

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DESIGN AND ANALYSIS FOR EMBEDDED
SYSTEMS TO MEET RESOURCE

CONSTRAINTS

WEI ZHANG

PhD

The Hong Kong Polytechnic University

2021

The Hong Kong Polytechnic University
Department of Computing

Design and Analysis for Embedded Systems to Meet

Resource Constraints

Wei Zhang

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

April 2021

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

Wei Zhang (Name of Student)

iii

ABSTRACT

Embedded systems are generally subject to resource constraints due to the limited amount

of available resources. To operate correctly, efficiently and sustainedly in the presence of

resource constraints, the system should be precisely analyzed and elaborately designed. This

thesis considers two typical resource constraints, timing constraints and energy constraints,

and studies on designing or analyzing embedded software under these constraints.

Tasks in real-time systems have a limited amount of time to use. In order to sat-

isfy the timing constraints, the worst-case execution time (WCET) of real-time tasks should

be tightly and safely predicted. In the past decades, the WCET analysis of real-time tasks

is well studied under the single-task environment. However, in reality, a task may be in-

terfered with by other tasks, resulting in more cache misses and additional execution time.

For instance, higher priority tasks may preempt the lower priority task’s execution and evict

memory blocks accessed by the lower priority task. Once the lower priority task is resumed,

the memory reference that is originally cache hit may miss the cache, and additional time

will be costed to reload these additional cache miss memory blocks. The additional execu-

tion time and the additional cache miss memory block are called cache-related preemption

delay (CRPD) and useful cache block (UCB), respectively. The state-of-the-art method com-

putes the CRPD by counting the number of UCB. However, it can not capture the dynamic

behavior of data memory references, e.g., index-dependent array access, as a result, may

either overestimate or underestimate the CRPD. To address this problem, this thesis adopts

the temporal scope analysis to capture the dynamic behavior of data memory references and

integrate it into the existing UCB computation method to tightly and safely bound the num-

ber of UCB. Experimentally, our approach conducts a tighter and safe result comparing with

the state-of-the-art.

iv

A real-time task may be preempted more than once during its one operating period,

and thus the total CRPD caused by all the preemptions should be counted. The state-of-the-

art method counts the number of UCB of different preemption points in isolation and sums

the k-largest counts as the total number of extra cache misses of k preemptions. However,

different preemption points may have the same UCB, and simply summing them may double

count some UCB, causing overestimation. To address this problem, we efficiently explore

the correlation on UCB computation among different preemption points and introduce a new

analysis unit to produce a tighter total UCB. Experiments with benchmark programs show

that the proposed technique leads to substantially tighter total CRPD estimation with multiple

preemptions comparing with the state-of-the-art.

Similar to preemptions, shared cache contentions between parallel executing tasks

may also cause additional cache misses and execution time. The state-of-the-art method

considers that all the possible shared cache contentions between parallel executing tasks can

happen together. In specific, a memory reference is considered as a shared cache miss as

long as its parallel executing tasks access the same shared cache line with it. But, because

each task’s memory references are accessed in a certain order, a large portion of the shared

cache contentions can not happen together in reality. Therefore the state-of-the-art method

is pessimistic. To address this problem, this thesis models shared cache contentions between

memory references and access orders among memory references together, and proposes an

efficient algorithm for calculating the worst-case additional execution time. We conduct the

experiments with the MRTC benchmarks. Experiment results show that our method can

significantly improve the analysis precision over the state-of-the-art with most benchmark

programs without sacrificing the analysis efficiency.

Energy harvesting systems, which harvest energy from the environment to operate,

promise to power billions of IoT devices without being restricted by battery life. Since the

ambient energy is generally weak and unstable, the system is subject to energy constraints;

that is, it may suffer unpredictable and frequent power failures. To finish a task across power

v

outages, the state-of-the-art method frequently backup the system state, which costs lots of

energy and time and adversely reduces the time and energy for the program’s execution. This

thesis proposes LATICS, a low-overhead adaptive task-based intermittent computing system,

which adaptively skips some unnecessary state savings when the energy supply is sufficient.

To reduce the backup overhead, we precisely analyze the minimum set of data that should

be saved when its following state saving points are dynamically enabled/disabled at run-time

rather than saving all the system state. Moreover, we disclose that the state saving point can

not be blindly skipped even if the energy is sufficient. It is because skipping such state saving

points can lead to more data to backup. In this thesis, we introduce the concept of breaking

points to avoid skipping such points. Experimentally, LATICS significantly reduces state

saving overhead and improves execution efficiency compared to existing solutions.

State backup which is performed frequently in energy harvesting systems, is consid-

ered as the performance bottleneck. Although its overhead can be reduced through some

optimizing techniques, it always blocks the system’s execution as they are performed in se-

quential. Performing state saving and system execution in parallel is feasible in modern

MCU, e.g., by leverage DMA, but is not adopted by existing systems as it may cause data

race and further system error. However, in energy harvesting systems, since the backup is

performed frequently, the former incorrect backup can be overwritten soon by the following

backups. Moreover, incorrect backup rarely happens as only a part of data may result in in-

correct backup errors. Therefore, in this work, instead of avoiding the incorrect backup, we

allow the incorrect backup to occur and propose an efficient method to precisely detect the

incorrect backup. In addition, we design a fault-tolerant backup management mechanism to

guarantee that the system can execute correctly in case of the state is backed up incorrectly.

The proposed method is implemented as a run-time system, and experimental results show

that the proposed method has a better performance than existing methods.

Keywords: static timing analysis, cache analysis, WCET, CRPD, shared cache contention,

energy-harvesting system, parallel state backup, intermittent computing

vi

PUBLICATIONS ARISING FROM THE THESIS

1. Wei Zhang, Songran Liu, Mingsong Lv, QiuLin Chen and Nan Guan. ”Intermittent

Computing with Efficient State Backup by Asynchronous DMA”. in Design Automa-

tion and Test in Europe (DATE), 2021.

2. Songran Liu, Wei Zhang, Mingsong Lv, Qiulin Chen, Nan Guan, “LATICS: A Low-

overhead Adaptive Task-based Intermittent Computing System”, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

3. Wei Zhang, Nan Guan, Lei Ju, Yue Tang, Weichen Liu and Zhiping Jia. ”Scope-

Aware Useful Cache Block Calculation for Cache-Related Preemption Delay Analysis

with Set-Associative Data Caches”. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), 2019.

4. Wei Zhang, Nan Guan, Lei Ju, Weichen Liu. ”Analyzing Data Cache Related Pre-

emption Delay with Multiple Preemptions”. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 2018.

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Nan

Guan, for the continuous support of my Ph.D. study and research. I am very honored to

be a student of Dr. Guan, and I want to thank him for his guidance which helps me finally

know how to find research problems, fix these issues, write academic papers, and present

the research work. The completion of the thesis would not have been possible without his

support and help.

I must also thank Prof. Lei Ju at Shandong University, the supervisor of my master

thesis. I finished my first academic paper under his professional supervision. The experience

made me realize that doing research is such a great lifelong cause. Since that, a seed of

being an excellent researcher is planted in the deepest of my heart. I also appreciate a lot

of constructive advice and encouragement he gives to me during my Ph.D. study in both

research and life.

I want to thank Dr. Mingsong Lyu from the Hong Kong Polytechnic University, for

his patient guidance, stimulating discussions, insightful comments, and encouragement. I

also express my gratitude to other members of Dr. Guan’s research group - Dr. Songran

Liu, Dr. Xu Jiang, Dr. Yue Tang, Dr. Tao Yang, Dr. He Du, Qingqiang He, Xuemei Peng,

etc.—for their unconditional assistance during my Ph.D. study.

I would also express my gratitude to Dr. Yuanqing Zheng at the Hong Kong Polytech-

nic University, for kindly serving as the Chairman of the Board of Examiners (BoE). I also

thank Prof. Guoliang Xing from the Chinese University of Hong Kong, and Dr. Cong Liu

from The University of Texas at Dallas, for kindly taking the time from their busy schedules

to serve as the external examiners.

viii

I recognize that this thesis would not have been possible without the financial assis-

tance from the Hong Kong Polytechnic University. I thank Dr. Guan and the Department of

Computing for offering me grants to attend international conferences.

Finally, I want to thank my family, especially my parents and my wife. I can not

finish my Ph.D. study without their unconditional support and endless love. I would also

like to thank my daughter, Suisui. The birth of my daughter makes me stronger and braver,

which helps me overcome all the difficulties and motivates me to finish my Ph.D. thesis.

ix

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY . iii

ABSTRACT . iv

PUBLICATIONS . vii

ACKNOWLEDGEMENTS . viii

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

CHAPTER 1. INTRODUCTION. 1

1.1 Timing Analysis for Real-time System Software . 1

1.1.1 Cache-Related Preemption Delay Analysis . 2

1.1.2 Share Cache Contention Analysis for WCET Estimation 4

1.2 Designing Efficient Energy Harvesting System . 5

1.3 Thesis Organization . 6

CHAPTER 2. CACHE-RELATED PREEMPTION DELAY ANALYSIS WITH SET-
ASSOCIATIVE CACHES . 8

2.1 Introduction . 8

2.2 Related Work . 10

2.3 Preliminary . 12

2.4 Motivation . 14

2.4.1 Underestimation at The Basic Block Boundary . 14

2.4.2 Overestimation of UCBs for Set-associative Caches . 16

2.4.3 Summary of The Observations . 19

2.5 New Analysis Boundary . 20

2.6 Temporal Scope Analysis . 21

2.7 Scope-Aware UCB Analysis . 26

2.7.1 Temporal Scope Normalization . 27

2.7.2 RCS and LCS Calculation . 31

x

2.7.3 UCB Calculation . 36

2.8 Evaluation . 38

2.9 Conclusions . 43

CHAPTER 3. CACHE-RELATED PREEMPTION DELAY WITH MULTIPLE PRE-
EMPTIONS . 45

3.1 Introduction . 45

3.2 Background . 46

3.2.1 Temporal Scope Analysis . 46

3.2.2 UCB Analysis . 48

3.3 Motivation . 49

3.4 Useful Memory Block Analysis . 51

3.4.1 A Running Example . 52

3.4.2 Analysis Unit . 54

3.4.3 Useful Memory Block Classification . 55

3.5 Useful Cache Block Analysis for Subsequent Preemptions . 59

3.5.1 O-UMB Analysis for Subsequent Preemptions . 59

3.5.2 I-UMB Analysis for Subsequent Preemptions . 61

3.5.3 UCB Calculation for Subsequent Preemptions . 62

3.5.4 Total CRPD Analysis . 64

3.5.5 Discussion . 67

3.6 Evaluation . 68

3.7 Conclusion . 72

CHAPTER 4. SHARED CACHE CONTENTION ANALYSIS FOR WCET ESTIMA-
TION ON MULTI-CORES . 73

4.1 Introduction . 73

4.2 Related Work . 74

4.3 Preliminary . 76

4.3.1 System Model . 76

4.3.2 The State-of-the-Art Method . 78

4.4 Motivation . 80

4.4.1 Overestimation I . 82

4.4.2 Overestimation II . 82

4.4.3 Summary and Discussion . 83

4.5 Methodology . 84

xi

4.5.1 Access Order Analysis . 84

4.5.2 Precise Shared Cache Contention Analysis Between URs 87

4.5.3 Precise Shared Cache Contention Analysis Between Tasks 88

4.6 Multi-Level Cache Analysis . 94

4.7 Evaluation . 95

4.8 Conclusion . 99

CHAPTER 5. LATICS: A LOW-OVERHEAD ADAPTIVE TASK-BASED INTER-
MITTENT COMPUTING SYSTEM . 101

5.1 Introduction . 101

5.2 Overview . 103

5.3 Analysis . 106

5.3.1 Rationale . 106

5.3.2 Analysis Target and the Definition of Breaking Point . 109

5.3.3 Computing PWS and Inserting Breaking Points . 111

5.4 The Run-Time System . 120

5.4.1 The Main Work Flow . 120

5.4.2 Core Components . 122

5.5 Experiments and Evaluation . 124

5.5.1 Experimental Setup . 124

5.5.2 Evaluation Methods . 125

5.5.3 Empirical results and evaluation . 126

5.5.4 Further Discussion. 130

5.6 Conclusion . 134

CHAPTER 6. INTERMITTENT COMPUTING WITH EFFICIENT STATE BACKUP
BY ASYNCHRONOUS DMA . 135

6.1 Introduction . 135

6.2 Related Work . 136

6.3 The Parallel State Backup Problem . 137

6.4 Overview of Our Approach . 138

6.5 Design . 141

6.5.1 Software Model . 141

6.5.2 State Backup Error Detection . 142

6.5.3 Buffer Design for Fault-tolerant Backup Management . 146

6.5.4 Reorganizing Memory Layout to Reduce Backup Errors 146

xii

6.6 Experiments and Evaluation . 147

6.6.1 Experimental Setup . 147

6.6.2 Results and Evaluation . 148

6.7 Conclusion . 150

CHAPTER 7. CONCLUSION AND FUTURE WORK. 151

7.1 Conclusion . 151

7.2 Future Work . 152

REFERENCES . 153

xiii

LIST OF FIGURES

2.1 The control flow graph of a program fragment . 15

2.2 A running example . 17

2.3 Examples of continuous and noncontinuous iteration ranges 23

2.4 Memory blocks accessed by array A at different loop iterations 24

2.5 Temporal scope analysis . 25

2.6 Program unrolling according to the normalization . 32

2.7 Unrolled control flow graph for the RCS and LCS calculation of DL1[0],L2[10]
2 . . 34

2.8 Analysis time of different benchmarks. 39

2.9 Maximal UCB number on different benchmarks . 42

2.10 Data memory accesses of Adpcm . 43

2.11 UCB number of different loop points in Bsort100 . 44

3.1 Transformed CFG of a preempted task . 50

3.2 A running example . 54

3.3 Total number of UCBs of different benchmarks with different numbers of
preemptions. 70

4.1 A multi-core processor with shared cache . 76

4.2 Control flow graph (CFG) of task T . 77

4.3 CFGs of two parallel tasks T and T′ . 80

4.4 Cache states of C1 . 82

4.5 CM(Pa
T ,P

b
T′)

. 89

4.6 A multi-level cache architecture . 94

5.1 The WAR problem and breaking point insertion. 105

5.2 Deciding breaking points for each leading task . 108

5.3 An example to explain PWS computation and breaking points insertion 119

5.4 A running example of the run-time system . 121

5.5 Execution time results under random power traces (normalized to InK’s total
execution time) . 127

5.6 The program graph of CEM . 128

6.1 An example of the parallel state backup problem . 138

xiv

6.2 Overview of the proposed state backup approach. 139

6.3 Fault-tolerant backup management . 140

6.4 State backup error detection exemplified (principle and optimization) 143

6.5 Execution times of different benchmarks under different NVM speeds (Nor-
malized to ASY-OPT) . 148

xv

LIST OF TABLES

2.1 UCB in different temporal scopes at P1 . 19

2.2 Benchmark descriptions and array sizes . 41

3.1 Benchmark descriptions and array sizes . 69

3.2 Total CRPD of tasks preempted by different preempting tasks 71

4.1 Mapping among memory blocks, cache sets and memory references of T and
T′ . 81

4.2 Reduced estimated WCET in percentage of our method with different bench-
mark programs . 96

4.3 Average analysis time and the number of CEOPs of each benchmark 99

5.1 State saving size for all tasks (in bytes) . 127

5.2 Execution time results under periodic power traces with different power cycles129

5.3 The number of tasks finished in each power cycle . 130

5.4 The minimal execution times (in ms) obtained by ES and LATICS under
periodic power trace with 1ms power cycle . 131

5.5 Results with different α values under periodic power trace with 1ms power
cycle . 132

5.6 Time cost (in µs) for different state copying methods under different data
sizes (in bytes) . 133

6.1 A survey of state backup methods . 137

6.2 Average numbers of uncovered incorrect backups (UIB), incorrect backups
(IB) and total backups (B) . 149

xvi

CHAPTER 1

INTRODUCTION

Nowadays, embedded systems exist in almost everything in our lives, e.g., cars, robots, tele-

phones, pacemakers, climate control systems, fire alarm systems, manufacturing systems,

etc. Unlike the general-purpose system, embedded systems have limited resources to achieve

their objective and therefore are subject to resource constraints. To satisfy the resource con-

straints, the system should be specifically designed and analyzed.

This thesis considers two typical resource constraints, timing constraints and energy

constraints. In real-time systems, tasks should be finished before their deadline. Violating

the timing constraints may lead to catastrophic consequences such as loss of human life. A

safe and tight bound on the execution time of real-time tasks should be predicted in advance

to guarantee the timing constraints can be satisfied. Energy harvesting systems harvest the

energy from the ambient environment to operate. Since the abient energy is weak and unsta-

ble, the system may suffer unpredictable and frequent power failures. Conventional software

that always reboots from the system entry can not progress under such energy constraints.

Hence, a new design of embedded software should be proposed.

1.1 Timing Analysis for Real-time System Software

In order to know whether real-time tasks can be finished before their deadline, a safe (no

less than any possible execution time) and tight (as close as possible to the actual worst-case

execution time) upper bound on the execution time, also known as the worst-case execution

time (WCET), should be computed in advance. Analyzing whether a memory reference is

a cache miss or hit is the foremost part of timing analysis, as the timing delay caused by a

cache miss could be several orders of magnitude greater than a cache hit.

1

Static timing analysis has been studied for several decades and works well under the

single-task environment [28]. Different tasks may compete to use the same cache line in

practice, causing additional cache misses and a long delay in the execution time. To derive a

safe and tight WCET bound, we need to tightly and safely bound the worst-case additional

execution time caused by inter-task interferences. Existing methods are inaccurate in com-

puting such additional shared cache misses, and thus may either overestimate or undereste

the WCET bound. The overestimated WCET bound may lead to a pessimistic schedulabil-

ity test result and waste computational resource, while the underestimated WCET bound is

unsafe and may cause system failures. This thesis considers two typical inter-task interfer-

ences, preemptions and share cache contentions, and proposes methods to tight the WCET

bounds while guaranteeing the soundness of the analysis result.

1.1.1 Cache-Related Preemption Delay Analysis

Preemptive scheduling is widely used in real-time systems to ensure more important or ur-

gent tasks to be executed first. A higher priority task may preempt lower priority tasks,

evicts memory blocks accessed by lower priority tasks from the cache, and makes the fol-

lowing accesses to these evicted memory blocks miss the cache. Once the lower priority task

is resumed, additional time is spend to reload these additional cache miss memory blocks,

and such additional execution time is called cache-related preemption delay (CRPD). It has

been shown that CRPD contributes significantly to task execution time [40]. Therefore, a

precise CRPD analysis is crucial for real-time system tests and design.

The state-of-the-art method computes CRPD by counting the number of useful cache

blocks (UCBs) [4, 9], where a UCB of a program point is defined as a memory block that

1. is reside in the cache when the program reaching the program point,

2. will be re-referenced before it is evicted from the cache when leaving the program

point.

2

If preemption occurs at a program point, the additional number of cache misses will no

larger than the number of UCBs. In addition, the state-of-the-art method pointed out that the

CRPD of different preemption points in a basic block is the same, and therefore the UCB

computation can only be performed for each basic block rather than each instruction.

However, the state-of-the-art UCB computation method can not capture the dynamic

behavior of data memory reference and therefore may overestimate the number of UCBs.

For instance, an index-dependent array reference may access different memory blocks at

different loop iterations, and a memory block is only a UCB of the program point at the

loop iteration it is accessed. However, the state-of-the-art method can not distinguish which

memory block is accessed at each iteration, and thus consider that all the memory blocks are

UCBs at all the iterations, which is over-pessimistic. Besides, performing UCB computa-

tion at each basic block boundary may underestimate the number of UCBs. Underestimated

WCET bound may lead to catastrophic consequences, which should be avoided. To address

the above-mentioned problems, we adopt the scope-aware analysis [31] to capture the dy-

namic data memory access behavior and integrate it into the UCB computation to compute a

safe and tighter bound of CRPD.

A task may be preempted several times (i.e., k) during its one period. The state-

of-the-art method [7, 37] calculates the total number of additional cache misses by simply

summing the k-largest UCBs. However, since UCBs of different preemption points may

have correlations, simply summing the k-largest may double count some UCBs. This the-

sis first points out the pessimism of existing total CRPD analysis methods. Furthermore,

we show that computing the worst-case additional cache misses for multiple preemptions is

computationally intractable. According to the locality of memory references, propose an ap-

proximate method to efficiently and precisely compute the total CRPD. Experimental results

show that, for most benchmarks, the total UCBs produced by our method is 50% less than

that of the state-of-the-art method.

3

1.1.2 Share Cache Contention Analysis for WCET Estimation

Embedded real-time systems are shifting to multi-core platforms to meet both high-performance

requirements and strict thermal and power constraints [26,46]. Multi-core processors, while

bringing great performance benefits, significantly complicate the cache behavior analysis.

Most multi-core processors contain a shared cache which can be accessed by different cores

simultaneously. Different tasks executed in parallel on different cores may contend to use

the same shared cache line. We a memory reference is a shared cache hit if only one task is

executed on the processor. If another task is executed in parallel and access the same shared

cache set with it, its cache behavior may be changed to miss due to shared cache contentions.

Therefore, in multi-core systems, the cache behavior of memory references depends not only

on the local program’s execution flow but also on the shared cache contentions with its co-

runner tasks.

The state-of-the-art method [39] considers that all the shared cache contentions be-

tween parallel executing tasks can happen together, which is pessimistic. Specifically, a

memory reference is regarded as a shared cache miss as long as other parallel-executing

tasks access the same shared cache set with it. However, memory references are accessed

in a certain order defined by the program control flow graph, and thus a lot of shared cache

contentions can not happen together at runtime. We denote the set of shared cache con-

tentions that can happen together as the feasible set. To derive a tight and safe WCET bound,

the feasible set that causes the maximum shared cache misses (i.e., the most extra execution

time) should be computed. Shared cache contentions between parallel executing tasks can

form a massive number of feasible sets, and how to exactly find the objective one is chal-

lenged. In this thesis, we introduce a novel model to analyze the shared cache contentions.

The new model can capture access orders among different memory references. Based on the

new analysis model, we propose an efficient method to compute the maximum number of

additional cache misses caused by shared cache contentions, and produce a tighter WCET

bound. Experimentally, the proposed method can produce a much tighter WCET bound for

most benchmark programs without sacrificing efficiency.

4

1.2 Designing Efficient Energy Harvesting System

Batteries are inconvenient to use and not environmentally friendly as they generally need to

be charged or replaced periodically. Since the number of Internet-of-Things(IoT) devices

will be expected to exceed 20 billion by 2025 [3], powering such a huge number of IoT

devices with batteries is no longer a practical solution. A new technology, energy harvesting,

is considered a promising technique to power a huge number of IoT devices in the future.

Energy harvesting technology harvests energy from the ambient environment, e.g., solar,

piezoelectric, RFID, wind and ,thermal, thus eliminating restrictions caused by batteries.

Energy harvesting systems operate when the energy is available and turn off when

the harvested energy is depleted. However, due to the size constraints of IoT devices and the

changeable environment, the harvested energy is weak and unstable, leading to unpredictable

and frequent power failures (i.e., even more than a hundred times per second). Traditional

embedded software will reboot from the very beginning every time the system is power-

on, and therefore cannot progress under such frequent and unpredictable power failures. To

provide sustainable service, a new computing paradigm, intermittent computing, is proposed.

In intermittent computing, a program is decomposed into a set of program segments. In

this thesis, we focus on task-based intermittent computing, in which a program segment

is realized as a task. Once the system resumes power failures, the system continues its

execution from the beginning of the latest executed task. Incrementally, the program can

finish its execution task by task in the presence of such an unstable power supply.

However, to ensure memory consistency across power outages, the system should

backup the system state before each task’s execution. These state backups consume a lot of

energy and time, which adversely impact the system’s performance. It has been shown that

the state backup can consume up to 90% total execution time [41], which is the performance

bottleneck of the energy harvesting system. In this thesis, we propose two methods to reduce

the backup overhead.

First, we propose an adaptive task-based intermittent computing system, which can

coalesce some tasks when the energy is enough to skip some unnecessary state backup.

5

Counter-intuitively, we found that some state backups can not be skipped even if the energy

is sufficient, as skipping it may lead to much more state to backup. In this thesis, we introduce

the breaking point for each task to guide the task coalescing. A breaking point is a task that

a compulsive state backup should be performed before its execution. Then, to minimize the

overhead of each backup overhead, we propose an algorithm to precisely find the data that

need to be backed up for each task rather than backup all the system state. We implement

a run-time algorithm to implement the proposed method. Experimental results show that

the proposed method significantly reduces state saving overhead and improves execution

efficiency compared to existing solutions.

To further reduce the state backup overhead, we propose to perform the system state

backup in parallel with the task’s execution to hide the latency of the state backup. Most

embedded MCUs contain specific hardware that can transfer data without interrupting the

CPU, e.g., DMA. But all the existing methods perform the state backup in sequential. This

is becauses performing the state backup in parallel with the task’s execution may cause data

race, and therefore backup an incorrect variable. All existing methods [23, 70] adopt the se-

quential backup method to avoid the happening of incorrect backup. In reality, we found that

the probability of the happening of an incorrect backup is very small. Therefore, it is a waste

to use an inefficient method to prevent a small probability thing. Moreover, an incorrect

backup can be overwritten by the next backup soon. Therefore, we allow the backup error

to occur by performing state backup in parallel. To avoid a system failure in the presence of

incorrect backup, we propose an efficient method to detect backup error and a fault-tolerant

backup buffer management method. Experimental results show that the proposed method

can efficiently detect state backup errors, and by parallelizing state backup with program

execution, system performance is considerably improved.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

6

• Chapter 2 discloses the underestimation and the overestimation of existing CRPD anal-

ysis methods and presents a method to produce a tight and safe CRPD bound for a

single preemption.

• Chapter 3 shows the pessimism of existing methods on computing total CRPD for

multiple preemptions and presents a method to tight the CRPD bound of multiple

preemptions.

• Chapter 4 presents a novel method to precisely compute the additional execution time

caused by shared cache contentions between parallel executing tasks.

• In chapter 5, we present an adaptive task-based intermittent computing system to re-

duce the backup overhead of energy harvesting systems.

• In chapter 6, to further reduce the overhead caused by state backup, we, for the first

time, propose to parallel the state backup with the task’s execution and design a run-

time system to ensure system correctness.

7

CHAPTER 2

CACHE-RELATED PREEMPTION DELAY ANALYSIS WITH SET-ASSOCIATIVE

CACHES

2.1 Introduction

Static timing analysis is crucial for the design of real-time systems. Conventionally, the

worst-case execution time (WCET) analysis of a task is performed assuming the task is

executing in an uninterrupted environment. However, most real-time tasks may suffer inter-

task interference during its execution. For example, in preemptive systems, a lower priority

task is allowed to be preempted by higher priority tasks. Preemptive scheduling introduces

additional cache misses, because the preempting task may evict some reusable cache blocks

of the preempted task. The cost of reloading such additional misses is called cache-related

preemption delay (CRPD) [37]. It has been shown that CRPD contributes significantly to

task execution time [40]. Therefore, precise CRPD analysis is important to build correct and

resource-efficient real-time systems.

Most existing work on CRPD analysis only considers instruction caches. The access

behaviors of instruction caches and data caches are very different. The execution of an

instruction always access the same memory block, and a memory block can only be accessed

by neighboring instructions (if we inline all the functions). By contrast, an instruction may

access different data memory blocks at its different executions (e.g., an index-dependent

array access), and a data memory block may be visited by instructions distributed in different

locations of a program. Existing CRPD analysis techniques fail to capture the dynamic data

cache access behaviors, and therefore may either overestimate or underestimate the CRPD.

To the best of our knowledge, the only existing work which takes the dynamic behavior of the

8

data memory references into account is [53], which only considers direct-mapped caches and

suffers from strict restrictions on data access patterns (so only applicable to a very limited

subset of realistic programs).

In this chapter, we study the CRPD analysis for data caches (called dCRPD analysis

for short). CRPD is caused by cache block conflicts between the preempted task and pre-

empting task, so CRPD analysis should be performed with both of them. The problem to be

solved regarding the preempted task is how to bound the number of cache blocks that will be

reused after a preemption, namely, the useful cache blocks (UCBs). On the other hand, the

problem concerning a preempting task is how to estimate the number of cache blocks that

will be occupied by the preempting task(s), namely, the evicted cache blocks (ECBs) [37].

Similar to many existing work (e.g., [4, 37]), we focus on the calculation of UCBs for the

preempted task, which can be easily integrated with state-of-the-art joint UCB-ECB CRPD

analysis (e.g., [8]) and CRPD-aware schedulability analysis (e.g., [12, 44]).

Previous work has studied UCB calculation for instruction caches, and claimed that

the analysis can also be applied to data caches [6, 34]. However, this will lead to problems

in soundness and precision:

• Soundness. It has been pointed out that the set of data UCBs may change at the in-

struction level, instead of at the basic block level for the instruction CRPD analysis [6].

In this chapter, we demonstrate, by means of a concrete counter-example, that the ex-

isting work [34, 52], which performs analysis at the block boundaries, underestimates

the CRPD when applied to data cache. Further, to solve this problem, we introduce

a new unit for dCRPD analysis, data analysis blocks, and perform analysis at their

boundaries for safe UCB calculation.

• Precision. The traditional UCB calculation for instruction caches lacks the capability

to predict the dynamic behavior of data accesses. In this chapter, we disclose that, for

a preemption point that resides in a loop, its UCBs may be different in different loop

iterations. The existing work [6,8] that counts all the UCBs at different loop iterations

may significantly overestimate the dCRPD. To solve this problem, we consider the

9

temporal scope of each memory block in UCB calculation to precisely predict the

dynamic behavior of the data memory references, which significantly improves the

analysis precision.

We evaluate our method with benchmark programs containing frequent data memory

accesses from the MRTC WCET benchmark [2]. In particular, we compare our method with

the state-of-the-art CRPD analysis technique for set-associative caches in [34]. Note that the

technique in [34] is designed for instruction caches, and as discussed above, is not sound

for data caches. Nevertheless, we use [34] as the bottom line in the comparison to show the

precision improvement of our method consisting in counting the temporal scopes of memory

blocks and eliminating the memory blocks doomed to be evicted before the next visit from

UCB. Experiment results show that for most benchmark programs our method can reduce

more than half of the UCBs and thus significantly improve the CRPD analysis precision.

2.2 Related Work

CRPD analysis on the preempted task bounds the number of useful cache blocks (UCBs)

for each possible preemption point. Lee et al. modeled the cache state with a set of possible

memory blocks that may reside in a cache block at each preemption point for the UCB calcu-

lation [37] (the set-based approach). Negi et al. enhanced the accuracy of UCB calculation

by incorporating path analysis such that cache states resulting from different program paths

are captured (the state-based approach [52]). [63] proposed a CRPD analysis framework that

balances the scalability of the set-based approach with the accuracy of the state-based ap-

proach. Altmeyer et al. integrated UCB calculation with cache behavior modeling in WCET

analysis to deliver a safe and tight bound of preemption costs due to CRPD [4]. Kleinsorge et

al. extended the state-based approach to set-associative instruction caches [34]. [9] noted that

not every UCB will contribute to CRPD, because the UCBs will not be evicted from the cache

by preempting tasks if the preempting tasks do not access enough memory blocks. Hence,

with a consideration of the associativity of the cache, Altmeyer et al. tightened the CRPD us-

ing the concept of Resilience. Among all the above-mentioned techniques, [37,52,63] focus

10

on the direct-mapped cache analysis, and [9, 34] focus on the set-associative cache analysis.

Evicted cache block (ECB) analysis determines the cache blocks that may poten-

tially be occupied by higher-priority preempting tasks. In [65], the UCB-Union approach

considered that a single preemption may evict the cache blocks of multiple preempted tasks

to provide a tighter CRPD analysis. [8] provided a comprehensive analysis framework ECB-

Union to capture the interleaving between multiple preempting and preempted tasks. In [57],

a new cache replacement policy was proposed to reduce the CRPD cost due to cache con-

flicts. UCB and ECB calculation can be easily integrated to provide more precise CRPD

analysis results than applying any of them individually [7].

In addition to the CRPD cost of a single preemption, the number of preemptions must

be computed to integrate CRPD analysis with system-level schedulability analysis. Nested

and indirect preemptions were considered to bound the total number of preemptions in fixed-

priority [7] and EDF scheduling [44]. [54] utilized the tasks’ best-case and worst-case exe-

cution times to further tighten the number of preemptions. The integration of CRPD analysis

and fixed-priority preemption threshold scheduling was studied in [12]. In case of multiple

preemptions occurred in one period of preempted tasks, the UCBs of each preemption point

may have correlations. Work in [72] detected the correlations and performed an accurate

total CRPD analysis for multiple preemptions.

The above-mentioned CRPD analysis techniques mainly focus on instruction caches.

Some of them [8, 37] even claimed that they can be extended to data cache analysis. Due to

the lack of ability to predict the dynamic behavior of data references, they may suffer from

significant overestimation. Various methods have been proposed to analyze data cache be-

havior, e.g., the cache miss equation (CME) framework [24] and the Presburger Arithmetic

formulations [13]. The CME framework has been utilized for data cache behavior model-

ing [67] and dCRPD analysis [55], which provides precise analysis results for data references

with regular patterns. However, the CME framework and the Presburger Arithmetic formu-

lations have inherent limitations in handling programs with input-dependent branches and

data references. Furthermore, it is not easy to integrate the CME-based approach with ex-

11

isting AI-based frameworks for instruction CRPD analysis and CRPD-WCET co-analysis

(e.g., [4]).

[62] proposed a framework that categorizes data memory accesses as predictable

or unpredictable, where the impact of unpredictable memory accesses on the data cache is

bounded for WCET analysis. AI-based data cache analysis frameworks that handle both

regular and input-/data- dependent accesses for WCET estimation were proposed in [60]

and [31]. In particular, [31] introduced the concept of ”temporal scope” to capture the dy-

namic behavior of data caches for WCET analysis. In this work, we enhance the concept of

”temporal scope” in [31] for CRPD analysis.

2.3 Preliminary

As mentioned before, CRPD is caused by the interference on the cache blocks between

the higher priority tasks (ECB) and the lower priority tasks (UCB). ECB of a program,

corresponding to all the cache blocks that the program may access during its execution, is

easy to compute. Compared with the ECB calculation, the UCB calculation is far more

complicated. A UCB for a program point is defined as:

Definition 2.3.1 (UCB). A UCB is a memory block which is in the cache when the program

reaches the program point and may be re-referenced in the following execution before being

replaced by another memory block.

For a program point P, UCBP is a collection of all the UCBs at P. In most of existing

work [34, 52], the computation of UCBs of a program preemption point is done through an

iterative calculation for reaching cache states (RCS) and living cache states (LCS) [34]:

• RCS: The Reaching Cache States at a program point P of a program, denoted as

RCSP, is the set of possible cache states when P is reached via any incoming path.

• LCS: Given a program, the living cache states at a point P, denoted as LCSP, are

defined as the possible first references to cache blocks via any outgoing path from P.

12

Note that, the path mentioned here is the path on the CFG (control flow graph) of the pre-

empted task. The iterative method used to calculate the RCSP and LCSP for a program point

P is shown below.

RCSIN
P =

⋃
p=pre(P)

RCSOUT
p

RCSOUT
P = {lru(r,genP) | r ∈ RCSIN

P }

LCSOUT
P =

⋃
s=succ(P)

LCSIN
s

LCSIN
P = {lru(l,genP) | l ∈ LCSOUT

P }

When the fixed point is reached in this iterative analysis, we set RCSP = RCSOUT
P , LCSP =

LCSOUT
P . In the above, the pre(P) (succ(P)) is the set of immediately preceding (succeed-

ing) program points of P. In order to simplify the presentation, we only give the high level

description of the lru function and the gen function, and a more detailed description pre-

sented in [34]. The function lru(s1,genP) defined in [34] returns the cache state s after

access of program point P under a LRU replacement policy with an original cache state

s1. And the gen function returns all the memory blocks accessed by a program point. The

RCSIN
P RCSOUT

P LCSIN
P and LCSOUT

P are initially assigned with:

RCSIN
P = ∅, RCSOUT

P = {genP}

LCSOUT
P = ∅, LCSIN

P = {genP}

Finally, if a memory block resides both in RCSP and LCSP, the method in [34]

considers the memory block to be a UCB. The computation of the UCBs is performed at an

abstract domain. In the abstract domain, an abstract cache state is defined as a vector with

n-elements {ca1, · · · , can} to denote the RCSP, LCSP and UCBP, where n is the number

of cache sets. Each cai denotes the i− th cache set and it contains the memory blocks which

will map to the cache set. In this chapter, as with most embedded processors (e.g., ARM

11 [21]), we assume the size of each cache block is 32 Bytes.

13

The iterative calculation for the RCSP and LCSP is based on the CFG (control flow

graph) of the objective program. In the CFG, we use BBi to denote a basic block and define

the following concepts.

• Program point: Each program point corresponds to an instruction (on the executable

level). More specifically, a program point locates right after the corresponding instruc-

tion.

• Preemption point: When a program is preempted at a program point, this program

point is called a preemption point.

• Execution point: A program point may execute for more than one time when it is

located in a loop. An execution point refers to a program point in a particular loop

iteration.

In this work, to simplify the presentation, we assume a fully-associative cache with

least recently used (LRU) replacement policy, and our techniques can be easily extended to

set-associative caches since the analysis for one cache set does not affect other cache sets.

2.4 Motivation

The state-of-the-art UCB calculation method [34] (for set-associative instruction caches) is

performed on the basic block boundaries. However, this may underestimate the UCB and

lead to unsound CRPD analysis results when dealing with data caches, as shown in Section

2.4.1. On the other hand, the method in [34] is designed for instruction caches and may

significantly overestimate the UCB with data caches, as it will be shown in Section 2.4.2.

2.4.1 Underestimation at The Basic Block Boundary

The work in [37], which focused on instruction analysis, proved that the number of useful

cache blocks at any execution point within a basic block is the same. The following work on

14

CRPD analysis [52], [63], [34], performed their computations at the basic block boundary

to reduce the computational complexity. The work in [6] noted that the set of UCBs may

change at the instruction level and not only at the basic block level for data cache analysis.

Since their work focused on the instruction analysis, they didn’t give a clear conclusion

about either unsoundness or pessimism and still performed their analysis on the basic block

boundary. In this section, we present this phenomenon and claim that performing dCRPD

at the basic block boundary may underestimate the number of UCBs. How to avoid this

unsoundness is presented in Section 2.5.

m1;

m0;

m1;

m2;

m0;

p0

BB0

p1
BB1

Figure 2.1. The control flow graph of a program fragment

We have a control flow graph of a program fragment in Fig. 2.1. In this example, the

program contains 2 basic blocks BB0 and BB1. In BB0, the program always accesses memory

block m1, m0, m1 and m2 successively. In BB1, the program always accesses memory block

m0. Consider two possible preemption points, P0 and P1, where P0 is located before the

access to m0 (a program point inside BB0) and P1 is located at the end of BB0 (the boundary

of BB0). In this subsection we assume the associativity is 2. Based on the RCS/LCS analysis

technique presented in Section 2.3, we have the following RCS and LCS of the preemption

point P1:

RCSP1 = {(m2,m1)}

LCSP1 = {(m0,m1)}

15

Since m1 is the only memory block that resides both in RCSP1 and LCSP1 , the number of

useful cache blocks of P1 is 1.

Similarly, we have the RCS and LCS of preemption point P0 as follows:

RCSP0 = {(m1,m0)}

LCSP0 = {(m0,m1)}

So the number of UCBs of P0 is 2 (m1 and m0) which is larger than the number of UCBs

of P1. Since the number of UCBs at the basic block boundary (P1) may be less than other

points (P0) inside the basic block, the preemption occurred inside the basic block may lead

to more additional cache misses. Therefore, using the number of UCBs at the basic block

boundary to represent other points inside the basic block is unsafe. Hence, we make the

following general observation for dCRPD analysis.

Observation 1. In a program where data references at different program locations access the

same data memory block, it will lead to an underestimation if the UCB analysis is performed

at the basic block boundaries.

2.4.2 Overestimation of UCBs for Set-associative Caches

In the following, we will use the example in Fig. 2.2 to illustrate the pessimism problem. Fig.

2.2(a) shows the control flow graph (CFG) of a program fragment, which contains four basic

blocks, BB1 to BB4, and they all reside in a loop L1 with index of range [0, 31]. We assume

BB1 and BB3 do not access data memory and only the data references in BB2 and BB4 are

listed. Our example contains both array accesses and scalar variable accesses: Arrays A,

B, C and E which contain 32 integers; a and b which are scalar variables. The accessed

memory blocks and their corresponding temporal scopes are shown in Fig. 2.2(b). Since we

assume a fully-associative cache, all the memory blocks map to the same cache set.

16

index 0-7 8-15 16-23 24-31

A[index] 𝑚0 𝑚1 𝑚2 𝑚3

B[index] 𝑚4 𝑚5 𝑚6 𝑚7

C[index] 𝑚8 𝑚9 𝑚10 𝑚11

E[index] 𝑚12 𝑚13 𝑚14 𝑚15

a 𝑚16

b 𝑚17

(b) Memory blocks and corresponding

temporal scopes

A[index]

B[index]

C[index]

(a) The transformed CFG

a

B[index]

C[index]

A[index]

E[index]

b

…

D1(BB1)

D2

D3

D4

D5

D6

D7(BB3)

D8

D9

D10

D11

BB2

BB4

start

P1

Figure 2.2. A running example

Most of the literature on CRPD analysis technique primarily focuses on instruction

caches. When these techniques are extended for data caches (e.g., [37], [4], [34]), pessimistic

results will be obtained due to the lack of ability to predict the dynamic behavior of data

references. When such techniques address the dynamic behavior of data cache references,

the original CRPD analysis may assume that each data reference instruction may access any

of the possible memory blocks at any loop iteration (e.g., A[index] may access either m0,

m1, m2 or m3 during any iteration of loop L1 in the example of Fig. 2.2(a)). However, each

memory block can only be accessed at a particular loop iteration, as shown in Fig. 2.2(b),

and it can be determined by a static analysis, which will be discussed in the context of our

temporal scope analysis in Section 2.6.

Given the temporal scope information shown in Fig. 2.2(b), different memory blocks

will become referenced at various loop iterations. Based on the analysis framework presented

in Section 2.3, we have the following fixed-point analysis results for program point P1 at

17

various loop iterations.

Iteration[0,7]

RCSP1 = {(m17,m16,m8,m4)}

LCSP1 = {(m4,m8,m0,m12)}

Iteration[8,15]

RCSP1 = {(m17,m16,m9,m5)}

LCSP1 = {(m5,m9,m1,m13)}

Iteration[16,23]

RCSP1 = {(m17,m16,m10,m6)}

LCSP1 = {(m6,m10,m2,m14)}

Iteration[24,31]

RCSP1 = {(m17,m16,m11,m7)}

LCSP1 = {(m7,m11,m3,m15)}

According to the accurate UCB calculation presented above, the number of UCBs

and the corresponding useful memory block are shown in Table 2.1. Since a data reference

may access different memory blocks in its different execution instances, the RCS and LCS

of preemption points also changed in different loop iterations. Consequently, the UCBs of a

preemption point at different loop iterations changed. Due to the lack of the temporal scope

information of every memory block, the conventional framework considers that all memory

blocks may be accessed in any loop iteration and this may lead to overestimation. Without

the consideration of the temporal scope of every memory block, the UCB calculation method

considers that the following memory blocks

m4,m5,m6,m7,m8,m9,m10,m11

18

Table 2.1. UCB in different temporal scopes at P1

Loop iterations number of UCB (UCBs)

[0,7] 2(m4,m8)

[8,15] 2(m5,m9)

[16,23] 2(m6,m10)

[24,31] 2(m7,m11)

are the useful cache blocks. So the conventional method considers that the maximum num-

ber of UCB is 4 (which can not be greater than the associativity). However depending on

the above RCS and LCS of P1 in different loop iterations and the UCBs in different loop

iterations shown in Table 2.1, we can find for every particular loop iteration, there are at most

only 2 useful memory blocks, so the maximum number of UCB at P1 is 2. To summarize,

the following observation is made in this chapter.

Observation 2. A memory reference may access different memory blocks in its different

references, especially for array access in the loop. As a result, the UCBs of a program point

that is in a loop may be different at different loop iterations. To obtain a tight UCB count for

dCRPD analysis, it is crucial to utilize the loop-affine reference information to identify the

temporal scopes of the memory blocks.

2.4.3 Summary of The Observations

In the above subsections, we point out that the data CRPD analysis can’t be performed at the

basic block boundary, otherwise it will lead to an underestimation; the data CRPD analysis

should consider the temporal scope information of every memory block to capture its behav-

ior, otherwise it will lead to overestimation. In the hard real time systems, underestimation

19

is unacceptable since the result is unsound. Moreover the overestimation will produce a

pessimistic result, and then have a pessimistic effect on the scheduling analysis.

2.5 New Analysis Boundary

As pointed out in Section 2.4.1, conducting UCB analysis at basic block boundaries may

produce unsound results. To solve this problem, we define a new type of block as follows

and perform the analysis at its boundary:

Definition 2.5.1 (Data Analysis Block). A data analysis block (DAB) is a maximal sequence

of instructions within a basic block and contains at most one data memory referencing in-

struction at the beginning of the sequence.

The original CFG is converted into a transformed CFG on the basis of DABs:

• A basic block in the original CFG without accessing any data memory block remains

as a DAB in the transformed CFG.

• A basic block containing accesses to data memory blocks is divided into a set of DABs,

where in each DAB, the data memory accessing instruction is the first instruction of

the DAB.

During the execution of a DAB without data memory blocks, the program does not access

any data memory, so the data cache state is unchanged. For a DAB containing accesses to

data memory blocks, the program only accesses the data memory at the first instruction, then

the data cache states are steady during the execution of the remaining instructions of the

DAB (in the same loop iteration). Therefore, we have the following theorem:

Theorem 2.5.1. The UCBs are equal at every point of a DAB (at each particular loop

iteration if the DAB is a loop).

20

The proof of the theorem is straightforward and thus omitted. Therefore, performing

UCB analysis at the boundaries of DABs is safe.

Fig. 2.2(a) shows the transformed CFG of the example. In the transformed CFG,

basic block BB2 is divided into five DABs D2, D3, D4, D5 and D6, each containing a data

memory reference at the beginning (i.e., B in D3 and a in D6). Basic block BB4 is divided

into D8, D9, D10 and D11. Finally, basic blocks BB1 and BB3, which do not have any data

memory block references, are directly converted into DABs D1 and D7 in the transformed

CFG respectively.

2.6 Temporal Scope Analysis

According to Observation 2 in Section 2.4.2, traditional UCB analysis may cause overesti-

mation when applying to data caches because it fails to predict the dynamic behavior of data

accesses. To solve this problem, we integrate the concept of temporal scope into UCB anal-

ysis to better predict the behavior of data accesses. The temporal scope was first introduced

in [31] in the context of WCET analysis, which helps to more precisely handle the dynamic

behaviors of data accesses and input/data-dependency.

In a previous work [31], the temporal scope was defined on a may-basis. In CRPD

analysis, for a preemption point, the reaching cache state and the living cache state should

be computed as the input of the subsequent CRPD analysis. If at a particular loop iteration,

a memory block must be accessed by a data memory reference, the access is a must access,

otherwise it is a may access. We assume that the age of a memory block is 0 when it is

accessed, meanwhile the age of other memory blocks that has the smaller age in the same

cache set increases by 1. Considering that data access may include must-access and may-

access, must-access and may-access should be considered separately when computing the

cache state. For example, in a set-associative cache analysis, when a program may access a

memory block, the age of each cache block will not increase because it is possible that the

program will not access the memory block. To perform a more accurate CRPD analysis, we

use two different types of temporal scopes, must-scope and may-scope, to denote the must-

21

access and may-access, respectively, and the definitions of the must temporal scope and the

may temporal scope are as follows:

Definition 2.6.1. (May Temporal Scope) A may temporal scope regarding data memory

block m and DAB D, denoted by T̃S
D

m, is defined as:

T̃S
D

m =

m̃,D,
⋃
D∈Li

{Li[l,u]}


where

⋃
D∈Li

{Li[l,u]} characterizes a continuous range of iterations for loops containing D,

and data memory block m may be accessed in DAB D in any loop iteration in ∪D∈Li{Li[l,u]},

where l and u represent the minimal iteration and the maximal iteration of loop Li that m

may be accessed respectively.

Definition 2.6.2. (Must Temporal Scope) A must temporal scope regarding data memory

block m and DAB D, denoted by TS
D
m, is defined as:

TS
D
m =

m,D,
⋃
D∈Li

{Li[l,u]}


where

⋃
D∈Li

{Li[l,u]} characterizes a continuous range of iterations for loops containing D,

and data memory block m must be accessed in DAB D in any loop iteration in ∪D∈Li{Li[l,u]},

where l and u represent the minimal iteration and the maximal iteration of loop Li that m is

accessed respectively.

Note that, in the definition of must temporal scope and may temporal scope, we only

capture a continuous range of iterations. This is because in Section 2.7.2 when unrolling

the program, we need to get the continuous range of iterations that each must data reference

only accesses one memory block in this range. The tilde and bar used on the memory block

is only used to indict whether the memory block is from a must temporal scope or may

temporal scope. The union set in the above definitions is used to capture all the range of

iterations for different loops that the memory block is accessed. The must temporal scopes

22

0 1 2 3

0 19 0 19 0 19 0 19

2-10 2-10

(L1)

(L2)

(a) Noncontinuous iteration range

0 1 2 3

0 19 0 19 0 19 0 19

0-19

(L1)

(L2)

0-19

(b) Continuous iteration range

0 1 2 3

0 19 0 19 0 19 0 19

2-10

(L1)

(L2)

(c) Continuous iteration range

Figure 2.3. Examples of continuous and noncontinuous iteration ranges

and may temporal scopes have essentially the same form, but differ in their semantics (the

data memory block must be accessed or may be accessed). In other words, a may temporal

scope is an over-approximation of the actual possible loop ranges of a memory block, while

a must temporal scope is an under-approximation.

In our work, the may temporal scope analysis is performed using the same approach

presented in [31], which performs address analysis at the disassembly code with the program

binary. Note that the iteration range of resulting may temporal scope by this approach must

be continuous. Fig. 2.3 illustrates the difference between continuous and noncontinuous

iteration ranges. In Fig. 2.3-(a), the iteration ranges of the outer loop L1 and inner loop

L2 are [0, 1] and [2, 10], which lead to noncontinuous iteration range. Its safe continuous

over-approximation is shown in Fig. 2.3-(b), where the loop range of the inner loop L2

is extended to [0, 19], where 19 is the loop upper bound of L2. In Fig. 2.3-(c), the inner

loop does not reach lower or upper bound of the loop. However, since its outer loop only

covers one iteration, it is also a continuous iteration range. In general, an iteration range

is continuous if the following condition holds: scan all the loops from the outermost to

innermost, once a loop has an interval iteration range, all the inner loops must have iteration

23

range covering the whole valid ranges. For example, we show an array access in Fig. 2.4. In

the example, array A must access memory block m1 in different iteration ranges [0, 7] and

[16, 24]. Since A accesses m1 in noncontinuous iteration range, we get the safe continuous

over-approximation of m1 [0, 24]. Therefore, in range [0, 24] A does not must access m1, and

the temporal scope of m1 is a may temporal scope. Note that, accessing a memory block in

noncontinuous iteration range is common in reality programs, i.e., traversing a matrix with

column major order.

m1 m2 m1

A[0] A[7] A[8] A[15]A[16] A[24]

Figure 2.4. Memory blocks accessed by array A at different loop iterations

In principle, must temporal scopes can be obtained using similar techniques with

[31]. In this work, we use a simple approach to do this: we obtain the must temporal scopes

by selecting among the may temporal scopes obtained above that actually characterize pre-

cise memory access patterns. The simple approach generally contains two steps: 1. we

obtain all the may temporal scopes; 2. for a may temporal scope, if the obtained iteration

ranges of all other temporal scopes do not overlap with its, it is a must temporal scope. By

doing this, we only get the temporal scopes that are both may and must temporal scopes

(and thus is actually the exact temporal scope for the memory access). If a must temporal

scope is obtained, we can simply discard the corresponding may temporal scope (i.e., the

may temporal scope is masked by the must temporal scope).

We use the example in Fig. 2.5 to illustrate the must and may temporal scopes.

Assume the program is running on a 32-bit machine with a memory block size of 32 bytes,

and all the array accesses never exceed the array boundary. Also the memory block size

can be changed depending on the real platform architecture. In this chapter, we assume that

the memory block size is 32 bytes, as with lots of embedded processors [21]. The program

contains a scalar access (variable x), non-scalar access (array B) and input-dependent access

24

m0
D2 {L1[0,1], L2[0,19]}

m1
D4 {L1[0,1], L2[0,19]}

m2
D4 {L1[0,1], L2[0,19]}

m3
D5 {L1[0,0], L2[0,15]}

m4
D5 {L1[0,1], L2[0,19]}

m5
D5 {L1[1,1], L2[0,19]}

(a) Code fragment

int A[16]; int x;
short int B[2][20];
for(i=0;i<2;i++){ // L1

for(j=0;j<20;j++){ // L2

scanf(%d ,&x);
if(A[x]>0)

sum+=B[i][j];
}

}

i<2

j<20

scanf(%d ,&x);

A[x]>0

(b) Control flow graph

i++;

x

sum+=B[i][j]

j++;

D0

D7 D1

D2

D3

D4

D5

D6

Ref. Memory blocks Address Expression

x m0 m0

A[x] m1, m2 ⏊*4+BaseA

B[i][j] m3, m4, m5 20*i*2+j*2+BaseB

(c) Memory blocks and address expression

(d) Temporal scopes

Figure 2.5. Temporal scope analysis

(array A). Three DABs D2, D3 and D4 all contain accesses to m0, the data memory block of

x. The temporal scope analysis is automatically performed with the assembly code of each

benchmark. With the assembly code , we can get the address expression of each data memory

reference. In the following we discuss how to get the temporal scope of each memory block

according to the address expression with the example.

For the access to x, all references to x (in DABs D2 and D3) always access memory

block m0 in any loop iteration of L1 and L2. Therefore, the must temporal scopes of m0

accessed by x regarding D2 and D3 are

TS
D2

m0
= (m0,D2, {L1[0, 1],L2[0, 19]})

TS
D3

m0
= (m0,D3, {L1[0, 1],L2[0, 19]})

The memory blocks accessed by array A depend on the value of input variable x,

which cannot be determined at compile time. Since the program is running on a 32-bit

machine and each integer occupies 4 bytes in memory, the access of A[x] may cover two

memory blocks, denoted by m1,m2 in our example, and the address expression of the array

is ⊥ × 4 + BaseA, where BaseA denotes the start address of array A (also the address of

25

the first byte of memory block m1), ⊥ denotes the unknown input-dependent access index.

Since ⊥ is unknown, we have to assume that array A can access any memory block in the

valid range in different iterations. Therefore, we cannot claim any must temporal scope for

m1 and m2, and have their may temporal scopes as follows:

T̃S
D4

m1
= (m̃1,D4, {L1[0, 1],L2[0, 19]})

T̃S
D4

m2
= (m̃2,D4, {L1[0, 1],L2[0, 19]})

For the loop affine access array B, the data memory block accessed in a loop iteration

depends on the value of loop indices i and j. The address expression of array B is

(20× i + j)× 2 + BaseB

where BaseB is the start address of B (also the start address of its first memory block m3).

Array B contains 40 short integers, where each short integer occupies 2 bytes in memory.

Memory block m3 has the address range [BaseB,BaseB + 31], so it is accessed with i =

0 ∧ 0 ≤ j ≤ 15. Therefore, m3 has a must temporal scope:

TS
D5

m3
= (m3,D5, {L1[0, 0],L2[0, 15]})

The address range of data memory block m4 is [BaseB + 32,BaseB + 63], m4 can

be accessed from (i = 0, j = 16) and (i = 1, j = 11). Therefore its actual access range is

continuous. But the iteration ranges of j are not equal when i is equal to 0 or 1. So we use

a minimal continuous over-approximation of its actual iteration range L1[0, 1],L2[0, 19], and

have may temporal scope as shown below.

T̃S
D5

m4
= (m̃4,D5, {L1[0, 1],L2[0, 19]})

2.7 Scope-Aware UCB Analysis

This section presents our scope-aware UCB analysis based on the new analysis boundaries

and must/may temporal scopes introduced in the above sections. Similar to [34], our UCB

26

analysis is also performed by computing the RCS and LCS. However, we will compute the

UCB of a DAB at each loop iteration, instead of computing a single UCB for all the loop

iterations as in [34].

In [34], RCS (LCS) is computed by iteratively collecting memory blocks into RCS

(LCS) until a fixed point is reached. This method is not suitable to our problem since (1)

the RCS and LCS of the same DAB at different loop iterations are different and (2) the

data memory blocks accessed in different loop iterations may be different. A naive method

to compute the RCS (LCS) in different loop iterations is to simply unroll all the loops and

search backwards (forwards) along the unrolled CFG to check which memory blocks may

still reside in the cache when reaching the considered DAB in each particular loop iteration,

which is extremely inefficient due to the exploded size of the unrolled CFG. In the following,

we will introduce a scalable approach to compute the RCS (LCS) of a DAB in different loop

iterations.

2.7.1 Temporal Scope Normalization

The first step is to normalize the temporal scopes such that no two temporal scopes have

overlapping loop iteration ranges. Intuitively, this will identify the boundary loop iterations

of the temporal scopes. The iterations between two consecutive boundaries are similar and

thus do not need to be unrolled.

The method of how to normalize given temporal scopes is given in Algorithm 1. In

the algorithm, for each outmost loop, we first check all the temporal scopes residing in the

same outmost loop. For each outmost loop L and a list of all the temporal scopes accessed

in L, we use normalize(list,L) to do the normalization. The basic idea of our algorithm is

to split the temporal scopes from its outmost loop to the inner loop. After the split of outer

loop, all the temporal scopes do not overlap at this loop. Then for the temporal scopes which

have the same loop interval at this loop, we split on its inner loop, iteratively, until we split

to the inner most loop, then all the split temporal scopes in the same outmost loop do not

overlap with each other.

27

Algorithm 1 normalize(list,L)
1: for i=0; i < L.index; i++ do

2: if check(list, L, i) then

3: split(list, L, i);

4: end if

5: end for

6: {SLa , SLb
, ...} = group(list)

7: if L has inner loop then

8: denoting the inner loop of L as Lx

9: for all the S of group(list) do

10: normalize(SLx , Lx);

11: end for

12: end if

In the algorithm 1, L.index denotes the iterations of loop L. For a given outmost

loop L and a temporal scope list, we traverse all the loop iterations of this loop from the first

to the last (line 1), where the temporal scope list contains all the temporal scopes in L. We

use check(list,L, i) to check whether there is a temporal scope TS in list satisfying

TS.L.l == i ∨ TS.L.u == i

If there exists such a temporal scope, it means the temporal scope’s boundary at L is i. Then

we use the function split(list,L, i) to split other temporal scopes to avoid their overlap at

this loop, where the TS.L.l denotes the l at L of TS, and the TS.L.u denotes the u at L of TS.

Function split(list,L, i) checks all the temporal scopes in the list which satisfies:

TS.L.l <= i ∧ TS.L.u > i

For each of such temporal scopes TS, we create a new temporal scope TS′ = TS assuming

TS.L.u = i;TS′.L.l = i + 1

28

and insert TS′ into the list. When all the iterations of L have been checked, all the temporal

scopes do not overlap in this level. And then we use the function group(list) to separate

the list to different temporal scope lists SLx . In each list, temporal scopes have the same

loop interval at L, and they have the same inner loop of L denoted as Lx. Iteratively, we

reuse the function normalize to normalize the temporal scope of each SLx at loop Lx until

all the temporal scopes do not overlap at every loop level. The computational complexity

of Algorithm 1 is IN , where I denotes the maximum iterations of loops and N denotes the

maximum nesting depth of loops.

In the following, we illustrate how Algorithm 1 works. Rather than using temporal

scopes of memory blocks in Fig. 2.5, in order to better illustrate our normalization method,

we use five new temporal scopes. Among these five sample temporal scopes, there are four

must temporal scopes (TS1,TS2,TS3,TS4) and a may temporal scope (T̃S5)

TS1 = (m1,D1, {L1[0, 4],L2[0, 19]})

TS2 = (m2,D1, {L1[5, 8],L2[0, 19]})

TS3 = (m3,D2, {L1[0, 0],L2[0, 9]})

TS4 = (m4,D2, {L1[1, 1],L2[0, 9]})

T̃S5 = (m̃5,D2, {L1[0, 8],L2[0, 19]})

In these temporal scopes, for their outmost loop L1, they have five boundaries: 0 (TS1,TS2,T̃S5

), 1 (TS4), 4 (TS1), 5 (TS2), 8 (T̃S5). The boundary of temporal scopes at a particular loop

is the upper bound and the lower bound of their loop iteration range, and they can be found

using the check(list,L, i) function in Algorithm 1. In order to avoid the overlap of all the

temporal scopes at loop L1, we split every temporal scope whose loop interval covers any

29

other’s boundaries. After the split we get the following temporal scopes.

TS1.1 = (m1,D1, {L1[0, 0],L2[0, 19]})

TS1.2 = (m1,D1, {L1[1, 1],L2[0, 19]})

TS1.3 = (m1,D1, {L1[2, 4],L2[0, 19]})

TS2 = (m2,D1, {L1[5, 8],L2[0, 19]})

TS3 = (m3,D2, {L1[0, 0],L2[0, 9]})

TS4 = (m4,D2, {L1[1, 1],L2[0, 9]})

T̃S5.1 = (m̃5,D2, {L1[0, 0],L2[0, 19]})

T̃S5.2 = (m̃5,D2, {L1[1, 1],L2[0, 19]})

T̃S5.3 = (m̃5,D2, {L1[2, 4],L2[0, 19]})

T̃S5.4 = (m̃5,D2, {L1[5, 8],L2[0, 19]})

Once no temporal scopes overlap at loop L1, we split all the temporal scopes with the

same loop interval at L1 on their inner loops. After the split, the given temporal scopes are

normalized to:

30

{L1[0, 0]}

TS1.1.1 = (m1,D1, {L1[0, 0],L2[0, 9]})

TS1.1.2 = (m1,D1, {L1[0, 0],L2[10, 19]})

TS3 = (m3,D2, {L1[0, 0],L2[0, 9]})

T̃S5.1.1 = (m̃5,D2, {L1[0, 1],L2[0, 9]})

T̃S5.1.2 = (m̃5,D2, {L1[0, 1],L2[0, 19]})

{L1[1, 1]}

TS1.2.1 = (m1,D1, {L1[1, 1],L2[0, 9]})

TS1.2.2 = (m1,D1, {L1[1, 1],L2[10, 19]})

TS4 = (m4,D2, {L1[1, 1],L2[0, 9]})

T̃S5.2.1 = (m̃5,D2, {L1[1, 1],L2[0, 9]})

T̃S5.2.2 = (m̃5,D2, {L1[1, 1],L2[10, 19]})

{L1[2, 4]}

TS1.3 = (m1,D1, {L1[2, 4],L2[0, 19]})

T̃S5.3 = (m̃5,D2, {L1[2, 4],L2[0, 19]})

{L1[5, 8]}

TS2 = (m2,D1, {L1[5, 8],L2[0, 19]})

T̃S5.4 = (m̃5,D2, {L1[5, 8],L2[0, 19]})

2.7.2 RCS and LCS Calculation

In this section, we present how to compute the RCS and LCS of a DAB. In the following,

we use the example in Fig. 2.6 to present how our technique works. In this example, the

program contains two loops L1 and L2 and 7 DABs as shown in the CFG (Fig. 2.6 (a)). The

unrolled CFG of the example in Fig. 2.6 (a) based on the normalized temporal scopes in Fig.

31

2.6 (b) is shown in Fig. 2.6 (c). For loops in our example, loop L1 contains 2 iterations and

is the outer loop of L2 which contains 16 iterations.

D0

D1

D2

D3 D4

D5

D6

DAB
L1[0,0]

L2[0,7]

L1[0,0]

L2[8,15]

L1[1,1]

L2[0,7]

L1[1,1]

L2[8,15]

D0 𝑚0 𝑚0 𝑚0 𝑚0

D1 𝑚1 𝑚1 𝑚1 𝑚1

D2 𝑚2 𝑚2 𝑚2 𝑚2

D3 𝑚3 𝑚3 𝑚3 𝑚3

D4 𝑚7 𝑚7 𝑚7 𝑚7

D5

D6 𝑚11 𝑚11 𝑚11 𝑚11

(a) The transformed CFG (b) The loop boundaries and temporal scopes

D0

D1

D2

D4

D5

L
2

[0
,7

]

D3

D2

D4

D5

D6

D3
L

2
[8

,1
5

]

L
1

[0
,0

]

D0

D1

D2

D5

L
2

[0
,7

]

D3

D2

D5

D6

D3

L
2

[8
,1

5
]

L
1

[1
,1

]

D4

D4

(c) The unrolled CFG

Figure 2.6. Program unrolling according to the normalization

As presented in Section 2.4.2, the RCS and LCS of a DAB are different in its dif-

ferent instance of different loop iterations if the DAB is in a loop. So, in our work, the

calculation of RCS and LCS is performed on each loop iteration of a DAB. We first intro-

duce some notations. For a DAB D, we define Dℓ as the instance of D in a particular loop

iteration ℓ = ∪D∈Li{Li⟨a⟩}, where Li⟨a⟩ denotes the particular loop iteration of loop L. For

the example in Fig. 2.6, DL1[0],L2[10]
2 represents the D2 at the first loop iteration of L1 and the

32

11-th iteration of L2.

After the normalization in Section 2.7.1, the iteration ranges of any two temporal

scope residing in the same loop are not overlapping, i.e., either they are equal, or one is

earlier than the other one. Therefore, instead of unrolling the CFG with each single loop

iteration, we can unroll the CFG in a more compact way, based on the boundaries of the

iteration ranges of the temporal scopes.

The unrolled CFG is composed by different loop iteration ranges. Since the cache

state of a DAB at the border of the range may be different with that of iteration inside

the range, we compute RCSDℓ and LCSDℓ for each Dℓ. We first locate the Dℓ on the un-

rolled CFG. For the example shown in Fig 2.6, assume we compute the RCS and LCS of

DL1[0],L2[10]
2 . First we locate the DL1[0],L2[10]

2 on the unrolled CFG, which is D2 in the iteration

range of L1[0, 0],L2[8, 15]. In case of that, we extract the objective iteration from the range in

order to capture the access behavior of the program in this loop range denoted as GDL1[0],L2[10]
2

as we show in the Fig. 2.7.

With the unrolled control flow graph GDℓ
i
, we define the distance of two vertices on

a path as follows:

Definition 2.7.1 (Distance(v1,v2)). The distance between two vertices in the unrolled CFG

is the minimum number of the must temporal scopes of distinct memory blocks on the path

from v1 to v2.

For the distance calculation, when counting the number of the must temporal scopes,

the temporal scope in v2 should be counted and the temporal scope in v1 should not. In case

of v1 = v2, the distance is 0.

The RCSDi
ℓ and LCSDi

ℓ are represented by a vector of k elements c[0,...,k-1]. The

RCSDℓ , is defined as:

RCSx
Dℓ [i] = (m, m̃|∀TS(m) ∈ G ∧ Dis(TS(m), Dℓ) = i)

33

D0

D1

D2

D4

D5

L
2
[0

,7
]

D3

D2

D4

D5

D6

L
2
[1

1
,1

5
]

L
1
[0

,0
]

D0

D1

D2

D5

L
2
[0

,7
]

D3

D2

D5

D6

D3

L
2
[8

,1
5
]

L
1
[1

,1
]

D4

D4

D2

D4

D5

L
2
[8

,9
]

D2

D4

D5

L
2
[1

0
,1

0
]

D3

D3

D3

Figure 2.7. Unrolled control flow graph for the RCS and LCS calculation of DL1[0],L2[10]
2 .

The LCSDℓ is defined as:

LCSx
Dℓ [i] = (m, m̃|∀TS(m) ∈ G ∧ Dis(Dℓ,TS(m)) = i + 1)

where the m denotes the memory block from the must temporal scope, m̃ is the memory

block from the may scope, TS(m) denotes vertex on GDℓ
i

of the temporal scopes of m and

the Di
ℓ denotes the corresponding DAB on GDℓ

i
.

After the extraction of DL1[0],L2[10]
2 , for the RCSDL1[0],L2[10]

2
calculation, we traverse

the GDL1[0],L2[10]
2

from the located DAB (DL1[0],L2[10]
2) in a reverse direction, until we find k

distinct memory blocks in every possible reverse path. For different paths, we have different

34

RCSDL1[0],L2[10]
2

:

RCS1

DL1[0],L2[10]
2

= {(m2), (m4), (m3), (m1)}

RCS2

DL1[0],L2[10]
2

= {(m2), (m4), (m7), (m1)}

RCS3

DL1[0],L2[10]
2

= {(m2), (m8), (m7), (m1)}

RCS4

DL1[0],L2[10]
2

= {(m2), (m8), (m3), (m1)}

Therefore, among all the paths, we get the minimum distance of each memory block at

different paths and obtain the RCSDL1[0],L2[10]
2

as follows:

RCSDL1[0],L2[10]
2

= {(m2), (m4,m8), (m3,m7), (m1)}

Similarly for the LCS calculation, we traverse the program in a forward direction,

then we have LCSDL1[0],L2[10]
2

:

LCS1

DL1[0],L2[10]
2

= {(m8), (m2), (m̃11,m0), (m1)}

LCS2

DL1[0],L2[10]
2

= {(m4), (m2), (m̃11,m0), (m1)}

By selecting the minimum index of all the memory blocks among all the LCSx
DL1[0],L2[10]
2

, we

have:

LCSDL1[0],L2[10]
2

= {(m8,m4), (m2), (m̃11,m0), (m1)}

For memory block m in RCSDi
ℓ or LCSDi

ℓ , we have the following lemma:

Lemma 2.7.1. All the memory blocks that may be in the cache when the program reach to

Di
ℓ are in RCSDi

ℓ . If the first access of a memory block after Di
ℓ is a cache hit, it must in

LCSDi
ℓ .

Proof. If m is in the cache when the program reaches to Di
ℓ, there must exist a path from

the latest access of m before Di
ℓ to Di

ℓ that the program access less than k memory blocks.

35

Therefore, in the unrolled CFG, there must exist a path from TS(m) to Dℓ that Dis(TS(m), Dℓ)

must be less than k, and thus the memory block must be in a RCSx
Di

ℓ .

Similarly, if the first access of memory block is a cache hit, there must exist a path

from Di
ℓ to the first access of the memory block after Di

ℓ that the program accesses less than

k memory blocks. Therefore, Dis(Dℓ,TS(m)) must be less than k and the memory block

must be in a LCSy
Di

ℓ . □

2.7.3 UCB Calculation

In this section, we present the method of how to compute the UCB of a D at ℓ, which is

denoted as UCBDℓ . Before the UCB calculation, we first compute the useful memory block

(umb) depending on the RCS and LCS which are computed in Section 2.7.2. The umb is

defined as:

Definition 2.7.2 (Useful memory block (umb)). A useful memory block of Dℓ is a memory

block which is in the cache when the program runs to Dℓ and the next access to the memory

block after Dℓ is a hit.

For a pair of RCSx
Dℓ

i
and LCSy

Dℓ
i
, before computing umbs, we first define {MIDDℓ(mu)}

for the memory block(mu) that both reside in the RCSDℓ and LCSDℓ . {MIDDℓ(mu)} is de-

fined as:

MIDDℓ(mu) = {m|index(m < index(mu))}

Where the index(m) returns the index of m in the RCSxDℓ
i or LCSy

Dℓ
i
. Then we define

MIDminDℓ(mu) as the one among all {MIDDℓ(mu)} with the minimal cardinality. There-

fore, we have the following lemma:

36

Lemma 2.7.2. Suppose m is in RCSx
Di

ℓ [r] and LCSx
Di

ℓ [l], if m is a umb, |MIDminDℓ(m)|

must be less than k.

Proof. 1. Suppose m is a umb of Di
ℓ, between the latest access of m before Di

ℓ and the

first access of m after Di
ℓ, the program at most access k− 1 memory blocks no matter

which path it executes.

2. Since each RCSx
Di

ℓ [r] corresponds a path from the latest access of m to Di
ℓ and

each LCSx
Di

ℓ [l] corresponds a path from Di
ℓ to the first access of m after Di

ℓ, each

MIDDℓ(mu) contains all the memory blocks that must be accessed on a path from the

latest access of m before Di
ℓ and the first access of m after Di

ℓ.

3. By step 1, the program at most accesses k−1 memory blocks on every path. Therefore,

the cardinality of all the MIDDℓ(mu) are no larger than k. Thus MIDminDℓ(m) must

be less than k, and the lemma is proved. □

By lemma 2.7.1, if a memory block m is a umb of Di
ℓ, it must be in RCSDi

ℓ and

LCSDi
ℓ . By lemma 2.7.2, if m is a umb of Di

ℓ, |MIDminDℓ(m)| must be less than k. There-

fore, we can get all the umbs for Di
ℓ by selecting the memory blocks (mu) from RCSDi

ℓ and

LCSDi
ℓ as follows:

mu ∈ RCSDi
ℓ ∧ mu ∈ LCSDi

ℓ ∧ |MIDminDℓ(mu)| < k

In our example, we compute the UCB of DL1[0],L2[10]
2 . According to the RCS

D
L1[0],L2[10]
2

and LCSDL1[0],L2[10]
2

computed in Section 2.7.2, the memory blocks m2, m4, m8 and m1 both

reside in RCSDL1[0],L2[10]
2

and LCSDL1[0],L2[10]
2

.

For memory block m2 we have two MIDDL1[0],L2[10]
2

(m2):

{m8}, {m4}

37

Apparently, their cardinalities are all less than 4, so m2 is a umb. Similarly, m4 and m8 are

umb too. For memory block m1, we have 8MIDDL1[0],L2[10]
2

(m1):

{m2,m4,m3,m8,m2,m0}{m2,m4,m3,m4,m2,m0}

{m2,m4,m7,m8,m2,m0}{m2,m4,m7,m4,m2,m0}

{m2,m8,m7,m8,m2,m0}{m2,m8,m7,m4,m2,m0}

{m2,m8,m3,m8,m2,m0}{m2,m8,m3,m4,m2,m0}

Since the cardinalities of all the above MIDDℓ(m1)s are more than 4, m1 is not a umb.

When all the useful memory blocks of Dℓ
i are obtained, we have the useful memory

block set which contains all the useful memory blocks of Dℓ
i denoted as UMBDℓ

i
. So the

number of ucb of Di at loop iteration ℓ is;

UCBDℓ
i
= min{|UMBDℓ

i
|, k}

So if the preemption point occurred at Dℓ
i , the maximum CRPD is:

CRPDDℓ
i
= UCBDℓ

i
∗ ReloadTime

where the ReloadTime denotes the cache reload time.

In our example, depending on the computed useful memory block of DL1[0],L2[10]
2 , we

have:

UMBDL1[0],L2[10]
2

= {m2,m4,m8}

So we have:

UCBDL1[0],L2[10]
2

= 3

So if the program is preempted at DL1[0],L2[10]
2 by the preempting task, the maximum CRPD

is: 3 ∗ ReloadTime.

2.8 Evaluation

We evaluate the proposed dCRPD analysis approach with the WCET benchmark [2] in

this section. Since our approach focuses on the data cache analysis, we only conduct our

38

dCRPD analysis on programs with frequent data memory references. In addition, we select

representative programs with identical data memory access behaviors (e.g., among various

bubble-sort- or selection-sort-based programs) because they have the same dCRPD analysis

results. The other selected 11 benchmarks used in our evaluation explore different program

structures and memory access patterns, including nested loops, non-rectangular loop nests,

row-/column-based matrix accesses, and data-/input-dependent branches. Table 2.2 shows

the benchmark name, a brief description, and the input array size. Moreover, we compare

the analysis time of our technique and the conventional method in Fig. 2.8 to evaluate the

overhead.

In the experiment, we modify the Chronos WCET analyzer ([38]) to obtain the

transformed control flow graph with DABs and the temporal scope for all the memory blocks

accessed by each data memory reference. We assume that each benchmark is executed on a

processor architecture with a 5-stage pipeline, in-order execution, perfect branch prediction,

and separate L1 instruction and data caches. Both instruction and data caches are 4-way

set-associative caches and have a total cache size of 8 kB with an LRU replacement policy.

We assume that each cache block has a block size of 32 B; therefore, the instruction cache

and data cache both contain 64 cache sets.

0

1

2

3

4

Ti
m

e
(s

)

STATE-UCB TS-UCB

Figure 2.8. Analysis time of different benchmarks

Current dCRPD approach [53] is limited to addressing direct-mapped caches, and

39

since we focus on set-associative cache analysis, we will not compare our method with

this approach. We compare our approach with the straightforward extension of the original

approach [34], which focuses on LRU set-associative instruction cache analysis. To apply

the original approach for safe dCRPD, we modify the gen function (as discussed in Section

2.3) of each data referencing instruction to generate an abstract cache state that contains all

data memory blocks that are possibly referenced by the instruction at any time. Furthermore,

in contrast to instruction cache analysis where the corresponding instruction memory block

is guaranteed to be visited during an instruction fetch, the CRPD analysis for a data cache

must operate on a may-basis for non-scalar data accesses and perform at the DAB boundary

to obtain a safe upper bound.

The maximal UCB is the most important parameter for bounding the preemption

cost. As discussed above the CRPD of the preempted task is the cache reload time multiple

the intersection of the UCB and ECB. In our evaluation, we report the UCBs of all the

programs listed in Table 2.2 between the original approach (ORI-UCB) and our proposed

temporal-scope-aware UCB calculation (TS-UCB). Since the ORI-UCB fails to precisely

identify which data memory blocks are visited at each program point, it has to conservatively

assume that any of the memory blocks in the address space of the visited data array may

become referenced. Therefore, for the analysis results of all the benchmarks, when the

program with an array performs an access in a loop, the ORI-UCB thinks that all the cache

blocks mapped by all the memory block are accessed by the array as the UCB. As a result,

for all benchmarks, ORI-UCB treats all 256 data cache blocks or the working set of the

program as UCBs. For example, Matmult has a working set of 216 memory blocks over

the entire execution, which is smaller than the data cache size, and then, they are considered

as the UCBs in ORI-UCB. Compared with ORI-UCB, our approach achieves a significant

improvement in the maximal UCB calculation because our TS-UCB approach integrates the

temporal scope information of every memory block.

The Cnt benchmark is a simple program that counts the non-negative numbers in a

matrix. In this benchmark, the program uses a loop with a depth of two to access the matrix

sequentially. During the sequential accessing of the matrix, a memory block of the matrix is

40

Table 2.2. Benchmark descriptions and array sizes

Benchmark Benchmark description Array Size Number of DABs

Adpcm Adaptive pulse code modulation 2048 57

Lms Adaptive signal enhancement 1024 24

Matmult Matrix multiplication 24 × 24 19

Cnt Count non-negative in matrix 128 × 128 15

Jfdctint DCT of pixel blocks 256 × 64 49

Bsort100 Bubblesort program 2048 13

Edn (FIR) filter calculations 1024 38

Ns Search multi-dimensional array 16×16×16×16 16

St Statistics program 2048 27

Fir Finite impulse response filter 720 11

Insertsort Insertion sort 2048 14

only accessed in eight successive loop iterations; thus, for the eight loop iterations, the UCB

is 1. Therefore, fully considering the loop, the UCB number is 1 in every loop iteration, as

shown in Fig. 2.9. The sequential access of an array or a matrix is very common in programs,

like benchmarks St and Ns. According to the analysis result shown in Fig. 2.9, our TS-UCB

achieves a significant improvement when addressing loop affine array references.

In contrast to data analysis approaches based on linear equations, temporal scope

analysis is more applicable because it can address data references with input/data dependen-

cies. The Adpcm benchmark includes an input-dependent and data-dependent situation. The

CFG of Adpcm is shown in Fig.2.10, where the 3 different array accesses are labeled as (A),

41

0
50

100
150
200
250
300

N
u

m
b

er
 o

f
U

C
B

s
STATE-UCB TS-UCB

Figure 2.9. Maximal UCB number on different benchmarks

(B), and (C). Due to the array access (A) in the data-dependent branches (i.e., bufferstep),

as well as the input-dependent array access (B) (i.e., delta is computed according to the input

stream), our temporal scope analysis produces a pessimistic analysis result for (A) and (B);

however, for array (C), the temporal scope analysis can also provide an accurate behavior

prediction for every memory block of this reference. As a result, (A) is treated as an irreg-

ular array access in our analysis, where each access may visit any of the 33 memory blocks

in array inp de. Array access (B) is input dependent, therefore, we consider that it may visit

any of the 3 data memory blocks in array indexTable. The temporal scope of the mem-

ory block referenced is a may scope. Finally, access to outp de is loop affine. Therefore,

although the outp de array contains 2048 short integers (i.e., spanning over 129 memory

blocks in the worst case), the maximal UCB resulting from accesses to outp de is only 1.

Finally, TS-UCB reports that the overall maximal number of UCBs is 37.

The Bsort100, as well as the insertsort program, where the boundary of the inner

loop decreases when the outer loop’s index increases. Due to the decrease in the work space

of the inner loop, the data reference accesses fewer memory blocks. At the first iteration of

the outer loop, the inner loop sequentially accesses all the memory blocks of the array and

bubbles the objective value to the first place in the array. According to Table 2.2, the array

size of Bsort100 is 2048; therefore, the array may access 256 memory blocks. Then, when

42

bufferstep

*inp_de++ (A)

indexTable[delta] (B)

outp_de++ (C)

Figure 2.10. Data memory accesses of Adpcm

the outer loop reaches the second iteration, the inner loop accesses the 256 memory blocks

again; therefore, the UCB number is 256, which is the same as the result of ORI-UCB.

When the outer loop executes the 8th iteration, the inner loop accesses 255 memory blocks

because the inner loop only executes for 2040 times; therefore, the UCB number of Bsort100

is 255. As shown in Fig. 2.11, the UCB number decreases during the execution of the

program. However, ORI-UCB finds that the UCB number of Bsort100 is always 256. As

a result, although both analyses give the same maximal UCB number, the proposed analysis

accurately captures the changes in the UCB over the program execution, potentially leading

to a substantially improved joint UCB-ECB CRPD and schedulability analysis in which

possible preemption points are considered.

2.9 Conclusions

The utilization of cache in modern computer systems makes static timing analysis more

complicated, especially for data caches with a more unpredictable access behavior. This

chapter presents a general and accurate data CRPD analysis framework, which can produce

a safe and accurate data CRPD analysis result compared with the state-of-the-art CRPD

43

0 1024 2047

256
ORI-UCB

TS-UCB

0 7 15 23 31 39

zoom in

Outer loop index

Number of UCBs

Figure 2.11. UCB number of different loop points in Bsort100

method [34]. Moreover, our work is the first approach that targets on the set-associative data

cache-related preemption delay analysis.

According to the transformed CFG and the temporal scope of every memory block,

we do the normalization of all the temporal scopes and unroll the program depending on the

normalization analysis result. Compared with the method which fully unrolls the program,

our framework is more efficient. With a distance calculation of each execution point, we

can compute the RCS and LCS of program points at different loop iterations thus getting

the UCBs. Finally, we evaluate our approach with the MRTC benchmark programs. The

experimental result shows our approach can obtain a more accurate dCRPD analysis result

than the existing works.

44

CHAPTER 3

CACHE-RELATED PREEMPTION DELAY WITH MULTIPLE PREEMPTIONS

3.1 Introduction

Work presented in chapter 2 show the CRPD analysis for a single preemption. In gen-

eral, a lower-priority task may be preempted multiple times during the execution of each

period. Existing CRPD analysis techniques calculate the UCB of different program points

independently and sum the k-largest number of UCBs as the total number of UCBs for k

preemptions.

The above-mentioned state-of-the-art CRPD analysis techniques, although work well

with instruction caches, may lead to significant overestimation when dealing with data caches.

An instruction may access different data memory blocks in different loop iterations, and the

same memory block may be accessed by different instructions at different program points.

Consequently, a data memory block may be contained in the UCB of different program

points, and simply using the sum of the k-largest number of UCBs as the total number of

UCBs is pessimistic.

In this chapter, we present a new CRPD analysis technique to address the pessimism

described above for direct-mapped data caches. Our technique computes the UCBs of a

program point based on the analysis of UCBs of program points where previous preemptions

are assumed to happen, to remove the double-counting of UCBs of different preemptions. We

define a new analysis unit which makes it more efficient to compute the redundant memory

blocks in the subsequent preemptions.

We conduct experiments with benchmarks in [2]. The number of UCBs is widely

45

used to bound the CRPD if the preempting tasks are nondeterministic. Therefore, we com-

pute the total number of UCBs of each benchmark for different number of preemptions.

Moreover, we also compute the total CRPD with concrete preempted tasks and preempting

tasks. According to the experimental results, we can conclude that, our method can substan-

tially tighten the total number of UCBs for multiple preemptions and significantly reduce

total CRPD with concrete preempting tasks.

3.2 Background

Related work in CRPD analysis is discussed in section 2.2. This chapter focuses on CRPD

analysis for the direct-mapped cache, which is different from the set-associative cache analy-

sis presented in chapter 2. Our previous work [71] has the most precision on CRPD analysis

for the direct-mapped cache of a single preemption, and is considered as the base of the

technique proposed in this chapter. As the background knowledge of this chapter, In this

section, we briefly introduce again the temporal scope analysis and UCB computation in

section 3.2.1 and 3.2.2, respectively. Section 2.5 and [71] show that using basic blocks as

the analysis unit for data CRPD analysis is unsafe, and introduce a new analysis unit called

DAB for safe UCB calculation. The UCBs of any program points in a DAB are equal, so

when we talk about the UCB calculation, the program point and the DAB are equivalent.

3.2.1 Temporal Scope Analysis

The concept of temporal scope was introduced in [31] for WCET analysis, defined on may se-

mantics in the sense that it captures memory blocks that may be accessed by a data reference

instruction in particular loop iterations. Temporal scope analysis is performed automatically

via an address analysis at the disassembly code from the program binary. Therefore, loop

boundary and memory address of a program should be known at compile time in our method.

Moreover, we do not deal with the program with virtual address and dynamically allocated

data.

46

[71] adopted temporal scope for CRPD analysis, and extend it to include both may

semantics and must semantics (memory blocks must be accessed by a data reference instruc-

tion in particular loop iterations). Since the latter work can capture the data access behavior

more precisely, we use the latter temporal scope analysis.

Definition 3.2.1. (May Temporal Scope) A may temporal scope regarding data memory

block m and DAB D, denoted by T̃S
D

m, is defined as

T̃S
D

m =

(
m̃,D,

⋃
D∈Li

{Li[l, u]}

)

where
⋃

D∈Li
{Li[l, u]} characterizes a continuous range of iterations for loops containing

D, and m is a data memory block that may be accessed in DAB D in any loop iteration in

∪D∈Li
{Li[l, u]}.

Definition 3.2.2. (Must Temporal Scope) A must temporal scope regarding data memory

block m and DAB D, denoted by TS
D

m, is defined as:

TS
D

m =

(
m,D,

⋃
D∈Li

{Li[l, u]}

)

where
⋃

D∈Li
{Li[l, u]} characterizes a continuous range of iterations for loops containing

D, and m is a data memory block that must be accessed in DAB D in any loop iteration in

∪D∈Li
{Li[l, u]}.

For simplicity of presentation, we also use TSD
m to denote a temporal scope in general

when it is not needed to distinguish whether it is a must or a may temporal scope. For a

temporal scope TSD
m, we call the combination of its DAB and loop iteration range as its

scope. For example, we have the following temporal scope:

(m1, D1, {L1[0, 7], L2[0, 7]})

It means m1 is accessed in DAB D1, and the data reference instruction in D1 only accesses

m1 in the iteration ♯0 to iteration ♯7 of loop L1 and the iteration ♯0 to iteration ♯7 of loop L2.

47

Its scope is:

(D1, {L1[0, 7], L2[0, 7]})

In this work, we refer to a data reference instruction as a data reference. If the tempo-

ral scopes of all the memory blocks accessed by a data reference are must temporal scopes,

we define the data reference as a Must data reference. Otherwise, the data reference is a

May data reference. Since a must data reference only contains must scopes, the memory

block accessed by the reference at each loop iteration is deterministic. Therefore, when a

must data reference accesses a new memory block, the memory blocks accessed before will

never be accessed. If there is a preemption occurs in a particular loop iteration, among the

memory blocks that accessed before by a Must data reference, at most one memory block can

be reloaded into the cache by the Must data reference when the program resumes execution.

3.2.2 UCB Analysis

[71] used the temporal scope of every memory block to capture the dynamic behaviors of

data accesses, and use the “temporal scope abstract cache state” (TS-ACS) to denote the

content of all cache blocks. A TS-ACS is presented by a vector of n elements c[0, ..., n− 1]

(n denotes the number of cache sets), where c[i] = TSm if cache block ci holds memory

block m, or c[i] = ⊥ if ci does not hold any memory block.

In order to compute the UCBs of each DAB, [71] use a fixed-point analysis to com-

pute its reaching cache states (RCS) and living cache states (LCS), where the RCS and LCS

are defined as follows.

RCS. The reaching cache states at a program point p, denoted by RCSp, is the set of

possible cache states when p is reached via any incoming program path.

LCS. Given a program, the living cache states at a point p, denoted by LCSp, is

defined as the possible first references to cache blocks via any outgoing program path from

p.

The fixed-point RCS computation of a DAB iteratively collects its preceding DABs

48

via different possible incoming edges and computes the possible cache states when the exe-

cution reaches to the DAB. When the fixed point is reached, the RCS of the DAB is obtained.

Similarly, the fixed-point LCS computation of a DAB uses a backward iteration by collecting

states of successors in the control flow graph.

A memory block contained by some TS-ACSs in RCS and some TS-ACSs in LCS is

called a useful memory block (UMB) , and the corresponding cache block is a useful cache

block (UCB). According to the temporal scopes of a UMB, [71] finds whether the memory

block can be loaded into the cache in a particular loop iteration, thus computes the UCBs for

a DAB at each loop iteration.

3.3 Motivation

ALL Existing CRPD techniques for instruction cache analysis [7, 37] compute the UCBs of

each program point independently, and simply sum the k-largest number of UCBs among

all program points as the total UCBs for k preemptions. [7] pointed out that the basic block

containing the maximum number of UCBs often resides in a loop and the maximum number

should take into account as often as the loop iterates when selecting the k-largest UCBs. [71]

can significantly tighten the CRPD for each program point. However, its CRPD analysis

for each program point is also performed independently. In this section we will show that

the CRPD of a program point may decrease if there was a preemption occurred beforehand.

Consequently, simply summing the k-largest CRPD will lead to a significant overestimation

for total CRPD calculation.

We use the following example to illustrate this issue. The transformed control flow

graph (CFG) of a preempted task is shown in Fig. 3.1. It includes 6 DABs and a loop L1.

Loop L1 iterates for 20 times and contains two DABs, D2 and D3. We assume the example

is running on a platform with a direct-mapped cache of 4 cache blocks, and a memory block

mi maps to cache block c(i mod 4).

Using the UCB computation method in [71], the RCS and LCS of D2 and D3 are

49

m0
D0

m1
D1

m2
D2

m3
D3

m4
D4

m1 D1

BB0

BB1

BB2

RCSD2= {m0, m1, m2, m3}

LCSD2= {m4, m1, m2, m3}

RCSD3= {m0, m1, m2, m3}

LCSD3= {m4, m1, m2, m3}

Figure 3.1. Transformed CFG of a preempted task

shown in Fig 3.1. As a result, the numbers of UCBs of D2 and D3 are 3, which are larger than

other DABs’. Therefore, the maximum preemption cost of the preempted task is treload × 3,

where the treload denotes the cache block reloading time. Suppose the preempted task will

be preempted for 8 times in one period. Since D2 and D3 both reside in L1 and L1 loops

for 20 times (which is larger than the number of preemptions 8), the state-of-the-art methods

[7, 37] consider that the 8 preemptions occur at D2 or D3. Therefore, the total CRPD of 8

preemptions computed by the state-of-the-art method is:

treload × 8× 3

However, this approach is very pessimistic, because the evicted UMBs by the former

preemptions may never be loaded back into the cache. Thus, the number of UCBs of D2 and

D3 actually may decrease in subsequent preemptions. Suppose the first preemption occurs

at D2 or D3, the CRPD of which is treload × 3. The UMBs (m1, m2, m3) of D2 or D3 are

all considered to be evicted from the cache by the first preemption. Under this circumstance,

when the task resumes execution, the RCS of D2 and D3 are changed to:

RCS2nd
D2 = {⊥,⊥,m2,m3}

RCS2nd
D3 = {⊥,⊥,m2,m3}

50

This is because, memory block m1 will never be loaded back into the cache when

the program resumes execution from the first preemption point (D2 or D3), while the LCS

of D2 and D3 is the same as previous. Therefore, the number of UCBs of D2 and D3 is 2

if the program has been preempted at D2 or D3 before. As a result, the total CRPD of 8

preemptions occured at D2 or D3 can be bounded by:

treload × (3 + 7× 2)

Memory block m1 which is considered as UMB of D2 and D3 in the first preemption

should not be considered as UMB of D2 and D3 in the subsequent preemptions. The reason

why m1 is considered as UMB in the first preemption is that, m1 is accessed by different

data references, which reside in the preceding DAB (D1) and the succeeding DAB (D5) of

D2 respectively. However this situation can not happen in instruction cache analysis since

an instruction memory block cannot be accessed at different locations in a program.

In summary, all existing CRPD techniques compute the UCBs of a program point

independently. Therefore, in the traditional k-largest preemption cost calculation, a memory

block m can be double counted as UMBs at different program points or the same program

point in its different loop iterations. However, in many cases, once a memory block m is

evicted from the cache due to preemption, it will not be revisited and loaded back into the

cache within a certain program region. Therefore, m should be counted at most once in

the total CRPD analysis for multiple preemptions in this region. In order to perform an

accurate total CRPD analysis for multiple preemptions, we should re-compute the UCBs of

each program point for the subsequent preemptions based on the UCBs already counted in

the previous preemptions.

3.4 Useful Memory Block Analysis

In the following, we present a new method to compute the total CRPDs of a program for mul-

tiple preemptions to address the pessimism discussed in Section 3.3. Our method consists of

51

two parts: (1) the first preemption analysis, which assumes the preemption is the first pre-

emption and analyzes the UCBs of each DAB, and (2) the subsequent preemption analysis,

which analyzes the UCBs of each DAB assuming at least one preemption has happened. We

use [71] for the first preemption analysis, and develop new analysis techniques for the second

case. This section first introduces a running example that will be used to illustrate our new

method and some useful concepts. Then the new method to analyze UCBs for subsequent

preemptions will be introduced in Section 3.5.

3.4.1 A Running Example

In this subsection, we introduce a running example as shown in Fig. 3.2 and present its

first preemption analysis. Fig 3.2 (a) shows the transformed-CFG of a code fragment. The

memory blocks accessed in each DAB and their temporal scopes are shown in the Fig 3.2 (b).

We assume the example is running on a direct-mapped cache with 8 cache sets (c0...c7), and a

memory block mi maps to cache set ci. Both loop L1 and L2 contain 32 loop iterations. The

running example includes array accesses (A[i]) and accesses to a scalar variable at different

locations (a, b). These two types of access patterns represent the main feature of data access.

By [71], the RCS and LCS of D2 is:

52

RCSD2 = {(m0, D2, L1(0, 7)), (m1, D2, L1(8, 15)),

(m2, D2, L1(16, 23)), (m3, D2, L1(24, 31)),

(m4, D0, ∅), (m5, D1, (L1(0, 31)),⊥,⊥}

LCSD2 = {(m0, D2, L1(0, 7)), (m1, D2, L1(8, 15)),

(m2, D2, L1(16, 23)), (m3, D2, L1(24, 31)),

(m4, D3, ∅), (m5, D1, (L1(0, 31)),⊥,⊥}(LCS1
D2
)

{(m0, D4, L2(0, 7)), (m1, D4, L2(8, 15))

, (m2, D4, L2(16, 23)), (m3, D4, L2(24, 31))

, (m4, D3, ∅), (m5, D5, (L2(0, 31)),⊥,⊥}(LCS2
D2
)

The LCS of D2 represents two different cache states when the program leaves D2.

LCS1
D2

corresponds to ”D2 → D1 → D2...”. By RCSD2 and LCS1
D2

, we can get that the

number of UCBs of D2 is 3. Because according to the temporal scopes of m0, m1, m2 and

m3, there is at most one memory block among them that can be counted as UMB of D2 at its

each loop iteration. Moreover, memory blocks m4 and m5 are both UMBs of D2 at its every

loop iteration.

LCS2
D2

corresponds to the program path ”D2 → D1 → D2...”. By RCSD2 and

LCS2
D2

the number of UCBs of D2 is 6 and the UMBs are:

m0,m1,m2,m3,m4,m5

[71] finds the number of UCBs (6) only exist from the 25th (i=24) iteration to the 32th (i=31)

iteration of loop L1. Because before the 25th iteration of L1, m3 have not been loaded into

the cache and cannot be considered as a UMB. All the existing methods select the k-largest

number of UCBs among all the program points and consider the time used to reload these

UCBs as the maximum total CRPD of k-preemptions. In this example, when they select the

k-largest number of UCBs, the number of UCBs (6) of D2 will be selected 8 times.

53

a;

(a) Control flow graph

D0

(b) Memory blocks and temporal scopes in

different loop regions

b;

D1

A[i];

D2

a;

D3

b; D5A[i]; D4

D6

D7

a(D0) m4

Index(L1) 0-7 8-15 16-23 24-31

A[i] (D2) m0 m1 m2 m3

b(D1) m5

LR0

LR1

a(D3) m4

LR2

Index(L2) 0-7 8-15 16-23 24-31

A[i] (D4) m0 m1 m2 m3

b(D5) m5

LR3

Figure 3.2. A running example

3.4.2 Analysis Unit

In this subsection, we introduce a new analysis unit for our multiple preemption CRPD anal-

ysis. According to the observation in Section 3.3, in order to accurately compute the total

CRPD for multiple preemptions, we need to re-compute the UCBs for subsequent preemp-

tions of each program point. However, the computation of the subsequent UCBs of each

program point is very complex. The subsequent preemption cost of a DAB is different when

previous preemptions occur at different program points. It would require to enumerate all

the possible preemption sequences to precisely decide which one among them leads to the

largest total CRPD, which is computationally intractable.

A UMB may only be double counted by different program points in a certain pro-

gram region. In order to reduce the computational complexity, instead of computing the

subsequent UCBs of a DAB affected by all the preceding preemption points, we shrink the

analysis region. More specifically, we only compute the UCBs for the subsequent preemp-

tions of a DAB affected by the DABs in a certain program region. Since different DABs in

54

the same loop have similar preceding and succeeding DABs. Therefore, they have similar

RCS and LCS. As a result, all the DABs in the same loop may have much more common

UMBs, and thus may have the same UMBs which may be double counted. In order to cap-

ture the DABs in the same loop, we define the loop region (LR) as follows and use it as our

analysis unit.

Definition 3.4.1 (Loop region, LR). A loop region is a set of DABs. The set either contains

only one DAB that does not reside in any loop, or all the DABs that reside in an outmost

loop.

With different previous preemption points, different redundant UMBs of a DAB

should be excluded in the subsequent preemptions. Therefore, an accurate UMBs computa-

tion of a DAB in subsequent preemptions should be performed every time when the previous

preemption points are different. However, the redundant UMBs of a DAB in subsequent

preemptions may be not much different if previous preemption points are in the same loop

region as the DAB. Thus, an accurate UMBs of a DAB in subsequent preemptions can be

obtained by one computation (only consider these same redundant UMBs).

For the example in Fig. 3.2-(a), the data reference in different LR is shown in Fig.

3.2-(b). D0 is a DAB not residing in any loop, so it forms a loop region LR0 itself. Similarly,

D3 forms a loop region LR2. The outmost loop L1 contains D1 and D2, so LR1 = {D1, D2},

and similarly LR3 = {D4, D5}. D7 does not reside in any loop and form a loop region itself,

since it does not contain any data reference, we omit it in Fig. 3.2-(b) for simplicity.

3.4.3 Useful Memory Block Classification

As shown in Section 3.3, the UCBs of a program point may be less if a preemption occurred

before, since some UMBs may be evicted from the cache by the previous preemptions. In

this subsection, we analyze which UMBs can be counted in the subsequent preemptions, and

classify the UMBs of a DAB into three categories.

55

All the existing works consider a memory block that resides in both RCSD and

LCSD as a UMB of D. However, a UMB of a DAB may be evicted from the cache by

previous preemptions, and it can not be counted as a UMB for the DAB in subsequent pre-

emptions, unless it will be loaded back into cache when the program reaches the DAB after

resuming execution from previous preemptions. In order to find whether a UMB will be

loaded back into the cache when the program resumes execution, we use a new notation to

denote the UMB of a DAB Di:

m{Srcs, Slcs}

where Srcs denotes the scope of TSD
m from RCSDi

, which records the temporal scope of the

latest access to m when the program reaches Di. Slcs denotes the scope of TSD
m from LCSDi

,

which records the temporal scope of the first access to m when the program leaves Di. For

the example in Fig 3.2, m0 is the UMB of D2, since it resides in RCSD2 and LCS2
D2

, which

is denoted by:

m0{(D2, L1(0, 7)), (D4, L2(0, 7))}

For the first preemption analysis, we define a vector U1st
Di

for a RCSa
Di

and a

LCSb
Di

, where a RCSa
Di

is a TS-ACS of RCSDi
and a LCSb

Di
is a TS-ACS of LCSDi

.

The vector contains n elements U1st
Di
[0, · · · , n − 1] (n is the number of cache sets). Each

element U1st
Di
[x] in U1st

Di
is defined as:

U1st
Di
[x] =

{
m{Srcs, Slcs} |m ∈ RCSa

Di
[x] ∧m ∈ LCSb

Di
[x]
}

If there is no UMB in U1st
Di
[x], U1st

Di
[x] = ⊥.

A DAB may have several U1st since a RCS or an LCS may contain several TS-ACS.

56

According to the RCSD2 and the LCS1
D2

of the example in Fig 3.2, we have:

U1st1
D2

={(m0{(D2, L1(0, 7)), (D2, L1(0, 7))}),

(m1{(D2, L1(8, 15), D2, L1(8, 15)}),

(m2{(D2, L1(16, 23), D2, L1(16, 23)}),

(m3{(D2, L1(24, 31), D2, L1(24, 31)}),

(m4{(D0, ∅), (D3, ∅)}),

(m5{(D1, L1(0, 31), D1, L1(0, 31)}),⊥,⊥}

According to the RCSD2 and the LCS2
D2

, we have:

U1st2
D2

= {(m0{(D2, L1(0, 7)), (D4, L2(0, 7))}),

(m1{(D2, L1(8, 15), D4, L2(8, 15)}),

(m2{(D2, L1(16, 23), D4, L2(16, 23)}),

(m3{(D2, L1(24, 31), D4, L2(24, 31)}),

(m4{(D0, ∅), (D3, ∅)}),

(m5{(D1, L1(0, 31), D5, L2(0, 31)}),⊥,⊥}

We classify UMBs of a DAB Di into the following three categories:

1. Outside UMB (O-UMB): The Srcs of the memory block is in a different loop region

from Di.

2. Inside UMB (I-UMB): The Srcs is a must scope and in the same loop region as Di.

3. Other UMB: The rest of UMBs excluding the O-UMBs and I-UMBs.

57

Since a memory block is considered as an O-UMB of a DAB Di only depends on its

Srcs, where two O-UMBs m1{Srcs1, Slcs1} and m2{Srcs2, Slcs2} are equal iff

m1 = m2 ∧ Srcs1 = Srcs2

Similarly, two I-UMBs m3{Srcs3, Slcs3} and m4{Srcs4, Slcs4} are equal iff

m3 = m4 ∧ Srcs3 = Srcs4

An O-UMB counted as a UMB of Di in the previous preemptions should not be

counted as a UMB again for the subsequent preemptions of all the DABs that are in the loop

region of Di. This is because the data reference loading the UMB into the cache is in a differ-

ent loop region from Di, and the data reference will never be re-visited during the execution

of all the DABs in this loop region. For example, the O-UMB m4{(D0, ∅), (D3, ∅)} of D2

is loaded into the cache by the data reference in D0 which is in a different loop region from

D2. D0 will never be re-visited during the execution from the first visit of D1 or D2 to the

latest visit of D1 or D2.Thus, the UMB m4{(D0, ∅), (D3, ∅)} of D2 cannot be counted as a

UMB again for D2 and D1 in their subsequent preemptions if it is counted as a UMB of D2

in the previous preemption.

Assuming j I-UMBs of a DAB Di accessed by a must data reference have been

evicted from the cache, according to the definition of Must data reference we know that,

among these j I-UMBs at most one memory block can be loaded into the cache when the

program resumes execution. Thus if these j memory blocks are already counted as UMBs

of Di in its first preemption, among them, at most one memory block should be counted a

UMB of Di in its subsequent preemptions.

In summary, if the first preemption occurred at Di, its O-UMBs can be used to pre-

cisely find whether an O-UMB of a DAB in the same loop region with Di can be counted as

a UMB again in the subsequent preemptions; its I-UMBs can be used to bound the number

of I-UMBs of a DAB in the same loop region with Di in the subsequent preemptions.

58

3.5 Useful Cache Block Analysis for Subsequent Preemptions

We define the loop region as our analysis unit since the DABs in it may have the same redun-

dant UMBs. With the analysis unit, we can get an accurate UCBs of a DAB in subsequent

preemptions by only performing the subsequent preemption analysis once. In this section,

according to the different categories of UMBs, we compute the UCBs of each DAB for the

subsequent preemptions and compute the total CRPD of the program for multiple preemp-

tions.

Similar with the first preemption analysis, we define vectors U2nd
Di

of a DAB Di

for subsequent preemption analysis. A U2nd
Di

records all the memory blocks that should be

counted as UMBs in the subsequent preemptions. Initially, we copy all the U1st
Di

of Di and

re-name them as U2nd
Di

. In our method, we mainly analyze two types of UMB: (1) O-UMB:

the UMBs in the subsequent preemptions that we can precisely identify. and (2) I-UMB:

the UMBs in the subsequent preemptions that we cannot precisely identify but can bound

their total number. In the following we will delete O-UMBs that should not be counted

as UMBs in the subsequent preemptions from U2nd
Di

, and compute how many I-UMBs in

U2nd
Di

could be counted as UMBs in the subsequent preemptions.

3.5.1 O-UMB Analysis for Subsequent Preemptions

According to the discussion of O-UMB in Section 3.4.3, if the program is preempted at Di

before, an O-UMB of Di should not be counted as a UMB for all the DABs in the same loop

region as Di for the subsequent preemption analysis. However, an O-UMB of Di may not

always be counted as a UMB if the program is preempted at Di. This is because a DAB may

have several U1st
Di

, and we only discuss one U1st
Di

when computing the UMBs. We define

an O-UMB set OADi
for a DAB Di as:

OADi
=

⋂
∀U∈U1st

Di

U(O-UMB)

where U(O-UMB) denotes all the O-UMBs in U. Thus, a memory block in OADi
is always

counted as a UMB of Di in its first preemption. The equality between two O-UMBs depends

59

on their scopes in RCS. For simplicity, we omit the Slcs of all the memory blocks in OADi
.

For the example in Fig 3.2, according to U1st
D2 shown in Section 3.4.1, we have:

U1st1
D2
(O-UMB) = U1st2

D2
(O-UMB) = {(m4{(D0, ∅)})}

So OAD2 is

OAD2 = {(m4{(D0})}

Memory blocks in OADi
should not be counted as UMBs for all the DABs that reside in the

same loop region with Di, if the first preemption occurred at Di.

In order to find the O-UMBs that should not be counted as UMB for all the DABs

that reside in the same loop region with Di, if the first preemption occurs at anywhere of the

loop region, we define an O-UMB set for a loop region LRi as:

OALRi
=

⋂
∀D∈LRi

OAD

The OALRi
only contains the O-UMBs that already be counted as a UMB for first preemption

occurring at anywhere in LRi. Specifically, the memory blocks in OALRi
have already been

considered to be evicted from the cache by the first preemption that occurs at anywhere of

LRi. Therefore, we have the following lemma.

Lemma 3.5.1. Suppose Dj is a DAB in LRi, if we delete all the memory blocks that in

OALRi
from U2nd

Dj
, the remaining memory blocks are an superset of UMBs of Dj that will

be re-loaded in to the cache,if the program is preempted at LRi before.

Proof. All the memory blocks in OALRi
are a subset of memory blocks that can not be re-

loaded into cache if the program is preempted at LRi before. This is because memory blocks

in OALRi
are accessed by the data references that is in the different loop region with LRi.

Therefore, if deleting all the memory blocks in OALRi
from U2nd of each DAB Dj in LRi,

the remaining memory blocks are an superset of UMBs of Dj that will be re-loaded in to the

cache,if the program is preempted at LRi before.

60

In our example, similar to D2, we have:

OAD1 = {(m4{(D0)})}

Since loop region LR1 only contains D1 and D2, we have:

OALR1 = {(m4{(D0)})}

3.5.2 I-UMB Analysis for Subsequent Preemptions

According to the discussion of I-UMB in section 3.4.3, among all I-UMBs of a DAB Di

accessed by a Must data reference, at most one memory block should be counted as a UMB

of the DABs in the same loop region with Di for each subsequent preemption, if the first

preemption occurred at Di. Similar with the O-UMB analysis, we define an I-UMB set IADi

for a DAB Di as :

IADi
=

⋂
∀U∈U1st

Di

U(I-UMB)

where U(I-UMB) denotes all the I-UMBs in U. All the I-UMBs in IADi
must be counted

as UMB of Di in its first preemption analysis. Since different DABs may have different

I-UMBs, we define the I-UMB set IALRi
for a loop region LRi as:

IALRi
=

⋂
∀D∈LRi

IAD

Memory blocks in IALRi
are all counted as UMBs by the first preemption analysis if the first

preemption occurred at anyplace of LRi. By IALRi
we have the following lemma.

Lemma 3.5.2. Assuming memory blocks in IALRi
are accessed by l different Must data ref-

erence. If all the memory blocks in IALRi
are evicted from the cache by a preemption that

occurred at LRi, at most l memory blocks can be re-loaded into the cache during the follow-

ing execution of LRi.

61

Proof. If memory blocks accessed by a must data reference are evicted from the cache, at

most one of these memory blocks can be re-loaded into the cache after the program resumes

execution. Therefore, among the evicted memory blocks accessed by l different Must data

references, at most l memory blocks can be re-loaded into the cache during the following

execution.

Among all the memory blocks in IALRi
, we can get that at most l memory blocks

should be counted as UMBs in a subsequent preemption occurring at a DAB in LRi, but can

not decide which memory block should be counted as a UMB in subsequent preemptions.

This is because, a UMB in IALRi
may be evicted from the cache by the first preemption or

the subsequent preemptions. Therefore, when computing which UMB may be evicted from

the cache in the subsequent preemptions, we consider all of them to be UMBs, but only l

memory blocks can be evicted from the cache.

Since LR1 only contains D1 and D2, and IAD1 equals IAD2 , we have:

IALR1 = IAD1 = IAD2 = {(m0{(D2, L1(0, 7))}),

(m1{(D2, L1(8, 15)}), (m2{(D2, L1(16, 23)}),

(m3{(D2, L1(24, 31)}), (m5{(D1, L1(0, 31)})}

3.5.3 UCB Calculation for Subsequent Preemptions

In this subsection we discuss how to compute U2nd of each DAB using IALRi
and OALRi

. The

U2nd of each DAB is initially set to be the same as U1st. According to lemma 3.5.1, all the

memory blocks in OALRi
should not be counted as UMBs anymore for subsequent preemp-

tions of all the DABs in LRi. For all the UMBs in OALRi
, we delete all the corresponding

UMBs from U2nds of all the DABs in LRi. By Lemma 3.5.2, we can compute the number of

I-UMBs that could be counted as UMB in the subsequent preemptions. For all the UMBs in

IALRi
, we label the corresponding UMBs in U2nds of all the DABs in LRi with I (UMBI).

62

We define ECB as the set of cache blocks that will be visited by all the preempting

tasks. For each DAB Di, we compute the number of cache blocks that may be evicted from

the cache by the first preemption occurring at Di and denote the number as UCB1st
Di

. For each

U1st of Di, we count the number of U1st[x]s (0 ≤ x < n) in U1st which satisfies:

U1st
Di
[x] ̸= ⊥ ∧ cx ∈ ECB

Among all the U1st of Di, UCB1st
Di

equals the maximum one.

For each DAB Di, we also compute the number of cache blocks that may be evicted

from the cache by the subsequent preemptions occurring at Di and denote the number

as UCB2nd
Di

. For each U2ndj
Di

of Di, we initially set UCB2ndj
Di

equals to 0. For all the

UCB2ndj
Di
[x] of UCB2ndj

Di
that contains a UMB not labeled with I , we count the number of

UCB2ndj
Di
[x]s which satisfies:

U2nd
Di
[x] ̸= ⊥ ∧ cx ∈ ECB

and add the count to UCB2ndj
Di

. For all the U2nd
Di
[x1, x2, · · · , xp]s that only contain UMBIs

loaded into the cache by same Must date reference, if

∃l ∈ [0, p], cxl
∈ ECB

UCB2ndj
Di

adds by one. When all the UCB2ndj
Di

are computed, we set UCB2nd
Di

equal to the

largest UCB2ndj
Di

. For the UCB2nd we have the following lemma.

Lemma 3.5.3. UCB2nd
Di

is safe to bound the number of UCBs for the preemption occurring

at Di if there was a preemption occurring at the same loop region with Di before.

Proof. If there was a preemption occurring at the loop region of Di. By lemma 3.5.1, the

remaining memory blocks in U2nd
Di

is a superset of UMBs that can be counted as UMB in the

subsequent preemptions. By lemma 3.5.2, among all the I-UMBs in U2nd
Di

, only l (the number

of must data references of these I-UMBs) I-UMBs be counted as UMB in the subsequent

63

preemptions. So the UCB2nd
Di

is safe to bound the number of UCBs of Di if there was a

preemption occurring at anyplace in its loop region .

For the running example, we have IALR1 and OALR1 as presented in Section 3.5.2 and

Section 3.5.1 respectively. Then we can get U2nd
D2:

U2nd1
D2

={(m0
I{(D2, L1(0, 7)), (D2, L1(0, 7))}),

(m1
I{(D2, L1(8, 15), D2, L1(8, 15)}),

(m2
I{(D2, L1(16, 23), D2, L1(16, 23)}),

(m3
I{(D2, L1(24, 31), D2, L1(24, 31)}),

,⊥, (m5
I{(D1, L1(0, 31), D1, L1(0, 31)}),⊥,⊥}

U2nd2
D2

={(m0
I{(D2, L1(0, 7)), (D4, L2(0, 7))}),

(m1
I{(D2, L1(8, 15), D4, L2(8, 15)}),

(m2
I{(D2, L1(16, 23), D4, L2(16, 23)}),

(m3
I{(D2, L1(24, 31), D4, L2(24, 31)}),

⊥, (m5
I{(D1, L1(0, 31), D5, L2(0, 31)}),⊥,⊥}

In the example, all the UMBs in U1st1
D2

and U2nd1
D2

are labeled with I , and loaded into

the cache by two different Must data references, A in D2 and b in D1. Therefore, UCB2nd
D2

is

2. Assuming all the UMBs will be evicted from the cache by the preempting task, the CRPD

of D2 in each of its subsequent preemption is 2× treload, which is much less than 6 × treload

produced by [71].

3.5.4 Total CRPD Analysis

In this subsection we introduce an algorithm to compute the total CRPD of k-preemptions

with UCB1st and UCB2nd of each DAB. Similar with the state-of-the-art [7,37], we still pick

the k-largest number of UCBs to compute the total CRPD, but in our work the number of

UCBs of each DAB is not fixed.

64

When selecting the k-largest number of UCBs, we first choose UCB1st of every DAB.

After a UCB1st
Di

is selected, we adopt the UCB2nd of all the DABs that is in the same loop

region as Di. Iteratively, we select k UCBs for k preemptions. A DAB residing in a loop

should be taken into account as often as the loop iterates. In our algorithm, we use TDi
to

denote the number of times that Di should be taken into account. Obviously, TDi
is no less

than 1. The algorithm is defined as follows.

Algorithm 2 K − CRPD

1: For each DAB, set its UCB equal to its UCB1st

2: for i=0 ; i<k ; i++ do

3: Chose the largest UCB of all the DABs Di.

4: if TDi
!= 0 then

5: TDi
−−;

6: The i-th largest UCB is set as UCBDi

7: else

8: i-1

9: end if

10: For the selected DAB, the UCB of the DABs which have the same loop region with

it is set to UCB2nd.

11: end for

The selected k-largest UCBs by Algorithm 2 may belong to DABs of different LRs.

For each LR, there must exist one UCB1st and several UCB2nds. The UCB1st must no less

than any UCB1st of a DAB in the LR. These UCB2nds must be no less than UCB2nds of other

DABs in the LR. Then we have the following proof.

Proof. For the k selected UCBs:

1. The largest UCB must be selected from a UCB1st
Di

. It is safe to bound the number of

UCBs if only one preemption occur.

65

2. If the second largest UCB is UCB2nd
Dj

, Di and Dj must be in the same loop region.

UCB2nd
Dj

must be no less than UCB2nds of all the DABs in the same loop region with

Dj . So if exist one preemption occurring in different loop region with Di, the two

selected UCBs are safe. This is because both UCB1st
Di

and UCB2nd
Dj

are no less than

UCB1st of DABs that in different loop region with Di. Also, UCB2nd
Dj

must be the

largest UCB2nd among all the DABs that is in the loop region of Di. By lemma 3.5.3,

if the two preemptions both occurring in the loop region of Di, the two selected UCBs

are safe.

3. If the second largest UCB is UCB1st
Dj

, Dj must be in the different loop region with Di.

UCB1st
Dj

must be no less than UCB1sts of all the DABs in the different loop region with

Di. So if exist one preemption occurring in the different loop region of Di, the two

selected UCB are safe. Also the UCB1st
Dj

must be no less than the largest UCB2nds of

all the DABs in the same loop region with Di. Therefore, the two selected UCBs are

safe if the two preemptions are both occurring at the loop region of Di.

4. By 2 and 3, if there are two preemptions, the two selected UCB are safe to bound

the total number of UCBs. Repeating the above reasoning iteratively, we know the k

selected UCBs can bound the total UCBs for k preemptions.

UCB1st and UCB2nd of each DAB for the example program in Fig 3.2 shown in the

following Table.

According to algorithm 2, we first select the largest UCB1st (i.e., 6), which belongs

to D2 and D3. Since D2 and D3 both reside in the same loop region, no matter which one is

selected, we will adopt their UCB2nd in the following. Thus, the second largest number of

66

DAB D0 D1 D2 D3 D4 D5 D6 D7

UCB1st 1 6 6 5 5 5 5 0

UCB2nd 1 2 2 0 2 2 2 0

Execution counts 1 32 32 1 32 32 32 1

UCBs is 5 which belongs to D4, D5 and D6. If selecting D4 as the second preemption point,

the third largest number of UCBs should be selected from D5 or D6 (i.e., 5), because D4

can only be selected once. If selecting D5 or D6 as the second preemption point, we adopt

their UCB2nd in the following. Since UCB2nd of D5 and D6 are less than the UCB1st of D4,

the third largest number of UCB should be selected from D4 (i.e., 5). If the program in this

example will be preempted 8 times, the total preemption cost is:

treload × (6 + 5 + 5 + 2× 5) = 26× treload

However, the total CRPD for 8 preemptions estimated by the state-of-the-art methods

[7, 37] is:

treload × 6× 8 = 48× treload

Compared with the state-of-the-art method, our method approximately reduces half

of total CRPD for 8 preemptions, which can greatly improve the system-level analysis pre-

cision.

3.5.5 Discussion

The complexity of the proposed method is bounded by O((S ∗L∗M)E ∗D+M ∗D+D2),

where S is the number of cache sets, L is the maximal level of loop nesting, M is the

number of memory blocks, D is the number of DABs, and E is the number of conditional

branches in program. Our multiple preemption CPRD analysis includes three steps. First, we

adopt [71]to do the first preemption analysis for each DAB, the computational complexity

67

of which is O((S ∗ L ∗ M)E ∗ D) as presented in [71]. In the second step, we classify all

the UMBs of each DAB as O-UMBs and I-UMBs, which complexity is O(M ∗ D). Third,

we select k-largest UCBs from 2 ∗ D UCBs, the complexity is O(D2). The state-of-the-

art method only perform the first preemption analysis for each DAB, and its computation

complexity is O((S ∗ L ∗ M)E ∗ D + D2). Compared with it, the additional computation

complexity of our approach is O(D ∗ M), which is in general much less than the state-of-

the-art method.

3.6 Evaluation

In this section, we evaluate the proposed multiple preemption CRPD analysis approach with

10 WCET benchmarks which are selected from Mälardalen WCET benchmark [2]. The

Mälardalen WCET benchmark is the one of the most widely used benchmarks for WCET

analysis and CRPD analysis. For the general interests of data cache analysis, among 20

programs in the benchmark suit that have data memory accesses, we (i) exclude programs

with very limited number of data memory accesses (e.g., ”qurt”, ”minver”); and (ii) select

representatives for programs with identical data memory access behaviors (e.g., among var-

ious bubble sort or selection sort based programs). These 10 benchmarks used in our eval-

uation explore different program structures and memory access patterns, including nested

loops, non-rectangular loop nests, row/column-based matrix accesses, data/input dependent

branches, etc. Table 3.1 shows the benchmark name, a brief description and the input array

size for each benchmark.

In the experiment, we first follow [71]to get the UCB1st of each DAB. Then, we

compute the UCB2nd of each DAB using the proposed method. With UCB1st and UCB2nd

of each DAB, the total number of UCBs for multiple preemptions can be computed by Al-

gorithm 2. Assume that each benchmark executes on a SimpleScalar processor with 5-stage

pipeline, in-order execution, perfect branch prediction, and separate L1 instruction and data

caches. In order to get an sufficient evaluation, we use two different cache configurations,

the data cache with 512 cache blocks and 256 cache blocks, the instruction cache has the

68

Table 3.1. Benchmark descriptions and array sizes

Benchmark Benchmark description Array size

Adpcm Adaptive pulse code modulation 2048

Lms adaptive signal enhancement 1024

Matmult Matrix multiplication 24 × 24

Cnt Count non-negative in matrix 64 × 64

Bsort100 Bubblesort program 1024

Edn (FIR) filter calculations 1024

Ns Search multi-dimensional array 32 × 64

St Statistics program 1024

Fir Finite impulse response filter 720

Insertsort Insertion sort 1024

same size with the data cache. Both instruction and data caches are direct-mapped, and each

block has block size 32B.

The number of UCBs is widely used to bound the CRPD of preempted tasks if the

preempting tasks are nondeterministic. We compare the total UCBs produced by our ap-

proach and the state-of-the-art method with different numbers of preemptions. The state-

of-the-art method sums the k-largest number of UCBs of different program points produced

by [71]as the total UCBs of k preemptions. The analysis result of different approaches are

shown in Fig. 3.3. The legend entries shown in the bottom right corner represent the ap-

proach and corresponding cache configuration. For example, the ”our approach 512” means

that our approach is performed with a data cache containing 512 blocks. According to the

69

Our approach 512 State-of-the-art 512

Our approach 256 State-of-the-art 256

0

1000

2000

3000

4000

5000

6000

7000

ADPCM

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CNT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

50

100

150

200

250

300

350

400 FIR NS MATMULT

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

LMS

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

BSORT100

EDN

0

500

1000

1500

2000

2500

INSERTSORT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

ST

Figure 3.3. Total number of UCBs of different benchmarks with different numbers of pre-

emptions

experimental result, we can conclude that, no matter how much the cache size is, our ap-

proach can significantly reduce the total number of UCBs of each benchmark with different

number of preemptions.

Our approach has a large improvement on benchmarks ”cnt”, ”bsort100”, ”insert-

sort”, ”fir” and ”ns” no matter how many preemptions there are. In these five benchmarks,

the largest number of UCBs all belongs to the DAB in a loop. So the state-of-the-art method

computes the total number of UCB by multiplying the largest UCB1st and the number of

preemptions. Since these programs only contain Must data references, in our method, the

UCB2nd of the DABs that reside in a loop equals the number of Must data references in its

loop region. Therefore, UCB2nd of each DAB is much less than its UCB1st. Thus, the total

number of UCBs produced by our approach is much less than the state-of-the-art method.

Our approach has a small improvement on ”Edn” when the number of preemptions

is less than 8. Benchmark ”Edn” contains 13 loop regions and the largest 8 UCB1st of

different loop regions are not much different with each other. Therefore, the sum of the

largest 8 UCB1st of different loop regions is not much different with the largest UCB1st

70

Table 3.2. Total CRPD of tasks preempted by different preempting tasks

preempted
preempting tasks

our state-of-

task approach the-art

Fir Bsort100,St,Insertsort,Lms 3800ns 9200ns

Adpcm Matmult,Ns,Edn,Cnt 33800ns 52400ns

Cnt Insertsort,St,Ns,Edn 102600ns 204800ns

Insertsort Matmult,St,Lms,Cnt 38900ns 52800ns

Lms Insertsort,St,Ns,Cnt 39600ns 54000ns

multiplied by 8. However our method can also get a large improvement when the number

of preemptions increase, because with the increase of the number of preemptions we will

select more UCBs from UCB2nd which is much less than UCB1st. Benchmark ”Adpcm” has

a May data reference. Meanwhile, it accesses two Must data references in the same loop

region as the May data reference. Although our method can not identify whether a UMB

accessed by a May data reference can be counted as a UMB in the subsequent preemptions.

Due to the Must data references, we can still exclude a certain number of redundant UMBs

from UCB2nd. As a result, our method can still get a significant improvement on benchmark

”Adpcm”.

Among all the benchmarks, ”cnt”, ”st” ”ns” and ”edn” access more than 256 memory

blocks during its execution. Since the number of UCBs must be less than the number of total

cache blocks, the number of UCBs decreases when the cache size decreases from 512 to 256.

However whether a UMB is a O-UMB or a I-UMB has no relevant with the cache size. So

our method can also get significant improvement with different cache sizes.

We also evaluate our method with concrete preempting tasks. In this part, the number

of cache blocks of data cache is 512. The preempted task and the preempting tasks are shown

71

in Table 3.2. Assuming the preempted task will be preempted 4 times in one period and the

cache block reloading time is 100ns, the total CRPD of 4 preemptions computed by our

approach and the state-of-the-art method are shown in Table 3.2. When the preempting tasks

are deterministic, we can get a more accurate CRPD analysis result. This is because, if a

UCB of a preempted task is never accessed by the preempting tasks, it will never contribute

to the CRPD. According to the analysis result shown in Fig 3.2, our method can still get a

significant improvement when the preempting tasks are deterministic.

According to the analysis result, we can conclude that, no matter how many pre-

emptions there are, our method can averagely reduce more than 50 percent of total UCBs

compared with the state-of-the-art method for most benchmarks. For a small part of bench-

marks, our method may have less improvement when the number of preemptions is small.

However, when the number of preemptions is larger than a certain number, our method can

get a substantial improvement, and the certain number is not as large as unreasonable. Thus,

our work can also perform a more precise total CRPD analysis with concrete preempting

tasks.

3.7 Conclusion

Extending the existing total instruction CRPD method to total data CRPD analysis may lead

to a significant overestimation. In this chapter, we produce a new method to precisely com-

pute the total data CRPD for multiple preemptions. Specifically, we distinguish which mem-

ory blocks can be counted as UMB again in the subsequent preemptions based on the first

preemption analysis result, and further compute a tight CRPD bound of multiple preemp-

tions. With the proposed approach, we can perform a more accurate timing analysis for the

real-time tasks in preemptive systems.

72

CHAPTER 4

SHARED CACHE CONTENTION ANALYSIS FOR WCET ESTIMATION ON

MULTI-CORES

4.1 Introduction

Embedded real-time systems are shifting to multi-core platforms in order to meet both high-

performance requirements and strict thermal and power constraints [26,46]. Multi-core pro-

cessors typically contain a shared cache which is accessed by different cores. Different

tasks that execute in parallel on different cores may access the same shared cache line, thus

causing shared cache contentions with each other. Similarly to preemptions, shared cache

contentions between parallel executing tasks may also cause additional cache misses, and

additional execution time. Shared cache makes the WCET analysis problem on multi-cores

significantly more difficult than the single-core case [14].

To estimate the WCET of a task on multi-cores, one needs to bound the number of

extra cache misses caused by inter-core contention on the shared cache. To guarantee the

soundness of the estimated WCET bound, the state-of-the-art method [39] considers that

all the potential shared cache contentions between parallel executing tasks happen together,

which is too conservative. However, since the access of memory references of a task fol-

lows a certain order defined by its control flow graph, not all the potential shared cache

contentions can happen together in reality. Moreover, since the execution counts of different

memory references are different, when a memory reference (the interfered memory refer-

ence) contends with other tasks, the shared cache contention may not happen every time

the memory reference is accessed. Therefore, the state-of-the-art method, which considers

all the access of all the conflicted memory references as shared cache misses is pessimistic.

73

A detailed discussion on the above-mentioned pessimism with illustrative examples will be

given in section 4.4.

Challenges and Contributions. In practice, due to the access order constraints, some

potential shared cache contentions never happen together. We call a combination of shared

cache contentions a feasible combination. In order to derive a safe and tight WCET bound

in the presence of shared cache contentions, we should find the feasible combination that

causes the maximum shared cache misses (henceforth called worst-case feasible combina-

tion). Between parallel executing tasks, a huge number of potential shared cache contentions

between memory references may be caused, and much more feasible combinations may be

further constructed. Therefore, identifying the feasible combinations and further finding the

worst-case feasible combination is challenging, which intuitively requires enumerating all

the possible combinations. This thesis proposes a novel analysis model that can efficiently

find the worst-case feasible combination. In addition, we precisely predict the maximum ex-

tra shared cache misses caused by each potential shared cache contention rather than simply

considering all the memory accesses of effective memory references as extra shared cache

misses. Totally, the maximum extra shared cache misses caused by shared cache contentions

are precisely predicted. In addition, we believe that the proposed model can be extended to

other shared resource contention analysis. Experimentally, our method significantly tightens

the estimated WCET bound over the state-of-the-art with most benchmark programs without

compromising efficiency.

4.2 Related Work

The WCET analysis problem was initially studied for single-core processors [68], for which

the Abstract Interpretation (AI) based method [22] demonstrated to be successful solutions

and form the common foundation for later research in cache analysis for WCET estimation.

This approach typically includes two phases: first computing abstract cache states of program

points by a fixed-point iteration, and second classifying memory references as cache hit or

miss according to the abstract cache states. Later, the AI-based method is extended and

74

refined to deal with data caches [31,60], cache-related preemption delay (CRPD) [5,71,72],

multi-level caches [28, 61, 74].

The aforementioned works all assumed that the program under analysis owns the en-

tire cache. However, on multi-core processors, this assumption is impractical as co-running

tasks on different cores contend with each other on the shared cache. [69] is the first work to

consider the shared cache contentions in the context of WCET analysis. It simply reclassifies

all the memory references that access the same cache line with other parallel executing tasks

as shared cache miss. Later, Liang et al. proposed a more precise method [39] by excluding

the shared cache contentions between tasks whose lifetime does not overlap. In addition,

their work can also deal with shared set-associative caches while work in [69] can only han-

dle the direct-mapped cache. Liang’s work represents the state-of-the-art method as it has

the best accuracy when dealing with shared set-associative instruction cache contentions so

far [45]. Later, [15] studied the WCET analysis on a timing-anomaly architecture.

All existing works used the similar method to compute extra shared cache misses

caused by shared cache contentions, which can be summarized as the following two steps:

(1) Assume a single task environment and use multi-level cache analysis techniques [28] to

get the cache behavior of memory references at different levels. (2) According to the analysis

result of step (1), find the memory references that access the same shared cache lines and

change their cache behavior accordingly. Note that in step (2), both [39] and [69] assume

all potential shared cache contentions would happen. However, in reality, a large portion of

potential shared cache contentions are mutually exclusive and thus should not be counted at

the same time. Therefore, [39] and [69] both lead to a pessimistic estimated WCET bound.

We will discuss their pessimism in detail in Section 4.4.

[73] pointed that not all the potential shared cache contentions would happen to-

gether, and adopted an enumeration-based method to explore all the feasible combinations

of shared cache contentions. Due to its low efficiency, this approach is hard to deal with sys-

tems that contain more than two cores. Moreover, it is restricted to deal with direct-mapped

caches, while we consider set-associative caches.

75

4.3 Preliminary

This section gives the assumed processor architecture—the platform which the applications

run on, and the Control Flow Graph (CFG)—the program model used to describe the ana-

lyzed applications. As the necessary background knowledge, the state-of-the-art method [39]

is also briefly introduced.

……Core 1 Core 2 Core n

Shared cache (L2 cache)

Figure 4.1. A multi-core processor with shared cache

4.3.1 System Model

Since our work focuses on the shared cache analysis, to simplify the presentation, we as-

sume a cache architecture that only contains a single-level shared instruction cache as shown

in Figure 4.1. Note, our work can also deal with multi-level caches through a straightforward

extension shown in Section 4.6. Real-time systems are generally deployed on a micropro-

cessor which has a simple structure. Similar with most relative works [28, 45], we make the

following reasonable assumption:

• the assumed multi-core processor is an in-order processor,

• the relative memory address of each memory reference can be obtained at compile

time,

• the processor is a timing-anomaly-free architecture,

• the shared cache is a k-way set-associative cache with least recently used (LRU) re-

placement policy.

76

• the data memory references do not interfere with the shared instruction caches1.

In the set-associative cache, the age of all the memory blocks are assumed to be initialized

with k. When a memory block is accessed, its age is changed to 0, and the age of memory

blocks with smaller age than it increases by one. Once the age of a memory block increases

to k, the memory block is evicted from the cache.

URT
2

URT
3

rT
2

rT
1

rT
3

rT
4

rT
5

rT
6

URT
1

URT
4

Figure 4.2. Control flow graph (CFG) of task T

This work focuses on the program level analysis rather than system level analysis.

We assume that whether tasks are executed in parallel are known in advance, as it can be

solved by existing method [39].

We use the Control Flow Graph (CFG) composed by memory references to model

each task, where a memory reference corresponds to an instruction at the assembly code

level. We show an example of CFG in Figure 4.2. In the example, task T contains 6 memory

references. Memory references r2T and r3T reside in the same loop. Memory references r5T and

r6T reside in a nested loop, where RR5
T resides in the inner loop of r6T. Memory references

r1T and r4T do not reside in any loop. We assume the loop bounds of each loop are known in

advance, and the maximum execution counts of each memory reference can be obtained at

compile time. Some notations that will be used are summarized as follows.

1Similar to [39, 69, 73], this can be serviced from a separate data shared cache or a perfect private data

cache.

77

• ri
T: A memory reference of task T.

• C(ri
T): Cache set accessed by ri

T.

• x(ri
T) :Maximum execution counts of ri

T.

• k: Associativity of shared cache.

• Tcon: Set of tasks that may execute with T in parallel.

• chit: Latency of shared cache hit.

• cmiss: Latency of shared cache miss.

4.3.2 The State-of-the-Art Method

Intra-core analysis.The WCET analysis with shared caches includes two steps, intra-core

analysis and inter-core analysis. The intra-core analysis computes the WCET of a task T if it

owns the whole cache, and its major work is to classify memory references as the following

categories:

• Always Hit (AH): The memory block accessed by the memory reference is always in

the cache when the memory reference is accessed.

• Always Miss (AM): The memory block accessed by the memory reference is always

not in the cache when the memory reference is accessed.

• Persistent (PS): The memory block accessed by the memory reference is always in

the cache when the memory reference is accessed except when the memory reference

is first accessed.

• Not classified (NC): The memory reference cannot be classified as either AH, AM or

PS.

78

After finishing the classification, we further classify a persistent (PS) memory reference as

AM for its first access and AH for the rest of the accesses when computing the WCET. With

the analyzed cache behavior of each memory reference, the longest path which leads to the

maximum execution time and the execution counts of memory references on the path can be

obtained [64]. In the timing-anomaly-free architecture, chit must be less than cmiss. Existing

methods generally treat NC memory references as cache miss when computing the WCET

bound. Therefore, the intra-core analysis result of task T denoted as WCETintra T is:

WCETintra T = xhit
PathIntra ∗ chit + xmiss

PathIntra ∗ cmiss (4.1)

where xhit
PathIntra (resp. xmiss

PathIntra) denotes the total execution counts of memory references

classified as AH (resp. AM or NC) on the longest path.

Inter-core analysis. Since different tasks executed on different cores may contend

with each other on shared cache, the cache behavior analyzed by intra-core analysis should be

modified accordingly. The state-of-the-art method performs shared cache contention analysis

by reclassifying conflicting memory references as NC, where conflicting memory reference

is defined as:

Definition 4.3.1 (Conflicting Memory Reference). A memory reference ri
T of task T is a

conflicting memory reference iff:

1. The memory reference is AH in intra-core analysis.

2. The sum of the maximum age of the memory reference in intra-core analysis and the

counts of memory references that access the same cache set with it is less than the

associativity k.

Based on the new cache behaviors, the longest path in inter-core analysis can also be

obtained. Denoting the total number of execution counts of memory references classified as

AH (resp. AM or NC) on this longest path as xhit
PathInter (resp. xmiss

PathInter). The WCET bound

79

can be computed:

WCET T = xhit
PathInter ∗ chit + xmiss

PathInter ∗ cmiss (4.2)

By subtracting WCETintra T from WCET T, the extra execution time caused by shared cache

contentions computed by the state-of-the-art method can be obtained:

WCETinter T =(xhit
PathInter ∗ −xhit

PathIntra) ∗ chit+

(xmiss
PathInter − xmiss

PathIntra) ∗ cmiss
(4.3)

Section 4.4 shows that WCETinter T computed by the state-of-the-art method is pes-

simistic and section 4.5 presents a new method to obtain a tighter WCETinter T.

4.4 Motivation

This section discloses the pessimism of the state-of-the-art method [39] with a concrete ex-

ample shown in Figure 4.3. This example shows two parallel executing tasks,T and T′. Task

T contains four memory references, r1T, r2T, r3T and r4T. Among them, r1T and r2T reside in one

loop, while r3T and r4T reside in another loop. Both these two loops iterate for 10 times. Task

T′ contains two memory references, r1T′ and r2T′ . The mapping among memory blocks, cache

sets and memory references is shown in Table 4.1.

rT
1

rT
2

rT
3

rT
4

rT′
1

rT′
2

cache

contention

Figure 4.3. CFGs of two parallel tasks T and T′

80

Table 4.1. Mapping among memory blocks, cache sets and memory references of T and T′

cache set memory block memory reference

C1

m1 r1T

m2 r2T

m3 r2T′

C2

m4 r3T

m5 r4T

m6 r1T′

Assuming the associativity of the shared cache is 2, the state-of-the-art method clas-

sifies r1T, r2T, r3T and r4T as PS in the intra-core analysis. We further classify each of them as

AM for its first access and AH for the rest of the accesses. In the following, we use (r1T)
′,

(r2T)
′, (r3T)

′ and (r4T)
′ to denote the parts classified as AH respectively. Therefore,

WCETintra T = 4 ∗ cmiss + 36 ∗ chit.

Since r1T′ accesses the same cache set with r3T and r4T, and r2T′ accesses the same cache set with

r1T and r2T, (r1T)
′ (r2T)

′ (r3T)
′ and (r4T)

′ are all conflicting memory references and all of them are

reclassified as NC. Therefore,

WCETT = 40 ∗ cmiss

By subtracting WCETintra T from WCETT, the extra execution time caused by shared cache

contentions is:

WCETinter T = 36 ∗ (cmiss − chit).

81

4.4.1 Overestimation I

As mentioned above, the state-of-the-art method modifies the cache behavior of a conflicting

memory reference as NC. If the conflicting memory reference is accessed several times

(i.e., reside in a loop), its every memory access is reclassified as NC and considered as

shared cache miss in the WCET computation. However, the shared cache contention may

not happen every time the conflicting memory reference is accessed, and some accesses of

it may still be shared cache hit. For the example in Figure 4.3, (r4T)
′ is a conflicting memory

reference and contends with r1T′ . The state-of-the-art method reclassifies all the 9 accesses of

(r4T)
′ as NC. However, r1T′ is only accessed by T′ once, and only contends with (r4T)

′ once.

Assuming r1T′ is accessed just after the 2nd access of r4T, the cache states of C2 are shown in

Figure 4.4.

m4

m5

m5

m4

m6

m5

m4

m6

m5

m4

m4

m5

age: 0

age: 1

rT
4

(2nd) rT′
1

misshithit

rT
3

(3rd) rT
3

(4th)rT
4

(3rd)

contention

hit

m5

m4

rT
4

(4th)

hit

Figure 4.4. Cache states of C1

According to the cache states, shared cache contention causes the 3rd access of r4T

to miss the cache, and the following accesses of r4T are still cache hit. Thus, we have the

following observation.

Observation 3. Shared cache contention may not happen every time a conflicting memory

reference is accessed. Thus, considering all the accesses of a conflicting memory reference

as shared cache miss is pessimistic.

4.4.2 Overestimation II

The state-of-the-art method reclassifies all the conflicting memory references as NC. More

specifically, between two tasks, it considers that all the potential shared cache contentions

82

between memory references can happen together. However, due to the certain access order

among memory references defined by the control flow graph, some potential shared cache

contentions never happen together in practice. For the example in Figure 4.3, the state-of-

the-art method reclassifies both (r1T)
′ and (r3T)

′ as NC. Assuming shared cache contention

between (r3T)
′ and r1T′ happens first, T must execute to r3T and r1T will never be accessed.

Therefore, shared cache contention between (r1T)
′ and r2T′ will not happen. Similarly, if shared

cache contention between (r1T)
′ and r2T′ happened, shared cache contention between (r3T)

′ and

r1T′ never happen. To summarize, shared cache contention between (r1T)
′ and r2T′ and shared

cache contention between (r3T)
′ and r1T′ can not happen together.

By examining all the four potential shared cache contentions shown in Fig. 4.3, we

can easily conclude that at most two of them can happen in reality (i.e., either shared cache

contention between (r1T)
′ and r2T′ and shared cache contention between (r2T)

′ and r2T′ , or shared

cache contention between (r3T)
′ and r1T′ and shared cache contention (r4T)

′ and r1T′). Therefore,

we have the following observation:

Observation 4. Some shared cache contentions between memory references of parallel tasks

never happen together. The method that reclassifies all the conflicting memory references as

NC may overestimate the WCET.

4.4.3 Summary and Discussion

Above observations show that, the pessimism of the state-of-the-art method is twofold. First,

it overestimates the extra number of shared cache misses caused by each potential shared

cache contention. For the example in Figure 4.3, shared cache contentions cause at most

one access of each memory reference of T to miss the shared cache, but the state-of-the-

art method reclassifies all its 9 memory accesses as NC. Second, it considers that all the

potential shared cache contentions happen together, thus counting some infeasible combina-

tions of shared cache contentions. For the example, among these four potential shared cache

contentions between T and T′, the state-of-the-art method considers that all of them happen

83

together, and sums the extra execution time caused by them as WCETinter T. However, at

most two potential shared cache contention can happen in reality, and the maximum shared

cache misses caused by shared cache contentions is 2. Therefore:

WCETinter T = 2 ∗ (cmiss − chit)

which is significantly less than 36 ∗ (cmiss − chit) analyzed by the state-of-the-art method.

To find the worst-case feasible combination for a tight WCET estimation, two major

problems should be solved. 1. How to efficiently identify whether a combination of shared

cache contentions is a feasible combination. 2. How to efficiently find the worst-case feasible

combination. We present a novel method in Section 4.5 to solve these two problems.

4.5 Methodology

This section presents a novel WCET analysis framework to solve the pessimism disclosed

in Section 4.4. Firstly, we define a new analysis unit in section 4.5.1. Then, section 4.5.2

shows how to precisely compute the maximum shared cache misses caused by each potential

shared cache contention, while section 4.5.3 proposes a novel algorithm to efficiently find

the worst-case feasible combination.

4.5.1 Access Order Analysis

According to Observation 4, some shared cache contentions can not happen together because

the access to memory references should follow a certain order. In Figure 4.3, shared cache

contention between (r3T)
′ and r1T′ and shared cache contention between (r1T)

′ and r2T′ can not

happen together as (r3T)
′ must be accessed after (r1T)

′ and r1T′ must be accessed before r2T′ .

In order to identify whether two shared cache contentions can happen together, the access

order among effective memory references therefore should be precisely obtained. However,

in real programs, due to the structure of loops and branches, sometimes it is impossible to

get a constant access order among memory references.

84

Assuming two memory references rA
T and rB

T are in the same loop, the access of rA
T in

the former iterations must be accessed before the access of rB
T in the later iterations, and the

access of rA
T in the later iterations must be accessed after the access of rB

T in the former iter-

ations. Therefore, the access order between memory references in the same loop is unfixed.

Let’s assume two shared cache contentions, shared cache contention between rA
T and ri

T′ and

shared cache contention between rB
T and rj

T′ , where rA
T and rB

T are in the same loop. Since rA
T

may be accessed before and after rB
T , these two shared cache contentions can always happen

together no matter what access order between ri
T′ and rj

T′ is. Therefore, the unfixed access

order is useless for feasible combination analysis. In order to efficiently identify whether

two shared cache contentions can happen together, we group all the memory references in

the same loop together as the new analysis unit, Unordered Region (UR).

Definition 4.5.1 (Unordered Region, UR). A UR is a set of memory references. The set

either contains only one memory reference that does not reside in any loop, or all the memory

references that reside in an outmost loop.

Moreover, due to the structure of branches in a program, the access order between

URs may be nonexistent. Assuming two URs URi and URj are in the different paths of a

branch, URi is neither accessed before nor accessed after than URj. In order to precisely

capture the access order between URs, we enumerate all the paths from the start UR to the

end UR, where the path is called Constant Execution Order Path (CEOP). Since there are no

loops after using UR as the analysis unit, the number of CEOPs of a program is generally

small. According to the number of CEOPs of the programs of the most popular WCET

benchmark [27] shown in Table 4.3, the number of CEOPs of most benchmark programs is

no larger than 5.

We denote a CEOP of task T as PT, and the x-th UR in PT as PT(x). For the example

in Figure 4.2, memory references r2T and r3T are grouped as UR2
T, while memory references r5T

and r6T are grouped as UR4
T. Other memory references not in any loop are grouped as a UR

individually. Finally we get the CFG composed by URs, and denote it as UR-CFG. Then we

85

enumerate all the CEOPs from the start UR (UR1
T) to the end UR (UR4

T):

PA
T : UR1

T → UR2
T → UR4

T

PB
T : UR1

T → UR3
T → UR4

T

The x-th UR in PT is denoted as PT(x). For example:

PA
T(3) = UR4

T

Therefore, assuming two URs in PT, PT(x) and PT(y), if x < y, PT(x) must be

accessed before PT(y), and PT(y) must be accessed after PT(x). In the following of this

section, when we mention the shared cache contention, we refer to the shared cache con-

tention between URs. With two CEOPs of different tasks, we can identify whether two

shared cache contentions can happen together through the following lemma.

Lemma 4.5.1. Let’s assume two CEOPs of two parallel tasks T and T′, PT and PT′ . PT(x1)

and PT(x2) are two different URs of PT. PT′(y1) and PT′(y2) are two different URs of PT′ . If

x1 < x2 and y1 < y2, shared cache contention between PT(x1) and PT′(y2) can not happen

together with shared cache contention between PT(x2) and PT′(y1).

Proof. Since x1 < x2, and y1 < y2, PT(x1) must be accessed before PT(x2), and PT′(y1) must

be accessed before PT′(y2).

• Supposing shared cache contention between PT(x1) and PT′(y2) happens first, T′ must

execute to PT′(y2) and has no chance to access PT′(y1). Therefore, the shared cache

contention between PT(x2) and PT′(y1) does not happen.

• Similarly, if shared cache contention between PT(x2) and PT′(y1) happens first, shared

cache contention between PT(x1) and PT′(y2) does not happen.

Therefore, these two shared cache contentions can not happen together.

86

In order to precisely predict the access orders among different memory references,

we define UR as the analysis unit. Moreover, we have lemma 4.5.1 to formally identify

whether two shared cache contentions can happen together. Based on the new analysis unit

and lemma 4.5.1, we develop an algorithm which can efficiently find the worst case feasible

combination in Section 4.5.3.

4.5.2 Precise Shared Cache Contention Analysis Between URs

According to Observation 3, when a conflicting memory reference (rA
T) contends with another

memory reference(rB
T′), not all the accesses of rA

T are changed to shared cache miss. To

precisely predict the maximum extra shared cache misses caused by each potential shared

cache contention, we have the following lemma.

Lemma 4.5.2. Assuming a conflicting memory reference (denoted as rA
T) contends with a

memory reference (denoted as rB
T′) on the shared cache, each memory access of rB

T′ causes at

most one memory access of rA
T to miss the cache.

Proof. According to the definition of conflicting memory reference, rA
T is always shared

cache hit if no tasks are executing in parallel. Taking shared cache contentions into con-

sideration, when T′ executes to rB
T′ , memory block accessed by rA

T is evicted from the cache.

Then the next access of rA
T misses the cache. Consequently, the age of the memory block

accessed by rA
T is updated with 0 which is no larger than its original age when it is always hit.

Therefore, the following accesses of rA
T must be cache hit until the next access of rB

T′ .

By lemma 4.5.2, we can conclude that the extra number of shared cache misses of

rA
T caused by shared cache contentions does not exceed the execution counts of rB

T′ . A con-

flicting memory reference may contend with different memory references, and therefore the

extra number of shared cache misses of a conflicting memory reference does not exceed the

87

execution counts of itself and the sum of the execution counts of all the memory references

that contend with it.

We define the function f to compute the maximum extra execution time caused by

the shared cache contention between the new analysis units, URs. Assuming two URs, URi
T

and URj
T′ , the extra execution time of T due to shared cache contention between URi

T and

URj
T′ can be computed as:

f(URi
T,URj

T′) =
∑

∀ri
T∈Rcon(URi

T)

{
min(x(ri

T),
∑

∀rj
T′∈URj

T′

x(rj
T′))× cmiss|

(
C(ri

T) = C(rj
T′)
)}

where Rcon(URi
T) denotes the set of conflicting memory references in URi

T,
∑

x(rj
T′) returns

the sum of the execution counts of all the memory references of URj
T′ that access the same

cache set with ri
T (i.e., a conflicting memory reference). Therefore, the extra number of

shared cache misses of ri
T does not exceed the maximum execution counts of itself (i.e., x(ri

T))

and
∑

x(rj
T′). Function f computes the maximum extra number of shared cache misses of

each conflicting memory reference in URi
T individually and sums them together to get the

maximum extra execution time caused by shared cache contentions between URi
T and URj

T′ .

For the example shown in Figure 4.3, we use UR1
T and UR2

T′ as the target URs to

illustrate function f . UR1
T contains two conflicting memory references, (r1T)

′ and (r2T)
′, and

they both access the same cache set with r2T′ . Therefore, we have:

f(UR1
T,UR2

T′) =

[
min

(
x
(
(r1T)

′) , x (r2T′
))

+min
(
x
(
(r2T)

′) , x (r2T′
))]

∗ cmiss

The maximum execution counts of (r1T)
′ and (r2T)

′ are both 9, and that of r2T′ is 1. As

a result,

f(UR1
T,UR2

T′) = (1 + 1) ∗ cmiss = 2 ∗ cmiss

4.5.3 Precise Shared Cache Contention Analysis Between Tasks

According to Observation 4, in order to obtain a precise estimated WCET bound, the worst-

case feasible combination of shared cache contentions should be found out. This section

88

details the proposed efficient and precise method.

A B

C D E

n

m

FCP

i

j

f(URT
i , URT′

j
)

Figure 4.5. CM(Pa
T ,P

b
T′)

Our method is performed with every pair of CEOPs of two parallel tasks. When T

executes PA
T and T′ executes PB

T′ , we build a matrix of elements as shown in Figure 4.5. In

the figure, a square represents an element. We call the matrix as Contention Matrix of PA
T

and PB
T′ , and denote it as CMPA

T ,P
B
T′

. The size of CMPA
T ,P

B
T′

is m ∗ n, where m and n are the

number of URs of PA
T and PB

T′ respectively. In CMPA
T ,P

B
T′

, element CMPA
T ,P

B
T′
[i][j] represents

the shared cache contention between PA
T(i) and PB

T′(j), and it has a value:

CMPA
T ,P

B
T′
[i][j] = f

(
PA

T(i),P
B
T′(j)

)
CMPA

T ,P
B
T′

contains all the potential shared cache contentions between PA
T and PB

T′ .

Some of them can not happen together as mentioned above. Assuming two shared cache

contentions in CMPA
T ,P

B
T′

, CMPA
T ,P

B
T′
[i1][j1] and CMPA

T ,P
B
T′
[i2][j2], by Lemma 4.5.1, if

i1 < i2 ∧ j1 > j2

they can not happen together. Specifically, if one element is in the upper-right or the lower-

left of another, they can not happen together. In a combination of elements, if there exists an

element in the upper-right or lower-left of another, the combination is infeasible. Therefore,

89

a combination is a feasible combination if no element is in the upper-right or lower-left of

others. We define Feasible Contention Path (FCP) and prove that elements of any feasible

combination can be connected by a FCP.

Definition 4.5.2 (Feasible Contention Path, FCP). FCP is a loop free directed path. It is

composed by a set of sub-paths whose directions are either from upper to lower or from left

to right. From the sub-path in the left-upper to the sub-path in the right-lower, the destination

of a sub-path is the starting point of the next sub-path. The starting point of the FCP is the

start point of the first sub-path and the destination of the FCP is the destination of the last

sub-path.

An example FCP is shown in Figure 4.5. The first sub-path is from A to C, and its

destination (i.e., C) is the starting point of the next sub-path (i.e., C to E). Next, we prove

that any feasible combination can be covered by a FCP.

Lemma 4.5.3. All the elements of a feasible combination of shared cache contentions can

be connected by a FCP.

Proof. We first prove that, for any element if there exist elements in the same row with it

there does not exist elements in the same column with it and vice-verse. We use the example

CM in Figure 4.5 to prove this. Treating A as the effective element, B is in the same row

with it and C is in the same column with it. Therefore, B is in the upper-right of C, and the

combination of A, B and C is infeasible.

We select one element as the start element. Then we prove this lemma from the start

element step by step. For each step, there are three cases:

1. If an element O is in the same row with the start element, we use a path from right

90

to left to connect them. Then, among all the unconnected elements, no one is in the

upper row or left column of O.

2. If an element O is in the same column with the start element, we use a path from upper

to lower to connect them. Then, among all the unconnected elements, no one is in the

upper row or left column of O.

3. For other cases, between the start element’s left neighbouring element and lower neigh-

bouring element, we randomly choose one O and connect them. Then, among all the

unconnected elements, no one is in the upper row or left column of O.

Comparing with all the unconnected elements, O is in the left-most and upper-most. Then,

we treat O as the start element and repeat (1) (2) (3) until the element in the right-most and

lower-most is connected. Therefore, all the elements of a feasible combination are connected

by a set of paths whose directions are either from upper to lower or from left to right. A FCP

is constructed by connecting all these sub-paths end to end and all the elements in the feasible

combination are connected by the FCP.

A feasible combination of shared cache contentions can construct a FCP, and the

extra execution time caused by all the shared cache contentions in it is the sum of the values

of all the elements covered by the FCP. Denoting the sum of values of all the elements

connected by a FCP as VFCP, the maximum extra execution time caused by shared cache

contentions between two CEOPs is the maximum VFCP among all the FCPs in the CM. We

propose algorithm 3 to find the FCP with the maximum VFCP, denoted as FCPmax, for a

CM.

Algorithm 3 Maximum VFCP

1: define matrix ArvVal[m][n]

2: for i=1 ; i<m ; i++ do

91

3: ArvVal[i][0] = CM[i][0] + CM[i-1][0]

4: end for

5: for i=1 ; i<n ; i++ do

6: ArvVal[0][i] = CM[0][i] + CM[0][i-1]

7: end for

8: for i=1 ; i<m ; i++ do

9: for j=1 ; j<n ; j++ do

10: ArvVal[i][j] = max(ArvVal[i-1][j],ArvVal[i][j-1]) + CM[i][j]

11: end for

12: end for

Since the values of all the elements in a CM are no less than 0, FCPmax must start

from CM[0][0] and end with CM[m-1][n-1]. In the algorithm, we compute the arriving value

of all the elements if it is on FCPmax. The arriving value of an element is the sum of

values of all its preceding elements and itself, and the arriving value can be furthermore used

to compute its succeeding elements’ arriving value. In algorithm 3, we store the arriving

values in ArvVal[][] (line 1). According to the direction of FCP, when a FCP arrives an

element CM[i][j], the FCP comes from either its left neighboring element (i.e., CM[i-1][j])

or upper neighboring element (i.e., CM[i][j-1]). From the point CM[0][0], we first consider

two special cases, the elements in the first row and the elements in the first column. If an

element in the first row is on FCPmax, FCPmax can only come from its left neighboring

element. Therefore, the arriving value of it is the sum of the values of all the elements in its

left and itself (line 3). Similarly, the arriving value of elements in the first column is the sum

of the values of all the elements in its upper and itself (line 6). For the remaining elements

(e.g., CM[i][j]), we only need to choose the one with the larger arriving value as its preceding

element between its two possible preceding elements (e.g., CM[i-1][j] and CM[i][j-1]), and

its arriving value is the sum of the larger arriving value and the value of itself (line 10).

Finally, the arriving value of all elements can be computed, and the maximum VFCP is the

arriving value of ArvVal[m-1][n-1].

92

For given PA
T and PB

T′ , the maximum extra execution time caused by shared cache

contentions denoted as W(PA
T,P

B
T′), can be computed. For the analyzed task (i.e., T) and its

parallel executing task (i.e., T′), we compute the W(PA
T,P

B
T′) for each pair of CEOPs sep-

arately, and find the maximum W(PA
T,P

B
T′). Therefore, WCETinter(T,T′) can be computed

by:

WCETinter(T,T′) = max
{
∀(PT ∈ T,PT′ ∈ T′),W(PT,PT′)

}
A task may have more than one parallel executing tasks. We compute the additional

execution time caused by shared cache contention with each parallel executing task indi-

vidually and sum them as the total additional execution time. Thus, WCETinter T can be

computed by:

WCETinter T =
∑

T′∈Tcon

WCETinter(T,T′)

where Tcon contains all the tasks that execute with T in parallel no matter which core it

executes on. Note that, since a task T′ may execute several times during the execution of T,

Tcon contains l T′, where l denotes the times that T ′ may execute during the execution of T.

Specifically, for each execution of T ′, we compute the WCETinter individually and then sum

them up. Last, WCETT is the sum of WCETinter T and the WCETintra T analyzed by the

intra-core analysis. Since the WCETT computed by the proposed method may not always be

less than the state-of-the-art method. We also use the state-of-the-art method to compute the

WCETT and treat the smaller one as the final result. Note, by the evaluation, the estimated

WCET bound analyzed by the proposed method is tighter in most cases.

The computational complexity of the proposed method is N ∗(xy)2, where N denotes

the number of tasks that execute with T in parallel, x denotes the maximum number of paths

of branches in UR-CFG, and y denotes the number of branches in UR-CFG. Specifically,

(xy) denotes the number of CEOP of tasks. Since UR-CFG does not contain any loop, the

number of CEOP is generally small as shown in Table 4.3. The timing complexity of the

proposed method increases linearly with the increase of the number of parallel executing

tasks. Although the theoretical worst case complexity is exponential, real world programs

do not involve too many nested branches and hence the proposed method is effective.

93

4.6 Multi-Level Cache Analysis

To simplify the presentation, the above sections assume a simple cache architecture which

only contains a single level shared instruction cache. However, our method can be easily

extended to the processors with non-inclusive multi-level caches, a more general case, by

adopting the existing intra-core multi-level cache analysis technique [28]. We assume a

standard architecture of the multi-level caches as shown in Figure 4.6. Each core has a

private level 1 (L1) instruction and data cache, different cores share a level 2 (L2) cache.

Core 1

D-cache I-cache

Core 2

D-cache I-cache

Core n

D-cache I-cache

Shared cache (L2 cache)

Core 1 Core 1 Core 1
L1 cache

……

Figure 4.6. A multi-level cache architecture

We adopt the standard multi-level cache analysis technique [28] as the intra-core

analysis to get the cache behaviors of memory references at different levels of cache. The

intra-core analysis is first performed at the L1 cache, and classifies memory references as

always hit (L1 AH), always miss (L1 AM), persistent (L1 PS) or non-classified (L1 NC).

Eliminating the memory references that are hit in L1 cache by a filter function, it uses the

same method to get the L2 cache behavior of each memory reference. The filter function is

defined as:
Li cache behavior Li + 1 access behavior

Li AH Never (N) access Li + 1 cache
Li AM Always (A) access Li + 1 cache

Li NC
Uncertain (U)

(may or may not access Li + 1 cache)

Iteratively, the intra-core analysis is performed level by level, until the last level. Finally,

the cache behavior of memory references at different level are produced. With the analyzed

cache behavior, the longest path PathIntra can be found out.

94

Accordingly, the equation to compute the WCETintra T should be changed depending

on the number of levels. Assuming the number of levels is 2: the WCETintra T is:

WCETintra T = xL1 hit
PathIntra ∗ cL1 hit + xL1 miss

PathIntra ∗ cL1 miss + xL2 hit
PathIntra ∗ cL2 hit + xL2 miss

PathIntra ∗ cL2 miss

where xL1 hit
PathIntra, xL1 miss

PathIntra, xL2 hit
PathIntra and xL2 miss

PathIntra denote the total number of execution

counts of memory references classified as L1 AH, L1 AM or L1 NC, L2 AH and L2 AM or

L2 NC respectively. cL1 miss, cL1 hit, cL2 miss and cL2 hit denote the latency of L1 cache miss,

L1 cache hit, L2 cache miss and L2 cache hit respectively.

When extending our method to multi-level caches, the only additional step is to re-

place the intra-core analysis with the standard multi-level intra-core analysis [28]. According

to definition 4.3.1, all the conflicting memory references can be obtained. Also the UR-CFG

of each task and the maximum extra execution time caused by each potential shared cache

contention can also be computed by the method presented in section 4.5.1 and section 4.5.2

respectively. Subsequently, following the method presented in section 4.5.3, the worst-case

feasible set of shared cache contentions can be computed. Further, we can get the WCETinter.

WCET T can be finally computed by summing WCETintra T and WCETinter T.

4.7 Evaluation

This section evaluates the precision and the efficiency of the proposed approach through a

comparison with the state-of-the-art method [39]. In the experiment, we assume a dual-core

processor. Each core has a private L1 instruction cache and L1 data cache, while two cores

share a L2 instruction cache. The size of L1 instruction cache and L1 data cache are both

512B. Since in hard real time systems, the shared cache size is relatively small, we set the L2

instruction cache size as 4K which is same with the experiment setting of the state-of-the-art

method. Both the L1 cache and the L2 cache are 2 way set-associative, and the block size of

them are both 32-byte. We assume the latency of L1 cache hit, L2 cache hit and L2 cache

miss are 1 cycle, 6 cycles and 106 cycles respectively.

95

Table 4.2. Reduced estimated WCET in percentage of our method with different benchmark

programs

T

T’
fir mat fdct cnt expint qurt end ludcmp ns adpcm st ndes bs avg.

mat 0.1 0 0.1 0.1 0 0 0 0.1 0.1 0 0 0 0.1 0.05

cnt 0 0 0.1 0 0.3 0.1 0 0.3 0.4 0 0 0 0.3 0.12

fir 33.5 16.7 0.1 16.8 0.1 0 16.7 33.6 0.1 0 0.1 0 16.8 10.35

fdct 54.4 51.6 33.5 51.6 48.8 16.7 2.7 41.8 65.5 0 19.5 0 61.3 34.42

expint 6.2 3.7 9.9 7.4 0 0 0 3.7 6.2 0 0 0 5 3.24

qurt 28.2 35.2 5.5 33.8 21.5 0 29.2 34.7 28.3 0 15.5 17.3 17.3 20.55

edn 31.3 27.5 28.3 30 25.2 0 9.2 24.9 40.9 0 7.9 0 37.3 20.19

ludcmp 0 0.8 0.8 0 0 0.8 0 0 0.8 0 0 0 0.8 0.31

ns 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0.05

ndes 39.3 25.2 30.3 45.8 40 0 0 54 52.2 0 14.3 0 39.8 26.22

bs 6.4 0 12.8 6.4 0 0 12.6 6.4 0 0 0 0 0 3.43

adpcm 49.6 50.9 44.5 50.5 51.1 16.2 23.7 42.5 62.5 0 27.3 8.4 58.2 37.33

st 1.3 1.3 1.2 1.2 1.3 0.1 0.5 0.9 0.2 0 0.8 0.5 1.9 0.86

Our method is evaluated with the most widely used benchmark program suite in static

timing analysis, Mälardalen WCET benchmark suite [27]. The benchmark programs used

in our experiment are shown in Table 4.2. Our evaluation is performed with every pair of

benchmark programs as shown in Table 4.2. We assume task T (i.e., the first column of

Table 4.2) executes on a core, while task T′ (i.e., the first row of Table 4.2) executes on the

other core in parallel. Both of them execute only once. We conduct the estimated WCET

bound of task T with different T′ using our method denoted as OUR and the state-of-the-

art method denoted as OTHER separately. Compared with the state-of-the-art method, The

ratios between OTHER − OUR and OTHER with different pairs of T and T′ are shown in

Table 4.2. Note that, the higher the number in Table 4.2 is, the tighter the estimated WCET

bound of our method is. For example, when T is fir and T′ is edn, the estimated WCET bound

96

produced by our method is 16.7 percentage points less than that produced by the state-of-the

art method.

Our method is implemented based on an existing WCET analysis tool Chronos [38].

Originally, Chronos can get the cache access behavior of memory references and the CFG

of the analyzed task. Based on the original function of Chronos, we implement the proposed

method to get the conflicting memory references analysis, UR-CFG, and further the extra

execution time caused by shared cache contentions.

According to the analysis results shown in Table 4.2, when T is matmult, cnt, lud-

cmp, ns or st, our method gets slight improvement in accuracy. This is because, among

these benchmarks, most of the memory references are L1 AH. For example, program mat-

mult contains 504 instruction memory references, among which 468 references are L1 AH.

Therefore, the time used to access the L2 cache is only a small portion of its overall execu-

tion time. That is, the L2 cache behavior has slight effect on the program’s execution time.

Hence, although our method performs more accurate analysis for L2 cache, the improvement

is also only a small portion of the estimated WCET. Therefore, the reduced estimated WCET

for these benchmarks are relatively slight.

When task T′ is expint, edn, adpcm or ndes, the gained improvement in accuracy of

our method is less. This is because these benchmarks all contain a large number of memory

references that access the L2 cache, and these memory references cause a large number of

shared contentions. More importantly, a conflicting memory reference may contend with

several memory references. By our method, shared cache contentions between a conflict-

ing memory reference and some interfering memory references may be excluded, but the

conflicting memory reference may still contend with other interfering memory references

causing the conflicting memory reference to miss the cache. For example, ndes contains

234 memory references accessing the L2 cache. Thus, under these situations, the state-of-

the-art method that considers that all the conflicting memory references should be changed to

L2 NC is relatively accurate. As a result, the gained improvement in accuracy of our method

is relatively less.

97

For other pairs of T and T′, our method significantly tightens the estimated WCET

bound compared with the state-of-the-art method. In these cases, the analyzed task (i.e.,

T) contains lots of conflicting memory references. The state-of-the-art method re-classifies

all the conflicting memory references as L2 NC, and considers all of them as shared cache

miss when computing the WCET. However, in our method, through a precise shared cache

contention analysis, a large number of shared cache contentions are excluded, and therefore

a large number of accesses of conflicting memory references are still considered as shared

cache hit when computing the WCET. Therefore, our method gains significant improvement

in accuracy as the estimated WCET bound is much tighter. For example, when T is fdct

and T ′ is ns, fdct contains 57 conflicting memory references. The state-of-the-art method

considers that all of them are reclassified as L2 NC. Since total execution counts of all the

57 conflicting memory references are 456, the state-of-the-art method considers that shared

cache contentions between fdct and ns introduce 45600 cycles latency. However, since not all

the 57 conflicting memory references will be re-classified as L2 NC together, the maximum

latency caused by shared cache contentions analyzed by our method is only 8000 cycles.

Adding the latency caused by the shared cache contentions to the intra-core analysis result,

totally our method gains a 65.5% improvement in accuracy.

Averagely, our work can significantly tighten the estimated WCET bound comparing

with the state-of-the-art method. Meanwhile, as shown in Table 4.3, our method consumes

almost the same analysis time with it. The proposed shared cache contention analysis is

performed with each pair of CEOPs of parallel tasks. In contrast, the state-of-the-art method

considers all the CEOPs of a program to be together. As shown in Table 4.3, after using UR

as our new analysis unit, the number of CEOPs of most benchmark programs is no larger

than 2. Therefore, the additional pairs of paths that need to be analyzed are not much. More

importantly, most of the analysis time is consumed by the intra-core analysis, which exists

both in our method and the state-of-the-art method. Therefore, the additional time that our

method consumes is quite a small part of the total. The exceptional benchmark programs are

qurt and ndes. They contain more CEOPs, and our method consumes more analysis time.

But in these experiments, our method achieves much more improvement in accuracy.

98

Table 4.3. Average analysis time and the number of CEOPs of each benchmark

Benchmarks
Analysis time(ms) Number

State-of-the-art Our method of CEOPs

matmult 53.07 57.99 1

cnt 36.64 51.16 1

fir 28.29 32.04 2

fdct 42.69 46.46 1

expint 41.44 45.63 1

qurt 106.17 204.81 27

edn 104.73 113.96 1

ludcmp 51.79 55.36 2

ns 41.75 44.91 1

ndes 137.02 163.16 4

bsort100 26.69 29.81 1

adpcm 359.39 526.39 1

st 45.48 49.47 1

4.8 Conclusion

Producing a tight estimated WCET bound for systems with shared caches is crucial for mod-

ern hard real-time systems. Therefore, the maximum shared cache misses caused by shared

cache contentions should be precisely predicted. However, the state-of-the-art method is

99

pessimistic in shared cache contention analysis. It not only overestimates the number of

shared cache misses caused by each potential shared cache contention, but also counts some

infeasible shared cache contentions. The proposed method can improve the state-of-the-art

method in the above-mentioned two aspects, and further produce a much tighter and safe

estimated WCET bound. As a result, the real-time system test and design can be benefited

from the tighter estimated WCET bound.

100

CHAPTER 5

LATICS: A LOW-OVERHEAD ADAPTIVE TASK-BASED INTERMITTENT

COMPUTING SYSTEM

5.1 Introduction

It is predicted that the number of Internet-of-Things (IoT) devices will exceed 20 billion by

2025 [3]. A challenge is how to power such a huge amount of IoT devices. As such devices

are typically deployed in complex working environments, it is almost impossible to charge

or change their batteries. Energy harvesting is a promising approach which allows a device

to rely on energy harvested from the ambient environment. As energy output of harvesters is

typically weak and unstable, the computing system must ensure software programs will make

progress in the presence of frequent power failures. Therefore, energy-harvesting systems

must be able to timely store program states and keep making progress in the presence of

frequent power failures.

To this end, checkpointing, a widely used technique in fault-tolerant computing, has

been applied to energy-harvesting systems [10, 11, 18, 30, 32, 33, 35, 43, 49, 56, 66]. When

program execution reaches a checkpoint, system states are saved to non-volatile memory

(NVM) for future restoration. However, checkpointing is generally expensive, as all volatile

states, including processor context and data on volatile memory (VM), have to be saved to

NVM.

The task-based paradigm [20, 29, 48, 58, 70] offers a lighter-weight alternative to

checkpointing. Take the state-of-the-art task-based intermittent computing systems InK [70]

for example, an application is programmed as a collection of atomic execution blocks called

101

tasks. Each task is written as a function by the programmer, and the control flow between

tasks are also explicitly defined by the programmer. System states are saved at task bound-

aries, and when recovering from a power failure occurred during the execution of a task, the

system resumes execution from the beginning of that task. At task boundaries, the system

only needs to store the global data, i.e., the variables whose lifetimes cross task boundaries

and shared by multiple tasks, but not the local variables accessed inside each task. Essen-

tially, task boundaries play a similar role as checkpoints. However, as the programmer has

full control to decide how to group related functionalities and variables into a task, typi-

cally, much fewer data need to be saved at task boundaries than the standard checkpointing

approach.

Many modern ultra-low-power processors are equipped with NVM, such as FRAM,

which has good enough read/write speed and lifetime to serve as the main memory [1].

Therefore, the system can allocate data on NVM and programs can directly address them,

which is more efficient than copying them back and forth between VM and NVM. However,

directly operating data on NVM may cause memory inconsistency due to the so-called Write-

After-Read (WAR) problem [43] in the presence of power failure (detailed in Section 5.2).

To solve the problem, the system should maintain a backup version for the WAR variables.

When recovering from a power failure occurred in some task, the system restores the WAR

variables from the backup version to main memory, and then correctly resumes execution

from the beginning of the aborted task.

In the task-based paradigm, task granularity plays an important role to system perfor-

mance. In general, the larger size are the tasks, the higher amount of incomplete execution

is aborted at power failures. In the extreme case, if a task is too large to be finished by the

energy harvested until the next power failure, the system will trap in the re-execution of this

task and never make any progress (the so-called Sisyphus effect). On the other hand, if tasks

are too small, the execution flow will cross task boundaries and thus save program states

frequently, which leads to high overhead. To address this dilemma, some systems adopt

an adaptive execution approach, which can skip state saving at task boundaries under good

energy conditions.

102

Skipping state saving at task boundaries makes ensuring memory consistency a com-

plex problem. On one hand, the overhead is reduced as state saving is done less frequently;

on the other hand, skipping state saving may introduce new WAR variables. To keep the

memory consistent, newly introduced WAR variables have to be identified and saved, which

may adversely increase state saving overhead. A related work, Coala [51], addressed the

problem by a very conservative approach: copying used data pages on-demand to VM in

case operating the variables in the pages may cause WAR problem. During state saving,

Coala pessimistically saves all modified data pages to NVM. As shown in our experiments

(Sec. 5.5), this approach makes program execution very inefficient.

In this work, we present LATICS, a low-overhead adaptive task-based intermittent

computing system that saves much fewer states at task boundaries than existing approaches.

It is generally believed that skipping state saving at task boundaries is always beneficial, so

related systems try to skip as many as possible if the energy condition allows. However, our

work discloses that skipping state saving at one task boundary may cause the system to save

more data at other places, and thus leads to higher overall overhead. In light of this observa-

tion, we propose a novel task-based intermittent computing system that enforces mandatory

state saving at certain task boundaries, regardless of the current energy conditions, and con-

ducts analysis to decide the breaking points and the states to be saved to ensure correct

execution. Experiments conducted on an MSP430 platform show that LATICS drastically

reduces the amount of states to save at task transitions and improves execution efficiency,

compared with existing solutions.

5.2 Overview

The main objective of LATICS is to reduce state saving overhead and improve execution

efficiency of adaptive task-based intermittent computing systems.

At run-time, LATICS will coalesce the execution of several consecutive tasks into a

large execution block called transactional execution block (TEB). The first task in the TEB is

called the leading task. System states are only saved at the beginning of the leading task, but

103

not at any other task boundary inside the TEB. If a power failure occurs and aborts a TEB,

the system will resume from its leading task. If the TEB successfully finishes execution, a

new TEB will be decided. The above process repeats until the program is completed. TEB

is now the atomic execution block of the system. LATICS tends to use a larger TEB and thus

skip state saving on more task boundaries if it has high confidence that the current energy

condition is good and the possibility of power failures is low. A unique feature of LATICS

is that, LATICS also forces TEBs to end at certain task boundaries and conduct state saving,

in order to reduce the overall state saving overhead. To see its benefit, we first explain what

kind of states must be saved at the beginning of a TEB.

We begin with explaining the WAR problem [43]. Fig. 5.1(a) shows three sequen-

tially executed tasks, T1,T2,T3. Each task executes as an individual TEB, i.e., if power fails

during the execution of a task, the system resumes execution at the beginning of that task.

u, x, y, z are variables allocated on NVM, a is a variable allocated on VM. Suppose power

fails after “z = a + 1”, the system will resume execution from the beginning of T2. The

correct read to z at a=z should return −1 (assigned in T1). However, value 0 is actually re-

turned as a result of the partial execution before the power failure. This is the so-called WAR

problem. We say z is a WAR variable, and the read and write to z have WAR dependency.

Note that y is a WAR variable in T3 (y=y+1 means y’s value is first read, then incremented

by 1, and finally written back to y).

To avoid the WAR problem, a system should save all WAR variables at the beginning

of each task. As shown in Fig. 5.1(b), if the value of z is saved at the beginning of T2,

when the system recovers from a power failure, z’s correct value can be restored and then T2

continues to execute consistently. Saving the WAR variables at task boundaries is a major

overhead in task-based intermittent computing systems.

Now we consider an adaptive task-based intermittent computing system that only

saves states at the beginning of a TEB and skips state saving at the task boundaries inside

the TEB. In Fig. 5.1(c), assume at run-time T2 and T3 are coalesced into a TEB, so the

state saving between T2 and T3 is skipped. As power may fail anywhere in T2 and T3,

104

a = z;
z = a+1;

u = x;

z = -1;

x = u+1;
y = y+1;

T1

T2

T3

Resumes here

a = z;
z = a+1;

u = x;

z = -1;

x = u+1;
y = y+1;

T1

T2

T3

power fails
z == 0
Incorrect !

a = z;
z = a+1;

u = x;

z = -1;

x = u+1;
y = y+1;

T1

T2

T3

WAR to save:
x, y, z

a = z;
z = a+1;

u = x;

z = -1;

x = u+1;
y = y+1;

T1

T2

T3

TEB Insert a
breaking point

(a) Power fails during
===execution

(b) System resumes with
======WAR problem

(c) WAR problem in adaptive
====task coalescing

(d) Reduced state saving due to
breaking point insertion

TEB

WAR to save:
z

WAR to save:
y

TEB

Figure 5.1. The WAR problem and breaking point insertion

WAR variables inside both tasks have to be saved at the beginning of the TEB. Notably, x

now becomes a new WAR variable as a result of coalescing T2 and T3. If power fails after

x=u+1 and the system resumes execution from T2, reading x at u=x may be incorrect as

a result of x=u+1 in the incomplete execution. Saving x introduces new overhead, a result

of task coalescing.

Reduce state saving by breaking point insertion. Assume x is a large-size array,

the benefits of skipping state saving between T2 and T3 may well be covered by the extra

overhead of saving x. To address this problem, LATICS inserts breaking points into the

program on task boundaries. When program execution reaches a breaking point, state saving

105

must be conducted immediately. In the above example, LATICS inserts a breaking point

between T2 and T3 and breaks the read and write dependency of the WAR variable x. As a

result, x is excluded from the state saving at the beginning of the TEB.

The rest of this chapter details the two main components of LATICS: 1) a static

analysis to decide the breaking points and compute a set of variables to save for each task if

it leads a TEB; 2) a run-time system which decides how to group tasks into a TEB, manages

state saving and restoration, and most importantly enforces the breaking point mechanism.

5.3 Analysis

Saving states at TEB boundaries guarantees memory consistency for adaptive task-based

intermittent computing systems. The main objective of this work is to minimize the state

saving overhead during the execution of TEBs that are decided at run-time. This section

presents our static analysis to achieve this goal. First, we show it is more precise to compute

a specific set of breaking points and a set of variables to save for each task that leads a

TEB than for the whole program; second, we present an algorithm to efficiently decide the

breaking points and compute the variables to save at each leading task.

5.3.1 Rationale

To tightly identify a set of variables to save at the leading task of a TEB requires two levels

of information: (1) the WAR variables that need to be saved, and (2) which tasks are grouped

into a TEB.

To precisely identify the WAR variables in a TEB, we need to consider the following

cases. First, a WAR variable in a task remains a WAR variable in the TEB that includes the

task [49,51]. Second, WAR variables introduced by coalescing tasks, such as x in Fig. 5.1(d),

should be saved [49, 51]. Third, there is no need to save the variables which are only read

or written, as power failures do not make the values of such variables inconsistent. Last but

not least, coalescing multiple tasks may as well exclude some WAR variables by destroying

106

the WAR dependency of their reads and writes. Suppose a TEB groups task T1 and T2, and

v is a WAR variable local to T2. If there is a write operation to v in T1, v is no longer a

WAR variable in the TEB. When a power failure occurs in the TEB, the system will resume

execution from T1 (the leading task of the TEB). The write to v in T1 overwrites any value

of v written in the TEB’s incomplete execution before the power fails, thus we do not have

to save v at the beginning of the TEB.

In adaptive task-based intermittent computing systems, each TEB is decided only at

run-time. The variables that need to be saved depends on which tasks are grouped together,

which is affected by the current power condition and future program paths. Adaptively

deciding TEBs brings difficulties in precise identification of the variables to be included in

state saving.

Computing the states to save at the leading task of a TEB.

Due to the dynamic feature on how TEBs are decided, to compute a fixed set of variables to

save for a whole program will be too pessimistic. So in this work, we propose to compute

an individual set of variables for each task. If a TEB starts, only the subset of variables

associated with its leading task need to be saved. This approach helps to exclude unnecessary

state saving. Furthermore, for a given leading task, the decision on the scope of a TEB may

vary according to different power conditions, so the computed set of variables should cover

TEBs with all possible scopes.

Deciding breaking points for the leading task of a TEB. A major observation in our

study is that, forcing the TEB to end before a task and conducting an in-situ state saving

may reduce the overall amount of states to save, as shown in Fig. 5.1(d). Now, we have two

options: to decide a set of breaking points for the whole program, or to decide an individual

set of breaking points for each leading task. LATICS chooses the latter option, the reason of

which is given below.

Consider an example in Fig. 5.2 with three tasks T1, T2 and T3. WAR(a) in T1 means

a is a WAR variable local to T1. The R(d) in T1 and T2 are read operations to variable d, and

W(d) in T3 is a write operation to d. Consider coalescing T1 and T3 into TEB1, T2 and T3

107

0

1

4

5

6

b

d

c
a

T1’s memory copy
range without the

breaking point

T1’s memory copy
range with the
breaking point

T2’s memory copy
range without the

breaking point

T2’s memory copy
range with the
breaking point

WAR(a)
R(d)T1

WAR(b,c)
R(d)T2

W(d)T3

Breaking points

(a) The program and the candidate breaking points

(b) Memory copy range before and after inserting
a breaking point

Figure 5.2. Deciding breaking points for each leading task

into TEB2. We can compute the sets of variables involved in the state saving at the beginning

of TEB1 and TEB2, which are {a, d} and {b, c, d}, respectively. In LATICS, we associate

with each leading task a memory copy range which is the minimal address region that covers

the state variables. For example, given the memory layout in Fig. 5.2(b), the memory copy

ranges for T1 and T2 are [1, 6] and [0, 5] respectively. The main objective is to leverage the

performance benefit of bulk-copying (further discussed in Sec. 5.5.4).

In order to reduce state saving overhead for T1 and T2, let’s consider inserting break-

ing points on the incoming edges to T3. As a result, d is no longer a WAR variable of either

TEB1 or TEB2. The variables to save at the beginning of T1 is changed to {a} with corre-

sponding memory copy range [5, 6]. For TEB2, the variables to save at the beginning of T2

is now {b, c}, but the memory copy range that covers {b, c} remains to be [0, 5]. Therefore,

inserting a breaking point for TEB2 is pointless in reducing the total amount of data copy-

ing. Motivated by this observation, LATICS chooses to decide an individual set of breaking

108

points for each task.

To summarize, to reduce state saving overhead, we propose to decide an individual

set of breaking points for each leading task and also compute the variables to be saved at the

leading task. Analysis is detailed in the following sub-sections.

5.3.2 Analysis Target and the Definition of Breaking Point

The analysis target are the WAR variables that are either local to a task or introduced by task

coalescing (inserting breaking points may exclude WAR variables). A program is a directed

graph, denoted by G, where each node is a task and the edges are control flows among tasks.

Each task T can be further modeled by a control flow graph CFGT, comprising basic blocks

(denoted by BB) connected by control flow edges.

The WAR variables in a task can be defined and identified over the CFG of the task.

Definition 5.3.1 (WAR variable in a task). If a variable x is a WAR variable in task Ti, there

must exist a basic block BBR which reads x, such that:

• Condition 1: BBR is reachable from the starting basic block of CFGTi
,

• Condition 2: along one of the paths satisfying Condition 1 there is no basic block that

writes x,

• Condition 3: there exists a basic block BBW that writes x and BBW is reachable from

BBR in CFGTi
.

By the above definition, WAR variables in a task can be obtained by analyzing the

reachability between the basic blocks in CFGT. A widely used polynomial time algorithm to

find reachability between the nodes on a directed graph is to compute the graph’s transitive

closure. We also apply this algorithm in our approach to find the WAR variables in a task Ti

and represent them with a set WARTi
.

109

As discussed above, given a task Ti, TEBs with different scopes can be decided with

Ti as the leading task, and each TEB may require a different set of variables to save at its

beginning. To overcome this uncertainty, we propose to compute a set of variables for state

saving considering TEBs with all possible scopes and led by Ti. We call the set of variables

the Possible WAR Set of task Ti, denoted by PWSTi
.

Definition 5.3.2 (Possible WAR Set). If variable x ∈ PWSTi
, there must exist a basic block

BBR in some task that reads x, such that:

• Condition 1: BBR in reachable from the starting basic block of Ti in G,

• Condition 2: along one of the paths satisfying Condition 1 there is no basic block of

any task that writes x,

• Condition 3: there exists a basic block BBW in some task that writes x and BBW is

reachable from BBR on G.

Note that PWSTi
is defined over G, so BBR and BBW in Definition 5.3.2 can reside

in tasks other than Ti.

Definition 5.3.3 (Breaking point1). A breaking point is associated to an edge on G, such that

when the execution of a TEB reaches a breaking point, the PWS for the outgoing task of the

edge must be saved.

An important feature is, inserting breaking points does not introduce new WAR vari-

ables. First, the WAR variables in the tasks before the breaking point are not changed and

should be saved at the beginning of the TEB. Second, the WAR variables in the tasks after

the breaking point are not changed, and should be saved at the leading task after the breaking

1A breaking point is essentially a checkpoint if this approach is applied to checkpoint-based design. Insert-

ing a breaking point means conducting a mandatory checkpoint at a specified program point.

110

point. Third, the WAR variables, whose read occurs before the breaking point and write

occurs after the breaking point, need not to be saved, as their WAR dependency is destroyed.

5.3.3 Computing PWS and Inserting Breaking Points

Now we present an algorithm to compute the PWS for each leading task, the complexity

of which comes from breaking point insertion. As a breaking point may destroy the WAR

dependency of some WAR variables, inserting a new breaking point to G may cause a re-

computation of PWS for all leading tasks. Finding the optimal breaking point assignment

will be computationally intractable, as one needs to explore all possible edge combinations.

For efficiency, we present a heuristic algorithm which incrementally computes the PWS for a

leading task and inserts breaking points on-the-fly. For a leading task Ti, the algorithm starts

a traversal of an induced sub-graph of G whose nodes are all reachable from Ti. During each

step, the algorithm collects read and write operations to data allocated on NVM and identifies

WAR variables. At each step to process a node, an evaluation is performed to decide whether

breaking point(s) should be inserted on its incoming edge(s). If an insertion is decided, its

impact on the PWS computation will take effect immediately.

– Program transformation

If program graph G has loop structures, the result of PWS depends on the order of

node traversal, and it is in general unclear when the traversal would terminate. To address this

problem, we propose to transform G into G′ by the following unroll approach and compute

PWS over G′. We build a new construct for a loop structure which contains two copies of

the loop body serially connected, and replace the original loop structure with the new one.

We say the first and second loop bodies are at level 1 and level 2 respectively. Each loop

structure in G will be replaced by the unrolled structure to form G′. If there are nested loops,

the unroll is conducted from the inner-most level to the outer-most level. The resulting G′ is

now a directed acyclic graph which is much easier to process for PWS computation. By the

unroll operation, nodes in the same loop body may be replicated multiple times. If the nodes

in G′ are generated from the same replication, we say they are in the same unroll level, e.g.,

111

T1 and T2 are in the same unroll level in the example of Fig. 5.3.

As for the structure of task-based programs, there can be doubts that “goto” style

control flows may be produced as programmers are allowed to freely specify the control flow

among tasks by task transition directives. But this situation will rarely occur. A program is

a set of instructions to implement the functionality of an application, regardless of whether

the program progresses continuously or intermittently. Task is only a construct allowing a

programmer to specify places where system states are saved to survive power failures. Thus,

a task-based program should be naturally programmed by inserting task boundaries into a

correctly implemented ordinary program. As most programs are well-structured, the task-

based version obtained as above will remain well-structured.

Definition 5.3.4 (Image and image set). In G′, each replica of a node/edge v is an image of

v, and all the images of node/edge v, including v, form an image set of v, denoted by ISv.

For example, T1 and T′
1 in Fig. 5.3 form an image set IST1 .

From now on, we compute the PWS for each leading task and insert breaking point

over G′ instead of G. We will prove any WAR variables in G will be definitely identified in

G′.

Definition 5.3.5 (Reachability over image set). In G′, an image set ISB is reachable from

another image set ISA, if there is at least one node y from ISB and one node x from ISA,

such that y is reachable from x in G′.

Lemma 5.3.1 (Reachability maintenance). If node B is reachable from node A in G, ISB is

reachable from ISA in G′.

Proof. We prove this lemma by distinguishing two cases:

Case 1: If A and B are in the same loop body in G, there are two sub cases. a) B is

reachable from A by a path that does not include the back edge of the loop body, this path

112

belongs to the loop body and is always retained in G′ according to our unroll method. b) B

is reachable from A by a path that include the back edge, then there must be a path from A

(at level 1) to B′ (at level 2) in G′. So we can conclude ISB is reachable from ISA in G′.

Case 2: If A and B are in different loop bodies in G, without loss of generality, we

assume A is in the outer loop and B is in the inner loop. There must be a path p1 from A

to the entry node NB of B’s loop body and a path p2 from NB to B. Note that p1 belongs

to the outer loop and p2 belongs to the inner loop. Both paths are retained in G′, so ISB is

reachable from ISA. If otherwise A is in the inner loop and B is in the outer loop, then A’s

exit node will be used to bridge the reachability from A to B. The above property can be

extended to nodes that span across more than two levels of loop structures, by repeating the

above reasoning for adjacent loop levels.

Lemma 5.3.2 (Reachability maintenance with node removal). By removing node X from G

and at the same time removing ISX from G′, if node B is reachable from node A in G\{X},

then ISB is reachable from ISA in G′ \ {ISX}.

Proof. If node B is reachable from node A in G \ {X}, there must exist a path p in G from

A to B and p does not contain X . By the construction of G′, p also exists in G′, making ISB

reachable from ISA in G′ by path(s) in ISp. Removing ISX from G′ does not destroy ISp, as

X is not on p in G. So ISB must be reachable from ISA in G′ \ {X}.

Theorem 5.3.1 (PWS maintenance). Any variable which is in PWST over G is in PWST

over G′.

Proof. If a variable x ∈ PWST, x must satisfy three conditions. Note that conditions 1 and

3 in the definition of PWS are essentially reachability between nodes; condition 2 can be

113

checked by removing all write nodes to x from G and then explore reachability between

nodes. By Lemma 1 and Lemma 2, if x satisfies all three conditions over G, x must satisfy

all the conditions over G′, which means x is also in PWST if it is evaluated over G′.

Algorithm 4 Compute PWS and insert breaking points for a leading task

Input: Program graph G′, Leading task Ti

Output: PWS for Ti; BPS, the set of breaking points for Ti

1: PWS = ∅, BPS = ∅, Ready queue RdyQ = {Ti}, RT = ∅,WT = ∅

2: while RdyQ is not empty do

3: T = Dequeue(RdyQ) /* to evaluate task T */

4: for each incoming edge E of T do

5: let TE be the starting node of E

6: PWS′ = PWS ∪ (WART − WTE) ∪ (RTE ∩ WINT)

7: if Range(PWS′) - Range(PWS) > α× Cost then

8: Insert a dummy task TBE on each edge in ISE

9: BPS = BPS ∪ TBE

10: else

11: PWS = PWS′

12: end if

13: end for

14: RT = (
⋃

p=pre(T) Rp − WBT) ∪ (RTT −
⋂

p=pre(T) Wp)

15: WT = (
⋂

p=pre(T) Wp) ∪ WBT

16: mark T as VISITED

17: for each node Tn NOT VISITED do

18: if all its direct preceding nodes are VISITED then

19: Enqueue(RdyQ, Tn)

20: end if

21: end for

22: end while

114

– PWS computation and breaking point insertion

Before introducing the algorithm to compute PWS, some definitions and notions

used in the analysis are given here. We use WINT to denote the set of variables written in

task T. Furthermore, we define read-through variable and write-break variable for task T

used in the analysis.

Definition 5.3.6 (Read-through variable and write-break variable). A variable x is a read-

through variable of task T, if there exists a path from the starting BB to the end BB of T,

such that there is a BBR on the path that read x, and there is no write to x on the sub-path

from the starting point of T to BBR. The set of read-through variables of T is denoted by

RTT. A variable x is a write-break variable of task T, if for all paths from the starting BB

to the end BB of T, there is a write to x on the path. The set of write-break variables of T is

denoted by WBT.

Computing PWS. Algorithm 4 gives the proposed analysis which takes the graph G′

as input, computes the PWS for leading task Ti and decides a set of edges to insert breaking

points for Ti. The analysis starts with node Ti (line 4), and iteratively explores all the task

nodes reachable from Ti (line 5, 18-20). Note that before computing PWS, the WART, RTT,

WBT, and WINT are pre-computed for each task T.

In the evaluation to each task T, the PWS for Ti is updated by adding the newly

identified WAR variables (line 9), which includes two cases:

• (WART − WTE): If a variable is already a WAR variable in T, then it is potentially a

WAR variable in a TEB led by Ti. If the variable is also a write-break variable in the

task preceding T, the variable is no longer a WAR variable in the TEB, which has been

explained in Sec. 5.3.12.

2In principle, a WAR variable x in T is excluded only if x is a write-break variable in all incoming edges,

115

• RTE ∩ WINT: If there is a read to a variable in the preceding node of T and a write to

the variable in T, a new WAR variable resulted by coalescing tasks is identified.

The above evaluation is performed for all the incoming edges of T (line 7).

Inserting breaking points. Once the PWS for Ti is updated (the new PWS′), a

breaking point decision will be made immediately (line 10-14). Here, Range(PWS) refers

to the memory copy range for the set of variables in PWS. If the increase in the amount of

memory copy exceeds a threshold, α × Cost, inserting a breaking point here is considered

beneficial to reduce state saving overhead and thus a breaking point is inserted. If a breaking

point is inserted on edge E, Ti’s PWS will not be updated, because 1) the breaking point

breaks the WAR dependency of the variables that fall into the set RTE ∩WINT, and 2) a state

saving is forced at the beginning of T, so Ti’s local WAR variables WART need not to be

saved at the beginning of Ti. The result of the new breaking point to the computation of Ti’s

PWS will take effect right away and be carried into the computation in later iterations.

Note that when a breaking point is decided, it is inserted on all edges in the image

set of E on G′ (line 11). This is because if we allow breaking points to be inserted in only

one level of the loop in G′, the run-time system has to distinguish which iteration the loop

is executing to implement such a breaking point decision, which will introduce considerable

run-time overhead. For run-time efficiency, we choose not to distinguish loop iterations when

inserting breaking points.

The breaking point operation may bring a new issue. Consider an edge E from A

to B in G. It is possible a breaking point is decided when evaluating E′, which means in

the earlier evaluation to E, the effect of inserting the breaking point on E is not considered.

i.e., a write operation to x is guaranteed to exist before T is reached. The WAR variable can be prematurely

excluded in the evaluation of an individual edge. However, in the evaluation of other edges, if x is not a write-

break variable in the incoming node, x will be included back into PWS as a set union is conducted in PWS

update.

116

Now we prove not considering the breaking point effect when evaluating E will not cause an

actual WAR variable to be missed in the computed PWS.

Not considering a breaking point for an edge E is equivalent to including a set of

new paths starting from E and the nodes along these paths in PWS computation. So we

prove including the new paths does not cause WAR variables to be missed in the PWS

computation, by Lemma 5.3.3.

Lemma 5.3.3. If a variable x is a WAR variable in graph G, then x is still a WAR variable

in graph GN , where GN is produced by adding new edges and nodes into G.

Proof. By the definition of PWS, there must exist a path p1 satisfying condition 1 and 2 and

a path p2 satisfying condition 3 to make x a WAR variable. No matter what read and write

operations may occur on a new path pn, adding pn will not destroy p1 or p2 in GN , so all the

conditions are still met and x is a WAR variable in GN .

Then we discuss cost evaluation. Whether to insert a breaking point is decided by

comparing the benefit of reducing state saving and the cost of conducting a state saving

operation.

The benefit is reduced memory copying by the breaking point, i.e., Range(PWS′)

- Range(PWS). The state saving operation cost, denoted by Cost, is the overhead of the

common operations to prepare the execution environment of the next TEB, such as updating

the scope of the next TEB, and setting the pointer of the leading task for the run-time system.

Note that an important feature of breaking points is that inserting a breaking point will not

introduce new WAR variables. In LATICS, we multiply a factor α on the cost side, meaning

that a breaking point will be inserted if the benefit is larger enough than Cost. The value of α

should be set by the system designer, and different values of α may have different results in

inserting breaking points. In this work, we set α to 5. Further exploration of other α settings

is left to future work.

117

In our implementation, we add a dummy task TBE on the edge with a breaking point

to avoid run-time maintenance of program paths. Once TBE is reached, the PWS of the

immediate succeeding task of TBE will be saved.

Updating read and write sets. After the PWS is computed, RT and WT are updated

for task T (line 15-16). The purpose of maintaining RT and WT is to transfer the read and

write behaviors of the data on NVM to T’s succeeding nodes to be involved in identifying

new WAR variables in future iterations.

RT first includes the reading set for all incoming nodes (
⋃

p=pre(T) Rp), but if a write

to a variable x in RT is guaranteed to occur for all paths in T, x is excluded, as the read to x

no longer cause WAR dependency in future nodes to be explored. The read-through variables

of T are also included into RT. But if a write to a read-through variable is guaranteed at all

possible incoming edges, the variable will not cause WAR dependency in the future and is

thus excluded. (RTT −
⋂

p=pre(T) Wp) implements the latter case.

The update of WT is relatively simple. If a write-breaking variable appears in all

incoming nodes, it is included into WT. The write-breaking variables in T are also included

into WT and carried to the evaluation of future nodes.

The algorithm iterates until all nodes reachable from Ti are explored. The compu-

tational complexity of the proposed algorithm is O(N), where N is the number of nodes in

G′.

– A running example

To illustrate how Algorithm 4 works, we use an example in Fig. 5.3 to show the

computation of PWS and breaking point insertion. For simplicity, we omit the evaluation to

T1. After T1 is evaluated, we have:

PWS = {a}

RdyQ = {T2,T3}, RT1 = {b}, WT1 = ∅

Step 1. Dequeue T2 and compute PWS′:

118

T1

T2 T3

T4

T1’

T2’ T3’

T4’

(a) G composed of tasks

(b) Different types of variables
-----and memory layout

(c) G' unrolled from G

Level 1

Level 2

a

c

b

d
Mem. Layout

0

4

8

28

32

𝑊𝐴𝑅!! = {𝑎}
𝑅𝑇!! = 𝑏

𝑊IN!" = {𝑏}
𝑊𝐵!" = 𝑑

𝑊𝐵!# = {𝑐}
𝑊𝐴𝑅!# = {𝑑}

𝑅𝑇!$ = {𝑐}
𝑊𝐵!$ = 𝑑

T1

T2 T3

T4
L

Figure 5.3. An example to explain PWS computation and breaking points insertion

PWS = {a}, PWS′ = {a, b}

RdyQ = {T3}, RT2 = {b}, WT2 = {d}

In this step, there is a path from T1 to T2 on which T1 reads b and T2 writes b, so b

is a new WAR variable and is included in PWS′. Given α=5 and Cost=1, Range(PWS ′)

- Range(PWS) < 5, so no breaking point is inserted, and PWS is updated as PWS′. Then

RT2 and WT2 are also updated with the information in Fig. 5.3(b).

Step 2. Dequeue T3 and compute PWS′:

PWS = {a, b}, PWS′ = {a, b}

RdyQ = {T4}, RT3 = {b, c}, WT3 = {d}

Similar to step 1, RT3 , WT3 and PWS are updated. After the analysis of T3, T4 is

inserted into RdyQ as all of its preceding nodes (T2 and T3) have been visited.

Step 3. Dequeue T4 and evaluate the edge from T2 to T4:

119

PWS = {a, b}, PWS′ = {a, b}

Then evaluate the edge from T3 to T4:

PWS = {a, b}, PWS′ = {a, b, c}

Since Range(PWS′) - Range(PWS) = 20>5, we insert a breaking point on this edge,

and do not update PWS. RT4 , WT4 and RdyQ are updated as follows:

RdyQ = {T′
1}, RT4 = {b}, WT4 = {c, d}

After all the nodes in G′ have been explored, the final PWST1 is {a, b}. A breaking

point is inserted on the edge from T3 to T4. Each time this breaking point is reached at

run-time, PWST4 will be saved.

5.4 The Run-Time System

We build a run-time system to implement the core functionalities of the proposed approach.

The run-time system makes dynamic decisions on task coalescing, manages data buffers,

conducts state saving and restoration, and most importantly enforces mandatory state saving

at breaking points. We will first give the work flow of LATICS’ run-time system and then

detail its main components.

5.4.1 The Main Work Flow
Algorithm 5 The run-time system

1: Let currTEB be a newly created TEB

2: Let T0 be the leading task of currTEB

3: if recovered from power failure then

4: RESTORE(T0)

5: end if

6: currTEB = DECISION();

7: while not end of the program do

8: Ti = T0

120

9: if no power failure then

10: SAVE(Ti)

11: end if

12: while currTEB is not finished do

13: if Ti is a breaking task then

14: T0 = Ti

15: SAVE(Ti)

16: end if

17: EXECUTE(Ti)

18: UPDATE HISTORY()

19: Ti = NEXT(Ti)

20: end while

21: currTEB = DECISION()

22: end while

[0, 5]

[1, 5]

[2, 5] [2, 5]

[2, 5]

[4, 5]

0
1
2
3
4
5
.
.
.

The union
set of PWS
for all tasks

Other global
variables

T2

T3 T4

T5

T6

T1 Working
buffer
x
y
z
m
n

…

Backup
buffer
x
y
z
m
n

Addr.

FRAM

Breaking point

Figure 5.4. A running example of the run-time system

The behavior of the run-time system is specified by Algorithm 5, and we use the

example in Fig. 5.4 to explain how it works. A possible execution trace may be as follows.

• The program starts and the run-time system decides a TEB led by task T1 and contain-

ing 3 tasks.

121

• System states are saved by copying the data in memory copy range [0, 5] covering

PWST1 from the working buffer to the backup buffer.

• T1, T2 and T3 execute until T3 is finished.

• As the current TEB is done, the run-time system creates a new TEB at this point, and

makes a decision to let the TEB coalesce 6 tasks.

• As T5 is the leading task of the new TEB, data in memory copy range [2, 5] covering

PWST5 are copied from the working buffer to the backup buffer.

• A power failure occurs in the execution of T2 (after T5).

• After recovery, the run-time system identifies the power failure, therefore, it restores

the system states at the beginning of the aborted TEB, by copying data in memory

copy range [2, 5] from the backup buffer to the working buffer.

• The run-time system creates a new TEB the TEB coalesces 4 tasks, and execution

resumes from T5. The new TEB continues and the program takes the right branch.

• After T2 is finished, the run-time system encounters a breaking point on the incoming

edge to T4. Although the current TEB is not finished yet, a state saving is forced at

this point, saving the data in memory copy range [2, 5] covering PWST4 to the backup

buffer. As a result, if a power failure occurs later, the system will resume execution

from T4 instead of the original leading task T5.

• T5 is finished, and a new TEB starting from T2 will be decided by the run-time system.

• Execution continues until the program is completed.

5.4.2 Core Components

LATICS allocates local variables that are only accessed in a single task on SRAM, and

allocates the variables shared among tasks on FRAM. LATICS maintains two buffers for the

shared data: a working buffer and a backup buffer. The working buffer serves as part of the

122

main memory and stores all the shared data. The backup buffer stores a backup copy for the

set union of the PWS for all leading tasks, which is a subset of the shared data. Note that

the PWS for each leading task is computed from the shared data.

The SAVE() function conducts state saving. It is invoked when the program starts

for the first time, and when a TEB successfully finishes execution and the run-time system

decides a new TEB. The main operation is to save the variables in the memory address range

covering the PWS of the leading task from the working buffer to the backup buffer.

The RESTORE() function restores states and is only invoked after the system recov-

ers from a power failure. States saved at the beginning of the aborted TEB are restored. The

main operation is to copy the variables in the memory copy range covering the PWS of the

leading task from the backup buffer to the working buffer. SAVE() and RESTORE() are the

key operations to ensure memory consistency for the system.

DECISION() is the function to realize adaptive execution by deciding the TEBs.

The function is invoked either after a TEB successfully finishes or after the system recovers

from a power failure. In LATICS, DECISION() predicts the available energy considering

the execution history recorded by UPDATE HISTORY(), and then makes a decision on the

number of tasks to be coalesced into the next TEB.

Enforcing the breaking point mechanism. During execution, if the run-time system

identifies a breaking point before a task T, it ends the current TEB and conducts state saving

by invoking SAVE(T). From now on, the rest of the original TEB forms a new TEB and

continues execution. If power fails in the new TEB, the system will later resume from T,

instead of the leading task of the original TEB.

Note that the state save/restore mechanism in LATICS differs from the state-of-the-

art task-based system InK [70]. In both LATICS and InK, task execution operates on the

working buffer. After a task is finished, InK changes the role of its working buffer and

backup buffer by a pointer swap, and right before starting the next task, the run-time system

copies all data in the new backup buffer to the new working buffer for memory consistency.

While LATICS maintains only a subset of the data (the set union of the PWS for all leading

123

tasks) in the backup buffer. By this means, LATICS reduces memory usage and avoids

unnecessary state saving.

5.5 Experiments and Evaluation

5.5.1 Experimental Setup

LATICS provides a solution for efficient adaptive execution of task-based intermittent com-

puting systems. Currently, LATICS is implemented based on the state-of-the-art task-based

system InK [70]. In principle it can be applied to other task-based systems as well. The LAT-

ICS run-time system and the application program are compiled into the binary executable

using the TI v18.12.4 compiler by TI Code Composer Studio.

We deploy LATICS on TI’s MSP430FR5994 launchpad equipped with a micro-

controller, 8KB volatile memory (SRAM) and 256KB non-volatile memory (FRAM) all

clocked at their highest speed. We allocate local variables of each task on SRAM, and the

data that are shared by tasks on FRAM. Bulk-copying between memories uses DMA. The

hardware board is powered by a programmable power supplier by which we can generate

different power traces to evaluate LATICS under different power conditions.

LATICS is compared against two state-of-the-art task-based intermittent computing

systems: InK [70] and Coala [51]. InK is a task-based system which saves states at all

task boundaries. A working buffer and a backup buffer are implemented to manage the data

allocated on NVM. LATICS differs with InK, in that LATICS is an adaptive task-based inter-

mittent computing system which may skip state saving when power supply is sufficient, and

more importantly, with the support of static analysis, LATICS saves only the PWS of a task

that leads a TEB which is a small subset of the data on NVM. Coala is a recently proposed

adaptive task-based intermittent computing system. At run-time, Coala dynamically predicts

the number of tasks to coalesce from execution history. Coala implements a paging system

and copies used data pages on-demand to VM, and at the end of a TEB, saves all modified

data pages to a backup buffer. Comparably, LATICS adopts the breaking point mechanism

124

to reduce unnecessary state saving, and only saves PWS for the leading task of a TEB.

We use 8 benchmark programs adopted in InK and Coala to evaluate system perfor-

mance. The benchmarks are Cold-chain Equipment Monitoring (CEM), Cuckoo Filter (CK),

Cyclic Redundancy Check (CRC), Bitcount (BC), Dijkstra shortest path algorithm (DIJ), Se-

lection sort algorithm (SRT), RSA encryption (RSA) and Activity Recognition (AR).

In the benchmarks, the read/write to the global variables shared among tasks are ex-

plicitly programmed by two macros, GET(v) and SET(v) where v is a global variable.

The transitions between tasks are programmed by the NEXT(Ti) macro indicating the next

task is Ti. The CFG for each task is extracted from the task’s source code and the pro-

gram graph G is constructed by connecting the tasks’ CFG with the task transitions. WAR

dependency is obtained by exploring G and tracking the read/write operations.

5.5.2 Evaluation Methods

LATICS’ performance is evaluated and compared with InK and Coala with the above bench-

marks. We run each benchmark program 20 times and report the averaged execution time

for a single run. The total execution time for each benchmark is recorded from the start to

the end of its execution and is further divided into state saving time and task execution time.

The state saving time is the time spent on state saving at the beginning of the TEBs. The

task execution time refers to the time to execute the task code. Both parts include the partial

execution in the aborted TEBs resulted by power failure.

For task coalescing, we adopt Coala’s Weighted Energy-Guided Coalescing Strategy

for fair comparison. The strategy essentially collects the execution history to obtain an en-

ergy capacity indicating how many tasks can be coalesced within the energy capacity. Once

a TEB successfully finishes, the capacity will be halved, and once a power failure occurs,

the capacity will be updated according to the past execution history. All the parameters are

set to the same with Coala.

To test the compared systems under different power supplies, we conduct experi-

125

ments with periodic power traces in which power failure occurs periodically during system

execution with a given period called power cycle. Tab. 5.2 reports the results under periodic

power traces, where the second column is the power cycle. Experiments are conducted for

eight power cycle configurations 1ms, 2ms, 3ms, ..., 8ms, which are in the typical range of

power cycles in intermittent systems powered by capacitors [48]. Due to limited space, only

the results for power cycle 1ms, 2ms, 4ms, 8ms are listed in Tab. 5.2. We also conducted

experiments on random power traces that reflect real-life scenarios. In these traces, the time

gap between two consecutive power failures are randomly chosen from range [1ms, 8ms].

Fig. 5.5 reports the experimental results under random power traces.

We also further discuss: (1) the effectiveness of our proposed approach by comparing

it with an exhaustive search method; (2) the impact of α to breaking point decision; (3)

performance of different state copying methods.

5.5.3 Empirical results and evaluation

For all experiments under all power traces, LATICS outperforms InK and Coala w.r.t. the

state saving time and the total execution time, which shows that LATICS has low state saving

overhead and high execution efficiency. We now give detailed evaluation to the results.

First, we investigate how much state saving can be reduced by our proposed ap-

proach. Tab. 5.1 lists the results of InK and LATICS. The numbers for InK are the total state

saving size for all tasks, i.e., a product of the size of system states and the number of tasks

in the program. For LATICS, we sum up the sizes of the memory copy ranges covering the

PWS for all tasks (assuming each task can serve as a leading task) computed by our pro-

posed method. The results show that, by inserting breaking points and by the computation of

PWS, very few data need to be saved at the leading tasks of TEBs, so state saving overhead

is significantly reduced in LATICS.

Second, the performance of LATICS under random power traces is evaluated, the

results of which are shown in Fig. 5.5. The figure illustrates the total execution time for

LATICS, InK and Coala, normalized to that of InK. The grey part in each bar refers to the

126

Table 5.1. State saving size for all tasks (in bytes)

CEM CRC BC CK AR DIJ RSA SRT

InK 41904 16 220 4260 1804 3570 4200 824

LATICS 260 8 170 3452 324 140 1624 216

state saving time, and the slashed part refers to the task execution time. For all benchmarks,

LATICS has the smallest total execution time. InK consumes a large portion of time on state

saving, as it pessimistically saves all system states at all task boundaries. Coala saves at the

end of a TEB the data pages that have been modified since the beginning of the TEB. Coala’s

state saving is not efficient, since (1) writes to non-WAR variables may also cause a data page

to be saved; (2) as Coala conducts memory copy in pages, the actual amount of data copied

in state saving is larger than the total size of all modified variables. LATICS outperforms InK

and Coala, because LATICS adaptively group tasks into TEBs and by adopting the breaking

point mechanism and the PWS computation, unnecessary state saving at the beginning of

the TEB is avoided as much as possible. Similar comparison results can also be witnessed

in the experiments on periodic power traces, shown in Tab. 5.2.

��

����

��

����

��

����

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

�
�
	

�
�

�
�
�
�
��

��	����
�������������

Run time normalized to InK

��

��
����

��
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�
�

�

�

�
�

�
�

�
�

�
�
�

�
�
�

��

��
����

��
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�

�
�
	

�
�
�
�

��
�
����

�
�
	

�
�
�

�

�

�
�

�
�

�
�

�
�
�

�
�
�

Backup time
Task execution time

Figure 5.5. Execution time results under random power traces (normalized to InK’s total

execution time)

127

To further explain the results, we explore in detail the CEM benchmark which has

significant performance improvement. The program graph of CEM (tasks’ CFG omitted,

only showing inter-task transitions) is given in Fig. 5.6 which contains 12 tasks. There

are read operations to a large-size array A in T5, T6 and T7 and write operations to A in

T8. Breaking points were inserted on the incoming edges to T8, which breaks the WAR

dependency of A and thus considerably reduces state saving. Some benchmarks, such as

RSA, do not exhibit significant improvement in Fig. 5.5, because they spend execution time

in loops that do not access the variables that are in InK’s states but excluded by the breaking

points in LATICS.

T8T0 T1 T2 T4 T5 T6 T9 T10 T11

T3 T7

R(A) R(A)

R(A)

W(A)

Figure 5.6. The program graph of CEM

Third, experimental results for periodic power traces are shown in Tab. 5.2 (Dashes

in the table mean the program failed to progress). Regarding task execution time, LATICS

provides comparable performance to InK, only slightly larger in some benchmarks. As tasks

in LATICS are coalesced into larger TEBs, in the presence of power failures, LATICS may

undergo more re-execution time with larger atomic execution blocks (i.e., TEBs). Note that

this is a general phenomenon for all adaptive task-based intermittent computing systems.

Coala performs worst in task execution time. To avoid the WAR problem, Coala adopts an

inefficient paging system which copies the requested data page on-demand to VM. Coala’s

paging system considerably sacrifices execution efficiency. Also shown in Tab. 5.2, when

power cycle increases, LATICS performs better with less state saving overhead, in that the

benefit of skipping state saving within the TEBs increases with larger power cycles. We also

128

list the number of tasks that are executed in one power cycle for all benchmarks in Tab. 5.3.

LATICS executes more tasks in a power cycle than InK and Coala, which also shows that

LATICS has less state saving overhead and thus generally makes better progress.

Table 5.2. Execution time results under periodic power traces with different power cycles

Coala InK LATICS

Apps
Power

cycle (ms)

Backup

(ms)

Total

(ms)

Backup

(ms)

Total

(ms)

Backup

(ms)

Total

(ms)

CEM

1 −− −− 777.39 800.33 2.26 25.66

2 76.51 259.37 617.30 640.25 1.60 24.73

4 52.19 258.84 604.71 627.21 1.23 23.79

8 30.91 225.44 586.84 609.79 1.08 24.10

CRC

1 0.73 3.15 0.92 2.14 0.07 1.28

2 0.37 2.80 0.93 2.16 0.04 1.26

4 0.25 2.68 1.01 2.20 0.03 1.27

8 0.36 2.80 0.92 2.14 0.02 1.25

BC

1 7.44 32.85 8.46 20.33 0.79 12.85

2 4.19 29.01 8.36 20.17 0.53 12.62

4 2.58 27.97 8.15 19.76 0.33 12.07

8 1.79 27.13 8.30 20.09 0.17 12.03

CK

1 8.85 25.83 20.10 25.23 1.27 6.41

2 5.78 22.84 19.74 24.89 0.80 6.08

4 3.78 21.7 19.26 24.29 0.34 5.37

8 2.24 20.23 19.59 24.72 0.23 5.37

AR

1 38.11 199.76 29.81 144.15 4.19 99.73

2 31.24 187.17 27.66 119.75 2.29 96.68

4 16.34 170.24 26.63 114.65 1.77 88.11

8 8.45 118.60 25.49 113.06 0.63 88.74

DIJ

1 98.58 384.15 224.31 258.76 5.08 38.86

2 79.77 366.07 212.71 247.19 3.10 37.01

4 52.53 329.01 207.78 241.51 2.23 36.26

8 34.39 313.66 210.49 244.97 1.67 35.81

RSA

1 14.72 101.53 30.21 72.33 2.58 48.00

2 9.77 83.28 29.00 70.29 2.64 48.00

4 6.33 77.64 28.85 70.13 2.34 45.72

8 3.05 61.35 29.19 70.67 2.85 44.38

SRT

1 216.16 741.1 173.65 231.04 10.78 68.27

2 99.27 640.23 169.17 226.52 5.84 63.30

4 95.33 539.46 169.00 226.47 3.18 60.54

8 92.72 500.23 171.54 230.10 1.76 59.15

129

Table 5.3. The number of tasks finished in each power cycle

Power

cycle (ms)
Methods CEM CRC BC CK AR DIJ RSA SRT

1

Coala – 39 27 21 4 8 5 7

InK 2 49 41 21 8 10 10 25

LATICS 64 96 66 76 12 65 17 85

2

Coala 13 91 59 44 7 18 10 15

InK 5 98 82 43 18 21 22 51

LATICS 131 199 136 161 24 137 34 182

4

Coala 27 190 115 91 16 37 19 32

InK 10 200 167 86 36 42 44 103

LATCIS 267 402 275 335 49 280 71 380

8

Coala 55 385 236 186 26 77 38 68

InK 21 401 344 174 74 85 89 207

LATICS 551 803 605 675 98 563 142 794

5.5.4 Further Discussion

– Effectiveness of the breaking point insertion approach

To justify the effectiveness of our proposed breaking point insertion approach (Algo-

rithm 1), we implemented an exhaustive search method (abbreviated ES) to find the “opti-

mal” solution and compared it with our approach.

In fact, the optimal breaking point locations depend on the program paths and the

power traces, and an optimal solution only exists with known program path and power trace.

As the executed program path and the actual power trace is only known at run time, a clair-

voyant method is required to search the optimal solution.

To this end, we run each benchmark program once with a periodic power trace (1ms

power cycle) and obtain an execution history. Then an induced program graph is generated

by excluding the paths not taken in the execution history. An exhaustive search is conducted

130

on the induced program graph by enumerating whether a breaking point is inserted on each

edge of the graph. Note that as data inputs for all benchmarks are fixed in our experiment,

the program is guaranteed to take the same path each time it is executed. In each experiment,

we run the benchmark program with the same power trace and record the total run time. If

the search does not finish after 20 hours, we stop the search and report the best solution so

far. Table 5.4 gives the results for ES and our approach.

Table 5.4. The minimal execution times (in ms) obtained by ES and LATICS under periodic

power trace with 1ms power cycle

CEM CRC BC CK AR DIJ RSA SRT

ES 49.02 1.27 13.01 6.13 97.84 35.29 41.93 64.04

LATICS 25.66 1.28 12.85 6.41 99.73 38.86 48.00 68.27

We compare the minimal total run time obtained by ES and the total run time by LAT-

ICS. The exhaustive search for CRC, DIJ, and SRT were finished and the results obtained

are optimal. It can be seen that the total run times of LATICS for the three benchmarks

are slightly larger than those of ES. The reasons are two fold: first, ES is clairvoyant while

LATICS is not; second, our approach, i.e. Algorithm 1, is a heuristic method which only con-

siders a subset of the problem state space. The exhaustive search for the other 5 benchmarks

did not finish within 20 hours. This is because even the program path is known, searching

for an optimal breaking point assignment still needs to explore a huge state space. Note that

20 hours are still not enough for ES to find sufficiently good results so the execution times

obtained by ES are larger than those those of LATICS for some benchmarks.

– The impact of α to breaking point insertion

Parameter α is involved in deciding whether a breaking point will be inserted when

Algorithm 1 explores the unrolled graph (line 10). Only when the difference in the size of

memory copy range exceeds α × Cost, a breaking point is inserted. We conducted experi-

ments with α = 2, 5, 10 under a power trace with 1ms power cycle to explore how α will

affect the results.

131

Table 5.5. Results with different α values under periodic power trace with 1ms power cycle

α = 2 α = 5 α = 10

Apps
Backup

(ms)

Total

(ms)

Backup

(ms)

Total

(ms)

Backup

(ms)

Total

(ms)

CEM 7.54 27.27 2.26 25.66 2.26 25.66

CRC 0.07 1.28 0.07 1.28 0.07 1.28

BC 3.49 15.58 0.79 12.85 0.79 12.85

CK 2.67 7.14 1.27 6.41 1.27 6.41

AR 4.19 99.73 4.19 99.73 5.90 111.77

DIJ 5.08 38.86 5.08 38.86 5.08 38.86

RSA 2.98 48.24 2.58 48.00 4.55 49.60

SRT 10.78 68.27 10.78 68.27 10.78 68.27

The total run time and backup time are shown in Tab. 5.5. First, the total run times for

all three configurations are very close, which shows that the values of α within the explored

range do not significantly affect the results for the benchmarks. The total run time is the

lowest for the α = 5 configuration. If the value of α is too small, e.g., α = 2, too many

breaking points will be inserted, so the benefit of task coalescing is decreased. If the value

of α is too large, e.g., α = 10, too few breaking points will be inserted, which compromises

the benefit of breaking point.

– Performance of state copying

In LATICS, the PWS is copied to a backup buffer at the beginning of a leading task.

Instead of copying the exact PWS, we copy a memory copy range that covers the PWS.

The main motivation is that bulk-copying by DMA is much faster than copying the variables

one-by-one. As the variables of a PWS may not be stored in continuous addresses in the

memory, a memory copy range may contain variables other than the PWS to save at a point.

132

Even though, copying the data in the memory copy range in bulk is in most cases more

efficient.

In Tab. 5.6, we report the time overhead of three copying methods running on our

MSP430 board, bulk-copying by DMA (DMA bulk), variable-copying by DMA (DMA

copy), and variable-copying by CPU (implemented by memcpy(), CPU copy), for differ-

ent data sizes. We provide results for copying 2B to 512B data. For variable-copying, we set

the variable size to be 2B, the size of an integer on MSP430.

For variable-copying, the time overhead is linearly proportionally to the copied data

size, with DMA slightly faster than CPU. For bulk-copying by DMA, the copy speed con-

tinues to increase from 2B to 512B. From 16-32B data size, bulk-copying by DMA is one

order of magnitude faster than variable-copying approaches. 70 memory copy ranges exist

in all benchmarks, 13 of them are sized 2-15B, 43 of them are sized 16-64B, and 14 of them

are sized 65-284B. So in most cases, conducting bulk-copying is more efficient. The results

explain why we choose bulk-copying in LATICS even if extra variables may be included in

a memory copy range. In general, large programs with large state copying size will benefit

more from bulk-copying.

Table 5.6. Time cost (in µs) for different state copying methods under different data sizes

(in bytes)

Methods 2 4 8 16 32 64 128 256 512

CPU copy 7.5 15.8 31.5 61.8 123.5 247 494 988 1976

DMA copy 7.2 14.4 28.8 57.5 115 230 460 920 1840

DMA bulk 7.2 7.4 7.5 8.3 10 13.3 19.8 32.8 58.5

The actual memory layout of the state variables may impact the size of the memory

copy range and thus the state copying overhead. In general, there does not exist an optimal

layout in reality, as the efficiency of a memory layout is related to the actual occurrence

of leading tasks which is further affected by the actual power traces. We leave systematic

investigation in memory layout optimization to future work.

133

5.6 Conclusion

This chapter presents LATICS, a low-overhead adaptive task-based intermittent computing

system. The major challenge addressed by LATICS is how to reduce the amount of saved

states in the presence of dynamic decision of how many tasks are grouped together for atomic

execution. We observed that it is not always beneficial to skip state saving at task bound-

aries as it may sometime cause higher amount of saved states at other places and thus leads

to higher overall run-time overhead. LATICS is implemented on top of the state-of-the-art

task-based intermittent computing system InK [70], and evaluated on a hardware based on

MSP430. Experimental results show that LATICS significantly reduces state saving over-

head and improves execution efficiency compared to the state-of-the-art.

134

CHAPTER 6

INTERMITTENT COMPUTING WITH EFFICIENT STATE BACKUP BY

ASYNCHRONOUS DMA

6.1 Introduction

Energy harvesting is a promising approach which allows a device to rely on energy har-

vested from the ambient environment. As energy output of harvesters is typically weak and

unstable, the computing system must ensure software programs will make progress in the

presence of frequent power failures. To this end, a new computing paradigm called intermit-

tent computing is proposed [25]. In intermittent computing systems, a program progresses

incrementally with the granularity of program segment. At the end of each program segment,

the program states are backed up to non-volatile memory (NVM), such as FLASH or FRAM,

and then the system continues to execute the next program segment. Once a power failure

occurs and later the system recovers, the backup states on NVM are reloaded so that the exe-

cution can resume from the beginning of the failed segment, instead of conducing a complete

restart from the very beginning of the program. State backup is very time-consuming and

is frequently conducted during the progress of a program. Although Direct Memory Access

(DMA) is used in most systems to accelerate data copying, the time overhead of state backup

is still very large.

To the best of our knowledge, all existing intermittent systems, with documented

method on state backup, conduct state backup sequentially with program execution, i.e.,

during state backup the program has to stop and wait. However, if state backup can be

conducted in parallel with program execution, then the state backup latency will be hidden

135

in program execution. As a result, the program has a much smaller total execution time, and

thus can make better progress.

In this work, we seek to parallelize state backup and program execution by asyn-

chronous DMA. The main challenge is data racing may cause incorrect program states that

are polluted by program execution to be backed up into NVM. In our solution, we parallel

state backup with program execution, and at the end of the state backup detect whether an

error has occurred. Moreover, even if an error is detected, we do not immediately handle

the error, but let the program continue to execute, as it is highly probable that the erroneous

backup will be covered by a future correct backup. We have implemented an intermittent

system based on the proposed approach. Experiments conducted on an STM32F7-based

platform show that the proposed method can efficiently detect and cover state backup errors,

and by parallelizing state backup with program execution, system performance is consider-

ably improved.

6.2 Related Work

Intermittent computing [42,47] is recently proposed to enable a system to keep progress and

produce correct computation in the presence of frequent power failures. The main principle

is to let the system timely back up program states to NVM so that when the system recovers

from a power failure, it can resume from the most recent backup states instead of experi-

encing a complete restart. With the increasing number of energy harvesting IoT devices [3],

intermittent computing is an enabler for such devices to provide sustainable services.

As state backup is a major overhead in intermittent computing, we did a survey of

existing intermittent systems on their state backup methods. A classification of state backup

methods is given in Table 6.1 (For intermittent systems that are not named, we use the sur-

name of the first author to represent the proposed system or method). All systems with

documented state backup method adopt either CPU or DMA to conduct state backup. First,

in all systems that use CPU, state backup is sequentially conducted with program execution.

Second, systems that use DMA also conduct state backup sequentially with program exe-

136

Table 6.1. A survey of state backup methods

Methods Intermittent systems

CPU
Cotai [58], Chain [20], Mementos [56], Alpaca [48],

QUICKRECALL [32], Ratchet [66], Chinchilla [49]

DMA
InK [70], Daulby [23], Chen [17], TICS [36],

Coala [51], CoSpec [19], ELASTIN [18], CatNap [50]

Unknown Hibernus++ [10], HarvOS [11]

cution. In CoSpec [19], a specialized hardware, which is not widely available in embedded

MCUs, is required in state backup. This chapter towards reducing state backup overhead

by parallelizing state backup and program execution. Note that in intermittent systems that

adopt Just-in-Time checkpointing [10], system execution is firstly stopped and then the sys-

tem states are saved to NVM, so state backup is always serially conducted with system

execution.

6.3 The Parallel State Backup Problem

This section shows the correctness problem caused by parallel state backup and program ex-

ecution. In sequential state backup using either CPU or DMA, a program segment is allowed

to start only after the program states at its starting point are totally copied to NVM. Now

consider to conduct state backup simultaneously with the execution of a program segment.

We will show by the example in Fig. 6.1 that a critical correctness problem may occur.

Assume A is one of the variables to back up. The execution of program segment T

operates A during execution, and state backup copies state variables including A to NVM. A

correct state backup at the beginning of T should copy A’s value 1 to NVM. The execution

137

……

A++;

……

……

time

A == 1

program execution

backup(…)

backup(…)

backup(A)

state backup

t1

t2

Segment T

t3
power failure

resume from here;
reload A’s backup
A == 2, incorrect①

②
③

Figure 6.1. An example of the parallel state backup problem

of T modifies A’s value to 2 by an increment operation at time t1, while the backup of A is

conducted at a later time t2. As a result, the NVM stores an incorrect value of A (i.e., 2). If

a power failure occurs at time t3, after the system recovers, the program resumes from the

beginning of T by reloading the backup states from NVM. Now an incorrect value of A is

reloaded. We call this phenomenon the “parallel state backup problem”. The problem will

further result in incorrect computation of T.

Due to the lack of techniques to solve the parallel backup problem exemplified by

Fig. 6.1, to the best of our knowledge, existing intermittent computing systems pessimisti-

cally serialize task execution and state backup (by either CPU or DMA). The consequence

is that a large portion of the system execution time is spent on frequent state backup [59].

6.4 Overview of Our Approach

The objective of this work is to parallelize state backup and program execution for inter-

mittent systems without destroying logical correctness. Such a design allows to hide state

backup latency in task execution time, and thus can improve system performance. In this

section, we will give an overview of the main idea. Key design details are provided in the

next section.

The main idea is carried by the work flow shown in Fig. 6.2. The system behavior

mainly contains a loop to execute program segments one after another until the program is

138

System starts

Reload the most recent

correct backup states

Execute a

program segment

Back up

program states

State backup

error detection

Correct?

Save the correct

backup states

End of

program?
System stops

parallel

Y

Y

N

N

Figure 6.2. Overview of the proposed state backup approach

139

finished. In our approach, we conduct state backup simultaneously with the execution of a

program segment. As this may cause the problem shown in Fig. 6.1, we propose a technique

to detect potential backup errors at the end of the state backup (The error detection technique

will be detailed in Sec. 6.5).

Once a state backup error is detected, we know the current backup data is not trust-

worthy and can not be used for system restoration. A common method is to completely

restart the system. However, a complete restart will incur too much re-execution overhead,

so we try to avoid it. Note that state backup is performed timely and frequently in intermittent

systems. It is highly probable that an incorrect backup can be overwritten by a future correct

backup. Motivated by this observation, we propose fault-tolerant backup management to

allow the system to continue execution even if the backup states are temporarily incorrect.

We will explain the idea with the example in Fig. 6.3.

time

T1 T2 T3 T4 T5

B1 B2 B3 B4 B5

Restore to the program

point corresponding the

most recent correct backup

power

failure

program

execution

state

backup

backup

data
√ X √ √ X

Figure 6.3. Fault-tolerant backup management

In Fig. 6.3, Ti represents program segments, and Bi represents the state backup con-

ducted in parallel with Ti. When backup B2 is done, a backup error is detected, leading the

backup data to an inconsistent state. However, we do not immediately solve the problem, and

simply allow the system to continue executing T3. As the next state backup B3 is correct,

the incorrect backup states are covered by new correct backup states that can be used for

system restoration. Note that state backup B5 is also incorrect, and unfortunately during the

execution of T5, a power failure occurs. As the backup states now are incorrect, the system

140

is not able to restore to the beginning of T5. Since backup B4 is correct, the system can roll

back to the beginning of T4, i.e., the program point corresponding the most recent correct

backup. The fault-tolerant backup management, as part of the whole solution, is depicted by

the green blocks in Fig. 6.2.

The next section will present the detailed design for state backup error detection and

fault-tolerant backup management.

6.5 Design

In this section, we first introduce the task-based software model [70] which is used to explain

the proposed techniques Then state backup error detection is presented in detail. At last, we

present a heuristic to explore how memory layout can affect the occurrence of state backup

errors.

6.5.1 Software Model

By task-based model, a program is coded as a collection of tasks, where each task is essen-

tially a program segment implemented as a function. The tasks are connected by the control

flows specified by the programmer. During the execution, state backup is conducted at the

beginning of each task. If a power failure occurs, and later the system recovers, it first re-

stores the program states from the backup, and then continues to execute the last unfinished

task before power failure. Program states in task-based model refer to the set of variables

that are shared by multiple tasks and whose lifetimes span across task boundaries, but not

the local variables allocated on the stack and accessed inside the task. To distinguish data

copies, we say task execution accesses task-shared variables stored in a working buffer in

main memory, and in state backup, task-shared variables are copied from the working buffer

to a backup buffer on NVM using DMA.

141

6.5.2 State Backup Error Detection

Target for Error Detection

In the general sense, any task-shared variable in the working buffer may experience the

problem in Fig. 6.1, if state backup is conducted in parallel with task execution. However,

not all backup errors will eventually lead to incorrect program execution. Error detection

only needs to observe those backup errors that affect the correctness of task execution.

Whether the backup error of a variable will cause incorrect execution depends on the

access behavior of the variable. Without loss of generality, we consider a task-shared variable

A accessed in task T. The behaviors of accessing A can be classified into the following cases

which have different results on the correctness of task execution.

• CASE 1: A is only read in T. No backup error will occur as the execution of T does

not change A’s value.

• CASE 2: A is only written in T. A write to A may cause incorrect state backup and

assume such a case occurs. If power fails in T, the system resumes from the beginning

of T. Although an incorrect value of A will be reloaded, the incorrect value will

be overwritten by the write operation to A in T, so task execution remains correct.

Otherwise, if power failures do not occur, at the end of T, the correct value of A

remains in the working buffer. The execution of the next task will execute on the

working buffer and the task sees a correct value of A.

• CASE 3: A is first written and then read in T. This case is the same as CASE 2.

• CASE 4: A is first read and then written in T. T’s execution will be incorrect if an

incorrect value of A is backed up and power fails in T. After system resumes, the

incorrect backup value of A is reloaded from the backup buffer. The first read to

A loads the incorrect value, which may cause incorrect computation. Variable A in

Fig. 6.1 is an example of this case.

142

With the above analysis, an error detection method only needs to observe the backup

results for those variables that fall into CASE 4. The access properties of variables are eval-

uated within each task. A variable, evaluated to be in CASE 4 in any task, will be observed.

In the next sub-sections, when talking about variables, we mean the variables of CASE 4.

Error Detection

To detect the backup error for a variable, we need to observe the timing relation between the

write to the variable by program execution and the read to the variable by state backup. To

this end, we instrument both the task code and the backup data with flag variables to record

the progress of both CPU and DMA, so as to provide information for error detection at the

end of state backup. We will use the examples in Fig. 6.4 to explain our method.

task T state backup

A++;

B++;

backup(A)

backup(B)

flag = 1;

backup(flag)

(a) Inserting one flag variable

to detect error, failed

flag = 0;

time

task T state backup

A++;

B++;

backup(A)

backup(B)

f_a = 1;

backup(f_b)
f_b = 1;

backup(f_a)

(b) Inserting two flag variables

to detect error, succeeded

f_a = 0; f_b = 0;

time

task T state backup

C++;

D++;

backup(D)

backup(C)

f_c = 1;
backup(f_c)

f_d = 1;

backup(f_d)

(c) Reducing redundant

flag variables

time

f_c = 0; f_d = 0;

Figure 6.4. State backup error detection exemplified (principle and optimization)

Task T modifies variables A and B during its execution. We need to know whether

before such modifications the backup to the two variables is finished or not. We introduce

a flag variable “flag” and initialize it to 0 before T starts. In task code, we insert a flag

instruction FI(flag) before the first write to A or B in the task. For example, in Fig. 6.4(a),

flag = 1 is a flag instruction. On the state backup side, the variable flag is also backed

up, immediately after B. When state backup is finished, we check the value of flag in the

backup buffer to detect error. If the value of flag in the backup buffer is 0, it is clear that

after both A and B are backed up, none of the modifications to A or B is executed, then we

can safely conclude that no backup error occurred. Otherwise, if the value of flag in the

143

backup buffer is 1, it indicates at the time when A and B finish backup, task execution has

passed flag=1. In such case, it is possible that the task has executed A++ or even B++.

Thus, we are not sure whether an error actually occurred during state backup, and have to

report an error for safety. In the example in Fig. 6.4(a), the value of flag in the backup buffer

is 1 as backup(flag) executed after flag=1, so a backup error is reported.

Actually, in this example, there is no backup error, since the backup operation to A

did occur before the modification to A (by A++), and so does B. This behavior can not be

captured with only one flag variable. Then we introduce two flag variables f a and f b to

observe the access conflicts on A and B, respectively. The code instrumentation is shown

in Fig. 6.4(b). This time, when we check the values of f a at the end of state backup, we

find that f a’s value in the backup buffer is 0 as backup(f a) occurs before f a=1, so A is

correctly backed up. Similarly, fb = 0, so B is also correctly backed up. Only if the value of

all flag variables in the backup buffer are 0, we can safely conclude that there is no backup

error caused by the execution of the task. By inserting more flag variables in a finer-grained

way, we are able to find out correct state backups that would be classified incorrect by a

coarser flag insertion.

Removing redundant flags

To maximize the precision of error detection, one can choose to use an independent flag for

every variable. However, this will insert redundant flags. We will show what is a redundant

flag with the example in Fig. 6.4(c).

Let us consider two variables C and D observed by two flag variables f c and f d

respectively. We use the notion e1⇒ e2 to represent event e1 occurs earlier than event e2.

In this example, if at the end of state backup f c’s value in the backup buffer is 0, i.e., C is

correctly backed up, we know that backup(f c) ⇒ f c= 1. Now we can conclude that D

is also correctly backed up, because backup(f d) ⇒ backup(f c) ⇒ f c= 1 ⇒ f d= 1.

Otherwise, if C is not correctly backed up, of course one can still leverage f d to observe

whether D is correctly backed up. Note that we can conclude the state backup is correct only

144

if all flag variables are 0 in the backup buffer. Even if D is found to be correctly backed

up, as an error is already detected for C, the detection result for D does not affect the final

conclusion. Thus, we can safely remove flag variable f d without sacrificing the precision of

error detection. We say f d is a redundant flag. The property described above is formulated

with Lemma 6.5.1. As the proof is straightforward, we omit the proof.

Lemma 6.5.1. Suppose variable A has a higher address than variable B in the buffers,

which means backup(B)⇒backup(A), and in a task the first write to A occurs before that

to B, i.e., write(A) ⇒ write(B). If the backup of A is correct, the backup of B must be

correct.

Assume flag variables and corresponding flag instructions have been inserted to ob-

serve all variables. Redundant flag variables that satisfy Lemma 1 can be found by exploring

the flag instructions on the control flow graph (CFG) of a task according to Definition 1. Any

identified redundant flag variable and its flag instructions will be removed.

Definition 6.5.1. A flag instruction FI(f) is a redundant flag instruction of task T iff: on ev-

ery path from the starting node of the CFG of T to FI(f), there is a flag instruction operating

a flag whose memory address is no lower than f .

To summarize, our proposed state backup error detection technique works as follows:

1. Off-line instrumentation.

(a) Identify task-shared variables that needs observation.

(b) For each such variable, insert a flag into the backup data behind the variable it

observes, and insert a corresponding flag instruction into the task before the first

write on the variable.

(c) Remove all redundant flags from the backup data and corresponding flag instruc-

tions in the program.

145

2. Run-time Support. All the flag variables are set to 0 before each task starts execution.

After state backup is finished, if all the flag variables in the backup buffer are 0, the

backup is concluded correct; otherwise, the backup is considered incorrect.

6.5.3 Buffer Design for Fault-tolerant Backup Management

In Sec. 6.4 we introduced fault-tolerant backup management which allows the system to

continue execution even if the backup states are temporarily incorrect. The technique is

implemented by the buffer design.

For now, we have a working buffer for program execution and a backup buffer to store

backup states. As the backup buffer can be polluted by incorrect state backup, we introduce

a new buffer called safe buffer to maintain the most recent correct backup copy. When state

backup is finished, the correct backup data is in the backup buffer. We do not copy the data

from the backup buffer to the safe buffer. Instead, we swap the role of the two buffers. In

the implementation, there is a pointer to each buffer. The role swap can be done by a pointer

swap. If the backup buffer is polluted by an erroneous backup, the safe buffer still maintains

correct program states corresponding an earlier program point. If a power failure occurs, the

system will always resume by reloading the states in the safe buffer and roll back to the most

recent consistent program point. A power failure may also occur during the data copying

from the working buffer to the backup buffer, making the backup buffer inconsistent. For

such a case, the safe buffer still enables the system to restore to a most recent consistent

program point.

6.5.4 Reorganizing Memory Layout to Reduce Backup Errors

In state backup, the variable at a lower address will be copied earlier and thus has a lower

probability to experience backup error. So, changing the layout of the variables in the buffers

may affect the occurrence of backup errors. However, an optimal memory layout does not

generally exist. First, different tasks of a program may access different variables and they

146

compete to put their own variables in low memory address, in the layout optimization pro-

cess; second, the execution frequency of different tasks is input-dependent and can not be

decided offline, so it is impossible to decide which task should have higher priority in com-

peting lower addresses. Therefore, we developed a heuristic method to re-organize memory

layout to investigate its impact on backup errors.

The main idea is to put the “most frequently” accessed variables in the lowest mem-

ory address. We compute a weight, Wv, for each variable to model its access frequency by

equation (6.1), where v is a variable, and CTi
(v) is the execution count of task Ti that ac-

cesses v. In our exploration, we run each program a sufficiently large number of times to

measure the average execution count of each task.

Wv = ∀v∈CASE 4

∑
CTi

(v) (6.1)

6.6 Experiments and Evaluation

6.6.1 Experimental Setup

We designed a task-based intermittent system to implement the proposed approach, and run

the system on a STM32F7-based development board. 8 benchmark programs from related

work [51,70] are used for evaluation1. The sizes of shared variables in the benchmarks range

from 18 bytes to 622 bytes. A programmable power supply is adopted to generate power

traces. In the experiments, we assume that the system suffers a power failure around every

5ms.

New NVM devices are increasingly adopted in new processors [16]. They vary in

multiple features including most importantly the access speed. To evaluate the performance

of our approach for different NVM devices, we use SRAM to simulate NVM at different

speeds. This is implemented by evenly inserting dummy variables into the variables to be

1Available at https://github.com/IntermittentComputing/TaskBased

147

backed up. We denote the access speed of SRAM by vs. For instance, to simulate an NVM

with half the speed of SRAM, denoted by vs/2, we insert a dummy variable before each

shared variable with the same size. In the experiments, we simulated four NVM speeds,

vs/1, vs/2, vs/3 and vs/4.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

V
s

V
s
/2

V
s
/3

V
s
/4

DIJ AR CK SRT CRC BC RSA CEM

ASY-OPT ASY SYN

E
x
e

c
u

ti
o

n
 T

im
e

Figure 6.5. Execution times of different benchmarks under different NVM speeds (Normal-

ized to ASY-OPT)

6.6.2 Results and Evaluation

To evaluate the performance of the proposed approach, and also how it can be affected by dif-

ferent memory layouts, we measure the execution time of the benchmark programs executed

in three different settings:

• ASY-OPT: asynchronous DMA on the memory layout produced by the technique in

Sec. 6.5.4

• ASY: asynchronous DMA with initial memory layout

• SYN: sequential state backup (by DMA) and program execution with initial memory

layout

The results are given in Fig. 6.5 with all execution times normalized to ASY-OPT.

The performance of the proposed approach (ASY-OPT and ASY) is considerably improved

compared to existing approaches (SYN). The performance gain is comparably lower in pro-

grams such as CRC and CEM. The reason lies in the ratio between the average execution

148

time of a task and the average latency of state backup. Take CEM for example, as the states

to backup is very large, the backup latency is much larger than the average task execution

time. Parallelizing state backup and program execution does not help much in reducing total

execution time. Program CRC is on the other extreme. CRC has a very small state size, and

the backup latency is much smaller than the average task execution time. In such a case, the

space for asynchronous DMA to improve performance is reduced. The inserted flag variables

cause an average increase in the sizes of backup states by 3%.

We analyze the results regarding different NVM speeds. There is not an identical

trend for all programs. In essence, different NVM speeds indicate different backup latency,

and thus affect the ratio between the average task execution time and the backup latency.

If the ratio becomes too small or too large, as discussed before, the space for performance

improvement by asynchronous DMA will be small.

Table 6.2. Average numbers of uncovered incorrect backups (UIB), incorrect backups (IB)

and total backups (B)

DIJ AR CK SRT CRC BC RSA CEM

ASY-OPT

UIB 0 0 0 0 0 0 0 0

IB 0.5 3 24.7 0 0 5.5 8.5 0

B 167.5 152 260 402 102 87 81 540.5

ASY

UIB 0 0 0.5 0 0 0 0 2.2

IB 0.5 13.5 49.5 0 0 5.5 10.2 214.2

B 167.5 152 260.5 402 102 87 81 541.2

At last, we evaluate the impact of memory layout to the proposed approach. In Ta-

ble 6.2, for each program, we list the average numbers of total backups (B), incorrect backups

(IB) and uncovered incorrect backups (UIB) under different NVM speeds, and compare the

149

results between ASY-OPT and ASY. The results show that the proposed heuristic can reduce

the number of incorrect backups, especially for AR, CK and CEM. If we look at the execu-

tion time under ASY-OPT and ASY in Fig. 6.5, only AR is comparably more sensitive to the

memory layout. There are two main reasons. First, even if the better memory layout reduces

the number of incorrect state backups, almost all incorrect state backups can be efficiently

covered by the proposed fault-tolerant backup management technique regardless of the mem-

ory layout (see the UIB row for the two layouts in Table 6.2). Second, in most programs,

the state backups are finished before conflicts between state backup and program execution

occur, since the write operations to the variables in a task are separated by computation steps.

6.7 Conclusion

This chapter presents an approach to improve the performance of intermittent systems by

enabling parallel state backup and program execution, and at the same time ensure the sys-

tem still produces correct computation. The main techniques are an error detection method

to precisely identify state backup errors and a backup management method that allows the

system to tolerate state backup errors at run time. Experimental results show that the pro-

posed approach can considerably improve execution performance compared to the existing

approaches with sequential state backup and program execution.

150

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Embedded system is generally subject to resource constraints, thus bringing difficulties in

both design and analysis. This thesis considers two resource constraints, timing constraints

and energy constraints, and proposes several methods to improve the analysis accuracy and

system performance.

The worst-case execution time of real-time tasks should be precisely computed to

guarantee the timing constraints can be satisfied. However, inter-task interference may cause

more execution time, and the existing timing analysis method can not safely and tightly

bound the additional execution time. We in this thesis consider two common inter-task in-

terference, shared cache contention and preemption, and precisely compute the worst-case

additional execution time. Experimental results show that the worst-case execution time

bound caused by inter-task interference can be significantly tightened.

Energy harvesting system is the promising technology to power a huge number of

IoT devices in the future. But the state backup in energy harvesting systems costs a lot

of energy and time, significantly impacting the system’s performance. In this thesis, we

present two methods to reduce the state backup overhead. In the first method, we propose an

adaptive task-based intermittent computing system, which can skip some unnecessary state

backup. Moreover, we precisely compute the minimum set of data that need to be backed

up instead of backing up all the system state. In the second method, we, for the first time,

propose to parallel the system execution and state backup. To ensure system correctness in

the case of data racing, we propose a backup error detection method. Once a backup error

151

is detected, a fault-tolerant resumption mechanism can guarantee the system’s correctness.

Experimentally, our method can significantly reduce the task’s execution time.

7.2 Future Work

This thesis has studied the design and analysis for embedded systems under timing con-

straints and energy constraints, which can be extended to different directions in the future.

First, for real-time systems, based on the static analysis result presented in this thesis, we can

improve the real-time tasks’ worst-case performance, i.e., reduce real-time tasks’ worst-case

execution time. Some existing methods, like cache locking or cache partition, can be used

to improve the worst-case performance. The static analysis result presented in this thesis

can provide some hints for us to design new cache locking algorithms or cache partition

mechanisms to improve real-time tasks’ worst-case performance. Second, for energy har-

vesting systems, a hardware and software co-design can be used to further reduce the system

overhead while achieving better system performance. Some hardware can be configured

to balance the energy consumption and the computational accuracy. For instance, one can

configure the resolution of the analog-to-digital converter (ADC) to balance the computa-

tional accuracy and overhead; When erasing a flash memory, users can adaptively change

the erase time/voltage based on the 0/1-bit ratio of the erased data to tradeoff the energy/time

consumption and the longevity of the stored information. By utilizing such configurable

hardware components, the system can achieve better performance while satisfying the con-

straints.

152

REFERENCES

[1] http://www.ti.com/microcontrollers.html.

[2] WCET Benchmarks, http://mrtc.mdh.se/projects/wcet.html.

[3] https://iot-analytics.com/, referenced in Sep. 2020.

[4] Sebastian Altmeyer and Claire Burguiere. A new notion of useful cache block to im-

prove the bounds of cache-related preemption delay. In ECRTS’09, 2009., pages 109–

118.

[5] Sebastian Altmeyer and Claire Burguiere. A new notion of useful cache block to im-

prove the bounds of cache-related preemption delay. In ECRTS’09. 21st Euromicro

Conference on Real-Time Systems.

[6] Sebastian Altmeyer and Claire Maiza Burguière. Cache-related preemption delay

via useful cache blocks: Survey and redefinition. Journal of Systems Architecture,

57(7):707–719, 2011.

[7] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Improved cache related pre-

emption delay aware response time analysis for fixed priority pre-emptive systems.

Real-Time Systems, 48(5).

[8] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Cache related pre-emption

delay aware response time analysis for fixed priority pre-emptive systems. In Real-

Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages 261–271. IEEE, 2011.

153

[9] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tightening

the crpd bound for set-associative caches. In ACM Sigplan Notices, volume 45, pages

153–162. ACM, 2010.

[10] Domenico Balsamo, Alex S. Weddell, and et al. Hibernus++: A self-calibrating and

adaptive system for transiently-powered embedded devices. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2016.

[11] Naveed Anwar Bhatti and Luca Mottola. Harvos: efficient code instrumentation for

transiently-powered embedded sensing. In ACM/IEEE International Conference on

Information Processing in Sensor Networks, 2017.

[12] Reinder J Bril, Sebastian Altmeyer, Martijn MHP Van Heuvel, Robert Davis, Moris

Behnam, et al. Integrating cache-related pre-emption delays into analysis of fixed prior-

ity scheduling with pre-emption thresholds. In Real-Time Systems Symposium (RTSS),

2014 IEEE, pages 161–172.

[13] Siddhartha Chatterjee, Erin Parker, Philip J Hanlon, and Alvin R Lebeck. Exact anal-

ysis of the cache behavior of nested loops. programming language design and imple-

mentation, 36(5):286–297, 2001.

[14] S Chattopadhyay and A Roychoudhury. Scalable and precise refinement of cache tim-

ing analysis via model checking. 2011.

[15] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter

Marwedel, and Heiko Falk. A unified wcet analysis framework for multicore platforms.

ACM Transactions on Embedded Computing Systems (TECS), 13(4s):124, 2014.

[16] An Chen. A review of emerging non-volatile memory (nvm) technologies and applica-

tions. Solid-State Electronics, 2016.

[17] Wei-Ming Chen, Pi-Cheng Hsiu, and Tei-Wei Kuo. Enabling failure-resilient

intermittently-powered systems without runtime checkpointing. In ACM/IEEE Design

Automation Conference, DAC, 2019.

154

[18] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. Achieving

stagnation-free intermittent computation with boundary-free adaptive execution. In

IEEE Real-Time and Embedded Technology and Applications Symposium ,RTAS, 2019.

[19] Jongouk Choi, Qingrui Liu, and Changhee Jung. Cospec: Compiler directed spec-

ulative intermittent computation. In Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO, 2019.

[20] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent

programs. In ACM International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA, 2016.

[21] David Cormie. The arm11 microarchitecture. Retrieved July, 21:2004, 2002.

[22] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In Pro-

ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 238–252. ACM, 1977.

[23] Timothy Daulby, Anand Savanth, Geoff Merrett, and Alex S Weddell. Improving the

forward progress of transient systems. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 2020.

[24] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: a

compiler framework for analyzing and tuning memory behavior. ACM Transactions on

Programming Languages and Systems (TOPLAS), 21(4):703–746, 1999.

[25] Graham Gobieski, Amolak Nagi, and et al. Manic: A vector-dataflow architecture for

ultra-low-power embedded systems. In Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO, 2019.

[26] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and analysis

for multicores. Emsoft, 2010.

155

[27] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen

wcet benchmarks: Past, present and future. In OASIcs-OpenAccess Series in Informat-

ics, volume 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[28] Damien Hardy and Isabelle Puaut. Wcet analysis of multi-level non-inclusive set-

associative instruction caches. In RTSS, 2008,IEEE.

[29] Josiah D. Hester, Kevin M. Storer, and Jacob Sorber. Timely execution on intermit-

tently powered batteryless sensors. In Proceedings of the 15th SenSys, 2017.

[30] Matthew Hicks. Clank: Architectural support for intermittent computation. In Pro-

ceedings of the 44th ISCA, 2017.

[31] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache analysis

for wcet estimation. In 17th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, pages 203–212, 2011.

[32] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. QUICKRECALL: A low

overhead HW/SW approach for enabling computations across power cycles in tran-

siently powered computers. In International Conference on VLSI Design, 2014.

[33] Maeng Kiwan and Lucia Brandon. Supporting peripherals in intermittent systems with

just-in-time checkpoints. In Proceedings of the 40th PLDI, 2019.

[34] Jan C Kleinsorge, Heiko Falk, and Peter Marwedel. A synergetic approach to accurate

analysis of cache-related preemption delay. In Proceedings of the ninth ACM interna-

tional conference on Embedded software, pages 329–338. ACM, 2011.

[35] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah Hester, and

Przemyslaw Pawelczak. Time-sensitive intermittent computing meets legacy software.

In the 25th ASPLOS, 2020.

[36] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah Hester, and

Przemysław Pawełczak. Time-sensitive intermittent computing meets legacy software.

156

In International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS, 2020.

[37] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo

Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related

preemption delay in fixed-priority preemptive scheduling. IEEE Transactions on Com-

puters, 47(6):700–713, 1998.

[38] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing

analyzer for embedded software. Science of Computer Programming, 69(1-3):56–67,

2007.

[39] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy Suhen-

dra. Timing analysis of concurrent programs running on shared cache multi-cores.

Real-Time Systems, 48(6):638–680, 2012.

[40] Fang Liu and Yan Solihin. Understanding the behavior and implications of context

switch misses. ACM Transactions on Architecture and Code Optimization (TACO),

7(4):21, 2010.

[41] Songran Liu, Wei Zhang, Mingsong Lv, Qiulin Chen, and Nan Guan. Latics: A low-

overhead adaptive task-based intermittent computing system. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2020.

[42] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. Inter-

mittent computing: Challenges and opportunities. In Summit on Advances in Program-

ming Languages, SNAPL, 2017.

[43] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution

model for intermittent systems. In Proceedings of the 36th PLDI, 2015.

[44] Will Lunniss, Sebastian Altmeyer, Claire Maiza, Robert Davis, et al. Integrating cache

related pre-emption delay analysis into EDF scheduling. In Real-Time and Embedded

157

Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pages 75–84. IEEE,

2013.

[45] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on

static cache analysis for real-time systems. Leibniz Transactions on Embedded Sys-

tems, 3(1):05–1, 2016.

[46] Mingsong Lv, Yi Wang, Guan Nan, and Yu Ge. Combining abstract interpretation

with model checking for timing analysis of multicore software. In Proceedings of the

31st IEEE Real-Time Systems Symposium, RTSS 2010, San Diego, California, USA,

November 30 - December 3, 2010, 2010.

[47] Kaisheng Ma, Yang Zheng, and et al. Architecture exploration for ambient energy

harvesting nonvolatile processors. In IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), 2015.

[48] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent Execution with-

out Checkpoints. In ACM International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA, 2017.

[49] Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient

intermittent computing. In USENIX Symposium on Operating Systems Design and

Implementation, OSDI, 2018.

[50] Kiwan Maeng and Brandon Lucia. Adaptive low-overhead scheduling for periodic

and reactive intermittent execution. In ACM Conference on Programming Language

Design and Implementation, PLDI, 2020.

[51] Amjad Yousef Majid, Carlo Delle Donne, and et al. Dynamic task-based intermit-

tent execution for energy-harvesting devices. ACM Transactions on Sensor Networks

,TOSN, 2020.

[52] Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estimation

of cache-related preemption delay. In Proceedings of the 1st IEEE/ACM/IFIP inter-

158

national conference on Hardware/software codesign and system synthesis, pages 201–

206. ACM, 2003.

[53] Harini Ramaprasad and Frank Mueller. Bounding preemption delay within data cache

reference patterns for real-time tasks. In Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2006, pages 71–80.

[54] Harini Ramaprasad and Frank Mueller. Tightening the bounds on feasible preemption

points. In Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE International,

pages 212–224.

[55] Harini Ramaprasad and Frank Mueller. Bounding worst-case data cache behavior by

analytically deriving cache reference patterns. In Real Time and Embedded Technology

and Applications Symposium (RTAS), pages 148–157, 2005.

[56] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: system support for long-

running computation on rfid-scale devices. In International conference on Architec-

tural support for programming languages and operating systems, ASPLOS, 2011.

[57] Jan Reineke, Sebastian Altmeyer, Daniel Grund, Seungyong Hahn, and Claire Maiza.

Selfish-lru: Preemption-aware caching for predictability and performance. In Real-

Time and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th,

pages 135–144.

[58] Emily Ruppel and Brandon Lucia. Transactional concurrency control for intermittent,

energy-harvesting computing systems. In ACM Conference on Programming Language

Design and Implementation, PLDI, 2019.

[59] Joshua San Miguel, Ganesan, and et al. The eh model: early design space exploration

of intermittent processor architectures. In IEEE/ACM International Symposium on Mi-

croarchitecture ,MICRO, 2018.

159

[60] Rathijit Sen and YN Srikant. Wcet estimation for executables in the presence of data

caches. In Proceedings of the 7th ACM & IEEE international conference on Embedded

software, pages 203–212. ACM, 2007.

[61] Tyler Sondag and Hridesh Rajan. A more precise abstract domain for multi-level

caches for tighter wcet analysis. In Real-Time Systems Symposium (RTSS), 2010 IEEE

31st, pages 395–404.

[62] Jan Staschulat and Rolf Ernst. Worst case timing analysis of input dependent data

cache behavior. pages 227–236, 2006.

[63] Jan Staschulat and Rolf Ernst. Scalable precision cache analysis for real-time software.

ACM Transactions on Embedded Computing Systems (TECS), 6(4):25, 2007.

[64] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient detection

and exploitation of infeasible paths for software timing analysis. In Proceedings of the

43rd annual Design Automation Conference, pages 358–363. ACM, 2006.

[65] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitasking real-

time systems with caches. ACM Transactions on Embedded Computing Systems

(TECS), 6(1):7, 2007.

[66] Joel van der Woude and Matthew Hicks. Intermittent computation without hardware

support or programmer intervention. In USENIX Symposium on Operating Systems

Design and Implementation, OSDI, 2016.

[67] Xavier Vera and Jingling Xue. Let’s study whole-program cache behaviour analyti-

cally. In International Symposium on High-Performance Computer Architecture, pages

175–186, 2002.

[68] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,

Tulika Mitra, et al. The worst-case execution-time problem—overview of methods and

160

survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3):36,

2008.

[69] Jun Yan and Wei Zhang. Wcet analysis for multi-core processors with shared l2 in-

struction caches. In Real-Time and Embedded Technology and Applications Sympo-

sium, 2008. RTAS. IEEE, pages 80–89.

[70] Kasim Sinan Yildirim, Amjad Yousef Majid, and et al. Ink: Reactive kernel for tiny

batteryless sensors. In ACM Conference on Embedded Networked Sensor Systems,

SenSys, 2018.

[71] Wei Zhang, Fan Gong, Lei Ju, Nan Guan, and Zhiping Jia. Scope-aware useful cache

block analysis for data cache related preemption delay. In Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2017 IEEE.

[72] Wei Zhang, Nan Guan, Lei Ju, and Weichen Liu. Analyzing data cache related preemp-

tion delay with multiple preemptions. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 37(11):2255–2265, 2018.

[73] Wei Zhang and Jun Yan. Accurately estimating worst-case execution time for multi-

core processors with shared direct-mapped instruction caches. In 15th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and Applications,

2009. RTCSA., pages 455–463.

[74] Zhenkai Zhang and Xenofon Koutsoukos. Precise multi-level inclusive cache analysis

for wcet estimation. In IEEE Real-time Systems Symposium, 2015.

161

