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Abstract

In the last decade, the advancement of the Internet of Things (IoT) enables com-

munication and computation to appear anytime and anywhere. Numerous mobile

devices and sensing equipment are interconnected that realize continuous data col-

lection and analysis, which we refer to as mobile sensing. Based on the integration

of artificial intelligence (AI) and IoT, health-related information could be extracted

from data collected and provides real-time intervention automatically that has led

to the emergence of smart health (s-Health) applications. However, the fundamental

issues posed by the new paradigm of healthcare create barriers against the practi-

cal use of the s-Health system. One key challenge is the dynamic nature of human

responses under di↵erent health conditions. It raises the need for calibration of the

system to provide personalized diagnosis, making it di�cult to scale for a large pop-

ulation and increases the cost of the initial setup. The other challenge stems from

the widely used machine learning techniques that require a vast amount of training

data to build the model.

To unleash the full potential of s-Health, methods that can sense the general set

of health indicators and e�ciently predict the influences are necessary. This thesis

focuses on the monitoring of stress as one major factor that a↵ects our physical and

mental health. We carry out a series of studies to 1) detect and recognize repetitive

activities related to health conditions; 2) measure the symptoms and predict the

impact of stress, using data collected from mobile devices. This thesis made three

main contributions.

The first contribution is the general approaches proposed for monitoring repetitive
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activities such as exercises, heartbeat, and respiration. We consider the repeated

physical motion as patterns that occur consecutively in multivariate time series ob-

tained from mobile devices. We proposed a multiple-length successive similar pat-

tern detector (mSIMPAD) to detect repetitive activities using the sensor data. The

mSIMPAD has barely any assumption regarding the target pattern and scales lin-

early, that can naturally adapt to di↵erent individuals and e�cient enough to deploy

on resource-constrained devices. On this basis, we proposed a scalable template ex-

traction method (STEM) to locate and identify repeating patterns from multivariate

time series. It substitutes the commonly used sliding-window-based technique and

achieved more generic and e�cient monitoring of repetitive activity. We also demon-

strate the proposed approaches have a wide range of applications including a use

case of respiration monitoring using wireless signals.

The second contribution is the investigation of stress recognition using mobile de-

vices. There is positive stress (eustress) and negative stress (distress) that a↵ects our

mental status and altering our behavior in di↵erent aspects. We developed a data col-

lection platform using smartphones, wearable sensors, and computers and conducted

an empirical study to examine the feasibility of stress recognition by exploiting the

data collected. We found that physical and behavioral data help discriminate eustress

from distress defined by its e↵ect on performance.

The third contribution is the work on predicting the impact of stress. We pro-

posed a computational continuous stress performance prediction (CCSP) method

that leverages domain knowledge to model the interaction between stress and cogni-

tive performance over time. An experiment was designed and conducted in a rigorous

laboratory environment. Data includes cognitive performance, physiological signals,

and the concentrations of cortisol in saliva were collected during the experiment.

Our computational model shows improvement in prediction performance on a small

dataset with the aid of domain knowledge. It also shed light on the problem of cog-

nitive performance prediction (increase, decrease, same) by estimating the physical

stress symptoms with mobile devices.
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Chapter 1

Introduction

1.1 Background

Population aging has aroused grave concerns all over the world. Most medical sys-

tems have gradually begun to digitize and as a result healthcare service incorporating

information technology has emerged. Smart Health (s-Health) is an umbrella term

for technology that aims to promote health. It is capable to collect health informa-

tion from various sources, processing this information, and deliver advice and action

to improve medical status in an intelligent manner. In this thesis, we focus on the

smart health application in monitoring human stress as it plays a vital role in our

physical and mental health. The presence of stress is unavoidable that has become an

emerging risk of public health. It is related to various health issues including heart

diseases, obesity, diabetes, depression, and anxiety. Beyond the individual health

problem, stress is also an issue for the economy. The financial cost of job stress in

the US is about $300 billion annually [9], as a result of accidents, absenteeism, em-

ployee turnover, diminished productivity, direct medical, legal, and insurance costs,

and so on.

Given the importance of stress in our health and wellbeing, an increasing number of
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studies have been published monitoring stress using mobile devices. A large portion

of the literature investigates the detection of stress using physiological parameters

such as heart rate variability, galvanic skin response, pupil diameter, etc; and multi-

modal data including speech, facial expression, physical activities, and behavior.

The results are promising in which the state-of-the-art can classify if stress occurs

for di↵erent people under di↵erent contexts. However, the presence and e↵ect of

stress are complicated. While most of the previous work simplifies the problem as

a binary classification that overlooked the positive impact of stress and therefore

ignored the situation where stress is sometimes desired.

The measurement of stress and its e↵ect is crucial for improving stress resilience, the

ability to adapt and recover from strain. Understanding the relationships between

stress and its impact provides a knowledge basis for stress monitoring strategy, to

promote physical and mental wellbeing, and increases e�ciency in workplaces. In

view of this, we aim to fill the research gap by studying the measurement of stress

and its impact, to provide more suitable interventions for better stress resilience,

and eventually promote general health. Particularly, we investigated the methods for

repetitive activities detection and recognition to estimate various health indicators

including respiration and exercises. Also, we studied the measurement of stress, and

a computational approach to predict the impact of stress on cognitive performance.

In theory, this will enable s-Health applications by facilitating the general assessment

of health conditions and the discovery of stressful behaviors in the near future.

Measuring the repetitive activities and stress, as well as its impact on our body is non-

trivial given the following reasons. First of all, the existing approaches are usually

scenario dependant where providing a generic method to all possible circumstances

is challenging. Second, stress is an internal mental state that is di�cult to quantify

for measurement and prediction. Third, the relationship between the mental state
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and its response is complicated. The response might di↵er from one to another due

to individual di↵erences, and various types of stimuli. To address these challenges,

we focus on the measure of a general set of daily activities - repetitive activities -

as it relates to our health and mental state in many ways. We also focused on the

objective measure of symptoms such as behavioral and physiological parameters to

estimate the perceived stress, and the computational model to predict the change of

cognitive ability. In advance of the detailed explanation of our research framework,

we first introduce the background of stress including the definition and essential

knowledge to illustrate the rationale of this thesis.

1.1.1 What is Stress?

Everyone has the experience of feeling the pressure from various life events. Surpris-

ingly, the definition of stress is still under debate in the research community due to its

complex nature. There are multiple aspects of studying stress related to psychology

and physiology, yet no consensus of understanding stress was made by far.

The most widely adopted definition of stress stems from Hans Selye, who coined the

term in 1936 [120]. He defined stress as ”the nonspecific response of the body to any

demand made upon it” [122]. In general terms, stress is the biological and psycholog-

ical response to any external stimulus perceived as a threat. Those stimuli are called

stressors, which can be physical (e.g. fighting o↵ a physical attack, putting hands

into cold water, physical o�ce clutter) or psychological (e.g. facing humiliation, time

pressure on a decision, financial worries). The perception of stressor is a psychologi-

cal process, where a situation is perceived as a threat when the estimated demands

are greater than the resources that the individual has available [10]. Therefore, a

situation that is stressful for someone might not be stressful for another one, which

makes it di�cult to study with subjectivity.
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The degree of perceived stress determines the body’s response through the autonomic

nervous system, which controls involuntary body functions such as breathing, blood

pressure, and heartbeat. A stressful stimulus will activate the sympathetic nervous

system (SNS), and it regulates bodily functions by signaling the adrenal glands to re-

leases hormones including adrenalin and cortisol into the bloodstream. The reaction

as a survival mechanism is also known as the ”fight-or-flight” response [8]. It results

in several physiological changes such as increased heartbeat, breath, and muscle ten-

sion, that prepare one’s body to counter the threatening situation. After the stressful

situation, the parasympathetic nervous system (PNS) that responsible for the ”rest

and digest” processes, reduces the stress response and restores homeostasis.

Some suggest that stress could be the stress itself, the cause, as well as the result

of it. In this thesis, we stick with the original definition and consider stress as

the ”response” of any stressful events. More specifically, we regard stress as the

”symptoms” that could be objectively measured, such as cortisol, physiological and

behavioral changes. While the ”perceived stress ’ is the subjective evaluation of the

stress feeling. There is a good explanation in [124], where the authors suggest that

”there is an underlying property called stress for which both the symptom mea-

surements and the reported measures (perceived stress) are approximations”. Stress

could be derived from the symptom measurements using machine learning models to

learn the underlying model of true stress. They also coined the word computed stress

to distinguish from traditional stress measure, defined as the ”stress computationally

derived from instantaneous measures of stress symptoms obtained by non-invasive

methods”. In the rest of the thesis, we regard stress derived from the computational

model as computed stress and used with stress interchangeably.
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1.1.2 Impact of Stress

Based on general stress, researchers also proposed di↵erent types of stress. Regard-

ing the duration, it can be classified as Acute Stress, a short-term stress response

that usually lasts no more than a couple of hours (e.g. football game, public speech,

taking an exam). Chronic Stress, a long-term stress that usually lasts for several

days to years, and the individual has little or no control of it. The prolonged activa-

tion of SNS a↵ects numerous health outcomes. It gradually increases resting heart

rate, blood pressure, respiration rate, which also increases the risk of cardiovascular

diseases including heart disease, high blood pressure, and stroke. Exposure to stress

for a long period can lead to serious mental issues such as depression, anxiety, and

personality disorders.

Eustress

Calm Distress

Optimal
Stress

P
er

fo
rm

an
ce

Stress Arousal

Figure 1.1: Relation between stress and performance based on the Yerkes-Dodson
Law.

Considering the types and impacts of stress, Selye also introduced the concept of

positive and negative stress, namely the Eustress and Distress accordingly [122]. He

distinguishes eustress and distress in terms of the adaptive and non-adaptive e↵ects

of the stress response. Eustress is the ”healthy, positive, constructive results of

stressful events and stress response”; In contrast, distress is associated with negative

feelings and physical impairments [66]. Besides, there is an opinion that eustress
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and distress can be distinguished quantitatively based on the law of Yerkes-Dodson

[145]. It suggests that stress is beneficial to the performance until some optimal level

is reached, after which performance will decline. The relationship between stress and

performance follows the inverted U shape as shown in figure 1.1. Among di↵erent

attempts to understand the concept of eustress, the common root is the adaptive

nature of the response, in which eustress should bring positive health e↵ects. While

the two dominating approaches used to distinguish eustress from distress is depending

on the interpretation of the feeling, and the impact on performance.

Most of the previous work focuses on the unpleasant aspect of stress. Although the

concept of eustress has been introduced in the early 70s, there is surprisingly little

work studied about it. Therefore, we investigated the positive stress by quantita-

tively measure the symptoms of stress and the e↵ect of it. In the next section, we

will provide a detailed description of the research framework and the scope of this

thesis.

1.2 Research Focus

Stress presents in almost every aspect of life that could seem too broad to study. In

order to monitor stress for better health, being able to measure stress and its impact

is key. It allows the quantification of stress and its e↵ect that can facilitate the design

of stress management strategy. This research focuses on the measurement of health

related repetitive activities, estimate the symptoms and predict the impacts of stress

using data collected from mobile devices. The health indicators and stress responses

span along with di↵erent aspects of a person from physical, mental, to behavioral,

which outlines this research work. In this section, we first introduce the overview of

the research area and the key challenges, then we introduce the research framework

to tackle the challenges raised from the research question.
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1.2.1 Stress Monitoring: An Overview

We provide an overview of the research area in figure 1.2, o↵ering some examples

of symptoms and impacts in each of the aspects mentioned above. From the phys-

ical point of view, stress can lead to several physical changes in the body such as

increased heartbeat, blood pressure, respiration rate, and muscle tension. The physi-

cal symptoms can be monitored by mobile devices and potentially used for estimating

the stress of a person. When people experiencing stress for a long period, it might

cause serious health issues such as heart diseases, high blood pressure, obesity, and

diabetes [10].

SYMPTOM IMPACT

MENTAL MENTAL

PHYSICALPHYSICAL

BEHAVIORALBEHAVIORAL

Respiration 
Rate

Skin 
Conductance

Blood Pressure

Heart Disease Diabetes

Obesity High Blood 
Pressure

Anxiety Depression

Repetitive 
Activity

Stress
Racing 

Thoughts

Lack of 
Concertation 

Heartbeat

Forgetfulness

Multi-tasking Performance Substance 
Abused

Psychosis Post-traumatic 
Stress Disorder

Figure 1.2: An overview of the stress symptoms and impacts with respect to the
three aspects.

While the physical symptoms can be measured objectively, the mental symptoms

are less intuitive to measure from data collected using mobile devices. Although

measuring the mental symptoms are fairly di�cult, we can estimate the mental

state indirectly from human behavior. According to Wikipedia, human behavior is

”the potential and expressed capacity of human individuals or groups to respond to
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internal and external stimuli throughout their life” [4]. It is considered as a complex

interplay of actions, cognition, and emotions [5]. In other words, it is the interaction

between how we think, feel, and act. It is a combination of the physical and mental

aspects, and therefore providing clues of one’s mental state.

As an example, when people su↵ering from racing thoughts and find it di�cult to

concentrate as a result of stress, it reflects on how we interact with the computer.

Mark et. al. suggested that people tend to switch computer windows more often

as a sign of multitasking [90]. It could be a source of distraction that results in

poor performance at work. A recent study suggests that repetitive activity, espe-

cially ritual-like behavior, is a stress relief that confers a sense of controllability and

predictability [35]. One example is where basketball players bounce the ball exactly

six times before a free throw. The repeated high precision and concentration perfor-

mance of the same act reflects the situation is under control of the person, thereby

reducing the feeling of stress and anxiety. This kind of stereotyped ritual-like activity

emerged naturally as the phenomena are not only observed in humans, but also in

other animals. As a result, those behavioral changes can be objectively measured to

estimate the internal mental state.

Although repetitive activity characterizes the behavioral stress response [69], it has

a larger overlap with common daily activities such as walking, running, and cycling.

Solely monitoring the repetitive activities cannot conclude if a person is stressed or

not, especially there is limited knowledge on the repetitive activities that are related

to stress. In this thesis, we focus on the repetitive daily activities related to health

and fitness such as exercises, heartbeat, and respiration rate. Since these activities

account for a large fraction of human behavior, that associated with health [102, 71]

and also commonly adopted as a mean for stress relief [49, 60, 109]. Beyond the

responses, stress can also a↵ect our performance either positively or negatively, or
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lead to several behavioral disorders such as substance abused.

1.2.2 Research Challenges

Challenge 1: Variation of the activities and stress response

Each person is a unique individual. We distinct from others in many di↵erent ways

such as di↵erent physique, culture, intelligence, and habits. It leads to the varia-

tion of health conditions, symptoms, and impacts of stress among di↵erent people.

Identifying repetitive activities and monitor the stress of humans is therefore very

challenging. The same activity can be performed in many di↵erent ways, and dif-

ferent activities can be largely diverse. These variations incur great challenges to

existing machine learning based approaches, in which the di�culties stem from the

design of features and the acquisition of su�cient annotated data. In order to ad-

dress these issues, existing work provides solutions on an ad hoc basis, where di↵erent

models were deployed for a di↵erent set of activities as well as personalized models

for each individual. Applying multiple models on mobile devices is unfortunately not

practical as the devices are typically resource-constrained, and are even not possible

on the emerging battery-free devices. More importantly, there are cases where the

knowledge of the target activities is limited, especially when the goal is to discover

behavioral responses to stress. To address the above issues and support the discov-

ery in the future, a generic and e�cient method that can identify general repetitive

activities is desired.

Challenge 2: Lack of data for human research

Annotated data of human subjects especially of their mental and biological state is

critical to many studies related to humans. Collecting human data is however very

costly and sometimes impossible. The participants typically have little incentive to
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contribute their data. On the contrary, they are more worried about the proper use

of the data collected. Although existing work proposed to leverage transfer learning

to reduce the number of data needed for data-driven models, it has little application

in the real-world scenario as the target of the task and the data required varies.

In addition, data collected from human subjects is usually unreliable based on in-

dividual subjective evaluations. For example, a questionnaire is one of the most

commonly used techniques to estimate a person’s mental state. However, it is di�-

cult to pinpoint their feeling exactly on a numbered scale. Some approaches require

recalling the participant’s memory of the past experience may su↵er from inaccurate

information as a result of memory loss. There are significantly inadequate data on

human subjects in terms of both quantity and quality. To overcome this challenge

approaches that leverage domain knowledge in order to compensate for the lack of

data are needed.

1.2.3 Research Framework

Given the above overview, the aim of this research is basically two folds: 1) to

detect and recognize repetitive activities; 2) to measure and predict stress and its

impact. To this end, the following research framework was proposed as shown in

figure 1.3. This research focuses on the physical (physiological) and behavioral mea-

sures as they can be quantified objectively. Those activities and responses to stress

will be captured by mobile devices such as smartphones, smartwatches, wearable

sensors, and wireless devices. Data will be collected from various sensors including

Photolethysmogram (PPG), Electrodermal Activity (EDA), wireless signal, and ac-

celerometer, which is already available in wearable devices. The collected data will

then be processed for data completion, noise filtering, normalization, and standard-

ization. Specifically, physiological stress symptoms such as heart rate variability, skin
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conductance, and respiration rate will be measured from the obtained sensor data.

On the other hand, repetitive activities will be measured from body motion data

captured from the accelerometer. Performance can be measured from smartphone

and computer usage. Finally, those measures will facilitate stress monitoring by cap-

turing the daily activities, estimating stress, and predicting its impact on cognitive

performance.

RESEARCH ISSUES

Stress-cognition Modeling
• Leverage domain knowledge to 

model relationship between stress 
and cognitive performance.

Stress Recognition
• Investigate the classification 

between positive and negative 
stress with data collected.

Repeated Pattern Detection
• Develop an algorithm to detect 

repeated pattern in sensor data for 
repetitive activity detection.

Repeated Pattern Identification
• Propose an approach to locate and 

classify the detected repetitive 
activities.

Stress Responses

Physical Responses Behavioral Responses

Mobile Devices

Preprocessing

Physiological Measures
• Photoplethysmogram
• Electrodermal activity
• Wireless signal

Behavioral Measures
• Accelerometer data
• Smartphone usage
• Computer usage

Stress Monitoring

Impact Prediction
• Cognitive Performance Prediction

Stress Estimation
• General Stress Detection
• Eustress Recognition

Health Measurements
• Repetitive Activity Detection
• Repetitive Activity Recognition

Figure 1.3: The proposed research framework and the corresponding research issues.

The research issues are also listed on the right of the figure. The issues can be simply

grouped into two parts. From the bottom, we have repeated pattern detection and

identification that aims to provide a method to measure the daily activities that

are related to health. As mentioned in section 1.2.2, a generic method is needed

to cope with individual di↵erences in repetitive activity. We tackle this challenge

in a two-step approach by first solving an easier problem which is to detect the
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repeated pattern, followed by a more di�cult problem that will locate and recognize

the repeated pattern. The approaches were applied to detect and recognize daily

activities including walking, running, and cycling, that facilitate the measurement

of health condition. The upper part of the research issues aims to measure and

predict stress and its impact. Stress recognition is di↵erent from stress detection

and measurement in the literature. Most of the existing work treat stress as general

stress that is usually unpleasant. This problem aims to investigate the possibility

to distinguish eustress from distress. Then we model the relationship between stress

and cognitive performance in a time-aware manner.

HEALTH STRESS

PHYSICAL

MENTAL

BEHAVIORAL

1.mSIMPAD

2.STEM

3.EUSTRESS

4.CCSP

Figure 1.4: The map of our research work in the stress monitoring context.

In figure 1.4, we show the mapping of our research work under the context of stress

monitoring based on the focus of each work. The left is related to the measurement

of health condition, while the right is related to modeling the impact of stress. The

mSIMPAD investigates an e�cient and robust algorithm for repeating pattern detec-
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tion. The algorithm can detect if any real-valued multivariate time series contains

any repeating pattern, in which barely any assumption with the pattern such as

the shape and interval are unknown. Followed by mSIMPAD, we proposed STEM

to locate and recognize the repeating pattern of a time series. Both mSIMPAD and

STEM are studied to identify daily activities that are highly repetitive, it can also be

applied to many other applications such as respiration monitoring using wireless sig-

nals as we will show in chapter 3. The EUSTRESS is a preliminary study that aims

to understand the relationship between eustress and stress symptoms. Lastly, the

CCSP studied a computational model on the basis of theory about stress and perfor-

mance to predict cognitive performance by measuring stress symptoms. The reason

to leverage domain knowledge for model building is that it provides more accurate

prediction using a computational model that requires few annotated data.

1.3 Literature Review

Stress monitoring using mobile devices is an emerging area throughout the last

decade. More and more commercial wearable devices started to include stress mon-

itor as one of the basic features like Apple [1], Garmin [3], and Fitbit [2]. It seems

a well-studied area but when it comes to research, there are still many open issues

that remain unsolved. In view of this, there is an increasing number of studies pro-

posed for stress detection with the aid of mobile devices. Almost every previous

work applies machine learning techniques for monitoring stress. Much e↵ort has

been devoted to discovering the potential source of data for stress detection. The

emphasis is put on the e�ciency and robustness of the features extracted from the

sensor data.

Henceforth, one natural way to classify the previous work is by the data modality.

Each modality measures the stress response in a di↵erent part of the mechanism,
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which can be roughly divided into two categories: biomedical signals and behavioral

signals. In this section, we introduce the taxonomy of the literature on the basis of

di↵erent data modalities and investigate the work being proposed recently to tackle

challenges under di↵erent application scenarios for stress detection.

1.3.1 Biomedical Signals

Biomedical signals are observations of human body processes which are time-varying

measures that are typically obtained from electronic sensors [65]. It is the most

widely used measure for stress detection given the solid background knowledge of

the biological mechanism. It also enabled objective measures of the subjective in-

ternal feeling that makes it the most popular and reliable source for stress detection

[124]. There are two types of biosignals, namely physiological signals and physical

signals.

Physiological signals are direct measures of the body’s vital functions such as car-

diac activity, brain function, exocrine activity, and muscle excitability [43]. The

common techniques to estimate these body functions including electroencephalogra-

phy (EEG), electrocardiography (ECG), photoplethysmogram (PPG), blood volume

pulse (BVP), electrodermal activity (EDA), electromyography (EMG), etc. Figure

1.5 shows the distribution of the physiological measurement of the human body.

Physical signals are measured of body deformation as the result of muscle activity

such as pupil size, blinks, respiration, facial expression, and voice [43]. The physical

signals are less directed to the body function and might be influenced by external

factors such as environment and human consciousness.

There is no clear boundary applying solely physiological signals or physical signals,

instead, most studies combined di↵erent measures for a better approximation of
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Figure 1.5: The physiological signals that has been considered in the literature.

stress. Healey and Picard [52] are the pioneer in stress detection using biosignals

with mobile devices. They developed a sensing platform to capture ECG, EMG,

EDA, and respiration measures and showing promising results in stress detection

while in real-world driving. The authors in [148] later studied a multi-user system

to monitor signals including EDA, BVP, Pupil Diameter, and Skin Temperature for

stress detection on computer users. As the biosignal may reveal similar patterns

under cognitive load, the authors in [123] illustrated the possibility to di↵erentiate

between cognitive load and stress by using a wearable EDA device. The authors also

find that non-relative features perform better than relative features, which suggests

that calibration procedures are not needed in practical systems. Despite the widely

used physiological signal, the physical signals for stress detection were also examined

in the literature.

The facial expression has been investigated as a source for stress detection [88, 39,
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108]. Face temperature variation is possibly a more privacy-sensitive measure of

stress with images [127]. Towards a less invasive measure of stress, authors in [81]

proposed a voice-based sensing approach that captures characteristics such as pitch,

speaking rate, and vocal energy as features. A study comparing the voice- and EDA-

based methods suggested that both measures correlate with the perceived stress, are

both e↵ective and less invasive [13].

As more and more studies are published with similar results, it is convinced that

the biosignals are e�cient and robust features for stress detection [124]. Researchers

begin to explore more in-depth issues in stress detection applications. One direction

is to introduce non-intrusive sensing approaches for stress detection. In [84], the

authors investigated the potential of using a lightweight PPG signal to detect stress

and cognitive load. McDu↵ et. al. [96] investigated an approach to estimate PPG

measure at a distance of 3 meters using a digital camera. On the other hand, Sun et.

al. [130] proposed an activity-aware stress detection approach given that physical

activity could a↵ect biosignal, which should be considered while performing stress

detection. cStress was proposed to provide a gold standard for continuous stress

measurements with which the experiment was carefully designed and data collected

from rigorous lab study [57]. It also considers temporal dependency for the model

design.

1.3.2 Behavioral Signal

Compared to the biomedical signal, the literature on behavioral signals is much less

studied. While the biomedical signals are more suitable for acute stress detection

as the bodily response is more instance; the behavioral signals are more suitable for

chronic stress as the changes of behavior are more prominent than the biosignal in

the long run.
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Several works investigated the possibility of using information collected from mobile

devices for stress detection. Behavioral data such as screen on time, call usage, SMS

usage, location traces, and co-located Bluetooth devices shows clear modification

during stressful situations [41, 116]. Jaques et. al. [63] combined physiological data

with behavioral data to predict student’s stress and happiness. Similar work has been

proposed in [22], that instead of physiological data, it uses information from smart-

phones, personality traits, and weather data to recognize the stress of a participant.

In [37], the authors proposed to leverage smartphone app usage to predict perceived

stress at the workplace. Among those smartphone-based approaches, StudentLife

[134] initiated a big leap that performed a large-scale study with 48 participants

across 10 weeks. It captured physiological, behavioral, and self-reported measures of

the students that enabled various applications including stress detection.

Besides the smartphone-based approach, researchers also explore the potential of

using social media content to detect the stress of a person [77]. It analyzes the

textual information of the content on Twitter to infer the users’ psychological stress.

There are also studies showing that data collected from the use of a computer mouse

can detect if the user is stressed [129]. The authors in [54] proposed to detect

stress by measuring the pressure made upon the keyboard and mouse. Mark et. al.

studied the relationship between computer use and stress [90]. Stress is associated

with time spent on computers and the amount of multitasking, which is evaluated by

the number of switches between computer windows. Researchers also investigated

using motion data collected from smartphone to detect stress in working environment

[40].
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1.3.3 Remarks

The related work demonstrated the possibility of stress detection with mobile devices

that have been studied extensively. There are e↵ective and robust biosignals features

widely used in the literature, and numerous potential measures related to behavior.

The literature is clearly moving from laboratory to naturalistic setting, in order to

provide a more practical system design for continuous stress measurement.

In contrast to stress detection, predicting the impact of stress using mobile devices is

previously unexamined. Although there is work modeling and predicting the change

of cognitive performance [12], it is not on the basis of stress and is not in the scope

of this study.

1.4 Thesis Organization

The rest of the dissertation is organized as follows. The main body contains two parts:

1) detection and recognition of repetitive activities; 2) measurement and prediction of

the impact of stress. The first part included in Chapter 2 and Chapter 3, introduced

a generic method to detect and identify repeating patterns in multivariate time series,

for the health related repetitive activities. The second part including Chapter 4 - a

preliminary study of stress recognition, and Chapter 5 - a computational model to

predict cognitive performance over time under stress by measuring the biosignals.

The final chapter concludes the whole dissertation.
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Chapter 2

mSIMPAD: E�cient and Robust
Mining of Successive Similar
Patterns of Multiple Lengths in
Time Series

A Successive Similar Pattern (SSP) is a series of similar sequences that occur consec-

utively at non-regular intervals in time series. Mining SSPs could provide valuable

information without a priori knowledge, which is crucial in many applications ranging

from health monitoring to activity recognition. However, most existing work is com-

putationally expensive, focuses only on periodic patterns occurring in regular time

intervals, and is unable to recognize patterns containing multiple periods. Here we

investigate a more general problem of finding similar patterns occurring successively,

in which the similarity between patterns is measured by the z-normalized Euclidean

distance. We propose a linear time, robust method, called Multiple length Successive

sIMilar PAtterns Detector (mSIMPAD), that mines SSPs of multiple lengths mak-

ing no assumptions regarding periodicity. We apply our method on the detection of

repetitive movement using a wearable inertial measurement unit. The experiments

were conducted on three public datasets, two of which contain simple walking and
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idle data, while the third is more complex and contains multiple activities. mSIM-

PAD achieved F-Score improvements of 3.2% and 6.5% respectively, over the simple

and complex datasets compared to the state-of-the-art walking detector. In addition,

mSIMPAD is scalable and applicable to real-time applications since it operates in

linear time complexity.

2.1 Introduction

Successive Similar Patterns (SSPs), or series of similar subsequences that occur suc-

cessively, are prevalent in the physical world in areas such as seasonal weather, biosig-

nals, and human behavior. Mining SSPs in time series means recognizing the ap-

pearance of successive recurring patterns, which is a challenging problem of great

influence [146]. For example, repetitive physical motions characterize many inter-

esting types of exercise including walking [114, 24], running [50], and free weight

training [45, 137], which can be detected as the repeating patterns occurring in

wearable sensor data. SSP detection is the enabling technology for exercise tracking

using wearable devices that evaluate the activeness of an individual and can provide

guidelines for daily activities to promote physical health. Despite exercise tracking,

SSP detection can be applied to analyze heartbeat signals from electrocardiography

(ECG) by searching unusual patterns within periodical signals for abnormal heart-

beat detection [32]. Factory assembly work can be analyzed by estimating the lead

time using SSP detected from wearable sensor data [86]. In this work, we focus on

the use case of repetitive movement detection - a problem that aims to identify the

repeating physical motion of human activities - using wearable inertial measurement

units (IMUs) data. Automatic repetitive movement detection is warranted as it is the

fundamental building block for human activity recognition. Specifically, representa-

tive patterns can be extracted e�ciently from long-time series of each of the detected
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segments to facilitate human behavior studies and wearable healthcare applications

[42].

Although numerous methods for repeating patterns finding have been proposed based

on periodicity detection, most of them can only handle a single fixed period and fail

to detect periodic patterns when disturbances appear or the patterns are misaligned

[138, 147]. There are also patterns with multiple periods that may not be present

all the time and their re-occurrence may be shifted. For instance, an athlete lifting

weights may perform multiple successive repetitions, where the interval between each

repetition may vary due to muscle fatigue. Di↵erent moves can produce di↵erent pe-

riods and the shift of each repetition can constitutes asynchronous periodic patterns.

Existing methods typically require extensive domain knowledge to determine and

learn many parameters [137, 112] and make assumptions to the target patterns such

as the fixed periodicity [114, 45]. Therefore, it is desirable to have an SSP detection

method which is parameter-light, and robust to unknown patterns with variations.

Such general approach can reduce the e↵ort devoted to scenario based repetitive

movement detection as it requires barely any domain knowledge.

SSP detection is related to, yet di↵erent from periodic pattern mining and periodicity

detection. In periodic pattern mining, the focus is on finding the pattern in symbol

sequences that is fully or partially matched with other occurrences of the pattern

[139]. Although Yang et. al. [138] introduced an e�cient method for asynchronous

periodic patterns mining, it is not a straightforward process to convert real-valued

time series to symbol sequences when prior knowledge is missing [78]. On the other

hand, periodicity detection focuses on estimating the period of the recurring patterns

[18]. The key di↵erence of SSP is the relaxation of the periodicity assumption. It

does not postulate a regular interval among the successive patterns, which is more

flexible in covering the general set of repeating patterns in reality.
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Mining multiple length, successive similar patterns is not trivial due to the following

reasons. Unlike periodic patterns, the concept of SSP is ambiguous and di�cult to

define without prior knowledge of the target pattern. A high computational cost is

associated with this problem due to the relaxation of the periodicity assumption.

Searching for variable interval patterns between each repetition is intractable even

for a small number of repetitions. Additionally, a time series may contain multiple

lengths of repeating patterns which makes it di�cult to determine which length a

pattern belongs to.

Here, we outline a novel, e�cient and robust matrix profile [144] based algorithm that

finds SSPs with multiple lengths in multi-dimensional real-valued time series. We

first introduce a definition of SSP based on the concept of the Range-constrained Ma-

trix Profile (RCMP) and proposed the Range-Constrained Multi-dimensional Scal-

able Time series Ordered Matrix Profile (RC-mSTOMP) to compute the RCMP

e�ciently. We then present the Successive sIMilar PAtterns Detector (SIMPAD) on

the basis of the RCMP which requires two inputs: the target pattern length l and

the maximum displacement of pattern m. SIMPAD has barely any periodicity con-

straints, and the result can be computed and updated in an online fashion e�ciently.

We extended the proposed method and introduced the Multiple length Successive

sIMilar PAtterns Detector (mSIMPAD) for finding SSP with multiple lengths within

a time series. It provides an estimation of the pattern length and potentially assists

in applications such as representation learning for pattern recognition.

Given their ubiquity and availability in smartphones and wearable devices [67, 126,

30], IMUs are the dominantly used source of data for physical activity assessment. It

is a well-established area for evaluating the performance of the proposed method in

real-world applications. Experiments were conducted on three public datasets and

we achieved promising results compared to the state-of-the-art (SOTA) repeating
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pattern based walking detectors. It shows that the performance of the proposed

method is insensitive to the input parameters. We also examined the robustness of

our method on low-quality sensor data, to evaluate its suitability to the emergence

of battery-free, low sampling frequency, power consumption optimized wearable de-

vices. Additionally, we examined the empirical computational cost and demonstrated

the linear relationships to the length and number of dimensions of the input time

series. The code used in this study is freely available to all researchers and can be

found at: https://github.com/chuntungli/mSIMPAD. We summarize our contribu-

tions here:

• We formally defined an SSP, which makes no assumption regarding the pe-

riodicity of the target pattern. On this basis, we introduced the RCMP, a

modification of the Matrix Profile that is more e�cient and superior in the

case of SSP detection.

• We proposed the SIMPAD, a general SSP detection method based on the

RCMP that is robust, e�cient, and parameter-light, which can facilitate various

healthcare applications including exercise tracking and heartbeat monitoring.

This method is then extended to capture SSPs with multiple lengths, which

we call mSIMPAD.

• We evaluate the performance of SIMPAD and mSIMPAD on three public

datasets both empirically and by examining their computational costs. The

experiments demonstrated the superior performance of the proposed methods

over the SOTA repeating pattern based walking detectors.

• We provide guidelines for parameter settings by investigating the e↵ect of dif-

ferent values. We also examined the influence of low-quality input data and

the result a�rmed that the proposed methods have practical value in handling
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battery-free wearable devices.

The rest of this chapter is organized as follows. Section 2.2 summarizes the recent

findings on repetitive activity detection and motif discovery. Section 2.3 introduces

the preliminaries of the proposed algorithm. In section 2.4, we introduced the RCMP

and mSIMPAD in detail. Section 2.5 presents the experimental evaluation on three

public datasets. Section 2.6 discusses the potential problems and applications of the

mSIMPAD. Finally, Section 2.7 covers the conclusion and future direction of this

work.

2.2 Related Work

Our work is closely related to the detection of periodicity in time series, which is an

active field of research in the data mining community that has been studied exten-

sively. AutoCorrelation Function (ACF) based methods and Fast Fourier Transform

(FFT) based methods are the two major approaches to date for periodicity detection

in time series [104, 147, 44, 132, 133]. ACF computes the correlation of a sequence to

a previous sequence candidate with varying lags and the period is determined by the

lag that maximizes the ACF. FFT converts a sequence from the time domain to the

frequency domain and determines the period as the frequency that has the maximum

power. Generally, the two methods have the same O(n log n) computational cost and

the major drawback of these methods is that they assume the pattern has the same

periodicity. It fails when the periodicity varies overtime and the result is sensitive

to the frequency that is being estimated.

In human activity recognition, ACF and FFT based methods have been widely used

to detect activities that are composed of repetitive movements. Rai et al. [114]

proposed a normalized-autocorrelation based approach to identify the repetitive pat-
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tern of walking from IMU data. Brajdic & Harle [24] conducted a comprehensive

evaluation of walk detection comparing the supervised and unsupervised methods

including ACF and FFT based approaches. They show that all of the studied meth-

ods achieve comparable results. Physical exercises also consist of a set of repetitions

of the same movement, which make them a detection candidate here. Guo et al.

[45] extracted the magnitudes of the IMU data and computed the ACF to identify

and count each repetition per set using data collected from wearable mobile devices.

These approaches are especially robust when the period is known a priori. How-

ever, the period is usually not known and may vary overtime in many real-world

applications.

Xie et al. [137] decomposed a movement (complex-activities) into a series of small-

range movements (meta-activities) and used the sequence of meta-activities to rec-

ognize a complex-activity. They collect angular information during physical exercise

and apply Dynamic Time Warping (DTW) to identify meta-activities to overcome

this issue. Maekawa et al. [86] is similar to this work, where it also identifies similar

patterns in the repetition to evaluate assembly work in a factory. It identifies the

motif within the IMU time series of each repetition and uses the interval of motif to

estimate the lead time of the operation process.

Motif discovery has been extensively studied, but a breakthrough was made recently

by Yeh et al. who proposed an e�cient algorithm, namely namely the STAMP to

compute the matrix profile [144]. Several extensions have been made in the following

years for multi-dimensional time series as well as towards the improvement of the

e�ciency of the algorithm [142, 143]. Mirmomeni et al. [99] proposed to leverage

the matrix profile for mining SSP by examining the number of nearest neighbor arch

crossings at each sample of the time series; however, this method will fail when a

similar pattern appears in a faraway region of the series. Gharghabi et. al. [42] intro-
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duced a temporal constraint to exclude arches from undesired regions in a di↵erent

context for time series segmentation, but these methods inherit the same compu-

tational costs of the matrix profile that requires O(n2) time. To overcome these

issues, we propose a general SSP detection based on the matrix profile with a time

constraint during computation that can remove information from undesired regions,

while being e�cient enough for real-time applications.

2.3 Preliminary

2.3.1 Successive Similar Patterns Mining

In this chapter, we investigate successive similar patterns mining from sensory data.

Since periodicity detection has been studied extensively where di↵erent fields define

it in di↵erent ways. We unite these definitions by starting with the definitions of

the useful notations. A time series T is a sequence of real valued numbers, and

a subsequence Ti,l of T is a continuous subset of the values from T of length l

starting from position i. Formally, Ti,l = [ti, ..., ti+l�1]. The distance between two

subsequences dist(Ti,l, Tj,l) is measured by the z-normalized Euclidean distance:

dist(Ti,l, Tj,l) =

vuut
lX

p=1

(
ti+p�1 � µi,l

�i,l
� tj+p�1 � µj,l

�j,l
)2 (2.1)

It is the root squared di↵erence of the z-normalized values of two subsequences, where

µi,l is the mean of Ti,l and �i,l is the standard deviation. This can be simplified as

follow:

dist(Ti,l, Tj,l) =

s

2l(1� QTi,j � lµiµj

l�i�j
) (2.2)

where QTi,j is the dot product of the two subsequences. A successive similar pattern

is a subsequence Ti,l of T where a similar subsequence Tj,l appears within a nearby
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range. We then define similar as a small distance between the two subsequences, and

a nearby range refers to a small displacement between two subsequences. Formally,

a subsequence Ti,l is a successive similar pattern i↵ 9Tj,l : dist(Ti,l, Tj,l) < ↵, for i 6= j

and |i � j| < m where ↵ 2 R is some threshold in which ↵ � 0 and m 2 Z is a

user-defined window length. Then we define the problem as:

Problem 1 (Successive Similar Patterns Mining) Given a multi-dimensional

data series T , target subsequence length l and the searching range m. We want to

identify the subsequences that contain successive similar pattern in T .

2.3.2 Matrix Profile

Before we introduce the proposed method, a brief introduction to the Matrix profile

(MP) is provided as a background. This is a method recently proposed by Yeh et. al.

[144] for all-pair-similarity-search across a time series. The MP is defined as a vector

MP = [mp1, ...,mpn�l+1] that stores the minimum distance of the subsequence to

its nearest neighbor for every subsequence in T . The pair of subsequences that has

the minimum distance, namely the motif pair can be easily identified from the valley

of the MP . The matrix profile was developed for uni-dimensional time series, and

it has been recently extended to process multi-dimensional time series. We suggest

interested readers refer to [143].

E�cient algorithms have been proposed to compute the matrix profile including the

STOMP [142] and STAMP [144]. The former iterates the time series in sequential

order, making it more e�cient; while the later is an anytime algorithm that iterates

the time series in random order to produce approximated result at any iteration.

Theoretically, the computational cost of STAMP is O(n2 log n), which was later

superseded by SCRIMP++ [149], and both STOMP and SCRIMP++ are O(n2),

where n is the length of the time series T .
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We are now ready to introduce our proposed methods given the above definitions. In

the next session, we will introduce the SIMPAD to e�ciently solve the SSP detection

problem. Then, we will present the mSIMPAD, an extension for multiple-length SSP

detection.

2.4 Methodology

The detection method has two parts, first we introduce the Successive sIMilar Pat-

terns Detector (SIMPAD) to identify the segments that potentially contain succes-

sive similar patterns namely the set of ”valleys” from the Range-Constrained Matrix

Profile. Second, we choose a combination of valleys that maximize the likelihood of

the segments being repetitive using a maximum weighted independent set algorithm.

For simplicity, repeating patterns and successive similar patterns (SSPs) being used

interchangeably in the rest of this chapter.

2.4.1 Range-Constrained Matrix Profile

The original matrix profile calculates the distances between every subsequence to the

rest of the time series and only preserves the distances and their corresponding indices

for its nearest neighbor. However, such an approach allows the nearest neighbor to

be located anywhere in the time series, which might not be of our interest as the SSP

should appear in a period that is considered ”short”. Figure 2.1 shows a case where

an abnormal heartbeat due to ventricular contractions can hardly be identified by

the regular matrix profile because of the coincident matching, but is fairly notable

in the RCMP. If similar ventricular contractions appeared multiple times over the

entire ECG recording, it may identify the contractions as SSP with the regular matrix

profile by accident. Therefore, we introduce the Range-Constrained Matrix Profile

(RCMP) where the nearest neighbor is calculated only within a given range. For

ease of presentation, we refer to MP as the vector of RCMP in the rest of this
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chapter.

Figure 2.1: Top: a snippet of ECG data in the Beth Israel Deaconess Medical Centre
(BIDMC) PPG and Respiration dataset [16]. Middle: the original MP computed
from the ECG signal. Bottom: the range-constrained MP that clearly indicate the
two ventricular contractions.

The idea of the RCMP is to find the nearest neighbor only within the searching range

(length of the search window) m. Instead of calculating the entire distance profile,

we calculate a range-constrained distance profile DPi,m for every subsequence Ti,l

in T . DPi,m is an intermediate vector to store the distances of subsequence Ti,l to

other subsequences from Ti�m,l to Ti+m,l. Then the minimum value in DPi,m is se-

lected to update the MP . We modified the mSTOMP algorithm in [143] introducing

the RC-mSTOMP which produces the MP in O(nm) time. This modification not

only ensures a local similarity search but also significantly improves the e�ciency

of computing the RCMP. The details of this algorithm can be found in algorithm

1.

Let Ti,l and Tj,l be the motif pair which are two subsequences that have the lowest

mutual distance between each other. One may imagine that a subsequence repeated

once is a motif pair that forms two valleys in the MP at the location of the pair.

However, the distance between Ti+1,l and Tj+1,l should also be small since most of

the distances between the subsequences overlapped with the motif pair. Therefore,
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Algorithm 1: Range Constrained Multi-Dimensional Matrix Profile (RC-
mSTOMP).

Input: d-dimension time series TTT , int l, int m
Output: MP

1 double[] MP ; int[] IP ;
2 double[] QT  slidingDotProduct(TTT 1,l,TTT 1,m);
3 int s sum(TTT 1,l); int ss squaredSum(TTT 1,l);
4 int sr  2m+ 1; int dv  ttt1; int nv  tttm+1;
5 for i 1 to |TTT | do
6 if i > 1 then
7 QT  QT � dv ⇥ TTT i�m,sr + nv ⇥ TTT i�m+l,sr;
8 s s� dv + nv;
9 ss ss� dv

2 + nv
2;

10 DPi,m  calcDistProfile(QT,TTT i,l,TTT i�m,sr, s, ss);
11 DPi,m  columnWiseAscendingSort(DPi,m)
12 DP

0
i,m  double[d, sr] = {0,...,0}

13 for k  1 to d do
14 DP

0
i,m  DP

0
i,m +DPi,m[k, :]

15 DP
00
i,m  DP

0
i,m ÷ k

16 MP [k, :] elementWiseMin(MP [k, :], DP
00
i,m)

17 end
18 dv  ttti�m; nv  ttti+m+1;
19 end

instead of having two (or the number of repetitions) separated valleys, the MP

covering SSP should be a flat valley.

With this observation, we can identify SSPs by finding the valleys in the MP . The

details of the SIMPAD can be found in algorithm 2. We first compute the MP

providing the time series T and the target subsequence length l as input. Then

the key of this algorithm is to decide a suitable threshold to distinguish repeating

and non-repeating components. This is a di�cult task as the distance of the MP

correlates to the d and l. We assume the input series T is a composition of repetitive

subsequences and non-repetitive subsequences, so that theMP is either at a distance

of SSP or non-SSP segments. Then we apply Otsu’s method [106] which is a popular
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Algorithm 2: Successive sIMilar PAtterns Detector (SIMPAD)

Input: d-dimensional time series T , int l
Output: RP

1 MP  RC-mSTOMP(T, l);
2 double ↵ otsu thresh(MP );
3 RP  boolean[|MP

0|] = [0,...,0];
4 counter  0;
5 for i t to |MP | do
6 if MP [i]  ↵ then
7 if counter � l then
8 RP [i� l : i] 1;
9 else

10 counter  counter + 1;
11 end
12 else
13 counter  0;
14 end
15 end

binarization method in the field of image processing to determine the threshold ↵.

Those subsequences with distance below ↵ are valid as the valleys shown in figure

2.2. Finally, to avoid false positives caused by chance, we only accept subsequences

that are valid for at least l consecutive time steps. The result is stored in a boolean

vector RP of length l�m+ 1, which indicates if the corresponding subsequence Ti,l

in T contains a repeated pattern or not.

Note that we could replace the RCMP by the regular matrix profile and perform the

same detection pipeline for SSP identification. However, it will generate an MP that

includes the nearest neighbor from anywhere of the entire time series and potentially

degrades the detection performance. To overcome this issue, we might adopt the

windowing approach by letting the window size equals to the search range m while

computing the regular matrix profile for each window. We then obtain the full MP

by concatenating the matrix profiles of each window to perform SSP detection. This

can ensure the range constraint but the windows are assumed to be independent,

31



which results in a loss of information coherency of the pattern as a whole. Instead,

the RCMP incorporates the range constraint in the computation, which preserves

information coherency and reduces the computational cost. We include the detection

results of SIMPAD and mSIMPAD with a regular matrix profile and those with a

sliding-window-based regular matrix profile in Section 2.5.3.

2.4.2 Multiple-Length Successive Similar Patterns Detection

In the last section, we have introduced the SIMPAD that can be applied for fixed-

length SSP detection. It assumes all the repeated patterns have the same length, so it

may fail when patterns with di↵erent lengths appear within one time series. To tackle

this problem, we present the Multiple-length Successive sIMilar PAtterns Detector

(mSIMPAD) to capture repeated patterns of di↵erent lengths automatically. The

basic intuition is that for each potential pattern length, we compute the RCMP

accordingly and identify the valleys as the candidates of repeated patterns. We then

choose a set of valleys that best fits the patterns.

0 100 200 300 400 500 600

MP14

MP25

v1 v4
v2 v5

v3 v6
s

Figure 2.2: An artificial signal contains 3 regions of sine waves with two intervals:
From 100 to 200 and 400 to 500, the interval is 25; From 250 to 350, the interval is
14. The bottom shows the MP with length 25 in purple, and 14 in blue.

Let l̂ be the true length of a repeated pattern that equals to the interval length. The

quality of a fit is then defined by the distance between l̂ to the detected subsequence

length l. In reality, l̂ is usually not known and may vary overtime. We assume that
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a valley with larger sum of depth is a better fit to the repeated pattern. The rationale

behind is that a larger value in the valley implies a clearer di↵erentiation between

repeated pattern and non-repeated patterns. Figure 2.2 shows an example where

the area of valleys is larger when l is closer to l̂. Finding a better fit to a repeated

pattern is similar to searching for a valley with a larger sum.

To better illustrate the problem, we further introduce the notation of MP s and

valleys with di↵erent target lengths. MPl is the MP of T with subsequence length

l. A valley Vl 2 R|Vl| is a sequence of di↵erences between the subsequence D 2 R|Vl|

of MPl with some real value threshold ↵ such that all the values of Vl are less than

↵. Formally, Vl = [↵� di|di < ↵, 8i 2 [1, 2, ..., |Vl|]], where di 2 D.

Identifying patterns with multiple periodicities in T maps to finding the best fit of

valleys from multiple length MP s. Given that we have computed all the MP s for

di↵erent l, there are two key issues when choosing the set of valleys that best fit the

patterns. The first issue is that the scale of the distance depends on l. From equation

2.1 we notice that longer subsequences tend to have larger distances, and therefore

the di↵erence between ↵ and di could be larger. That being said, the distance incurs

a strong bias to pairs of subsequences with larger l. To mitigate this e↵ect, we obtain

the length normalized distance by factorizing the MP by sqrt(1/l) which is known

to be better than simply factorized by l [79]. With the length normalized distance,

we can compare the similarity of subsequence pairs with di↵erent length as well as

the corresponding valleys.

The second issue is that at any point in T , there should be at most one valley

chosen as the best fit of a given pattern. While one valley may overlap with other

valleys with di↵erent l, choosing one valley will reject the others. See figure 2.2

as an example, choosing v1 will reject v4, and vice versa. This could become a lot
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more complicated when |L| is large, and one valley may be overlapped with multiple

other valleys either from one length or di↵erent lengths. The longest valley is always

chosen if we simply find valleys that yield the largest sum. To overcome this issue,

we introduce the assumption that the sum of all selected valleys is maximized when

all of the best fits of repeated patterns are found. Instead of choosing those longest

valleys, the overall objective is to find a set of valleys that maximize the total sum.

It allows the method to choose several shorter valleys over one long valley if the total

sum is larger. Formally, the subproblem is defined as:

Problem 2 (Multiple Length Successive Similar Patterns Mining) Let V =

{V1, V2, ..., V|V |} be the set of valleys found in MP at all candidates l, and idx(Vl) =

[x1, x2, ..., x|Vl|] be the function mapping the valley to the corresponding index in

T . The objective is to find the subset Vopt ✓ V such that the total sum of valley

P
Vi2Vopt

P|Vi|
j=1 vj is maximized where idx(Vi)

T
idx(Vj) = ;, 8Vi, Vj 2 Vopt and i 6= j.

This problem is related to the Maximum Weighted Independent Set (MWIS) prob-

lem [107], which is an NP hard problem to find a subset of weighted vertices in a

graph such that there exists no edge between any pair of the selected vertices while

the sum of the weights is maximized. We can generate the graph G = {V 0
, E}

for vertices V
0 = {v01, v02, .., v0|V |} as the sum of valleys V as v

0
i =

P|Vi|
j=1 vj. Then

we can generate the set of edges E if two valleys are overlapped, formally E =

{(v0i, v0j)|idx(Vi)
T

idx(Vj) 6= ;}. The objective is then defined as:

max
Vopt✓V 0

X

vi2Vopt

vi

s.t.8u, v 2 Vopt : (u, v) 62 E

(2.3)

Notice that the graph generated is sparse with numerous components, since the
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valleys come from di↵erent parts of the time series and are separated by regions that

have no repeated patterns. In order to find the solution more e�ciently, we can

divide the problem into multiple subproblems by the components in G while having

the same optimal solution. This can drastically reduce the search space to speed up

the computation. Then we apply the branch and bound approach in [107] for each

of the subgraphs and finally combine the result to obtain the optimal solution.

Algorithm 3:Multiple-length Successive sIMilar Patterns Detector (mSIM-
PAD)

Input: d-dimension Time Series TTT , int[] L, int[] M
Output: RP

1 RP = [False, ..., False];
// Find valleys from MP at different l

2 for l,m L,M do
3 MPl  RC-mSTOMP(T, l,m);
4 ↵ otsu(MPl);
5 V [l] findValleys(MPl,↵);
6 end
// Find best match from V

7 G generateGraphs(V );
8 for G

0  G do
9 Vopt  MWIS(G0);

10 end
11 RP [idx(Vopt)] True;
12 return RP ;

The details of the mSIMPAD can be found in algorithm 3. First, we compute the

MP for each potential pattern length and searching range and determine ↵ using

Otsu’s method to identify the valleys from lines 2 to 6. Note that it is possible to

let L be [2, 3, ..., n/3] and M be 2⇥ L if domain knowledge is missing. We generate

graph G and separate it into multiple subgraphs in line 7. Line 8 to line 10 outline

the loop for each subgraph to find the MWIS that is the best fit of valleys and it is

stored in Vopt. Finally, the repeated patterns are annotated as the indexes of selected

valleys correspond to T .
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2.5 Experimental Evaluation

The experiment aims to answer the following questions: 1) How do di↵erent thresh-

olds ↵, subsequence lengths l and search ranges m a↵ect the detection accuracy?

2) Does the proposed algorithm achieve a comparable result to the SOTA walking

detectors? 3) Can it detect di↵erent forms of repetitive movement? 4) How does

it scale to di↵erent sizes of input? We first introduce the metric for performance

evaluation.

2.5.1 Performance Metric

For a time series T of length n, we identify if the subsequence Ti,l that contains repet-

itive movement, where i 2 [1, ..., n� l+1] and l is the window size of the search. This

process produces n�l+1 detection result denoted asRP = [rp1, rp2, ..., rpn�l+1]:

rpi =

(
1, if ti,l contains SSP

0, otherwise

The ground truth of each trace contains a repetitive segment indicated by tstart and

tend, and we derive the truth label of each subsequence Ti,l as 1 if tstart � i � tend,

and 0 otherwise. Then we define accuracy (ACC), false positive rate (FPR), false

negative rate (FNR), and error rate (ERR) as follow:

8
>>>><

>>>>:

ACC = TP+TN
|RP |

FPR = FP
FP+TN

FNR = FN
FN+TP

ERR = FP+FN
|RP |

TP FN

FP TN

1 0

1

0

Prediction

La
be
l
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2.5.2 Parameter Estimation

First, we study the e↵ect of the parameters of SIMPAD on a dataset [24] collected

from 27 participants using a conventional smartphone with an embedded accelerom-

eter sampled at 100Hz. The participants were told to walk at di↵erent speeds with

di↵erent placement of the smartphone - i.e. carry by hand, in a pocket, in a backpack

or in a handbag. Then the ground truth was obtained by manually labeling each of

the traces from the camera recording, which has the indicated start and end times

when participants were walking. The previous study in [24] shows that both super-

vised and unsupervised approach can accurately detect walking segments in which

the median error rate is less than 2%.

The parameters were estimated by evaluating the performance on walk detection

using the ground truth provided. We start by examining the e↵ect of the threshold

↵. It is assumed that no repeating patterns appear in the first e subsequences, so

that the first e distances were used to obtain the baseline distance dbase for non-

repetitive subsequences as dbase =
Pe

i=0 mpi. We let e = 100 as the earliest walking

session begins at 837. We let 0  ⌧  1 be a user defined ratio to obtain threshold

↵ manually by multiplying the baseline distance such that ↵ = ⌧ ⇥ dbase. A range

of values [0, 0.05, 0.1, ..., 0.95, 1.0] for ⌧ were examined over all the traces, where we

fix the other parameters for l = 100 (⇡1 sec) which is about to cover a stride (two

steps) as the average steps per second is about 2 [114]. Let the searching range m

be 3 times the subsequence length (3l). We excluded the first e subsequences in the

evaluation as we are using these distances to determine ↵.

Figure 2.3a shows the performance of di↵erent values of ⌧ , where we found that

lower ⌧ results in higher FNR, and higher ⌧ results in higher FPR. It suggests that

the distance of the RCMP can e↵ectively di↵erentiate between repetitive and non-
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Figure 2.3: (a) e↵ect on accuracy (ACC), false positive rate (FPR) and false negative
rate (FNR) of di↵erent ⌧ ; (b) and (c) e↵ect on false positive rate and false negative
rate of di↵erent l and m.

repetitive subsequences. The value of ⌧ was fixed as 0.85 for the following evaluation

on di↵erent subsequence lengths l and searching ranges m.

Ideally, the subsequence length should be exactly the same as the length of the re-

peating pattern such that it matches the next cycle. However, repetitive movements

in reality vary in every repetition which makes the value di�cult to determine. Sim-

ilarly, the searching range should cover somewhere around i + l, as the next cycle

should begin right after the current cycle. Unfortunately, the lag between each

cycle varies and the shape might be deformed. Therefore, a larger search range

provides a better chance to find a more similar nearby cycle, therefore lowering the

distances.

We demonstrated the relations between di↵erent subsequence lengths and searching

ranges in figure 2.3b and 2.3c, in which the performance is calculated from the

mean of the detection result over all traces. It shows that FPR is insensitive to l,

though relatively higher FPR occurred when l is smaller. This is due to the smaller

l providing fewer points to compare in a subsequence so that it is more likely to

mismatch the non-repetitive subsequences randomly. On the contrary, FNR seems

to be very sensitive to l as it increases drastically when l is small. The reason is
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that for a repetitive movement with a normal cycle of length l̂, 100 in this case,

if l ⌧ l̂ (i.e. l < l̂/2) then the subsequence contains only a small portion of the

complete cycle. While the searching range is small, it cannot cover any portion of

the next cycle with the given window. Therefore, the FNR is significantly higher for

l  50 and m  3⇥ l given that the average length of a walking cycle is about 100.

Fortunately, the larger m can tolerate the negative e↵ect of a small l better, since

it provides a better chance for the small portion of a cycle to be matched with the

next cycle given a large window. But it comes with a minor drawback that the FPR

is slightly increased.

As discussed earlier, the dataset in [24] is a relatively simple, and contains only idle

and walking data. The authors achieved a median of total error of less than 2% with

the best parameters. Unfortunately, we were unable to reproduce the result with the

reported parameters, so that we compare the performance mentioned in [24]. The

SIMPAD achieved comparable result as the median of total error rate is 1.78% using

the parameters (l = 100,m = 6⇥ l, ⌧ = 0.85, e = 100).

2.5.3 Repetitive Movement Detection

We first evaluate if the proposed methods achieve comparable results to the SOTA

walking detectors on the HAPT [15] dataset. Then we study if the mSIMPAD

is generic enough for the general repetitive movement detection by evaluating the

performance on PAMAP2 [115] that contains various activities.

Evaluation of Robustness

The HAPT is a dataset collected from 30 volunteers using accelerometer and gy-

roscope on smartphone at a 50Hz sampling rate. It contains di↵erent forms of ac-

tivities including: walking, climbing up or down stairs, sitting, standing, laying,

and transitions between activities. We use the precision = TP/(TP + FP ), recall
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= TP/(TP + FN), and F-Score = 2 ⇤ (p⇥ r)/(p+ r) for the evaluation.

We compare the proposed methods to the widely used walk detection algorithms,

namely the Normalized Autocorrelation based Step Counting (NASC) [114] and the

short-term Fourier transform (STFT) [18] correspond to the ACF based method and

the FFT based method. These algorithms were the best performing algorithms as

noted in [24]. NASC excluded segments of the time series where the standard devia-

tion was below a threshold �thresh over a window stdwin, then it performs normalized

auto-correlation over a window of 2 seconds with a range of time span ⌧min to ⌧max

for those remaining subsequences. Those subsequences are then asserted to be walk-

ing if the maximum of the normalized auto-correlation exceeded another threshold

Rthresh. STFT is a Fourier transform based method that calculates the frequency

domain energy of the vertical acceleration signal with consecutive windows of size

dftwin, and a�rms walking if the total energy of the interested frequencies exceeds

threshold dftthresh.

Algorithm Parameter Value

NASC stdwin = 40, �thresh = 0.24, Rthresh = 0.4, ⌧min = 40, ⌧max = 100

STFT dftwin = 60, dftthresh = 0.25, freqmin = 0.01Hz, freqmax = 7Hz

SIMPAD l = 50, m = 5⇥ l

mSIMPAD L = [40, 50, 60], M = 5⇥ l 2 L

Table 2.1: List of the parameter values used of each algorithm for HAPT dataset.

The raw linear accelerations obtained from accelerometer were used for SIMPAD,

mSIMPAD and NASC. Since the STFT takes the vertical velocity as input, we

apply the Madgwick algorithm [85] in order to estimate the orientation of the smart-

phone using the gyroscope signal, and then transform the linear acceleration to the

coordinate with respect to the earth.

The parameters of the SOTA methods were then selected using a brute force search
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approach in order to provide the upper bound of performance for each of the methods.

The selected values are reported in table 2.1. For the SIMPAD, we are only required

to provide the parameters of l and m. We choose the length to be 1 second (⇡50

samples) as discussed earlier. From the previous experiment, we notice that 5 times

the subsequence length can tolerate with the mismatch between l and ltruewell. For

the mSIMPAD, we choose L = [40, 50, 60] to cover the variations of walking speeds

and the same scale for the searching range as M = 5⇥ L .
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Figure 2.4: Detection result on one of the traces with di↵erent algorithms. The top
indicate the groundtruth of the trace with blue line, and the detection results are
indicated with red line in the lower figures.

An example of a detection result of each algorithm is shown in figure 2.4. The red

lines indicate the detection result generated by the methods where 0 is non-repetitive,

otherwise it is repetitive. The ground truth were indicated by blue lines. The graph

shows that NASC su↵ers from a higher false negative rate and breaks one walking

period into several segments due to the di�culty of defining a global threshold. STFT

has a more continuous detection period, but is not sensitive enough to cover the

walking period in place that results in higher false positive rate. On the contrary,

SIMPAD and mSIMPAD reveal better performance and cover the entire walking
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period and fit the walking period better compared to the other algorithms.

From the above example, we observed that the data contains two subsequences that

have significantly higher acceleration magnitude for every trace (between samples

7050-7900 and 10250-11060 in the above example). We further investigated all the

traces and found that there exist repeating patterns that have not been reported in

the annotations provided in [15]. It might be due to the relocation of the experiment

as it happens when the task changes from lying to walking, and from walking to

climbing downstairs. Therefore, we excluded the two suspicious zones of data from

the last transition to the first walking part, and from the last walking to the first

climbing downstairs part for a more precise evaluation.
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Figure 2.5: Performance on HAPT dataset.

The overall result is reported in figure 2.5 including the normal evaluation where

the entire dataset was used, and the excluded evaluation where the suspicious zone

has been removed. To provide a fair comparison, we modified NASC and STFT to

automatically determine the threshold using Otsu’s method as we use in our pro-

posed approach, and selected one second as the window size for those methods. We

notice that the modified NASC and STFT achieved a comparable result to the best

parameters obtained from exhaustive search. Automatic threshold determination

may lead to variation tolerance between di↵erent time series, to the point where its
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incorporation into STFT even outperforms the best parameters. While the NASC

is a two-step thresholding approach, we fixed rthresh as 0.4 and determine stdthresh

by using Otsu’s method, which yields similar results to the best parameters. Both

SIMPAD and mSIMPAD show improvements by 2.8 and 2.5% respectively, with F-

Scores roughly equal to 95%. Also, the high precision and recall of the proposed

methods illustrate that the RCMP is a robust indicator for di↵erentiating repeating

and non-repeating patterns.

Evaluation on Generality

This section aims to evaluate the ability of the proposed method on general successive

similar patterns detection. The evaluation is conducted using the PAMAP2 [115],

which is collected from 9 subjects wearing 3 IMUs sampled at 100Hz frequency while

performing 18 di↵erent activities. The various types of activities aim to provide a

range of di↵erent repeating frequencies for generality evaluation. We classify the fol-

lowing activities as repetitive: walking, running, cycling, Nordic walking, ascending

stairs, descending stairs, and rope jumping. The rest are considered as non-repetitive

activities. We leverage the IMU data on the subject’s ankle for activity detection.

We down-sample the data to 50Hz and the same transformation method mentioned

in the previous section was applied for vertical acceleration estimation.

We compare the results to the modified NASC and STFT with the same parameters

that were used in the previous section, since it is di�cult to define a global threshold

for various activities. For the mSIMPAD, we choose L = 40, 70, 100 accordingly

to the 0.8, 1.4 and 2 seconds in order to capture repeating patterns with di↵erent

lengths. The lengths were selected as a reference to ⌧min and ⌧max where NASC

searches within this time lag range.

The overall results are reported in table 2.2 in which the best values are in bold. The
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Dataset Algorithm Accuracy (%) Precision (%) Recall (%) F-Score (%)

HAPT

NASC 94.10 ± 3.49 91.26 ± 3.05 91.56 ± 10.88 91.07 ± 6.57

STFT 94.03 ± 2.37 91.30 ± 3.35 91.73 ± 5.44 91.41 ± 3.34

SIMPAD 96.44 ± 2.26 95.63 ± 4.33 94.50 ± 3.89 94.96 ± 2.98

mSIMPAD 96.16 ± 2.60 94.35 ± 5.36 95.10 ± 3.45 94.62 ± 3.44

PAMAP2

NASC 81.70 ± 12.32 99.39 ± 0.85 66.47 ± 21.95 77.12 ± 22.26

STFT 78.79 ± 9.12 99.31 ± 0.90 62.45 ± 6.75 76.50 ± 4.76

SIMPAD 84.11 ± 5.59 99.12 ± 1.14 71.24 ± 5.66 82.78 ± 3.74

mSIMPAD 84.62 ± 5.65 98.28 ± 1.78 72.90 ± 5.58 83.59 ± 3.62

Table 2.2: Performance on HAPT dataset where the values given as mean ± SD.

proposed methods outperform NASC and STFT by 5.7% in F-Score. It shows that

the RCMP works well with di↵erent types of repetitive movements as well as di↵erent

lengths of repeating pattern. The similar results of SIMPAD and mSIMPAD suggest

that if the target patterns have similar lengths, SIMPAD can capture most of the

repeating patterns with ease. The performance of mSIMPAD still higher than the

SIMPAD as it can find better match within the patterns of di↵erent lengths. We

expect the improvement would be much larger when the variability of the pattern

lengths is huge.

Note that both SIMPAD and mSIMPAD are matrix profile based methods, in which

the input can be replaced by the original matrix profile. However, the regular MP

has a higher probability of finding the nearest neighbor which is not a repeating

pattern just by chance without the range constraint. We can see that from its

performance on the HAPT dataset where the F-Scores are 92.15% and 91.23% for

the SIMPAD and mSIMPAD respectively. We notice a significantly lower precision

(87.78% and 85.89%) which complies with the inference when the regular matrix

profile is used. Alternatively, we could perform windowing on the time series by

letting m be the window size to satisfy the range constraint. However, the sliding

window fails to capture coherent information, which results in poor performance
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compared to the RCMP. The SIMPAD and mSIMPAD with sliding-window-based

regular matrix profile achieved F-Scores 92.27% and 92.86% respectively on HAPT,

79.96% and 81.28% on PAMAP2, which shows that both are worse than the proposed

RCMP-based approach. The RCMP satisfied the range constraint while preserving

the coherent information and greatly reduced the computational cost, which is a

more suitable solution for the problem at hand.

Robustness on Low-Quality Data

Battery-free wearable devices rely only on harvested kinetic energy from the user,

which has emerged as an alternative to power sensor nodes [128]. The wireless com-

munication and sensing units consume much more power than a typical microcon-

troller, so the transmission and sampling rate of such devices is reduced to optimize

power consumption [59]. We investigate the influence of low-quality accelerometer

data by downsampling the traces in the HAPT dataset to 20Hz and adjusted the

parameters l and m by the downsampling ratio. As the performance of SIMPAD

and mSIMPAD are similar in the HAPT dataset, we report the mSIMPAD result for

simplicity. The performance of mSIMPAD recorded a decrease by 2.11% to 92.51%

while NASC and STFT also decreased by 2.2% and 0.12% to 88.87% and 91.29%

respectively. It shows that the existing approaches perform fairly well on sensor data

having a low sampling frequency, as most human activities are lower than 10Hz.
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Figure 2.6: E↵ect of sensor noise to performance.

45



We also study how sensor quality influences performance by adding Gaussian noise

to the traces. We first normalize the traces to the scale of 0 to 1, then inserted

random noise of a normal distribution having 0 mean and scale as a standard devia-

tion between 0 to 0.3. Surprisingly, the performance of mSIMPAD improves slightly

when a small level of noise is inserted into the signal (scale=0.05) as shown in fig-

ure 2.6. The reason is that segments of relatively idle data, could be identified as

similar patterns (e.g. a slightly upward trend or slight downward trend), which ac-

tually should not be detected at all. The added noise increases the distance between

these drifts, and can help distinguish such data up to a certain noise level (10% of

the maximum sensor value in this case), which suggests a future direction towards

improving the performance of mSIMPAD by simply adding random noise. The per-

formance of STFT is slightly higher than the proposed approach under very serious

noise where the noise scale is 0.3 - that is 30% of the maximum value of the data

which is rather unrealistic. In general, the proposed approach is more robust than

the existing methods, while the STFT potentially performs better in the situation

of extremely low-quality data.

2.5.4 Comparison of Execution Times

The above evaluation demonstrated that mSIMPAD is a robust method for repeti-

tive movement detection even on datasets that contains multiple activities. In this

section, the empirical computational cost to obtain the MP is examined. Theoreti-

cally, the time complexity of RC-mSTOMP is O(nm) in which m can be neglected

as m⌧ n, while mSTOMP is O(n2) and both ACF and FFT are O(n log n), where

n is the sequence length, and m is the searching range (note that both algorithms

increases linearly with respect to the number of dimensions). The time complexity of

RC-mSTOMP is significantly lower than the other methods since it scales linearly to

the sequence length. We evaluate this property by comparing the RC-mSTOMP to
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its parent algorithms (mSTOMP and SCRIMP++), and also examine the e↵ect on

the execution time with di↵erent parameters. All the experiments were performed on

a conventional PC with Intel Core(TM) i7-8850H CPU @ 2.60GHz x 12 and 16GB

RAM. The default values of the parameters are as follow when not specified: n = 214,

l = 100, m = 200, and d = 1.
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Figure 2.7: A comparison on execution time of di↵erent sequence lengths.

First, we examined the computational cost on di↵erent sequence length empirically

to compare RC-mSTOMP to its parent algorithms mSTOMP and SCRIMP++. It

is not intended to conclude that the proposed algorithms are superior than its parent

algorithms as the goal of these algorithms are di↵erent. Instead, we aim to demon-

strate that the proposed method inherits the important properties of the parent

algorithms while scaling linearly with respect to sequence length, so that it can sup-

port real-time applications. In this evaluation, di↵erent lengths of sinusoidal signals

were generated as the input sequences. The resulting execution times are shown in

figure 2.7. They coincided with our expectations where RC-mSTOMP produces the

lowest execution time among all the other algorithms and scales linearly as we will

show in the following. mSTOMP and SCRIMP++ are roughly scaling at O(n2) but

still very scalable to large time series. The SCRIMP++ completes slightly faster

than mSTOMP that might due to the sinusoidal data in this particular case.
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Figure 2.8: An evaluation on execution time of di↵erent parameters.

Then, we examined the e↵ect on execution time over di↵erent parameters: n, l, m,

and d. The resulting execution times are shown in figure 2.8. It shows that the

proposed algorithm inherits the same property as discussed in [143] on subsequence

lengths and dimensionality. Subsequence length has no e↵ect on execution time when

m is fixed, and it follows a linear relationship to dimensionality. Then we examined

the e↵ect of the length n of the input sequence by fixing the other parameters as

default values, and execute RC-mSTOMP on the time series with increasing length.

As expected, we found that the execution time increases linearly with respect to

sequence length. Finally, we evaluate the e↵ect of the length of the searching range

m on execution time. We found that for small n, the e↵ect of di↵erent size of m

is negligible. Therefore, we increase n to 216 and l = 500. The result at the right

of the figure 2.8 shows that it also follow a linearithmic relationship with respect to

m.

In this section, we demonstrated that RC-mSTOMP is capable of supporting real-

time applications as the execution time has no e↵ect on l and linearly correlates to n,

m, and d. In the next section, we will discuss the potential problem and application

of this work.
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2.6 Discussion

We proposed the method for multiple length successive similar patterns mining us-

ing the Matrix Profile, and we evaluated the proposed methods in the use case of

repetitive movement detection on three public datasets. Result shows that the pro-

posed method is e�cient and robust for general repeated pattern mining without

prior knowledge of the pattern, except the expected lengths of the target patterns.

In this section, we discuss the potential problems as well as the applications of the

proposed algorithm.

The underlying technique of the proposed method is related to matching the patterns

of a time series on its own. It seems to coincide with ACF and FFT that are the

commonly used techniques in the previous work, but there are two major di↵erences

that explained the superiority of the proposed method. Firstly, the ACF and FFT

have more restricted constraints on the time span so that the repeated patterns occur

with regular intervals, while our proposed method is capable of detecting repeated

patterns with a variable time span since we are searching for a local motif within a

given range m. Secondly, e�cient algorithms for calculating the ACF and FFT are

O(n log n) while our method achieved O(nm). To the best of our knowledge, it is

by far the fastest, deterministic and exact algorithm for successive similar patterns

detection.

The key limitation of the proposed method is to determine the parameters. The

pattern length l and the displacement m could be designated based on the sampling

frequency of the sensor data. We suggest larger l and m would be more favorable

to highly repeating patterns such as walking as shown in section 2.5.2. Also, exper-

iment shows that SIMPAD can work well even if l is quite di↵erent from the actual

pattern length. In addition, the threshold � is determined by Otsu’s method that

49



assumed the time series is a composition of repeated and non-repeated components.

If such assumption is not met, choosing a global threshold would be an option. It is

not di�cult as the distance is normalized both by the signal and the length of the

pattern.

0 500 1000 1500 2000 2500 3000 3500 4000

Ac
ce
le
ra
tio

n
M
ag

ni
tu
de

Figure 2.9: An example of rope jumping data in PAMAP2 [115]. The magnitude of
the acceleration signal shows that several pause exists during the activity. The blue
line indicates the ground truth of the repetitive movements, and the red line indicates
the detection result of mSIMPAD: 0 as non-repeating; and > 0 as repeating.

The experiments might not show an enormous improvement of our method compared

to the SOTA as reported in 2.5.3. However, considering the modest number of

parameters to set, and its robustness to novel situations as well as to poor quality

sensor data, the proposed method has great potential as a general approach that

is devoid the e↵ort devoted to studying specific scenarios. Also, we investigated

the detection results over di↵erent series and found two key reasons that degrade the

detection performance. First, the dataset is generated mainly for activity recognition

purposes, so the quality of the ground truth labels is rough. There are o↵sets on

almost every repeated activity that result in many false negatives that actually are

non-repeated components. Also, the repeated activities are not always continuous

nor contiguous, but the ground truth labeling annotated the entire segment as one

activity. For instance, participants may fail while rope jumping. An example can

be found in figure 2.9 where the participant has stopped several times during rope

jumping. Those regions constitute idle data as no body motion is captured whereas

the ground truth data was not handled to that level of detail.
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Second, we only used the raw accelerometer data as input which is a noisy signal.

Various techniques would be applied to obtain quality data including filtering and

sensor fusion in order to improve the detection performance. As an example, we

included the gyroscope data as input to the mSIMPAD, and the average F-Score has

increased from 83.6 to 87.5 for the PAMAP2 dataset. However, we aim to compare

the result to the SOTA walking detectors within a consistent setting. We therefore

apply the same configuration over the three datasets in order to demonstrate the

proposed methods are superior than the SOTA in general, but not by manipulating

the data input nor the parameters of the algorithm. In addition, our method can

better extract those repeated activities in place as shown in the example in figure

2.4 and figure 2.9. It suggests that the proposed method is desired, and it can be

applied as a subroutine of human activity recognition and analysis.

The potential applications of the proposed algorithm is two-fold. For non-periodical

time series, it can identify where repeated patterns occurred, especially for asyn-

chronous periodic patterns and slowly changing patterns. Applications such as ex-

ercise tracking, which rely on repeated pattern detection can utilize the proposed

method for better performance. On the other hand, it can identify abnormalities

for periodical time series such as electrocardiograms of heartbeats as shown in figure

2.1. The intuition is that the MP computed from periodical data is the composition

of regular patterns and abnormal patterns. For the regular patterns, the distance

of MP should be close to 0 where the abnormal patterns are the discords from the

MP . It can also be applied as a subroutine of other data mining tasks such as activ-

ity recognition, activity segmentation, and routine discovery. For instance, RCMP

can e�ciently identify those segments containing repetitive movements, and machine

learning techniques can then be applied only to those segments in order to eliminate

unnecessary computation.
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2.7 Conclusion

A Successive Similar Pattern (SSP) is a key feature of many kinds of interesting

data. The detection of these repeating patterns without prior knowledge comes with

significant challenges. In this study, we proposed the mSIMPAD, an e�cient algo-

rithm for multiple length SSP detection based on the matrix profile. We formally

defined SSP based on the distance to the nearby subsequences and introduced the

Range-constrained Matrix Profile - a modification of the original matrix profile -

to compute the distances e�ciently. Then, the SIMPAD was proposed and we fur-

ther extended it to handle multiple length successive similar patterns automatically,

namely the mSIMPAD. We studied the repetitive movement detection problem as

a use case, and we conducted experiments on three public datasets to evaluate the

proposed method in terms of robustness and time e�ciency. The experimental eval-

uation shows that the mSIMPAD achieved on par (or even better) results compared

to the state-of-the-art repeating pattern based walking detectors on all three public

datasets. Finally, we discussed the potential problems and applications arising from

the proposed method. In the future, we plan to extract the template of the SSPs us-

ing the RCMP, and apply it to activity recognition and abnormality detection.

52



Chapter 3

Repetitive Activity Monitoring
Using Multivariate Time Series: A
Generic and E�cient Approach

Repetitive activities like breathing and walking account for a large fraction of human

behavior. Repetitive activity monitoring aims to measure and distinguish between

di↵erent repeating activities using multivariate time series data collected from IoT

devices. It not only plays a vital role in understanding human behavior but also en-

ables numerous applications ranging from healthcare monitoring to manufacturing

management. Most existing approaches process multivariate time series on a sliding

window basis. However, these approaches are mostly scenario dependent, computa-

tionally expensive, and require extensive domain knowledge. Moreover, real-world

repetitive activities may have varying time intervals between them, which invalidate

existing sliding window methods. In this chapter, we propose STEM, a Scalable

Template Extraction Method for scenario independent monitoring of repetitive ac-

tivities with varying intervals. Instead of using sliding windows, we detect and locate

the appearance of repeating patterns based on the Matrix Profile. Distributional fea-

tures are then extracted from the identified patterns such that domain knowledge

53



can be avoided. The model is validated on both three public datasets and a syn-

thetic dataset. The results demonstrate the proposed method can eliminate around

95% of the computation on undesired subsequences while achieving a recognition

improvement of over 20% on the synthetic dataset and 4% on the public datasets.

It also shows superior performance on a use case of respiration rate estimation using

wireless signals.

3.1 Introduction

Repetitive activities are building blocks of our daily lives including fundamental bod-

ily functions like respiration and heartbeat, and common human activities like exer-

cise and assembly line manufacturing. The capacity of accurately monitoring repeti-

tive activities could enable numerous applications ranging from healthcare monitor-

ing [24, 45] to manufacturing management [86]. For example, premature ventricular

contractions as a risk factor to many heart diseases could be detected via monitoring

the repeating heartbeats with commodity wearable devices [74]. Therefore, there are

growing interests of repetitive activity monitoring which refers to detecting whether

successively repeated physical motions exist and identifying the category of those

motions. The recent advancement in IoT technologies allows e�cient collection of

sensor data, providing a great opportunity for continuous monitoring of repetitive

activities. The data collected typically appear as multivariate time series data. The

focus of this chapter is to achieve e�cient and e↵ective repetitive activity monitoring

with multivariate time series data.

Due to the significance of repetitive activity monitoring, various approaches have

been proposed. However, those approaches have three main limitations. First, they

have a strong assumption that repetitive activities contain fixed periodicity which

is unrealistic in many real-world scenarios. For instance, people who su↵er from
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sleep apnea stop and start breathing repeatedly at an irregular rate. At the gym,

the time intervals between consecutive movements may change with the levels of

energy. The presence of irregular intervals of the repetitive activity invalidates the

existing approaches. Second, existing approaches are mostly sliding-window-based

methods. It typically requires considerable domain knowledge to determine the size

and step of the window as well as to design the features, which remains a major

challenge in general activity recognition [75]. Third, the sliding window methods are

too computationally demanding for IoT devices with limited resources. It divides

the time series into segments of equal length and extracts features from every seg-

ment for further activity recognition with supervised learning models. The feature

extraction and recognition pipeline performed on every window induce a prohibitive

computational cost.

In this chapter, we focus on monitoring repetitive activities using multivariate time

series data derived from IoT devices. The main idea is based on the Successive Similar

Pattern (SSP) [74] - the recurring pattern with irregular intervals - generated by the

repeating physical motions within the time series. However, the vision of applying

SSP for repetitive activity monitoring entails the following challenges.

• The SSPs could have variable lengths, shapes, and intervals making it di�cult

to identify the segments where SSPs occur.

• The start and end positions are ambiguous for recurrent patterns. As a result,

identifying each SSP from the time series incur a high computational cost that

becomes intractable even for small data.

• The SSPs may have various lengths and could be misaligned, making it di�cult

to compare the distances between di↵erent SSPs.
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To address those challenges, we firstly proposed an algorithm called R-mSIMPAD to

detect time series segments containing SSP and estimate the length of the pattern

which is more robust and has fewer assumptions than the existing method [74]. Next,

we introduced the concept of the templates that is the underlying “true” patterns

being repeated with variations, in order to formally define a set of SSPs in the same

segment without any assumption regarding the pattern. On this basis, we proposed

a Scalable Template Extraction Method (STEM) to identify and extract the set of

SSPs from the detected segment. Finally, we examined two approaches to classify

the detected segments. On one hand, we investigated an elastic-measurement-based

method to compute the pairwise distance between the extracted template and apply

the Nearest Neighbor algorithm for the classification. On the other, we combined

STEM with the Empirical Cumulative Distribution Function (ECDF) to extract

distributional features from the segments to mitigate the computational cost incurred

by the elastic measure.

We conducted extensive experimental evaluations on both public datasets and a

synthetic dataset. The results suggest that our approach can e�ciently reduce 95%

unnecessary computation by ignoring time series that do not contain any repeating

patterns. Also, the extracted template can e↵ectively distinguish among di↵erent

SSPs achieving an improvement of up to 23% on synthetic data. The features ex-

tracted by the combination of STEM and ECDF show superior performance on the

public datasets recorded a 3.3% improvement on average. We found that STEM can

better identify the patterns being repeated and exclude those patterns with abnor-

malities and variations that lead to a better result. Finally, we study a use case of

respiration monitoring based on wireless signals. Without any modification, STEM

easily achieved at least 3 times better performance compared to the baseline method.

The use case illustrated that the proposed method has great potential as a general
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method for many other applications.

The main contributions of this work are as follows:

• We investigated the problem of repetitive activity monitoring and proposed

STEM, an e�cient and e↵ective method to identify and recognize SSPs from

multivariate time series.

• We performed extensive evaluations on both public datasets and synthetic data

to validate the performance of the proposed method and achieving on par or

even superior performance.

• We demonstrated that the proposed approach is a general method that can be

applied to many applications as we illustrated on the two use cases of repetitive

activity recognition and respiration rate monitoring.

The rest of this chapter is organized as follows. Section 3.2 summarize the related

literature. Section 3.3 presents the detailed design and rationale of the method.

Section 3.4 illustrate the result of the experiments. Section 3.5 discussed some issues

that might be uncleared. Finally, we conclude this article in Section 3.6.

3.2 Related Work

Repetitive activity monitoring is closely related to activity recognition, which aims

to classify di↵erent activities using the collected data. Although the previous work

does not explicitly target repetitive activities, most of them are studied and eval-

uated mainly on repetitive activities [27, 82, 45, 141, 101]. Some studies included

recognition of non-repetitive activities but the performance there usually su↵ers due

to the complex nature of the activity [51], making it out of the scope of our work

here.
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A large body of literature adopted time series classification techniques for activity

recognition [11], in which unrealistic assumptions were made. They assumed that the

start and end positions of a pattern can be accurately identified and that the lengths

are equal for patterns of the same class [58]. Therefore, considerable work adopted

the sliding window approach combined with machine learning models to perform

activity recognition given its simplicity and robustness. One of the key contributions

of the prior work focuses on extracting distinctive features from the data. Popular

statistical features such as [68] and distributional features [47] achieved promising

results on many activity recognition tasks even compared to state-of-the-art deep-

learning-based approaches [51].

There is also existing work that focuses on a particular set of highly repetitive activ-

ities. Xia et al. [110] proposed an unsupervised method to recognize assembly work

in a factory by finding the motif in the sensor data. [101, 45, 137] investigated the

recognition of di↵erent gym exercises that are highly repetitive, and count the repeti-

tions of each exercise for performance evaluation. The auto-correlation function that

computes the self-similarity at di↵erent lags, is the most commonly used approach

for repetition counting. The major drawback is that auto-correlation cannot handle

repeating patterns with irregular intervals as shown recently in [74]. Although repet-

itive activity recognition has been widely studied, the existing approaches are either

scenario dependant and require extensive domain knowledge to determine many pa-

rameter settings or make unrealistic assumptions that are not practical for real-world

applications. We aim to propose a general method for repetitive activity monitor-

ing that has barely any pattern assumptions regarding shape and periodicity and is

e�cient and robust to novel situations.
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3.3 Methodology

In this section, we first introduce the notations and definitions essential to under-

standing the problem. Then we provide the general problem statement of repetitive

activity monitoring. We then present the general idea and rationale of the proposed

method and give examples.

3.3.1 Definitions

A multivariate time series T is a sequence of d-dimensional real-valued numbers.

A subsequence Ti,l of T is a continuous subset of the values from T of length l

starting from position i. Formally, Ti,l = [Ti, ...,Ti+l�1], where Ti is a d-dimensional

vector. A Successive Similar Pattern (SSP) is a more general definition of a repeating

pattern, which is a subsequence that occurs consecutively at non-regular intervals in

time series [74]. It is defined as a subsequence Ti,l of T where a similar subsequence

Tj,l appears within a nearby range. The range is a user-defined constraint of the

displacement of the SSP and the similarity is defined by the z-normalized Euclidean

distance as:

D(Ti,l, Tj,l) =

vuut
lX

p=0

dX

k=0

(
t
(k)
i+p � µ

(k)
i,l

�
(k)
i,l

�
t
(k)
j+p � µ

(k)
j,l

�
(k)
j,l

)2 (3.1)

where t
(k)
i is the value of Ti at k-th dimension, µ

(k)
i,l and �

(k)
i,l are the mean and

standard deviation of [T(k)
i , . . . ,T(k)

i+l]. The pair of Ti,l and Tj,l is considered in the

same class if the above condition is satisfied. A segment is a subsequence T̂ of T

contains either none or exactly one class of SSPs. Each segment belongs to either

one class in the set of all possible classes Y = [y1, . . . , ym].
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Data Acquisition

SSP Detection
• Find segment that contains SSP
• Estimate length of the pattern

Template Extraction
• Locate the repeated patterns
• Extract template representation

SSP Identification
Template 
Matching

Distributional 
Features

Interpolation Filtering

Figure 3.1: Overall framework of the Repetitive Activity Recognition System.

3.3.2 Problem Statement

Repetitive activity monitoring aims to classify and measure di↵erent repetitions of

the same physical motion using data collected from IoT devices. In this chapter,

we focus on the identification and classification of SSPs in multivariate time series.

Since the SSPs within a segment is ill-defined, we introduce the concept of templates

to help formulate the problem.

We assume there is a template, a d-dimensional sequence Tl of length l that is being

repeated with variations at non-regular interval within a segment T̂ . Given a multi-

variate time series T , our objective is to find a set of non-overlapping subsequences

S = {Ti,l} as SSPs that minimize
P

Ti,l2S D(Tl, Ti,l), and predict S as y
0 2 Y that

minimize the error between y
0 and y.
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3.3.3 Method Overview

The proposed method has four major components as shown in Figure 3.1. Firstly,

data is collected with IoT devices and preprocessing is performed on the acquired

data. The preprocessing is simply an interpolation of missing data and low-pass

filtering with 20Hz as the cuto↵ frequency, that can be computed in most of the

light-weight IoT devices. Then the SSP detection method will find subsequences

that contain SSPs and estimates the pattern length. SSP template extraction will

then finds the patterns that are being repeated only on the detected segments and

therefore significantly reduced unnecessary computation. Finally, SSP identification

can be achieved by either matching the extracted template or combining it with

existing distributional features.

3.3.4 Successive Similar Pattern Extraction

SSP Detection

Mining SSPs is computationally expensive as it covers a more general set of repeat-

ing patterns without assuming a fixed periodicity of the recurring interval. In this

regard, mSIMPAD has been proposed recently for mining SSPs of multiple lengths

in time series [74]. It scales linearly to the size of the input series and is robust to

novel situations as well as to poor quality data. This method is developed based

on the Matrix Profile [144], a method for all-pair-similarity-search across a time se-

ries. It modified the original matrix profile by introducing a temporal constraint,

namely a Range-constrained Matrix Profile (RCMP). The intuition is that the dis-

tances between SSPs are comparatively lower than those of non-SSPs. A set of SSP

candidates can then be identified from the RCMP as valleys, which is a continuous

segment that has a lower distance to some threshold. With the SSP candidates ob-

tained from di↵erent target lengths, mSIMPAD chooses a non-overlapping subset of
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candidates that maximize the sum of depths of the selected valleys as the SSP. This

detects SSPs and provides a rough estimation of the pattern length.

The key limitation of mSIMPAD is that it assumes the input series must contain

both repeating and non-repeating subsequences, such that it can apply the Otsu

method [106] to determine the threshold ✓. However, this might not be the case

in some scenarios where data contains only repeating segments. Also, the detected

segments might simply be rejected or separated by unexpected spikes due to random

noise. To overcome these problems, we further improved mSIMPAD by learning the

threshold ✓ and introducing the method for merging time series segments to avoid

spikes or false rejections.

(a) (b)

Figure 3.2: The e↵ect of sequence dimension and length to the distance of random
signals. (a) shows the probability distribution of the distance of random noise with
di↵erent d x l combinations. (b) shows the dotted lines are the estimation of power-
law function and the dots are true values of mean, 10-percentile, 5-percentile, and
1-percentile respectively.

To learn the threshold ✓, we study how the random signal contributes to Z-normalized

Euclidean distances and determine a threshold that can eliminate most of the random

signal. From equation 1, we notice that apart from the signal itself, the distance is

attributed to the subsequence length l and dimension d of the series. Adding l by
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1 will increase the elements by a factor of d, and adding d by 1 will increase the

elements by a factor of l. Therefore, we model the relationship by varying the value

of d⇥ l from a set of candidates from [4, ..., 1000] and choosing d and l arbitrarily.

For each candidate, we generate 100 time-series using the approach proposed in [64]

and compute the RCMP of the series to estimate the distance of a random signal

at di↵erent d⇥ l. The result is shown in Figure 3.2 which reveals that the distance

follows the power-law distribution in terms of the rise of the average values, as well

as the scale of the variation. The reason is that when there are more elements to

compare, it is less likely to find two similar subsequences just by chance. Therefore,

the distances will converge if the number of points is large enough. We could estimate

the distance of a random signal given di↵erent d ⇥ l with the following equation,

setting ↵ = �2.46, k = �0.62; ✏ = 1.33:

✓(d⇥ l) = ↵(d⇥ l)k + ✏ (3.2)

In this work, we aim at a 95% confidence interval in eliminating random signals

by computing the threshold as the estimated mean subtracted by 1.645 times the

estimated standard deviation. Then, we could identify regions that contain SSPs

by choosing the subsequences where the distance values are less than ✓. Data from

periods of idle activity may however contain drifts that have lower mutual distances

causing false-positive just by chance. To overcome this issue, we modified the mSIM-

PAD to standardize the input series with 0 mean and standard deviation as 1. Then

we insert a Gaussian noise with a scale of 0.1 to mitigate the e↵ect of idle data. On

the other hand, to avoid splitting the desired subsequence into smaller parts due to

an abnormal spike or valley, we introduced a greedy, iterative merging approach to

combine a split with its surrounding subsequences if the length of the split is less
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Table 3.1: Performance comparison on repeating pattern detection.

Method Accuracy Precision Recall F1 Score

HAPT

SIMPAD 0.970 0.994 0.945 0.968
mSIMPAD 0.971 0.991 0.951 0.970
R-SIMPAD 0.971 0.945 1.000 0.972
R-mSIMPAD 0.966 0.935 1.000 0.966

mHealth

SIMPAD 0.692 1.000 0.579 0.731
mSIMPAD 0.777 1.000 0.696 0.819
R-SIMPAD 0.891 1.000 0.852 0.920
R-mSIMPAD 0.915 1.000 0.884 0.938

PAMAP2

SIMPAD 0.808 0.994 0.712 0.829
mSIMPAD 0.816 0.990 0.729 0.839
R-SIMPAD 0.933 0.970 0.923 0.946
R-mSIMPAD 0.928 0.952 0.935 0.943

than l. It starts from the split with the smallest length and iteratively merging those

splits until all of the splits have at least length l. Then the subsequence is verified

for containing SSPs by majority voting.

The improved method relaxes the assumption that the input time series must contain

both repeating and non-repeating patterns. It also provides more accurate detection

results as the inserted Gaussian noise can better di↵erentiate the idle and non-idle

components in sensor data. We employed the same evaluation metric in [74] and we

further discard irrelevant data such as subsequences labeled as a transition since they

may contain any activities including repetitive activity (e.g. walking to another loca-

tion) during the transition phase. The improved methods are denoted as R-SIMPAD

and R-mSIMPAD respectively, that are more robust and have fewer assumptions on

the input signal compared to their original forms. The results are reported in Ta-

ble 3.3.4. We notice that our algorithm performs similarly to existing work on the

HAPT dataset but significant improvements can be observed on both the mHealth

and PAMAP2 datasets. The number of false negatives has been drastically reduced
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as we can see from the much higher recall rate, resulting in an over 11% improvement

in the F1 score.

Scalable Template Extraction Method (STEM)

With the above-given method, we identified subsequences that contain SSPs and

provided a rough estimation of pattern lengths. Then for each subsequence, we

compute the distance profile DPi, and select the nearest neighbor T(j, l) iteratively if

the distance is less than ✓. The distances from j � pr to j + pr are discarded for the

selected nearest neighbor T(j, l) with a pruning range pr = � ⇥ l, in which � is the

pruning factor of the pattern length. This process will repeat until all of the distances

are discarded or are greater than ✓. Then we estimate the quality of the match by

averaging all of the distances of the chosen subsequences that are denoted as template

candidates and select the set of candidates with the minimum average distances as

the best match of the SSP. However, the estimated length of the pattern is relatively

rough, which may over or underestimate the true length of the pattern. We proposed

a two-step approach to better refines the length of the extracted template. The SSP

should either be continuous or vary at di↵erent intervals. We could evaluate the

variation of the positions around the start and end points of the candidates. If the

SSP is continuous, we could refine the template by minimizing the distance between

the start and end positions. The intuition is that the pattern should appear one

after another such that the variation should remain relatively low as we can see from

Figure 3.3; otherwise, the variation should be relatively high such that we can refine

the length by minimizing the averaged variations. From the experiment, we notice

a huge improvement in terms of recognition accuracy with this template refinement

approach as we will show in section 3.4.

The recognition is then performed by comparing the templates. One can imagine that

65



Template

Variability = 0

Variability = 1

Estimated 
Template

Estimated 
Template

Figure 3.3: Example of a repeating pattern with di↵erent variability and the feature
extraction and refinement procedure. It finds a set of SSP candidates, then estimates
the point-wise variation among them. It then refines the start and end position by
either the least variance or the least distance, based on the maximum point-wise
variation that is smaller or larger than some threshold � accordingly.

for continuous patterns, it is di�cult to determine the start and end positions. The

extracted template may be misaligned where the start and end positions lie around

the middle. When comparing two templates, we align them by padding one by itself

to cover all possible extracted cycles and compute the cross-correlation between the

padded template with the other. Then, we roll the template by maximizing the

cross-correlation.

On the other hand, the template generated from one sequence might be slightly

di↵erent from another in terms of length and shape. We apply an elastic distance
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Algorithm 4: Scalable Template Extraction Method
Require: T , int l, double ✓, double �=1
Ensure: TP

1: Cbest  [];
2: for i 1 : n� l + 1 do
3: DP  computeDP(Ti,l, T );
4: C  findCandidates(DP);
5: if D(C) < D(Cbest then
6: Cbest  C;
7: end if
8: end for
9: �C  pointwiseSTD(Cbest);
10: if �C < std(T ) then
11: Cbest  refineByNearestPoint(Cbest);
12: else
13: Cbest  refineByVariability(Cbest);
14: end if
15: TP  median(Cbest);
16: return TP ;

metric to handle these kinds of small di↵erences. Dynamic Time Wrapping (DTW)

has been the most widely used measure for time series. However, [94] suggested that

the Time Warp Edit Distance (TWED) consistently achieves the best performance

in their study. Compared to other distances like DTW, the TWED is a metric that

can potentially speed up computation such as clustering and retrieval. To reduce

the computational cost of TWED, we adopted the window constraint as discussed

in [103] to the TWED to limit the maximum warping of the TWED.

The above-mentioned method, denoted as STEM-TWED, aims to identify the sub-

sequences which minimize the internal distance as a representation and recognize the

subsequence by comparing the TWED with the labeled templates. It can distinguish

tiny di↵erences among time series which is especially suitable for di↵erentiating fairly

similar, low dimensional series. However, it relies on accurate length estimation as

the di↵erences in lengths between time series incur higher costs. mSIMPAD only
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o↵ers a rough estimation of the pattern length, and it depends on the input of the

length candidates. Moreover, time series distance measures such as DTW and TWED

are computationally expensive. Therefore, we introduce a variation of STEM we call

STEM-ECDF that incorporates the existing feature extraction method, namely the

Empirical Cumulative Distribution Function (ECDF) which is simple, yet very ro-

bust even compared with state-of-the-art deep-learning-based features [51].

We employ the same detection and candidates extraction approach as mentioned

above. Instead of using a single template as a representation, we compute the ECDF

of all the template candidates as a representation. Each detected subsequence will

then be represented by the ECDF vector that preserves the distributional information

of the template. Since the ECDF features have the same number of dimensions, we

can leverage traditional machine learning models for recognizing the template. This

allows recognition with much lower computational cost, while still being capable of

handling repeating patterns with irregular intervals. We delayed the discussion on

the merit of this approach until section 3.5.

3.4 Experimental Evaluation

In this section, we report the experimental evaluation of the proposed approach

to SSP recognition and compare it to other baseline activity recognition methods.

We used one synthetic dataset and three sensor-based activity datasets. With the

ground truth being available in the synthetic data, we specifically measured the

performance of template extraction from three aspects: pattern length estimation,

template candidate selection, and the similarity between the extracted template and

the ground truth pattern. We then measure the performance of activity recognition

on the three public datasets to illustrate the robustness of real-world applications.

Finally, a use case of wireless-sensing based respiration monitoring is provided to
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demonstrate that the proposed method as a general approach has a broad range of

applications with great impact.

3.4.1 Experiment Setup

The baseline methods include one of the most widely used statistical features [68]

and the Empirical Cumulative Distribution Function (ECDF) [47] for IMU-based

activity recognition. mSIMPAD and STEM perform directly on the input series,

while the baseline methods are sliding window based. To provide a fair comparison,

we divide the recognition result into equal-length segments, which is done in the

baseline methods. Then we perform majority voting within each segment to decide

whether it contains an SSP and choose the extracted template accordingly. To

mitigate the e↵ect of recognition model parameters, we apply the Nearest Neighbor

(NN) classifier for both the STEM and baseline methods.

Evaluation Metric

We adopted the weighted F1 score as the evaluation metrics defined as 1
|X|(

P
i2C 2|Xi|⇥

precisioni⇥recalli
precisioni+recalli

) where C is the set of given classes, |X| is the number of all testing in-

stances, |Xi|, precisioni and recalli refer to the number of testing instances, precision,

and recall of a particular class i respectively. The precisioni is defined as TPi
TPi+FPi

and the recalli is defined as TPi
TPi+FNi

, where TPi, FPi, and FNi refer to the true

positive, false positive, and false negative of a particular class i respectively.

Synthetic Data

To get a better grasp of the performance of the proposed approach, we need a dataset

we have full control over, including knowledge of the shape of the pattern, the number

of repetitions, and the interval variability. Therefore, synthetic data is required for

evaluation purposes, as well as to help determine the proper set of parameters for
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Table 3.2: List of activities.

Repetitive Activities Non-repetitive Activities

HAPT walking, walking upstairs,
walking downstairs

sitting, standing, lying

MHEALTH walking, climbing stairs,
jogging, running, cycling

sitting, standing, lying

PAMAP2 walking, walking upstairs,
walking downstairs, run-
ning, cycling, Nordic walk-
ing

sitting, standing, lying,
watching TV, computer
work

Figure 3.4: Evaluation result on the synthetic dataset in terms of length estimation,
candidate selection, template extraction, and recognition performance.

the algorithm itself. We first randomly generated 19 random walk time series with

lengths between [40,. . . ,80]. The 19 time-series are treated as templates, and for
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Figure 3.5: Confusion matrix of di↵erent methods on the synthetic dataset.

each template, we generate 100 time-series repeating the template from 5 to 20 times

randomly. We also generated 100 random time series with no repeating patterns as

one negative class. Gaussian noise was then added to each of the generated series,

resulting in 2000 synthetic time series.

We produced six datasets following the above-mentioned procedures with the same 19

templates, in which we introduce di↵erent variable intervals between [0,0.1,...,0.5].
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The variable interval v is a factor of the pattern length l, which determines the

standard deviation of the interval equal to v ⇥ l and the interval between patterns

following the normal distribution. Figure 3.3 shows an example where variability

equals 0 means the templates appear one after another, and variability equals 1

means the templates appear at varying intervals in which the variation follows a

normal distribution with standard deviation as 1 ⇥ the pattern length.

Public Datasets

We choose three publicly available activity datasets for the evaluation. The HAPT

[15] collects data from 30 volunteers wearing a waist-mounted smartphone while

performing various activates in laboratory conditions: walking, walking upstairs,

walking downstairs, sitting, standing, and Lying down. MHEALTH [17] is composed

of 12 activities in an out-of-lab environment, performed by 10 volunteers with 3

sensors placed on the subject’s chest, right wrist, and left ankle. PAMAP2 [115]

includes 18 activities performed by 9 subjects wearing 3 sensors on the subject’s

chest, and the dominant side’s hand and ankle.

Table 3.3: List of activities ID.

ID Activity

A0 Non-repetitive Activities
A1 Walking
A2 Walking Upstairs
A3 Walking Downstairs
A4 Jogging
A5 Running
A6 Cycling
A7 Nordic Walking

We manually classify activities as repetitive activities and non-repetitive activities

for each dataset, where non-repetitive activities are treated as one class. The details

of the classification are mentioned in Table 3.3. We choose only two IMUs (one from
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the hand and one from the ankle) from the MHEALTH and PAMAP2 datasets, as

the chest data does not contribute much information on the listed activities. For

each of the detected segments, we extract the template (denoted as STEM-TWED)

and the ECDF features (denoted as STEM-ECDF) from the template candidates as

mentioned in section 3.3. Then the sliding window is applied to extract statistical

and ECDF features directly from the window data. The STEM-TWED and STEM-

ECDF features are also selected on the same window by majority voting. The size

of the window is defined as 5 seconds with a step size of 2.5 seconds.

3.4.2 Evaluation of Repetitive Activity Recognition

Synthetic Data

We assess the quality of the extracted template by evaluating its performance on

length estimation, candidate selection, and template extraction measured by the sim-

ilarity between the template and the ground truth. The results can be found in

Figure 3.4, and detailed evaluations are outlined in the following section.

Length estimation evaluates the ability to choose the correct pattern length by mea-

suring the length di↵erences between extracted templates against the ground truth.

We measure the Root Mean Squared Error (RMSE) for the di↵erences and the result

shows that the RMSE decreases with the increasing variability in general. Also, the

refined template recorded consistently lower RMSE, suggesting that the refinement

technique can provide a more accurate length estimation.

We measure the di↵erences between the location of the selected template candidates

and the locations of ground truth patterns to assess the quality of selected candidates.

To mitigate the e↵ects of the length variations, we compute the di↵erences using the

center point of the template candidate and the ground truth. Again, we measure the

RMSE of the di↵erences for the evaluation. Noticing that the number of selected
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candidates might be di↵erent from the ground truth number, we match the largest

common indices with a greedy approach. We start from matching the pair of indices

with a minimal di↵erence and remove those pairs from the list iteratively. This

process repeats until either the list of candidate indices or ground truth indices are

empty. It is reasonable to ignore patterns that have not been covered, since the

goal of the STEM is not to identify all patterns but to discover the most internally

similar subsequences. subsequences that are covered are distinct from the selected

candidates, and including such abnormal patterns might degrade the performance

of template extraction. The results show that the error generally decreases with

increasing variability. The performance of the refined template is also consistently

better than the original template except for when variability is close or equal to 0.

This happens for patterns without a variable interval, since it is possible to identify

any snippet of the series as the template itself while remaining at a low averaged

distance, which is still correct as it identifies the pattern as long as the length is also

estimated properly.

We examine the distance between the template and ground truth, where we align

the two sequences and measure their mutual distance with TWED. As expected, the

distance also decreases with increasing variability as we achieved better length esti-

mation and candidate selection. Moreover, the performance of the refined template

is consistently better than the original template. The above evaluation suggests that

the proposed template extraction method is satisfactory for patterns with regular

periodicity, while still very robust when the pattern contains variable intervals. The

template refinement is also needed as it provides more accurate length estimation

and candidate selection which leads to a more precise template, and therefore the

distance is much lower than the original template.

The analysis above demonstrated how the proposed method performs on template
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Figure 3.6: An illustration of the e�ciency achieved over the traditional approach.
SSP detection reduces most of the unnecessary computation by eliminating segments
without any SSP.

extraction under di↵erent variability conditions of the repeating pattern. We then

examine the performance of recognizing the pattern with the extracted templates.

For each dataset of di↵erent variability, we perform 5-fold cross-validation to divide

the dataset into 5 equal size partitions randomly. We then perform evaluations using

each partition as the testing set and the remaining partitions as the training set.

The performance is then calculated as the average over the 5 partitions as shown in

Figure 3.5.

We can see that the proposed STEM-based method achieved superior performance

compared to the baseline methods. Although the RMSE of length estimation seems

to be quite high, the distance computed by TWED can still e�ciently distinguish

series with tiny di↵erences. The results show that STEM-TWED achieved a 23%

improvement compared to the best baseline method when the variability is up to

0.5.

Public Datasets

We evaluate the performance of repetitive activity recognition from two aspects: ef-

ficiency and classification accuracy. E�ciency is evaluated by measuring the degree

of reduction of unnecessary computation as shown in Figure 3.6, whereas accuracy,

is the degree to which repetitive and non-repetitive activities are correctly identified.

Successfully classified subsequences of both the repetitive and non-repetitive activi-
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Figure 3.7: Confusion matrix of di↵erent methods on the public datasets.

ties are the true positives from both sets. We recorded an average true positive rate

of repetitive activity classification of 92.4% and 93.9% respectively for SIMPAD and
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mSIMPAD over the three datasets; and 96.6% and 95% for non-repetitive activity

classification. This suggests that the mSIMPAD is better at identifying repetitive

activities at 93.9% while eliminating 95% of the non-repetitive segments.

Note that for the public datasets, some of the classes only have a few samples so that

we only perform 3-fold cross-validation for the evaluation on recognition accuracy,

and the results are reported in Table 3.4. The two baseline methods produce similar

results while the ECDF features perform slightly better in general. Surprisingly,

the STEM-TWED had the worst performance, which shows that the individual dif-

ferences can largely degrade the recognition performance with an elastic distance

measure approach. For instance, one’s pattern of jogging might be more similar

to another’s, and as we can see from Figure 3.7, the STEM-TWED has di�culty

distinguishing between jogging and running.

With the abstraction of the pattern using statistical features, STEM-ECDF achieved

the best performance in two out of three datasets. This is because the STEM-

ECDF can better identify internally similar patterns and ignore abnormalities to

form better quality features out of the repetitive activity. However, as we have

illustrated the superior performance of STEM-TWED on the synthetic dataset, it

suggests the STEM-TWED is more suitable for repetitive activity monitoring where

the patterns are very similar in most cases. We delay the discussion in choosing the

STEM-ECDF and STEM-TWED, and the reason that STEM-ECDF outperforms

the original ECDF in section 3.5. In general, the proposed approach achieved superior

performance compared to the baseline methods, recording a 3.3% improvement on

average for the STEM-ECDF.

The above evaluation suggests that for repeating patterns with irregular intervals, the

proposed approach performs significantly better than the baseline methods. However,
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measuring the distance between two sequences with time-warping techniques are

known to be computationally expensive. The superior performance comes with a

trade-o↵ of computational e�ciency. By combining the template extraction with the

distributional features, the e�ciency can be largely improved while achieving on par

or even better result on repetitive activity recognition in reality.

3.4.3 Use case: Respiration Monitoring

Wireless sensing is an emerging area in the IoT community. Numerous publications

have shown the potential of wireless-sensing based vital sign detection, which enables

various applications in healthcare as well as activity recognition. To illustrate the

potential of the proposed method on other repeating pattern extraction problems,

we adopted respiration monitoring using wireless signals as a use case. Specifically,

we identify the repeating patterns within a wireless signal captured from an RFID

transceiver to estimate the respiration rate of a subject with an RFID tag on their

chest. We randomly selected 10 signals collected in [140] in which half of them

contain normal breathing, and the other half contain periods where the participants

were instructed to hold their breath to simulate the condition of Sleep Apnea.

Respiration can be identified by measuring the phase of the wireless signal [80].

Intuitively, the physical motion of the chest a↵ects the signal strength of the tag

as it expands and contracts while inhaling and exhaling. These miniature changes

constitute periodic patterns in the phase values of the signal. These patterns can

be detected by STEM and provide the estimated pattern length if it exists. The

located template candidates are considered as a signal of breathing in which we can

estimate the breathing rate by counting the number of candidates. We compare

the performance with the baseline method introduced in [140]. It assumed that

the breathing pattern is a simple waveform signal that can be identified by peak
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detection. It computes a threshold, determined by the mean of the phase value

to eliminate false positives caused by small variations. A normal breathing rate is

roughly 30 times per minute and is considered as a physical limitation. This avoids

peaks that are closer than 2 seconds apart. Then, we compute the number of breaths

within each signal and calculate the RMSE for each of the methods. The RMSE of

STEM is 0.89, where the RMSE of the baseline method is 3.66, which shows that

STEM achieved much better performance compared to the baseline method.

Figure 3.8: Example of respiration estimation. The red line denotes the detected
pattern using STEM and the blue cross marks denote the detected respiration using
the baseline method.

Figure 3.8 shows an example of normal breathing and simulated sleep apnea by

holding one’s breath. As we can see, STEM can accurately identify the waveform

generated by breathing even with irregular intervals, periods of pause, and shape vari-

ations. In contrast, although the baseline method achieved similar results on normal

breathing datasets, it fails if the signal contains periods of pause. The minimum

distance between peaks simply does not work when the pattern contains irregular

intervals as the breathing rate might vary from the average value. The drift of the

signal can invalidate the threshold approach. In contrast, STEM first detects if the

repeating pattern occurs by comparing the z-normalized distance between the subse-

quences, which can better handle data drift and shape variation. The inserted noise
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can better di↵erentiate the truly repeating patterns from the non-repeating sub-

sequences. Therefore, STEM achieved much better performance in estimating the

breathing rate from the wireless signal. Note that this is just an example application

of our approach. It can also facilitate many other applications such as heart rate

detection, blink rate detection, and many repetitive motions such as hand-flapping,

rocking, spinning, just to name a few.

3.5 Discussion

In this work, we focus on the classification of multivariate time series that may

contain repeating patterns. These kinds of time series are prevalent in day to day

life, and are especially interesting when considering repetitive activities [24, 45, 137,

86, 110], physiological signals [80], or the audio signals of music [113], just to name

a few. We focus on the application of repetitive activities given their importance

for physical health monitoring. The presented method is however general enough for

other time series classification tasks with repeating patterns, as the proposed method

is scenario independent where the only required parameter is the length of the target

pattern.

Based on STEM, we proposed a recognition method using the nearest neighbor al-

gorithm with time warp edit distance namely the STEM-TWED. It shows an ability

for accurate recognition that however has a few drawbacks. First, the method com-

pares against the z-normalized template that could misclassify similar patterns with

totally di↵erent magnitudes. Second, the TWED relies on accurate length estima-

tion as the di↵erences between lengths incur a higher distance due to the warping

penalty. Also, it is di�cult to design a proper penalty if the templates are not

normalized. Third, the computational cost increases with the number of training

samples due to the distance measure for each sample, and calculating the TWED
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is much slower than calculating the Euclidean distance for the traditional features.

To balance the recognition accuracy with the computational cost, we combine the

STEM with the Empirical-Cumulative-Distribution-Function based features namely

the STEM-ECDF. The advantage of the STEM-ECDF is that it can avoid unnec-

essary computation on non-repetitive series, while e�ciently extracting template

candidates and ignoring noisy data within the subsequences.

Figure 3.9: Example of candidate selection in a snippet of mHealth dataset.

Figure 3.9 shows a snippet of data from the mHealth dataset, obtained from the

accelerometer on a person’s ankle while climbing stairs. We notice that from the raw

accelerometer signal, the X-axis is almost flat compared to the Z- and Y-axis data.

If we normalize the data on each axis, very similar patterns can be observed among

the three axes as shown in the middle of the graph. We observe slight di↵erences

between each repetition, but by using STEM we e↵ectively extract internally similar

subsequences within the series, such as the subsequences highlighted in red color.

Since the three axes have almost identical patterns, we only show the candidates
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extracted from the X-axis in the lower part of the figure.

3.6 Conclusion

In this work, we proposed STEM, a template extraction method to identify repeating

patterns in multivariate time series and apply it to repetitive activity identification.

STEM aims to substitute the commonly used sliding window technique, which is

computationally expensive and usually requires extensive domain knowledge to work.

STEM leverages the recently proposed successive similar pattern detection method

to determine whether repeating patterns occur within a time series. For these de-

tected subsequences, it identifies a template, which is a pattern that minimizes the

internal distances within the subsequence as a representation. We evaluated our

approach on synthetic data, as well as on three publicly available datasets. The

experiment shows that the proposed method can e�ciently avoid unnecessary com-

putation on non-repeating series. It also provides more accurate recognition results

especially when the periodicity of the repeating pattern is variable. By combining

the STEM with the distributional feature, it achieved a more balanced trade-o↵ be-

tween computational cost and recognition accuracy. The proposed method shows

superior performance compared to the baseline methods on repetitive activity recog-

nition, and can additionally be applied to other time series classification tasks with

repeating patterns.
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Chapter 4

Eustress or Distress: An Empirical
Study of Perceived Stress in
Everyday College Life

Eustress is literally the ”good stress” associated with positive feelings and health

benefits. Previous studies focused on general stress, where the concept of eustress

has been overlooked. This chapter presents a novel approach towards stress recogni-

tion using data collected from wearable sensors, smartphones, and computers. The

main goal is to determine if behavioral factors can help di↵erentiate eustress from

other kinds of stress. We conducted a natural experiment to collect user smartphone

and computer usage, heart rate, and survey data in situ. By correlation and principal

component analysis, a set of features could then be constructed. The performance

was evaluated under leave-one-subject-out cross-validation, where the combined be-

havioral and physiological features enabled us to achieve 84.85% accuracy for general

stress, 71.33% one kind of eustress as an urge for better performance, and 57.34%

for eustress as a state of a better mood. This work provided encouraging results as

an initial study for measuring eustress.
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4.1 Introduction

Stress is one of the major attributes of mental health has received growing interest

from both industry and academia. Numerous studies suggest that stress is a health

crisis, which associated with several diseases such as cardiovascular diseases, anxiety,

and depression. A recent survey found that about half of the Americans experienced

a major stressful event in the last year [105]. Many of them reported they su↵er

from stress-related behavioral responses including lack of sleep, losing appetite, and

desire to exercise. Nowadays, the term stress is generally referred to as negative

stress (distress) in our daily conversation. The adverse impact of stress has been

studied extensively, whereas the positive aspect of stress has also attracted rising at-

tention. For example, the business and management community aims at maximizing

individual productivity by managing work stress. However, the concept of positive

stress (eustress) is incomplete. Lacking knowledge about eustress obstructed the

development of positive stress.

Typically, stress was assessed through a questionnaire or clinical assessment by a

psychiatrist. In the last two decades, researchers tried to measure stress through

physiological markers including heart rate, blood pressure, galvanic skin response,

etc. The result of these methods is promising in a rigorous laboratory environment,

however, not applicable to detect stress in daily life. Moreover, the concept of eustress

has been overlooked in the past decades. In light of advanced mobile and wearable

technology, data can be collected ubiquitously and less obtrusively, which enabled

continuous stress assessment using ubiquitous sensing technology. To address these

problems, we conducted a natural experiment and evaluated the classification result

on the features extracted. We showed that ubiquitous computing is a potential

method for evaluating eustress.
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4.2 Background

The word stress was coined by Selye back in 1965, who defined stress as “the non-

specific responses of the body to any demand for change” [119]. In general, it refers

to the physiological responses caused by any stressful event (stressor). These re-

sponses are triggered by the Autonomic Nervous System (ANS), which influences

internal organs and regulating heart rate, respiratory rate, blood vessel, galvanic

skin response, and so on. ANS is divided into two subsystems, namely the Sym-

pathetic Nervous System (SNS) and the Parasympathetic Nervous System (PNS).

When stressful events arise, a higher activity rate in SNS, which signals the adrenal

glands to release stress hormones (e.g. adrenaline and cortisol). These hormones led

to physiological changes, also known as the “fight or flight” response. Alternatively,

activity in PNS increases during the restful event.

Selye introduced the concept of positive stress, namely eustress in 1976 [122]. He

extended his work in stress to distinguish eustress and distress in terms of adaptive-

ness toward stress response, where eustress is “healthy, positive, constructive results

of stressful events and stress response” [66]. Lazarus considers eustress as a posi-

tive cognitive response to a stressor, which is associated with positive feelings and a

healthy physical state [70].

Another dominating approach to understand eustress was developed on the Yerkes

Dodson Law [20]. It suggests that stress is beneficial to the performance until some

optimal level is reached, after which performance will decline, which follows the

inverted U shape diagram.
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4.3 Related Work

Owing to the unclear criteria to distinguish eustress from others, the existing analysis

focused on general stress. Various stress measurement methods using computational

techniques have been proposed in the last two decades [124]. These methods can

be classified into two categories: physiological measures and physical measures. The

former one evaluates mental stress by monitoring di↵erent physiological responses

including skin conductivity, heart activity, brain activity, blood pressure, etc. The

later one collects physical characteristics (e.g. body gesture, facial expression, voice,

etc.) that is sensitive to stress and using machine learning methods to develop

a computational model for stress recognition. Among all di↵erent types of input,

Sharma & Gedeom suggested that heart rate variability (HRV) rank the top among

di↵erent primary measure for assessing mental stress in terms of accuracy and non-

intrusiveness.

Sun et al. consider stress assessment as a detection problem, which takes accelerom-

eter data into account to filter the e↵ect of motion artifact [130]. In [116], the

authors collected data from wearable sensors and mobile phones in situ, which accu-

racies range from 75-87.5% for 2-class classification problems with di↵erent feature

sets. Their work was extended in [36] with a larger population and longer period, in

which achieving classification accuracies range from 67-92%, showing that behavioral

features are possible to recognize mental stress on a daily basis.

Existing methods investigated the pattern of physical and physiological sensory data

under general stress. In our work, we study the feasibility of measuring eustress by

HRV, smartphone, and computer usage data. To the best of our knowledge, we are

the first who proposing a classification model toward eustress.
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4.4 Research Questions

On the basis of previous work, general stress can be recognized by a physiological

signal with high accuracy and suggested that stress is related to a number of behav-

ioral factors such as multitasking, applications used, and physical activity. Recall

one of the explanation of eustress regarding performance, multitasking lead to task-

switching cost which associated with a decrement in performance [98]. It is obvious

that smartphone and computer use are the major source of interruption, and closely

related to multitasking. Therefore, we designed the experiment to investigate the

possibility of using physiological and behavioral signals together to build an accu-

rate classifier of eustress recognition. Since there has no single domination definition

towards eustress, we assess eustress is twofold: 1) Higher self-reported performance

along with moderate stress level [20]; 2) Higher self-reported mood along with mod-

erate stress level [70]

It is not di�cult to realize that too much or too little stress might not trigger “eu-

stress” in terms of the definitions mentioned in the previous section. Therefore, we

assume eustress must be under a moderate physiological stress level. To answer

these questions, we study the pattern of whether these behavioral features are able

to correlate to this situation.

4.5 Study Protocol

We designed an in situ study and recruited 7 physically healthy subjects (5 male

and 2 female) with ages ranging from 22 to 28, in which all of them are either

research students and sta↵. We collected data from each participant on 5 days during

their waking hours. During the study, three sources of data are collected from (1)

sensor and application on smartphone, (2) application on personal computer, and
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(3) wearable heart rate sensor. These data can be categorized into heart rate, usage,

and survey measure respectively.

We developed StressSurvey, which is an application for Android smartphones to

collect smartphone activities and other sensory data. It connects the heart rate

sensor automatically in the background, and recording heart rate data transmitted.

It also captures smartphone screen and call activities. Every hour in between 8 AM to

12 PM, the application reminds the participant to report the survey by notification.

The details of the data acquisition process are described in the following section.

Figure 4.1: Control panel for heart
rate measurement.

Figure 4.2: Example of periodic sur-
vey.

Heart rate measure. Heart rate variability is collected using the Polar H7 heart

rate sensor [6], wearing a chest band to record beat-to-beat interval and average

heart rate. The heart rate data is measured by the ECG sensor and preprocessed

within the H7 device. Then it transmits the record in 1000ms via Bluetooth to

the Android smartphone. Since the connection is using Bluetooth 4.0 (BLE), the
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smartphone is required at least Android version 4.3 with BLE enabled (e.g. Nexus

5, Galaxy S3). The data transmitted complies with BLE specification, where the

characteristic specified the format of the record. Each record is either 8- or 16-bit

int format, indicated by the first bit of data (0 for 8-bit int, 1 for 16-bit int). Bit 1

and 2 indicate whether the sensor contact feature supported and the sensor contact

status. Bit 3 is the indicator of energy status that indicates if energy expended data

is presented. Bit 4 indicates if RR-interval data is presented, and the interval is

represented in 1/1024 sec. We shift the reading byte by checking the flag data. Each

record is stored with UNIX timestamp on the smartphone in common separated

values (CSV) format.

In order to eliminate the e↵ect of heart rate due to human artifact, motion data

were collected along with heart rate measure, obtained from the accelerometer on

the android smartphone. Each motion data contains a three-dimensional vector,

which was calculated after removing the influence of the force of gravity.

Smartphone and computer usage measure. Usage log is collected via commercial

application RescueTime [7]. Participants are asked to install the RescueTime client

application on both computers and smartphones, each of them is assigned with seven

prepared user accounts: hkpu.stresssurvey.#@gmail.com where # is an integer id

from one to seven. Data can be downloaded through the public API, each row con-

tains the timestamp, application name, category, duration, and estimated productive

index ranging from -2 to 2. We collected the most fine-grained record in five minutes

interval for each participant. The screen on and o↵ events and the state of smart-

phone calls are collected directly by StressSurvey. Each record comes with an event

indicator and timestamp and is stored locally in CSV format.

Survey measure. This study using the experience sampling method (ESM) to capture
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self-reported survey from time to time. During the daytime, the application sends

out the notification to remind the participant to complete a survey every hour. The

survey consists of several questions and provided an integer scale ranging from one

to five, asking the perceived stress, performance, and mood. Participants completed

the end-of-day survey rated the same scale according to a daily basis.

Table 4.1: Statistic of the data for each participant.

Subj. Survey # of reports (1-5) Total

1
Stress 11 1 3 1 0

16Mood 1 1 3 3 8
Performance 2 5 5 1 3

3
Stress 10 3 2 2 0

17Mood 0 1 6 8 2
Performance 4 7 4 2 0

4
Stress 1 6 6 1 0

14Mood 0 1 7 6 0
Performance 0 4 9 1 0

5
Stress 3 9 22 4 2

40Mood 0 5 19 14 2
Performance 0 10 20 9 1

6
Stress 7 17 5 1 0

30Mood 0 2 17 11 0
Performance 4 9 9 8 0

7
Stress 2 3 1 9 11

26Mood 9 13 1 3 0
Performance 5 8 12 0 1

4.6 Data Overview

Over 7 participants, one was excluded from the analysis because the heart rate sen-

sor was disconnected most of the time. We collected 5,058,233 accelerometer data,

1,410,109 heart rate data, 10,851 screen activity data, 878 call activity, 14,746 smart-

phones and computers usage, and 252 self-reported survey data in raw format.

By removing incomplete data, there are 143 survey data combined with sensory,
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usage, and survey data aggregated on an hourly basis. Statistic of the reported

survey is shown as table 4.1, where we found that each participant has their own

preference for reporting their values.

In general, perceived stress is positively associated with performance and inversely for

mood as shown in figure 4.3. The average use of smartphone and computer increase

starting from 6 AM to 11 AM and reach the first peak in the morning. After this, it

slightly drops from 12 PM to 1 PM. The use of computers and smartphones at night

decreased significantly.

Figure 4.3: Average of inter-subject computer and smartphone usage (duration) and
survey value.

4.7 Feature Extraction

Data especially heart rate measure requires cleaning and transformation prior to

classification. First of all, we remove obvious errors (e.g. heart rate < 40), and

RR-interval that is more than 20% di↵erent from the previous one. Then, the value
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is interpolated by the moving average. The summary of features extracted is shown

as table 4.2.

4.7.1 Heart Rate Measure

Heart rate measure (HRM) including average heart rate data and actual R-R interval

obtained from the heart rate sensor. The average heart rate data were aggregating

in 60-minute windows, in which the standard deviation (SDHR) and the average

(AVHR) of heart rate were derived. Heart rate variability features can also be ex-

tracted from the windows including the standard deviation of NN-interval (SDNN),

an average of NN-interval (AVNN), percentage of adjacent NN-intervals di↵ering by

more than 50ms (pNN50), and root-mean-square di↵erences of successive R-R in-

tervals (RMSSD). For frequency-domain features, since the sampling rate deviates

because of the system operation, and the number of samples is not necessarily the

product of two. Therefore, we employ the Lomb-Scargle Periodogram [62] that is

capable to analyze unevenly sampled time-series and data sets with missing val-

ues.

Then the power spectrum obtained is sum up to three separate bins, grouped by

very low frequency (VLF) < 0.04 Hz, low frequency (LF) 0.04 - 0.15 Hz, and high

frequency (HF) 0.15 - 0.4 Hz respectively. In addition, the accelerometer data were

collected during heart rate measurement is available. Then the motion intensity (MI)

was defined by 1
3(|ACCx|+ |ACCy|+ |ACCz|), where average and standard deviation

of MI were calculated in the 60-minute windows aligned to the HRM features.

4.7.2 Smartphone and Computer Usage

Usage log including smartphone screen, call state, and application used are captured

from smartphones and computers. For screen and call activities, duration and fre-
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Table 4.2: Summary of extracted features for stress classification.

Modality Features
Heart rate measure AVHR, SDHR, AVNN, SDNN, RMSSD,

PNN50, VLF, LF, HF, LF/HF
Motion AVMI, SDMI
Screen Duration of screen on time (secs), frequency

of screen on event
Call Number of call, answered call; Duration of

o↵-hook
Application Duration of each category: social, entertain-

ment, internet, communication, study, email

quency are extracted from raw data. For application usage, records are aggregated

on an hourly basis. Each record consist of the name of the application, time of the

usage recording, and duration of each application. Some other information such as

category and estimated productivity provided by RescueTime were not used. The

usage record is then labeled manually into the following categories: internet, email,

social, communication, study, and entertainment. Then the sum of the duration of

applications used from the same category was calculated. In order to eliminate the

individual di↵erence among di↵erent participants, the categorized data was used to

derive three ratios namely: social, productive, and non-productive ratio. Then we

perform the dimension reduction by using Principal Component Analysis (PCA), to

further eliminate linearly dependent features.

4.8 Classification Result

In this section, we present the process of training the classifier, and the result of dif-

ferent approaches. We use the R (programming language) to build various classifiers

using well-known learning methods: Multinomial Logistic Regression (MLR), Sup-

port Vector Machine (SVM), and Random Forest (RF), to evaluate the predictive

power on the linear classifier, non-linear classifier, and ensemble classifier respec-
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Figure 4.4: Classification Result

tively.

First of all, we perform inter-subject z-score normalization on the features in order

to increase the generality of the model. Then we calculate the correlation matrix

to eliminate redundant features, which has a coe�cient greater than 0.75. Then

the features were selected by exhaustive search with 10-fold cross-validation using

Random Forest. Then we apply the Synthetic Minority Over-sampling Technique

(SMOTE) [26] to the training data set to avoid over-fitting and deal with unbalanced

data distribution.

For each classification problem, we partition all features into two subsets of features:

physiological features, physical features. We tested every problem with any set of

features before and after dimension reduction using PCA. The performance was eval-

uated under leave-one-subject-out cross-validation. For each learning method, the

model was built using repeated cross-validation. We also fine-tuning the parameters

of the model using a greedy approach in terms of accuracy.
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4.8.1 General Stress Recognition

Prior to the eustress recognition, we tested our features on two-class general stress

recognition with the above setting. Whereas the self-reported survey collected during

the study was ranging perceived stress from one to five, then the value was normal-

ized within the subject and the class ”stressed” is defined by z-score ¿ 0 where the

alternative is ”not stressed”.

On average, we achieved 82.75% accuracy and 96.93% recall for a two-class stress

recognition problem using all features by applying PCA; More specifically, the best

result was obtained by Support Vector Machine with 83.22% accuracy and 97.9%

recall. For physiological features alone the accuracy reached 81.59% and 96.27%

recall, where behavioral features obtained 84.85% accuracy and 99.03% recall. Our

results show that we achieved competitive classification accuracy comparing to the

state of the art.

4.8.2 Eustress Recognition

In this study, we have several assumptions: 1) eustress is the “right” amount of

stress that improves performance [20]; 2) eustress associated with a positive feeling.

Therefore, we define eustress in two ways: Eustress is the combination of moderate

stress with high performance; and eustress is the combination of moderate stress

with high mood. We consider moderate stress as 1 standard deviation away from

0 (both positive and negative direction) for z-score normalized stress. Mood as a

subjective measure as stress was applied the same normalization technique as stress,

where the distribution of performance is more consistent over di↵erent subjects, we

considered high performance strictly greater than 3.

For eustress in terms of perceived performance, the accuracy achieved 67.13% with
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recall only 42.75% using all PCA features. For eustress defined by perceived mood,

the accuracy has only 55.25% and recall 56.22% using physiological PCA features.

It shows that the highly unbalanced data result in a poor recall rate on eustress

classification.

4.9 Limitation

This work as a preliminary study of eustress has several limitations. Firstly, the

sample size is limited to 6, where a larger-scale study is required for further study.

Secondly, self-report surveys are considered as ground truth in this work, where

it may su↵er from inconsistent between di↵erent subjects. Lastly, the concept of

eustress is unclear, where a more accurate model can be achieved by introducing a

more concrete definition of eustress.

4.10 Conclusion

Existing work studied general stress in both laboratory and natural environments.

However, there are only a few works that contributed to eustress since the concept

has been proposed in the ’70s. Our work-study the possibility of using ubiquitous

sensing technologies for eustress recognition. We conducted a natural experiment and

recruited 7 participants over 5 days. With an Android-based application developed,

heart rate and smartphone usage data were collected to constructed a set of features

using correlation and principal component analysis. We estimated the robustness of

the features by three standard learning algorithms.

The result showed that heart rate variability, computer, and smartphone usage can

be used for general stress classification as the literature suggested. The recognition

accuracy also remains consistent over di↵erent learning algorithms. On the other

hand, the accuracy of eustress in terms of performance is higher than mood, since
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perceived performance is highly related to the application used on smartphones and

computers. However, the recall rates are low for both cases showing that the gener-

ality of the model still requires further study. The gap between general stress and

eustress mainly due to the solid background of general stress that facilitated the

feature engineering process and results in better classification performance.

Notice that the accuracy comparing to the existing work may seem quite low, however

is reasonable since the previous studies assess mental stress in a rigorous laboratory

or aggregated the data by days. In contrast, our natural experiment approach and

finer granularity of time-series result in more noisy data which leads to a decrement

of performance. We agreed that there is room for improvement, further study is

required to achieve better recognition accuracy and recall rate.

To conclude, eustress is a widely accepted psychological phenomenon, should receive

more interest from academia. As an initial study, our work provided encouraging

results of eustress recognition, which can facilitate research on this problem in the

near future.
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Chapter 5

How Continuous Stress A↵ects
Cognitive Performance: Towards a
Computational Model

Cognition can be viewed as dynamical systems that are a↵ected by various factors

including mental stress and mental fatigue. Computationally modeling the dynamics

of cognitive performance over time is crucial for improving productivity, and prevent-

ing accidents by varying external stressors. Previous work focused on descriptively

identifying and discovering the general trends between predictive factors and per-

formance. However, existing models remain at the theoretical level and cannot be

applied for cognitive performance prediction on a prolonged cognitive task. We pro-

posed a data-driven cognitive performance prediction model (called CCSP model)

by leveraging psychological knowledge to computationally model the dynamic rela-

tionship between stress, fatigue, and cognitive performance over time. The proposed

model was then trained and evaluated on the data collected in a rigorous laboratory

experiment. It outperforms the state-of-the-art machine learning models in both

Leave-one-participant-out and N-step ahead prediction settings. We discuss the im-

plication of our work on improving learning and working productivity and preventing
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the occurrence of driving and occupational accidents.

5.1 Introduction

Stress is ubiquitous, and it has become part of our daily life. In 2016, the over-

all stress level in America was increased for the first time in nearly a decade, and

there were 80% of Americans experienced at least one stress symptoms according

to a recent survey [14]. As a public health crisis, stress has been shown as a risk

factor to several diseases including cardiovascular disease, high blood pressure, dia-

betes, anxiety, and depression [29, 97, 33]. Apart from mental and physical health

consequences, stress is also an important factor a↵ecting cognitive performance. Ac-

cording to the definition given by the Oxford dictionary, cognition is “the mental

process of acquiring knowledge and understanding including perception, intuition,

and reasoning through experience and sense”. It is usually assessed by measuring

performance at specific tasks, which is cognitive performance. Being able to model

the impact of stress on cognitive performance can provide insight into improving pro-

ductivity, and preventing occupational accidents from happening by varying external

stressors. Hence, monitoring stress to promote mental health and improve cognitive

performance is a vital question in many stressful occupations such as nursing and

the military.

One of the most widely accepted definitions of stress was introduced by J. Rabkin in

1976, where the stress is defined as “the organism’s response to stressful conditions

or stressors, consisting of a pattern of physiological and psychological reactions, both

immediate and delayed” [111]. As a survival mechanism, stress hormones including

cortisol and adrenaline are released under stressful situations. It improves the bodily

and cognitive function to contend with threats and challenges. After that, it will

resume to normal homeostasis being the equilibrium within the organism [121]. The
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relationship between stress and performance had been described as the inverted-U

curve [145], which is a widely accepted law of psychology. Furthermore, the law

has been extensively applied to identify positive stress, namely “eustress”, which is

the stress that improves performance. The law suggested that stress is beneficial to

the performance until some optimal level is reached, after which performance will

decline.

Apart from stress, excessive hours of work often leads to mental fatigue - “a psy-

chobiological state caused by prolonged periods of demanding cognitive activity and

characterized by subjective feelings of tiredness and lack of energy” [89] - that im-

pairs performance. Previous work suggested that supervisory executive attentional

functions are impaired during mental fatigue such that performance is a↵ected more

by other stressors [95]. In such a case, the interactive development of stress and

performance in prolonged cognitive task is accompanied by mental fatigue. Un-

fortunately, the inverted-U relation only considers stress as an instantaneous e↵ect

on performance, which ignored its development over time. It is crucial to model

stress together with mental fatigue to overcome this limitation. In [56], the authors

proposed the cognitive-energetic framework that considers cognition as a dynamic

process by regulating goals and actions as well as resource allocation. It remains

at the theoretical level that is not applicable for performance prediction because of

the inability to quantify those factors. Existing frameworks shared the same limita-

tion since those works aim to identify the predictive factors and discover the general

trends on performance, which is insu�cient to predict the fluctuation of performance

over time. As a dynamic process, a data-driven computational model is required to

predict cognitive performance in daily life.

This study focuses on modeling the impact of continuous stress and mental fatigue

on cognitive performance while performing prolonged cognitive tasks. By leveraging
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psychophysiological knowledge, we propose a data-driven Computational Continuous

Stress Performance (CCSP) model to investigate the dynamic relationship between

stress, mental fatigue, and cognitive performance over time. The model is trained

and validated by data collected from a rigorous laboratory experiment carried out by

15 healthy participants. The proposed model outperforms the state-of-the-art ma-

chine learning models in both leave-one-participant-out and N-step ahead prediction

setting. Although recent trends in machine learning lie on black-box approaches such

as deep neural networks, we showed that a simple but interpretable model combines

with domain knowledge could better predict psychological states.

There are several challenges in developing and validating the CCSP model. First,

mental fatigue as an internal state cannot be measured objectively. Typical ap-

proaches measure mental fatigue by subjective self-report which su↵ered from indi-

vidual bias. Another alternative approach is to approximate mental fatigue by the

change of cognitive performance, which assumes mental fatigue is the only factor

influence performance. In many cases, one is performing prolonged cognitive tasks

under stress, and cognitive performance is a↵ected by both mental fatigue and stress.

Therefore, it is not practical to measure mental fatigue directly from the cognitive

performance. To address this challenge, we model mental fatigue as a latent state of

the Hidden Markov Model, in which the impact of fatigue is embedded and modeled

indirectly by the change of cognitive performance.

The second major challenge is to design a suitable stressor to induce stress contin-

uously without changing the operation or the di�culty of the cognitive task. Stress

is usually induced by varying the operation or di�culty of the task in psychological

studies. In our study, the task has to remain the same di�culty throughout the

experiment such that performance at di↵erent points of time is comparable. For this

sake, we adopt ambient tra�c noise as an external stressor in the experiment, which
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is independent of the cognitive task.

The third major challenge is to handle the learning e↵ect leading to an incomparable

performance issue. When participants perform a cognitive task for a period of time,

the learning process with experience accumulated tends to increase performance due

to improved skills. Delivering task training to the participant may eliminate this

e↵ect, however, it is time-consuming and it may also introduce other biases in mea-

suring cognitive performance because of the individual di↵erence of learning ability.

We applied the Advanced Trail Making Test (ATMT) - a standard cognitive perfor-

mance evaluation task, to evaluate cognitive performance, which is robust enough

with almost no learning e↵ect as shown in the previous study [100].

To the best of our knowledge, our work is the first one to build a data-driven com-

putational model on the basis of psychological theories, that measures the impact

of continuous stress on performance taking mental fatigue into consideration. It fills

the gap between psychological theory and computational modeling approaches, and

pave the way towards the goal of applying stress detection on modeling the impact

on human behavior.

The main contributions of this work are as follows:

• We leverage the knowledge of psychology to study a theoretical Continuous

Stress Performance (CSP) model that comprehensively describes the dynamic

relationship between stress, mental fatigue, and cognitive performance in a

prolonged cognitive task.

• We build a Computational Continuous Stress Performance (CCSP) model based

on the theoretical CSP model to quantitatively investigate the impact of stress

and mental fatigue on cognitive performance over time. Each component in
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the CCSP model has the physical meaning corresponding to the psychological

concepts and theories.

• The proposed CCSP model can accurately predict cognitive performance in

real-time that could provide insights on improving productivity, stress man-

agement, and risk management for prolonged cognitive tasks. We also show

that a↵ective detection problems with limited training examples should apply

domain knowledge in the model building phase. Therefore, simple but robust

models could outperform the state-of-the-art machine learning models.

The rest of this chapter is organized as follows. In section 5.2, we review the related

work of stress and cognitive performance. In section 5.6, we study the psychological

CSP model and computerize it to a CCSP model. In section 5.5, we introduce data

collection from a laboratory experiment and stress measurement methods. In section

5.7, we analyze the data obtained from the experiment and evaluated the performance

of the proposed CCSP model. In the last section, we discuss the implication and

limitations of our work, followed by future research directions.

5.2 Related Work

5.2.1 Stress Measurement and Detection

In recent years, computer scientists are interested in detecting and quantifying stress.

By measuring stress intensity automatically, it helps better understand the stressors

and manage stress levels in daily life. Either in the laboratory environment or in the

natural environment, there is still a lack of a gold standard for stress measurement.

Existing approaches assess mental stress levels based on the bodily response to the

psychological state. Under the stimulation of stressor, the hypothalamic-pituitary-

adrenal (HPA) axis increases the secretion of stress hormones including cortisol and
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catecholamine, which triggers a series of physiological changes in our body [118].

Typically, psychologists and physiologists detected the concentration of cortisol col-

lected in blood, saliva, or urine samples to measure stress [124]. The detection of

cortisol concentration takes place in professional institutions is very expensive and

time-consuming such that it is inapplicable to monitor stress on a daily basis. As

an alternative approach, recent studies rely on detecting the change of physiological

signals caused by a sympathovagal imbalance in our body such as altered heart rate

variability (HRV) [25, 87] and electrodermal activity (EDA) [31].

On this basis, computer scientists have made great contributions toward ubiquitous

sensing of stress-related physiological responses. There are basically three types of

contributions. First, the development of new sensors that allow non-intrusive and

ubiquitous sensing of physiological signs. Second, the investigation on feature de-

scriptors to better represent and distinguish the stressful physiological state from

others. Lastly, building a supervised machine learning model to accurately predict

stress. Currently, stress has been well detected in both laboratory and wild via phys-

iological signals collected by wearable sensors [57, 84, 117, 136, 130], digital cameras

[96] and hyperspectral imaging technique [28] and achieved over 90% reported pre-

diction accuracy.

Apart from measuring the physiological signal, stress could also be detected by be-

havioral changes such as gesture and body posture [38], facial expression [125, 83],

semantics of speech [72], mobile phone usage [22], social interaction [77], and hybrid

approach using both physiological and behavioral data [73]. In a word, physiological

and behavioral measures collected from ubiquitous sensing can be reliably applied for

approximating mental stress. On top of stress detection, there are several works that

studied the relationship between stress and human behavior such as typing pressure

[54], email usage style [92], and sleep debt [93] by descriptive analytics. However,
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there is no existing work computationally modeling the impact of stress on human

behavior for performance forecasting. In this work, we propose a computational

cognitive performance prediction model to fill in this research gap.

5.2.2 Stress and Cognitive Performance

The relation between stress and cognitive performance has been studied by psychol-

ogists for a long time. There are numerous studies indicated that stress intensity

significantly influence cognitive performance [21, 46, 53, 135]. In [131], the authors

suggested that cognitive performance can be predicted under stress. The response

of stress predicted better performance in the case of resources outweighing demands

than the case of demands outweighing resources [131]. Alternatively, stress is associ-

ated with better performance if one is energetic enough to adapt to stress. Otherwise,

mental fatigue will diminish the ability of stress tolerance leading to the decrement

of performance [23, 55]. Psychologists focused on descriptive analytics that identifies

and discovers significant predictors to describe the e↵ect of stress and fatigue on

performance as a trend or phenomenon. It is rare to find a computational model

of such a trend or phenomenon to make it applicable for performance prediction in

daily life.

In computer science, research on cognitive performance now is focusing on contin-

uously assessing the cognitive function and finding out the condition of achieving

the best cognitive performance through modeling and understanding the rhythms of

cognitive function such as attention and alertness. By monitoring the usage of online

activities including productivity software, Internet surfing, window switching, mail

checking, and Facebook, etc. in the workplace environment, G. Mark et al. found

that the peak of focus attention appears in mid-afternoon while the bored feeling is

strongest in early afternoon [91]. S. Abdullah et al. adopted the response time of

108



the Psychomotor Vigilance Task (PVT) as alertness measurement and predicted it

by given smartphone usage behaviors to continuously and automatically monitor the

cognitive performance [12]. However, existing studies fail to explain the mechanism

of the observed trends and phenomena and usually ignored fatigue induced by the

prolonged cognitive load which introduced bias in measuring cognitive performance.

In this work, we go beyond the previous findings to investigate the e↵ect of con-

tinuous stress on cognitive performance over time and computationally model it for

cognitive performance prediction.

5.3 Continuous Stress Performance Model

In this section, we unify the theories regarding stress, fatigue, and cognitive perfor-

mance and proposed a psychological Continuous Stress Performance (CSP) model

that theoretically study the impact of continuous stress and mental fatigue on cog-

nitive performance over time.

The relation between stress and performance can be described by the inverted-U

hypothesis, also known as the Yerkes-Dodson Law [145]. As one of the oldest laws of

psychology, it has been widely accepted and referenced. However, R. Hockey had crit-

icized its correctness, suggested that the Yerkes-Dodson Law has oversimplified the

relation between stress and performance [55, 48]. He argued that the original study

was describing the link between discrimination learning and aversive reinforcement,

it then being adopted to relate stress and performance which was misinterpreted.

The decrement of learning performance under high-stress situations might be caused

by the distracting e↵ect of stress-inducing tasks or secondary anxiety e↵ects instead

of stress itself [55]. Moreover, noise, heat, and sleep loss made performance worse

when those stressors enforced alone, but the joint e↵ect of two stressors was oppo-

site in some cases [55]. For example, sleep loss reduced body sensitivity to noise
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but the noise increased concentration when sleep loss, which eliminated performance

decreasing. Therefore, there was no direct support to the proposed relation, and it

persisted due to the failure of quantifying stress and performance respectively to the

inverted-U axis.

Another limitation of the Yerkes-Dodson Law is that it is not considering the tem-

poral e↵ect of stress on performance. In the Yerkes-Dodson law, each stress intensity

is associated with a constant predicted performance value. By performing the same

cognitive task multiple times under di↵erent stress intensities, the relation between

stress and performance forms the inverted-U shape [46]. The inverted-U relation

keeps constant if stress remains at the same level regardless of the duration of the

task. In the reality, cognitive performance fluctuated over time because of continuous

cognitive demand even if stress remains at the same level. Therefore, the Yerkes-

Dodson Law is not applicable for modeling the impact of stress on performance over

time. Cognitive performance would change under prolonged stress and cognitive

demand. Predicting cognitive performance by stress intensity without noticing the

dynamic change under stress over time leads to imprecise results. In such a dy-

namic cognitive process, the relation between stress and performance is much more

complicated than the inverted-U.

Continuously performing cognitive tasks induces mental fatigue as a result of pro-

longed stress and cognitive demand, which is a symptom of insu�cient mental energy.

This psychological state a↵ects the ability to sustain stress and performance [23, 55].

J. Huxley defined mental energy as “the driving forces of the psyche, emotional as

well as intellectual” [61], where H. Lieberman defined in a similar way as “the ability

and willingness to engage in cognitive work”. It is one of the major attributes of

performance [76]. In view of this, we adopt the concept of mental energy to describe

the temporal e↵ect of mental fatigue towards prolonged cognitive demand and stress
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in the following section. Prolonged cognitive tasks consume mental energy over time

and gradually a↵ect cognitive performance.

Figure 5.1: Continuous Stress Performance Model.

Under continuous stress, the human body consumes mental energy in order to adapt

to the demand for change. While the stressor persists for long period until the men-

tal energy drain, this reciprocal relationship triggers the state of exhaustion such

that severe stress responses arose [34]. According to the General Adaptation Syn-

drome theory, our body consumes “adaptation energy” to resist cortisol secretion

resulting in lower stress responses [23, 121]. In other words, “energy” as a limited

resource is required during the process of stress adaptation. Lower stress responses

can be observed while energy is su�cient to manage the stressor, vice versa. There-

fore, continuous stress and mental energy have an interactive e↵ect on each other

and jointly a↵ect cognitive performance over time. On the other hand, prolonged

cognitive demand also a↵ected the state of mental energy. We named the dynamic

impact of continuous stress and mental energy on cognitive performance as CSP

model as shown in Fig. 5.1. Prolonged cognitive tasks induced cognitive demands

that consumed mental energy over time. Continuous stress and the amount of mental

energy interactively a↵ect each other, which jointly leads to the fluctuation of cogni-
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tive performance over time. In CSP model, mental energy serves as an intermediate

variable carrying the physical meaning of the temporal e↵ect of stress on cognitive

performance.

5.4 Data Set

In this section, we will introduce our laboratory experiment design for physiological

stress response data and cognitive performance data collection.

5.4.1 Design of Laboratory Experiment

A laboratory experiment was conducted to capture the temporal relation between

stress, mental energy, and cognitive performance. Fifteen healthy non-smoking adult

participants of both genders (three females), di↵erent ages (22 to 30, average 26.53,

variance 5.41), multiple races (one Indian, one Italian, and thirteen Chinese) par-

ticipated. The experiment was conducted in a completely soundproofed enclosed

room, and the temperature was kept constant at 22 degrees Celsius. Participants

were sitting in front of a laptop computer and wearing the Empatica E4 wristband

on the wrist of their dominant hand, which continuously collected their electroder-

mal activity (EDA), blood volume pulse (BVP), inter-beat interval (IBI), and 3-axis

accelerometer data to measure stress response during the experiment. The physiolog-

ical stress response data and cognitive performance data would be collected during

the experiment for training and testing the CCSP model later.

Laboratory Experimental Tasks

We alternately conduct the Advanced Trail Making Test (ATMT) and the N-back test

in the experiment. The ATMT is a cognitive test to “evaluate the level of selective

attention and spatial working memory regardless of the subject’s intelligence quotient

or experience” [100]. The test begins with 25 dots with numbers (1 to 25) on the
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screen. Participants were asked to connect the dots in sequential order as quickly as

possible while avoiding to connect the wrong numbers. The dot will disappear when

the participant connects it in the right order. Then a new dot with a new number

will be placed on the screen at a random position in order to ensure that there are 25

dots at any time. The new number is generated in sequential order starting from 26.

For instance, when the participant clicks the dot with number 1, it will disappear

and a new dot with number 26 will be generated at the same time. An example

of the ATMT shows in Fig. 5.2a. To measure cognitive performance, the number

of corrected and uncorrected connection, mouse movement distance, and the time

interval between connecting two dots were recorded.

The N-back test is one of the most popular experimental paradigms to evaluate work-

ing memory. It is a continuous task in which a series of stimuli present consecutively,

and the participant determines whether the current stimuli are the same as the stim-

uli n trial before. In the 2-back test, a series of stimuli in one of six characters (’A’,

’B’, ’C’, ’D’, ’E’, and ’F’) will be displayed to participants one by one. Participants

are asked to press key H on the keyboard when the current appearing character is

the same as the one in N trials before as shown in Fig. 5.2b. Every character appears

800 ms followed by a 400 ms blink page to determine the result (correct, incorrect,

or missing). There is 50 stimulus presented in every minute with 17 triggered stimuli

that participants need to respond. The sequence of stimulus is generated randomly

and then fixes to everyone. Therefore, every participant has the same series of stim-

uli to assure the di�culty among di↵erent participants is the same. The number of

correct, incorrect, and miss are recorded as well as the response time of correct and

incorrect.

In our experiment, we adopt participants’ performance in ATMT to quantify their

cognitive performance instead of the performance in the 2-back test because the
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performance in the 2-back test is much easier to be influenced by the increase of

learning with experience than ATMT. In our pilot study, nine participants are hired

to perform the 2-back test for uninterrupted 20 minutes. Though they had trained

before the experiments, their performance kept on decreasing in the first twelve

minutes because of 2-back test successfully consumed their mental energy and induce

fatigue, but their performance increased in the last 5 to 7 minutes. This phenomenon

is because of the learning process with experience accumulated from the test. Even

though participants hardly remember some characters at the end of the test, they

could still make correct responses under conditioned reflexes of their memory, which is

the limitation of using the n-back test to evaluate cognitive performance. Comparing

with the N-back test, the ATMT is more robust to learning with experience so that

the performance in ATMT would keep on decreasing under mental fatigue [100].

The limitation of ATMT is that the performance decreases slowly under fatigue and

the number of incorrect connections is very small. Therefore, we adopt the 2-back

test to consume participants’ mental energy and induce fatigue, then measure their

cognitive performance in ATMT so that we could get rid of the learning e↵ect and

the performance incomparable issue.

Laboratory Experimental Protocol

The experiment consists of two sessions: neutral testing and stress testing. In neutral

testing, the cognitive workload would induce mental fatigue, and it is unavoidable

that a small amount of stress would be induced by the cognitive demand simulta-

neously. The neutral testing aims to collect data for exposing the e↵ect of mental

fatigue on cognitive performance. In stress testing, an external stressor, baby crying

noise, would be applied to the subject to induce extra stress during performing the

same tasks as in neutral testing. Stress will be not only induced by cognitive demand

but also induced by the sensory load. Because the cognitive tasks in both neutral
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(a) (b)

Figure 5.2: Examples of the experimental tasks. (a) is the example of the Advanced
Trail Making Test and (b) is the example of the 2-back test.

testing and stress testing are exactly the same, ideally the mental fatigue induced by

the cognitive workload in both testings for a given subject would be the same too.

The stress testing phase aims to collect data for exploring the changes in cognitive

performance over time under external stressors comparing with the neutral phase.

Participants are required to visit the lab twice for the two sessions. We randomly

selected 7 participants to take the stress testing first and the rest of 8 participants

would take the neutral testing first. There is at least 3 hours gap between the two

sessions in order to ensure the participant has recovered from both stress and fa-

tigue. All participants were instructed to avoid any kind of ca↵eine within twelve

hours before the experiment.

The participants will wait outside the experimental room upon arrival, where the ob-

server explains the experiment protocol and the experimental tasks to them. Then

each participant will have 7 minutes of training of the tasks before the experiment be-

gin (2 minutes ATMT; 5 minutes 2-back test). After training, the participants wear
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the E4 wristband and following the observer to the experimental room. Physiological

data collection will launch once the E4 wristband has been worn. Participants are

asked to sit in front of a laptop computer and the experiment begins once the observer

leave and closes the door of the experimental room. The first part is a 5-minute rest,

where the physiological data were recorded to capture the baseline for each partici-

pant. After the rest session, the participant fills in his demography information, and

then start performing three cognitive tasks sessions continuously.

Figure 5.3: The schedule of cognitive tasks session. Q is questionnaire session.

Each cognitive task session contains 4 rounds of ATMT (1 minute per round) and

3 rounds of the 2-back test (2 minutes per round) alternately as shown in Fig. 5.3.

Before and after each cognitive task session, participants are asked to self-report their

stress level and fatigue level on a scale of 1 to 5 from lowest to highest. In order to

make the performance measurement comparable between stress testing and neutral

testing, we fix the appearing position of each dot for all participants, which means

that all cognitive tasks including ATMT and 2-back tests are exactly the same in

stress testing and neutral testing for all participants. The only di↵erence between

neutral testing and stress testing is that baby crying noise is played during stress

testing. Using baby crying as an external stressor aims to increase the sensory load,

and thus increasing psychological stress without changing the operation or di�culty

of the task.

5.5 Data Observation

We collected data from 28 participants where two were excluded due to software

issues that causing incomplete data. From the remaining 26 participants (M:17;
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Figure 5.4: An overview of the data distribution.

F:9), we collected 208 self-reports and Cortisol samples, 624 ATMT and Attention

task records, and 468 N-back task records.

An overview of the data is shown in figure 5.4. We notice that both self-reported

stress and fatigue have skewed distribution towards the lower values, while 62.5%

and 58.7% of the surveys report their level of stress and fatigue were less than 3

accordingly. There are only 13.5% and 22.1% of the surveys report their level of

stress and fatigue was above 3, and those were reported by only 15 participants.

For the Cortisol readings, we can see that the normalized Cortisol shows a more

significant di↵erence between the first and the second sessions with a p-value < 0.001.

It suggests that the experiment successfully induce stress and fatigue over time that

results in higher Cortisol. We also find that individual di↵erences, as well as gender

di↵erences of performance, exist among the participants. Therefore, we normalized

the self-reports, Cortisol, and performance data for the following analysis to mitigate

the e↵ect of the individual di↵erences.

First, we study the correlation between self-report and Cortisol. There exists a high

correlation between self-reported stress and fatigue where the coe�cient is 0.61 with
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a p-value < 0.001. Surprisingly, there is no significant correlation for either stress

and fatigue to Cortisol. It might be caused by the fact that perceived stress and

the physiological response to stress might be di↵erent, which is potentially a↵ected

by mental energy as discussed earlier. In general, Cortisol increases over time even

across sessions but the self-report stress and fatigue are decreased after the rest

session. Then we investigated the e↵ect of the session order (whether participant

listening to noise in the first session) and the result shows that participants having

the stress session first will drastically increase the Cortisol in the later neutral session

even after 15 minutes recovery, the di↵erence comparing to neutral session first is

significant with p-value < 0.05. Therefore, we applied the linear regression model on

time and the order of the session to predict the normalized Cortisol. The R-square

of the model reaches 0.219 which is comparatively good to the self-reports (stress:

0.142; fatigue: 0.156).
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Figure 5.5: Trend of the cognitive performance in terms of correct count and response
time.

For the performance, we notice that both normalized correct count and normalized

response time increase overtime. It shows that the participants are less responsive

when fatigue accumulated, but the performances on cognitive tasks are increasing

which might be caused by more concentration as time goes. We found correlation of
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0.2 between Cortisol and correct count with p-value < 0.005, 0.15 between Cortisol

and response time with p-value < 0.005, 0.14 between self-report stress and response

time with p-value < 0.001, and 0.098 between self-reported fatigue and response time

with p-value < 0.05. This finding in line with our expectation where performance is

related to mental state, which can be partially expressed by stress and fatigue.

Figure 5.6: T-SNE of stress defined by self-reported stress, Cortisol, and the com-
bination of the two. High stress is where the normalized value of the parameter is
greater or equal to 0.5 and values that lower than 0.5 are low stress.

We then study if the collected physiological data can estimate mental stress. We

extracted statistical features including minimum, maximum, median, and standard

deviation for each of the physiological data. There are more on heart rate variability

as suggested by previous work [73, 124, 57]. The full list of features can be found in

table 5.1. Figure 5.6 shows T-SNE and the detection result of the extracted features.

We defined stress according to three criteria: self-report stress, Cortisol, and the

combination of the two. The self-report stress and Cortisol were scale between 0 and

1 for each participant, and we define high stress as the value � 0.6 where low stress
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Table 5.1: Summary of extracted features for stress estimation.

Modality Features
Blood volume pulse mean, standard deviation, minimum, maxi-

mum, range, first percentile, third percentile,
and median of blood volume pulose

Electrodemo activity mean, standard deviation, minimum, maxi-
mum, range, first percentile, third percentile,
and median of skin conductance

Motion mean, standard deviation, minimum, maxi-
mum, range, first percentile, third percentile,
and median of motion intensity

Body temperature mean, standard deviation, minimum, maxi-
mum, range, first percentile, third percentile,
and median of body temperature

Heart rate measure mean, standard deviation, minimum, maxi-
mum, range, first percentile, third percentile,
and median of heart rate and heart rate vari-
ability; RMSSD, PNN20, PNN50, SD1, SD2,
SD1SD2, VLF, LF, HF, total power, LF ra-
tio, HF Ratio, and the ratio of LF and HF

as the value  0.4 in order to avoid fuzzy data. This results in some data that do not

fall into any of the class and those have been discarded in the classification process.

For self-report, it retains 81.25% (507) of the data, 81.41% (508) for cortisol, and

34.78% (217) for the combination of the two. We can see that for both self-report

stress and Cortisol, the high stress are more concentrated but still mixed with those

instances of low stress. We notice a clearer di↵erentiation using the combination of

both self-report and Cortisol.

We then applied conventional classification models to recognize low and high stress

defined by di↵erent criteria. First of all, the features were normalized between 0

and 1 for each participant. Then we applied the Principle Component Analysis

(PCA) to reduce the number of dimensions of the features. We choose 51 as the

number of dimensions that retain more than 99% of the variance. Then we evaluate
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the classification result on the conventional classification models including Naive

Bayes (NB), Decision Tree (DT), Random Forest (RF), Nearest Neighbor (NN),

Support Vector Machine (SVM), and Artificial Neural Network (ANN). The result

was evaluated by 10-fold cross-validation in the lower part of figure 5.6. It shows

that the performance of classifying stress is way better than a random guess. For

the combination of both self-report and Cortisol, the F-score achieved up to 85.8%.

It complies with the expectation that physiological data can be applied for mental

stress estimation. However, as shown above, the relationship between mental stress

and cognitive performance is non-linear and vastly a↵ected by the duration of the

task. Therefore, a model that takes time e↵ect into consideration is needed, and

the e↵ect to responsive and cognitive ability are di↵erent as shown from the above

study.

In this section, we found that in general, there are correlations between stress and

cognitive performance. There is also a significant temporal e↵ect of accumulated

stress on cognitive performance. However, it is unable to predict the change of

performance for a specific individual using these factors since the e↵ect of stress and

duration to mental energy is unclear, and it is di�cult to measure mental energy

objectively. While we show that physiological signals can estimate mental stress

fairly well, stress and duration of the cognitive task play an important role in mental

energy. A model that takes the stress and the temporal e↵ect of stress on cognitive

performance is needed. In the next section, we introduce a computational model

that considers the mental state as a hidden state, which takes the physiological

signal as input to predict cognitive performance by taking the temporal e↵ect into

consideration.
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5.6 Computational Continuous Stress Performance
Model

On the basis of the proposed CSP model, we developed the Computational Con-

tinuous Stress Performance (CCSP) model which quantifies the dynamic impact of

continuous stress and mental energy on cognitive performance over time. CCSP

model could be used to predict cognitive performance by given a time series of stress

responses. The following definitions are provided to formulate the problem formally.

In the following session, performance is regarded as computed cognitive performance,

which is an objective measure of e↵ectiveness and e�ciency in performing a cognitive

task, in order to provide objective measure towards the vague concept.

Problem 3 (Successive Similar Patterns Mining) Given a Time series of stress

measurement S = {st|t = 1, 2, ..., n}. Assume that the mental energy et is deter-

mined by et�1 and st: et = g(et�1, st), and performance yt1 and yt2 are independent

for t1 = 1, 2, ..., n and t2 = 1, 2, ..., n but t1 6= t2. The objective is to build a compu-

tational model to predict performance yt respected to st and et

The formulation begins with the segmentation of the time series, which was dis-

cretized into T time interval with the same length. In CSP model, mental energy is

solely a↵ected by stress and the duration of cognitive demand. After discretization,

mental energy et at time t = 1, 2, ..., T is the consequence of current stress st acting on

surplus energy et�1 at t�1 so that et is determined by et�1 and st. The initial mental

energy is represented by e0. As mentioned in CSP model, performance yt at time t is

a↵ected by both stress response st and the amount of mental energy et, which means

that the performance at di↵erent time frames is independent. Then, our research

problem can be formulated as shown in the following box. In our study, mental

energy is one of the dependent variables to performance, so it cannot be measured
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Figure 5.7: Computational Continuous Stress Performance Model.

by performance indicators directly as what psychologists had done before.

The most direct approach to solve the problem is to first collect large amounts of

stress response data and performance data, then adopt an existing machine learning

algorithm to predict the performance by using features extracted from stress response

data. The machine learning algorithm here just serves as a black box, which fails

to explain the psychological relation between continuous stress, mental energy, and

performance, but the prediction results show that the classical classifiers such as

random forest, k-nearest neighbors, and deep neural network cannot work well (please

refer section 5.7 for more details). One alternative approach is that using the collected

stress response, performance data at each time frames to fit a surface representing the

function of performance respected to stress responses and time. However, it is very

di�cult to collect large amounts of stress response data from a single person in fine-

grained, which covered a wide range of stress intensity. The individual di↵erences in

stress responses will introduce lots of errors further increasing the di�culty of model

fitting.
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Although the real value data of mental energy cannot be collected directly, we seek

to build a computational model that can still retain the joint impact of stress and

mental energy on performance over time. Therefore, we formulate the CCSP model in

the view of probability. Our goal shifts to estimate yt which maximizes the posterior

likelihood P (yt|st, et). Since et is dependent upon et�1 but independent of et�l, l =

2, 3, ..., t� 2 and current performance yt is independent of the previous performance,

the problem satisfies the Markov assumption. Better yet, the mental energy et can

be modeled as the latent state of Markov chain, which can only be partially observed

by cognitive performance yt under input condition st. It perfectly solves the problem

that lacks objective mental energy data but still retains its impact on performance.

Integrating the interaction between yt, st and et at time t = 1, 2, ..., T , we get a

directed graph model showed in Fig. 5.7, which could be quantitatively modeled by

the Input-Output Hidden-Markov Model (IOHMM). The IOHMM first estimates the

probability distribution of mental energy et at current time frame t by given current

input probability of stress st and the probability distribution of mental energy et�1 at

last time frame, and then calculates the probability of current performance yt under

the condition of st and et. In each time step t, the three vertices st, et, and pt form

a Bayesian Network that determine the dependent probability distribution between

them.

5.6.1 CCSP Model Training and Prediction Algorithms

CCSP model could be considered as a combination of the standard Hidden Markov

Model and the Bayesian network. It represents the condition probability distribu-

tion P (yT1 |sT1 ) of observation sequences y
T
1 = y1, y2, ..., yT on the condition of input

sequences s
T
1 = s1, s2, ..., sT , where T is the length of sequences. In this chapter,

we adopt the method proposed in [19] to train the optimal parameters of CCSP

model including initial state probability distribution ⇡, state transition probability
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distribution A, and observation probability distribution B for both latent states and

output observation, which is the expectation-maximization (EM) based algorithm.

It maximizes the condition likelihood P (yT1 |sT1 ), which is similar to the Baum-Welsh

algorithm used to train a standard hidden Markov model.

We first introduce the EM algorithm for training CCSP model. Let us define

e
T
1 = e1, e2, ..., eT as the hidden state mental energy sequences and �(⇡, A,B) is the

parameters of CCSP model that need to be trained, where ⇡ = [⇡1, ⇡2, ..., ⇡i, ..., ⇡n]T

is initial state probability vector and ⇡i = P (e1 = i|y1), i = 1, 2, ..., n represents the

probability of being in state i at time t = 1 with output observation y1; A = [aij,t]n⇥n

is state-transition probability matrix at time t and aij,t = P (et = i|et�1 = j, st), i =

1, 2, ..., n, j = 1, 2, ..., n represents the transition probability from state i to state j

with input st; B = [bj,t(k)]n⇥m is the observation probability matrix where bj,t(k) =

P (yt = k|et = j, st), k = 1, 2, ...,m is the probability of obtaining observation yt = k

in state j at time t.

Similar to the Baum-Welsh algorithm, we first calculate the expectation of parameter

�̂ under current hidden state and get the Q function, then we maximize the Q

function to estimate the optimal parameter � using maximum likelihood estimate

(MLE). Let E is the set of hidden state e
T
1 , Y is the set of output observation

y
T
1 , and S is the set of input data s

T
1 , then the Q function can be calculated by

Eq. 5.1 where ĝi,j = P (et = i|sT1 , yT1 , �̂), ĥij,t = P (et = i, et�1 = j|sT1 , yT1 , �̂), and

zt = [z1,t, z2,t, ..., zi,t, ..., zn,t]T is a vector of indicator variables that zi,t = 1 if i = t,

otherwise zi,t = 0.
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Q(�, �̂) = E[logP (E,Y|S,�)|Y,S, �̂]

=
TX

t=1

nX

i=1

E[zi,t|sT1 , yT1 , �̂] · logP (yt|et = i, st,�)

+ E[zi,t, zj,t�1|sT1 , yT1 , �̂] · logP (et = i|et�1 = j, st,�)

=
TX

t=1

nX

i=1

ĝi,j logP (yt|et = i, st,�)

+
nX

j=1

ĥij,t logP (et = i|et�1 = j, st,�)

(5.1)

ĝi,j and ĥij,t can be easily calculated by the forward-backward algorithm with param-

eter �̂ using Eq. 5.2 to Eq. 5.6 where ↵i,t is obtained by the forward pass algorithm

and �i,t is computed by the backward pass algorithm.

ĝi,j = P (et = i|sT1 , yT1 ) =
1

L
↵i,t�i,t (5.2)

ĥij,t =
1

L
P (yt|et = i, st)↵j,t�1�i,jP (et = i|et�1 = j, st) (5.3)

↵i,t = P (yT1 , et = i|sT1 )

= P (yt|et = i, st)
X

j

P (et = i|et�1 = j, st)↵j,t�1

(5.4)

�i,t = P (yT1 |et = i, s
T
1 )

=
X

j

P (yt+1|et+1 = j, st)P (et = j|et�1 = i, st+1)�j,t+1

(5.5)
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L = P (yT1 |sT1 ) =
X

i

P (yT1 , eT = i|sT1 ) =
X

i

↵i,T (5.6)

In maximization step, we use gradient ascent method to increase the value of ob-

jective Q function in Eq. 5.1 and search the best parameter �. Since the first

term of objective Q function depends on initial state probability vector ⇡ and state-

transition matrix A, and the second term only depends on the observation probability

matrix B, we separate the objective Q function into two sub-functions and optimize

them alternately, which will simplify the primal problem and reduce computational

cost.

The prediction of discrete performance yT+1 at next time step can be formulated

as searching a discrete value pT+1 = k from the performance candidate set {k|k =

1, 2, ...} to maximize the likelihood P (yT+1|yT1 , sT , �̂) with given performance obser-

vation sequence y
T
1 , the stress response sT+1 and well trained CCSP model �̂. The

objective conditional probability is calculated by Eq. 5.7.

P (yT+1|yT1 , sT , �̂) =
P (yT+1, y

T
1 |sT , �̂)

P (yT1 |sT , �̂)
(5.7)

Because yT+1 is independent of y
T
1 , the objective probability P (yT+1|yT1 , sT , �̂) is

proportional to P (yT+1, y
T
1 |sT , �̂). For each possible performance observation yT+1 =

k, k = 1, 2, ..., the likelihood P (yT+1 = k, y
T
1 |sT , �̂) can be obtained by the forward

pass algorithm and the one with maximum likelihood would be selected as the pre-

dicted output observation that is the predictive cognitive performance yt+1 at next

time stamp.
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5.7 Evaluation

In this section, we provide the result of experimental evaluation on cognitive perfor-

mance prediction. We first introduce the metrics adopted for the evaluation. Then,

we discuss two supervised learning schemes to validate our proposed CCSP model

and comparing the result with several baseline methods.

5.7.1 Evaluation Metric

In this evaluation, the target classes are represented as i = 1, 2, 3 that refers to dif-

ferent states of cognitive performance: increasing, decreasing, and remain constant.

We define the true positive and false positive corresponding to di↵erent truth and

prediction classes as shown in Figure 5.8b. The precision and recall of each class are

calculated with the equation as shown in Figure 5.8a.

where j = 1, 2, 3 and j 6= i. We also use F1-score as a combined metrics to evaluate

performance in predicting each class label i, which is defined in Eq. 5.8.

F1i = 2 · precisioni · recalli
precisioni + recalli

(5.8)
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5.7.2 Prediction Analysis

In this section, we discuss two supervised learning schemes for predicting cognitive

performance. The first scheme is the person independent prediction using 10-fold

cross-validation. The other one is the n-step ahead prediction which utilizes the

data at the early trails as a training set and predicts the future performance in the

later trails. Note that we do not train an individual model to test person dependent

prediction because each participant only has 12 data points collected in the neutral

session and another 12 data points collected in the stress session, which is too small

to train an e↵ective model.

Among the three cognitive tasks, we selected the performance of ATMT to evaluate

the prediction result. The reason is that the correctly connected numbers (or cor-

rect count) of ATMT have the most balanced distribution as shown in Section 5.5.

Also, the performance of ATMT is less a↵ected by the skill of the participant and

therefore not related to the level of education. Particularly, we measure the amount

of correct count within a given time. The precision of the ATMT task is defined

as the correct count divided by both correct and incorrect count. In our dataset,

we notice a small incorrect count that recorded an average 0.9558 precision with a

standard deviation of 0.0722. It means that adopting average value to predict the

precision already achieve negligible root-mean-square error. Therefore, we focus on

the prediction of the change of correctly count. The average change of correct count

over all participants is �0.035, and the standard deviation is 3.4. Therefore we define

the three classes by the di↵erence of correct count as >= 3 for increasing, <= �3

for decreasing, > �3, and < 3 for remain constant.
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Table 5.2: Comparison of results in person independent prediction defined by the
di↵erences of correct count in ATMT task.

Model Precision Recall F1-Score

KNN 40.38% 35.97% 37.45%
NN 31.92% 50.14% 38.12%
RF 32.28% 55.97% 40.69%
SVM 32.28% 55.97% 40.69%
CCSP 42.86% 43.19% 42.03%

Table 5.3: Comparison of results in person independent prediction defined by the
normalized di↵erences of correct count in ATMT task.

Model Precision Recall F1-Score

KNN 46.76% 44.31% 45.06%
NN 42.10% 62.15% 49.94%
RF 42.02% 64.44% 50.73%
SVM 42.02% 64.44% 50.73%
CCSP 50.34% 51.39% 50.24%

Person Independent Prediction

For the person independent prediction, we divide the subject’s data into 10 partitions

randomly. Each partition has two to three subject’s data in both stress and neutral

session. For each fold, one of the partitions is selected as the testing set and the rest

of the data is used as the training set. The weighted average of F1-score, precision,

and recall are then calculated and averaged over the 10 folds. We choose the number

of hidden states by an exhaustive search that minimizes the training error for the

CCSP.

The result in Table 5.2 shows the prediction performance on the di↵erences of cor-

rect count in the ATMT task. The RF and SVM achieved the same result, while

the KNN and NN models also achieved a similar result. Generally, CCSP achieved

better performance comparing with the baseline methods. It has significantly higher

precision suggesting that it is more accurate to predict the correct classes. The RF
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and SVM were highly a↵ected by the skewed distribution that predicting most sam-

ples as constant, which is the dominant class and therefore recorded a higher recall

rate. In order to reduce the individual di↵erences, we also measure the performance

on predicting the normalized di↵erences of correct count in ATMT. The di↵erences

in the correct count are normalized within each session for each participant. The

result in Table 5.3 shows that the performance is significantly better, and again the

CCSP model achieved the highest precision. However, the F1-Score is slightly lower

than the RF and SVM.

N-Step Ahead Prediction

The N-step ahead prediction aims to predict the future n trails performance given the

previous performance. Since each participant has 12 trails in each session, we divide

the dataset by the index of trails. For example, 1-step ahead prediction leverage the

first 11 trails data of all participants as a training set and predicts the performance

of the last trail. In this evaluation, we adopt the same approach in the last section

to determine the number of states used in CCSP.

The result is shown in Table 5.4 and the best performance of each evaluation are in

bold. It suggests that the performance of CCSP consistently outperforms the other

baseline methods. Again to mitigate the e↵ect of individual di↵erences in perfor-

mance variation, we evaluated the prediction result on the normalized di↵erence of

performance and the results are shown in Table 5.5. Significantly better performance

can be observed compared with the raw performance di↵erences and the performance

is also consistently superior to the other baseline methods.
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5.8 Discussion and Conclusion

Continuous stress and mental fatigue are important factors a↵ecting cognitive per-

formance. In the CHI community, stress detection using ubiquitous technology has

been well achieved in the past few years. However, it remains at the level of sens-

ing and yet applied for real-world applications. Our work combines psychological

theories and models to create the composite CSP model considering the dynamic

relationship between stress, fatigue, and performance. We then transform it into a

data-driven computational model for cognitive performance prediction. The model

has achieved better prediction accuracy compared with the state-of-the-art machine

learning techniques. The model is trained and validated using data collected from

a rigorous laboratory experiment carried out by 28 healthy participants. Because

there are numerous studies that examined the relationship between these variables,

our work focuses on the quantification of such relation from the collected data. The

resultant model is capable to predict the change of cognitive performance given a

series of physiological measurements as an approximation of stress. It is the first

step towards the goal to apply stress detection on modeling the impact of stress on

human behavior.

By analyzing the collected data, we replicated the results of previous studies, con-

firmed that physiological features are statistically significant in terms of predicting

self-reported stress and fatigue. Although ambient noise as an external stressor may

not significantly a↵ect physiological stress responses, we observe that performance

in searching task are generally higher while participants are hearing a noise in the

background. This finding is also supported by previous studies where noise positively

associated with alertness and selectivity - the situation that having higher priority

for the allocation of resources to multiple tasks [55].
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The result of cognitive performance prediction obtained from the proposed CCSP

model shows the importance of leveraging domain knowledge in model design, which

has been overlooked in most of the previous work. Although black-box approaches

such as DNN also achieve relatively good results, our simple but interpretable CCSP

model obtains the best prediction performance which is superior to the others.

Cognitive performance prediction with ubiquitous sensing devices has many potential

applications. Organization management can apply this technique to optimize overall

productivity with workflow management. For instance, more work can be allocated

to the worker inducing stress that improves its productivity. It can also reduce the

workload of those workers experiencing mental fatigue and allow those workers to

recover from overload. Some occupations are stressful in nature such as caregivers,

nurses, and drivers. Cognitive performance prediction can be applied to prevent

accidents caused by excessive stress and fatigue. Individuals such as students and

employees can utilize the prediction result to improve productivity by scheduling

working or study plans dynamically.

This work has paved the way for future research towards extending the application

of stress detection to understanding human behavior. However, it still has several

limitations and potentials for future work. First of all, this study focused on the

dynamic of performance in a prolonged cognitive task. It is a micro view of the

dynamic process, therefore, overlooked the e↵ect of macro attributes such as the

cognitive rhythm [12]. It is valuable to extend the CCSP model considering the

cognitive rhythm as well as the energy recovery process in a longer period. Second,

the work could be extended by increasing the scale of participants where new ob-

servations and conclusions can be drawn from a larger sample. Third, the ambient

noise as an artificial stressor may not be the best choice in studying the e↵ect on

performance. Other stress induction methods that would not a↵ect the evaluation of
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performance can be applied, where di↵erent e↵ects on performance could be exam-

ined. Finally, this laboratory study as proof of concept provided important insight on

predicting behavioral changes by measuring psychophysiological attributes. Future

work could extend it to field study to capture cognitive dynamics in a more realistic

environment.
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Chapter 6

Conclusion

Ubiquitous monitoring of stress is an important problem with great impact, espe-

cially for smart health applications. In this thesis, we focused on the measure of

repetitive activities, stress, and its impact on cognitive performance. For measuring

repetitive activities, the key challenge is the variation incurred by individual di↵er-

ences and the diversity of the activities. Meanwhile, the proposed method should

be e�cient enough to operate on mobile devices. For the prediction of stress im-

pacts, the key challenge is the limited number of annotated data, which makes it

di�cult to approximate a model to the underlying relationship. Especially most of

the data-driven models are data-hungry.

To address the issue of diversity in human activities, we proposed to measure the

repeating physical motion to capture repetitive daily activities that are related to

health. Particularly, we divided the problem into two sub-problems. The first is to

detect repetitive activity using wearable sensors. The data generated are typically

time-varying measures. We hereby study a more general problem that detects re-

peating patterns in multivariate time series. We proposed an e�cient and robust

algorithm to detect whether and where repeating patterns occurred in the time se-

ries. Second, we aim to locate and recognize the pattern that is being repeated from
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the detected segments of the time series. It helps to count the number of repeti-

tions of the activity, and be able to extract the pattern so as to classify the activity.

The proposed approach can e↵ectively detect and identify repeating patterns in mul-

tivariate time series. Beyond measuring the repetitive activity, we demonstrated

that the method can also be applied in many other applications such as respiration

monitoring using wireless signals.

The second issue related to the di�culty to obtain annotated data for stress im-

pact prediction. We first provided a preliminary study to show that positive stress

can be recognized using data collected from smartphones. On this basis, we con-

firmed stress symptoms have relations with an impact on cognitive performance. By

leveraging domain knowledge in psychology and physiology, we proposed a compu-

tational model that can continuously predict cognitive performance by monitoring

physiological signals as an estimation of stress.

As discussed in section 1.3, stress detection has been studied extensively in which

di↵erent potential measures were investigated for both biomedical and behavioral

symptoms. However, the computational way for stress impact monitoring is under-

examined. It is crucial to measure and predict the impact of stress to provide more

e↵ective stress management. In the future, we will investigate more aspects of the

stress impacts to improve the stress intervention method. Also, more attention will

be paid to the discovery of behavioral symptoms of stress. This can potentially be

achieved by applying knowledge from psychology, as well as to inspire new directions

back to the psychology field.

In summary, we investigated the measurement of stress symptoms and the prediction

of stress impacts. We identified the challenges and research issues for stress mon-

itoring and proposed an e↵ective framework to address the issues aforementioned.
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The proposed algorithms for repeating pattern is a general approach that is also

applicable for other problems with multivariate time series. The prediction of stress

impact demonstrated the potential of better stress management using a computa-

tional approach and o↵ering promising direction for future work.
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