 5 most important features considered by RF. Figure 3-14 presents 

the distributions of each important feature across the relax and stress groups. Each 

bar stands for a distribution (green for relaxed and red for stressed), where the 

yellow line marks the mean value of each distribution. The box covers the first 

quartile to the third quartile, and the whiskers cover the range from minimum to 

maximum, except for outliers, which are shown by hollow circles. A t-test is 

adopted to determine whether there is a significant difference between the means 

of the two groups. If the p-value of the t-test is less than 0.01, which indicates that 

the difference of means is statistically highly significant, it is annotated with "∗∗" 

at the top of the figure. If the p-value is in  0.01, 0.05) , which means the 
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difference is statistically significant, and it is marked with "∗". If the p-value is 

greater or equal to 0.05, the difference is not significant, and it is marked with "X". 

 

Figure 3-14 Distributions of selected important features 

Figure 3-14 suggest that the important features have different distributions 

between the relax and stress groups. The t-test shows that four of them are shown 

the significant or highly significant difference in means between the two groups. 

𝑎𝑡𝑡𝑟𝐺  of the stressed group shows a lower cross zero rate. In physical terms, every 

time 𝑎𝑡𝑡𝑟𝐺 across the boundary between positive and negative (or vice versa), it 

indicates a change in the direction of the gaze movement (e.g., from leaving the 

mouse to approaching it). Therefore, a higher cross-zero rate implies that the gaze 

is moving back and forth without a clear target in mind. We also note that 𝑎𝑡𝑡𝑟𝐺 

exhibits a higher NPratio. This implies that the gaze is directly moving toward the 

target and leading the mouse in most cases together with the lower zero crossing 

rate, suggests that gaze movement is more consistent when the subject is stressed. 

Finally, it can be seen that when the user is stressed, the value of the mean 

latency of peaks is smaller. This indicates that the distance (in the time domain) 

between gaze and mouse is smaller. The mean of mouse attraction value is larger, 
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which means that the mouse has a greater tendency to move. Putting together, this 

suggests that when under stress, the mouse catches up with the gaze more quickly 

and with less delay. One possible reason for the above behaviors is that when 

subjects are stressed, their alertness may also be increased [32]. In situations where 

the stress is caused by the imposition of a time limit (such as in our study), this 

alertness discourages distractions and encourages more focus on the task at hand. 

A similar kind of gaze and mouse coordination has also been found when a user is 

in a state with a high cognitive load [49]. 

3.3 Webcam-based Stress Detection via Gaze and Mouse 

Behaviors 

In the previous sections, we propose the movement pattern based stress 

detection method for static UI tasks and the UI-agnostic stress detection based on 

the MGAttraction signals for dynamic UIs tasks. Both stress detection methods 

rely on the gaze location data, which is directly collected by the eye-tracker. 

However, the eye-tracker is still considered as special equipment that most 

common users cannot access to it and largely reduce the generalizability of our 

methods. To address such limitation, we propose to use the webcam, a kind of 

standard device, to replace the eye tracker by estimating the gaze locations from 

the webcam video frames and extend our UI-agnostic stress method so that it can 

detect stress efficiently based on the estimated gaze location without relying on 

the eye-tracker. 
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3.3.1 Estimate Gaze Locations from Webcam Video 

 

Figure 3-15 Overall pipeline of estimating gaze locations from webcam video 

Figure 3-15 shows the whole process of estimating gaze locations from the 

webcam video. We treat the video as a sequence of frames recording the subjects' 

face and upper body. The webcam camera is fixed in the middle of the top of the 

display, which is about 60 𝑐𝑚 away from the subject. In order to estimate the 

gaze locations from the webcam video, we exploit the state-of-the-art OpenFace 

2.0 [9] to extract facial features related to the head pose and the eye gaze direction. 

Extracted features with their meanings and formulations are shown in Table 3-9. 

For each valid 𝑓𝑟𝑎𝑚𝑒𝑖 at 𝑡𝑖 in the video, where valid is defined by the ability of 

the OpenFace algorithm to capture the subject's head and face, a facial feature 

vector 𝐹𝑡𝑖
𝐹𝑎𝑐𝑖𝑎𝑙 is extracted, which contains 12 features. At the same time, we also 

record the gaze location < 𝑥𝑡𝑖
, 𝑦𝑡𝑖

> on the screen at 𝑡𝑖 as captured by the eye-

tracker, to be the ground truth for training purposes. Two Support Vector 

Regression (SVR) models are then trained to construct the mapping from the facial 

feature vectors to the estimated 𝑥 and 𝑦 gaze locations on the screen: 𝐹𝐹𝑎𝑐𝑖𝑎𝑙 →

 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 and 𝐹𝐹𝑎𝑐𝑖𝑎𝑙 → 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. We evaluate the performance of our gaze 

location estimation method using the leave-one-subject-out cross-validation. The 
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average error in pixels of estimated gaze locations among all subjects is around 

125 pixels, and detailed average errors for each subject are shown in Figure 3-16.  

Feature Meaning Formulation 

 

 

𝒉𝒆𝒂𝒅𝑻𝒙, 𝒉𝒆𝒂𝒅𝑻𝒚, 𝒉𝒆𝒂𝒅𝑻𝒛 

 

Location of the 

head 

Location of the head 

corresponding to webcam in 

millimeters and positive Z is 

the direction away from the 

camera 

 

𝒉𝒆𝒂𝒅𝑹𝒙, 𝒉𝒆𝒂𝒅𝑹𝒚, 𝒉𝒆𝒂𝒅𝑹𝒛 

Rotation of the 

head 

Pitch (Rx), yaw (Ry), and roll 

(Rz) of the head with webcam 

being the origin 

 

𝑳_𝒈𝒂𝒛𝒆𝒙, 𝑳_𝒈𝒂𝒛𝒆𝒚, 𝑳_𝒈𝒂𝒛𝒆𝒛 

Left eye gaze 

direction  

Left eye gaze direction vector 

in the webcam coordinates 

with webcam being the origin 

 

𝑹_𝒈𝒂𝒛𝒆𝒙, 𝑹_𝒈𝒂𝒛𝒆𝒚, 𝑹_𝒈𝒂𝒛𝒆𝒛 

Right eye gaze 

direction  

Right eye gaze direction vector 

in the webcam coordinates 

with webcam being the origin 

Table 3-9 𝐹𝐹𝑎𝑐𝑖𝑎𝑙: Facial features extracted from webcam video 

 

Figure 3-16 Average error in pixels of estimated gaze locations for each subject 
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3.3.2 Inferring Mental Stress Based on the Estimated Gaze 

Locations 

Our gaze estimation process described in the last section gives us a sequence 

of on-screen estimated gaze locations, which forms the estimated gaze trajectory 

GE = < 𝑃𝐺𝐸
(0)

, 𝑃𝐺𝐸
( )

,  , 𝑃𝐺𝐸
(𝑛)

> . We follow the same procedures to generate 

estimated gaze attraction 𝑎𝑡𝑡𝑟𝐺𝐸   and estimated mouse attraction 𝑎𝑡𝑡𝑟𝑀𝐸   from 

the sequence of on-screen mouse locations M and the sequence of on-screen 

estimated gaze locations GE. Session-level features (𝜙𝐸 ⊕ 𝑆𝐸) are extracted from 

𝑎𝑡𝑡𝑟𝐺𝐸  and 𝑎𝑡𝑡𝑟𝑀𝐸  to discriminate between relax and stress sessions. Similarly, 

the performance of stress detection based on the estimated gaze locations is 

evaluated by the leave-one-subject-out mechanism. 

 

Performance 

Class 

Precision Recall F-measure 

Relax 0.64 0.65 0.64 

Stress 0.66 0.66 0.66 

Weighted Average 0.65 0.65 0.65 

Table 3-10 Stress detection performance based on estimated gaze locations 

Predicted as 

Ground truth 

Relax Stress Total 

Relax 55 30 85 

Stress 31 59 90 

Total 86 89 175 

Table 3-11 Confusion matrix for stress detection based on estimated gaze locations 

Table 3-10 presents the results of stress detection based on the estimated eye 

gaze locations. The confusion matrix is presented in Table 3-11. The overall CCR 

for stress detection based on the estimated gaze locations is 65.1%, a drop of 
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around 14% from the performance achieved when the eye-tracker is used to 

capture the eye gaze locations. 

The average error of the estimated eye gaze locations is about 125 pixels on 

a 1600×1000-pixel screen, but this performance degradation may or may not be 

uniform across the entire surface. We, therefore, conduct a deeper analysis to 

investigate the relationship between the CCR performance in different screen 

regions and the inherent error in the estimated eye gaze locations. We first evenly 

divide the whole screen area into 16×10 sub-areas, and each sub-area contains 

around 100× 100 pixels. For each sub-area, we compute the average error of 

estimated gaze locations based on the following equation: 

𝑒𝑟𝑟𝑜𝑟𝑗 =
∑ √(𝑃𝐺

(𝑖)
− 𝑃𝐺𝐸

(𝑖)
)2𝐶𝑗

𝑖

|𝐶𝑗|
                                      3-11 

Where 𝑒𝑟𝑟𝑜𝑟𝑗 is the average error of gaze estimation in the 𝑗𝑡ℎ sub-area, 

𝐶𝑗 is the set of gaze locations 𝑃𝐺  collected by the eye-tracker within the 𝑗𝑡ℎ sub-

area, 𝑃𝐺𝐸
(𝑖)

 is the corresponding estimated gaze of 𝑃𝐺
(𝑖)

 and | ∙ | returns the size 

of the set. We then set a threshold (𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟) and classify all the sub-areas into 

two categories: those which exhibit an average error greater than 𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟, and 

those which exhibit an error less than 𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟. 

Figure 3-17 shows the results of our analysis based on different thresholds. 

The region in black shows the area in which the average estimated gaze location 

error is smaller than the threshold. It can be seen that the estimated gaze locations 

in the central area of the screen are more accurate (i.e., have lower errors) 

compared to locations at the edge of the screen. 
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Figure 3-17 Error analysis with respect to screen regions. The average estimated gaze 

location error is smaller than 𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟  in the black areas 

Therefore, we build separate models that specialize in handling user 

behaviors in particular parts of the screen. Specifically, we construct five models 

for each 𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟: 125 pixels, 150 pixels, 200 pixels, 250 pixels and ∞ (no 

𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟). Based on the estimated location of the gaze, we then trigger the model 

with the lowest 𝑡ℎ𝑟𝑒𝑠𝑒𝑟𝑟 that covers the corresponding part of the screen. The 

leave-one-subject-out mechanism is used to evaluate the performance, and the 

results are shown in Table 3-12. It is obvious that our webcam-based stress 

detection model can achieve better performance when the gaze estimation is more 

accurate unless there are no adequate estimated gazes achieved inside the 

corresponding part of the screen. 

In order to improve the performance of our webcam-based model despite the 

error in the estimated gaze location, we investigate the possibility of adding 

additional information directly from the webcam video without going through the 

gaze location estimation process. The webcam video shows the eyes and the 

surrounding structures, and as such, pupil movements can be easily extracted from 

the video. We, therefore, investigate whether adding this information would 

improve our stress detection performance. 
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Performance 

 𝒉𝒓𝒆𝒔𝒆𝒓𝒓 

Precision 

(Stress) 

Recall 

(Stress) 

F-measure 

(Stress) 

Accuracy 

100 px Not evaluated for the size of the area is too small 

125 px 0.64 0.58 0.61 64.5% 

150 px 0.70 0.69 0.69 68.6% 

200 px 0.67 0.72 0.70 67.4% 

250 px 0.67 0.66 0.66 65.7% 

no  𝒉𝒓𝒆𝒔𝒆𝒓𝒓 0.66 0.66 0.66 65.1% 

Table 3-12 Stress detection performance based on estimated gaze locations 

 

Figure 3-18  Generating the pupil movement histogram: (a) showing the detected 

landmarks and pupil center (b) showing the segmentation of the eye image based on the 

landmarks and (c) showing the 2-D histogram encoding the probability of the pupil center 

appearing in each zone 

To extract the pupil movements, we utilize state-of-the-art Dlib [58] and 

OpenFace [9] to detect eye landmarks and each eye's pupil center positions for 

each eye frame in the webcam video. An example of landmarks and corresponding 

pupil center positions is shown in Figure 3-18(a). Based on the positions of 

landmarks, we divide the eye area into 5×3 sub-zones, and the layout of sub-zones 

is presented in Figure 3-18(b). We then represent the center of the eye pupil by the 

column-row ID of the sub-zone that it currently resides in. For example, Figure 

3-18(b) shows a pupil center residing in Zone C1.  

This method of encoding the eye pupil locations allows us to create a 

sequence of Zone IDs that represent the eye pupil movement for the entire session. 
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This sequence can be further encoded into a 2-D histogram by considering the 

pupil location IDs in all the frames recorded for that session, which can be shown 

in Figure 3-18 (c). The 2-D histogram thus encodes the probability that the pupil 

center appears in each zone. 

The 2-D histograms allow us to analyze the relative positions of the eye pupil 

center. Our observations suggest that there is always one zone that has a 

significantly higher probability than the others. This suggests that the subjects' 

pupils often remain in one specific for most of the time in a session period. This 

phenomenon makes sense since each subject has a 𝑐𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑝𝑜𝑡 

for the eyes when reading. Given a choice, he/she would either move the content 

window inside a 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛  of the screen, or he/she would 

move his/her head such that his/her eyes will rest in the comfort zone [92].  

By this definition, the zone of the highest probability, which we call the 

𝑔𝑟𝑜𝑢𝑛𝑑 𝑧𝑜𝑛𝑒 , indicates when the subject is reading content in his/her most 

comfortable reading position. If the next reading target results in the pupil center 

being outside of the ground zone, he/she will move the webpage's position to the 

preferred reading region or move his/her head. Either way, at this moment, his/her 

pupil centers will return to the ground zone. 

To model this behavior, two kinds of signals 𝐼(𝑡) and 𝐷(𝑡) are generated 

from the webcam video. 𝐼(𝑡)  captures whether the pupil center is inside the 

ground zone at time 𝑡  and 𝐷(𝑡)  is the Euclidean distance between the pupil 

center and the center of the ground zone at time 𝑡. 𝐼(𝑡) and 𝐷(𝑡) are formulated 

as below: 

𝐼(𝑡) = {
1 𝑖𝑓 𝑝𝑢𝑝𝑖𝑙 𝑐𝑒𝑛𝑡𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑧𝑜𝑛𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   3-12 
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𝐷(𝑡) = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑃𝑝𝑐
(𝑡)

, 𝑃𝑔)                                            3-13 

Where 𝑃𝑝𝑐
(𝑡)

 is the position of pupil center at time 𝑡 and 𝑃𝑔 is the position 

of the ground zone center. After generating the 𝐼(𝑡) and 𝐷(𝑡) signals, we then 

extract features 𝐹𝑃𝑢𝑝𝑖𝑙  from 𝐼(𝑡)  and 𝐷(𝑡) . Meanings and formulations of 

features in 𝐹𝑃𝑢𝑝𝑖𝑙 are shown in Table 3-13. 

Feature Meaning  Formulation 

 𝟏
𝑷𝒖𝒑𝒊𝒍

,   
𝑷𝒖𝒑𝒊𝒍

 Mean of signal 𝐼(𝑡) and 

𝐷(𝑡) 

𝑀𝑒𝑎𝑛(𝐼(𝑡)) and 𝑀𝑒𝑎𝑛(𝐷(𝑡)) 

 𝟑
𝑷𝒖𝒑𝒊𝒍

,  𝟒
𝑷𝒖𝒑𝒊𝒍

 Standard deviation of 

signal 𝐼(𝑡) and 𝐷(𝑡) 

𝑆𝑡𝑑(𝐼(𝑡)) and 𝑆𝑡𝑑(𝐷(𝑡)) 

 𝟓
𝑷𝒖𝒑𝒊𝒍

,  𝟔
𝑷𝒖𝒑𝒊𝒍

 Max and Min of signal 

𝐷(𝑡) 

𝑀𝑎𝑥(𝐷(𝑡)) and 𝑀𝑖𝑛(𝐷(𝑡)) 

 

 𝟕
𝑷𝒖𝒑𝒊𝒍

 

Number of activations of 

signal 𝐼(𝑡) 

Number of changes from 0 to 1 

of signal 𝐼(𝑡) divided by the 

total duration of the session 

 

 𝟖
𝑷𝒖𝒑𝒊𝒍

, 𝟗
𝑷𝒖𝒑𝒊𝒍

,  𝟏𝟎
𝑷𝒖𝒑𝒊𝒍

 

Mean, Max and Min of 

activation duration of 

signal 𝐼(𝑡) 

Mean, Max and Min duration of 

signal 𝐼(𝑡)equals to 1 

consecutively 

Table 3-13 𝐹𝑃𝑢𝑝𝑖𝑙: Features extract from I(t) and D(t) signals to describe pupil movement 

For each session's webcam video, two pupil feature vectors 𝐹𝐿
𝑃𝑢𝑝𝑖𝑙

  and 

𝐹𝑅
𝑃𝑢𝑝𝑖𝑙

  are extracted for the left and right eyes, respectively. Then, we merge 

𝐹𝐿
𝑃𝑢𝑝𝑖𝑙

 and 𝐹𝑅
𝑃𝑢𝑝𝑖𝑙

 together into 𝐹 
𝑃𝑢𝑝𝑖𝑙 by computing the mean of the respective 

features from 𝐹𝐿
𝑃𝑢𝑝𝑖𝑙

 and 𝐹𝑅
𝑃𝑢𝑝𝑖𝑙

. 
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Performance 

 

Model 

Accuracy 

(CCR) 

Precision 

(Stress) 

Recall 

(Stress) 

Eye-tracker based  78.8% 0.77 0.84 

Webcam-based 65.1% 0.66 0.66 

Webcam-based  

+ Pupil Moment  

73.7% 0.73 0.78 

Table 3-14 Performance of different approaches in dynamic UIs task 

Similar to previous evaluations, the leave-one-subject-out mechanism is used 

to evaluate the performance of the stress detection model based on the webcam-

estimated eye gaze locations, augmented with the pupil movement features. 

Evaluation results are shown in Table 3-14, and the confusion matrix is presented 

in Table 3-15. Results show that, with the help of the pupil movement features, the 

webcam-based model can improve more than 8% accuracy, which brings its 

performance close to the eye-tracker based model but without the need for any 

special equipment. 

 

                    

Predicted as 

 

Ground truth 

Relax Stress Total 

Relax 59 26 85 

Stress 20 70 90 

Total 79 96 175 

Table 3-15 Confusion matrix for webcam-based stress detection with pupil moment 

features 

3.4 Summary 

In this chapter, we focus on investigating how to infer the affective state, 

especially mental stress from gaze and mouse behaviors. This study proposes two 
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mental stress detection approaches: the movement pattern based stress detection 

approach mainly for static UI tasks and the UI-agnostic stress detection approach 

based on MGAttraction signals for dynamic UIs tasks. To improve the UI-agnostic 

stress detection approach's generalizability, we estimate the on-screen gaze 

locations from the webcam video to replace eye-trackers with webcams without 

relying on any special devices.  

For the first part of the study, we explore the possibility of using gaze and 

mouse behaviors, especially movement patterns and gaze-mouse coordination for 

stress detection in an interactive application modeled upon a common e-Learning 

evaluation task. We use an approach that extracts representative movement 

patterns from the gaze transition sequence and extracts gaze-mouse coordination 

features to successfully detect stress at the question-level. Aggregating the result 

at the question level and adding features that consider the consistency of the gaze 

and mouse movements across multiple questions allows us to detect the user stress 

level of an evaluation session with a performance of over 40% over the baseline. 

By analyzing the data, we find that when a subject is relaxed, he/she tends to revisit 

the same UI component more frequently and be attracted by the irrelevant 

information easier than they are stressed. Also, when a subject is stressed, he/she 

is apt to move their mouse and eyes more rapidly, and their behaviors are more 

consistent when he/she performs the same operations. 

For the second part of the study, we have demonstrated the feasibility of 

detecting stress on a common user interaction task based on gaze and mouse 

behaviors in a dynamic UI environment. Unlike most other state-of-the-art 

approaches, which model the correlation between gaze or mouse and the UI 

components separately, our approach considers both gaze and mouse information 

into the MGAttraction coordinate system, which is translation- and rotation- 
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invariant. This alleviates the need for accurate detection/identification of UI 

components. Our MGAttraction also allows for interpretation of the gaze and 

mouse behaviors in physical terms - in other words, the tendency of gaze and 

mouse to approach to or depart from each other. This allows the qualitative 

investigation of behaviors that are more important for stress detection. Our 

observations suggest that a subject tends to be more focused on his/her task and 

exhibits more consistent gaze movement, more intensity mouse movement, and 

less time latency between gaze and mouse under the stressed condition. We believe 

the MGAttraction coordinate system would benefit future studies in the human 

computer interaction area.  

Our UI-agnostic stress detection approach by utilizing the MGAttraction 

coordinate system achieves the best performance compared with other state-of-

the-art stress detection approaches. StressClick [49] is the system that is closest to 

ours. However, StressClick only considers the movement of the gaze before and 

after each mouse click. Our approach expands upon theirs by considering both 

gaze and mouse behaviors during the entire session. Results show that considering 

both gaze and mouse information together can build a better-performing stress 

detection model. It also suggests that features extracted in a single modality within 

a short time-window may not be powerful enough to detect stress in a more open-

ended and complex task. 

We then explore the feasibility of using the webcam to estimate gaze 

locations on the screen and detect stress based on gaze estimation, which makes 

our approach more feasible for consumer applications than approaches relying on 

the use of a specialized eye-tracker. We first find that the accuracy of gaze 

estimation strongly affects the performance of the stress detection. We also find 

that the accuracy of the webcam-based gaze estimation varies according to the 
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position of gaze on the screen with some regions (the upper-middle part screen 

when the webcam is placed on top of the monitor in the middle). Both findings 

illustrate that it may be beneficial for UI designers to better exploit this area of the 

screen since gaze information in that area can be estimated with higher confidence 

just using a standard webcam. To further improve the performance of our webcam-

based stress detection model, we involve another modality of information, which 

is the pupil movement. Our final webcam-based stress model considers both the 

gaze and mouse relative movement behaviors and the pupil movement. This 

multimodal approach helps to improve our model's performance. 
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4 Inferring Users' Writing Cognitive Process Based on 

Gaze and Typing Behaviors 

Chapter 3 presents the behavioral signals based approaches to infer the 

affective state, especially users' mental stress. Based on gaze and mouse behaviors, 

two important modalities, we successfully detect the mental stress in both static 

UI environment and dynamic UI environment. In this chapter, we investigate 

another important component of the cognitive state, which is inferring users' 

cognitive processes in daily computer interaction tasks. Different tasks may 

involve different cognitive processes, and in this thesis, we focus on analyzing the 

cognitive processes of writing.  

Unlike the previous studies, gaze and typing behaviors are investigated 

during copy-typing tasks. In these tasks, subjects just need to type the texts from 

sources prepared in advance. This type of behavior is not the same as typing the 

texts composed on their own. Another weakness of previous research is that 

English is the language used by most of the prior studies to investigate gaze and 

typing behaviors. 

To address those limitations, we construct our datasets by collecting data 

from subjects from different age groups with different typing skills. Three articles 

in different genres (reminiscent, logical, and creative) are required to be composed 

by each subject, and all the articles are written in Chinese. A detailed description 

of datasets is introduced at the beginning of this chapter. Based on the constructed 

datasets, we first investigate that whether and how age-factors affect the cognitive 

process of writing in Section 4.2 and then we explore that whether and how writing 

genres affect the writing cognitive process for users with different typing skills in 

Section 4.3, followed by the summary in Section 4.4. 
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One of the significant challenges of the study is how to identify the time 

window in different types based on gaze and typing behaviors so that different 

writing processes can be isolated as clear as possible. Another challenge is to 

design the appropriate features to capture the differences in the writing cognitive 

process. To overcome the challenges, we design three different types of time 

windows to divide the writing process into three different phases: thinking phase, 

typing phase, and transition phase between the thinking and typing phases for 

investigating age-factors' effect. Statistical-based gaze-typing features are 

extracted from each time window to model the behaviors. Because the impact of 

writing genres is more complicated than age-factors, we further categorize the 

thinking window and the typing window into three different subtypes, respectively, 

and statistical-based and sequence-based gaze-typing features are extracted. The 

concreted definitions of each time window and procedures we extract features are 

introduced in Section 4.2 and 4.3. 

4.1 Constructing Writing Cognitive Process Datasets 

4.1.1 Subjects' Background and Environment Setting 

This study aims to explore whether and how age-factors, writing skills, and 

writing genres affect the writing cognitive process based on gaze-typing behaviors. 

Therefore, we establish datasets that satisfy the requirements, including 1) texts 

generated originally in different genres by each subject, 2) subjects recruited from 

diverse age groups with different typing skills, and 3) subjects writing articles in 

their first language: Chinese. As far as we know, our datasets are the first datasets 

that satisfy all these requirements at the same time. 

Data included in the datasets are collected from 46 subjects. 18 subjects 

belong to the child age group (Ages 8 –  12, 𝑀𝑒𝑎𝑛  = 9.85, 𝑆𝑇𝐷  = 1.46), 10 
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subjects to the college students age group (Ages 22 – 29, 𝑀𝑒𝑎𝑛 = 24.6, 𝑆𝑇𝐷 = 

2.46) and 18 subjects to the elder age group (Ages 55 – 67, 𝑀𝑒𝑎𝑛 = 60.75, 𝑆𝑇𝐷 

= 4.05). A pre-experiment survey is conducted by each subject before participates 

in the official experiment. The pre-experiment results suggest that all the 

participating subjects are acquainted with using computers and able to type in two 

hands. All the recruited subjects in the study are native Chinese speakers, and they 

all type in Chinese by using the Chinese Pinyin input method. 

When typing Chinese in the Pinyin input method, as illustrated in Figure 4-1, 

a list of potential Chinese words/phrases corresponding to the Latin texts inputted 

by a user are presented in a pop-up candidates box under the caret. The user then 

chooses a certain choice by using the number key or pressing the space to pick the 

first candidate. After selecting the targeted word/phrase, the candidate box will 

disappear, and the chosen word/phrase is appended to the position of the caret. 

Then the caret moves to the end of the word/phrase that has just been produced.

 

Figure 4-1 An example of the pop-up candidates box. The user input the Latin text "pin' yin' 

shu' ru' fa", shown on the top of the candidates box, and five corresponds Chinese 

words/phrases are generated automatically by the system, shown below the user input. The 

user can either choose the correct mapping by pressing the number key or press "space" to 

select the first option. 

As shown in Figure 4-2, our experiment was performed in a traditional office 

setting. The setup included a 22'' LCD display at 1680 × 1050 resolution with 

Microsoft Word executing in full-screen mode. A Tobii EyeX eye-tracker was 

attached to the bottom of the screen, and a full-size QWERTY keyboard was used 



 

89 

 

for input. During the experiment, subjects were expected to sit around 60 𝑐𝑚 

away from the screen in a comfortable typing position. The subject's eye gaze on-

screen locations, which were obtained by the EyeX eye-tracker, was logged at 60 

𝐻𝑧. The mouse cursor position was also captured at 100 𝐻𝑧. All keypress events 

were also logged. Screen recordings were taken at 30 𝐻𝑧. 

 

Figure 4-2 Experiment environment 

4.1.2 Experiment Design 

We hypothesize that during the writing process, the subjects' cognitive 

process and load are correlated to the genres of the text that they are working on. 

For instance, the cognitive processes of editing a scientific article and writing a 

narrative essay are completely different, which may manifest in different gaze-

typing behaviors. Therefore, three articles in different genres are required by 

subjects to complete. Details are shown below: 

• Reminiscent –  Write an article describing an unforgettable event that 

occurred several years ago or so. With the intention of bringing readers back 

in time to witness the event, the event should be described clearly and 

specifically. 
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• Logical − Write a guideline to instruct readers on a new skill. The instruction 

steps should be connected by the connective words but not written in the list 

form. Examples are the rules of playing bridge or the procedures of 

multiplying or dividing a 2-digit number. The presumption is that the reader 

has no previous experience of this skill. 

• Creative − Write an essay on a fantasy event, such as a day in the far future, 

or the life in a moon colony. 

The subjects were instructed to write an article that would be about one page 

in length and given around 30 minutes for each task. If a subject could not finish 

within 30 minutes, he/she would be reminded of the time, but the experiment 

would continue till he/she finished writing the article. The font size was set to 18 

DenXian with triple-line spacing so that the eye tracker could locate fixations and 

saccades accurately. Every subject was given sufficient time to adapt to the 

equipment and experimental settings. There was a 15-minute break between every 

two tasks to prevent exhaustion. After each break, the eye-tracker was recalibrated. 

Experiment sessions in which the subjects wrote too little or otherwise did not 

meet our length requirement were removed. 

4.1.3 Overview of Datasets 

Our experiments resulted in 138 instances, each of them representing around 

30 minutes of composing and typing activity from 46 subjects (18 in child age 

group, 10 in college student age group, 18 in elder age group). Among all instances, 

46 instances are labeled as reminiscent, 46 as logical, and 46 instances as creative.  

Many previous studies [52, 53, 89] illustrate that one of the most significant 

impacts on the gaze-typing behaviors comes from the typing skill, and users are 

always categorized into touch typists and non-touch typists. Where touch typing 
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is a style of typing in which the subject relies on muscle memory to locate the keys, 

and non-touch typing is the other style of typing that requires a subject to look at 

the keyboard to locate the keys. Therefore, the gaze and typing data of non-touch 

typists exhibit more dramatic displacements along the y-axis and lower typing 

speed. These differences in the gaze-typing behaviors are far more marked than 

the differences induced by the different cognitive processes. 

We, therefore, separate the collected writing data based on typing skills for a 

cleaner analysis. For each subject, we measure the time spent typing by the subject 

while looking at the keyboard by summing up all the typing periods during which 

the subject's eye gaze is away from the screen and compute the ratio 𝛾 of that 

time to the sum of all typing periods. 

 

Figure 4-3 Cumulative distribution function of γ for all subjects 

Figure 4-3 shows the cumulative distribution function (CDF) of 𝛾 for all the 

subjects. In this study, we choose 𝛾 = 0.5 as the threshold to distinguish touch 

typists and non-touch typists. If 𝛾 ≥ 0.5, implying that the subject needs to look 

at the keyboard while typing more than half of the time, then the subject is 

considered as a non-touch typist. Otherwise, the subject is classified as a touch 

typist. 
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We finally obtain a total of 69 instances from 23 touch typist subjects and 69 

instances from 23 non-touch-typing subjects. The detailed composition of each 

dataset is shown in Table 4-1. As expected, most of the subjects in the child age 

group are non-touch typists, and most of the subjects in the college age group are 

categorized as touch typists. Around 67% of subjects in the elderly age group are 

classified as touch typists, as far as we know, they worked with computers before 

they retired. 

Dataset Num. of subjects 

in 

Child age group 

Num. of subjects 

in  

College age group 

Num. of subjects 

in  

Elderly age group 

Touch typist 1 10 12 

Non-touch typist 17 0 6 

Total 18 10 18 

Table 4-1 Detailed composition of the datasets from each age group 

Every data instance in our datasets representing the typing activity over one 

article includes eye gaze and mouse positions in the form of a series of <

𝑡𝑔𝑎𝑧𝑒 , 𝑥𝑔𝑎𝑧𝑒 , 𝑦𝑔𝑎𝑧𝑒 >  and < 𝑡𝑚𝑜𝑢𝑠𝑒 , 𝑥𝑚𝑜𝑢𝑠𝑒 , 𝑦𝑚𝑜𝑢𝑠𝑒 >  tuples and keyboard 

events in the form of a series of < 𝑡𝑘𝑒𝑦, 𝑘𝑒𝑦𝑛𝑎𝑚𝑒 > tuples, where 𝑡𝑔𝑎𝑧𝑒, 𝑡𝑚𝑜𝑢𝑠𝑒 

and 𝑡𝑘𝑒𝑦  are the timestamps, 𝑥𝑔𝑎𝑧𝑒 , 𝑦𝑔𝑎𝑧𝑒 , 𝑥𝑚𝑜𝑢𝑠𝑒 , 𝑦𝑚𝑜𝑢𝑠𝑒  are the on-screen 

coordinates and 𝑘𝑒𝑦𝑛𝑎𝑚𝑒 is the specific key pressed by a subject.  

A two-phase heuristic filter [107] is applied to eliminate the impulse noise 

from the eye-tracking data. Eye gaze fixations are then detected from the processed 

eye-tracking positions by utilizing the Dispersion-Threshold Identification 

algorithm [101] with the dispersion as 35 𝑝𝑥 and minimum fixation duration as 

170 𝑚𝑠, which are presented in the form of a series < 𝑡𝑓𝑖𝑥 , 𝑑𝑢𝑟𝑓𝑖𝑥 , 𝑥𝑓𝑖𝑥 , 𝑦𝑓𝑖𝑥 > 

tuples, where 𝑡𝑓𝑖𝑥  is the timestamp when the fixation starts , 𝑑𝑢𝑟𝑓𝑖𝑥  is the 

duration of the fixation and 𝑥𝑓𝑖𝑥, 𝑦𝑓𝑖𝑥 is the coordinate of the on-screen fixation 
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position. A series of caret positions are also extracted in the form of <

𝑡𝑐𝑎𝑟𝑒𝑡, 𝑥𝑐𝑎𝑟𝑒𝑡, 𝑦𝑐𝑎𝑟𝑒𝑡 >, which encodes that at moment 𝑡𝑐𝑎𝑟𝑒𝑡, the caret is located 

at <𝑥𝑐𝑎𝑟𝑒𝑡, 𝑦𝑐𝑎𝑟𝑒𝑡> on the screen. This pre-processed data is used to model the 

gaze-typing behaviors at a given moment 𝑡. At moment 𝑡, based on the keyboard 

events data, we can determine whether a subject is thinking about what is going to 

write or typing on the keyboard. Keyboard events can also be used to model typing 

dynamics. Combining with fixation and caret positions allows us to deduce 

whether a subject is rereading the previously written texts, or just staring at a place 

and thinking. 

4.1.4 Data Distribution 

During the experiment, three articles in different genres are generated by each 

subject. In order to not disturb the subjects' cognitive process, we did not impose 

many detailed constraints, such as word choices, sentence length, or the number 

of paragraphs. During the writing, the subjects were also permitted to remove or 

edit the already-generated texts. To better understand the data, this section presents 

some descriptive statistical analysis of our writing datasets. 

Datasets Num. words 

in 

Reminiscent 

Num. words 

in 

 Logical 

Num. words 

in 

Creative 

Num. words 

in 

All genres 

Touch typist 266.5 222.0 227.3 237.4 

Non-touch typist 237.2 199.0 208.3 216.3 

Table 4-2 Number of words among different writing genres 

Datasets Typing speed 

(WPM) 

Reminiscent 

Typing speed 

(WPM) 

Logical 

Typing speed 

(WPM) 

Creative 

Typing speed 

(WPM) 

All genres 

Touch typist 46.9 44.4 42.2 44.5 

Non-touch typist 16.2 15.5 16.7 16.1 

Table 4-3 Typing speed in words per minute (WPM) among different writing 
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Table 4-2 shows the length of articles in different genres generated by touch 

typists and non-touch typists. According to the table, touch typists tend to generate 

articles in a longer length. For different genres of articles, reminiscent articles are 

the longest ones, and creative articles are the shortest ones. Table 4-3 illustrates 

the typing speed across different groups. Obviously, touch typists type much faster 

than non-touch typists. Figure 4-4 shows the vocabulary usage for both the touch 

typists and the non-touch typists. Based on the results, it can be concluded that 

there is no noticeable difference in the vocabulary usage between touch typists and 

non-touch typists, and most of the words used are from the top 1000 most-

frequently-used Chinese characters ∗. One interesting observation is that logical 

writing tends to need a more diverse vocabulary than the other genres of writing. 

 

Figure 4-4 Vocabulary usage across different writing genres for touch typists and non-touch 

typists: percentage of vocabulary in the article belonging to the top N frequently used Chinese 

characters, where N equals 500, 1000, 1500 and 2000 

In our experiment, subjects were asked to write one article in each of the three 

genres: reminiscent, logical, and creative, respectively. For proper analysis, it is 

important to know whether the subjects were actually able to follow instructions 

*: http://lingua.mtsu.edu/chinese-computing/statistics/char/list.php 
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and generate the appropriate articles for the requested genres, i.e. the content of 

the articles match the expected genre. This is especially important in the case of 

the child subjects, who may have less experience writing logical articles. To this 

end, we recruited two experts, who are high-school Chinese teachers from 

mainland China, to review the articles written by our subjects. We asked the 

experts to read the articles and label each of them as reminiscent, logical, creative, 

or hard to decide. Given an article, the experts labeled it only based on its content 

without any prior knowledge, such as the expected genre. The articles are 

presented in random order to the experts. 

It is not hard to imagine that different parts of an article may be categorized 

as different genres. For example, an article presents detailed instructions for 

cooking a dish (logical), may also include content which touches on the writer's 

memory and life experience (reminiscent), such as "when I first tried this, I ...". To 

take this into consideration, in addition to giving one overall genre label, we also 

asked the experts to rate the genres (reminiscent, logical, creative) for each article 

by distributing 5 points across the three genres. For example, if an expert thinks 

that a given article contains about 80% of logical content, and roughly 20% of 

reminiscent content, he/she would be expected to give the article the overall label 

of logical and rate the genres as Reminiscent: 1, Logical: 4, and Creative: 0. 

Table 15 presents the results of the expert review. Our results suggest that all 

the articles were correctly written for the requested genres, even for the articles 

written by our child subjects. Content-wise, most of the children and college 

students write logical articles with instructions for mathematical operations such 

as 2-digit number multiplications or divisions, while most of the older adults write 

articles on cooking or card games. According to the experts, all the logical articles 

are well written with reasonable and clear logical steps. It is also interesting to 
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observe that reminiscent and creative articles also have some logical content, as 

can be seen in Table 4-4, where around 15% of the content in the reminiscent and 

creative articles was judged as belonging to the logical genre by the experts. This 

may be due to the fact that the writers feel the need to systematically present their 

narrations in order to make them believable or convincing.  

 Reminiscent (R.) Logical (L.) Creative (C.) 

R. L. C. R. L. C. R. L. C. 

All 4.21 0.73 0.06 0.13 4.79 0.08 0.02 0.95 4.03 

Child 4.24 0.76 0.00 0.04 4.86 0.10 0.00 0.88 4.12 

College 4.09 0.60 0.31 0.00 4.91 0.09 0.01 0.85 4.14 

Elder 4.25 0.75 0.00 0.28 4.66 0.06 0.00 0.87 4.13 

Table 4-4 Results of the expert review – Detailed ratings of articles written by subjects from 

different age groups 

Table 4-5 shows the p-values of one-way analysis of variance (ANOVA) tests 

[38] on the article genre ratings of different age groups. The resulted p-values 

suggest that there is no significant difference (p > 0.05) in the genre ratings across 

different age groups. In other words, the experts judge that all the subjects, 

including the children and elderly, were able to generate the appropriate articles in 

the requested genres. 

 Reminiscent Logical Creative 

P-value 0.13 0.11 0.15 

Table 4-5 P-values of ANOVA tests on article genre ratings for different age groups 

4.2 Investigating the Effect of Age Factors 

In the last section, we introduce how we construct the writing cognitive 
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process datasets. Based on the constructed datasets, we first want to explore 

whether and how age-factors affect the writing cognitive process shown by the 

gaze-typing behaviors and whether we can detect the age group of a user based on 

the gaze-typing behaviors. The reason we expect that the age-factor may affect the 

behaviors is that previous studies [13, 35, 36] find that age-factors tend to affect 

the cognitive capacity, especially the capacity of working memory, which plays an 

essential role in writing indicated by the writing model proposed by Flower et al. 

[30]. In order to thoroughly investigate the gaze-typing behaviors for each 

cognitive process of writing, we identify time windows in different types to isolate 

the writing process. Different features to model the gaze-typing behaviors are 

extracted from different types of the time window, which are analyzed and utilized 

to detect the age group of each subject. 

4.2.1 Identifying the Thinking/Typing Phases through Gaze-

typing Dynamics 

Based on linguistics and psychology [30], the writing cognitive process 

involves multiple thinking phases, including planning, translating, and reviewing. 

The planning phase includes extracting relevant information from long term 

memory and creative thinking to formulate writing ideas. Then, in the translating 

phase, the writing ideas are converted into the language by following the context 

logic in the translating phase, and the translating phase primarily works in short 

term memory. Finally, the generated sentences are evaluated and revised in the 

reviewing phase, which can result in a new cycle of planning and translating. 
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Figure 4-5 The three types of time windows and their correspondence with the appearance 

of the pop-up candidates box. Two adjacent typing-windows are merged if the time gap is less 

than 750 𝑚𝑠. The duration for each transition window is 2∆t, where ∆t is 250 𝑚𝑠. 

According to this logic, three different temporal windows are defined to 

capture different behaviors. The 𝑡ℎ𝑖𝑛𝑘𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 is defined as a continuous 

time period that a subject is fixated on the screen without typing on the keyboard. 

The 𝑡𝑦𝑝𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 is, on the other hand, defined as the time period that a subject 

is formulating texts and inputting them by typing on the keyboard. Intuitively, we 

believe that the thinking windows are likely composed of the planning and 

reviewing phases of cognitive activity, and the translating phases are mainly 

included in the typing windows. Inspired by the previous works about the gaze 

and mouse coordination, which are introduced in Section 2.1, some human 

cognition elements manifest in the coordination between gaze locations and hands 

activities. For example, to click a button, a user needs to determine the button 

location first by eye gaze before moving the mouse toward the button. The spatial 

and time distance between the gaze and mouse encode the cognitive information 

of the user. Specific to inputting Chinese text using the Pinyin input method, a user 

needs first to determine the correct Chinses word/phrase inside the pop-up 
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candidates box by eye gaze before selecting it by hands. Also, for the non-touch 

typists, when they start typing, they need to move their gazes down to the keyboard 

before typing.  

Therefore, we identify the third type of time window, namely 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤, to capture those behaviors. The transition window is defined 

as a short time period around the transition point between a thinking window and 

a typing window. For the transition window, we further define Type 1 as the 

transition from the typing window to the thinking window and Type 2 as the 

transition from the thinking window to the typing window. The relationship among 

these three types of time windows and their correspondence with the candidates 

box's appearance and typing activities are presented in Figure 4-5. 

The appearance of the pop-up candidates box is utilized as an important hint 

to identify each type of time window from the data. The time period that the 

candidates box appears on the screen is regarded as one typing window, which 

starts when the subject type the first keystroke and ends when he/she commits to 

a word/phrase from a number of candidates. If the time between two adjacent 

typing windows is less than 750 𝑚𝑠, which was considered to be the minimum 

time needed to interpret five characters [95], we combine these two adjacent 

typing windows together as one continuous typing window. If the time between 

two adjacent typing windows is larger or equal to 750 𝑚𝑠, we consider it as one 

thinking window. To validate the appropriateness of the 750 𝑚𝑠 as the minimum 

length for a thinking window, we observe the behaviors of subjects inside thinking 

windows with a duration shorter than 750 𝑚𝑠. We find that across all subjects, the 

average number of fixations inside these windows is 0.93, and only around 10% 

of time gaze are focused on the screen. Around 70% of the time, the subjects 

𝑔𝑙𝑎𝑛𝑐𝑒 at the screen, and the gaze stays in the same place for a duration shorter 
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than the minimum duration of the fixation, which we set at 170 𝑚𝑠. One possible 

purpose of the glance is to confirm that the chosen characters have indeed been 

generated and appended to the previous text. Around 20% of the time, the subjects 

do not even look at the screen. Therefore, we consider that a thinking window that 

is shorter than 750 𝑚𝑠 can be regarded as a part of the previous typing window. 

After identifying typing windows and thinking windows, transition windows 

can be determined, which is the 500 𝑚𝑠 period spanning a thinking window and 

the adjacent typing window. The 500 𝑚𝑠 parameter was chosen as it has been 

shown that the gaze usually starts to move 500 𝑚𝑠 before the mouse moves, and 

the gaze always leads the mouse [48]. Figure 4-5 presents an example showing the 

three types of time windows and their relationship to the presence of the candidates 

box. A whole writing process, thereby, can be considered as a sequence of 

transitions between typing windows and thinking windows. We believe that 

different cognitive activities are involved in the thinking and typing windows. 

Therefore, different behavior patterns should manifest in various types of windows. 

4.2.2 Extracting Gaze-typing Features 

The gaze-typing features are extracted both at the window-level and the 

session-level along the spatial and temporal dimensions. The overall process of 

feature extraction is shown in Figure 4-6. In the feature extraction process, a 

session is defined as the activity collected during the entire time it takes to 

compose a given essay. We first identify the time windows in different types from 

each session based on the typing activity and the candidates box's presence. A 

session, therefore, is composed of multiple thinking windows, typing windows, 

and transition windows. 
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Figure 4-6 Overview of feature extraction. 𝐹𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔, 𝐹𝑇𝑦𝑝𝑖𝑛𝑔, 𝐹𝑇𝑟 are window-level 

feature vectors and 𝜙𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔, 𝜙𝑇𝑦𝑝𝑖𝑛𝑔, 𝜙𝑇𝑟 are session-level feature vectors for each 

window type. φ is the final overall session feature vector that aggregates all information across 

all window types and all individual windows. 

For each type of window, we extract features to generate a window-level 

feature vector 𝐹𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔 , 𝐹𝑇𝑦𝑝𝑖𝑛𝑔  and 𝐹𝑇𝑟  from different types of time 

windows. The feature vectors of the same type are then aggregated to form the 

session-level feature vectors with corresponding types: 𝜙𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔, 𝜙𝑇𝑦𝑝𝑖𝑛𝑔 and 

𝜙𝑇𝑟. The final overall session-level feature 𝜙 is generated by concatenating the 

session-level feature vectors for the three types of windows together. 

The window-level features of the thinking window are first extracted. Based 

on the definition of the thinking window, there has been no keyboard activity for 

more than 750 𝑚𝑠. During this period, the subject is expected to either generating 

writing ideas for the following content or reviewing the already-generated content. 

Thus, most of the features extracted from the thinking window are used to describe 

the eye gaze movements. 
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Feature Meaning Formulation 

 𝟏
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Duration Duration of the time-window 

  
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Number of fixations Number of fixations in the time-window 

 𝟑
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Fixation duration Average duration of fixations in the time-

window 

 𝟒
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Time that gaze is off-

screen 

Percentage of time that the subject is looking 

away from the screen 

 𝟓
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Horizontal spread of 

fixations 

Width of the bounding box enclosing all 

fixations in the time window 

 𝟔
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Vertical spread of 

fixations 

Height of the bounding box enclosing all 

fixations in the time window 

 𝟕
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Horizontal distance 

to the caret 

Average horizontal distance of fixations to the 

caret position (positive to the right) 

 𝟖
𝑻𝒉𝒊𝒏𝒌𝒊𝒏𝒈

 Vertical distance to 

the caret 

Average vertical distance of fixations to the 

caret position (positive downwards) 

Table 4-6 Window-level features extracted from the thinking window 

Table 4-6 lists the set of features extracted from each thinking window. Based 

on the definition, an eye gaze fixation is a period of time during which eye gaze is 

relatively stable within a specific location, and that comprehensive takes place 

during fixations [95], most of our features are defined by the fixations occurring 

within the window, especially the duration and the number of fixations. Also, the 

fixation position relative to the caret position is important, which can indicate 

whether a subject is in the reviewing phase. We also design features to model the 

size of the context reviewed through the fixations inside the window. Also, 

whether a user looks at the screen is important, as some users look away from the 

writing environment when they are thinking or formulating ideas. 

We then extract window-level features for the typing window. The typing 

window is defined as a period of time that a subject is translating writing ideas 

into language and inputting by typing on the keyboard. In a typing window, it is 

also possible for a subject to review the already-generated content so that the 
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newly generated texts are coherent with previous texts. Thus, from the typing 

window, both eye fixation and typing features are extracted. 

Feature Meaning Formulating 

 𝟏
𝑻𝒚𝒑𝒊𝒏𝒈

 Duration Duration of the time window 

  
𝑻𝒚𝒑𝒊𝒏𝒈

 Number of fixations Number of fixations captured in this time 

window 

 𝟑
𝑻𝒚𝒑𝒊𝒏𝒈

 Fixation duration Average duration of fixations captured in the 

time window 

 𝟒
𝑻𝒚𝒑𝒊𝒏𝒈

 Time that gaze is off-

screen 

Percentage of time that the subject is looking 

away from the screen 

 𝟓
𝑻𝒚𝒑𝒊𝒏𝒈

 Horizontal spread of 

fixations 

Width of the bounding box enclosing all 

fixations in the time window 

 𝟔
𝑻𝒚𝒑𝒊𝒏𝒈

 Vertical spread of 

fixations 

Height of bounding box enclosing all fixations 

in the time window 

 𝟕
𝑻𝒚𝒑𝒊𝒏𝒈

 Horizontal distance to 

the caret 

Average horizontal distance of fixations to the 

caret position (positive to the right) 

 𝟖
𝑻𝒚𝒑𝒊𝒏𝒈

 Vertical distance to 

the caret 

Average vertical distance of fixations to the 

caret position (positive downwards) 

 𝟗
𝑻𝒚𝒑𝒊𝒏𝒈

 Number of keypresses Number of keypresses in the time window 

 𝟏𝟎
𝑻𝒚𝒑𝒊𝒏𝒈

 Number of Characters Number of Chinese characters actually 

generated in the time-window 

 𝟏𝟏
𝑻𝒚𝒑𝒊𝒏𝒈

 Number of Deletes Number of delete presses in the time window 

Table 4-7 Window-level features extracted from the typing window 

Table 4-7 presents all the features extracted from the typing window. 

𝑓2
𝑇𝑦𝑝𝑖𝑛𝑔

 - 𝑓8
𝑇𝑦𝑝𝑖𝑛𝑔

  are the same features extracted from the thinking window, 

which model fixations and the relationship between eye gaze and the caret. 

𝑓9
𝑇𝑦𝑝𝑖𝑛𝑔

  and 𝑓 0
𝑇𝑦𝑝𝑖𝑛𝑔

  are two ways to measure the quantity of language is 

generated. 𝑓9
𝑇𝑦𝑝𝑖𝑛𝑔

- 𝑓  
𝑇𝑦𝑝𝑖𝑛𝑔

 to some extent reflect the amount of effort that a 

subject dedicates during a typing window. 

Lastly, we extract features from the transition window. By definition, the 

transition window is a short transition period between a thinking window and a 
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typing window. During this time, a subject either starts to type on the keyboard or 

has just finished typing and therefore enters the reviewing or thinking phase. 

Previous studies [49] show that gaze-hand patterns around the translation point are 

indicative of the cognitive state of the human being. We, therefore, follow their 

work in extracting similar features around the transition point. 

Since half of the subjects in this experiment are non-touch typists, and they 

have to look down to the keyboard to locate keys. Such behavior results in many 

travels of the gaze between the screen, keyboard, and the candidates box. Even for 

the touch typists, though the times of gaze shifting between screen and keyboard 

are much less than non-touch typists, there are still many times of gaze shifting 

between content and the candidates box. This information is utilized to extract the 

following information: 

In Type 1 transition-window, the time gap between the last keypress and the 

gaze beginning to leave the candidates box area is measured. If we cannot find 

such behavior, then the feature is set to 0. 

In Type 2 transition-window, the time gap between the first keypress and the 

gaze beginning to shift downwards to the keyboard is measured. If the first 

keypress occurs earlier, then the time gap is measure in a positive value. If there 

is no such behavior happens during the time period, then the feature is set to 0. 

Based on this information, we extract two features, as shown in Table 4-8. 

Table 4-8 Window-level features extracted from the transition window 

Feature Meaning  Formulation 

 

 𝟏
𝑻𝒓 

Time to look away 

from the candidates 

box 

For Type 1 transition-window: Time between the 

last keypress and gaze moving away from the 

candidates box area 

 

  
𝑻𝒓 

Time to look toward 

the keyboard 

For Type 2 transition-window: Time between first 

keypress and gaze moving toward the keyboard 
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After extracting the window-level features, two kinds of session-level 

features are extracted based on statistical behaviors to model the average behaviors 

and the variation behaviors for each session. We believe that a subject's macro 

behavior can be modeled by these statistical session-level features.  

As previously mentioned in Figure 4-5, a session is composed of 𝑚 thinking 

windows, 𝑛 transition windows and 𝑘 typing windows in total. After extracting 

window-level features, we achieve 𝑚  window-level feature vectors for the 

thinking windows 𝐹 
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

, 𝐹2
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

, ⋯, 𝐹𝑚
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

, 𝑛 feature vectors for the 

transition windows 𝐹 
𝑇𝑟 , 𝐹2

𝑇𝑟 ,  ⋯ , 𝐹𝑛
𝑇𝑟  and 𝑘  feature vectors for the typing 

windows 𝐹 
𝑇𝑦𝑝𝑖𝑛𝑔

 , 𝐹2
𝑇𝑦𝑝𝑖𝑛𝑔

 , ⋯ , 𝐹𝑘
𝑇𝑦𝑝𝑖𝑛𝑔

 . 𝜙𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔  is the session-level feature 

vector extracted from 𝐹 
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 , 𝐹2
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 ,  ⋯ , 𝐹𝑚
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

  by computing the 

mean value and the standard deviation of each feature 𝑓𝑖
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 , where 𝑖 ∈

{1,2,⋯ ,8}  among 𝐹 
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 , 𝐹2
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 , ⋯ , 𝐹𝑚
𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔

 . 𝜙𝑇𝑦𝑝𝑖𝑛𝑔  and 𝜙𝑇𝑟  are 

constructed in the same way as 𝜙𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔 . The final session-level feature vector 

𝜙 is built by concatenating 𝜙𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔 , 𝜙𝑇𝑦𝑝𝑖𝑛𝑔  and 𝜙𝑇𝑟 together. 

4.2.3 Feature Selection 

The purpose of feature selection is to select indicative features and exclude 

the redundant and irrelevant features from the entire feature set. Totally, we extract 

42 features, where 16 features are extracted from the thinking windows, 22 

features are extracted from the typing windows, and 4 features are extracted from 

the transition windows. Through the feature selection process, we want to find the 

optimal subset of features. 

We adopt the wrapper method with the best-first search and a stopping 

function of 10 consecutive non-improving search nodes for feature selection on 

the leave-one-subject-out mechanism. Specifically, we select features on the data 



 

106 

 

from 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 1 subjects based on the classification performance on data from 

the remaining subject. This process is repeated for 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡  times, where 

𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 46. A feature is deemed indicative if it is selected multiple times over 

several folds. 

4.2.4 Evaluation of Age-group Detection 

Feature Formulation 

 𝟏
𝑻𝒓_mean Average value of all the time differences between the last keypress 

and the time that the subject starts to move the gaze away from 

the candidates box area across the writing process 

 𝟏
𝑻𝒓_std Standard deviation of all the time differences between the last 

keypress and the time that the subject starts to move the gaze 

away from the candidates box area across the writing process 

 𝟗
𝑻𝒚𝒑𝒊𝒏𝒈

_mean Average number of keypress in each typing-window across the 

writing process 

 𝟔
𝑻𝒚𝒑𝒊𝒏𝒈

_mean Average value of the vertical spread of fixation in each typing-

window across the writing process 

 𝟖
𝑻𝒚𝒑𝒊𝒏𝒈

_mean Average value of the y-distance between fixations to the caret in 

each typing window across the writing process 

Table 4-9 Selected indicative features of capturing differences among different age-groups 

We evaluate our features on detecting the age group of a user while he/she is 

writing an article on the computer. Since a real-life situation requires a trained 

model to be able to perform prediction on unseen users, we use the leave-one-

subject-out cross-validation for evaluation in our experiment. In other words, the 

model is built (with feature selection) and trained based on the data from 

𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 1  subjects and evaluate on the remaining subject. This process is 

iterated for 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 times, where 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 = 46. The average correctness (CCR) 

of the model is reported as the overall performance.  
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Performance 

Ground truth 

Precision Recall F-measure 

Children 0.83 0.81 0.82 

College Students 0.66 0.83 0.74 

Elderly 0.98 0.85 0.91 

Table 4-10 Detailed performance of the age-group detection 

Predicted as 

Ground truth 

Children College 

Students 

Elderly Total 

Children 44 9 1 54 

College Students 5 25 0 30 

Elderly 4 4 46 54 

Total 53 38 47 138 

Table 4-11 Confusion matrix of the age-group detection 

We first want to investigate the indicative features that can capture behavioral 

variations among children, college students, and elderly typists. After the feature 

selection step, the initial whole feature set, containing 42 features, is trimmed 

down to 5 indicative features, which is presented in Table 4-9. Using a support 

vector machine (SVM) with RBF kernel, we achieve an overall performance (CCR) 

of 83.3%, compared with a baseline of 39.1%, achieved by classifying every 

instance as majority class. Table 4-10 presents our model's detailed performance, 

and the confusion matrix is shown in Table 4-11. 

Our feature selection results suggest that age-factors affect gaze-typing 
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behaviors while writing on the computer, and the transition window and the typing 

window capture more significant different behaviors across different age groups. 

Comparing subjects from different age-groups, it appears that college students and 

children move their gaze away from the candidates box earlier than elderly 

subjects (children: 𝑓2
𝑇𝑟 mmean = 76ms, college students: 𝑓2

𝑇𝑟 mmean = 59ms, 

elderly: 𝑓2
𝑇𝑟 mmean = 96ms) and elderly subjects tend to review material just 

generated more often than other groups during the translating phase (children: 

𝑓6
𝑇𝑦𝑝𝑖𝑛𝑔

 mmean = 39 𝑝𝑥 , 𝑓8
𝑇𝑦𝑝𝑖𝑛𝑔

 mmean = -173 𝑝𝑥  college students: 

𝑓6
𝑇𝑦𝑝𝑖𝑛𝑔

mmean = 36 𝑝𝑥, 𝑓8
𝑇𝑦𝑝𝑖𝑛𝑔

mmean = -186 𝑝𝑥, elderly: 𝑓6
𝑇𝑦𝑝𝑖𝑛𝑔

mmean = 32 

𝑝𝑥, 𝑓8
𝑇𝑦𝑝𝑖𝑛𝑔

mmean = -147 𝑝𝑥). In addition, elderly subjects use fewer keypresses 

to generate the same number of Chinese characters (children: 53 keypresses, 

college students: 63 keypresses, elderly: 41 keypresses to move the caret 1000 

𝑝𝑥 forward), mainly as college students and children prefer to input longer strings 

of pinyin equivalents compared with the elderly, who are more willing to input in 

shorter phrases or even character-by-character, resulting in more keystrokes in 

verifying and committing to the text. 

It is interesting to notice that no indicative feature selected belongs to 

𝐹𝑇ℎ𝑖𝑛𝑘𝑖𝑛𝑔, which suggests the differences in typing behaviors and the gaze-hand 

transition behaviors among different age groups are more substantial than the 

difference in thinking behaviors while writing. According to the results presented 

in Table 4-10 and Table 4-11, it illustrates that based on the gaze-typing behaviors, 

we can successfully detect the age-groups of users. It also shows that among 

different age-groups, the elderly can be differentiated easier from the others 

compared to discriminating between children and college students. It can be 

explained that almost all the subjects in the elderly group are non-touch typists and 

share similar typing behaviors.  
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4.3  Investigating the Effect of Article Genres 

In the last section, we investigate the effect of the age-factors on the cognitive 

process of writing based on gaze and typing behaviors. Two kinds of time windows: 

thinking window and typing window, are defined to divide the writing process into 

thinking and typing processes. We extract different gaze-typing features from both 

thinking process periods, typing process periods, and transition periods between 

the thinking and typing processes to model behaviors. Finally, results show that 

gaze-typing features extracted from the typing windows and transition windows 

are more indicative of determining the age group of the subject. 

In this section, we want to explore the effect on the cognitive process of 

writing illustrated by the gaze and typing behaviors when a subject generates texts 

in different article genres. Similarly, different types of time widows are defined to 

isolate the various stages of the writing process. However, just dividing the writing 

processes into the thinking process and typing process is not enough this time, 

since the effect of article genres is more complicated than the effect of age-factors, 

which can be easily overshadowed by other factors, such as writing skills. Hence, 

the thinking window and typing window are further divided into sub-categories 

based on the gaze and typing activities so that we can capture the behaviors at a 

more detailed level. 

4.3.1 Identifying Different Writing Processes 

Figure 4-5 presents the relationship of different types of time windows with 

the writing activity and the appearance of the candidates box. Basically, a typing 

window is a consecutive time period that a subject is typing on the keyboard. On 

the other hand, a thinking window is a consecutive time period that there is no 

keyboard activity, and a transition window is a short period of time spanning two 
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adjacent typing window and thinking window. The detailed definitions and 

procedures of identifying each kind of time window can be found in Section 4.2.1. 

Therefore, a whole writing process can be treated as a series of transitions between 

thinking windows and typing window. We believe that different cognitive 

activities are involved in the thinking and typing windows. Therefore, different 

behavior patterns should manifest in different types of windows. 

4.3.1.1 Types of Thinking Window 

The thinking window is a period of time between two typing windows when 

there is no typing activity. It has two main functions: 1) to review the texts that 

just be generated and 2) to think about what to write next. We expect these two 

functions will generate different behavior patterns. For example, if a subject is in 

the reviewing phase, there is a higher possibility that he/she may be rereading the 

already-generated texts, with more scanning behavior, and if a subject is in the 

planning phase recalling some writing material, we expect fixations with longer 

duration. Therefore, to better capture the changing of the cognitive activities, we 

differentiate the thinking into three types: off-screen (𝑂), reading (𝑅), and fixating 

(𝐹), based on the behavior patterns. 

A thinking window is determined as Type 𝑂, if a subject does not look at the 

screen for more than 50% of the time window. This thinking window appears more 

frequently when the subject is a non-touch typist. Two possible scenarios during 

Type 𝑂 thinking window may occur are when a subject is conceiving what to 

write next, or when a subject is recalling material. Alamargot et al. [6] show that 

when a subject is composing a text, long pauses are observed when he/she is 

contemplating 𝑤ℎ𝑎𝑡 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒 𝑛𝑒𝑥𝑡, or when he/she is considering the best way 

to express ideas. During this period, attention may not necessarily stay focused on 
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the writing environment, which is referred to as 𝑎𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑎𝑧𝑒. Therefore, 

Type 𝑂 thinking windows exist in both the planning and translation phases.  

Type 𝐹  thinking windows are similar to Type 𝑂  windows. During the 

window period, a subject focuses on the writing environment for a long time (long 

fixations) without rereading the already-generated texts (lack of reading saccades).  

A thinking window of Type 𝑅 happens when a subject spends the majority 

(≥ 50%) of the time rereading previously written texts. According to previous 

studies [30, 62], rereading often occurs when a subject externalizes his/her ideas 

into text or reviews what he/she just writes. Thus Type 𝑅  thinking windows 

appear in both the translation and reviewing phases. 

4.3.1.2 Types of Typing Window 

The primary function of a typing window is to generate the actual text which 

was formulated in the last thinking window. Based on the typing behavior, we 

define three different types of typing windows: windows with lower keystroke 

frequency (𝐿), windows with uniform keystroke intervals (𝑈), and windows with 

non-uniform keystroke intervals (𝑁). These windows capture different types of 

typing behavior patterns, which may reflect different mental states of the subject. 

Type 𝐿  typing windows are usually shorter in duration, as the keystroke 

frequency is lower, containing fewer keypresses. We set the threshold to be not 

more than four keystrokes, including the final committing press that selects the 

character(s) to be generated. Considering that the average number of keypresses 

per typing window is 10.0, which is rough equals to 3-5 Chinese characters, these 

kinds of typing windows are fairly uncommon. When typing in Chinese, the usual 

practice is to generate the approximation of a sequence of Chinese characters in 

the same candidates box before committing. As shown in Table 4-12, many 
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phrases generated in Type 𝐿 typing windows are functional phrases, especially 

auxiliary words, which are often used with a main verb to express tense, aspect, 

modality, voice, emphasis, etc., and may reflect the mental state of the subject. 

Type Percentage Type Percentage 

Auxiliary 23% Link verb 3% 

Preposition 7% Pronoun 1% 

Conjunction 7% Other 54% 

Adverb 4%   

Table 4-12 Types of phrases generated in Type L typing window 

Window Type Description 

 

Thinking 

window 

Off-screen (𝑂) The subject looks away from the screen for the 

majority (>=50%) period of the window 

Reading (𝑅) The subject rereads the texts ahead of the caret 

Fixation (𝐹) The subject fixates on a place on the screen 

 

 

 

 

Typing 

window 

Less-press (𝐿) The subject presses fewer keys during 

the period of the window 

Pressing with 

uniformed keypress 

intervals (𝑈) 

The subject presses several keys and time 

intervals between every two keypresses are 

similar in length 

Pressing with non-

uniformed keypress 

intervals (𝑁) 

The subject presses several keys, and there 

exists at least one time interval between two 

keys, whose length is significantly greater than 

others 

Table 4-13 Different types of thinking window and typing window based on gaze and typing 

activities 

Type 𝑁  and Type 𝑈  typing windows contain more than four keystrokes. 

The distinction between them is that Type 𝑁 typing windows contain at least one 

interval between successive keypresses, which lasts significantly – at least three 

standard deviations (over all keypress intervals of the subject) – longer than the 

others. This distinction attempts to capture pauses in writing, which indicates 

cognitive processing [121]. Table 4-13 lists all the types of thinking windows and 
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typing windows with their descriptions. 

4.3.2 Extracting Statistics-based Gaze-typing Features from 

Time Windows 

 

Figure 4-7 Overview of feature extraction of statistics-based gaze-typing features 

Similar to what we do for the age-factors detection, statistics-based gaze-

typing features both at window-level and session-level along the temporal and 

spatial dimensions are extracted. The process of extracting statistics-based gaze-

typing features is shown in Figure 4-7. We define a session as the activity collected 

during the time it takes to compose a given article. Similarly, thinking windows 

and typing windows are extracted from the session using the appearance and 

disappearance of the candidates box as indicators. A session, therefore, consists of 

multiple thinking windows, typing windows, and transition windows. We further 

differentiate thinking windows and typing windows into different types based on 

the gaze and typing activities listed in Table 4-13. For each type of thinking 

window and typing window, different sets of features are extracted to generate a 

window-level feature vector 𝐹𝑖
𝑗
 , where 𝑗 ∈ {𝑂, 𝑅, 𝐹, 𝐿, 𝑈, 𝑁, 𝑇𝑟}  indicates the 
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type of the feature vector and 𝑖 indicates that the feature vector is extracted from 

the 𝑖𝑡ℎ time window in type 𝑗 of the session. The feature vectors of the same type 

are then aggregated to form the session-level feature vector 𝜙𝑗  , where 𝑗 ∈

{𝑂, 𝑅, 𝐹, 𝐿, 𝑈, 𝑁, 𝑇𝑟} . Appending the session-level feature vectors for different 

types of thinking window and typing window together gives us the final overall 

session-level statistics-based gaze-typing feature vector 𝜙, where 𝜙 = [𝜙𝑗]. 

4.3.2.1 Extracting Statistics-based Gaze-typing Features from 

Thinking Window 

After defining three different types of thinking windows based on the gaze 

behavior patterns during the window period, we can construct the window-level 

features to capture behavioral differences when generating articles in different 

genres. 

Feature Meaning Formulation 

 𝟏
𝑶 Gaze off-screen 

duration 

Sum of the duration when gaze is off-screen 

Table 4-14 𝐹𝑂: Features describing the behavior in Type O thinking window 

Since there are no keyboard events during the thinking window, by definition, 

thinking window features are related to the eye gaze. In Type 𝑂  thinking 

windows, we want to model behavior that characterizes a subject's formulating 

ideas for additional content while not focusing on the writing environment. 

However, since we cannot detect the gaze position reliably when the subject's gaze 

is off-screen, the only feature (𝑓 
𝑂) that we can define is the duration while the 

subject's gaze is off the screen, as shown in Table 4-14. This feature gives us a 

sense of the length of the pause while the subject either recalls the material that 
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will be generated next or while he/she translates ideas into texts. We define a time 

period as being an off-screen gaze if 1) the eye tracker cannot capture any eye gaze 

inside the screen area and 2) the duration of the period is equal to or larger than 

400 𝑚𝑠, which is the average duration of an eye blink [12]. 

In Type 𝑅  thinking windows, a subject is mainly rereading already-

generated texts. We thus design the first part of the feature set (𝑓 
𝑅) to describe the 

text that is being reread by the subject. If the location of the text that is being read 

is close to the caret, it is likely that this text was just generated in the previous 

typing windows, and the subject is likely to be in a reviewing phase. However, if 

the location that is being read is 2 or 3 sentences away from the caret, then the 

subject may be translating his/her ideas into a sentence that integrates with the 

previous text. 

 

Feature Meaning Formulation 

 𝟏
𝑹 Distance of the reread 

texts 

Average distance between all the reread 

texts to the caret during the time window 

(𝑀𝑒𝑎𝑛(𝑑𝑖)) 

  
𝑹 Length of the reread 

texts 

Total length of the reread texts (𝑆𝑢𝑚(𝑙𝑖)) 

 𝟑
𝑹 Rereading duration Total duration spent in rereading already-

generated texts 

 𝟒
𝑹 Number of fixations Total number of fixations in the time 

window 

 𝟓
𝑹 Duration of fixations Average duration of the fixations in the time 

window 

Table 4-15 𝐹𝑅: Features describing the behavior in Type R thinking window 
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Figure 4-8 Illustration of the features that describe the reread texts 

Another feature (𝑓2
𝑅) measures the amount of texts reread by the subject. We 

define the distance between the reread texts and the caret as the number of pixels 

from the midpoint of the reread texts to the position of the caret along the text line. 

Figure 4-8 illustrates an example. The green line shows the reread texts, and the 

red dash line denotes the distance to the caret. We also extract the features (𝑓 
𝑅-𝑓5

𝑅) 

to describe the fixation, including the number of fixations and average duration of 

fixations. Table 4-15 lists this set of features. 

 

Figure 4-9 Illustration of the features that describe the staring point 

For Type 𝐹 thinking windows, we want to capture behavior patterns similar 

to Type 𝑂 windows but model the act in which a subject fixates on the screen 
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without rereading already-generated texts. Besides features (𝑓 
𝐹), which measures 

the duration of the pause, we also extract features (𝑓2
𝐹) to describe the location of 

the fixation relative to the caret, as shown in Figure 4-9, and features (𝑓 
𝐹 − 𝑓5

𝐹) 

that describe the fixation. 

We observe from our data that there are time periods during which the user 

seems to stare at a small area for an extended period of time. This behavior 

generates many fixations within a small area. This also appears to be correlated 

with thinking behavior on the part of the user, as they do not seem to correspond 

to reading behavior. We, therefore, define these stare points (𝑠𝑝) as areas with a 

radius of 50 𝑝𝑖𝑥𝑒𝑙𝑠 or less (two Chinese words take up 100 𝑝𝑖𝑥𝑒𝑙𝑠) with several 

fixation points. 

The distance between each stare point and the caret is measured from the 

center of the staring point to the center of the caret, and the duration of the 

𝑖𝑡ℎ  stare point (𝑠𝑝𝑖) 𝑡𝑖 is defined as the total duration of all fixations in stare point 

𝑠𝑝𝑖. Table 4-16 shows all the features with meaning and formulation. 

Feature Meaning Formulation 

 𝟏
𝑭 Horizontal distance to the 

caret 

Average horizontal distance of stare points to 

the caret position (𝑀𝑒𝑎𝑛(𝑑ℎ𝑖)) 

  
𝑭 Vertical distance to the 

caret 

Average vertical distance of stare points to 

the caret position (𝑀𝑒𝑎𝑛(𝑑𝑣𝑖)) 

 𝟑
𝑭 Total duration spent in 

staring and thinking 

Total duration spent in staring at screen and 

thinking 

 𝟒
𝑭 Number of fixations Total number of fixations in the time window 

 𝟓
𝑭 Duration of fixation Average duration of fixations in the time 

window 

Table 4-16 𝐹𝐹: Features describing the behavior in Type F thinking window 

4.3.2.2 Extracting Statistics-based Gaze-typing Features from Typing Window 

The definition of the typing window is the period of time during which a 
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subject is typing on the keyboard, which we believe corresponds to the activity of 

translating ideas into language. As previously introduced, a typing window 

contains keystrokes processed by the system through a series of pop-up candidates 

boxes. Similar to the thinking winnow, we define different types of typing window 

based on typing patterns and design different groups of features to model the 

behavioral patterns. 

Feature Meaning Formulation 

 𝟏
𝑳 Duration Duration in which the pop-up candidates window is 

visible on the screen 

  
𝑳 Keypress interval Average interval between every two keypresses 

Table 4-17 𝐹𝐿: Features describing the behavior in Type L typing window 

Table 4-17 presents the features extracted from Type 𝐿  typing windows. 

These windows contain a few keyboard presses, which we observe usually 

correspond to the generation of functional characters or phrases. The language 

modeling inside the keypress-to-character conversion mapping sorts commonly–

seen characters or phrases to the top, which means that the user often only needs 

to type the first character instead of the complete phonetic mapping. For example, 

the phonetic mapping for "I" and "We" are "wo" (我) and "wo men" (我们), 

respectively. Since these words are so often used, the Chinese input software will 

generate these words as soon as the user types "w", without the following "o". 

Because they are so commonly used, these characters are usually generated 

proficiently and at high speed. Features (𝑓 
𝐿 − 𝑓2

𝐿 ) are designed to capture the 

impact of the different cognitive activities on the generation of these common 

terms. 

Type 𝑈 and Type 𝑁 typing windows contain more keypresses. This allows 

us to extract more complex features to model behavior patterns. Wallot et al. [121] 
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illustrate that, compared with simple typing, generating texts create more complex 

keystroke activity, which manifests in two ways: 1) longer keypress intervals, 

reflecting longer pauses in writing, and 2) increased number of edition and 

deletions. Our features are designed to describe these two aspects of behaviors, as 

described in Table 4-18 and Table 4-19. 

Feature Meaning Formulation 

 𝟏
𝑼 Number of keystrokes Total number of keystrokes during the window 

period 

  
𝑼 Keypress interval Average interval between every two keypresses 

 𝟑
𝑼 Recurrence Total number of deletes and edits performed 

during the window period 

 𝟒
𝑼 Duration Duration in which the pop-up candidates 

window is visible on the screen 

Table 4-18 𝐹𝑈: Features describing the behavior in Type U typing window 

Feature Meaning Formulation 

 𝟏
𝑵 Number of 

keystrokes 

Total number of keystrokes during the window 

period 

  
𝑵 Keypress interval Average interval between every two keypresses 

 𝟑
𝑵 Pause duration Total duration of intervals, in which the duration is 

3-deviations away from the average 

 𝟒
𝑵 Recurrence Total number of deletes and edits performed 

during the window period 

 𝟓
𝑵 Duration Duration in which the pop-up candidates window 

is visible on the screen 

Table 4-19 𝐹𝑁: Features describing the behavior in Type N typing window 
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4.3.2.3 Extracting Statistics-based Gaze-typing Features from Transition 

Window 

Like what we do for the age-factors detection, we also extract statistics-based 

gaze-typing features from the two types of transition window, where the transition 

window in Type 1 captures the transition from the typing process to the thinking 

process and the Type 2 transition window captures the transition from the opposite 

direction. Features extracted from the transition window are utilized to model the 

gaze-hand transition, which is either a subject moves his/her gaze from the screen 

to the keyboard and starts to type, or he/she finishes selecting the intended 

word/phrase and moves his/her gaze away from the candidates box area, which is 

presented in Table 4-20. 

 

 

 

 

Feature Meaning Formulation 

 

 𝟏
𝑻𝒓 

Time is taken in looking 

away from the 

candidates box 

For Type 1 transition windows: Time between 

the last keypress and gaze moving away from 

the candidates box area 

  
𝑻𝒓 Time is taken in looking 

towards the keyboard 

For Type 2 transition windows: Time between 

first keypress and gaze moving toward the 

keyboard 

Table 4-20 𝐹𝑇𝑟: Window-level features extracted from the transition window 
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4.3.2.4 Building Session-level Statistics-based Gaze-typing Features 

Session-level statistic-based gaze-typing features are used to model the 

overall gaze-typing behaviors in a session, which is the activity collected during 

the entire time of composing a given article. We believe these statistics-based level 

features can represent the macro behaviors of a subject. Therefore, we extract two 

types of session-level features based on statistics from the window-level features: 

the average behavior and the variation inside a session. For example, a session 

consists of 𝑚 thinking windows, which include 𝑚𝑂 Type 𝑂, 𝑚𝑅 Type 𝑅 and 

𝑚𝐹 Type 𝐹 thinking windows, where 𝑚 = 𝑚𝑂 + 𝑚𝑅 + 𝑚𝐹. There are also 𝑛 

typing windows, which includes 𝑛𝐿  Type 𝐿 , 𝑛𝑈  Type 𝑈  and 𝑛𝑁  Type 𝑁 

typing windows, 𝑛 = 𝑛𝐿 + 𝑛𝑈 + 𝑛𝑁 . 𝑘  transition windows are also extracted 

from the session. 

A window-level feature vector is extracted from each time window based on 

its type as introduced before. We construct 𝜙𝑗  , a session-level statistics-based 

feature vector of type 𝑗, where 𝑗 ∈ {𝑂, 𝑅, 𝐹, 𝐿, 𝑈, 𝑁, 𝑇𝑟}, by computing the mean 

value and standard deviation for each feature from the window-level feature vector 

𝐹𝑗 across all the time windows in type 𝑗 during the session. For instance, the 

session-level statistics-based feature vector 𝜙𝑅  would be calculated as 

 𝜇 , 𝜎 , ⋯ , 𝜇5, 𝜎5 , where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the 

𝑖𝑡ℎ  feature in the window-level feature vector 𝐹𝑅  across all Type 𝑅  thinking 

windows and 𝑖 ∈  0, 5  . Session-level statistics-based feature vectors for other 

types of windows can be extracted in the same way. The final overall session-level 

statistics-based feature vector 𝜙 is built by concatenating all types of session-

level feature vectors together. 
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4.3.3 Extracting Sequence-based Gaze-typing Features from 

Session 

Our statistics-based features are used to model the gaze-typing behavior 

patterns inside each type of time window. In construct, the sequence-based 

features are designed to model the change of a subject's behaviors across the 

session, which we hypothesize can distinguish between writing genres. To build 

the sequence-based features, we first construct the behavior-transition sequence 

for each session, which captures the whole of the behavior transition exhibited by 

a subject across an entire session. We then extract 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 subsequences, or 

patterns, from this behavior-transition sequence. The details of the process are 

described in this section. 

4.3.3.1 Modeling the Behavior Transition within a Session 

Based on the definition, a session represents the activity during the entire 

process of composing an article, which can be represented as a sequence of 

transitions between thinking windows and typing windows. We also introduce how 

we categorize thinking windows and typing windows into six types that are 

designed to capture distinctive behaviors. Following this, we model the change in 

users' behaviors during the whole process of writing an article through the 

transition over the different types of time windows within a session. 

For instance, the 𝑖𝑡ℎ session (𝑆𝑒𝑠𝑠𝑖 ) contains 𝑚  thinking windows and 𝑛 

typing windows. Since thinking windows and typing windows appear alternately, 

thus |𝑚 − 𝑛| = 1  or 𝑚 = 𝑛 . Given this, we generate a session-level behavior 

sequence 𝑠𝑖 = {𝑠𝑡𝑎𝑡𝑒𝑖}𝑖=𝑚+𝑛, where 𝑠𝑡𝑎𝑡𝑒𝑖 ∈ {𝑂, 𝑅, 𝐹, 𝐿, 𝑈, 𝑁} corresponds to 

the type of 𝑖𝑡ℎ  time window in 𝑆𝑒𝑠𝑠𝑖 . The label of 𝑠𝑖  is the genre of 𝑆𝑒𝑠𝑠𝑖 , 

which can be 𝑅𝑒𝑚𝑖𝑛𝑖𝑠𝑐𝑒𝑛𝑡, 𝐿𝑜𝑔𝑖𝑐𝑎𝑙, or 𝐶𝑟𝑒𝑎𝑡𝑖𝑣𝑒. 
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 Length of 

Sequence 

State Ratio 

O R F L U N 

Reminiscent 259 15.7% 11.4% 23.6% 13.8% 12.0% 23.4% 

Logical 245 14.6% 12.4% 23.8% 13.5% 11.3% 24.4% 

Creative 237 14.9% 11.8% 23.8% 13.2% 12.1% 24.2% 

Table 4-21 Overview of behavior types for different genres of writing 

Table 4-21 presents an overall of behavior information, including the average 

length of the behavior sequence, and the distribution of the various behavior types 

within the sequences, for each of the writing genres in our dataset. 

4.3.3.2 Extracting Indicative Patterns from the Behavior Sequence 

A pattern is a subsequence of behaviors, which can be regarded as a series of 

actions. For example, a pattern 𝐹 ⇒ 𝑈 is commonly seen in our dataset, and it 

describes the situation whereby a subject stares at the screen for a while to think, 

followed by typing texts on the keyboard with uniform keypress intervals. 

However, this pattern is so frequently seen in all behavior sequences across 

different writing genres. In this sense, it is not indicative as its presence does not 

provide distinguishing information between the different genres of writing. 

An 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒  pattern is, therefore, a subsequence, which occurs 

differently across behavior sequences from different genres of writing. In order to 

judge the degree of 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, we define a weighting scheme that assigns 

an appropriate weight to each pattern to imply the amount of genre information 

provided by that pattern. Inspired by the work from text categorization [24, 66, 

93], our pattern weighting scheme comprises of three components: pattern 

frequency (𝑝𝑓), relevance frequency (𝑟𝑓) and trend distance weightings (𝑡𝑑). The 
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weighting (𝑤) can be computed as: 

𝑤 = 𝑝𝑓 × 𝑟𝑓 × 𝑡𝑑                                                    4-1 

Relevance frequency ( 𝑟𝑓 ) component is introduced first. Relevance 

frequency was initially proposed by Lan et al. [66] for text categorization. In the 

traditional text categorization problem, the 𝑟𝑓  factor is a supervised term, 

weighted with their indicativeness, which can be roughly interpreted as their 

power of discriminating the documents into positive and negative categories. 

We map the original problem to our sequence classification task by viewing 

patterns and behavior sequences to terms and documents. We map each of the 

genres reminiscent, logical, and creative to positive and the two other garners to 

negative in turn. Given all behavior sequences with positive labels (𝑆+) and all 

sequences with negative labels (𝑆−), then the relevance frequency of pattern 𝑝 

can be computed as: 

𝑟𝑓(𝑝, 𝑆+, 𝑆−) = log (2 +
|{𝑠 ∈ 𝑆+: 𝑝 ∈ 𝑠}|

|{𝑠 ∈ 𝑆−: 𝑝 ∈ 𝑠}|
)                            4-2 

Where |∙| returns the number of elements in the set. 

The relevance frequency formula gives higher weights to patterns that 

infrequently occur in 𝑆+ class and more frequently in 𝑆− class. However, there 

is a possibility that it will identify rare patterns, which occur only once or twice in 

the entire dataset. These patterns are not helpful for our purpose, as they may not 

be generalizable. We, therefore, include the pattern frequency factor to balance the 

indicativeness with generalizability. Pattern frequency ( 𝑝𝑓 ) measures how 

frequently a pattern 𝑝  occurs in a behavior sequence. Since the length of the 

sequence may vary from session to session, the pattern frequency is normalized 

by the length of the sequence. Given a behavior sequence 𝑠, the pattern frequency 
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of a pattern 𝑝 can be computed as: 

𝑝𝑓(𝑝, 𝑠) = log (𝑛𝑝,𝑠 / 𝑙𝑒𝑛(𝑠))                                               4-3 

Where 𝑙𝑒𝑛(∙) returns the length of the sequence and 𝑛𝑝,𝑠 is the number of 

occurrences of pattern 𝑝 in the behavior-transition sequence 𝑠. 

Lastly, trend distance (𝑡𝑑) is introduced. The process of writing an article is 

dynamic, and as such, the writing behaviors may change during the writing process. 

For example, when a subject writes a reminiscent article, recall behavior may 

appear more frequently at the beginning than at the end of the writing. Figure 4-10 

presents an example. We have behavior sequences 𝑠   and 𝑠2 , belonging to 

different genres of writing, both of which contain 15 occurrences of Patterns 𝑝  

and 𝑝2 . On the surface, it appears that 𝑝   and 𝑝2  are not significantly 

discriminative. However, when we consider the different stages of writing, it can 

be seen that 𝑝   and 𝑝2  have very different appearance patterns - 𝑝   appears 

more frequently toward the beginning of 𝑠 , and more frequently towards the end 

of 𝑠2 . These kinds of differences cannot be readily captured by 𝑡𝑓  and 𝑟𝑓 

factors. Hence, we need a new factor to capture this difference. 

 

Figure 4-10 Examples of two patterns, which have the same total occurrence times but 

gave different trend distance weighting 
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Based on this analysis, we propose a new weighting factor, which we call the 

trend distance weighting, which takes into account the occurrences across the 

whole process of writing an article. We first assume that a writing process consists 

of 𝜋 behavior subsequences. Figure 4-11 shows how we generate our behavior 

subsequences. We first divide the session into 𝜋  stages of equal duration (red 

dotted box). The behavior subsequence 𝑠𝑝𝑎𝑟_𝑖 is then simply the sequence of time 

window types of the windows that appear in the partition. In our example, the 𝑖𝑡ℎ 

stage consists of 5 time windows with Types 𝑈,𝑂, 𝑈, 𝐹, 𝐿 . The behavior 

subsequence 𝑠𝑝𝑎𝑟_𝑖  is therefore 𝑈 ⇒ 𝑂 ⇒ 𝑈 ⇒ 𝐹 ⇒ 𝐿 . Likewise, 𝑠𝑝𝑎𝑟_𝑖+   is 

𝑂 ⇒ 𝑈 ⇒ 𝑂 ⇒ 𝑁 ⇒ 𝑅 ⇒ 𝑁. 

 

Figure 4-11 Generating behavior subsequences from session data 

To compute the trend distance weighting, first, we count the number of 

occurrences of the pattern in each partition. Given a behavior-transition sequence 

𝑠𝑖  with 𝜋  partitions, the number of occurrences of the pattern 𝑝  in each 

partition can be expressed as a vector 𝑁𝑠𝑖

𝑝
  and 𝑁𝑠𝑖

𝑝 =

 𝑓𝑝,𝑠𝑝𝑎𝑟𝑡_1  , 𝑓𝑝,𝑠𝑝𝑎𝑟𝑡_2 ,  , 𝑓𝑝,𝑠𝑝𝑎𝑟𝑡_𝜋 . Given all behavior-transition sequences with 

positive labels (𝑆+) and all sequences with negative labels (𝑆−), the trend distance 

weighting (𝑡𝑑) of a pattern 𝑝 can be computed as: 
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𝑡𝑑(𝑝, 𝑆+, 𝑆−) = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑄𝑆+

𝑝 , 𝑄𝑆−

𝑝 ), 𝑤ℎ𝑒𝑟𝑒 

𝑄𝑆+

𝑝 =
∑ 𝑁𝑠𝑖

𝑝/‖𝑁𝑠𝑖

𝑝‖
|𝑆+|
𝑖= 

|𝑆+|
 

𝑄𝑆−

𝑝 =
∑ 𝑁𝑠𝑖

𝑝/‖𝑁𝑠𝑖

𝑝‖
|𝑆−|
𝑖= 

|𝑆−|
                                              4-4 

4.3.3.3 Sequence-based Gaze-typing Features 

So far, we have defined a weighting scheme to select indicative patterns, 

which represents some gaze-typing behaviors that may potentially distinguish 

writing activities based on the exhibited behaviors. When a subject writes an 

article in one of the reminiscent, logical, creative writing genres, he/she is more 

likely to show behaviors that are indicative of that genre. This means that extracted 

patterns that are indicative for a particular genre should occur more frequently in 

behavior sequences generated from writing sessions corresponding to the genre. 

We use a bag-of-words model [122] to generate the sequence-based gaze-

typing features from the behavior-transition sequences. We select the 𝑘 highest-

weighted patterns as our indicative patterns, or 𝑤𝑜𝑟𝑑𝑠 , and represent each 

behavior-transition sequence by the occurrence frequencies of the word contained 

in a bag-of-words approach. If 𝑘  patterns are selected, and each behavior-

transition sequence contains 𝜋  partitions, then the size of the sequence-based 

gaze-typing feature vector is 𝑘 × 𝜋 and the value of the 𝑖𝑡ℎ entry is the number 

of occurrences of the (⌊(𝑖 − 1)/𝜋⌋ + 1)𝑡ℎ  pattern in the (𝑖 − 3 × ⌊(𝑖 − 1)/

𝜋⌋)𝑡ℎ partition of the sequence. 

 

 



 

128 

 

4.3.4 Evaluation of Detecting Article Genres 

We evaluate our statistics-based and sequence-based gaze-typing features on 

the task of detecting the genre of an article that a subject is currently working on. 

In this section, we first analyze features to understand gaze and typing behaviors 

across different genres, and then we build our article genre detection model based 

on the analysis results. The detection model is evaluated on the datasets that we 

constructed in Section 4.1, and the performance will be reported at the end of the 

section. 

 

4.3.4.1 Understanding Statistics-based Gaze-typing Features 

Statistics-based gaze-typing features are extracted from different types of the 

time window. Since our objective is to build a user-independent model, we want 

our features to be effective at capturing behavior differences across different 

subjects. However, for different subjects, the range of a feature can be entirely 

different. For example, some subjects are used to generating a series of Chinese 

characters in one candidates box and then revising them by correcting typos. On 

the other, some subjects are used to typing phrase by phrase or even character by 

character. This means that the range of the features: the number of keystrokes 

(𝑓 
𝑈  𝑎𝑛𝑑 𝑓 

𝑁) is completely different, and the raw features 𝑓 
𝑈 𝑎𝑛𝑑 𝑓 

𝑁 are not 

generalizable across users. To solve this problem, we apply min-max 

normalization for all statistics-based gaze-typing features across different sessions 

of the same subject to mitigate the effect of user variation. After normalization, the 

ranges of all the features are within  0,1 . Since the scope of normalization is 

across all the sessions in different article-genres of the same subject, so the 

normalized features are still capable of capturing the differences between the 
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different article-genres and can be compared across different subjects and used in 

a user-independent fashion. 

To better understand the gaze-typing behaviors, we analyze the window-level 

statistics-based gaze-typing features in different article-genre sessions by 

answering two questions: 1) whether there is a significant difference between 

different article-genre groups for each feature and 2) how they are different.  

First, we group all the window-level features with the same type together, and 

then they are divided into three groups: reminiscent, logical, and creative, based 

on the genre of their corresponding article. A Kruskal Wallis H test [112] is then 

performed to test whether features in the three groups originate from the same 

distribution. In other words, if the test shows that a particular feature is 

significantly different, it means that feature can potentially capture the differences 

between writing articles in different genres. Kruskal Wallis H test is a non-

parametric method, which is the extension of Mann-Whitney U test [86] to support 

multiple groups (more than 2) comparison. Compared with the one-way analysis 

of variance test, Kruskal Wallis H test does not need the population to be normally 

distributed, nor does it assume that standard deviations of the groups are all equal. 

To see out how these features are different across different article-genres, we apply 

the Dunn's test with Bonferroni correction [26], a non-parametric post hoc test, on 

the features shown significant by the Kruskal Wallis H test. Table 4-22 lists all the 

significant features by the Kruskal Wallis H test with their p-values with correction 

of Dunn's test for touch typists. For both p-values, if 𝑝 ≤ 0.05, then it will be 

considered as 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 under such a test. The mean values of all significant 

features are also shown in the table for comparison across different groups. 

Results show that rereading behaviors differ between the writing reminiscent 

and creative articles. When a subject composes an article in the creative genre, 
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he/she tends to spend more time in rereading already-generated texts with more 

fixations, but each fixation is shorter in duration compared with composing an 

article in the reminiscent genre. Intuitively, the results make sense. Rereading 

behaviors appear more frequently in the translating phase and reviewing phase. 

Compared with reminiscent writing, composing an article in the creative genre 

requires continually ensuring that the plot is reasonable. Therefore, it makes sense 

that they spend more time rereading the texts and reread longer chunks of text.  

We also observe some 𝑝𝑎𝑢𝑠𝑒 behaviors when a subject stares at a position 

on the screen for a while during the typing period. During this time, the candidates 

box window remains on the screen, but there are few gaze movements and no 

keypresses. These pauses appear less often while composing reminiscent articles. 

One possible reason is that reminiscent writing is less complex compared with 

others. It is known that the frequency and duration of these pause behaviors are 

positively correlated with the complexity of the writing task [121].  
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Significant 

feature 

P-value with correction of 

Dunn's test 

P-value 

of 

Wallis H test 

Normalized Mean 

R vs.L R vs.C L vs.C R L C 

Length of the 

reread texts in 

Type R  (  
𝑹) 

1.00 1.00 0.02 0.02 0.30 0.27 0.32 

Reading duration 

in Type R ( 𝟑
𝑹) 

0.31 0.01 0.01 0.01 0.13 0.14 0.17 

Number of 

fixations in Type R 

( 𝟒
𝑹) 

0.07 0.01 1.00 0.01 0.10 0.12 0.14 

Duration of 

fixations in Type R 

( 𝟓
𝑹) 

1.00 0.02 0.01 0.01 0.32 0.31 0.28 

Total duration of 

staring and 

thinking in Type F 

( 𝟑
𝑭) 

0.01 0.01 1.00 0.01 0.12 0.13 0.13 

Duration of typing 

in Type L ( 𝟏
𝑳) 

0.01 1.00 0.01 0.01 0.10 0.12 0.09 

Keypress interval 

in Type L (  
𝑳) 

0.01 0.92 0.01 0.01 0.10 0.11 0.09 

Pause duration 

in Type N ( 𝟑
𝑵) 

0.02 0.01 1.00 0.01 0.08 0.10 0.11 

Duration of typing 

in Type N ( 𝟓
𝑵) 

0.28 0.04 1.00 0.04 0.11 0.13 0.17 

Time to look 

toward keyboard 

in Type 2 

transition window 

(  
𝑻𝒓) 

0.01 0.01 0.01 0.01 0.45 0.52 0.39 

Table 4-22 Kruskal Wallis H test and Dunn's test results of significant statistics-based gaze-

typing features for touch typists (R: Reminiscent, L: Logical, C: Creative) 
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Significant 

feature 

P-value with correction 

of Dunn's test 

P-value 

of 

Wallis H test 

Normalized Mean 

R vs. L R vs. C L vs.C R  L C 

Duration of 

fixations 

in Type R ( 𝟓
𝑹) 

<0.01 0.87 0.01 <0.01 0.28 0.33 0.30 

Total duration of 

staring and 

thinking in Type F 

( 𝟑
𝑭) 

0.24 0.01 0.06 <0.01 0.19 0.20 0.16 

Duration of 

fixations 

in Type F ( 𝟓
𝑭) 

0.37 <0.01 0.10 <0.01 0.24 0.23 0.20 

Duration of typing 

in Type L ( 𝟏
𝑳) 

1.00 <0.01 <0.01 <0.01 0.14 0.13 0.12 

Keypress interval 

in Type L (  
𝑳) 

1.00 <0.01 0.01 <0.01 0.15 0.14 0.16 

Keypress interval 

in Type U (  
𝑼) 

1.00 <0.01 <0.01 <0.01 0.27 0.26 0.22 

Duration of typing 

in Type U  ( 𝟒
𝑼) 

1.00 <0.01 <0.01 <0.01 0.28 0.28 0.23 

Number of 

keystrokes 

in Type N ( 𝟏
𝑵) 

<0.01 1.00 0.05 <0.01 0.18 0.16 0.18 

Time to look 

toward keyboard 

in Type 2 

transition window 

(  
𝑻𝒓) 

<0.01 <0.01 <0.01 <0.01 0.48 0.44 0.37 

Table 4-23 Kruskal Wallis H test and Dunn's test results of significant statistics-based gaze-

typing features for non-touch typists (R: Reminiscent, L: Logical, C: Creative) 
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The Kruskal Wallis H test is also applied to the data from the non-touch 

typists in a similar fashion. In their cases, most of the significant features are 

extracted from the Type 𝐹  thinking widow and the Type 𝐿  and 𝑈  typing 

windows. Significant features from the thinking phase include: the total duration 

of staring and thinking (𝑓 
𝐹) and fixation duration (𝑓5

𝐹 , 𝑓5
𝑅) of the Type 𝐹 and 𝑅 

thinking windows. Significant features from the typing phase are the keypress 

intervals (𝑓2
𝐿 , 𝑓2

𝑈) in both Type 𝐿 and 𝑈 typing windows and the typing duration 

(𝑓 
𝐿 , 𝑓 

𝑈) in both Type 𝐿 and 𝑈 typing windows.  

The results of the Dunn's test with Bonferroni correction on the significant 

features are shown in Table 4-23. Based on the results, we can find that composing 

an article in the creative genre has the most distinguishable typing behaviors, 

which are mainly shown in two aspects: keypress interval and the typing duration. 

For creative writing, both the keypress interval and the typing duration are the 

shortest in Type 𝐿 and 𝑈 typing windows. A similar phenomenon is also found 

by Wallot et al. [121] that keypress intervals are somewhat faster when the piece 

of writing is more complex. 

We also observe that when a subject composes an article in the logical genre, 

she/he tends to have longer fixations when rereading the already-generated texts 

than in other genres. One of the possible explanations is that these longer fixations 

are indicative of more complex language processing. Henderson et al. [43] have 

observed that texts with a higher degree of logical complexity require greater 

attentional focus and more effort in language processing, as subjects attempt to 

connect the linkage between different parts of the text. This increases cognitive 

activity manifests in longer fixations. 

The (𝑓2
𝑇𝑟 ) feature of the Type 2 transition window shows that there is a 

significant difference in the writing behavior between every pair of genres for both 
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touch and non-touch typists. When subjects are composing in the creative genre, 

they exhibit the smallest normalized feature value of 𝑓2
𝑇𝑟 , which means that a 

subject's gaze moves downward earliest when composing a creative article, 

compared to other genres. This phenomenon suggests that writing a creative article 

is a more cognitively complex task than the other two genres since a higher 

cognitive load induces people to move their gaze away from the target, scan more 

hastily and at a higher speed [49]. 

4.3.4.2 Understanding Sequence-based Gaze-typing Features 

Sequence-based gaze-typing features are extracted from the behavior 

sequence of each session to capture the occurrence patterns of 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 

patterns across the behavior-transition sequences. Indicative patterns are behavior 

subsequences, which differ across different writing genres. A weighting scheme 

was previously defined to determine whether a subsequence is an indicative 

pattern. Potential indicative patterns are all the possible subsequences with lengths 

ranging from  2,4  time window transitions. The reason we restrict the maximum 

length of the pattern to 4 is that based on the observation that most of the clauses 

are generated within four time windows. 

In this section, we address two important questions: 1) whether the weighting 

scheme can help us to select patterns with discriminating power, and 2) what the 

selected indicative patterns are. Previously defined the means by which the 

indicativeness of a pattern can be quantified by the weighting (𝑤), which can be 

computed through 𝑝𝑓 , 𝑟𝑓,  and 𝑡𝑑 , where 𝑝𝑓  helps to avoid selecting a rare 

subsequence as a pattern, and 𝑟𝑓 and 𝑡𝑑 determine the discriminating power of 

a pattern from different perspectives: 𝑟𝑓 measures the differences of the pattern's 

occurrences between the positive and negative groups and 𝑡𝑑 measures the trend 
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difference between the positive and negative groups. 

 

Figure 4-12 Top-100 normalized 𝑟𝑓 weights and Top-100 normalized 𝑟𝑓 ∙ 𝑡𝑑 weights for 

touch typists and non-touch typists 

Figure 4-12 shows the top 100 largest 𝑟𝑓 weights and top 100 largest 𝑟𝑓 ∙

𝑡𝑑  weightings in descending order for both touch and non-touch typists. For 

comparison, the weightings are normalized into  0,1   range using min-max 

normalization. The value of the 1𝑠𝑡  largest weighting is mapped to 1 and the 

100𝑡ℎ largest weighting is mapped to 0. It is obvious that many patterns share the 

same 𝑟𝑓 weighting. Even when the value of the weight is at a high level, this 

phenomenon still occurs quite often. The reason for this is that our sequence 

classification problem gives us six different states, where the transition is strictly 

between one of 𝑂, 𝑅, 𝐹 states and one of 𝐿, 𝑈, 𝑁 states. This gives us a total 

of 3 = 27 different kinds of transitions, which may not be complex enough to 

cover the different behaviors evidenced in our dataset. Figure 4-12 shows that 

many patterns, which appear to be quite dissimilar, do share the same 𝑟𝑓 weight. 

This suggests that the 𝑟𝑓  term may not be sufficient enough on its own to 
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quantify the discriminating power of the pattern. We, therefore, involve the 𝑡𝑑 

term for additional information. 

 

Figure 4-13 Examples of how the 𝑡𝑑 term further distinguishes the discriminating power 

of patterns with the same 𝑡𝑑 weight 

As an example, Figure 4-13 compares three patterns: 𝑅 ⇒ 𝑁 ⇒ 𝑅 , 𝑁 ⇒

𝑅 ⇒ 𝑈 and 𝐹 ⇒ 𝐹 ⇒ 𝑁, based on their 𝑟𝑓 and 𝑟𝑓 ∙ 𝑡𝑑. Three patterns have the 

same 𝑟𝑓 weighting value of 0.65. However, the 𝑟𝑓 ∙ 𝑡𝑑 weightings of these 3 

patterns are completely different: 

• 𝑁 ⇒ 𝑅 ⇒ 𝑈  has the highest 𝑟𝑓 ∙ 𝑡𝑑  of 0.51. In reminiscent and logical 

writing, it decreases in frequency as the writer approaches the middle part of 

writing and then increases again as the writer approaches the conclusion of the 

writing period. However, in creative writing, this pattern slightly increases as 

the writer approaches the midpoint of the writing activity but decreases 

dramatically as the conclusion approaches. 

• 𝐹 ⇒ 𝐹 ⇒ 𝑁 has a lower 𝑟𝑓 ∙ 𝑡𝑑 of 0.23. From the figure, even though there 

is some difference in the behavior of the pattern across different genres, the 

difference is less dramatic than 𝑁 ⇒ 𝑅 ⇒ 𝑈 . For 𝑅 ⇒ 𝑁 ⇒ 𝑅 , its 𝑟𝑓 ∙ 𝑡𝑑 
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does not make the top 100 list. 

 Touch typist Non-touch typist 

𝑝𝑓 ∙ 𝑟𝑓 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑 𝑝𝑓 ∙ 𝑟𝑓 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑 

1 𝐹 ⇒ 𝐹 ⇒ 𝐹 𝑂 ⇒ 𝑂 ⇒ 𝑂 𝐿 ⇒ 𝐹 ⇒ 𝐹 𝐿 ⇒ 𝐹 ⇒ 𝐹 

2 𝐹 ⇒ 𝐹 ⇒ 𝑁 𝐿 ⇒ 𝑁 ⇒ 𝑅 𝑁 ⇒ 𝑁 ⇒ 𝑅 𝑁 ⇒ 𝑁 ⇒ 𝑅 

3 𝑁 ⇒ 𝐹 ⇒ 𝐹 𝑁 ⇒ 𝑂 ⇒ 𝑂 𝑁 ⇒ 𝑅 ⇒ 𝑁 𝑁 ⇒ 𝐹 ⇒ 𝑁 

4 𝐹 ⇒ 𝑁 ⇒ 𝐹 𝑁 ⇒ 𝑁 ⇒ 𝑅 𝐹 ⇒ 𝑁 ⇒ 𝑅 𝐹 ⇒ 𝑁 ⇒ 𝑅 

5 𝐹 ⇒ 𝐹 ⇒ 𝑈 𝑂 ⇒ 𝑂 ⇒ 𝑁 𝐹 ⇒ 𝑈 ⇒ 𝑁 𝐹 ⇒ 𝑈 ⇒ 𝑁 

Table 4-24 Top-5 selected patterns for both touch typists and non-touch typists 

Table 4-24 lists the top 5 selected indicative patterns for both touch and non-

touch typists based on the 𝑝𝑓 ∙ 𝑟𝑓 and 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑 weightings. We note that in 

most of the selected patterns, at least two of three states are the same (e.g., 𝐹 ⇒

𝐹 ⇒ 𝑁 has two 𝐹 states). This suggests that the indicative patterns describe a 

period of time during which the subject's state is relatively stable. For example, 

the pattern F => F => F describes the behavior in which a subject stares at the 

screen for a while (presumably thinking) before typing. The top-ranked indicative 

patterns differ depending on the weighting terms used. In particular, for touch 

typists, the top 5 indicative patterns selected based on the  𝑝𝑓 ∙ 𝑟𝑓  weighting 

contain more 𝐹 states, whereas the 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑 weighting more highly weighs 

the 𝑂  states. Compared to touch typists, the top 5 indicative patterns selected 

based on the  𝑝𝑓 ∙ 𝑟𝑓  weighting and the 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑  weighting for non-touch 

typists are more similar to each other. One possible reason is that non-touch typists 

are less efficient when typing, and the process of hunting for the correct key on 

the keyboard dominates the behaviors across the entire process of writing the 

article. 
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4.3.4.3 Evaluating the Performance of Writing Genre Detection 

Our writing genre detection method is evaluated on the datasets constructed 

by us in Section 4.1. In real-life applications, a method should be able to work for 

a never-seen-before new user. Therefore, we employ a leave-one-subject-out 

cross-validation mechanism for evaluation. Specifically, a supervised learning 

model will be built based on the statistics-based gaze-typing features and the 

sequence-based features. The model will be trained on all but one of the subjects 

and evaluated on the remaining subject. The process will be iterated for 𝑁𝑠 times, 

where 𝑁𝑠 equals the total number of subjects. Since we build separate models for 

touch and non-touch typists, our approach's overall performance is calculated as 

the weighted average of the performance achieved over the touch and non-touch 

groups. 

We first investigate the proper parameter values for our approach. The 

parameter (𝑛𝑝𝑎𝑟) determines the number of partitions that a behavior sequence 

will be segmented into, which will be used to compute the 𝑡𝑑 term. Physically, it 

also represents the number of writing stages, so it is not reasonable to have an 

overlarge or over small 𝑛𝑝𝑎𝑟 . The parameter 𝑛𝑠𝑒𝑙𝑒𝑐𝑡  denotes the number of 

indicative patterns that will be considered, sorted by weight. A too-small 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 

may omit some useful patterns, but an over-large 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 will select some non-

indicative patterns, which may dilute the impact of the truly indicative features. 

In this experiment, we explore the impact of different value combinations of 

𝑛𝑝𝑎𝑟  and 𝑛𝑠𝑒𝑙𝑒𝑐𝑡  on the performance. Linear support vector machine (SVM) 

models are built based on the concatenation of the statistic-based features with the 

sequence-based features, which are generated by different values of 𝑛𝑝𝑎𝑟  and 

𝑛𝑠𝑒𝑙𝑒𝑐𝑡. Figure 4-14 summarizes the results. 
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Figure 4-14 Overall performance trends of writing genre detection approach with a 

different number of partitions 𝑛𝑝𝑎𝑟 and number of indicative patterns selected 𝑛𝑠𝑒𝑙𝑒𝑐𝑡  

predicted as 

 

Ground truth 

Reminiscent Logical Creative 

Reminiscent 18 1 2 

Logical 0 24 1 

Creative 1 2 22 

Table 4-25 Confusion matrix of the article-category detection for touch typists 

predicted as 

 

Ground truth 

Reminiscent Logical Creative 

Reminiscent 22 1 2 

Logical 4 16 1 

Creative 1 0 20 

Table 4-26 Confusion matrix of the article-category detection for non-touch typists 
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Compared with the overall baseline of 36.2%, which is achieved by 

predicting every instance as the majority class, the best performance of our 

approach (𝑛𝑝𝑎𝑟 = 4, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 = 20 ) can achieve 88.4% accuracy, which is quite 

promising. Table 4-25 and Table 4-26 show the detailed confusion matrixes. 

We notice from the figure that when 𝑛𝑝𝑎𝑟 = 4 or 5, our approach always 

yields the best performance. It makes sense since usually most articles can be 

divided into three parts: introduction, body, and conclusion, and the body part has 

around 2-3 times the length as the length of the introduction and the conclusion 

parts. We note that when 𝑛𝑝𝑎𝑟 =  4 or 5, the max performance is achieved when 

𝑛𝑠𝑒𝑙𝑒𝑐𝑡  is around 20, which also meets our intuition that selecting too many 

patterns will worsen the overall performance since non-indicative patterns may be 

included. 

Figure 4-14 also presents the performance trend of linear SVM models built 

on the statistics-based features and sequence-based by using the 𝑝𝑓 ∙ 𝑟𝑓 

weighting scheme with different 𝑛𝑠𝑒𝑙𝑒𝑐𝑡  values, 𝑝𝑓  weighting scheme, 𝑟𝑓 

weighting scheme and the performance of only using statistics-based features. It 

is clear that with reasonable values of 𝑛𝑝𝑎𝑟, the overall performance of the 𝑝𝑓 ∙

𝑟𝑓 ∙ 𝑡𝑑 weighting scheme is always better than the others. 

We also evaluate the performance of our approach without differentiating 

between touch typists and non-touch typists. We construct a new dataset by 

combining data from all subjects and training linear SVM models on the dataset 

with different values of 𝑛𝑝𝑎𝑟 and 𝑛𝑠𝑒𝑙𝑒𝑐𝑡. Based on the previous results, potential 

values of 𝑛𝑝𝑎𝑟 are 4 and 5. Figure 4-15 shows the performance trends. The best 

performance is around 77%, which is attained when 𝑛𝑝𝑎𝑟 = 5 and 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 = 15. 

According to the figure, we acknowledge that the performance of the 𝑝𝑓 ∙ 𝑟𝑓 ∙ 𝑡𝑑 

weighting scheme is better than 𝑝𝑓 ∙ 𝑟𝑓, which is consistent with the results of 
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training separate models for touch typists and non-touch typists. It can also be seen 

that the combined model performs worse than training separate models for 

different levels of typing ability. A possible reason is that gaze-typing behaviors 

differ so much between touch typists and non-touch typists, and these inconsistent 

behaviors may confuse the model. 

 

Figure 4-15 Performance trends of writing genre detection approach trained on the touch 

typists dataset and non-touch typist dataset together 

Finally, we evaluate the performance of our approach across different age 

groups to ascertain the effect of the age factor. As shown in Table 4-1, the college 

student group are all touch typists and all but one subject in the child group are 

non-touch typists. As are around 33% of subjects in the elderly-age group, we 

therefore further divide the elderly-age group into the touch typist elderly-age 

group and non-touch typist elderly-age group. For each specific age group, we 

then construct a linear SVM model on the concatenation of statistics-based and 

sequence-based features with 𝑝𝑓 · 𝑟𝑓 · 𝑡𝑑 weighting scheme, where 𝑛𝑝𝑎𝑟 =  4 

and 𝑛𝑠𝑒𝑙𝑒𝑐𝑡 =  20, which achieves the best performance in the previous evaluation. 

Table 4-27 presents the results of the evaluation by age group. It can be seen 
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that the performances for the child group and college student group are close to 

the best performance achieved by differentiating the touch typists and the non-

touch typists (Figure 4-14). However, for the elders, the performance drops more 

significantly compared to the two other groups, approaching the performance we 

achieved in Figure 4-15 when there was no differentiation between the touch 

typists and the non-touch typists. However, when the elders are broken down into 

touch typists and non-typists, the performance improves significantly, even 

outperforming the best performance previously achieved. These observations 

suggest that (1) the typing skill has a bigger effect on writing genre detection than 

the age factor, and (2) the age factor may provide additional information that can 

contribute additionally to the performance of writing genre detection after the 

dominant factor (typing skill) is accounted for. 

Article-category detection for 

 Children College 

students 

Elders Touch typists in 

elderly-age group 

Non-touch typists in 

elderly-age group 

CCR 87.0% 83.3% 77.8% 91.2% 88.9% 

Table 4-27 Article-category detection for different age groups 

4.4 Summary 

In this chapter, we focus on exploring the cognitive process of writing based 

on gaze-typing behaviors. In this study, we focus on investigating how the age-

factors and writing genres affect the cognitive process of writing by analyzing gaze 

and typing behaviors when subjects are generating their own texts. Since there is 

no published dataset available, which satisfies requirements, we construct our 

datasets by collecting data from 46 subjects (18 in child age group, 10 in college 
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students group, and 18 in the elder age group), 138 articles (46 in reminiscent, 46 

in logical, and 46 in creative articles).  

Based on the result of the age-group detection experiment, our statistics-

based gaze-typing features can successfully determine the age group of the subject 

during the process of writing with a high accuracy, which is 83.3%. It indicates 

that the age-factors do affect the writing process. According to the result of the 

feature selection for age-group detection, we know that the age-factors' effect 

mainly reflects in the typing phase and transition phase (from thinking to typing). 

It is because that the typing skills and the capacities of the working memory are 

different among these three age groups.  

For the effect of the writing genres, we successfully utilize statistics-based 

gaze-typing features and sequence-based features to determine an article's genre 

based on gaze and typing behaviors during writing. It indicates that the writing 

genres influence the writing cognitive process and can be inferred by gaze and 

typing behaviors. We find that when a subject is composing a complex article, 

which involves more idea-generating phases and text-organizing phases, he/she 

will reread already-generated texts more frequently. The purpose of rereading 

already-generated texts could be providing hints of what to write next or helping 

organize the current generating sentence. They can be differentiated by the length 

of the rereading texts since organizing the sentence needs to reread longer length 

to ensure the correctness both logically and semantically. Another important 

finding is that unlike the copy-type tasks, when the subject generates their own 

texts, keypress intervals are not consistent, and pauses exist throughout the task. 

This is most likely because the process of composition requires subjects to convert 

their ideas into text in addition to inputting the text via the keyboard. The 

observation supports this hypothesis that longer pauses are observed in the logical 
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and creative writing, requiring the subject to imagine and visualize a scenario and 

express it coherently in textual language with logical and semantic correctness. 

These requirements presumably require more cognitive effort than reminiscent 

writing, in which subjects are simply asked to recall an event. We also notice that 

non-touch typists always shift their gaze away from the screen and towards the 

keyboard before they start typing earlier for logical and creative writing. This is 

consistent with previous work [49] on a different domain (mathematics 

calculation), which shows that when a subject is in a high cognitive load state, they 

are more likely to move their gaze away from the target earlier at a higher speed. 

The results in Figure 4-15 show that the best performance of writing genre 

detection is achieved by combining statistics-based and sequence-based gaze-

typing features. It implies that sequential gaze-typing behaviors can model the 

writing process. The transition between different kinds of behaviors also appears 

to capture the information of writing's cognitive process, especially with certain 

behaviors that frequently appear during a particular process of the activity.  

We also discover that the same behavior may have different causes. One 

example is that the non-touch typists need to look at the keyboard while typing, 

their eye gaze movements exhibit many saccades with greater variation along the 

y-axis, and the eye gaze cannot be captured for large amounts of time. However, 

for touch typists, saccades with more significant variation along the y-axis are 

generally related to rereading the previously generated texts, and periods of time 

when the subject's gaze is off-screen are often associated with deep thought and 

planning what to write next. These behaviors, though superficially the same, have 

very different causes, which argues for the need to train separate models based on 

the typing proficiency of the subject. 

In conclusion, our results indicate that people from different age groups 
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compose articles in different genres, the writing cognitive processes are different, 

which can be inferred by gaze-typing behaviors. The effects of age-factors are 

mainly reflected in the typing behaviors, and the effects of article genres are 

mostly on the rereading behavior, pauses during typing, and transitions between 

different behaviors. In a nutshell, our results are promising and provide a more in-

depth understanding of human behavior in writing. 
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5 Inferring Users' Cognitive Process of Summarization 

Based on Gaze and Typing Behaviors 

Chapter 4 introduces the way of investigating the writing cognitive process 

by analyzing the gaze-typing behaviors when users are generating their own texts. 

We design the gaze-typing features extracted from different writing processes such 

as planning the writing ideas, rereading, converting writing ideas into texts, typing 

texts into computers, and reviewing already-generated texts to model behaviors. 

Based on our gaze-typing features, we show that the age-factors and different 

writing genres affect the writing cognitive process, and the differences in the 

writing cognitive process can be captured successfully by our gaze-typing features. 

In this chapter, we take a step further by investigating the cognitive process of 

summarizing writing based on the gaze-typing features extracted from 

multimodalities. 

Compared with writing (generating own texts on a computer), summarizing 

a document is a complex text that needs a person to multitask between reading 

comprehension and writing based on understanding. Unlike the reading and 

writing behaviors that have been investigated substantially, the exploration of 

summarization is at the very early stage. Known that the cognitive load during 

reading and writing are dependent upon the level of comprehension or difficulty 

of the article, it suggests that it should be possible that the different difficulty levels 

of summarization task may also affect the cognitive process of the person and can 

be analyzed based on the gaze-typing features, similar as what we do to analyze 

the wiring cognitive process. Another important goal of this study is to examine 

whether multimodal features can improve the supervised learning performance 

and explore the possible reasons for our multimodal features' superior 
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performance. 

In this study, we first construct our summarizing task dataset by recruiting 20 

subjects to accomplish three different summarizing writings in different difficulty 

levels. The details of experiment settings and designs are introduced in Section 

5.1. In Section 5.2, we are going to introduce the procedures of extracting 

multimodal features from the gaze, keyboard, time modalities to capture the 

differences of cognitive processes of summarizing texts in different difficulty 

levels, followed by the evaluation of our multimodal features in the aspect of the 

performance of recognizing different difficulty levels in Section 5.3. In Section 

5.4, we will compare the performances between the multimodal features with the 

features extracted from every single modality, followed by the summary in Section 

5.5. 

5.1 Constructing Summarizing Task Datasets 

5.1.1 Experiment Settings 

The purpose of this research is to examine the cognitive process of summary 

writing, in particular, to explore the variations in cognitive processes when 

summary writing on the basis of gaze and typing behaviors at different difficulty 

levels. Therefore, as our research focuses on writing in the Chinese language, in 

our experiment, 20 experimental subjects (Ages 25 – 50, 𝑀𝑒𝑎𝑛 = 35.4, 𝑆𝑇𝐷 = 

7.5) were recruited, and all of them were native Chinese speakers with at least a 

high school education. A pre-experiment survey was conducted prior to the 

experiment and showed that all the recruited subjects were familiar with typing on 

the keyboard using the Chinese Pinyin input method, which mapped Latin 

phonetic symbols to Chinese Characters. In addition, every subject had reading 

and writing habits and spent at least half an hour reading every week in the 
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previous year and wrote at least once a week. 

 

Figure 5-1 Experimental interface for summarizing task 

 

Figure 5-2 Experimental environment and the overall framework of the multimodal 

approach 

As seen on the left side of Figure 5-2, the experiment was conducted in a 

standard office room. The configuration consisted of a 22" LCD display at 

1680×1050 resolution, and a Tobii EyeX eye tracker was installed to the bottom 

of the display, a full-size QWERTY keyboard, and a regular optical mouse. A 

subject was positioned about 60 𝑐𝑚 away from the display in the experiment, 
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and the height of the display and chair had been changed to accommodate the 

preference of the subject. 

The screen was equally divided into two areas of the same size during the 

experiment. On the left side of the screen, the piece of article that the subjects were 

expected to be summarized was shown, and the area is called the 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑟𝑒𝑎. 

The 𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 was on the right side of the screen, where the subjects wrote 

the summaries. The purpose of this side-by-side configuration is to emulate the 

split-view mode, which is frequently used in everyday life in many computer 

setups. The experimental interface is illustrated in Figure 5-1. 

Articles to be summarized were in Chinese, and the font was set to 28 𝑝𝑡 

DengXian. Two data collection systems were running in the background during 

the experiment: one of them captured the eye gaze positions at 60 𝐻𝑧 and tracked 

the keyboard presses at 100 𝐻𝑧, and the other one captured the screen video at 10 

𝐻𝑧 simultaneously. 

5.1.2 Experiment Design 

Three articles in around 400 words length at various difficulty levels were to 

be summarized by the participants of our experiment. Two of them were selected 

from local newspaper reports, which were acquainted by all subjects. A general 

introduction of a machine learning algorithm, which none of the participates were 

familiar with, was selected as the third article. Below are the specifics of each 

piece of the article:  

• Easy: A report on the bike-sharing economy in the local newspaper. The author 

first illustrates the present growth of the bike-sharing economy in the article 

and then discusses the price change in the future. 

• Medium: An article from the local newspaper about the local price increase of 
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agricultural goods, which poses various opposing opinions with claims. 

• Hard: An overview article on genetic algorithms, describing its fundamental 

principles, and how DNA selection is related. 

Compared to the easy-difficulty article, the medium-difficulty article 

contained more argument shifts, and the topic of the hard-difficulty article was 

unrelated to the subjects. Both variables made the articles harder to comprehend 

and summarize. Each subject was expected to complete a summary of half the 

original articles' length for each article, which was around 150-200 words. There 

was no limit on the time spent on writing. It commonly took about 30 minutes for 

each subject to complete each summary. 

Two warm-up pieces of summary tasks were undertaken by the participants 

before the formal experiment, which was intended to make the subjects familiar 

with the experimental interface and input devices. With the help of the warm-up 

tasks, we are able to normalize behavior features across subjects that will be 

completely introduced in Section 5.3.1. Articles with different difficulty levels 

were presented to the subjects in random order during the experiment. There was 

a 20-minute break after each summary writing to prevent subjects from being 

exhausted. The eye tracker was recalibrated after each break. We also required 

each subject to rank the difficulty of each summarization task from Easy to Hard 

to validate each summary task's relative difficulty as perceived by the subjects was 

consistent with our assumptions. 

Finally, our summarizing task dataset consists of 55 instances, including 19 

instances labeled as 𝐸𝑎𝑠𝑦, 19 instances labeled as 𝑀𝑒𝑑𝑖𝑢𝑚, and 17 instances 

labeled as 𝐻𝑎𝑟𝑑  after excluding one subject, who did not complete the 

experiment, and 4 additional instances due to the equipment fault. Based on the 

self-reports, the difficulty of the task, as perceived by each subject, is consistent 
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with the assumption made in the experiment. 

5.2 Extracting Multimodal Features from Input Signals 

In this study, we are going to investigate how gaze and typing behaviors are 

affected based on the cognitive changes when summarizing articles of various 

degrees of difficulty. Multimodal features that incorporate eye gaze movements, 

keypresses, and text generation are studied. In this section, we will mainly 

introduce the feature extraction and selection procedures for the features. Figure 

5-2 presents the overall framework of our method. 

5.2.1 Pre-processing of Input Signals 

Our experiment setup provides us three channels for detecting user behaviors, 

which include the eye-tracker, the keyboard, and the screen recording. The format 

of the eye-tracker outputs is a series of three-dimension tuples in the form of <

𝑥, 𝑦, 𝑡 > , which indicates that at time 𝑡 , the subject is fixating on the screen 

position at (𝑥, 𝑦). For each period that the eye-tracker fails to capture any subject's 

eye gaze on the screen, if its duration is more than 400 𝑚𝑠 , then it will be 

considered that the subject does not look at the screen, and the signals during that 

period will be removed. Else it will be considered as a blink [12], and the linear 

interpolation is utilized to approximate the eye gaze locations. To eliminate the 

impose noise from the eye-tracking signal, a two-phase heuristic filter [107] is 

then exploited. Fixations are intervals of time during which a subject holds his/her 

gaze at the same positions to understand the visual information, which can be 

detected by using the dispersion threshold identification (I-DT) algorithm [101] 

with the dispersion of 35 𝑝𝑥 and minimum stay time of 170 𝑚𝑠.  

Apply these two algorithms returns us a series of fixations in the form of <

𝑡𝑓𝑖𝑥 , 𝑑𝑢𝑟𝑓𝑖𝑥 , 𝑥𝑓𝑖𝑥 , 𝑦𝑓𝑖𝑥 >, where 𝑡𝑓𝑖𝑥 is the time when a subject starts to fixate on 
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the location (𝑥𝑓𝑖𝑥 , 𝑦𝑓𝑖𝑥)  and 𝑑𝑢𝑟𝑓𝑖𝑥 , stands for the duration of the fixation. A 

saccade is defined as a spontaneous and continuous gaze movement from one 

fixation position to another. Thus, a saccade appears between every two adjacent 

fixations. Based on the definition, a saccade can be represented as <

𝑡𝑠𝑎𝑐 , 𝑑𝑢𝑟𝑠𝑎𝑐, 𝑑𝑖𝑠𝑡𝑠𝑎𝑐 , 𝑥𝑠𝑎𝑐_ , 𝑦𝑠𝑎𝑐_ , 𝑥𝑠𝑎𝑐_2, 𝑦𝑠𝑎𝑐_2 > , where 𝑡𝑠𝑎𝑐  is the moment 

that the gaze starts to move from the on-screen location (𝑥𝑠𝑎𝑐_ , 𝑦𝑠𝑎𝑐_ )  to 

(𝑥𝑠𝑎𝑐_2, 𝑦𝑠𝑎𝑐_2) and 𝑑𝑢𝑟𝑠𝑎𝑐and 𝑑𝑖𝑠𝑡𝑠𝑎𝑐  stand for the duration and the Euclidean 

distance of the saccade, respectively. Then the eye gaze movement can be 

measured by the scanpath [87] – a sequence of fixations and saccades represented 

as 𝑆𝑝 = {𝑓𝑖𝑥0, 𝑠𝑎𝑐0, 𝑓𝑖𝑥 , 𝑠𝑎𝑐 , ⋯ , 𝑓𝑖𝑥𝑛, 𝑠𝑎𝑐𝑛}. 

The format of the keyboard signal is in the form of < 𝑡𝑘𝑒𝑦, 𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >, 

which encodes that the 𝑘𝑒𝑦_𝑛𝑎𝑚𝑒  key is stroked at the time 𝑡𝑘𝑒𝑦 . From the 

screen recording, the caret position at each timestamp < 𝑡𝑐𝑢𝑟 , 𝑥𝑐𝑢𝑟 , 𝑦𝑐𝑢𝑟 > can be 

detected, and the position of each text deletion, text insertion, and text appending 

can be achieved through the further process by combining the keyboard events and 

text caret positions together. 

Mouse movement signal is also collected during the experiment in the form 

of < 𝑡𝑚𝑜𝑢𝑠𝑒 , 𝑥𝑚𝑜𝑢𝑠𝑒 , 𝑦𝑚𝑜𝑢𝑠𝑒 > , which encodes that mouse cursor stays at 

(𝑥𝑚𝑜𝑢𝑠𝑒 , 𝑦𝑚𝑜𝑢𝑠𝑒)  at 𝑡𝑚𝑜𝑢𝑠𝑒 .  However, through the data visualization, we find 

that mouse is seldom used by subjects during the summarizing task. The only cases 

that a subject uses the mouse is to occasionally select a target word/phrase from a 

candidate box or relocate the text caret. Because the amount of meaningful mouse 

movement data is so rare, the mouse movement signal is not used in this study. 

5.2.2 Extracting Features from Eye-tracking Signal 

Previous studies [30, 126, 127] indicate that summary writing requires many 
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processes, including reading the text to be summarized, understanding it by 

grasping key information, translating the summarizing/writing ideas into 

sentences, and typing the sentences on the keyboard. However, there is 

considerable variance in a subject's behaviors, especially the behaviors of eye gaze 

when a subject is in the different phases. Therefore, the entire summary process is 

segmented into many phases so that the behaviors of the subject within each phase 

are relatively constant. 

We first segment the scanpath into two types: 𝑆𝑝𝑟𝑒𝑎𝑑 and 𝑆𝑝𝑤𝑟𝑖𝑡𝑒, where 

sub-scanpaths in 𝑆𝑝𝑟𝑒𝑎𝑑 type occur within the reading area and sub-scanpaths in 

𝑆𝑝𝑤𝑟𝑖𝑡𝑒 are within the writing area. In practice, subjects do not keep focusing on 

the screen over the whole duration of the experiment, as their attention can be 

diverted by external influences. We, thus, ignore sub-scanpaths that are shorter 

than 500 𝑚𝑠 in length. 

In this study, all the summarizations are written in Chinese by using the 

Pinyin input method. The method of typing in Chinese in Pinyin, as introduced in 

Section 4.1, is very different from that of typing in English. Since it is an indirect 

text generation approach for the Pinyin input method and a subject needs to input 

the phonetic equivalent in alphabetic symbols to produce a Chinese word/phrase, 

which will then be translated to the actual text. Since the phonetic mapping is 

always one-to-many, in a pop-up word selection window (Figure 5-3), the system 

presents all possible candidates, which are changed dynamically as the keyboard 

is pressed. A subject then chooses his/her intended text from the presented 

candidates. 
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Figure 5-3 An example of the pop-up candidates words selection window 

Known about how the texts are generated helps us to categorize 𝑆𝑝𝑤𝑟𝑖𝑡𝑒 into 

two types: 𝑆𝑝𝑡𝑦𝑝𝑒 and 𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑. 𝑆𝑝𝑡𝑦𝑝𝑒 is a type of sub-scanpath in which the 

gaze of the subject stays within the pop-up word selection window region and 

𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑  is a kind of sub-scanpath outside the words selection window, 

suggesting that the subject rereads his/her previously generated text. Rereading is 

an important writing behavior during which the subject reviews generated texts 

for planning new ideas for the subsequent generation [30]. 

 

Feature Meaning Formulation 

 𝟏 Sub-scanpath 

duration 

Total duration of fixations and saccades inside the 

sub-scanpath 

   Number of 

fixations 

Number of fixations inside the sub-scanpath 

 𝟑.𝟒.𝟓 Fixation duration Mean(𝑓 ), standard deviation(𝑓 ) and max(𝑓5) of the 

fixation duration 

 𝟔,𝟕,𝟖 Saccade distance Mean(𝑓6), standard deviation(𝑓7) and max(𝑓8) of the 

saccade distance 

 𝟗 Number of 

switching-line 

saccades 

Number of switching-line saccades inside the sub-

scanpath 

Table 5-1 Features of clustering 𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpaths 
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Figure 5-4 Examples of two types of 𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpath 

Based on the previous research, 𝑆𝑝𝑟𝑒𝑎𝑑 behaviors suggest that when writing 

a summary, a subject is reading the article to grasp the main ideas in order to 

generate the writing ideas or reference the detailed material in the given article 

during writing. Compared to 𝑆𝑝𝑤𝑟𝑖𝑡𝑒, sub-scanpaths in 𝑆𝑝𝑟𝑒𝑎𝑑 are much more 

diverse and complicated. Therefore, in order to group and categorize sub-

scanpaths of the same kind, we apply the 𝑘-means algorithm [75] to cluster all the 

𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpaths based on the features in Table 5-1. The silhouettes 

measurement [99] is utilized to determine the optimal number of clusters, which 

is 2 based on the result. 
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Category Sub-category Usage 

 

Within the 

reading 

area 

(𝑺𝒑𝒓𝒆𝒂𝒅) 

Reading the text to be 

summarized 

(𝑆𝑝𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑) 

Understanding the basic idea of 

the text by a careful reading 

Skimming the text to be 

summarized 

(𝑆𝑝𝑠𝑘𝑖𝑚) 

Selecting and extracting relevant 

information for the current 

writing goal 

Within the 

writing area 

(𝑺𝒑𝒘𝒓𝒊 𝒆) 

Within the pop-up words 

selection window (𝑆𝑝𝑡𝑦𝑝𝑒) 

Selecting the final text from the 

phonetic equivalent 

Rereading previously generated 

text 

(𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑) 

Reviewing the generated text and 

inspiring new writing ideas 

Table 5-2 Summary of sub-scanpath in different categories 

An example of each cluster is illustrated in Figure 5-4, where red circles stand 

for fixations and the length of each circle radius is proportional to the fixation 

duration. Red line segments represent saccades. It is evident that the sub-scanpaths 

in different clusters are distinct from each other. Type A 𝑆𝑝𝑟𝑒𝑎𝑑 sub-scanpaths 

have a longer duration, have more fixations than Type B sub-scanpaths. Most of 

the saccades in Type A 𝑆𝑝𝑟𝑒𝑎𝑑 sub-scanpaths are shorter in the distance than the 

saccades in Type B 𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpaths. For Type A 𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpaths, 

we also find that most of the saccades are horizontal, aligning with the direction 

of the text-lines, and the saccade length is around 1-2 times the width of a Chinese 

word. This indicates that Type A 𝑆𝑝𝑟𝑒𝑎𝑑  sub-scanpaths are generated when a 

subject is reading through the texts. 

On the other hand, Type B 𝑆𝑝𝑟𝑒𝑎𝑑 sub-scanpaths contain relatively longer 

saccades, which always appear at the beginning and the end of the sub-scanpaths 

traversing vertically across multiple text-lines. Prior work [15] illustrates that Type 

B sub-scanpaths suggest skimming behavior. That is a subject focuses on selecting 

and extracting relevant information to his/her current writing goal from the texts 
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without paying too much attention to the irrelevant material [82]. We, thus, 

represent Type B sub-scanpaths as 𝑆𝑝𝑠𝑘𝑖𝑚. Table 5-2 presents an overview of all 

categories of 𝑆𝑝𝑟𝑒𝑎𝑑 with their descriptions. 

 

 

 

 

 

Feature Meaning Formulation 

𝒈𝟏 − 𝒈𝟒 FSs distance, speed Mean and standard deviation of all FSs 

distances and speeds 

𝒈𝟓 − 𝒈𝟖 BSs distance, speed Mean and standard deviation of all BSs 

distances and speeds 

𝒈𝟗 − 𝒈𝟏  Distance and speed 

of all saccades 

Mean and standard deviation of all 

saccades distances and speeds 

𝒈𝟏𝟑, 𝒈𝟏𝟒 Fixations after FS Mean and standard deviation of all 

fixation durations after FS 

𝒈𝟏𝟓, 𝒈𝟏𝟔 Fixations after BS Mean and standard deviation of all 

fixation durations after BS 

𝒈𝟏𝟕, 𝒈𝟏𝟖 Duration of all 

fixations 

Mean and standard deviation of all 

fixation durations 

∗ FS stands for forward saccade; BS stands for backward saccade 

Table 5-3 𝐹𝑔𝑎𝑧𝑒
𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 : Features extracted from 𝑆𝑝𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑  
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For each category 𝑖 of sub-scanpaths, we extract specific eye-gaze features 

𝐹𝑔𝑎𝑧𝑒
𝑖  from all members of instances. For a sub-scanpath in 𝑆𝑝𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 type, 

we extract the feature vector 𝐹𝑔𝑎𝑧𝑒
𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 . According to the primary cognitive 

activity that is demonstrated by this sub-scanpath, we determine two kinds of 

saccades: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑆𝑎𝑐𝑐𝑎𝑑𝑒𝑠 (𝐹𝑆)  and 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑆𝑎𝑐𝑐𝑎𝑑𝑒𝑠 (𝐵𝑆) . FS is 

identified as a horizontal saccade following the direction of the text, and BS, also 

recognized as the regressive saccade, is opposite to the direction of FS. Previous 

studies have found that as the level of text increases in complexity, the length of 

FSs, and the duration of the fixations after the FSs also increase [94]. Table 5-3 

shows the details of features in 𝐹𝑔𝑎𝑧𝑒
𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 with their formulations. 

As illustrated in Figure 5-4 (Type B), a sub-scanpath in 𝑆𝑝𝑠𝑘𝑖𝑚 consists of 

the 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 saccades and 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 saccades, where searching saccades are 

identified by long-distance saccades spanning across several text-lines, but reading 

function GetSaccadeType(Sac)                      % Sac: a saccade in 𝑆𝑝𝑠𝑘𝑖𝑚           

{  

 if length of saccade >= 200 px  

  type  "Searching (SS)" 

 else                   % anti-clockwise, 0° is horizontal to the right                                   

  if direction of Sac is in (−30°, 30°) 𝑜𝑟 (150°, 210°)   

   type  "Reading (RS)" 

   if direction of Sac is in (−30°, 30°) 

    sub_type  "ForwardReading(FRS)" 

   else 

    sub_type  "BackwardReading(BRS)" 

  else 

   type  "Undefined" 

 return type, sub_type 

} 

Algorithm 5-1 Determine type saccade in 𝑆𝑝𝑠𝑘𝑖𝑚  
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saccades are short-distance saccades along the text-line direction. When a subject 

refers to the text, searching saccades are used to locate the part of the text, and 

reading saccades are used to determine that this part of the text is useful. A rule-

based approach to determine different kinds of saccades is presented in Algorithm 

5-1. 

Feature Meaning Formulation 

𝒈𝟏𝟗 − 𝒈𝟑𝟒 SSs, RSs, FRSs, BRSs 

distance, speed 

Mean, standard deviation of each kind of 

saccade distance and speed 

𝒈𝟑𝟓 − 𝒈𝟑𝟖 Number of SSs, RSs, 

FRSs, BRSs 

Number of each kind of saccades 

𝒈𝟑𝟗 − 𝒈𝟒  All Saccades distance, 

speed 

Mean, standard deviation of all 

saccades distances and speeds 

𝒈𝟒𝟑 − 𝒈𝟓𝟎 Fixations after SSs, RSs, 

FRSs, BRSs 

Mean, standard deviation of each kind of 

fixation duration 

𝒈𝟓𝟏, 𝒈𝟓  All fixations Mean, standard deviation of all 

fixations durations 

𝒈𝟓𝟑 − 𝒈𝟓𝟔 Cumulative distance of 

SSs along one direction 

Cumulative distance of SSs along with x-

positive, x-negative, y-positive, and y-

negative directions 

𝒈𝟓𝟕 − 𝒈𝟔𝟒 Distance of SSs along 

one direction 

Mean and standard deviation of distances 

of SSs along with x-positive, x-negative, y-

positive, and y-negative directions 

*SS stands for searching saccade; RS stands for reading saccade; FRS and BRS 

stands for forward and backward reading saccade 

Table 5-4 𝐹𝑔𝑎𝑧𝑒
𝑠𝑘𝑖𝑚: Features extracted from 𝑆𝑝𝑠𝑘𝑖𝑚  

Features 𝐹𝑔𝑎𝑧𝑒
𝑠𝑘𝑖𝑚  extracted from 𝑆𝑝𝑠𝑘𝑖𝑚  sub-scanpaths are intended to 

describe various kinds of fixations and saccades. Features 𝐹𝑔𝑎𝑧𝑒
𝑠𝑘𝑖𝑚  are listed in 

Table 5-4, where the x-positive direction is horizontal to the right, and the y-

positive direction is vertical to the up. 

According to the definition, 𝑆𝑝𝑤𝑟𝑖𝑡𝑒 can be further classified into 𝑆𝑝𝑡𝑦𝑝𝑒 
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and 𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑. Because that 𝑆𝑝𝑡𝑦𝑝𝑒 is highly correlated to the typing skill rather 

than the cognitive process of summarization, we only extract features from 

𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑. Since 𝑆𝑝𝑟𝑒𝑟𝑒𝑎𝑑 is generated when rereading the previously generated 

text, our extracted features are the same as that of features extracted from 

𝑆𝑝𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 and indicated by 𝐹𝑔𝑎𝑧𝑒
𝑟𝑒𝑟𝑒𝑎𝑑 , denoted from 𝑔65  to 𝑔82 . In total, 82 

features are extracted from the eye-tracking signal to modal eye-gaze behaviors 

through different summary phases.  

5.2.3 Extracting Features from Keyboard Signal 

Prior study has illustrated that keystroke dynamics provide useful 

information for the cognitive state inference [115]. Therefore, we extract features 

related to keystroke dynamics from the keyboard signal for analysis. 

First, we define typing phases, identified as periods during that the interval 

between every two keypresses is no more than 1.2 seconds [21]. During these time 

periods, we extract keyboard dynamics features 𝐹𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

  from the keyboard 

signal, as presented in Table 5-5. 

 

Feature Meaning Formulation 

𝒌𝟏, 𝒌  Number of 

keypresses 

Mean and standard deviation of number of 

keypresses in each typing phase 

𝒌𝟑, 𝒌𝟒 Inter-key intervals Mean and standard deviation of all inter-key 

intervals 

𝒌𝟓, 𝒌𝟔 Number of deletions Mean and standard deviation of number of times 

the backspace key is pressed in each typing phase 

Table 5-5 𝐹𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑
𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

: Features extracted from keyboard signal 

The screen recording is also collected during the experiment to give us 

another channel of information. The information includes the text caret position at 
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each timestamp and the timestamps that the pop-up candidates box appears on the 

screen. Combining keyboard events, caret position, and the appearance of the pop-

up words selection window allows us to reconstruct insert, append, and delete text 

generation operations, as well as the location of the operation and the number of 

words generated or deleted by that operation. We believe that the text generation 

procedure can provide indicative information. For example, if a subject performs 

on a difficult summary, it is possible that there would be relatively more frequent 

insert and delete operations. Table 5-6 presents the text generating features 

(𝐹𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑
𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

) with their meanings and formulations. Totally, we extract 15 features 

from the keyboard signal to model the typing dynamics and the text generation 

procedure. 

Feature Meaning Formulation 

𝒌𝟕 − 𝒌𝟗 Operation frequency Number of insert, append and delete 

operations divided by task duration 

𝒌𝟏𝟎, 𝒌𝟏𝟏 Number of words 

generated 

Mean and standard deviation of number of 

words generated in each typing phase 

𝒌𝟏 , 𝒌𝟏𝟑 Number of words 

deleted 

Mean and standard deviation of number of 

words deleted in each typing phase 

𝒌𝟏𝟒 Number of words 

generated since 

rereading action 

Mean of number of words generated 

between every two rereading behaviors 

𝒌𝟏𝟓 Number of words 

generated since the last 

reading of the text to be 

summarized 

Mean of words generated between every 

two understanding behaviors 

Table 5-6 𝐹𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑
𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒: Features extracted from text generation procedure 

5.2.4 Extracting Duration-related Features 

Finally, we extract duration-related features from the eye-tracking signal and 
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keyboard signal, which are designed to measure the time spent on each phase. We 

believe that the time can reflect the effort that a subject spent on each phase 

compared to others. 

After processing the eye-tracking signals and keyboard signals, we identify 

the different behaviors, including understanding or skimming the original article, 

rereading the already-generated texts, and writing by typing on the keyboard. As 

shown in Table 5-7, we establish duration-related features (𝐹𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ), which 

measure the total cumulative time spent on each behavior. 

 

Feature Meaning  Formulation 

𝒅𝟏 Duration of completing the 

summary task (𝑑𝑢𝑟𝑡𝑎𝑠𝑘) 

𝑑𝑢𝑟𝑡𝑎𝑠𝑘

(𝑛𝑠𝑢𝑚 + 𝑛𝑔𝑒𝑛)
 

𝒅 , 𝒅𝟑 Duration of understanding 

phases(𝑑𝑢𝑟𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑) 

𝑑𝑢𝑟𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑

𝑛𝑠𝑢𝑚
 ，   

𝑑𝑢𝑟𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑

𝑑𝑢𝑟𝑡𝑎𝑠𝑘
 

𝒅𝟒, 𝒅𝟓 Duration of typing phases 

(𝑑𝑢𝑟𝑡𝑦𝑝𝑒) 

𝑑𝑢𝑟𝑡𝑦𝑝𝑒

𝑛𝑔𝑒𝑛
 ，   

𝑑𝑢𝑟𝑡𝑦𝑝𝑒

𝑑𝑢𝑟𝑡𝑎𝑠𝑘
 

𝒅𝟔, 𝒅𝟕 Duration of rereading phases  

(𝑑𝑢𝑟𝑟𝑒𝑟𝑒𝑎𝑑) 

𝑑𝑢𝑟𝑟𝑒𝑟𝑒𝑎𝑑

𝑛𝑔𝑒𝑛
 ，   

𝑑𝑢𝑟𝑟𝑒𝑟𝑒𝑎𝑑

𝑑𝑢𝑟𝑡𝑎𝑠𝑘
 

*𝒏𝒔𝒖𝒎 stands for number of words in the text to be summarized; 𝒏𝒈𝒆𝒏 stands 

for number of words are generated 

Table 5-7 𝐹𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛: Duration-related features 

5.3 Evaluation of Multimodal Features 

In this section, our multimodal features' effectiveness is evaluated to 

discriminate different summary task difficulty levels. First, the indicative features 

are selected. Then based on the selected indicative features, a machine learning 

model is developed, and the performance of the model is evaluated by using the 

leave-one-subject-out cross-validation in the correct classification rate (CCR).  
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5.3.1 Feature Normalization and Feature Selection 

As stated in the last section, we totally extract 104 potential multimodal 

features from different input channels, including 82 features extracted from the 

eye-tracking signal, 15 features extracted from the keyboard signal, and 7 features 

are associated with time duration. All these potential features can be categorized 

into six groups to model the gaze and typing behaviors in different summary 

writing activity phases.  

It is recognized that because of the factors of age [4], proficiency in typing 

[89], etc., features, which are used to model gaze and typing behaviors may vary 

significantly between different subjects. Furthermore, the influence of these 

factors on gaze and typing behaviors is likely even more severe than the impact of 

the summary writing's cognitive process. Therefore, to eliminate the variations 

among subjects, we need to normalize the extracted features. We first extract 104 

potential multimodal features from the two pieces of summary writings written in 

the warm-up sessions, and then the mean value for each feature is determined to 

be the 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 for each of that particular feature for each subject. The features 

extracted from the formal experimental sessions of generating the three 

summarizations in different difficulty levels are then normalized by the 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

corresponding to that subject, respectively: 

𝑓′ = 
𝑓 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
                                                          5-1 

Where 𝑓′ is the normalized feature, and 𝑓 is its original feature value. 

Our feature extracting process totally gives us 104 potential multimodal 

features. It is possible that some features are duplicated to each other since they 

contain similar information, and it is also possible that some features are irrelevant 
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to the goal. To eliminate the influence of the duplicated and irrelevant information, 

the feature selection process is applied to select a good subset of features for our 

classifier. 

In this study, the wrapper method with 10-fold cross-validation is applied to 

select an effective subset of features. A prior study has stated that, compared with 

other filter methods, the wrapper method is always able to produce a decent 

performance [105]. 

The support vector machine (SVM) with the RBF kernel is utilized as the 

classifier in this study. The final subset of features selected by the wrapper is 

present in Table 5-8, where group means the signal channel that the feature 

extracted from. 

Group Feature 

 

Skimming 

Mean speed of all searching saccades 

Mean distance of all searching saccades along with the x-positive 

direction 

Mean distance of all forward reading saccades 

Text 

generation 

Mean number of words generated in each typing phase 

Duration-

related 

Duration of all understanding phases divided by the number of 

words in the text to be summarized 

Duration of all typing phases divided by task duration 

Table 5-8 Indicative features selected from potential features 

5.3.2 Performance of Difficulty Level Detection 

After feature normalization and feature selection, we adopt SVM with RBF 

kernel as the classifier, which is constructed based on the selected features. We use 

the leave-one-subject-out cross-validation to evaluate the CCR performance of our 

model. Specifically, we split our dataset into 𝑁𝑠 − 1  and 1 subject and the 

classifier is trained on the data collected from 𝑁𝑠 − 1 subjects and evaluated on 
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the data collected from the left-out subject. The model's overall performance is the 

average CCR across 𝑁𝑠 time, where 𝑁𝑠 = 20 in this study. 

 

 

 

Performance 

Class 

Precision  Recall F-measure 

Easy 0.85 0.90 0.87 

Medium 0.94 0.90 0.92 

Hard 0.94 0.94 0.94 

Table 5-9 Classification performance for difficulty level detection by using multimodal 

model 

 

 

 

Predicted as 

Ground truth 

Easy Medium Hard 

Easy 17 1 1 

Medium 2 17 0 

Hard 1 0 16 

Table 5-10 Confusion matrix for difficulty level detection by using multimodal model 
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Figure 5-5 Box plot of selected features 

 

The result shows that our model (SVM with RBF kernel), constructed based 

on the selected multimodal features listed in Table 5-8 yields an overall CCR 

performance of 91.0%, which is around 55% improvement of the baseline 

performance by classifying every instance into the majority class (easy class).  

The detailed precision, recall, F-measure for each class is shown in Table 5-9, and 

Table 5-10 presents the confusion matrix. Based on the results, it can be concluded 

that our multimodal approach can successfully discriminate the level of difficulty 

of the text that the subject is summarizing. 

In order to investigate how these selected features can help us discriminate 



 

167 

 

the different difficulty levels of the text that the subject is summarizing, we plot 

the distribution of each selected indicative feature for different difficulty levels, 

which is shown in Figure 5-5. Inside the figure, each bar stands for a normalized 

value distribution and the black dot inside the bar marks the median. The range 

from the first quartile to the third quartile is covered by the box area, and the ranges 

from the minimum to the first quartile and from the third quartile to the maximum 

are covered by the left and right whiskers, respectively. It is obvious that most of 

the selected features have different distributions among different difficulty levels. 

Based on the distributions shown in Figure 5-5, 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑦𝑝𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  and 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑 

are the features show the greatest difference among different difficulty levels. Both 

features measure the ratio of time that a subject spends on the understanding and 

typing phases. It shows a clear trend that with the increase of the difficulty, a 

subject will spend more time on understanding than typing. The explanation of 

this phenomenon is obvious that it does not take much effort for a subject to 

understand the flow of the text when the piece to be summarized is clear, 

particularly when the material is familiar to him/her. Hence, the ratio of time spent 

on typing gets increased.  

In addition, since the text's logic is explicit for the easy summary, a subject 

does not need to read the texts back and forth to search for useful information. 

This is evidenced by the fact that when summarizing the easy text, the subjects 

exhibit the smallest value of 𝑀𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑆𝑆𝑠 𝑎𝑙𝑜𝑛𝑔 𝑥 −

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 . However, if the content of the text is unfamiliar to the 

subjects when they read the text, it is hard for them to predict the next word, which 

causes the length of the reading saccade to be decreased [74], which can be shown 
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by 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠. 

Compared with the easy task and the hard task, the article in the medium task 

contains more logical changes due to the different arguments presented. Fully 

understand the article requires a subject to figure out the relationships among 

arguments, resulting in a high cognitive load. High cognitive lead leads to a 

decrease in saccade speed [108] and a decrease in the number of words generated 

in each typing phase.  

Another interesting point we find is that most of the selective features 

extracted from eye-tracking modality are in the skimming group, which can be 

shown in Table 5-8. One possible reason is that skimming behavior (Type B in 

Table 5-4) occurs more frequently than reading behavior (Type A in Table 5-4). To 

summarize, there are on average 27.8 occurrences of skimming behavior, a total 

of 154.8 seconds, compared with 1.2 occurrences of reading behavior with a total 

of 55.5 seconds. 

5.4 Exploring the Benefits of Multimodal Features 

To verify that the model constructed on the multimodal features truly 

outperforms the models built based on a single modality, we follow the same 

procedure introduced in Section 5.2 and build six different models based on the 

selected features extracted from the eye-tracking signal, the keyboard signal, the 

duration-related information, and combinations of the above. Selected features for 

every single modality are listed in Table 5-11. Same evaluation mechanism: 

leaving-one-subject-out cross-validation is applied to achieve the CCR 

performance of each model.  
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No. Feature Selected from Each Modality 

Eye-tracking Keyboard Duration-related 

1 Mean distance of all 

SSs along the x-

positive direction 

Number of keypresses Duration of all 

understanding phases 

divided by 𝑛𝑠𝑢𝑚 

2 Mean speed of all 

SSs 

Number of words 

generated since the last 

rereading 

Duration of all typing 

phases divided by task 

duration 

3 Mean distance of all 

FRSs 

Number of words 

generated since the last 

reading of the text to be 

summarized 

Duration of completing 

the summary task divided 

by 𝑛𝑔𝑒𝑛 

4 Std. duration of all 

fixations after FRS 

Mean number of words 

generated in each typing 

phase 

Duration of all typing 

phases divided by 𝑛𝑔𝑒𝑛 

5 Std. duration of all 

fixations after BR 

 

*𝒏𝒔𝒖𝒎 stands for number of words in the text to be summarized; 𝒏𝒈𝒆𝒏stands for 

number of words are generated; 𝑺𝑺 stands for searching saccade; 𝑹𝑺 stands for 

reading saccade; 𝑭𝑹𝑺 and 𝑩𝑹𝑺 stands for forward and backward reading 

saccade 

Table 5-11 Features selected from each modality 

Figure 5-6 presents all the performances achieved by the models constructed 

on different combinations of the modalities or the contribution from each modality 

(or a combination thereof), and the results indicate that the multimodal approach 

achieves the best performance. Even for the eye-tracking modality, which contains 

82 features taking over about 80% of the total potential features, the multimodal 

approach still exceeds the model built on the eye-tracking modality around 15%. 
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Figure 5-6 Performances (CCRs) contributed by different modalities 

 Average of pair-

wise 𝑹  

Performance in CCR 

Multimodal 0.04 91.0% 

Eye-tracking modality 0.08 76.3% 

Keyboard modality 0.31 63.6% 

Duration-related modality 0.27 67.3% 

Eye-tracking + keyboard modalities 0.17 74.5% 

Eye-tracking + duration-related 

modalities 

0.14 80.0% 

Keyboard + duration-related 

modalities 

0.21 72.7% 

Table 5-12 Average of pair-wise R^2 for different modalities 

To further investigate the reason that the multimodal approach shows the best 

performance, we define feature value sequence 𝑉𝑆𝑒𝑞𝑖  for the 𝑖𝑡ℎ  selected 

features: 𝑉𝑆𝑒𝑞𝑖 = {𝑓𝑖
0, 𝑓𝑖

 , ⋯ , 𝑓𝑖
𝑛} , where 𝑓𝑖

𝑘  stands for the value of the 𝑖𝑡ℎ 

selected feature for the 𝑘𝑡ℎ instance for a particular class and 𝑛 = 20. For the 

selected features from all modalities, from only eye-tracking modality, from only 

keyboard modality, from only duration-related modality, and from their 

combinations, we generate feature value sequences separately. Then the average 

of the pair-wise square of the correlation coefficient (𝑅2 ) among feature value 
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sequences in their own group is computed and reported in Table 5-12. The value 

of 𝑅2 is used to measure the relationship between two sequences, and the larger 

the value is, the greater the correlation exists. According to the results in Table 

5-12, we notice that the multimodal approach shows the lowest average pair-wise 

𝑅2, which indicates that compared to the models built based on the single modality, 

features used by the multimodal approach are less correlated with each other. It 

means that the multimodal approach captures a larger spectrum of possible 

behaviors. This provides a possible reason to explain why the multimodal 

approach outperforms the others. 

5.5 Summary 

In this chapter, we focus on investigating the cognitive process of summary 

writing. In this study, we propose a multimodal approach that analyzes the 

cognitive process of summary writing to recognize different difficulty levels of the 

summary task. To validate our approach, we construct our own dataset by 

conducting human experiments of performing summary writings with different 

difficulties over multiple iterations. During the experiments, multiple signal 

channels are collected, including the eye-tracking signal, the keyboard signal, and 

the screen recording. Combining and analyzing the information across multiple 

channels of signal, we extract multimodal features, including features to describe 

different types of fixations and saccades for both understanding and skimming 

behaviors, features to model the keyboard dynamics, features to model the text 

generation procedure, and features to capture the duration-related information. 

Evaluated on the dataset constructed by us, our multimodal approach achieves 

more than 90% accuracy, which is approximately 55% performance improvement 

above the baseline, which indicates that our multimodal features are able to 
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capture behavioral differences when summarizing the text in different difficulty 

levels.  

In this study, we also investigate one of the potential reasons that the 

multimodal approach outperforms other models that use only a single modality or 

parts of full modalities. It is because that multimodal features can capture a wider 

range of possible behaviors, providing more independent information to the 

machine learning model. We hope these findings could help the community better 

understand human behaviors to fulfill the gap of understanding the cognitive 

process of summary writing and provide an example of how to design the 

multimodal features to capture more behavioral information.  
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6 Discussion 

6.1 Performance evaluation for subjective experiment 

This thesis aims to investigate the human state of users when they are 

interacting with computers. Precisely, we infer whether a user is stressed or not 

during the interaction with a computer and the user's writing/summarizing 

cognitive process based on gaze and mouse behaviors. For both stress detection 

and analysis of the writing/summarizing cognitive process, experiments are 

composed of multiple sessions in different settings. For example, when we 

investigate the effect of stress, two kinds of sessions, stressed sessions and non-

stress sessions, are conducted. When analyzing the impact of the writing genre, 

three different sessions are completed by each subject during which he/she writes 

articles in different genres. Then features are designed to capture the differences 

in gaze and hand behaviors across different kinds of sessions. The final 

performance of our extracted features is evaluated as a classification problem, 

which is the correct classification rate of determining the kinds of sessions based 

on the extracted features. 

The above evaluation process is effective based on an essential assumption 

that subjects' states are aligned with our expectations, which means that subjects 

become stressed in stress sessions and calm in non-stress sessions. To verify the 

alignment between a subject's state and our expectation, each subject needs to self-

report after each session. Although the self-reporting approach is widely adopted 

in many previous studies, there also exist some concerns, which may affect the 

effectiveness of the evaluation process. 

The biggest concern is the reliability of the self-reporting, specifically, 

whether a subject is able to perceive if he/she is under stress and the degree of the 
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stress level. In our case, after applying the efficient stress inducement methods 

(time-pressure and background noise), mental stress can usually be induced. 

Therefore, we believe subjects can tell when they are under stress in our 

experiment. Most of the subjects report that they are more concentrated on the 

tasks when they are in stressed sessions, and some of them even feel their heartbeat 

speeding up and sweating. However, the degree of stress, is not reliable if we only 

base on self-reporting, as it is hard for a subject to tell the difference between stress 

levels 3 and 4 on a 5-point scale, for example. To solve that problem, we would 

need to involve other equipment or methods in obtaining the ground truth. 

One possible way is to involve physiological signals, such as galvanic skin 

response, heartbeat rate, and blood pressure signal. Nowadays, these signal 

detectors are integrated and embedded into a single wristband/smartwatch. 

Because of the small size of the equipment, presumably it will not affect the 

subjects' behaviors. Utilizing physiological signals alone cannot predict the stress 

level with a hundred percent accuracy. Still, we can achieve the change of the 

stress level by comparing physiological signals within a session. We can also 

check the reliability of the self-report by comparing physiological signals across 

different kinds of sessions for a specific subject. Another benefit of involving the 

physiological signals is that we can do long-term mental stress detection, also 

known as continuous stress detection. Self-reporting is not feasible for the long-

term mental stress detection problem because it is hard to decide when to do the 

self-reports and the frequency of self-reports. 

6.2 User-independent model vs. user-dependent model 

In this thesis, all the models constructed are user-independent models, which 

means models are generated to capture the indicative behaviors that exist among 
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the majority of subjects. The benefit of a well-trained user-independent model is 

that it can work efficiently for a subject whose data is not even learned by the 

model. To construct a user-independent model, we need to eliminate the effect of 

individual differences so that a model can discover the common behaviors that 

exist across all the subjects. For example, in the writing experiment, we find that 

college students have better typing skills than elders, which reflects in the different 

typing speeds and the different number of words generated in each candidate box. 

Therefore, feature normalization across subjects is highly needed. Otherwise, it 

may confuse the machine learning model and impacts the performance. To build a 

better user-independent model, we need to collect data from different subjects, and 

the more subjects involved, the more robust a model we can achieve. But building 

a user-independent model does not require collecting too much data from the same 

subject. 

On the other hand, a user-dependent model is trained on the data collected 

from a single subject and tested and used by that specific subject. Hence, a user-

dependent model can capture the specific indicative behaviors, which only exist 

for that particular subject. The benefit of a well-trained user-dependent model is 

that it can always yield better performance than a user-independent model used for 

a specific subject. It is because that a user-dependent model is trained only based 

on the data collected from that particular subject, and it won't be confused by 

others' different behaviors. Therefore, to construct a user-dependent model, we 

need to collect a large amount of data from the same subject. 

To deploy our models, such as the stress detection model in the real world. 

By considering the characteristics of a user-independent model and a user-

dependent model. We can first deploy the user-independent model since it can 

work in a decent performance for all the users. When a user is using the model, we 
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can keep collecting his/her data till we achieve enough data to build a user-

dependent model only for that user, which can work in the best performance. 

6.3 Influences of various user environments in real life 

The data from our study was collected in a lab or office environment, 

meaning that it is very homogeneous across subjects. However, in real use contexts, 

the environments may be quite different from ours, and furthermore, it may vary 

from subject to subject. This section mainly discusses the influence of the 

environment on the data and the subsequent performance of the model.  

For both stress detection and writing/summarizing cognitive analysis, our 

experimental environments use the same hardware devices and UI settings (font 

size, line spacing, etc...). Therefore, the performance of models will be decreased 

if they are used in a dramatically different environment without re-training by 

involving the data collected in the new environment. But we believe the 

performance will not drop a lot based on the following reasons. 

First, most extracted features are not significantly affected by the 

environment settings. For example, features in Table 3-4 and Table 3-5 are 

designed to model the MGAttraction signals, which are more related to gaze and 

mouse relative movement. Although the environment setting may affect the gaze 

and mouse movement individually, their relative movement (gaze-mouse 

coordination) is more related to the user's behaviors, which is not affected too 

much by the environment [48]. Also, for the writing/summarizing cognitive 

process analysis, most of the features extracted from a thinking window are used 

to describe the behaviors of different kinds of fixations and saccades, and features 

extracted from a typing window are used to describe typing dynamics and keypress 

activities. Those behaviors are related to computer-use habits, which are also less 
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affected by the environment. 

Second, all the experiment settings for stress detection and 

writing/summarizing analysis are designed to be pursued in line with the actual 

situation. All the experiments are carried out in a conventional office environment 

with standard input devices, which are frequently used by common users. Also, 

during each task, we do not impose too many constraints to imitate actual usage 

as much as possible. For example, for the web searching task, subjects are allowed 

to visit any websites and view the information in any format (texts, images, videos). 

For the writing task, subjects are asked to write on Microsoft Word with the default 

view layout, and for the summarizing task, we choose to use the split-view mode 

to evenly put the texts to be summarized and the writing pad side by side. Both 

configurations are frequently used in everyday life to make sure there is no huge 

difference between our experiments settings and the real-life setups.   

6.4 Other useful signal modalities under the same 

settings 

This thesis aims to infer the human state based on gaze and hand behaviors. 

The input signal modalities utilized by us are the eye-tracker signal, mouse 

movement signal, keyboard dynamics, and keyboard activities signal. In section 

3.3.2, we estimate eye gaze locations based on the webcam video instead of relying 

on the eye tracker signal. Hence, for the final setting, the input signal modalities 

contain webcam video signal, mouse movement signal, keyboard dynamics and 

activities signal. In this section, we are going to discuss what other information 

can be extracted to infer the human state besides gaze and mouse behaviors and 

their benefits and limitations. 

First, facial expression signals can be extracted from the webcam video signal, 
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and facial expressions are highly related to the user's emotion. By using computer 

vision techniques, facial action units [113] can be extracted, which can be used as 

features to detect the user's emotion. Facial action units are the actions (raiser, 

lower, tightener, stretcher …) of the brow, lip, lid, cheek, nose, and chin. The 

benefits of using facial expressions are easy to be extracted and interpreted. User-

dependent models trained based on facial expression features can achieve a good 

performance. However, sometimes facial expressions can vary across different 

users, even when they are in the same mental state. Therefore, the performance of 

user-independent models built based on facial expressions tends to not be very 

satisfactory [113]. 

Second, the eye blink rate signal can be extracted from the webcam video. 

According to the previous works [68, 80], blinks occur during reading or speaking 

and reflect changes of attention and changes in thought process, which is 

negatively related to the amount of attention needed by a task. Therefore, eye blink 

rate can be utilized to infer the mental state, such as the cognitive load and user's 

attention level. However, using eye blink rate to infer the mental state in a real-life 

application is not simple. Because the eye blink duration is so short, around 100 

ms to 400 ms, therefore, the speed of webcam video should be at least 30 frame-

per-second (fps), which is 3 images for each blink. Also, blinking is an 

individualist behavior, which may lead to worse performance of the user-

independent model. 

Also, pupil dilation is another important modality that can potentially be 

extracted from the webcam video. Pupil dilation can be considered as pupil 

diameter. Usually, pupil diameter will be changed based on the light intensity. If a 

person is in a low light environment, his/her pupil diameter will become larger to 

absorb more light. Besides the light intensity, the pupil diameter is also affected 
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by the cognitive load. Previous works [45, 56] illustrate that the pupil diameter 

can be considered as a strong indicator of the cognitive load that pupil diameter 

becomes larger with the increment of the cognitive load. The limitations of the 

pupil diameter signal modality are that it requires that webcam video is in high 

resolution, and it will be influenced heavily by the light intensity of the 

environment. 

According to the finding discovered in section 5.4, a multimodality model 

built based on features extracted from different uncorrelated signal modalities 

always outperforms than a single modality model. Therefore, it is highly valuable 

that we can build a multimodal model in the future by considering all the signal 

modalities mentioned above so that it can show the best performance in a real-

world scenario. 

6.5 Implications of the findings beyond this work 

The main contribution of this thesis can be categorized into two parts. First, 

we propose a UI-agnostic stress detection method, which can successfully detect 

metal stress without relying on any special devices. Second, we explore the 

writing/summarizing cognitive process based on gaze and typing behaviors, 

including investigating the effect of the age factor, the writing genre, and the 

difficulty level. The implications of each part of the contribution will be discussed 

in this section.  

The implication of the first part of the contribution is straightforward, which 

is to detect stress while a user is interacting with a computer. Since our proposed 

method does not rely on any special devices, our stress detection method can be 

easily implemented into the existing applications to monitor stress levels in real-

time. As mentioned in the introduction, our stress detection method is beneficial 
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for e-learning applications to avoid the mental stress caused by the high cognitive 

load that affects the learning outcome. Also, the idea of our stress detection method 

can be applied to the driving scenario, where the gaze is used to view the road 

situation, hands are used to control the steering wheel, and the gaze-hand 

coordination can be utilized to infer the mental state of a driver. 

The implications of the second part of the contribution mainly reflect in that 

we demonstrate an example of how to analyze a user's cognitive process based on 

users' behaviors. Basically, we first need to divide the whole process into several 

phases, and users show different behaviors in each kind of phase. Both statistics-

based and sequence-based features are extracted. Statistics-based features contain 

both features to describe the overall behaviors for the whole process and the 

specific behaviors for each kind of phase. Sequence-based features are used to 

capture the transition information over different kinds of phases. The best 

performance is achieved by combining statistic-based and sequence-based 

features together. Moreover, we find that using the sequence-based features alone 

achieves much better performance than the statistics-based features achieve on 

their own. It illustrates that variation of user behaviors is a powerful indicator of 

users' cognitive and mental state. We believe that variation-based behavior features 

can be extended to other applications, such as stress detection and behavior-based 

continuous authentication.  

The result shown in Figure 4-15 demonstrates that training separate models 

indeed achieves better performance than training a single model to cover both 

touch and non-touch typists, and the impact of typing skill is far greater than the 

impact of age, at least on our task of writing genre detection. A model trained with 

data from both touch and non-touch typists is easily confused by behaviors with 

the same patterns and causes. This implies that combining data from different 
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groups to increase the size of training data is not always helpful, as it risks 

conflating data with different root causes. Human-computer interaction studies 

often involve data from different groups, particularly different subject populations. 

Our results suggest that one should be very careful with managing the training data 

based on the understanding of user behaviors, a point which is seldom mentioned 

in previous work. We hope that our findings can benefit the human-computer 

interaction community and lead to better behavior-based models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

182 

 

7 Conclusion and Future Work 

7.1 Conclusion 

Understanding the affective and cognitive state is essential in HCI study and 

draw huge attention recently. It provides essential knowledge for us to design and 

develop intelligent systems in different emerging areas. This thesis focuses on 

inferring users' affective state, specifically mental stress, based on gaze and typing 

behaviors and understanding users' cognitive process of writing and summarizing 

based on gaze and typing behaviors. Our study can also be considered as an 

excellent example of inferring the affective and cognitive state based on the gaze 

and hands behaviors during daily computer interaction.  

We investigate the mental stress inference in three steps. First, we study 

mental stress detection in the static UI environment. We successfully detect stress 

based on the representative movement patterns extracted from the gaze and mouse 

transition sequences and gaze-mouse coordination features modeling the relative 

movements of gaze and mouse in the spatial, time, and speed domains. It proves 

that mental stress can be inferred effectively via the gaze and mouse behaviors. 

However, for stress detection in a dynamic UI environment, all the above features 

can no longer be extracted easily. Therefore, we propose a coordinate system 

named MGAttraction to measure the gaze and mouse attraction reflected by their 

relative movements in a translation- and rotation-invariant manner. A UI agnostic 

stress detection method is constructed based on the MGAttraction coordinate 

system. Both segment-level features and session-level features are extracted to 

model the specific gaze and mouse behaviors inside each segment and the overall 

behaviors across all the segments. Finally, to improve our stress detection method's 

generalizability, we estimate the gaze on-screen locations based on the facial 
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landmarks detected from the webcam video, which are used to infer mental stress 

instead of using the eye-tracker. Combining with the pupil movement features 

proposed by us to model the pupil movement behaviors, the performance of the 

webcam-based stress detection method is close to the performance of using the 

eye-tracker, which is a kind of special equipment to detect the gaze on-screen 

locations. 

To understand the cognitive process of writing, we first show that the age-

factors and writing genres affect the cognitive process of writing. The effects of 

the age-factors mainly reflect on the typing behaviors and the behaviors that gaze 

travels between the screen and keyboard when they are about to type on the 

keyboard. All these effects indicate typing skills and working memory capacities 

are different among different age groups. For the effects of the writing genres, 

unlike the age-factors, that the gaze behaviors are affected, especially for the 

rereading behavior. When a subject composes a complicated article, the rereading 

behavior appears more frequently. Also, when composing a complicated article, 

there exists more pauses with a long duration when they are typing on the computer. 

Both statistics-based and sequence-based features are extracted to model the gaze-

typing behaviors and how gaze-typing behaviors are changed in a period of time.  

Compared to writing, summarizing is a multitask of reading and writing. 

Therefore, to investigate the cognitive process of summarizing in different 

difficulty levels, we first divide the whole summarizing period into reading phases, 

including understanding and referencing the text and writing phases. Then 

multimodal features are extracted to model the gaze-typing behaviors in different 

phases. We find that when the text to be summarized is difficult, a subject will 

spend more time understanding the text with shorter reading saccades. When 

referring to the text content, longer skimming saccades appear since they need to 
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cover more information into one sentence for a complicated text.  

This thesis concludes with the limitations of current work and potential future 

work. 

7.2 Limitations and Future work 

The first limitation of our study is that the size of our datasets is relatively 

small. For both stress detection datasets and summarizing task dataset, there are 

around 20 subjects are recruited. Although the size of each dataset is reasonable 

for proving the feasibility of our hand-crafted features and being used to analyze 

how behaviors are different across different groups, it is not sufficient for some 

data-driven approaches such as deep learning algorithms so that they cannot 

simply be applied to our dataset. Therefore, it is highly needed to increase the size 

of our datasets. Because data-driven approaches can automatically extract features 

based on the data, which is completely different from extracting hand-craft 

features based on background knowledge and the understanding of the question, it 

would be interesting to compare these two kinds of learning approaches in HCI 

problems.  

Besides collecting more data, data augmentation is another possible way to 

enlarge our dataset. Data augmentation is the process of transforming existing data 

to generate new data for training with the aim of improving the performance of 

classifiers. However, most of the data in our study are in the time-series format. 

How to transform them without destroying their features in the time domain is still 

needed to be further explored. 

In addition, our study can be improved by further diversifying our tasks in 

each experiment. Besides the web searching task, we can also involve online 

shopping and video gaming tasks for stress detection. Since both are daily 
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computer interaction tasks and contain lots of gaze and mouse movements. Also, 

the users' affective state is essential to be analyzed for these two tasks. For the 

writing and the summarizing tasks, more genres of articles can be required subjects 

to complete, and more articles with different difficulty levels can be involved to 

further validate our findings. Another interesting direction that we can further 

investigate the cognitive process of writing is to study whether and how the 

pressure, such as time pressure affects the cognitive process of writing shown by 

gaze and mouse behaviors. Since writing under pressure to meet strict deadlines is 

a common scenario in the real world. Therefore, such behaviors are worthwhile to 

be investigated.  

Also, exploring the effects of different kinds of stress inducements on user 

behaviors is highly valuable and interesting. In the experiments of stress detection, 

time limit pressure and background noise are used to induce stress. Although both 

methods can induce stress efficiently, it is unclear whether they induce the same 

type of stress. The previous study [31] shows that mental stress can be divided into 

two categories: high cognitive load and environmental pressure. Different kinds 

of mental stress may have different effects on human behaviors. For example, 

some kinds of stress are beneficial and motivated to make users more concentrated 

on their tasks. However, some types of stress make users overwhelmed and affect 

working efficiency. Therefore, we can explore users' gaze and hand behaviors 

under different types of stress inducement methods separately for future work. 

Also, it is interesting that we can investigate the relationship between working 

efficiency and mental stress. 

Finally, in our study, the states of subjects are accessed through the post-

experiment questionnaires. The benefit of utilizing the post-experiment 

questionnaire is that it will not interfere with the experiment's process. But the 
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drawback is that we can only have an overview state for an entire period of the 

experiment session. In other words, we can only have an overall label for the entire 

session. While for the study of stress detection, it is hard to guarantee that a subject 

is in the stress state for the entire session, which may affect the further fine-grained 

analysis's performance. Therefore, in the future, besides only relying on the post-

experiment questionnaire, we can also involve the real-time physiological 

detectors, such as E4 wristband [83], a kind of unobtrusive equipment, which will 

not disturb subjects too much, to access the states of subjects in the real-time. With 

the help of the real-time physiological signals, we can identify the time points 

when a subject becomes stressed and backs to normal exactly. Based on these 

kinds of information, we can further investigate what kinds of gaze and mouse 

behaviors can be used as signs of subjects will become stressed shortly so that 

different stress reduction approaches can be applied in advance. 
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