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Abstract

The captured images by modern camera sensor are color-mosaicked signals which

contain incomplete color information, noise, less vivid colors and improper tones. To

reconstruct a high-quality displayable image, an image signal processing (ISP) pipeline

is employed onboard a camera to enhance the captured raw images by a cascade of

image processing components, including demosaicking, white balance, noise removal,

color space conversion, tone mapping and detail enhancement. However, there are

two challenges in designing an ISP pipeline. First, the individual components in an

ISP pipeline may have limited performance due to simple design. Second, there could

be limitations on the whole ISP pipeline, which are designed in a divide-and-conquer

manner with error accumulation. In this thesis, we leverage new optimization and

learning methods to tackle the two challenges.

To address the first challenge, we make several improvements on the design of

individual image processing components. In the first work, we propose a new method

for tone mapping component, which aims to convert a high dynamic range (HDR)

image to a standard dynamic range image with improved perceptual quality. We design

a hybrid `1-`0 norm optimization approach for tone mapping, and address the halo

artifacts and over-enhancement problem in existing methods in the literatures. In the

second work, we propose a deep-learning-based approach for single image denoising.

Unlike the common end-to-end architecture, we adopt a two-stage convolutional

neural network (CNN) architecture with smooth-first and enhance-later strategy.

iv



The proposed architecture removes the noise in the first stage and hallucinates high-

frequency details back to the image in the second stage by adversarial learning. The

proposed method can produce detail-enriched results and outperforms the existing

denoising methods in terms of perceptual quality on both synthetic and real-world

noisy images. In the third work, we propose a novel learning scheme for real-world

burst denoising which leverages multiple images. To apply deep learning to burst

denoising, it is difficult to construct a dataset for this purpose because of the object

motions in a scene. We bypass this obstacle by designing a decoupled learning

method to leverage two complementary datasets. With the designed network and

the decoupled learning scheme, we achieve leading performance in real-world burst

denoising without the need of a real-world burst dataset for training.

To address the second challenge, we propose a data-driven framework for camera

ISP learning. Different from the existing camera ISPs that rely on manual design

of individual image processing components, we design a deep CNN as an ISP and

train it with pairwise datasets to reconstruct high-quality displayable images from

raw counterparts. The challenge for this work is to properly characterize the diverse

image processing components inside an ISP. We tackle this problem by designing a

two-stage CNN architecture, where image restoration related subtasks are addressed

in the first stage and image enhancement related subtasks in the second stage. The

proposed ISP model achieves high image quality and outperforms the state-of-the-art

ISP learning methods on several publicly available benchmark datasets.

In summary, in this thesis, we present a novel tone mapping algorithm, and two

deep CNN-based methods for image denoising and burst denoising, respectively. In

addition, we present a data-driven framework for the ISP pipeline design.

Keywords: Image enhancement, Image restoration, Tone mapping, Image de-

noising, Burst denoising, Camera ISP
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Chapter 1

Introduction

1.1 Motivation

Digital imaging devices become increasingly important in our daily life. Smartphone

cameras are used by people to record the splendid moments of life, while surveillance

cameras are used to guarantee the securities of the society. This phenomenon raises

the needs to improve the quality of the captured images by these cameras. However,

due to the limitations of the camera hardware design, the captured images could go

through different levels of degradations. For example, most camera deploys a color

filter array on top of the sensors, and thus, only one color channel can be recorded in

one pixel location. In addition, the small aperture and small CMOS sensor limit the

amount of collected light and lead to heavy noise corruption. As a result, the raw

image data captured by camera sensors are typically color-mosaiced irradiance signals

containing noise, incorrect colors, loss of details and high dynamic range [96, 62].

To reconstruct a high-quality displayable image for viewing, many cameras employ

an image signal processing (ISP) pipeline to process and enhance the sensor raw

data. Such pipeline is a cascade of image processing components, which typically

include image demosiacking, noise removal, white balance, color space conversion,

tone mapping and detail enhancement. Despite the many efforts to develop the

ISP pipeline, there are some problems that remain unsolved. For one thing, in the
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traditional ISP design, the individual processing components are hand-crafted simple

algorithms. This arrangement could lead to unsatisfactory image quality, especially

in challenging imaging scenarios such as nighttime and in high dynamic range (HDR)

environment. For another, the whole ISP pipeline design could cause limitation on

the image quality because the individual components are developed independently,

which results in error accumulation and unnecessary long development period. In

this thesis, we aim to develop new methods for some image processing components as

well as the whole ISP pipeline.

As an image processing component in an ISP pipeline, tone mapping aims to

reproduce a standard dynamic range (SDR) image for display from the sensor HDR

image. Tone mapping operation plays an important role in the image perceptual

quality. The traditional tone mapping component in an ISP pipeline usually adopts

a global adjusting curve and results in loss of details in the tone mapped image. On

the other hand, the tone mapping algorithms proposed in the literatures usually

generate various artifacts, including halo artifacts and over-enhancement artifacts.

One may improve tone mapping by adopting the deep learning technique, which has

recently demonstrated good performance on several image processing tasks. However,

generating the ground truth is a labor-intensive and highly subjective process, and

this causes instability in the network training. Thus, we propose a hybrid `1-`0

optimization model for tone mapping. We use `1 sparsity to preserve the edge regions

and prevent the halo artifacts, while adopting `0 sparsity to characterize the image

details, which improves the overall naturalness of the image. We collect a large HDR

image database and compare with several state-of-the-art tone mapping algorithms.

Experiments show that our tone mapping algorithm can achieve excellent details

reproduction while avoiding halo and over-enhancement artifacts.

As an important ISP component, single image denoising aims to remove various

noise introduced in the imaging process. Nowadays, image denoising becomes in-
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creasingly important for smartphone cameras which collect insufficient light under

challenging environment due to the use of small lens and sensors. The noise removal

components in commercial cameras usually adopt filter-based method and result

in residual noise. To improve the denoising performance, there are many works in

the literatures that train deep convolutional neural networks (CNN) on large scale

datasets with noisy-clean image pairs. Though these deep-learning-based methods

show notable advantages over traditional ones, they usually produce over-smooth

results. This is because noise and image details are entangled in the high-frequency

domain of an image, and the operation of removing noise inevitably leads to detail

loss. To address this problem, we propose a two-stage denoising network with a

smooth-first and enhance-later strategy. In the first stage, a noise reduction sub-

network conducts normal denoising on the noisy images and produces smooth but

clean images. Then in the second stage a detail enhancement subnetwork hallucinates

high-frequency details on the output of the first stage and produces detail-enriched

results. A sophisticated adversarial training scheme is applied to train the network to

generate realistic details. The proposed method outperforms the recently proposed

deep-learning-based denoising methods by a large margin in terms of perceptual

quality metrics on both synthetic Gaussian noise and real-world noise.

Burst denoising is an advanced imaging technique of modern smartphone cameras

which captures multiple noisy images of a dynamic scene and combines them into a

clean image. Typical algorithm procedures include pre-denoising, frame alignment

and image fusion. In view of the recent success of deep learning technique, it is

much desirable to apply deep-learning-based method to real-world burst denoising.

Specifically, we can train a deep CNN to learn aligning images with object motions

and removing real-world noise from data. However, it is difficult to construct a

real-world burst denoising dataset for this purpose due to the presence of object

motions. We propose a decoupled learning scheme which leverages two complementary
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datasets to learn real-world burst denoising. The first dataset is a video dataset

which contains dynamic sequences corrupted by synthetic noise. The other dataset

is a burst dataset with static scenes and real-world noisy sequence. Our decoupled

learning algorithm can learn the frame alignment from the dynamic sequences in the

video dataset and learn the adaptation to real-world noise statistics in the static burst

dataset. Experiments demonstrate that through our decoupled learning scheme, a

burst denoising network can effectively tackle the real-world dynamic noise sequences

without the need to construct a real-world burst denoising dataset.

Last but not least, we make improvement on the ISP pipeline as a whole. The

traditional ISP pipeline is designed in a divide-and conquer manner where the image

processing components are developed independently. Such a design method could lead

to error accumulation since each component scarcely considers the previous and the

following components. Moreover, the development of ISP pipeline will go through a

long period because each image processing components requires painstaking parameter

tuning. To address the above drawbacks of ISP design, we propose a general and

effective framework which is based on deep-learning technique. Specifically, we first

analyze the individual components in an ISP and divide them into two weakly corre-

lated groups, i.e., image restoration and enhancement. Image restoration components

aim to faithfully reconstruct the detail information of scene irradiance, while the

objective of style enhancement components is to improve the visual appearance of

images. We propose a CNN architecture for ISP pipeline which characterizes the two

groups with two subnetworks, respectively. This arrangement allows collaborative

processing of correlated ISP subtasks while avoiding mixed treatment of weakly

correlated subtasks, leading to high quality image reconstruction in various imaging

scenarios.
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1.2 Literature Review

In this section, we review on the previous research on image tone mapping, single

image denoising, burst denoising and ISP pipeline.

1.2.1 Tone Mapping

Existing tone mapping algorithms can be categorized into global methods and local

methods. Global tone mapping methods reproduce a LDR image by applying a single

nonlinear curve to the radiance map [110, 117, 101]. Because of the spatially invariant

nature, global methods are lack of detail preservation. In contrast, local tone mapping

algorithms with a spatially variant property are the main stream of tone mapping

techniques [102, 37, 75, 86, 49, 41]. Local methods are commonly based on layer

decomposition, where the base layer is first estimated by edge preserving filter and

detail layer is the residual between base layer and the original image. Different local

tone mapping algorithms mainly differ in the filter design. Reinhard et al . proposed to

use a Gaussian-based filter with a spatially adaptive scale parameter [102]. Durand et

al . adopted a bilateral filter to estimate the base layer [37]. Although this method can

avoid halo artifacts to some extent, it over-enhances the image by boosting the small-

scale details. Meylan proposed a Retinex-based adaptive filter tone mapping [86].

Gu et al . proposed a weighted guided filter for tone mapping [49]. Many local tone

mapping methods also have halo artifact or over-enhancement problem due to the

improper characterization of image structures.

Tone mapping task is also related to the research of edge-preserving filtering. The

earliest edge-preserving filter is bilateral filter that considers local range variation

of the image [39]. Min proposed a fast global smoother based on weighted least

square [88]. Other representative filters are Xu’s `0-based filter [120] and Bi’s `1-based

filter [12]. While most filters imposed strong edge-preserving prior to avoid halo
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artifacts, they lack a naturalness prior on the visual appearance of the images and

lead to over-enhancement artifact in the results.

Deep learning technique has been successfully applied to various image processing

tasks, including image super-resolution and denoising. When applied to tone mapping,

there needs a large-scale pairwise datasets with HDR images and the corresponding

ground truth (GT) tone mapped images. The difficulty lies in the creation of GT,

which requires labor-intensive tuning and subjective evaluation of image quality.

Recently Rana et al . proposed a deep learning approach for tone mapping and created

the GTs by selecting the results from several traditional tone mapping algorithms

[99]. In such a compromised scheme, the tone mapping quality is bounded by the

performance of the traditional algorithms. Since it is a complex process to construct

an ideal tone mapping dataset, in this thesis we do not consider deep learning method

and leave it to future work.

1.2.2 Single Image Denoising

The image denoising has been widely studied in the academia and can be divided

into synthetic Gaussian denoising and real-world denoising. Additionally, the image

denoising method proposed in our thesis is related to adversarial image restoration.

Gaussian denoising. As a classical and fundamental problem in image process-

ing, image denoising has been widely studied in the academia, while most of the

methods employ the additive Gaussian white noise (AWGN) model. Traditional

methods heavily rely on hand-crafted image priors, including statistical prior [104, 94],

sparsity prior [3, 40, 84], non-local self-similarity [17, 33, 50, 119, 82], etc. Recently,

deep learning based methods [79, 132, 23, 4] have significantly improved the Gaussian

denoising performance by learning image priors from data. These methods train deep

CNN models with different architectures on large-scale datasets that contain noisy-

clean image pairs. In the seminal work of DnCNN [131], Zhang et al . demonstrated
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that a ResNet-like [55] model can outperform the traditional hand-crafted methods

by a large margin. NLRN [79] and RNAN [137] models incorporate the self-similarity

prior and achieve further improvement. RIDNet [4] incorporates the attention mecha-

nism into the model, which adaptively controls the relative importance among feature

maps.

Real-world Image Denoising. The research on real-world denoising has not

been widely investigated until recently. The real-world noise in raw images has much

more complex statistics than AWGN, and it is further complicated by the camera

image signal processing (ISP) pipeline. Due to the lack of large-scale datasets of

real-world noisy images and their noise-free counterparts, researchers proposed to

synthesize noisy raw images by reversing the ISP pipeline on high quality clean

sRGB images and adding Poisson-Gaussian noise on the raw images [15, 130, 52].

In this way, a large amount of noisy and clean image pairs can be synthesized to

train deep denoising models. Different methods differ mainly on the modeling of ISP

pipeline. The unprocessing-to-raw method [15] employs simple parametric models to

characterize several important ISP operations, including demosaicking, white balance,

color conversion and tone mapping. The CycleISP method [130] trains a CNN model

to reverse the ISP pipeline, which can account for some complex ISP operations. Some

researchers collected real-world datasets for denoising by using different approaches

to generate ground truth clean images [1, 24]. The SID dataset captures long-exposed

images as clean ground truths [24], while the SIDD dataset averages a large number

of noisy raw images as ground truths [1].

Adversarial Image Restoration. Generative adversarial network (GAN) [47]

is a generative modeling method which learns to sample realistic data by alternatively

training a generator and a discriminator network with different objectives. The

generator learns to sample real data to fool the discriminator, while the discriminator

learns to differentiate between real and the synthetic data. Many subsequent works
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of GAN focus on improving its training stability [5, 89, 61, 6, 64], e.g., by adopting

different loss functions [6, 61], progressive learning [64] and regularizations [51].

Due to the capability of generating realistic data, GAN has been successfully

applied to image translation [58, 142, 30, 139], super-resolution (SR) [69, 116, 111, 20,

29, 113], image inpainting [126] and raindrop removal [74], etc. Notable progress has

been witnessed in SR where high-resolution details need to be recovered. Ledig et al .

[69] trained a SR network with an additional GAN loss, where a discriminator network

distinguishes real high-resolution images from the super-resolved ones. Though the

SR results obtain lower objective metrics (e.g., PSNR), higher perceptual quality is

obtained. Wang et al . [116] proposed to use relativistic GAN loss [61] for SR, where

the discriminator estimates the relativistic rather than absolute authenticity between

real and fake samples. Recently, GAN has been applied to noise modeling [25, 128].

However, there is little work that successfully applies adversarial training to improve

the visual quality of denoised images, which is our goal in this work.

1.2.3 Burst Denoising

Burst denoising methods capture a noisy image sequence as input, and perform a

series of operations, including frame alignment, temporal fusion and post-processing,

to reproduce the underlying scene [143, 53, 32, 82, 78, 16]. The frame alignment

operation aims to build the correspondence between the dynamic contents of the

target and reference frames. Some works adopt block matching for alignment [53,

32, 82, 33, 143], while others use optical flow methods [78, 16]. The fusion operation

aims to merge the outputs from multiple frames, which should be robust to alignment

error. Representative approaches include collaborative filtering [33], non-local means

[16] and frequency domain fusion [53].

Recently, a few works have been proposed to learn frame alignment and fusion

from the input sequences for burst denoising. The KPN model proposed by Mildenhall
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Figure 1.1: Major components in a traditional camera image signal processing pipeline.

et al . [87] predicts the convolutional kernels to selectively fuse a burst of images with

object motion. Xue et al . [121] designed a CNN model that explicitly consists of

frame alignment, fusion and post-processing modules. Godard et al . [46] proposed

a recurrent architecture for burst denoising, which can increase the image quality

by accumulating noisy images. These learning-based methods achieve better image

quality than their non-learning counterparts.

Despite the recent success, it is difficult to apply deep-learning-based burst

denoising method to real-world scenario where the noise statistics is intricate. This is

because it is difficult to construct a real-world burst denoising dataset in the presence

of scene motions. As a remedy, several works have been reported to synthesize realistic

data for burst denoising [15, 52, 87, 38]. Tim et al . [15] and Guo et al . [52] proposed

to reverse the ISP pipeline on the sRGB images and generate noisy training images

that are close to the camera raw data. Mildenhall et al . [87] proposed to synthesize

noise and motions for burst denoising. Ehret et al . [38] proposed to train a CNN

model for synthetic noise, and then fine-tune it on the camera raw images without

clean ground-truth based on the Noise2Noise principle [72]. However, these methods

are compromised schemes which cannot cope with the real-world scenes with heavy

noise corruption and object motion.

1.2.4 Camera ISP Pipeline

There exist various types of image processing components inside the ISP pipeline of

a camera. The major ones include demosaicking, noise reduction, white balancing,

color space conversion, tone mapping and color enhancement, as shown in Fig. 1.1.
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The demosaicking operation interpolates the single-channel raw image with repetitive

mosaic pattern (e.g., Bayer pattern) into a full color image [134, 97, 73], followed

by a denoising step to enhance the signal-to-noise ratio [33, 50, 119, 82]. White

balancing corrects the color that is shifted by illumination according to human

perception [28, 57, 13, 10]. Color space conversion usually involves two steps of

matrix multiplication [63]. It firstly transforms the raw image in camera color space

to an intermediate color space (e.g., CIE XYZ) for processing and then transforms

the image to sRGB space for display. Tone mapping compresses the dynamic range

of the raw image and enhances the image details [125, 102, 37]. Color enhancement

operation manipulates the color style of an image [45, 31, 76, 127], usually in the

form of 3D lookup table (LUT) search. A detailed survey of the ISP components can

be found in [96, 62].

In the design of a traditional ISP pipeline, each algorithm component is usually

developed and optimized independently without knowing the effect to its successors.

This may cause error accumulation along the algorithm flow in the pipeline [56].

Moreover, each step inside an ISP pipeline is characterized by simple algorithms

which are not able to tackle the challenging imaging requirement by ubiquitous

cellphone photography. Recently, there are a few works that apply the learning-based

approach to the ISP pipeline design [100, 105]. One pioneering work of this type is

Jiang et al . ’s affine mapping framework [59]. In this work, the raw image patches

are clustered based on simple features and then a per-class affine mapping is learned

to map the raw patches to the sRGB patches. This learning-based approach has

limited regression performance due to the use of simple parametric model. Chen et al .

proposed a multiscale CNN for nighttime denoising [24]. They constructed a denoising

dataset and the CNN model is trained to convert a noisy raw image to a clean sRGB

image. Schwartz et al . proposed a CNN architecture called DeepISP that learns to

correct the exposure [105]. One common limitation of Chen’s and Schwartz’s models
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Figure 1.2: Contributions and organizations of the thesis.

is that they only considered one single aspect of ISP pipeline. Their task-specific

architectures are not general enough to model the various components inside an ISP

pipeline.

There exist a few datasets with different imaging scenarios that can be used for ISP

pipeline learning [53, 24, 18]. These datasets contain raw images and the corresponding

groundtruth sRGB images that are manually processed and retouched in a controlled

setting. The HDR+ dataset is featured with burst denoising and sophisticated style

retouching [53]; the SID dataset is featured with nighttime denoising [24]; and the

FiveK dataset contains groundtruth images that are retouched by five photographers

to have different color styles [18].

1.3 Contributions and Thesis Organization

The contributions and organizations of the thesis are summarized in Fig. 1.2, and are

described in detail in the following.

In chapter 2, we propose a tone mapping algorithm which adopts a hybrid `1-`0

norm optimization to characterize different features of an image. Our tone mapping

algorithm achieves visually compelling results and outperforms state-of-the-art tone
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mapping algorithms in terms of artifact prevention.

In chapter 3, we propose a novel denoising network for detail-enriched image

denoising. We adopt a smooth-and-enhance strategy where the network smooths

the input noisy image first and then hallucinates high-frequency textures to enhance

the perceptual quality. Adversarial training technique is applied for realistic details

generation. Our denoising network is shown to outperform the recently proposed

deep-learning-based denoising methods by a large margin in terms of perceptual

quality.

In chapter 4, we propose a practical learning scheme for burst denoising in real-

world scenarios. While it is difficult to construct a real-world dataset for burst

denoising, our learning scheme leverages two existing datasets to learn the required

operations in burst denoising, including frame alignment and real-world noise adapta-

tion. Our burst denoising method trained by the proposed learning scheme can be

applied to real-world burst denoising and outperforms other burst denoising methods

in the literatures.

In chapter 5, we propose a general and effective framework for ISP pipeline

learning. We analyze the typical image processing components in an ISP and divide

them into two weakly correlated groups. A two-stage network is designed to learn the

two groups of operations by two ground truths. Our two-stage framework is shown

to have great advantages over the traditional ISP pipeline and outperforms several

deep-learning-based ISPs in the literatures.

In chapter 6, we summarize our works and discuss the future research work.

12



Chapter 2

Tone Mapping by Hybrid `1-`0
Layer Decomposition

Tone mapping is an important image enhancement algorithm in the image signal

processing (ISP) pipeline of a camera. It aims to transform the high dynamic range

(HDR) raw image to a standard dynamic range (SDR) image with good visual quality

for display. This is usually achieved by reducing the luminance dynamic range of an

image while boosting the image details. Most existing tone mapping algorithms in the

literatures are based on layer decomposition method, where the image is decomposed

into a base layer and a detail layer. The base layer is compressed and the detail layer

is enhanced, followed by a recombination of the two layers to obtain the tone mapped

image. However, the tone mapped images usually contain halo artifacts or over-

enhancement artifacts, due to poor characterization of the two layers. In this chapter,

we propose a hybrid `1-`0 optimization model as the layer decomposition for tone

mapping. The proposed optimization model uses `1 and `0 sparsities to characterize

the base and detail layer, respectively, and leads to excellent tone mapping quality

with minimal artifacts.
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2.1 Introduction

The real-world scenes could span a luminance dynamic range that significantly exceeds

the response range of most imaging devices. Thanks to the celebrated high dynamic

range(HDR) technique in the past decade, the intact information of the scene can be

recorded in a radiance map by bracketed exposure fusion technique [35, 9]. However,

most of the display devices have a limited dynamic range and fail to reproduce the

information in the radiance map faithfully. Therefore, an effective tone mapping

algorithm is needed to transform the HDR radiance map into a standard dynamic

range(SDR) image without sacrificing the main visual information.

In the past two decades, a large number of tone mapping techniques have been

proposed in the literature. Despite the diversity in the design methodology, a large

part of these tone mapping methods are based on layer decomposition [102, 37, 86, 49].

Specifically, an image is decomposed into a base layer and a detail layer and then

processed separately. The detail layer with fine-grain details is preserved or boosted

[37, 49], and the base layer with large spatial smoothness and high range variations

is compressed. Although most layer-decomposition-based tone mapping algorithms

could increase the visual interpretability of a radiance map to some extent, they

have limitations in obtaining natural and visually pleasing results. A typical problem

is over-enhancement, where small scale textural details dominate the image. This

is because the existing works commonly ignore the spatial property of the detail

layer, which has a significant impact on the tone mapped image. In addition, halo

artifacts are still a problem in some tone mapping algorithms due to the lack of edge-

preserving property for the base layer [49]. In order to obtain a natural and artifact-free

reproduction of the radiance map, some proper priors should be incorporated into

the layer decomposition framework.

Given the fact that a tremendous amount of information is recorded in a HDR
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radiance map, which part of the information should be assigned a high priority for

visual perception is an important question for tone mapping. In psychology, it was

found that human vision is more sensitive to edges [7, 48]. This visual mechanism

facilitates the capturing of the main semantic information of the scene. In intrinsic

decomposition research [22, 12], it is commonly assumed that the edges in the

reflectance layer(a concept similar to the detail layer) is sparse, which also indicates

the high importance of the structural information in an image. In view of the above

observations, a tone mapping operator should address the structural reproduction in

the first place. Since the spatial property of the detail layer in the layer decomposition

framework mostly affects the visual appearance of the tone mapped image, we consider

to impose a structural sparsity prior on the detail layer.

While the use of prior on detail layer has not been reported in tone mapping

research, the `1 sparsity prior has long been adopted in Retinex decomposition [90, 43]

to model the structural sparsity of the reflectance layer. However, although the `1

term preserves edges in an image, its piecewise smoothness nature leads to weak

structural prior. On the other hand, the `0 sparsity term has been shown to have

great piecewise flattening property [120]. Thus, the `0 term seems to be a better

choice for the structural prior.

We propose a hybrid `1-`0 layer decomposition model for tone mapping. Specifi-

cally, a `0 gradient sparsity term is imposed on detail layer to model the structural

prior. In this way, the detail layer mostly contains structural information, which is

enhanced later in the algorithm. Additionally, to prevent the halo artifacts, an `1

gradient sparsity term is imposed on the base layer to preserve edges. Then, we devise

an effective multiscale tone mapping scheme based on our decomposition model. Due

to the use of proper priors in our layer decomposition, our tone mapper outperforms

state-of-the-art tone mapping algorithms in visual quality.
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(a) Radiance map (b) Detail layer by `1-`0 model(c) Detail layer by `1-`1 model

(d) Result by `1-`0 model (e) Result by `1-`1 model (f) 1-D analysis

Figure 2.1: Results by the proposed layer decomposition. The 1-D analysis is
performed on detail layers, which are illustrated on (b) and (c). The location is on
the line drawn in (a).

2.2 Tone Mapping by Hybrid `1-`0 Optimization

2.2.1 Hybrid `1-`0 Layer Decomposition

To devise a suitable layer decomposition framework, we mainly model the structural

prior of the detail layer and the edge-preserving prior on the base layer. Denote by

S, B and S ´B the original image, the base layer, and the detail layer, respectively.

The proposed layer decomposition optimization model is as follows:

min
B

řN
p“1

!

pSp ´Bpq
2
` λ1

ř

i“tx,yu |BiBp|

` λ2
ř

i“tx,yu F
`

BipSp ´Bpq
˘

)

(2.1)

where p is the pixel index, N is the number of pixels in the image. The first term
řN
p“1pSp ´Bpq

2 forces the base layer to be close to the original image. The spatial

property of the base layer is formulated as a `1 gradient sparsity term |BiBp|, i “ x, y,

where Bi is the partial derivative operation and i “ x, y denote the horizontal and
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vertical axes, respectively. The spatial property of the detail layer is formulated as a

`0 gradient sparsity term with an indicating function F pxq:

F pxq “

#

1, x ‰ 0

0, x “ 0
. (2.2)

The merits of our layer decomposition model lie in the hybrid usage of the `1

and the `0 terms. For one thing, due to the outlier-rejection nature of `1 sparsity

term [80], the large gradient of the base layer is preserved. Thus, the base layer is

piecewise smooth. For another, it has been shown that the `0 sparsity term yields

flattening effects [120, 91]. Our model applies `0 term to force some small textural

gradients of the detail layer to be zeros, while leaving the main structural gradients

intact. This arrangement yields piecewise constant effect and successfully models the

structural prior, as depicted in Figs 2.1(b).

Another possible choice for the detail layer is `1 gradient sparsity term, which has

been reported in Retinex research [43, 90]. In Fu’s model [43], the `1 term is imposed

on the reflectance/detail layer to gain piecewise constant effect. However, the `1 term

has two drawbacks. First, its nature is piecewise smoothness [81] and is not effective

to produce piecewise constant result, as depicted in Figs 2.1(c). Second, under the

same parameter setting, the `1 term does not strongly regularize the detail layer,

which could lead to over-enhancement of the tone mapped image, as shown in Figs

2.1(e). To illustrate the difference between the `1 term and `0 term, the 1-D signals

extracted from their resultant detail layers are shown in Figs 2.1(f). The position

of the signal is the yellow line in Figs 2.1(a). We can see that the `0 term flattens

the small trivial variations and preserves visually important edges, whereas the `1

term is not effective in such mechanism. As a result, the use of `0 term avoids the

over-enhancement problem and increases the visual interpretability of an image, as

shown in Figs 2.1(d).
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2.2.2 Solver

The optimization model (2.1) is nonconvex due to the `0 norm. We adopt the ADMM

framework to solve our objective function. For the sake of clarity, firstly the objective

function (2.1) is rewritten in a matrix-vector form as:

min
b

1
2
}s´ b}22 ` λ1}Ob}1 ` λ21

JF pOps´ bqq, (2.3)

where s, b P RN are the concatenated vector form of S,B in (2.1), respectively, and

1 P R2N is a vector of all ones. O denotes the concatenation of two gradient operator

matrices O “ rOJx ,O
J
y s
J P R2NˆN . F pOps ´ bqq performs elementwise non-zero

indication and outputs a binary vector. Now two auxiliary variables c1, c2 P R2N are

introduced to replace Ob, Ops´bq, respectively. The resultant augmented Lagrangian

function of our model is written as
Lpb, c1, c2,y1,y2q “

1
2
}s´ bq}22 ` λ1}c1}1

` λ21
JEzpc2q ` pc1 ´ ObqJy1

` pc2 ´ Ops´ bqqJy2

`
ρ
2
p}c1 ´ Ob}22 ` }c2 ´ Ops´ bq}22q,

(2.4)

where yi, i “ 1, 2 are the Lagrangian dual variables. At iteration k, the function

(2.4) is optimized by minimizing primal sub-problems with respect to b, c1, c2 and

maximizing the dual problems with respect to y1, y2 alternatively.

(1) Solving bk`1:

Firstly we split vector ck1 into two equal-length pieces, i.e., ck1 “ rck T
1,1 , c

k T
1,2 s

T ,

where ck T
1,i P RN , i “ 1, 2. In the same fashion, ck2 “ rc

k T
2,1 , c

k T
2,2 s

T , yk1 “ ry
k T
1,1 ,y

k T
1,2 s

T

and yk2 “ ryk T
2,1 ,y

k T
2,2 s

T . Then the objective function with respect to bk`1 is a

quadratic programming problem

bk`1 “ argmin
b

"

1

2
}s´ b}22 `

1

2
}ck1,1 ´ Oxb`

yk1,1
ρk
}
2
2 `

1

2
}ck1,2 ´ Oyb`

yk1,2
ρk
}
2
2

`
1

2
}ck2,1 ´ Oxb`

yk2,1
ρk
}
2
2 `

1

2
}ck2,2 ´ Oyb`

yk2,2
ρk
}
2
2

*

,

(2.5)
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which can be efficiently solved in Fourier domain

bk`1 “ fft´1
ˆ

fftpsq ` fft˚pOx ¨ fx
kq ` fft˚pOy ¨ fy

kq

1` 2ρk
`

fft˚pOxq ¨ fftpOxq ` fft˚pOyq ¨ fftpOyq
˘

˙

, (2.6)

where

fxk “ fft

ˆ

ρkpck1,1 `
yk1,1
ρk

` Oxs´ ck2,1 ´
yk2,1
ρk
q

˙

,

fyk “ fft

ˆ

ρkpck1,2 `
yk1,2
ρk

` Oys´ ck2,2 ´
yk2,2
ρk
q

˙

.

(2.7)

The denotations fft, fft˚ and fft´1 are the 2-D FFT, conjugate FFT and inverse FFT,

respectively.

(2) Solving ck`11 :

The objective function with respect to ck`11 is

ck`11 “ argmin
c1

"

2λ1
ρk
}c1}1 ` }c1´ Obk`1 `

yk1
ρk
}
2
2,

*

, (2.8)

which can be solved by soft-shrinkage operation:

ck`11 “ Tλ1{ρkpOb
k`1

´ yk1{ρ
k
q, (2.9)

where Tαpxq “ signpxq ¨maxp|x| ´ α, 0q is the soft-thresholding function.

(3) Solving ck`12 :

The objective function with respect to ck`12 is:

ck`12 “ argmin
c2

"

2λ2
ρk

F pc2q ` pc2 ´ qkq2
*

, where qk “ Ops´ bk`1q ´
yk2
ρk
.

(2.10)

This objective function can be solved in an element-wise manner

2N
ÿ

j“1

min
c2,j

"

2λ2
ρk

F pc2,jq ` pc2,j ´ qkj q
2

*

, (2.11)
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Figure 2.2: The proposed two-scale tone mapping algorithm

where j is the entry index of a vector.

According to the analysis of [120], the solution of ck`12 at entry j is

ck`12,j “

#

0, if pqkj q
2 ď λ2

ρk

qkj , Otherwise
. (2.12)

(4) Dual ascent for Lagrangian multipliers.

yk`11 “ yk1 ` ρ
k
pck`11 ´ Obk`1q,

yk`12 “ yk2 ` ρ
k
pck`12 ´ Ops´ bk`1qq.

(2.13)

(5) Update ρk`1 as ρk`1 “ 2ρk.

The ADMM is efficient to find the approximate solution for the base layer B

variable within a few iterations(15 in our case). Lastly, after the estimation for B,

the detail layer is obtained by S ´B.

2.2.3 Extension to Multiscale Decomposition

By applying the hybrid `1-`0 decomposition model (2.1) to the radiance map, we

can produce a piecewise constant detail layer and a piecewise smooth base layer.

While this single-scale scheme is a standard framework for tone mapping, applying

the decomposition repeatedly to create multiple scales can further improve the tone

mapping algorithm. In this way, different attributes of an image, represented by
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(a) One scale (b) Two scales

Figure 2.3: Tone mapping results by one scales and two scales

different scale layers, can be manipulated, which leads to more flexible and effective

tone reproduction. By leveraging the efficiency and effectiveness, we adopt a two-scale

decomposition scheme for tone mapping, as depicted in Fig 2.2. This will produce

the first scale detail layer D1, the second scale detail layer D2 and the second scale

base layer B2.

As discussed in Section 2.2.1, the spatial property of D1 mostly affects the

tone mapped image. We apply the proposed `1-`0 model (2.1) to the first scale

decomposition:

B1 “ model`1,`0pSq,

D1 “ S ´B1,
(2.14)

where model`1,`0p¨q is the optimization model in (2.1). After the first level decomposi-

tion, the structural information remains in the detail layer D1 and the main textural

information is transfered to the base layer B1.

For the second scale decomposition model, model (2.1) is applied to B1, but the

weight λ2 of the `0 term is set to 0, leading to a total variation problem:

B2 “ argmin
B

N
ÿ

p“1

 

pB1,p ´Bpq
2
` λ3

ř

i“tx,yu |BiBp|
(

,

D2 “ B1 ´B2,

(2.15)

This arrangement is due to the strategy that we preserve the textural information of
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the image in the 2nd scale detail layer D2. Thus, the `0-based structural prior is not

applicable in this decomposition. As a result, the layer D2 stores the majority of the

textural information, and the layer B2 contains local mean brightness.

To summarize, our two-scale decomposition scheme produces three layers in

addition relationship:

S “D1 `D2 `B2, (2.16)

Figs 2.3 shows the difference between our tone mappers with 1 scale and 2 scales(The

details of our algorithm will be discussed in Section 2.2.4). It can be seen that while

the one-scale result is acceptable, the two-scale result preserves the medium frequency

of an image and achieves more natural appearance.

Acceleration. The accuracy of the second scale decomposition (2.15) is not

strictly required. Thus, we adopt a acceleration scheme. First, we linearly downsample

the B1 by a factor of 4. Then the decomposition model in (2.15) is performed on

a low resolution of B2, followed by a linear upsampling to the original resolution.

Because the boundary regions in the image are slightly blurred due to the sampling

scheme, we finally perform a rapid guided filtering of B2 with the original B1 as the

guidance image to recover the sharp boundary information [54].

2.2.4 Tone Mapping Process

The processing steps of the proposed tone mapping algorithm mainly include color

transformation, multiscale decomposition, detail layer boosting, base layer compres-

sion, and recombination of the layers. While this algorithm framework is common

in the tone mapping research, our approach mainly differs in two aspects. First,

our suit of layer decomposition models is discriminative in the spatial attributes of

an image. As described in Section 2.2.3, our multiscale decomposition deploys the

structural information, textural information and local mean brightness separately
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into different layers, whereas existing multiscale models merely perform a progressive

smoothing [41, 49]. Second, in our multiscale manipulation approach, we perform a

layer-selective nonlinear processing, whereas other works only perform linear intensity

scaling [41].

Since the dynamic range of an image is mostly embedded in the brightness

domain, our core algorithm only processes the luminance channel and preserves the

chromaticity components. Specifically, the input RGB radiance map is transformed

to HSV space and only the V channel is tone mapped. At the reverse transformation

stage, the saturation channel is multiplied by 0.6 to prevent oversaturation.

Our tone mapping algorithm on the luminance channel of a radiance map is

depicted in Fig 2.2. The V channel Vh of the radiance map is firstly converted to log

domain and normalized to the range of (0, 1). This approach mimics the response of

human vision to the luminance and preliminarily reduces the dynamic range. Then

our two-scale decomposition scheme using (2.14) and (2.15) is applied, yielding three

layers D1, D2, and B2. Since the base layer B2 can be considered as the local

brightness level of the image, we compress it by a gamma function:

B1
2 “ L ¨ p

B2

L
q

1
γ , (2.17)

where L is the largest brightness level(L “ 1 in our case, due to the normalization).

For the first detail layer D1, we use a nonlinear stretching function to boost it:

D1
1 “ signD1 ¨

ˆ

|D1|

maxp|D1|q

˙α

¨maxp|D1|q, (2.18)

This function with the parameter α has a stretching effect for signals centering at 0.

Smaller α yields larger stretching degree and vice versa. Since the structural prior is

imposed in D1 by decomposition model (2.1), the structural residual of the original

image is boosted by the stretching function. This arrangement would result in a more

visually appealing image. Then, a luminance SDR image is reconstructed by

Vl “ 1.2D1
1 `D2 ` 0.8B1

2. (2.19)
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(a) The log radiance map (b) λ2 “ 0.0008

(c) λ2 “ 0.003 (d) λ2 “ 0.008

Figure 2.4: The effect of λ2 on the detail layer when λ1 is fixed to 0.3.

Finally, the values of Vl at 0.5% and 99.5% intensity level are mapped to 0 and 1,

respectively. Values out of this range are clipped.

2.3 Experiments and Analysis

This section presents several experiments to verify the performance of our hybrid

`1-`0 layer decomposition model (2.1) and the proposed tone mapping algorithm. A

HDR database with 40 radiance maps is collected for evaluation.

2.3.1 Parameter Selection

The parameters that affect our `1-`0 decomposition model (2.1) are λ1, λ2. They

balance the fidelity term, the `1 gradient sparsity term on B1 and the `0 gradient

sparsity term on D1. Figs 2.4 shows the effects of λ2 on the detail layer when λ1 is

fixed. It can be seen that different values of λ2 lead to different degrees of flattening

effect on D1. When λ2 is excessively large, some structures are totally flattened. In

contrast, when λ2 is overly small, some small texture gradients appear in the D1, and
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(a) λ1 “ 0.06 (b) λ1 “ 0.3 (c) λ1 “ 1

(d) λ1 “ 0.06 (e) λ1 “ 0.3 (f) λ1 “ 1

Figure 2.5: The effect of λ1 on the two layers when λ2 is fixed to 0.01λ1. The upper
three images are detail layers. The bottom three images are base layers.

the structural prior is less modeled. We performed an exhaustive experiment with our

database and found that when λ2 is set to 0.01λ1 the decomposition is consistently

satisfactory. Figs 2.5 presents the effect of parameter λ1 when λ2 is fixed to 0.01λ1.

It can be seen that λ2 mainly controls the degree of piecewise smoothness of B1 and

the signal magnitude of D1. We fix λ1 to a moderate value of 0.3. In summary, λ1 is

empirically fixed at 0.3 while λ2 is fixed at 0.003. Both parameters are not dependent

on image contents and we find them satisfactory for most HDR images.

Other parameters that are left to be determined are λ3 in (2.15), γ in (2.17) and

α in (2.18). λ3 controls the degree of smoothness in the final base layer B2. We found

that except some extreme settings, λ3 does not considerably affect the tone mapped

image. Hence λ3 is fixed to 0.1. α mainly controls the stretching degree of the first

detail layer D1. To prevent over-boosting effect, we set it to a moderate value of 0.8.

Finally, the γ is set to 2.2 as a common practice in Retinex decomposition research

[66, 90, 43].
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(a) D1 by Gu’s[49] (b) D2 by Gu’s[49] (c) B2 by Gu’s[49] (d) Results by Gu’s[49]

(e) D1 by Ours (f) D2 by Ours (g) B2 by Ours (h) Results by ours

Figure 2.6: Comparison of multiscale decomposition models

2.3.2 The Decomposed Layers

To verify the multiscale decomposition performance of our tone mapping algorithm,

we compare with Gu’s multiscale tone mapper [49]. In Gu’s model, a local guided

filter weighted by gradient function is repeatedly applied to the original image to

obtain 2 scale layers. Note that although Gu’s model is claimed to have 3 scales(4

layers), the last scale base layer is a constant image. Thus the valid scale number

is two. We merge the last two layers of Gu’s model to one, resulting in 2 scales(3

layers) in total. Gu’s model enforces the edge-preserving property on the base layer

without imposing any prior on the detail layer.

In Figs 2.6, the multiscale decomposition results by Gu’s model and our methods

are compared. A 1-D auxiliary analysis is shown in Figs 2.7, where a piece of 1-D

signal(the position is the red line in Fig 2.7(a)) is extracted from the decomposed

layers of each method. It can be seen from Fig 2.7(b)) that Gu’s model simply

performs progressive smoothing without considering the spatial property of the detail

layer. Thus, the first detail layer(the red curve in 2.7(b)) is full of small fluctuations

and the tone mapped image is over-enhanced, as depicted in Fig 2.6(d). What’s
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(a) Log radiance map(with
line for (b) and (c))

(b) Gu’s model[49] (c) Ours

Figure 2.7: 1-D analysis of multiscale decomposition

worse, Gu’s model does not strictly preserve edges due to the nature of local filter.

Thus the tone mapped result has halo artifact, see the zoom-in in Fig 2.6(d). In

contrast, due to the structural prior, our method distributes the small-scale variations

in the second layer D2, and enforces the first layer D1 to be piecewise constant, as

shown in Fig 2.7(c). In addition, our method is also edge-preserving. Therefore, our

model not only avoids halo artifacts but also achieves visually compelling results, as

shown in Fig 2.6(h).

2.3.3 Comparison of Tone Mapping

We compare our tone mapper with 4 state-of-the-art tone mapping algorithms(TMO).

These 4 TMOs are visual adaptation method(VAD) [42], backward-compatible method

(BWC) [83], guided filter method(GF) [49], and gradient reconstruction method(GR)

[107]. GF is implemented by us since the source code is not available. BWC is

implemented with pfstool1. VAD and GR are implemented by the authors’ source

codes. All these tone mapping methods use the default parameters as provided in

the original papers.

Subjective evaluation. Figs 2.8, 2.9 show the comparison of tone mapping

results. We can see that our method achieves a strong balance between detail

1http://pfstools.sourceforge.net/
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(a) Radiance map (b) VAD[42] (c) BWC[83]

(d) GF[49] (e) GR[107] (f) Ours

Figure 2.8: Comparison of tone mapping

(a) Radiance map (b) VAD[42] (c) BWC[83]

(d) GF[49] (e) GR[107] (f) Ours

Figure 2.9: Comparison of tone mapping
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(a) Radiance map (b) Photomatix (c) Ours

Figure 2.10: Comparison with Photomatix

Table 2.1: Comparison of mean opinion scores

VAD[42] BWC[83] GF[49] GR[107] Ours

Mean 4.68 5.11 5.31 4.60 6.43

Std 1.48 1.21 1.45 1.60 1.20

enhancement and naturalness preservation. In contrast, other TMOs suffer from

different types of distortions. GR and GF have over-enhancement problem and halo

artifacts. VAD has color shift problem and BWC overly softens the images. In Figs

2.10, our tone mapper is compared with the default tone mapper of Photomatix2.

We can see that while the two methods can obtain satisfactory results, our method

achieves higher visual interpretability on the image due to the highlighting of structural

information.

To further qualitatively verify the performance of our tone mapper, we perform a

subjective experiment on our HDR database. Specifically, 6 subjects, 3 males and

3 females, are requested to give scores to 40 images tone-mapped by each method.

The score ranges from 1(the worst) to 8(the best) spaced with 0.5. 2 of the subjects

2https://www.hdrsoft.com/
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Figure 2.11: Comparison of mean opinion score statistics

Table 2.2: Comparison of TMQI

TMQI
Structural

fidelity
Naturalness

WLS[41] 0.8703 0.8513 0.4540

VAD[42] 0.8695 0.8614 0.4320

BWC[83] 0.8633 0.8498 0.4213

GF[49] 0.8692 0.8446 0.4508

GR[107] 0.8746 0.8303 0.5147

Ours 0.8851 0.8334 0.5547

are researchers in image processing, while the others major in other fields. The

tone mapped images are shown in random order on a PA328 display with 32 inch

(7680ˆ4320), controlled by a Mac Pro PC with 2.9 GHz CPU. The subjects are

not acknowledged of the tone mapping algorithms involved in the experiment. The

subjects are taught how to use the programs before the evaluation. The mean opinion

score statistics are illustrated in Fig 2.11 and table 2.1. We can see that our tone

mapper achieves the highest mean scores(6.43) and a tolerable variation(1.20).

Objective evaluation. Aside from subjective evaluation, we use the Tone
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Table 2.3: Comparison of running time on a 1333ˆ 2000 image

VAD[42] BWC[83] GF[49] GR[107] Ours

Code C++ C++ Matlab Matlab Matlab

Time 18.1s 0.7s 1.7s 77.6s 8.6s

Mapped Image Quality Index (TMQI) to perform an objective evaluation on 6 TMOs.

[124]. TMQI first evaluates the structural fidelity and naturalness of the tone mapped

images. Then the two measures are adjusted by power function and averaged to give

a final score in the range from 0 to 1. Larger values of TMQI indicate better quality

of the tone mapped image, and vice versa. Table 2.2 illustrates the mean TMQI

score of each TMO performed on our database with 40 HDR images. We can see that

our method achieves not only the highest TMQI score (0.8851), but also the highest

naturalness measure (0.5547). These excellent marks objectively indicate the high

performance of our algorithm.

Efficiency. The proposed tone mapper has a relatively low computational

complexity. The most complicated part is the FFT operation in the ADMM-based

solver, which cost OpN∆logpNqq. Table 2.3 compares the running time of the 5

TMOs on a 1333ˆ 2000 sized image(Fig 2.8(a)). The testing environment is a PC

with i7 6850k CPU, 16G RAM. It can be seen that our tone mapper has a moderate

running time.

2.3.4 Discussion and Future Work

Given the fact that deep learning technique has been successfully applied to various

image processing tasks, i.e., super-resolution and denoising, it is a natural idea

to adopt it to improve the tone mapping quality. One can construct a pairwise

dataset with HDR images and their ideal tone mapped counterparts and train a deep

convolutional neural network (CNN) to perform the tone mapping process. However,
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the generation of ground truths, i.e., the tone mapped images, is a challenging problem.

It requires labor-intensive adjusting of various image attributes, including brightness,

local contrast, color and details. In addition, the agreement on ground truth quality

is highly subjective as an HDR image could have multiple style of tone mapped

images. Therefore, there are little work in the academia that adopts deep learning

approach for tone mapping. Rana et al . [99] adopted a compromised scheme, where

the ground truth tone mapped images are generated by manually selecting the best

results from several traditional tone mapping algorithms. This compromised approach

will degrade the performance of the learned network.

In the future work, we plan to address the above problem by constructing a

dedicated tone mapping dataset. We will collect a large number of HDR images and

hire several photographers to create the tone mapped images by using HDR softwares

like Photoshop or Aurora HDR. Each HDR image will correspond to multiple styles

of tone mapped images which are generated by different photographers. We believe

this dataset will not only provide high quality ground truths for network training,

but also offer wide range of choices for tone mapped results.

2.4 Summary

We propose a novel hybrid `1-`0 layer decomposition model to address the overen-

hancement and halo artifact problem of tone mapping. This decomposition model

effectively realizes a structural prior of the detail layer and the edge-preserving prior

of the base layer. The ADMM algorithm is adopted to solve the optimization model

efficiently. Then, based on this `1-`0 layer decomposition, a multiscale tone mapping

algorithm is proposed. It performs dynamic range reduction in the base layer and

structure boosting in the detail layer. Due to the proper use of the two priors, our

multiscale tone mapping algorithm not only avoids halo artifact but also achieve more
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visually compelling tone mapping results than existing works.
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Chapter 3

A Smooth-and-Enhance Strategy

for Detail-enriched Single Image

Denoising

Single image denoising is a fundamental research topic in the academia. Though

the recently proposed deep learning based denoising methods have achieved a great

success, the trade-off between noise removal and texture preservation often leads to

over-smoothed results, sacrificing the perceptual quality of denoised images. One may

train a denoising network with adversarial training technique to synthesize image

details. However, mixing the tasks of noise removal and detail synthesis tends to

generate much visual artifact. In this chapter, we propose a two-stage network for

detail-enriched image denoising by using a smooth-first (noise removal) and enhance-

later (detail enhancement) strategy, with one subnetwork designed for each of the two

stages. Firstly, the noise removal and detail enhancement subnetworks are pre-trained

for conventional denoising and super-resolution tasks, respectively, to learn image

priors for smoothing and enhancement. Then a joint adversarial training is performed

in a scale-progressive manner to output detail enriched results. Experiments on

synthetic and real-world noisy images demonstrate that the proposed smooth-and-

enhance method can significantly improve the perceptual quality of denoised images
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with richer textures and details over the recent state-of-the-arts.

3.1 Introduction

Noise introduction is inevitable in the digital imaging process. The photonic nature

of light causes fluctuation in the light collection of a camera, while the imperfection of

electronic hardware adds further disturbance on the analog to digital conversion [118].

The noise degrades the image quality by impairing the image details and structures,

and hence denoising is an indispensable step in the camera image signal processing

(ISP) pipeline [98] to remove the noise and recover the image details.

A variety of image denoising algorithms [104, 40, 17, 33, 50, 119] have been

developed in the past decades. Most of the successful methods exploit the prior

knowledge of natural image statistics, including statistical prior [104, 94], sparsity

prior [3, 40, 84], self-similarity prior [17, 33, 50, 119, 82], etc. The recently developed

deep learning based methods [131, 132, 71, 123] significantly boost the denoising

performance by training deep convolutional neural networks (CNNs) on large-scale

datasets of noisy-clean image pairs. Instead of using hand-crafted image priors, CNNs

can learn priors from data and they demonstrate much better results on reconstructing

image structures.

In spite of the great success, CNN-based denoising methods still need to trade-off

between noise removal and texture preservation, leading to over-smoothed results,

which deviate from the natural image statistics and have low perceptual quality.

Although some methods can recover more details by decreasing the denoising strength

via extra network input such as noise map [132], the residual noise impairs the image

quality. The aforementioned problem is caused by the fact that image details and

noise are tangled with each other in high-frequency domain. It is difficult for the

denoisers to tell noise from image details. Thus, much textures and fine details are
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lost during the noise removal process.

To enrich the image details and improve the perceptual quality of denoising

results, one intuitive idea is to adopt the popular adversarial training techniques

[47, 116]. Specifically, one could fine-tune the pre-trained denoising network with the

supervision of a discriminator network, which differentiates between original natural

images and denoised ones. Under such a supervision, the denoising network can learn

to synthesize images that approximate the statistics of natural images. However,

directly introducing adversarial training to image denoising could lead to unstable

results with inferior details, because removing noise and synthesizing details are two

contradicting subtasks: the former reduces the high-frequency image components

while the latter increases. Mixing these two subtasks will mislead the CNN to take

noise as source of details and amplify them. A more deliberate strategy is needed to

synthesize image details without amplifying noise.

To solve the aforementioned problem, we propose a two-stage network for detail-

enriched image denoising by using a smooth-first and enhance-later strategy. We

explicitly split the denoising process into a noise removal process and a detail en-

hancement process, and characterize them by two subnetworks, respectively. The

noise removal subnetwork conducts normal denoising, which yields smooth but overall

clean results. Based on the clean semantic content of the first stage, the detail

enhancement subnetwork then hallucinates image details via adversarial training. We

call the proposed network SAE-Net (smooth and enhance network) and design an

effective training scheme of it. First, the noise removal subnetwork is pre-trained

via a denoising task, while the detail enhancement subnetwork is pre-trained via a

super-resolution task for initial detail synthesis. The pre-training process aims to

learn image priors for noise smoothing and detail enhancement. Then the whole

network is jointly fine-tuned with the supervision of a discriminator network. To

stabilize the adversarial training, we adopt a progressive scheme where the learning
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gradually moves from low to high resolution scales. Experiments on synthetic and

real-world noisy images show that our SAE-Net can achieve visually compelling

results by simultaneously removing noise and synthesizing high-quality details. It

outperforms the recently proposed deep-learning-based denoising methods by a large

margin in terms of perceptual quality metrics (e.g., PI [14] and LPIPS [135]).

3.2 Image Denoising by Smooth-and-Enhance Strat-

egy

Image denoising aims to recover the latent clean image I from its degraded version

In. In this work we consider the AWGN in sRGB space and real-world noise in raw

domain. Given a training dataset S with noisy-clean image pairs (In,Igt), we aim to

train a denoising CNN Gp¨; θq parameterized by θ to restore the clean images.

The key challenge to restore a visually pleasant image is to remove the noise while

preserving the image fine details. However, it is difficult for a denoiser to address

these two subtasks simultaneously because image details and noise are entangled with

each other in the high-frequency domain of an image. When a network is trained to

remove noise, like the many existing works [131, 4, 137], it may treat some of the

image details as noise and suppress them, resulting in piece-wise smooth denoising

output. It is always a high demand for a denoiser to reproduce image fine-scale details

so that the denoised images could look more natural.

Intuitively, one may fine-tune the pre-trained denoiser with the recently proposed

adversarial training methods [116] by using a discriminator network to guide the

denoising network to synthesize realistic details. However, the process of synthesizing

details conflicts with removing noise because the former enhances the high-frequency

components while the latter suppresses them. Mixing the two subtasks in a one-stage

network structure could mistreat the noise as source of image details and amplify
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Figure 3.1: Network structure.

them, leading to results with much artifacts and inferior quality. Therefore, we need

to carefully treat the noise removal and detail synthesis subtasks to better leverage

the adversarial training technique.

3.2.1 Smooth and Enhance: A Two-stage Network

Instead of using a one-stage network for denoising, we proposed a two-stage network

structure with a smooth-first and enhance-later strategy. We split the denoising

process into a noise removal stage and a detail enhancement stage, which are char-

acterized by two subnetworks, respectively. The noise removal subnetwork, called

NR-Net, focuses on smoothing image noise, while the detail enhancement subnetwork,

called DE-Net, focuses on hallucinating high-frequency textures for detail-enriched

results. In order to effectively train the two subnetworks, which have conflicting

objectives, we have the following considerations.

First, the two subnetworks should be trained to accomplish their specific objectives,

i.e., smoothing noise and synthesizing details. To this end, we pre-train the NR-Net

as a normal denoising network and pre-train DE-Net as a super-resolution network

which recovers certain image details. Second, the whole network should produce
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clean images with realistic details that match natural image statistics. To achieve

this goal, we perform adversarial joint fine-tuning of the two subnetworks after the

pre-training. We describe the network structures in this section while discussing the

details of training strategy in Section 3.2.2.

Network structure. We call the proposed network SAE-Net (smooth and

enhance network), while its two stage structure is shown in Fig. 3.1. The noise

removal subnetwork NR-Net, denoted as Gnrp¨; θnrq, takes In as input and produces

an initially denoised image Id:

Id “ GnrpIn; θnrq (3.1)

Then, Id goes through an operation P p¨q before being further processed. In the case

of AWGN removal (in sRGB color space), P p¨q is simply an identity mapping. In

the case of real-world noise removal in raw domain, P p¨q is a set of differentiable ISP

operations that convert Id from raw domain to sRGB domain, including demosaicking

Mp¨q, white balance W p¨q, color space conversion Cp¨q and gamma correction Gp¨q:

P pIdq “ GpCpW pMpIdqqq (3.2)

In the nonlinear sRGB space, image details in dark regions are more prominent, which

facilitates the detail synthesis in dark regions.

The detail enhancement subnetwork DE-Net, denoted as Gdep¨; θdeq, takes P pIdq

as input and outputs an enhanced clean image Ie with richer textures and details:

Ie “ GdepP pIdq; θdeq (3.3)

A discriminator network Dp¨; θdq is employed to differentiate the authenticity

of the enhanced image. Specifically, Dp¨; θdq takes Ie and the ground truth image

as input, and outputs a probability to indicate the naturalness of the input image.

Although many sophisticated CNN architectures can be employed to implement the

two subnetworks and the discriminator network, we implement them with simple yet

effective multi-scale structures for simplicity.
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Noise removal network. We adopt a 5-level UNet-like structure for NR-Net

[103], as shown in Fig. 3.1. The NR-Net has a contracting path that progressively

decreases the resolution of feature maps, followed by an expanding path to progres-

sively expand the resolution back. The detail information in the feature map is

preserved by the skip connections between the contracting path and the expanding

path at the same resolution level. To facilitate information propagation, we deploy

residual convolutional blocks in the two paths at each resolution level. The UNet

has advantages of scale-adaptive operation, where finer scales focus on removing

high-frequency noise and coarser scales focus on restoring overall image structures.

Detail enhancement network. We also adopt a multi-scale structure for DE-

Net but with different settings from NR-Net. We keep the expanding path but remove

the learnable layers in the contracting path. Instead, the contraction is performed by

downsampling the input image with bilinear method to each resolution level. This

setting facilitates the progressive GAN training, which will be explained in Section

3.2.2. At each resolution level, a convolutional layer is deployed to process the input

image, followed by two residual blocks which hallucinate details on the previous

feature maps. Skip connections are deployed between the input image and the

expanding path at the same resolution level. With the multi-scale structure, DE-Net

can hallucinate large-scale structures on coarse scales, while synthesize high-frequency

textures on finer scales.

Discriminator network. As shown in the right-bottom corner of Fig. 3.1, the

discriminator works at 5 resolution levels by progressively downsampling the input

image with stride-2 convolutions. Two fully connected layers are deployed at the

lowest resolution and output the probability value. Batch normalization is employed

between convolutions and activations, except the first convolution.
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Figure 3.2: Fade-in layers. The green and orange blocks denote the modules from DE-
Net and discriminator, respectively. ToRGB and FromRGB denotes 1ˆ1 convolutions
that reduce and expand the channel size, respectively.

3.2.2 Training Strategy

The training of the proposed SAE-Net is divided into two steps. The first step

independently pre-trains the two subnetworks to learn denoising and super-resolution

priors from natural images. The second step performs joint fine-tuning of NR-Net

and DE-Net in an adversarial manner to enrich image details in the final results. For

simplicity of expression, we use Igt to denote the ground truths in both sRGB and

raw domains. When calculating a loss, we assume that the ground truth is already

transformed to the same domain as the corresponding network output.

Step 1: Pre-training NR-Net and DE-Net. For NR-Net, we pre-train it as

a normal deep denoiser with an `1 loss function such as Ls1,nr “ L`1pId, Igtq. The

results may be piece-wise smooth but contain overall clean contents.

For DE-Net, we pre-train it as a super-resolution network because super-resolution

is highly correlated to detail hallucination. We use the same dataset but use different

settings to generate training image pairs. Specifically, we use the original clean image
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Igt as the ground truth. To obtain the input image, we randomly downsample Igt by

factors of 2, 4 or 8 and then resize them back to the original resolution. A set of `1

losses are imposed on the outputs at all resolution levels to train DE-Net, which can

be depicted as:

Ls1,de “
ÿ4

i“0
L`1pI ie, I igtq (3.4)

where I ie denotes the output image at the ith resolution level of DE-Net (I0e “ Ie is

the original resolution). For level i ‰ 0, I ie is obtained by adding a 1ˆ1 convolution to

the output feature map of DE-Net to reduce the channel size to 3. Correspondingly,

I igt is the ground truth image which is bilinearly downsampled to the ith resolution

level. Such a multi-scale arrangement is to let DE-Net generate a detail-enriched

image at every resolution level, and facilitate the progressive adversarial training in

the second step.

Step 2: Joint adversarial fine-tuning. The second step performs joint adver-

sarial training of NR-Net and DE-Net. The loss is set as Ls2 “ λLs2,nr`p1´λqLs2,de.

The first term Ls2,nr “ L`1pId, Igtq regularizes NR-Net with `1 loss to maintain its

pre-denoising functionality. The second term Ls2,de is imposed on DE-Net, which is

composed of an `1 loss L`1 , a perceptual loss Lper and an adversarial loss LGad:
Ls2,de “ λ1L`1 ` λ2Lper ` λ3LGad (3.5)

The perceptual loss Lper in (3.5) measures the `1 distance between the feature repre-

sentations in the pre-trained VGG-19 network of two images, which can improve the

perceptual quality of important structures. Similar to [116], we use the convolutional

layers before activations to compute the loss, which can provide dense supervision1.

For the adversarial loss LGad in (3.5), we adopt a relativistic GAN loss [116], which

has the following formulation:
LGadpxf , xrq “ ´ Exr r1´ logpDpxr, xf qs

´ Exf rlogpDpxf , xrqqs
(3.6)

1We use both low and high level features “22” and “54” for the loss computation, where “xy” denotes
the xth convolution before the yth max-pooling.
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where xf and xr denote the fake and real data, respectively, and Dp¨q denotes the

estimated relative authenticity between xf and xr:

#

Dpxr, xf q “ σpDcpxrq ´ Exf rCpxf qsq
Dpxf , xrq “ σpDcpxf q ´ ExrrCpxrqsq

(3.7)

where σp¨q denotes the sigmoid function, Dcp¨q denotes the non-transformed discrim-

inator output, and Exf r¨s denotes the operation of averaging the fake images in a

mini-batch. The loss for the discriminator network is simply the symmetric form of

the generator loss in (3.6):

LDadpxf , xrq “ ´ Exr rlogpDpxr, xf qqs

´ Exf r1´ logpDpxf , xrqqs
(3.8)

Different from the standard GAN [47] where the discriminator predicts the samples

as absolutely real or fake, the discriminator in relativistic GAN predicts whether a

real sample is more realistic than a fake one. This arrangement can leverage both real

and fake samples and provide better supervision for the training of the generator.

Directly optimizing the adversarial losses in (3.5) and (3.8) at the original image

resolution is difficult and can be unstable. We adopt a progressive training scheme

[64], where the generator and discriminator are trained synchronously from low to

high resolutions. Specifically, starting from the lowest (i.e., the 4th) resolution level of

the DE-Net and the discriminator, we train their modules at the (i` 1)th resolution

level for Ti`1 iterations with the pair of adversarial losses (3.5)(3.8), and then go to

the ith level until reaching the original resolution. When moving from one resolution

level to another, we adopt a “fade-in” layer [64], as shown in Fig. 3.2, which avoids

degrading the learned module for previous resolution level. Specifically, the loss for

DE-Net minimizes Ls2,depÎ ie, I igtq from resolution level i “ 4 to i “ 0, where I igt is the

ground truth bilinearly resized to ith resolution level. Î ie denotes the output image of

DE-Net, which is combined by the image at the current resolution level I ie and the

upsampled image at previous level I i`1e :
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Algorithm 3.1 Adversarial fine-tuning of NR-Net and DE-Net.

Markers: i P t0, 1, 2, 3, 4u: resolution level of DE-Net; Ti: number of training

iterations at resolution i; α: weight in fade-in layer; I ie: the image reconstructed at

the ith level of DE-Net; I igt: the ground truth resized to the ith resolution level.

Optimization:

for i “ 4 to 0 do

Initialize α “ 0

if i “ 4 then

Î ie “ I ie
else

Î ie “ α ¨ I ie ` p1´ αq ¨ uppI
i`1
e q

end if

for iter “ 0 to Ti do

1. Update from the i` 1th to the ith level modules of SAE-Net with the

gradient of

λL`1pId, Igtq ` p1´ λqLs2,depÎ ie, I igtq
2. Update from the i ` 1th to the ith level modules of the discriminator

with the gradient of

LDadpÎ ie, I igtq
3. α “ minp1, 2

Ti
iterq

end for

end for

Î ie “

#

α ¨ I ie ` p1´ αq ¨ uppI
i`1
e q, i P t0, 1, 2, 3u

I ie, i “ 4
(3.9)

The parameter α is the weight that grows from 0 to 1 in the training, gradually

switching the training from the i`1th to the ith level module of DE-Net (i.e., increasing

resolution). Meanwhile, the discriminator loss minimizes LDadpÎ ie, I igtq. Similar to the

DE-Net, the training of the discriminator, which also has a multi-scale structure,

progresses from the i` 1th to the ith resolution level. The discriminator takes αÎ ie

as the input for its ith level module, while taking the downsampled p1´ αqÎ ie for its

i` 1th level. The discrimination on the input image switches from i` 1th to the ith
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resolution level as α grows from 0 to 1. The above training procedure is summarized

in Algorithm 3.1.

3.3 Experiments

We conduct experiments to verify the effectiveness of the proposed SAE-Net on

both synthetic and real-world noisy images quantitatively and qualitatively. Three

metrics are used for objective evaluation, including the peak signal-to-noise ratio

(PSNR), the perceptual index (PI) used in the PIRM-SR Challenge [14] and the

LPIPS metric [135]. While PSNR simply measures the pixel-wise errors between two

images, PI and LPIPS are metrics designed for human perception. In particular, PI

is a no-reference metric and a lower PI indicates better perceptual quality. LPIPS

compares the feature representations of two images in a pre-trained classification

network. A smaller LPIPS means the image is visually closer to the ground truth,

hence better perceptual quality.

3.3.1 Experimental Settings

Datasets. For the experiments on AWGN removal, we use the combination of DIV2K

[2], Flickr2K [109] and OST [111] datasets as training data. The three datasets have

800, 2,650 and 10,324 high quality images, respectively. Following previous works

[131, 23], we choose CBSD68, Kodak24, McMaster and Urban100 as the testing sets.

For the experiments on real-world noise removal, we select 3,600 high-quality

images with low ISO from the FiveK dataset [18] to create the training data because

they have high resolution and rich details. We adopt the ISP unprocessing method

[15] to synthesize the training pairs in raw or sRGB domain. We also include the

SIDD medium set and Renoir dataset for training as a complement because they

contain real-world noisy-clean image pairs. The testing set is composed of two parts.

The first is the SIDD validation set which contains 1280 noisy sRGB patches from
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Table 3.1: Gaussian denoising results in PI/LPIPS. The values in bold letter indicate
the best scores.“-” means that the result is not available.

Datasets σ DnCNN FFDNet IRCNN RNAN RIDNet SADNet SMNet SAE-
Net

CBSD68
30 2.67/0.148 2.85/0.147 2.47/0.117 2.91/0.119 3.11/0.152 2.95/0.111 2.76/0.144 2.56/0.096

50 2.79/0.210 3.30/0.241 2.69/0.203 3.24/0.200 3.43/0.229 3.21/0.180 3.12/0.188 2.50/0.147

70 3.26/0.316 3.75/0.313 - 3.52/0.264 4.07/0.319 3.41/0.234 3.15/0.306 3.11/0.181

Kodak24
30 2.63/0.172 2.81/0.168 2.34/0.139 2.60/0.132 2.86/0.173 2.63/0.124 2.51/0.169 2.34/0.110

50 2.70/0.237 3.30/0.259 2.57/0.225 2.94/0.210 3.22/0.247 2.84/0.187 2.93/0.205 2.35/0.154

70 3.32/0.338 3.81/0.331 - 3.23/0.271 4.03/0.329 3.05/0.234 3.12/0.334 3.04/0.184

McMaster
30 3.49/0.159 3.75/0.156 3.07/0.138 3.51/0.138 3.74/0.167 3.50/0.133 3.28/0.143 2.91/0.124

50 3.38/0.207 4.18/0.215 3.20/0.194 4.00/0.196 4.28/0.222 4.04/0.148 3.86/0.183 2.95/0.156

70 4.12/0.268 4.59/0.268 - 4.35/0.240 4.93/0.275 4.41/0.228 3.42/0.254 3.69/0.181

Urban100
30 3.99/0.088 4.32/0.084 3.84/0.073 4.25/0.066 4.27/0.085 4.16/0.062 4.00/0.083 3.74/0.062

50 3.80/0.136 4.39/0.136 3.76/0.123 4.27/0.107 4.29/0.131 4.20/0.095 4.32/0.108 3.71/0.094

70 3.80/0.224 4.44/0.186 - 4.26/0.144 4.42/0.188 4.25/0.127 3.75/0.200 4.07/0.116

indoor images. To test the performance in challenging outdoor scenario, we capture

20 noisy raw images with vivo NEX 3S in nighttime scenario as the second test part,

which is called vivo testing set.

Training details. The kernel sizes of SAE-Net and the discriminator are set to

3ˆ3. We crop non-overlapping 256ˆ256 patches from each training image and exclude

those smooth patches, yielding 133,854 patches in total for training. The batch size

is set to 16 and the number of epochs is set to 25 for each training step. We use

the Adam optimizer (β1 “ 0.5, β2 “ 0.99) [67] for network optimization. The initial

learning rate is set to 1e-4 and it is exponentially decayed by 0.1 at the 3
4
th epoch

for step 1, and is fixed at step 2. At step 2, the update iterations for the resolution

levelstT0, T1, T2, T3, T4u are t80000, 40000, 40000, 40000, 10000u. The weights λ, λ1,

λ2,λ3 are set to 0.5, 0.01, 1 and 0.005, respectively.

3.3.2 Results on AWGN Noise Removal

We firstly evaluate the performance of SAE-Net on images corrupted by AWGN

with noise levels σ “30, 50 and 70. We compare with the state-of-the-art denoising
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Table 3.2: Gaussian denoising results in PSNR(dB). The values in bold letter indicate
the best scores.“-” means that the result is not available.

Datasets σ DnCNN FFDNet IRCNN RNAN RIDNet SADNet SMNet SAE-
Net

CBSD68
30 29.9 30.2 30.1 30.7 30.3 30.7 30.1 28.8

50 27.9 27.9 27.9 28.2 28.0 28.3 28.1 27.1

70 26.1 26.5 - 26.8 26.5 26.9 26.1 25.3

Kodak24
30 31.1 31.4 31.2 31.9 31.4 31.8 31.1 29.5

50 28.8 28.9 28.9 29.5 29.1 29.6 29.4 28.0

70 27.1 27.61 - 28.2 27.6 28.3 27.2 26.3

McMaster
30 31.1 31.5 31.3 32.1 31.4 32.0 31.3 29.4

50 28.6 29.2 28.9 29.7 29.1 29.7 29.6 28.0

70 26.9 27.6 - 28.2 27.6 28.3 27.1 26.0

Urban100
30 29.9 30.5 30.3 31.5 30.4 31.3 30.3 28.7

50 27.6 28.1 27.7 29.1 28.1 29.0 28.8 26.8

70 25.3 26.4 - 27.4 26.2 27.5 25.8 24.9

(a) Noisy image (b) DnCNN [131] (c) FFDNet [132] (d) IRCNN [133] (e) RNAN [137]

(f) RIDNet [4] (g) SADNet [23] (h) SMNet [93] (i) SAE-Net (j) Ground truth

Figure 3.3: The Gaussian denoising results (σ “ 50) on an image from the McMaster
testing set.

methods, including CBM3D [34], DnCNN [131], FFDNet [132], IRCNN [133], RNAN

[137], RIDNet [4], SADNet [23] and SMNet [93]. Except CBM3D, all the compared

methods are deep CNN-based denoisers. The detailed configurations of the compared

methods are described as follows.
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(a) Noisy image (b) CBM3D [34] (c) DnCNN [131] (d) FFDNet [132] (e) RNAN [137]

(f) RIDNet [4] (g) SADNet [23] (h) SMNet [93] (i) SAE-Net (j) Ground truth

Figure 3.4: The Gaussian denoising results (σ “ 70) on an image from the Urban100
testing set.

1) For FFDNet [132], RNAN [137] and SADNet [23], we use the available pre-

trained models by the original authors for testing on σ=30, 50 and 70.

2) For DnCNN [131] and SMNet [93], pre-trained models for σ “50 are available.

For σ “30 and 70, we train DnCNN and SMNet from scratch by using the

original codes and select the models with the best testing PSNR.

3) For IRCNN [133], the pre-trained models for σ “30 and 50 are available. Since

the training code is not publically available and is difficult to implement, we do

not report its performance on σ “70.

4) For RIDNet [4] which has testing code only, we train it on our training dataset

for σ “ 30, 50 and 70 with the same setting described in the original paper.

The models with the best testing PSNR are selected.

Table 3.2 and Table 3.2 illustrates the quantitative results of the compared methods

in terms of PSNR and PI/LPIPS, respectively. We have several observations. First,

SAE-Net obtains the best PI and LPIPS scores on almost all testing sets and noise
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(a) Noisy image (b) CBM3D [34] (c) DnCNN [131] (d) FFDNet [132] (e) RNAN [137]

(f) RIDNet [4] (g) SADNet [23] (h) SMNet [93] (i) SAE-Net (j) Ground truth

Figure 3.5: The Gaussian denoising results (σ “ 70) on an image from the CBSD68
testing set.

levels. This indicates that the results of SAE-Net are perceptually closer to the

ground truths (in term of LPISP) and they have very high perceptual quality (in

term of PI). Second, as the noise level increases from σ=30 to 70, the gap between

SAE-Net and the competing methods becomes more significant in terms of LPIPS.

This indicates that SAE-Net can better maintain the image perceptual quality. Third,

the proposed SAE-Net has the lowest PSNR scores in all cases. This is because our

network is to minimize the perceptual distortion by using adversarial training, rather

than optimize the PSNR index.

Fig. 3.3 shows the denoising results of SAE-Net and the compared methods

on σ=50. It can be seen that SAE-Net achieves the best perceptual quality by

synthesizing realistic textures on the cloth surface, whereas the competing methods

produce piecewise smooth results (e.g., RNAN, RIDNet) or irregular visual artifacts

(e.g., DnCNN, FFDNet, RIDNet). The advantage of SAE-Net becomes larger as noise

level increases. Figs. 3.4 and 3.5 show the results on noise level σ=70. We can see

that under such a high noise level, all the competing methods blur severely the image

details, while SAE-Net can still successfully recover part of the missing details on the
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Table 3.3: Quantitative results of Real-world denoising. For SIDD validation set
with ground truths available we evaluate PSNR/PI/LPIPS, while for vivo testing
set without ground truth we evaluate PI. The values in bold letter indicate the best
results. “-” means the result is not available.

CBDNet[52] UTR[15] RIDNet[4] SADNet[23] SAE-Net

SIDD 14.46/13.12.11/0.321 - 38.71/11.81/0.221 39.45/11.98/0.207 37.22/11.24/0.147

vivo test
set

6.52 7.94 6.36 6.34 6.16

(a) Noisy image (b) CBDNet[52] (c) RIDNet[4] (d) SADNet[23] (e) SAE-Net (f) Ground truth

Figure 3.6: Real-world denoising results of the compared methods on SIDD validation
set. Best viewed on screen with zoom-in.

mountain areas. This validates that our smooth and enhance strategy is robust to

noise level and it can effectively introduce extra details in the enhancement stage.

3.3.3 Results on Real-world Noise Removal

We compare SAE-Net with state-of-the-art real-world denoising methods, including

CBDNet [52], UTR [15], RIDNet [4] and SADNet [23]. Other denoising methods

in Section 3.3.2 are not included because they are not designed for real-world noise

removal. The evaluations are performed on SIDD validation set and the vivo testing

set.
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.7: Real-world denoising results of the compared methods on vivo testing
set. The images from left to right are (a) Noisy raw image. (b) Noisy patches.
(c) UTR[15]. (d) CBDNet[52]. (e) RIDNet[4]. (f) SADNet[23]. (g) SAE-Net. All
denoised raw images are transformed to sRGB space for display. Best viewed on
screen with zoom-in.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.8: Real-world denoising results of the compared methods on vivo testing
set. The images from left to right are (a) Noisy raw image. (b) Noisy patches.
(c) UTR[15]. (d) CBDNet[52]. (e) RIDNet[4]. (f) SADNet[23]. (g) SAE-Net. All
denoised raw images are transformed to sRGB space for display. Best viewed on
screen with zoom-in.

SIDD validation set. Following some previous works [4, 23], the denoising

and evaluation are both conducted in sRGB space. We use the publicly available

pre-trained models of CBDNet, RIDNet and SADNet, for testing. For SAE-Net,

we first train it on the FiveK subset (with 3600 sRGB images) with our two-step

training strategy because FiveK subset contains diverse images for training a GAN.

The original sRGB images in FiveK are treated as the ground truth. To acquire the

noisy sRGB images, we firstly transform the ground truth I to raw images Ir by
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reversing several ISP operations with the method in [15], including gamma correction

G(¨), color space conversion Cp¨q, white balance W p¨q and demosaicking Dmp¨q, which

can be expressed as

Ir “ D´1m pW
´1
pC´1ppG´1pIqqqqq (3.10)

Then we add Poisson-Gaussian noise to the raw images, denoted as

Inr “ npIrq (3.11)

where np¨q denotes the noise corruption. Lastly we transform the noisy raw images

back to sRGB space as the input for SAE-Net:

Ir “ GpCpW ppDmpInrqqqqq (3.12)

After training on FiveK, we perform adversarial fine-tuning without progressive

scheme on the SIDD median set and Renoir dataset to adapt to the real-world noisy

sRGB images. From Fig. 3.6 we can see that SAE-Net can recover high-frequency

details in the object surface, while other methods produce slightly over-smoothed

results.

vivo testing set. For the vivo testing set, the denoising is performed in raw

space and the results are converted to sRGB space for evaluations. We train UTR,

RIDNet, SADNet and SAE-Net on the FiveK subset. We apply the ISP unprocessing

operations in (3.2) and (3.3) to the sRGB images in FiveK to synthesize the noisy

raw images, which are then initially demosaicked by Dmp¨q as network inputs. We

have different configurations on the network outputs, which are described as follows:

1) For UTR, RIDNet and SADNet, the network outputs are in raw RGB space and

are transformed to sRGB space using forward ISP operation in (3.4) (except

demosaicking Dmp¨q) for loss calculation.
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Figure 3.9: Comparison of human opinion scores on Real-dynamic test set.

2) For SAE-Net, the output of NR-Net is in raw space and is transformed by the

operations in (3.4) (except demosaicking Dmp¨q) to sRGB space as the input

for DE-Net. Finally, DE-Net outputs an enhanced sRGB image.

3) For CBDNet which operates in sRGB space, we transform the noisy raw images

to sRGB space before denoising.

Since there is no ground truths for this testing set, we compare the PI scores

and conduct visual comparison. From Table 3.3, we can see that SAE-Net obtains

the best PI score. From the visual comparison in Fig. 3.7 and 3.8, we can see that

SAE-Net can recover many realistic details on the tree trunk region. In contrast,

while the other methods can remove most of the noise, they blur the image details to

different degrees and lead to lower visual quality.

To further evaluate the visual quality on vivo testing set, we perform a user

study, where 10 subjects (5 males and 5 females) are requested to rate the quality

of the denoised images. The score ranges from 1 (the worst) to 5 (the best) with
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Table 3.4: Quantitative results (PI/LPIPS) of different variants of SAE-Net on AWGN
removal with σ “ 50.

OS OS-GAN OS-ProGAN TS-GAN SAE-Net

CBSD68 3.47/0.246 3.16/0.189 3.14/0.171 3.02/0.160 2.50/0.147

Kodak24 3.26/0.257 3.04/0.212 3.04/0.184 2.82/0.180 2.35/0.154

decimal interval. The denoised image by each denoiser is shown in random order by

a MATLAB program on a PA328 display with 32 inch (7680ˆ4320), controlled by a

Mac Pro PC with 2.9 GHz CPU. The program allows zooming in to the same regions

simultaneously for all the compared results. The subjects are not acknowledged of the

denoising algorithms involved in the experiment. Before the evaluation, the subjects

are taught how to use the programs, especially in zooming the image to inspect local

image details. The mean opinion score statistics are illustrated in Fig 3.9 and table

2.1. We can see that our tone mapper achieves the highest mean scores(4.24) and a

tolerable variation(1.1).

3.3.4 Ablation Study

To better validate the effectiveness of our smooth and enhance strategy, we compare

SAE-Net with its variants trained by different training strategies. In particular, OS

denotes a one-stage network trained with pixel-wise loss2. OS-GAN denotes the OS

model fine-tuned with normal adversarial loss. OS-ProGAN denotes the OS model

fine-tuned with scale progressive adversarial loss. TS-GAN denotes the two-stage

SAE-Net fine-tuned with normal adversarial loss in the second training step. All the

compared methods are trained on the AWGN training set with σ “ 50 and evaluated

on CBSD68 and Kodak24 testing sets. For each setting, we select the model with the

best LPIPS for evaluation.

2We double the convolutions blocks in NR-Net to make OS have comparable amount of parameters
to SAE-Net.
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(a) OS (b) OS-GAN (c) OS-ProGAN (d) TS-GAN (e) SAE-Net (f) GT

Figure 3.10: The AWGN removal results (σ “ 50) between different learning schemes
on two images from CBSD68 testing set. The top and bottom rows are cropped
patches of images “163085” and “105025” from CBSD68, respectively.

Table 3.4 illustrates the PI and LPIPS scores. We can see that SAE-Net obtains

the best PI/LPIPS scores. Meanwhile, the two-stage structures (TS-GAN, SAE-Net)

outperform the one-stage structures (OS-ProGAN, OS-GAN, OS), indicating that

the smooth and enhance strategy is more effective than the one-stage strategy for

improving the perceptual quality. Fig. 3.10 shows the results of the compared schemes.

We can see that the two-stage structures (TS-GAN and SAE-Net) can generate more

details than the one-stage ones. In contrast, the one-stage OS-GAN produces many

noise-like artifacts and color errors.

3.4 Summary

In image denoising, it is a challenging problem to remove the noise while reconstructing

the image details since noise and image details are both high-frequency components.

In this chapter, we propose a smooth and enhance strategy for detail-enriched image

denoising. We explicitly divide the denoising process into a noise removal and

a detail enhancement stages, which are characterized by two subnetworks. The

noise removal subnetwork focuses on removing noise while the detail enhancement
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subnetwork hallucinates the lost image details. We developed a training scheme

which first performs task-specific pre-training of the two subnetworks and then

performs adversarial fine-tuning of the whole network to approximate the manifold

of natural images. The trained network, call SAE-Net, can effective remove the

noise and generate realistic image details. Experiments on Gaussian and real-world

noise removal demonstrated that SAE-Net has leading performance on improving the

perceptual quality of the denoised images.
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Chapter 4

A Decoupled Learning Scheme for

Real-world Deep Burst Denoising

The recently developed burst denoising approach, which reduces noise by using

multiple frames captured in a short time, has demonstrated much better denoising

performance than its single-frame counterparts. However, existing learning based

burst denoising methods are limited by two factors. On one hand, most of the models

are trained on video sequences with synthetic noise. When applied to real-world raw

image sequences, visual artifacts often appear due to the different noise statistics. On

the other hand, there lacks a real-world burst denoising benchmark of dynamic scenes

because the generation of clean ground-truth is very difficult due to the presence

of object motions. In this chapter, a novel multi-frame CNN model is carefully

designed, which decouples the learning of motion from the learning of noise statistics.

Consequently, an alternating learning algorithm is developed to learn how to align

adjacent frames from a synthetic noisy video dataset, and learn to adapt to the raw

noise statistics from real-world noisy datasets of static scenes. Finally, the trained

model can be applied to real-world dynamic sequences for burst denoising. Extensive

experiments on both synthetic video datasets and real-world dynamic sequences

demonstrate the leading burst denoising performance of our proposed method.
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4.1 Introduction

The imaging quality of smartphone cameras is much affected by the small aperture

and small CMOS sensor, which limit the amount of collected light and result in heavy

noise in the raw images. Denoising is a crucial step in the camera image processing

pipeline (ISP) to remove the noise and reveal the latent image details. The denoising

algorithms can be divided into single-frame denoising methods [33, 131, 52, 4] and

burst denoising methods [143, 53, 87, 46]. While the former ones take a single-frame

image as input for processing and are easier to implement, their denoising performance

is limited, especially under the low-light environment. The recently developed burst

denoising methods capture multiple frames in a short time as input, and thus they

can leverage more redundant information for noise removal, leading to much better

denoising quality.

The burst denoising problem can be addressed by hand-crafted methods [53, 32,

82, 33, 143] or learning-based methods [87, 121, 46]. The traditional hand-crafted

algorithms are often manually designed to exploit the spatio-temporal similarities.

For example, the well-known VBM3D method [32] denoises an image patch by finding

and fusing its similar patches in the adjacent frames. In contrast, the learning-based

methods train a denoising model by using pairwise datasets with a noisy image

sequence as input and a clean image as ground-truth. In particular, the rapid

development of deep convolutional neural networks (CNNs) [87, 121, 46] largely

facilitate the research of learning based burst denoising. The CNN model is powerful

to learn a set of nonlinear transformations from the noisy input to the clean output,

including frame alignment, fusion and post processing, achieving superior performance

to traditional burst denoising methods.

Despite the great progress, the learning-based burst denoising methods are limited

by two factors. On one hand, the current multi-frame CNN models are mostly trained
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on video datasets with synthetic noise, e.g., Gaussian or Poisson-Gaussian noises.

When the learned models are applied to real-world raw image sequences, whose noise

distribution and statistics are more complex, unpleasant visual artifacts such as color

shift and residual noise will appear. One the other hand, there lacks a real-world

dataset for learning burst denoising models of dynamic sequence. This is mainly

because in the presence of scene motion (e.g., hand shake motion and object motion),

it is difficult to craft a clean ground-truth frame by using existing ground-truth

generation techniques, such as using low ISO setting [24] or averaging multiple frames

[1]. Misalignment problem will occur, which significantly degrades the quality of

ground-truth. It is highly desirable to develop a burst denoising CNN model that

can adapt to the real-world noise statistics without the need of a real-world pairwise

burst image dataset.

There are two key issues in designing such a burst denoising CNN model. Firstly,

to enable multi-frame processing, the CNN model should be able to align input frames

to compensate the scene motion caused by hand shake and object movement in real

scenarios. Second, the CNN model should be able to adapt to real-world noise for

better generalization to real-world burst images. Based on the above considerations,

we propose a decoupled learning framework for real-world burst denoising. First, a

novel multi-frame CNN model is carefully designed with modular architecture which

decouples the learning of motion from the learning of noise adaption. Second, an

alternative learning algorithm is developed to leverage the complementary information

from two datasets we prepared. One is a video dataset with synthetic noise, where the

model learns to perform frame alignment, while the other is a real-world burst image

dataset of static scenes, from which the model learns to adapt to raw noise statistics.

With the designed CNN model and our decoupled learning algorithm, the learned

CNN model achieves leading performance in real-world burst denoising without the

need of a pairwise real-world burst dataset for training.
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4.2 Decoupled Learning Network for Burst De-

noising

Given a sequence of N noisy raw images (e.g., in the Bayer color filter array (CFA)

pattern [11]) captured by a handheld camera, denoted by I “ tI1, I2, ..., INu, our

goal is to estimate a clean RGB image O from I, i.e., O “ fpI; θq, where fp¨̈̈; θq

denotes the denoising model (e.g., a CNN model in our work) parameterized by θ.

We consider one frame from I as the reference frame, denoted by Ir, and denoise it

by aligning and fusing it with other frames Ii, i ‰ r.

To denoise real-world burst image sequences of dynamic scenes, the CNN model

should learn to simultaneously align frames and adapt to real-world noise from some

training dataset. Considering the fact that there lacks a real-world burst image dataset

of dynamic scenes with ground-truth clean images, we propose to use two types of

datasets for training, which can be generated by using the publically accessible data.

One is a synthetic noisy video dataset of dynamic scenes, denoted by Dd (subscript

“d” for dynamic). Each data pair (Id,Gd) in Dd consists of a noisy video sequence Id

and a clean ground-truth frame Gd. The other is a real-world burst image dataset of

static scenes, denoted by Ds (subscript “s” for static). Each data pair (Is,Gs) in Ds

consists of a noisy raw image sequence Is and a ground-truth clean RGB image Gs.

Dd can be easily built by using the many high quality video sequences [121], while

Ds can be built by the existing frame averaging method [1]. These two datasets

have complementary information. The video dataset Dd contains rich dynamic scene

motions, but the noise is synthetic and not real. In contrast, the static burst dataset

Ds does not contain scene motion, but can provide information of real noise statistics.

We investigate how to learn a CNN model fp¨̈̈; θq from Dd and Ds, and present a

decoupled learning scheme to achieve this goal.
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4.2.1 Training Data Preparation

Before we present the CNN model architecture and the decoupled learning scheme,

the two required datasets, Dd and Ds, must be prepared. We present how to use the

existing data to build these two datasets in this section.

Preparation of Dd. We collect high quality video sequences from the Vimeo-90k

dataset [121] to prepare Dd. Specifically, we extract 5 consecutive frames as a burst

sequence from the many videos in this dataset, yielding a total of 20000 sequences

with different contents. However, directly adding noise to those sequences will make

Dd deviate too much from the real-world dynamic noisy image sequences. Inspired by

the work of [15], we propose to reverse the ISP pipeline and add noise to the reversed

raw images so that the synthesized noisy sequences can be more realistic.

Specifically, we reverse four key ISP operations, including gamma correction,

color space conversion, white balance and demosaicking, together with realistic noise

synthesis, for building Dd. A reverse gamma conversion with parameter γ is applied

on a video frame L, where γ is sampled from a uniform distribution within range

[2.0,2.6]. Then, a reverse color space conversion C is applied, with the color matrix

randomly interpolated by the color matrices given in static real-world dataset Ds.

Next, a reverse white balance gain of W “ 1{prg, 1, bgq is applied with rg and bg

matched to the statistics in Ds. Finally, we obtain the synthetic clean RGB image of

a frame as G “ WCLγ.

To synthesize the noisy input, a mosaicking mask M is applied to G, yielding

a Bayer CFA pattern image, denoted by GM . Then Poisson-Gaussian noise which

is approximated by heteroscedastic Gaussian [87] is added to the CFA image to

synthesize noisy raw image I:

I “ GM ` npGMq (4.1)
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where noise n is dependent on the signal intensity g at each location:

npgq „ N pµ “ g, σ2
“ λshotg ` λ

2
readq (4.2)

where N pµ, σ2q is Gaussian distribution. λshot and λread are the shot noise and

readout noise, which are uniformly sampled in the range (0.00001,0.01) and (0,0.058),

respectively.

By the above described process, we can synthesize a sequence of noisy raw images

I and take them as Id. The clean RGB image G of the center frame is taken as the

ground-truth Gd. A data pair (Id,Gd) is then constructed for Dd.

Preparation of Ds. We use the static burst image datasets in [24, 1] to prepare

dataset Ds. We extract 140 and 162 groups of data pairs in [24] and [1], respectively.

Each group contains a static noisy sequence of 5 raw images and a clean RGB ground-

truth. We propose to add simple motions to the static burst sequences to facilitate

the learning of frame alignment. Specifically, for a raw noisy image sequence, we add

vertical and horizontal global shifts to its frames (except for its reference frame Ir):

Îi “ Iipx` xi, y ` yiq, for i ‰ r (4.3)

where the shift xi and yi are uniformly sampled from the range [-4,4].

The ground-truth image Gs is already available in the static noisy image datasets

[24, 1]. After adding simple motions to its adjacent noisy frames and taking them as

Is, a data pair (Is,Gs) for the dataset Ds can be generated.

4.2.2 Decoupled Network Design

To achieve the goal of decoupled learning with Dd and Ds, we design a modular

CNN which is explicitly divided into a pre-processing (PreP) module Mp, a temporal

processing module (TemP) Mt and a post-processing module (PostP) Mo. We call the

proposed CNN model BDNet (burst denoising network), whose learning framework
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Figure 4.1: The decoupled learning framework for our burst denoising network
(BDNet).

(a) PreP module

(c) PostP module (b) TemP module

Figure 4.2: The structure of the PreP module Mp, TemP module Mt and PostP
module Mo of the proposed BDNet.

is illustrated in Fig. 4.1. The detailed structures of modules Mp, Mt and Mo are

illustrated in Fig. 4.2.

Pre-processing module. The PreP module Mp is constructed to perform

single-frame denoising on the noisy CFA sequence I “ tI1, I2, ..., INu and output

pre-denoised features F “ tF1, F2, ..., FNu. In addition, we add a noise level as input,

which is obtained by
a

λshot ` λ2read. We adopt a multi-scale (three scales) UNet [103]

with 15 convolutional layers for single image denoising for its simplicity and good

performance. As shown in Fig. 4.2(a), the adopted UNet consists of a contracting path
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which continuously downsamples the image features with stride convolutions, and an

expanding path that gradually upsamples the features to the original resolution. Skip

connections are added between the contracting and expanding paths at the same

scale level. The PreP module Mp not only helps to reduce the noise but also increases

the robustness in the subsequent frame alignment operation.

Temporal processing module. The TemP module Mt is constructed to align

and fuse the pre-denoised features F “ tF1, F2, ..., FNu and output a single feature

map Ft. It has been shown that accurate alignment can be obtained with deformable

convolutions [115]. Thus, we adopt the Pyramid, Cascading and Deformable alignment

(PCD) model and temporal attention methods in [115] as the alignment and fusion

components in our TemP module, respectively. As shown in Fig. 4.1(b), the PCD takes

a pair of reference and target features as input, and progressively warps the target

feature to the reference feature in a multi-scale and cascading manner. The temporal

attention component fuses all the aligned features according to their similarities to

the reference feature.

Post-processing module. The PostP module Mo takes the fused feature Ft as

input and conducts some refinement operations to reconstruct a clean image. As

shown in Fig. 4.1(c), we deploy 5 residual blocks to build Mo, each containing two

convolutional layers. Then a 1ˆ1 convolutional and a sub-pixel convolutional layer

are applied to output the denoised RGB image O.

4.2.3 Decoupled Learning Process

Given the BDNet model in Section 4.2.2 and the two prepared datasets 4.2.1 Dd and

Ds in Section 3.2, the remaining question is how to effectively learn frame alignment

and real-world noise adaptation for burst denoising. We propose a decoupled learning

method to this end, which is illustrated in Fig. 4.1.

First, considering that the noise statistics in the dynamic video dataset Dd
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(synthetic noise) and static burst dataset Ds (real-world noise) are different, different

CNN modules should be deployed for each case to avoid mixed learning. Therefore,

we train and deploy two instances of the PreP module Mp with the same architecture

but different parameters. These two module instances, denoted by Md
p and M s

p ,

transform the synthetic noisy sequences Id (from Dd) and real-world noisy sequences

Is (from Ds) to pre-denoised feature sequences Fd and Fs, respectively. We assign a

pair of sub-losses, denoted by Ldp and Lsp, for the pre-denoising modules

#

minLdp
`

Gd, Recon1pFd,rq
˘

minLsp
`

Gs, Recon1pFs,rqq
˘ (4.4)

where Fd,r and Fs,r are the reference feature maps in the pre-denoised feature sequences

Fd and Fs, respectively. This pair of sub-losses Ldp and Lsp (e.g., `1 loss) calculate

the errors between the ground-truths Gd, Gs from the two datasets and the images

reconstructed from the pre-denoised reference features Fd,r, Fs,r, respectively. The

reconstruction operation Recon1 is performed by a shared 1ˆ1 convolution that

reduces the channel size, followed by a sub-pixel convolution to expand to the original

resolution. Since the features are initially denoised, they are in a relatively clean

signal space, which facilitates the subsequent frame alignment learning.

Second, we deploy one TemP module Mt to receive the feature sequences Fd

and Fs, perform frame alignment and fusion, and output the fused features F d
t and

F s
t , respectively. Since both Fd and Fs are in a relatively clean latent space, the

learned frame alignment capability of Fd can be transfered to Fs. A pair of sub-losses,

denoted by Ldt and Lst , are deployed on Mt:

#

minLdt
`

Gd, Recon2pF
d
t q
˘

minLst
`

Gs, Recon2pF
s
t q
˘ (4.5)

The sub-losses compare the ground-truths Gd and Gs with the images reconstructed
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from the fused features F d
t and F s

t , respectively. The reconstruction operation Recon2

consists of a shared 1ˆ1 convolution followed by a sub-pixel convolution.

Third, considering that the dataset Dd is generated by reversing the ISP, while

the images in dataset Ds are collected in the real raw image domain, the ground-truth

images of the two datasets may have some appearance differences. In particular, the

ground-truth images in Ds have genuine image structures, whereas the ones in Dd

may have artifacts caused by reversing ISP. Therefore, different CNN modules should

be deployed to learn different types of ground-truths. We assign two instances of

PostP module Mo, denoted by Md
o and M s

o , to transform the fused features F d
t and

F s
t to the final denoised images Od and Os, respectively. A pair of sub-losses, denoted

by Ldo and Lso, are deployed to compare Gd and Gs with the denoised images Od and

Os, respectively:

#

minLdo
`

Gd, Odq
˘

minLso
`

Gs, Osq
˘ (4.6)

Finally, in the training process, we have two sets of loss functions Ld and Ls to

update the BDNet on Dd and Ds, respectively, which are as follows:

#

Ld “ wppkq ¨ Ldp ` wtpkq ¨ Ldt ` wopkq ¨ Ldo
Ls “ wppkq ¨ Lsp ` wtpkq ¨ Lst ` wopkq ¨ Lso

(4.7)

where wppkq, wtpkq and wopkq are the weights assigned on the sub-losses, which are

variables dependent on the global epochs k in the training. We adopt an adaptive

weighting scheme to train the modules progressively by setting:

$

’

&

’

%

wppkq “ 0.1
k
K , 1 ď k ď K, else 0.1

wtpkq “ 0.1 ¨ 10
k
K , K ď k ď 2K, else 0.1

wopkq “ 0.1 ¨ 10
k
K , 2K ď k ď 3K, else 0.1

(4.8)
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Under this weighting scheme, the three pairs of sub-losses in Eq. (4.7) dominate the

training process in turn. In the first K epochs, wppkq gradually decreases from 1 to

0.1, while the others remain at 0.1. This setting emphasizes the sub-losses Ldp and Lsp

that optimize the PreP module. Then, during the epochs from K to 2K, the weight

wtpkq gradually ascends from 0.1 to 1, with the others remain at 0.1. At this stage,

the sub-loss Ldt and Lst dominate the training, focusing on the TemP module. Lastly,

during the epoch from 2K to 3K, the weight wopkq on sub-losses Ldo and Lso ascends

from 0.1 to 1, with the other weights remaining at 0.1. This stage focuses on the

training of the PostP module.

We adopt `1 loss for all the sub-losses involved in Eq. (4.7). An alternative

training scheme is adopted to assign J1 iterations for loss Ld and J2 iterations for

loss Ls in one cycle. In the testing stage, the modules Md
p and Md

o are removed, and

only the M s
p , Mt and M s

o modules are used to form the final BDNet model.

4.3 Experiments

In this section, we conduct experiments to verify the effectiveness of proposed decou-

pled learning approach for burst denoising. We evaluate our BDNet on both synthetic

noisy video dataset and real-world noisy sequences quantitatively and qualitatively.

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [141] are

used as the quantitative metrics. Metrics like PI and LPIPS are not employed in our

experiments since we emphasize on the fidelity of the denoised image rather than the

perceptual aspect.

The kernel size of the convolutional layers of our BDNet is set to 3ˆ3. Leaky

ReLU is used as the activation function. The number of input frames N of a burst

sequence is set to 5 for all multi-frame methods in the comparison. In all experiments,

we use the Adam optimizer (β1 “ 0.9, β2 “ 0.99) [67] to train BDNet and other
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competing CNN models. The initial learning rate is set to 10´4, and it exponentially

decays by 0.1 at 3/4 of the total epochs. The parameter K in Eq. (4.8) is set to

30. In the decoupled training, we update the model for J1 “ 3 iterations on Dd and

J2 “ 1 on Ds in one cycle. In all training, the batch size is set to 2 and the patch size

is set to 128ˆ128. Random rotations, vertical and horizontal flippings are applied for

data augmentation.

4.3.1 Datasets

Training set. For dynamic video dataset Dd, we extract 20,000 image sequences

from the Vimeo-90K video dataset [121], each containing 5 consecutive frames. As

for Ds, we leverage the SIDD [1] and SID datasets [24] to build it. Specifically, we

combine the Sony training set of SID (162 image sequences) and 140 image sequences

selected from SIDD training set as our static burst dataset Ds.

Testing set. Our testing set consists of a synthetic test set and a real-world test

set. For the synthetic test set, we extract another 200 image sequences (different

from the training sequences in scene and content) from the Vimeo-90k dataset [121],

denoted by Vimeo-200. For the real-world test set, we build a static test set, denoted

by Real-static, for quantitative evaluation, as well as a dynamic test set, denoted by

Real-dynamic, for qualitative perceptual evaluation because the ground-truths are

hard to generate for dynamic scenes. The Real-static set is composed of the Sony test

set (50 image sequences) in SID dataset [24] and 20 image sequences selected from

the SIDD dataset [1]. For the Real-dynamic test set, we use iPhone 7 to capture 20

dynamic noisy image sequences in low-light environment. All the images are stored

in raw format.
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(a) Ref noisy frame (b) VBM4D (c) DNCNN (d) RIDNet

(e) KPN (f) TOFlow (g) BDNet (h) ground-truth

Figure 4.3: The denoising results of the compared methods on Vimeo-200 test set
with Gaussian noise σ=50.

Table 4.1: Quantitative results (PSNR/SSIM) on the synthetic test sets. G25,
G50 and PG indicates Gaussian σ=25, Gaussian σ=50 and Poisson-Gaussian noise,
respectively.

VBM4D DNCNN RIDNet KPN TOFlow BDNet

G25 28.30/0.735 32.60/0.870 34.74/0.908 34.84/0.907 34.99/0.902 36.78/0.937

G50 25.92/0.621 29.32/0.776 31.47/0.821 32.44/0.862 31.95/0.829 34.03/0.900

PG 30.48/0.845 35.79/0.934 38.34/0.954 37.77/0.940 37.90/0.951 39.45/0.965

4.3.2 Results on Synthetic Noisy Sequences

We firstly evaluate the burst denoising performance of our BDNet on synthetic noisy

data. We compare BDNet with several representative and state-of-the-art methods

which are popularly used for synthetic noisy video denoising, including VBM4D [82],

DnCNN [131], RIDNet [4], KPN [87] and TOFlow [121]. Among them, VBM4D is a

classical patch based video denoising method; DnCNN and RIDNet are single-frame

denoising CNN models; and KPN and TOFlow are CNN based multi-frame denoising

models. We train all the CNN based models, including BDNet, until convergence on
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(a) Ref. noisy frame (b) VBM4D (c) DNCNN (d) RIDNet

(e) KPN (f) TOFlow (g) BDNet (h) ground-truth
Figure 4.4: The denoising results of the compared methods on Vimeo-200 test set
with Poisson-Gaussian noise.

the dataset Dd. We add three types of noises, including Gaussian noise with σ=25

(G25), Gaussian noise with σ=50 (G50) and Poisson-Gaussian noise (PG) defined

in Eq. (4.2), to the Vimeo-200 test set, and apply the competing models to these

synthetic noisy sequences.

Table 4.1 shows the PSNR/SSIM results of the compared methods. We can see

that the proposed BDNet achieves the highest PSNR and SSIM scores in all cases.

While TOFlow performs well in the cases of low noise levels, i.e., G25 and PG, its

performance heavily degrades in the case of higher noise level, i.e., G50. This is

because it performs frame alignment in the image domain, but the alignment accuracy

is affected by the heavy image noise. While the single-frame models, DnCNN and

RIDNet, have relatively lower PSNR/SSIM scores, RIDNet performs well on PG

noise, which may be attributed to its robust feature attention modules. Figs. 4.3 and

4.4 present the visual comparison of different denoising methods on Gaussian noise

of σ “ 50 and Poisson-Gaussian noise, respectively. We can clearly see that BDNet

can reconstruct some subtle image structures and deliver very good visual quality,

whereas other methods over-smooth much the details.
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(a) Noisy frame (b) UTR (c) M-UNet (d) M-RIDNet

(e) KPN (f) INN (g) BDNet (h) ground-truth

Figure 4.5: Denoising Results of the compared methods on Real-static test set. White
balance gain and a gamma conversion with parameter 2.2 are applied for better
visualization.

Table 4.2: Quantitative evaluation on the Real-static test set.

VBM4D UTR UNet
M-

UNet
RIDNet

M-
RIDNet

KPN INN BDNet

PSNR 40.49 42.02 43.85 44.23 44.17 44.54 39.68 43.95 45.31

SSIM 0.901 0.897 0.954 0.964 0.960 0.968 0.867 0.964 0.971

4.3.3 Results on Real-world Noisy Sequences

We use the ”Real-static” (for quantitative evaluation) and ”Real-dynamic” (for

qualitative evaluation) test sets to evaluate the performance of BDNet on real-world

burst noisy sequences. We compare BDNet with those methods popularly used for

real-world image denoising in literature, including VBM4D [82], UNet [24], RIDNet

[4], Unprocess-to-raw (UTR) [15], KPN [87] and INN [68]. Both UTR and KPN

methods learn real-world denoising by synthesizing data that resembles raw noisy

images. In particular, UTR reverses the ISP pipeline, while KPN adds motion and

noise to clean images to synthesize a burst of noisy images. In addition, the INN
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(a) Ref. noisy frame (b) UTR (c) M-UNet (d) M-RIDNet

(e) KPN (f) INN (g) BDNet (h) ground-truth
Figure 4.6: The denoising results of the compared methods on Real-static test set.

method uses global affine transformation to align frames and performs burst denoising

by learning a trainable proximal operation. For fair comparison, we make the following

configurations.

1) First, for the single-frame denoising methods UNet and RIDNet, we build a

multi-frame version for them, denoted by M-UNet and M-RIDNet, respectively.

M-UNet and M-RIDNet first denoise each frame in the noisy sequence, and

then apply optical flow alignment [129] to fuse the denoised frames by average

fusion, resulting in the finally denoised sequences.

2) Second, the UTR method learns a single-frame CNN. For fair comparison with

UTR, we replace its single-frame CNN by our multi-frame BDNet structure

and re-train it on Dd.

3) Third, we re-train KPN on dataset Dd using the same data synthesis setting as
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(a) (b) (c) (d) (e) (f)

Figure 4.7: Denoising results of the compared methods on Real-dynamic test set. (a)
Noisy reference frame. (b) Noisy patches. (c) M-RIDNet. (d) KPN. (e) INN. (f)
BDNet. White balance gain and a gamma conversion with parameter 2.2 are applied
for better visualization. Best viewed on screen with zoom-in.

the original paper [87], including ISP pipeline reversing and noise generation.

4) At last, we train UNet, RIDNet and INN models on dataset Ds until convergence,

and use the models with the best testing performance.

Table 4.2 shows the quantitative evaluation results on the ”Real-static” test set.

It is clear that the proposed BDNet obtains the highest PSNR and SSIM scores. UTR

and KPN have low objective scores since they are not able to adapt to the real-world

static test data. The two multi-frame models, M-UNet and M-RIDNet, obtain higher

scores than their single-frame counterparts, which proves that the multi-frame fusion

helps for realistic noise removal. However, their PSNR/SSIM results are still lower

than the proposed BDNet. Figs. 4.5 and 4.6 compare visually the denoising results

of the compared methods on images in the Real-static test set. One can see that the

proposed BDNet is able to remove the noise without blurring the details, whereas

the other methods tend to over-smooth the image details. In addition, the UTR
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(a) Reference noisy frame (b) UTR (c) M-RIDNet

(d) KPN (e) INN (f) BDNet
Figure 4.8: The denoising results of the compared methods on Real-dynamic test set.

method leaves residual noise in the image (Fig. 4.5(b)) because it is not adapted to

the real-world dataset.

We then compare the competing models on the Real-dynamic test set. Since

no ground-truths are available, we can only make qualitative comparisons on them.

Figs. 4.7 and 4.8 show the results, where we can see that those competing methods

have residual noise or artifacts caused by scene motion. In particular, the KPN

method has severe color shift on image with large noise (the plant area in Fig. 4.7(d)).

The M-RIDNet and INN methods encounter motion artifacts in the car area in Fig.

4.7(c)(e)). This is because optical flow and global affine alignment cannot effectively

account for the local object motion. In contrast, the proposed BDNet is able to

compensate for scene motion and restore the clean details.

4.3.4 Ablation Study

To better validate the effectiveness of our decoupled learning strategy, we make some

ablation studies here by comparing it with two other intuitive training strategies
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(a) Train on Dd and fine-tune on on Ds (b) Direct alternating training

Figure 4.9: Illustration of different learning schemes for real-world burst denoising
with dynamic scenes. Please refer to the text for detailed descriptions.

Table 4.3: Quantitative results (PSNR/SSIM) of different learning schemes on the
Real-static test set.

BDNet-ft BDNet-at
Default
setting

45.17/0.968 44.67/0.967 45.31/0.971

using Dd and Ds, which are illustrated in Fig. 4.9. The first scheme, denoted by

BDNet-ft, trains BDNet on dataset Dd and fine-tunes it on Ds till convergence. The

second scheme, denoted by BDNet-at, directly alternates the training on Dd and Ds

without deploying two instances of the PreP module Mp and the PostP module Mo.

Table 4.3 shows the quantitative results of the compared schemes on the Real-

static test set. It can be seen that BDNet-at has much lower PSNR/SSIM scores

than BDNet, which validates the importance of using two instances for Mp and Mo.

BDNet-ft achieves similar PSNR/SSIM scores to BDNet. This is mainly because it

utilizes Ds in the training while this quantitative test is also on static scenes. However,

the perceptual quality of BDNet-ft and BDNet-na is much worse than BDNet for

both Real-static and Real-dynamic scenarios. Fig. 4.10 shows the denoising results

of three schemes on a static low-light sequence. One can see that BDNet-ft and

BDNet-na generate visual artifacts in the street lamp area due to insufficient adaption

to real-world noise. Fig. 4.11 shows the denoising results on dynamic scenes. It can be

seen that BDNet-ft causes ghost artifacts in the car area with large motion, because
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(a) (b) (c) (d) (e)

Figure 4.10: The results on a raw image sequence with large noise in Real-static test
set by different learning schemes. (a) Noisy patch. (b) BDNet-ft. (c) BDN-at. (d)
Default BDNet. (e) Ground-truth. White balance gain and a gamma conversion with
parameter 2.2 are applied for better visualization.

(a) (b) (c) (d) (e)

Figure 4.11: The results on an raw image sequence with large noise by different
learning schemes. (a) Noisy reference frame. (b) Noisy patch. (c) BDNet-ft. (d)
BDN-at. (e) Defualt BDNet. White balance gain and a gamma conversion with
parameter 2.2 are applied for better visualization. Best viewed on screen with zoom-in.

its fine-tuning on static dataset corrupts the learned alignment ability. In contrast,

the decoupled learning scheme can achieve both merits of aligning dynamic sequences

and revealing fine details in real-world scenes.

4.4 Summary

It is a challenging problem to learn a burst denoising network for real-world dynamic

noisy sequences because of the lack of a pairwise training dataset. In this chapter, we

proposed to leverage two types of existing datasets, a synthetic noisy video dataset

and a static real-world burst dataset, to address this issue. We designed a modular

CNN model, and proposed a decoupled learning approach, which learns to align
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adjacent frames from the synthetic video dataset and learns to adapt to raw noise

statistics from the static burst dataset. The trained CNN model, namely BDNet, can

be well applied to real-world dynamic noisy sequences and it obtains compelling detail

reconstruction quality with little motion blur. BDNet achieves leading performance,

both quantitatively and qualitatively, on the task of burst image sequence denoising

in real-world scenes.
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Chapter 5

A Two-stage Framework for

General and Effective Camera ISP
Learning

Traditional image signal processing (ISP) pipeline consists of a set of cascaded image

processing modules onboard a camera to reconstruct a high-quality sRGB image

from the sensor raw data. Recently, some methods have been proposed to learn a

convolutional neural network (CNN) to improve the performance of traditional ISP.

However, in these works usually a CNN is directly trained to accomplish the ISP tasks

without considering much the correlation among the different components in an ISP.

As a result, the quality of reconstructed images is barely satisfactory in challenging

scenarios such as low-light imaging. To address this problem, we firstly analyze

the correlation among the different tasks in an ISP, and categorize them into two

weakly correlated groups: restoration and enhancement. Then we design a two-stage

network, called CameraNet, to progressively learn the two groups of ISP tasks. In

each stage, a ground truth is specified to supervise the subnetwork learning, and the

two subnetworks are jointly fine-tuned to produce the final output. Experiments on

three benchmark datasets show that the proposed CameraNet achieves consistently

compelling reconstruction quality and outperforms the recently proposed ISP learning

methods.
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5.1 Introduction

The raw image data captured by camera sensors are typically red, green and blue

channel-mosaiced irradiance signals containing noise, less vivid colors and improper

tones [96, 62]. To reconstruct a displayable high-quality sRGB image, an in-camera

image signal processing (ISP) pipeline is generally required, which consists of a set of

cascaded components, including color demosaicking, denoising, white balance, color

space conversion, tone mapping and color enhancement, etc. The performance of an

ISP plays the key role to improve the quality of sRGB images output from a camera.

The traditional ISP is usually designed as a set of handcrafted modules, each

of which addresses a specific task [96]. For instance, a 3D lookup table is typically

employed for the color enhancement task [62]. In most traditional ISP models, the

modules are designed in a divide-and-conquer manner (i.e., splitting the ISP into a

set of modules and developing them independently), while little attention has been

paid to design them as a whole [56]. Moreover, it is time-consuming to tune each

module for high image quality since the best output of one module may not result

in the desired quality of the final output. Besides the standard ISP pipeline, there

are also some ISP methods designed for burst imaging in the literature [53, 143].

However, these methods are subject to the effectiveness of image alignment techniques

[8], which may generate ghost artifacts caused by object motion.

Recently, it has been shown that the performance of some image processing tasks,

such as denoising [132, 131], white balance [57, 13], color demosaicking [108, 44],

color enhancement [27, 45, 19], etc, can be significantly improved by deep learning

techniques. In these methods, a convolutional neural network (CNN) is trained with

a task-specific dataset that contains image pairs for supervised learning. Inspired by

these methods, an intuitive idea is that we can train a subnetwork for each subtask of

the ISP pipeline, and then chain them together as a whole ISP network. However, this
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is still a divide-and-conquer strategy as used in the traditional ISP design, which is

cumbersome and ineffective. First, it is difficult and expensive to construct a dataset

which has a ground truth for each subtask in the ISP. If we use different task-specific

datasets to train different subnetworks separately, errors will be accumulated as in

traditional ISP. Second, training a subnetwork for each subtask will make the whole

network very heavy and complex. Third, some subtasks in an ISP are not independent

but correlated. It has been verified that for correlated tasks, it is more effective to

treat them jointly and train a shared network for them [44, 112, 95].

Instead of learning a subnetwork for each subtask, some works have been reported

to directly train a CNN model for all ISP subtasks as a whole [105, 100, 24]. Like the

many CNN methods for image denoising and super-resolution [131, 65, 36], in these

works a single-stage network is straightforwardly trained as an ISP in an end-to-end

manner. However, an ISP is a composition of multiple image processing tasks, some

of which may not be correlated too much with each other. Directly training them

as a whole may make the network difficult to optimize, and lead to unsatisfactory

learning performance.

In this chapter, we propose a new framework for deep-learning-based ISP pipeline

design, which includes a two-stage CNN and the associated training scheme. We firstly

analyze the relationships of individual subtasks of an ISP and group them into two

weakly correlated clusters, namely, the restoration group and the enhancement group.

Then a CNN model called CameraNet is proposed with two subnetworks to address the

two groups of subtasks, respectively. Accordingly, a restoration and an enhancement

ground truths are specified and used to train CameraNet in a progressive manner.

With this arrangement, the two-stage CameraNet allows collaborative processing of

correlated ISP subtasks while avoiding mixed treatment of weakly correlated subtasks,

leading to high quality sRGB image reconstruction in various imaging scenarios. In

our experiments, CameraNet outperforms the state-of-the-art ISP learning methods
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and obtains consistently compelling results on three publically available benchmark

datasets, including HDR+ [53], SID [24] and FiveK datasets [18].

5.2 Two-stage Camera ISP Framework

Suppose there are N essential subtasks in an ISP pipeline, including but not restricted

to demosaicking, white balance, denoising, tone mapping and color enhancement.

The traditional ISP pipeline employs N cascaded hand-crafted modules to address

these subtasks. Let Icfa be the raw CFA image and Io be the output sRGB image.

The traditional ISP can be represented as Io “ fNpfN´1p. . . pf1pIcfaq . . . qq, where

fi, 1 ď i ď N , denotes the ith algorithm component. The main drawback of such

traditional ISP design is that each algorithm component is hand-crafted and it is

difficult to optimize the pipeline as a whole, which limits the quality of output sRGB

images.

In contrast to the traditional ISP design, we adopt the data-driven approach and

model an ISP as a deep CNN system to address the N subtasks as a whole:

Io “ FisppIcfa, ω; θq, (5.1)

where Fispp.; θq refers to the CNN model with parameters θ to be optimized, and ω

denotes the optional camera metadata (e.g., noise level, shutter speed) that can be

used to help the network training and inference. We leverage a dataset S to train

Fisp in a supervised manner. The dataset contains a set of input raw images Icfa,

and for each Icfa there are K associated ground truth images Gk, 1 ď k ď K. In

the case that K “ 1, there is only one final ground truth output. In the case that

K ą 1, there are several intermediate ground truths Gk, k ă K, leveraged to train

the network, while GK is the final ground truth for sRGB image reconstruction.

In the design of Fispp.; θq, it is desirable that the CNN model can explicitly address
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the different ISP subtasks while keeping the network as compact and simple as

possible. To this end, we propose an effective two-stage CNN architecture and the

associated learning scheme, which are described in the following sections.

5.2.1 Two-stage Grouping

As discussed in the previous subsection, Fisp is expected to address the ISP subtasks

explicitly. One possible approach is to deploy a CNN subnetwork for each ISP subtask

and chain them in sequence [77, 21]. As we discussed in the introduction section,

however, such a divide-and-conquer strategy is cumbersome and ineffective, and it

will make the whole network too heavy and complex. On the other hand, it has

been demonstrated that some ISP subtasks, e.g., demosaicking and denoising, are

correlated and they can be jointly addressed [44, 140]. Therefore, we propose to

group the ISP subtasks into several weakly correlated clusters, while each cluster

consists of several correlated subtasks. A CNN module is deployed for each cluster to

allow joint learning of correlated subtasks, and then all the CNN modules are jointly

fine-tuned to reduce the possible accumulated errors.

Based on the existing works in low-level vision, we group the ISP subtasks into

two clusters: image restoration and enhancement. The goal of image restoration is

to faithfully reconstruct the linear scene irradiance which contains genuine image

structures and colors from raw image data. Typical restoration operations include

color demosaicking, white balance, noise removal, deblurring, super-resolution, etc.

They usually maintain the image distribution without largely changing the contrast

and color style of an image. In contrast, the enhancement operations often nonlinearly

change the image contrast and color distribution to make the image visually more

appealing to human observers. Image enhancement operations are mainly located

at the rear part of an ISP, such as tone mapping, color transform and contrast

enhancement.
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Figure 5.1: The image histogram changes caused by different image processing
operations, including demosaicking, denoising (with σ “ 15 and 25), 4ˆ super-
resolution, local contrast enhancement [114] and global tone mapping [102], on images
in the BSD100 dataset [85]. The vertical axis denotes the `1 norm of histogram
differences, while the horizontal axis denotes the image index in BSD100.

Let’s perform a test to evaluate the influences of several typical restoration and

enhancement operators on image distribution. The restoration operators, including

demosaicking, denoising (σ “ 15, 25) and super-resolution, and the enhancement

operators, including local enhancement [114] and global tone mapping [102]1, are

employed in the test. White balance is excluded because it can be simply accounted

for by per-channel global scaling. We denote the image before and after an operation

fp¨q as I and fpIq, respectively. Then, the `1 difference between the histogram vectors

(with 256 bins) of I and fpIq are computed to measure the amount of change on

image intensity distribution. The BSD100 images are employed in the test [85]. For

the restoration operations, we use the original images as fpIq and degrade them to

obtain I. Fig. 5.1 shows the `1 norms of histogram differences of the BSD100 images.

We can see that the enhancement operators produce much higher changes on the

image histogram than the restoration operators. This phenomenon validates that

1We firstly apply a reverse gamma conversion with parameter 2.4 to synthesize a linear raw image
before applying the tone mapper.
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Figure 5.2: The proposed CameraNet system for ISP learning.

the enhancement and restoration operators have substantially different algorithm

behaviors, which motivates us to employ a two-stage network design for ISP learning.

5.2.2 Two-stage Network Design

According to the discussions in the above subsection, we categorize the ISP subtasks

into two groups (restoration and enhancement), and propose a two-stage CNN

system, namely CameraNet, which is illustrated in Fig. 5.2. It is composed of a data

preparation module, a restoration module called Restore-Net, and an enhancement

module called Enhance-Net.

The role of the data preparation module is to separate some simple operations

from the training since they can be well performed beforehand. The pre-processing

operations applied on the CFA image Icfa include bad pixel repairing, dark and white

level normalization and pixel rearrangement. Bad pixel repairing interpolates the

pixels where there are no response due to manufacturing imperfection. We use the

python package Rawpy for this operation, which replaces the bad pixels by their

neighboring pixels. Dark and white level normalization normalizes the dynamic range

to [0,1]. Pixel rearrangement repacks the channel interlaced CFA image Icfa to several

single channel sub-images. Without loss of generality, we suppose that Bayer pattern

is adopted. Then the CFA image Icfa is rearranged as four sub-images (R, G, G, B) of

the same size, and we denote by Irggb the four sub-images for simplicity of expression.

Then Restore-Net, denoted by Fr, applies restoration-related operations, such

as demosaicking, white balance and denoising, on the output of data preparation
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Figure 5.3: The structure of UNet-like Restore-Net and Enhance-Net modules in the
proposed CameraNet system.

module, i.e., Irggb. The output of Restore-Net is:

Ir “ FrpIrggb, ωn; θrq (5.2)

where θr denotes the parameters of Restore-Net, and ωn “ λshot ` λ
2
read is the input

noise level to facilitate the denoising subtask. λshot and λread are the shot and readout

noise parameters that can be obtained from the camera metadata. The restored

image Ir is in an intermediate color space. The CIE XYZ space is considered here

because it is designed to match human vision [92].

The Enhance-Net, denoted by Fe, takes the restored image Ir as input for pro-

cessing. It first clips the intensity values below 0 and above 1, and applies an sRGB

gamma function to the clipped image to account for the fixed nonlinear transfor-

mation from CIE XYZ space to sRGB space. Then the Enhance-Net learns to

perform enhancement operations, such as tone mapping, detail enhancement and

color manipulation, on Ir to produce the final output image Io in sRGB color space:

85



Io “ FepIr; θeq (5.3)

where θe denotes the parameters of Enhance-Net.

CNN architecture. There could be many possible designs for the Restore-Net

and Enhance-Net modules. We consider a simple yet effective one, where two 5-level

UNet like subnetworks are employed for Restore-Net and Enhance-Net, respectively.

The architecture of the two subnetworks is shown in Fig. 5.3. A UNet has a contracting

path to progressively reduce the resolution of feature maps, followed by an expanding

path to progressively expand the resolution back [103]. Image structures are preserved

by the skip connections from the contracting path to the expanding path at the same

level. We adopt UNet for three reasons. First, the multi-scale processing nature of

UNet can result in good image quality by learning adaptive operations for each scale.

The finer scales focus on reproducing image local details and textures, while the

coarser scales focus on enhancing image global colors and tones. Second, with UNet

the main computations are deployed on the coarse image scales (lower resolution),

resulting in relatively lower computational complexity. In addition, UNet can well

solve multiple restoration subtasks by extracting common multiscale features to all

subtasks and adopting a similar set of operations. Each subtask is flexibly accounted

for in the network rather than rigidly treated.

Since the full color images Ir and Io have twice the spatial resolution of the input

sub-images Irggb in each channel, a sub-pixel convolutional layer [106] is deployed at

the end of Restore-Net and Enhance-Net to expand the resolution. In addition, to

account for the global transformations in both modules (white balance in Restore-Net

and global enhancement in Enhance-Net), we deploy an extra global transform block

in the UNet modules, as shown in Fig. 5.3. This block first applies global averaging

pooling to the input feature maps on the 5th level (lowest resolution), followed by 2
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fully connected layers to obtain the globally scaled features as a 1-D vector. Finally,

the global features are multiplied to the output feature maps on the 5th level in a

per-channel manner. This process can be described as:

H5,out “ U5pH5,inq b LfcpLfcpLppH5,inqqq, (5.4)

where H5,out and H5,in denote the output and input feature maps on the 5th level,

respectively. U5p.q, Lfcp.q and Lpp.q denote the 5th level operation block of UNet, the

fully connected layer and the global pooling layer, respectively. Symbol ”b” denotes

per-channel multiplication.

To further promote the learning performance of Enhance-Net, we deploy two

extra settings that are found helpful for enhancement tasks. First, the convolution

dilation rates of Enhance-Net are set to 1,2,2,4,8 from the 1st level to the 5th level

to enlarge the receptive field. By this setting, the network can refer to a larger

context to enhance an image, which avoids halo artifacts around the edges. Second,

Enhance-Net deploys a residual connection within a convolutional block, as shown in

the specification of Fig. 5.3. The residual connection predicts and adds features upon

the previous feature maps in the network, which is helpful for detail boosting.

5.2.3 Ground Truth Generation

Most existing datasets [24, 53, 18] contain only the final ground truth Go of the

network output. For example, the HDR+ [53] and FiveK [18] datasets provide the

sRGB ground truths that are created by HDR+ algorithm and human retouching,

respectively. However, for our proposed two-stage CameraNet system, it is expected

that we could have a restoration ground truth Gr and an enhancement ground truth

Go, which are corresponding to the intermediately restored image Ir and the finally

enhanced image Io, for network training.
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Figure 5.4: The workflow of creating restoration and enhancement ground truths
using Adobe software. The restoration ground truth is created in Adobe Camera
Raw, while the enhancement ground truth is created in Lightroom. The dots in
restoration operations refer to other possible restoration tasks such as aberration
correction and deblurring, while the dots in enhancement operations refer to other
possible adjustment of image features.

The ground truths Gr and Go can be generated by using photo editing software,

e.g., Adobe software. An example procedure is shown in Fig. 5.4. In the first step, the

restoration ground truth Gr is created by performing restoration-related operations

on the raw image Icfa, including demosaicking, denoising and white balance. In

our experiments on the FiveK dataset, the Gr is generated in this way. On some

datasets (e.g., HDR+ dataset) where a raw image sequence is available for each scene,

one can adopt additional operations to boost the quality of the restoration ground

truth. For example, the sequence of raw images can be fused into one raw image

to suppress noise, followed by other restoration operations. We use this method to

generate the restoration ground truths on the HDR+ dataset. In the second step, the

enhancement ground truth Go is created by applying enhancement-related operations

on the restoration ground truth Gr, including contrast adjustment, tone mapping,

color manipulation and color conversion. This can be easily done by using photo
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(a) (b) (c) (d) (e)

Figure 5.5: Illustration of the two-stage network outputs and ground truths. The
columns from left to right are (a) Raw images. (b) Results by Restore-Net. (c)
Restoration ground truth. (d) Results by Enhance-Net. (e) Enhancement ground
truth. The image in the first row is from the HDR+ dataset [53], while the image in
the second row is from the FiveK dataset [18]. A gamma transform with parameter
2.2 is applied to the raw images and restoration ground truths for display.

retouching software, e.g., Adobe Lightroom.

Since the goal of restoration tasks is to objectively reconstruct genuine image

structures and colors, the styles of the generated ground truths Gr from raw images

are generally similar. In contrast, the enhancement tasks are subjective to human

observers, which may result in various styles of enhancement ground truths Go.

Fig. 5.5 shows the image triplets from the HDR+ dataset and the FiveK dataset,

including the raw image (demosaicked for better visualization), the restoration and

the enhancement ground truths. We also show the reconstructed images in the

two stages of our CameraNet for reference. One can see that the two restoration

ground truths exhibit similar visual attributes, whereas the two enhancement ground

truths are of very different styles. The enhancement ground truth in HDR+ dataset

emphasizes on detail enhancements while that in FiveK dataset focuses on color style

manipulation.
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5.2.4 Two-step Training Scheme

Based on the two-stage structure of CameraNet, we propose a two-step training

scheme of it. In the first step, the Restore-Net and Enhance-Net are independently

trained in parallel, while in the second step, the two subnetworks are jointly fine-tuned.

We adopt a set of `1 losses in the training of CameraNet because the `1 loss is simple

to calculate and tends to converge to a visually good local minimum [138].

In the first step, the Restore-Net is trained with a restoration loss calculated

between the restored image Ir and the ground truth Gr in linear and logarithmic

space:

LrpIr, Grq “ }Ir ´Gr}1`

}logpmaxpIr, εqq ´ logpmaxpGr, εqq}1,
(5.5)

where ε is a small value to avoid infinity. The use of the log sub-loss is based on

the fact that the restored image Ir is in a linear space where the image intensity is

proportional to scene radiance but not human visual response. Thus, to penalize

the error in terms of human perception, we introduce this nonlinear term in the loss

computation.

Meanwhile, the Enhance-Net is trained in parallel to Restore-Net. The restoration

ground truth Gr is input to the Enhance-Net, and the output is denoted as Io,r “

FepGr; θeq. The enhancement loss is calculated as the `1 difference between Io,r and

the ground truth Go:

LopIo,r, Goq “ }Io,r ´Go}1, (5.6)

It can be seen that the training of Enhance-Net does not rely on the output of

Restore-Net. In addition, there is not a nonlinear term in the loss because the

enhanced image is already in a nonlinear color space, i.e., sRGB space.
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Once the parallel training of Restore-Net and Enhance-Net is finished in the first

step, in the second step the two subnetworks are jointly fine-tuned with the following

joint loss:

Ljoint “ λ ¨ LrpIr, Grq ` p1´ λq ¨ LopIo, Goq (5.7)

Note that in this step, the enhancement sub-loss takes Io rather than Io,r in Eq. (5.6)

as input for loss calculation. The joint fine-tuning has two roles. First, the Enhance-

Net receives the gradients from the enhancement sub-loss, while the Restore-Net

receives the gradients from both restoration and enhancement sub-losses, weighted

by λ and 1 ´ λ, respectively. Thus, this step allows the Restore-Net to contribute

to the final sRGB image reconstruction. Second, since the two subnetworks are

trained independently in the first step, cumulative errors may occur due to the gap

in the intermediate results. Joint fine-tuning can reduce such cumulative errors by

facilitating the interaction between the two modules. The setting of parameter λ

is scenario-specific. If the restoration subtasks dominate the ISP pipeline, e.g., in

the low-light imaging scenario, λ should be set larger to emphasize the restoration

functionality of Restore-Net, and vice versa.

While the adopted `1-based loss functions yield good results, our training scheme

is open to other advanced loss design, e.g., adversarial loss [70] and perceptual loss

[60]. Actually, we find that employing the perceptual loss in the fine-tuning step can

slightly improve the visual appearance of the reconstructed images, which will be

discussed in the experiment section.

5.3 Experiments

In this section we perform extensive experiments to verify the learning capability and

image reconstruction performance of our CameraNet system both quantitatively and
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qualitatively. Three objective indices, including PSNR, SSIM [141] and S-CIELAB

[136], are employed in the quantitative evaluation. PSNR calculates the ratio of the

peak signal power to the power of reconstruction errors, while SSIM measures the

structural similarity between reconstructed and ground truth images. S-CIELAB

measures the perceptual errors of two colors in the Lab space (the smaller the measure,

the better the color fidelity). We use the code from [59] for calculating S-CIELAB.

Without loss of generality, Bayer CFA pattern is used in all our experiments. However,

it is not difficult to adapt CameraNet to a new CFA design. One can simply retrain

the Restore-Net with the input data of the new CFA pattern, e.g., RGBW or RGBG.

5.3.1 Dataset Setting

Three publically available datasets that can be used for ISP learning are employed

in our experiments, including the HDR+ dataset [53], the SID dataset [24] and the

FiveK dataset [18]. These datasets have different features and they can be used to

validate the performance of an ISP learning method from different aspects.

The HDR+ dataset [53] focuses on burst denoising and detail enhancement. For

each scene, a burst of underexposed raw images are captured. Those images are firstly

aligned and fused into one raw image to suppress noise, and then the HDR+ algorithm

is applied to the fused raw image to produce the sRGB image. For each scene, the

fused raw image and the corresponding sRGB image are provided in the dataset.

We use DCraw to perform demosaicking, white balance and color conversion on the

fused raw image to obtain the restoration ground truth, and treat the provided sRGB

images as the enhancement ground truth. The Nexus 6P subset, which includes 665

scenes as training data and 240 scenes as testing data2, is used in the experiment. We

take a single raw image (the reference frame in alignment) as the input of CameraNet.

2The other subsets are not used because there are some misalignments between the input images
and the ground truths.
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The data in the testing set are sampled according to the distribution of ISO values,

which are rough indicators of noise level.

The SID dataset [24] focuses on denoising in low-light environment. For each

scene, it provides a noisy raw image with short exposure and a relatively clean raw

image with long exposure. To obtain the restoration ground truths, we use the

DCRaw to perform restoration operations on the long-exposed raw images. Since

the SID dataset does not involve any enhancement operation, we further process the

restoration ground truth by the auto-enhancement tool in Photoshop to obtain the

enhancement ground truth. We use the Sony A7S2 subset for experiments, which

includes 181 and 50 scenes for training and testing, respectively. The data in the

testing set are sampled according to the distribution of ISO values.

The FiveK dataset [18] is featured with strong manual retouching on image tone

and color style. For each raw image of the 5,000 scenes, five photographers are

employed to adjust various visual attributes of the image by using the Lightroom

software and generate five images with different photographic styles. As in many

previous works [45, 122], we take the set of images retouched by expert-C as the

enhancement ground truths. Since the FiveK dataset does not contain restoration

ground truth, we process the input raw image using DCRaw to obtain the restoration

ground truth. The Nikon D700 subset with 500 training images and 150 uniformly

sampled testing images is used in the experiments.

5.3.2 Experimental Setting

We use the Adam optimizer (β1 “ 0.9, β2 “ 0.99) to train CameraNet and all the

competing CNN models. In the first training step, Restore-Net is trained for 2000,

4000 and 1000 epochs on the FiveK, HDR+, and SID datasets, respectively, depending

on the task complexity on the three datasets. The Enhance-Net is trained with 500

epochs on all the three datasets since the enhancement tasks on these datasets have
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(a) Raw image (b) One-stage (c) Two-stage (d) Three-stage (e) Ground truth

Figure 5.6: Results by one-stage, two-stage and three-stage CNN models. The two
sets of images are from the SID dataset [24]. A gamma transform with parameter 2.2
is applied to the raw images and restoration ground truths for display.

comparable complexity. In the second fine-tuning step, 200 epochs are used for all

the datasets.

The initial learning rate for the first training step is set to 10´4, and exponentially

decays by 0.1 at 3/4 epochs. The learning rate for the fine-tuning step is fixed to

10´5. Considering the importance of the restoration subtask on each dataset, the

parameter λ in Eq. (5.7) is set to 0.1, 0.5 and 0.9 on the FiveK, HDR+, and SID

datasets, respectively. In both training steps, the batch size is set to 1 and the patch

size is set to 1024ˆ1024. Random rotations, vertical and horizontal flippings are

applied for data augmentation.

5.3.3 Ablation Study

We use the HDR+ and SID datasets for ablation study on the proposed two-stage

network design, the training scheme, and the network architecture. All the evalu-

ated models in this subsection are trained until convergence with the best testing

performance.
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Table 5.1: Ablation study on the HDR+ and SID datasets. The best and second best
scores are highlighted in red and blue for each column.

HDR+ dataset SID dataset

PSNR SSIM
S-

CIELAB
PSNR SSIM

S-
CIELAB

Default two-stage setting 25.01 0.854 5.32 22.44 0.742 7.58

One-stage setting 21.53 0.816 6.48 19.04 0.692 9.48

Three-stage setting 23.57 0.834 5.99 21.56 0.735 8.40

Training without step 1 22.02 0.824 5.48 21.89 0.719 7.76

Training without step 2 23.98 0.843 5.34 22.21 0.738 7.63

Fine-tuning with perceptual loss 24.05 0.839 5.64 21.06 0.713 8.13

One-stage SRGAN+CAN24 21.72 0.801 7.18 19.85 0.682 9.50

Two-stage SRGAN+CAN24 22.31 0.815 6.93 20.96 0.714 8.85

The effectiveness of two-stage network design. To verify the effectiveness

of the proposed two-stage design of CameraNet, we compare it with a one-stage and

a three-stage counterparts. In the one-stage setting, a UNet with the same number of

parameters as the two-stage CameraNet (i.e., double the number of processing blocks

at each resolution level) is employed, and it is trained with the final enhancement

ground truth. In the three-stage setting, three UNets are employed to progressively

learn the ISP pipeline in three stages, i.e., demosaicking, denoising/white balance

and enhancement. The number of parameters are maintained the same by reducing

1/3 the number of processing blocks at each resolution level.

The PSNR/SSIM/S-CIELAB results of the three competing networks on the

HDR+ and SID datasets are shown in Table 5.1. One can see that the default

two-stage network works significantly better than the one-stage network, and much

better than the three-stage network. Some visual comparison results are shown in

Fig. 5.6. It can be seen that the one-stage network produces various visual artifacts,

the three-stage network performs much better, while the two-stage network delivers

the best visual quality. This experiment validates that it is difficult to use a single
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(a) Without step 1 (b) Defualt setting (c) Ground truth

Figure 5.7: Comparison between the default training setting and the setting without
step 1. The image is from the HDR+ dataset [53].

(a) Without step 2 (b) Defualt setting (c) Ground truth

Figure 5.8: Comparison between the default training setting and the setting without
step 2. The image is from the HDR+ dataset [53].

network to handle all ISP tasks together, while it is less effective to process correlated

subtasks (e.g., demosaicking and denoising) using different networks. By grouping

the ISP subtasks into two groups of correlated subtasks and deploying one network

for each group, our two-stage CameraNet demonstrates highly effective ISP learning

performance.

The two-step training scheme. We then evaluate the effectiveness of the

proposed two-step training scheme. Firstly, we compare it with two variants. The

first variant skips the first training step and directly goes to the second joint training

step, i.e., we directly train the whole CameraNet with the loss in Eq. (5.7). The
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(a) Without p.l. (b) With p.l. (c) ground truth

Figure 5.9: Comparison between the results with and without perceptual loss (p.l.).
We add the p.l. on the enhanced image in the fine-tuning step with weight 0.01. The
image is from the HDR+ dataset [53].

second variant keeps the first step but removes the second joint fine-tuning step. The

results are shown in Table 5.1. We can see that without the first step in training, the

PSNR/SSIM/S-CIELAB scores become significantly worse. One visual example is

presented in Fig. 5.7. We can see that some noises remain in the reconstructed image.

This indicates the importance of progressive training of restoration and enhancement

modules. On the other hand, from Table 5.1 we can see that without the joint

fine-tuning step, the results are not that bad but still far behind our default two-step

training scheme. One visual example is shown in Fig. 5.8. We can see that without

the joint fine-tuning, the sky area has a sudden color change and has unnatural

appearance.

Perceptual loss. The perceptual loss [60] has been widely used in many image

restoration and enhancement networks to improve the image visual quality. It is

interesting to evaluate whether the perceptual loss can bring additional benefit to

our CameraNet. We apply the perceptual loss (weighted by 0.01) on the enhanced

images in the fine-tuning step3. The quantitative results are presented in Table 5.1,

and one visual example is shown in Fig. 5.9. We can see that the perceptual loss

3We use the ”relu2 2” and ”relu5 4” layers in the VGG-19 network to calculate the loss.
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(a) Raw image (b) One-stage SRGAN+CAN24 (c) Two-stage SRGAN+CAN24

(d) CameraNet (e) Ground truth

Figure 5.10: Comparison between SRGAN+CAN24 and CameraNet. A gamma
transform with parameter 2.2 is applied to the raw images and restoration ground
truths for display.

slightly improves the visual quality by reducing some subtle artifacts, while it leads

to a moderate drop in the quantitative metrics since it penalizes the error in feature

domain rather than the image domain.

Other CNN architectures. To verify whether the proposed two-stage frame-

work can be generalized to other CNN architectures, we further compare the one-stage

and two-stage settings by using a different CNN architecture. We use SRGAN [70]

with 10 layers as the restoration subnetwork and CAN24 [26] as the enhancement

subnetwork. The PSNR/SSIM/S-CIELAB scores are shown in Table 5.1, and one

visual example is shown in Fig. 5.10. We can see that the two-stage setting of

SRGAN+CAN24 outperforms its one-stage counterpart. Meanwhile, the two-stage

SRGAN+CAN24 is not as effective as our CameraNet in noise removal. We think

this is mainly because SRGAN+CAN24 lacks multiscale processing that facilitates

the denoising task.
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Table 5.2: Objective comparison of different learning-based ISP methods.

HDR+ dataset SID dataset FiveK dataset

PSNR SSIM
S-

CIELAB
PSNR SSIM

S-
CIELAB

PSNR SSIM
S-

CIELAB

CameraNet 25.01 0.854 5.32 22.44 0.742 7.58 23.57 0.849 6.74

L3 algorithm [59] 19.23 0.682 9.84 16.47 0.462 12.64 20.00 0.797 10.70

DeepISP-Net [105] 22.88 0.818 6.78 18.26 0.649 10.18 22.59 0.845 7.38

DeepCamera [100] 20.65 0.738 8.81 18.19 0.587 10.97 20.67 0.776 8.86

(a) Raw image (b) Result by L3 (c) Result by DeepCamera

(d) Result by DeepISP-Net (e) Result by CameraNet (f) Ground truth

Figure 5.11: Results on a church image from the HDR+ dataset [53] by the competing
methods. A gamma transform with parameter 2.2 is applied to the raw image for
better visualization.

5.3.4 Comparison with Recent Learning-based ISP

In this section, we compare our CameraNet with those recently developed learning-

based ISP methods, including L3 algorithm [59], DeepISP-Net [105] and DeepCamera

[100]. The L3 algorithm firstly groups the patches of the input raw images according

to the intensity level and then learns a per-class filter to obtain the sRGB image.

DeepISP-Net and DeepCamera are single-stage CNN models trained in an end-to-end
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(a) Raw image (b) Result by L3 (c) Result by DeepCamera

(d) Result by DeepISP-Net (e) Result by CameraNet (f) Ground truth

Figure 5.12: Results on a pavilion image from the SID dataset [24] by the competing
methods. A gamma transform with parameter 2.2 is applied to the raw image for
better visualization.

manner. In particular, DeepISP-Net takes a pre-demosaicked image as input and

process the image with a single scale. DeepCamera takes the mosaic CFA image

as input and adopts a multi-scale architecture. We train all the compared methods

on the HDR+, FiveK and SID datasets until convergence with their best testing

results. The source codes of L3 is provided by the authors. Because the source

codes of DeepISP-Net and DeepCamera are unavailable, we implement them based

on the settings described in the original papers and train them using the original loss

functions. The PSNR/SSIM/S-CIELAB results of the compared methods are shown

in Table 5.2, while Figs. 5.11-5.14 present the visual results.

Results on the HDR+ dataset. The HDR+ dataset is featured with moderate

denoising and strong detail enhancement. As can be seen from Table 5.2, the proposed

CameraNet achieves significantly better objective scores than the other methods.

This is because the two-stage nature of CameraNet can effectively account for the

restoration and enhancement tasks involved in the HDR+ dataset. In contrast, the L3
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(a) Raw image (b) Result by L3 (c) Result by DeepCamera

(d) Result by DeepISP-Net (e) Result by CameraNet (f) Ground truth

Figure 5.13: Results on a pavilion image from the SID dataset [24] by the competing
methods. A gamma transform with parameter 2.2 is applied to the raw image for
better visualization.

method, DeepISP-Net and DeepCamera mix the restoration and enhancement tasks

to train the filters or networks, making the learning process more difficult. Fig. 5.11

shows a visual example for comparison. The proposed CameraNet obtains visually

pleasing results, while the L3 method, DeepISP-Net and DeepCamera produce visual

artifacts. In particular, the L3 method barely performs denoising and produces false

colors because the filter learning approach is too simple for the complex ISP tasks.

DeepISP-Net and DeepCamera show better results, but they retain some noise-like

artifacts. We suspect this is because DeepISP-Net and DeepCamera mix the denoising

and color manipulation subtasks. As a result, the noise in the raw image is not

effectively removed but amplified. In contrast, the proposed CameraNet produces

visually appealing results with much less artifacts, which can be attributed to the

two-stage treatment of different ISP subtasks.

Results on the SID dataset. On the SID dataset, from Table 5.2 we can see

that CameraNet outperforms the other methods by a large margin. This is because
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(a) Raw image (b) Result by L3 (c) Result by DeepCamera

(d) Result by DeepISP-Net (e) Result by CameraNet (f) Ground truth

Figure 5.14: Results on a flower image from the FiveK dataset [18] by the competing
methods. A gamma transform with parameter 2.2 is applied to the raw image for
better visualization.

the noise level in the SID dataset is much higher than the HDR+ dataset, which

requires the CNN model to have strong denoising capability. Our CameraNet meets

this requirement by explicitly considering the denoising subtask in the restoration

stage, whereas DeepISP-Net and DeepCamera mix all the ISP subtasks together

in learning, leading to inferior performance. Figs. 5.12 and 5.13 show the results

of the compared methods. We can see that the visual quality of the proposed

CameraNet is significantly higher than DeepISP-Net and DeepCamera. Specifically,

DeepISP-Net produces inaccurate colors, while DeepCamera remains serious noise in

the reconstructed images. In comparison, CameraNet effectively reduces the noise

and enhances the image structures. Moreover, the results by the L3 method largely

deviate from the ground truth. This is because the filter-learning-based L3 model

is not expressive enough to perform the ISP tasks in challenging conditions such as

low-light imaging.
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Table 5.3: Over-fitting evaluation. This table compares the training and testing losses
of the last epoch for each training step on the three datasets. The “Gap” means the
difference between the testing loss and the training loss.

First step (Restore-Net) First step (Enhance-Net) Second step

Train Test Gap Train Test Gap Train Test Gap

HDR+ dataset 0.0043 0.0058 +0.0015 0.0348 0.0421 +0.0073 0.0370 0.0482 +0.0112

SID dataset 0.0078 0.0117 +0.0039 0.0387 0.0676 +0.0289 0.0400 0.0769 +0.0369

FiveK dataset 0.0034 0.0067 +0.0033 0.0326 0.0659 +0.0333 0.0345 0.0670 +0.0325

Results on the FiveK dataset. Compared with the HDR+ and SID datasets,

the FiveK dataset is less challenging because it does not involve the denoising subtask.

In fact, the major task on the FiveK dataset is the enhancement of colors and tones

on images captured by high-end cameras with little noise. From Table 5.2, we can

see that the advantage of CameraNet over DeepISP-Net is not as significant as that

on the HDR+ and SID datasets because the dominant enhancement tasks can be

well learned by DeepISP-Net. The results by DeepCamera and L3 model are much

worse than CameraNet and DeepISP-Net. The inferior performance of DeepCamera

may be caused by its use of mosaic CFA image as input to the network. In such

case, the convolutional kernels at the early layers have extra burden to separate the

color channels of CFA image, leading to less accurate results. Fig. 5.14 compares

the results of different methods on a flower image. We can see that CameraNet and

DeepISP-Net achieve satisfactory results, whereas the L3 method and DeepCamera

generate some artifacts.

Over-fitting evaluation. Table 5.3 compares the training and testing losses of

the last epoch of each training step on the three datasets. One can see that there

is over-fitting on all datasets, especially on the SID and FiveK datasets since they

have fewer training data than the HDR+ dataset. The over-fitting problem is mostly

caused by the lack of training data on the three datasets. We believe it can be diluted

if more data can be collected for training.
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(a) Full transfer (b) Enhance-Net transfer (c) Ground truth

Figure 5.15: Cross-dataset testing. First row: the results of transferring the Camer-
aNet trained on FiveK dataset to the testing image from HDR+ dataset. Second row:
the results of transferring the CameraNet trained on HDR+ dataset to the testing
image from FiveK dataset. “Full transfer” means transferring the whole CameraNet,
while “Enhance-Net transfer” means transferring only the Enhance-Net.

5.3.5 Cross-dataset Testing

We use the HDR+ and FiveK datasets to test the cross-dataset performance of

CameraNet. Specifically, we apply the network trained on one dataset to the testing

set of another dataset. We only perform subjective evaluation because the two

datasets have different types of ground truths, which makes the objective comparison

less meaningful. Fig. 5.15 presents two cross-dataset testing examples, from which we

can have two observations. On one hand, if we transfer the whole CameraNet trained

on one dataset to the raw images of another dataset with a different sensor, the results

have erroneous colors and details (see the left column of Fig. 5.15). For example, the

result of ”FiveK to HDR+” (top left image in Fig. 5.15) exhibits greenish color and

noisy details. This is because the Restore-Net depends heavily on the camera sensor,

and the mismatched sensor statistics will cause the inaccurate reconstruction of the

sRGB image. On the other hand, if we only apply the Enhance-Net to the restored
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(a) Raw image (b) Result by Sony ISP (c) Result by CameraNet

Figure 5.16: Comparison with Sony A7S2 ISP in low-light scenarios. Both of the
raw images are captured with aperture f3.5, exposure time 1/100s and ISO 12800.
A gamma transform with parameter 2.2 is applied to the raw image for better
visualization.

images by Restore-Net in another dataset, the results are perceptually acceptable

but with a different image style (see the middle column of Fig. 5.15). This is because

the restored images are in the similar color space so that the Enhance-Net depend

less on the camera sensor.

The above observations imply that when we develop an ISP for a new sensor

(possibly with a new CFA pattern), we may not need to completely retrain the

CameraNet. We could only retrain the Restore-Net and then refine the Enhance-Net

a little. In addition, different Enhance-Nets can be trained for a sensor to obtain

different enhancement styles, such as nighttime, portrait, landscape, objects, etc.

5.3.6 Comparison with Traditional ISP

Since there is not a traditional ISP publically available to use, we compare CameraNet

with the ISP onboard a Sony A7S2 camera (the same model as the one used in the

SID dataset [24]) to demonstrate the advantage of our method over traditional ISP

pipeline. Specifically, we use the Sony A7S2 camera to collect several noisy raw images
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Table 5.4: Computational complexity of the compared CNN models. The GFLOPS
and running time are evaluated on an image of resolution 4032ˆ3024.

GFLOPS
Running time

(sec.)
Number of parameters

(mill.)

CameraNet 3306.69 0.892 26.53

DeepISP-Net [105] 12869.79 2.12 0.629

DeepCamera [100] 4460.35 1.62 0.467

in low-light environment with similar settings to those used in the construction of the

SID dataset. The JPEG images output by the camera are collected as the results by

Sony A7S2 ISP. The results by our approach are obtained by first applying CameraNet

trained on the SID dataset to the collected noisy raw images, and then compressing

the output sRGB images by JPEG. Fig. 5.16 shows the visual comparison between

CameraNet and Sony A7S2 ISP on two raw images. One can see that in such low-light

imaging scenario, the Sony A7S2 ISP produces results with residual noise and faded

color, while the results by CameraNet exhibit clean structure, high local contrast

and vivid color. This demonstrates the powerful image reconstruction capability of

learning-based ISP methods in challenging scenarios.

5.3.7 Computational Complexity

In Table 5.4, we compare the computational complexity, running time and number of

parameters of the competing CNN-based methods on Nvidia Quadro GV100. We

can see that CameraNet has the lowest complexity and fastest speed. To produce an

sRGB image of size 4032ˆ3024, it consumes 3306.69 GFLOPS in 0.892s. DeepISP-Net

consumes much more GFLOPS than CameraNet and DeepCamera and it runs the

slowest. The lower computational complexity of CameraNet is mainly attributed to

its multi-scale operations. However, CameraNet has 26.53 million parameters, which

consumes much more memory than the other two CNN models. This is because the

number of convolution channels grows exponentially in the contracting path of a
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UNet module, yielding roughly 33% parameters at the lowest resolution level. Since

UNet deploys most of the computations on the lowest resolution level, the proposed

CameraNet still has a low GFLOPS consumption.

5.3.8 Limitations

The proposed CameraNet has two main limitations. First, the number of parameters

(26.53M) and computational cost (3306.69 GLOPS) are relatively high for application

to mobile devices. It is expected that the network can be trimmed and compressed

to attain better compactness and efficiency. Second, our CameraNet is designed for

single-frame photography. In recent years, burst imaging is becoming more and more

popular in mobile cameras, where multiple raw images are captured and fused into

one sRGB image. For burst imaging, some additional components should be added to

our current CNN architecture, such as frame alignment and fusion. How to compress

our network for mobile devices and how to extend it to burst photography will be

our future work.

5.4 Summary

We proposed an effective two-stage CNN system, namely CameraNet, for data-driven

ISP pipeline learning. We exploited the intrinsic correlations among the ISP subtasks

and categorized them into two sets of weakly correlated operations, i.e., restoration

and enhancement. Accordingly, a two-stage architecture was adopted in the proposed

CameraNet to account for the two sets of operations, facilitating the learning capability

while maintaining the model compactness. Two ground truths were specified to train

the two-stage model, and a two-step training scheme was employed to train the whole

model. Experiments showed that the proposed two-stage CNN framework significantly

outperforms the commonly used one-stage framework in deep ISP learning. The

proposed CameraNet outperforms state-of-the-art learning-based ISP models on three
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benchmark ISP datasets in terms of both quantitative measures and visual perception

quality.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The image signal processing (ISP) pipeline of a camera is a cascade of multiple image

processing components to transform the sensor raw data to high-quality displayable

images. Typical image processing components include demosaicking, noise removal,

white balance, tone mapping and color enhancement. The traditional ISPs employ

a simple algorithm for each processing component, which causes various limitations

on the results, including residual noise, loss of image details and visual artifacts.

In this thesis, we propose several new designs to improve the camera ISP pipeline,

including an optimization-based tone mapping algorithm, two deep-learning based

image denoising algorithms and a deep-learning-based ISP framework.

As key component for the image perceptual quality, tone mapping is the process

to reproduce a displayable standard dynamic range (SDR) image from the high

dynamic range (HDR) senor data. The challenge of tone mapping is to compress the

dynamic range, enhance the image details and preserve naturalness simultaneously.

Many methods in academia have halo artifacts or over-enhancement problem due

to improper treatment on image features. In chapter 2, we propose a hybrid `1-

`0 optimization method for tone mapping. We employ `1 sparsity prior on image

edges to prevent halo artifact, while imposing `0 sparsity prior on image details to
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suppress over-enhancement artifacts. The experimental results demonstrate that the

proposed algorithm could produce visually appealing results with minimal artifact

and outperforms the state-of-the-art tone mapping methods in the academia.

Since noise corruption is a common and severe problem in camera imaging

process, single image denoising is an important component in a camera ISP pipeline

to improve recover the clean image details. While the recent deep-learning-based

approaches achieve leading performance, they produce over-smooth results due to

the trade-off between noise removal and detail reconstruction. In chapter 3, we

address this problem by adopting a smooth-and-enhance strategy in designing a

convolutional neural network (CNN) for denoising. The proposed denoiser performs

normal denoising first and then hallucinates high-frequency details later to produce

detail-enriched results. Adversarial training technique is adopted in the training

to generate realistic image details. Experiments on synthetic Gaussian noise and

real-world noise demonstrate that the proposed method can produce denoised images

with notably better perceptual quality than the deep-learning-based denoisers in the

literatures.

Burst denoising leverages multiple noisy images of the same scene to reduce noise.

It is desirable to apply deep learning technique to real-world burst denoising, where a

CNN can be employed to learn the burst denoising process, including adaptation to

real-world noise and frame alignment. However, it is difficult to construct a dataset

for this purpose because generating ground truths is difficult for dynamic scenes.

In chapter 4, we propose a decoupled learning scheme to alleviate this problem.

We leverage two complementary datasets, including a video dataset with synthetic

noise, and a static burst dataset with real-world noise. We design a decoupled CNN

architecture and a training scheme, which can learn the real-world noise adaptation

from static burst dataset and learn frame alignment from the dynamic content in the

video dataset. Experiments show that under the proposed decouple learning scheme,
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our burst denoising CNN achieves leading performance in denoising real-world noisy

sequences without the need of a real-world burst denoising dataset.

In the traditional camera ISP pipeline, the individual image processing components

are designed independently with little considerations to design them as a whole. This

not only leads to error accumulation in the result but also requires long development

period on algorithm tuning. In chapter 5, we design a data-driven framework for ISP

learning, where a two-stage network, dubbed CameraNet, is developed to replace the

traditional ISP pipelines. CameraNet is divided into an image restoration stage and an

enhancement stage, which demonstrates excellent capability in learning various types

of ISP pipelines. Experiments show that the proposed CameraNet can achieve stably

good performance in several benchmark datasets, and outperforms both traditional

ISP pipelines and recently proposed deep-learning-based ISP designs in the literatures.

6.2 Future Work

We plan to expand our study in the following directions as the future work:

• Learning tone mapping operation. Deep learning technique has demon-

strated notable advantages over traditional algorithms in some image processing

task. It remains a question whether it can be applied to tone mapping task to

make improvement. In the future, we plan to construct a large-scale pairwise

dataset with HDR images and the ground truth tone mapped images to develop

deep-learning-based tone mapping approach. We will hire several experienced

photographers to use image editing software to generate multiple styles of

ground truth tone mapped images for each HDR image.

• Real-world denoising with adversarial learning. While the proposed

smooth-and-enhance denoiser in chapter 3 shows great advantages in detail

richness, it could generate some small artifacts, including distorted textures

111



and color bias, in denoising some real-world noisy images. This is caused by the

employment of adversarial training technique, which are known to be unstable.

In the future, we will explore how to refine the adversarial learning technique

to benefit the real-world image restoration application.

• Real-time deep burst denoising. While deep learning has shown great

advantage on real-world burst denoising task, it has several limitations when

applied to real-time scenario, including large model complexity and slow running

time. This is caused by the manner of taking and processing multiple frames

simultaneously. In the future, we will explore more runtime-efficient architecture

design for burst denoising. For example, developing a recurrent architecture

which takes one frame at a time could be a possible solution.

• Deep ISP pipeline by burst imaging. Currently the CameraNet proposed

in chapter 5 only takes single raw image as input. It is non-trivial to extend it

to burst imaging where a collection of raw images are captured as input. The

input raw images may contain different exposures and dynamic contents, which

brings both challenges and potential benefits to the ISP pipeline design.

• Hardware deployment. Although the proposed algorithms, including tone

mapping, denoising and ISP pipeline, have high performance in laboratory

environment, there are many factors that should be put to consideration when

deploying them into hardware. First, computational complexity should be

reduced by decreasing some of the network hyper parameters, e.g., number

of channels and layers. Second, since the model size is reduced, knowledge

distillation technique should be applied to maintain the same amount of learned

knowledge. Third, hardware-friendly operations should be adopted in the net-

work design to maximize the infer speed. For example, transposed convolution
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should be avoided since it is not well supported by most of the hardware plat-

forms. Finally, one should have a systematic set of knowledge when deploying

the algorithms. This is our future work.
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joint demosaicking and denoising. ACM Transactions on Graphics (TOG),
35(6):191:1–191:12, November 2016.
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