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Abstract
Since its inception, blockchain technology has shown promising application prospects

from cryptocurrency to a variety of forms, such as medicine, economics, cloud

computing, and so on. As the program deployed and executed in blockchain, smart

contract is the core technology in the 2.0 era of blockchain. Through developing

smart contracts, developers can realize rich logic and greatly expand the capabilities

of blockchain system. As the most popular blockchain system that supports smart

contract, Ethereum can complete one million transactions per day.

Since blockchain is one of the core technology in FinTech (Financial Technology)

industry, users are very concerned about its security. Some security vulnerabilities

and attacks have been recently reported. Note that smart contracts with security

vulnerabilities may lead to financial losses. For instance, in June 2016, the criminals

attacked the smart contract DAO by exploiting a recursive calling vulnerability, and

stole around 60 million dollars. In this thesis, we conduct systematic examination

on security risks to popular blockchain systems. We survey the real attacks on

popular blockchain systems and analyze the vulnerabilities exploited in these cases.

Furthermore, we summarize practical academic achievements for enhancing the

security of blockchain, and suggest a few future directions in this area.

More than eight million smart contracts have already been deployed in Ethereum,

while only less than 1% are open-source. Unfortunately, facing the bytecodes of

deployed smart contracts, it is difficult to quickly and comprehensively understand

their details. In this thesis, we propose and implement a system named Stan, which
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can analyze the runtime bytecodes of smart contract and automatically describe its

interfaces in natural language, enabling users to quickly and thoroughly understand

closed-source contracts. Given the address of target contract, Stan can automati-

cally acquire its runtime bytecodes and describe every interface from four aspects.

The functionality description summarizes the interface’s functionality, and usage

description tells the user how to call this interface. The behavior description describes

message-call related behaviors within the interface, and payment description describes

whether the interface can receive ETH. We analyze bytecodes through symbolic

execution and generate readable descriptions following standard workflow of NLG

(Natural Language Generation) system. Furthermore, we statically analyze contract

source codes to evaluate descriptions’ adequacy and accuracy. We also evaluate

descriptions’ readability through questionnaires and statistical methods.

Ethereum has two kinds of accounts: EOA (Externally Owned Account) and

contract account. However, not all accounts should be kept. We regard the worthless

accounts that deserve to be removed without affecting the normal operations of users

and other accounts as erasable accounts. Erasable accounts not only waste system

resources and affect the efficiency of blockchain, but also easily waste users’ money. In

this thesis, we design and implement a novel tool named Glaser to discover erasable

accounts by analyzing the StateDB of Ethereum. In detail, it leverages program

analysis techniques to discover contract accounts with worthless runtime bytecodes,

and employs state field and transaction analysis to discover EOAs that no one owns

their private keys. The accounts discovered by Glaser are worthless and deserve to

be removed without affecting the normal operations of other accounts/users. Applying

Glaser to all Ethereum accounts, we discovered 508,482 erasable accounts, and

more than 99.9% of them are still stored in Ethereum. These erasable accounts have

wasted users more than 106 million dollars and can be removed through executing

SELFDESTRUCT operation in their runtime bytecodes by users, or removed forcibly by
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Ethereum officials. Glaser also characterizes erasable accounts through call graph

and creation graph analysis.

Gas is the execution fee for running smart contracts in Ethereum. However, we

find that under-optimized smart contracts cost more gas than necessary, and therefore

the miners or users will be overcharged. In this thesis, we identify seven gas-costly

patterns and divide them into two categories: useless-code related patterns, and

loop-related patterns. Furthermore, we propose and develop Gasper, a new tool for

discovering gas-costly patterns in bytecode automatically. Gasper leverages symbolic

execution and it can locate three representative patterns. By applying Gasper to

analyze deployed smart contracts, we find that more than 80% smart contracts suffer

from these three patterns, respectively. There are already more than 296 thousand

kinds of cryptocurrencies built on Ethereum. However, not all cryptocurrencies can

be controlled by users. For example, some money is permanently locked in wallets’

accounts due to attacks. In this thesis, we conduct the systematic investigation

on locked cryptocurrencies in Ethereum. In particular, we define four categories

of accounts with locked cryptocurrencies and develop a novel tool named Clue to

discover them. Results show that there are more than one billion dollars value of

cryptocurrencies locked in Ethereum. We also analyze the reasons (i.e., attacks/be-

haviors) why cryptocurrencies are locked. Because the locked cryptocurrencies can

never be controlled by users, avoid interacting with the accounts discovered by Clue

and repeating the same mistakes again can help users to save money.

Keywords: Smart Contract, Ethereum, Program Analysis, Cryptocurrency, Mali-

cious Behavior.
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Chapter 1

Introduction

Since its inception, blockchain technology has shown promising application prospects

from cryptocurrency to a variety of forms, such as medicine, economics, cloud

computing, and so on. As the most popular blockchain system that supports smart

contract, Ethereum can complete one million transactions per day. Since blockchain

is one of the core technology in FinTech industry, users are very concerned about its

security. Some security vulnerabilities and attacks have been recently reported. Loi et

al. discover that 8,833 out of 19,366 existing Ethereum contracts are vulnerable [134].

Note that smart contracts with security vulnerabilities may lead to financial losses. For

instance, the criminals attacked the smart contract DAO [11] by exploiting a recursive

calling vulnerability, and stole around 60 million dollars. As another example, the

criminals exploited transaction mutability in Bitcoin to attack MtGox, the largest

Bitcoin trading platform. It caused the collapse of MtGox, with a value of 450 million

dollars Bitcoin stolen [3]. In Chapter 2, we systematically survey security issues for

blockchain systems.

More than eight million smart contracts have already been deployed in Ethereum,
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while only less than 1% are open-source. Unfortunately, facing the bytecodes of

deployed smart contracts, it is difficult to quickly and comprehensively understand

their details [107] [182], which leads to two issues. First, when users encounter a

deployed contract, they usually do not know exactly how to use it, because users do

not know the interfaces (i.e., external/public functions) of the bytecodes or the specific

functionalities of its interfaces; Second, although some contracts are open-source, the

blockchain system only stores the runtime bytecodes of them [62]. Usually common

users cannot easily comprehend the contracts’ sources published on websites (e.g.,

Etherscan [24]), not to mention the bytecodes of these contracts. In Chapter 3, we

describe the runtime bytecodes of smart contracts in natural language.

Being the largest blockchain that supports smart contract, Ethereum has two

kinds of accounts: EOA (Externally Owned Account) and contract account [132].

As a permissionless blockchain system, Ethereum allows any user to create many

EOAs through their private keys. Deploying a smart contract to Ethereum will

produce a contract account that contains the contract’s runtime bytecodes. Every

node must synchronize blockchain data, which includes blocks and StateDB (State

DataBase) [62]. The StateDB stores all the accounts’ state information, such as

ETH balance, transaction number, runtime bytecodes, and so on [62]. However,

not all accounts should be kept. We regard the worthless accounts that deserve to

be removed without affecting the normal operations of users and other accounts as

erasable accounts. Erasable accounts not only waste system resources and affect the

efficiency of blockchain, but also easily waste users’ money. We characterize erasable

accounts of Ethereum in Chapter 4.

Gas is the execution fee for running smart contracts in Ethereum. The creators
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and users of smart contracts will be charged certain amount of gas for purchasing

the computing resources from miners. The charge of a transaction equals to the

multiplication of the gas consumed by executing the transaction and the price of

gas (ETH per unit). Moreover, when deploying contracts, the creators will also be

charged of gas, the amount of which are related to the size of smart contracts in

bytecodes. However, we find that under-optimized smart contracts cost more gas

than necessary, and therefore the miners or users will be overcharged. As the most

popular blockchain that supports smart contracts, there are many kinds of contract-

based cryptocurrencies built in Ethereum. Apart from ETH, which is the native

cryptocurrency of Ethereum, more than 296 thousand cryptocurrency contracts are

deployed in Ethereum [54]. These cryptocurrencies have high market capitalization.

For example, the ETH has a total value of about 20 billion dollars [56], and USDT has

a total value of more than four billion dollars [53]. However, not all cryptocurrencies

can be controlled by users. We analyze under-optimized smart contracts and locked

cryptocurrencies in Chapter 5.

Thesis Contribution

We make the following contributions in this thesis:

1. We conduct systematic examination on the security of blockchain systems. We

survey real attacks and analyze the exploited vulnerabilities. Furthermore,

we summarize practical academic achievements for enhancing the security of

blockchain, and suggest a few future directions in this area.

2. We propose and implement a system named Stan, which can analyze the

runtime bytecodes of smart contract and automatically describe its interfaces
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in natural language, enabling users to quickly and thoroughly understand

closed-source contracts.

3. We design and implement a tool named Glaser to discover erasable accounts

by analyzing the StateDB of Ethereum. It leverages program analysis techniques

to discover contract accounts with worthless runtime bytecodes, and employs

state field and transaction analysis to discover EOAs that no one owns their

private keys.

4. We develop a tool named Gasper for discovering gas-inefficient patterns in

bytecodes. Gasper leverages symbolic execution and it can locate three

representative patterns. We find that more than 80% smart contracts suffer

from these three patterns, respectively.

5. We conduct the systematic investigation on locked cryptocurrencies in Ethereum.

We define four categories of accounts with locked cryptocurrencies and develop

a tool named Clue to discover them. Results show that there are more than

one billion dollars value of cryptocurrencies locked in Ethereum.

Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce the

background of this thesis, including the literature review. We also systematically

survey security issues for blockchain systems. In Chapter 3, we describe the run-

time bytecodes of smart contracts in natural language, enabling users to quickly

and thoroughly understand closed-source contracts. In Chapter 4, we characterize

erasable accounts in Ethereum, helping to save system resources and users’ money. In
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Chapter 5, we analyze under-optimized smart contracts and locked cryptocurrencies,

which can help users/developers to save money. Finally, Chapter 6 makes a conclusion

of this thesis, and indicates insights obtained from this research and our future work.

The primary research outputs emerged from this thesis are as follows:

• Xiaoqi Li, Ting Chen, Xiapu Luo, Chenxu Wang, “CLUE: Towards Discovering

Locked Cryptocurrencies in Ethereum”, The 36th ACM/SIGAPP Symposium

on Applied Computing (SAC), 2021.

• Xiaoqi Li, Ting Chen, Xiapu Luo, Jiangshan Yu, “Characterizing Erasable

Accounts in Ethereum”, in Proceedings of The 23rd Information Security Con-

ference (ISC), 2020.

• Xiaoqi Li, Ting Chen, Xiapu Luo, Tao Zhang, Le Yu, Zhou Xu, “STAN: Towards

Describing Bytecodes of Smart Contract”, in Proceedings of The 20th IEEE

International Conference on Software Quality, Reliability and Security (QRS),

2020.

• Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, Qiaoyan Wen, “A Survey on

the Security of Blockchain Systems”, in Future Generation Computer Systems

(FGCS), 2017.

• Ting Chen, Xiaoqi Li, Xiapu Luo, Xiaosong Zhang, “Under-optimized Smart

Contracts Devour Your Money”, in Proceedings of the Early Research Achieve-

ments Track at the 24th International Conference on Software Analysis, Evolu-

tion, and Reengineering (SANER), 2017.
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Chapter 2

Literature Review

Since its inception, the blockchain technology has shown promising application

prospects. From the initial cryptocurrency to the current smart contract, blockchain

has been applied to many fields. Although there are some studies on the security and

privacy issues of blockchain, there lacks a systematic examination on the security of

blockchain systems. In this chapter, we conduct a systematic study on the security

threats to blockchain and survey the corresponding real attacks by examining popular

blockchain systems. We also review the security enhancement solutions for blockchain,

which could be used in the development of various blockchain systems, and suggest

some future directions to stir research efforts into this area.

Since the debut of Bitcoin in 2009, its underlying technique, blockchain, has shown

promising application prospects and attracted lots of attentions from academia and

industry. Being the first cryptocurrency, Bitcoin was rated as the top performing

currency in 2015 [29] and the best performing commodity in 2016 [4], and has

about 300,000 confirmed transactions [38] daily in 2020. At the same time, the

blockchain technique has been applied to many fields, including medicine [70,97,172],
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economics [77, 116, 117], Internet of things [96, 158, 179], software engineering [91,

146,168] and so on. The introduction of Turing-complete programming languages to

enable users to develop smart contracts running on the blockchain marks the start of

blockchain 2.0 era. With the decentralized consensus mechanism of blockchain, smart

contracts allow mutually distrusted users to complete data exchange or transaction

without the need of any third-party trusted authority. Ethereum is now the most

widely used blockchain supporting smart contracts, where there are already more

than eight million deployed smart contracts and more than one million transactions

happened daily [131].

Since blockchain is one of the core technology in FinTech (Financial Technology)

industry, users are very concerned about its security. Some security vulnerabilities

and attacks have been recently reported. Loi et al. discover that 8,833 out of 19,366

existing Ethereum contracts are vulnerable [134]. Note that smart contracts with

security vulnerabilities may lead to financial losses. For instance, the criminals

attacked the smart contract DAO [11] by exploiting a recursive calling vulnerability,

and stole around 60 million dollars. As another example, the criminals exploited

transaction mutability in Bitcoin to attack MtGox, the largest Bitcoin trading platform.

It caused the collapse of MtGox, with a value of 450 million dollars Bitcoin stolen [3].

Although there are some recent studies on the security of blockchain, none of

them performs a systematic examination on the risks to blockchain systems, the

corresponding real attacks, and the security enhancements. The closest research work

to ours is [69] that only focuses on Ethereum smart contracts, rather than popular

blockchain systems. From security programming perspective, their work analyzes the

security vulnerabilities of Ethereum smart contracts, and provides a taxonomy of
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common programming pitfalls that may lead to vulnerabilities [69]. Although a series

of related attacks on smart contracts are listed in [69], there lacks a discussion on

security enhancement. This chapter focuses on the security of blockchain from more

comprehensive perspectives. The main contributions of this chapter are as follows:

• We conduct systematic examination on security risks to popular blockchain

systems (e.g., Ethereum, Bitcoin).

• We survey the real attacks on popular blockchain systems and analyze the

vulnerabilities exploited in these attack cases.

• We summarize practical academic achievements for enhancing the security of

blockchain.

The remainder of this chapter is organized as follows. Section 2.1 introduces the

main technologies used in blockchain systems. Section 2.2 systematically examines

the security risks to blockchain, and Section 2.3 surveys real attacks on blockchain

systems. After summarizing the security enhancements to blockchain in Section 2.4,

we summarize the chapter in Section 2.5.

2.1 Overview of Blockchain Technologies

This section introduces the main technologies employed in blockchain. We first present

the fundamental trust mechanism (i.e., the consensus mechanism) used in blockchain,

and then explain the synchronization process between nodes. After that, we introduce

the two development stages of blockchain.
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Consensus Mechanism

Being a decentralized system, blockchain systems do not need a third-party trusted

authority. Instead, to guarantee the reliability and consistency of the data and trans-

actions, blockchain adopts the decentralized consensus mechanism. In the existing

blockchain systems, there are four major consensus mechanisms [180]: PoW (Proof

of Work), PoS (Proof of Stake), PBFT (Practical Byzantine Fault Tolerance), and

DPoS (Delegated Proof of Stake). Other consensus mechanisms, such as PoB (Proof

of Bandwidth) [55], PoET (Proof of Elapsed Time) [47], PoA(Proof of Authority) [46]

and so on, are also used in some blockchain systems. The two most popular blockchain

systems (i.e., Bitcoin and Ethereum) use the PoW mechanism. Ethereum also in-

corporates the PoA mechanism (i.e., Kovan public test chain [32]), and some other

cryptocurrencies also use the PoS mechanism, such as PeerCoin, ShadowCash and so

on.

Compute puzzle

Solve puzzle

Create block

Verify puzzle

Verify puzzle

Node A

Node B

Node C

Other nodes

Broadcast

Figure 2.1: PoW consensus mechanism.

PoW mechanism uses the solution of puzzles to prove the credibility of the data.

The puzzle is usually a computationally hard but easily verifiable problem. When a

node creates a block, it must resolve a PoW puzzle. After the PoW puzzle is resolved,
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it will be broadcasted to other nodes, so as to achieve the purpose of consensus, as

shown in Figure 2.1.

In different blockchain systems, the block structure may vary in detail. Typically in

Bitcoin, each block contains PrevHash, nonce, and Tx [136]. In particular, PrevHash

indicates the hash value of the last generated block, and Txs denote the transactions

included in this block. The value of nonce is obtained by solving the PoW puzzle. A

correct nonce should satisfy that the hash value shown in Equation 2.1 is less than a

target value, which could be adjusted to tune the difficulty of PoW puzzle.

SHA256(PrevHash ||Tx1 ||Tx2 || ... ||nonce) < Target (2.1)

PoS mechanism uses the proof of ownership of cryptocurrency to prove the

credibility of the data. In PoS-based blockchain, during the process of creating block

or transaction, users are required to pay a certain amount of cryptocurrency. If the

block or transaction created can eventually be validated, the cryptocurrency will be

returned to the original node as a bonus. Otherwise, it will be fined. In the PoW

mechanism, it needs a lot of calculation, resulting in a waste of computing power. On

the contrary, PoS mechanism can greatly reduce the amount of computation, thereby

increasing the throughput of the entire blockchain system.

Block Propagation and Synchronization

In the blockchain, each full node stores the information of all blocks. Being the

foundation to building consensus and trust for blockchain, the block propagation

mechanisms can be divided into the following categories [106,123,124]:

(1) Advertisement-based propagation. This propagation mechanism is originated
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Figure 2.2: Block synchronization process between nodes.

from Bitcoin. When node A receives the information of a block, A will send an inv

message (a message type in Bitcoin) to its connected peers. When node B receives

the inv message from A, it will do as follows. If node B already has the information

of this block, it will do nothing. If node B does not have the information, it will reply

to node A. When node A receives the reply message from node B, node A will send the

complete information of this block to node B.

(2) Sendheaders propagation. This propagation mechanism is an improvement to

the advertisement-based propagation mechanism. In the sendheaders propagation

mechanism, node B will send a sendheaders message (a message type in Bitcoin) to

node A. When node A receives the information of a block, it will send the block header

information directly to node B. Compared with the advertisement-based propagation

mechanism, node A does not need to send inv messages, and hence it speeds up the

block propagation.

(3) Unsolicited push propagation. In the unsolicited push mechanism, after

one block is mined, the miner will directly broadcast the block to other nodes. In

12



this propagation mechanism, there is no inv message and sendheaders message.

Compared with the previous two propagation mechanisms, unsolicited push mechanism

can further improve the speed of block propagation.

(4) Relay network propagation. This propagation mechanism is an improvement to

the unsolicited push mechanism. In this mechanism, all the miners share a transaction

pool. Each transaction is replaced by a global ID, which will greatly reduce the

broadcasted block size, thereby further reducing the network load and improving the

propagation speed.

(5) Push/Advertisement hybrid propagation. This hybrid propagation mechanism

is used in Ethereum. We assume that node A has n connected peers. In this mechanism,

node A will push the block to
√
n peers directly. For the other n −

√
n connected

peers, node A will advertise the block hash to them.

Different blockchain systems may use diverse block synchronization processes. In

Ethereum, node A can request block synchronization from node B with more total

difficulty. The specific process is as follows (shown in Figure 2.2) [106,123,124]:

(1) Node A requests the header of the latest block from node B. This action is

implemented by sending a GetBlockHeaders message. Node B will reply to node A a

BlockHeaders message that contains the block header requested by A.

(2) Node A requests MaxHeaderFetch blocks to find common ancestor from node

B. The default value of MaxHeaderFetch is 256, but the number of block headers sent

by node B to A can be less than this value.

(3) If A has not found common ancestor after the above two steps, node A

will continue to send GetBlockHeaders message, requesting one block header each

time. Moreover, A repeats in binary search to find the common ancestor in its local
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blockchain.

(4) After node A discovers a common ancestor, A will request block synchronization

from the common ancestor. In this process, A requests MaxHeaderFetch blocks per

request, but the actual number of nodes sent from B to A can be less than this value.

Technology Development

Figure 2.3: Query Bitcoin
transaction history.

Figure 2.4: Pay with Bit-
coin.

Figure 2.5: Collect pay-
ments with Bitcoin.

From the birth of the first blockchain system Bitcoin, the blockchain technology

has experienced two stages of development: blockchain 1.0 and blockchain 2.0.

In the blockchain 1.0 stage, the blockchain technology is mainly used for cryp-

tocurrency. In addition to Bitcoin, there are many other types of cryptocurrencies,

such as Litecoin, Dogecoin and so on. There are currently over 700 types of cryptocur-

rencies, and the total market capitalizations of them are over 26 billion US$ [12]. The

technology stack of cryptocurrency could be divided into two layers: the underlying

decentralized ledger layer and protocol layer [159]. Cryptocurrency client, such as
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Bitcoin Wallet [7], runs in the protocol layer to conduct transactions, as shown in

Figure 2.3 to Figure 2.5. Compared with traditional currency, cryptocurrency has

the following characteristics and advantages [60]:

(1) Irreversible and traceable. Transfer and payment operations are irreversible

using cryptocurrency. Once the behavior is completed, it is impossible to withdraw.

In addition, all user behaviors are traceable, and these behaviors are permanently

saved in the blockchain.

(2) Decentralized and anonymous. There is no third-party organization involved in

the entire structure of cryptocurrency, nor does it has central management like banks.

In addition, all user behaviors are anonymous. Hence, according to the transaction

information, we cannot obtain the user’s real identity.

(3) Secure and permissionless. The security of the cryptocurrency is ensured by

the public key cryptography and the blockchain consensus mechanism, which are hard

to be broken by the criminal. Moreover, there is no need to apply for any authority or

permission to use cryptocurrency. Users can simply use the cryptocurrency through

the relevant clients.

(4) Fast and global. Transactions can be completed in only several minutes using

cryptocurrency. Since cryptocurrencies are mostly based on public chains, anyone in

the world can use them. Therefore, the user’s geographical location has little impact

on the transaction speed.

In blockchain 2.0 stage, smart contract is introduced so that developers can create

various applications through smart contracts. A smart contract can be considered

as a lightweight DApp (decentralized application). Ethereum is a typical system of

blockchain 2.0. Each Ethereum node runs an EVM (Ethereum Virtual Machine) that
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Table 2.1: Statistics of blockchain systems supporting smart contracts.

System Contract language Total TXs Market Capitalization /M US$
Ethereum EVM bytecode 23,102,544 8,468

RSK Solidity Unknown N/A
Counterparty EVM bytecode 12,170,386 15

Stellar Transaction chains Unknown 139
Monax EVM bytecode Unknown N/A
Lisk JavaScript Unknown 71

Solidity compiler: solc

Parity

Development

Deploy by transaction
Source code: *.sol

Contracts bytecode 

and ABI

Geth

Pythereum

Cpp-

ethereum

Ethereum node

Ethereum 

blockchain
Interact by transaction

Contract address

Figure 2.6: The process of smart contract’s development, deployment, and interaction.

executes smart contracts. Besides Ethereum, several other blockchain systems also

support smart contracts, whose information is listed in Table 2.1 [71]. In Ethereum,

developers can use a variety of programming languages to develop smart contracts,

such as Solidity (the recommended language), Serpent, and LLL. Since these languages

are Turing-complete, smart contracts can achieve rich functions. Figure 2.6 shows the

process of smart contracts’ development, deployment and interaction. Each deployed

smart contract corresponds to a unique address, through which users can interact with

the smart contract through transactions by different clients (e.g., Parity, Geth, etc.).

Since smart contracts can call each other through messages, developers can develop

more feature-rich DApps based on available smart contracts. Compared with the
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traditional application, a DApp has the following characteristics and advantages [50]:

(1) Autonomy. DApps are developed on the basis of smart contracts, and smart

contracts are deployed and run on the blockchain. Hence, DApps can run autonomi-

cally without the need of any third party’s assistance and participation.

(2) Stable. The bytecodes of smart contracts are stored in the state tree of

blockchain. Each full node saves the information of all blocks and stateDB, including

the bytecodes of smart contracts. Hence, the failure of some nodes will not affect its

operation. This mechanism ensures that DApps can run stably.

(3) Traceable. Since the invocation information of smart contracts is stored in the

blockchain as transactions, all the behaviors of DApps are recorded and traceable.

(4) Secure. The public key cryptography and the blockchain consensus mechanism

can ensure the security and correct operations of smart contracts, so as to maximize

the security of DApps.

2.2 Risks to Blockchain

Table 2.2: Taxonomy of blockchain’s risks.

Number Risk Cause Range of Influence
1 51% vulnerability Consensus mechanism

Blockchain1.0, 2.0
2 Private key security Public-key encryption scheme
3 Criminal activity Cryptocurrency application
4 Double spending Transaction verification mechanism
5 Transaction privacy leakage Transaction design flaw
6 Criminal smart contracts Smart contract application

Blockchain2.07 Vulnerabilities in smart contract Program design flaw
8 Under-optimized smart contract Program writing flaw
9 Under-priced operations EVM design flaw

We divide the common blockchain risks into nine categories, as shown in Table 2.2,

and detail the causes and possible consequence of each risk. The risks described in

Section 3.1 exist in blockchain 1.0 and 2.0, and their causes are mostly related to the
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blockchain operation mechanism. By contrast, the risks introduced in Section 3.2 are

unique to blockchain 2.0, and are usually resulted from the development, deployment,

and execution of smart contracts.

2.2.1 Common Risks to Blockchain 1.0 and 2.0

51% Vulnerability

The blockchain relies on the distributed consensus mechanism to establish mutual

trust. However, the consensus mechanism itself has 51% vulnerability, which can be

exploited by attackers to control the entire blockchain. More precisely, in PoW-based

blockchains, if a single miner’s hashing power accounts for more than 50% of the

total hashing power of the entire blockchain, then the 51% attack may be launched.

Hence, the mining power concentrating in a few mining pools may result in the

fears of an inadvertent situation, such as a single pool controls more than half of all

computing power. In Jan. 2014, after the mining pool ghash.io reached 42% of the

total Bitcoin computing power, a number of miners voluntarily dropped out of the

pool, and ghash.io issued a press statement to reassure the Bitcoin community that

it would avoid reaching the 51% threshold [6]. In PoS-based blockchains, 51% attack

may also occur if the number of coins owned by a single miner is more than 50%

of the total blockchain. By launching the 51% attack, an attacker can arbitrarily

manipulate and modify the blockchain information. Specifically, an attacker can

exploit this vulnerability to conduct the following attacks [2]:

(1) Reverse transactions and initiate double spending attack (the same coins are

spent multiple times).

(2) Exclude and modify the ordering of transactions.
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(3) Hamper normal mining operations of other miners.

(4) Impede the confirmation operation of normal transactions.

Private Key Security

When using blockchain, the user’s private key is regarded as the identity and security

credential, which is generated and maintained by the user instead of third-party

agencies. For example, when creating a cold storage wallet in Bitcoin blockchain, the

user must import his/her private key. Hartwig et al. [139] discover a vulnerability

in ECDSA (Elliptic Curve Digital Signature Algorithm) scheme, through which an

attacker can recover the user’s private key because it does not generate enough

randomness during the signature process.

Once the user’s private key is lost, it will not be able to be recovered. If the

private key is stolen by criminals, the user’s blockchain account will face the risk of

being tampered by others. Since the blockchain is not dependent on any centralized

third-party trusted institutions, if the user’s private key is stolen, it is difficult to

track the criminal’s behaviors and recover the modified blockchain information.

Criminal Activity

Bitcoin users can have multiple Bitcoin addresses, and the address has no relationship

with their real life identity. Therefore, Bitcoin has been used in illegal activities.

Through some third-party trading platforms that support Bitcoin, users can buy or

sell any product. Since this process is anonymous, it is hard to track user behaviors,

let alone subject to legal sanctions. Some frequent criminal activities with Bitcoin

include:
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(1) Ransomware. The criminals often use ransomware for money extortion, and em-

ploy Bitcoin as trading currency. In July 2014, a ransomware named CTB-Locker [31]

spread around the world by disguising itself as mail attachments. If the user clicks the

attachment, the ransomware will run in the background of the system and encrypt

about 114 types of each file [13]. The victim has to pay the attacker a certain amount

of Bitcoin within 96 hours. Otherwise, the encrypted files will not be restored. In

May 2017, another ransomware WannaCry (also named as WannaCrypt) [59] infected

about 230,000 victims across 150 countries in two days. It exploited a vulnerability

in Windows system to spread, and encrypted users’ files to ask for Bitcoin ransom.

Table 2.3: Top 10 categories of items available in Silk Road.

Number Category Items Percentage
1 Weed 3338 13.7%
2 Drugs 2194 9.0%
3 Prescription 1784 7.3%
4 Benzos 1193 4.9%
5 Books 955 3.9%
6 Cannabis 877 3.6%
7 Hash 820 3.4%
8 Cocaine 630 2.6%
9 Pills 473 1.9%
10 Blotter (LSD) 440 1.8%

(2) Underground market. Bitcoin is often used as the currency in the underground

market. For example, Silk Road is an anonymous, international online marketplace

that operates as a Tor hidden service and uses Bitcoin as its exchange currency [90].

The top 10 categories of items available in Silk Road are listed in Table 2.3 [90]. Most

of the items sold in Silk Road are drugs, or some other controlled items in the real

world. Since international transactions account for a significant proportion in Silk

Road, Bitcoin makes the transaction in the underground market more convenient,

which will cause harm to the social security.
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(3) Money laundering. Since Bitcoin has the features like anonymity and network

virtual payment and has been adopted by many countries, compared with other

currencies, Bitcoin carries the lowest risk of being used for money laundering [58].

Cody et al. propose Dark Wallet [14], a Bitcoin application that can make Bitcoin

transaction completely stealth and private. Dark Wallet can encrypt transaction

information and mix the user’s valid coins with chaff coins, and hence it can make

money laundering much easier.

Double Spending

Attacker

Transaction to vendor

Vendor

Bitcoin 

network

Mining pool

Transaction to 

colluding address

Transaction to vendor

Transaction to 

colluding address

Figure 2.7: Double spending attack model against fast payment in Bitcoin.

Although the consensus mechanism of blockchain can validate transactions, it

is still impossible to avoid double spending [122]. Double spending refers to that a

consumer uses the same cryptocurrency multiple times for transactions. For example,

an attacker could leverage race attack for double spending. This kind of attack is

relatively easy to implement in PoW-based blockchains, because the attacker can

exploit the intermediate time between two transactions’ initiation and confirmation
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to quickly launch an attack. Before the second transaction is mined to be invalid, the

attacker has already got the first transaction’s output, resulting in double spending.

Ghassan et al. [121] conduct an analysis of double spending against fast payment

in Bitcoin, and propose an attack model, as shown in Figure 2.7. Assuming that an

attacker knows the vendor’s address before the attack, to perform double spending,

the attacker will send two transactions, TXv and TXa and choose the same BTCs

(cryptocurrency in Bitcoin) as inputs for TXv and TXa. TXv’s recipient address

is set to the targeted vendor’s address, and TXa’s recipient address is set to the

colluding address controlled by the attacker. If the following three conditions are met,

double spending will be successful: (1) TXv is added to the wallet of the targeted

vendor; (2) TXa is mined as valid into the blockchain; (3) The attacker gets TXv’s

output before the vendor detects misbehavior. If the attack is successful, TXv will

eventually be verified as an invalid transaction, and BTCs are really spent by TXa.

The attacker has received TXv’s output, which is the vendor’s normal service. Since

TXa’s recipient address is controlled by the attacker, these BTCs are still owned by

herself. In this double spending model, the attacker enjoys the service without paying

any BTC.

Transaction Privacy Leakage

Since the users’ behaviors in the blockchain are traceable, the blockchain systems

take measures to protect the transaction privacy of users. In the Bitcoin and Zcash,

they use one-time accounts to store the received cryptocurrency. Moreover, the user

needs to assign a private key to each transaction. In this way, the attacker cannot

infer whether the cryptocurrency in different transactions is received by the same user.
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In Monero, users can include some chaff coins (called “mixins”) when they initiate a

transaction so that the attacker cannot infer the linkage of actual coins spent by the

transaction.

Table 2.4: Linkability analysis of Monera transaction inputs with mixins.

Not deducible Deducible In total
Using newest TXO 15.07% 4.60% 19.67%

Not using newest TXO 22.61% 57.72% 80.33%
In total 37.68% 62.32% 100%

Unfortunately, the privacy protection measures in blockchain are not very robust.

Andrews et al. [141] empirically evaluate two linkability weaknesses in Monero’s mixin

sampling strategy, and discover that 66.09% of all transactions do not contain any

mixins. 0-mixin transaction will lead to the privacy leakage of its sender. Since users

may use the outputs of 0-mixin transaction as mixins, these mixins will be deducible.

Moreover, they study the sampling method of mixins and find that the selection of

mixins is not really random. Newer TXOs (transaction outputs) tend to be used

more frequently. They further discover that 62.32% of transaction inputs with mixins

are deducible, as shown in Table 2.4 [141]. By exploiting these weaknesses in Monero,

they can infer the actual transaction inputs with 80% accuracy.

2.2.2 Specific Risks to Blockchain 2.0

Criminal Smart Contracts

Criminals can leverage smart contracts for a variety of malicious activities, which may

pose a threat to our daily life. CSCs (Criminal Smart Contracts) can facilitate the

leakage of confidential information, theft of cryptographic keys, and various real-world

crimes (e.g., murder, arson, terrorism, etc.) [119]. Juels et al. propose an example of
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password theft CSC PwdTheft, whose process is shown in Figure 2.8 [119].

PwdTheft

App

SGX-enabled host
Server

PKC, A

ct, б, α

enclave
PW

HTTPS login 

by PW

Figure 2.8: Execution procedure of PwdTheft using SGX-enabled platform.

PwdTheft can be exploited for a fair exchange between contractor C and perpetrator

P. C will pay a reward to P if and only if P gives a valid password to C. The entire

transaction process can be done without any third party trusted agencies involved.

Since the smart contract deployed in blockchain cannot access network directly [176], in

the actual work process of PwdTheft, it is combined with trusted hardware technology,

such as Intel SGX (Software Guard eXtension), to prove the validity of the password

through HTTPS (Hypertext Transfer Protocol Secure). SGX will create a trusted

execution environment named enclave, which can protect the application from

being attacked by others. Any privileged or unprivileged software cannot access the

runtime environment of enclave. Furthermore, SGX can produce quote, a digitally

signed attestation. Quote can get the hash value of the application run in enclave

environment. Meanwhile, quote can access the relevant data during runtime of the

application. The whole password exchange process is divided into three steps:

(1) PwdTheft provides (pkC , A), pkC is the public key of C, and A is the target

account for stealing.

(2) The application that runs in SGX, using the PW provided by P, logs on to the

server account A by establishing an HTTPS connection.
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(3) If the preceding steps are successful, the data ct, σ and α will be transmitted

to PwdTheft. ct = encpkC [PW ] and σ = Sigskapp [ct]. skapp is the signature private

key of the application. α is a quote that runs on P’s SGX-enabled host.

After PwdTheft receives ct, σ and α, C can decrypt them to verify the data, and

then decide whether a reward should be paid to P. In this process, in order to prevent

P from changing the password maliciously after the data transmission to PwdTheft,

they can add a timestamp in the data. In addition, PwdTheft can be easily extended

for conducting other malicious activities. For example, criminals can leverage CSCs

to make 0-day vulnerability transactions, which are critical cyber-weaponry [119].

Vulnerabilities in Smart Contract

Table 2.5: Taxonomy of vulnerabilities in smart contract.

Number Vulnerability Cause Level
1 Call to the unknown The called function does not exist

Contract source code

2 Out-of-gas send Fallback of the callee is executed
3 Exception disorder Irregularity in exception handling
4 Type casts Type-check error in contract execution
5 Reentrancy vulnerability Function is re-entered before termination
6 Field disclosure Private value is published by the miner
7 Immutable bug Alter a contract after deployment

EVM bytecode8 ETH lost Send ETH to an orphan address
9 Stack overflow The number of values in stack exceeds 1024
10 Unpredictable state State of the contract is changed before invoking

Blockchain mechanism11 Randomness bug Seed is biased by malicious miner
12 Timestamp dependence Timestamp of block is changed by malicious miner

As programs running in the blockchain, smart contracts may have security vulnera-

bilities caused by program defects. Nicola et al. [69] conduct a systematic investigation

of 12 types of vulnerabilities in smart contract, as shown in Table 2.5. Loi et al. [134]

propose a symbolic execution tool called Oyente to find 4 kinds of potential security

bugs. They discover that 8,833 out of 19,366 Ethereum smart contracts are vulnerable.

The details of these 4 bugs are as follows:
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(1) Transaction-ordering dependence. Valid transactions can change the state of

Ethereum blockchain from σ to σ′: σ T→ σ′ . In every epoch, each miner proposes

their own block to update the blockchain. Since a block may contain multiple

transactions, blockchain state σ may change multiple times within an epoch. When a

new block contains two transactions Ti and Tj , which invoke the same smart contract,

it may trigger this vulnerability. Because the execution of the smart contract is

associated with state σ, the execution order of Ti and Tj affects the ultimate state.

The order of transactions’ execution depends entirely on miners. In this case, TOD

(Transaction-Ordering Dependent) contracts are vulnerable.

(2) Timestamp dependence. In the blockchain, every block has a timestamp. Some

smart contracts’ trigger conditions depend on timestamp, which is set by the miner

according to its local system time. If an attacker can modify it, timestamp-dependent

contracts are vulnerable.

(3) Mishandled exceptions. This category of vulnerability may occur when different

smart contracts are called from each other. When contract A calls contract B, if B runs

abnormally, B will stop running and return false. In some invocations, contract A

must explicitly check the return value to verify if the call has been executed properly.

If A does not correctly check the exception information, it may be vulnerable.

(4) Reentrancy vulnerability. During the invocation of the smart contract, the

actual state of the contract account is changed after the call is completed. An attacker

can use the intermediate state to conduct repeated calls to the smart contract. If the

invoked contract involves ETH transfer, it may result in illegal ETH stealing.
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Under-Priced Operations

As mentioned earlier, each operation is set to a specific gas value in Ethereum, which

can be queried in the yellow paper [62]. Ethereum sets the gas value based on the

execution time, bandwidth, memory occupancy and other parameters. In general,

the gas value is proportional to the computing resources consumed by the operation.

However, it is difficult to accurately measure the consumption of computing resources

of an individual operation, and therefore some gas values are not set properly. For

example, some IO-heavy operations’ gas values are set too low, and hence these

operations can be executed in quantity in one transaction. In this way, an attacker

can initiate a DoS (Denial of Service) attack on Ethereum.

Table 2.6: Gas modifications in EIP150.

Number Operation Old value EIP150 value
1 EXTCODESIZE 20 700
2 EXTCODECOPY 20 700
3 BALANCE 20 400
4 SLOAD 50 200
5 CALL 40 700
6 SELFDESTRUCT (does not create account) 0 5,000
7 SELFDESTRUCT (creates an account) 0 25,000

Actually, attackers have exploited the under-priced operation EXTCODESIZE to

attack Ethereum [20]. When EXTCODESIZE is executed, it needs to read state infor-

mation and then the node will read hard disk. Since the gas value of EXTCODESIZE is

only 20, the attacker can call it more than 50,000 times in one transaction. This will

cause the user to consume a lot of computing resources, and block synchronization

will be significantly slower compared with the normal situation. As another example,

some attackers exploited the under-priced operation SELFDESTRUCT to launch DoS

attacks [15]. They exploited SELFDESTRUCT to create about 19 million empty accounts,
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which need to be stored in the state tree. This attack caused a waste of hard disk

resources. At the same time, the node information synchronization and transaction

processing speed are significantly decreased.

In order to solve the security problem caused by under-priced operations, the gas

values of seven IO-heavy operations are modified in EIP (Ethereum Improvement

Proposal) 150 [34], as shown in Table 2.6. Note that EIP150 has already been

implemented in the Ethereum public chain by hard fork, and the new gas table

parameters are used after No.2463000 block.

2.3 Blockchain Attack Cases

In this section, we survey real attacks on blockchain systems, and analyze the

vulnerabilities exploited in these attacks.

Selfish Mining Attack

The selfish mining attack is conducted by attackers (i.e., selfish miners) for the purpose

of obtaining undue rewards or wasting the computing power of honest miners [152].

The attacker holds discovered blocks privately and then attempts to fork a private

chain [99]. Afterwards, selfish miners would mine on this private chain, and try to

maintain a longer private branch than the public branch because they privately hold

more newly discovered blocks. In the meanwhile, honest miners continue mining on

the public chain. New blocks mined by the attacker would be revealed when the public

branch approaches the length of private branch, such that the honest miners end

up wasting computing power and gaining no reward, because selfish miners publish

their new blocks just before honest miners. As a result, the selfish miners gain a
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competitive advantage, and honest miners would be incentivized to join the branch

maintained by selfish miners. Through a further consolidation of mining power into

the attacker’s favor, this attack undermines the decentralization nature of blockchain.

Ittay et al. [99] propose an attack strategy named Selfish-Mine, which can force

the honest miners to perform wasted computations on the stale public branch. In

the initial circumstance of Selfish-Mine, the length of the public chain and private

chain are the same. The Selfish-Mine involves the following three scenarios:

(1) The public chain is longer than the private chain. Since the computing power

of selfish miners may be less than that of the honest miners, selfish miners will update

the private chain according to the public chain, and in this scenario, selfish miners

cannot gain any reward.

(2) Selfish miners and honest miners almost simultaneously find the first new

block. In this scenario, selfish miners will publish the newly discovered block, and

there will be two concurrently forks of the same length. Honest miners will mine in

either of the two branches, while selfish miners will continue to mine on the private

chain. If selfish miners firstly find the second new block, they will publish this block

immediately. At this point, selfish miners will gain two blocks’ rewards at the same

time. Because the private chain is longer than the public chain, the private chain will

be the ultimate valid branch. If honest miners firstly find the second new block and

this block is written to the private chain, selfish miners will gain the first new block’

rewards, and honest miners will gain the second new block’ rewards. Otherwise, if

this block is written to the public block, honest miners will gain these two new blocks’

rewards, and selfish miners will not gain any reward.

(3) After selfish miners find the first new block, they also find the second new
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block. In this scenario, selfish miners will hold these two new blocks privately, and

they continue to mine new blocks on the private chain. When the first new block is

found by honest miners, selfish miners will publish its own first new block. When

honest miners find the second new block, the selfish miners will immediately publish

its own second new block. Then selfish miners will follow this response in turn, until

the length of the public chain is only 1 greater than the private chain, after which the

selfish miners will publish its last new block before honest miners find this block. At

this point, the private chain will be considered valid, and consequently selfish miners

will gain the rewards of all new blocks.

DAO Attack

Table 2.7: Some other attacks that exploit smart contracts’ vulnerabilities.

Number Attack case Related vulnerabilities

1 King of the ETH throne Out-of-gas send
Exception disorder

2 Multi-player games Field disclosure
3 Rubixi attack Immutable bug

4 GovernMental attack

Immutable bug
Stack overflow

Unpredictable state
Timestamp dependence

5 Dynamic libraries attack Unpredictable state

The DAO is a smart contract deployed in Ethereum on 28th May of 2016, which

implements a crowd-funding platform. The DAO contract was attacked only after it

has been deployed for 20 days. Before the attack happened, DAO has already raised

150 million US$, which is the biggest crowdfund ever. The attacker stole about 60

million US$.

The attacker exploited the reentrancy vulnerability in this case. Firstly, the

attacker publishes a malicious smart contract, which includes a withdraw() function
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call to DAO in its callback function. The withdraw() will send ETH to the callee,

which is also in the form of call. Therefore, it will invoke the callback function of the

malicious smart contract again. In this way, the attacker is able to steal all the ETH

from DAO. There are some other cases that exploit smart contracts’ vulnerabilities

(described in Section 2.2.2), which are listed in Table 2.7 [69].

BGP Hijacking Attack

BGP (Border Gateway Protocol) is a de-facto routing protocol and regulates how

IP packets are forwarded to their destination. To intercept the network traffic of

blockchain, attackers either leverage or manipulate BGP routing. BGP hijacking

typically requires the control of network operators, which could potentially be exploited

to delay network messages. Maria et al. [68] comprehensively analyze the impact of

routing attacks, including both node-level and network-level attacks, on Bitcoin, and

show that the number of the successfully to-be-hijacked Internet prefixes depends on

the distribution of mining power. Because of the high centralization of some Bitcoin

mining pools, if they are attacked by BGP hijacking, it will have a significant effect.

The attackers can effectively split the Bitcoin network, or delay the speed of block

propagation.

Attackers conduct BGP hijacking to intercept Bitcoin miners’ connections to a

mining pool server, as analyzed by Dell SecureWorks [5]. By rerouting traffic to a

mining pool controlled by the attacker, it was possible to steal cryptocurrency from

the victim. This attack collected an estimated 83,000 US$ of cryptocurrency over

a two month period. Since the BGP security extensions are not widely deployed,

network operators have to rely on monitoring systems, which would report rogue
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announcements, such as BGPMon [169]. However, even if an attack is detected,

solving a hijacking still cost hours as it is a human-driven process consisting of

altering configuration or disconnecting the attacker. For example, YouTube ever took

about three hours to resolve a hijacking of its prefixes by a Pakistani ISP (Internet

Service Provider) [41].

Eclipse Attack

Table 2.8: Some other attacks that may be caused by the eclipse attack.

Number Attack Harm
1 Engineering block races Wasting mining power on orphan blocks
2 Splitting mining power 51% vulnerability may be triggered
3 Selfish mining Attacker can gain more than normal mining rewards
4 0-confirmation double spend The vendor would not get rewards for its service5 N-confirmation double spend

The eclipse attack allows an attacker to monopolize all of the victim’s incoming

and outgoing connections, which isolates the victim from the other peers in the

network [151]. Then, the attacker can filter the victim’s view of the blockchain, or let

the victim cost unnecessary computing power on obsolete views of the blockchain.

Furthermore, the attacker is able to leverage the victim’s computing power to conduct

its own malicious acts. Ethan et al. [111] consider two types of eclipse attack on

Bitcoin’s peer-to-peer network, namely botnet attack and infrastructure attack. The

botnet attack is launched by bots with diverse IP address ranges. The infrastructure

attack models the threat from an ISP, company or nation-state that has contiguous

IP addresses. The Bitcoin network might suffer from disruption and a victim’s view

of the blockchain will be filtered due to the eclipse attack. Additionally, the eclipse

attack is a useful basis for other attacks, as shown in Table 2.8 [111].
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Figure 2.9: Overview of the liveness attack process.

Aggelos et al. [125] propose the liveness attack, which is able to delay as much

as possible the confirmation time of a target transaction. They also present two

instantiations of such attack on Bitcoin and Ethereum. Liveness attack consists

of three phases, namely attack preparation phase, transaction denial phase, and

blockchain retarder phase (shown in Figure 2.9):

(1) Attack preparation phase. Just like selfish mining attack, an attacker builds

advantage over honest miners in some way before the target transaction TX is

broadcasted to the public chain. The attacker builds the private chain, which is

longer than the public chain.

(2) Transaction denial phase. The attacker privately holds the block that contains

TX, in order to prevent TX from being written into the public chain.

(3) Blockchain retarder phase. In the growth process of the public chain, TX will

no longer be able to be privately held in a certain time. In this case, the attacker

will publish the block that contains TX. In some blockchain systems, when the depth

of the block that contains TX is greater than a constant, TX will be regarded valid.

Therefore, the attacker will continue building private chain in order to build an

advantage over the public chain. After that, the attacker will publish her privately

held blocks into public chain in proper time to slow down the growth rate of public
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chain. The liveness attack will end when TX is verified as valid in the public chain.

Balance Attack

Christopher et al. [143] propose the balance attack against PoW-based blockchain,

which allows a low-mining-power attacker to momently disrupt communications

between subgroups with similar mining power. They abstract blockchain into a

DAG (Directed Acyclic Graph) tree, in which DAG = < B,P >. B are the nodes

indicating blocks’ information, and they are connected through directed edges P .

After introducing a delay between correct subgroups of equivalent mining power,

the attacker issues transactions in one subgroup (called “transaction subgroup”) and

mines blocks in another subgroup (called “block subgroup”), to guarantee that the

tree of block subgroup outweighs the tree of transaction subgroup. Even though the

transactions are committed, the attacker is able to outweigh the tree containing this

transaction and rewrite blocks with high probability.

The balance attack inherently violates the persistence of the main branch prefix

and allows double spending. The attacker needs to identify the merchant-involved

subgroup and create transactions to purchase goods from those merchants. Thereafter,

the attacker issues transactions to this subgroup and propagates the mined blocks to

the rest nodes of the group. As long as the merchant ships goods, the attacker stops

delaying messages. With a high probability that the DAG tree seen by the merchant is

outweighed by another tree, the attacker could successfully reissue another transaction

using exactly the same coins. Balance attack proves that PoW-based blockchain is

block oblivious. That is, when writing a transaction into the main chain, there is a

certain probability that the attacker can override or delete the block containing this
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transaction. In the related experiment, the authors configure an Ethereum private

chain with equivalent parameters of R3 consortium [48], and showed that they can

successfully carry out the balance attack, which only needs to control about 5% of

total computing power.

2.4 Blockchain Security Enhancements

In this section, we summarize security enhancements to blockchain systems, which

can be used in the development of blockchain systems.

SmartPool

Parity or geth

TXs

Parity or geth

Smartpool client

Smartpool client

Miner

Miner

Smartpool contract

Smartpool contract

Tasks

Completed shares

Share batches

Rewards

Figure 2.10: Overview of SmartPool’s execution process.

As described in Section 2.2.1, there already has mining pool with more than

40% of total computing power of blockchain. This poses a serious threat to the

decentralization nature, making blockchain vulnerable to several kinds of attacks.

Loi et al. [136] propose a novel mining pool system named SmartPool, whose

workflow is shown in Figure 2.10. SmartPool gets the transactions from Ethereum

node clients (i.e., parity [43] or geth [39]), which contain mining tasks information.
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Then, the miner conducts hashing computation based on the tasks and returns the

completed shares to the smartpool client. When the number of the completed shares

reaches to a certain amount, they will be committed to smartpool contract, which

is deployed in Ethereum. The smartpool contract will verify the shares and deliver

rewards to the client. Compared with the traditional P2P pool, SmartPool system

has the following advantages:

(1) Decentralized. The core of the SmartPool is implemented in the form

of smart contract, which is deployed in blockchain. Miners need first connect to

Ethereum to mine through the client. Mining pool can rely on Ethereum’s consensus

mechanism to run. In this way, it ensures decentralization nature of pool miners. The

mining pool state is maintained by Ethereum and no longer requires a pool operator.

(2) Efficiency. Miners can send the completed shares to the smartpool contract in

batches. Furthermore, miners only need to send part of shares to be verified, not all

shares. Hence, SmartPool is more efficient than the P2P pool.

(3) Secure. SmartPool leverages a novel data structure, which can prevent the

attacker from resubmitting shares in different batches. Furthermore, the verification

method of SmartPool can guarantee that honest miners will gain expected rewards

even there exist malicious miners in the pool.

Quantitative Framework

There exist tradeoffs between blockchain’s performance and security. Arthur et

al. [106] propose a quantitative framework, which is leveraged to analyze PoW-based

blockchain’s execution performance and security provisions. As shown in Figure 2.11,

the framework has two components: blockchain stimulator and security model. The
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Figure 2.11: Components of quantitative framework.

stimulator mimics blockchain’s execution, whose inputs are parameters of consensus

protocol and network. Through the simulator’s analysis, it can gain performance

statistics of the target blockchain, including block propagation times, block sizes,

network delays, stale block rate, throughput, etc. The stale block refers to a block

that is mined but not written to the public chain. The throughput is the number

of transactions that the blockchain can handle per second. Stale block rate will be

passed as a parameter to the security model component, which is based on MDP

(Markov Decision Processes) for defeating double spending and selfish mining attacks.

The framework eventually outputs optimal adversarial strategy against attacks, and

facilitates building security provisions for the blockchain.

Oyente

Loi et al. [134] propose Oyente to detect bugs in Ethereum smart contracts. Oyente

leverages symbolic execution to analyze the bytecode of smart contracts and it follows

the execution model of EVM. Since Ethereum stores the bytecode of smart contracts
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in its blockchain, Oyente can be used to detect bugs in deployed contracts.
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Figure 2.12: Overview of Oyente’s architecture design and execution process.

Figure 2.12 shows Oyente’s architecture and execution process. It takes the

smart contract’s bytecode and Ethereum global state as inputs. Firstly, based

on the bytecode, CFG BUILDER will statically build CFG (Control Flow Graph) of

smart contract. Then, according to Ethereum state and CFG information, EXPLORER

conducts simulated execution of smart contract leveraging static symbolic execution.

In this process, CFG will be further enriched and improved because some jump targets

are not constants; instead, they should be computed during symbolic execution. The

CORE ANALYSIS module uses the related analysis algorithms to detect four different

vulnerabilities (described in Section 2.2.2). The VALIDATOR module validates the

detected vulnerabilities and vulnerable paths. Confirmed vulnerability and CFG

information will finally be output to the VISUALIZER module, which can be employed

by users to carry out debugging and program analysis. Currently, Oyente is open

source for public use [40].
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Hawk

As described in Section 2.2.1, privacy leakage is a serious threat to blockchain. In the

era of blockchain 2.0, not only transactions but also contract-related information are

public, such as contract’s bytecode, invoking parameters, etc.

Ahmed et al. [127] propose Hawk, a novel framework for developing privacy-

preserving smart contracts. Leveraging Hawk, developers can write private smart

contracts, and it is not necessary for them to use any code encryption or obfuscation

techniques. Furthermore, the financial transaction’s information will not be explicitly

stored in blockchain. When programmers develop Hawk contract, the contract can

be divided into two parts: private portion, and public portion. The private data and

financial function related codes can be written into the private portion, and codes

that do not involve private information can be written into the public portion. The

Hawk contract is compiled into three pieces. (1) The program that will be executed

in all virtual machines of nodes, just like smart contracts in Ethereum. (2) The

program that will only be executed by the users of smart contracts. (3) The program

that will be executed by the manager, which is a special trustworthy party in Hawk.

The Hawk manager is executed in Intel SGX enclave (described in Section 2.2.1),

and it can see the privacy information of the contract but will not disclose it. Hawk

can not only protect privacy against the public, but also protect the privacy between

different Hawk contracts. If the manager aborts the protocol of Hawk, it will be

automatically financially penalized, and the users will gain compensation. Overall,

Hawk can largely protect the privacy of users when they are using blockchains.
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Figure 2.13: Basic architecture of Town Crier system.

Town Crier

Smart contract often needs to interact with off-chain (i.e., external) data source.

Zhang et al. [176] propose TC (Town Crier), which is an authenticated data

feed system for this data interaction process. Since the smart contract deployed in

blockchain cannot access network directly, they cannot get data through HTTPS. TC

exactly acts as a bridge between HTTPS-enabled data source and smart contracts.

The basic architecture of TC is shown in Figure 2.13. TC contract is the front end of

the TC system, which acts as API between users’ contracts and TC server. The core

program of TC is running in Intel SGX enclave (described in Section 2.2.1). The

main function of the TC server is to obtain the data requests from users’ contracts,

and obtain the data from target HTTPS-enabled websites. Finally, the TC server will

return a datagram to the users’ contracts in the form of digitally signed blockchain

messages.

TC can largely protect the security of the data requesting process. The core

modules of TC are respectively running on decentralized Ethereum, SGX-enabled
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enclave, and HTTPS-enabled website. Furthermore, the enclave disables the

function of network connection to maximize its security. Relay module is designed as

a network communication hub for smart contracts, SGX enclave environment, and

data source websites. Therefore, it achieves isolation between network communication

and the execution of TC’s core program. Even if the Relay module is attacked, or the

network communication packets are tampered, it will not change the normal function

of TC. TC system provides a robust security model for the smart contracts’ off-chain

data interaction, and it has already been launched online as a public service [57].

2.5 Brief Summary

In this chapter, we focus on the security issues of blockchain technology. By studying

the popular blockchain systems (e.g., Ethereum, Bitcoin, Monero, etc.), we conduct

a systematic examination on the security risks to blockchain. For each risk or

vulnerability, we analyze its causes and possible consequence. Furthermore, we survey

the real attacks on the blockchain systems, and analyze the vulnerabilities exploited

in these attacks. Finally, we summarize blockchain security enhancements.

In recent period of time, there emerges many new papers related to blockchain

security, including smart contract analysis [35] [78] [147] [100] [73] [108] [162] [107] [115],

account analysis [103] [126] [126] [81] [129] [167] and cryptocurrency analysis [118]

[153] [165] [154] [83] [95] [161]. Due to space limitations in this chapter, we will

introduce some of these work in the following chapters.
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Chapter 3

Runtime Bytecodes’ Description for
Smart Contracts

More than eight million smart contracts have been deployed into Ethereum, which is

the most popular blockchain that supports smart contract. However, less than 1% of

deployed smart contracts are open-source, and it is difficult for users to understand

the functionality and internal mechanism of those closed-source contracts. Although

a few decompilers for smart contracts have been recently proposed, it is still not

easy for users to grasp the semantic information of the contract, not to mention

the potential misleading due to decompilation errors. In this chapter, we propose

the first system named Stan to generate descriptions for the bytecodes of smart

contracts to help users comprehend them. In particular, for each interface in a smart

contract, Stan can generate four categories of descriptions, including functionality

description, usage description, behavior description, and payment description, by

leveraging symbolic execution and NLP (Natural Language Processing) techniques.

Extensive experiments show that Stan can generate adequate, accurate and readable

descriptions for contract’s bytecodes, which have practical value for users.
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3.1 Overview

Since its inception, blockchain technology has shown promising application prospects

from cryptocurrency to a variety of forms, such as medicine [172] [98] and cloud

computing [149] [133]. As the program deployed and executed in blockchain, smart

contract is the core technology in the 2.0 era of blockchain [180]. Through developing

smart contracts, developers can realize rich logic and greatly expand the capabilities

of blockchain system. As the most popular blockchain system that supports smart

contract, Ethereum can complete one million transactions per day [22]. More than

eight million smart contracts have already been deployed in Ethereum, while only

less than 1% are open-source [10].

Unfortunately, facing the bytecodes of deployed smart contracts, it is difficult to

quickly and comprehensively understand their details [107] [182], which leads to two

issues. First, when users encounter a deployed contract, they usually do not know

exactly how to use it, because users do not know the interfaces (i.e., external/public

functions) of the bytecodes or the specific functionalities of its interfaces; Second,

although some contracts are open-source, the blockchain system only stores the

runtime bytecodes of them [62]. Usually common users cannot easily comprehend the

contracts’ sources published on websites (e.g., Etherscan [24]), not to mention the

bytecodes of these contracts. Note that all the bytecodes mentioned in this chapter

refer to runtime bytecodes.

The root cause of above problems is the lack of tools to comprehensively summarize

the functionalities of contract’s bytecodes. Although a few decompilers for smart

contracts have been recently proposed to turn contracts’ bytecodes into user-defined
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IR (Intermediate Representation) [107] or Solidity sources [157], it is still not easy

for users to grasp the semantic information of the contract, not to mention the

potential misleading due to decompilation errors. Some other studies leverage symbolic

execution [134] [20], static analysis [160] [34], or formal methods [113] [150] to analyze

smart contracts for detecting security issues, whose purposes are different from this

chapter.

0x606060405260043610610083576000357c01f168063095ea7b314610088
57806318160ddd146100e257806323b872dd1461010b57806341c0e1b5146
1018457806370a0823114610199578063a9059cbb14...//contract bytecodes

0x3ccfd60b  //one interface's descriptions
Functionality Description: Owner can withdraw contract funds.  //FD
Usage Description: You can call this interface as withdraw().  //UD
Behavior Description: In this interface, it transfers ETH to another address. In this 
interface, it calls another user-defined contract.  //BD
Payment  Description:  This interface  is payable and you can send ETH to this 
interface.  //PD

Figure 3.1: The runtime bytecodes of one closed-source contract and the descriptions
for one interface generated through Stan.

In this chapter, we propose and implement a system named Stan (deScribe

byTecodes of smArt coNtract), which can analyze the runtime bytecodes of smart

contract and automatically describe its interfaces in natural language, enabling

users to quickly and thoroughly understand closed-source contracts. One moti-

vating example of Stan’s descriptions for a smart contract (address at Mainnet:

0x68854ed29d6feca85242a9b5c00b9e93895a5403) is shown in Figure 3.1. Given the

address of target contract, Stan can automatically acquire its runtime bytecodes and

describe every interface from four aspects. The functionality description summarizes

the interface’s functionality, and usage description tells the user how to call this

interface. The behavior description describes message-call related behaviors within
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the interface, and payment description describes whether the interface can receive

ETH.

Our Contributions. The main contributions of this chapter are listed as follows:

• To the best of our knowledge, we conduct the first research of describing the

bytecodes of smart contracts in natural language. For closed-source contract’s

bytecodes, Stan can generate four categories of descriptions for each interface.

• We leverage program analysis and NLP techniques to describe bytecodes. We an-

alyze bytecodes through symbolic execution and generate readable descriptions

following standard workflow of NLG (Natural Language Generation) system.

• We evaluate the generated descriptions from three aspects. We develop a

tool named Scans, which statically analyzes contract sources to evaluate

descriptions’ adequacy and accuracy. We also evaluate descriptions’ readability

through questionnaires and statistical methods.

The remainder of this chapter is organized as follows. Section 3.2 introduces the

technical background, and Section 3.3 details the principle and implementation of

Stan. Then Section 3.4 systematically evaluates the generated descriptions. After

discussing the limitations and future work in Section 3.5, we summarize the chapter

in Section 3.6.

3.2 Background

This section briefly introduces necessary background.
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3.2.1 Ethereum

Ethereum has two types of accounts, namely EOA (Externally Owned Account) and

contract account [166]. Users can create EOAs and store ETH (native cryptocurrency

in Ethereum). Users can send transactions using the private key associated to the

EOA address, including ETH transfers and contract calls [84]. The contract account

is created by EOA or another contract account. Besides ETH, the contract account

contains the bytecodes and storage variables of smart contract.

3.2.2 Smart Contract

In Ethereum, each node runs an EVM (Ethereum Virtual Machine), and the bytecodes

of contract are executed in EVM [183]. Smart contract can be developed through

several Turing complete languages, such as Solidity (the recommended language),

Serpent, and Vyper [183]. Therefore, smart contract can implement complex logics.

Contract Interface: It denotes functions that can be called externally by EOA

or other deployed contract. “external” or “public” functions can be invoked by others.

If a contract is open-source in Etherscan [24], the most popular Ethereum block

explorer, users can retrieve contract’s ABI (Application Binary Interface) to get its

interface information.

Contract Invocation: After a smart contract is deployed to Ethereum, its

interfaces can be called through transactions [84]. Gas is the basic unit of resource

consumption for transactions in Ethereum. Invoking smart contracts through transac-

tions requires a certain amount of gas [81]. When a smart contract is running in EVM,

each opcode consumes some gas, whose value is defined in the Yellow Paper [62].

Message-call: There are two kinds of transactions in Ethereum, namely normal
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transaction (i.e., sent from EOA) and internal transaction (i.e., sent from contract).

Through message-call, smart contract can interact with other EOAs or contract

accounts, which typically cause internal transactions. One normal transaction may

include several internal transactions, and message-call usually comes with the occur-

rence of sensitive behaviors. For example, through exploiting recursive message-call

vulnerability, the criminals stole more than 60 million dollars from smart contract

Thedao [132]. We analyze four different message-call related behaviors in this

chapter.

DevDoc: Ethereum NatSpec (Natural Specification) [19] prescribes the writing

specifications of DevDoc (Developer Documentation) in the contract’s sources. For

example, with the annotation field ‘details’, contract developers can explain the

functionality of the interface.

ERCDoc: In EIP (Ethereum Improvement Proposal) [18], there is ERCDoc

(ERC Documentation), which prescribes standard interfaces for tokens in Ethereum.

For example, ERC20 is the most popular token standard and there already exist more

than 238,000 deployed ERC20 tokens [16].

3.2.3 Program Analysis

Loi et al. [134] proposed Oyente, which uses symbolic execution to detect security

bugs in smart contracts. Although Stan uses Oyente as its symbolic execution

engine, our analysis of bytecodes is not related to the security bugs studied in [134].

There are some other symbolic execution engines for detecting vulnerable in smart

contracts [37] [35] [78] [128] [142] [144] [147], whose purposes are different from ours.

Sergei et al. [160] proposed Smartcheck, a static tool that examines contracts’
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Solidity sources to detect security bugs. However, it cannot analyze bytecodes directly.

There are many other static analysis tools [100] [74] [108] [162] [163] [110] for detecting

different kinds of security issues in smart contracts. Some studies [113] [150] [109]

[112] [67] employ formal methods to verify security properties of smart contracts and

EVM, whose purposes differ from this chapter.

Matt [157] proposed Porosity, a decompiler for contracts’ bytecodes. However,

there are still many challenges to generate accurate and readable source codes.

Similarly, there are some research [107] [74] [30] [182] [65] [31] decompiling contracts’

bytecodes into user-defined intermediate languages, to improve the readability of

runtime bytecodes and to facilitate the analysis of smart contracts. Some other

studies (e.g., gas optimization [80] [79] [82]) have different purposes. In summary,

these studies provide us with valuable inspiration to conduct the first research of

describing contracts’ bytecodes.

3.3 Stan’s Implementation

User

Mainnet
Kovan
Rinkeby
Ropsten

Ethereum RPC API

bytecodes

NLG Interface 
description

address

DevDoc analysis

SWUM analysis
ERCDoc analysis

Functionality analysis

Usage analysis

Payment analysis

Behavior analysisSymbolic 
execution

Function dispatcher 
analysis

NoSQL contract database

A

B C E

D

Figure 3.2: Overview of Stan’s architecture.

The overview of Stan’s architecture is shown in Figure 3.2, which mainly consists
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of five modules:

(A) Functionality analysis module (Section 3.3.1): Stan conducts contract-

oriented analysis through NLP techniques to generate functionality related phrases for

interfaces. Note that the functionality of Stan is to describe closed-source contracts’

bytecodes, and we analyze open-source contracts and metadata to provide help for

bytecodes’ analysis through discovering identical bytes signatures.

(B) Usage analysis module (Section 3.3.2): Stan extracts function bytes signatures

from function dispatcher and reverse them into corresponding text signatures. From

text signature (e.g., transfer(address, uint256)), users can know function’s name

and parameter’s configuration, which are used to call the interface.

(C) Behavior analysis module (Section 3.3.3): Stan analyzes external/public

functions to generate intermediate information for message-call related behaviors

leveraging symbolic execution. Through analyzing opcodes and operands, we recognize

four kinds of sensitive message-call behaviors (e.g., ETH transfer, contract deployment,

contract call).

(D) Payment analysis module (Section 3.3.4): Stan analyzes external/public

functions to generate intermediate information for payment feature through symbolic

execution. We construct CFG (Control Flow Graph) to recognize two kinds of

payment patterns, indicating whether the interface is payable.

(E) NLG module (Section 3.3.5): Stan generates the final readable interface

descriptions leveraging the results of previous four modules. The NLG process follows

the standard workflow of NLG system, i.e., document planner, micro-planner, and

surface realizer.
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3.3.1 Functionality analysis module

DevDoc and ERCDoc analysis

In this section, we analyze DevDoc and ERCDoc to generate phrases that summarize

interfaces’ functionalities. The result is stored in Stan’s database and will be used

to facilitate the describing of bytecodes. In the next section, we analyze interfaces

without DevDoc or ERCDoc.

Through Scans’ static analysis for 129,737 open-source contracts, there are 5.36%

(6,954) sources with DevDoc. We show the process of DevDoc analysis through a

function, whose text signature is ‘totalSupply()’, which is divided into four steps.

First, we leverage Scans to perform static analysis of sources and parse their DevDocs,

to extract all the ‘details’ annotations for functions with signature ‘totalSupply()’.

Second, we aggregate the ‘details’ annotations of functions, whose signatures are

the same and appear in different contracts, into a single paragraph. Note that we

only intercept the first sentence in each function instance’s ‘details’ annotations, as

it is most closer to the goal of describing interfaces’ functionalities. In addition, we

pre-process the aggregated paragraph. In detail, we remove non-English sentences,

identical sentences, meaningless special symbols, etc. After pre-processing, we obtain

53 different sentences, and all of them are written by the developer to describe the

functionalities of ‘totalSupply()’.

W (Vi) = (1−
Damping factor︷︸︸︷

df ) + df ×
∑

Vj∈In(Vi)

Weight of Eji︷︸︸︷
wji∑

Vk∈Out(Vj)
wjk

W (Vj) (3.1)

where: In(Vi) is the set of vertices that point to Vi,

Out(Vj) is the set of vertices that Vj points to.
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Third, we summarize the paragraph T through TextRank Model. TextRank is

a ranking model for natural language [140] mainly used to unsupervised keywords

extraction for texts. We conduct word segmentation (segmented by spaces), part-of-

speech tagging on the paragraph, and filter out stop words. Then we build the keyword

graph G = (V, E) through TextRank Model, whose vertice set is composed of word

ti. If two different tis appear in a window of length k, they have the co-occurrence

relationship and there is an edge between the corresponding two vertices with specified

weights. Vi’s weight is computed using Formula 3.1. We sort all the vertices according

to their weights, to get several words with top weight values as keywords. At last, we

extract key phrases (i.e., keywords with co-occurrence relationship) as summarization

of the paragraph.

Similarity(Si, Pj) =
|{

Words in sentence and phrase︷︸︸︷
wm |wm ∈ Si ∩ wm ∈ Pj}|
|{wn|wn ∈ Si ∪ wn ∈ Pj}|

(3.2)

Table 3.1: Part of the statistics of ranked sentences in ‘details’ paragraph for function
signature ‘totalSupply()’.

ID MinHash Jaccard index Sentence
?47? ?0.183017870949962? ?‘Total supply of tokens.’?
36 0.161335751783794 ‘Returns the total token supply.’
43 0.140755293788616 ‘Function to access total supply of tokens.’
2 0.139558685183205 ‘Total Supply.’
1 0.114068411467280 ‘Retrieves total supply.’
40 0.091591782314505 ‘Obtain total number of tokens in existence.’

Fourth, to get the significance weight for different sentences in the paragraph, we

calculate Jaccard index (shown in Formula 3.2) of each sentence Si to extracted key

phrases Pj through MinHash algorithm [76]. At last, we sort the sentences according
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to their weight values, as shown in Table 3.1 (ID represents position ordinal of sentence

in the ‘details’ paragraph), and select the highest weighted sentence (marked with ?)

as the functionality phrase for the function with signature ‘totalSupply()’.

Furthermore, we find that token-related function signatures have very high occur-

rence frequencies. Through Scans’ static analysis for 129,737 open-source contracts,

there are 67.56% (87,652) sources with contract names that contain the keyword

‘erc’. In other words, approximately 67.56% contracts implement the ERC standard

token interfaces. Therefore, we get ERCDocs from EIPs and analyze standard to-

ken interfaces, to obtain token-related function signatures and their corresponding

functionality phrases.

Table 3.2: Quantity statistics of token interfaces defined in ERCDocs.

Documentation Defined interfaces Documentation Defined interfaces
ERC20 9 ERC918 9
ERC721 17 ERC998 25
ERC777 15 ERC1080 8
ERC827? 9+3 ERC1132? 0+9
ERC884? 6+11 ERC1203? 6+4
ERC900 10 ERC1410 12

Because the writing structure of ERCDocs is not standardized or unified, it is

difficult to parse their content automatically. First, we analyze the ERCDocs manually,

extracting function signatures and their corresponding annotations defined in the

documents. We have analyzed 12 popular token-related ERCDocs, and their relevant

statistics are shown in Table 3.2. ? marks ERCDocs that extend ERC20. For example,

ERC827 inherits 9 functions from ERC20 and defines 3 new functions. Note that the

ERC1132 is also ERC20’s extension; however, it only describes its 9 new functions.

For all ERCDocs, we only extract external/public functions. Second, we combine

different annotations of the same function signature into one paragraph. Third, we
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summarize functions’ paragraphs through TextRank model separately, to generate

functionality phrases for interfaces defined in ERCDocs. Eventually, we generate 115

different function signatures and their corresponding functionality phrases, which will

be loaded into Stan’s database.

SWUM analysis

In this section, we generate functionality related phrases through SWUM for interfaces

without DevDoc or ERCDoc, whose process is divided into three steps.

SWUM (Software Word Usage Model) is used to extract linguistic information

from program statements, including words in different parts of speech and the language

relationship between them [156]. We use some examples to interpret the process.

First, for functions that follow standard naming conventions, we segment their text

signatures through specific rules. We analyze three types of naming conventions, i.e.,

Camel case (e.g., ‘isPresaleReady()’), Pascal case (e.g., ‘GiveBlockReward()’), and

Snake case (e.g., ‘claimed_tokens()’). For those functions that do not follow standard

naming conventions, we leverage Zipf’s law [61] to conduct word segmentation. After

word segmentation, we tag the words in part-of-speech to get a set of nouns, verbs,

and so on. For example, the function signature ‘isPresaleReady()’ is segmented into

(‘is’, ‘presale’, ‘ready’) and tagged as (‘VBZ’, ‘NP’, ‘ADJP’).

Second, we analyze the linguistic relationship between the segmented words, such

as subject-verb, verb-object, passive relations, etc. Leveraging Stanford parser [145],

we construct syntax tree of the text signature to analyze its linguistic relationship.

We analyze four types of syntax tree, including SINV (inverted declarative sen-

tence), FRAG (fragment), S (simple declarative clause), and NP (noun phrase). The
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ROOT

SINV

VBZ NP

is NP ADJP

NN JJ

presale ready

ROOT

FRAG

VP

VBZ VP

is VBN

finished

ROOT

S

VP

VB NP

register VBN

investor

VBN

account

ROOT

NP

NN NN

gas price

isPresaleReady() isFinished() registerInvestorAccount() gasPrice()

Figure 3.3: Four types and examples of syntax tree for function signature.

structures and examples of these four syntax trees are shown in Figure 3.3. SINV

represents inverted declarative sentence; FRAG represents fragment; S represents

simple declarative clause; NP represents noun phrase.

Third, the functionality phrase is generated using the analysis results from the

previous two steps, and the process is shown in Algorithm 1. In the algorithm of

phrase generation, we analyze the structure of syntax tree, then select artificially

designed verbs and templates to be assembled as phrases. For example, the function

‘isPresaleReady()’ is classified as SINV type of syntax tree, and then we depth-first

traverse the syntax tree, looking for the noun subject. Afterward, we select verb

‘check’ and template ‘whether the NP VBZ ADJP’, and generate the functionality
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phrase for this function as ‘Checks whether the presale is ready’.

Algorithm 1: Phrase generation through syntax tree

1. Input: Sf ← signature of function f

2. Listf ← WordSegmentation(Sf ) Bthrough Camel, Pascal, Snake cases, or Zip’f law

3. Listf ← Part-of-speech(Listf )

4. STf ← StanfordParser(Listf ) Bconstruct syntax tree

5. Switch(Type(STf )):

6. Case SINV : Binverted declarative sentence

7. V E ← VerbSelector(STf )

8. TPf ← TemplateSelector(STf )

9. Pf ← PhraseConstructor(Listf , STf , V E, TPf )

10. Case FRAG: Bfragment

11. OB ← ObjectSelector(STf )

12. TPf ← TemplateSelector(STf )

13. Pf ← PhraseConstructor(Listf , STf , OB, TPf )

14. Case S: Bsimple declarative clause (no need to add new elements or select
templates, because Listf can be fully constructed into a phrase, and the sentence
structure is fixed)

15. Pf ← PhraseConstructor(Listf , STf )

16. Case NP : Bnoun phrase (no need to select templates, because the sentence
structure is fixed)

17. V E ← VerbSelector(STf )

18. Pf ← PhraseConstructor(Listf , STf , V E)

19. Output: Pf
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Database construction

We have crawled total of 129,737 deployed open-source contracts from Etherscan,

whose statistics are shown in Table 3.3 (? marks Testnets). Through DevDoc and

ERCDoc analysis, we have generated 12,993 and 115 different function signatures and

their corresponding functionality phrases respectively. Leveraging Scans, we totally

extract 2,860,798 function text signatures from 129,737 sources’ ABIs. As supplements,

we obtain 147,724 from EFSD (Ethereum Function Signature Database) [17], which

is a public signature database that anyone can updates. Then we combine the text

signatures extracted from ABIs and EFSD, removing duplicates, and use Keccak-256

hash algorithm to calculate bytes signature for each item. Eventually, we obtain

202,995 different text signatures and corresponding bytes signatures, which are used

in SWUM analysis and usage analysis (Section 3.3.2). We publish the above analysis

results data on https://figshare.com/articles/dataset/11650734. To the best

of our knowledge, it is the most comprehensive Ethereum function signature public

dataset.

Table 3.3: Quantity statistics of deployed open-source smart contracts.

Network name Transactions Block depth Open-source contracts
Mainnet 506,822,407 8,234,086 50,017
Kovan? 23,994,109 12,485,019 8,622

Rinkeby? 38,609,478 4,807,975 19,527
Ropsten? 106,730,113 6,073,746 51,571

Note that we do not leverage code clone techniques in this chapter because

we only analyze open-source contract’s function signature, not its function body.

Stan can describe bytecodes that do not have corresponding sources. The Stan’s

database is used to reverse bytes signature and help to generate functionality and
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usage descriptions. Behavior and payment descriptions’ generation does not use the

database at all. We also use two different bytecodes datasets, one has corresponding

sources and the other one does not have, to fully evaluate Stan in Section 3.4.

We construct contract database for Stan, and import these function-related

data to assist in describing bytecodes of closed-source contracts. If one function’s

bytes signature in bytecodes can be retrieved in the database, we can use its related

data to generate functionality and usage descriptions. We use MongoDB [89] to

implement the database, and fully import the datasets published in the above URL

into database to help describe bytecodes. When the final functionality descriptions

are generated for one interface, we set specific priority rules to decide which field is

used, which are presented in Section 3.3.5. The results of SWUM analysis are not

loaded into database, because Stan directly generates descriptions from function

signatures through SWUM if their DevDoc-related or ERCDoc-related phrases cannot

be retrieved in database. Note that if one function’s bytes signature in bytecodes

cannot be retrieved in the database, its functionality and usage descriptions may not

be generated properly.

3.3.2 Usage analysis module

In this section, we analyze the runtime bytecodes to recognize external functions’

signatures, further to generate intermediate information for usage descriptions.

The usage analysis is divided into three steps. First, leveraging Oyente [134],

which is a symbolic execution engine, we construct CFG of the runtime bytecodes.

Second, we recognize function dispatchers in the CFG. The function dispatcher is

used to compare the bytes signature encoded in transaction parameter with signatures
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… //stack and arithmetic operations
0x32 CALLDATALOAD
0x33 DIV
0x34 PUSH4 0x06fdde03
0x39 DUP2 
0x3a EQ 
0x3b PUSH2 0x008a
0x3e JUMPI
0x3f DUP1 
0x40 PUSH4 0x18160ddd
0x45 EQ 
0x46 PUSH2 0x00e6
0x49 JUMPI

ܫ 0ܰ, ,ሻݏ݁ݐݕሺ4ܾݐ݌݁ܿݎ݁ݐ݊ܫ ܫ 0ܰ
′

ܫ 0ܰ
′ , ܤሼ݈ܽݑݍܧ 1ܵሽ, ሾݐ, ݂ሿ

ሾݐ, ݂ሿ, ,1ሽܴܦܦܣሼ݌݉ݑܬ ܲܿሼ1ܴܦܦܣ, ܿ݌ߤ ൅ 1ሽ 

,ܫܵ ,ሽ݊ܵܤሼ݈ܽݑݍܧ ሾݐ, ݂ሿ

ሾݐ, ݂ሿ, ,ሽܴ݊ܦܦܣሼ݌݉ݑܬ ܲܿሼܴ݊ܦܦܣ, ܿ݌ߤ ൅ 1ሽ 

Figure 3.4: Bytecode snippet of two different types of function dispatcher.

in runtime bytecodes, to decide which function to execute exactly. There exist two

different types of function dispatchers in bytecodes, and we use the bytecode snippet

of one closed-source contract (Address at Mainnet: 0x50e57ada51fa82b5a3de6ebae3d2

1f88c8d3a672) (shown in Figure 3.4) to interpret their patterns. Opcodes in program

counter 0x32 to 0x3e belong to dispatcher type one, and opcodes in counter 0x3f to

0x49 belong to dispatcher type two. For the first type, which is usually located in

the opcode block of initial entrance, it reads the first 32 bytes of the transaction’s

input data as IN0. After intercepting the first 4 bytes of IN0 into IN ′
0, it compares

IN
′
0 with the first bytes signature in bytecodes BS1. If IN

′
0 equals BS1, the program

counter will be changed to ADDR1, which is the opcode block corresponding to

function BS1. Otherwise, the program counter will be changed to µpc + 1. For the

second type of function dispatcher, it reads SI, which is the bytes signature of the

transaction’s target function, from the stack directly. Then it compares SI with one

of bytes signature in bytecodes BSn. If SI equals BSn, the program counter will be

changed to ADDRn. Otherwise, the program counter will be changed to µpc + 1.
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Third, we extract function bytes signatures from function dispatchers (i.e., (BS1, 0x

06fdde03) and (BSn, 0x18160ddd)) and retrieve their corresponding text signatures

through the contract database. Note that it may fail to retrieve text signatures,

whose adequacy is evaluated in Section 3.4.2. Eventually, the extracted function

bytes signatures and their corresponding text signatures (i.e., (0x06fdde03, name()

and (0x18160ddd, totalSupply()) act as intermediate information to be transferred to

the NLG module (in Section 3.3.5) to generate usage descriptions.

3.3.3 Behavior analysis module

Table 3.4: Four different categories of interface behaviors through message-call, and
their corresponding opcodes and operands to be analyzed.

Interface behavior Analyzed opcode Analyzed operand

ETH transfer? CALL, CALLCODE Pv

SELFDESTRUCT 7

Pre-compiled contract call CALL Pa

User-defined contract call? CALL Pa

CALLCODE, STATICCALL,
DELEGATECALL 7

Contract deployment? CREATE 7

In this section, we analyze four kinds of message-call behaviors in interface, further

to generate intermediate information for behavior descriptions. The behavior analysis

is divided into two steps. First, for every execution path in function body, we record

the occurrence of message-call related opcodes and their corresponding operands

through symbolic execution. Second, we analyze the recorded information of message-

call related opcodes and operands, and summarize it into four different categories

of interface behaviors listed in Table 3.4 (? marks the behaviors that cause internal

transactions).

For ETH transfer behavior, there are two scenarios. In the first scenario, CALL or
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CALLCODE is bound to appear during function body execution. Further, we analyze

their value field operand Pv, to check whether Pv is a non-zero constant or symbolic

value. If Pv is a non-zero constant, it indicates the existence of a fixed amount of ETH

transfer. If Pv is a symbolic value, it indicates the existence of a non-fixed amount

of ETH transfer, whose specific value is determined by function’s input parameter

or contract’s storage. In the second scenario, SELFDESTRUCT is bound to appear and

we do not need to analyze its operand. The occurrence of SELFDESTRUCT indicates

that there is ETH transfer during contract’s self-destruction. For PRE contract call

behavior, CALL is bound to appear, and we analyze its target address field operand Pa,

to check whether Pa is a constant value from 0x1 to 0x8. From version Metropolis [62],

Ethereum implements eight different PRE contracts.

For user-defined contract call behavior, there are two scenarios. In the first

scenario, CALL is bound to appear during function body execution, and its operand

Pa is not any of the addresses of PRE contracts. In the second scenario, CALLCODE or

STATICCALL or DELEGATECALL is bound to appear during function body execution.

We do not need to analyze their operands in this scenario, and the presence of any of

them can prove the existence of user-defined contract call behavior.

For contract deployment behavior, CREATE is bound to appear during function

body execution, and we do not need to analyze its operands. The occurrence of

CREATE indicates that there is inline assembly or call to its constructor in the function

body, to deploy new contracts. At last, the target interface’s specific message-call

behavior category will act as intermediate information to be transferred to the NLG

module to generate behavior descriptions.
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3.3.4 Payment analysis module

In this section, we analyze whether the target interface is ETH payable, further to

generate intermediate information for payment feature descriptions. When we develop

smart contract with Solidity, a function needs to be decorated with modifier payable

in order to receive ETH through transactions. If users call a non-payable interface

with ETH, the transaction execution will fail and waste user’s gas.

0x149 CALLVALUE
0x14a ISZERO
0x14b PUSH2 0x0150
0x14e JUMPI
0x14f INVALID

0x35 CALLVALUE
0x36 ISZERO
0x37 PUSH2 0x003f
0x3a JUMPI
0x3b PUSH1 0x00
0x3d DUP1
0x3e REVERT

ݒܶ , ,ሼ0ሽ݈ܽݑݍܧ ሾݐ, ݂ሿ 

ሾݐ, ݂ሿ, ܦܦܣ൛݌݉ݑܬ ݂ܴൟ, ܲܿ൛ܦܦܣ ݂ܴ , ܿ݌ߤ ൅ 1ൟ 

ܲܿ, ܿ݌ߤ൛ݐ݁݃ݎܽܶݏ݅ ൅ 1ൟ,  ሻࢀሺ࢝࢕࢘ࢎࢀ

ݒܶ , ,ሼ0ሽ݈ܽݑݍܧ ሾݐ, ݂ሿ 

ሾݐ, ݂ሿ, ܦܦܣ൛݌݉ݑܬ ݂ܴൟ, ܲܿ൛ܦܦܣ ݂ܴ , ܿ݌ߤ ൅ 1ൟ 

ܲܿ, ܿ݌ߤ൛ݐ݁݃ݎܽܶݏ݅ ൅ 1ൟ,  ሻࢀሺ࢚࢘ࢋ࢜ࢋࡾ

Figure 3.5: Bytecode snippet of two different types of payment operations.

We recognize payment operations’ patterns in the CFG of the target function

body, to detect whether the interface is non-payable. We use two different bytecode

snippets (contract A at Mainnet: 0x6ab6aac6a6f844e322a6c42b3185e1bc4cf56e42, and

B at Mainnet: 0xa3ed88f7c9bf7df33b7549bb8c5a889b6049504c) to interpret payment

patterns as shown in Figure 3.5. Opcodes in program counter 0x149 to 0x14f (in

function 0x66117276) belong to non-payable type one, and opcodes in counter 0x35

to 0x3e (in function 0x62c06767) belong to non-payable type two.

It acquires transaction’s value field Tv, and determine whether Tv equals 0. If
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Tv equals 0, the program counter will be changed to ADDRf , which is the initial

execution block’s address of behaviors within function. If Tv is not equal to 0, the

program counter is changed to µpc + 1, which is the address of next execution block.

In the execution block that started from µpc + 1, it throws or reverts the transaction

due to different compiler Solc [51] versions. Before Solc version 0.4.12, it throws

the transaction through INVALID (0xfe in bytes). In this scenario, it rolls back all

state changes and consumes the remaining gas. For example, one transaction (Hash

at Rinkeby: 0x128907301beff5c56af8234e3c925567352696defffc89e453313e33ae73a

c5d) failed with invalid opcode error, and it consumed all the 4,707,786 gas from

the user. After Solc version 0.4.12 (including v0.4.12), it reverts the transaction

through REVERT (0xfd in bytes). In this scenario, it rolls back all state changes and

returns the remaining gas to the user. For example, one transaction (Hash at Mainnet:

0x037a08b19bc3255e2feca42f6e08294ab8f7daa26e400d998b2a1368159216f2) failed

with inverted error, and it consumes 22.53% (22,525/100,000) of the gas given by

the user. Therefore, in both scenarios, transaction will fail and cause the user’s gas

wasted. Note that either of our detected pattern’s occurrence indicates that the target

interface is non-payable.

At last, the result of interfaces’ analysis, (0x66117276, [Nonpayable, T rue]) and (

0x62c06767, [Nonpayable, T rue]), act as intermediate information to be transfered to

the NLG module respectively to generate feature descriptions.

3.3.5 NLG module

In this section, we generate the final readable interface descriptions leveraging the

results of previous four analysis modules. The NLG module mainly consists of three
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steps, which are shown in Algorithm 2.

Algorithm 2: Description generation through NLG module

1. Input: IFf,u,b,p Bintermediate information of functionality, usage, behavior, and
payment descriptions

2. Step 1: document planner

3. WIF ← WeightAssign(IFf,u,b,p)

4. For Element in IFf,u,b,p:

5. WIFf,u,b,p ← WeightAssign(Element)

6. Step 2: micro-planner

7. For Pd,s,e in IFf :

8. CGd,s,e
← NLGFactory-CreateClause(Pd,s,e)

9. For Element in IFu,b,p:

10. TPu,b,p ← TemplateSelector(Type(IFu,b,p))

11. C
′′
U,B,P ← NLGFactory-CreateClause(TPu,b,p,Element)

12. C
′
U,B,P ← Aggregator(C ′′

U,B,P )

13. Step 3: surface realizer

14. CF ← WeightHighest(CGd,s,e
,WIFg)

15. CU,B,P ← WeightSort(C ′
U,B,P ,WIFu,b,p)

16. DF,U,B,P ← NLGFactory-CreateParagraph(CF,U,B,P )

17. Di ← GrammarChecker(WeightSort(DF,U,B,P ,WIF ))

18. Output: Di

The first step is document planner for content determination and document

structuring. After importing four categories of intermediate information IFf,u,b,p for
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the target interface, we give them four different weights to determine the order in which

the descriptions appear. Note that specific weight values of WIF are set depending

on the degree of IF ’s importance, which will be used to determine paragraphs’ order.

For example, we give IFf the highest weight and functionality description will appear

first among the four kinds of descriptions. Similarly, we traverse specific elements in

IFf,u,b,p and weight them, which will be used to select elements to generate sentences,

and to determine the order of sentences within paragraphs.

The second step is micro-planner for lexicalization and aggregation. Through

IFf , we parse three different kinds of functionality phrases Pd,s,e, which represent

DevDoc-based, SWUM-based, and ERCDoc-based phrases. Leveraging NLGFactory

APIs in Simplenlg [105], which is a package used for language generation, we create

complete sentences CGd,s,e
of functionality descriptions from Pd,s,e. Then we traverse

specific elements in IFu,b,p and select sentence template TPu,b,p according to the

category of IFu,b,p. Using specific TPu,b,p and Element, we create complete sentences

for usage, behavior, and payment descriptions C ′′
U,B,P . Because there might exist

sentences that are highly similar or identical in C
′′
U,B,P , we set rules to aggregate

these sentences. For example, when there are two ETH transfers in the same IFb, we

describe them only once.

The third step is surface realizer for linguistic and structure realization. For the

three kinds of sentences CGd,s,e
, we select the highest weighted sentence to act as the

interface’s functionality description. In NLG module’s implementation, we set the

highest weights for ERCDoc-based sentences because their IFf are artificially analyzed

and extracted from EIPs in Section 3.3.1, which are more accurate than the other

two kinds of sentences. For the sentences in C ′
U,B,P , we determine their appearance
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order according to their weight values in WIFu,b,p. Then we create four different

paragraphs DF,U,B,P from the four kinds of sentences CF,U,B,P , leveraging NLGFactory

APIs. After we adjust paragraphs’ order of DF,U,B,P according to their weight values

in WIF , we check their language grammar through Languagecheck [33]. At last,

Di is output as the final descriptions for the target interface.

3.4 Evaluation

We conduct a series of experiments to evaluate Stan, which are used for answering

the following research questions:

RQ1 Adequacy: How many contracts’ bytecodes can be successfully described

through Stan?

RQ2 Accuracy: To what extent can Stan accurately describe contracts’ byte-

codes?

RQ3 Readability: How is the readability of the generated descriptions for users?

3.4.1 Datasets and Experimental Overview

Table 3.5: Quantity statistics of two kinds of contract bytecodes’ datasets for evalua-
tion.

DS Network Bytecode Destructed Identical Analyzed
1 Mainnet 6,920,465 N/A 6,803,635 116,830

2

Mainnet 50,017 725 1,398 47,894
Kovan 8,622 79 514 8,029
Rinkeby 19,527 228 269 19,030
Ropsten 51,571 626 998 49,947

In order to fully evaluate Stan, we create two kinds of bytecodes’ datasets,

which are shown in Table 3.5. For DS1, we crawl 42,115,551 different accounts’

information in 28 days from Mainnet. We resolve all crawled accounts, with 6,920,465
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accounts containing bytecodes, indicating that these are contract accounts and they

are not self-destructed. After deleting all accounts containing duplicate bytecodes, we

obtain 116,830 different runtime bytecodes. For DS2, we crawl open-source contracts’

bytecodes from Mainnet and three public Testnets. Then we delete accounts that

contain empty bytecodes, which means that they are already self-destructed, and

accounts containing duplicate bytecodes. All the bytecodes in DS2 can retrieve

corresponding source codes through Etherscan, which can facilitate us

to evaluate the accuracy and readability of their descriptions generated

from bytecodes. The statistics also show that only less than 1% (50,017/6,920,465)

contracts are open-source.

Considering that the symbolic execution consumes time and hardware resources,

we run experiments through 4 cloud instances. These instances are all configured

with Intel Xeon E312x 2.60GHz CPU and 8G RAM, running 64-bit Ubuntu 18.04.

We randomly extract 800 runtime bytecodes from DS1 to constitute DS1’, and 200

from each network (total of 800) in DS2 to constitute DS2’. We have checked

all the bytecodes in DS1’ and they are not verified with source codes in

Etherscan.

Before the evaluation, we run Stan to generate descriptions for DS1’ and DS2’,

which include a total of 1,600 contracts’ bytecodes. As a first step, we run the

Oyente [134] engine on the datasets alone, in 25 hours, to remove those contracts

that encounter timeout exception. There are 651 contracts’ bytecodes, 357 in DS1’

and 294 in DS2’, executed without timeout. Second, we generate descriptions for

these 651 contracts’ bytecodes through Stan, with an average analysis time of 87.4s

(including symbolic execution) per contract.
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3.4.2 RQ1 Adequacy

Table 3.6: Quantity statistics of the success rate of normally describing or tagging
bytecodes.

DS Bytecodes Described NF tagged JE tagged Success rate
1’ 357 292 (81.8%) 62 (17.4%) 3 (0.8%) 100%
2’ 294 294 (100%) 0 0 100%

In this section, we evaluate how many bytecodes can be successfully described

through Stan. The quantity statistics of the success rate of normally describing or

tagging bytecodes are shown in Table 3.6. Note that we tag two kinds of insecure

contracts, i.e., NF (No Function) contracts, and JE (Jump Exception) contracts.

For DS1’, there are 292 (81.8%) bytecodes described normally through our NLG

module. The other 65 bytecodes are tagged as insecure contracts, i.e., NF (No

Function) contracts or JE (Jump Exception) contracts, which are advised not to

be called. The NF contract has no external/public function and executes the same

opcode snippet for each invocation. For example, one tagged NF contract (Address at

Mainnet: 0x5170E3C93df0605F3b02b00d8C3D9a7235fcD1Ef) is a honeypot contract,

and it executes the same useless operations for each invocation. It wastes users’ gas

and can maliciously receive users’ ETH attached in the transaction. Therefore, we

tag this contract’s bytecodes as “ALERT: This is an insecure NF contract!” The JE

contract has invalid jump destination(s) in its opcodes, which may encounter jump

exception and exhaust users’ gas. For one tagged JE contract (Address at Mainnet:

0x6a5dffaAdBCbeF3359a017cc5100908630364aBF), regardless of which interface is

called, it will encounter a runtime exception, which exhausts users’ gas. Therefore,

we tag this contract’s bytecodes as “ALERT: This is an insecure JE contract!”
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For DS2’, all the 294 (100%) contracts’ bytecodes are normally described and

no bytecodes tagged as insecure contracts. We can conclude that contracts with

corresponding verified source codes are generally more secure.

Table 3.7: Quantity statistics of interfaces described normally, and the success rate of
four kinds of descriptions.

DS Interfaces FD UD BD & PD
1’ 3,179 (N/A) 2,231 (70.2%) 2,979 (93.7%) 3,179 (100%)
2’ 4,180 (100%) 3,023 (72.3%) 4,180 (100%) 4,180 (100%)

We further evaluate Stan’s adequacy from the level of interfaces, whose statistics

are shown in Table 3.7. For the described 292 contracts’ bytecodes in DS1’, 3,179

interfaces are analyzed. There are 2,231 (70.2%) interfaces’ functionalities successfully

described. Some interfaces are failed to generate functionality description because they

are not included in DevDoc and ERCDoc analysis. In the meanwhile, they cannot be

analyzed perfectly through SWUM, which are mainly reflected in two aspects. First,

some functions are highly irregularly named. For example, function caps(address)

cannot be recognized through Stanford parser [145] because “caps” is not a complete

word or standard abbreviation. Second, some functions’ syntax structure cannot

be analyzed. For example, function MAX_INVESTMENTS_BEFORE_CHANGE() cannot be

classified into the four syntax trees we detect. There are 2,979 (93.7%) text signatures

recognized through our usage analysis and contract database. To the best of our

knowledge, we already construct the most comprehensive function signature dataset.

For the other 6.3% functions, there is currently no viable way to identify their text

signatures.

For the 294 contracts’ bytecodes in DS2’, by using Scans, we acquire their corre-

sponding source codes and totally extract 4,180 external/public functions statically.
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As shown in Table 3.7, 100% of these interfaces are analyzed and identified text

signatures through usage analysis. Similar to DS1’, 72.3% interfaces’ functionalities

successfully described.

Answer to RQ1 (Adequacy): Stan can successfully describe or tag 100% of

the bytecodes in two datasets. Furthermore, 100% of interfaces can be successfully

described by two description modules (i.e., BD, PD). More than 93.7% of interfaces’

usage descriptions can be successfully generated, and more than 70.2% of interfaces’

functionalities can be successfully described. Stan can adequately describe bytecodes

of smart contracts.

3.4.3 RQ2 Accuracy

Table 3.8: Quantity statistics of Stan’s accuracy of tagging insecure bytecodes.

DS Result Accuracy DS Result Accuracy
1’ NF tag 623 / 07 2’ UD 4,1803 / 07

1’ JE tag 33 / 07 2’ PD non-payable 2,5463/07

2’ FD 2173 / 12; / 17 2’ PD payable 1,6343/07

In this section, we evaluate to what extent can Stan accurately describe byte-

codes. We first evaluate the insecure contracts’ bytecodes tagged in DS1’, and

FD(functionality description)/UD(usage description)/PD(payment description) in

DS2’, whose statistics are shown in Table 3.8. Unlike DS1’, all bytecodes in DS2’ have

corresponding source codes, which makes it possible for us to evaluate the accuracy

of their FD/UD/PD/BD(behavior description) through sources’ review and static

analysis.

By using Disasm [27], which is a disassembler tool, we acquire all 62 tagged NF

bytecodes’ corresponding opcodes and retrieve operation PUSH4 in them. No matter
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which type of runtime function dispatcher, there is bound to exist PUSH4 operation.

However, PUSH4 is not retrieved in the 62 tagged NF contracts. To further validate

our conclusion, we analyze all history transactions of these 62 NF contracts. Only

2 of these 62 contracts were invoked after creation. All the 10 history transactions

of one contract (Address at Mainnet: 0x84161a5491D9A9348ED48d44b2c717C9ab9

2B4F3) were reverted, which wastes users’ gas, and the other contract (Address at

Mainnet: 0xbB38048902107b62A680db6bA69d6d356D6A8014) maliciously received

user’s ETH attached in transaction. For the 3 tagged JE contracts’ bytecodes, only 1

contract (Address at Mainnet: 0x9C88d1967fE2653da893B742aDa960D6570592b7)

was invoked after creation, which encountered error “Bad jump destination” . For the

other 2 contracts, we re-deploy them in our private local chain and invoke them, the

same error was encountered as a result.

For the FD, we randomly select 20 bytecodes from DS2’ and totally get 230

interfaces with their FDs generated by Stan. To avoid the threat of inter-rater

reliability, we ask three different people to evaluate their accuracy. Through manual

sources’ review, we discover that 217 (94.3%) interfaces’ FDs are accurate, while 12

(5.2%) interfaces’ FDs are inaccurate and 1 (0.4%) interface’s FD is wrong. Inaccurate

and wrong FDs are mainly due to that there are incomprehensible abbreviations in

some FDs. For example, FD of function getBlockNM() is “Gets block nm”.

To evaluate the accuracy of UD, leveraging Scans, we acquire all of the 4,180

functions’ text signatures from their source codes. Then we use Keccak-256 hash

algorithm to calculate bytes signature for each of them. Verified by comparison

with bytecodes’ descriptions, 100% of the 4,180 functions’ text signatures in UD are

correct.
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For the PD, we first acquire ABIs of all the bytecodes’ corresponding Solidity

sources in DS2’ from Etherscan. Leveraging Scans, we statically analyze the payable

field (True or False) of every external/public function in ABIs. Then we compare

the results to the payment descriptions generated through Stan. As a result, 100% of

2,546 non-payable and 1,634 payable interfaces, which are all described from runtime

bytecodes through Stan, are correct.

We further evaluate Stan’s accuracy of BD. Stan totally detects and describes

72 different interfaces with message-call behaviors, whose statistics are shown in

Table 3.9 (? marks pre-compiled contract calls). Leveraging Scans, we statically

analyze the AST of those functions’ corresponding Solidity sources, trying to detect

Solidity statements corresponding to these specific message-call behaviors. For the

other described interfaces without message-call behavior, there is no related statement

detected. Note that the user-defined contract call behavior has no fixed Solidity

statement, and we check the 26 cases manually through source review.

Table 3.9: Quantity statistics of Stan’s accuracy of message-call behaviors’ description
in BD.

DS Result Accuracy Evaluated statement
2’ ETH transfer 20 3 transfer()/call.value()/selfdestruct()
2’ ?ECDSA sig recovery 16 3 ecrecover(bytes32,uint8,bytes32,...)
2’ U-defined contract call 26 3 N/A
2’ ?SHA-256 hash 2 3 sha256(bytes)
2’ ?RIPEMD-256 hash 1 3 ripemd160(bytes)
2’ Contract deployment 7 3 new CONTRACT

Answer to RQ2 (Accuracy): 100% of the insecure contracts are correctly

tagged, and more than 94.3% of generated functionality descriptions are correct.

100% of generated usage/payment/behavior descriptions are correct. Stan can

accurately describe bytecodes of smart contracts.
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3.4.4 RQ3 Readability
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Figure 3.6: Quantity statistics of readability scores evaluated manually and their
corresponding response number.

In this section, we evaluate the readability of descriptions generated through

Stan. First, from the 4,180 described interfaces in DS2’, we randomly select 10

interfaces and make sure that they all have annotations written by developers in

their corresponding Solidity sources. Then we try to evaluate the readability of

these 10 interfaces’ descriptions generated through Stan from their bytecodes, and

their annotations written by developers. Second, we design a questionnaire through

Surveymonkey [52]. We set a screening question only to accept those who have

ever used Ethereum before. Furthermore, we set four readability scores and options

(4:very difficult, 3:difficult, 2:easy, 1:very easy) in 20 evaluation questions. Also, if
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the responder thinks the annotations or descriptions difficult to read, we set open

questions to input their reasons.

Third, we publish the questionnaire in BlockFlow [8], which is a blockchain

development forum. During 4 days, we totally receive 38 responses. However, 2

responses are incomplete, and 2 responses do not meet the screening criteria. Therefore,

the completion rate of the questionnaire is 95% (34/38). Quantity statistics of

readability scores and their corresponding response numbers are shown in Figure 3.6.

For total 340 evaluation responses (34 complete questionnaires for 10 interfaces),

72.9% (248/340) responses think the annotations written by developers are (very)

difficult to read, while 96.5% (328/340) responses think the descriptions generated

through Stan are (very) easy to read.
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Figure 3.7: Quantity statistics of readability scores for 10 interfaces’ annotations
written by developers.

We also analyze the reasons that responders provide why they think some items

(very) difficult to read. We further analyze and compare the readability scores
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Figure 3.8: Quantity statistics of readability scores for 10 interfaces’ descriptions
generated through Stan.

distributions of developers’ annotations and Stan’s descriptions, whose quantity

statistics are shown in Figure 3.7 and 3.8. For the descriptions generated through Stan,

one responder suggests giving Solidity snippet example to call the bytecodes’ interface,

which is out of scope of this chapter. For the annotations written by developers, there

are mainly 3 different reasons. There are 103 responders think the annotations are

too simple explanation for interfaces, 36 responders think there exist syntax errors in

annotations, and 29 responders think some vocabulary cannot be understood. Through

manually checking the corresponding specific content of developers’ annotations,

function 0x13af4035 ’s annotation only has 3 words (“Change owner address”), which

21 responders think is too simple. For function 0xa9059cbb’s annotation (“Check if

the sender has enough. Add the same to the recipient.”), 16 responders think it has

syntax errors. For function 0xa9059cbb’s annotation (“SafeMath.sub will throw”), 12

responders think some vocabulary cannot be understood.
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Leveraging Scipy [75], we further analyze the statistical distributions of the

readability scores through two kinds of non-parametric tests, whose statistics are

shown in Table 3.10. First, we compare the AVG (average) and STD (standard

deviation) values of the readability scores for the bytecodes’ descriptions generated

through Stan and annotations written by developers. As a result, all of Stan’s

descriptions perform better than their corresponding developers’ annotations in AVG.

Even compared to the best AVG of developer’s annotation (i.e., 2.118), Stan’s

descriptions are all received better scores. For STD, all of the most significant three

values are appeared in developers’ annotations. That is to say, the annotations written

by different developers, as well as different responders for the same annotations, there

exist significant differences.
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Table 3.10: Statistics of non-parametric tests for the readability of Stan’s descriptions.

In
te
rf
ac
e

ID
F
u
n
ct
io
n

B
yt
es

si
gn

at
u
re

A
V
G

va
lu
e

D
ev
el
op

er
/

S
ta

n
S
T
D

va
lu
e

D
ev
el
op

er
/

S
ta

n
p
va
lu
e

K
ol
m
og
or
ov
-S
m
ir
n
ov

Z
h
va
lu
e

K
S
Z

p
va
lu
e

M
an

n
-W

h
it
n
ey

U
h
va
lu
e

M
W

U
1

0x
e7
24
52
9c

2.
50
0
/
1.
64
7

0.
69
7
/
0.
47
7

3.
11
84
25

*
e-
05

1
7.
14
23
22

*
e-
07

1
2

0x
42
96
6c
68

2.
97
1
/
1.
47
1

0.
51
4
/
0.
55
4

7.
69
36
12

*
e-
12

1
5.
76
48
68

*
e-
12

1
3

0x
a9
05
9c
bb

2.
94
1
/
1.
58
8

0.
33
8
/
0.
58
9

7.
32
72
50

*
e-
13

1
3.
95
64
94

*
e-
12

1
4

0x
a9
05
9c
bb

2.
67
6
/
1.
52
9

0.
46
8
/
0.
54
3

5.
11
86
27

*
e-
07

1
4.
88
78
77

*
e-
10

1
5

0x
4b

b2
78
f3

2.
17
6
/
1.
53
1

0.
38
1
/
0.
49
9

8.
95
24
78

*
e-
04

1
6.
08
90
33

*
e-
07

1
6

0x
18
16
0d

dd
2.
67
6
/
1.
44
1

0.
52
7
/
0.
49
7

5.
11
86
27

*
e-
07

1
1.
06
71
91

*
e-
10

1
7

0x
d7

3d
d6

23
3.
11
8
/
1.
76
4

0.
32
2
/
0.
54
6

1.
60
12
34

*
e-
16

1
2.
13
41
56

*
e-
13

1
8

0x
b6

02
a9
17

2.
73
5
/
1.
61
7

0.
60
9
/
0.
59
4

8.
66
22
92

*
e-
06

1
8.
14
24
37

*
e-
09

1
9

0x
74
a8
f1
03

2.
11
8
/
1.
79
4

0.
32
2
/
0.
47
1

3.
06
75
83

*
e-
01

0
1.
12
95
70

*
e-
03

1
10

0x
13
af
40
35

2.
85
3
/
1.
79
2

0.
80
9
/
0.
58
3

2.
20
49
47

*
e-
06

1
2.
62
58
90

*
e-
07

1

77



Second, we conduct Kolmogorov-Smirnov Z and Mann-Whitney U tests to detect

whether the two sets of scores have the same statistical distribution. If the p value is

less than 0.05, which is a relatively strict threshold, the result hypotheses value will

be 1, and the two sets’ statistical distributions are different. As a result, except for

interface ID-9’s KSZ test, all results show that the two sets of scores have different

statistical distributions. Through manual checking, we discover that the annotations

of ID-9 perform the best in the 10 samples, which receive scores closest to those of

Stan’s descriptions.

Answer to RQ3 (Readability): Compared with the interfaces’ annotations

written by developers, 96.5% manual responses think the descriptions generated

through Stan are (very) easy to read. Furthermore, Stan can generate more stable

and readable descriptions than developers’ annotations.

3.5 Limitations and Solutions

In this section, we discuss some limitations and the corresponding solutions, which

are as follows:

(1). As described in Section 3.4.1, we run the symbolic execution engine alone on

two datasets to discover that many contracts’ bytecodes encounter timeout exception.

In future work, we will improve cloud instance’s configuration, and use more significant

timeout threshold to reduce the number of timeout cases.

(2). We analyze every execution path and some opcodes’ symbolic values to

describe interfaces accurately and comprehensively, with an average analysis time of

87.4s per contract. In future work, we may consider improving Stan’s performance

with faster static analysis techniques and evaluating Stan with more comprehensive
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bytecodes datasets.

(3). As described in Section 3.4.2, some functions’ signatures cannot be analyzed

perfectly through SWUM. In future work, we will build more and better syntax trees,

and add more common word abbreviations in Ethereum to Stanford parser’s rule

libraries to improve SWUM analysis.

(4). Stan can generate four categories of descriptions for each interface, as well

as tag two kinds of insecure contracts’ bytecodes. In future work, we will conduct

more features’ and behavior’ analysis to improve Stan’s functionalities.

3.6 Brief Summary

In this chapter, we propose Stan, which leverages symbolic execution and NLP

techniques to describe runtime bytecodes of smart contracts. Stan can generate

four categories of descriptions in natural language for every interface of bytecodes

deployed in Ethereum. We also develop static tool Scans to facilitate us to construct

the database for Stan, and facilitate us to evaluate the generated descriptions.

Extensive experiments show that Stan can generate adequate, accurate, and readable

descriptions for bytecodes. In future work, we will explore other techniques (e.g.,

machine learning [177] [171]) to generate better descriptions.
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Chapter 4

Analysis of Erasable Accounts in
Ethereum

Being the most popular permissionless blockchain that supports smart contracts,

Ethereum allows any user to create accounts on it. However, not all accounts matter.

For example, the accounts due to attacks can be removed. In this chapter, we

conduct the first investigation on erasable accounts that can be removed to save

system resources and even users’ money (i.e., ETH or gas). In particular, we propose

and develop a novel tool named Glaser, which analyzes the State DataBase of

Ethereum to discover five kinds of erasable accounts. The experimental results show

that Glaser can accurately reveal 508,482 erasable accounts and these accounts

lead to users wasting more than 106 million dollars. Glaser can help stop further

economic loss caused by these detected accounts. Moreover, Glaser characterizes

the attacks/behaviors related to detected erasable accounts through graph analysis.
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4.1 Overview

Being the largest blockchain that supports smart contract, Ethereum has two kinds of

accounts: EOA (Externally Owned Account) and contract account [132]. As a permis-

sionless blockchain system, Ethereum allows any user to create many EOAs through

their private keys. Deploying a smart contract to Ethereum will produce a contract

account that contains the contract’s runtime bytecodes. Every node must synchronize

blockchain data, which includes blocks and StateDB (State DataBase) [62]. The

StateDB stores all the accounts’ state information, such as ETH balance, transaction

number, runtime bytecodes, and so on [62].

Figure 4.1: One empty account detected by Glaser.

However, not all accounts should be kept. In particular, we identify three kinds of

erasable contract accounts that are produced due to contracts’ programming errors

or attacks, and two kinds of erasable EOAs that are produced due to contracts’

deployment failure or DoS (Denial of Service) attacks. Such erasable accounts not

only waste system resources and affect the efficiency of blockchain, but also easily
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waste users’ money (i.e., ETH or gas). For example, one empty account (Address: 0x

6e557f01c9dcb573b03909c9a5b3528aec263472) discovered in this chapter was created

due to contract deployment failure. It wasted user’s 137,552 gas when it was called

because the contract’s runtime bytecodes were not stored in this account, whose

information is shown in Figure 4.1. We regard the worthless accounts that deserve to

be removed without affecting the normal operations of users and other accounts as

erasable accounts.

Unfortunately, there lacks a systematic study on the erasable accounts that can

be removed. Although some studies [85] [84] use call graph analysis to measure the

control flow between contracts, their purposes are different from ours. Our work

focuses on the erasable accounts that exist in Ethereum, and some of our analyzed

accounts (e.g., DoS contracts) are related to interaction between contracts. There

also exist some other research analyzing different kinds of security issues for smart

contracts [102] [86] or Ethereum architecture [63] [173] [135]. These research mainly

focus on security issues on the contract-level and system-level of Ethereum, whose

contents and purposes are different from ours.

To fill the gap, we design and implement a novel tool named Glaser (detectinG

erasabLe AccountS in EtheReum) to discover erasable accounts by analyzing the

StateDB of Ethereum. It is worth noting that marking an account as erasable just

according to its liveness and balance value is improper, because an account might

contain useful runtime bytecodes or its private key is owned by external user so that

it cannot be removed even if it has not been used for a long time and stores no ETH.

Instead, Glaser analyzes accounts’ contents and states stored in Ethereum StateDB.

In detail, it leverages program analysis techniques to discover contract accounts
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with worthless runtime bytecodes, and employs state field and transaction analysis

to discover EOAs that no one owns their private keys. The accounts discovered

by Glaser are worthless and deserve to be removed without affecting the normal

operations of other accounts/users.

Applying Glaser to all Ethereum accounts, we discovered 508,482 erasable

accounts, and more than 99.9% of them are still stored in Ethereum. These erasable

accounts have wasted users more than 106 million dollars and can be removed through

executing SELFDESTRUCT operation in their runtime bytecodes by users, or removed

forcibly by Ethereum officials. For example, one erasable contract account (Address:

0xa30BCeA7E5806aC5D37D221D2F8A40642B0Bb1a6) can be removed through

transaction sent by any user, and some empty account created due to DoS attacks

were already removed forcibly through hard fork by Ethereum officials [15]. This

chapter mainly focuses on erasable accounts’ detection to help users identify erasable

accounts and remind users not to call them to save money, and erasable accounts’

characterization to interpret their behaviors/attacks and creation reasons.

Our Contributions. The main contributions of this chapter are listed as follows:

• To the best of our knowledge, we conduct the first systematic investigation on

erasable accounts in Ethereum. We propose and define five kinds of erasable

accounts, i.e., three kinds of erasable contracts and two kinds of erasable EOAs.

• We design a novel approach to analyze the Ethereum StateDB, and implement

the idea in a tool called Glaser, which can discover and characterize erasable

contract accounts and erasable EOAs. For contract accounts, leveraging static

analysis and symbolic execution, Glaser analyzes runtime bytecodes of con-
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tracts to detect three kinds of erasable contract accounts. For EOAs, Glaser

analyzes their state-related attribute fields and historical transactions to dis-

cover two kinds of erasable EOAs. Glaser also characterizes erasable accounts

through call graph and creation graph analysis.

• We conduct experiments to evaluate and characterize the detected erasable

accounts. We analyze the 508,482 detected erasable accounts’ creation time

distributions. More than 99.9% of them are still stored in Ethereum, and their

transactions wasted users more than 106 million dollars. Glaser can remind

users not to call erasable accounts and help stop further economic loss of users

caused by them. Furthermore, the graph analysis of erasable accounts interprets

their creation reasons, i.e., attacks, programming errors, or deployment failure.

This chapter is organised as follows. Section 4.2 introduces the technical back-

ground and Section 4.3 interprets the details of erasable accounts. Then Section 4.4

details the principles of Glaser. Section 4.5 evaluates the results and Section 4.6

characterizes attacks/behaviors related to discovered erasable accounts. At last, we

discuss this chapter in Section 4.7 and conduct summarization in Section 4.8.

4.2 Background

We briefly introduce the knowledge involved in this chapter.

4.2.1 StateDB

Supporting smart contracts, Ethereum records not only transactions but also state

transitions that occur in blockchain. Ethereum contains two types of accounts, i.e.,
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EOA and contract account [164], which are all indexed by 20 bytes length of addresses.

Account’s creation and usage: Ethereum is a permissionless blockchain system,

and users can create their own EOA and store ETH (native cryptocurrency in

Ethereum). Users can initiate transactions by the private key corresponding to the

EOA address, including ETH transfers and contract calls. The contract accounts

are created by EOAs or other contract accounts. In addition to storing ETH, the

contract account also holds the runtime bytecodes of smart contract. There are two

types of bytecodes in Ethereum: runtime bytecodes stored in contract account, and

deployment bytecodes used for contract runtime bytecodes’ deployment. The contract

account is not controlled by the user’s private key, but by the contract’s runtime

bytecodes’ logics.

Account’s removal: Users can only remove contract account through executing

SELFDESTRUCT in its runtime bytecodes. All EOAs and contract accounts without

SELFDESTRUCT in runtime bytecodes cannot be removed by users. In addition, all

erasable accounts can be removed forcibly by Ethereum officials. Although some

discovered erasable accounts in this chapter cannot be removed by users, our results

can remind users not to call them to save money.

StateDB: The StateDB stores the world state of Ethereum based on accounts.

For every account a, its state σ[a] consists of four fields [62]: If a is an EOA, σ[a]n

stores the number of external transactions sent from this account. If a is a contract

account, σ[a]n stores the number of contracts created by this account. σ[a]b stores

the balance value (in Wei) of account a. σ[a]s stores the root hash of Merkle tree

which encodes the storage contents of the account. σ[a]c stores the runtime bytecodes

of account a. Note that the main difference between EOA and contract account is
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whether its code field is empty [62].

4.2.2 Contract Execution

When a smart contract is deployed in Ethereum, users can invoke its external functions

through transactions. Note that we describe transactions sent from EOAs as external

transactions, and message-calls sent from contract accounts as internal transactions

in this chapter. Gas is the basic unit of resource consumption for transactions in

Ethereum [178]. Before users initiate transactions, they all need to pay a certain

amount of gas. When the smart contract is running in EVM, each opcode corresponds

to a certain amount of gas, whose value is defined in the Ethereum Yellow Paper [62].

To prevent DoS attacks, Ethereum has modified the gas value of some specific opcodes,

such as SELFDESTRUCT’s value was modified from 0 to 5,000 in EIP-150 (Ethereum

Improvement Proposal) [79].

The smart contracts’ execution in EVM involves three forms of data, namely

storage, memory, and stack [80]. The storage data is stored in StateDB of Ethereum

in the form of key-value pairs, and both key’s length and value’s length are 256

bits [132]. Storage is persistent and will not be released as transaction execution

ends. Storage data is stored and read through two opcodes, i.e., SLOAD and SSTORE.

Memory is the temporarily allocated space when smart contracts are executed in

EVM, which is automatically freed as the transaction execution finishes. EVM is a

1,024 depth stack-based virtual machine, and the contracts’ opcodes are all executed

around the stack [131].
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4.2.3 Account Analysis

Frowis et al. [103] constructed call graph for smart contracts deployed in Ethereum

and discovered contracts calling to removed contracts. Note that they focus on

measuring the control flow immutability between contracts, whose purpose is different

from our work. Kiffer et al. [126] measured smart contracts’ creation and interaction

with each other, which interpreted how are smart contracts being used. However,

they do not analyze erasable contracts that exist in Ethereum. Kiffer et al. [126]

measured the overall usage of Ethereum, which interpreted how is Ethereum being

used. They discovered that SELFDESTRUCT’s usage rose sharply during DoS attacks

in 2016. However, they do not measure or analyze erasable accounts produced

during DoS attacks. Chen et al. [81] proposed an adaptive gas cost mechanism for

Ethereum to defend against under-priced DoS attacks. They do not analyze real

accounts in Ethereum that are related to these attacks. Wang et al. [167] proposed an

optimization storage engine to reduce nodes’ storage volume, which can improve the

scalability of blockchain systems. They do not analyze the erasable accounts which

are already stored in StateDB. Angelo et al. [94] analyzed contract deployment code

patterns which were exploited by attackers, and they described three related attack

scenarios in reality appeared in the middle of 2018, whose contents and purposes are

different from ours. They focus on the vulnerabilities and attacks leveraging skillfully

crafted deployment codes, while we detect erasable accounts due to programming or

deployment errors.
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4.3 Erasable Accounts

We introduce erasable accounts detected in this chapter.

4.3.1 Erasable Contract

The main difference between EOA and contract account is whether its code field is

empty [62]. Below we introduce erasable contracts with runtime bytecodes.

Meaningless contract: We analyze two kinds of meaningless contract, i.e.,

MC-S (Meaningless Contract with STOP) and MC-RS (Meaningless Contract with

REVERT or SELFDESTRUCT).

MC-S refers to one particular kind of meaningless contract, whose first opcode

in its runtime bytecodes is STOP. There exist MC-S because users incorrectly use

runtime bytecodes to deploy contracts, whose creation and behavior will be analyzed

in Section 4.5. When the MC-S is called, STOP will halt the transaction’s execution

immediately. Therefore, these contracts are controlled by STOP, which is meaningless

and may waste user’s gas or ETH.

MC-S Example: One MC-S (Address: 0x2Ab748a546760b1EC834E164DEDE2E7

1C4010E1d) was called with input data three times, which waste users’ gas. Their

input data were not processed before the related transactions were halted by STOP.

Furthermore, this meaningless contract was transferred ETH through transactions

twice. Because the MC-S is controlled by STOP, the total of more than 0.042 ETH

stored in this account can never be transferred out, which results in users’ money

waste.

MC-RS refers to contract that has REVERT or SELFDESTRUCT opcode in its first
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basic block. A basic block means a series of sequential opcodes without any control

flow operation (e.g., JUMP, STOP) [79]. The first basic block is the program entrance

and every call to the contract will execute it. Most MC-RS are deployed by malicious

contracts through internal transactions (i.e., sent from contract). However, MC-RS is

meaningless because any call to MC-RS will invoke REVERT or SELFDESTRUCT. REVERT

ends runtime bytecodes’ execution and reverts state changes of the call. SELFDESTRUCT

removes the contract account from blockchain.

0x0  PUSH1 0x00  //MC-RS-1
0x2  CALLDATALOAD  //get the first 32bytes call data
0x3  SELFDESTRUCT  //destruct the contract

0x0  PUSH1 0x80  //MC-RS-2
0x2  PUSH1 0x40
0x4  MSTORE  //save 0x80 to memory
0x5  PUSH1 0x00
0x7  DUP1
0x8  REVERT //end execution and revert state changes
0x9  STOP  
0xa  LOG2  //other basic blocks
…… ……

Figure 4.2: Snippets of two MC-RS.

MC-RS Example: The snippets of two MC-RS are shown in Figure 4.2. There

are only three operations in the first MC-RS (Address: 0xa30BCeA7E5806aC5D3

7D221D2F8A40642B0Bb1a6). This contract can be exploited by attacker to steal

ETH through setting his own EOA address in the call data. However, this contract

is meaningless. Because any call to it will invoke SELFDESTRUCT and transfer out

the ETH stored in it. The second MC-RS (Address: 0x7770A80851A266e717dC93

A194A7eC0875214293) will invoke REVERT during any call to it. Furthermore, the

operations after its first basic block will never execute. Any call to the contract will
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execute operations from 0x0 to 0x8, which is meaningless and waste gas.

Stack or opcode error contract: EVM is a virtual machine based on 1,024

depth stack, and the stack will definitely overflow (push more than 1,024 items into

stack) or underflow (pop item from empty stack) if the stack error contract is called.

Before EIP-150 increased the gas cost of CALL from 40 to 700, the attacker may

exploit stack overflow through recursive call depth attack [132]. Nowadays, although

stack overflow is hard to occur, stack underflow still exists due to program writing

errors.

Stack Error Contract Example: One transaction (Hash: 0x9518bcde68b522a4521

c3eeade8fa461af16b5c7f0d1529d7ead27663d4e5092) encountered “Stack Underflow”

error and exhausted its gas, due to its contract deployment-related codes. Moreover,

runtime bytecodes’ contents may be related to some uncontrollable factors, which may

also produce stack error contracts. One example of stack error contract’s deployment

bytecodes is shown in Figure 4.3 (Related transaction: 0xf7db99fb452413383991

5b8e08914dae0f9bcecd6847691e4dd2ce8ead61e420). In program counter 0x5, it

returns runtime bytecodes to deploy, whose first byte is related to the current block’s

timestamp (in program counter 0x0 to 0x1). At last, one stack error contract (Address:

0x7a0352aa3231d2255a96113b619057994341069e) was deployed, and its first operation

in runtime bytecodes is DIV, which will result in stack underflow.

Developers can use high-level languages or directly write bytecodes to develop

smart contract. However, due to programming errors, some runtime bytecodes

deployed in blockchain cannot be disassembled to correct opcodes. If there exist un-

known opcodes that cannot be recognized by EVM, it will encounter “Bad Instruction

Error”. Opcode error contract refers to contract that has unknown opcode in the first
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0x0 TIMESTAMP //get the block's timestamp
0x1 CALLVALUE
0x2 MSTORE8 //save byte to memory
0x3 CODESIZE
0x4 CALLVALUE
0x5 RETURN //return bytecodes to deploy

Figure 4.3: The deployment bytecodes of one stack error contract.

basic block, which will encounter error during any call to it.

Opcode Error Contract Example: The first two bytes of one contract’s runtime

bytecodes are 0xd929, which cannot be correctly disassembled to opcodes of EVM.

Because the unknown opcodes exist in its first basic block, all transactions calling to it

encountered “Bad Instruction Error” (Address: 0x526634cde83e541ba851a402e5c85bd

0838505eb) (need to be viewed in advanced mode in Etherscan). The transaction with

“Bad Instruction Error” exhausts gas, halts execution and reverts state changes [62].

DoS contract: We analyze two kinds of DoS related contracts: attacked Parity

wallets, and malicious contracts exploited for DoS attacks. If contract A hardcodes

and calls contract B’s address to execute, and B is removed, A will be a dependency

error contract without normal service. In November of 2017, the attacker escalated

his privilege and removed Parity’s multi-sig library contract (Address: 0x863df6bfa4

469f3ead0be8f9f2aae51c91a907b4), which caused all Parity wallets that depend on

it out of service. Note that calling to a removed contract will just return 1 (means

no error or exception), and users cannot verify if it is out of service through return

value. If users knew in advance that their wallets were out of service, they would not

use them anymore to deduce financial losses. Etherscan only marks part of attacked

Parity wallets, we attempt to detect more of them.
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In 2016, the attacker exploited malicious contracts to initiate DoS attack for

Ethereum [132]. The attacker executes massive particular operations (e.g., EXTCODESIZE,

DELEGATECALL), which consume low gas but high system resources. The DoS attack

leads to low nodes’ data synchronization and transaction execution. The Ethereum

official modified many operations’ gas values in EIP-150 [132] to repair related

vulnerabilities.

Malicious DoS Contract Example: We analyze the malicious DoS contracts and

discover that they have similar patterns. These malicious contracts just have one

basic block in their runtime bytecodes. In the basic block, there are many particular

operations that consume low gas but high system resources. For example, one

malicious DoS contract’s snippets are shown in Figure 4.4 (Address: 0x792218d8bbe0

0fb81296236b014Fb14af2DA385B) with 200 EXTCODESIZE in the only basic block of

the contract.

0x00 PUSH20 0x42a119d24fd64362f3892815d310c83edcb61b88
0x15 EXTCODESIZE 
0x16 POP
0x17 PUSH20 0xdfccc8e473dc262cfc6ddb4092946b66baadf88b
0x2c EXTCODESIZE //its gas was modified from 20 to 700
0x2d POP
0x2e PUSH20 0xd96b74abd2ded0b7f2873202a2f3bb562b22b2ef
0x43 EXTCODESIZE
0x44 POP

Figure 4.4: Snippets of one malicious DoS contract.

4.3.2 Erasable EOA

Below we detect erasable EOAs, which do not store codes.

Empty account: The empty account has the following features: ¶zero value
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balance, ·zero value nonce, and ¸empty code. Whether the account has code is the

main difference between contract account and EOA, and we classify empty accounts

into erasable EOA. Ethereum officials have only cleaned up the empty accounts created

during the DoS attack exploiting SELFDESTRUCT [15]. However, there still exist empty

accounts due to contract deployment failure. Before EIP-2, it will create an empty

account if the contract deployment transaction does not succeed (e.g., out of gas).

After EIP-2, it will fail with error and do not create empty accounts anymore. The

creation process of empty accounts denotes that they are not controlled by runtime

bytecodes or external users, which results in their uselessness. The empty account

may result in gas waste, because users may incorrectly think runtime bytecodes are

deployed in these accounts.

Example: One empty account (Address: 0x6e557f01c9dcB573b03909C9A5b352

8aEc263472) has been called many times, which wastes users’ gas. We analyze all

the input data of the related transactions, whose first four bytes are all function

signatures. That is to say, all these transactions were intended to invoke the functions

in runtime bytecodes.

DoS EOA: The DoS EOA has the following features: ¶1 Wei value balance,

·zero value nonce, ¸empty code, ¹zero historical external transaction, and ºone

historical internal transaction without error. The differences between empty account

and DoS EOA are their balance value and creation process. DoS EOAs are created

through internal transactions sent from contracts. Massive DoS EOAs were created

during the DoS attack in 2016, whose creation will be analyzed in Section 4.5.1. The

attacker created DoS EOAs through smallest financial cost (i.e., 1 Wei), and all of

these accounts’ addresses were generated through computation in runtime bytecodes,

94



whose process denotes their uselessness (detail in Section 4.6). The existence of

massive DoS EOAs increases the StateDB size, resulting in the waste of disk resources

and nodes’ difficulty in syncing data.

Example: One transaction (Hash: 0x1aa87a25df792f1dacacbc194e3963a0cbc

f950ede1d60e679500b40d9589b17) detected by Glaser created ten DoS EOAs

through internal transactions. Note that 1 Wei (1 ETH = 1018 Wei) is the smallest

cryptocurrency unit in Ethereum, which cannot even buy 1 gas. The recommended

gas price is 61 GWei [24] (1 GWei = 109 Wei), which can be set in transaction by

users.

4.4 Glaser’s Implementation

To analyze the StateDB, we synchronize the blockchain with “fat-db=on” option

through Parity client, which can build appropriate information to allow enumeration

of all accounts. Then we export the StateDB as plain text file through Parity and

leverage Glaser to traverse StateDB data to detect erasable accounts. The overview

of Glaser’s architecture is shown in Figure 4.5, which mainly consists of three

modules:

(1) Erasable contract account detection. In this module, Glaser detects three

kinds of erasable contract accounts: meaningless contracts, stack/opcode error con-

tracts, and DoS contracts. According to their respective characteristics, we leverage

different techniques, which mainly include runtime bytecodes’ static analysis and

symbolic execution.

(2) Erasable EOA detection. In this module, Glaser detects two kinds of erasable

EOAs: empty accounts, which are produced due to contract deployment failure; and
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Erasable contract account's detection
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Figure 4.5: Overview of Glaser’s architecture.

DoS EOAs, which are produced due to DoS attacks. We mainly leverage state field

and transaction analysis to discover erasable EOAs.

(3) Graph analysis for erasable accounts. For the detected erasable accounts,

Glaser characterizes their behaviors/attacks through call graph analysis and creation

graph analysis, whose details will be described in Section 4.6.

4.4.1 Erasable Contract Detection

Meaningless contract: Glaser leverages runtime bytecodes’ static analysis to

detect two kinds of meaningless contract, i.e., MC-S and MC-RS. Static analysis

refers to techniques that examine codes without attempting to execute them [88].

Glaser statically analyzes contracts’ runtime bytecodes to detect MC-S. In detail, it

intercepts runtime bytecodes’ first byte to judge whether it is 0x00, which is the hex

code for STOP. If one contract starts with 0x00 byte in its runtime bytecodes, it will

be tagged as MC-S. Glaser also statically analyzes contracts’ runtime bytecodes

to detect MC-RS. First, it disassembles contract’s runtime bytecodes to acquire

the opcodes. Second, it splits the opcodes into different basic blocks, which end
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with specific control flow operations (i.e., STOP, JUMP, JUMPI, RETURN, SELFDESTRUCT,

REVERT). Third, it analyzes the first basic block. If REVERT or SELFDESTRUCT exists

in the first basic block, it will tag the contract as MC-RS.

Stack or opcode error contract: Glaser leverages symbolic execution and

runtime bytecodes’ static analysis to detect stack/opcode error contracts. Symbolic

execution uses symbolic values as inputs to simulate the process of program execu-

tion [134]. The detection process of stack error contract is divided into three steps.

First, Glaser acquires the opcodes of contract’s runtime bytecodes. Second, it

splits the opcodes into different basic blocks and extracts the runtime bytecodes

corresponding to the first basic block. Third, it symbolically executes the extracted

runtime bytecodes leveraging Oyente [134], which is a symbolic execution engine. If

the symbolic execution process encounters “Stack Underflow”, it will tag the contract

as stack error contract. For opcode error contract, Glaser disassembles contract’s

runtime bytecodes into opcodes and split them into basic blocks. Then Glaser

detects whether there exist unknown opcodes in its first basic block. If unknown

opcode exists in its first basic block, the contract will be tagged as opcode error

contract.

DoS contract: Glaser leverages symbolic execution and runtime bytecodes’

static analysis to detect DoS contracts. Glaser detects attacked Parity wallet

contracts leveraging symbolic execution techniques. Glaser analyzes four related op-

erations for contracts’ interaction, i.e., CALL, CALLCODE, DELEGATECALL, STATICCALL.

If the symbolic execution encounters anyone of these operations, it extracts the second

item of the stack µs[1], which is used as the address of contract being called. If µs[1]

is a real value that matches the address of removed Parity multi-sig library, it will
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tag this contract as attacked Parity wallet. For malicious DoS contract, Glaser dis-

assembles contract’s runtime bytecodes into opcodes and split them into basic blocks.

Then Glaser analyzes the number and content of basic block. If one contract has

only one basic block and has more than 100 DoS related operations, Glaser will tag

it as malicious DoS contract. We analyze seven DoS related operations: EXTCODESIZE,

EXTCODECOPY, BALANCE, CALL, DELEGATECALL, CALLCODE, SELFDESTRUCT.

4.4.2 Erasable EOA Detection

Empty account: Glaser leverages account state field analysis and transaction

analysis to detect empty accounts. The detection process of empty accounts is divided

into two steps. First, Glaser analyzes the account attribute fields to detect possible

empty accounts, which should satisfy the three features described in Section 4.3.2.

Second, Glaser analyzes the historical transaction of the detected empty accounts

in the first step, to verify that they are created due to contract deployment failure. In

detail, it analyzes the oldest transaction related to the accounts detected in the first

step. If one account’s oldest transaction is used for contract deployment, Glaser

will tag it as erasable empty account.

DoS EOA: Glaser leverages account state field analysis and transaction analysis

to detect DoS EOA. Similar to the detection of empty accounts, detection process of

DoS EOAs is divided into two steps. First, Glaser analyzes the account attribute

fields to detect possible DoS EOAs, which should satisfy the first three features

described in Section 4.3.2. Second, Glaser analyzes the historical transaction of the

detected DoS EOAs in the first step, to verify that they are created through internal

transactions sent from contracts. In detail, we set relatively strict conditions to verify
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DoS EOAs in this step. Glaser analyzes their historical external transactions and

internal transactions. If one account has no external transaction and only one internal

transaction without error (i.e., sent 1 Wei to create this account), we can conclude

that it is an erasable DoS EOA. There might exist massive internal transactions with

“Out of Gas Error”, which were used for DoS attacks.

4.5 Evaluation

We carry out experiments to answer the following research questions:

RQ1 Quantity: How many each kind of erasable accounts can be detected

through Glaser?

RQ2 Accuracy: To what extent can Glaser accurately detect erasable ac-

counts?

RQ3 Waste: How much money lost due to erasable accounts?

4.5.1 RQ1 Quantity

In this section, we evaluate the quantity statistics of erasable accounts detected

through Glaser. Furthermore, we analyze the creation time distribution of the

detected erasable accounts.

Table 4.1: Quantity statistics of erasable accounts detected through Glaser.

Cat. Taxonomy Quantity Erasable accounts Quantity

¶ Erasable contract 481,087
Meaningless contract 479,153

Stack/opcode error contract 150
DoS contract 1,784

· Erasable EOA 27,395 Empty account 195
DoS EOA 27,200

We have exported the StateDB of Ethereum and detect erasable accounts lever-
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aging Glaser, whose quantity statistics are shown in Table 4.1. We discover

481,087 erasable contracts and 27,395 erasable EOAs respectively. All the five

specific kinds of detected erasable accounts’ addresses are published on https:

//figshare.com/articles/dataset/11516694. For the 1,784 DoS contracts, we

detect 658 different contracts hardcode and call the removed Parity multi-sig library,

while Etherscan only tags 153 of them. Because most users leverage high-level

languages to develop contracts, there exists a small quantity of stack/opcode error

contracts. Because Ethereum officials have already repaired the bug of empty ac-

count’s creation due to contract deployment failure, the discovered empty accounts’

quantity is small.

To measure the number of erasable accounts at different time, we analyze their

historical transactions to acquire their creation time. The analysis of accounts’

creation time is divided into two steps. First, we crawl all the historical transactions

related to the detected erasable accounts through Geth RPC APIs. Second, we

filter out the oldest transaction of each account and acquire the timestamp of this

transaction, which is the creation time of this account.

Figure 4.6: Cumulative quantity distribution of meaningless contracts.
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1

Figure 4.7: Cumulative quantity distribution of DoS contracts.

The cumulative quantity distribution of meaningless contracts at different time is

shown in Figure 4.6. Before July of 2019, the quantity of meaningless contracts is

small. Because most meaningless contracts are MC-S and they are directly created

by users through EOA. For example, one user (Address: 0x3ff51120D34f4318B6

aff85DbCa5481DbF03f40B) created 9 MC-S with totally same runtime bytecodes

around February of 2018. When the user realized his irrational behavior, he did not

create MC-S any more. After November of 2019, some active malicious contracts are

massively called, which leads to the quantity sharp growth of meaningless contracts

(i.e., MC-RS). For example, one Ponzi contract (Address: 0x7C20218efC2e07C8Fe25

32fF860D4A5d8287cB31) created many MC-RS before April of 2020 through internal

transactions (i.e., sent from contract account). Because most users leverage high-

level languages to develop contracts, there exists a small quantity of stack/opcode

error contracts. Their deployment time distribution does not have clear trends or

characteristics.

The cumulative quantity distribution of DoS contracts at different time is shown

in Figure 4.7. There are two sharp growth periods for DoS contracts. The first
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period is around October of 2016, the attacker deployed more than 1k malicious DoS

contracts and sent massive transactions to them, leading to external transactions’

slow execution. The second period is around November of 2017, the Parity’s multi-sig

library contract was attacked and removed during this period, which produced 658

dependency error wallets without service.

The cumulative quantity distribution of empty accounts at different time is

shown in Figure 4.8. Because the Ethereum officials have repaired the bug of empty

accounts’ creation due to contract deployment failure and cleaned up the empty

accounts produced due to DoS attacks, the growing of their cumulative quantity is

halted around March of 2016. The cumulative quantity distribution of DoS EOAs is

shown in Figure 4.9. There is a sharp growth period of DoS EOAs’ quantity around

November of 2016. According to analysis, the attacker (One exploited account: 0xeec

2a1ee6ee942596b6e255d24d38c0a9338cfef) created massive DoS EOAs during/after

the DoS attacks of empty accounts’ creation exploiting SELFDESTRUCT [15].

Answer to RQ1 (Quantity): We have discovered 508,482 erasable accounts,

whose quantity distributions at different time reflect their creation reasons.

Figure 4.8: Cumulative quantity distribution of empty accounts.
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Figure 4.9: Cumulative quantity distribution of DoS EOAs.

4.5.2 RQ2 Accuracy

In this section, we evaluate the accuracy of erasable accounts detected through

Glaser, whose statistics are shown in Table 4.2. We evaluate the accuracy of

erasable accounts in two primary aspects. First, we analyze whether the detected

erasable accounts are still stored in Ethereum. Second, we analyze their transactions

to verify their uselessness.

Table 4.2: Statistics of erasable accounts’ accuracy and waste evaluation.

Erasable account Quantity Storage Ext. tr. Int. tr. Gas ETH
¶ DoS contract 1,784 100% 3 26,474 7,707,646 50,497,619,162 515,035.16ETH

· Meaningless contract 479,153 99.9% 3 2,080 490,611 36,996,614,413 274.97ETH
¸ Stack/opcode error cont. 150 100% 3 141 157,513 854,099,555 0

¹ Empty account 195 100% 3 237 5 79,786,061 0
º DoS EOA 27,200 100% 3 0 1,163,763 1,180,693,660 27,200 Wei

Storage: Because it is difficult to traverse accounts in its changing StateDB, we

export the StateDB to offchain and execute Glaser on it. Therefore, there exists

possibility that the detected erasable accounts are already removed or cleaned up in

the newest StateDB. We leverage Etherscan, which is a real-time Ethereum block

explorer, to verify their existence. We discover that 99.9% (479,150/479,153) detected
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erasable contract accounts still store runtime bytecodes. 3 MC-RS contracts are

removed through executing SELFDESTRUCT. All the 195 empty accounts can be still

normally retrieved without special tagging, and all the 27,200 detected DoS EOAs

still store ETH. Therefore, more than 99.9% of the detected erasable accounts are

still stored in the latest StateDB.

Uselessness: In the following, we analyze the detected erasable accounts’ transac-

tions to verify their uselessness. All the below analyzed transactions’ data is published

on https://figshare.com/articles/dataset/11518017.

For the 1,784 DoS contracts, we crawl all of their 26,474 external transactions

and 7,707,646 internal transactions. According to the timestamp of Parity multi-sig

library’s removal (Transaction hash: 0x47f7cff7a5e671884629c93b368cb18f58a99

3f4b19c2a53a8662e3f1482f690), we extract 920 external transactions of attacked

Parity wallets that occurred after the attack. Apart from pure ETH transfers,

there are 789 external transactions calling wallets’ functions. Because calling to a

removed contract does not result in failure or exception, we debug these transactions

for analysis. We acquire these transactions’ execution traces through Geth API

debug_traceTransaction. All these transactions called the removed library through

DELEGATECALL, which wasted users’ gas or ETH. For malicious DoS contracts, there are

1,128 external transactions used for contract deployments. All the other transactions

(15,334 external transactions and 7,700,836 internal transactions) executed with “Out

of Gas Error” were exploited for DoS attacks.

For the 479,153 meaningless contracts, we crawl all of their 2,080 external trans-

actions and 490,611 internal transactions for checking and debugging. Apart from

2,002 contract deployment’s external transactions, 7 external transactions were halted

104

https://figshare.com/articles/dataset/11518017


by the first executed operation STOP before their data fields were processed, which

verifies their uselessness. All the other 71 external transactions were executed with

“Reverted Error”. Apart from 489,890 internal transactions used for contract deploy-

ment or compulsive ETH transfer through SELFDESTRUCT, all the other 721 internal

transactions were executed with “Reverted Error”.

For the 150 stack/opcode error contracts, we crawl all of their 141 external trans-

actions and 157,513 internal transactions for analysis. Apart from 150 transactions

used for contract deployment and 337 transactions used for compulsive ETH transfer

through SELFDESTRUCT, all the other 157,167 transactions were encountered “Bad

Instruction Error” or “Stack Underflow Error”.

For the 195 empty accounts, we crawl all of their 237 external transactions and 5

internal transactions. Apart from 195 contract deployment’s transactions, we analyze

other 47 transactions. All of these 47 transactions transferred ETH or called the

empty accounts with function signatures in their data fields, which denotes that they

were intended to call a function of contract. However, all of their data fields were not

processed because the accounts were empty, which denotes their uselessness. For the

27,200 DoS EOAs, we crawl all of their 1,163,763 internal transactions, and there does

not exist external transaction. In 27,200 internal transactions, the attacker created

DoS EOA through transferring 1 Wei, which is the smallest financial cost for the

attacker. All the other 1,136,563 internal transactions were executed with “Out of

Gas Error”, which were used for DoS attack (analyzed in Section 4.3.2).

Answer to RQ2 (Accuracy): All the detected erasable accounts’ related

transactions are useless, and more than 99.9% of the detected erasable accounts are

still stored in Ethereum.
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4.5.3 RQ3 Waste

In this section, we evaluate the money lost due to erasable accounts. We analyze

the gas and ETH consumed in erasable accounts’ transactions, whose statistics are

shown in Table 4.2. For DoS contracts, 733,583,247 gas were consumed during calling

Parity wallets before they were attacked. Therefore, these gas are not wasted. We

analyze all the DoS contracts’ balance values and 515,035.16 ETH transferred to

them are permanently locked in DoS contracts, which are wasted. For meaningless

contracts, all their consumed gas are wasted. However, 272.77 ETH attached to

their transactions were returned to users due to “Reverted Error”, which are not

wasted. For category ¸ to º, all their gas and ETH are wasted. According to the

gas prices set in transactions and ETH price (204.36$/ETH) on May 25 of 2020 [24],

106,360,910$ is totally wasted due to these erasable accounts.

Answer to RQ3 (Waste): About 89 billion gas and 515,037 ETH are wasted

due to erasable accounts, which are worth 106,360,910$.

4.6 Graph Analysis

We analyze attacks/behaviors related to discovered erasable accounts to answer the

question: How are erasable accounts behaved and created in reality?

Glaser’s graph analysis module can be divided into two parts, i.e., call graph and

creation graph. First, through symbolic execution, we analyze DoS contract’s runtime

bytecodes to generate call graph from erasable accounts to other accounts. According

to the definitions (in Section 4.3) of erasable accounts, only DoS contracts can call

other accounts. During symbolic execution, we analyze the operands of DoS related
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operations (in Section 4.4). If the target address of one operation is a real value, we

can conclude that the DoS contract interacts with another account and we add an

edge into the call graph. Second, through transaction analysis, we generate creation

graph for erasable accounts. We analyze the account creation related transactions of

erasable accounts and filter out their source addresses, which constructs the nodes

of creation graph. The creation related transactions construct the edges of creation

graph. If the erasable account is created through contract account, we also analyze

which user (i.e., EOA) calls the contract. Furthermore, we also analyze the creation

source address’s transactions to see whether it creates other accounts.

Call graph: According to their features, the DoS contracts can be divided into

two types, i.e., Many-to-One DoS contract and One-to-Many DoS contract, whose

topology graphs are shown in Figure 4.10. We only show the first three bytes of

contracts’ addresses for better display.

(A) (B)

Figure 4.10: (A): Call graph of Many-to-One DoS contracts. (B): Call graph of
One-to-Many DoS contract.

For Many-to-One DoS contract, one center contract’s address is hardcoded and

interacted with many other contracts. Some Many-to-One DoS contracts detected
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through Glaser are shown in Figure 4.10 (A). In this example, the center contract

(Address: 0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4) is Parity’s multi-sig library,

which was attacked in 2017. The center contract is removed, all its dependant wallet

contracts become out of service (i.e., dependency error). Glaser has discovered

658 contract accounts calling the removed library. We only show 20 attacked Parity

contracts in the figure for better display, and the nodes in deep grey color represent

that these erasable contracts still store ETH.

For One-to-Many DoS contract, one DoS contract hardcodes and interacts with

many other contracts. One example of One-to-Many DoS contract detected through

Glaser is shown in Figure 4.10 (B). In this example, Glaser has discovered that

one malicious DoS contract (Address: 0x792218d8bbe00fb81296236b014Fb14af2DA38

5B) hardcodes and interacts with 200 different external contracts, which have all been

removed. We only show 16 removed contracts in the figure, and the malicious DoS

contract (in light grey) is still stored in StateDB. Both types of DoS contracts might

be called, which will result in waste of gas or ETH. For example, one DoS contract

(Address: 0x41849f3bd33ced4a21c73fddd4a595e22a3c2251) shown in Figure 4.10 has

been transferred ETH in 57 transactions, which can be avoided if its account was

detected/alerted in time.

Creation graph: According to their features, the creation graphs can be divided

into two types: erasable account created by EOA, and erasable account created by

contract.

Erasable accounts were created by EOAs due to programming error or deployment

error, and we explain their creations through one meaningless contract example,

whose creation graph is shown in Figure 4.11 (A). The user (in red color) called one
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deployed contract (Address: 0x2Ab748a546760b1EC834E164DEDE2E71C4010E1d)

and realized that it was meaningless due to deployment error. The user incorrectly

used runtime bytecodes to deploy the contract and transferred ETH to it. Then the

user redeployed another correct contract (in green color), whose runtime bytecodes

are just same with the data field of the transaction deploying the previous meaningless

contract. Note that these types of erasable accounts’ creation can be avoided, and it

is better to first test and deploy contracts in private/public Testnet before they are

deployed in Mainnet.

(A) (B)

Figure 4.11: (A): Creation graph of one meaningless contract. (B): Creation graph of
DoS EOAs.

Erasable accounts were created by contracts due to some attacks, and we explain

their creations through one DoS EOA example, whose creation graph is shown in

Figure 4.11 (B). The attacker exploited one EOA (Address: 0xc0ae1ca3d89a417cb

e525498a1a20d40c9fd720d) to call a malicious contract (Address: 0xeec2a1ee6ee9

42596b6e255d24d38c0a9338cfef), creating 14 different DoS EOAs through internal

transactions (Hash: 0xefc6cc36a06eb6b067a35e028a2ad42617d16ff9e958e8fdaec599

d474e306f2). Exploiting one storage variable, the malicious contract can generate
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different addresses in different transactions. These addresses were calculated and

generated in runtime bytecodes, and only the last three bytes of them are different.

The attacker totally created 12,204 different DoS EOAs leveraging this malicious

contract, resulting in the waste of system resources and nodes’ difficulty in syncing

data.

4.7 Discussion

We discuss validity threats, limitations, and future work of this chapter.

(1) Glaser can not only discover erasable accounts that already exist in Ethereum,

but also erasable accounts that might be created in future. Some kinds of accounts

analyzed by Glaser might also be created in future, and Glaser might discover

more erasable accounts.

(2) For the discovered erasable accounts, only part of meaningless contracts can

be destructed by ordinary users. Because some MC-RS have SELFDESTRUCT in their

first basic blocks, which can be invoked through transactions by users. Although

most of discovered erasable accounts cannot be easily destructed by users, our results

can remind users not to call them, which can help users save money.

(3) Path explosion and timeout exception are common threats for the symbolic

execution techniques leveraged in this chapter. However, we use some methods to

reduce these threats. During detecting stack error contracts, we first extract runtime

bytecodes corresponding to the first basic block and then symbolically execute them.

During detecting attacked Parity wallets, we first filter out contracts without external

call operations and then symbolically execute them.

(4) As Glaser focuses on five kinds of erasable accounts in Ethereum, we will
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detect more kinds of erasable accounts in future. We will also analyze erasable

accounts in other blockchain systems.

4.8 Brief Summary

We have conducted the first work that systematically characterizes erasable accounts in

Ethereum, i.e., erasable contract accounts and erasable EOAs. We have implemented

Glaser to analyze the StateDB, which can detect erasable accounts leveraging

bytecodes’ static analysis, symbolic execution, transaction analysis, and state fields

analysis. Furthermore, we have analyzed attacks/behaviors related to erasable

accounts through graph analysis. Extensive experiments are also conducted to

evaluate the quantity, accuracy, and waste of the detected erasable accounts.
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Chapter 5

Gas-Inefficient Contracts and Locked
Cryptocurrencies that Devour Money

Smart contracts are full-fledged programs that run on blockchains (e.g., Ethereum,

one of the most popular blockchains). In Ethereum, gas (in Ether, a cryptographic

currency like Bitcoin) is the execution fee compensating the computing resources of

miners for running smart contracts. However, we find that under-optimized smart

contracts cost more gas than necessary, and therefore the creators or users will be

overcharged. In this work, we conduct the first investigation on Solidity, the recom-

mended compiler, and reveal that it fails to optimize gas-inefficient programming

patterns. In particular, we identify seven gas-inefficient patterns and group them to

two categories. Then, we propose and develop Gasper, a new tool for automatically

locating gas-inefficient patterns by analyzing smart contracts’ bytecodes. The pre-

liminary results on discovering three representative patterns from 4,240 real smart

contracts show that 93.5%, 90.1% and 80% contracts suffer from these three patterns,

respectively.

As the most popular blockchain that supports smart contracts, there are already
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more than 296 thousand kinds of cryptocurrencies built on Ethereum. However, not all

cryptocurrencies can be controlled by users. For example, some money is permanently

locked in wallets’ accounts due to attacks. In this chapter, we conduct the first

systematic investigation on locked cryptocurrencies in Ethereum. In particular, we

define four categories of accounts with locked cryptocurrencies and develop a novel

tool named Clue to discover them. Results show that there are more than one

billion dollars value of cryptocurrencies locked in Ethereum. We also analyze the

reasons (i.e., attacks/behaviors) why cryptocurrencies are locked. Because the locked

cryptocurrencies can never be controlled by users, avoid interacting with the accounts

discovered by Clue and repeating the same mistakes again can help users to save

money.

5.1 Overview

Smart contracts run on the machines of miners, who can earn Ethers (i.e., the

cryptographic currency circulated in Ethereum) by contributing their computing

resources. The creators and users of smart contracts will be charged certain amount of

gas for purchasing the computing resources from miners. The charge of a transaction

equals to the multiplication of the gas consumed by executing the transaction and the

price of gas (ETH per unit). Moreover, when deploying contracts, the creators will

also be charged of gas, the amount of which are related to the size of smart contracts

in bytecodes.

We find that under-optimized smart contracts cost more gas than necessary, and

therefore the creators or users will be overcharged. To save money, developers had

better follow gas-efficient programming patterns. Unfortunately, there is not such
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a guideline yet, and it is difficult for developers to identify gas-inefficient bytecode

and replace them with gas-efficient ones, because it requires deep understanding of

EVM’s instructions, the gas consumption for different operations, the data locations

accessed by operations, the amount of data read or written etc. Hence, a compiler

that can optimize the bytecode for minimizing gas consumption is highly desired.

In this chapter, we conduct the first investigation on Solidity, the recommended

compiler for Ethereum, and reveal that it fails to optimize gas-inefficient programming

patterns. More precisely, we identify seven gas-inefficient patterns and divide them into

two categories: useless-code related patterns, and loop-related patterns. Furthermore,

we propose and develop Gasper (short for GAS-inefficient Patterns checkER), a

new tool for discovering gas-inefficient patterns in bytecode automatically. Gasper

leverages symbolic execution and it currently can locate three representative patterns,

which cover the two categories. By applying Gasper to analyze all deployed smart

contracts, we find that 93.5%, 90.1% and 80% smart contracts suffer from these three

patterns, respectively. It is worth noting that although the list of our patterns is by

no means of complete, this research sheds light on this important issue and hopefully

stirs more research on it.

As the most popular blockchain that supports smart contracts, there are many

kinds of contract-based cryptocurrencies built in Ethereum. Apart from ETH, which

is the native cryptocurrency of Ethereum, more than 296 thousand cryptocurrency

contracts are deployed in Ethereum [54]. These cryptocurrencies have high market

capitalization. For example, the ETH has a total value of about 20 billion dollars [56],

and USDT has a total value of more than four billion dollars [53]. Note that all the

cryptocurrencies’ prices in this chapter are based on statistics in September, 2020 [54].
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However, not all cryptocurrencies can be controlled by users. Actually, much

value of cryptocurrency is permanently locked in some accounts. For example, the

attacker escalated his privilege and destructed Parity’s multi-sig library contract in

2017 [45], which locked all the ETH stored in Parity wallet accounts. Through our

analysis, there are 203 wallet accounts with more than 515,035 locked ETH, which is

worth more than 192 million dollars. Many users still sent cryptocurrencies to the

attacked wallet accounts, leading more money permanently lost. If the accounts with

locked cryptocurrencies can be detected and alerted in time, users can reduce their

economic losses.

Unfortunately, there still lacks systematic research on the locked cryptocurrencies

in Ethereum. Although there are some research analyzing attacks [87,118] or criminal

smart contracts [86] stealing cryptocurrencies in Ethereum, they focus on different

purposes from ours. We detect locked cryptocurrencies that do not belong to anyone,

while they analyze stolen cryptocurrencies due to attacks. There also exist some other

research analyzing the properties of cryptocurrency networks [153,165], inconsistent

behaviors [83], and gas optimizations [81] of smart contract in Ethereum, whose main

contents and purposes are different from this chapter.

To fill this gap, we propose and develop a novel tool named Clue (disCovering

Locked cryptocUrrency in Ethereum), which can discover four categories of accounts

with more than one billion dollars value of locked cryptocurrencies. In particular,

we discover two categories of contract accounts with locked cryptocurrencies due

to contract destruction or attacks, and two categories of EOAs (Externally Owned

Accounts) with locked cryptocurrencies due to users’ unreasonable behaviors. Note

that calling to accounts with locked cryptocurrencies not only wastes system compu-
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Figure 5.1: One destructed contract account with locked cryptocurrency detected by
Clue.

tation resources, but also wastes users’ money. For example, one contract account

(Address: 0x97eC9BFb0F6672C358620615a1E4dE0348Aea05c) discovered by Clue

locks more than 208 ETH, as shown in Figure 5.1, which is worth more than 79

thousand dollars. Users still call this contract after its destruction, leading to all the

sent cryptocurrencies locked permanently.

Our Contributions. The main contributions of this chapter are listed as follows:

• To our best knowledge, this is the first investigation revealing that lots of smart

contracts, generated by the recommended compiler, contain gas-inefficient

bytecodes, which can be replaced with gas-efficient bytecodes to save money.

• We propose and develop Gasper, a new tool based on symbolic execution

for automatically discovering gas-inefficient patterns in bytecode. The current

version covers three representative patterns in two categories, and is being

extended to support more patterns.

• We apply Gasper to all deployed smart contracts, and find that 93.5%, 90.1%

and 80% smart contracts suffer from these three patterns, respectively.
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• To the best of our knowledge, we conduct the first research that systematically

analyzes locked cryptocurrencies in Ethereum. We propose and define four

categories of accounts with locked cryptocurrencies, i.e., two kinds of EOAs

and two kinds of smart contract accounts.

• We implement a tool named Clue to detect each category of accounts with

locked cryptocurrencies. For smart contract accounts, we analyze their ac-

count states in StateDB and analyze their historical transactions, to discover

destructed contracts. Leveraging symbolic execution, we analyze the runtime

bytecodes of smart contracts to discover attacked Parity wallet contracts. For

EOAs, we mainly use account state analysis and transaction analysis to detect

contract-creation failure EOAs and 0x0 account.

• We analyze the attacks/behaviors related to the discovered locked cryptocur-

rencies, which can explain why they are locked and help users to save money.

We also conduct experiments to evaluate its quantity and accuracy. A total of

1,091,796,292.09$ value of cryptocurrencies are discovered by Clue, and all of

the discovered cryptocurrencies are permanently locked in Ethereum.

This chapter is organised as follows. Section 5.2 introduces the related techni-

cal background. Section 5.3 interprets the details of gas-inefficient programming

patterns and Section 5.4 details the principles of Gasper. Then Section 5.5 eval-

uates Gasper’s results. Section 5.6 describes the four categories of accounts with

locked cryptocurrencies and Section 5.7 details the principle and implementation

of Clue. Then Section 5.8 systematically evaluates the quantity and accuracy of

discovered locked cryptocurrencies. After discussing the limitations and future work
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in Section 5.9, we summarize the chapter in Section 5.10.

5.2 Background

In this section, we briefly introduce the necessary background related to this chapter.

5.2.1 Gas Mechanism

Gas is used for purchasing computing resources from miners since smart contracts

run on miners’ machines. Gas can be considered as money with equivalent value. For

example, the average gas price on Nov. 11, 2016 is 0.000000024334480804 ETH [26],

which is roughly equal to 2.5× 10−7 US dollars [9]. Note that the gas price and the

exchange rate of ETH to US dollar are determined by the market and keep changing.

Deploying and executing smart contracts cost money. For instance, an addition

operation that sums up the top two items of the stack takes 3 units of gas, about

7.5×10−7 US dollars. One may argue that the cost for an addition is so low that we do

not need to optimize it. However, it is worth noting that real smart contracts consist

of lots of operations and some operations consume much more gas than the addition

operation, as shown in Table 5.1. Moreover, smart contracts usually provide public

methods that can be called unlimited times by various clients and contracts. Hence,

an optimized smart contract can save obvious gas (i.e., money) than its un-optimized

counterpart due to the scale effect.

Stack operations (e.g., POP, PUSH), arithmetic operations (e.g., ADD, SUB), bitwise

operations (e.g., OR, XOR), and comparison operations (e.g., LT/GT) are cheap because

being a stack-based virtual machine, EVM favors such stack-related operations.

Loading a word (i.e., 256 bits) from the memory (e.g., MLOAD) or saving a word to
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Table 5.1: Gas cost of different operations, a complete list can be found in Ethereum’s
yellow paper.

Operation Gas Description
ADD/SUB 3

Arithmetic operationMUL/DIV 5
ADDMOD/MULMOD 8

AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation

POP 2 Stack operationPUSH/DUP/SWAP 3
MLOAD/MSTORE 3 Memory operation

JUMP 8 Unconditional jump
JUMPI 10 Conditional jump
SLOAD 200 Storage operation
SSTORE 5,000/

20,000
BALANCE 400 Get balance of an account
CREATE 32,000 Create a new account using CREATE

CALL 25,000 Create a new account using CALL

the memory (e.g., MSTORE) are also cheap. The term “memory” referred in Ethereum

stands for a special memory area, of which a contract obtains a freshly cleared instance

for each message call. For example, the data attached in a message call is stored

in memory. It is worth noting that the gas consumption will be multiplied if many

words in memory are read or written. Moreover, memory can be expanded when

accessing a previously untouched memory location. Every expanded word needs 3

units of gas.

Loading a word from the storage (i.e., SLOAD) or saving a word to the storage

(i.e., SSTORE) are expensive. The term “storage” referred in Ethereum is a persistent

memory area where any changes to the storage by one call of a contract can be

observed by subsequent calls of that contract. A SSTORE operation costs 20,000 units

of gas if the storage word is set to non-zero from zero; otherwise, it costs 5,000. It is

worth noting that although the caller of a contract will be refunded 15,000 units of

gas if a SSTORE operation sets a non-zero storage word to zero, the refund will not be
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committed until the transaction completes successfully.

EVM has a number of blockchain-specific operations which are very expensive,

such as BALANCE, CREATE and CALL. Moreover, a conditional jump (i.e, JUMPI) is

more expensive that an unconditional jump (i.e., JUMP). The gas consumption of each

operation is susceptible to change due to the fast evolving of Ethereum. Roughly

speaking, users are charged proportionally to the consumed computing resources.

5.2.2 Account State

Every account in Ethereum has its state, whose information is stored in StateDB

(State DataBase). For each account a, there are four fields in StateDB [130]:

(1) Code σ[a]c. It stores the smart contract’s runtime bytecodes, which is empty

if a is an EOA.

(2) Balance σ[a]b. It stores the ETH balance value (in Wei) of the account. 1

ETH = 1018 Wei.

(3) Nonce σ[a]n. It stores the number of transactions sent from EOA, or the

number of contracts created by contract account.

(4) Storage σ[a]s. It stores the root hash of Merkle tree which encodes the storage

contents of the account.

The main difference of EOA and contract account is whether its code field σ[a]c

is empty [130]. In this chapter, we mainly analyze three fields of account, i.e., σ[a]c,

σ[a]b, and σ[a]n.
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5.2.3 Cryptocurrencies in Ethereum

Cryptocurrency is digital assets based on blockchain techniques [153]. There are two

categories of cryptocurrencies in Ethereum, i.e., ETH and CBC (Contract-Based

Cryptocurrency) [165]. ETH is the native cryptocurrency of Ethereum, and miners

can earn ETH by participating in consensus and writing blocks. Apart from ETH,

there are many other kinds of cryptocurrencies based on contracts, and ERC20 is

the most popular standard of CBC [131]. All the CBC analyzed in this chapter are

compliant with ERC20. Both EOA and contract account can hold cryptocurrency.

EOA can transfer out ETH by initiating transactions from it, and contract can

transfer out ETH by executing specific operations (e.g., CALL, SELFDESTRUCT) [62].

Note that accounts can only transfer out their CBC by calling the corresponding

ERC20-based smart contract.

The ERC20 standard provides some basic functions and events that must be

implemented of CBC in Ethereum, which are shown in Figure 5.2. The constant string

name defines the name of the CBC (e.g., USDT). If the user Ua wants to transfer

out CBC from his/her account, Ua can call the function transfer() (in Line 5).

Furthermore, the user Ua can authorize another account Ub to transfer out CBC from

his/her account through calling the function transferFrom() (in Line 6). Before Ub

transfers out Ua’s CBC, Ua must authorize the account Ub through calling function

approve() (in Line 7). In the bodies of function transfer() and transferFrom(),

developers need to call the event Transfer() (in Line 9), because Etherscan needs

to monitor the CBC’s transfer information through this event [153,165].
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1  contract ERC20 {
2    string public constant name = "Token Name";
3    function totalSupply() constant returns (uint sup);
4    function balanceOf(address owner) constant returns 
(uint balance);
5    function transfer(address to, uint value) returns 
(bool success);
6    function transferFrom(address from, address to, uint 
value) returns (bool success);
7    function approve(address spender, uint value) 
returns (bool success);
8    function allowance(address owner, address spender) 
constant returns (uint remaining);
9    event Transfer(address indexed from, address indexed 
to, uint value);
10   event Approval(address indexed owner, address 
indexed spender, uint value);  }

Figure 5.2: The ERC20 standard of CBC in Ethereum.

5.2.4 Cryptocurrency Analysis

Chen et al. [86] detected Ponzi schemes, which are classic frauds and might cheat

users’ ETH. They built a classification model to detect latent Ponzi schemes by using

data mining and machine learning methods. Cheng et al. [87] analyzed the attack that

steals cryptocurrencies exploiting unprotected JSON-RPC endpoints. They designed

and implemented a honeypot that could capture real attacks in the wild. Ji et

al. [118] implemented a tool named Deposafe to detect and exploit the fake deposit

vulnerability in ERC-20 tokens. They identified over 7,000 vulnerable contracts that

may suffer from two types of attacks, which demonstrated the urgency to identify

and prevent the fake deposit vulnerability. However, all of the above work analyzed

the cryptocurrencies illegally possessed by criminals, and they did not analyze locked
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cryptocurrencies that does not belong to anyone. [153,154,165] measured the network

properties and structures of ERC20 smart contracts, and [83] analyzed inconsistent

behaviors in ERC20 smart contracts. However, they focused on analyzing the smart

contracts’ implementations and invocations, whose purposes differ from ours. Angelo

et al. [95] detected and classified the bytecodes of cryptocurrency related smart

contracts. They analyzed the methods and standards of the contracts, to investigate

the actual usage of cryptocurrency related contracts. However, they did not analyze

the states/transfers of cryptocurrencies held by accounts and did not analyze locked

cryptocurrencies. Tramèr et al. [161] analyzed the side-channel attacks that let

remote adversaries bypass privacy protections in cryptocurrency related transactions.

Their proposed attacks enabled an active remote adversary to identify the secret

payee of any transaction in Zcash or Monero. Although their study highlighted

the dangers of side-channel leakage in anonymous cryptocurrencies, they did not

analyze locked cryptocurrencies in these systems. Zhou et al. [181] analyzed real-world

attacks and defenses adopted in the wild based on the transaction logs produced by

uninstrumented EVM. Besides successful attacks, they also studied attempted attacks

that are prevented due to the deployments of defenses. Although they analyzed

cryptocurrency transfer actions resulted from the attacks, they did not analyze

the locked cryptocurrencies due to attacks or unreasonable behaviors. Kalodner et

al. [120] presented Blocksci, a platform to analyze the data of different blockchain

systems. Blocksci incorporated an in-memory analytical (rather than transactional)

database and it supported different analysis tasks, including cryptocurrency analysis.

However, their study focused on the acquisition and organization of blockchain data

and they did not analyze locked cryptocurrencies. There are some other work analyzed
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cryptocurrencies in Ethereum [101,104,148,155] or other blockchains [72,93,114,174],

whose contents and purposes are different from ours.

5.2.5 Gas-Related Studies

Chen et al. propose to defend against DoS attacks of Ethereum by adjusting gas

costs dynamically [81]. By doing so, DoS attacks exploiting under-priced EVM

operations will be terminated quickly [81]. Madmax decompiles EVM bytecode, and

then detects gas-related security problems from the decompiled code [108]. Gastap

derives the sound gas upper bounds for all public functions of a given smart contract,

by inferring size relations, generating gas equations and solving the equations [66].

Gasol extends Gastap by replacing multiple accesses to the same storage location

with one access [64]. Gasfuzz applies feedback-directed fuzz testing to automatically

generate inputs which could lead to a high gas consumption of contract functions [137].

Marescotti et al. [138] leverages symbolic model checking to compute the exact worst-

case gas consumption for smart contracts.

Yang et al. conduct an empirical study of gas consumption, and they have several

observations, including some under-priced EVM operations that can be exploited by

DoS attacks [170]. Zhang et al. propose a novel data structure, so-called GEM2-Tree

to substitute the original Merkle hash tree in Ethereum to reduce gas cost [175].

Smartcheck [160] detects 21 kinds of code issues in Ethereum smart contracts. Two

of them are related to gas-inefficient code. The first is byte[] because it can be replaced

with bytes which is cheaper. The second is the loops with function calls inside because

repeated function invocations will result in considerable gas consumption. Our work

is different with Smartcheck mainly because Smartcheck relies on the source
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code of smart contracts. Unfortunately, open-source contracts only account for less

than 1%. For example, since there is no type information in EVM bytecode, it is

difficult to distinguish byte[] from bytes without the source code.

5.3 Gas-Inefficient Programming Patterns

We identify seven gas-inefficient patterns, which can be classified into two categories:

useless code related patterns and loop related patterns. The former introduces

additional cost due to the increased size of bytecode during the deployment and

the removable bytecode in runtime. The latter involves using expensive operations

in the loop. We have validated all these patterns using the latest Solidity whose

optimization is enabled. More precisely, we feed Solidity the gas-inefficient patterns

in source code, and then check whether the gas-inefficient patterns are converted into

gas-efficient ones in the generated bytecode. The results show that none of these

patterns has been optimized by Solidity. For the ease of illustration, we present the

patterns in source code rather than bytecode.

5.3.1 Category 1: Useless Code Related Patterns

1  function p1 ( uint x ){

2    if ( x > 5)

3  if ( x*x < 20)

4  XXX }

1  function p2 ( uint x ){

2    if ( x > 5)

3  if ( x > 1)

4  XXX }

P
a
tte

rn
 1

P
a
tte

rn
 2

Figure 5.3: Pattern 1: dead code, and Pattern 2: opaque predicate

(1) Dead code. Figure 5.3 (Pattern 1) gives an example of dead code where Line

4 will not be executed because the predicate “x*x<20” at Line 3 is evaluated to false
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under all circumstances. Solidity does not remove Line 3 and 4 from the generated

bytecode and hence wastes money.

(2) Opaque predicate. The outcome of an opaque predicate is known to be true

or false without execution. For example, the predicate “x>1” in Figure 5.3 (Pattern

2) is an opaque predicate. Since the predicate at Line 3 is evaluated to true under all

circumstances, it should be removed for saving gas.

5.3.2 Category 2: Loop Related Patterns

1  uint sum = 0;

2  function p3 ( uint x ){

3    for ( uint i = 0 ; i < x ; i++)

4  sum += i; }

1  function p4 () returns ( uint ){

2    uint sum = 0;

3    for ( uint i = 1 ; i <= 100 ; i++)

4  sum += i;

5    return sum; }
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Figure 5.4: Pattern 3: expensive operations in a loop, and Pattern 4: constant
outcome of a loop

(1) Expensive operations in a loop. The expensive operations in a loop are worth

attention because they may execute multiple times in one invocation. Moving the

expensive operations out of the loop can save gas. For example, in Figure 5.4 (Pattern

3), since the variable sum is stored in the storage, Line 4 involves a SLOAD for loading

sum to the stack and a SSTORE for saving the outcome of the ADD to the storage. Note

that the storage-related operations are very expensive.

An advanced compiler should assign sum to a local variable (e.g., tmp) that resides

in the stack, then add i to tmp inside the loop, and finally assign tmp to sum after

the loop. Such optimization reduces the storage-related operations from 2x to just 2,

i.e., one SLOAD and one SSTORE.
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(2) Constant outcome of a loop. In some cases, the outcome of a loop may be a

constant that can be inferred in compilation. As shown in Figure 5.4 (Pattern 4),

the storage variable sum in p4 equals to 5050 after the loop. Hence, the body of p4

should be simplified as “return 5050;”.

1  function p5 ( uint x ){

2    uint m = 0;

3    uint v = 0;

4    for ( uint i = 0 ; i < x ; i++)

5      m += i;

6    for ( uint j = 0 ; j < x ; j++)

7      v -= j; }

1  uint x = 1;

2  uint y = 2;

3  function p6 ( uint k ){

4    uint sum = 0;

5    for ( uint i = 1 ; i <= k ; i++)

6      sum = sum + x + y; }

P
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 5
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Figure 5.5: Pattern 5: loop fusion, and Pattern 6: repeated computations in a loop

(3) Loop fusion. It combines several loops into one if possible and thus reduces

the size of bytecode. In particular, it can reduce the amount of operations, such as

conditional jumps and comparison, etc., at the entry points of loops. The two loops

shown in Figure 5.5 (Pattern 5) can be combined into one loop, where both m and v

get updated.

(4) Repeated computations in a loop. In some cases, there may be expressions that

produce the same outcome in each iteration of a loop. Hence, the gas can be saved

by computing the outcome once and then reusing the value instead of recomputing it

in subsequent iterations, especially, for the expressions involving expensive operands.

For example, in Figure 5.5 (Pattern 6), the gas consumption is very high due to the

repeated computations. More precisely, the summation of two storage words (i.e.,

“x+y” at Line 6) is quite expensive because x and y should be loaded into the stack

(i.e., SLOAD) before addition. To save gas, this summation should be finished before

the loop, and then the result is reused within the loop.

128



1  function p7 ( uint x , uint y ) returns ( uint ){

2    for ( int i = 0 ; i < 100 ; i++)

3      if ( x > 0 )  y+=x;

4    return y; }

P
a
tte

rn
 7

Figure 5.6: Pattern 7: Comparison with unilateral outcome in a loop

(5) Comparison with unilateral outcome in a loop. It means that a comparison

is executed in each iteration of a loop but the result of the comparison is the same

even if it cannot be determined in compilation (i.e., not an opaque predicate). For

instance, in Figure 5.6, the comparison at Line 3 should be moved to the place before

the loop.

Summary: Adequate optimizations can reduce the cost of contract creators if

the size of smart contracts can be reduced (e.g., eliminating dead code, removing

unnecessary comparisons), and the cost of contract users if the computations of smart

contracts can be reduced (e.g., moving expensive operations out of a loop). It is

worth noting that the loop-related patterns will cost more gas with the increase of

the loop count.

5.4 Gasper’s Implementation

We propose and develop Gasper to automatically discover gas-inefficient program-

ming patterns from the bytecode of smart contracts. Gasper handles bytecode

directly without the need of source code, because only a few smart contracts open

their sources. As an early research achievement, the current version of Gasper

can find all patterns in category 1 and one representative pattern (i.e., expensive

operations in a loop) in category 2. The detection of other patterns is in development.
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Gasper conducts symbolic execution on bytecode to cover all reachable code

blocks (a block is a straight-line code sequence with no branches in except to the

entry and no branches out except at the exit). Given a smart contract, Gasper

first disassembles its bytecode using disasm provided by Ethereum. Then, Gasper

constructs the Control Flow Graph (CFG). It is worth noting that the CFG will be

improved gradually during symbolic execution if new control flow transfers are found.

Symbolic execution starts from the root node of the CFG, and traverses the CFG. If

Gasper encounters a conditional jump, it checks which branches (i.e., true or false)

are feasible by querying the Z3 solver [92]. If both are feasible, Gasper selects one

branch following the depth-first search.

5.4.1 Detection of Dead Code

Gasper detects dead code through three steps. First, it logs the addresses of all

executed blocks by symbolic execution. Then, it collects the addresses of all blocks

by scanning the CFG. Finally, Gasper reports all blocks that are found in the CFG

but not executed by symbolic execution as dead code.

5.4.2 Detection of Opaque Predicates

To detect opaque predicates, Gasper executes the smart contract symbolically, and

records the executed branch (i.e., true or false) when a conditional jump is encountered.

After that, the conditional jump with one never-executed branch is regarded as an

opaque predicate.
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5.4.3 Detection of Expensive Operations in a Loop

Gasper detects this pattern through two steps. First, Gasper looks for loops in the

bytecode. Second, it searches loop bodies for expensive operations. More precisely,

Gasper firstly searches for back edges in the CFG, which indicate the existence of

loops, and then identifies the entry block and exit block for each loop. Afterwards,

using Dijkstra algorithm, Gasper calculates the distances between each block with

the entry block and exit block, respectively. The distance between two nodes is the

least number of edges from one node to the other. A block is considered to be in

a loop if it is closer to the exit block than to the entry block. Currently, Gasper

supports detecting 3 expensive operations, including SLOAD, SSTORE and BALANCE.

More operations will be included in future work.

5.5 Gasper’s Evaluation

We have implemented Gasper based on Oyente [134], and evaluated it using all

smart contracts deployed on Ethereum. More precisely, we scan all addresses in the

blockchain because each deployed contract must be associated with an unique address.

We find 566,907 addresses till November 5th, 2016, of which 539,617 addresses contain

no bytecodes. Therefore, we download 27,290 contracts’ bytecodes in total. Moreover,

we find that many contracts are exactly the same (i.e., their bytecodes are identical).

After eliminating identical contracts, 4,669 contracts are left. During experiments,

429 (less than 10%) contracts cannot be examined because Oyente crashes due to

its internal errors(e.g., Unknown Instructiondelegatecall, Stack Underflow, Unknown

Instructionextcodesize) or Oyente runs out of time. Eventually, 4,240 contracts are
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Figure 5.7: Overview of gas-inefficient patterns: 1, 2, 3 indicate dead code, opaque
predicates, and expensive operations in a loop, respectively.

successfully inspected.

The number of smart contracts that have the 3 gas-inefficient patterns are illus-

trated in Figure 5.7. More than 70% contracts contain all these patterns, indicating

that their bytecodes have not been properly optimized for reducing gas. Besides,

more than 90% contracts have dead code or opaque predicates.

Figure 5.8 presents the distribution of dead code blocks and opaque predicates

in smart contracts. Each point (a, b) indicates that a smart contracts contain b

dead code blocks or opaque predicates. Note that the contracts without these two

patterns are not counted. The distributions of dead code blocks and opaque predicates

demonstrate similar trends: 51.7% contracts contain more than 20 dead code blocks

and 52.6% contracts contain more than 10 opaque predicates.
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Figure 5.8: Distribution of dead code blocks and opaque predicates in smart contracts.

Figure 5.9 demonstrates that 69.9%, 78.5% and 21% contracts have SLOAD, SSTORE

and BALANCE operations in a loop, respectively. Moreover, if a contract has SSTORE

operations in a loop (the percentage is 69.9%), it may contain SLOAD operations

(69.3%) as well. Interestingly, if a contract uses BALANCE operations in a loop (21%),

it likely contains both SLOAD and SSTORE operations (18.6%).

Figure 5.10 shows that a large number of contracts contain many expensive

operations in a loop. For example, 57.1% and 51.5% of contracts have more than 7

SSTORE and 20 SLOAD operations in a loop, respectively. Note that contracts without

such expensive operations in a loop are not counted.

As expected, contracts with larger size are likely to contain more gas-inefficient

patterns. Figure 5.11 shows the relationship between the number of SLOAD/SSOTRE

and the size of smart contracts. For example, a contract, named ARK, which is of
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Figure 5.9: Number of contracts containing expensive operations

34,767 bytes and deployed in 0x37b4869e73B7cE1284D6502B01aC81d500b50237, has

304 SLOAD and 168 SSTORE operations in loops.

5.5.1 Real Case 1: Firstcontract

Firstcontract is open source and deployed at the address 0x68C7147205A8bEB9

D99fD19908b93462CdFfC60d. Gasper discovers dead code at Line 200 (i.e., pattern

1) and an opaque predicate (i.e., pattern 2) at Line 199, as shown in Figure 5.12.

The function indexof takes in two strings, _haystack and _needle. At Line 195,

_haystack is converted into a set of bytes, h. At Line 199, the length of h is compared

to 2 ∗ ∗128− 1. However, the predicate will never be evaluated to true because “∗∗”

stands for exponential arithmetic. Consequently, the code at Line 200 cannot be

executed.
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Figure 5.10: Distribution of SSTORE and SLOAD within a loop in smart contracts.

5.5.2 Real Case 2: Ballot

Ballot is also open source and deployed at the address 0x5A4964bb5FDd3CE646b

B6AA020704F7D4db79302. Gasper finds a SLOAD operation in a loop and it can be

moved outside the loop, as shown in Figure 5.13.

Since the array proposals (defined Line 29) is in the storage, getting access to

its length (i.e., proposals.length at Line 59) involves the SLOAD operation. Moreover,

the number of executing SLOAD is proposals.length, because the length of proposals

is accessed in each iteration of the loop. This inefficient code can be optimized by

assigning proposals.length to a stack variable, and then using the stack variable to do

the comparison with proposal at Line 59. After optimization, the number of using

SLOAD can be reduced to only one.
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Figure 5.11: Statistics of the size of contracts which contain SSTORE and SLOAD in a
loop.

193  function indexOf ( string _haystack , string _needle ) internal returns ( int )

194  {

195    bytes memory h = bytes ( _haystack );

196    bytes memory n = bytes ( _needle );

197    if ( h . length < 1 || n . length < 1 || ( n . length > h . length ))

198      return - 1;

199    else if ( h . length > ( 2 ** 128 - 1 ))

200      return - 1 ;

  ...

Figure 5.12: Gas-inefficient code in Firstcontract

5.6 Locked Cryptocurrencies

In this section, we define four kinds of contract accounts and EOAs with locked

cryptocurrencies in Ethereum.
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29  Proposal [] public proposals;

   ...

57  function winningProposal () constant returns ( uint8 winningProposal){

58    uint256 winningVoteCount = 0 ;

59    for ( uint8 proposal = 0 ; proposal < proposals . length ; proposal ++)

   ...

Figure 5.13: Gas-inefficient code in Ballot

5.6.1 Locked Cryptocurrencies in Contract

Destructed contract

In Ethereum, the smart contract can be destructed and transfer out all its stored

ETH through executing the SELFDESTRUCT operation. After destruction, the smart

contract account will be deleted from StateDB. However, some users may not know

in time of the smart contract’s destruction and still send ETH/CBC to it, which

leads to the sent ETH/CBC be locked. After sending ETH to the destructed smart

contract account, the contract account with the same address before destruction

will be created again in the StateDB. For the CBC held by the destructed contract

account, most of it will also be permanently locked. Because the destructed contract

account stores no runtime bytecodes, it cannot send out transaction. Therefore, the

destructed contract account cannot transfer out its CBC through calling transfer()

function, or authorize another account to transfer out its CBC through calling the

transferFrom() function (the principle described in Section 5.2.3). Above all, all the

ETH and most of the CBC held by the destructed contract accounts are permanently

locked in Ethereum.

Example: One smart contract named Insightsnetworkcontributions (Ad-

dress: 0x97eC9BFb0F6672C358620615a1E4dE0348Aea05c) is discovered by Clue as

destructed contract with locked cryptocurrencies. It has been transferred more than
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Table 5.2: Top five transactions transferring ETH of one destructed smart contract
account.

Rank Transaction hash Locked ETH Value
1 0x4f64bd65c438e265be9ff7d8042018670578ba547bdbd49e3cf42d972eb118b4 50.00 18,654.50$
1 0xcd4902aa0a4e77074c6adebfc6a2455029341a270729429993a83d70af67582a 50.00 18,654.50$
3 0xa9bec2803452fd67ba7e09643d38560fb130af662cfa788db169a75a761b7bd6 27.00 10,073.43$
4 0x3403c6ec86697a836a1efb3e61e00c09ad914f021f0d05b6c1543ae1f59f9615 25.00 9,327.25$
5 0x9e4589470f92c14c62944dddba8f00d6b3143d7bddcc5608db5ef73ed4204b06 23.53 8,778.81$

Total N/A 175.53 65,488.49$

208 ETH after its destruction (Transaction hash: 0x7e805cccba8ab2a1bac991ee0d0

33d6567864558e9e266c1087e607c63b2f0a9), which is worth more than 79 thousand

dollars. Furthermore, all the CBC held by this destructed smart contract is also

locked, which is worth about six dollars. Although there are many transactions sent

to this destructed contract account, most of the locked ETH is related to several

transactions. The top five transactions transferred ETH to this account are listed

in Table 5.2. 84.4% (175.53ETH) of all its locked ETH is due to these top five

transactions.

Attacked Parity contract

431  function() payable {
432    // just being sent some cash?
433    if (msg.value > 0)
434      Deposit(msg.sender, msg.value);
435    else if (msg.data.length > 0)
436      _walletLibrary.delegatecall(msg.data);
437  }
......
455  address constant _walletLibrary = 
0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4;

Figure 5.14: Fallback function in the Solidity sources of Parity wallet contract.
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In Nov. of 2017 [49], the attacker escalated his privilege and destructed the

multi-sig library of Parity wallets, leading to all the ETH and most of the CBC held

by wallet contracts that depend on the library locked permanently. The fallback

function in the Solidity sources of Parity wallet contract is shown in Figure 5.14. One

smart contract can only have one fallback function, which has no function name. In

this fallback function, the wallet contract calls the library contract, whose address

is hardcoded in Line 455. Many critical functions are written in the called wallet

library, such as function execute() used for ETH transfer and function kill() used

for contract account’s destruction.

The attacker destructed the wallets’ library in the following process. First, the

attacker called the library’s functions initWallet() and initMultiowned() through

the fallback function, to escalate his/her privilege. Second, the attacker destructed

the library contract through calling function kill(). After the library’s destruction,

all the wallet contracts can no longer call the library and executing its functions.

Therefore, all the ETH stored in the attacked Parity wallet contracts is permanently

locked. Furthermore, all the CBC held by the attacked wallet contracts is also locked.

This is because the wallet contract cannot call the ERC20 contracts, whose details

will be analyzed in Section 5.7.1.

Example: There are many attacked wallet contracts with much value of ETH,

which are listed in Table 5.3. One attacked Parity wallet contract (Address: 0x0da3cB

3046F72fcbb49edF01B04AB6efc6C0D8DC) discovered by Clue stores 2,576.35ETH.

After the attack, there were 17.88ETH transferred to this wallet contract. Furthermore,

there is also 2.09$ value of CBC locked in it. If these wallet accounts with locked

cryptocurrencies can be detected and alerted in time, the users might no longer
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transfer cryptocurrencies to it, which can help users to save money.

Table 5.3: Top ten attacked Parity wallet contracts with locked ETH detected by
Clue.

Rank Attacked Parity wallet Locked ETH Value
1 0x3bfc20f0b9afcace800d73d2191166ff16540258 306,276.62 114,268,744.16$
2 0x376c3e5547c68bc26240d8dcc6729fff665a4448 114,939.00 42,882,591.51$
3 0x43ab622752d766d694c005acfb78b1fc60f35b69 21,704.33 8,097,668.48$
4 0xc7cd9d874f93f2409f39a95987b3e3c738313925 16,475.53 6,146,855.49$
5 0xdb0e7d784d6a7ca2cbda6ce26ac3b1bd348c06f8 6,925.00 2,583,648.25$
6 0x49eafa4c392819c009eccdc8d851b4e3c2dda7d0 4,524.98 1,688,224.79$
7 0xbe17d91c518f1743aa0556425421d59de0372766 4,360.67 1,626,922.37$
8 0x41849f3bd33ced4a21c73fddd4a595e22a3c2251 3,263.66 1,217,638.91$
9 0x8655d6bf4abd2aa47a7a4ac19807b26b7609b61d 3,000.00 1,119,270.00$
10 0x0da3cb3046f72fcbb49edf01b04ab6efc6c0d8dc 2,576.35 961,210.42$

Total N/A 484,046.14 180,592,774.37$

5.6.2 Locked Cryptocurrencies in EOA

0x0 account

Because of users’ unreasonable behaviors, their cryptocurrencies might be locked in

the account whose address is 0x0. Because the 0x0 account never stores any code, we

classify it as EOA. Furthermore, no user has the private key of the 0x0 account and

it cannot send out transaction. Therefore, all the ETH and CBC held by the 0x0

account are permanently locked. The cryptocurrencies are locked in the 0x0 account

due to two scenarios: unreasonable mining and unreasonable cryptocurrency transfer,

whose details will be analyzed in Section 5.7.2.

Example: The mining pool manager of Spark-Pool wrongly sent rewards to the

0x0 account in one transaction (Hash: 0x1920b021d6e3d637bbc72df4ea4f40032409fff

b1dfa2de2e74cf009ffb08c06), leading to 5$ value of ETH permanently locked in the

0x0 account. For another example, one developer wrongly writes withdraw(uint256

amount) function’s destination address as 0x0 and locks 20 ETH in one transaction

140



(Hash: 0xa6b5a31cbc29b6a54f5e046cf5af6e6ea1ecc184ae149d555f5e1cc153ecb0e1).

Note that after the developer realized the bug, he/she destructed the contract (Address:

0x580E45f982a0A01cFab3B36B3Ec8Df63fcc5D290).

Contract-creation failure EOA

When the user deploys a smart contract in Ethereum, he/she will still receive one fake

contract address if the contract-creation fails. Indeed, the received contract address

does not exist in StateDB just after the contract-creation failure. However, some

users might wrongly ignore the failure message and still transfer cryptocurrencies to

the fake contract address, leading to cryptocurrencies locked permanently. Because

the address with locked cryptocurrencies stores no code, we classify it as EOA.

Figure 5.15: One contract-creation failure EOA with locked cryptocurrencies detected
by Clue.

Example: One EOA (Address: 0x5488b0a000843dc54b0e541dfb75c2927f92adc8)

discovered by Clue locks 19 ETH in value of 7,088.71 dollars and some CBC in

value about seven dollars. After the user encountered an out-of-gas error during

contract-creation, he still called the fake contract address three times, as shown in

Figure 5.15.
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Figure 5.16: Overview of Clue’s architecture.

5.7 Clue’s Implementation

In this section, we detail the principle and implementation of Clue. The overview of

Clue’s architecture is shown in Figure 5.16, which mainly consists of two modules:

(1) Locked cryptocurrencies in contracts. In this module, Clue detects two kinds

of contract accounts with locked cryptocurrencies: destructed contract and attacked

Parity contract. For destructed contract, we debug accounts’ historical transactions

and detect destructed contracts with locked cryptocurrencies through transaction

trace analysis and ETH/CBC balance analysis. For attacked Parity contract, we

statically analyze contracts’ runtime bytecodes and detect wallet contracts with locked

cryptocurrencies through symbolic execution and ETH/CBC balance analysis.

(2) Locked cryptocurrencies in EOAs. In this module, Clue detects two kinds

of EOAs with locked cryptocurrencies: 0x0 account and contract-creation failure

account. For the 0x0 account, we analyze all its historical transactions to explain

why cryptocurrencies are locked in the 0x0. For contract-creation failure account, we

export sensitive EOAs from StateDB and detect contract-creation failure accounts
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with locked cryptocurrencies through transaction and ETH/CBC balance analysis.

Inside the two modules, we conduct plug-in development for the detection of

each account category. Therefore, Clue is scalable for more categories of accounts’

detection in the future. Furthermore, we also plan to analyze other blockchain systems

(e.g., Bitcoin, EOS), which will be described in Section 5.9.

5.7.1 Detection of Locked Cryptocurrencies in Contract

Detection of destructed contracts

The detection of destructed contracts with locked cryptocurrencies is divided into

four steps. First, for accounts stored in the StateDB, we debug their historical

external transactions through Geth API debug.traceTransaction() [28]. From the

execution trace of the external transaction, we analyze whether it ever executed the

SELFDESTRUCT operation, which is used for destructing the contract account. Second,

for the external transaction that executed SELFDESTRUCT, we leverage Ethereum RPC

API to get the detailed information of the transaction. Because the execution of

SELFDESTRUCT will produce internal transaction, we get the detailed information

of the internal transaction according to the hash of external transaction. Third,

leveraging the transaction’s execution trace and detailed information, we analyze the

specific address of the destructed contract account. If the type field of one internal

transaction is “suicide”, we can conclude that it is used for destructing the contract

account. Then we export the sender address of the internal transaction, which is

the address of destructed contract. Fourth, we analyze ETH/CBC balance of the

destructed contract through Ethereum RPC-APIs [21, 25]. At last, the destructed

contracts with locked cryptocurrencies can be discovered.
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Detection of attacked Parity contracts

The detection of attacked Parity contracts with locked cryptocurrencies is divided

into four steps. We use an example of one attacked Parity contract to describe the

process, whose snippets of the runtime bytecodes are shown in Figure 5.17. First, for

contract accounts stored in the StateDB, we export their runtime bytecodes from the

code field σ[a]c. Second, we statically analyze the bytecodes. Static analysis refers to

analyzing the runtime bytecodes without attempting to run them [88]. In particular,

we use Disasm [27] to disassemble the runtime bytecodes and detect hardcoded Parity

library pattern. All the attacked parity wallet contracts hardcode the destructed

library through pattern “PUSH20 0x863df6bfa4469f3ead0be8f9f2aae51c91a907b

4” (in Line 0xa9). Third, we leverage symbolic execution techniques to analyze the

runtime bytecodes with the hardcode pattern. Symbolic execution refers to executing

the codes with symbolic values, and we use Oyente [134] as the symbolic execution

engine. During the symbolic execution process of runtime bytecodes, we monitor the

external call related operations (i.e., CALL, CALLCODE, DELEGATECALL, STATICCALL).

If we encounter external call operation’s execution, we analyze its second operand Pa,

which is used for the target address of the external call (in Line 0xc9 and 0xcf). If Pa

is a real value and equals with the hardcoded Parity library’s address, we can conclude

that the corresponding analyzed contract account is an attacked Parity contract.

Furthermore, the attacked Parity contract cannot call ERC20 contracts to transfer

out its CBC. This is because Pa does not equal with ERC20 contracts’ addresses or

associated with transaction’s input data. Fourth, we analyze the ETH/CBC balances

for the detected contracts in the third step. At last, attacked Parity wallet contracts
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with locked cryptocurrencies can be discovered.

0xa9 PUSH20 0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
...... // stack and arithmetic operations
0xc0 PUSH1 0x00  //output data size: outsize
0xc2 PUSH1 0x00  //output data position: out
0xc4 PUSH1 0x04  
0xc5 DUP4
0xc6 ADD  //compute for input data size: insize
0xc8 PUSH1 0x00  //input data position: in
0xc9 DUP7  //prepare for library address: a
0xcc PUSH2 0x2710 
0xcd GAS
0xce SUB  //compute for gas: g
0xcf DELEGATECALL//delegatecall(g,a,in,insize,out,outsize)

Figure 5.17: Snippets of the disassembled runtime bytecodes of an attacked Parity
wallet contract.

5.7.2 Detection of Locked Cryptocurrencies in EOA

Analysis of 0x0 account

We leverage transaction analysis to detect locked cryptocurrencies in the 0x0 account,

demystifying reasons of the lock. As described in Section 5.6.2, the cryptocurrencies

are locked in the 0x0 account due to two scenarios, i.e., unreasonable mining and

unreasonable cryptocurrency transfer.

For unreasonable mining, the mining reward (i.e., ETH) might be locked in 0x0

account during pool mining or solo mining. If the miner does not correctly set his

address (e.g., set as null) in the mining pool, the pool manager might send the miner’s

reward to the 0x0 account. We filter out sender addresses of all the 0x0’s 26,243

historical external transactions (i.e., sent from EOAs) and discovered ten transactions

with ETH sent from pool managers [36]. Similarly, if the miner does not correctly
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set his address during solo mining, Ethereum system might send rewards to the 0x0

account. Etherscan has listed all the 483.89 ETH wrongly sent to 0x0 during solo

mining [1].

For unreasonable cryptocurrency transfer, the cryptocurrencies might be locked

due to transaction setting errors or contract programming bugs. If the user does not

correctly set transaction’s destination address, the transaction might be sent to 0x0

by some clients. For example, one user forgot to set the destination address, and

wrongly sent his Golem (one kind of CBC) to 0x0 [23]. We analyze all 0x0’s historical

external transactions. If one transaction’s sender address is not a mining pool manager

and its value field is not zero, we can conclude that it is a setting error transaction

with locked ETH. Besides, if there exist bug(s) in contract’s cryptocurrency transfer

function, the contract might wrongly transfer cryptocurrencies to the 0x0. Correct

transfer functions should check the destination address to avoid cryptocurrencies

being locked. We analyze all the 109,729 internal transactions (i.e., sent from smart

contracts) sent to 0x0. If one transaction’s value field is not zero, we can conclude

that its ETH is locked due to smart contract’s programming bugs. Furthermore, all

the CBC held by the 0x0 account is locked due to unreasonable transfers.

Detection of contract-creation failure EOAs

We leverage account state analysis and transaction analysis to detect contract-creation

failure EOAs with locked cryptocurrencies, which is divided into three steps. First,

we traverse the StateDB and filter out sensitive EOAs. The sensitive EOAs have

the following state features: nonce σ[a]n is zero, and code σ[a]c is empty. The

sensitive EOAs with these features never send out any transaction. σ[a]c field is
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empty indicates that the account a is an EOA. For an EOA, its σ[a]n field stores

the number of transactions sent from it. Second, leveraging Ethereum RPC-API, we

fetch and analyze sensitive EOA’s oldest transaction, to verify that it encountered

an error and returned a smart contract address. As described in Section 5.6.2, the

contract-creation transaction will also return a fake contract address when it fails

with errors. Third, we analyze ETH/CBC balance of the detected EOAs in the second

step through Ethereum RPC-APIs. At last, contract-creation failure accounts with

locked cryptocurrencies can be discovered.

5.8 Clue’s Evaluation

In this section, we carry out experiments to answer the following research questions:

RQ1 (Quantity): How much value of locked cryptocurrencies can be detected

by Clue?

RQ2 (Accuracy): To what extent can Clue accurately discover locked cryp-

tocurrencies?

5.8.1 RQ1: Quantity

We evaluate the quantity of locked cryptocurrencies detected by Clue, whose statistics

are shown in Table 5.4. Note that all cryptocurrency values are measured in US dollars.

(m: discovered candidate accounts before ETH/CBC balance analysis. l: accounts

with locked cryptocurrencies. ¨: external transactions. «: internal transactions.)

Applying Clue to all Ethereum StateDB data, we totally discover 1,091,796,292.09$

value of locked cryptocurrencies. The related accounts’ addresses for each category

and analyzed transaction data are published on https://figshare.com/s/2f2d
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97899f5ecc361b21. For the destructed contracts, many of them were created due

to DoS attacks in 2016 [81]. The attacker created large amount of smart contracts

and destructed them through SELFDESTRUCT operation. Most of these destructed

contracts are not called any more by normal users. Therefore, most of the destructed

contracts do not lock any cryptocurrency. For the attacked Parity contracts, we

totally discover 658 related accounts, while Etherscan only tags 153 of them [44].

For the 0x0 account, there is no locked CBC due to unreasonable mining, because

Ethereum only rewards the miner with ETH. For contract-creation failure EOAs,

their locked cryptocurrencies’ value is small, because users might stop calling these

accounts after they realize the contract-creation failure. The locked CBC of destructed

contracts does not be transferred out during contracts’ destruction, which leads to

more locked CBC than ETH. Furthermore, all these detected accounts might lock

more cryptocurrencies with Ethereum’s running, and we also plan to measure locked

cryptocurrencies’ time accumulation in our future work.

Answer to RQ1 (Quantity): For the proposed four kinds of Ethereum accounts,

we totally discover 1,091,796,292.09$ value of cryptocurrencies locked in them.
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Table 5.4: Statistics of locked cryptocurrencies and accounts detected through Clue.
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5.8.2 RQ2: Accuracy

We evaluate the accuracy of locked cryptocurrencies detected by Clue through

Etherscan. Some of the accuracy evaluation need manual analysis. To avoid the

threat of inter-rater reliability, we ask three different people to evaluate their accuracy.

For destructed contracts, we check all the 173 discovered accounts through Ether-

scan. All of them have been tagged “Self-Destruct” , and they all have more than zero

value of ETH/CBC. Furthermore, there is no ETH/CBC transferred out after their

destruction. Similarly, all the 203 attacked Parity wallets have more than zero value

of ETH/CBC, and their ETH/CBC never be transferred out after the Parity attack

(Transaction hash: 0x47f7cff7a5e671884629c93b368cb18f58a993f4b19c2a53a8662e3f

1482f690). In addition, we decompile these contracts leveraging Panoramix [42],

and they all call the attacked Parity wallets’ library. Note that although Etherscan

displays that some CBC is transferred out from 0x0, it is a developer’s programming

error [44], because Etherscan only monitors CBC’s transfer through ERC20 contracts’

events (Line 9 in Figure 5.2). Indeed, because nobody has the private key of 0x0,

its ETH/CBC is locked permanently. For the contract-creation failure accounts, we

check all the 191 discovered accounts that lock cryptocurrencies through Etherscan.

All of these accounts encountered errors during contract-creation, and they all have

more than zero value of ETH/CBC. Also, their ETH/CBC is never transferred out.

Answer to RQ2 (Accuracy): 100% of the 568 accounts discovered by Clue

store cryptocurrencies, and all of these cryptocurrencies are locked permanently.
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5.9 Discussion

In this section, we discuss some limitations, the corresponding solutions and future

work.

(1) We will extend Gasper by identifying more gas-inefficient patterns and the

corresponding efficient patterns. Moreover, we plan to cover all these patterns and

improve compilers to produce gas-efficient bytecodes.

(2) We propose and detect four categories of accounts with locked cryptocurrencies

in Ethereum, while there might also exist other categories. In our future work, we

plan to analyze more categories of accounts with locked cryptocurrencies.

(3) We run Clue on all the Ethereum accounts’ data. Although the number

of discovered accounts with locked cryptocurrencies is small (i.e., 568), the value

of locked cryptocurrencies is great. To the best of our knowledge, there is still no

research of how many accounts with locked cryptocurrencies exist in Ethereum, and

our work fills this gap.

(4) In other blockchain systems (e.g., Bitcoin, EOS), there might also exist locked

cryptocurrencies. The Clue version in this chapter cannot be directly applied to

other blockchain systems, because of different system architectures. However, we

plan to improve Clue to detect more cryptocurrencies in other blockchain systems

in future work.

(5) All the CBC analyzed in this chapter are compliant with the ERC20 standard,

and we will analyze more comprehensive standard CBC (e.g., ERC721) in our future

work. After some improvements, we will also open-source Clue.

(6) For symbolic execution techniques, path explosion and timeout exception are
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common threats. To avoid these threats, before symbolic execution, we statically

analyze the runtime bytecodes to detect contracts with hardcode pattern (described

in Section 5.7.1). The combination of static analysis and symbolic execution improves

Clue’s performance and reduces exceptions.

(7) As Ethereum system is running, there will be more locked cryptocurrencies,

and we plan to analyze its time accumulation in our future work. Although the

cryptocurrencies locked in Ethereum cannot be used or transferred out by users,

Clue still can help users to save money. Because Clue can remind users not to call

the discovered accounts to avoid locking more cryptocurrencies. Furthermore, Clue

can also reveal why cryptocurrencies are locked, which can remind users to avoid

unreasonable behaviors.

5.10 Brief Summary

We perform the first investigation to expose that lots of smart contracts, generated

by the recommended compiler Solidity, contain gas-inefficient bytecodes, which can

be replaced with gas-efficient bytecodes to save money. In particular, we identify

seven gas-inefficient patterns belonging to two categories. Moreover, we propose

and develop Gasper that leverages symbolic execution to automatically discover

three representative gas-inefficient patterns in bytecode. By applying Gasper to all

deployed smart contracts, we find that 93.5%, 90.1% and 80% smart contracts suffer

from these three patterns, respectively.

In this chapter, we also analyze cryptocurrencies locked permanently in Ethereum.

We define four categories of accounts with locked cryptocurrencies and implement

a tool named Clue, which discovers more than one billion dollars value of locked
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cryptocurrencies. We also analyze why these cryptocurrencies are locked, which can

help users/developers to avoid losing money. We will analyze locked cryptocurrencies

in more account types and other blockchain systems (e.g., Bitcoin, EOS) in our future

work.
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Chapter 6

Conclusion

Since its inception, blockchain technology has shown promising application prospects

from cryptocurrency to a variety of forms, such as medicine, economics, cloud

computing, and so on. As the most popular blockchain system that supports smart

contract, Ethereum can complete one million transactions per day. Since blockchain

is one of the core technology in FinTech industry, users are very concerned about its

security. Some security vulnerabilities and attacks have been recently reported. In

Chapter 2, we systematically survey security issues for blockchain systems.

More than eight million smart contracts have already been deployed in Ethereum,

while only less than 1% are open-source. Unfortunately, facing the bytecodes of

deployed smart contracts, it is difficult to quickly and comprehensively understand

their details. In Chapter 3, we describe the runtime bytecodes of smart contracts in

natural language.

Ethereum has two kinds of accounts: EOA and contract account. However, not

all accounts should be kept. We regard the worthless accounts that deserve to be

removed without affecting the normal operations of users and other accounts as
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erasable accounts. Erasable accounts not only waste system resources and affect the

efficiency of blockchain, but also easily waste users’ money. We characterize erasable

accounts of Ethereum in Chapter 4.

Gas is the execution fee for running smart contracts in Ethereum. However, we

find that under-optimized smart contracts cost more gas than necessary, and therefore

the miners or users will be overcharged. There are already more than 296 thousand

kinds of cryptocurrencies built on Ethereum. However, not all cryptocurrencies can

be controlled by users. We analyze under-optimized smart contracts and locked

cryptocurrencies in Chapter 5.

6.1 Summary of Contribution

We make the following contributions in this thesis:

1. We conduct systematic examination on the security of blockchain systems. We

survey real attacks and analyze the exploited vulnerabilities. Furthermore,

we summarize practical academic achievements for enhancing the security of

blockchain.

2. We propose and implement a system named Stan, which can analyze the

runtime bytecodes of smart contract and automatically describe its interfaces

in natural language, enabling users to quickly and thoroughly understand

closed-source contracts.

3. We design and implement a tool named Glaser to discover erasable accounts

by analyzing the StateDB of Ethereum. It leverages program analysis techniques
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to discover contract accounts with worthless runtime bytecodes, and employs

state field and transaction analysis to discover EOAs that no one owns their

private keys.

4. We develop a tool named Gasper for discovering gas-inefficient patterns in

bytecodes. Gasper leverages symbolic execution and it can locate three

representative patterns. We find that more than 80% smart contracts suffer

from these three patterns, respectively.

5. We conduct the systematic investigation on locked cryptocurrencies in Ethereum.

We define four categories of accounts with locked cryptocurrencies and develop

a tool named Clue to discover them. Results show that there are more than

one billion dollars value of cryptocurrencies locked in Ethereum.

6.2 Future Work

We plan to conduct the following improvements in our future work.

For Chapter 3, we plan to improve cloud instance’s configurations, and use more

significant timeout threshold to reduce the number of timeout cases. Furthermore,

we consider improving Stan’s performance with faster static analysis techniques

and evaluating Stan with more comprehensive bytecodes datasets. We will also

build more and better syntax trees, and add more common word abbreviations in

Ethereum to Stanford parser’s rule libraries to improve SWUM analysis. At last, we

will conduct more features’ and behavior’ analysis to improve Stan’s functionalities.

For Chapter 4, Glaser can not only discover erasable accounts that already

exist in Ethereum, but also erasable accounts that might be created in future. Some
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kinds of accounts analyzed by Glaser might also be created in future, and Glaser

might discover more erasable accounts. As Glaser focuses on five kinds of erasable

accounts in Ethereum, we will detect more kinds of erasable accounts in future. We

will also analyze erasable accounts in other blockchain systems.

For Chapter 5, we plan to identify more gas-inefficient patterns and extend Gasper

to cover all these patterns. We also plan to improve compilers to produce gas-efficient

bytecode. Furthermore, we plan to analyze more categories of accounts with locked

cryptocurrencies in Ethereum, and improve Clue to detect more cryptocurrencies

in other blockchain systems. At last, we will analyze more comprehensive standard

CBC (e.g., ERC721) in our future work.

6.3 Insights

Based on the above research, we list a few future directions to stir up research efforts

into this area.

First, nowadays the most popular consensus mechanism used in blockchain is

PoW. However, a major disadvantage of PoW is the waste of computing resources.

To solve this problem, Ethereum is trying to develop a hybrid consensus mechanism

of PoW and PoS. Conducting researches and developing more efficient consensus

mechanisms will make a significant contribution to the development of blockchain.

Second, with the growth of the number of feature-rich DApps, the privacy leakage

risk of blockchain will be more serious. A DApp itself, as well as the process of

communication between the DApp and Internet, are both faced with privacy leakage

risks. There are some interesting techniques that can be applied in this problem: code

obfuscation, application hardening, execution trusted computing (e.g., Intel SGX),
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etc. Third, the blockchain will produce a lot of data, including block information,

transaction data, contract bytecodes, etc. However, not all of the data stored in

blockchain is valid and useful. For example, many smart contracts are never be

executed after their deployments. An efficient data cleanup and detection mechanism

is desired to improve the execution efficiency of blockchain systems.
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