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Abstract

In recent years, the pervasive application of machine learning has encouraged
a boosting amount of artificial intelligent services, such as voice assistant,
facial recognition, autonomous driving, word suggestion, and security diag-
nostics. Essentially, it enables a computer system to learn the underlying
patterns from data and represents them in a model, which is then integrated
into designated software for assessing new input. While machine learning
has significantly reshaped the modern paradigm of system development, it
also stirs up extensive social debates over privacy and confidentiality con-
cerns. In particular, adversarial machine learning has grown in importance
as researchers discover that a trained model can be deceived, extracted,
inverted or applied in malicious inference. Nevertheless, up to now, the
understanding of privacy risks and the countermeasures against them remain
limited. To unveil privacy challenges and tackle potential vulnerabilities, I
focus my PhD study on the emerging attacks and defenses in the context
of adversarial machine learning. Adversarial machine learning originally
refers to the manipulation of model behavior by supplying deceptive samples.
With the rapid development of alternative attacks such as model extraction
and membership inference, it has been bestrewed in a broader domain —
corruption of functionality and confidentiality with respect to the adoption of
machine learning, where new threats are not only presented in the decision
stage but also demonstrated across the pipeline of machine learning.

The works described in this thesis are mainly divided into three parts,
in a top-down order of attack surfaces, from model prediction to data col-
lection. In the first part, I present a novel mechanism for preventing the
extraction of private decision boundary on machine learning services. The
proposal consists of obfuscating the output of a classifier with the guarantee
of boundary differential privacy, in such a way that fine-grained queries
designed to infer the boundary have their accuracy sufficiently diminished in
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the critical zone, thus hampering the goal of delineating a clear inter-class
border. In the second part, I present a side-channel attack system MISSILE
to infer sensitive indoor locations in a given premise with machine learning
inference. A spyware can stealthily collect these sensory data from typical
inertial sensors, such as accelerator, gyroscope and magnetic sensor. In the
third part, I will turn to the very source of data collection and study the future
of privacy-preserving data collection with an empirical evaluation of local
differential privacy and federated learning under a designated task. Finally, I
conclude the insights revealed in this study and discuss possible directions of
privacy protection with adversarial machine learning in mind.
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1Introduction

The breakthroughs in communication and information technology have sig-
nificantly reformed the modern lifestyle, as we can continue to work from
home digitally during the difficult time of a pandemic. Meanwhile, an un-
precedented amount of data are generated when we go online shopping
with mobile phones, monitor fitness with a smart watch, or comment on
social networks. Coupled with the improvement in semiconductor fabrication
and parallel computation, massive data motivate the rapid development of
artificial intelligence (AI), which is characterized by the pervasive application
of machine learning, such as voice assistant, facial recognition, autonomous
driving, word suggestion and security diagnostics. In contrast to rule-based
software, machine learning enables a computer program to automatically
extract patterns (e.g., stochastic gradient descent) from given samples (i.e.,
training data), and then provide estimation on new unseen samples (i.e.,
testing data).

Although the amassing of data provides convenience to construct an AI
model, it poses a number of threats to individual and corporate freedom over
the control of secrecy. On the one hand, data collectors such as government
departments and commercial companies can distinguish user’s identity, ana-
lyze personal behavior, and even implicitly influence one’s decision-making
process without any consent, leading to the tightened laws against privacy
infringement [18], [76]. Besides, even if the user only provides sanitized data
(e.g., removal of real data attribute), machine learning significantly reduces
the effort to perform side-channel inference and expose original information.
On the other hand, given the training process’s stochastic nature, the model
constructed from user’s data is not guaranteed to be secret-free [26], [81].
It can implicitly memorize a sample and later reveal that information under
the manipulation of an adversary. Furthermore, model prediction can expose
internal formation, which can be extracted for replication without any secu-
rity breach at the system level. This breaks the confidentiality of intellectual
property and often lays the foundation of other privacy-invasive inference
attacks, as discussed in the following sections.

1.1 Emerging Privacy Concerns
Privacy is gradually becoming a prerequisite of modern society, which offers
seclusion freedom of personal or collective information. The last decade has

1



witnessed both the abuse of private information as well as the significant
recognition of privacy all around the world. Particularly, in 2013, a former
NSA contractor Edward Snowden revealed how the government organization
ran a surveillance program globally by prying into personal activities [88],
opening up an intensive global debate about the rights to maintain privacy in
the midst of digital revolution. This topic has only expanded as Facebook-
Cambridge Analytica data scandal [39] exacerbates user’s outpouring rage
in the privacy policy. A British consulting firm Cambridge Analytica profiled
and harvested personal data from fifty million unwitting Facebook users,
which were then provided to a political party for profit. The consulting
company eventually filed for bankruptcy after a series of administrative fine.
To combat such data abuse, US Federal Trade Commission has filed more
than 130 lawsuits against spyware and 50 against general violation of privacy
corruption practice [76]; and EU has adopted the more stringent “General
Data Protection Regulation” (GDPR) to supercede the “Data Protection Direc-
tive” and enforced it in May 2018 [18], which elaborates how data should be
collected, retrieved and transferred between different parties. Understanding
the importance of privacy concerns not only raises consumer’s awareness but
also supports the sustainable development of corporation given the increasing
scrutiny of regulation.

Unfortunately, with the increasing adoption of sophisticated AI applica-
tions, even the best practice of law enforcement can not fully prevent privacy
infringement from adversarial machine learning. It has been reported that
Amazon smart speaker Echo automatically recorded private discussion and
sent the audio to one of the victim’s contacts [32]. As it has become apparent
in the past several years, new privacy challenges have emerged along with
the vulnerability of machine learning and its application in malicious infer-
ence. There is an immense demand in the scientific community for advancing
privacy protection under the broad vision of adversarial machine learning, as
introduced in the following section.

1.2 Adversarial Machine Learning
Despite the momentous advances in AI adoption, our comprehension of the
loopholes inherent to such systems and how to protect against them is still in
its infancy. Early research in the machine learning community discovers that
a well-trained model can be intentionally fooled using deceptive samples, like
optical illusions for machines, which sparks heated discussion over a model’s
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inherited vulnerabilities when under adversarial input manipulation. We
refer here to adversarial machine learning in a broader sense — corruption
of functionality and confidentiality with respect to the adoption of machine
learning. This aligns with the rapid development of alternative attacks such
as model extraction and membership inference, where new threats are not
only presented in the decision stage but also demonstrated across the pipeline
of machine learning. We now address the spectrum of adversaries in the
taxonomy of adversarial machine learning and our prioritized focus in this
thesis. As shown in Fig. 1.1, based on the nature of the attack, adversarial
machine learning can be grouped into six categories. The black-frame box
at the center represents a normal trained binary model with its decision
boundary and the arrows represent feasible malicious attacks. Specifically,
the details of each attack are listed below.

• Model Evasion: As mentioned before, recent study has shown that
model prediction is susceptible to the manipulation of adversarial sam-
ple. Such a sample can be efficiently produced using backward algo-
rithms such as fast gradient sign method [28]. Essentially, the effective-
ness of machine learning relies on the assumption that training data
and testing data belong to an identical distribution, which is usually
not the case when an adversary presents. Consequently, this leads to
inconsistent prediction over a human-indistinguishable input.

• Model Inversion: Turning a model back to its original data seems
impossible but it has been achieved by [26]. Recognizable images of
faces are inverted from a trained model with only name and prediction
confidence provided, which is directly privacy-invasive to the users
contributing to the training set.

1.2 Adversarial Machine Learning 3



• Membership Inference: Given a data sample and query access to a
model, membership inference can discover whether that particular
record is presented in training dataset. To some extent, this can be
viewed as a weak inversion attack but it still poses the same threats to
breach participant identities and business confidentiality. It is achieved
by sophisticated shadow model approach [81] and then significantly
improved with only a statistical threshold on prediction confidence [78].
We utilize this attack to evaluate the privacy leakage in federated
machine learning.

• Model Extraction: Researchers have concerningly found that query
access can be leveraged to explore model internals and replicate a
substitute model with a significant agreement to the original one. Prior
work has evolved from extracting basic logistic regression classifier [86]
to advanced image recognizer [73]. In particular, model extraction is
extremely threatening as it provides a white-box model to the former
three attacks and thus becomes one of our prioritized targets in this
study.

• Model Poisoning: Poisoning a model can either corrupt prediction ac-
curacy (functionality) or backdoor a designated sample (integrity) [40].
This attack takes place during the training stage when malicious train-
ing data are supplied through malicious labeling and crowdsourcing.

• Side-channel Inference: With the advent of machine learning, unim-
portant and irrelevant data is no longer insignificant to personal privacy.
Efforts required for linkage or pattern mining is largely reduced in
inference attacks [67]. To call for broad attention to its privacy-invasive
threat, we explore learning-based inference on indoor locations with
unprivileged sensor data.

1.3 Contributions and Thesis
Organization

The research problems investigated in this thesis can be categorized into three
levels of attack surfaces as shown in Fig. 1.2 with two examples of machine
learning services. In the model surface (e.g., neural network), we prioritized
our focus on model extraction, the stepping stone towards other adversarial
machine learning. Countermeasures are proposed using differential privacy.
Then in the data pool surface (e.g., collected sensor data), we elaborate the
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feasibility of a learning-based inference attack on sensor data to comprise
private indoor whereabouts. Finally, in the surface of the individual record
(e.g., a speech command), where data are about to be collected, we provide
an empirical study on privacy-preserving collection under adversarial attacks.

Specifically, this thesis makes the following contributions as presented in
each chapter:

• Chapter 2: We provide a comprehensive review of related literature
extraction attacks and defenses, differential privacy, side-channel infer-
ence and localization.

• Chapter ??: We elaborate on the basic preliminary concepts applied
throughout this thesis.

• Chapter 3: For model surface, we present a differentially private coun-
termeasure against model extraction. A novel boundary differentially
private layer is proposed against extraction attacks on machine learn-
ing services. The proposal offers boundary differential privacy in a
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user-specified boundary-sensitive zone by obfuscating the output of
a classifier, in such a way that fine-grained queries designed to infer
the boundary have their accuracy sufficiently diminished in the critical
zone. To identify sensitive queries that fall in a zone, we develop an
efficient approach using corner points as indicators. Boundary random-
ized response is designed as the building block for the perturbation
algorithm, followed by a generalization to multiclass model and an
adaptive version that can protect a soft margin of the decision bound-
ary. The effectiveness and flexibility of this defense layer on protecting
decision boundary is verified through extensive experimental results.

• Chapter 4: For data pool surface, we introduce an inference attack that
can eavesdrop on user’s sensitive indoor whereabouts using unprivi-
leged mobile sensors and machine learning. The key idea is to identify
a sensitive indoor location (e.g., an office) using multiple structural
characteristics (e.g., turnings in a corridor, pausing of motion to open
a fire stop door, or taking an elevator). These characteristics lead to
unique patterns in mobile sensor readings and constitute the signature
of this location. To evaluate this issue, the thesis proposes the mobile
inertial sensor-based sensitive indoor location eavesdropping (MISSILE)
system to perform inference using only unprivileged sensors, such as
accelerometer, gyroscope and magnetic field sensor. The performance
of this inference attack is experimented in our campus with 15 sensitive
indoor locations.

• Chapter 5 For individual record surface, we discuss the future of pri-
vate data collection against adversarial probing with two distributed
data analytical tools, local differential privacy and federated machine
learning. The former one is a theoretical privacy notation that can
be achieved by different algorithms, while the latter one is a generic
distributed learning framework without theoretical provable privacy.
Both tools avoid direct access to personal data while still retaining
high utility. We conduct a comparative study of both tools to solve a
common set of classification problems in mobile scenarios. Important
insights into their performance are provided in terms of classification
performance, privacy loss, computation and communication cost.

• Chapter 6 We conclude the outcomes of this thesis and offer new
directions for future works in privacy protection.

6 Chapter 1 Introduction



2Preliminary and Literature
Review

2.1 Supervised Machine Learning Model
A dataset X contains samples in a d-dimensional feature space. Each sample
has a membership in a set of predefined classes called labels. Supervised
machine learning trains a statistical model by such sample-label pairs to
make predictions of labels on unknown samples. In this thesis we focus on
classification models which have K possible outputs. Formally, a classification
model f produces a response y to a query sample x as follows.

y = f(x) =



“class 1” label

“class 2” label

...

“class K” label

.

Classification models have been widely adopted in many machine learning
applications, such as activity categorization, face recognition and speaker
identification. Depending on the nature of these applications, the model
f can be either linear (e.g., logistic regression) or non-linear (e.g., neural
network). To train a supervised model, a popular parametric approach is to
minimize the empirical risk between the prediction of the model and the real
label by adjusting model parameter W as follows.

arg min
W

∑
x∈X
L(f(x,W ), y).

2.2 Model Extraction
In a model extraction attack, a malicious party attempts to replicate a model
from the original one by continuously exploiting the prediction API. Techni-
cally any queries can constitute such an attack. However, the more queries
the more likely this malicious attack will be exposed. As such, in the litera-
ture most model extraction attacks fabricate fine-tuned queries by differential
techniques such as line search [58], [86] and Jacobian augmentation[74].
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These queries are carefully selected to capture the information about decision
boundary where prediction results vary drastically.

Formally, a model extraction attack selects a set of fine-tuned queries
Xdiff and obtains their responses Ydiff to train a replica model f ′.

Xdiff = {x1,x2, . . . ,xn}, x ∈ Rd,

Ydiff = {y1, y2, . . . , yn}, y ∈ R1,

∃x, x′ ∈ Xdiff , dist(x,x′) = δ ∧ y 6= y′,

where dist(·)1 measures the distance between two queries and δ is the unit
distance adopted in the differential techniques when searching for boundary,
i.e., where two corresponding responses y 6= y′.

Machine-learning-as-a-service (MLaaS) has furnished model extraction
attacks through the rich information available from prediction API. Tramer
et al. [86] proposed extraction methods that leveraged the confidence infor-
mation in the API and managed to extract the full set of model parameters
using equation-solving. Papernot [74] et al. introduced a Jacobian-based
data augmentation technique to extend queries and to train a substitute
DNN. Similarly, Juuti et al. [41] leveraged both optimal hyperparameters
and Jacobian-based data augmentation to extract models under their gener-
alized framework. Orekondy et al. [71] proposed a knockoff model to steal
the functionality of an image classifier and developed reinforce-based query
strategy using multi-armed bandits problem. Pal et al. [73] further improved
the extraction attack on image model without annotated data. Their hybrid
strategy combines greedy clustering with adversarial samples. Yu et al. [98]
proposed new adversarial samples generation technqiue named FeatureFool
using feature-based optimization algorithm and performed model extraction
on MLaaS platform. Besides extracting model parameters, Wang et al. [89]
also extracted the hyperparamters of a fully trained model by utilizing the
zero gradient technique. Oh et al. [69] developed a model-of-model to
infer internal information of a neural network such as layer type and kernel
sizes.

Model extraction without confidence is similar to learning with member-
ship query [4], [87], which learns a concept through querying membership on
an oracle. This technique has been exploited by Lowd et al. to extract binary

1In general, this notation can be any distance metrics (e.g., Manhattan distance, Euclidean
distance). The implications of distance metrics to detailed algorithms will be discussed
in Chapter 3.2.1.1.
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classifiers [58]. They used line search to produce optimized queries for linear
model extraction. This technique was extended by Tramer et al. [86] to
non-linear models such as a polynomial kernel support vector machine. They
adopted adaptive techniques such as active learning to synthesize fine-tuned
queries and to approximate the decision boundary of a model. Pal et al.
[73] further improved the extraction attack using only top-1 label on image
model.

As for the defense, confidence rounding and ensemble model were shown
effective against equation-solving extractions in [86]. Lee et al. [52] proposed
perturbations using the mechanism of reverse sigmoid to inject deceptive
noises to output confidence, which preserved the validity of top and bottom
rank labels. Kesarwani et al. [46] monitored user-server streams to evaluate
the threat level of model extraction with two strategies based on entropy
and compact model summaries. The former derived information gain with a
decision tree while the latter measured feature coverage of the input space
partitioned by source model, both of which were highly correlated to ex-
traction level. Juuti et al. [41] adopted a different approach to monitor
consecutive queries based on the uniqueness of extraction behavior. A warn-
ing would be generated when queries deviated from a benign distribution
due to malicious probing. Quiring et al. [77] adopted the notion of closeness-
to-the-boundary in digital watermarking and applied it to protect against
extraction attacks on decision trees. The defense strategy was devised from
protection of watermark detector and it monitored the number of queries that
fell into security margin. They proposed a remote verification mechanism to
determine the model ownership using the watermark implanted in DNN.

2.3 Differential Privacy
Differential privacy (DP) was first proposed by Dwork [24] to guarantee the
privacy of a centralized dataset with standardized mathematical notation.
It is proposed to bounds data sanitation with a measurable budget so that
sensitive information can be released with a strong privacy guarantee. In
centralized sanitation, all sensitive data are processed in one place and it is
primarily defined in terms of adjacent datasets that differ on one data point
with each other.

A perturbation algorithm A(·) probabilistically modifies the original data
to other values in the same domain. It achieves ε-differential privacy, if and
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only if for any two adjacent datasets D, D′ and any possible output τ of the
perturbation algorithm, the following inequality always holds.

e−ε ≤
Pr
[
A(D) = τ

]
Pr
[
A(D′) = τ

] ≤ eε.

Intuitively, privacy budget ε controls how close the sanitized data is to the
original one. A larger privacy budget will induce a higher degree of similarity
as well as utility.

Duchi et al. [23] extended this notation to local differential privacy (LDP)
for distributed data sources. Randomized response proposed by Warner et al.
[92] is the baseline perturbation algorithm for LDP, which protects binary
answers of individuals. Although differential privacy has not been used
in model extraction and defense, it has been applied in several adversarial
machine learning tasks. For example, Abadi et al. [2] introduced differentially
private stochastic gradient descent to deep learning, which can preserve
private information of the training set. Lee et al. [51] further improved
its effectiveness using an adaptive privacy budget. Their approaches are
shown effective against model inversion attack [26] or membership inference
attack[81].

DP is defined in a centralized setting where data are collected and ran-
domized by a trusted third-party, whereas LDP removes this role and assumes
local randomization by users themselves before sending to the collector. As
such, they are adopted for fundamentally different scenarios. We do not
think that DP/LDP are naturally superior to other anonymity metrics. Instead,
DP/LDP are developed from the perspective of theoretically provable bound
of privacy by introducing randomization, which makes few assumptions on
the type of attacks. Other anonymity metrics such as k-anonymity only have
syntactic privacy notions. Although they provide privacy protection from
different aspects, it has been indicated by recent study[56] that k-anonymity
can satisfy DP with reasonable conditions.

2.4 Side-channel Inference and
Localization

Side-channel attacks on mobile devices have evolved drastically. Since smart
devices constantly sense the environmental information with their embedded
sensors, external influence such as temperature, air pressure, noise, and
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body movement may create unique patterns on sensory data. For motion-
related sensors, Owusu et al. [72] eavesdropped users’ passwords using
only accelerometer to detect the acceleration caused by different digits.
Mehrnezhad et al. [60] further improved this approach by a website that
can smuggle sensor readings with JavaScript. For radio frequency related
sensors, Li et al. [55] proposed WindTalker to infer sensitive keystrokes on
mobile devices with side-channel information from wireless network. As
for other environmental sensing modules (e.g. barometer, magnetometer,
microphone, and camera), similar approach has been applied to the inference
of identity [101] and behavior [35].

Recently side-channel attacks have exploited the inertial sensors in An-
droid and iOS to infer a user’s outdoor location and even trace him/her.
While we pay close attention to the indoor scenario with pedestrian where
the estimation has to deal with limited data and volatile movement, most of
related works focus on outdoor inference where multiple resources are avail-
able (e.g. GPS, street map and real-time public transport database). Users’
driving routes have been successfully tracked in [33] and [66] by motion
sensory information from their mobile devices. The former work is based on
accelerometer and gyroscope, which leverages a dead reckoning technique
with probability mapping algorithm while the latter one uses fine-grained
gyroscope data and the graph of road information. Other than motion sen-
sors, ambient sensors have also been investigated in driving route inference
attack. Won et al. [95] proposed to use the latent relation between barometer
readings and the geolocation to track drivers. As for public transportation,
Hua et al. [36] showed that they could reveal users’ daily metro schedule
by monitoring accelerometers whose data are significantly affected by the
route of metro. Watanabe et al. [93] demonstrated how to infer users’ train
schedule by matching user motions with the public railway database.

Other location attacks leverage non-sensory or active information. Mose-
nia et al. [64] can track users on train, plane or outdoor walking using hybrid
sources. Michalevsky et al. [63] designed a location inference attack by pro-
filing power consumption during commutes as cellular signal strength varies.
Gao et al. [27] showed that usage-based automotive insurance can expose
a driver’s route through the recorded driving speed while Zhou et al. [100]
enhanced the inference performance using real-time traffic and proposed
defense framework with privacy-preserving scoring and audition. Kenneth et
al. [7] develop an active location attack using signal transmitted from low
power magnetic coil and received by mobile magnetometer. Cellular network
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based localization has also shown to be effective by observing the pattern
of data transmission [83] or listening to GSM broadcast channel [49]. Li et
al. [54] and Ometov et al. [70] proposed new methods on location tracking
through social network footprints. Arp et al. [6] used the ultrasonic wave to
infer a user’s current location.

In traditional localization, mobile devices have played a major role in
indoor positioning system (IPS) over the past decade. Significant approaches
in IPS include dead reckoning, magnetic field fingerprinting, wireless mul-
tilateration and fingerprinting. Among these approaches, dead reckoning
extensively utilizes inertial motion sensors for displacement and activity anal-
ysis. It predicts user’s indoor route from an initial position with continuously
measured speed and direction. Murata et al. [65] improve the performance of
basic indoor dead reckoning with human activity knowledge such as age and
environment when estimating step length. While Kang et al. [44] develop
a fine-grained system to derive accurate walking parameters from inertial
sensor data. But in dead reckoning, small error may easily accumulate and
lead to erroneous results [11]. An alternative indoor positioning technique
using inertial sensor is to leverage magnetic filed information. Magnetic
field fingerprinting requires an offline mapping of magnetic intensity [30].
Wireless multilateration is another more stable positioning solution which
derives time of arrival or direction of arrival information from external refer-
ence devices to pinpoint current location [11] while wireless fingerprinting
captures the distribution of wireless signal strength [47].

State-of-the-art IPS usually incorporates various radio frequency signals
(WLAN, RFID, Bluetooth, etc.) with context information from the floor plan,
ambient sound/light sensing, magnetic field map to provide reliable posi-
tioning [19]. Under this legitimate scenario, unconstrained permission is
granted to access privileged radio sensors, pedestrian initial state, computa-
tion power and floor plan data. However, such resources are unavailable for
a stealthy attacker, who also has little domain knowledge of mobility analysis
or magnetic map construction.

2.5 Distributed Data Analytics
As mentioned above, LDP has been widely applied in distributed data col-
lection, such as crowdsourcing scenario. It has found main application in
statistical analysis tasks, such as frequency estimation over categorical data.
Erlingsson et al. proposed RAPPOR [25] for this task, which transforms
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a sensitive string into a Bloom filter and then applies the randomized re-
sponse method [91] to perturb it. Marginal release has been studied in [99]
under LDP, which is a potential alternative to produce synthetic data for ma-
chine learning task. Learning models using distributed resources have been
proposed for distributed GPU settings [17]. While they focus on a highly-
controlled network inside a data center, Google proposes federated machine
learning for a loose federation of multiple mobile clients with scalable de-
sign [59] and develops secure aggregation using encryption scheme such as
multi-party computation [8]. As for the system aspects, the architecture of
federated learning discussed in this thesis is horizontal design [97], which
enables easy unification with LDP on communication level [75]. Particularly,
horizontal federated systems in mobile edge computing have started to study
differentially private version by injecting noises to either SGD process or the
final updates [57].
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3Defending Private
Decision Boundary
Against Extraction Attack

In this chapter, we begin our study on the attack surface of model and defend
it against extraction attack on model prediction. The pervasive application
of artificial intelligent has encouraged the boosting business of machine
learning services, such as Microsoft Azure Face API, Google Cloud Speech-
to-Text, and Amazon Comprehend. To train these high-quality machine
learning models, service providers need to spend intense human labor and
computation resources to acquire a large well-labeled datasets and tune
training process. However, a prediction API call, which consists of a query
and its response, can be vulnerable to adversarial attacks that disclose the
internal states of these models. Particularly, a model extraction attack [86] is
able to restore important model parameters using the rich information (e.g.,
model type, prediction confidence) provided by the prediction API. Once the
model is extracted, an adversary can further apply model inversion attack
[26] to learn the proprietary training data, compromising the privacy of data
contributors. Another follow-up attack on the extracted model is evasion
attack [74], [96], which avoids a certain prediction result by modifying its
query. For example, a hacker modifies the executable binaries of a malware
or the contents of a phishing email in order not to be detected by an antivirus
or spam email filter.

Countermeasures against model extraction attacks have received increased
attention but are still inadequate. One of them is to restrict rich information
in the prediction API, for example, by rounding the prediction confidence
value to a low granularity. However, even if the service provider completely
eliminates this value in the prediction API, that is, to offer prediction label
only, an adversary can still defeat this protection by issuing large number
of fine-tuned queries and train a replica of the original model with great
similarity [58], [74], [86]. The other countermeasure is to detect malicious
extraction by monitoring feature coverage [46] or query distribution [41],
and stop the service when a certain threshold is reached. However, since we
cannot preclude user collusion, all queries and responses must be considered
aggregately, which leads to significant false positive cases and eventually the
early termination of service.
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To address the disadvantages, in this chapter we propose a new counter-
measure that obfuscates the output label of a prediction response. There are
three main concerns when designing this obfuscation mechanism. First, the
accuracy of prediction API is highly correlated with the degree of obfuscation
— if obfuscation needs to be applied to most queries, the utility of the machine
learning service will degrade severely. Second, the obfuscation mechanism
should be independent of the underlying machine learning models and can
tackle a category of boundary-probing attacks. Third, the obfuscation mecha-
nism should be customizable. That is, it should allow user-defined parameters
that can trade utility for model privacy or vice versa.

Our key observation is that many model extraction attacks exploit fine-
tuned queries near the decision boundary of a machine learning model
achieve optimal extraction performance[71], [73]. We treat decision bound-
ary probing as an abstract and necessary condition of high-quality extraction
attacks. The responses of these queries disclose the details of model pa-
rameters and therefore should be obfuscated with priority. To this end, we
propose a boundary differentially private layer (BDPL) for machine learning
services. BDPL provides a parameterized approach to obfuscate responses
whose queries fall in a predefined boundary-sensitive zone. The notion of
differential privacy guarantees the responses of all queries in the boundary-
sensitive zone are indistinguishable from one another. As such, adversary
cannot learn the decision boundary no matter how many queries are issued to
the prediction API. On the other hand, the majority perturbation falls within
boundary-sensitive zone and out-of-zone query is less affected from obfus-
cation. In this way, we can make the best use of the obfuscation and retain
high utility of the machine learning service. To summarize, our contributions
in this chapter are as follows.

• We propose a new protection mechanism, namely, boundary differen-
tial privacy, against model extraction with fine-tuned queries while
balancing service utility and model protection level.

• We develop an efficient method to identify queries in the boundary-
sensitive zone, and design a perturbation algorithm called boundary
randomized response for binary model to guarantee boundary differen-
tial privacy.

• We generalize binary defense to multiclass model and develop corre-
sponding perturbation algorithm in a pairwise manner.
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Fig. 3.1: Motivation and Threat Model

• We design an alternative defense layer with soft margin to extend the
scope of protection and implement an adaptive perturbation algorithm.

• We conduct extensive empirical study on both binary and multiclass,
linear and non-linear machine learning models to evaluate the effec-
tiveness of our solution.

The rest of the chapter is organized as follows. Chapter 3.1 elaborates on
the threat model and problem definition with boundary-sensitive zone and
boundary differential privacy. Chapter 3.2 presents the details of boundary
differentially private layer. Chapter 3.3 introduces evaluation metrics and
shows the experimental results of BDPL against model extractions. Chapter
3.5 concludes this chapter and discusses future work.

3.1 Problem Definition
3.1.1 Motivation and Threat Model
A machine learning service provides a prediction result using a proprietary
model as shown in Fig. 3.1. An adversary wants to produce a replica of
this model by continuously querying it through the provided prediction API.
We assume he can perform a typical two-stage extraction attack: 1) The
adversary generates a set of fine-tuned real/synthetic queries normalized
in [-1,1] and interacts with API under a large query budget. 2) He can
store all responses, i.e., labels and reconstruct a replica model by training
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Fig. 3.2: Illustration of Hypothetical Decision Boundary and Boundary-Sensitive
Zone in 2D

on the fine-tuned query-response pairs (e.g., minimize the empirical risk of
an objective function). The success replication will results in intellectual
property loss for the original provider and induce other attacks. The attack
is semi-whitebox1, i.e., it can extract a replicated model using the same
model type (e.g., convolutional neural network) and hyperparameters as the
original one. Apart from public knowledge of model and defense settings, we
assume the adversary has no apriori information of the decision boundary.

3.1.2 Boundary-Sensitive Zone
Our problem is to protect against model extraction attacks by obfuscating
query responses. Before we formally define the security model, we first
introduce the notion of decision boundary and boundary-sensitive zone. For
most supervised models, a decision boundary is a critical borderline in the
feature space where labels are different on both sides. Fig. 3.2 illustrates the
hypothetical decision boundaries in four combination cases in a 2D feature

1The semi-whitebox assumption is based on the fact that state-of-the-art models in spe-
cific application domains, such as image classification, are usually public knowledge.
Nonetheless, our solution can also work against black-box attacks where such knowledge
is proprietary.
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space. In a multi-dimensional feature space, a line boundary becomes a
hyperplane, and a curve boundary becomes a hypersurface.

Our key idea is to protect the query responses near the decision boundary
against most model extraction attacks. To this end, we introduce the notion
of boundary-sensitive zone.

Definition 1. (Boundary-Sensitive Zone) Given feature space Z, a model f and
a parameter ∆ chosen by the model owner, all feature vectors adjacent to the
decision boundary of f constitute a subspace Z∆ of Z, where

Z∆ = {x ∈ Rd | dist(x, f) < ∆},

where dist(·) measures the distance between a feature vector x and
the decision boundary of f . All queries in this zone Z∆ are considered
particularly sensitive and have high risk of revealing the decision boundary
of this model.

3.1.3 Boundary Differential Privacy
All queries in the boundary-sensitive zone need obfuscation, whose objective
is to perturb the responses of any two sensitive queries so that they are
indistinguishable for the adversary to determine the true decision boundary
within this zone. To this end, we adopt the notion of differential privacy and
formally define boundary differential privacy as follows.

Definition 2. (ε-Boundary Differential Privacy) A perturbation algorithm A(·)
achieves ε-boundary differential privacy, if and only if for any two queries x1,
x2 in the boundary-sensitive zone Z∆, the following inequality always holds for
the true responses y1 and y2 and the perturbed ones A(y1) and A(y2).

e−ε ≤
Pr
[
y1 = y2

∣∣∣A(y1), A(y2)
]

Pr
[
y1 6= y2

∣∣∣A(y1), A(y2)
] ≤ eε.

The above inequality guarantees that an adversary cannot deduce whether
two perturbed responses A(y1) and A(y2) originate from the same (y1 = y2)
or different labels (y1 6= y2) with high confidence (controlled by ε). As such,
the adversary cannot use fine-tuned queries, no matter how many they are, to
find the decision boundary within the granule of boundary-sensitive zone.
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3.2 Boundary Differentially Private Layer
In this section, we present our solution to protect against model extraction
attacks with respect to ε-boundary differential privacy (ε-BDP) by appending
a BDP layer to the model output. According to Definition 2, this layer
consists of two major steps — identifying query sensitivity, and perturbing
the responses of sensitive queries to satisfy BDP. In what follows, we first
introduce the implement of binary defense with a technique to identify
sensitive queries with the notion of corner points and a perturbation algorithm
called boundary randomized response to guarantee ε-BDP. Then we generalize
it to multiclass model with a technique to identify counter class for developing
its perturbation algorithm multiclass boundary randomized response. Finally,
we introduce a zone-less variant with soft margin to globalize the defense
while retaining majority of obfuscation inside boundary sensitive zone, where
the perturbation is provided by adaptive boundary randomized response.

3.2.1 Binary Defense
We start from binary models which have only two labels — positive and
negative, which are particularly popular in spam filtering, malware detection,
and disease diagnosis.

3.2.1.1 Identifying Sensitive Queries In Binary Model

A query is identified as sensitive if it falls in the boundary-sensitive zone
according to Definition 1. However, in practice the decision boundary may not
have a closed form (especially for complex models such as neural networks).
In this subsection, we propose a method to determine if a query xq is sensitive
without deriving the boundary-sensitive zone. The idea is to test if a ball
centered at xq with radius ∆ intersects with the decision boundary2. In
theory, this is equivalent to finding if there exists a flipping point x′ in the
ball that has a different label from that of the query point xq. Formally,

Definition 3. (Query Sensitivity) A query xq is sensitive, if and only if:

∃x′ ∈ B(xq,∆), s.t., f(x′) 6= f(xq),

where B(xq,∆) = {x ∈ Rd |dist(x,xq) ≤ ∆} is the ball centered at xq with
radius ∆.

2The case of tangency is rarely reached in real life given that the feature space is usually
continuous. For simplicity, we mainly consider intersection.
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The above definition needs to test infinite number of points in the ball,
which is infeasible. Nonetheless, we observe that if the ball is convex and
small enough,3 a sufficient condition of query xq being sensitive is that at least
one of the corner points in each dimension of this ball B(xq,∆) is a flipping
point. As such, the sensitivity of query xq can be approximated by testing
the labels of 2d corner points of xq without false negatives. Furthermore,
if the distance metric is the L1 distance (i.e., Manhattan distance), this is
also a necessary condition, which means that testing corner points leads to
the exact sensivitity. For example, given a two-dimensional query [a,b] and
L1 radius ∆, if corner points [a±∆, b] and [a, b±∆] have flipping events,
query [a,b] is sensitive. The following theorem proves this.

Theorem 1. (Flipping Corner Theorem) A sufficient condition of query xq being
sensitive is that,

∃ ∆i ∈ ∆ · I, f(xq ±∆i) 6= f(xq),

where I is the identity matrix, ∆i is the projected interval on some dimension i,
and xq ±∆i denotes the two corner points in dimension i. If the distance metric
is the L1 distance, this equation is also a necessary condition.

Proof. Let xi be one of the corner points in dimension i.

• (Sufficient Condition) For any xi, the decision boundary must exist
between xi and xq where f(xi) 6= f(xq). It intersects line xixq at point
bi. As xi, xq and bi are on the same straight line, we have

dist(xi, bi) + dist(xq, bi) = dist(xi,xq) = ∆.

Since dist(xq,f) is the minimum distance between xq and any point on
the decision boundary, we have

dist(xq, f) ≤ dist(xq, bi) = ∆− dist(xi, bi) < ∆.

According to Definition 1, query xq is sensitive and this proves the
sufficient condition.

• (Necessary Condition for L1 Distance) If xq is a sensitive query, an L1-ball
centered at xq with radius ∆ will be given by

B(xq,∆) = {x ∈ Rd
∣∣∣ distL1(x,xq) ≤ ∆}. (3.1)

3If ∆ is small, the decision boundary near the ball can be treated as a hyperplane.
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Let bm be the point which is the closest to xq on the decision boundary
of f . According to Definition 3, we have

distL1(xq, bm) = distL1(xq, f) < ∆.

Since xq is sensitive, bm must be inside this L1-ball:

bm ∈ B(xq,∆).

This means that the decision boundary must intersect the ball at bm.
As such, at least one convex vertex of the ball is on a different side
of the decision boundary than point xq. Since the convex vertices of
an L1-ball are exactly those corner points, there exists at least one
corner point xi such that f(xi) 6= f(xq). And this proves the necessary
condition.

Therefore, flipping corner point is a sufficient condition for query xq being
sensitive and a necessary condition under the L1 distance metric.

3.2.1.2 Perturbation Algorithm: Boundary Randomized Response

Randomized response [92] is a privacy-preserving survey technique devel-
oped for surveying sensitive questions. A randomized boolean value is given
to the answer and provides plausible deniability. As the perturbation algo-
rithm defined in boundary differential privacy has exactly two output choices,
we design the following BRR algorithm based on randomized response to
satisfy ε-BDP.

Definition 4. (Boundary Randomized Response, BRR) Given query sample xq

and its true response yq ∈ {0, 1}, the boundary randomized response algorithm
A(yq) perturbs yq by the following:

A(yq) =


yq, w.p. 1

2 +
√
e2ε−1

2+2eε

1− yq, w.p. 1
2 −

√
e2ε−1

2+2eε

.

Theorem 2. The boundary randomized response algorithm A(yq) satisfies ε-
BDP.

Proof. To satisfy ε-BDP, the following inequality must hold according to
Definition 2.

Pr[y1 = y2|A(y1), A(y2)]
Pr[y1 6= y2|A(y1), A(y2)] ≤ eε. (3.2)
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We assume p is the probability of retaining yq and 1− p the probability of
flipping yq. According to algorithm A, for any two responses y1, y2 ∈ {0, 1},
the four possible cases for the above inequality are:

Pr[y1 = y2|A(y1) = 0, A(y2) = 0]
Pr[y1 6= y2|A(y1) = 0, A(y2) = 0] , or

Pr[y1 = y2|A(y1) = 1, A(y2) = 1]
Pr[y1 6= y2|A(y1) = 1, A(y2) = 1] = p2 + (1− p)2

2p(1− p) ,

and

Pr[y1 = y2|A(y1) = 0, A(y2) = 1]
Pr[y1 6= y2|A(y1) = 0, A(y2) = 1] , or

Pr[y1 = y2|A(y1) = 1, A(y2) = 0]
Pr[y1 6= y2|A(y1) = 1, A(y2) = 0] = 2p(1− p)

p2 + (1− p)2 .

Given 0 ≤ p ≤ 1, it is easy to prove that the former two cases are always
larger than the latter. If we further use equality instead of inequality in
Eqn. 3.2, we can derive the following equation of p:

p2 + (1− p)2

2p · (1− p) = eε.

By solving the above equation, we can derive p as

p =
(2 + 2eε)±

√
(2 + 2eε)2 − 4(2 + 2eε)
2(2 + 2eε) .

p1 = 1
2 +
√
e2ε − 1

2 + 2eε , p2 = 1
2 −
√
e2ε − 1

2 + 2eε . (3.3)

Finally, we need to test the validity of both solutions. Let u = eε, the
derivative of p1 in Eqn. 3.3 with respect to u is:

∂p

∂u
=

( 2
u−1)(

√
u2 − 1)

(2 + 2u)2 ≥ 0.

As such, p1 is monotonic with respect to u and ε. Since ε ∈ [0,+∞], the
lower and upper bounds of p1 are obtained when ε = 0 and ε = +∞:

lim
ε→0

[1
2 +
√
e2ε − 1

2 + 2eε
]

= 1
2 ,

lim
ε→+∞

[1
2 +
√
e2ε − 1

2 + 2eε
]

= lim
ε→+∞

[1
2 +

√
1− 1

e2ε

2
eε

+ 2

]
= 1.
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Algorithm 1 Boundary Differentially Private Layer For Binary Model
Input: Boundary-Sensitive Zone Parameter ∆

Boundary Privacy Budget ε
Query xq ∈ Rd
Model f

Output: Original Response yq or Perturbed Response y′q
Procedure:
1: if xq is not cached then
2: yq = f(xq)
3: CornerPoints = getCornerPoints(∆,xq)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: y′q = BRR(yq, ε)
7: Cache(xq, y′q)
8: return y′q
9: return yq

10: else
11: return getCached(xq)

As such, the derived p1 in Eq. 3.3 is in the range of [1
2 , 1) and is thus valid.

Similarly, we can prove p2 is in the range of (0, 1
2 ] and is thus invalid.

3.2.1.3 Summary for Binary Defense

Algorithm 1 summarizes the detailed procedures of BDP layer that can
be tapped to the output of any binary machine learning model f . When a
new query xq arrives, if it has already been queried before, the layer directly
returns the cached response y′q to prevent attacker from learning multiple
perturbed responses of the same query response, which can lead to a less
private BDP. Otherwise, the layer first obtains the real result yq from model f .
Then it determines whether xq is in the boundary-sensitive zone by checking
all corner points. As long as one corner point is as a flipping point, the query
is identified as sensitive, and the boundary randomized response algorithm
BRR(·) with privacy budget ε will be invoked. The layer will thus return
the perturbed result y′q and cache it for future use. Otherwise, if xq is not
sensitive after checking all corner points, the real result yq will be returned.
As for time complexity for identifying sensitive queries if they are not cached,
since we only need to check two corner points in each dimension for an
m-dimensional query, the upper bound time complexity will be O(mT ) where
T is the time cost of each model prediction. Nonetheless, the average time
cost can be much smaller as the process can terminate early as long as one
flipping corner is found and we also propose n-shot sampling to speed up
this process. As for T , in our evaluation environment we find the average of
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T over a variety of models is 70− 90µs for logistic regression, 400− 500µs for
shallow neural network, and 600−700µs for convolutional neural network.

3.2.2 Generalization to Multiclass Model
We now consider the case where the prediction domain of a model has more
than two classes. To adapt the current algorithm to multiclass model and
retain ε-BDP guarantee, we observe that the decision boundary in a multiclass
model is essentially a union of binary boundaries, each of which separates
two classes. As such, we can extend the definition of sensitive query in a
multiclass model in terms of its nearby decision boundary. Formally,

Definition 5. (Multiclass Query Sensitivity) A query xq is sensitive to the
decision boundary of classes u, v ∈ Domain(f), if and only if:

∃x′ ∈ B(xq,∆), s.t., f(x′) = u, f(xq) = v, u 6= v,

where u is called the counter class to the true response v and Domain(f)
contains all possible output classes.

In this way, one class (i.e., true response) can be treated as the “positive”
label and the other as the “negative” one (i.e., the counter class). The multi-
class case is thus reduced to the same problem of protecting binary decision
boundaries except that there are boundaries for each pair of classes.

3.2.2.1 Identifying Counter Class

The key idea of avoiding multiple decision boundaries from a variety
of candidate counter classes for u is to only associate sensitive query with
its nearest decision boundary and identify the corresponding class on the
other side as the counter class. To identify this class, we use the majority
vote from all flipping corner points. However, a full scan of all these points
is not practical particularly in a high dimensional dataset with hundreds
or even thousands of corner points. To strike a balance between accuracy
and efficiency, we perform an N -shot sampling over the flipping corners.
Formally,

Definition 6. (N-shot Flipping Corner) An estimate of query xq being sensitive
to the decision boundary of classes u, v ∈ Domain(f) is that,

∀∆i∈N ∈ ∆ · I, V (f(xq ±∆i) 6= f(xq)) = u,
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where ∆i∈N denotes flipping corner points in N sampling dimensions with
flipping corners and V (·) finds the class with the highest flipping rate from the
comparison results of provided corner points.

3.2.2.2 Multiclass Boundary Randomize Response

Now that we can detect a sensitive query in the multiclass case, given its
true response and counter class, we use the following Multiclass Boundary
Randomized Response (MBRR) algorithm to achieve ε-BDP.

Definition 7. (Multiclass Boundary Randomized Response, MBRR) Given a
query sample xq, its true response yq and counter class yq (yq, yq ∈ {u, v}), the
multiclass boundary randomized response algorithm A(yq) perturbs yq by the
following:

A(yq) =


yq, w.p. 1

2 +
√
e2ε−1

2+2eε

yq, w.p. 1
2 −

√
e2ε−1

2+2eε

.

Theorem 3. The multiclass boundary randomized response algorithm A(yq)
provides ε-BDP to each binary decision boundary fu,v in the model.

The proof is similar to that of Theorem 2 and is thus omitted.

3.2.2.3 Summary for Multiclass Defense

Algorithm 2 summarizes the detailed procedures of BDP layer for a mul-
ticlass machine learning model f . Similar to the binary model, the layer
directly returns a cached response to retain privacy guarantee if query xq has
been processed before. In addition to zone parameter ∆ and privacy budget
ε, the number of samples N to determine the counter class can be tuned
between efficiency and accuracy. After the counter class is determined, the
multiclass boundary randomized response algorithm MBRR(·) with privacy
budget ε is invoked. The layer then returns the perturbed result y′q and caches
it for future use.

3.2.3 Zone-less Boundary Differentially Private
Layer

In the previous section, the decision boundary is formulated as a zone with
a hard margin controlled by ∆ — a query is either inside this zone (i.e.,
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Algorithm 2 Boundary Differentially Private Layer For Multiclass Model
Input: Flipping Corner Shot N

Boundary-Sensitive Zone Parameter ∆
Boundary Privacy Budget ε
Query xq ∈ Rd
Model f

Output: Original Response yq or Perturbed Response y′q
Procedure:
1: if xq is not cached then
2: yq = f(xq)
3: cPoints = getCornerPoints(∆,xq, N)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: CounterClass = getCounterClass(cPoints)
7: y′q = MBRR(yq, ε, CounterClass)
8: Cache(xq, y′q)
9: return y′q

10: return yq
11: else
12: return getCached(xq)

sensitive) or outside of it (i.e., non-sensitive). ε-BDP can be achieved in
the former case but no privacy is provided in the latter case. This makes
the choice of ∆ a crucial and challenging task for the user — a small value
leaves some decision boundary unprotected and yet a large value introduces
unnecessary noise to non-boundary area where no protection is needed. To
make ∆ less influential, in this section we propose a soft margin approach as
an alternative to the hard margin.

3.2.3.1 Soft Query Sensitivity

The soft margin is essentially defined through the notion of soft query
sensitivity, in which a query is no longer a hard “0” (non-sensitive) or “1”
(sensitive). Instead, it is 1 on the soft margin and is larger than 1 when inside
the margin. Then the degree of perturbation depends on the query sensitivity.
The rationale behind a soft sensitivity of a query is three-folded. First, it
must have a negative correlation with its distance to the nearest decision
boundary, because query results reveal more information about the boundary
and thus are more sensitive when they are closer to it. Second, how much
the sensitivity depends on the distance should be controlled by the model
owner. Third, the soft and hard sensitivity should be a unified notion. That
is, the perturbation protocol for the hard sensitivity, Boundary Randomized
Response (BRR), must still work with minimum adaptation. The following is
a definition that satisfies all three rationales.
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Definition 8. (Soft Query Sensitivity) Given a model f and a zone parameter ∆
chosen by the model owner, the sensitivity of a query xq is a fractional function
as:

s(xq) = ∆
dist(xq, fu,v)

, (3.4)

where dist(xq, fu,v) measures the distance between query xq and the nearest
decision boundary fu,v.

To derive the distance without a closed form of the decision boundary, we
can still adopt the flipping-corner-point method. The idea is to perform a
binary search with an initial distance guess. If flipping corner points occur,
the distance must be smaller, so we reduce the current guess to half and
repeat the search; otherwise we double the guess. The final distance is
obtained when a precision threshold or a maximum number of iterations is
reached.

3.2.3.2 Adaptive Boundary Randomized Response

Given the above definition of query sensitivity, the perturbation algorithm,
Adaptive Boundary Randomized Response (ABRR), is exactly the same as
BRR, except for the exponents. In BRR, the exponent is ε which is implicitly
ε

s(xq) where s(xq) is always 1. ABRR uses the same formulae where s(xq) is
defined in Eqn. 3.4.

Definition 9. (Adaptive Boundary Randomized Response, ABRR) Given query
sample xq normalized to [-1,1], query sensitivity s(xq) , its true response yq and
counter class yq (yq, yq ∈ {u, v}), the adaptive boundary randomized response
algorithm A(yq) perturbs yq by the following:

A(yq) =


yq, w.p. 1

2 +
√
e2ψ−1

2+2eψ

yq, w.p. 1
2 −
√
e2ψ−1

2+2eψ

,

where ψ = ε
s(xq) .

Theorem 4. The adaptive boundary randomized response algorithm A(yq)
satisfies ψ-BDP to each binary decision boundary fu,v, where ψ ≤ 2

∆ε.
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Proof. We assume p1, p2 are the probabilities of retaining true responses for
two queries x1,x2. According to ABRR, for any two responses y1, y2 ∈ {u, v},
the four possible cases to derive the BDP inequality are:

Pr[y1 = y2|A(y1) = u,A(y2) = u]
Pr[y1 6= y2|A(y1) = u,A(y2) = u] , or

Pr[y1 = y2|A(y1) = v,A(y2) = v]
Pr[y1 6= y2|A(y1) = v,A(y2) = v] = p1p2 + (1− p1)(1− p2)

p1(1− p2) + p2(1− p1) ,

and

Pr[y1 = y2|A(y1) = u,A(y2) = v]
Pr[y1 6= y2|A(y1) = u,A(y2) = v] , or

Pr[y1 = y2|A(y1) = v,A(y2) = u]
Pr[y1 6= y2|A(y1) = v,A(y2) = u] = p1(1− p2) + p2(1− p1)

p1p2 + (1− p1)(1− p2) .

Since p1, p2 ∈ [1
2 , 1), the partial derivatives to p1 and p2 of the right-hand side

term in the former two cases are

∂ p1p2+(1−p1)(1−p2)
p1(1−p2)+p2(1−p1)

∂p1
= 2p1 − 1

(−2p1p2 + p1 + p2)2 ≥ 0,

∂ p1p2+(1−p1)(1−p2)
p1(1−p2)+p2(1−p1)

∂p2
= 2p2 − 1

(−2p1p2 + p1 + p2)2 ≥ 0.

As such, the right-hand side term in the former two cases is monotonically
increasing. Similarly, that term in the latter two cases is monotonically
decreasing. Let pmax = max{p1, p2}. Then the two terms are bounded as
follows.

p1p2 + (1− p1)(1− p2)
p1(1− p2) + p2(1− p1) ≤

pmax
2 + (1− pmax)2

2pmax(1− pmax)
, (3.5)

p1(1− p2) + p2(1− p1)
p1p2 + (1− p1)(1− p2) ≤ 1. (3.6)

Furthermore, since p1, p2 ∈ [1
2 , 1), the right-hand side term of Eqn. 3.5 also

serves as the upper bound of the right-hand side term of Eqn. 3.6. That is,

pmax
2 + (1− pmax)2

2pmax(1− pmax)
≥ 1.
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Algorithm 3 Zone-less Boundary Differentially Private Layer for Multiclass
Model
Input: Query xq ∈ Rd

Model f
Soft Margin ∆
Boundary Privacy Budget ε

Output: Perturbed Response y′q
Procedure:
1: if xq is not cached then
2: yq = f(xq)
3: sq = getSensitivity(f,xq,∆)
4: CounterClass = getCounterClass(f,xq)
5: y′q = ABRR(yq, ε, sq, CounterClass)
6: Cache(xq, y′q)
7: return y′q
8: else
9: return getCached(xq)

According to ABRR, we can derive pmax as

pmax =
√
e2ψmax − 1

2 + 2eψmax .

By replacing pmax in the right term of Eqn. 3.5 with it, we have

pmax
2 + (1− pmax)2

2pmax(1− pmax)
= eψmax .

Finally, since the sensitivity s(xq) is in the range [ 2
∆ , +∞], we derive the

bound of ψmax as

ψmax ≤
ε

s(xq) ≤
∆
2 ε. (3.7)

Due to the monotonicity of exponential function, we have

eψmax ≤ e
2
∆ ε. (3.8)

Therefore, for any two queries, the algorithm satisfies ψ-BDP where ψ ≤
2
∆ε.

Notably, for queries inside the margin of ∆, sensitivity is equal or greater
than 1. As a result, we can prove that a minimum of ε-BDP is always
achieved, same as the requirement for boundary-sensitive zone in BDPL. In
other words, ABRR essentially provides stronger non-uniform ε-BDP than
BRR in ∆ boundary-sensitive zone. We summarize this property as follows.
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Corollary 1. For any query xq inside the margin of ∆, the adaptive boundary
randomized response algorithm A(yq) satisfies ψ-BDP where ψ ≤ ε

Proof. Since query xq now has s(xq) in the range [1,+∞], , we can prove the
following by Eqn. 3.7 and 3.8.

eψmax ≤ eε.

3.2.3.3 Summary for Zone-less Defense

Algorithm 3 summarizes the detailed procedures of zone-less BDP layer
with soft margin. Caching policy is still carried out for any historical query.
If xq is a new query, the sensitivity of xq to nearest decision boundary is
first measured using a binary search with the corner-point technique. Then
the counter class is calculated for a multiclass model. Finally, the adaptive
boundary randomized response algorithm ABRR(·) is invoked to perform
perturbation with BDP protection.

3.3 Experiments
In this section, we evaluate the effectiveness of boundary differentially private
layer (BDPL) against model extraction attacks. Specifically, we implement
those motivating extraction attacks using fine-tuned queries as in [58], [86]
and compare the success rates of these attacks with and without BDPL.

3.3.1 Setup
3.3.1.1 Datasets and Machine Learning Models

We evaluate three datasets and two models used in the literature [86] —
a Botany dataset Mushrooms (113 attributes, 8124 records), a census dataset
Adult (109 attributes, 48842 records) and a general social survey dataset GSS
(101 attributes, 16127 records). The former two datasets are obtained from
UCI machine learning repository [22] while the last one is from NORC[82].
All categorical items are processed by one-hot-encoding [34] and missing
values are replaced with the mean value of this attribute. We adopt min-max
normalization to unify all feature domains into [-1,1]. Data augmentation is
not used for all the experiments, in accordance with the configuration of the
original attacks.
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For the evaluation of binary defense, Mushrooms dataset is trained on
the label that shows whether a mushroom is poisonous or edible, and Adult
dataset is trained on the label that shows whether the annual income of an
adult exceeds 50K (Adult-b). As for multiclass defense, GSS dataset is used
to train a model to predict level of happiness while Adult dataset is used to
predict the race of the participants (Adult-m).

We train both a linear model, namely, logistic regression (LR), and a non-
linear model, namely, 3-layer neural network (NN), to predict unknown labels
on the above datasets. Logistic regression is implemented using cross-entropy
loss with L2 regularizer. Neural network is implemented using TensorFlow
r1.12 [1]. The hidden layer contains 20 neurons with tanh activation. The
output layer is implemented with a sigmoid function for binary prediction
and a softmax function for multiclass prediction.

3.3.1.2 Attack and Evaluation Metrics

We implement the extraction attack defined in Chapter ?? using original
attack code of line-search technique in [86]. Specifically, the attacker first cre-
ates a seed set of pairwise queries with opposite or different response labels,
and then searches for new samples that lie on the line segment connecting
this pair to approach the decision boundary. This process is repeated until
either a searching threshold or query limit is reached. The size of a seed set is
4 and the searching threshold is 0.05. It is a white-box attack which produces
an extracted model f ′ with the same hyperparameters and architectures as
the original model f . To compare f and f ′, we adopt extraction rate [46],
[86] to measure the proportion of matching predictions (i.e., both f and f ′

predict the same label) in an evaluation query set. Formally,

• Extraction Rate (R). Given an evaluation query set Xe, the extraction
rate

R = 1
|Xe|

∑
xi∈Xe

1(f(xi) = f ′(xi)),

where 1(·) is an indicator function that outputs 1 if the input condition
holds and 0 otherwise. The extraction rate essentially measures the
similarity of model outputs given the same inputs.

• Utility (U). This second metric is evaluated on the test data points and
measures the proportion of responses that are perturbed (i.e., flipped)
by BDPL. It indicates how useful these responses are from a normal
user’s perspective. Formally, given the entire queries Xq issued from test
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set by clients, and the set of (perturbed) responses Yq from the service
provider,

U = 1
|Xq|

∑
xi∈Xq ,yi∈Yq

1(f(xi) = yi).

We follow the same evaluation setting as the original works. In the classic
attack (Tramer’s [86]) of Section 5.2-5.5, training set sample are used for
the construction of victim model, whereas test set samples and uniformly
sampled points are applied in the evaluation of utility and extraction rate
respectively. In the advanced attack (ActiveThief [73]) of Section 5.6, the
configuration is similar, except that the extraction rate is evaluated against
test set samples.

3.3.2 Overall Evaluation
To evaluate how well the decision boundary can be protected by our solution,
we launch extraction attacks on a number of model/dataset combinations
and plot the extraction rate R of sensitive queries in Figs. 3.3 and 3.4 in
terms of the number of queries.

Evaluation of BDPL. In this experiment, we set ∆ = 1/8, and ε = 0.01
for all models. As shown in Fig. 3.3, except for the initial extraction stage
(query size less than 5K), BDPL exhibits a significant protection effect for all
8 combinations — up to 12% drop on R — compared with no defense. The
drops in GSS w/ NN and Adult-m w/ NN are smaller (around 5%−6%) because
these two models are the most complicated (multiclass neural networks) and
the least vulnerable to label perturbation.

The secondary axis of Fig. 3.3 also plots the utility of BDPL using bar
chart. We observe that the utility saturates at over 80% after 20K queries
in all combinations (among which 4 can achieve nearly 90% utility) except
for Adult w/ LR. This model has the fewest parameters and feature inputs,
so BDPL has to perturb more sensitive queries to retain the same BDP level
as the others. The impact on utility by ∆ and ε will be further discussed in
Section 3.3.4.

It is noteworthy that 1% reduction of extraction rate is more significant
in later attack stage than earlier stage where the attackers need to increase
the amounts of queries tremendously. For example, in Fig.6(e), the adversary
spends 15K queries to improve extraction rate from 90% to 97%, which is
canceled off by BDPL using after 15K queries with only 11% utility loss.
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Obviously, 7% drop on extraction rate is more significant than an 11% utility
loss because the former costs 15K queries whereas the latter costs only about
1.5K queries.

Evaluation of Zone-less BDPL. In this experiment, we set ∆ = 1/8
and increase ε to 0.16 so that the overall utility is similar to the previous
experiment (i.e., over 80%). The experiment results on Mushrooms and GSS
are plotted in Fig. 3.4. Zone-less BDPL provides even better protection in all 4
combinations than BDPL, particularly at the initial stage (query size less than
5K) with a much lower extraction rate. Furthermore, all extraction rates
saturate even earlier (after 10k of queries) than BDPL. Overall, we observe
that zone-less BDPL performs particularly well with logistic regression models,
where we witness an extra drop of 4% on R compared with BDPL. The impact
on R and U by ∆ and ε will be shown in Section 3.3.5.

3.3.3 BDPL vs. Uniform Perturbation
In this experiment, we compare BDPL on binary model (single decision
boundary) with a uniform perturbation mechanism that randomly flips the
response label by a certain probability, whether the query is sensitive or not.
To have a fair comparison, we use trial-and-error4 to find this probability so
that the overall extraction rates of both mechanisms are almost the same.
In Fig. 3.5, we plot the extraction rates of both mechanisms for Mushrooms
w/ LR with ∆ = 1/8 and ε = 0.01. We observe that BDPL outperforms
uniform perturbation by 5%-7% extraction rate, which is very significant as
this leads to an increase of misclassification rate by 30%-50%. As such, we
can conclude that BDPL is very effective in protecting the decision boundary
by differentiating sensitive queries from non-sensitive ones, and therefore it
retains high utility for query samples that are faraway from the boundary.

3.3.4 Impact of ε and ∆ in BDPL
In this subsection, we evaluate BDPL performance with respect to zone
parameter ∆ and privacy budget ε. In Fig. 3.6, we fix ε and vary ∆ from 1/64
to 1/8 for all 8 model/dataset combinations. In Fig. 3.7, we fix ∆ and vary ε
from 0.01 to 0.64 for all 8 model/dataset combinations.

Impact on Extraction Rate When ∆ increases from 1/64 to 1/8, the
extraction rate is significantly reduced in both logistic regression (up to

4To do this, we start with 1 random flip out of all responses and measure its overall extrac-
tion rate. We then repeatedly increment this number by 1 until the overall extraction
rate is very close to that of BDPL.
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Fig. 3.3: Overall Protection Effect by BDPL: Extraction Rate and Utility
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Fig. 3.4: Overall Protection Effect by Zone-less BDPL: Extraction Rate and Utility

12% drop) and neural network (up to 10% drop). Nonetheless, for neural
networks, the extract rate does not change much when ∆ increases from 1/64
to 1/32, which indicates that if the boundary-sensitive zone is too small, BDPL
may not provide effective protection, especially when the decision boundary
is non-linear. As for privacy budget ε, its impact is not as significant as ∆. We
only observe up to 4% drop of extraction rate when ε decreases from 0.64 to
0.01 for all 8 model/dataset combinations.

Last but not the least, the extraction rates under all these settings saturate
as the query size increases. In most cases, they start to saturate before 5K
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queries, and in the worst case, they saturate at 15K or 20K. This indicates
that BDPL imposes a theoretical upper bound on the extraction rate no matter
how many queries are issued.

Impact on Utility In this part, we evaluate BDPL performance regarding
utility under similar varying settings. In Fig. 3.8, we plot the final utility
with respect to ∆ and ε after 20K queries for all model/dataset combinations.
Except for Adult w/ LR, all utilities are higher than 80% and most of them are
above 90%, which means that BDPL does not severely sacrifice the accuracy
of a machine learning service. As expected, the utility reaches peak when
∆ = 1/64 (the smallest zone size) and ε = 0.64 (the least probability of
perturbation). Furthermore, as is coincided with the extraction rate, the
utility is more sensitive to ∆ than to ε. For example, an increase of ∆ from
0.01 to 0.1 leads to a drop of utility by 10%, whereas a decrease of ε from 0.1
to 0.01 leads to only 5% drop.

To conclude, BDPL permanently protects decision boundary of both linear
and non-linear models with moderate utility loss. The changes of ∆ and
ε (particularly the former) have modest impact on the extraction rate and
utility.

3.3.5 Impact of ε and ∆ in Zone-less BDPL
In this subsection, we evaluate zone-less BDPL performance with respect to
∆ and ε. In Fig. 3.9, we fix ε and vary ∆ from 1/64 to 1/8. In Fig. 3.10, we
fix ∆ and vary ε from 0.01 to 0.64. Due to space limitation, we only plot the
results on both dataset/model combinations, i.e., GSS w/ LR and GSS w/
NN.

Impact on Extraction Rate. Both parameters maintain effectiveness in
protecting decision boundary and saturating the extraction rate. Particularly,
compared to the hard margin solution, when ε decreases from 0.64 to 0.01,
zone-less BDPL draws significant drop over extraction rate (up to 25% drop in
logistic regression and 15% in neural network). This coincides with Corollary
1 in Section 3.2.3 that zone-less BDPL achieves better ε-BDP protection than
BDPL. Meanwhile, varying zone parameter ∆ has less eminent effect than in
the hard margin case. This coincides with our zone-less design to protect the
decision boundary with a soft margin.

Impact on Utility. We evaluate zone-less BDPL in terms of utility after
20K queries. In Fig. 3.11, we observe that the change of ε leads to 35% change
of utility while the change of ∆ only leads to 10%. This can be explained
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Fig. 3.6: Impact of Varying ∆ in BDPL with ε = 0.01
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Fig. 3.7: Impact of Varying ε in BDPL with ∆ = 1/8
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Fig. 3.8: Utility vs. ∆ and ε in BDPL
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Fig. 3.9: Impact of Varying ∆ in Zone-less BDPL
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Fig. 3.10: Impact of Varying ε in Zone-less BDPL

by the fact that zone-less BDPL adopts ABRR which obfuscates results in
the global feature space . In addition, utility is still independent of model
types and remains over 80% when ε is greater than 0.15. As expected, utility
reaches peak when ∆ = 1/64 (when soft margin is the most concentrated
near a decision boundary) and ε = 0.64 (the least probability of perturbation).

To conclude, zone-less BDPL provides strong protection for decision
boundary in the global feature space. Privacy budget ε brings more con-
trol over the extraction rate than ∆.

3.3.6 Evaluation of BDPL on Advanced Attack
Recent study has shown that the extraction attacks are becoming threatening
on complex models such as convolutional neural network. In this subsection,
we turn to these emerging attacks which substantially scale both the input
dimensions and model complexity. We expect these to be bigger challenges
for BDPL as these attacks allow attackers to draw natural data as query from
the same domain such as images.

In Table.3.1, we review those high-quality extraction attacks on complex
model from peer-reviewed papers. To precisely address the feature of recent
attacks, we list out whether the attacks support two of the most predominant
advanced models, i.e., convolutional neural network (CNN) and recurrent
neural network (RNN). Adversary knowledge is leveraged to illustrate ad-
versary capability on data acquisition, specifically whether they can access
any problem domain dataset. They are divided into three levels with an
increasingly stringent requirement on dataset knowledge. We also categorize
query strategy based on the nature of query such as reinforce-based probing
(e.g., reinforce learning) and adversarial-based probing (e.g., adversarial
samples). Detailed techniques can be found in the related works.
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Fig. 3.11: Utility vs. ∆ and ε in Zone-less BDPL

Due to space limitation, we select state-of-the-art ActiveThief[73] as the
attack scheme for evaluation because it is the most recent and advanced
attack. Activethief is a model extraction framework for neural networks using
non-problem domain datasets and pool-based active learning strategies. We
adopt the same configuration of the original paper and implement it on a
convolutional neural network with various image datasets.

Datasets and Machine Learning Models. We evaluate two datasets for
training victim models — a hand-written digits image dataset MNIST (28 ∗ 28
resolution, 1 channel, 60k records) and a colorful general objects dataset
CIFAR10 (32 ∗ 32 resolution, 3 channels, 60k records). The two datasets are
obtained from their official repository respectively [50][48]. Compared to
previous evaluation, feature size has scaled to 7x and 30x respectively. As for
adversary query database, we use the downsampled and unannotated subset
of the ILSVRC2012-14 dataset from ImageNet[20]. In each experiment,
images from ImageNet are resized to fit the input size of the victim model.

With regards to the model architecture, we adopt the same CNN design
in [73] for evaluation, which has 3 blocks of convolution. In each block,
there are 2 repeated units of 2 convolution layers using a 3 × 3 kernel,
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followed by 1 pooling layer using 2 × 2 kernel. The stride length is 1 and 2
for convolution kernel and pooling kernel respectively. ReLU is adopted as
the activation function for each convolution layer. The last pooling layer is
attached to a fully connected layer which produces a final prediction using
softmax function.

Attack and Evaluation Metrics. The attack is performed as follows. A
random subset of initial seed images are selected from the adversary database.
Then the attacker queries these images against the victim model and obtains
a set of responses. A basic replica model is developed by training on these
query-response pairs. The attacker then queries the remaining images using
a designated strategy.

We evaluate one non-probing and one probing strategy regarding decision
boundary. The non-probing strategy is ActiveThief Random Strategy (ATRS)
where a subset of images are selected uniformly at random. The probing
strategy is ActiveThief Hybrid Strategy (ATHS) where k-center and DeeplFool
are combined for subset selection and it is the strongest attack in ActiveThief.
This process is repeated for a fixed number of iterations. In each iteration,
the replica model is retrained from all accumulated query-response pairs.
Strategy hyperparameters such as number of seed samples and iteration
numbers are the same in [73]. Previous evaluation metrics are adopted,
that is, extraction rate R and utility U . To be consistent with original attack,
the extraction rate is evaluated against test set samples in the following
experiments.

3.3.6.1 Effectiveness of BDPL on Advanced Attack

We launch two extraction attacks (ATRS and ATHS) on 2 models and
plot the extraction rate R in Figs. 3.12 and 3.13 in terms of the budget of
queries. BDPL parameters ∆ = 1/7 and ε = 0.01 are set for all models in this
experiment.

Effectiveness on ATRS. Fig. 3.12 presents the evaluation results on the
non-probing attack. Despite the significant growth of attack complexity, our
defense still draws a 1.5% drop over extraction rate on both models. The
decrease is small because BDPL focuses queries neighboring decision bound-
ary whereas ATRS draws queries uniformly from normal image distribution
and ratios of sensitive queries may be low. The mismatch leads to smaller
perturbation as expected. Nevertheless, BDPL still maintains a decreased and
saturated upper bound for model extraction.
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Fig. 3.12: Overall Protection Effect by BDPL on ATRS: Extraction Rate and Utility

From the secondary axis of Fig. 3.12, we observe that the utility trend
stabilizes at over 90% after 20K queries for both models. Particularly, the
utility remains over 95% before 10K for CIFAR-10 w/ CNN. This is consistent
with the small drop of extraction rate given that perturbation is light. The
impact on utility by ∆ and ε will be further discussed in Section 3.3.6.2.

Effectiveness on ATHS. Fig. 3.13 presents the evaluation results on the
probing attack. Notably, the extraction is reduced by 4% and 2.7% respec-
tively for two models, which is more significant compared to that in ATRS.
This corresponds to the nature of probing strategy that leverages k-center
(diversifying classes) and DeepFool (approaching decision boundary). BDPL
demonstrates stronger capability against such attack. The drop of extraction
rate is smaller in CIFAR-10 w/ CNN given that it has great complexity (over
3000 input dimensions) and low risk in current extraction attack.

As for the utility trend, both models are saturated at over 90%. The per-
turbation stays obviously light which inhibits further drop of extraction rate.
We conjecture that current defense is not entirely on its optimal performance
due to high-dimensionality and great model complexity. Section 3.4 will
further identify the limitations of BDPL and areas of improvement.

3.3.6.2 Impact of ε and ∆ on Complex Model

In this subsection, we evaluate BDPL performance with respect to zone
parameter ∆ and privacy budget ε. In Fig. 3.14, we fix ε and vary ∆ from
1/32 to 1/4 in BDPL. In Fig. 3.15, we fix ∆ and vary ε from 0.01 to 0.64 in
BDPL. We mainly plot the results on MNIST w/ CNN under non-probing and
probing attacks.

The extraction rate is reduced more significantly on ATHS when ∆ in-
creases from 1/32 to 1/4. As coincided with the design of BDPL, it has bigger
impact on probing strategy. Moreover, the drop of extraction rate is obviously
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Fig. 3.13: Overall Protection Effect by BDPL on ATHS: Extraction Rate and Utility
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Fig. 3.14: Impact of Varying ∆ in BDPL on MNIST w/ CNN

greater on ∆ = 1/4 than the other 3 parameters, which indicates that a
large ∆ is required for effective defense on the current model. As for ε,
when decreasing to 0.01, the change is less significant compared to that in
∆. This indicates that complex model is less sensitive against the change of
perturbation (privacy budget). Overall, the extraction rates are consistently
bounded and saturate as the query size increases. ε-BDPL still imposes a
theoretical upper bound on the extraction rate and prevent full extraction.
Furthermore, BDPL displays flexible control over the extraction in probing
strategy.

To conclude, BDPL alleviates the threat of extraction rate in spite of
the significant growth of victim complexity and strong attack. The change
of ∆ takes dominant control over the extraction rate. We will discuss the
limitations and improvements in the following section.

3.4 Discussion
In this section, we make some notes of BDPL and identify areas of future
improvement.
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Fig. 3.15: Impact of Varying ε in BDPL on MNIST w/ CNN

We set ∆ = 1/8 and ε = 0.01 for the demonstration of overall evaluation
as this combination can strike a good balance between the security and
the utility while showing transferability among datasets. However, for the
practitioners, this combination may not always be the best choice during
deployment. They will need to adjust ∆ and ε sequentially according to their
demand and the flexibility plot in this thesis. To improve the deployment
efficiency in future work, a self-adaptive mechanism for hyperparameter is
needed to set ∆, ε given the security and utility goal. It can initialize the
layer using the above combination and then adjust them on the fly. The
security level can be measured using other monitoring-based techniques
such as feature coverage [46] while the utility can be estimated through the
perturbation mechanism.

For attacks that only support probability-level extraction, our BDPL, which
is at label-level, cannot protect against it. On the other hand, we’d argue
that BDPL can still protect against attacks extraction using natural data. First,
normal and natural data can also be close to decision boundary, although the
ratio of sensitive queries in these attacks is lower than that in the fine-tuned
ones. Second, the optimal strategy in recent studies [41], [73] leverages
adversarial techniques which implicitly perform fine-tuned probing on the
decision boundary. This means our BDPL can effectively protect against them,
as indicated in our new experimental results against [73] in Section 5.6.
Nonetheless, extraction using natural data is limited on specific model types,
such as images and text, where same domain data can be easily obtained and
used as query set. If the victim is a genetic model, it would be difficult to
perform such extraction since genetic data is usually proprietary.

We also identify two core components that can be further improved for
better performance in complex model. One is distance metrics and the other
is perturbation mechanism.
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Distance Metrics. In the current version, we adopt flipping-corner-point
technique on two essential assumptions: modular design and generality.
The first one allows plug-in feature for practical deployment, where service
providers can tap in BDPL with the same API for users. The second one
ensures compatibility with both parametric (e.g. neural network) and non-
parametric models (e.g., decision tree). Unlike the classical models, deep
neural networks such as image models may have high model complexity and
thousands of input dimensions. Our intuition for flipping-corner technique,
which comes from the L-norm ball, may have unexpected behavior in such
space[3].

To improve the scalability, we can start by relaxing the first assumption
and access the internals of provider’s model. As such, a straightforward
remedy becomes feasible by performing flipping-corner detection in the
middle part of model, such as a bottleneck layer[79]. The dimensionality is
greatly reduced after the intermediate representation compared to the raw
input. Apart from the high-dimensionality, the manifold assumption discussed
in adversarial robustness of complex model may also render flipping-corner-
point technique unstable. Corner points may not flip properly when samples
fall out of the manifold. As a result, L-norm distance metrics may degrade
the accuracy of detection process. By relaxing the second assumption, we
can leverage the gradient from parametric model to propose gradient-based
distance metrics, which is more suitable under the manifold assumption. We
believe it is a viable and practical solution for future improvement as complex
parametric models are prevailing in machine learning services.

Perturbation Mechanism. As motivated by binary defense, randomized
response is adopted as the basic framework for multiclass defense. We per-
form a one-vs-one approximation for each class and treat multiclass defense
as a combination of binary defense. This assumption may incur imbalanced
noises since only one counter class is considered. Perturbation may be
concentrated on specific pairs of classes. To resolve this, a natural frame-
work capable of categorical-value perturbation, such as k-ary randomized
response[42], can be adopted for multiclass defense. Furthermore, if we
extend the mechanism to be numeric-value suitable, probability-level defense
becomes feasible. Nonetheless, these existing mechanisms will still need
significant adaptation to satisfy ε-BDP before applying it to our defense. We
plan to implement them in future work.
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3.5 Summary
In this chapter, we propose boundary differentially private layer to defend
machine learning models against extraction attacks by obfuscating the query
responses. This layer guarantees boundary differential privacy in a user-
specified boundary-sensitive zone. To identify sensitive queries that fall in
a zone, we develop an efficient approach that uses corner points as indica-
tors. We design boundary randomized response as the building block for
perturbation algorithm, followed by a generalization to multiclass model
and an adaptive version that can protect a soft margin of decision boundary.
We prove such perturbation algorithm satisfies ε-BDP. Through extensive
experimental results, we demonstrate the effectiveness and flexibility of our
defense layer on protecting decision boundary while retaining high utility of
the machine learning service. For future work, we plan to propose defense
more suitable for complex model and consider strong adversary with evasion.
We also plan to extend our defense layer to protect against other machine
learning attacks such as model evasion and inversion.

3.5 Summary 49





4Learning Indoor Locations
from Unprivileged Sensor
Data

In this chapter, we turn to the attack surface of data pool and investigate
learning-based inference on unprivileged sensor data. The increasing sensory
capability and accuracy in mobile and wearable devices have nourished many
convenient applications, such as turn-by-turn navigation, fitness tracking,
virtual reality, and interactive mobile game. However, privacy infringement
arising from these applications has recently drawn much attention throughout
the world. Unfortunately, as more and more personal data, such as locations,
passwords and daily schedules, are accessed through smartphones, even
the best practice of privacy protection cannot protect them against mobile
attacks that exploit side-channel information, such as UI state [12], power
usage [63], or cellular network signal strength [83].

In the literature of side-channel attacks, many works have succeeded in
exposing information about victim’s location such as tracking their driving
or public transport routes without using GPS, either through cellular/Wi-Fi
networks [83] or by inertial sensors [36], [66]. However, these works focus
on outdoor location, so it remains unresolved on the risk of indoor location
leakage from unprivileged sensory data, which are usually more private
and sensitive. In this chapter, we develop the mobile inertial sensor-based
sensitive indoor location eavesdropping (MISSILE) system to infer sensitive
indoor locations using side-channel information only from unprivileged sen-
sors such as accelerometer, gyroscope and magnetic field sensor. Our key
idea is to identify a sensitive indoor location (e.g., an office) using multiple
structural characteristics (e.g., turnings in a corridor, pausing of motion to
open a fire stop door, or taking an elevator). These characteristics lead
to unique patterns in sensor readings and constitute the signature of this
location.

There are four challenges in MISSILE, namely, how to acquire reliable
location labels, how to handle data inconsistency caused by device placement
and movement, how to transform raw data into features, and how to build an
effective learning model. To address these challenges, we propose a general-
purpose machine learning system without prior knowledge of structural
characteristics. To feed this system with sufficient training data, we develop
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an automatic location labeling mechanism using Bluetooth beacons with
latency calibration method. Raw sensory data collected from different sources
are made consistent with normalization and noise reduction techniques.
After an efficient feature extraction procedure, calibration for anomalies is
further applied in modeling to reduce the impact of data contamination from
mislabeling and low-quality sensor output. Finally, a lightweight classifier is
trained and embedded in a spyware to eavesdrop a victim’s sensitive indoor
location. Through our extensive experiments in a real indoor environment,
we show the feasibility of MISSILE and the high risk of indoor sensitive
location eavesdropping. To complement this research, we also discuss the
potential extension of this attack and two countermeasures in addition to
lifting up the privilege requirement of accessing sensory data.

To summarize, our contributions of this study are in the following three
perspectives.

• We adopt a general adversarial framework for side-channel attacks
on mobile devices, based on which we propose our indoor location
eavesdropping attack.

• We develop a real-life indoor location eavesdropping attack system
which comprises automatic data labeling, data processing and machine
learning pipeline on mobile inertial sensor data.

• We propose a labeling mechanism with BLE beacons and a calibration
method to compensate for latency using maximum likelihood estima-
tion.

• We conduct extensive experiments to demonstrate the feasibility of
such an attack and thus the risk of indoor location exposure in practice.

The rest of this chapter is organized as follows. Chapter 4.1 formally
defines the privacy problem from side-channel attack and threat model
with challenges. Chapter 4.2 dives into the detail of MISSILE system and
its associated algorithms. Chapter 4.3 presents the system evaluation and
severity of this threat. We further discuss the extension of this system and
potential countermeasures in Chapter 4.4. Finally we draw our summary of
this study in Chapter 4.5.

4.1 Problem Statement

52 Chapter 4 Learning Indoor Locations from Unprivileged Sensor Data



Targeted Behavior
(e.g., Screen touching, 

Body motion)

Side-channel Information
(e.g., Power usage,

Sensor signals)

Successful
Inference

Ground Truth
(Manual collection or 

external database)

Pattern Matching

Fig. 4.1: The framework for side-channel attack on mobile devices

4.1.1 General Side-channel Attack Framework
A typical side-channel attack on mobile devices is described in Fig. 4.1.
Side channels in these devices may react to user interaction or exterior
environment change, which can be exploited by attackers to infer sensitive
information. For example, a slight but distinct acceleration change in motion
sensor can leak a user’s keystroke on soft keypad. A direct consequence
of such attack is the loss of users’ privacy, which may further lead to even
more serious attacks such as social engineering on the victim, blackmailing
ransomware, and hijacking. As most sensors (especially multiple inertial
sensors) do not require permission to access, such attacks can be camouflaged
in normal applications, which makes them hard to detect. Based on this
general adversarial framework, in what follows we define the MISSILE attack
on indoor sensitive locations.

4.1.2 MISSILE Motivating Scenario
We assume there are a finite number of sensitive locations within the premises
concerned (such as a campus, a shopping center, or a hospital). An adver-
sary would like to stalk the daily routine of a frequent visitor (such as
students/staff in a university campus) and to eavesdrop whether and how
often a victim user visits some sensitive location such as an office room, a
particular clinic, or even restroom. We assume the adversary can intrigue
the victim to install a legitimate application on her mobile phone.1 Victim
users are often tricked into downloading such apps especially when they do
not require special permissions such as location. For example, Kaspersky
Labs found and removed 58,000 instances of stalkerware in 2018 [31]. Even

1Some studies have also revealed the possibility of attaining sensor data through web
browsers using Javascript [61], notwithstanding limited sensor types (e.g., motion
sensors only) and sampling frequency.
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popular “trustworthy” apps might have vulnerabilities that open the door for
spying, such as the one found in Whatsapp that allows injection of spyware
onto people’s phones [68]. Through such applications, the adversary can
then collect unprivileged sensory information on the victim’s mobile device
in the background (both Android and iOS allow such collection without
permission). A classifier embedded in this application can then identify the
unique sensor pattern of a sensitive location.

The sensors considered in this chapter include accelerometer, linear accel-
eration sensor, gyroscope, and magnetic field sensor. While accelerometer
and linear acceleration sensor are common motion sensors shipped in modern
mobile devices for detecting device acceleration, gyroscope is another impor-
tant sensor. By detecting a sudden turn or a subtle slow winding, it indicates
if a victim user is changing his/her direction in a regular degree due to a
hallway or corridor. Magnetic field sensor is an environmental sensor whose
readings change as the victim user moves indoor. Magnetic local variation
exists in all buildings due to the geolocation and magnetic materials used in
construction (e.g., a large amount of steel in an elevator) [53]. By combining
the above sensor readings in mobile devices, each sensitive location may have
a unique pattern in the sensory data stream for location inference.

4.1.3 Threat Model
The major threat comes from a mobile application that only silently collects
sensory data and eavesdrops sensitive location. In this chapter, we assume
the attacker and its client-side application has the following capabilities or
characteristics:

Adversary Application and Network: For both Android and iOS, ap-
plication packages from any sources can be installed on the devices.2 As
such, the malicious party can easily develop legitimate spyware or repackage
popular applications (such as Facebook, Messenger, and WhatsApp) with
malicious codes and distribute them through social networks, third-party app
markets or emails. We assume this application has network access, either
Wi-Fi or cellular network, to upload the eavesdropping results to or update
the classifier regularly from the attacker’s server.

Stealthy Side Channels: Side channels obtained from the unprivileged
accelerometer, gyroscope, and magnetic field sensor are accessible to the
adversary application. While both Android and iOS have permission pro-

2Apple Developer Enterprise Program allows a developer to create and distribute custom
apps to any iOS device without submitting them to App Store.
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tection mechanism for GPS, Wi-Fi and Bluetooth (iOS and Android over
6.0 require on-the-fly approval), there is no specific permission protection
for sensors on both operating systems. The attack is not assumed to be
zero-permission. Instead, since the attack only targets at the permission-free
inertial sensors, no additional permissions (particularly location-related) are
needed. In other words, any installed application can acquire sensor readings
without the consent or even knowledge of users. Existing antivirus apps
cannot prevent MISSILE from running in the background as MISSILE only
monitors sensor readings with low CPU and battery consumption like most
legitimate applications.

Computational Power and Machine Intelligent: The application can
access the CPU (or even GPU) of the mobile device for sensory data processing
and classification. Nonetheless, the computationally intensive training of the
classifier is still performed on the server side. However, as the computational
capability of mobile devices keeps increasing, especially with the advent of
dedicated AI chip on SoC (e.g., ARM Machine Learning Processor), certain
machine learning tasks can be processed on the mobile devices to offload the
MISSILE server and improve location inference response time.

4.1.4 Technical Challenges
Indoor pedestrian location inference using sensory data is more challenging
than route inference in outdoor environments [66], [95]. We summarize
four major challenges as below.

Reliable Label Acquisition: To perform indoor location eavesdropping
attack, we need to capture sensor readings with proper labels. As GPS and
open map data are usually not available under indoor scenarios, an automatic,
highly-efficient, and reliable mechanism is needed to collect a large number
of location labels as ground truth for training data.

Data Inconsistency: Since the output coordinates of inertial sensors
depend on the relative posture of mobile devices, we need to normalize
various device placements such as vertically in a pocket or horizontally in a
handbag. Furthermore, motion sensors capture not only the location pattern
but also the walking style of users. The diversity of walking speed and moving
behavior of individuals has a negative impact on the inference as it causes
inconsistency in sensory data.

Raw Data Optimization: Raw sensor values are not suitable to be di-
rectly fed into a machine learning pipeline since processing high-dimensional
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and high-frequency data consumes a significant amount of computational
resources. To maximize the attack performance under limited computational
power, we need an optimal set of low-dimensional features selected by an
automated feature extraction procedure without prior information of location
details.

Robust Modeling: The collected training data may be in low quality,
as they can be contaminated by corrupted devices, label signal delay, and
internal software or device faults. The performance of the machine learning
model can be impacted by such anomalies and therefore a robust model with
anomaly calibration is always preferred.

4.2 MISSILE System
In this section, we first present the overall design of MISSILE system, followed
by the detailed discussion on individual component implementation.

4.2.1 Design Overview
As shown in Fig. 4.2, the proposed MISSILE system is composed of two
stages.

In the training stage, the attacker first identifies target indoor sensitive
locations, physically walks through these locations with stock mobile devices,
and collects sensor readings as they pass by these locations.3 To automate the
collection process and increase its accuracy, MISSILE deploys a Bluetooth Low
Energy (BLE) beacon in each sensitive location to activate sensor readings
automatically as the attacker walks by. BLE beacons (e.g. Apple’s iBeacon)
are small, inexpensive, and long-lasting devices that continuously emit identi-
fiable radio signals in the neighborhood (normally within a range of up to 10
meters in our system). In practice, BLE beacons have been widely deployed
by many indoor positioning services for navigation and advertisement, so
the attacker can even leverage these existing beacons without any extra
deployment cost.

To acquire a desired length of data with proper label, segmentation
is performed on the long continuous data stream. Such a small segment
from the whole stream is called an exemplar, which is assumed to contain
the unique signature of a sensitive location. The length of exemplar is a

3Many premises are semi-private/semi-public and accessible to the attacker. For example,
everyone can enter most of the buildings in a university campus or a hospital even though
they are privately owned premises.
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Fig. 4.2: Overview of MISSILE system

hyperparameter that ensures it is long enough to contain the desired sensor
data patterns. Each exemplar can contain signals from multiple sensors to
capture a comprehensive set of location characteristics, so that they can reveal
the structural (e.g., door opening, stairs walking), ambient (e.g., magnetic
field), and even environmental (e.g., air pressure) patterns and increase
robustness against dynamic environment such as high user density.

Exemplars are further normalized to resolve the inconsistency problem of
device placement. Noise reduction is applied next due to the high-density
noise in normalized exemplar from body movement. Then automatic feature
extraction is performed to obtain an optimal low-dimensional representation
of the sensor pattern. The generality of this procedure allows the attacker to
replicate MISSILE to other premises without knowledge of the actual sensor
pattern and feature engineering. When the features of clean exemplars
are ready, a robust supervised learning scheme using anomaly calibration
technique is used to construct a classifier to recognize the sensor pattern for
each sensitive location.

4.2 MISSILE System 57



In the attacking stage, the attacker embeds this classifier into a legitimate
mobile application for victims to install on their mobile devices. This ap-
plication then continuously collects the sensor readings in the background
and captures indoor sensitive locations when the expected sensor patterns
occur. To preserve battery life, two activation techniques are introduced to
reduce unnecessary eavesdropping when the victim is far from the concerned
premises or is stationary. Finally, the eavesdropped sensitive location log can
be delivered to the attacker when the network is available.

4.2.2 Labeling and Data Segmentation
The first key component is to segment the short, recognizable pattern exem-
plar of sensitive locations from the stream of continuous sensory readings.
To determine the starting timestamp of an exemplar, an intuitive choice is
to use the estimated distance from the beacon. However, since this distance
is hard and inaccurate to estimate,4 we instead use the raw Received Signal
Strength Indicator (RSSI) and its change. Typically, RSSI ranges from around
-20dB to -80dB in short proximity and less than -95dB in the farthest distance
under the setting of experiment deployment.

4.2.2.1 Climbing Point as Starting Timestamp

Since this is the training stage, the attacker can have the full control to
keep the device moving while collecting the BLE signals. The challenge in
segmentation is to determine the starting timestamp of a potential sensor
pattern that indicates a sensitive location is reached. Intuitively, this times-
tamp should be associated with a maximal RSSI value (i.e., a climbing point).
However, due to the fluctuation of radio signals, there are multiple climbing
points when walking through a location, as illustrated in Fig. 4.3a. To resolve
the true starting timestamp, we introduce two thresholds to prune climbing
point candidates caused by signal delay and other factors. Step threshold is
the minimum length between two starting timestamps (of two locations),
and the RSSI threshold defines the minimum RSSI for a starting timestamp.
The former is based on the fact that sensitive locations are discrete and
fall apart with one another, whereas the latter is based on the fact that the
starting timestamp is usually associated with a strong RSSI. When multiple
reference points are available in a location, we leverage the metadata emitted

4Theoretically, we can estimate the distance between a receiver and a beacon based on the
received signal and the reference signal strength of 1-meter distance. However, due to
the environmental absorption and power change, such distance estimation can suffer
from significant delay and fluctuations.
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Fig. 4.3: Exemplar timestamp is detected in RSSI sequence collected from one
reference point. The sensitivity is set to -99dB since RSSI lower than this
threshold occurs from a remote beacon.

by the beacons to separate signal sources, namely major identifier and minor
identifier. In our setting, major identifier denotes the location while minor
identifier denotes the beacon itself.

Algorithm 4 describes the details of determining starting timestamp for
an exemplar. It first separates the RSSI sequence from different beacons by
minor. After deriving all RSSI climbing points from each beacon, we store
them in the set of CP as shown in Fig. 4.3a. A point is defined as climbing
if the current RSSI is larger than its previous moment in the sub-sequence.
Based on the provided RSSI threshold rt, all climbing points whose RSSI
values are below rt are pruned. The algorithm iteratively sorts and accesses
remaining points in descending order of their RSSI values. In each iteration,
only one climbing point is retained for each beacon within the step threshold
st while all other climbing points with different major (i.e., signals from
other locations) are pruned. After this step, only those strong climbing
points survive in Start, the candidate set for starting timestamps of sensor
pattern. Fig. 4.3b illustrates a running example of this algorithm for one
reference point (i.e., RSSI measurements taken from one beacon for each
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Algorithm 4 Starting Timestamp Determination
Input: RSSI sequence

S = {s1, s2, . . . , sn}
si = {timestamp,major,minor, rssi}
Step threshold st
RSSI threshold rt

Output: Starting points Start
Procedure:
1: CP = ∅, Pruned = ∅, Start = ∅
2: Segment S into sub-sequences {S1, S2, . . .} with same minor
3: for each sequence Si do
4: Add all climbing points in Si to CP
5: for j = 1 to |CP | do
6: if CPj .rssi ≤ rt then
7: Prune j-th point from CP

8: CP = DescendSortRSSI(CP )
9: for k = 1 to |CP | do

10: if CPk not in Pruned then
11: l = CPk.timestamp− st
12: r = CPk.timestamp+ st
13: O = FindOverlap(l, r, CP,CPk.major)
14: Pruned = Pruned ∪O
15: Start = CP - Pruned
16: Return Start

location), where a red rectangle denotes an exemplar of length 15 seconds
(i.e., 750 samples under a 50Hz sampling rate). In what follows, we propose
a calibration method to refine this starting timestamp to further compensate
for the latency of BLE signal.

4.2.2.2 Calibration for Latency

The latency of detecting BLE beacon signal consists of both discovery
latency and propagation latency. The former arises from the fact that BLE
is a slotted protocol that periodically sends data packet in designated time
slots and sleeps in between. The emitting interval between two consecutive
slots can range from 100ms to 2000ms. Discovery latency happens when
broadcast packets miss the scanning window of a receiving mobile device,
which has low BLE scanning frequency by default. Since data collection is
managed by attacker, such latency can be significantly reduced by minimizing
the emitting interval and maximizing the scanning frequency [15].

The propagation latency is caused by radio signal propagation due to
absorption, congestion or reflection. Although such latency could be large
and fluctuating in general, we only care about the latency when the device
is in close proximity to the BLE beacon to annotate the starting timestamp.
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Fig. 4.4: The deviation histogram of derived starting timestamp

As shown in Fig. 4.4, we plot the deviation between the actual starting
timestamp, which is recorded manually, and the derived starting timestamp
from Algorithm 4 under different proximity distances and beacon models. We
observe that the deviation can be approximated by Gaussian distribution with
a mean proportional to its proximity distance. Under this assumption, we
propose a calibration method using Maximum Likelihood Estimation (MLE)
[94] as follows to refine the annotated starting timestamp.

According to Bayes’ Theorem, the conditional probability of actual starting
timestamp t given a derived starting timestamp α from RSSI is

P (t|α) = P (α|t)P (t)
P (α) .
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Since both P(α) and P(t) are constant (because both α and t are uniformly
distributed drawn from their domains), maximizing P (t|α) is equivalent to
maximizing P(α|t), and further P(α − t|t), the conditional probability of
deviation α− t. According to our assumption, the latter follows a Gaussian

distribution, i.e., P (α− t|t) = 1
σ
√

2πe
− (α−t−µ)2

2σ2 . Therefore, we can calibrate the
starting timestamp t∗ by maximizing the following likelihood

t∗ = arg max
t

P (α− t|t)

= arg max
t

1
σ
√

2π
e−

(α−t−µ)2

2σ2

= arg min
t

(α− t− µ)2

2σ2 . (4.1)

After solving the Eqn. 4.1, we have

t∗ = α− µ. (4.2)

According to Eqn. 4.2, in the single reference point case, the calibration
can simply be carried out by deducting a mean deviation from the derived
starting timestamp.

Now we generalize the derivation to the case of two reference points (e.g.,
beacons on both sides of the location) whose derived timestamps are α1 and
α2 respectively.5 The joint conditional likelihood of α1 and α2 can be derived
from their individual distribution independently:

P (α1, α2|t) = P (α1|t) · P (α2|t).

Similar to the single reference point case, we can calibrate the starting
timestamp t∗ by maximizing the joint likelihood of α1− t and α2− t instead:

t∗ = arg max
t

P (α1 − t|t) · P (α2 − t|t)

= arg max
t

1
σ1
√

2π
e
− (α1−t−µ1)2

2σ12 · 1
σ2
√

2π
e
− (α2−t−µ2)2

2σ22

= arg min
t

(α1 − t− µ1)2

2σ12 + (α2 − t− µ2)2

2σ22 . (4.3)

As such, by solving Eqn. 4.3, we have

t∗ = σ2
2(α1 − µ1) + σ1

2(α2 − µ2)
σ12 + σ22 .

5We assume no collision in the beacon signal as BLE can transmit through 40 channels.
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As we observe from Fig. 4.4, the deviation follows the same distribution
given the same beacon model and proximity distance. Therefore, we can
simplify t∗ by setting σ1 = σ2 = σ and µ1 = µ2 = µ:

t∗ = σ2(α1 − µ) + σ2(α2 − µ)
σ2 + σ2 = α1 + α2

2 − µ. (4.4)

Eqn. 4.4 means that in case of two or more reference points, the cali-
bration can simply be carried out by deducting a mean deviation from the
average of all derived starting timestamps.

4.2.3 Normalization and Noise Reduction
Most inertial sensors (e.g., accelerometer) produce 3-dimensional readings in
a coordinate system that is relative to the device’s screen. As such, different
device placements cause inconsistency of the sensor readings even when
they come from the same location. Another key factor in data consistency is
irrelevant noise caused by body movement. For example, walking has a major
impact on motion sensors especially when the device is placed close to the
leg (e.g., in the pant pocket). In such cases, the sensor signals caused by body
movement can overshadow those caused by the physical environment.

4.2.3.1 Resolving Inconsistency by Device Placement

A straightforward solution is to convert the screen-based 3-axis coordinate
vector, such as the accelerometer vector A = [ax, ay, az], into an absolute
value by taking the Euclidean norm:

‖A‖ =
√
a2
x + a2

y + a2
z.

This scalar is independent of device placement, but the details of device
movement on each axis are removed. To preserve the details, we adopt
the rotation-based normalization which transforms screen-based coordinate
into world reference coordinate [29]. In what follows, we use the gravity
sensor vector and the magnetic field sensor vector as example. Note that
the former points to the core of the earth while the latter always provides
an approximate geographical pole direction. A rotation matrix which maps
between the screen-based coordinate and world coordinate can be derived as
follows.

Unit vector of a vector v can be obtained from vu = v
‖v‖ . Let G and M be

the unit vector of gravity and magnetic field in device reference, the cross
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Table 4.1: Runtime on Google Pixel

Approach Execution Time (ns)

Coordinate Rotation 20000 - 25000

Euclidean Norm 600 - 900

product of G and M must be perpendicular to the plane spanned by G and
M . Since M lies on the plane spanned by the gravity vector and south-north
vector, this cross product produces vector EW , i.e., the west-east vector.
Similarly, the south-north vector SN is the cross product of G and unit vector
of EW :

G = [gx, gy, gz]>, M = [mx,my,mz]>,

M ×G = EW, G× EW = SN.

As such, we can use the unit vectors of EW , SN , G to form a rotation
matrix that connects screen-based coordinate and world reference coordinate.
To rotate a new sample K into world coordinate, we multiply it with the
inverse of rotation matrix R as follows

R =


ewx snx gx

ewy sny gy

ewz snz gz

 .

R−1 ·K = Krotated.

Obviously the computational cost of the rotation-matrix-based normaliza-
tion is higher than the Euclidean-norm-based normalization, as the former
involves matrix inverse and multiplication. In our experiment, we measure
their CPU time (see Table 4.1), and the latter is more than 20 times faster.
Nonetheless, the former preserves more details in each axis and our exper-
imental results in Table 4.5 show that the former consistently outperforms
the latter in terms of F1-score under various classifiers.

4.2.3.2 Resolving Inconsistency by Body Movement Noises

Body movement noises are mostly distributed in the high-frequency spec-
trum while sensor signals corresponding to location patterns lie in the low-
frequency spectrum. To illustrate this, we use the accelerometer as an
example. Fig. 4.5a shows raw accelerometer readings of a pedestrian who
encounters a sudden turn when walking inside a building. The original raw
data have such a dense signal distribution over the whole recordings that it is
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(a) Accelerometer raw data
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(b) Filtered data with α = 0.15

Fig. 4.5: Turning event is more evident after filtering movement noises

hard to discover important event from the time domain. Therefore, we apply
a low-pass filter to this sequence. In particular, we choose a moving average
filter for noise reduction, which derives the moving average from the original
sensor data as

yi = yi−1 + α ∗ (xi − yi−1),

where the filtered sample yi is based on its previous value yi−1 and the current
xi with parameter α lying between 0 to 1. As illustrated in Fig. 4.5b, by
applying this filter the data are properly smoothed and the turning motion is
more evident from the original noisy data.

4.2.4 Feature Extraction
Filtered exemplars are still in the form of raw sensor signals unsuitable for
learning an effective model. To reduce the data volume for learning, we
need to extract significant low-dimensional features from these exemplars.
Features are commonly used in classification tasks to capture the properties of
signal behavior. Further, since we assume the adversary has no prior domain
knowledge on sensor patterns, this feature extraction and selection process
should be fully automated without human intervention. In MISSILE, we
adopt the FRESH procedure [16] to build an automatic significant features
extractor, which remarkably reduces the effort on feature engineering. The
detailed procedure is shown in Algorithm. 5, which consists of the following
three phases.

4.2.4.1 Extraction of Feature Candidates

The raw time-series exemplars are first mapped into common features
with a set of predefined parameters. Let us assume that there are k exemplars
in the collection E = {E1, E2, ..., Ek}. For each exemplar, n samples are
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Algorithm 5 Significant Features Extractor
Input: Exemplars

E = {E1, E2, . . . , Ek}, Ei ∈ Rm×n

Location labels
L = {l1, l2, . . . , lk}
Rank threshold r

Output: Final features
F ′ = {F ′1, F ′2, . . . , F ′k}, F ′i ∈ Rm×r

Procedure:
1: F = ∅, tempPV=∅, PV = ∅, Type = ∅, F ′ = ∅
2: for Ei in (E1, E2, . . . , Ek) do
3: Fi = ExtractCommonFeatures(Ei)
4: Add Fi into F
5: for feature type f in F do
6: if f is binary feature then
7: tempPV = FisherTest(f , L)
8: else if f is real-valued feature then
9: tempPV = MannWhitneyTest(f , L)

10: Add tempPV to PV
11: Type = RankFeature(PV, r)
12: F ′ = SelectFeature(F, Type)
13: Return F ′

collected from each sensor axis and a total of m sensor axes are sampled. As
such, each exemplar can be written as

Ei = {(s1
it1 , s

1
it2 , . . . , s

1
itn), . . . , (smit1 , s

m
it2 , . . . , s

m
itn)},

where t1 is the starting timestamp of exemplar Ei.

The features Fi of exemplar Ei are extracted from various statistics on
samples including maximum, minmum and root mean square (f rmsmi =√∑tn

t1 |s
m
i |2

n
):

Fi = {(fmax1
i , fmin1

i , f rms1
i , . . .),

. . . ,

(fmaxm
i , fminm

i , f rmsm
i , . . .)}.

4.2.4.2 Statistical Hypothesis Testing

After all the features are extracted, we need to select significant ones from
them before feeding them into a classifier for learning. Statistical hypothesis
test is conducted on each feature to evaluate its relevance to locations. The

66 Chapter 4 Learning Indoor Locations from Unprivileged Sensor Data



main idea is that, if a feature f can distinguish a particular location ja,
its conditional probability distribution on this location ja, P (f |ja), must be
significantly different from P (f |jb), the distribution on any other location jb.
Using this principle, the null hypothesis Hf

0 and alternative hypothesis Hf
1 to

test relevance of feature f to location ja are formulated as

∀jb 6= ja, H
f
0 = {P (f |ja) = P (f |jb)},

Hf
1 = {P (f |ja) 6= P (f |jb)}.

A set of probability values (p-value) PV will be returned after the tests.
A smaller p-value suggests stronger evidence to reject the null hypothesis
Hf

0 , which means the feature is relevant to location ja against location jb

since they do not share the same conditional distribution. In MISSILE, we
use two hypothesis tests, namely, Fisher’s exact test for those binary features
and Mann–Whitney rank test for those real-valued features.6

4.2.4.3 Selection

In the final step, we sum up the total p-values across all axes for each
feature and rank them in ascending order. Only top-r features which have
the smallest p-values are selected as the refined feature set F ′.

In MISSILE, we apply FRESH [16] with over 60 categories of pre-defined
features. They can be divided into two sets. Time-domain features such as
mean, variance, median, and the number of peaks mainly characterize signal
intensity as in time series. For example, a magnetic field sensor produces
different number of peaks based on the magnetic local variation in different
locations. Frequency-domain features capture the characteristics of signal
pattern in terms of frequency envelope and certain frequency component
after Fourier transform. Certain location such as a winding corridor may not
have obvious time-domain pattern but it has unique pattern on frequency
domain. Table 4.2 shows the top-12 features after the selection step using
our exemplar dataset. These features constitute the inputs for location
classification task in our experiment.

4.2.5 Modeling
In the core of MISSILE, we want to identify sensor patterns for different
sensitive indoor locations, which is a typical classification task. There are a

6The Mann–Whitney rank test can examine the distribution of two real-valued random
variables using statistics derived from ranking against each other. In the case of multiple
locations, the test is conducted in one-vs-all style.
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number of classification models suitable for this task, such as naive Bayesian,
decision tree, support vector machine and neural network. All of them are
capable of learning hidden pattern from data to labels. In MISSILE, we choose
the non-parametric decision tree as the classifier. In particular, we use the
CART (Classification And Regression Tree) classifier model [10]. This model
recursively splits input attributes (i.e., features in training data) to generate
a binary decision tree, where each leaf node corresponds to a class label.
To split attributes, gini index is employed for the impurity measurement
function H(·):

H(P ) = 1−
∑
k

p2
k,

where pk is the ratio of instances with label k among all the instances in node
P . If H(P ) = 0, then this node becomes a leaf node as only one label exists
among all instances. We determine the order of attributes to split using gini
gain:

Gain(P ) = H(P )−
∑
c

|Pc|
|P |

H(Pc),

where Pc represents child node c of node P , and | · | means the number of
instances. A higher gain value indicates a better choice to split this node.

4.2.6 Calibration for Anomalies
In the above classification, we trust the training set with their labels and
input features. However, in reality there are anomalies in the training set.
First, exemplars from the automatic collection may be labeled with incorrect
location due to BLE signal delay or signal penetration from the floor or wall.
Second, malfunctioned mobile sensors may produce low-quality data, which
significantly contaminates the training set. To prevent the above anomalies
from degrading the classifying accuracy, we adopt two orthogonal machine
learning techniques, namely Ensemble Learning (e.g., Random Forest [9])
and Isolation Forest [84] to identify these anomalies.

4.2.6.1 Random Forest

Ensemble learning uses multiple learning algorithms with bootstrapping
technique to achieve better classification accuracy than could be achieved
from any of the constituent learning algorithms alone. Recent side-channel
attack research [72] [36] suggests that an ensemble version of the decision
tree, namely the random forest, is suitable to conduct learning tasks on a noisy
dataset with distinguishing patterns. Random forest generates a multitude
of decision trees, and trains each with random subset data of the given
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features. When classifying input features, the data pass through every tree
in the forest and the final prediction is decided by the most predicted label
of these trees. The various trees trained with different subset data provide
significant variability for a prediction model, thus reducing the overfitting
issue. However, an ensemble classifier is at the cost of consuming more CPU
time for training and classification.

4.2.6.2 Isolation Forest

Isolation forest is a robust and efficient anomaly detection algorithm with
linear time complexity. It can be used before the training phase to filter
anomalies. The core idea of isolation forest is that anomalies are sensitive to
isolation when separating attributes. In other words, an anomaly is usually
far away from the dense distribution inside the class cluster, so it is singled
out at the early stage of isolation. Essentially an isolation tree (i-Tree) is a
full binary tree with random attribute split. It first randomly picks a feature
from an input feature set and selects a random splitting point between the
minimum and the maximum value of this attribute. All the instances are then
separated into two partitions based on this splitting point, one assigned to
the left child node and the other to the right child node. The isolation is then
recursively conducted until all instances are isolated in the leaf nodes.

Isolation forest constitutes multiple i-Trees obtained by isolating different
subsets of the original set of n instances. An anomaly score is then given to
each instance x as follows

Score(x, n) = 2−
E(h(x))
A(n) ,

where the nominator is the expectation of the path length h(x) (i.e., number
of edges from the root node to the x instance) of all i-Trees inside the forest.
And the denominator A(n) is the average path length of an i-Tree given n

samples (i.e., average number of edges from the root node to any external
leaf node) to normalize E(h(x)), which can be derived by

A(n) = 2H(n− 1)− 2(n− 1)
n

,

where H(n−1) is the (n−1)-th harmonic number.

Once the scores are ready, we filter those instances whose anomaly scores
are higher than our designated threshold. The final score is in (0, 1] since the
fractional component in Score(·) is greater than zero and it is bounded by
an exponential function. An exemplar is considered as an anomaly when its

70 Chapter 4 Learning Indoor Locations from Unprivileged Sensor Data



score is close to 1 (i.e., E(h(x)) is much smaller than average path length)
and a normal one when it is close to 0 (i.e., E(h(x)) is much greater than
average path length).

4.2.7 Attacking Stage
Unlike training stage, the attacking stage, i.e., location eavesdropping, is
operated on the victim’s device. As such, the key challenge in this stage is
to operate in a stealthy manner, i.e., using as low footprint of CPU, memory,
bandwidth and power as possible. Regarding low CPU and memory footprint,
we employ sliding window [45] to process the sensory data stream by limiting
the extent of data to a sequence of most recent samples. It is usually defined
by tuple {win, str} where win is the range of windowing and str is the stride
when sliding. When it is applied to the attacking stage, the sensor data are
sliced by the sliding window to form a specific length of exemplar and fed to
the embedded classifier. Once a sensitive location is inferred, the spyware
can take various actions such as notifying its command-and-control center or
starting audio recording (if corresponding permission has been granted).

Regarding low power footprint, we propose two optional techniques to
reduce the activity of the spyware. The main idea is to invoke the location
eavesdropping only when the victim is walking and is not far away from a
sensitive location.

Opportunistic Wi-Fi Activation: Nowadays many buildings or common
areas are covered by a large public Wi-Fi. By scanning the available SSIDs,
the spyware or repackage application can activate eavesdropping only when
a victim device “sees” a specific SSID, which means it is close to the premises
concerned. Note that scanning nearby SSIDs may require Internet-related
permission in the recent release of operating system7, but most users tend to
grant it because it is the most common permission.

Motion Activation: To reduce unnecessary eavesdropping activity when
victim is non-moving (standing or sitting still), the spyware can start mon-
itoring only after a motion is detected on the victim through endpointing.
Endpointing is a common technique used in speech recognition system to
determine the start and end of a user speech and to separate speech region
and non-speech region [80]. We can apply endpointing in motion sensor data
as the energy in movement region, i.e., the sum of squared sample values,

7Android does not restrict on scanning SSID until Oreo (8.0). Even in Oreo, SSID scan-
ning is still allowed if an app has any of the three permissions (CHANGE_WIFI_STATE,
ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION).
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is typically much higher than the energy in non-movement region. We can
allow sensors to deep sleep and wake up intermittently to see if the current
average window of energy exceeds a pre-defined threshold. If it does not
exceed, all sensors continue to sleep until the next wake-up cycle.

4.3 Performance Evaluation
To evaluate the real-life performance of the MISSILE system, we conduct
experiments on sensitive locations in a university campus, including students’
laboratory, professor’s office, common room, washrooms, ATM station, and
canteen entrances. The disclosure of these locations can lead to significant
privacy breach where, for example, the frequency of accessing washrooms
and ATM can indicate personal health and financial status. In practice,
entrances, exits and corridors connecting different zones are good targets
of sensitive locations as they can be used to outline a victim’s daily activity.
Such knowledge can further lead to social engineering attacks. As for the
selection of locations, we first identify sensitive indoor areas that imply
strong semantics of personal activities and may arouse interests of attackers.
Then for each chosen location we represent it (and its neighborhood) by a
combination of visual characteristics (e.g., door, turn, corridors) as listed in
Table. 4.3. In our experiment, we choose 15 representative sensitive locations
that exhibit different combinations of visual characteristics, which constitute
the unique patterns when victims pass by. Fig. 4.6 shows photo snapshots
of four sample locations whereas Fig. 4.7a and Fig. 4.7b plot them in their
corresponding floor plans.

The sensory data are collected by 10 individuals with mixed genders
and body figures. They carry the test devices with random placement
(left/right/front pockets) for their daily use over a period of 90 days. As for
location labels, we take advantage of existing BLE beacons deployed by other
services (e.g., teaching facilitation) to label sensor data and each location
has one beacon as reference point. To preclude the impact of the way we
split training and test datasets, all experiments are conducted 10 times using
random splits and the averaged results are reported. Specifically, among all
2580 exemplars of sensitive locations, 6 individuals’ exemplars (around 1548
exemplars) are used for training while the other 4 individuals’ (around 1032
exemplars) are used for testing. As for non-sensitive locations, we randomly
extract 350 exemplars for training into a “non-sensitive location” class, which
is close to the number of exemplars of the most popular sensitive location.
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Fig. 4.6: Indoor sensitive location examples
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Fig. 4.7: Experiment floor plan with example trajectory (shadow area illustrates
sensitive area).
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For testing, we extract another 1400 exemplars with non-sensitive locations.
This ratio, 1032 : 1400, approximates the statistics of ratios of sensitive to
non-sensitive locations of all exemplars in our experiment. Other system
parameters are listed in Table 4.4.

Our comparative study includes: (1) the performance of different normal-
ization approaches (i.e., rotation-matrix-based versus Euclidean-norm-based
normalization), (2) the impact of ensemble classifiers (i.e., decision tree
versus random forest), (3) the impact of isolation forest, (4) the impact of
training data size, (5) the impact of sensor types, (6) the impact of different
location characteristics, (7) the impact of system parameters (e.g. exemplar
length, tree numbers in random forest and feature setting), and (8) the
power consumption on popular devices. To evaluate the effectiveness of
MISSILE attack, we categorize all classification results of location label i
into 4 cases in one-vs-all style: true positive (TPi, recognizing a location i

correctly), true negative (TNi, ignoring a location i correctly), false positive
(FPi, recognizing a location i incorrectly), and false negative (FNi, ignoring
a location i incorrectly). Based on these cases, we define precision and recall
for each location label i as follows

precisioni = |TPi|
|TPi|+ |FPi|

,

recalli = |TPi|
|TPi|+ |FNi|

.

The precisioni essentially tells how well the system can distinguish loca-
tion i from other locations while recalli shows how well the system can detect
a particular location label. As these two metrics are sometimes contradicting
to each other, we also employ the F1-score [14] as an overall metric for each
location label i, which is

F1i = 2 · precisioni · recalli
recalli + precisioni

.

The overall F1-score is the weighted average F1-score of all location labels,
based on the number of true instances of each location in the testing data
label set L as follows

F1overall =
∑
i

|Li|
|L|

F1i.
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Table 4.4: System Parameters

Parameter Value

Exemplar Length 15s

Sampling Frequency 50Hz

Noise Filter α 0.15

Step Threshold 750

RSSI Threshold -85dB

Features 12 features per sensor axis

Anomaly Threshold 0.8

Models Decision Tree, Random Forest

Devices (Android Version, RAM, CPU)

LG G3 (5.0, 3GB, 2.5GHz),

Redmi Note4X (6.0, 4GB, 2.0GHz),

Google Pixel (7.1, 4GB, 2.15GHz),

HTC U Ultra (8.0, 4GB, 2.15GHz),

Samsung Galaxy S8 (8.0, 4GB, 2.35GHz)

Selected Sensors Gyroscope (3-axis),

Magnetic Field Sensor (3-axis),

Linear Acceleration Sensor (3-axis),

Accelerometer (3-axis)

Table 4.5: Overall Performance of Missile System

Classifier Training Time (s) Inference Time (ms) F1-Score F1-Score (after Isolation Forest)

DTEN 0.6 - 0.8 0.8 - 1.2 35.14% 42.35%

DTRM 1.6 - 2.0 1.5 - 2.0 49.27% 53.13%

RFEN 9.0 - 10.0 40.0 - 60.0 59.62% 63.14%

RFRM 15.0 - 16.0 60.0 - 80.0 70.81% 73.79%

4.3.1 Overall Performance of Missile System
Table. 4.5 shows the performance comparison between decision tree (DT)
and random forest (RF), with Euclidean-norm-based (EN) and rotation-
matrix-based normalization (RM), namely, DTEN, DTRM, RFEN, RFRM. We
observe that all classifiers significantly outperform random guess (one out
of 16 choices, 6.25%), which justifies the feasibility of MISSILE. Further,
random forest, an ensemble classifier, can achieve an even higher F1-score of
62%. On the other hand, rotation matrix normalization always outperforms
Euclidean norm by at least 10%, because it preserves useful information
for classification. Anomaly detection by isolation tree has shown moderate
improvement of F1-score for all classifiers, among which the classifier with
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Fig. 4.8: Impact of training data size by decision tree and random forest

decision tree and Euclidean norm witnesses over 6% improvement. This
shows both the ensemble method and rotation matrix normalization are more
robust against anomalies. For the rest of experiments, we will mainly report
DTRM and RFRM results after isolation tree. In terms of CPU time, classifiers
using ensemble method cost significantly 10 times more CPU resources to
train the model and 50 times more to make a prediction. Rotation matrix
normalization also noticeably increases the training overhead but has less
influence for prediction. It suggests that spyware can switch among different
classifiers to balance battery condition and desired utility.

4.3.2 Impact of Training Data Size
Fig. 4.8 illustrates the precision for individual sensitive locations. We cate-
gorize them into locations with small training data (≤ 50 exemplars) and
locations with rich training data (≥ 150 exemplars). We observe that lo-
cations in the former category (L6 to L15) have a higher probability to be
misclassified. This effect is more eminent for the decision tree than for the
random forest, as the former is a single classifier method and thus more
vulnerable to noises and outliers. An ensemble method such as the random
forest tends to alleviate the impact of noises and outliers by splitting data
into subsets with crossover items, so that they cannot easily dominate the
training process. Note that L16 (grouped as N) is a location label for all
non-sensitive locations. It achieves around 90% accuracy in RFRM , which
indicates that the system is able to identify most of non-sensitive locations.
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Fig. 4.9: System precision with one and two reference points calibration

4.3.3 Impact of BLE Reference Points
To evaluate the impact of the number of BLE reference points on the annota-
tion of starting timestamps, we collect additional training data from location
L1 and L2 using two beacons each and re-train our system. Fig. 4.9 plots the
difference of system precision using one and two reference points. Overall,
the system with two reference points always performs better by 3%-4% for
DTRM and 1% for RFRM. The small gain might be attributed to the long
exemplar length, which is already long enough to include enough sensor
patterns to distinguish a sensitive location (more details are discussed in
Section 4.3.6. Since one reference point already leads to satisfactory per-
formance, throughout the experiment we use one reference point for each
location and calibrate the starting timestamps of exemplars with the mean of
deviation distribution.

4.3.4 Impact of Sensor Type
To investigate the contributions of different sensor types in the MISSILE
system, we measure the F1-scores using single or a pair of sensors in Fig. 4.10.
We observe that in both DTRM and RFRM, the top F1-score rankings are
similar, which means some sensor or sensor combinations are consistently
better than the others regardless of the classifiers. In particular, the magnetic
field sensor plays a major role, with its F1-score reaching over 60% (alone)
and around 70% (pairwise). This indicates that the magnetic distribution
caused by geolocation and indoor structure material can constitute a unique
signature for inferring sensitive locations. By combining another motion
sensor, such a sensor pair can approximate the result of using all four sensors.
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Fig. 4.10: Performance results in descending order for different sensors: Gyro-
scope (G), Magnetic Field Sensor (M), Linear Acceleration Sensor (L),
Accelerometer (A)

Other three sensors leverage user behavior information and obtain similar
results (over 50%).

4.3.5 Impact of Location Characteristics
Regardless of the methods used for classification, we observe that the F1-
scores in some locations are consistently better than those in the others. For
example, locations L1 and L2 have both high precision (75% and 73%) and
high recall (90% and 86% in Fig. 4.11). From Table 4.3, we learn that L1
and L2 have 4 and 3 characteristics, respectively, while all other locations
have 2 or even fewer. Furthermore, some characteristic has more significant
impact than the others. For example, the top-ranked recall locations — L1-L5,
L13, L14, L11, and L15 — all share a common characteristic: a fire stop
door. Such high recall implies a high tendency to identify locations with door
opening event correctly.
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Fig. 4.11: Recall of RFRM in ascending order for individual location
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4.3.6 Impact of System Parameters
4.3.6.1 Impact of Exemplar Length

In previous experiments, we set 15 seconds as the standard time length of
an exemplar in the attacking stage. This value is set to generate a sufficiently
long signal pattern that captures necessary characteristics of any sensitive
location. In this subsection, we vary this length from 3 to 30 seconds and
plot the F1-score in Fig. 4.12a under both decision tree and random forest
methods.

For both methods, we observe a steady increase as the exemplar length
increases, which coincides with our reasoning above that a longer exemplar
may capture more characteristics of a sensitive location. However, the F1-
score starts to saturate after 12 seconds especially for classifier RFRM , which
indicates that over-extending this length does not significantly help to further
improve the classification results as the chance of a sensitive location being
covered by two consecutive exemplars is slim.

4.3.6.2 Impact of Random Forest Setting

We vary the number of decision trees for the ensemble method (i.e., the
random forest) and plot the F1-score for both Euclidean norm and rotation
matrix normalization in Fig. 4.12b. We observe that both methods reach a
saturation point after 60-100, which means the random forest is robust under
this parameter.

4.3.6.3 Impact of Feature Setting

Top-12 feature selection is adopted during the automatic feature extraction
in all the previous experiments. To examine the impact of this setting, we
measure and plot the F1-score change of classifier RFRM with feature
sets generated under different top-r settings in Fig. 4.12c. We observe that
top-1 feature in classifier RFRM can reach an F1-score of 48% alone. The
performance of classifier grows steadily until this setting reaches top-6 and F1-
score saturates at around 73%. This indicates that a minimum of top-6 feature
setting is required for classifier RFRM to achieve its best performance. Since
the ranking is decided by p-values shown in Table. 4.2, it is obvious that
features containing the unique information of sensitive location are highly
associated with low p-values.
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Table 4.6: Spyware Power Consumption on Monitoring Sensors (50Hz)

Model Capacity Spyware-On Idle Usage

HTC U Ultra 3000mAh 1.323% 0.611% 0.712%

Samsung Galaxy S8 3000mAh 1.529% 0.801% 0.728%

Google Pixel 2770mAh 1.317% 0.507% 0.810%

4.3.7 Power Consumption
The spyware installed by MISSILE continually samples multiple mobile sen-
sors. To reduce power consumption, we implement both opportunistic WiFi
activation and motion activation as in Chapter 4.2. To further evaluate the
power impact of continuously accessing sensors, we activate the spyware in
the background to sample sensors with the screen off and measure the power
usage per hour of various smartphones. The result is presented in Table. 4.6,
which shows a moderate consumption of around 0.7% - 0.8% extra battery
per hour.

4.4 Extension and Countermeasure
In this section, we will discuss the potential extension of MISSILE and coun-
termeasures.
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In the experiment, the sensitive locations data are collected by attackers
manually, which limits the scalability of this attack. To acquire a large-scale
and more diversified dataset, this process can be enhanced by automation or
crowdsensing. The former, such as IndoorAtlas [37], can provide efficient
sensory measurement of indoor location. The latter delegates the task of
sensing and labeling location data to a crowdsourcing platform.

Currently, the MISSILE system only considers stateless recognition, which
does not take the relationship between sensitive locations into consideration.
Inspired by dead reckoning for indoor positioning [44], we can improve
the location inference performance by extracting detailed context such as
walking distance, turning angle and pushing motion.

As for countermeasures for indoor sensitive location inference attack of
MISSILE, we propose two methods as below.

Access Control: Permission mechanism is the first line of defense. We
suggest that no request from mobile application for statistics or raw sensory
information should bypass the permission mechanism. In addition, since
high-resolution sensor data can be exploited by attackers who take advantage
of subtle change [62], we suggest replacing them with feature-level data
access, which also significantly reduces computational cost.

Data Manipulation: Noise injection is an alternative countermeasure.
Software level noise injection has already been applied to GPS data in the
geo-social network. With the same rationale, noise can be injected into
sensor readings to avoid highly accurate location inference. If the operating
system cannot be trusted to perform this injection, we recommend employing
hardware noise injection, for example, enabling the vibrator of a mobile
device.

4.5 Summary
In this chapter, we investigate a side-channel attack that can eavesdrop user’s
sensitive locations using unprivileged sensory information. This attack is
modeled as a classification problem of various sensory data collected from
different locations. The classifier is built from supervised learning of training
data prepared by automatic labeling mechanism, effective processing and
optimal feature extraction. Real experiments are conducted on 15 indoor
locations inside a university campus. The classifier using modeling with
anomaly calibration can reach around 73% F1-score, which is significantly
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higher than random guess. As for future work, we plan to implement the
improved version using multiple reference points for labeling, stateful routes
and other side-channels (e.g., JavaScript in mobile browser). We also plan to
investigate countermeasures against such attack, evaluate and compare them
on various metrics, such as time complexity, accuracy and utility.
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5Collecting Data with
Privacy Protection

In this chapter, we focus on the attack surface of individual records and how
to prevent privacy leakage during collection. In most of the machine learning
applications, the machine learning model is refined by continually feeding in
new user data (as features) and their feedback (as labels) from their mobile
devices. However, these data, such as type history, web access logs, and fre-
quently visited locations, are often sensitive and private information. Despite
of strict legislation on personal data protection and the efforts made by most
service providers, hosting personal data in a centralized location can still be
highly risky due to security breach, internal theft or corporate dishonesty.
A famous incident is the leakage of celebrity photos from iCloud in 2014.
Unfortunately, centralized sanitation (e.g., generalization) and encryption
schemes are shown vulnerable to various attacks, such as deanonymizing
Netflix challenge dataset with IMDb data [67].

More recently, two distributed data analytical tools are proposed to pro-
tect privacy, namely, local differential privacy [21] and federated machine
learning [59]. Both tools avoid direct access of personal data while still re-
taining high utility, e.g., high accuracy on statistics estimation or the trained
model. Their mechanisms are summarized as follows:

1. Local differential privacy (LDP): Each user perturbs her data locally
before sending them to an untrusted service provider for data collection
and analytics. LDP achieves plausible deniability of each individual un-
der a measurable and rigorous mechanism. LDP is heavily investigated
in the literature of privacy-preserving statistics collection.

2. Federated machine learning (FML): It trains a globally shared model
over a large number of distributed clients using an efficient control
protocol with the central server. Only model parameter updates calcu-
lated on local data are submitted to the server, who aggregates them to
improve the shared global model. This approach not only protects users’
local data but also leverages on the computing resources on mobile
devices.

Although both tools avoid direct access, their methodologies are essen-
tially different. LDP is a theoretical privacy notation that can be achieved by
different algorithms, while FL is a generic distributed learning framework
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without theoretical provable privacy. To conduct a comparative study of both
tools, we deploy them to solve a common set of classification problems in mo-
bile scenarios. This allows us to gain important insights of their performance
in terms of classification performance, privacy loss, CPU/power consumption,
and bandwidth consumption. In particular, to unify the privacy model of
both solutions, we design a privacy loss metric through a general sample
inference attack. To summarize, our primary contributions are as follows:

• We implement two competing solutions that learn from user data with-
out submitting the original user data to the server and extensively
discuss the unification of two solutions.

• We design a unified privacy loss metric for both solutions through a
general sample inference attack.

• We conduct extensive experiments to compare both solutions in a set
of machine learning problems in mobile scenarios.

The rest of the work is organized as follows. In Chapter 5.1, we introduce
the fundamental principles of LDP and federated machine learning, and point
out their problems. Chapter 5.2 presents the methodology of our comparative
study of the two techniques. The experimental results shown in Chapter 5.3
compare their performance for given learning tasks with respect to various
model and dataset parameters. We discuss other challenges of FML in Chapter
5.4. And finally, the findings of the study are summarized in Chapter 5.5.

5.1 Background
5.1.1 Local Differential Privacy
LDP [21] extends the notion of differential privacy by perturbing local data
with noise determined by a predefined parameter. In a nutshell, a perturba-
tion algorithm A probabilistically modifies a local raw value νi to another
value in the same domain of possible outputs κ. The modified value is then
submitted to the server. A learning task on the statistical features (e.g.,
frequency and mean) of such data retains certain accuracy after the server
collects all perturbed values. Meanwhile, each individual can have plausible
privacy guarantee bounded on a privacy budget of ε.

86 Chapter 5 Collecting Data with Privacy Protection



Formally, the perturbation algorithm suffices ε-LDP principle if and only if
for any two individuals’ inputs νi and νj, we have

Pr[A(νi) = s] ≤ eε · Pr[A(νj) = s],

where s ∈ κ. Obviously, perturbed data is closer to the original data with a
larger privacy budget ε and user population. Since the noises are applied
to the data set directly, this strategy may have a strong impact on model
performance when the budget is low.

5.1.2 Federated Machine Learning
In a task of federated machine learning, each mobile device initializes its
own training using the shared model downloaded from the server and builds
a new model using its local data. The updated model parameters are then
be returned to the server, averaged with other peer devices and merged as
the new shared model. This process is repeated multiple rounds to satisfy a
learning objective until the desired set of model parameters are obtained.

Formally, a typical supervised machine learning objective function can be
expressed as

arg min
W

1
N

∑
j∈J
L(f(xj,W ), yj),

where a learning algorithm is stated as f and its corresponding parameters W
are estimated from the dataset J with a total sample size of N by minimizing
the loss L between predictions on all input xi and true label yi in the training
set.

In federated machine learning, data are assumed to be distributed over a
set of M mobile devices and each of them can be considered as a partition
P with n = |P | training samples. The objective in this setting evolves to
minimize the aggregated loss:

g(W ) =
∑
m∈M

nm
N
F (Pm,W ), (5.1)

where F is the local loss defined by

F (Pm,W ) = 1
nm

∑
k∈Pm

L(f(xk,W ), yk). (5.2)
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To train such an objective in Eqn. 5.1, a straightforward gradient descent
algorithm can be applied to estimate model parameters using the iterative
rule below:

Wt+1 ← Wt − η∇g(W ),

which is a full-batch gradient descent using all client data to generate an
update in round t. However, this is not practical since it takes a long time for
each iteration and even multiple times longer under the case of potentially
high latency and limited bandwidth of the mobile network. To improve
communication efficiency, federated machine learning commonly increases
individual client computation by asking each mobile device to iterate over
local data several times with stochastic gradient descent before submitting
the parameter updates to the server for averaging [59].

5.2 Methodology
5.2.1 Problem Statement
We aim to tackle a machine learning problem in a distributed data setting
where companies such as Google and Apple would like to improve their AI
service accuracy, such as word auto-complete suggestion, through the data
(e.g., keyboard input) from millions of distributed data points. To minimize
the risk of privacy leakage, these companies adopt either of the two strategies:
local differential privacy to allow users to perturb data before submitting to
them or federated learning to train the machine learning model locally and
only update the model parameters to them. Table. 5.1 summarizes the main
characteristics of both strategies. A typical data record for classification task
is in the form of {X1, X2, ..., Xl} where Xi (i < l) are feature dimensions and
the last one Xl is the classification label of this record.

5.2.2 Strategy LDP: Submit Perturbed Data with
ε-LDP

5.2.2.1 Client Side:

To perturb each user’s data while satisfying ε-LDP, a sanitized mechanism
is introduced which covers sensitive information with a certain amount of
noises. For categorical attributes, each of the attributes has ki (1 ≤ i ≤ l)
candidate values across all samples. For any dimension Xi, the perturbed
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Table 5.1: Comparison of LDP and FML

Local Differential Privacy Federated Machine Learning

Target Data Collection Distributed Learning

Computation
Mobile Perturbation,

Server Training
Mobile Training,

Server Aggregation

Application Shared Model Personal/Shared Model

Privacy Preservation Adaptive Privacy Budget Model Updates Only

Communication One-time Submission Multiple Interactions

Frequent Data Type Structured Data Text, Image, Audio

output can be X ′i by using a staircase mechanism proposed by [43], namely
k-RR:

P (X ′i|Xi) = 1
ki − 1 + eε

e
ε if X ′i = Xi

1 if X ′i 6= Xi

,

where there will be a probability of eε

k−1+eε to output the real value, and 1
k−1+eε

to output one of the remaining k − 1 candidate values.

As for numeric attributes normalized in [-1,1], a piecewise mechanism by
[90] can be applied as follows:

P (X ′i|Xi) = 1
eε/2 + 1

e
ε/2 if X ′i ∈ [Li, Ri]

1 if X ′i ∈ [−δ, Li) ∪ (Ri, δ]
,

δ = exp(ε/2) + 1
exp(ε/2)− 1 ,

Li = δ + 1
2 ·Xi −

δ − 1
2 ,

Ri = Li + δ − 1.

where there will be a probability of eε/2

eε/2+1 to output a value sampled in
[Li, Ri], and 1

eε/2+1 to output one in [−δ, Li) ∪ (Ri, δ]. After perturbation,
the sanitized data {X ′1, X

′
2, ..., X

′
l} will be submitted to the server when a

high-speed network is available such as Wi-Fi.

5.2.2.2 Server Side:

The server receives a set of perturbed data from clients and concatenates
them into one large dataset. Different from the statistics collection which
usually has a calibration, the sanitized data won’t have such a post-processing
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step since we aim at generating a perturbed dataset. All data points will
be checked for any invalid or erroneous values produced by the client side.
Features can be further extracted and put into learning pipeline to train a
new model. To make use of the current model, its parameters will be used to
initialize the new model.

5.2.3 Strategy FML: Train Locally with Federated
Machine Learning

5.2.3.1 Client Side:

The client receives an instruction for model update task with a set of
training parameters like local batch size and the number of training passes.
The current service model with weights W will be downloaded into this
device. Local data will be formulated into a proper input form and put into
the training pipeline. In the current round t, the client m may iterate through
the local data E passes with learning rate η before uploading results using
the following gradient descent,

Wmt ← Wmt − η∇F (Pm,W ),

where Pm is local data {X1, X2, ..., Xl}m used in one iteration but this can
be controlled by the server to avoid using the whole local dataset in one
batch.

5.2.3.2 Server Side:

The server sends out an invitation to a fraction C of current online devices
M at each round of training and starts sending service model to C ·M devices
after confirmation. Updates received from the selected clients will be merged,
which is equivalent to:

Wt+1 ←
∑ nm

N
Wmt .

This server-client interaction will be repeated for multiple times until the
changes of parameters meet the pre-defined threshold.

5.3 Evaluation
5.3.1 Setup
We evaluated three public datasets in this comparative study.
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• NYC Taxi [85]: This dataset contains 1.4m samples of 2016 yellow
taxi trips in New York City. Based on the 8 attributes (e.g., number of
customers, starting location of a trip), a model is trained to predict the
duration of each trip.

• BR2000 [38]: This dataset has 38k samples of census data collected
in 2000 Brazil demographic census. Based on the 13 attributes (e.g.,
household, disability), a model is trained to predict a person’s monthly
income.

• Adult [22]: This dataset consists of 45k samples of census data from
UCI Machine Learning Repository. 14 attributes (e.g., education level,
occupation) are provided to determine whether a person earns over
50k a year.

All datasets contain categorical and continuous attributes. To ensure
the data are applicable to LDP, we perturbed the numberic attributes and
categorical attributes using corresponding mechanisms. Missing values and
outliers were removed. For both tasks, the machine learning model was a
neural network with 2 hidden layers containing 30 units, followed by relu
activation function. The output layer was a softmax activation to produce
classification results. Both strategies were given an initial model trained by
10% of data. The remaining 70% of data were distributed to clients for local
training and 20% were used for testing. Similarly, LDP only perturbed the
70% of the data and use the original 20% for testing.

All experiments are implemented with Python 3.6 on a desktop computer
running Windows 10 with Intel Core i7-7700 3.6GHz CPU and 32G DDR4
RAM. Federated learning is simulated with TensorFlow r1.13. As the experi-
ments require thousands of mobile devices to participate, which we do not
own, we use multiple server machines and multithreading to simulate these
devices. For privacy budget in LDP, we demonstrate the results of ε set to 2,
4 and 8, which are common budgets adopted by industries [5]. For LDP, the
central model is trained with 500 iterations for maximum 100 epochs using
a learning rate of 0.1. As for FML, by default, we pick 20% of clients in each
round for maximum 200 rounds and iterate 20 local passes with learning
rate 0.1 in each device before uploading the updates.

5.3.2 Classification Performance
To explore the performance of two strategies, we evaluated the misclassifica-
tion rate with respect to the number of clients. The rate was reported when
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Fig. 5.1: Misclassification rate of different strategies

it converged during training or exceeded the maximum number of server
epochs in LDP (resp. maximum communication rounds in FML).

As shown in Fig. 5.1, both strategies reduce misclassification rate with
the change of client numbers from 0.1k to 1.6k. The rate of LDP does not
change much for the budget of 2 until it reaches around 1300 clients where
the rate achieves the optimal 34% in BR2000 dataset. The case with budget
of 4 converges slightly quicker to a misclassification rate of 27% while the
budget of 8 reaches the optimal performance of 15% in Adult dataset and
eventually outperforms FML in most datasets. This is consistent with the
perturbation mechanism where more relaxed privacy guarantee, i.e., greater
budget, leads to lighter noises. Most of the misclassification rates saturate
after the client size exceed 1k. It indicates that the model performance of
LDP mainly benefits from an environment with a large scale of distributed
data.

For FML, IID and non-IID setups were evaluated, that is, to distribute
the data in a way where most labels evenly exist in each device or cluster
in different devices. In both setups, misclassification rate decreases faster
with more participants and stays at saturated level on 14% (IID) and 19%
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Fig. 5.2: Privacy of different strategies (E: number of local passes in FML)

(non-IID), optimal in BR2000 and NYC Taxi respectively when the number of
clients reaches between 700 and 1000. FML can learn a useful model even if
there are only a few clients at the early stage compared to LDP. It is obvious
that the uneven distribution of data leads to a negative impact on FML, while
LDP is free from the influence of data distribution since this strategy collects
all data in the first place.

5.3.3 Privacy Loss
To understand the privacy loss of both strategies, inference accuracy is eval-
uated using general sample inference attacks. In this attack, we assume an
adversary (e.g., untrusted aggregator) is able to decrypt the communication
channel in both strategies and has basic knowledge about the types of the
local training set (e.g., attribute type, candidate value). By observing the
data transferred between a client and a server, i.e., perturbed data in LDP
and model parameters in FML, the adversary can perform inference attack
to determine which samples drawn from the same distribution belong to
the client training set. A higher inference accuracy leads to greater privacy
loss.
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In LDP, the inference is performed by measuring the Manhattan distance
between testing data and perturbed data, and a testing record is considered
as a member of local dataset when its minimum distance is less than a
threshold. As for FML, since adversary can obtain both global model and
local updated one, by comparing the membership inference [78] on the
two models, the local samples can be exposed. That is, given a threshold,
if a record is recognized as a member in the inference on the local model
but non-member on the global model, it is likely that this record belongs
to the local set. We evaluated all settings on a testing dataset with half of
the samples used in local training and the other half outside of the device,
such that the random guess is 0.5. All results were reported under optimal
threshold in their settings.

As shown in Fig. 5.2, LDP achieves a flexible control over privacy loss
compared to FML. Except for the budget of 8, the inference accuracy is
constrained to less than 80% and even 55% as privacy budget drops to 2 in
all datasets. As for FML, the inference accuracy can reach over 80% among all
datasets with 5 local passes and even 90% in NYC Taxi and Adult when local
passes increase to 10. To improve communication efficiency, it commonly
adds more computation to clients by iterating local updates multiple times
before the aggregation step. This indicates that such fine-grained updates can
significantly capture the details of local data and are vulnerable to malicious
inference. In this case, LDP with low budget has stronger privacy guarantee
than FML while the performance of classifier is the trade-off by revisiting
model misclassification rate.

5.3.4 CPU Consumption
5.3.4.1 Client Side

The main client CPU consumption is on perturbation of data for LDP
while FML spends most of the time updating the global model with local
data. We review the CPU time against the average local dataset size of each
device in Fig. 5.3. FML consumes more CPU to iterate through the data and
grows linearly to over 3.8ms for NYC Taxi (resp. 6.3ms for BR2000) while
LDP grows significantly slower and only reaches 1.2ms for NYC Taxi (resp.
1.7ms for BR2000). When the size of local dataset is small, the time will
approximate preparation time such as parameters initialization since the real
processing time is too short. The battery will drain faster under the setting of
FML.
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Fig. 5.4: Communication cost

5.3.4.2 Server Side

The computation resources of server are spent on pooling client’s data
and training the model in LDP. Obviously it consumes more CPU over server
side to train the model compared to FML where the server only needs to co-
ordinate clients and aggregates all received updates, since training workload
is transferred to clients. For each model, 100 server training epochs take an
average of 36s with 500 iterations in LDP while the aggregation and update
process in FML take less than 1s.

5.3.5 Communication Cost
5.3.5.1 Client Side

As for data transmission of client device, since LDP will collect all data,
the transmission amount is constant to the size of local dataset while FML
sends a number of parameters depending on model size. In Fig. 5.4a, LDP
has a larger communication cost than FML when communication rounds are
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less than 300. Eventually, FML has 3x more cost due to frequent exchange of
model updates with server.

5.3.5.2 Server Side

On the server side, since the communication cost against round change
just aggregates all client’s, we instead investigate the transferred data size
against the number of clients by fixing round number at 1.1k (best model
performance) for each client. As shown in Fig. 5.4b, LDP grows much faster
with more participants than FML in communication cost since it is equivalent
to collect the whole dataset combined from all clients. Due to the frequent
interactions between clients and server, the accumulated transferred data
grow quickly as well and reaches over 30MB when 20% of clients participate
in each round and can outgrow LDP with 40% participation rate.

5.4 Discussion
Impact of Data and Training Procedure In this comparative study, we
evaluated moderate type of data for generality. For “heavy data” like images
and audio, we expect the trend of computation/network overhead will be
similar to current comparative study but with widening gap. On the one hand,
client CPU usage in FML will grow drastically as the model complexity also
increases for such data while LDP remains the same. On the other hand, LDP
will consume higher network usage given that perturbed data has a similar
size of the original one. For LDP, we adopt the same straightforward training
as FML for fair comparison. However, the model performance may be volatile
to the privacy budget. Alternative training procedure using frequency-based
statistics [2] can be adopted to improve the model quality and stability. The
main idea is to generate synopsis such as histogram from perturbed data and
synthesize training data from that synopsis.

Privacy Challenges in FML Even though FML provides a good property of
intrinsic preservation of local data while delivering high-quality model, this
strategy still faces many challenges on privacy protection and the reasons are
three-fold. First, as shown in our empirical analysis, privacy control is limited
for the submitted updates in FML, since the change of local pass number does
not produce a significant influence over the privacy loss. Second, current
FML heavily relies on encryption schemes to deliver secure aggregation and
is susceptible to the inherited vulnerabilities of that designated encryption.
Third, the system efficiency is liable to be degraded by the secure aggregation
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scheme, such as multi-party computation (MPC) [8] which is inherently
computationally complex.

Unification of FML and LDP. Essentially, the aggregation step in FML is
performing mean calculation on scattered data sources. Given that LDP
has been frequently applied in such distributed analytical task [21], we
can consider a unification approach that tackles the above challenges by
integrating FML with LDP. The core idea is to inject ε-LDP perturbation
to model updates before transmission. Specifically, on the client side, a
set of training instructions are provided as usual to perform local training.
In addition to batch size and the number of training passes, the client is
also notified of LDP perturbation mechanism and a privacy budget ε. After
parameter update W is derived, instead of submitting it immediately, the
client will generate a noisy version W + ldp(ε). On the server side, noisy
updates received from the selected clients will be merged to canceled the
additive noises. This server-client interaction can repeat for multiple times
with different budgets. If the perturbation is produced by a biased mechanism
with non-zero mean, the server will further perform a calibration step on the
aggregated result to obtain an accurate estimation.

In this way, the adversary can only recover noisy model updates even if
the communication channel is intercepted. Besides, the level of perturbation
can be flexibly negotiated on the fly. For example, if a participant finds the
privacy budget unsatisfied, he/she can reject this round of training until
the expectation is met. Furthermore, perturbation noise ldp(ε) is commonly
generated with light computation, which can improve the overall efficiency
compared to encryption scheme. Emerging works have tried to leverage such
unification but the designs are still limited to particular genres of models[75].
In some aspects, the unification approach can always outperform the two
originals given that the perturbation is presented in intermediate values and
keep a high resolution of original data. Nonetheless, we leave their empirical
study for future work.

5.5 Summary
We investigate two promising data analytic strategies for distributed setting
while preserving user privacy. Both strategies are adopted in the same real
machine learning problems and evaluated with extensive experiments under
various system settings. The results show that local differential privacy
mainly benefits from a large user population and consumes less CPU/battery
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on mobile devices while maintaining a rigorous privacy guarantee. Federated
machine learning can adapt itself quickly for a moderate number of users
and produce a learning model with higher quality while the fine-grained
update is vulnerable to inference. Nonetheless, the data submitted with local
differential privacy can be reused indefinitely for other tasks such as marginal
release or itemset mining, while the model trained by FL is specified for one
type of prediction task. As for future work, we plan to evaluate different
unified solutions again each other using similar empirical framework. We also
plan to propose new privacy-preserving method based on the comparative
study.
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6Discussion and
Conclusion

In this thesis, we investigated privacy invasion and protection in three levels
of attack surface under the context of adversarial machine learning. We
proposed a boundary differentially private layer against extraction attack, de-
veloped a learning-based eavesdropping system to infer indoor whereabouts
and conducted a comparative study on two emerging privacy-preserving
data analytics using local differential privacy and federated machine learn-
ing. As demonstrated in our study, unlike traditional privacy challenges in
data management, securing AI systems against adversarial probing can be
more difficult with the scrutiny of user requirements as well as the rapid
evolvement of adversarial machine learning in different attack surfaces. This
domain is in its infancy and calls for a broad contribution on various topics,
such as balance of privacy and performance, personalized and on-demand
design, rigorous privacy restriction in theoretical aspects. In particular, we
would like to discuss three important directions that may shine the way
toward privacy protection for the future.

Extraction and Defense on Sequential Model. As discussed in the
literature review and our defense proposal, most existing extraction attacks
focus on conventional classifiers where the output space is constrained to
discrete and limited candidates. We are not aware of its influence on model
adopted for sequential data, such as recurrent neural network (RNN), long
short-term memory network (LSTM). Particularly, with the rise of voice
assistant, automatic speech recognition has been widely applied in mobile
phones, smart speakers and automatic driving, hence posing a compelling
call to understand feasibility and damage. Compared to conventional model
extraction, the amount of query budget is non-trivial given the complexity of
sequential model and output combination, incurring high cost and system
attention. Recently there has been a trend to provide offline service as Google
rolls out on-device assistant and keyboard with the well-compressed model,
which may alleviate this challenge and open up a new discussion.

Raw Data and Pervasive Obfuscation. Throughout this study, it is not
difficult to see that the feasibility and severity of the attacks partly take
advantage of accurate data produced in the pipeline of machine learning
(e.g., faithful prediction, high-frequency sensor data, latest gradient). It
would be interesting to ask whether such high-resolution values are necessary
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for all systems regardless of timing and input. A framework of pervasive
obfuscation may be the potential solution to prevent privacy leakage in the
first place and to significantly reduce adoption effort when new threats are
encountered.

Sparse Data Collection. We have discussed the unification of local dif-
ferential privacy and federated machine learning in the previous chapter. An
implicit assumption in such unification is that there are enough participants
to contribute to the learning process so that the obfuscation to the individual
model can be sufficiently smoothed out. However, there are cases where
this assumption will no hold, such as sparse data on particular illness where
perturbation to all model updates are unrealistic to utility. One possible
way to tackle this challenge is to consider the correlation between model
updates or identify insignificant parameters using techniques from pruning
study [13]. In this way, the privacy budget can be largely preserved for
informative feedback and improve its utility when data are sparse.

To conclude, machine learning plays an increasingly important role in
the rapidly transformed society and inevitably draws growing attention from
adversaries. It is imperative to comprehend the source of privacy leakage
in adversarial machine learning from a systematic view and never too late
to prevent its immense impact. As Patrick Henry said in 1775, “Give me
liberty, or give me death.”, we look forward to a world where true liberty not
only lies in the freedom of expression but also in the choice to seclude the
information about himself/herself.
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