

CERTIFICA TE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

____________ (Signed)

____----'W~aiw-H~o..!..A!..!:u~____ (Name of Student)

ii

iii

Abstract

We propose to mine a set of rules from a collection of rule sets, each rule being discovered

in a data set using a data mining algorithm. These meta-rules, rules about rules, represent

the kind of knowledge that few existing data mining algorithms have been developed to

mine for. In this study, we define problems in discovering the underlying regularities,

differences, and changes hidden in rule sets and propose a new approach, meta-mining,

which mines previous data mining results to discover these underlying regularities,

differences, and changes.

The purpose of meta-mining for regularities and for differences in rule sets is to

discover association relationships. Meta-mining for regularities seeks to discover

association relationships supported by a sufficiently large number of rules contained in just

a few records in many data sets. Meta-mining for differences seeks to discover association

relationships supported by a sufficiently small number of rules contained in many records in

a small number of data sets. It would not be possible to distinguish between these two kinds

of association relationships if the data sets were concatenated into a single data set. The

associations that a large number of data sets have in common can be discovered in the form

of rules. Their rule sets will contain a correspondingly large number of rules that support

the associations. As these rules govern regular characteristics in the data sets, we refer to

the rules for these rules as regular meta-rules. In contrast, the rules for some associations

will be found in just a few data sets and their rule sets will contain a correspondingly

smaller number of rules that support the associations. As these associations contribute to

distinguishing or differentiating the data sets which contain them, we refer to the rules for

these rules as differential meta-rules.

Meta-mining can also be used to reveal changes in rule sets and this information can be

used to discover change meta-rules, regularities governing how rules change over time.

Change meta-rules can be used to predict how the rules will change in the future, freeing

users from dependence on the historical data, allowing better planning, and making it

possible to obviate or delay undesirable change.

A meta-mining approach to the discovery of regular, differential, and change meta-

rules should be able to 1) automatically generate fuzzy sets from data; 2) use linguistic

variables and linguistic terms to represent regularities, differences, and changes; 3) exploit

the scalability of parallel computer systems; 4) group and select a subset of attributes; and 5)

iv

enable the mining of association relationships involving attributes that were not originally

contained in the data.

To generate fuzzy sets directly from data, we present a new fuzzy partitioning method

to maximize the class-attribute interdependence, thereby improving the classification results.

This method uses an information-theoretic measure to evaluate the interdependence between

the class and an attribute.

So that association relationships can be represented using easily-understood linguistic

variables and terms, we propose new algorithms for mining fuzzy rules and meta-rules.

These utilize an objective measure to discover interesting associations among attributes

without the need for a user to supply any thresholds. We also extend these new algorithms

to exploit the scalability of parallel systems so as to handle very large data sets and rule sets.

The parallel algorithms produce the same results as their serial counterparts in a fraction of

the time.

We also define the problem of attribute clustering and introduce a methodology for

solving it. Our proposed method groups interdependent attributes into clusters by

optimizing a criterion function derived from an information measure that reflects the

interdependence between attributes. The partitioning of a relational table into attribute

subgroups allows a small number of attributes within or across the groups to be selected for

analysis. Clustering attributes reduces the search dimension of a mining algorithm.

To allow the discovery of association relationships involving attributes that are not

originally contained in the data, we introduce the concept of using transformation functions

and propose a formal approach to this problem. This approach can also handle the union of

relational and transactional data stored in a relational database.

In this study, we also tested our proposed techniques with extensive experiments on

many synthetic and real-world data sets. The results show that they are very effective in

mining not just rules from data sets, but also meta-rules from rule sets.

v

List of Publications Arising from the Thesis

 W.-H. Au and K. C. C. Chan, “Classification with Degree of Membership: A Fuzzy

Approach,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose, CA, 2001, pp.

35–42.

 W.-H. Au and K. C. C. Chan, “An Evolutionary Approach for Discovering Changing

Patterns in Historical Data,” in B. V. Dasarathy (Ed.), Data Mining and Knowledge

Discovery: Theory, Tools, and Technology IV, Proc. of SPIE Vol. 4730, 2002, pp. 398–

409.

 W.-H. Au and K. C. C. Chan, “Fuzzy Data Mining for Discovering Changes in

Association Rules over Time,” in Proc. of the 11th IEEE Int’l Conf. on Fuzzy Systems,

Honolulu, HI, 2002, pp. 890–895.

 W.-H. Au and K. C. C. Chan, “Mining Fuzzy Association Rules in a Bank-Account

Database,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 2, pp. 238–248, 2003.

 W.-H. Au and K. C. C. Chan, “Mining Fuzzy Rules for Time Series Classification,” in

Proc. of the 13th IEEE Int’l Conf. on Fuzzy Systems, Budapest, Hungary, 2004, pp.

239–244.

 W.-H. Au and K. C. C. Chan, “Mining Changes in Association Rules: A Fuzzy

Approach,” Fuzzy Sets and Systems, vol. 149, no. 1, pp. 87–104, 2005.

 W.-H. Au, K. C. C. Chan, and A. K. C. Wong, “A Fuzzy Approach to Partitioning

Continuous Attributes for Classification,” to appear in IEEE Trans. on Knowledge and

Data Engineering.

 W.-H. Au, K. C. C. Chan, A. K. C. Wong, and Y. Wang, “Attribute Clustering for

Grouping, Selection, and Classification of Gene Expression Data,” IEEE/ACM Trans.

on Computational Biology and Bioinformatics, vol. 2, no. 2, pp. 83–101, 2005.

 W.-H. Au, K. C. C. Chan, and X. Yao, “A Novel Evolutionary Data Mining Algorithm

with Applications to Churn Prediction,” IEEE Trans. on Evolutionary Computation, vol.

7, no. 6, pp. 532–545, 2003.

 K. C. C. Chan and W.-H. Au, “Mining Fuzzy Association Rules in a Database

Containing Relational and Transactional Data,” in A. Kandel, M. Last, and H. Bunke

(Eds.), Data Mining and Computational Intelligence, New York, NY: Physica-Verlag,

2001, pp. 95–114.

 K. C. C. Chan, W.-H. Au, and B. Choi, “Mining Fuzzy Rules in a Donor Database for

Direct Marketing by a Charitable Organization,” in Proc. of the 1st IEEE Int’l Conf. on

Cognitive Informatics, Calgary, Alberta, Canada, 2002, pp. 239–246.

vi

Acknowledgements

First of all, I thank my advisor, Prof. Keith C. C. Chan, for the continuous support and the

constructive advice. The experience obtained by working with him in the past few years is

definitely invaluable.

Next, I present my sincere thank-you to Prof. Andrew K. C. Wong of the Department

of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada for the

discussion of many interesting research ideas. His enthusiasm in research has inspired me

to become an outstanding researcher.

I thank Prof. Xin Yao of the School of Computer Science, The University of

Birmingham, Edgbaston, Birmingham, U.K. for working on the paper on genetic algorithms

and churn prediction, and Dr. Yang Wang of the Pattern Discovery Software Systems, Ltd.,

Waterloo, Ontario, Canada for working on the paper on attribute clustering.

I also thank my examiners for their valuable comments. They are Prof. Qin Lu of the

Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

Hong Kong, Prof. Witold Pedrycz of the Department of Electrical and Computer

Engineering, University of Alberta, Edmonton, Alberta, Canada, and Prof. Xindong Wu of

the Department of Computer Science, University of Vermont, Burlington, Vermont, USA.

Lastly, but certainly not the least, I thank my wife for encouraging me to finish the

doctoral study. I also thank my parents. Without my wife’s and my parents’

encouragement, I would not be able to make the difficult decision to relocate to Seattle,

Washington, USA.

vii

Table of Contents

Abstract ... iii

List of Publications Arising from the Thesis... v

Acknowledgements .. vi

List of Figures..ix

List of Tables..xi

Chapter 1 Introduction...1
1.1 The Problem... 2
1.2 An Overview of the Proposed Approach... 9
1.3 Organization of the Thesis.. 13

Chapter 2 Related Work ...16
2.1 Data Mining ... 16

2.1.1 Association Rule Mining ... 16
2.1.2 Classification ... 21
2.1.3 Discretization and Fuzzy Partitioning.. 24
2.1.4 Fuzzy Sets in Data Mining .. 27
2.1.5 Data Mining Based on Genetic Algorithms... 28
2.1.6 Mining Rules in Time Series Data... 31
2.1.7 Attribute Clustering and Data Mining in Gene Expression Data................................... 33
2.1.8 Handling Both Transaction and Relational Data ... 36
2.1.9 Data Transformation.. 37

2.2 Meta-Mining .. 38
2.2.1 Mining Regularities in Multiple Data Sets .. 40
2.2.2 Mining Differences in Multiple Data Sets ... 42
2.2.3 Mining Changes in Multiple Data Sets.. 43

Chapter 3 The Proposed Approach..45
3.1 A Formal Problem Description .. 45

3.1.1 Mining Regularities and Differences... 47
3.1.2 Mining Changes... 49

3.2 The Solution ... 52
3.2.1 Data Transformation.. 54
3.2.2 Fuzzy Partitioning.. 54
3.2.3 Attribute Clustering ... 55
3.2.4 Fuzzy Rule Mining .. 56
3.2.5 Parallelization of Fuzzy Rule Mining.. 57

Chapter 4 Data Transformation...59
4.1 Transformation Functions.. 60

4.1.1 The Logical Functions ... 62
4.1.2 The Arithmetic Functions .. 63
4.1.3 The Substring Functions .. 64
4.1.4 The Discretization Functions ... 64

4.2 A Case Study on the Bank-Account Database .. 65
4.2.1 The Transformation Functions Defined... 66
4.2.2 Fuzzy Association Rules Discovered .. 67

viii

Chapter 5 Partitioning Continuous Attributes ..73
5.1 An Fuzzy Partitioning Algorithm .. 75

5.1.1 An Class-Attribute Interdependence Measure ... 75
5.1.2 Fuzzy Partitioning of Continuous Data ... 78

5.2 An Example Application in Fuzzy Decision Tree Construction...................... 85
5.3 Evaluating Its Effectiveness.. 86

Chapter 6 Attribute Clustering...89
6.1 An Attribute Interdependence Measure ... 91
6.2 An Attribute Clustering Algorithm ... 94
6.3 Performance Evaluation ... 95

6.3.1 A Synthetic Data Set.. 95
6.3.2 Gene Expression Data Sets.. 98

Chapter 7 Mining Fuzzy Rules in Data Sets and Rule Sets..................................124
7.1 Fuzzy Association Rules.. 127

7.1.1 Linguistic Variables and Linguistic Terms.. 128
7.1.2 Identification of Interesting Associations between Linguistic Terms.......................... 132
7.1.3 Formation of Fuzzy Association Rules.. 134
7.1.4 Predicting Previously Unknown Values Using Fuzzy Association Rules 135

7.2 The FARM Algorithm... 137
7.3 The EFARM Algorithm.. 138

7.3.1 Encoding Rules in the Chromosomes.. 139
7.3.2 Generating First-Order Rules .. 140
7.3.3 Initialization of Populations... 140
7.3.4 The Genetic Operators... 141
7.3.5 Selection and the Fitness Function .. 144
7.3.6 Criteria for Termination... 144

7.4 Applications in Mining Meta-Rules in Rule Sets.. 145
7.4.1 Mining Regularities and Differences... 145
7.4.2 Mining Changes... 147

7.5 Comparing the FARM and EFARM Algorithms... 150
7.5.1 Different Data Sets .. 150
7.5.2 The Subscriber Database ... 154

Chapter 8 Parallelization of Fuzzy Rule Mining Algorithms167
8.1 The Parallel-FARM Algorithm.. 168
8.2 The Parallel-EFARM Algorithm ... 171
8.3 Scalability Evaluation ... 173

8.3.1 Sizeup .. 174
8.3.2 Speedup ... 176
8.3.3 Scaleup .. 177

Chapter 9 Experimental Results ..180
9.1 Synthetic Data Sets.. 180
9.2 The Property-Valuation Database ... 192
9.3 The Stock-Price Database... 201

Chapter 10 Conclusions ...212

References...217

ix

List of Figures

Fig. 1. The proposed meta-mining approach.. 53
Fig. 2. Schema of the bank-account database. ... 65
Fig. 3. The definitions of the linguistic terms for the attribute called Loan Balance. 68
Fig. 4. The definitions of linguistic terms for the attribute called Customer Age. 69
Fig. 5. The Dinkelbach’s algorithm.. 79
Fig. 6. The ITFP algorithm... 80
Fig. 7. Fuzzy sets Xj, Y, and Skj. .. 81
Fig. 8. Attribute values of A1 and A2 in the tuples in the synthetic data set.......................... 96
Fig. 9. The total interdependence redundancy measure over all the clusters found in the

synthetic data set. .. 97
Fig. 10. The total interdependence redundancy measure over all the clusters found in the

gene expression data sets... 101
Fig. 11. The most representative genes found by ACA. .. 109
Fig. 12. The most representative genes found by the k-means algorithm. 111
Fig. 13. The most representative genes found by SOM. .. 112
Fig. 14. The most representative genes found by the biclustering algorithm..................... 113
Fig. 15. The scheme for evaluating the classificatory effectiveness of gene pools............ 114
Fig. 16. A sample relation. ... 130
Fig. 17. The definitions of linguistic terms. ... 131
Fig. 18. The resulting fuzzy relation. ... 131
Fig. 19. The FARM algorithm.. 137
Fig. 20. The EFARM algorithm. .. 139
Fig. 21. An allele representing an h-th order rule... 139
Fig. 22. The initialize function. .. 141
Fig. 23. The reproduce function... 141
Fig. 24. An example of the crossover-1 operator (the thick borders indicate the rule

boundaries). ... 142
Fig. 25. An example of the crossover-2 operator (the thick borders indicate the rule

boundaries). ... 143
Fig. 26. The mutation function... 144
Fig. 27. Reference lift curves. .. 157
Fig. 28. Lift curves for FARM, EFARM, C4.5, and neural network under different monthly

churn rates averaged over ten runs. ... 160
Fig. 29. Lift factors for FARM, EFARM, C4.5, and neural network under different monthly

churn rates averaged over ten runs. ... 163
Fig. 30. The Parallel-FARM algorithm. ... 171
Fig. 31. The Parallel-EFARM algorithm.. 173
Fig. 32. The evaluate function.. 173
Fig. 33. Sizeup performance. ... 175
Fig. 34. Speedup performance.. 177
Fig. 35. Scaleup performance... 179
Fig. 36. The changes in r1, …, r7 in the period from t1 to t125... 187
Fig. 37. The actual and predicted rules. ... 191
Fig. 38. Schema of the property-valuation database. ... 192
Fig. 39. Fuzzy sets for T_SIZE. .. 194
Fig. 40. Fuzzy sets for T_FLOOR. ... 195
Fig. 41. The total interdependence redundancy measure over all the clusters found in the

transformed relation. ... 196
Fig. 42. The average price per square foot of residential properties in Yuen Long during the

period from 1991 to 2001.. 199
Fig. 43. The schema of the stock-price database.. 201

x

Fig. 44. The stock prices of the three companies during the period from 2000 to 2004. ... 202
Fig. 45. Fuzzy sets for T_PERCENT_CHANGE. ... 204
Fig. 46. Total interdependence redundancy measure over all the clusters found in the

transformed relation. ... 205
Fig. 47. Percentage change in stock prices of the three companies during the period from

2000 to 2004.. 206
Fig. 48. Prediction of the stock price of Hang Seng Bank Ltd... 209

xi

List of Tables

Table 1. Summary of the bank-account database. .. 66
Table 2. Classification of the fuzzy association rules discovered in the bank-account

database. .. 69
Table 3. A summary of the data sets used in our experiments. .. 86
Table 4. Performance of C4.5 averaged over 10 trials. .. 87
Table 5. The top 5 genes in each of the 7 clusters found in the colon-cancer data set. 102
Table 6. The top 5 genes in each of the 10 clusters found in the leukemia data set. 103
Table 7. The ranking of the 35 genes selected by different approaches in the colon-cancer

data set... 107
Table 8. The ranking of the 50 genes selected by different approaches in the leukemia data

set. ... 108
Table 9. The performance of different classification algorithms in the colon-cancer data set.

... 115
Table 10. The performance of C5.0 on the top genes selected by different techniques in the

colon-cancer data set... 115
Table 11. The performance of neural networks on the top genes selected by different

techniques in the colon-cancer data set... 116
Table 12. The performance of the nearest neighbor method on the top genes selected by

different techniques in the colon-cancer data set. ... 116
Table 13. The performance of the naïve Bayes method on the top genes selected by

different techniques in the colon-cancer data set. ... 116
Table 14. The performance of neural networks on the top genes selected by the k-means

algorithm in the colon-cancer data set. ... 118
Table 15. The performance of neural networks on the top genes selected by the biclustering

algorithm in the colon-cancer data set. ... 118
Table 16. The performance of different classification algorithms in the leukemia data set.

... 119
Table 17. The performance of C5.0 on the top genes selected by different techniques in the

leukemia data set. .. 119
Table 18. The performance of neural networks on the top genes selected by different

techniques in the leukemia data set. .. 119
Table 19. The performance of the nearest neighbor method on the top genes selected by

different techniques in the leukemia data set... 120
Table 20. The performance of the naïve Bayes method on the top genes selected by

different techniques in the leukemia data set... 120
Table 21. The performance of neural networks on the top genes selected by the k-means

algorithm in the leukemia data set. .. 121
Table 22. The performance of C5.0 on the top genes selected by the biclustering algorithm

in the leukemia data set. .. 122
Table 23. Different setups of crossover probabilities p1 and p2. .. 143
Table 24. Percentage accuracy of the six different approaches.. 154
Table 25. Relations in the subscriber database... 155
Table 26. Some of the identified variables in the transformed data. 156
Table 27. Execution times for FARM, EFARM, C4.5, and neural network under different

monthly churn rates averaged over ten runs.. 164
Table 28. Rules discovered in the data sets.. 181
Table 29. Regular meta-rules discovered in the rule sets. .. 182
Table 30. Differential meta-rules discovered in the rule sets. .. 183
Table 31. Parameter setting for generating the synthetic data set. 183
Table 32. The rules in R1 selected for further experimentation.. 184

xii

Table 33. Rules r1, …, r7 in R125... 188
Table 34. Rules r1, …, r7 in 125R̂ .. 190
Table 35. Summary of the property-valuation database. ... 192
Table 36. The average percentage error of the adjusted residuals and weights of evidence of

the rules predicted using change meta-rules.. 200
Table 37. Experimental results on prediction of property amount. 200
Table 38. Trading performance. ... 210
Table 39. Trading signals. .. 210

1

Chapter 1

Introduction

Data mining is concerned with the nontrivial extraction of implicit, previously unknown,

and potentially useful information from data [Frawley, Piatetsky-Shapiro, and Matheus

1991]. It involves the search for patterns of interest in a particular representational form or

in a set of such representations (e.g., decision trees, association rules) [Fayyad, Piatetsky-

Shapiro, and Smyth 1996].

Data mining is also an important step in what is called knowledge discovery in

databases (KDD) [Fayyad, Piatetsky-Shapiro, and Smyth 1996] and, indeed, many

researchers use the term data mining to mean KDD (e.g., [Agrawal et al. 1996; Han et al.

1996; Imielinski, Virmani, and Abdulghani 1996; Silberschatz, Stonebraker, and Ullman

1996]). In this thesis, we use data mining as a synonym for KDD.

To quote from [Matheus, Chan, and Piatetsky-Shapiro 1993], “the grand challenge of

data mining is to collectively handle the problems imposed by the nature of real-world

databases, which tend to be dynamic, incomplete, redundant, noisy, sparse, and very large.”

Many interesting studies of data mining have been carried out, drawing upon methods,

algorithms, and techniques from fields as diverse as machine learning, pattern recognition,

database systems, statistics, artificial intelligence, knowledge acquisition, and data

visualization (see, e.g., [Fayyad et al. 1996; Piatetsky-Shapiro and Frawley 1991]).

Data mining techniques can be classified according to the kind of knowledge they mine

for. The mining of association rules aims at discovering interesting relationships or

associations among different attribute values [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995,

1996]. A Boolean association rule involves binary attributes; a generalized association rule

involves attributes that are hierarchically related; a quantitative association rule involves

attributes that can take on quantitative or categorical values. An example of an association

rule is “90% of transactions that contain bread also contain butter; 3% of all transactions

contain both of these items.” The 90% is referred to as the confidence and the 3%, the

support, of the rule. The discovered association rules can be used later for human

examination and machine inference, e.g., classification [Liu, Hsu, and Ma 1998].

2

Classification is another important topic in data mining research [Agrawal et al. 1992;

Agrawal, Imielinski, and Swami 1993a; Lu, Setiono, and Liu 1995; Mehta, Agrawal, and

Rissanen 1996; Shafer, Agrawal, and Mehta 1996]. Classification involves finding a

classification model or a classifier which can classify data records into different predefined

classes. This requires a set of records to be used in training which are classified by

reference to an attribute which allows records in the training set to be classified by domain

experts. If a data mining technique is a good one, it should be possible to construct a

classifier that can for classify records using other attribute values not originally in the

training set. The classification problem has been studied extensively in the area of

supervised learning by machine learning and pattern recognition researchers and various

techniques have been proposed to solve it [Michie, Spiegelhalter, and Taylor 1994].

Clustering is the process of grouping a set of records into clusters [Bradley, Fayyad,

and Reina 1998; Cheeseman and Stutz 1996; Ganti et al. 1999b; Zhang, Ramakrishnan, and

Livny 1996]. Unlike in classification, the class label of each record is not known. Data

clusters can be discovered from a set of records based on their attribute values by

maximizing the intraclass and minimizing the interclass similarities. Common features of

data records in the same cluster can then be identified and used to derive a set of rules which

serves as a description of that cluster [Jain, Murty, and Flynn 1999].

Regardless of whether a data mining algorithm is developed for association rule mining,

classification, or clustering, its application to a data set typically results in a set of

production (if-then) rules [Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a,

1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Bradley, Fayyad, and Reina

1998; Cheeseman and Stutz 1996; Cheung et al. 1996a; Ganti et al. 1999b; Han and Fu

1995; Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and

Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b;

Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and

Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996]. It is for this reason that we

focus on the mining tasks in rule sets.

1.1 The Problem
This thesis contributes to the problem definitions of mining the underlying regularities,

differences, and changes hidden in rule sets and the introduction of a new approach to

dealing with the problems.

Given a collection of rule sets discovered by existing data mining techniques (e.g.,

3

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer

1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and

Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta,

Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and

Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996]), we

propose a meta-mining approach to discovering a set of rules in the rule sets. These rules

are called meta-rules because they are rules about rules.

The meta-mining approach, which is composed of a collection of techniques, enables

the discovery of patterns that existing data mining techniques have not been developed to

mine for. These patterns are regularities, differences, and changes in the underlying patterns

hidden in databases. Sections 1.1.1–1.1.3 describes these features more fully and explains

the importance of mining them. Section 1.1.4 presents the proposed meta-mining

techniques and, again, explains their importance.

1.1.1 Mining Regularities in Rule Sets

Meta-mining is able to discover the underlying regularities hidden in rule sets. Let us take

as an example an interstate or international company. It consists of a number of offices at

different geographical locations and each office (or group of offices) maintains its own

database [Bright, Hurson, and Pakzad 1992]. In general, local decisions are made at the

branches of the international company, whereas global decisions are made at the head office

and the branches contribute to these decisions in various ways. To facilitate effective

decision making in such an environment, many international companies need to mine

multiple data sets throughout their branches [Zhang, Wu, and Zhang 2003; Zhang, Zhang,

and Wu 2004]. To do so, one can extract relevant data from multiple data sets to amass a

single data set and apply existing data mining techniques (e.g., [Agrawal et al. 1992;

Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and

Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al.

1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and

Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996;

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer,

Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and

Livny 1996]) to the single data set [Liu, Lu, and Yao 1998; Ribeiro, Kaufman, and

Kerschberg 1995; Wrobel 1997; Yao and Liu 1997; Zhong, Yao, and Ohsuga 1999].

However, this approach is unable to distinguish the relationships supported by a

number of tuples in many data sets from those supported by many tuples in only a few data

4

sets. For example, a data mining algorithm may discover a rule stating that “if a customer is

married and middle-aged, then he/she gets a home mortgage.” This rule may be supported

by many tuples in the data sets in only one or two branches. The decisions made by the

head office based on this rule may therefore be good for these one or two branches; but they

may not be beneficial or may even be harmful to the company as a whole.

To discover the regularities in common in the branches’ data sets, we proposed to use a

meta-mining approach. Given the rule sets discovered in the data sets, it mines a set of

meta-rules from them. These meta-rules represent the regularities hidden in the rule sets,

which in turn reflect the regularities embedded in the data sets. Based on the meta-rules

discovered, the head office can better make global decisions that are beneficial to the whole

company.

Realistically, the meta-mining of regularities in rule sets is not limited to use in

international companies. Any public or private organization that maintains a collection of

data sets or a data set with implicit groupings in terms of geographical locations, time

periods, etc. can benefit from meta-mining. For example, meta-mining techniques can be

applied to the rule sets discovered from the data sets collected in different outlets operated

by a supermarket chain, different shops operated by an apparel retailer, or different post

offices or public libraries operated by a government.

Example 1.1 shows how meta-rules can represent the underlying regularities hidden in

rule sets and how an organization can use the discovered relationships to better make

decisions.

Example 1.1 Let us consider a supermarket chain, which operates five outlets, S1, …, S5,

at different geographical locations. Let us suppose that rule sets R1, …, R5 contain the

association rules1 discovered in the transaction data sets collected in outlets S1, …, S5,

respectively. The rule sets are given in the following:

R1: {i1, i2} ⇒ {i3}

 {i4} ⇒ {i1}

R2: {i1, i2} ⇒ {i3}

 {i2, i3, i5} ⇒ {i4}

1 An association rule is a production (if-then) rule associated with support and confidence as its

interestingness measures.

5

 {i2, i3} ⇒ {i4}

R3: {i2, i3, i5} ⇒ {i4}

R4: {i1, i2} ⇒ {i3}

 {i2, i3, i5} ⇒ {i4}

R5: {i1, i2} ⇒ {i3},

where i1, …, i5 are items.

Rule {i1, i2} ⇒ {i3} is found in four out of the five rule sets. This rule states that “if a

customer purchases items i1 and i2, then he/she also purchases i3.” It holds in all the outlets

except S3. A meta-rule discovered in the rule sets would be:

{i1, i2} ⇒ {i3}.

This meta-rule states that “in general, if a customer purchases i1 and i2, then he/she also

purchases i3.” The difference between the rule and the meta-rule is that the former

represents a relationship that holds in only an outlet and provides no information about

whether it holds in any other outlets, whereas the latter represents a relationship that holds in

the outlets in general. Based on this meta-rule, the supermarket chain may like to bundle i1

and i2 together in its outlets to increase the sales of i3. Although this decision would not

affect the revenue of outlet S3, it may significantly increase the revenue of the supermarket

chain as a whole.

Another meta-rule discovered in the rule sets would be:

{i2, i3} ⇒ {i4}.

It states that “in general, if a customer purchases i2 and i3, then he/she also purchases i4.”

This meta-rule is supported by the following rules in R2, R3, and R4:

R2: {i2, i3, i5} ⇒ {i4}

 {i2, i3} ⇒ {i4}

R3: {i2, i3, i5} ⇒ {i4}

6

R4: {i2, i3, i5} ⇒ {i4}.

Although rule {i2, i3} ⇒ {i4} is not found in any of the five rule sets, such a relationship can

be revealed by mining them for meta-rules.

1.1.2 Mining Differences in Rule Sets

Discovered meta-rules can also represent the differences in rules sets. A meta-rule is

differential if it is supported by only a few rule sets, representing a relationship that holds in

those few rule sets but not in the others. It therefore distinguishes these rule sets from the

others. In other words, the meta-rule represents one of the distinctive characteristics of

these rule sets and in turn reflects the distinctive characteristics of the corresponding data

sets.

For example, let us consider an apparel retailer operating a number of shops at different

geographical locations. To maintain its brand, the retailer has each shop supply a basic

range of apparel. The differential meta-rules are useful for the retailer as it allows the

retailer to identify the differences in the apparel sold in its shops while each shop, in

addition to providing the basic clothing range, caters to the preferences of its own customers.

Example 1.2 shows how meta-rules can represent the differences in rule sets and how

an organization can make use of the discovered relationships.

Example 1.2 Let us consider the supermarket chain given in Example 1.1. The following

differential meta-rule would be mined from the rule sets:

{i4} ⇒ {i1}.

It is supported by R1 only and represents a relationship that “in an exceptional manner, if a

customer purchases i4, then he/she also purchases i1.” This buying habit differentiates

between S1 and all the other outlets.

Based on this meta-rule, the supermarket chain may like to stop selling i4 except in

outlet S1, selling some other item in its place. The rationale for this decision would be that

the sales of i4 affect the sales of i1 in S1 but in no other outlet. This decision would not

reduce the revenues of S1, and would improve the revenues of all the other outlets, assuming

that the newly-offered items are more profitable than i4. The revenue of the whole

7

supermarket chain may therefore be improved.

1.1.3 Mining Changes in Rule Sets

The ability to detect and adapt to changes is critical to the success of many individuals and

business organizations as it allows decision makers to take the changes into consideration

and even take advantage of the changes when they make decisions. Knowing how

circumstances will change enables a business organization to not only provide new products

and services to satisfy the changing needs of its customers, but also to design corrective

actions to prevent or delay undesirable changes.

Existing data mining techniques (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and

Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Bradley,

Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 1996a; Ganti et al.

1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila,

Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu

1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996;

Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996]) aim at producing

accurate models of the real world in an efficient manner. They are very useful for human

users to better understand the problem domains and for prediction. However, regardless of

how accurately a model predicts, it can only predict based on historical data. An approach

to this data that does not take into account the information about change that is hidden in its

patterns is not optimal, especially when the discovered models are used for classification.

In this thesis, we also study the problem of mining changes in the context of production

rules. Given a rule associated with a sequence of interestingness measures (e.g., the

Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence [Agrawal,

Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared measure [Brin,

Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the adjusted

residual and weight of evidence [Chan and Wong 1990, 1991], etc.) in different time periods,

we propose to mine a set of meta-rules to represent the regularities governing how a rule

changes over time. The change in the rule, in turn, reflects the change in the underlying

characteristics hidden in the data. Human users can use the discovered meta-rules to

examine the rule and to predict how the rule will change.

Example 1.3 illustrates the problem of mining changes in rule sets, showing how meta-

rules can represent the changes in the discovered rules.

Example 1.3 Let us consider the association rules concerned with items i1, i2, i3, and i4

8

discovered in three consecutive time periods, t1, t2, and t3. Assume that the association rule

discovered in time period t1 is:

r: {i1, i2, i3} ⇒ {i4}

whose support and confidence in t1 are support1(r) = 37.8% and confidence1(r) = 95.0%,

respectively. This association rule states that “if a customer purchases i1, i2, and i3, then

he/she also purchases i4.” A support of 37.8% for this rule means that 37.8% of records in

the database being mined show that items i1, i2, i3, and i4 are purchased together, whereas a

confidence of 95.0% means that 95.0% of the customers who purchased items i1, i2, and i3

also bought i4.

In time period t2, the association rule becomes:

r': {i1, i2, i3} ⇒ {i4}

whose support and confidence in t2 are support2(r) = 34.9% and confidence2(r) = 94.8%,

respectively.

Then in time period t3, the association rule becomes:

r": {i1, i2, i3} ⇒ {i4}

whose support and confidence in t3 are support3(r) = 28.4% and confidence3(r) = 94.5%,

respectively.

The support of the association rule decreases in the period from t1 to t2 and in the

period from t2 to t3. A meta-rule of support mined from these rules would be:

Change in support in this period = Fairly decrease

 ⇒ Change in support in next period = Highly decrease.

This meta-rule of support states that “if the change in support in this period fairly decreases,

then the change in support in next period will decrease significantly.” The support of the

association rule in tj can then be predicted given the support of this rule in tj – 1 and that in

tj – 2.

On the other hand, the confidence of the association rule is more or less the same in the

9

period from t1 to t2 and in the period from t2 to t3. A meta-rule of confidence discovered in

these rules would be:

Change in confidence in this period = More or less the same

 ⇒ Change in confidence in next period = More or less the same.

It states that “if the change in confidence in this period is more or less the same, then the

change in confidence in next period will be more or less the same.” The confidence of the

association rule in tj can then be predicted given the confidence of this rule in tj – 1 and that in

tj – 2.

1.2 An Overview of the Proposed Approach
To mine meta-rules from rule sets effectively, a meta-mining approach should be able to 1)

generate fuzzy sets from data automatically; 2) use linguistic variables and linguistic terms

to represent the discovered regularities, differences, and changes; 3) exploit the scalability

of parallel computer systems to mine meta-rules efficiently; 4) group and select a subset of

attributes for meta-mining; and 5) enable the mining of meta-rules involving attributes that

are not originally contained in the database. This study proposes a meta-mining approach

composed of a collection of techniques that satisfy these requirements. These techniques

are applicable to both the mining of meta-rules from rule sets and the mining of rules from

data sets.

1.2.1 Fuzzy Partitioning

Many of the existing data mining algorithms (e.g., ID3 [Quinlan 1986], AQ15 [Michalski et

al. 1986], ITRule [Smyth and Goodman 1992], CN2 [Clark and Niblett 1989], and CBA

[Liu, Hsu, and Ma 1998]) can be applied only to discrete-valued data. To deal with

continuous or mixed continuous and discrete valued data, the domain of each continuous

attribute is typically discretized into a finite number of intervals [Ching, Wong, and Chan

1995; Chiu, Wong, and Cheung 1991; Dougherty, Kohavi, and Sahami 1995; Fayyad and

Irani 1993; Kerber 1992; Kurgan and Cios 2001; Liu and Setiono 1997; Liu, Wong, and

Wang 2004; Wong and Chiu 1987]. The discrete-valued and the discretized data can then

be handled in a uniform fashion and rules can be mined from them. Instead of using a

discretization algorithm to preprocess continuous data, some data mining algorithms use

built-in discretization mechanisms. For example, when a continuous attribute is

encountered in the data mining process, C4.5 [Quinlan 1993], CART [Breiman et al. 1984],

and the association rule mining algorithm proposed in [Srikant and Agrawal 1996] discretize

10

it into two or more intervals so that their criterion functions are optimized. Although they

do not require continuous attributes to be discretized in advance, they discretize the

attributes when they are mining rules.

However, if too many data lie on the boundaries of the intervals due to the ambiguous

or fuzzy nature of the attribute values near the boundary regions, discretization could result

in very different discoveries in the data that could be both misleading and meaningless.

Data mining algorithms therefore could not discover accurate models in the discretized data.

To better handle continuous data, the use of fuzzy sets for data mining has recently been

proposed in the literature [Mitra, Pal, and Mitra 2002]. This allows continuous data lying on

the interval boundaries to partially belong to multiple intervals. Its resilience to noise and

affinity with human knowledge representation make the use of fuzzy sets a key component

of many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 2003; Chan and Au

1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and Pedrycz 1999;

Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow 1998; Kacprzyk

and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999; Yager 1991]).

These systems typically require fuzzy sets to be predefined as input and they perform data

mining based on these fuzzy sets.

A fuzzy set is defined by a membership function, which maps objects in a domain of

concern to their membership values in the fuzzy set. It is associated with a linguistic term,

which allows human users both to easily express their knowledge and to comprehend the

expressed knowledge [Pedrycz and Gomide 1998; Yen and Langari 1999]. Since

membership functions can profoundly affect the performance of fuzzy models, the

determination of membership functions or fuzzy partitioning is an important problem in

fuzzy data mining. A membership function can be either determined by human experts or

generated directly from data. A weakness of having human experts provide input is that in

most situations it is difficult for them to express or formalize their knowledge and

experience [Buchanan et al. 1983; Johnson-Laird 1989]. It is for this reason that in this

study we propose a new method for constructing fuzzy partitions directly from data.

1.2.2 Meta-Rule Mining Algorithms

Based on the fuzzy sets generated, we propose to use linguistic variables and linguistic

terms to represent the underlying regularities, differences, and changes hidden in the rule

sets. The use of fuzzy set based techniques not only better handles the noise embedded in

the data, but because of the affinity of fuzzy sets with human knowledge representation also

enables human users to better comprehend the discovered meta-rules [Au and Chan 1998,

11

1999, 2001, 2003; Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al.

2003; Hirota and Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima

2001; Janikow 1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel,

and Last 1999; Yager 1991]. In this study, we propose two new algorithms for handling

fuzzy data and for mining meta-rules. These algorithms use linguistic variables and

linguistic terms to represent the discovered regularities, differences, and changes.

1.2.3 Parallel Meta-Rule Mining Algorithms

Data mining techniques may generate a surplus of patterns and, as a result, very large rule

sets [Frawley, Piatetsky-Shapiro, and Matheus 1991; Klemettinen et al. 1994; Matheus,

Piatetsky-Shapiro, and McNeill 1996; Piatetsky-Shapiro 1991; Silberschatz and Tuzhilin

1996]. To efficiently mine meta-rules from very large rule sets, we propose to exploit the

scalability of parallel computer systems. We enhance the proposed meta-mining algorithms

into distributed ones to take advantage of the scalability of parallel systems.

1.2.4 Attribute Clustering

Given a relational table, a conventional clustering algorithm groups tuples, each of which is

characterized by a set of attributes, into clusters based on similarity [Jain, Murty, and Flynn

1999]. Intuitively, tuples in a cluster are more similar to each other than those belonging to

different clusters. It has been shown that clustering is very useful in many data mining

applications (e.g., [Fayyad et al. 1996; Piatetsky-Shapiro and Frawley 1991]).

When applied to data sets such as gene expression data that are “wide” and “shallow,”

conventional clustering algorithms often encounter the problem that data sets usually

contain a huge number of attributes (genes) and a small number of tuples (gene expression

profiles). This often compromises the performance of conventional clustering algorithms.

Euclidean distance and Pearson’s correlation coefficient are widely used as the distance

measure for clustering [Jiang, Tang, and Zhang 2004]. However, when Euclidean distance

is applied to the measurement of the similarity between genes, it does not effectively reflect

functional similarities such as positive and negative correlations, interdependency or

closeness in values. In fact, Euclidean distance accounts only for the last. In other words,

the primary interest of the overall shapes of genes [Jiang, Tang, and Zhang 2004] is not well

accounted for. Pearson’s correlation coefficient has been proposed for dealing with this but

an empirical study [Heyer, Kruglyak, and Yooseph 1999] has shown that Pearson’s

correlation coefficient is not robust to outliers and may assign a high similarity score to a

pair of dissimilar genes.

12

Having so many attributes (genes) relative to so few tuples (samples) is also likely to

result in the discovery of irrelevant patterns (i.e., gene combinations which correlate with a

target variable purely by chance) [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. A

useful technique for dealing with this is to select a small number of the most promising

genes and use them solely to build models [Piatetsky-Shapiro, Khabaza, and Ramaswamy

2003]. To select genes, the t-value is widely used [Piatetsky-Shapiro, Khabaza, and

Ramaswamy 2003]. It is important to note that the t-value can only be used when the

samples are pre-classified. Without class information, it cannot be used for gene selection.

In this study, we present a methodology for grouping attributes that are interdependent

or correlated. We refer to such a process as attribute clustering. Attribute clustering is

based on the observation that attributes in a cluster are more correlated with each other than

are attributes in different clusters. Attribute clustering allows the reduction of the search

dimension of a data mining or meta-mining algorithm, facilitating the search for interesting

relationships or the construction of models in a tightly correlated subset of attributes and

obviating the need to search the entire attribute space. After attributes are clustered, one can

select a smaller number for further analysis.

1.2.5 Data Transformation

Data transformation is an essential step in KDD [Fayyad, Piatetsky-Shapiro, and Smyth

1996]. If performed effectively, it is able to reduce the effective number of variables under

consideration or to find invariant representations of the data [Fayyad, Piatetsky-Shapiro, and

Smyth 1996]. However, existing data mining techniques (e.g., [Agrawal et al. 1992;

Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and

Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al.

1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and

Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996;

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer,

Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and

Livny 1996]) do not provide any explicit methodology for data transformation.

Without using data transformation, it is not possible to find some useful and important

features that represent the data. It is also impossible to discover rules or meta-rules

involving attributes not originally contained in the database. For example, neither the rule

“if a subscriber’s average monthly payment is less than fifty dollars and he/she makes a

phone call during Christmas, then the phone call is over an hour in duration” nor the meta-

rule “in the past few years, if a subscriber’s average monthly payment is more than two

13

hundred dollars and he/she makes a phone call on Thanksgiving Day, then the phone call is

less than half an hour in duration” can be discovered because the database does not contain

explicitly the attribute values of “Christmas,” “Thanksgiving Day,” and “average monthly

payment.” These attributes are functions of the “date of call” and “monthly payment” and

are not stored in the original data. To mine rules and meta-rules of this kind, one must

calculate the charge of each phone call based on the start time, the end time, and the charge

per minute for that call period.

Without data transformation, useful and important features may not be utilized in data

mining and meta-mining tasks. As a result, interesting and meaningful rules (meta-rules)

may not be discovered even with the most effective data mining (meta-mining) algorithms.

In this study, to enable the mining of interesting and meaningful rules and meta-rules, we

propose a data transformation method. This method also enables data mining in the union

of relational and transaction data that existing techniques are not developed for [Au and

Chan 2003; Chan and Au 2001].

1.3 Organization of the Thesis
The rest of this thesis is organized as follows. In Chapter 2, we survey related work. In

Chapter 3, we present the problem definitions of mining meta-rules of regularities,

differences, and changes in rule sets. We also give an overview of our proposed meta-

mining approach. This approach is comprised of a collection of techniques, including a

fuzzy partitioning algorithm, serial and parallel algorithms for mining meta-rules, a data

transformation technique, and an attribute clustering method.

In Chapter 4, we propose a new approach to data transformation in databases. In

addition to enabling the discovery of rules involving attributes that are not originally

contained in the data, it also enables data mining in the union of relational and transaction

data. The proposed approach involves the use of transformation functions to transform the

original data. The application of transformation functions to the original data results in a set

of transformed data. Instead of mining the original data, we mine rules from the

transformed data. From the rule sets discovered in the transformed data, we can mine meta-

rules involving attributes not contained in the original data.

In Chapter 5, we introduce a new fuzzy partitioning method to determine the

membership functions of fuzzy sets directly from data. In other words, this method forms a

fuzzy partition of the input space automatically. The proposed method uses an information-

theoretic measure, which evaluates the interdependence between the class and an attribute,

14

as the objective function for fuzzy partitioning. It employs fractional programming

(iterative dynamic programming) to find the global optimum of the measure. Fuzzy

partitioning enables our proposed meta-rule mining algorithms and other fuzzy data mining

techniques to build fuzzy models or discover fuzzy rules based on the generated fuzzy sets

instead of relying on user-specified ones. To evaluate the effectiveness of the fuzzy

partitioning method, several real-world data sets were used in our experiments. The

experimental results show that this method is very effective when compared to other well-

known discretization and fuzzy partitioning approaches.

Chapter 6 defines the problem of attribute clustering and introduces a methodology for

solving it. Our proposed method groups interdependent attributes into clusters by

optimizing a criterion function derived from an information measure that reflects the

interdependence between attributes. By applying our algorithm to a data set, meaningful

clusters of attributes are discovered. The grouping of attributes based on attribute

interdependence within group helps to capture different aspects of association relationships

in each group. Significant attributes selected from each group then contain useful

information for classification and identification. To evaluate the performance of the

proposed approach, we applied it to two well-known gene expression data sets and

compared our results with those obtained by other methods. Our experiments show that the

proposed method is able to find the meaningful clusters of genes. By selecting a subset of

genes which have high multiple-interdependence with others within clusters, significant

classification information can be obtained. Thus a small pool of selected genes can be used

to build classifiers with very high classification rates. From the pool, gene expressions of

different categories can be identified.

In Chapter 7, we propose two new algorithms for mining meta-rules in rule sets. One

mines rules and meta-rules based on heuristics, whereas the other mines them using a

genetic algorithm. Both algorithms employ an objective interestingness measure to

distinguish interesting association relationships from uninteresting ones. They also utilize

linguistic variables and linguistic terms to represent the discovered relationships. To

evaluate their performance, we applied them to several real-world data sets. The

experimental results of the data mining tasks show that they can build very accurate models.

We then enhance these algorithms into distributed ones to exploit the scalability of

parallel systems in Chapter 8. The parallel algorithms divide a data set into several

horizontal partitions and assign them to different sites in a distributed system. Each site

scans its database partition to obtain the number of tuples characterized by different attribute

values and then exchanges the local counts with all the other sites to find the global counts.

15

Based on the global counts, the interestingness measures are computed and the sites are able

to uncover interesting association relationships. The parallel algorithms were implemented

in an experimental test bed. Their scalability was tested using a popular benchmarking data

set and the results show that they have very good size-up, speedup, and scale-up

performance.

In Chapter 9, we apply our proposed meta-mining approach to several synthetic and

real-world data sets for experimentation. The results show that useful and meaningful

regularities, differences, and changes can be discovered.

Finally, we conclude this study with a summary in Chapter 10.

16

Chapter 2

Related Work

In this chapter, we survey the related work in the literature. We first provide the state of the

art of existing data mining techniques in Section 2.1. We then give the work related to

meta-mining and the mining of regularities, differences, and changes in the subsequent

sections. We also discuss the pros and cons of different approaches in this same chapter.

2.1 Data Mining

2.1.1 Association Rule Mining

An example of an association rule is “90% of transactions that contain bread also contain

butter; 3% of all transactions contain both of these items.” The 90% is referred to as the

confidence and the 3%, the support, of the rule. More formally, an association rule is

defined as follows [Agrawal, Imielinski, and Swami 1993b].

Let I = {i1, …, im} be a set of binary attributes called items and T be a set of

transactions. Each transaction t ∈ T is represented as a binary vector with t[k] = 1 if t

contains item ik and t[k] = 0, otherwise, for k = 1, …, m. A set of items is known as an

itemset. The support of an itemset, X ⊂ I, is defined as the percentage of tuples containing X.

The itemset is frequent if its support is greater than or equal to the user-specified minimum

support. An association rule is defined as an implication of the form X ⇒ Y where X ⊂ I,

Y ⊂ I, and X ∩ Y = ∅. The rule X ⇒ Y holds in T with support defined as the percentage of

tuples containing X and Y and confidence defined as the percentage of tuples containing Y

given that they also contain X. An association rule is interesting if its support and

confidence are greater than or equal to the user-supplied minimum support and minimum

confidence, respectively. Since they are defined over binary data, association rules of such

type are often referred to as Boolean association rules.

Algorithms for mining Boolean association rules first find all frequent itemsets in a

database and then generate association rules from these frequent itemsets. Since the former

step consumes most of the computational resources, current research focuses mainly on the

speeding up of the process of discovering frequent itemsets (e.g., [Agrawal, Imielinski, and

Swami 1993b; Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen,

and Verkamo 1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]).

17

Apriori [Agrawal and Srikant 1994] is a well-known algorithm for mining Boolean

association rules. At each iteration, it generates a set of candidate itemsets from the

frequent itemsets found at the previous iteration. It then scans all the transactions to obtain

the support counts of the candidate itemsets. Subsequently, Apriori finds all the frequent

itemsets for that iteration and proceeds to the next iteration. To improve the computational

efficiency of the algorithm, different techniques have been proposed. For example, DHP

[Park, Chen, and Yu 1995a] extends Apriori by using a hashing technique to prune away

some candidate itemsets at the second iteration.

Instead of scanning through a large database multiple times, another algorithm known

as Partition [Savasere, Omiecinski, and Navathe 1995] accomplishes the mining of frequent

itemsets in only two scans of the database. Partition starts the data mining process by

dividing the database into a number of non-overlapping partitions. In the first database scan,

each partition is scanned to find all frequent itemsets in that partition. The frequent itemsets

are then merged to generate all candidate itemsets. In the second database scan, it counts

the actual support of these itemsets and identifies the frequent itemsets.

Unlike these techniques, a method called FP-growth [Han, Pei, and Yin 2000] has been

proposed to mine frequent itemsets without candidate generation. It first compresses the

database into a FP-tree, but retains the itemset association information at the same time. It

then divides the FP-tree into a set of conditional databases, each of which is associated with

one frequent item, and it mines each such database separately. The FP-growth method

transforms the problem of finding long frequent itemsets to looking for shorter ones

recursively and then concatenating the suffix [Han, Pei, and Yin 2000]. It has been shown

in [Han, Pei, and Yin 2000] that this method is about an order of magnitude faster than

Apriori. Although both FP-growth and Partition accomplish the mining of frequent itemsets

in a small number of database scans (one in FP-growth and at most two in Partition), FP-

growth does not generate any candidate itemsets in the data mining process.

Techniques for mining Boolean association rules have recently been extended to take

is-a hierarchies (i.e., taxonomies) into consideration. An example of a three-level is-a

hierarchy is “professor is-a faculty member is-a staff.” Association rules involving is-a

hierarchies are known as multiple-level association rules [Han and Fu 1995] or generalized

association rules [Srikant and Agrawal 1995]. In this thesis, we use the term generalized

association rules to refer to both of their work. The mining of these rules involves mining a

database of transactions consisting of sets of items, each of which is defined at some level in

a hierarchy. In other words, the antecedent and the consequent of a generalized association

rule can be some set of items and/or their ancestors in the corresponding hierarchies. Like

18

Boolean association rules, generalized association rules are also defined over binary data.

They are therefore rather restrictive in their applications in many different areas. It is for

this reason that a lot of recent efforts have been put into the mining of quantitative

association rules [Srikant and Agrawal 1996].

Quantitative association rules are defined over quantitative (continuous) and

categorical (discrete) attributes [Srikant and Agrawal 1996]. The statement “70% of tertiary

educated people between age 25 and 30 are unmarried” is one such example. To handle

quantitative attributes, the domains of these attributes are discretized into intervals. The

discretization can be performed as a part of the algorithms (e.g., [Srikant and Agrawal 1996])

or as a preprocessing step before data mining (e.g., [Liu, Hsu, and Ma 1998]). Both

categorical and quantitative attributes can be handled in a uniform fashion as a set of

<attribute, integer value> pairs by mapping the values of categorical attributes to a set of

consecutive integers and by mapping the discretized intervals of quantitative attributes to

consecutive integers, which preserve the order of the intervals [Srikant and Agrawal 1996].

Instead of having just one field for each attribute, there is a need to use as many fields as the

number of different attribute values. For example, the value of a Boolean field

corresponding to <attribute1, value1> would be “1” if attribute1 has value1 in the original

record and “0,” otherwise [Srikant and Agrawal 1996]. After the mappings, the algorithms

for mining Boolean association rules (e.g., [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo

1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]) can be applied

to the encoded data.

Recently, the problem of mining association rules has further been extended in [Lu,

Han, and Feng 1998] for the mining of n-dimensional inter-transaction association rules.

An n-dimensional inter-transaction association rule is concerned with the association among

items from different transaction records, each of which is characterized by n dimensional

attributes (e.g., time, location, etc.). Two algorithms, E-Apriori and EH-Apriori, which are

extensions of Apriori, have been proposed in [Lu, Han, and Feng 1998] to deal with the

huge search space.

For association rule mining algorithms such as those described in [Agrawal, Imielinski,

and Swami 1993b; Agrawal and Srikant 1994; Han and Fu 1995; Lu, Han, and Feng 1998;

Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and Yu

1995a; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1996] to determine if

a Boolean, generalized, quantitative, or n-dimensional inter-transaction association rule is

interesting, its support and confidence have to be greater than or equal to the user-supplied

19

thresholds (i.e., minimum support and minimum confidence). A weakness of such approach

is that many users do not have any idea what the thresholds should be. If they are set too

high, a user may miss some useful rules; but if they are set too low, the user may be

overwhelmed by many irrelevant ones [Han and Kamber 2001; Hand, Mannila, and Smyth

2001].

To ease the burden of having a user determine minimum support, an automatic

mechanism is employed in WEKA [Witten and Frank 2005]. It sets the upper bound and

the lower bound for minimum support to 1.0 and 0.1, respectively. Apriori in WEKA starts

with the upper bound and incrementally decreases minimum support in a pre-defined step,

which is 0.05 by default. It stops when a user-specified number of rules are generated or the

lower bound is reached.

2.1.1.1 Parallel Algorithms for Mining Association Rules

Serial algorithms for mining association rules (e.g., [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo

1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]) have been

extended to take advantage of the scalability of parallel systems to handle very large

databases.

For mining association rules, three algorithms, namely, Count Distribution, Data

Distribution, and Candidate Distribution, which adopt Apriori in a distributed-memory

architecture, have been proposed in [Agrawal and Shafer 1996]. These algorithms divide a

database into several horizontal partitions and assign them to different processors. In the

case of Count Distribution, every processor runs Apriori over its database partition with a

modification that it exchanges the local support counts of candidate itemsets in its database

partition with all the other processors to find the global support counts in the whole

database and then identifies frequent itemsets based on the global support counts at each

iteration.

Data Distribution partitions candidate itemsets and assigns them to different processors

in a round-robin fashion. At each iteration, every processor broadcasts its database partition

to all the other processors to find the global support counts of its candidate itemsets.

Candidate Distribution starts the data mining process by employing Count Distribution or

Data Distribution. At certain iteration, it divides the candidate itemsets into several disjoint

subsets and assigns different subsets to different processors. At the same time, the database

is repartitioned in such a way that each processor can find the (global) support counts of its

candidate itemsets in its database partition independent of other processors. To achieve this,

20

parts of the database may have to be replicated on several processors. Each processor can

then generate candidate itemsets and count the supports of these candidate itemsets

independently at subsequent iterations.

The experimental results presented in [Agrawal and Shafer 1996] show that the

performance of Count Distribution is superior to Data Distribution and Candidate

Distribution. The broadcasting of database partitions involves high communication

overhead. Furthermore, having each processor to scan the entire database at each iteration

makes Data Distribution perform relatively poorly when compared to Count Distribution.

Candidate Distribution also performs less satisfactorily than Count Distribution because of

the overhead of repartitioning the database and replicating parts of the database, which may

be large, on several processors.

In addition to these three algorithms, a number of parallel algorithms based on Apriori

have also been described in the literature (e.g., [Cheung et al. 1996a; Han, Karypis, and

Kumar 1997; Park, Chen, and Yu 1995; Shintani and Kitsuregawa 1996]). They use

different optimization techniques to improve the performance. For example, Intelligent

Data Distribution [Han, Karypis, and Kumar 1997] improves the performance of Data

Distribution by employing a ring-based all-to-all broadcast to exchange database tuples,

switching to Count Distribution when the total number of candidate itemsets falls below a

threshold, and dividing candidate itemsets using a prefix-based partitioning. Hybrid

Distribution [Han, Karypis, and Kumar 1997] further improves the performance of

Intelligent Data Distribution by combining it with Count Distribution. It splits a system of

multiple processors into several equal-sized groups, where each group is considered as a

hypothetical processor. Hybrid Distribution applies Count Distribution to the database

among the hypothetical processors, whereas it uses Intelligent Data Distribution among the

processors within each group. At each iteration, Hybrid Distribution also dynamically

adjusts the number of hypothetical processors.

Furthermore, FDM [Cheung et al. 1996a] extends Count Distribution by adopting a

new approach to reduce the number of candidate itemsets for counting. Since every

globally frequent itemset must be locally frequent at some site, each site only considers the

candidate itemsets generated from the globally and locally frequent itemsets at that site. It

then scans through its database partition to find the local support counts of these candidate

itemsets. Three optimization methods have been presented in [Cheung et al. 1996a]. The

local pruning method has each site to remove any itemset that is not locally frequent; the

global pruning method is to find the upper bounds of the supports of itemsets and remove

those itemsets whose upper bounds are less than the minimum support; and the count

21

polling method lets each polling site request the local support counts of the itemsets

assigned to it from all the other sites, calculate the global support counts, and broadcast the

globally and locally frequent itemsets with their support counts to all the other sites.

Similar to the serial association rule mining algorithms, these parallel algorithms

identify interesting association rules based on the user-specified thresholds (i.e., minimum

support and minimum confidence). They may not find some interesting rules if the

thresholds are set too high, whereas they may find irrelevant ones if the thresholds are set

too low [Han and Kamber 2001; Hand, Mannila, and Smyth 2001].

2.1.2 Classification

The classification problem typically involves finding a classification model or a classifier to

classify a set of records into different predefined classes. To do so, the class attribute – the

attribute in a database in which records should be classified according to – is first identified

by domain experts. A set of records, called the training set, is then used to construct a

classifier. Using the classifier, a record that is not originally in the training set can be

classified based on its attribute values. The classification problem has been studied

extensively by researchers in the machine learning community and various techniques have

been proposed to solve it [Michie, Spiegelhalter, and Taylor 1994]. Among the many

solution techniques, the decision-tree based approaches are the most popularly adopted

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a; Mehta, Agrawal, and

Rissanen 1996; Shafer, Agrawal, and Mehta 1996].

Most of the decision-tree based algorithms (e.g., IC [Agrawal et al. 1992], CDP

[Agrawal, Imielinski, and Swami 1993a], CART [Breiman et al. 1984], SLIQ [Mehta,

Agrawal, and Rissanen 1996], C4.5 [Quinlan 1993], Serial SPRINT [Shafer, Agrawal, and

Mehta 1996], etc.) are composed of two phases: the tree-building phase and the tree-pruning

phase. In the tree-building phase, a decision tree is constructed by recursively partitioning

the training set. This process continues until all or the majority of the records in each

partition belong to a single class. At the end of this process, a decision tree is constructed.

Each non-leaf node in the resulting decision tree carries out a test on an attribute so as to

determine how the training set should be partitioned. Since the decision tree may contain

branches that are created due to noises in the data set, these branches have to be deleted.

The tree-pruning phase therefore consists of, for example, selecting and removing the

subtree with the least estimated error rate. Tree pruning has been shown to increase the

classification accuracy of a decision tree on one hand and reduce the complexity of the tree

on the other.

22

Decision-tree based approaches (e.g., IC, CDP, CART, ID3 [Quinlan 1986], and C4.5)

originally require the entire database to fit in the real memory of a computer and hence they

cannot handle large databases. Some recent efforts have been put into improving the

scalability of decision-tree based algorithms by handling disk-resident data that are too large

to fit in memory (e.g., SLIQ and Serial SPRINT).

SLIQ creates a set of attribute lists and a class list. An attribute list, in which an entry

consists of an attribute value and a record identifier, is created for each attribute. The

attribute lists for continuous attributes are sorted by attribute values when they are created.

In the class list, each entry contains a class label, a record identifier, and a pointer to a node

in the decision tree that indicates to which node the corresponding training record currently

belongs. When a decision-tree node is split to create new children and a training record is

assigned to one of the children, the reassignment is done simply by changing the pointer

field of the corresponding entry in the class list. Only a portion of an attribute list is

required to fit in real memory when a node is being split. However, the class list has to fit in

real memory all the time or else the performance will be degraded severely because the class

list is randomly assessed and frequently updated. Since the size of the class list grows in

direct proportion to the size of the training set, this limits the size of the database that SLIQ

can handle.

Serial SPRINT overcomes this problem by using different data structure. It maintains

an attribute list for each attribute, in which an entry consists of an attribute value, a class

label, and a record identifier. The attribute lists for continuous attributes are sorted by

attribute values when they are created. The initial lists are associated with the root of the

decision tree at first. Nodes are then split to create new children. The attribute lists

belonging to each node are therefore partitioned and the partitioned attribute lists are

associated with the children. The order of the entries in a list is preserved when it is

partitioned so that the lists for continuous attributes are sorted once only. In order to split

the attribute lists according to the splitting decision, Serial SPRINT creates a hash table that

keeps a mapping between a record identifier and the node with which the record is

associated based on the splitting decision. The elimination of the use of the class list makes

Serial SPRINT can handle very large databases.

In the process of constructing decision trees, all arcs labeled by the values of selected

attributes have to be expanded. This may introduce irrelevant variables and make resulting

paths longer than what are actually needed. Furthermore, the construction of decision trees

usually involves binarizing continuous attributes into two intervals so that the records with

some attribute values greater than some threshold belong to one branch, whereas those

23

records with the attribute values less than or equal to that threshold belong to the other

branch (e.g., [Agrawal, Imielinski, and Swami 1993a; Breiman et al. 1984; Mehta, Agrawal,

and Rissanen 1996; Quinlan 1993; Shafer, Agrawal, and Mehta 1996]). Such binarization

on continuous attributes may result in multiple tests on the same attribute and hence a

substantial increase in the complexity of the resulting decision trees. The decision-tree

based algorithms are also sensitive to the small differences in training data. For example, a

very different decision tree can be constructed when some records appear more than once in

the training set.

In addition to the abovementioned problems, when decision-tree based algorithms are

extended to determine the probabilities associated with such classifications (see, e.g.,

[Quinlan 1987b]), it is possible that some leaves in a decision tree have similar class

probabilities.

2.1.2.1 Parallel Algorithms for Classification

To build decision trees in very large databases, some recent efforts have been put into

exploiting the scalability of parallel systems (e.g., [Joshi, Karypis, and Kumar 1998; Shafer,

Agrawal, and Mehta 1996; Srivastava et al. 1998; Zaki, Ho, and Agrawal 1999]).

Parallel SPRINT [Shafer, Agrawal, and Mehta 1996] extends Serial SPRINT by

distributing the attribute lists evenly among all the processors and finding the split point for

a node in the decision tree in parallel. To split the attribute lists according to the splitting

decision, the hash table is required on all the processors to keep a mapping between a record

identifier and the node with which it is associated based on the splitting decision. In order

to construct this hash table, each processor requires O(N) memory to store the hash table and

O(N) communication overhead for all-to-all broadcast, where N is the number of records in

the data [Kumar et al. 1994]. This makes Parallel SPRINT to be unscalable with respect to

runtime and memory requirements [Joshi, Karypis, and Kumar 1998]. To overcome this

shortage, ScalParC [Joshi, Karypis, and Kumar 1998] employs a distributed hash table,

which is split among all the processors, and uses an efficient personalized communication to

update the hash table.

Parallel classification algorithms such as Parallel SPRINT and ScalParC are originally

developed for the distributed-memory architecture. Recently, techniques proposed in [Zaki,

Ho, and Agrawal 1999] extend Parallel SPRINT to work on the shared-memory architecture.

Furthermore, two basic parallel formulations for the construction of decision trees (i.e.,

the synchronous and partitioned tree construction approaches) have been proposed in

24

[Srivastava et al. 1998]. In the synchronous tree construction approach, all processors

construct a decision tree synchronously by sending and receiving class distribution

information of local data. It incurs a high communication overhead as the number of nodes

in the decision tree gets larger and larger in the tree-building phase. On the other hand, in

the partitioned tree construction approach, different processors work on different parts of the

decision tree. It incurs the cost of load balancing when each node is split. To combine the

strengths and eliminate the weaknesses of these approaches, a hybrid scheme is given in

[Srivastava et al. 1998] that keeps continuing with the synchronous tree construction

approach as long as the communication cost incurred is not too high. Once this cost

becomes too high, the hybrid scheme switches to the partitioned tree construction approach.

The experimental results in [Srivastava et al. 1998] show that the hybrid scheme

outperforms the partitioned tree construction approach, which in turn outperforms the

synchronous tree construction approach.

These parallel algorithms focus mainly on the speedup of the construction of decision

trees. They suffer from the same problems experienced by their serial counterparts, that is,

the potentially high complexity of resulting decision trees because of the binarization of

continuous attributes and the high sensitivity to the small differences in data sets.

2.1.3 Discretization and Fuzzy Partitioning

Regardless of a data mining algorithm is developed for association rule mining or

classification, it typically requires the domains of continuous attributes to be discretized into

a finite number of intervals [Breiman et al. 1984; Clark and Niblett 1989; Liu, Hsu, and Ma

1998; Michalski et al. 1986; Quinlan 1986, 1993; Smyth and Goodman 1992; Srikant and

Agrawal 1996].

Discretization techniques can be classified into two categories: unsupervised and

supervised. Unsupervised methods simply apply a prescribed scheme to discretize the

continuous values without making use of the attribute-class information, whereas supervised

methods take into consideration the attribute-class information.

The representatives of unsupervised discretization methods are equal-width and equal-

frequency [Chiu, Wong, and Cheung 1991]. The equal-width discretization merely divides

the range of observed values for a continuous attribute into k equal-sized intervals, where k

is a user-specified parameter. Given m records, the equal-frequency discretization divides

the range of values for a continuous attribute into k intervals, where each interval contains

m / k attribute values. A typical problem of unsupervised methods is that it is difficult to

determine how many intervals are the best for a given attribute.

25

Theoretically, directed by class information, supervised discretization methods can

automatically determine the best number of intervals for each given continuous attribute for

classification. Examples of supervised methods are maximum entropy [Wong and Chiu

1987], CADD [Ching, Wong, and Chan 1995], information entropy maximization [Fayyad

and Irani 1993], Paterson-Niblett [Paterson and Niblett 1982] (which is built into C4.5),

ChiMerge [Kerber 1992], Chi2 [Liu and Setiono 1997], and CAIM [Kurgan and Cios 2001].

These supervised methods usually rely on heuristics to attain the local optimum of their

objective functions that measure the class and attribute dependence. For example, CADD

discretizes data by heuristically maximizing the interdependence between the class and the

continuous attribute [Ching, Wong, and Chan 1995]. CAIM differs from CADD by using a

different objective function to capture the dependency relationship between the class and the

continuous attribute while keeping the number of intervals as minimal as possible [Kurgan

and Cios 2001]. The use of heuristics makes supervised methods cannot always find the

global optimum of the objective functions.

An alternative to discretization is fuzzy partitioning. Fuzzy partitioning techniques

generate fuzzy sets to represent the domains of continuous attributes. They can be classified

into three categories: 1) grid partitioning, 2) tree partitioning, and 3) scatter partitioning

[Yen and Langari 1999]. The grid partitioning forms a partition by dividing the input space

into several fuzzy slices, each of which is specified by a membership function for each

feature dimension. The tree partitioning constructs a partition by applying a series of

guillotine cuts such that each is a cut that is made across the subspace to be partitioned and

each of the regions so produced can be subject to further independent guillotine cutting.

The scatter partitioning finds a subset of the input space that characterizes the fuzzy regions

of possible occurrence of records in the data set instead of covering the whole input space

[Yen and Langari 1999]. Of the different fuzzy partitioning methods, the grid partitioning is

the most commonly used in practice, particularly in system control applications [Yen and

Langari 1999].

A grid partition can be uniform, if formed by uniformly symmetric membership

functions, or non-uniform, if formed by non-uniformly spaced asymmetric membership

functions. Although a uniform grid partition is easier to construct, a non-uniform partition

is more flexible in adapting to the specific nonlinear characteristics of the function being

approximated [Yen and Langari 1999]. In addition to having human experts to form a grid

partition, learning techniques can also be used to construct the partition. Typical learning

methods used for such purpose include fuzzy clustering (e.g., [Bezdek 1981; Fajfer and

Janikow 2000; Janikow and Fajfer 1999; Liao, Celmins, and Hammell II 2003]), neural

26

networks (e.g., [Jang 1993; Kohonen 2001]), and genetic algorithms (e.g. [Arslan and Kaya

2001; Karr 1991]).

Fuzzy clustering algorithms aim at finding soft partitions of data sets based on certain

criteria. A datum in a data set can partially belong to multiple soft partitions (clusters). It is

important to note that a soft partition is not necessarily a fuzzy partition because the input

space can be larger than the data set. However, most fuzzy clustering algorithms, including

the fuzzy c-means (FCM) algorithm [Bezdek 1981], generate a soft partition that also forms

a fuzzy partition [Pedrycz and Gomide 1998; Yen and Langari 1999]. Fuzzy clustering

algorithms can therefore be used for fuzzy partitioning.

To form a fuzzy partition, we can construct a neural network that takes variables of a

fuzzy model as inputs and generates the degrees with which the input data belong to a

predetermined number of fuzzy regions. If supervised training algorithms for neural

networks (e.g., backpropagation [Rumelhart, Hinton, and Williams 1986; Werbos 1974])

are used, one needs to have a set of training data, which can be obtained either by asking

domain experts to assign membership degrees to a sample set of input data or by clustering a

sample set of input data using a clustering algorithm (e.g., the FCM algorithm) [Yen and

Langari 1999]. Consequently, the fuzzy partitions so produced should be more or less the

same as those obtained by fuzzy clustering. This limits the merits of using neural networks

to find fuzzy partitions. Instead of using supervised training algorithms for neural networks,

one can employ unsupervised training algorithms (e.g., Kohonen’s self-organizing maps

(SOM) [Kohonen 2001]) for fuzzy partitioning. A SOM is composed of an input layer of

units, a one- or two-dimensional output grid of processing units, and a set of connections

linking the input units to the output units. To cluster the input data, one simply feeds each

record into a SOM, while each output unit of the SOM competes with all of the others to

“win” the record, and the training algorithm updates the weights of the connections to the

winning unit along with those nearby units to better match the record. Unlike supervised

algorithms, it does not require the assignment of any membership degree to the input record

in the training. After training, the SOM usually ends up with a few units that summarize

many observations (strong units) and several units that do not really correspond to any of

the observations (weak units). The strong units represent the prototypes of the clusters

formed. These clusters form the fuzzy partition.

Since fuzzy partitioning can be formulated as an optimization problem of finding the

parameters of fuzzy sets composing a fuzzy partition that optimizes the resultant fuzzy

model based on certain evaluation criteria, genetic algorithms (GAs) can be applied to

construct fuzzy partitions. Given an attribute, let us assume that a predetermined number of

27

fuzzy sets are used to characterize it. To form a fuzzy partition, the parameters of the fuzzy

sets are encoded in a fixed-length chromosome. As a result, each chromosome represents a

fuzzy partition and it is evaluated by an appropriate fitness function (e.g., classification

accuracy if the resultant model is for classification or the difference between the actual and

the expected output if the resultant fuzzy model is for control applications, etc.). The GA

starts from generating a population of chromosomes in a random manner. It then evaluates

the fitness of the chromosomes by the fitness function. Based on their fitness, chromosomes

are selected and a new population of chromosomes is generated by crossover and mutation.

These steps repeat until some termination criteria are satisfied. The interested readers are

referred to [Goldberg 1989] for the details.

The abovementioned fuzzy partitioning techniques are unsupervised because they do

not take into account the interdependence between the class and the attribute.

Recently, the fuzzy interpretation of discretized intervals has been proposed in [Wu

1999]. It represents one of the first attempts, if not the first, on discretizing attributes with

fuzzy border. Given a user-specified spread parameter, the linear, polynomial, and arctan

membership functions are proposed to fuzzify the borders of an interval. When a value is

covered by more than one fuzzy interval, the match degree is given by either the maximum

of the membership degrees of the value in all the intervals or the fuzzy plus of all the

membership degrees. The three membership functions do not show any significant

difference in the experiments so that the polynomial function is chosen as the default [Wu

1999]. The experimental results in [Wu 1999] show that HCV [Wu 1995] exhibits better

performance when it is equipped with fuzzy interpretation as compared to not equipping

with fuzzy interpretation.

2.1.4 Fuzzy Sets in Data Mining

Regardless of how the values of continuous attributes are discretized, the intervals may not

be concise and meaningful enough for human users to easily obtain non-trivial knowledge

from the discovered relationships. To better handle continuous data, the use of fuzzy sets

for data mining has recently been proposed in the literature [Mitra, Pal, and Mitra 2002].

The resilience to noises and the affinity with the human knowledge representation make

fuzzy sets to be used in many data mining systems (e.g., [Au and Chan 1998, 1999, 2001,

2003; Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and

Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow

1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999;

Yager 1991]).

28

Linguistic summaries introduced in [Yager 1991] express knowledge using a linguistic

representation that is natural for human users to comprehend. An example of a linguistic

summary is the statement “about half of the people in the database are middle-aged.”

However, no algorithm was proposed for generating linguistic summaries in [Yager 1991].

Recently, the use of an algorithm for mining association rules for the purpose of linguistic

summaries has been studied in [Kacprzyk and Zadrozny 2001]. This technique extends

AprioriTid [Agrawal and Srikant 1994], a well-known algorithm for mining association

rules, to handle linguistic terms (fuzzy values). An attribute is replaced by a set of artificial

attributes (items) so that a tuple supports a specific item to a certain degree, which is in the

range from 0 to 1. Given two user-specified thresholds, threshold1 and threshold2, an item

or an itemset (i.e., a combination of items) is considered interesting if its fuzzy support is

greater than threshold1 and it is also less than threshold2. Although this technique is very

useful, many users may not be able to set the thresholds appropriately.

In addition to linguistic summaries, an interactive process for the discovery of top-

down summaries, which utilizes fuzzy is-a hierarchies as domain knowledge, has been

described in [Lee and Kim 1997]. This technique aims at discovering a set of generalized

tuples, such as <technical writer, documentation>. In contrast to association rules, which

involve the implications between different attributes, linguistic summaries and generalized

tuples only provide the summarization on different attributes. The idea of implication has

not been taken into consideration and hence these techniques are not developed for the task

of rule discovery.

Furthermore, the applicability of fuzzy modeling techniques to data mining has been

discussed in [Hirota and Pedrycz 1999]. Given a relational table, X, and a context variable,

A, the context-sensitive fuzzy clustering method reveals the structure in X in the context of A.

Since this method can only manipulate continuous attributes, the values of any discrete

attributes are first encoded into numeric values. The context-sensitive fuzzy clustering

method is then applied to the encoded data to induce clusters in the context of A. Although

the encoding technique allows this method to deal with discrete attributes, the distances

between the encoded numeric values, which do not possess any meaning in the original

discrete attributes, are used to induce the clusters. Therefore, the associations that are

concerned with these attributes, which are discovered by the context-sensitive fuzzy

clustering method, may be misleading.

2.1.5 Data Mining Based on Genetic Algorithms

Other than the use of decision-tree based algorithms, techniques based on genetic algorithms

29

(GAs) have also been proposed for predictive modeling. There are currently two different

GA-based approaches for rule discovery: the Michigan approach and the Pittsburgh

approach. The Michigan approach, exemplified by Holland’s classifier system [Holland

1986], represents a rule set by the entire population, whereas the Pittsburgh approach,

exemplified by Smith’s LS-1 system [Smith 1983], represents a rule set by an individual

chromosome. Although the Michigan approach is able to deal with multi-class problems,

one of the major difficulties in using it is the problem in credit assignment, which gives the

activated classifiers a reward if the classification they produced is correct and gives them a

punishment, otherwise. Specifically, it is extremely hard to come up with a good credit

assignment scheme that works.

The algorithms based on the Pittsburgh approach (e.g., [DeJong, Spears, and Gordon

1993; Janikow 1993; Smith 1983]) represent an entire rule set as a chromosome, maintain a

population of candidate rule sets, and use selection and genetic operators to produce new

generation of chromosomes and, hence, new rule sets. Each chromosome competes with

one another in terms of classification accuracy on the application domain. Individuals are

selected for reproduction using roulette wheel selection and a whole new population is

generated based on crossover and mutation. The selected chromosomes produce offspring

using an extended version of the standard two-point crossover operator such that the

crossover points can occur either both on rule boundaries or within rules [DeJong, Spears,

and Gordon 1993; Smith 1983]. That is, if one parent is being cut on a rule boundary, then

the other parent must be cut on a rule boundary as well; similarly, if one parent is being cut

at a point, say, 5 bits to the right of a rule boundary, then the other parent must be cut in a

similar spot [DeJong, Spears, and Gordon 1993; Smith 1983]. The mutation operator is

identical to the classical one, which performs bit-level mutations. The fitness of each

individual rule set is computed by testing the rule set on the current set of training examples

[DeJong, Spears, and Gordon 1993; Smith 1983].

The Pittsburgh approach is originally designed for single-class learning problems and

hence only the antecedent of a rule is encoded into an allele of a chromosome [DeJong,

Spears, and Gordon 1993; Janikow 1993; Smith 1983]. An instance that matches one or

more rules is classified as a positive example of the concept (class) and an instance that fails

to match any rule is classified as a negative example [DeJong, Spears, and Gordon 1993;

Janikow 1993; Smith 1983]. To tackle multi-class problems, they could be extended by

introducing multiple populations so that a specific population is dedicated to learn each

concept. It is possible that an instance is matched by more than one rule of different

concepts on one hand and it is also possible that an instance is matched by none of any rule

30

of any concept on the other. Unfortunately, this problem has not been addressed in many of

the systems based on the Pittsburgh approach (e.g., [DeJong, Spears, and Gordon 1993;

Janikow 1993; Smith 1983]).

Recently, the use of GAs for rule discovery in the application of data mining has been

studied in [Choenni 2000; Fidelis, Lopes, and Freitas 2000; Freitas 2002; Kwedlo and

Kretowski 1998]. These algorithms are based on the Michigan approach in such a way that

each rule is encoded in a chromosome and the rule set is represented by the entire

population. Unlike classifier systems (e.g., [Greene and Smith 1994; Holland 1986;

McAulay and Oh 1994]), they 1) have modified the individual encoding method to use non-

binary representation; 2) do not encode the consequents of rules into the individuals; 3) use

extended version of crossover and mutation operators suitable to their representations; 4) do

not allow rules to be invoked as a result of the invocation of other rules; and 5) define

fitness functions in terms of some measures of classification performance (e.g., cover

[Choenni 2000], sensitivity and specificity [Fidelis, Lopes, and Freitas 2000], etc.).

It is important to note that these algorithms [Choenni 2000; Fidelis, Lopes, and Freitas

2000; Freitas 2002] are developed to discover rules for a single class only. When they are

used to deal with multi-class problems, the GAs are run once for each class. Specifically,

they would search rules predicting the first class in the first run; they would search rules

predicting the second class in the second run and so on. Similar to the Pittsburgh approach,

it is possible that an instance is matched by more than one rule predicting different classes

on one hand and it is also possible that an instance is matched by none of any rule predicting

any class on the other. This problem has not been addressed by these algorithms.

Although GA-based rule discovery approaches can produce accurate predictive models,

they cannot determine the likelihood associated with their predictions. This prevents these

techniques from being applicable to the task of predicting churn, which requires the ranking

of subscribers according to their likelihood to churn (see, e.g., [Au, Chan, and Yao 2003;

Mozer et al. 2000]).

2.1.5.1 Parallel Genetic Algorithms

There are two main types of parallel GAs: single-population (e.g., [Abramson and Abela

1992; Bethke 1976; Fogarty and Huang 1991; Hauser and Manner 1993]) and multiple-

population (e.g., [Grefenstette 1981; Grosso 1985; Tanese 1987]). A single-population

parallel GA uses a single population of chromosomes and can be implemented on shared-

memory and distributed-memory computers.

31

On a shared-memory computer, the population is stored in the shared memory and each

processor evaluates the fitness of the chromosomes assigned to it and writes the fitness

values back. One of the processors (the master processor) is responsible for applying the

genetic operators (i.e., selection, crossover, and mutation) to produce the next generation.

On a distributed-memory computer, the population is stored in one processor (the

master processor) and this processor sends the chromosomes to the other processors (the

slave processors) for evaluation, collects the fitness values from the slave processors, and

executes the genetic operators to produce the next generation. Communication occurs only

when the slave processors receive their subsets of chromosomes for evaluation and when

they return the fitness values.

A multiple-population parallel GA, which uses multiple populations of chromosomes,

is a simple extension of the serial GA. It consists of multiple serial GAs, runs each of them

on a processor of a parallel computer, and exchanges some individuals at certain

predetermined times. The exchange (migration) of individuals from one population to

another population is controlled by several parameters: the topology that defines the

connection of the multiple populations, the number of individuals that are exchanged (the

migration rate), and the frequency of migrations [Cantu-Paz 1998].

It is important to note that the performance of multiple-population parallel GAs that

communicate every generation using a fully connected topology and the maximal migration

rate closely resembles the performance of single-population parallel GAs [Cantu-Paz and

Goldberg 1999]. Regardless of whether a parallel GA is single- or multiple-population, it

has been shown in [Cantu-Paz and Goldberg 1999] that the optimal number of processors

that minimizes the execution time is directly proportional to the square root of the

population size and the fitness evaluation time. This theoretically confirms the claim that

parallel GAs can reduce the execution time by using multiple processors.

Although parallel GAs have been used in many practical applications, they have not

been applied to the data mining process. Our work represents the first attempt of using

parallel GAs for data mining, in particular, the mining of fuzzy association rules.

2.1.6 Mining Rules in Time Series Data

Many data mining methods have been proposed for time series classification in the literature

(e.g., [Andre-Jonsson and Badal 1997; Bozkaya, Yazdani, and Ozsoyoglu 1997; Huang and

Yu 1999; Indyk, Koudas, and Muthukrishnan 2000; Kalpakis, Gada, and Puttagunta 2001;

Keogh and Smyth 1997; Park, Kim, and Chu 2001; Pratt and Fink 2002; Struzik and Siebes

32

1999; Wang and Wang 2000]). They typically focus on the introduction of new similarity

measures as a subroutine to an existing classification algorithm (e.g., the 1-Nearest

Neighbor algorithm). Although these methods may classify unseen time series accurately,

they are not developed to explicitly reveal the underlying patterns hidden in the time series

data. It has been shown in [Keogh and Kasetty 2003] that these methods perform poorly

when compared to Euclidean distance in the experiments with some well-known time series

data sets. Their dissatisfactory performance is perhaps due to the noisy and fuzzy nature of

time series data.

The mining of sequential patterns [Agrawal and Srikant 1995], frequent episodes

[Mannila, Toivonen, and Verkamo 1995], and partial periodic patterns [Han, Dong, and

Yin 1999] have also been proposed in the literature. They are concerned with discovering

event sequences (i.e., groups of events ordered by time). For example, an event can be the

purchase of an item in market basket data or the increase of a stock price in financial data.

Sequential patterns and frequent episodes represent frequent event sequences, whereas

partial periodic patterns are event sequences that reoccur for a period or a set of periods.

Furthermore, an algorithm for clustering time series has been presented in [Gavrilov et al.

2000]. The problem of event detection [Guralnik and Srivastava 1999] is concerned with

finding time points at which the parameters in a data model or even the model itself are

changed. It is important to note that these techniques are not developed for mining rules

(i.e., the if-then relationships between events) in time series data.

An approach for discovering rules in time series data has been proposed in [Das et al.

1998]. It first forms a set of subsequences by sliding a window through a time series and

clusters the subsequences by using a suitable measure of time series similarity (e.g.,

Euclidean distance). The center of each cluster is then encoded to a sequence of primitive

shapes. From these sequences of primitive shapes, it mines a set of rules in the form of “if

A, then B within time T” where A and B are sequences of primitive shapes. Each rule is

associated with two parameters: frequency and confidence. This approach only discovers

those rules whose frequencies and confidences are greater than or equal to the user-specified

minimum frequency and minimum confidence, respectively. The discovered rules are then

ranked by the J-measure [Smyth and Goodman 1992]. However, it can be difficult for the

users to decide what the thresholds should be and the inappropriate setting can result in the

neglect of some useful rules or the discovery of many irrelevant rules [Han and Kamber

2001; Hand, Mannila, and Smyth 2001].

Furthermore, E-Apriori and EH-Apriori can also be used to mine n-dimensional inter-

transaction association rules from time series data [Lu, Han, and Feng 1998]. Similar to

33

other association rule mining algorithms, they require human users to supply thresholds.

However, many users have no idea what these thresholds should be.

Recently, an information-theoretic fuzzy approach has been proposed in [Last, Klein,

and Kandel 2001] for knowledge discovery in time series data. This approach first cleans

and preprocesses the time series data based on signal processing techniques. It then

constructs an information-theoretic connectionist network to identify the most useful

features of the preprocessed data. A set of rules can be extracted from the connectionist

network. The set of discovered rules is further reduced by 1) fuzzifying the rules; 2)

reducing the set of fuzzified rules by conflict resolution; and 3) merging rules from the

reduced set. This approach is to fuzzify crisp rules discovered in crisp data instead of

handling fuzzy data and discovering fuzzy rules.

2.1.7 Attribute Clustering and Data Mining in Gene

Expression Data

A gene expression data set from a microarray can be represented by an expression table,

T = {wij | i = 1, …, p, j = 1, …, n}, where wij ∈ ℜ is the measured expression level of gene gi

in sample sj [Domany 2003]. Each row in the expression table corresponds to one particular

gene and each column to a sample. Such a data set is typically composed of a large number

of genes but a small number of samples. For example, the colon-cancer data set [Alon et al.

1999] consists of 62 samples and 2,000 genes and the leukemia data set [Golub et al. 1999]

contains 72 samples and 7,129 genes. The number of samples is likely to remain small for

many areas of investigation, especially for human data, due to the difficulty of collecting

and processing microarray samples [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].

Classification and clustering are two major tasks in gene expression data analysis.

Classification is concerned with assigning memberships to samples based on expression

patterns, whereas clustering aims at finding new biological classes and refining existing

ones [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. To cluster and/or recognize

patterns in gene expression data sets, dimension problems are encountered. Typically, gene

expression data sets consist of a large number of genes (attributes) but a small number of

samples (tuples). Many data mining algorithms (e.g., classification [Agrawal et al. 1992;

Chan and Wong 1990, 1991; Janikow 1998; Maimon, Kandel, and Last 1999; Quinlan 1993;

Smyth and Goodman 1992], association rule mining [Agrawal, Imielinski, and Swami 1993;

Agrawal and Srikant 1994; Delgado et al. 2003; Liu, Hsu, and Ma 1998; Park, Chen, and

Yu 1995; Savasere, Omiecinski, and Navathe 1995], pattern discovery [Wong and Wang

1997, 2003], linguistic summaries [Kacprzyk and Zadrozny 2001; Yager 1991], and context-

34

sensitive fuzzy clustering [Hirota and Pedrycz 1999]) are developed and/or optimized to be

scalable with respect to the number of tuples, so as not to handle a large number of attributes.

The distinctive characteristic of gene expression data allows clustering both genes and

samples [Domany 2003; Jiang, Tang, and Zhang 2004]. With conventional clustering

methods, the genes are considered as the tuples and the samples as the attributes. Thus it

allows genes with similar expression patterns (i.e., co-expressed genes) to be identified

[Jiang, Tang, and Zhang 2004]. On the other hand, to cluster samples, the samples are

considered as the tuples and the genes as the attributes. The clustering analysis of samples

is to find new biological classes or to refine existing ones [Piatetsky-Shapiro, Khabaza, and

Ramaswamy 2003]. By this token, conventional clustering algorithms are able to group

both samples and genes from the data.

To apply existing clustering algorithms to genes, various algorithms have been used.

Well-known examples are: k-means algorithms [De Smet et al. 2002; Heyer, Kruglyak, and

Yooseph 1999; Ralf-Herwig et al. 1999], Kohonen’s self-organizing maps (SOM) [Tamayo

et al. 1999], and various hierarchical clustering algorithms [Alon et al. 1999; Eisen et al.

1998].

As for distance measures, Euclidean distance and Pearson’s correlation coefficient are

widely used for clustering genes [Jiang, Tang, and Zhang 2004]. Given two genes Ai and Aj,

i, j ∈ {1, …, p}, i ≠ j, the Euclidean distance between Ai and Aj is given by:

 ∑
=

−=
n

k
jkikjiE wwAAd

1

2)() ,(, (2.1)

where w ∈ ℜ is the measured expression level.

dE measures the difference in the individual magnitudes of each gene. The genes

regarded as similar by Euclidean distance may be very dissimilar in terms of their shapes or

vice versa. For example, let us consider the two genes, which have an identical shape but

only differ from each other by a large scaling factor. Their Euclidean distance is large

although they have an identical shape. However, for gene expression data, the overall

shapes of genes are of the primary interest [Jiang, Tang, and Zhang 2004]. It is for this

reason that Euclidean distance may not be able to yield a good proximity measurement of

genes.

The Pearson’s correlation coefficient between genes Ai and Aj is defined as:

35

∑∑

∑

==

=

−−

−−
=

n

k
jjk

n

k
iik

n

k
jjkiik

jiC

wwww

wwww
AAd

1

2

1

2

1

)()(

))((
) ,(, (2.2)

where iw and jw are the means of wik and wjk, k = 1, …, n, respectively. It considers each

gene as a random variable with n observations and measures the similarity between the two

genes by calculating the linear relationship between the distributions of the two

corresponding random variables. An empirical study [Heyer, Kruglyak, and Yooseph 1999]

has shown that Pearson’s correlation coefficient is not robust to outliers and it may assign

high similarity score to a pair of dissimilar genes.

Recently, biclustering algorithms (e.g., [Cheng and Church 2000; Madeira and Oliveira

2004]) have been proposed to cluster both genes and samples simultaneously. Biclustering

algorithms aim at identifying subsets of genes and subsets of samples by performing

simultaneous clustering of both rows and columns of a gene expression table instead of

clustering columns and rows (genes and samples) separately [Madeira and Oliveira 2004].

Specifically, these algorithms group a subset of genes and a subset of samples into a

bicluster such that the genes and samples exhibit similar behavior. A popular measure of

the coherence of genes and samples in a bicluster is the mean squared residue [Cheng and

Church 2000]. Let I ⊆ {1, …, p} and J ⊆ {1, …, n}. The mean squared residue of a

bicluster, TIJ = {wij | i ∈ I, j ∈ J}, is defined in [Cheng and Church 2000] as:

 ∑
∈∈

+−−=
JjIi

IJIjiJijIJR wwww
JI

Td
,

2)(
||||

1)(, (2.3)

where wiJ is the mean of wij, j ∈ J, wIj is the mean of wij, i ∈ I, and wIJ is the mean of wij,

i ∈ I, j ∈ J. A bicluster is formed if its mean squared residue is less than or equal to a user-

specified threshold.

Gene selection is another important step to further narrowing down the attribute

number prior to data mining. A good number of algorithms have been developed for this

purpose (e.g., [Mukherjee et al. 2003; Pan 2002]). To select genes, the t-value is widely

used in the literature [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. Assuming that

there are two classes of samples in a gene expression data set, the t-value t(Ai) for gene Ai is

given by:

36

2

2
21

2
1

21)(
nn

At i
σσ

µµ

+

−
= , (2.4)

where µr and σr are the mean and the standard deviation of the expression levels of gene Ai

for class r, respectively, and nr is the number of samples in class r for r = 1, 2. The top

genes ranked by the t-value can then be selected for data mining. When there are multiple

classes of samples, the t-value is typically computed for one class versus all the other classes.

A weakness of using the t-value to select genes is the redundancy among the selected

genes [Ding and Peng 2003; Xing, Jordan, and Karp 2001; Yu and Liu 2004]. To solve this

problem, methods that can handle both the gene-class relevance and the gene-gene

redundancy have been proposed (e.g., [Ding and Peng 2003; Xing, Jordan, and Karp 2001;

Yu and Liu 2004]). These methods typically use some metric to measure the gene-class

relevance (e.g., mutual information, the F-test value [Ding and Peng 2003], information

gain, symmetrical uncertainty [Yu and Liu 2004], etc.) and employ the same or a different

metric to measure the gene-gene redundancy (e.g., mutual information, the L1 distance

[Ding and Peng 2003], Pearson’s correlation coefficient, etc.). To find a subset of relevant

but non-redundant genes, they usually use a methodology called redundant cover to

eliminate redundant genes with respect to a subset of genes selected according to the metric

for measuring the gene-class relevance and the gene-gene redundancy (see, e.g., [Xing,

Jordan, and Karp 2001; Yu and Liu 2004]). Another approach to doing so combines the

metric for measuring the gene-class relevance and that for measuring the gene-gene

redundancy into a single criterion function and then selects genes so that the criterion

function is optimized (see, e.g., [Ding and Peng 2003]).

It is important to note that both the t-value and the methods that handle the gene-class

relevance and the gene-gene redundancy can only be used to select genes when the samples

are pre-classified.

2.1.8 Handling Both Transaction and Relational Data

To deal with both transaction and relational data, there is a related, but not directly

applicable, work presented in [Dhar and Tuzhilin 1993]. In [Dhar and Tuzhilin 1993], a

database containing a customer table and a transaction table is described. Some techniques

to discover rules from this database have been proposed. However, the problem of how to

handle both of transaction and relational data has not been discussed. It is not clear how this

approach can be used to handle the union of transaction and relational data in general.

37

2.1.9 Data Transformation

Existing data mining techniques do not provide any explicit methodology for data

transformation. Related, but not directly applicable, work includes attribute-oriented

induction [Cai, Cercone, and Han 1991; Han, Cai, and Cercone 1992, 1993; Han and Fu

1996] and an abstract-driven approach [Dhar and Tuzhilin 1993]. As a means of rule

discovery, both of them do not provide any formalism for the problem of data

transformation.

Attribute-oriented induction makes use of concept hierarchies defined by knowledge

engineers or domain experts. Each of these concept hierarchies defines a sequence of

mappings from a set of concepts to their higher-level correspondences according to a

general-to-specific ordering with the most general concept defined by a reserved word “any”

and the most specific concepts corresponding to the specific data in the database [Han and

Fu 1996]. An attribute is at the desirable level if it contains no more distinct values than its

attribute threshold – a small integer that can be specified by users or set to the default value.

The minimum desirable level of an attribute is the level in the concept hierarchy such that

the attribute would have more distinct values than its threshold when it was specialized to

one level lower. Attribute-oriented induction transforms an initial relation, which contains

the data relevant to the task the user has on hand, into generalized relations using

generalization, attribute removal, concept tree ascension, and vote propagation [Han, Cai,

and Cercone 1993]. In a generalized relation, some or all of its attribute values are higher-

level concepts, that is, non-leaf nodes in the concept hierarchies. A generalized relation

becomes a prime relation if all of its attributes are at the minimum desirable level. This

generalization process continues recursively until a prime relation is obtained. A set of rules

can then be discovered from the prime relation using rule transformation [Han, Cai, and

Cercone 1993].

Another related, but not directly applicable, work is the abstract-driven approach,

which is based on a vocabulary, a set of classification hierarchies, and a set of abstraction

functions [Dhar and Tuzhilin 1993]. The vocabulary consists of a set of user-defined

predicates, which are defined as disjunctions of conjunctive clauses, where each atomic

formula is either a database relation, or another previously introduced user-defined predicate,

or a condition involving attributes from database relations [Dhar and Tuzhilin 1993]. These

user-defined predicates are grouped into classification hierarchies such that a partial order is

imposed on all the predicates in the vocabulary based on the logical implication [Dhar and

Tuzhilin 1993]. As a result, a predicate at higher level of a hierarchy logically implies those

predicates at lower level of the same hierarchy. Furthermore, an abstraction function of an

38

attribute maps the domain values of the attribute into some other domain; for example, the

abstraction function year maps a date into a year by “extracting” the year from the date

[Dhar and Tuzhilin 1993]. These abstraction functions can also be grouped into abstraction

hierarchies by their composition [Dhar and Tuzhilin 1993]. Based on the vocabulary, the

classification hierarchies, and the abstraction functions, a new relation, called abstract,

whose attributes come from the union of the above three components is generated. A set of

interesting patterns can then be extracted from the abstract.

Each abstraction function used in [Dhar and Tuzhilin 1993] can only deal with one

attribute. This prohibits the generation of new attributes that are composed of more than

one primitive attribute. For instance, the attribute “commission,” which is calculated by the

multiplication of the primitive attributes “transaction amount” and “commission rate,”

cannot be produced. The applicability of such abstraction functions is therefore quite

restrictive. Although the abstract generated by the abstract-driven approach can be

considered as a set of transformed data, this technique is developed for the task of pattern

discovery but not for the task of data transformation.

Furthermore, since both of attribute-oriented induction [Cai, Cercone, and Han 1991;

Han, Cai, and Cercone 1992, 1993; Han and Fu 1996] and the abstract-driven approach

[Dhar and Tuzhilin 1993] are not developed for the task of data transformation, they do not

provide any explicit methodology for defining the necessary components (e.g., concept

hierarchies, vocabularies, classification hierarchies, abstraction functions, etc.) for

performing data transformation. However, it is difficult for human users to express or

formalize their knowledge and experience in most situations [Buchanan et al. 1983;

Johnson-Laird 1989]. It is especially difficult when there is no explicit methodology to do

so. These methods are therefore inadequate for casual users to perform data transformation

due to the lack of explicit methodology for specifying the process of data transformation.

2.2 Meta-Mining
Meta-mining is concerned with mining previously discovered patterns, which are typically

represented in the form of production (if-then) rules [Au and Chan 2002a, 2002b, 2005;

Roddick and Spiliopoulou 2002; Roddick and Spiliopoulou 2000; Kurgan and Cios 2004].

It can be used to discover many useful patterns that existing data mining techniques (e.g.,

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer

1996; Agrawal and Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz

1996; Cheung et al. 1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995;

Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and

39

Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995;

Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan,

and Livny 1996]) are not developed to mine for. These patterns are represented in the form

of production rules and they are called meta-rules because they are rules about rules. The

discovered meta-rules are arguably closer to the forms of knowledge that might be

considered interesting [Roddick and Spiliopoulou 2002]. For example, the meta-rule “High

Income is becoming more associated with Mercedes Benz Ownership” is arguably more

interesting than the rule “High Income is associated with Mercedes Benz Ownership.”

Although meta-mining is an important problem, it has received little attention in the

literature. To our best knowledge, in addition to our previous work [Au and Chan 2002a,

2002b, 2005], this problem has only been studied in [Roddick and Spiliopoulou 2000;

Kurgan and Cios 2004].

A framework for analyzing data mining results, called higher order mining, has been

proposed in [Roddick and Spiliopoulou 2000]. In this framework, a first order rule is a rule

discovered in a data set, whereas a second order rule is a sequence of first order rules

discovered in different data sets. Given a second order rule, the interestingness measures

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first

order rules can be considered as a time series. One can then apply time series analysis (e.g.,

ARIMA [Box, Jenkins, and Reinsel 1994]) to analyze the time series. Some of the first

order rules of a second order rule may not hold in the corresponding data sets because their

interestingness measures may fall below the user-specified thresholds, for example. The

time series may therefore contain missing values. However, time series analysis is not

developed to deal with missing values. Furthermore, the discovered patterns are embedded

in the parameters of the statistical model constructed and hence they are unnatural for

human users to comprehend.

This framework has also been used in a meta-mining system proposed in [Kurgan and

Cios 2004] to generate data models from already generated data models. The system 1)

divides a data set into a number of subsets; 2) generates a set of rule from each data subset

using a supervised learning algorithm; and 3) mines a set of (meta-) rules from the rule sets

using the same algorithm. The discovered meta-rules can then be used for classification.

The experimental results reported in [Kurgan and Cios 2004] show that the performance of

the meta-rules discovered from the already discovered rule sets is a little inferior to that of

40

the rules discovered from the data sets in terms of classification rate.

 [Roddick and Spiliopoulou 2000] is concerned with revealing changes in rule sets,

whereas [Kurgan and Cios 2004] aims at discovering regularities in rule sets. None of them

is developed to uncover all of the regularities, differences, and changes.

A related, but not directly applicable, work is meta-learning [Prodromidis, Chan, and

Stolfo 2000]. Given a collection of data sets or data subsets, it runs a supervised learning

algorithm or different learning algorithms on each of them. It then combines the predictions

of the learned classifiers to produce a meta-classifier by recursively learning arbiter and

combiner models in a bottom-up tree manner [Prodromidis, Chan, and Stolfo 2000]. An

arbiter plays the role as a judge whose own prediction is used if the participating classifiers

cannot reach a consensus decision. A combiner can further be classified as class-combiner,

class-attribute-combiner, and binary-class-combiner. In a class-combiner, the meta-level

training instances consist of the correct classification and the predictions; in a class-

attribute-combiner, the instances are formed as in a class-combiner with the addition of the

attribute vectors; and a binary-class-combiner, the instances are composed in a manner

similar to that in a class-combiner except that each prediction has l binary predictions where

l is the number of classes [Prodromidis, Chan, and Stolfo 2000]. An example of the patterns

revealed by meta-learning is “given a record, if classifier 1 classifies it into class A and

classifier 2 classifies it into class B, then it is classified into class A.” Meta-learning indeed

is not developed to reveal the underlying patterns hidden in the classifiers.

2.2.1 Mining Regularities in Multiple Data Sets

For an interstate or international company, which comprises a number of offices at different

geographical locations and has each office (or group of offices) to maintain its own database,

to better make decisions, it needs to mine multiple databases throughout their offices [Zhang,

Wu, and Zhang 2003]. However, existing data mining techniques (e.g., [Agrawal et al.

1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal

and Srikant 1994, 1995; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996;

Cheung et al. 1996a; Ganti et al. 1999b; Han, Dong, and Yin 1999; Han and Fu 1995;

Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo

1994, 1995; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b;

Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and

Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996]) are developed to handle a

single database and they are not directly applicable to mining multiple databases.

Recently, several techniques for data mining in multiple databases, including [Liu, Lu,

41

and Yao 1998; Ribeiro, Kaufman, and Kerschberg 1995; Wrobel 1997; Yao and Liu 1997;

Zhong, Yao, and Ohsuga 1999], have been proposed in the literature. These multi-database

mining techniques typically involve 1) selecting relevant data from multiple databases; 2)

extracting the selected data to amass a single database; and 3) applying existing data mining

techniques, such as association rule mining (e.g., [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995,

1996]), classification (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a; Lu,

Setiono, and Liu 1995; Mehta, Agrawal, and Rissanen 1996; Shafer, Agrawal, and Mehta

1996]), and clustering (e.g., [Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996;

Ganti et al. 1999b; Zhang, Ramakrishnan, and Livny 1996]), to the single database.

They can therefore discover only the same kind of patterns as conventional (single-)

database mining techniques. They are unable to discover some patterns such as “in general,

if a customer is married and middle-aged, then he/she gets a home mortgage.” They also

cannot discover such patterns as “in an exceptional manner, if a customer is single and

tertiary educated, then he/she has more than one car.” The former represents a regular

pattern supported by many branches of an international company, whereas the latter

represents a differential pattern supported by only a few branches.

Recently, the mining of high-vote patterns in multiple databases has been proposed in

[Zhang, Zhang, and Wu 2004]. Given the m databases, D1, …, Dm in the m branches of a

company, a conventional (single-) database mining algorithm is first applied to Di to

discover a set of patterns, Ri, i = 1, …, m. Let R = {rj | rj ∈ R1 ∪ … ∪ Rm} and n = |R|. The

average voting rate, AVR, is given by:

 ∑
=

=
n

j
jrvoting

n
AVR

1

)(1 , (2.5)

where voting(rj) is the voting rate of rj and is calculated by:

m

miRrR
rvoting iji

j

|} ..., ,1 ,|{|
)(

=∈
= . (2.6)

The interestingness of rj, interest(rj), is then defined in [Zhang, Zhang, Wu 2004] as:

42

AVR

AVRrvoting
rinterest j

j −

−
=

1
)(

)(. (2.7)

A pattern is high-voting if its voting rate is greater than the average voting rate and its

interestingness is greater than or equal to a user-specified threshold [Zhang, Zhang, and Wu

2004]. A weakness of this approach is that many users do not have any idea what the

threshold should be. Some useful patterns may be missed if it is set too high, whereas many

irrelevant patterns may be found if it is set too low.

Instead of concatenating multiple data sources to amass a single data set, a set of

association rules can be synthesized from the association rules discovered in the data

sources [Wu and Zhang 2003]. The supports of these association rules are estimated in

terms of the supports of the underlying association rules and the popularities of the data

sources. The experimental results in [Wu and Zhang 2003] show that the synthesized rules

are a good approximate of the rules discovered in the concatenated data set. Although this

synthesizing technique starts from multiple data sources, it is not developed to discover the

regularities in the rule sets.

2.2.2 Mining Differences in Multiple Data Sets

In [Ganti et al. 1999a], a framework has been proposed to measure the difference between

two data sets by building two models (one from each data set) and measuring the amount of

work required to transform one model to the other. It results in a real number to reflect to

which degree the two data sets differ from each other. However, it is not developed to

explicitly reveal what the differences are.

Recently, the mining of exceptional patterns in multiple databases in the context of

association rules has been proposed in [Zhang, Zhang, and Wu 2004]. Given the m

databases, D1, …, Dm in the m branches of a company, an association rule mining algorithm

is first applied to Di to discover a set of patterns (i.e., association rules), Ri, i = 1, …, m. Let

R = {rj | rj ∈ R1 ∪ … ∪ Rm}. The interestingness of rj, exceptional interest(rj), is defined in

[Zhang, Zhang, and Wu 2004] as:

AVR

AVRrvoting
rinterest lexceptiona j

j −

−
=

)(
)(, (2.8)

where voting(rj) is the voting rate of rj given by Equation (2.6) and AVR is the average

voting rate calculated by Equation (2.5). In addition to this measure, another interestingness

43

measure of rj with respect to Di is also defined in [Zhang, Zhang, and Wu 2004] as:

i

iji
ji minsupport

minsupportrsupport
rinterest lexceptiona

−
=

)(
)(, (2.9)

where supporti(rj) is the support of rj in Di and minsupporti is the user-specified minimum

support for mining patterns in Di. A pattern rj is exceptional if 1) its voting rate is greater

than the average voting rate and exceptional interest(rj) is greater than or equal to a user-

specified threshold; and 2) exceptional interesti(rj) is greater than or equal to another user-

specified threshold for all i ∈ {i | rj ∈ Ri}. Similar to the mining of high-vote patterns, a

weakness of this approach is that many users have no idea what the thresholds should be. If

they are set too high, some useful patterns may be missed; but if they are set too low, many

irrelevant patterns may be found.

2.2.3 Mining Changes in Multiple Data Sets

To deal with the data collected in different time periods, the maintenance of discovered

association rules (e.g., FUP [Cheung et al. 1996b]) and active data mining [Agrawal and

Psaila 1995] have been proposed in the literature. Incremental updating techniques (e.g.,

FUP) can be used to update the discovered association rules if there are additions, deletions,

or modifications of any tuples in a database after a set of association rules has been

discovered. Active data mining is concerned with representing and querying the shape of

the history of parameters for the discovered association rules. Although these techniques

can be used to track the variations in supports and confidences of association rules, both of

them are not developed to discover and predict rule changes.

Although the mining of rule changes over time is an important problem, it has received

little attention. To our best knowledge, in addition to our previous work [Au and Chan

2002a, 2002b, 2005], this problem has only been studied in [Liu et al. 2000], [Liu, Hsu, and

Ma 2001], and [Roddick and Spiliopoulou 2000]. [Liu et al. 2000] is concerned with

finding whether a decision tree built in a time period is applicable in other time periods.

Given two data sets collected in two different time periods, this method builds a decision

tree based on one of the data sets and then builds another based on the other data set such

that the latter tree uses the same attribute and chooses the same cut point for the attribute as

the former at each step of partitioning. This method can be used to identify three categories

of changes in the context of decision tree building: partition change, error rate change, and

coverage change [Liu et al. 2000]. Compared to [Liu et al. 2000], instead of building a

decision tree in the next time instance to ensure that it resembles the first, our goal is to

44

discover the changes in rules discovered in different time periods.

Following the idea presented in [Liu et al. 2000], a method has been proposed in [Liu,

Hsu, and Ma 2001] to find whether a set of association rules discovered in a time period is

applicable in other time periods. To do so, it employs chi-square test to determine whether

there are any changes in the supports and confidences of the association rules discovered in

different time periods. Unlike this method, our goal is to mine (meta-) rules to represent the

changes and to predict any changes in the future.

If the underlying data sets are collected in different time periods, the higher order

mining framework proposed in [Roddick and Spiliopoulou 2000] can be used to find the

changes in the discovered rules. Given a second order rule, the interestingness measures

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first

order rules can be considered as a time series, which can be analyzed by time series analysis

(e.g., ARIMA [Box, Jenkins, and Reinsel 1994]). The time series may contain missing

values because some of the first order rules of a second order rule may not hold in the

corresponding data sets as their interestingness measures may fall below the user-specified

thresholds, for example. However, time series analysis is not developed to deal with

missing values. Furthermore, the discovered patterns are embedded in the parameters of the

statistical model constructed. They are therefore not natural for human users to comprehend.

45

Chapter 3

The Proposed Approach

In this chapter, we define the problems of mining regularities, differences, and changes in

rule sets and propose a new meta-mining approach to solving them. The proposed approach

is composed of a collection of techniques for 1) generating fuzzy sets from data

automatically; 2) using linguistic variables and linguistic terms to represent the discovered

regularities, differences, and changes; 3) exploiting the scalability of parallel computer

systems to mine meta-rules efficiently; 4) grouping and selecting a subset of attributes for

meta-mining; and 5) enabling the mining of meta-rules involving attributes that are not

originally contained in the database. This chapter also describes how these techniques fit

into the meta-mining approach.

3.1 A Formal Problem Description
Let us suppose that there is a collection of data sets, Dj, j = 1, …, n. A set of rules,

} ..., ,{ 1 jjsjj rrR = , is mined from Dj, j = 1, …, n. A rule, rju ∈ Rj, is an implication of the

form X ⇒ Y, where X and Y are conjunctions of conditions. The antecedent and the

consequent of the rule X ⇒ Y are denoted as antecedent(X ⇒ Y) = X and

consequent(X ⇒ Y) = Y, respectively.

Example 3.1 An example rule, r, is:

Sex = Male ∧ Education = Tertiary ∧ Income = High

 ⇒ Mercedes Benz Ownership = True.

The antecedent and the consequent of this rule are:

antecedent(r) = (Sex = Male ∧ Education = Tertiary ∧ Income = High)

and

consequent(r) = (Mercedes Benz Ownership = True),

respectively.

46

Given a rule, X ⇒ Y, let condition(X) and condition(Y) be the sets of all the conditions

in its antecedent and consequent, respectively. The set of conditions in the rule X ⇒ Y is

then given by condition(X ⇒ Y) = condition(X) ∪ condition(Y). Let us further suppose that

U
js

u
juj rconditionRcondition

1

)()(
=

= .

Example 3.2 Let us consider the rule r given in Example 3.1. The set of conditions in its

antecedent is:

condition(antecedent(r)) = {Sex = Male, Education = Tertiary, Income = High},

the set of conditions in its consequent is:

condition(consequent(r)) = {Mercedes Benz Ownership = True},

and the set of conditions in the rule is:

condition(r) = {Sex = Male, Education = Tertiary, Income = High,

 Mercedes Benz Ownership = True}.

In general, the rule X ⇒ Y is associated with one or more interestingness measures (e.g.,

the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.). We denote

the interestingness measure of the rule X ⇒ Y in Dj as interestingnessj(X ⇒ Y).

Example 3.3 In an association rule mining algorithm, the interestingness of a rule such as

that in Example 3.1 is measured in terms of support and confidence. It holds in data set Dj

with support,

||

|)(|
)(

j

jTrueOwnershipBenzMercedesHighIncomeTertiaryEducationMaleSex
j D

D
rsupport =∧=∧=∧==

σ
, (3.1)

and confidence,

47

|)(|

|)(|
)(

jHighIncomeTertiaryEducationMaleSex

jTrueOwnershipBenzMercedesHighIncomeTertiaryEducationMaleSex
j D

D
ronfidencec

=∧=∧=

=∧=∧=∧==
σ

σ
, (3.2)

where σ denotes the SELECT operation in relational algebra and |S| denotes the cardinality

of set S.

3.1.1 Mining Regularities and Differences

From R1, …, Rn, we aim at mining a set of meta-rules to reveal the underlying regularities

hidden in the rule sets and the differences between different rule sets.

Definition 3.1 A meta-rule mined from rule sets R1, …, Rn is an implication of the form:

X ⇒ Y,

where X and Y are conjunctions of conditions such that U
n

j
jRconditionXcondition

1

)()(
=

⊆ ,

U
n

j
jRconditionYcondition

1

)()(
=

⊆ , and condition(X) ∩ condition(Y) = ∅.

Rather than being supported by data records, a meta-rule is supported by the rules in

the rule sets. We say that a rule supports a meta-rule if the set of conditions in the meta-rule

is a subset of that in the rule.

Definition 3.2 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, is supported by a set of

rules:

R (X ⇒ Y) = {r | r ∈ R1 ∪ … ∪ Rn, condition(X) ∪ condition(Y) ⊆ condition(r)}.

A meta-rule represents an association relationship in common in the rule sets if many

rules support it. In other words, it represents an underlying regularity hidden in the rule sets.

Definition 3.3 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a regularity

embedded in them if |R (X ⇒ Y)| is sufficiently large. We refer to this meta-rule as a regular

meta-rule.

48

On the other hand, a meta-rule represents a distinctive association relationship in the

rule sets if only a few rules support it. In other words, it represents a difference between the

rule sets.

Definition 3.4 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a difference

between them if |R (X ⇒ Y)| is sufficiently small. We refer to this meta-rule as a differential

meta-rule.

To reveal regularities and differences in rule sets, we mine regular and differential

meta-rules from the rule sets, respectively.

Example 3.4 Let us consider rule sets R1, …, R5, each of which contains a set of

association rules. They are given in the following:

R1: {i1, i2} ⇒ {i3}

 {i4} ⇒ {i1}

R2: {i1, i2} ⇒ {i3}

 {i2, i3, i5} ⇒ {i4}

 {i2, i3} ⇒ {i4}

R3: {i2, i3, i5} ⇒ {i4}

R4: {i1, i2} ⇒ {i3}

 {i2, i3, i5} ⇒ {i4}

R5: {i1, i2} ⇒ {i3},

where i1, …, i5 are items.

The meta-rule {i2, i3} ⇒ {i4} is supported by the following rules:

R2: {i2, i3, i5} ⇒ {i4}

 {i2, i3} ⇒ {i4}

R3: {i2, i3, i5} ⇒ {i4}

49

R4: {i2, i3, i5} ⇒ {i4},

whereas the meta-rule {i4} ⇒ {i1} is supported by the following rule:

R1: {i4} ⇒ {i1}.

The former and the latter meta-rules are supported by 44.4% (= 4 / 9) and 11.1%

(= 1 / 9) of all the rules, respectively.

A straightforward approach to determining whether a meta-rule is supported by a

sufficiently large or small number of rules is to have a user supply thresholds. For example,

if the threshold for determining regular meta-rules is set to 40%, the former meta-rule is

found to be regular; and if the threshold for determining differential meta-rules is set to 15%,

the latter meta-rule is found to be differential.

A weakness of this approach is that it is difficult to determine what the thresholds

should be. An effective algorithm should use an objective measure to mine regular and

differential meta-rules, instead of having a user supply thresholds.

3.1.2 Mining Changes

We are also concerned with mining a set of meta-rules to reveal how the rules in the rule

sets change over time.

Now, let us further suppose that Dj is collected in time periods tj, j = 1, …, n, where

t1, …, tn are consecutive and tj happens before tk if j < k. Let us consider rules rju ∈ Rj and

rkv ∈ Rk, j, k ∈ {1, …, n}, j < k. These represent the same association relationship if, and

only if, antecedent(rju) = antecedent(rkv) and consequent(rju) = consequent(rkv).

Definition 3.5 Given a rule, rju ∈ Rj, if there exists another rule, rkv ∈ Rk, j < k, such that

antecedent(rju) = antecedent(rkv) and consequent(rju) = consequent(rkv), rju is equivalent to rkv,

denoted as rju ≡ rkv, because they represent the same association relationship.

It is important to note that although rju ≡ rkv, its interestingness measure in tj may be

different from that in tk because the rule may change as will be discussed in Definitions 3.6–

3.8.

50

Definition 3.6 Given two rules, rju ∈ Rj and rkv ∈ Rk, j < k, such that rju ≡ rkv, rju changes

during the period from tj to tk if interestingnessj(rju) ≠ interestingnessk(rju). We say that rju is

a changed rule in tk.

It is possible that rule rju is found in Rj but not in Rk because it is interesting in tj but it

becomes uninteresting in tk, j < k.

Definition 3.7 Given Rj and Rk, j < k, if rju ∈ Rj and there does not exist rkv ∈ Rk such that

rju ≡ rkv, we say that rju is perished in tk and rju is a perished rule in tk. In this case, the

interestingness measure of rju in tk is missing, denoted as interestingnessk(rju) = ?.

On the other hand, it is also possible that rkv is not found in Rj but is found in Rk

because it is uninteresting in tj but it becomes interesting in tk, j < k.

Definition 3.8 Given Rj and Rk, j < k, if rkv ∈ Rk and there does not exist any rju ∈ Rj such

that rju ≡ rkv, we say that rkv is added in tk and rkv is an added rule in tk. In this case, the

interestingness measure of rkv in tj is missing, denoted as interestingnessj(rkv) = ?.

An added rule or a perished rule is a special case of a changed rule. It is special in that

an added rule’s interestingness measure changes from below a threshold to above it,

whereas a perished rule’s interestingness measure changes in the reverse direction, from

above the threshold to below it. The threshold can be specified by a user or determined by

an objective means. Revealing how a rule changed in the past allows one to predict whether

it will be added or perished or to what degree it will change in the future.

For each rule in R1 ∪ … ∪ Rn, we are interested in mining a set of meta-rules to

represent the regularities governing how the rule changes during the period from t1 to tn. We

refer to these meta-rules as change meta-rules because they represent how the rule changes

over time.

Definition 3.9 For r ∈ R1 ∪ … ∪ Rn, a change meta-rule is an implication of the form:

r
p

r
j

r
p

r
j

r
p

r
j qqhh

lLlLlL =⇒=∧∧= ...
11

,

where r
jk

L is an attribute representing

)()()(1 rnessnterestingirnessnterestingirnessnterestingi
kkk jjj −=∆ + (i.e., the difference in

51

the interestingness measure of r during the period from
kjt to 1+kjt) and r

pk
l is an attribute

value in)(r
jk

Ldom , which denotes the domain of r
jk

L , for k = 1, …, h, q and

j1 < … < jh < jq.

The mining of change meta-rules allows the examination of the regularities governing

how a rule changes during a period t1 to tn. The discovered meta-rules can also be used to

predict how the rule will change in tn + 1. The ability to predict how rules will change allows

accurate results to be achieved when the discovered rules in the past are used for

classification in the future.

Example 3.5 Let us consider the association rules of items i1, i2, i3, and i4 discovered in

three consecutive time periods, t1, t2, and t3. Assume that the association rule discovered in

time period t1 is:

r: {i1, i2, i3} ⇒ {i4}

whose support and confidence in t1 are support1(r) = 37.8% and confidence1(r) = 95.0%,

respectively.

In time period t2, the association rule becomes:

r': {i1, i2, i3} ⇒ {i4}

whose support and confidence in t2 are support2(r) = 34.9% and confidence2(r) = 94.8%,

respectively.

Then in time period t3, the association rule becomes:

r": {i1, i2, i3} ⇒ {i4}

whose support and confidence in t3 are support3(r) = 28.4% and confidence3(r) = 94.5%,

respectively.

The support of the association rule decreases in the period from t1 to t2 and in the

period from t2 to t3. A change meta-rule of support mined from these rules would be:

52

Change in support in this period = Fairly decrease

 ⇒ Change in support in next period = Highly decrease.

This meta-rule of support states that “if the change in support in this period moderately

decreases, then the change in support in next period will decrease significantly.” The

support of the association rule in tj can then be predicted given the support of this rule in tj – 1

and that in tj – 2.

On the other hand, the confidence of the association rule is more or less the same in the

period from t1 to t2 and in the period from t2 to t3. A change meta-rule of confidence

discovered in these rules would be:

Change in confidence in this period = More or less the same

 ⇒ Change in confidence in next period = More or less the same.

This states that “if the change in confidence in this period is more or less the same, then the

change in confidence in next period will be more or less the same.” The confidence of the

association rule in tj can then be predicted given the confidence of this rule in tj – 1 and that in

tj – 2.

3.2 The Solution
Given a collection of data sets or data subsets, we propose to use a meta-mining approach to

the discovery of regularities, differences, and changes in these rules. It comprises a

collection of techniques for: 1) data transformation, 2) fuzzy partitioning, 3) attribute

clustering, and 4) rule mining. They enable the mining of rules from data sets and meta-

rules from rule sets. Fig. 1 shows the proposed meta-mining approach and how these

techniques fit in it.

53

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

.........

.........

Data Mining

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Meta-Mining

Meta-
Rule Set

(Chapter 4)

(Chapter 5)

(Chapter 6)

(Chapters 7 & 8)

Fig. 1. The proposed meta-mining approach.

54

3.2.1 Data Transformation

Some existing algorithms can be used to discover association rules in transactional data,

whereas other algorithms can be used to mine association rules in relational data. None of

them has been explicitly developed to handle both transactional and relational data. We

introduce a novel approach to handling both transactional and relational data at the same

time. This type of data allows data mining algorithms to discover multi-dimensional

association rules. To effectively uncover the hidden association relationships, the proposed

approach combines the relational and transactional data by performing data transformations.

It has been applied to a data mining task involving a large database that was provided by an

international bank with offices in Hong Kong. The database contains the demographic data

of over 320,000 customers and their banking transactions collected over a six-month period.

By mining the database, the bank would like to be able to discover interesting patterns that

would reveal different characteristics about different customers so that it could better serve

and retain them. With our approach, fuzzy association rules obtained by our mining

algorithms proposed in Chapter 7 are judged by the experts from the bank to be very useful.

In particular, they discovered that they had identified some interesting characteristics about

the customers who had once used the bank’s loan services but then decided later to cease

using them. The bank translated what they discovered into actionable items by offering

some incentives to retain their existing customers.

To enable effective mining of fuzzy rules in the data mining phase, the proposed meta-

mining approach applies the data transformation method to each data set. This method

makes use of transformation functions to transform the original data into a set of

transformed data. Instead of mining the original data, we mine rules from the transformed

data. This enables not only the discovery of rules involving attributes not originally

contained in the data, but also data mining in the combination of relational and transactional

data.

In the meta-mining phase, the data transformation method can also be applied to the

rule sets if the introduction of new attributes is desirable. This method transforms the

attributes involved in the conditions of the rules in the rule sets using transformation

functions to produce a set of transformed data. For clarity, we here refer to the transformed

data as the transformed meta-data.

3.2.2 Fuzzy Partitioning

To deal with continuous or mixed continuous valued and discrete valued data, the domains

of continuous attributes are typically discretized into a finite number of intervals. However,

55

if too many data points lie on the boundaries of the intervals due to the ambiguity or

fuzziness of the attribute values near the boundary regions, this could sensitively affect the

usefulness of the discovered patterns, especially when they are used for classification. To

better handle continuous data, we propose to use fuzzy sets to represent interval events in

the domains of continuous attributes, allowing continuous data lying on the interval

boundaries to partially belong to multiple intervals. The effect of noise to fuzzy set based

techniques has been evaluated experimentally in [Gayme, Menon, and Ball 2003; Pacini and

Kosko 1992; Postlethwaite 1991; Sun and Wang 2005; Xie et al. 1994]. These empirical

studies demonstrated the resilience to noise of fuzzy sets. Realistically, the resilience to

noise of fuzzy sets and their affinity with human knowledge representation make them very

useful in many data mining applications.

Since the membership functions of fuzzy sets can profoundly affect the performance of

the models or rules discovered, the determination of membership functions or fuzzy

partitioning is crucial. In this chapter, we present a new method to determine the

membership functions of fuzzy sets directly from data to maximize the class-attribute

interdependence and thence improve the classification results. In other words, it forms a

fuzzy partition of the input space automatically, using an information-theoretic measure to

evaluate the interdependence between the class membership and an attribute as the objective

function for fuzzy partitioning. To find the global optimum of the measure, it employs

fractional programming (iterative dynamic programming). Fuzzy partitioning then enables

fuzzy data mining techniques to build fuzzy models or discover fuzzy rules based on the

generated fuzzy sets instead of relying on the user-specified ones. To evaluate the

effectiveness of the proposed method, several real-world data sets are used in our

experiments. The experimental results show that this method is very effective in

classification when compared to other well-known discretization and fuzzy partitioning

approaches.

After data transformation, the meta-mining approach applies the fuzzy partitioning

technique to the transformed data in the data mining phase. It also applies the fuzzy

partitioning technique to the transformed meta-data in the meta-mining phase to generate

fuzzy sets automatically for the new attributes introduced by data transformation. Because

those attributes have been fuzzy partitioned in the data mining phase, it is not necessary to

fuzzy partition them again in this step.

3.2.3 Attribute Clustering

We propose an attribute clustering method, which is able to group genes based on their

56

interdependence so as to mine meaningful patterns from the gene expression data. This

method can be used for gene grouping, selection, and classification. The partitioning of a

relational table into attribute subgroups allows a small number of attributes within or across

the groups to be selected for analysis. The clustering of attributes reduces the search

dimension of a data mining algorithm. The reduction of the search dimension is especially

important to data mining in gene expression data because such data typically consist of a

huge number of genes (attributes) and a small number of gene expression profiles (tuples).

Most data mining algorithms are typically developed and optimized to scale to the number

of tuples rather than to the number of attributes. The situation becomes even worse when

the number of attributes overwhelms the number of tuples, in which case, the likelihood of

reporting patterns that are actually irrelevant due to chance becomes rather high. Gene

grouping and selection are thus important preprocessing steps when many data mining

algorithms are applied to gene expression data. This work defines the problem of attribute

clustering and introduces a methodology for solving it. Our proposed method groups

interdependent attributes into clusters by optimizing a criterion function derived from an

information measure that reflects the interdependence between attributes. By applying our

algorithm to gene expression data, meaningful clusters of genes are discovered. The

grouping of genes based on attribute interdependence within group helps to capture different

aspects of gene association patterns in each group. Significant genes selected from each

group then contain useful information for gene expression classification and identification.

To evaluate the performance of the proposed approach, we applied it to two well-known

gene expression datasets and compared our results with those obtained by other methods.

Our experiments show that the proposed method is able to find the meaningful clusters of

genes. By selecting a subset of genes which have high multiple-interdependence with others

within clusters, significant classification information can be obtained. Thus a small pool of

selected genes can be used to build classifiers with very high classification rate. From the

pool, gene expressions of different categories can be identified.

After fuzzy partitioning, our meta-mining approach employs the attribute clustering

method to group interdependent attributes into clusters. It also applies the attribute

clustering method to group interdependent attributes in the transformed and fuzzy

partitioned meta-data into clusters. Significant attributes selected from each group contain

useful information for classification and identification.

3.2.4 Fuzzy Rule Mining

Existing data mining algorithms (e.g., decision-tree based approaches and association rule

mining algorithms) typically require the domains of continuous attributes to be discretized

57

into a finite number of intervals. These intervals may not be concise and meaningful

enough for humans to easily obtain nontrivial knowledge from the discovered rules. Instead

of using intervals, we propose two new algorithms, called FARM and EFARM, for mining

fuzzy rules, which employ linguistic variables and linguistic terms to represent the revealed

regularities. The linguistic representation is especially useful when the discovered rules are

presented to human users for examination. The use of fuzzy set based techniques not only

makes the proposed algorithms resilient against noise such as inaccuracies in physical

measures of real-world entities and missing values in databases, but also enables the

prediction of attribute values to be associated with degrees of membership. Our algorithms

are therefore able to deal with those cases where an object can belong to more than one class.

For example, a person can suffer from a cold and fever at the same time. To distinguish

interesting association relationships from uninteresting ones, both of our proposed

algorithms employ an objective interestingness measure, which reflects the difference in the

observed and the expected degree to which an object is characterized by different linguistic

terms. Being based on the objective measure, they do not require any user-supplied

thresholds, which are usually difficult to determine. To evaluate the performance of our

algorithms, we tested them using several real-life data sets for data mining. The

experimental results show that they are very effective at the tasks. When compared to

popular data mining algorithms, they are better able to uncover useful rules hidden in

databases. Furthermore, we also applied our proposed algorithms to synthetic data sets for

meta-mining. The results show that they can reveal the embedded regularities, differences,

and changes effectively.

3.2.5 Parallelization of Fuzzy Rule Mining

We also extend the FARM and EFARM algorithms, which are developed to mine fuzzy

rules in data sets and meta-rules in rule sets in the last chapter, to exploit the scalability of

parallel computer systems. The parallel versions of FARM and EFARM are called Parallel-

FARM and Parallel-EFARM, respectively. Given a very large data set, Parallel-FARM

divides it into several horizontal partitions and assigns them to different sites in a distributed

system. Each site scans its database partition to obtain the number of tuples characterized

by different linguistic terms and then exchanges the local counts with all the other sites to

find the global counts. Based on the global counts, the interestingness measures are

computed and the sites are able to uncover interesting associations. By repeating this

process of counting, exchange of counts, and calculation of interestingness measures,

Parallel-FARM is able to discover all interesting associations in a data set. On the other

hand, Parallel-EFARM employs a parallel genetic algorithm for mining rules. It encodes a

complete set of rules in one single chromosome and each allele encodes one rule which is

58

represented by some non-binary symbolic values. It stores a single population of

chromosomes in a master processor. In each generation of Parallel-EFARM, the master

processor performs selection, crossover, and mutation. It then distributes all the

chromosomes among the processors in a distributed system. Each processor evaluates the

fitness of the chromosomes assigned to it and sends the fitness of these chromosomes back

to the master processor. Parallel-EFARM then proceeds to the next generation. Both

Parallel-FARM and Parallel-EFARM were implemented in an experimental test bed. Their

scalability was tested using a popular benchmarking data set. The results show that Parallel-

FARM and Parallel-EFARM have very good sizeup, speedup, and scaleup performance.

The meta-mining approach applies one of the serial and parallel mining algorithms to

mine rules (meta-rules) on the selected attributes from the transformed and fuzzy partitioned

data (meta-data). The discovered rules and meta-rules represent the revealed association

relationships using linguistic variables and linguistic terms. The discovered meta-rules are

also able to represent regularities, differences, and changes in the rule sets.

As a remark, in order to mine meaningful meta-rules, the underlying data sets are ought

to be “comparable.” For example, one data set contains the close price of a stock listed in

the Hong Kong Stock Exchange; another data set contains the close price of a stock listed in

the New York Stock Exchange; and so on. This perspective is consistent with [Pedryz

2002]. In [Pedryz 2002], how fuzzy sets discovered in different data sets affect each other

have been taken into consideration and the collaborative fuzzy clustering technique has been

proposed to adjust these fuzzy sets.

59

Chapter 4

Data Transformation

Given a database system consisting of transactional data (e.g., records of purchase,

electronic fund transfer, phone calls, etc.) and relational data (e.g., customer information,

inventory records, etc.), our goal is to discover a set of interesting rules that describes the

relationship between the patterns underlying them. The mining of association rules (e.g.,

[Agrawal, Imielinski, and Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant

1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and Swami 1995; Mannila,

Toivonen, and Verkamo 1994; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski,

and Navathe 1995; Srikant and Agrawal 1995, 1996]) is developed to reveal the patterns or

associations hidden in the data. Some of existing algorithms (e.g., [Agrawal, Imielinski, and

Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a;

Han and Fu 1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park,

Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal

1995]) can be used to discover association rules in transactional data with no reference to

relational data. On the other hand, other algorithms (e.g., [Srikant and Agrawal 1996]) can

be used to mine association rules in relational data without any reference to transactional

data. None of them is explicitly developed for handling both transactional and relational

data. It is not clear how they, which deal with either transactional or relational data, can be

applied to discover association rules relating the union of both transactional and relational

data.

However, many database systems contain not only transactional data but also relational

data concerning information such as customer background and inventory records, etc. For

example, the rule “70% of the phone calls made by lawyers are to Canton, China; 8% of all

transaction records exhibit such characteristics” cannot be discovered by existing techniques.

This rule relates the phone call patterns to the career of customers. To discover rules of

such kind, both of transactional and relational data have to be taken into consideration.

Since both transactional and relational data are usually collected in many database systems,

it is important that this problem to be dealt with effectively.

To deal with the problem that is created by the fact that there is more than one database

relation, the concept of a universal relation needs to be used. A universal relation is an

imaginary relation that can be used to represent the data that is constructed by logically

joining all of the separate tables of a relational database [Ullman 1988]. The use of a

60

universal relation, therefore, makes it possible for the existing data mining systems (e.g.,

[Matheus, Chan, and Piatetsky-Shapiro 1993]) to deal with both transactional and relational

data. Unfortunately, the construction of universal relations will very likely lead to the

introduction of redundant information, which will mislead the rule discovery process of

many data mining algorithms.

Existing data mining algorithms (e.g., [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995,

1996]) can be made more powerful if they can overcome such a problem. They can also be

further improved if they can discover rules that involve attributes that are not originally

contained in a database. The ability to do so is essential to the mining of interesting patterns

in many different application areas. For example, rules regarding consumers’ buying habits

at Christmas cannot be discovered if a new attribute of “holiday” has not been considered.

Taking into consideration the need to address these issues, our proposed approach is

equipped with some transformation functions that can be used to deal with both

transactional and relational data and the different types of attributes in the databases of a

database system so as to construct new relations.

The rest of this chapter is organized as follows. In Section 4.1, we introduce a

formalism to handle the union of relational and transactional data. In Section 4.2, we

describe the bank-account database that was provided by the bank in a consultancy project

of the Department of Computing, The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong. Prof. Keith C. C. Chan was the principal investigator of the

consultancy project. In Section 4.3, we discuss the fuzzy association rules that are

discovered by our rule mining algorithms proposed in Chapter 7 in the bank-account

database.

4.1 Transformation Functions
To discover interesting associations in a relational database, some variables of interest can

be extracted directly from the database, whereas some of them are not contained in the

original data and they are produced by the transformation functions. To handle the union of

both relational and transactional data, we define a set of transformation functions to operate

on multiple relations. The application of these transformation functions to the database

results in a set of transformed data. To manage the data mining process effectively, the

61

transformed data is stored in a relation in the relational database. We refer to this relation as

the transformed relation. We define the problem formalism in the following.

Let
iiKi AA ..., ,1 , for i = 1, …, I, be the attributes of the real-world entities represented

by the relational tables, Ri, i = 1, …, I, respectively. Let the domain of Aik, k = 1, …, Ki, be

represented by } ..., ,{)()()1(ikm
ikikik aaAdom = , i = 1, 2, …, I, k = 1, 2, …, Ki. In other words,

)(...)(1 iiKii AdomAdomR ××⊆ . For any Ri, we use
iRA to denote the set of attributes of Ri,

that is, } ..., ,{ 1 ii iKiR AA=A . The primary key of Ri, which is composed of one or more

attributes and is associated with each tuple in a relation, is represented by

} ..., ,{ 1 iiKii AA⊆K .

For a database system, a set of transaction records can be denoted by Tj, j = 1, …, J,

where each Tj is characterized by a set of attributes, which are denoted by

jjLj AA ..., ,1 , and has a unique transaction identifier TIDj. In another words,

)(...)(1 jjLjjj AdomAdomTIDT ×××⊆ .

The definition of the transaction records, which is used here, follows the idea presented

in [Srikant and Agrawal 1996]. It is a generalization of the definition of the transactions

used in many of the existing algorithms for mining association rules (e.g., [Agrawal,

Imielinski, and Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994;

Cheung et al. 1996a; Han and Fu 1995; Houtsma and Swami 1995; Mannila, Toivonen, and

Verkamo 1994; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995;

Srikant and Agrawal 1995]). In these algorithms, a transaction, t, is typically defined as

<TID, J’>, where TID is the transaction identifier of t, J’ ⊆ J, and J = {item1, …, itemn} is a

set of items. To store transactions of this kind in a relational database, one can define a

relation, T(TID, A1, …, An), where TID is a transaction identifier. For any t ∈ T, t[Ak] = 1 if

t contains itemk; otherwise, t[Ak] = 0, for k = 1, …, n. This is a special case of the definition

of the transaction records used in this chapter. In addition to handling items, our definition

can also handle categorical (discrete-valued) and quantitative (continuous-valued) attributes.

This allows richer semantics to be captured in the transaction records as compared to the

definition that is only concerned with items (e.g., [Agrawal, Imielinski, and Swami 1993b;

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995]).

In a database system, there are some one-to-many relationships between the records in

62

Ri, i = 1, …, I, and those in Tj, j = 1, 2, …, J. For example, the bank-account database

contains a set of relational tables (i.e., CUSTOMER and ACCOUNT) that contain

background information about each customer and a transactional table (i.e., TRANSACTION)

that contains the details of each transaction made by a customer. The relational data are

related to the transactional data by some one-to-many relationships in such a way that we

can find Ki, which is the primary key of Ri, in } ..., ,{ 1 jjLj AA , which can be used as a foreign

key to provide a reference to the corresponding tuple in Ri, i = 1, …, I.

Given Ri and Tj, to deal with both relational and transactional data and to consider

additional attributes that are not originally in the database, we propose the concept of using

transformation functions that are defined on the original attributes in Ri and Tj. Let f1, …, fp

be a set of transformation functions, where:

 pprpp AAAf
p

′→×× ...: 1 , p = 1, …, P,

where rp ≥ 1,

and U UU

∈

==

J

j
T

I

i
Rpu ji

A
11

 AA , u = 1, …, rp.

We can construct a new relation R′ that contains both the original attributes in Ri and Tj

and the transformed attributes that are obtained by applying appropriate transformation

functions. Let R′ be composed of attributes, nAA ′′ ..., ,1 , that is,)(...)(1 nAdomAdomR ′××′⊆′ ,

where uA′ , u = 1, …, n, can be any attribute in Ri, i = 1, …, I, or Tj, j = 1, …, J, or any

transformed attribute. In other words, U U UUU

∈′

===

P

p
prpp

J

j
T

I

i
Ru pji

AAfA
1

1
11

),...,(AA .

Instead of performing data mining on the original Ri and Tj, we perform data mining on R′ .

Given a database, different kinds of transformation functions can be performed. They

include logical, arithmetic, substring, and discretization functions. Depending on the type

of attribute, one or more of these functions can be applied to the attribute. We provide the

definition of each type of transformation functions in the following sections.

4.1.1 The Logical Functions

The logical functions are composed of a combination of logical operators, such as NOT,

AND, OR, etc. A logical function can take one or more attributes as arguments. Let f1, …,

fn be a set of functions so that:

63

)(...)() ..., , ,(1121 jrrjrj cacaaaaf =⊗⊕== , j = 1, …, n,

where ai ∈ dom(Ai), cji ∈ dom(Ai), U UU

∈

==

J

j
T

I

i
Ri ji

A
11

 AA , i = 1, …, r,

and ⊕, …, ⊗ ∈ {AND, OR, NOT, XOR, NAND, NOR}.

A generic way of utilizing these functions is to construct a logical function, f, defined

in terms of f1, …, fn, as follows:

=

=
=

=

true) ..., ,(if else
.
.
.

true) ..., ,(if else2
true) ..., ,(if1

) ..., ,(

1

12

11

1

rn

r

r

r

aafn

aaf
aaf

aaf ,

where ai ∈ dom(Ai), U UU

∈

==

J

j
T

I

i
Ri ji

A
11

 AA , i = 1, …, r.

In the case where none of f1, …, fn are evaluated as being true, the logical function, f,

produces an unknown value as its output. Furthermore, if the value of any attribute, Ai,

i = 1, …, r, of a tuple is unknown, the logical function, f, also produces an unknown value as

its output.

4.1.2 The Arithmetic Functions

The arithmetic functions can involve addition, subtraction, multiplication, and division. An

arithmetic function takes a set of attributes as its argument and produces an attribute that has

a type of real or integer. Let f1, …, fr be operations in relational algebra, each of which

produces an integer or a real number. The arithmetic function f is defined as follows:

)(...)() ..., ,(111 rrr afafaaf ⊗⊕= ,

where ai ∈ dom(Ai), U UU

∈

==

J

j
T

I

i
Ri ji

A
11

 AA , i = 1, …, r,

and ⊕, …, ⊗ ∈ {+, −, ×, ÷}.

64

In the case where the value of any attribute, Ai, i = 1, …, r, of a tuple is unknown, the

arithmetic function, f, produces an unknown value as its output.

4.1.3 The Substring Functions

The substring functions extract a specific portion of a given attribute. Let the given attribute,

A, be a string of s characters. For any a ∈ dom(A), we use a[i] to denote the i-th character of

a. The substring function, f, is defined as follows:

][]...1[][)(ualalaaf += ,

where a ∈ dom(A), U UU

∈

==

J

j
T

I

i
R ji

A
11

 AA ,

and 1 ≤ l ≤ u ≤ s.

In the case where the value of an attribute, A, of a tuple is unknown, the substring

function, f, produces an unknown value as its output.

4.1.4 The Discretization Functions

The discretization functions discretize the domain of any numeric attribute into a finite

number of intervals. Let f be the discretization function that creates r intervals. We use ui to

denote the upper limit of the i-th interval, for i = 1, …, r – 1. Then, f is defined as follows:

>
≤<−

≤<
≤

=

−

−−

1

12

21

1

 if
 if1

.

.

.
 if2
 if1

)(

r

rr

ua
uau

r
r

uau
ua

af ,

where a ∈ dom(A), U UU

∈

==

J

j
T

I

i
R ji

A
11

 AA .

In the case where the value of an attribute, A, of a tuple is unknown, the discretization

function, f, produces an unknown value as its output.

The boundaries of the intervals can be specified by users or determined automatically

by using various algorithms (e.g., [Ching, Wong, and Chan 1995; Liu, Wong, and Wang

2004]). One of the commonly used algorithms involves discretizing the attribute into equal

65

intervals. Another popular algorithm involves discretizing the attribute into intervals in

such a way that the number of tuples in each interval is the same. As a result, each tuple has

an equal probability of lying in any interval.

4.2 A Case Study on the Bank-Account Database
The bank-account database was provided by a bank in Hong Kong. The bank does not want

to be identified in our work because customer attrition rates are confidential. The bank-

account database is stored in an Oracle database, which is one of the most popular relational

database management systems [Date 2000]. It is composed of 3 relations, namely,

CUSTOMER, ACCOUNT, and TRANSACTION. Of these relations, CUSTOMER and

ACCOUNT contain relational data, whereas TRANSACTION contains transactional data.

Specifically, the bank maintains a tuple in CUSTOMER for each customer (e.g., sex, age,

marital status, etc.), a tuple in ACCOUNT for each account owned by a customer (e.g.,

account type, loan amount limit, etc.), and a tuple in TRANSACTION for each transaction

made by a customer on one of his/her accounts (e.g., cash deposit, cash withdrawal, etc.). A

customer can have one or more accounts and an account can have one or more transactions.

Accordingly, a tuple in CUSTOMER is associated with one or more tuples in ACCOUNT,

and a tuple in ACCOUNT is associated with one or more tuples in TRANSACTION.

Fig. 2 shows the schema of the bank-account database. Since each relation in the bank-

account database contains many attributes, we only show a subset of these attributes in Fig.

2.

CUSTOMER (CUST_ID, SEX, AGE, MARITAL_STATUS, …)
ACCOUNT (ACCT_ID, CUST_ID, OVERDRAFT_LIMIT, BALANCE, …)
TRANSACTION (TID, ACCT_ID, DATE, AMOUNT, …)

Fig. 2. Schema of the bank-account database.

It is important to note that a relation in a relational database may contain relational data

or transactional data. The entity that a relation represents is what makes it either relational

or transactional. In a relation that contains transactional data, each tuple (transaction record)

represents a business transaction. Specifically, a transaction record represents a debit or

credit transaction in the bank-account database. A transaction record, therefore, has to store

the account involved in the transaction, the date of the transaction, the amount of the

transaction, etc.

In the bank-account database, CUSTOMER contains data for 320,000 customers. Each

customer had opened one or more bank accounts for the purpose of using loan services, such

66

as a mortgage loan, a tax payment loan, etc. In this data, 99.5% of all customers were from

Hong Kong and the remaining 0.5% of customers were from other countries (e.g., Singapore,

Taiwan, France, the United States, etc.). The total loan balance of all customers in the bank-

account database was H.K. $11.8 billion in November 1999.

The bank-account database was extracted from the time interval of September 1999

through to November 1999. The task was to reveal the interesting association relationships

in the data so as to better serve and retain customers. These relationships are represented in

the form of fuzzy association rules. Table 1 gives a summary of the bank-account database.

Table 1. Summary of the bank-account database.

Relation No. of Attributes No. of Tuples
CUSTOMER 48 320,000
ACCOUNT 42 558,431

TRANSACTION 37 1,746,996

4.2.1 The Transformation Functions Defined

In this section, we describe how we can construct a transformed relation, R (T_ACCT_TYPE,

T_AMOUNT, T_NATIONALITY, …), using the transformation functions. To obtain the

transformed relation, we (including a domain expert from the bank) defined 102

transformation functions in total. From the 102 transformation functions, in this section, we

present three of them as an illustration.

Consider the attribute ACCOUNT[ACCT_ID]. The first digit of this attribute denotes

the type of account. Let us suppose that it is a personal account if this digit is 1 and that it is

a corporate account if this digit is 2. There exists a transformation function, f1, defined as:

f1(s) = first_digit_of(s),

where first_digit_of(s) returns the first digit of string s. The transformed attribute

T_ACCT_TYPE was produced by applying f1(ACCOUNT[ACCT_ID]) to every tuple in

ACCOUNT, which is an example of the substring functions that are defined in Section 4.1.3.

To compute the average amount in the customers’ accounts, we make use of another

transformation function, f2, which is defined as follows:

67

|)(|

][

)()(
2 ACCOUNT

AMOUNT

CUST_ID

ACCOUNTCUST_ID

id

t id

t

idf
=

∈
∑
==

σ
σ ,

where σ denotes the SELECT operation from relational algebra and |S| denotes the

cardinality of set S. The function, f2, is an example of the arithmetic functions that are

defined in Section 4.1.2. The transformed attribute, T_AMOUNT, was produced by applying

the function f2(CUSTOMER[CUST_ID]) to every tuple in CUSTOMER.

The nationality of the customers can be grouped into different geographical regions for

the purpose of discovering more meaningful rules. Such a grouping is performed by a

transformation function, f3, which is defined as:

=

Canadianor US= if elseAmericanNorth
Germanor ...or French or UK = if elseEuropean

Koreanor ...or Japaneseor Chinese= ifAsian
)(3

n
n

n
nf .

This function, f3, is an example of the logical functions that are defined in Section 4.1.1.

The transformed attribute, T_NATIONALITY, was produced by applying the function

f3(CUSTOMER[NATIONALITY]) to every tuple in CUSTOMER.

By applying the transformation functions to the bank-account database, we obtained

the required transformed relation. There are 102 attributes in the transformed relation.

Among the 102 transformed attributes, 6 are categorical (discrete-valued) and 96 are

quantitative (continuous-valued). Instead of performing data mining on the original data,

we discovered interesting associations from the transformed data.

4.2.2 Fuzzy Association Rules Discovered

Instead of applying our fuzzy association rule mining algorithms proposed in Chapter 7 to

the three original relations in the bank-account database, we performed data mining on the

transformed relation. The results obtained by FARM and EFARM are more or less the same.

We report only the results obtained by FARM in this section for clarity.

In consultation with the banking officials, we defined appropriate linguistic terms for

some attributes in the transformed relation, whereas we applied our fuzzy partitioning

technique proposed in Chapter 5 to generate linguistic terms for other attributes

automatically. As an example, two linguistic terms, Small and Large, were defined for the

attribute called Loan Balance. The definitions of these linguistic terms are given in Fig. 3.

68

0

1

0 200000 400000 600000 800000 1000000

Loan Balance

D
eg

re
e

of
 M

em
be

rs
hi

p
Small Large

Fig. 3. The definitions of the linguistic terms for the attribute called Loan Balance.

As another illustration, let us consider the attribute called Customer Age. Four

linguistic terms Young, Youth, Middle Aged, and Elderly were defined for Customer Age

(Fig. 4).

Using the linguistic terms that were defined by the domain expert, we applied our rule

mining algorithm to the transformed relation. From the discovered fuzzy association rules,

we selected 200 rules randomly and presented them to the banking officials whom we

consulted on the definition of the linguistic terms. The rules were evaluated according to

how useful and how unexpected they were, as judged by the domain expert. The domain

expert classified the rules into three categories: very useful, useful, and less useful. The

result of the classification of these rules is summarized in Table 2.

69

0

1

0 20 40 60 80 100

Customer Age

D
eg

re
e

of
 M

em
be

rs
hi

p

Young Youth Middle Aged Elderly

Fig. 4. The definitions of linguistic terms for the attribute called Customer Age.

Table 2. Classification of the fuzzy association rules discovered in the bank-account

database.

 No. of Rules Percentages
Very useful 51 25.5%

Useful 132 66.0%
Less useful 17 8.5%

Among the 200 rules, the domain expert found 91.5% of them to be either useful or

very useful. We expect that the evaluation of the remaining rules will follow a similar

distribution because the 200 evaluated rules were selected randomly. This evaluation is

quite high for an automated data mining tool. The reasons for this are likely to be that our

interestingness measure can effectively reveal the interesting associations that are hidden in

the data and that the fuzzy association rules, which employ linguistic terms to represent the

underlying relationships, are more natural for human users to understand.

In the rest of this section, we show some of the discovered fuzzy association rules,

which were identified as very useful by the domain expert. The following rule, regarding

the affect that the annual income of a customer and the number of accounts that he/she holds

has on the length of the customer relationship, was found being very useful.

70

Annual Income = Very Large ∧ No. of Accounts = Very Small

 ⇒ Relationship Length = Very Short [w = 0.71],

where Relationship Length is produced by an arithmetic function, fRelationship Length, which is

defined as follows:

CUSTOMER))SYSDATE CUST_IDCEMEMBER_SIN (()(idLength ipRelationsh idf =−= σπ ,

where π is the PROJECT operation in relational algebra, and SYSDATE returns the current

date in Oracle.

This rule states that a customer who has a very large annual income and who holds a

very small number of accounts will have a very short relationship with the bank. The length

of the relationship that the bank has with a customer is important because the bank has a

greater opportunity to cross-sell its products and services to a customer if he/she stays with

the bank for a longer time. The domain expert found this rule being useful because it

identifies the characteristics of customers who are more likely to have a short-tem

relationship with the bank. By providing incentives to these customers, the bank can

lengthen the relationships with them and increase its cross-selling opportunities (and hence

we hope also improve its profitability). It is important to note that this rule involves only

the attributes in the relational data.

The following fuzzy association rule, regarding the factors affecting the transaction

costs, was also found to be very useful.

Sales Cost (Direct) = Large ∧ Sales Cost (Branch) = Very Large

 ⇒ ATM Transaction Cost = Very Large

 ∧ Branch Transaction Cost = Very Large [w = 5.38].

This rule describes the costs of ATM transactions and branches as being very large if the

cost of direct sales is large and the cost of branch sales is also very large. The rule identifies

the factors that affect the costs of ATM transactions and branches. Based on this rule, the

domain expert suggested that the bank could provide better control of the costs of direct and

branch sales so that the costs of ATM transactions and branches could be reduced. It is also

important to note that this rule involves only the attributes in the transactional data.

Let us consider the fuzzy association rules that involve attributes that are in both the

71

relational and transactional data.

Customer Sex = Female ⇒ Loan Balance = Small [w = 1.23]

Customer Sex = Male ⇒ Loan Balance = Large [w = 0.67],

where Loan Balance is produced by an arithmetic function, fLoan Balance, which is defined as

follows:

|)(|

][

)()(
 ACCOUNT

CELOAN_BALAN

CUST_ID

ACCOUNTCUST_ID

id

t
BalanceLoan

id

t

idf
=

∈
∑
==

σ
σ .

The former rule states that female customers are more likely to use small loans, whereas the

latter rule describes male customers as being more likely to use large loans. It is important

to note that these rules are concerned with how the demographics of a customer affect

his/her transactions. Specifically, they describe the association relationships between a

customer’s gender, which is contained in the relational data, and his/her total loan balances,

which are contained in the transactional data. These rules cannot be discovered unless both

relational and transactional data are considered together.

In addition to these rules, let us also consider the following fuzzy association rule:

Customer Sex = Female ∧ Marital Status = Widowed

 ⇒ Loan Balance = Large [w = 3.62].

This rule states that female customers who are widowed are more likely to use large loans.

As discussed above, a female customer is expected to make use of only small loans.

However, the fact that these women are widowed, means that they tend to use large loans.

Similar to the rules discussed above, this rule associates the demographics (i.e., gender and

marital status) of a customer with his/her transactions (i.e., loan balances). This rule can

only be revealed if relational and transactional data are considered together.

4.2.1.1 Customer Retention

On the basis of the fuzzy association rules concerning the loan balance, the domain expert

revealed that customers who use small loans could easily settle the loans as compared to

those with larger loans. Because of this, customers who use small loans are more likely to

stop using the loan services and cease to be a customer. Based on the rules concerning a

72

small loan balance, the bank is able to identify the characteristics of customers that may

cease being customers. The bank can retain more of its customers in the future by offering

incentives to the customers that have the same characteristics. In this way, our approach can

be used for customer retention or to help reduce the customer attrition rate.

Let us consider the fuzzy association rules concerning the affect of the gender of a

customer on his/her loan balance. Specifically, they state that female customers are more

likely to use small loans, whereas male customers tend to use large loans. Based on these

rules, the domain expert also revealed that female customers usually have a significant

amount of savings and it is probably because of this reason that they tend to use small loans.

This characteristic means that female customers tend to find it easier to settle loans, and

hence they are more likely to cease using the loan services as compared to male customers.

The attrition of customers is therefore related to gender. This finding is very useful to the

domain expert because customers who are likely to cease using the loan services could be

identified using these rules. To reduce the attrition rate, the domain expert suggested that

incentives, such as lower interest rates, could be offered to female customers.

Let us also consider the fuzzy association rule that states that female customers who are

widowed are more likely to use large loans. From other rules, we have revealed that female

customers are more likely to cease using the loan services. However, the fact that these

women are widowed, means that they tend to continue using the loan services. The domain

expert found this rule being especially useful because it identifies a new niche market for

promoting the bank’s loan services.

73

Chapter 5

Partitioning Continuous Attributes

Many of existing data mining algorithms (e.g., ID3 [Quinlan 1986], AQ15 [Michalski et al.

1986], ITRule [Smyth and Goodman 1992], CN2 [Clark and Niblett 1989], and CBA [Liu,

Hsu, and Ma 1998]) can only be applied to discrete-valued data. In order to deal with

continuous or mixed continuous and discrete valued data, the domain of each continuous

attribute is typically discretized into a finite number of intervals [Ching, Wong, and Chan

1995; Chiu, Wong, and Cheung 1991; Dougherty, Kohavi, and Sahami 1995; Fayyad and

Irani 1993; Kerber 1992; Kurgan and Cios 2001; Liu and Setiono 1997; Liu, Wong, and

Wang 2004; Wong and Chiu 1987]. The discrete-valued and the discretized data can then

be handled in a uniform fashion and rules or models can be mined from them. Some data

mining algorithms use built-in discretization mechanisms instead of using a discretization

algorithm to preprocess continuous data. For example, when a continuous attribute is

encountered in the data mining process, C4.5 [Quinlan 1993], CART [Breiman et al. 1984],

and the association rule mining algorithm proposed in [Srikant and Agrawal 1996] discretize

its domain into two or more intervals so that their criterion functions are optimized.

Although they do not require continuous attributes to be discretized in advance, they

discretize the attributes while mining rules.

Discretization enables many data mining algorithms to handle real-world data sets that

consist of not only discrete, but also continuous data. However, if too many data lie on the

boundaries of the intervals due to the ambiguous or fuzzy nature of the attribute values near

the boundary regions, this could drastically affect the discovered rules or models that could

be misleading and meaningless. As a consequence, data mining algorithms could not

discover accurate models or rules from the discretized data.

To better handle continuous data, the use of fuzzy sets for data mining has recently

been proposed in the literature [Mitra, Pal, and Mitra 2002]. It allows continuous data that

lie on the interval boundaries to partially belong to multiple intervals. The resilience to

noises and the affinity with the human knowledge representation of fuzzy sets make them a

key component in many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 2003;

Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and

Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow

1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999;

Yager 1991]). By and large, these systems require fuzzy sets to be predefined as input upon

74

which they perform data mining.

A fuzzy set is defined by a membership function which maps objects in a domain of

concern to their membership values in the fuzzy set. It is associated with a linguistic term,

which allows human users to easily express their knowledge on one hand and comprehend

the expressed knowledge on the other (see, e.g., [Pedrycz and Gomide 1998; Yen and

Langari 1999]). Since membership functions can profoundly affect the performance of

fuzzy models, the determination of membership functions or fuzzy partitioning is an

important problem in fuzzy data mining. A membership function can be either determined

by human experts or generated directly from data. A weakness of having human experts to

provide inputs is that it is usually difficult for them to express or formalize their knowledge

and experience in most situations [Buchanan et al. 1983; Johnson-Laird 1989]. It is for this

reason that significant efforts have been put into generating membership functions from data

recently (e.g., [Arslan and Kaya 2001; Fajfer and Janikow 2000; Jang 1993; Janikow and

Fajfer 1999; Karr 1991; Lee and Takagi 1993; Liao, Celmins, and Hammell II 2003]).

In this chapter, we propose a new method, called Information-Theoretic Fuzzy

Partitioning (ITFP), to construct fuzzy partitions directly from data. It uses an information-

theoretic measure, which evaluates the interdependence between the class membership and

an attribute, as the objective function for fuzzy partitioning. ITFP employs fractional

programming (iterative dynamic programming) to find the global optimum of the measure.

An advantage of ITFP is that it can determine the number of fuzzy sets automatically.

To evaluate the performance of ITFP, we applied it to several data sets when fuzzy

partitions are constructed. We then fed the fuzzified data sets into a well-known decision-

tree based algorithm, C4.5 [Quinlan 1993]. For C4.5 to handle the fuzzified data, it is

extended in such a way that it uses the fuzzy membership values of continuous data in the

calculation of the gain ratio. We compared the classification accuracies of ITFP with those

obtained by other discretization and fuzzy partitioning methods. The experimental results

show that ITFP is more effective.

The rest of this chapter is organized as follows. In the next section, we present our

approach to fuzzy partitioning. We then show how C4.5 is extended to deal with fuzzy data

in Section 5.2. To evaluate the performance of ITFP, it is applied to several real-life data

sets. In order to facilitate a comparison, we also applied other well-known discretization

and fuzzy partitioning algorithms to these data sets. The experimental results are given in

Section 5.3.

75

5.1 An Fuzzy Partitioning Algorithm

5.1.1 An Class-Attribute Interdependence Measure

The fuzzy membership functions most commonly used in practice are the triangular

membership functions and the trapezoid membership functions [Yen and Langari 1999].

Since the former can be considered a special case of the latter, we consider only the

trapezoid membership functions in this chapter.

Let A1, …, AK be the attributes of the real-world entities represented by a relational

table, D. If Ak, k ∈ {1, …, K}, is discrete, let its domain be represented by

} ..., ,{)(1 kkRkk aaAdom = . Otherwise, if Ak, k ∈ {1, …, K}, is continuous, let its domain be

represented by dom(Ak) = [lk, uk], where lk, uk ∈ ℜ. For classification, one of the discrete

attributes is chosen as the class label and let us denote it as Ac, c ∈ {1, …, K}.

For each continuous attribute, Ak, k ∈ {1, …, K} – {c}, its domain is represented by

fuzzy sets, Sk1, …,
kkJS , such that:

≥
<≤−−

<
=

4

43344

3

0
)()(

1
)(

j

jjjjj

j

S

bx
bxbbbxb

bx
x

kj
µ for j = 1, (5.1)

≥
<≤−−
<≤
<≤−−

<

=

4

43344

32

21121

1

0
)()(

1
)()(

0

)(

j

jjjjj

jj

jjjjj

j

S

bx
bxbbbxb
bxb
bxbbbbx

bx

x
kj

µ for j = 2, …, Jk – 1, (5.2)

and

≥
<≤−−

<
=

2

21121

1

1
)()(

0
)(

j

jjjjj

j

S

bx
bxbbbbx

bx
x

kj
µ for j = Jk, (5.3)

where
kjSµ is the membership function of fuzzy set Skj, j = 1, …, Jk.

76

The fuzzy partition of dom(Ak) is composed of Sk1, …,
kkJS that satisfies the following

condition [Ruspini 1969]:

 1)(
1

=∑
=

k

kj

J

j
S xµ , ∀ x ∈ dom(Ak). (5.4)

It has been shown that this condition is a desirable property for the stability of fuzzy logic

controllers (see, e.g., [Pedrycz and Gomide 1998; Yen and Langari 1999]). In order to

satisfy the condition, we set bj1 = b(j – 1)3, bj2 = b(j – 1)4, bj3 = b(j + 1)1, and bj4 = b(j + 1)2, for

j = 2, …, Jk – 1, when we generate the fuzzy sets.

Let) ..., ,(1 kkJk SS=ϕ denote the fuzzy partition and let Lkϕ denote the linguistic

variable, which represents the partitioned attribute. For clarity, we denote the expression

“Lkϕ is Skj” as Lkϕ = Skj in this chapter. We say that a record, d, is with Lkϕ = Skj to a degree of

])[(kS Ad
kj

µ . The joint probability of a record in D, which belongs to class acr, c ∈ {1, …,

K}, r ∈ {1, …, Rc}, with Lkϕ = Skj, k ∈ {1, …, K} – {c}, j ∈ {1, …, Jk}, is given by:

∑

∑

∈

∈ ==

Dd
kS

Dd
kS

aS Ad

Ad

p
kj

cracA

kj

crkj])[(

])[(
)(

µ

µ
σ

, (5.5)

where σ denotes the SELECT operation from relational algebra.

The estimated marginal probability of Ac = acr and that of Lkϕ = Skj are calculated by:

 ∑
=

=
k

crkjcr

J

j
aSa pp

1

 (5.6)

and

 ∑
=

=
c

crkjkj

R

r
aSS pp

1

, (5.7)

respectively.

77

Definition 5.1 The interdependence redundancy measure between the class attribute, Ac,

and fuzzy set Skj is defined as:

),(
);(

);(
kjc

kjc
kjc SAH

SAI
SAR = , (5.8)

where I(Ac; Skj) is the mutual information between Ac and Skj, which is given by:

 ∑
=

=
c

kjcr

crkj

crkj

R

r Sa

aS
aSkjc pp

p
pSAI

1

log);((5.9)

and H(Ac, Skj) is the joint entropy of Ac and Skj and is calculated by:

 ∑
=

−=
c

crkjcrkj

R

r
aSaSkjc ppSAH

1

log),(. (5.10)

In addition to the interdependence redundancy measure between the class attribute and

a fuzzy set, we can also define the measure between the class attribute and a linguistic

variable [Wang and Wong 1979; Wong and Liu 1975].

Definition 5.2 The interdependence redundancy measure between the class attribute, Ac,

and linguistic variable Lkϕ is defined as:

),(
);(

);(
ϕ

ϕ
ϕ

kc

kc
kc LAH

LAI
LAR = , (5.11)

where I(Ac; Lkϕ) is the mutual information between Ac and Lkϕ, which is given by:

 ∑
=

=
kJ

j
kjckc SAILAI

1

);();(ϕ (5.12)

and H(Ac, Lkϕ) is the joint entropy of Ac and Lkϕ and is calculated by:

78

 ∑
=

=
kJ

j
kjckc SAHLAH

1

),(),(ϕ . (5.13)

I(Ac; Lkϕ) measures the average reduction in uncertainty about Ac that results from

learning the value of Lkϕ [MacKay 2003]. To maximize the use of attribute Ak after

partitioning for classification, we should maximize the dependence of Ac on Lkϕ during the

fuzzy partitioning process. I(Ac; Lkϕ) initially appears to be a good candidate for such a

partitioning criterion. However, a weakness of using I(Ac; Lkϕ) as the partitioning criterion

is that its value increases with the number of fuzzy sets. In fact, I(Ac; Lkϕ) is at maximum

before any partitioning and it decreases as the number of fuzzy sets is reduced. It is for this

reason that we need to normalize I(Ac; Lkϕ) by H(Ac, Lkϕ), which yields the interdependence

redundancy measure, R(Ac; Lkϕ).

R(Ac; Lkϕ) reflects the degree of deviation from interdependence between Ac and Lkϕ. If

R(Ac; Lkϕ) = 1, Ac and Lkϕ are strictly dependent. If R(Ac; Lkϕ) = 0, they are statistically

independent. If 0 < R(Ac; Lkϕ) < 1, then Ac and Lkϕ are partially dependent. The definition of

the interdependence redundancy measure shows that it is independent of the composition of

Ac and Lkϕ. This implies that the number of attribute values can be reduced without

destroying the interdependence relationship between Ac and Lkϕ. As a result, partitioning

can be considered as a process to remove the redundancy introduced by too many possible

attribute values. At the same time, the fuzzy partitioning process should minimize the loss

of correlation between the class attribute and any other attribute. The properties of the

interdependence redundancy measure clearly render an ideal candidate as a class-dependent

partitioning criterion [Ching, Wong, and Chan 1995; Liu, Wong, and Wang 2004], which is

used in our partitioning method as the optimization criterion.

The partitioning problem can therefore be solved by finding the fuzzy partition of the

domain of Ak such that the interdependence redundancy measure after partitioning is

maximized. Let ψ represent the set of all possible finite fuzzy partitions. Given a class-

attribute pair, we need to find ϕmax ∈ ψ such that:

);();(,ψ
max ϕϕϕ kckc LARLAR ≥∈∀ . (5.14)

5.1.2 Fuzzy Partitioning of Continuous Data

To find ϕmax, we propose to use fractional programming [Sniedovich 1992], which is a

79

branch of nonlinear optimization involving ratio functions. Specifically, given a set, Z, and

real-valued functions on Z, r, v, and w, such that
)(
)()(

zw
zvzr = , where w(z) > 0 for all z ∈ Z,

fractional programming can be used to find c ∈ Z such that:

))((max zrc
Zz∈

= . (5.15)

Let Z* be the set of solutions to the problem of finding c. By assuming that Z* is not

empty, it can be solved as a parametric problem of finding a(λ) such that:

))()((max)(zwzva
Zz

λλ −=
∈

, (5.16)

where λ ∈ ℜ. Let Z*(λ) be the set of optimal solutions given λ and let us assume that it has

at least one solution.

It is proved in [Sniedovich 1992] that z ∈ Z* if, and only if, r ∈ Z*(r(z)) and hence

a(λ) = 0 if, and only if, λ = c. The Dinkelbach’s algorithm shown in Fig. 5 can be used to

solve a(λ) = 0.

k = 1;
select some z ∈ Z;
z(k) = z;
λ(k) = r(z(k));
loop
 find))()((max)()()(zwzva k

Zz

k λλ −=
∈

;

 select some z ∈ Z*(λ(k));
 z(k + 1) = z;
 λ(k + 1) = r(z(k + 1));
 k = k + 1;
until (a(λ(k)) = 0)
z’ = z;
λ’ = r(z’);

Fig. 5. The Dinkelbach’s algorithm.

The Dinkelbach’s algorithm obtains the optimal solution, z’, and it is guaranteed to

terminate in finite steps if w(z) > 0 for all z ∈ Z and if Z is finite [Sniedovich 1992].

Based on the Dinkelbach’s algorithm, we propose to use a new fuzzy partitioning

algorithm, called Information-Theoretic Fuzzy Partitioning (ITFP), to partition the domains

of continuous attributes. It has two important components: one is an iterative process that

80

uses the first component to drive towards the final global optimum solution and the other

attempts to attain the maximum value of the objective function by applying dynamic

programming for optimizing the class-attribute interdependence. This algorithm is

presented in Fig. 6. For every continuous attribute, Ak, k ∈ {1, …, K} – {c}, the algorithm

obtains the optimal fuzzy partition ϕmax.

for each continuous attribute Ak, k ∈ {1, …, K} – {c}
begin
 select some ϕ ∈ ψ;

),(
);(

);(
ϕ

ϕ
ϕ

kc

kc
kc LAH

LAI
LARu == ;

 loop
 find ϕ’ such that),();(ϕϕ ′′ − kckc LAuHLAI is maximized using
 a dynamic programming algorithm (see below);

),(
);(

);(
ϕ

ϕ
ϕ

′

′
′ ==′

kc

kc
kc LAH

LAI
LARu ;

 u = u’;
 until (u = u’)
 ϕk = ϕ’;
end

Fig. 6. The ITFP algorithm.

Now, we describe the dynamic programming algorithm to obtain the fuzzy partition

ϕmax, such that),();(
maxmax kckc LAuHLAI ϕϕ − is maximized for any given u ≥ 0. Let

} ..., ,{)(1 kk MA xxD =π such that
kMxx ≤≤ ...1 , where π denotes the PROJECT operation

from relational algebra. Let the domain of Ak be partitioned into fuzzy partition

) ..., ,(1 kkJk SS=ϕ such that 21 1 jmj bxb
j
≤≤

−
 and 43 jmj bxb

j
≤≤ , j = 1, …, Jk, mj ∈ {1, …,

Mk}, and
kJmm << ...1 . bj1 and bj2 are already set when Sk(j – 1) is determined to satisfy the

condition of fuzzy partition (Equation (5.4)). To generate Skj, we need to find bj3 and bj4

only. For the purpose of determining bj3 and bj4, let us suppose that
1−jmx ,

jmx , and
1+jmx

are given here. The way to determine
jmx , j = 1, …, Jk, will be presented later in this

section.

81

1jb
1−jmx 2jb 3jb

jmx 4jb
0

1

(a) Xj.

1jb
1−jmx 2jb 3jb

jmx 4jb
0

1

(b) Y.

1jb
1−jmx 2jb 3jb

jmx 4jb
0

1

(c) Skj.

Fig. 7. Fuzzy sets Xj, Y, and Skj.

Given
1−jmx and

jmx , we can form a special fuzzy set, Xj, to represent the interval,

] ,[
1 jj mm xx
−

, whose membership function is defined as:

82

>
≤≤

<
=

−

−

j

jj

j

j

m

mm

m

X

xx
xxx

xx
x

0
1
0

)(
1

1

µ , (5.17)

for j = 1, …, Jk. Xj is given in Fig. 7(a). In fact,) ..., ,(1 kJXX=τ is also a fuzzy partition

of dom(Ak).

We can then calculate the interdependence redundancy measure R(Ac; Xj) between Ac

and Xj by Equation (5.8). We are going to determine Skj so that R(Ac; Skj) = R(Ac; Xj). This

ensures that the fuzzy partitioning process does not introduce any change in the

interdependence relationship in terms of the interdependence redundancy measure.

Following the idea presented in [Wu 1999], we have the user to supply a parameter, which

controls how a fuzzy set spreads out into its adjacent fuzzy sets. In our approach, the user-

specified parameter, ε, is interpreted as the percentage of the interdependence redundancy

measure between Ac and Skj to be spread out into Sk(j + 1). Initially, let us set

)(22
1

3 jmj bxb
j
−= and define a temporary fuzzy set, Y, whose membership function is

defined as:

>
≤≤
<≤−−

<

=

3

32

21121

1

0
1

)()(
0

)(

j

jj

jjjjj

j

Y

bx
bxb
bxbbbbx

bx

xµ . (5.18)

We then employ the binary search to find the value of bj3 in the range between bj2 and

jmx such that R(Ac; Y) = (1 – ε) R(Ac; Xj). Fig. 7(b) shows fuzzy set Y.

After the value of bj3 is found, let us set)(32
1

4 1 jmj bxb
j
−=

+
. Again, we use the binary

search to find the value of bj4 in the range between bj3 and
1+jmx such that

R(Ac; Skj) = R(Ac; Xj). Skj is then determined. Skj is shown graphically in Fig. 7(c). It is

important to note that this method makes
crjcrkj aXaS pp = and hence R(Ac; Lkϕ) = R(Ac; Lkτ).

Consequently, R(Ac; Lkϕ) is maximized when R(Ac; Lkτ) is maximized.

Now, we present how to determine
jmx , j = 1, …, Jk. Let Fτ = I(Ac; Xkτ) – uH(Ac, Xkτ)

for fuzzy partition) ..., ,(1 kJXX=τ . We have:

83

 ∑∑
= =

+=
c k

crjcrj

jcr

crj

crj

R

r

J

j
aXaX

Xa

aX
aX pup

pp

p
pF

1 1

)loglog(τ . (5.19)

Fτ can therefore be considered as the sum of Jk terms, each of which corresponds to a

fuzzy set, Xj, and is given by:

 ∑
=

+
c

crjcrj

jcr

crj

crj

R

r
aXaX

Xa

aX
aX pup

pp

p
p

1

)loglog(, (5.20)

for j ∈ {1, …, Jk}. The value of Fτ is fixed if the lower and upper bounds of the

corresponding region are given. Let us consider the case that the s-th region boundary (i.e.,

smx) is set to xi, i ∈ {1, …, Mk}, that is, ms = i. The partitioning of the first i attribute values

has nothing to do with that of the last Mk – i attribute values in terms of Fτ. This observation

allows us to use a dynamic programming algorithm to optimize Fτ.

Let gis be the sum of the first s terms of Fτ given that xi is the s-th region boundary, i.e.,

 ∑∑
= =

+=
s

j

R

r
aXaX

Xa

aX
aXis

c

crjcrj

jcr

crj

crj
pup

pp

p
pg

1 1

)loglog(. (5.21)

Let Tis be the set of all possible partition schemes with the first i continuous values

being partitioned into s regions, we write }|) ..., , ..., ,{(
1

imxxxT smmmis kJs
== . Let fis

denote the optimal value of gis among all possible partition schemes in Tis, i.e.,

)(max
) ..., ,(1

isTxxis gf
iskJmm ∈

= . (5.22)

fis drives the partitioning of the first i attribute values given that they are partitioned

into s regions. Since Ak has Mk values in D, it can be partitioned into at most Mk regions.

Therefore, we have:

)(max)),();((max
1 kk

kk
JMMJkckc fLAuHLAI

≤≤
=− τττ

. (5.23)

To apply the dynamic programming algorithm to calculate fis, we need to figure out a

recursive equation to represent fis. Let us assume that there are t attribute values in the s-th

region (i.e., ms – ms – 1 = t). We obtain the following recursive equation:

84

 ∑
=

−−
∈

++=
c

crscrs

scr

crs

crs
iskkJk

R

r
aXaX

Xa

aX
aXstiTiiis pup

pp
p

pff
1

)1)(() ..., ,(
)loglog()(max

1

. (5.24)

We also have the following initial conditions:

 ∑
=

+=
c

crcr

cr

cr

cr

R

r
aXaX

Xa

aX
aXi pup

pp
p

pf
1

1)loglog(
11

1

1

1
, ∀ 1 ≤ i ≤ Mk, (5.25)

where m0 = 1 and m1 = i, and

∞−

=+= ∑
=

otherwise

spup
pp

p
pf

c

crcr

cr

cr

cr

R

r
aXaX

Xa

aX
aX

s
1)loglog(

11
11

1

1

1 . (5.26)

Based on the above equations, we can formulate the following dynamic programming

algorithm:

1. Create a table with size U × U, where U is the number of unique values of attribute

Ak. The element in the i-th row and the s-th column gives the value of fis.

2. Initialize the elements in the first row and the first column of the table according to

Equation (5.26) and Equation (5.25), respectively.

3. Calculate all the elements in this table according to the recursive equation of fis

(Equation (5.24)).

4. Find the maximum value in the last row. Let us assume that the maximum value is

in the s*-th column. Then the optimal partition consists of s* regions (i.e., s* fuzzy

sets). We then trace back to obtain the optimal region boundaries.

To incorporate semantics into the fuzzy sets to be discovered, one can define the

interval boundaries himself/herself and make use of our proposed method to fuzzify the

boundaries. In this way, the semantics can also be taken into consideration. Furthermore,

since humans can typically handle only 7 ± 2 concepts at the same time, one may also like

to supply such an upper bound of the number of fuzzy sets to be discovered.

Finally, let us consider the complexity of ITFP. The complexity of the dynamic

programming component is O(n2), where n is the number of values contained in the data.

The binary search for fuzzifying a boundary can complete in O(n log n). Hence the

85

complexity of our proposed method is O(n2). This kind of task is able to be completed in a

reasonable amount of time by any modern off-the-shelf single-processor machine.

5.2 An Example Application in Fuzzy Decision Tree
Construction

In this section, we describe how C4.5, which is a well-known decision-tree based

classification approach, can be extended to handle fuzzy data. In the tree-building phase,

when C4.5 encounters a discrete attribute, it does what it does as usual without any change.

When it encounters a continuous attribute, which has already been fuzzy partitioned, we

extend it in the following.

Let Ak be the attribute under consideration. Ak is, in turn, represented by a linguistic

variable Lkϕ. Given a set of records, D, that belongs to some class, acr, the average amount

of information, info(D), needed to identify the class of a record in D is given by:

 ∑
=

−=
c

crcr

R

r
aa ppDinfo

1

log)(, (5.27)

where
crap is the estimated marginal probability of Ac = acr calculated by Equation (5.6). In

fact, info(D) is equivalent to the joint entropy of Ac and Lkϕ, H(Ac, Lkϕ), given by Equation

(5.13).

Let us further suppose that D is divided into D1, …,
kJD in accordance with Lkϕ so that

all the records in Dj are with Lkϕ = Skj, j = 1, …, Jk. The expected information requirement,

)(Dinfo
kL ϕ

, can then be computed as the weighted sum over the subsets:

 ∑
=

=
k

kjk

J

j
jSL DinfopDinfo

1

)()(
ϕ

, (5.28)

where
kjSp is the estimated marginal probability of Lkϕ = Skj calculated by Equation (5.7).

The information that is gained, gain(Lkϕ), by dividing D in accordance with Lkϕ, is then

given by:

)()()(DinfoDinfoLgain
kLk ϕϕ −= . (5.29)

86

It is equivalent to the mutual information between Ac and Lkϕ, I(Ac; Lkϕ), calculated by

Equation (5.12).

Now, let us consider the potential information generated by dividing D into Jk subsets,

split info(Lkϕ). It is calculated by:

 ∑
=

−=
k

kjkj

J

j
SSk ppLinfo split

1

log)(ϕ . (5.30)

The gain ratio is then defined as:

)(

)(
)(

ϕ

ϕ
ϕ

k

k
k Linfo split

Lgain
Lratio gain = . (5.31)

Intuitively, it expresses the proportion of the information generated by the division that

appears useful for classification [Quinlan 1993].

The pruning mechanism used in C4.5 can also be extended to handle fuzzy data in a

similar manner. We omit the discussion here for simplicity.

5.3 Evaluating Its Effectiveness
In order to evaluate the performance of ITFP, we applied it to several real-world data sets,

which are the public data sets used in the StatLog project [Michie, Spiegelhalter, and Taylor

1994]. Of all the public data sets used in the StatLog project, the dna and the letter data sets

contain discrete valued data only. We therefore did not use these data sets in our

experiments. A summary of the datasets used in our experiments is given in Table 3. The

interested readers are referred to [Michie, Spiegelhalter, and Taylor 1994] for the details.

Table 3. A summary of the data sets used in our experiments.

Data Set No. of
Attributes

No. of Continuous
Attributes

No. of
Classes

No. of
Records

Largest
Class

australian 14 6 2 690 55.5%
diabetes 8 8 2 768 65.1%
german 24 7 2 1,000 70.0%
heart 13 7 2 270 55.6%

satimage 36 36 6 6,435 23.8%
segment 19 19 7 2,310 14.3%
shuttle 9 9 7 58,000 78.6%
vehicle 18 18 4 846 25.8%

87

First we applied our ITFP to each of the eight data sets to produce a set of fuzzified

data. Each fuzzified data set was divided into two subsets, one for training and the other for

testing. We fed the training set to the modified version of C4.5, which is extended to deal

with fuzzy data (see Section 5.4), to build a fuzzy decision tree. The resultant decision tree

was then used to classify the test records. The classification accuracy of the decision tree

was recorded. This step was repeated ten times and the average classification accuracy was

calculated. The experimental results are given in Table 4 (“Cont.” denotes running C4.5 on

the original data (it has a built-in to discretize continuous values into discrete values),

“Equal Freq.” refers to the equal-frequency discretization, “Entropy” refers to the

information entropy maximization discretization, “HCV” refers to the fuzzy interpretation

of discretized intervals, “S” stands for supervised, and “U” denotes unsupervised).

In our experiments, we set the fuzziness parameter of FCM to 2 because the study in

[Pal and Bezdek 1995] suggests that the best choice is probably in the interval between 1.5

and 2.5, whose mean and midpoint (i.e., 2) is usually the preferred choice for many uses of

FCM. We set the dimension of SOM’s output nodes to 100 × 100 so that SOM is able to

determine the number of clusters automatically by not assigning any input vector to some of

the output nodes.

Table 4. Performance of C4.5 averaged over 10 trials.

Classification
(Standard Deviation)

Discretization Fuzzy Partitioning

Cont. Equal
Width

Equal
Freq. Entropy Top

Down
Bottom

Up FCM SOM SGA HCV ITFP
Dataset

S U U S U U U U U S S

australian 86.2%
(4.2%)

82.5%
(4.5%)

86.8%
(2.9%)

81.6%
(4.1%)

85.1%
(4.4%)

82.2%
(5.5%)

81.9%
(2.8%)

85.1%
(4.4%)

74.6%
(12.7%)

84.8%
(2.7%)

87.1%
(2.8%)

diabetes 72.6%
(7.7%)

66.2%
(4.5%)

68.2%
(3.7%)

75.1%
(5.1%)

63.9%
(4.7%)

68.8%
(4.0%)

74.9%
(5.1%)

71.0%
(5.9%)

68.6%
(4.7%)

65.7%
(4.3%)

76.5%
(4.0%)

german 71.9%
(4.1%)

67.7%
(5.1%)

68.4%
(4.5%)

70.9%
(5.0%)

67.1%
(3.3%)

67.1%
(3.3%)

67.7%
(4.3%)

68.1%
(5.5%)

60.8%
(15.6%)

67.8%
(3.9%)

75.2%
(3.8%)

heart 77.8%
(8.7%)

75.2%
(5.3%)

78.9%
(6.8%)

78.5%
(4.6%)

73.7%
(10.1%)

71.1%
(7.4%)

79.6%
(7.7%)

75.2%
(9.2%)

77.4%
(4.8%)

74.8%
(5.7%)

79.6%
(4.7%)

satimage 85.8%
(1.1%)

82.2%
(0.5%)

83.1%
(2.0%)

81.8%
(1.7%)

21.4%
(2.5%)

21.8%
(1.9%)

84.7%
(0.5%)

82.4%
(0.7%)

46.2%
(4.0%)

22.7%
(2.4%)

86.8%
(1.6%)

segment 96.5%
(1.6%)

91.7%
(1.0%)

94.2%
(1.0%)

95.3%
(1.1%)

11.2%
(1.1%)

85.1%
(2.3%)

94.5%
(2.1%)

96.8%
(1.5%)

36.2%
(1.9%)

1.9%
(0.8%)

95.5%
(0.8%)

shuttle 99.9%
(0.0%)

89.6%
(0.4%)

98.7%
(0.1%)

99.9%
(0.0%)

78.7%
(0.3%)

78.4%
(0.4%)

91.6%
(0.9%)

99.7%
(0.0%)

11.9%
(0.0%)

77.3%
(0.1%)

98.2%
(0.2%)

vehicle 71.2%
(5.6%)

63.9%
(3.5%)

66.4%
(6.0%)

69.3%
(6.1%)

23.2%
(2.1%)

61.9%
(4.9%)

72.7%
(5.6%)

66.0%
(3.7%)

38.4%
(4.8%)

22.7%
(3.5%)

72.7%
(2.9%)

Average 82.7% 77.4% 80.6% 81.5% 53.0% 67.0% 81.0% 80.5% 51.8% 52.2% 84.0%

88

As shown in Table 4, ITFP obtains the best results on six out of the eight data sets. On

the remaining data set shuttle, discretization algorithms achieve the highest accuracy, and on

segment, the fuzzy partitioning technique SOM does the best. We also find that supervised

methods yield the best results on seven of all the eight data sets. An unsupervised method

produces the best result only on the remaining data set segment. In fact, the best three

algorithms in terms of the average classification accuracy are all supervised ones. By this

token, supervised methods perform better than unsupervised ones.

Our ITFP, which is a supervised approach to fuzzy partitioning, outperforms all the

other discretization and fuzzy partitioning methods in average. It is the best on six of all the

eight data sets. The average performance of the built-in discretization mechanism of C4.5 is

second to ITFP only, but it yields the best accuracy on only one of the eight data sets.

The equal-frequency discretization, information entropy maximization, FCM, and

SOM achieve more or less the same average classification accuracy. The performance of

the equal-width discretization is a little inferior to these four methods.

Although the top-down and the bottom-up fuzzy partitioning are developed for a fuzzy

decision-tree based classification approach, the experimental results show that they do not

perform well. On the contrary, they are among the most disappointing ones in our

experiments. Of the remaining algorithm, SGA’s performance is similar to the top-down

fuzzy partitioning.

To statistically test whether ITFP outperforms the built-in of C4.5, we use the sign test

(see, e.g., [Walpole and Myers 1993]). The null hypothesis is that the classification

accuracy obtained by ITFP and the built-in are the same, whereas the alternative hypothesis

is that the classification accuracy obtained by ITFP is higher than that obtained by the built-

in. ITFP. Of the eight datasets, ITFP performs better than the built-in on six datasets. The

p-value is then equal to ∑
=

=
6

0

9648.0)5.0,8;(
x

xb . Since it is greater than 0.95, the null

hypothesis can certainly be rejected at the 0.05 level of significance. We therefore conclude

that ITFP outperforms the built-in of C4.5.

89

Chapter 6

Attribute Clustering

Clustering is an important topic in data mining research. Given a relational table, a

conventional clustering algorithm groups tuples, each of which is characterized by a set of

attributes, into clusters based on similarity [Jain, Murty, and Flynn 1999]. Intuitively, tuples

in a cluster are more similar to each other than those belonging to different clusters. It has

been shown that clustering is very useful in many data mining applications (e.g., [Fayyad et

al. 1996; Piatetsky-Shapiro and Frawley 1991]).

When applied to gene expression data analysis, conventional clustering algorithms

often encounter the problem related to the nature of gene expression data which is normally

“wide” and “shallow.” In another words, data sets usually contain a huge number of genes

(attributes) and a small number of gene expression profiles (tuples). This characteristic of

gene expression data often compromises the performance of conventional clustering

algorithms. In this chapter, we present a methodology to group attributes that are

interdependent or correlated with each other. We refer to such a process as attribute

clustering. In this sense, attributes in a cluster are more correlated with each other, whereas

attributes in different clusters are less correlated. Attribute clustering is able to reduce the

search dimension of a data mining algorithm to effectuate the search of interesting

relationships or for construction of models in a tightly correlated subset of attributes rather

than in the entire attribute space. After attributes are clustered, one can select a smaller

number for further analysis.

A gene expression data set from a microarray can be represented by an expression table,

T = {wij | i = 1, …, p, j = 1, …, n}, where wij ∈ ℜ is the measured expression level of gene gi

in sample sj [Domany 2003]. Each row in the expression table corresponds to one particular

gene and each column to a sample. Such a data set is typically composed of a large number

of genes but a small number of samples. For example, the colon-cancer data set [Alon et al.

1999] consists of 62 samples and 2,000 genes and the leukemia data set [Golub et al. 1999]

contains 72 samples and 7,129 genes. The number of samples is likely to remain small for

many areas of investigation, especially for human data, due to the difficulty of collecting

and processing microarray samples [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].

The distinctive characteristic of gene expression data allows clustering both genes and

samples [Domany 2003; Jiang, Tang, and Zhang 2004]. With conventional gene clustering

90

methods, the genes are considered as the tuples and the samples as the attributes. Thus it

allows genes with similar expression patterns (i.e., co-expressed genes) to be identified

[Jiang, Tang, and Zhang 2004]. On the other hand, to cluster samples, the samples are

considered as the tuples and the genes as the attributes. The clustering analysis of samples

is to find new biological classes or to refine existing ones [Piatetsky-Shapiro, Khabaza, and

Ramaswamy 2003]. By this token, conventional clustering algorithms are able to group

both samples and genes from the data. In general, Euclidean distance and Pearson’s

correlation coefficient are widely used as the distance measure for clustering [Jiang, Tang,

and Zhang 2004]. However, when Euclidean distance is applied to measure the similarity

between genes, it is not effective to reflect functional similarity such as positive and

negative correlation, interdependency as well as closeness in values. In fact, Euclidean

distance accounts only for the last. In another words, the primary interest of the overall

shapes of genes [Jiang, Tang, and Zhang 2004] is not well accounted for. Hence, Pearson’s

correlation coefficient is proposed by some researchers. An empirical study [Heyer,

Kruglyak, and Yooseph 1999] has also shown that Pearson’s correlation coefficient is not

robust to outliers and it may assign high similarity score to a pair of dissimilar genes. Hence,

a new method to cluster attributes in a relation is presented in this work which takes into

consideration the abovementioned issues. It is known as k-modes Attribute Clustering

Algorithm, referred to as ACA. ACA employs an information measure to evaluate the

interdependence between attributes. It is used to direct the grouping of attributes into

clusters. By applying ACA to gene expression data, clusters of genes based on their mutual

correlation can be discovered. We can then select a small number of the top-ranked genes

in each cluster for further analysis.

Furthermore, having so many genes relative to so few samples is likely to result in the

discovery of irrelevant patterns (i.e., gene combinations which correlate with a target

variable purely by chance) [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. A useful

technique to deal with it is to select a small number of the most promising genes and use

them solely to build models [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. To

select genes, the t-value is widely used [Piatetsky-Shapiro, Khabaza, and Ramaswamy

2003]. It is important to note that the t-value can only be used when the samples are pre-

classified. If no class information is provided, it cannot be used for gene selection. In this

chapter, we introduce a multiple interdependence measure [Chiu and Wong 2004; Wong,

Liu, and Wang 1976] for selection of genes with the highest correlation with the rest of

attributes within a cluster.

To demonstrate ACA’s usefulness for mining and analyzing gene expression data and

91

to evaluate its performance, two gene expression data sets, colon-cancer and leukemia, are

used. We first applied ACA to each of them, selecting the most promising genes; then fed

the selected genes into several well-known classification algorithms and compared their

classification accuracies with those yielded by other gene selection methods. These

classification algorithms, including a decision-tree based algorithm, neural networks, the

nearest neighbor approach, and the naïve Bayes method, are used in this chapter because

they have been employed in classification of gene expression data in the literature [Ben-Dor

et al. 2000; Dudoit, Fridlyand, and Speed 2002; Friedman, Nachman, and Pe’er 2000; Keller

et al. 2000; Khan et al. 2001; Lu and Han 2003; Zhang et al. 2001]. The experimental

results demonstrate that ACA is more effective.

Each tuple in a relation R is characterized by a set of attributes, A1, …, Ap. If Ai,

i ∈ {1, …, p}, takes on discrete values, let its domain be represented by

} ..., ,{)(1 iimii aaAdom = . Otherwise, if Ai, i ∈ {1, …, p}, is continuous, let its domain be

represented by dom(Ai) = [li, ui], where li, ui ∈ ℜ. Let us suppose that R consists of n tuples,

t1, …, tn. Each tuple, tu, u ∈ {1, …, n}, is represented by a vector of p attribute values:

tu = (xu1, …, xup), where xui ∈ dom(Ai), i = 1, …, p.

Definition 6.1 Attribute clustering is a process which finds c disjoint clusters, C1, …, Cc,

of correlated attributes by assigning each attribute in {A1, …, Ap} to one of these clusters.

Formally, we define attribute clustering as a process that ∀ Ai, i ∈ {1, …, p}, Ai is assigned

to a Cr, r ∈ {1, …, c}, where Cr ∩ Cs = ∅ for all s ∈ {1, …, c} – {r}.

To find meaningful clusters, attribute clustering is conducted so that attributes within a

cluster should have high correlation with or high interdependence to each other, whereas

attributes in different clusters are less correlated or more independent. Most of the

conventional clustering methods use some distance metric to measure the dissimilarity or

distance between two objects. In this chapter, we introduce the new interdependence

information measure which we believe are more meaningful if interdependent patterns are

the most significant characteristics of a cluster reflecting the inter-relationship among

attributes.

6.1 An Attribute Interdependence Measure
For each continuous attribute in relation R, its domain is typically discretized into a finite

number of intervals for data mining. In this chapter, we use our fuzzy partitioning technique

ITFP introduced in the last chapter to partition the continuous data. It uses the normalized

92

mutual information measure that reflects interdependence between the class label and the

attribute to be partitioned as the objective function, and fractional programming (iterative

dynamic programming) to find a global optimal solution.

Let us suppose that the domain of Ai, i ∈ {1, …, p}, is fuzzy partitioned by ITFP into

mi fuzzy sets. After fuzzy partitioning, the domains of all the attributes in R can be

represented by } ..., ,{)(1 iimii vvAdom = , i = 1, …, p, where vik = aik, k = 1, …, mi, if Ai is

discrete and vik = lik, which is a linguistic term, if Ai is a fuzzy partitioned continuous

attribute.

Let σ denote the SELECT operation from relational algebra and |S| denote the

cardinality of set S. The probability of a record in R having Ai = vik, i ∈ {1, …, p},

k ∈ {1, …, mi}, is then given by:

|)(|

|)(|
)Pr(

NULL R
R

vA
i

iki

A

vA
iki

≠

===
σ
σ

 (6.1)

and the joint probability of a record in R having Ai = vik and Aj = vjl, i, j ∈ {1, …, p}, i ≠ j,

k ∈ {1, …, mi}, l ∈ {1, …, mj}, is calculated by:

|)(|

|)(|
)Pr(

NULL NULL R

R
vAvA

ji

jljiki

AA

vAvA
jljiki

≠∧≠

=∧=
==∧=

σ

σ
. (6.2)

Definition 6.2 The interdependence redundancy measure [Wong and Liu 1975] between

two attributes, Ai and Aj, i, j ∈ {1, …, p}, i ≠ j, is defined as:

) ,(
) :(

) :(
ji

ji
ji AAH

AAI
AAR = , (6.3)

where I(Ai : Aj) is the mutual information between Ai and Aj, which is given by:

 ∑∑
= = ==

=∧=
=∧==

i jm

k

m

l jljiki

jljiki
jljikiji vAvA

vAvA
vAvAAAI

1 1)Pr()Pr(
)Pr(

log)Pr() :((6.4)

and H(Ai, Aj) is the joint entropy of Ai and Aj and is calculated by:

93

 ∑∑
= =

=∧==∧=−=
i jm

k

m

l
jljikijljikiji vAvAvAvAAAH

1 1

)Pr(log)Pr() ,(. (6.5)

I(Ai : Aj) measures the average reduction in uncertainty about Ai that results from

learning the value of Aj [MacKay 2003]. If I(Ai : Aj) > I(Ai : Ah), h ∈ {1, …, p}, h ≠ i ≠ j, the

dependence of Ai on Aj is greater than the dependence of Ai on Ah. I(Ai : Aj) initially appears

to be a good candidate for measuring the interdependence between Ai and Aj. However, a

weakness of using I(Ai : Aj) is that its value increases with the number of possible attribute

values (i.e., mi and mj). It is for this reason that we need to normalize I(Ai : Aj) by H(Ai, Aj),

which yields the interdependence redundancy measure, R(Ai : Aj).

More accurately stated, R(Ai : Aj) reflects the degree of deviation from independence

between Ai and Aj. If R(Ai : Aj) = 1, Ai and Aj are strictly dependent. If R(Ai : Aj) = 0, they

are statistically independent. If 0 < R(Ai : Aj) < 1, then Ai and Aj are partially dependent.

The definition of the interdependence redundancy measure shows that it is independent of

the composition of Ai and Aj. This implies that the number of attribute values does not

affect the interdependence relationship between Ai and Aj. The properties of the

interdependence redundancy measure clearly render an ideal candidate to measure the

dependence between different attributes.

If two attributes are dependent on each other, they are more correlated with each other

when compared to two independent attributes. The interdependence redundancy measure is

therefore able to evaluate the interdependence or correlation of attributes. If

R(Ai : Aj) > R(Ai : Ah), h ∈ {1, …, p}, h ≠ i ≠ j, the dependence between Ai and Aj is greater

than that between Ai and Ah. In attribute clustering, we use R(Ai : Aj) to measure the

interdependence between attributes Ai and Aj.

In order to investigate the interdependency of an attribute with all the other within a

group, we introduce the concept of significant multiple interdependency.

Definition 6.3 The multiple interdependence redundancy measure [Chiu and Wong 2004;

Wong, Liu, and Wang 1976] of an attribute Ai within an attribute group or cluster,

C = {Aj | j = 1, …, p}, is defined as:

 ∑
=

=
p

j
jii AARAMR

1

) :()(, (6.6)

94

where R(Ai : Aj) is the interdependence redundancy measure between Ai and Aj.

Based on the concept of MR(Ai), we introduce the concept of the “mode” which is an

attribute with the highest multiple interdependence redundancy in an attribute group.

Definition 6.4 The mode of an attribute group, C = { Aj | j = 1, …, p}, denoted by η(C) is

an attribute, say Ai, in that group such that:

 MR(Ai) ≥ MR(Aj) for all j ∈ {1, …, p}.

6.2 An Attribute Clustering Algorithm
To group attributes A1, …, Ap into clusters, we build our information-theoretic attribute

clustering algorithm by converting the popular k-means algorithm into what we call the k-

modes algorithm by replacing: 1) the concept of the term “mean,” which represents the

center of a cluster of entities, by the concept of mode which is the attribute with the highest

multiple interdependence within an attribute group and 2) the distance measure used in k-

means by the interdependence redundancy measure between attributes. We can then

formulate the k-modes algorithm in the following.

1. Initialization. Let us assume that the number of clusters, k, where k is an integer

greater than or equal to 2, is given. Of the p attributes, we randomly select k

attributes, each of which represents a candidate for a mode ηr, r ∈ {1, …, k}.

Formally, we have ηr = Ai, r ∈ {1, …, k}, i ∈ {1, …, p}, to be the mode of Cr and

ηr ≠ ηs for all s ∈ {1, …, k} – {r}.

2. Assignment of each attribute to one of the clusters. For each attribute, Ai,

i ∈ {1, …, p}, and each cluster mode, ηr, r ∈ {1, …, k}, we calculate the

interdependence redundancy measure between Ai and ηr , R(Ai : ηr). We assign Ai to

Cr if R(Ai : ηr) ≥ R(Ai : ηs) for all s ∈ {1, …, k} – {r}.

3. Computation of mode for each attribute cluster. For each cluster, Cr, r ∈ {1, …,

k}, we set ηr = Ai if MR(Ai) ≥ MR(Aj) for all Ai, Aj ∈ Cr, i ≠ j.

4. Termination. Steps 2 and 3 are repeated until the ηr for the clusters does not change.

Alternatively, ACA also terminates when the pre-specified number of iterations is

reached.

95

It is important to note that the number of clusters, k, is fed to ACA as an input

parameter. To find the best choice for k, we use the sum of the multiple significant

interdependence redundancy measure, ∑ ∑
= ∈

k

r CA
ri

ri

AR
1

) :(η , to evaluate the overall

performance of each clustering. With this measure, we can run ACA for all k ∈ {2, …, p}

and select the value k that maximizes the sum of the multiple significant interdependence

redundancy measure over all the clusters as the number of clusters. That is,

 ∑∑
= ∈

∈=
k

r CA
ripk

ri

ARk
1

} ..., ,2{) :(maxarg η . (6.7)

To investigate the complexity of ACA algorithm, we consider a gene expression table,

which is composed of n samples such that each sample is characterized by p gene

expression levels. The k-modes algorithm requires O(np) operations to assign each gene to

a cluster (Step 2). It then performs O(np2) operations to compute the mode for each cluster

(Step 3). Let t be the number of iterations, the computational complexity of the k-modes

algorithm is given by:

)(

))(()ACA(
2

2

tknpO

tnpnpkOO

=

+=
. (6.8)

This kind of task is able to be completed in a reasonable amount of time by any modern

off-the-shelf single-processor machine. Furthermore, the k-modes algorithm can easily be

parallelized to run on clusters of processors because the calculation of the interdependence

redundancy measure is an independent task.

6.3 Performance Evaluation

6.3.1 A Synthetic Data Set

To evaluate the clusters of attributes formed by ACA, we first applied it to a synthetic data

set. Each tuple in the synthetic data set is composed of 20 continuous attributes and is pre-

classified into one of the 3 classes: C1, C2, and C3. Let us denote the attributes as A1, …, A20.

In the designed experiment, attribute values of A1 and A2 alone can determine the class

membership of a tuple (Fig. 8). As shown in Fig. 8, data points lying on the rectangles, the

circle, and the triangle belong to C1, C2, and C3, respectively. Values of the other attributes

(i.e., A3, …, A20) in the tuple are randomly generated in the following manner:

96

 A3–A6: uniformly distributed from 0 to 0.5 if the value of A1 < 0.5; uniformly

distributed from 0.5 to 1, otherwise.

 A7–A11: uniformly distributed from 0 to 0.5 if the value of A1 ≥ 0.5; uniformly

distributed from 0.5 to 1, otherwise.

 A12–A15: uniformly distributed from 0 to 0.5 if the value of A2 < 0.5; uniformly

distributed from 0.5 to 1, otherwise.

 A16–A20: uniformly distributed from 0 to 0.5 if the value of A2 ≥ 0.5; uniformly

distributed from 0.5 to 1, otherwise.

0

0.5

1

0 0.5 1

A 1

A
2

C 1

C 1C 2

C 3

Fig. 8. Attribute values of A1 and A2 in the tuples in the synthetic data set.

It is obvious that A3, …, A11 are correlated with A1, whereas A12, …, A20 are correlated

with A2. For an attribute clustering algorithm to be effective, it should be able to reveal such

correlations. In our experiments, we generated 200 tuples in the synthetic data set and

added noises to the data set by replacing the attribute values of A3, …, A20 in 25% of the

tuples with a random real number between 0 and 1.

97

We first used our fuzzy partitioning technique ITFP proposed in the last chapter to

fuzzy partition the domain of each attribute. As expected, it partitions the domain of each

attribute into 2 fuzzy intervals: ∫ ∫
−−

+
1 2

10
212)()(1x x

x x
xxxx

x
 and ∫ ∫+

−−2

1 2

1
121 1)()(x

x x xx
xxxx ,

where x1 ≤ x2 and x1 ≈ x2 ≈ 0.5. We then applied ACA to the fuzzy partitioned data to find

clusters of attributes. Fig. 9 shows the sum of the interdependence redundancy measure

over all the clusters versus the number of clusters found in the synthetic data set. As shown

in Fig. 9, it finds that the optimal number of clusters is 2. ACA identifies 2 clusters of

attributes: {A1, A3, …, A11} and {A2, A12, …, A20}. A1 is the mode of the former cluster,

whereas A2 is the mode of the latter. It shows that ACA is able to reveal the correlations

between the attributes hidden in the synthetic data set.

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clusters

To
ta

l I
nt

er
de

pe
nd

en
ce

 R
ed

un
da

nc
y

M
ea

su
re

Fig. 9. The total interdependence redundancy measure over all the clusters found in the

synthetic data set.

To evaluate the stability of the cluster configuration, we set the number of clusters to

be 2 and ran ACA 190 times with different settings of initial modes. We ran 190 trials

because there are 20C2 (= 190) possible settings of initial modes for grouping the 20

attributes into 2 clusters in the synthetic data set. We examined the clusters of attributes

formed in each trial. We found that ACA groups the attributes into the same cluster

configuration in all the 190 trials. This shows that the cluster configuration formed by ACA

98

is optimal and stable over all the possible settings of initial modes in the synthetic data set.

For the purpose of comparison, we applied the k-means algorithm [McQueen 1967],

Kohonen’s SOM [Kohonen 2001], and the biclustering algorithm [Cheng and Church 2000]

to the synthetic data set. When k is set to be 2, the k-means algorithm groups {A1, A3, …, A6,

A17, …, A20} into a cluster and {A2, A7, …, A16} into another cluster, whereas the biclustering

algorithm groups {A1, A3, A8, A9, A10, A13, A14, A16, A17, A20} into a cluster and {A2, A4, …, A7,

A11, A12, A15, A18, A19} into another cluster. SOM produces 7 clusters: {A12, A16}, {A7, A8, A10,

A11}, {A9}, {A2, A13, A14, A15}, {A1, A3, A5}, {A17, …, A20}, and {A4, A6}. It is clear that the

cluster configurations obtained by the k-means algorithm, SOM, and the biclustering

algorithm are not able to represent the correlations between attributes hidden in the data.

After clusters of attributes were obtained, we selected the top attribute in each cluster

for classification. The selected attributes were fed to C5.0 (a commercial version of C4.5

[Quinlan 1993], which is a popular decision tree based classification algorithm) for building

classification models. We used C5.0 in this experiment because the classification models it

builds are represented in the form of decision trees, which can be further examined.

For ACA, attributes A1 and A2 are selected and fed to C5.0. C5.0 builds a decision tree

consisting of 5 leaf nodes and 4 non-leaf nodes that classifies all the tuples in the synthetic

data set correctly. For k-means, A2 and A6 are selected and fed to C5.0. The decision tree

built is composed of 6 leaf nodes and 5 non-leaf nodes. It misclassifies 23 tuples, which

belong to C3 but are classified as C2. Biclusering algorithm selects A12 and A14. The

decision tree built upon this result consists of 5 leaf nodes and 4 non-leaf nodes. It

misclassifies 72 tuples, including 1 tuple belonging to C1, 48 tuples belonging to C2, and 23

tuples belonging to C3. For SOM, A2, A4, A5, A8, A9, A12, and A19 are selected. The decision

tree built consists of 9 leaf nodes and 8 non-leaf nodes. Although the decision tree is rather

complicated when compared to those constructed using the genes selected by ACA, the k-

means algorithm, and the biclustering algorithm, it correctly classifies all of the tuples in the

synthetic data set.

The experimental results on the synthetic data set show that ACA is a very promising

and robust technique 1) to group attributes into clusters; 2) to select a subset of attributes

from the clusters formed; and 3) to allow classification algorithms to build accurate

classification models.

6.3.2 Gene Expression Data Sets

To evaluate the performance of ACA, we applied it to two well-known gene expression data

99

sets: the colon-cancer data set [Alon et al. 1999] and the leukemia data set [Golub et al.

1999]. They are the same data sets used in [Li and Wong 2002a, 2002b] for gene selection.

6.3.2.1 The Methodology for Evaluation

The difficulty of evaluation of the attribute clustering results is that we know too little about

how genes actually associate among themselves. Although the rationale behind ACA is to

group attributes by optimizing the intra-group attribute interdependence, we still have to

justify the meaningfulness of such assumption backed by certain ground truth. Hence to

have an objective and meaningful evaluation of ACA and others, we have to use what we

know about the data to devise an evaluation scheme.

What we know about the two test data sets we used is that each of them could be

classified into classes. The colon-cancer data set consists of 62 samples and 2,000 genes,

which is represented by a 2,000 × 62 expression table. The samples are composed of tumor

biopsies collected from tumors and normal biopsies collected from healthy part of the

colons of the same patient. Each sample has been pre-classified into one of the two classes:

normal and cancer. The leukemia data set consists of 72 samples and 7,129 genes, which is

represented by a 7,129 × 72 expression table. The samples are taken from 63 bone marrow

samples and 9 peripheral blood samples. They are either of type AML of leukemia or of

type ALL as the two classes. Taking the pre-classified knowledge as ground truth we could

devise an evaluation scheme as follows.

Since the task objective of the proposed methodology is clustering, we would like to

ask how meaningful the clusters obtained are and what more useful information they contain.

In view of this, we should first examine the cluster configuration and infer by observation,

which one reveals more information about the data and gene groupings obtained. Next, we

would like to get significant and insightful information from each cluster by selecting a

subset of most representative genes and examining their patterns. Finally, we could use this

extracted information for classification to see how the results obtained are backed by the

ground truth. Our proposed scheme for evaluation and comparison can be outlined as

follows.

1. The study of the cluster configuration obtained by different methods.

2. The study of representative patterns in each cluster found by them.

3. The result of gene classification based on the pool of top significant genes selected

from each of the clusters.

100

6.3.2.2 The Cluster Configurations

In this study we would like to find out:

1. how optimal is the cluster configurations;

2. how do the clustering configuration patterns look like, viz. how evenly or lopsided

are the cluster configurations; and

3. does each cluster contain distinctive patterns, and how discriminative they are

between classes.

We first used our ITFP to fuzzy partition the domains of the genes (attributes) in the

colon-cancer and leukemia data sets into 2 fuzzy intervals since there are only two classes in

each case. This method was used because it can minimize the information lost in the fuzzy

partitioning. We then applied ACA to the discretized data to find clusters of genes. Fig. 29

shows the sum of the interdependence redundancy measure over all the clusters versus the

number of clusters formed from the colon-cancer and leukemia data sets.

In ACA, the cluster configuration is formed based on the maximization of intra-group

attribute interdependence. As shown in Fig. 10, it reports that the optimal numbers of

clusters for the colon-cancer and leukemia data sets are 7 and 10, respectively. The number

of clusters found is optimal with respect to the intra-group attribute interdependence. This

has been supported by various experiments on synthetic data including the one presented

above. To investigate the representative patterns in each cluster, the top 5 genes, ranked

according to the magnitude of their multiple interdependence redundancy in each cluster are

selected and listed in Tables 5 and 6. We will study their patterns in next section.

101

200

210

220

230

240

250

260

270

2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Clusters

To
ta

l I
nt

er
de

np
en

de
nc

e
R

ed
un

da
nc

y
M

ea
su

re

(a) The colon-cancer data set.

0

100

200

300

400

500

600

2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Clusters

To
ta

l I
nt

er
de

pe
nd

en
ce

 R
ed

un
da

nc
y

M
ea

su
re

(b) The leukemia data set.

Fig. 10. The total interdependence redundancy measure over all the clusters found in the

gene expression data sets.

102

Table 5. The top 5 genes in each of the 7 clusters found in the colon-cancer data set.

Cluster Rank Accession
Number

Name

1 1 H05814 PUTATIVE ATP-DEPENDENT RNA HELICASE C06E1.10 IN
CHROMOSOME III (Caenorhabditis elegans)

1 2 X02874 Human mRNA for (2'-5') oligo A synthetase E (1,6 kb RNA)
1 3 U33429 human K+ channel beta 2 subunit mRNA, complete cds
1 4 H22579 INTEGRIN ALPHA-6 PRECURSOR (Homo sapiens)
1 5 H25940 PUTATIVE SERINE/THREONINE-PROTEIN KINASE PSK-H1

(Homo sapiens)
2 1 T73092 EUKARYOTIC INITIATION FACTOR 4A-I (Homo sapiens)
2 2 R26146 NUCLEAR FACTOR NF-KAPPA-B P105 SUBUNIT (HUMAN)
2 3 T90851 ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 4 (Rattus

norvegicus)
2 4 R93337 HOMEOTIC GENE REGULATOR (Drosophila melanogaster)
2 5 T69446 EUKARYOTIC INITIATION FACTOR 4A-I (HUMAN)
3 1 M26383 Human monocyte-derived neutrophil-activating protein (MONAP)

mRNA, complete cds
3 2 U34252 Human r-aminobutyraldehyde dehydrogenase mRNA, complete cds
3 3 T59162 SELENIUM-BINDING PROTEIN (Mus musculus)
3 4 M27749 IMMUNOGLOBULIN-RELATED 14.1 PROTEIN PRECURSOR

(HUMAN)
3 5 T54341 P25886 60S RIBOSOMAL PROTEIN L29
4 1 T51849 TYROSINE-PROTEIN KINASE RECEPTOR ELK PRECURSOR

(Rattus norvegicus)
4 2 D13243 Human pyruvate kinase-L gene, exon 12
4 3 X52008 H.sapiens alpha-2 strychnine binding subunit of inhibitory glycine

receptor mRNA
4 4 R48936 GLYCOPROTEIN VP7 (Chicken rotavirus a)
4 5 X14968 Human testis mRNA for the RII-alpha subunit of cAMP dependent

protein kinase
5 1 T90036 CLASS I HISTOCOMPATIBILITY ANTIGEN, E-1 ALPHA CHAIN

PRECURSOR (Pongo pygmaeus)
5 2 R81170 TRANSLATIONALLY CONTROLLED TUMOR PROTEIN (Homo

sapiens)
5 3 X67235 H.sapiens mRNA for proline rich homeobox (Prh) protein
5 4 L20469 Human truncated dopamine D3 receptor mRNA, complete cds
5 5 T63133 THYMOSIN BETA-10 (HUMAN)
6 1 T92451 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL MUSCLE-

TYPE (HUMAN)
6 2 H11460 GOLIATH PROTEIN (Drosophila melanogaster)
6 3 H23975 IG ALPHA-1 CHAIN C REGION (Gorilla gorilla gorilla)
6 4 R70030 IG MU CHAIN C REGION (HUMAN)
6 5 D10522 Human mRNA for 80K-L protein, complete cds. (HUMAN);contains

element TAR1 repetitive element
7 1 H71627 VITELLOGENIN A2 PRECURSOR (Xenopus laevis)
7 2 X74795 H.sapiens P1-Cdc46 mRNA
7 3 T55840 TUMOR-ASSOCIATED ANTIGEN L6 (Homo sapiens)
7 4 D17400 Human mRNA for 6-pyruvoyl-tetrahydropterin synthase, complete

cds
7 5 R71585 EBNA-2 NUCLEAR PROTEIN (Epstein-barr virus)

103

Table 6. The top 5 genes in each of the 10 clusters found in the leukemia data set.

Cluster Rank Accession Number Name
1 1 D21261_at SM22-ALPHA HOMOLOG
1 2 X14362_at CR1 Complement component (3b/4b) receptor 1, including

Knops blood group system
1 3 HG3514-HT3708_at Tropomyosin Tm30nm, Cytoskeletal
1 4 U91903_at Frezzled (fre) mRNA
1 5 U44975_at DNA-binding protein CPBP (CPBP) mRNA, partial cds
2 1 D25248_at Randomly sequenced mRNA
2 2 X06290_at APOLIPOPROTEIN(A) PRECURSOR
2 3 M21305_at GB DEF = Alpha satellite and satellite 3 junction DNA

sequence
2 4 HG3437-HT3628_s_at Myelin Proteolipid Protein, Alt. Splice 2
2 5 J03027_at HLA-G MHC class I protein HLA-G
3 1 D26018_at KIAA0039 gene, partial cds
3 2 X82018_at ZID protein
3 3 U19107_rna1_at ZNF127 (ZNF127) gene
3 4 U46746_s_at Dystrobrevin-alpha mRNA
3 5 L39009_at GB DEF = Class IV alcohol dehydrogenase 7 (ADH7) gene,

5' flanking region
4 1 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral

hemorrhage)
4 2 D26308_at NADPH-flavin reductase
4 3 U10473_s_at GB DEF = Clone p4betaGT/3 beta-1,4-galactosyltransferase

mRNA, partial cds
4 4 Z35227_at TTF mRNA for small G protein
4 5 Z32684_at XK mRNA for membrane transport protein
5 1 D28124_at Unknown product
5 2 U72648_s_at GB DEF = Alpha2-C4-adrenergic receptor gene
5 3 HG4417-HT4687_f_at Homeotic Protein Hpx-2
5 4 HG2239-HT2324_r_at Potassium Channel Protein (Gb:Z11585)
5 5 S59049_at RGS1 Regulator of G-protein signaling 1
6 1 D28416_at GB DEF = Esterase D, 5'UTR (sequence from the 5'cap to

the start codon)
6 2 D10656_at CRK V-crk avian sarcoma virus CT10 oncogene homolog
6 3 M63483_at MATRIN 3
6 4 U13680_at LDHC Lactate dehydrogenase C
6 5 M64571_at MAP4 Microtubule-associated protein 4
7 1 D29642_at HYPOTHETICAL MYELOID CELL LINE PROTEIN 3
7 2 U69108_at TNF receptor associated factor 5 mRNA, partial cds
7 3 L07738_at DIHYDROPRYRIDINE-SENSITIVE L-TYPE, SKELETAL

MUSCLE CALCIUM CHANNEL GAMMA SUBUNIT
7 4 X83107_at Bmx mRNA for cytoplasmic tyrosine kinase
7 5 U69140_s_at RPS26 Ribosomal protein S26
8 1 D30036_at PHOSPHATIDYLINOSITOL
8 2 X58723_at GB DEF = MDR1 (multidrug resistance) gene for P-

glycoprotein
8 3 X67683_at GB DEF = Keratin 4
8 4 L00635_at FNTB Farnesyltransferase, CAAX box, beta
8 5 J03890_rna1_at SP-C1 gene (pulmonary surfactant protein SP-C) extracted

from Human pulmonary surfactant protein C (SP-C) and
pulmonary surfactant protein C1 (SP-C1) genes

9 1 D31764_at KIAA0064 gene
9 2 S82471_s_at GB DEF = SSX3=Kruppel-associated box containing SSX

gene [human, testis, mRNA Partial, 675 nt]
9 3 D87434_at KIAA0247 gene
9 4 U09877_at Helicase-like protein (HLP) mRNA
9 5 L27624_s_at TISSUE FACTOR PATHWAY INHIBITOR 2

PRECURSOR
10 1 D31891_at KIAA0067 gene
10 2 Z22534_at SERINE/THREONINE-PROTEIN KINASE RECEPTOR R1

PRECURSOR
10 3 HG4312-HT4582_s_at Transcription Factor Iiia
10 4 U09477_at Clone 53BP1 p53-binding protein mRNA, partial cds
10 5 U50315_at EZH1 Enhancer of zeste (Drosophila) homolog 1

104

To facilitate the comparison of the cluster configurations, we applied the k-means

algorithm [McQueen 1967], Kohonen’s SOM [Kohonen 2001], and the biclustering

algorithm [Cheng and Church 2000] to the original colon-cancer and leukemia data sets and

compared the cluster results with that obtained by ACA on the respective sets of fuzzy

partitioned data. Here, we shall discuss the issues of optimality of cluster configuration with

regards to the number of clusters obtained.

By virtue of the theoretical basis and the design of the algorithm, given a specific

setting of initial modes (cluster centers), ACA is able to determine the k that renders a

clustering configuration that maximizes the intra-cluster interdependence of genes over

various k. The cluster configuration selected is therefore an optimal one with respect to the

setting of initial modes. It is important to note that the cluster configuration may not be

optimal with different settings of initial modes. However, the experimental results on the

synthetic data set presented in Section 6.3.1 show that the cluster configuration formed by

ACA is optimal and stable over all the possible settings of initial modes. Although ACA

does not guarantee to form an optimal cluster configuration because initial modes are

chosen randomly, the experimental results show that it is able to produce a suboptimal, if

not globally optimal, and stable configuration.

In forming clusters, both the k-means algorithm and the biclustering algorithm do not

have a measure of the total dissimilarity over all the clusters. They cannot find the cluster

number to justify the optimality of the cluster configuration. To deal with this problem, the

k-means algorithm and the biclustering algorithm require a user to supply the number of

clusters in advance.

SOM aims at optimizing the distances between the input vectors and the reference

vectors. In other words, the reference vectors are moved towards the denser areas of the

input vector space. To determine the number of clusters, SOM does so by not assigning any

input vector to some output nodes in the neural network. This process is implicit in the

training process of SOM and it does not explicitly optimize any measure of the total

dissimilarity or distance measure over all the clusters. The number of clusters resulted is, by

and large, conditioned by the convergence of the weights of the network links, which is, in a

certain sense, a little ad hoc.

We next proceed to compare the representative patterns selected from each of the

cluster. Since only ACA provides a clearly defined way to determine the number of clusters,

105

we apply each of the above methods to produce 7 and 10 clusters in the colon-cancer and

leukemia data sets respectively for comparison purpose. We also apply the t-value and the

methods that handle both the gene-class relevance and the gene-gene redundancy (i.e., the

MRMR algorithm [Ding and Peng 2003] and the RBF algorithm [Yu and Liu 2004]) to rank

the genes in the two data sets for the purpose of comparison. For the MRMR algorithm, we

used the F-test correlation quotient as the criterion function because the experimental results

in [Ding and Peng 2003] show that it yields better classification results than the other

criterion functions for continuous features.

In each of the two data sets, the clusters found by ACA consist of more or less the same

number of genes. However, the k-means algorithm groups 1,592 of the 2,000 genes (i.e.,

79.6% of all the genes) into one cluster for the colon-cancer data set and groups 6,514 of the

7,129 genes (i.e., 91.4% of all the genes) into one cluster for the leukemia data set. The

cluster distribution produced by SOM is less lopsided. It groups 708 of the 2,000 genes (i.e.,

35.4% of all the genes) into one cluster for the colon-cancer data set, whereas the clusters it

finds in the leukemia data set contain more or less the same number of genes. Similar to

ACA, the biclustering algorithm also forms clusters containing more or less the same

number of genes. Comparing the cluster size distribution, those produced by ACA and the

biclustering algorithm are less lopsided. Of the other two, k-means produces the most

lopsided distribution for both data sets.

In the rest of this section, we examine the gene ranking obtained by different

approaches. Since the clusters found by ACA are less lopsided and the genes selected are

informative (whose effectiveness is reflected by the classification experiments presented in

Section 7.4.4), the cluster configuration obtained by it and the top genes selected would

provide a reasonable basis for performance comparison. Therefore, they will be used as the

benchmark in the comparison process.

In the colon-cancer data set, of the top 35 genes ranked by the t-value, 22 are in Cluster

2 and none is in Cluster 1 found by ACA. Furthermore, none of the 35 genes is ranked in

the top 5 in any of the clusters found by ACA. On the other hand, in the leukemia data set,

none of the top 50 genes ranked by the t-value is in Clusters 5 and 8 found by ACA. 7 of

these genes are ranked in the first 100th in one of the 10 clusters found by ACA.

Specifically, genes M27891_at and D21261_at are also selected by ACA. However, many

of the genes selected by the t-value are ranked very low in the clusters found by ACA. For

example, gene J05032 in the colon-cancer data set, which is ranked the fourth by the t-value,

is ranked the 174th in Cluster 2 found by ACA, whereas gene J03589_at in the leukemia

data set, which is ranked the 46th by the t-value, is ranked the 796th in Cluster 3 found by

107

found by ACA. Many of these genes selected by the biclustering algorithm are ranked very

low in the clusters found by ACA. For example, gene L07032 in the colon-cancer data set,

which is ranked the third in Cluster 1 found by the biclustering algorithm, is ranked the

269th in Cluster 3 by ACA, whereas gene S79862_s_at in the leukemia data set, which is

ranked the first in Cluster 1 found by the biclustering algorithm, is ranked the 382th in

Cluster 4 found by ACA.

The ranking of the genes selected by the t-value, the k-means algorithm, SOM, the

biclustering algorithm, the MRMR algorithm, and the RBF algorithm with respect to that

selected by ACA in the colon-cancer and leukemia data sets is summarized in Tables 7 and

8, respectively. The first row in Table 7 gives the number of the 35 genes selected by the t-

value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR algorithm, and

the RBF algorithm that are ranked in the top 5 in any of the 7 clusters found by ACA; the

second row in Table 7 gives the number of the 35 genes selected by the t-value, the k-means

algorithm, SOM, the biclustering algorithm, the MRMR algorithm, and the RBF algorithm

that are ranked from the 6th to the 15th in any of the 7 clusters found by ACA; and so on for

the other rows. The details of Table 8 can be interpreted in a similar fashion.

The comparison of the ranking of genes by the other six methods with the benchmark

ranking by ACA is important. Since top ranking genes selected by ACA yield excellent

classification results, the cross comparison of genes selected by other six methods would

shed light on which genes would have high or low classificatory value and why. This will

be discussed in Sections 6.3.2.3 and 6.3.2.4.

Table 7. The ranking of the 35 genes selected by different approaches in the colon-cancer

data set.

Rank in the clusters
found by ACA t-value k-means SOM Biclustering MRMR RBF

1–5 0 1 0 0 3 0
6–15 4 1 3 3 2 0

16–50 2 6 6 5 1 0
51–100 14 5 2 5 6 0

101–200 7 5 9 3 17 2
201–350 8 17 15 19 21 1

108

Table 8. The ranking of the 50 genes selected by different approaches in the leukemia data

set.

Rank in the clusters
found by ACA

t-value k-means SOM Biclustering MRMR RBF

1–10 2 1 1 1 1 0
11–50 2 2 1 2 2 0

51–100 3 3 3 1 4 0
101–200 7 8 7 6 4 1
201–300 4 5 10 10 6 1
301–500 13 21 12 11 15 1
501–700 8 9 9 8 6 0

701–1000 11 1 7 11 12 0

6.3.2.3 The Patterns of Genes in the Clusters

In this section, we will select the most significant genes in each cluster based on certain

criterion functions and examine their patterns, respectively. More specifically, we would

like to find out:

1. how coherent are the most representative genes and

2. do they reflect coherence, interdependence, similarity or both and what are the

implications of such relationship in these patterns.

To address the above issues, we selected some of the results obtained from ACA, k-

means, SOM, and biclustering for discussions. Fig. 11 shows the most representative genes

in Cluster 2 found by ACA in the colon-cancer data set and those in Cluster 9 found by

ACA in the leukemia data set. The gene segments highlighted in boxes b, c, and e in Fig.

11(a) and boxes a, b, and e in Fig. 11(b) are similar to each other. Gene segments that are

interdependent with each other are grouped together and shown in box d in Fig. 11(a). Note

that the two plots at the lower part of the box are more or less correlated or interdependent

with the curve near the top of the box although they are not similar to them because of the

huge distance magnitude from them. Gene segments highlighted in box a in Fig. 11(a) and

boxes c and d in Fig. 11(b) are also interdependent even though some of the segment pairs

are negatively correlated. It illustrates that the interdependence redundancy measure can

clusters genes using both similarity and interdependence measures. This may contribute to

the high attribute association results of ACA as reported in Section 6.3.2.4.

109

0

200

400

600

800

1000

1200

1400

1600

1800

1 11 21 31 41 51 61

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

T73092
R26146
T90851
R93337
T69446

a
b c

d
e

(a) Cluster 2 in the colon-cancer data set.

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

1 11 21 31

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

D31764_at
S82471_s_at
D87434_at
U09877_at
L27624_s_at

a

b

c

d

e

(b) Cluster 9 in the leukemia data set.

Fig. 11. The most representative genes found by ACA.

Fig. 12 shows the most representative genes in Cluster 2 found by the k-means

algorithm in the colon-cancer data set and those in Cluster 1 found by the k-means

algorithm in the leukemia data set. The gene segments highlighted in boxes a, c, and e in

Fig. 12(a) and box c in Fig. 12(b) are similar to each other. In Fig. 12(a), those highlighted

in boxes b and d are dissimilar in such a way that gene H78063’s shape is distanced from

110

the others. However, these gene segments are still interdependent although they are not

similar. The similar phenomena are observed in the gene segments highlighted in boxes a, b,

and d in Fig. 12(b). Those highlighted in box e are interdependent but negatively correlated.

Hence, clustering algorithms based on similarity are unable to group genes which are

interdependent. It is perhaps for this reason that the genes selected by ACA contain more

classificatory information. The high classification rate of ACA as reported later in Section

6.3.2.4 may attribute to gene interdependence as it is conceivable that interdependence is a

key factor that makes up classes.

Figs. 13 and 14 show the most representative genes found by SOM and the biclustering

algorithm in the colon-cancer and leukemia data sets, respectively. The gene segments

highlighted in boxes in Figs. 30 and 31 are less coherent. This indicates that the genes in a

cluster found by SOM and the biclustering algorithm are less coherent, i.e., they are by and

large not that much similar nor interdependent. It is perhaps for this reason that the genes

selected by SOM and the biclustering algorithm are not very useful for classification (see

Section 6.3.2.4).

On the whole, the patterns in the top representative genes selected by ACA are most

coherent in the sense of interdependence that embodies similarity as well as positive and

negative correlation. The patterns selected in association with the k-means results are

coherent only in the similarity sense. There are positively correlated, negatively correlated

and/or interdependent segments which are not accounted for by the distance measure

employed. The plots from SOM and the biclustering algorithm show that they are less

coherent. While they are able to account for positive correlation and negative correlation

separately, they are not able to account for both especially when they occur along the gene

segments in the comparison. The interdependence measure accounts for all.

111

0

100

200

300

400

500

600

700

1 11 21 31 41 51 61

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

U18934
H47650
R00285
U34252
H78063

a

b
c

d e

(a) Cluster 2 in the colon-cancer data set.

0

50

100

150

200

250

300

350

400

450

1 11 21 31

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

X83368_at
U93867_at
U61500_at
HG210-HT210_s_at
M65131_rna1_at

a

b

cd

e

(b) Cluster 1 in the leukemia data set.

Fig. 12. The most representative genes found by the k-means algorithm.

112

0

100

200

300

400

500

600

700

1 11 21 31 41 51 61

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

L11369
H29293
H72110
H17923
T80178

(a) Cluster 1 in the colon-cancer data set.

0

5000

10000

15000

20000

25000

1 11 21 31

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

D13748_at
D14710_at
D21261_at
D63874_at
D64142_at

(b) Cluster 2 in the leukemia data set.

Fig. 13. The most representative genes found by SOM.

113

0

50

100

150

200

250

300

350

1 11 21 31 41 51 61

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

M63239
H14607
L07032
T78624
M81651

(a) Cluster 1 in the colon-cancer data set.

-100

-50

0

50

100

150

200

250

1 11 21 31

Sample

G
en

e
E

xp
re

ss
io

n
Le

ve
l

S79862_s_at
L18920_f_at
M85085_at
U13044_at
U94332_at

(b) Cluster 1 in the leukemia data set.

Fig. 14. The most representative genes found by the biclustering algorithm.

114

6.3.2.4 Gene Expression Classification

Since the ground truth of class labels for these two gene expression datasets is known, we

use this information to devise experiments for assessing the performance of various methods.

The evaluation scheme is depicted in Fig. 15. First, to show how much classificatory

information could get from the data, we use both the clustering and the attribute selection

results obtained by the listed methods for evaluation. That is, we obtain a set of clusters

from the genes. We then select a subset of top genes from each cluster to make up a gene

pool. We then run classification experiments on the selected gene pool to see whether or

not the results are backed by the ground truth and which method performs the best.

Classification
Algorithms

C5.0
Neural Networks
Nearest Neighbor

Naive Bayes

Entire Gene
Space

Selected Gene
Pools

Attribute Clustering and
Gene Selection Methods

ACA
t-value

k-means
Biclustering

MRMR
RBF

Classification Tests Results

Tables 9 and 16

Tables 10-13
and 17-20

Fig. 15. The scheme for evaluating the classificatory effectiveness of gene pools.

The results obtained by applying the listed classifiers on the data taken from the entire

gene space are given in Tables 9 and 16 while the results obtained by the same set of

classifiers on the gene pools selected by different attribute clustering and gene selection

methods are documented on Tables 10–13 and Tables 17–20.

The argument on the appropriateness of such evaluation scheme is as follows. If the

selected genes are informative, an inductive learning algorithm should be able to build an

accurate classifier on top of them. Based on this idea, we selected the top k genes from each

of the clusters so that a total of 7 × k and 10 × k genes are selected for k = 1, …, 5 in the

colon-cancer and leukemia data sets, respectively. We then used C5.0, nonlinear neural

networks with a single hidden layer and weight decay [Bishop 1995], the nearest neighbor

method, and the naïve Bayes method to build classifiers on top of the selected genes. These

classification algorithms are used in this work because they have been employed in

classification of gene expression data in the literature [Ben-Dor et al. 2000; Dudoit,

Fridlyand, and Speed 2002; Friedman, Nachman, and Pe’er 2000; Keller et al. 2000; Khan

115

et al. 2001; Lu and Han 2003; Zhang et al. 2001].

6.3.2.4.1 The Colon-Cancer Data Set

In the classification performance evaluation process, we employed the leave-one-out cross-

validation (LOOCV), which is a widely used process for gene expression data classification

[Simon 2003]. With LOOCV, we selected the first sample as the test set and the remaining

61 samples as the training set. Repeating through the first sample to the 62nd sample, we

got the classification accuracy (i.e., the percentage of the samples, which are predicted

correctly).

As the benchmark, we first trained C5.0, neural networks, the nearest neighbor method,

and the naïve Bayes method with all 2,000 genes without gene selection. The classification

accuracy by LOOCV is given in Table 9. To evaluate the attribute clustering and gene

selection performance of ACA, the selected gene pools were fed to the same group of

classification algorithms. For comparison purpose, we repeated the gene selection process

using the t-value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR

algorithm, and the RBF algorithm. The classification results of the classifiers built on

different gene pools are provided in Tables 10–13.

Table 9. The performance of different classification algorithms in the colon-cancer data set.

Classification Algorithm Classification Accuracy
C5.0 82.3%

Neural Networks 83.9%
Nearest Neighbor 79.0%

Naïve Bayes 35.5%

Table 10. The performance of C5.0 on the top genes selected by different techniques in the

colon-cancer data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

7 88.7% 83.9% 64.5% 64.5% 67.7% 80.6%
14 91.9% 77.4% 77.4% 59.7% 58.1% 75.8%
21 91.9% 82.3% 75.8% 58.1% 69.4% 83.9%
28 91.9% 85.5% 74.2% 48.4% 77.4% 83.9%
35 91.9% 74.2% 71.0% 43.5% 75.8% 83.9%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 82.3%.

116

Table 11. The performance of neural networks on the top genes selected by different

techniques in the colon-cancer data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

7 90.3% 80.6% 71.0% 64.5% 75.8% 87.1%
14 90.3% 87.1% 83.9% 75.8% 72.6% 90.3%
21 90.3% 83.9% 77.4% 75.8% 82.3% 87.1%
28 90.3% 80.6% 85.5% 67.7% 72.6% 90.3%
35 90.3% 80.6% 87.1% 67.7% 79.0% 90.3%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 90.3%.

Table 12. The performance of the nearest neighbor method on the top genes selected by

different techniques in the colon-cancer data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

7 83.9% 80.6% 58.1% 50.0% 69.4% 64.5%
14 82.3% 80.6% 69.4% 59.7% 62.9% 56.5%
21 82.3% 80.6% 64.5% 59.7% 53.2% 61.3%
28 82.3% 79.0% 61.3% 58.1% 64.5% 67.7%
35 80.6% 75.8% 62.9% 54.8% 53.2% 72.6%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 67.7%.

Table 13. The performance of the naïve Bayes method on the top genes selected by

different techniques in the colon-cancer data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

7 64.5% 56.5% 62.9% 64.5% 67.7% 64.5%
14 67.7% 53.2% 62.9% 29.0% 67.7% 64.5%
21 67.7% 45.2% 62.9% 29.0% 48.4% 38.7%
28 67.7% 35.5% 56.5% 29.0% 48.4% 43.5%
35 67.7% 38.7% 56.5% 29.0% 48.4% 43.5%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 64.5%.

The experimental results in Tables 10–13 show that ACA is, by and large, superior to

the other six attribute clustering and gene selection methods by selecting a better small set

of discriminative genes in the colon-cancer data set than the others as reflected by the

classification results. It is surprised to observe that the classification results obtained using

the gene pools selected by ACA and t-value are even better than those using all the genes.

And, as shown by the results, ACA outperforms t-value in all cases. Although the MRMR

and RBF algorithms can find good discriminative genes for C5.0, neural networks, and the

naïve Bayes method, they are unable to do so for the nearest neighbor method. As shown in

the results, ACA outperforms the MRMR and RBF algorithms in all cases except neural

networks, in which the three approaches yield comparable classification rate. The k-means

117

algorithm, SOM, and the biclustering algorithm fail to find the good discriminative genes as

shown in the results. This result shows that it is able to build a more accurate classifier if a

subset of more informative genes based on multiple interdependence is selected by ACA

before feeding them into the classifier for training.

It is interesting to note that the performance of C5.0 is able to achieve a 91.9% when

using the 14 genes selected by ACA and maintain at the same accuracy even when more

genes are selected by ACA (see Table 10). This implies that the good diagnostic

information exists in a small set of genes which can be effectively selected by ACA and a

small set of genes can be used to build classifiers for diagnostic purpose. This has a

significant implication to clinical, pharmaceutical, and bioengineering applications.

Similarly, the same phenomenon is observed in the 90.3% rate when 7 genes selected by

ACA is fed into neural networks classifier and its performance remains at that level even

when more genes selected by ACA are fed in (see Table 11). This suggests that using only

the top 1 or 2 genes in each cluster found by ACA are already good enough for training

C5.0 and neural networks.

On the other hand, the poor classification performance using the set selected by the k-

means algorithm, SOM, and the biclustering algorithm (see Tables 9–13) may be explained

by our observation that their selected top genes are ranked very low by ACA (see Table 7).

In another words, they are less interdependent with other genes in the group. To further this

argument, we also observe that the genes selected by t-value are ranked relatively high by

ACA in comparison to the other three (see Table 7).

Since the k-means algorithm and the biclustering algorithm do not provide a criterion

function to show which k would give the most optimal configuration, we will evaluate it by

varying k to see which k will produce the best result. As shown in Tables 10–13, the k-

means algorithm yields the best result when the top 5 genes in each cluster are selected and

fed to neural networks (87.1% as shown in Table 11), whereas the biclustering algorithm

achieves the best result when the top 3 genes in each cluster are selected and fed to neural

networks (82.3% as shown in Table 11). In order to use their best performance results for

comparison, we select the top 5 genes from each cluster for the k-means algorithm and the

top 3 genes for the biclustering algorithm. The classification performance by neural

networks on the top genes selected by the k-means algorithm and the biclustering algorithm

with different number of clusters is given in Tables 14 and 15, respectively. The

experimental results show that the performance of using 7 clusters (where 7 is the cluster

number determined by ACA) is close to the best result (87.1% for the k-means algorithm

and 82.3% for the biclustering algorithm as shown in Table 11). With the same

118

configuration ACA achieves at a 90.3% rate. It is interesting to observe that the number of

clusters determined by ACA, if used as a candidate of k, both of the k-means algorithm and

the biclustering algorithm yields the second best result.

Table 14. The performance of neural networks on the top genes selected by the k-means

algorithm in the colon-cancer data set.

No. of Clusters Found Classification Accuracy
2 64.5%
4 80.6%
6 80.6%
8 88.7%

10 83.9%
15 88.7%
20 88.7%

Table 15. The performance of neural networks on the top genes selected by the biclustering

algorithm in the colon-cancer data set.

No. of Clusters Found Classification Accuracy
2 74.2%
4 64.5%
6 80.6%
8 79.0%

10 83.9%
15 83.9%
20 64.5%

SOM is able to determine the number of clusters automatically. It determines that there

are 35 clusters. As shown in Tables 10–13, SOM produces the best result when the top 2

and 3 genes in each cluster are selected and fed to neural networks (75.8% as shown in

Table 11). We therefore evaluated the performance of neural networks using the top 2 and 3

genes in each of the 35 clusters found by SOM and found that the classification accuracy is

87.1% and 88.7%, respectively. It is important to note that ACA obtains a classification

accuracy of 90.3% using 7 genes only (see Table 11).

6.3.2.4.2 The Leukemia Data Set

We next report the performance of ACA based on the classification results on the leukemia

data set. The data set taken from the website is already divided into a training set, which

consists of 38 samples, and a test set, which consists of 34 samples, by the donor of the data

set. Like what we did for the colon-cancer data, we used C5.0, neural networks, the nearest

neighbor method, and the naïve Bayes method to build classifiers using the selected genes

as the training set. The classifiers thus built were tested on the samples in the test set.

119

Again, as the benchmark, we first trained C5.0, neural networks, the nearest neighbor

method, and the naïve Bayes method with all 7,129 genes. The classification results are

given in Table 16. To evaluate the attribute clustering and gene selection performance of

ACA, its selected gene pools were fed to the same group of classification algorithms. For

the classification comparison purpose, we fed into the same group of classifiers the gene

selected by the t-value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR

algorithm, and the RBF algorithm using the similar process. The classification results of the

classifiers built on respective gene pools are provided in Tables 17–20.

Table 16. The performance of different classification algorithms in the leukemia data set.

Classification Algorithm Classification Accuracy
C5.0 91.2%

Neural Networks 91.2%
Nearest Neighbor 82.4%

Naïve Bayes 41.2%

Table 17. The performance of C5.0 on the top genes selected by different techniques in the

leukemia data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

10 94.1% 94.1% 47.1% 55.9% 71.1% 91.2%
20 94.1% 94.1% 55.9% 55.9% 60.5% 91.2%
30 94.1% 94.1% 55.9% 64.7% 65.8% 91.2%
40 94.1% 94.1% 55.9% 61.8% 57.9% 91.2%
50 94.1% 94.1% 55.9% 61.8% 60.5% 91.2%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 85.3%.

Table 18. The performance of neural networks on the top genes selected by different

techniques in the leukemia data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

10 97.1% 82.4% 70.6% 61.8% 52.9% 97.1%
20 97.1% 82.4% 64.7% 61.8% 58.8% 94.1%
30 97.1% 82.4% 64.7% 52.9% 47.1% 94.1%
40 94.1% 88.2% 61.8% 73.5% 58.8% 94.1%
50 97.1% 82.4% 58.8% 58.8% 52.9% 97.1%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 94.1%.

120

Table 19. The performance of the nearest neighbor method on the top genes selected by

different techniques in the leukemia data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

10 91.2% 82.4% 50.0% 50.0% 52.9% 61.8%
20 91.2% 88.2% 44.1% 61.8% 52.9% 70.6%
30 91.2% 88.2% 44.1% 67.6% 58.8% 67.6%
40 91.2% 88.2% 47.1% 70.6% 58.8% 70.6%
50 91.2% 82.4% 47.1% 67.6% 52.9% 70.6%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 47.1%.

Table 20. The performance of the naïve Bayes method on the top genes selected by

different techniques in the leukemia data set.

Classification Accuracy No. of Genes
Selected ACA t-value k-means SOM Biclustering MRMR

10 82.4% 55.9% 58.8% 58.8% 58.8% 67.6%
20 61.8% 47.1% 58.8% 58.8% 58.8% 55.9%
30 61.8% 38.2% 58.8% 58.8% 58.8% 50.0%
40 61.8% 29.4% 52.9% 58.8% 58.8% 47.1%
50 61.8% 20.6% 52.9% 58.8% 58.8% 47.1%

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 58.8%.

The experimental results in Tables 17–20 show that ACA is, by and large, superior to

the other six attribute clustering and gene selection methods as it selects a better small set of

discriminative genes from the leukemia data set than the others. As in the colon-cancer

cases, the classification results obtained using the gene pools selected by ACA are also

better than those using all the leukemia genes. In all cases, ACA outperforms t-value.

However, although the t-value can also find the good discriminative genes for C5.0 and the

nearest neighbor method, yet it fails to find good discriminative genes for the training of

neural networks and the naïve Bayes method. The MRMR and RBF algorithms find good

discriminative genes for C5.0, neural networks, and the naïve Bayes method but are unable

to do so for the nearest neighbor method. ACA outperforms the MRMR and RBF

algorithms in all cases except neural networks, in which the three approaches produce

comparable classification accuracy. The k-means algorithm, SOM, and the biclustering

algorithm cannot find the good discriminative genes as shown in the results. Similar to the

result found in the colon-cancer data set, this result shows that it is able to build a more

accurate classifier if a subset of more informative genes based on multiple interdependence

selected by ACA are fed into the classifier for training.

It is interesting to note that the performance of C5.0 is able to achieve a 94.1% rate

when using the 7 genes selected by ACA and maintain at the same accuracy level even more

121

genes selected by ACA are used (see Table 17). This again supports that using only the top

genes in each cluster found by ACA are good enough for training C5.0.

As in the colon-cancer cases, the poor classification performance using the set selected

by the k-means algorithm, SOM, and the biclustering algorithm (see Tables 16–20) may

follow the same argument as in the last section (see Table 8).

Process similar to the colon-cancer cases are used to evaluate the performance of the k-

means algorithm and the biclustering algorithm except the numbers may be different (Tables

17–20). The k-means algorithm obtained the best result when the top gene in each cluster is

selected and fed to neural networks (70.6% as shown in Table 18), whereas the biclustering

algorithm produced the best result when the top gene in each cluster is selected and fed to

C5.0 (71.1% as shown in Table 17). Based on their best performance scenarios, the

experimental results of using their optimal configuration of both 10 clusters (where 10

happens to be the cluster number determined by ACA as well) yields one of the best results

(70.6% for the k-means algorithm as shown in Table 18, whereas 71.1% for the biclustering

algorithm as shown Table 20). The performance by neural networks on the top genes

selected by the k-means algorithm and that by C5.0 on the top genes selected by the

biclustering algorithm with different number of clusters are given in Tables 21 and 22,

respectively. With the same configuration, ACA obtains a classification accuracy of 97.1%

(see Table 18) and 94.1% (see Table 17), respectively, far superior to their performance. It

is interesting to observe that the number of clusters determined by ACA (10 in this case), if

used as a candidate of k, both the k-means algorithm and the biclustering algorithm yield the

best result.

Table 21. The performance of neural networks on the top genes selected by the k-means

algorithm in the leukemia data set.

No. of Clusters Found Classification Accuracy
2 58.8%
4 61.8%
6 58.8%
8 58.8%

10 70.6%
15 70.6%
20 67.6%

122

Table 22. The performance of C5.0 on the top genes selected by the biclustering algorithm

in the leukemia data set.

No. of Clusters Found Classification Accuracy
2 58.8%
4 58.8%
6 55.9%
8 58.8%

10 71.1%
15 41.2%
20 44.1%

Kohonen’s SOM determines that there are 54 clusters, far too many for practical

reasons. As shown in Tables 17–20, SOM produces the best result when the top 4 genes in

each cluster are selected and fed to neural networks (73.5% as shown in Table 18). The

classification accuracy of neural networks using the top 4 genes in each of the 54 clusters is

73.5%. It is important to note that ACA obtains a classification accuracy of 97.1% using 10

genes only (see Table 18).

6.3.2.5 Can a Specific Gene(s) Governed a Disease Be Found by
ACA?

To answer the question on what more lights could the multiple interdependence results

could shed on the nature and the usefulness of the information obtained by ACA, the

following experiment is conducted.

We first examined the decision tree built on top of the genes selected by ACA in the

leukemia data set. We found that the decision tree built by C5.0 uses only gene M27891_at,

which is the first gene in Cluster 4 found by ACA (see Table 4), to classify any samples.

This gene is also ranked as the second by the t-value. The decision tree achieves a

classification accuracy of 94.1%. Next, we examined the decision tree built using all the

7,129 genes in the leukemia data set. We found that the decision tree built in this way does

not use gene M27891_at. It surprises us to notice that the decision tree built on top of all the

genes obtains a classification accuracy of 91.2%, which is lower than what it does if using

the top gene M27891_at selected by ACA.

Although we cannot comment on the biological impacts of gene M27891_at to

leukemia at this moment, the experimental results show that this gene is very useful in the

classification of leukemia and the usefulness of this gene cannot be identified if gene

selection has not been done properly. As researchers are devoting immense effort to

identify genes that govern various diseases, the method we propose may provide a new way

123

of not only reducing the search dimensionality of gene expressions in analysis, but also

singling out potential candidates for the classification and identification of diseases.

124

Chapter 7

Mining Fuzzy Rules in Data Sets and Rule Sets

The problem of mining association rules is introduced in [Agrawal, Imielinski, and Swami

1993b] to reveal interesting patterns in the data. The mining of association rules is

originally defined for transaction data. This is later extended to also handle relational data

containing categorical (discrete-valued) and quantitative (continuous-valued) data [Srikant

and Agrawal 1996]. In its most general form, an association rule is defined for the attributes

of a database relation, T. It is an implication of the form X ⇒ Y, where X and Y are

conjunctions of certain conditions. A condition is either Ai = ai, where ai is a value in the

domain of the attribute Ai if Ai is discrete, or ai ∈ [li, ui], where li and ui are bounding values

in the domain of the attribute Ai if Ai is continuous. The association rule X ⇒ Y holds in T

with a certain support, which is defined as the percentage of tuples that have the

characteristics satisfying X and Y, and a certain confidence, which is defined as the

percentage of tuples that have the characteristics satisfying Y given that they also satisfy X.

An association relationship is usually considered interesting if its support and confidence

values are greater than or equal to some user-specified minimum [Agrawal, Imielinski, and

Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han and Fu 1995;

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and

Agrawal 1995, 1996].

An example of an association rule is:

Marital Status = Single ∧ Age ∈ [35, 45] ∧ Account Balance ∈ [1 000, 2 500]

 ⇒ Loan Balance = [10 000, 15 000],

which describes a person who is single, aged between 35 and 45, and with an account

balance that is between $1,000 and $2,500, as someone who is likely to use a loan that is

between $10,000 and $15,000. An association rule defined over market basket data has a

special form. The antecedent and the consequent are conjunctions involving Boolean

attributes that take on the value of 1. An example of an association rule that is defined over

market basket data is:

Pizza = 1 ∧ Chicken Wings = 1 ⇒ Coke = 1 ∧ Salad = 1.

125

This rule states that a customer who buys pizza and chicken wings also buys coke and salad.

Although the existing algorithms for mining association rules (e.g., [Liu, Hsu, and Ma

1998; Srikant and Agrawal 1996]) can be used to identify interesting association

relationships in continuous or mixed continuous and discrete valued data, they require the

domains of continuous attributes to be discretized into intervals. These intervals are often

hard to define. If too much data lies on the boundaries of the intervals, this could result in

very different discoveries in the data that could be both misleading and meaningless. In

addition to the need for discretization, there is a requirement for users to provide the

thresholds for minimum support and confidence, and this also makes the existing techniques

(e.g., [Agrawal, Imielinski, and Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et

al. 1996a; Han and Fu 1995; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and

Navathe 1995; Srikant and Agrawal 1995, 1996]) to be difficult to use. If the thresholds are

set too high, a user may miss some useful rules; but if the thresholds are set too low, the user

may be overwhelmed by too many irrelevant rules [Han and Kamber 2001; Hand, Mannila,

and Smyth 2001].

To better represent the underlying association relationships hidden in the data, we

develop two new fuzzy algorithms for data mining. They employ linguistic variables and

linguistic terms to represent the revealed regularities and exceptions. This linguistic

representation is especially useful when the discovered rules are presented to human experts

for examination because of its affinity with the human knowledge representation. Since our

interpretation of linguistic terms is based on fuzzy set theory, the rules that are expressed in

these terms are referred to hereinafter as fuzzy association rules [Au and Chan 1998, 1999,

2001, 2003, 2004; Chan and Au 1997b, 2001, 2002].

An example of a fuzzy association rule is given as follows:

Marital Status = Single ∧ Age = Middle ∧ Account Balance = Small

 ⇒ Loan Balance = Moderate,

where Single is a crisp value,

Middle is a linguistic term that is represented by the fuzzy set

∫∫
−

+
− 50

40

10
140

30

10
1)50()30(

x
x

x
x

, and

 Moderate is a linguistic term that is represented by the fuzzy set

126

∫ ∫
−

+
−20000

10000

30000

20000

10000
1

10000
1)30000()10000(

x
x

x
x

.

This rule states that a middle-aged person who is single and has a small balance in

his/her bank account is likely to use a loan for a moderate amount. When this rule is

compared to the association rule involving discrete intervals, the fuzzy association rule is

easier for human users to comprehend. In addition to the linguistic representation, the use

of fuzzy set based techniques hides the boundaries of the adjacent intervals of the

continuous attributes. This makes our proposed algorithms to be resilient to noises in the

data, such as inaccuracies in the physical measurements of real-life entities. Furthermore,

the fact that 0.5 is the fuzziest degree of membership of an element in a fuzzy set provides a

new means for them to deal with missing values in databases. Using defuzzification

techniques, our algorithms allow continuous values to be inferred when fuzzy association

rules are applied to as yet unseen records.

To avoid the need for user-specified thresholds, both of the two proposed algorithms

utilize an objective interestingness measure, which is defined in terms of a fuzzy support

and confidence measure [Au and Chan 1998, 1999, 2001, 2002a, 2002b, 2003, 2004; Au,

Chan, and Yao 2003; Chan and Au 1997a, 1997b, 2001; Chan, Au, and Choi 2002], that

reflects the actual and the expected degree to which a tuple is characterized by different

linguistic terms. Unlike other data mining algorithms (e.g., [Agrawal, Imielinski, and

Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han and Fu 1995;

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and

Agrawal 1995, 1996]), the use of this interestingness measure has the advantage that it does

not require any user-specified thresholds.

Using the discovered rules, our proposed algorithms can be used to classify records

with unknown class membership. In particular, they are able to predict churn, which is

concerned with the loss of subscribers who switch from one carrier to another. To reduce

churn rate, a carrier in Malaysia gives us a database of 100,000 subscribers. For such an

application, the goal is not only to predict whether or not a subscriber would switch from

one carrier to another, it is also important that the likelihood of the subscriber’s doing so be

predicted. Otherwise, it can be difficult for the carrier to take advantage of the discovery

because the carrier does not have enough resources to contact all or a large fraction of the

subscribers. Although logit regression and neural networks can determine a probability for

a prediction with its likelihood, they do not explicitly express the uncovered patterns in a

symbolic, easily understandable form. It is for this reason that the carrier does not consider

these approaches as the best for their task concerned as they could not verify and interpret

127

the uncovered churning patterns.

Unlike existing techniques, our algorithms are able to mine rules representing the

churning patterns and to predict whether a subscriber is likely to churn in the near future.

The experimental results show that they are able to discover the regularities hidden in the

database and to predict the probability that a subscriber churns under different churn rates.

In addition, since some attributes in the subscriber database contains significant amount of

missing values, the ability of the proposed algorithms to handle missing values effectively is

important to their success in churn prediction.

In addition to mining rules from data sets, our proposed algorithms can also mine meta-

rules from rule sets. Specifically, they are able to discover 1) regular meta-rules to represent

association relationships in common in the rule sets; 2) differential meta-rules to represent

distinguishing associations in only a few rule sets; and 3) change meta-rules to represent the

regularities governing how rules change over time.

The rest of this chapter is organized as follows. In Section 7.1, we present what fuzzy

association rules are and how to use an objective measure to find the interesting associations

that are hidden in databases. We then propose two algorithms for mining fuzzy association

rules. One is based on a heuristic and the other employs an evolutionary approach. The

details of the former algorithm and those of the latter are given in Sections 7.2 and 7.3,

respectively. To evaluate the performance of our algorithms, we applied them to several

real-life data sets for data mining. The experimental results are provided in Section 7.4.

The details of the subscriber database provided by the carrier in Malaysia and the

experimental results using this database to test if our proposed algorithms are effective for

churn prediction are also given in this same section. Furthermore, we also applied our

algorithms to synthetic data sets for meta-mining. The details and the results of the

experiments are described in Section 7.5.

7.1 Fuzzy Association Rules
In the following subsections, we present 1) the definition of linguistic variables and

linguistic terms; 2) how to identify interesting association relationships between linguistic

terms; 3) the formation of fuzzy rules to represent the interesting associations and how to

represent the uncertainty associated with the rules; and 4) how to predict previously

unknown values using the discovered fuzzy rules.

128

7.1.1 Linguistic Variables and Linguistic Terms

Given a database relation, D, each tuple, t, in D consists of a set of attributes, A = {A1, …,

An}, where A1, …, An can be continuous or discrete. For any tuple, t ∈ D, t[Ai] denotes the

value ai in t for attribute Ai ∈ A. Let L = {L1, …, Ln} be a set of linguistic variables such

that Li ∈ L represents Ai ∈ A.

For any continuous attribute, Ai ∈ A, let dom(Ai) = [li, ui] ⊆ ℜ denote the domain of the

attribute. Ai is represented by a linguistic variable, Li, whose value is a linguistic term in

T(Li) = {lij | j = 1, …, si}, where lij is a linguistic term characterized by a fuzzy set, Fij, that is

defined on dom(Ai) and whose membership function is
ijFµ so that:

]1 ,0[)(: →iF Adom
ij

µ .

The fuzzy sets Fij, j = 1, …, si, are then represented by:

=

∫

∑

continuous is if
)(

discrete is if
)(

)(

)(

iAdom i

iF

iAdom
i

iF

ij

A
a

a

A
a

a

F

i

ij

i

ij

µ

µ

, (7.1)

where ai ∈ dom(Ai). The degree of compatibility of ai ∈ dom(Ai) with linguistic term lij is

given by)(iF a
ij

µ .

For any discrete attribute, Ai ∈ A, let } ..., ,{)(1 iimii aaAdom = denote the domain of Ai.

Ai is represented by linguistic variable Li whose value is a linguistic term in

T(Li) = {lij | j = 1, …, mi}, where lij is a linguistic term characterized by a fuzzy set, Fij, so

that:

 ∑=)(

)(
i

ij

Adom
i

iF
ij a

a
F

µ
, (7.2)

where ai ∈ dom(Ai). The degree of compatibility of ai ∈ dom(Ai) with linguistic term lij is

given by)(iF a
ij

µ .

In addition to handling discrete and continuous attributes in a uniform fashion, the use

129

of linguistic terms to represent discrete attributes also allows the fuzzy nature of some real-

world entities to be easily captured. For example, it may be difficult to distinguish the color

orange from the color red in some situations. It is for this reason that an object, which is

orange in color, can be perceived as red in color to certain extent. Such kind of fuzziness in

attribute Color can be represented by linguistic terms Red and Orange. Based on these

linguistic terms, the color of an object can be compatible with the term Red to a degree of

0.7 and with the term Orange to a degree of 0.3.

Interested readers are referred to [Mendel 1995] and [Yen 1999] for the details of the

linguistic variables, linguistic terms, fuzzy sets, and membership functions.

Using the above technique, the original attributes, A, are represented by a set of

linguistic variables, L = {Li | i = 1, …, n}. These linguistic variables are associated with a

set of linguistic terms, l = {lij | i = 1, …, n, j = 1, …, si}. These linguistic terms are, in turn,

characterized by a set of fuzzy sets, F = {Fij | i = 1, …, n, j = 1, …, si}. Given a tuple, t ∈ D,

and a linguistic term, lij ∈ l, which is characterized by a fuzzy set, Fij ∈ F, the degree of

membership of the values in t with respect to Fij is given by])[(iF At
ij

µ . The degree to

which t is characterized by lij,)(t
ijlλ , is defined as follows:

])[()(iFl Att
ijij

µλ = . (7.3)

If 1)(=t
ijlλ , t is completely characterized by the linguistic term lij. If 0)(=t

ijlλ , t is

undoubtedly not characterized by the linguistic term lij. If 1)(0 << t
ijlλ , t is partially

characterized by the linguistic term lij. In the case where t[Ai] is unknown, 5.0)(=t
ijlλ ,

which indicates that there is no information available concerning whether t is or is not

characterized by the linguistic term lij.

It is important to note that t can also be characterized by more than one linguistic term.

Let ϕ be a subset of integers so that ϕ = {i1, …, ih}, where ϕ ⊆ {1, …, n} and |ϕ| = h ≥ 1.

We also suppose that Aϕ is a subset of A so that Aϕ = {Ai | i ∈ ϕ}. Given any Aϕ, it is

associated with a set of linguistic terms, T(Lϕ) = {lϕj | j = 1, …, ∏
∈

=
ϕ

ϕ
i

iss }, where lϕj is

represented by a fuzzy set, Fϕj, so that
hh jijij FFF ∩∩= ...

11ϕ , ik ∈ ϕ,
kik sj ∈ . The degree

to which t is characterized by the term lϕj,)(t
jlϕ

λ , is defined as follows:

130

]))[(...,]),[(min()(
111 hhjhijij iLiLl AtAtt µµλ

ϕ
= . (7.4)

Based on the linguistic variables and linguistic terms, we can apply our proposed

algorithms to discover the fuzzy association rules, which are represented in a manner that is

natural for human users to understand.

7.1.1.1 An Illustrative Example

In this section, we illustrate how a relation in a relational database can be transformed to a

fuzzy relation based on linguistic variables and linguistic terms. Let us consider a sample

relation shown in Fig. 16 (“U” stands for unmarried and “M” stands for married).

Age Marital Status Salary
23 U 40,000
29 M 43,000
33 M 55,000
35 U 64,000
55 M 62,000

Fig. 16. A sample relation.

Let us further suppose that the Marital Status attribute, which is a discrete attribute, is

represented by two linguistic terms defined as:

U
1

=Unmarried

and

M
1

=Married .

For the remaining two continuous attributes, Age and Salary, they are represented by

the linguistic terms given in Fig. 17.

Based on these linguistic terms, the sample relation is transformed to a fuzzy relation

shown in Fig. 18. Instead of mining interesting rules from the original relation, we perform

data mining in the resulting fuzzy relation.

131

0

1

0 20 40 60 80

Age

D
eg

re
e

of
 M

em
be

rs
hi

p

Young Middle Aged Old

(a) The Age attribute.

0

1

0 20000 40000 60000 80000 100000

Salary

D
eg

re
e

of
 M

em
be

rs
hi

p Low Medium High

(b) The Salary attribute.

Fig. 17. The definitions of linguistic terms.

Age Marital Status Salary
{(Young, 0.85),

(Middle Aged, 0.15)}
{(Unmarried, 1)} {(Low, 0.5),

(Medium, 0.5)}
{(Young, 0.55),

(Middle Aged, 0.45)}
{(Married, 1)} {(Low, 0.35),

(Medium, 0.65)}
{(Young, 0.35),

(Middle Aged, 0.65)
{(Married, 1)} {(Medium, 0.75),

(High, 0.25)}
{(Young, 0.25),

(Middle Aged, 0.75)}
{(Unmarried, 1)} {(Medium, 0.3),

(High, 0.7)}
{(Middle Aged, 0.25),

(Old, 0.75)}
{(Married, 1)} {(Medium, 0.4),

(High, 0.6)}

Fig. 18. The resulting fuzzy relation.

132

7.1.2 Identification of Interesting Associations between

Linguistic Terms

The fuzzy support of a linguistic term, lϕk, is represented by fsup(lϕk), and it is defined as

follows:

∑∑

∑

∈ =

∈=

Dt

s

j
l

Dt
l

k

t

t
lfsup

j

k

ϕ

ϕ

ϕ

λ

λ

ϕ

1

)(

)(
)(. (7.5)

The fuzzy support of the linguistic term lϕk, fsup(lϕk), can be considered as being the

probability that a tuple is characterized by lϕk.

In the rest of this chapter, the association between a linguistic term, lϕk, and another

linguistic term, lpq, is expressed as lϕk → lpq. The fuzzy support of the association lϕk → lpq,

fsup(lϕk → lpq), is given by:

∑∑∑

∑

∈ = =

∈=→

Dt

s

j

s

u
ll

Dt
ll

pqk
p

puj

pqk

tt

tt
llfsup

ϕ

ϕ

ϕ

λλ

λλ

ϕ

1 1

))(),(min(

))(),(min(
)(. (7.6)

In fact, other t-norms (e.g., the multiplication operation) can also be used in the calculation

of the fuzzy support. We use the minimum operation here because it is one of the most

popular t-norms used in the literature (see, e.g., [Yen and Langari 1999]).

The fuzzy confidence of the association lϕk → lpq is represented by fconf(lϕk → lpq) and

this is calculated by:

)(

)(
)(

k

pqk
pqk lfsup

llfsup
llfconf

ϕ

ϕ
ϕ

→
=→ . (7.7)

Intuitively, the fuzzy support of lϕk → lpq, fsup(lϕk → lpq), can be considered as being

the probability that a tuple is characterized by lϕk and lpq, whereas the fuzzy confidence of

lϕk → lpq, fconf(lϕk → lpq), can be considered as being the probability that a tuple is

characterized by lpq given that it is also characterized by lϕk.

133

To decide whether an association, lϕk → lpq, is interesting, we determine whether the

difference between fconf(lϕk → lpq) and fsup(lpq) is significant. The significance of the

difference can be objectively evaluated using the adjusted residual [Chan and Wong 1990,

1991]. This is defined in terms of fuzzy confidence and support measures [Au and Chan

1998, 1999, 2001, 2002a, 2002b, 2003, 2004; Au, Chan, and Yao 2003; Chan and Au 1997a,

1997b, 2001; Chan, Au, and Choi 2002] that reflect the differences in the actual and the

expected degree to which a tuple is characterized by different linguistic terms. The adjusted

residual, d(lϕk → lpq), is defined as [Chan and Wong 1990, 1991]:

)(

)(
)(

pqk

pqk
pqk

ll

llz
lld

→

→
=→

ϕ

ϕ
ϕ

γ
, (7.8)

where z(lϕk → lpq) is the standardized residual and is defined as [Chan and Wong 1990,

1991]:

)(

)()(
)(

pqk

pqkpqk
pqk lle

llellfsup
llz

→

→−→
=→

ϕ

ϕϕ
ϕ , (7.9)

e(lϕk → lpq) is the expected degree to which a tuple is characterized by lϕk and lpq and is

calculated by:

 ∑∑∑
∈ = =

××=→
Dt

s

j

s

u
llpqkpqk

p

puj
ttlfsuplfsuplle

ϕ

ϕ
λλϕϕ

1 1

))(),(min()()()(, (7.10)

and γ(lϕk → lpq) is the maximum likelihood estimate [Chan and Wong 1990, 1991] of the

variance of z(lϕk → lpq) and is given by:

))(1))((1()(pqkpqk lfsuplfsupll −−=→ ϕϕγ . (7.11)

The measure defined by (7.8) can be considered as being an objective interestingness

measure because it does not depend on a user’s subjective input. Since d(lϕk → lpq) has a

normal distribution [Agresti 1990], if d(lϕk → lpq) > 1.96, then the presence of lϕk implies the

presence of lpq. In other words, whenever lϕk is found in a tuple, the probability that lpq is

also found in the same tuple is expected to be significantly higher than when lϕk is not found.

134

7.1.3 Formation of Fuzzy Association Rules

In the context of rule mining, the number of conditions in the antecedent of a rule is often

referred to as its order [Smyth and Goodman 1992; Wong and Wang 1997, 2003]. A first-

order fuzzy association rule can be defined as a rule involving one linguistic term in its

antecedent. A second-order fuzzy association rule can be defined as a rule involving two

linguistic terms in its antecedent. A third-order fuzzy association rule can be defined as a

rule involving three linguistic terms in its antecedent, and so on for other higher orders.

Given that lϕk → lpq is interesting, we can form the following fuzzy association rule:

)]([pqkpqk llwll ⇒⇒ ϕϕ ,

where w(lϕk ⇒ lpq) is the weight of evidence measure, which is a confidence measure that

represents the uncertainty associated with lϕk ⇒ lpq. This measure is defined as follows

[Chan and Wong 1990, 1991].

Since the relationship between lϕk and lpq is interesting, there is some evidence for a

record to be characterized by lpq given it has lϕk. The weight of evidence measure is defined

in terms of an information-theoretic measure known as mutual information. Mutual

information measures the change of uncertainty about the presence of lpq in a tuple given

that it has lϕk. It is defined as:

)(

)(
log):(

pq

pqk
kpq lfsup

llfconf
llI

→
= ϕ

ϕ . (7.12)

Based on mutual information, the weight of evidence measure is defined as [Chan and

Wong 1990, 1991]:

UU

U

qj
pj

qj
k

pqk

qj
kpjkpqpqk

lfsupllfsup

lfsupllfsup

llIllIllw

≠≠

≠

→

→
=

−=⇒

)()(

)()(
log

)):(():()(

pj

pq

ϕ

ϕ

ϕϕϕ

. (7.13)

w(lϕk ⇒ lpq) can be interpreted intuitively as a measure of the difference in the gain in

information when a tuple that is characterized by lϕk is also characterized by lpq as opposed

to being characterized by other linguistic terms.

135

Since lϕk is defined by a set of linguistic terms, l∈
hh jiji ll ..., ,

11
, we have a high-order

fuzzy association rule:

)]([...
111 pqkpqpjiijii llwlLlLlL

hhh
⇒=⇒=∧∧= ϕ ,

where i1, …, ih ∈ ϕ.

In the case that a class label is given, our algorithms can be modified in such a way that

they discover only those rules whose consequents are concerned with only the class label.

The generation of the rules that are not useful for classification can therefore be avoided.

7.1.4 Predicting Previously Unknown Values Using Fuzzy

Association Rules

Using the discovered fuzzy association rules, we are able to predict the values of some of

the characteristics of previously unseen records. The results can be continuous or discrete,

depending on the nature of the attributes whose values are to be predicted. Unlike other

classification techniques, which classify records into distinct classes, ours allows continuous

values to be inferred from fuzzy association rules.

Given a tuple, t ∈ dom(A1) × … × dom(Ap) × … × dom(An), let t be characterized by n

attribute values, α1, …, αp, …, αn, where αp is the value to be predicted. Let lp be a

linguistic term with a domain of T(Lp). The value of αp is determined according to lp. To

predict the correct value of αp, we search the discovered rules. If some attribute value, say

αj, j ≠ p, of t is characterized by the linguistic term in the antecedent of a rule that implies lpq,

then it can be considered providing some confidence that the value of lp should be assigned

to lpq. By repeating this procedure, that is, by matching each attribute value of t against the

rules, we can determine the value of lp by computing the total confidence measure.

Each of the attributes of t may or may not provide a contribution to the total confidence

measure, and those that do may support the assignment of different values. Therefore, the

different contributions to the total confidence measure are measured quantitatively and then

combined for comparison in order to find the most suitable value of lp. For any combination

of the attribute values, αϕ, p ∉ ϕ, of t, it is characterized by a linguistic term, lϕk, to a degree

of compatibility,)(t
klϕλ , for each k ∈ {1, …, sϕ}. Given the rules that imply the assignment

of lpq, lϕk ⇒ lpq [w(lϕk ⇒ lpq)], for all k ∈ ζ ⊆ {1, …, sϕ}, the confidence provided by αϕ for

such an assignment is given by:

136

)()(tllww
kpq l

k
pqkl ϕϕ

λ
ζ

ϕα ×⇒=∑
∈

. (7.14)

Suppose that, among the n − 1 attribute values excluding αp, only some combinations

of them, α[1], …, α[j], …, α[β], where α[j] = {αi | i ∈ {1, …, n} − {p}}, are found matching

one or more rules. Then, the total confidence measure for assigning the value of lp to lpq is

given by:

 ∑
=

=
β

α
1

][
j

lq jpq
ww . (7.15)

In the case that Ap is discrete, lp is assigned to lpc if:

wc > wg, g = 1, …, ps′ and g ≠ c,

where ps′ (≤ sp) denotes the number of linguistic terms that are implied by the rules, and αp

is, therefore, assigned to apc ∈ dom(Ap).

If Ap is continuous, a new method is used to assign an appropriate value to αp. Given

the linguistic terms,
ppsp ll ..., ,1 , and their total confidence measures,

ppsp ww ..., ,1 , let

)(pF a
pu

µ′ be the weighted degree of membership of ap ∈ dom(Ap) to the fuzzy set Fpu,

u ∈ {1, …, sp}. The value of)(pF a
pu

µ′ is given by:

)()(pFpupF awa
pupu

µµ ⋅=′ , (7.16)

where ap ∈ dom(Ap) and u = 1, …, sp. The predicted value, α, is then defined as:

∫
∫

′

⋅′
=

)(...

)(...

)(

)(

1

1

p ppsp

p ppsp

Adom ppFF

Adom pppFF

daa

daaa

UU

UU

µ

µ
α , (7.17)

where))(),(max()(aaa YXYX µµµ ′′=′ U for any fuzzy sets X and Y. This prediction, α,

provides an appropriate value for αp.

137

7.2 The FARM Algorithm
In this section, we propose a new algorithm for mining fuzzy association rule based on a

heuristic. It is known as FARM (Fuzzy Association Rule Mining) in the rest of this thesis.

To discover the high-order fuzzy association rules, FARM makes use of a heuristic in

which the association between klϕ′ , where ϕ′ = ϕ1 ∪ ϕ2, and lpq is considered being more

likely to be interesting if the association between kl
1ϕ and lpq and the association between

kl
2ϕ and lpq are interesting. Based on such a heuristic, FARM evaluates the interestingness

of only the associations between different combinations of conditions in lower-order

association rules. This approach can effectively prevent an exhaustive search for the

interesting associations involving all combinations of the linguistic terms.

FARM starts the data mining process by finding a set of first-order fuzzy association

rules using the objective interestingness measure introduced in Section 7.1.2. After these

rules are discovered, they are stored in rule set R1. The rules in R1 are then used to generate

second-order rules, which are, in turn, stored in R2. The rules in R2 are then used to generate

third-order rules, which are stored in R3, and so on for fourth and higher orders. FARM

iterates until no higher-order association rule is found. The details of the algorithm are

given in Fig. 19.

R1 ← {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96};
h ← 2;
while Rh – 1 ≠ ∅ do
begin
 C ← {each linguistic term in the antecedent of r | r ∈ Rh – 1};
 forall lϕk comprising h linguistic terms in C do
 begin
 forall lpq, q = 1, …, sp, do
 begin
 if d(lϕk → lpq) > 1.96 then
 Rh ← Rh ∪ {lϕk ⇒ lpq [w(lϕk ⇒ lpq)]};
 end
 end
 h ← h + 1;
end

U
h

hRRules = ;

Fig. 19. The FARM algorithm.

FARM employs the objective interestingness measure described in Section 7.2.2 to

determine whether the association relationship lϕk → lpq is interesting. If lϕk → lpq is

138

identified as being interesting, then it generates a rule, lϕk ⇒ lpq, whose uncertainty is

represented by the confidence measure that is defined in Section 7.2.3. All generated rules

are stored in a rule set, which is used later for inference or for human users to examine.

7.3 The EFARM Algorithm
FARM will perform slowly when there are enormous attributes. To perform search more

effectively in a huge rule set space, we propose to use an evolutionary algorithm, called

EFARM (Evolutionary FARM), in this section. Although EFARM performs slower than

FARM when there are a moderate number of attributes, our experimental results on several

data sets show that the former algorithm achieves more accurate classification results than

the latter (Section 7.5.1).

EFARM discovers rules by an iterative process. It begins with the generation of a set

of first-order rules using the objective interestingness measure given in Section 7.2.2. Based

on these rules, it then discovers a set of second-order rules in the next iteration and based on

the second-order rules, it discovers third-order rules, etc. In other words, if we refer to the

initial set of first-order rules as R1, the rules in R1 are then used to generate a set of second-

order rules, R2. R2 is then used to generate a set of third-order rules, R3, and so on for fourth

and higher order rules. In general, at the (h – 1)-th iteration, EFARM begins an

evolutionary learning process by generating an initial population of individuals (each

represents a set of h-th order rules) by randomly combining the rules in Rh – 1 to form a set of

rules of order h. Once started, the iterative learning process goes on uninterruptedly until no

more interesting rules in the current population can be identified. The EFARM algorithm is

given in Fig. 20.

The decode function in Fig. 20 is to extract all the interesting rules encoded in a

chromosome and store them in Rh. If an allele in the chromosome is found interesting based

on the objective measure defined in Section 7.1.2, the decode function will extract the rules

it encodes. The rule set returned by the decode function therefore contains interesting rules

only. When none of the rules encoded in the individual is found interesting, the decode

function will return a null set and hence Rh will become a null set.

139

R1 ← {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96};
h ← 2;
while Rh – 1 ≠ ∅ do
begin
 t ← 0;
 population[t] ← initialize(Rh – 1);
 fitness(population[t]);
 while not terminate(population[t]) do
 begin
 t ← t + 1;
 population[t] ← reproduce(population[t – 1]);
 fitness(population[t]);
 end
 Rh ← decode(the fittest individual in population[t]);
 h ← h + 1;
end

U
h

hRRules = ;

Fig. 20. The EFARM algorithm.

7.3.1 Encoding Rules in the Chromosomes

For the evolutionary process, EFARM encodes a complete set of rules in a single

chromosome in such a way that each gene encodes a single rule. Specifically, given the

following h-th order rule, for example:

)]([...
111 pqkpqphkhk llwlLlLlL

h
⇒=⇒=∧∧= ϕ ,

where w(lϕk ⇒ lpq), given by Equation (7.13), is an uncertainty measure associated with it,

this rule is encoded in EFARM by the allele given in Fig. 21.

111 klL =
hhkh lL =.........

Fig. 21. An allele representing an h-th order rule.

It should be noted that the consequent and the uncertainty measure are not encoded.

This is because the consequent is not, and in fact, should not be determined by chance. In

EFARM, both the consequent and the uncertainty measure are determined when the fitness

of a chromosome is computed. Given this representation scheme, the number of genes in

the chromosome is, therefore, the same as the number of rules in the rule set.

140

7.3.2 Generating First-Order Rules

EFARM begins the evolutionary process by the generation of a set of first-order rules.

When compared to randomly generated initial population, it has been shown that

heuristically-generated initial populations can improve convergence speed and find better

solutions [Hill 1999; Ishibuchi and Nakashima 1999; Julstrom 1994; Yang and Nygard

1993]. Based on these findings, EFARM first discovers a set of first-order rules and places

it in the initial population. Furthermore, the initial first-order rules are generated very

rapidly. The time it takes to generate the initial population that contains the first-order rules

is negligible when compared to the time it takes for the best set of rules to be evolved.

By using the interestingness measure given by Equation (7.8) and the weight of

evidence measure given by Equation (7.13), a set of interesting first-order rules can be

discovered. Once these rules are discovered, EFARM will begin an iterative process of

initialization of population, evaluation of fitness of individuals, selection, reproduction, and

termination, etc., so as to discover higher order rules.

7.3.3 Initialization of Populations

Since a good initial population may improve the speed of the evolutionary process and make

it easier for an optimal solution to be found, EFARM does not generate its initial

populations completely randomly. Instead, it makes use of a heuristic in which the

association between lij ∧ lks and lpq is more likely to be interesting if the association between

lij and lpq and the association between lks and lpq are interesting. Based on this heuristic,

EFARM generates different sets of h-th order rules by randomly combining the (h – 1)-th

order rules discovered in the previous iteration. The details of the initialization process are

given in the initialize function in Fig. 22.

The initialize function takes as argument, Rh – 1. The chromi.allelej in Fig. 22 denotes

the j-th allele of the i-th chromosome. The randh(C) function returns an h-th order allele

constructed by randomly combining h elements in C. For our experiments, popsize was set

to 30 and the number of alleles in each chromosome was set to nalleles = |Rl – 1|, where |Rl – 1|

denotes the number of rules in Rh – 1. We set nalleles = |Rh – 1| because each allele represents

the antecedent of a rule and the chromosome is used to encode Rh – 1.

141

population initialize(Rh – 1)
begin
 C ← {all conjuncts in the antecedent of all r ∈ Rh – 1};
 i ← 1;
 while i ≤ popsize do
 begin
 j ← 1;
 while j ≤ nalleles do
 begin
 chromi.allelj ← randh(C);
 j ← j + 1;
 end
 i ← i + 1;
 end
 return U

i
ichrom ;

end

Fig. 22. The initialize function.

7.3.4 The Genetic Operators

The genetic operators used by EFARM are implemented in the reproduce function shown in

Fig. 23. The select(population[t – 1]) function uses the roulette wheel selection scheme

[Fogel 1995; Goldberg 1989; Michalewicz 1996] to select two different chromosomes,

chrom1 and chrom2, with respect to their fitness values from the current population, i.e.,

population[t – 1]. These two chromosomes are then passed as arguments to the crossover

function.

population reproduce(population[t – 1])
begin
 chrom1 ← select(population[t – 1]);
 chrom2 ← select(population[t – 1]);
 nchrom1, nchrom2 ← crossover(chrom1, chrom2);
 mutation(nchrom1);
 mutation(nchrom2);
 population ← steady-state(population[t – 1], nchrom1, nchrom2);
 return population;
end

Fig. 23. The reproduce function.

The crossover(chrom1, chrom2) function uses the two-point crossover operator because

it allows the combination of schemata, which is not possible with the classical, one-point

crossover [Michalewicz 1996]. EFARM uses two different strategies in choosing the

crossover points, namely, crossover-1 and crossover-2. The crossover-1 operator allows the

crossover points to occur between two rules only, whereas the crossover-2 operator allows

the crossover points to occur within one rule only. An example of the crossover-1 operator

142

and that of the crossover-2 operator are graphically depicted in Fig. 24 and Fig. 25,

respectively.

In EFARM, the crossover probability for the crossover-1 operator and that for the

crossover-2 operator are denoted as p1 and p2, respectively. For our experimentation, four

different setups are used and they are summarized in Table 23.

The first three setups, EFARM-1, EFARM-2, and EFARM-3, use constant values of p1

and p2, whereas the last setup, EFARM-4, uses adaptive values of p1 and p2. In EFARM-4,

p1 is increased by 0.05 and p2 is decreased by 0.05 whenever the termination criteria

specified in Section 7.4.6 are satisfied. The evolutionary process ends when p1 and p2 reach

0.75 and 0.25, respectively, and the termination criteria are satisfied. The performance of

EFARM under different setups will further be discussed in Section 7.6.2.

121 lL = 212 lL = 111 lL = 323 lL = 222 lL = 313 lL =

111 lL = 313 lL = 212 lL = 131 lL = 323 lL = 212 lL =

(a) Before crossover.

121 lL = 212 lL =

111 lL = 323 lL =

222 lL = 313 lL =

111 lL = 313 lL =

212 lL = 131 lL =

323 lL = 212 lL =

(b) After crossover.

Fig. 24. An example of the crossover-1 operator (the thick borders indicate the rule

boundaries).

143

121 lL = 212 lL = 111 lL = 323 lL = 222 lL = 313 lL =

111 lL = 313 lL = 212 lL = 131 lL = 323 lL = 212 lL =

(a) Before crossover.

121 lL =

212 lL = 111 lL = 323 lL = 222 lL =

313 lL =

111 lL =

313 lL = 212 lL = 131 lL = 323 lL =

212 lL =

(b) After crossover.

Fig. 25. An example of the crossover-2 operator (the thick borders indicate the rule

boundaries).

Table 23. Different setups of crossover probabilities p1 and p2.

 Beginning of evolution End of evolution
 p1 p2 p1 p2
EFARM-1 0.5 0.5 0.5 0.5
EFARM-2 0.75 0.25 0.75 0.25
EFARM-3 0.25 0.75 0.25 0.75
EFARM-4 0.25 0.75 0.75 0.25

The mutation(nchrom1) function, which is different from the traditional mutation

operator [Fogel 1995; Goldberg 1989; Michalewicz 1996], takes a chromosome as argument.

Its details are given in Fig. 26. The random function returns a real number between 0 and 1

and pmutation contains the mutation rate and is a constant. The random(1, h) function

returns an integer between 1 and h. The nchrom.allelej.rulek denotes the k-th rule in the j-th

allele of chromosome nchrom. The hill-climb(C) function replaces the k-th rule with each

element in C and evaluates the chromosome’s fitness value. It returns the one producing the

greatest fitness. Instead of replacing a rule with an element in C randomly, the use of the

hill-climb function allows EFARM to search for improvements even when premature

convergence occurs [Fogel 1995].

The steady-state(population[t – 1], nchrom1, nchrom2) function in reproduce produces

144

a new population, population[t], by removing the two least-fit chromosomes in

population[t – 1] and replacing them with nchrom1 and nchrom2 while keeping the rest of

the other chromosomes intact.

mutation(nchrom)
begin
 C ← {all conjuncts in the antecedent of all r ∈ Rh – 1};
 j ← 1;
 while j ≤ nalleles do
 begin
 if random < pmutation then
 begin
 k = random(1, h);
 nchrom.allelej.rulek ← hill-climb(C);
 end
 j ← j + 1;
 end
end

Fig. 26. The mutation function.

7.3.5 Selection and the Fitness Function

To determine the fitness of a chromosome that encodes a set of h-th order rules, EFARM

uses a performance measure defined in terms of the probability that the value of an attribute

of a tuple can be correctly predicted based on the rules in R = R1 ∪ ⋅⋅⋅ ∪ Rh – 1 ∪ {rules

encoded in the chromosome being evaluated}. The use of this fitness measure is to allow

EFARM to maximize the number of records that it can correctly predict. How exactly such

fitness value can be determined is given in the following.

An attribute, say, Ai of a tuple o characterized by A1 = v1, …, Ai = vi, …, An = vn is

randomly selected and the value vi deleted from o. The rules contained in R are then used to

see if the value of Ai can be correctly predicted based on v1, …, vi – 1, vi + 1, …, vn. Assume

that a rule which predicts Ai = aip ∈ dom(Ai) is matched, this rule can be considered

providing some evidence for or against Ai to have the value aip and the strength of the

evidence is given by the weight of evidence associated with it. By matching v1, …, vi – 1,

vi + 1, …, vn against the rules in R, the value that Ai should take on can be determined based

on a total weight of evidence measure which we describe in Section 7.2.4.

7.3.6 Criteria for Termination

The terminate(population[t]) function in Fig. 20 implements the following termination

criteria: 1) terminate when the best and the worst performing chromosome in population[t]

differs by less than 0.1% because in this case, the whole population becomes very similar

145

and it is not likely to achieve any improvement in the future generations; 2) terminate when

the total number of generations specified by the user is reached; and 3) terminate when no

more interesting rules in the current population can be identified because it is unlikely to

find any interesting h-th order rules if no (h – 1)-th order rule is found interesting.

7.4 Applications in Mining Meta-Rules in Rule Sets
Following the definitions of regular, differential, and change meta-rules given in Chapter 3,

we present how our proposed algorithms can be used to mine such meta-rules from rule sets

in this section. Specifically, given a collection of data sets, D1, …, Dm, FARM and EFARM

are used to discover a set of rules, Rj, j ∈ {1, …, m}, from each data set. Our task here is to

mine regular, differential, and change meta-rules from R1, …, Rm.

7.4.1 Mining Regularities and Differences

Given R1, …, Rm, a condition, (Li = lik) ∈ condition(R1) ∪ …∪ condition(Rm), is supported

by a set of rules:

R (lik) = {r | r ∈ R1 ∪ …∪ Rm, (Lik = lik) ∈ condition(r)},

where condition(r) denotes the set of conditions in r and U
jRr

j rconditionRcondition
∈

=)()(

(defined in Chapter 3).

The support of linguistic term lik is then given by:

|...

|)(|)(
1 m

ik
ik RR

llfsup
∪∪

=
|

R . (7.18)

Similarly, an association, lik → lpq, where (Li = lik), (Lp = lpq) ∈ condition(R1) ∪ …∪

condition(Rm), is supported by a set of rules:

R (lik → lpq) = {r | r ∈ R1 ∪ …∪ Rm, (Lik = lik), (Lp = lpq) ∈ condition(r)}.

The support and the confidence of the association lik → lpq are then given by:

|...
|)(|

)(
1 m

pqik
pqik RR

ll
llfsup

∪∪

→
=→
|

R
 (7.19)

146

and

)(

)(
)(

ik

pqik
pqik lfsup

llfsup
llfconf

→
=→ , (7.20)

respectively.

Intuitively, fsup(lik) and fsup(lpq) can be considered as being the probability that a rule

has the condition Li = lik and Lp = lpq, respectively. Similarly, fsup(lik → lpq) can be

considered as being the probability that a rule has both Li = lik and Lp = lpq. If Li = lik and

Lp = lpq are independent of each other, then fsup(lik → lpq) = fsup(lik) × fsup(lpq). Hence

fsup(lik) × fsup(lpq) × |R1 ∪ …∪ Rm| yields the expected value of |R (lik → lpq)|

(= fsup(lik → lpq) × |R1 ∪ …∪ Rm|). If |R (lik → lpq)| is significantly larger than its expected

value, it is sufficiently large. The regular meta-rule lik ⇒ lpq can therefore be formed

(Definition 3.3). On the other hand, if |R (lik → lpq)| is significantly smaller than its expected

value, it is sufficiently small. Consequently, the differential meta-rule lik ⇒ lpq can be

formed (Definition 3.4).

The difference between fsup(lik → lpq) and fsup(lik) × fsup(lpq) and hence the difference

between |R (lik → lpq)| and its expected value can be objectively evaluated in terms of the

adjusted residual, d(lik → lpq), given by Equation (7.8). Since the adjusted residual has a

normal distribution [Agresti 1990], we can conclude that fsup(lik → lpq) is significantly

larger than fsup(lik) × fsup(lpq) if d(lik → lpq) > 1.96 (the 95th percentile of the normal

distribution). In other words, |R (lik → lpq)| is significantly larger than its expected value and

it is therefore sufficiently large. On the other hand, if d(lik → lpq) < –1.96, we can conclude

that fsup(lik → lpq) is significantly smaller than fsup(lik) × fsup(lpq). In other words,

|R (lik → lpq)| is significantly smaller than its expected value and it is therefore sufficiently

small.

It is important to note that we need to take care of not only the criterion

d(lik → lpq) > 1.96, but also d(lik → lpq) < –1.96 for meta-mining. The former is to test for

the regularities in common in the rule sets (i.e., regular meta-rules), whereas the latter is to

test for the distinguishing relationships in only a few rule sets (i.e., differential meta-rules).

By replacing Equations (7.5)–(7.7) with Equations (7.18)–(7.20), the adjusted residual

can be calculated by Equation (7.8). It can be used as a measure to identify whether the

support of an association hidden in the rule sets is sufficiently large or sufficiently small in

147

order to identify regular or differential meta-rules, respectively. The uncertainty associated

with the regular or differential meta-rules can then be evaluated by the weight of evidence

given by Equation (7.13).

7.4.2 Mining Changes

For each rule, r ∈ R1 ∪ … ∪ Rm, we have a sequence of adjusted residuals, S r = (d1(r), …,

dm(r)), where dj(r) is the adjusted residual of r in Rj for j = 1, …, m, and a sequence of

weights of evidence, C r = (w1(r), …, wm(r)), where wj(r) is the weight of evidence of r in Rj

for j = 1, …, m. S r and C r are then converted to sequences ∆S r = (∆d1(r), …, ∆dm – 1(r)) and

∆C r = (∆w1(r), …, ∆wm – 1(r)), where ∆dj(r) = dj + 1(r) – dj(r) and ∆wj(r) = wj + 1(r) – wj(r),

j = 1, …, m, respectively. By sliding a window of width g across ∆S r, it is divided into a set

of subsequences, r
gm

r
−∆∆ SS ..., ,1 , where))(...,),((1 rdrd gjj

r
j −+∆∆=∆S . Similarly, ∆C r is

also divided into a set of subsequences, r
gm

r
−∆∆ CC ..., ,1 , where

))(...,),((1 rwrw gjj
r
j −+∆∆=∆C . We can then mine a set of change meta-rules of adjusted

residual in subsequences r
gm

r
−∆∆ SS ..., ,1 and a set of change meta-rules of weight of

evidence in subsequences r
gm

r
−∆∆ CC ..., ,1 .

Example 7.1 Let us consider a fuzzy association rule, r. Let us suppose that its adjusted

residuals in certain 6 consecutive periods are given by the sequence S r = (3.78, 3.49, 2.84,

2.93, 2.89, 2.97) and its weights of evidence in these 6 periods are given by the sequence

C r = (5.09, 4.89, 4.59, 2.97, 3.08, 5.18). We have ∆S r = (–0.29, –0.65, 0.09, –0.04, 0.08)

and ∆C r = (–0.2, –0.3, –1.62, 0.11, 2.1). By sliding a window of width g = 3 across ∆S r, we

obtain a set of subsequences, r
1S∆ = (–0.29, –0.65, 0.09), r

2S∆ = (–0.65, 0.09, –0.04), and

r
3S∆ = (0.09, –0.04, 0.08). Similarly, by sliding the window across ∆C r, we obtain a set of

subsequences, r
1C∆ = (–0.2, –0.3, –1.62), r

2C∆ = (–0.3, –1.62, 0.11), and r
3C∆ = (–1.62, 0.11,

2.1).

For simplicity, we only discuss how to mine change meta-rules of adjusted residual in

subsequences r
gm

r
−∆∆ SS ..., ,1 in the rest of this section. It is straightforward to extend the

description to mine change meta-rules of weight of evidence in subsequences
r

gm
r

−∆∆ CC ..., ,1 .

148

7.4.2.1 Linguistic Variables and Linguistic Terms

Given subsequences r
gm

r
−∆∆ SS ..., ,1 , where))(...,),((1 rdrd gjj

r
j −+∆∆=∆S , j = 1, …, m – g,

we define a set of linguistic variables, } ..., ,{ 1
r
g

rr LL=L , such that r
iL represents ∆dj + i – 1(r)

in r
jS∆ for i = 1, …, g. The value of r

iL is a linguistic term in } ..., ,{)(1
r
is

r
i

r
i i

llLT = , where r
ikl ,

k ∈ {1, …, si}, is a linguistic term defined by a fuzzy set, r
ikF , that is defined on ℜ, which is

the domain of ∆dj + i – 1(r), and whose membership function is r
ikFµ so that:

]1 ,0[: →ℜr
ikFµ .

The degree of compatibility of x ∈ ℜ with r
ik

r
i sL = is given by)(xr

ikFµ . Since it may

not be trivial for one to define the fuzzy sets, we propose to use a fuzzy partitioning

technique to generate the membership functions of the fuzzy sets in Chapter 5.

Given r
jS∆ and a linguistic term,)(r

i
r
ik LTl ∈ , which is characterized by a fuzzy set,

r
ikF , the degree of membership of the values in r

jS∆ with respect to r
ikF is given by

))((1 rd ijF r
ik

−+∆µ . The degree to which r
jS∆ is characterized by r

ik
r
i lL = ,)(r

jlr
ik
S∆λ , is

defined as:

))(()(1 rd ijF
r
jl r

ik
r
ik

−+∆=∆ µλ S . (7.21)

If 1)(=∆ r
jlr

ik
Sλ , r

jS∆ is completely characterized by r
ik

r
i lL = . If 0)(=∆ r

jlr
ik

Sλ , r
jS∆ is

undoubtedly not characterized by r
ik

r
i lL = . If 1)(0 <∆< r

jl r
ik

Sλ , r
jS∆ is partially

characterized by r
ik

r
i lL = . In the case that ∆dj + i – 1(r) is missing because dj + i – 1(r) = ? and/or

dj + k(r) = ?, 5.0)(=∆ r
jlr

ik
Sλ , which indicates that there is no information available

concerning whether r
jS∆ is or is not characterized by r

ik
r
i lL = .

Each subsequence } ..., ,{ 1
r

gm
rr

j −∆∆∈∆ SSS is represented by a set of ordered triples,

r
jo = {))(, ,(

11
111

r
jl

rr
rlL S∆λ , …,))(, ,(

11111
r
jl

r
s

r
r
s

lL S∆λ , …,))(, ,(
1

1
r
jl

r
g

r
g r

g
lL S∆λ , …,

))(, ,(r
jl

r
gs

r
g r

ggsg
lL S∆λ }.

149

Example 7.2 Let us consider the rule, r, described in Example 7.1. We have a set of

subsequences of adjusted residual, r
1S∆ = (–0.29, –0.65, 0.09), r

2S∆ = (–0.65, 0.09, –0.04),

and r
3S∆ = (0.09, –0.04, 0.08). Each subsequence is then represented by three linguistic

variables, rS1 (which represents “Change in adjusted residual in 1 period ago”), rS2 (which

represents “Change in adjusted residual in this period”), and rS3 (which represents “Change

in adjusted residual in next period”). The value of each linguistic variable can take from 5

linguistic terms whose membership functions are defined in the following:

≥

≤≤−
=

≤≤−

≤≤
=

≤≤−

≤≤−+
=

≤≤−
−≤≤−+

=

−≤≤−+

−≤
=

−

−

−

−

otherwise0
1.0 if1

1.005.0 if)05.0(
)(

otherwise0
1.005.0 if)1.0(

05.00 if)(
)(

otherwise0
05.00 if)05.0(

005.0 if)05.0(
)(

otherwise0
005.0 if)(

05.01.0 if)1.0(
)(

otherwise0
05.01.0 if)05.0(

1.0 if1
)(

05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1

x
xx

x

xx
xx

x

xx
xx

x

xx
xx

x

xx
x

x

increaseHighly

increaseFairly

 samethe less or More

decreaseFairly

decreaseHighly

µ

µ

µ

µ

µ

.

r
1S∆ is then represented by a set of ordered triples, ro1 , where

ro1 = {(rL1 , Highly decrease, 0), (rL1 , Fairly decrease, 0.58), (rL1 , More or less the same,

0.42), (rL1 , Fairly increase, 0), (rL1 , Highly increase, 0), (rL2 , Highly decrease, 0.3),

(rL2 , Fairly decrease, 0.7), (rL2 , More or less the same, 0), (rL2 , Fairly increase, 0),

(rL2 , Highly increase, 0), (rL3 , Highly decrease, 0), (rL3 , Fairly decrease, 0), (rL3 ,

More or less the same, 0.82), (rL3 , Fairly increase, 0.18), (rL3 , Highly increase, 0)}.

Similarly, r
2S∆ and r

3S∆ are represented by ro2 and ro3 , respectively.

150

The fuzzy support of the linguistic term r
ikl ,)(r

iklfsup , is given by:

∑∑

∑
−

= =

−

=

∆

∆

= gm

j

s

k

r
jl

gm

j

r
jl

r
ik i

r
ik

r
ik

lfsup

1 1

1

)(

)(
)(

S

S

λ

λ
, (7.22)

and the fuzzy support of the association r
pq

r
ik ll → ,)(r

pq
r
ik llfsup → , is calculated by:

∑∑∑

∑
−

= = =

−

=

∆∆

∆∆

=→
gm

j

s

k

s

q

r
jl

r
jl

gm

j

r
jl

r
jl

r
pq

r
ik

i p

r
pq

r
ik

r
pq

r
ik

llfsup

1 1 1

1

))(),(min(

))(),(min(
)(

SS

SS

λλ

λλ
. (7.23)

The fuzzy confidence of the association r
pq

r
ik ll → ,)(r

pq
r
ik llfconf → , is then given by:

)(

)(
)(r

ik

r
pq

r
ikr

pq
r
ik lfsup

llfsup
llfconf

→
=→ . (7.24)

By replacing Equations (7.5)–(7.7) with Equations (7.22)–(7.24), we use 1) the

adjusted residual given by Equation (7.8) as an objective interestingness measure to identify

interesting change meta-rules and 2) the weight of evidence given by Equation (7.13) to

evaluate the uncertainty associated with the interesting change meta-rules.

7.5 Comparing the FARM and EFARM Algorithms
In this section, we evaluate the performance of our proposed algorithms, FARM and

EFARM, for data mining. We first applied them to several real-world data sets to test their

classification performance in general (Section 7.5.1). These data sets are obtained from the

UCI Machine Learning Repository [Blake and Merz 1998]. We next applied them to the

subscriber database provided by a carrier in Malaysia to test their performance on assigning

likelihood to their classification (Section 7.5.2).

7.5.1 Different Data Sets

For each trial in each experiment, each of the data sets used was divided into two data sets

with records in each of them randomly selected. The mining of rules was performed on one

151

of the data sets (i.e., the training data set). The other data set was reserved for testing (i.e.,

the testing data set). For each of these testing data sets, the values of one of the attributes

were deleted. We refer to this attribute as the class attribute in the rest of this section. The

rules discovered by mining the training data set were used to predict the class attribute

values in the testing data set. The predicted values were then compared against the original

values to see if they are the same. If it is the case, the accuracy count was incremented

correspondingly. Based on this accuracy count, the percentage accuracy for each of FARM,

EFARM, C4.5 [Quinlan 1993] (a well-known decision-tree classifier), CBA [Liu, Hsu, and

Ma 1998] (an association rule mining algorithm), SCS [Goldberg 1989] (a Michigan-style

classifier system), and GABL [DeJong, Spears, and Gordon 1993] (a Pittsburgh-style

concept learner), was computed. The accuracy, averaged over a total of ten trials for each

experiment, was recorded and compared and they are given in Table 24.

Since GABL is originally developed to solve “single-class (or concept)” problems,

multiple populations have to be used in our experiments so that each of them can be

dedicated to the learning of relationship between a single value in a multiple-valued

attribute and other attribute values in a database. In our experiments, when a test record is

matched by none of any rule of any class, we assign the record to the most common or the

majority class in the training data set; on the other hand, when a test record is matched by

more than one rule of different classes, we assign the record to the majority class that

matches the record.

In our experiments, the crossover rate in EFARM was set to 0.6, the mutation rate was

set to 0.0001, and the population size was set to 30. Since the performances of EFARM

under different setups (Table 1) are more or less the same, we only report the experimental

results of EFARM under the setup where both the crossover probability for the crossover-1

and that for the crossover-2 operator are set to 0.5 (i.e., EFARM-1) in this section. The

performance of EFARM for churn prediction under different setups will be discussed in the

next section.

For GABL, the mutation probability was set to 0.001, the crossover probability was set

to 0.6, and the population size was set to 100 [DeJong, Spears, and Gordon 1993]. For SCS,

the population size was set to 1,000, the bid coefficient was set to 0.1, the bid spread was set

to 0.075, the bidding tax was set to 0.01, the existence tax was set to 0, the generality

probability was set to 0.5, the bid specificity base was set to 1, the bid specificity multiplier

was set to 0, the ebid specificity base was set to 1, the ebid specificity multiplier was set to 0,

the reinforcement award was set to 1, the proportion to select per generation was set to 0.2,

the number to select was set to 1, the mutation probability was set to 0.02, the crossover

152

probability was set to 1, the crowding factor was set to 3, and the crowding sub-population

was set to 3 [Goldberg 1989].

All the experiments reported in this section and Section 4.5 were performed using a

personal computer with Intel Pentium III 1 GHz processor as CPU, 256 MB of main

memory, and running Red Hat Linux 7.1. In the following, we describe the data sets used in

our experiments and present the results analyzing the performance of the different

approaches.

7.5.1.1 The Zoo Data Set

Each record in the zoo data set [Forsyth 1990] is characterized by 18 attributes. Since the

unique name of each animal is irrelevant, it is ignored. All the 17 remaining attributes are

discrete. The class attribute is concerned with the type of the animals are classified into.

The value of the class attribute can be one of: mammal, bird, reptile, fish, amphibian, insect,

and coelenterate.

7.5.1.2 The DNA Data Set

Each record in the DNA data set [Noordewier, Towell, and Shavlik 1991] consists of a

sequence of DNA, an instance name, and the class attribute. Since the unique name of each

instance is irrelevant, it is ignored. A sequence of DNA contains 60 fields, each of which

can be filled by one of: A, G, T, C, D (i.e., A or G or T), N (i.e., A or G or C or T), S (i.e., C

or G), and R (i.e., A or G). The class attribute is concerned with the splice junctions that are

points on a DNA sequence at which “superfluous” DNA is removed during the process of

protein creation. It indicates the boundaries between extrons (the parts of the DNA

sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced

out) and can be one of EI (extron-intron boundary), IE (intron-extron boundary), and N

(neither extron-intron nor intron-extron boundary).

7.5.1.3 The Credit Card Data Set

The credit card data set [Quinlan 1987a] contains data about credit card applications. It

consists of 15 attributes of which the class attribute is concerned with whether or not an

application is successful. The meaning of these attributes is not known as the names of the

attributes and their values are changed by the donor of the database to meaningless symbols

to protect the confidentiality of the data. Out of the 15 attributes, 6 are continuous and 9 are

discrete. The 6 continuous attributes were fuzzy partitioned using the fuzzy partitioning

technique introduced in Chapter 6.

153

7.5.1.4 The Diabetes Data Set

Each record in the diabetes data set [Smith et al. 1988] is characterized by 9 attributes. The

value of the class attribute can be either “1” (tested positive for diabetes) or “2” (tested

negative for diabetes). The other attributes are continuous and they were fuzzy partitioned

using the fuzzy partitioning technique proposed in Chapter 6.

7.5.1.5 The Satellite Image Data Set

Each record in the satellite image data set corresponds to a 3 × 3 square neighborhood of

pixels completely contained within an area. Each record contains the pixel values in the

four spectral bands of each of the 9 pixels in the 3 × 3 neighborhood and the class attribute

is the class of the central pixel that is one of: red soil, cotton crop, grey soil, damp grey soil,

soil with vegetation stubble, and very damp grey soil. All the 36 (= 4 spectral bands × 9

pixels in neighborhood) attributes other than the class attribute is continuous and in the

range between 0 and 255. For our experiments, these continuous attributes were fuzzy

partitioned using the fuzzy partitioning technique described in Chapter 6.

7.5.1.6 The Social Data Set

The social data set [Kohavi 1996] contains data collected by the U.S. Census Bureau. The

records in the database are characterized by 15 attributes. Of these attributes, 6 of them are

continuous. These continuous attributes were fuzzy partitioned using the fuzzy partitioning

technique described in Chapter 6. The remaining 9 attributes are all discrete. The class

attribute is concerned with whether the annual salary of a person exceeds $50K or not.

7.5.1.7 The PBX Data Set

A private branch exchange (PBX) system is a multiple-line business telephone system that

resides on a company’s premises. One of the significant features of a PBX system is its

ability to record call activity such as keeping records of all calls and callers. In one of our

experiments, we used the data from the database of a PBX system used in a

telecommunications company in Indonesia. The PBX data set contains data about the usage

of the PBX system in the company. Each record in the PBX data set is characterized by 13

attributes. Except for two attributes that are discrete, all the remaining attributes are

continuous. The continuous attributes were fuzzy partitioned using the technique described

in Chapter 6. There are many missing values in this data set. In particular, 98.4% of

records have missing values in one or more attributes. The class attribute is concerned with

the identification of the calling party.

154

7.5.1.8 Summary

In summary, both FARM and EFARM perform better than the other four approaches in all

the seven data sets. EFARM achieves an average accuray of 91.7%, whereas FARM

obtains an average rate of 88.1%. This shows that EFARM outperforms FARM in terms of

classification rate on the data sets used in our experiments.

Table 24. Percentage accuracy of the six different approaches.

Percentage Accuracy
(Standard Deviation)

Data

Set

No. of

Records

Class

Attribute FARM EFARM C4.5 CBA SCS GABL

zoo 101 Type 96.4%
(4.7%)

100.0%
(0.0%)

90.9%
(8.4%)

92.2%
(9.1%)

27.3%
(10.3%)

28.2%
(2.9%)

DNA 3,190 Splice 93.6%
(1.0%)

95.4%
(0.6%)

92.9%
(0.8%)

51.4%
(48.9%)

23.2%
(15.1%)

53.7%
(0.0%)

credit
card 690 Success 88.8%

(1.8%)
95.6%
(4.0%)

82.6%
(4.3%)

85.1%
(5.7%)

58.9%
(9.2%)

58.9%
(0.0%)

diabetes 768 Test-result 76.0%
(2.9%)

79.8%
(1.7%)

73.8%
(2.6%)

69.3%
(4.3%)

61.3%
(7.3%)

61.3%
(0.0%)

satellite
image 6,435 Soil 83.6%

(1.0%)
85.5%
(0.8%)

85.2%
(0.5%)

72.1%
(8.3%)

19.9%
(5.6%)

23.1%
(0.0%)

social 48,843 Salary 86.1%
(0.4%)

85.7%
(0.2%)

85.4%
(0.3%)

82.6%
(0.3%)

23.6%
(17.2%)

75.8%
(0.0%)

PBX 3,009
Calling-
party-

identification

93.7%
(0.9%)

99.9%
(0.2%)

94.6%
(5.2%)

90.1%
(5.6%)

59.6%
(26.4%)

94.2%
(0.2%)

 Average 88.1% 91.7% 86.5% 77.5% 39.1% 56.5%

7.5.2 The Subscriber Database

Since competition in the telecommunications industry is very fierce, many carriers consider

reducing churn as an important business venture to maintain profitability. Churn costs

carriers a large amount of money annually in North America and Europe [Lockwood 1997].

A small reduction in annual churn rate can result in a substantial increase in the valuation

and the shareholder value of a carrier [Lockwood 1997]. Consequently, analyzing and

controlling churn is critical for carriers to improve their revenues.

To reduce churn rate, a carrier in Malaysia gave us a database of 100,000 subscribers in

a consultancy project of the Department of Computing, The Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong. Prof. Keith C. C. Chan was the principal

investigator of the consultancy project. Among these subscribers, some of them have

already switched to another carrier. The task assigned to us is to mine the database to

uncover patterns that relate the demographics and behaviors of subscribers with churning so

that further loss of subscribers can be prevented as much as possible. Efforts are then made

to retain subscribers that are identified to have a high probability of switching to other

155

carriers.

Since the customer services center of the carrier has a fixed number of staff available to

contact only a small fraction of all subscribers, it is important for it to distinguish

subscribers with high probability of churning from those with low probability so that, given

the limited resources, the high probability churners can be contacted first.

The subscriber database was extracted randomly from the time interval of August

through October 1999. The task is to discover interesting relationships concerning with the

demographics and the behaviors of the subscribers who had churned in the period between

August and September 1999. By representing these relationships in the form of rules, they

would then be used to predict whether a subscriber would churn in October 1999.

According to the definition of the carrier, a subscriber churns when all services held by

him/her are closed.

The subscriber database provided by the carrier is stored in an Oracle database. It

contains three relations which are listed in Table 25. It is important to note that some

attributes in some relations contain significant amount of missing values, for example,

62.4% of values in attribute LOCATION in relation DEMOGRAPHICS are missing. The

handling of missing values is an important problem to be tackled for mining interesting rules

in this database.

Table 25. Relations in the subscriber database.

Relation Description

CDR Call detail records (each tuple, which is characterized by
date, time, duration, location, etc., represents a phone call).

BILLING
Billing records (each tuple, which is characterized by fee,
additional charges for roaming and other value-added
services, etc., represents a monthly bill).

DEMOGRAPHICS
Demographic records (each tuple, which is characterized
by service plan, handset type, etc., represents an application
for services made by a subscriber).

We, together with a domain expert from the carrier, identified 251 variables associated

with each subscriber that might affect his/her churn. Some of these variables were extracted

directly from the database, whereas some of them required data transformation, which is

one of the key steps in the knowledge discovery process [Fayyad, Piatetsky-Shapiro, and

Smyth 1996], on the original data. One of the ways to perform data transformation is the

use of transformation functions [Au and Chan 2003; Chan and Au 2001]. Instead of

156

discovering rules in the original data, we applied FARM and EFARM to the transformed

data. Table 26 lists some of the variables in the transformed data.

To manage the data mining process effectively, the transformed data are stored in a

relation in the Oracle database. We refer to this relation as the transformed relation in the

rest of this chapter. Each attribute in the transformed relation corresponds to an identified

variable. The details of the use of transformation functions are given in Chapter 4.

Table 26. Some of the identified variables in the transformed data.

Variable Description
Location Subscriber location.

Type Customer type (e.g., government versus corporate).
Payment Method Payment method (e.g., cash versus credit card).

Plan Service plan.
Charge Monthly charge.
Usage Monthly usage.
Calls Number of calls made.

Abnormal Calls Number of abnormally terminated calls.

Instead of mining the subscriber database, we used FARM and EFARM to mine the

transformed relation. The transformed relation was divided into two partitions: the data

concerning with whether subscribers had churned or had not churned in the time interval

from August to September 1999 and the data concerning with whether subscribers would

churn or would not churn in October 1999. The former was used as the training data set for

FARM and EFARM to discover rules and the latter was used as the testing data set for them

to make the “churn” and “no churn” predictions based on the discovered rules.

We applied FARM and EFARM to the training data set to discover rules and predict

the “churn” or “no churn” of the subscribers in the testing data set. In the

telecommunications industry, the “churn” and “no churn” prediction is usually expressed as

a lift curve. The lift curve plots the fraction of all churners having churn probability above

the threshold against the fraction of all subscribers having churn probability above the

threshold. It indicates the fraction of all churners could be caught if a certain fraction of all

subscribers were contacted. Since the customer services center of a carrier has a fixed

number of staff that is able to contact only a fixed fraction of all subscribers, the lift curve,

which can estimate the fraction of churners can be caught given the limited resources, is

very useful in the telecommunications industry.

The lift curve representing perfect discrimination of churners from non-churners and

157

that representing no discrimination of churners from non-churners under a churn rate of 5%

are shown in Fig. 27(a) and Fig. 27(b), respectively. We refer to the former and the latter as

the perfect churn predictor and the random churn predictor, respectively.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

(a) Lift curve representing perfect discrimination of churners from non-churners.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

(b) Lift curve representing no discrimination of churners from non-churners.

Fig. 27. Reference lift curves.

158

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(a) Monthly churn rate = 1%.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(b) Monthly churn rate = 2%.

159

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(c) Monthly churn rate = 4%.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(d) Monthly churn rate = 6%.

160

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(e) Monthly churn rate = 8%.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

(f) Monthly churn rate = 10%.

Fig. 28. Lift curves for FARM, EFARM, C4.5, and neural network under different monthly

churn rates averaged over ten runs.

161

In order to evaluate the performance of FARM and EFARM using the lift curve, we

ranked the tuples in the testing data set according to the total weight of evidence. Given the

prediction and the total weight of evidence produced by FARM and EFARM over the

testing data set, the tuples predicted to churn were sorted in the descending order of the total

weight of evidence, whereas those tuples predicted not to churn were sorted in the ascending

order of the total weight of evidence. The tuples predicted to churn came before the tuples

predicted not to churn. Using the above method, we had an ordering of the tuples in the

testing data set such that the ones with a higher probability to churn came before the ones

with a lower probability.

Since the churn rates of different carriers are different and the churn rate of a specific

carrier varies from time to time, we created several data sets with different monthly churn

rates by randomly deleting tuples in the training and the testing data sets until appropriate

fractions of churners and non-churners were obtained. We can then plot the performance of

FARM and EFARM in the form of lift curves under different monthly churn rates (Fig. 28).

The performance of EFARM under different setups (Table 23) is also given in Fig. 28.

For the purpose of comparison, we also applied C4.5 and nonlinear neural networks to

these data sets. C4.5 was used because it performs better than CBA, SCS, and GABL in the

experimental results given in the last section, whereas neural networks were used because

they are the best churn predictor reported in an empirical study [Mozer et al. 2000]. The

neural networks used in our experiments are multilayer perceptrons with a single hidden

layer which contains 20 nodes and they were trained by the backpropagation algorithm with

the learning rate was set to 0.3 and the momentum term was set to 0.7. The lift curves for

C4.5 and neural networks are also shown in Fig. 28.

As shown in Fig. 28, the performances of EFARM are more or less the same under

different setups of the crossover probability for the crossover-1 and the crossover-2 operator.

This is a nice feature because it is usually difficult for human users to determine the

appropriate values of an algorithm’s parameters for it may perform well under a specific

setup in a certain environment and may perform poorly under the same setup in another

environment.

Regardless of the values of p1 and p2, the performance of EFARM is always better than

that of the random churn predictor when different fraction of subscribers were contacted

under different monthly churn rates. When compared to C4.5, EFARM identifies more

churners than C4.5 under different monthly churn rates. It is important to note that neural

networks also identify more churners than C4.5, which is consistent with the study in

162

[Mozer et al. 2000]. When compared to neural networks, EFARM identifies more churners

than neural networks do when a small fraction (≤ 10%) of subscribers were contacted under

different monthly churn rates. When the fraction of subscribers contacted is relatively large

(> 10%), the performance of EFARM is better than that of neural networks under a monthly

churn rate of ≤ 4%, whereas its performance is comparable to neural networks’ under a

monthly churn rate of 6% and 8%. It is interesting to note that EFARM outperforms neural

networks when ≤ 80% of subscribers were contacted under a monthly churn rate of 10%.

Among all the approaches tested in our experiments, FARM is, by and large, the best

churn predictor. With it, a very large fraction (> 85%) of churners could be caught when

x% of subscribers were contacted under a monthly churn rate of x%. From this point of

view, it performs very well as the perfect churn predictor outperforms it by only less than

15% under different monthly churn rates.

To better compare the performance of FARM, EFARM, C4.5, and neural networks, let

us consider the lift factor, which is defined as the ratio of the fraction of churners identified

and the fraction of subscribers contacted. For example, if y% of churners are identified

when z% of subscribers are contacted, the lift factor is y / z. Owing to the limited number of

staff in the carrier’s customer services center, it can only contact 5% of all subscribers. It is

important to note that the lift factor for the random churn predictor is 1, whereas the lift

factor for the perfect churn predictor is 20 (= 100% / 5%) under a monthly churn rate of

≤ 5% and it is (5% / monthly churn rate) / 5 under a monthly churn rate of > 5%. The lift

factors for FARM, EFARM, C4.5, and neural networks when 5% of subscribers were

contacted under different monthly churn rates are shown in Fig. 29.

163

0

2

4

6

8

10

12

14

16

18

20

1% 2% 4% 6% 8% 10%

Monthly churn rate

Li
ft

fa
ct

or

Neural Network C4.5 EFARM-1 EFARM-2 EFARM-3 EFARM-4 FARM

Fig. 29. Lift factors for FARM, EFARM, C4.5, and neural network under different monthly

churn rates averaged over ten runs.

Again, regardless of the values of p1 and p2, EFARM obtains higher lift factors than

neural networks, which in turn obtain higher lift factors than C4.5, when 5% of subscribers

were contacted under different monthly churn rates. The experimental results show that

EFARM is able to make accurate churn prediction under different churn rates. FARM

achieves a very high lift factor (> 19) under a monthly churn rate of ≤ 4%. Its performance

is very close to the perfect churn predictor under such a monthly churn rate. Under a

monthly churn rate of ≥ 6%, it obtains a lift factor comparable to EFARM.

Furthermore, the relationships discovered by neural networks are encoded in the

weights of the connections. It is difficult, if not impossible, to decode the discovered

relationships and present them to the domain expert in an interpretable form. Unlike neural

networks, FARM and EFARM are able to present the discovered relationships in the form

of rules, which are easy for the domain expert to comprehend. Although the relationships

discovered by C4.5 can also be represented in the form of rules, the experimental results

show that FARM and EFARM outperform C4.5.

To evaluate their computation efficiency, Table 27 shows the execution times for

FARM, EFARM, C4.5, and neural networks under different monthly churn rates. At a

specific monthly churn rate, the execution times for EFARM-1, EFARM-2, EFARM-3, and

164

EFARM-4 are more or less the same because they differ from each other by using different

values of p1 and p2 only. Since p1 + p2 = 1 in different setups, their time complexities should

be more or less the same. When the monthly churn rate increases, the execution time for

EFARM increases because more and more relationships are found interesting and hence the

number of alleles in a chromosome increases.

Table 27. Execution time of FARM, EFARM, C4.5, and neural network under different

monthly churn rates averaged over ten runs.

Execution Time (sec.) Monthly
Churn
Rate

Neural
Network C4.5 EFARM-1 EFARM-2 EFARM-3 EFARM-4 FARM

1% 54,852 1,306 21,852 18,135 19,056 17,744 836
2% 55,117 1,765 24,234 21,499 26,534 21,886 1,366
4% 55,691 2,071 33,028 28,054 28,103 28,807 3,332
6% 58,022 1,646 31,806 31,075 30,115 28,884 4,908
8% 55,447 1,280 34,333 35,366 34,186 34,211 13,598

10% 55,568 1,046 38,903 38,169 39,128 42,981 18,018

The experimental results show that EFARM accomplishes the data mining task faster

than neural networks. They also show that EFARM runs longer than FARM under different

monthly churn rates because the former requires a number of iterations for generating rules

of each order, whereas the latter generates rules of each order in only one scan of the data

set. Similar to EFARM, the running time of FARM increases as the monthly churn rate

increases since many and many association relationships are found interesting as the

monthly churn rate increases.

Of the four approaches, C4.5 requires, by and large, the least execution time to

complete since it uses less number of iterations than neural networks and EFARM. When

compared to FARM, it performs less efficiently than FARM under a small (≤ 2%) monthly

churn rate but it performs more efficiently than FARM under a relatively high (≥ 4%)

monthly churn rate. However, C4.5 is unable to produce churn prediction as accurate as

neural networks, EFARM, and FARM (Fig. 28 and Fig. 29).

As demonstrated in the experimental results in the last section, EFARM outperforms

the other techniques in the data sets used in the experiments. In the experimental results on

churn prediction given in this section, EFARM also outperforms neural networks and C4.5.

Although it is relatively computationally expensive, the accurate classification and

prediction results can justify its usefulness. As compared to FARM, it can accomplish the

mining tasks more efficiently when there are a large number of attributes.

165

In the rest of this section, we present the rules discovered by both FARM and EFARM

and found interesting and useful by the domain expert from the carrier in Malaysia. The

domain expert found the following rule very useful:

Type = Personal ∧ Bonus = No ⇒ Churn = True [w = 1.75].

This rule states that a subscriber churns if he/she subscribes the service plan personally

and he/she is not admitted to any bonus scheme with a weight of evidence of 1.75.

According to this rule, the domain expert suggested that the carrier could admit those

subscribers who subscribe the service plan personally and have not already admitted to any

bonus scheme to a bonus scheme so as to retain them.

Another rule the domain expert found interesting is listed in the following:

Sex = Male ∧ Tenure ∈ [378, 419] ⇒ Churn = True [w = 0.78].

The above rule states that a male subscriber who has used the service plan for a period

between 378 and 419 days churns with a weight of evidence of 0.78. Although the domain

expert cannot explain why this rule is applicable to male subscribers only, he found this rule

meaningful because a new subscriber is usually entitled a rebate after using the service plan

for a period of one year and one can still keep the money even though he churns after

receiving the rebate. In order to retain these subscribers, the domain expert suggested that

the carrier could offer them incentives or rebates after using the service plan for another

year when they have used the service plan for a period of one year.

In addition to the above rules, the following rule was discovered:

District = Kuala Lumpur ∧ Payment Method = Cash ∧ Age = Middle-Aged

 ⇒ Churn = True [w = 1.20].

This rule states that a subscriber churns if he/she lives in Kuala Lumpur, is middle-aged,

and pays bills using cash with a weight of evidence of 1.20. Although the domain expert

could hardly explain why this rule applies to those subscribers in this age group living in

Kuala Lumpur only, he found it meaningful because it is easier for a subscriber to churn if

he/she pays bills using cash when compared to one who pays bills using auto pay. The

domain expert found this rule useful because it identifies a niche for the carrier to retain its

subscribers.

Furthermore, the domain expert also found the following rule interesting:

166

Sex = Male ∧ District = Penang ∧ Subscription Channel = Dealer ∧ Dealer Group = A

 ⇒ Churn = True [w = 1.84].

This rule states that a male subscriber who lives in Penang and subscribes the service

through a dealer, which is under Dealer Group A2, churns with a weight of evidence of 1.84.

The domain expert suggested that the churn of the subscribers might be due to the poor

customer services provided by the dealers, which are under Dealer Group A, in Penang. He

recommended the carrier to investigate into the service level of these dealers so as to

introduce corrective actions.

2 In order to maintain the anonymity of the carrier, we cannot disclose the name of the dealer group

and we simply call it Dealer Group A in this work.

167

Chapter 8

Parallelization of Fuzzy Rule Mining Algorithms

To discover interesting associations in databases, many algorithms (e.g., [Agrawal,

Imielinski, and Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han

and Fu 1995; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995;

Srikant and Agrawal 1995, 1996]) employ the support-confidence framework. Based on it,

an association relationship is considered interesting if it satisfies the minimum support and

the minimum confidence threshold defined by the users. While these algorithms can be

effective in different tasks, it should be noted that what the thresholds should be set are

often difficult to decide. In fact, it has been shown that association relationships discovered

by algorithms employing the support-confidence framework can be quite misleading [Han

and Kamber 2001; Hand, Mannila, and Smyth 2001]. For a data mining algorithm to be

more effective, an objective interestingness measure that does not require a lot of effort of

trial-and-error on the users’ part is needed. In the last chapter, we propose one such

measure. Based on the concept of statistical residual analysis, it is defined in terms of a

fuzzy support and confidence measure [Au and Chan 1998, 1999, 2001, 2002a, 2002b, 2003,

2004; Au, Chan, and Yao 2003; Chan and Au 1997a, 1997b, 2001; Chan, Au, and Choi

2002] that reflects the observed and the expected degree to which a tuple is characterized by

different linguistic terms.

In addition to the advantage associated with the proposed measure being objective, it

also has the advantage that it can be computed in a distributed environment. In this chapter,

we show how this can be made possible in two parallel algorithms: Parallel-FARM and

Parallel-EFARM, which are the parallel versions of FARM (Section 7.2) and EFARM

(Section 7.3), respectively. With Parallel-FARM and Parallel-EFARM, the discovery of

association relationships in extremely large databases can be accomplished effectively and

efficiently.

Parallel-FARM performs its tasks by first dividing a very large data set into several

horizontal partitions and assigning them to different sites in a distributed system. Each site

next scans its database partition to obtain the local counts of tuples that are characterized by

different linguistic terms. The local counts obtained from all the other sites are then

obtained to find the global counts. Based on the global counts, interesting associations can

be identified using the proposed objective interestingness measure. To discover high-order

associations, Parallel-FARM repeats the counting, exchanges of counts, and calculation of

168

the interestingness iteratively until no more interesting associations can be found.

On the other hand, Parallel-EFARM employs a parallel genetic algorithm (parallel GA)

to find interesting associations so as to avoid exhaustive search in the rule space. It encodes

a complete set of rules in one single chromosome and each allele encodes one rule, which is

represented by some non-binary symbolic values. It stores a single population of

chromosomes in a master processor. In each generation, the master processor performs

selection, crossover, and mutation. It then distributes all the chromosomes among the

processors in the distributed system. Each processor first determines the interestingness of

each allele in each chromosome and next evaluates the fitness of the chromosomes assigned

to it. After the evaluation, the processor sends the fitness of these chromosomes back to the

master processor. Parallel-EFARM then proceeds to the next generation.

Both of Parallel-FARM and Parallel-EFARM were implemented in a distributed

system and evaluated for effectiveness and scalability with a benchmarking data set. The

experimental results show that they have very good size-up, speedup, and scale-up

performance.

The rest of this chapter is organized as follows. The details of Parallel-FARM and

Parallel-EFARM are given in Sections 8.1 and 8.2, respectively. To evaluate their

performance, we have applied them to a popular benchmarking data set. The results are

discussed in Section 8.3.

8.1 The Parallel-FARM Algorithm
In this section, we describe how Parallel-FARM extends FARM to discover fuzzy

association rules in a distributed environment. Similar to FARM, Parallel-FARM is

developed to mine high-order fuzzy association rules. A first-order fuzzy association rule

can be defined as a rule involving one linguistic term in its antecedent. A second-order

fuzzy association rule can be defined as a rule involving two linguistic terms in its

antecedent. A third-order fuzzy association rule can be defined as a rule involving three

linguistic terms in its antecedent, and so on for other higher orders.

Parallel-FARM employs the same objective interestingness measure as FARM to

distinguish interesting associations from uninteresting ones. In order to handle the large

combinations of linguistic terms, it also uses the same heuristic that the association between

a linguistic term, klϕ′ , where ϕ′ = ϕ1 ∪ ϕ2, and another linguistic term, lpq, is considered

being more likely to be interesting if the association between kl
1ϕ and lpq and the association

169

between kl
2ϕ and lpq are interesting. Based on such a heuristic, Parallel-FARM evaluates the

interestingness of only the associations between different combinations of conditions in

lower-order association rules. The details of Parallel-FARM are given in the following.

Given a database relation, D, each tuple, t, in D consists of a set of attributes,

A = {A1, …, An}, where A1, …, An can be continuous or discrete. Let L = {L1, …, Ln} be a

set of linguistic variables such that Li ∈ L represents Ai ∈ A and the value of Li is a linguistic

term in T(Li) = {lij | j = 1, …, si}. Let us further suppose that l = {lij | i = 1, …, n, j = 1, …,

si}.

In a distributed system comprising m sites, S1, …, Sm, the database relation D with N

tuples is horizontally partitioned over the m sites into D1, …, Dm. Let the number of tuples

in database partition Dj be Nj, j = 1, …, m.

The fuzzy support count of linguistic term lϕk, where ϕ ⊆ {1, …, n} and |ϕ| = h ≥ 1, in

D is given by:

 ∑
∈

=
Dt

lk tlcount
k

)()(
ϕ

λϕ , (8.1)

where)(t
klϕλ is the degree to which t is characterized by lϕk defined by Equation (7.4).

Similarly, the fuzzy support count of lϕk in Dj is calculated by:

 ∑
∈

=
j

k
Dt

lkj tlcount)()(
ϕ

λϕ . (8.2)

It is obvious to note that:

 ∑
=

=
m

j
kjk lcountlcount

1

)()(ϕϕ . (8.3)

We refer to count(lϕk) as the global fuzzy support count of lϕk and countj(lϕk) as the local

fuzzy support count of lϕk at site Sj.

Let us consider an h-th order association, lϕk → lpq. The fuzzy support count of

lϕk → lpq in D is given by:

170

 ∑
∈

=→
Dt

llpqk ttllcount
pqk

))(),(min()(λλ
ϕϕ , (8.4)

whereas the fuzzy support count of lϕk → lpq in Dj is calculated by:

 ∑
∈

=→
j

pqk
Dt

llpqkj ttllcount))(),(min()(λλ
ϕϕ . (8.5)

Again, it is obvious to note that:

 ∑
=

→=→
m

j
pqkjpqk llcountllcount

1

)()(ϕϕ . (8.6)

We refer to count(lϕk → lpq) as the global fuzzy support count of lϕk → lpq and

countj(lϕk → lpq) as the local fuzzy support count of lϕk → lpq at site Sj.

The fuzzy support of the linguistic term lϕk and that of the association lϕk → lpq are

given by:

∑
=

=
ϕ

ϕ

ϕ
ϕ s

j
j

k
k

lcount

lcount
lfsup

1

)(

)(
)((8.7)

and

∑∑
= =

→

→
=→

ϕ

ϕ

ϕ
ϕ s

j

s

u
pqj

pqk
pqk

u

llcount

llcount
llfsup

1 1

)(

)(
)(, (8.8)

respectively. Based on Eqautions (8.7) and (8.8), we can calculate d(lϕk → lpq) defined by

Equation (7.8) to evaluate whether the association lϕk → lpq is or is not interesting.

To mine fuzzy association rules, each site in the distributed system runs Parallel-

FARM. Each site is required to scan its database partition in each pass. For the h-th pass,

each site Sj generates the candidate h-th order rules from the (h – 1)-th order rules. Site Sj

then scans its database partition Dj to obtain the local fuzzy support counts of all the

candidate h-th order rules. After that, site Sj exchanges the local fuzzy support counts to all

171

the other sites to find the global fuzzy support counts. Subsequently, each site Sj evaluates

the interestingness of the candidate h-th order rules to obtain the interesting ones (i.e., the h-

th order rules). Site Sj then generates the candidate (h + 1)-th order rules from the h-th order

rules and this process repeats. The algorithm terminates when neither h-th order rule nor

candidate (h + 1)-th order rule is found. Fig. 30 gives this algorithm.

if h = 1 then {
 forall lik, lpq ∈ l, i ≠ p do
 begin
 scan Dj to find countj(lik), countj(lpq), and countj(lik → lpq);
 end
 exchange countj(lik), countj(lpq), and countj(lik → lpq) with all the other
 sites to calculate count(lik), count(lpq), and count(lik → lpq);
 R1 = {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96};
} else {
 C ← {each linguistic term in the antecedent of r | r ∈ Rh – 1}
 forall lϕk comprising h linguistic terms in C do
 begin
 forall lpq, q = 1, …, sp, do
 begin
 scan Dj to find countj(lϕk), countj(lpq), and countj(lϕk → lpq);
 end
 end
 exchange countj(lϕk), countj(lpq), and countj(lϕk → lpq) with all the other
 sites to calculate count(lϕk), count(lpq), and count(lϕk → lpq);
 Rh = {lϕk ⇒ lpq [w(lϕk ⇒ lpq)] | d(lϕk → lpq) > 1.96};
}

Fig. 30. The Parallel-FARM algorithm.

Since each site in the distributed system exchanges its local fuzzy counts with all the

other sites to calculate the global fuzzy counts, the (h – 1)-th order rules and hence the

candidate h-th order rules, which are generated from the (h – 1)-th order rules, found at

different sites are identical for all h. After the termination of Parallel-FARM, each site

therefore discovers an identical set of fuzzy association rules.

8.2 The Parallel-EFARM Algorithm
Parallel-EFARM is able to mine fuzzy association rules in large databases without any need

for user-specified thresholds or mapping of quantitative into binary attributes. It is

developed to run on a distributed system for fast execution. In the distributed system, one of

the processors is chosen as the master and the other processors are selected as the slaves.

The master processor is responsible for the initialization of population, the selection of

chromosomes, and the recombination of chromosomes using the genetic operators, whereas

each of the slave processors is responsible for the evaluation of fitness of chromosomes

172

assigned to it.

It is important to note that the master processor has to stop and wait to receive the

fitness values for all the population before it can proceed to the next generation. In order to

fully utilize the computation power of the distributed system, Parallel-EFARM has the

master processor together with the slave processors to evaluate the fitness of chromosomes.

Given that there are m processors in the distributed system, Parallel-EFARM divides the

population into m subsets of chromosomes and assigns each subset to a processor for fitness

evaluation.

Parallel-EFARM discovers fuzzy association rules by an iterative process. It begins

with the generation of a set of first-order fuzzy association rules using the objective

interestingness measure introduced in Section 7.1.2. Based on these rules, it then discovers

a set of second-order fuzzy association rules in the next iteration and based on the second-

order fuzzy association rules, it discovers third-order fuzzy association rules, etc. In other

words, if we refer to the initial set of first-order fuzzy association rules as R1, the rules in R1

are then used to generate a set of second-order fuzzy association rules, R2. R2 is then used to

generate a set of third-order fuzzy association rules, R3, and so on for fourth and higher

order fuzzy association rules.

In general, at the (h – 1)-th iteration, Parallel-EFARM begins a parallel GA by

generating an initial population of chromosomes (each represents a set of h-th order fuzzy

association rules) by randomly combining the rules in Rh – 1 to form a set of h-th order fuzzy

association rules. Once started, the parallel GA goes on uninterruptedly until no more

interesting fuzzy association rule in the current population can be identified. Parallel-

EFARM is given in Fig. 31.

It should be noted that the processors in the distributed system are labeled by 1,…, m,

where m is the number of processors. The details of the evaluate function are given in Fig.

32. In the evaluate function, the master processor uses the divide function to partition

population[t] into m subsets of chromosomes, which are, in turn, stored in subset[1], …,

subset[m]. The master processor then sends subset[i] to processor i for fitness evaluation for

i = 1, …, m. Upon receiving the subset of chromosomes, a processor evaluates their fitness

and sends the fitness values back to the master processor. On the receipt of the fitness

values from all the processors, the master processor updates the fitness values of the

chromosomes in population[t].

All the remaining components of Parallel-EFARM are the same as EFARM given in

173

Section 7.3.

MASTER PROCESSOR:
 R1 ← { lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96};
 h ← 2;
 while Rh – 1 ≠ ∅ do
 begin
 t ← 0;
 population[t] ← initialize(Rh – 1);
 evaluate(population[t]); /* see Fig. 32 */
 while not terminate(population[t]) do
 begin
 t ← t + 1;
 population[t] ← reproduce(population[t – 1]);
 evaluate(population[t]); /* see Fig. 32 */
 end
 Rh ← decode(the fittest individual in population[t]);
 h ← h + 1;
 end
 U

h
hRRules ← ;

SLAVE PROCESSOR:
 receive subset[i] from the master processor;
 send fitness(subset[i]) to the master processor;

Fig. 31. The Parallel-EFARM algorithm.

evaluate(population[t])
begin
 subset[1], …, subset[m] ← divide(population[t]);
 for i = 1 to m do
 begin
 send subset[i] to processor i;
 receive fitness[i] from processor i;
 end
 update_fitness(population[t], subset[1], …, subset[m]);
end

Fig. 32. The evaluate function.

8.3 Scalability Evaluation
We implemented Parallel-FARM and Parallel-EFARM in a distributed system using PVM

(Parallel Virtual Machine) [Geist et al. 1994]. To perform our experiments, a 100 Mb LAN

was used to connect ten Sun Ultra 5 workstations, each of which has 64 MB of main

memory running Solaris 2.5.1. Each workstation has a local drive and its database partition

is loaded on its local drive before each experiment started. The databases used in our

174

experiments on scalability are synthetic data generated using the tool provided by [IBM

1996]. Each tuple in the databases is characterized by 9 attributes. Of the 9 attributes, 3 are

discrete and 6 are continuous.

In order to evaluate the performance of Parallel-FARM, we also implemented Count

Distribution in our test bed. For each database, we discretized the domain of continuous

attributes into several intervals and mapped the values of discrete attributes and the intervals

of discretized continuous attributes into integers. We then applied Count Distribution to the

transformed data. Since Count Distribution finds frequent itemsets based on support

constraint, we applied it to the databases using various minimum supports so as to evaluate

how its performance is affected by the setting of minimum support.

We ran a number of experiments to evaluate the sizeup, speedup, and scaleup

performance of Parallel-FARM, Parallel-EFARM, and Count Distribution. In the rest of

this section, we refer to Count Distribution as CD.

8.3.1 Sizeup

In our first experiment, we fixed the number of sites in the distributed system to 10. To

evaluate the performance of Parallel-FARM, Parallel-EFARM, and CD with respect to

different database sizes, we increased the number of tuples from 1 million to 10 million in

our experiment. Fig. 33 shows the performance of Parallel-FARM, Parallel-EFARM, and

CD as the database size increases. In addition to the absolute execution times, we also plot

sizeup, which is the execution time normalized with respect to the execution time for 1

million tuples, in Fig. 33 (“PFARM” denotes Parallel-FARM, “PEFARM” denotes Parallel-

EFARM, and “CD (x%)” denotes running CD with minimum support = x%).

As shown in Fig. 33, both Parallel-FARM and Parallel-EFARM scale almost linearly in

this experiment. When the database size increases, more I/O and CPU processing are

required to scan the database for obtaining the local counts and to compute the

interestingness measure for identifying interesting association relationships. The amount of

execution time spent in communication is more or less the same regardless of the database

size because the number of association relationships is independent of the database size and

only their local counts are exchanged between different sites in the distributed system. This

characteristic of the algorithm results in the reduction of the percentage of the overall

execution time spent in communication. Since the I/O and CPU processing in Parallel-

FARM and Parallel-EFARM scales linearly with the database size, they show sublinear

performance.

175

This experiment also shows that the performance of Parallel-FARM is superior to CD

with respect to different database sizes. Specifically, Parallel-FARM is 2.8 times faster than

CD with minimum support = 2% and 7.6 times faster than CD with minimum

support = 0.5%.

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

No. of tuples (in millions)

E
xe

cu
tio

n
tim

e
(s

ec
.)

in
 lo

g
sc

al
e

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(a) Exection time.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

No. of tuples (in millions)

S
iz

eu
p

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(b) Sizeup.

Fig. 33. Sizeup performance.

176

8.3.2 Speedup

In our second experiment, we fixed the database size to 2 million tuples. To evaluate the

performance of Parallel-FARM and Parallel-EFARM with respect to different number of

sites in the distributed system, we increased the number of sites from 1 to 10 in our

experiment. Fig. 34 shows their performance as the number of sites increases. In addition

to the absolute execution times, we also plot speedup, which is the execution time

normalized with respect to the execution time for a single site, in Fig. 34.

As shown in Fig. 34, Parallel-FARM and Parallel-EFARM exhibit very good speedup

performance in this experiment. In particular, when there are m sites in the distributed

system, they can shorten the execution time to about 1 / m of the execution time for a single

site. It is important to note however that given the same amount of data, the speedup

performance will deteriorate as the number of sites in the distributed system increases. The

deterioration is due to the communication time becoming a significant percentage of the

overall execution time when compared to the relatively small processing time for the small

amount of data to process on each site.

This experiment also shows that Parallel-FARM performs better than CD with respect

to different number of sites in the distributed system. In particular, when there are 2 sites in

the distributed system, Parallel-FARM is 2.7 times faster than CD with minimum

support = 2% and 7.4 times faster than CD with minimum support = 0.5%. When there are

10 sites in the distributed system, Parallel-FARM is 3 times faster than CD with minimum

support = 2% and 8.3 times faster than CD with minimum support = 0.5%.

177

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

No. of processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

in
 lo

g
sc

al
e

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(a) Execution time.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

No. of processors

S
pe

ed
up

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(b) Speedup.

Fig. 34. Speedup performance.

8.3.3 Scaleup

In this experiment, we fixed the size of the database partition at a site to 1 million tuples.

We increased the number of sites in the distributed system from 1 to 10. Fig. 35 shows the

performance of Parallel-FARM and Parallel-EFARM as the number of sites increases. In

addition to the absolute execution time, we also plot scaleup, which is the execution time

178

normalized with respect to the execution time for a single site, in Fig. 35.

As shown in Fig. 35, Parallel-FARM and Parallel-EFARM have very good scaleup

performance. Since the number of association relationships they find does not change when

the database size increases, the I/O and CPU processing at each site remains constant. The

execution time increases slightly as the database size and the number of sites increase. The

small increment in execution time is due again to the increase in the communication

overhead when there are more and more sites in the distributed system.

This experiment also shows that Parallel-FARM can better handle larger databases

when more processors are available when compared to CD. Parallel-FARM is 2.7 times

faster than CD with minimum support = 2% and 7.4 times faster than CD with minimum

support = 0.5%.

179

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

No. of processors

E
xe

cu
tio

n
tim

e
(s

ec
.)

in
 lo

g
sc

al
e

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(a) Execution time.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

No. of processors

S
ca

le
up

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

(b) Scaleup.

Fig. 35. Scaleup performance.

180

Chapter 9

Experimental Results

9.1 Synthetic Data Sets
To evaluate the performance of our proposed algorithms on meta-mining tasks, we carried

out two experiments using synthetic data sets. In our first experiment, we embedded some

association relationships in six synthetic data sets and then tested whether our algorithms

were able to discover the regularities and the differences hidden in the underlying

association relationships. In the second experiment, we embedded some rule changes in

several synthetic rule sets. We examine whether our algorithms can reveal such rule

changes.

In our experiments, our proposed algorithms, FARM and EFARM, produce more or

less the same results. We therefore in this section report only the results obtained by FARM.

9.1.1 Mining Regularities and Differences

In this experiment, we test the proposed algorithm for effectiveness when it is used to

discover the underlying regularities and differences embedded in data sets. We generated

six data sets for experimentation. Each tuple in these data sets is characterized by 3

attributes: X, Y, and Z. Each of these attributes can take on two values: T and F. Each data

set contains 1,000 tuples. We generated the first five data sets, D1, …, D5, according to the

following association relationships:

X = F ∧ Y = F ⇒ Z = F

X = F ∧ Y = T ⇒ Z = T

X = T ∧ Y = F ⇒ Z = T

X = T ∧ Y = T ⇒ Z = F.

The remaining data set, D6, was generated according to the following association

relationships:

181

X = F ∧ Y = F ⇒ Z = F

X = F ∧ Y = T ⇒ Z = F

X = T ∧ Y = F ⇒ Z = F

X = T ∧ Y = T ⇒ Z = T.

To further examine the performance of our algorithm in the presence of uncertainty,

5% of noise was added randomly to the data sets by randomly changing the value of Z in 50

tuples (i.e., 5% of all tuples) from F to T or vice versa. We applied our proposed algorithm

to Dj to discover rules and stored the discovered rules in Rj, j = 1, …, 6. The discovered

rules together with their adjusted residuals and weights of evidence are given in Table 28.

Table 28. Rules discovered in the data sets.

Rule
Set Rule Adjusted

Residual
Weight of
Evidence

X = F ∧ Y = F ⇒ Z = F 16.10 4.06
X = F ∧ Y = T ⇒ Z = T 16.61 4.33
X = T ∧ Y = F ⇒ Z = T 16.61 4.33

R1

X = T ∧ Y = T ⇒ Z = F 17.13 5.10
X = F ∧ Y = F ⇒ Z = F 15.96 3.88
X = F ∧ Y = T ⇒ Z = T 16.03 3.96
X = T ∧ Y = F ⇒ Z = T 16.18 4.07

R2

X = T ∧ Y = T ⇒ Z = F 16.25 4.08
X = F ∧ Y = F ⇒ Z = F 15.96 3.95
X = F ∧ Y = T ⇒ Z = T 15.74 3.71
X = T ∧ Y = F ⇒ Z = T 16.76 4.46 R3

X = T ∧ Y = T ⇒ Z = F 16.54 4.42
X = F ∧ Y = F ⇒ Z = F 16.40 4.29
X = F ∧ Y = T ⇒ Z = T 16.03 3.89
X = T ∧ Y = F ⇒ Z = T 16.76 4.46

R4

X = T ∧ Y = T ⇒ Z = F 16.40 4.29
X = F ∧ Y = F ⇒ Z = F 17.02 4.62
X = F ∧ Y = T ⇒ Z = T 16.73 4.71
X = T ∧ Y = F ⇒ Z = T 16.73 4.71

R5

X = T ∧ Y = T ⇒ Z = F 16.43 4.11
X = F ∧ Y = F ⇒ Z = F 7.98 2.17
X = F ∧ Y = T ⇒ Z = F 9.95 3.68
X = T ∧ Y = F ⇒ Z = F 9.62 3.31 R6

X = T ∧ Y = T ⇒ Z = T 27.55 5.40

As shown in Table 28, our algorithm is able to uncover all the underlying association

relationships embedded in the six data sets. It was next used to mine meta-rules from the

rule sets R1, …, R6. Table 29 shows the regular meta-rules discovered from the rule sets.

182

Table 29. Regular meta-rules discovered in the rule sets.

Regular Meta-Rule Adjusted
Residual

Weight of
Evidence

X = F ∧ Y = F ⇒ Z = F 2.60 infinity
X = F ∧ Y = T ⇒ Z = T 2.13 2.56
X = T ∧ Y = F ⇒ Z = T 2.13 2.56

The regular meta-rule “X = F ∧ Y = F ⇒ Z = F” is supported by six rules (one in each

rule set), whereas the meta-rules “X = F ∧ Y = T ⇒ Z = T” and “X = T ∧ Y = F ⇒ Z = T” are

supported by five rules (one in each of R1, …, R5). All of them represent the regularities in

the rule sets, which in turn reflect the characteristics in common in the data sets.

Let us consider the meta-rule “X = F ∧ Y = T ⇒ Z = T” as an example. It is supported

by five rules. Its antecedent “X = F ∧ Y = T” is supported by 6 rules, whereas its consequent

“Z = T” is supported by 11 rules. Assuming that they are independent of each other, the

meta-rule is expected to be supported by 2.75 (= 11 × 6 / 24) rules (given by Equation

(4.10)). We next need to decide whether 5 is significantly larger than 2.75. To do so in an

objective manner, we propose to use the adjusted residual analysis. The adjusted residual is

2.13 (calculated by Equation (4.8)), which is greater than 1.96 (the 95th percentile of the

normal distribution). We therefore conclude that the meta-rule is supported by a sufficiently

large number of rules and hence it represents one of the regularities in the rule sets (i.e., a

regular meta-rule).

It is important to note that the meta-rule “X = T ∧ Y = T ⇒ Z = F” is also supported by

five rules (one in each of R1, …, R5). Its antecedent “X = T ∧ Y = T” and its consequent

“Z = F” are supported by 6 and 13 rules, respectively. Therefore, we expect that 3.25

(= 13 × 6 / 24) rules would support this meta-rule. To objectively decide whether 5 is

significantly larger than 3.25, we make use of the adjusted residual analysis. The adjusted

residual is found to be 1.66 (< 1.96). Hence we conclude that the meta-rule is not supported

by a sufficiently large number of rules.

In addition to discovering regular meta-rules, our algorithms can also discover

differential meta-rules for representing the distinctive relationships in only a few rule sets.

Table 30 gives the differential meta-rules discovered from the rule sets.

183

Table 30. Differential meta-rules discovered in the rule sets.

Differential Meta-Rule Adjusted
Residual

Weight of
Evidence

X = F ∧ Y = T ⇒ Z = F –2.13 –2.56
X = T ∧ Y = F ⇒ Z = F –2.13 –2.56

For example, the meta-rule “X = T ∧ Y = F ⇒ Z = F” is supported by only one rule in

R6. Its antecedent “X = T ∧ Y = F” and consequent “Z = F” are supported by 6 and 13 rules,

respectively. Hence 3.25 (= 13 × 6 / 24) rules are expected to support this meta-rule. We

find that 1 is significantly less than 3.25 as the adjusted residual is –2.13 (< –1.96). We

conclude that the meta-rule is supported by a sufficiently small number of rules and hence it

represents a distinguishing relationship (i.e., a differential meta-rule).

Let us consider the meta-rule “X = T ∧ Y = T ⇒ Z = T,” which is also supported by one

rule in R6. Its antecedent “X = T ∧ Y = T” is supported by 6 rules, whereas its consequent

“Z = T” is supported by 11 rules. We expect it would be supported by 2.75 (= 11 × 6 / 24)

rules. The adjusted residual is –1.66 (> –1.96) and hence 1 is not significantly less than 2.75.

We therefore conclude that the meta-rule is not supported by a sufficiently small number of

rules.

9.1.2 Mining Changes

In our experiment, we first generated a synthetic data set using the tool provided by [IBM

1996]. The parameter setting for generating the synthetic data set is listed in Table 31. The

parameters and the method for the generation of the synthetic data set are detailed in

[Agrawal and Srikant 1994].

Table 31. Parameter setting for generating the synthetic data set.

Parameter Value
Number of transactions 1,000
Average size of transactions 5
Average size of the maximal potentially large itemsets3 2
Number of maximal potentially large itemsets 20
Number of items 100

We used the synthetic data set as the transactions collected in time period t1 (i.e., D1).

3 An itemset is large if its support is greater than or equal to minimum support.

184

We next applied our algorithm to D1 to discover rules concerned with item i7. A set of 28

rules was discovered and stored in R1. We selected five rules randomly for further

experimentation. The selected rules are shown in Table 32.

Table 32. The rules in R1 selected for further experimentation.

Rule Adjusted
Residual

Weight of
Evidence

 r1: {i93, i94, i99} ⇒ {i7} 6.87 4.40
 r2: {i93, i97, i99} ⇒ {i7} 2.88 3.56
 r3: {i93, i96, i99} ⇒ {i7} 15.87 6.40
 r4: {i93, i98} ⇒ {i7} 6.85 4.33
 r5: {i93, i96} ⇒ {i7} 7.48 4.21

We then generated another 124 data sets, D2, …, D125, in such a way that 1) r1, …, r4

change in the period from t1 to t125; 2) r5 is perished in t125; 3) r6 is added, changes, and is

perished periodically during the period from t1 to t125; 4) a new rule, r7, is added in t71; and 5)

all the other rules remain the same in the period from t1 to t125. Fig. 36 shows how r1, ..., r7

change in the period from t1 to t125.

The association rules discovered in D125 and stored in R125 are given in Table 33.

0

2

4

6

8

10

12

14

16

18

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(a) r1.

185

0

2

4

6

8

10

12

14

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(b) r2.

0

2

4

6

8

10

12

14

16

18

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(c) r3.

186

0

1

2

3

4

5

6

7

8

9

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(d) r4.

0

1

2

3

4

5

6

7

8

9

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(e) r5.

187

0

1
2

3

4

5
6

7

8
9

10

t1 t26 t51 t76 t101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(f) r6.

0

2

4

6

8

10

12

14

16

18

1 26 51 76 101

Time Period

V
al

ue

Adjusted Residual Weight of Evidence 95th Percentile

(g) r7.

Fig. 36. The changes in r1, …, r7 in the period from t1 to t125.

188

Table 33. Rules r1, …, r7 in R125.

Rule Adjusted
Residual

Weight of
Evidence

 r1: {i93, i94, i99} ⇒ {i7} 14.53 4.22
 r2: {i93, i97, i99} ⇒ {i7} 11.88 6.71
 r3: {i93, i96, i99} ⇒ {i7} 2.34 1.83
 r4: {i93, i98} ⇒ {i7} 7.02 6.69
 r6: {i51, i69} ⇒ {i7} 8.16 2.98
 r7: {i28, i63} ⇒ {i7} 3.38 15.78

Each rule in R1 ∪ … ∪ R124 is associated with a sequence of adjusted residuals and a

sequence of weights of evidence. In our experiments, we set the width of the window to 20.

By sliding the window across the sequence of adjusted residual, we divided it into a set of

subsequences. Similarly, we also divided the sequence of weights of evidence into another

set of subsequences.

We defined 20 linguistic variables, rr SS 201 ..., , , to represent each subsequence of

adjusted residuals. rS20 represents “Change in adjusted residual in next period,” rS19

represents “Change in adjusted residual in this period,” and r
kS , k ∈ {1, …, 18}, represents

“Change in adjusted residual in 19 – k period(s) ago.” The value of r
kS , k = 1, …, 20, can

take from 5 linguistic terms whose membership functions are defined as follows:

≥

≤≤−
=

≤≤−

≤≤
=

≤≤−

≤≤−+
=

≤≤−
−≤≤−+

=

−≤≤−+

−≤
=

−

−

−

−

otherwise0
1.0 if1

1.005.0 if)05.0(
)(

otherwise0
1.005.0 if)1.0(

05.00 if)(
)(

otherwise0
05.00 if)05.0(

005.0 if)05.0(
)(

otherwise0
005.0 if)(

05.01.0 if)1.0(
)(

otherwise0
05.01.0 if)05.0(

1.0 if1
)(

05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1

x
xx

x

xx
xx

x

xx
xx

x

xx
xx

x

xx
x

x

increaseHighly

increaseFairly

 samethe less or More

decreaseFairly

decreaseHighly

µ

µ

µ

µ

µ

.

189

Similarly, we defined 20 linguistic variables, rr CC 201 ..., , , to represent each

subsequence of weight of evidence. rC20 represents “Change in weight of evidence in next

period,” rC19 represents “Change in weight of evidence in this period,” and r
kC , k ∈ {1, …,

18}, represents “Change in weight of evidence in 19 – k period(s) ago.” The value of r
kC ,

k = 1, …, 20, can take from 5 linguistic terms whose membership functions are defined in

the following:

≥

≤≤−
=

≤≤−

≤≤
=

≤≤−

≤≤−+
=

≤≤−
−≤≤−+

=

−≤≤−+

−≤
=

−

−

−

−

otherwise0
1.0 if1

1.005.0 if)05.0(
)(

otherwise0
1.005.0 if)1.0(

05.00 if)(
)(

otherwise0
05.00 if)05.0(

005.0 if)05.0(
)(

otherwise0
005.0 if)(

05.01.0 if)1.0(
)(

otherwise0
05.01.0 if)05.0(

1.0 if1
)(

05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1
05.0
1

05.0
1

x
xx

x

xx
xx

x

xx
xx

x

xx
xx

x

xx
x

x

increaseHighly

increaseFairly

 samethe less or More

decreaseFairly

decreaseHighly

µ

µ

µ

µ

µ

.

Each subsequence was then converted to a set of ordered triples. After that, we applied

our proposed algorithm to these ordered triples to discover meta-rules. The discovered

meta-rules were then used to predict how the adjusted residuals and the weights of evidence

of the rules would change in t125. The predicted rules were stored in 125R̂ (Table 34).

190

Table 34. Rules r1, …, r7 in 125R̂ .

Rule Adjusted
Residual

Weight of
Evidence

 r1: {i93, i94, i99} ⇒ {i7} 14.47 4.22
 r2: {i93, i97, i99} ⇒ {i7} 12.33 6.74
 r3: {i93, i96, i99} ⇒ {i7} 2.34 1.83
 r4: {i93, i98} ⇒ {i7} 7.07 6.73
 r6: {i51, i69} ⇒ {i7} 7.85 3.00
 r7: {i28, i63} ⇒ {i7} 3.37 15.70

It is important to note that r5 is perished in t125 and it is therefore not found in 125R̂ .

Our algorithm is able to predict the changed rules (i.e., r1, …, r4), the perished rule (i.e., r5),

the added rules (i.e., r6 and r7) in t125. The difference of the actual rules in R125 and the

predicted rules in 125R̂ is shown in Fig. 37.

In the rest of this section, we present some of the meta-rules discovered by our

algorithm. A meta-rule of adjusted residual for r1 discovered is given in the following:

Change in adjusted residual in this period = Fairly increase

 ∧ Change in adjusted residual in 5 periods ago = Highly increase

 ⇒ Change in adjusted residual in next period = Fairly decrease [w = 3.89].

This meta-rule states that “if the change in adjusted residual in this period fairly increases

and the change in adjusted residual in 5 periods ago highly increases, then the change in

adjusted residual in next period would fairly decrease.”

Another meta-rule of weight of evidence for r7 mined from the rule sets is provided as

follows:

Change in weight of evidence in this period = More or less the same

 ∧ Change in weight of evidence in 12 periods ago = Highly increase

 ⇒ Change in weight of evidence in next period = Highly decrease [w = 2.15].

This meta-rule states that “if the change in weight of evidence in this period is more or less

the same and the change in weight of evidence in 12 periods ago highly increases, then the

change in weight of evidence in next period would highly decrease.”

191

0

2

4

6

8

10

12

14

16

r1 r2 r3 r4 r6 r7

Rule

A
dj

us
te

d
R

es
id

ua
l

Actual
Predicted

(a) The adjusted residual of the actual and predicted rules.

0

2

4

6

8

10

12

14

16

18

r1 r2 r3 r4 r6 r7

Rule

W
ei

gh
t o

f E
vi

de
nc

e

Actual
Predicted

(b) The weight of evidence of the actual and predicted rules.

Fig. 37. The actual and predicted rules.

192

9.2 The Property-Valuation Database
The property-valuation database is extracted from the data warehouse maintained by the

Hong Kong office of a worldwide property valuation company. It contains two relational

tables: PROPERTY and TRANSACTION. Each tuple in the PROPERTY table represents a

residential property, which is characterized by, e.g., direction, size of property, number of

bed rooms, etc., in Hong Kong, whereas each tuple in the TRANSACTION table represents a

buy/sell transaction, which is characterized by date of transaction, transaction amount,

mortgage ratio, etc., concerned with a tuple in the PROPERTY table (i.e., a residential

property). The PROPERTY and the TRANSACTION tables consist of the characteristics of

765,106 residential properties in 59 districts in Hong Kong and 909,226 transactions

completed during the period between 1991 and 2001, respectively.

Fig. 38 shows the schema of the property-valuation database. Since each relation in

the property-valuation database contains many attributes, we only show a subset of these

attributes in Fig. 38.

PROPERTY (PROPERTY_ID, DIRECTION, SIZE, NUM_OF_BED_ROOMS, …)
TRANSACTION (TID, PROPERTY_ID, TRANS_DATE, AMOUNT, …)

Fig. 38. Schema of the property-valuation database.

In the property-valuation database, PROPERTY contains data for 765,106 residential

properties in 59 districts in Hong Kong, whereas TRANSACTION consists of data for

909,226 transactions completed during the period between 1991 and 2001. Each property in

the former table had been sold or bought in one or more transaction maintained in the latter.

The transaction amount in the property-valuation database is about HK$2,450 billion in

total. Table 35 gives a summary of the property-valuation database.

Table 35. Summary of the property-valuation database.

Relation No. of Attributes No. of Tuples
PROPERTY 28 765,106

TRANSACTION 13 909,226

9.2.1 The Transformation Functions Defined

In this section, we describe how we can construct a transformed relation, R (T_BUILD_AGE,

T_AMOUNT, T_NATIONALITY, …), using the transformation functions (defined in Chapter

8). To obtain the transformed relation, we, together with a domain expert from the property

evaluation company, defined 14 transformation functions in total. From the 14

193

transformation functions, in this section, we present three of them as an illustration.

Let us consider the attributes PROPERTY[BUILD_DATE] and

TRANSACTION[TRANS_DATE]. The former represents the date on which the residential

property was built, whereas the latter represents the transaction date. The difference in these

two attributes gives the age of the property when the transaction was made. We defined the

following transformation function:

f1(tid) = π TRANS_DATE – BUILD_DATE (σ TID = tid (TRANSACTION PROPERTY)),

where σ, π, and denote the SELECT, PROJECT, and NATURAL JOIN operations from

relational algebra. This function is an example of the arithmetic functions defined in

Chapter 8. The transformed attribute T_BUILD_AGE was produced by applying

f1(TRANSACTION[TID]) to every tuple in TRANSACTION.

The transaction amount can be partitioned into a finite number of intervals for the

purpose of discovering more meaningful rules. After we consulted the domain expert, we

defined another transformation function as follows:

≥
<≤
<≤
<≤
<≤
<≤

<

=

0000006 if6
00000060000005 if5
00000050000004 if4
00000040000003 if3
00000030000002 if2
00000020000001 if1

000,000,1 if0

)(2

,,amount
,,amount,,
,,amount,,
,,amount,,
,,amount,,
,,amount,,

amount

amountf .

The transformed attribute T_AMOUNT was produced by applying

f2(TRANSACTION[AMOUNT]) to every tuple in TRANSACTION, which is an example of

the discretization function defined in Chapter 8.

The domain expert suggested that whether there exist or do not exist any bay windows

rather than the size of bay windows would be used in our analysis. We therefore made use

of a transformation function defined as:

 >

=
otherwise

0 if
)(3 N

sizeY
sizef .

194

This function is an example of the logical functions defined in Chapter 8. The transformed

attribute T_BAY_WINDOWS was produced by applying

f3(PROPERTY[SIZE_OF_BAY_WINDOWS]) to every tuple in PROPERTY.

By applying the transformation functions to the property-valuation database, we

obtained the required transformed relation. There are 14 attributes in the transformed

relation. Among the 14 transformed attributes, 8 are categorical (discrete-valued) and 6 are

quantitative (continuous-valued). Instead of performing data mining on the original data,

we discovered interesting associations from the transformed data.

9.2.2 Fuzzy Sets Resulted from Fuzzy Partitioning

After data transformation, we applied our fuzzy partitioning algorithm ITFP to the

transformed data. It is used to generate fuzzy sets automatically to represent each of the 6

continuous, transformed attributes. We present some of the generated fuzzy sets in this

section.

For example, ITFP generated 9 fuzzy sets for the transformed attribute T_SIZE, which

represents the size of a residential property. Fig. 39 shows the generated fuzzy sets.

0

1

400 500 600 700 800 900 1000

T_SIZE

D
eg

re
e

of
 M

em
be

rs
hi

p

Fig. 39. Fuzzy sets for T_SIZE.

As another example, 4 fuzzy sets were generated for the transformed attribute

T_FLOOR, which represents the floor of a property. They are given in Fig. 40.

195

0

1

0 10 20 30 40 50

T_FLOOR

D
eg

re
e

of
 M

em
be

rs
hi

p

Fig. 40. Fuzzy sets for T_FLOOR.

9.2.3 Attribute Clustering for Grouping and Selection of

Attributes

We next applied our attribute clustering algorithm, ACA, to the transformed and fuzzy

partitioned data to find clusters of attributes. Fig. 41 shows the sum of the interdependence

redundancy measure over all the clusters versus the number of clusters found.

196

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7 8 9 10

No. of Clusters

To
ta

l I
nt

er
de

pe
nd

en
ce

 R
ed

un
da

nc
y

M
ea

su
re

Fig. 41. The total interdependence redundancy measure over all the clusters found in the

transformed relation.

As shown in Fig. 41, it finds that the optimal number of clusters is 3. ACA identifies 3

clusters of attributes, where T_CLUB_HOUSE, which represents whether there is a club

house, T_NUM_OF_LIVING_ROOMS, which represents the number of living rooms, and

T_BUILD_AGE, which represents the building age, are the modes. These clusters have 5, 3,

and 6 attributes, respectively.

From each of the three attribute clusters, we select the top 3 attributes for data mining

and meta-mining.

9.2.4 Mining Meta-Rules

After the original data are transformed, the transformed data are fuzzy partitioned, and the

transformed attributes are grouped and selected, we applied our fuzzy rule mining

algorithms, FARM and EFARM, to discover meta-rules. Since the results they obtained are

more or less the same, in this section we report only the findings of FARM.

9.2.4.1 Regular and Differential Meta-Rules

For our experimentation, the domain expert identified three districts of interest: Yuen Long,

Sheung Shui, and Tseung Kwan O. He was interested in association relationships

197

concerned with the amount of the residential properties in these districts. We first extracted

the transformed data in 2001 concerned with these three districts into three data sets, one for

each district. We then applied our algorithm to mine a set of rules in each data set. Next,

we applied them to mine a set of regular and differential meta-rules from the rule sets.

A regular meta-rule the domain expert found being meaningful is given as follows:

Swimming Pool = No ⇒ Amount ∈ [0, 1 000 000) [w = 7.63].

The meta-rule states that “in general, a residential property is worth less than 1 million

dollars if there is no swimming pool.” This represents an association relationship in

common in the characteristics of properties in these districts. The domain expert found this

meta-rule being meaningful because many people enjoy using recreational facilities (e.g.,

swimming pools, club houses, etc.) in their properties and hence they will not pay much

money for a property if there is no swimming pool.

The domain expert also found the following regular meta-rules being meaningful:

Direction = South ⇒ Amount ∈ [4 000 000, 5 000 000) [w = 4.21]

Direction = South ⇒ Amount ∈ [5 000 000, 6 000 000) [w = 3.95].

They state that “in general, a residential property is worth between 4 million and 6 million

dollars if it faces south.” Again, it represents an association in common in the

characteristics of properties in the three districts. The domain expert found them being

meaningful because many Chinese prefer properties that face south and are willing to pay

more for them.

Another regular meta-rule found being meaningful by the domain expert is provided in

the following:

Estate = No ⇒ Amount ∈ [0, 1 000 000) [w = 0.65].

This states that “in general, a residential property is worth less than 1 million dollars if it is

not in any estate.” This meta-rule is meaningful because the properties in an estate are

usually better managed than those not in an estate. It is for this reason that many people will

not pay much for properties that are not in an estate.

In addition to regular meta-rules, the domain expert also found the discovered

198

differential meta-rules interesting. A differential meta-rule found interesting by the domain

expert is:

Swimming Pool = Yes ∧ Estate = No ⇒ Amount ∈ [1 000 000, 2 000 000) [w = –0.18].

This states that “in an exceptional manner, a residential property is worth between 1 million

and 2 million dollars if there is one or more swimming pool and it is not in any estate.” This

represents a distinguishing association relationship in the characteristics of properties in

Yuen Long only. The finding of this differential meta-rule surprises us since it, together

with the last regular meta-rule, indicate that properties with swimming pool(s) but not in any

estate in Yuen Long are worth more than those in Sheung Shui and Tseung Kwan O.

Although the domain expert had not recognized this relationship, he found it to be

meaningful because many properties in Yuen Long lack recreational facilities, such as

swimming pools, and people in Yuen Long are willing to pay more for a property with one

than people in other districts.

Another differential meta-rule the domain expert found interesting is:

Size = ∫ ∫
−

+
506

0

9.576

506

9.70)506(1
x
x

x
 ⇒ Amount ∈ [1 000 000, 2 000 000) [w = –1.12],

where ∫ ∫
−

+
506

0

9.576

506

9.70)506(1
x
x

x
 denotes the leftmost fuzzy set shown in Fig. 39. This

states that “in an exceptional manner, a residential property is worth between 1 million and

2 million dollars if its size is small.” This represents a distinctive relationship in the

characteristics of properties in Sheung Shui only. Together with the following regular meta-

rule:

Size = ∫ ∫
−

+
506

0

9.576

506

9.70)506(1
x
x

x
 ⇒ Amount ∈ [0, 1 000 000) [w = 2.90],

which states that “in general, a property is worth less than 1 million dollars if its size is

small,” the domain expert found the differential meta-rule to be meaningful because it

confirms that the properties in Sheung Shui are usually worth more than those in Yuen Long

and Tseung Kwan O.

199

9.2.4.2 Change Meta-Rules

For our further experimentation, we selected the transformed data concerned with residential

properties in Yuen Long during the period from 1991 to 2001. The average price per square

foot of these properties in this period is given in Fig. 42. As shown in Fig. 42, the average

price fluctuates significantly and hence the rules discovered in the historical data are unable

to provide an accurate prediction of the price of properties in the future.

0

1000

2000

3000

4000

5000

4/1
99

1

4/1
99

2

4/1
99

3

4/1
99

4

4/1
99

5

4/1
99

6

4/1
99

7

4/1
99

8

4/1
99

9

4/2
00

0

4/2
00

1

Month

P
ric

e

Fig. 42. The average price per square foot of residential properties in Yuen Long during the

period from 1991 to 2001.

The domain expert from the company aimed at predicting the amount of a property

based on other attributes. To perform this task, we first divided the database into 127

partitions, T1, …, T127, where T1 contains the buy/sell transactions in April 1991, T2 contains

the buy/sell transactions in May 1991, and so on. We next made use of our algorithm to

discover 126 sets of fuzzy association rules, R1, …, R126, from the first 126 database

partitions, T1, …, T126. Finally, we applied our fuzzy rule mining algorithm to discover a set

of change meta-rules, which represent the regularities about the changes in the adjusted

residual and weight of evidence of each fuzzy rule in R1 ∪ … ∪ R126.

Using the change meta-rules, we predicted how the adjusted residual and weight of

evidence of each fuzzy rule in R1 ∪ … ∪ R126 would change in October 2001. This resulted

200

in a set of fuzzy association rules, 127R′ , such that the adjusted residual and weight of

evidence of each rule in 127R′ was predicted based on the changes in the fuzzy rules

discovered in the time period from April 1991 to September 2001 (i.e., the discovered

change meta-rules).

In our experiments, we set the width of the sliding window to 20. The average

percentage error of the adjusted residuals and weights of evidence of the rules predicted

using the change meta-rules is given in Table 36.

Table 36. The average percentage error of the adjusted residuals and weights of evidence of

the rules predicted using change meta-rules.

 Percentage Error
Adjusted residual 0.36%
Weight of evidence 1.01%

In addition to the above, we predicted the amount of each record in the last database

partition, T127, using 127R′ . To further evaluate the performance of our approach, we used

the fuzzy rules discovered in T1 ∪ … ∪ T126 to predict the amount of each record in T127.

We denote these fuzzy rules as R. For the purpose of comparison, we also applied C4.5, a

well-known decision tree classifier, to T1 ∪ … ∪ T126 for training and to T127 for testing.

The experimental results are given in Table 37 (“Fuzzy Rules + Meta-Rules” denotes

the classification rate yielded based on 127R′ and “Fuzzy Rules” denotes the classification

rate yielded based on R).

Table 37. Experimental results on prediction of property amount.

 Percentage Accuracy
C4.5 85.7%

Fuzzy Rules 83.3%
Fuzzy Rules + Meta-Rules 88.7%

As shown in Table 37, the rule set produced using change meta-rules (i.e., 127R′)

obtains better accuracy than the rule set discovered in T1 ∪ … ∪ T126 when they were used

to predict the amount of the records in T127 collected in October 2001. The experimental

results show that our approach is able to improve the performance of a data mining

201

algorithm by discovering and predicting the changes in rules. Our approach to mining fuzzy

rules and change meta-rules also outperforms C4.5.

We also repeated our experimentation on the properties in Sheung Shui and Tseung

Kwan O. The experimental results show that our approach to mining fuzzy rules and

change meta-rules produces good classification rate. We report in this section only the

results on Yuen Long.

9.3 The Stock-Price Database
The stock-price database contains the stock prices of three companies listed in the Stock

Exchange of Hong Kong during the period from 2000 to 2004. The companies are in

different industries. Specifically, they are Hang Seng Bank Ltd., a major bank in Hong

Kong, Sun Hung Kai Properties Ltd., a major property developer in Hong Kong, and CLP

Holdings Ltd., a major electricity supplier in Hong Kong. Fig. 43 gives the schema of the

stock-price database. Each tuple in the STOCK table, the DIVIDEND table, the

SHARES_ISSUED table, and the PRICE table represents a listed company, the dividend

paid by a company, the shares issued by a company, the price of a company, respectively.

Since each relation in the stock-price database consists of many attributes, only a subset of

these attributes is given in Fig. 43.

STOCK (STOCK_CODE, NAME, LISTING_DATE, FISCAL_MONTH, …)

DIVIDEND (STOCK_CODE, DATE, AMOUNT_PER_SHARE, …)

SHARES_ISSUED (STOCK_CODE, DATE, NUM_OF_SHARES_ISSUED, …)

PRICE (STOCK_CODE, DATE, CLOSE_PRICE, VOLUME, …)

Fig. 43. The schema of the stock-price database.

Fig. 44 shows the stock prices of the three companies during the period between 2000

and 2004. As shown in Fig. 44, the stock prices of Hang Seng Bank Ltd. and Sun Hung Kai

Properties Ltd. fluctuate more significantly than CLP Holdings Ltd.

202

0

20

40

60

80

100

120

Ja
n-

00

A
pr

-0
0

Ju
l-0

0

O
ct

-0
0

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

A
pr

-0
2

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

A
pr

-0
3

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

A
pr

-0
4

Ju
l-0

4

O
ct

-0
4

Date

P
ric

e

Hang Seng Bank Ltd. Sun Hung Kai Properties Ltd. CLP Holdings Ltd.

Fig. 44. The stock prices of the three companies during the period from 2000 to 2004.

9.3.1 The Transformation Functions Defined

In this section, we describe how to construct a transformed relation for the stock-price

database using the transformation function introduced in Chapter 8.

Let us consider the attribute PRICE[CLOSE_PRICE]. It represents the close price of a

company’s stock on a specific date. Since the company may pay dividend and may issue

additional shares, the close price has to be adjusted accordingly in order to reflect the actual

trade price. We therefore defined the following transformation functions for the adjustment:

∑

∑

<∧=

=∧=

∈

∈
+=

)(

)(
4][

][

1) ,(

UEDSHARES_ISS

UEDSHARES_ISS

DATESTOCK_CODE

DATESTOCK_CODE

RES_ISSUEDNUM_OF_SHA

RES_ISSUEDNUM_OF_SHA

datescode

datescode

t

t

t

t

datescodef

σ

σ

and

f5(scode, date) = (1 / f4(scode, date)) × π CLOSE_PRICE – AMOUNT_PER_SHARE

 (σ STOCK_CODE = scode ∧ DATE = date (PRICE DIVIDEND)),

203

where denotes the LEFT OUTER JOIN operation from relational algebra. The

transformation functions f4 and f5 are examples of the arithmetic functions defined in

Chapter 8.

Since we are interested in the stock price movements, we defined the following

transformation function for computing the percentage change in price:

)1 ,(
)1 ,() ,(

) ,(
5

55
6 −

−−
=

datescodef
datescodefdatescodef

datescodef .

This function is also an example of the arithmetic functions. The transformed attribute

T_PERCENT_CHANGE was produced by applying f6(PRICE[STOCK_CODE],

PRICE[DATE]) to every tuple in PRICE.

We then constructed the transformed relation R (STOCK_CODE, DATE,

T_PERCENT_CHANGE) for discovering the similarity, difference, and change in stock

price movements.

We next produced a time series using the following operation:

transpose(π T_PERCENT_CHANGE (σ STOCK_CODE = scode (R))),

where transpose(T) returns the transpose of relation T. The time series was then divided

into a set of subsequences by sliding a window of width w = 20. The subsequences are

stored in the relational database for the ease of retrieval. We therefore obtained a relation,

S (T_PERCENT_CHANGE1, …, T_PERCENT_CHANGE20). The attribute

T_PERCENT_CHANGE20 represents the percentage change on the next transaction date, the

attribute T_PERCENT_CHANGE19 represents the percentage change on the present

transaction date, the attribute T_PERCENT_CHANGE18 represents the percentage change on

the last transaction date, and the attribute T_PERCENT_CHANGEi represents the percentage

change on the (19 – i)-th to the last transaction date for i = 1, …, 17.

9.3.2 Fuzzy Sets Resulted from Fuzzy Partitioning

After data transformation, we applied our fuzzy partitioning technique ITFP proposed in

Chapter 6 to the transformed relation R. It was used to generate fuzzy sets to represent the

transformed attribute T_PERCENT_CHANGE. Fig. 45 shows the generated fuzzy sets.

204

0

1

-6.0% -4.0% -2.0% 0.0% 2.0% 4.0% 6.0%

T_PERCENT_CHANGE

D
eg

re
e

of
 M

em
be

rs
hi

p

Highly decreased Highly increasedFairly
decreased

Fairly
increased

More or less
the same

Fig. 45. Fuzzy sets for T_PERCENT_CHANGE.

The generated fuzzy sets were then used to represent the domain of each of

T_PERCENT_CHANGE1, …, T_PERCENT_CHANGE20 in S.

9.3.4 Attribute Clustering for Grouping and Selection of

Attributes

We next applied our attribute clustering algorithm ACA proposed in Chapter 7 to S. Fig. 46

shows the sum of the interdependence redundancy measure over all the clusters versus the

number of clusters found.

205

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 3 4 5 6 7 8 9 10

No. of Clusters

To
ta

l I
nt

er
de

pe
nd

en
ce

 R
ed

un
da

nc
y

M
ea

su
re

Fig. 46. Total interdependence redundancy measure over all the clusters found in the

transformed relation.

As shown in Fig. 46, it finds that the optimal number of clusters is 3. ACA identifies 3

clusters of attributes, where T_PERCENT_CHANGE2, T_PERCENT_CHANGE7, and

T_PERCENT_CHANGE16 are the modes. These clusters have 8, 6, and 6 attributes,

respectively. From each of the three attribute clusters, we select the top 3 attributes for data

mining and meta-mining.

9.3.5 Mining Meta-Rules

Similar to our experimentation on the property-valuation database, we next applied our

fuzzy rule mining algorithms, FARM and EFARM, to the transformed data to discover

meta-rules. Since the results they obtained are more or less the same, we report only the

findings of FARM in this section for clarity. We first present the discovered regular and

differential meta-rules in Section 9.3.5.1. We next report how change meta-rules lead to an

accurate prediction of the stock price in Section 9.3.5.2.

9.3.5.1 Regular and Differential Meta-Rules

For our experimentation, we aimed at finding the association relationships concerned with

how the percentage change in stock price on a specific date is affected by percentage

206

changes in the past few days. Fig. 47 shows the value of T_PERCENT_CHANGE (i.e., the

percentage change in stock price) of the three companies.

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%
Ja

n-
00

M
ay

-0
0

S
ep

-0
0

Ja
n-

01

M
ay

-0
1

S
ep

-0
1

Ja
n-

02

M
ay

-0
2

S
ep

-0
2

Ja
n-

03

M
ay

-0
3

S
ep

-0
3

Ja
n-

04

M
ay

-0
4

S
ep

-0
4

Date

%
 C

ha
ng

e
Hang Seng Bank Ltd. Sun Hung Kai Properties Ltd. CLP Holdings Ltd.

Fig. 47. Percentage change in stock prices of the three companies

during the period from 2000 to 2004.

We first extracted the subsequence data concerned with the three companies into three

data sets, one for each company. We then applied our algorithm to mine a set of rules in

each data set. Next, we applied it to mine a set of regular and differential meta-rules from

the rule set.

A regular meta-rule discovered is given as follows:

Percentage change on the 14th to the last transaction date = More or less the same ∧

 Percentage change on the 12th to the last transaction date = Fairly increased

 ⇒ Percentage change on the next transaction date = More or less the same

 [w = infinity].

This meta-rule states that “in general, if the stock prices on the 14th and 12th to the last

transaction date are more or less the same and fairly increased, respectively, then the stock

price on the next transaction date will be more or less the same.” This represents an

207

association relationship in common in the characteristics of the stock price movements of

the three companies.

The following regular meta-rules are also discovered:

Percentage change on the present transaction date = Highly increased

 ⇒ Percentage change on the next transaction date = Highly decreased

 [w = 5.57]

Percentage change on the present transaction date = Highly increased

 ⇒ Percentage change on the next transaction date = Fairly decreased

 [w = 3.74].

These state that “in general, if the stock price highly increases on this transaction date, then

the stock price will fairly or highly decrease on the next transaction date.” Again, they

represent association relationships in common in the characteristics of the stock price

movements of the three companies. They suggest that it is a safe bet for the decrease in the

stock price on the next transaction date if one finds that the stock price highly increases on

the present transaction date.

In addition to regular meta-rules, our algorithm also discovered the following

differential meta-rule:

Percentage change on the 13th to the last transaction date = More or less the same

 ⇒ Percentage change on the next transaction date = More or less the same

 [w = –4.70].

This states that “in an exceptional manner, if the stock price on the 13th to the last

transaction date is more or less the same, then the stock price on the next transaction date

will be more or less the same.” This represents a distinguishing association relationship in

the characteristics of the stock price movement of CLP Holdings Ltd. only.

9.3.5.2 Change Meta-Rules

For our further experimentation, we extracted the transformed time-series data for Hang

Seng Bank Ltd. during the period from 2000 to 2004. As shown in Figs. 45 and 47, the

stock price of the company fluctuates significantly and hence the rules discovered in the

historical data are unable to provide an accurate prediction of the stock price in the future.

We aimed at predicting the stock price on the next transaction date given the stock

208

price on the previous 19 days. To perform this task, we first divided the subsequence data

into 20 partitions, T1, …, T20, where T1 contains the subsequences representing the stock

price in the period from January 2000 to March 2000, T2 contains the subsequences

representing the stock price in the period from April 2000 to June 2000, and so forth. We

next used our algorithm to discover 19 sets of fuzzy association rules, R1, …, R19, from the

first 19 database partitions, T1, …, T19. Finally, we applied our fuzzy rule mining algorithm

to discover a set of change meta-rules, which represent the regularities about the changes in

the adjusted residual and weight of evidence of each fuzzy rule in R1 ∪ … ∪ R19.

Using the change meta-rules, we predicted how the adjusted residual and weight of

evidence of each fuzzy rule in R1 ∪ … ∪ R19 would change in the period between October

2004 and December 2004. This resulted in a set of fuzzy association rules, 20R′ , such that

the adjusted residual and weight of evidence of each rule in 20R′ were predicted based on the

change meta-rules discovered. We predicted the stock price of each subsequence in the last

database partition, T20, using 20R′ .

To further evaluate the performance of our approach, we used the fuzzy rules

discovered in T1 ∪ … ∪ T19 to predict the stock price. We denote these discovered fuzzy

rules as R. For the purpose of comparison, neural networks were also applied to the data

because they are the most popular classifier for financial time series forecasting [Baestaens,

van den Bergh, and Wood 1994; Refenes, Burgess, and Bentz 1997; Weigend, Huberman,

and Rumelhart 1990]. The neural networks used in our experiments are multilayer

perceptrons with a single hidden layer, which contains 20 nodes, and they were trained by

the backpropagation algorithm [Rumelhart, Hinton, and Williams 1986; Werbos 1974] with

the learning rate was set to 0.3 and the momentum term was set to 0.7. The neural networks

used the first 4¾ years of the data for training (i.e., T1 ∪ … ∪ T19) and the last ¼ year of the

data for testing (i.e., T20). The predictions produced by the neural networks were averaged

over 10 runs.

Fig. 48 shows the actual and the predicted stock prices during the period between

October 4, 2004 and December 31, 2004 (“Fuzzy Rules + Meta-Rules” denotes the

predictions based on 20R′ and “Fuzzy Rules” denotes the predictions based on R).

209

90

92

94

96

98

100

102

104

106

108

110

Oct-04 Nov-04 Dec-04

Date

P
ric

e

Actual Fuzzy Rules + Meta-Rules Fuzzy Rules Neural Networks

Fig. 48. Prediction of the stock price of Hang Seng Bank Ltd.

The prediction produced by 20R′ , R, and neural networks deviates from the actual price

by ±0.4%, ±0.7%, and ±1.3%, respectively, in average.

Based on the prediction of the stock price, one can make buy/sell decisions using

certain trading strategies. In this section, we compare the performance of predicted fuzzy

rules and neural networks using a simple trading strategy. Let us assume that we have a

certain amount of capital and we are able to buy/sell the stock of Hang Seng Bank Ltd. from

October 4, 2004 to December 31, 2004. In this trading strategy, if the stock price is

predicted to rise by 0.5% on date t + 1, we buy the stock with all the capital on date t; if the

stock price is predicted to drop by 0.5% on date t + 1, we sell the stock on date t; otherwise,

we do nothing, that is, we hold the stock or the cash on hand. This strategy allows us to

make a profit by buying the stock today (i.e., date t) if the stock price will be higher

tomorrow (i.e., date t + 1) and to prevent a loss by selling the stock today (i.e., date t) if the

stock price will be lower tomorrow (i.e., date t + 1) according to the prediction. We refer to

this trading strategy as the active trading strategy in the rest of this section.

A weakness of the active trading strategy is that we can only make money when the

market is up. When the market is down, all we can do is to prevent loss. In order to allow

making money when the market is down, we modify the strategy to become more

210

aggressive by allowing short selling. In the modified strategy, if the stock price is predicted

to rise by 0.5% on date t + 1, we buy the stock with all the capital on date t; if the stock

price is predicted to drop by 0.5% on date t + 1, we short sell the stock on date t and buy it

back when there is a buy signal; otherwise, we do nothing, that is, we hold the stock or the

cash on hand or keep short selling the stock. This allows us to make profit when the market

is down because we will be able to buy the stock at a lower amount than the price at which

we sold short. We refer to this modified strategy as the short selling trading strategy in the

rest of this section.

The experimental results are given in Table 38. The number of buy/sell transactions

made is provided in Table 39.

Table 38. Trading performance.

 Active Trading
Strategy

Short Selling Trading
Strategy

Neural Networks 3.0% 1.4%
Fuzzy Rules 5.5% 6.7%

Fuzzy Rules + Meta-Rules 11.5% 15.3%

Table 39. Trading signals.

Active Trading
Strategy

Short Selling Trading
Strategy

Buy Sell Buy Sell
Neural Networks 12 11 23 23

Fuzzy Rules 8 7 16 15
Fuzzy Rules + Meta-Rules 10 9 19 18

The experimental results show that neural networks, which do not take into

consideration the fact that the trends hidden in financial time series are in short-time basis,

cannot produce good trading performance. Although short selling can be used to make

money when the market is down, one risks greater loss if the predictions are wrong when

compared to not using short selling. This is why neural networks yield even poorer trading

performance when using short selling as when they do.

As shown in Table 38, our approach, which mines fuzzy rules and change meta-rules,

obtains good trading performance using both the active trading strategy and the short selling

trading strategy. This demonstrates the effectiveness of the mining of change meta-rules in

representing rule changes in time series.

211

We also repeated our experimentation on the stock price data for Sun Hung Kai

Properties Ltd. and CLP Holdings Ltd. The experimental results also show that our

approach to mining fuzzy rules and change meta-rules obtains good prediction accuracy and

trading performance although the actual figures vary. We report in this section only the

results on Hang Seng Bank Ltd.

212

Chapter 10

Conclusions and Future Work

This study proposes to mine a set of rules from the rules sets discovered by a data mining

algorithm. These rules are called meta-rules because they are rules about rules. We define

the problems of discovering the underlying regularities, differences, and changes hidden in

rule sets and propose a new approach to dealing with these problems. We refer to the

proposed approach as a meta-mining approach since it mines previous mining results.

Given a collection of rule sets, each of which is discovered in a data set, the meta-

mining of regularities is concerned with the discovery of association relationships that are

supported by a sufficiently large number of rules in the rule sets. They are in common in

different data sets (i.e., the regularities) and hence they are called regular meta-rules. The

regular meta-rules are especially useful for an interstate or international company to better

make business decisions that are beneficial to the company as a whole.

The meta-mining of differences from the rule sets aims at revealing rules that are

supported by a sufficiently small number of rules. They represent the distinguishing

characteristics of the few data sets. They are therefore referred to as differential meta-rules.

The differential meta-rules are very useful for an international company to better make

decisions that are beneficial to specific branches.

Based on our formalism, we can distinguish the associations supported by a number of

records in many data sets from the associations supported by many records in only a few

data sets. If one concatenates the data sets into amass a single data set, these two kinds of

associations cannot be distinguished. With meta-mining, regular meta-rules are used to

represent the former kind of associations, whereas differential meta-rules are used to

represent the latter kind of associations.

In addition to discovering regularities and differences, we also propose to discover the

changes in rules over time. The goal in meta-mining changes from rule sets is to uncover

the regularities governing how the rules change over time (i.e., the change meta-rules).

Change meta-rules reflect change in the underlying characteristics hidden in the data. They

can be used for human examination and for predicting how the rules will change in the

future. Unless one takes changes into consideration, one can only predict based on

historical data and the prediction cannot lead to any change because it will no longer be

213

valid. Knowing the changes in advance allows a business organization not only to provide

new products and services to satisfy the changing needs of its customers, but also to design

corrective actions to stop or delay undesirable changes.

To discover regular, differential, and change meta-rules effectively, a meta-mining

approach should be able to 1) generate fuzzy sets from data automatically; 2) use linguistic

variables and linguistic terms to represent the discovered regularities, differences, and

changes; 3) exploit the scalability of parallel computer systems; 4) group and select a subset

of attributes; and 5) enable the mining of relationships involving attributes that are not

originally contained in the data.

In this study, we propose a good number of techniques to do with the aforementioned

tasks and incorporate them into our meta-mining approach. Specifically, to generate fuzzy

sets directly from data, we present a new fuzzy partitioning method called ITFP to

maximize the class-attribute interdependence and thence improve the classification results.

It uses an information-theoretic measure effectively to evaluate the interdependence

between the class and an attribute. In the comparison of discretization techniques versus

fuzzy partitioning techniques, the experimental results on several real-world data sets show

that the latter, if done effectively, can outperform the former. In view of unsupervised

versus supervised methods, the results show that the latter perform better than the former.

Our ITFP, which is a supervised and fuzzy partitioning method, indeed achieves, by and

large, the best performance in our experiments. From the experimental results, the efficacy

of ITFP demonstrates that fuzzy partitioning enables fuzzy data mining techniques (e.g.,

fuzzy decision trees [Janikow 1998], fuzzy classification [Au and Chan 2001], fuzzy

association rules [Au and Chan 1998, 1999, 2003, 2004; Chan and Au 1997b, 2001; Chan,

Au, and Choi 2002], fuzzy linguistic summaries [Kacprzyk and Zadrozny 2001; Yager

1991], etc.) to build fuzzy models or to discover fuzzy rules on top of the generated fuzzy

sets instead of the user-specified fuzzy sets.

In order to employ linguistic variables and linguistic terms to represent the revealed

association relationships so that they can be understood by human users easily because of

their affinity with human knowledge representation, we propose two new algorithms, called

FARM and EFARM, for mining fuzzy rules and meta-rules. FARM discovers high-order

fuzzy association rules based on a heuristic, whereas EFARM mines high-order rules using

an evolutionary algorithm. Both of them employ an objective interestingness measure to

discover interesting association relationships among attributes without any subjective input

required of the users. The discovered associations can be used later for human examination

or for machine inference, e.g., classification.

214

We tested their performance with extensive experiments. The experimental results on

several real-world data sets for data mining show that our algorithms yield accurate

classification. In particular, the experimental results on the subscriber database provided by

a carrier in Malaysia show that they are able to discover churn patterns and to predict churn

accurately. Furthermore, they are also robust in such a way that they can discover rules

hidden in the subscriber database and predict the churn of subscribers under different churn

rates. Since the churn rates of different subscribers are different and the churn rate of a

specific carrier varies from time to time, robustness is necessary to an effective churn

predictor. The ability of our proposed algorithms to identify a large number of churners

when only a small fraction of subscribers were contacted is especially important because the

customer services center of the carrier has a fixed number of staff and they can contact only

a small fraction of subscribers. On the other hand, the experimental results on synthetic data

sets for meta-mining also show that our algorithms are effective for discovering the

underlying regularities, exceptions, and changes embedded.

To handle very large data sets and rule sets, we extend the two proposed algorithms to

exploit the scalability of parallel computer systems. While producing the same results, the

parallel algorithms accomplish a data mining or a meta-mining task in only a fraction of the

time required by their serial counterparts. The experimental results on a popular

benchmarking data set show that they have very good size-up, speedup, and scale-up

performance.

We also present a new method for grouping interdependent attributes into clusters by

optimizing a criterion function known as interdependence redundancy. We propose a

clustering algorithm known as k-modes Attribute Clustering Algorithm (ACA). ACA

adopts the idea of k-means clustering algorithm in the entity space to cluster attributes in the

attribute space by replacing 1) the concept of the “mean” in the former by the “mode” and 2)

the distance measure used in the former to the interdependence redundancy measure

between attributes. In order to have a meaningful evaluation of our methodology, we devise

an experimental evaluation scheme to provide a common base of performance assessment

and comparison with other methods. From the experiments on the two gene expression data

sets, colon-cancer and leukemia, we find that our attribute clustering algorithm that

maximizes intra-group interdependences and the attribute selection method based on

multiple attribute interdependence measure works well and yields meaningful and useful

results in terms of 1) finding good clustering configurations, which contain interdependence

information within clusters and discriminative information for classification; 2) selecting

from each cluster significant genes with high multiple interdependence with other genes

215

within each cluster; and 3) yielding very high classification results on both of gene

expression data sets using a small pool of genes selected from the clusters found by ACA as

the training set. When comparing the experimental results of ACA with those of several

well-known methods, we find that, by and large, ACA outperforms the others. As shown by

the surprising results in both the colon-cancer and the leukemia cases, ACA is able to select

very small subsets of genes (14 out of 2,000 in the former and 10 of 7,129 in the latter) to

achieve very high classification accuracy (91.9% in the former and 97.1% in the latter)

much higher than when the entire set of genes are used. This reveals that the good

diagnostic information existing in a small set of genes can be effectively selected by ACA

for diagnostic purpose. We believe that this has a significant implication for clinical,

pharmaceutical, and bioengineering applications.

To allow the discovery of association relationships involving attributes that are not

contained in the original data, we propose using transformation functions and introduce a

formal approach. This approach can also handle both relational and transactional data in a

relational database. Depending on the type of attribute, we can apply different types of

transformation functions to the attributes. The types of transformations include logical,

arithmetic, substring, and discretization functions. The use of transformation functions

results in a transformed relation. Instead of performing data mining on the original data, we

applied our fuzzy association rule mining algorithms to the transformed data of the bank-

account database provided by an international bank. Among the discovered fuzzy

association rules, we selected 200 rules randomly and presented them to a domain expert

from the bank. The domain expert confirmed that she could understand the fuzzy

association rules without any difficulty, although it is nontrivial for her to explain the basis

for some of the rules. In particular, the domain expert found that 91.5% of these randomly

selected rules are useful or very useful. The reasons for this are likely to be that our

interestingness measure can effectively reveal the interesting associations that are hidden in

the data and that the fuzzy association rules, which employ linguistic terms to represent the

underlying relationships, are more natural for human users to understand.

Finally, we applied our proposed meta-mining approach to several synthetic and real-

life data sets for experimentation. The experimental results show that our approach is able

to reveal the underlying regularities, differences, and changes hidden in the data.

In conclusion, our proposed meta-mining approach is very effective not only in mining

rules from data sets, but also in mining meta-rules from rule sets. The discovered meta-

rules effectively represent the underlying regularities, differences, and changes hidden in the

rule sets, which in turn reflect the regularities, the differences, and the change of

216

characteristics in the data sets.

In the future, we are going to generalize our fuzzy partitioning method to handle

multiple variables at the same time. Instead of fuzzy sets, it would result in fuzzy relations.

The rules discovered involing such fuzzy relations would perhaps reflect a more meaningful

representation of the underlying relationships as compared to those involving fuzzy sets.

217

References

D. Abramson and J. Abela (1992) “A Parallel Genetic Algorithm for Solving the School

Timetabling Problem,” in Proc. of the 15th Australian Computer Science Conf., pp. 1–

11.

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami (1992) “An Interval Classifier

for Database Mining Applications,” in Proc. of the 18th Int’l Conf. on Very Large Data

Bases, Vancouver, British Columbia, Canada, pp. 560–573.

R. Agrawal, T. Imielinski, and A. Swami (1993a) “Database Mining: A Performance

Perspective,” IEEE Trans. on Knowledge and Data Engineering, vol. 5, no. 6, pp. 914–

925.

R. Agrawal, T. Imielinski, and A. Swami (1993b) “Mining Association Rules between Sets

of Items in Large Databases,” in Proc. of the ACM SIGMOD Int’l Conf. on

Management of Data, Washington D.C., pp. 207–216.

R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger (1996) “The Quest

Data Mining System,” in Proc. of the 2nd Int’l Conf. on Data Mining and Knowledge

Discovery, Portland, OR, pp. 244–249.

R. Agrawal and G. Psaila (1995) “Active Data Mining,” in Proc. of the 1st Int’l Conf. on

Knowledge Discovery and Data Mining, Montreal, Canada.

R. Agrawal and J. C. Shafer (1996) “Parallel Mining of Association Rules,” IEEE Trans. on

Knowledge and Data Engineering, vol. 8, no. 6, pp. 962–969.

R. Agrawal and R. Srikant (1994) “Fast Algorithms for Mining Association Rules,” in Proc.

of the 20th Int’l Conf. on Very Large Data Bases, Santiago, Chile, pp. 487–499.

R. Agrawal and R. Srikant (1995) “Mining Sequential Patterns,” in Proc. of the 11th IEEE

Int’l Conf. on Data Engineering, Taipei, Taiwan, pp. 3–14.

A. Agresti (1990) Categorical Data Analysis, New York, NY: John Wiley & Sons.

U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine (1999)

“Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and

Normal Colon Tissues Probed by Oligonucleotide Arrays,” Proc. of the National

Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6745–6750.

H. Andre-Jonsson and D. Badal (1997) “Using Signature Files for Querying Time-Series

Data,” in Proc. of the 1st European Symp. on Data Mining and Knowledge Discovery,

218

Trondheim, Norway, pp. 211–220.

A. Arslan and M. Kaya (2001) “Determination of Fuzzy Logic Membership Functions

Using Genetic Algorithms,” Fuzzy Sets and Systems, vol. 118, no. 2, pp. 297–306.

W.-H. Au and K. C. C. Chan (1998) “An Effective Algorithm for Discovering Fuzzy Rules

in Relational Databases,” in Proc. of the 7th IEEE Int’l Conf. on Fuzzy Systems,

Anchorage, AK, pp. 1314–1319.

W.-H. Au and K. C. C. Chan (1999) “FARM: A Data Mining System for Discovering Fuzzy

Association Rules,” in Proc. of the 8th IEEE Int’l Conf. on Fuzzy Systems, Seoul,

Korea, pp. 1217–1222.

W.-H. Au and K. C. C. Chan (2001) “Classification with Degree of Membership: A Fuzzy

Approach,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose, CA, pp. 35–

42.

W.-H. Au and K. C. C. Chan (2002a) “An Evolutionary Approach for Discovering

Changing Patterns in Historical Data,” in B. V. Dasarathy (Ed.), Data Mining and

Knowledge Discovery: Theory, Tools, and Technology IV, Proc. of SPIE Vol. 4730, pp.

398–409.

W.-H. Au and K. C. C. Chan (2002b) “Fuzzy Data Mining for Discovering Changes in

Association Rules over Time,” in Proc. of the 11th IEEE Int’l Conf. on Fuzzy Systems,

Honolulu, HI, pp. 890–895.

W.-H. Au and K. C. C. Chan (2003) “Mining Fuzzy Association Rules in a Bank-Account

Database,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 2, pp. 238–248.

W.-H. Au and K. C. C. Chan (2004) “Mining Fuzzy Rules for Time Series Classification,”

in Proc. of the 13th IEEE Int’l Conf. on Fuzzy Systems, Budapest, Hungary, pp. 239–

244.

W.-H. Au and K. C. C. Chan (2005) “Mining Changes in Association Rules: A Fuzzy

Approach,” Fuzzy Sets and Systems, vol. 149, no. 1, pp. 87–104.

W.-H. Au, K. C. C. Chan, A. K. C. Wong, and Y. Wang (2005) “Attribute Clustering for

Grouping, Selection, and Classification of Gene Expression Data,” IEEE/ACM Trans.

on Computational Biology and Bioinformatics, vol. 2, no. 2, pp. 82–101.

W.-H. Au, K. C. C. Chan, and X. Yao (2003) “A Novel Evolutionary Data Mining

Algorithm with Applications to Churn Prediction,” IEEE Trans. on Evolutionary

Computation, vol. 7, no. 6, pp. 532–545.

D.-E. Baestaens, W.-M. van den Bergh, and D. Wood (1994) Neural Networks Solutions for

219

Trading in Financial Markets, London, U.K.: Pitman.

A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini (2000)

“Tissue Classification with Gene Expression Profiles,” in Proc. of the 4th Annual Int’l

Conf. on Computational Molecular Biology, Tokyo, Japan, pp. 54–64.

A. D. Bethke (1976), “Comparison of Genetic Algorithms and Gradient-Based Optimizers

on Parallel Processors: Efficiency of Use of Processing Capacity”, Technical Report

197, Logic of Computer Group, University of Michigan, Ann Arbor, MI.

J. C. Bezdek (1981) Pattern Recognition with Fuzzy Objective Function Algorithms, New

York, NY: Plenum.

C. Bishop (1995) Neural Networks for Pattern Recognition, New York, NY: Oxford Univ.

Press.

C. L. Blake and C. J. Merz (1998) UCI Repository of Machine Learning Databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html], Department of Information and

Computer Science, University of California, Irvine, CA.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel (1994) Time Series Analysis: Forecasting

and Control, 3rd Ed., Englewood Cliffs, NJ: Prentice-Hall.

T. Bozkaya, N. Yazdani, and Z. M. Ozsoyoglu (1997) “Matching and Indexing Sequences

of Different Lengths,” in Proc. of the 6th Int’l Conf. on Information and Knowledge

Management, Las Vegas, NV, pp. 128–135.

P. Bradley, U. Fayyad, and C. Reina (1998) “Scaling Clustering Algorithms to Large

Databases,” in Proc. of the 4th Int’l Conf. on Knowledge Discovery and Data Mining,

New York, NY, pp. 9–15.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984) Classification and

Regression Trees, Belmont, CA: Wadsworth.

M. Bright, A. Hurson, and S. Pakzad (1992) “A Taxonomy and Current Issues in

Multidatabase Systems,” IEEE Computer, vol. 25, no. 3, pp. 50–60.

S. Brin, R. Motwani, C. Silverstein (1997) “Beyond Market Baskets: Generalizing

Association Rules to Correlations,” in Proc. of the ACM SIGMOD Int’l Conf. on

Management of Data, Tucson, AZ, pp. 265–276.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur (1997) “Dynamic Itemset Counting and

Implication Rules for Market Basket Data,” in Proc. of the ACM SIGMOD Int’l Conf.

on Management of Data, Tucson, AZ, pp. 255–264.

220

B. G. Buchanan, D. Barstow, R. Bechtal, J. Bennett, W. Clancey, C. Kulikowski, T.

Mitchell, and D. A. Waterman (1983) “Constructing an Expert System,” in F. Hayes-

Roth, D. A. Waterman, and D. B. Lenat (Eds.), Building Expert Systems, Boston, MA:

Addison-Wesley, pp. 127–168.

Y. Cai, N. Cercone, and J. Han (1991) “Attribute-Oriented Induction in Relational

Databases,” in [Piatetsky-Shapiro and Frawley 1991], pp. 213–228.

E. Cantu-Paz (1998) “A Survey of Parallel Genetic Algorithms,” Calculateurs Paralleles,

Reseaux et Systems Repartis, vol. 10, no. 2, pp. 141–171.

E. Cantu-Paz and D. E. Goldberg (1999) “On the Scalability of Parallel Genetic

Algorithms,” Evolutionary Computation, vol. 7, no. 4, pp. 429–449.

K. C. C. Chan and W.-H. Au (1997a) “An Effective Algorithm for Mining Interesting

Quantitative Association Rules,” in Proc. of the 12th ACM Symp. on Applied

Computing, San Jose, CA, pp. 88–90.

K. C. C. Chan and W.-H. Au (1997b) “Mining Fuzzy Association Rules,” in Proc. of the 6th

Int’l Conf. on Information and Knowledge Management, Las Vegas, NV, pp. 209–215.

K. C. C. Chan and W.-H. Au (2001) “Mining Fuzzy Association Rules in a Database

Containing Relational and Transactional Data,” in A. Kandel, M. Last, and H. Bunke

(Eds.), Data Mining and Computational Intelligence, New York, NY: Physica-Verlag,

pp. 95–114.

K. C. C. Chan, W.-H. Au, and B. Choi (2002) “Mining Fuzzy Rules in a Donor Database for

Direct Marketing by a Charitable Organization,” in Proc. of the 1st IEEE Int’l Conf. on

Cognitive Informatics, Calgary, Alberta, Canada, pp. 239–246.

K. C. C. Chan and A. K. C. Wong (1990) “APACS: A System for the Automatic Analysis

and Classification of Conceptual Patterns,” Computational Intelligence, vol. 6, no. 3,

pp. 119–131.

K. C. C. Chan and A. K. C. Wong (1991) “A Statistical Technique for Extracting

Classificatory Knowledge from Databases,” in [Piatetsky-Shapiro and Frawley 1991],

pp. 107–123.

P. Cheeseman and J. Stutz (1996) “Bayesian Classification (AutoClass): Theory and

Results,” in [Fayyad et al. 1996], pp. 153–180.

Y. Cheng and G. M. Church (2000) “Biclustering of Expression Data,” in Proc. of the 8th

Int’l Conf. on Intelligent Systems for Molecular Biology, San Diego, CA, pp. 93–103.

D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and Y. Fu (1996a) “A Fast Distributed

221

Algorithm for Mining Association Rules,” in Proc. of the 4th Int’l Conf. on Parallel

and Distributed Information Systems, Miami Beach, FL, pp. 31–42.

D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong (1996b) “Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique,” in Proc.

of the 12th Int’l Conf. on Data Engineering, New Orleans, LA, pp. 106–114.

J. Y. Ching, A. K. C. Wong, and K. C. C. Chan (1995) “Class-Dependent Discretization for

Inductive Learning from Continuous and Mixed-Mode Data,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 17, no. 7, pp. 641–651.

D. K. Y. Chiu and A. K. C. Wong (2004) “Multiple Pattern Associations for Interpreting

Structural and Functional Characteristics of Biomolecules,” Information Sciences, vol.

167, pp. 23–39.

D. K. Y. Chiu, A. K. C. Wong, and B. Cheung (1991) “Information Discovery through

Hierarchical Maximum Entropy Discretization and Synthesis,” in [Piatetsky-Shapiro

and Frawley 1991], pp. 125–140.

P. Clark and T. Niblett (1989) “The CN2 Algorithm,” Machine Learning, vol. 3, pp. 261–

283.

S. Choenni (2000) “Design and Implementation of a Genetic-Based Algorithm for Data

Mining,” in Proc. of the 26th Int’l Conf. on Very Large Data Bases, Cairo, Egypt, pp.

33–42.

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth (1998) “Rule Discovery from

Time Series,” in Proc. of the 4th Int’l Conf. on Knowledge Discovery and Data Mining,

New York, NY, pp. 16–22.

C. J. Date (2000) An Introduction to Database Systems, 7th Ed., Reading, MA: Addison-

Wesley.

K. A. DeJong, W. M. Spears, and D. F. Gordon (1993) “Using Genetic Algorithms for

Concept Learning,” Machine Learning, vol. 13, pp. 161–188.

M. Delgado, N. Marín, D. Sánchez, and M.-A. Vila (2003) “Fuzzy Association Rules:

General Model and Applications,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 2, pp.

214–225.

A. P. Dempster (1967) “Upper and Lower Probabilities Induced by a Multi-Valued

Mapping,” Annals of Mathematical Statistics, vol. 38, pp. 325–339.

F. De Smet, J. Mathys, K. Marchal, G. Thijs, B. De Moor, and Y. Moreau (2002) “Adaptive

Quality-Based Clustering of Gene Expression Profiles,” Bioinformatics, vol. 18, no. 5,

222

pp. 735–746.

V. Dhar and A. Tuzhilin (1993) “Abstract-Driven Pattern Discovery in Databases,” IEEE

Trans. on Knowledge and Data Engineering, vol. 5, no. 6, pp. 926–938.

C. Ding and H. Peng (2003) “Minimum Redundancy Feature Selection from Microarray

Gene Expression Data,” in Proc. of the IEEE Computational Systems Bioinformatics

Conf., Stanford, CA, pp. 523–528.

E. Domany (2003) “Cluster Analysis of Gene Expression Data,” Journal of Statistical

Physics, vol. 110, pp. 1117–1139.

J. Dougherty, R. Kohavi, and M. Sahami (1995) “Supervised and Unsupervised

Discretization of Continuous Features,” in Proc. of the 12th Int’l Conf. on Machine

Learning, Tahoe City, CA, pp. 194–202.

S. Dudoit, J. Fridlyand, and T. P. Speed (2002) “Comparison of Discrimination Methods for

the Classification of Tumors Using Gene Expression Data,” Journal of the American

Statistical Association, vol. 97, no. 457, pp. 77–87.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein (1998) “Cluster Analysis and

Display of Genome-Wide Expression Patterns,” Proc. of the National Academy of

Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868.

M. Fajfer and C. Z. Janikow (2000) “Bottom-Up Fuzzy Partitioning in Fuzzy Decision

Trees,” in Proc. of the 19th Int’l Conf. of the North American Fuzzy Information

Processing Society, Atlanta, GA, pp. 326–330.

U. M. Fayyad and K. B. Irani (1993) “Multi-Interval Discretization of Continuous-Valued

Attributes for Classification Learning,” in Proc. of the 13th Int’l Joint Conf. on

Artificial Intelligence, Chambéry, France, pp. 1022–1029.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth (1996) “From Data Mining to

Knowledge Discovery: An Overview,” in [Fayyad et al. 1996], pp. 1–34.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.) (1996) Advances

in Knowledge Discovery and Data Mining, Menlo Park, CA; Cambridge, MA:

AAAI/MIT Press.

M. V. Fidelis, H. S. Lopes, and A. A. Freitas (2000) “Discovering Comprehensible

Classification Rules with a Genetic Algorithm,” in Proc. of the 2000 Congress on

Evolutionary Computation, San Diego, CA, pp. 805–810.

T. C. Fogarty and R. Huang (1991) “Implementing the Genetic Algorithm on Transputer

Based Parallel Processing Systems,” in Proc. of Parallel Problem Solving from Nature,

223

pp. 145–149.

D. B. Fogel (1995) Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, New York, NY: IEEE Press.

R. Forsyth (1990) PC/BEAGLE User’s Guide, Pathway Research Ltd.

W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus (1991) “Knowledge Discovery in

Databases: An Overview,” in [Piatetsky-Shapiro and Frawley 1991], pp. 1–27.

A. A. Freitas (2002) “Understanding the Critical Role of Attribute Interaction in Data

Mining,” Artificial Intelligence Review, vol. 16, pp. 177–199.

N. Friedman, M. Nachman, and D. Pe’er (2000) “Using Baysian Networks to Analyze

Expression Data,” in Proc. of the 4th Annual Int’l Conf. on Computational Molecular

Biology, Tokyo, Japan, pp. 127–135.

V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh (1999a) “A Framework for

Measuring Changes in Data Characteristics,” in Proc. of the 18th ACM SIGMOD-

SIGACT-SIGART Symp. on Principles of Database Systems, Philadelphia, PA, pp. 126–

137.

V. Ganti, R. Ramakrishnan, J. Gehrke, A. L. Powell, and J. C. French (1999b) “Clustering

Large Data Sets in Arbitrary Metric Spaces,” in Proc. of the 15th Int’l Conf. on Data

Engineering, Sydney, Australia, pp.502–511.

M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani (2000) “Mining the Stock Market:

Which Measure is Best?” in Proc. of the 6th ACM SIGKDD Int’l Conf. on Knowledge

Discovery and Data Mining, Boston, MA, pp. 487–496.

D. Gayme, S. Menon, and C. Ball (2003) “Fault Detection and Diagnosis in Turbine

Engines Using Fuzzy Logic,” in Proc. of the 22nd Int’l Conf. on the North American

Fuzzy Information Procession Society, Chicago, IL, pp. 341–346.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam (1994) PVM:

Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel

Computing, Cambridge, MA: MIT Press.

D. E. Goldberg (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,

Reading, MA: Addison-Wesley.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,

M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander (1999)

“Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene

Expression Monitoring,” Science, vol. 286, pp. 531–537.

224

D. P. Greene and S. F. Smith (1994) “Using Coverage as a Model Building Constraint in

Learning Classifier Systems,” Evolutionary Computation, vol. 2, no. 1, pp. 67–91.

J. J. Grefenstette (1981) “Parallel Adaptive Algorithms for Function Optimization,”

Technical Report CS-81-19, Computer Science Department, Vanderbilt University,

Nashville, TN.

P. B. Grosso (1985) “Computer Simulations of Genetic Adaptation: Parallel Subcomponent

Interaction in a Multilocus Model,” Ph.D. Thesis, University of Michigan, Ann Arbor,

MI.

V. Guralnik and J. Srivastava (1999) “Event Detection from Time Series Data,” in Proc. of

the 5th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, San

Diego, CA, pp. 33–42.

J. Han, Y. Cai, and N. Cercone (1992) “Knowledge Discovery in Databases: An Attribute-

Oriented Approach,” in Proc. of the 18th Int’l Conf. on Very Large Data Bases,

Vancouver, British Columbia, Canada, pp. 547–559.

J. Han, Y. Cai, and N. Cercone (1993) “Data-Driven Discovery of Quantitative Rules in

Relational Databases,” IEEE Trans. on Knowledge and Data Engineering, vol. 5, no. 1,

pp. 29–40.

J. Han, G. Dong, and Y. Yin (1999) “Efficient Mining of Partial Periodic Patterns in Time

Series Database,” in Proc. of the 15th IEEE Int’l Conf. on Data Engineering, Sydney,

Australia, pp. 106–115.

J. Han and Y. Fu (1995) “Discovery of Multiple-Level Association Rules from Large

Databases,” in Proc. of the 21st Int’l Conf. on Very Large Data Bases, Zurich,

Switzerland, pp. 420–431.

J. Han and Y. Fu (1996) “Exploration of the Power of Attribute-Oriented Induction in Data

Mining,” in [Fayyad et al. 1996], pp. 399–421.

J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N.

Stefanovic, B. Xia, and O. R. Zaiane (1996) “DBMiner: A System for Mining

Knowledge in Large Relational Databases,” in Proc. of the 2nd Int’l Conf. on Data

Mining and Knowledge Discovery, Portland, OR, pp. 250–255.

J. Han and M. Kamber (2001) Data Mining: Concepts and Techniques, San Francisco, CA:

Morgan Kaufmann.

E.-H. Han, G. Karypis, and V. Kumar (1997) “Scalable Parallel Data Mining for

Association Rules,” in Proc. of the ACM SIGMOD Int’l Conf. on Management of Data,

225

Tucson, AZ, pp. 277–288.

J. Han, J. Pei, and Y. Yin (2000) “Mining Frequent Patterns without Candidate Generation,”

in Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, Dallas, TX, 2000,

pp. 1–12.

D. Hand, H. Mannila, and P. Smyth (2001) Principles of Data Mining, Cambridge, MA:

The MIT Press.

R. Hauser and R. Manner (1993) “Implementation of Standard Genetic Algorithm on

MIMD Machines,” in Y. Davidor, H.-P. Schwefel, and R. Manner (Eds.), Parallel

Problem Solving from Nature, PPSN III, Berlin, Germany: Springer-Verlag, pp. 504–

513.

R. Herwig, A. J. Poustka, C. Müller, C. Bull, H. Lehrach, and J. O’Brien (1999) “Large-

Scale Clustering of cDNA-Fingerprinting Data,” Genome Research, vol. 9, pp. 1093–

1105.

L. J. Heyer, S. Kruglyak, and S. Yooseph (1999) “Exploring Expression Data: Identification

and Analysis of Coexpressed Genes,” Genome Research, vol. 9, pp. 1106–1115.

R. R. Hill (1999) “A Monte Carlo Study of Genetic Algorithm Initial Population Generation

Methods,” in Proc. of the 31st Conf. on Winter Simulation – A Bridge to the Future,

Phoenix, AZ, pp. 543–547.

K. Hirota and W. Pedrycz (1999) “Fuzzy Computing for Data Mining,” Proc. of the IEEE,

vol. 87, no. 9, pp. 1575–1600.

J. Holland (1986) “Escaping Brittleness: The Possibilities of General-Purpose Learning

Algorithms Applied to Parallel Rule-Based Systems,” in R. Michalski, J. Carbonell,

and T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach, San

Mateo, CA: Morgan Kaufmann.

M. Houtsma and A. Swami (1995) “Set-Oriented Mining for Association Rules in

Relational Databases,” in Proc. of the 11th Int’l Conf. on Data Engineering, Taipei,

Taiwan, pp. 25–33.

Y. Huang and P. S. Yu (1999) “Adaptive Query Processing for Time-Series Data,” in Proc.

of the 5th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, San

Diego, CA, pp. 282–286.

E. Hüllermeier (2001) “Implication-Based Fuzzy Association Rules,” in Proc. of the 5th

European Conf. on Principles of Data Mining and Knowledge Discovery, Freiburg,

Germany, pp. 241–252.

226

IBM Quest Data Mining Project (1996) Quest Synthetic Data Generation Code

[http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html].

T. Imielinski, A. Virmani, and A. Abdulghani (1996) “DataMine: Application Programming

Interface and Query Language for Database Mining,” in Proc. of the 2nd Int’l Conf. on

Data Mining and Knowledge Discovery, Portland, OR, pp. 256–262.

P. Indyk, N. Koudas, and S. Muthukrishnan (2000) “Identifying Representative Trends in

Massive Time Series Data Sets Using Sketches,” in Proc. of the 26th Int’l Conf. on

Very Large Data Bases, Cairo, Egypt, pp. 363–372.

H. Ishibuchi and T. Nakashima (1999) “Improving the Performance of Fuzzy Classifier

Systems for Pattern Classification Problems with Continuous Attributes,” IEEE Trans.

on Industrial Electronics, vol. 46, no. 6, pp. 1057–1068.

H. Ishibuchi, T. Yamamoto, and T. Nakashima (2001) “Fuzzy Data Mining: Effect of Fuzzy

Discretization,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose, CA, pp.

241–248.

A. K. Jain, M. N. Murty, and P. J. Flynn (1999) “Data Clustering: A Review,” ACM

Computing Surveys, vol. 31, no. 3, pp. 264–323.

J.-S. R. Jang (1993) “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE

Trans. on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685.

C. Z. Janikow (1993) “A Knowledge-Intensive Genetic Algorithm for Supervised

Learning,” Machine Learning, vol. 13, pp. 189–228.

C. Z. Janikow (1998) “Fuzzy Decision Trees: Issues and Methods,” IEEE Trans. on

Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 28, no. 1, pp. 1–14.

C. Z. Janikow and M. Fajfer (1999) “Fuzzy Partitioning with FID3.1,” in Proc. of the 18th

Int’l Conf. of the North American Fuzzy Information Processing Society, New York,

NY, pp. 467–471.

D. Jiang, C. Tang, and A. Zhang (2004) “Cluster Analysis for Gene Expression Data: A

Survey,” IEEE Trans. on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1370–

1386.

P. N. Johnson-Laird (1989) “Human Experts and Expert Systems,” in L. A. Murray and J. T.

E. Richardson (Eds.), Intelligent Systems in a Human Context: Development,

Implications, and Applications, Oxford, U.K.: Oxford University Press, pp. 35–46.

M. V. Joshi, G. Karypis, and V. Kumar (1998) “ScalParC: A New Scalable and Efficient

Parallel Classification Algorithm for Mining Large Datasets,” in Proc. of the 1st

227

Merged Int’l Parallel Processing Symp. and Symp. on Parallel and Distributed

Processing, Orlando, FL, pp. 573–579.

B. A. Julstrom (1994) “Seeding the Population: Improved Performance in a Genetic

Algorithm for the Rectilinear Steiner Problem,” in Proc. of the ACM Symp. on Applied

Computing, Phoenix, AZ, pp. 222–226.

J. Kacprzyk and S. Zadrozny (2001) “On Linguistic Approaches in Flexible Querying and

Mining of Association Rules,” in H. L. Larsen, J. Kacprzyk, S. Zadrozny, T. Andreasen,

and H. Christiansen (Eds.), Flexible Query Answering Systems: Recent Advances, Proc.

of the 4th Int’l Conf. on Flexible Query Answering Systems, Heidelberg, Germany:

Physica-Verlag, pp. 475–484.

K. Kalpakis, D. Gada, and V. Puttagunta (2001) “Distance Measure for Effective Clustering

of ARIMA Time Series,” in Proc. of the 1st IEEE Int’l Conf. on Data Mining, San Jose,

CA, pp. 273–280.

C. L. Karr (1991) “Design of an Adaptive Fuzzy Logic Controller Using a Genetic

Algorithm,” in Proc. of the 4th Int’l Conf. on Genetic Algorithms, San Diego, CA, pp.

450–457.

A. D. Keller, M. Schummer, L. Hood, and W. L. Ruzzo (2000) “Bayesian Classification of

DNA Array Expression Data,” Technical Report UW-CSE-2000-08-01, Department of

Computer Science and Engineering, University of Washington.

E. Keogh and S. Kasetty (2003) “On the Need for Time Series Data Mining Benchmarks: A

Survey and Empirical Demonstration,” Data Mining and Knowledge Discovery, vol. 7,

no. 4, pp. 349–371.

E. Keogh and P. Smyth (1997) “A Probabilistic Approach to Fast Pattern Matching in Time

Series Databases,” in Proc. of the 3rd Int’l Conf. on Knowledge Discovery and Data

Mining, Newport Beach, CA, pp. 24–30.

R. Kerber (1992) “ChiMerge: Discretization of Numerical Attributes,” in Proc. of the 9th

National Conf. on Artificial Intelligence, San Jose, CA, pp. 123–128.

J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M.

Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer (2001) “Classification and

Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial

Neural Networks,” Nature Medicine, vol. 7, no. 6, pp. 673–679.

M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo (1994)

“Finding Interesting Rules from Large Sets of Discovered Association Rules,” in Proc.

228

of the 3rd Int’l Conf. on Information and Knowledge Management, Gaithersburg, MD,

pp. 401–407.

R. Kohavi (1996) “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision Tree

Hybrid,” in Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining,

Portland, Oregon.

T. Kohonen (2001) Self-Organizing Maps, 3rd Ed., Berlin, Germany: Springer-Verlag.

V. Kumar, A. Grama, A. Gupta, and G. Karypis (1994) Introduction to Parallel Computing:

Design and Analysis of Algorithms, Redwood City, CA: Benjamin/Cummings.

L. Kurgan and K. J. Cios (2001) “Discretization Algorithm that Uses Class-Attribute

Interdependence Maximization,” in Proc. of the 2001 Int’l Conf. on Artificial

Intelligence, Las Vegas, NV, pp. 980–987.

L. A. Kurgan and K. J. Cios (2004) “Meta Mining Architecture for Supervised Learning,” in

Proc. of the 7th Int’l Workshop on High Performance and Distributed Mining, Lake

Buena Vista, FL, pp. 18–26.

W. Kwedlo and M. Kretowski (1998) “Discovery of Decision Rules from Databases: An

Evolutionary Approach,” in Proc. of the 2nd European Symp. on Principles of Data

Mining and Knowledge Discovery, Nantes, France, pp. 370–378.

M. Last, Y. Klein, and A. Kandel (2001) “Knowledge Discovery in Time Series Database,”

IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 31, no. 1,

pp. 160–169.

D. H. Lee and M. H. Kim (1997) “Database Summarization Using Fuzzy ISA Hierarchies,”

IEEE Trans. on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 27, no. 4,

pp. 671–680.

M. A. Lee and H. Takagi (1993) “Integrating Design Stages for Fuzzy Systems Using

Genetic Algorithms,” in Proc. of the 2nd IEEE Int’l Conf. on Fuzzy Systems, San

Francisco, CA, pp. 612–617.

J. Li and L. Wong (2002a) “Identifying Good Diagnostic Gene Groups from Gene

Expression Profiles Using the Concept of Emerging Patterns,” Bioinformatics, vol. 18,

no. 5, pp. 725–734.

J. Li and L. Wong (2002b) “Identifying Good Diagnostic Gene Groups from Gene

Expression Profiles Using the Concept of Emerging Patterns (Corrigendum),”

Bioinformatics, vol. 18, no. 10, pp. 1406–1407.

T. W. Liao, A. K. Celmins, and R. J. Hammell II (2003) “A Fuzzy C-Means Variant for the

229

Generation of Fuzzy Term Sets,” Fuzzy Sets and Systems, vol. 135, no. 2, pp. 241–257.

B. Liu, W. Hsu, H.-S. Han, and Y. Xia (2000) “Mining Changes for Real-Life

Applications,” in Proc. of the 2nd Int’l Conf. on Data Warehousing and Knowledge

Discovery, London Greenwich, U.K.

B. Liu, W. Hsu, and Y. Ma (1998) “Integrating Classification and Association Rule

Mining,” in Proc. of the 4th Int’l Conf. on Knowledge Discovery and Data Mining,

New York, NY, pp. 80–86.

B. Liu, W. Hsu, and Y. Ma (2001) “Discovering the Set of Fundamental Rule Changes,” in

Proc. of the 7th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,

San Francisco, CA, pp. 335–340.

H. Liu, H. Lu, and J. Yao (1998) “Identifying Relevant Databases for Multidatabase

Mining,” in Proc. of the 2nd Pacific-Asia Conf. on Knowledge Discovery and Data

Mining, Melbourne, Australia, pp. 210–221.

H. Liu and R. Setiono (1997) “Feature Selection via Discretization,” IEEE Trans. on

Knowledge and Data Engineering, vol. 9, no. 4, pp. 642–645.

L. Liu, A. K. C. Wong, and Y. Wang (2004) “A Global Optimal Algorithm for Class-

Dependent Discretization of Continuous Data,” Intelligent Data Analysis, vol. 8, no. 2,

pp. 151–170.

Y. Lu and J. Han (2003) “Cancer Classification Using Gene Expression Data,” Information

Systems, vol. 28, no. 4, pp. 243–268.

H. Lu, J. Han, and L. Feng (1998) “Stock Movement Prediction and N-Dimensional Inter-

Transactional Association Rules,” in Proc. of the ACM SIGMOD Workshop on

Research Issues on Data Mining and Knowledge Discovery, Seattle, WA, pp. 12:1–

12:7.

H. Lu, R. Setiono, and H. Liu (1995) “NeuroRule: A Connectionist Approach to Data

Mining,” in Proc. of the 21st Int’l Conf. on Very Large Data Bases, Zurich,

Switzerland, pp. 478–489.

L. Liu, A. K. C. Wong, and Y. Wang (2004) “A Global Optimal Algorithm for Class-

Dependent Discretization of Continuous Data,” Intelligent Data Analysis, vol. 8, no. 2,

pp. 151–170.

J. Lockwood (1997) “Study Predicts ‘Epidemic’ Churn,” Wireless Week, Aug. 25, 1997.

D. J. C. MacKay (2003) Information Theory, Inference, and Learning Algorithms,

Cambridge, U.K.: Cambridge University Press.

230

S. C. Madeira and A. L. Oliveira (2004) “Biclustering Algorithms for Biological Data

Analysis: A Survey,” IEEE Trans. on Computational Biology and Bioinformatics, vol.

1, no. 1, pp. 24–45.

O. Maimon, A. Kandel, and M. Last (1999) “Information-Theoretic Fuzzy Approach to

Knowledge Discovery in Databases,” in R. Roy, T. Furuhashi, and P. K. Chawdhry

(Eds.), Advances in Soft Computing – Engineering Design and Manufacturing, London,

U.K.: Springer-Verlag, pp. 315–326.

H. Mannila, H. Toivonen, and A. I. Verkamo (1994) “Efficient Algorithms for Discovering

Association Rules,” in Proc. of the AAAI Workshop on Knowledge Discovery in

Databases, Seattle, WA, pp. 181–192.

H. Mannila, H. Toivonen, and A. I. Verkamo (1995) “Discovering Frequent Episodes in

Sequences,” in Proc. of the 1st Int’l Conf. on Knowledge Discovery and Data Mining,

Montreal, Canada, pp. 210–215.

C. J. Matheus, P. K. Chan, and G. Piatetsky-Shapiro (1993) “Systems for Knowledge

Discovery in Databases,” IEEE Trans. on Knowledge and Data Engineering, vol. 5, no.

6, pp. 903–913.

C. J. Matheus, G. Piatetsky-Shapiro, and D. McNeill (1996) “Selecting and Reporting What

is Interesting: The KEFIR Application to Healthcare Data,” in [Fayyad et al. 1996], pp.

495–515.

A. D. McAulay and J. C. Oh (1994) “Improving Learning of Genetic Rule-Based Classifier

Systems,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 152–159.

J. B. McQueen (1967) “Some Methods for Classification and Analysis of Multivariate

Observations,” in Proc. of the 5th Berkeley Symp. on Mathematical Statistics and

Probability, Berkeley, CA, pp. 281–297.

M. Mehta, R. Agrawal, and J. Rissanen (1996) “SLIQ: A Fast Scalable Classifier for Data

Mining,” in Proc. of the 5th Int’l Conf. on Extending Database Technology, Avignon,

France, pp. 18–32.

J. M. Mendel (1995) “Fuzzy Logic Systems for Engineering: A Tutorial,” Proc. of the IEEE,

vol. 83, no. 3, pp. 345–377.

Z. Michalewicz (1996) Genetic Algorithms + Data Structures = Evolution Programs, Third,

Revised and Extended Ed., New York, NY: Springer-Verlag.

R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac (1986) “The AQ15 Inductive Learning

System: An Overview and Experiments,” in Proc. of the Int’l Meeting on Advances in

231

Learning, Orsay, France.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor (Eds.) (1994) Machine Learning, Neural,

and Statistical Classification, New York, NY: Ellis Horwood.

S. Mitra, S. K. Pal, and P. Mitra (2002) “Data Mining in Soft Computing Framework: A

Survey,” IEEE Trans. on Neural Networks, vol. 13, no. 1, pp. 3–14.

M. C. Mozer, R. Wolniewicz, D. B. Grimes, E. Johnson, and H. Kaushansky (2000)

“Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless

Telecommunications Industry,” IEEE Trans. on Neural Networks, vol. 11, no. 3, pp.

690–696.

S. N. Mukherjee, P. Sykacek, S. J. Roberts, and S. J. Gurr (2003) “Gene Ranking Using

Bootstrapped P-Values,” SIGKDD Explorations, vol. 5, no. 2, pp. 16–22.

M. O. Noordewier, G. G. Towell, and J. W. Shavlik (1991) “Training Knowledge-Based

Neural Networks to Recognize Genes in DNA Sequences,” in R. P. Lippmann, J. E.

Moody, and D. S. Touretzky (Eds.), Advances in Neural Information Processing

Systems, vol. 3, San Mateo, CA: Morgan Kaufmann.

P. J. Pacini and B. Kosko (1992) “Adaptive Fuzzy Systems for Target Tracking,” Intelligent

Systems Engineering, vol. 1, no. 1, pp. 3–21.

N. R. Pal and J. C. Bezdek (1995) “On Cluster Validity for the Fuzzy c-Means Model,”

IEEE Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 370–379.

W. Pan (2002) “A Comparative Review of Statistical Methods for Discovering

Differentially Expressed Genes in Replicated Microarray Experiments,” Bioinformatics,

vol. 18, no. 4, pp. 546–554.

J. S. Park, M.-S. Chen, and P. S. Yu (1995a) “An Effective Hash-Based Algorithm for

Mining Association Rules,” in Proc. of the ACM SIGMOD Int’l Conf. on Management

of Data, San Jose, CA, pp. 175–186.

J. S. Park, M.-S. Chen, and P. S. Yu (1995b) “Efficient Parallel Data Mining for Association

Rules,” in Proc. of the 4th Int’l Conf. on Information and Knowledge Management,

Baltimore, MD, pp. 31–36.

S. Park, S. Kim, and W. W. Chu (2001) “Segment-Based Approach for Subsequence

Searches in Sequence Databases,” in Proc. of the 16th ACM Symp. on Applied

Computing, Las Vegas, NV, pp. 248–252.

A. Paterson and T. B. Niblett (1982) ACLS Manual, Edinburgh: Intelligent Terminals Ltd.

232

W. Pedrycz (2002) “Collaborative Fuzzy Clustering,” Pattern Recognition Letters, vol. 23,

pp. 1675–1686.

W. Pedrycz and F. Gomide (1998) An Introduction to Fuzzy Sets: Analysis and Design,

Cambridge, MA: The MIT Press.

G. Piatetsky-Shapiro (1991) “Discovery, Analysis, and Presentation of Strong Rules,” in

[Piatetsky-Shapiro and Frawley 1991], pp. 229–248.

G. Piatetsky-Shapiro and W. J. Frawley (Eds.) (1991) Knowledge Discovery in Databases,

Menlo Park, CA; Cambridge, MA: AAAI/MIT Press.

G. Piatetsky-Shapiro, T. Khabaza, and S. Ramaswamy (2003) “Capturing Best Practice for

Microarray Gene Expression Data Analysis,” in Proc. of the 9th ACM SIGKDD Int’l

Conf. on Knowledge Discovery and Data Mining, Washington, DC, pp. 407–415.

B. Postlethwaite (1991) “Empirical Comparison of Methods of Fuzzy Relational

Identification,” IEE Proc. on Control Theory and Applications, vol. 138, no. 3, pp.

199–206.

K. B. Pratt and E. Fink (2002) “Search for Patterns in Compressed Time Series,” Int’l J. of

Image and Graphics, vol. 2, no. 1, pp. 86–106.

A. L. Prodromidis, P. K. Chan, and S. J. Stolfo (2000) “Met-Learning in Distributed Data

Mining Systems: Issues and Approaches,” in H. Kargupta and P. Chan (Eds.),

Advances in Distributed and Parallel Knowledge Discovery, Menlo Park, CA;

Cambridge, MA: AAAI/MIT Press, pp. 79–112.

J. R. Quinlan (1986) “Induction of Decision Trees,” Machine Learning, vol. 1, pp. 81–106.

J. R. Quinlan (1987a) “Simplifying Decision Trees,” Int’l J. of Man-Machine Studies, vol.

27, pp. 221–234.

J. R. Quinlan (1987b) “Decision Trees as Probabilistic Classifiers,” in Proc. of the 4th Int’l

Workshop on Machine Learning, Irvine, CA, pp. 31–37.

J. R. Quinlan (1993) C4.5: Programs for Machine Learning, San Mateo, CA: Morgan

Kaufmann.

A.-P. N. Refenes, A. N. Burgess, and Y. Bentz (1997) “Neural Networks in Financial

Engineering: A Study in Methodology,” IEEE Trans. on Neural Networks, vol. 8, no. 6,

pp. 1222–1267.

J. Ribeiro, K. Kaufman, and L. Kerschberg (1995) “Knowledge Discovery from Multiple

Databases,” in Proc. of the 1st Int’l Conf. on Knowledge Discovery and Data Mining,

233

Montreal, Canada, pp. 240–245.

J. F. Roddick and M. Spiliopoulou (2002) “A Survey of Temporal Knowledge Discovery

Paradigms and Methods,” IEEE Trans. on Knowledge and Data Engineering, vol. 14,

no. 4, pp. 750–767.

D. Rumelhart, G. Hinton, and J. Williams (1986) “Learning Internal Representations by

Error Propagation,” in D. Rumelhart and J. McClelland (Eds.), Parallel Distributed

Processing, Cambridge, MA: MIT Press, pp. 318–362.

E. H. Ruspini (1969) “A New Approach to Fuzzy Clustering,” Information and Control, vol.

15, pp. 22–32.

A. Savasere, E. Omiecinski, and S. Navathe (1995) “An Efficient Algorithm for Mining

Association Rules in Large Databases,” in Proc. of the 21st Int’l Conf. on Very Large

Data Bases, Zurich, Switzerland, pp. 432–444.

G. Shafer (1976) Mathematical Theory of Evidence, Princeton, NJ: Princeton University

Press.

J. Shafer, R. Agrawal, and M. Mehta (1996) “SPRINT: A Scalable Parallel Classifier for

Data Mining,” in Proc. of the 22nd Int’l Conf. on Very Large Data Bases, Mumbai

(Bombay), India, pp. 544–555.

A. Silberschatz, M. Stonebraker, and J. Ullman (1996) “Database Research: Achievements

and Opportunities into the 21st Century,” SIGMOD Record, vol. 25, no. 1, pp. 52–63.

A. Silberschatz and A. Tuzhilin (1996) “What Makes Patterns Interesting in Knowledge

Discovery Systems,” IEEE Trans. on Knowledge and Data Engineering, vol. 8, no. 6,

pp. 970–974.

R. Simon (2003) “Supervised Analysis When the Number of Candidate Features (p) Greatly

Exceeds the Number of Cases (n),” SIGKDD Explorations, vol. 5, no. 2, pp. 31–36.

S. Smith (1983) “Flexible Learning of Problem Solving Heuristics through Adaptive

Search,” in Proc. of the 8th Int’l Joint Conf. on Artificial Intelligence, Karlsruhe,

Germany, pp. 422–425.

J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes (1988)

“Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus,” in

Proc. of the Symp. on Computer Applications and Medical Cares, pp. 261–265.

P. Smyth and R. M. Goodman (1992) “An Information Theoretic Approach to Rule

Induction from Databases,” IEEE Trans. on Knowledge and Data Engineering, vol. 4,

no. 4, pp. 301–216.

234

M. Sniedovich (1992) Dynamic Programming, New York, NY: Marcel Dekker, Inc.

M. Spiliopoulou and J. F. Roddick (2000) “Higher Order Mining: Modelling and Mining the

Results of Knowledge Discovery,” in N. F. F. Ebecken and C. A. Brebbia (Eds.), Data

Mining II – Proc. of the 2nd Int’l Conf. on Data Mining Methods and Databases for

Engineering, Finance, and Other Fields, Southampton, U.K.: WIT Press, pp. 309–320.

R. Srikant and R. Agrawal (1995) “Mining Generalized Association Rules,” in Proc. of the

21st Int’l Conf. on Very Large Data Bases, Zurich, Switzerland, pp. 407–419.

R. Srikant and R. Agrawal (1996) “Mining Quantitative Association Rules in Large

Relational Tables,” in Proc. of the ACM SIGMOD Int’l Conf. on Management of Data,

Montreal, Canada, pp. 1–12.

A. Srivastava, E.-H. Han, V. Kumar, and V. Singh (1998) “Parallel Formulations of

Decision-Tree Classification Algorithms,” in Proc. of the Int’l Conf. on Parallel

Processing, Minneapolis, MN, pp. 237–244.

Z. Struzik and A. Siebes (1999) “The Haar Wavelet Transform in the Time Series Similarity

Paradigm,” in Proc. of the 3rd European Conf. on Principles of Data Mining and

Knowledge Discovery, Prague, Czech Republic, pp. 12–22.

J. Sun and X.-Z. Wang (2005) “An Initial Comparison on Noise Resisting between Crisp

and Fuzzy Decision Trees,” in Proc. of the 4th Int’l Conf. on Machine Learning and

Cybernetics, Guangzhou, China, pp. 2545–2550.

P. Tamayo, D. Solni, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T.

R. Golub (1999) “Interpreting Patterns of Gene Expression with Self-Organizing Maps:

Methods and Application to Hematopoietic Differentiation,” Proc. of the National

Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2907–2912.

R. Tanese (1987) “Parallel Genetic Algorithm for a Hypercube,” in Proc. of the 2nd Int’l

Conf. on Genetic Algorithms, pp. 177–183.

J. D. Ullman (1988) Principles of Database and Knowledge-Base Systems, vol. 1, Rockville,

MD: Computer Science Press.

R. E. Walpole and R. H. Myers (1993) Probability and Statistics for Engineers and

Scientists, 5th Ed., Upper Saddle River, NJ: Prentice-Hall.

C. Wang and X. S. Wang (2000) “Supporting Content-Based Searches on Time Series via

Approximation,” in Proc. of the 12th Int’l Conf. on Scientific and Statistical Database

Management, Berlin, Germany, pp. 69–81.

C. C. Wang and A. K. C. Wong (1979) “Classification of Discrete-Valued Data with

235

Feature Space Transformation,” IEEE Trans. on Automatic Control, vol. AC-24, no. 3,

pp. 434–437.

A. S. Weigend, B. A. Huberman, and D. E. Rumelhart (1990) “Predicting the Future: A

Connectionist Approach,” Int’l J. of Neural Systems, vol. 1, pp. 193–209.

P. J. Werbos (1974) “Beyond Regression: New Tools for Predicting and Analysis in the

Behavioral Sciences,” Ph.D. Thesis, Harvard University, Cambridge, MA.

I. H. Witten and E. Frank (2005) Data Mining: Practical Machine Learning Tools and

Techniques, 2nd Ed., San Francisco, CA: Morgan Kaufmann.

A. K. C. Wong and D. K. Y. Chiu (1987) “Synthesizing Statistical Knowledge from

Incomplete Mixed-Mode Data,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. PAMI-9, no. 6, pp. 796–805.

A. K. C. Wong and T. S. Liu (1975) “Typicality, Diversity, and Feature Patterns of an

Ensemble,” IEEE Trans. on Computers, vol. c-24, no. 2, pp. 158–181.

A. K. C. Wong, T. S. Liu, and C. C. Wang (1976) “Statistical Analysis of Residue

Variability in Cytochrome C,” Journal of Molecular Biology, vol. 102, pp. 287–295.

A. K. C. Wong and Y. Wang (1997) “High-Order Pattern Discovery from Discrete-Valued

Data,” IEEE Trans. on Knowledge and Data Engineering, vol. 9, no. 6, pp. 877–893.

A. K. C. Wong and Y. Wang (2003) “Pattern Discovery: A Data Driven Approach to

Decision Support,” IEEE Trans. on Systems, Man, and Cybernetics – Part C:

Applications and Reviews, vol. 33, no. 1, pp. 114–124.

S. Wrobel (1997) “An Algorithm for Multi-Relational Discovery of Subgroups,” in Proc. of

the 1st European Symp. on Principles of Data Mining and Knowledge Discovery,

Trondheim, Norway, pp. 367–375.

X. Wu (1995) Knowledge Acquisition from Data Bases, Norwood, NJ: Ablex.

X. Wu (1999) “Fuzzy Interpretation of Discretized Intervals,” IEEE Trans. on Fuzzy

Systems, vol. 7, no. 6, pp. 753–759.

X. Wu and S. Zhang (2003) “Synthesizing High-Frequency Rules from Different Data

Sources,” IEEE Trans. on Knowledge and Data Engineering, vol. 15, no. 2, pp. 353–

367, 2003.

H. Xie, Y. C. Lee, R. L. Mahajan, and R. Su (1994) “Process Optimization Using a Fuzzy

Logic Response Surface Method,” IEEE Trans. on Components, Packaging, and

Manufacturing Technology – Part A, vol. 17, no. 2, pp. 202–211.

236

E. P. Xing, M. I. Jordan, and R. M. Karp (2001) “Feature Selection for High-Dimensional

Genomic Microarray Data,” in Proc. of the 18th Int’l Conf. on Machine Learning,

Williamstown, MA, pp. 601–608.

R. R. Yager (1991) “On Linguistic Summaries of Data,” in [Piatetsky-Shapiro and Frawley

1991], pp. 347–363.

C.-H. Yang and K. E. Nygard (1993) “The Effects of Initial Population in Genetic Search

for Time Constrained Traveling Salesman Problems,” in Proc. of the ACM Conf. on

Computer Science, Indianapolis, IN, pp. 378–383.

J. Yao and H. Liu (1997) “Searching Multiple Databases for Interesting Complexes,” in

Proc. of the 1st Pacific-Asia Conf. on Knowledge Discovery and Data Mining,

Singapore, pp. 198–210.

J. Yen (1999) “Fuzzy Logic – A Modern Perspective,” IEEE Trans. on Knowledge and

Data Engineering, vol. 11, no. 1, pp. 153–165.

J. Yen and R. Langari (1999) Fuzzy Logic: Intelligence, Control, and Information, Upper

Saddle River, NJ: Prentice-Hall.

L. Yu and H. Liu (2004) “Redundancy Based Feature Selection for Microarray Data,” in

Proc. of the 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,

Seattle, WA, pp. 737–742.

M. J. Zaki, C.-T. Ho, and R. Agrawal (1999) “Parallel Classification for Data Mining on

Shared-Memory Multiprocessors,” in Proc. of the 15th Int’l Conf. on Data Engineering,

Sydney, Australia, pp. 198–205.

T. Zhang, R. Ramakrishnan, and M. Livny (1996) “BIRCH: An Efficient Data Clustering

Method for Very Large Databases,” in Proc. of the ACM SIGMOD Int’l Conf. on

Management of Data, Montreal, Canada, pp. 103–114.

S. Zhang, X. Wu, and C. Zhang (2003) “Multi-Database Mining,” IEEE Computational

Intelligence Bulletin, vol. 2, no. 1, pp. 5–13.

H. Zhang, C. Y. Yu, B. Singer, and M. Xiong (2001) “Recursive Partitioning for Tumor

Classification with Gene Expression Microarray Data,” Proc. of the National Academy

of Sciences of the United States of America, vol. 98, no. 12, pp. 6730–6735.

S. Zhang, C. Zhang, and X. Wu (2004) Knowledge Discovery in Multiple Databases,

London, U.K.: Springer-Verlag.

N. Zhong, Y. Yao, and S. Ohsuga (1999) “Peculiarity Oriented Multi-Database Mining,” in

Proc. of the 3rd European Conf. on Principles of Data Mining and Knowledge

237

Discovery, Prague, Czech Republic, pp. 136–146.

	theses_copyright_undertaking
	b19579317

