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Abstract

While several popular network architectures have been developed and widely used,

it remains an important topic to design effective and efficient convolutional neural

network (CNN) architectures for visual recognition. The design of reliable CNN ar-

chitectures faces three main challenges, including how to reduce the computational

cost, how to improve the accuracy, and how to enhance the robustness against ad-

versarial attacks. In this thesis, we study the design of reliable CNN architectures

for visual recognition.

In Chapter 1, we review some common CNN architectures and their design meth-

ods for visual recognition, and discuss contribution and organization of this thesis.

In Chapter 2, we present a detachable second-order pooling network to improve

the performance of first-order CNNs in image classification while keeping the same

computational cost at testing stage. In Chapter 3, we propose to train deep CNNs

with a learnable sparse transform (LST), which learns to convert the input features

into a more compact and sparser domain together with the CNN training process.

The proposed LST is more effective in reducing the spatial and channel-wise feature

redundancies than the conventional Conv2d, and it can be efficiently implemented

with existing CNN modules for seamless training and inference. We also present a

hybrid LST-ReLU activation to enhance the robustness of the learned CNN models.

In Chapter 4, we further improve LST to faithfully build CNNs for visual recogni-

tion. The proposed LST v2 employs hierarchical depth-wise separable convolution
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to allow incomplete yet flexible expansion. LST v2 can achieve comparable or even

higher accuracy than LST-Net in a wide range of visual recognition tasks. Finally, in

Chapter 5, we study the application of LST to adversarial attacks. A robust convo-

lutional layer with multiple kernels, namely RConv-MK, is proposed to improve the

robustness of LST against various types of image corruptions and manually designed

adversarial attacks.

In summary, in this thesis we present four reliable CNN architecture design meth-

ods, including a detachable second-order pooling network, a learnable sparse trans-

form and its improved version, and a robust convolutional layer. Extensive exper-

iments demonstrate their effectiveness and efficiency for accurate, lightweight and

robust visual recognition.

Keywords: Convolutional neural network, architecture design, learnable sparse

transform, visual recognition, knowledge distillation, adversarial attack
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Chapter 1

Introduction

Convolutional neural network (CNN) has been discovered effective in numerous vi-

sual recognition tasks. Thanks to the continuous development of parallel processing

devices, the need for reliable CNNs has never stopped in the trend of deep learning.

Bolstered by the requirements of numerous applications, such as healthcare, enter-

tainment, security monitoring, environmental protection, and autonmous driving, it

has become one of the most heated topics today how to design effective and efficient

CNN architectures.

Design of reliable CNN architectures is confronted with three main challenges.

First, compared with conventional methods depending on handcrafted features, CNNs

always require more parameters and overhead. Though more effective, CNN based

methods require more hardware resources for data storage and computation in prac-

tice. Besides, large bandwidth technologies are expected to reduce latency of data

communication. Both clearly increase the hardware cost. Second, performance of

CNNs can still be improved in many applications to reduce waste and protect the

environment (e.g ., to reduce release of carbon dioxide), to gain profit, to boost pro-

duction, etc. One should note that the performance gap between CNNs and human

beings still remains large in many cases. Third, CNNs are vulnerable under adver-

sarial attacks. A well-trained CNN model can be easily fooled to produce wrong
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outputs by deliberately constructed inputs that are imperceptible to human beings.

Unfortunately, there is little discussion on this issue from the perspective of CNN

architecture.

In this thesis, we study reliable CNN architecture design for visual recognition.

Here, we are convinced that the reliablity of CNN architecture design has at least

two meanings. First, it refers to higher accuracy or lower error rates in the fields of

computer vision and pattern recognition. Second, we also focus on the robustness

of CNN architectures when we are confronted with various types of noises in the

real world as well as some deliberately designed attacks. To tackle the above three

challenges, we are motivated to identify the drawbacks of existing methods to re-

duce the cost while boosting the performance. In addition, we discuss reliable CNN

architecture under adversarial attacks. The remainder of this section is organized

as follows. In Section 1.1, we brief common components of CNNs and some mod-

ern CNN architectures. In Section 1.2, we discuss some existing CNN architecture

design methods for visual recognition. Finally, we summarize our contributions and

the structure of this thesis in Section 1.3.

1.1 Overview of Convolutional Neural Network

Architectures

1.1.1 2D convolutional layer

The 2D convolutional layer (Conv2d) is the core building block of a CNN. Given

a set of hyper-parameters, including kernel size, input channels, output channels,

stride, padding, dilation, etc., the convolutional layer extracts features from a 3D

tensor. Conv2d is found redundant according to its definition. To save parameters

and overhead of Conv2d layers, group convolution [90] (GConv) and PWConv [105]

are popularly employed in the design of bottlenecks. PWConv employs a 1� 1 win-
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dow, performing a linear combination of the input from all channels. It is often

used to align a set of feature maps with different number of channels [154]. GConv

assumes that the input features can be decomposed into several groups along the

channel dimension, where features from different groups are independent. A success-

ful application of GConv is ResNeXt [186]. DWConv [68] is a special case of GConv

when there is only one input channel per group. It is widely used to build lightweight

models for mobile devices, such as MobileNet [68, 149]. In addition, some proposed

to improve Conv2d layers for better feature extraction. Bello et al . [7] introduced

a novel two-dimensional relative self-attention mechanism to augment conventional

Conv2d. Hu et al . [69] adaptively determined aggregation weights based on the

compositional relationship of local pixel pairs for more effective extraction of spatial

information. Wang et al . [165] factorized 2D self-attention into two 1D self-attentions

and developed a position-sensitive self-attention to largely reduce both overhead and

number of parameters. Chen et al . [28] designed dynamic convolution to adaptively

generate convolution kernels based on image contents.

1.1.2 Pooling layer

A pooling layer performs dimensionality reduction of spatial cues. In this way, it

helps to reduce spatial size of features for faster computation, lower down the risk

of overfitting, and increase a model’s invariance to spatial transform, such as trans-

lation, rotation and scaling. Max pooling and average pooling are the most popular

pooling layers to build up CNNs.

A global pooling layer performs a more extreme type of dimensionality reduc-

tion, removing both height and width dimensions. A global pooling method can

be roughly divided into two categories, including first- and high-order global pool-

ing ones. First-order global pooling methods apply a unary operator to each fea-

ture map and concatenate all outputs as the final output. Lin et al . [105] first
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performed Global Average Pooling (GAP) in a network by averaging final convo-

lutional features to obtain a vector descriptor. Thanks to this design, the cost of

high-dimensional dense layers in networks such as AlexNet [90] and VGGNet [151]

can be largely reduced. GAP is widely adopted in mainstream CNN architectures,

including ResNet [59], DenseNet [72], ResNeXt [186], MobileNet [68], and Incep-

tion networks [155, 81, 156]. Statistically, GAP summarizes the first-order statistics

(i.e., mean) of high-level convolutional features, neglecting the higher-order statistics.

High-order global pooling algorithms aim at more discriminative image representa-

tion. Most works in this category exploit pairwise correlations between channels

while some others, e.g ., [11] , further consider higher-order interactions of features.

Bilinear CNN (B-CNN) [109, 110] and DeepO2P [82] are pioneering works. Both

of them compute covariance matrix (or second-order moments) as the global image

representations. MPN-COV [100] and its fast version [99] (i.e., iSQRT-COV) have

reported compelling performance on large-scale visual recognition and fine-grained

classification, significantly outperforming the first-order networks.

1.1.3 Non-linear activation layer

In CNNs, an activation function decides whether a neuron should be activated or not.

In this way, non-linearity is introduced to the network, which is believed as one of the

most critical factors to the success of a CNN model on different computer vision tasks.

ReLU [131] is a pioneer and the most popular non-linear activation function in deep

CNN. It is a simple yet highly effective segmented function, forcing the input negative

valued features to zeros and keeping only the non-negative features. Parametric

ReLU [58], leaky ReLU [169], ELU [31] and SELU [87] consider non-negative features

by allowing adaptive negative activation with learnable parameters. Swish [140] is

defined as the multiplication of input features and their sigmoid activation, working

better than ReLU on deeper models across several challenging datasets. ReLU6 [68]
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is a modification of ReLU where an upper limitation of the activation is set to 6 to

increase robustness of a lightweight model in low-precision computation.

1.1.4 Modern CNN architectures

We briefly review the development of modern CNN architectures in recent years.

Alex et al . [90] were the first to train a deep convolutional neural network, namely

AlexNet, and obtained considerably better results than the previous state-of-the-art

on ImageNet [35]. Simonyan and Zisserman [151] discovered that increase of depth

improves performance of CNNs using an architecture with 3 � 3 convolution filters

in the large-scale image recognition. Inception architectures [155, 81, 156, 154] are

carefully designed to increase the depth and width of the network while keeping the

computational cost constant by using distinct filters and 1 � 1 convolutions. To

make training easier and improve generalization, He et al . [59] proposed a milestone

residual unit and used it to build hundreds or even one thousand layers of neural

networks, called ResNet, where both forward and backward signals can be directly

propagated from one block to others. Zagoruyko et al . [198] developed wide resid-

ual networks by simply decreasing depth and increasing width of residual networks,

which demonstrate far superiority over the thin and very deep counterparts on image

classification. Xie et al . [186] constructed ResNeXt by repeating a building block that

aggregates a set of homogeneous and multi-branch formed transformations with the

same topology, achieving clear performance boost on image classification under the

restricted condition of maintaining complexity of ResNet. Gao et al . [48] constructed

hiearchical residual-like connections within one single residual block to build CNNs

called Res2Net, which demonstrated consistent performance gains on a wide range of

visual recognition tasks. Recently, there is a growing interest in building light weight

deep neural networks for resource limited devices, such as smart phones, cameras,

drones, etc. These architectures feature fewer parameters and lower overhead but
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they are designed to achieve competitive results on many visual recognition tasks,

e.g ., image classification, object detection and segmentation. Some representative

works include MobileNet [68, 149, 67], ShuffleNet [204, 119], FBNet [179], HBONet

[91], ESPNet [127, 128], DiCENet [126], EfficientNet [159], TinyNet [54], etc.

1.2 Existing CNN Architecture Design Methods

for Visual Recognition

1.2.1 Knowledge distillation

Knowledge distillation is an effective approach to train powerful CNNs. It transfers

the knowledge from more powerful entities into weaker ones for inference [64, 52].

Hinton et al . [64] proposed to transfer knowledge from an ensemble of acoustic models

into a smaller and distilled one for easier deployment. Gupta et al . [52] transferred

representations from a well labeled domain to an unseen domain. Yim et al . [193]

introduced a sequential flow between layers to distill knowledge. Furlanello et al . [46]

trained student models parameterized identically to their teachers so that students

can even outperform their teachers in some small scale vision tasks. Guo et al . [51]

treated all CNNs as student models and generated soft target as supervisions during

training by ensembling predictions of all student models and distorting the input

images. Zhang et al . [205] leveraged a small trusted set to estimate exemplar weights

and pseudo label for noisy data so that they can be reused for supervised training of

neural networks. Li et al . [93] exploited gradient cues for knowledge distiallation and

jointly trained both plain CNNs without shortcuts and their ResNet counterpart to

deploy shortcut-free models. In this way, entire memory usage can be greatly reduced

during inference.

While existing knowledge distiallation methods usually rely on a pre-trained,

high performance teacher network, and skillful design of metrics, in this thesis, we
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introduce a simple yet effective regularization term by applying the same criterion

to both student and auxiliary teacher networks, so that knowledge distiallation can

be induced with no extra metric.

1.2.2 Self-attention modules

Self-attention mechanism enables effective capture and fusion of global cues in deep

CNNs. In recent years, we have witnessed a growing interest in the development

of self-attention modules to improve conventional Conv2d on various visual recogni-

tion tasks. Wang et al . [170] proposed non-local neural network as a flexible building

block that fuses both non-local and local information for intermediate layers of CNNs.

SENet [71] constructs reliable features by fusing both spatial and channel-wise in-

formation within local receptive fields. CBAM [178] improves spatial attention of

SENet by considering two types of local statistics. GE framework [70] aggregates

feature responses from a large spatial extent and redistributes the pooled information

to local features for better performance. GALA [111] extends SENet by combining

visual saliency. Li et al . [102] exploited multiple branches with different kernel sizes

for information fusion. Cao et al . [16] designed a simplified yet effective way to model

global contexts, which generally outperforms [170, 71]. LCT block [148] enhances

the performance of SENet on image recognition and object detection by capturing

dependencies between channels and linearly transforming the global context of each

channel. Wang et al . [168] developed a local cross-channel interaction method free

of dimensionality reduction and validated its efficiency and efffectiveness. Recently,

DCA-Net [120] interconnects adjacent attention blocks to boost attention modules.

While self-attention modules have obtained impressive results on visual recogni-

tion tasks, they work as a patch of conventional Conv2d, with the need for additional

parameters and computational overhead during both training and inference stages.

In this thesis, we introduce learnable sparse transform as an alternative of conven-
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tional Conv2d to internally perform fusion of channel and spatial cues, while we can

achieve comparable or even better results on a wide range of visual recognition tasks.

1.2.3 CNN architecture design in frequency domain

Compared with spatial domain, frequency domain features compactness and sparsity

for reliable visual recognition. We review CNN architecture design in frequency do-

main in three directions. First, Fourier transforms and the inverse are employed to

compute convolutions at every convolutional layer, similar to many classical harmonic

analysis works, e.g . discrete cosine transform [174] and discrete wavelet transform

[62, 145, 20]. Some representative works can be found in [146, 135]. Even though

methods of this category are more effective in feature extraction, they suffer from

intensive compuatation due to back-and-forth transformations. Second, lightweight

modules are developed based on frequency transforms and inserted into existing

CNN architectures to improve conventional Conv2d. Qin et al . [136] designed a

multi-spectral channel attention module to perform pre-processing in the frequency

domain. Alizadeh vahid et al . [1] extended the butterfly operations from FFT algo-

rithm to a general Butterfly Transform and designed a set of criterion for channel

fusion to reduce the computational complexity of point-wise convolutions. However,

methods in this category usually require additional parameters and overhead. Third,

a specific layer is introduced before the main CNN to perform necessary computation

of given images in frequency domain. Shipitsin et al . [150] learned to select neces-

sary frequencies of input images from the frequency domain for its subsequent CNN

model, leading to clear performance boost on classification, segmentation, and other

low-level computer vision tasks. Yang et al . [191] performed domain adaption on

semantic segmentation just using a Fourier Transform and its inverse and achieved

state-of-the-art performance on several benchmarks. Works in this line must be

aware of the input image size and they use kernels of the same size, leading to two
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main drawbacks in real applications: (a) the extra parameters account for a large

proportion of the total parameters of a CNN, since the input image size is usually of

high resolution; (b) it is not flexible to deal with input images of different size.

In this thesis, we introduce reliable CNN architecture design in frequency domain.

Our methods basically follow conclusions of classical harmonic analysis works and

we adopt the form of the methods in the first category to save cost. Instead of using

fixed Fourier transforms and the inverse, we initialize spatial and feature transforms

as the DCT and make them fully learnable in an end-to-end training fashion.

1.2.4 Neural Architecture Search

Neural Architecture Search (NAS) [211, 212, 134, 40] is a heated direction of CNN

architecture design to automate the process of model design. By applying automated

machine learning techniques, it usually outperforms human-designed models in terms

of number of parameters, overhead and accuracy. For completeness, we briefly re-

view some representative works in this line. Early efforts sampled each architecture

from a heuristic search space via reinforcement learning [6, 211, 212] or evolutionary

algorithms [142, 141, 185] and individually trained it from scratch for performance

evaulation. Though effective, these methods were slow as they needed to evaluate a

large number of candidate architectures, which usually cost hundreds to thousands

of GPU days in total. To reduce computational cost, Cai et al . [9] explored the

architecture space based on the current network and reusing its weights for simi-

lar architectures sampled from the search space. Pham et al . [134] constructed a

large computational graph to force all architectures to share their parameters and

trained a controller to search for an optimal neural network architecture. Tan et

al . [158] considered NAS for inference on mobile devices by designing a factorized

hiearchical search space to encourage layer diversity of the network. Liu et al . [112]

formulated NAS in a differentiable manner based on continuous relaxation of archi-
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tecture representation to discover high-performance CNN architectures for various

visual recognition tasks.

In this thesis, we focus on manual CNN architecture design methods for visual

recognition. We strive to avoid performance bias caused by any explicit or implicit

architecture changes as much as possible and make our methods truly complementary

to most existing NAS approaches.

1.3 Contribution and Thesis Organization

This thesis is mainly consisted of four works we have done during the PhD study.

In the first work: We propose a novel method, namely DSoP-Net, to improve

the performance of first-order CNNs in image classification. Auxiliary branches are

carefully designed to transfer knowledge to the backbone first-order networks during

training, which are removable at the testing stage. As a result, the proposed method

leverages the advantages of second-order pooling networks while keeping similar com-

plexity to first-order networks during inference. To the best of our knowledge, this

is the first attempt to make use of higher-order statistics in knowledge distillation.

This work will be introduced in Chapter 2.

In the second work: We learn to convert the input features into a more compact

and sparser domain together with the CNN training process by training deep CNNs

with a learnable sparse transform (LST). LST can more effectively reduce the spatial

and channel-wise feature redundancies than the conventional Conv2d. It can be

efficiently implemented with existing CNN modules, and is portable to existing CNN

architectures for seamless training and inference. We further present a hybrid ST-

ReLU activation to enhance the robustness of the learned CNN models to common

types of corruptions in the input. This work will be introduced in Chapter 3.

In the third work: We develop a fast and lightweight transform with hiearchical
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DWConv (HDWConv) based on LST-Net to reduce the redundancy of the conven-

tional Conv2d. To produce a compact feature bank, we allow incomplete yet flexible

expansion so that the structure of HDWConv can be completely determined before

training. High frequency input channels are expanded more times for near-complete

expansion, while low frequency ones are expanded fewer times to save cost. In addi-

tion, we partition input channels into groups and assign one or more unique kernels

with identical initialization for better representation. This work will be introduced

in Chapter 4.

In the fourth work: We discuss the application of LST to adversarial attacks. A

novel structure, namely RConv-MK, is proposed to improve the architectural defects

of LST. It employs a set of kernels of different size and flexibly applies them to

the input features of different frequencies. It enlarges the receptive fields for low

frequency features and saves the overhead for sparse high frequency features. Besides,

we introduce a normalized soft thresholding operator to adaptively address input

samples with different corruption scales for removal of noise and trivial features in

the relevant feature domain. This work will be introduced in Chapter 5.

The remainder of this thesis is organized as follows: from Chapter 2 to Chapter

5, we introduce the above four works in order; in Chapter 6, we conclude this thesis

and present some future directions.
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Chapter 2

Detachable Second-order Pooling:

Towards High Performance

First-order Networks

In this chapter, we will study how to improve the performance of first-order CNNs in

image classification. Second-order pooling has proved to be more effective than its

first-order counterpart in visual classification tasks. However, second-order pooling

suffers from the high demand of computational resource, limiting its use in practi-

cal applications. In this work, we present a novel architecture, namely detachable

second-order pooling network, to leverage the advantage of second-order pooling by

first-order networks while keeping the model complexity unchanged during inference.

Specifically, we introduce second-order pooling at the end of a few auxiliary branches

and plug them into different stages of a convolutional neural network. During the

training stage, the auxiliary second-order pooling networks assist the backbone first-

order network to learn more discriminative feature representations. When training is

completed, all auxiliary branches can be removed and only the backbone first-order

network is used for inference. Experiments conducted on CIFAR-10, CIFAR-100 and

ImageNet datasets clearly demonstrate the improved performance of our network,

which achieves even higher accuracy than second-order networks but keeps the low
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inference complexity of first-order networks.

2.1 Introduction

Deep convolutional neural networks (CNNs) have been widely used in tackling var-

ious computer vision problems, including visual object recognition [90, 41, 207],

face recognition [74, 83, 15], person re-identification [29, 206, 190] and scene un-

derstanding [184, 96, 209], among others. Tremendous efforts have been devoted to

the design of CNN architectures for boosting performance. It is widely acknowl-

edged that deeper and/or wider networks, such as ResNet [59], Inception [154] and

ResNeXt [186], could have higher representation learning capability. However, the

increase of network depth/width will also bring more overhead and difficulties for

network deployment.

Another factor affecting the learning capability of neural networks is the pool-

ing strategy. In recent years, global second-order pooling (GSoP) networks [109,

108, 167, 100, 110, 99] have attracted a lot of attentions. By replacing the classical

global average pooling (GAP) with covariance pooling at the end of CNNs, signif-

icant improvement has been reported on large-scale visual recognition tasks. For

example, ResNet-50 with GSoP surpasses ResNet-152 [99]. The GAP [105] calcu-

lates the first-order statistics (i.e., mean) of individual channels without considering

the interactions between channels, while the global covariance pooling computes the

second-order statistics of high-level convolutional features by exploiting the pair-wise

channel correlations, leading to stronger statistical modeling capability. Though the

use of covariance matrix to represent image statistics enhances the nonlinear learning

capability of networks, the required computational complexity increases quadrati-

cally, significantly higher than its first-order counterpart.

Either increasing the width/depth of networks or employing covariance pool-
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ing will consume much more computational resources. One interesting question is

whether we can leverage the advantage of second-order pooling in the first-order net-

works while keeping the model complexity unchanged. This work attempts to solve

this challenging problem. Inspired by the knowledge distillation method [64], we

propose a novel architecture, called detachable second-order pooling network (DSoP-

Net), where the covariance pooling networks assist the first-order network to learn

more discriminative representations during training; however, during the inference

stage, the covariance pooling networks can be removed and only the trained first-

order network is deployed. The proposed DSoP-Net achieves significant performance

gains without introducing any additional cost. In particular, on the large-scale Im-

ageNet dataset [90], DSoP-Net achieves a top-1 error rate of 21.15% with a single

ResNet-50 network.

The key idea of DSoP-Net lies in that a weak pooling method (student) can learn

from stronger ones (teachers). Existing methods of this kind, such as knowledge

distillation [64, 52, 193], often explicitly minimize the discrepancy between features

produced by one or more teacher networks and the student network. The success of

such methods largely relies on a pre-trained, high performance teacher network as

well as the skillful design of metrics to measure the discrepancy so that the knowledge

can be well transferred. In contrast, in this chapter we employ a simple yet effective

regularization term by applying the same criterion used in the original first-order

pooling to the second-order one. As a result, no extra metric is needed and the

knowledge induced by covariance pooling can easily flow into the first-order network.

Figure 2.1 presents an overview of DSoP-Net. During training, auxiliary branches

are employed, each with a covariance matrix based second-order pooling and an

output header. This allows us to learn spatial information at intermediate layers

by adjusting the channel correlations with deep supervision. Once these auxiliary

branches are plugged into the backbone architecture at different stages, they actively
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Figure 2.1: The proposed auxiliary second-order pooling networks (subnetworks
within the dashed rectangular box) assist the discriminative representation learning
of the backbone first-order network. For deployment, we obtain a high-performance
first-order network by detaching the auxiliary branches.

cooperate with the first-order pooling and its corresponding output header. The

network is optimized with the loss function that is composed of the first-order output

header and all extra second-order ones. When training is completed, all auxiliary

branches are removed and only the backbone first-order network is preserved for

inference. The resulting DSoP-Net is very powerful, even outperforming its second-

order counterparts but with much lower model complexity.

The rest of the chapter is organized as follows. Section 2.2 reviews some re-

lated works. Section 2.3 and Section 2.4 introduce our methods and implementation

details, respectively. Section 2.5 shows experimental results of DSoP-Net and Sec-

tion 2.6 concludes this chapter.
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2.2 Related Work

Section 2.2.1 briefly reviews global pooling methods in the literature. Section 2.2.2

presents the use of auxiliary networks in the training of backbone network. In Sec-

tion 2.2.3, we discuss squeeze-and-excitation networks and its differences from our

DSoP-Net.

2.2.1 Global pooling

The CNN models learn discriminative features in an end-to-end manner. At the

end of the network, a global pooling of convolutional features is often performed

to represent the whole image for classification. We briefly review the first-order

pooling methods [90, 105] and the high-order ones [109, 110, 100, 108, 167, 99, 11],

respectively.

First-order global pooling methods apply a unary operator to each feature map

and concatenate all outputs as the final output. Lin et al . [105] first performed Global

Average Pooling (GAP) in a network by averaging final convolutional features to

obtain a vector descriptor. Thanks to this design, the cost of high-dimensional dense

layers in networks such as AlexNet [90] and VGGNet [151] can be largely reduced.

GAP is widely adopted in mainstream CNN architectures, including ResNet [59],

DenseNet [72], ResNeXt [186], MobileNet [68], and Inception networks [155, 81, 156].

Statistically, GAP summarizes the first-order statistics (i.e., mean) of high-level

convolutional features, neglecting the higher-order statistics.

High-order global pooling algorithms aim at more discriminative image represen-

tation. Most works in this category exploit pairwise correlations between channels

while some others, e.g ., [11] , further consider higher-order interactions of features.

Bilinear CNN (B-CNN) [109, 110] and DeepO2P [82] are pioneering works. Both

of them compute covariance matrix (or second-order moments) as the global image
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representations. MPN-COV [100] and its fast version [99] (i.e., iSQRT-COV) have

reported compelling performance on large-scale visual recognition and fine-grained

classification, significantly outperforming the first-order networks. Unfortunately,

the covariance representations are of hundreds of thousands of dimensions. In ad-

dition, computing high-order statistics is time-consuming at both training and test

stages compared to their first-order counterparts. This limits the practical applica-

tions of second-order networks, especially on resource limited devices.

Several methods have been proposed to improve the efficiency of high-order global

pooling methods. Compact Bilinear Pooling [49] compresses the full bilinear pool-

ing and achieves comparable performance with significantly reduced parameters.

In [100, 99], dimensionality reduction is performed prior to second-order pooling.

Moreover, [99] only carries out basic matrix operations suitable for GPU to speed

up. Nevertheless, these second-order based methods are still much slower than their

first-order counterparts.

2.2.2 Auxiliary networks

Recently, a few methods have been proposed to employ an auxiliary network for

backbone network training. To the best of our knowledge, the Inception network ar-

chitecture [155] is among the first works that utilize auxiliary branches with carefully

crafted design for classification and detection tasks. Similarly, knowledge distillation

in deep CNNs is an effective approach to transferring the knowledge from more pow-

erful models into weaker ones for inference [64, 52]. Hinton et al . [64] proposed to

transfer knowledge from an ensemble of acoustic models into a smaller, distilled one

for easier deployment. Gupta et al . [52] transferred the learned representations from

a well labeled domain, obtaining large performance boost by learning rich represen-

tations in the unseen domain. Recently, Yim et al . [193] introduced a sequential flow

between layers to distill knowledge. Furlanello et al . [46] trained student models pa-
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rameterized identically to their teachers so that students can even outperform their

teachers in some small scale vision tasks.

2.2.3 Squeeze-and-excitation networks

Based on the prior that it is important to fuse both spatial and channel-wise informa-

tion at each layer, a lightweight block, called squeeze-and-excitation (SE) Networks

(short for “SE-Net” in the rest of this chapter), has been recently developed in [71].

It first introduces extra GAP layers followed by convolutional and non-linear acti-

vation layers. Then, the spatial features are adaptively adjusted along the channel

dimension according to the results computed from the last step. Though SE-Net can

improve much the performance, computation of the correlations is required so that

the extra layers cannot be removed in the inference stage.

We argue that it is possible to design a detachable version of SE-Net which can

achieve equivalent or even better performance. Actually, the re-calibration opera-

tion at the last step of the original SE block can be approximated and replaced by

incorporating additional gradients computed based on channel correlations during

training, which are not required and can be omitted in inference. In this chapter,

DSoP-Net is proposed as the first attempt to reach this goal.

2.3 Proposed Method

Section 2.3.1 introduces our DSoP-Net in detail, and Section 2.3.2 presents how we

solve the issue of dimensionality reduction in second-order pooling methods.

2.3.1 DSoP-Net

Inspired by the works of knowledge distillation [64, 193], we propose to improve the

first-order pooling network without introducing extra parameters and computational

cost during inference. Our idea is to transfer the knowledge of second-order pool-
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ing networks (teachers) to the first-order pooling network (student) in the training

stage, while the teacher networks can be detached from the student in the inference

stage. To achieve this goal, existing knowledge distillation frameworks often em-

ploy one or more metrics to properly measure the discrepancy between the output

of student and teacher networks in the total loss; however, existing metrics, such

as p-norm, Kullback-Leibler (KL) divergence, Jensen-Shannon (JS) divergence and

Wasserstein divergence, are not suitable to directly measure the distance between

first- and second-order pooling outputs.

We propose a simple yet effective solution without the need of extra metrics

required in knowledge distillation methods. The auxiliary branch networks are in-

troduced and attached to the first-order pooling network to form a multiple output

network, where all outputs are identical to the original output of the first-order net-

work in one task. This allows us to reuse the same criterion, e.g ., cross-entropy

loss in the classification task, to measure the distance between output of any aux-

iliary branch and the label. By summing the losses of auxiliary branches into the

total loss, knowledge and expertise of the teacher networks can be taught to the stu-

dent network by computing the gradients of auxiliary branches w.r.t. the first-order

network.

To clearly illustrate the structure of DSoP-Net, we begin with the structure of

an auxiliary branch designed in DSoP-Net, followed by the total loss and some dis-

cussions.

19



(a) A normal first-order pooling network

(b) A first-order pooling network with the l -th layer modified as a squeeze-and-excitation
block [71]

(c) DSoP-Net with an auxiliary branch plugged after the l -th layer

Figure 2.2: Comparison of back propagation at the l -th layer of a first-order pooling network with different architectures.
“`” stands for element-wise addition and “b” stands for channel-wise multiplication between a scalar and its corresponding
feature map in back propagation. y1l denotes the output of the squeeze-and-excitation block related to the l -th layer.
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Structure of an auxiliary branch

Denote by yl the output of the l -th layer of the backbone model. The i -th auxiliary

branch in DSoP-Net is made up of three parts, including a number of convolution

and non-linear activation layers Si
a, a covariance-based second-order pooling layer

P i
a, and task-dependent output Oi

a (please refer to Figure 2.1). Before introducing

the general case of auxiliary branches, we first discuss the case when there is only

one auxiliary branch inserted after the l -th layer during training, as shown in Figure

2.2(c).

The first part of our auxiliary branch consists of convolutional layers and non-

linear activation layers Sa
1, which are used to extract features from yl for second-

order pooling. We reuse the building block of the first-order pooling network, such as

bottlenecks of ResNet [59] or its variants [186, 198]. No down-sampling operation is

performed so that the output of this part has the same height and width as those of yl

but the channel number can be determined as a hyper-parameter. If we train DSoP-

Net without this part in the auxiliary branch, there is a clear performance drop under

the same experimental settings. This is because the intermediate features, especially

those of layers closer to the input, are not discriminative enough to fulfill a task.

The second part of our auxiliary branch is a covariance matrix based second-order

pooling layer Pa. The covariance matrix describes the channel correlations of the

output of Sa. The element (i,j ) of the covariance matrix is obtained by computing

the inner production of the i -th and the j -th channels after they are vectorized.

Once the covariance matrix is ready, we proceed to normalization, such as matrix

logarithm [3] and matrix power [100, 99], etc. The upper- or lower-triangular matrix

of the results is re-arranged to form a vector, regarded as the output of the second

part.

1Superscript is omitted as there is only one branch in this case.
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The third part is to produce task-dependent output Oa. It can be easily adapted

from the corresponding structure in the backbone model. Since in this work we focus

on the classification task, we leverage a fully-connected layer as a linear classifier.

Meanwhile, it allows us to reuse the cross-entropy loss in classification tasks to effec-

tively update the weights of an auxiliary branch in DSoP-Net during training. The

weights of the l -th layer can be updated by minimizing the loss of the branch and

the loss of the backbone first-order pooling network together. From the perspective

of back propagation, the gradients related to channel correlations in the branch are

merged into the gradients in the first-order pooling network.

The total loss

In the general case, we suppose that there are N auxiliary branches plugged into a

first-order pooling network during training. Let B1
a, . . . ,BN

a denote these branches in

order as shown in Figure 2.1. It always holds that Bi
a is inserted closer to the input

than Bj
a in DSoP-Net, @i   j, i, j � 1, . . . , N . Let L denote the loss computed for

the original output of the backbone model O. O1
a, . . . ,ON

a are the outputs of the

auxiliary branches, sharing the same shape and meaning as O. We employ the same

criterion to compute the losses of auxiliary branches, L1
a, . . . ,LN

a .

We sum up L1
a, . . . ,LN

a together with L as the total loss of the DSoP-Nets to

minimize:

LDSoP�Net � αL�
Ņ

i�1

βiLi
a, (2.1)

where α and tβiuNi�1 are weights used to balance the contribution of each term. We

set α � β1 � . . . � βN � 1 by default except stated otherwise.

For any layer of the backbone model between insertion point of Bk (included)

and the insertion point of Bk�1 (excluded), its gradients are determined by outputs
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of the original first-order pooling and all the auxiliary branches inserted after that

layer. The gradients of the l -th layer of the backbone model can be written as

BLDSoP�Net

Byl
� BpαL�°N

i�k βiLi
aq

Byl
, (2.2)

where yl is the output of the l -th layer. For those outputs of branches plugged before

the specific layer, it can be clearly observed that they are irrelevant to the update of

the l -th layer’s weights.

It should also be noted that a layer in the backbone model will not be updated

with additional second-order statistics if there is no auxiliary branch inserted after

that layer. In practice, we always insert the last auxiliary branch BN right before the

first-order pooling layer to make sure that each layer of the backbone model (except

the original pooling layer and its classifier) can acquire extra cues during training.

After training is completed, we remove all auxiliary branches so that the first-

order network has the same parameters and computational overhead as it originally

has during test.

Discussions

Once optimized, DSoP-Net can work without extra parameters and computation of

channel-information in auxiliary branches. As we will see in the section of experi-

mental results, DSoP-Net exhibits highly competitive performance with second-order

pooling networks. This leads to an interesting question: how does channel-based in-

formation contribute to a CNN model during training and test?

It is important to fuse spatial and channel-based cues of a CNN model to boost

model performance. As the channel-based cues can be directly computed from the

spatial responses, optimizing spatial responses w.r.t. channel-based information can

improve the latter in return. Therefore, there is no need to explicitly compute

channel-based cues during test as the channel-based cues have been determined once
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the spatial responses are given. In other words, when we jointly optimize the spatial

and channel-based cues during training, the spatial cues can be further enhanced.

It is critical to ensure that the backbone network used for training is equivalent to

the one used for testing after we detach all the auxiliary branches from it. When two

CNNs have the same weights and the same computational graph, they will obtain

the same output for the same input. As detaching the branches does not affect

the value of any weight, all weights of DSoP-Net remain unchanged in the testing

stage. As for the computational graph, though all auxiliary branches are detached,

no operations are removed or added in the computational graph of the remained

DSoP-Net. Therefore, the entire route from the input to the desired output O is the

same before and after the detachment. The DSoP-Net used for training is equivalent

to the one used for testing.

To further explain the detachable property of DSoP-Net, in Figure 2.2 we compare

DSoP-Net with the original first-order pooling network and SE-Net [71] from the

perspective of back propagation. One can see that gradients at the l -th layer of the

original first-order pooling network are computed only w.r.t. the original loss L. In

contrast, gradients obtained at the l -th layer of both DSoP-Net and SE-Net can be

written as the weighted summation of two terms corresponding to the spatial and

channel-based information. In the dash-dotted rectangle, it can be observed that

the weight of one term in SE-Net is partially determined by the output of the other

one according to the definition of channel-wise multiplication. However, weights of

both terms in DSoP-Net are independent to each other. They are pre-defined by

the relative contributions of L and La in the total loss, which is concise and easy

to compute. It remains unsolved in [71] whether the channel-wise information plays

a more important role than the spatial information as an SE block can be hardly

partitioned for in-depth study. With DSoP-Net, however, we are able to unveil that

it is merely important to explicitly compute channel-wise information during test
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when the spatial information is well learned. It can be seen that at the test stage

DSoP-Net can be regarded as a special SE-Net whose channel-wise information is

always trivial, e.g ., 1s. Besides, it can be found from the experimental results in

Section 2.5 that DSoP-Net can achieve equivalent or even better performance than

SE-Net.

2.3.2 Progressive supervised dimensionality reduction

The output feature dimension of covariance matrix based second-order pooling method

is proportional to the square of input channels. As a result, dimensionality reduc-

tion (DR) is required prior to a second-order pooling layer to save computational

overhead and prevent over-fitting. However, a large channel reduction ratio often

leads to significant performance drop. The DR operator in [100, 99], for example,

consists of a 1�1 convolution, followed by BN and ReLU layers. When it reduces

the channel number from 2048 to 64 so that the dimension of second-order represen-

tation is comparable to that of the vanilla ResNet-50 model (with GAP) at 2K -d,

the performance gain almost fades out while it costs 24% more inference time to

perform GSoP. Clearly, it is of vital importance to develop a compact yet effective

DR operator.

In this chapter, we propose a compound DR operator which consists of a sequence

of lightweight DR operators, called progressive supervised dimensionality reduction

(PSDR). PSDR shares the same design principle of DSoP. Their main difference lies

in where they locate in a CNN model. A CNN model can be regarded as a multi-step

transform that maps its input domain to the desired output domain. Both PSDR

and DSoP aim to introduce the second-order statistics from the detachable branches

to actively guide and improve the learning of each step, i.e., they both exploit the

second-order statistics. A straight of M intermediate layers are created for PSDR

during training. Each intermediate layer gently reduces the channel to some extent
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without decreasing the performance, and all these layers work together to reduce

the channel to the desired dimension. In addition, we incorporate auxiliary branches

to better transfer the expertise and knowledge in high-dimensional domain to low-

dimensional domain at all intermediate layers. Specifically, an auxiliary branch is

inserted after each intermediate layer during training, and there are M auxiliary

branches B1, . . . ,BM . Similar to B1, . . . ,BN , each auxiliary branch used in PSDR

is composed of three parts. The first part is formed by a 1 � 1 convolutional layer

followed by batch normalization and non-linear activation layer, e.g . ReLU, reducing

the given number of channels to the desired number. We reuse the covariance matrix

based second-order pooling layer to construct the second part of an auxiliary branch

in PSDR. The third part is built to produce task-dependent output, which can borrow

from the corresponding layers of the backbone model.

Let P1
a, . . . ,PM

a denote the second part of an auxiliary branch in PSDR. We denote

the output of auxiliary branches by O1
a, . . . ,OM

a , sharing the same form and meaning

as the original output O. As the same criterion is adopted to measure these output,

we can obtain their corresponding losses J 1
a , . . . ,JM

a . All these extra losses are

summed up with the original loss J to minimize. Thus, the total loss function of

PSDR can be written as

LPSDR � λJ �
M̧

i�1

γiJ i
a , (2.3)

where λ and tγiuMi�1 are scalars used to balance the contribution of each term. By

default, λ � γ1 � . . . � γM � 1.

Figure 2.3 compares a direct DR operation with the proposed PSDR. Before the

second-order pooling layer, the direct DR operation takes only one step to reduce

2048 channels to 64, running the risk of severe information loss in the output O.

In contrast, it takes four more steps with PSDR. One can see that on the right-
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(a)

(b)

Figure 2.3: Comparison of (a) a direct DR operation and (b) our PSDR used to
reduce channels from 2048 to 64 for second-order pooling. The blue, purple and
yellow rectangles denote a 1�1 convolutional layer followed by batch normalization
and ReLU (number of channels is presented after comma), a second-order pooling
layer, and a fully-connected layer used as a linear classifier, respectively. Data shape
is formatted as height � width � channel, located next to the related arrow. Four
identical auxiliary branches (dashed rectangle) are created for PSDR during training.
Names of the output are presented in the bracket.
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hand side of Figure 2.3(b), there are 5 1�1 convolutional layers with 1024, 512,

256, 128 and 64 filters, where each layer is followed by batch normalization and

ReLU. In the dashed rectangle, four auxiliary branches are attached at the first four

steps, resulting in O1
a,O2

a,O3
a and O4

a, respectively. With the help of these branches,

channel correlations of features obtained at intermediate steps are strengthened in

the process of channel reduction.

2.4 Implementation Details

2.4.1 Architecture of DSoP-Net

It is flexible to implement our DSoP-Net with many standard architectures. In this

chapter, we implement DSoP-Net with the popular and powerful ResNet [59]. By

default, we create 4 auxiliary branches with second-order pooling and output header,

which are inserted after conv2 x, conv3 x, conv4 x and conv5 x, respectively. We

repeat the ResNet bottleneck defined at each stage for several times to set up the first

part of the auxiliary branch described in Section 2.3, where strides of convolutional

layers are fixed to 1 so that the input and output of the auxiliary layers have identical

size. We name the first part of auxiliary branches as a conv2 x, a conv3 x, a conv4 x

and a conv5 x, respectively. For example, a conv2 x is inserted after conv2 x.

For the second-order pooling method used in each auxiliary branch, we use

iSQRT-COV [99] for fast speed and reliable performance. Before the iSQRT-COV

meta-layer, we perform a DR following [100, 99] so that the number of channels is

at most 256 if necessary. This reduces the computational cost during training and

prevents potential over-fitting. In our implementation, we follow the default setting

of hyper-parameters described in [99]. We use trace based pre-normalization and 5

Newton-Schultz iterations to solve matrix power.

The ResNet-18, ResNet-34 and ResNet-50 based DSoP-Net models are presented
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in Table 2.1. The input size is 224�224�3. We use the same names for those

layers as in the original ResNet structure [59]. We use prefix “a ” to indicate the

corresponding layers in the auxiliary branches. For instance, a conv2 x is inserted

after conv2 x, and a pds2 is on top of a conv2 x. For comparison, we present the

structure of ResNet-101 in the rightmost column. We only change the stride of

convolutional layers in conv5 x from 2 to 1 so that the output size is 14�14. Let us

consider the modified ResNet-18 model as an example. We replicate the blocks at

stage2�stage5 and accordingly put them in the auxiliary branches. We plug a direct

DR layer to reduce the channel number to 256 right before the second-order pooling

operation. However, values obtained after a conv2 x�a conv4 x are directly fed into

a pds2�a pds4 without DR, respectively. The majority of extra parameters come

from the dense layers in a pds2�a pds5 as the dimension of image representation of

the auxiliary branches increases from 2K to 32K.

The training of DSoP-Net costs more than twice the time than training its back-

bone model with the same experimental configuration. The extra time comes from

two parts: auxiliary branches and second-order pooling layers. As the total number

of convolutional layers in our auxiliary branches are by default the same as that of

the backbone model, the auxiliary convolutional layers roughly double the training

time. The extra training time costed by the second-order layers depends on the

number of auxiliary branches. For example, with DSoP-Net for ImageNet, it takes

approximately 74, 97, and 158 hours to train a ResNet-18, ResNet-34 and ResNet-50,

respectively.
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Table 2.1: DSoP-Net with modified ResNet architecture. The input image size is 224�224�3. 1st- and 2nd-PDS are short
terms for 1st- and 2nd-order pooling, and dense layer and softmax, respectively. Figures in bracket indicate kernel size and
number of channels used for pooling.

Layer Name Output Size 18-layer 34-layer 50-layer 101-layer

conv1 112�112 7�7, 64, stride 2

3�3, max pool, stride 2

conv2 x 56�56 �
3 � 3, 64

3 � 3, 64

�
� 2

�
3 � 3, 64

3 � 3, 64

�
� 3

�
�� 1 � 1, 64

3 � 3, 64

1 � 1, 256

�
��� 3

�
�� 1 � 1, 64

3 � 3, 64

1 � 1, 256

�
�� times3

a conv2 x 56�56

�
3 � 3, 64

3 � 3, 64

�
� 2

�
3 � 3, 64

3 � 3, 64

�
� 2

�
�� 1 � 1, 64

3 � 3, 64

1 � 1, 256

�
��� 3 N.A.

a pds2 1�1 2nd-PDS(64) 2nd-PDS(64) 2nd-PDS(64) N.A.

conv3 x 28�28

�
3 � 3, 128

3 � 3, 128

�
� 2

�
3 � 3, 128

3 � 3, 128

�
� 4

�
��1 � 1, 128

3 � 3, 128

1 � 1, 512

�
��� 4

�
��1 � 1, 128

3 � 3, 128

1 � 1, 512

�
��� 8

a conv3 x 28�28

�
3 � 3, 128

3 � 3, 128

�
� 2

�
3 � 3, 128

3 � 3, 128

�
� 2

�
��1 � 1, 128

3 � 3, 128

1 � 1, 512

�
��� 4 N.A.

a pds3 1�1 2nd-PDS(128) 2nd-PDS(128) 2nd-PDS(256) N.A.
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conv4 x 14�14

�
3 � 3, 256

3 � 3, 256

�
� 2

�
3 � 3, 256

3 � 3, 256

�
� 6

�
�� 1 � 1, 256

3 � 3, 256

1 � 1, 1024

�
��� 6

�
1 � 1, 256

3 � 3, 256 1 � 1, 1024

�
� 23

a conv4 x 14�14

�
3 � 3, 256

3 � 3, 256

�
� 2

�
3 � 3, 256

3 � 3, 256

�
� 2

�
�� 1 � 1, 256

3 � 3, 256

1 � 1, 1024

�
��� 13 N.A.

a pds4 1�1 2nd-PDS(256) 2nd-PDS(256) 2nd-PDS(256) N.A.

conv5 x 14�14

�
3 � 3, 512

3 � 3, 512

�
� 2

�
3 � 3, 512

3 � 3, 512

�
� 3

�
�� 1 � 1, 512

3 � 3, 512

1 � 1, 2048

�
��� 3

�
�� 1 � 1, 512

3 � 3, 512

1 � 1, 2048

�
��� 3

a conv5 x 14�14

�
3 � 3, 512

3 � 3, 512

�
� 2

�
3 � 3, 512

3 � 3, 512

�
� 2

�
�� 1 � 1, 512

3 � 3, 512

1 � 1, 2048

�
��� 3 N.A.

a pds5 1�1 2nd-PDS(256) 2nd-PDS(256) 2nd-PDS(256) N.A.

1st-PDS(512) 1st-PDS(2K )

GFLOPs (Train.) 7.26 9.81 13.45 10.01

GFLOPs (Test) 3.06 5.61 6.27 10.01

#Param (Train) 100.6M 110.7M 181.9M 44.5M

#Param (Test) 11.7M 21.8M 25.6M 44.5M
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2.4.2 Organization of PSDR

To balance precision and speed of PSDR, we reduce half of the channels at the first

intermediate layer in our implementation. For the rest of intermediate layers, we

introduce a decay factor δ P p0, 1q for gentle DR. The number of output channels at

an intermediate layer can be computed by

Ci
a �

#
0.5C0

a , i � 1,

tδC i�1
a u, otherwise,

(2.4)

where C0
a is the number of given feature maps for PDSR. We set δ � 0.25 in the

remaining of this chapter unless otherwise specified. For example, given C0
a=2048

feature maps, we set up 2 intermediate layers for PSDR and they are associated

with 1024 and 256 channels, respectively. Besides, we directly reduce the number of

current channels to the desired number in each auxiliary branch before we perform

second-order pooling in case of limited GPU memory.

2.5 Experiments

We evaluate the proposed method on large-scale image classification dataset Ima-

geNet, as well as CIFAR-10 and CIFAR-100 datasets. All experiments are conducted

on a machine equipped with dual Intel Xeon Gold 6136@3.0GHz CPUs, 128G DDR4

2666MHz RAM, 1T nvme m.2 SSD and 8 NVIDIA Tesla P100 GPU cards. We

implement our method by using PyTorch [133] compatible with CUDA and cuDNN.

2.5.1 Datasets

We adopt ImageNet LSVRC2012 dataset [35] with 1,000 classes for large-scale image

classification task. The dataset contains over 1.2 million images for training, 50

thousand images for validation, and 100 thousand images for testing. As labels of
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Table 2.2: Comparison of error rates (%) achieved by different methods with ResNet-
50 on ImageNet.
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the test images are not released, we follow [81, 59] and compare methods on the

validation set.

We also evaluate the generalization capability of the proposed DSoP-Net on the

CIFAR-10 dataset and the CIFAR-100 dataset [89]. Both datasets are well bal-

anced, consisting of 60,000 32�32 colour images from 10 and 100 classes, respectively.

For each dataset, 50,000 images are used for training and the remaining 10,000 are

adopted for testing.

2.5.2 Experimental Settings

We closely follow standard experimental settings on ImageNet as well as CIFAR-10

and CIFAR-100 datasets for fair comparison. Details are presented below.

Experimental setting for ImageNet. In the training phase, we first resize

each image so that its shorter side is randomly sampled on [256, 512] [154]. Then,

a fixed-size 224�224 patch is randomly cropped from the down-scaled image or its

horizontally flipped version. Finally, we normalize each patch by subtracting the

dataset mean and dividing it by the dataset standard deviation. In the testing

phase, we resize each test image so that its shorter side is 256 and a single 224�224

center crop is applied for inference. We use SGD [153] with a mini-batch of 256

for optimization and set weight decay to 1 � 10�4 and momentum to 0.9. We train

DSoP-Net from scratch for 90 epochs. Learning rate starts at 0.1, and is reduced to

0.01 and 0.001 at Epoch 30 and 60, respectively.

Experimental setting for CIFAR-10 and CIFAR-100. Standard data aug-

mentation strategy [105, 73, 71] is adopted in training, where images are horizontally

flipped at random and zero-padded on each side with 4 pixels before conducting a

random 32�32 crop. For evaluation, we report the error computed on the test images

of original size.
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2.5.3 Evaluation on ImageNet

We compare our DSoP-Net with 4 categories of competing networks, including: (1)

networks with quadratic transformation instead of just linear convolutions, such as

FBN [103] and SORT [171]; (2) vanilla ResNet-50 trained with deeper or wider

models in terms of knowledge distillation [64], which plays the role of student net-

work jointly optimized with a teacher network, e.g . a modified ResNet-50 that uses

stride=1 for all convolutional layers at stage 5, ResNet-101 and SE-ResNeXt-101;

(3) architectures developed with fixed design such as SE-Net [71], and CBAM [178];

and (4) networks that use GSoP at the network end, such as MPN-COV [100] and

iSQRT-OV [99]. We compare the results reported in the original papers for methods

in categories (1), (3) and (4). We run the methods in category (2) with PyTorch of-

ficial implementation of ResNet family models 2 and third-party 3 implementation of

SE-ResNeXt-101, with which we achieved very close results to ResNet family models

reported in [129]. Due to limited computational resources, we adapted the final size

of a random image crop to 256�256 pixels so that experiments can be conducted with

a single set of 8-way GPU server; meanwhile, we reduced the mini-batch size from

1024 to 256 for SE-ResNeXt-101 as the original setting reported in [71] is highly in

favor of the distributed training system. Accordingly, we reduced the initial learning

rate from 0.6 to 0.15. Following the settings in [100, 99], to obtain higher resolution

feature maps, we further changed the value of stride at stage 5 from 2 to 1. We use

the original ResNet-50 architecture (stride=2) and the modified one (stride=1) as

two baselines for fair comparison, and denote by ResNet-50-s2 and ResNet-50-s1 the

two baselines, respectively.

Table 2.2 compares the performance of DSoP-Net with the state-of-the-arts on

ImageNet. We have three observations articulated below. First, the proposed

2https://github.com/pytorch/vision

3https://github.com/Cadene/pretrained-models.pytorch
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ResNet-50-s1 w/ DSoP-Net achieves top-1/5 error rates at 21.15%/5.70% on Im-

ageNet, significantly outperforming all the competing methods. It is even better

than those methods that explicitly use GSoP at the network end, including MPN-

COV [100] and iSQRT-COV [99]. Second, with equivalent number of parameters

used in training, ResNet-50-s2 w/ DSoP-Net outperforms joint training with a single

deeper and/or wider teacher model. It shows that a student model is not able to

well fuse the channel correlations and the spatial information without explicit mod-

elling during training. However, it is hard to design metrics to directly measure the

discrepancy of channel correlations between the student and the teacher models. In

contrast, DSoP-Net is free of this issue and it allows us to easily transfer knowledge

and expertise of second-order statistics to the student model. Third, DSoP-Net uses

the same architecture as the two baseline models during inference, making it the

most lightweight one among all competing methods. However, it can still obtain

equivalent or even better performance than the heavier models, such as SE-Net [71].

We also study the performance of the latest state-of-the-art architectures with

our DSoP-Net. EfficientNet-b0 [159] is selected as the backbone model. Without a

TPU cluster in hand, we made a few changes of the original experimental settings

to fit our own GPU server. Specifically, the mini-batch size is reduced from 2048 to

768, and the initial learning rate is accordingly set to 0.048 for RMSProp. First, we

used a third-party implementation 4 and managed to achieve a top-1/5 accuracy of

EfficientNet-b0 at 76.81%/93.32% on ImageNet with baseline ResNet preprocessing.

The results we obtained are almost the same as the official TPU implementation 5

under similar settings (top-1 accuracy at 76.8%). Then, we replaced the original first-

order pooling of EfficientNet-b0 with the second-order pooling structure by reducing

the number of channels from 1280 to 64 with a sequence of conv1� 1, BN and swish

4https://github.com/rwightman/pytorch-image-models

5https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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(a) (b)

Figure 2.4: Convergence curves regarding (a) top-1 and (b) top-5 error rates achieved
by ResNet-50-s1 with and without DSoP-Net on ImageNet.

activation [140]. To prevent over-fitting, we inserted a dropout layer before the last

linear classifier and set its dropout rate to 0.2. It turns out that the EfficientNet-b0

with second-order pooling obtains a top-1/5 accuracy at 77.02%/93.38%. Finally,

we constructed the DSoP-Net for EfficientNet-b0 by inserting two auxiliary branches

with second-order pooling. One was inserted at the middle of the backbone model

and the other was inserted at the end. With DSoP-Net, the top-1/5 accuracy of the

original first-order pooling head is further improved to 77.12%/93.56%. This vali-

dates the complementary nature of DSoP-Net to state-of-the-art CNN architectures

such as EfficientNet.

Figure 2.4 compares the convergence curves of our DSoP-Net (output with GAP)

and those of ResNet-50-s1. We can see that our DSoP-Net consistently outper-

forms ResNet-50-s1 by a large margin. This shows that knowledge acquired from the

auxiliary classifiers with second-order pooling improves the original classifier with

first-order pooling throughout the whole training process. Figure 2.5 presents the

convergence curves of different output headers. We have three observations. First,

the first-order output achieves very close performance to its teacher output in the
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Table 2.3: Comparison of error rates (%) achieved by different training policies with
DSoP-Net on ImageNet.

Training
#Epoch

a pds2 a pds3 a pds4 a pds5 GAP

policy Top-1/5 Top-1/5 Top-1/5 Top-1/5 Top-1/5

One-phase
90

34.59 25.44 21.77 21.11 21.15

(default) /15.24 /8.33 /6.04 /5.57 /5.70

Two-phase 90+15
43.52 30.00 24.68 23.34 23.57

/22.36 /11.30 /7.54 /6.50 /6.85
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Figure 2.5: Convergence curves regarding (a) top-1 and (b) top-5 error rates achieved
by all output headers of DSoP-Net under ResNet-50 architecture on ImageNet, in-
cluding the original one and the four obtained in the auxiliary branches.

last detachable branch. Second, output of a branch inserted at a later layer always

performs better than that of a branch inserted at an earlier layer. The first-order

output has even better results than those second-order outputs of the branches in-

serted at earlier layers. Third, compared to the original backbone model, the benefit

gained by DSoP-Net during the very first epochs is significant while later the gap

between the curves gradually reduces. This raises an interesting question whether

early removal of auxiliary branches in DSoP-Net can help to boost the performance.
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We employed ResNet-50-s1 as the backbone and inserted auxiliary branches at the

beginning of training on ImageNet. All experimental settings remain unchanged ex-

cept that auxiliary branches are removed at epoch 30, 45, 60, respectively, to train

the DSoP-Net. Experimental results show that the top-1/5 accuracies are decreased

by 0.87%/0.31%, 0.41%/0.14% and 0.33%/0.11%, respectively, compared to adopt-

ing auxiliary branches during the whole training. That is, early removal of auxiliary

branches in DSoP-Net harms the final performance of the backbone model.

We continue to investigate the importance of engaging second-order statistics at

earlier layers of first-order pooling networks. The default training policy of our DSoP-

Net can be regarded as one-phase where first- and second-order statistics jointly help

to update the weights of the backbone model. For comparison reasons, we define a

two-phase training policy where first- and second-order statistics are independently

computed in order. Specifically, we first attach the same 4 auxiliary branches, in-

cluding a pds2,3,4,5, to the baseline ResNet-50 model (stride=1) after it converges

under default training settings so that it has the same structure as DSoP-Net. Then,

we proceed to fine-tune the parameters in auxiliary branches and fix those of the

backbone model for 15 epochs on ImageNet. Learning rate starts at 0.1, and is re-

duced to 0.01 and 0.001 after 5 and 10 epochs, respectively. From Table 2.3, one

can see that the performance of the outputs at the 4 auxiliary branches achieved by

the two-phase training policy can be largely improved by the default training policy.

This suggests that optimizing networks simultaneously with first- and second-order

statistics lead to better performance at earlier layers than computing the two kinds

of statistics separately during training. Besides, with the default training policy of

DSoP-Net, the strengthened intermediate layers help to improve the classification

performance of the backbone model.
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Table 2.4: Summary of DSoP-Net with different backbone models on CIFAR-10 and
CIFAR-100 datasets.

Backbone
#Block #Branch #Total #Conv. Stage

per stage per stage branches per stage spec.

ResNet-110 18 6 18 72 r0,0,3s�6

ResNet-164 18 6 18 108 r0,0,3s�6

WRN-22-10 3 2 6 12 r1,0,2s
WRN-28-10 4 2 6 16 r0,2,0,2s

ResNeXt-64-8 3 2 6 18 r1,0,2s
ResNeXt-64-16 3 2 6 18 r1,0,2s

2.5.4 Evaluation on CIFAR-10 and CIFAR-100 Datasets

We further implement DSoP-Net with other modern backbone models to evaluate

its generalization ability on CIFAR-10 and CIFAR-100 datasets, including two Pre-

activation ResNet models [59], i.e. ResNet-110 and ResNet-164, two Wide Residual

Networks (WRN) [198] models, i.e. WRN-22-10 and WRN-28-10, as well as two

ResNeXt [186] models, i.e. ResNeXt-64-8 and ResNeXt-64-16. During training, for

all models, we used SGD with momentum as optimizer and set the batch size as

128 and momentum as 0.9. For Pre-activation ResNet models, we set the weight

decay as 1�10�4 and the number of training epochs as 110. The learning rate starts

from 0.3, and it is divided by 10 at 80 and 95 epochs. For WRN models, we set the

weight decay as 5 � 10�4 and the number of training epochs as 200. The learning

rate begins from 0.1, and is divided by 5 at epochs 60, 120 and 160. For ResNeXt

models, we set the weight decay as 5 � 10�4 and the number of training epochs as

300. The initial learning rate is 0.1, and is divided by 10 at 150 and 225 epochs. To

construct auxiliary branches for each model, definition of the same building block is

reused at the stage where one auxiliary branch is attached. Meanwhile, we keep the

total number of building blocks at one stage the same as that of the blocks used in
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the backbone model. Therefore, there are the same number of convolutional layers

in the backbone model and its auxiliary branches.

Table 2.4 summarizes some key statistics of DSoP-Net with different backbone

models on CIFAR-10 and CIFAR-100 datasets. Take ResNet-110 as an example.

We uniformly insert 18 branches with second-order pooling into the backbone net-

work. The pattern of each stage is specified as r0, 0, 3s�6, where the non-zero values

suggest the number of auxiliary convolutional layers inserted at the corresponding

position while the zero values mean there are no auxiliary branches inserted at that

position. To this end, there is a detachable branch at the end of every 3 bottle-

necks; 6 auxiliary branches are attached to each stage; and there are 6 � 3 � 18

auxiliary branches in total. For each branch, it adopts the same network structure

as its associated 3 bottlenecks before the second-order pooling layer. As each orig-

inal/auxiliary bottleneck depicts 2 convolutional layers, 36 � 36 � 72 convolutional

layers are used at each stage during training. The target number of channels are set

to 128 for all second-order pooling layers, including DSoP-Nets and iSQRT-COV [99]

for comparison. For DR, we follow [100, 99] and use the direct DR operator. To avoid

over-fitting, we incorporate a dropout layer with dropout rate of 0.5 before a dense

layer in an auxiliary branch if 128 channels are used for second-order pooling. In

this way, the image representation in auxiliary branches is 2K -d, 4K -d, and 4K -d

for branches attached to Stage 1, Stage 2, and Stage 3, respectively.

To adapt to the CNN models on CIFAR-10 and CIFAR-100 datasets, we fixed

the weight of original loss as α � 1 in Equation 2.1. Weights of losses connected with

auxiliary outputs at Stage 1, Stage 2 and Stage 3 of all models are empirically set as

0.1, 0.2 and 0.3, respectively. This significantly helps to prevent gradient exposure

accumulated at earlier layers in back-propagation. Meanwhile, this also strengthens

the role of the original prediction of backbone model. We observed that all losses

are basically on the same order of magnitude; thus, the desired loss of the original
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Table 2.5: Comparison of error rates (%) achieved by different backbone models on
CIFAR-10.

Backbone
w/o DSoP-Net w/ DSoP-Net

Gain
(Original) (Ours)

ResNet-110 6.37 5.73 0.64

ResNet-164 5.46 4.55 0.91

WRN-22-10 4.44 3.91 0.53

WRN-28-10 4.17 3.81 0.36

ResNeXt-64-8 3.65 3.44 0.21

ResNeXt-64-16 3.58 3.20 0.38

prediction given by the 1st-order pooling layer only takes up a very small portion

(� 5%) if all components are equally weighted in the total loss, challenging the per-

formance of the backbone model in inference. In contrast, with our implementation,

loss of the original prediction actually takes up 30% � 50% in the total loss to train

more effective CNN model.

To prevent over-fitting caused by auxiliary branches, a direct DR operator is

inserted before the 2nd-order pooling layer to keep at most 128 channels if there are

more channels for GSoP. Meanwhile, a dropout layer (p � 0.5) is plugged between

the second-order pooling layer and the dense layer in each branch. Consequently, the

dimension of image representation produced by any auxiliary branch on CIFAR-10

and CIFAR-100 datasets is equal to or less than 128�(128+1)�0.5�0.5=4K.

Table 2.5 and Table 2.6 demonstrate the results achieved by different backbone

models with and without DSoP-Net on CIFAR-10 and CIFAR-100 datasets. One can

clearly see that models with DSoP-Net effectively outperforms the same architecture

without DSoP-Net on both CIFAR-10 and CIFAR-100. Besides, it can be observed

that DSoP-Net is more useful when training a narrow network. For example, the

performance gain on CIFAR-10 for the narrowest model, ResNet, reaches 0.64% �
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Table 2.6: Comparison of error rates (%) achieved by different backbone models on
CIFAR-100.

Backbone
w/o DSoP-Net w/ DSoP-Net

Gain
(Original) (Ours)

ResNet-110 26.88 25.43 1.45

ResNet-164 24.33 21.06 3.27

WRN-22-10 20.75 18.91 1.84

WRN-28-10 20.50 18.50 2.00

ResNeXt-64-8 17.77 16.34 1.43

ResNeXt-64-16 17.31 16.23 1.08

Table 2.7: Comparison of error rates (%) achieved by different pooling methods
in the auxiliary branches on ImageNet. ResNet-50-s1 is employed as the backbone
model.

With DSoP-Net Aux. Pool. Method Order Top-1/5

7 N.A. N.A. 23.57/6.85

X
GAP [105] 1st 22.74/6.61

iSQRT-COV [99] 2nd 21.15/5.70

0.91% while those for the WRN models, and the widest ResNeXt models, are reduced

to 0.36% � 0.53%, and 0.21% � 0.38%, respectively.

2.5.5 Ablation Study

DSoP-Net

We conduct ablation study of DSoP-Net from three aspects, as presented in detail

as follows.

Pooling methods in auxiliary branches. We study the impact of different

pooling methods in auxiliary branches. ResNet-50-s1 is employed as the backbone

model and we modify the network architecture of auxiliary branches during training.
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Table 2.8: Comparison of error rates (%) achieved by different number of channels
used for second-order pooling at a pds2,3,4,5 on ImageNet. ResNet-18-s1 is employed
as the backbone model. An asterisk symbol in superscript indicates a DR operation
before 2nd-order pooling.

With Target
#Chnl

GFLOPs /
Top-1/5

DSoP-Net #Chnl #Param.(M)

7 N.A. N.A. 3.06/11.7 30.11/10.78

X

64 64,64�,64�,64� 5.69/32.7 29.19/10.12

128 64,128,128�,128� 5.95/51.3 28.88/9.92

256 64,128,256,256� 7.26/100.6 28.69/9.85

Table 2.9: Comparison of top-1 error rates of ResNet-20 on CIFAR-10 by different
optimizers (%).

Optimizer w/o DSoP-Net w/ DSoP-Net

SGD [153] 7.92 7.59

ADAHESSIAN [192] 7.87 7.70

RAdam [114] 8.62 8.07

Table 2.10: Comparison of top-1 error rates of ResNet-18-s1 on ImageNet by different
optimizers (%).

Optimizer w/o DSoP-Net w/ DSoP-Net

SGD [153] 30.11 28.69

ADAHESSIAN [192] 29.86 29.55

RAdam [114] 32.12 31.29
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Table 2.11: Comparison of error rates(%) achieved by different insertion points with
ResNet-18 on ImageNet.

#Conv. Layers in With
#Branch GFLOPs

#Param.
Top-1 Top-5

a conv2,3,4,5 x DSoP-Net (M)

0,0,0,0 7 N.A. 3.06 11.7 30.11 10.78

16,0,0,0 X
1

4.94 94.8 29.09 10.04

0,0,0,16 X 11.23 127.4 28.88 9.92

8,8,0,0 X

2

4.34 95.4 29.06 10.03

8,0,0,8 X 8.47 108.7 29.00 9.98

0,0,8,8 X 8.50 112.0 28.77 9.90

4,4,4,4 X 4 7.26 100.6 28.69 9.85

Table 2.12: Comparison of error rates (%) achieved by different DR methods with
ResNet-50-s1 on ImageNet in reducing the 2048 channels.

Method
Target

δ
w/ Aux.

Top-1 Top-5
#Channel Branches

Direct DR [100, 99]

64 N.A. N.A. 23.73 6.99

128 N.A. N.A. 22.78 6.43

256 N.A. N.A. 22.14 6.22

PSDR (Ours)

64 0.25 7 23.30 6.86

128 0.25 7 22.18 6.09

64 0.5 7 23.24 6.72

128 0.5 7 22.02 6.15

256 0.5 7 21.84 5.99

64 0.5 X 22.71 6.42

128 0.5 X 21.89 6.11

256 0.5 X 21.65 6.00
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All layers used for channel reduction are removed and the second part is changed from

iSQRT-COV to GAP while the other parts remain unchanged. We train the backbone

model with the modified auxiliary branches from scratch with the default training

strategy. We compare it to default architecture defined in DSoP-Net under the same

backbone model. Table 2.7 presents the results. Compared with the baseline, we

can see that the introduction of auxiliary branches with first-order pooling method

improves top-1 error rates by 0.8%. If we use the covariance matrix based second-

order pooling as the second part of an auxiliary branch, it further boosts the result

by nearly 1.4%. It shows that the second-order channel correlations are difficult to

be directly modelled by first-order pooling such as GAP. Instead, knowledge and

expertise from the second-order pooling layer in an auxiliary branch are effective in

adjusting the spatial responses in the backbone model.

Number of channels for GSoP. Covariance matrix as an image representation

quadratically increases the computational complexity of the second-order pooling

method. It also affects the number of parameters of the dense layer in an auxiliary

branch. To study the impact, in each auxiliary branch, we decrease the number of

channels for second-order pooling from 256 to 128 and 64, respectively. ResNet-18

(stride=1), denoted by ResNet-18-s1, is employed as the backbone model. Table 2.8

compares the results by using different number of channels. One can see that the

total number of parameters used in training decreases sharply from 100.6M to 32.7M

with only 64 channels. It reduces the computational complexity by approximately

21.6%. Meanwhile, top-1/5 error rates increase moderately by 0.5% and 0.27%.

Even so, DSoP-Nets still reduces the top-1 error rate by almost 1% with the same

backbone inference architecture.

Insertion points of the auxiliary branches. To study the impact of different

insertion points, we employ ResNet-18 model as backbone and fix the total number of

ResNet bottlenecks used in all auxiliary branches as 16. Specifically, we remove one
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or more auxiliary branches based on the default architecture of DSoP-Net under the

ResNet-18-s1 architecture (please refer to Table 2.1), where each auxiliary branch

contains four ResNet bottlenecks. We uniformly distribute the bottlenecks to the

remaining branches. Table 2.11 presents the results. One can see that performance

of first-order pooling can be improved by inserting more branches at different stages.

With the same number of branches, plugging branches at the layers closer to the

first-order pooling benefits performance boost at the price of more parameters and

computations in training, but not during the inference stage.

Choice of optimizer. It has been shown [84, 118] that SGD is a very stable and

effective network optimizer for various CNN architectures, especially on large scale

datasets such as ImageNet. It is interesting to investigate whether other optimizers

can further improve the performance of DSoP-Net than SGD. We test two recent

optimizers: ADAHESSIAN [192] and Rectified Adam (a.k.a. RAdam) [114]. We use

the official implementation of ADAHESSIAN6 and RAdam7. In the experiments, we

opt to SGD [153] as the baseline and evaluated ResNet-20 on CIFAR-10 and ResNet-

18-s1 on ImageNet, which are widely used to compare different optimizers (especially

those designed for CNN models). We use the same hyper parameter settings reported

in the original paper of each optimizer, including weight decay, initial learning rate,

total epochs, learning rate schedule, etc.

Table 2.9 and Table 2.10 summarize the results. One can have the following three

observations. First, for each optimizer, model trained with DSoP-Net outperforms

the same model trained without DSoP-Net on both CIFAR-10 and ImageNet. This

shows that our method is effective with different optimizers. Second, compared

to the baseline optimizer, DSoP-Net slightly reduces the gap between RAdam and

SGD on CIFAR-10 from 0.70% to 0.48%. However, the gap between RAdam and

6https://github.com/amirgholami/adahessian

7https://github.com/LiyuanLucasLiu/RAdam
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SGD on ImageNet is enlarged from 2.01% to 2.60%. Third, ADAHESSIAN results

in better performance than SGD for the original CNN models on both datasets,

but it is not as good as SGD for models with DSoP-Net. We believe that the

performance loss is caused by the approximation of the Hessian matrix as a diagonal

operator. Such an approximation may be suitable for the sequential models (such

as the vanilla CNN models), but for multiple-header models like DSoP-Net, it is

critical to consider the correlations among parameters in the backbone model and

those in the auxiliary model. As a result, some second-order cues in the auxiliary

branches may be implicitly lost during the optimization with ADAHESSIAN, and

the performance becomes worse than the DSoP-Net optimized with SGD. Besides,

SGD is friendly to computational resources in terms of both memory and overhead,

and hence it is easier to apply to deeper or wider CNN architectures.

PSDR

We employ ResNet-50-s1 as the backbone model in the ablation study of PSDR. In

addition, we focus on the parameter selection of δ in Equation 2.4 and the introduc-

tion of auxiliary branches for DR. Table 2.12 demonstrates the results achieved by

the direct DR operator adopted in [100, 99] and the proposed PSDR in reducing the

2048 channels of the last convolutional layer. It can be observed that PSDR outper-

forms direct DR when the same reduction ratio is applied. A larger δ allows more

intermediate layers, leading to a clear performance boost. Meanwhile, introduction

of auxiliary branches enables transfer of second-order statistics from high-dimension

domain to low-dimension domain, which also improves the DR operation. Partic-

ularly, PSDR significantly improves the direct DR when the given 2048 channels

are reduced to 64 channels. We achieve a top-1/5 error rate of 22.71%/6.42%, even

better than when keeping 128 channels with direct DR.
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2.6 Conclusion

In this chapter, we propose a novel method which significantly improves the perfor-

mance of first-order CNNs in image classification. Auxiliary branches are carefully

designed to transfer knowledge to the backbone first-order networks during training,

which are however removable at the testing stage. As a result, the proposed method

leverages the advantages of second-order pooling networks while keeping similar com-

plexity to first-order networks during inference. To the best of our knowledge, this

is the first attempt to make use of higher-order statistics in knowledge distillation.

Experiments conducted on ImageNet as well as CIFAR-10 and CIFAR-100 datasets

demonstrate the effectiveness of our network. In particular, we achieve a top-1 error

rate of 21.15% with single center-crop using ResNet-50 network.

In the next chapter, we will move from the perspective of overall CNN architecture

in this chapter to the design of fast and lightweight CNN modules.
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Chapter 3

LST-Net: Learning a

Convolutional Neural Network
with a Learnable Sparse Transform

The 2D convolutional (Conv2d) layer is the fundamental element to a deep convo-

lutional neural network (CNN). Despite the great success of CNN, the conventional

Conv2d is still limited in effectively reducing the spatial and channel-wise redundancy

of features. In this chapter, we propose to mitigate this issue by learning a CNN with

a learnable sparse transform (LST), which converts the input features into a more

compact and sparser domain so that the spatial and channel-wise redundancy can be

more effectively reduced. The proposed LST can be efficiently implemented with ex-

isting CNN modules, such as point-wise and depth-wise separable convolutions, and

it is portable to existing CNN architectures for seamless training and inference. We

further present a hybrid soft thresholding and ReLU (ST-ReLU) activation scheme,

making the trained network, namely LST-Net, more robust to image corruptions at

the inference stage. Extensive experiments on CIFAR-10/100, ImageNet, ImageNet-

C and Places365-Standard datasets validated that the proposed LST-Net can obtain

even higher accuracy than its counterpart networks with fewer parameters and less

overhead.
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3.1 Introduction

The past decade has witnessed a great success of deep convolutional neural netowrk

(CNN) in various computer vision problems, such as visual object recognition [90, 41],

object detection [144, 143, 101], face recognition [74, 83], scene understanding [184,

209], etc. The 2D convolutional (Conv2d) layer [90] is one of the key elements in a

CNN to extract powerful features from the input image. Despite the great success

of CNN, the conventional Conv2d is limited in effectively reducing the spatial and

channel-wise redundancy of features. When image features are propagated through

Conv2d, it usually requires a large number of kernels to model the data and hence

introduces exaggerated parameters and overhead. Meanwhile, Conv2d simply sums

up all convolutional responses along the channel dimension for the same kernel and

takes little advantage of inter-channel cues [71, 33], which is less effective.

A lot of efforts have been devoted to improving the performance of Conv2d. Re-

cent works can be roughly categorized into two categories. The first category of works

aim to enhance what a Conv2d layer sees in the spatial domain. For representative

works in this category, dilated convolution [195] effectively expands its receptive field

by applying predefined gaps, while deformable convolutional networks [32, 210] im-

prove the performance of Conv2d by learning internal parameters to model geometric

transformation or variations so as to adaptively focus on some more important ar-

eas. Though these methods make better use of spatial information, they fail to take

advantage of the channel-wise cues. The second category of works strengthen the

performance of Conv2d by combining both spatial and channel-wise attentions. Rep-

resentative works in this category can be found in [71, 178, 45, 16]. For example,

squeeze-and-excitation networks (SENet) [71] re-weights the features along the chan-

nel dimension using an efficient squeeze-and-excitation block. Usually, these works

rely on an extra network path to adjust spatial and channel-wise attentions after
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the conventional Conv2d is computed. The redundancy of conventional Conv2d re-

mains but it requires additional network parameters and overhead. It is interesting

to investigate whether we can develop a new convolutional module, which can better

describe the local features, reduce the spatial and channel-wise feature redundancies,

and reduce the parameters and overhead while keeping the accuracy unchanged or

even improved.

We propose to mitigate these issues by learning a CNN with a learnable sparse

transform (LST). We are motivated by the classical harmonic analysis works such

as discrete cosine transform (DCT) [174] and discrete wavelet transform (DWT)

[62, 145, 20], which can convert the given image into a more compact and sparse

domain to reduce the spatial and channel redundancy of features. In DCT and

DWT, the sparse transforms are manually pre-designed, while in our proposed LST,

the sparse transform is learned from training data together with the process of CNN

training. The proposed LST learning can be efficiently implemented with existing

CNN modules, such as point-wise convolutions [105] (PWConvs) and depth-wise

separable convolutions [68] (DWConvs). This makes LST compatible with existing

CNN architectures for seamless training and inference without additional operations.

The proposed LST promotes sparser features. In light of the sparsity priors

[162, 13, 14], we further present a hybrid soft thresholding [39] and ReLU [131]

(ST-ReLU) activation scheme. Compared with the standard ReLU, the ST-ReLU

activation can suppress the noise and trivial features in the learning process, making

the trained network more robust to image corruptions, such as noise, blur, digital

compression, etc. Overall, the proposed LST module can be applied to existing

state-of-the-art network architectures such as ResNet and VGGNet. The obtained

new network, namely LST-Net, achieves more robust and accurate performance with

fewer parameters and less overhead. Our major contributions are summarized as

follows.

52



� A novel learnable sparse transform based Conv2d module is developed, which

can be efficiently implemented and seamlessly integrated into existing CNN

learning process, producing sparser features and improving the effectiveness of

learned CNN models.

� A new activation function is presented by properly combining soft-thresholding

and ReLU operations, which endows the proposed LST-Net with better robust-

ness to image trivial features and corruptions.

3.2 Related Work

3.2.1 Network bottleneck

To save parameters and overhead of Conv2d layers, group convolution [90] (GConv)

and PWConv [105] are popularly employed in the design of bottlenecks. PWConv

employs a 1 � 1 window, performing a linear combination of the input from all

channels. It is often used to align a set of feature maps with different number of

channels [154]. GConv assumes that the input features can be decomposed into

several groups along the channel dimension, where features from different groups are

independent. A successful application of GConv is ResNeXt [186]. DWConv [68] is

a special case of GConv when there is only one input channel per group. It is widely

used to build lightweight models for mobile devices, such as MobileNet [68, 149],

ShuffleNet [119, 204], etc.

Xie et al . [186] improved ResNet bottleneck [59] by substituting the conventional

3�3 Conv2d in the middle with a GConv of slightly more channels. One problem of

this method is how to set the group number. A larger number of groups can easily

cause loss of inter-channel cues while a smaller number of groups can hardly reduce

redundancy of Conv2d. Recently, Res2Net [48] was developed by fusing the group

with the intermediate results obtained from the latest group in a recursive manner.
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Though Res2Net demonstrates higher accuracy, it actually sacrifices parallel execu-

tion on devices such as GPUs. In this paper, we naturally incorporate DWConvs

and PWConvs to facilitate transforms in spatial and channel-wise fields.

3.2.2 Learning space

The conventional Conv2d layer is less effective in reducing the spatial and channel-

wise feature redundancies because each Conv2d kernel interacts with input features

locating in a local grid of limited size and cannot take features outside the grid

into consideration. To mitigate this issue, dilated convolution [195] applies prede-

fined gaps to enlarge spatial receptive field of Conv2d. Deformable convolutional

networks [32, 210] learn to adaptively focus on some more important areas by mod-

elling geometric transformation or variations with internal parameters; however, they

fail to further consider the channel-wise cues of features and require sophisticated

implementation skills. SENet [71] and its variants [178, 45, 16] focus on designing

lightweight network paths to fuse channel-wise and spatial features to improve the

attention of the conventional Conv2d. Though these methods is effective to boost

accuracy, they remain inefficient as they use more parameters and require extra

overhead.

To improve the performance of Conv2d layer, it’s more straightforward to perform

convolution in a more compact and sparser domain. The classical DCT [174] and

DWT [62, 145, 20] transform the input image into a sparse space for manipulation and

they have a wide range of successful applications [174, 43, 203, 10, 20, 75]. The sparse

coding [132] techniques encode the image patches as a sparse linear combination of

learned atoms. However, the transformation filters used in DCT and DWT are

manually designed and they are not effective enough to represent image structures,

while sparse coding is computationally inefficient and is hard to be extended for

deep feature extraction. In this paper, we propose to learn a sparse transformation
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together with the deep CNN learning so that the network can be more efficiently and

effectively learned in a sparser space.

3.2.3 Activation function

Non-linearity introduced by the activation function is among the most critical factors

to the success of a CNN model in various computer vision tasks. ReLU [131] is a

pioneer and the most popular non-linear activation function in deep CNN. It is a

simple yet highly effective segmented function, forcing the input negative valued

features to zeros and keeping only the non-negative features. To make use of the

information of negative features, parametric ReLU [58], leaky ReLU [169], ELU [31]

and SELU [87] are proposed to allow adaptive negative activation with learnable

parameters. However, negative activation functions need to be carefully designed

and they only exhibit better performance in specific applications. One problem of

ReLU and its variants is that they are not very robust to noise or other corruptions

in the input image. It is well-known that by soft-thresholding the image features in

some sparse domain, such as DWT domain [62, 145, 20] and sparse coding domain

[132], the latent image features can be well recovered. In our proposed LST, we

adaptively learn a sparse transform together with the CNN learning, which can make

the CNN features sparser. This motivates us to develop a new activation scheme,

i.e., hybrid soft-thresholding and ReLU (ST-ReLU), to better exploit the merit of

sparser features. The ST-ReLU further enhances the robustness of learned CNN

models to various types of corruptions.
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3.3 Proposed Method

3.3.1 Learnable sparse transform (LST)

Denote by I P RHin�Win�Cin the input feature and O P RHout�Wout�Cout the output

feature of a Conv2D layer, where Hin{Hout, Win{Wout, Cin{Cout denote the height,

the width, and the channel number of the input/output feature, respectively. The

sliding window Ω of the Conv2D can be parameterized by the kernel size sH � sW

(for simplicity of expression, we omit the subscripts H and W in the remaining of

this paper), number of kernels Cout, stride, as well as padding. We denote the kth

kernel by Kpkq.

The Conv2d output feature is redundant in both spatial and channel dimensions.

When the sliding window Ω is centered at spatial location (i,j) of I, the output Oi,j,k

by convolving I with kernel Kpkq is computed as

Oi,j,k �
ş

x�1

ş

y�1

Ciņ

z�1

ΩpI; i, jqx,y,z �Kpkq
x,y, (3.1)

where ΩpI; i, jqx,y,z is the pixel at px, y, zq of the tensor extracted from I by Ω, and

Kpkq
x,y means the pixel at px, yq of Kpkq.

We have two observations from Equation 3.1. First, all feature pixels in the local

neighborhood of the pixel at spatial location (i,j) are involved in the computation.

While this is helpful to extract the high frequency features, it is redundant for ex-

tracting the low frequency features, which usually occupy most of the pixels in a

feature map. Second, the subscript z does not follow K but only comes up with

Ω. That is to say, all pixels in the same channel are equally weighted to produce

Oi,j,k. It has been found that the input features have strong similarities along the

channel dimension [176, 61]. Therefore, there exists much redundant channel-wise

computations. All these motivate us to develop a learnable sparse transform (LST),
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Figure 3.1: Illustration of different transforms. (a) 2D-DCT, (b) a tiled spatial
transform, (c) Ts, (d) Tc, and (e) Tr.

with which the redundancy of conventional Conv2D can be reduced and hence a

more efficient CNN can be learned.

Overview of LST. Our LST consists of three transforms: a spatial transform

Ts, a channel-wise transform Tc, and a resize transform Tr. Ts and Tc strive to reduce

the spatial and channel-wise redundancies by transforming the corresponding field

into a more compact domain, while Tr aims to resize the input to obtain the desired

shape of output. Tr can be placed either before or after Ts and Tc. The LST, denoted

by TLST , can be implemented as

TLST � I � Tr � Ts � Tc � I, (3.2)
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or in the form of

TLST � I � Ts � Tc � Tr � I. (3.3)

The spatial transform Ts. We propose to reduce the spatial redundancies

of local features by using a learnable spatial transform Ts with associated weights

Ws P Ra2�1�s�s (dimensions are organized in PyTorch [133] style). Inspired by the

success of classical 2D-DCT [124], which decomposes the image local region into

different frequency bands by using sequential column and row transforms, we can

implement Ts by applying column and row transforms, denoted by Tcolumn and Trow,

respectively. Mathematically, the corresponding weights Ws can be expressed as:

Ws � Wcolumn bWrow, (3.4)

where b means the Kronecker product with necessary dimension insertion and re-

moval, Wcolumn P Ra�1�s�1 and Wrow P Ra�1�1�s are the weights of Tcolumn and

Trow, respectively, and a is a hyper parameter specifying the number of coefficients

to keep.

As illustrated in Figure 3.1(a), a 2D-DCT transforms a local region into different

frequencies. The low frequency coefficients concentrate at the top left corner and

they dominate the energy (high amplitude), while many high frequency coefficients

are close to zero (low amplitude) and can be neglected. Based on this fact, to save

unnecessary parameters and computation, we set 1 ¤ a   s so that the low amplitude

trivial features can be excluded from calculation. Since for almost all existing CNN

architectures, it is true that the kernel size s ¥ 3, we set a � r s
2
s by default in this

chapter.

Figure 3.1(c) depicts our implementation of Ts. One can see that the output of

Ts is arranged along the channel dimension (this will ease much the implementation

of our resize transform Tr). For each s� s local region, by convolving it with Ws, we
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obtain an a2-dim output vector. Thus, for each input feature map, it is transformed

into a number of a2 feature maps by aggregating the a2-dim output vectors. That

is, Ts maps RHs in�Ws in�Cs to RHs out�Ws out�pa2�Csq, where Cs is the channel number

of the input argument of Ts, and Hs in{Hs out and Ws in{Ws out are the input/output

height and width, respectively. In contrast, the conventional spatial transform or-

ganizes the output in the height and width fields, instead of the channel domain.

We term the conventional spatial transform as tiled spatial transform, which maps

RHs in�Ws in�Cs to Rpa�Hs inq�pa�Ws inq�Cs , as illustrated in Figure 3.1(b). Comparing

our Ts with tiled spatial transform, we can obtain three findings.

First, Ts is simpler to implement than tiled spatial transform. In practice, we

can adopt a DWConv operation to implement it. Second, Ts only affects the channel

dimension, which allows us to easily use the existing efficient implementations for the

resize transform Tr. (Please see the following section of resize transform for details.)

In contrast, a tiled spatial transform increases both the height and width of feature

maps so that Tr must be changed to deal with the enlarged spatial dimensions.

Third, our Ts always holds memory continuity, making it faster in both training and

inference. In contrast, a tiled spatial transform needs channel shuffle, which requires

extra memory alignment.

Owe to the physical meaning of Ts (i.e., to reduce feature spatial redundancy),

2D-DCT can be effectively used to initialize Ws with Equation 3.4. This makes the

training of LST converge efficiently to a good local minimum. In Section 3.4.3, we

will show that initialization of Ws by 2D-DCT exhibits much better performance

than random initialization.

Channel-wise transform Tc. Tc is used to reduce the redundancy along channel

dimension. It is a RHc�Wc�Cc in Ñ RHc�Wc�Cc out mapping, where Cc in/Cc out is the

channel number of the input/output of Tc, and Hc and Wc denote the height and

width of the input, respectively. Tc encourages features to be more separable along
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the channel and simplifies the resize transform Tr in reweighting data.

A PWConv operation can be naturally leveraged for Tc with its associated weights

Wc P RCc out�Cc in�1�1. Similar to Ts, 2D-DCT can be used to initialize Tc for compact

features. We fill Wc with the 2D-DCT basis functions shaped as Cc in � Cc out and

expand its dimensions where necessary. Figure 3.1(d) illustrates the implementation

of Tc. One can see that the output of Tc is organized in order by the expected

feature amplitude like 2D-DCT. It should be noted that Tc is similar to the resize

transform Tr since both of them adopt PWConv for implementation. However, they

are initialized in different ways.

The resize transform Tr. A conventional Conv2d equally treats all the samples

in the window without considering their importance. To fill this gap, the resize

transform Tr is designed as a RHr�Wr�Cr in Ñ RHr�Wr�Cr out mapping, where Hr/Wr

is the height/width of the input, and Cr in and Cr out are the channel number of

the input and output, respectively. Tr is learned to adaptively reweight the input

features with its weights Wr P RCr out�Cr in�1�1. Figure 3.1(e) illustrates how Tr

works. With the help of our design of Ts and Tc, Tr can be implemented by directly

leveraging a normal PWConv operation in our paper.

Discussions. To better understand the role of LST, in Figure 3.2 we visualize

the learned features by the standard ResNet50 (with conventional Conv2d) and our

LST-Net with a ResNet50 architecture on ImageNet [35]. (The details of the model

can be found in Section 3.4.2.) Once trained, a validation image is randomly selected

and its center crop is fed into the two models. Figure 3.2 visualizes 16 channels of the

features (other channels are similar) from the first bottleneck (the features after the

Ts transform are visualized for our LST-Net). We clip the amplitude of the feature

in the range of [0, 0.1] and stretch the features in each channel as a vector. Each

column in Figure 3.2 represents the vectorized features of a channel.

One can see that the output features of conventional Conv2d in ResNet50 are
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(b) Our LST-Net after Ts

Figure 3.2: Visualization of output features. One can see that the features output
by LST-Net are sparser and well-structured along the channel dimension.

mixed up along the channel dimension. In contrast, the features output by LST-Net

are sparser (with lower amplitude) and well-structured along channel dimension.

Specifically, every a2 � 22 � 4 channels form a unit where the four channel features

are de-correlated into different frequency bands (please also refer to Figure 3.1(c)).

Such kind of sparser and structured features are highly suited to the successive

channel-wise operations such as PWConv (used by resize transform Tr) or a sequential

of global average pooling (GAP) [105] plus a dense layer.

3.3.2 Hybrid ReLU-ST activation scheme

By using the proposed LST introduced in Section 3.3.1, we are able to generate

more compact and sparser features than the conventional Conv2D layers in a CNN,

as illustrated in Figure 3.2. It has been shown in many works of WT [39, 38] and

sparse coding [132] that a soft-thresholding (ST) operation in the sparse feature

domain can increase the robustness to noise and trivial features. The ST operation

for the input feature x can be written as
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Figure 3.3: Illustration of the two LST bottlenecks with downsample operators.
EWPlus means element-wise addition. PWConv/DWConv in red font indicates ini-
tialization with 2D-DCT while blue font suggests random initialization.

y �
#
sgnpxqp|x| � τq, |x| ¥ τ,

0, otherwise.
(3.5)

where τ is a hyper parameter for the threshold. To exploit the merit of sparser

features brought by LST, we propose a new activation scheme for our LST-Net by

jointly using ST and ReLU, namely ST-ReLU.

Specifically, ST is adopted at two places in LST-Net; otherwise, ReLU is used.

First, ST is inserted in the middle of Tc and Ts. It not only reduces the noises along

the channel dimension but also further forces sparsity and suppresses trivial features

in the spatial domain. Second, ST is used as the last activation function for an LST

to allow adaptive negative activation. Unlike existing methods such as parametric

ReLU [58], leaky ReLU [169], ELU [31] and SELU [87], ST is a natural selection of

activation in the sparse feature domain, and it accords with the findings on spiking

states of neurons in neuroscience [77, 78, 199, 147, 34].
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3.3.3 The bottleneck

We construct a novel bottleneck, namely LST bottleneck, to wrap LST and the hybrid

ST-ReLU activation scheme. A shortcut path is introduced in our LST bottleneck

to avoid gradient exploding or vanishing when a model goes deeper. As a result, an

LST bottleneck can be written as follows when the shape of input feature I is the

same as that of output O:

O � TLST � I � I (3.6)

If the input shape is different from the output shape, the bottleneck becomes

O � TLST � I �D � I, (3.7)

where D is a downsample operator to adjust the shape of features. D is adopted

when the stride of Ω is greater than 1 or Cin � Cout.

According to the arrangement of Ts, Tc and Tr defined in Equation 3.2 and

Equation 3.3, we design two bottleneck structures, namely LST-I and LST-II, as

illustrated in Figure 3.3. One difference between LST-I and LST-II lies in how the

bottleneck expands. LST-I is similar to the basic bottleneck in [59]. It first expands

the number of channels by a2 times with Ts; then, it reduces the number of channels

back to Cout with Tr. The expansion factor of LST-I is 1. In contrast, LST-II adopts a

similar ideology to the ResNet bottleneck [59]. It starts to reduce the channel number

to Cout{a2 with Tr and then increases it to Cout with Ts. Like ResNet bottleneck [59],

we refer the planes (core number of channels) of an LST-II bottleneck to Cch out,

i.e., Cout{a2. Meanwhile, the expansion factor of LST-II is determined by Ts, which

equals a2.

Another difference between the two bottlenecks lies in the implementation of

D. LST-I adopts the widely used structure, i.e., a PWConv followed by a BN. In

contrast, we propose to leverage a 1�1 DWConv followed by BN for the downsample

63



operator D of LST-II by assuming that Cout is divisible by Cin. Such an assumption

usually holds in many modern architectures, e.g ., VGG [151], ResNet [59], ResNeXt

[186], etc. It shifts the original definition of “identity” in such cases to a group-wise

mapping by expanding one channel to Cout{Cin channels. Each input feature map

only interacts with its Cout{Cin associated output feature maps by DWConv, making

it very efficient to handle hundreds or even thousands of feature maps.

With LST-I or LST-II, one can easily build an LST-Net by using existing network

architectures with fewer parameters and less overhead. Examples of LST-Net with

some common CNNs can be found in Section 3.4.2.

3.4 Experiments

3.4.1 Experiment setup and datasets

All experiments are conducted using an 8-way NVIDIA Tesla P100 GPU server with

2 Intel Xeon Gold 6136 CPUs and 128G RAM. To evaluate our method, we build

up LST-Nets by replacing conventional Conv2d operations with our proposed LST

bottlenecks w.r.t. some widely used CNN architectures. The datasets used include

CIFAR-10/100 [89] and ImageNet [35]. Besides, ImageNet-C [63] dataset is used to

demonstrate the robustness of LST-Net to common image corruptions. In addition,

MS-COCO dataset is also used to study the performance in object detection and

instance segmentation. Ablation studies are performed to discuss the initialization,

the selection of parameter τ in ST-ReLU, the difference between LST-I and LST-II

and comparison of ReLU-ST to other activations.

CIFAR-10 and CIFAR-100 datasets. Standard data augmentation strategies

[105, 73] were adopted in training, including random horizontal flip, padding of four

extra pixels on each side, random crop, etc. Each model was trained for 160 epochs.

We used SGD with a mini-batch of 128 samples for optimization. Weight decay and
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momentum were set to 5 � 10�4 and 0.9, respectively. Learning rate started at 0.1,

and was reduced by a factor of 10 after 32K and 48K iterations. One GPU card was

used to train LST-Nets constructed w.r.t. ResNet-20 and ResNet-56 architectures;

two GPU cards were employed for 110- and 164-layer LST-Nets; four GPU cards

were adopted to train LST-Nets built under other architectures. We did not use any

SyncBN layers.

ImageNet LSVRC2012 dataset. By default, we follow the settings in [81, 59] to

compare different methods on the validation set (no test labels are released). SGD

with a mini-batch of 256 samples was used for optimization. Weight decay was set

to 1 � 10�4 and momentum to 0.9. We trained each model from scratch for 90

epochs. Learning rate started at 0.1, and was reduced by a factor of 10 for every 30

epochs. We employed four GPU cards to train LST-Net constructed w.r.t. ResNet-

18, ResNet-34, ShiftNet, AlexNet and MobileNet V2. Eight GPU cards were all used

to train other models.

ImageNet-C dataset. We used the ImageNet-C dataset to study the robustness

of those models trained on ImageNet. No fine-tuning was conducted for test on

ImageNet-C.

Places365-Standard dataset. We reused the same training settings on ImageNet.

We report the best top-5 test accuracy achieved by ten-crop estimation for each

model.

MS-COCO dataset. We used MS-COCO dataset to study the performance on

object detection, instance segmentation and human pose estimation. For the first

two tasks, all experiments were conducted using default settings of MMDetection [22].

Specifically, we resized images to 1333�800 at both training and test stages. Besides,

we applied 1� learning rate schedule policy for fair comparison, i.e., each ImageNet

pretrained backbone model was fine-tuned for 12 epochs. Neither synchronized batch

normalization nor image scale augmentation was leveraged in our experiments. In
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terms of human pose estimation, we leveraged SimpleBaseline [183] as the key-points

estimation method. To locate key-points, human images are detected by a detector

having human AP of 56.4 on COCO val2017 dataset and resized to 256�192 or

384�288 during training and inference.

PASCAL VOC dataset. We used PASCAL VOC dataset [41] to study the per-

formance on semantic segmentation. In the training phase, we randomly cropped

a fixed-size 513�513 patch from an image or its horizontally flipped version. In

the testing phase, a single 513�513 center crop is applied for inference. We used

SGD [153] with a mini-batch of 16 for optimization. Output stride is fixed to 16 in

both training and testing phases.

MPII dataset. We used MPII dataset [2] to evaluate LST-Net on human pose

estimation. We trained all models on MPII training set and evaluate them on MPII

test set. SimpleBaseline [183] is used as the key-points estimation method.

FGVC-Aircraft dataset. FGVC-Aircraft dataset [123] includes 10,000 images

across 100 aircraft categories. We used it to evaluate LST-Net on fine-grained visual

recognition.

Birds-CUB200-2011 dataset. Birds-CUB200-2011 dataset [175] consists of 11,788

images from 200 bird species. We used the original dataset partition for evaluation.

It is used for fine-grained visual recognition.

FGVC-Cars dataset. FGVC-Cars [88] contains 16,185 images from 196 car classes.

It is also used for fine-grained visual recognition.

Stanford Dogs dataset. The Stanford Dogs [85] dataset includes 20,580 images

of 120 breeds of dogs around the world. We also used it for fine-grained image

categorization.

Describing Textures Dataset. Describing Textures Dataset (DTD) [30] collects

5,640 material images from 47 classes. A total of 10 pre-defined splits are used to

evaluate models on texture classification. We used the mean and standard deviation
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of the best top-1 accuracy over all splits as our criteria.

Indoor67 dataset. Indoor67 dataset [137] consists of 6,700 images from 67 indoor

scene classes. For each class, 80 and 20 samples are used for training and test,

respectively. We also employed this dataset for texture classification.

DUTS dataset. DUTS dataset [166] contains 10553 training images and 5019 test

images for saliency object detection. Following [66], we employed F-measure and

Mean Absolute Error (MAE) as the metrics for evaluation. For a fair comparison,

the latest PoolNet [113] with ResNet-50 backbone is used as our baseline. We trained

all models by taking use of the training set of DUTS dataset, and we studied the

performance by using its test set.

Extended Complex Scene Saliency Dataset. Extended Complex Scene Saliency

Dataset (ECSSD) [188] is a benchmark dataset for evaluation of saliency detection

algorithms. It comprises 1000 images, including a large number of semantically

meaningful but structurally complicated samples. The entire ECSSD is used for

test.

PASCAL-S dataset. PASCAL-S dataset [104] is a saliency object detection bench-

mark constructed on the validation set of PASCAL VOC 2010 segmentation challenge

[41]. It contains 850 natural images and all of them are used for test.

DUT-OMRON dataset. DUT-OMRON dataset [189] is a challenging saliency

object detection dataset. It consists of 5168 complicated images with accurate ground

truth. The whole dataset is used for evaluation.

HKU-IS dataset. HKU-IS dataset [92] is built for saliency object detection. It

contains 4447 natural images, where 2500, 500 and 1447 images are used for training,

validation and test, respectively. We followed [113] and used the test set of HKU-IS

dataset for evaluation.

Salient Objects Dataset. Salient Objects Dataset (SOD) [130] is a pioneer work

on salient object detection. It collects 300 images used in Berkeley Segmentation
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Dataset [125]. In this chapter, all images are employed for evaluation.

3.4.2 Detailed structures of LST-Net

We can construct our LST-Nets w.r.t. existing CNN architectures (e.g., ResNet, VGG

and AlexNet, etc.) by replacing their main building blocks, such as conventional

Conv2d layers or featured bottlenecks, with our proposed LST-I or LST-II bottleneck.

For each existing CNN architecture, we closely followed its instantiation on different

datasets to construct our corresponding LST-Net.

LST-Net w.r.t. ResNet on CIFAR-10/100. Table 3.1 and Table 3.2 show

the structures of LST-Net constructed w.r.t. ResNet on CIFAR-10/100 using LST-I

and LST-II bottlenecks, respectively. We substituted each basic bottleneck of ResNet

with a pair of LST-I or LST-II bottlenecks as there are two Conv2d operations in

each original bottleneck. To keep the same classifier (the last FC layer), we inserted

a PWConv before GAP (please refer to the third last row of Table 3.2) so that Cin

of FC remains 64.

LST-Net w.r.t. ResNet on ImageNet. Table 3.3 and Table 3.4 present the

architectures of LST-Net w.r.t. ResNet on ImageNet. For shallow models, such

as ResNet-18 and ResNet-34, we built up LST-Net for ImageNet in the same way

as that for CIFAR-10/100. For deep models, such as ResNet-50 and ResNet-101,

we did not introduce extra PWConv before the GAP layer. We employed LST-II

bottlenecks at each stage of conv2 x�conv5 x with comparable number of parameters

and computational cost.

LST-Net w.r.t. WRN on CIFAR-10/100. Table 3.5 and Table 3.6 demon-

strate the details of LST-Net constructed w.r.t. WRN on CIFAR-10/100 when width

multiplier is set to 8 and 10, respectively. We adopted LST-II bottlenecks for con-

struction. Following WRN, we enlarged the core channels of each LST-II bottleneck,

i.e., Cr out, for a few times according to the pre-defined width multiplier.
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LST-Net w.r.t. WRN on ImageNet. LST-II bottlenecks are adopted to

construct LST-Net w.r.t. WRN on ImageNet. Following WRN, we enlarged the core

channels of each LST-II bottleneck, i.e., Cr out, for a few times according to the

pre-defined width multiplier. Thus, it has very similar structure to the one built up

w.r.t. ResNet on ImageNet.

LST-Net w.r.t. VGG on ImageNet. Table 3.7 and Table 3.8 present the

LST-Nets constructed w.r.t. VGG on ImageNet using FC and GAP, respectively. As

VGG has a larger spatial size at various layers than that of the corresponding layers

in ResNet, we adopt LST-I bottleneck for VGG to save overhead. LST-Net (FC)

adopts the same classifier as the standard VGG, i.e. three FC layers. In contrast,

classifier of LST-Net (GAP) is similar to that of ResNet.

LST-Net w.r.t. AlexNet on ImageNet. Table 3.9 and Table 3.10 present the

LST-Net constructed w.r.t. AlexNet on ImageNet using FC and GAP, respectively.

For the same reason as that of VGG, we employed LST-I bottleneck. LST-Net (FC)

has the same classifier as the original AlexNet. In contrast, LST-Net (GAP) takes

the same classifier structure as ResNet.

LST-Net w.r.t. ShiftNet on ImageNet. Table 3.11, Table 3.12 and Table

3.13 show the LST-Net constructed w.r.t. ShiftNet on ImageNet. We employ LST-I

bottleneck for the same reason as VGG and AlexNet. Besides, we set a � 2 for all

bottlenecks. Following ShiftNet, we set the base width to 32 for LST-Net (A) and

half the number for LST-Net (B) and LST-Net (C). We reduced a few bottlenecks

at each stage to match its original expansion rate.

3.4.3 Ablation study

Initialization. As discussed in Section 3.3, 2D-DCT is used to initialize our spatial

and channel-wise transforms Ws and Wc to reduce the feature redundancy. It is

important to study whether random initialization (R.I.) can achieve similar results.
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Table 3.1: LST-Net constructed using LST-I bottleneck w.r.t. ResNet on CIFAR-
10/100.

Type/Stride Cin a2 � Cs Cout
Repeat

20 56 110 164

Conv3x3/1 3 N.A. 16 1

LST-I/1 16 64 16 5 17 35 53

LST-I/2 16
128 32

1

LST-I/1 32 5 17 35 53

LST-I/2 32
256 64

1

LST-I/1 64 5 17 35 53

GAP 64 N.A. 64 1

FC 64 N.A. 10/100 1

Table 3.2: LST-Net constructed using LST-II (default) bottleneck w.r.t. ResNet on
CIFAR-10/100.

Type/Stride Cin Cr out Cout
Repeat

20 56 110 164

Conv3x3/1 3 N.A. 16 1

LST-I/1
16

16 64
1

64 5 17 35 53

LST-II/2 64
32 128

1

LST-II/1 128 5 17 35 53

LST-II/2 128
64 256

1

LST-II/1 256 5 17 35 53

Conv1x1/1 256 N.A. 64 1

GAP 64 N.A. 64 1

FC 64 N.A. 10/100 1

70



Table 3.3: LST-Net constructed w.r.t. ResNet on ImageNet and Places365-Standard
(18 and 34 layers).

Name Type/Stride Cin Cr out Cout
Repeat

18 34

conv1 Conv7�7/2 3 N.A. 64 1 1

conv2 x

MaxPool3�3/2 64 N.A. 64 1 1

LST-II/2 64
64 256

1 1

LST-II/1 256 1 5

conv3 x
LST-II/2 256

128 512
1 1

LST-II/1 512 1 7

conv4 x
LST-II/2 512

256 1024
1 1

LST-II/1 1024 1 11

conv5 x
LST-II/2 1024

512 2048
1 1

LST-II/1 2048 1 5

Conv1x1/1 2048 N.A. 512 1 1

GAP 512 N.A. 512 1 1

FC 512 N.A. 365/1K 1 1

We build LST-Nets of 20�164 layers in depth using the vanilla ResNet architecture

[59] to test this (LST-II bottleneck is used). We use the uniform distribution within

r�?u,?us to randomly initialize Ws and Wc, where u � 1{pCin � a2 � s2q for Ws

and u � 1{pCin � a� sq for Wc.

Table 3.14 summarizes the error rates on CIFAR-100 (similar conclusions can be

made on CIFAR-10). One can see that 2D-DCT initialization obtains much better

performance than R.I., which lags behind the former by 2.7% � 7.0%. Besides, an

LST-Net with R.I. is even worse than the baseline vanilla ResNet. This is because

LST-Net will drop a certain amount of trivial frequencies after 2D-DCT initialization,

while R.I. may be difficult to transform the channel and spatial fields of the input
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Table 3.4: LST-Net constructed w.r.t. ResNet on ImageNet and Places365-Standard
(50 and 101 layers).

Name Type/Stride Cin Cr out Cout
Repeat

50 101

conv1 Conv7�7/2 3 N.A. 64 1 1

conv2 x

MaxPool3�3/2 64 N.A. 64 1 1

LST-II/2 64
64 256

1 1

LST-II/1 256 9 9

conv3 x
LST-II/2 256

128 512
1 1

LST-II/1 512 13 13

conv4 x
LST-II/2 512

256 1024
1 1

LST-II/1 1024 20 77

conv5 x
LST-II/2 1024

512 2048
1 1

LST-II/1 2048 9 9

GAP 2048 N.A. 2048 1 1

FC 2048 N.A. 365/1K 1 1

feature into different frequencies with PWConv and DWConv operations, resulting

in unnecessary loss of some crucial information.

The selection of parameter τ . We study the effect of parameter τ (refer

to Equation 3.5) on LST-Net. We built a 20-layer LST-Net in favor of ResNet

architecture, and tested on CIFAR100. We search for the optimal value of τ in

the range of t0, 10�1, 10�2, 10�3, 10�4, 10�5, 10�6u. The error rates are t28.92%,

28.32%, 28.28%, 28.86%, 28.21%, 28.43%, 28.70%u, where the best result is 28.21%

when τ � 10�4. Thus, we set τ � 10�4 by default in all experiments of this chapter.

Note that when τ � 0, ST-ReLU is reduced to standard ReLU, but its error rate

is larger than other values of τ . This validates that our hybrid ReLU-ST activation

scheme works better than ReLU for LST-Net.

LST-I vs LST-II. We discuss the pros and cons of our proposed LST-I and
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Table 3.5: LST-Net constructed w.r.t. WRN on CIFAR-10/100 (width multiplier =
8).

Type/Stride Cin Cr out Cout
Repeat

16 22 28 40

Conv3x3/1 3 N.A. 16 1

LST-II/1
16

128 512
1

512 1 2 3 5

LST-II/2 512
256 1024

1

LST-II/1 1024 1 2 3 5

LST-II/2 1024
512 2048

1

LST-II/1 2048 1 2 3 5

Conv1x1/1 2048 N.A. 512 1

GAP 512 N.A. 512 1

FC 512 N.A. 10/100 1

Table 3.6: LST-Net constructed w.r.t. WRN on CIFAR-10/100 (width multiplier =
10).

Type/Stride Cin Cr out Cout
Repeat

16 22 28 40

Conv3x3/1 3 N.A. 16 1

LST-II/1
16

160 640
1

640 1 2 3 5

LST-II/2 640
320 1280

1

LST-II/1 1280 1 2 3 5

LST-II/2 1280
640 2560

1

LST-II/1 2560 1 2 3 5

Conv1x1/1 2560 N.A. 640 1

GAP 640 N.A. 640 1

FC 640 N.A. 10/100 1
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Table 3.7: LST-Net (FC) constructed w.r.t. VGG on ImageNet and Places365-
Standard.

Type/Stride Cin a2 � Cs Cout Repeat

Conv3�3/1 3 N.A. 64 1

MaxPool2�2/2 64 N.A. 64
1

LST-I/1 64 512 128

MaxPool2�2/2 128 N.A. 128

1LST-I/1 128
1024 256

LST-I/1 256

MaxPool2�2/2 256 N.A. 256

1LST-I/1 256
2048 512

LST-I/1 512

MaxPool2�2/2 512 N.A. 512 1

LST-I/1 512 2048 512 2

FC 25088 N.A. 4096

1FC 4096 N.A. 4096

FC 4096 N.A. 365/1K

LST-II bottlenecks in building up a LST-Net. For LST-I, one is free to replace a

conventional Conv2d by LST-I in many existing architectures, such as ResNet [59],

AlexNet [90], VGG [151], etc. For example, a basic ResNet bottleneck can be replaced

by a pair of LST-I bottlenecks as it has two Conv2d operations. For LST-II, due to

the expansion factor of LST-II, parameters and overhead of the associated PWConv

operation in the shortcut path are increased by a2 times compared to LST-I. Thus,

LST-II is not suitable to architectures with larger spatial size at earlier layers, such

as AlexNet and VGG. LST-II will also increase the output channel number of the

last bottleneck, but this issue can be easily solved with an extra PWConv operation,

which is cheap compared to the entire CNN model in terms of number of parameters

and computational cost. When building a deeper CNN model, such as ResNet-50 or
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Table 3.8: LST-Net (GAP) constructed w.r.t. VGG on ImageNet and Places365-
Standard.

Type/Stride Cin a2 � Cs Cout Repeat

Conv3�3/1 3 N.A. 64 1

MaxPool2�2/2 64 N.A. 64
1

LST-I/1 64 512 128

MaxPool2�2/2 128 N.A. 128

1LST-I/1 128
1024 256

LST-I/1 256

MaxPool2�2/2 256 N.A. 256

1LST-I/1 256
2048 512

LST-I/1 512

MaxPool2�2/2 512 N.A. 512 1

LST-I/1 512 2048 512 2

GAP 512 N.A. 512 1

FC 512 N.A. 365/1K 1

ResNet-101, it is more suitable to use LST-II than LST-I. In Table 3.15, we construct

LST-Nets with LST-I and LST-II bottlenecks w.r.t. ResNet architecture and compare

them on CIFAR-100. The vanilla ResNet is included as the baseline. Both LST-I

and LST-II outperform the baseline by a large margin, while LST-II performs better

than its LST-I counterpart. In the remaining experiments of this chapter, if not

specified, we adopt LST-II bottleneck to build ResNet models by default.

Comparison of ST-ReLU to other activations. We use a 20-layer and a

164-layer LST-Net to compare our ReLU-ST with ReLU [131], leaky ReLU (LReLU)

[121], parametric ReLU (PReLU) [58], ELU [31] and SELU [87] on CIFAR-100. For

comparison, we remove ST operations in LST bottleneck and replace ReLU by other

activations. Table 3.16 presents the top-1 error rates achieved by different activations.

One can see that ReLU-ST outperforms other activations for both 20- and 164-layer
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Table 3.9: LST-Net (FC) constructed w.r.t. AlexNet on ImageNet and Places365-
Standard.

Type/Stride Cin a2 � Cs Cout Repeat

Conv11�11/4 3 N.A. 64 1

MaxPool3�3/2 64 N.A. 64
1

LST-I/1 64 768 192

MaxPool3�3/2 192 N.A. 192
1

LST-I/1 192 1536 384

MaxPool3�3/2 384 N.A. 384

1LST-I/1 384
1024 256

LST-I/1 256

FC 9216 N.A. 4096

1FC 4096 N.A. 4096

FC 4096 N.A. 365/1K

Table 3.10: LST-Net (GAP) constructed w.r.t. AlexNet on ImageNet and Places365-
Standard.

Type/Stride Cin a2 � Cs Cout Repeat

Conv11�11/4 3 N.A. 64 1

MaxPool3�3/2 64 N.A. 64
1

LST-I/1 64 768 192

MaxPool3�3/2 192 N.A. 192
1

LST-I/1 192 1536 384

MaxPool3�3/2 384 N.A. 384

1LST-I/1 384
1024 256

LST-I/1 256

GAP 512 N.A. 512 1

FC 512 N.A. 365/1K 1
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Table 3.11: LST-Net (A) constructed w.r.t. ShiftNet-A on ImageNet.

Type/Stride Cin a2 � Cs Cout Repeat

Conv7�7/2 3 N.A. 32 1

LST-I 5�5/2
32 128 32

1

LST-I 5�5/1 4

LST-I 5�5/2 32
256 64

1

LST-I 5�5/1 64 2

LST-I 3�3/2 64
512 128 1

LST-I 3�3/1 128

LST-I 3�3/2 128
1024 256 1

LST-I 3�3/1 256

GAP 256 N.A. 256 1

FC 256 N.A. 1K 1

Table 3.12: LST-Net (B) constructed w.r.t. ShiftNet-B on ImageNet.

Type/Stride Cin a2 � Cs Cout Repeat

Conv7�7/2 3 N.A. 16 1

LST-I 5�5/2
16 64 16

1

LST-I 5�5/1 4

LST-I 5�5/2 16
128 32

1

LST-I 5�5/1 32 2

LST-I 3�3/2 32
256 64 1

LST-I 3�3/1 64

LST-I 3�3/2 64
512 128 1

LST-I 3�3/1 128

GAP 128 N.A. 128 1

FC 128 N.A. 1K 1
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Table 3.13: LST-Net (C) constructed w.r.t. ShiftNet-C on ImageNet.

Type/Stride Cin a2 � Cs Cout Repeat

Conv7�7/2 3 N.A. 16 1

LST-I 5�5/2
16 64 16 1

LST-I 5�5/1

LST-I 5�5/2 16
128 32 1

LST-I 5�5/1 32

LST-I 3�3/2 32
256 64 1

LST-I 3�3/1 64

LST-I 3�3/2 64
512 128 1

LST-I 3�3/1 128

GAP 128 N.A. 128 1

FC 128 N.A. 1K 1

Table 3.14: Comparison (error rates, %) of different initialization methods on CIFAR-
100.

Method / Depth 20 56 110 164

ResNet [59] (R.I.) 30.88 27.62 26.23 26.07

LST-Net (R.I.) 31.12 29.92 28.95 28.94

LST-Net (2D-DCT) 28.21 24.09 22.66 21.94

Table 3.15: Comparison (error rates, %) of different bottlenecks on CIFAR-100.

Method / Depth 20 56 110 164

ResNet [59] 30.88 27.62 26.23 26.07

LST-I 27.64 25.08 23.76 23.15

LST-II 28.21 24.09 22.66 21.94
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Table 3.16: Comparison (error rates, %) of different activation methods on CIFAR-
100.

Depth ReLU-ST LReLU [121] SELU [87] ReLU [131] PReLU [58] ELU [31]

20 28.21 28.37 28.69 28.92 29.35 31.60

164 21.94 22.44 22.84 22.86 23.91 29.94

Table 3.17: Results (error rates, %) by different networks under ResNet on CIFAR-
10/100.

Depth Model Param/FLOPs C10/C100

20

ResNet [59] 0.27M/40.8M 7.7/30.9

PreactResNet [59] 0.27M/40.8M 7.7/30.8

ShiftResNet [180] 0.16M/27M 9.0/31.4

FE-Net [27] 0.16M/27M 8.3/30.8

SENet [71] 0.28M/40.8M 7.6/30.5

CBAM [178] 0.28M/40.8M 7.3/30.3

LST-Net 0.20M/34M 6.7/28.2

56

ResNet [59] 0.86M/126M 6.6/27.6

PreactResNet [59] 0.86M/126M 6.5/27.6

ShiftResNet [180] 0.55M/84M 7.3/27.9

FE-Net [27] 0.55M/84M 8.3/30.8

SENet [71] 0.87M/126M 6.4/27.5

CBAM [178] 0.87M/126M 6.0/27.1

LST-Net 0.59M/94M 5.6/24.1

110

ResNet [59] 1.73M/253M 6.6/25.2

PreactResNet [59] 1.73M/253M 6.2/24.1

ShiftResNet [180] 1.18M/187M 6.8/27.4

FE-Net [27] N.A. N.A.

SENet [71] 1.74M/253M 5.2/23.9

CBAM [178] 1.74M/253M 5.1/23.5

LST-Net 1.17M/183M 5.0/22.7
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Table 3.18: Results (error rates, %) by different networks under WRN on CIFAR-
10/100.

Depth Multiplier Model Param/FLOPs C10/C100

16

8
WRN [198] 10.96M/2.00G 4.80/22.03

LST-Net 7.41M/1.30G 4.70/20.88

10
WRN [198] 17.12M/3.12G 4.49/21.52

LST-Net 11.53M/2.01G 4.46/20.21

22

8
WRN [198] 17.16M/2.91G 4.56/21.21

LST-Net 10.94M/1.82G 4.40/19.33

10
WRN [198] 26.80M/4.54G 4.44/20.75

LST-Net 17.01M/2.82G 4.31/18.57

28

10
WRN [198] 36.48M/5.95G 4.17/20.50

LST-Net 22.50M/3.63G 4.03/18.23

12
WRN [198] 43.42M/8.56G 4.33/20.41

LST-Net 32.29M/5.20G 3.94/17.93

40

4
WRN [198] 8.91M/1.41G 4.97/22.89

LST-Net 5.52M/0.87G 4.31/19.14

8
WRN [198] 35.75M/5.63G 4.66/19.38

LST-Net 21.52M/3.38G 3.76/18.56

LST-Nets. The gain is higher for deeper models.

3.4.4 Evaluation on image classification

Evaluation on CIFAR-10 and CIFAR-100. We build our LST-Net models

w.r.t. the popular architectures, including ResNet [59] and Wide Residual Networks

(WRN) [198], and compare LST-Net with state-of-the-art CNNs in those families,

e.g. Pre-activation ResNet [59], SENet [71], CBAM [178], and two other models, i.e.,

ShiftResNet [180] and FE-Net [27].

Table 3.17 and Table 3.18 present the results on CIFAR-10/100. We can have

the following findings. First, LST-Net achieves the lowest error rates under differ-
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ent network depths with almost the least number of parameters and FLOPs (very

close to ShiftResNet and FE-Net). This validates its effectiveness and efficiency.

LST-Net outperforms ResNet and PreactResNet while reducing over 40% parame-

ters and 35% overhead. Compared to SENet and CBAM, LST-Net does not need

extra paths while it achieves even better results. For instance, a 110-layer LST-Net

improves SENet/CBAM of the same depth by 0.2%/0.1% and 1.2%/0.8% on CIFAR-

10 and CIFAR-100, respectively. Besides, LST-Net outperforms both ShiftResNet

and FENet by a large margin with comparable parameters and overhead. For ex-

ample, a 20-layer LST-Net reduces the error rates of ShiftResNet and FE-Net by

2.3/3.2% and 1.6/2.6% on CIFAR-10/100, respectively.

Second, when we switch to wider CNN models, our bottleneck can save more

parameters and computational cost because the computation of PWConv dominates

an entire LST bottleneck when it is wide enough (the cost of DWConv can be ne-

glected). We can obtain consistent performance boost of our LST-Net with the

increase of width and/or depth. In contrast, the corresponding WRN architecture is

less effective in improving its results with more channels and/or layers. For example,

for a 28-layer WRN, the error rates will rise by 4.17% � 4.33% on CIFAR-10 when

the width multiplier is increased from 10 to 12.

Evaluation on ImageNet. We then evaluate LST-Net on ImageNet [35] for

large-scale image classification. We construct LST-Nets under the widely used net-

work architectures, including ResNet [59], WRN [198], AlexNet [90] and VGG (with

11 layers) [151]. We also build LST-Nets w.r.t. ShiftNet [180] and MobileNet V2

[149].

Specifically, for ResNet or WRN architecture, we construct LST-Net using LST-II

bottleneck, and for AlexNet/VGG, we build LST-Net (FC) by replacing Conv2d lay-

ers with LST-I bottlenecks. We also change the original classifier layer in AlexNet/VGG

into GAP [105] followed by a dense layer in the same way as [208], resulting in LST-
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Net (GAP). Similarly, the standard AlexNet/VGG can be modified in the same

way, resulting in AlexNet (GAP)/VGG (GAP). Since BN [81] is used in our bottle-

neck, we further insert a BN layer after each Conv2d of AlexNet/VGG, termed as

AlexNet/VGG (BN). For ShiftNet architecture, we build the LST-Nets by adjusting

the stride, kernel size, number of stages, etc., according to its variants A, B, and C

with different depth and width. For MobileNet V2, we build LST-Net (M-V2) by

replacing the Inverted Residual bottlenecks in MobileNet V2 with the LST-I bottle-

necks and reusing the original settings, including kernel size, stride, expansion rate

E , number of bottlenecks, etc. To adapt LST-I bottleneck to the Inverted Resid-

ual bottleneck, we made three changes: (1) we replaced each ReLU in the original

LST-I bottleneck by ReLU6 and the ReLU-ST activation scheme was adapted to

ReLU6-ST, where we set τ � 1 � 10�8 in ST to take care of the need for a linear

transform; (2) we removed PWConv and BN in channel-wise transform Tc when the

expansion rate E � 1; (3) we removed the downsample operator D and element-wise

plus when E ¡ 1 while stride¡1 or Cin � Cout. Table 3.19 shows the structure of

LST-Net built up w.r.t. MobileNet V2, where we modified LST-I bottleneck in this

experiment. Figure 3.4 illustrates the LST-I bottlenecks corresponding to MobileNet

V2 bottlenecks. Batch size, initial learning rate and weight decay are set to 256, 0.05

and 5 � 10�4, respectively. We adopted a cosine learning rate decay strategy and

trained our model for 150 epochs.

Table 3.20, Table 3.21, and Table 3.22 summarize the results. One can see that

LST-Net consistently surpasses ResNet, SENet and CBAM of the same depth with

fewer parameters and less overhead. An 18-layer LST-Net even achieves lower top-1

error rates than the standard ResNet-34 on ImageNet. Despite different depth, in-

creasing width of LST-Net with WRN architecture steadily increases its accuracy.

Meanwhile, LST-Net saves larger proportion of parameters and overhead compared

to WRN. LST-Net with AlexNet or VGG architecture is much more robust to differ-
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Table 3.19: LST-Net constructed w.r.t. MobileNet V2 on ImageNet.

Type/Stride Cin a2 � Cs pEq Cout Repeat

Conv3x3/1 3 N.A. 16 1

Modified LST-I/1 16 16 (1) 16 1

Modified LST-I/2 16 96 (6)
24

1

Modified LST-I/1 24 144 (6) 1

Modified LST-I/2 24 144 (6)
32

1

Modified LST-I/1 32 192 (6) 2

Modified LST-I/1
32 192 (6)

64
1

64 384 (6) 3

Modified LST-I/2 64 384 (6)
96

1

Modified LST-I/1 96 576 (6) 2

Modified LST-I/2 96 576 (6)
160

1

Modified LST-I/1 160 960 (6) 2

Modified LST-I/1 160 960 (6) 320 1

PWConv 320 N.A. 1280 1

GAP 1280 N.A. 1280 1

FC 1280 N.A. 1K 1

ent classifier structures than the standard AlexNet or VGG because LST-Net learns

structured features, which are well suited for channel-wise operations (see our discus-

sion in Section 3.3.1). Meanwhile, LST-Net (FC) can reduce top-1/top-5 error rates

of AlexNet (BN) and VGG (BN) by 2.61%/2.62% and 1.06%/0.40%, respectively.

LST-Net also shows better performance under the ShiftNet architecture. Compared

with all the three variants, our LST-Net reduces the top-1 error rate of its corre-

sponding counterpart by 0.6% �2.3% with similar number of parameters. LST-Net

(M-V2) achieves a 72.3% top-1 accuracy, outperforming MobileNet V2 by 0.4% using

the same number of parameters and computational cost. This again validates the
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Figure 3.4: Illustration of LST-I bottleneck w.r.t. the Inverted Residual bottleneck
in MobileNet V2. EWPlus means element-wise plus. PWConv/DWConv in red font
indicates initialization with 2D-DCT while blue font suggests random initialization.

generality and superiority of our LST method.

We present the convergence curves of LST-Net on ImageNet in terms of top-1

and top-5 error rates. Figs. 3.5 and 3.6 compare the convergence curves of ResNet-

18, ResNet-50 and their corresponding LST-Nets. One can see that our LST-Nets

achieve lower error rates during the entire training process.

3.4.5 Evaluation on robustness to common corruptions

We study the robustness of LST-Net to common corruptions in input by using the

ImageNet-C dataset [63]. The mean corruption error (mCE) defined in [63] is used

as our criteria. We construct LST-Net according to the ResNet architecture and

compare it with the vanilla ResNet [59], SENet [71] and CBAM [178]. To examine

the role of ST (please refer to Section 3.3.2) in improving the robustness of LST-Net,

we also test LST-Net without ST in activation.

Table 3.23 lists the mCE and corruption errors for each type of corruption. One
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Table 3.20: Results (error rates, %) by different networks under ResNet on ImageNet.

Depth Model Param/FLOPs Top-1/Top-5

18

ResNet [59] 11.69M/1.81G 30.24/10.92

SENet [71] 11.78M/1.81G 29.41/10.22

CBAM [178] 11.78M/1.82G 29.31/10.17

LST-Net 8.03M/1.48G 26.55/8.59

34

ResNet [59] 21.79M/3.66G 26.70/8.58

SENet [71] 21.96M/3.66G 26.13/8.35

CBAM [178] 21.96M/3.67G 26.01/8.40

LST-Net 13.82M/2.56G 23.92/7.24

50

ResNet [59] 25.56M/4.09G 23.85/7.13

SENet [71] 28.09M/4.09G 23.14/6.70

CBAM [178] 28.09M/4.10G 22.98/6.68

LST-Net 23.33M/4.05G 22.78/6.66

101

ResNet [59] 44.55M/7.80G 22.63/6.44

SENet [71] 49.29M/7.81G 22.35/6.19

CBAM [178] 49.29M/7.81G 21.65/5.95

LST-Net 42.36M/7.75G 21.63/5.94
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Figure 3.5: Convergence curves of ResNet-18 and our LST-Net on ImageNet.
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Table 3.21: Results (error rates, %) by different networks under WRN on ImageNet.

Depth Mulp. Model Param/FLOPs Top-1/Top-5

18

1
WRN [198] 11.69M/1.81G 30.24/10.92

LST-Net 8.03M/1.48G 26.55/8.59

1.5
WRN [198] 25.88M/3.87G 27.06/9.00

LST-Net 17.53M/3.21G 24.44/7.51

2
WRN [198] 45.62M/6.70G 25.58/8.06

LST-Net 30.68M/5.59G 23.49/6.93

3
WRN [198] 101.78M/14.72G 24.06/7.33

LST-Net 67.96M/12.31G 22.33/6.52

34

1
WRN [198] 21.79M/3.66G 26.70/8.58

LST-Net 13.82M/2.56G 23.92/7.24

1.5
WRN [198] 48.61M/8.03G 24.50/7.58

LST-Net 30.42M/5.59G 22.29/6.30

2
WRN [198] 86.04M/14.09G 23.39/7.00

LST-Net 53.49M/9.79G 21.44/6.11
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Figure 3.6: Convergence curves of ResNet-50 and our LST-Net on ImageNet.
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Table 3.22: Results (error rates, %) by different networks under other architectures
on ImageNet.

Model Param/FLOPs Top-1/Top-5

AlexNet [90] 61.10M/0.71G 43.45/20.91

AlexNet (BN) 61.10M/0.71G 41.93/20.02

AlexNet (GAP) 2.73M/0.66G 51.13/26.33

LST-Net (FC) 60.30M/0.62G 39.32/17.40

LST-Net (GAP) 2.25M/0.60G 39.91/17.86

VGG [151] 132.86M/7.61G 30.98/11.37

VGG (BN) 132.86M/7.61G 29.62/10.19

VGG (GAP) 9.73M/7.49G 33.40/12.20

LST-Net (FC) 128.63M/5.89G 28.56/9.79

LST-Net (GAP) 6.63M/5.04G 29.23/10.26

ShiftNet-A [180] 4.1M/1.4G 29.9/10.3

ShiftNet-B [180] 1.1M/N.A. 38.8/16.4

ShiftNet-C [180] 0.78M/N.A. 41.2/18.0

LST-Net (A) 4.3M/1.2G 29.3/10.0

LST-Net (B) 1.2M/389.5M 36.9/14.8

LST-Net (C) 0.84M/342.5M 38.9/16.3

MobileNet V2 [149] 3.4M/300M 28.1%/N.A.

LST-Net (M-V2) 3.4M/300M 27.7%/9.4%

can see that LST-Net achieves lower mCE than its competitors of the same depth. It

significantly reduces the mCE of the vanilla ResNet by 3.69% (18-layer) / 6.47% (50-

layer), and also improves SENet and CBAM by at least 2.76% (18-layer) / 2.02%

(50-layer). Though SENet and CBAM use extra paths which work well on clean

images, the pooling operations in these paths may produce biased results in the

existence of corruptions when the model is shallow. In contrast, LST does not need

such extra paths and its robustness comes from the compact and sparser features.

In addition, the ST operation in our ST-ReLU activation function can strengthen

the robustness of LST-Net to most types of corruptions. With ST, the mCE of
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LST-Net-18/50 is reduced by 0.45%/0.31%.

3.4.6 Evaluation on large-scale scene recognition

We evaluate LST-Net for large-scale scene recognition on Places365-Standard dataset

[209]. We build up LST-Nets w.r.t. ResNet [59], AlexNet [90] and 11-layer VGG [151]

for fair comparison. We compare LST-Net with its counterpart networks. Table 3.24

and Table 3.25 present top-5 accuracies obtained using ten-crop estimation.

One can see that LST-Net surpasses its counterparts. This validates that LST-Net

is also effective for the large-scale scene recognition task. In particular, an 18-layer

LST-Net can even surpass ResNet-50 by 1.27% while saving nearly 70% of the total

parameters and 64% of the total FLOPs. Meanwhile, LST-Net under ResNet-50

architecture achieves the best performance on Places365-Standard dataset, 0.96%

higher than its closest follower, CBAM-50. Besides, by replacing the last linear

layers of AlexNet by GAP, the accuracy drops significantly, while LST-Net(GAP) is

robust in this case. AlexNet (BN) only slightly improves AlexNet [90], while LST-

Net (FC) built up w.r.t. AlexNet, also using BN and FC, improves much AlexNet

(BN). Similarly, the accuracy drops by nearly 1% when the last linear layers of VGG

is replaced by GAP, while LST-NET (GAP) constructed under VGG is also robust

in the same case. LST-Net (FC) built up w.r.t. VGG improves VGG (BN) by 0.24%.

3.4.7 Evaluation on fine-grained visual recognition

We evaluate the performance of our LST-Net on fine-grained visual recognition.

Four datasets are used for evaluation, including FGVC-Aircraft, Birds-CUB200-2011,

FGVC-Cars and Stanford Dogs. Neither part annotations nor bounding boxes are

used for training or testing. For fair comparison, we follow [194] for experimental

setting. For both ResNet-50 and our LST-Net w.r.t. ResNet-50, we report the best

performance we achieved.
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Table 3.23: Comparison of model robustness to common corruptions on ImageNet-C.
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Table 3.24: Results of networks under ResNet on Places365-Standard dataset.

Model Param/FLOPs Top-5 Acc. (%)

ResNet-50 [59] 25.24M/4.09G 85.08

SENet-50 [71] 26.77M/4.09G 85.86

CBAM-50 [178] 26.79M/4.09G 86.22

LST-Net (ResNet-18) 7.71M/1.48G 86.35

LST-Net (ResNet-34) 13.50M/2.56G 86.94

LST-Net (ResNet-50) 23.01M/4.05G 87.18

Table 3.25: Results of networks under other architectures on Places365-Standard
dataset.

Model Param/FLOPs Top-5 Acc. (%)

AlexNet [90] 58.50M/0.71G 82.89

AlexNet (BN) 58.50M/0.71G 82.98

AlexNet (GAP) 2.56M/0.66G 77.89

LST-Net (FC) 57.70M/0.64G 83.99

LST-Net (GAP) 2.09M/0.62G 82.95

VGG [151] 130.26M/7.61G 84.91

VGG (BN) 130.26M/7.61G 85.09

VGG (GAP) 9.73M/7.49G 83.95

LST-Net (FC) 127.15M/6.01G 85.33

LST-Net (GAP) 6.30M/5.89G 85.12

Table 3.26 presents the fine-grained visual recognition results. Our LST-Net

outperforms ResNet-50 on all datasets by at least 2% in terms of top-1 accuracy.

It is worth noting that LST-Net obtains a considerable gain of 12.37% on Stanford

Dogs dataset.

3.4.8 Evaluation on texture classification

We employ DTD [30] and Indoor67 dataset [137] to study the performance of our

LST-Net on texture classification. For fair comparison, we follow [109] for experi-
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Table 3.26: Fine-grained visual recognition results (top-1 accuracy, %) of LST-Net.

Backbone
FGVC Birds FGVC Stanford

-Aircraft -CUB200-2011 -Cars Dogs

ResNet-50 [59] 86.70 82.21 88.68 76.23

LST-Net 90.04 85.61 91.51 88.60

Table 3.27: Texture classification results (top-1 accuracy, %) of LST-Net.

Backbone DTD Indoor67

ResNet-50 [59] 63.68�0.85 79.63

LST-Net 67.47�1.09 81.72

mental setting to compare ResNet-50 and our LST-Net w.r.t. ResNet-50.

Table 3.27 presents the texture classification results. It can be observed that LST-

Net outperforms ResNet-50 on both datasets. Specifically, our method improves the

average top-1 accuracy of ResNet-50 by 3.79% on DTD. In addition, it outperforms

top-1 accuracy of ResNet-50 by 2.09% on Indoor67 dataset.

3.4.9 Evaluation on object detection and instance segmen-
tation

We report results of object detection and instance segmentation on MS-COCO [107].

We trained all models on COCO-2017 training set and evaluated on COCO-2017

validation set using standard COCO AP metric of single scale. For comparison, we

adopted some popular one-stage and two-stage object detection and/or instance seg-

mentation frameworks, including Faster-RCNN [144], RetinaNet [106], FCOS [161],

Mask R-CNN [57], and Cascade Mask R-CNN [12]. We replaced vanilla ResNet-50

with our LST-Net as the backbone model of each framework, and the settings for

hyper-parameters and detection heads remained unchanged.

Table 3.28 and Table 3.29 present the object detection results and instance seg-
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Table 3.28: Object detection results (%) of LST-Net on MS-COCO validation set.

Detector Backbone mAP AP 50 AP 75 AP S APM APL

Faster R-CNN
[144]

ResNet [59] 37.4 58.1 40.4 21.2 41.0 48.1

LST-Net 40.8 62.2 44.3 24.8 44.7 53.1

RetinaNet [106]
ResNet [59] 36.5 55.4 39.1 20.4 40.3 48.1

LST-Net 38.7 58.5 41.7 22.2 42.7 51.2

FCOS [161]
ResNet [59] 36.6 55.7 38.8 20.7 40.1 47.4

LST-Net 38.8 58.7 41.5 22.5 42.4 50.2

Mask R-CNN
[57]

ResNet [59] 38.2 58.8 41.4 21.9 40.9 49.5

LST-Net 41.3 62.5 45.0 25.1 45.1 54.3

Cascade Mask
R-CNN [12]

ResNet [59] 41.2 59.4 45.0 23.9 44.2 54.4

LST-Net 43.9 62.6 47.9 26.3 47.4 57.8

Table 3.29: Instance segmentation results (%) of LST-Net on MS-COCO validation
set.

Detector Backbone mAP AP 50 AP 75 AP S APM APL

Mask R-CNN
[57]

ResNet [59] 34.7 55.7 37.2 18.3 37.4 47.2

LST-Net 37.1 59.3 39.4 20.9 40.5 50.8

Cascade Mask
R-CNN [12]

ResNet [59] 35.9 56.6 38.4 19.4 38.5 49.3

LST-Net 38.1 59.7 40.9 21.4 41.3 51.9

mentation results on MS-COCO validation set, respectively. One can clearly see that

LST-Net significantly boosts the performance of vanilla ResNet under all settings.

mAP is improved by 2.2%�3.4% in object detection and 2.2%�2.4% in semantic

segmentation. This suggests that our LST-Net is more reliable on object detection

and instance segmentation tasks.
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Table 3.30: Semantic segmentation results (%) of LST-Net on PASCAL VOC2012.

Seg. Method Backbone mIoU
Overall Freq. W.

Acc. (%) Acc.(%)

DeepLab V3 [23]
ResNet [59] 0.767 93.89 88.76

LST-Net 0.790 94.49 90.07

DeepLab V3+ [24]
ResNet [59] 0.771 94.13 89.14

LST-Net 0.792 94.58 90.17

3.4.10 Evaluation on semantic segmentation

We report semantic segmentation results on PASCAL VOC [41]. We closely follow

the experimental settings of [24] for fair comparison. Specifically, we trained all mod-

els on the original PASCAL VOC2012 training set as well as extra annotations pro-

vided by SBD [56], and we validated the models on the original PASCAL VOC2012

validation set. Similar to Section 3.4.9, we also substituted vanilla ResNet-50 for our

LST-Net as the backbone model. We resorted to two popular semantic segmentation

methods for evaluation, including DeepLab V3 [23] and DeepLab V3+ [24]. In favor

of both methods, we replaced stride with dilation in the spatial transform Ts of LST

bottlenecks at Stage 4, while the rest transforms remained unchanged. The perfor-

mance of semantic segmentation is measured in terms of mIoU, overall accuracy, and

frequency weighted accuracy.

Table 3.30 demonstrates the results. One can see that our LST-Net improves

ResNet in terms of the four semantic segmentation indices. It is worthwhile noting

that mIoU is significantly improved by more than 0.02 for both DeepLab V3 and

DeepLab V3+.
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Table 3.31: Human pose estimation results (AP, %) of LST-Net on MPII dataset.

Backbone Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

ResNet-50 [59] 96.35 95.33 88.99 83.18 88.42 83.96 79.59 88.53 33.91

LST-Net 96.76 95.35 89.42 84.00 88.56 84.95 80.63 89.05 34.41

Table 3.32: Human pose estimation results (%) of LST-Net on COCO key-points
detection dataset.

Backbone Input Size AP AP0.5 AP0.75 APM APL AR AR0.5 AR0.75 ARM ARL

ResNet-50 [59]
256�192

70.4 88.6 78.3 67.1 77.2 76.3 92.9 83.4 72.1 82.4

LST-Net 74.1 92.5 81.5 71.1 78.7 77.0 93.4 83.5 73.7 82.0

ResNet-50 [59]
384�288

72.2 89.3 78.9 68.1 79.7 77.6 93.2 83.8 72.8 84.6

LST-Net 76.5 93.6 83.7 73.4 81.3 79.0 94.1 85.2 75.6 84.2

3.4.11 Evaluation on human pose estimation

To study the performance of LST-Net on human pose estimation, we use Simple-

Baseline [183] as the key-points detection method. We only replace the backbone

ResNet-50 with our LST-Net, where both backbone models are pre-trained on Im-

ageNet dataset. All implementation remains the same with SimpleBaseline [183].

Both MPII dataset [2] and COCO key-point detection dataset [107] are used for

evaluation. For each dataset, we use the training set to train all the models and

validation set for test.

Table 3.31 and Table 3.32 show the results using LST-Net on MPII dataset and

COCO key-points detection dataset, respectively. LST-Net outperforms mean AP

of ResNet-50 by 0.52% on MPII dataset. Meanwhile, on COCO key-points detection

dataset, LST-Net significantly improves mean AP of ResNet-50 by 3.7% and 4.3%

when input size is 256�192 and 384�288, respectively. In addition, our method also

has considerable gain of mean AR by 0.7% and 1.3% on COCO key-points detection

dataset when input size is 256�192 and 384�288, respectively.
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Table 3.33: Salient object detection results of LST-Net.

Dataset Backbone F-measureÒ MAEÓ

ECSSD [188]

ResNet-50 [59] 0.940 0.042

Res2Net [113] 0.947 0.036

LST-Net 0.950 0.034

PASCAL-S [104]

ResNet-50 [59] 0.863 0.075

Res2Net [113] 0.871 0.070

LST-Net 0.876 0.066

DUT-OMRON [189]

ResNet-50 [59] 0.830 0.055

Res2Net [113] 0.837 0.052

LST-Net 0.834 0.052

HKU-IS [92]

ResNet-50 [59] 0.934 0.032

Res2Net [113] 0.936 0.031

LST-Net 0.941 0.028

SOD [130]

ResNet-50 [59] 0.867 0.100

Res2Net [113] 0.885 0.096

LST-Net 0.875 0.093

DUTS [166]

ResNet-50 [59] 0.886 0.040

Res2Net [113] 0.892 0.037

LST-Net 0.895 0.035

3.4.12 Evaluation on salient object detection

To evaluate LST-Net on salient object detection, we replace the ResNet-50 backbone

of PoolNet [113] with our LST-Net w.r.t. the original backbone architecture and

keep the remaining network architecture unchanged. In addition, we also compare

our LST-Net to state-of-the-art salient object detection backbone Res2Net [113] by

using its official implementation 1. No edge information is leveraged during training.

Table 3.33 presents the results of LST-Net on salient object detection. Our

LST-Net consistently achieves better salient object detection results than the vanilla

1https://github.com/Res2Net/Res2Net-PoolNet
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ResNet-50 in terms of both F-measure and MAE across all the benchmark datasets.

Compared to Res2Net, the proposed method obtains comparable results on DUT-

OMRON and SOD. Meanwhile, it slightly outperforms the state-of-the-art saliency

detection backbone architecture under both metrics across the remaining four bench-

marks.

3.5 Conclusion

In this chapter, we propose to train deep CNNs with a learnable sparse transform

(LST), which learns to convert the input features into a more compact and sparser

domain together with the CNN training process. LST can more effectively reduce

the spatial and channel-wise feature redundancies than the conventional Conv2d.

It can be efficiently implemented with existing CNN modules, and is portable to

existing CNN architectures for seamless training and inference. We further present

a hybrid ST-ReLU activation to enhance the robustness of the learned CNN models

to common types of corruptions in the input. Extensive experiments validate that

the proposed LST-Net achieves even higher accuracy than its counterpart networks

of the same family with lower cost.

In the next two chapters, we will discuss the bottleneck of our LST and improve

its implementation with the knowledge in traditional signal processing.
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Chapter 4

Learning a Fast and Lightweight

Transform with Hierarchical
Depth-wise Separable Convolution

The conventional 2D convolutional layer (Conv2d) produces redundant features. In

Chapter 3, we introduced LST-Net to reduce the redundancies of Conv2d by learning

a learnable sparse transform. In the spatial transform step of LST-Net, all channels

are expanded several times by using a depth-wise separable convolution (DWConv)

kernel to allow reweighting in the associated resize transform step. However, using

a single DWConv kernel is not able to effectively model the input features at dif-

ferent frequencies. Besides, the expansion of high frequency features will result in

unnecessary channels, which cause unnecessary parameters and computational cost

in the resize transform. In this chapter, we propose to mitigate the above issues with

the knowledge in traditional signal processing. We develop a fast and lightweight

transform with hierarchical DWConv (HDWConv) to build a CNN, namely LST-

Net v2. HDWConv allows flexible expansion of the input features based on their

frequency. Low frequency features are decomposed into more bands, while high fre-

quency features are decomposed into fewer bands. In this way, we can effectively

discard redundant features along channel dimension to relieve the resize transform.

In addition, HDWConv partitions the input features into groups by the similarity
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of frequency. Each group is assigned one or more unique DWConv kernels to bet-

ter model the features at different frequencies. Extensive experiments demonstrated

that the proposed LST-Net v2 can achieve comparable or even higher accuracy than

LST-Net while saving 20% � 40% parameters and computational cost.

4.1 Introduction

The 2d convolutional layer (Conv2d) plays a key role in deep convolutional neural

networks (CNNs) to extract features for a wide range of computer vision tasks, e.g .,

image recognition [35, 209], image retrieval [138, 139], image restoration [86, 202],

etc. Despite its great success, Conv2d has been found redundant in extracting image

features [80, 55, 181, 95, 94, 97]. How to design fast and lightweight alternatives of

Conv2d remains a heated topic in computer vision and machine learning research.

To reduce the redundancies of Conv2d, existing works can be roughly divided

into two categories. Some works train a CNN model built with Conv2d to identify

and discard weights of less importance. Representative works in this category can

be found in [95, 61, 76, 60, 116]. Though these methods can produce lightweight

models for faster inference, it is rather painful to train the whole network from

scratch. What’s worse, re-training is usually needed to improve the pruned architec-

ture. Other works [68, 149, 119, 67, 91, 53] design Conv2d alternatives by using fast

primitive operators such as point-wise convolutional layers (PWConv) [105], depth-

wise separable convolutional layers (DWConv) [68], channel shuffle [119], etc. In

practice of network architecture design, these primitives are widely used as undi-

vided routines. It remains an open question whether some of them, e.g ., DWConv,

can be further accelerated.

In this chapter, we make an effort along this line and develop a fast and lightweight

transform as an alternative of Conv2d. Our work is mainly inspired by the recently
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developed LST-Net [97], which learns a set of channel and spatial transforms to con-

vert the given CNN features into a more compact and sparser latent space. The

transforms are initialized by discrete cosine transform (DCT) for adaptive decompo-

sition, and a soft thresholding (ST) is applied to remove noises and trivial features

in the learned domain. Though LST-Net is effective and efficient, it can still be

improved from two aspects. First, in the spatial transform step of LST-Net, all

channels are expanded several times by using a DWConv kernel to allow reweighting

in the associated resize transform step. However, it is ineffective to model the input

features at different frequencies in this way. Second, high frequency features are

already sparse enough so that their expansion will easily result in trivial channels,

which cause unnecessary parameters and computational cost in the resize transform.

We dedicatedly design a hierarchical depth-wise separable convolutional layer

(HDWConv) to mitigate the above issues of LST-Net. To reduce redundant features,

HDWConv allows flexible expansion whereas the expansion rate is fixed in DWConv.

High frequency features are expanded more times for near-complete expansion, while

low frequency features are expanded fewer times to save cost. Notably, based on the

prior knowledge of DCT and inspired by the visualization results of LST-Net, the

structure of HDWConv can be directly determined before training. This helps to

avoid training the whole CNN model. Besides, we partition the input features of

HDWConv into a few groups along the channel dimension based on the similarity of

frequency. Each feature group is assigned one or more DWConv kernels with identical

DCT initialization for better and flexible modeling. Compared to entire bottleneck,

the extra parameters introduced to each group are negligible. By replacing DWConv

with HDWConv in the spatial transform step, we develop LST v2 bottleneck to

construct CNNs, namely LST-Net v2. Our extensive experiments on representative

benchmarks show that the proposed LST-Net v2 can obtain comparable or even

higher accuracy than LST-Net while saving around 20% � 40% parameters and
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overhead.

4.2 Review and analysis of LST-Net

4.2.1 Review of LST-Net

Our work is inspired by LST-Net [97], which is briefly reviewed here.

Figure 4.1 illustrates two types of LST bottlenecks used to build LST-Net, i.e.,

LST-I and LST-II. An LST bottleneck consists of three primitive transforms, includ-

ing channel transform Tc, spatial transform Ts, and resize transform Tr. The weights

of Tc or Ts are initialized as DCT so that the transform input can be decomposed

along the channel or spatial dimension at different frequencies. Both Tc and Ts can

be implemented by using existing routines to facilitate end-to-end learning, including

PWConv and DWConv. Both outputs are arranged along the channel dimension for

removal of noise and trivial feature by applying ST. In either type of LST bottleneck,

Ts is arranged right after Tc to save parameters and computational cost [98]. In Tr, a

PWConv is randomly initialized to learn to reweight all channels for Tc and Ts, where

the desired output size can be obtained. Notably, both types of LST bottlenecks are

the same except for the location of Tr.

4.2.2 Complexity analysis

To figure out the main constraints of an LST bottleneck, we study the complex-

ity of its three primitive transforms. The computational complexity of the channel

transform Tc, spatial transform Ts and resize transform Tr of an LST bottleneck

is OpHWC2q, OpHWs2a2Cq and OpHWa2C2q, respectively. where C is the in-

put/output channels, H/W is the width/height of the input or output, s is the

kernel size, and a P Z� is the channel multiplier along the height or the width di-

mension in Ts. To be clear, the input and output of an LST bottleneck is assumed
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(b) LST-II

Figure 4.1: Illustration of two types of LST bottlenecks [97]. PWConv/DWConv in
bold font indicates initialization as DCT while normal font suggests random initial-
ization. The input and the output channels of the spatial transform Ts are highlighted
in prism colorset, where red means low frequency signals while purple means high
frequency signals. Ts lies at the core part of either LST bottleneck, closely follow-
ing the channel transform Tc in either bottleneck. The output of Ts determines the
maximum number of channels of an LST bottleneck, where each input channel, re-
gardless of the frequency, is expanded by a fixed number of a2 times due to the use
of DWConv. Meanwhile, the output of Ts also settles the cost of the resize transform
Tr, which dominates the entire bottleneck.
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to be identical in shape so that subscripts can be omitted where necessary. Since

1 ¤ a   s    C always holds in modern architectures, e.g ., AlexNet [90], VGG

[151], ResNet [59], etc., the overhead of an LST bottleneck is dominated by the re-

size transform Tr at OpHWs2a2Cq. Meanwhile, the number of parameters of Tc, Ts

and Tr are C2, a2s2 and a2C2, respectively. Similarly, the number of parameters of

an entire LST bottleneck is also determined by Tr at a2C2.

Judging from the decisive part of an LST bottleneck, both the computational

complexity OpHWs2a2Cq and number of parameters a2C2 of Tr are on a basis of

a2, as C is fixed in terms of a bottleneck. The basis of a2 actually comes from the

spatial transform Ts, where each input channel of Ts is expanded a2 times via a single

DWConv kernel, regardless of its exact frequency in the output feature bank of Tc.

Thus, we focus on the spatial transform Ts and its use of DWConv to improve an

LST bottleneck.

4.2.3 Motivation

From the above analysis, we know that the spatial transform Ts lies at the core of

an LST bottleneck. We discuss the shortcomings of Ts from two aspects.

In terms of the parameters and overhead, there still exists a large number of trivial

features in the output of Ts because high frequency input features are decomposed

into the same number of a2 frequency bands as their low frequency counterparts.

Actually, many high frequency features are already sparse enough, especially in a

wider LST bottleneck (i.e., C is larger). It is almost in vain to decompose a sparse

high frequency feature into many bands. What’s worse, it even increases the burden

of the resize transform Tr.

In addition, a single DWConv kernel in Ts is not qualified to simultaneously

extract features at different frequencies. High frequency features suggest edge cues

while low frequency features reflect smooth region. Therefore, a single kernel should
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be only allowed to handle a few features similar in frequency to better model the

features of Ts. Meanwhile, it is also desired that a number of DWConv kernels can

be learned together to cope with a large number of features at different frequencies.

4.3 Proposed method

In Section 4.3.1, we first present an overview of our proposed HDWConv. Then,

we formulate our method in Section 4.3.2. Finally, we discuss some implementation

details in Section 4.3.3.

4.3.1 Overview

We design a fast, lightweight yet more powerful substitution of DWConv in the spatial

transform Ts of an LST bottleneck, namely Hierarchical DWConv (HDWConv), to

mitigate the constraints of the associate DWConv. Below, we brief each constraint

and its corresponding solution.

Compactness. To produce a compact feature bank for Ts, it is equivalent to

identify and remove those high frequency output features. We have two candidate

solutions: (1) drop of last (short for DoL), where we skip expanding the last several

high-frequency channels of the input; and (2) flexible expansion (short for F.E.),

where all input channels are leveraged for expansion but some are expanded fewer

times.

Our HDWConv is designed based on F.E. as it has two merits. First, F.E.

preserves all features from the channel transform Tc. In contrast, DoL quadratically

discards the input features at the end to achieve the same cost, running a risk of

losing critical information before Ts. Second, F.E. allows more flexible expansion in

Ts while the expansion rate is discontinuous in DoL due to the use of DWConv. In

Section 4.4.2, experimental results will be provided to further validate the advantage

of F.E.
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Effectiveness. To match features at different frequencies, HDWConv divides

input features into several disjoint groups by similarity of their frequency. Therefore,

the size of a feature group will not be too large. Unlike one kernel per channel, with

the introduction of feature group, we can save parameters. Meanwhile, a feature

group allows a small amount of frequency distortions of the input so that training

will become more stable. By default, we depict a2 non-empty feature groups in this

chapter so that each group is expanded a unique number of times ranging from 1 to

a2.

Unlike the use of a single DWConv kernel in [97], we assign each feature group

one or more separate DWConv kernels to strengthen the power of spatial transform.

Even though this requires some additional weights, they are almost negligible when

compared to those of the resize transform Tr (see Section 4.2.2). Meanwhile, the

overhead and space complexity remain the same after the change.

The topology of HDWConv is deterministic. With the prior knowledge of DCT,

we are aware of the general distribution of features at different frequencies, and

HDWConv can be accordingly specified even without training. It not only helps to

identify and remove high frequency features, but also defines how to partition all

feature groups. In this chapter, high frequency input features of Ts are assumed

to come after low frequency ones based on two facts. First, DCT initialization

of the preceding channel transform Tc arranges the input of Ts in the exact order

before training starts. Second, even if there exist some exceptions during training,

the expected order remains basically unchanged from the visualization results of an

LST-Net [97]. With the assumption, one can directly index the input as contiguous

memory along its channel dimension to define the boundaries of all feature groups,

which is almost free.
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4.3.2 Formulation

Denote the input and the output of HDWConv by xs P RCi�H�W and ys P RCo�H�W ,

respectively, where Ci and Co are the input and output number of channels. Like

DWConv, we always have Ci ¤ Co for HDWConv, where the equation only holds

when a � 1. Notably, we expect that the expansion rate of HDWConv ε � Co{Ci ¤
a2 as HDWConv is designed to save the output channels of DWConv, where ε � a2

iff a � 1.

HDWConv-A.To prune unnecessary high frequency features, we develop the

initial version of HDWConv, called HDWConv-A. We later improve the modelling

of features in its successors. Figure 4.2(a) and Figure 4.2(b) illustrate the structure

of DWConv and HDWConv-A, respectively. Judging from the overall structure, our

HDWConv-A uses exactly the same kernel θA P Ra2�s�s as the one in DWConv before

training. However, HDWConv-A flexibly expands each input channel a number of

times from 1 to a2 according to the channel frequency, i.e., the relative position of

the entire input. Given a low frequency channel with high amplitude, it is expanded

more times (i.e., close or equivalent to a2) for near-complete decomposition. In

contrast, a high frequency channel with low amplitude is expanded fewer times (i.e.,

close or equivalent to once) to save cost.

To meet the input and output number of channels, HDWConv-A partitions its

input along the channel dimension into a2 feature groups for flexible expansion as

G � tGju|a2j�1 � tpρs,j, Cs,j, εs,jqu|a2j�1 (4.1)

where Gj is the j-th group, and ρs,j, Cs,j and εs,j are the position of the first feature

along the channel dimension, feature group size and expansion rate of Gj, respec-

tively. Let P � rρs,1, . . . , ρs,a2sT , Cs � rCs,1, . . . , Cs,a2sT and E � rεs,1, . . . , εs,a2sT . Ci

can be written as

Ci � }Cs}1, (4.2)
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and Co can be computed as

Co � CT
s E. (4.3)

We set εs,j � a2 � j � 1 (j � 1, . . . , a2) to match εs,j with the general frequencies of

Gj. Besides, we conduct DWConv for all input channels of Gj by using the first εs,j

channels of θA w.r.t. the formulation of DCT [174].

HDWConv-B. In Figure 4.2(b), the first few unrolled parts of the single DW-

Conv kernel of HDWConv-A are convolved with more input features than the rest

parts for expansion. The first kernel part in red is applied to all feature groups, while

the last kernel part in blue is only used in G1. For better modeling, one should apply

every part of a DWConv kernel to a limited number of feature groups. To mitigate

this issue, we develop HDWConv-B by assigning one unique DWConv kernel to each

feature group when a ¡ 1. Denote θB P R
°a2

j�1 pa
2�j�1q�s�s the HDWConv-B kernel.

θs,jpj � 1, . . . , a2q has εs,j � a2 � j � 1 channels. When a � 1, HDWConv-B is the

same as HDWConv-A.

Figure 4.2(c) illustrates the structure HDWConv-B. One can see that the out-

put of HDWConv-B is of the same size as that of HDWConv-A, saving the same

amount of output features of a corresponding DWConv used in [97]. Each θs,j P
Rpa2�j�1q�s�spj � 1, . . . , a2q is initialized as 2D-DCT [174] so that both HDWConv-

A and HDWConv-B are created the same for any xs at the start of training.

HDWConv-C. We propose the last version of HDWConv, HDWConv-C, to

further enhance the representation power of HDWConv-B in case of oversized groups.

When there are too many channels in one feature group, similar to HDWConv-A, it

remains difficult for a single DWConv kernel to model the entire group well.

To avoid larger feature group, we equally partition Gj (j � 1, . . . , a2) into

rj � tCs,j{Cs,zu subgroups along the channel dimension by similarity of frequency,

where Cs,z denotes the smallest size of all feature groups when ε ¡ 1. Other-
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Figure 4.2: Illustration of (a) DWConv, (b) HDWConv-A and (c) HDWConv-B.
Each DWConv kernel is unrolled along its channel dimension. In HDWConv-A/B,
we stamp a black cross mark on each saved output channel of DWConv. HDWConv-B
produces the same number of output features for each input channel of HDWConv-
A. However, HDWConv-B is better at modelling the input as it assigns each of its
feature group a separate DWConv kernel.
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(b) HDWConv-C with rj separate DWConv kernels in all feature
subgroups

Figure 4.3: Illustration of the j-th (j � 1, . . . , a2) feature group. Each DWConv
kernel is unrolled along its channel dimension. We stamp a black cross mark on
every saved output channels of related DWConv.

wise, Cs,z P p1, Ciq is a predefined hyper-parameter. In addition, we assign a sep-

arate DWConv kernel θs,j,k P Rpa2�j�1q�s�s to the k-th subgroup (k � 1, . . . , rj),

which is also initialized as 2D-DCT [174]. We have the kernel of HDWConv-C

θC P R
°a2

j�1

°rj pa2�j�1q�s�s.

In HDWConv-C, the j-th group Gjpj � 1, . . . , a2q can be written as

Gj � tSGj,ku|rjk�1 � tpρs,j,k, Cs,j,k, εs,jqu|rjk�1, (4.4)

where SGj,k denotes the k-th subgroup of Gj, and ρs,j,k and Cs,j,k are the position

of the first channel and the subgroup size, respectively. We always have ρs,j � ρs,j,1

and Cs,j �
°rj

k�1Cs,j,k.
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Figure 4.3(a) and Figure 4.3(b) illustrate Gjpj � 1, . . . , a2q in HDWConv-B and

HDWConv-C, respectively. It can be observed that both versions produce features

identical in shape, and they also have the same overhead. As all kernels are initialized

the same, all three versions of HDWConv are created the same for xs at the first

iteration of training. The only difference lies in that HDWConv-B uses a shared

DWConv kernel for all input channels of the group while HDWConv-C leverages

rj separate DWConv kernels, a very small number independent of Cs,j. As rj   
Cs,j, the extra number of parameters introduced in HDWConv-C can be omitted in

practice.

Figure 4.4 compares the structure of DWConv and all three versions of the pro-

posed HDWConv. Given the same input xs, the output of DWConv (with some

dark blue rectangles) has more channels than that of any version of our HDWConv

(without any dark blue rectangles). All versions of HDWConv have their output ys

same in size but they use different number of DWConv kernels (little cubics in the

middle). Specifically, there is only one DWConv kernel in HDWConv-A. In contrast,

there are group and subgroup number of separate DWConv kernels in HDWConv-B

and HDWConv-C, respectively.

Discussion. By properly applying the proposed HDWConv to an LST bottle-

neck, one can have an improved version, namely LST v2. With such modification,

the computational complexities of the channel transform Tc, spatial transform Ts

and resize transform Tr in an LST v2 bottleneck is OpHWC2q, OpHWs2εCq and

OpHWεC2q, respectively. Compared with their counterparts in an LST bottleneck,

the cost of Tc remains unchanged, while the other two transforms cost only ε{a2 the

overhead of their original version. For example, with the default setting of LST (i.e.,

a � 2), Ts and Tr of LST v2 reduce 50% and 25% the overhead for ε � 2 and ε � 3,

respectively.
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Figure 4.4: Structural comparison of (a) DWConv, (b) HDWConv-A, (c) HDWConv-B and (d) HDWConv-C when ε ¡ 1.
The input and the output channels are highlighted in prism colorset, where red means low frequency signals while purple
means high frequency signals.
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4.3.3 Implementation

Given Ci and Co, it is important to automatically configure the structure of a con-

volutional layer. So is HDWConv. Below we discuss how to compute G when ε ¡ 1.

As ε   a2, we at first compute a by solving pa�1q2 ¤ Co{Ci   a2 to make sure that

there exists at least one solution of G, simultaneously satisfying both Equation 4.2

and Equation 4.3. In this way, both a2 and E are obtained.

Algorithm 1: Automatic configuration of HDWConv when a ¡ 1.

Input: Ci, Co;

Initialization: a2, dc, dr, ε, ε̂, sc, sr, E, R̂ � initpCi, Coq;
if ε̂ � ε then

if dr|dc then

R̂r�pdc{drqs � R̂r�pdc{drqs � dr;
break;

else

R̂ � update Rpdc, dr, a2, R̂q;
end

end

G � format groupspCi, Co, E, R̂q;
return G;

Algorithm 2: init.

Input: Ci, Co;
Initialization: d � gcdpCi, Coq, ε � Ci{Co;
a2 � pt?εu� 1q2;
R̂, E � 1a2�1, ra2, a2 � 1, . . . , 2, 1sT ;

sc, sr � R̂TE, }R̂}1;
ε̂ � sc{sr;
m,n � Co{d, Ci{d;

t � r sc�a2�sr
m�a2�n

s;

dc, dr � m � t� sc, n � t� sr;

return a2, dc, dr, ε, ε̂, sc, sr, E, R̂;

Then, we leverage both Equation 4.2 and Equation 4.3 as our criteria and conduct

a greedy search for Cs and stop at the first time when the target ε is satisfied. Instead
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of a direct search, we develop a two-step method detailed in Algorithm 1. At the first

step, we explore the relative proportion of each group in Ci, i.e., R � rr1, . . . , ra2sT ,

by initializing R � R̂ � 1 and adjusting one element of R̂ at a step of 1 until

R̂TE{}R̂}1 � ε. Specifically, we aim to reach ε � Co{Ci from ε̂ � sc{sr � R̂TE{}R̂}1
at initialization. To facilitate search, we rewrite our goal as

ε � Co

Ci

� m � d
n � d � m � t

n � t , (4.5)

where d is the greatest common divisor (gcd) of Ci and Co, and t P R� is the

corresponding multiplier when our search finishes, i.e., ε̂ � ε. As all elements of R̂ are

considered as positive integers, we introduce two non-negative integers dc � m � t�sc
and dr � n � t � sr to measure the discrepancies at initialization. According to the

definition of E, one should be aware that all values of E range from 1 to a2.In this

sense, it is true that

dc ¤ dr ¤ a2 � dc. (4.6)

By combining Eq. 4.5 and Eq. 4.6, we know that

sc � a2 � sr
m� a2 � n ¤ t ¤ sc � sr

m� n
. (4.7)

Algorithm 2 presents our initialization method. One can see that dc and dr are

initialized by setting t to its lower bound.

Once R̂ is determined, at the second step, we initialize Cs � Ĉs � tCi{}R}1u �R.

Due to the use of floor function, there may be some remaining input features. To

address this problem, we first assign all remainders to the group whose expansion rate

is the closest to ε, and we move its elements one by one to other feature groups where

necessary until Equation 4.2 is satisfied. Algorithm 3 demonstrates the approach in

Python style, where a zero-based strategy is adopted for indexing and a negative value
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Algorithm 3: update R.

Input: dc, dr, a
2, R;

Initialization: idx � �minpdc, a2q;
while dr ¡ 0 do

if dc �� �idx� dr then
Rridxs � Rridxs � dr;
dc � dr � 0;

else
if dc � idx� 1 ¥ dr then

Rridxs � Rridxs � 1;
dr � dr � 1;
dc � dc � idx;
if �dc ¥ dr � pidx� 1q then

idx � idx� 1;
end

else
idx � idx� 1;

end

end

end
return R;

suggests reverse indexing. When Ĉs is obtained, R is accordingly solved. Meanwhile,

the structure of HDWConv-A or HDWConv-B is also specified.

After R is determined, one can equally partition each feature group of HDWConv-

C into relevant number of subgroups. In terms of indivisible cases, as input features

at last of a group are less important than the rest, they are put into the subgroup

with the highest frequency bands and the lowest amplitude as the remainders in our

implementation. To this end, values of any ρs,j,k and Cs,j,k are confirmed. Mathe-

matically, the size Cs,j,k can be computed as

Cs,j,k �
#

t
Cs,j

rj
u, 1 ¤ k   rj,

Cs,j �
°rj�1 t

Cs,j

rj
u, k � rj.

(4.8)

Table 4.1 lists some typical examples of HDWConv-C, where “A”, “R” and “V”

stand for AlexNet, ResNet and VGG, respectively.
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Table 4.1: Examples of HDWConv-C.

Kernel Exp. rate ε
Arch.

#Groups #Subgroups
RT

size (RTE{}R}1) (a2) (}R}1)

3 � 3
2

A/R/V 4 10 r1, 1, 5, 3s
(20/10)

3 � 3
3

A/R/V 4 10 r3, 5, 1, 1s
(30/10)

5 � 5
6

A 9 12
r4, 1, 1, 1,

(72/12) 1, 1, 1, 1, 1s

4.4 Experiments

In this section, we first brief our experiment setup and datasets. Then, we con-

duct ablation study of the two candidate pruning methods and different versions of

HDWConv. Finally, we evaluate the performance of LST-Net v2 on representative

benchmarks.

4.4.1 Experiment setup and datasets

All experiments are conducted on a server equipped with Intel Xeon Gold 6248R

CPUs and NVIDIA Quadro RTX 8000 GPU cards. We use PyTorch [133] for imple-

mentation.

Methods for comparison. LST-Net [97] is selected as our baseline, to which

we report the relative change of other methods in terms of number of parameters and

overhead. We build two LST-Net v2 under each architecture w.r.t. the baseline by

default except stated otherwise. Specifically, we respectively set ε � 2 and ε � 3 for

each transform in case s � 3 and accordingly set ε � 21 and ε � 6 when s � 5 (see

Table 4.1). We also report the original results of CNNs built with the conventional

Conv2d. For better presentation, we compare methods w.r.t. their core building

1In case ε � 2 and s � 5, we keep a � 3 to fully match LST-Net under AlexNet and accordingly
set R � r1, 1, 1, 1, 1, 1, 1, 1, 28sT .
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Table 4.2: Comparison of two candidate pruning methods for the spatial transform
Ts.

Dataset Method
#Param

FLOP
Top-1

(M) E. R. (%)

CIFAR-10
DoL 0.347 55.149M 6.27

F.E. 0.347 55.149M 6.06

ImageNet
DoL 13.844 2.528G 24.01

F.E. 13.846 2.529G 23.09

blocks.

Datasets. We use exactly the same datasets and default experimental settings

detailed in [97] for fair comparison. Specifically, CIFAR-10/100 [89] and the Ima-

geNet [35] are used to compare the performance of each method on natural images.

The ImageNet-C [63] is employed to evaluate the robustness of each method on im-

ages with common corruptions. We study the performance of each method on the

Places365-Standard [209] for large-scale scene recognition. We use FGVC-Aircraft

dataset [123], Birds-CUB200-2011 dataset [175], FGVC-Cars [88] and Stanford Dogs

[85] dataset for fine-grained visual recognition. Describing Textures Dataset (DTD)

[30] and Indoor67 dataset [137] are employed for texture classification. We use MS-

COCO dataset [107] to study the performance on object detection, instance segmen-

tation and human pose estimation. PASCAL VOC dataset [41] is used to study the

performance of each method on semantic segmentation. We conduct experiments

on MPII dataset [2] for human pose estimation. DUTS dataset [166], ECSSD [188],

PASCAL-S dataset [104], DUT-OMRON dataset [189], HKU-IS dataset [92] and

SOD [130] are employed for salient object detection.
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4.4.2 Ablation study

Candidate pruning methods. We first investigate the two candidate pruning

methods for the spatial transform Ts discussed in Section 4.3.1, including DoL and

F.E. For fair comparison, both methods are required to drop half of the output

features of Ts in their own way. We implement DoL based on LST [97] by reducing

the output channels of PWConv in the channel transform Tc to half of the original

size at each layer. For F.E., we adopt HDWConv-A so that both methods leverage an

identical shared kernel in Ts at initialization. We build two CNNs under ResNet-56

on CIFAR-10 [89] and ResNet-50 on ImageNet [35], respectively. We use top-1 error

rates as our criteria.

Table 4.2 summarizes the results. One can see that DoL uses slightly fewer

parameters and less overhead than F.E, which is almost negligible. However, F.E.

significantly reduces the top-1 error rates of DoL on both datasets. The gap is 0.21%

and 0.92% on CIFAR-10 and ImageNet, respectively. It can be inferred that the

last input features of the spatial transform Ts are more critical to those spatially

decomposed ones generated from the middle input features. As some valuable cues

are missing in the spatial transform Ts of DoL, it eventually harms the performance.

Different versions of HDWConv. We build LST-Net v2 under the archi-

tecture of ResNet-18 [59] and AlexNet-GAP [90] on ImageNet to compare different

versions of HDWConv when ε ¡ 1. In addition, we also build CNNs under the archi-

tecture of MobileNet v2 [149] (short for MNet v2) to examine the choice of number

of groups when ε � 1.

Table 4.3 presents the results. One can have at least three findings. First, given

the same ε under the same architecture, one can see that HDWConv-C¡HDWConv-

B¡HDWConv-A in terms of performance when a ¡ 1. When ε � 2, the top-1/5

error rates of LST-Net v2 under AlexNet-GAP with HDWConv-A can be reduced by
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Table 4.3: Comparison of different versions of HDWConv on ImageNet.

Arch. Ver.
#Param

GFLOP ε #Groups
#Sub- Top-1/5

(M) groups E. R. (%)

A

4.98 0.97 2

1 N.A. 27.33/9.01

B 4 N.A. 27.07/8.90

ResNet C 4 10 27.02/8.87

[59] A

6.51 1.23 3

1 N.A. 26.83/8.84

B 4 N.A. 26.62/8.64

C 4 10 26.61/8.53

A

1.42 0.35 2

1 N.A. 42.20/19.50

B 4 N.A. 41.99/19.40

AlexNet C 4 10 41.59/19.33

[90] A

1.84 0.49

3 1 N.A. 40.88/18.59

B 3/6 4/9 N.A. 40.68/18.57

C 3/6 4/9 36/12 40.45/18.31

MobileNet
v2 [149]

A/B

3.4 0.3 1

1 N.A. 27.7/9.4

C 1 2 27.6/9.3

C 1 3 27.7/9.3

C 1 4 27.7/9.4

C 1 8 27.8/9.6

0.21%/0.10% and 0.61%/0.17% with HDWConv-B and HDWConv-C, respectively.

Second, for the same version of HDWConv under the same architecture when a ¡ 1,

ε � 3 is always better than ε � 2 as it preserves more channels for the resize

transform Tr. Meanwhile, HDWConv-A is more sensitive to the value of ε than

HDWConv-B and HDWConv-C. For LST-Net v2 under ResNet-18, the top-1 gap

between ε � 2 and ε � 3 by using HDWConv-A is 0.50% while the corresponding gap

by using HDWConv-B and HDWConv-C is reduced to 0.45% and 0.41%, respectively.

Third, HDWConv-C can also outperform HDWConv-A/B under the architecture of

MobileNet v2 when ε � 1. The top-1/5 error rates are both reduced by 0.1% when

there are 2 subgroups. However, increase of the feature subgroups does not further
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brings performance gains. Instead, it slightly increases error rates. When there

are 8 subgroups, the top-1/5 error rates of HDWConv-C is even worse than those

of HDWConv-A/B by 0.1%/0.2%. As MobileNet v2 is rather slim, each feature

subgroup will easily contain fewer channels with more subgroups. In this sense,

HDWConv-C will become vaulnerable to some distortions of frequency from its input

channels, which causes performance drop.

Judging from the above results, we use HDWConv-C by default to build LST-Net

v2 in the remaining of this chapter.

Choice of number of groups. We study the choice of number of groups

for HDWConv-C under the architecture of WRN16-8 [198] on CIFAR-10/100. For

comparison, a scale factor m is used to adjust the default number of groups (i.e.,

a2). Table 4.4 presents details of all HDWConv-C constructed in the experiment

with different number of groups. One can see that increase of groups for the same

expansion rate ε scales up the size of groups with smaller expansion rates while it

reduces the size of groups with larger expansion rates. Notably, a larger number of

groups could make HDWConv inapplicable to some slim models. For example, when

m � 2.5 and ε � 2, there are 45 subgroups in total, which is even greater than the

channel size of most layers (e.g ., 16 or 32 channels) of a vanilla ResNet [59] model.

In addition, an HDWConv layer with fewer groups can’t produce larger expansion

rate as we only allow non-empty groups. For instance, ε � 3 can’t be obtained from

3 groups as the last two groups are not allowed to be empty. Table 4.5 presents

the results. One can see that increase of groups always causes performance drop

for the same expansion rate on both CIFAR-10 and CIFAR-100 datasets. Besides,

the channel expansion of our HDWConv can be more flexible when ε � 2. To be

consistent with the case of ε � 3, we set the number of groups to a2 (i.e., m � 1.0)

for an HDWConv layer by default.

#Parameters reduction vs. performance. LST v2 reduces the feature re-
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Table 4.4: Details of HDWConv-C (s � 3, a2 � 4) with different number of groups.

ε m
#Groups #Subgroups

RT

(m � a2) (}R}1)

2

0.75 3 3 r1, 1, 1s
1.0 4 10 r1, 1, 5, 3s
1.5 6 15 r1, 1, 1, 1, 1, 10s
2.0 8 28 r1, 1, 1, 1, 1, 1, 1, 21s
2.5 10 45 r1, 1, 1, 1, 1, 1, 1, 1, 1, 36s

3

1.0 4 10 r3, 5, 1, 1s
1.5 6 8 r1, 1, 1, 1, 2, 2s
2.0 8 14 r1, 1, 1, 1, 1, 1, 1, 7s
2.5 10 23 r1, 1, 1, 1, 1, 1, 1, 1, 2, 13s

dundancies of LST. A smaller ε suggests a smaller number of channels, hence fewer

parameters and less overhead. Meanwhile, fewer features may reduce the representa-

tion power, causing certain performance drop. It is critical to study the relationship

between number of parameters and performance. We build ResNet-18 for ImageNet

using Conv2d, LST and the proposed LST v2. The number of channels of Conv2d

and LST is multiplied by a decimal to obtain comparable overhead (in terms of

FLOPs) to LST v2.

Table 4.6 shows the results in a descending order of FLOPs. One can have at least

two findings. First, with comparable overhead, LST v2 requires the fewest number

of parameters, while it achieves the lowest error rates. Second, with the reduction

of channel number, the performance drops for all three methods, while LST v2

drops the least. In short, LST v2 improves much the accuracy of both Conv2d and

LST with similar cost. When Co is not divisible by Ci in an LST bottleneck due to

multiplication of a given decimal (see Figure 3.3(b)), we replace a standard DWConv

with the proposed HDWConv-A for its downsample operator, where there are just

two groups and one group contains (Co mod Ci) channels and all channels of this
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Table 4.5: Comparison (error rates, %) of choice of number of groups for HDWConv-
C on CIFAR-10/100.

ε m
#Groups #Subgroups

C10 C100
(m � a2) (}R}1)

2

0.75 3 3 4.50 20.98

1.0 4 10 4.53 21.05

1.5 6 15 4.55 21.26

2.0 8 28 5.16 21.52

2.5 10 45 5.29 23.56

3

1.0 4 10 4.51 20.09

1.5 6 8 4.41 20.36

2.0 8 14 4.54 20.38

2.5 10 23 5.87 23.25

group are expanded by one more time than the rest.

4.4.3 Evaluation on image classification

Evaluation on CIFAR-10 and CIFAR-100. To investigate the trade-off between

performance and reduction in number of parameters and overhead, we build LST-

Net v2 under the architectures of ResNet [59] and WRN [198] for CIFAR-10/100,

respectively.

Table 4.7 and Table 4.8 demonstrate the results. Compared to LST [97], the

proposed LST v2 reduces around 40% and 20% of parameters and overhead under

each architecture when ε � 2 and ε � 3. The largest gap between LST and LST v2

(ε � 2) under ResNet is just 1.0%/1.6% in terms of top-1 error rates while the largest

gap between LST and LST v2 (ε � 3) is further closed to 0.2%/1.1%. In contrast,

our method obtains comparable or even better performance than LST under WRN.

This suggests the necessity to partition the input of LST v2 into a few groups and

assign separate DWConv kernels for effective modelling. Besides, LST v2 always
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Table 4.6: Effect of number of parameters (error rates, %) on ImageNet.

Backbone #Chout FLOPs #Param
Top-1 Top-5

Method Mult. (G) (M)

Conv2d �1.0 1.81 11.69 30.24 10.92

Conv2d �0.9 1.47 9.48 31.09 11.28

LST �1.0 1.48 8.03 26.55 8.59

Conv2d �0.8 1.23 7.55 32.57 12.18

LST �0.9 1.23 6.72 27.58 9.15

LST v2 (ε � 3) N.A. 1.23 6.51 26.61 8.53

Conv2d �0.71 1.00 5.99 33.91 12.90

LST �0.79 1.00 5.42 28.25 9.61

LST v2 (ε � 2) N.A. 0.97 4.98 27.02 8.87

Table 4.7: Results of LST v2 under ResNet on CIFAR-10/100.

Arch. Method #Param (M) FLOP Top-1 E. R. (%)

ResNet-20 [59]

LST [97] 0.2 34.0M 6.7/28.2

Conv2d 0.3Ò35.0% 40.8MÒ20.0% 7.7Ò1.0/30.9Ò2.7

LST v2 (ε � 2) 0.1Ó40.5% 20.6MÓ39.3% 7.7Ò1.0/29.8Ò1.6

LST v2 (ε � 3) 0.2Ó19.9% 27.5MÓ19.2% 6.70.0/29.1Ò0.9

ResNet-56 [59]

LST [97] 0.6 94.0M 5.6/24.1

Conv2d 0.9Ò45.8% 126.0MÒ34.0% 6.6Ò1.0/27.6Ò3.5

LST v2 (ε � 2) 0.3Ó41.1% 55.1MÓ41.3% 5.9Ò0.3/26.4Ò2.2

LST v2 (ε � 3) 0.5Ó20.7% 74.5MÓ20.7% 5.4Ó0.2/24.4Ò0.3

ResNet-110 [59]

LST [97] 1.2 183.0M 5.0/22.7

Conv2d 1.7Ò47.9% 253.0MÒ38.3% 6.6Ò1.6/25.2Ò2.5

LST v2 (ε � 2) 0.7Ó41.0% 106.9MÓ41.6% 5.6Ò0.6/24.7Ò2.0

LST v2 (ε � 3) 0.9Ó20.5% 145.1MÓ20.7% 5.2Ò0.2/23.8Ò1.1
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Table 4.8: Results of LST v2 under WRN architecture on CIFAR-10/100.

Arch. Method #Param (M) FLOP Top-1 E. R. (%)

WRN16-8 [198]

LST [97] 7.4 1.3G 4.7/20.9

Conv2d 11.0Ò47.7% 2.0GÒ54.3% 4.8Ò0.1/22.0Ò1.2

LST v2 (ε � 2) 4.4Ó40.4% 0.8GÓ37.6% 4.5Ó0.2/21.1Ò0.2

LST v2 (ε � 3) 5.9Ó20.2% 1.1GÓ18.8% 4.5Ó0.2/20.1Ó0.8

WRN16-10 [198]

LST [97] 11.5 2.0G 4.5/20.2

Conv2d 17.1Ò48.5% 3.1GÒ55.0% 4.50.0/21.5Ò1.3

LST v2 (ε � 2) 6.9Ó40.4% 1.3GÓ37.5% 4.6Ò0.1/20.0Ó0.2

LST v2 (ε � 3) 9.2Ó20.2% 1.6GÓ18.8% 4.50.0/19.9Ó0.3

WRN22-8 [198]

LST [97] 10.9 1.8G 4.4/19.3

Conv2d 17.2Ò56.8% 2.9GÒ61.0% 4.6Ò0.2/21.2Ò1.9

LST v2 (ε � 2) 6.5Ó40.4% 1.1GÓ38.4% 4.2Ó0.2/19.7Ò0.4

LST v2 (ε � 3) 8.7Ó20.2% 1.5GÓ19.2% 4.2Ó0.2/19.1Ó0.2

WRN22-10 [198]

LST [97] 17.0 2.8G 4.3/18.6

Conv2d 26.8Ò57.5% 4.5GÒ64.0% 4.4Ò0.1/20.8Ò2.2

LST v2 (ε � 2) 10.2Ó40.3% 1.7GÓ38.3% 4.1Ó0.2/19.0Ò0.4

LST v2 (ε � 3) 13.6Ó20.2% 2.3GÓ19.2% 4.0Ó0.3/18.7Ò0.1

WRN28-10 [198]

LST [97] 22.5 3.6G 4.0/18.2

Conv2d 36.5Ò61.2% 6.0GÒ64.0% 4.2Ò0.2/20.5Ò2.3

LST v2 (ε � 2) 13.4Ó40.3% 2.2GÓ38.7% 4.00.0/19.1Ò0.9

LST v2 (ε � 3) 18.0Ó20.1% 2.9GÓ19.4% 3.8Ó0.2/18.1Ó0.2

WRN28-12 [198]

LST [97] 32.3 5.2G 3.9/17.9

Conv2d 43.4Ò61.5% 8.6GÒ64.6% 4.3Ò0.4/20.4Ò2.5

LST v2 (ε � 2) 19.3Ó40.3% 3.2GÓ38.7% 3.90.0/18.5Ò0.6

LST v2 (ε � 3) 25.8Ó20.1% 4.2GÓ19.4% 3.7Ó0.2/17.90.0

WRN40-4 [198]

LST [97] 5.5 0.9G 4.3/19.1

Conv2d 8.9Ò66.1% 1.4GÒ66.8% 5.0Ò0.7/22.9Ò3.8

LST v2 (ε � 2) 3.3Ó40.4% 0.5GÓ39.5% 4.6Ò0.3/20.5Ò1.4

LST v2 (ε � 3) 4.4Ó20.2% 0.7GÓ19.8% 4.1Ó0.2/19.9Ò0.7

WRN40-8 [198]

LST [97] 21.5 3.4G 3.8/18.6

Conv2d 35.8Ò66.1% 5.6GÒ66.8% 4.7Ò0.9/19.4Ò0.8

LST v2 (ε � 2) 12.9Ó40.2% 2.1GÓ39.3% 3.9Ò0.1/18.4Ó0.2

LST v2 (ε � 3) 17.2Ó20.1% 2.7GÓ19.6% 3.6Ó0.2/18.3Ó0.3

122



Table 4.9: Comparison of state-of-the-art methods for compressing Conv2d on
CIFAR-10.

Arch. Method #Param (M) MFLOP Top-1 E. R. (%)

VGG-16

Conv2d 15.0 313 6.4

`1 [95, 116] 5.4 206 6.6

SBP [61] N.A. 136 7.5

Ghost [53] 7.7 158 6.3

LST v2 (ε � 2) 4.1 90 6.1

LST v2 (ε � 3) 5.9 131 6.0

ResNet-56

Conv2d 0.85 125 6.6

CP [61] N.A. 63 8.0

`1 [95, 116] 0.73 91 7.5

AMC [60] N.A. 63 8.1

Shift [180] 0.55 84 7.3

SSL [27] 0.55 84 7.2

Ghost [53] 0.43 63 7.3

LST v2 (ε � 2) 0.35 55 5.9

LST v2 (ε � 3) 0.47 75 5.4

outperforms Conv2d under both architectures while it saves 45% � 60% parameters

and overhead. Considering the actual parameters and overhead of LST v2, we believe

our method is much competitive on CIFAR-10 and CIFAR-100.

We also compare LST v2 with state-of-the-art methods for compressing Conv2d

under VGG-16 variant [197] and ResNet-56 [59] on CIFAR-10, including `1 [95, 116],

SBP [61], Ghost [53], CP [61], AMC [60], Shift [180] and SSL [27].

Table 4.9 shows the results. We can have three findings. First, LST v2 takes

up comparable or even fewer parameters and less overhead under each architecture.

Second, LST v2 obtains the best top-1 error rates. LST v2 (ε � 3) outperforms its

closest follow-up, Ghost [53], by 0.3% under VGG-16. Meanwhile, it significantly

reduces top-1 error rates of its closest follow-up, SSL [27], by 1.8% under ResNet-56.

123



Table 4.10: Results of LST v2 under ResNet architecture on ImageNet.

Arch. Method #Param (M) GFLOP Top-1/5 E. R. (%)

ResNet-18 [59]

LST [97] 8.03 1.48 26.55/8.59

Conv2d 11.69Ò45.58% 1.81Ò22.30% 30.24Ò3.69/10.92Ò2.33

LST v2 (ε � 2) 4.98Ó37.94% 0.97Ó34.56% 27.02Ò0.47/8.87Ò0.28

LST v2 (ε � 3) 6.51Ó18.97% 1.23Ó17.13% 26.61Ò0.06/8.53Ó0.06

ResNet-34 [59]

LST [97] 13.82 2.56 23.92/7.24

Conv2d 21.79Ò57.67% 3.66Ò42.97% 26.70Ò2.78/8.58Ò1.34

LST v2 (ε � 2) 8.45Ó38.88% 1.61Ó37.20% 24.08Ò0.16/7.33Ò0.09

LST v2 (ε � 3) 11.13Ó19.44% 2.08Ó18.66% 23.86Ó0.06/7.17Ó0.07

ResNet-50 [59]

LST [97] 23.33 4.05 22.78/6.66

Conv2d 25.24Ò9.69% 4.09Ò0.99% 23.85Ò1.07/7.13Ò0.47

LST v2 (ε � 2) 13.52Ó41.24% 2.53Ó37.56% 22.87Ò0.09/6.64Ó0.02

LST v2 (ε � 3) 18.02Ó21.69% 3.32Ó18.11% 22.77Ó0.01/6.64Ó0.02

ResNet-101 [59]

LST [97] 42.36 7.75 21.63/5.94

Conv2d 44.55Ò5.17% 7.80Ò0.65% 22.63Ò1.00/6.44Ò0.50

LST v2 (ε � 2) 25.03Ó40.92% 4.70Ó39.38% 21.84Ò0.21/6.16Ò0.22

LST v2 (ε � 3) 33.28Ó21.43% 6.22Ó19.77% 21.61Ó0.02/6.01Ò0.07

Third, the proposed LST v2 is the only method that improves the performance of

Conv2d under the ResNet-56 architecture when ε � 2 or ε � 3.

Evaluation on ImageNet. We study the performance of LST-Net v2 for large-

scale image recognition on ImageNet. For comparison, we build CNNs under the

architectures of ResNet [59], WRN [198], VGG-GAP [151] (11-layer) and AlexNet-

GAP [90].

Table 4.10, Table 4.11, and Table 4.12 demonstrate the results. One can ob-

tain the following findings. First, under the ResNet architecture, LST v2 (ε � 3)

achieves comparable or slightly better top-1/5 error rates compared to LST [97] by

saving nearly 20% of parameters and overhead. LST v2 (ε � 2) further reduces

the cost of LST [97] by around 40% while the top-1/5 performance gap is no more

than 0.47%/0.28%. Compared to the conventional Conv2d, LST v2 only requires
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Table 4.11: Results of LST v2 under WRN architecture on ImageNet.

Arch. Method #Param (M) GFLOP Top-1/5 E. R. (%)

WRN18-1.5 [198]

LST [97] 17.53 3.21 24.44/7.51

Conv2d 25.88Ò47.64% 3.87Ò20.59% 27.06Ò2.62/9.00Ò1.49

LST v2 (ε � 2) 10.74Ó38.73% 2.07Ó35.52% 24.72Ò0.28/7.58Ò0.07

LST v2 (ε � 3) 14.13Ó19.37% 2.64Ó17.76% 24.34Ó0.10/7.44Ó0.07

WRN18-2 [198]

LST [97] 30.68 5.59 23.49/6.93

Conv2d 45.62Ò48.68% 6.70Ò19.87% 25.58Ò2.09/8.06Ò1.13

LST v2 (ε � 2) 18.67Ó39.14% 3.58Ó35.93% 23.56Ò0.07/7.12Ò0.19

LST v2 (ε � 3) 24.68Ó19.57% 4.59Ó17.96% 23.12Ó0.37/6.86Ó0.07

WRN18-3 [198]

LST [97] 67.96 12.31 22.33/6.52

Conv2d 101.78Ò49.77% 14.72Ò19.53% 24.06Ò1.73/7.33Ò0.81

LST v2 (ε � 2) 41.07Ó39.56% 7.84Ó36.35% 22.42Ò0.09/6.41Ó0.11

LST v2 (ε � 3) 54.52Ó19.78% 10.08Ó18.18% 22.14Ó0.19/6.36Ó0.16

WRN34-1.5 [198]

LST [97] 30.42 5.59 22.29/6.30

Conv2d 48.61Ò59.78% 8.03Ò43.67% 24.50Ò2.21/7.58Ò1.28

LST v2 (ε � 2) 18.46Ó39.32% 3.49Ó37.55% 22.55Ò0.26/6.46Ò0.16

LST v2 (ε � 3) 24.44Ó19.66% 4.54Ó18.78% 22.43Ò0.14/6.45Ò0.15

WRN34-2 [198]

LST [97] 53.49 9.79 21.44/6.11

Conv2d 86.04Ò60.87% 14.09Ò43.92% 23.39Ò1.95/7.00Ò0.89

LST v2 (ε � 2) 32.33Ó39.55% 6.09Ó37.77% 21.60Ò0.16/6.05Ó0.06

LST v2 (ε � 3) 42.91Ó19.77% 7.94Ó18.88% 21.58Ò0.14/6.01Ó0.10

approximately 40% � 55% overhead under the same architecture but our method

significantly reduces the top-1 and top-5 error rates by 0.79% � 3.63% and 0.28% �
2.39%, respectively. Second, under the WRN architecture, LST v2 outperforms both

LST [97] and the conventional Conv2d when ε � 3. For example, the top-1 error rate

is reduced by 0.37% under WRN18-2. The gap between LST v2 (ε � 2) and LST

[97] is rather close, ranging from 0.1% to 0.3%. Third, under the VGG-GAP [151]

architecture, LST-Net v2 (ε � 3) obtains the best results by saving nearly 20% of

parameters and overhead. It reduces the top-1/5 error rates of LST [97], conventional

Conv2d and Conv2d+BN by 0.54%/0.22%, 4.71%/2.16% and 2.94%/1.72%, respec-
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Table 4.12: Results of LST v2 under VGG and AlexNet architecture on ImageNet.

Arch. Method #Param (M) GFLOP Top-1/5 E. R. (%)

VGG-GAP [151]

LST [97] 6.63 5.89 29.23/10.26

Conv2d 9.73Ò46.85% 7.49Ò27.15% 33.40Ò4.17/12.20Ò1.94

Conv2d+BN 9.73Ò46.85% 7.49Ò27.15% 31.63Ò2.40/11.76Ò1.50

LST v2 (ε � 2) 4.17Ó36.99% 3.55Ó39.67% 29.65Ò0.42/10.63Ò0.37

LST v2 (ε � 3) 5.40Ó18.50% 4.72Ó19.83% 28.69Ó0.54/10.04Ó0.22

AlexNet-GAP [90]

LST [97] 2.25 0.60 39.91/17.86

Conv2d 2.73Ò21.33% 0.66Ò10.00% 51.13Ò11.22/26.33Ò8.47

Conv2d+BN 2.73Ò21.33% 0.66Ò10.00% 46.65Ò6.74/23.43Ò5.57

LST v2 (ε � 2) 1.42Ó36.73% 0.35Ó42.39% 41.59Ò1.68/19.33Ò1.47

LST v2 (ε � 3, 6) 1.84Ó18.31% 0.49Ó19.13% 40.45Ò0.54/18.31Ò0.45

tively. Fourth, under the AlexNet-GAP [90] architecture, the top-1/5 error rates of

LST v2 are respectively 0.54%/0.45% and 1.68%/1.47% behind those of LST [97]

when ε � 3 and ε � 2. However, LST v2 still outperforms Conv2d and Conv2d+BN

by over 5.06%/4.10% in terms of the top-1/5 error rates while the proposed method

only requires nearly half of the parameters and overhead. The gap between LST [97]

and LST v2 may result from the fact that AlexNet-GAP [90] is relatively thin and

shallow compared to other modern architectures. There may be insufficient number

of high frequency features for reduction in LST v2, which leads to the performance

drop. However, the proposed method still shows very competitive performance w.r.t.

its cost.

Besides, we build up models under ResNet50 and compare the inference time

including data loading and pre-processing with a single CPU thread. It takes LST

[97] 84.61ms on average to cope with a 224�224 center-cropped image while the

proposed LST v2 (ε � 2) and LST v2 (ε � 3) only need 53.28ms (37.04% off) and

68.72ms (18.78% off), respectively.

Figure 4.6 and Figure 4.5 compare convergence curves of Conv2d, LST, LST v2

(ε � 2) and LST v2 (ε � 3) on ImageNet under ResNet-18 and ResNet-50 [59]
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Table 4.13: Comparison of state-of-the-art methods for compressing ResNet-50 on
ImageNet.

Method #Param (M) GFLOP Top-1/5 E. R. (%)

Conv2d 25.2 4.1 23.9/7.1

ThiNet [117] 16.9 2.6 27.9/9.7

NISP [196] 14.4 2.3 N.A./9.2

Versatile [172] 11.0 3.0 25.5/8.2

SSS [76] N.A. 2.8 25.8/8.1

Ghost [53] 13.0 2.2 25.0/7.7

LST v2 11.6 2.1 23.0/6.8

architecture, respectively. One can see that both LST v2 (ε � 2) and LST v2 (ε � 3)

are similar to LST, achieving more smooth convergence curves than Conv2d under

both architectures.

In addition, we compare LST v2 with some state-of-the-art methods for compress-

ing ResNet-50 on ImageNet, including ThiNet [117], NISP [196], Versatile [172], SSS

[76] and Ghost [53]. We use LST-II v2 bottleneck to construct CNNs by following the

layer configuration of LST-Net [97]. We set ε � 1.5 for LST v2 to obtain comparable

cost.

Table 4.13 presents the results. We can have at least two findings. First, LST v2

achieves the best top-1/5 error rates, the only one outperforming Conv2d. Second,

our method saves 54.0% parameters and 48.8% overhead, taking up the least overhead

and the second fewest parameters following SSS [76]. Like Ghost [53], the structure

of LST v2 is deterministic. There is no need to train the whole model like ThiNet

[117], NISP [196], Versatile [172], and SSS [76].

4.4.4 Evaluation on robustness to common corruptions

We investigate the robustness of LST-Net v2 to common corruptions in input on

the ImageNet-C dataset [63]. We perform prediction by using ImageNet pre-trained

127



0 10 20 30 40 50 60 70 80 90

Epochs

10

20

30

40

50

60

70

80

90

100

T
o
p
1
 T

ra
in

 E
rr

o
rs

 /
 %

Depth:50

Conv2d

LST

LST v2( =2)

LST v2( =3)

(a) Top-1 error rates on training set

0 10 20 30 40 50 60 70 80 90

Epochs

10

20

30

40

50

60

70

80

90

100

T
o
p
5
 T

ra
in

 E
rr

o
rs

 /
 %

Depth:50

Conv2d

LST

LST v2( =2)

LST v2( =3)

(b) Top-5 error rates on training set

0 10 20 30 40 50 60 70 80 90

Epochs

20

30

40

50

60

70

80

90

T
o
p
1
 V

a
l 
E

rr
o
rs

 /
 %

Depth:50

Conv2d

LST

LST v2( =2)

LST v2( =3)

(c) Top-1 error rates on validation set

0 10 20 30 40 50 60 70 80 90

Epochs

0

10

20

30

40

50

60

70

T
o
p
5
 V

a
l 
E

rr
o
rs

 /
 %

Depth:50

Conv2d

LST

LST v2( =2)

LST v2( =3)

(d) Top-5 error rates on validation set

Figure 4.5: Comparison of convergence curves of Conv2d, LST and LST v2 under
ResNet-50 architecture on ImageNet.

models under the architecture of ResNet-18 and ResNet-50 without fine-tuning on

[63]. The mean corruption error (mCE) [63] is used as our criteria. We compare

LST v2 with the conventional Conv2d and LST [97]. Table 4.14 demonstrates the

mCE and corruption errors for each type of corruption. It can be observed that the

proposed LST-Net v2 are more robust to common corruptions.
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Table 4.14: Results of LST v2 on ImageNet-C.
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(c) Top-1 error rates on validation set
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(d) Top-5 error rates on validation set

Figure 4.6: Comparison of convergence curves of Conv2d, LST and LST v2 under
ResNet-18 architecture on ImageNet.

4.4.5 Evaluation on large-scale scene recognition

We study the performance of LST v2 for large-scale scene recognition on Places365-

Standard [209]. We construct models under ResNet, VGG-GAP and AlexNet-GAP.

Instead of fine-tuning ImageNet pre-trained models like [209, 97], we train each model

from scratch for fair comparison. Top-5 accuracy is used as our criteria under the

standard 10-crop setting. Table 4.15 presents results. Compared to LST [97], LST
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v2 can achieve competitive or even better performance while it saves nearly 20%

� 40% parameters and overhead. Meanwhile, it always outperforms Conv2d and

Conv2d+BN.

4.4.6 Evaluation on fine-grained visual recognition

We follow the experimental setting and protocal in Section 3.4.7 and study the

performance of our LST v2 on fine-grained visual recognition. FGVC-Aircraft, Birds-

CUB200-2011, FGVC-Cars, and Stanford Dogs are employed for evaluation. ResNet-

50 is adopted as the backbone model, where Conv2d, LST [97] and LST v2 are used

to build up the model.

Table 4.16 demonstrates the fine-grained visual recognition results. One can

see that our LST v2 can achieve comparable results to LST on fine-grained visual

recognition. Besides, LST v2 (ε � 2) outperforms Conv2d by at least 1% on all four

benchmarks. It is interesting to see that LST v2 (ε � 3) further improves the top-1

accuracy of LST by 0.4% on Stanford Dog dataset.

4.4.7 Evaluation on texture classification

We study the performance of LST v2 on texture classification using the same setting

with Section 3.4.8. Both DTD [30] and Indoor67 dataset [137] are employed for

evaluation. All methods, including Conv2d, LST [97] and the proposed LST v2, are

used to build up models under the architecture of ResNet-50 [59], and each model is

pretrained on ImageNet.

Table 4.17 presents the texture classification results of LST v2. One can see that

models constructed using LST v2 with different ε values obtain better performance

than the one using Conv2d on both DTD and Indoor67 dataset. Average top-1

accuracy of LST (ε � 2) and LST (ε � 3) on DTD falls behind that of LST [97] by

2.03% and 1.36%, respectively. In fact, textures, unlike natural images, are similar to
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Table 4.15: Results of LST v2 on Places365-Standard dataset.

Arch. Method
#Param

GFLOP
Top-5 Acc.

(M) (%)

ResNet-18
[59]

LST [97] 7.71 1.48 86.35

Conv2d 11.36Ò47.39% 1.81Ò22.55% 85.78Ó0.57

LST v2 (ε � 2) 4.66Ó39.59% 0.97Ó34.58% 86.36Ò0.01

LST v2 (ε � 3) 6.18Ó19.83% 1.23Ó17.15% 86.38Ò0.03

ResNet-34
[59]

LST [97] 13.50 2.56 86.94

Conv2d 21.47Ò59.05% 3.66Ò43.10% 86.51Ó0.43

LST v2 (ε � 2) 8.12Ó39.85% 1.61Ó37.21% 86.79Ó0.15

LST v2 (ε � 3) 10.81Ó19.94% 2.08Ó18.67% 86.95Ò0.01

ResNet-50
[59]

LST [97] 23.01 4.05 87.18

Conv2d
25.24Ò9.69% 4.09Ò0.99% 85.08Ó2.10

(fine-tuning)

Conv2d 25.24Ò9.69% 4.09Ò0.99% 86.79Ó0.39

LST v2 (ε � 2) 13.52Ó41.24% 2.53Ó37.56% 87.15Ó0.03

LST v2 (ε � 3) 18.02Ó21.69% 3.32Ó18.11% 87.20Ò0.02

VGG-GAP
[151]

LST [97] 6.30 5.89 85.12

Conv2d 9.41Ò49.33% 7.61Ò29.14% 83.95Ó1.17

Conv2d+BN 9.41Ò49.33% 7.61Ò29.14% 84.76Ó0.36

LST v2 (ε � 2) 3.85Ó38.91% 3.55Ó39.66% 85.20Ò0.08

LST v2 (ε � 3) 5.07Ó19.45% 4.72Ó19.83% 85.29Ò0.17

AlexNet-GAP
[90]

LST [97] 2.09 0.62 82.95

Conv2d 2.56Ò22.49% 0.66Ò6.45% 77.89Ó5.06

Conv2d+BN 2.56Ò22.49% 0.66Ò6.45% 79.70Ó3.25

LST v2 (ε � 2) 1.26Ó39.70% 0.35Ó44.27% 81.69Ó1.26

LST v2 (ε � 3, 6) 1.67Ó19.87% 0.49Ó21.77% 82.33Ó0.62
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Table 4.16: Fine-grained visual recognition results (top-1 accuracy, %) of LST v2
under the architecture of ResNet-50.

Backbone FGVC Birds FGVC Stanford

Model -Aircraft -CUB200-2011 -Cars Dogs

LST [97] 90.04 85.61 91.51 88.60

Conv2d 86.70Ó3.34 82.21Ó3.40 88.68Ó2.83 76.23Ó12.37

LST v2
88.03Ó2.01 84.47Ó1.14 89.73Ó1.78 87.52Ó1.08

(ε � 2)

LST v2
89.11Ó0.93 85.21Ó0.40 90.51Ó1.00 89.00Ò0.40

(ε � 3)

Table 4.17: Texture classification results (top-1 accuracy, %) of LST v2 under the
architecture of ResNet-50.

Backbone Method DTD Indoor67

Conv2d [59] 63.68�0.85 79.63

LST [97] 67.47�1.09 81.72

LST v2 (ε � 2) 65.71�1.09 80.37

LST v2 (ε � 3) 66.14�0.54 81.08

their low frequency features while differentiable with their high frequency features. In

our view, the gap between LST and LST v2 on texture classification is still acceptable

since LST v2 drops considerable high frequency features to save cost.

4.4.8 Evaluation on object detection and instance segmen-
tation

We report object detection and instance segmentation results on MS-COCO [107].

We follow the data splittion, detectors, and backbone architecture detailed in Section

3.4.9. One should note that the LST v2 produce fewer channels than LST at the

same layer due to its use of HDWConv. To make detectors compatible with our

LST v2, we accordingly reduced the input channels where necessary in the detectors,

so that detectors also require fewer parameters and less overhead when LST v2 is
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employed to construct the backbone model.

Table 4.18 and Table 4.19 present the object detection results and instance seg-

mentation results on MS-COCO validation set, respectively. One can see that LST

v2 (ε � 2) and LST v2 (ε � 3) outperform Conv2d on both tasks. Compared to LST,

mAP of LST v2 (ε � 3) slightly lacks behind by 0.2% with Faster R-CNN on object

detection, while it has the same or even better results in all the remaining cases.

Meanwhile, the mAP gap between both LST v2 bottlenecks with various detectors

ranges from 0.2% to 0.6%, which we believe is totally acceptable.

4.4.9 Evaluation on semantic segmentation

We report semantic segmentation results on PASCAL VOC [41]. We follow the same

experimental settings described in Section 3.4.10. To evaluate LST v2, we reduce

input channels where necessary in DeepLab V3 [23] and DeepLab V3+ [24]. To meet

the requirement of both segmentation methods, we replace stride with dilation for

HDWConv layers at Stage 4 of an ImageNet pretrained model by setting stride to 1

and dilation to 2 before fine-tuning on PASCAL VOC2012 dataset starts.

Table 4.20 demonstrates the results. It can be observed that both LST v2 (ε � 2)

and LST v2 (ε � 3) achieve very close results of LST with the same segmentation

method under all three indices. Meanwhile, our LST v2 are much better than the

baseline Conv2d by at least 0.015 in terms of mIoU.

4.4.10 Evaluation on human pose estimation

To study the performance of LST-Net on human pose estimation, we use Simple-

Baseline [183] as the key-points detection method. We only replace the backbone

ResNet-50 with our LST-Net, where both backbone models are pre-trained on Im-

ageNet dataset. All implementation remains the same with SimpleBaseline [183].

Both MPII dataset [2] and COCO key-point detection dataset [107] are used for
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Table 4.18: Object detection results (%) of LST v2 on MS-COCO validation set.

Detector
Backbone

mAP AP 50 AP 75 AP S APM APL
Method

Faster R-CNN
[144]

LST [97] 40.8 62.2 44.3 24.8 44.7 53.1

Conv2d 37.4 58.1 40.4 21.2 41.0 48.1

LST v2 (ε � 2) 40.1 61.5 43.8 24.2 43.8 52.2

LST v2 (ε � 3) 40.6 61.8 44.2 23.3 44.4 53.0

RetinaNet [106]

LST [97] 38.7 58.5 41.7 22.2 42.7 51.2

Conv2d 36.5 55.4 39.1 20.4 40.3 48.1

LST v2 (ε � 2) 38.5 58.4 41.2 22.6 42.3 51.1

LST v2 (ε � 3) 38.7 58.8 41.4 22.7 42.3 50.8

FCOS [161]

LST [97] 38.8 58.7 41.5 22.5 42.4 50.2

Conv2d 36.6 55.7 38.8 20.7 40.1 47.4

LST v2 (ε � 2) 38.6 58.3 41.1 22.0 42.3 50.3

LST v2 (ε � 3) 38.9 59.1 41.5 23.0 42.5 50.5

Mask R-CNN
[57]

LST [97] 41.3 62.5 45.0 25.1 45.1 54.3

Conv2d 38.2 58.8 41.4 21.9 40.9 49.5

LST v2 (ε � 2) 40.8 61.8 44.6 24.2 44.2 53.3

LST v2 (ε � 3) 41.3 62.6 45.1 25.1 44.9 53.8

Cascade Mask
R-CNN [12]

LST [97] 43.9 62.6 47.9 26.3 47.4 57.8

Conv2d 41.2 59.4 45.0 23.9 44.2 54.4

LST v2 (ε � 2) 43.6 62.4 47.6 25.3 47.1 57.2

LST v2 (ε � 3) 44.1 62.6 48.2 26.3 47.7 57.4

evaluation. For each dataset, we use the training set to train all the models and

validation set for test.

Table 4.21 and Table 4.22 show the results using LST v2 on MPII dataset and

COCO key-points detection dataset, respectively. One can have at least two find-

ings. First, compared to LST, our LST v2 achieves comparable or slightly better

performance on both human pose estimation datasets. For example, LST v2 (ε � 3)

slightly improves mean AP and mean AR of LST [97] by 0.2% on COCO key-points
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Table 4.19: Instance segmentation results (%) of LST v2 on MS-COCO validation
set.

Detector
Backbone

mAP AP 50 AP 75 AP S APM APL
Method

Mask R-CNN
[57]

LST [97] 37.1 59.3 39.4 20.9 40.5 50.8

Conv2d 34.7 55.7 37.2 18.3 37.4 47.2

LST v2 (ε � 2) 36.5 58.6 38.9 20.2 39.8 49.5

LST v2 (ε � 3) 37.1 59.4 39.5 20.9 40.5 50.2

Cascade Mask
R-CNN [12]

LST [97] 38.1 59.7 40.9 21.4 41.3 51.9

Conv2d 35.9 56.6 38.4 19.4 38.5 49.3

LST v2 (ε � 2) 37.9 59.8 40.4 20.6 41.0 51.0

LST v2 (ε � 3) 38.3 59.7 41.2 21.3 41.8 51.9

detection datasets for 256�192 input images. Second, compared to Conv2d, LST v2

obtains considerable gain on both datasets. LST v2 (ε � 2) outperforms mean AP of

Conv2d by 0.38% on MPII dataset, while it saves nearly 45% parameters and com-

putational cost. Meanwhile, it substantially improves the mean AP/AR values of

Conv2d by 2.5%/0.6% and 3.8%/1.2% on COCO key-points detection dataset when

input size is 256�192 and 384�288, respectively, .

Table 4.20: Semantic segmentation results of LST v2 on PASCAL VOC2012.

Seg. Method
Backbone

mIoU
Overall Freq. W.

Method Acc. (%) Acc. (%)

DeepLab V3 [23]

LST [97] 0.790 94.49 90.07

Conv2d 0.767 93.89 88.76

LST v2 (ε � 2) 0.782 94.29 89.37

LST v2 (ε � 3) 0.786 94.30 89.40

DeepLab V3+ [24]

LST [97] 0.792 94.58 90.17

Conv2d 0.771 94.13 89.14

LST v2 (ε � 2) 0.786 94.37 89.50

LST v2 (ε � 3) 0.790 94.52 89.73
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Table 4.21: Human pose estimation results (%) of LST v2 on MPII dataset.

Backbone
Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

Method

LST [97] 96.76 95.35 89.42 84.00 88.56 84.95 80.63 89.05 34.41

Conv2d 96.35 95.33 88.99 83.18 88.42 83.96 79.59 88.53 33.91

LST v2
97.00 95.35 89.21 83.57 87.64 85.45 80.85 88.91 33.98

(ε � 2)

LST v2
96.79 95.35 89.14 84.00 88.49 85.35 80.73 89.05 34.42

(ε � 3)

Table 4.22: Human pose estimation results (%) of LST v2 on COCO key-points
detection dataset.

Backbone Input
AP AP0.5 AP0.75 APM APL AR AR0.5 AR0.75 ARM ARL

Method Size

LST [97]

256�192

74.1 92.5 81.5 71.1 78.7 77.0 93.4 83.5 73.7 82.0

Conv2d 70.4 88.6 78.3 67.1 77.2 76.3 92.9 83.4 72.1 82.4

LST v2
73.9 92.5 81.6 71.0 78.3 76.9 93.3 83.8 73.7 81.7

(ε � 2)

LST v2
74.3 92.6 81.6 71.3 78.8 77.2 93.4 83.9 74.0 82.1

(ε � 3)

LST [97]

384�288

76.5 93.6 83.7 73.4 81.3 79.0 94.1 85.2 75.6 84.2

Conv2d 72.2 89.3 78.9 68.1 79.7 77.6 93.2 83.8 72.8 84.6

LST v2
76.0 92.6 82.5 72.7 80.9 78.8 93.9 84.6 75.3 83.9

(ε � 2)

LST v2
76.3 92.6 83.6 73.1 81.3 79.0 93.8 85.2 75.5 84.3

(ε � 3)

4.4.11 Evaluation on salient object detection

To study LST v2 on salient object detection, we use the same experiment setting

and protocal described in Section 3.4.1 and Section 3.4.12. We replace LST [97] with

our LST v2 (ε � 2) and LST v2 (ε � 3) to construct the backbone model under

ResNet-50 architecture. To enable fusion of intermediate features across different

stages, LST v2 (ε � 2) and LST v2 (ε � 3) only offer half and three quarters of

channels of Conv2d or LST at the corresponding layers, respectively. This makes it
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really challenging when we examine the representation power of the proposed method

on salient object detection.

Table 4.23 presents the results of LST v2 on salient object detection. One can

have at least two findings. First, both LST v2 (ε � 2) and both LST v2 (ε � 3)

significantly outperform Conv2d in terms of both F-measure and MAE across all the

benchmark datasets. Second, compared to LST, both instances of LST v2 show very

close performance on DUT-OMRON, HKU-IS and SOD. It is worth noting that LST

v2 (ε � 3) is even better than LST on three challenging benchmarks under both

metrics on ECSSD, PASCAL-S and DUTS.

4.5 Conclusion

In this chapter, we proposed a fast and lightweight transform with HDWConv based

on LST-Net to reduce the redundancy of the conventional Conv2d. To produce a

compact feature bank, we allow incomplete yet flexible expansion so that the struc-

ture of HDWConv can be completely determined before training. High frequency

input channels are expanded more times for near-complete expansion, while low fre-

quency ones are expanded fewer times to save cost. In addition, we partition input

channels into groups and assigned one or more unique kernels with identical initial-

ization for better representation. Extensive experiments validate that the proposed

method can achieve comparable or even higher accuracy than LST-Net while it only

requires approximately 40% � 55% parameters and computational cost of Conv2d

under the same architecture, saving around 20% � 40% overhead of LST-Net.
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Table 4.23: Salient object detection results of LST v2 under ResNet-50 architecture.

Dataset Backbone Method F-measureÒ MAEÓ

ECSSD [188]

Conv2d 0.940 0.042

LST [97] 0.950 0.034

LST v2 (ε � 2) 0.947 0.035

LST v2 (ε � 3) 0.952 0.031

PASCAL-S [104]

Conv2d 0.863 0.075

LST [97] 0.876 0.066

LST v2 (ε � 2) 0.872 0.069

LST v2 (ε � 3) 0.881 0.064

DUT-OMRON [189]

Conv2d 0.830 0.055

LST [97] 0.834 0.052

LST v2 (ε � 2) 0.830 0.055

LST v2 (ε � 3) 0.830 0.051

HKU-IS [92]

Conv2d 0.934 0.032

LST [97] 0.941 0.028

LST v2 (ε � 2) 0.935 0.030

LST v2 (ε � 3) 0.943 0.028

SOD [130]

Conv2d 0.867 0.100

LST [97] 0.875 0.093

LST v2 (ε � 2) 0.875 0.097

LST v2 (ε � 3) 0.876 0.094

DUTS [166]

Conv2d 0.886 0.040

LST [97] 0.895 0.035

LST v2 (ε � 2) 0.886 0.039

LST v2 (ε � 3) 0.897 0.034
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Chapter 5

Application of LST to Adversarial

Attacks

2D convolution (Conv2d) layers are key components of a convolutional neural net-

work (CNN). It is expected that Conv2d can be robust to various types of image

corruptions in real-world as well as those manually designed adversarial attacks.

Though many efforts have been devoted to improve the robustness of the learned

CNN model, seldomly works have been done to study the robustness of Conv2d. In-

spired by learnable sparse transform (LST) that learns to convert the CNN features

into a compact and sparse latent space, we design a robust layer with multiple ker-

nels as an alternative of Conv2d, namely RConv-MK, to empower LST with much

higher robustness to image corruptions and adversarial attacks. RConv-MK employs

a set of kernels of different size and flexibly applies them to the input features of

different frequencies. It enlarges the receptive fields for low frequency features and

saves the overhead for sparse high frequency features. A normalized soft thresholding

(NST) operator is introduced to adaptively remove the noise and trivial features in

the relevant feature domain. Extensive experiments are performed to validate the

effectiveness of RConv-MK under popular CNN architectures for adversarial samples

as well as clean input images.
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5.1 Introduction

Deep convolutional neural networks (CNNs) have shown their power in a wide range

of computer vision tasks, especially in image recognition [35, 209]. Despite the great

success, it has been found that a well performed CNN model can be out of work when

handling images with various types of corruptions in real world [63]. In addition, a

CNN model can be easily fooled by deliberately designed adversarial samples with

subtle and unperceivable perturbations to human eyes [157]. Therefore, it is a very

practical issue to improve the robustness of CNN models against image corruption

and adversarial attacks.

To improve the robustness of CNN models for image recognition with corruptions,

most of existing methods aim to improve the quality of input data to CNNs. Based on

the priors of image denoising, some pioneer works [44, 65, 187] attempt to transform

the input data from spatial (pixel) domain into certain frequency domain for easier

noise removal before they are fed into the networks for recognition tasks. Though

CNNs adapted to a specific type of corruption can have better robustness, they

may be fragile to out-of-box corruptions. Besides, implementation of these methods

requires manual setting for each task, which is not practical to use. For example,

one needs to manually adjust the noise level to find a good balance between noise

removal and image cue preservation. For adversarial attacks, many defense methods

[122, 21, 201, 200] have been developed to generate adversarial samples for training

robust CNN models. Almost all of them view the CNN model as a “black-box” and

focus on the adversarial sample generation process. As a result, it is hard to approach

the root cause of poor performance of CNNs under adversarial attacks. Meanwhile,

it provides little insight to the development of robust CNN architectures.

Though different methods have been developed to respectively address the prob-

lems of corrupted image recognition and adversarial attack, to the best of our knowl-
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edge, almost all of them ignored an important perspective: can we and how to

improve the robustness of 2D convolution (Conv2d), which is the key component

of CNN, for more robust image recognition and anti-attack performance? In this

chapter, we make an effort along this line and develop a robust Conv2d layer un-

der existing CNN architectures. Our work is mainly inspired by LST-Net [97] (see

Chapter 3), which learns a set of channel and spatial transforms to convert the CNN

features into a compact and sparse latent space. The transforms are initialized by

discrete cosine transform (DCT), and a soft thresholding (ST) is applied to remove

noises and trivial features in the learned domain. Though LST-Net is effective and

efficient, it can still be improved from two aspects. First, it is noticed that the out-

put features of the channel transform are basically organized by frequency, which

motivates use to develop distinct strategies to match and exploit this property in the

following spatial transform. Second, the threshold of ST in LST-Net is fixed for the

whole CNN model, which is less accurate and flexible to process the complex input

with various corruptions.

We design a robust Conv2d layer with multiple kernels, denoted by RConv-MK,

to mitigate the above issues. To make better use of the output of channel transform,

a set of kernels of different sizes are adopted in spatial transform. Large kernels can

be easily applied to handle low frequency signals and small kernels to high frequency

ones. With large kernels, one can avoid misclassifying low frequency signals due to

limited receptive field. Meanwhile, small kernels can reduce much the overhead as

high frequency signals are usually sparse. By sequentially partitioning the input into

suitable groups, RConv-MK can obtain nearly the same overhead as LST-Net at the

cost of negligible extra parameters. In addition, considering that the corruption levels

always vary from one sample to another, we propose a normalized soft thresholding

(NST) operator to effectively control unknown corruption level of each sample. As

a result, RConv-MK is more robust than conventional Conv2d as well as LST bot-
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tleneck, and the robustness of the entire CNN model is accordingly enhanced. Our

extensive experiments on clean images, corrupted images and adversarial samples

validate the effectiveness and efficiency of RConv-MK.

5.2 Related Work

5.2.1 Image recognition on corrupted images

In real world, clean images may be easily corrupted due to many reasons, such as

improper light condition, defects of imaging devices, bad lighting, defocus blur, etc.

While a CNN model may perform well on clean images, it can be out of work when

handling corrupted photos. The existing image restoration methods [202, 47, 42] are

basically developed to improve the image quality according to the criteria such as

PSNR or SSIM [173] but not the accuracy in image recognition. Therefore, they are

not suitable to be directly used for corrupted image recognition.

It’s intuitive to suppress noises of corrupted images for reliable recognition. Al-

gorithms [44, 65, 187] have been developed to convert the input data from spatial

domain into certain frequency domain before they are fed into CNNs for two main

reasons. First, noises are easy to identify and suppress in frequency domain. Second,

it is cost-effective to conduct domain transform and/or its inverted operation by

performing classic convolution. Franzen [44] converted gray-scale images into DCT

domain and fed the responses into a 2-layer NLP model for classification. Hossain

et al. [65] inserted a DCT module before a pre-trained VGG-16 model to fine-tune

the model on dataset with various types of common corruptions. Xu et al. [187]

converted the color space from RGB space into YCbCr, separately computed DCT

for each channel, and aggregated the responses along channel dimension as model’s

input. However, the robustness of those models may be limited to the specific fre-

quency domain, and the models may suffer from the generalization problem to unseen
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corruptions. Meanwhile, these methods require manual adjustment of noise level dur-

ing domain transform, where one needs to balance a trade-off between noise removal

and image cue preservation. Li et al. [97] proposed a novel bottleneck to transform

its input features to a compact and sparse domain by using learnable kernels, where

soft thresholding (ST) is adopted for noise removal. In this chapter, we use multiple

kernels of different sizes w.r.t. frequency in related feature domain. In addition, we

improve the model robustness by adaptively estimating the relative corruption level

of each sample.

5.2.2 Adversarial attacks and defenses

Generally, adversarial attacks refer to using deliberately designing inputs (a.k.a.

adversarial examples) to fool a trained network model and force it to produce wrong

outputs. The purpose of adversarial attacks may vary under different scenarios [17].

In this chapter, we focus on image recognition and the goal of adversarial attacks is

to cause misclassification.

Adversarial attack algorithms can be roughly classified into two categories based

on whether gradient is adopted. Optimization-based attacks are by far the most pow-

erful methods. Given an input image and its associated ground truth label, these

methods generate the adversarial samples by computing the gradients according to

the CNN architecture and the pre-defined loss function, such as cross-entropy loss

C&W[19], etc. Meanwhile, `1 [25], `2 [157, 19] and `8 [122, 18] distortion metrics are

commonly used to measure the budget of adversarial examples, while some emerg-

ing work [152] has been reported to investigate the possibility of `0 distortion. In

comparison, gradient-free attacking methods are developed for the cases that the

network architecture is unavailable. Some representative works can be found in

[26, 163, 79, 8, 115].

To defend against adversarial attacks, adversarial training [4] is one of the most
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popular and natural choices. It augments the training data by generating adversarial

examples with certain attacking methods. Though the adversarially trained model

can deal with unseen data, the model may still fail when facing adversarial samples

generated by other attacking methods. This is because one model can hardly cover

the entire input space by training with a limited number of searching steps. To

narrow the gap, Deng et al . [36] modelled the potential adversarial examples from

the perspective of distribution for more effective training. Other defense algorithms

focus on designing better objective functions. Chen et al . [21] proposed a novel

loss function to neutralize the probability of wrong predictions and maximize the

probability of right predictions. However, these defense methods tend to ignore the

role of network architecture.

Different from the above defense methods, we propose to enhance the robustness

of CNN architecture (more specifically, the 2D convolution layer) to defend against

adversarial attacks. Our method is complementary to current works and it can be

readily used to improve the anti-attack performance of existing methods.

5.2.3 Receptive field of CNNs

Receptive field refers to the region in the input space that a CNN can see at a

specific layer, determined by the kernel size of the preceding layers. Most existing

architectures are manually designed with fixed kernel size at each layer, such as

AlexNet [90], VGG [151], ResNet [59], etc. These architectures may not work well

at capturing features that need large receptive field.

To mitigate this issue, dilated convolution [195] introduces a hyper-parameter,

called dilation rate, to control how much the receptive field is expanded by inserting

fixed zeros into the spatial dimension of its kernels. However, tuning dilation rate

of each layer is time-consuming and requires additional knowledge and expertise.

Models from the Inception family [155, 81, 156, 154] are built with bottlenecks of
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multiple branches at each layer. Each branch is configured with kernels of different

sizes to fit features in various receptive fields. Unfortunately, it is troublesome to

match the features with their corresponding kernels when an Inception model is

trained from scratch. Consequently, Inception modules are likely to lose cues due

to improper matches. In contrast, our proposed method in this chapter can locate

features of different frequencies, which can better process different features using

kernels of different sizes.

5.2.4 Normalization layers

A normalization layer plays a critical role in the training of a CNN, as it effectively

neutralizes the internal covariate shift [81] between input distribution and output

distribution. To the best of our knowledge, Batch Normalization (BN) [81] is the

first work to mitigate this issue. A BN layer normalizes the whole batch for every

single activation, where statistics, such as mean values and standard deviations, are

collected for each unit across the batch during mini-batch based training. Unlike

BN, a Layer Normalization (LN) [5] layer proposes to normalize all the activations

of a single layer of a batch along the channel dimension, where it collects statistics

from every unit within the layer. Besides, Instance Normalization (IN) [164] con-

ducts each sample a BN-like computation, where a sample refers to an unit of the

space spanned along the batch dimension and the channel dimension. In addition,

Group Normalization (GN) [182] improves BN by partitioning channels into groups

and computing mean values and standard deviations for each group. As GN is in-

dependent of batch size, its accuracy is discovered stable in a wide range of batch

sizes.

None of the aforementioned normalization layer is able to handle input with dif-

ferent scales of noise levels in adversarial attack while addressing internal covariate

shift. Thus, a CNN model constructed with a single type of normalization layer,

146



usually BN, are vulnerable to adversarial attacks. In this chapter, we propose nor-

malized soft-thresholding (NST) to simultaneously mitigate input with different noise

scales as well as close the discrepancy between input distribution and output distri-

bution for effective removal of noise and redundancies. Besides, our NST is easy to

implement as it only leverages two existing methods, including BN and LN.

5.3 Proposed Method

5.3.1 Problem formulation

Denote by x P RH�W�C the input natural image in the spatial domain and y �
1, 2, . . . ,m its associated class labels in a classification task, where m is the number

of classes. A CNN model of L layers can be regarded as a sequence of functions as

follows,

ŷ � f � x � f pLq � f pL�1q � . . . � f p2q � f p1q � x, (5.1)

where f piq is the function of the i-th layer of the CNN model with its associated

parameters θpiq, i � 1, 2, . . . , L. We further denote the input and the output of f piq

by xpiq P RH
piq
in �W

piq
in �C

piq
in and ypiq P RH

piq
out�W

piq
out�C

piq
out , respectively. Let Jf py, ŷq be a

loss function measuring the distance between y and ŷ, e.g. the cross-entropy loss.

Generally, a corrupted sample x1 can be modelled as

x1 � x� η, (5.2)

where η can be noises caused by some corruptions in the real world, or it can be

the perturbation deliberately computed by a specific adversarial algorithm, aiming

to enforce the noisy sample resulting in a wrong classification y1 � fpx1q � y.

In this chapter, we do not assume any specific distribution on η, but assume

that η is a random and high frequency signal. This assumption generally holds for

the common image corruptions. When η is generated by adversarial attack, the
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assumption also holds well since the perturbation behaves like noise. A robust CNN

model is expected to consistently make correct prediction for either the clean input

image x or its corrupted counterparts x1.

5.3.2 Spatial transform with multiple kernels

Given the kernel size k� k and expansion rate a for DWConv, Ts of LST repeatedly

applies a convolutional kernel θ
piq
s P Ra2�1�k�k to each channel of x

piq
s . It can be

observed that the learned weights of Tc in LST-Net maintain two important prop-

erties (which are also possessed by our RConv-MK). First, the transformed features

are structured, where the low frequency signals are placed at one end while the high

frequency ones are located at the other end in the channel dimension. Second, low

frequency features are dense while high frequency features are sparse. Without loss

of generality, in the remaining of this chapter, we assume that features of x
piq
s (or

y
piq
c ) are arranged from low to high frequencies in the channel dimension.

Obviously, the existing implementation of Ts ignores the properties of Tc. When

we deal with the first few channels, the fixed kernel size (usually 3�3 in most modern

architectures) may be too small to identify the genuine low frequency signals. Thus,

some high frequency signals will be misclassified as low frequency ones due to limited

receptive field. Meanwhile, when we compute the last few channels, the fixed kernel

size may not be suitable for sparse high frequency signals.

In Figure 5.1, we use two toy samples to illustrate the effect of using different

kernel sizes. When we use an undersized kernel, such as the blue 3 � 3 kernel in

Figure 5.1(a), due to its limited receptive field, the result is very different (by mean

value and standard deviation) from the one extracted by a large kernel like the red

5�5 one. In Figure 5.1(b), one can see that both large and small kernels can produce

very close results for high frequency signals. This suggests use of small kernels for

high frequency signals to reduce redundancies.
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Figure 5.1: Illustration of the effect (mean�std) of using different kernel sizes.

In this chapter, we are committed to improving the design of Ts in LST. Figure 5.2

illustrates the implementation of Ts in this chapter. By providing kernels of suitable

sizes for signals of different frequencies, we can improve Ts in LST to produce better

features for low frequency signals and accelerate computation for high frequency

ones. The proposed RConv-MK adopts a set of m-kernels of different sizes and

sort them by their kernel size in a descending order. The associated weights can

be written as θ
piq
s � tθpiqs,j|θpiqs,j P Ra2�1�kj�kj , j � 1, . . . ,mu, satisfying @p ¡ q, kp ¡

kq ¥ 1, and Dj, kj � k. Accordingly, we partition x
piq
s into m groups along the

channel dimension to have x
piq
s,1, . . . , x

piq
s,m, where x

piq
s,j P RH

piq
in �W

piq
in �C

piq
s,j , @j � 1, . . . ,m.

Obviously,
°m

j�1C
piq
s,j � C

piq
s . Ts of RConv-MK applies each θ

piq
s,j to its related group

of input channels x
piq
s,j, @j � 1, . . . ,m so that low frequency signals are assigned large

kernels while high frequency ones are given small kernels. In this way, we can make

good use of signals of different frequencies in relation to the properties of the feature

domain. Finally, Ts ends up with concatenating results of all m-groups along the

channel dimension for noise removal.
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Figure 5.2: Illustration of spatial transform Ts of RConv-MK at the i-th layer. Chan-
nels of the input x

piq
s and the output y

piq
s of Ts are highlighted in prism colorset, where

red means low frequency signals with high amplitude while purple means high fre-
quency signals with low amplitude. A number of m kernels are used in Ts, including
θ
piq
s,1, . . . , θ

piq
s,m. Each kernel has a2 channels, producing a2 output channels for each

input channel. Kernels of large window size like θ
piq
s,1 convolve with low frequency sig-

nals, while kernels of small window size like θ
piq
s,m are used for high frequency signals.

5.3.3 Normalized soft thresholding

In LST-Net, soft-thresholding is used to remove noise and trivial features. However,

the threshold τ is determined manually based on the noise level in the corresponding

feature domain. Mismatch of τ and features may cause performance drop. A large

τ value may cut down useful cues, while noises are easy to survive a small τ value.

Actually, there are dozens or hundreds of τ to be set when a CNN goes deeper. And

it is impossible to separately tune each of them. More importantly, the noise level

of x1 may vary dramatically from one sample to another and it is hard to determine

the threshold in adversarial attack. It is highly desired to develop a more adaptive

thresholding scheme to remove noise and trivial features for robust convolution. We

develop a normalized soft thresholding (NST) method to this end. Mathematically,

NST at first normalizes each sample Xi (i � 1, . . . , N) from an N�sized mini-batch
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X as

XLN,i � pXi � µpXiqq{σpXiq (5.3)

where µp�q and σp�q compute the mean and the standard deviation, respectively. In

this way, corrupted samples at different noise levels are scaled to nearly the same

level in an adaptive manner, so that the normalized corrupted samples are expected

to approach the distribution of their corresponding clean samples. In this sense,

we are allowed to further mitigate internal corvariate shift of the normalized mini-

batch XLN by conducting batch normalization (BN) [81] over it to obtain XBN .

The above normalization part of NST can be easily implemented with a sequence of

non-parametric layer normalization (LN) [5] plus a standard BN.

Finally, noises in the normalized feature domain can be suppressed by the classic

ST as

YNST �
#
sgnpXBNqp|XBN | � τq, |XBN | ¥ τ,

0, otherwise.
(5.4)

where τ is the threshold and YNST is the NST output of X. In this chapter, with the

introduction of normalization, in NST, we can easily set τ � 10�4 in all experiments.

5.3.4 RConv-MK

By applying spatial transform with multiple kernels and NST to LST bottleneck,

we are able to construct a robust convolutional layer, namely RConv-MK, for the

application of adversarial attack. It is worthwhile noting that NST can be only found

in both channel transform Tc and spatial transform Ts of the proposed RConv-MK,

where each ST operator in an LST bottleneck is replaced by an NST operator.

According to its design principle, the architecture of resize transform Tr remains

unchanged to what it is for an LST bottleneck, i.e., a sequence of Conv1 � 1, BN

and ReLU.
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(b) RConv-MK-II

Figure 5.3: Illustration of two types of RConv-MK.

Figure 5.3 illustrates two types of RConv-MK built for LST-I and LST-II (see

Section 3.3.3), respectively. It can be observed that none of the changes in RConv-

MK is exposed as an outside interface. That is to say, when we are building CNNs

on adversarial attack, it needs nothing but shifting from LST to RConv-MK, making

it quite convenient in practice.

5.3.5 Implementation details and complexity analysis

Here, we present some implementation details of the proposed RConv-MK. To be

comparable with LST, we expect that RConv-MK has almost the same overhead at
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the cost of negligible number of extra parameters for the same setting of k and a.

We set m � 3 and fix k1 � k � 2, k2 � k and k3 � 1 in this chapter. Besides,

we set C
piq
s,2 to half of C

piq
s so that the kernel of size k � k will be computed with

the majority of the input features. As of DWConv, when we have the same input

shape and stride, the overhead is in proportion to the kernel size. Therefore, we

have C
piq
s,j9k�2

j , j � 1, . . . ,m. With the above settings, we can conduct a grid search

to specify the proportion for some popular kernel sizes. In this chapter, we set

C
piq
s,1 : C

piq
s,2 : C

piq
s,3 � 1 : 3 : 2 when k � 3, and C

piq
s,1 : C

piq
s,2 : C

piq
s,3 � 1 : 2 : 1 when k � 5.

Compared to LST, the number of extra parameters of RConv-MK can be deter-

mined by tθpiqs,j|θpiqs,j P Ra2�1�kj�kj , j � 1, . . . ,m, kj � ku. In modern architectures,

C
piq
in , C

piq
out " a, k and the total number of parameters are dominated by Tr, propor-

tional to C
piq
in � C

piq
out. Weights of Tc and Tr discussed in this chapter are just a tiny

fraction. Take the ResNet architecture [59] as an example. Given a � 2, there

are only a2 � pk21 � k23q � 22 � p52 � 12q � 104 extra parameters in a RConv-MK.

In contrast, C
piq
in and C

piq
out vary from 64 to 512. Approximately, the number of ex-

tra parameters only occupies 0.01% � 1% of the total number of parameters in a

RConv-MK.

5.4 Experiments

In this section, we first discuss our experiment setup and datasets. Then, we evaluate

the performance of the proposed RConv-MK with clean images as well as its robust-

ness to common types of corruptions and adversarial attacks in order. Finally, we

conduct ablation study on the number of multiple kernels and the setting of channel

split in a RConv-MK.

153



Table 5.1: Methods for comparison in this chapter.

Method
Use aux. Noise Receptive Low freq. High freq.

branch removal method field kernel size kernel size

Conv2d No N.A. Uniform N.A. N.A.

Conv2d-MK No N.A. Varied N.A. N.A.

Conv2d+SE Yes N.A. Uniform N.A. N.A.

Conv2d+CBAM Yes N.A. Uniform N.A. N.A.

LST No ST Uniform N.A. N.A.

RConv-UK No NST Uniform N.A. N.A.

RConv-RMK No NST Varied Small Large

RConv-DMK No N.A. Varied Large Small

RConv-LMK No LN Varied Large Small

RConv-SMK No ST Varied Large Small

RConv-MK No NST Varied Large Small

5.4.1 Experiment setup and datasets

All experiments are conducted on a 10-way GPU server equipped with dual Intel

Xeon Gold 6248R@3.0GHz CPUs, 256G DDR4 2933MHz RAM and NVIDIA Quadro

RTX 8000 GPU cards and Samsung 860 EVO SSDs. For implementation, we use

PyTorch [133] compatible with CUDA 10.2 and cuDNN v7.6.5 on Ubuntu 18.04.

Methods for comparison. Table 5.1 lists key attributes of competing methods.

The conventional Conv2d is set as the baseline. Similar to RConv-MK, Conv2d-MK

splits input along channel dimension into m-groups and compute Conv2d of different

kernel sizes for each group and then concatenates the results of each group. We also

study two popular attention modules, i.e., SE [71] and CBAM [178]. In addition

to LST [97], RConv-MK and its variants are compared. In terms of arrangement

of kernels, RConv-UK adopts a uniform kernel in Ts, and RConv-RMK reverses the

order of kernels. For noise removal methods, RConv-LMK replaces NST by LN;

RConv-SMK substitutes NST with ST; RConv-DMK removes all NST operators.
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The datasets. In this chapter, the ImageNet [35] is employed to evaluate the

performance of each method on clean images. The ImageNet-C [63] is employed

to evaluate the robustness of each method on images with common corruptions.

CIFAR-10/100 [89] are used for the evaluation under white-box adversarial attacks.

We closely follow standard experimental settings for fair comparison. Details can be

found in Section 3.4.1.

5.4.2 Evaluation on adversarial attacks

We evaluate the robustness of RConv-MK to adversarial attacks on CIFAR-10/100.

We compare models built with RConv-MK and other methods under two architec-

tures, i.e., ResNet-18 and WRN34-10. We conducted adversarial training of each

model on each dataset under the `8 PGD attack for 100 epochs using common hyper-

parameter settings. Specifically, the perturbation size ε � 8{255, step size η � 2{255,

number of steps is 10. Learning rate started at 0.1 and was reduced by a factor of

10 after 75, 90 and 100 epochs, respectively. We fixed batch size as 128 and weight

decay as 0.0002. We tested each trained model under untargeted white-box attacks

of four algorithms, including FGSM [50], PGD [122], FFGSM [177] and ODI [160].

We used the official implementation of ODI and advertorch [37] of the rest.

Table 5.2 presents the accuracy obtained by different methods. One can have the

following findings. First, the proposed RConv-MK outperforms all its competitors

under adversarial attacks. Second, the attention modules, including Conv2d+SE

and Conv2d+CBAM, have almost the same performance as the baseline under var-

ious untargeted white-box attacks on both datasets. We note that according to the

definition, both attention modules show more interest in local patterns while they

suppress trivial features for image recognition. Although such kind of mechanism

is helpful to the recognition of clean images, it may hurt the backbone model un-

der adversarial attacks because the corrupted local patterns have large chance to
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impose uncorrected excitation to the target features. Third, for noise removal meth-

ods, RConv-MK (NST) ¡ RConv-LMK (LN) ¡ RConv-SMK (ST) ¡ RConv-DMK

(none) on CIFAR-10 and RConv-MK (NST) ¡ RConv-SMK (ST) ¡ RConv-DMK

(none) ¡ RConv-LMK (LN) on CIFAR-100. ST improves robustness to adversarial

attacks as it actually plays a role of gradient mask under adversarial attacks. LN

shows competitive performance on CIFAR-10 but it performs poorly on CIFAR-100.

In our view, this may be caused by the over-fitting problem of LN in adversarial train-

ing. With the increase of categories, the decision boundaries are expected to be less

smooth in the unit space shaped by LN. Therefore, the model becomes vulnerable to

unseen adversarial samples during test. Fourth, the arrangement of multiple kernels

also matters in adversarial attacks. We can see that RConv-MK (normal order) ¡
RConv-UK (uniform kernel) ¡ RConv-RMK (reversed order). Fifth, Conv2d-MK

always obtains worse results than the baseline due to its poor structure in spatial

domain for channel split and concatenation. In contrast, our RConv-MK improves

RConv-UK under all attacks as the channel operations are conducted in a well struc-

tured domain.

5.4.3 Evaluation on images with corruptions

We study the robustness of RConv-MK to common types of corruption on ImageNet-

C [63], which contains 19 distinct corruptions. The mean corruption error (mCE)

is used as the criteria (the lower the better). We construct CNNs under ResNet-18

and ResNet-50.

Table 5.7 and Table 5.8 show the best top-1/5 error rates on clean ImageNet

and the corresponding mCE values on ImageNet-C under ResNet-18 and ResNet-

50, respectively. One can have at least four findings. First, RConv-MK obtains

lower mCE than its competitors of the same depth. It significantly reduces the

mCE of the baseline by 6.55% (18-layer) / 9.10% (50-layer). Second, in terms of
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Table 5.2: Results (robust accuracy, %) by different methods under untargeted white-
box attacks on CIFAR-10/100.

Arch. Method FFGSM FGSM PGD ODI

ResNet-18

Conv2d 59.40/30.05 55.36/27.06 46.30/22.22 44.36/20.92

Conv2d+SE 59.70/30.41 55.99/27.26 46.34/22.53 44.32/21.42

Conv2d+CBAM 59.84/30.22 56.28/27.28 46.71/22.37 44.59/21.27

Conv2d-MK 57.54/30.39 53.86/27.40 45.16/21.98 43.15/21.98

LST 61.74/32.67 58.01/29.53 49.12/23.86 46.88/22.23

RConv-LMK 62.64/32.08 58.93/29.40 49.62/24.36 47.64/22.83

RConv-SMK 61.93/33.21 58.19/30.29 49.65/24.98 48.50/23.96

RConv-DMK 61.44/32.14 57.64/28.68 48.22/23.12 46.31/21.87

RConv-RMK 62.15/32.71 58.43/29.63 49.57/24.28 47.80/23.00

RConv-UK 62.53/33.50 59.09/30.53 50.02/25.02 48.02/23.60

RConv-MK 62.68/34.14 59.25/31.41 50.70/25.81 48.85/24.22

WRN34-10

Conv2d 60.78/32.15 57.31/29.22 47.05/24.00 45.94/22.85

Conv2d+SE 60.75/32.04 56.70/28.98 46.51/23.34 45.36/22.20

Conv2d+CBAM 60.49/32.35 56.68/29.62 46.89/24.05 45.62/22.84

Conv2d-MK 60.87/31.12 57.63/28.29 47.04/22.94 45.64/21.56

LST 62.80/34.08 59.02/30.25 50.46/24.42 48.21/24.37

RConv-LMK 64.06/32.48 60.16/30.12 50.92/24.90 49.19/23.81

RConv-SMK 64.18/33.91 60.18/30.82 50.95/25.42 50.53/24.94

RConv-DMK 62.32/33.84 57.71/29.90 49.60/25.06 48.08/24.10

RConv-RMK 63.60/33.66 58.56/30.04 50.24/25.39 49.23/24.93

RConv-UK 64.05/34.19 59.86/31.07 51.38/25.51 50.29/25.03

RConv-MK 64.55/34.55 60.67/31.50 52.64/26.63 51.05/25.39

noise removal methods, RConv-MK (NST) ¡ RConv-LMK (LN) or RConv-SMK

(ST) ¡ RConv-DMK (none). This shows that both LN and ST improves the model

robustness to common corruptions, while the rational integration of them as NST

can further produce more robust results. Third, when it comes to the arrangement

of multiple kernels, RConv-MK (normal order) ¡ RConv-UK (uniform kernel) ¡
RConv-RMK (reversed order). This suggests that signals of different frequencies are

sensible to the kernel size. Mismatches make it even worse than the use of a uniform

kernel. Fourth, it is critical to group and concatenate channels for multiple kernels in
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Table 5.3: Comparison of clean image recognition on ImageNet and robustness to
common corruptions on ImageNet-C.

m kernel sizes Proportion Top-1/5 E. R. (%, I) mCE (I-C)

2 1 � 1, 5 � 5 2:1 27.29/9.13 80.19

3 1 � 1,
2:3:1 26.26/8.48 78.74

(default) 3 � 3, 5 � 5

4
1 � 1, 3 � 3,

7:9:1:1 26.64/8.69 79.62
5 � 5, 7 � 7

Table 5.4: Comparison ofm (robust accuracy, %) under untargeted white-box attacks
on CIFAR-10/100.

m kernel sizes Proportion FFGSM FGSM PGD ODI

2 1 � 1, 5 � 5 2:1 61.71/32.94 58.14/30.13 50.03/24.88 48.20/23.75

3 1 � 1,
2:3:1 62.68/34.14 59.25/31.41 50.70/25.81 48.85/24.22

(default) 3 � 3, 5 � 5

4
1 � 1, 3 � 3,

7:9:1:1 62.39/33.41 58.84/30.29 50.28/25.06 48.55/23.81
5 � 5, 7 � 7

Table 5.5: Comparison of clean image recognition on ImageNet and robustness to
common corruptions on ImageNet-C.

Proportion Dominant
Top-1/5 E. R. (%, I) mCE (I-C)

(1 � 1 : 3 � 3 : 5 � 5) kernel size

2:1:1 1 � 1 26.59/8.75 79.72

2:2:1 1 � 1, 3 � 3 26.46/8.64 79.43

2:3:1
3 � 3 26.26/8.48 78.74

(default)

2:4:1 3 � 3 26.31/8.50 78.96

2:5:1 3 � 3 26.37/8.52 79.15

N.A. (RConv-UK) 3 � 3 26.42/8.53 79.38
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Table 5.6: Robust accuracy (%) of different kernel proportions (1� 1 : 3� 3 : 5� 5)
under untargeted white-box attacks on CIFAR-10/100.

Proportion
Dominant

FFGSM FGSM PGD ODI
kernel size

2:1:1 1 � 1 62.44/33.15 58.92/30.39 50.21/25.36 48.49/23.75

2:2:1 1 � 1, 3 � 3 62.54/33.62 59.07/30.99 50.48/25.64 48.63/24.10

2:3:1
3 � 3 62.68/34.14 59.25/31.41 50.70/25.81 48.85/24.22

(default)

2:4:1 3 � 3 62.53/33.74 59.19/31.19 50.59/25.73 48.77/24.09

2:5:1 3 � 3 62.52/33.60 59.10/30.98 50.42/25.58 48.68/23.93

N.A.
3 � 3 62.53/33.50 59.09/30.53 50.02/25.02 48.02/23.60

(RConv-UK)

frequency domain. We see that RConv-MK ¡ RConv-UK in frequency domain while

Conv2d-MK   Conv2d because signals in the spatial domain are not well structured.

Table 5.7: Comparison of robustness to common corruptions under ResNet-18 archi-
tecture on ImageNet-C.

Method Top-1/5 E. R. (%) mCE

Conv2d 30.24/10.92 85.29

Conv2d+SE 29.41/10.22 83.97

Conv2d+CBAM 29.31/10.17 84.97

Conv2d-MK 37.51/15.84 94.98

LST 26.55/8.59 79.89

RConv-LMK 27.33/8.98 80.48

RConv-SMK 27.40/9.04 80.81

RConv-DMK 27.03/8.81 80.91

RConv-RMK 26.84/8.69 79.99

RConv-UK 26.42/8.53 79.38

RConv-MK 26.26/8.48 78.74
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Table 5.8: Comparison of robustness to common corruptions under ResNet-50 archi-
tecture on ImageNet-C.

Method Top-1/5 E. R. (%) mCE

Conv2d 23.85/7.13 77.01

Conv2d+SE 23.14/6.70 74.47

Conv2d+CBAM 22.98/6.68 72.56

Conv2d-MK 24.96/7.51 77.17

LST 22.78/6.66 70.54

RConv-LMK 22.76/7.05 70.34

RConv-SMK 22.98/6.64 70.80

RConv-DMK 23.31/6.88 70.93

RConv-RMK 23.10/6.80 70.81

RConv-UK 22.59/6.58 69.79

RConv-MK 22.22/6.32 67.91

5.4.4 Evaluation on clean images

In addition to adversarial attacks, it is also important to investigate whether RConv-

MK is effective to clean images. To this end, we study the performance of our method

on some popular visual recognition tasks, including image recognition, object detec-

tion, instance segmentation, semantic segmentation and salient object detection.

Image recognition. We discuss the performance of RConv-MK on image recog-

nition with clean images. We first build up CNNs using RConv-MK under ResNet

[59] and WRN [198]. CIFAR-10/100 dataset [89] is employed for evaluation.

Table 5.9 and Table 5.10 demonstrate the error rates of RConv-MK under ResNet

and WRN on CIFAR-10/100, respectively.

In addition, we construct models under modern network architectures, including

ResNet [59], WRN [198], VGG (with 11 layers) [151], AlexNet [90], and ShiftNet

[180], and perform experiments on ImageNet [35]. Table 5.11, Table 5.12 and Table

5.13 present the results. One can see that models built with our RConv-MK reduces
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Table 5.9: Results (error rates, %) of RConv-MK under ResNet architecture on
CIFAR-10/100.

Depth Method Param/FLOPs C10/C100

20

Conv2d 0.27M/40.8M 7.7/30.9

Conv2d+SE 0.28M/40.8M 7.6/30.5

Conv2d+CBAM 0.28M/40.8M 7.3/30.3

LST 0.20M/34M 6.7/28.2

RConv-MK 0.20M/34M 6.4/27.5

56

Conv2d 0.86M/126M 6.6/27.6

Conv2d+SE 0.87M/126M 6.4/27.5

Conv2d+CBAM 0.87M/126M 6.0/27.1

LST 0.59M/94M 5.6/24.1

RConv-MK 0.59M/94M 5.5/24.0

110

Conv2d 1.73M/253M 6.6/25.2

Conv2d+SE 1.74M/253M 5.2/23.9

Conv2d+CBAM 1.74M/253M 5.1/23.5

LST 1.17M/183M 5.0/22.7

RConv-MK 1.17M/183M 5.0/22.6

the top-1 error rates of those built with LST by 0.2% � 0.5% at almost the same

cost. In addition, an 18-layer model built with RConv-MK obtains even lower error

rates than a 34-layer model built with Conv2d. Similar results can also be drawn for

a 34-layer and a 50-layer RConv-MK ResNet models.

We also compare our RConv-MK with DCTNet [187] with 64 input channels

under the same ResNet50 architecture on ImageNet. The top-1/5 error rates of

DCTNet are reduced by RConv-MK from 22.84%/6.53% to 22.22%/6.32%. It in-

dicates that noises in the input DCT domain of DCTNet may hurt the backbone

model. Besides, RConv-MK runs at 27.78 FPS (including data loading and pre-

processing with single CPU thread plus computation on GPU), faster than DCTNet

by 3.39 FPS. Even though DCTNet can reduce the latency of data transmission to
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Table 5.10: Results (error rates, %) of RConv-MK under WRN architecture on
CIFAR-10/100.

Depth Multiplier Model Param/FLOPs C10/C100

16

8

Conv2d 10.96M/2.00G 4.80/22.03

LST 7.42M/1.30G 4.70/20.88

RConv-MK 7.42M/1.30G 4.40/20.20

10

Conv2d 17.12M/3.12G 4.49/21.52

LST 11.53M/2.01G 4.46/20.21

RConv-MK 11.53M/2.01G 4.14/20.18

22

8

Conv2d 17.16M/2.91G 4.56/21.21

LST 10.94M/1.82G 4.40/19.33

RConv-MK 10.94M/1.82G 4.15/19.21

10

Conv2d 26.80M/4.54G 4.44/20.75

LST 17.01M/2.82G 4.31/18.57

RConv-MK 17.01M/2.82G 4.07/18.41

28

10

Conv2d 36.48M/5.95G 4.17/20.50

LST 22.50M/3.63G 4.03/18.23

RConv-MK 22.50M/3.63G 3.90/18.07

12

Conv2d 43.42M/8.56G 4.33/20.41

LST 32.29M/5.20G 3.94/17.93

RConv-MK 32.29M/5.20G 3.86/17.83

40

4

Conv2d 8.91M/1.41G 4.97/22.89

LST 5.52M/0.87G 4.31/19.14

RConv-MK 5.52M/0.87G 3.92/18.80

8

Conv2d 35.75M/5.63G 4.66/19.38

LST 21.52M/3.38G 3.76/18.56

RConv-MK 21.52M/3.38G 3.70/18.44
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Table 5.11: Results (error rates, %) of RConv-MK under ResNet architecture on
ImageNet.

Depth Method Param/FLOPs Top-1/Top-5

18

Conv2d 11.69M/1.81G 30.24/10.92

LST 8.03M/1.48G 26.55/8.59

RConv-MK 8.03M/1.48G 26.26/8.48

34

Conv2d 21.79M/3.66G 26.70/8.58

LST 13.82M/2.56G 23.92/7.24

RConv-MK 13.82M/2.56G 23.54/6.99

50

Conv2d 25.56M/4.09G 23.85/7.13

LST 23.33M/4.05G 22.78/6.66

RConv-MK 23.33M/4.05G 22.22/6.32

101

Conv2d 44.55M/7.80G 22.63/6.44

LST 42.36M/7.75G 21.63/5.94

RConv-MK 42.36M/7.75G 21.41/5.93

some extent by performing DCT sequentially on CPU, we note that the cost is still

expensive (even with support of advanced CPU instructions). Therefore, it almost

neutralizes the latency it actually saves.

Object detection and instance segmentation. We report results of object

detection and instance segmentation on MS-COCO [107]. The same dataset parti-

tion, detectors, and backbone architecture are used in Section 3.4.9.

Table 5.14 and Table 5.15 demonstrate the object detection results and instance

segmentation results on MS-COCO validation set, respectively. One can see that

RConv-MK has better mAP results than the other two backbone methods on both

tasks. Among all detectors, RConv-MK improves mAP of Conv2d by 2.9%�3.9% on

object detection, while it further boosts mAP of LST by 0.5%�1.7%. Besides, on

instance segmentation, RConv-MK outperforms Conv2d by 2.7%�2.9% and LST by

0.5% with Mask R-CNN and Cascade Mask R-CNN.
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Table 5.12: Results (error rates, %) of RConv-MK under WRN architecture on
ImageNet.

Depth Mulp. Method Param/FLOPs Top-1/Top-5

18

1

Conv2d 11.69M/1.81G 30.24/10.92

LST 8.03M/1.48G 26.55/8.59

RConv-MK 8.03M/1.48G 26.26/8.48

1.5

Conv2d 25.88M/3.87G 27.06/9.00

LST 17.53M/3.21G 24.44/7.51

RConv-MK 17.53M/3.21G 24.03/7.33

2

Conv2d 45.62M/6.70G 25.58/8.06

LST 30.68M/5.59G 23.49/6.93

RConv-MK 30.68M/5.59G 23.01/6.88

3

Conv2d 101.78M/14.72G 24.06/7.33

LST 67.96M/12.31G 22.33/6.52

RConv-MK 67.96M/12.31G 22.31/6.51

34

1

Conv2d 21.79M/3.66G 26.70/8.58

LST 13.82M/2.56G 23.92/7.24

RConv-MK 13.82M/2.56G 23.54/6.99

1.5

Conv2d 48.61M/8.03G 24.50/7.58

LST 30.42M/5.59G 22.29/6.30

RConv-MK 30.42M/5.59G 22.20/6.28

2

Conv2d 86.04M/14.09G 23.39/7.00

LST 53.49M/9.79G 21.44/6.11

RConv-MK 53.49M/9.79G 21.38/6.10

50

1

Conv2d 25.56M/4.09G 23.85/7.13

LST 23.33M/4.05G 22.78/6.66

RConv-MK 23.33M/4.05G 22.22/6.32

2

Conv2d 68.88M/11.40G 21.90/6.03

LST 66.10M/11.09G 20.89/5.76

RConv-MK 66.10M/11.09G 20.78/5.72
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Table 5.13: Results (error rates, %) of RConv-MK under AlexNet, VGG and ShiftNet
architectures on ImageNet.

Architecture Method Param/FLOPs Top-1/Top-5

AlexNet (FC)

Conv2d w/o BN 61.10M/0.71G 43.45/20.91

Conv2d w/ BN 61.10M/0.71G 41.93/20.02

LST 60.30M/0.62G 39.32/17.40

RConv-MK 60.30M/0.62G 38.85/17.22

AlexNet (GAP)

Conv2d w/o BN 2.73M/0.66G 51.13/26.33

Conv2d w/ BN 2.73M/0.66G 46.65/23.43

LST 2.25M/0.60G 39.91/17.86

RConv-MK 2.25M/0.60G 39.31/17.23

VGG (FC)

Conv2d w/o BN 132.86M/7.61G 30.98/11.37

Conv2d w/ BN 132.86M/7.61G 29.62/10.19

LST 128.63M/5.89G 28.56/9.79

RConv-MK 128.63M/5.89G 28.08/9.72

VGG (GAP)

Conv2d w/o BN 9.73M/7.49G 33.40/12.20

Conv2d w/ BN 9.73M/7.49G 31.63/11.76

LST 6.63M/5.04G 29.23/10.26

RConv-MK 6.63M/5.04G 28.20/9.88

ShiftNet-A

Shift 4.1M/1.4G 29.9/10.3

LST 4.3M/1.2G 29.3/10.0

RConv-MK 4.3M/1.2G 29.2/9.9

ShiftNet-B

Shift 1.1M/N.A. 38.8/16.4

LST 1.2M/389.5M 36.9/14.8

RConv-MK 1.2M/389.5M 36.7/14.7

ShiftNet-C

Shift 0.78M/N.A. 41.2/18.0

LST 0.84M/342.5M 38.9/16.3

RConv-MK 0.84M/342.5M 38.7/16.2
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Table 5.14: Object detection results (%) of RConv-MK on MS-COCO validation set.

Detector
Backbone

mAP AP 50 AP 75 AP S APM APL
Method

Faster R-CNN
[144]

LST [97] 40.8 62.2 44.3 24.8 44.7 53.1

Conv2d 37.4 58.1 40.4 21.2 41.0 48.1

RConv-MK 41.3 62.6 45.0 24.6 44.9 54.1

RetinaNet [106]

LST [97] 38.7 58.5 41.7 22.2 42.7 51.2

Conv2d 36.5 55.4 39.1 20.4 40.3 48.1

RConv-MK 39.4 60.0 42.0 23.2 43.3 51.5

FCOS [161]

LST [97] 38.8 58.7 41.5 22.5 42.4 50.2

Conv2d 36.6 55.7 38.8 20.7 40.1 47.4

RConv-MK 39.6 60.0 42.2 23.2 43.2 52.3

Mask R-CNN
[57]

LST [97] 41.3 62.5 45.0 25.1 45.1 54.3

Conv2d 38.2 58.8 41.4 21.9 40.9 49.5

RConv-MK 41.8 63.3 45.9 24.6 45.8 54.3

Cascade Mask
R-CNN [12]

LST [97] 43.9 62.6 47.9 26.3 47.4 57.8

Conv2d 41.2 59.4 45.0 23.9 44.2 54.4

RConv-MK 44.4 63.0 48.4 26.0 47.8 58.2

Table 5.15: Instance segmentation results (%) of RConv-MK on MS-COCO valida-
tion set.

Detector
Backbone

mAP AP 50 AP 75 AP S APM APL
Method

Mask R-CNN
[57]

LST [97] 37.1 59.3 39.4 20.9 40.5 50.8

Conv2d 34.7 55.7 37.2 18.3 37.4 47.2

RConv-MK 37.6 59.9 40.2 20.6 41.0 50.8

Cascade Mask
R-CNN [12]

LST [97] 38.1 59.7 40.9 21.4 41.3 51.9

Conv2d 35.9 56.6 38.4 19.4 38.5 49.3

RConv-MK 38.6 60.2 41.5 21.2 41.7 52.6
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Table 5.16: Semantic segmentation results of LST v2 on PASCAL VOC2012.

Seg. Method
Backbone

mIoU
Overall Freq. W.

Method Acc. (%) Acc.(%)

DeepLab V3 [23]

LST [97] 0.790 94.49 90.07

Conv2d 0.767 93.89 88.76

RConv-MK 0.792 94.52 90.16

DeepLab V3+ [24]

LST [97] 0.792 94.58 90.17

Conv2d 0.771 94.13 89.14

RConv-MK 0.797 94.64 90.18

Semantic segmentation. We report semantic segmentation results of RConv-

MK on PASCAL VOC [41]. We set up the backbone model under ResNet-50 archi-

tecture by using RConv-MK. More details can be found in Section 3.4.10.

Table 5.16 presents the results. With the same semantic segmentation method,

RConv-MK substantially outperforms both Conv2d and LST in terms of all three

metrics. For example, RConv-MK improves the mIoU of Conv2d/LST by 0.025/0.002

and 0.026/0.005 in cases of DeepLab V3 and DeepLab V3+, respectively.

Salient object detection. We compare RConv-MK to Conv2d and LST [97] on

salient object detection by following the setting in Section 3.4.1 and Section 3.4.12.

Specifically, we replace LST [97] with our RConv-MK to build the backbone model

under ResNet-50 architecture. For each method, the backbone model is pretrained

on ImageNet.

Table 5.17 presents the results of RConv-MK on salient object detection. It can

be observed that RConv-MK achieves better results than both Conv2d and LST in

terms of F-meansure and MAE across all benchmarks.
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Table 5.17: Salient object detection results of RConv-MK under ResNet-50 architec-
ture.

Dataset Backbone Method F-measureÒ MAEÓ

ECSSD [188]

Conv2d 0.940 0.042

LST [97] 0.950 0.034

RConv-MK 0.953 0.032

PASCAL-S [104]

Conv2d 0.863 0.075

LST [97] 0.876 0.066

RConv-MK 0.882 0.063

DUT-OMRON [189]

Conv2d 0.830 0.055

LST [97] 0.834 0.052

RConv-MK 0.836 0.049

HKU-IS [92]

Conv2d 0.934 0.032

LST [97] 0.941 0.028

RConv-MK 0.944 0.026

SOD [130]

Conv2d 0.867 0.100

LST [97] 0.875 0.093

RConv-MK 0.885 0.092

DUTS [166]

Conv2d 0.886 0.040

LST [97] 0.895 0.035

RConv-MK 0.901 0.033

5.4.5 Ablation study

We explore different settings of multiple kernels in the proposed RConv-MK. Exper-

iments are designed from two aspects, including the effect of m, i.e., total number

of kernels used in Ts, and the effect of different settings of channel split when the

default m � 3 kernels are used.

Regarding the choice of m, Table 5.3 and Table 5.4 present the results. We con-

sider m from 2 to 4 because kernels larger than 7�7 are rare in modern architectures

due to computational cost. Thus, we stop at m � 4 (i.e., the largest kernel size is

168



7 � 7). One can see that a model wins all cases when m � 3. When m � 4, the

results are close to those of m � 3. However, there is a clear drop when m � 2. In

our view, this is caused by the fact that some critical cues may be lost as the 1 � 1

kernel are applied to convolve with most channels in Ts to balance the cost of 5 � 5

DWConv.

Table 5.5 and Table 5.6 demonstrate the results of different settings of channel

split. We fixed the relative proportion of channels for 1 � 1 and 5 � 5 kernels and

adjust the proportion of those for the 3�3 kernel. It can be observed that the default

setting results in the best performance when we deal with clean images, corrupted

images as well as adversarial attacks. Starting from the default setting, with more

channels convolved with the 3�3 kernel, the results are closer to the use of a uniform

kernel, i.e., RConv-UK.

5.5 Conclusion

In this chapter, we proposed RConv-MK to make LST architecturally robust to ad-

versarial attacks. RConv-MK employs a set of kernels of different size and flexibly

applies them to the input features of different frequencies. It enlarges the receptive

fields for low frequency features and saves the overhead for sparse high frequency fea-

tures. We further introduce a normalized soft thresholding (NST) operator to adap-

tively address input samples with different corruption scales for effective removal of

noise and trivial features in the relevant feature domain. Extensive experiments val-

idate the effectiveness of the proposed RConv-MK under popular CNN architectures

to corrupted samples as well as clean images.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Visual recognition has a wide range of real applications in our daily life. With the

rapid development of deep convolutional neural networks (CNNs) in the past years,

remarkable progress has been made on many tasks. While design of CNN architecture

today becomes increasingly convenient by reusing some common modules and well-

proved network architecture, it leaves an open question whether these modules and

network architecture can be still improved in some other way to make substantial

contribution to CNNs. In this thesis, we made some attempts to design reliable CNN

architecture for visual recognition. To satisfy the genuine need of real applications,

we value the overhead and number of parameters and are committed to obtaining

performance gain at comparable or even lower cost.

First-order CNNs are widely used for various visual recognition tasks. It is highly

valued to improve their performance whlie keeping the same cost at testing stage.

In Chapter 2, we presented detachable second-order pooling networks (DSoP-Net)

to improve the performance of first-order CNNs in image classification. We care-

fully designed auxiliary branches to transfer knowledge to the backbone first-order

networks during training, which can be removed before inference. As a result, DSoP-

Net leverages the advantages of second-order pooling networks while keeping similar
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complexity to first-order networks during inference. To our best knowledge, this is

the first attempt to use higher-order statistics in knowledge distillation. Experiments

conducted on benchmarks demonstrated the effectiveness of our network.

2D convolutional layers play an important role in the success of CNNs. In Chap-

ter 3, we proposed to train deep CNNs with a learnable sparse transform (LST),

which learns to convert the input features into a more compact and sparser domain

together with the CNN training process. LST can more effectively reduce the spa-

tial and channel-wise feature redundancies than the conventional Conv2d. It can

be efficiently implemented with existing CNN modules, and is portable to existing

CNN architectures for seamless training and inference. We further presented a hy-

brid ST-ReLU activation to enhance the robustness of the learned CNN models to

common types of corruptions in the input. We validated that LST-Net can achieve

even higher accuracy than its counterpart networks of the same family with lower

cost on a wide range of visual recognition tasks.

Albeit with less overhead and fewer parameters, LST can still be improved to

faithfully build CNNs for visual recognition. In Chapter 4, we proposed LST v2 to

reduce its redundancy. To produce a compact feature bank, we allowed incomplete

yet flexible expansion. The structure of HDWConv can be completely determined

with no need for extra fine-tuning. High frequency input channels were expanded

more times for near-complete expansion, while low frequency ones were expanded

fewer times to save cost. In addition, we partitioned input channels into groups

and assigned one or more unique kernels with identical initialization for better rep-

resentation. We demonstrated that LST v2 can achieve comparable or even higher

accuracy than LST-Net on a wide range of visual recognition tasks while it only

requires approximately 40% � 55% parameters and computational cost of Conv2d

under the same architecture, saving around 20% � 40% overhead of LST-Net.

Finally, in Chapter 5, we discussed the application of LST to adversarial attacks.
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We proposed RConv-MK to improve the architecture of LST against various types of

image corruptions and manually designed adversarial attacks. The novel transform

contains a set of kernels of different size. The kernels at each layer are flexibly

applied to the given features of different frequencies to enlarge the receptive fields

for low frequency features and saves the overhead for sparse high frequency features.

We further introduce a normalized soft thresholding (NST) operator to adaptively

address input samples with different corruption scales for effective removal of noise

and trivial features in the relevant feature domain. Extensive experiments conducted

on a number of popular visual recognition tasks demonstrated the effectiveness of

RConv-MK.

6.2 Future Work

The proposed algorithms in this thesis advance reliable CNN architecture design

for visual recognition. In future work, we will expand our study in the following

directions:

� Depth-wise separable convolutional layers are widely used in the spatial trans-

form of LST-Net and its variants. However, a large number of independent

operations, like HDWConv, are exectued in sequence, making little use of par-

allel devices, such as GPU cards. We will implement it with our own kernel

function to boost the runtime performance on GPU.

� Our current implementation of DSoP-Net, LST-Net and its variants is based on

single float. However, it is more desired to perform low precision calculation,

like half float, integer, etc., on resource-limited devices. In the future, we will

investigate the performance of the proposed methods for such application.

� The proposed methods in this thesis can fill the pool of search space for a large
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number of existing Neural Architecture Search (NAS) strategies [211, 212, 134,

40]. We are looking forward to discovering more powerful neural networks

constructed with our methods by leveraging NAS.

� To strengthen an LST v2 bottleneck, we will enlarge its receptive field by using

different kernel sizes for its spatial transform in a similar way of RConv-MK.

� We will investigate our methods on more visual recognition tasks, including

facial attribute analysis, visual tracking, industrial defect detection, action

recognition, crowd counting, etc.

We will explore the above research directions in the future.
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