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Abstract 

The stripping breakup process of a single liquid droplet under the impact of a planar 

shock wave is the phenomenon that has been widely observed over the last 70 years. This 

droplet aerobreakup phenomenon is a fundamental and challenging two-phase flow 

problem that occurs in multi-application, such as secondary atomization and raindrop 

damage during an atmosphere reentry. A challenging problem which arises in this domain 

is how the internal structure and flow field inside the droplet affects the droplet’s initial 

deformation.  

In this thesis, the droplet breakup experiment is conducted in a horizontal shock 

tube and the evolution of the droplet interface is recorded by direct high-speed photography. 

Compressible Euler equations are solved using an in-house inviscid upwind characteristic 

space-time conservation element and solution element (CE/SE) method coupled with the 

HLLC approximate Riemann solver. A reduced five-equation model is employed to 

demonstrate the air/liquid interface. 

First, we present the numerical and theoretical investigation targeting the 

establishment of an internal flow field inside a pure water droplet exposed to shock-wave 

impact. The main focus is on the description of the droplet internal flow pattern, which is 
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believed to be one of the dominant factors in initial droplet deformation. The droplet 

internal flow pattern holds steady for quite a long time after the incident shock passage, 

and a saddle point is observed for the first time. Accordingly, the saddle point inside the 

droplet flow is used as a characteristic point to describe the internal flow. Cases of different 

incident shock strengths and liquid are tested, and a theoretical prediction is proposed to 

delineate the correlation between the saddle point steady position and the strength of the 

incident shock wave. The numerical cases are found to be in good agreement with the 

prediction. The present study helps to complete the understanding of the overall droplet 

aerobreakup phenomenon. 

Moreover, to bridging the knowledge gap that few studies have yielded the 

deformation and breakup regimes of a water droplet embedded with a vapor cavity in the 

high-speed airstream, the interaction of a shock wave and a water droplet embedded with 

a vapor cavity is experimentally investigated in a shock tube for the first time. The vapor 

cavity inside the droplet is generated by decreasing the surrounding pressure to the 

saturation pressure, and an equilibrium between the liquid phase and the gas phase is 

obtained inside the droplet. The formation of a transverse jet inside the droplet during the 

cavity-collapse stage is clearly observed. Soon afterwards, at the downstream pole of the 

droplet, a water jet penetrating into the surrounding air is observed during the cavity-
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expansion stage. The evolution of the droplet is strongly influenced by the evolution of the 

vapor cavity. The phase change process plays an important role in vapor cavity evolution. 

The effects of the relative size and eccentricity of the cavity on the movement and 

deformation of the droplet are presented quantitatively. A modified Rayleigh-Plesset 

equation is derived that reasonably predicts the bubble collapse process. 
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1. Introduction 

1.1 Backgrounds  

After being impacted by the coming shock wave, the droplets will then deform and 

break up in the following subsonic or supersonic free stream gas flow. This phenomenon 

is a hot-spot flow problem focusing on the evolutions of the high-speed impact interface 

shape and the droplet deformation and fragmentation mechanism. Researchers have put 

attention on this problem for several decades, due to its wide applications in the industrial 

and natural environment.  

As shown in Fig. 1.1(a), such industrial applications include the ablation 

management of space vehicles caused by rain droplet impingement during an atmosphere 

reentry (Reinecke & Waldman 1970). By optimizing the shape of the aircraft and 

improving the aerodynamic characteristics of the surface, the droplets will be broken before 

hitting the surface, thus reducing the energy of the droplets and effectively reducing the 

damage of the aircraft surface. Other applications involve the supersonic combustion in 

multiphase mixtures for scramjet engines (Fig. 1.1(b)), and the national security measures 

for the terrorist attack of an airborne bio/chemical weapon explosion, etc.  
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Figure 1.1 Examples of droplet aerodynamic breakup in engineering applications. (a) 

Apollo capsule during atmospheric reentry; (b) schematic diagram of a liquid jet injected into a 

high-speed cross flow (Perurena et al., 2009). 

In the combustion chamber of the engine, as shown in Figure 1.1(b), the liquid jet 

that ejected from the fuel nozzle into the high-speed air stream first break into multiple 

droplets, these large droplets then secondary breakup into smaller droplet sizes (Perurena 

et al. 2009), accurately predicting droplet fragmentation times and the mist particle size 

distribution would be useful in optimizing engine design and raise the combustion 

efficiency. As the energy that leading to the liquid droplets breakdown comes from the 

kinetic energy of the high velocity airflow after the shock wave, the installation of a water 

curtain in the closed compartment can reduce the damage to the equipment and casualties 

caused by the blast wave(Van Wingerden 2000). 

The fragmentation of isolated spherical droplets in airflow is a fundamental topic 

in the study of high-speed two-phase flow. A large number of scholars have studied and 

discussed the droplet fragmentation problem under different incoming flow conditions. 
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The early studies were mainly based on experimental observation and theoretical analysis, 

including the description of the morphology of droplets in the airflow under various 

incoming flow conditions, the measurement of droplet fragmentation time and the 

discrimination of several fragmentation mechanisms under different incoming flow 

conditions. As the experimental means and measurement accuracy are gradually enriched, 

the study of the droplet deformation and crushing mechanism is refined, and the droplet 

breakup experimental results are further enriched. At this stage, the transformation of the 

crushing mechanism and its influence by the incoming flow parameters are the hotspots of 

related research. Although the most fruitful achievements were obtained in experimental 

methods, the computational fluid dynamics played a significant role in understanding the 

droplet breakup mechanism. Because of the water’s surface tension, the diameter of liquid 

droplets in nature is less than 3mm, and the wave system cannot be seen clearly using only 

experimental observation methods such as schlieren method. It is also difficult to measure 

the interfacial pressure distribution and temperature change of the deforming liquid 

droplets due to the experimental capability. With the help of CFD, a lot of studies have 

been carried out to simulate the droplet deformation and crushing process by numerical 

methods and to reveal its underlying mechanism. However, most of the existing studies are 

focused either on the first stage of droplet deformation or on the pure numerical validation. 
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The outer air flow is assumed to be the only drive of the droplet deformation, which leads 

to incomplete understanding of the droplet breakup mechanism. As a result, a 

comprehensive experimental and numerical investigation is still needed. The experimental 

images should illustrate the droplet interface evolution features from its early to relatively 

late stage. At the meantime, it is incomplete to only interpret the deformation from the 

perspective of outer flow. The inner liquid flow is also need be considered. Herein, we 

build upon the computational efforts of Shen and Wen (2016), and utilize a flow solver to 

numerically investigate this fundamental fluid dynamics problem. 

The problem of aerodynamic deformation of bubbling droplets is also prevalent in 

engineering applications. In an experimental study of excitation wave impingement on a 

liquid column, Sembian et al. (2016) found that cavitation bubbles were generated 

downstream of the column, which they attributed to the convergence of expansion waves 

reflected from the interface downstream of the column at specific locations within the 

droplet, generating a low pressure sufficient to initiate cavitation; meanwhile, numerical 

simulations confirmed this, i.e., the location of the simulated low-pressure zone and the 

experimental cavitation. The location of the air bubbles is coincident. In ultrasound therapy, 

Shpak et al. (2016) used droplets to coat certain low-boiling drugs (e.g. volatile 

perfluoropentane) and they found that once a phase change was triggered, a large cavity 
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would form inside the droplet. In addition, a large number of vesicular-containing droplets 

are generated during vapor-containing column jet fragmentation (Lin et al., 2004). In 

contrast, the aerodynamic deformation and fragmentation kinetics of vesicular droplets is 

relatively complex, and there exists both aerodynamic deformation and fragmentation of 

liquid and bubble collapse, which belongs to the combination of the two. At present, there 

is a lack of research on the pneumatic deformation and fragmentation of bubbling droplets, 

and the underlying mechanism needs to be further explored. 

Even with advancements in numerical methods, it is difficult to quantify the 

behavior of the interface shape of the droplet with cavitation bubble in aerobreakup 

experiments. This thesis represents the start of an attempt to bridge this gap in the current 

state of aerobreakup knowledge. The purpose of the present study is to elucidate the 

stripping breakup mode of a single liquid droplet embedded with a vapor cavity induced 

by a planar shock wave. Experimental results present the detailed deformation and breakup 

mechanism of this kind bubbling droplet. 
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1.2 Motivations  

A detailed understanding of the physical mechanisms of the breskup process, and 

how they translate into final fragment sizes, has been a challenge to theorists, 

experimentalists, and computer modelers alike. 

With the considerations all above, the motivations of the present subject are as 

follows: 

1. Experimentally study the deformation and breakup patterns of millimeter-scale 

liquid droplets with or without a vapor cavity inside in the high-speed airstream behind a 

shock wave, with the focus on the influence of the parameters, such as We and Re on the 

development of the instability (R-T instability and K-H instability). 

2. Numerical study the inner flow effect on droplet deformation in the shock/droplet 

interaction problem. 

3. Through the complementarily numerical and experimental efforts, investigating 

the detailed stripping breakup governing mechanisms and the underlying physics. 
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1.3 Historical Perspective 

1.3.1 Droplet Deformation Resulting from the Shock-Droplet Interaction 

The interaction between shock wave and an individual liquid droplet, which yields 

the consequent aerodynamic breakup of the droplet, poses a fundamental and challenging 

two-phase flow problem. The rise of supersonic flight has created a requirement for better 

understanding of shock waves and of the properties of gases/liquids processed by shock 

waves. The comprehensive reviews on this subject can be found in Wierzba & Takayama 

(1988), Joseph et al. (1999),  Guildenbecher et al. (2009) and Theofanous (2011). 

The breakup of a liquid droplet is a complex multiple physics problem, 

characterized by many dimensionless parameters in a competitive manner (Theofanous, 

2011). The effects of four dimensionless parameters were mainly discussed: Weber number 

We, Ohnesorge number Oh, Reynolds number Re and Bond number Bo. The definitions 

of these parameters are: 

𝑊𝑒 =
𝜌𝑔𝑢𝑔

2 𝐷

𝜎
      (1.1) 

𝑂ℎ = 𝜇𝑙/√𝜌𝑙𝜎𝐷 =
√𝑊𝑒

𝑅𝑒
     (1.2) 

𝑅𝑒 = 𝜌𝑔𝑢𝑔𝐷/𝜇𝑔       (1.3) 

𝐵𝑜 = 𝑎𝜌𝑙𝐷2/4𝜎      (1.4) 
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where 𝜌 is density, 𝑢  the velocity, 𝐷  the diameter of the liquid droplet, 𝜎  the 

surface tension of the droplet, 𝑎 the droplet acceleration, and 𝜇 the viscosity. Subscripts 𝑙 

and g indicate the liquid and gas behind the shock. The parameters We , Oh , Re , and Bo 

present the ratios of the fluid’s inertia force to its surface tension force, viscous force to its 

inertial and surface tension force, inertia force to viscous force and body force to surface 

tension force, respectively. 

 

Figure 1.2 Six distinct mechanisms of droplet breakup as determined by the initial Weber 

number (Pilch and Erdman 1987). 

The fascinating feature of liquid droplet breakup is the various distinct breakup 

regimes exhibited under different conditions. As shown in Fig 1.2, the types of liquid 

droplets breakup can be categorized into six modes according to different values of We 
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(Pilch & Erdman, 1987): vibrational mode, bag mode, bag-and-stamen mode, chaotic mode, 

stripping (shear) mode and catastrophic mode. These mechanisms are generally considered 

applicable to the breakup of droplets with very low viscosity (Oh<<1), in a qualitative way. 

 

Figure 1.3 The castastrophic breakup regime (Joseph et al. 1999). 

Wierzba & Takayama (1988) experimentally studied the mechanism of shear 

breakup of liquid droplets. A four-stage mechanism of the stripping breakup of liquid 

droplets was proposed by using holographic interferometry. Yoshida & Takayama (1990) 

showed that the patterns of the droplet breakup differed significantly with the methods of 

visualization. Images of the droplet breakup observed by double-exposure holographic 

interferometry were found to be different from those observed by shadowgraphs. To 

eliminate three-dimensional (3D) effects, Igra & Takayama (1999) visualized the two-
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dimensional (2D) shock/water-column interactions in a shock tube by sequential double-

exposure holographic interferograms. They mentioned that a 2D shock/water column 

interaction provides the only method for quantitative visualization of wave motions in 

water. 

As shown in Fig. 1.3, Joseph et al. (1999, 2002) presented a series of shadowgraphs, 

covering a wide range of We (=11700−169000), Oh (=0.002−82.3) and Re (40000−127600), 

and claimed that the droplet breakup is mainly caused by Rayleigh Taylor instability under 

high We (catastrophic mode). However, Theofanous et al. (2007, 2008 & 2011) argued that 

both temporal and spatial resolutions of shadowgraphs are not high enough to capture the 

fine structures during the breakup process and the “catastrophic mode” may not exist. As 

shown in Fig. 1.4, they investigated the aerodynamic breakup of Newtonian and 

viscoelastic droplets by laser-induced fluorescence visualizations at spatial resolutions of 

up to 200 pixels for millimeter and exposure times as low as 5 ns. They concluded: (1) as 

shown in Fig. 1.5, the droplet breakup can be mainly contributed by two major mechanisms: 

Rayleigh-Taylor piercing (RTP) (shown in Fig. 1.4(a),(b)) and shear-induced entrainment 

(SIE) (shown in Fig. 1.4(c),(d)), corresponding to low and high Weber number. (2) with 

increasing We, SIE is favored over RTP, and (3) there is no practical limitation for Oh to 

droplet breakup. Their observations are apparently different from previous studies. 
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Figure 1.4 Illustration of the principal criticalities responsible for aerobreakup of liquid 

droplet. (a) the first mode of RTP; Run[SO1000 (silicon oils, viscosity equals 1000 cSt); 

We=1500; Oh=5.3]; (b) the second mode of RTP; Run[SO10 (silicon oils, viscosity equals 10 

cSt); We=24.2; Oh=0.05]; (c) the onset of SIE; Run[Water (viscosity equals 1 cSt); We=210; 

Oh=0.002], and (d) the early stage of development of K-H SIE; Run[TBP4 (tri-butyl phosphate, 

viscosity equals 4 cSt); We=7000; Oh=0.018] (Mitikin & Theofanous 2017). 
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Figure 1.5 The three criticalities of aerobreakup with Newtonian liquids (Mitikin & 

Theofanous 2017). 

Another important aspect of liquid droplet breakup is the time required for complete 

breakup. Liang et al. (1988) summarized the early experimental measurements of breakup 

time, including the finding of Ranger & Nicholls (1969) and Simpkins & Bales (1972) for 

shear breakup and those of Reinecke & McKay (1969) and Reinecke & Waldman (1970) 

for catastrophic breakup (all for shock wave disturbances at large ρl/ρg and low Oh). Under 

these conditions, the normalized breakup time tb/t* for both shear and catastrophic breakup 

modes was shown nearly constant over a large range of We. Here, the characteristic 
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breakup time t*=d0(ρl/ρg)1/2/u0. Hsiang & Faeth (1992) found that tb/t*=5 provides a 

reasonably good correlation for all the measurements of the shear breakup mode with 

Oh<0.1 in Fig. 6. When considered the effect of Oh, an empirical correlation of 

tb/t*=5/(1−Oh/7) were proposed for We<1000 and Oh<3.5. Joseph et al. (2002) applied the 

RT instability theory to analyze the catastrophic mode with the unstable disturbances of 

amplitude A(t)= A0ent, where A0 is the initial amplitude and n the growth rate. A ‘break-up’ 

time 𝑡𝑏

∧
 is arbitrarily defined as the time taken for the initial A0 to grow to M times its value:   

𝑡𝑏

∧
= (1/𝑛) 𝑙𝑛 𝑀. Theofanous et al. (2007) presented data on deformation and breakup 

regimes, aided by numerical simulations. Different time scales were used to correlate the 

governing mechanisms in different breakup regimes. Their results agree with the breakup 

time correlation of Hsiang & Faeth (1992). 

Focusing on the stripping mode, researchers conducted a number of classical 

experiments in various ways to study the breakup mechanisms. Wierzba and Takayama 

(1988) performed their shock tube experiments combined with five different photographic 

techniques and established the famous four-stage mechanism of the stripping type breakup. 

Hsiang and Faeth (1992) conducted a series of experiments concentrating on the 

atomization and spay problems and improved the famous droplet deformation and breakup 

regime map. Theofanous & Li (2008); Theofanous (2011); Theofanous et al. (2012) did a 
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number of studies in the aerodynamic breakup of liquid droplet in a rarefied supersonic 

flow using their LIF technique. They recorded clearly the droplet evolution and redefined 

the breakup mechanism. In order to minimize the uncertainty in visualizing the three-

dimensional shock/droplet interaction, two dimensional liquid columns were adopted. Igra 

and Takayama (2001; 2003) performed experiments on shock/water column interactions 

in a shock tube by sequential double-exposure holographic interferograms. Sembian et al. 

(2016) successfully observed the propagation of waves inside the water column for incident 

Ma 1.75 and 2.4 by creating a water column of 22 mm in diameter using super-hydrophobic 

coating techniques. 

The above-mentioned experiments provided a comprehensive database of the liquid 

droplet aerodynamic breakup phenomena. However, thorough understanding of the 

breakup mechanisms can only be addressed by direct numerical simulations (Joseph et al. 

1999; Theofanous 2011). Various numerical works have been performed in recent years. 

Based on their experimental results, Igra and Takayama (2001) studied the shock/water 

column interaction using an interpolated pseudo-particle (CIP) scheme. Chen (2008) 

reported 2D simulations of stripping breakup of a water column where the five-equation 

model was solved by a Godunov-type scheme coupled with the HLLC-Riemann solver. 

Theofanous et al. (2012) combined the numerical code MuSiC+ and AROS to simulate the 
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droplet breakup process observed in their experiments. In their simulation, the MuSiC+ 

code provided the shear stress distributions and viscous boundary layer details around a 

drop as input to AROS, and the AROS predicted viscous KH dispersion on the drop surface. 

Meng and Colonius (2013; 2015) studied the effects of shock strength on the droplet 

breakup. The five-equation model was solved by a 3rd order WENO scheme coupled with 

the HLLC Riemann solver. 

 

Figure 1.6 Two droplet breakup mechanism (Guildenbecher te al. 2009). 

As shown in Fig. 1.6, Two theoretical models exist for the generation of liquid mist 

at the periphery of the droplets during the breakup process. Fig. 1.6 gives a diagram of the 

two theoretical models respectively. Fig. 1.6(a) shows the shear stripping breakup 

mechanism proposed by Ranger & Nochollos (1969). They assume that the droplets are 

spherical prior to fragmentation and ignore the pressure gradient and liquid swirl inside the 

droplets. A two-phase boundary layer forms gradually between the gas and liquid phases 



16 

 

and develops a K-H instability. The instability perturbation grows gradually until it breaks 

free of the surface tension bound and leaves the main droplet to form a liquid mist by 

entrainment of the airflow. 

Another mechanism for the generation of liquid mist is the crushing mechanism for 

thin layer refinement proposed by LIU & Reita (1997). Under the combined effect of 

standing high pressure and low pressure near the equator, the droplet gradually flattens, 

and due to the shear of the airflow, a thin layer of liquid with a thickness comparable to the 

liquid inner boundary layer is formed in the outer layer of the droplet. This thin layer 

extends downstream, the thickness continues to thin, and finally due to capillary instability 

and broken into a large number of small droplets. 

So far, a large number of experimental and numerical results have supported the 

sheet-thinning theory. However, the existence of shear stripping fragmentation cannot be 

ruled out at present. Therefore, along with the change of experimental parameters, the two 

liquid mist generation mechanisms can be switched between the above two. 
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1.3.2 Bubble Collapse  

 

Figure 1.7 Examples of bubble collapse in medicine aera: the interaction of bubbles and 

blood vessels (Chen et al. 2011). 

Bubble collapse refers to the process by which a bubble rapidly shrinks in volume, 

and rises in pressure and temperature in response to an external high-pressure fluid. 

Generally speaking, when the pressure inside the bubble rises to a level that is sufficient to 

resist the external high-pressure fluid, the bubble will begin to expand (along with a 

decrease in pressure) until it collapses again. Thus, due to inertia, this collapse-expansion 

process can continue several times, gradually decreasing in intensity, until the kinetic 

energy is dissipated. 

In Extracorporeal Excitation Lithotripsy (EELT), which is commonly used in the 

medical field, ultrasound waves are converged and propagated to the patient's stone, 

inducing the collapse of microbubbles near the stone to generate a high-speed jet, which 

hits the stone or body fluids, generating an extremely high pressure, thus crushing the stone 

and achieving a therapeutic effect (Johnsen & Colonius, 2008, 2009). In the use of targeted 
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drug therapy, as shown in Fig. 1.7, drug-coated microbubbles are delivered to the diseased 

areas in the human body, and then ultrasound is used to induce microbubble collapse, 

which causes the drug to be released in the diseased area to achieve the targeted therapy 

(Chen et al., 2011; Wang et al., 2015). In addition, bubble collapse is also present in 

applications such as hot spot formation in explosives (Bowden & Yoffe, 1958; Bourne & 

Field, 1991) and ultrasonic cleaning (Hodnett & Zeqiri, 1997). 

 

Figure 1.8  A series of pictures depicting the collapse of a 1 mm diameter cylindrical bubble 

driven by a 1 GPa incident shock.(Hawker & Ventikos 2012) 
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For an ideal spherical bubble collapse problem, the dynamics can be analyzed by 

solving the Rayleigh-Plesset equation (Brennen, 1995), which makes the assumption of no 

viscous incompressibility on the Navier-Stokes equation. In both natural and engineering 

applications, bubble collapse is often non-spherical due to a variety of perturbations: free 

interfaces, walls, volumetric forces (e.g., gravity), other bubbles, and shock waves or 

ultrasonic impacts. 

A intense bubble collapse process generates an excitation wave (Supponen et al., 

2016), which in turn acts on other nearby bubbles (Lauer et al., 2012a). Ohl & Ikink (2003) 

experimentally investigated bubble collapse in water induced by a weak excitation wave 

(peak pressure of about 22 MPa) with a range of bubble diameters of 7 to 55 μm. The jet 

tip length and the mean jet velocity were found to increase linearly with the bubble 

diameter. Ball et al. (2000) used the Free-Lagrange method to numerically simulate the 

problem of 6 mm cylindrical bubbles impacted by a strong surge of 1.9 GPa, and the 

simulation results obtained are in good agreement with experimental observations (Bourne 

& Field, 1992), including linear compression of bubble volume with time, collapse of the 

bubble tip, and the effect of the collapse of the bubble tip on the bubble diameter. time, 

location of hot gases and cold glow. They also give the evolution of the interface and wave 

system structure during bubble collapse, such as the generation of lateral jets, jets hitting 
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downstream interfaces, and the generation of explosive waves (water hammer excursions), 

and predict that the final gas temperature will rise to 12,000 K due to the strong excitation 

heating effect. Hawker & Ventikos (2012) use a highly accurate Front Frontier software 

for the Tracking method, simulates the problem of a single bubble in water impacted by a 

strong excitation wave (after-wave pressure of 100 MPa to 100 GPa) and obtains very 

detailed results on the interface and wave system evolution, as shown in Figure 1.8. Based 

on the difference in physical mechanisms, they divided the bubble collapse dynamics into 

three stages: incident excitation to generate lateral jet, jet impact to generate water hammer 

excitation, and vortex ring evolution. It was found that lateral jet impact is not the only 

cause of pressure peaks in the liquid phase, but that secondary jet structures and expelled-

gas excitations in bubbles also induce pressure peaks in the liquid phase. By contrast, they 

also found that spherical bubbles produce 40% higher water hammer excitation pressures 

than columnar bubbles, due to the convergence of transverse jets being more violent in the 

three-dimensional case. Another counter-intuitive phenomenon is that the density peak in 

the bubble decreases with the enhancement of the incident excitation, which is due to the 

reduced reflection time of the bowed excitation in the bubble. 
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1.3.3 The Aerobreakup of Single Droplet Embedded with Cavitation Bubble 

Droplet aerodynamic deformation and bubble collapse has been extensively studied, 

in which the flow mechanism has been largely clearer. In contrast, the aerodynamic 

deformation and fragmentation kinetics of bubbling liquid droplets is relatively complex, 

with both aerodynamic deformation and fragmentation of liquids and bubble collapse, 

belonging to the combination of the two. (Payri et al., 2005) found that cavitation in engine 

nozzles has a strong influence on the formation and atomization of fuel spray, and that a 

well-characterized spray can improve combustion efficiency, reduce pollutant emissions, 

and thus improve overall engine performance. At present, with the increase of fuel injection 

pressure, the cavitation phenomenon has become very prominent in the fuel injection 

process, and the fuel jet becomes a bubble-liquid two-phase flow, which has an important 

impact on the atomization of the fuel spray. However, at present, the research on pneumatic 

deformation and fragmentation of bubble-containing liquid droplets started late, and the 

research results are still lacking, and the flow mechanism still needs to be further explored. 

Lin et al. (2004) combined experimental and numerical simulations to study the 

problem of gas-containing liquid column injection, and found that the aerated liquid jet 

produced by the nozzle can effectively enhance liquid atomization and gas-liquid mixing 

under subsonic conditions by prefilling a small amount of gas into the liquid. In the far 
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field typical of gas-containing liquid column jets, they observed good spray characteristics, 

including a larger spray cross-sectional area, smaller droplet size, higher droplet velocities, 

and a fairly uniform liquid-liquid mist distribution in the spray plume. Lüet al. (2017) 

simulated the bubbling diesel droplet collapse process using the Volume of Fluid numerical 

method, separately with and without considering the phase change. Without considering 

the phase transition, the bubbles undergo multiple collapse rebound processes, which 

resemble damped spring oscillations, and the bubble volume fluctuation interval becomes 

progressively narrower. In the case of phase change, the bubbles only collapse but not 

rebound, and the collapse velocity of the bubbles accelerates with increasing ambient 

pressure and decreasing saturated vapor pressure; in contrast, the influence of ambient 

pressure on the collapse velocity is greater than that of saturated vapor pressure on the 

collapse. 

Last several years, the phenomenon that cavitation bubbles appear in a droplet was 

experimentally observed in shock–water-column interaction (Sembian et al. 2016) and 

droplet–solid-wall impingement (Field, Dear & Ogren 1989; Field et al. 2012), where 

rarefaction waves and tension waves, respectively, play important roles in the formation of 

the cavitation bubbles.As shown in Fig. 1.9, Sembian et al. (2016) observed the cavitation 
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bubbles causing by the focus of the reflected expansion wave in the 22mm diameter 2D 

water column. 

 

Figure 1.9 Experimental observation of reflected expansion waves and the resulting 

cavitation bubbles in a two-dimensional liquid column (Sembian et al. 2016). 

 

 

Figure 1.10 The interface evolutions of the shock/water-hollow at Mach number 

2.4(Xiang & Wang 2017). 

Additionally, Xiang & Wang (2017) numerically simulated the problem of 

excitation-impacted columnar pure droplets and cavity-containing droplets. In the study of 

pure droplets, the numerically simulated wave system structure and experimental 

observations (Sembian et al., 2016) are in good agreement. In particular, the expansion 

wave generated by the reflection from the wall downstream of the droplet converges inside 
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the droplet to produce a continuous low pressure that is sufficient to produce cavitation, 

and the numerically simulated low pressure region is in agreement with the experimentally 

observed location of cavitation. In the study of cavity-containing droplets, Xiang & Wang 

(2017), referring to the analytical approach of Hawker & Ventikos (2012), divided the 

evolution of the wave system structure and interface morphology into three stages: the 

establishment of the external flow field of the liquid ring, the generation of the jet and its 

evolution, and the impact of the jet on the downstream interface and its subsequent 

evolution. It is noteworthy that no water hammer excitation is generated during the third 

stage of jet impact, as the jet and downstream liquid ring quickly exchange momentum and 

fuse together to move downstream, thus reducing the pressure generated by the collision 

(peak impact in water is about 30 times atmospheric pressure). As shown in Fig. 1.10, the 

numerical simulation in Xiang & Wang (2017) indicated that cavitation bubbles can forms 

a transverse jet in the Mach 2.4 gas flow and a super high pressure region will be formed 

in near the impaction point. Then the liquid will be driven into the cavity to form the 

socalled second sheeting jet. 

Wu et al. (2018) studied the problem of high-speed columnar droplet impact on the 

solid wall by numerical simulation with an initial impact velocity of 50∼200 m/s. It was 

found that when a columnar droplet hits the solid wall, a restricted bending excitation wave 
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is generated at the impacting surface, and the bending excitation wave propagates within 

the droplet towards the unimpacted surface; subsequently, due to the reflection of the 

surface of the unimpacted surface, a series of expanding waves converge at a distance of 

∼100 m/s from the droplet vertex. At one-third of the diameter, the local fluid sustained 

low pressure satisfies the cavitation conditions and produces a cavity. Within the 

parameters of the study, the location of the cavity was independent of the initial impact 

velocity; however, the higher the impact velocity, the larger the cavitation zone and the 

more dramatic the subsequent collapse. 

Later, Wu, Wang & Xiang (2019) studied the problem of bubble-containing liquid 

column impingement on the solid wall, as shown in Figure 1.11, where the bubbles are air 

and saturated water vapor cases respectively. For the air bubble case, transmission waves 

are generated within the bubble and further compress the cavity; the main jet, lateral jet 

and sheet jet cause intermittent interfacial impingement fusion, and the impingement 

process generates a series of small bubbles, which collapse intermittently and produce 

intermittent collapsing wavelets. However, for the saturated water vapor case, no 

transmission waves are initially generated and the vapor cavity rapidly contracts with local 

condensation; as the cavity contracts, strong collapsing excitations are generated in the 

flow field. They improve on the spherical collapse theory and predict the non-spherical 
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collapse time, and the numerical simulations of the collapse time at different initial bubble 

radii and initial impact velocities are in good agreement with the improved theory. 

 
Figure 1.11 Numerical simulation of the evolution of interfaces and wave systems in the 

problem of solid-wall impingement of fluid columns embedded with bubble. The left-side figures 

are gas cavity, the right-side figures are vapor cavity (Wu et al. 2019). 
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1.3.4 The Instabilities in Aerobreakup 

The potentially active modes for shock/droplet interection problem include 

Rayleigh-Taylor (RT) instability, Kelvin-Helvin-Helmholtz instability ((KHI)), and 

Richtmyer-Meshkov instability (RMI). 

Harper et al. (1972) performed a systematic analysis of the RT instability induced 

by acceleration at the droplet surface, but their theoretical predictions are consistent with 

experiment only to a limited extent (windward side of the droplet in the later stages of 

fragmentation). Theofanous et al. (2011) and Chang et al. (2013) analyzed and simulated 

the droplet surface that KH instability mainly generate, and that RT puncture behavior is 

not present in the high Weber number condition. Wang et al. (2014) argued that there is 

RM instability involved in the droplet fragmentation process. 

Theofanous et al. (2008; 2011; 2012) argue that Richtmeyer-Meshkov Instabilities 

can be neglected due to severe mismatch between the acoustic impedance of gases and 

droplets. 

In the case of secondary atomization/droplet breaking in the high speed flow region 

after a shock wave, the competition which takes place on droplet surfaces is between K-H 

instability and R-T instability. The R-T instability occurs when a heavy fluid is being 

accelerated by a light fluid (shown in Fig.1.12). If Bond number Bo＜105，the R-T 
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instability will not the main reason for droplet breakup (Chen 2008). The K-H instability 

can occur where there is a velocity difference across the interface between two fluids 

(shown in Fig. 1.13). The K-H instability is caused by the sheer flow at the interface, and 

it can occur at very small scales in the horizontal system. 

 

Figure 1.12 Schematic of Rayleigh–Taylor instability 

 

Figure 1.13 Schematic of Kelvin-Helmholtz instability (Jalaal & Mehravaran 2014). 
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The growth rate of KH and RT instabilities can be predicted by the linear-stability 

theory as (Kull, 1991) 

   
2

1 22

1 2 1 2

U
n k k

  

   
= +

+ +
     (1.5) 

where [U] and [ρα] are the jump of tangential velocity and normal acceleration 

across the interface. The 1st and 2nd terms in Eq. (1.5) are induced by KH and RT 

instabilities, respectively. It is difficult to evaluate the contribution of these two 

mechanisms experimentally or theoretically. 

1.4 Scope of Thesis 

There exists a gap in the current state of droplet aerobreakup knowledge associated 

with the underlying fundamental flow physics that dictate the experimentally observed 

shock/cavity-containing droplet interaction phenomena. Much work has yet to be done. 

Even with advancements in experimental methods, it is challenging to visualize and 

quantify the behavior of the gas phase in aerobreakup experiments.  

The scope of this thesis is organized as follows.  

The experimental and numerical methods are first laid out in Chapters 2. In Chapter 

2, we describe the setup of the problem as it relates to previous experimental investigations. 
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All the experiments are conducted using the horizontal shock tube of the Department of 

Mechanical Engineering at the Hong Kong Polytechnic University. The governing 

equations and physical model for the in-house CE/SE numerical simulation method are 

then presented.  

Investigation of aerodynamic breakup of a sphere liquid droplet behind a planer 

shock wave are described in Chapter 3. The inner flow effect on the droplet deformation is 

highlighted in this chapter. 

Additionally, with the advanced experimental facilities established, we proceed to 

present the shock/vapor cavity containing droplet interaction experimental results in 

Chapters 4. Due to the the ignorance of the phase change in the present code, the code fails 

to simulate the evolution of both the droplet and cavity precisely. Therefore, the CE/SE 

simulations are not listed in this chapter. It is expected that subsequent numerical studies 

will fill this gap. 

Lastly, conclusions and suggestions for future work are made in Chapter 5. 
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2. Method 

This chapter is about the shock tube experimental setup and the numerical 

simulation method that this thesis uses and provides verification examples to assess  the 

accuracy of  the CE/SE numerical simulations. 

2.1 Experimental Apparatus and Measurement Methodology 

We conduct the experiments in a newly built self-designed shock tube facility with 

𝑀𝑎 number range 1.2~2.5, 𝑊𝑒 range 103~104, and water droplets diameter D range 1~3mm. 

A representative case conducted in this shock tube produces an incident shock with 

𝑀𝑎 number 1.52 with the post-shock air density 𝜌𝑔 = 1.14 𝑘𝑔 ∙ 𝑚3 and the free stream 

speed after the shock 𝑢𝑔 = 248.6 𝑚 ∙ 𝑠−1. The water droplets in this case have a diameter 

D of 2.5 mm. Under this condition, the corresponding 𝑊𝑒 number and 𝑅𝑒 number are as 

follows: 

𝑊𝑒 =
𝜌𝑔𝑢𝑔

2 𝐷

𝜎
= 3.0 × 103    𝑎𝑛𝑑    𝑅𝑒 =

𝜌𝑔𝑢𝑔𝐷

𝜇𝑔
= 3.3 × 104                                (2.1) 

where σ is the surface tension and 𝜇𝑔 is the viscosity. 

2.1.1 Shock tube 

We designed and built a special shock tube for studying the shock/droplet 

interaction. Fig. 2.1 shows a schematic of this specially designed shock tube facility, 
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consisting mainly of a shock tunnel, diaphragm, droplet generator, pressure supply, and 

observation windows.  

The shock tube is made of a stainless-steel containing chromium and manganese 

and has high-strength resistance (2.5MPa). The overall inside length of the shock tube is 

5450mm. The cross section is 80mm×80mm square. The lengths of the driver section and 

the driven section can be adjusted by switching the modular round tubes. Therefor this 

shock tube can provide at least 1 ms test time for all the preset experimental cases. A liquid 

dropper sits on top of the test section. Ball-bearing carriages that ride on two stainless steel 

rails support the entire tube. In addition to the tunnels, a boost control pump (SMC 

VBA11A, Japan, max pressure 20atm) and a vacuum pump (LEYBOLD DIVAC 1.2L, 

German) in the facility can run experimental cases with various Mach numbers (1.2~2.5) 

and Weber numbers (103~104). As shown in table 2.1, 16 preset running conditions should 

be able to be conducted in this shock tube. P4 represents the pressure in the driver section, 

and P1 represents the pressure in the driven section and test section. The variable v is the 

free stream velocity after the impact shock, ρ is the free stream density. 

Generating a shock requires a quick rupture of the diaphragm. Cases which the 

pressure in the driver section is below 0.8MPa use a two-diaphragm system, due to its 
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repeat accuracy of higher than 90% under 1Mpa. For higher driven pressure, an electric 

bursting device can burst the aluminum foil diaphragm between the driver/driven sections.  

 

 

Figure 2.1 Schematic of the shock tube assembly. 

 

Table 2.1. The overall running conditions of the shock tube. 

2.1.2 Electrical and Visualization Setup 

Fig. 2.2 shows the schematics of the electrical outline and direct high-speed 

photography. First, a signal from the signal generator goes to the droplet generator, and 

then the signal generator sends a delayed signal to the diaphragm bursting device. The 

delay time is approximated by √𝐷 𝑔⁄ − 𝑙 𝑢𝑠 − 𝑡𝑑⁄ , so that the droplet falls to the center of 
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the shock tube when the shock impacts on it. Here, D is the diameter of the shock tube, g 

the acceleration of gravity, l the distance between the droplet and the diaphragm, us the 

shock speed, and td the diaphragm breakup time. Four piezoresistive pressure transducers 

that sit flush on the shock tube wall connect to a multi-channel signal conditioner and then 

a data acquisition system to record us and pressure behind the shock wave. The shock Mach 

number is then calculated basing on the record us and the gap between the piezoelectric 

transducers. The piezoresistive pressure transducers’ signal triggers another delay 

generator, which then triggers the high-speed camera at a preset time before the impact of 

the shock on the droplet.  

A Z-type schlieren system is used to verify the shock Mach number’s accuracy 

before the running. Due to the rarely small size of the droplet, it will be too difficult to 

observe the wave pattern around the droplet. Refer to the visualization system in 

Theofanous 2011, a direct shadowgraph system containing two 150W LED light sources, 

a light diffuser, and a high-speed camera (Photron SA-Z, Japan) allows for flow 

visualization of the interfacial flow. With the effect of the scattered light from the light 

diffuser, this direct high-speed photography technology shows improved three-

dimensional quality like the Planar laser induced fluorescence (PLIF) images in the early 

time of the droplet deformation. The sequential images have a resolution of 33.5 to 40 
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pixels/mm (110 pixels along the droplet diameter 2.5mm) and a frame interval of 20μs. 

Exposure time reaches as fast as 250ns.. 

 

 

Figure 2.2 Schematics of the electrical outline and direct high-speed photography. 

2.1.3 Creation of the Water Droplet 

A specially designed injector device can inject a single drop of test liquid into the 

test section by controlling the injection volume. Fig. 3-3 shows a schematic of the droplet 

generator system. Details of the generation and control of water droplets are as follows. A 

syringe needle, connected to the solenoid valve, generates droplets, controlling the volume 

per drop and the dripping time. The water tank maintains the pressure of the water pipes, 

so that the repeat accuracy can achieve about 80%. 
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The typical droplet diameter is about 2.5mm. With further enlargement of the 

diameter, oscillations will occur on the droplet surface from the start. With the assistance 

of the vacuum pump in the text section of the shock tube, better spherical droplets with 

larger diameter can result. 

 

Figure 2.3 Schematic of the droplet generator system. 

 

Figure 2.4 Bubble growth process (Liu et al. 2018). 

In the present study, to experimental study how is the water-bubble affect the 

droplet’s aerobreakup, depressurization of the air surrounding a water droplet (Liu et al. 

2018) generates a droplet embedded with a vapor cavity (Fig. 2.4). Due to the existing 

experimental accuracy problem it is temporarily impossible to precisely control the liquid 
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flow rate and drop time, therefore the size and position of the vapor cavity inside the droplet 

is uncontrollable. Nevertheless, the process achieves satisfactory sphericity for the droplet 

and cavity. It is worth mentioning that the use of a diameter decreasing nozzle will facilitate 

the creation of droplets with vapor bubbles. 

2.2. Numerical Methods and Validations 

The experiment adopts an upwind space-time CE/SE (conservation element and 

solution element) method (Shen et al. 2015; Shen & Wen 2016; Shen et al. 2017) to 

simulate the process of a plane shock impacting with a spherical water droplet. This method 

has been well validated in capturing shocks and details of complex flow structures. 

Therefore, this chapter ignores the details of the method and provides only a brief 

description. For the computer programmer that interested in the CE/SE code, a sample code 

of using CE/SE method to simulation the deformation of the droplet after the shock wave 

(Ma=2.4, axisymmetric droplet embedded with a vapor cavity) is listed in the appendices. 

In this method, an upwind procedure determines the numerical flux through the interface 

of two different conservation elements. The upwind procedure breaks the space-time 

inversion invariance so that it can be directly applied to capture discontinuities without 

spurious oscillations. It has a second order precision in both temporal and spatial scales  
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and employs two-dimensional rectangular meshes. 

2.2.1 Modeling Geometry and Problem Description 

The problem geometry, as shown in Fig. 2.5, is a two-dimensional rectangular 

domain. The model simulates only half the water droplet as the experimental visualizations 

show no significant asymmetries along the test chamber’s centerline. Hence, an axial 

symmetry plane boundary condition is set at the domain’s bottom, and non-reflection wall 

boundary conditions are set at the remaining three boundaries. The width of the 

computational Region is 10R, where the R is the radius of the droplet. L1 and L2 are 15R 

and 20R, respectively. The mesh for the domain has a uniform grid of 7000×2000 points, 

with a grid resolution of 400 points along the water droplet diameter. In one case, while 

initializing, the entire domain is at rest with the following initial conditions: 

𝛾𝑔 = 1.4, 𝜋𝑔 = 0, 𝛾𝑙 = 1.932, 𝜋𝑙 = 1.1645 × 109, 𝑀𝑠 = 1.52                               

𝜌𝑔 = 0.6𝑘𝑔/𝑚3, 𝑃𝑔 = 5000𝑃𝑎, 𝜌𝑙 = 1000𝑘𝑔/𝑚3, 𝑃𝑙 = 5000𝑃𝑎                   (2.2) 

 

Figure 2.5 The schematic of the initial setup for the shock-water droplet interaction. 
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2.2.2 Equation of state 

A solution to express the volume fraction-based five-equation model illustrates the 

gas/liquid interface evolution as follows: 

𝜕𝛼𝑖

𝜕𝑡
+ 𝑉 ∙ ∇𝛼𝑖 = 0, 𝑖 = 1,2 

𝜕𝜌𝑠𝛼𝑠

𝜕𝑡
+ ∇ ∙ (𝜌𝑠𝛼𝑠V) = 0,      𝑠 = 1,2 

𝜕𝜌𝑉

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑉 𝑉 + 𝑝) = 0 

 
𝜕𝐸

𝜕𝑡
+ 𝛻 ∙ (𝑉(𝐸 + 𝑝)) = 0    (2.3) 

where the 𝛼𝑖  denotes the volume fraction of gas 𝑖, 𝜌𝑠  the density of component 

fluid 𝑠, 𝜌 the density of the mixture, V the velocity vector, 𝑝 the pressure and E the total 

energy. 

The stiffened gas equation of state (EOS) is adopted to close the system: 

 𝑝 = (𝛾 − 1) (𝐸 −
1

2
𝜌𝑉 ∙ 𝑉) − 𝛾𝜋    (2.4) 

where, 

 
1

𝛾−1
= ∑

𝛼𝑖

𝛾𝑖−1
  𝑎𝑛𝑑  

𝛾𝜋

𝛾−1
= ∑

𝛼𝑖𝛾𝑖𝜋𝑖

𝛾𝑖−1
    (2.5) 

The total density and the sound speed of the mixture can be respectively calculated 

as follows: 
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 ρ = ∑ 𝛼𝑖𝜌𝑖   𝑎𝑛𝑑  𝑐 = √𝛾(𝑝 + 𝜋) 𝜌⁄     (2.6) 

Solving the five-equation model uses a maximum-principle satisfying upwind 

CE/SE scheme that proves capable of capturing the contact interface without obvious 

diffusion. The HLLC approximate Riemann solver is employed to get the numerical fluxes 

between the conservation element. This numerical method proves to be perfect in the 

numerical conservative properties in both space and time and accurate in capturing shock 

and contact discontinuities. 

 

 

Figure 2.6. Grid convergence test showing density distributions at 20 μs after the incident 

shock touches the droplet with four different grid sizes (140, 160, 180, and 200 grids per droplet 

radius). 
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2.2.3 The Independence of the Computing Grid 

First, we tested the grid convergence according to the density distributions 𝑙𝑔 (𝜌) 

along the axis of symmetry, as shown in Fig. 2.6, with four different grids arranged within 

the length of the droplet radius. The terms R140 ∼ R200 denote that there were 140 ∼ 200 

grids arranged per droplet radius. The left inset presents a sketch of the droplet/shock-wave 

system after the shock-wave impact, within which RS denotes the reflected shock, IS is the 

incident shock, MS is the Mach stem, WS is the windward stagnation point, and LS is the 

leeward stagnation point. The dotted line indicates the axis of symmetry. The right inset 

presents an enlarged MS area (dashed square area). Clearly, the larger the grid number is, 

the sharper the pressure change across the MS shock front is. The shock fronts of cases 

R160, R180, and R200 nearly collapse with each other, which indicates good grid 

convergence. Throughout, this study adopts a mesh size of 200 grids per droplet radius. In 

a standard example of using the CE/SE method to simulate the droplet fragmentation and 

deformation process from the start of the incoming shock wave impact the droplet to the 

160 µs instant that after the passage of the shock wave, the simulation takes about 70 to 80 

hours to simulate the process using a mesh size of 200 grids per droplet radius on 64 intel 

Xeon E7-4850 v4 computing cores. 
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2.2.4 Validation Cases 

2.2.4.1 Qualitative Analysis of Shock/Water-Droplet Breakup 

 

Figure 2.7 Comparison of the numerical and experimental results at different instants 

(upper part: experimental images, lower part: numerical results). 

The numerical CE/SE method first simulates the experiment conducted by Yi et al. 

(2017) using a droplet diameter 𝑑0 of 3.03 mm and an incident shock Mach number 𝑀𝑠 of 

1.39. Fig. 2.7 shows a comparison between the numerical results and the experimental 

images, selecting three distinct instants after the shock impact (𝑡 = 0). At 𝑡 = 40𝜇𝑠, the 

experimental image shows tiny corrugation (C) at the leeward surface of the droplet 

between the equator (EQ) and the LS, whereas the rest of the surface remains intact. At 

this moment, a Kelvin–Helmholtz instability (KHI) develops at the windward surface in 

the numerical result but not in the experimental result. The reason for this difference 

derives from ignoring the surface tension term in the present numerical method. In the 
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experimental images, the first tiny corrugation grows at 𝑡 = 60𝜇𝑠 and turns into the “lip.” 

The KHI amplitude is another element. The KHI amplitude is a direct response to the shear 

velocity distribution, which increases from the WS to the EQ. At 𝑡 = 100𝜇𝑠, although the 

main body of the droplet remains spherical to a certain extent, the protrusions are distinct, 

and atomization (AT) occurs obviously at the tips of these protrusions. In the in-house 

CE/SE numerical simulation method, because the continuous model with the volume 

fraction-based five-equation is used, it is possible to use different volume fractions (e.g., 

αwater=0.5) to distinguish between AT and droplet bodies. The capability of the present 

numerical method, according to this comparison, proves to be fairly good. 

2.2.4.2 Qualitative Analysis of Shock/Water-Column Breakup 

 

Figure 2.8 Sequential images of water column deformation and breakup for Mach 2.4 at 

t*=0.39 (a), 0.44 (b), 1.87 (c), 9.51 (d). The left shadow graphs of each sub-figures are 

experimental images of Sembian et al.(2016) the right upper half and lower half are numerical 

density gradient and pressure contour respectively. 
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Fig. 2.8 shows that simulating the shock/water-column interaction (Sembian et al. 

2016) validates the numerical method. The zero time is the instant of shock impact, and 

the dimensionless time t* is defined as follows: 

𝑡∗ = 𝑡𝑢𝑔 𝐷⁄ (2.7) 

The figure presents numerical density gradient (right-upper) and pressure 

distribution (right-lower) in comparison with the experimental image (left) at four distinct 

instants. 

The incident shock propagates from left to right and impinges on the water column. 

At t*=0.39, the incident shock (IS), reflected shock (RS), and Mach stem (MS) intersect in 

a triple point, and Fig. 2.8(a) clearly shows the reflected expansion wave (REx) within the 

water column. Due to the acoustic impedance mismatch between the air and water, waves 

propagate much faster in the water than that in air. The REx focuses at a single point (FREx) 

immediately at t*=0.44 while the incident shock moves a very short distance in Fig. 2.8(b). 

After the passage of the incident shock, the flow field builds and a recirculation zone forms 

at the leeward side of the water column at t*=1.87 in Fig. 2.8(c). And finally, Fig. 2.8(d) 

presents the water column breaks up in a striping mode at t*=9.51. Images in Fig. 2.8 

validate the present numerical method in capturing both wave structures and contact 

interfaces. Thus, the following study can proceed based on the present method. 
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3. Investigation of Aerodynamic Breakup of a Sphere Liquid Droplet 

behind a Shock Wave 

Normal shockwaves have little effect on the droplet. However, these shock could 

generate a subsonic or supersonic flow around the droplet. The droplets will then deform 

and break up in the shock wave-induced gas flow. At present, a large amount of attention 

in the literature focuses on several typical fragmentation modes and their transformation 

patterns with respect to each other. In this chapter, based on experimental and numerical 

simulations, the effects of the external airflow and the internal flow of the droplet on the 

deformation of the droplet will be described in detail. 

3.1. Outer airflow effect on droplet deformation 

3.1.1. Detailed Shock/Droplet Interaction around the Interface 

 

Figure 3.1 Numerical density gradient for a 2.5mm water droplet hit by a Mach 1.52 

incident shock wave (We=3000). 
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Fig. 3.1 shows the process by which the shock wave is bypassed near the droplet, where 

t=0 is defined as the moment when incident shock and the droplet are about to impact. The duration 

of this phase is relatively short, usually less than 20 microseconds. Under the conditions of this 

thesis, no visible deformation of the droplet surface occurs during the bypassing phase of the shock 

wave. The shock wave impacts the windward side of the droplet and reflection occurs. As the wave 

propagates downstream, the angle of incidence increases, and near the middle of the windward 

surface, the reflection type changes from regular to Mach reflection (Fig. 3.1(c)). The development 

of the bow-shaped reflection wave is relatively simple: the intensity decreases as it propagates 

outward. In the preferred computational domain, the reflected excitation wave acts on the droplet 

attachment region after it is re-reflected at the wall, but its intensity is so low that its influence can 

be neglected. The expansion wave generated by the post-wave flow through the bent interface act 

on the Mach rod and bend it. The bent Mach steam, after passing through the region near the equator 

of the sphere, converges on the leeward side towards the backward stationary point. The Mach 

reflection waves converge and intersect at the backward standing point (Fig. 3.1(e)), creating 

extremely high pressures and temperatures in this region. The bypassing wave then travels 

upstream over the surface of the sphere, decreasing in intensity until it is finally dissipated. During 

the intersection of the bypassing waves, a Mach steam is formed at the intersection of the waves 

downstream of the rear stationary point and propagates downstream. 
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The reflected wave of the Mach-Mach collision sweeps across the entire surface of the 

droplet (Fig. 3.1(i)). Although there is a large pressure gradient at the moment and an extremely 

high acceleration peak is created, this peak acceleration does not stop at a fixed area of the droplet, 

but sweeps across the entire droplet, so there is no significant deformation of the droplet. In fact, 

droplet deformation during excitation is generally negligible and when the excitation ends and a 

stable ambient airflow field is formed, it is the constant pressure exerted by the ambient airflow on 

the surface of the droplet that is the primary cause of the droplet's degeneration. 

 

Figure 3.2 Numerical density gradient (left) and pressure contour (right) at t=2.5μs 

(t*=0.25). 

The transmitted shock wave will be produced in the droplet when the incident shock impact 

the droplet, when this transmitted shock reaching the downstream water-air interface, the 

transmitted shock gets reflected as an expansion wave, since acoustic impedance Zwater > Zair. Due 

to the droplet’s downstream concave boundary the reflected expansion wave focuses at a point, 

(Fig. 3.2) creating “negative pressures.” By negative pressure, we mean that the absolute pressure 

is below 0. 
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3.1.2. Pressure Distribution Effect on Droplet Deformation 

 

   

Figure 3.3 Pressure distributions on the droplet’s surface at 0.69μs, 0.97μs and 2.03μs 

after the shock impingement (a) and the corresponding shock wave refraction patterns (b) 

(αwater=0.5). Pressure distribution effect on droplet deformation. 

Two mechanisms can be responsible for the formation of the lips during the droplet 

deformation behind the shock wave. One is the squeezing and sucking effect of the nonuniform 

pressure field, which is referred to as the pressure mechanism in this study. And the other is the 
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accumulation effect of the shear induced surface flow, which is referred to as the shear mechanism. 

The action of pressure mechanism can be reflected by the pressure distribution. To analysis the 

pressure distribution, dimensionless pressure factor 𝐶𝑝 =
𝑝−𝑝∞

𝑝𝑑
   is introduced, where P∞ is the free 

stream gas pressure, Pd is the flow dynamic pressure. If Cp is above 0, it means the area is under a 

squeezing effect, and vice versa. 

Fig. 3.3 shows the pressure distributions on the droplet’s surface at 0.69μs, 0.97μs and 

2.03μs after the shock impingement and the corresponding shock wave refraction patterns: RRR, 

FPR, FNR. As for local sound speed, the shock/droplet interaction problem is a slow-fast, air-water 

interface case. Fig. 3.3(a) presents the RRR (regular refraction with reflected shock) shock 

refraction pattern. In this pattern, the transmitted t-wave is always ahead of the incident i-wave, 

and it moves along the interface at the same velocity. Figure 3.3(b) presents the FPR (free precursor 

reflection) shock refraction pattern. The t-wave breaks loose from the i-shock and reflected r-waves, 

running significantly ahead along the interface. The t-wave is a evanescent wave, which is refracted 

back into a side, s-wave. The s-wave interacts with the i-wave, transform into a k-wave, which is 

reflected as a centered expansion e-wave. The e-wave interacts with the r-wave, causing weaken 

each other. The local Cp has a small peak between the i-wave and t-wave on the interface.  Figure 

3.3(c) presents the FNR (free precursor von Neumann reflection) shock refraction pattern. The 

different between FNR and FPR is the formation of a weak Mach reflection n-wave. 
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Fig. 3.4 presents the pressure distributions on the droplet’s surface at different instants in 

the early stage after the shock impingement at Ms=1.52 and We=3000. Compared with wave 

movement in Fig. 3.1, show the wave effect on the droplet deformation.  

 

Figure 3.4 Pressure distributions on the droplet’s surface at different times in the early 

period after the shock impingement at Ms=1.52 and We=3000 (αwater=0.5). 

Fig. 3.5(a) presents the pressure distributions on the droplet’s surface at different time after 

the shock impingement along with the vortex separation development at Ms=1.52 (αwater=0.95), 

with -90˚ indicating the windward stagnation point and 0˚ the equator. Low pressure trough on the 

Cp graph means that special areas are under sucking effect, which may lead to formation of lips on 

the droplet’s surface. It can be observed that at 40μs, four low pressure trough angles on the 

droplet’s surface at -18°, -1°, 23°, 45°. However, till 100μs only the -12o and 25o low pressure 

trough angles become the main force that control the deformation of the droplet. It coincides well 

with the experimental results. 
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Fig. 3.5(b) shows the numerical Schlieren of spherical droplet’s deformation a t*=9.8. It 

shows clearly that the liquid bulges/rings angles on the leeside water surface at t*=9.8 (-1.2°, 25.2°, 

45.2°) are almost the same as low pressure peaks angle on the droplet’s lee surface at t*=4 (-1°, 

23°, 45°). After the votex separation fully developed, the four low pressure areas on the lee surface 

of droplet will generate liquid rings later. And different from the windward surface, the liquid 

bulges/rings on the leeside droplet surface will maintain the same angles for a period.  

As shown in Fig. 3.5(b), In the early stages of breakup, the liquid mist is produced in two 

main regions: near the equator and at the top of the leeward surface liquid ring. In the former, the 

direction of spraying is the same as that of the ambient airflow, while in the latter the direction of 

spraying is opposite to that of the ambient airflow. Of the two, generally speaking, the amount of 

liquid fog generated near the equator is much higher than that of the leeward liquid ring, which is 

the main component of the early liquid fog. In the middle and late stages of droplet fragmentation, 

due to the flattening of the droplet body, the two areas of liquid mist generation will gradually 

approach each other. 
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Figure 3.5 Pressure distributions on the droplet’s surface at 10μs, 40μs, 70μs and100μs 

after the shock impingement (a) and numerical Schlieren of spherical droplet’s deformation at 

t=100μs (b) (t*=10) at Ms=1.52 and We=3000 (αwater=0.5). 

3.1.3. Qualitative Analysis of Water-Droplet Breakup 

 

Figure 3.6 Sequential images of spherical drop deformation and breakup at Mach 1.52 

and We=3000 and comparison with the corresponding axisymmetric CE/SE simulation (αwater 

≥0.05). 
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Fig. 3.6 shows comparisons of sequential experimental images of a spherical drop 

deformation and breakup for a typical case with shock 𝑀𝑎=1.52 and 𝑊𝑒=3000 and the 

corresponding numerical results. The comparisons are made in two ways: each lower half 

image in the upper row presents a 2D view where the simulation results represent a middle 

slice of the water droplet, and each lower half image in the lower row presents a 3D view 

where an iso-surface with water volume fraction 0.05 represents the air/droplet interface. 

As shown in Fig. 3.6, the entire deformation and breakup process can be well simulated. 

In this case, the incident shock wave propagates from left to right, and the starting time is 

the instant when the incident shock wave impinges on the liquid surface at the windward 

stagnation point. At t* = 2, the incident shock wave passes the liquid droplet, and the flow 

field is initially established. At this early moment, the droplet can be deemed a solid sphere 

where a perfect spherical form is maintained. At t* = 4, the lip structure forms at the 

leeward surface of the droplet, and shear induced ripples form at the windward surface 

(marked as KHI which is caused by the Kelvin−Helmholtz instability). However, both the 

windward and leeward stagnation areas maintain smooth surfaces. The size of lip and the 

shear induced ripples grow with time, and the width of the droplet in the transverse 

direction compresses (t* = 6 ∼ 14, see also Fig. 3.7(a)). The mark of breakup occurs at t* 

= 8 when atomization first happens at the protrusion near the droplet equator (denoted as 
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A1). The second atomization point occurs at the lip tip (t* = 10, denoted as A2), although 

the lip appears first. It is interesting to note that the atomized lip tip (A2) is left pointing. 

As time elapses, the distance between the first atomization point (A1) and the second 

atomization point (A2), labeled as L, becomes shorter. The figure illustrates this change as 

L6 < L8 < L10 < L12 < L14, where the subscripts denote the time. This indicates that the flow 

direction at the left and right sides of the droplet are opposite. The opposite flow direction 

enhances the formation of the vortices at the lateral side, which benefits the stripping 

breakup process. From the instant t* = 8, a basin-shaped leeward surface emerges and its 

depth increases. Fig. 3.7(a) presents the interface evolution history. The development of 

the basin depth leads to further droplet lateral growth, making the striping phenomenon 

even more severe.  

Figure 3.7(b) presents the vorticity distribution of the flow field at the early stage 

(t = 20µs). After the incident shock passage, the vorticity that results concentrates mainly 

in a region near the droplet surface. At the windward side of the droplet, the vorticity 

distribution remains confined on the droplet surface except in the area near the stagnation 

point where the angle between the fluid flow and the surface normal direction is small. 
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Figure 3.7 Deformation history of the water droplet surface by the CE/SE simulation (a) 

at Ms=1.52 and We=3000, and vortices distribution (b) at t=20 µs (t*=2) in Figure 4-2. S denotes 

the separation point, KH the area where the KH instability emerges. ֺω1, ω2 and ω3 denotes three 

distinct vortices. The white dashed line represents the air/water interface (volume fraction of 

heavy fluid 95%). Light color indicates positive vorticity and dark color indicates negative 

vorticity. 

The separation occurs near the droplet equator (S). In this case, the vorticity acts as 

an index of flow direction. It shows that the air flow separates tangentially near the droplet 

equator. At the droplet windward surface out of the stagnation area, an interface protrusion 

occurs (KH), which is induced by the K-H instability. The vorticity at the leeward 

stagnation area is as weak as the windward stagnation area. However, the vorticity 

distribution between the separation point and the leeward stagnation point is complex and 

fascinating. The inset of Fig. 3.7(b) enlarges the complex part of the vorticity and illustrates 

streamlines. The streamlines out of the separation region are regular while the streamlines 
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in the separation region are twisted. In the separation region, three distinct vortices form, 

labelled ω1, ω2, and ω3 separately. This flow structure is in accordance with the research 

of Theofanous et al. (2012) and Meng et al. (2013). The three vortices rotate in different 

directions: ω1 clockwise, ω2 anti-clockwise, and ω3 clockwise. These vortices locate 

closely at the droplet surface and force the surface to deform. As the arriving shock wave 

passes through the equator, negative vorticity ω2 is generated by the baroclinic vorticity 

term,
1

𝜌2 ∇𝜌 × ∇𝑝 , which relying on the gas flow after the shock wave to propagate 

downstream. The surface area between ω1 and ω2 is pressed to “sink” into the droplet, 

while the surface area between ω2 and ω3 is “pulled up” into the air (red arrows depict the 

deformation trend). The clockwise rotating vortices ω1 and ω3 are the reason why the 

protrusion A2 atomization happens windward. And the distance decreasing between A1 and 

A2 has an explanation. Fig. 3.7 shows that the outer air flow field of the shock/droplet 

interaction builds up at a very early stage. There is an obvious hysteresis of the droplet 

deformation after the flow field has built up.  

In the numerical results, the liquid protrusion in the middle of the leeward droplet 

surface is slightly weaker than the experimental images. The main reason is that the 

numerical code does not take the surface tension variation into account. As the shock wave 
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passes by, the surface tension becomes smaller with the increase of gas temperature. In that 

case, the small liquid protrusion easily extends into lips. 

 

Figure 3.8 Breakup of the droplet hit by Ms=1.52 shock at t=460μs (t*=46) (left is the 

experimental photo, right is the numerical density gradient). (αwater≥0.05). 

Fig. 3.8(a) shows the deformation and breakup of the droplet hit by Ms=1.52 shock 

at t=460μs(t*=46), clearly revealing a discontinuous gap in the atomization cloud. Shown 

in Fig. 3.8(b), this discontinuous gap may be due to the development of instability on the 

windward surface. The B area in Fig. 3.7(a) continues to cave during the flattening of the 

droplet, and then the outer atomization cloud will detach from the main drop body at a 

certain time. 
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3.2. Inner flow effect on droplet deformation 

3.2.1. Internal Flow Field Description 

Previous work has seldom considered the inner flow of the water droplet in the 

shock/droplet interaction because of its low flow speed. However, there is no doubt that 

the droplet deformation is a combined action of the inner and outer flow of the droplet. It 

is incomplete to interpret the deformation only from the perspective of outer flow. Fig. 3.9 

presents the inner flow field of the water droplet by illustrating the pressure distribution as 

well as the streamlines at a series of instants. When the incident shock impinges a spherical 

droplet, Mach stem emerges at the droplet surface, and then it diffracts (DS) at the leeward 

surface; see (a), 5 µs. At this moment, the much faster transmitted shock has already built 

up the inner flow field. Streamlines shown within the droplet coincide with the precursory 

transmitted shock in the droplet. At instant (b) 7 µs, the inner flow basically remains intact, 

except for the minor change effected by the diffracted shock (DS). At (c) 9 µs, the DS near 

the leeward stagnation point forms a high pressure zone, and re-diffracts to the windward. 

This high pressure zone is vital to the inner flow field. It produces a negative speed in the 

x direction, and a half saddle point (HS) is formed at the axis of symmetry. The windward-

moving re-diffracted shock imposes direct disturbance only at the leeward stagnation area. 
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The vortices formed near the leeward surface well “protect” the droplet surface from 

disturbance of any shock wave (d, 11 µs). After its formation, the half saddle point HS 

moves windward until the moment (e), 20 µs. From 20 µs on, the location of HS stays 

steady at approximately a fixed point (x =0.4∼0.5 mm), and the droplet can be considered 

as two parts divided by the streamlines emitted from the HS point. It also is worth noting 

that, up to this time (e, 20 µs), the droplet surface contour (the white solid line) remains a 

perfect circle. Also at this time, both the outer and inner flow fields have built up without 

the droplet deformation. A prediction of droplet deformation rests on the inner flow: two 

protrusions will emerge at the droplet surface, one at the intersection of droplet surface and 

the streamlines emitted from the HS point (i.e. A2) and the other at the leeward surface of 

the droplet surface near the largest vortex (i.e. A3). Apparently, these two protrusions form 

via different mechanisms: the inner fluid flow driven by the high pressure zone at the 

leeward stagnation point forms A2, while the outer fluid flow driven by the vortex forms 

A3. The deformation at (f, 50 µs) proves this prediction. In addition, the third protrusion 

(A1) is visible near the droplet equator at this moment; it is formed mainly by the outer low 

pressure zone. As time elapses, the droplet deforms obviously (g, 100 µs) in both the lateral 

and transverse directions, but the HS point remains nearly still (h, 140 µs). 
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Figure 3.9 Numerical pressure distribution and streamlines at (a) 5 µs, (b) 7 µs, (c) 9 µs, (d) 11 

µs, (e) 20 µs, (f) 50 µs, (g) 100 µs and (h) 140 µs. The white solid line denotes the air/water 

interface, DS the diffracted shock, and Bif the bifurcated point. 
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Figure 3.10 Numerical airstream density distribution and the internal flow streamlines of Yi et 

al.’s case. 

This study then employs the numerical CE/SE method to simulate the experiment 

conducted by Yi et al. (2017), using a droplet diameter 𝑑0 of 3.03 mm and an incident 

shock Mach number 𝑀𝑠 of 1.39. Fig. 3.10 depicts the flow field build-up process of this 
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shock–droplet interaction by the air density contours. The white solid lines with arrows 

illustrate the temporal streamlines. These streamlines are truncated to focus only on the 

liquid flow inside the droplet rather than on the outer airflow and the interfacial boundary 

flow. After the incident shock (IS) impacts the windward surface of the droplet at 𝑡 = 2𝜇𝑠, 

the reflected shock (RS) forms and propagates upstream, whereas a transmitted shock (TS, 

shown by the white dash line) propagates inside the droplet, which is much faster than the 

incident shock in air. Before the diffracted shock (DS) collides at the droplet LS point, the 

droplet internal flow keeps developing, induced by the internal diverging TS (𝑡 = 6𝜇𝑠) 

when all of the streamlines within the droplet are pointing in the downstream direction. At 

𝑡 = 14𝜇𝑠, high pressure forms in the LS area because of the DS collision. Accordingly, 

this high pressure induces the LS and the part of the internal liquid close to the LS to flow 

upstream. As a result, there must be a point inside the droplet on the axis of symmetry 

where the velocity is zero to balance the downstream and upstream liquid flow momentums. 

Observed for the first time, a saddle point (SP, labeled as the white dot) forms. In the 

following instants, although the shedding vortex (SV), KHI, and chaotic recirculation zone 

(RZ) form in sequence ( 𝑡 = 20, 60, 𝑎𝑛𝑑 100𝜇𝑠) , the SP keeps its position nearly 

unchanged. This shock–droplet interaction process shows that the forming of the internal 

flow field is in quite a short time after the incident shock sweeps over the droplet. The 
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existence of an SP suggests that the droplet is suspended in air relative to the SP position, 

before the free stream tears apart and blows downstream the droplet. 

Late-stage images at 𝑡 = 200 𝑎𝑛𝑑 250𝜇𝑠  show where the droplet is severely 

deformed into a crescent shape. At 200𝜇𝑠 , although the droplet experiences severe 

deformation, the internal flow field maintains the same pattern as before. The distance 

between the windward stagnation point (WS) and leeward stagnation point (LS) decreases, 

and the SP nearly touches the LS. At  250𝜇𝑠, the SP disappears, and all of the streamlines 

point in the downstream direction. No longer suspended, the whole droplet drifts 

downstream.  

To delineate the relative positions of the WS, LS, and SP, Fig. 3.11 records the 

trajectories of these three points. The distance between the WS and LS illustrates that the 

droplet becomes narrow in the streamwise direction. Interestingly, the SP trajectory 

remains steady after the formed internal flow field (at t = 25𝜇𝑠) and moves toward the LS 

when the droplet deforms severely (at t= 180𝜇𝑠). After the trajectories of the LS and the 

SP intersect, the LS trajectory stops moving upstream and turns downstream instead. 
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Figure 3.11 Trajectories of windward stagnation point (WS), leeward stagnation point (LS), and 

saddle point (SP) of Yi et al.’s case. 

More numerical cases examined if this internal flow pattern is universal in a larger 

parameter space. The focus was on the droplet diameter and density differences. Regarding 

the droplet diameter, additional simulations examined 𝑑0 = 2.5 and 3.5 mm. Regarding the 

density difference, while maintaining the incident shock strength at 𝑀𝑠 = 2.4, simulations 

included three different kinds of droplets: gelatin (heavier than water), fat (lighter that 

water), and dodecane (much lighter than water). Table 3.1 lists the corresponding densities 

and stiffened gas EOS parameters. 
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Table 3.1 The parameters used for the different liquids. 

Dimensionless trajectories of the WS, LS, and SP are extracted from the numerical 

results mentioned previously (see Fig. 3.12). The quantities are nondimensionalized as  

𝑡∗ =
𝑡

[(𝑑0 𝑢𝑔⁄ )√𝜌𝑙 𝜌𝑔⁄ ]
,  

𝑥∗ = 𝑥 𝑑0⁄ , 

 𝑎𝑛𝑑 𝑡𝑠𝑝
∗ = (𝑡 − 𝑡𝑠𝑝

0 )/[(𝑑0 𝑢𝑔⁄ )√𝜌𝑙 𝜌𝑔⁄ ]   (3.1) 

where 𝑡∗ is the dimensionless time of the droplet evolution, 𝑢𝑔 is the post-shock air 

velocity, 𝜌𝑙 is the liquid density, 𝜌𝑔 is the post-shock air density, 𝑥∗ is the dimensionless 

time, 𝑡∗ is the dimensionless time of SP development, and 𝑡𝑠𝑝
0  is the instant when the SP 

appears. Fig. 3.12(a) reveals that the dimensionless trajectories of the WS and LS collapse 

perfectly into each other. The SP trajectories, as shown in Fig. 3.12(b), hold steady at 

around 𝑥∗ = 0.3  after 𝑡𝑠𝑝
∗ = 0.05 , which indicates that this internal flow pattern is 

universal in similar shock/droplet interaction phenomena. 



66 

 

 

 

Figure 3.12 Trajectories of a) WS/LS, and b) SP, for different droplets at Ms = 2.4 in their 

dimensionless form. 

 

 

Figure 3.13 Water droplet morphologies at t∗ = 0.3 for cases with different incident shock 

strengths. 
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3.2.2. Internal Flow Field with Different Shock Strengths 

 

Figure 3.14 Trajectories of WS (open symbols) and LS (solid symbols) of cases with 

different incident shock Mach numbers. 

To correlate 𝑀𝑠  with the water droplet internal flow pattern, cases simulate 

different shock strengths, and make comparisons at the same dimensionless time. Fig. 3.13 

presents the droplet internal flow pattern at the instant when 𝑡∗ = 0.3 for four different 𝑀𝑠 

values. With the increase of shock strength, the SP locates itself closer and closer to the 

LS, and the droplet morphology varies accordingly. 

The momentum transportation from the high-pressure zones at the WS and the LS 

obviously affects the position of the SP. This momentum transportation presents itself by 

the movement of the positions of the stagnation points. Fig. 3.14 shows the trajectories of 
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the WS and LS of the preceding five different 𝑀𝑠 cases and compares them. It is interesting 

to see that both the WS and LS trajectories fits perfectly to the potential theory prediction 

(Engel 1958) at the early stage. 

 

Figure 3.15 SP trajectories for cases with different incident shock strengths. 

Because the internal flow field is simple at the early stage, an easy way to describe 

the internal flow pattern is to record the position of the SP, which remains stationary in 

space after the initial flow development process. Fig. 3.15 presents the trajectories of the 

SPs for different incident shock strengths. As shown, SPs form very close to the LS initially 

and move upstream. Although oscillations exist in all five cases because of the repeated 

internal wave reflection, the positions of the SPs hold relatively steady after 𝑡𝑠𝑝
∗ = 0.05. 

Furthermore, Fig. 3.15 well reflects the trend shown in Fig. 3.13 in that the SP position 
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drifts farther downstream (larger x coordinate) for the relatively strong shock cases. The 

trajectories of the SPs before they reach their stationary position collapse to the same line 

(with the same slope as the black dash line denoted in Fig. 3.15). This indicates the ability 

to correlate the rate of change of the internal flow pattern using the preceding 

nondimensionalization method. 

3.2.3. Theoretical Prediction 

Following the preceding discussion, the position of the SP, 𝑙𝑠𝑝 , after the initial 

shock–droplet interaction, can be estimated based on the velocity at which the SP moves 

(𝑢𝑠𝑝) and the duration in which the shock influences the LS area (𝑡𝑠), i.e., 𝑙𝑠𝑝~𝑢𝑠𝑝𝑡𝑠. 𝑢𝑠𝑝 

is the outcome of the change of internal flow, and it connects to the liquid flow velocity 𝑢𝑙 

(i.e., 𝑢𝑠𝑝~ 𝑢𝑙). The term 𝑡𝑠 closely relates to the shock propagation outside of the droplet, 

and it connects to the shock velocity 𝑢𝑠  by 𝑡𝑠~(𝑑0 𝑢𝑠⁄ ) = (𝑑0 𝑎0⁄ 𝑀𝑠), where 𝑎0 is the 

sound speed in quiescent air. In this way, we present the dimensionless SP displacement 

𝑙𝑠𝑝
∗ = 𝑙𝑠𝑝 𝑑0 ⁄ by a simple linear approximation: 

𝑙𝑠𝑝
∗ = 𝐴

𝑢𝑙  𝑡𝑠

𝑑0
+ 𝐵 = 𝐴

𝑡𝑠

𝑑0/𝑢𝑙 
+ 𝐵 = 𝐴

 𝑡𝑠

𝑡̃
+ 𝐵    (3.2) 

where 𝑑0 on the right-hand side of the first equals sign is used to nondimensionalize the 

term 𝑢𝑙 𝑡𝑠. The liquid flow velocity is obtained qualitatively by 𝑢𝑙 ~𝑢𝑔 √𝜌𝑔 𝜌𝑙⁄  as applied 
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by Nicholls & Ranger (1969), which arises directly from an application of Newton’s 

second law to droplet displacement. The important measure of the intensity of the 

interaction is the gas-flow dynamic pressure ( (1/2)𝜌𝑔 𝑢𝑔
2) behind the shock); the 

momentum flux change 𝜌𝑙 𝑢𝑙
2 inside the droplet is proportional to (1/2)𝜌𝑔 𝑢𝑔

2 as a prompt 

consequence of the interfacial response to this gas dynamic impulse (i.e., 𝜌𝑙 𝑢𝑙
2~(1/

2)𝜌𝑔 𝑢𝑔
2)). Therefore, the liquid velocity 𝑢𝑙 ~𝑢𝑔 √𝜌𝑔 𝜌𝑙⁄  can be qualitatively obtained. The 

term 𝑡̃ = 𝑑0 𝑢𝑙⁄  can be considered a characteristic time. A and B are constants to be 

determined. 

Manipulating equation 3.2 and correlating the dimensionless SP displacement to 

the incident shock strength, we have 

𝑙𝑠𝑝
∗ =

𝐴

𝑑0
𝑢𝑔√

𝜌𝑔

𝜌𝑙

𝑑0

𝑢𝑠
+ 𝐵 

   = 𝐴√
𝜌0

𝜌𝑙

2(𝑀𝑠
2+1)

𝑀𝑠√𝑀𝑠
2(𝛾2−1)+2(𝛾+1)

+ 𝐵  (3.3) 

where 𝜌0 is the density in quiescent air, and γ = 1.4 is the ratio of the specific heats of air. 

Note that 

𝜌𝑔 = 𝜌0
(𝛾+1)𝑀𝑠

2

(𝛾−1)𝑀𝑠
2+2

      (3.4) 

𝑢𝑔 = (1 −
𝜌0

𝜌𝑔
)𝑢𝑠    (3.5) 
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Figure 3.16 Comparison of numerical results and the theoretical prediction of Equation 3.3. 

Asymptotic conditions confine the correlation between 𝑙𝑠𝑝
∗  and 𝑀𝑠 in Equation 3.3. 

When 𝑀𝑠 approaches 1, the incident shock is infinitely weak, and the SP is located at the 

center of the droplet (i.e., 𝑙𝑠𝑝
∗   goes to 0.5). However, when 𝑀𝑠 approaches infinity, the SP 

reaches the LS (i.e., 𝑙𝑠𝑝
∗  goes to zero). From this, constants A = −7.14 and B = 0.5 are 

derived. Equation 3.3 relates the stationary SP position solely to the incident shock strength 

𝑀𝑠. 

Following the preceding discussion, Fig. 3.16 depicts the relationship between 𝑙𝑠𝑝
∗  

and 𝑀𝑠  in Equation 3.3, together with the numerical data in Fig. 3.15. The five cases' 

numerical error bars characterize the vibrations of the SPs due to the constantly repeating 
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reflection of the internal wave system. It is easy to understand that the larger 𝑀𝑠 is, the 

larger the vibration amplitude of SP. It is seen that the theoretical prediction agrees well 

with the numerical simulations. We can quantitatively predict the characteristic internal 

flow field pattern with different incident shock strengths, including the stationary SP 

position and the trajectories of the WS and LS. 

3.3 Summary 

In summary, this study investigates, both numerically and theoretically, the internal 

flow pattern of a single water droplet under shock impact. Similar internal flow patterns 

occur in cases with different incident shock strengths, in which the SP forms and remains 

stationary soon after the passage of the incident shock. With the increase in the incident 

shock strength, the SP position varies, and the droplet presents different morphologies. A 

simple theory can predict the stationary position of SP in accordance with the incident 

shock Mach number. This correlation connects the shock strength with the droplet internal 

flow field. It infers that the shock inputs the droplet internal flow pattern into the droplet 

at the initial impact stage rather than following the post-shock airstream. More research 

should be done on this point in the near future. 
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4. Investigation of a Shock Interacting with a Sphere Water Droplet 

Embedded with a Large Vapor Bubble Inside 

4.1 Experimental Specifications 

Since Chapter 2 schematically explains the experiment setup used in this study, this 

chapter will not be describe it further. Some specifications for setup and operation are given 

below. 

A key point to mention is, a vacuum pump (Leybold DIVAC) removes the air from 

the test and driven sections before each experiment, and a vacuum pressure gauge 

(SMCGZ46-K2K) measures the final pressure at (5.3 ± 0.5) × 103 Pa. Meanwhile, as a 

result of the heating effect of the LED light source, the temperature inside the test section 

is 34℃, which is higher than the laboratory temperature (23℃). Thereby, the ambient 

pressure in the test section reaches the saturation vapor pressure of water (5.3 × 103 Pa) at 

34℃. The equilibrium between the liquid phase and gas phase is reached inside the droplet, 

and a large vapor bubble (cavity) is gradually generated within the droplet before the 

droplet falls from the needle. However, each experiment cannot control the sizes of the 

droplet and the bubble, as well as the position of the bubble relative to the droplet. The 

droplet’s diameter (𝐷𝑑) ranges from 1.14 mm to 3.04 mm, and the bubble’s diameter (𝐷𝑐) 
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ranges from 0.68 mm to 2.71 mm. Table 4.1 lists the dimensions of 𝐷𝑑 and 𝐷𝑐 for each 

case. 

 

Table 4.1 The initial physical parameters in all cases(Liang et al. 2020). Here Dd represents the 

droplet diameter; Dc represents the cavity diameter; S represents the eccentric distance between 

the cavity center and the droplet center, and a positive or negative value indicates whether the 

cavity center is closer to the upstream or downstream wall of the droplet, respectively; Uflow and 

pg represents the flow speed after the incident shock and pressure in the surrounding gas; M 

represents the incident shock Mach number; Re represents the Reynolds number; We  represents 

the Weber number; and We
* represents the defined Weber number in present study. 

As measured by two piezoelectric transducers, the incident shock Mach number is 

2.25 ± 0.15. Reynolds numbers and Weber numbers of flows under different working 

conditions are also calculated by the following definitions: 

𝑅𝑒 =
𝜌𝑔𝑈𝑓𝑙𝑜𝑤𝐷𝑑

𝜇𝑔
, 𝑊𝑒 =

𝜌𝑔𝑈𝑓𝑙𝑜𝑤
2 𝐷𝑑

𝜎
,   (4.1) 

where 𝜌𝑔, 𝜇𝑔, and 𝑈𝑓𝑙𝑜𝑤 are the density, viscosity, and flow velocity of the post-

shock gas. 𝐷𝑑  represents the diameter of the droplet, and 𝜎  is the surface tension 

coefficient of water at the pre-shock temperature 34 ºC. 
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Here, another dimensionless parameter 𝑊𝑒
∗(= 𝑝𝑔𝐷𝑑/𝜎) is also defined to compare 

the post-shock gas pressure 𝑝𝑔  and the Laplace pressure. Table 4.1 summarizes 

geometrical and flow parameters in different cases. By using the relations of normal shock, 

𝑊𝑒
∗ can be readily expressed in terms of the shock Mach number 𝑀𝑠 and the traditional 

Weber number 𝑊𝑒: 

𝑊𝑒

𝑊𝑒
∗ =

4𝛾(𝑀𝑠
2−1)2

[2𝛾𝑀𝑠
2−(𝛾−1)][2+(𝛾−1)𝑀𝑠

2]
,    (4.2) 

where 𝛾 is the specific heat ratio of air. Since the shock Mach numbers of 

different cases are all approximately 2, the ratios of 𝑊𝑒 to 𝑊𝑒
∗ are all approximately 1.5 in 

the present study. 

4.2 Qualitative Analysis 

Fig. 4.1 shows experimental images of the hollow droplets in five representative 

cases. Time zero is defined as the instant at which the shock wave impacts the upstream 

wall of the droplet, and the time is normalized by 𝐷𝑑/𝑈𝑓𝑙𝑜𝑤 . Fig. 4.1(a) indicates the 

upstream wall of the droplet (UW), the downstream wall of the droplet (DW), the upstream 

interface of the cavity (UI), and the downstream interface of the cavity (DI). Note that the 

incident shock wave propagates from right to left in each image. 
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Figure 4.1 Evolution of the droplet embedded with a vapor cavity under the impact of a planar shock wave in different 

experimental cases. Panels (a), (b), (c), (d) and (e) correspond to cases 1, 2, 5, 7 and 9 in table 4.1, respectively. The incident 

shock wave travels from right to left. UW and DW denote the upstream wall and the downstream wall of the droplet, 

respectively. UI and DI denote the upstream interface and the downstream interface of the vapor cavity, respectively. Here Ld and 

Lc are the streamwise lengths of the droplet and the cavity, respectively. The dimensionless time tUflow=Dd is shown in each 

image (Liang et al. 2020). 
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Case 5 listed in the table 4.1 has the largest average droplet diameter of 3.04 mm; 

therefore, it is the best image resolution to use as an example of the entire interaction 

process, as shown in Fig. 4.1(c). During the interaction of the incident shock wave and the 

droplet embedded with a vapor cavity (dimensionless time from 0 to 0.6), the external 

shape of the droplet remains almost undisturbed. However, the UI of the vapor cavity 

moves downstream slightly because the transmitted shock wave and the compression 

waves reflect from the UW impact on the UI repeatedly. 

From dimensionless time 0.6–26.0, the DW becomes flattened and moves upstream 

because the pressure difference between the high pressure generated by the shock–shock 

interaction behind the droplet and the low pressure generated by rarefaction waves inside 

the liquid drives the DW. This observation is similar to the results of Xiang & Wang (2017), 

Meng & Colonius (2018) and Guan et al. (2018). In addition, the cavity shrinks 

substantially. In this process, local condensation of vapor can take place (Wu et al. 2019) 

because the local pressure inside the cavity can be higher than the saturation pressure after 

repeated impacts of shock/compression waves. In addition, a ring-like structure emerges 

on the outside surface of the droplet. 

The third frame of Fig. 4.1(c) for a dimensionless time of 29.2 clearly shows a 

transverse jet along the symmetric axis of the droplet. Two explanations arise for the 
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formations of the transverse jet. The first explanation is derives from the Richtmyer–

Meshkov instability (Richtmyer 1960; Meshkov 1969). As the Richtmyer–Meshkov 

instability (RMI) develops on the liquid–gas interface (UI) with an extreme Atwood 

number (Apazidis 2016), vorticity deposited by the misalignment between the pressure 

gradient and the density gradient drives the UI to penetrate into the vapor cavity (Xiang & 

Wang 2017). The second explanation emphasizes the mechanism that, after the transmitted 

shock inside the droplet impacts the vapor cavity, rarefaction waves reflected from the 

vapor cavity relax the pressure near the UI. The resultant temporal pressure gradient 

accelerates the flow in the streamwise direction. Due to the curved shape of the UI, this 

acceleration focuses the flow to one point, eventually causing the flow to evolve and form 

the transverse jet (Hawker & Ventikos 2012). Comparing the positions of the jet tip 

between two sequential images results in a measure of the mean velocity of the transverse 

jet in case 5, and this calculation is  𝑉𝑗𝑒𝑡 = 21.9 ± 0.1.9 𝑚/𝑠. Here, 𝑉𝑗𝑒𝑡 decomposes into 

three parts. The first part is the post-shock velocity of the interface UI, denoted by 𝑉0. 

Based on the experimental images at the early stage of evolution, 𝑉0 is evaluated to be 4:73 

𝑚/𝑠. The second part is the RMI growth rate 𝑉𝑅𝑀𝐼 of the interface UI, which equals 6.69 

𝑚/𝑠. The impulsive theory (Richtmyer 1960) calculates this rate as follows: 

𝑉𝑅𝑀𝐼 = 𝑘𝑎𝐴𝑉0 ,     (4-3) 
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where 𝑘 = √2/𝑎  is the wavenumber (Haas & Sturtevant 1987), 𝑎  is the cavity 

radius, and A = 1  is the Atwood number. The rest (approximately 10:48 𝑚/𝑠 ) is the 

velocity induced by other mechanisms, such as the flow penetration due to the reflected 

rarefaction waves and the effect of cavity collapse. When the transverse jet impacts the DI 

with a large momentum, a great temperature rise develops at the impact point (Bourne & 

Field 1992; Hawker & Ventikos 2012). Therefore, the vapor cavity expands, accompanied 

by local evaporation. As the volume of the vapor cavity increases, the DI catches up with 

the DW. Later, a water jet appears at the downstream pole of the droplet (dimensionless 

time 57.7). To the best of the authors’ knowledge, this water jet has not been observed in 

previous experimental studies on the shock–droplet interaction. Eventually, the fine mist 

generated by the droplet breakup at dimensionless time 86.2 covers the water jet. 

Other interesting findings include the effects of the cavity size and position on 

droplet deformation. When the ratio of the cavity diameter to the droplet diameter σ is 

sufficiently large (Fig. 4.1c), a mushroom-like vortex ring appears on the head of the water 

jet because of the Kelvin–Helmholtz instability induced by the velocity shear, and the 

surface of the UW is prominently rippled, which is different from the smooth liquid surface 

in the classical shock–droplet interaction experiments (Theofanous & Li 2008). The 

eccentricity of the vapor cavity ϵ also influences the droplet deformation. When the cavity 
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is closer to the downstream wall, the water jet is long and thin, as shown in Fig. 4.1(d). 

When the cavity is closer to the upstream wall, the water jet is short and thick, as shown in 

Fig. 4.1(e). 

In summary, cavity evolution significantly influences droplet deformation, and 

cavity evolution has two stages: a cavity-collapse stage and a cavity-expansion stage. 

Multiple physical mechanisms, including shock/rarefaction wave dynamics, interface 

instabilities, and gas–liquid phase changes, govern the entire flow process. 

4.3 Droplet Evolution 

 

Figure 4.2 Comparison of the dimensionless displacements on the characteristic points of 

the droplets for different cases: (a) different δ and small ϵ (| ϵ |≤ 0.1); (b) different ϵ and similar δ 

(0.59 ≤ δ ≤ 0.74). Triangle symbols and square symbols represent the UWB displacements and 

the DWB displacements obtained from the experimental images, respectively. 
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Fig. 4.2 shows the time-varying displacements of the upstream wall boundaries 

(UWBs) and the downstream wall boundaries (DWBs) in different cases. The 

dimensionless displacement is defined as (𝑥𝑑 − 𝑥0𝑑)/𝐷𝑑, where 𝑥𝑑 is the displacement of 

the UWB or DWB, and 𝑥0𝑑  is the initial position of the UWB. For all cases, after the 

incident shock wave impacts on the hollow droplet, the UWB displacement (triangle 

symbol) increases gradually with a positive acceleration because of the accelerating effect 

of the rarefaction wave reflected from the DW. Moreover, the displacement of the DWB 

(square symbol) decreases slightly at first, and then increases because both the transverse 

jet impingement and the local evaporation of water push the DI downstream. 

In Fig. 4.2(a), when the eccentricity is sufficiently small (|𝜖| ≤ 0.1), the time-

varying displacements of the UWBs for different 𝛿 values almost coincide, which indicates 

that 𝛿 has little influence on the motion of the UW. In addition, the movement of the DWB 

increases when 𝛿 is larger. In the inset of Fig. 4.2(a), the dimensionless time is redefined 

as t𝑈𝑓𝑙𝑜𝑤𝐷𝑐/𝐷𝑑
2 = (t𝑈𝑓𝑙𝑜𝑤/𝐷𝑑)𝛿. The time-varying displacements of the DWBs almost 

coincide with this new dimensionless method, which means that the water jet velocity is 

nearly proportional to 𝛿. 

In Fig. 4.2(b), when 𝛿  varies over a small range (0.59 ≤ 𝛿 ≤ 0.74), the time-

varying displacements of the UWBs in the cases with the negative 𝜖 (≤ −0.1) are smaller 
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than those in the cases with 𝜖~0, while those in the cases with positive 𝜖 (≥ 0.1) reduce 

even more. Therefore, when the vapor cavity center misalignes with the droplet center, the 

vapor cavity impedes the motion of the UW, especially when the vapor cavity is closer to 

the UW. In addition, the time-varying displacement of the DWB with negative 𝜖 (≤ −0.1) 

is similar to those in the cases with 𝜖~0, but those in the cases with positive 𝜖 (≥ 0.1) are 

smaller. In general, as 𝜖 increases, the time-varying displacement of the DWB decreases. 

 

Figure 4.3 Comparison of the dimensionless streamwise lengths of the droplets for different 

cases: (a) different δ and small ϵ (| ϵ |≤ 0.1); (b) different ϵ and similar δ (0.59 ≤ δ ≤ 0.74). 

Fig. 4.3 shows the time-varying lengths of the droplets ( 𝐿𝑑 ) in different cases. The 

time is normalized as t𝑈𝑓𝑙𝑜𝑤/𝐷𝑑 , and the length is normalized as 𝐿𝑑/𝐷𝑑 . Fig. 4.3(a) 

demonstrates the comparison between cases with sufficiently small eccentricity (|𝜖| ≤

0.1)  and different values of 𝛿 . When 𝛿 ≥ 0.8  , 𝐿𝑑  first decreases, and then increases 

because the water jet velocity is larger than the velocity of the UWB. However, when 𝛿 ≤
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0.66, due to the limited momentum of the transverse jet, the induced velocity of the water 

jet is larger than the velocity of the UWB only during a short period. Consequently, 𝐿𝑑  

first decreases, then increases slightly, and finally decreases again during the observation 

time. In Fig. 4.3(b), 𝛿  varies within a small range (0.59 ≤ 𝛿 ≤ 0.74) , but 𝜖  varies 

significantly. When 𝜖 = −0.15, 𝐿𝑑  first decreases and then increases. However, for the 

cases with 𝜖 ≥ −0.04, 𝐿𝑑  first decreases, then increases for a short period, and finally 

decreases again. In summary, when the size of the cavity is relatively large or the position 

of the cavity is closer to the downstream wall, the water jet is faster, and thus the length of 

the droplet is longer. 

4.4 Cavity Evolution 

Fig. 4.4(a) shows the time-varying displacements of the upstream interface 

boundaries (UIBs) and the downstream interface boundaries (DIBs) in different cases. The 

normalized displacement is defined as (𝑥𝑐 − 𝑥0𝑐)/𝐷𝑐, where 𝑥𝑐 is the displacement of the 

UIB or DIB, and 𝑥0𝑐 is the initial position of the UIB. After the transmitted shock wave 

passes through the vapor cavity, the UI moves downstream as a result of the shock impact 

and the cavity collapse. Meanwhile, the DI moves upstream because of the high pressure  
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Figure 4.4 (a) Comparison of the dimensionless displacements of the UIBs and DIBs for 

different cases. Triangle symbols and square symbols represent the UIB displacements and the 

DIB displacements obtained from the experimental images, respectively. (b) Comparison of the 

dimensionless lengths of cavities for all cases. 

generated by the shock–shock interaction near the downstream pole of the cavity as well 

as the cavity collapse. Before the vapor cavity shrinks to a tiny core, the transverse jet 

inside the cavity impacts the DI, and the volume of the cavity decreases at this time. 

Thereafter, the momentum exchange between the transverse jet and the DI and the local 

evaporation of water, which expands the vapor cavity, pushes the DI downstream and 

drives the UI upstream. The time-varying displacements of the UIBs and DIBs in almost 

all the cases show agreement in their variation trends. 

Fig. 4.4(b) indicates the time-varying lengths of the vapor cavity (𝐿𝑐 ) in different 

cases. The normalized length is defined as 𝐿𝑐/𝐷𝑐. In general, both 𝛿 and 𝜖 have limited 

influences on the evolution in the vapor cavity size. The decrease in 𝐿𝑐  corresponds to the 
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cavity-collapse stage, which is caused by shock compression and possibly vapor 

condensation. The subsequent increase in 𝐿𝑐  corresponds to the cavity-expansion stage, 

which comes from the transverse jet impingement and the water evaporation. 

 

 

Figure 4.5 (a) Schematics of a spherical collapsing model for a water droplet embedded 

with a vapor cavity. The droplet is immersed in uniform air with a pressure equal to the postshock 

air pressure in the present experiment. The pressure inside the cavity is assumed to be the 

saturation pressure of water. (b) Theoretical prediction and experimental data for the time-varying 

cavity size in the collapsing stage of case 6. 

A theoretical estimation of the time-varying cavity length can emerge from solving 

a simplified cavity collapsing problem, which is assumed to be of spherical symmetry, as 

sketched in Fig. 4.5(a). Extending the Rayleigh–Plesset equation (Brennen 1995) to the 

scenario, as shown in Fig. 4.5(a), can describe the evolution of the cavity radius 𝑎(𝑡) . First 

of all, due to the liquid density 𝜌 only changing minorly after the incident shock wave, then 
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by ignoring the change in liquid density (∇ ∙ u = 0,

here u represents the velocity vector), the continuity equation for the liquid phase can 

be expressed in spherical coordinates as 

1

𝑟2

𝜕(𝑟2𝑢(𝑡,𝑟))

𝜕𝑟
= 0 ,      (4.4) 

where the flow velocity 𝑢(𝑡, 𝑟) is in the radial direction. From equation 4.4 and 

the boundary condition for velocity at the liquid–vapor interface (r = a(t)), 

u(t, a(t)) =
𝑑𝑎(𝑡)

𝑑𝑡
 ,      (4.5) 

The velocity field can be derived and expressed in term of the cavity radius (a(t)) 

as 

𝑢(𝑡, 𝑟) =
𝑑𝑎(𝑡)

𝑑𝑡

𝑎2(𝑡)

𝑟2       (4.6) 

The velocity at r = R(t) is equal to the change rate of the droplet radius 

(dR(t)/𝑑𝑡), thus 

𝑑𝑅(𝑡)

𝑑𝑡
= u(t, R(t)) =

𝑑𝑎(𝑡)

𝑑𝑡

𝑎2(𝑡)

𝑅2(𝑡)
 .    (4.7) 

Integrating equation 4.7 yields 

𝑅3(𝑡) = 𝑎3(𝑡) + 𝑅0
3 − 𝑎0

3 ,     (4.8) 

where 𝑅0 and 𝑎0 are the radius of droplet and cavity at 𝑡 = 0, respectively. 

By ignoring the viscous force, the surface tension and the gravity, the momentum 

equation for the liquid phase can be written in spherical coordinates as 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑡
= −

1

𝜌

𝑝

𝑟
      (4.9) 

where 𝜌 and p are the density and pressure in the liquid phase at the experimental 

temperature.  

Assume that the droplet is immersed in a uniform gas with a pressure 𝑝∞ and the 

cavity is filled with a saturated water vapor that has a pressure 𝑝𝑠𝑎𝑡. Then, integrating 

equation 4.9 with respect to 𝑟, we obtain 

∫ (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑡
) 𝑑𝑟 =

𝑝𝑠𝑎𝑡−𝑝∞

𝜌

𝑅(𝑡)

𝑎(𝑡)
    (4.10) 

After substituting equation 4.6 into equation 4.10 and performing the integration, 

the resulting equation is the modified Rayleigh–Plesset equation: 

(𝑎(𝑡) −
𝑎2(𝑡)

𝑅(𝑡)
)

𝑑2𝑎(𝑡)

𝑑𝑡2 + [
3

2
− 2 (

𝑎(𝑡)

𝑅(𝑡)
) +

1

2
(

𝑎(𝑡)

𝑅(𝑡)
)4] (

𝑑𝑎(𝑡)

𝑑𝑡
)

2

=
𝑝𝑠𝑎𝑡−𝑝∞

𝜌
, (4.11) 

where the relation between 𝑅(𝑡) and 𝑎(𝑡) are provided by equation 4.8. 

In the limit of 𝑅(𝑡) → ∞, equation 3.2 reduces to the classical Rayleigh–Plesset 

equation for a vapor bubble in an infinite volume of liquid. A limitation of the present 

modelling comes from the assumption of undisturbed vapor pressure 𝑝𝑠𝑎𝑡. Accordingly, 

future work should incorporate into the collapse dynamics the effects of thermodynamics 

and heat transfer on the evaluation of 𝑝𝑠𝑎𝑡. 
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With initial conditions and physical parameters in accordance with those in 

experimental case 6, the above equations are numerically solved, and Fig. 4.5(b) plots the 

collapsing history of the vapor cavity. The comparison between the theoretical results and 

corresponding experimental data indicates that the idealized theoretical model in bubble 

dynamics still provides a good estimation of the time-varying cavity length, even though 

the present problem involves complex flow physics. For a vapor cavity in an infinite 

volume of water with initial radius 𝑎0, the total collapse time has the following theoretical 

expression, known as the Rayleigh time (Lord Rayleigh 1917; Brennen 1995): 

𝜏𝑅 = √
3𝜋

2

Γ(5/6)

Γ(1/3)
𝑎0√

𝜌

𝑝∞−𝑝𝑠𝑎𝑡
 ,    (4.12) 

where Γ is the Gamma function. Based on the parameters in case 6, the normalized 

Rayleigh time 𝜏𝑅𝑈𝑓𝑙𝑜𝑤/𝐷𝑑  is equal to 42.62, which overestimates the collapse time, in 

comparison with the results in Fig. 4.5(b). Therefore, it is necessary to consider the effect 

of finite droplet size in modelling the collapse dynamics for the present problem. 

4.4 Summary 

In this chapter, the evolution of the droplet with a vapor bubble inside under shock 

impact is experimentally investigated, and the development of multiphase systems under 

shock wave is investigated.  
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1). For the first time, shock-tube experiments on the interaction of shock wave and 

a water droplet embedded with a vapor cavity are performed to investigate both the 

evolutions of water droplet and vapor cavity. 

2). An equilibrium between the liquid phase and the gas phase inside the droplet is 

obtained by the depressurization of the surrounding gas to the saturated vapor pressure. 

3). The deformations of the vapor cavity can be separated into two stages: (1) the 

vapor cavity shrinks because of the shock compression and the possible local condensation; 

(2) the cavity expands because of the transverse jet impact and the consequent local 

evaporation. 

4). When the vapor cavity size is larger and the vapor cavity center is closer to the 

downstream wall of the droplet, the water jet is longer, and its speed is higher. 

5). A modified Rayleigh-Plesset equation is derived that reasonably predicts the 

bubble collapse process. 
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5. Conclusions and Suggestions for Future Research  

5.1 Conclusions 

In summary, the main conclusions of Chapter 3 include: 

The internal flow pattern of a single water droplet under shock impact is 

investigated numerically and theoretically. Similar internal flow patterns are found in cases 

with different incident shock strengths, in which the SP forms and remains stationary soon 

after the passage of the incident shock. With the increase in the incident shock strength, 

the SP position varies, and the droplet presents different morphologies. A simple theory is 

proposed to predict the stationary position of SP in accordance with the incident shock 

Mach number. This correlation connects the shock strength with the droplet internal 

flowfield. It infers that the droplet internal flow pattern is input into the droplet at the initial 

impact stage by the shock rather than following the postshock airstream. Upon this point, 

more research should be done in the near future. 

Moreover, the evolution of the droplet with a vapor bubble inside under shock 

impact is experimentally investigated, and the development of multiphase systems under 

shock wave is investigated. The main conclusions of Chapter 4 include： 

The interaction of excitation waves with droplets containing vapor bubbles was 

studied using shock tube experiments to investigate the deformation of droplets and 
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bubbles in a multiphase system. Vapor bubbles containing different sizes and eccentricities 

were generated in the droplets by reducing the ambient pressure. The evolution of the vapor 

bubbles was found to significantly affect the deformation of the outer surface of the 

droplets. The deformation of bubbles and droplets can be divided into two phases based on 

the change in bubble volume: bubble-collapse phase and bubble-expansion phase. In the 

bubble-collapse phase, the transverse jet at the upstream interface of the bubble and its 

collision with the downstream interface of the bubble was observed. After the transverse 

jet impacts the downstream interface of the bubble, the bubble and interface deformation 

enters the bubble expansion phase, and a water jet appears at the downstream pole of the 

droplet. The effect of the size and eccentricity of the bubble relative to the droplet on the 

motion and deformation of the bubble and the droplet was quantitatively analyzed. When 

the size of the bubble was relatively large or when the size of the bubble was closer to the 

downstream wall of the droplet, the water jet was longer and thus the length of the droplet 

was greater. However, the effect of the size and position of the bubble relative to the droplet 

on the bubble deformation is limited. Finally, a modified Rayleigh-Plesset equation is 

given that reasonably predicts the bubble collapse process considering a finite droplet 

volume. 
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The interaction of a shock wave and a liquid droplet embedded with a vapor cavity 

poses a great challenge for the numerical simulation method, considering the complex 

wave system, unstable liquid–gas interfaces, and the possible phase change process. 

Therefore, the present experiments provide valuable benchmarks for numerical solvers 

aimed at compressible two-phase flows. The present experimental data and images can 

serve as reference results for numerical validation purposes. Future works will include 

developing numerical methods for multiphase flows with viable phase-change models and 

numerical studies of shock–droplet interactions considering vapour cavities inside the 

droplets. 

5.2 Suggestions for Future Research 

As the position of the SP is related to the momentum transportation from the high 

pressure regions (WS and LS), for industrial applications, it should be of great practical 

value to study the parameters that affect the steady time of the SP.  

The Mach number studied in the experiments with shock waves impacting droplets 

containing vapor bubbles was around 2.2. To future study the evolution of the sphere 

droplet containing large vapor bubble under the impact of the planar shock wave, more 

experiments need to be conducted  at a larger range of Mach numbers. In addition, although 



93 

 

the CE/SE numerical simulations agree well with the previous shock-droplet experiments. 

The numerical code still needs major improvement to fit the shock-droplet embedded with 

vapor bubble experiment results, because the phase change can not be neglected in these 

experiments. It is believed that the future development of numerical simulation programs 

that consider the solution of the compressible N-S equations for reasonable phase transition 

equations is needed to study in detail the evolution of such multiphase systems. 
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 Appendices 

A. High Weber Number Shock/Droplet Interaction Experiment. 

 

Figure A.1 Evolution of the droplet interface at Weber number equals to 9945. 

As the experiment shown in Fig. A.1 has a high Weber number (9945), it may 

contributes to the discussion of the terminal breakup regime (SIE vs. catastrophic). As 

shown in Fig. A.1, in the early stages of fragmentation, the liquid mist is produced in two 

main regions: near the equator and at the top of the leeward surface liquid ring. In the 
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former, the direction of spraying is the same as that of the ambient airflow, while in the 

latter the direction of spraying is opposite to that of the ambient airflow. Of the two, 

generally speaking, the amount of liquid fog generated near the equator is much higher 

than that of the leeward liquid ring, which is the main component of the early liquid fog. 

In the middle and late stages of droplet fragmentation, due to the extreme flattening of the 

droplet body, the two droplet-generating regions will gradually get closer and closer 

together, which is difficult to distinguish from the image. Under the action of peripheral 

shear, the droplets in crushing show a similar "crescent" morphology, which is consistent 

with the shear stripping pattern. Because no RT punctures were observed in the middle 

region of the windward side of the droplet, the catastrophic phenomenon does not existence 

at least at the 104 Weber number. Moreover, this experiment run confirmed that K-H 

instability at the droplet surface dominates the generation of liquid fog near the equator in 

the presence of high dynamic pressure. 
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B. The CE/SE Simulation Results Comparing with the Existing Experiments. 

 

Figure B.2 The evolution of the shock/water-ring interaction at Ms=2.4, t*=6.85. (a) the 

top part is the numerical schlieren and the bottom part is the pressure contours (Xiang & Wang 

2017), (b) the CE/SE simulation results. 

Since the experimental means used to generate bubble-containing droplets in this 

thesis are only applicable to the generation of vapor bubble-containing droplets, and our 

simulation procedure has so far not solved the phase transition problem, the authors did not 

present the results of our available numerical simulations in the main chapters, instead to 

illustrate them in the appendix. These information are provided for subsequent researchers 

to conduct their research.  

First of all, A comparison between Xiang & Wang (2017) simulation work with our 

CE/SE simulation is provided in Fig. B.1, under the same test conditions, the second 

sheeting jet has also been observed in the current CE/SE code. 
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Table B.1 lists all the experimental cases’ run conditions. Fig. B.2 and Fig. B.6 

further present the sequential experiment photos for case 2 and 7. These two cases holding 

relatively large vapor bubble inside the droplet, the cavity-collapse stage and the cavity-

expansion stage could also be clearly observed. 

Fig. B.3 and Fig. B.7 presents the comparison between the sequential experiment 

results with the CE/SE numerical simulations. The 3D numerical results are generated by 

VisIt software basing on the results of axisymmetric numerical calculations. It can be 

observed intuitively that the numerical simulation results of the collapse process of the 

vapor bubble lag significantly behind the actual experimental results, mainly due to the 

lack of calculation of the phase transition of the vapor bubble in the shock-induced high 

pressure and high temperature conditions, but in general, the deformation of the outer 

surface of the droplet from the droplet is in basic agreement with the experiment. 

Fig. B.4 present an interesting phenomenon that when the transverse jet is formed, 

there is a negative pressure region just in the liquid after the windward surface.  

Fig. B.5 shows the comparison of the dimensionless displacements of the various 

interface for case 2 between experiment and numerical simulation. Fail to simulate the 

evolution of both the droplet and cavity, and which is ascribed to the ignorance of the phase 

change in the present code.  
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Table B.1 The run conditions of all the experimental cases. 

 

 

Figure B.3 The experimental photos of case 2 in the early stage of the breakup 

phenomena. The shock wave flows from right to left. 
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Figure B.4 Comparison of the experimental and numerical results for case 2. 

 

Figure B.5 The pressure counters for case 2 when the transverse jet is formed 
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Figure B.6 Comparison of the dimensionless displacements of the various interface for 

case 2 between experiment and numerical simulation. 
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Figure B.7 The experimental photos of case 7 in the early stage of the breakup phenomena. 

The shock wave comes from left. 

 

 

 

 

Figure B.8 Comparison of the experimental and CE/SE numerical results for case 7. 
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C. Illustration of the CE/SE Simulation Code for a Mach Number 2.4 Case with an 

Air Cavitation Bubble. 

In order to record the latest developments in CE/SE simulation code to this day, the 

code for a Mach 2.4 case is appended as follows: 

 

#include "stdafx.h" 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <omp.h> 

#include <conio.h> 

#include <ctype.h> 

#include <string.h> 

#include <time.h> 

 

#define NumberOfThreads 39 

 

#define time 7.0E-4 

//computing time 

#define Nx 1800 

//grid number in x direction 

#define Ny 480 

//grid number in y direction 

#define Neq 6 

//Number of Equation 

#define CFL_Number 0.4 

//Courant number 

#define WBAP_Parameter_n 5.0 

#define SmallNumber 1e-15 

#define pi 3.141592654 
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#define GAMA1 1.4 

#define PAI1 0 

#define GAMA2 7.15 

#define PAI2 3.31e8 

//EOS constant of materials 

#define StoreFreq 500 

//Output restore file & result file frequency 

#define OutputFileType 1 

//0--Ascii file 1--Binary type 

#define is_symm 1 

//algorithm selection: 1--symmetric flow(y=0 is axis of symmetry);0--plane flow 

#define Xc 0.0 

#define Yc 0.0 

//coordinates of droplet's centroid (m) 

#define DropletRadius 0.0015 

#define innerDropletRadius 0.0008  // r/r0=0.75 

//radius of droplet (m) 

#define Ms 2.4 

//shock Mach number 

#define SurfaceTension 0.0 

#define MAXIMUM 1.0 

#define MINIMUM 0.0 

// 

#define RHOMIN 1E-15 

#define PMIN 1E-15 

 

#define rou1 0.06 

#define u1 0 

#define v1 0 

#define p1 5000.00 

 

#define rou2 1000.0 

#define u2 0 

#define v2 0 

#define p2 5000.00 
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#define MAX(x,y) (((x)>(y))?(x):(y)) 

#define MIN(x,y) (((x)<(y))?(x):(y)) 

 

double ***U1, ***U2, ***Ux1, ***Uy1, ***Ux2, ***Uy2, ***Ut, ***F, ***Fy, ***Ft, ***G, ***Gx, 

***Gt, ***S, ***Sx, ***Sy, ***St, **Curv, **Normx,**Normy; 

double const Lx_S=-0.0135;  //-4.0*DropletRadius; 

double const Lx_E=0.0135;  //8*DropletRadius; 

double const Ly_S=0; 

double const Ly_E=0.009;  //4*DropletRadius; 

//size of domain 

double const Xshock=-1.2*DropletRadius; 

//shock position (m) 

double const dx=double(Lx_E-Lx_S)/double(Nx),dy=double(Ly_E-Ly_S)/double(Ny); 

double DeltaL=sqrt(dx*dx+dy*dy),sintheta=dy/DeltaL,costheta=dx/DeltaL; 

//gird size 

double InitialMass1,InitialMass2,TotalMass1,TotalMass2,InitialEnergy,TotalEnergy; 

 

void ErrorHandler(int errcode); 

void restoreall(char* sFName); 

void restart(char* sFName); 

void Initializer(void); 

void BoundaryTreatment(double U[Nx+2][Ny+2][Neq],double Ux[Nx+2][Ny+2][Neq],double 

Uy[Nx+2][Ny+2][Neq]); 

void ComputeFluxesAndDerivatives(double ***U, double ***Ux, double ***Uy, int ishalf); 

void Comput_Ut(double *U, double *Ux, double *Uy, double y, double *Qt); 

bool Rotated_HLLC_RiemannSolver(double QL[Neq],double QR[Neq],double FHLLC[Neq],double 

GridNormalx,double GridNormaly); 

double WBAP_Limiter(double Theta1,double Theta2); 

void CESE_2DTimeMarching(double ***U_old, double ***Ux_old, double ***Uy_old, 

                      double ***U_new, double ***Ux_new, double ***Uy_new, double dt, int IsHalf); 

void Compute_NormAndCurv(double ***U, int IsHalf); 

void WriteAsciiData(char *filename,double U[Nx+2][Ny+2][Neq]); 

void WriteBinaryData(char *filename,double U[Nx+2][Ny+2][Neq]); 

void CESE_Solver(void); 

void AllocateMemory(void); 

void FreeMemory(void); 
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void AllocateMemory(void) 

{ 

 int i,j; 

 printf("Allocate memory..."); 

 U1=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Ux1=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Uy1=(double ***)malloc((Nx+2)*sizeof(double **)); 

 U2=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Ux2=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Uy2=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Ut=(double ***)malloc((Nx+2)*sizeof(double **)); 

 F=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Fy=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Ft=(double ***)malloc((Nx+2)*sizeof(double **)); 

 G=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Gx=(double ***)malloc((Nx+2)*sizeof(double **)); 

 Gt=(double ***)malloc((Nx+2)*sizeof(double **)); 

 S = (double ***)malloc((Nx + 2)*sizeof(double **)); 

 Sx = (double ***)malloc((Nx + 2)*sizeof(double **)); 

 Sy = (double ***)malloc((Nx + 2)*sizeof(double **)); 

 St = (double ***)malloc((Nx + 2)*sizeof(double **)); 

 Curv = (double **)malloc((Nx + 2)*sizeof(double *)); 

 Normx = (double **)malloc((Nx + 2)*sizeof(double *)); 

 Normy = (double **)malloc((Nx + 2)*sizeof(double *)); 

 for(i=0;i<Nx+2;i++) 

 { 

  U1[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Ux1[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Uy1[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  U2[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Ux2[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Uy2[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Ut[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  F[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Fy[i]=(double **)malloc((Ny+2)*sizeof(double *)); 
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  Ft[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  G[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Gx[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  Gt[i]=(double **)malloc((Ny+2)*sizeof(double *)); 

  S[i] = (double **)malloc((Ny + 2)*sizeof(double *)); 

  Sx[i] = (double **)malloc((Ny + 2)*sizeof(double *)); 

  Sy[i] = (double **)malloc((Ny + 2)*sizeof(double *)); 

  St[i] = (double **)malloc((Ny + 2)*sizeof(double *)); 

  Curv[i] = (double *)malloc((Ny + 2)*sizeof(double)); 

  Normx[i] = (double *)malloc((Ny + 2)*sizeof(double)); 

  Normy[i] = (double *)malloc((Ny + 2)*sizeof(double)); 

  for(j=0;j<Ny+2;j++) 

  { 

   U1[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Ux1[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Uy1[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   U2[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Ux2[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Uy2[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Ut[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   F[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Fy[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Ft[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   G[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Gx[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   Gt[i][j]=(double *)malloc((Neq)*sizeof(double)); 

   S[i][j] = (double *)malloc((Neq)*sizeof(double)); 

   Sx[i][j] = (double *)malloc((Neq)*sizeof(double)); 

   Sy[i][j] = (double *)malloc((Neq)*sizeof(double)); 

   St[i][j] = (double *)malloc((Neq)*sizeof(double)); 

  } 

 } 

 printf("Done!\n"); 

} 

void FreeMemory(void) 

{ 
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 int i,j; 

 printf("Free memory..."); 

 for(i=0;i<Nx+2;i++) 

 { 

  for(j=0;j<Ny+2;j++) 

  { 

   free(U1[i][j]); 

   free(Ux1[i][j]); 

   free(Uy1[i][j]); 

   free(U2[i][j]); 

   free(Ux2[i][j]); 

   free(Uy2[i][j]); 

   free(Ut[i][j]); 

   free(F[i][j]); 

   free(Fy[i][j]); 

   free(Ft[i][j]); 

   free(G[i][j]); 

   free(Gx[i][j]); 

   free(Gt[i][j]); 

   free(S[i][j]); 

   free(Sx[i][j]); 

   free(Sy[i][j]); 

   free(St[i][j]); 

  } 

  free(U1[i]); 

  free(Ux1[i]); 

  free(Uy1[i]); 

  free(U2[i]); 

  free(Ux2[i]); 

  free(Uy2[i]); 

  free(Ut[i]); 

  free(F[i]); 

  free(Fy[i]); 

  free(Ft[i]); 

  free(G[i]); 

  free(Gx[i]); 
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  free(Gt[i]); 

  free(S[i]); 

  free(Sx[i]); 

  free(Sy[i]); 

  free(St[i]); 

  free(Curv[i]); 

  free(Normx[i]); 

  free(Normy[i]); 

 } 

 free(U1); 

 free(Ux1); 

 free(Uy1); 

 free(U2); 

 free(Ux2); 

 free(Uy2); 

 free(Ut); 

 free(F); 

 free(Fy); 

 free(Ft); 

 free(G); 

 free(Gx); 

 free(Gt); 

 free(S); 

 free(Sx); 

 free(Sy); 

 free(St); 

 free(Curv); 

 free(Normx); 

 free(Normy); 

 printf("Done!\n"); 

} 

 

void ErrorHandler(int errcode) 

{ 

 switch(errcode) 

 { 
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 case 0: 

  { 

   printf("Restore file does not match!\n"); 

   printf("The present configuration is: Nx=%d,Ny=%d\n",Nx,Ny); 

   exit(0); 

  } 

 case 1: 

  { 

   printf("Can not open the File\n"); 

   exit(0); 

  } 

 case 2: 

  { 

   printf("File not exist!\n"); 

   exit(0); 

  } 

 } 

} 

void restoreall(char* sFName,double& comput_time,int& comput_num) 

{ 

 int i,j,k; 

 FILE* fp; 

 int AA; 

    if((fp=fopen(sFName,"wb"))==NULL)ErrorHandler(1); 

    printf("Restoring data..."); 

    fwrite(&comput_num,sizeof(int),1,fp); 

    fwrite(&comput_time,sizeof(double),1,fp); 

    AA=Nx; 

    fwrite(&AA,sizeof(int),1,fp); 

    AA=Ny; 

    fwrite(&AA,sizeof(int),1,fp); 

 for(i=0;i<=Nx;i++) 

 { 

  for(j=0;j<=Ny;j++) 

  { 

   for(k=0;k<Neq;k++) 
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   { 

    fwrite(&U1[i][j][k],sizeof(double),1,fp); 

    fwrite(&Ux1[i][j][k],sizeof(double),1,fp); 

    fwrite(&Uy1[i][j][k],sizeof(double),1,fp); 

   } 

  } 

 } 

 fclose(fp); 

    printf("Done!\n"); 

} 

 

void restart(char* sFName,double& comput_time,int& comput_num) 

{ 

 FILE* fp; 

 int i,j,k,A1,A2; 

 if((fp=fopen(sFName,"rb"))==NULL)ErrorHandler(2); 

    printf("Reading Data..."); 

 fread(&comput_num,sizeof(int),1,fp); 

 fread(&comput_time,sizeof(double),1,fp); 

 fread(&A1,sizeof(int),1,fp); 

 fread(&A2,sizeof(int),1,fp); 

 printf("The configuration of restart file is: Nx=%d,Ny=%d\n",A1,A2); 

    if(A1!=Nx||A2!=Ny) ErrorHandler(0); 

 for(i=0;i<=Nx;i++) 

    { 

        for(j=0;j<=Ny;j++) 

        { 

            for(k=0;k<Neq;k++) 

            { 

                fread(&U1[i][j][k],sizeof(double),1,fp); 

                fread(&Ux1[i][j][k],sizeof(double),1,fp); 

                fread(&Uy1[i][j][k],sizeof(double),1,fp); 

            } 

        } 

    } 

 fclose(fp); 
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 printf("Done!\n"); 

} 

double ComputingTimeStep(double ***U) 

{ 

 int i,j; 

 double VOF1,gama,pai,density,x_velocity,y_velocity,pressure,SoundSpeed,MaximumWaveSpeed; 

 MaximumWaveSpeed=0; 

#pragma omp parallel for private(j,VOF1,gama,pai,density,x_velocity,y_velocity,pressure,SoundSpeed) 

 for(i=0;i<Nx+1;i++) 

 { 

  for(j=0;j<Ny+1;j++) 

   { 

    VOF1=U[i][j][0]; 

    density=U[i][j][1]+U[i][j][2]; 

    x_velocity=U[i][j][3]/density; 

    y_velocity=U[i][j][4]/density; 

    gama=1.0/(VOF1/(GAMA1-1)+(1-VOF1)/(GAMA2-1))+1; 

    pai=(VOF1*GAMA1*PAI1/(GAMA1-1)+(1-

VOF1)*GAMA2*PAI2/(GAMA2-1))*(gama-1)/gama; 

    pressure=(gama-1)*(U[i][j][5]-

0.5*density*(x_velocity*x_velocity+y_velocity*y_velocity))-gama*pai; 

    if(density<=0||(pressure+pai)<=0) continue; 

#pragma omp critical 

    { 

      

       SoundSpeed=sqrt(gama*(pressure+pai)/density); 

       

MaximumWaveSpeed=MAX(MaximumWaveSpeed,SoundSpeed+sqrt(x_velocity*x_velocity+y_velocity*

y_velocity)); 

    } 

   } 

 } 

 return CFL_Number*MIN(dx,dy)/MaximumWaveSpeed; 

} 

//Computing time step according to Courant number 
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void Initializer() 

{ 

 int i,j,k; 

 double x,y,alpha,rou,gama,pai; 

 double xLD,yLD,xRD,yRD,xLU,yLU,xRU,yRU,d1,d2,d3,d4; 

 double innerd1, innerd2, innerd3, innerd4; 

 double rouf,uf,vf,pf,a; 

 a=sqrt(GAMA1*(p1+PAI1)/rou1); 

 rouf=rou1*(GAMA1+1)*Ms*Ms/(2+(GAMA1-1)*Ms*Ms); 

 uf=(1-rou1/rouf)*Ms*a; 

 vf=0; 

 pf=p1*(2*GAMA1*Ms*Ms-(GAMA1-1))/(GAMA1+1); 

#pragma omp parallel for 

private(j,k,x,y,alpha,rou,gama,pai,xLD,yLD,xRD,yRD,xLU,yLU,xRU,yRU,d1,d2,d3,d4) 

 for(i=0;i<Nx+1;i++) 

 { 

  x=Lx_S+i*dx; 

  for(j=0;j<Ny+1;j++) 

  { 

   y=Ly_S+j*dy; 

   if(x<Xshock) 

   { 

    U1[i][j][0]=1.0; 

    U1[i][j][1]=rouf; 

    U1[i][j][2]=0; 

    U1[i][j][3]=rouf*uf; 

    U1[i][j][4]=rouf*vf; 

    U1[i][j][5]=(pf+GAMA1*PAI1)/(GAMA1-1)+0.5*rouf*(uf*uf+vf*vf); 

   } 

   else 

   { 

    xLD=xLU=x-0.5*dx; 

    xRD=xRU=x+0.5*dx; 

    yLD=yRD=y-0.5*dy; 

    yLU=yRU=y+0.5*dy; 
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    d1=sqrt(xLD*xLD+yLD*yLD)-DropletRadius; 

    d2=sqrt(xRD*xRD+yRD*yRD)-DropletRadius; 

    d3=sqrt(xRU*xRU+yRU*yRU)-DropletRadius; 

    d4=sqrt(xLU*xLU+yLU*yLU)-DropletRadius; 

 

    innerd1 = sqrt(xLD*xLD + yLD*yLD) - innerDropletRadius; 

    innerd2 = sqrt(xRD*xRD + yRD*yRD) - innerDropletRadius; 

    innerd3 = sqrt(xRU*xRU + yRU*yRU) - innerDropletRadius; 

    innerd4 = sqrt(xLU*xLU + yLU*yLU) - innerDropletRadius; 

 

    if(d1>=0&&d2>=0&&d3>=0&&d4>=0) alpha=1.0; 

    if(d1<0&&d2<0&&d3<0&&d4<0) alpha=0.0; 

    { 

     if (innerd1<0 && innerd2<0 && innerd3<0 && innerd4<0) 

alpha = 1.0; 

      

     if (innerd1<0 && innerd2 >= 0 && innerd3 >= 0 && 

innerd4 >= 0) alpha = 0.5*innerd1*innerd1 / (innerd2 - innerd1) / (innerd4 - innerd1); 

     if (innerd1 >= 0 && innerd2<0 && innerd3 >= 0 && 

innerd4 >= 0) alpha = 0.5*innerd2*innerd2 / (innerd3 - innerd2) / (innerd1 - innerd2); 

     if (innerd1 >= 0 && innerd2 >= 0 && innerd3<0 && 

innerd4 >= 0) alpha = 0.5*innerd3*innerd3 / (innerd4 - innerd3) / (innerd2 - innerd3); 

     if (innerd1 >= 0 && innerd2 >= 0 && innerd3 >= 0 && 

innerd4<0) alpha = 0.5*innerd4*innerd4 / (innerd1 - innerd4) / (innerd3 - innerd4); 

 

     if (innerd1 >= 0 && innerd2<0 && innerd3<0 && innerd4<0) 

alpha = 1.0 -0.5*innerd1*innerd1 / (innerd2 - innerd1) / (innerd4 - innerd1); 

     if (innerd1<0 && innerd2 >= 0 && innerd3<0 && innerd4<0) 

alpha = 1.0 -0.5*innerd2*innerd2 / (innerd3 - innerd2) / (innerd1 - innerd2); 

     if (innerd1<0 && innerd2<0 && innerd3 >= 0 && innerd4<0) 

alpha = 1.0 -0.5*innerd3*innerd3 / (innerd4 - innerd3) / (innerd2 - innerd3); 

     if (innerd1<0 && innerd2<0 && innerd3<0 && innerd4 >= 0) 

alpha = 1.0 -0.5*innerd4*innerd4 / (innerd1 - innerd4) / (innerd3 - innerd4); 

 

     if (innerd1<0 && innerd2 >= 0 && innerd3 >= 0 && 

innerd4<0) alpha = 1.0 -0.5*(innerd2 / (innerd2 - innerd1) + innerd3 / (innerd3 - innerd4)); 
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     if (innerd1 >= 0 && innerd2<0 && innerd3<0 && innerd4 >= 

0) alpha = 1.0 -0.5*(innerd1 / (innerd1 - innerd2) + innerd4 / (innerd4 - innerd3)); 

     if (innerd1 >= 0 && innerd2 >= 0 && innerd3<0 && 

innerd4<0) alpha = 1.0 -0.5*(innerd1 / (innerd1 - innerd4) + innerd2 / (innerd2 - innerd3)); 

     if (innerd1<0 && innerd2<0 && innerd3 >= 0 && innerd4 >= 

0) alpha = 1.0-0.5*(innerd4 / (innerd4 - innerd1) + innerd3 / (innerd3 - innerd2)); 

 

     

    } 

 

    if(d1<0&&d2>=0&&d3>=0&&d4>=0) alpha=1-0.5*d1*d1/(d2-

d1)/(d4-d1); 

    if(d1>=0&&d2<0&&d3>=0&&d4>=0) alpha=1-0.5*d2*d2/(d3-

d2)/(d1-d2); 

    if(d1>=0&&d2>=0&&d3<0&&d4>=0) alpha=1-0.5*d3*d3/(d4-

d3)/(d2-d3); 

    if(d1>=0&&d2>=0&&d3>=0&&d4<0) alpha=1-0.5*d4*d4/(d1-

d4)/(d3-d4); 

 

    if(d1>=0&&d2<0&&d3<0&&d4<0) alpha=0.5*d1*d1/(d2-d1)/(d4-d1); 

    if(d1<0&&d2>=0&&d3<0&&d4<0) alpha=0.5*d2*d2/(d3-d2)/(d1-d2); 

    if(d1<0&&d2<0&&d3>=0&&d4<0) alpha=0.5*d3*d3/(d4-d3)/(d2-d3); 

    if(d1<0&&d2<0&&d3<0&&d4>=0) alpha=0.5*d4*d4/(d1-d4)/(d3-d4); 

 

    if(d1<0&&d2>=0&&d3>=0&&d4<0) alpha=0.5*(d2/(d2-d1)+d3/(d3-

d4)); 

    if(d1>=0&&d2<0&&d3<0&&d4>=0) alpha=0.5*(d1/(d1-d2)+d4/(d4-

d3)); 

    if(d1>=0&&d2>=0&&d3<0&&d4<0) alpha=0.5*(d1/(d1-d4)+d2/(d2-

d3)); 

    if(d1<0&&d2<0&&d3>=0&&d4>=0) alpha=0.5*(d4/(d4-d1)+d3/(d3-

d2)); 

 

    U1[i][j][0]=alpha; 

    U1[i][j][1]=rou1*alpha; 

    U1[i][j][2]=rou2*(1-alpha); 
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    rou=U1[i][j][1]+U2[i][j][2]; 

    gama=1.0/(alpha/(GAMA1-1)+(1-alpha)/(GAMA2-1))+1; 

    pai=(alpha*GAMA1*PAI1/(GAMA1-1)+(1-

alpha)*GAMA2*PAI2/(GAMA2-1))*(gama-1)/gama; 

    U1[i][j][3]=rou*u1; 

    U1[i][j][4]=rou*v1; 

    U1[i][j][5]=(p1+gama*pai)/(gama-1)+0.5*rou*(u1*u1+v1*v1); 

   } 

   for(k=0;k<Neq;k++) 

   { 

    Ux1[i][j][k]=0; 

    Uy1[i][j][k]=0; 

   } 

  } 

 } 

} 

/*void Initializer() 

{ 

 int i,j,k; 

 double x,y; 

 double rouf,uf,vf,pf,a; 

 a=sqrt(GAMA1*(p1+PAI1)/rou1); 

 rouf=rou1*(GAMA1+1)*Ms*Ms/(2+(GAMA1-1)*Ms*Ms); 

 uf=(1-rou1/rouf)*Ms*a; 

 vf=0; 

 pf=p1*(2*GAMA1*Ms*Ms-(GAMA1-1))/(GAMA1+1); 

#pragma omp parallel for private(j,k,x,y) 

 for(i=0;i<Nx+1;i++) 

 { 

  x=Lx_S+i*dx; 

  for(j=0;j<Ny+1;j++) 

  { 

   y=Ly_S+j*dy; 

   if(x<Xshock) 

   { 

    U1[i][j][0]=1.0; 
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    U1[i][j][1]=rouf; 

    U1[i][j][2]=0; 

    U1[i][j][3]=rouf*uf; 

    U1[i][j][4]=rouf*vf; 

    U1[i][j][5]=(pf+GAMA1*PAI1)/(GAMA1-1)+0.5*rouf*(uf*uf+vf*vf); 

   } 

   else 

   { 

    if(sqrt(x*x+y*y)>=DropletRadius) 

    { 

     U1[i][j][0]=1.0; 

     U1[i][j][1]=rou1; 

     U1[i][j][2]=0; 

     U1[i][j][3]=rou1*u1; 

     U1[i][j][4]=rou1*v1; 

     U1[i][j][5]=(p1+GAMA1*PAI1)/(GAMA1-

1)+0.5*rou1*(u1*u1+v1*v1); 

    } 

    else 

    { 

     U1[i][j][0]=0.0; 

     U1[i][j][1]=0.0; 

     U1[i][j][2]=rou2; 

     U1[i][j][3]=rou2*u2; 

     U1[i][j][4]=rou2*v2; 

     U1[i][j][5]=(p2+GAMA2*PAI2)/(GAMA2-

1)+0.5*rou2*(u2*u2+v2*v2); 

    } 

   } 

   for(k=0;k<Neq;k++) 

   { 

    Ux1[i][j][k]=0; 

    Uy1[i][j][k]=0; 

   } 

  } 

    } 
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} 

//Initialization*/ 

void BoundaryTreatment() 

{ 

 int i,j,k; 

#pragma omp parallel private(k) 

 { 

#pragma omp for 

  for(j=1;j<=Ny;j++) 

  { 

   for(k=0;k<Neq;k++) 

   { 

    U2[0][j][k]=U2[1][j][k]; 

    Ux2[0][j][k]=0; 

    Uy2[0][j][k]=0; 

   } 

  }//Left boundary-inflow 

#pragma omp for 

  for(j=1;j<=Ny;j++) 

  { 

   for(k=0;k<Neq;k++) 

   { 

    U2[Nx+1][j][k]=U2[Nx][j][k]; 

    Ux2[Nx+1][j][k]=0; 

    Uy2[Nx+1][j][k]=0; 

   } 

  }//Right boundary-nonreflection 

#pragma omp for 

  for(i=0;i<=Nx+1;i++) 

  { 

   for(k=0;k<Neq;k++) 

   { 

    if(k==-4) 

    { 

     U2[i][Ny+1][k]=-U2[i][Ny][k]; 

     Ux2[i][Ny+1][k]=-Ux2[i][Ny][k]; 
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     Uy2[i][Ny+1][k]=Uy2[i][Ny][k]; 

    } 

    else 

    { 

     U2[i][Ny+1][k]=U2[i][Ny][k]; 

     Ux2[i][Ny+1][k]=0; 

     Uy2[i][Ny+1][k]=0; 

    } 

   } 

  } 

  //Upper boundary-nonreflection 

#pragma omp for 

  for(i=0;i<=Nx+1;i++) 

  { 

   for(k=0;k<Neq;k++) 

   { 

    if(k==4) 

    { 

     U2[i][0][k]=-U2[i][1][k]; 

     Ux2[i][0][k]=-Ux2[i][1][k]; 

     Uy2[i][0][k]=Uy2[i][1][k]; 

    } 

    else 

    { 

     U2[i][0][k]=U2[i][1][k]; 

     Ux2[i][0][k]=Ux2[i][1][k]; 

     Uy2[i][0][k]=-Uy2[i][1][k]; 

    } 

   } 

  } 

  //Lower boundary-symmetry 

 }  

} 

 

 

void ComputeFluxesAndDerivatives(double ***U,double ***Ux,double ***Uy,int ishalf) 
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{ 

 int i,j,k; 

 double 

y,VOF1,rou,u,v,p,gama,pai,VOF1x,roux,ux,vx,px,gamax,paix,VOF1y,rouy,uy,vy,py,gamay,paiy,VOF1t,ro

ut,ut,vt,pt,gamat,pait; 

#pragma omp parallel for 

private(j,k,y,VOF1,rou,u,v,p,gama,pai,VOF1x,roux,ux,vx,px,gamax,paix,VOF1y,rouy,uy,vy,py,gamay,pai

y,VOF1t,rout,ut,vt,pt,gamat,pait) 

 for(i=0;i<Nx+2;i++) 

 { 

  for(j=0;j<Ny+2;j++) 

  { 

   y = Ly_S + j*dy-ishalf*0.5*dy; 

   VOF1=U[i][j][0]; 

   rou=U[i][j][1]+U[i][j][2]; 

   u=U[i][j][3]/rou; 

   v=U[i][j][4]/rou; 

   gama=1.0/(VOF1/(GAMA1-1)+(1-VOF1)/(GAMA2-1))+1; 

   pai=(VOF1*GAMA1*PAI1/(GAMA1-1)+(1-VOF1)*GAMA2*PAI2/(GAMA2-

1))*(gama-1)/gama; 

   p=(gama-1)*(U[i][j][5]-0.5*rou*(u*u+v*v))-gama*pai; 

   VOF1x=Ux[i][j][0]; 

   roux=Ux[i][j][1]+Ux[i][j][2]; 

   ux=Ux[i][j][3]/rou-U[i][j][3]/rou/rou*roux; 

   vx=Ux[i][j][4]/rou-U[i][j][4]/rou/rou*roux; 

   gamax=-(1.0/(GAMA1-1)-1.0/(GAMA2-1))*(gama-1)*(gama-1)*VOF1x; 

   paix=(GAMA1*PAI1/(GAMA1-1)-GAMA2*PAI2/(GAMA2-

1))*VOF1x*(gama-1)/gama+pai/(gama-1)/gama*gamax; 

   px=gamax*(U[i][j][5]-0.5*rou*(u*u+v*v))+(gama-1)*(Ux[i][j][5]-

0.5*roux*(u*u+v*v)-rou*(u*ux+v*vx))-gamax*pai-gama*paix; 

 

   VOF1y = Uy[i][j][0]; 

   rouy = Uy[i][j][1] + Uy[i][j][2]; 

   uy = Uy[i][j][3] / rou - U[i][j][3] / rou / rou*rouy; 

   vy = Uy[i][j][4] / rou - U[i][j][4] / rou / rou*rouy; 
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   gamay = -(1.0 / (GAMA1 - 1) - 1.0 / (GAMA2 - 1))*(gama - 1)*(gama - 

1)*VOF1y; 

   paiy = (GAMA1*PAI1 / (GAMA1 - 1) - GAMA2*PAI2 / (GAMA2 - 

1))*VOF1y*(gama - 1) / gama + pai / (gama - 1) / gama*gamay; 

   py = gamay*(U[i][j][5] - 0.5*rou*(u*u + v*v)) + (gama - 1)*(Uy[i][j][5] - 

0.5*rouy*(u*u + v*v) - rou*(u*uy + v*vy)) - gamay*pai - gama*paiy; 

 

   F[i][j][1]=U[i][j][1]*u; 

   F[i][j][2]=U[i][j][2]*u; 

   F[i][j][3]=U[i][j][3]*u+p; 

   F[i][j][4]=U[i][j][4]*u; 

   F[i][j][5]=(U[i][j][5]+p)*u; 

 

   G[i][j][1]=U[i][j][1]*v; 

   G[i][j][2]=U[i][j][2]*v; 

   G[i][j][3]=U[i][j][3]*v; 

   G[i][j][4]=U[i][j][4]*v+p; 

   G[i][j][5]=(U[i][j][5]+p)*v; 

 

   if (is_symm&&y>0.1*dy) 

   { 

    S[i][j][1] = -U[i][j][1] * v/y; 

    S[i][j][2] = -U[i][j][2] * v/y; 

    S[i][j][3] = -U[i][j][3] * v / y - 2*SurfaceTension*Curv[i][j] * 

Normx[i][j]; 

    S[i][j][4] = -U[i][j][4] * v / y - 2*SurfaceTension*Curv[i][j] * 

Normy[i][j]; 

    S[i][j][5] = -(U[i][j][5] + p)*v/y; 

 

    for (k = 0; k < Neq-1; k++) 

    { 

     Sx[i][j][k] = -(Ux[i][j][k] * v + U[i][j][k] * vx) / y; 

     Sy[i][j][k] = -(Uy[i][j][k] * v + U[i][j][k] * vy) / y + U[i][j][k] 

* v / y/y; 

    } 

    Sx[i][j][5] = -(Ux[i][j][5] + px)*v / y - (U[i][j][5] + p)*vx / y; 



126 

 

    Sy[i][j][5] = -(Uy[i][j][5] + py)*v / y - (U[i][j][5] + p)*vy / y + (U[i][j][5] 

+ p)*v / y/y; 

   } 

   else 

   { 

    S[i][j][1] = 0; 

    S[i][j][2] = 0; 

    S[i][j][3] = -SurfaceTension*Curv[i][j]*Normx[i][j]; 

    S[i][j][4] = -SurfaceTension*Curv[i][j]*Normy[i][j]; 

    S[i][j][5] = 0; 

    for (k = 0; k < Neq; k++) Sx[i][j][k] = Sy[i][j][k] = 0; 

   } 

    

   Gx[i][j][1]=Ux[i][j][1]*v+U[i][j][1]*vx; 

   Gx[i][j][2]=Ux[i][j][2]*v+U[i][j][2]*vx; 

   Gx[i][j][3]=Ux[i][j][3]*v+U[i][j][3]*vx; 

   Gx[i][j][4]=Ux[i][j][4]*v+U[i][j][4]*vx+px; 

   Gx[i][j][5]=(Ux[i][j][5]+px)*v+(U[i][j][5]+p)*vx; 

 

   Fy[i][j][1]=Uy[i][j][1]*u+U[i][j][1]*uy; 

   Fy[i][j][2]=Uy[i][j][2]*u+U[i][j][2]*uy; 

   Fy[i][j][3]=Uy[i][j][3]*u+U[i][j][3]*uy+py; 

   Fy[i][j][4]=Uy[i][j][4]*u+U[i][j][4]*uy; 

   Fy[i][j][5]=(Uy[i][j][5]+py)*u+(U[i][j][5]+p)*uy; 

 

 

   Ut[i][j][0]=-u*Ux[i][j][0]-v*Uy[i][j][0]; 

   Ut[i][j][1] = -(Ux[i][j][1] * u + U[i][j][1] * ux) - (Uy[i][j][1] * v + U[i][j][1] * vy) 

+ S[i][j][1]; 

   Ut[i][j][2] = -(Ux[i][j][2] * u + U[i][j][2] * ux) - (Uy[i][j][2] * v + U[i][j][2] * vy) 

+ S[i][j][2]; 

   Ut[i][j][3] = -(Ux[i][j][3] * u + U[i][j][3] * ux + px) - (Uy[i][j][3] * v + U[i][j][3] 

* vy) + S[i][j][3]; 

   Ut[i][j][4] = -(Ux[i][j][4] * u + U[i][j][4] * ux) - (Uy[i][j][4] * v + U[i][j][4] * vy 

+ py) + S[i][j][4]; 
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   Ut[i][j][5] = -(Ux[i][j][5] + px)*u - (U[i][j][5] + p)*ux - (Uy[i][j][5] + py)*v - 

(U[i][j][5] + p)*vy + S[i][j][5]; 

 

   VOF1t=Ut[i][j][0]; 

   rout=Ut[i][j][1]+Ut[i][j][2]; 

   ut=Ut[i][j][3]/rou-U[i][j][3]/rou/rou*rout; 

   vt=Ut[i][j][4]/rou-U[i][j][4]/rou/rou*rout; 

   gamat=-(1.0/(GAMA1-1)-1.0/(GAMA2-1))*(gama-1)*(gama-1)*VOF1t; 

   pait=(GAMA1*PAI1/(GAMA1-1)-GAMA2*PAI2/(GAMA2-

1))*VOF1t*(gama-1)/gama+pai/(gama-1)/gama*gamat; 

   pt=gamat*(U[i][j][5]-0.5*rou*(u*u+v*v))+(gama-1)*(Ut[i][j][5]-

0.5*rout*(u*u+v*v)-rou*(u*ut+v*vt))-gamat*pai-gama*pait; 

   Ft[i][j][1]=Ut[i][j][1]*u+U[i][j][1]*ut; 

   Ft[i][j][2]=Ut[i][j][2]*u+U[i][j][2]*ut; 

   Ft[i][j][3]=Ut[i][j][3]*u+U[i][j][3]*ut+pt; 

   Ft[i][j][4]=Ut[i][j][4]*u+U[i][j][4]*ut; 

   Ft[i][j][5]=(Ut[i][j][5]+pt)*u+(U[i][j][5]+p)*ut; 

 

   Gt[i][j][1]=Ut[i][j][1]*v+U[i][j][1]*vt; 

   Gt[i][j][2]=Ut[i][j][2]*v+U[i][j][2]*vt; 

   Gt[i][j][3]=Ut[i][j][3]*v+U[i][j][3]*vt; 

   Gt[i][j][4]=Ut[i][j][4]*v+U[i][j][4]*vt+pt; 

   Gt[i][j][5]=(Ut[i][j][5]+pt)*v+(U[i][j][5]+p)*vt; 

 

   if (is_symm&&y>0.1*dy) 

   { 

    for (k = 0; k < Neq - 1; k++) St[i][j][k] = -(Ut[i][j][k] * v + U[i][j][k] * 

vt) / y; 

    St[i][j][5] = -(Ut[i][j][5] + pt)*v / y - (U[i][j][5] + p)*vt / y; 

   } 

   else 

   { 

    for (k = 0; k < Neq; k++) St[i][j][k] = 0; 

   } 

  } 

 } 
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} 

void Comput_Ut(double *U, double *Ux, double *Uy, double y,double Curvature,double nx,double ny, 

double *Qt) 

{ 

    double VOF1,rou,u,v,p,gama,pai,VOF1x,roux,ux,vx,px,gamax,paix,VOF1y,rouy,uy,vy,py,gamay,paiy; 

 VOF1=U[0]; 

 rou=U[1]+U[2]; 

 u=U[3]/rou; 

 v=U[4]/rou; 

 gama=1.0/(VOF1/(GAMA1-1)+(1-VOF1)/(GAMA2-1))+1; 

 pai=(VOF1*GAMA1*PAI1/(GAMA1-1)+(1-VOF1)*GAMA2*PAI2/(GAMA2-1))*(gama-

1)/gama; 

 p=(gama-1)*(U[5]-0.5*rou*(u*u+v*v))-gama*pai; 

 VOF1x=Ux[0]; 

 roux=Ux[1]+Ux[2]; 

 ux=Ux[3]/rou-U[3]/rou/rou*roux; 

 vx=Ux[4]/rou-U[4]/rou/rou*roux; 

 gamax=-(1.0/(GAMA1-1)-1.0/(GAMA2-1))*(gama-1)*(gama-1)*VOF1x; 

 paix=(GAMA1*PAI1/(GAMA1-1)-GAMA2*PAI2/(GAMA2-1))*VOF1x*(gama-

1)/gama+pai/(gama-1)/gama*gamax; 

 px=gamax*(U[5]-0.5*rou*(u*u+v*v))+(gama-1)*(Ux[5]-0.5*roux*(u*u+v*v)-rou*(u*ux+v*vx))-

gamax*pai-gama*paix; 

 VOF1y=Uy[0]; 

 rouy=Uy[1]+Uy[2]; 

 uy=Uy[3]/rou-U[3]/rou/rou*rouy; 

 vy=Uy[4]/rou-U[4]/rou/rou*rouy; 

 gamay=-(1.0/(GAMA1-1)-1.0/(GAMA2-1))*(gama-1)*(gama-1)*VOF1y; 

 paiy=(GAMA1*PAI1/(GAMA1-1)-GAMA2*PAI2/(GAMA2-1))*VOF1y*(gama-

1)/gama+pai/(gama-1)/gama*gamay; 

 py=gamay*(U[5]-0.5*rou*(u*u+v*v))+(gama-1)*(Uy[5]-0.5*rouy*(u*u+v*v)-rou*(u*uy+v*vy))-

gamay*pai-gama*paiy; 

 if (is_symm&&y > 0.1*dy) 

 { 

  Qt[0] = -u*Ux[0] - v*Uy[0]; 

  Qt[1] = -(Ux[1] * u + U[1] * ux) - (Uy[1] * v + U[1] * vy) - U[1] * v / y; 

  Qt[2] = -(Ux[2] * u + U[2] * ux) - (Uy[2] * v + U[2] * vy) - U[2] * v / y; 



129 

 

  Qt[3] = -(Ux[3] * u + U[3] * ux + px) - (Uy[3] * v + U[3] * vy) - U[3] * v / y-

2*SurfaceTension*Curvature*nx; 

  Qt[4] = -(Ux[4] * u + U[4] * ux) - (Uy[4] * v + U[4] * vy + py) - U[4] * v / y -

2*SurfaceTension*Curvature*ny; 

  Qt[5] = -(Ux[5] + px)*u - (U[5] + p)*ux - (Uy[5] + py)*v - (U[5] + p)*vy - (U[5]+p) * v / 

y; 

 } 

 else 

 { 

  Qt[0] = -u*Ux[0] - v*Uy[0]; 

  Qt[1] = -(Ux[1] * u + U[1] * ux) - (Uy[1] * v + U[1] * vy); 

  Qt[2] = -(Ux[2] * u + U[2] * ux) - (Uy[2] * v + U[2] * vy); 

  Qt[3] = -(Ux[3] * u + U[3] * ux + px) - (Uy[3] * v + U[3] * vy) - 

SurfaceTension*Curvature*nx; 

  Qt[4] = -(Ux[4] * u + U[4] * ux) - (Uy[4] * v + U[4] * vy + py) - 

SurfaceTension*Curvature*ny; 

  Qt[5] = -(Ux[5] + px)*u - (U[5] + p)*ux - (Uy[5] + py)*v - (U[5] + p)*vy; 

 } 

} 

 

bool Rotated_HLLC_RiemannSolver(double QL[Neq],double QR[Neq],double FHLLC[Neq],double 

GridNormalx,double GridNormaly) 

{ 

 int k,m; 

 double 

gamaL,paiL,alphaL,rouL,uL,vL,pL,EL,aL,SL,qL,rL,gamaR,paiR,alphaR,rouR,uR,vR,pR,ER,aR,SR,qR,rR,

FL[Neq],FR[Neq]; 

 double S_star,ratioL_star,QL_star[Neq],ratioR_star,QR_star[Neq]; 

 double cBar,DeltaU,DeltaV,DeltaUV,Lamda[2],RotatedNormal[2][2]; 

 alphaL=QL[0]; 

 rouL=QL[1]+QL[2]; 

 uL=QL[3]/rouL; 

 vL=QL[4]/rouL; 

 gamaL=1.0/(alphaL/(GAMA1-1)+(1-alphaL)/(GAMA2-1))+1; 

 paiL=(alphaL*GAMA1*PAI1/(GAMA1-1)+(1-alphaL)*GAMA2*PAI2/(GAMA2-1))*(gamaL-

1)/gamaL; 
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 EL=QL[5]; 

 pL=(gamaL-1)*(QL[5]-0.5*rouL*(uL*uL+vL*vL))-gamaL*paiL; 

 if (gamaL <= SmallNumber || rouL <= RHOMIN || (pL + paiL) <= PMIN) return false; 

 aL=sqrt(gamaL*(pL+paiL)/rouL); 

 alphaR=QR[0]; 

 rouR=QR[1]+QR[2]; 

 uR=QR[3]/rouR; 

 vR=QR[4]/rouR; 

 gamaR=1.0/(alphaR/(GAMA1-1)+(1-alphaR)/(GAMA2-1))+1; 

 paiR=(alphaR*GAMA1*PAI1/(GAMA1-1)+(1-alphaR)*GAMA2*PAI2/(GAMA2-1))*(gamaR-

1)/gamaR; 

 ER=QR[5]; 

 pR=(gamaR-1)*(QR[5]-0.5*rouR*(uR*uR+vR*vR))-gamaR*paiR; 

 if (gamaR<=SmallNumber||rouR <= RHOMIN || (pR + paiR) <= PMIN) return false; 

 aR=sqrt(gamaR*(pR+paiR)/rouR); 

 DeltaU=uR-uL; 

 DeltaV=vR-vL; 

 DeltaUV=sqrt(DeltaU*DeltaU+DeltaV*DeltaV); 

 cBar=0.5*(aL+aR); 

 if(DeltaUV<=1e-3*cBar) 

 { 

  RotatedNormal[0][0]=GridNormalx; 

  RotatedNormal[0][1]=GridNormaly; 

  RotatedNormal[1][0]=-RotatedNormal[0][1]; 

  RotatedNormal[1][1]=RotatedNormal[0][0];//0--nx,1--ny 

 } 

 else 

 { 

  RotatedNormal[0][0]=DeltaU/DeltaUV; 

  RotatedNormal[0][1]=DeltaV/DeltaUV; 

  RotatedNormal[1][0]=-RotatedNormal[0][1]; 

  RotatedNormal[1][1]=RotatedNormal[0][0]; 

 } 

 for(k=0;k<Neq;k++) 

 { 

  FHLLC[k]=0; 
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 } 

 for(m=0;m<2;m++) 

 { 

  Lamda[m]=GridNormalx*RotatedNormal[m][0]+GridNormaly*RotatedNormal[m][1]; 

  if(Lamda[m]==0) 

  { 

   continue; 

  } 

  else 

  { 

   if(Lamda[m]<0) 

   { 

    RotatedNormal[m][0]=-RotatedNormal[m][0]; 

    RotatedNormal[m][1]=-RotatedNormal[m][1]; 

   } 

   qL=uL*RotatedNormal[m][0]+vL*RotatedNormal[m][1]; 

   rL=-uL*RotatedNormal[m][1]+vL*RotatedNormal[m][0]; 

   qR=uR*RotatedNormal[m][0]+vR*RotatedNormal[m][1]; 

   rR=-uR*RotatedNormal[m][1]+vR*RotatedNormal[m][0]; 

   SL=MIN(qL-aL,qR-aR); 

   SR=MAX(qL+aL,qR+aR); 

   FL[1]=QL[1]*qL; 

   FL[2]=QL[2]*qL; 

   FL[3]=QL[3]*qL+pL*RotatedNormal[m][0]; 

   FL[4]=QL[4]*qL+pL*RotatedNormal[m][1]; 

   FL[5]=(EL+pL)*qL; 

   FR[1]=QR[1]*qR; 

   FR[2]=QR[2]*qR; 

   FR[3]=QR[3]*qR+pR*RotatedNormal[m][0]; 

   FR[4]=QR[4]*qR+pR*RotatedNormal[m][1]; 

   FR[5]=(ER+pR)*qR; 

   S_star=(pR-pL+rouL*qL*(SL-qL)-rouR*qR*(SR-qR))/(rouL*(SL-qL)-

rouR*(SR-qR)); 

   ratioL_star=(SL-qL)/(SL-S_star); 

   QL_star[1]=ratioL_star*QL[1]; 

   QL_star[2]=ratioL_star*QL[2]; 
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   QL_star[3]=ratioL_star*rouL*(S_star*RotatedNormal[m][0]-

rL*RotatedNormal[m][1]); 

  

 QL_star[4]=ratioL_star*rouL*(S_star*RotatedNormal[m][1]+rL*RotatedNormal[m][0]); 

   QL_star[5]=ratioL_star*rouL*(EL/rouL+(S_star-qL)*(S_star+pL/rouL/(SL-

qL))); 

   ratioR_star=(SR-qR)/(SR-S_star); 

   QR_star[1]=ratioR_star*QR[1]; 

   QR_star[2]=ratioR_star*QR[2]; 

   QR_star[3]=ratioR_star*rouR*(S_star*RotatedNormal[m][0]-

rR*RotatedNormal[m][1]); 

  

 QR_star[4]=ratioR_star*rouR*(S_star*RotatedNormal[m][1]+rR*RotatedNormal[m][0]); 

   QR_star[5]=ratioR_star*rouR*(ER/rouR+(S_star-qR)*(S_star+pR/rouR/(SR-

qR))); 

   if(SL>=0) 

   { 

    for(k=1; k<Neq; k++) 

    { 

     FHLLC[k]=FHLLC[k]+fabs(Lamda[m])*FL[k]; 

    } 

   } 

   else 

   { 

    if(SR<=0) 

    { 

     for(k=1; k<Neq; k++) 

     { 

      FHLLC[k]=FHLLC[k]+fabs(Lamda[m])*FR[k]; 

     } 

    } 

    else 

    { 

     if(S_star>=0) 

     { 

      for(k=1; k<Neq; k++) 
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      { 

      

 FHLLC[k]=FHLLC[k]+fabs(Lamda[m])*(FL[k]+SL*(QL_star[k]-QL[k])); 

      } 

     } 

     else 

     { 

      for(k=1; k<Neq; k++) 

      { 

      

 FHLLC[k]=FHLLC[k]+fabs(Lamda[m])*(FR[k]+SR*(QR_star[k]-QR[k])); 

      } 

     } 

    } 

   } 

  } 

 } 

 return true; 

} 

double WBAP_Limiter(double Theta1,double Theta2) 

{ 

    double FinalValue; 

    if(Theta1<=SmallNumber||Theta2<=SmallNumber)FinalValue=0; 

    else 

FinalValue=(WBAP_Parameter_n+1.0/Theta1+1.0/Theta2)/(WBAP_Parameter_n+1.0/Theta1/Theta1+1.0/

Theta2/Theta2); 

    return FinalValue; 

} 

double WeightedAverage(double GradientL,double GradientR) 

{ 

 double Gradient; 

 Gradient=(pow(fabs(GradientL),2)*GradientR+pow(fabs(GradientR),2)*GradientL) 

  /(pow(fabs(GradientL),2)+pow(fabs(GradientR),2)+SmallNumber); 

 return Gradient; 

}// 

 



134 

 

void CESE_2DTimeMarching(double ***U_old, double ***Ux_old, double ***Uy_old, 

                         double ***U_new,double ***Ux_new,double ***Uy_new,double dt,int IsHalf) 

{ 

    int i,j,k,I,J; 

 bool signalL, signalR, signalD, signalU; 

 double y, U_LD[Neq], U_LU[Neq], U_RD[Neq], U_RU[Neq], F_LD, F_LU, F_RD, F_RU, G_DL, 

G_DR, G_UL, G_UR, S_LD, S_LU, S_RD, S_RU; 

    //fluxes through the surfaces of CE 

    double 

ULDR[Neq],ULDU[Neq],URDL[Neq],URDU[Neq],URUL[Neq],URUD[Neq],ULUR[Neq],ULUD[Neq]; 

    double FC_L[Neq],FC_D[Neq],FC_R[Neq],FC_U[Neq];//fluxes through the inner boundaries 

    //R-right;L-left;U-upper;D-Down 

    double UI,VI,UxC,UyC,UxL[Neq],UxR[Neq],UyL[Neq],UyR[Neq],UtL[Neq],UtR[Neq]; 

    double Theta1,Theta2,DUDa[Neq],DUDb[Neq],Ratioa,Ratiob; 

 

#pragma omp parallel for private(j,k,I,J,signalL, signalR, signalD, 

signalU,y,U_LD,U_LU,U_RD,U_RU,F_LD,F_LU,F_RD,F_RU,G_DL,G_DR,G_UL,G_UR, S_LD, S_LU, 

S_RD, 

S_RU,ULDR,ULDU,URDL,URDU,URUL,URUD,ULUR,ULUD,FC_L,FC_D,FC_R,FC_U,UI,VI,UxC,U

yC,UxL,UxR,UyL,UyR,UtL,UtR,Theta1,Theta2,DUDa,DUDb,Ratioa,Ratiob) 

    for(i=IsHalf;i<=Nx;i++) 

    { 

        for(j=IsHalf;j<=Ny;j++) 

        { 

            I=i+1-IsHalf; 

            J=j+1-IsHalf; 

 

            for(k=0;k<Neq;k++) 

            { 

                U_LD[k]=U_old[I-1][J-1][k]+Ux_old[I-1][J-1][k]*dx/4+Uy_old[I-1][J-1][k]*dy/4; 

                U_RD[k]=U_old[I][J-1][k]-Ux_old[I][J-1][k]*dx/4+Uy_old[I][J-1][k]*dy/4; 

                U_RU[k]=U_old[I][J][k]-Ux_old[I][J][k]*dx/4-Uy_old[I][J][k]*dy/4; 

                U_LU[k]=U_old[I-1][J][k]+Ux_old[I-1][J][k]*dx/4-Uy_old[I-1][J][k]*dy/4; 

            } 
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   for(k=0;k<Neq;k++) 

   { 

    UyC=2*(U_LU[k]-U_LD[k])/dy; 

    if(fabs(Uy_old[I-1][J-1][k])<=SmallNumber) UyL[k]=Uy_old[I-1][J-

1][k]; 

    else 

    { 

     Theta1=UyC/Uy_old[I-1][J-1][k]; 

     Theta2=Uy_old[I-1][J][k]/Uy_old[I-1][J-1][k]; 

     UyL[k]=Uy_old[I-1][J-1][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

 

    if(fabs(Uy_old[I-1][J][k])<=SmallNumber) UyR[k]=Uy_old[I-1][J][k]; 

    else 

    { 

     Theta1=UyC/Uy_old[I-1][J][k]; 

     Theta2=Uy_old[I-1][J-1][k]/Uy_old[I-1][J][k]; 

     UyR[k]=Uy_old[I-1][J][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

   } 

   y = (J - 1)*dy - 0.5*(1-IsHalf)*dy; 

   Comput_Ut(U_LD, Ux_old[I - 1][J - 1], UyL, y, Curv[I - 1][J - 1], Normx[I - 1][J 

- 1], Normy[I - 1][J - 1], UtL); 

   y = J*dy - 0.5*(1 - IsHalf)*dy; 

   Comput_Ut(U_LU, Ux_old[I - 1][J], UyR, y, Curv[I - 1][J], Normx[I - 1][J], 

Normy[I - 1][J], UtR); 

   for(k=0;k<Neq;k++) 

   { 

    ULDU[k]=U_LD[k]+UyL[k]*dy/4+UtL[k]*dt/4; 

    ULUD[k]=U_LU[k]-UyR[k]*dy/4+UtR[k]*dt/4; 

   } 

   signalL=Rotated_HLLC_RiemannSolver(ULDU,ULUD,FC_L,0,1); 
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   for(k=0;k<Neq;k++) 

   { 

    UyC=2*(U_RU[k]-U_RD[k])/dy; 

    if(fabs(Uy_old[I][J-1][k])<=SmallNumber) UyL[k]=Uy_old[I][J-1][k]; 

    else 

    { 

     Theta1=UyC/Uy_old[I][J-1][k]; 

     Theta2=Uy_old[I][J][k]/Uy_old[I][J-1][k]; 

     UyL[k]=Uy_old[I][J-1][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

    if(fabs(Uy_old[I][J][k])<=SmallNumber) UyR[k]=Uy_old[I][J][k]; 

    else 

    { 

     Theta1=UyC/Uy_old[I][J][k]; 

     Theta2=Uy_old[I][J-1][k]/Uy_old[I][J][k]; 

     UyR[k]=Uy_old[I][J][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

   } 

   y = (J - 1)*dy - 0.5*(1 - IsHalf)*dy; 

   Comput_Ut(U_RD, Ux_old[I][J - 1], UyL, y, Curv[I][J - 1], Normx[I][J - 1], 

Normy[I][J - 1], UtL); 

   y = J *dy - 0.5*(1 - IsHalf)*dy; 

   Comput_Ut(U_RU, Ux_old[I][J], UyR, y, Curv[I][J], Normx[I][J], Normy[I][J], 

UtR); 

   for(k=0;k<Neq;k++) 

   { 

    URDU[k]=U_RD[k]+UyL[k]*dy/4+UtL[k]*dt/4; 

    URUD[k]=U_RU[k]-UyR[k]*dy/4+UtR[k]*dt/4; 

   } 

   signalR=Rotated_HLLC_RiemannSolver(URDU,URUD,FC_R,0,1); 

 

 

   for(k=0;k<Neq;k++) 

   { 

    UxC=2*(U_RD[k]-U_LD[k])/dx; 
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    if(fabs(Ux_old[I-1][J-1][k])<=SmallNumber) UxL[k]=Ux_old[I-1][J-

1][k]; 

    else 

    { 

     Theta1=UxC/Ux_old[I-1][J-1][k]; 

     Theta2=Ux_old[I][J-1][k]/Ux_old[I-1][J-1][k]; 

     UxL[k]=Ux_old[I-1][J-1][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

    if(fabs(Ux_old[I][J-1][k])<=SmallNumber) UxR[k]=Ux_old[I][J-1][k]; 

    else 

    { 

     Theta1=UxC/Ux_old[I][J-1][k]; 

     Theta2=Ux_old[I-1][J-1][k]/Ux_old[I][J-1][k]; 

     UxR[k]=Ux_old[I][J-1][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

   } 

   y = (J - 1)*dy - 0.5*(1 - IsHalf)*dy; 

   Comput_Ut(U_LD, UxL, Uy_old[I - 1][J - 1], y, Curv[I - 1][J - 1], Normx[I - 1][J 

- 1], Normy[I - 1][J - 1], UtL); 

   Comput_Ut(U_RD, UxR, Uy_old[I][J - 1], y, Curv[I][J - 1], Normx[I][J - 1], 

Normy[I][J - 1], UtR); 

   for(k=0;k<Neq;k++) 

   { 

    ULDR[k]=U_LD[k]+UxL[k]*dx/4+UtL[k]*dt/4; 

    URDL[k]=U_RD[k]-UxR[k]*dx/4+UtR[k]*dt/4; 

   } 

   signalD=Rotated_HLLC_RiemannSolver(ULDR,URDL,FC_D,1,0); 

 

 

   for(k=0;k<Neq;k++) 

   { 

    UxC=2*(U_RU[k]-U_LU[k])/dx; 

    if(fabs(Ux_old[I-1][J][k])<=SmallNumber) UxL[k]=Ux_old[I-1][J][k]; 

    else 
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    { 

     Theta1=UxC/Ux_old[I-1][J][k]; 

     Theta2=Ux_old[I][J][k]/Ux_old[I-1][J][k]; 

     UxL[k]=Ux_old[I-1][J][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

 

    if(fabs(Ux_old[I][J][k])<=SmallNumber) UxR[k]=Ux_old[I][J][k]; 

    else 

    { 

     Theta1=UxC/Ux_old[I][J][k]; 

     Theta2=Ux_old[I-1][J][k]/Ux_old[I][J][k]; 

     UxR[k]=Ux_old[I][J][k]*WBAP_Limiter(Theta1,Theta2); 

    } 

   } 

   y = J *dy - 0.5*(1 - IsHalf)*dy; 

   Comput_Ut(U_LU, UxL, Uy_old[I - 1][J], y, Curv[I - 1][J], Normx[I - 1][J], 

Normy[I - 1][J], UtL); 

   Comput_Ut(U_RU, UxR, Uy_old[I][J], y, Curv[I][J], Normx[I][J], Normy[I][J], 

UtR); 

   for(k=0;k<Neq;k++) 

   { 

    ULUR[k]=U_LU[k]+UxL[k]*dx/4+UtL[k]*dt/4; 

    URUL[k]=U_RU[k]-UxR[k]*dx/4+UtR[k]*dt/4; 

   } 

   signalU=Rotated_HLLC_RiemannSolver(ULUR,URUL,FC_U,1,0); 

 

 

            for(k=1;k<Neq;k++) 

            { 

 

                F_LD=F[I-1][J-1][k]+Fy[I-1][J-1][k]*dy/4+Ft[I-1][J-1][k]*dt/4; 

                F_LU=F[I-1][J][k]-Fy[I-1][J][k]*dy/4+Ft[I-1][J][k]*dt/4; 

                F_RD=F[I][J-1][k]+Fy[I][J-1][k]*dy/4+Ft[I][J-1][k]*dt/4; 

                F_RU=F[I][J][k]-Fy[I][J][k]*dy/4+Ft[I][J][k]*dt/4; 

 

                G_DL=G[I-1][J-1][k]+Gx[I-1][J-1][k]*dx/4+Gt[I-1][J-1][k]*dt/4; 
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                G_DR=G[I][J-1][k]-Gx[I][J-1][k]*dx/4+Gt[I][J-1][k]*dt/4; 

                G_UL=G[I-1][J][k]+Gx[I-1][J][k]*dx/4+Gt[I-1][J][k]*dt/4; 

                G_UR=G[I][J][k]-Gx[I][J][k]*dx/4+Gt[I][J][k]*dt/4; 

 

    S_LD = S[I - 1][J - 1][k] + Sx[I - 1][J - 1][k] * dx / 4 + Sy[I - 1][J - 1][k] 

* dy / 4 + St[I - 1][J - 1][k] * dt / 4; 

    S_LU = S[I - 1][J][k] + Sx[I - 1][J][k] * dx / 4 - Sy[I - 1][J][k] * dy / 4 + 

St[I - 1][J][k] * dt / 4; 

    S_RD = S[I][J - 1][k] - Sx[I][J - 1][k] * dx / 4 + Sy[I][J - 1][k] * dy / 4 

+ St[I][J - 1][k] * dt / 4; 

    S_RU = S[I][J][k] - Sx[I][J][k] * dx / 4 - Sy[I][J][k] *  dy / 4 + St[I][J][k] 

* dt / 4; 

 

    

    U_LD[k] = U_LD[k] + dt / dx*(F_LD - FC_D[k]) + dt / dy*(G_DL - 

FC_L[k])+  dt / 2 * S_LD; 

    U_RD[k] = U_RD[k] + dt / dx*(FC_D[k] - F_RD) + dt / dy*(G_DR - 

FC_R[k]) + dt / 2 * S_RD; 

    U_RU[k] = U_RU[k] + dt / dx*(FC_U[k] - F_RU) + dt / dy*(FC_R[k] - 

G_UR) + dt / 2 * S_RU; 

    U_LU[k] = U_LU[k] + dt / dx*(F_LU - FC_U[k]) + dt / dy*(FC_L[k] - 

G_UL) + dt / 2 * S_LU; 

    U_new[i][j][k]=0.25*(U_LD[k]+U_RD[k]+U_LU[k]+U_RU[k]); 

    if (signalL&&signalR&&signalD&&signalU) 

    { 

     UxL[k] = 2 * (U_RD[k] - U_LD[k]) / dx; 

     UxR[k] = 2 * (U_RU[k] - U_LU[k]) / dx; 

     UxC = 0.5*(UxL[k] + UxR[k]); 

     if (fabs(UxC) <= SmallNumber) Ux_new[i][j][k] = UxC; 

     else 

     { 

      Theta1 = UxL[k] / UxC; 

      Theta2 = UxR[k] / UxC; 

      Ux_new[i][j][k] = UxC*WBAP_Limiter(Theta1, 

Theta2); 

     } 
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     UyL[k] = 2 * (U_LU[k] - U_LD[k]) / dy; 

     UyR[k] = 2 * (U_RU[k] - U_RD[k]) / dy; 

     UyC = 0.5*(UyL[k] + UyR[k]); 

     if (fabs(UyC) <= SmallNumber) Uy_new[i][j][k] = UyC; 

     else 

     { 

      Theta1 = UyL[k] / UyC; 

      Theta2 = UyR[k] / UyC; 

      Uy_new[i][j][k] = UyC*WBAP_Limiter(Theta1, 

Theta2); 

     } 

    } 

    else Ux_new[i][j][k] = Uy_new[i][j][k] = 0; 

    DUDa[k]=costheta*Ux_new[i][j][k]+sintheta*Uy_new[i][j][k]; 

    DUDb[k]=sintheta*Uy_new[i][j][k]-costheta*Ux_new[i][j][k]; 

            } 

   UI=U_new[i][j][3]/(U_new[i][j][1]+U_new[i][j][2]); 

   VI=U_new[i][j][4]/(U_new[i][j][1]+U_new[i][j][2]); 

   if(UI>=0) 

   { 

    FC_D[0]=UI*ULDR[0]; 

    FC_U[0]=UI*ULUR[0]; 

   } 

   else 

   { 

    FC_D[0]=UI*URDL[0]; 

    FC_U[0]=UI*URUL[0]; 

   } 

   if(VI>=0) 

   { 

    FC_L[0]=VI*ULDU[0]; 

    FC_R[0]=VI*URDU[0]; 

   } 

   else 

   { 
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    FC_L[0]=VI*ULUD[0]; 

    FC_R[0]=VI*URUD[0]; 

   } 

 

   F_LD=UI*(U_old[I-1][J-1][0]+Uy_old[I-1][J-1][0]*dy/4+Ut[I-1][J-1][0]*dt/4); 

   F_LU=UI*(U_old[I-1][J][0]-Uy_old[I-1][J][0]*dy/4+Ut[I-1][J][0]*dt/4); 

   F_RD=UI*(U_old[I][J-1][0]+Uy_old[I][J-1][0]*dy/4+Ut[I][J-1][0]*dt/4); 

   F_RU=UI*(U_old[I][J][0]-Uy_old[I][J][0]*dy/4+Ut[I][J][0]*dt/4); 

 

   G_DL=VI*(U_old[I-1][J-1][0]+Ux_old[I-1][J-1][0]*dx/4+Ut[I-1][J-1][0]*dt/4); 

   G_DR=VI*(U_old[I][J-1][0]-Ux_old[I][J-1][0]*dx/4+Ut[I][J-1][0]*dt/4); 

   G_UL=VI*(U_old[I-1][J][0]+Ux_old[I-1][J][0]*dx/4+Ut[I-1][J][0]*dt/4); 

   G_UR=VI*(U_old[I][J][0]-Ux_old[I][J][0]*dx/4+Ut[I][J][0]*dt/4); 

 

 

   U_LD[0] = U_LD[0] + dt / dx*(F_LD - FC_D[0]) + dt / dy*(G_DL - FC_L[0]); 

   U_RD[0] = U_RD[0] + dt / dx*(FC_D[0] - F_RD) + dt / dy*(G_DR - FC_R[0]); 

   U_RU[0] = U_RU[0] + dt / dx*(FC_U[0] - F_RU) + dt / dy*(FC_R[0] - G_UR); 

   U_LU[0] = U_LU[0] + dt / dx*(F_LU - FC_U[0]) + dt / dy*(FC_L[0] - G_UL); 

   U_new[i][j][0] = 0.25*(U_LD[0] + U_RD[0] + U_LU[0] + U_RU[0]); 

   if (signalL&&signalR&&signalD&&signalU) 

   { 

    UxL[0] = 2 * (U_RD[0] - U_LD[0]) / dx; 

    UxR[0] = 2 * (U_RU[0] - U_LU[0]) / dx; 

    UxC = 0.5*(UxL[0] + UxR[0]); 

    if (fabs(UxC) <= SmallNumber) Ux_new[i][j][0] = UxC; 

    else 

    { 

     Theta1 = UxL[0] / UxC; 

     Theta2 = UxR[0] / UxC; 

     Ux_new[i][j][0] = UxC*WBAP_Limiter(Theta1, Theta2); 

    } 

 

    UyL[0] = 2 * (U_LU[0] - U_LD[0]) / dy; 

    UyR[0] = 2 * (U_RU[0] - U_RD[0]) / dy; 

    UyC = 0.5*(UyL[0] + UyR[0]); 
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    if (fabs(UyC) <= SmallNumber) Uy_new[i][j][0] = UyC; 

    else 

    { 

     Theta1 = UyL[0] / UyC; 

     Theta2 = UyR[0] / UyC; 

     Uy_new[i][j][0] = UyC*WBAP_Limiter(Theta1, Theta2); 

    } 

   } 

   else Ux_new[i][j][0] = Uy_new[i][j][0] =0; 

   DUDa[0]=costheta*Ux_new[i][j][0]+sintheta*Uy_new[i][j][0]; 

   DUDb[0]=sintheta*Uy_new[i][j][0]-costheta*Ux_new[i][j][0]; 

 

   if(fabs(DUDa[0])<=SmallNumber) 

   { 

    Ratioa=1.0; 

    DUDa[0]=0; 

   } 

   else 

   { 

    Theta1=fabs(MAXIMUM-U_new[i][j][0])/(fabs(DUDa[0])*DeltaL/2); 

    Theta2=fabs(MINIMUM-U_new[i][j][0])/(fabs(DUDa[0])*DeltaL/2); 

    Ratioa=MIN(1,MIN(Theta1,Theta2)); 

   } 

 

   if(fabs(DUDb[0])<=SmallNumber) 

   { 

    Ratiob=1.0; 

    DUDb[0]=0; 

   } 

   else 

   { 

    Theta1=fabs(MAXIMUM-U_new[i][j][0])/(fabs(DUDb[0])*DeltaL/2); 

    Theta2=fabs(MINIMUM-U_new[i][j][0])/(fabs(DUDb[0])*DeltaL/2); 

    Ratiob=MIN(1,MIN(Theta1,Theta2)); 

   } 
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   for(k=0;k<Neq;k++) 

   { 

    DUDa[k]=Ratioa*DUDa[k]; 

    DUDb[k]=Ratiob*DUDb[k]; 

 

    Ux_new[i][j][k]=(DUDa[k]-DUDb[k])/(2*costheta); 

    Uy_new[i][j][k]=(DUDa[k]+DUDb[k])/(2*sintheta); 

   } 

    

        } 

    } 

}//mesh variables updated in half time step 

void Compute_NormAndCurv(double ***U, int IsHalf) 

{ 

 int i, j; 

 double NLD, NxLD, NyLD, NRD, NxRD, NyRD, NRU, NxRU, NyRU, NLU, NxLU, NyLU ; 

#pragma omp parallel for private(j,NLD, NxLD, NyLD, NRD, NxRD, NyRD, NRU, NxRU, NyRU, NLU, 

NxLU, NyLU) 

 for (i = 1; i < Nx + IsHalf; i++) 

 { 

  for (j = 1; j < Ny + IsHalf; j++) 

  { 

   if (U[i][j][0]>0.1&&U[i][j][0] < 0.9) 

   { 

    NxLD = (U[i][j][0] + U[i][j - 1][0] - U[i - 1][j][0] - U[i - 1][j - 1][0]) / (2 

* dx); 

    NyLD = (U[i][j][0] + U[i- 1][j ][0] - U[i ][j- 1][0] - U[i - 1][j - 1][0]) / (2 

* dy); 

    NLD = sqrt(NxLD*NxLD + NyLD*NyLD); 

    NxRD = (U[i+1][j][0] + U[i+1][j - 1][0] - U[i ][j][0] - U[i ][j - 1][0]) / (2 

* dx); 

    NyRD = (U[i+1][j][0] + U[i ][j][0] - U[i+1][j - 1][0] - U[i ][j - 1][0]) / (2 

* dy); 

    NRD = sqrt(NxRD*NxRD + NyRD*NyRD); 

    NxRU = (U[i + 1][j+1][0] + U[i + 1][j][0] - U[i][j+1][0] - U[i][j][0]) / (2 

* dx); 
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    NyRU = (U[i + 1][j+1][0] + U[i][j+1][0] - U[i + 1][j ][0] - U[i][j ][0]) / 

(2 * dy); 

    NRU = sqrt(NxRU*NxRU + NyRU*NyRU); 

    NxLU = (U[i][j+1][0] + U[i][j ][0] - U[i - 1][j+1][0] - U[i - 1][j][0]) / (2 

* dx); 

    NyLU = (U[i][j+1][0] + U[i - 1][j+1][0] - U[i][j ][0] - U[i - 1][j ][0]) / (2 

* dy); 

    NLU = sqrt(NxLU*NxLU + NyLU*NyLU); 

    Normx[i][j] = 0.25*(NxLD + NxRD + NxRU + NxLU); 

    Normy[i][j] = 0.25*(NyLD + NyRD + NyRU + NyLU); 

    Curv[i][j] = (NxRD / NRD + NxRU / NRU - NxLD / NLD - NxLU / 

NLU) / (2 * dx) + (NyLU / NLU + NyRU / NRU - NyLD / NLD - NyRD / NRD) / (2 * dy); 

   } 

   else Normx[i][j] = Normy[i][j] = Curv[i][j] = 0; 

  } 

 } 

#pragma omp parallel for 

 for (j = 1; j < Ny + IsHalf; j++) 

 { 

  Normx[0][j] = Normx[1][j]; 

  Normy[0][j] = Normy[1][j]; 

  Curv[0][j] = Curv[1][j]; 

  Normx[Nx + IsHalf][j] = Normx[Nx + IsHalf - 1][j]; 

  Normy[Nx + IsHalf][j] = Normy[Nx + IsHalf - 1][j]; 

  Curv[Nx + IsHalf][j] = Curv[Nx + IsHalf - 1][j]; 

 } 

#pragma omp parallel for 

 for (i = 0; i <= Ny + IsHalf; i++) 

 { 

  Normx[i][0] = Normx[i][1]; 

  if (IsHalf) Normy[i][0] = -Normy[i][1]; 

  else Normy[i][0] = 0; 

  Curv[i][0] = Curv[i][1]; 

  Normx[i][Ny + IsHalf] = Normx[i][Ny + IsHalf - 1]; 

  Normy[i][Ny + IsHalf] = Normy[i][Ny + IsHalf - 1]; 

  Curv[i][Ny + IsHalf] = Curv[i][Ny + IsHalf - 1]; 
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 } 

 

} 

 

void WriteAsciiData(char *filename,double ***U) 

{ 

 int i,j; 

 FILE *fp; 

 double rou,alpha,u,v,p,gama,pai; 

 printf("WriteAsciiData..."); 

 fp=fopen(filename,"w+"); 

 fprintf(fp,"TITLE

 =\"Dataset\"\nVARIABLES=\"x\"\"y\"\"roug\"\"roul\"\"rou\"\"alpha\"\"u\"\"v\"\"p\"\"Curv\"\"Nx\

"\"Ny\""); 

 fprintf(fp,"ZONE T=\"Zone 1\"\nI=%d J=%d K=%d ZONETYPE=Ordered\n",Ny+1,Nx+1,1); 

 fprintf(fp,"DATAPACKING=POINT\n"); 

 for(i=0;i<=Nx;i++) 

 {  

  for(j=0;j<=Ny;j++) 

  { 

   alpha=U[i][j][0]; 

   rou=U[i][j][1]+U[i][j][2]; 

   u=U[i][j][3]/rou; 

   v=U[i][j][4]/rou; 

   gama=1.0/(alpha/(GAMA1-1)+(1-alpha)/(GAMA2-1))+1; 

   pai=(alpha*GAMA1*PAI1/(GAMA1-1)+(1-alpha)*GAMA2*PAI2/(GAMA2-

1))*(gama-1)/gama; 

   p=(gama-1)*(U[i][j][5]-0.5*rou*(u*u+v*v))-gama*pai; 

   fprintf(fp, 

"%20f%20f%20.10e%20.10e%20.10e%20.10e%20.10e%20.10e%20.10e%20.10e%20.10e%20.10e\n", 

i*dx, j*dy, U[i][j][1], U[i][j][2], rou, alpha, u, v, p, Curv[i][j], -SurfaceTension*Curv[i][j] * Normx[i][j], -

SurfaceTension*Curv[i][j] * Normy[i][j]); 

  } 

 } 

 fclose(fp); 

 printf("Done!\n"); 
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} 

//Output Ascii results 

void WriteBinaryData(char* filename,double ***U,double PresentTime) 

{ 

 int i,j,k; 

 FILE *fp; 

 double x,y,rou,alpha,u,v,p,gama,pai; 

 double DD; 

 int II; 

 float FF,ZONEMARKER,EOHMARKER; 

 char CC[128]; 

 double MAX_roug,MAX_roul,MAX_rou,MAX_alpha,MAX_u,MAX_v,MAX_p; 

 double MIN_roug,MIN_roul,MIN_rou,MIN_alpha,MIN_u,MIN_v,MIN_p; 

 printf("WriteBinaryData..."); 

 ZONEMARKER=299.0; 

 EOHMARKER =357.0; 

 MAX_roug=MAX_roul=MAX_rou=MAX_alpha=MAX_u=MAX_v=MAX_p=-1e100; 

 MIN_roug=MIN_roul=MIN_rou=MIN_alpha=MIN_u=MIN_v=MIN_p=1e100; 

 for(i=0;i<=Nx;i++) 

 {  

  for(j=0;j<=Ny;j++) 

  { 

   alpha=U[i][j][0]; 

   rou=U[i][j][1]+U[i][j][2]; 

   u=U[i][j][3]/rou; 

   v=U[i][j][4]/rou; 

   gama=1.0/(alpha/(GAMA1-1)+(1-alpha)/(GAMA2-1))+1; 

   pai=(alpha*GAMA1*PAI1/(GAMA1-1)+(1-alpha)*GAMA2*PAI2/(GAMA2-

1))*(gama-1)/gama; 

   p=(gama-1)*(U[i][j][5]-0.5*rou*(u*u+v*v))-gama*pai; 

   MAX_roug=MAX(MAX_roug,U[i][j][1]); 

   MIN_roug=MIN(MIN_roug,U[i][j][1]); 

   MAX_roul=MAX(MAX_roul,U[i][j][2]); 

   MIN_roul=MIN(MIN_roul,U[i][j][2]); 

   MAX_rou=MAX(MAX_rou,rou); 

   MIN_rou=MIN(MIN_rou,rou); 
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   MAX_alpha=MAX(MAX_alpha,U[i][j][0]); 

   MIN_alpha=MIN(MIN_alpha,U[i][j][0]); 

   MAX_u=MAX(MAX_u,u); 

   MIN_u=MIN(MIN_u,u); 

   MAX_v=MAX(MAX_v,v); 

   MIN_v=MIN(MIN_v,v); 

   MAX_p=MAX(MAX_p,p); 

   MIN_p=MIN(MIN_p,p); 

  } 

 } 

   /* 

       * Open the file and write the tecplot datafile  

       * header information  

       */ 

         

 fp=fopen(filename,"wb"); 

 strcpy(CC,"#!TDV111"); 

 fwrite(CC,sizeof(char),8,fp);//Magic number, Version number, version information 

 II=1; 

 fwrite(&II,sizeof(int),1,fp);//Integer value of 1;This is used to determine the byte order of the reader, 

relative to the writer 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//FileType 

 strcpy(CC,"DataBase"); 

 for(i=0;i<9;i++) 

 { 

  if(i==8)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 //Title 

 II=9; 

 fwrite(&II,sizeof(int),1,fp);//number of variable 

 strcpy(CC,"X"); 

 for(i=0;i<2;i++) 

 { 
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  if(i==1)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"Y"); 

 for(i=0;i<2;i++) 

 { 

  if(i==1)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"roug"); 

 for(i=0;i<5;i++) 

 { 

  if(i==4)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"roul"); 

 for(i=0;i<5;i++) 

 { 

  if(i==4)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"rou"); 

 for(i=0;i<4;i++) 

 { 

  if(i==3)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"alpha"); 

 for(i=0;i<6;i++) 

 { 

  if(i==5)II=0; 
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  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"u"); 

 for(i=0;i<2;i++) 

 { 

  if(i==1)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"v"); 

 for(i=0;i<2;i++) 

 { 

  if(i==1)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 } 

 strcpy(CC,"p"); 

 for(i=0;i<2;i++) 

 { 

  if(i==1)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 }//variable name 

 fwrite(&ZONEMARKER,sizeof(float),1,fp); 

 strcpy(CC,"ZONE1"); 

 for(i=0;i<6;i++) 

 { 

  if(i==5)II=0; 

  else II=CC[i]; 

  fwrite(&II,sizeof(int),1,fp); 

 }//Zone name 

 II=-1; 

 fwrite(&II,sizeof(int),1,fp);//parent zone 

 //Zero-based zone number within this datafile to which this zone is a child. 

 II=-2; 
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 fwrite(&II,sizeof(int),1,fp);//StrandID: -2 = pending strand ID for assignment by Tecplot             

 // -1 = static strand ID 

 // 0 <= N < 32700 valid strand ID 

 fwrite(&PresentTime,sizeof(double),1,fp);//solution time 

 II=-1; 

 fwrite(&II,sizeof(int),1,fp);//zone color (set to -1 if you want Tecplot to determine). 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//ZoneType 0=ORDERED,        1=FELINESEG,  

 // 2=FETRIANGLE,     3=FEQUADRILATERAL, 

 //4=FETETRAHEDRON,  5=FEBRICK, 

 //6=FEPOLYGON,      7=FEPOLYHEDRON 

 II=1; 

 fwrite(&II,sizeof(int),1,fp);//data packing 0-block 1-point 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//Specify Var Location. 0 = Don't specify, all data is located at the nodes. 

1 = Specify 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//Are raw local 1-to-1 face neighbors supplied? (0=FALSE 1=TRUE). 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//Number of miscellaneous user-defined face neighbor connections 

(value >= 0). 

 II=Nx+1; 

 fwrite(&II,sizeof(int),1,fp);//IMAX 

 II=Ny+1; 

 fwrite(&II,sizeof(int),1,fp);//JMAX 

 II=1; 

 fwrite(&II,sizeof(int),1,fp);//KMAX 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//1=Auxiliary name/value pair to follow   0=No more Auxiliar 

name/value pairs 

 fwrite(&EOHMARKER,sizeof(float),1,fp); 

 fwrite(&ZONEMARKER,sizeof(float),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 
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 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp); 

 II=1; 

 fwrite(&II,sizeof(int),1,fp);//variable data format, 1=Float, 2=Double, 3=LongInt, 4=ShortInt, 

5=Byte, 6=Bit 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//Has passive variables: 0 = no, 1 = yes. 

 II=0; 

 fwrite(&II,sizeof(int),1,fp);//Has variable sharing 0 = no, 1 = yes 

 II=-1; 

 fwrite(&II,sizeof(int),1,fp);//Zone number to share connectivity list with (-1 = no sharing) 

 DD=Lx_S; 

 fwrite(&DD,sizeof(double),1,fp); 

 DD=Lx_E; 

 fwrite(&DD,sizeof(double),1,fp); 

 DD=Ly_S; 

 fwrite(&DD,sizeof(double),1,fp); 

 DD=Ly_E; 

 fwrite(&DD,sizeof(double),1,fp); 

 fwrite(&MIN_roug,sizeof(double),1,fp); 

 fwrite(&MAX_roug,sizeof(double),1,fp); 

 fwrite(&MIN_roul,sizeof(double),1,fp); 

 fwrite(&MAX_roul,sizeof(double),1,fp); 

 fwrite(&MIN_rou,sizeof(double),1,fp); 

 fwrite(&MAX_rou,sizeof(double),1,fp); 

 fwrite(&MIN_alpha,sizeof(double),1,fp); 
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 fwrite(&MAX_alpha,sizeof(double),1,fp); 

 fwrite(&MIN_u,sizeof(double),1,fp); 

 fwrite(&MAX_u,sizeof(double),1,fp); 

 fwrite(&MIN_v,sizeof(double),1,fp); 

 fwrite(&MAX_v,sizeof(double),1,fp); 

 fwrite(&MIN_p,sizeof(double),1,fp); 

 fwrite(&MAX_p,sizeof(double),1,fp); 

 // Compressed list of min/max pairs for each non-shared and non-passive 

 //variable. For each non-shared and non-passive variable (as specified above) 

 for(j=0;j<=Ny;j++) 

 { 

  for(i=0;i<=Nx;i++) 

  { 

   x=Lx_S+i*dx; 

   y=Ly_S+j*dy; 

   alpha=U[i][j][0]; 

   rou=U[i][j][1]+U[i][j][2]; 

   u=U[i][j][3]/rou; 

   v=U[i][j][4]/rou; 

   gama=1.0/(alpha/(GAMA1-1)+(1-alpha)/(GAMA2-1))+1; 

   pai=(alpha*GAMA1*PAI1/(GAMA1-1)+(1-alpha)*GAMA2*PAI2/(GAMA2-

1))*(gama-1)/gama; 

   p=(gama-1)*(U[i][j][5]-0.5*rou*(u*u+v*v))-gama*pai; 

   FF=float(x); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(y); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(U[i][j][1]); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(U[i][j][2]); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(rou); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(U[i][j][0]); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(u); 
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   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(v); 

   fwrite(&FF,sizeof(float),1,fp); 

   FF=float(p); 

   fwrite(&FF,sizeof(float),1,fp); 

  } 

 } 

 fclose(fp); 

 printf("Done!\n"); 

} 

//Output Binary results 

void CESE_Solver() 

{ 

 int i,j,NumberofStep; 

 FILE *fp; 

 char key,sFName[1024]; 

 double x,AA,XX,ZZ,ComputingTime,dt,MaxAlpha,MinAlpha; 

 do 

 { 

  printf("Please select:\n[1] New Computation\n[2] Restart an Old Computation\n"); 

  key=_getch(); 

 }while(!(key=='1'||key=='2')); 

 printf("\nYour choice is [%c]\n\n",key); 

 if(key=='1') 

 { 

  ComputingTime=0; 

  NumberofStep=0; 

  Initializer(); 

  InitialMass1=(U1[0][0][1]+U1[0][Ny][1]+U1[Nx][0][1]+U1[Nx][Ny][1])*dx*dy/4; 

  InitialMass2=(U1[0][0][2]+U1[0][Ny][2]+U1[Nx][0][2]+U1[Nx][Ny][2])*dx*dy/4; 

  InitialEnergy=(U1[0][0][5]+U1[0][Ny][5]+U1[Nx][0][5]+U1[Nx][Ny][5])*dx*dy/4; 

  for(i=1;i<Nx;i++) 

  { 

   InitialMass1=InitialMass1+(U1[i][0][1]+U1[i][Ny][1])*dx*dy/2; 

   InitialMass2=InitialMass2+(U1[i][0][2]+U1[i][Ny][2])*dx*dy/2; 

   InitialEnergy=InitialEnergy+(U1[i][0][5]+U1[i][Ny][5])*dx*dy/2; 
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  } 

  for(j=1;j<Ny;j++) 

  { 

   InitialMass1=InitialMass1+(U1[0][j][1]+U1[Nx][j][1])*dx*dy/2; 

   InitialMass2=InitialMass2+(U1[0][j][2]+U1[Nx][j][2])*dx*dy/2; 

   InitialEnergy=InitialEnergy+(U1[0][j][5]+U1[Nx][j][5])*dx*dy/2; 

  } 

  for(i=1;i<Nx;i++) 

  { 

   for(j=1;j<Ny;j++) 

   { 

    InitialMass1=InitialMass1+U1[i][j][1]*dx*dy; 

    InitialMass2=InitialMass2+U1[i][j][2]*dx*dy; 

    InitialEnergy=InitialEnergy+U1[i][j][5]*dx*dy; 

   } 

  } 

  fp=fopen("Conservation Property.txt","w+"); 

  fprintf(fp,"%e\t%e\t%e\t%e\t%e\t%e\n",ComputingTime,0.0,0.0,0.0,0.0,0.0); 

  fclose(fp); 

 } 

 else 

 { 

  printf("Input the data file name:\n"); 

  scanf("%s",sFName); 

  restart(sFName,ComputingTime,NumberofStep); 

 } 

 Compute_NormAndCurv(U1, 0); 

 sprintf(sFName,"result_t=%.2fus.plt",ComputingTime*1e6); 

 if(OutputFileType==0) WriteAsciiData(sFName,U1); 

 else WriteBinaryData(sFName,U1,ComputingTime); 

 while(ComputingTime<time) 

 { 

  if(NumberofStep%30==0) 

  { 

   AA=XX=ZZ=0; 

      for(i=0;i<=Nx;i++) 
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      { 

       x=Lx_S+i*dx; 

          for(j=0;j<=Ny;j++) 

       { 

     AA=AA+(1-U1[i][j][0]); 

        XX=XX+U1[i][j][2]*x; 

        ZZ=ZZ+U1[i][j][2]; 

       } 

      } 

   AA=AA*dx*dy; 

      XX=XX/ZZ; 

      if(ComputingTime==0)fp=fopen("centroid.txt","w"); 

      else fp=fopen("centroid.txt","a"); 

      fprintf(fp,"%e\t%e\t%e\n",ComputingTime,XX,AA); 

      fclose(fp); 

  } 

  dt=ComputingTimeStep(U1); 

  ComputingTime=ComputingTime+dt; 

  NumberofStep++; 

  printf("N=%d,dt=%e,t=%e\n",NumberofStep,dt,ComputingTime); 

  ComputeFluxesAndDerivatives(U1,Ux1,Uy1,0); 

  CESE_2DTimeMarching(U1,Ux1,Uy1,U2,Ux2,Uy2,dt,1); 

  BoundaryTreatment(); 

  Compute_NormAndCurv(U2, 1); 

        ComputeFluxesAndDerivatives(U2,Ux2,Uy2,1); 

        CESE_2DTimeMarching(U2,Ux2,Uy2,U1,Ux1,Uy1,dt,0); 

  Compute_NormAndCurv(U1, 0); 

  if(NumberofStep%StoreFreq==0) 

  { 

   sprintf(sFName,"result_t=%.2fus.plt",ComputingTime*1e6); 

   if(OutputFileType==0) WriteAsciiData(sFName,U1); 

   else WriteBinaryData(sFName,U1,ComputingTime); 

   restoreall("restoreall.dat",ComputingTime,NumberofStep); 

  } 

  MaxAlpha=0; 

  MinAlpha=1.0; 
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  for(i=0;i<=Nx;i++) 

  { 

   for(j=0;j<=Ny;j++) 

   { 

    MaxAlpha=MAX(MaxAlpha,U1[i][j][0]); 

    MinAlpha=MIN(MinAlpha,U1[i][j][0]); 

   } 

  } 

  TotalMass1=(U1[0][0][1]+U1[0][Ny][1]+U1[Nx][0][1]+U1[Nx][Ny][1])*dx*dy/4; 

  TotalMass2=(U1[0][0][2]+U1[0][Ny][2]+U1[Nx][0][2]+U1[Nx][Ny][2])*dx*dy/4; 

  TotalEnergy=(U1[0][0][5]+U1[0][Ny][5]+U1[Nx][0][5]+U1[Nx][Ny][5])*dx*dy/4; 

  for(i=1;i<Nx;i++) 

  { 

   TotalMass1=TotalMass1+(U1[i][0][1]+U1[i][Ny][1])*dx*dy/2; 

   TotalMass2=TotalMass2+(U1[i][0][2]+U1[i][Ny][2])*dx*dy/2; 

   TotalEnergy=TotalEnergy+(U1[i][0][5]+U1[i][Ny][5])*dx*dy/2; 

  } 

  for(j=1;j<Ny;j++) 

  { 

   TotalMass1=TotalMass1+(U1[0][j][1]+U1[Nx][j][1])*dx*dy/2; 

   TotalMass2=TotalMass2+(U1[0][j][2]+U1[Nx][j][2])*dx*dy/2; 

   TotalEnergy=TotalEnergy+(U1[0][j][5]+U1[Nx][j][5])*dx*dy/2; 

  } 

  for(i=1;i<Nx;i++) 

  { 

   for(j=1;j<Ny;j++) 

   { 

    TotalMass1=TotalMass1+U1[i][j][1]*dx*dy; 

    TotalMass2=TotalMass2+U1[i][j][2]*dx*dy; 

    TotalEnergy=TotalEnergy+U1[i][j][5]*dx*dy; 

   } 

  } 

  TotalMass1=TotalMass1/InitialMass1-1.0; 

  TotalMass2=TotalMass2/InitialMass2-1.0; 

  TotalEnergy=TotalEnergy/InitialEnergy-1.0; 

  fp=fopen("Conservation Property.txt","a+"); 
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 fprintf(fp,"%e\t%e\t%e\t%e\t%e\t%e\n",ComputingTime,TotalMass1,TotalMass2,TotalEnergy,Mi

nAlpha,1-MaxAlpha); 

  fclose(fp); 

 } 

 if(OutputFileType==0) WriteAsciiData("FinalResult.plt",U1); 

 else WriteBinaryData("FinalResult.plt",U1,ComputingTime); 

} 

 

int main() 

{ 

 AllocateMemory(); 

 omp_set_num_threads(NumberOfThreads); 

    CESE_Solver(); 

 FreeMemory(); 

} 

 

 




