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Abstract

The emergence of mobile devices and messaging applications has revolutionized the

way that information propagates among individuals, and triggers the demand of

virtual conversational agents for assisting and accompanying human users. This

presents unprecedented challenges and opportunities and drives many researchers to

study how to properly respond to the user based on a given conversation context. In

this thesis, we aim at incorporating extra information like knowledge, emotion and

intention into open-domain chatbots, which aims to encourage the informativeness

and coherence of the generated responses.

In specific, we identify three main research problems to be addressed in open-

domain conversation response generation, i.e., 1. How to explore the benefits of

extra information for conversation context modeling and response generation when

building open-domain chatbots? 2. How to develop an effective chatbot to learn the

information change through turns of conversations and consider the dependencies

among them? 3. How to understand conversation context better through capturing

the interactions between extra information and conversation utterances and improve

conversation coherence in a holistic view?

To address the aforementioned problems, we deploy several approaches based

on Seq2Seq models inspired by the recent advances in neural response generation.

Because conversations are inherited with discourse structures, we divide the thesis

into three parts, where each part concentrates on a certain level of conversation

iv



structure.

In the first part (work 1 and 2), we investigate research problem 1 under the set-

ting of basic level of conversation, i.e., utterance-level. In order to improve utterance-

level coherence and alleviate the data sparsity issue, we develop two conditional con-

versation models to consider knowledge and emotion information, respectively. In

work 1, we focus on knowledge incorporation and utilize conversation-related knowl-

edge to generate entity-aware responses. On two movie conversation corpus, the pro-

posed knowledge-grounded chatbot significantly outperforms other four knowledge-

grounded models. In work 2, we shift the attention to emotion-incorporation and

present a conditional variational model for controlled response generation. The main

idea is to introduce an external label to monitor the variable learning when condition-

ing the response generation on a specific attribute(s). In addition, we also propose

to keep two separate dialogue contexts for each speaker in the conversation, in order

to learn the speaker-aware information like personality, sentiment, styles, etc. The

experimental results demonstrate that our framework is able to generate responses

conditioned on specific attributes which is contributing to utterance-level coherence.

The second part (work 3 and 4) explores solutions for problem 2 with the aim

of improving the conversation-level coherence. Note that conversation is unique in

that information will change as the conversation goes, and the information at the

current state depends on both the current utterance and previous information states.

Therefore in the works in this part, we put efforts to explore the dynamics of infor-

mation to improve conversation-level coherence for social chatbots. Specifically, in

work 3, we leverage the meta-path information and propose a meta-path-augmented

chatbot which firstly compares the context vector with each of the learned meta-

path vectors, and then selects the candidate entity(s) that complies with the most

similar meta-path. In work 4, we identify social coherence and individual coherence

as two intention factors in conversation modeling, and design two strategies to in-
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corporate them for multi-round response generation. On two real-world multi-round

conversation datasets, we demonstrate the effectiveness of the proposed approach in

improving conversation-level coherence.

The third part (work 5 and 6) delves into problem 3 and investigates how to im-

prove the context-level coherence. Despite the recent improvements, the majority of

existing methods learn the conversation representation and the information represen-

tation separately, which creates an obstacle for the chatbots to accurately model the

conversation context and in turn influences the response quality. In the last part of

our work, we argue to regard both conversation utterances and other information as

a whole conversation context, and propose structured models to integrate the poten-

tial interactions among the conversation context. In work 5, we unify conversation

utterances and background knowledge in one graph , and establish an innovative

graph encoder to learn finer and deeper features for better response generation. In

work 6, we together consider the emotion and intention states of the speakers, and

propose an adversarial-augmented hierarchical model to generate responses that are

sensitive to speaker states. Through extensive experiments, we verify the hypothesis

that human emotions put a prior effect on conversation behavior.

In summary, we study the problem of open-domain conversation modeling and

response coherence in a systematic way. We demonstrate the effectiveness of the

proposed approaches on real-world datasets, which implies the potentials of our works

when applying in real-world scenarios, such as empathetic companions for the elderly

and entertaining social chatbot.
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Chapter 1

Introduction

1.1 Background

With the popularity of social networks and mobile applications, people share in-

formation in more different ways, which are often in the form of dialogues. Since

dialogues are more natural manners to communicate and exchange information, both

researchers and industrial developers have paid high attention on investigating di-

alogues, especially on building intelligent conversational agents. The primary goal

is to better understand the semantics during conversations and provide natural and

effective service through turns of communications.

Owing to the development of deep learning technologies, the pioneering work on

developing intelligent dialogue systems often relies on a neural encoder-decoder ar-

chitecture [218, 208, 190, 252]. According to the application scenarios, these dialogue

systems can be roughly categorized into two classes: task-oriented dialogue systems

and non-task-oriented social chatbots. The former class targets at assisting human

users to effectively accomplish a set of pre-defined tasks, e.g., information request,

restaurant booking, flight checking, hotel accommodation, and etc. Differently, non-

task-oriented conversation systems, a.k.a. social chatbots, are to accompany humans

and build amicable relations with humans by freely conversing with people on open-

domain topics. In this thesis, we focus on building the latter type, open-domain
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social chatbots.

The typical task of building open-domain chatbots is response generation, the

task that requires chatbots to generate high-quality responses given user inputs. In

recent years, neural response generation has achieved significant success in both aca-

demic [190, 313, 304, 185] and commercial worlds [200, 175, 315]. However, many

challenges still remain. Most typically, the generated responses are often less infor-

mative and coherent to the conversation context. For example, these chatbots tend

to generate dull and meaningless responses like “I can’t tell you”, “I’m not sure”, “I

think so” [101]. Such responses are far from satisfactory.

From the perspective of human-computer interaction, some researchers have in-

vestigated the perceptions and expectations regarding the use of conversational

agents, and pointed out the importance of response naturalness, i.e., human-like

qualities [21]. The most frequently mentioned components comprising conversational

agent’s naturalness are: responding informativeness [129, 140] and coherence with

the preceding context [85, 154]. Obviously, generating meaningless responses like

“I’m not sure” is under the user expectations for open-domain chatbots.

In the field of neural conversational modeling, researchers term the problem as

generic response problem or safe response problem. The causes of this problem

are multi-folds. The most fundamental one points to the underlying architecture

adopted by these chatbots. Typically, the majority of text generation approaches in

these studies are borrowed from neural translation [8], which applied the sequence-to-

sequence(seq2seq) architecture [218] on a large scale of parallel corpora. Based on the

architecture, neural generative models are trained to learn the post-response map-

pings using maximum likelihood (MLE) training objective. This kind of objective

induces the model to treat the post-response relationship as one-to-one mappings.

However, the conversations in the real world often embodies one-to-many relation-

ships, where a post is often associated with multiple valid responses [310]. Such
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discrepancy is one of the fatal causes to the generic response issue.

To tackle this issue, there are several lines of mainstream approaches. Previous

studies modify objective functions to introduce diversity-promoting factors [104, 106,

123]. The following work encourages diversity of responses during beam search [101,

231], or introduces random factors by sampling [74, 2] rather than generating highest

likelihood sentences.

This thesis falls into another popular research line that incorporates extra infor-

mation like topic, cue-word, or style to encourage informative responses [150, 269,

239, 287, 52].Incorporating extra information is motivated based on the following

observations. Firstly, conversations often heavily rely on background knowledge.

For example, it is common for humans to mention some background articles they

have read about the conversation topic. Secondly, dialogue is a dynamic informa-

tion exchange flow[187]. It often consists of multi-turns of verbose utterances, where

each utterance is dependent on what has been previously mentioned. This makes

dialogues different from formal texts like news, and it is thus more challenging to

understand conversations than plain texts. Thirdly, conversation is a social behavior

formed by at least two parties. People produce utterances to reply and echo others,

and when utterances are often turned from different interlocutors, it will lead to the

topic drifts. More importantly, conversations are emphatically distinct in the ways

that human consider others feelings and react properly. Considering these distinc-

tions, it is a necessity to consider extra information when developing social chatbots

to encourage the informativeness and coherence of the generated responses.

1.2 Research Problems

The primary goal of this thesis is to investigate the benefit of extra information for

social chatbots, and how to effectively utilize different types of information to improve

3



response quality. The investigations are expected to handle the real-world problems

shed lights on the development of social chatbots. The main research problems to

be addressed in the thesis are listed as follows:

• Problem 1: How to explore the benefits of extra information for conversation

context modeling and response generation when building open-domain chatbots?

• Problem 2: How to develop an effective chatbot to learn the information change

through turns of conversations and consider the dependencies among them?

• Problem 3: How to understand conversation context better through capturing

the interactions between extra information and conversation utterances and im-

prove conversation coherence in a holistic view?

The first problem focuses only on exploring extra information for conversation

modeling and requires a proposal of a minimum viable chatbot to examine their sig-

nificance at the utterance level. Extra information can be viewed as an additional

source of conversation context, which plays vital role for both conversation under-

standing and response generation. The main challenge of this problem is how to

obtain additional information and design applicable models to make full use of the

information in different types. A chatbot model equipped with more information is

expected to better understand the conversation and respond more coherently.

The second problem pays attention to exploiting extra information in the multi-

turn conversation setting. Typical types of information include background knowl-

edge and speakers’ internal states. As the conversation goes, these types of informa-

tion will change upon the previous states, and in turn influences the next response.

Hence, the reveal of the information dynamics is beneficial to improve the informa-

tion prediction accuracy as well as response coherence. The main challenge of this

problem is how to design effective mechanism that captures the information flow and
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generate responses coherent to the information states.

The last problem emphasizes on the interaction between extra information and

conversation utterances and requires for a unified model to comprehend them jointly.

Different from the first and second problems, which only need to model a single

source information for response generation, this problem aims at exploring the mu-

tual impacts among the conversation context, which consists of multiple sources of

information. Intuitively, when responding to others, humans will simultaneously

consider various kinds of information to make the response coherent to the whole

context. For this problem, the key challenge is how to together formulate multiple

sources with different structures and how to include the interactions into the unified

framework for holistic conversation modeling.

1.3 Research Overview and Contributions

Nowadays, Seq2Seq models have proven their great potentials in building conver-

sational agents. Because dialogue context is essential for conversation modeling,

researchers have proposed several methods for modeling dialogue context, especially

history utterances, to improve the coherence of responses. However, conversation

context is not limited to history utterances. It is also related to other information

such as background knowledge and speaker information. To encourage response co-

herence, chatbots need to consider more types of conversation context as we humans

do. Moreover, despite recent studies on response coherence, the progress of this trend

is still at the initial stage of utterance-level coherence. There exist a lot of expec-

tations and improvements to be achieved on building the intelligent conversational

models.

In our work, we target at developing intelligent open-domain chatbots based on

three levels of coherence, i.e., utterance-level, conversation-level and context-
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level coherence. In accordance, the research works in this thesis are organized by

three parts. The first part focuses on the utterance-level coherence through extra

information injection, and the second part attempts to improve conversation-level

coherence by introducing dependencies of extra information, while the third part

concentrates on the context-level coherence by considering conversation and extra

information in a holistic view. The overview of these works is summarized in Table

1.1. For utterance-level coherence, we establish two frameworks (work 1 and work 2)

to solve the aforementioned research problem 1. For conversation-level, we propose

two approaches (work 3 and work 4) to address the research problem 2. For context-

level coherence, we develop two models (work 5 and work 6) to explore solutions for

the research problem 3. The motivations and contributions of these works are briefly

summarized in below.

Work 1 & 2: Utterance-level Coherence via Knowledge and
Emotion Incorporation

Due to the insufficiency of vanilla Seq2Seq models in response generation, as initial

attempts, we propose to incorporate two typical kinds of extra information into

Seq2Seq models, i.e., background knowledge and speaker emotion. In work 1 and

work 2, our research targets are to explore which type of knowledge/emotion is more

suitable for existing chatbots to utilize, and how to make good use of the equipped

knowledge/perceived emotion. To solve these problems, two novel chatbots, namely

Mike and SPHRED based on Seq2Seq models are proposed.

Mike is a chatbot equipped with a knowledge base (KB) that learns to recog-

nizes necessary knowledge relevant to the utterances, and generates coherent and

entity-aware responses based on the detected knowledge. While previous works treat

attributes and entities equally, our work is novel in discerning their differences and

incorporating them in different manners. In this way, our chatbot Mike better cap-

6
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tures the conversation logic with the help of contextual attributes, which in turn

leads the respones to be more coherent. Regarding to emotion incorporation, the

proposed SPHRED is a conditional conversational model allowing the responses to

be controlled by specific attributes. Additionally, the two speakers in the conver-

sation are associated with two separate encoders to model their dialog states while

maintaining speaker-aware features. This model is flexible and potential to be ap-

plied to many scenarios for generating informative responses that are consistent with

the specified attributes.

Contributions: In work 1, we propose to utilize contextual attributes and en-

tities in their own ways. The contextual attributes contribute to capture the con-

versation logic for context modeling. The related entities are beneficial to generate

responses when referring is needed. We develop a novel movie knowledge-grounded

chatbot, namely Mike, which firstly locates contextual knowledge from MKB that we

build in advance, and then generates entity-aware responses based on the attribute-

aware context representation. On two movie conversation corpus, our Mike signif-

icantly outperforms other four knowledge-grounded models. This work is under the

review (minor revision) of the Computational Linguistics [111].

In work 2, we present a conditional variational model for controlled response

generation. The main idea is to introduce an external label to monitor the variable

learning when conditioning the response generation on a specific attribute(s). In

addition, we also propose to keep two separate dialogue contexts for each speaker

in the conversation, in order to learn the speaker-aware information like personal-

ity, sentiment, styles, etc. The experimental results demonstrate the flexibility and

potentials of our model. This work has been accepted by the 55th annual meeting

of the Association for Computational Linguistics (ACL) as a conference paper [195].

Also the developed dataset has been accepted by the 8th International Joint Con-

ference on Natural Language Processing [113] as a conference paper, and included as
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a benchmark dataset by huggingface NLP library.1

Work 3 & 4: Conversation-level Coherence via Knowledge
and Intention Incorporation

In work 1 & 2, we only incorporate extra information into utterances. Although

history conversations are explored, the models in work 1 & 2 regard them as a single

sequence of utterances without taking into consideration the dependency among the

conversations. However, conversation is unique in that information will change as

the conversation goes. The information at the current state depends on both the

current utterance and previous information states. Therefore in our later works,

we put efforts to explore the dynamics of information to improve conversation-level

coherence for social chatbots.

Specifically, in work 3, we propose a meta-path-augmented chatbot namely Mocha

to capture the knowledge structure among the conversations. We assume that meta-

paths over the mentioned entities are indicative of conversation flow, and it is thus

reasonable to generate responses by leveraging the meta-path information. In par-

ticular, 10 most high-frequent meta-paths are defined according to the conversation

data, and are then encoded into vectors for model use. Afterwards, Mocha firstly

compares the context vector with each of the learned meta-path vectors, and then

selects the candidate entity(s) that complies with the most similar meta-path. In

work 4, we develop Cheer to model communication intentions in social chatbots

through capturing social coherence and individual coherence explicitly. Social co-

herence regards what the other speaker has said, and is captured by inter-speaker

interactions between two adjacent utterances using a novel interaction unit. Individ-

ual coherence considers what the chatbot itself has been proposed, and is handled

by keeping separate entity memories to ensure local consistency.

1https://github.com/huggingface/nlp/pull/556
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Contributions:

In work 3, we propose to model conversation-level coherence by taking into ac-

count conversation flow for knowledge-grounded chatbots. We leverage meta-path

information of entity mentions and propose chatbot Mocha, which is augmented

using meta-path information to have awareness of conversation flow. On two movie

conversation corpus, our Mocha significantly outperforms the compared models. To

the best of our knowledge, our work is the first to explore meta-path information in

social chatbots. This work has been accepted by the Thirty-Third AAAI Conference

on Artificial Intelligence (AAAI-19) as a conference paper [110].

In work 4, we identify social coherence and individual coherence as two intention

factors in conversation modeling, which have been largely neglected before. We

propose a chatbot Cheer where two carefully designed strategies are introduced to

incorporate these two kinds of coherence for multi-round response generation. On

two real-world multi-round conversation datasets, we validate the effectiveness of the

proposed approach and demonstrate the necessity of intention factors in coherence

modeling. This work is under the review as a conference paper of the 16th conference

of the European Chapter of the Association for Computational Linguistics (EACL).

Work 5 & 6: Context-level Coherence via the Interaction
between Information and Conversation

Although recent studies proposed several knowledge-grounded and emotion-aware

conversational models and considered information structure in certain ways, they

learn the conversation representation and the information representation separately.

For example, the utterance representation is modeled by condensing the history

information, and meanwhile the entity vector is learned to capture KB networks

using graph embedding approaches. The blindness between utterance and entity

vectors hinders the chatbots to precisely comprehend the conversation context and

10



thus harms the quality of the response. In the last part of our work, we argue to

regard both conversation utterances and other information as a whole conversation

context, and propose structured models to integrate the potential interactions among

the conversation context.

In work 5, we unify conversation utterances and background knowledge and es-

tablish an innovative Context Graph Encoder (CGE) in order to represent the

graph-structured knowledge-enhanced context in an integrated manner, which serves

as basis for knowledge reasoning when generating responses. In work 6, we together

consider the intention and emotion states of the speaker using two discrete variables,

and employ a continuous variable to allow content-level diversity. To control models’

behavior in more fine-grained way, we devise a adversarial learning objective and ap-

ply it on the variable-level. The ablation studies verify the novelty and effectiveness

of the proposed adversarial-augmented hierarchical response generation.

Contributions: In work 5, we define and model the graph-structured conversa-

tion context derived from both history conversations and external knowledge. We

develop a novel graph-based encoder, namely CGE, that enables holistic conversation

understanding. Through extensive experiments, we demonstrate that the effective-

ness of our approach as well as the contribution of the proposed graph encoder. This

work is under the review as a conference paper of the 16th conference of the European

Chapter of the Association for Computational Linguistics (EACL).

In work 6, we consider the speaker’s emotion and intention in one, single model

by introducing two discrete variables to model them and employing one content-level

variable to encourage the response diversity. The hierarchy among the three variables

is explored and validated by comparing different model variants. In order to better

improve the generation performance, the hierarchical model is further augmented

with a variable-level adversarial learning objective. Based on the extensive experi-

mental results, we find that human emotions put a prior effect on conversation be-
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havior, especially on conversation intentions. We also emphasize the contribution of

the devised adversarial learning which is devised and performed on the variable-level.

The work has been accepted by IEEE Transactions on Transactions on Knowledge

and Data Engineering (TKDE) as a journal paper [109].

1.4 Structure of Thesis

The thesis is organized as follows to give an overall picture. Chapter 1 firstly in-

troduces the background of the researches on dialogue systems especially on open-

domain neural response generation. Then this chapter also explains the three key

problems, research overview and contribution of this thesis. Chapter 2 provides a

comprehensive survey on the related work, including mainstream retrieval-based and

generation-based approaches, context-aware models like knowledge-grounded chat-

bots. According to the three research problems, the thesis is divided into three parts.

The first part (Chapter 3 and 4) mainly introduces basic chatbots that is able to uti-

lize extra information. Chapter 3 presents a novel knowledge-aware chatbot, which

utilizes both attributes and entities in structured knowledge bases. Chapter 4 inves-

tigates the effect of emotion for social chatbots and builds up a simple model that

learns users’ emotion and responses with specific emotions. The works presented in

the second part (Chapter 5 and 6) are established based on the previous parts. Chap-

ter 5 investigates how to incorporate additional knowledge information meta-path

to capture the structure of knowledge utilization during the conversations. Without

loss of generality, in Chapter 6, we explore the impact of the intention information

on social chatbots and propose novel designs to model social and individual coher-

ence when intention is implicit. Based on the findings in previous work, the third

part (Chapter 7 and Chapter 8) considers the interaction between extra information

and conversation utterances. Chapter 7 structures knowledge base and conversation

12



utterances into a holistic context graph and examines its significance on conversa-

tion modeling. Chapter 8 combines emotion and intention together and proposes a

hierarchical model to capture their dependencies. Finally, the last chapter, Chap-

ter 9 summarizes the proposed approaches, our findings, contributions as well as

suggestions on future work.
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Chapter 2

Literature Review

In this chapter, we go through the studies that are relevant to the research works

in this thesis. We mainly focus on summarizing conversation modeling from the

perspectives of tasks, evaluation as well as existing approaches. We also present the

literature review on dialogue context modeling with the aim of improving response

quality.

2.1 Conversation Tasks and Evaluation

The research on building automatic conversational agents has a long-standing his-

tory. Formally in existing human-computer systems, the user inputs an utterance

as the query, and the system returns a response as the output. According to their

application scenarios, conversational agents can be categorized into task-driven dia-

logue systems and chit-chat conversational agents. The former task-driven systems

are designed for assisting people to complete particular tasks, ranging from flight

scheduling to restaurant reservation. These tasks are basically established in vari-

ous vertical domains and the conversational systems are tailored to fulfill user needs

within these domains. The latter chit-chat conversational agents, in contrast, are

non-task-oriented. Since they are usually designed for social chit-chats, this type of

conversational agents are often abbreviated as chatbots. Different from task-oriented

14



Figure 2.1: Examples of Two Conversation Tasks.

systems, chatbots aim to engage users in the open domain for entertainments, which

makes it easier to go viral among users. With the development of digital economics,

both task-oriented and open-domain conversational agents have garnered a lot of

research attentions since they have greatly influenced human’s daily life and demon-

strated their huge commercial potentials.

2.1.1 Task-driven Dialogue Systems

The branch of task-driven dialogue systems is also called goal-oriented dialogue

systems. As revealed by its name, task-driven dialogue systems are established

to finish domain-specific tasks like travel request, restaurant booking, and so on.

Before achieving the final goal, the systems need to learn the user need by com-

municating with users turn by turn. As such, to complete a task often involves

a series of interactions between system and user. At last, these task-driven dia-

logue systems require a direct user feedback on whether the task is complete or

not [59, 244, 179, 275, 286, 143].

In recent years, building task-driven dialogue systems have attracted enormous

attention from enterprises because automatic systems are able to provide 24-hour ser-
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vice and potentially bring in large commercial profits. For example, enterprises have

launched intelligent personal assistants (IPAs) including Apple’s Siri,1 Microsoft’s

Cortana,2 Google Assistant,3 Facebook M,4, Amazon’s Alexa,5 etc.

Traditionally, these dialog systems have been developed using heuristic rules and

template-based approaches [247, 35, 196, 236]. Because it relies tedious effort to

design rules and templates, these approaches constrain traditional task-oriented di-

alog agents to be applied within only small and specific domains, e.g., information

query on transports [183]. Beyond rule- and template-based methods, modern task-

oriented dialogue systems often consist of four components: natural language un-

derstanding (NLU) [244, 179, 275], dialogue state tracking (DST) [152, 99, 72, 143],

dialogue policy learning (DPL) [253, 107, 211], and natural language generation

(NLG) [59, 157, 235, 250]. With the development of deep neural networks, end-

to-end approaches demonstrate their effectiveness on learning a fully data-driven

task-specific dialogue systems [212, 255, 16, 252, 251].

Though achieving promising performances, end-to-end models usually depend on

a considerable amount of labeled data, which prohibits them from easily applying to

new and extended domains. Hence, it is worthy of exploring to transfer knowledge

from a source domain with sufficient labeled data to a target domain with little

labeled data. Existing work on multi-domain goal-oriented dialogue systems can be

classified into two general categories. One category of work trains one, single model

on the mixed multi-domain dataset [135, 47, 134]. Such methods make it to implicitly

extract the shared features but fail to effectively capture domain-specific knowledge.

The other category of work sets one separate model for each domain [249, 173].

1https://www.apple.com/ios/siri/

2https://www.microsoft.com/en-us/cortana/

3https://assistant.google.com/

4https://developers.facebook.com/blog/post/2016/04/12/

5https://developer.amazon.com/alexa/
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Although supposed to better capture domain-specific features, this strand of works

might ignore shared knowledge between different domains, and lead to performance

degradation.

With the recent progress of the sequence-to-sequence (Seq2Seq) models in text

generation [218, 8, 131], it becomes common to formulate task-oriented dialogue

generation as the Seq2Seq mapping from the dialogue history to response [135, 47,

134]. This kind of modeling scheme makes the development of these systems no longer

burdened with the manual design and laborious annotation of the modules. Notably,

one of the remaining challenges is how to query the structured KB. Instead of calling

APIs to interact with the KB, later approaches shift to integrate KB query as an

input or processing module in the model. The most popular way is to regard the KB

query as an attention network over the entire KB entities [47, 41, 134, 249, 180, 257].

Briefly speaking, the recent tread in building task-oriented dialogue systems follows

the paradigm of modeling KB with dialogue systems in a unified manner, which is

inspired from work on encoding extra information for Seq2Seq-based open-domain

chatbots. We will detail the latter ones in the following sections.

2.1.2 Open-domain Chatbots

The other category of automatic dialog systems is chit-chat conversational agents,

which aims at engaging and accompanying users by daily chatting. Such primary

goal requires the chatbots to have a large open-domain conversation scope. Owing

to the rise of deep learning techniques and the large amount of available conversation

data [208, 193, 264, 305], we are now witnessing fast and encouraging progresses of

chatbots in both industrial and academic fields [29, 277, 178, 51, 221].

In the research field of building open-domain chatbots, the mainstream approaches

rely on the framework of neural Seq2Seq models [218, 209, 190]. However, these mod-

els alone are still inadequate to develop a satisfactory chatbot without extra control.
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For example, standard Seq2Seq models tend to utter bland responses with little

meaningful information. To tackle this issue, researchers explore to inject various

information into Seq2Seq models. Among different kinds of information, the widely

adopted ones are topic, personality, and emotion. Additionally, incorporating exter-

nal background knowledge is another promising way to bridge the gap between an

artificial dialogue system and a real human. We will detail these improvements in

the next section.

In spite of these advances, Seq2Seq based chatbots still suffer from a lot of prob-

lems including understanding difficulty and response inconsistency. To address, Ama-

zon Alexa Prize [178] provides a platform to collect real human-machine conversation

data and pushes the research on social chatbots a step further [291]. The chatbots

submitted to anticipate Amazon Alexa Prize are not necessarily using end-to-end

solution. Rather, they are encouraged to focus on improving user experience and

becoming a human-like companion. Ideally, a human expert conversationalist will

blend a number of skills in a seamless way: During the conversation, he/she will

provide engaging talking points, and listen to the other speakers. The human expert

will also display knowledge, empathy and maintain a consistent persona [82, 201].

Likewise, to become a human virtual companion, it is necessary for social chatbots to

acquire sufficiently high IQ, and to perform a range of skills in order to bond with and

accompany the users in their daily life [200]. More importantly, social chatbots also

need a sufficient EQ to cater for users’ mental needs, such as emotional affection and

social belonging, which are among the fundamental needs for human beings [137].

Therefore, large improvements can be made on building better intelligent chatbots

that emphasizes desirable conversational skills. To step further on blending skills

for social chatbots, [201] introduces Blended Skill Talk (BST), which pays atten-

tion to the desirable aspects by providing conversational context, i.e., topics and

personas. Based on BST, [185] fine-tunes the models that make the conversational
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model concentrating on desired aspects and skills, achieving large gains. Through

extensive experiments, they find that small models trained using BST can match or

even outperform larger models without BST.

The typical commercial social chatbot is Microsoft’s XiaoIce [200].6, and its

rapidly increasing user indicates the necessity of chatbot service. The popularity

of XiaoIce can be attributed to its unique design goal. As explained in [315], the

primary goal of XiaoIce is to be an AI companion and form long-term, emotional

connections with users. Such goal is different from early social chatbots since the

latter ones do not care about long-term relationships. As emphasized in [315], the

heart of XiaoIce’s system design is the integration of both IQ and EQ. To implement

this idea, XiaoIce is developed on an empathetic computing framework [25, 49] that

enables it to feel human emotions and thoughts, and respond to users dynamically.

Upon the empathetic computing framework, there is the core module of XiaoIce,

i.e., Core Chat, to provide the fundamental communication capability. In specific,

core Chat consists of two parts: (1) General Chat that is responsible for engaging

in open-domain conversations that cover a wide range of topics; (2) Domain Chats

that are responsible for engaging in deep conversations on specific domains such as

music, movie and celebrity. Both General chat and domain chats are data-driven re-

sponse generation systems which output responses in two stages: response candidate

generation and ranking. As a hybrid commercial chatbot, the response candidates

in XiaoIce are either retrieved from the databases which consist of human-generated

conversations or texts, or generated on the fly by a neural response generator. By

equipping the empathetic computing and Core chat modules, XiaoIce is able to take

the text input and generate interpersonal responses.

6https://www.msXiaoIce.com/
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2.1.3 Datasets and Evaluation

In early days, people establish conversational systems using hard-coded rules or

human-written templates. Despite the simplicity, such methods require tedious hu-

man efforts on creating abundant rules or feasible templates to foster the agents.

To remedy this issue, researchers explore data-driven methods and curate several

datasets. Before this decade, the widely-known datasets in this research field in-

clude TRAINS [183], DBOX [168], bAbI synthetic dialog [18] and Movie Dialog

datasets [43]. For example, bAbI [18] is a synthetic dialog dataset that consists

of simple reasoning on objects. However, these datasets are of small size and the

systems trained on these datasets are often limited within a certain domain.

Obviously, a natural conversation often goes out of scope easily which is problem-

atic to domain-specific systems. For open-domain chatbots, it is critical to train the

models on large-scale datasets. [191] proposes a neural responding machine (NRM)

and evaluates its effectiveness using the newly introduced dataset Sina Weibo [240].

The post-response pairs in the dataset are constructed by collecting the posts and

replies in the same threads on Weibo, the largest social network in China.7 Similar

social network-based datasets include Ubuntu [126], Twitter [184], Reddit [3], etc.

There are also several Chinese datasets proposed in recent years, such as Douban

Conversation Corpus [264] and E-commerce Dialogue Corpus [305]. In the latest

year, [245] crawls 79M conversations from Weibo, and constructs Weibo dataset

(LCCC-base) through a rigorous cleaning process. LCCC-base is then mixed with

several public Chinese conversation datasets to obtain a larger Chinese conversation

dataset (LCCC-large).

Despite the large scales of these datasets, the “conversations” from social networks

are often noisy and short. Even worse, these “conversations” are inherently differ-

7https://weibo.com/
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ent from real-world human conversations since they are synthesized by linking the

online posts and replies. To facilitate the development of automatic conversational

models, more and more dialogue datasets are curated using crowdsourcing to collect

conversations between crowd workers. The dataset PERSONA-CHAT [102] assigns

a persona for each crow worker and considers consistent personality while continuing

a natural conversation. Modified from PERSONA-CHAT, Dialogue NLI [248] is a

natural language inference dataset, which has been demonstrated useful to improve

the conversation consistency. CoQA [181] is curated under the scheme of Wizard-

of-Woz where two annotators are paired to converse given a passage by asking and

answering questions towards the passage. Note that each question in the passage

is contextually related to the history utterances. More recently, there are a hand-

ful of knowledge-grounded corpora proposed using different sources under different

languages. Unlike open-domain chit-chats, researchers develop knowledge-grounded

corpora by specifying some topics which need extra knowledge during conversation.

Some datasets [313, 54, 122, 225, 172] collect dialogues and label the knowledge anno-

tations using string matching, named entity recognition, and other linguistic-driven

techniques. In particular, CMU DoG [313] utilizes 30 Wikipedia articles about popu-

lar movies as grounded documents. Another dataset also using Wikipedia is Wizard

of Wikipedia (WoW) [42], which covers up to 1,365 dialogue topics and is much

larger than CMU DoG. Considering its topic coverage, WoW emphasizes more on

the generalization ability of conversation models. In addition to the unstructured

text, India DoG [146] uses fact tables as background resources, OpenDialKG [147]

and DuConv [260] build up their corpora based on structured knowledge graphs.

Evaluation is another long-standing issue in developing social chatbots. Gener-

ally, automatic measurements like N-gram matching are widely-adopted criteria when

evaluating the response quality. Existing metrics like BLEU [161] and ROUGE [114]

usually calculate the overlapping of the words between the reference and the candi-
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date on the surface level. In addition, [101] proposes Dist-1 and Dist-2 scores for the

ratios of the uni-grams and bi-grams, to indicate the informativeness of the responses.

Notably, these metrics only consider word-level similarity and often fail to capture

the real semantics under the compared text. However, chatbots are open-ended and

do not necessarily solve a clearly-defined task. It is unsafe to assess the chatbot

performances simply based on a pre-defined ground-truth. As a result, these N-gram

based metrics inevitably show poor correlation with human judgment [119, 156, 26].

To better evaluate text generation models, different neural network-based metrics

are proposed. BERTSCORE [301] develops a soft approximation of context em-

bedding to replace the hard N-gram matching. MOVERSCORE [308] applies word

embeddings of a pre-trained model to find the semantic similarity via Word Mover’s

Distance. Most recently, [65] proposes PERCEPTION SCORE, a system-level au-

tomated evaluation metric that learns the difference between the generations and

the distribution of references. Despite the improvements, these methods often utilize

prior knowledge in a large pre-trained neural model, which neglects the fact that

semantic meaning of generation and reference are context-dependent, especially in

open-ended generation task. Considering the limits of existing studies, researchers

often evaluate the conversational models by calibrating human judgments and auto-

matic evaluation metrics in order to truly fathom the quality of generations.

2.2 Existing Approaches

We will introduce the mainstream approaches for building open-domain chatbots in

this section. According to implementation methods, conversational systems can be

typically classified into retrieval-based models and generation-based models. Based

on the massive available data, it is straightforward to build a dialogue system using

information retrieval techniques. In this case, the problem is formulated as given a
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user query, the system searches for candidate responses by matching metrics. TAn-

other way to adopt language generation approaches and build a generation-based

conversational system alternatively. Inteading of retrieving an existing reply can-

didate, these approaches generate a response using a language model trained be-

fore. With deep learning techniques applied, both retrieval-based generation-based

systems are greatly advanced and generally are developed upon the sequence-to-

sequence architecture. Additionally, ensembling retrieval-based and generation-based

approaches together has also emerged as a powerful choice to build conversational

agents. Whereas retrieval-based approaches are able to provide human-written high-

quality response candidates, generation-based approaches are flexible to refine the

response candidates into more suitable ones. By combining the benefits from the two

worlds, ensembling methods are also appealing and their responses are often more

preferred in terms of fluency and relevance.

2.2.1 Retrieval-based Approaches

Retrieval-based approaches select proper responses from data pool by matching tech-

niques [240, 87, 126, 278, 318, 268, 264]. Retrieval-based chatbots are often composed

of two components, retrieve module and re-rank module. With regarding to retrieve

module, encoding queries and responses into vectors with same semantic space are

first constructed, and then nearest neighbor search (NNS) within vector space is the

following step. Many approximative algorithms [193, 198] have been examined to

improve retrieve efficiency. In the research field, focuses have been put more on the

re-rank module [160, 237, 219, 318] that selects the most appropriate response from

some candidates.

Typically, matching models are adopted for the rerank module in order to cap-

ture query-response semantic relevance. Early studies on matching model could be

classified into two main categories: matching function learning and representation
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learning. Approaches of matching function learning first represent queries and re-

sponses based on shallow features, and then apply some deep models to discover the

matching patterns. The representative methods include ARC-II [75], MatchPyra-

mid [160], Match-SRNN [237], RCNN [166]. One thing to note is that the query-

response interaction at the beginning requires huge time cost, which is a drawback

for online environments. On the other hand, methods of representation learning start

with deep models to acquire representations for query and response, and in the last

step, they often use simple matching function like dot-product and cosine distance

to measure the semantic similarity [158, 238, 176].

Current state-of-the-art methods on response retrieval follow a representation-

interaction-aggregation framework [263, 319]. For each utterance-response pair,

matching signals are distilled from their interactions based on their representations,

and then are aggregated as a matching score. This line of methods has two shortcom-

ings. First, representations learned by these methods work well for the re-ranking

task but fail in the semantic search task with large-scale responses, which impede

their potentials in online environments. Second, although utterance-response inter-

action has proven to be crucial to the performance of the matching models [264], the

interaction is often executed in a rather shallow manner where matching between an

utterance and a response candidate is determined only by one step of interaction.

To alleviate the latter shortcoming, [222] increases the depth of context-response

interaction in matching and shows that depth can bring significant improvement to

model performance on the task of matching-based response retrieval.

Owing to the fast development of pre-training techniques [40, 125], a machine is

able to achieve promising performances which are sometimes very close to human

performance. [73] makes the first attempt to apply pre-trained language models in

response selection where multi-turn conversations exist. Based on the pre-training

models, [62] proposes Speaker-Aware BERT where the model is designed to have
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awareness of the speaker change, which is an instrumental nature inherited in multi-

turn conversations.

2.2.2 Generation-based Approaches

To date, generation-based approaches have been demonstrated effectively in dia-

logue modeling and response generation. [233] pioneers this direction by originally

applying the Seq2Seq model in open-domain response generation. [191] follows and

proposes Neural Responding Machine (NRM) with several context generators. De-

spite the potentials, vanilla Seq2Seq models are observed to generate generic and

dull responses, such as “I don’t know” or “I’m OK” [101]. This is called the “generic

response problem” or “safe response problem”. Literature in the past few years has

identified a number of reasons for this problem. Accordingly, several lines of research

methods have been proposed to tackle this problem.

It is worth-noting that one important and maybe the most deeply-rooted cause

lies in the nature of the generation architecture. Although the sequence-to-sequence

(Seq2Seq) architecture [218] has been broadly utilized for response generation in

Short-Text Conversation [233, 190], it was originally designed for Machine Transla-

tion to model one-to-one mapping for identical semantics expressed in two different

languages. However, this one-to-one relationship goes against the nature of con-

versation, i.e., multiple valid responses exist for a given post, namely one-to-many

relationship [311]. To tackle this issue, some intial works modify the decoding strat-

egy to improve response quality. Researchers have proposed new objectives [101],

enhanced decoding algorithms [104]. For example, [101] proposes to penalize dull

and bland responses based on the maximum mutual information (MMI) during the

beam searching. The following works adjust the data distributions by using different

weighting methods to sample the data in order to force the model to emphasize more

on the rare samples [153, 123]. The majority of these approaches make effort in either
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the stage of pre-processing or the stage of post-processing in the testing phase. In

other words, these methods do not pay attention to altering the architecture of the

Seq2Seq models.

Later, many attentions have shifted to incorporate useful information into con-

versational models to improve the diversity and informativeness of the generated re-

sponses. One line of research introduces a set of latent responding mechanisms and

generates responses based on a selected mechanism. [310] learns the post-response

mappings as a mixture of the mechanisms, but it is questionable that they only rely on

one single mechanism when generating responses given a new post. [28] adopts poste-

rior selection to build one-to-one mapping relationship between the mechanisms and

target responses. Another line of research adopts Conditional Variational Autoen-

coder (CVAE) to introduce latent variables into Seq2Seq models through variational

learning. The latent variables are supposed to capture the discourse-level semantics

of target response and in turn encourage the response informativeness. Recent lit-

erature along this line attempts to improve the model performance by putting extra

control on the latent variable [306, 66, 52]. Despite the control, these methods still

rely on the discourse-level latent variable, which is too coarse for the decoders to

mine sufficient guiding signals at each generation step. As a result, these variational

models are observed to ignore the latent variable [306, 66, 52] and to generate se-

mantically irrelevant or grammatically disfluent responses [174]. In this thesis, we

explore different manners of approaches to develop generalized conversation models

that are capable of incorporating various information effectively.

There is another issue that affects the performance of generation-based models,

which does not apply to retrieval-based systems. At the inference mode, generative

models must select a decoding method to synthesize the response word by word. The

choice of decoding algorithm is crucial, and models with different decoding algorithms

may produce completely different results. In particular, different decoding algorithms
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usually prefer different lengths of the generated responses, which is crucial for human

judgments. For example, previous work has also reported that beam search is not

as effective as sampling [74, 2]. However, as shown in a recent study, calibrating the

hype-rparameters carefully can provide powerful results by weighing trade-offs.

In the past decade, the academic community has witnessed the flourishing of

generation-based methods, especially when the model of pre-training language mod-

els has recently been proposed. For example, DialoGPT [304], as a typical pre-trained

dialogue model, is trained over 147 million dialogue-like communication trainings on

Reddit after 12 years. As a result, DialoGPT has achieved close to human perfor-

mance in both automatic and manual evaluation in a single-round dialogue setting.

Many of the following works in this line show that generative dialogue systems us-

ing pre-training techniques can produce more relevant, satisfying, and contextual

responses than before. Meena [2] depends on the Evolved Transformer [202] and

[108] studies the generation of dialogue by fine-tuning Chinese GPT on some small

dialogue datasets. [245] proposes a pre-trained dialogue model CDial for Chinese di-

alogue generation, which is trained on a collection of multiple large Chinese dialogue

datasets.

2.2.3 Other Approaches

Besides Seq2Seq based approaches, ensembling techniques, adversarial learning and

reinforcement learning algorithms have also been attempted to improve the response

quality.

Adversarial learning [61] is firstly introduced in dialogue systems for evaluation

in [89]. By their study, they train a discriminator as a proxy to differentiate the

generated responses from real responses in terms of length, genuine and diversity.

After that, [106] and [276] aim to apply generative adversarial networks [61] to al-

leviate the “safe response problem” [101, 276]. These works adopt Seq2Seq models
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as the underlying architecture, and add extra modules to enhance the generation

procedure. To directly apply the GAN framework in response generation is non-

trivial. [106] adopts reinforcement learning approach and approximately computed

the rewards. [276] sidesteps the issue by using an approximate layer to replace the

procedure of discrete sampling. [302] deploys a method based on adversarial learning

and optimize the MMI objective directly in the model training phase [101]. These

models adopt the Seq2Seq models as the generator and pay attention to the design

of the discriminator, and at last the generators and discriminators in these works are

jointly optimized. One of our research works [109] develops a hierarchical variational

model augmented with a variable-level adversarial learning objective, which is able

to produce outputs by hierarchically predicting the necessary speaker states, and

then conveying the states in the final responses.

Deep reinforcement learning are widely used for policy learning in the goal-

oriented dialogue systems[210, 118]. Recent research works also attempt to apply

reinforcement learning to train neural dialogue models [105, 106]. However, previ-

ous approaches depend on the REINFORCE algorithm for model learning, which is

known for being slow, unstable, and with high variance when rewards are sparse and

delayed until the end of a task episode [144]. Later work [142] attempts to adopt the

actor-critic method [7] to overcome these weaknesses. In terms of learning a dialogue

policy for open-domain dialogue, [272] designs a policy network to predict dialogue

acts and feed those acts into a response generation model to control responses. [70]

designs a policy that integrates knowledge with dialogue acts at a sentence-level, and

demonstrate that a basic rule-based dialogue policy can result in strong performance.

Recently, some researchers have ensembled several aforementioned methods to

enhance the performance by combining each of their benefits. For example, it is

feasible to rank two types of responses and return the top-1 result. Another rea-

sonable and promising way to ensemble methods is to feed retrieved responses to a
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generation-based model to enhance the informativeness and diversity of the gener-

ated response. [175] proposes that when the top retrieved response achieved a score

above a certain threshold, it should be taken as the final response; otherwise, the

response should be obtained from a generation-based model. Similarly, [205] reranks

the two kinds of responses but firstly concatenates the retrieved responses into the

context to generate a response. [262] designs a response-editing model that modi-

fies a prototype using guidance from an edit vector. [320] and [299] cast response

generation as a reinforcement learning process. Recently, a skeleton-then-response

framework has been shown promising results for this task [23]. Nevertheless, how to

precisely extract a skeleton and how to effectively train a retrieval-guided response

generator are still challenging. [24] extracts the skeleton by an interpretable match-

ing model and in their work, the skeleton-guided response generation is accomplished

by a separately trained generator.

2.3 Context Modeling

A good conversational agent is expected to produce responses that are grammatically

fluent, semantically relevant, and contextually coherent. However, as stated above,

standard Seq2Seq models are prone to produce generic and bland responses [101].

Especially for multi-turn conversations where there are several turns of previous

utterances, the responses generated by standard Seq2Seq models are often improper

to the conversation context [110]. To mitigate performance gap and improve response

coherence, how to effectively model conversation context becomes a more and more

important issue.

At the beginning of applying neural networks for chatbots, researchers’ efforts

are mainly paid on exploring effective mechanisms to summarize conversation histo-

ries, i.e., the previous utterances before the current input. As the development of
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neural chatbots, researchers have realized that conversation context is not limited to

history utterances. Hence, later and recent attempts have been made to improve the

capacities of conversational models by considering other context-related information

such as external background knowledge and internal context features. In the follow-

ing, we will review literature work on improving response coherence by grounding on

external knowledge. One one hand, there exists a handful of literature attempting to

enhance context understanding by leveraging additional contents [54, 42, 313]. On

the other hand, a plethora of literature augments the decoder to leverage structured

knowledge bases (KBs) [322, 122, 111, 289]. We will also review the studies con-

sidering contextual information when modeling conversation context, such as emo-

tion [312, 117, 109], dialog act [307], speaker personality [102, 171, 300, 133, 27, 204],

as well as topic [268, 150, 67]. The following contents will present a detailed review

of modeling conversation contexts including dialogue histories, external knowledge

as well as other related information.

2.3.1 History-aware Models

Generally speaking, context modeling has been a long-standing challenge in conver-

sation research. For multi-turn conversations, typical conversation context includes

history dialogues from previous conversation turns. Early efforts exploit history ut-

terances as the only source of the conversation context, and draw on neural networks

for their powerful representation capabilities [208, 189, 19, 188, 31]. Although [209]

is conducted under retrieval-based approaches, it demonstrates clear improvement

on the response quality when the context feature is integrated. After examining its

benefit, the remaining problem is how to effectively utilize contextual information.

[103] argue to model the words and utterances in different levels of hierarchy when

learning the representations. Then, hierarchical representation learning is proposed

to model the context, which discerns the word- and utterance-level information and
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produce their representations in different ways. Both retrieval-based and generation-

based conversational agents exploit and integrate the information from the two levels

together.

In terms of retrieval-based systems, one line of approaches encodes multiple ut-

terances of the context into a single context vector and uses the vector to match

responses. [208] splices utterances into one sentence and then encodes it with LSTM.

[318] takes each utterance as a unit and uses hierarchical GRU to encode utterances

into a context vector to catch utterance-level discourse information. [63] consid-

ers an interaction between the context and the response in order to produce more

descriptive representation, and uses an attentive hierarchical recurrent encoder to

characterize the representation.

With regard to generation-based systems, [209] directly feeds embeddings of pre-

vious conversation turns with current inputs into the hidden layers of encoders. [208]

develops a RNN based model HRED, which builds up a context encoder (Contex-

tRNN) on the top of a word-level encoder (EncoderRNN) to hierarchically model the

dialogue context. In order to include more variations and encourage diversity in gen-

eration, HRED is further extended in [189] with an extra continuous variable. Later,

[19] uses Memory Networks to encode the unstructured history dialogues, while [68]

utilizes structured knowledge in addition to the unstructured history. [188] expands

the generation process by adding a sequence of discrete stochastic variables for each

utterance, which helps generate responses with high-level compositional structure.

2.3.2 Knowledge-aware Models

Endowing the chatbots with extra background knowledge is another promising idea

to improve response coherence. It is very likely that people respond in conversation

focusing on certain topics rather on rambling among unrelated issues. To control the

generation performance, researchers propose different methods to introduce various
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contents into generation models. [150] is the first attempt to explicitly control text

generation by selecting cue words based on the external Pointwise Mutual Informa-

tion (PMI). Following their work, the improved approach has been moved to a more

implicit and flexible manner [288]. Later work exploits other content types including

topic, knowledge, etc.

Initial work on introducing topic into response generation models is to incorporate

a topic variable calculated by Latent Dirichlet Allocation (LDA) [14]. Such topic

information can either be learned from current input in conversation [268, 150], or

obtained from conversation history as a prior knowledge [128]. [268] encodes both the

input word embeddings and the topic keyword embeddings into a content encoder and

a topic encoder, respectively. These two encoders then interact with each other in a

joint attention mechanism to together determine the response decoding. However, it

is hard to ensure that the topics learned from the external corpus are consistent with

that in the conversation corpus. [128] comprises all previous dialog turns as a topic

vector, which is then concatenated with hidden states to predict the response tokens

to be generated. [67] recognizes both topics and keywords to evaluate conversation

models using topic-centered metrics.

Nowadays, one of the most popular research directions is to build knowledge-

grounded chatbots. [295] handles possible breakdowns in dialog systems by retriev-

ing a short description to generate sentences. Some works attempt to incorporate

implicit knowledge into chatbots to address the “generic response problem”. [234]

aligns topic-related descriptions from Wikipedia pages with Reddit comment threads,

and proposes a coupling network to fuse the implicit knowledge before generating

comments. While [150] and [268] inject conversation topics into Seq2Seq models, [67]

recognizes topics and keywords to build up topic-based assessment scores. There also

exist other content introducing models exploiting different types of knowledge. For

example, [271] uses meta-words, and [321] utilizes the retrieved existing dialogues.
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However, the leading cause of generating generic responses is that the model can

not obtain enough background knowledge from the query message [54, 125]. To

alleviate the lack of background knowledge, researchers have begun to introduce ex-

ternal knowledge into the generation. The knowledge can be unstructured knowledge

texts [54], structured knowledge graphs [313], or hybrid of them [125]. Especially,

[54] utilizes unstructured textual information as explicit knowledge for the chatbots.

[254] presents a model allowing developers to express domain knowledge via soft-

ware and action templates. [322] develops a dialogue system to talk about musics.

Although grounding on structured knowledge, their system is focusing more on an-

swering music-related questions.

The structured knowledge has the best quality, because it is generally extracted

and summarized by the human. The structured knowledge graph can be either

domain-specific [322, 122] or open-domain [290, 313]. Two previous studies [290, 313]

have proved the feasibility of introducing commonsense knowledge into dialogue sys-

tems, where [290] is designed for retrieval-based systems, and CCM [313] is for re-

sponse generation models. Following CCM, ConKADI [259] is designated to be aware

of the context when using the knowledge, and it uses human’s responses as poste-

rior knowledge in training. Concurrently, [258] exhibits the central topic fact of a

generated response, and it is controllable such that TopicKA can generate multiple

diverse responses based on different topic facts. Especially, the majority of existing

knowledge-grounded chatbot augments the decoder to leverage structured knowledge

bases (KBs) [322, 122, 111, 289]. In addition to facilitating response generation, in

this thesis, we also explore the benefits of leveraging KB for context understanding.

[54] and [42] feed unstructured knowledge to the RNN-based and Transformer-based

encoders. [313] and [122] combine factual embeddings with the encoder states. Dif-

ferent from the previous “shallow” combination approaches, in this thesis, we define

and model the conversation context by combining history conversations and external
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knowledge, by which we develop a novel graph-based encoder that enables holistic

conversation understanding and in turn facilitates response coherence.

2.3.3 Other Context-aware Models

Learning the dialogue features explicitly is another way to model the coherence

and diversity of the response. Among all the context-related features, identity at-

tributes, speaker emotions and communication behaviors are widely explored. In the

research line of modeling speaker identities, [102] introduces an extra variable rep-

resenting personal information to capture personalized communication styles. [145]

uses transfer learning techniques to train a personalized dialogue system. [3] also

considers author information in Reddit Forum and modeled it as an input feature.

More recent work considers the differences between the two speakers in a dialogue

and models them separately [195]. [171] endows chatbots with a pre-defined agent

profile to improve the coherence in the generated responses.

In addition to speaker’s persona, there are also other internal factors affecting

people’s daily communication, among which emotion and intention are two essential

ones. As a critical kind of intelligence in humans, emotional intelligence is poten-

tially useful in building conversational agents. As studies have shown, endowing the

conversational agents with emotional intelligence will make users engage longer and

deeper, and thus improve the user satisfaction towards the chatbots [98]. When one

find that his/her friend is upset, he/she usually will express his/her concerns toward

the friend by asking the reasons behind the mood [139]. People often have shared

mental states and these states together contribute greatly to form human’s emotional

intelligence, which consequently affect human’s conversation behaviors.

To build emotion-aware chatbots, researchers’ attention has been paid to detect

emotion revealed in the history utterances and has been recently moved towards

generating responses with the specific properties like sentiments, tenses, or emotions.
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[79] proposes a text generation model based on variational autoencoders (VAEs)

to produce sentences presenting a given sentiment or tense. [56] presents a RNN-

based language model to generate emotional sentences conditioned on their affect

categories. This study focuses on general text generations rather than in the case of

conversations. [316] has collected a large number of Twitter conversations including

emojis, on which they use emojis to express emotions in the generated text by trying

various variants of the conditional VAEs. The representative work in this area is

Emotional Chatting Machine (ECM) [312]. On the basis of the Seq2Seq framework,

ECM and its subsequent methods [36, 207] mainly represent the given emotion

category as a vector, and use a gating mechanism to add it to the decoding step to

affect the response generation process. As experiments have shown, this approach

will aggravate the issue of generic responses in some cases [109]

Another line of research work focuses on modeling communication behavior ex-

pressed as dialog acts in open-domain chatbots. [307] captures the diversity of re-

sponses through conditional variational autoencoder and utilizes dialog act informa-

tion as the latent variable. There also exist certain literature focusing on generating

responses conditioned on latent factors, which are less interpretable. [285] attempts

to improve the specificity with the reinforcement learning framework by using the

averaged IDF score of the words in the response as a reward. [311] introduces latent

responding factors to the Seq2Seq model to avoid generating safe responses. How-

ever, these latent factors are hard to decide the number. In this thesis, we consider

together the effect of emotion and intention on conversation modeling, and propose

a hierarchical generation model to explore the dependency of these two factors in

response generation.
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Part I

Utterance-level Coherence
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Chapter 3

Knowledge Incorporation for

Utterance-level Coherence

3.1 Introduction

Different from task-oriented dialogue assistants, social chatbots are not necessarily

to solve problems. Rather, they are designed to engage and company users by chit-

chat conversations [200]. However, it is non-trivial to build a satisfactory human-like

chatbots since open-domain chatbots are expected to have a large conversation scope.

To constrain the research scope, knowledge-grounded conversation modeling becomes

a new research direction. On one hand, unlike open domain dialogue, it involves some

specific topics which need extra knowledge during response generation. On the other

hand, it also has various indirect information to the topic such as chitchat, expressing

a personal experience or opinions related to the topic, etc.

Therefore, developing knowledge-aware chatbots are beneficial for research on

human-like conversations. To achieve this, it is instrumental for these chatbots to be

equipped with conversation-related knowledge, a.k.a. contextual knowledge. When

people are discussing on a movie, for example, they often express their attitudes

towards the actors and the directors of the film. Previous literature on equipping

chatbots with external knowledge often utilize unstructured knowledge. However,
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there remain at least two issues unexplored: (1) Which type of knowledge is more

suitable for existing chatbots to utilize? (2) How to make good use of the equipped

knowledge? To explore these two problems, we equip the chatbot with structured

knowledge base (KB). To better utilize KB for chatbots, we identify and exploit the

following information in KB:

• The first is attributes in KB. Essentially, contextual knowledge is beneficial

for conversation context modeling. People often start and keep a conversation

following a certain logic. See a real example in Figure 3.1. Given the film The

Notebook as the topic, user B imagines the new film Spotlight because user A

is talking about series of romance movies acted by the actress Rachel. In the

figure, bold words indicate the underlying attribute, which are illustrated as

the red arrows linking the films. As the attribute of the film, actress holds as

the underlying logic link that naturally guarantees the coherence when moving

forward the conversation. It is thus reasonable to equip chatbots with the

ability to recognize the underlying attribute(s) for conversation understanding

and link to related knowledge based on the recognized attribute(s).

• The second is entities in KB. As another kind of contextual knowledge, enti-

ties are more important because they are extensively involved especially when

people offer new information, provide supporting evidence, or refer to what

has been mentioned. To facilitate response generation, chatbots need to also

bear in mind related entities as candidates to be selected when responding to

users. As revealed in the example, person A does not insist on the romance

movies but moves on to the new one after person B introduces Spotlight. In

regard of the current context, the entities being considered in each turn may

change. The larger the number of the candidate entities, the harder it will be

for the chatbots to reason the most suitable one based on the current context.
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Figure 3.1: A Motivating Conversation Example.

To ease this issue, our idea is to selectively collect the candidate entities using

the recognized attributes to reduce the collection size.

In this chapter, we develop a MovIe KnowlEdge-grounded chatbot, namely

Mike, equipped with a movie knowledge base (MKB). Given an input utterance(s)

associate with a topic film, our Mike firstly recognizes the underlying attribute(s)

and then collects candidate entities by starting from the mentioned entities and then

propagating along the edge(s) of the recognized attribute(s). After equipped with

necessary contextual knowledge, Mike performs conversation understanding and re-

sponse generation using an knowledge-enhanced Seq2Seq architecture [218]. The

encoder is enhanced with the detected attributes to compress the input utterance(s)

into an attribute-aware context representation. The decoder is augmented with a

pointer gate [232] to decide when to mention an entity and select from the candi-

dates the most appropriate one based on the attribute-aware context. While previous

works treat attributes and entities equally, our work is novel in discerning their dif-

ferences and incorporating them in different manners. In this way, our chatbot Mike

captures the conversation logic better with the help of contextual attributes, which

in turn leads Mike to generate more coherent and entity-aware responses.

To validate the effectiveness of the proposed approach, we build a new movie chit-

chat conversation corpus, Bili-Film, collected from a large Chinese video platform.

The contributions in this chapter are briefly summarized as follows:
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• We identify external knowledge related to a conversation as contextual knowl-

edge, and regard its necessities in both context representation and response

generation.

• We propose to utilize contextual attributes and entities in their own ways.

The contextual attributes are contributing to capture the conversation logic

for context modeling. The related entities are beneficial to generate responses

when referring is needed.

• We develop a novel movie knowledge-grounded chatbot, namely Mike, which

firstly collects contextual knowledge from a MKB we build, and then generates

entity-aware responses based on the attribute-aware context representation.

• On two movie conversation corpus, our Mike significantly outperforms other

four knowledge-grounded models.

The rest of this chapter is organized as follows. Section 3.2 surveys the previous

work on building knowledge-aware chatbots. Section 3.3 describes the proposed

chatbot Mike. Experiments and analysis are presented in Section 3.4. Finally, we

summarize this chapter in Section 3.5.

3.2 Related Work on Knowledge-aware Chatbots

As the fundamental pillars, knowledge bases and knowledge graphs (KBs and KGs)

are emerging as important data sources for various applications. Typically, a knowl-

edge graph (KG) is a multi-relational graph composed of entities (nodes) and re-

lations (different types of edges). Each edge is represented as a triple of the form

(head entity eh, relation r, tail entity et). Such a triple is also called a fact, indicating

that two entities are connected by a specific relation. For example, the triple {The

Notebook, actBy, Rachel McAdams} describes the fact that the film The Notebook
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is acted by Rachel McAdams. However, the symbolic nature of KGs impedes their

applications. To tackle this issue, knowledge graph embedding models have been

proposed to embed the relations and entities in a KG into low-dimensional contin-

uous vector spaces. These KG embedding models can be roughly categorized into

two groups: translation-based models and semantic matching models. Specifically,

translation-based models learn the embeddings by calculating the plausibility of a

fact as the distance between the two entities, usually after a translation carried out

by the relation. Representative models are TransE [17], TransH [246], TransR [115].

In TransE [17], the entity and relation embedding vectors are in the same space. In

TransH [246], entity embedding vectors are projected into a relation-specific hyper-

plane. In TransR [115], entities are projected from the entity space to the relation

space. [241] summarizes numerous advanced knowledge embedding approaches. In

this work, we embed our KG using the widely-adopted TransE model [17], and inte-

grate the knowledge embeddings into conversation models in a novel way.

In the line of equipping chatbots with external background knowledge, some works

attempt to incorporate implicit knowledge into chatbots to address the “generic

response” problem. [54] utilizes external textual information as explicit knowledge

for the chatbots, and [165] exploits the relevant information within the dialogue

corpus as soft prototypes to facilitate response generation. [254] presents a model

allowing developers to express domain knowledge via software and action templates.

Most similar to our work is [322] that develops a dialogue system to talk about musics.

Although grounding on knowledge, their system is focusing more on answering music-

related questions. Moreover, each dialogue in their data is restricted to one singer.

Differently, our approach is targeted at film-related chit-chats on various aspects

rather than answering questions in movie domains.
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3.3 Method

To begin with, we describe the notation and framework of Mike, a knowledge-

grounded chatbot equipped with an associate knowledge base (KB) K. Build upon

the encoder-decoder architecture, Mike consists of three main components, as illus-

trated in Figure 3.2:

• A contextual knowledge collector finds attributes and entities by linking the

input sequence x to the associate KB K. It detects the mentioned attributes

from the input sequence, and collects entities relevant to the conversation.

• An attribute-aware encoder that transforms the input sequence of utterances x

into an attribute-based representation by attending on the detected attributes.

• An entity-aware decoder generates the final response by properly referring to

the pre-collected entities.

With these three components, our approach firstly collects from K the contextual

knowledge pertaining to the input x, including the related attributes and entities.

The detected attributes are used in the attribute-aware encoder to form an attribute-

aware context representation, while the set of related entities are used as candidates

to augment the entity-aware decoder.

3.3.1 Preliminaries

In two-party human-computer conversational systems, chatbots interact with users

by returning proper responses. In particular, generative conversation models formu-

late the problem of response generation as learning a Seq2Seq mapping.

Formally, conversation models take as input the combination of the current user

utterance uT and conversation histories tu1, ¨ ¨ ¨ ,uT´1u, where T is the turn number.

Each utterance in the conversation is a sequence of words, a.k.a. ut “ tx1, ¨ ¨ ¨ , xNtu.
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Figure 3.2: The overview of the proposed chatbot Mike.

Hence, chatbot is fed with a sequence of words x “ tx1, ¨ ¨ ¨ , xNxu, and is required to

generate a response y “ ty1, ¨ ¨ ¨ , yNyu, where Nx and Ny are the token numbers.

3.3.2 Contextual Knowledge Collector

The prerequisite step is to locate and extract the necessary knowledge from the

equipped movie knowledge base (MKB) K. In the left side of Figure 3.3, a general

sketch of K is depicted in the form of knowledge graph. The nodes are entities that

are connected by the attributes on the edges. Despite of the existence of countless

facts in a KB, there is only a limited portion of the knowledge that are necessary for

conversation understanding and response generation. It is more effective to scope a

set of contextual knowledge by linking the input utterance(s) to the associate KB

K.1

Given a conversation, the underlying logic is often indicated by the attribute

information in the utterance(s). It is feasible to detect the attribute(s) Rx from the

input utterance(s) using lexical patterns because they are often expressed regularly.

For example, the words “actress” and “starring” (the red bold words in Figure 3.3)

1For efficiency, we retrieve a subgraph of the associate topic film, and perform knowledge discovery
on the subgraph.
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indicate the attribute type actBy. Similarly, we also detect a set of entities Ex

mentioned in the input utterance(s) using entity linking techniques. By including

the topic film into the set Ex, we produce a set of seed entities Eseed “ tExY etopicu,

where etopic is the topic entity.

However, it is insufficient to solely rely on the entities explicitly mentioned in

the conversation. To expand the seed set Eseed, we propose to collect more relevant

entities Er by using the detected attribute(s) in Rx. Concretely, we take each entity

in Ex as head node eh, and collect the entity on the tail node et only if the relation

reh,et between eh and et matches with (one of) the detected attribute(s) Rx. In this

way, only the entities linked by the detected attribute(s) are collected to expand the

entity set. We repeat this procedure by 2 times, which results in a 2-hop expansion

as illustrated in Figure 3.3.

Notice that it is unreliable to expand the entity set using all the attributes in

the KB, although it is straightforward to do so as in [322]. The larger the size of

the entity set, the harder it will be for the chatbots to reason the most suitable

when generating responses. Instead, we guide the entity set expansion based on

the detected attributes, which is supposed to filter out noisy entities and eventually

reduce the set size. The detected attributes will bias the entity expansion to collect

those entities pertinent to the inherent conversation clue, and thus encourage more

smooth and coherent conversations.

As a result, we collect the set of contextual knowledge related to a conversation

including the set of detected attribute(s) R “ Rx and the set of candidate entities

E “ tExYEru. To fed this knowledge into the encoder-decoder conversational model,

we encode the attributes and entities into dense representation using TransE [17], a

knowledge graph embedding model, and denote the resulted embeddings as rm and

en, respectively, where @m P t1, ¨ ¨ ¨ , Nru, @n P t1, ¨ ¨ ¨ , Neu. Then, the attribute

and entity embeddings are passed to the encoder and decoder in their own ways, as
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Figure 3.3: Contextual Knowledge Collector.

shown in Figure 3.2. The attribute embeddings are fed to the encoder to facilitate

context modeling. The entity embeddings are served as candidates for the decoder

to generate knowledgeable responses by selecting proper entities when referring is

needed.

3.3.3 Attribute-aware Context Encoder

Given the input sequence x, we embed its tokens using a Recurrent Neural Network

(RNN), and then utilize the contextual attributes obtained in the first step to enhance

the semantic representation.2 This converts a sequence of inputs px1,x2, ¨ ¨ ¨ ,xtq

to hidden states ph1,h2, ¨ ¨ ¨ ,htq. To capture long-term dependencies among the

2When x is a sequence of multiple utterances, we concatenate the utterances into one, unified
utterance. As empirically validated, using hierarchical context encoder did not bring in obvious
improvements.
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utterances, we adopt a special variant of RNNs, bi-directional Gated Recurrent Unit

(GRU) [32] as the encoder basis. The typical GRU cell is formed up by two gates,

the update gate gzt and the reset gate grt , which are computed as follows:

gzt “ σpWzxt `Uzht´1q (3.1)

grt “ σpWrxt `Urht´1q (3.2)

At each time step t, the update gate gzt controls how much the unit updates the

content in the hidden states, whereas the reset gate grt acts as a similar mechanism

to allow the unit forget what has been previously computed. With these two gates,

the hidden states at each time step t is a linear interpolation computed as follows:

ht “ p1´ gzt qht´1 ` gzt h̃t (3.3)

h̃t “ tanhpW0x` grt q d pU0ht´1qq (3.4)

where d is element-wise multiplication.

To encode the semantics from both the forward and backward of the input se-

quences, we adopt Bi-directional GRUs as our encoder basis. The Bi-directional

GRUs are two GRUs combined together. One GRU looks forward and the other one

looks backward, to consume the information from both directions. As a result, the

hidden states at each time step is concatenated by the state from each direction:

ht “ r
ÐÝ
ht,
ÝÑ
hts (3.5)

Based on our preliminary studies, we propose to enrich the representation based

on the detected attributes to form a context representation. As shown in the left

part of Figure 3.2, we use an attribute-based attention mechanism [8] to measure the

semantic relevance between the utterance hidden states and the detected attributes.

We compute the attribute-attention weights as:

αt „ expphtW1r̄q (3.6)

r̄ “
1

Nr

Nr
ÿ

m“1

rm
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where W1 is a learned matrix. Combined with the learned attention, the final context

representation:

ct “ αtht (3.7)

which is then fed to the decoder. Intuitively, attribute-aware context encoder fuses

the attribute information into the attribute-aware context representation, which is

then used to initialize the hidden states of the decoder. When generating the re-

sponses, the attribute-aware context representation guides the decoder to prefer en-

tities with similar representations, and thus allows the chatbot follow the underlying

logic of the conversation and finally improve the response coherence.

3.3.4 Entity-aware Response Decoder

The last step is to properly respond by using the candidate entities related to the

attributes. These candidate entities aid in the procedure of response generation when

referring is needed.

Basically, the decoder is another GRU that takes as input the context represen-

tation ct and the previously decoded token yt´1 to update its hidden state st similar

as Eq. 3.3:

st “ GRUpst´1, rct; yt´1sq (3.8)

where r; s is the concatenation operator of the two vectors. After obtaining the state

vector at the current time step t, the decoder generates each word yt based on a

softmax classification over the hidden state st and the context ct:

pgrupyt|y1, ¨ ¨ ¨ , yt´1q “ fpyt´1, st´1, ctq

“ softmaxpWostq

where Wo is a parameter matrix. Hence, the decoder generates the response y “
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ty1, ¨ ¨ ¨ , yNyu conditioned on the conversation context by maximizing the probability:

pgrupy1, ¨ ¨ ¨ , yNy |ctq “ pgrupy1|ctq

Ny
ź

t“2

pgrupyt|y1, ¨ ¨ ¨ , yt´1, ctq (3.9)

“ pgrupy1|ctq

Ny
ź

t“2

ppyt|yt´1, st´1, ctq (3.10)

To realize the entity-aware generation as illustrated in the upper right of Fig-

ure 3.2, we augment the decoder in the principle of pointer networks [232, 284, 64].

Pointer networks have been demonstrated powerful on tackling out-of-vocabulary

(OOV) words during generation. Previously, they are used to copy OOV words

from the input sequences into the output sequences. Inspired by this idea, we adopt

pointer networks to copy entities from external KB.

Concretely, the decoder is augmented using a gate gentt , which determines whether

to copy an entity by pent or to produce a word by pgru. Formally, the two-way

generation is formulated as:

ppyt|y1, ¨ ¨ ¨ , yt´1q “ gentt pentpyt|yt´1, st, ct,Eq

` p1´ gentt qp
gru
pyt|yt´1, st´1, ctq (3.11)

where E is the matrix stacking the candidate entity embeddings en obtained in the

first step (Section 3.1). When the gate “opens”, the decoder calculates the probability

over the candidates E and then directly copies the selected entity. Otherwise, the

decoder switches back to a vanilla GRU language model and omits a general word

based on the softmax output. The gate gentt is trained on the hidden state:

gentt “ σpWgstq (3.12)

The remaining is to learn which entity is to be selected by pent at each time

step. We adopt another attention mechanism to estimate the relevance between the

context and each entity. In this way, we are able to acquire the attention weights βt
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similar as Eq. 3.6:

βt „ exppEWectq (3.13)

Since the context representation ct has been enriched by the attribute embeddings,

the entities connecting with the detected attributes will have similar embeddings and

then attract higher attention weights. The attended entities are naturally coherent

to the conversation context.

Now the augmented decoder generates a candidate entity by:

pentpyt|yt´1, st, ct,Eq “

#

βtj, if yt “ ej

0, otherwise
(3.14)

The GRU language model pgru is rather simple, and we adapt it to be aware of

the film title by introducing the film title embedding in its content vector ct. This

encourages the generation to stay focused.

3.3.5 Model Learning

After pre-collecting the candidate entities (by contextual knowledge collector), we

are able to obtain supervision signals to train the switch gate gentt . We have:

gentt “

#

1, if target word is a candidate entity

0, otherwise
(3.15)

To train the model in the fully supervised manner, we have a training set of

triples:

D “ tpX1, Y1, R1, E1qu
Nd

where Nd denotes the count of training examples, X and Y build up the utterance-

response pairs. Correspondingly, R and E are the sets of detected attributes and

candidate entities, obtained using contextual knowledge collector in Mike.
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Finally, we train model parameters by minimizing the negative log-likelihood

objective as follows:

NLLpD, θq “ ´
ÿ

Nd
ÿ

i“1

log ppYi|Xi, Ri, Eiq (3.16)

The model parameters θ include the embeddings of vocabulary, entities, relations,

and the encoder-decoder components. Since the model is fully differential, we use

stochastic gradient descent to back-propagate the gradients through the model com-

ponents.

3.4 Experiments

In this section, we acquire two movie conversation corpus, on which we compare with

7 state-of-the-art conversational models to demonstrate the effectiveness of the pro-

posed approach. As indicated by the automatic evaluations and human judgments,

the proposed Mike outperforms other knowledge-grounded models significantly.

3.4.1 Datasets

We evaluate the proposed chatbot using two movie conversation corpus. The first

corpus we adopt is a publicly available knowledge-driven dialog dataset, DuConv,3

a carefully-crowdsourced conversation dataset. In DuConv, each dialog is formed

by two human crowdsourcers, where one human plays the role of leading the con-

versation, i.e., given related knowledge, initiating a novel topic or continuing the

current one in the movie domain [260]. The DuConv dataset consists of 30k con-

versations with 120k conversation turns. We randomly split the dataset by 8:1:1 into

training/development/test set.

3https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/

ACL2019-DuConv
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Table 3.1: Statistics of Corpus DuConv and Bili-film.

Dataset DuConv Bili-film

Total Number of Conversations 29,858 12,530

Total Number of Utterance 270,399 38,467

Average Number of Speaker Turns 9.1 3.6

Average Number of Tokens Per Turn 10.6 27.8

Number of Covered Movies 91,874 187

Number of Covered Movie Stars 51,753 248

Number of Unique Entities Per Conversation 9.3 3.1

In addition to this carefully-curated corpus, we also build a novel conversation

corpus Bili-Film from real-world data. Bili-Film is crawled and curated from a

Chinese video discussion platform Bilibili.4 Although there are other movie dis-

cussion platforms,5 the discussions on them are often focusing on detailed plots, and

are too complex to learn. In contrast, the discussions BiliBili are more condense

to capture.

The BiliBili users often release movie-related videos such as self-produced lens,

montages, and narrations. Other users may discuss on the videos by introducing

comments or replying to other users under the videos, which is as usual as on typical

forums. The comment threads between two users are the desired discussions we

collect. We collect a set of 20 seed active publishers to crawl the two-party discussions

under their videos. We also extract the corresponding film titles from the video

captions, and use them as the discussion topics. We filter out some discussions that

are meaningless or too long to learn. We maintain at most four speaker turns in

all discussions. After random spilt, 10,000 conversations in Bili-film are used for

training, 1,530 for validation, and 1000 for testing.6 The statistics of DuConv and

4https://www.bilibili.com/v/cinephile/

5i.e., https://www.reddit.com/r/movies/, https://moviechat.org/, https://filmboards.

com/, etc.

6The dataset will be released to the public.
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our Bili-Film corpus are presented in Table 3.1.

3.4.2 Experimental Setup

Knowledge Base Construction

To build a KB from scratch requires tedious effort. Instead, we build our KB K

by leveraging the largest Chinese KB zhishi.me [155], which comprises a lot of

knowledge from three encyclopedias: Baidu Baike, Hudong Baike, and Wikipedia in

Chinese.7 Even though it is a general KB, zhishi.me is focused on movie domain an

covers more facts than those in CN-DBPedia [270].

In specific, we firstly extract the triples from zhishi.me whose attribute types are

either actBy or directBy. This is assumed to collect all the film entities in zhishi.me.

We also adopt a common practice that adding the inverse attributes, i.e., actBy´1)

to cover more facts. After that, we run a second round of collection focusing on the

triples whose attribute types are: actBy, writeBy, directBy, hasAlias, and hasGenre.

The reason why we adopt writeBy is to include the cases when the movies are adapted

from books like the series of Harry Potter. As a result, our KB is defined with five

entity types, i.e., actor (actress), writer, director, film, and genre. Another thing

to note is that, the entities are either real-world concrete things, e.g., Harry Potter,

or virtual concepts, e.g., comedy movie. For simplicity, we do not distinguish them

undistinguished in this work.

As mentioned before, entity alias mining is crucial in our scenario. To improve

the performance of entity discovery, we refine our MKB by extracting more alias

information from an extra source. Although entities in zhishi.me already contain the

attribute hasAlias, they are sometimes out-of-date. To cover more, we also acquire

alias from Douban Movie. For example, the famous Chinese director Stephen Chow

(周星驰) are mostly mentioned with his nicknames 周星星 and 星爷. However,

7https://baike.baidu.com, https://www.hudong.com
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Figure 3.4: The Schema of the MKB.

the former one is missing in zhishi.me but found in Douban.8 These additional

nicknames are appended to facilitate entity linking.

Compared Models

In order to examine whether Mike is effective on incorporating knowledge into con-

versation modeling, we validate the performances of the following approaches:

• Attn-Enc-Dec [8]: It is a standard encoder-decoder approach with the widely-

adopted attention mechanism. The encoder and decoder in this models are set

as GRUs [33] for fair comparison. Note that neither history utterances, nor

extra knowledge is incorporated. We choose this bare-bones model to demon-

strate to what extend the performance will be achieved by a standard Seq2Seq

conversational agents without knowledge.

• Concat-Enc-Dec [209]: This model is extended from Attn-Enc-Dec where

history utterances are concatenated along with the current input, and still

without background knowledge.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

8https://movie.douban.com/celebrity/1048026/
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• Fact-Enc-Dec [54]: It is a knowledge-grounded conversation model that con-

sumes relative textual facts as additional knowledge information. To fit it into

our scenario, we use the films’ one-sentence descriptions as the textual facts.

By comparing with it, we aim at distinguishing the effects between the un-

structured and structured knowledge.

• KB-Lstm [282]: It identifies the knowledge related to the conversation and

encodes the knowledge into conversation representation, which is similar with

our idea. Differently, KB-Lstm only encodes the entities explicitly mentioned

in the input utterance, and incorporates the entity encodings using concatena-

tion operation in the encoder. On the contrary, we feed the context-relevant

entities to the decoder for reasoning in response generation while our encoder

takes the attribute information into account.

• KB-Lstm+: We improve the above KB-Lstm model by incorporating also

attributes information into the corresponding encoder. This is assumed to

inject more knowledge implicitly and thus expand its knowledge scope. We

denote this enhanced version as KB-Lstm+.

• GenDS [322]: It is the most similar approach to ours. GenDS shares a similar

idea with ours that it ranks candidate entities collected from the retrieved facts

to facilitate entity-aware response generation. Because candidates in GenDS

also contain the entities implicitly mentioned in the input, it mainly differs

with ours in how the candidate entities are selected.

All models are implemented by TensorFlow [1]. For pre-processing, we the utter-

ances are tokenized using Jieba segmenter.9 To encode the movie knowledge base, we

apply the KB2E [116] implementation of TransE graph embedding approach.10 The

9https://github.com/fxsjy/jieba

10https://github.com/thunlp/KB2E
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vocabulary size is constrained to 25,000 words, and the words are initialized using

300-dimentional FastText vectors [15]. During training, these word embeddings are

then fine-tuned. The sizes of the hidden states are all set as 512, and the size of mini-

batch is 32. We set the initial learning rate as 0.001. During learning, it is adapted

it to be exponentially decayed, and the learning gradients whose norms are larger

than 0.5 are also clipped. We adopt the Adam optimizer for training stability [91].

Evaluation Metrics

In order to assess the model performances, we use a set of popular metrics that are

commonly adopted in previous works to evaluate response quality [218, 127, 124,

195, 200], including both automatic evaluations and human judgments:

• BLEU-n: The N-gram based BLEU scores are proposed to indicate the overlap-

ping degree between the generated responses and the ground-truth response [162];

• Dist-n: Since the distinct grams produced by the models stand for the informa-

tiveness of the responses, it is reasonable to devise a measurement based on it

to evaluate response quality. Typically, the Dist-1 and Dist-2 scores stand for

the ratios for unigrams and bigrams [101]. This metric has been widely used

in works on response generation [268, 265];

• Appropriateness and Grammar: According to previous studies [124], the afore-

mentioned automatic metrics do not often correlate well with human judg-

ments in conversation generation tasks. To ease this issue, we also evaluate the

models using human judgments. We first adopt two 3-scale human evaluation

metrics, Appropriateness and Grammar, to judge the quality of the generated

responses [195];

• Precision and Recall: These two scores are used to examine the overlapping on

knowledge-specific words, i.e., entity mentions in the generated responses [322].
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The precision is the percentage of right generated entities in all generated

entities, whereas the recall is of ground truth entities. These two metrics are

calculated based on 100 manually annotated cases and are used to examine

the ability of referring to the most relative entities. In this case, generating

responses that contain irrelevant entities are not preferred.

3.4.3 Performance Evaluation

As shown in Table 3.2, the experimental results on the two corpus DuConv and Bili-

film exhibit similar findings. We first examine the importance of knowledge in chat

response generation. As implied by the first three rows across the two datasets, the

three chatbots in each first block perform the worst. This is not surprising, because

they are models with no access to contextual knowledge. Such performances are

disappointing but reasonable, and motivate our research to incorporate background

knowledge into open-domain dialogue models.

Since all other five models are equipped with background knowledge, we then in-

vestigate among them which mechanism(s) is more effective in utilizing background

knowledge. According to the form of knowledge they consume, these five mod-

els can be further categorized into two groups: unstructural knowledge v.s. struc-

tural knowledge. It is obvious that Fact-Enc-Dec lags far from other knowledge-

grounded models on DuConv. Even worse, Fact-Enc-Dec performs almost sim-

ilar as Attn-Enc-Dec even it consumes extra knowledge on Bili-film. Notice

that the fact knowledge it utilizes is represented in the form of natural language

sentence, i.e., Titanic stars Leonardo DiCaprio and Kate Winslet as.... Such un-

structured representation impedes existing encoder-decoder models to exploit useful

information from it and results in negligible improvement over the “non-knowledge-

aware” Attn-Enc-Dec. On the contrary, KB-Lstm, KB-Lstm+, GenDS and

our Mike utilize structural knowledge, i.e., the attributes and entities. Their better
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performances on both DuConv and Bili-film suggest that it is more effective to

integrate knowledge in structured forms into Seq2Seq models.

Among the group of models that utilize structural knowledge, KB-Lstm, KB-

Lstm+ lag far from Mike especially on BLEU-n, Distinct-n and entity-related

scores. While both KB-Lstm+ and KB-Lstm+ employ attribute and entity infor-

mation, KB-Lstm+ results in negligible improvement (and even decrease) over the

original KB-Lstm. The difference between KB-Lstm+ and Mike lies largely in the

distinct mechanisms they utilize the attribute and entity information. KB-Lstm+

comprises the attribute and entity information into a single vector and passes it to

the RNN hidden state, which might be too elusive to guide high-quality response

generation. Differently, Mike makes use of attributes and entities in different man-

ners. Mike attends on the detected attributes to fuse the attribute information

into context representation, and mentions the proper candidate entity(s) whenever

the pointer gate is activated. The comparison results demonstrate the superiority of

Mike on incorporating this knowledge.

Overall, according to their performances on both DuConv and Bili-film, Mike

and GenDS perform the best and the second best, accordingly. Their similarity is

the entity reasoning ability which learns to select entities from the pre-collected set

of candidates. This proves that such a mechanism is necessary for chatbots. Dif-

ferent from Mike, GenDS retrieves entities by string matching the fact triples in

the KB with the entities explicitly mentioned in the conversation utterances. In

such unfiltered way, their candidate set might include noisy entities that are too tan-

gential to the conversation context. As a result, GenDS has larger possibilities of

attending on wrong, peripheral entities, and then generates unintelligible responses.

On the contrary, Mike accesses to new entities Er linked by the detected attributes.

The detected attributes will bias the entity expansion to collect implicit but ma-

terial entities that closely related to the conversation. This novel strategy enables
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Mike to expand the conversation scope, and meanwhile limits the candidate set in

a reasonable range.

On the two corpus DuConv and Bili-film, the proposed Mike surpasses the

compared models significantly in terms of almost all indicators. Notably, the au-

tomatic Distinct-n scores and human evaluation scores (Appr., Gram., Prec., and

Recall.) indicate that the responses generated by our Mike are more diverse, fluent,

and appropriate to the conversation context.

3.4.4 Analysis

Mike consists of three modules, i.e., contextual knowledge collector, attribute-aware

encoder and entity-aware decoder. To examine the performance and contribution

of each module, we conduct ablation studies and error analysis on Bili-film. We

randomly select 100 test cases, and manually annotate the attribute and entities in

the input utterance.

Attribute and Entity Detection

Note that in our case, the underlying attributes are often expressed regularly. Most

entities mention in the text are movie-related. More importantly, we only care about

those attributes and entities related to a specific given film. Hence, we use simple

matching algorithms to separately detect attributes and entities from text.

Given an input, the attributes are detected automatically by lexical patterns.

For example, the appearance of “actress”, “starring in”, “has a role of” indicate

the attribute actBy. Based on the identified attributes, entity mentions are detected

through string matching. Although some APIs are able to extract entities from short

text, we find they are unreliable since the recall of a 100 test example are less than

10%. More advanced approaches as in [282] might be of help but we leave it as

future work. To improve matching quality, we clean the punctuations in advance.,
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Table 3.3: Error Analysis of Attribute and Entity Detection.

Attribute Entity

Correct 94 76.4% Correct 128 64.7%

Missing 12 9.8% Missing 65 32.8%

Wrong 17 13.8% Wrong 5 2.5%

i.e., guillemets (《》), interpuncts (·) and quotation marks (“”). As a result,莱昂纳

多·迪卡普里奥 (Leonardo DiCaprio)=莱昂纳多-迪卡普里奥=莱昂纳多迪卡普里奥.

To accelerate, we also segment the entity names and match them in segment units.

In this case, “Leonardo” will also be successfully matched to “Leonardo DiCaprio”.

The performance of contextual knowledge collection is reported in Table 3.3.

Since there often exist multiple attributes and entities in each utterance, the total

number of the annotated ones are more than 100. It is shown that our detection

accuracies are 76.4% and 64.7%, which are comparable to the performances in similar

settings [298].

Although our scenario is much simpler, pattern matching techniques still face

challenges. We show some cases in Table 3.4. As shown in Case #1, simple pattern

matching will fail when the sentence has negative terms. This indicates that seman-

tic parsing is needed when complex sentence grammar like concessive clause exists.

Sometimes, the indicator word (pattern) is misleading as in Case #2. Another kind

of failure is caused by entity detection. In Case #3, the model fails to link the men-

tion “Old Leo” to the entity Leonardo because the associate KB does not cover the

alias “Old Leo”. Note that the last case is about the conversation on the film Leon:

The Professional directed by Luc Besson. However, the user mentions the director

Stephen Chow, which is not covered in the subgraph of Leon. Theoretically, it is

applicable to link entities based on the whole graph, which we leave as future work.
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Table 3.5: Ablation Studies.

Model BLEU-3 Distinct-1 Precision Recall

Mike 0.84 0.19 0.47 0.53

-2HE 0.70 0.13 0.31 0.38

-AAE 0.55 0.11 0.24 0.24

-EAD 0.19 0.04 0.16 0.08

Ablation Studies

We perform additional ablation studies to investigate how important the following

parts in our approach are: (1) the “2-hop-expansion” (2HE) solution in candidate

entity selection; (2) the attribute-aware encoder (AAE); (3) and the entity-aware

decoder (EAD). Table 3.5 presents the experimental results. For comparison purpose,

we list the performance scores achieved by our full model Mike in the first row.

After removing the 2HE trick, as shown in the second row, the precisions and

recalls will drop to 0.31 and 0.38 respectively, which indicates that it is necessary

to expand the conversation scope by enlarging the candidate entities. As shown in

Figure 3.3, to allow richer and more diverse semantics in the conversation, we treat

the detected entities as seeds and add their neighboring entities that are linked by the

detected attributes within 2-hops. Since we include all the detected and re-collected

entities as the candidates, the proposed 2HE trick is beneficial to generate more

diverse and informative responses.

After replacing the attribute-aware encoder with a vanilla RNN encoder, the

performance scores also decreases. This suggests that attribute-aware encoder is also

crucial to facilitate conversation understanding by using the contextual attribute

information. Intuitively, the attribute-aware context encoder fuses the attribute

information into the attribute-aware context representation, which allows the chatbot

follow the underlying logic of the conversation when generating the responses.

Our approach degrades to standard Enc-Dec when all the special designs are
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removed. The remarkable gap between the scores in the last two rows are strong

evidence for the necessity of the entity-aware decoder. Essentially, the decoder in the

proposed Mike is a RNN language model augmented with the pointer gate [232, 284,

64]. In this way, it ranks candidate entities collected from the associate knowledge

base and thus generates more engaging and informative responses.

3.5 Chapter Summary

In this chapter, we investigate conversation modeling using external knowledge, and

propose a knowledge-grounded conversational model called Mike. Based on the

encoder-decoder architecture, the proposed Mike consists of three main components:

(1) a contextual knowledge collector that performs knowledge discovery and transfer

to link the associate KB with the given conversation; (2) a novel attribute-aware

context encoder that represents current and history utterances using the collected

attribute information; (3) a powerful entity-aware response decoder that generates

informative responses by properly referring to suitable entities. With these three

components, the proposed Mike are able to comprehend conversation logic using

the detected attributes and respond to users more engagingly and coherently using

the candidate entities.

On two movie conversation corpus DuConv and Bili-film, we empirically

demonstrate the effectiveness of Mike. It significantly outperforms other 7 state-of-

the-art conversation models through both automatic evaluations and human judg-

ments. The generated responses by Mike are the most plausible among the compared

ones. We further conduct error analysis and ablation studies, and investigate the im-

portance of each component in our approach. The overall experimental results reveal

that attribute and entity information play distinguished and indispensable roles in

conversation modeling, which have been neglected in previous research.
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Chapter 4

Emotion Incorporation for

Utterance-level Coherence

4.1 Introduction

In order to build high-quality conversational agents, some researchers have investi-

gated the human expectations over the virtual conversational agents. Many previous

studies pointed out the importance of humanness towards building a natural conver-

sational agent [21]. The most frequently mentioned criteria are responding coherently

with the preceding context [129, 140, 85, 154], learning user needs and answering

questions [129, 140], realizing domain-specific concepts and terms [296, 154], facili-

tating input and response diversity [129, 140, 85, 151], and developing a consistent

personality [140, 85, 154].

In addition, emotional intelligence has also been emphasized, which is an im-

portant human intelligence. Indeed, emotions play a vital role in our daily lives

and fundamentally affect people’s communication. When friends express their up-

set moods, people usually sympathize with them and ask why [139]. Research shows

that using emotional intelligence to recognize conversational agents can increase user

engagement and satisfaction [167, 199, 98]. Psychological or mental states such as

empathy contribute a lot to emotional intelligence. In accordance, these mental
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Figure 4.1: A Motivating Conversation Example.

states then stimulate the relevant behaviors in human’s daily chat.

Therefore, we take emotion as a representative kind of information to investigate

its importance in open-domain chatbots. To endow the chatbots with emotional

intelligence, there are at least two issues to resolve:

• Take the conversation in Fig 4.1 for example. As we can see, person B receives

a dance invitation from A, but shows different wishes under certain emotions.

In the upper case, the conversation continues in a happy way and arrives at a

dance date when the conversation ends. When comes to the lower case, friend

B is frustrated because of the failure of the game, so he/she declines the dance

invitation. This example shows that emotions often guide people’s words and

thus the outcome of dialogue. Therefore, dialogue agents with emotional intel-

ligence should incorporate emotional information when generating responses.

• However, emotion is an internal speaker state in the process of conversation,

which cannot be directly obtained in actual application scenarios. In this ex-

ample, when friend A is aware of friend B’s grief, he/she expresses concern

about A. Therefore, it is very intuitive for the chatbot to perceive the user’s

emotions. Therefore, intelligent agents are expected to detect users’ emotions

and reply emphatically using more pleasing expressions.

In this chapter, we handle these two issues by proposing a conditional variational
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framework, enabling controlled response generation by a specific attribute, e.g., emo-

tion. Inspired by the semi-supervised deep generative model [92], our framework pro-

duces responses regarding to not only the conversation context, but also a stochastic

variable as well as an external label. In addition, we also propose to keep two sep-

arate dialogue contexts for each speaker in the conversation, in order to learn the

speaker-aware information like personality, sentiment, styles, etc. To resolve the two

issues discussed above, we test our framework on a scenario where the label serves

as a signal to indicate which kind of emotion should the response embodies. Before

the decoder starts the generation, the proper emotion class is inferred in advance to

lead the response semantics. We name the framework as SPHRED.

To validate the effectiveness of the proposed framework, we curate a novel dataset

named as DailyDialog [113], which consists of 13,118 dialogues with high-quality

manually labelled emotion information. In brief, we highlight our contributions as

follows:

• We propose a conditional variational framework for emotion-aware dialog gen-

eration, and provides the context vector for both speakers separately.

• We curate a high-quality conversation dataset DailyDialog, which consists of

manually-labeled emotion information. Our dataset is released to the public

on http://yanran.li/dailydialog, and has been included in the popular

huggingface NLP platform as an benchmark conversation dataset.1 We believe

it will fortune the research future r the furtureworks in esearch in this field.

• We verify the proposed framework on emotion incorporation. The evaluation

results on DailyDialog show that SPHRED providess a better context represen-

tation than previous models and helps generate higher-quality emotion-aware

responses.

1https://github.com/huggingface/datasets/pull/556
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The remaining of this chapter is organized as follows. In Section 4.2, we conduct

survey of existing emotion-aware chatbots. Then, we describe our method on mod-

eling emotion information for response generation in Section 4.3. In Section 4.4, we

present the proposed dataset as well as the evaluation results and analysis, followed

by our chapter summary in Section 4.5.

4.2 Related Work on Emotion-aware Chatbots

Affective computing, initiated by Picard [169] in the mid-1990s, is expected to be

an essential ability of computer and is thus argued as a critical direction of human-

computer interaction research. For example, earlier works show it is helpful for

users to get emotional support and overcome frustration if computer and machines

are able to perform communication strategies like active listening and exhibit the

sense of empathy during the interactions [96]. Another study [13] establishs that

even after a long course of interaction, users find an embodied relational agent with

deliberate social-emotional skills are more respectful, appealing, and trustworthy

than an equivalent task-oriented agent.

In this chapter, we mainly focus on incorporating the factor of emotion, which

is an essential aspect of building human-like chatbot. The rise of the emotion-aware

chatbot (EAC) Parry [34] is inspired by ELIZA [247] in early 1975. In early develop-

ment, EAC is designed by using a rule-based approach. Similar to Eliza, Parry still

uses a rule-based approach but with a better understanding, including the mental

model that can stimulate emotion. Now, most of emotion-aware chatbots are built

upon neural network models. In May 2014, Microsoft introduced XiaoIce [200], an

empathetic social chatbot which is able to recognize users’ emotional needs. XiaoIce

is able to provide an engaging interpersonal communication by giving encouragement

or other affective messages, so that succeeds in holding human attention during com-

67



munication.

There are at least two vital parts of building EAC, an emotion classifier to detect

emotion contained in the utterances, as well as an emotion-aware response genera-

tor to produce a emotional and meaningful response. Emotion detection is a well-

established task in natural language processing research area. In the early develop-

ment of emotion classifier, most of the studies propose to use traditional machine-

learning approach. In recent years, neural network based approachs are able to gain

better performances. Based on the detected emotion categories, the chatbots will

respond with the most appropriate emotion. One recent emotion-aware chatbot in

the research area is Emotional Chatting Machine (ECM) [312]. Then several studies

follow to deal with this research area by introducing emotion embedding representa-

tion [6, 192, 36] or modeling as reinforcement learning problem [214, 100].

There are also an expanding numbers of emotion-aware chatbots, which are de-

veloped using other kind of approaches. Several studies design emotion-coping ap-

proaches by adjusting the neural network structure and the training objective func-

tion to make the model produce responses following a predefined strategy [5, 309,

267]. Other bodies of work employ explicit indicators, such as the use of emoji,

image, or emotional category, to inform their model how to regulate the emotional

response [317, 76, 83, 206]. Our work is inspired by the idea of modeling discourse-

level latent variable, and we attempt to incorporate interpretable variables into these

Seq2Seq models like emotion variable.
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4.3 Method

4.3.1 Preliminaries

Varitional Autoencoder

For general VAE [94, 182], it is a deep generative latent model that simultaneously

learns an encoder and decoder from a set of data samples. Typically, VAE assumes

that a continuous variable z is generated from a pre-defined prior distribution pθpzq

and the data is then produced from the condition distribution pθpx—z), where x

represents the data samples. Commonly, Gaussian density is adopted but other

choices are possible, such as Bernoulli or Poisson.

On one hand, the encoder in the VAE architecture approximates the distribution

qφpz|xq, which captures a hidden representation of data samples x. On the other

hand, the VAE’s decoder attempts to capture the distribution pθpx|zq, which enables

transforming hidden representations into an output. As such, a general VAE model

is aimed to optimize the following objective:

´Ez„qpz|xqrlogpppx|zqs `KLpqφpz|xq||ppzqq (4.1)

The first term in Eq. 4.1 is the expected negative log likelihood of the data dis-

tribution, which is often called the reconstruction loss. Intuitively, such loss encour-

ages the encoder to better capture the underlying distribution of the data samples.

The other term in Eq. 4.1 is the Kullback-Leibler divergence between the encoder’s

distribution qφpz|xq and ppzq, which calculates the information discrepancy when

approximating z using qφp9q and encourages the true latent distribution to be aligned

with the (pre-defined) Gaussian distribution.

Conditional Varitional Autoencoder

Typically, the conditional variational autoencoder (CVAE) is a conditional variant of

general variational autoencoder (VAE), which introduces a probabilistic distribution
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over the latent variable to model response diversity. Following CVAE, we firstly

encode x and y by the post encoder and response encoder, respectively. The two

encoders are constructed by the shared bidirectional GRUs [33] which generate a

series of hidden states thxiu
|x|
i“1 for x and thyiu

|y|
i“1 for y. Then, we obtain the sentence

representation hx for the post x by averaging thxiu
|x|
i“1. The sentence representation

hy for the response y is calculated from thyiu
|y|
i“1 in the same way.

In training phase, we sample a latent variable z from the posterior distribu-

tion qRpz|x,yq. The distribution is modeled as a multivariate Gaussian distribution

N pµ,Σq, where Σ is a diagonal covariance. We parameterize µ and Σ by the recog-

nition network through a fully connected layer conditioned on the concatenation

rhx;hys:

«

µ

logpΣq

ff

“ Wq

«

hx

hy

ff

` bq (4.2)

where Wq and bq are learnable parameters. To mitigate the gap in encoding of latent

variables between train and testing [203, 280], CVAE requires the posterior distri-

bution qRpz|x,yq to be close to the prior distribution pP pz|xq. Notably, pP pz|xq is

parameterized by the prior network and also follows a multivariate Gaussian distri-

bution N pµ1,Σ1q in a similar way but only conditioned on hx. As usual, we minimize

the discrepancy between the two distributions by the Kullback-Leibler divergence in

part to the total marginal lower bound:

Lkl “ KLpqRpz|x,yq||pP pz|xqq (4.3)

Varitional Encoder Decoder

Although it is simple, it is not enough to apply VAE to NLP tasks like text summa-

rization and dialogue response generation. These tasks require the models to map
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and “translate” the input X into an output Y with different semantics. To remedy

this issue, researchers devise VAEs with the framework of encoder-decoder, and the

resulted variational encoder-decoder (VED) framework is equipped with an an extra

inference network on X, i.e., qφpz|yq “ qφpz|Ypxqq “ qφpz|xq.

Whereas classic Seq2Seq models represent each example x in the corpus X using

a fixed representation, VEDs inject the stochastic variable z into the decoders by

modifying pθpy|x, zq. Therefore, sampling z for several times will vary greatly the

generation process even when the input xs are the same. The proposed method in this

chapter also adopts VED as the basic architecture, which takes history utterances

as input and uses a variable encoder-decoder architecture [189] to transform the

input. In specific, a low-level encoder consumes the current utterance and a high-

level encoder is used to represent the history dialogues. In [189], these two encoders

are named as EncoderRNN and ContextRNN for utterance-level and context-level

computation as:

ut “ EncoderRNNpx1, ¨ ¨ ¨ , xt´1q (4.4)

ct “ ContextRNNpu1, ¨ ¨ ¨ , utq (4.5)

ct “ fput´1, ct´1q (4.6)

where ut and ct are the hidden states of the low-level EncoderRNN and high-level

ContextRNN, respectively. During the course of the conversation, ContextRNN

summarizes the historical information gradually and finally form the representation

ct.

When generating responses, a DecoderRNN parametrized by pθ produces the

subsequent response word-by-word via:

yt „ pθpyt|ct, y1, ¨ ¨ ¨ yt´1q

As analyzed before, it is better to model more diversity during the generation.
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To capture variation during decoding, there is a latent variable zc injected into the

DecoderRNN in order to influence the generation by:

yt „ pθpyt|zc, ct, y1, ¨ ¨ ¨ yn´1q (4.7)

Initially, zc was brought in for language modeling and one-sided sentence gener-

ation [20], which has been used to capture high-level information like themes, emo-

tions, styles, and other interpretable features [20, 189]. However, the ambiguity in zc

makes it difficult to capture precisely. In addition, if other influencing factors can be

captured from the conversation utterances, it will complement the data insufficiency

and help mitigate the ambiguity in the response semantics to be uttered.

4.3.2 Separated Context Modeling

To better capture the conversation context, which is shown criticial for response

generation, we develop a hierarchical framework with separated context modeling

(SPHRED). This section firstly introduces the concept of SPHRED, then describes

in detail the conditional variational framework and how to apply the framework to

build emotion-aware chatbots.

We decompose a conversation as a two-level hierachical sequences: sequences of

utterances in the top-level and sequences of tokens in the word-level, as in [208]. Let

w1, . . . ,wN be a conversation with N utterances, where wn “ pwn,1, . . . , wn,Mnq is the

n-th speaker turn. The probability of the conversation sequences can be factorized

as:

N
ź

n“1

Mn
ź

m“1

Pθpwm,n|wm,ăn,wănq (4.8)

where θ includes the model parameters and wăn represents the conversation context

up to the step n.

If we only use a single RNN to model the conversation context, it will result

in a general context representation, which fails to learn the distinguished speaker-
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Figure 4.2: Computational Graph for SPHRED.

aware information for each speaker. It is unsuitable for us to adopt such common

representations especially when we are interested in exploiting the personal attributes

that can be acquired from the model and applied to guide the variable learning.

Hence, we instead build two separate states for the two speakers, which is illustrated

in Figure 4.2. Conceretely, the proposed SPHRED consists of an token-level encoder

RNN, along with two speaker-aware status RNNs, each assigned for a corresponding

speaker. When processing the speaker turn k, each status RNN takes as input the

last encoder RNN state of turn k ´ 2. Then, the obtained two status vectors are

concatenated to form the higher-level context representation.

We will demonstrate in the experiments that the developed SPHRED not only

better captures speaker-aware information using each individual status RNN, but

also learns a meaningful context representation than the original HRED [208].

4.3.3 SPHRED

VAEs have been used for text generation in [20], where texts are synthesized from

latent variables. Starting from this idea, we assume every utterance wn comes with

a corresponding label yn and latent variable zn. The generation of zn and wn are

conditioned on the dialog context provided by SPHRED, and the additional class

label yn. For each utterance, the latent variable zn is first sampled from a prior
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Figure 4.3: Graphical Model for the Conditional Variational Framework.

distribution. The overall process of dialogue generation can be formulated as:

Pθpzn|yn,w
n´1
1 q “ N pµprior,Σpriorq (4.9)

Pθpwn | yn, zn,w
n´1
1 q “

Mn
ź

m“1

Pθpwn,m | yn, zn,w
n´1
1 , wn,m´1n,1 q

(4.10)

When yn can be acquired directly, it is intuitive to train a reasonable classifier first

and then infer the label from the conversation context. The choices for such classifiers

are not limited to simple feed-forward or deep neural networks.

Likewise, the posterior distribution of zn can be approximated using the label

information as followed by Equation 4.11. Technically,

Qφpzn|yn,w
n
1 q “ N pµposterior,Σposteriorq (4.11)

The graphical model is depicted in Figure 4.3. As shown, solid lines denote

generative model Pθpzn|yn,w
n´1
1 q and Pθpwn | yn, zn,w

n´1
1 q. When yt`1 is known,

there exists an additional link from yt`1 to z (dashed line). Ct encodes context

information up to time t. Dotted lines are posterior approximation Qφpzn|yn,w
n
1 q.

The training objective is derived as in Eq. 4.12, which is a lower bound of the

logarithm of the sequence probability. When the label is to be predicted (ȳn), an ad-
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ditional classification loss (first term) is added such that the distribution qφpyn|w
n´1
1 q

can be learned together with other parameters.

logPθpw1, . . . ,wNq ě Eppwn,ynq
“

qφpyn|w
n´1
1 q

‰

´

N
ÿ

n“1

KL
“

Qψpzn | w
n
1 ,ynq||Pθpzn | w

n´1
1 , ȳnq

‰

` EQψpzn|wn
1 ,ynq

rlogPθpwn | zn,w
n´1
1 ,ynqs

(4.12)

4.3.4 Emotion-controlled Response Generation

The major focus in this chapter is to avoid producing generic responses by incorpo-

rating emotion information. Hence, we let the label y indicate the emotion class.

When the emotion class can be easily acquired and assigned to the models, no predic-

tion is needed, and thus the training cost does not contain the first item in Formula

4.12. This is the simplest scenario of our framework, which allows explicit control on

which class of responses to generate by assigning corresponding values to the label.

As discussed in the introduction, however, it is more realistic that chatbots infer

the emotion to express currently. More specifically, the label y represents the emotion

class, which is unknown at test time and needs to be predicted from the context. To

achieve this, the probability qφpyn|w
n´1
1 q is modeled by feedforward neural networks.

In this case, our framework successfully learns to predict the proper label and decode

responses conforming to this label.

4.4 Experiments

4.4.1 Dataset

In order to examine the effectiveness of our framework SPHRED, we create a human-

written multi-turn corpus, which contains conversations focusing on the daily affairs.

In the following subsections, we will introduce the dataset DailyDialog in detail.
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Figure 4.4: An Example in DailyDialog Dataset.

In our daily life, there are two main reasons why we communicate with others:

exchange information and enhancing social bonding. In order to communicate and

share ideas, we often follow certain dialogue procedures to chat with others. Usu-

ally, we don’t answer other people’s questions rigidly and wait for the next question.

Instead, humans usually respond to the previous context first, and then put forward

their viewpoints through suggestions or questioning something. By this means, peo-

ple will focus on what others have said in order to encourage a rapport. Another

reason why people chat is to bond up their social connection with others. Hence,

daily chats are involve with affections and emotions. By expressing the emotions like

happiness and anger, people can show mutual respect, sympathy and understanding

with each other, thereby strengthening the connections between each other [148].

We use an example to show the two phenomena mentioned above as in Fig-

ure 4.4. We make the words into italic to highlight the new information raised by

speaker B, which is totally fresh to the other speaker A. Also, we underline and color

the words into purple in order to emphasize the expressed emotions. After hearing
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from speaker A, speaker B begins worried and shares his/her emotion towards A in

the fourth turn of conversation. In order to pacify A, speaker B then proposes to

breathe deeply and get away from the upset mood. Such a proposal is new to the

conversation context, but it is also dependent and related to the conversation con-

text. This case clearly demonstrates that B’s words establish a connection between

the preceding history and the ongoing conversations. Note that in the example, some

text is omitted due to space limit.

Dataset Construction and Basic Statistics

In order to build a multi-round dialogue dataset, we grab raw data from various

websites for English learners to practice oral English dialogues in their daily lives.

This is why we call it the DailyDialog dataset. The dialogues in the dataset retain

the following three attractive characteristics. First of all, the language in DailyDialog

is manually written, so it is more formal than the Twitter Dialog Corpus [184] and

the Chinese Weibo dataset [240]. The latter consists of posts and replies on social

networks, which are noisy, short and different from real conversations. Second, the

dialogues in DailyDialog usually focus on a certain topic and a specific physical

environment. For example, the conversation that occurs in a store is usually between

a customer looking for a suitable product and a salesperson willing to help with the

purchase. Another typical conversation occurs between two students talking about

summer travel. The third ideal characteristic is that our conversations usually end

after a reasonable speaker turns. This distinguishes DailyDialog from existing dialog

datasets, such as Switchboard [58] and OpenSubtitles [88], the latter usually has

150+ and 1,000+ speaker turns in one, long-lasting conversation. By studying some

examples, we find that in such conversations, people often talk about three or more

topics (or scenes). In comparison, our dataset has about 8 speaker turns on average,

which is more suitable for training compact conversational models.
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After crawling, we de-duplicate the original data, filter out conversations involving

more than two participants (three or more speakers), and use the auto-correction

package to automatically correct spelling errors.2 As a result, there are 13,118 multi-

turn conversations on the daily topics in our dataset. We also sum up the average

token numbers and turn numbers to give a picture of the dataset. The result statistics

are present in Table 4.1.

For evaluation, we divide the dataset randomly into a training/validation/test

sets, which has 11,118/1,000/1,000 conversations, respectively. The models are

trained on the traing set, and the parameters are tuned on the validation set, while

the performances are evaluated on the test set.

Table 4.1: Statistics of corpus DailyDialog.

Total Number of Conversations 13,118

Average Speaker Turns Per Conversation 7.9

Average Number Tokens Per Conversation 114.7

Average Number of Tokens Per Utterance 14.6

Annotation Criteria and Procedure

Originally, the dialogues in DailyDialog are crawled from online website for English

language learners to master the basic communication ability in daily life. Hence,

these dialogues are by nature resembling of the phenomena in daily communications.

As discussed in early parts, there are two communication purposes, i.e., exchang-

ing information and enhancing social bonding. To make full use of the dataset and

explore deeply of human conversation behaviors, we carefully annotate the conver-

sations with the perspectives of these two purposes.

The purpose of exchanging information is relevant to the intents, which have been

defined as dialogue act or speech at in the previous literature. Generally, speech

2https://github.com/phatpiglet/autocorrect/
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acts stand for the communication functions and objectives when humans converse.

Following [4], we annotate the speech acts for each utterance in our dataset using

four categories: {Inform, Questions, Directives, Commissive}. The Inform category

is annotated when the speaker is sharing information and notifying something in the

utterance. The Questions category indicates that the speaker is seeking and eager

to learn information. The Directives and Commissive categories are counterpart to

each other, which includes speech acts like suggest/accept offer. Please refer to [4] for

more details on the speech act definition. Afterwards, there are four intent categories

defined and annotated in DailyDialog.

The second purpose, enhancing social bonding, is highly correlated with human

emotions. The commonly adopted emotion theory is “BigSix Theory” [46], and is

also chosen for our dataset. In this case, we annotate each utterance with one of the

following emotion category: {Anger, Disgust, Fear, Happiness, Sadness, Surprise}.

Besides, we include an extra category {Other} to allow the utterance being annotated

with other nuanced categories. As such, there are seven emotion categories in our

dataset.

For the sake of labelling quality, we train three experts with professional linguistic

knowledge, and ask them to firstly label 100 test samples, then reduce the discrepancy

after discussing the criteria details. Finally, these three annotators are required to

label the whole dataset independently and reach the inter annotator agreement of

78.9%.

4.4.2 Experimental Setup

Compared Models

In order to examine whether SPHRED is effective on emotion-aware response gener-

ation, we adopt two lines of approaches to be compared, i.e., retrieval-based methods

and generation-based models. In specific, the compared models are as follows:

79



• Retrieve-Embedding [130]: It is a retrieval method based on similarity

scores calculated from embedding space. We measure the distance between

embeddings as the average of cosine similarity, Jaccard distance and Euclidean

distance. At test time, candidates whose context embedding is closer to the test

context embedding are ranked higher. Similar approaches have been adopted

extensively on response retrieval task.

• Retrieve-Feature [84]: It is a retrieval-based method where similarity

scores are calculated based on features. We adopt several linguistic features:

TF-IDF and three fuzzy string matching features, i.e., QRatio, WRatio, and

Partial ratio. We first use TF-IDF to select 1,000 candidates and rank them

with the fuzzy features. These fuzzy features are implemented with fuzzywuzzy

package.3 We denote this feature engineering approach as {Feature}. Similar

approaches have been demonstrated effectively on response retrieval task and

duplicate question detection task,4 such as [281].

• Retrieve-Rerank [130]: It is a two-stage method to encourage the retrieved

response to follow a certain criteria. In the first stage, a set of response can-

didates is retrieved using features, and then fed to the reranker in the second

stage. Based on the emotion class, the candidates are reranked and the one

with the highest rank is taken as the model output. Specifically, we compare

the emotion history of the test example with that of the candidate example,

and use the compared similarity as reranking feature. For example, if the test

emotion history is {happy,sad,other}, then the candidate response whose emo-

tion history is also (or similar to) {happy,sad,other} will be reranked higher.

• Enc2Dec [218, 190]: The basic cells in this model are all standard GRUs.

3https://github.com/seatgeek/fuzzywuzzy

4https://github.com/abhishekkrthakur/is_that_a_duplicate_quora_question
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Not that this bare-bones models is excluded with any history utterance, which

aims at demonstrating to what extend the performance will be achieved by a

standard Seq2Seq conversational agents without knowledge.

• Enc2Dec-Attn [8]: It is a standard encoder-decoder approach with the

widely-adopted attention mechanism. The encoder and decoder in this models

are set as GRUs [33] for fair comparison. Note that neither history utterances,

nor extra knowledge is incorporated. This model plays a role of benchmarking

the performance of Seq2Seq conversational models without knowledge.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

• VHRED [189]: This model enhances the capability of hierarchical conversa-

tional models by including a latent variable to allow more variations in response

generation.

We re-implement the aforementioned compared models using TensorFlow [1]. For

fair comparison, the vocabulary sizes in all the experiments are set as 25,000, where

the out-of-vocabulary (OOV) words are replaced with to a special token UNK. The

word embedding size is set as 300. At first, word embeddings are initialized with

the Google Word2Vec embeddings.5 All low-level word-level encoders are defined

as 1-layer GRUs with 512 hidden neurons. The high-level context-level encoders

in HRED [208] and VHRED [189] are both 1-layer bidirectional GRUs with 1,024

hidden units. We set the minibatch size to 128, and set the learning rate as a fixed

number of 0.0002. Adam optimizer [92] is adopted for model training.

5ttps://code.google.com/archive/p/word2vec/
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Evaluation Metrics

In order to systematically compare the model performances, we use two widely-

adopted automatic metrics to assess responses produced by the models:

• BLEU-n: The N-gram based BLEU scores are proposed to indicate the over-

lapping degree between the generated responses and the ground-truth response [162];

• Dist-n: Since the distinct grams produced by the models stand for the infor-

mativeness of the responses, it is reasonable to devise a measurement based

on it to evaluate response quality. Typically, the Distinct-n scores stand for

the ratios for N-grams [101]. This metric has been widely used in works on

response generation [268, 265];

According to the research [119, 156], N-gram based scores like BLEU usually are

often inconsistent with human judgments when assessing dialogue models. In order

to complement the evaluation, we randomly pick up 100 test samples and perform

manual assessments on them. We train three annotators with linguistic background

and send the samples to them. To be fair, these annotators have no idea about

which model the test response belongs to. The annotators are asked to consider the

following 4 aspects when rating the generated response [106]:

• Relevance: This measures the relevance degree between the generated re-

sponse and the input utterances.

• Fluency: It assesses the grammar correctness and fluency of the generated

responses.

• Diversity: This judges the informativeness of the generated responses. If the

generated responses contain several repetitive pieces, they are considered as of

low diversity.
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• Emotion Appropriateness: This metric focuses on the emotion expressed in

the responses, and evaluate whether they are appropriate to the conversation

context.

The rating for each aspect is 3-scale, i.e., {1,2,3}. In specific, a response annotated

with 3 for the Fluency aspect means that it is perfectly clear and almost natural;

2 stands for artificial but understandable; 1 is the worst, which means that the

generated response is of nonsense. Obviously, the higher of the rating, the better is

the generated response.

4.4.3 Performance Evaluation

The experimental results are presented in Table 4.2. We first investigate the perfor-

mance of retrieval-based methods and the necessity of emotional integration. Since

the real response in the test set is not seen in the training set, we cannot use rank-

ing indicators such as Recall-k to evaluate performance. We also do not manually

evaluate the retrieved responses because they are all manually written. Instead, we

report BLEU-n and Distinct-1 scores obtained by retrieval-based methods. Based

on the score, the retrieval-based model in the first block (first three rows) usually

produces better results than the generation-based model (the last five rows). Among

them, Retrieve-Feature performs the best, which shows that linguistic features

are good at capturing semantic similarities. Moreover, Retrieve-Rerank achieves

the higher BLEU-2 and BlEU-3 scores than Retrieve-Embedding in the evaluation.

Since Retrieve-Rerank model contains emotion information in the re-ranking

stage, the experimental results partially verify the benefit of emotion information in

conversation modeling.

However, the BLEU-n scores are calculated based on the overlapping degree on

the word-level, which do not fully guarantee that the response is suitable for the

context of the conversation. Therefore, we also evaluate the performance of retrieval-
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based methods by calculating the percentage of “Equivalence” between the emotion

label of the retrieved response and that of the real answer. The results are reported

in Table 4.3. Although minor improvements can be seen when using the emotion

information, we believe that it is not a strong evaluation indicator, because it still

cannot be concluded that the higher the “Equivalence” percentage, the better the

retrieved response is.

Table 4.3: Percentage (%) of Emotion “Equivalence” by Retrieval Approaches.

Embedding Feature Rerank

Emotion 69.2 73.7 74.6

Then, we examine the performance of generation-based methods and study their

effectiveness in using emotion information. The compared generation-based methods

can be divided into two categories. The models in the second block (the fourth row

to the sixth row) are generative models without any latent variables, and the third

block (the last two rows) consists of generation models with additional latent vari-

able. Generally, the performance of those models without latent variables are worse

than the model with latent variables. Among the three models in the second block,

HRED has the highest BLEU score because it considers history information. When

examining the Distinct-1 and Diversity scores achieved by Enc2Dec, Enc2Dec-

Attn and HRED, it is obvious that these models tend to produce universal and

boring responses [101, 150] such as “I don’t know”, which is generally related to most

input utterances. These findings are consistent with previous work and prove the

necessity of considering more information when developing conversational models.

By examining the last two rows in Table 4.2, we can see that VHRED and the

proposed SPHRED are the best two models. Even more, the scores achieved by

SPHRED is the closest to the best scores achieved by Retrieve-Feature, sug-

gesting the high-quality of the responses generated by SPHRED. To analyze deeper,
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we compare SPHRED with VHRED. Although they are similar in the way of captur-

ing history utterances, the proposed SPHRED differs VHRED in that: (1) SPHRED

utilizes emotion information as an extra label to guide the variable learning, and the

learned variable is more meaningful; (2) SPHRED separates the single-line context

RNN into two independent parts, which leads to a better context representation. It

is also worth mentioning that the size of the hidden states of the context RNN in

SPHRED is only half of that in HRED, but SPHRED still yields better performances

with fewer parameters. Hence it is reasonable to apply this context information to

our framework. In the next subsection, we will investigate on the effectiveness of

SPHRED through case studies and ablated experiments.

4.4.4 Analysis

Case Study

In dialogue response generation, word-level overlap metrics such as BLEU-n scores

are inadequate to well evaluate the performane of dialogue models [120]. To provide

insights on whether emotion information is beneficial, and how it works in the com-

pared models, we firstly conduct a case study using retrieval methods, and presents

the results in Table 4.4.

Table 4.4: Case Study of Retrieve-based Approaches.

Test Context

U1: No way... You can’t keep it. (1)
U2: Please...it’s so cute and tame. (0)
U3: All right. But you have to... (0)

Retrieved Response

Ground-truth: I will. Thank you, Mummy.
Retrieve-Feature: Is there somewhere you wanted to go eat at?
Retrieve-Rerank: Now we get along very well. It makes me feel...

We present an example in Table 4.4 to illustrate how emotion improves the quality
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of the retrieved responses. Given that the emotion labels in the test context (U1,

U2 & U3) of {1, 0, 0}, which means {Anger, Others, Others}, the most appropriate

responses retrieved from the emotion-based reranking approach is that “Now we get

along very well. It makes me feel that I’m someone special.” The context history

for this response is “oh, really? so you just took home a stray cat? // Yes. It

was starving and looking for something to eat when I saw it. // Poor cat.” whose

emotion history is {6, 0, 0}, which means {Surprise, Others, Others}.

Ablated Experiment

In the next part of experiments, we aim to examine the effectiveness of the proposed

approach in emotion utilization. Since there are potential ways to incorporate emo-

tion information into neural generative models, we compare the proposed SPHRED

with several variants. They are:

• EncDec-Emo: We follow [312] to incorporate the label information during

decoding. The emotion label is characterized as an one-hot vector. We denote

the label-enhanced approaches as {-Emo}.

• HRED-Emo: This variant is similar with EncDec-Emo where the base model

is HRED.

• VHRED-Emo: Based on the standard VHRED, emotion information is treated

as an extra vector concatenated into decoder states as HRED-Emo does.

• VHRED-Emo+: In this version, both emotion and stochastic variable are

taken into consideration. The only difference between this version and the

proposed SPHRED is that the base context representation is a single HRED. In

other words, this compared model is a simplification of the proposed SPHRED

without consideration of speaker uniqueness.
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• SPHRED: The proposed full model comprises both speaker and emotion char-

acteristics of conversations.

We also evaluate the models using both automatic and human metrics, and

present the results in Table 4.5.

Table 4.5: Ablation Studies.

BLEU-1 BLEU-2 BLEU-3 Rel. Flu. Divers. Appr.

EncDec-Emo 0.379 0.156 0.018 1.52 1.45 1.54 1.77

HRED-Emo 0.431 0.193 0.016 1.77 1.59 1.76 1.93

VHRED-Emo 0.396 0.174 0.019 1.83 1.44 1.77 1.72

VHRED-Emo+ 0.437 0.192 0.018 1.88 1.62 1.81 2.02

SPHRED 0.443 0.198 0.021 2.11 1.72 1.91 2.06

By comparing the scores in Table 4.2 and Table 4.5, we can see that introducing

emotion information into generation models brings in improvements over EncDec and

HRED, but impacts the performance of VHRED. Apparently, VHRED differs from

EncDec and HRED in that it owns an extra latent variable. We thus conjecture that

the reason behind the performance drop of VHRED-Emo lies in the combination of

latent variable and emotion label.

To further analyze the reason, we compare VHRED, VHRED-Emo and VHRED-

Emo+. From Table 4.5 we can see that VHRED-Emo lags from VHRED, while

VHRED-Emo+ outperforms the standard VHRED. Among these three models, VHRED

only has the latent variable, and VHRED-Emo incorporates the emotion label into

decoder states without any control over the latent variable, whereas VHRED-Emo+

regulates the latent variable using the emotion information. It is indicated that,

simply concatenating extra information with decoder states will sometimes harm the

performance. Without any control, the latent variable is confused during the learn-

ing especially when an extra emotion information is injected. On the contrary, the
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regulation over the latent variable helps yield the performance boost from VHRED

and VHRED-Emo+.

The analysis above gives us another hint that, it is instrumental to guide the

latent variable learning in varitional models. The guidance from the emotion label in

SPHRED is the key to the success of SPHRED. Another contributing component

in SPHRED is the separate context representation for each speaker. The best scores

yield by SPHRED in Table 4.5 demonstrates that SPHRED not only well keeps

individual features, but also provides a better holistic representation for the response

decoder than other compared models. To complementary, we also provide some

generated responses in Table 4.6.

Table 4.6: Case Study of Generation-based Approaches.

Test Context

U1: I have to check out today. I’d like my bill ready by 10 in morning.
U2: You can be sure of that, sir .

Generated Response

Ground-truth: Thank you.
HRED-Emo: all right, sir.
VHRED-Emo: here you are.
VHRED-Emo+: okay, fine.
SPHRED: how long will it take to get there?

4.5 Chapter Summary

In this chapter, we propose to inject emotion information into open-domain chatbots

and examine its benefit for conversation modeling. To verify the proposal, We de-

vise a conditional variational framework for controlled dialogue response generation

namely SPHRED. Our framework is novel in that: (1) It models the dialog states

for the two speakers separately; and (2) it utilizes information label, i.e., emotion

to guide the variable learning. In order to evaluate the effectiveness of the proposed
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model SPHRED, we also curate a novel conversation dataset DailyDialog, which is

high-quality, multi-turn and manually labeled. The dialogues in the dataset cover

totally ten topics and it is rich in emotion. The evaluation results on DailyDialog

are indicative: (1) Emotion information in beneficial for both retrieval-based and

generation-based conversation models. (2) When introducing emotion information

into varional-based models, it should be cautious to control the variable learning. (3)

SPHRED is effective in leveraging emotion information to guide the latent variable

for conditional response generation.

The proposed SPHRED is also flexible to be applied in real-world scenarios. We

only need to adapt the classifier to detect other information, for example, conversa-

tion topic, which we leave for future research. External models can also be used for

detecting generic responses or classifying emotion categories. In this work, we focus

on the controlling ability of our framework. Future research can also experiment

with bringing external knowledge to improve the overall quality of the generated

responses. Besides, it is also promising to utilize the topic information in DailyDi-

alog dataset by domain adaptation and transfer learning. The proposed dataset is

available on http://yanran.li/dailydialog, and has been included in the popular

huggingface NLP platform as an benchmark conversation dataset.6 We hope it is

beneficial for future research in this field.

6https://github.com/huggingface/datasets/pull/556
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Part II

Conversation-level Coherence
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Chapter 5

Knowledge Incorporation for

Conversation-level Coherence

5.1 Introduction

In order to generate meaningful responses, social chatbots need to understand the

knowledge related to the conversation. Past work has endowed chatbots the ability

of entity reasoning mechanism, that is, the ability to refer to the knowledge base

(KB) to mention appropriate entities when generating responses [322, 111, 122]. To

ensure response quality, it is reasonable that the generated entities should be relevant

in terms of semantics and coherent in terms of conversation flow.

Generally speaking, conversation flow is the effortless progression of ideas and

responses in a conversation. A natural exchange of inspiration occurs making for a

smooth and comfortable experience. In other words, conversation flow happens when

conversation is comfortable, effortless and smooth. It is the way conversations are

supposed to work. When previous conversation had concentrated more on the actors

of a movie, it would be sudden to mention the movie’s writer without a smooth

transition. Rather, it would be more coherent if the chatbots continue and elaborate

more about the actors, and smoothly transit towards other actor-related things. To

this end, conversation flow can be reflected by the logic as the conversation goes.
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Figure 5.1: A Conversation Example With Meta-Path.

In this chapter, we aim to explore methods of improving the conversation-level co-

herence for knowledge-grounded social chatbots. Specifically, we propose to capture

the conversation-level coherence through modeling conversation flow. For knowledge-

grounded chatbots, the conversation flow is often greatly reflected by the discussion

focus, i.e., the entities mentioned during the conversations. Inspired by [44], we

model conversation flow by leveraging the meta-paths formed by the entity men-

tions. A general meta-path is defined as a sequence of object types representing a

relationship with the particular semantics. In our case, an example meta-path of

mentioned entities could be actorÑfilmÑfilm. To better illustrate how meta-path

is indicative for conversation flow, we present a conversation example on Leonardo

DiCaprio in Figure 5.1. Linking the mentions to to the equipped KB enables us to

map the mentions into their object types, i.e., Titanic ÞÑ type film. We then follow

the original order in the conversation to connect the acquired types, resulting in the

meta-path film Ñ film Ñ film. As a result, this conversation example with 3 speaker

turns contain a meta-path of {F Ñ F Ñ F}, which are implied in the brackets. By

using meta-paths, the relationship between two films can be described as film Ñ

actor Ñ film (FAF) and film Ñ director Ñ film (FDF), where FAF denotes the

movies starring the same actor, and FDF denotes the movies directed by the same

director.

Because the meta-path information can be treated as a strong indicator of con-

versation flow, it is intuitive to generate responses and mention the entities following

the meta-path to enhance conversation-level coherence. Therefore, we propose a

chatbot Mocha, which is Meta-path augmented KnOwledge-grounded CHAtbot.
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Equipped with an external knowledge base, Mocha begins by detecting relevant

knowledge related to the conversation contexts. Then, Mocha uses the collected

knowledge to understand the conversation context and generates responses with the

help of entity candidates. In specific, the encoder transforms the input utterance(s)

into an attribute-aware context vector. And the decoder is enhanced with copying

mechanism [232] to determine when to copy an entity, and decide which candidate

entity to be generated using the newly introduced meta-path information. In par-

ticular, 10 most high-frequent meta-paths are defined according to the conversation

data, and are then encoded into vectors for model use. Afterwards, Mocha firstly

compares the context vector with each of the learned meta-path vectors, and then

selects the candidate entity(s) that complies with the most similar meta-path. Our

main contributions are highlighted as follows:

• We propose to model conversation-level coherence by taking into account con-

versation flow for chatbots, and leverage meta-path information of entity men-

tions to model conversation flow.

• We augment the knowledge-aware chatbot with meta-path information, and

endow it with the awareness of conversation flow information to better capture

the conversation-level coherence.

• On two movie conversation corpus, our Mocha significantly outperforms the

compared models and demonstrates the effectiveness of capturing conversation

flow through case studies.

• To the best of our knowledge, our work is the first to explore meta-path infor-

mation in social chatbots.

This chapter is structured as follows. Section 5.2 introduces related work on

conversation-level knowledge and meta-path embedding. Section 5.3 presents the
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proposed methods on improving conversation-level response coherence. The exper-

imental results and analysis are given in Section 5.4. At last, we summarize this

chapter in Section 5.5.

5.2 Related Work on Meta-path and Coherence

Evaluation

5.2.1 Meta-path Embedding

Meta-path describes how two nodes in a graph are connected via different types of

paths [217]. The measurements or indicators based on the meta-path information in

information networks are corresponding to the traditional features. As such, these

meta-path based indicators are also potentially beneficial for mining features. The

initial attempt along this research area proposes the idea of leveraging meta-path for

similarity search. The core is to define the semantic dependencies among different

objects, which form meaningful features to the given task. Following this idea, [217]

proposes PathSim and compares this newly introduced measure with traditional

ones based on random walks. The results clearly show that the meta-path based

measure PathSim often yield better performances for the task of finding similar

objects in the networks. Another appealing task in the real-world is detecting and

predicting the co-authorship relations. To perform the task by utilizing the meta-

path information, one can design the meta-paths in the network that are beneficial

for the relationship prediction, and learn the weights assigned to the features such as

nodes, edges and paths for better results. This idea is later verified by [215], where

the most indicative meta-paths are learned and pointed out. This demonstrates

that meta-path information is also interpretable when we want to explain the model

performances for relation prediction tasks.

In addition to utilizing meta-path for mining information network, [293, 294] em-
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ploy the meta-path information to in recommendation systems, where the nodes in

the meta-path are constructed by the entities like users and items, and the edges

linking the nodes are represented by the user-item consumption records. Based on

such correspondences, mainstream recommendation algorithms can be reformulated

in the perspective of meta-paths. The most commonly adopted algorithm, item-based

collabororative filtering can be represented by meta-paths where the paths capture

the user preferences and consumptions towards the items. The content-based recom-

mendation algorithms [164] are the similar. Likewise, it is also feasible to apply the

meta-path structure in the recently emergent social-aware recommendations [220].

To the best of our knowledge, our work is the first to explore meta-path in-

formation in social chatbots. In our work, we innovatatively utilize meta-path to

capture conversation flow, and develop a meta-path augmented chatbot to explore

how meta-path will be beneficial for improving the conversation-level coherence.

5.2.2 Coherence Evaluation

There exists a large body of work regarding different notions of coherence and defin-

ing coherence from different pespectives. Early approaches to dialogue coherence

modeling are built upon available models for monologue, such as the EntityGrid

model [11]. As for dialogue models, there are also different perspectives when assess-

ing coherence, such as dialogue act (DA) label coherence, topic and logic coherence.

For example, researchers define transition patterns among DA labels [50] associated

with utterances to measure coherence. This model restricts utterance vectors only

to entity mentions, and needs gold DA labels as its inputs for training as well as

evaluation. However, obtaining DA labels from human annotators is expensive and

using dialogue act prediction (DAP) models makes the performance of coherence

model dependent on the performance of DAP models.

In brief, most of these approaches require human annotated labels [226], which are
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difficult to obtain. Even though some of them did not require such labels, they rely on

extra resources, such as commonsense knowledge graph [45, 81]. To this end, instead

of directly adopting these evaluation metrics, we borrow and combine the ideas from

them. For knowledge-grounded models, we borrow the idea from EntityGrid [11],

and consider the entity semantic, entity transition and entity consistency coherence

at utterance, conversation and context level. For emotion-aware models, we borrow

the idea from DA coherence, and consider both conversation and context coherence

with respect to intentions.

5.3 Method

5.3.1 Preliminaries

In two-party human-computer conversational systems, chatbots interact with users

by returning proper responses. In particular, generation-based conversation models

cast the problem of response generation as a Seq2Seq learning problem.

Formally, conversation models take as input the combination of the current user

utterance uT and conversation histories tu1, ¨ ¨ ¨ ,uT´1u, where T is the turn number.

Each utterance in the conversation is a sequence of words, a.k.a. ut “ tx1, ¨ ¨ ¨ , xNtu.

Hence, chatbot is fed with a sequence of words x “ tx1, ¨ ¨ ¨ , xNxu, and is required

to generate a response y “ ty1, ¨ ¨ ¨ , yNyu, where Nx and Ny are the token numbers.

When there are multiple turns of previous utterances, the conversation is called

multi-round conversation.

Our task is to generate responses according to the user input utterance as well

as history utterances, and especially consider the scenario of multi-round response

generation. We propose a novel approach to equip the chatbot with topic-based

contextual knowledge by linking to a movie knowledge base (MKB) K. The core

is how to effectively utilize K in chatbots. Our approach firstly extracts from K
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Figure 5.2: Illustration of Meta-path Concepts.

the contextual knowledge specific to the input utterance x, including the discussion

attributes and the candidate entities, which are then represented as knowledge em-

beddings r and e. The attribute embeddings r are used when encoding the input

x to produce the conversation context representation, which is then passed to the

decoder for response generation. Ideally, a human-like and intelligent chatbot should

be aware of multi-round conversation histories, in order to sustain a smooth and nat-

ural conversation. The smoothness and naturalness of a conversation can be assessed

by the conversation flow. In this chapter, we capture conversation flow by leveraging

meta-path information of an equipped KB.

5.3.2 Meta-Path

Formally, we denote the set of entity types as A, and then denote a meta-path P

as A1ÑA2Ñ. . .ÑAL`1, which represents a particular semantic relationship between

types A1 and AL`1, where L is the path length. Giving a meta-path P , there exist

multiple specific paths under the meta-path, which is called a path instance denoted
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by P .

The illustration of meta-path is shown in Figure 5.2. Take a typical movie knowl-

edge base (KB) for example. There are: (a) nodes with three different types, i.e.,

actor/actress, movie, and director; (b) a heterogeneous network where the edges with

two types are formed by nodes with three types; (c) two meta-paths defined on the

KB, i.e., {MovieÑActorÑMovie} and {MovieÑDirectorÑMovie}.

In addition to pointing out the meta-paths we are interested in, we also need

to consider how to quantify the connection between two objects following a given

meta-path. Typically, we can use the number of path count, random walk-based

measures, or PathSim [217].

Traditionally, the concept of meta-path is introduced to model heterogeneous

information networks [216]. A meta-path is defined as a sequence capturing the

proximity over its starting and ending nodes. From the perspective of semantic rela-

tionships, meta-paths can be interpreted as particular semantics over heterogeneous

networks, which permits the researchers to apply meta-path based approaches for

real-world network applications.

To the best of our knowledge, our work is the initial attempt to leverage meta-

path information to capture conversation coherence for knowledge-aware chatbots.

To do so, we observe the conversation data and calculate 10 most high-frequent

meta-paths. Each meta-path is formed by 3 connected entity types in their original

order during the course of the conversations. In other words, the length of the meta-

path we define is 2. Denoting that M (Movie), D (director), and A (actor), the 10

meta-paths we finally regard are present as follows:

• M Ñ M Ñ M

• M Ñ A Ñ A

• M Ñ D Ñ M
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• D Ñ M Ñ M

• D Ñ M Ñ D

• D Ñ D Ñ D

• D Ñ A Ñ A

• A Ñ A Ñ A

• A Ñ F Ñ A

• A Ñ M Ñ M

5.3.3 Meta-path Embeddings

After defining these meta-paths, we need to represent the meta-paths in dense forms

for model use. Since meta-path is symbolic by nature, the initial step is to generate

path instances that are able to capture both the semantic and structural correlations

between different types of nodes. To effectively transform the structure of heteroge-

neous network into skip-gram, however, there is a critical issue that heterogeneous

random walks are biased to: (1) high-frequent types of nodes that are prevalent in all

counted paths; and (2) centering nodes who are dominant a large amount of paths

but are only small-sized in the whole network [217].

To alleviate the issue, [44] proposes the heterogeneous model metapath2vec, which

injects the structures of heterogeneous network structure into skip-gram, and con-

ducts random walks on the heterogeneous networks based on the newly introduced

meta-path information. Similar with the way in skip-gram, metapath2vec regards

the nodes with different types as the same, and models distribution of the node

frequency without taken into consideration the node types. By this way, the devel-

oped meta-path based strategy guarantees the feasibility of incorporating the nodes
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with different types into skip-gram model while maintaining the semantic structures

among the networks.

Following [44], we generate multiple instances for each path and obtain the in-

stance embeddings using a Gated Recurrent Unit [32]. Because there are a number

of valid instances for each 2-length meta-path, the instance embeddings are further

pooled into a unified vector. Finally, each meta-path is associated with a continuous

vector pm, where @m P t1, . . . , 10u.

5.3.4 Meta-path Augmented Chatbot

After acquiring the meta-path representations in the previous steps, we are now able

to augment the knowledge-grounded chatbot with meta-path information, in order

to utilize the conversation flow information encoded in the meta-paths. Equipped

with an external knowledge base, the augmented chatbot Mocha consists of three

main components:

• An entity collector that retrieves the relevant knowledge from the large KB

pool, and prepares the retrieved knowledge for chatbot’s later use.

• A context encoder that comprehends conversation context, and represents the

context information into dense vectors for decoder’s initialization.

• A meta-path augmented decoder that conducts reasoning on the retrieved

knowledge and generates the final knowledge-informative response.

Below, we will present each component in detail.

Entity Collector

Given a conversation, Mocha collects a set of contextual entities E through link-

ing the mentions to the KB. Generally, the knowledge in KBs are stored as triples

teh, r, etu, where the entities eh and et are connected by the attribute r. Although
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there exist numerous facts, the knowledge related to the conversation and necessary

to the response generation is limited.

We recognize the entities mentions in a conversation and link them to the KB

by [194]. The detected entities are then expanded to form a larger set of entity can-

didates, in order to facilate larger scope of conversation. Specifically, we follow [111]

and regard the detected entities as seeds at the very beginning. Based on the seeds,

we collect the neighboring entities within 2-hops. As a result, the candidate set

consists of both detected entity mentions as well as their neighbors.

More specifically, we identify the discussion attributes and select candidate en-

tities from K. Four kinds of entities are candidate entities useful for generating

responses: the topic film eτ , the entities explicitly mentioned in the input ex, the

entities implicitly mentioned êx, and those entities that are new to the input. The

last kind of entities, which are denoted as er, can be selected based on the detected

attributes. In the example, the attribute cast 4 helps select the new entity Spot-

light. We recognize ex by using string matching techniques. However, there often

exist multiple mentions for the same entity. To address the coreference problem,

we build entity alias dictionaries based on the attribute alias to improve matching

quality. êx and er are selected based on the detected attributes r. As a result, the

candidate entities e “ teτ , ex, êx, eru is formed. We limit the maximum number of it

to 10.

The extracted attributes and selected entities are contextual knowledge to supple-

ment the chatbot to respond to the input. However, to use them as discrete features

is prone for generalization. To tackle this, we apply TransE [17] to transform K into

knowledge graph embeddings. By retrieving the corresponding embeddings, we can

acquire the distributed representations for the extracted attributes and entities as

r and e, respectively. These knowledge embeddings are then fed to the encoder to

enhance the input representation and to the decoder to generate engaging responses.
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Briefly speaking, the entity collector shortlists a candidate set of contextual enti-

ties E. To faciliate the generalization of the model, we apply TransE [17] to encode

the discrete-formed candidates into continuous-valued vectors, denoted as en, where

@n P t1, ¨ ¨ ¨ , Neu. When generating responses, these entity embeddings are used to

facilitate entity-aware response generation in the decoder.

Context Encoder

To understand the user input utterance x, we embed utterance tokens using an

utterance encoder, and then employ the contextual knowledge collected before to

enrich the representation obtained through the encoder.

Typically, we adopt a special variant of RNNs, Gated Recurrent Unit (GRU) [32]

as the encoder basis. The GRU cell is formed up by two gates, the update gate gzt and

the reset gate grt . In order to consume the information from both directions of the

utterance sequences, we use the Bi-directional GRUs, which are indeed two GRUs

combined together. One GRU looks forward and the other one looks backward. As a

result, each hidden state is concatenated by the representations from both directions,

i.e., ht “ r
ÐÝ
ht,
ÝÑ
hts.

To follow the underlying logic of the discussion, we propose to form the context

representation based on the detected attributes. Typically, we use an attribute-based

attention mechanism [8] to measure the semantic relevance between the utterance

hidden states and the detected attributes. The attribute-attention weights are com-

puted as:

αt „ expphTt War̄q (5.1)

r̄ “
1

n

n
ÿ

i“1

ri

where Wa is an intermediate matrix to be learned. Combined with the learned

attention, the final context representation m “ αtht, which is then fed to the decoder.
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Figure 5.3: Meta-path Augmented Entity-aware Decoder.

Entity-aware Decoder

The last step is to properly respond by using the candidate entities related to the

attributes. These candidate entities benefit the response generation when referring

is needed.

We augment the decoder with a pointer switch gentt to realize the entity-aware

generation. The gating variable gentt [232] decides whether to generate an entity using

pent or to omit a general word using pgru. The gate gentt is trained on:

gentt “ σpWgstq

At each time step t, the pointer gentt operates like a gate and determines whether

to generate a token from the candidate entities or not. When it does, the decoder

calculates the probability over the candidate entities to select which one to be men-

tioned.

At the heart of our Mocha is how to utilize meta-path information for modeling

conversation-level coherence. As shown in Figure 5.3, when the gate is “open”, the

decoder conducts entity reasoning by taking into account the meta-path information.

It firstly approximates how close each meta-path pm is to the context ht, and obtain

104



the attention weights αt as:

αt „ exppPWphtq

where P is the matrix consisting of the meta-path vectors pm. And, Wp is a learnable

matrix that transforms the hidden representations. Then, we apply another attention

mechanism on en and obtain the corresponding weights βt. Intuitively, the generated

entity should belong to the ending type (A3) in the attended meta-paths. To do so,

we align the entity weights with their corresponding path weights, and multiply the

two weights as the output probability. Finally, the decoder generates a candidate

entity by:

pentpyt|ht,P,Eq “

#

αtiβtj, if yt “ ej and ej ÞÑ Ai

0, otherwise

Note that since the meta-path vectors pm is formed using metapath2vec [44] method

by aggregating information from the constitute entity instances, they share the same

representation space with the candidate entities en. Hence, the multiplication of

the two vectors obtained from the above equation indicates the similarity degree of

the meta-path and the entity candidate. The higher the similarity, the better the

coherence will be achieved after choosing the entity candidate.

When referring is needed, the decoder directly copies the entity with the highest

probability. In this way, the generated response is expected to follow the conver-

sation flow by approximating the context representation ht with both meta-path

information and candidate entities.
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5.4 Experiments

5.4.1 Datasets

We examine the proposed approach on two movie conversation corpus. The first

corpus we adopt is a publicly available knowledge-driven dialog dataset, DuConv,1

a carefully-crowdsourced conversation dataset. DuConv [260] is a proactive con-

versation dataset with 29,858 dialogues and 270,399 utterances. The dialogues are

crowd-sourced and formed under a specific requirement. In the two-party conversa-

tion, one crowd-sourcer is asked to mainly play the role of a leading player assigned

with an explicit goal, a knowledge path comprised of two topics, and is provided with

knowledge related to these two topics. The knowledge in this dataset is a format of

the triplet {subject, property, object}, which totally contains about 144k entities and

45 properties. We randomly split the dataset by 8:1:1 into training/development/test

set.

In addition to this carefully-curated corpus, we also validate the proposed ap-

proach on another real-world conversation corpus, Bili-film [111], which is collected

from Bilibili, a Reddit-like Chinese movie discussion platform.2 Although there are

other datasets or social platforms, they are either QA-formed or the discussions are

too verbose to distill knowledge. Rather, the conversations on BiliBili are more

suitable.

To provide external knowledge, we build a movie KB K based on zhishi.me [155],

a Chinese knowledge base with the largest knowledge coverage in movie domain.

There are five types of entities in K, i.e., film, director, actor(actress), writer, and

genre. We randomly split the corpus by 8:1:1. Finally, 10,000 conversations are used

for training, 1,530 for validation, and 1000 for testing. The statistics of DuConv

1https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/

ACL2019-DuConv

2https://www.bilibili.com/v/cinephile/
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Table 5.1: Statistics of Corpus DuConv and Bili-film.

Dataset DuConv Bili-film

Total Number of Conversations 29,858 12,530

Total Number of Utterance 270,399 38,467

Average Number of Speaker Turns 9.1 3.6

Average Number of Tokens Per Turn 10.6 27.8

Number of Covered Movies 91,874 187

Number of Covered Movie Stars 51,753 248

Number of Unique Entities Per Conversation 9.3 3.1

and our Bili-film corpus are presented in Table 5.1.

5.4.2 Experimental Setup

For each conversation, we use special symbols “$u” and “$s” respectively for two

speakers and place them at the beginning of each utterance. We use Jieba3 for word

segmentation. Following prior work, we construct our KB, collect the candidates and

implement the models as described in Chapter 3.

Compared Models

In order to examine whether the proposed approach is effective, we compare our

approach with the following state-of-the-art models:

• Attn-Enc-Dec [8]: It is a standard encoder-decoder approach with the widely-

adopted attention mechanism. The encoder and decoder in this models are set

as GRUs [33] for fair comparison. Note that neither history utterances, nor

extra knowledge is incorporated. We choose this bare-bones model to demon-

strate to what extend the performance will be achieved by a standard Seq2Seq

conversational model without knowledge.

3https://github.com/fxsjy/jieba
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• Concat-Enc-Dec [209]: It is a extension of Attn-Enc-Dec where history

utterances are concatenated along with the current input, and still without

background knowledge.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

• Fact-Enc-Dec [54]: This is a knowledge-grounded model that consumes tex-

tual “facts” related to the input. To fit it into our scenario, we use the films’

one-sentence descriptions as the textual facts. By comparing with it, we aim

to distinguish the effects between utilizing unstructured and structured knowl-

edge.

• KB-Lstm [282]: It identifies the knowledge related to the conversation and en-

codes the knowledge into conversation representation, which is similar with our

idea. Differently, KB-LSTM only encodes the entities explicitly mentioned in

the input utterance, and incorporates the entity encodings using concatenation

operation in the encoder. On the contrary, we feed the context-relevant entities

to the decoder for reasoning in response generation while our encoder takes the

attribute information into account.

• KB-Lstm+: We improve the above KB-LSTM model by also incorporating

the attribute information into the corresponding encoder. This is assumed to

inject more knowledge implicitly and thus expand its knowledge scope. We

denote this enhanced version as KB-Lstm+.

• GenDS [322]: It is the most similar approach to ours as it also ranks candidate

entities collected from the retrieved facts to facilitate entity-aware response

generation. The difference is that GenDS lacks explicit mechanism to consider

coherence factors.
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• Mike: The proposed model in Chapter 3.

5.4.3 Performance Evaluation

The comparison results of our proposed model and baselines on two datasets are

reported in Table 5.2 and Table 5.3. First of all, we can see that the BLEU scores

on DuConv are often lower than those on Bili-Film. It is due to the linguis-

tic differences of between these two datasets. From Table 5.1, it is obvious that

the conversations in DuConv are longer than those in Bili-Film, which hinders

neural generative models to extract meaningful semantics and obstacles them from

producing high-quality responses.

Nevertheless, the model performances are shown similar on these two datasets.

The models without extra knowledge (the first block) perform the worst on both

datasets, and lag far from knowledge-grounded models (the models in the last two

blocks). This finding supports our motivation to incorporate knowledge informa-

tion into conversation models, which assists chatbots to capture the conversation

semantics and in turn form a better reply.

When comparing the models in the second block (the fourth to sixth rows) with

those in the third block (the last three rows), we can find that the way to utilize extra

knowledge is essentially influential for the chatbot performance. Obviously, Fact-

Enc-Dec is the most disappointing one among the models equipped with external

knowledge. It is because Fact-Enc-Dec utilizes knowledge described in unstruc-

tured text, i.e., Titanic stars Leonardo as.... Its disappointing performance suggest

that it is more effective to inject structural knowledge into Seq2Seq models. Despite

of utilizing structural knowledge, KB-Lstm, KB-Lstm+ still generate less satis-

factory responses, as indicated by the BLEU-n, Distinct-n and entity-related scores

they obtain. While both KB-Lstm+ and KB-Lstm+ employ attribute and entity

information, KB-Lstm+ results in negligible improvement (and even decrease) over
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the original KB-Lstm.

Remarkably, the three models in the last block, i.e., GenDS, Mike and the

proposed Mocha win a lot. They three share the same architecture of the decoder

and the main difference is how they utilize knowledge in context understanding and

entity reasoning. The major findings from the comparison among they three are

summarized as follows.

GenDS is the worst among the three models. Different from Mike, GenDS

retrieves entities by matching the fact triples in the KB with the entities explicitly

mentioned in the conversation utterances. In such unfiltered way, their candidate set

might include noisy entities that are too tangential to the conversation context. As

a result, GenDS has larger possibilities of attending on wrong, peripheral entities,

and then generates unintelligible responses.

On the contrary, Mike accesses to new entities Er linked by the detected at-

tributes. The detected attributes will bias the entity expansion to collect implicit

but material entities that closely related to the conversation. This novel strategy

enables Mike to expand the conversation scope, and meanwhile limits the candidate

set in a reasonable range.

Our meta-path augmented chatbot Mocha is consistently better than all the

baselines (or achieve the same scores) on the two datasets. The experimental results

indicate the effectiveness of Mocha on open-domain response generation, which

adopts a comprehensive way to leverage conversation-level information for improving

response coherence. By comparing Mocha with Mike, we can find that the overall

performance achieved by Mocha outperforms Mike, the chatbot developed in the

previous chapter. The results show the hierarchical reasoning mechanism is able to

successfully utilize the meta-path based context for response generation. Since the

importance of each meta-path depends on the context similarity, meta-paths provide

beneficial information for the conversation flow among previous utterances, which
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has a potential influence on the generated responses.

5.4.4 Analysis

The motivation of this work is to improve conversation-level coherence for response

generation. Since conversation flow is formulated as meta-path in this work, we

present further analysis to investigate whether conversation flows smoothly by using

the proposed method. To do so, we conduct case study and interpret the results

vividly.

To give a comprehensive understanding, we sample some generated responses to

manually check the model results. In Table 5.4, underlined words are entities copied

or referred from the external KB, and input utterances are shorten due to limit space.

We translate the original conversation into English for better readability.

There are three sampled cases. In the first conversation, the topic film is The

Notebook, and the input utterances are focusing on several movies the actress has

starred in. After checking the responses, we can see that all the other four models

except Mocha fail to generate informative responses. Even GenDS produces the

relevant entity Rachel, the entity is the name of the actress. Since both the two

speakers are aware of who is the actress they are talking about (as mentioned in the

previous utterances), it is weird to repeat the actress name when the focus is the

actress’s films. Notably, the proposed Mocha successfully raises a new film starred

by the actress, i.e., La La Land. This example demonstrates that Mocha captures

a proper conversation flow based on the meta-path information extracted in the

conversation context, which is {Film Ñ Film Ñ Film}, a highly frequent meta-path

as defined on our dataset.

The second example is more interesting, which is a conversation on the film

Mermaid. Although the first three models still generate nothing but dull words,

we can see that both GenDS and Mocha produce two entities in one response
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utterance. In this case, both GenDS and Mocha generate informative responses.

When comparing them more carefully, it is obvious that the response generated by

GenDS is out of the topic as the entities mentioned by GenDS are less proper

to the conversation context. In contrast, the responses uttered by Mocha is more

coherent, which echoes the previously mentioned entity Zhixiang Luo.

We attribute the cause of the second case to the entity reasoning. At the first

glimpse, the entity Kung Fu is irrelevant to the topic film Mermaid, and Stephen

Chow does not star in the topic film Mermaid. Indeed, Stephen Chow is the director

of the topic film Mermaid who also directs the mentioned film Kung Fu. During

entity collection step, these two entities will be stored as candidates for response

generation. However, GenDS does not has complicated entity reasoning strategy

and thus simply select they two to form the final response. As a result, the responses

coherence is hampered. In contrast, entity reasoning in Mocha is more considerate.

By considering the meta-path information, Mocha filters out the irrelevant entities

because their entity types do not correlate with the context. As such, the response

generated by Mocha shares better conversation-level coherence. The case in the

last example is similar.

5.5 Chapter Summary

In this chapter, we investigate conversation-level coherence using extra knowledge

in the structure of meta-path. We propose a meta-path augmented chatbot called

Mocha. Built upon the framework Mike proposed in chapter 3, Mocha shares the

same knowledge collector and context encoder with Mike. The difference lies in the

decoder. Given a conversation, Mocha in this chapter conducts entity reasoning

over the pre-collected candidate entities based on the newly introduced meta-path

information. Particularly, we define 10 most popular meta-paths observed in our
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conversation data, and encode them into vectors using metapath2vec approach [44].

Specifically, when generating responses, Mocha firstly compares the context rep-

resentation with each of the meta-path vectors, and then attends on the candidate

entities that follow the most similar meta-path. Since meta-path information greatly

reflects the conversation flow, the responses generated by Mocha is expected to

be more coherent to the context. On two movie conversation corpus DuConv and

Bili-film, we empirically demonstrate the effectiveness of Mocha.

The major contribution of Mocha is the incorporation of meta-path information,

which takes the conversation flow into consideration and learn effective representa-

tions for response generation. Besides the performance improvement, another benefit

of the meta-path incorporation is that it makes the generated response highly inter-

pretable. Since meta-paths serve as important interaction context, the attention

weights provide explicit evidence to understand why the candidate entity(s) is se-

lected by the model. We further conduct case studies to reveal such interpretability.

To the best of our knowledge, our work is the first to explore meta-path information

in social chatbots.
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Chapter 6

Intention Incorporation for

Conversation-level Coherence

6.1 Introduction

Because social chatbots are designed to company users and sustain long, chit-chat

conversations, it is critical for them to ensure coherence when generating responses.

In other words, the responses should be appropriate according to the conversation

contexts, a.k.a. the previous utterances within the current session. The awareness

of what have been said will influence the chatbots’ behavior on how to respond in

the current turn. In conversation modeling, such behavior can be interpreted as a

kind of communication intention.

Previous approaches of modeling intention are often designed for task-oriented

dialogue systems. Moreover, they rely on specific annotation criteria to categorize the

utterances with explicit intention labels, e.g., dialog acts [39]. However, intentions in

social conversations are often complicated and implicit, which hinders the feasibility

of dialog acts in social chatbots. Alternatively, in this chapter, we consider two

primary factors to implicitly capture conversation-level intentions for social chatbots:

• The first factor is social coherence. Globally speaking, giving feedback on oth-

ers’ points will generate social coherence [90]. A chatbot enabling of responding
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Figure 6.1: A Motivating Example of Social and Individual Coherence.

w.r.t. social coherence will make users feel being well understood and thus fulfill

their social needs [200].

• As the conversation goes, the second factor is individual coherence. After global

considering others, a natural chatbot is also required to perform consistently

when defending or elaborating on its own points raised in earlier round(s).

Usually, these two types of intention factors are greatly influenced by the men-

tioned entities especially in social conversations. As illustrated in Figure 6.1, by

responding directly to what has just been mentioned by the user, i.e., Spotlight , the

chatbot exhibits the sense of social coherence. Individual coherence is revealed in

the late of the conversation where the chatbot sticks to its previous ideas about the

mentioned entity, i.e., Spotlight .

To incorporate these two intention factors, we develop an encoder-decoder archi-

tecture enhanced with an entity reasoning mechanism, i.e., the ability to mention

proper entities with reference to an associated knowledge base when generating re-

sponses. To encourage conversation-level response coherence, we propose to strategi-

cally model the aforementioned two factors. On the global level, social coherence is
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captured by inter-speaker interactions between two adjacent utterances using a novel

interaction unit. Then, individual coherence is handled by keeping two separate en-

tity memories for user and chatbot to ensure speaker consistency. By incorporating

these two factors from global to local, our chatbot, namely Cheer, is able to per-

form CoHErence-driven Entity-aware Response generation. Although coherence has

been considered crucial in theoretical conversation analysis [90], previous work on

social chatbots captured coherence implicitly by calculating the utterance similari-

ties [318, 141, 297], or based on RL techniques which are hard to train without good

supervision [273, 274]. To the best of our knowledge, we are the first to together

model social and individual coherence factors, and effectively incorporate them into

Seq2Seq conversation models without extra annotation.

We summarize our contributions as follows:

• We identify social coherence and individual coherence as two intention factors

in conversation modeling, which have been largely neglected before.

• We propose two carefully designed strategies to model and incorporate these

two kinds of coherence into multi-round response generation.

• On two real-world multi-round conversation datasets, we validate the effec-

tiveness of the proposed approach and demonstrate the necessity of intention

factors in coherence modeling.

The rest of this chapter is organized as follows. Section 6.2 surveys the previous

work on modeling intention for open-domain conversational agents. Section 6.3 de-

scribes the proposed method. Experiments and analysis are presented in Section 6.4.

Finally, we summarize this chapter in Section 6.5.

119



6.2 Related Work on Intention-aware Chatbots

Recognizing the importance of context to response coherence, researchers have pro-

posed a wide range of context-aware dialogue models. The easiest way is to use con-

catenation [127, 209, 113], pooling [209] or weighted combination [223] to integrate

history and current utterances as a whole input. A more sophisticated approach is

to use a hierarchical encoder by treating the dialogue as a two-level sequence, which

has been extended with high-level latent variables to capture the diversity in the

dialogue. [264] proposes Sequential Matching Network in which candidate responses

are first matched with each pronunciation in the context to accumulate final ranking

information. The similarity of [261] is that it uses a separate memory to model each

historical utterance, and then uses an additional RNN as a context memory to ac-

cumulate its information. However, the reasoning mechanism in [261] is inspired by

multi-hop reasoning in reading comprehension tasks and applied to the entire dis-

course. The difference is that our work suggests that the social coherence between

adjacent turns of w.r.t. and the personal coherence of the speaker’s turn are mainly

integrated into the entity reasoning in the response generation process.

Our work is also related to literature on modeling entities w.r.t. context. [97]

proposes to embed entities based on the local contexts of its previous occurrence.

Differently, [71] allocates extra blocks of hiddens as memories to track the contexts

of entities. While the memories used in their work only models entity implicitly

and are updated every timestep, [86] associates with each entity a dynamic repre-

sentation, which is updated only when an entity appears. Similarly, [284] clusters

entity mentions using coreference links and updates the entity states using the last

hidden states. Also related is [69] that represents structural knowledge in a dialogue

by constructing knowledge graphs whose nodes are updated when being mentioned

and being influenced by their neighbors. [313] and [122] combine factual embeddings
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with the encoder states, and augment the decoder with copying mechanism as that

in [322]. However, none of these approaches considers coherence for multi-round

open-domain conversations. Entity consistency has also been demonstrated vital in

task-oriented dialogue systems [173, 159]. Recent research points out the significance

of generating coherent questions in open-domain dialogue systems [242] and detects

identity fraud by asking derived questions [243]. Different from [132] that applies

discourse modeling to dialogue coherence, our work develops a global-to-local entity

reasoning approach enabling of capturing multi-turn coherence without linguistic

annotation. More recently, a few works adopt reinforcement learning to improve di-

alogue coherence by learning complicated policies [273, 274]. Our work differs with

them in at least three folds: (1) We focus on open-domain chatbots rather on a

specific information-seeking task; (2) We model multi-turn coherence without lin-

guistic annotation and identify two different coherence factors clearly; (3) Currently

our approach is trained with teacher forcing but is potentially compatible with RL

techniques, which we leave as future work.

6.3 Method

In this section, we describe the notation and framework of Cheer. The two strategies

developed for coherence modeling will be presented in the next section.

Formally, a chatbot generates a response y “ ty1, ¨ ¨ ¨ , yNyu according to the user

input x “ tx1, ¨ ¨ ¨ , xNxu, where Nx and Ny are the token numbers. For multi-round

conversation, the chatbot should also consider context information from the history

utterance(s) tu1, ¨ ¨ ¨ , uT u, where ut “ twt1 , ¨ ¨ ¨ , wtN u, and T is the total turn number

excluding the current input.

The proposed Cheer is a knowledge-grounded chatbot equipped with an as-

sociate knowledge base (KB) K. Built upon the encoder-decoder architecture, it
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Figure 6.2: Coherence-driven Response Generation via Entity Reasoning.

firstly transforms the input utterance x into context-aware representation, and then

conducts entity reasoning by properly referring to the set of pre-collected entities E.1

6.3.1 Preliminaries

Specifically, given a conversation equipped with a KB, Cheer models the conver-

sation context using a typical context encoder, which is widely adopted in existing

dialogue models. Given an utterance x, we embed its tokens using a special variant

of RNNs, bi-directional Gated Recurrent Unit (GRU) [32].2 In order to consume the

information from both directions of the utterance sequences, Bi-directional GRUs

are indeed two GRUs combined together. One GRU looks forward and the other one

looks backward. As a result, each hidden state is concatenated by the representations

from both directions, i.e., ht “ r
ÐÝ
ht,
ÝÑ
hts.

Based on our preliminary studies, we propose to enrich the representation using

the detected attributes to form a knowledge-aware context representation. As shown

in the left part of Figure 6.2, we use an attribute-based attention mechanism [8] to

1We will explain how to collect the entity candidates in the experiment section.

2For multi-round conversation, we concatenate C with x as a single, long utterance. As empirically
validated, using hierarchical context encoder did not bring in obvious improvements.
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measure the semantic relevance between the utterance hidden states and the detected

attributes. We compute the attribute-attention weights as:

αt „ expphtW1r̄q (6.1)

r̄ “
1

Nr

Nr
ÿ

m“1

rm

where W1 is a learned matrix. Combined with the learned attention, the final context

representation ct “ αtht is then fed to the response decoder. Intuitively, knowledge-

aware context modeling fuses the attribute information into the knowledge-aware

context representation, which allows the chatbot follow the underlying logic of the

conversation when generating the responses.

The core is to generate proper and informative response according to the user

input and the current conversation context. Commonly, response generation is im-

plemented by another GRU that takes as input the context representation ct and

the previously decoded token yt´1 to update its hidden state st [209]:

st “ GRUpst´1, rct; yt´1sq (6.2)

where r; s is the concatenation operator of the two vectors. Then, the decoder uses

the hidden state st and the context ct to predict the target word yt at the current

time step t through a softmax function:

pgrupyt|y1, ¨ ¨ ¨ , yt´1q “ fpyt´1, st´1, ctq

“ softmaxpWostq (6.3)

When referring is needed, response generation can benefit from the set of the

collected entities E by directly “copying” the most suitable entity from the set. To

achieve this, we augment the decoder with copying mechanism [64]:

ppyt|y1, ¨ ¨ ¨ , yt´1q “ gentt pentpyt|ht,Eq

` p1´ gentt qp
gru
pyt|yt´1, st,htq (6.4)
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where E is the matrix stacking the candidate entity embeddings en. The entity gate

gentt is trained to decide whether to select an entity using pent or to generate a word

from GRU language model using pgru. When the entity gate gentt is “open”, the

chatbot needs to reason which entity(s) is the most proper one(s) to be selected. We

regard this problem as entity reasoning, and present our solution in the following

subsection.

6.3.2 Social Coherence and Individual Coherence

To sustain conversations, the selected entity(s) should not be only relevant, but

also coherent regarding the current conversation context. In this part, we elaborate

our designs for modeling the two coherence factors, and integrate them into entity

reasoning from global-to-local for coherence-driven response generation, which is

illustrated briefly in Figure 6.2.

Entity reasoning relies heavily on the understanding of the conversation context.

However, the context representation ht obtained above is assumed to capture the

general word-level semantics of the conversation, which lacks crucial information for

response coherence.

To supplement word-level semantics with more information, we propose to ex-

plicitly capture the two primary factors: social coherence and individual coherence.

Social coherence is captured by the inter-speaker interaction between a pair of two

adjacent utterances, which puts global effect on how the conversation moves. For-

mally, we compute the interaction of a pair of two utterances in the successive turns,

i.e., uT´1 and uT using an interaction function f :

dT “ fpuT´1,uT q (6.5)

One plausible way is to re-use the representations obtained by the context en-

coder described in the previous section, i.e., ut “ ct and compute the word-by-word
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Figure 6.3: Social Coherence By Interaction Encoder.

interaction by alignment:

dTij “ W2pru
T´1
i ; uTj sq ` b (6.6)

However, as shown in our experiments, the features learned in this way is not

desirable, as they have already been composed by RNNs, resulting in a kind of

“leveling effect” on the high-level semantics. In other words, the semantics in ui

and uj carried by RNNs along all previous timesteps are too similar to be used as

interaction features. Similar discussions are referred by [228].

Alternatively, we introduce an interaction unit which computes the interaction

between the last two consecutive utterances based on their self-attentive representa-

tions. As depicted in Figure 6.3, our interaction unit takes as input one utterance

represented in the word embedding space, uT “ tw1, ¨ ¨ ¨ ,wl
uT
u. To capture the se-

mantics from the local context, a self-attention layer on each word pair is computed

similar as standard attention [8]:

v “W3prwi; wj; wi ˝wjsq ` b (6.7)

δ “softmaxpmaxjvijq (6.8)

where ˝ represents concatenation and element-wise multiplication. The self-attention

layer connects each word to any other word in the same utterance. Combing with
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a max-pooling operation on the row of v, the self-attention layer outputs a self-

attentive representation uTSA, which pays attention to the most indicative words for

interaction. We perform similar operations on the other utterance and obtain uT´1SA .

Then, the two encoded utterances are fed to the upper-level layers to obtain the

interaction features:

dT “ fpuT´1SA ,uTSAq (6.9)

where f is the interaction function. Empirically motivated, we adopt a feed-forward

neural network. The interaction unit can be regarded as a feature extractor that

provides a view for the chatbot to align and cohere with the user.

Upon social coherence, the chatbot is also expected to follow individual coherence

and maintain self-contained. To achieve this, we explicitly track the entities already

been generated by equipping the chatbot with two extra memory units: kTA stands

for the entity just mentioned by the user (A), and kTB with respect to the latest

entity referred by the chatbot (B). Whenever entity reasoning is performed, the

corresponding memory will be updated with the latest selected entity embeddings.

6.3.3 Entity Reasoning with Intention Factors

Since response coherence is largely revealed by the mentions of the entities, we in-

corporate these two factors into entity reasoning. Ideally, the obtained interaction

features dT summarizes global interaction, and the entity memory unit kTB records

the local consistency. Combined with the word-level semantics ct, the activation of

entity reasoning is decided by:

gentt “ σpWsst `Wdd
T
`Wkk

T
Bq (6.10)

If the gate is “open”, entity reasoning is conducted by attending on the candidate

entities using:

λT „ exppEW4rct; d
T
sq (6.11)
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Figure 6.4: Individual Coherence By Memory Units.

After an entity is generated, it is unlikely for it to be used twice in the current

response. Inspired by the coverage attention [224], we introduce a vector qt to record

the probability each candidate entity already been mentioned, where qtj P r0, 1s that

adaptively weights each candidate entity in the embedding space. Initially, q0 “ λT ,

which means that the entries corresponding to those attended entities are set to a

large value because these entities are probable to be mentioned in the following turns.

Intuitively, the value decreases towards 0 when the corresponding entity has been

generated. Essentially, the vector qt adjusts the candidate entities E by:

Ẽ “ pp1Ne ´ qt´1q b 1kq ˝ E (6.12)

where 1Ne “ 1Ne , 1k “ 1k, and Ne, k is the number and embedding dimension size of

the candidate entities, respectively. ˝ is the Hadamard product of the two matrices.

The resulted weighted candidate embeddings Ẽ will adapt the attention weights

βtj as:

βt „ exppẼW5rc; dT sq (6.13)

To update the weight vector, we utilize gentt , the probability of generating a new

entity, by:

qt “ qt´1 ` g
ent
t βt (6.14)
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In this way, the decoder has less chance to repeat an entity in the same response.

We illustrate the complete mechanism of entity reasoning with two coherence factors

in Figure 6.4.

6.3.4 Model Learning

Now the augmented decoder generates a candidate entity by:

pentpyt|y ă t,Eq “

$

’

&

’

%

λtj, if yt “ ej and kTB is empty

βtj, if yt “ ej and kTB not empty

0, otherwise

(6.15)

After the candidate entities are collected already, they serve as the supervision

signals to train the switch gate gentt :

gentt “

#

1, if target word is a candidate entity

0, otherwise

To summarize, the gate gentt determines when the decoder should copy an entity

from the candidates, which is influenced by three factors: the linguistic patterns

captured by language model st, social coherence reflected by interaction feature dT ,

and individual coherence indicated by entity memory kT . When the gate opens, the

decoder attends to the most proper entity based on Eq. 6.15, where the attention

weights are globally influenced by dT and locally adjusted by kT .

6.4 Experiments

6.4.1 Datasets

We examine the proposed approach on two movie conversation corpus. The first

corpus we adopt is a publicly available knowledge-driven dialog dataset, DuConv,3

a carefully-crowdsourced conversation dataset. DuConv is a proactive conversation

3https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/

ACL2019-DuConv
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dataset with 29858 conversations and 270399 utterances. In DuConv, each dialog is

formed by two human crowdsourcers, where one human plays the role of leading the

conversation, i.e., given related knowledge, initiating a novel topic or continuing the

current one in the movie domain [260]. The knowledge in this dataset is a format of

the triplet {subject, property, object}, which totally contains about 144k entities and

45 properties. We randomly split the dataset by 8:1:1 into training/development/test

set.

In addition to this carefully-curated corpus, we also validate the proposed ap-

proach on another real-world conversation corpus, Bili-film [111], which is collected

from Bilibili, a Reddit-like Chinese movie discussion platform.4 Although there are

other datasets or social platforms, they are either QA-formed or the discussions are

too verbose to distill knowledge. Rather, the conversations on BiliBili are more

suitable.

To provide external knowledge, we build a movie KB K based on zhishi.me [155],

a Chinese knowledge base with the largest knowledge coverage in movie domain.

There are five types of entities in K, i.e., film, director, actor(actress), writer, and

genre. We randomly split the corpus by 8:1:1. Finally, 10,000 conversations are used

for training, 1,530 for validation, and 1000 for testing. The statistics of DuConv

and our Bili-film corpus are presented in Table 6.1.

6.4.2 Experimental Setup

Preprocessing

For each conversation, we use special symbols “$u” and “$s” respectively for two

speakers and place them at the beginning of each utterance. We use Jieba5 for word

segmentation. Following prior work, we construct our KB, collect the candidates and

4https://www.bilibili.com/v/cinephile/

5https://github.com/fxsjy/jieba

129

https://www.bilibili.com/v/cinephile/
https://github.com/fxsjy/jieba


Table 6.1: Statistics of Corpus DuConv and Bili-film.

Dataset DuConv Bili-film

Total Number of Conversations 29,858 12,530

Total Number of Utterance 270,399 38,467

Average Number of Speaker Turns 9.1 3.6

Average Number of Tokens Per Turn 10.6 27.8

Number of Covered Movies 91,874 187

Number of Covered Movie Stars 51,753 248

Number of Unique Entities Per Conversation 9.3 3.1

implement the models as described in Chapter 3.

Compared Models

In order to examine whether Cheer is effective in modeling conversation-level co-

herence, we compare it with several approaches:

• Attn-Enc-Dec [8]: It is a standard encoder-decoder approach with the widely-

adopted attention mechanism. The encoder and decoder in this models are set

as GRUs [33]. For fair comparison. Note that neither history utterances, nor

extra knowledge is incorporated. We choose this bare-bones model to demon-

strate to what extend the performance will be achieved by a standard Seq2Seq

conversational model without knowledge.

• Concat-Enc-Dec [209]: It is a extension of Attn-Enc-Dec where history

utterances are concatenated along with the current input, and still without

background knowledge.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

• T-A-RNN [141]: To improve coherence, this RNN-based model with a dy-

namic attention model favors the generation of words sharing associations
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with salient words in the conversation history. In addition, it incorporates

LDA-based topic information following [128].

• Fact-Enc-Dec [54]: This is a knowledge-grounded model that consumes tex-

tual “facts” related to the input. To fit it into our scenario, we use the films’

one-sentence descriptions as the textual facts. By comparing with it, we aim

to distinguish the effects between utilizing unstructured and structured knowl-

edge.

• KB-Lstm [282]: It identifies the knowledge related to the conversation and en-

codes the knowledge into conversation representation, which is similar with our

idea. Differently, KB-LSTM only encodes the entities explicitly mentioned in

the input utterance, and incorporates the entity encodings using concatenation

operation in the encoder. On the contrary, we feed the context-relevant entities

to the decoder for reasoning in response generation while our encoder takes the

attribute information into account.

• KB-Lstm+: We improve the above KB-LSTM model by also incorporating

the attribute information into the corresponding encoder. This is assumed to

inject more knowledge implicitly and thus expand its knowledge scope. We

denote this enhanced version as KB-Lstm+.

• GenDS [322]: It is the most similar approach to ours as it also ranks candidate

entities collected from the retrieved facts to facilitate entity-aware response

generation. The difference is that GenDS lacks explicit mechanism to consider

coherence factors.

• CCM [313]: It is a state-of-the-art knowledge graph based conversation model.

We use the implementation provided by the authors6 and fit our KB to their

6https://github.com/tuxchow/ccm

131

https://github.com/tuxchow/ccm


setting.

Evaluation Metrics

We evaluate 8 models with four commonly adopted metrics. They are:

• BLEU-n: The N-gram based BLEU scores are proposed to indicate the over-

lapping degree between the generated responses and the ground-truth response [162];

• Dist-n: The Dist-1 and Dist-2 scores [101] have been widely used in works on

response generation [268, 265];

• 3-scale human evaluation in terms of appropriateness (Appr.) and grammat-

ical correctness (Gram.) [195];

• precisions (Prec.), recalls (Rec.) and coherence (Coher.) of entities in gen-

erated responses to examine the overlapping on referred entities [322] as well

as the coherence of the generated entities w.r.t. what has been said in previous

rounds. The three metrics (Appr. Gram. and Coher.) are calculated based on

100 manually annotated cases and are used to examine response quality with

coherence taken into account. In this case, generating responses that contain

irrelevant or inconsistent entities are not preferred.

6.4.3 Performance Evaluation

The experimental results on corpus DuConv and Bili-film are given in Table 6.2

and Table 6.3, respectively. As can be seen, the model performances on the two

corpus DuConv and Bili-film are similar. We first examine the importance of

entity reasoning in response generation. The worst performances are achieved by the

three models in the first block, as indicated by the first four rows on both Table 6.2

and Table 6.3. It is not surprising because they are the models that have no access
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to contextual knowledge. Even though T-A-RNN considers multi-round coherence

based on a dynamic attention mechanism and LDA-based topic information, its

improvement is negligible.

According to whether or not having the mechanism of entity reasoning, the rest

five models can be further categorized into two groups (the second and third blocks).

Obviously, Fact-Enc-Dec performs the worst, which implies that the unstructured

“fact” knowledge representation may impede encoder-decoder models to exploit use-

ful information. The performance of KB-Lstm+ is also unsatisfactory, even though

it does incorporate the structural knowledge. KB-Lstm+ comprises the attribute

and entity information into a single vector and passes it to the RNN hidden state,

which might be too elusive to guide high-quality response generation without entity

reasoning. The comparison results on both DuConv and Bili-film demonstrate

the superiority of Cheer on incorporating this knowledge.

When examining the performance of the third group of models (the third block),

we can see that GenDS, CCM and Cheer outperform the seven models above

them on par. The improvement is largely brought by their entity-aware decoders,

which allows an explicit mechanism to generate entities from selected candidates.

The difference among them is how they understand the context for knowledge rea-

soning. GenDS [322] retrieves a set of related facts and only uses them to expand

the candidate set. CCM [313] includes a knowledge interpreter module, which com-

bines knowledge vectors with utterance embeddings before feeding to the encoder.

Considering its unsatisfactory performance, we conjecture that the shallow concate-

nation in CCM impedes its dynamic graph attention in the decoder to take into

account of coherence factors. Overall speaking, Cheer is the best model especially

when considering its impressive performance on Bili-film. We attribute the sat-

isfactory performances achieved by Cheer to the success modeling of both social

and individual coherence. In Cheer, these two coherence factors are strategically
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incorporated when deciding what to say. Thus, the responses generated by Cheer

are more coherent as compared with GenDs and CCM. For better understanding,

we show some examples of generated responses for both single- and multi-round

conversations in Table 6.4.

6.4.4 Analysis

We conduct additional experiments on corpus Bili-film to investigate: (1) how

important the two coherence factors are; (2) whether the developed two strategies

in Cheer captures coherence effectively. For comparison purpose, we implement a

bare-bones model, denoted as Cheer-basic.

Social Coherence

To examine the effectiveness of Cheer in modeling social coherence, we compare

with:

• GRU-S: As discussed previously, it is plausible to model the inter-speaker in-

teraction by re-using the utterance representation obtained from the knowledge-

aware context encoder (See Eq. 6.6). Since the encoder is essentially a GRU,

We denote this model as GRU-S.

• Cheer-S: It adopts the proposed interaction unit to capture social coherence.

Different from GRU-S, it represents an utterance by applying self-attention

mechanism on its composing words.

The comparison results are shown in Table 6.5. For clarity, colored rows are

our proposals, and the bold row is the full version. As shown in the first three

rows, both GRU-S and Cheer surpasses Cheer-basic on the BLEU and coherence

scores, indicating the importance of social coherence in response generation. Notably,

while GRU-S only achieves negligible improvement, Cheer-S brings in significant
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Table 6.5: Model Analysis.

Model BLEU-3 Dist-1 Prec. Rec. Coher.

Cheer-basic 0.65 0.13 0.41 0.38 0.23

GRU-S 0.69 0.12 0.38 0.38 0.25

Cheer-S 0.76 0.15 0.48 0.49 0.27

SHRED-I 0.62 0.11 0.35 0.39 0.20

Cheer-I 0.67 0.12 0.43 0.50 0.23

Cheer 0.81 0.19 0.53 0.56 0.34

increases especially on the last three metrics. The performance disparity is resulted

from the different representation manners in these two models. GRU-S represents

each utterance in a recurrent way, which mixes word semantics together and eludes

useful information for interaction modeling. On the contrary, CHEER-S captures

social coherence using its self-attentive representation, which highlights salient words

in each utterance that are indicative for inter-speaker interaction.

Individual Coherence

To examine the effect of individual coherence, we compare 2 models below:

• SHRED-I [195]: It captures individual coherence using two independent GRU-

based encoders to separately model the two speaker states. Its decoder is

augmented with copying mechanism for fair comparison.

• Cheer-I: An ablated Cheer where individual coherence is harnessed by two

entity memories.

The experimental results are shown in the fourth and fifth rows in Table 6.5. Al-

though SHRED-I performs even worse than Cheer-basic, Cheer-I outperforms

the baseline model on par. This reveals that individual coherence is beneficial for

response generation as long as captured appropriately. In SHRED-I, individual co-

herence is implicitly encoded in the two separate context GRUs, and the decoder is
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expected to distill necessary features from the encoded vectors, which is unreliable.

Differently, Cheer-S uses two entity memories to explicitly guide response genera-

tion. We thus speculate that it is more effective to handle individual coherence in

entity reasoning.

In summary, the overall experimental results demonstrate that the two coherence

factors play distinguished and indispensable roles in social conversations. To generate

coherent responses, a chatbot needs to take into account coherence both globally and

locally.

6.5 Chapter Summary

In this work, we develop a chatbot Cheer to generate coherent responses via entity

reasoning by considering both conversation-level intention implicitly. Different from

explicit dialog acts, we model two intention factors, social coherence and individual

coherence, from global to local. To the best of our knowledge, we are the first to

identify and introduce these two intention factors in response generation. On both

DuConv and Bili-film corpus, it has been demonstrated crucial to incorporate

these two factors, which can be effectively achieved by our two novel designs, i.e., the

interaction unit for social coherence and the entity memory for individual coherence.

As discussed before, the intentions in social chatbots are often more implicit as

compared with those in task-oriented dialogue systems. It is thus more difficult to

define a fixed and reliable annotation criteria to capture the intention in social chat-

bots. Therefore, in this chapter, we make an initial step to model the intentions

based on two communication concepts, i.e., social coherence and individual coher-

ence. Admittedly, the methods developed in this chapter is intuitive but simplified.

In the future, we plan to explore more systematized way for modeling coherence in

social chatbots.
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Part III

Context-level Coherence
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Chapter 7

Knowledge Incorporation for

Context-level Coherence

7.1 Introduction

To develop non-task-oriented social chatbots [200], existing works based on the

Seq2Seq architecture often struggle with the well-recognized “safe response” prob-

lem [101] that the generated responses are often too generic to be meaningful.

To mitigate this this, a natural idea is to introduce external information such as

knowledge bases (KBs) into response generation. To implement this idea, prior work

proposed to devise the response generator with copying mechanism, which allows

referring information from KBs [322, 122, 110]. In general, there are thousands of

hundreds of possible entities in an equipped KB. It is thus a critical issue to reason

which entity(s) is the most proper especially to the whole conversation context.

Essentially, the referred entities should not only be relevant, but also suitable

for the input utterances, history conversations as well as the semantics behind the

KB. Unfortunately, the approaches used in previous work are not safe to achieve this

goal. In specific, the utterance vectors learned using existing approaches [322, 111]

only contain information from the conversation side, whereas the entity vectors are

acquired using graph embedding models that solely capture the KB network in the

141



Table 7.1: A Conversation Example.

Turn Utterances

1 The actress is so amazing in starring also The Notebook, The Vow.

2 And the last year winner Spotlight. Love Rachel so much!

3 Oh my, gorgeous !

Candidates: (1) Rachel McAdams (2) Ryan Gosling

KB side. For utterance representation, it has no idea what is stored in the KB and

what is related to a given potential entity. The situation is similar for entity vector

since it is unaware of any conversation utterances from the graph embedding models.

There exist an information gap between the utterance and entity vectors, which is

notorious for context modeling.

We argue that the essential cause is the lack of holistic context understanding. In

conversations, people often talk with short and condense expressions, and omit some

background knowledge according to the context. It is important but non-trivial to

simultaneously capture conversation internal information (a.k.a. utterances and his-

tories) and conversation-related external knowledge when we need a comprehensive

and precise understanding of the context. In this work, we unify these two kinds of

information in one context graph (CG). For each conversation, there are two types

of nodes in its CG, i.e., utterance and mention nodes.1 Nodes are also connected with

different types of relations. As shown in the example in Table 7.1, when reasoning

whether Rachel McAdams is a good match, the previous mentions of her starring

movies (e.g., The Notebook and The Vow) are valuable information in the context.

In order to fit the conversation context formed in the unified context graph, we

develop a context graph encoder suitable for graph understanding, which facil-

itates a coherent entity reasoning in response generation. Particularly, we identify

1In this paper, we will use mentions to represent the entities mentioned in conversation utterances,
and refer to the entities to be selected as entity candidates or candidates for short.
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the entity mentions in the conversation utterances and link the mentions to the ex-

ternal KB. The extracted entities and conversation utterance themselves serve as the

basic nodes in the initial context graph. To process the graph, our encoder begins

with calculating the interactions between the entity candidate and each node in the

graph, where piece-wise interactions are stored in the node-level vectors. Then, the

encoder fuses the node-level features and propagates the features to the graph along

the edges, which are aggregated finally to produce an graph-aware candidate vector.

Notably, our encoder is built upon the paradigm of the interaction-fusion-aggregation

over the stages of node-edge-graph. This allows us to collect the finer features from

each node and meanwhile be aware of the useful features from neighboring nodes in

the graph. Eventually, a copying-enhanced decoder [322] is adopted to implement

the referring mechanism, which approximates the similarity between the CG-aware

candidate representation and the conversation.

In brief, our main contributions include:

• We define and model the graph-structured conversation context from history

conversations and external knowledge;

• We develop a novel graph-based encoder, namely CGE, that enables holistic

conversation understanding;

• We empirically verify the effectiveness of the method as well as each compo-

nent’s contribution.

The remaining of this chapter is organized as follows. In Section 7.2, we conduct

survey of related work on modeling conversation context and graph neural networks.

Then, we describe the proposed method in Section 7.3. In Section 7.4, we present

the evaluation results and experimental analysis. Finally, we summarize this chapter

in Section 7.5.
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7.2 Related Work on Knowledge Fusion

One essential issue when injecting external knowledge into conversational models is

how to fuse the knowledge with conversation text. Traditionally in the task of QA,

combination of a KG and a text corpus has been studied with a strategy of late

fusion [186, 53] or early fusion [37, 213], which can help address the issue of low

coverage to answers in KG based models. With the rapid growth of Graph Con-

volutional Network (GCN) [95], recent work explores GCNs to efficiently deal with

graph-structured data and fuses information into NLP models. A plenty of literature

has demonstrated GCN’s potential in NLP tasks, e.g., integrating the syntactic and

semantic information in neural machine translation [12, 136], text classification [80],

question answering [213, 38], word embedding [227] and sequence learning [121].

Please refer to recent reviews [314, 266] for more details. Our work differs from these

studies in that we employ a GCN to explore information interactions over the graph-

structured conversation context, which is obtained by fusing conversation utterances

and an external KB.

Similar to our work is [10]. Notably, Our work is quite different from their

model [10] in at least two aspects. First of all, their graph based encoder is only

applied to query and dialogue histories, whereas our graph based encoder is de-

veloped to understand graph-structured knowledge-enhanced conversation context.

Secondly, their model is designated and evaluated for task-oriented dialogue models

whereas our model is for open-domain social chatbots. Although GSN [77] and Dia-

logueGCN [55] also leverage dependencies in conversations based on GCNs, they only

focus on the information from utterances. In our work, the context graph encoder

(CGE) considers heterogeneous interactions among utterances, entity mentions and

external knowledge.
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7.3 Method

Our aim is to reason whether an entity candidate is suitable to the conversation

context.

7.3.1 Context Graph

Given a conversation equipped with a KB, its context graph is formed by two types

of nodes: conversation utterances and entity mentions. As demonstrated in Fig-

ure 7.1, each blue bubble represents one speaker-turn of utterance, whereas each

orange pentagon one entity mention. Green lines with labels depict different types

of relations between the nodes. The read star is an entity candidate, and we will

explain how to collect the candidates in the experiment section. Specially, the blue

bubbles represent utterances uj, j P t1, . . . , Nuu, whereas orange pentagon stand for

entity mentions mk, k P t1, . . . , Nmu, which is detected using heuristic string match-

ing and entity linking techniques [194]. To keep crucial interactive information, we

extract two types of relations among these nodes: utterance-utterance relation that

links two consecutive utterances from a same speaker, and utterance-mention link

that connects an utterance node and its consisting mention node. These relations

are illustrated as green dash lines in Figure 7.1.

Under the definition, a conversation having Nu speaker-turns of utterances is

represented as a context graph G “ pV ,Rq, with nodes v P V and labeled edges

(relations) r P R, where V “ U YM.

7.3.2 Context Understanding using Context Graph Encoder

To understand the graph-structured conversation context G, we propose Context

Graph Encoder (CGE), based on Graph Convolutional Networks (GCN, [95]). As

illustrated in Figure 7.1, each entity candidate ci (denote as a red star) is fed into
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CGE to fuse graph-structured context information stage-by-stage: (1) Firstly, each

node uj and mk is computed with candidate ci to obtain a set of node-level interac-

tions pj and qk; (2) Secondly, a stack of graph convolutional layers is applied to learn

graph-aware interactions; (3) These features are then aggregated into a final vector zi,

which captures both local- and global-interactions between the conversation context

and the candidate ci. For each candidate ci, GCE combines the interaction vector

zi with its original representation ci (i.e., learned from knowledge graph embedding

method), resulting in a context-graph-aware representation c̃i.

Below, we detail our CGE by starting from initialization followed by the interac-

tion layers.

Node Features

Since the nodes V “ U YM in G belong to two types, we initialize them with

different manners. Each utterance node uj in U is initialized with its consisting

word embeddings, uj “ tw1, . . . , wNju P RK . To capture the local semantics, a
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self-attention layer on each word pair is computed by:

u1 “ Wuprwa; wb; wa ˝wbsq ` bu (7.1)

δ “ softmaxpmaxbu
1
abq (7.2)

where ; and ˝ represents concatenation and element-wise multiplication, respectively.

The self-attention layer connects each word to any other word in the same utterance.

Combing with a max-pooling operation on the row of u1, the self-attention layer out-

puts a self-attentive representation uj, which highlights the most indicative words for

interaction. For mention nodes mk PM, we initialize them with their corresponding

KB embeddings.

Node-level Interaction

.

Note that candidate ci and nodes uj, mk are different objects with distinguished

characteristics. Hence, we adopt a bilinear layer to transform them into a shared

representation space, and then capture the interactions among them. Without loss

of generality, take uj for example:

zj “ σpWuzuj `Wczci ` bzq (7.3)

pj “ Wpzj ` bp (7.4)

where σ is the ReLU activation function [57]. The obtained pj are interactive features

between utterance node uj and candidate ci. By passing the mention node mk into

above equations, we can obtain its corresponding node-level interaction vector qk.

Graph-aware Interaction

To carry global information in G, we adapt GCN [95] to our problem. In each

GCN step, every node in the graph is updated by aggregating its neighboring in-

formation along the connecting relations. Taking the step recursively, graph-level
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information will be propagated in the graph, and GCN will finally assign a graph-

aware feature vector to each node.

For our graph G “ pV ,Rq, we denote X P R|V|ˆQ the node feature matrix,

where each row xv P RQ is the feature vector for node v (xv P tpv,qvu). Then the

computation in one GCN layer is defined as:

gv “ f

ˆ

ΣuPN pvq pWgxu ` bgq

˙

, @v P V (7.5)

where gv is the output representation for node v, N pvq refers to the (immediate)

neighbor set of v, f is a non-linear activation function, and we empirically adopt

ReLU [57].

Considering the typed-relations among the nodes, we expand the edge set R by

incorporating the inverse-edges and self-loops, and denote the expanded set as R1.

Then, we devise the recursive computation of stacking multiple GCN layers as:

gl`1v “ f

ˆ

ΣuPN pvq
`

Wl
ruvg

l
u ` b

l
ruv

˘

˙

(7.6)

Note that the trainable parameters Wl
ruv and blruv are layer- and typed-relation spe-

cific. After applying the devised GCN layers for several hops, we obtain the graph-

aware representation of pj and qk, and denote them as p̃j and q̃k, where p̃j, q̃k P gLv ,

and L is the number of total GCN layers.

Interaction-aware Representation

The proposed CGE follows the interaction-fusion-aggregation paradigm. To aggre-

gate the information in the context graph, we adopt attention mechanism similar
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as [229]:

zi “

Nu`Nm
ÿ

n“1

βng
L
n (7.7)

βn “
exppωnq

ΣNu`Nm
j“1 exppωjq

(7.8)

ωn “ hᵀ
aptanhpWaci `Wbg

L
nqq (7.9)

where ha is trainable attention vector. With the learned attention weights, we obtain

the final interaction vector zi considering the importance of each node in the context

graph.

Until now, for each candidate ci, we have two different representations: its origi-

nal representation ci (learned using graph embedding methods), and its interactive

representation zi (obtained after Eq. 7.9). Since they two provide information from

different perspectives, we borrow the idea from [149] and combine the representations

via:

c̃i “ tanhpWf rci; zi; ci ˝ zi; ci ´ zis ` bf q (7.10)

where ˝ denotes the element-wise product.

Intuitively, the fused representation c̃i shares semantics from both external KB

and conversation utterances, and highlights the fine-grained interactions among the

corresponding context graph (CG) through layers of GCN propagation. In this way,

the proposed CGE provides holistic understanding of the conversation context with

the help of CG, generates CG-aware representations of knowledge, which will in turn

facilitate response generation.

7.3.3 Response Generation

To generate proper and informative response, we adopt GRU [32] as the decoder

basis. The GRU cell is fed with the context representation ht and the previously
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decoded token yt´1 to update its hidden state st:

st “ GRUpst´1, rht, yt´1sq (7.11)

ht “ r
ÐÝ
ht,
ÝÑ
hts (7.12)

where r; s is the concatenation operator of the two vectors. We obtain ht by recur-

rently encoding the input utterances using another bi-directional GRU.2 By recur-

rently processing the state vectors, the decoder generates the response by conducting

a softmax function over the vocabulary:

pgrupyt|y1, ¨ ¨ ¨ , yt´1q “ fpyt´1, st,htq

“ softmaxpWostq (7.13)

Following previous work [322, 313, 289], we augment the decoder with copying

mechanism [64]. In this way, response generation can benefit from a set of pre-

collected entity candidates C by directly “copying” the most suitable candidate from

the set. In specific:

ppyt|y1, ¨ ¨ ¨ , yt´1q “ gentt pentpyt|ht,Cq

` p1´ gentt qp
gru
pyt|yt´1, st,htq (7.14)

2For multi-round conversation, we concatenate the utterances into one, unified utterance. As
empirically validated, using hierarchical context encoder did not bring in obvious improvements.
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where C is the matrix stacking the candidate embeddings c̃i. Note that we use the

context-graph-aware embeddings provided by the proposed CGE. When the entity

gate gentt is “open”, the decoder approximates how close each candidate is to the

context using attention mechanism [8]:

αt „ exppCWchtq (7.15)

Otherwise, the decoder switches back to a vanilla GRU language model and omits a

general word based on the softmax output. The gate gentt is trained on the hidden

state:

gentt “ σpWestq (7.16)

By utilizing the augmented decoder, knowledge-grounded response generation

refers to an KB entity by:

pentpyt|yt´1, st,ht,Cq “

#

αti, if yt “ ci

0, otherwise
(7.17)

Since the candidate embeddings c̃i have been augmented using the proposed

CGE, they are aware of comprehensive information over the graph-structured con-

versation context. These CG-aware candidate embeddings thus allow more accurate

matching between the candidate and the conversation (Eq. 7.15). As a result, the

decoder will attend to more proper entity(s), which will be demonstrated through

our experiments.

7.4 Experiments

7.4.1 Datasets

As before, we examine the proposed approach on two corpora for knowledge-grounded

conversation model evaluation, DuConv and Bili-Film.
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7.4.2 Experimental Setup

Preprocessing

For each conversation, we use special symbols “$u” and “$s” respectively for two

speakers and place them at the beginning of each utterance. We use Jieba3 for word

segmentation. Following prior work, we construct our KB, collect the candidates and

implement the models as described in Chapter 3.

Compared Models

We compare with the following 10 models to examine the effectiveness of the proposed

graph-structured chatbot:

• Attn-S2S: The sequence-to-sequence (S2S) approach with a vanilla attention

mechanism [8].

• Concat-S2S [209]: It is a extension of Attn-S2S where history utterances

are concatenated along with the current input, and still without background

knowledge.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

• HGFU [287]: Hierarchical Gated Fusion Unit (HGFU) incorporates a cue

word extracted using pointwise mutual information (PMI) into the decoder to

generate meaningful responses.

• Fact-S2S [54]: A knowledge-grounded conversation model that consumes un-

structured facts. We use the films’ one-sentence descriptions as the textual

knowledge.

3https://github.com/fxsjy/jieba
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• KB-Lstm [283]: This model comprises the entities explicitly mentioned in the

input utterance into the encoder. To expand its knowledge scope, we enhance

it by attributes, denoted as KB-LSTM+.

• GenDS [322]: This model shares similar decoder with ours, and ranks entity

candidates collected from the retrieved facts.

• CCM [313]: It is a state-of-the-art knowledge graph based conversation model.

We use the implementation provided by the authors4 and fit our KB to their

setting.

• Cheer: It is a conversation model proposed by ourselves in order to capture

conversation-level coherence through modeling intention factors implicitly.

7.4.3 Performance Evaluation

The analysis of the performances in the first two blocks are similar with Chap-

ter 5. Here we directly move the attention towards the third block, where the model

GenDS and CCM yield satisfatory performances when comparing them with the

other seven models in the first and second blocks. We deduce such good performance

to the incorporation of the copying-allowed decoders GenDS and CCM. This is

consistent with the analysis in the previous chapters. Here, we are also curious the

reason why CCM is not as good as expected. Even though CCM includes knowl-

edge interpreter module which is able to learn certain interactions among knowledge

entities, we suppose that it only learns shallow and vague interactions, which are

not enough and even notorious to context understanding when the interactions are

wrongly captured.

4https://github.com/tuxchow/ccm
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Table 7.4: Model Analysis.

Model BLEU-3 Dist-1 Prec. Rec. Coher.

Base 0.65 0.13 0.41 0.38 0.23

+NI 0.72 0.15 0.44 0.46 0.27

+GI 0.86 0.19 0.50 0.55 0.36

+GA 0.90 0.19 0.52 0.60 0.43

Overall speaking, Cheer and CGE are the best two models (the last two rows).

We attribute the satisfactory performances achieved by Cheer to the considera-

tion of conversation-level coherence. In Cheer, two kinds of intention factors are

strategically incorporated when deciding what to say. Thus, the responses generated

by Cheer are more coherent as compared with GenDs and CCM. Despite that

Cheer models two intention factors explicitly, the knowledge representation and

context representation in it are learned separately, which hampers the performance

of entity reasoning. On the other side, CCM makes it in learning a comprehen-

sive representation based on the graph structure conversation context. Utilizing the

highest scores obtained by CGE, it proves the need to understand the context of the

conversation from a holistic perspective when generating responses. In general, the

proposed CGE is significantly better than the comparative model for all indicators

except Dist-2. In particular, the automatic Distinct-n score and knowledge coverage

score (the three rightmost columns) indicate that the responses generated by CGE

are more diverse, smooth and consistent with the context of the conversation.

7.4.4 Analysis

Ablation Studies. We conduct extra experiments to answer a question: whether

each component in the developed CGE is beneficial for comprehensive context mod-

eling. To do so, we build up a bare-bones model Base, in which there is no context

information used.
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There are three stages in CGE: (1) Node-level Interaction (NI) refers to Eq. 7.4;

(2) Graph-level Interaction (GI) refers to Eq. 7.6; and (3) Graph Attention (GA)

refers to Eq. 7.9. Adding them step-by-step on the top of the bare-bones model Base,

we obtain several variants of the proposed CGE. It is clearly revealed in Table 7.4

that all the developed component is contributing to the final performances.

Case Studies. We also present qualitative analysis in addition to quantitative

evaluation, in order to study why our approach works and where future work could

potentially improve it. Some generated responses are present in Table 7.5, where the

underlined words are entities. Note that input utterances are shorten due to limit

space.

In the single-round conversation setting (the upper block), take the film The

Notebook as example. Despite that GenDS generates a related entity Ryan Gosling,

it is based on the similarity between utterance representation and the KB embedding

of Ryan Gosling. This best match makes the response less informative, since it only

reveals the name of the leading actor. On the contrary, the proposed CGE fuses

context graph information into the KB candidates, which in this case allows the

embedding of Ryan Gosling aware of conversation context: who is the leading actor,

and what the conversation talks about. Thus, CGE successfully refers to another

film La La Land acted by the leading actor. Considering the context, this new entity

is beneficial to sustain future conversations.

Similar behavior is also observed in the multi-round conversation setting (the

lower block). Take Eternal Sunshine as example. When generating y2, there are

three utterance nodes (i.e., x1,y1,x2) and two mention nodes (i.e., The Mask and

Jim Carrey) in the context graph. By learning the interactions over the graph and

discriminating the importance of the nodes, CGE captures the focus as the conver-

sation goes, and replies appropriately.

Nevertheless, there is still room for improvement. The response y2 generated
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by CGE in the case Eternal Sunshine seems repetitive to the conversation context.

The potential reason is that entity Jim Carrey has been mentioned several times in

the context, which leads CGE pay too much attention on it. In the future, it is

promising to explore ways of balancing knowledge novelty and coherence.

7.5 Chapter Summary

Previous work on building knowledge-aware chatbots often target at improving the

method of knowledge incorporation and reasoning for response generation. To do

so, existing approaches often devise decoders in Seq2Seq chatbots. We argue that

knowledge is also and even more important for conversation understanding. How-

ever, how to incorporate knowledge into the encoders is less explored. To investigate

the significance of knowledge in conversation understanding, in this work, we de-

velop a graph-based encoder, CGE. The proposed encoder is operated on the graph-

structured context to fuse the information from both conversation utterances and

external knowledge, and finally obtain a comprehensive understanding for the whole

conversation context. On two large-scale conversation corpora, it has been demon-

strated crucial to reason knowledge by considering conversation utterances and KB

together. We also empirically validate the effectiveness of the proposed approach

through both quantitative and qualitative evaluations.

In the future, there are two directions we are interested to explore. Currently,

pre-training models are promising, and they are expected to learn implicit linguistic

knowledge from large-scale datasets. Since our method is compatible with pretrained

models in theory, it is promising to combine pre-training methods with the proposed

CGE and develop a pretrained knowledge-grounded model. Secondly, the main idea

of our method is to fuse information from different sources, and model conversations

in a holistic view. Hence, it is also interesting to incorporate both structured and
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unstructured knowledge to further enhance our chatbot.
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Chapter 8

Emotion and Intention for
Context-level Coherence

8.1 Introduction

As research has shown, it will increase the user’s participation and satisfaction,

thereby giving the dialogue agent emotional intelligence, which is an important hu-

man intelligence. Previous works in this field only use emotion information through

a gating mechanism [312] and directly integrate the emotion vector into the response

decoding, which may not be sufficient.

Indeed, various potential factors that affect people’s daily life. When friends ex-

press their upset moods, people usually sympathize with them and ask why [139].

Humans are inherited with shared mental states (such as empathy), which con-

tribute greatly to emotional intelligence. In daily life, these mental states stimulate

our communication behaviors when we chat with others. It is reasonable to model

these factors together to obtain a context-level understanding of the speaker’s under-

standing. In other words, ensuring response consistency at the context level requires

comprehensive modeling of many factors. Emotion and intention are two neces-

sary factors. Take the two dialogues in Fig 8.1 as an example. Person B receives a

dance invitation from A, but shows different wishes under certain emotions. In the
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Figure 8.1: A Conversation where Emotions Guide People’s Thoughts.

upper case, the conversation continues in a happy way and arrives at a dance date

when the conversation ends. When comes to the lower case, friend A sympathizes

with B and asks what happened from the perspective of realizing B’s sadness. This

example shows that emotions usually guide people’s internal states like intentions,

and therefore words as well as the outcome of dialogue. Therefore, intelligent agents

are expected to perceive users’ emotions and reply emphatically using more pleasing

expressions.

In this chapter, we aim to investigate how emotions influence other internal fac-

tors and semantics conveyed in the conversation. Specifically, we will use intention

as a representative factor to explore, which is also another important factor that

reflects people’s thinking. In the aforementioned example, when A cares about why

B is upset, he/she expresses the worry towards B instead of insisting on the details of

the invitation. We hereby assume that emotion shapes the idea of intention, and both

of these two factors mediate the response semantics. We use two discrete variables to

capture the speaker’s intention and emotion, and use the continuous variable to rep-

resent changes in the content level as similar to [189]. In order to incorporate these

variables, we adopt the basis of variable encoder-decoder and design a novel hierar-

chical conditional model. Given an input along with history utterances, we transform

them in context-aware representation, and firstly infer the interested variables in a

hierarchy of emotionÑ intentionÑ content, and then form the responses based on
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the variable predictions. Such hierarchy in the prediction procedure captures inherits

the dependency among emotion, intention and content, which for example, allows

the conversation topics to be guided by the internal factors. In addition, since the

intention now depends on emotion, it will facilitate much smarter and emotionally

rich conversations. In this way, based on the overall context, the response semantics

is expected to be more reasonable when considering the whole conversation context.

The developed model is termed as HINTE, which stands for generating responses

with Hierarchical INTention and Emotion prediction. We are also interested in

examine the hypothesis we assume on the variables, and thus we implement several

model variants to realize different relationships among the variables.

The remaining issue is how to efficiently train the developed HINTE to generate

responses with desired properties. There are two difficulties. The first one is the

vanishing latent variable problem that the decoder often bypasses the variable to

be conditioned during generation, as identified in previous studies [20]. Even if the

variables are aware to the decoder, it is still non-trivial to guarantee the variables are

fully expressed in the generated responses. To remedy these two issues, we devise a

adversarial learning approach as inspired by [61] to supervise the generation model

on the variable-level. This brings us the benefit that the behavior monitoring on the

variable-level is more effective than that conducted on the response level. The benefit

is also verifies through comparison and ablation studies with other two adversarial

approaches [292, 78]. To highlight, we conclude our contributions in below:

• We model two typical factors, emotion and intent for dialogue generation, and

deploy a hierarchical conditional model to examine the effectiveness.

• We explore the relationships among emotion, intention and content in conver-

sation modeling, hypothesize that emotion puts a high-level effect on intention,

and investigate several model variants to validate it.
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• We design a new adversarial learning objective, and empirically enhance the

model performance, which has also been demonstrated beneficial through ab-

lation studies.

The rest of this chapter is structured as follows. In Section 8.2, we give a brief

survey on exiting hierarchical conversation models related to our work. In Section 8.3,

we describe the technical details the proposed method on incorporating both emotion

and intention information. In Section 8.4, we evaluate the model performances and

deeply analyze the contribution of each component in the proposed approach. At

last, we summarize this chapter in Section 8.5.

8.2 Related Work on Hierarchical Conversation

Models

Due to the development of massive data and neural networks, researchers are trying

to build conversational agents using generation-based methods. Because history

dialogues usually provide a lot of information for conversation modeling, researchers

have proposed a wide range of context-aware dialogue models. The easiest way is to

use concatenation [126, 209, 279] and averaging [209, 223] to combine the historical

utterances with the current utterance and feed them as a whole input to the model. A

more sophisticated approach is to use a hierarchical encoder by treating the dialogue

as a two-level sequence [208].

When modeling the structure of the conversation, [189] devises HRED with an

additional variable to encourage response diversity. Afterwards, [195] provides each

interlocutor with a speaker-aware encoder to improve VHRED, and then combines

its hidden states to form a high-level dialogue context. [30] injects the variability

of memory read through latent variables, and learns to make abstract high-level

decisions in the dialogue tracking process. Their memory has been enhanced in the
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hierarchy and updated to remember each utterance. Recent work in this area uses

a global random variable that is conditioned on the speaker and finally affects the

context [9]. Similar to [189, 195], our work is also based on the conditional variable

framework and is novel in that we focus on the dependency among the variables. To

the best of our knowledge, rarely has such dependency been investigated before.

8.3 Method

We develop a variational framework, HINTE, that is able to generate responses

conditioned on the variables predicted in hierarchy. In particular, HINTE consists

of the following parts: (1) History and Utterance Representation; (2) Hierarchical

Intention and Emotion Prediction; (3) Conditional Response Generation.

We depict the designs of HINTE in Figure 8.2, where the lower block depicts the

overview of HINTE. As shown, the proposed framework consists of three key modules.

The most important module is the hierarchical variable prediction, which we expand

in the upmost part with five typical relations among ze, zi and zc. In specific, the

three variables, i.e., emotion, intention and content, are demonstrated using different

colors and shapes. Below, we will firstly give a picture of our framework by sketching

three modules, and then describe the novel designs in the next subsections.

8.3.1 History and Utterance Representation

We aim to produce speaker-aware responses by capturing the speaker’s emotion and

intention states. To achieve it, we following [39, 46] and formulate emotion and intent

using two discrete variables ze and zi, respectively. In specific, the discrete variables

are indexed by the pre-defined categories of emotion and intention variables. Denote

that ut and ct are the utterance input and context representation at the time step t,

respectively. The task is formally defined as generating response(s) given {ct, zti, zte}.

For better readability, we will omit the subscripts without harming the technical
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Figure 8.2: The Hierarchical Variational Generation Framework HINTE.

clarity.

Based on the architecture of VHRED [189], the history and current utterances

are processed through:

ut “ EncoderRNNpx1, ¨ ¨ ¨ , xt´1q (8.1)

ct “ ContextRNNpu1, ¨ ¨ ¨ , utq (8.2)

ct “ fput´1, ct´1q (8.3)

Based on the obtained representation, the decoder pθ generates each word in the

response by:

yt „ pθpyt|ct, y1, ¨ ¨ ¨ yt´1q

To capture variation during decoding, there is a latent variable zc injected into

VHRED to influence the generation by:

yt „ pθpyt|zc, ct, y1, ¨ ¨ ¨ yn´1q (8.4)

Initially, zc was brought in for language modeling and one-sided sentence gen-

eration [20], which has been used to capture high-level information like themes,
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emotions, styles, and other interpretable features [20, 189]. However, the ambiguity

in zc makes it difficult to capture precisely. In addition, if the model is able to cap-

ture other influencing factors and utilize them for understanding and generation, the

semantics to be conveyed in the responses will be better learned.

Motivated by this, we propose to incorporate two more variables ze and zi and

bring in the emotion and intention information in addition to the latent variable

zc. We derive the three variables using the context representation obtained through

EncoderRNN and ContextRNN. Notably, this work aim to explore the relationships

among the variables. To achieve this, we establish a hierarchical predictive model,

which allows us to infer the variables in turn by taking into account the hierarchy

among them. We will describe the details in Section 8.3.2.

After the hierarchical prediction, the proposed framework HINTE is able to finally

produce the speaker-aware responses by depending on the derived variables ze, zi,

and zc. Formally, the decoder now generates a word by:

yn „ pθpyn|zi, ze, zc, ct, y1, ¨ ¨ ¨ yn´1q (8.5)

Overall speaking, the proposed framework HINTE is equipped with a generation

hierarchy to predict the latent variables one-by-one before generating the conditional

responses. Because there are three latent variables together influence the generation

performance, it is non-trivial to sufficiently learn the model. Hence, we further

enhance the inference networks in the proposed framework with a novel adversarial

learning objective, which will be presented in Section 8.3.3. As will be demonstrated

by the experiments, the augmentation will not only benefit the model training but

also facilitate the response generation and help HINTE to produce higher-quality

responses.
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8.3.2 Hierarchical Intention and Emotion Prediction

The primary contribution of the proposed network is the hierarchical prediction

for the three latent variables. Using the context representations, we propose to

infer the proper emotion and intention to be conveyed, and exploit them to form a

speaker-aware response(s). Before generating the corresponding response, the model

needs to infer the discrete and continuous variables. Note that the discrete variables

are defined on the utterance-level, and the continuous variable is on the context-

level. Therefore, there are potentially numerous combination of these variables in

the auxiliary hierarchy when incorporating these three variables into the model.

Hierarchical Model

As indicated in the study [230], the discrete factor is usually at a higher level during

the generation process when multiple variables exist. In addition, research works

in theoretical psychology and communication have surmised and empirically shown

that emotion and intention have impacts on the content of the response [39, 197].

To achieve this, it is possible to impose the discrete variables to be predicted:

zi „ ppzi|u1, ¨ ¨ ¨utq

ze „ ppze|u1, ¨ ¨ ¨utq

zc „ ppzc|zi, ze,u1, ¨ ¨ ¨utq

It is worth-noting that there are other options for how to model the relationship

between emotion and intent. They can be predicted independently of each other. One

may also rely on the other and predict conditionally. We choose the hierarchy based

on the findings from the literature on emotional intelligence that emotions usually

guide a person’s thoughts and ultimately affect the outcome of the conversation [138].

As such, we hypothesizeethat emotions have an impact on intentions, and adopt a
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three-level prediction hierarchy in the developed HINTE:

ppzi, ze, zc|u1, ¨ ¨ ¨utq

“ppzc|zi, ze,u1, ¨ ¨ ¨utqppzi, ze|u1, ¨ ¨ ¨utq

“ppzc|zi, ze, ctqppzi|ze, ctqppze|ctq

The three-level prediction procedure is illustrated in Figure 8.2 (5), which is:

zeÑ ziÑ zc. Without loss of generality, we also propose several model variants and

compare with them to validate the hierarchical hypothesis. To this end, we also

illustrate the five main variants in the upmost part of Figure 8.2, where (1)(2) rep-

resent the prediction procedure with two or three independent variables, (3) models

a two-level inference process, and (4)(5) stand for three-level hierarchy. It is clear

that the assumption in (4) is totally contradicted to the hypothesis we adopt as the

main design.

To obtain the final predictions of emotion and intention, we sample from the

corresponding distributions ppzeq and ppziq, respectively. Since they are discrete

variables, the predicted class is selected as the vector dimension with the largest

prediction value. To incorporate the predicted variables into response generation, we

then cast the discrete classes into one-hot embeddings, which are then combined to-

gether with the continuous variable to pass to the decoder. In this way, the proposed

HINTE is able to respond by firstly predicting the latent variables in a hierarchical

procedure zeÑ ziÑ zc, and then consider the predictions to form the variable-aware

responses.

These three variables are predicted by approximating their posterior distributions

using three inference networks, which are denoted as qeφpze|u1, ¨ ¨ ¨utq, q
i
φpzi|u1, ¨ ¨ ¨utq,

and qcφpzc|zi, ze,u1, ¨ ¨ ¨utq. Practically, they are Gaussian distributions:
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qeφpze|u1, ¨ ¨ ¨utq “ Multipoet q “ softmaxpWeoet q

oet “ MLPe
put,h

C
t q

qiφpzi|ze,u1, ¨ ¨ ¨utq “ Multipoitq “ softmaxpWioitq

oit “ MLPi
put,h

C
t , zeq

where ot is an integrated representations for hidden inputs, and Multi() stands for a

feed-forward neural network.

Variational Bounds

During inference, the latent variables are inferred by maximizing the variational

bounds. For readability, the subscript for ct is omitted, and zd is introduced to

represent either ze or zi. Also, we use qd to refer to qe or qi. When the labels for

the discrete variables, i.e., zd are unseen, that is, X “ tWiu
K
i“1. In this case, for

any W “ pw1, w2, ¨ ¨ ¨wNq P X , the variational bound for the unsupervised setting is

derived as follows:

log ppw1, ¨ ¨ ¨ , wNq ě
N
ÿ

n“1

´KLpqdφ||ppzd|cqq

´KLpqcφ||ppzc|zd, cqq

` Eqrlog ppwn|zc, zd, cqs

:“ ´Vun (8.6)

However, the models trained with the above learning objective are often observed

unstable because of the high sample variance [251]. In order to mitigate this problem,

we adopt supervised learning approaches to provide fine-grained signals for the model

learning. When we are able to access the labels of zd, i.e., pX ,Zq “ tpWi, Ziqu
K
i“1,

we put the supervisions Z “ pz1
d, z

2
d, ¨ ¨ ¨ z

N
d q P Z on W “ pw1, w2, ¨ ¨ ¨wNq P X . Then
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we derive the variational bound in the supervised setting as:

log ppW,Zq ě
N
ÿ

n“1

´KLpqc||ppzc|zd, cqq

`Eqcrlog ppwn|zd, zc, cqs

` log ppzd|cq

:“´ Vsup (8.7)

According to the variational bounds given above, we are now able to derive the

learning objective for both the unsupervised the supervised settings. Formally, we

denote the objectives as Lsup :“ EW,Z„pX ,ZqrVsuppW,Zqs for supervised setting, and

Lun :“ EW„X rVunpW qs for the unsupervised setting.

8.3.3 Adversarial-augmented Inference Learning

We maximize the objective of log-likelihood when training the model. Unfortunately,

solely relying on the objective itself is insufficient to ensure the generated responses

resemble the desired properties. Even if the content in the generated response is

regarded as emotional and intentional by the machine, they might not be sensible

for humans. An example case is that the machine may predict a generated response

containing painful words as the emotion category of happiness. This inconsistency

is partially attributed to the free generation process that the decoder will get no

penalty even if the generated responses are ridiculous to the predictions. Consid-

ering the architecture of decoder is autoregressive, i.e., RNNs, the situation is even

exacerbated. It is because that RNNs will impose stronger conditional constraints

between the neighboring words, as revealed by [20]. As a result, the information

brought by the latent variables z will get lost and turn weak during model learning.

There are two additional issues we observe that exaggerate the worse situation.

When generating words, the decoder will neglect the information predicted by the la-
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tent variables, the similar vanishing variable problem as in [20]. Ideally, the decoder

is expected to concentrate on minimizing the KL-divergence term meanwhile keep-

ing the reconstruction loss. When the decoder is able to directly access the encoder,

however, the learning procedure will be deviated since it easily accesses the input

information. Theoretically, if qφpy|zq can perceive X (i.e., the information on the

encoder side), then qφpy|zq may be learned almost identical as qφpy|xq. In addition,

the latent variables would not acquire sufficient information during training and thus

are difficult to learn well if they are not regularized. The undesired phenomena are

resulted from the lack of supervision on the conditional generation behavior. To al-

leviate these problems, we deploy the idea of adversarial learning [61] to monitor the

variable learning. Intuitively, given a real response, humans are able to deduce its un-

derlying emotion and intention. This implies that a high-quality generated response

should to be consistent with the latent predictions, i.e., the predicted categories of

emotion and intention.

Figure 8.3: The Augmented and Original Inference Networks.

Inspired from this, we augment the inference networks and “transform” it into

discriminators. In particular, an extra class is appended to the output of the inference

networks, which represent the “fake” category. For illustrative understanding, we

take the intention inference network qi as a case, as shown in Figure 8.3. The color

bars are depicted to stand for the weight values output from the inference networks,
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which means how likely each category is for the discrete variables, as predicted

by the network. The selected variable category will be set as 1 after sampling,

whereas others as 0. The emotion inference network qe is augmented in the same way.

Denoting the space of all possible intention classes as Zi, we define the augmented

latent factor z˚i P ZiYtFu where tFu represents the generated (fake) sentence. Now

we have qipz˚i |c, w1, ¨ ¨ ¨ , wnq. The objective for the new augmented qi is:

Lqi :“EW,Z„pX ,Zqr
N
ÿ

n“1

λipziq log qiφpzi|c, wnq

`λipFq
N
ÿ

n“1

log qiφpz
˚
i “ F|c, w̃npziqqs (8.8)

where λi are the class weights for tackling unbalanced class labels. By augmented

with an extra class, the inference networks qi and qe now perform like “discrimina-

tors” to have more awareness of the variable sensibility. This will in turn aid in the

learning of the generator, a.k.a. response generation. When the discrete variables

are discriminated as “fake”, the DecoderRNN should be penalized. To achieve this,

we derive an adversarial loss as:

Vadvpw1, ¨ ¨ ¨ , wnq “ Ezir

N
ÿ

n“1

log qipzi|w̃npziq, cqs (8.9)

and defined by Ladv :“ EW„X rVadvpW qs.

We then add these two adversarial losses derived from qi and qe to the variational

objective. The combination of the losses will together influence the decoding proce-

dure, whose objective now turns into Lg “ Lsup ` λadvLadv or Lg “ Lun ` λadvLadv,

where λadv is a weight tuning the constraints of the adversarial learning, and Lsup or

Lun is the variational objective as defined in Eq. 8.7 and 8.6. The objective for the

continuous encoder qc remains the same. It is trained jointly with the decoder, using

normal back-propagation, on both labeled and unlabeled data. Finally, we generate
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responses w̃npzi, zeq by replacing each arg maxpxq word choice with softmaxpx{αq,

where α is the temperature parameter.

It is worth-noting that our way to apply adversarial learning is different from pre-

vious methods that applied adversarial learning on the response-level with an extra

independent discriminator. Rather, we devise the inference networks, i.e., qi and qe,

and train them to discern the variable-level imperfections, which bring in at least

two-fold benefits: (1) After augmentation, qi and qe are able to perceive the response

inconsistency based on the integration of variable predictions and conversation his-

tory, which also deduces the response generator to become stronger in accordance; (2)

Because the representations adopted in qi and qe are shared with other components

in the proposed HINTE, it can be regarded as a regularizer to aid in representation

learning. Since our novel design directly regulates the conditional behavior on the

variable level, the way of applying adversarial learning proposed in this chapter is

more effective and efficient, which is verified through extensive experiments in the

following section.

8.4 Experiments

We design three groups of experiments to examine the proposed approach along with

each novel design. In the first group, we compare with other state-of-the-art models

and demonstrate the powerfulness of the proposed HINTE (Section 8.4.3). In the

second group, nine model variants are implemented to validate the assumption that

emotion shapes the behavior of intention (Section 8.4.4). The third group of experi-

ments is set to examine the advantage and novelty of the newly devised adversarial

learning objective through comparing with similar methods (Section 8.4.4). We also

conduct ablated studies at last.
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Table 8.1: Statistics of Corpus DailyDialog.

Total Number of Conversation 13,118

Average Speaker Turns Per Conversation 7.9

Average Number of Tokens Per Conversation 114.7

Average Number of Tokens Per Utterance 14.6

8.4.1 Dataset

We adopt the dataset DailyDialog [113] to validate the effectiveness of the proposed

HINTE. DailyDialog is a publicly available conversation corpus involving 13,118

multi-turn conversations. It is attractive in that each utterance is annotated with

both emotion and intention class with three experts. As far as we know, DailyDi-

alog is the only one chit-chat corpus that is tagged with both emotion and inten-

tion labels manually. This makes it the only one suitable to assess the proposed

hierarchical response generation model. We follow the official divisions for train-

ing/validation/testing as in [113]. Please refer to chapter 4 for more on the annota-

tion details,

8.4.2 Experimental Setup

Compared Models

In order to investigate whether the proposed HINTE is effective on open-domain

response generation, we compare it with several state-of-the-art models:

• Enc2Dec-Attn [8]: This is the vanilla Seq2Seq model equipped with the

attention mechanism.

• HRED [208]: This state-of-the-art model incorporates history utterances, where

a conversation-level ContextRNN is on the top the word-level utteranceRNN.

• Transformer [228]: This is a newly established state-of-the-art text genera-
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tion model. We adopt the implementation here.1

• VHRED [189]: This model enhances the capability of hierarchical conversa-

tional models by including a latent variable to allow more variations in response

generation.

• SPHRED [195]: This model is proposed and described in chapter 4, where

the responses are produced base on the speaker-aware context representation

as well as a latent variable guided by an external label.

We use TensorFlow [1] to implement all the models, and concatenate the one-

vector labels into the decoding vectors of all the compared models. The vocabulary

is restricted to 25,000 words, where the OOV words are mapped to UNK. We adopt

Google’s 300-dimentional word embeddings,2 and normalize the embeddings during

training. All low-level word-level encoders are defined as 1-layer GRUs with 512 hid-

den neurons. The high-level context-level encoders in HRED [208] and VHRED [189]

are both 1-layer bidirectional GRUs with 1,024 hidden units. We set the minibatch

size to 128, and set the learning rate as a fixed number of 0.0002. Adam optimizer [92]

is adopted for model training.

Evaluation Metrics

We adopt two commonly used automatic scores to assess the model performances, i.e.,

BLEU-n [161] and Distinct-n [101]. Nevertheless, according to the research [119, 156],

N-gram based scores like BLEU usually are often inconsistent with human judgments

when assessing dialogue models. In order to complement the evaluation, we randomly

pick up 100 test samples and perform manual assessments on them. We train three

annotators with linguistic background and send the samples to them. To be fair,

1https://github.com/EternalFeather/Transformer-in-generating-dialogue

2https://code.google.com/archive/p/word2vec/
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these annotators have no idea about which model the test response belongs to. The

annotators are asked to consider the following 4 aspects when rating the generated

response [106]: {Relevance, Fluency, Diversity and Appropriateness} as before. For

the details of the annotation criteria, please refer to Chapter 4.

Another thing to note is that, the annotators are notified to give the same rank,

when the responses to be compared share a large piece of overlapping with each

other. In general cases, the annotator will give a higher rank to a better response.

The comparison results are present in Table 8.2.

8.4.3 Performance Evaluation

We begin with studying the importance of latent variable. According to the majority

of scores across Table 8.2, the chatbots in the first block (first three rows) perform

the worst than the models in the second block (last three rows). Although Trans-

former beats VHRED and SPHRED in BLEU-1 and BLEU-2 scores, it obtains a

poor Distinct-1 score. This is because the responses generated from Enc2Dec-Attn

and Transformer usually contain a series of common words, such as “I don’t know”,

“thank you”, “I like it”, etc. These common but useless words greatly contribute

to Transformer’s high BLEU scores. On the other hand, the responses generated by

HRED, VHRED and SPHRED are more informative, which can be concluded from

their satisfactory Dist-1 scores. The contradiction between BLEU scores and human

judgment is consistent with the suggestion from [120, 156] that, BLEU-n is not a

good indicator for evaluating dialogue models.

We then look deeper for the reasons for the model failures. The problem of

“safe response” may be due to the one-to-many relationship between a given input

utterance and its possible multiple proper responses. By using more information

such as intent and emotion, latent variable based models can reduce the number

of possible responses by learning a more compact and precise representation of the
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response to be generated. As a result, those responses will be preferred if they

are compatible with the emotion and intention in the conversation context, a.k.a.

input utterance(s). Since Enc2Dec-Attn and HRED only utilize the latent variable

in the decoder without considering them in context modeling, their experimental

results prove that, it is instrumental to incorporate influential variables using effective

approaches.

Since all the other three models employ latent variables in context modeling, we

compare them to find out which model can capture the variables more effectively. By

checking the last three rows in Table 8.2, we can see the differences among VHRED,

SPHRED and HINTE. Although similar in the way of modeling history information,

the proposed HINTE differs from VHRED and SPHRED in how it uses intent and

emotional information. Note that VHRED and SPHRED simply concatenate intent

and emotion information in a single, plain vector, and the functions of variables are

independent. Therefore, it is difficult for these two models to distinguish information

from different variables in the learning process. In contrast, our HINTE exploits these

variables in a hierarchical manner to allow emotion and intention to adjust content

variables.

It is obvious that HINTE and SPHRED yields the best performances. By com-

paring they two, we can find that both of them allow the external label to guide

the variable learning. However, it is difficult to train a variational model, because

variational inferences often suffer from high sample variance. In the early stages,

the training process will be unstable and the produced subtle samples will prohibit

the chabots from receiving reliable learning signals, resulting in a large decrease on

the scores. One way to alleviate the issue is to apply semi-supervised learning [93]

to aid in variational model learning [78, 251]. Therefore, we also investigate the

performance of HINTE based on the scheme of semi-supervised learning. To use

different scales of labelled data, we randomly remove certain ratios of data labels as
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unsupervised set, and train HINTE under the paradigm of semi-supervised learning,

which is equal to Eq.(8) and Eq.(9) as present before. From the last block in Ta-

ble 8.2, we can observe that as the ratio decreases, the model also degrades. It is also

worth-noting that the effect of variable labels is more significant when the ratio of

training data is under 20%. Despite the limited improvements when extra 20% data

are available, HINTE (40%) still achieves competitive results to SPHRED (100%).

Generally, our HINTE is more superb as indicated by all evaluation metrics. We

will show some case studies in the next subsection.

8.4.4 Analysis

Hypothesis Validation and Ablated Study

In this subsection, we focus on studying whether the novel designs in our proposal

are useful: (1) the prediction hierarchy of emotionÑ intentionÑ content; (2) the

adversarial objective applied on the variable-level. We implement and compare with

three groups and in total nine model variants, as list in Table 8.3. To evaluate nine

model variants, we first run automatic assessments and then make a little change

for the human judgements. Because now there are nine models to be compared for

each annotator, it is hard for them to rank from the best to the worst (1st to the

ninth). Therefore, we modify the human judgment criteria to make the annotators

rate the responses according to the four aspects. The comparison results are given

in Table 8.4.3.

It is observable that the independent models in the first block, namely HINTE-

EC, HINTE-IC, HINTE-EIC, are the worst variants. Among they three, HINTE-

EIC demonstrates a negligible improvement over the other two models. In spite of it,

HINTE-EIC is still far from competitive with the other two blocks of model variants.

The comparison between the blocks affirms the benefit of modeling high-level discrete

variables over response generation. Moreover, regarding to the distinctions between
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HINTE-EC and HINTE-IC, and comparing them to HINTE-I, it is promising to see

that intention and emotion are complementary to each other.

We then shift attention to examine the performances among the second block

of models. It is interesting that HINTE-EI-(S) and HINTE-EI-C(U) yield distin-

guishing performances even though they two share the “same” two-level hierarchy

of prediction. According to the indicators, the conditional model HINTE-EI-(S)

even falls behind the independent counterpart HINTE-EIC. This result implies that

it is useless and even notorious to predict the different discrete variables using the

same feed-forward inference networks, because the inference networks will struggle

to predict precisely based on the entangled representations.

As surmised before, HINTE-E-I-C and HINTE surpasses the other variants ow-

ing to their hierarchical conditional procedure. Their overwhelming performances

validate the hypothesis that content is guided by emotions and intentions in a hier-

archical manner. By comparing the model performances between the second and the

third block, we are able to draw conclusions that by modeling the emotion’s influence

on the intention, both HINTE-E-I-C and HINTE are capable of utilizing information

more effectively to predict the influential factors and in turn better bias the response

generation. It is intuitive that humans will finish a dialogue when being enraged

by the other speaker in the conversation. As argued by [138], when experiencing a

certain kind of emotion, humans usually are evoked with special reactions like ter-

minating the chats with others. Similar findings are also observed in the studies on

psychology and communication theory [148, 163, 197].

Study on Variable Inference with Adversarial Learning

The difference between HINTE-E-I-C and HINTE in Table 8.4.3 is evident that

introducing adversarial learning is of benefit for the variable prediction in response

generation. In specific, the devised adversarial learning is applied on the variable-
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Figure 8.4: The Influence of λadv on Adversarial Learning Objective.

level, which assists the representation learning. To quantitatively measure to what

extend the adversarial learning benefit the predictions, we explore the effect of the

coefficient λadv. Based on different value of λadv, we compare the priors (i.e., ppzq)

and the posteriors (i.e., qpz|xq) of the discrete variables with the real labels. and

illustrate the result in Figure 8.4. The best performance is achieved when λadv is

increased to 0.4. Neither a smaller nor a larger value is desired, because a smaller

λadv will not bring in enough regulation from the adversarial monitoring, and a larger

λadv will on the contrary make the learning procedure dominate by the adversarial

gradients.

Notably, the prior distributions of intent and emotion are quite different, as shown

in Figure 8.4. The reason is that these two variables are distributed distinguishedly

in the original dataset. As mentioned in Chapter 4 [113], the intent factor is labelled

with balanced category distribution, while the category distribution of emotion is

totally uneven. This greatly influences the learning of these two variables in HINTE.

As discussed in [170], though there are multiple categorization and dimensional tax-

onomies available, it is challenging to decide which annotation criteria is the most

suitable. Although a simple categorization has obvious shortcomings, it is also non-
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trivial for annotators to label the dataset using complex emotion models with a

satisfactory agreement.

Since the other novel design in the developed HINTE is the variable-level adver-

sarial objective, we then investigate its distinction and contribution by comparing it

with the following approaches:

• HINTE-E-I-C: This is a variant of HINTE, as introduced in the previous

subsection. Since this vanilla model is not equipped with adversarial learning,

we introduce it as a baseline model.

• HINTE-R [292]: The first design we compare is the original idea proposed

in [61], where a free discriminator D is deployed to decide whether the test

sample is a true example from the dataset, or a synthesized one produced by

the generator G. To make a reasonable comparison, we perform two adap-

tions. Firstly, we replace the adversarial loss in HINTE with a classification

one classified by an external convolutional neural network based discriminator

D. Secondly, we adapt the generator G in HINTE, i.e., the response decoder,

to be trained via REINFORCE algorithm [256] following [292], and the gener-

ator objective becomes as Lg “
ř

tDpytq ˚ log ppyt|yătq. While the proposal in

HINTE is conducted on the variable-level, this compared model builds up the

adversarial game on the response-level, and is thus denoted as HINTE-R.

• HINTE-C [78]: The second model to be compared is more similar to our

proposal. It is introduced in [78] in order to also bias the variable in text

generation with desired style like sentiment. Distinct from our proposal, the

discriminator in this compared model is also disentangled from the generator.

Note that the compared models are equipped with the same response generators.

This kind of control experiment makes us focus on the effect of their distinguishing
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Table 8.5: Comparison of Sampling and Parameter Choices.

Sampling α Perplexity BLEU-2 Posterior-emo. Posterior-intent

deterministic 0.1 130.9 0.048 0.45 0.53

deterministic 1 127.2 0.039 0.49 0.48

stochastic 0.1 104.6 0.088 0.74 0.71

stochastic 1ÝÑ0 66.0 0.214 0.90 0.82

parts, that is, how they utilize the idea of adversarial learning in the “disciminator”

part and how about the effects. To quantitatively measure the model performances,

we adopt perplexity (PPL), KL cost, BLEU-n and Distinct-n scores, as well as pre-

diction accuracy. An ideal response decoder is expected to have low PPL, non-trivial

KL costs, and accurate variable predictions. The results in Table ?? strongly sup-

ports that our design for variable-level adversarial learning is of great benefit.

Studies for Variable and Word Sampling

In our method, there are two technical designs that also have impacts on response

diversity: the sampling method of latent variables and the sampling parameters of

word decoding. These variables can be obtained deterministically using the argmax

operation, instead of randomly sampling zi and ze. Another influential parameter

is the temperature α during word decoding. To obtain a deeper investigation, we

design several sets of control experiments with respect to these two factors.

The comparison results are clearly revealed in Table 8.5 by the Perplexity scores

of the first three rows against those in the last rows. The higher perplexity achieved

by the deterministic variable models indicate that the deterministic models often

struggle to converge due to the sharper learning signals acquired from the argmax

operations. In other words, the stochastic models with sampling methods are more

sufficiently trained when comparing with their deterministic counterparts. Among

the two stochastic variants we compare, the one trained with a dynamic strategy of
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the temperature achieves a significantly better performance. In specific, the value of

the temperature is set to be a large number when the training starts and is modestly

decreased to a lower number (almost zero) when approaching the ending point. Such

dynamic strategy facilitates to induce the model at the beginning stage to be more

diverse, and guarantee the prediction to be more reliable at the end.

8.5 Chapter Summary

We study context-level coherence by considering two conversation factors, emotion

and intention, when modeling open-domain conversation. Innovatatively, we hypoth-

esize that these two factors are not independent and we investigate the dependency

among the factors by proposing a hierarchical conditional model, HINTE. In spe-

cific, we model an effect of emotion on top of the factor intention, and validate the

hypothesis through extensive experiments. The proposed model HINTE is scalable

because it is very straightforward to allow extra information modeling into it.
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Chapter 9

Conclusions and Future Work

In the past decade, mobile devices has brought revolutionary changes on the way

that information propagates among individuals. The evolution of messaging appli-

cations is now in full swing including WhatsApp, Slack, Chinese Wechat and their

analogs. For example, both Facebook Messenger and Wechat have more than 1.2

billion monthly users from a wide range of age groups. With the spread of messen-

gers, virtual conversational agents for assisting and accompanying human users are

becoming increasingly in demand. For solving tasks, virtual assistants like Siri can

fulfill information seeking need, hotel booking, check-in for a flight and so on. For

social needs, chatbots like Xiaoice aim to build amicable bonds with users through

entertainments and chit-chats. All these related conversational agents require good

understanding of user needs and proper reactions towards users. This presents un-

precedented challenges and opportunities for researches on developing conversational

agents, driving many researchers, in recent years, to study the dialogues on messaging

platforms and particularly focus on the problems of response retrieval and response

generation, which study how to properly respond to the user based on the conversa-

tion context.

In this thesis, we comprehensively study the problem of response generation for

open-domain social chatbots. Since conversation consists of multiple turns of ut-
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terances, we tackle three-level of response coherence by proposing three important

sub-problems, i.e., (1) how to exploit extra information in a limited design to improve

utterance-level response coherence; (2) how to model the information dependencies

in multiple turns to improve conversation-level coherence; and (3) how to capture

the interactions between extra information and utterances to understand conversa-

tion context in a holistic view. Based on the neural encoder-decoder architecture,

we proposed a series of models to utilize three kinds of extra information, includ-

ing background knowledge, emotion and intention, to address these three problems.

Compared with state-of-the-art studies, our proposed models consistently obtain sig-

nificant improvements on response informativeness and response coherence.

9.1 Summary of Contributions

The following sections summarize the contributions of this thesis according to the

information we explore.

9.1.1 Knowledge-aware Models

• Different from previous knowledge-grounded chatbots only injecting knowledge

into response generation, we regard the necessities of knowledge in both context

representation and response generation, and develop a chatbot Mike to utilize

KB attributes and entities in their own ways.

• We are the first to model conversation flow using meta-path information, and

propose a meta-path augmented chatbot Mocha to generate responses that

are coherent to the conversation flow.

• The experimental results on two large-scale datasets demonstrate that it is more

effective to incorporate structural knowledge than unstructured knowledge into
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Seq2Seq models, and the proposed Mike and Mocha significantly outperform

other state-of-the-art models.

• The further ablation studies verify that response coherence is remarkably im-

proved because of the utilization of attributes, entities and meta-paths.

9.1.2 Emotion-aware Models

• We first propose a conditional variational model, SPHRED, which models the

states of two speakers separately and learns to generate responses based on the

predicted emotion.

• We then curate a conversation corpus, DailyDialog, which exhibits a variety

of natural human communication phenomenon. In particular, conversations

are emotion-rich and manually labelled based on the “BigSix” emotion theory.

The dataset has been included in the popular huggingface NLP platform as a

benchmark conversation dataset.1

• The experimental results on the developed dataset demonstrate the significance

of emotion for both retrieval-based and generation-based approaches, and show

the effectiveness of the proposed framework, SPHRED. Meanwhile, it is also

flexible to be applied to response generation controlled by any other kind of

information.

• The further analysis reveals that the key of SPHRED is the success guidance

on latent variable from emotion information. It emphasizes the importance of

variable learning in controlled response generation, and inspires our later work

on hierarchical variable conversation models.

1https://github.com/huggingface/datasets/pull/556
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9.1.3 Context-aware Models

• While traditional context-aware models only model history utterances, we ar-

gue that conversation context also includes information like background knowl-

edge and emotion. Most importantly, it is critical to model conversation by

considering all the information in the conversation context together.

• We explore the effect of history utterances on entity reasoning when generating

responses, and design a chatbot, Cheer, to achieve both social coherence and

individual coherence.

• Unlike previous studies, which learn the representations of knowledge and ut-

terances separately, we model external knowledge and utterances with a unified

context graph, and develop, CGE, to allow the chatbot to have holistic under-

standing of conversation.

• We are the first to explore the dependencies of emotion and intention in open-

domain response generation, and develop an adversarial-enhanced hierarchical

model, HINTE, to firstly predict emotion, then intention, and lastly generate

the response based on the predictions.

• On the benchmark datasets, we demonstrate the effectiveness of the proposed

models, verify the hypothesis that emotion influences intention in daily com-

munication. The experimental results show the importance of holistic context

modeling for open-domain response coherence.

9.2 Future Work

At last, we point out the following potential directions that can further extend our

previous work.
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• In Chapters 3, 5, 6 and 7, we develop knowledge-grounded models and ex-

ploit the structure of knowledge like attribute and meta-path to improve re-

sponse coherence. Despite the improvement, the chatbot equipped with exter-

nal knowledge bases (KBs) have some shortcomings. Firstly, the performance

of these chatbots heavily depend on the coverage and the accuracy of external

KB, as we analyzed in Chapter 3. Secondly, the majority of KBs consist of

certain factual knowledge from a specific domain, which is only a small frac-

tion of our world knowledge. On the other hand, pretrained language models

(PLMs) [40, 177] have been demonstrated powerful for various NLP tasks due

to its ability to learn implicit knowledge inherited in the large-scale unlabeled

corpora. Hence, it is promising but non-trivial to leverage PLMs to improve

conversation models. Because standard PLMs only accepts a single sequence

as input, current approaches utilizing PLMs for dialogues often simply concate-

nate the input dialogue history and the output response in fine-tuning stage [22]

or duplicate PLMs in the encoder or the decoder side [60, 303]. However, as

demonstrated in our thesis, it is necessary to incorporate multiple sources of

information when modeling dialogues. Therefore, the first challenge is how

to exploit the power of PLMs by fully leveraging the contextual information

for dialogue models. Secondly, PLMs often set constraints on the maximum

number of input tokens, and thus hinders the utilization of longer conversation

history and external knowledge. It is necessary to devise efficient protocol to

bypass the information bottleneck of PLMs. To this end, we plan to endow

chatbots with knowledge from both external KB and PLMs in the future to

tackle the aforementioned two research problems.

• Another potential direction of future work is to improve the sense of empathy

of emotion-aware chatbot and endow it with the ability of pacifying users. In
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Chapters 4 and 8, we develop emotion-aware chatbots which is only able to

perceive coarse-grained user emotions and generate emotion-aware responses

without any communication strategy. This is far from an emphatic companion

as we human friends or counseling psychologists can do. Very recently, there

are already some noteworthy advancements in the field of empathetic chat-

bots to accompany users or treat mental illnesses. For example, Woebot [48]

uses methods from Cognitive Behavioural Therapy (CBT) to help people feel

grounded during this unprecedented anxiety-provoking COVID-19 time. This

offers evidence that intelligent chatbots can serve as a cost-effective and ac-

cessible therapeutic agent. Although not designed to appropriate the role of a

trained therapist, integrative psychological AI emerges as a feasible option for

delivering support. Therefore, it is interesting to improve the emotion-aware

chatbots in Chapters 4 and 8 by building up a series of counseling abilities.

When interacting with users, the chatbots should become more strategic to

guide user express themselves more, and to pacify users’ towards a calm or

positive emotion. To achieve this, we plan to detect not only users’ emotions

but also the causes behind the emotions. The emotion cause will be helpful

to form the response strategy. Also, we will design a set of communication

intentions with respect to counseling behavior, and learn multi-turn counseling

strategies to elicit and appease user emotions.

• Moreover, reasoning is also a crucial direction for future research on conversa-

tion modeling. On the one hand, there are a variety of information in conver-

sation context, and it is a comprehensive decision when generating responses

given multiple sources of information. While previous knowledge-grounded

chatbots often rely on attention mechanism to select knowledge based on a

plain similarity score, recent work has proposed reinforcement learning based
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and graph network based methods to conduct reasoning more structurally. The

key idea of recent methods is to formulate the information as graph nodes and

incorporate the dependencies among the information as graph edges, which is

similar to the context graph we define in Chapter 7. The distinction, however,

lies in the reasoning part. Rather than using attention scores, some researchers

adopt reinforcement learning to traverse over the graph and reach at the node

to be selected. We can also apply this idea under our current framework to

conduct entity reasoning over the context graph using reinforcement learning

techniques. On the other hand, conversation is a dynamic process through

multiple turns of information exchange. Therefore, how to reason over the

turn-taking with newly involved information is also an interesting problem.

Overall, how to effectively reason over the information graph and handle the

dynamics of the conversation is a challenging problem to be solved.

194



Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016.

[2] Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah
Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade,
Yifeng Lu, et al. Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977, 2020.

[3] Rami Al-Rfou’, Marc Pickett, Javier Snaider, Yun-Hsuan Sung, Brian Strope,
and Ray Kurzweil. Conversational contextual cues: The case of personalization
and history for response ranking. CoRR, abs/1606.00372, 2016.

[4] Dilafruz Amanova, Volha Petukhova, and Dietrich Klakow. Creating annotated
dialogue resources: Cross-domain dialogue act classification. In LREC, 2016.

[5] Nabiha Asghar, P. Poupart, J. Hoey, Xin Jiang, and Lili Mou. Affective neural
response generation. ArXiv, abs/1709.03968, 2018.

[6] Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang, and Lili Mou. Affective
neural response generation. In European Conference on Information Retrieval,
pages 154–166. Springer, 2018.

[7] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, Aaron Courville, and Yoshua Bengio. An actor-critic algorithm
for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2014.

[9] JinYeong Bak and Alice H. Oh. Variational hierarchical user-based conversa-
tion model. In EMNLP/IJCNLP, 2019.

195



[10] Suman Banerjee and Mitesh M Khapra. Graph convolutional network with
sequential attention for goal-oriented dialogue systems. Transactions of the
Association for Computational Linguistics, 7:485–500, 2019.

[11] R. Barzilay and Mirella Lapata. Modeling local coherence: An entity-based
approach. Computational Linguistics, 34:1–34, 2008.

[12] Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil
Sima’an. Graph convolutional encoders for syntax-aware neural machine trans-
lation. In Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1957–1967, Copenhagen, Denmark, September
2017. Association for Computational Linguistics.

[13] T. Bickmore and Rosalind W. Picard. Establishing and maintaining long-term
human-computer relationships. ACM Trans. Comput. Hum. Interact., 12:293–
327, 2005.

[14] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-
tion. Journal of Machine Learning Research, 3:993–1022, 2003.

[15] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606, 2016.

[16] Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-
oriented dialog. arXiv preprint arXiv:1605.07683, 2016.

[17] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems, pages 2787–2795,
2013.

[18] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog.
CoRR, abs/1605.07683, 2016.

[19] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog.
In ICLR, 2017.

[20] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefow-
icz, and Samy Bengio. Generating sentences from a continuous space. arXiv
preprint arXiv:1511.06349, 2015.

[21] Petter Bae Brandtzæg and A. Følstad. Why people use chatbots. In INSCI,
2017.

196



[22] Pawe l Budzianowski and Ivan Vulic. Hello, it’s gpt-2 - how can i help you? to-
wards the use of pretrained language models for task-oriented dialogue systems.
In NGT@EMNLP-IJCNLP, 2019.

[23] Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, Wai Lam, and
Shuming Shi. Skeleton-to-response: Dialogue generation guided by retrieval
memory. arXiv preprint arXiv:1809.05296, 2018.

[24] Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, and Shuming Shi.
Retrieval-guided dialogue response generation via a matching-to-generation
framework. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 1866–1875, 2019.

[25] Yang Cai. Empathic computing. In Ambient Intelligence in Everyday Life,
pages 67–85. Springer, 2006.

[26] Arun Chaganty, Stephen Mussmann, and Percy Liang. The price of debiasing
automatic metrics in natural language evalaution. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 643–653, 2018.

[27] Zhangming Chan, Juntao Li, Xiaopeng Yang, Xiuying Chen, Wenpeng Hu,
Dongyan Zhao, and Rui Yan. Modeling personalization in continuous space for
response generation via augmented Wasserstein autoencoders. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 1931–1940, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[28] Chaotao Chen, Jinhua Peng, Fan Wang, Jun Xu, and Hua Wu. Generating
multiple diverse responses with multi-mapping and posterior mapping selec-
tion. arXiv preprint arXiv:1906.01781, 2019.

[29] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dia-
logue systems: Recent advances and new frontiers. Acm Sigkdd Explorations
Newsletter, 19(2):25–35, 2017.

[30] Hongshen Chen, Z. Ren, Jiliang Tang, Y. Zhao, and D. Yin. Hierarchical
variational memory network for dialogue generation. Proceedings of the 2018
World Wide Web Conference, 2018.

[31] Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yihong Eric Zhao, and Dawei
Yin. Hierarchical variational memory network for dialogue generation. In
Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 1653–
1662, Republic and Canton of Geneva, Switzerland, 2018. International World
Wide Web Conferences Steering Committee.

197
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