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Abstract 
 

We propose to mine a set of rules from a collection of rule sets, each rule being discovered 

in a data set using a data mining algorithm.  These meta-rules, rules about rules, represent 

the kind of knowledge that few existing data mining algorithms have been developed to 

mine for.  In this study, we define problems in discovering the underlying regularities, 

differences, and changes hidden in rule sets and propose a new approach, meta-mining, 

which mines previous data mining results to discover these underlying regularities, 

differences, and changes. 

The purpose of meta-mining for regularities and for differences in rule sets is to 

discover association relationships.  Meta-mining for regularities seeks to discover 

association relationships supported by a sufficiently large number of rules contained in just 

a few records in many data sets.  Meta-mining for differences seeks to discover association 

relationships supported by a sufficiently small number of rules contained in many records in 

a small number of data sets.  It would not be possible to distinguish between these two kinds 

of association relationships if the data sets were concatenated into a single data set.  The 

associations that a large number of data sets have in common can be discovered in the form 

of rules.  Their rule sets will contain a correspondingly large number of rules that support 

the associations.  As these rules govern regular characteristics in the data sets, we refer to 

the rules for these rules as regular meta-rules.  In contrast, the rules for some associations 

will be found in just a few data sets and their rule sets will contain a correspondingly 

smaller number of rules that support the associations.  As these associations contribute to 

distinguishing or differentiating the data sets which contain them, we refer to the rules for 

these rules as differential meta-rules. 

Meta-mining can also be used to reveal changes in rule sets and this information can be 

used to discover change meta-rules, regularities governing how rules change over time.  

Change meta-rules can be used to predict how the rules will change in the future, freeing 

users from dependence on the historical data, allowing better planning, and making it 

possible to obviate or delay undesirable change. 

A meta-mining approach to the discovery of regular, differential, and change meta-

rules should be able to 1) automatically generate fuzzy sets from data; 2) use linguistic 

variables and linguistic terms to represent regularities, differences, and changes; 3) exploit 

the scalability of parallel computer systems; 4) group and select a subset of attributes; and 5) 
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enable the mining of association relationships involving attributes that were not originally 

contained in the data. 

To generate fuzzy sets directly from data, we present a new fuzzy partitioning method 

to maximize the class-attribute interdependence, thereby improving the classification results.  

This method uses an information-theoretic measure to evaluate the interdependence between 

the class and an attribute. 

So that association relationships can be represented using easily-understood linguistic 

variables and terms, we propose new algorithms for mining fuzzy rules and meta-rules.  

These utilize an objective measure to discover interesting associations among attributes 

without the need for a user to supply any thresholds.  We also extend these new algorithms 

to exploit the scalability of parallel systems so as to handle very large data sets and rule sets.  

The parallel algorithms produce the same results as their serial counterparts in a fraction of 

the time. 

We also define the problem of attribute clustering and introduce a methodology for 

solving it.  Our proposed method groups interdependent attributes into clusters by 

optimizing a criterion function derived from an information measure that reflects the 

interdependence between attributes.  The partitioning of a relational table into attribute 

subgroups allows a small number of attributes within or across the groups to be selected for 

analysis.  Clustering attributes reduces the search dimension of a mining algorithm. 

To allow the discovery of association relationships involving attributes that are not 

originally contained in the data, we introduce the concept of using transformation functions 

and propose a formal approach to this problem.  This approach can also handle the union of 

relational and transactional data stored in a relational database. 

In this study, we also tested our proposed techniques with extensive experiments on 

many synthetic and real-world data sets.  The results show that they are very effective in 

mining not just rules from data sets, but also meta-rules from rule sets. 
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Chapter 1 

Introduction 
 

Data mining is concerned with the nontrivial extraction of implicit, previously unknown, 

and potentially useful information from data [Frawley, Piatetsky-Shapiro, and Matheus 

1991].  It involves the search for patterns of interest in a particular representational form or 

in a set of such representations (e.g., decision trees, association rules) [Fayyad, Piatetsky-

Shapiro, and Smyth 1996]. 

Data mining is also an important step in what is called knowledge discovery in 

databases (KDD) [Fayyad, Piatetsky-Shapiro, and Smyth 1996] and, indeed, many 

researchers use the term data mining to mean KDD (e.g., [Agrawal et al. 1996; Han et al. 

1996; Imielinski, Virmani, and Abdulghani 1996; Silberschatz, Stonebraker, and Ullman 

1996]).  In this thesis, we use data mining as a synonym for KDD. 

To quote from [Matheus, Chan, and Piatetsky-Shapiro 1993], “the grand challenge of 

data mining is to collectively handle the problems imposed by the nature of real-world 

databases, which tend to be dynamic, incomplete, redundant, noisy, sparse, and very large.”  

Many interesting studies of data mining have been carried out, drawing upon methods, 

algorithms, and techniques from fields as diverse as machine learning, pattern recognition, 

database systems, statistics, artificial intelligence, knowledge acquisition, and data 

visualization (see, e.g., [Fayyad et al. 1996; Piatetsky-Shapiro and Frawley 1991]). 

Data mining techniques can be classified according to the kind of knowledge they mine 

for.  The mining of association rules aims at discovering interesting relationships or 

associations among different attribute values [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and 

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995, 

1996].  A Boolean association rule involves binary attributes; a generalized association rule 

involves attributes that are hierarchically related; a quantitative association rule involves 

attributes that can take on quantitative or categorical values.  An example of an association 

rule is “90% of transactions that contain bread also contain butter; 3% of all transactions 

contain both of these items.”  The 90% is referred to as the confidence and the 3%, the 

support, of the rule.  The discovered association rules can be used later for human 

examination and machine inference, e.g., classification [Liu, Hsu, and Ma 1998]. 



 

2 

Classification is another important topic in data mining research [Agrawal et al. 1992; 

Agrawal, Imielinski, and Swami 1993a; Lu, Setiono, and Liu 1995; Mehta, Agrawal, and 

Rissanen 1996; Shafer, Agrawal, and Mehta 1996].  Classification involves finding a 

classification model or a classifier which can classify data records into different predefined 

classes.  This requires a set of records to be used in training which are classified by 

reference to an attribute which allows records in the training set to be classified by domain 

experts.  If a data mining technique is a good one, it should be possible to construct a 

classifier that can for classify records using other attribute values not originally in the 

training set.  The classification problem has been studied extensively in the area of 

supervised learning by machine learning and pattern recognition researchers and various 

techniques have been proposed to solve it [Michie, Spiegelhalter, and Taylor 1994]. 

Clustering is the process of grouping a set of records into clusters [Bradley, Fayyad, 

and Reina 1998; Cheeseman and Stutz 1996; Ganti et al. 1999b; Zhang, Ramakrishnan, and 

Livny 1996].  Unlike in classification, the class label of each record is not known.  Data 

clusters can be discovered from a set of records based on their attribute values by 

maximizing the intraclass and minimizing the interclass similarities.  Common features of 

data records in the same cluster can then be identified and used to derive a set of rules which 

serves as a description of that cluster [Jain, Murty, and Flynn 1999]. 

Regardless of whether a data mining algorithm is developed for association rule mining, 

classification, or clustering, its application to a data set typically results in a set of 

production (if-then) rules [Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 

1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Bradley, Fayyad, and Reina 

1998; Cheeseman and Stutz 1996; Cheung et al. 1996a; Ganti et al. 1999b; Han and Fu 

1995; Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and 

Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; 

Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and 

Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996].  It is for this reason that we 

focus on the mining tasks in rule sets. 

1.1 The Problem 
This thesis contributes to the problem definitions of mining the underlying regularities, 

differences, and changes hidden in rule sets and the introduction of a new approach to 

dealing with the problems. 

Given a collection of rule sets discovered by existing data mining techniques (e.g., 
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[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 

1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and 

Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, 

Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and 

Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996]), we 

propose a meta-mining approach to discovering a set of rules in the rule sets.  These rules 

are called meta-rules because they are rules about rules. 

The meta-mining approach, which is composed of a collection of techniques, enables 

the discovery of patterns that existing data mining techniques have not been developed to 

mine for.  These patterns are regularities, differences, and changes in the underlying patterns 

hidden in databases.  Sections 1.1.1–1.1.3 describes these features more fully and explains 

the importance of mining them.  Section 1.1.4 presents the proposed meta-mining 

techniques and, again, explains their importance. 

1.1.1 Mining Regularities in Rule Sets 

Meta-mining is able to discover the underlying regularities hidden in rule sets.  Let us take 

as an example an interstate or international company.  It consists of a number of offices at 

different geographical locations and each office (or group of offices) maintains its own 

database [Bright, Hurson, and Pakzad 1992].  In general, local decisions are made at the 

branches of the international company, whereas global decisions are made at the head office 

and the branches contribute to these decisions in various ways.  To facilitate effective 

decision making in such an environment, many international companies need to mine 

multiple data sets throughout their branches [Zhang, Wu, and Zhang 2003; Zhang, Zhang, 

and Wu 2004].  To do so, one can extract relevant data from multiple data sets to amass a 

single data set and apply existing data mining techniques (e.g., [Agrawal et al. 1992; 

Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and 

Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 

1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and 

Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; 

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, 

Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and 

Livny 1996]) to the single data set [Liu, Lu, and Yao 1998; Ribeiro, Kaufman, and 

Kerschberg 1995; Wrobel 1997; Yao and Liu 1997; Zhong, Yao, and Ohsuga 1999]. 

However, this approach is unable to distinguish the relationships supported by a 

number of tuples in many data sets from those supported by many tuples in only a few data 
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sets.  For example, a data mining algorithm may discover a rule stating that “if a customer is 

married and middle-aged, then he/she gets a home mortgage.”  This rule may be supported 

by many tuples in the data sets in only one or two branches.  The decisions made by the 

head office based on this rule may therefore be good for these one or two branches; but they 

may not be beneficial or may even be harmful to the company as a whole. 

To discover the regularities in common in the branches’ data sets, we proposed to use a 

meta-mining approach.  Given the rule sets discovered in the data sets, it mines a set of 

meta-rules from them.  These meta-rules represent the regularities hidden in the rule sets, 

which in turn reflect the regularities embedded in the data sets.  Based on the meta-rules 

discovered, the head office can better make global decisions that are beneficial to the whole 

company. 

Realistically, the meta-mining of regularities in rule sets is not limited to use in 

international companies.  Any public or private organization that maintains a collection of 

data sets or a data set with implicit groupings in terms of geographical locations, time 

periods, etc. can benefit from meta-mining.  For example, meta-mining techniques can be 

applied to the rule sets discovered from the data sets collected in different outlets operated 

by a supermarket chain, different shops operated by an apparel retailer, or different post 

offices or public libraries operated by a government. 

Example 1.1 shows how meta-rules can represent the underlying regularities hidden in 

rule sets and how an organization can use the discovered relationships to better make 

decisions. 

 

Example 1.1 Let us consider a supermarket chain, which operates five outlets, S1, …, S5, 

at different geographical locations.  Let us suppose that rule sets R1, …, R5 contain the 

association rules1 discovered in the transaction data sets collected in outlets S1, …, S5, 

respectively.  The rule sets are given in the following: 

 

R1: {i1, i2} ⇒ {i3} 

 {i4} ⇒ {i1} 

 

R2: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 
                                                      
1 An association rule is a production (if-then) rule associated with support and confidence as its 

interestingness measures. 
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 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 

 

R4: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 

 

R5: {i1, i2} ⇒ {i3}, 

 

where i1, …, i5 are items. 

Rule {i1, i2} ⇒ {i3} is found in four out of the five rule sets.  This rule states that “if a 

customer purchases items i1 and i2, then he/she also purchases i3.”  It holds in all the outlets 

except S3.  A meta-rule discovered in the rule sets would be: 

 

{i1, i2} ⇒ {i3}. 

 

This meta-rule states that “in general, if a customer purchases i1 and i2, then he/she also 

purchases i3.”  The difference between the rule and the meta-rule is that the former 

represents a relationship that holds in only an outlet and provides no information about 

whether it holds in any other outlets, whereas the latter represents a relationship that holds in 

the outlets in general.  Based on this meta-rule, the supermarket chain may like to bundle i1 

and i2 together in its outlets to increase the sales of i3.  Although this decision would not 

affect the revenue of outlet S3, it may significantly increase the revenue of the supermarket 

chain as a whole. 

Another meta-rule discovered in the rule sets would be: 

 

{i2, i3} ⇒ {i4}. 

 

It states that “in general, if a customer purchases i2 and i3, then he/she also purchases i4.”  

This meta-rule is supported by the following rules in R2, R3, and R4: 

 

R2: {i2, i3, i5} ⇒ {i4} 

 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 
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R4: {i2, i3, i5} ⇒ {i4}. 

 

Although rule {i2, i3} ⇒ {i4} is not found in any of the five rule sets, such a relationship can 

be revealed by mining them for meta-rules.  

1.1.2 Mining Differences in Rule Sets 

Discovered meta-rules can also represent the differences in rules sets.  A meta-rule is 

differential if it is supported by only a few rule sets, representing a relationship that holds in 

those few rule sets but not in the others.  It therefore distinguishes these rule sets from the 

others.  In other words, the meta-rule represents one of the distinctive characteristics of 

these rule sets and in turn reflects the distinctive characteristics of the corresponding data 

sets. 

For example, let us consider an apparel retailer operating a number of shops at different 

geographical locations.  To maintain its brand, the retailer has each shop supply a basic 

range of apparel.  The differential meta-rules are useful for the retailer as it allows the 

retailer to identify the differences in the apparel sold in its shops while each shop, in 

addition to providing the basic clothing range, caters to the preferences of its own customers. 

Example 1.2 shows how meta-rules can represent the differences in rule sets and how 

an organization can make use of the discovered relationships. 

 

Example 1.2 Let us consider the supermarket chain given in Example 1.1.  The following 

differential meta-rule would be mined from the rule sets: 

 

{i4} ⇒ {i1}. 

 

It is supported by R1 only and represents a relationship that “in an exceptional manner, if a 

customer purchases i4, then he/she also purchases i1.”  This buying habit differentiates 

between S1 and all the other outlets. 

Based on this meta-rule, the supermarket chain may like to stop selling i4 except in 

outlet S1, selling some other item in its place.  The rationale for this decision would be that 

the sales of i4 affect the sales of i1 in S1 but in no other outlet.  This decision would not 

reduce the revenues of S1, and would improve the revenues of all the other outlets, assuming 

that the newly-offered items are more profitable than i4.  The revenue of the whole 
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supermarket chain may therefore be improved.  

1.1.3 Mining Changes in Rule Sets 

The ability to detect and adapt to changes is critical to the success of many individuals and 

business organizations as it allows decision makers to take the changes into consideration 

and even take advantage of the changes when they make decisions.  Knowing how 

circumstances will change enables a business organization to not only provide new products 

and services to satisfy the changing needs of its customers, but also to design corrective 

actions to prevent or delay undesirable changes. 

Existing data mining techniques (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and 

Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Bradley, 

Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 1996a; Ganti et al. 

1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, 

Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 

1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; 

Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996]) aim at producing 

accurate models of the real world in an efficient manner.  They are very useful for human 

users to better understand the problem domains and for prediction.  However, regardless of 

how accurately a model predicts, it can only predict based on historical data.  An approach 

to this data that does not take into account the information about change that is hidden in its 

patterns is not optimal, especially when the discovered models are used for classification.   

In this thesis, we also study the problem of mining changes in the context of production 

rules.  Given a rule associated with a sequence of interestingness measures (e.g., the 

Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence [Agrawal, 

Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared measure [Brin, 

Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the adjusted 

residual and weight of evidence [Chan and Wong 1990, 1991], etc.) in different time periods, 

we propose to mine a set of meta-rules to represent the regularities governing how a rule 

changes over time.  The change in the rule, in turn, reflects the change in the underlying 

characteristics hidden in the data.  Human users can use the discovered meta-rules to 

examine the rule and to predict how the rule will change. 

Example 1.3 illustrates the problem of mining changes in rule sets, showing how meta-

rules can represent the changes in the discovered rules. 

 

Example 1.3 Let us consider the association rules concerned with items i1, i2, i3, and i4 
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discovered in three consecutive time periods, t1, t2, and t3.  Assume that the association rule 

discovered in time period t1 is: 

 

r: {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t1 are support1(r) = 37.8% and confidence1(r) = 95.0%, 

respectively.  This association rule states that “if a customer purchases i1, i2, and i3, then 

he/she also purchases i4.”  A support of 37.8% for this rule means that 37.8% of records in 

the database being mined show that items i1, i2, i3, and i4 are purchased together, whereas a 

confidence of 95.0% means that 95.0% of the customers who purchased items i1, i2, and i3 

also bought i4. 

In time period t2, the association rule becomes: 

 

r': {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t2 are support2(r) = 34.9% and confidence2(r) = 94.8%, 

respectively. 

Then in time period t3, the association rule becomes: 

 

r": {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t3 are support3(r) = 28.4% and confidence3(r) = 94.5%, 

respectively. 

The support of the association rule decreases in the period from t1 to t2 and in the 

period from t2 to t3.  A meta-rule of support mined from these rules would be: 

 

Change in support in this period = Fairly decrease 

 ⇒ Change in support in next period = Highly decrease. 

 

This meta-rule of support states that “if the change in support in this period fairly decreases, 

then the change in support in next period will decrease significantly.”  The support of the 

association rule in tj can then be predicted given the support of this rule in tj – 1 and that in  

tj – 2. 

On the other hand, the confidence of the association rule is more or less the same in the 
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period from t1 to t2 and in the period from t2 to t3.  A meta-rule of confidence discovered in 

these rules would be: 

 

Change in confidence in this period = More or less the same 

 ⇒ Change in confidence in next period = More or less the same. 

 

It states that “if the change in confidence in this period is more or less the same, then the 

change in confidence in next period will be more or less the same.”  The confidence of the 

association rule in tj can then be predicted given the confidence of this rule in tj – 1 and that in 

tj – 2.  

1.2 An Overview of the Proposed Approach 
To mine meta-rules from rule sets effectively, a meta-mining approach should be able to 1) 

generate fuzzy sets from data automatically; 2) use linguistic variables and linguistic terms 

to represent the discovered regularities, differences, and changes; 3) exploit the scalability 

of parallel computer systems to mine meta-rules efficiently; 4) group and select a subset of 

attributes for meta-mining; and 5) enable the mining of meta-rules involving attributes that 

are not originally contained in the database.  This study proposes a meta-mining approach 

composed of a collection of techniques that satisfy these requirements.  These techniques 

are applicable to both the mining of meta-rules from rule sets and the mining of rules from 

data sets. 

1.2.1 Fuzzy Partitioning 

Many of the existing data mining algorithms (e.g., ID3 [Quinlan 1986], AQ15 [Michalski et 

al. 1986], ITRule [Smyth and Goodman 1992], CN2 [Clark and Niblett 1989], and CBA 

[Liu, Hsu, and Ma 1998]) can be applied only to discrete-valued data.  To deal with 

continuous or mixed continuous and discrete valued data, the domain of each continuous 

attribute is typically discretized into a finite number of intervals [Ching, Wong, and Chan 

1995; Chiu, Wong, and Cheung 1991; Dougherty, Kohavi, and Sahami 1995; Fayyad and 

Irani 1993; Kerber 1992; Kurgan and Cios 2001; Liu and Setiono 1997; Liu, Wong, and 

Wang 2004; Wong and Chiu 1987].  The discrete-valued and the discretized data can then 

be handled in a uniform fashion and rules can be mined from them.  Instead of using a 

discretization algorithm to preprocess continuous data, some data mining algorithms use 

built-in discretization mechanisms.  For example, when a continuous attribute is 

encountered in the data mining process, C4.5 [Quinlan 1993], CART [Breiman et al. 1984], 

and the association rule mining algorithm proposed in [Srikant and Agrawal 1996] discretize 
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it into two or more intervals so that their criterion functions are optimized.  Although they 

do not require continuous attributes to be discretized in advance, they discretize the 

attributes when they are mining rules. 

However, if too many data lie on the boundaries of the intervals due to the ambiguous 

or fuzzy nature of the attribute values near the boundary regions, discretization could result 

in very different discoveries in the data that could be both misleading and meaningless.  

Data mining algorithms therefore could not discover accurate models in the discretized data.  

To better handle continuous data, the use of fuzzy sets for data mining has recently been 

proposed in the literature [Mitra, Pal, and Mitra 2002].  This allows continuous data lying on 

the interval boundaries to partially belong to multiple intervals.  Its resilience to noise and 

affinity with human knowledge representation make the use of fuzzy sets a key component 

of many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 2003; Chan and Au 

1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and Pedrycz 1999; 

Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow 1998; Kacprzyk 

and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999; Yager 1991]).  

These systems typically require fuzzy sets to be predefined as input and they perform data 

mining based on these fuzzy sets. 

A fuzzy set is defined by a membership function, which maps objects in a domain of 

concern to their membership values in the fuzzy set.  It is associated with a linguistic term, 

which allows human users both to easily express their knowledge and to comprehend the 

expressed knowledge [Pedrycz and Gomide 1998; Yen and Langari 1999].  Since 

membership functions can profoundly affect the performance of fuzzy models, the 

determination of membership functions or fuzzy partitioning is an important problem in 

fuzzy data mining.  A membership function can be either determined by human experts or 

generated directly from data.  A weakness of having human experts provide input is that in 

most situations it is difficult for them to express or formalize their knowledge and 

experience [Buchanan et al. 1983; Johnson-Laird 1989].  It is for this reason that in this 

study we propose a new method for constructing fuzzy partitions directly from data. 

1.2.2 Meta-Rule Mining Algorithms 

Based on the fuzzy sets generated, we propose to use linguistic variables and linguistic 

terms to represent the underlying regularities, differences, and changes hidden in the rule 

sets.  The use of fuzzy set based techniques not only better handles the noise embedded in 

the data, but because of the affinity of fuzzy sets with human knowledge representation also 

enables human users to better comprehend the discovered meta-rules [Au and Chan 1998, 
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1999, 2001, 2003; Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 

2003; Hirota and Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 

2001; Janikow 1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, 

and Last 1999; Yager 1991].  In this study, we propose two new algorithms for handling 

fuzzy data and for mining meta-rules.  These algorithms use linguistic variables and 

linguistic terms to represent the discovered regularities, differences, and changes. 

1.2.3 Parallel Meta-Rule Mining Algorithms 

Data mining techniques may generate a surplus of patterns and, as a result, very large rule 

sets [Frawley, Piatetsky-Shapiro, and Matheus 1991; Klemettinen et al. 1994; Matheus, 

Piatetsky-Shapiro, and McNeill 1996; Piatetsky-Shapiro 1991; Silberschatz and Tuzhilin 

1996].  To efficiently mine meta-rules from very large rule sets, we propose to exploit the 

scalability of parallel computer systems.  We enhance the proposed meta-mining algorithms 

into distributed ones to take advantage of the scalability of parallel systems. 

1.2.4 Attribute Clustering 

Given a relational table, a conventional clustering algorithm groups tuples, each of which is 

characterized by a set of attributes, into clusters based on similarity [Jain, Murty, and Flynn 

1999].  Intuitively, tuples in a cluster are more similar to each other than those belonging to 

different clusters.  It has been shown that clustering is very useful in many data mining 

applications (e.g., [Fayyad et al. 1996; Piatetsky-Shapiro and Frawley 1991]). 

When applied to data sets such as gene expression data that are “wide” and “shallow,” 

conventional clustering algorithms often encounter the problem that data sets usually 

contain a huge number of attributes (genes) and a small number of tuples (gene expression 

profiles).  This often compromises the performance of conventional clustering algorithms. 

Euclidean distance and Pearson’s correlation coefficient are widely used as the distance 

measure for clustering [Jiang, Tang, and Zhang 2004].  However, when Euclidean distance 

is applied to the measurement of the similarity between genes, it does not effectively reflect 

functional similarities such as positive and negative correlations, interdependency or 

closeness in values.  In fact, Euclidean distance accounts only for the last.  In other words, 

the primary interest of the overall shapes of genes [Jiang, Tang, and Zhang 2004] is not well 

accounted for.  Pearson’s correlation coefficient has been proposed for dealing with this but 

an empirical study [Heyer, Kruglyak, and Yooseph 1999] has shown that Pearson’s 

correlation coefficient is not robust to outliers and may assign a high similarity score to a 

pair of dissimilar genes. 
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Having so many attributes (genes) relative to so few tuples (samples) is also likely to 

result in the discovery of irrelevant patterns (i.e., gene combinations which correlate with a 

target variable purely by chance) [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].  A 

useful technique for dealing with this is to select a small number of the most promising 

genes and use them solely to build models [Piatetsky-Shapiro, Khabaza, and Ramaswamy 

2003].  To select genes, the t-value is widely used [Piatetsky-Shapiro, Khabaza, and 

Ramaswamy 2003].  It is important to note that the t-value can only be used when the 

samples are pre-classified.  Without class information, it cannot be used for gene selection. 

In this study, we present a methodology for grouping attributes that are interdependent 

or correlated.  We refer to such a process as attribute clustering.  Attribute clustering is 

based on the observation that attributes in a cluster are more correlated with each other than 

are attributes in different clusters.  Attribute clustering allows the reduction of the search 

dimension of a data mining or meta-mining algorithm, facilitating the search for interesting 

relationships or the construction of models in a tightly correlated subset of attributes and 

obviating the need to search the entire attribute space.  After attributes are clustered, one can 

select a smaller number for further analysis. 

1.2.5 Data Transformation 

Data transformation is an essential step in KDD [Fayyad, Piatetsky-Shapiro, and Smyth 

1996].  If performed effectively, it is able to reduce the effective number of variables under 

consideration or to find invariant representations of the data [Fayyad, Piatetsky-Shapiro, and 

Smyth 1996].  However, existing data mining techniques (e.g., [Agrawal et al. 1992; 

Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal and 

Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; Cheung et al. 

1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; Lu, Setiono, and 

Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and Rissanen 1996; 

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Shafer, 

Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, and 

Livny 1996]) do not provide any explicit methodology for data transformation. 

Without using data transformation, it is not possible to find some useful and important 

features that represent the data.  It is also impossible to discover rules or meta-rules 

involving attributes not originally contained in the database.  For example, neither the rule 

“if a subscriber’s average monthly payment is less than fifty dollars and he/she makes a 

phone call during Christmas, then the phone call is over an hour in duration” nor the meta-

rule “in the past few years, if a subscriber’s average monthly payment is more than two 
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hundred dollars and he/she makes a phone call on Thanksgiving Day, then the phone call is 

less than half an hour in duration” can be discovered because the database does not contain 

explicitly the attribute values of “Christmas,” “Thanksgiving Day,” and “average monthly 

payment.”  These attributes are functions of the “date of call” and “monthly payment” and 

are not stored in the original data.  To mine rules and meta-rules of this kind, one must 

calculate the charge of each phone call based on the start time, the end time, and the charge 

per minute for that call period. 

Without data transformation, useful and important features may not be utilized in data 

mining and meta-mining tasks.  As a result, interesting and meaningful rules (meta-rules) 

may not be discovered even with the most effective data mining (meta-mining) algorithms.  

In this study, to enable the mining of interesting and meaningful rules and meta-rules, we 

propose a data transformation method.  This method also enables data mining in the union 

of relational and transaction data that existing techniques are not developed for [Au and 

Chan 2003; Chan and Au 2001]. 

1.3 Organization of the Thesis 
The rest of this thesis is organized as follows.  In Chapter 2, we survey related work.  In 

Chapter 3, we present the problem definitions of mining meta-rules of regularities, 

differences, and changes in rule sets.  We also give an overview of our proposed meta-

mining approach.  This approach is comprised of a collection of techniques, including a 

fuzzy partitioning algorithm, serial and parallel algorithms for mining meta-rules, a data 

transformation technique, and an attribute clustering method. 

In Chapter 4, we propose a new approach to data transformation in databases.  In 

addition to enabling the discovery of rules involving attributes that are not originally 

contained in the data, it also enables data mining in the union of relational and transaction 

data.  The proposed approach involves the use of transformation functions to transform the 

original data.  The application of transformation functions to the original data results in a set 

of transformed data.  Instead of mining the original data, we mine rules from the 

transformed data.  From the rule sets discovered in the transformed data, we can mine meta-

rules involving attributes not contained in the original data. 

In Chapter 5, we introduce a new fuzzy partitioning method to determine the 

membership functions of fuzzy sets directly from data.  In other words, this method forms a 

fuzzy partition of the input space automatically.  The proposed method uses an information-

theoretic measure, which evaluates the interdependence between the class and an attribute, 
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as the objective function for fuzzy partitioning.  It employs fractional programming 

(iterative dynamic programming) to find the global optimum of the measure.  Fuzzy 

partitioning enables our proposed meta-rule mining algorithms and other fuzzy data mining 

techniques to build fuzzy models or discover fuzzy rules based on the generated fuzzy sets 

instead of relying on user-specified ones.  To evaluate the effectiveness of the fuzzy 

partitioning method, several real-world data sets were used in our experiments.  The 

experimental results show that this method is very effective when compared to other well-

known discretization and fuzzy partitioning approaches. 

Chapter 6 defines the problem of attribute clustering and introduces a methodology for 

solving it.  Our proposed method groups interdependent attributes into clusters by 

optimizing a criterion function derived from an information measure that reflects the 

interdependence between attributes.  By applying our algorithm to a data set, meaningful 

clusters of attributes are discovered.  The grouping of attributes based on attribute 

interdependence within group helps to capture different aspects of association relationships 

in each group.  Significant attributes selected from each group then contain useful 

information for classification and identification.  To evaluate the performance of the 

proposed approach, we applied it to two well-known gene expression data sets and 

compared our results with those obtained by other methods.  Our experiments show that the 

proposed method is able to find the meaningful clusters of genes.  By selecting a subset of 

genes which have high multiple-interdependence with others within clusters, significant 

classification information can be obtained.  Thus a small pool of selected genes can be used 

to build classifiers with very high classification rates.  From the pool, gene expressions of 

different categories can be identified. 

In Chapter 7, we propose two new algorithms for mining meta-rules in rule sets.  One 

mines rules and meta-rules based on heuristics, whereas the other mines them using a 

genetic algorithm.  Both algorithms employ an objective interestingness measure to 

distinguish interesting association relationships from uninteresting ones.  They also utilize 

linguistic variables and linguistic terms to represent the discovered relationships.  To 

evaluate their performance, we applied them to several real-world data sets.  The 

experimental results of the data mining tasks show that they can build very accurate models. 

We then enhance these algorithms into distributed ones to exploit the scalability of 

parallel systems in Chapter 8.  The parallel algorithms divide a data set into several 

horizontal partitions and assign them to different sites in a distributed system.  Each site 

scans its database partition to obtain the number of tuples characterized by different attribute 

values and then exchanges the local counts with all the other sites to find the global counts.  
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Based on the global counts, the interestingness measures are computed and the sites are able 

to uncover interesting association relationships.  The parallel algorithms were implemented 

in an experimental test bed.  Their scalability was tested using a popular benchmarking data 

set and the results show that they have very good size-up, speedup, and scale-up 

performance. 

In Chapter 9, we apply our proposed meta-mining approach to several synthetic and 

real-world data sets for experimentation.  The results show that useful and meaningful 

regularities, differences, and changes can be discovered. 

Finally, we conclude this study with a summary in Chapter 10. 
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Chapter 2 

Related Work 
 

In this chapter, we survey the related work in the literature.  We first provide the state of the 

art of existing data mining techniques in Section 2.1.  We then give the work related to 

meta-mining and the mining of regularities, differences, and changes in the subsequent 

sections.  We also discuss the pros and cons of different approaches in this same chapter. 

2.1 Data Mining 

2.1.1 Association Rule Mining 

An example of an association rule is “90% of transactions that contain bread also contain 

butter; 3% of all transactions contain both of these items.”  The 90% is referred to as the 

confidence and the 3%, the support, of the rule.  More formally, an association rule is 

defined as follows [Agrawal, Imielinski, and Swami 1993b]. 

Let I = {i1, …, im} be a set of binary attributes called items and T be a set of 

transactions.  Each transaction t ∈ T is represented as a binary vector with t[k] = 1 if t 

contains item ik and t[k] = 0, otherwise, for k = 1, …, m.  A set of items is known as an 

itemset.  The support of an itemset, X ⊂ I, is defined as the percentage of tuples containing X.  

The itemset is frequent if its support is greater than or equal to the user-specified minimum 

support.  An association rule is defined as an implication of the form X ⇒ Y where X ⊂ I,  

Y ⊂ I, and X ∩ Y = ∅.  The rule X ⇒ Y holds in T with support defined as the percentage of 

tuples containing X and Y and confidence defined as the percentage of tuples containing Y 

given that they also contain X.  An association rule is interesting if its support and 

confidence are greater than or equal to the user-supplied minimum support and minimum 

confidence, respectively.  Since they are defined over binary data, association rules of such 

type are often referred to as Boolean association rules. 

Algorithms for mining Boolean association rules first find all frequent itemsets in a 

database and then generate association rules from these frequent itemsets.  Since the former 

step consumes most of the computational resources, current research focuses mainly on the 

speeding up of the process of discovering frequent itemsets (e.g., [Agrawal, Imielinski, and 

Swami 1993b; Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen, 

and Verkamo 1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]). 
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Apriori [Agrawal and Srikant 1994] is a well-known algorithm for mining Boolean 

association rules.  At each iteration, it generates a set of candidate itemsets from the 

frequent itemsets found at the previous iteration.  It then scans all the transactions to obtain 

the support counts of the candidate itemsets.  Subsequently, Apriori finds all the frequent 

itemsets for that iteration and proceeds to the next iteration.  To improve the computational 

efficiency of the algorithm, different techniques have been proposed.  For example, DHP 

[Park, Chen, and Yu 1995a] extends Apriori by using a hashing technique to prune away 

some candidate itemsets at the second iteration. 

Instead of scanning through a large database multiple times, another algorithm known 

as Partition [Savasere, Omiecinski, and Navathe 1995] accomplishes the mining of frequent 

itemsets in only two scans of the database.  Partition starts the data mining process by 

dividing the database into a number of non-overlapping partitions.  In the first database scan, 

each partition is scanned to find all frequent itemsets in that partition.  The frequent itemsets 

are then merged to generate all candidate itemsets.  In the second database scan, it counts 

the actual support of these itemsets and identifies the frequent itemsets. 

Unlike these techniques, a method called FP-growth [Han, Pei, and Yin 2000] has been 

proposed to mine frequent itemsets without candidate generation.  It first compresses the 

database into a FP-tree, but retains the itemset association information at the same time.  It 

then divides the FP-tree into a set of conditional databases, each of which is associated with 

one frequent item, and it mines each such database separately.  The FP-growth method 

transforms the problem of finding long frequent itemsets to looking for shorter ones 

recursively and then concatenating the suffix [Han, Pei, and Yin 2000].  It has been shown 

in [Han, Pei, and Yin 2000] that this method is about an order of magnitude faster than 

Apriori.  Although both FP-growth and Partition accomplish the mining of frequent itemsets 

in a small number of database scans (one in FP-growth and at most two in Partition), FP-

growth does not generate any candidate itemsets in the data mining process. 

Techniques for mining Boolean association rules have recently been extended to take 

is-a hierarchies (i.e., taxonomies) into consideration.  An example of a three-level is-a 

hierarchy is “professor is-a faculty member is-a staff.”  Association rules involving is-a 

hierarchies are known as multiple-level association rules [Han and Fu 1995] or generalized 

association rules [Srikant and Agrawal 1995].  In this thesis, we use the term generalized 

association rules to refer to both of their work.  The mining of these rules involves mining a 

database of transactions consisting of sets of items, each of which is defined at some level in 

a hierarchy.  In other words, the antecedent and the consequent of a generalized association 

rule can be some set of items and/or their ancestors in the corresponding hierarchies.  Like 
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Boolean association rules, generalized association rules are also defined over binary data.  

They are therefore rather restrictive in their applications in many different areas.  It is for 

this reason that a lot of recent efforts have been put into the mining of quantitative 

association rules [Srikant and Agrawal 1996]. 

Quantitative association rules are defined over quantitative (continuous) and 

categorical (discrete) attributes [Srikant and Agrawal 1996].  The statement “70% of tertiary 

educated people between age 25 and 30 are unmarried” is one such example.  To handle 

quantitative attributes, the domains of these attributes are discretized into intervals.  The 

discretization can be performed as a part of the algorithms (e.g., [Srikant and Agrawal 1996]) 

or as a preprocessing step before data mining (e.g., [Liu, Hsu, and Ma 1998]).  Both 

categorical and quantitative attributes can be handled in a uniform fashion as a set of 

<attribute, integer value> pairs by mapping the values of categorical attributes to a set of 

consecutive integers and by mapping the discretized intervals of quantitative attributes to 

consecutive integers, which preserve the order of the intervals [Srikant and Agrawal 1996].  

Instead of having just one field for each attribute, there is a need to use as many fields as the 

number of different attribute values.  For example, the value of a Boolean field 

corresponding to <attribute1, value1> would be “1” if attribute1 has value1 in the original 

record and “0,” otherwise [Srikant and Agrawal 1996].  After the mappings, the algorithms 

for mining Boolean association rules (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 

1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]) can be applied 

to the encoded data. 

Recently, the problem of mining association rules has further been extended in [Lu, 

Han, and Feng 1998] for the mining of n-dimensional inter-transaction association rules.  

An n-dimensional inter-transaction association rule is concerned with the association among 

items from different transaction records, each of which is characterized by n dimensional 

attributes (e.g., time, location, etc.).  Two algorithms, E-Apriori and EH-Apriori, which are 

extensions of Apriori, have been proposed in [Lu, Han, and Feng 1998] to deal with the 

huge search space. 

For association rule mining algorithms such as those described in [Agrawal, Imielinski, 

and Swami 1993b; Agrawal and Srikant 1994; Han and Fu 1995; Lu, Han, and Feng 1998; 

Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and Yu 

1995a; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1996] to determine if 

a Boolean, generalized, quantitative, or n-dimensional inter-transaction association rule is 

interesting, its support and confidence have to be greater than or equal to the user-supplied 
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thresholds (i.e., minimum support and minimum confidence).  A weakness of such approach 

is that many users do not have any idea what the thresholds should be.  If they are set too 

high, a user may miss some useful rules; but if they are set too low, the user may be 

overwhelmed by many irrelevant ones [Han and Kamber 2001; Hand, Mannila, and Smyth 

2001]. 

To ease the burden of having a user determine minimum support, an automatic 

mechanism is employed in WEKA [Witten and Frank 2005].  It sets the upper bound and 

the lower bound for minimum support to 1.0 and 0.1, respectively.  Apriori in WEKA starts 

with the upper bound and incrementally decreases minimum support in a pre-defined step, 

which is 0.05 by default.  It stops when a user-specified number of rules are generated or the 

lower bound is reached. 

2.1.1.1 Parallel Algorithms for Mining Association Rules 

Serial algorithms for mining association rules (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Srikant 1994; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 

1994; Park, Chen, and Yu 1995a; Savasere, Omiecinski, and Navathe 1995]) have been 

extended to take advantage of the scalability of parallel systems to handle very large 

databases. 

For mining association rules, three algorithms, namely, Count Distribution, Data 

Distribution, and Candidate Distribution, which adopt Apriori in a distributed-memory 

architecture, have been proposed in [Agrawal and Shafer 1996].  These algorithms divide a 

database into several horizontal partitions and assign them to different processors.  In the 

case of Count Distribution, every processor runs Apriori over its database partition with a 

modification that it exchanges the local support counts of candidate itemsets in its database 

partition with all the other processors to find the global support counts in the whole 

database and then identifies frequent itemsets based on the global support counts at each 

iteration. 

Data Distribution partitions candidate itemsets and assigns them to different processors 

in a round-robin fashion.  At each iteration, every processor broadcasts its database partition 

to all the other processors to find the global support counts of its candidate itemsets.  

Candidate Distribution starts the data mining process by employing Count Distribution or 

Data Distribution.  At certain iteration, it divides the candidate itemsets into several disjoint 

subsets and assigns different subsets to different processors.  At the same time, the database 

is repartitioned in such a way that each processor can find the (global) support counts of its 

candidate itemsets in its database partition independent of other processors.  To achieve this, 
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parts of the database may have to be replicated on several processors.  Each processor can 

then generate candidate itemsets and count the supports of these candidate itemsets 

independently at subsequent iterations. 

The experimental results presented in [Agrawal and Shafer 1996] show that the 

performance of Count Distribution is superior to Data Distribution and Candidate 

Distribution.  The broadcasting of database partitions involves high communication 

overhead.  Furthermore, having each processor to scan the entire database at each iteration 

makes Data Distribution perform relatively poorly when compared to Count Distribution.  

Candidate Distribution also performs less satisfactorily than Count Distribution because of 

the overhead of repartitioning the database and replicating parts of the database, which may 

be large, on several processors. 

In addition to these three algorithms, a number of parallel algorithms based on Apriori 

have also been described in the literature (e.g., [Cheung et al. 1996a; Han, Karypis, and 

Kumar 1997; Park, Chen, and Yu 1995; Shintani and Kitsuregawa 1996]).  They use 

different optimization techniques to improve the performance.  For example, Intelligent 

Data Distribution [Han, Karypis, and Kumar 1997] improves the performance of Data 

Distribution by employing a ring-based all-to-all broadcast to exchange database tuples, 

switching to Count Distribution when the total number of candidate itemsets falls below a 

threshold, and dividing candidate itemsets using a prefix-based partitioning.  Hybrid 

Distribution [Han, Karypis, and Kumar 1997] further improves the performance of 

Intelligent Data Distribution by combining it with Count Distribution.  It splits a system of 

multiple processors into several equal-sized groups, where each group is considered as a 

hypothetical processor.  Hybrid Distribution applies Count Distribution to the database 

among the hypothetical processors, whereas it uses Intelligent Data Distribution among the 

processors within each group.  At each iteration, Hybrid Distribution also dynamically 

adjusts the number of hypothetical processors. 

Furthermore, FDM [Cheung et al. 1996a] extends Count Distribution by adopting a 

new approach to reduce the number of candidate itemsets for counting.  Since every 

globally frequent itemset must be locally frequent at some site, each site only considers the 

candidate itemsets generated from the globally and locally frequent itemsets at that site.  It 

then scans through its database partition to find the local support counts of these candidate 

itemsets.  Three optimization methods have been presented in [Cheung et al. 1996a].  The 

local pruning method has each site to remove any itemset that is not locally frequent; the 

global pruning method is to find the upper bounds of the supports of itemsets and remove 

those itemsets whose upper bounds are less than the minimum support; and the count 
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polling method lets each polling site request the local support counts of the itemsets 

assigned to it from all the other sites, calculate the global support counts, and broadcast the 

globally and locally frequent itemsets with their support counts to all the other sites. 

Similar to the serial association rule mining algorithms, these parallel algorithms 

identify interesting association rules based on the user-specified thresholds (i.e., minimum 

support and minimum confidence).  They may not find some interesting rules if the 

thresholds are set too high, whereas they may find irrelevant ones if the thresholds are set 

too low [Han and Kamber 2001; Hand, Mannila, and Smyth 2001]. 

2.1.2 Classification 

The classification problem typically involves finding a classification model or a classifier to 

classify a set of records into different predefined classes.  To do so, the class attribute – the 

attribute in a database in which records should be classified according to – is first identified 

by domain experts.  A set of records, called the training set, is then used to construct a 

classifier.  Using the classifier, a record that is not originally in the training set can be 

classified based on its attribute values.  The classification problem has been studied 

extensively by researchers in the machine learning community and various techniques have 

been proposed to solve it [Michie, Spiegelhalter, and Taylor 1994].  Among the many 

solution techniques, the decision-tree based approaches are the most popularly adopted 

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a; Mehta, Agrawal, and 

Rissanen 1996; Shafer, Agrawal, and Mehta 1996]. 

Most of the decision-tree based algorithms (e.g., IC [Agrawal et al. 1992], CDP 

[Agrawal, Imielinski, and Swami 1993a], CART [Breiman et al. 1984], SLIQ [Mehta, 

Agrawal, and Rissanen 1996], C4.5 [Quinlan 1993], Serial SPRINT [Shafer, Agrawal, and 

Mehta 1996], etc.) are composed of two phases: the tree-building phase and the tree-pruning 

phase.  In the tree-building phase, a decision tree is constructed by recursively partitioning 

the training set.  This process continues until all or the majority of the records in each 

partition belong to a single class.  At the end of this process, a decision tree is constructed.  

Each non-leaf node in the resulting decision tree carries out a test on an attribute so as to 

determine how the training set should be partitioned.  Since the decision tree may contain 

branches that are created due to noises in the data set, these branches have to be deleted.  

The tree-pruning phase therefore consists of, for example, selecting and removing the 

subtree with the least estimated error rate.  Tree pruning has been shown to increase the 

classification accuracy of a decision tree on one hand and reduce the complexity of the tree 

on the other. 
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Decision-tree based approaches (e.g., IC, CDP, CART, ID3 [Quinlan 1986], and C4.5) 

originally require the entire database to fit in the real memory of a computer and hence they 

cannot handle large databases.  Some recent efforts have been put into improving the 

scalability of decision-tree based algorithms by handling disk-resident data that are too large 

to fit in memory (e.g., SLIQ and Serial SPRINT). 

SLIQ creates a set of attribute lists and a class list.  An attribute list, in which an entry 

consists of an attribute value and a record identifier, is created for each attribute.  The 

attribute lists for continuous attributes are sorted by attribute values when they are created.  

In the class list, each entry contains a class label, a record identifier, and a pointer to a node 

in the decision tree that indicates to which node the corresponding training record currently 

belongs.  When a decision-tree node is split to create new children and a training record is 

assigned to one of the children, the reassignment is done simply by changing the pointer 

field of the corresponding entry in the class list.  Only a portion of an attribute list is 

required to fit in real memory when a node is being split.  However, the class list has to fit in 

real memory all the time or else the performance will be degraded severely because the class 

list is randomly assessed and frequently updated.  Since the size of the class list grows in 

direct proportion to the size of the training set, this limits the size of the database that SLIQ 

can handle. 

Serial SPRINT overcomes this problem by using different data structure.  It maintains 

an attribute list for each attribute, in which an entry consists of an attribute value, a class 

label, and a record identifier.  The attribute lists for continuous attributes are sorted by 

attribute values when they are created.  The initial lists are associated with the root of the 

decision tree at first.  Nodes are then split to create new children.  The attribute lists 

belonging to each node are therefore partitioned and the partitioned attribute lists are 

associated with the children.  The order of the entries in a list is preserved when it is 

partitioned so that the lists for continuous attributes are sorted once only.  In order to split 

the attribute lists according to the splitting decision, Serial SPRINT creates a hash table that 

keeps a mapping between a record identifier and the node with which the record is 

associated based on the splitting decision.  The elimination of the use of the class list makes 

Serial SPRINT can handle very large databases. 

In the process of constructing decision trees, all arcs labeled by the values of selected 

attributes have to be expanded.  This may introduce irrelevant variables and make resulting 

paths longer than what are actually needed.  Furthermore, the construction of decision trees 

usually involves binarizing continuous attributes into two intervals so that the records with 

some attribute values greater than some threshold belong to one branch, whereas those 
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records with the attribute values less than or equal to that threshold belong to the other 

branch (e.g., [Agrawal, Imielinski, and Swami 1993a; Breiman et al. 1984; Mehta, Agrawal, 

and Rissanen 1996; Quinlan 1993; Shafer, Agrawal, and Mehta 1996]).  Such binarization 

on continuous attributes may result in multiple tests on the same attribute and hence a 

substantial increase in the complexity of the resulting decision trees.  The decision-tree 

based algorithms are also sensitive to the small differences in training data.  For example, a 

very different decision tree can be constructed when some records appear more than once in 

the training set. 

In addition to the abovementioned problems, when decision-tree based algorithms are 

extended to determine the probabilities associated with such classifications (see, e.g., 

[Quinlan 1987b]), it is possible that some leaves in a decision tree have similar class 

probabilities. 

2.1.2.1 Parallel Algorithms for Classification 

To build decision trees in very large databases, some recent efforts have been put into 

exploiting the scalability of parallel systems (e.g., [Joshi, Karypis, and Kumar 1998; Shafer, 

Agrawal, and Mehta 1996; Srivastava et al. 1998; Zaki, Ho, and Agrawal 1999]). 

Parallel SPRINT [Shafer, Agrawal, and Mehta 1996] extends Serial SPRINT by 

distributing the attribute lists evenly among all the processors and finding the split point for 

a node in the decision tree in parallel.  To split the attribute lists according to the splitting 

decision, the hash table is required on all the processors to keep a mapping between a record 

identifier and the node with which it is associated based on the splitting decision.  In order 

to construct this hash table, each processor requires O(N) memory to store the hash table and 

O(N) communication overhead for all-to-all broadcast, where N is the number of records in 

the data [Kumar et al. 1994].  This makes Parallel SPRINT to be unscalable with respect to 

runtime and memory requirements [Joshi, Karypis, and Kumar 1998].  To overcome this 

shortage, ScalParC [Joshi, Karypis, and Kumar 1998] employs a distributed hash table, 

which is split among all the processors, and uses an efficient personalized communication to 

update the hash table. 

Parallel classification algorithms such as Parallel SPRINT and ScalParC are originally 

developed for the distributed-memory architecture.  Recently, techniques proposed in [Zaki, 

Ho, and Agrawal 1999] extend Parallel SPRINT to work on the shared-memory architecture. 

Furthermore, two basic parallel formulations for the construction of decision trees (i.e., 

the synchronous and partitioned tree construction approaches) have been proposed in 
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[Srivastava et al. 1998].  In the synchronous tree construction approach, all processors 

construct a decision tree synchronously by sending and receiving class distribution 

information of local data.  It incurs a high communication overhead as the number of nodes 

in the decision tree gets larger and larger in the tree-building phase.  On the other hand, in 

the partitioned tree construction approach, different processors work on different parts of the 

decision tree.  It incurs the cost of load balancing when each node is split.  To combine the 

strengths and eliminate the weaknesses of these approaches, a hybrid scheme is given in 

[Srivastava et al. 1998] that keeps continuing with the synchronous tree construction 

approach as long as the communication cost incurred is not too high.  Once this cost 

becomes too high, the hybrid scheme switches to the partitioned tree construction approach.  

The experimental results in [Srivastava et al. 1998] show that the hybrid scheme 

outperforms the partitioned tree construction approach, which in turn outperforms the 

synchronous tree construction approach. 

These parallel algorithms focus mainly on the speedup of the construction of decision 

trees.  They suffer from the same problems experienced by their serial counterparts, that is, 

the potentially high complexity of resulting decision trees because of the binarization of 

continuous attributes and the high sensitivity to the small differences in data sets. 

2.1.3 Discretization and Fuzzy Partitioning 

Regardless of a data mining algorithm is developed for association rule mining or 

classification, it typically requires the domains of continuous attributes to be discretized into 

a finite number of intervals [Breiman et al. 1984; Clark and Niblett 1989; Liu, Hsu, and Ma 

1998; Michalski et al. 1986; Quinlan 1986, 1993; Smyth and Goodman 1992; Srikant and 

Agrawal 1996]. 

Discretization techniques can be classified into two categories: unsupervised and 

supervised.  Unsupervised methods simply apply a prescribed scheme to discretize the 

continuous values without making use of the attribute-class information, whereas supervised 

methods take into consideration the attribute-class information. 

The representatives of unsupervised discretization methods are equal-width and equal-

frequency [Chiu, Wong, and Cheung 1991].  The equal-width discretization merely divides 

the range of observed values for a continuous attribute into k equal-sized intervals, where k 

is a user-specified parameter.  Given m records, the equal-frequency discretization divides 

the range of values for a continuous attribute into k intervals, where each interval contains  

m / k attribute values.  A typical problem of unsupervised methods is that it is difficult to 

determine how many intervals are the best for a given attribute. 
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Theoretically, directed by class information, supervised discretization methods can 

automatically determine the best number of intervals for each given continuous attribute for 

classification.  Examples of supervised methods are maximum entropy [Wong and Chiu 

1987], CADD [Ching, Wong, and Chan 1995], information entropy maximization [Fayyad 

and Irani 1993], Paterson-Niblett [Paterson and Niblett 1982] (which is built into C4.5), 

ChiMerge [Kerber 1992], Chi2 [Liu and Setiono 1997], and CAIM [Kurgan and Cios 2001].  

These supervised methods usually rely on heuristics to attain the local optimum of their 

objective functions that measure the class and attribute dependence.  For example, CADD 

discretizes data by heuristically maximizing the interdependence between the class and the 

continuous attribute [Ching, Wong, and Chan 1995].  CAIM differs from CADD by using a 

different objective function to capture the dependency relationship between the class and the 

continuous attribute while keeping the number of intervals as minimal as possible [Kurgan 

and Cios 2001].  The use of heuristics makes supervised methods cannot always find the 

global optimum of the objective functions. 

An alternative to discretization is fuzzy partitioning.  Fuzzy partitioning techniques 

generate fuzzy sets to represent the domains of continuous attributes.  They can be classified 

into three categories: 1) grid partitioning, 2) tree partitioning, and 3) scatter partitioning 

[Yen and Langari 1999].  The grid partitioning forms a partition by dividing the input space 

into several fuzzy slices, each of which is specified by a membership function for each 

feature dimension.  The tree partitioning constructs a partition by applying a series of 

guillotine cuts such that each is a cut that is made across the subspace to be partitioned and 

each of the regions so produced can be subject to further independent guillotine cutting.  

The scatter partitioning finds a subset of the input space that characterizes the fuzzy regions 

of possible occurrence of records in the data set instead of covering the whole input space 

[Yen and Langari 1999].  Of the different fuzzy partitioning methods, the grid partitioning is 

the most commonly used in practice, particularly in system control applications [Yen and 

Langari 1999]. 

A grid partition can be uniform, if formed by uniformly symmetric membership 

functions, or non-uniform, if formed by non-uniformly spaced asymmetric membership 

functions.  Although a uniform grid partition is easier to construct, a non-uniform partition 

is more flexible in adapting to the specific nonlinear characteristics of the function being 

approximated [Yen and Langari 1999].  In addition to having human experts to form a grid 

partition, learning techniques can also be used to construct the partition.  Typical learning 

methods used for such purpose include fuzzy clustering (e.g., [Bezdek 1981; Fajfer and 

Janikow 2000; Janikow and Fajfer 1999; Liao, Celmins, and Hammell II 2003]), neural 
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networks (e.g., [Jang 1993; Kohonen 2001]), and genetic algorithms (e.g. [Arslan and Kaya 

2001; Karr 1991]). 

Fuzzy clustering algorithms aim at finding soft partitions of data sets based on certain 

criteria.  A datum in a data set can partially belong to multiple soft partitions (clusters).  It is 

important to note that a soft partition is not necessarily a fuzzy partition because the input 

space can be larger than the data set.  However, most fuzzy clustering algorithms, including 

the fuzzy c-means (FCM) algorithm [Bezdek 1981], generate a soft partition that also forms 

a fuzzy partition [Pedrycz and Gomide 1998; Yen and Langari 1999].  Fuzzy clustering 

algorithms can therefore be used for fuzzy partitioning. 

To form a fuzzy partition, we can construct a neural network that takes variables of a 

fuzzy model as inputs and generates the degrees with which the input data belong to a 

predetermined number of fuzzy regions.  If supervised training algorithms for neural 

networks (e.g., backpropagation [Rumelhart, Hinton, and Williams 1986; Werbos 1974]) 

are used, one needs to have a set of training data, which can be obtained either by asking 

domain experts to assign membership degrees to a sample set of input data or by clustering a 

sample set of input data using a clustering algorithm (e.g., the FCM algorithm) [Yen and 

Langari 1999].  Consequently, the fuzzy partitions so produced should be more or less the 

same as those obtained by fuzzy clustering.  This limits the merits of using neural networks 

to find fuzzy partitions.  Instead of using supervised training algorithms for neural networks, 

one can employ unsupervised training algorithms (e.g., Kohonen’s self-organizing maps 

(SOM) [Kohonen 2001]) for fuzzy partitioning.  A SOM is composed of an input layer of 

units, a one- or two-dimensional output grid of processing units, and a set of connections 

linking the input units to the output units.  To cluster the input data, one simply feeds each 

record into a SOM, while each output unit of the SOM competes with all of the others to 

“win” the record, and the training algorithm updates the weights of the connections to the 

winning unit along with those nearby units to better match the record.  Unlike supervised 

algorithms, it does not require the assignment of any membership degree to the input record 

in the training.  After training, the SOM usually ends up with a few units that summarize 

many observations (strong units) and several units that do not really correspond to any of 

the observations (weak units).  The strong units represent the prototypes of the clusters 

formed.  These clusters form the fuzzy partition. 

Since fuzzy partitioning can be formulated as an optimization problem of finding the 

parameters of fuzzy sets composing a fuzzy partition that optimizes the resultant fuzzy 

model based on certain evaluation criteria, genetic algorithms (GAs) can be applied to 

construct fuzzy partitions.  Given an attribute, let us assume that a predetermined number of 
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fuzzy sets are used to characterize it.  To form a fuzzy partition, the parameters of the fuzzy 

sets are encoded in a fixed-length chromosome.  As a result, each chromosome represents a 

fuzzy partition and it is evaluated by an appropriate fitness function (e.g., classification 

accuracy if the resultant model is for classification or the difference between the actual and 

the expected output if the resultant fuzzy model is for control applications, etc.).  The GA 

starts from generating a population of chromosomes in a random manner.  It then evaluates 

the fitness of the chromosomes by the fitness function.  Based on their fitness, chromosomes 

are selected and a new population of chromosomes is generated by crossover and mutation.  

These steps repeat until some termination criteria are satisfied.  The interested readers are 

referred to [Goldberg 1989] for the details. 

The abovementioned fuzzy partitioning techniques are unsupervised because they do 

not take into account the interdependence between the class and the attribute. 

Recently, the fuzzy interpretation of discretized intervals has been proposed in [Wu 

1999].  It represents one of the first attempts, if not the first, on discretizing attributes with 

fuzzy border.  Given a user-specified spread parameter, the linear, polynomial, and arctan 

membership functions are proposed to fuzzify the borders of an interval.  When a value is 

covered by more than one fuzzy interval, the match degree is given by either the maximum 

of the membership degrees of the value in all the intervals or the fuzzy plus of all the 

membership degrees.  The three membership functions do not show any significant 

difference in the experiments so that the polynomial function is chosen as the default [Wu 

1999].  The experimental results in [Wu 1999] show that HCV [Wu 1995] exhibits better 

performance when it is equipped with fuzzy interpretation as compared to not equipping 

with fuzzy interpretation. 

2.1.4 Fuzzy Sets in Data Mining 

Regardless of how the values of continuous attributes are discretized, the intervals may not 

be concise and meaningful enough for human users to easily obtain non-trivial knowledge 

from the discovered relationships.  To better handle continuous data, the use of fuzzy sets 

for data mining has recently been proposed in the literature [Mitra, Pal, and Mitra 2002].  

The resilience to noises and the affinity with the human knowledge representation make 

fuzzy sets to be used in many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 

2003; Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and 

Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow 

1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999; 

Yager 1991]). 
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Linguistic summaries introduced in [Yager 1991] express knowledge using a linguistic 

representation that is natural for human users to comprehend.  An example of a linguistic 

summary is the statement “about half of the people in the database are middle-aged.”  

However, no algorithm was proposed for generating linguistic summaries in [Yager 1991].  

Recently, the use of an algorithm for mining association rules for the purpose of linguistic 

summaries has been studied in [Kacprzyk and Zadrozny 2001].  This technique extends 

AprioriTid [Agrawal and Srikant 1994], a well-known algorithm for mining association 

rules, to handle linguistic terms (fuzzy values).  An attribute is replaced by a set of artificial 

attributes (items) so that a tuple supports a specific item to a certain degree, which is in the 

range from 0 to 1.  Given two user-specified thresholds, threshold1 and threshold2, an item 

or an itemset (i.e., a combination of items) is considered interesting if its fuzzy support is 

greater than threshold1 and it is also less than threshold2.  Although this technique is very 

useful, many users may not be able to set the thresholds appropriately. 

In addition to linguistic summaries, an interactive process for the discovery of top-

down summaries, which utilizes fuzzy is-a hierarchies as domain knowledge, has been 

described in [Lee and Kim 1997].  This technique aims at discovering a set of generalized 

tuples, such as <technical writer, documentation>.  In contrast to association rules, which 

involve the implications between different attributes, linguistic summaries and generalized 

tuples only provide the summarization on different attributes.  The idea of implication has 

not been taken into consideration and hence these techniques are not developed for the task 

of rule discovery. 

Furthermore, the applicability of fuzzy modeling techniques to data mining has been 

discussed in [Hirota and Pedrycz 1999].  Given a relational table, X, and a context variable, 

A, the context-sensitive fuzzy clustering method reveals the structure in X in the context of A.  

Since this method can only manipulate continuous attributes, the values of any discrete 

attributes are first encoded into numeric values.  The context-sensitive fuzzy clustering 

method is then applied to the encoded data to induce clusters in the context of A.  Although 

the encoding technique allows this method to deal with discrete attributes, the distances 

between the encoded numeric values, which do not possess any meaning in the original 

discrete attributes, are used to induce the clusters.  Therefore, the associations that are 

concerned with these attributes, which are discovered by the context-sensitive fuzzy 

clustering method, may be misleading. 

2.1.5 Data Mining Based on Genetic Algorithms 

Other than the use of decision-tree based algorithms, techniques based on genetic algorithms 
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(GAs) have also been proposed for predictive modeling.  There are currently two different 

GA-based approaches for rule discovery: the Michigan approach and the Pittsburgh 

approach.  The Michigan approach, exemplified by Holland’s classifier system [Holland 

1986], represents a rule set by the entire population, whereas the Pittsburgh approach, 

exemplified by Smith’s LS-1 system [Smith 1983], represents a rule set by an individual 

chromosome.  Although the Michigan approach is able to deal with multi-class problems, 

one of the major difficulties in using it is the problem in credit assignment, which gives the 

activated classifiers a reward if the classification they produced is correct and gives them a 

punishment, otherwise.  Specifically, it is extremely hard to come up with a good credit 

assignment scheme that works. 

The algorithms based on the Pittsburgh approach (e.g., [DeJong, Spears, and Gordon 

1993; Janikow 1993; Smith 1983]) represent an entire rule set as a chromosome, maintain a 

population of candidate rule sets, and use selection and genetic operators to produce new 

generation of chromosomes and, hence, new rule sets.  Each chromosome competes with 

one another in terms of classification accuracy on the application domain. Individuals are 

selected for reproduction using roulette wheel selection and a whole new population is 

generated based on crossover and mutation.  The selected chromosomes produce offspring 

using an extended version of the standard two-point crossover operator such that the 

crossover points can occur either both on rule boundaries or within rules [DeJong, Spears, 

and Gordon 1993; Smith 1983].  That is, if one parent is being cut on a rule boundary, then 

the other parent must be cut on a rule boundary as well; similarly, if one parent is being cut 

at a point, say, 5 bits to the right of a rule boundary, then the other parent must be cut in a 

similar spot [DeJong, Spears, and Gordon 1993; Smith 1983].  The mutation operator is 

identical to the classical one, which performs bit-level mutations.  The fitness of each 

individual rule set is computed by testing the rule set on the current set of training examples 

[DeJong, Spears, and Gordon 1993; Smith 1983]. 

The Pittsburgh approach is originally designed for single-class learning problems and 

hence only the antecedent of a rule is encoded into an allele of a chromosome [DeJong, 

Spears, and Gordon 1993; Janikow 1993; Smith 1983].  An instance that matches one or 

more rules is classified as a positive example of the concept (class) and an instance that fails 

to match any rule is classified as a negative example [DeJong, Spears, and Gordon 1993; 

Janikow 1993; Smith 1983].  To tackle multi-class problems, they could be extended by 

introducing multiple populations so that a specific population is dedicated to learn each 

concept.  It is possible that an instance is matched by more than one rule of different 

concepts on one hand and it is also possible that an instance is matched by none of any rule 
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of any concept on the other.  Unfortunately, this problem has not been addressed in many of 

the systems based on the Pittsburgh approach (e.g., [DeJong, Spears, and Gordon 1993; 

Janikow 1993; Smith 1983]). 

Recently, the use of GAs for rule discovery in the application of data mining has been 

studied in [Choenni 2000; Fidelis, Lopes, and Freitas 2000; Freitas 2002; Kwedlo and 

Kretowski 1998].  These algorithms are based on the Michigan approach in such a way that 

each rule is encoded in a chromosome and the rule set is represented by the entire 

population.  Unlike classifier systems (e.g., [Greene and Smith 1994; Holland 1986; 

McAulay and Oh 1994]), they 1) have modified the individual encoding method to use non-

binary representation; 2) do not encode the consequents of rules into the individuals; 3) use 

extended version of crossover and mutation operators suitable to their representations; 4) do 

not allow rules to be invoked as a result of the invocation of other rules; and 5) define 

fitness functions in terms of some measures of classification performance (e.g., cover 

[Choenni 2000], sensitivity and specificity [Fidelis, Lopes, and Freitas 2000], etc.). 

It is important to note that these algorithms [Choenni 2000; Fidelis, Lopes, and Freitas 

2000; Freitas 2002] are developed to discover rules for a single class only.  When they are 

used to deal with multi-class problems, the GAs are run once for each class.  Specifically, 

they would search rules predicting the first class in the first run; they would search rules 

predicting the second class in the second run and so on.  Similar to the Pittsburgh approach, 

it is possible that an instance is matched by more than one rule predicting different classes 

on one hand and it is also possible that an instance is matched by none of any rule predicting 

any class on the other.  This problem has not been addressed by these algorithms. 

Although GA-based rule discovery approaches can produce accurate predictive models, 

they cannot determine the likelihood associated with their predictions.  This prevents these 

techniques from being applicable to the task of predicting churn, which requires the ranking 

of subscribers according to their likelihood to churn (see, e.g., [Au, Chan, and Yao 2003; 

Mozer et al. 2000]). 

2.1.5.1 Parallel Genetic Algorithms 

There are two main types of parallel GAs: single-population (e.g., [Abramson and Abela 

1992; Bethke 1976; Fogarty and Huang 1991; Hauser and Manner 1993]) and multiple-

population (e.g., [Grefenstette 1981; Grosso 1985; Tanese 1987]).  A single-population 

parallel GA uses a single population of chromosomes and can be implemented on shared-

memory and distributed-memory computers. 
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On a shared-memory computer, the population is stored in the shared memory and each 

processor evaluates the fitness of the chromosomes assigned to it and writes the fitness 

values back.  One of the processors (the master processor) is responsible for applying the 

genetic operators (i.e., selection, crossover, and mutation) to produce the next generation. 

On a distributed-memory computer, the population is stored in one processor (the 

master processor) and this processor sends the chromosomes to the other processors (the 

slave processors) for evaluation, collects the fitness values from the slave processors, and 

executes the genetic operators to produce the next generation.  Communication occurs only 

when the slave processors receive their subsets of chromosomes for evaluation and when 

they return the fitness values. 

A multiple-population parallel GA, which uses multiple populations of chromosomes, 

is a simple extension of the serial GA.  It consists of multiple serial GAs, runs each of them 

on a processor of a parallel computer, and exchanges some individuals at certain 

predetermined times.  The exchange (migration) of individuals from one population to 

another population is controlled by several parameters: the topology that defines the 

connection of the multiple populations, the number of individuals that are exchanged (the 

migration rate), and the frequency of migrations [Cantu-Paz 1998]. 

It is important to note that the performance of multiple-population parallel GAs that 

communicate every generation using a fully connected topology and the maximal migration 

rate closely resembles the performance of single-population parallel GAs [Cantu-Paz and 

Goldberg 1999].  Regardless of whether a parallel GA is single- or multiple-population, it 

has been shown in [Cantu-Paz and Goldberg 1999] that the optimal number of processors 

that minimizes the execution time is directly proportional to the square root of the 

population size and the fitness evaluation time.  This theoretically confirms the claim that 

parallel GAs can reduce the execution time by using multiple processors. 

Although parallel GAs have been used in many practical applications, they have not 

been applied to the data mining process.  Our work represents the first attempt of using 

parallel GAs for data mining, in particular, the mining of fuzzy association rules. 

2.1.6 Mining Rules in Time Series Data 

Many data mining methods have been proposed for time series classification in the literature 

(e.g., [Andre-Jonsson and Badal 1997; Bozkaya, Yazdani, and Ozsoyoglu 1997; Huang and 

Yu 1999; Indyk, Koudas, and Muthukrishnan 2000; Kalpakis, Gada, and Puttagunta 2001; 

Keogh and Smyth 1997; Park, Kim, and Chu 2001; Pratt and Fink 2002; Struzik and Siebes 
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1999; Wang and Wang 2000]).  They typically focus on the introduction of new similarity 

measures as a subroutine to an existing classification algorithm (e.g., the 1-Nearest 

Neighbor algorithm).  Although these methods may classify unseen time series accurately, 

they are not developed to explicitly reveal the underlying patterns hidden in the time series 

data.  It has been shown in [Keogh and Kasetty 2003] that these methods perform poorly 

when compared to Euclidean distance in the experiments with some well-known time series 

data sets.  Their dissatisfactory performance is perhaps due to the noisy and fuzzy nature of 

time series data. 

The mining of sequential patterns [Agrawal and Srikant 1995], frequent episodes 

[Mannila, Toivonen, and Verkamo 1995], and partial periodic patterns [Han, Dong, and 

Yin 1999] have also been proposed in the literature.  They are concerned with discovering 

event sequences (i.e., groups of events ordered by time).  For example, an event can be the 

purchase of an item in market basket data or the increase of a stock price in financial data.  

Sequential patterns and frequent episodes represent frequent event sequences, whereas 

partial periodic patterns are event sequences that reoccur for a period or a set of periods.  

Furthermore, an algorithm for clustering time series has been presented in [Gavrilov et al. 

2000].  The problem of event detection [Guralnik and Srivastava 1999] is concerned with 

finding time points at which the parameters in a data model or even the model itself are 

changed.  It is important to note that these techniques are not developed for mining rules 

(i.e., the if-then relationships between events) in time series data. 

An approach for discovering rules in time series data has been proposed in [Das et al. 

1998].  It first forms a set of subsequences by sliding a window through a time series and 

clusters the subsequences by using a suitable measure of time series similarity (e.g., 

Euclidean distance).  The center of each cluster is then encoded to a sequence of primitive 

shapes.  From these sequences of primitive shapes, it mines a set of rules in the form of “if 

A, then B within time T” where A and B are sequences of primitive shapes.  Each rule is 

associated with two parameters: frequency and confidence.  This approach only discovers 

those rules whose frequencies and confidences are greater than or equal to the user-specified 

minimum frequency and minimum confidence, respectively.  The discovered rules are then 

ranked by the J-measure [Smyth and Goodman 1992].  However, it can be difficult for the 

users to decide what the thresholds should be and the inappropriate setting can result in the 

neglect of some useful rules or the discovery of many irrelevant rules [Han and Kamber 

2001; Hand, Mannila, and Smyth 2001]. 

Furthermore, E-Apriori and EH-Apriori can also be used to mine n-dimensional inter-

transaction association rules from time series data [Lu, Han, and Feng 1998].  Similar to 
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other association rule mining algorithms, they require human users to supply thresholds.  

However, many users have no idea what these thresholds should be. 

Recently, an information-theoretic fuzzy approach has been proposed in [Last, Klein, 

and Kandel 2001] for knowledge discovery in time series data.  This approach first cleans 

and preprocesses the time series data based on signal processing techniques.  It then 

constructs an information-theoretic connectionist network to identify the most useful 

features of the preprocessed data.  A set of rules can be extracted from the connectionist 

network.  The set of discovered rules is further reduced by 1) fuzzifying the rules; 2) 

reducing the set of fuzzified rules by conflict resolution; and 3) merging rules from the 

reduced set.  This approach is to fuzzify crisp rules discovered in crisp data instead of 

handling fuzzy data and discovering fuzzy rules. 

2.1.7 Attribute Clustering and Data Mining in Gene 

Expression Data 

A gene expression data set from a microarray can be represented by an expression table,  

T = {wij | i = 1, …, p, j = 1, …, n}, where wij ∈ ℜ is the measured expression level of gene gi 

in sample sj [Domany 2003].  Each row in the expression table corresponds to one particular 

gene and each column to a sample.  Such a data set is typically composed of a large number 

of genes but a small number of samples.  For example, the colon-cancer data set [Alon et al. 

1999] consists of 62 samples and 2,000 genes and the leukemia data set [Golub et al. 1999] 

contains 72 samples and 7,129 genes.  The number of samples is likely to remain small for 

many areas of investigation, especially for human data, due to the difficulty of collecting 

and processing microarray samples [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. 

Classification and clustering are two major tasks in gene expression data analysis.  

Classification is concerned with assigning memberships to samples based on expression 

patterns, whereas clustering aims at finding new biological classes and refining existing 

ones [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].  To cluster and/or recognize 

patterns in gene expression data sets, dimension problems are encountered.  Typically, gene 

expression data sets consist of a large number of genes (attributes) but a small number of 

samples (tuples).  Many data mining algorithms (e.g., classification [Agrawal et al. 1992; 

Chan and Wong 1990, 1991; Janikow 1998; Maimon, Kandel, and Last 1999; Quinlan 1993; 

Smyth and Goodman 1992], association rule mining [Agrawal, Imielinski, and Swami 1993; 

Agrawal and Srikant 1994; Delgado et al. 2003; Liu, Hsu, and Ma 1998; Park, Chen, and 

Yu 1995; Savasere, Omiecinski, and Navathe 1995], pattern discovery [Wong and Wang 

1997, 2003], linguistic summaries [Kacprzyk and Zadrozny 2001; Yager 1991], and context-
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sensitive fuzzy clustering [Hirota and Pedrycz 1999]) are developed and/or optimized to be 

scalable with respect to the number of tuples, so as not to handle a large number of attributes. 

The distinctive characteristic of gene expression data allows clustering both genes and 

samples [Domany 2003; Jiang, Tang, and Zhang 2004].  With conventional clustering 

methods, the genes are considered as the tuples and the samples as the attributes.  Thus it 

allows genes with similar expression patterns (i.e., co-expressed genes) to be identified 

[Jiang, Tang, and Zhang 2004].  On the other hand, to cluster samples, the samples are 

considered as the tuples and the genes as the attributes.  The clustering analysis of samples 

is to find new biological classes or to refine existing ones [Piatetsky-Shapiro, Khabaza, and 

Ramaswamy 2003].  By this token, conventional clustering algorithms are able to group 

both samples and genes from the data. 

To apply existing clustering algorithms to genes, various algorithms have been used.  

Well-known examples are: k-means algorithms [De Smet et al. 2002; Heyer, Kruglyak, and 

Yooseph 1999; Ralf-Herwig et al. 1999], Kohonen’s self-organizing maps (SOM) [Tamayo 

et al. 1999], and various hierarchical clustering algorithms [Alon et al. 1999; Eisen et al. 

1998]. 

As for distance measures, Euclidean distance and Pearson’s correlation coefficient are 

widely used for clustering genes [Jiang, Tang, and Zhang 2004].  Given two genes Ai and Aj, 

i, j ∈ {1, …, p}, i ≠ j, the Euclidean distance between Ai and Aj is given by: 
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where w ∈ ℜ is the measured expression level. 

dE measures the difference in the individual magnitudes of each gene.  The genes 

regarded as similar by Euclidean distance may be very dissimilar in terms of their shapes or 

vice versa.  For example, let us consider the two genes, which have an identical shape but 

only differ from each other by a large scaling factor.  Their Euclidean distance is large 

although they have an identical shape.  However, for gene expression data, the overall 

shapes of genes are of the primary interest [Jiang, Tang, and Zhang 2004].  It is for this 

reason that Euclidean distance may not be able to yield a good proximity measurement of 

genes. 

The Pearson’s correlation coefficient between genes Ai and Aj is defined as: 
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where iw  and jw  are the means of wik and wjk, k = 1, …, n, respectively.  It considers each 

gene as a random variable with n observations and measures the similarity between the two 

genes by calculating the linear relationship between the distributions of the two 

corresponding random variables.  An empirical study [Heyer, Kruglyak, and Yooseph 1999] 

has shown that Pearson’s correlation coefficient is not robust to outliers and it may assign 

high similarity score to a pair of dissimilar genes. 

Recently, biclustering algorithms (e.g., [Cheng and Church 2000; Madeira and Oliveira 

2004]) have been proposed to cluster both genes and samples simultaneously.  Biclustering 

algorithms aim at identifying subsets of genes and subsets of samples by performing 

simultaneous clustering of both rows and columns of a gene expression table instead of 

clustering columns and rows (genes and samples) separately [Madeira and Oliveira 2004].  

Specifically, these algorithms group a subset of genes and a subset of samples into a 

bicluster such that the genes and samples exhibit similar behavior.  A popular measure of 

the coherence of genes and samples in a bicluster is the mean squared residue [Cheng and 

Church 2000].  Let I ⊆ {1, …, p} and J ⊆ {1, …, n}.  The mean squared residue of a 

bicluster, TIJ = {wij | i ∈ I, j ∈ J}, is defined in [Cheng and Church 2000] as: 
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where wiJ is the mean of wij,  j ∈ J, wIj is the mean of  wij, i ∈ I, and wIJ is the mean of wij,  

i ∈ I, j ∈ J.  A bicluster is formed if its mean squared residue is less than or equal to a user-

specified threshold. 

Gene selection is another important step to further narrowing down the attribute 

number prior to data mining.  A good number of algorithms have been developed for this 

purpose (e.g., [Mukherjee et al. 2003; Pan 2002]).  To select genes, the t-value is widely 

used in the literature [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].  Assuming that 

there are two classes of samples in a gene expression data set, the t-value t(Ai) for gene Ai is 

given by: 
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where µr and σr are the mean and the standard deviation of the expression levels of gene Ai 

for class r, respectively, and nr is the number of samples in class r for r = 1, 2.  The top 

genes ranked by the t-value can then be selected for data mining.  When there are multiple 

classes of samples, the t-value is typically computed for one class versus all the other classes. 

A weakness of using the t-value to select genes is the redundancy among the selected 

genes [Ding and Peng 2003; Xing, Jordan, and Karp 2001; Yu and Liu 2004].  To solve this 

problem, methods that can handle both the gene-class relevance and the gene-gene 

redundancy have been proposed (e.g., [Ding and Peng 2003; Xing, Jordan, and Karp 2001; 

Yu and Liu 2004]).  These methods typically use some metric to measure the gene-class 

relevance (e.g., mutual information, the F-test value [Ding and Peng 2003], information 

gain, symmetrical uncertainty [Yu and Liu 2004], etc.) and employ the same or a different 

metric to measure the gene-gene redundancy (e.g., mutual information, the L1 distance 

[Ding and Peng 2003], Pearson’s correlation coefficient, etc.).  To find a subset of relevant 

but non-redundant genes, they usually use a methodology called redundant cover to 

eliminate redundant genes with respect to a subset of genes selected according to the metric 

for measuring the gene-class relevance and the gene-gene redundancy (see, e.g., [Xing, 

Jordan, and Karp 2001; Yu and Liu 2004]).  Another approach to doing so combines the 

metric for measuring the gene-class relevance and that for measuring the gene-gene 

redundancy into a single criterion function and then selects genes so that the criterion 

function is optimized (see, e.g., [Ding and Peng 2003]). 

It is important to note that both the t-value and the methods that handle the gene-class 

relevance and the gene-gene redundancy can only be used to select genes when the samples 

are pre-classified. 

2.1.8 Handling Both Transaction and Relational Data 

To deal with both transaction and relational data, there is a related, but not directly 

applicable, work presented in [Dhar and Tuzhilin 1993].  In [Dhar and Tuzhilin 1993], a 

database containing a customer table and a transaction table is described.  Some techniques 

to discover rules from this database have been proposed.  However, the problem of how to 

handle both of transaction and relational data has not been discussed.  It is not clear how this 

approach can be used to handle the union of transaction and relational data in general. 
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2.1.9 Data Transformation 

Existing data mining techniques do not provide any explicit methodology for data 

transformation.  Related, but not directly applicable, work includes attribute-oriented 

induction [Cai, Cercone, and Han 1991; Han, Cai, and Cercone 1992, 1993; Han and Fu 

1996] and an abstract-driven approach [Dhar and Tuzhilin 1993].  As a means of rule 

discovery, both of them do not provide any formalism for the problem of data 

transformation. 

Attribute-oriented induction makes use of concept hierarchies defined by knowledge 

engineers or domain experts.  Each of these concept hierarchies defines a sequence of 

mappings from a set of concepts to their higher-level correspondences according to a 

general-to-specific ordering with the most general concept defined by a reserved word “any” 

and the most specific concepts corresponding to the specific data in the database [Han and 

Fu 1996].  An attribute is at the desirable level if it contains no more distinct values than its 

attribute threshold – a small integer that can be specified by users or set to the default value.  

The minimum desirable level of an attribute is the level in the concept hierarchy such that 

the attribute would have more distinct values than its threshold when it was specialized to 

one level lower.  Attribute-oriented induction transforms an initial relation, which contains 

the data relevant to the task the user has on hand, into generalized relations using 

generalization, attribute removal, concept tree ascension, and vote propagation [Han, Cai, 

and Cercone 1993].  In a generalized relation, some or all of its attribute values are higher-

level concepts, that is, non-leaf nodes in the concept hierarchies.  A generalized relation 

becomes a prime relation if all of its attributes are at the minimum desirable level.  This 

generalization process continues recursively until a prime relation is obtained.  A set of rules 

can then be discovered from the prime relation using rule transformation [Han, Cai, and 

Cercone 1993]. 

Another related, but not directly applicable, work is the abstract-driven approach, 

which is based on a vocabulary, a set of classification hierarchies, and a set of abstraction 

functions [Dhar and Tuzhilin 1993].  The vocabulary consists of a set of user-defined 

predicates, which are defined as disjunctions of conjunctive clauses, where each atomic 

formula is either a database relation, or another previously introduced user-defined predicate, 

or a condition involving attributes from database relations [Dhar and Tuzhilin 1993].  These 

user-defined predicates are grouped into classification hierarchies such that a partial order is 

imposed on all the predicates in the vocabulary based on the logical implication [Dhar and 

Tuzhilin 1993].  As a result, a predicate at higher level of a hierarchy logically implies those 

predicates at lower level of the same hierarchy.  Furthermore, an abstraction function of an 
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attribute maps the domain values of the attribute into some other domain; for example, the 

abstraction function year maps a date into a year by “extracting” the year from the date 

[Dhar and Tuzhilin 1993].  These abstraction functions can also be grouped into abstraction 

hierarchies by their composition [Dhar and Tuzhilin 1993].  Based on the vocabulary, the 

classification hierarchies, and the abstraction functions, a new relation, called abstract, 

whose attributes come from the union of the above three components is generated.  A set of 

interesting patterns can then be extracted from the abstract. 

Each abstraction function used in [Dhar and Tuzhilin 1993] can only deal with one 

attribute.  This prohibits the generation of new attributes that are composed of more than 

one primitive attribute.  For instance, the attribute “commission,” which is calculated by the 

multiplication of the primitive attributes “transaction amount” and “commission rate,” 

cannot be produced.  The applicability of such abstraction functions is therefore quite 

restrictive.  Although the abstract generated by the abstract-driven approach can be 

considered as a set of transformed data, this technique is developed for the task of pattern 

discovery but not for the task of data transformation. 

Furthermore, since both of attribute-oriented induction [Cai, Cercone, and Han 1991; 

Han, Cai, and Cercone 1992, 1993; Han and Fu 1996] and the abstract-driven approach 

[Dhar and Tuzhilin 1993] are not developed for the task of data transformation, they do not 

provide any explicit methodology for defining the necessary components (e.g., concept 

hierarchies, vocabularies, classification hierarchies, abstraction functions, etc.) for 

performing data transformation.  However, it is difficult for human users to express or 

formalize their knowledge and experience in most situations [Buchanan et al. 1983; 

Johnson-Laird 1989].  It is especially difficult when there is no explicit methodology to do 

so.  These methods are therefore inadequate for casual users to perform data transformation 

due to the lack of explicit methodology for specifying the process of data transformation. 

2.2 Meta-Mining 
Meta-mining is concerned with mining previously discovered patterns, which are typically 

represented in the form of production (if-then) rules [Au and Chan 2002a, 2002b, 2005; 

Roddick and Spiliopoulou 2002; Roddick and Spiliopoulou 2000; Kurgan and Cios 2004].  

It can be used to discover many useful patterns that existing data mining techniques (e.g., 

[Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 

1996; Agrawal and Srikant 1994; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 

1996; Cheung et al. 1996a; Ganti et al. 1999b; Han and Fu 1995; Houtsma and Swami 1995; 

Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 1994; Mehta, Agrawal, and 
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Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; 

Shafer, Agrawal, and Mehta 1996; Srikant and Agrawal 1995, 1996; Zhang, Ramakrishnan, 

and Livny 1996]) are not developed to mine for.  These patterns are represented in the form 

of production rules and they are called meta-rules because they are rules about rules.  The 

discovered meta-rules are arguably closer to the forms of knowledge that might be 

considered interesting [Roddick and Spiliopoulou 2002].  For example, the meta-rule “High 

Income is becoming more associated with Mercedes Benz Ownership” is arguably more 

interesting than the rule “High Income is associated with Mercedes Benz Ownership.” 

Although meta-mining is an important problem, it has received little attention in the 

literature.  To our best knowledge, in addition to our previous work [Au and Chan 2002a, 

2002b, 2005], this problem has only been studied in [Roddick and Spiliopoulou 2000; 

Kurgan and Cios 2004]. 

A framework for analyzing data mining results, called higher order mining, has been 

proposed in [Roddick and Spiliopoulou 2000].  In this framework, a first order rule is a rule 

discovered in a data set, whereas a second order rule is a sequence of first order rules 

discovered in different data sets.  Given a second order rule, the interestingness measures 

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence 

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared 

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the 

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first 

order rules can be considered as a time series.  One can then apply time series analysis (e.g., 

ARIMA [Box, Jenkins, and Reinsel 1994]) to analyze the time series.  Some of the first 

order rules of a second order rule may not hold in the corresponding data sets because their 

interestingness measures may fall below the user-specified thresholds, for example.  The 

time series may therefore contain missing values.  However, time series analysis is not 

developed to deal with missing values.  Furthermore, the discovered patterns are embedded 

in the parameters of the statistical model constructed and hence they are unnatural for 

human users to comprehend. 

This framework has also been used in a meta-mining system proposed in [Kurgan and 

Cios 2004] to generate data models from already generated data models.  The system 1) 

divides a data set into a number of subsets; 2) generates a set of rule from each data subset 

using a supervised learning algorithm; and 3) mines a set of (meta-) rules from the rule sets 

using the same algorithm.  The discovered meta-rules can then be used for classification.  

The experimental results reported in [Kurgan and Cios 2004] show that the performance of 

the meta-rules discovered from the already discovered rule sets is a little inferior to that of 
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the rules discovered from the data sets in terms of classification rate. 

 [Roddick and Spiliopoulou 2000] is concerned with revealing changes in rule sets, 

whereas [Kurgan and Cios 2004] aims at discovering regularities in rule sets.  None of them 

is developed to uncover all of the regularities, differences, and changes. 

A related, but not directly applicable, work is meta-learning [Prodromidis, Chan, and 

Stolfo 2000].  Given a collection of data sets or data subsets, it runs a supervised learning 

algorithm or different learning algorithms on each of them.  It then combines the predictions 

of the learned classifiers to produce a meta-classifier by recursively learning arbiter and 

combiner models in a bottom-up tree manner [Prodromidis, Chan, and Stolfo 2000].  An 

arbiter plays the role as a judge whose own prediction is used if the participating classifiers 

cannot reach a consensus decision.  A combiner can further be classified as class-combiner, 

class-attribute-combiner, and binary-class-combiner.  In a class-combiner, the meta-level 

training instances consist of the correct classification and the predictions; in a class-

attribute-combiner, the instances are formed as in a class-combiner with the addition of the 

attribute vectors; and a binary-class-combiner, the instances are composed in a manner 

similar to that in a class-combiner except that each prediction has l binary predictions where 

l is the number of classes [Prodromidis, Chan, and Stolfo 2000].  An example of the patterns 

revealed by meta-learning is “given a record, if classifier 1 classifies it into class A and 

classifier 2 classifies it into class B, then it is classified into class A.”  Meta-learning indeed 

is not developed to reveal the underlying patterns hidden in the classifiers. 

2.2.1 Mining Regularities in Multiple Data Sets 

For an interstate or international company, which comprises a number of offices at different 

geographical locations and has each office (or group of offices) to maintain its own database, 

to better make decisions, it needs to mine multiple databases throughout their offices [Zhang, 

Wu, and Zhang 2003].  However, existing data mining techniques (e.g., [Agrawal et al. 

1992; Agrawal, Imielinski, and Swami 1993a, 1993b; Agrawal and Shafer 1996; Agrawal 

and Srikant 1994, 1995; Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; 

Cheung et al. 1996a; Ganti et al. 1999b; Han, Dong, and Yin 1999; Han and Fu 1995; 

Houtsma and Swami 1995; Lu, Setiono, and Liu 1995; Mannila, Toivonen, and Verkamo 

1994, 1995; Mehta, Agrawal, and Rissanen 1996; Park, Chen, and Yu 1995a, 1995b; 

Savasere, Omiecinski, and Navathe 1995; Shafer, Agrawal, and Mehta 1996; Srikant and 

Agrawal 1995, 1996; Zhang, Ramakrishnan, and Livny 1996]) are developed to handle a 

single database and they are not directly applicable to mining multiple databases. 

Recently, several techniques for data mining in multiple databases, including [Liu, Lu, 
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and Yao 1998; Ribeiro, Kaufman, and Kerschberg 1995; Wrobel 1997; Yao and Liu 1997; 

Zhong, Yao, and Ohsuga 1999], have been proposed in the literature.  These multi-database 

mining techniques typically involve 1) selecting relevant data from multiple databases; 2) 

extracting the selected data to amass a single database; and 3) applying existing data mining 

techniques, such as association rule mining (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and 

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995, 

1996]), classification (e.g., [Agrawal et al. 1992; Agrawal, Imielinski, and Swami 1993a; Lu, 

Setiono, and Liu 1995; Mehta, Agrawal, and Rissanen 1996; Shafer, Agrawal, and Mehta 

1996]), and clustering (e.g., [Bradley, Fayyad, and Reina 1998; Cheeseman and Stutz 1996; 

Ganti et al. 1999b; Zhang, Ramakrishnan, and Livny 1996]), to the single database. 

They can therefore discover only the same kind of patterns as conventional (single-) 

database mining techniques.  They are unable to discover some patterns such as “in general, 

if a customer is married and middle-aged, then he/she gets a home mortgage.”  They also 

cannot discover such patterns as “in an exceptional manner, if a customer is single and 

tertiary educated, then he/she has more than one car.”  The former represents a regular 

pattern supported by many branches of an international company, whereas the latter 

represents a differential pattern supported by only a few branches. 

Recently, the mining of high-vote patterns in multiple databases has been proposed in 

[Zhang, Zhang, and Wu 2004].  Given the m databases, D1, …, Dm in the m branches of a 

company, a conventional (single-) database mining algorithm is first applied to Di to 

discover a set of patterns, Ri, i = 1, …, m.  Let R = {rj | rj ∈ R1 ∪ … ∪ Rm} and n = |R|.  The 

average voting rate, AVR, is given by: 
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where voting(rj) is the voting rate of rj and is calculated by: 
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The interestingness of rj, interest(rj), is then defined in [Zhang, Zhang, Wu 2004] as: 
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A pattern is high-voting if its voting rate is greater than the average voting rate and its 

interestingness is greater than or equal to a user-specified threshold [Zhang, Zhang, and Wu 

2004].  A weakness of this approach is that many users do not have any idea what the 

threshold should be.  Some useful patterns may be missed if it is set too high, whereas many 

irrelevant patterns may be found if it is set too low. 

Instead of concatenating multiple data sources to amass a single data set, a set of 

association rules can be synthesized from the association rules discovered in the data 

sources [Wu and Zhang 2003].  The supports of these association rules are estimated in 

terms of the supports of the underlying association rules and the popularities of the data 

sources.  The experimental results in [Wu and Zhang 2003] show that the synthesized rules 

are a good approximate of the rules discovered in the concatenated data set.  Although this 

synthesizing technique starts from multiple data sources, it is not developed to discover the 

regularities in the rule sets. 

2.2.2 Mining Differences in Multiple Data Sets 

In [Ganti et al. 1999a], a framework has been proposed to measure the difference between 

two data sets by building two models (one from each data set) and measuring the amount of 

work required to transform one model to the other.  It results in a real number to reflect to 

which degree the two data sets differ from each other.  However, it is not developed to 

explicitly reveal what the differences are. 

Recently, the mining of exceptional patterns in multiple databases in the context of 

association rules has been proposed in [Zhang, Zhang, and Wu 2004].  Given the m 

databases, D1, …, Dm in the m branches of a company, an association rule mining algorithm 

is first applied to Di to discover a set of patterns (i.e., association rules), Ri, i = 1, …, m.  Let 

R = {rj | rj ∈ R1 ∪ … ∪ Rm}.  The interestingness of rj, exceptional interest(rj), is defined in 

[Zhang, Zhang, and Wu 2004] as: 
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where voting(rj) is the voting rate of rj given by Equation (2.6) and AVR is the average 

voting rate calculated by Equation (2.5).  In addition to this measure, another interestingness 
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measure of rj with respect to Di is also defined in [Zhang, Zhang, and Wu 2004] as: 
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where supporti(rj) is the support of rj in Di and minsupporti is the user-specified minimum 

support for mining patterns in Di.  A pattern rj is exceptional if 1) its voting rate is greater 

than the average voting rate and exceptional interest(rj) is greater than or equal to a user-

specified threshold; and 2) exceptional interesti(rj) is greater than or equal to another user-

specified threshold for all i ∈ {i | rj ∈ Ri}.  Similar to the mining of high-vote patterns, a 

weakness of this approach is that many users have no idea what the thresholds should be.  If 

they are set too high, some useful patterns may be missed; but if they are set too low, many 

irrelevant patterns may be found. 

2.2.3 Mining Changes in Multiple Data Sets 

To deal with the data collected in different time periods, the maintenance of discovered 

association rules (e.g., FUP [Cheung et al. 1996b]) and active data mining [Agrawal and 

Psaila 1995] have been proposed in the literature.  Incremental updating techniques (e.g., 

FUP) can be used to update the discovered association rules if there are additions, deletions, 

or modifications of any tuples in a database after a set of association rules has been 

discovered.  Active data mining is concerned with representing and querying the shape of 

the history of parameters for the discovered association rules.  Although these techniques 

can be used to track the variations in supports and confidences of association rules, both of 

them are not developed to discover and predict rule changes. 

Although the mining of rule changes over time is an important problem, it has received 

little attention.  To our best knowledge, in addition to our previous work [Au and Chan 

2002a, 2002b, 2005], this problem has only been studied in [Liu et al. 2000], [Liu, Hsu, and 

Ma 2001], and [Roddick and Spiliopoulou 2000].  [Liu et al. 2000] is concerned with 

finding whether a decision tree built in a time period is applicable in other time periods.  

Given two data sets collected in two different time periods, this method builds a decision 

tree based on one of the data sets and then builds another based on the other data set such 

that the latter tree uses the same attribute and chooses the same cut point for the attribute as 

the former at each step of partitioning.  This method can be used to identify three categories 

of changes in the context of decision tree building: partition change, error rate change, and 

coverage change [Liu et al. 2000].  Compared to [Liu et al. 2000], instead of building a 

decision tree in the next time instance to ensure that it resembles the first, our goal is to 
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discover the changes in rules discovered in different time periods. 

Following the idea presented in [Liu et al. 2000], a method has been proposed in [Liu, 

Hsu, and Ma 2001] to find whether a set of association rules discovered in a time period is 

applicable in other time periods.  To do so, it employs chi-square test to determine whether 

there are any changes in the supports and confidences of the association rules discovered in 

different time periods.  Unlike this method, our goal is to mine (meta-) rules to represent the 

changes and to predict any changes in the future. 

If the underlying data sets are collected in different time periods, the higher order 

mining framework proposed in [Roddick and Spiliopoulou 2000] can be used to find the 

changes in the discovered rules.  Given a second order rule, the interestingness measures 

(e.g., the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence 

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared 

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the 

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.) of its first 

order rules can be considered as a time series, which can be analyzed by time series analysis 

(e.g., ARIMA [Box, Jenkins, and Reinsel 1994]).  The time series may contain missing 

values because some of the first order rules of a second order rule may not hold in the 

corresponding data sets as their interestingness measures may fall below the user-specified 

thresholds, for example.  However, time series analysis is not developed to deal with 

missing values.  Furthermore, the discovered patterns are embedded in the parameters of the 

statistical model constructed.  They are therefore not natural for human users to comprehend. 
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Chapter 3 

The Proposed Approach 
 

In this chapter, we define the problems of mining regularities, differences, and changes in 

rule sets and propose a new meta-mining approach to solving them.  The proposed approach 

is composed of a collection of techniques for 1) generating fuzzy sets from data 

automatically; 2) using linguistic variables and linguistic terms to represent the discovered 

regularities, differences, and changes; 3) exploiting the scalability of parallel computer 

systems to mine meta-rules efficiently; 4) grouping and selecting a subset of attributes for 

meta-mining; and 5) enabling the mining of meta-rules involving attributes that are not 

originally contained in the database.  This chapter also describes how these techniques fit 

into the meta-mining approach. 

3.1 A Formal Problem Description 
Let us suppose that there is a collection of data sets, Dj, j = 1, …, n.  A set of rules, 

} ..., ,{ 1 jjsjj rrR = , is mined from Dj, j = 1, …, n.  A rule, rju ∈ Rj, is an implication of the 

form X ⇒ Y, where X and Y are conjunctions of conditions.  The antecedent and the 

consequent of the rule X ⇒ Y are denoted as antecedent(X ⇒ Y) = X and  

consequent(X ⇒ Y) = Y, respectively. 

 

Example 3.1 An example rule, r, is: 

 

Sex = Male ∧ Education = Tertiary ∧ Income = High 

 ⇒ Mercedes Benz Ownership = True. 

The antecedent and the consequent of this rule are: 

 

antecedent(r) = (Sex = Male ∧ Education = Tertiary ∧ Income = High) 

 

and 

 

consequent(r) = (Mercedes Benz Ownership = True), 

 

respectively.  
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Given a rule, X ⇒ Y, let condition(X) and condition(Y) be the sets of all the conditions 

in its antecedent and consequent, respectively.  The set of conditions in the rule X ⇒ Y is 

then given by condition(X ⇒ Y) = condition(X) ∪ condition(Y).  Let us further suppose that 

U
js

u
juj rconditionRcondition

1

)()(
=

= . 

 

Example 3.2 Let us consider the rule r given in Example 3.1.  The set of conditions in its 

antecedent is: 

 

condition(antecedent(r)) = {Sex = Male, Education = Tertiary, Income = High}, 

 

the set of conditions in its consequent is: 

 

condition(consequent(r)) = {Mercedes Benz Ownership = True}, 

 

and the set of conditions in the rule is: 

 

condition(r) = {Sex = Male, Education = Tertiary, Income = High, 

 Mercedes Benz Ownership = True}. 

  

In general, the rule X ⇒ Y is associated with one or more interestingness measures (e.g., 

the Dempster-Shafer measure [Dempster 1967; Shafer 1976], support and confidence 

[Agrawal, Imielinski, and Swami 1993b], conviction [Brin et al. 1997], the chi-squared 

measure [Brin, Motwani, Silverstein 1997], the J-measure [Smyth and Goodman 1992], the 

adjusted residual and weight of evidence [Chan and Wong 1990, 1991], etc.).  We denote 

the interestingness measure of the rule X ⇒ Y in Dj as interestingnessj(X ⇒ Y). 

 

Example 3.3 In an association rule mining algorithm, the interestingness of a rule such as 

that in Example 3.1 is measured in terms of support and confidence.  It holds in data set Dj 

with support, 
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and confidence, 
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where σ denotes the SELECT operation in relational algebra and |S| denotes the cardinality 

of set S.  

3.1.1 Mining Regularities and Differences 

From R1, …, Rn, we aim at mining a set of meta-rules to reveal the underlying regularities 

hidden in the rule sets and the differences between different rule sets. 

 

Definition 3.1 A meta-rule mined from rule sets R1, …, Rn is an implication of the form: 

 

X ⇒ Y, 

 

where X and Y are conjunctions of conditions such that U
n

j
jRconditionXcondition

1

)()(
=

⊆ , 

U
n

j
jRconditionYcondition

1

)()(
=

⊆ , and condition(X) ∩ condition(Y) = ∅.  

Rather than being supported by data records, a meta-rule is supported by the rules in 

the rule sets.  We say that a rule supports a meta-rule if the set of conditions in the meta-rule 

is a subset of that in the rule. 

 

Definition 3.2 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, is supported by a set of 

rules: 

 

R (X ⇒ Y) = {r | r ∈ R1 ∪ … ∪ Rn, condition(X) ∪ condition(Y) ⊆ condition(r)}. 

  

A meta-rule represents an association relationship in common in the rule sets if many 

rules support it.  In other words, it represents an underlying regularity hidden in the rule sets. 

 

Definition 3.3 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a regularity 

embedded in them if |R (X ⇒ Y)| is sufficiently large.  We refer to this meta-rule as a regular 

meta-rule.   
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On the other hand, a meta-rule represents a distinctive association relationship in the 

rule sets if only a few rules support it.  In other words, it represents a difference between the 

rule sets. 

 

Definition 3.4 A meta-rule, X ⇒ Y, mined from rule sets R1, …, Rn, represents a difference 

between them if |R (X ⇒ Y)| is sufficiently small.  We refer to this meta-rule as a differential 

meta-rule.   

To reveal regularities and differences in rule sets, we mine regular and differential 

meta-rules from the rule sets, respectively. 

 

Example 3.4 Let us consider rule sets R1, …, R5, each of which contains a set of 

association rules.  They are given in the following: 

 

R1: {i1, i2} ⇒ {i3} 

 {i4} ⇒ {i1} 

 

R2: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 

 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 

 

R4: {i1, i2} ⇒ {i3} 

 {i2, i3, i5} ⇒ {i4} 

 

R5: {i1, i2} ⇒ {i3}, 

 

where i1, …, i5 are items. 

The meta-rule {i2, i3} ⇒ {i4} is supported by the following rules: 

 

R2: {i2, i3, i5} ⇒ {i4} 

 {i2, i3} ⇒ {i4} 

 

R3: {i2, i3, i5} ⇒ {i4} 
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R4: {i2, i3, i5} ⇒ {i4}, 

 

whereas the meta-rule {i4} ⇒ {i1} is supported by the following rule: 

 

R1: {i4} ⇒ {i1}. 

The former and the latter meta-rules are supported by 44.4% (= 4 / 9) and 11.1%  

(= 1 / 9) of all the rules, respectively. 

A straightforward approach to determining whether a meta-rule is supported by a 

sufficiently large or small number of rules is to have a user supply thresholds.  For example, 

if the threshold for determining regular meta-rules is set to 40%, the former meta-rule is 

found to be regular; and if the threshold for determining differential meta-rules is set to 15%, 

the latter meta-rule is found to be differential. 

A weakness of this approach is that it is difficult to determine what the thresholds 

should be.  An effective algorithm should use an objective measure to mine regular and 

differential meta-rules, instead of having a user supply thresholds.  

3.1.2 Mining Changes 

We are also concerned with mining a set of meta-rules to reveal how the rules in the rule 

sets change over time. 

Now, let us further suppose that Dj is collected in time periods tj, j = 1, …, n, where 

t1, …, tn are consecutive and tj happens before tk if j < k.  Let us consider rules rju ∈ Rj and 

rkv ∈ Rk, j, k ∈ {1, …, n}, j < k.  These represent the same association relationship if, and 

only if, antecedent(rju) = antecedent(rkv) and consequent(rju) = consequent(rkv). 

 

Definition 3.5 Given a rule, rju ∈ Rj, if there exists another rule, rkv ∈ Rk, j < k, such that 

antecedent(rju) = antecedent(rkv) and consequent(rju) = consequent(rkv), rju is equivalent to rkv, 

denoted as rju ≡ rkv, because they represent the same association relationship.  

It is important to note that although rju ≡ rkv, its interestingness measure in tj may be 

different from that in tk because the rule may change as will be discussed in Definitions 3.6–

3.8. 
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Definition 3.6 Given two rules, rju ∈ Rj and rkv ∈ Rk, j < k, such that rju ≡ rkv, rju changes 

during the period from tj to tk if interestingnessj(rju) ≠ interestingnessk(rju).  We say that rju is 

a changed rule in tk.  

It is possible that rule rju is found in Rj but not in Rk because it is interesting in tj but it 

becomes uninteresting in tk, j < k. 

 

Definition 3.7 Given Rj and Rk, j < k, if rju ∈ Rj and there does not exist rkv ∈ Rk such that 

rju ≡ rkv, we say that rju is perished in tk and rju is a perished rule in tk.  In this case, the 

interestingness measure of rju in tk is missing, denoted as interestingnessk(rju) = ?.  

On the other hand, it is also possible that rkv is not found in Rj but is found in Rk 

because it is uninteresting in tj but it becomes interesting in tk, j < k. 

 

Definition 3.8 Given Rj and Rk, j < k, if rkv ∈ Rk and there does not exist any rju ∈ Rj such 

that rju ≡ rkv, we say that rkv is added in tk and rkv is an added rule in tk.  In this case, the 

interestingness measure of rkv in tj is missing, denoted as interestingnessj(rkv) = ?.  

An added rule or a perished rule is a special case of a changed rule.  It is special in that  

an added rule’s interestingness measure changes from below a threshold to above it, 

whereas a perished rule’s interestingness measure changes in the reverse direction, from 

above the threshold to below it.  The threshold can be specified by a user or determined by 

an objective means.  Revealing how a rule changed in the past allows one to predict whether 

it will be added or perished or to what degree it will change in the future. 

For each rule in R1 ∪ … ∪ Rn, we are interested in mining a set of meta-rules to 

represent the regularities governing how the rule changes during the period from t1 to tn.  We 

refer to these meta-rules as change meta-rules because they represent how the rule changes 

over time. 

 

Definition 3.9 For r ∈ R1 ∪ … ∪ Rn, a change meta-rule is an implication of the form: 
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the interestingness measure of r during the period from 
kjt  to 1+kjt ) and r

pk
l  is an attribute 

value in )( r
jk

Ldom , which denotes the domain of r
jk

L , for k = 1, …, h, q and  

j1 < … < jh < jq.  

The mining of change meta-rules allows the examination of the regularities governing 

how a rule changes during a period t1 to tn.  The discovered meta-rules can also be used to 

predict how the rule will change in tn + 1.  The ability to predict how rules will change allows 

accurate results to be achieved when the discovered rules in the past are used for 

classification in the future. 

 

Example 3.5 Let us consider the association rules of items i1, i2, i3, and i4 discovered in 

three consecutive time periods, t1, t2, and t3.  Assume that the association rule discovered in 

time period t1 is: 

 

r: {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t1 are support1(r) = 37.8% and confidence1(r) = 95.0%, 

respectively. 

In time period t2, the association rule becomes: 

 

r': {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t2 are support2(r) = 34.9% and confidence2(r) = 94.8%, 

respectively. 

Then in time period t3, the association rule becomes: 

 

r": {i1, i2, i3} ⇒ {i4} 

 

whose support and confidence in t3 are support3(r) = 28.4% and confidence3(r) = 94.5%, 

respectively. 

The support of the association rule decreases in the period from t1 to t2 and in the 

period from t2 to t3.  A change meta-rule of support mined from these rules would be: 
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Change in support in this period = Fairly decrease 

 ⇒ Change in support in next period = Highly decrease. 

 

This meta-rule of support states that “if the change in support in this period moderately 

decreases, then the change in support in next period will decrease significantly.”  The 

support of the association rule in tj can then be predicted given the support of this rule in tj – 1 

and that in tj – 2. 

On the other hand, the confidence of the association rule is more or less the same in the 

period from t1 to t2 and in the period from t2 to t3.  A change meta-rule of confidence 

discovered in these rules would be: 

 

Change in confidence in this period = More or less the same 

 ⇒ Change in confidence in next period = More or less the same. 

 

This states that “if the change in confidence in this period is more or less the same, then the 

change in confidence in next period will be more or less the same.”  The confidence of the 

association rule in tj can then be predicted given the confidence of this rule in tj – 1 and that in 

tj – 2.  

3.2 The Solution 
Given a collection of data sets or data subsets, we propose to use a meta-mining approach to 

the discovery of regularities, differences, and changes in these rules.  It comprises a 

collection of techniques for: 1) data transformation, 2) fuzzy partitioning, 3) attribute 

clustering, and 4) rule mining.  They enable the mining of rules from data sets and meta-

rules from rule sets.  Fig. 1 shows the proposed meta-mining approach and how these 

techniques fit in it. 

 

 



 

53 

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

Data
Set

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Rule Set

.........

.........

Data Mining

Data
Transformation

Fuzzy
Partitioning

Attribute
Clustering

Rule Mining

Meta-Mining

Meta-
Rule Set

(Chapter 4)

(Chapter 5)

(Chapter 6)

(Chapters 7 & 8)

 

Fig. 1.  The proposed meta-mining approach. 
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3.2.1 Data Transformation 

Some existing algorithms can be used to discover association rules in transactional data, 

whereas other algorithms can be used to mine association rules in relational data.  None of 

them has been explicitly developed to handle both transactional and relational data.  We 

introduce a novel approach to handling both transactional and relational data at the same 

time.  This type of data allows data mining algorithms to discover multi-dimensional 

association rules.  To effectively uncover the hidden association relationships, the proposed 

approach combines the relational and transactional data by performing data transformations.  

It has been applied to a data mining task involving a large database that was provided by an 

international bank with offices in Hong Kong.  The database contains the demographic data 

of over 320,000 customers and their banking transactions collected over a six-month period.  

By mining the database, the bank would like to be able to discover interesting patterns that 

would reveal different characteristics about different customers so that it could better serve 

and retain them.  With our approach, fuzzy association rules obtained by our mining 

algorithms proposed in Chapter 7 are judged by the experts from the bank to be very useful.  

In particular, they discovered that they had identified some interesting characteristics about 

the customers who had once used the bank’s loan services but then decided later to cease 

using them.  The bank translated what they discovered into actionable items by offering 

some incentives to retain their existing customers. 

To enable effective mining of fuzzy rules in the data mining phase, the proposed meta-

mining approach applies the data transformation method to each data set.  This method 

makes use of transformation functions to transform the original data into a set of 

transformed data.  Instead of mining the original data, we mine rules from the transformed 

data.  This enables not only the discovery of rules involving attributes not originally 

contained in the data, but also data mining in the combination of relational and transactional 

data. 

In the meta-mining phase, the data transformation method can also be applied to the 

rule sets if the introduction of new attributes is desirable.  This method transforms the 

attributes involved in the conditions of the rules in the rule sets using transformation 

functions to produce a set of transformed data.  For clarity, we here refer to the transformed 

data as the transformed meta-data. 

3.2.2 Fuzzy Partitioning 

To deal with continuous or mixed continuous valued and discrete valued data, the domains 

of continuous attributes are typically discretized into a finite number of intervals.  However, 
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if too many data points lie on the boundaries of the intervals due to the ambiguity or 

fuzziness of the attribute values near the boundary regions, this could sensitively affect the 

usefulness of the discovered patterns, especially when they are used for classification.  To 

better handle continuous data, we propose to use fuzzy sets to represent interval events in 

the domains of continuous attributes, allowing continuous data lying on the interval 

boundaries to partially belong to multiple intervals.  The effect of noise to fuzzy set based 

techniques has been evaluated experimentally in [Gayme, Menon, and Ball 2003; Pacini and 

Kosko 1992; Postlethwaite 1991; Sun and Wang 2005; Xie et al. 1994].  These empirical 

studies demonstrated the resilience to noise of fuzzy sets.  Realistically, the resilience to 

noise of fuzzy sets and their affinity with human knowledge representation make them very 

useful in many data mining applications. 

Since the membership functions of fuzzy sets can profoundly affect the performance of 

the models or rules discovered, the determination of membership functions or fuzzy 

partitioning is crucial.  In this chapter, we present a new method to determine the 

membership functions of fuzzy sets directly from data to maximize the class-attribute 

interdependence and thence improve the classification results.  In other words, it forms a 

fuzzy partition of the input space automatically, using an information-theoretic measure to 

evaluate the interdependence between the class membership and an attribute as the objective 

function for fuzzy partitioning.  To find the global optimum of the measure, it employs 

fractional programming (iterative dynamic programming).  Fuzzy partitioning then enables 

fuzzy data mining techniques to build fuzzy models or discover fuzzy rules based on the 

generated fuzzy sets instead of relying on the user-specified ones.  To evaluate the 

effectiveness of the proposed method, several real-world data sets are used in our 

experiments.  The experimental results show that this method is very effective in 

classification when compared to other well-known discretization and fuzzy partitioning 

approaches. 

After data transformation, the meta-mining approach applies the fuzzy partitioning 

technique to the transformed data in the data mining phase.  It also applies the fuzzy 

partitioning technique to the transformed meta-data in the meta-mining phase to generate 

fuzzy sets automatically for the new attributes introduced by data transformation.  Because 

those attributes have been fuzzy partitioned in the data mining phase, it is not necessary to 

fuzzy partition them again in this step. 

3.2.3 Attribute Clustering 

We propose an attribute clustering method, which is able to group genes based on their 
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interdependence so as to mine meaningful patterns from the gene expression data.  This 

method can be used for gene grouping, selection, and classification.  The partitioning of a 

relational table into attribute subgroups allows a small number of attributes within or across 

the groups to be selected for analysis.  The clustering of attributes reduces the search 

dimension of a data mining algorithm.  The reduction of the search dimension is especially 

important to data mining in gene expression data because such data typically consist of a 

huge number of genes (attributes) and a small number of gene expression profiles (tuples).  

Most data mining algorithms are typically developed and optimized to scale to the number 

of tuples rather than to the number of attributes.  The situation becomes even worse when 

the number of attributes overwhelms the number of tuples, in which case, the likelihood of 

reporting patterns that are actually irrelevant due to chance becomes rather high.  Gene 

grouping and selection are thus important preprocessing steps when many data mining 

algorithms are applied to gene expression data.  This work defines the problem of attribute 

clustering and introduces a methodology for solving it.  Our proposed method groups 

interdependent attributes into clusters by optimizing a criterion function derived from an 

information measure that reflects the interdependence between attributes.  By applying our 

algorithm to gene expression data, meaningful clusters of genes are discovered.  The 

grouping of genes based on attribute interdependence within group helps to capture different 

aspects of gene association patterns in each group.  Significant genes selected from each 

group then contain useful information for gene expression classification and identification.  

To evaluate the performance of the proposed approach, we applied it to two well-known 

gene expression datasets and compared our results with those obtained by other methods.  

Our experiments show that the proposed method is able to find the meaningful clusters of 

genes.  By selecting a subset of genes which have high multiple-interdependence with others 

within clusters, significant classification information can be obtained.  Thus a small pool of 

selected genes can be used to build classifiers with very high classification rate.  From the 

pool, gene expressions of different categories can be identified. 

After fuzzy partitioning, our meta-mining approach employs the attribute clustering 

method to group interdependent attributes into clusters.  It also applies the attribute 

clustering method to group interdependent attributes in the transformed and fuzzy 

partitioned meta-data into clusters.  Significant attributes selected from each group contain 

useful information for classification and identification. 

3.2.4 Fuzzy Rule Mining 

Existing data mining algorithms (e.g., decision-tree based approaches and association rule 

mining algorithms) typically require the domains of continuous attributes to be discretized 
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into a finite number of intervals.  These intervals may not be concise and meaningful 

enough for humans to easily obtain nontrivial knowledge from the discovered rules.  Instead 

of using intervals, we propose two new algorithms, called FARM and EFARM, for mining 

fuzzy rules, which employ linguistic variables and linguistic terms to represent the revealed 

regularities.  The linguistic representation is especially useful when the discovered rules are 

presented to human users for examination.  The use of fuzzy set based techniques not only 

makes the proposed algorithms resilient against noise such as inaccuracies in physical 

measures of real-world entities and missing values in databases, but also enables the 

prediction of attribute values to be associated with degrees of membership.  Our algorithms 

are therefore able to deal with those cases where an object can belong to more than one class.  

For example, a person can suffer from a cold and fever at the same time.  To distinguish 

interesting association relationships from uninteresting ones, both of our proposed 

algorithms employ an objective interestingness measure, which reflects the difference in the 

observed and the expected degree to which an object is characterized by different linguistic 

terms.  Being based on the objective measure, they do not require any user-supplied 

thresholds, which are usually difficult to determine.  To evaluate the performance of our 

algorithms, we tested them using several real-life data sets for data mining.  The 

experimental results show that they are very effective at the tasks.  When compared to 

popular data mining algorithms, they are better able to uncover useful rules hidden in 

databases.  Furthermore, we also applied our proposed algorithms to synthetic data sets for 

meta-mining.  The results show that they can reveal the embedded regularities, differences, 

and changes effectively. 

3.2.5 Parallelization of Fuzzy Rule Mining 

We also extend the FARM and EFARM algorithms, which are developed to mine fuzzy 

rules in data sets and meta-rules in rule sets in the last chapter, to exploit the scalability of 

parallel computer systems.  The parallel versions of FARM and EFARM are called Parallel-

FARM and Parallel-EFARM, respectively.  Given a very large data set, Parallel-FARM 

divides it into several horizontal partitions and assigns them to different sites in a distributed 

system.  Each site scans its database partition to obtain the number of tuples characterized 

by different linguistic terms and then exchanges the local counts with all the other sites to 

find the global counts.  Based on the global counts, the interestingness measures are 

computed and the sites are able to uncover interesting associations.  By repeating this 

process of counting, exchange of counts, and calculation of interestingness measures, 

Parallel-FARM is able to discover all interesting associations in a data set.  On the other 

hand, Parallel-EFARM employs a parallel genetic algorithm for mining rules.  It encodes a 

complete set of rules in one single chromosome and each allele encodes one rule which is 
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represented by some non-binary symbolic values.  It stores a single population of 

chromosomes in a master processor.  In each generation of Parallel-EFARM, the master 

processor performs selection, crossover, and mutation.  It then distributes all the 

chromosomes among the processors in a distributed system.  Each processor evaluates the 

fitness of the chromosomes assigned to it and sends the fitness of these chromosomes back 

to the master processor.  Parallel-EFARM then proceeds to the next generation.  Both 

Parallel-FARM and Parallel-EFARM were implemented in an experimental test bed.  Their 

scalability was tested using a popular benchmarking data set.  The results show that Parallel-

FARM and Parallel-EFARM have very good sizeup, speedup, and scaleup performance. 

The meta-mining approach applies one of the serial and parallel mining algorithms to 

mine rules (meta-rules) on the selected attributes from the transformed and fuzzy partitioned 

data (meta-data).  The discovered rules and meta-rules represent the revealed association 

relationships using linguistic variables and linguistic terms.  The discovered meta-rules are 

also able to represent regularities, differences, and changes in the rule sets. 

As a remark, in order to mine meaningful meta-rules, the underlying data sets are ought 

to be “comparable.”  For example, one data set contains the close price of a stock listed in 

the Hong Kong Stock Exchange; another data set contains the close price of a stock listed in 

the New York Stock Exchange; and so on.  This perspective is consistent with [Pedryz 

2002].  In [Pedryz 2002], how fuzzy sets discovered in different data sets affect each other 

have been taken into consideration and the collaborative fuzzy clustering technique has been 

proposed to adjust these fuzzy sets. 
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Chapter 4 

Data Transformation 
 

Given a database system consisting of transactional data (e.g., records of purchase, 

electronic fund transfer, phone calls, etc.) and relational data (e.g., customer information, 

inventory records, etc.), our goal is to discover a set of interesting rules that describes the 

relationship between the patterns underlying them.  The mining of association rules (e.g., 

[Agrawal, Imielinski, and Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 

1994; Cheung et al. 1996a; Han and Fu 1995; Houtsma and Swami 1995; Mannila, 

Toivonen, and Verkamo 1994; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, 

and Navathe 1995; Srikant and Agrawal 1995, 1996]) is developed to reveal the patterns or 

associations hidden in the data.  Some of existing algorithms (e.g., [Agrawal, Imielinski, and 

Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; 

Han and Fu 1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, 

Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 

1995]) can be used to discover association rules in transactional data with no reference to 

relational data.  On the other hand, other algorithms (e.g., [Srikant and Agrawal 1996]) can 

be used to mine association rules in relational data without any reference to transactional 

data.  None of them is explicitly developed for handling both transactional and relational 

data.  It is not clear how they, which deal with either transactional or relational data, can be 

applied to discover association rules relating the union of both transactional and relational 

data. 

However, many database systems contain not only transactional data but also relational 

data concerning information such as customer background and inventory records, etc.  For 

example, the rule “70% of the phone calls made by lawyers are to Canton, China; 8% of all 

transaction records exhibit such characteristics” cannot be discovered by existing techniques.  

This rule relates the phone call patterns to the career of customers.  To discover rules of 

such kind, both of transactional and relational data have to be taken into consideration.  

Since both transactional and relational data are usually collected in many database systems, 

it is important that this problem to be dealt with effectively. 

To deal with the problem that is created by the fact that there is more than one database 

relation, the concept of a universal relation needs to be used.  A universal relation is an 

imaginary relation that can be used to represent the data that is constructed by logically 

joining all of the separate tables of a relational database [Ullman 1988].  The use of a 
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universal relation, therefore, makes it possible for the existing data mining systems (e.g., 

[Matheus, Chan, and Piatetsky-Shapiro 1993]) to deal with both transactional and relational 

data.  Unfortunately, the construction of universal relations will very likely lead to the 

introduction of redundant information, which will mislead the rule discovery process of 

many data mining algorithms. 

Existing data mining algorithms (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and 

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995, 

1996]) can be made more powerful if they can overcome such a problem.  They can also be 

further improved if they can discover rules that involve attributes that are not originally 

contained in a database.  The ability to do so is essential to the mining of interesting patterns 

in many different application areas.  For example, rules regarding consumers’ buying habits 

at Christmas cannot be discovered if a new attribute of “holiday” has not been considered. 

Taking into consideration the need to address these issues, our proposed approach is 

equipped with some transformation functions that can be used to deal with both 

transactional and relational data and the different types of attributes in the databases of a 

database system so as to construct new relations.   

The rest of this chapter is organized as follows.  In Section 4.1, we introduce a 

formalism to handle the union of relational and transactional data.  In Section 4.2, we 

describe the bank-account database that was provided by the bank in a consultancy project 

of the Department of Computing, The Hong Kong Polytechnic University, Hung Hom, 

Kowloon, Hong Kong.  Prof. Keith C. C. Chan was the principal investigator of the 

consultancy project.  In Section 4.3, we discuss the fuzzy association rules that are 

discovered by our rule mining algorithms proposed in Chapter 7 in the bank-account 

database. 

4.1 Transformation Functions 
To discover interesting associations in a relational database, some variables of interest can 

be extracted directly from the database, whereas some of them are not contained in the 

original data and they are produced by the transformation functions.  To handle the union of 

both relational and transactional data, we define a set of transformation functions to operate 

on multiple relations.  The application of these transformation functions to the database 

results in a set of transformed data.  To manage the data mining process effectively, the 
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transformed data is stored in a relation in the relational database.  We refer to this relation as 

the transformed relation.  We define the problem formalism in the following. 

Let 
iiKi AA  ..., ,1 , for i = 1, …, I, be the attributes of the real-world entities represented 

by the relational tables, Ri, i = 1, …, I, respectively.  Let the domain of Aik, k = 1, …, Ki, be 

represented by } ..., ,{)( )()1( ikm
ikikik aaAdom = , i = 1, 2, …, I, k = 1, 2, …, Ki.  In other words, 

)(...)( 1 iiKii AdomAdomR ××⊆ .  For any Ri, we use 
iRA  to denote the set of attributes of Ri, 

that is, } ..., ,{ 1 ii iKiR AA=A .  The primary key of Ri, which is composed of one or more 

attributes and is associated with each tuple in a relation, is represented by 

} ..., ,{ 1 iiKii AA⊆K . 

For a database system, a set of transaction records can be denoted by Tj, j = 1, …, J, 

where each Tj is characterized by a set of attributes, which are denoted by  

jjLj AA  ..., ,1 , and has a unique transaction identifier TIDj.  In another words, 

)(...)( 1 jjLjjj AdomAdomTIDT ×××⊆ . 

The definition of the transaction records, which is used here, follows the idea presented 

in [Srikant and Agrawal 1996].  It is a generalization of the definition of the transactions 

used in many of the existing algorithms for mining association rules (e.g., [Agrawal, 

Imielinski, and Swami 1993b; Agrawal and Shafer 1996; Agrawal and Srikant 1994; 

Cheung et al. 1996a; Han and Fu 1995; Houtsma and Swami 1995; Mannila, Toivonen, and 

Verkamo 1994; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; 

Srikant and Agrawal 1995]).  In these algorithms, a transaction, t, is typically defined as 

<TID, J’>, where TID is the transaction identifier of t, J’ ⊆ J, and J = {item1, …, itemn} is a 

set of items.  To store transactions of this kind in a relational database, one can define a 

relation, T(TID, A1, …, An), where TID is a transaction identifier.  For any t ∈ T, t[Ak] = 1 if 

t contains itemk; otherwise, t[Ak] = 0, for k = 1, …, n.  This is a special case of the definition 

of the transaction records used in this chapter.  In addition to handling items, our definition 

can also handle categorical (discrete-valued) and quantitative (continuous-valued) attributes.  

This allows richer semantics to be captured in the transaction records as compared to the 

definition that is only concerned with items (e.g., [Agrawal, Imielinski, and Swami 1993b; 

Agrawal and Shafer 1996; Agrawal and Srikant 1994; Cheung et al. 1996a; Han and Fu 

1995; Houtsma and Swami 1995; Mannila, Toivonen, and Verkamo 1994; Park, Chen, and 

Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and Agrawal 1995]). 

In a database system, there are some one-to-many relationships between the records in 



 

62 

Ri, i = 1, …, I, and those in Tj, j = 1, 2, …, J.  For example, the bank-account database 

contains a set of relational tables (i.e., CUSTOMER and ACCOUNT) that contain 

background information about each customer and a transactional table (i.e., TRANSACTION) 

that contains the details of each transaction made by a customer.  The relational data are 

related to the transactional data by some one-to-many relationships in such a way that we 

can find Ki, which is the primary key of Ri, in } ..., ,{ 1 jjLj AA , which can be used as a foreign 

key to provide a reference to the corresponding tuple in Ri, i = 1, …, I. 

Given Ri and Tj, to deal with both relational and transactional data and to consider 

additional attributes that are not originally in the database, we propose the concept of using 

transformation functions that are defined on the original attributes in Ri and Tj.  Let f1, …, fp 

be a set of transformation functions, where: 
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We can construct a new relation R′  that contains both the original attributes in Ri and Tj 

and the transformed attributes that are obtained by applying appropriate transformation 

functions.  Let R′  be composed of attributes, nAA ′′  ..., ,1 , that is, )(...)( 1 nAdomAdomR ′××′⊆′ , 

where uA′ , u = 1, …, n, can be any attribute in Ri, i = 1, …, I, or Tj, j = 1, …, J, or any 

transformed attribute.  In other words, U U UUU 
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Instead of performing data mining on the original Ri and Tj, we perform data mining on R′ . 

Given a database, different kinds of transformation functions can be performed.  They 

include logical, arithmetic, substring, and discretization functions.  Depending on the type 

of attribute, one or more of these functions can be applied to the attribute.  We provide the 

definition of each type of transformation functions in the following sections. 

4.1.1 The Logical Functions 

The logical functions are composed of a combination of logical operators, such as NOT, 

AND, OR, etc.  A logical function can take one or more attributes as arguments.  Let f1, …, 

fn be a set of functions so that: 
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and ⊕, …, ⊗ ∈ {AND, OR, NOT, XOR, NAND, NOR}. 

A generic way of utilizing these functions is to construct a logical function, f, defined 

in terms of f1, …, fn, as follows: 
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In the case where none of f1, …, fn are evaluated as being true, the logical function, f, 

produces an unknown value as its output.  Furthermore, if the value of any attribute, Ai,  

i = 1, …, r, of a tuple is unknown, the logical function, f, also produces an unknown value as 

its output. 

4.1.2 The Arithmetic Functions 

The arithmetic functions can involve addition, subtraction, multiplication, and division.  An 

arithmetic function takes a set of attributes as its argument and produces an attribute that has 

a type of real or integer.  Let f1, …, fr be operations in relational algebra, each of which 

produces an integer or a real number.  The arithmetic function f is defined as follows: 
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and ⊕, …, ⊗ ∈ {+, −, ×, ÷}. 
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In the case where the value of any attribute, Ai, i = 1, …, r, of a tuple is unknown, the 

arithmetic function, f, produces an unknown value as its output. 

4.1.3 The Substring Functions 

The substring functions extract a specific portion of a given attribute.  Let the given attribute, 

A, be a string of s characters.  For any a ∈ dom(A), we use a[i] to denote the i-th character of 

a.  The substring function, f, is defined as follows: 
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and 1 ≤ l ≤ u ≤ s. 

In the case where the value of an attribute, A, of a tuple is unknown, the substring 

function, f, produces an unknown value as its output. 

4.1.4 The Discretization Functions 

The discretization functions discretize the domain of any numeric attribute into a finite 

number of intervals.  Let f be the discretization function that creates r intervals.  We use ui to 

denote the upper limit of the i-th interval, for i = 1, …, r – 1.  Then,  f is defined as follows: 
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∈

==

J

j
T

I

i
R ji

A
11

 AA . 

In the case where the value of an attribute, A, of a tuple is unknown, the discretization 

function, f, produces an unknown value as its output. 

The boundaries of the intervals can be specified by users or determined automatically 

by using various algorithms (e.g., [Ching, Wong, and Chan 1995; Liu, Wong, and Wang 

2004]).  One of the commonly used algorithms involves discretizing the attribute into equal 
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intervals.  Another popular algorithm involves discretizing the attribute into intervals in 

such a way that the number of tuples in each interval is the same.  As a result, each tuple has 

an equal probability of lying in any interval. 

4.2 A Case Study on the Bank-Account Database 
The bank-account database was provided by a bank in Hong Kong.  The bank does not want 

to be identified in our work because customer attrition rates are confidential.  The bank-

account database is stored in an Oracle database, which is one of the most popular relational 

database management systems [Date 2000].  It is composed of 3 relations, namely, 

CUSTOMER, ACCOUNT, and TRANSACTION.  Of these relations, CUSTOMER and 

ACCOUNT contain relational data, whereas TRANSACTION contains transactional data.  

Specifically, the bank maintains a tuple in CUSTOMER for each customer (e.g., sex, age, 

marital status, etc.), a tuple in ACCOUNT for each account owned by a customer (e.g., 

account type, loan amount limit, etc.), and a tuple in TRANSACTION for each transaction 

made by a customer on one of his/her accounts (e.g., cash deposit, cash withdrawal, etc.).  A 

customer can have one or more accounts and an account can have one or more transactions.  

Accordingly, a tuple in CUSTOMER is associated with one or more tuples in ACCOUNT, 

and a tuple in ACCOUNT is associated with one or more tuples in TRANSACTION. 

Fig. 2 shows the schema of the bank-account database.  Since each relation in the bank-

account database contains many attributes, we only show a subset of these attributes in Fig. 

2. 

 
CUSTOMER (CUST_ID, SEX, AGE, MARITAL_STATUS, …) 
ACCOUNT (ACCT_ID, CUST_ID, OVERDRAFT_LIMIT, BALANCE, …) 
TRANSACTION (TID, ACCT_ID, DATE, AMOUNT, …) 

Fig. 2.  Schema of the bank-account database. 

It is important to note that a relation in a relational database may contain relational data 

or transactional data.  The entity that a relation represents is what makes it either relational 

or transactional.  In a relation that contains transactional data, each tuple (transaction record) 

represents a business transaction.  Specifically, a transaction record represents a debit or 

credit transaction in the bank-account database.  A transaction record, therefore, has to store 

the account involved in the transaction, the date of the transaction, the amount of the 

transaction, etc. 

In the bank-account database, CUSTOMER contains data for 320,000 customers.  Each 

customer had opened one or more bank accounts for the purpose of using loan services, such 
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as a mortgage loan, a tax payment loan, etc.  In this data, 99.5% of all customers were from 

Hong Kong and the remaining 0.5% of customers were from other countries (e.g., Singapore, 

Taiwan, France, the United States, etc.).  The total loan balance of all customers in the bank-

account database was H.K. $11.8 billion in November 1999. 

The bank-account database was extracted from the time interval of September 1999 

through to November 1999.  The task was to reveal the interesting association relationships 

in the data so as to better serve and retain customers.  These relationships are represented in 

the form of fuzzy association rules.  Table 1 gives a summary of the bank-account database. 

 

Table 1.  Summary of the bank-account database. 

Relation No. of Attributes No. of Tuples 
CUSTOMER 48 320,000 
ACCOUNT 42 558,431 

TRANSACTION 37 1,746,996 
 

4.2.1 The Transformation Functions Defined 

In this section, we describe how we can construct a transformed relation, R (T_ACCT_TYPE, 

T_AMOUNT, T_NATIONALITY, …), using the transformation functions.  To obtain the 

transformed relation, we (including a domain expert from the bank) defined 102 

transformation functions in total.  From the 102 transformation functions, in this section, we 

present three of them as an illustration. 

Consider the attribute ACCOUNT[ACCT_ID].  The first digit of this attribute denotes 

the type of account.  Let us suppose that it is a personal account if this digit is 1 and that it is 

a corporate account if this digit is 2.  There exists a transformation function, f1, defined as: 

 

f1(s) = first_digit_of(s), 

 

where first_digit_of(s) returns the first digit of string s.  The transformed attribute 

T_ACCT_TYPE was produced by applying f1(ACCOUNT[ACCT_ID]) to every tuple in 

ACCOUNT, which is an example of the substring functions that are defined in Section 4.1.3. 

To compute the average amount in the customers’ accounts, we make use of another 

transformation function, f2, which is defined as follows: 
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where σ denotes the SELECT operation from relational algebra and |S| denotes the 

cardinality of set S.  The function, f2, is an example of the arithmetic functions that are 

defined in Section 4.1.2.  The transformed attribute, T_AMOUNT, was produced by applying 

the function f2(CUSTOMER[CUST_ID]) to every tuple in CUSTOMER. 

The nationality of the customers can be grouped into different geographical regions for 

the purpose of discovering more meaningful rules.  Such a grouping is performed by a 

transformation function, f3, which is defined as: 
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This function, f3, is an example of the logical functions that are defined in Section 4.1.1.  

The transformed attribute, T_NATIONALITY, was produced by applying the function 

f3(CUSTOMER[NATIONALITY]) to every tuple in CUSTOMER. 

By applying the transformation functions to the bank-account database, we obtained 

the required transformed relation.  There are 102 attributes in the transformed relation.  

Among the 102 transformed attributes, 6 are categorical (discrete-valued) and 96 are 

quantitative (continuous-valued).  Instead of performing data mining on the original data, 

we discovered interesting associations from the transformed data. 

4.2.2 Fuzzy Association Rules Discovered 

Instead of applying our fuzzy association rule mining algorithms proposed in Chapter 7 to 

the three original relations in the bank-account database, we performed data mining on the 

transformed relation.  The results obtained by FARM and EFARM are more or less the same.  

We report only the results obtained by FARM in this section for clarity.  

In consultation with the banking officials, we defined appropriate linguistic terms for 

some attributes in the transformed relation, whereas we applied our fuzzy partitioning 

technique proposed in Chapter 5 to generate linguistic terms for other attributes 

automatically.  As an example, two linguistic terms, Small and Large, were defined for the 

attribute called Loan Balance.  The definitions of these linguistic terms are given in Fig. 3. 
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Fig. 3.  The definitions of the linguistic terms for the attribute called Loan Balance. 

As another illustration, let us consider the attribute called Customer Age.  Four 

linguistic terms Young, Youth, Middle Aged, and Elderly were defined for Customer Age 

(Fig. 4). 

Using the linguistic terms that were defined by the domain expert, we applied our rule 

mining algorithm to the transformed relation.  From the discovered fuzzy association rules, 

we selected 200 rules randomly and presented them to the banking officials whom we 

consulted on the definition of the linguistic terms.  The rules were evaluated according to 

how useful and how unexpected they were, as judged by the domain expert. The domain 

expert classified the rules into three categories: very useful, useful, and less useful.  The 

result of the classification of these rules is summarized in Table 2. 
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Fig. 4.  The definitions of linguistic terms for the attribute called Customer Age. 

 

Table 2.  Classification of the fuzzy association rules discovered in the bank-account 

database. 

 No. of Rules Percentages 
Very useful 51 25.5% 

Useful 132 66.0% 
Less useful 17 8.5% 

 

Among the 200 rules, the domain expert found 91.5% of them to be either useful or 

very useful.  We expect that the evaluation of the remaining rules will follow a similar 

distribution because the 200 evaluated rules were selected randomly.  This evaluation is 

quite high for an automated data mining tool.  The reasons for this are likely to be that our 

interestingness measure can effectively reveal the interesting associations that are hidden in 

the data and that the fuzzy association rules, which employ linguistic terms to represent the 

underlying relationships, are more natural for human users to understand. 

In the rest of this section, we show some of the discovered fuzzy association rules, 

which were identified as very useful by the domain expert.  The following rule, regarding 

the affect that the annual income of a customer and the number of accounts that he/she holds 

has on the length of the customer relationship, was found being very useful. 
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Annual Income = Very Large ∧ No. of Accounts = Very Small 

 ⇒ Relationship Length = Very Short [w = 0.71], 

 

where Relationship Length is produced by an arithmetic function, fRelationship Length, which is 

defined as follows: 

 

CUSTOMER))SYSDATE CUST_IDCEMEMBER_SIN (()( idLength ipRelationsh idf =−= σπ , 

 

where π is the PROJECT operation in relational algebra, and SYSDATE returns the current 

date in Oracle. 

This rule states that a customer who has a very large annual income and who holds a 

very small number of accounts will have a very short relationship with the bank.  The length 

of the relationship that the bank has with a customer is important because the bank has a 

greater opportunity to cross-sell its products and services to a customer if he/she stays with 

the bank for a longer time.  The domain expert found this rule being useful because it 

identifies the characteristics of customers who are more likely to have a short-tem 

relationship with the bank.  By providing incentives to these customers, the bank can 

lengthen the relationships with them and increase its cross-selling opportunities (and hence 

we hope also improve its profitability).  It is important to note that this rule involves only 

the attributes in the relational data. 

The following fuzzy association rule, regarding the factors affecting the transaction 

costs, was also found to be very useful. 

 

Sales Cost (Direct) = Large ∧ Sales Cost (Branch) = Very Large 

 ⇒ ATM Transaction Cost = Very Large 

  ∧ Branch Transaction Cost = Very Large [w = 5.38]. 

 

This rule describes the costs of ATM transactions and branches as being very large if the 

cost of direct sales is large and the cost of branch sales is also very large.  The rule identifies 

the factors that affect the costs of ATM transactions and branches.  Based on this rule, the 

domain expert suggested that the bank could provide better control of the costs of direct and 

branch sales so that the costs of ATM transactions and branches could be reduced.  It is also 

important to note that this rule involves only the attributes in the transactional data. 

Let us consider the fuzzy association rules that involve attributes that are in both the 
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relational and transactional data. 

 

Customer Sex = Female ⇒ Loan Balance = Small [w = 1.23] 

Customer Sex = Male ⇒ Loan Balance = Large [w = 0.67], 

 

where Loan Balance is produced by an arithmetic function, fLoan Balance, which is defined as 

follows: 
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The former rule states that female customers are more likely to use small loans, whereas the 

latter rule describes male customers as being more likely to use large loans.  It is important 

to note that these rules are concerned with how the demographics of a customer affect 

his/her transactions.  Specifically, they describe the association relationships between a 

customer’s gender, which is contained in the relational data, and his/her total loan balances, 

which are contained in the transactional data.  These rules cannot be discovered unless both 

relational and transactional data are considered together. 

In addition to these rules, let us also consider the following fuzzy association rule: 

 

Customer Sex = Female ∧ Marital Status = Widowed 

 ⇒ Loan Balance = Large [w = 3.62]. 

 

This rule states that female customers who are widowed are more likely to use large loans.  

As discussed above, a female customer is expected to make use of only small loans.  

However, the fact that these women are widowed, means that they tend to use large loans.  

Similar to the rules discussed above, this rule associates the demographics (i.e., gender and 

marital status) of a customer with his/her transactions (i.e., loan balances).  This rule can 

only be revealed if relational and transactional data are considered together. 

4.2.1.1 Customer Retention 

On the basis of the fuzzy association rules concerning the loan balance, the domain expert 

revealed that customers who use small loans could easily settle the loans as compared to 

those with larger loans.  Because of this, customers who use small loans are more likely to 

stop using the loan services and cease to be a customer.  Based on the rules concerning a 
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small loan balance, the bank is able to identify the characteristics of customers that may 

cease being customers.  The bank can retain more of its customers in the future by offering 

incentives to the customers that have the same characteristics.  In this way, our approach can 

be used for customer retention or to help reduce the customer attrition rate. 

Let us consider the fuzzy association rules concerning the affect of the gender of a 

customer on his/her loan balance.  Specifically, they state that female customers are more 

likely to use small loans, whereas male customers tend to use large loans.  Based on these 

rules, the domain expert also revealed that female customers usually have a significant 

amount of savings and it is probably because of this reason that they tend to use small loans.  

This characteristic means that female customers tend to find it easier to settle loans, and 

hence they are more likely to cease using the loan services as compared to male customers.  

The attrition of customers is therefore related to gender.  This finding is very useful to the 

domain expert because customers who are likely to cease using the loan services could be 

identified using these rules.  To reduce the attrition rate, the domain expert suggested that 

incentives, such as lower interest rates, could be offered to female customers. 

Let us also consider the fuzzy association rule that states that female customers who are 

widowed are more likely to use large loans.  From other rules, we have revealed that female 

customers are more likely to cease using the loan services.  However, the fact that these 

women are widowed, means that they tend to continue using the loan services.  The domain 

expert found this rule being especially useful because it identifies a new niche market for 

promoting the bank’s loan services. 
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Chapter 5 

Partitioning Continuous Attributes 
 

Many of existing data mining algorithms (e.g., ID3 [Quinlan 1986], AQ15 [Michalski et al. 

1986], ITRule [Smyth and Goodman 1992], CN2 [Clark and Niblett 1989], and CBA [Liu, 

Hsu, and Ma 1998]) can only be applied to discrete-valued data.  In order to deal with 

continuous or mixed continuous and discrete valued data, the domain of each continuous 

attribute is typically discretized into a finite number of intervals [Ching, Wong, and Chan 

1995; Chiu, Wong, and Cheung 1991; Dougherty, Kohavi, and Sahami 1995; Fayyad and 

Irani 1993; Kerber 1992; Kurgan and Cios 2001; Liu and Setiono 1997; Liu, Wong, and 

Wang 2004; Wong and Chiu 1987].  The discrete-valued and the discretized data can then 

be handled in a uniform fashion and rules or models can be mined from them.  Some data 

mining algorithms use built-in discretization mechanisms instead of using a discretization 

algorithm to preprocess continuous data.  For example, when a continuous attribute is 

encountered in the data mining process, C4.5 [Quinlan 1993], CART [Breiman et al. 1984], 

and the association rule mining algorithm proposed in [Srikant and Agrawal 1996] discretize 

its domain into two or more intervals so that their criterion functions are optimized. 

Although they do not require continuous attributes to be discretized in advance, they 

discretize the attributes while mining rules. 

Discretization enables many data mining algorithms to handle real-world data sets that 

consist of not only discrete, but also continuous data.  However, if too many data lie on the 

boundaries of the intervals due to the ambiguous or fuzzy nature of the attribute values near 

the boundary regions, this could drastically affect the discovered rules or models that could 

be misleading and meaningless.  As a consequence, data mining algorithms could not 

discover accurate models or rules from the discretized data. 

To better handle continuous data, the use of fuzzy sets for data mining has recently 

been proposed in the literature [Mitra, Pal, and Mitra 2002].  It allows continuous data that 

lie on the interval boundaries to partially belong to multiple intervals.  The resilience to 

noises and the affinity with the human knowledge representation of fuzzy sets make them a 

key component in many data mining systems (e.g., [Au and Chan 1998, 1999, 2001, 2003; 

Chan and Au 1997b, 2001; Chan, Au, and Choi 2002; Delgado et al. 2003; Hirota and 

Pedrycz 1999; Hüllermeier 2001; Ishibuchi, Yamamoto, and Nakashima 2001; Janikow 

1998; Kacprzyk and Zadrozny 2001; Lee and Kim 1997; Maimon, Kandel, and Last 1999; 

Yager 1991]).  By and large, these systems require fuzzy sets to be predefined as input upon 
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which they perform data mining. 

A fuzzy set is defined by a membership function which maps objects in a domain of 

concern to their membership values in the fuzzy set.  It is associated with a linguistic term, 

which allows human users to easily express their knowledge on one hand and comprehend 

the expressed knowledge on the other (see, e.g., [Pedrycz and Gomide 1998; Yen and 

Langari 1999]).  Since membership functions can profoundly affect the performance of 

fuzzy models, the determination of membership functions or fuzzy partitioning is an 

important problem in fuzzy data mining.  A membership function can be either determined 

by human experts or generated directly from data.  A weakness of having human experts to 

provide inputs is that it is usually difficult for them to express or formalize their knowledge 

and experience in most situations [Buchanan et al. 1983; Johnson-Laird 1989].  It is for this 

reason that significant efforts have been put into generating membership functions from data 

recently (e.g., [Arslan and Kaya 2001; Fajfer and Janikow 2000; Jang 1993; Janikow and 

Fajfer 1999; Karr 1991; Lee and Takagi 1993; Liao, Celmins, and Hammell II 2003]). 

In this chapter, we propose a new method, called Information-Theoretic Fuzzy 

Partitioning (ITFP), to construct fuzzy partitions directly from data.  It uses an information-

theoretic measure, which evaluates the interdependence between the class membership and 

an attribute, as the objective function for fuzzy partitioning.  ITFP employs fractional 

programming (iterative dynamic programming) to find the global optimum of the measure.  

An advantage of ITFP is that it can determine the number of fuzzy sets automatically. 

To evaluate the performance of ITFP, we applied it to several data sets when fuzzy 

partitions are constructed.  We then fed the fuzzified data sets into a well-known decision-

tree based algorithm, C4.5 [Quinlan 1993].  For C4.5 to handle the fuzzified data, it is 

extended in such a way that it uses the fuzzy membership values of continuous data in the 

calculation of the gain ratio.  We compared the classification accuracies of ITFP with those 

obtained by other discretization and fuzzy partitioning methods.  The experimental results 

show that ITFP is more effective. 

The rest of this chapter is organized as follows.  In the next section, we present our 

approach to fuzzy partitioning.  We then show how C4.5 is extended to deal with fuzzy data 

in Section 5.2.  To evaluate the performance of ITFP, it is applied to several real-life data 

sets.  In order to facilitate a comparison, we also applied other well-known discretization 

and fuzzy partitioning algorithms to these data sets.  The experimental results are given in 

Section 5.3. 
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5.1 An Fuzzy Partitioning Algorithm 

5.1.1 An Class-Attribute Interdependence Measure 

The fuzzy membership functions most commonly used in practice are the triangular 

membership functions and the trapezoid membership functions [Yen and Langari 1999].  

Since the former can be considered a special case of the latter, we consider only the 

trapezoid membership functions in this chapter. 

Let A1, …, AK be the attributes of the real-world entities represented by a relational 

table, D.  If Ak, k ∈ {1, …, K}, is discrete, let its domain be represented by 

} ..., ,{)( 1 kkRkk aaAdom = .  Otherwise, if Ak, k ∈ {1, …, K}, is continuous, let its domain be 

represented by dom(Ak) = [lk, uk], where lk, uk ∈ ℜ.  For classification, one of the discrete 

attributes is chosen as the class label and let us denote it as Ac, c ∈ {1, …, K}. 

For each continuous attribute, Ak, k ∈ {1, …, K} – {c}, its domain is represented by 

fuzzy sets, Sk1, …, 
kkJS , such that: 
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where 
kjSµ  is the membership function of fuzzy set Skj, j = 1, …, Jk. 
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The fuzzy partition of dom(Ak) is composed of Sk1, …, 
kkJS  that satisfies the following 

condition [Ruspini 1969]: 

 

 1)(
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S xµ , ∀ x ∈ dom(Ak). (5.4) 

 

It has been shown that this condition is a desirable property for the stability of fuzzy logic 

controllers (see, e.g., [Pedrycz and Gomide 1998; Yen and Langari 1999]).  In order to 

satisfy the condition, we set bj1 = b(j – 1)3, bj2 = b(j – 1)4, bj3 = b(j + 1)1, and bj4 = b(j + 1)2, for  

j = 2, …, Jk – 1, when we generate the fuzzy sets. 

Let ) ..., ,( 1 kkJk SS=ϕ  denote the fuzzy partition and let Lkϕ denote the linguistic 

variable, which represents the partitioned attribute.  For clarity, we denote the expression 

“Lkϕ is Skj” as Lkϕ = Skj in this chapter.  We say that a record, d, is with Lkϕ = Skj to a degree of 

])[( kS Ad
kj

µ .  The joint probability of a record in D, which belongs to class acr, c ∈ {1, …, 

K}, r ∈ {1, …, Rc}, with Lkϕ = Skj, k ∈ {1, …, K} – {c}, j ∈ {1, …, Jk}, is given by: 
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where σ denotes the SELECT operation from relational algebra. 

The estimated marginal probability of Ac = acr and that of Lkϕ = Skj are calculated by: 
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respectively. 
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Definition 5.1 The interdependence redundancy measure between the class attribute, Ac, 

and fuzzy set Skj is defined as: 
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where I(Ac; Skj) is the mutual information between Ac and Skj, which is given by: 
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and H(Ac, Skj) is the joint entropy of Ac and Skj and is calculated by: 
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In addition to the interdependence redundancy measure between the class attribute and 

a fuzzy set, we can also define the measure between the class attribute and a linguistic 

variable [Wang and Wong 1979; Wong and Liu 1975]. 

 

Definition 5.2 The interdependence redundancy measure between the class attribute, Ac, 

and linguistic variable Lkϕ is defined as: 
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where I(Ac; Lkϕ) is the mutual information between Ac and Lkϕ, which is given by: 
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and H(Ac, Lkϕ) is the joint entropy of Ac and Lkϕ and is calculated by: 
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I(Ac; Lkϕ) measures the average reduction in uncertainty about Ac that results from 

learning the value of Lkϕ [MacKay 2003].  To maximize the use of attribute Ak after 

partitioning for classification, we should maximize the dependence of Ac on Lkϕ during the 

fuzzy partitioning process.  I(Ac; Lkϕ) initially appears to be a good candidate for such a 

partitioning criterion.  However, a weakness of using I(Ac; Lkϕ) as the partitioning criterion 

is that its value increases with the number of fuzzy sets.  In fact, I(Ac; Lkϕ) is at maximum 

before any partitioning and it decreases as the number of fuzzy sets is reduced.  It is for this 

reason that we need to normalize I(Ac; Lkϕ) by H(Ac, Lkϕ), which yields the interdependence 

redundancy measure, R(Ac; Lkϕ). 

R(Ac; Lkϕ) reflects the degree of deviation from interdependence between Ac and Lkϕ.  If 

R(Ac; Lkϕ) = 1, Ac and Lkϕ are strictly dependent.  If R(Ac; Lkϕ) = 0, they are statistically 

independent.  If 0 < R(Ac; Lkϕ) < 1, then Ac and Lkϕ are partially dependent.  The definition of 

the interdependence redundancy measure shows that it is independent of the composition of 

Ac and Lkϕ.  This implies that the number of attribute values can be reduced without 

destroying the interdependence relationship between Ac and Lkϕ.  As a result, partitioning 

can be considered as a process to remove the redundancy introduced by too many possible 

attribute values.  At the same time, the fuzzy partitioning process should minimize the loss 

of correlation between the class attribute and any other attribute.  The properties of the 

interdependence redundancy measure clearly render an ideal candidate as a class-dependent 

partitioning criterion [Ching, Wong, and Chan 1995; Liu, Wong, and Wang 2004], which is 

used in our partitioning method as the optimization criterion. 

The partitioning problem can therefore be solved by finding the fuzzy partition of the 

domain of Ak such that the interdependence redundancy measure after partitioning is 

maximized.  Let ψ represent the set of all possible finite fuzzy partitions.  Given a class-

attribute pair, we need to find ϕmax ∈ ψ such that: 

 

 );();( ,ψ
max ϕϕϕ kckc LARLAR ≥∈∀ . (5.14) 

5.1.2 Fuzzy Partitioning of Continuous Data 

To find ϕmax, we propose to use fractional programming [Sniedovich 1992], which is a 
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branch of nonlinear optimization involving ratio functions.  Specifically, given a set, Z, and 

real-valued functions on Z, r, v, and w, such that 
)(
)()(

zw
zvzr = , where w(z) > 0 for all z ∈ Z, 

fractional programming can be used to find c ∈ Z such that: 
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Let Z* be the set of solutions to the problem of finding c.  By assuming that Z* is not 

empty, it can be solved as a parametric problem of finding a(λ) such that: 
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where λ ∈ ℜ.  Let Z*(λ) be the set of optimal solutions given λ and let us assume that it has 

at least one solution. 

It is proved in [Sniedovich 1992] that z ∈ Z* if, and only if, r ∈ Z*(r(z)) and hence  

a(λ) = 0 if, and only if, λ = c.  The Dinkelbach’s algorithm shown in Fig. 5 can be used to 

solve a(λ) = 0. 

 

k = 1; 
select some z ∈ Z; 
z(k) = z; 
λ(k) = r(z(k)); 
loop 
 find ))()((max)( )()( zwzva k

Zz

k λλ −=
∈

; 

 select some z ∈ Z*(λ(k)); 
 z(k + 1) = z; 
 λ(k + 1) = r(z(k + 1)); 
 k = k + 1; 
until (a(λ(k)) = 0) 
z’ = z; 
λ’ = r(z’); 

Fig. 5.  The Dinkelbach’s algorithm. 

The Dinkelbach’s algorithm obtains the optimal solution, z’, and it is guaranteed to 

terminate in finite steps if w(z) > 0 for all z ∈ Z and if Z is finite [Sniedovich 1992]. 

Based on the Dinkelbach’s algorithm, we propose to use a new fuzzy partitioning 

algorithm, called Information-Theoretic Fuzzy Partitioning (ITFP), to partition the domains 

of continuous attributes.  It has two important components: one is an iterative process that 
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uses the first component to drive towards the final global optimum solution and the other 

attempts to attain the maximum value of the objective function by applying dynamic 

programming for optimizing the class-attribute interdependence.  This algorithm is 

presented in Fig. 6.  For every continuous attribute, Ak, k ∈ {1, …, K} – {c}, the algorithm 

obtains the optimal fuzzy partition ϕmax. 

 

for each continuous attribute Ak, k ∈ {1, …, K} – {c} 
begin 
 select some ϕ ∈ ψ; 
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  find ϕ’ such that ),();( ϕϕ ′′ − kckc LAuHLAI  is maximized using 
   a dynamic programming algorithm (see below); 
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  u = u’; 
 until (u = u’) 
 ϕk = ϕ’; 
end 

Fig. 6.  The ITFP algorithm. 

Now, we describe the dynamic programming algorithm to obtain the fuzzy partition 

ϕmax, such that ),();(
maxmax kckc LAuHLAI ϕϕ −  is maximized for any given u ≥ 0.  Let 

} ..., ,{)( 1 kk MA xxD =π  such that 
kMxx ≤≤ ...1 , where π denotes the PROJECT operation 

from relational algebra.  Let the domain of Ak be partitioned into fuzzy partition 

) ..., ,( 1 kkJk SS=ϕ  such that 21 1 jmj bxb
j
≤≤

−
 and 43 jmj bxb

j
≤≤ , j = 1, …, Jk, mj ∈ {1, …, 

Mk}, and 
kJmm << ...1 .  bj1 and bj2 are already set when Sk(j – 1) is determined to satisfy the 

condition of fuzzy partition (Equation (5.4)).  To generate Skj, we need to find bj3 and bj4 

only.  For the purpose of determining bj3 and bj4, let us suppose that 
1−jmx , 

jmx , and 
1+jmx  

are given here.  The way to determine 
jmx , j = 1, …, Jk, will be presented later in this 

section. 
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(c) Skj. 

Fig. 7.  Fuzzy sets Xj, Y, and Skj. 

Given 
1−jmx  and 

jmx , we can form a special fuzzy set, Xj, to represent the interval, 

] ,[
1 jj mm xx
−

, whose membership function is defined as: 
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for j = 1, …, Jk.  Xj is given in Fig. 7(a).  In fact, ) ..., ,( 1 kJXX=τ  is also a fuzzy partition 

of dom(Ak). 

We can then calculate the interdependence redundancy measure R(Ac; Xj) between Ac 

and Xj  by Equation (5.8).  We are going to determine Skj so that R(Ac; Skj) = R(Ac; Xj).  This 

ensures that the fuzzy partitioning process does not introduce any change in the 

interdependence relationship in terms of the interdependence redundancy measure.  

Following the idea presented in [Wu 1999], we have the user to supply a parameter, which 

controls how a fuzzy set spreads out into its adjacent fuzzy sets.  In our approach, the user-

specified parameter, ε, is interpreted as the percentage of the interdependence redundancy 

measure between Ac and Skj to be spread out into Sk(j + 1).  Initially, let us set 

)( 22
1

3 jmj bxb
j
−=  and define a temporary fuzzy set, Y, whose membership function is 

defined as: 
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We then employ the binary search to find the value of bj3 in the range between bj2 and 

jmx  such that R(Ac; Y) = (1 – ε) R(Ac; Xj).  Fig. 7(b) shows fuzzy set Y. 

After the value of bj3 is found, let us set )( 32
1

4 1 jmj bxb
j
−=

+
.  Again, we use the binary 

search to find the value of bj4 in the range between bj3 and 
1+jmx  such that  

R(Ac; Skj) = R(Ac; Xj).  Skj is then determined. Skj is shown graphically in Fig. 7(c).  It is 

important to note that this method makes 
crjcrkj aXaS pp =  and hence R(Ac; Lkϕ) = R(Ac; Lkτ).  

Consequently, R(Ac; Lkϕ) is maximized when R(Ac; Lkτ) is maximized. 

Now, we present how to determine 
jmx , j = 1, …, Jk.  Let Fτ = I(Ac; Xkτ) – uH(Ac, Xkτ) 

for fuzzy partition ) ..., ,( 1 kJXX=τ .  We have: 
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Fτ can therefore be considered as the sum of Jk terms, each of which corresponds to a 

fuzzy set, Xj, and is given by: 
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for j ∈ {1, …, Jk}.  The value of Fτ is fixed if the lower and upper bounds of the 

corresponding region are given.  Let us consider the case that the s-th region boundary (i.e., 

smx ) is set to xi, i ∈ {1, …, Mk}, that is, ms = i.  The partitioning of the first i attribute values 

has nothing to do with that of the last Mk – i attribute values in terms of Fτ.  This observation 

allows us to use a dynamic programming algorithm to optimize Fτ. 

Let gis be the sum of the first s terms of Fτ given that xi is the s-th region boundary, i.e., 
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Let Tis be the set of all possible partition schemes with the first i continuous values 

being partitioned into s regions, we write }|) ..., , ..., ,{(
1

imxxxT smmmis kJs
== .  Let fis 

denote the optimal value of gis among all possible partition schemes in Tis, i.e., 

 

 )(max
) ..., ,( 1

isTxxis gf
iskJmm ∈

= . (5.22) 

fis drives the partitioning of the first i attribute values given that they are partitioned 

into s regions.  Since Ak has Mk values in D, it can be partitioned into at most Mk regions.  

Therefore, we have: 
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To apply the dynamic programming algorithm to calculate fis, we need to figure out a 

recursive equation to represent fis.  Let us assume that there are t attribute values in the s-th 

region (i.e., ms – ms – 1 = t).  We obtain the following recursive equation: 
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We also have the following initial conditions: 
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where m0 = 1 and m1 = i, and 
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Based on the above equations, we can formulate the following dynamic programming 

algorithm: 

 

1. Create a table with size U × U, where U is the number of unique values of attribute 

Ak.  The element in the i-th row and the s-th column gives the value of fis. 

2. Initialize the elements in the first row and the first column of the table according to 

Equation (5.26) and Equation (5.25), respectively. 

3. Calculate all the elements in this table according to the recursive equation of fis 

(Equation (5.24)). 

4. Find the maximum value in the last row.  Let us assume that the maximum value is 

in the s*-th column.  Then the optimal partition consists of s* regions (i.e., s* fuzzy 

sets).  We then trace back to obtain the optimal region boundaries. 

To incorporate semantics into the fuzzy sets to be discovered, one can define the 

interval boundaries himself/herself and make use of our proposed method to fuzzify the 

boundaries.  In this way, the semantics can also be taken into consideration.  Furthermore, 

since humans can typically handle only 7 ± 2 concepts at the same time, one may also like 

to supply such an upper bound of the number of fuzzy sets to be discovered. 

Finally, let us consider the complexity of ITFP.  The complexity of the dynamic 

programming component is O(n2), where n is the number of values contained in the data.  

The binary search for fuzzifying a boundary can complete in O(n log n).  Hence the 
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complexity of our proposed method is O(n2).  This kind of task is able to be completed in a 

reasonable amount of time by any modern off-the-shelf single-processor machine. 

5.2 An Example Application in Fuzzy Decision Tree 
Construction 

In this section, we describe how C4.5, which is a well-known decision-tree based 

classification approach, can be extended to handle fuzzy data.  In the tree-building phase, 

when C4.5 encounters a discrete attribute, it does what it does as usual without any change.  

When it encounters a continuous attribute, which has already been fuzzy partitioned, we 

extend it in the following. 

Let Ak be the attribute under consideration. Ak is, in turn, represented by a linguistic 

variable Lkϕ.  Given a set of records, D, that belongs to some class, acr, the average amount 

of information, info(D), needed to identify the class of a record in D is given by: 
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where 
crap  is the estimated marginal probability of Ac = acr calculated by Equation (5.6).  In 

fact, info(D) is equivalent to the joint entropy of Ac and Lkϕ, H(Ac, Lkϕ), given by Equation 

(5.13). 

Let us further suppose that D is divided into D1, …, 
kJD  in accordance with Lkϕ so that 

all the records in Dj are with Lkϕ = Skj, j = 1, …, Jk.  The expected information requirement, 

)(Dinfo
kL ϕ

, can then be computed as the weighted sum over the subsets: 
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where 
kjSp  is the estimated marginal probability of Lkϕ = Skj calculated by Equation (5.7). 

The information that is gained, gain(Lkϕ), by dividing D in accordance with Lkϕ, is then 

given by: 

 

 )()()( DinfoDinfoLgain
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It is equivalent to the mutual information between Ac and Lkϕ, I(Ac; Lkϕ), calculated by 

Equation (5.12). 

Now, let us consider the potential information generated by dividing D into Jk subsets, 

split info(Lkϕ).  It is calculated by: 
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The gain ratio is then defined as: 
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Intuitively, it expresses the proportion of the information generated by the division that 

appears useful for classification [Quinlan 1993]. 

The pruning mechanism used in C4.5 can also be extended to handle fuzzy data in a 

similar manner.  We omit the discussion here for simplicity. 

5.3 Evaluating Its Effectiveness 
In order to evaluate the performance of ITFP, we applied it to several real-world data sets, 

which are the public data sets used in the StatLog project [Michie, Spiegelhalter, and Taylor 

1994].  Of all the public data sets used in the StatLog project, the dna and the letter data sets 

contain discrete valued data only.  We therefore did not use these data sets in our 

experiments.  A summary of the datasets used in our experiments is given in Table 3.  The 

interested readers are referred to [Michie, Spiegelhalter, and Taylor 1994] for the details. 

 

Table 3.  A summary of the data sets used in our experiments. 

Data Set No. of 
Attributes 

No. of Continuous 
Attributes 

No. of 
Classes

No. of 
Records 

Largest 
Class 

australian 14 6 2 690 55.5% 
diabetes 8 8 2 768 65.1% 
german 24 7 2 1,000 70.0% 
heart 13 7 2 270 55.6% 

satimage 36 36 6 6,435 23.8% 
segment 19 19 7 2,310 14.3% 
shuttle 9 9 7 58,000 78.6% 
vehicle 18 18 4 846 25.8% 
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First we applied our ITFP to each of the eight data sets to produce a set of fuzzified 

data.  Each fuzzified data set was divided into two subsets, one for training and the other for 

testing.  We fed the training set to the modified version of C4.5, which is extended to deal 

with fuzzy data (see Section 5.4), to build a fuzzy decision tree.  The resultant decision tree 

was then used to classify the test records.  The classification accuracy of the decision tree 

was recorded.  This step was repeated ten times and the average classification accuracy was 

calculated.  The experimental results are given in Table 4 (“Cont.” denotes running C4.5 on 

the original data (it has a built-in to discretize continuous values into discrete values), 

“Equal Freq.” refers to the equal-frequency discretization, “Entropy” refers to the 

information entropy maximization discretization, “HCV” refers to the fuzzy interpretation 

of discretized intervals, “S” stands for supervised, and “U” denotes unsupervised). 

In our experiments, we set the fuzziness parameter of FCM to 2 because the study in 

[Pal and Bezdek 1995] suggests that the best choice is probably in the interval between 1.5 

and 2.5, whose mean and midpoint (i.e., 2) is usually the preferred choice for many uses of 

FCM.  We set the dimension of SOM’s output nodes to 100 × 100 so that SOM is able to 

determine the number of clusters automatically by not assigning any input vector to some of 

the output nodes. 

 

Table 4.  Performance of C4.5 averaged over 10 trials. 

Classification 
(Standard Deviation) 

Discretization Fuzzy Partitioning 

Cont. Equal 
Width 

Equal
Freq. Entropy Top 

Down
Bottom

Up FCM SOM SGA HCV ITFP
Dataset 

S U U S U U U U U S S 

australian 86.2% 
(4.2%) 

82.5% 
(4.5%) 

86.8%
(2.9%)

81.6% 
(4.1%)

85.1%
(4.4%)

82.2%
(5.5%)

81.9%
(2.8%)

85.1% 
(4.4%) 

74.6%
(12.7%)

84.8%
(2.7%)

87.1%
(2.8%)

diabetes 72.6% 
(7.7%) 

66.2% 
(4.5%) 

68.2%
(3.7%)

75.1% 
(5.1%)

63.9%
(4.7%)

68.8%
(4.0%)

74.9%
(5.1%)

71.0% 
(5.9%) 

68.6%
(4.7%)

65.7%
(4.3%)

76.5%
(4.0%)

german 71.9% 
(4.1%) 

67.7% 
(5.1%) 

68.4%
(4.5%)

70.9% 
(5.0%)

67.1%
(3.3%)

67.1%
(3.3%)

67.7%
(4.3%)

68.1% 
(5.5%) 

60.8%
(15.6%)

67.8%
(3.9%)

75.2%
(3.8%)

heart 77.8% 
(8.7%) 

75.2% 
(5.3%) 

78.9%
(6.8%)

78.5% 
(4.6%)

73.7%
(10.1%)

71.1%
(7.4%)

79.6%
(7.7%)

75.2% 
(9.2%) 

77.4%
(4.8%)

74.8%
(5.7%)

79.6%
(4.7%)

satimage 85.8% 
(1.1%) 

82.2% 
(0.5%) 

83.1%
(2.0%)

81.8% 
(1.7%)

21.4%
(2.5%)

21.8%
(1.9%)

84.7%
(0.5%)

82.4% 
(0.7%) 

46.2%
(4.0%)

22.7%
(2.4%)

86.8%
(1.6%)

segment 96.5% 
(1.6%) 

91.7% 
(1.0%) 

94.2%
(1.0%)

95.3% 
(1.1%)

11.2%
(1.1%)

85.1%
(2.3%)

94.5%
(2.1%)

96.8% 
(1.5%) 

36.2%
(1.9%)

1.9%
(0.8%)

95.5%
(0.8%)

shuttle 99.9% 
(0.0%) 

89.6% 
(0.4%) 

98.7%
(0.1%)

99.9%
(0.0%)

78.7%
(0.3%)

78.4%
(0.4%)

91.6%
(0.9%)

99.7% 
(0.0%) 

11.9%
(0.0%)

77.3%
(0.1%)

98.2%
(0.2%)

vehicle 71.2% 
(5.6%) 

63.9% 
(3.5%) 

66.4%
(6.0%)

69.3% 
(6.1%)

23.2%
(2.1%)

61.9%
(4.9%)

72.7%
(5.6%)

66.0% 
(3.7%) 

38.4%
(4.8%)

22.7%
(3.5%)

72.7%
(2.9%)

Average 82.7% 77.4% 80.6% 81.5% 53.0% 67.0% 81.0% 80.5% 51.8% 52.2% 84.0%
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As shown in Table 4, ITFP obtains the best results on six out of the eight data sets.  On 

the remaining data set shuttle, discretization algorithms achieve the highest accuracy, and on 

segment, the fuzzy partitioning technique SOM does the best.  We also find that supervised 

methods yield the best results on seven of all the eight data sets.  An unsupervised method 

produces the best result only on the remaining data set segment.  In fact, the best three 

algorithms in terms of the average classification accuracy are all supervised ones.  By this 

token, supervised methods perform better than unsupervised ones. 

Our ITFP, which is a supervised approach to fuzzy partitioning, outperforms all the 

other discretization and fuzzy partitioning methods in average.  It is the best on six of all the 

eight data sets.  The average performance of the built-in discretization mechanism of C4.5 is 

second to ITFP only, but it yields the best accuracy on only one of the eight data sets. 

The equal-frequency discretization, information entropy maximization, FCM, and 

SOM achieve more or less the same average classification accuracy.  The performance of 

the equal-width discretization is a little inferior to these four methods. 

Although the top-down and the bottom-up fuzzy partitioning are developed for a fuzzy 

decision-tree based classification approach, the experimental results show that they do not 

perform well.  On the contrary, they are among the most disappointing ones in our 

experiments.  Of the remaining algorithm, SGA’s performance is similar to the top-down 

fuzzy partitioning. 

To statistically test whether ITFP outperforms the built-in of C4.5, we use the sign test 

(see, e.g., [Walpole and Myers 1993]).  The null hypothesis is that the classification 

accuracy obtained by ITFP and the built-in are the same, whereas the alternative hypothesis 

is that the classification accuracy obtained by ITFP is higher than that obtained by the built-

in. ITFP.  Of the eight datasets, ITFP performs better than the built-in on six datasets.  The 

p-value is then equal to ∑
=

=
6

0

9648.0)5.0,8;(
x

xb .  Since it is greater than 0.95, the null 

hypothesis can certainly be rejected at the 0.05 level of significance.  We therefore conclude 

that ITFP outperforms the built-in of C4.5. 
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Chapter 6 

Attribute Clustering 
 

Clustering is an important topic in data mining research.  Given a relational table, a 

conventional clustering algorithm groups tuples, each of which is characterized by a set of 

attributes, into clusters based on similarity [Jain, Murty, and Flynn 1999].  Intuitively, tuples 

in a cluster are more similar to each other than those belonging to different clusters.  It has 

been shown that clustering is very useful in many data mining applications (e.g., [Fayyad et 

al. 1996; Piatetsky-Shapiro and Frawley 1991]). 

When applied to gene expression data analysis, conventional clustering algorithms 

often encounter the problem related to the nature of gene expression data which is normally 

“wide” and “shallow.”  In another words, data sets usually contain a huge number of genes 

(attributes) and a small number of gene expression profiles (tuples).  This characteristic of 

gene expression data often compromises the performance of conventional clustering 

algorithms.  In this chapter, we present a methodology to group attributes that are 

interdependent or correlated with each other.  We refer to such a process as attribute 

clustering.  In this sense, attributes in a cluster are more correlated with each other, whereas 

attributes in different clusters are less correlated.  Attribute clustering is able to reduce the 

search dimension of a data mining algorithm to effectuate the search of interesting 

relationships or for construction of models in a tightly correlated subset of attributes rather 

than in the entire attribute space.  After attributes are clustered, one can select a smaller 

number for further analysis. 

A gene expression data set from a microarray can be represented by an expression table, 

T = {wij | i = 1, …, p, j = 1, …, n}, where wij ∈ ℜ is the measured expression level of gene gi 

in sample sj [Domany 2003].  Each row in the expression table corresponds to one particular 

gene and each column to a sample.  Such a data set is typically composed of a large number 

of genes but a small number of samples.  For example, the colon-cancer data set [Alon et al. 

1999] consists of 62 samples and 2,000 genes and the leukemia data set [Golub et al. 1999] 

contains 72 samples and 7,129 genes.  The number of samples is likely to remain small for 

many areas of investigation, especially for human data, due to the difficulty of collecting 

and processing microarray samples [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003]. 

The distinctive characteristic of gene expression data allows clustering both genes and 

samples [Domany 2003; Jiang, Tang, and Zhang 2004].  With conventional gene clustering 



 

90 

methods, the genes are considered as the tuples and the samples as the attributes.  Thus it 

allows genes with similar expression patterns (i.e., co-expressed genes) to be identified 

[Jiang, Tang, and Zhang 2004].  On the other hand, to cluster samples, the samples are 

considered as the tuples and the genes as the attributes.  The clustering analysis of samples 

is to find new biological classes or to refine existing ones [Piatetsky-Shapiro, Khabaza, and 

Ramaswamy 2003].  By this token, conventional clustering algorithms are able to group 

both samples and genes from the data.  In general, Euclidean distance and Pearson’s 

correlation coefficient are widely used as the distance measure for clustering [Jiang, Tang, 

and Zhang 2004].  However, when Euclidean distance is applied to measure the similarity 

between genes, it is not effective to reflect functional similarity such as positive and 

negative correlation, interdependency as well as closeness in values.  In fact, Euclidean 

distance accounts only for the last.  In another words, the primary interest of the overall 

shapes of genes [Jiang, Tang, and Zhang 2004] is not well accounted for.  Hence, Pearson’s 

correlation coefficient is proposed by some researchers.  An empirical study [Heyer, 

Kruglyak, and Yooseph 1999] has also shown that Pearson’s correlation coefficient is not 

robust to outliers and it may assign high similarity score to a pair of dissimilar genes.  Hence, 

a new method to cluster attributes in a relation is presented in this work which takes into 

consideration the abovementioned issues.  It is known as k-modes Attribute Clustering 

Algorithm, referred to as ACA.  ACA employs an information measure to evaluate the 

interdependence between attributes.  It is used to direct the grouping of attributes into 

clusters.  By applying ACA to gene expression data, clusters of genes based on their mutual 

correlation can be discovered.  We can then select a small number of the top-ranked genes 

in each cluster for further analysis. 

Furthermore, having so many genes relative to so few samples is likely to result in the 

discovery of irrelevant patterns (i.e., gene combinations which correlate with a target 

variable purely by chance) [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].  A useful 

technique to deal with it is to select a small number of the most promising genes and use 

them solely to build models [Piatetsky-Shapiro, Khabaza, and Ramaswamy 2003].  To 

select genes, the t-value is widely used [Piatetsky-Shapiro, Khabaza, and Ramaswamy 

2003].  It is important to note that the t-value can only be used when the samples are pre-

classified.  If no class information is provided, it cannot be used for gene selection.  In this 

chapter, we introduce a multiple interdependence measure [Chiu and Wong 2004; Wong, 

Liu, and Wang 1976] for selection of genes with the highest correlation with the rest of 

attributes within a cluster. 

To demonstrate ACA’s usefulness for mining and analyzing gene expression data and 
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to evaluate its performance, two gene expression data sets, colon-cancer and leukemia, are 

used.  We first applied ACA to each of them, selecting the most promising genes; then fed 

the selected genes into several well-known classification algorithms and compared their 

classification accuracies with those yielded by other gene selection methods.  These 

classification algorithms, including a decision-tree based algorithm, neural networks, the 

nearest neighbor approach, and the naïve Bayes method, are used in this chapter because 

they have been employed in classification of gene expression data in the literature [Ben-Dor 

et al. 2000; Dudoit, Fridlyand, and Speed 2002; Friedman, Nachman, and Pe’er 2000; Keller 

et al. 2000; Khan et al. 2001; Lu and Han 2003; Zhang et al. 2001].  The experimental 

results demonstrate that ACA is more effective. 

Each tuple in a relation R is characterized by a set of attributes, A1, …, Ap.  If Ai,  

i ∈ {1, …, p}, takes on discrete values, let its domain be represented by 

} ..., ,{)( 1 iimii aaAdom = .  Otherwise, if Ai, i ∈ {1, …, p}, is continuous, let its domain be 

represented by dom(Ai) = [li, ui], where li, ui ∈ ℜ.  Let us suppose that R consists of n tuples, 

t1, …, tn.  Each tuple, tu, u ∈ {1, …, n}, is represented by a vector of p attribute values:  

tu = (xu1, …, xup), where xui ∈ dom(Ai), i = 1, …, p. 

 

Definition 6.1 Attribute clustering is a process which finds c disjoint clusters, C1, …, Cc, 

of correlated attributes by assigning each attribute in {A1, …, Ap} to one of these clusters.  

Formally, we define attribute clustering as a process that ∀ Ai, i ∈ {1, …, p}, Ai is assigned 

to a Cr, r ∈ {1, …, c}, where Cr ∩ Cs = ∅ for all s ∈ {1, …, c} – {r}.  

To find meaningful clusters, attribute clustering is conducted so that attributes within a 

cluster should have high correlation with or high interdependence to each other, whereas 

attributes in different clusters are less correlated or more independent.  Most of the 

conventional clustering methods use some distance metric to measure the dissimilarity or 

distance between two objects.  In this chapter, we introduce the new interdependence 

information measure which we believe are more meaningful if interdependent patterns are 

the most significant characteristics of a cluster reflecting the inter-relationship among 

attributes. 

6.1 An Attribute Interdependence Measure 
For each continuous attribute in relation R, its domain is typically discretized into a finite 

number of intervals for data mining.  In this chapter, we use our fuzzy partitioning technique 

ITFP introduced in the last chapter to partition the continuous data.  It uses the normalized 
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mutual information measure that reflects interdependence between the class label and the 

attribute to be partitioned as the objective function, and fractional programming (iterative 

dynamic programming) to find a global optimal solution. 

Let us suppose that the domain of Ai, i ∈ {1, …, p}, is fuzzy partitioned by ITFP into 

mi fuzzy sets.  After fuzzy partitioning, the domains of all the attributes in R can be 

represented by } ..., ,{)( 1 iimii vvAdom = , i = 1, …, p, where vik = aik, k = 1, …, mi, if Ai is 

discrete and vik = lik, which is a linguistic term, if Ai is a fuzzy partitioned continuous 

attribute. 

Let σ denote the SELECT operation from relational algebra and |S| denote the 

cardinality of set S.  The probability of a record in R having Ai = vik, i ∈ {1, …, p},  

k ∈ {1, …, mi}, is then given by: 
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and the joint probability of a record in R having Ai = vik and Aj = vjl, i, j ∈ {1, …, p}, i ≠ j,  

k ∈ {1, …, mi}, l ∈ {1, …, mj}, is calculated by: 
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Definition 6.2 The interdependence redundancy measure [Wong and Liu 1975] between 

two attributes, Ai and Aj, i, j ∈ {1, …, p}, i ≠ j, is defined as: 
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where I(Ai : Aj) is the mutual information between Ai and Aj, which is given by: 
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and H(Ai, Aj) is the joint entropy of Ai and Aj and is calculated by: 
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I(Ai : Aj) measures the average reduction in uncertainty about Ai that results from 

learning the value of Aj [MacKay 2003].  If I(Ai : Aj) > I(Ai : Ah), h ∈ {1, …, p}, h ≠ i ≠ j, the 

dependence of Ai on Aj is greater than the dependence of Ai on Ah.  I(Ai : Aj) initially appears 

to be a good candidate for measuring the interdependence between Ai and Aj.  However, a 

weakness of using I(Ai : Aj) is that its value increases with the number of possible attribute 

values (i.e., mi and mj).  It is for this reason that we need to normalize I(Ai : Aj) by H(Ai, Aj), 

which yields the interdependence redundancy measure, R(Ai : Aj). 

More accurately stated, R(Ai : Aj) reflects the degree of deviation from independence 

between Ai and Aj.  If R(Ai : Aj) = 1, Ai and Aj are strictly dependent.  If R(Ai : Aj) = 0, they 

are statistically independent.  If 0 < R(Ai : Aj) < 1, then Ai and Aj are partially dependent.  

The definition of the interdependence redundancy measure shows that it is independent of 

the composition of Ai and Aj.  This implies that the number of attribute values does not 

affect the interdependence relationship between Ai and Aj.  The properties of the 

interdependence redundancy measure clearly render an ideal candidate to measure the 

dependence between different attributes. 

If two attributes are dependent on each other, they are more correlated with each other 

when compared to two independent attributes.  The interdependence redundancy measure is 

therefore able to evaluate the interdependence or correlation of attributes.  If  

R(Ai : Aj) > R(Ai : Ah), h ∈ {1, …, p}, h ≠ i ≠ j, the dependence between Ai and Aj is greater 

than that between Ai and Ah.  In attribute clustering, we use R(Ai : Aj) to measure the 

interdependence between attributes Ai and Aj. 

In order to investigate the interdependency of an attribute with all the other within a 

group, we introduce the concept of significant multiple interdependency. 

 

Definition 6.3 The multiple interdependence redundancy measure [Chiu and Wong 2004; 

Wong, Liu, and Wang 1976] of an attribute Ai within an attribute group or cluster,  

C = {Aj | j = 1, …, p}, is defined as: 
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where R(Ai : Aj) is the interdependence redundancy measure between Ai and Aj.  

Based on the concept of MR(Ai), we introduce the concept of the “mode” which is an 

attribute with the highest multiple interdependence redundancy in an attribute group. 

 

Definition 6.4 The mode of an attribute group, C = { Aj | j = 1, …, p}, denoted by η(C) is 

an attribute, say Ai, in that group such that: 

 

 MR(Ai) ≥ MR(Aj) for all j ∈ {1, …, p}. 

  

6.2 An Attribute Clustering Algorithm 
To group attributes A1, …, Ap into clusters, we build our information-theoretic attribute 

clustering algorithm by converting the popular k-means algorithm into what we call the k-

modes algorithm by replacing: 1) the concept of the term “mean,” which represents the 

center of a cluster of entities, by the concept of mode which is the attribute with the highest 

multiple interdependence within an attribute group and 2) the distance measure used in k-

means by the interdependence redundancy measure between attributes.  We can then 

formulate the k-modes algorithm in the following. 

 

1. Initialization.  Let us assume that the number of clusters, k, where k is an integer 

greater than or equal to 2, is given.  Of the p attributes, we randomly select k 

attributes, each of which represents a candidate for a mode ηr, r ∈ {1, …, k}.  

Formally, we have ηr = Ai, r ∈ {1, …, k}, i ∈ {1, …, p}, to be the mode of Cr and  

ηr ≠ ηs for all s ∈ {1, …, k} – {r}. 

2. Assignment of each attribute to one of the clusters.  For each attribute, Ai,  

i ∈ {1, …, p}, and each cluster mode, ηr, r ∈ {1, …, k}, we calculate the 

interdependence redundancy measure between Ai and ηr , R(Ai : ηr).  We assign Ai to 

Cr if R(Ai : ηr) ≥ R(Ai : ηs) for all s ∈ {1, …, k} – {r}. 

3. Computation of mode for each attribute cluster.  For each cluster, Cr, r ∈ {1, …, 

k}, we set ηr  = Ai if MR(Ai) ≥ MR(Aj) for all Ai, Aj ∈ Cr, i ≠ j. 

4. Termination.  Steps 2 and 3 are repeated until the ηr for the clusters does not change.  

Alternatively, ACA also terminates when the pre-specified number of iterations is 

reached. 
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It is important to note that the number of clusters, k, is fed to ACA as an input 

parameter.  To find the best choice for k, we use the sum of the multiple significant 

interdependence redundancy measure, ∑ ∑
= ∈

k

r CA
ri

ri

AR
1

) :( η , to evaluate the overall 

performance of each clustering.  With this measure, we can run ACA for all k ∈ {2, …, p} 

and select the value k that maximizes the sum of the multiple significant interdependence 

redundancy measure over all the clusters as the number of clusters.  That is, 
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To investigate the complexity of ACA algorithm, we consider a gene expression table, 

which is composed of n samples such that each sample is characterized by p gene 

expression levels.  The k-modes algorithm requires O(np) operations to assign each gene to 

a cluster (Step 2).  It then performs O(np2) operations to compute the mode for each cluster 

(Step 3).  Let t be the number of iterations, the computational complexity of the k-modes 

algorithm is given by: 
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This kind of task is able to be completed in a reasonable amount of time by any modern 

off-the-shelf single-processor machine.  Furthermore, the k-modes algorithm can easily be 

parallelized to run on clusters of processors because the calculation of the interdependence 

redundancy measure is an independent task. 

6.3 Performance Evaluation 

6.3.1 A Synthetic Data Set 

To evaluate the clusters of attributes formed by ACA, we first applied it to a synthetic data 

set.  Each tuple in the synthetic data set is composed of 20 continuous attributes and is pre-

classified into one of the 3 classes: C1, C2, and C3.  Let us denote the attributes as A1, …, A20.  

In the designed experiment, attribute values of A1 and A2 alone can determine the class 

membership of a tuple (Fig. 8).  As shown in Fig. 8, data points lying on the rectangles, the 

circle, and the triangle belong to C1, C2, and C3, respectively.  Values of the other attributes 

(i.e., A3, …, A20) in the tuple are randomly generated in the following manner: 
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 A3–A6: uniformly distributed from 0 to 0.5 if the value of A1 < 0.5; uniformly 

distributed from 0.5 to 1, otherwise. 

 A7–A11: uniformly distributed from 0 to 0.5 if the value of A1 ≥ 0.5; uniformly 

distributed from 0.5 to 1, otherwise. 

 A12–A15: uniformly distributed from 0 to 0.5 if the value of A2 < 0.5; uniformly 

distributed from 0.5 to 1, otherwise. 

 A16–A20: uniformly distributed from 0 to 0.5 if the value of A2 ≥ 0.5; uniformly 

distributed from 0.5 to 1, otherwise. 
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Fig. 8.  Attribute values of A1 and A2 in the tuples in the synthetic data set. 

It is obvious that A3, …, A11 are correlated with A1, whereas A12, …, A20 are correlated 

with A2.  For an attribute clustering algorithm to be effective, it should be able to reveal such 

correlations.  In our experiments, we generated 200 tuples in the synthetic data set and 

added noises to the data set by replacing the attribute values of A3, …, A20 in 25% of the 

tuples with a random real number between 0 and 1. 
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We first used our fuzzy partitioning technique ITFP proposed in the last chapter to 

fuzzy partition the domain of each attribute.  As expected, it partitions the domain of each 

attribute into 2 fuzzy intervals: ∫ ∫
−−

+
1 2

10
212 )()(1x x

x x
xxxx

x
 and ∫ ∫+

−−2

1 2

1
121 1)()(x

x x xx
xxxx , 

where x1 ≤ x2 and x1 ≈ x2 ≈ 0.5.  We then applied ACA to the fuzzy partitioned data to find 

clusters of attributes.  Fig. 9 shows the sum of the interdependence redundancy measure 

over all the clusters versus the number of clusters found in the synthetic data set.  As shown 

in Fig. 9, it finds that the optimal number of clusters is 2.  ACA identifies 2 clusters of 

attributes: {A1, A3, …, A11} and {A2, A12, …, A20}.  A1 is the mode of the former cluster, 

whereas A2 is the mode of the latter.  It shows that ACA is able to reveal the correlations 

between the attributes hidden in the synthetic data set. 
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Fig. 9.  The total interdependence redundancy measure over all the clusters found in the 

synthetic data set. 

To evaluate the stability of the cluster configuration, we set the number of clusters to 

be 2 and ran ACA 190 times with different settings of initial modes.  We ran 190 trials 

because there are 20C2 (= 190) possible settings of initial modes for grouping the 20 

attributes into 2 clusters in the synthetic data set.  We examined the clusters of attributes 

formed in each trial.  We found that ACA groups the attributes into the same cluster 

configuration in all the 190 trials.  This shows that the cluster configuration formed by ACA 
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is optimal and stable over all the possible settings of initial modes in the synthetic data set. 

For the purpose of comparison, we applied the k-means algorithm [McQueen 1967], 

Kohonen’s SOM [Kohonen 2001], and the biclustering algorithm [Cheng and Church 2000] 

to the synthetic data set.  When k is set to be 2, the k-means algorithm groups {A1, A3, …, A6, 

A17, …, A20} into a cluster and {A2, A7, …, A16} into another cluster, whereas the biclustering 

algorithm groups {A1, A3, A8, A9, A10, A13, A14, A16, A17, A20} into a cluster and {A2, A4, …, A7, 

A11, A12, A15, A18, A19} into another cluster.  SOM produces 7 clusters: {A12, A16}, {A7, A8, A10, 

A11}, {A9}, {A2, A13, A14, A15}, {A1, A3, A5}, {A17, …, A20}, and {A4, A6}.  It is clear that the 

cluster configurations obtained by the k-means algorithm, SOM, and the biclustering 

algorithm are not able to represent the correlations between attributes hidden in the data. 

After clusters of attributes were obtained, we selected the top attribute in each cluster 

for classification.  The selected attributes were fed to C5.0 (a commercial version of C4.5 

[Quinlan 1993], which is a popular decision tree based classification algorithm) for building 

classification models.  We used C5.0 in this experiment because the classification models it 

builds are represented in the form of decision trees, which can be further examined. 

For ACA, attributes A1 and A2 are selected and fed to C5.0.  C5.0 builds a decision tree 

consisting of 5 leaf nodes and 4 non-leaf nodes that classifies all the tuples in the synthetic 

data set correctly.  For k-means, A2 and A6 are selected and fed to C5.0.  The decision tree 

built is composed of 6 leaf nodes and 5 non-leaf nodes.  It misclassifies 23 tuples, which 

belong to C3 but are classified as C2.  Biclusering algorithm selects A12 and A14.  The 

decision tree built upon this result consists of 5 leaf nodes and 4 non-leaf nodes.  It 

misclassifies 72 tuples, including 1 tuple belonging to C1, 48 tuples belonging to C2, and 23 

tuples belonging to C3.  For SOM, A2, A4, A5, A8, A9, A12, and A19 are selected.  The decision 

tree built consists of 9 leaf nodes and 8 non-leaf nodes.  Although the decision tree is rather 

complicated when compared to those constructed using the genes selected by ACA, the k-

means algorithm, and the biclustering algorithm, it correctly classifies all of the tuples in the 

synthetic data set. 

The experimental results on the synthetic data set show that ACA is a very promising 

and robust technique 1) to group attributes into clusters; 2) to select a subset of attributes 

from the clusters formed; and 3) to allow classification algorithms to build accurate 

classification models. 

6.3.2 Gene Expression Data Sets 

To evaluate the performance of ACA, we applied it to two well-known gene expression data 
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sets: the colon-cancer data set [Alon et al. 1999] and the leukemia data set [Golub et al. 

1999].  They are the same data sets used in [Li and Wong 2002a, 2002b] for gene selection. 

6.3.2.1 The Methodology for Evaluation 

The difficulty of evaluation of the attribute clustering results is that we know too little about 

how genes actually associate among themselves.  Although the rationale behind ACA is to 

group attributes by optimizing the intra-group attribute interdependence, we still have to 

justify the meaningfulness of such assumption backed by certain ground truth.  Hence to 

have an objective and meaningful evaluation of ACA and others, we have to use what we 

know about the data to devise an evaluation scheme. 

What we know about the two test data sets we used is that each of them could be 

classified into classes.  The colon-cancer data set consists of 62 samples and 2,000 genes, 

which is represented by a 2,000 × 62 expression table.  The samples are composed of tumor 

biopsies collected from tumors and normal biopsies collected from healthy part of the 

colons of the same patient.  Each sample has been pre-classified into one of the two classes: 

normal and cancer.  The leukemia data set consists of 72 samples and 7,129 genes, which is 

represented by a 7,129 × 72 expression table.  The samples are taken from 63 bone marrow 

samples and 9 peripheral blood samples.  They are either of type AML of leukemia or of 

type ALL as the two classes.  Taking the pre-classified knowledge as ground truth we could 

devise an evaluation scheme as follows. 

Since the task objective of the proposed methodology is clustering, we would like to 

ask how meaningful the clusters obtained are and what more useful information they contain.  

In view of this, we should first examine the cluster configuration and infer by observation, 

which one reveals more information about the data and gene groupings obtained.  Next, we 

would like to get significant and insightful information from each cluster by selecting a 

subset of most representative genes and examining their patterns.  Finally, we could use this 

extracted information for classification to see how the results obtained are backed by the 

ground truth.  Our proposed scheme for evaluation and comparison can be outlined as 

follows. 

 

1. The study of the cluster configuration obtained by different methods. 

2. The study of representative patterns in each cluster found by them. 

3. The result of gene classification based on the pool of top significant genes selected 

from each of the clusters. 
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6.3.2.2 The Cluster Configurations 

In this study we would like to find out: 

 

1. how optimal is the cluster configurations;  

2. how do the clustering configuration patterns look like, viz. how evenly or lopsided 

are the cluster configurations; and 

3. does each cluster contain distinctive patterns, and how discriminative they are 

between classes.  

 

We first used our ITFP to fuzzy partition the domains of the genes (attributes) in the 

colon-cancer and leukemia data sets into 2 fuzzy intervals since there are only two classes in 

each case.  This method was used because it can minimize the information lost in the fuzzy 

partitioning.  We then applied ACA to the discretized data to find clusters of genes.  Fig. 29 

shows the sum of the interdependence redundancy measure over all the clusters versus the 

number of clusters formed from the colon-cancer and leukemia data sets. 

In ACA, the cluster configuration is formed based on the maximization of intra-group 

attribute interdependence.  As shown in Fig. 10, it reports that the optimal numbers of 

clusters for the colon-cancer and leukemia data sets are 7 and 10, respectively.  The number 

of clusters found is optimal with respect to the intra-group attribute interdependence.  This 

has been supported by various experiments on synthetic data including the one presented 

above.  To investigate the representative patterns in each cluster, the top 5 genes, ranked 

according to the magnitude of their multiple interdependence redundancy in each cluster are 

selected and listed in Tables 5 and 6.  We will study their patterns in next section. 
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(a) The colon-cancer data set. 
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(b) The leukemia data set. 

Fig. 10.  The total interdependence redundancy measure over all the clusters found in the 

gene expression data sets. 
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Table 5.  The top 5 genes in each of the 7 clusters found in the colon-cancer data set. 

Cluster Rank Accession 
Number 

Name 

1 1 H05814 PUTATIVE ATP-DEPENDENT RNA HELICASE C06E1.10 IN 
CHROMOSOME III (Caenorhabditis elegans) 

1 2 X02874 Human mRNA for (2'-5') oligo A synthetase E (1,6 kb RNA) 
1 3 U33429 human K+ channel beta 2 subunit mRNA, complete cds 
1 4 H22579 INTEGRIN ALPHA-6 PRECURSOR (Homo sapiens) 
1 5 H25940 PUTATIVE SERINE/THREONINE-PROTEIN KINASE PSK-H1 

(Homo sapiens) 
2 1 T73092 EUKARYOTIC INITIATION FACTOR 4A-I (Homo sapiens) 
2 2 R26146 NUCLEAR FACTOR NF-KAPPA-B P105 SUBUNIT (HUMAN) 
2 3 T90851 ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 4 (Rattus 

norvegicus) 
2 4 R93337 HOMEOTIC GENE REGULATOR (Drosophila melanogaster) 
2 5 T69446 EUKARYOTIC INITIATION FACTOR 4A-I (HUMAN) 
3 1 M26383 Human monocyte-derived neutrophil-activating protein (MONAP) 

mRNA, complete cds 
3 2 U34252 Human r-aminobutyraldehyde dehydrogenase mRNA, complete cds 
3 3 T59162 SELENIUM-BINDING PROTEIN (Mus musculus) 
3 4 M27749 IMMUNOGLOBULIN-RELATED 14.1 PROTEIN PRECURSOR 

(HUMAN) 
3 5 T54341 P25886 60S RIBOSOMAL PROTEIN L29 
4 1 T51849 TYROSINE-PROTEIN KINASE RECEPTOR ELK PRECURSOR 

(Rattus norvegicus) 
4 2 D13243 Human pyruvate kinase-L gene, exon 12 
4 3 X52008 H.sapiens alpha-2 strychnine binding subunit of inhibitory glycine 

receptor mRNA 
4 4 R48936 GLYCOPROTEIN VP7 (Chicken rotavirus a) 
4 5 X14968 Human testis mRNA for the RII-alpha subunit of cAMP dependent 

protein kinase 
5 1 T90036 CLASS I HISTOCOMPATIBILITY ANTIGEN, E-1 ALPHA CHAIN 

PRECURSOR (Pongo pygmaeus) 
5 2 R81170 TRANSLATIONALLY CONTROLLED TUMOR PROTEIN (Homo 

sapiens) 
5 3 X67235 H.sapiens mRNA for proline rich homeobox (Prh) protein 
5 4 L20469 Human truncated dopamine D3 receptor mRNA, complete cds 
5 5 T63133 THYMOSIN BETA-10 (HUMAN) 
6 1 T92451 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL MUSCLE-

TYPE (HUMAN) 
6 2 H11460 GOLIATH PROTEIN (Drosophila melanogaster) 
6 3 H23975 IG ALPHA-1 CHAIN C REGION (Gorilla gorilla gorilla) 
6 4 R70030 IG MU CHAIN C REGION (HUMAN) 
6 5 D10522 Human mRNA for 80K-L protein, complete cds. (HUMAN);contains 

element TAR1 repetitive element 
7 1 H71627 VITELLOGENIN A2 PRECURSOR (Xenopus laevis) 
7 2 X74795 H.sapiens P1-Cdc46 mRNA 
7 3 T55840 TUMOR-ASSOCIATED ANTIGEN L6 (Homo sapiens) 
7 4 D17400 Human mRNA for 6-pyruvoyl-tetrahydropterin synthase, complete 

cds 
7 5 R71585 EBNA-2 NUCLEAR PROTEIN (Epstein-barr virus) 
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Table 6.  The top 5 genes in each of the 10 clusters found in the leukemia data set. 

Cluster Rank Accession Number Name 
1 1 D21261_at SM22-ALPHA HOMOLOG 
1 2 X14362_at CR1 Complement component (3b/4b) receptor 1, including 

Knops blood group system 
1 3 HG3514-HT3708_at Tropomyosin Tm30nm, Cytoskeletal 
1 4 U91903_at Frezzled (fre) mRNA 
1 5 U44975_at DNA-binding protein CPBP (CPBP) mRNA, partial cds 
2 1 D25248_at Randomly sequenced mRNA 
2 2 X06290_at APOLIPOPROTEIN(A) PRECURSOR 
2 3 M21305_at GB DEF = Alpha satellite and satellite 3 junction DNA 

sequence 
2 4 HG3437-HT3628_s_at Myelin Proteolipid Protein, Alt. Splice 2 
2 5 J03027_at HLA-G MHC class I protein HLA-G 
3 1 D26018_at KIAA0039 gene, partial cds 
3 2 X82018_at ZID protein 
3 3 U19107_rna1_at ZNF127 (ZNF127) gene 
3 4 U46746_s_at Dystrobrevin-alpha mRNA 
3 5 L39009_at GB DEF = Class IV alcohol dehydrogenase 7 (ADH7) gene, 

5' flanking region 
4 1 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral 

hemorrhage) 
4 2 D26308_at NADPH-flavin reductase 
4 3 U10473_s_at GB DEF = Clone p4betaGT/3 beta-1,4-galactosyltransferase 

mRNA, partial cds 
4 4 Z35227_at TTF mRNA for small G protein 
4 5 Z32684_at XK mRNA for membrane transport protein 
5 1 D28124_at Unknown product 
5 2 U72648_s_at GB DEF = Alpha2-C4-adrenergic receptor gene 
5 3 HG4417-HT4687_f_at Homeotic Protein Hpx-2 
5 4 HG2239-HT2324_r_at Potassium Channel Protein (Gb:Z11585) 
5 5 S59049_at RGS1 Regulator of G-protein signaling 1 
6 1 D28416_at GB DEF = Esterase D, 5'UTR (sequence from the 5'cap to 

the start codon) 
6 2 D10656_at CRK V-crk avian sarcoma virus CT10 oncogene homolog 
6 3 M63483_at MATRIN 3 
6 4 U13680_at LDHC Lactate dehydrogenase C 
6 5 M64571_at MAP4 Microtubule-associated protein 4 
7 1 D29642_at HYPOTHETICAL MYELOID CELL LINE PROTEIN 3 
7 2 U69108_at TNF receptor associated factor 5 mRNA, partial cds 
7 3 L07738_at DIHYDROPRYRIDINE-SENSITIVE L-TYPE, SKELETAL 

MUSCLE CALCIUM CHANNEL GAMMA SUBUNIT 
7 4 X83107_at Bmx mRNA for cytoplasmic tyrosine kinase 
7 5 U69140_s_at RPS26 Ribosomal protein S26 
8 1 D30036_at PHOSPHATIDYLINOSITOL 
8 2 X58723_at GB DEF = MDR1 (multidrug resistance) gene for P-

glycoprotein 
8 3 X67683_at GB DEF = Keratin 4 
8 4 L00635_at FNTB Farnesyltransferase, CAAX box, beta 
8 5 J03890_rna1_at SP-C1 gene (pulmonary surfactant protein SP-C) extracted 

from Human pulmonary surfactant protein C (SP-C) and 
pulmonary surfactant protein C1 (SP-C1) genes 

9 1 D31764_at KIAA0064 gene 
9 2 S82471_s_at GB DEF = SSX3=Kruppel-associated box containing SSX 

gene [human, testis, mRNA Partial, 675 nt] 
9 3 D87434_at KIAA0247 gene 
9 4 U09877_at Helicase-like protein (HLP) mRNA 
9 5 L27624_s_at TISSUE FACTOR PATHWAY INHIBITOR 2 

PRECURSOR 
10 1 D31891_at KIAA0067 gene 
10 2 Z22534_at SERINE/THREONINE-PROTEIN KINASE RECEPTOR R1 

PRECURSOR 
10 3 HG4312-HT4582_s_at Transcription Factor Iiia 
10 4 U09477_at Clone 53BP1 p53-binding protein mRNA, partial cds 
10 5 U50315_at EZH1 Enhancer of zeste (Drosophila) homolog 1 
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To facilitate the comparison of the cluster configurations, we applied the k-means 

algorithm [McQueen 1967], Kohonen’s SOM [Kohonen 2001], and the biclustering 

algorithm [Cheng and Church 2000] to the original colon-cancer and leukemia data sets and 

compared the cluster results with that obtained by ACA on the respective sets of fuzzy 

partitioned data.  Here, we shall discuss the issues of optimality of cluster configuration with 

regards to the number of clusters obtained. 

By virtue of the theoretical basis and the design of the algorithm, given a specific 

setting of initial modes (cluster centers), ACA is able to determine the k that renders a 

clustering configuration that maximizes the intra-cluster interdependence of genes over 

various k.  The cluster configuration selected is therefore an optimal one with respect to the 

setting of initial modes.  It is important to note that the cluster configuration may not be 

optimal with different settings of initial modes.  However, the experimental results on the 

synthetic data set presented in Section 6.3.1 show that the cluster configuration formed by 

ACA is optimal and stable over all the possible settings of initial modes.  Although ACA 

does not guarantee to form an optimal cluster configuration because initial modes are 

chosen randomly, the experimental results show that it is able to produce a suboptimal, if 

not globally optimal, and stable configuration. 

In forming clusters, both the k-means algorithm and the biclustering algorithm do not 

have a measure of the total dissimilarity over all the clusters.  They cannot find the cluster 

number to justify the optimality of the cluster configuration.  To deal with this problem, the 

k-means algorithm and the biclustering algorithm require a user to supply the number of 

clusters in advance. 

SOM aims at optimizing the distances between the input vectors and the reference 

vectors.  In other words, the reference vectors are moved towards the denser areas of the 

input vector space.  To determine the number of clusters, SOM does so by not assigning any 

input vector to some output nodes in the neural network.  This process is implicit in the 

training process of SOM and it does not explicitly optimize any measure of the total 

dissimilarity or distance measure over all the clusters.  The number of clusters resulted is, by 

and large, conditioned by the convergence of the weights of the network links, which is, in a 

certain sense, a little ad hoc. 

We next proceed to compare the representative patterns selected from each of the 

cluster.  Since only ACA provides a clearly defined way to determine the number of clusters, 
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we apply each of the above methods to produce 7 and 10 clusters in the colon-cancer and 

leukemia data sets respectively for comparison purpose.  We also apply the t-value and the 

methods that handle both the gene-class relevance and the gene-gene redundancy (i.e., the 

MRMR algorithm [Ding and Peng 2003] and the RBF algorithm [Yu and Liu 2004]) to rank 

the genes in the two data sets for the purpose of comparison.  For the MRMR algorithm, we 

used the F-test correlation quotient as the criterion function because the experimental results 

in [Ding and Peng 2003] show that it yields better classification results than the other 

criterion functions for continuous features. 

In each of the two data sets, the clusters found by ACA consist of more or less the same 

number of genes.  However, the k-means algorithm groups 1,592 of the 2,000 genes (i.e., 

79.6% of all the genes) into one cluster for the colon-cancer data set and groups 6,514 of the 

7,129 genes (i.e., 91.4% of all the genes) into one cluster for the leukemia data set.  The 

cluster distribution produced by SOM is less lopsided.  It groups 708 of the 2,000 genes (i.e., 

35.4% of all the genes) into one cluster for the colon-cancer data set, whereas the clusters it 

finds in the leukemia data set contain more or less the same number of genes.  Similar to 

ACA, the biclustering algorithm also forms clusters containing more or less the same 

number of genes.  Comparing the cluster size distribution, those produced by ACA and the 

biclustering algorithm are less lopsided.  Of the other two, k-means produces the most 

lopsided distribution for both data sets. 

In the rest of this section, we examine the gene ranking obtained by different 

approaches.  Since the clusters found by ACA are less lopsided and the genes selected are 

informative (whose effectiveness is reflected by the classification experiments presented in 

Section 7.4.4), the cluster configuration obtained by it and the top genes selected would 

provide a reasonable basis for performance comparison.  Therefore, they will be used as the 

benchmark in the comparison process. 

In the colon-cancer data set, of the top 35 genes ranked by the t-value, 22 are in Cluster 

2 and none is in Cluster 1 found by ACA.  Furthermore, none of the 35 genes is ranked in 

the top 5 in any of the clusters found by ACA.  On the other hand, in the leukemia data set, 

none of the top 50 genes ranked by the t-value is in Clusters 5 and 8 found by ACA.  7 of 

these genes are ranked in the first 100th in one of the 10 clusters found by ACA.  

Specifically, genes M27891_at and D21261_at are also selected by ACA.  However, many 

of the genes selected by the t-value are ranked very low in the clusters found by ACA.  For 

example, gene J05032 in the colon-cancer data set, which is ranked the fourth by the t-value, 

is ranked the 174th in Cluster 2 found by ACA, whereas gene J03589_at in the leukemia 

data set, which is ranked the 46th by the t-value, is ranked the 796th in Cluster 3 found by 
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found by ACA.  Many of these genes selected by the biclustering algorithm are ranked very 

low in the clusters found by ACA.  For example, gene L07032 in the colon-cancer data set, 

which is ranked the third in Cluster 1 found by the biclustering algorithm, is ranked the 

269th in Cluster 3 by ACA, whereas gene S79862_s_at in the leukemia data set, which is 

ranked the first in Cluster 1 found by the biclustering algorithm, is ranked the 382th in 

Cluster 4 found by ACA. 

The ranking of the genes selected by the t-value, the k-means algorithm, SOM, the 

biclustering algorithm, the MRMR algorithm, and the RBF algorithm with respect to that 

selected by ACA in the colon-cancer and leukemia data sets is summarized in Tables 7 and 

8, respectively.  The first row in Table 7 gives the number of the 35 genes selected by the t-

value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR algorithm, and 

the RBF algorithm that are ranked in the top 5 in any of the 7 clusters found by ACA; the 

second row in Table 7 gives the number of the 35 genes selected by the t-value, the k-means 

algorithm, SOM, the biclustering algorithm, the MRMR algorithm, and the RBF algorithm 

that are ranked from the 6th to the 15th in any of the 7 clusters found by ACA; and so on for 

the other rows.  The details of Table 8 can be interpreted in a similar fashion. 

The comparison of the ranking of genes by the other six methods with the benchmark 

ranking by ACA is important.  Since top ranking genes selected by ACA yield excellent 

classification results, the cross comparison of genes selected by other six methods would 

shed light on which genes would have high or low classificatory value and why.  This will 

be discussed in Sections 6.3.2.3 and 6.3.2.4. 

 

Table 7.  The ranking of the 35 genes selected by different approaches in the colon-cancer 

data set. 

Rank in the clusters 
found by ACA t-value k-means SOM Biclustering MRMR RBF 

1–5 0 1 0 0 3 0 
6–15 4 1 3 3 2 0 

16–50 2 6 6 5 1 0 
51–100 14 5 2 5 6 0 

101–200 7 5 9 3 17 2 
201–350 8 17 15 19 21 1 
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Table 8.  The ranking of the 50 genes selected by different approaches in the leukemia data 

set. 

Rank in the clusters 
found by ACA 

t-value k-means SOM Biclustering MRMR RBF 

1–10 2 1 1 1 1 0 
11–50 2 2 1 2 2 0 

51–100 3 3 3 1 4 0 
101–200 7 8 7 6 4 1 
201–300 4 5 10 10 6 1 
301–500 13 21 12 11 15 1 
501–700 8 9 9 8 6 0 

701–1000 11 1 7 11 12 0 
 

6.3.2.3 The Patterns of Genes in the Clusters 

In this section, we will select the most significant genes in each cluster based on certain 

criterion functions and examine their patterns, respectively.  More specifically, we would 

like to find out: 

 

1. how coherent are the most representative genes and  

2. do they reflect coherence, interdependence, similarity or both and what are the 

implications of such relationship in these patterns. 

 

To address the above issues, we selected some of the results obtained from ACA, k-

means, SOM, and biclustering for discussions.  Fig. 11 shows the most representative genes 

in Cluster 2 found by ACA in the colon-cancer data set and those in Cluster 9 found by 

ACA in the leukemia data set.  The gene segments highlighted in boxes b, c, and e in Fig. 

11(a) and boxes a, b, and e in Fig. 11(b) are similar to each other.  Gene segments that are 

interdependent with each other are grouped together and shown in box d in Fig. 11(a).  Note 

that the two plots at the lower part of the box are more or less correlated or interdependent 

with the curve near the top of the box although they are not similar to them because of the 

huge distance magnitude from them.  Gene segments highlighted in box a in Fig. 11(a) and 

boxes c and d in Fig. 11(b) are also interdependent even though some of the segment pairs 

are negatively correlated.  It illustrates that the interdependence redundancy measure can 

clusters genes using both similarity and interdependence measures.  This may contribute to 

the high attribute association results of ACA as reported in Section 6.3.2.4. 

 



 

109 

0

200

400

600

800

1000

1200

1400

1600

1800

1 11 21 31 41 51 61

Sample

G
en

e 
E

xp
re

ss
io

n 
Le

ve
l

T73092
R26146
T90851
R93337
T69446

a
b c

d
e

 
(a) Cluster 2 in the colon-cancer data set. 
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(b) Cluster 9 in the leukemia data set. 

Fig. 11.  The most representative genes found by ACA. 

Fig. 12 shows the most representative genes in Cluster 2 found by the k-means 

algorithm in the colon-cancer data set and those in Cluster 1 found by the k-means 

algorithm in the leukemia data set.  The gene segments highlighted in boxes a, c, and e in 

Fig. 12(a) and box c in Fig. 12(b) are similar to each other.  In Fig. 12(a), those highlighted 

in boxes b and d are dissimilar in such a way that gene H78063’s shape is distanced from 
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the others.  However, these gene segments are still interdependent although they are not 

similar.  The similar phenomena are observed in the gene segments highlighted in boxes a, b, 

and d in Fig. 12(b).  Those highlighted in box e are interdependent but negatively correlated.  

Hence, clustering algorithms based on similarity are unable to group genes which are 

interdependent.  It is perhaps for this reason that the genes selected by ACA contain more 

classificatory information.  The high classification rate of ACA as reported later in Section 

6.3.2.4 may attribute to gene interdependence as it is conceivable that interdependence is a 

key factor that makes up classes. 

Figs. 13 and 14 show the most representative genes found by SOM and the biclustering 

algorithm in the colon-cancer and leukemia data sets, respectively.  The gene segments 

highlighted in boxes in Figs. 30 and 31 are less coherent.  This indicates that the genes in a 

cluster found by SOM and the biclustering algorithm are less coherent, i.e., they are by and 

large not that much similar nor interdependent.  It is perhaps for this reason that the genes 

selected by SOM and the biclustering algorithm are not very useful for classification (see 

Section 6.3.2.4). 

On the whole, the patterns in the top representative genes selected by ACA are most 

coherent in the sense of interdependence that embodies similarity as well as positive and 

negative correlation.  The patterns selected in association with the k-means results are 

coherent only in the similarity sense.  There are positively correlated, negatively correlated 

and/or interdependent segments which are not accounted for by the distance measure 

employed.  The plots from SOM and the biclustering algorithm show that they are less 

coherent.  While they are able to account for positive correlation and negative correlation 

separately, they are not able to account for both especially when they occur along the gene 

segments in the comparison.  The interdependence measure accounts for all. 
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(a) Cluster 2 in the colon-cancer data set. 
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(b) Cluster 1 in the leukemia data set. 

Fig. 12.  The most representative genes found by the k-means algorithm. 
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(a) Cluster 1 in the colon-cancer data set. 
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(b) Cluster 2 in the leukemia data set. 

Fig. 13.  The most representative genes found by SOM. 
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(a) Cluster 1 in the colon-cancer data set. 
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(b) Cluster 1 in the leukemia data set. 

Fig. 14.  The most representative genes found by the biclustering algorithm. 
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6.3.2.4 Gene Expression Classification 

Since the ground truth of class labels for these two gene expression datasets is known, we 

use this information to devise experiments for assessing the performance of various methods.  

The evaluation scheme is depicted in Fig. 15.  First, to show how much classificatory 

information could get from the data, we use both the clustering and the attribute selection 

results obtained by the listed methods for evaluation.  That is, we obtain a set of clusters 

from the genes.  We then select a subset of top genes from each cluster to make up a gene 

pool.  We then run classification experiments on the selected gene pool to see whether or 

not the results are backed by the ground truth and which method performs the best. 

 

Classification
Algorithms

C5.0
Neural Networks
Nearest Neighbor

Naive Bayes

Entire Gene
Space

Selected Gene
Pools

Attribute Clustering and
Gene Selection Methods

ACA
t-value

k-means
Biclustering

MRMR
RBF

Classification Tests Results

Tables 9 and 16

Tables 10-13
and 17-20

 

Fig. 15.  The scheme for evaluating the classificatory effectiveness of gene pools. 

The results obtained by applying the listed classifiers on the data taken from the entire 

gene space are given in Tables 9 and 16 while the results obtained by the same set of 

classifiers on the gene pools selected by different attribute clustering and gene selection 

methods are documented on Tables 10–13 and Tables 17–20. 

The argument on the appropriateness of such evaluation scheme is as follows.  If the 

selected genes are informative, an inductive learning algorithm should be able to build an 

accurate classifier on top of them.  Based on this idea, we selected the top k genes from each 

of the clusters so that a total of 7 × k and 10 × k genes are selected for k = 1, …, 5 in the 

colon-cancer and leukemia data sets, respectively.  We then used C5.0, nonlinear neural 

networks with a single hidden layer and weight decay [Bishop 1995], the nearest neighbor 

method, and the naïve Bayes method to build classifiers on top of the selected genes.  These 

classification algorithms are used in this work because they have been employed in 

classification of gene expression data in the literature [Ben-Dor et al. 2000; Dudoit, 

Fridlyand, and Speed 2002; Friedman, Nachman, and Pe’er 2000; Keller et al. 2000; Khan 
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et al. 2001; Lu and Han 2003; Zhang et al. 2001]. 

6.3.2.4.1 The Colon-Cancer Data Set 

In the classification performance evaluation process, we employed the leave-one-out cross-

validation (LOOCV), which is a widely used process for gene expression data classification 

[Simon 2003].  With LOOCV, we selected the first sample as the test set and the remaining 

61 samples as the training set.  Repeating through the first sample to the 62nd sample, we 

got the classification accuracy (i.e., the percentage of the samples, which are predicted 

correctly). 

As the benchmark, we first trained C5.0, neural networks, the nearest neighbor method, 

and the naïve Bayes method with all 2,000 genes without gene selection.  The classification 

accuracy by LOOCV is given in Table 9.  To evaluate the attribute clustering and gene 

selection performance of ACA, the selected gene pools were fed to the same group of 

classification algorithms.  For comparison purpose, we repeated the gene selection process 

using the t-value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR 

algorithm, and the RBF algorithm.  The classification results of the classifiers built on 

different gene pools are provided in Tables 10–13. 

 

Table 9.  The performance of different classification algorithms in the colon-cancer data set. 

Classification Algorithm Classification Accuracy 
C5.0 82.3% 

Neural Networks 83.9% 
Nearest Neighbor 79.0% 

Naïve Bayes 35.5% 
 

Table 10.  The performance of C5.0 on the top genes selected by different techniques in the 

colon-cancer data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

7 88.7% 83.9% 64.5% 64.5% 67.7% 80.6% 
14 91.9% 77.4% 77.4% 59.7% 58.1% 75.8% 
21 91.9% 82.3% 75.8% 58.1% 69.4% 83.9% 
28 91.9% 85.5% 74.2% 48.4% 77.4% 83.9% 
35 91.9% 74.2% 71.0% 43.5% 75.8% 83.9% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 82.3%. 
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Table 11.  The performance of neural networks on the top genes selected by different 

techniques in the colon-cancer data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

7 90.3% 80.6% 71.0% 64.5% 75.8% 87.1% 
14 90.3% 87.1% 83.9% 75.8% 72.6% 90.3% 
21 90.3% 83.9% 77.4% 75.8% 82.3% 87.1% 
28 90.3% 80.6% 85.5% 67.7% 72.6% 90.3% 
35 90.3% 80.6% 87.1% 67.7% 79.0% 90.3% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 90.3%. 

 

Table 12.  The performance of the nearest neighbor method on the top genes selected by 

different techniques in the colon-cancer data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

7 83.9% 80.6% 58.1% 50.0% 69.4% 64.5% 
14 82.3% 80.6% 69.4% 59.7% 62.9% 56.5% 
21 82.3% 80.6% 64.5% 59.7% 53.2% 61.3% 
28 82.3% 79.0% 61.3% 58.1% 64.5% 67.7% 
35 80.6% 75.8% 62.9% 54.8% 53.2% 72.6% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 67.7%. 

 

Table 13.  The performance of the naïve Bayes method on the top genes selected by 

different techniques in the colon-cancer data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

7 64.5% 56.5% 62.9% 64.5% 67.7% 64.5% 
14 67.7% 53.2% 62.9% 29.0% 67.7% 64.5% 
21 67.7% 45.2% 62.9% 29.0% 48.4% 38.7% 
28 67.7% 35.5% 56.5% 29.0% 48.4% 43.5% 
35 67.7% 38.7% 56.5% 29.0% 48.4% 43.5% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 64.5%. 

 

The experimental results in Tables 10–13 show that ACA is, by and large, superior to 

the other six attribute clustering and gene selection methods by selecting a better small set 

of discriminative genes in the colon-cancer data set than the others as reflected by the 

classification results.  It is surprised to observe that the classification results obtained using 

the gene pools selected by ACA and t-value are even better than those using all the genes.  

And, as shown by the results, ACA outperforms t-value in all cases.  Although the MRMR 

and RBF algorithms can find good discriminative genes for C5.0, neural networks, and the 

naïve Bayes method, they are unable to do so for the nearest neighbor method.  As shown in 

the results, ACA outperforms the MRMR and RBF algorithms in all cases except neural 

networks, in which the three approaches yield comparable classification rate.  The k-means 
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algorithm, SOM, and the biclustering algorithm fail to find the good discriminative genes as 

shown in the results.  This result shows that it is able to build a more accurate classifier if a 

subset of more informative genes based on multiple interdependence is selected by ACA 

before feeding them into the classifier for training. 

It is interesting to note that the performance of C5.0 is able to achieve a 91.9% when 

using the 14 genes selected by ACA and maintain at the same accuracy even when more 

genes are selected by ACA (see Table 10).  This implies that the good diagnostic 

information exists in a small set of genes which can be effectively selected by ACA and a 

small set of genes can be used to build classifiers for diagnostic purpose.  This has a 

significant implication to clinical, pharmaceutical, and bioengineering applications.  

Similarly, the same phenomenon is observed in the 90.3% rate when 7 genes selected by 

ACA is fed into neural networks classifier and its performance remains at that level even 

when more genes selected by ACA are fed in (see Table 11).  This suggests that using only 

the top 1 or 2 genes in each cluster found by ACA are already good enough for training 

C5.0 and neural networks. 

On the other hand, the poor classification performance using the set selected by the k-

means algorithm, SOM, and the biclustering algorithm (see Tables 9–13) may be explained 

by our observation that their selected top genes are ranked very low by ACA (see Table 7).  

In another words, they are less interdependent with other genes in the group.  To further this 

argument, we also observe that the genes selected by t-value are ranked relatively high by 

ACA in comparison to the other three (see Table 7). 

Since the k-means algorithm and the biclustering algorithm do not provide a criterion 

function to show which k would give the most optimal configuration, we will evaluate it by 

varying k to see which k will produce the best result.  As shown in Tables 10–13, the k-

means algorithm yields the best result when the top 5 genes in each cluster are selected and 

fed to neural networks (87.1% as shown in Table 11), whereas the biclustering algorithm 

achieves the best result when the top 3 genes in each cluster are selected and fed to neural 

networks (82.3% as shown in Table 11).  In order to use their best performance results for 

comparison, we select the top 5 genes from each cluster for the k-means algorithm and the 

top 3 genes for the biclustering algorithm.  The classification performance by neural 

networks on the top genes selected by the k-means algorithm and the biclustering algorithm 

with different number of clusters is given in Tables 14 and 15, respectively.  The 

experimental results show that the performance of using 7 clusters (where 7 is the cluster 

number determined by ACA) is close to the best result (87.1% for the k-means algorithm 

and 82.3% for the biclustering algorithm as shown in Table 11).  With the same 
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configuration ACA achieves at a 90.3% rate.  It is interesting to observe that the number of 

clusters determined by ACA, if used as a candidate of k, both of the k-means algorithm and 

the biclustering algorithm yields the second best result. 

 

Table 14.  The performance of neural networks on the top genes selected by the k-means 

algorithm in the colon-cancer data set. 

No. of Clusters Found Classification Accuracy 
2 64.5% 
4 80.6% 
6 80.6% 
8 88.7% 

10 83.9% 
15 88.7% 
20 88.7% 

 

Table 15.  The performance of neural networks on the top genes selected by the biclustering 

algorithm in the colon-cancer data set. 

No. of Clusters Found Classification Accuracy 
2 74.2% 
4 64.5% 
6 80.6% 
8 79.0% 

10 83.9% 
15 83.9% 
20 64.5% 

 

SOM is able to determine the number of clusters automatically.  It determines that there 

are 35 clusters.  As shown in Tables 10–13, SOM produces the best result when the top 2 

and 3 genes in each cluster are selected and fed to neural networks (75.8% as shown in 

Table 11).  We therefore evaluated the performance of neural networks using the top 2 and 3 

genes in each of the 35 clusters found by SOM and found that the classification accuracy is 

87.1% and 88.7%, respectively.  It is important to note that ACA obtains a classification 

accuracy of 90.3% using 7 genes only (see Table 11). 

6.3.2.4.2 The Leukemia Data Set 

We next report the performance of ACA based on the classification results on the leukemia 

data set.  The data set taken from the website is already divided into a training set, which 

consists of 38 samples, and a test set, which consists of 34 samples, by the donor of the data 

set.  Like what we did for the colon-cancer data, we used C5.0, neural networks, the nearest 

neighbor method, and the naïve Bayes method to build classifiers using the selected genes 

as the training set.  The classifiers thus built were tested on the samples in the test set. 
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Again, as the benchmark, we first trained C5.0, neural networks, the nearest neighbor 

method, and the naïve Bayes method with all 7,129 genes.  The classification results are 

given in Table 16.  To evaluate the attribute clustering and gene selection performance of 

ACA, its selected gene pools were fed to the same group of classification algorithms.  For 

the classification comparison purpose, we fed into the same group of classifiers the gene 

selected by the t-value, the k-means algorithm, SOM, the biclustering algorithm, the MRMR 

algorithm, and the RBF algorithm using the similar process.  The classification results of the 

classifiers built on respective gene pools are provided in Tables 17–20. 

 

Table 16.  The performance of different classification algorithms in the leukemia data set. 

Classification Algorithm Classification Accuracy 
C5.0 91.2% 

Neural Networks 91.2% 
Nearest Neighbor 82.4% 

Naïve Bayes 41.2% 
 

Table 17.  The performance of C5.0 on the top genes selected by different techniques in the 

leukemia data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

10 94.1% 94.1% 47.1% 55.9% 71.1% 91.2% 
20 94.1% 94.1% 55.9% 55.9% 60.5% 91.2% 
30 94.1% 94.1% 55.9% 64.7% 65.8% 91.2% 
40 94.1% 94.1% 55.9% 61.8% 57.9% 91.2% 
50 94.1% 94.1% 55.9% 61.8% 60.5% 91.2% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 85.3%. 

 

Table 18.  The performance of neural networks on the top genes selected by different 

techniques in the leukemia data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

10 97.1% 82.4% 70.6% 61.8% 52.9% 97.1% 
20 97.1% 82.4% 64.7% 61.8% 58.8% 94.1% 
30 97.1% 82.4% 64.7% 52.9% 47.1% 94.1% 
40 94.1% 88.2% 61.8% 73.5% 58.8% 94.1% 
50 97.1% 82.4% 58.8% 58.8% 52.9% 97.1% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 94.1%. 
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Table 19.  The performance of the nearest neighbor method on the top genes selected by 

different techniques in the leukemia data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

10 91.2% 82.4% 50.0% 50.0% 52.9% 61.8% 
20 91.2% 88.2% 44.1% 61.8% 52.9% 70.6% 
30 91.2% 88.2% 44.1% 67.6% 58.8% 67.6% 
40 91.2% 88.2% 47.1% 70.6% 58.8% 70.6% 
50 91.2% 82.4% 47.1% 67.6% 52.9% 70.6% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 47.1%. 

 

Table 20.  The performance of the naïve Bayes method on the top genes selected by 

different techniques in the leukemia data set. 

Classification Accuracy No. of Genes 
Selected ACA t-value k-means SOM Biclustering MRMR

10 82.4% 55.9% 58.8% 58.8% 58.8% 67.6% 
20 61.8% 47.1% 58.8% 58.8% 58.8% 55.9% 
30 61.8% 38.2% 58.8% 58.8% 58.8% 50.0% 
40 61.8% 29.4% 52.9% 58.8% 58.8% 47.1% 
50 61.8% 20.6% 52.9% 58.8% 58.8% 47.1% 

* The RBF algorithm selects 3 genes only and achieves a classification accuracy of 58.8%. 

 

The experimental results in Tables 17–20 show that ACA is, by and large, superior to 

the other six attribute clustering and gene selection methods as it selects a better small set of 

discriminative genes from the leukemia data set than the others.  As in the colon-cancer 

cases, the classification results obtained using the gene pools selected by ACA are also 

better than those using all the leukemia genes.  In all cases, ACA outperforms t-value.  

However, although the t-value can also find the good discriminative genes for C5.0 and the 

nearest neighbor method, yet it fails to find good discriminative genes for the training of 

neural networks and the naïve Bayes method.  The MRMR and RBF algorithms find good 

discriminative genes for C5.0, neural networks, and the naïve Bayes method but are unable 

to do so for the nearest neighbor method. ACA outperforms the MRMR and RBF 

algorithms in all cases except neural networks, in which the three approaches produce 

comparable classification accuracy.  The k-means algorithm, SOM, and the biclustering 

algorithm cannot find the good discriminative genes as shown in the results.  Similar to the 

result found in the colon-cancer data set, this result shows that it is able to build a more 

accurate classifier if a subset of more informative genes based on multiple interdependence 

selected by ACA are fed into the classifier for training. 

It is interesting to note that the performance of C5.0 is able to achieve a 94.1% rate 

when using the 7 genes selected by ACA and maintain at the same accuracy level even more 
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genes selected by ACA are used (see Table 17).  This again supports that using only the top 

genes in each cluster found by ACA are good enough for training C5.0. 

As in the colon-cancer cases, the poor classification performance using the set selected 

by the k-means algorithm, SOM, and the biclustering algorithm (see Tables 16–20) may 

follow the same argument as in the last section (see Table 8). 

Process similar to the colon-cancer cases are used to evaluate the performance of the k-

means algorithm and the biclustering algorithm except the numbers may be different (Tables 

17–20).  The k-means algorithm obtained the best result when the top gene in each cluster is 

selected and fed to neural networks (70.6% as shown in Table 18), whereas the biclustering 

algorithm produced the best result when the top gene in each cluster is selected and fed to 

C5.0 (71.1% as shown in Table 17).  Based on their best performance scenarios, the 

experimental results of using their optimal configuration of both 10 clusters (where 10 

happens to be the cluster number determined by ACA as well) yields one of the best results 

(70.6% for the k-means algorithm as shown in Table 18, whereas 71.1% for the biclustering 

algorithm as shown Table 20).  The performance by neural networks on the top genes 

selected by the k-means algorithm and that by C5.0 on the top genes selected by the 

biclustering algorithm with different number of clusters are given in Tables 21 and 22, 

respectively.  With the same configuration, ACA obtains a classification accuracy of 97.1% 

(see Table 18) and 94.1% (see Table 17), respectively, far superior to their performance.  It 

is interesting to observe that the number of clusters determined by ACA (10 in this case), if 

used as a candidate of k, both the k-means algorithm and the biclustering algorithm yield the 

best result. 

 

Table 21.  The performance of neural networks on the top genes selected by the k-means 

algorithm in the leukemia data set. 

No. of Clusters Found Classification Accuracy 
2 58.8% 
4 61.8% 
6 58.8% 
8 58.8% 

10 70.6% 
15 70.6% 
20 67.6% 
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Table 22.  The performance of C5.0 on the top genes selected by the biclustering algorithm 

in the leukemia data set. 

No. of Clusters Found Classification Accuracy 
2 58.8% 
4 58.8% 
6 55.9% 
8 58.8% 

10 71.1% 
15 41.2% 
20 44.1% 

 

Kohonen’s SOM determines that there are 54 clusters, far too many for practical 

reasons.  As shown in Tables 17–20, SOM produces the best result when the top 4 genes in 

each cluster are selected and fed to neural networks (73.5% as shown in Table 18).  The 

classification accuracy of neural networks using the top 4 genes in each of the 54 clusters is 

73.5%.  It is important to note that ACA obtains a classification accuracy of 97.1% using 10 

genes only (see Table 18). 

6.3.2.5 Can a Specific Gene(s) Governed a Disease Be Found by 
ACA? 

To answer the question on what more lights could the multiple interdependence results 

could shed on the nature and the usefulness of the information obtained by ACA, the 

following experiment is conducted. 

We first examined the decision tree built on top of the genes selected by ACA in the 

leukemia data set.  We found that the decision tree built by C5.0 uses only gene M27891_at, 

which is the first gene in Cluster 4 found by ACA (see Table 4), to classify any samples.  

This gene is also ranked as the second by the t-value.  The decision tree achieves a 

classification accuracy of 94.1%.  Next, we examined the decision tree built using all the 

7,129 genes in the leukemia data set.  We found that the decision tree built in this way does 

not use gene M27891_at.  It surprises us to notice that the decision tree built on top of all the 

genes obtains a classification accuracy of 91.2%, which is lower than what it does if using 

the top gene M27891_at selected by ACA. 

Although we cannot comment on the biological impacts of gene M27891_at to 

leukemia at this moment, the experimental results show that this gene is very useful in the 

classification of leukemia and the usefulness of this gene cannot be identified if gene 

selection has not been done properly.  As researchers are devoting immense effort to 

identify genes that govern various diseases, the method we propose may provide a new way 
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of not only reducing the search dimensionality of gene expressions in analysis, but also 

singling out potential candidates for the classification and identification of diseases. 
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Chapter 7 

Mining Fuzzy Rules in Data Sets and Rule Sets 
 

The problem of mining association rules is introduced in [Agrawal, Imielinski, and Swami 

1993b] to reveal interesting patterns in the data.  The mining of association rules is 

originally defined for transaction data.  This is later extended to also handle relational data 

containing categorical (discrete-valued) and quantitative (continuous-valued) data [Srikant 

and Agrawal 1996].  In its most general form, an association rule is defined for the attributes 

of a database relation, T.  It is an implication of the form X ⇒ Y, where X and Y are 

conjunctions of certain conditions.  A condition is either Ai = ai, where ai is a value in the 

domain of the attribute Ai if Ai is discrete, or ai ∈ [li, ui], where li and ui are bounding values 

in the domain of the attribute Ai if Ai is continuous.  The association rule X ⇒ Y holds in T 

with a certain support, which is defined as the percentage of tuples that have the 

characteristics satisfying X and Y, and a certain confidence, which is defined as the 

percentage of tuples that have the characteristics satisfying Y given that they also satisfy X.  

An association relationship is usually considered interesting if its support and confidence 

values are greater than or equal to some user-specified minimum [Agrawal, Imielinski, and 

Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han and Fu 1995; 

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and 

Agrawal 1995, 1996]. 

An example of an association rule is: 

 

Marital Status = Single ∧ Age ∈ [35, 45] ∧ Account Balance ∈ [1 000, 2 500] 

 ⇒ Loan Balance = [10 000, 15 000], 

 

which describes a person who is single, aged between 35 and 45, and with an account 

balance that is between $1,000 and $2,500, as someone who is likely to use a loan that is 

between $10,000 and $15,000.  An association rule defined over market basket data has a 

special form. The antecedent and the consequent are conjunctions involving Boolean 

attributes that take on the value of 1.  An example of an association rule that is defined over 

market basket data is: 

 

Pizza = 1 ∧ Chicken Wings = 1 ⇒ Coke = 1 ∧ Salad = 1. 
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This rule states that a customer who buys pizza and chicken wings also buys coke and salad. 

Although the existing algorithms for mining association rules (e.g., [Liu, Hsu, and Ma 

1998; Srikant and Agrawal 1996]) can be used to identify interesting association 

relationships in continuous or mixed continuous and discrete valued data, they require the 

domains of continuous attributes to be discretized into intervals.  These intervals are often 

hard to define.  If too much data lies on the boundaries of the intervals, this could result in 

very different discoveries in the data that could be both misleading and meaningless.  In 

addition to the need for discretization, there is a requirement for users to provide the 

thresholds for minimum support and confidence, and this also makes the existing techniques 

(e.g., [Agrawal, Imielinski, and Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et 

al. 1996a; Han and Fu 1995; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and 

Navathe 1995; Srikant and Agrawal 1995, 1996]) to be difficult to use.  If the thresholds are 

set too high, a user may miss some useful rules; but if the thresholds are set too low, the user 

may be overwhelmed by too many irrelevant rules [Han and Kamber 2001; Hand, Mannila, 

and Smyth 2001]. 

To better represent the underlying association relationships hidden in the data, we 

develop two new fuzzy algorithms for data mining.  They employ linguistic variables and 

linguistic terms to represent the revealed regularities and exceptions.  This linguistic 

representation is especially useful when the discovered rules are presented to human experts 

for examination because of its affinity with the human knowledge representation.  Since our 

interpretation of linguistic terms is based on fuzzy set theory, the rules that are expressed in 

these terms are referred to hereinafter as fuzzy association rules [Au and Chan 1998, 1999, 

2001, 2003, 2004; Chan and Au 1997b, 2001, 2002]. 

An example of a fuzzy association rule is given as follows: 

 

Marital Status = Single ∧ Age = Middle ∧ Account Balance = Small 

 ⇒ Loan Balance = Moderate, 

 

where Single is a crisp value, 

 

Middle is a linguistic term that is represented by the fuzzy set 
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 Moderate is a linguistic term that is represented by the fuzzy set 
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This rule states that a middle-aged person who is single and has a small balance in 

his/her bank account is likely to use a loan for a moderate amount.  When this rule is 

compared to the association rule involving discrete intervals, the fuzzy association rule is 

easier for human users to comprehend.  In addition to the linguistic representation, the use 

of fuzzy set based techniques hides the boundaries of the adjacent intervals of the 

continuous attributes.  This makes our proposed algorithms to be resilient to noises in the 

data, such as inaccuracies in the physical measurements of real-life entities.  Furthermore, 

the fact that 0.5 is the fuzziest degree of membership of an element in a fuzzy set provides a 

new means for them to deal with missing values in databases.  Using defuzzification 

techniques, our algorithms allow continuous values to be inferred when fuzzy association 

rules are applied to as yet unseen records. 

To avoid the need for user-specified thresholds, both of the two proposed algorithms 

utilize an objective interestingness measure, which is defined in terms of a fuzzy support 

and confidence measure [Au and Chan 1998, 1999, 2001, 2002a, 2002b, 2003, 2004; Au, 

Chan, and Yao 2003; Chan and Au 1997a, 1997b, 2001; Chan, Au, and Choi 2002], that 

reflects the actual and the expected degree to which a tuple is characterized by different 

linguistic terms.  Unlike other data mining algorithms (e.g., [Agrawal, Imielinski, and 

Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han and Fu 1995; 

Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; Srikant and 

Agrawal 1995, 1996]), the use of this interestingness measure has the advantage that it does 

not require any user-specified thresholds. 

Using the discovered rules, our proposed algorithms can be used to classify records 

with unknown class membership.  In particular, they are able to predict churn, which is 

concerned with the loss of subscribers who switch from one carrier to another.  To reduce 

churn rate, a carrier in Malaysia gives us a database of 100,000 subscribers.  For such an 

application, the goal is not only to predict whether or not a subscriber would switch from 

one carrier to another, it is also important that the likelihood of the subscriber’s doing so be 

predicted.  Otherwise, it can be difficult for the carrier to take advantage of the discovery 

because the carrier does not have enough resources to contact all or a large fraction of the 

subscribers.  Although logit regression and neural networks can determine a probability for 

a prediction with its likelihood, they do not explicitly express the uncovered patterns in a 

symbolic, easily understandable form.  It is for this reason that the carrier does not consider 

these approaches as the best for their task concerned as they could not verify and interpret 
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the uncovered churning patterns. 

Unlike existing techniques, our algorithms are able to mine rules representing the 

churning patterns and to predict whether a subscriber is likely to churn in the near future.  

The experimental results show that they are able to discover the regularities hidden in the 

database and to predict the probability that a subscriber churns under different churn rates.  

In addition, since some attributes in the subscriber database contains significant amount of 

missing values, the ability of the proposed algorithms to handle missing values effectively is 

important to their success in churn prediction. 

In addition to mining rules from data sets, our proposed algorithms can also mine meta-

rules from rule sets.  Specifically, they are able to discover 1) regular meta-rules to represent 

association relationships in common in the rule sets; 2) differential meta-rules to represent 

distinguishing associations in only a few rule sets; and 3) change meta-rules to represent the 

regularities governing how rules change over time. 

The rest of this chapter is organized as follows.  In Section 7.1, we present what fuzzy 

association rules are and how to use an objective measure to find the interesting associations 

that are hidden in databases.  We then propose two algorithms for mining fuzzy association 

rules.  One is based on a heuristic and the other employs an evolutionary approach.  The 

details of the former algorithm and those of the latter are given in Sections 7.2 and 7.3, 

respectively.  To evaluate the performance of our algorithms, we applied them to several 

real-life data sets for data mining.  The experimental results are provided in Section 7.4.  

The details of the subscriber database provided by the carrier in Malaysia and the 

experimental results using this database to test if our proposed algorithms are effective for 

churn prediction are also given in this same section.  Furthermore, we also applied our 

algorithms to synthetic data sets for meta-mining.  The details and the results of the 

experiments are described in Section 7.5. 

7.1 Fuzzy Association Rules 
In the following subsections, we present 1) the definition of linguistic variables and 

linguistic terms; 2) how to identify interesting association relationships between linguistic 

terms; 3) the formation of fuzzy rules to represent the interesting associations and how to 

represent the uncertainty associated with the rules; and 4) how to predict previously 

unknown values using the discovered fuzzy rules. 
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7.1.1 Linguistic Variables and Linguistic Terms 

Given a database relation, D, each tuple, t, in D consists of a set of attributes, A = {A1, …, 

An}, where A1, …, An can be continuous or discrete.  For any tuple, t ∈ D, t[Ai] denotes the 

value ai in t for attribute Ai ∈ A.  Let L = {L1, …, Ln} be a set of linguistic variables such 

that Li ∈ L represents Ai ∈ A. 

For any continuous attribute, Ai ∈ A, let dom(Ai) = [li, ui] ⊆ ℜ denote the domain of the 

attribute.  Ai is represented by a linguistic variable, Li, whose value is a linguistic term in  

T(Li) = {lij | j = 1, …, si}, where lij is a linguistic term characterized by a fuzzy set, Fij, that is 

defined on dom(Ai) and whose membership function is 
ijFµ  so that: 

 

]1 ,0[)(: →iF Adom
ij
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The fuzzy sets Fij, j = 1, …, si, are then represented by: 
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where ai ∈ dom(Ai).  The degree of compatibility of ai ∈ dom(Ai) with linguistic term lij is 

given by )( iF a
ij

µ . 

For any discrete attribute, Ai ∈ A, let } ..., ,{)( 1 iimii aaAdom =  denote the domain of Ai.  

Ai is represented by linguistic variable Li whose value is a linguistic term in  

T(Li) = {lij | j = 1, …, mi}, where  lij is a linguistic term characterized by a fuzzy set, Fij, so 

that: 
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where ai ∈ dom(Ai).  The degree of compatibility of ai ∈ dom(Ai) with linguistic term lij is 

given by )( iF a
ij

µ . 

In addition to handling discrete and continuous attributes in a uniform fashion, the use 
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of linguistic terms to represent discrete attributes also allows the fuzzy nature of some real-

world entities to be easily captured.  For example, it may be difficult to distinguish the color 

orange from the color red in some situations.  It is for this reason that an object, which is 

orange in color, can be perceived as red in color to certain extent.  Such kind of fuzziness in 

attribute Color can be represented by linguistic terms Red and Orange.  Based on these 

linguistic terms, the color of an object can be compatible with the term Red to a degree of 

0.7 and with the term Orange to a degree of 0.3. 

Interested readers are referred to [Mendel 1995] and [Yen 1999] for the details of the 

linguistic variables, linguistic terms, fuzzy sets, and membership functions. 

Using the above technique, the original attributes, A, are represented by a set of 

linguistic variables, L = {Li | i = 1, …, n}.  These linguistic variables are associated with a 

set of linguistic terms, l = {lij | i = 1, …, n, j = 1, …, si}.  These linguistic terms are, in turn, 

characterized by a set of fuzzy sets, F = {Fij | i = 1, …, n, j = 1, …, si}.  Given a tuple, t ∈ D, 

and a linguistic term, lij ∈ l, which is characterized by a fuzzy set, Fij ∈ F, the degree of 

membership of the values in t with respect to Fij is given by ])[( iF At
ij

µ .  The degree to 

which t is characterized by lij, )(t
ijlλ , is defined as follows: 

 

 ])[()( iFl Att
ijij

µλ = . (7.3) 

If 1)( =t
ijlλ , t is completely characterized by the linguistic term lij.  If 0)( =t

ijlλ , t is 

undoubtedly not characterized by the linguistic term lij.  If 1)(0 << t
ijlλ , t is partially 

characterized by the linguistic term lij.  In the case where t[Ai] is unknown, 5.0)( =t
ijlλ , 

which indicates that there is no information available concerning whether t is or is not 

characterized by the linguistic term lij. 

It is important to note that t can also be characterized by more than one linguistic term.  

Let ϕ be a subset of integers so that ϕ = {i1, …, ih}, where ϕ ⊆ {1, …, n} and |ϕ| = h ≥ 1.  

We also suppose that Aϕ is a subset of A so that Aϕ = {Ai | i ∈ ϕ}.  Given any Aϕ, it is 

associated with a set of linguistic terms, T(Lϕ) = {lϕj | j = 1, …, ∏
∈

=
ϕ

ϕ
i

iss }, where lϕj is 

represented by a fuzzy set, Fϕj, so that 
hh jijij FFF ∩∩= ...

11ϕ , ik ∈ ϕ, 
kik sj ∈ .  The degree 

to which t is characterized by the term lϕj, )(t
jlϕ

λ , is defined as follows: 
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ϕ
= . (7.4) 

Based on the linguistic variables and linguistic terms, we can apply our proposed 

algorithms to discover the fuzzy association rules, which are represented in a manner that is 

natural for human users to understand. 

7.1.1.1 An Illustrative Example 

In this section, we illustrate how a relation in a relational database can be transformed to a 

fuzzy relation based on linguistic variables and linguistic terms.  Let us consider a sample 

relation shown in Fig. 16 (“U” stands for unmarried and “M” stands for married). 

 

Age Marital Status Salary 
23 U 40,000 
29 M 43,000 
33 M 55,000 
35 U 64,000 
55 M 62,000 

Fig. 16.  A sample relation. 

Let us further suppose that the Marital Status attribute, which is a discrete attribute, is 

represented by two linguistic terms defined as: 

 

U
1

=Unmarried  

 

and 

 

 
M
1

=Married . 

For the remaining two continuous attributes, Age and Salary, they are represented by 

the linguistic terms given in Fig. 17. 

Based on these linguistic terms, the sample relation is transformed to a fuzzy relation 

shown in Fig. 18.  Instead of mining interesting rules from the original relation, we perform 

data mining in the resulting fuzzy relation. 

 



 

131 

0

1

0 20 40 60 80

Age

D
eg

re
e 

of
 M

em
be

rs
hi

p

Young Middle Aged Old

 
(a) The Age attribute. 
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(b) The Salary attribute. 

Fig. 17.  The definitions of linguistic terms. 

 

Age Marital Status Salary 
{(Young, 0.85),  

(Middle Aged, 0.15)} 
{(Unmarried, 1)} {(Low, 0.5),  

(Medium, 0.5)}  
{(Young, 0.55),  

(Middle Aged, 0.45)} 
{(Married, 1)}  {(Low, 0.35),  

(Medium, 0.65)}  
{(Young, 0.35),  

(Middle Aged, 0.65)  
{(Married, 1)}  {(Medium, 0.75),  

(High, 0.25)}  
{(Young, 0.25),  

(Middle Aged, 0.75)} 
{(Unmarried, 1)} {(Medium, 0.3),  

(High, 0.7)}  
{(Middle Aged, 0.25), 

(Old, 0.75)}  
{(Married, 1)}  {(Medium, 0.4),  

(High, 0.6)}  

Fig. 18.  The resulting fuzzy relation. 
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7.1.2 Identification of Interesting Associations between 

Linguistic Terms 

The fuzzy support of a linguistic term, lϕk, is represented by fsup(lϕk), and it is defined as 

follows: 
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The fuzzy support of the linguistic term lϕk, fsup(lϕk), can be considered as being the 

probability that a tuple is characterized by lϕk. 

In the rest of this chapter, the association between a linguistic term, lϕk, and another 

linguistic term, lpq, is expressed as lϕk → lpq.  The fuzzy support of the association lϕk → lpq, 

fsup(lϕk → lpq), is given by: 
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In fact, other t-norms (e.g., the multiplication operation) can also be used in the calculation 

of the fuzzy support.  We use the minimum operation here because it is one of the most 

popular t-norms used in the literature (see, e.g., [Yen and Langari 1999]). 

The fuzzy confidence of the association lϕk → lpq is represented by fconf(lϕk → lpq) and 

this is calculated by: 
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Intuitively, the fuzzy support of lϕk → lpq, fsup(lϕk → lpq), can be considered as being 

the probability that a tuple is characterized by lϕk and lpq, whereas the fuzzy confidence of  

lϕk → lpq, fconf(lϕk → lpq), can be considered as being the probability that a tuple is 

characterized by lpq given that it is also characterized by lϕk. 
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To decide whether an association, lϕk → lpq, is interesting, we determine whether the 

difference between fconf(lϕk → lpq) and fsup(lpq) is significant.  The significance of the 

difference can be objectively evaluated using the adjusted residual [Chan and Wong 1990, 

1991].  This is defined in terms of fuzzy confidence and support measures [Au and Chan 

1998, 1999, 2001, 2002a, 2002b, 2003, 2004; Au, Chan, and Yao 2003; Chan and Au 1997a, 

1997b, 2001; Chan, Au, and Choi 2002] that reflect the differences in the actual and the 

expected degree to which a tuple is characterized by different linguistic terms.  The adjusted 

residual, d(lϕk → lpq), is defined as [Chan and Wong 1990, 1991]: 
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where z(lϕk → lpq) is the standardized residual and is defined as [Chan and Wong 1990, 

1991]: 
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e(lϕk → lpq) is the expected degree to which a tuple is characterized by lϕk and lpq and is 

calculated by: 
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and γ(lϕk → lpq) is the maximum likelihood estimate [Chan and Wong 1990, 1991] of the 

variance of z(lϕk → lpq)  and is given by: 

 

 ))(1))((1()( pqkpqk lfsuplfsupll −−=→ ϕϕγ . (7.11) 

The measure defined by (7.8) can be considered as being an objective interestingness 

measure because it does not depend on a user’s subjective input.  Since d(lϕk → lpq) has a 

normal distribution [Agresti 1990], if d(lϕk → lpq) > 1.96, then the presence of lϕk implies the 

presence of lpq.  In other words, whenever lϕk is found in a tuple, the probability that lpq is 

also found in the same tuple is expected to be significantly higher than when lϕk is not found. 
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7.1.3 Formation of Fuzzy Association Rules 

In the context of rule mining, the number of conditions in the antecedent of a rule is often 

referred to as its order [Smyth and Goodman 1992; Wong and Wang 1997, 2003].  A first-

order fuzzy association rule can be defined as a rule involving one linguistic term in its 

antecedent.  A second-order fuzzy association rule can be defined as a rule involving two 

linguistic terms in its antecedent.  A third-order fuzzy association rule can be defined as a 

rule involving three linguistic terms in its antecedent, and so on for other higher orders. 

Given that lϕk → lpq is interesting, we can form the following fuzzy association rule: 

 

)]([ pqkpqk llwll ⇒⇒ ϕϕ , 

 

where w(lϕk ⇒ lpq) is the weight of evidence measure, which is a confidence measure that 

represents the uncertainty associated with lϕk ⇒ lpq.  This measure is defined as follows 

[Chan and Wong 1990, 1991]. 

Since the relationship between lϕk and lpq is interesting, there is some evidence for a 

record to be characterized by lpq given it has lϕk.  The weight of evidence measure is defined 

in terms of an information-theoretic measure known as mutual information.  Mutual 

information measures the change of uncertainty about the presence of lpq in a tuple given 

that it has lϕk.  It is defined as: 
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Based on mutual information, the weight of evidence measure is defined as [Chan and 

Wong 1990, 1991]: 
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w(lϕk ⇒ lpq) can be interpreted intuitively as a measure of the difference in the gain in 

information when a tuple that is characterized by lϕk is also characterized by lpq as opposed 

to being characterized by other linguistic terms. 
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Since lϕk is defined by a set of linguistic terms, l∈
hh jiji ll  ..., ,

11
, we have a high-order 

fuzzy association rule: 

 

)]([  ...
111 pqkpqpjiijii llwlLlLlL

hhh
⇒=⇒=∧∧= ϕ , 

 

where i1, …, ih ∈ ϕ. 

In the case that a class label is given, our algorithms can be modified in such a way that 

they discover only those rules whose consequents are concerned with only the class label.  

The generation of the rules that are not useful for classification can therefore be avoided. 

7.1.4 Predicting Previously Unknown Values Using Fuzzy 

Association Rules 

Using the discovered fuzzy association rules, we are able to predict the values of some of 

the characteristics of previously unseen records.  The results can be continuous or discrete, 

depending on the nature of the attributes whose values are to be predicted.  Unlike other 

classification techniques, which classify records into distinct classes, ours allows continuous 

values to be inferred from fuzzy association rules. 

Given a tuple, t ∈ dom(A1) × … × dom(Ap) × … × dom(An), let t be characterized by n 

attribute values, α1, …, αp, …, αn, where αp is the value to be predicted.  Let lp be a 

linguistic term with a domain of T(Lp).  The value of αp is determined according to lp.  To 

predict the correct value of αp, we search the discovered rules.  If some attribute value, say 

αj, j ≠ p, of t is characterized by the linguistic term in the antecedent of a rule that implies lpq, 

then it can be considered providing some confidence that the value of lp should be assigned 

to lpq.  By repeating this procedure, that is, by matching each attribute value of t against the 

rules, we can determine the value of lp by computing the total confidence measure. 

Each of the attributes of t may or may not provide a contribution to the total confidence 

measure, and those that do may support the assignment of different values.  Therefore, the 

different contributions to the total confidence measure are measured quantitatively and then 

combined for comparison in order to find the most suitable value of lp.  For any combination 

of the attribute values, αϕ, p ∉ ϕ, of t, it is characterized by a linguistic term, lϕk, to a degree 

of compatibility, )(t
klϕλ , for each k ∈ {1, …, sϕ}.  Given the rules that imply the assignment 

of lpq, lϕk ⇒ lpq [w(lϕk ⇒ lpq)], for all k ∈ ζ ⊆ {1, …, sϕ}, the confidence provided by αϕ for 

such an assignment is given by: 
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Suppose that, among the n − 1 attribute values excluding αp, only some combinations 

of them, α[1], …, α[j], …, α[β], where α[j] = {αi | i ∈ {1, …, n} − {p}}, are found matching 

one or more rules.  Then, the total confidence measure for assigning the value of lp to lpq is 

given by: 

 

 ∑
=

=
β

α
1

][
j

lq jpq
ww . (7.15) 

In the case that Ap is discrete, lp is assigned to lpc if: 

 

wc > wg, g = 1, …, ps′  and g ≠ c, 

 

where ps′  (≤ sp) denotes the number of linguistic terms that are implied by the rules, and αp 

is, therefore, assigned to apc ∈ dom(Ap). 

If Ap is continuous, a new method is used to assign an appropriate value to αp.  Given 

the linguistic terms, 
ppsp ll  ..., ,1 , and their total confidence measures, 

ppsp ww  ..., ,1 , let 

)( pF a
pu

µ′  be the weighted degree of membership of ap ∈ dom(Ap) to the fuzzy set Fpu,  

u ∈ {1, …, sp}.  The value of )( pF a
pu

µ′  is given by: 

 

 )()( pFpupF awa
pupu

µµ ⋅=′ , (7.16) 

 

where ap ∈ dom(Ap) and u = 1, …, sp.  The predicted value, α, is then defined as: 
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where ))( ),(max()( aaa YXYX µµµ ′′=′ U  for any fuzzy sets X and Y.  This prediction, α, 

provides an appropriate value for αp. 
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7.2 The FARM Algorithm 
In this section, we propose a new algorithm for mining fuzzy association rule based on a 

heuristic.  It is known as FARM (Fuzzy Association Rule Mining) in the rest of this thesis. 

To discover the high-order fuzzy association rules, FARM makes use of a heuristic in 

which the association between klϕ′ , where ϕ′ = ϕ1 ∪ ϕ2, and lpq is considered being more 

likely to be interesting if the association between kl
1ϕ  and lpq and the association between 

kl
2ϕ  and lpq are interesting.  Based on such a heuristic, FARM evaluates the interestingness 

of only the associations between different combinations of conditions in lower-order 

association rules.  This approach can effectively prevent an exhaustive search for the 

interesting associations involving all combinations of the linguistic terms. 

FARM starts the data mining process by finding a set of first-order fuzzy association 

rules using the objective interestingness measure introduced in Section 7.1.2.  After these 

rules are discovered, they are stored in rule set R1.  The rules in R1 are then used to generate 

second-order rules, which are, in turn, stored in R2.  The rules in R2 are then used to generate 

third-order rules, which are stored in R3, and so on for fourth and higher orders.  FARM 

iterates until no higher-order association rule is found.  The details of the algorithm are 

given in Fig. 19. 

 

R1 ← {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96}; 
h ← 2; 
while Rh – 1 ≠ ∅ do 
begin 
 C ← {each linguistic term in the antecedent of r | r ∈ Rh – 1}; 
 forall lϕk comprising h linguistic terms in C do 
 begin 
  forall lpq, q = 1, …, sp, do 
  begin 
   if d(lϕk → lpq) > 1.96 then 
    Rh ← Rh ∪ {lϕk ⇒ lpq [w(lϕk ⇒ lpq )]}; 
  end 
 end 
 h ← h + 1; 
end 

U
h

hRRules = ; 

Fig. 19.  The FARM algorithm. 

FARM employs the objective interestingness measure described in Section 7.2.2 to 

determine whether the association relationship lϕk → lpq is interesting.  If lϕk → lpq is 
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identified as being interesting, then it generates a rule, lϕk ⇒ lpq, whose uncertainty is 

represented by the confidence measure that is defined in Section 7.2.3.  All generated rules 

are stored in a rule set, which is used later for inference or for human users to examine. 

7.3 The EFARM Algorithm 
FARM will perform slowly when there are enormous attributes.  To perform search more 

effectively in a huge rule set space, we propose to use an evolutionary algorithm, called 

EFARM (Evolutionary FARM), in this section.  Although EFARM performs slower than 

FARM when there are a moderate number of attributes, our experimental results on several 

data sets show that the former algorithm achieves more accurate classification results than 

the latter (Section 7.5.1). 

EFARM discovers rules by an iterative process.  It begins with the generation of a set 

of first-order rules using the objective interestingness measure given in Section 7.2.2.  Based 

on these rules, it then discovers a set of second-order rules in the next iteration and based on 

the second-order rules, it discovers third-order rules, etc.  In other words, if we refer to the 

initial set of first-order rules as R1, the rules in R1 are then used to generate a set of second-

order rules, R2.  R2 is then used to generate a set of third-order rules, R3, and so on for fourth 

and higher order rules.  In general, at the (h – 1)-th iteration, EFARM begins an 

evolutionary learning process by generating an initial population of individuals (each 

represents a set of h-th order rules) by randomly combining the rules in Rh – 1 to form a set of 

rules of order h.  Once started, the iterative learning process goes on uninterruptedly until no 

more interesting rules in the current population can be identified.  The EFARM algorithm is 

given in Fig. 20. 

The decode function in Fig. 20 is to extract all the interesting rules encoded in a 

chromosome and store them in Rh.  If an allele in the chromosome is found interesting based 

on the objective measure defined in Section 7.1.2, the decode function will extract the rules 

it encodes.  The rule set returned by the decode function therefore contains interesting rules 

only.  When none of the rules encoded in the individual is found interesting, the decode 

function will return a null set and hence Rh will become a null set. 

 

 

 

 

 

 



 

139 

R1 ← {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96}; 
h ← 2; 
while Rh – 1 ≠ ∅ do 
begin 
 t ← 0; 
 population[t] ← initialize(Rh – 1); 
 fitness(population[t]); 
 while not terminate(population[t]) do 
 begin 
  t ← t + 1; 
  population[t] ← reproduce(population[t – 1]); 
  fitness(population[t]); 
 end 
 Rh ← decode(the fittest individual in population[t]); 
 h ← h + 1; 
end 

U
h

hRRules = ; 

Fig. 20.  The EFARM algorithm. 

7.3.1 Encoding Rules in the Chromosomes 

For the evolutionary process, EFARM encodes a complete set of rules in a single 

chromosome in such a way that each gene encodes a single rule.  Specifically, given the 

following h-th order rule, for example: 

 

)]([  ...
111 pqkpqphkhk llwlLlLlL

h
⇒=⇒=∧∧= ϕ , 

 

where w(lϕk ⇒ lpq), given by Equation (7.13), is an uncertainty measure associated with it, 

this rule is encoded in EFARM by the allele given in Fig. 21. 

 

111 klL =
hhkh lL =.........

 

Fig. 21.  An allele representing an h-th order rule. 

It should be noted that the consequent and the uncertainty measure are not encoded.  

This is because the consequent is not, and in fact, should not be determined by chance.  In 

EFARM, both the consequent and the uncertainty measure are determined when the fitness 

of a chromosome is computed.  Given this representation scheme, the number of genes in 

the chromosome is, therefore, the same as the number of rules in the rule set. 
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7.3.2 Generating First-Order Rules 

EFARM begins the evolutionary process by the generation of a set of first-order rules.  

When compared to randomly generated initial population, it has been shown that 

heuristically-generated initial populations can improve convergence speed and find better 

solutions [Hill 1999; Ishibuchi and Nakashima 1999; Julstrom 1994; Yang and Nygard 

1993].  Based on these findings, EFARM first discovers a set of first-order rules and places 

it in the initial population.  Furthermore, the initial first-order rules are generated very 

rapidly.  The time it takes to generate the initial population that contains the first-order rules 

is negligible when compared to the time it takes for the best set of rules to be evolved. 

By using the interestingness measure given by Equation (7.8) and the weight of 

evidence measure given by Equation (7.13), a set of interesting first-order rules can be 

discovered.  Once these rules are discovered, EFARM will begin an iterative process of 

initialization of population, evaluation of fitness of individuals, selection, reproduction, and 

termination, etc., so as to discover higher order rules. 

7.3.3 Initialization of Populations 

Since a good initial population may improve the speed of the evolutionary process and make 

it easier for an optimal solution to be found, EFARM does not generate its initial 

populations completely randomly.  Instead, it makes use of a heuristic in which the 

association between lij ∧ lks and lpq is more likely to be interesting if the association between 

lij and lpq and the association between lks and lpq are interesting.  Based on this heuristic, 

EFARM generates different sets of h-th order rules by randomly combining the (h – 1)-th 

order rules discovered in the previous iteration.  The details of the initialization process are 

given in the initialize function in Fig. 22. 

The initialize function takes as argument, Rh – 1.  The chromi.allelej in Fig. 22 denotes 

the j-th allele of the i-th chromosome.  The randh(C) function returns an h-th order allele 

constructed by randomly combining h elements in C.  For our experiments, popsize was set 

to 30 and the number of alleles in each chromosome was set to nalleles = |Rl – 1|, where |Rl – 1| 

denotes the number of rules in Rh – 1.  We set nalleles = |Rh – 1| because each allele represents 

the antecedent of a rule and the chromosome is used to encode Rh – 1. 
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population initialize(Rh – 1) 
begin 
 C ← {all conjuncts in the antecedent of all r ∈ Rh – 1}; 
 i ← 1; 
 while i ≤ popsize do 
 begin 
  j ← 1; 
  while j ≤ nalleles do 
  begin 
   chromi.allelj ← randh(C); 
   j ← j + 1; 
  end 
  i ← i + 1; 
 end 
 return U

i
ichrom ; 

end 

Fig. 22.  The initialize function. 

7.3.4 The Genetic Operators 

The genetic operators used by EFARM are implemented in the reproduce function shown in 

Fig. 23.  The select(population[t – 1]) function uses the roulette wheel selection scheme 

[Fogel 1995; Goldberg 1989; Michalewicz 1996] to select two different chromosomes, 

chrom1 and chrom2, with respect to their fitness values from the current population, i.e., 

population[t – 1].  These two chromosomes are then passed as arguments to the crossover 

function. 

 

population reproduce(population[t – 1]) 
begin 
 chrom1 ← select(population[t – 1]); 
 chrom2 ← select(population[t – 1]); 
 nchrom1, nchrom2 ← crossover(chrom1, chrom2); 
 mutation(nchrom1); 
 mutation(nchrom2); 
 population ← steady-state(population[t – 1], nchrom1, nchrom2); 
 return population; 
end 

Fig. 23.  The reproduce function. 

The crossover(chrom1, chrom2) function uses the two-point crossover operator  because 

it allows the combination of schemata, which is not possible with the classical, one-point 

crossover [Michalewicz 1996].  EFARM uses two different strategies in choosing the 

crossover points, namely, crossover-1 and crossover-2.  The crossover-1 operator allows the 

crossover points to occur between two rules only, whereas the crossover-2 operator allows 

the crossover points to occur within one rule only.  An example of the crossover-1 operator 
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and that of the crossover-2 operator are graphically depicted in Fig. 24 and Fig. 25, 

respectively. 

In EFARM, the crossover probability for the crossover-1 operator and that for the 

crossover-2 operator are denoted as p1 and p2, respectively.  For our experimentation, four 

different setups are used and they are summarized in Table 23. 

The first three setups, EFARM-1, EFARM-2, and EFARM-3, use constant values of p1 

and p2, whereas the last setup, EFARM-4, uses adaptive values of p1 and p2.  In EFARM-4, 

p1 is increased by 0.05 and p2 is decreased by 0.05 whenever the termination criteria 

specified in Section 7.4.6 are satisfied.  The evolutionary process ends when p1 and p2 reach 

0.75 and 0.25, respectively, and the termination criteria are satisfied.  The performance of 

EFARM under different setups will further be discussed in Section 7.6.2. 

 

121 lL = 212 lL = 111 lL = 323 lL = 222 lL = 313 lL =

111 lL = 313 lL = 212 lL = 131 lL = 323 lL = 212 lL =

 
(a) Before crossover. 

121 lL = 212 lL =

111 lL = 323 lL =

222 lL = 313 lL =

111 lL = 313 lL =

212 lL = 131 lL =

323 lL = 212 lL =

 
(b) After crossover. 

Fig. 24.  An example of the crossover-1 operator (the thick borders indicate the rule 

boundaries). 
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121 lL = 212 lL = 111 lL = 323 lL = 222 lL = 313 lL =

111 lL = 313 lL = 212 lL = 131 lL = 323 lL = 212 lL =

 
(a) Before crossover. 

121 lL =

212 lL = 111 lL = 323 lL = 222 lL =

313 lL =

111 lL =

313 lL = 212 lL = 131 lL = 323 lL =

212 lL =

 
(b) After crossover. 

Fig. 25.  An example of the crossover-2 operator (the thick borders indicate the rule 

boundaries). 

 

Table 23.  Different setups of crossover probabilities p1 and p2. 

 Beginning of evolution End of evolution 
 p1 p2 p1 p2 
EFARM-1 0.5 0.5 0.5 0.5 
EFARM-2 0.75 0.25 0.75 0.25 
EFARM-3 0.25 0.75 0.25 0.75 
EFARM-4 0.25 0.75 0.75 0.25 

 

The mutation(nchrom1) function, which is different from the traditional mutation 

operator [Fogel 1995; Goldberg 1989; Michalewicz 1996], takes a chromosome as argument.  

Its details are given in Fig. 26.  The random function returns a real number between 0 and 1 

and pmutation contains the mutation rate and is a constant.  The random(1, h) function 

returns an integer between 1 and h.  The nchrom.allelej.rulek denotes the k-th rule in the j-th 

allele of chromosome nchrom.  The hill-climb(C) function replaces the k-th rule with each 

element in C and evaluates the chromosome’s fitness value.  It returns the one producing the 

greatest fitness.  Instead of replacing a rule with an element in C randomly, the use of the 

hill-climb function allows EFARM to search for improvements even when premature 

convergence occurs [Fogel 1995]. 

The steady-state(population[t – 1], nchrom1, nchrom2) function in reproduce produces 
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a new population, population[t], by removing the two least-fit chromosomes in  

population[t – 1] and replacing them with nchrom1 and nchrom2 while keeping the rest of 

the other chromosomes intact. 

 

mutation(nchrom) 
begin 
 C ← {all conjuncts in the antecedent of all r ∈ Rh – 1}; 
 j ← 1; 
 while j ≤ nalleles do 
 begin 
  if random < pmutation then 
  begin 
   k = random(1, h); 
   nchrom.allelej.rulek ← hill-climb(C); 
  end 
  j ← j + 1; 
 end 
end 

Fig. 26.  The mutation function. 

7.3.5 Selection and the Fitness Function 

To determine the fitness of a chromosome that encodes a set of h-th order rules, EFARM 

uses a performance measure defined in terms of the probability that the value of an attribute 

of a tuple can be correctly predicted based on the rules in R = R1 ∪ ⋅⋅⋅ ∪ Rh – 1 ∪ {rules 

encoded in the chromosome being evaluated}.  The use of this fitness measure is to allow 

EFARM to maximize the number of records that it can correctly predict.  How exactly such 

fitness value can be determined is given in the following. 

An attribute, say, Ai of a tuple o characterized by A1 = v1, …, Ai = vi, …, An = vn is 

randomly selected and the value vi deleted from o.  The rules contained in R are then used to 

see if the value of Ai can be correctly predicted based on v1, …, vi – 1, vi + 1, …, vn.  Assume 

that a rule which predicts Ai = aip ∈ dom(Ai) is matched, this rule can be considered 

providing some evidence for or against Ai to have the value aip and the strength of the 

evidence is given by the weight of evidence associated with it.  By matching v1, …, vi – 1,  

vi + 1, …, vn against the rules in R, the value that Ai should take on can be determined based 

on a total weight of evidence measure which we describe in Section 7.2.4. 

7.3.6 Criteria for Termination 

The terminate(population[t]) function in Fig. 20 implements the following termination 

criteria: 1) terminate when the best and the worst performing chromosome in population[t] 

differs by less than 0.1% because in this case, the whole population becomes very similar 
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and it is not likely to achieve any improvement in the future generations; 2) terminate when 

the total number of generations specified by the user is reached; and 3) terminate when no 

more interesting rules in the current population can be identified because it is unlikely to 

find any interesting h-th order rules if no (h – 1)-th order rule is found interesting. 

7.4 Applications in Mining Meta-Rules in Rule Sets 
Following the definitions of regular, differential, and change meta-rules given in Chapter 3, 

we present how our proposed algorithms can be used to mine such meta-rules from rule sets 

in this section.  Specifically, given a collection of data sets, D1, …, Dm, FARM and EFARM 

are used to discover a set of rules, Rj, j ∈ {1, …, m}, from each data set.  Our task here is to 

mine regular, differential, and change meta-rules from R1, …, Rm. 

7.4.1 Mining Regularities and Differences 

Given R1, …, Rm, a condition, (Li = lik) ∈ condition(R1) ∪ …∪ condition(Rm), is supported 

by a set of rules: 

 

R (lik) = {r | r ∈ R1 ∪ …∪ Rm, (Lik = lik) ∈ condition(r)}, 

 

where condition(r) denotes the set of conditions in r and U
jRr

j rconditionRcondition
∈

= )()(  

(defined in Chapter 3). 

The support of linguistic term lik is then given by: 
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Similarly, an association, lik → lpq, where (Li = lik), (Lp = lpq) ∈ condition(R1) ∪ …∪ 

condition(Rm), is supported by a set of rules: 

 

R (lik → lpq) = {r | r ∈ R1 ∪ …∪ Rm, (Lik = lik), (Lp = lpq) ∈ condition(r)}. 

The support and the confidence of the association lik → lpq are then given by: 
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and 
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respectively. 

Intuitively, fsup(lik) and fsup(lpq) can be considered as being the probability that a rule 

has the condition Li = lik and Lp = lpq, respectively.  Similarly, fsup(lik → lpq) can be 

considered as being the probability that a rule has both Li = lik and Lp = lpq.  If Li = lik and  

Lp = lpq are independent of each other, then fsup(lik → lpq) = fsup(lik) × fsup(lpq).  Hence 

fsup(lik) × fsup(lpq) × |R1 ∪ …∪ Rm| yields the expected value of |R (lik → lpq)|  

(= fsup(lik → lpq) × |R1 ∪ …∪ Rm|).  If |R (lik → lpq)| is significantly larger than its expected 

value, it is sufficiently large.  The regular meta-rule lik ⇒ lpq can therefore be formed 

(Definition 3.3).  On the other hand, if |R (lik → lpq)| is significantly smaller than its expected 

value, it is sufficiently small.  Consequently, the differential meta-rule lik ⇒ lpq can be 

formed (Definition 3.4). 

The difference between fsup(lik → lpq) and fsup(lik) × fsup(lpq) and hence the difference 

between |R (lik → lpq)| and its expected value can be objectively evaluated in terms of the 

adjusted residual, d(lik → lpq), given by Equation (7.8).  Since the adjusted residual has a 

normal distribution [Agresti 1990], we can conclude that fsup(lik → lpq) is significantly 

larger than fsup(lik) × fsup(lpq) if d(lik → lpq) > 1.96 (the 95th percentile of the normal 

distribution).  In other words, |R (lik → lpq)| is significantly larger than its expected value and 

it is therefore sufficiently large.  On the other hand, if d(lik → lpq) < –1.96, we can conclude 

that fsup(lik → lpq) is significantly smaller than fsup(lik) × fsup(lpq).  In other words,  

|R (lik → lpq)| is significantly smaller than its expected value and it is therefore sufficiently 

small. 

It is important to note that we need to take care of not only the criterion  

d(lik → lpq) > 1.96, but also d(lik → lpq) < –1.96  for meta-mining.  The former is to test for 

the regularities in common in the rule sets (i.e., regular meta-rules), whereas the latter is to 

test for the distinguishing relationships in only a few rule sets (i.e., differential meta-rules). 

By replacing Equations (7.5)–(7.7) with Equations (7.18)–(7.20), the adjusted residual 

can be calculated by Equation (7.8).  It can be used as a measure to identify whether the 

support of an association hidden in the rule sets is sufficiently large or sufficiently small in 
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order to identify regular or differential meta-rules, respectively.  The uncertainty associated 

with the regular or differential meta-rules can then be evaluated by the weight of evidence 

given by Equation (7.13). 

7.4.2 Mining Changes 

For each rule, r ∈ R1 ∪ … ∪ Rm, we have a sequence of adjusted residuals, S r = (d1(r), …, 

dm(r)), where dj(r) is the adjusted residual of r in Rj for j = 1, …, m, and a sequence of 

weights of evidence, C r = (w1(r), …, wm(r)), where wj(r) is the weight of evidence of r in Rj 

for j = 1, …, m.  S r and C r are then converted to sequences ∆S r = (∆d1(r), …, ∆dm – 1(r)) and  

∆C r = (∆w1(r), …, ∆wm – 1(r)), where ∆dj(r) = dj + 1(r) – dj(r) and ∆wj(r) = wj + 1(r) – wj(r),  

j = 1, …, m, respectively.  By sliding a window of width g across ∆S r, it is divided into a set 

of subsequences, r
gm

r
−∆∆ SS  ..., ,1 , where ))( ..., ),(( 1 rdrd gjj

r
j −+∆∆=∆S .  Similarly, ∆C r is 

also divided into a set of subsequences, r
gm

r
−∆∆ CC  ..., ,1 , where 

))( ..., ),(( 1 rwrw gjj
r
j −+∆∆=∆C .  We can then mine a set of change meta-rules of adjusted 

residual in subsequences r
gm

r
−∆∆ SS  ..., ,1  and a set of change meta-rules of weight of 

evidence in subsequences r
gm

r
−∆∆ CC  ..., ,1 . 

 

Example 7.1 Let us consider a fuzzy association rule, r.  Let us suppose that its adjusted 

residuals in certain 6 consecutive periods are given by the sequence S r = (3.78, 3.49, 2.84, 

2.93, 2.89, 2.97) and its weights of evidence in these 6 periods are given by the sequence  

C r = (5.09, 4.89, 4.59, 2.97, 3.08, 5.18).  We have ∆S r = (–0.29, –0.65, 0.09, –0.04, 0.08) 

and ∆C r = (–0.2, –0.3, –1.62, 0.11, 2.1).  By sliding a window of width g = 3 across ∆S r, we 

obtain a set of subsequences, r
1S∆  = (–0.29, –0.65, 0.09), r

2S∆  = (–0.65, 0.09, –0.04), and 

r
3S∆  = (0.09, –0.04, 0.08).  Similarly, by sliding the window across ∆C r, we obtain a set of 

subsequences, r
1C∆  = (–0.2, –0.3, –1.62), r

2C∆  = (–0.3, –1.62, 0.11), and r
3C∆  = (–1.62, 0.11, 

2.1).   

For simplicity, we only discuss how to mine change meta-rules of adjusted residual in 

subsequences r
gm

r
−∆∆ SS  ..., ,1  in the rest of this section.  It is straightforward to extend the 

description to mine change meta-rules of weight of evidence in subsequences 
r

gm
r

−∆∆ CC  ..., ,1 . 
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7.4.2.1 Linguistic Variables and Linguistic Terms 

Given subsequences r
gm

r
−∆∆ SS  ..., ,1 , where ))( ..., ),(( 1 rdrd gjj

r
j −+∆∆=∆S , j = 1, …, m – g, 

we define a set of linguistic variables, } ..., ,{ 1
r
g

rr LL=L , such that r
iL  represents ∆dj + i – 1(r) 

in r
jS∆  for i = 1, …, g.  The value of r

iL  is a linguistic term in } ..., ,{)( 1
r
is

r
i

r
i i

llLT = , where r
ikl , 

k ∈ {1, …, si}, is a linguistic term defined by a fuzzy set, r
ikF , that is defined on ℜ, which is 

the domain of ∆dj + i – 1(r), and whose membership function is r
ikFµ  so that: 

 

]1 ,0[: →ℜr
ikFµ . 

The degree of compatibility of x ∈ ℜ with r
ik

r
i sL =  is given by )(xr

ikFµ .  Since it may 

not be trivial for one to define the fuzzy sets, we propose to use a fuzzy partitioning 

technique to generate the membership functions of the fuzzy sets in Chapter 5. 

Given r
jS∆  and a linguistic term, )( r

i
r
ik LTl ∈ , which is characterized by a fuzzy set, 

r
ikF , the degree of membership of the values in r

jS∆  with respect to r
ikF  is given by 

))(( 1 rd ijF r
ik

−+∆µ .  The degree to which r
jS∆  is characterized by r

ik
r
i lL = , )( r

jlr
ik
S∆λ , is 

defined as: 

 

 ))(()( 1 rd ijF
r
jl r

ik
r
ik

−+∆=∆ µλ S . (7.21) 

If 1)( =∆ r
jlr

ik
Sλ , r

jS∆  is completely characterized by r
ik

r
i lL = .  If 0)( =∆ r

jlr
ik

Sλ , r
jS∆  is 

undoubtedly not characterized by r
ik

r
i lL = .  If 1)(0 <∆< r

jl r
ik

Sλ , r
jS∆  is partially 

characterized by r
ik

r
i lL = .  In the case that ∆dj + i – 1(r) is missing because dj + i – 1(r) = ? and/or 

dj + k(r) = ?, 5.0)( =∆ r
jlr

ik
Sλ , which indicates that there is no information available 

concerning whether r
jS∆  is or is not characterized by r

ik
r
i lL = . 

Each subsequence } ..., ,{ 1
r

gm
rr

j −∆∆∈∆ SSS  is represented by a set of ordered triples,  

r
jo  = { ))( , ,(

11
111

r
jl

rr
rlL S∆λ , …, ))( , ,(

11111
r
jl

r
s

r
r
s

lL S∆λ , …, ))( , ,(
1

1
r
jl

r
g

r
g r

g
lL S∆λ , …, 

))( , ,( r
jl

r
gs

r
g r

ggsg
lL S∆λ }. 
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Example 7.2 Let us consider the rule, r, described in Example 7.1.  We have a set of 

subsequences of adjusted residual, r
1S∆  = (–0.29, –0.65, 0.09), r

2S∆  = (–0.65, 0.09, –0.04), 

and r
3S∆  = (0.09, –0.04, 0.08).  Each subsequence is then represented by three linguistic 

variables, rS1  (which represents “Change in adjusted residual in 1 period ago”), rS2  (which 

represents “Change in adjusted residual in this period”), and rS3  (which represents “Change 

in adjusted residual in next period”).  The value of each linguistic variable can take from 5 

linguistic terms whose membership functions are defined in the following: 
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r
1S∆  is then represented by a set of ordered triples, ro1 , where 

 
ro1  = {( rL1 , Highly decrease, 0), ( rL1 , Fairly decrease, 0.58), ( rL1 , More or less the same, 

0.42), ( rL1 , Fairly increase, 0), ( rL1 , Highly increase, 0), ( rL2 , Highly decrease, 0.3), 

( rL2 , Fairly decrease, 0.7), ( rL2 , More or less the same, 0), ( rL2 , Fairly increase, 0), 

( rL2 , Highly increase, 0), ( rL3 , Highly decrease, 0), ( rL3 , Fairly decrease, 0), ( rL3 , 

More or less the same, 0.82), ( rL3 , Fairly increase, 0.18), ( rL3 , Highly increase, 0)}. 

Similarly, r
2S∆  and r

3S∆  are represented by ro2  and ro3 , respectively.  
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The fuzzy support of the linguistic term r
ikl , )( r

iklfsup , is given by: 
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∑
−

= =

−

=

∆

∆

= gm

j

s

k

r
jl

gm

j

r
jl

r
ik i

r
ik

r
ik

lfsup

1 1

1

)(

)(
)(

S

S

λ

λ
, (7.22) 

 

and the fuzzy support of the association r
pq

r
ik ll → , )( r

pq
r
ik llfsup → , is calculated by: 
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s
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s
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j

r
jl

r
jl

r
pq
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ik

i p
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ik

r
pq

r
ik

llfsup

1 1 1

1

))( ),(min(

))( ),(min(
)(

SS

SS

λλ
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. (7.23) 

 

The fuzzy confidence of the association r
pq

r
ik ll → , )( r

pq
r
ik llfconf → , is then given by: 

 

 
)(

)(
)( r

ik

r
pq

r
ikr

pq
r
ik lfsup

llfsup
llfconf

→
=→ . (7.24) 

By replacing Equations (7.5)–(7.7) with Equations (7.22)–(7.24), we use 1) the 

adjusted residual given by Equation (7.8) as an objective interestingness measure to identify 

interesting change meta-rules and 2) the weight of evidence given by Equation (7.13) to 

evaluate the uncertainty associated with the interesting change meta-rules. 

7.5 Comparing the FARM and EFARM Algorithms 
In this section, we evaluate the performance of our proposed algorithms, FARM and 

EFARM, for data mining.  We first applied them to several real-world data sets to test their 

classification performance in general (Section 7.5.1).  These data sets are obtained from the 

UCI Machine Learning Repository [Blake and Merz 1998].  We next applied them to the 

subscriber database provided by a carrier in Malaysia to test their performance on assigning 

likelihood to their classification (Section 7.5.2). 

7.5.1 Different Data Sets 

For each trial in each experiment, each of the data sets used was divided into two data sets 

with records in each of them randomly selected.  The mining of rules was performed on one 
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of the data sets (i.e., the training data set).  The other data set was reserved for testing (i.e., 

the testing data set).  For each of these testing data sets, the values of one of the attributes 

were deleted.  We refer to this attribute as the class attribute in the rest of this section.  The 

rules discovered by mining the training data set were used to predict the class attribute 

values in the testing data set.  The predicted values were then compared against the original 

values to see if they are the same.  If it is the case, the accuracy count was incremented 

correspondingly.  Based on this accuracy count, the percentage accuracy for each of FARM, 

EFARM, C4.5 [Quinlan 1993] (a well-known decision-tree classifier), CBA [Liu, Hsu, and 

Ma 1998] (an association rule mining algorithm), SCS [Goldberg 1989] (a Michigan-style 

classifier system), and GABL [DeJong, Spears, and Gordon 1993] (a Pittsburgh-style 

concept learner), was computed.  The accuracy, averaged over a total of ten trials for each 

experiment, was recorded and compared and they are given in Table 24. 

Since GABL is originally developed to solve “single-class (or concept)” problems, 

multiple populations have to be used in our experiments so that each of them can be 

dedicated to the learning of relationship between a single value in a multiple-valued 

attribute and other attribute values in a database.  In our experiments, when a test record is 

matched by none of any rule of any class, we assign the record to the most common or the 

majority class in the training data set; on the other hand, when a test record is matched by 

more than one rule of different classes, we assign the record to the majority class that 

matches the record. 

In our experiments, the crossover rate in EFARM was set to 0.6, the mutation rate was 

set to 0.0001, and the population size was set to 30.  Since the performances of EFARM 

under different setups (Table 1) are more or less the same, we only report the experimental 

results of EFARM under the setup where both the crossover probability for the crossover-1 

and that for the crossover-2 operator are set to 0.5 (i.e., EFARM-1) in this section.  The 

performance of EFARM for churn prediction under different setups will be discussed in the 

next section. 

For GABL, the mutation probability was set to 0.001, the crossover probability was set 

to 0.6, and the population size was set to 100 [DeJong, Spears, and Gordon 1993].  For SCS, 

the population size was set to 1,000, the bid coefficient was set to 0.1, the bid spread was set 

to 0.075, the bidding tax was set to 0.01, the existence tax was set to 0, the generality 

probability was set to 0.5, the bid specificity base was set to 1, the bid specificity multiplier 

was set to 0, the ebid specificity base was set to 1, the ebid specificity multiplier was set to 0, 

the reinforcement award was set to 1, the proportion to select per generation was set to 0.2, 

the number to select was set to 1, the mutation probability was set to 0.02, the crossover 
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probability was set to 1, the crowding factor was set to 3, and the crowding sub-population 

was set to 3 [Goldberg 1989]. 

All the experiments reported in this section and Section 4.5 were performed using a 

personal computer with Intel Pentium III 1 GHz processor as CPU, 256 MB of main 

memory, and running Red Hat Linux 7.1.  In the following, we describe the data sets used in 

our experiments and present the results analyzing the performance of the different 

approaches. 

7.5.1.1 The Zoo Data Set 

Each record in the zoo data set [Forsyth 1990] is characterized by 18 attributes.  Since the 

unique name of each animal is irrelevant, it is ignored.  All the 17 remaining attributes are 

discrete.  The class attribute is concerned with the type of the animals are classified into.  

The value of the class attribute can be one of: mammal, bird, reptile, fish, amphibian, insect, 

and coelenterate. 

7.5.1.2 The DNA Data Set 

Each record in the DNA data set [Noordewier, Towell, and Shavlik 1991] consists of a 

sequence of DNA, an instance name, and the class attribute.  Since the unique name of each 

instance is irrelevant, it is ignored.  A sequence of DNA contains 60 fields, each of which 

can be filled by one of: A, G, T, C, D (i.e., A or G or T), N (i.e., A or G or C or T), S (i.e., C 

or G), and R (i.e., A or G).  The class attribute is concerned with the splice junctions that are 

points on a DNA sequence at which “superfluous” DNA is removed during the process of 

protein creation.  It indicates the boundaries between extrons (the parts of the DNA 

sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced 

out) and can be one of EI (extron-intron boundary), IE (intron-extron boundary), and N 

(neither extron-intron nor intron-extron boundary). 

7.5.1.3 The Credit Card Data Set 

The credit card data set [Quinlan 1987a] contains data about credit card applications.  It 

consists of 15 attributes of which the class attribute is concerned with whether or not an 

application is successful.  The meaning of these attributes is not known as the names of the 

attributes and their values are changed by the donor of the database to meaningless symbols 

to protect the confidentiality of the data.  Out of the 15 attributes, 6 are continuous and 9 are 

discrete.  The 6 continuous attributes were fuzzy partitioned using the fuzzy partitioning 

technique introduced in Chapter 6. 
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7.5.1.4 The Diabetes Data Set 

Each record in the diabetes data set [Smith et al. 1988] is characterized by 9 attributes.  The 

value of the class attribute can be either “1” (tested positive for diabetes) or “2” (tested 

negative for diabetes).  The other attributes are continuous and they were fuzzy partitioned 

using the fuzzy partitioning technique proposed in Chapter 6. 

7.5.1.5 The Satellite Image Data Set 

Each record in the satellite image data set corresponds to a 3 × 3 square neighborhood of 

pixels completely contained within an area.  Each record contains the pixel values in the 

four spectral bands of each of the 9 pixels in the 3 × 3 neighborhood and the class attribute 

is the class of the central pixel that is one of: red soil, cotton crop, grey soil, damp grey soil, 

soil with vegetation stubble, and very damp grey soil.  All the 36 (= 4 spectral bands × 9 

pixels in neighborhood) attributes other than the class attribute is continuous and in the 

range between 0 and 255.  For our experiments, these continuous attributes were fuzzy 

partitioned using the fuzzy partitioning technique described in Chapter 6. 

7.5.1.6 The Social Data Set 

The social data set [Kohavi 1996] contains data collected by the U.S. Census Bureau.  The 

records in the database are characterized by 15 attributes.  Of these attributes, 6 of them are 

continuous.  These continuous attributes were fuzzy partitioned using the fuzzy partitioning 

technique described in Chapter 6.  The remaining 9 attributes are all discrete.  The class 

attribute is concerned with whether the annual salary of a person exceeds $50K or not. 

7.5.1.7 The PBX Data Set 

A private branch exchange (PBX) system is a multiple-line business telephone system that 

resides on a company’s premises.  One of the significant features of a PBX system is its 

ability to record call activity such as keeping records of all calls and callers.  In one of our 

experiments, we used the data from the database of a PBX system used in a 

telecommunications company in Indonesia.  The PBX data set contains data about the usage 

of the PBX system in the company.  Each record in the PBX data set is characterized by 13 

attributes.  Except for two attributes that are discrete, all the remaining attributes are 

continuous.  The continuous attributes were fuzzy partitioned using the technique described 

in Chapter 6.  There are many missing values in this data set.  In particular, 98.4% of 

records have missing values in one or more attributes.  The class attribute is concerned with 

the identification of the calling party. 
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7.5.1.8 Summary 

In summary, both FARM and EFARM perform better than the other four approaches in all 

the seven data sets.  EFARM achieves an average accuray of 91.7%, whereas FARM 

obtains an average rate of 88.1%.  This shows that EFARM outperforms FARM in terms of 

classification rate on the data sets used in our experiments. 

 

Table 24.  Percentage accuracy of the six different approaches. 

Percentage Accuracy 
(Standard Deviation) 

Data 

Set 

No. of 

Records 

Class 

Attribute FARM EFARM C4.5 CBA SCS GABL

zoo 101 Type 96.4%
(4.7%)

100.0% 
(0.0%) 

90.9%
(8.4%)

92.2% 
(9.1%) 

27.3% 
(10.3%) 

28.2%
(2.9%)

DNA 3,190 Splice 93.6%
(1.0%)

95.4% 
(0.6%) 

92.9%
(0.8%)

51.4% 
(48.9%) 

23.2% 
(15.1%) 

53.7%
(0.0%)

credit 
card 690 Success 88.8%

(1.8%)
95.6% 
(4.0%) 

82.6%
(4.3%)

85.1% 
(5.7%) 

58.9% 
(9.2%) 

58.9%
(0.0%)

diabetes 768 Test-result 76.0%
(2.9%)

79.8% 
(1.7%) 

73.8%
(2.6%)

69.3% 
(4.3%) 

61.3% 
(7.3%) 

61.3%
(0.0%)

satellite 
image 6,435 Soil 83.6%

(1.0%)
85.5% 
(0.8%) 

85.2%
(0.5%)

72.1% 
(8.3%) 

19.9% 
(5.6%) 

23.1%
(0.0%)

social 48,843 Salary 86.1%
(0.4%)

85.7% 
(0.2%) 

85.4%
(0.3%)

82.6% 
(0.3%) 

23.6% 
(17.2%) 

75.8%
(0.0%)

PBX 3,009 
Calling-
party-

identification

93.7%
(0.9%)

99.9% 
(0.2%) 

94.6%
(5.2%)

90.1% 
(5.6%) 

59.6% 
(26.4%) 

94.2%
(0.2%)

  Average 88.1% 91.7% 86.5% 77.5% 39.1% 56.5%

7.5.2 The Subscriber Database 

Since competition in the telecommunications industry is very fierce, many carriers consider 

reducing churn as an important business venture to maintain profitability.  Churn costs 

carriers a large amount of money annually in North America and Europe [Lockwood 1997].  

A small reduction in annual churn rate can result in a substantial increase in the valuation 

and the shareholder value of a carrier [Lockwood 1997].  Consequently, analyzing and 

controlling churn is critical for carriers to improve their revenues. 

To reduce churn rate, a carrier in Malaysia gave us a database of 100,000 subscribers in 

a consultancy project of the Department of Computing, The Hong Kong Polytechnic 

University, Hung Hom, Kowloon, Hong Kong.  Prof. Keith C. C. Chan was the principal 

investigator of the consultancy project.  Among these subscribers, some of them have 

already switched to another carrier.  The task assigned to us is to mine the database to 

uncover patterns that relate the demographics and behaviors of subscribers with churning so 

that further loss of subscribers can be prevented as much as possible.  Efforts are then made 

to retain subscribers that are identified to have a high probability of switching to other 
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carriers. 

Since the customer services center of the carrier has a fixed number of staff available to 

contact only a small fraction of all subscribers, it is important for it to distinguish 

subscribers with high probability of churning from those with low probability so that, given 

the limited resources, the high probability churners can be contacted first. 

The subscriber database was extracted randomly from the time interval of August 

through October 1999.  The task is to discover interesting relationships concerning with the 

demographics and the behaviors of the subscribers who had churned in the period between 

August and September 1999.  By representing these relationships in the form of rules, they 

would then be used to predict whether a subscriber would churn in October 1999.  

According to the definition of the carrier, a subscriber churns when all services held by 

him/her are closed. 

The subscriber database provided by the carrier is stored in an Oracle database.  It 

contains three relations which are listed in Table 25.  It is important to note that some 

attributes in some relations contain significant amount of missing values, for example, 

62.4% of values in attribute LOCATION in relation DEMOGRAPHICS are missing.  The 

handling of missing values is an important problem to be tackled for mining interesting rules 

in this database. 

 

Table 25.  Relations in the subscriber database. 

Relation Description 

CDR Call detail records (each tuple, which is characterized by 
date, time, duration, location, etc., represents a phone call). 

BILLING 
Billing records (each tuple, which is characterized by fee, 
additional charges for roaming and other value-added 
services, etc., represents a monthly bill). 

DEMOGRAPHICS 
Demographic records (each tuple, which is characterized 
by service plan, handset type, etc., represents an application 
for services made by a subscriber). 

 

We, together with a domain expert from the carrier, identified 251 variables associated 

with each subscriber that might affect his/her churn.  Some of these variables were extracted 

directly from the database, whereas some of them required data transformation, which is 

one of the key steps in the knowledge discovery process [Fayyad, Piatetsky-Shapiro, and 

Smyth 1996], on the original data.  One of the ways to perform data transformation is the 

use of transformation functions [Au and Chan 2003; Chan and Au 2001].  Instead of 
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discovering rules in the original data, we applied FARM and EFARM to the transformed 

data.  Table 26 lists some of the variables in the transformed data. 

To manage the data mining process effectively, the transformed data are stored in a 

relation in the Oracle database.  We refer to this relation as the transformed relation in the 

rest of this chapter.  Each attribute in the transformed relation corresponds to an identified 

variable.  The details of the use of transformation functions are given in Chapter 4. 

 

Table 26.  Some of the identified variables in the transformed data. 

Variable Description 
Location Subscriber location. 

Type Customer type (e.g., government versus corporate). 
Payment Method Payment method (e.g., cash versus credit card). 

Plan Service plan. 
Charge Monthly charge. 
Usage Monthly usage. 
Calls Number of calls made. 

Abnormal Calls Number of abnormally terminated calls. 
 

Instead of mining the subscriber database, we used FARM and EFARM to mine the 

transformed relation.  The transformed relation was divided into two partitions: the data 

concerning with whether subscribers had churned or had not churned in the time interval 

from August to September 1999 and the data concerning with whether subscribers would 

churn or would not churn in October 1999.  The former was used as the training data set for 

FARM and EFARM to discover rules and the latter was used as the testing data set for them 

to make the “churn” and “no churn” predictions based on the discovered rules. 

We applied FARM and EFARM to the training data set to discover rules and predict 

the “churn” or “no churn” of the subscribers in the testing data set.  In the 

telecommunications industry, the “churn” and “no churn” prediction is usually expressed as 

a lift curve.  The lift curve plots the fraction of all churners having churn probability above 

the threshold against the fraction of all subscribers having churn probability above the 

threshold.  It indicates the fraction of all churners could be caught if a certain fraction of all 

subscribers were contacted.  Since the customer services center of a carrier has a fixed 

number of staff that is able to contact only a fixed fraction of all subscribers, the lift curve, 

which can estimate the fraction of churners can be caught given the limited resources, is 

very useful in the telecommunications industry. 

The lift curve representing perfect discrimination of churners from non-churners and 
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that representing no discrimination of churners from non-churners under a churn rate of 5% 

are shown in Fig. 27(a) and Fig. 27(b), respectively.  We refer to the former and the latter as 

the perfect churn predictor and the random churn predictor, respectively. 
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(a) Lift curve representing perfect discrimination of churners from non-churners. 
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(b) Lift curve representing no discrimination of churners from non-churners. 

Fig. 27.  Reference lift curves. 
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(a) Monthly churn rate = 1%. 
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(b) Monthly churn rate = 2%. 
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(c) Monthly churn rate = 4%. 
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(d) Monthly churn rate = 6%. 
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(e) Monthly churn rate = 8%. 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% subscribers

%
 c

hu
rn

er
s

Random Perfect Neural Network
C4.5 EFARM-1 EFARM-2
EFARM-3 EFARM-4 FARM

 
(f) Monthly churn rate = 10%. 

Fig. 28.  Lift curves for FARM, EFARM, C4.5, and neural network under different monthly 

churn rates averaged over ten runs. 
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In order to evaluate the performance of FARM and EFARM using the lift curve, we 

ranked the tuples in the testing data set according to the total weight of evidence.  Given the 

prediction and the total weight of evidence produced by FARM and EFARM over the 

testing data set, the tuples predicted to churn were sorted in the descending order of the total 

weight of evidence, whereas those tuples predicted not to churn were sorted in the ascending 

order of the total weight of evidence.  The tuples predicted to churn came before the tuples 

predicted not to churn.  Using the above method, we had an ordering of the tuples in the 

testing data set such that the ones with a higher probability to churn came before the ones 

with a lower probability. 

Since the churn rates of different carriers are different and the churn rate of a specific 

carrier varies from time to time, we created several data sets with different monthly churn 

rates by randomly deleting tuples in the training and the testing data sets until appropriate 

fractions of churners and non-churners were obtained.  We can then plot the performance of 

FARM and EFARM in the form of lift curves under different monthly churn rates (Fig. 28).  

The performance of EFARM under different setups (Table 23) is also given in Fig. 28. 

For the purpose of comparison, we also applied C4.5 and nonlinear neural networks to 

these data sets.  C4.5 was used because it performs better than CBA, SCS, and GABL in the 

experimental results given in the last section, whereas neural networks were used because 

they are the best churn predictor reported in an empirical study [Mozer et al. 2000].  The 

neural networks used in our experiments are multilayer perceptrons with a single hidden 

layer which contains 20 nodes and they were trained by the backpropagation algorithm with 

the learning rate was set to 0.3 and the momentum term was set to 0.7.   The lift curves for 

C4.5 and neural networks are also shown in Fig. 28. 

As shown in Fig. 28, the performances of EFARM are more or less the same under 

different setups of the crossover probability for the crossover-1 and the crossover-2 operator.  

This is a nice feature because it is usually difficult for human users to determine the 

appropriate values of an algorithm’s parameters for it may perform well under a specific 

setup in a certain environment and may perform poorly under the same setup in another 

environment. 

Regardless of the values of p1 and p2, the performance of EFARM is always better than 

that of the random churn predictor when different fraction of subscribers were contacted 

under different monthly churn rates.  When compared to C4.5, EFARM identifies more 

churners than C4.5 under different monthly churn rates.  It is important to note that neural 

networks also identify more churners than C4.5, which is consistent with the study in 
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[Mozer et al. 2000].  When compared to neural networks, EFARM identifies more churners 

than neural networks do when a small fraction (≤ 10%) of subscribers were contacted under 

different monthly churn rates.  When the fraction of subscribers contacted is relatively large 

(> 10%), the performance of EFARM is better than that of neural networks under a monthly 

churn rate of ≤ 4%, whereas its performance is comparable to neural networks’ under a 

monthly churn rate of 6% and 8%.  It is interesting to note that EFARM outperforms neural 

networks when ≤ 80% of subscribers were contacted under a monthly churn rate of 10%. 

Among all the approaches tested in our experiments, FARM is, by and large, the best 

churn predictor.  With it, a very large fraction (> 85%) of churners could be caught when 

x% of subscribers were contacted under a monthly churn rate of x%.  From this point of 

view, it performs very well as the perfect churn predictor outperforms it by only less than 

15% under different monthly churn rates. 

To better compare the performance of FARM, EFARM, C4.5, and neural networks, let 

us consider the lift factor, which is defined as the ratio of the fraction of churners identified 

and the fraction of subscribers contacted.  For example, if y% of churners are identified 

when z% of subscribers are contacted, the lift factor is y / z.  Owing to the limited number of 

staff in the carrier’s customer services center, it can only contact 5% of all subscribers.  It is 

important to note that the lift factor for the random churn predictor is 1, whereas the lift 

factor for the perfect churn predictor is 20 (= 100% / 5%) under a monthly churn rate of  

≤ 5% and it is (5% / monthly churn rate) / 5 under a monthly churn rate of > 5%.  The lift 

factors for FARM, EFARM, C4.5, and neural networks when 5% of subscribers were 

contacted under different monthly churn rates are shown in Fig. 29. 
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Fig. 29.  Lift factors for FARM, EFARM, C4.5, and neural network under different monthly 

churn rates averaged over ten runs. 

Again, regardless of the values of p1 and p2, EFARM obtains higher lift factors than 

neural networks, which in turn obtain higher lift factors than C4.5, when 5% of subscribers 

were contacted under different monthly churn rates.  The experimental results show that 

EFARM is able to make accurate churn prediction under different churn rates.  FARM 

achieves a very high lift factor (> 19) under a monthly churn rate of ≤ 4%.  Its performance 

is very close to the perfect churn predictor under such a monthly churn rate.  Under a 

monthly churn rate of ≥ 6%, it obtains a lift factor comparable to EFARM. 

Furthermore, the relationships discovered by neural networks are encoded in the 

weights of the connections.  It is difficult, if not impossible, to decode the discovered 

relationships and present them to the domain expert in an interpretable form.  Unlike neural 

networks, FARM and EFARM are able to present the discovered relationships in the form 

of rules, which are easy for the domain expert to comprehend.  Although the relationships 

discovered by C4.5 can also be represented in the form of rules, the experimental results 

show that FARM and EFARM outperform C4.5. 

To evaluate their computation efficiency, Table 27 shows the execution times for 

FARM, EFARM, C4.5, and neural networks under different monthly churn rates.  At a 

specific monthly churn rate, the execution times for EFARM-1, EFARM-2, EFARM-3, and 
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EFARM-4 are more or less the same because they differ from each other by using different 

values of p1 and p2 only.  Since p1 + p2 = 1 in different setups, their time complexities should 

be more or less the same.  When the monthly churn rate increases, the execution time for 

EFARM increases because more and more relationships are found interesting and hence the 

number of alleles in a chromosome increases. 

 

Table 27.  Execution time of FARM, EFARM, C4.5, and neural network under different 

monthly churn rates averaged over ten runs. 

Execution Time (sec.) Monthly 
Churn 
Rate 

Neural 
Network C4.5 EFARM-1 EFARM-2 EFARM-3 EFARM-4 FARM

1% 54,852 1,306 21,852 18,135 19,056 17,744 836 
2% 55,117 1,765 24,234 21,499 26,534 21,886 1,366 
4% 55,691 2,071 33,028 28,054 28,103 28,807 3,332 
6% 58,022 1,646 31,806 31,075 30,115 28,884 4,908 
8% 55,447 1,280 34,333 35,366 34,186 34,211 13,598

10% 55,568 1,046 38,903 38,169 39,128 42,981 18,018
 

The experimental results show that EFARM accomplishes the data mining task faster 

than neural networks.  They also show that EFARM runs longer than FARM under different 

monthly churn rates because the former requires a number of iterations for generating rules 

of each order, whereas the latter generates rules of each order in only one scan of the data 

set.  Similar to EFARM, the running time of FARM increases as the monthly churn rate 

increases since many and many association relationships are found interesting as the 

monthly churn rate increases. 

Of the four approaches, C4.5 requires, by and large, the least execution time to 

complete since it uses less number of iterations than neural networks and EFARM.  When 

compared to FARM, it performs less efficiently than FARM under a small (≤ 2%) monthly 

churn rate but it performs more efficiently than FARM under a relatively high (≥ 4%) 

monthly churn rate.  However, C4.5 is unable to produce churn prediction as accurate as 

neural networks, EFARM, and FARM (Fig. 28 and Fig. 29). 

As demonstrated in the experimental results in the last section, EFARM outperforms 

the other techniques in the data sets used in the experiments.  In the experimental results on 

churn prediction given in this section, EFARM also outperforms neural networks and C4.5.  

Although it is relatively computationally expensive, the accurate classification and 

prediction results can justify its usefulness.  As compared to FARM, it can accomplish the 

mining tasks more efficiently when there are a large number of attributes. 
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In the rest of this section, we present the rules discovered by both FARM and EFARM 

and found interesting and useful by the domain expert from the carrier in Malaysia.  The 

domain expert found the following rule very useful: 

 

Type = Personal ∧ Bonus = No ⇒ Churn = True [w = 1.75]. 

This rule states that a subscriber churns if he/she subscribes the service plan personally 

and he/she is not admitted to any bonus scheme with a weight of evidence of 1.75.  

According to this rule, the domain expert suggested that the carrier could admit those 

subscribers who subscribe the service plan personally and have not already admitted to any 

bonus scheme to a bonus scheme so as to retain them. 

Another rule the domain expert found interesting is listed in the following: 

 

Sex = Male ∧ Tenure ∈ [378, 419] ⇒ Churn = True [w = 0.78]. 

The above rule states that a male subscriber who has used the service plan for a period 

between 378 and 419 days churns with a weight of evidence of 0.78.  Although the domain 

expert cannot explain why this rule is applicable to male subscribers only, he found this rule 

meaningful because a new subscriber is usually entitled a rebate after using the service plan 

for a period of one year and one can still keep the money even though he churns after 

receiving the rebate.  In order to retain these subscribers, the domain expert suggested that 

the carrier could offer them incentives or rebates after using the service plan for another 

year when they have used the service plan for a period of one year. 

In addition to the above rules, the following rule was discovered: 

 

District = Kuala Lumpur ∧ Payment Method = Cash ∧ Age = Middle-Aged 

 ⇒ Churn = True [w = 1.20]. 

This rule states that a subscriber churns if he/she lives in Kuala Lumpur, is middle-aged, 

and pays bills using cash with a weight of evidence of 1.20.  Although the domain expert 

could hardly explain why this rule applies to those subscribers in this age group living in 

Kuala Lumpur only, he found it meaningful because it is easier for a subscriber to churn if 

he/she pays bills using cash when compared to one who pays bills using auto pay.  The 

domain expert found this rule useful because it identifies a niche for the carrier to retain its 

subscribers. 

Furthermore, the domain expert also found the following rule interesting: 
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Sex = Male ∧ District = Penang ∧ Subscription Channel = Dealer ∧ Dealer Group = A 

 ⇒ Churn = True [w = 1.84]. 

This rule states that a male subscriber who lives in Penang and subscribes the service 

through a dealer, which is under Dealer Group A2, churns with a weight of evidence of 1.84.  

The domain expert suggested that the churn of the subscribers might be due to the poor 

customer services provided by the dealers, which are under Dealer Group A, in Penang.  He 

recommended the carrier to investigate into the service level of these dealers so as to 

introduce corrective actions. 

 

 

                                                      
2 In order to maintain the anonymity of the carrier, we cannot disclose the name of the dealer group 

and we simply call it Dealer Group A in this work. 
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Chapter 8 

Parallelization of Fuzzy Rule Mining Algorithms 
 

To discover interesting associations in databases, many algorithms (e.g., [Agrawal, 

Imielinski, and Swami 1993b; Agrawal and Srikant 1994, 1996; Cheung et al. 1996a; Han 

and Fu 1995; Park, Chen, and Yu 1995a, 1995b; Savasere, Omiecinski, and Navathe 1995; 

Srikant and Agrawal 1995, 1996]) employ the support-confidence framework.  Based on it, 

an association relationship is considered interesting if it satisfies the minimum support and 

the minimum confidence threshold defined by the users.  While these algorithms can be 

effective in different tasks, it should be noted that what the thresholds should be set are 

often difficult to decide.  In fact, it has been shown that association relationships discovered 

by algorithms employing the support-confidence framework can be quite misleading [Han 

and Kamber 2001; Hand, Mannila, and Smyth 2001].  For a data mining algorithm to be 

more effective, an objective interestingness measure that does not require a lot of effort of 

trial-and-error on the users’ part is needed.  In the last chapter, we propose one such 

measure.  Based on the concept of statistical residual analysis, it is defined in terms of a 

fuzzy support and confidence measure [Au and Chan 1998, 1999, 2001, 2002a, 2002b, 2003, 

2004; Au, Chan, and Yao 2003; Chan and Au 1997a, 1997b, 2001; Chan, Au, and Choi 

2002] that reflects the observed and the expected degree to which a tuple is characterized by 

different linguistic terms. 

In addition to the advantage associated with the proposed measure being objective, it 

also has the advantage that it can be computed in a distributed environment.  In this chapter, 

we show how this can be made possible in two parallel algorithms: Parallel-FARM and 

Parallel-EFARM, which are the parallel versions of FARM (Section 7.2) and EFARM 

(Section 7.3), respectively.  With Parallel-FARM and Parallel-EFARM, the discovery of 

association relationships in extremely large databases can be accomplished effectively and 

efficiently. 

Parallel-FARM performs its tasks by first dividing a very large data set into several 

horizontal partitions and assigning them to different sites in a distributed system.  Each site 

next scans its database partition to obtain the local counts of tuples that are characterized by 

different linguistic terms.  The local counts obtained from all the other sites are then 

obtained to find the global counts.  Based on the global counts, interesting associations can 

be identified using the proposed objective interestingness measure.  To discover high-order 

associations, Parallel-FARM repeats the counting, exchanges of counts, and calculation of 
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the interestingness iteratively until no more interesting associations can be found. 

On the other hand, Parallel-EFARM employs a parallel genetic algorithm (parallel GA) 

to find interesting associations so as to avoid exhaustive search in the rule space.  It encodes 

a complete set of rules in one single chromosome and each allele encodes one rule, which is 

represented by some non-binary symbolic values.  It stores a single population of 

chromosomes in a master processor.  In each generation, the master processor performs 

selection, crossover, and mutation.  It then distributes all the chromosomes among the 

processors in the distributed system.  Each processor first determines the interestingness of 

each allele in each chromosome and next evaluates the fitness of the chromosomes assigned 

to it.  After the evaluation, the processor sends the fitness of these chromosomes back to the 

master processor.  Parallel-EFARM then proceeds to the next generation. 

Both of Parallel-FARM and Parallel-EFARM were implemented in a distributed 

system and evaluated for effectiveness and scalability with a benchmarking data set.  The 

experimental results show that they have very good size-up, speedup, and scale-up 

performance. 

The rest of this chapter is organized as follows.  The details of Parallel-FARM and 

Parallel-EFARM are given in Sections 8.1 and 8.2, respectively.  To evaluate their 

performance, we have applied them to a popular benchmarking data set.  The results are 

discussed in Section 8.3. 

8.1 The Parallel-FARM Algorithm 
In this section, we describe how Parallel-FARM extends FARM to discover fuzzy 

association rules in a distributed environment.  Similar to FARM, Parallel-FARM is 

developed to mine high-order fuzzy association rules.  A first-order fuzzy association rule 

can be defined as a rule involving one linguistic term in its antecedent.  A second-order 

fuzzy association rule can be defined as a rule involving two linguistic terms in its 

antecedent.  A third-order fuzzy association rule can be defined as a rule involving three 

linguistic terms in its antecedent, and so on for other higher orders. 

Parallel-FARM employs the same objective interestingness measure as FARM to 

distinguish interesting associations from uninteresting ones.  In order to handle the large 

combinations of linguistic terms, it also uses the same heuristic that the association between 

a linguistic term, klϕ′ , where ϕ′ = ϕ1 ∪ ϕ2, and another linguistic term, lpq, is considered 

being more likely to be interesting if the association between kl
1ϕ  and lpq and the association 
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between kl
2ϕ  and lpq are interesting.  Based on such a heuristic, Parallel-FARM evaluates the 

interestingness of only the associations between different combinations of conditions in 

lower-order association rules.  The details of Parallel-FARM are given in the following. 

Given a database relation, D, each tuple, t, in D consists of a set of attributes,  

A = {A1, …, An}, where A1, …, An can be continuous or discrete.  Let L = {L1, …, Ln} be a 

set of linguistic variables such that Li ∈ L represents Ai ∈ A and the value of Li is a linguistic 

term in T(Li) = {lij | j = 1, …, si}.  Let us further suppose that l = {lij | i = 1, …, n, j = 1, …, 

si}. 

In a distributed system comprising m sites, S1, …, Sm, the database relation D with N 

tuples is horizontally partitioned over the m sites into D1, …, Dm.  Let the number of tuples 

in database partition Dj be Nj, j = 1, …, m. 

The fuzzy support count of linguistic term lϕk, where ϕ ⊆ {1, …, n} and |ϕ| = h ≥ 1, in 

D is given by: 

 

 ∑
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where )(t
klϕλ  is the degree to which t is characterized by lϕk defined by Equation (7.4).  

Similarly, the fuzzy support count of lϕk in Dj is calculated by: 
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It is obvious to note that: 

 

 ∑
=

=
m

j
kjk lcountlcount

1

)()( ϕϕ . (8.3) 

 

We refer to count(lϕk) as the global fuzzy support count of lϕk and countj(lϕk) as the local 

fuzzy support count of lϕk at site Sj. 

Let us consider an h-th order association, lϕk → lpq.  The fuzzy support count of  

lϕk → lpq in D is given by: 
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whereas the fuzzy support count of lϕk → lpq in Dj is calculated by: 
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Again, it is obvious to note that: 
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We refer to count(lϕk → lpq) as the global fuzzy support count of lϕk → lpq and  

countj(lϕk → lpq) as the local fuzzy support count of lϕk → lpq at site Sj. 

The fuzzy support of the linguistic term lϕk and that of the association lϕk → lpq are 

given by: 
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respectively.  Based on Eqautions (8.7) and (8.8), we can calculate d(lϕk → lpq) defined by 

Equation (7.8) to evaluate whether the association lϕk → lpq is or is not interesting. 

To mine fuzzy association rules, each site in the distributed system runs Parallel-

FARM.  Each site is required to scan its database partition in each pass.  For the h-th pass, 

each site Sj generates the candidate h-th order rules from the (h – 1)-th order rules.  Site Sj 

then scans its database partition Dj to obtain the local fuzzy support counts of all the 

candidate h-th order rules.  After that, site Sj exchanges the local fuzzy support counts to all 
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the other sites to find the global fuzzy support counts.  Subsequently, each site Sj evaluates 

the interestingness of the candidate h-th order rules to obtain the interesting ones (i.e., the h-

th order rules).  Site Sj then generates the candidate (h + 1)-th order rules from the h-th order 

rules and this process repeats.  The algorithm terminates when neither h-th order rule nor 

candidate (h + 1)-th order rule is found.  Fig. 30 gives this algorithm. 

 

if h = 1 then { 
 forall lik, lpq ∈ l, i ≠ p do 
 begin 
  scan Dj to find countj(lik), countj(lpq), and countj(lik → lpq); 
 end 
 exchange countj(lik), countj(lpq), and countj(lik → lpq) with all the other 
  sites to calculate count(lik), count(lpq), and count(lik → lpq); 
 R1 = {lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96}; 
} else { 
 C ← {each linguistic term in the antecedent of r | r ∈ Rh – 1} 
 forall lϕk comprising h linguistic terms in C do 
 begin 
  forall lpq, q = 1, …, sp, do 
  begin 
   scan Dj to find countj(lϕk), countj(lpq), and countj(lϕk → lpq); 
  end 
 end 
 exchange countj(lϕk), countj(lpq), and countj(lϕk → lpq) with all the other  
  sites to calculate count(lϕk), count(lpq), and count(lϕk → lpq); 
 Rh = {lϕk ⇒ lpq [w(lϕk ⇒ lpq)] | d(lϕk → lpq) > 1.96}; 
} 

Fig. 30.  The Parallel-FARM algorithm. 

Since each site in the distributed system exchanges its local fuzzy counts with all the 

other sites to calculate the global fuzzy counts, the (h – 1)-th order rules and hence the 

candidate h-th order rules, which are generated from the (h – 1)-th order rules, found at 

different sites are identical for all h.  After the termination of Parallel-FARM, each site 

therefore discovers an identical set of fuzzy association rules. 

8.2 The Parallel-EFARM Algorithm 
Parallel-EFARM is able to mine fuzzy association rules in large databases without any need 

for user-specified thresholds or mapping of quantitative into binary attributes.  It is 

developed to run on a distributed system for fast execution.  In the distributed system, one of 

the processors is chosen as the master and the other processors are selected as the slaves.  

The master processor is responsible for the initialization of population, the selection of 

chromosomes, and the recombination of chromosomes using the genetic operators, whereas 

each of the slave processors is responsible for the evaluation of fitness of chromosomes 
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assigned to it. 

It is important to note that the master processor has to stop and wait to receive the 

fitness values for all the population before it can proceed to the next generation.  In order to 

fully utilize the computation power of the distributed system, Parallel-EFARM has the 

master processor together with the slave processors to evaluate the fitness of chromosomes.  

Given that there are m processors in the distributed system, Parallel-EFARM divides the 

population into m subsets of chromosomes and assigns each subset to a processor for fitness 

evaluation. 

Parallel-EFARM discovers fuzzy association rules by an iterative process.  It begins 

with the generation of a set of first-order fuzzy association rules using the objective 

interestingness measure introduced in Section 7.1.2.  Based on these rules, it then discovers 

a set of second-order fuzzy association rules in the next iteration and based on the second-

order fuzzy association rules, it discovers third-order fuzzy association rules, etc.  In other 

words, if we refer to the initial set of first-order fuzzy association rules as R1, the rules in R1 

are then used to generate a set of second-order fuzzy association rules, R2.  R2 is then used to 

generate a set of third-order fuzzy association rules, R3, and so on for fourth and higher 

order fuzzy association rules. 

In general, at the (h – 1)-th iteration, Parallel-EFARM begins a parallel GA by 

generating an initial population of chromosomes (each represents a set of h-th order fuzzy 

association rules) by randomly combining the rules in Rh – 1 to form a set of h-th order fuzzy 

association rules.  Once started, the parallel GA goes on uninterruptedly until no more 

interesting fuzzy association rule in the current population can be identified.  Parallel-

EFARM is given in Fig. 31. 

It should be noted that the processors in the distributed system are labeled by 1,…, m, 

where m is the number of processors.  The details of the evaluate function are given in Fig. 

32.  In the evaluate function, the master processor uses the divide function to partition 

population[t] into m subsets of chromosomes, which are, in turn, stored in subset[1], …, 

subset[m].  The master processor then sends subset[i] to processor i for fitness evaluation for 

i = 1, …, m.  Upon receiving the subset of chromosomes, a processor evaluates their fitness 

and sends the fitness values back to the master processor.  On the receipt of the fitness 

values from all the processors, the master processor updates the fitness values of the 

chromosomes in population[t]. 

All the remaining components of Parallel-EFARM are the same as EFARM given in 
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Section 7.3. 

 

MASTER PROCESSOR: 
 R1 ← { lik ⇒ lpq [w(lik ⇒ lpq)] | i ≠ p and d(lik → lpq) > 1.96}; 
 h ← 2; 
 while Rh – 1 ≠ ∅ do 
 begin 
  t ← 0; 
  population[t] ← initialize(Rh – 1); 
  evaluate(population[t]);  /* see Fig. 32 */ 
  while not terminate(population[t]) do 
  begin 
   t ← t + 1; 
   population[t] ← reproduce(population[t – 1]); 
   evaluate(population[t]); /* see Fig. 32 */ 
  end 
  Rh ← decode(the fittest individual in population[t]); 
  h ← h + 1; 
 end 
 U

h
hRRules ← ; 

 
SLAVE PROCESSOR: 
 receive subset[i] from the master processor; 
 send fitness(subset[i]) to the master processor; 
 

Fig. 31.  The Parallel-EFARM algorithm. 

 

evaluate(population[t]) 
begin 
 subset[1], …, subset[m] ← divide(population[t]); 
 for i = 1 to m do 
 begin 
  send subset[i] to processor i; 
  receive fitness[i] from processor i; 
 end 
 update_fitness(population[t], subset[1], …, subset[m]); 
end 

Fig. 32.  The evaluate function. 

8.3 Scalability Evaluation 
We implemented Parallel-FARM and Parallel-EFARM in a distributed system using PVM 

(Parallel Virtual Machine) [Geist et al. 1994].  To perform our experiments, a 100 Mb LAN 

was used to connect ten Sun Ultra 5 workstations, each of which has 64 MB of main 

memory running Solaris 2.5.1.  Each workstation has a local drive and its database partition 

is loaded on its local drive before each experiment started.  The databases used in our 
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experiments on scalability are synthetic data generated using the tool provided by [IBM 

1996].  Each tuple in the databases is characterized by 9 attributes.  Of the 9 attributes, 3 are 

discrete and 6 are continuous. 

In order to evaluate the performance of Parallel-FARM, we also implemented Count 

Distribution in our test bed.  For each database, we discretized the domain of continuous 

attributes into several intervals and mapped the values of discrete attributes and the intervals 

of discretized continuous attributes into integers.  We then applied Count Distribution to the 

transformed data.  Since Count Distribution finds frequent itemsets based on support 

constraint, we applied it to the databases using various minimum supports so as to evaluate 

how its performance is affected by the setting of minimum support. 

We ran a number of experiments to evaluate the sizeup, speedup, and scaleup 

performance of Parallel-FARM, Parallel-EFARM, and Count Distribution.  In the rest of 

this section, we refer to Count Distribution as CD. 

8.3.1 Sizeup 

In our first experiment, we fixed the number of sites in the distributed system to 10.   To 

evaluate the performance of Parallel-FARM, Parallel-EFARM, and CD with respect to 

different database sizes, we increased the number of tuples from 1 million to 10 million in 

our experiment.  Fig. 33 shows the performance of Parallel-FARM, Parallel-EFARM, and 

CD as the database size increases.  In addition to the absolute execution times, we also plot 

sizeup, which is the execution time normalized with respect to the execution time for 1 

million tuples, in Fig. 33 (“PFARM” denotes Parallel-FARM, “PEFARM” denotes Parallel-

EFARM, and “CD (x%)” denotes running CD with minimum support = x%). 

As shown in Fig. 33, both Parallel-FARM and Parallel-EFARM scale almost linearly in 

this experiment.  When the database size increases, more I/O and CPU processing are 

required to scan the database for obtaining the local counts and to compute the 

interestingness measure for identifying interesting association relationships.  The amount of 

execution time spent in communication is more or less the same regardless of the database 

size because the number of association relationships is independent of the database size and 

only their local counts are exchanged between different sites in the distributed system.  This 

characteristic of the algorithm results in the reduction of the percentage of the overall 

execution time spent in communication.  Since the I/O and CPU processing in Parallel-

FARM and Parallel-EFARM scales linearly with the database size, they show sublinear 

performance. 
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This experiment also shows that the performance of Parallel-FARM is superior to CD 

with respect to different database sizes.  Specifically, Parallel-FARM is 2.8 times faster than 

CD with minimum support = 2% and 7.6 times faster than CD with minimum  

support = 0.5%. 
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(b) Sizeup. 

Fig. 33.  Sizeup performance. 
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8.3.2 Speedup 

In our second experiment, we fixed the database size to 2 million tuples.  To evaluate the 

performance of Parallel-FARM and Parallel-EFARM with respect to different number of 

sites in the distributed system, we increased the number of sites from 1 to 10 in our 

experiment.  Fig. 34 shows their performance as the number of sites increases.  In addition 

to the absolute execution times, we also plot speedup, which is the execution time 

normalized with respect to the execution time for a single site, in Fig. 34. 

As shown in Fig. 34, Parallel-FARM and Parallel-EFARM exhibit very good speedup 

performance in this experiment.  In particular, when there are m sites in the distributed 

system, they can shorten the execution time to about 1 / m of the execution time for a single 

site.  It is important to note however that given the same amount of data, the speedup 

performance will deteriorate as the number of sites in the distributed system increases.  The 

deterioration is due to the communication time becoming a significant percentage of the 

overall execution time when compared to the relatively small processing time for the small 

amount of data to process on each site. 

This experiment also shows that Parallel-FARM performs better than CD with respect 

to different number of sites in the distributed system.  In particular, when there are 2 sites in 

the distributed system, Parallel-FARM is 2.7 times faster than CD with minimum  

support = 2% and 7.4 times faster than CD with minimum support = 0.5%.  When there are 

10 sites in the distributed system, Parallel-FARM is 3 times faster than CD with minimum 

support = 2% and 8.3 times faster than CD with minimum support = 0.5%. 
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(a) Execution time. 

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

No. of processors

S
pe

ed
up

PFARM PEFARM CD (2%)
CD (1.5%) CD (1%) CD (0.5%)

 
(b) Speedup. 

Fig. 34.  Speedup performance. 

8.3.3 Scaleup 

In this experiment, we fixed the size of the database partition at a site to 1 million tuples.  

We increased the number of sites in the distributed system from 1 to 10.  Fig. 35 shows the 

performance of Parallel-FARM and Parallel-EFARM as the number of sites increases.  In 

addition to the absolute execution time, we also plot scaleup, which is the execution time 
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normalized with respect to the execution time for a single site, in Fig. 35. 

As shown in Fig. 35, Parallel-FARM and Parallel-EFARM have very good scaleup 

performance.  Since the number of association relationships they find does not change when 

the database size increases, the I/O and CPU processing at each site remains constant.  The 

execution time increases slightly as the database size and the number of sites increase.  The 

small increment in execution time is due again to the increase in the communication 

overhead when there are more and more sites in the distributed system. 

This experiment also shows that Parallel-FARM can better handle larger databases 

when more processors are available when compared to CD.  Parallel-FARM is 2.7 times 

faster than CD with minimum support = 2% and 7.4 times faster than CD with minimum 

support = 0.5%. 
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(b) Scaleup. 

Fig. 35.  Scaleup performance. 
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Chapter 9 

Experimental Results 
 

9.1 Synthetic Data Sets 
To evaluate the performance of our proposed algorithms on meta-mining tasks, we carried 

out two experiments using synthetic data sets.  In our first experiment, we embedded some 

association relationships in six synthetic data sets and then tested whether our algorithms 

were able to discover the regularities and the differences hidden in the underlying 

association relationships.  In the second experiment, we embedded some rule changes in 

several synthetic rule sets.  We examine whether our algorithms can reveal such rule 

changes. 

In our experiments, our proposed algorithms, FARM and EFARM, produce more or 

less the same results.  We therefore in this section report only the results obtained by FARM. 

9.1.1 Mining Regularities and Differences 

In this experiment, we test the proposed algorithm for effectiveness when it is used to 

discover the underlying regularities and differences embedded in data sets.  We generated 

six data sets for experimentation.  Each tuple in these data sets is characterized by 3 

attributes: X, Y, and Z.  Each of these attributes can take on two values: T and F.  Each data 

set contains 1,000 tuples.  We generated the first five data sets, D1, …, D5, according to the 

following association relationships: 

 

X = F ∧ Y = F ⇒ Z = F 

X = F ∧ Y = T ⇒ Z = T 

X = T ∧ Y = F ⇒ Z = T 

X = T ∧ Y = T ⇒ Z = F. 

 

The remaining data set, D6, was generated according to the following association 

relationships: 
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X = F ∧ Y = F ⇒ Z = F 

X = F ∧ Y = T ⇒ Z = F 

X = T ∧ Y = F ⇒ Z = F 

X = T ∧ Y = T ⇒ Z = T. 

To further examine the performance of our algorithm in the presence of uncertainty, 

5% of noise was added randomly to the data sets by randomly changing the value of Z in 50 

tuples (i.e., 5% of all tuples) from F to T or vice versa.  We applied our proposed algorithm 

to Dj to discover rules and stored the discovered rules in Rj, j = 1, …, 6.  The discovered 

rules together with their adjusted residuals and weights of evidence are given in Table 28. 

 

Table 28.  Rules discovered in the data sets. 

Rule 
Set Rule Adjusted 

Residual 
Weight of 
Evidence 

X = F ∧ Y = F ⇒ Z = F 16.10 4.06 
X = F ∧ Y = T ⇒ Z = T 16.61 4.33 
X = T ∧ Y = F ⇒ Z = T 16.61 4.33 

R1 

X = T ∧ Y = T ⇒ Z = F 17.13 5.10 
X = F ∧ Y = F ⇒ Z = F 15.96 3.88 
X = F ∧ Y = T ⇒ Z = T 16.03 3.96 
X = T ∧ Y = F ⇒ Z = T 16.18 4.07 

R2 

X = T ∧ Y = T ⇒ Z = F 16.25 4.08 
X = F ∧ Y = F ⇒ Z = F 15.96 3.95 
X = F ∧ Y = T ⇒ Z = T 15.74 3.71 
X = T ∧ Y = F ⇒ Z = T 16.76 4.46 R3 

X = T ∧ Y = T ⇒ Z = F 16.54 4.42 
X = F ∧ Y = F ⇒ Z = F 16.40 4.29 
X = F ∧ Y = T ⇒ Z = T 16.03 3.89 
X = T ∧ Y = F ⇒ Z = T 16.76 4.46 

R4 

X = T ∧ Y = T ⇒ Z = F 16.40 4.29 
X = F ∧ Y = F ⇒ Z = F 17.02 4.62 
X = F ∧ Y = T ⇒ Z = T 16.73 4.71 
X = T ∧ Y = F ⇒ Z = T 16.73 4.71 

R5 

X = T ∧ Y = T ⇒ Z = F 16.43 4.11 
X = F ∧ Y = F ⇒ Z = F 7.98 2.17 
X = F ∧ Y = T ⇒ Z = F 9.95 3.68 
X = T ∧ Y = F ⇒ Z = F 9.62 3.31 R6 

X = T ∧ Y = T ⇒ Z = T 27.55 5.40 
 

As shown in Table 28, our algorithm is able to uncover all the underlying association 

relationships embedded in the six data sets.  It was next used to mine meta-rules from the 

rule sets R1, …, R6.  Table 29 shows the regular meta-rules discovered from the rule sets. 
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Table 29.  Regular meta-rules discovered in the rule sets. 

Regular Meta-Rule Adjusted 
Residual 

Weight of 
Evidence 

X = F ∧ Y = F ⇒ Z = F 2.60 infinity 
X = F ∧ Y = T ⇒ Z = T 2.13 2.56 
X = T ∧ Y = F ⇒ Z = T 2.13 2.56 

 

The regular meta-rule “X = F ∧ Y = F ⇒ Z = F” is supported by six rules (one in each 

rule set), whereas the meta-rules “X = F ∧ Y = T ⇒ Z = T” and “X = T ∧ Y = F ⇒ Z = T” are 

supported by five rules (one in each of R1, …, R5).  All of them represent the regularities in 

the rule sets, which in turn reflect the characteristics in common in the data sets. 

Let us consider the meta-rule “X = F ∧ Y = T ⇒ Z = T” as an example.  It is supported 

by five rules.  Its antecedent “X = F ∧ Y = T” is supported by 6 rules, whereas its consequent 

“Z = T” is supported by 11 rules.  Assuming that they are independent of each other, the 

meta-rule is expected to be supported by 2.75 (= 11 × 6 / 24) rules (given by Equation 

(4.10)).  We next need to decide whether 5 is significantly larger than 2.75.  To do so in an 

objective manner, we propose to use the adjusted residual analysis.  The adjusted residual is 

2.13 (calculated by Equation (4.8)), which is greater than 1.96 (the 95th percentile of the 

normal distribution).  We therefore conclude that the meta-rule is supported by a sufficiently 

large number of rules and hence it represents one of the regularities in the rule sets (i.e., a 

regular meta-rule). 

It is important to note that the meta-rule “X = T ∧ Y = T ⇒ Z = F” is also supported by 

five rules (one in each of R1, …, R5).  Its antecedent “X = T ∧ Y = T” and its consequent  

“Z = F” are supported by 6 and 13 rules, respectively.  Therefore, we expect that 3.25  

(= 13 × 6 / 24) rules would support this meta-rule.  To objectively decide whether 5 is 

significantly larger than 3.25, we make use of the adjusted residual analysis.  The adjusted 

residual is found to be 1.66 (< 1.96).  Hence we conclude that the meta-rule is not supported 

by a sufficiently large number of rules. 

In addition to discovering regular meta-rules, our algorithms can also discover 

differential meta-rules for representing the distinctive relationships in only a few rule sets.  

Table 30 gives the differential meta-rules discovered from the rule sets. 
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Table 30.  Differential meta-rules discovered in the rule sets. 

Differential Meta-Rule Adjusted 
Residual 

Weight of 
Evidence 

X = F ∧ Y = T ⇒ Z = F –2.13 –2.56 
X = T ∧ Y = F ⇒ Z = F –2.13 –2.56 

 

For example, the meta-rule “X = T ∧ Y = F ⇒ Z = F” is supported by only one rule in 

R6.  Its antecedent “X = T ∧ Y = F” and consequent “Z = F” are supported by 6 and 13 rules, 

respectively.  Hence 3.25 (= 13 × 6 / 24) rules are expected to support this meta-rule.  We 

find that 1 is significantly less than 3.25 as the adjusted residual is –2.13 (< –1.96).  We 

conclude that the meta-rule is supported by a sufficiently small number of rules and hence it 

represents a distinguishing relationship (i.e., a differential meta-rule). 

Let us consider the meta-rule “X = T ∧ Y = T ⇒ Z = T,” which is also supported by one 

rule in R6.  Its antecedent “X = T ∧ Y = T” is supported by 6 rules, whereas its consequent  

“Z = T” is supported by 11 rules.  We expect it would be supported by 2.75 (= 11 × 6 / 24) 

rules.  The adjusted residual is –1.66 (> –1.96) and hence 1 is not significantly less than 2.75.  

We therefore conclude that the meta-rule is not supported by a sufficiently small number of 

rules. 

9.1.2 Mining Changes 

In our experiment, we first generated a synthetic data set using the tool provided by [IBM 

1996].  The parameter setting for generating the synthetic data set is listed in Table 31.  The 

parameters and the method for the generation of the synthetic data set are detailed in 

[Agrawal and Srikant 1994]. 

 

Table 31.  Parameter setting for generating the synthetic data set. 

Parameter Value 
Number of transactions 1,000 
Average size of transactions 5 
Average size of the maximal potentially large itemsets3 2 
Number of maximal potentially large itemsets 20 
Number of items 100 

 

We used the synthetic data set as the transactions collected in time period t1 (i.e., D1).  

                                                      
3 An itemset is large if its support is greater than or equal to minimum support. 
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We next applied our algorithm to D1 to discover rules concerned with item i7.  A set of 28 

rules was discovered and stored in R1.  We selected five rules randomly for further 

experimentation.  The selected rules are shown in Table 32. 

 

Table 32.  The rules in R1 selected for further experimentation. 

Rule Adjusted 
Residual 

Weight of 
Evidence 

 r1: {i93, i94, i99} ⇒ {i7} 6.87 4.40 
 r2: {i93, i97, i99} ⇒ {i7} 2.88 3.56 
 r3: {i93, i96, i99} ⇒ {i7} 15.87 6.40 
 r4: {i93, i98} ⇒ {i7} 6.85 4.33 
 r5: {i93, i96} ⇒ {i7} 7.48 4.21 

 

We then generated another 124 data sets, D2, …, D125, in such a way that 1) r1, …, r4 

change in the period from t1 to t125; 2) r5 is perished in t125; 3) r6 is added, changes, and is 

perished periodically during the period from t1 to t125; 4) a new rule, r7, is added in t71; and 5) 

all the other rules remain the same in the period from t1 to t125.  Fig. 36 shows how r1, ..., r7 

change in the period from t1 to t125. 

The association rules discovered in D125 and stored in R125 are given in Table 33. 
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(a) r1. 
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(b) r2. 
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(c) r3. 
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(d) r4. 
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(e) r5. 
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(f) r6. 
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(g) r7. 

Fig. 36.  The changes in r1, …, r7 in the period from t1 to t125. 
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Table 33.  Rules r1, …, r7 in R125. 

Rule Adjusted 
Residual 

Weight of 
Evidence 

 r1: {i93, i94, i99} ⇒ {i7} 14.53 4.22 
 r2: {i93, i97, i99} ⇒ {i7} 11.88 6.71 
 r3: {i93, i96, i99} ⇒ {i7} 2.34 1.83 
 r4: {i93, i98} ⇒ {i7} 7.02 6.69 
 r6: {i51, i69} ⇒ {i7} 8.16 2.98 
 r7: {i28, i63} ⇒ {i7} 3.38 15.78 

 

Each rule in R1 ∪ … ∪ R124 is associated with a sequence of adjusted residuals and a 

sequence of weights of evidence.  In our experiments, we set the width of the window to 20.  

By sliding the window across the sequence of adjusted residual, we divided it into a set of 

subsequences.  Similarly, we also divided the sequence of weights of evidence into another 

set of subsequences. 

We defined 20 linguistic variables, rr SS 201  ..., , , to represent each subsequence of 

adjusted residuals.  rS20  represents “Change in adjusted residual in next period,” rS19  

represents “Change in adjusted residual in this period,” and r
kS , k ∈ {1, …, 18}, represents 

“Change in adjusted residual in 19 – k period(s) ago.”  The value of r
kS , k = 1, …, 20, can 

take from 5 linguistic terms whose membership functions are defined as follows: 
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Similarly, we defined 20 linguistic variables, rr CC 201  ..., , , to represent each 

subsequence of weight of evidence.  rC20  represents “Change in weight of evidence in next 

period,” rC19  represents “Change in weight of evidence in this period,” and r
kC , k ∈ {1, …, 

18}, represents “Change in weight of evidence in 19 – k period(s) ago.”  The value of r
kC ,  

k = 1, …, 20, can take from 5 linguistic terms whose membership functions are defined in 

the following: 
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Each subsequence was then converted to a set of ordered triples.  After that, we applied 

our proposed algorithm to these ordered triples to discover meta-rules.  The discovered 

meta-rules were then used to predict how the adjusted residuals and the weights of evidence 

of the rules would change in t125.  The predicted rules were stored in 125R̂  (Table 34). 
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Table 34.  Rules r1, …, r7 in 125R̂ . 

Rule Adjusted 
Residual 

Weight of 
Evidence 

 r1: {i93, i94, i99} ⇒ {i7} 14.47 4.22 
 r2: {i93, i97, i99} ⇒ {i7} 12.33 6.74 
 r3: {i93, i96, i99} ⇒ {i7} 2.34 1.83 
 r4: {i93, i98} ⇒ {i7} 7.07 6.73 
 r6: {i51, i69} ⇒ {i7} 7.85 3.00 
 r7: {i28, i63} ⇒ {i7} 3.37 15.70 

 

It is important to note that r5 is perished in t125 and it is therefore not found in 125R̂ .  

Our algorithm is able to predict the changed rules (i.e., r1, …, r4), the perished rule (i.e., r5), 

the added rules (i.e., r6 and r7) in t125.  The difference of the actual rules in R125 and the 

predicted rules in 125R̂  is shown in Fig. 37. 

In the rest of this section, we present some of the meta-rules discovered by our 

algorithm.  A meta-rule of adjusted residual for r1 discovered is given in the following: 

 

Change in adjusted residual in this period = Fairly increase 

 ∧ Change in adjusted residual in 5 periods ago = Highly increase 

  ⇒ Change in adjusted residual in next period = Fairly decrease [w = 3.89]. 

 

This meta-rule states that “if the change in adjusted residual in this period fairly increases 

and the change in adjusted residual in 5 periods ago highly increases, then the change in 

adjusted residual in next period would fairly decrease.” 

Another meta-rule of weight of evidence for r7 mined from the rule sets is provided as 

follows: 

 

Change in weight of evidence in this period = More or less the same 

 ∧ Change in weight of evidence in 12 periods ago = Highly increase 

  ⇒ Change in weight of evidence in next period = Highly decrease [w = 2.15]. 

 

This meta-rule states that “if the change in weight of evidence in this period is more or less 

the same and the change in weight of evidence in 12 periods ago highly increases, then the 

change in weight of evidence in next period would highly decrease.” 
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(a) The adjusted residual of the actual and predicted rules. 
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(b) The weight of evidence of the actual and predicted rules. 

Fig. 37.  The actual and predicted rules. 
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9.2 The Property-Valuation Database 
The property-valuation database is extracted from the data warehouse maintained by the 

Hong Kong office of a worldwide property valuation company.  It contains two relational 

tables: PROPERTY and TRANSACTION.  Each tuple in the PROPERTY table represents a 

residential property, which is characterized by, e.g., direction, size of property, number of 

bed rooms, etc., in Hong Kong, whereas each tuple in the TRANSACTION table represents a 

buy/sell transaction, which is characterized by date of transaction, transaction amount, 

mortgage ratio, etc., concerned with a tuple in the PROPERTY table (i.e., a residential 

property).  The PROPERTY and the TRANSACTION tables consist of the characteristics of 

765,106 residential properties in 59 districts in Hong Kong and 909,226 transactions 

completed during the period between 1991 and 2001, respectively. 

Fig. 38 shows the schema of the property-valuation database.  Since each relation in 

the property-valuation database contains many attributes, we only show a subset of these 

attributes in Fig. 38. 

 
PROPERTY (PROPERTY_ID, DIRECTION, SIZE, NUM_OF_BED_ROOMS, …) 
TRANSACTION (TID, PROPERTY_ID, TRANS_DATE, AMOUNT, …) 

Fig. 38.  Schema of the property-valuation database. 

In the property-valuation database, PROPERTY contains data for 765,106 residential 

properties in 59 districts in Hong Kong, whereas TRANSACTION consists of data for 

909,226 transactions completed during the period between 1991 and 2001.  Each property in 

the former table had been sold or bought in one or more transaction maintained in the latter.  

The transaction amount in the property-valuation database is about HK$2,450 billion in 

total.  Table 35 gives a summary of the property-valuation database. 

 

Table 35.  Summary of the property-valuation database. 

Relation No. of Attributes No. of Tuples 
PROPERTY 28 765,106 

TRANSACTION 13 909,226 
 

9.2.1 The Transformation Functions Defined 

In this section, we describe how we can construct a transformed relation, R (T_BUILD_AGE, 

T_AMOUNT, T_NATIONALITY, …), using the transformation functions (defined in Chapter 

8).  To obtain the transformed relation, we, together with a domain expert from the property 

evaluation company, defined 14 transformation functions in total.  From the 14 
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transformation functions, in this section, we present three of them as an illustration. 

Let us consider the attributes PROPERTY[BUILD_DATE] and 

TRANSACTION[TRANS_DATE].  The former represents the date on which the residential 

property was built, whereas the latter represents the transaction date.  The difference in these 

two attributes gives the age of the property when the transaction was made.  We defined the 

following transformation function: 

 

f1(tid) = π TRANS_DATE – BUILD_DATE (σ TID = tid (TRANSACTION  PROPERTY)), 

 

where σ, π, and  denote the SELECT, PROJECT, and NATURAL JOIN operations from 

relational algebra.  This function is an example of the arithmetic functions defined in 

Chapter 8.  The transformed attribute T_BUILD_AGE was produced by applying 

f1(TRANSACTION[TID]) to every tuple in TRANSACTION. 

The transaction amount can be partitioned into a finite number of intervals for the 

purpose of discovering more meaningful rules.  After we consulted the domain expert, we 

defined another transformation function as follows: 
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The transformed attribute T_AMOUNT was produced by applying 

f2(TRANSACTION[AMOUNT]) to every tuple in TRANSACTION, which is an example of 

the discretization function defined in Chapter 8. 

The domain expert suggested that whether there exist or do not exist any bay windows 

rather than the size of bay windows would be used in our analysis.  We therefore made use 

of a transformation function defined as: 
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This function is an example of the logical functions defined in Chapter 8.  The transformed 

attribute T_BAY_WINDOWS was produced by applying 

f3(PROPERTY[SIZE_OF_BAY_WINDOWS]) to every tuple in PROPERTY. 

By applying the transformation functions to the property-valuation database, we 

obtained the required transformed relation.  There are 14 attributes in the transformed 

relation.  Among the 14 transformed attributes, 8 are categorical (discrete-valued) and 6 are 

quantitative (continuous-valued).  Instead of performing data mining on the original data, 

we discovered interesting associations from the transformed data. 

9.2.2 Fuzzy Sets Resulted from Fuzzy Partitioning 

After data transformation, we applied our fuzzy partitioning algorithm ITFP to the 

transformed data.  It is used to generate fuzzy sets automatically to represent each of the 6 

continuous, transformed attributes.  We present some of the generated fuzzy sets in this 

section. 

For example, ITFP generated 9 fuzzy sets for the transformed attribute T_SIZE, which 

represents the size of a residential property.  Fig. 39 shows the generated fuzzy sets. 
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Fig. 39.  Fuzzy sets for T_SIZE. 

As another example, 4 fuzzy sets were generated for the transformed attribute 

T_FLOOR, which represents the floor of a property.  They are given in Fig. 40. 
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Fig. 40.  Fuzzy sets for T_FLOOR. 

9.2.3 Attribute Clustering for Grouping and Selection of 

Attributes 

We next applied our attribute clustering algorithm, ACA, to the transformed and fuzzy 

partitioned data to find clusters of attributes.  Fig. 41 shows the sum of the interdependence 

redundancy measure over all the clusters versus the number of clusters found. 
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Fig. 41.  The total interdependence redundancy measure over all the clusters found in the 

transformed relation. 

As shown in Fig. 41, it finds that the optimal number of clusters is 3.  ACA identifies 3 

clusters of attributes, where T_CLUB_HOUSE, which represents whether there is a club 

house, T_NUM_OF_LIVING_ROOMS, which represents the number of living rooms, and 

T_BUILD_AGE, which represents the building age, are the modes.  These clusters have 5, 3, 

and 6 attributes, respectively. 

From each of the three attribute clusters, we select the top 3 attributes for data mining 

and meta-mining. 

9.2.4 Mining Meta-Rules 

After the original data are transformed, the transformed data are fuzzy partitioned, and the 

transformed attributes are grouped and selected, we applied our fuzzy rule mining 

algorithms, FARM and EFARM, to discover meta-rules.  Since the results they obtained are 

more or less the same, in this section we report only the findings of FARM. 

9.2.4.1 Regular and Differential Meta-Rules 

For our experimentation, the domain expert identified three districts of interest: Yuen Long, 

Sheung Shui, and Tseung Kwan O.  He was interested in association relationships 
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concerned with the amount of the residential properties in these districts.  We first extracted 

the transformed data in 2001 concerned with these three districts into three data sets, one for 

each district.  We then applied our algorithm to mine a set of rules in each data set.  Next, 

we applied them to mine a set of regular and differential meta-rules from the rule sets. 

A regular meta-rule the domain expert found being meaningful is given as follows: 

 

Swimming Pool = No ⇒ Amount ∈ [0, 1 000 000) [w = 7.63]. 

 

The meta-rule states that “in general, a residential property is worth less than 1 million 

dollars if there is no swimming pool.”  This represents an association relationship in 

common in the characteristics of properties in these districts.  The domain expert found this 

meta-rule being meaningful because many people enjoy using recreational facilities (e.g., 

swimming pools, club houses, etc.) in their properties and hence they will not pay much 

money for a property if there is no swimming pool. 

The domain expert also found the following regular meta-rules being meaningful: 

 

Direction = South ⇒ Amount ∈ [4 000 000, 5 000 000) [w = 4.21] 

Direction = South ⇒ Amount ∈ [5 000 000, 6 000 000) [w = 3.95]. 

 

They state that “in general, a residential property is worth between 4 million and 6 million 

dollars if it faces south.”  Again, it represents an association in common in the 

characteristics of properties in the three districts.  The domain expert found them being 

meaningful because many Chinese prefer properties that face south and are willing to pay 

more for them. 

Another regular meta-rule found being meaningful by the domain expert is provided in 

the following: 

 

Estate = No ⇒ Amount ∈ [0, 1 000 000) [w = 0.65]. 

 

This states that “in general, a residential property is worth less than 1 million dollars if it is 

not in any estate.”  This meta-rule is meaningful because the properties in an estate are 

usually better managed than those not in an estate.  It is for this reason that many people will 

not pay much for properties that are not in an estate. 

In addition to regular meta-rules, the domain expert also found the discovered 
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differential meta-rules interesting.  A differential meta-rule found interesting by the domain 

expert is: 

 

Swimming Pool = Yes ∧ Estate = No ⇒ Amount ∈ [1 000 000, 2 000 000) [w = –0.18]. 

 

This states that “in an exceptional manner, a residential property is worth between 1 million 

and 2 million dollars if there is one or more swimming pool and it is not in any estate.”  This 

represents a distinguishing association relationship in the characteristics of properties in 

Yuen Long only.  The finding of this differential meta-rule surprises us since it, together 

with the last regular meta-rule, indicate that properties with swimming pool(s) but not in any 

estate in Yuen Long are worth more than those in Sheung Shui and Tseung Kwan O.  

Although the domain expert had not recognized this relationship, he found it to be 

meaningful because many properties in Yuen Long lack recreational facilities, such as 

swimming pools, and people in Yuen Long are willing to pay more for a property with one 

than people in other districts. 

Another differential meta-rule the domain expert found interesting is: 
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x
 denotes the leftmost fuzzy set shown in Fig. 39.  This 

states that “in an exceptional manner, a residential property is worth between 1 million and 

2 million dollars if its size is small.”  This represents a distinctive relationship in the 

characteristics of properties in Sheung Shui only.  Together with the following regular meta-

rule: 
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9.70)506(1
x
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x
 ⇒ Amount ∈ [0, 1 000 000) [w = 2.90], 

 

which states that “in general, a property is worth less than 1 million dollars if its size is 

small,” the domain expert found the differential meta-rule to be meaningful because it 

confirms that the properties in Sheung Shui are usually worth more than those in Yuen Long 

and Tseung Kwan O. 
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9.2.4.2 Change Meta-Rules 

For our further experimentation, we selected the transformed data concerned with residential 

properties in Yuen Long during the period from 1991 to 2001.  The average price per square 

foot of these properties in this period is given in Fig. 42.  As shown in Fig. 42, the average 

price fluctuates significantly and hence the rules discovered in the historical data are unable 

to provide an accurate prediction of the price of properties in the future. 
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Fig. 42.  The average price per square foot of residential properties in Yuen Long during the 

period from 1991 to 2001. 

The domain expert from the company aimed at predicting the amount of a property 

based on other attributes.  To perform this task, we first divided the database into 127 

partitions, T1, …, T127, where T1 contains the buy/sell transactions in April 1991, T2 contains 

the buy/sell transactions in May 1991, and so on.  We next made use of our algorithm to 

discover 126 sets of fuzzy association rules, R1, …, R126, from the first 126 database 

partitions, T1, …, T126.  Finally, we applied our fuzzy rule mining algorithm to discover a set 

of change meta-rules, which represent the regularities about the changes in the adjusted 

residual and weight of evidence of each fuzzy rule in R1 ∪ … ∪ R126. 

Using the change meta-rules, we predicted how the adjusted residual and weight of 

evidence of each fuzzy rule in R1 ∪ … ∪ R126 would change in October 2001.  This resulted 
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in a set of fuzzy association rules, 127R′ , such that the adjusted residual and weight of 

evidence of each rule in 127R′  was predicted based on the changes in the fuzzy rules 

discovered in the time period from April 1991 to September 2001 (i.e., the discovered 

change meta-rules). 

In our experiments, we set the width of the sliding window to 20.  The average 

percentage error of the adjusted residuals and weights of evidence of the rules predicted 

using the change meta-rules is given in Table 36. 

 

Table 36.  The average percentage error of the adjusted residuals and weights of evidence of 

the rules predicted using change meta-rules. 

 Percentage Error 
Adjusted residual 0.36% 
Weight of evidence 1.01% 

 

In addition to the above, we predicted the amount of each record in the last database 

partition, T127, using 127R′ .  To further evaluate the performance of our approach, we used 

the fuzzy rules discovered in T1 ∪ … ∪ T126 to predict the amount of each record in T127.  

We denote these fuzzy rules as R.  For the purpose of comparison, we also applied C4.5, a 

well-known decision tree classifier, to T1 ∪ … ∪ T126 for training and to T127 for testing. 

The experimental results are given in Table 37 (“Fuzzy Rules + Meta-Rules” denotes 

the classification rate yielded based on 127R′  and “Fuzzy Rules” denotes the classification 

rate yielded based on R). 

 

Table 37.  Experimental results on prediction of property amount. 

 Percentage Accuracy 
C4.5 85.7% 

Fuzzy Rules 83.3% 
Fuzzy Rules + Meta-Rules 88.7% 

 

As shown in Table 37, the rule set produced using change meta-rules (i.e., 127R′ ) 

obtains better accuracy than the rule set discovered in T1 ∪ … ∪ T126 when they were used 

to predict the amount of the records in T127 collected in October 2001.  The experimental 

results show that our approach is able to improve the performance of a data mining 
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algorithm by discovering and predicting the changes in rules.  Our approach to mining fuzzy 

rules and change meta-rules also outperforms C4.5. 

We also repeated our experimentation on the properties in Sheung Shui and Tseung 

Kwan O.  The experimental results show that our approach to mining fuzzy rules and 

change meta-rules produces good classification rate.  We report in this section only the 

results on Yuen Long. 

9.3 The Stock-Price Database 
The stock-price database contains the stock prices of three companies listed in the Stock 

Exchange of Hong Kong during the period from 2000 to 2004.  The companies are in 

different industries.  Specifically, they are Hang Seng Bank Ltd., a major bank in Hong 

Kong, Sun Hung Kai Properties Ltd., a major property developer in Hong Kong, and CLP 

Holdings Ltd., a major electricity supplier in Hong Kong.  Fig. 43 gives the schema of the 

stock-price database.  Each tuple in the STOCK table, the DIVIDEND table, the 

SHARES_ISSUED table, and the PRICE table represents a listed company, the dividend 

paid by a company, the shares issued by a company, the price of a company, respectively.  

Since each relation in the stock-price database consists of many attributes, only a subset of 

these attributes is given in Fig. 43. 

 

STOCK (STOCK_CODE, NAME, LISTING_DATE, FISCAL_MONTH, …) 

DIVIDEND (STOCK_CODE, DATE, AMOUNT_PER_SHARE, …) 

SHARES_ISSUED (STOCK_CODE, DATE, NUM_OF_SHARES_ISSUED, …) 

PRICE (STOCK_CODE, DATE, CLOSE_PRICE, VOLUME, …) 

Fig. 43.  The schema of the stock-price database. 

Fig. 44 shows the stock prices of the three companies during the period between 2000 

and 2004.  As shown in Fig. 44, the stock prices of Hang Seng Bank Ltd. and Sun Hung Kai 

Properties Ltd. fluctuate more significantly than CLP Holdings Ltd. 
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Fig. 44.  The stock prices of the three companies during the period from 2000 to 2004. 

9.3.1 The Transformation Functions Defined 

In this section, we describe how to construct a transformed relation for the stock-price 

database using the transformation function introduced in Chapter 8. 

Let us consider the attribute PRICE[CLOSE_PRICE].  It represents the close price of a 

company’s stock on a specific date.  Since the company may pay dividend and may issue 

additional shares, the close price has to be adjusted accordingly in order to reflect the actual 

trade price.  We therefore defined the following transformation functions for the adjustment: 
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and 

 

f5(scode, date) = (1 / f4(scode, date)) × π CLOSE_PRICE – AMOUNT_PER_SHARE  

 (σ STOCK_CODE = scode ∧ DATE = date (PRICE  DIVIDEND)), 
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where  denotes the LEFT OUTER JOIN operation from relational algebra.  The 

transformation functions f4 and f5 are examples of the arithmetic functions defined in 

Chapter 8. 

Since we are interested in the stock price movements, we defined the following 

transformation function for computing the percentage change in price: 

 

)1 ,(
)1 ,() ,(

) ,(
5

55
6 −

−−
=

datescodef
datescodefdatescodef

datescodef . 

 

This function is also an example of the arithmetic functions.  The transformed attribute 

T_PERCENT_CHANGE was produced by applying f6(PRICE[STOCK_CODE], 

PRICE[DATE]) to every tuple in PRICE. 

We then constructed the transformed relation R (STOCK_CODE, DATE, 

T_PERCENT_CHANGE) for discovering the similarity, difference, and change in stock 

price movements. 

We next produced a time series using the following operation: 

 

transpose(π T_PERCENT_CHANGE (σ STOCK_CODE = scode (R))), 

 

where transpose(T) returns the transpose of relation T.  The time series was then divided 

into a set of subsequences by sliding a window of width w = 20.  The subsequences are 

stored in the relational database for the ease of retrieval.  We therefore obtained a relation,  

S (T_PERCENT_CHANGE1, …, T_PERCENT_CHANGE20).  The attribute 

T_PERCENT_CHANGE20 represents the percentage change on the next transaction date, the 

attribute T_PERCENT_CHANGE19 represents the percentage change on the present 

transaction date, the attribute T_PERCENT_CHANGE18 represents the percentage change on 

the last transaction date, and the attribute T_PERCENT_CHANGEi represents the percentage 

change on the (19 – i)-th to the last transaction date for i = 1, …, 17. 

9.3.2 Fuzzy Sets Resulted from Fuzzy Partitioning 

After data transformation, we applied our fuzzy partitioning technique ITFP proposed in 

Chapter 6 to the transformed relation R.  It was used to generate fuzzy sets to represent the 

transformed attribute T_PERCENT_CHANGE.  Fig. 45 shows the generated fuzzy sets. 
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Fig. 45.  Fuzzy sets for T_PERCENT_CHANGE. 

The generated fuzzy sets were then used to represent the domain of each of 

T_PERCENT_CHANGE1, …, T_PERCENT_CHANGE20 in S. 

9.3.4 Attribute Clustering for Grouping and Selection of 

Attributes 

We next applied our attribute clustering algorithm ACA proposed in Chapter 7 to S.  Fig. 46 

shows the sum of the interdependence redundancy measure over all the clusters versus the 

number of clusters found. 
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Fig. 46.  Total interdependence redundancy measure over all the clusters found in the 

transformed relation. 

As shown in Fig. 46, it finds that the optimal number of clusters is 3.  ACA identifies 3 

clusters of attributes, where T_PERCENT_CHANGE2, T_PERCENT_CHANGE7, and 

T_PERCENT_CHANGE16 are the modes.  These clusters have 8, 6, and 6 attributes, 

respectively.  From each of the three attribute clusters, we select the top 3 attributes for data 

mining and meta-mining. 

9.3.5 Mining Meta-Rules 

Similar to our experimentation on the property-valuation database, we next applied our 

fuzzy rule mining algorithms, FARM and EFARM, to the transformed data to discover 

meta-rules.  Since the results they obtained are more or less the same, we report only the 

findings of FARM in this section for clarity.  We first present the discovered regular and 

differential meta-rules in Section 9.3.5.1.  We next report how change meta-rules lead to an 

accurate prediction of the stock price in Section 9.3.5.2. 

9.3.5.1 Regular and Differential Meta-Rules 

For our experimentation, we aimed at finding the association relationships concerned with 

how the percentage change in stock price on a specific date is affected by percentage 
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changes in the past few days.  Fig. 47 shows the value of T_PERCENT_CHANGE (i.e., the 

percentage change in stock price) of the three companies. 
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Fig. 47.  Percentage change in stock prices of the three companies  

during the period from 2000 to 2004. 

We first extracted the subsequence data concerned with the three companies into three 

data sets, one for each company.  We then applied our algorithm to mine a set of rules in 

each data set.  Next, we applied it to mine a set of regular and differential meta-rules from 

the rule set. 

A regular meta-rule discovered is given as follows: 

 

Percentage change on the 14th to the last transaction date = More or less the same ∧ 

 Percentage change on the 12th to the last transaction date = Fairly increased 

  ⇒ Percentage change on the next transaction date = More or less the same  

   [w = infinity]. 

 

This meta-rule states that “in general, if the stock prices on the 14th and 12th to the last 

transaction date are more or less the same and fairly increased, respectively, then the stock 

price on the next transaction date will be more or less the same.”  This represents an 
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association relationship in common in the characteristics of the stock price movements of 

the three companies. 

The following regular meta-rules are also discovered: 

 

Percentage change on the present transaction date = Highly increased  

 ⇒ Percentage change on the next transaction date = Highly decreased 

  [w = 5.57] 

Percentage change on the present transaction date = Highly increased  

 ⇒ Percentage change on the next transaction date = Fairly decreased 

  [w = 3.74]. 

 

These state that “in general, if the stock price highly increases on this transaction date, then 

the stock price will fairly or highly decrease on the next transaction date.”  Again, they 

represent association relationships in common in the characteristics of the stock price 

movements of the three companies.  They suggest that it is a safe bet for the decrease in the 

stock price on the next transaction date if one finds that the stock price highly increases on 

the present transaction date. 

In addition to regular meta-rules, our algorithm also discovered the following 

differential meta-rule: 

 

Percentage change on the 13th to the last transaction date = More or less the same 

 ⇒ Percentage change on the next transaction date = More or less the same 

  [w = –4.70]. 

 

This states that “in an exceptional manner, if the stock price on the 13th to the last 

transaction date is more or less the same, then the stock price on the next transaction date 

will be more or less the same.”  This represents a distinguishing association relationship in 

the characteristics of the stock price movement of CLP Holdings Ltd. only. 

9.3.5.2 Change Meta-Rules 

For our further experimentation, we extracted the transformed time-series data for Hang 

Seng Bank Ltd. during the period from 2000 to 2004.  As shown in Figs. 45 and 47, the 

stock price of the company fluctuates significantly and hence the rules discovered in the 

historical data are unable to provide an accurate prediction of the stock price in the future. 

We aimed at predicting the stock price on the next transaction date given the stock 
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price on the previous 19 days.  To perform this task, we first divided the subsequence data 

into 20 partitions, T1, …, T20, where T1 contains the subsequences representing the stock 

price in the period from January 2000 to March 2000, T2 contains the subsequences 

representing the stock price in the period from April 2000 to June 2000, and so forth.  We 

next used our algorithm to discover 19 sets of fuzzy association rules, R1, …, R19, from the 

first 19 database partitions, T1, …, T19.  Finally, we applied our fuzzy rule mining algorithm 

to discover a set of change meta-rules, which represent the regularities about the changes in 

the adjusted residual and weight of evidence of each fuzzy rule in R1 ∪ … ∪ R19. 

Using the change meta-rules, we predicted how the adjusted residual and weight of 

evidence of each fuzzy rule in R1 ∪ … ∪ R19 would change in the period between October 

2004 and December 2004.  This resulted in a set of fuzzy association rules, 20R′ , such that 

the adjusted residual and weight of evidence of each rule in 20R′  were predicted based on the 

change meta-rules discovered.  We predicted the stock price of each subsequence in the last 

database partition, T20, using 20R′ . 

To further evaluate the performance of our approach, we used the fuzzy rules 

discovered in T1 ∪ … ∪ T19 to predict the stock price.  We denote these discovered fuzzy 

rules as R.  For the purpose of comparison, neural networks were also applied to the data 

because they are the most popular classifier for financial time series forecasting [Baestaens, 

van den Bergh, and Wood 1994; Refenes, Burgess, and Bentz 1997; Weigend, Huberman, 

and Rumelhart 1990].  The neural networks used in our experiments are multilayer 

perceptrons with a single hidden layer, which contains 20 nodes, and they were trained by 

the backpropagation algorithm [Rumelhart, Hinton, and Williams 1986; Werbos 1974] with 

the learning rate was set to 0.3 and the momentum term was set to 0.7.  The neural networks 

used the first 4¾ years of the data for training (i.e., T1 ∪ … ∪ T19) and the last ¼ year of the 

data for testing (i.e., T20).  The predictions produced by the neural networks were averaged 

over 10 runs. 

Fig. 48 shows the actual and the predicted stock prices during the period between 

October 4, 2004 and December 31, 2004 (“Fuzzy Rules + Meta-Rules” denotes the 

predictions based on 20R′  and “Fuzzy Rules” denotes the predictions based on R). 
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Fig. 48.  Prediction of the stock price of Hang Seng Bank Ltd. 

The prediction produced by 20R′ , R, and neural networks deviates from the actual price 

by ±0.4%, ±0.7%, and ±1.3%, respectively, in average. 

Based on the prediction of the stock price, one can make buy/sell decisions using 

certain trading strategies.  In this section, we compare the performance of predicted fuzzy 

rules and neural networks using a simple trading strategy.  Let us assume that we have a 

certain amount of capital and we are able to buy/sell the stock of Hang Seng Bank Ltd. from 

October 4, 2004 to December 31, 2004.  In this trading strategy, if the stock price is 

predicted to rise by 0.5% on date t + 1, we buy the stock with all the capital on date t; if the 

stock price is predicted to drop by 0.5% on date t + 1, we sell the stock on date t; otherwise, 

we do nothing, that is, we hold the stock or the cash on hand.  This strategy allows us to 

make a profit by buying the stock today (i.e., date t) if the stock price will be higher 

tomorrow (i.e., date t + 1) and to prevent a loss by selling the stock today (i.e., date t) if the 

stock price will be lower tomorrow (i.e., date t + 1) according to the prediction.  We refer to 

this trading strategy as the active trading strategy in the rest of this section. 

A weakness of the active trading strategy is that we can only make money when the 

market is up.  When the market is down, all we can do is to prevent loss.  In order to allow 

making money when the market is down, we modify the strategy to become more 
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aggressive by allowing short selling.  In the modified strategy, if the stock price is predicted 

to rise by 0.5% on date t + 1, we buy the stock with all the capital on date t; if the stock 

price is predicted to drop by 0.5% on date t + 1, we short sell the stock on date t and buy it 

back when there is a buy signal; otherwise, we do nothing, that is, we hold the stock or the 

cash on hand or keep short selling the stock.  This allows us to make profit when the market 

is down because we will be able to buy the stock at a lower amount than the price at which 

we sold short.  We refer to this modified strategy as the short selling trading strategy in the 

rest of this section. 

The experimental results are given in Table 38.  The number of buy/sell transactions 

made is provided in Table 39. 

 

Table 38.  Trading performance. 

 Active Trading 
Strategy 

Short Selling Trading 
Strategy 

Neural Networks 3.0% 1.4% 
Fuzzy Rules 5.5% 6.7% 

Fuzzy Rules + Meta-Rules 11.5% 15.3% 
 

Table 39.  Trading signals. 

Active Trading 
Strategy 

Short Selling Trading 
Strategy  

Buy Sell Buy Sell 
Neural Networks 12 11 23 23 

Fuzzy Rules 8 7 16 15 
Fuzzy Rules + Meta-Rules 10 9 19 18 

 

The experimental results show that neural networks, which do not take into 

consideration the fact that the trends hidden in financial time series are in short-time basis, 

cannot produce good trading performance.  Although short selling can be used to make 

money when the market is down, one risks greater loss if the predictions are wrong when 

compared to not using short selling.  This is why neural networks yield even poorer trading 

performance when using short selling as when they do. 

As shown in Table 38, our approach, which mines fuzzy rules and change meta-rules, 

obtains good trading performance using both the active trading strategy and the short selling 

trading strategy.  This demonstrates the effectiveness of the mining of change meta-rules in 

representing rule changes in time series. 
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We also repeated our experimentation on the stock price data for Sun Hung Kai 

Properties Ltd. and CLP Holdings Ltd.  The experimental results also show that our 

approach to mining fuzzy rules and change meta-rules obtains good prediction accuracy and 

trading performance although the actual figures vary.  We report in this section only the 

results on Hang Seng Bank Ltd. 
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Chapter 10 

Conclusions and Future Work 
 

This study proposes to mine a set of rules from the rules sets discovered by a data mining 

algorithm.  These rules are called meta-rules because they are rules about rules.  We define 

the problems of discovering the underlying regularities, differences, and changes hidden in 

rule sets and propose a new approach to dealing with these problems.  We refer to the 

proposed approach as a meta-mining approach since it mines previous mining results. 

Given a collection of rule sets, each of which is discovered in a data set, the meta-

mining of regularities is concerned with the discovery of association relationships that are 

supported by a sufficiently large number of rules in the rule sets.  They are in common in 

different data sets (i.e., the regularities) and hence they are called regular meta-rules.  The 

regular meta-rules are especially useful for an interstate or international company to better 

make business decisions that are beneficial to the company as a whole. 

The meta-mining of differences from the rule sets aims at revealing rules that are 

supported by a sufficiently small number of rules.  They represent the distinguishing 

characteristics of the few data sets.  They are therefore referred to as differential meta-rules.  

The differential meta-rules are very useful for an international company to better make 

decisions that are beneficial to specific branches. 

Based on our formalism, we can distinguish the associations supported by a number of 

records in many data sets from the associations supported by many records in only a few 

data sets.  If one concatenates the data sets into amass a single data set, these two kinds of 

associations cannot be distinguished.  With meta-mining, regular meta-rules are used to 

represent the former kind of associations, whereas differential meta-rules are used to 

represent the latter kind of associations. 

In addition to discovering regularities and differences, we also propose to discover the 

changes in rules over time.  The goal in meta-mining changes from rule sets is to uncover 

the regularities governing how the rules change over time (i.e., the change meta-rules).  

Change meta-rules reflect change in the underlying characteristics hidden in the data.  They 

can be used for human examination and for predicting how the rules will change in the 

future.  Unless one takes changes into consideration, one can only predict based on  

historical data and the prediction cannot lead to any change because it will no longer be 
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valid.  Knowing the changes in advance allows a business organization not only to provide 

new products and services to satisfy the changing needs of its customers, but also to design 

corrective actions to stop or delay undesirable changes. 

To discover regular, differential, and change meta-rules effectively, a meta-mining 

approach should be able to 1) generate fuzzy sets from data automatically; 2) use linguistic 

variables and linguistic terms to represent the discovered regularities, differences, and 

changes; 3) exploit the scalability of parallel computer systems; 4) group and select a subset 

of attributes; and 5) enable the mining of relationships involving attributes that are not 

originally contained in the data. 

In this study, we propose a good number of techniques to do with the aforementioned 

tasks and incorporate them into our meta-mining approach.  Specifically, to generate fuzzy 

sets directly from data, we present a new fuzzy partitioning method called ITFP to 

maximize the class-attribute interdependence and thence improve the classification results.  

It uses an information-theoretic measure effectively to evaluate the interdependence 

between the class and an attribute.  In the comparison of discretization techniques versus 

fuzzy partitioning techniques, the experimental results on several real-world data sets show 

that the latter, if done effectively, can outperform the former.  In view of unsupervised 

versus supervised methods, the results show that the latter perform better than the former.  

Our ITFP, which is a supervised and fuzzy partitioning method, indeed achieves, by and 

large, the best performance in our experiments.  From the experimental results, the efficacy 

of ITFP demonstrates that fuzzy partitioning enables fuzzy data mining techniques (e.g., 

fuzzy decision trees [Janikow 1998], fuzzy classification [Au and Chan 2001], fuzzy 

association rules [Au and Chan 1998, 1999, 2003, 2004; Chan and Au 1997b, 2001; Chan, 

Au, and Choi 2002], fuzzy linguistic summaries [Kacprzyk and Zadrozny 2001; Yager 

1991], etc.) to build fuzzy models or to discover fuzzy rules on top of the generated fuzzy 

sets instead of the user-specified fuzzy sets. 

In order to employ linguistic variables and linguistic terms to represent the revealed 

association relationships so that they can be understood by human users easily because of 

their affinity with human knowledge representation, we propose two new algorithms, called 

FARM and EFARM, for mining fuzzy rules and meta-rules.  FARM discovers high-order 

fuzzy association rules based on a heuristic, whereas EFARM mines high-order rules using 

an evolutionary algorithm.  Both of them employ an objective interestingness measure to 

discover interesting association relationships among attributes without any subjective input 

required of the users.  The discovered associations can be used later for human examination 

or for machine inference, e.g., classification. 
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We tested their performance with extensive experiments.  The experimental results on 

several real-world data sets for data mining show that our algorithms yield accurate 

classification.  In particular, the experimental results on the subscriber database provided by 

a carrier in Malaysia show that they are able to discover churn patterns and to predict churn 

accurately.  Furthermore, they are also robust in such a way that they can discover rules 

hidden in the subscriber database and predict the churn of subscribers under different churn 

rates.  Since the churn rates of different subscribers are different and the churn rate of a 

specific carrier varies from time to time, robustness is necessary to an effective churn 

predictor.  The ability of our proposed algorithms to identify a large number of churners 

when only a small fraction of subscribers were contacted is especially important because the 

customer services center of the carrier has a fixed number of staff and they can contact only 

a small fraction of subscribers.  On the other hand, the experimental results on synthetic data 

sets for meta-mining also show that our algorithms are effective for discovering the 

underlying regularities, exceptions, and changes embedded. 

To handle very large data sets and rule sets, we extend the two proposed algorithms to 

exploit the scalability of parallel computer systems.  While producing the same results, the 

parallel algorithms accomplish a data mining or a meta-mining task in only a fraction of the 

time required by their serial counterparts.  The experimental results on a popular 

benchmarking data set show that they have very good size-up, speedup, and scale-up 

performance. 

We also present a new method for grouping interdependent attributes into clusters by 

optimizing a criterion function known as interdependence redundancy.  We propose a 

clustering algorithm known as k-modes Attribute Clustering Algorithm (ACA).  ACA 

adopts the idea of k-means clustering algorithm in the entity space to cluster attributes in the 

attribute space by replacing 1) the concept of the “mean” in the former by the “mode” and 2) 

the distance measure used in the former to the interdependence redundancy measure 

between attributes.  In order to have a meaningful evaluation of our methodology, we devise 

an experimental evaluation scheme to provide a common base of performance assessment 

and comparison with other methods.  From the experiments on the two gene expression data 

sets, colon-cancer and leukemia, we find that our attribute clustering algorithm that 

maximizes intra-group interdependences and the attribute selection method based on 

multiple attribute interdependence measure works well and yields meaningful and useful 

results in terms of 1) finding good clustering configurations, which contain interdependence 

information within clusters and discriminative information for classification; 2) selecting 

from each cluster significant genes with high multiple interdependence with other genes 
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within each cluster; and 3) yielding very high classification results on both of gene 

expression data sets using a small pool of genes selected from the clusters found by ACA as 

the training set.  When comparing the experimental results of ACA with those of several 

well-known methods, we find that, by and large, ACA outperforms the others.  As shown by 

the surprising results in both the colon-cancer and the leukemia cases, ACA is able to select 

very small subsets of genes (14 out of 2,000 in the former and 10 of 7,129 in the latter) to 

achieve very high classification accuracy (91.9% in the former and 97.1% in the latter) 

much higher than when the entire set of genes are used.  This reveals that the good 

diagnostic information existing in a small set of genes can be effectively selected by ACA 

for diagnostic purpose.  We believe that this has a significant implication for clinical, 

pharmaceutical, and bioengineering applications. 

To allow the discovery of association relationships involving attributes that are not 

contained in the original data, we propose using transformation functions and introduce a 

formal approach.  This approach can also handle both relational and transactional data in a 

relational database.  Depending on the type of attribute, we can apply different types of 

transformation functions to the attributes.  The types of transformations include logical, 

arithmetic, substring, and discretization functions.  The use of transformation functions 

results in a transformed relation.  Instead of performing data mining on the original data, we 

applied our fuzzy association rule mining algorithms to the transformed data of the bank-

account database provided by an international bank.  Among the discovered fuzzy 

association rules, we selected 200 rules randomly and presented them to a domain expert 

from the bank.  The domain expert confirmed that she could understand the fuzzy 

association rules without any difficulty, although it is nontrivial for her to explain the basis 

for some of the rules.  In particular, the domain expert found that 91.5% of these randomly 

selected rules are useful or very useful.  The reasons for this are likely to be that our 

interestingness measure can effectively reveal the interesting associations that are hidden in 

the data and that the fuzzy association rules, which employ linguistic terms to represent the 

underlying relationships, are more natural for human users to understand. 

Finally, we applied our proposed meta-mining approach to several synthetic and real-

life data sets for experimentation.  The experimental results show that our approach is able 

to reveal the underlying regularities, differences, and changes hidden in the data. 

In conclusion, our proposed meta-mining approach is very effective not only in mining 

rules from data sets, but also in mining meta-rules from rule sets.  The discovered meta-

rules effectively represent the underlying regularities, differences, and changes hidden in the 

rule sets, which in turn reflect the regularities, the differences, and the change of 
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characteristics in the data sets. 

In the future, we are going to generalize our fuzzy partitioning method to handle 

multiple variables at the same time.  Instead of fuzzy sets, it would result in fuzzy relations.  

The rules discovered involing such fuzzy relations would perhaps reflect a more meaningful 

representation of the underlying relationships as compared to those involving fuzzy sets. 
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