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Abstract

The Bayesian statistical paradigm has successful applications across various research

fields, including medicine, machine learning, artificial intelligence, and more. Mo-

tivated by the arising impact of Bayesian computing, the thesis compares two con-

temporary Bayesian specialized computational tools, Stan and NIMBLE. Both have

remained under active development, although they are enjoying the merit of free-

ing the practitioners and analysts from complicated statistical posterior inference by

automating the construction of samplers.

The comparison between Stan and NIMBLE is focused on the samplers. Their

performances are illustrated by the implementation of weakly informative and infor-

mative Bayesian estimation under the trimmed mean regression model by numerical

studies, respectively. The informative estimation requires a resampling scheme. We

replace Stan with R in comparison since resampling is problematic in Stan. We

assess performance of Bayesian inference in both parameter estimation and MCMC

diagnostics, for the comparison among Stan, NIMBLE, and R program.

We conclude that, both Bayesian computing tools can automate posterior ap-

proximation accurately and conveniently compared with pure R programming by

parameters hand-tuning plus mathematical derivation. RStan is efficient in parallel

computing but needs contrivance tackling discrete parameters owning to Hamilto-

nian Monte Carlo sampling. NIMBLE aims to serving users who are accustomed to

R software but less efficient.
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Chapter 1

Introduction

Machine learning (ML) and Artificial Intelligence (AI) pose challenges and opportu-

nities to all statistical methods dealing with uncertainty in the current big data era.

Fortunately, Bayesian models have commonly been used for dealing with uncertainty.

Bayesian statistics have been applied successfully to a broad range of fields related

to ML and AI as an important branch of computing statistics. The companion of

Bayesian computing is becoming more and more important. Also, recent years have

seen a surge in Bayesian computing methods to handle a massive data set.

With the trend of ML and AI, we may see further developments in Bayesian

computing in the next few years. However, as an essential branch of computing

statistics, Bayesian computing has been under full development, covering a wide

range of Bayesian awareness. Using specific programming languages to implement

statistical models is still one of the biggest obstacles to embracing the Bayesian

method. It is noticed that two contemporary programming languages, Stan and

NIMBLE, are constantly evolving, and the underlying algorithms are continually

improving. This paper compares these two computing tools for Bayesian computing

which can free participants and analysts from the complicated statistical inference

of posterior distributions.

R might be the most prevailing language or environment for data analysis and
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CHAPTER 1. INTRODUCTION

visualization with an unlimited framework that can write any sampler. R requires

users to have appropriate mathematical and statistical training and certain parame-

ter tuning ability. In short, R language provides flexibility for Bayesian programming

but needs mathematical and statistical training for inference of posterior distribu-

tions to some extend. The traditional Bayesian language BUGS (Bayesian inference

Using Gibbs Sampling. WinBugs initial released in 1997) and its extension JAGS

(Just Another Gibbs sampler) have tried to integrate with R, generating packages

like rjags, runjags, BRugs, R2WinBUGS for implementation of Markov chain Monte

Carlo (MCMC) calculations and Bayesian simulations. (Gelfand et al. (1990) and

Plummer et al. (2003)). Stan, initially released in 2012, is named after Stanislaw

Ulam (1909-1984) in memory of the pioneer of Monte Carlo methods. It directly

uses C++ dialogue for programming to shorten the compilation time and imple-

ments Bayesian sampling by the powerful and efficient Hamiltonian Monte Carlo

(HMC) algorithm (Gelman et al. (2015)). NIMBLE is initially released in 2015 as

a package of R and developed for Bayesian and Likelihood Estimation. It extends

and absorbs the advantages of BUGS and JAGS programming languages and pro-

poses a new user-adaptable Metropolis-Hastings (MH) sampling method (de Valpine

et al. (2017)). At the same time, NIMBLE has strong adaptability, which reduces

the requirements for tuning parameters.

Both Stan and NIMBLE are flexible and do not require users to have solid knowl-

edge of Bayesian and mathematical statistics. This merit is appealing and leads to

arising research interests. At the time of writing the thesis, we have searched out

over ten publications in using Stan though HMC for posterior sampling ( Si et al.

(2015), Benavoli et al. (2017), Ghosh et al. (2018), Yao et al. (2018), Buchholz et al.

(2021), Gao et al. (2021), Gelman et al. (2020), Weber et al. (2018), Gelman and

Vákár (2021), Korner-Nievergelt et al. (2015), McElreath (2018)); there are also sev-

eral studies applying NIMBLE for posteior sampling (Wehrhahn et al. (2018), Ma

— 2 —



CHAPTER 1. INTRODUCTION

and Chen (2020), Ponisio et al. (2020), Risser and Turek (2020)).

Unfortunately, few works compare their characteristics for beginners to follow up.

One may search out a casual wealth of experience sharing casually (Link1 (2020),

Link2 (2021) and Kruschke (2014)).

For the purpose of comparison, we demonstrate the difference between Stan and

NIMBLE by estimating the heteroscedastic trimmed mean regression with unknown

model error distribution from a nonparametric Bayesian perspective. Trimmed mean

regression is a more general robust regression tool than quantile regression when

analyzing data with heavy tails, outliers, long tails, skewness, and/or other aberrant

characteristics. However, there is only frequentist work on trimmed mean regression

in the literature, although quantile regression has been studied widely from Bayesian

insight. It is nontrivial to develop a Bayesian type estimation procedure considering

the heteroscedasticity and many constraints owing to the complex data structure. As

a byproduct, we also review robust Bayesian, particularly robust Bayesian regression,

since there is little comprehensive review work in the past decade.

We discuss the difference between Stan and NIMBLE based on their samplers.

MCMC, also named Markov chain simulation, is a general method to draw the

marginal posterior density of the parameter vector. The mathematical theory of

MCMC guarantees that the infinite chain will realize the perfect representation

of posterior distribution. Instead of directly computing the true posterior density,

MCMC allows people to draw samples from an approximate distribution and correct

the samples to approximate the true posterior density. The Markov chain enables

people to draw samples sequentially, for example, the to-update draws are fully based

on the latest draws. Within the trimmed mean regression model setting, we assess

mainly the accuracy and efficiency of the estimation procedure. We set the same

MCMC scenario implemented in Stan, NIMBLE and R. From the results, all three

tools convergence to the same MCMC scenario. We compare MCMC computational

— 3 —



CHAPTER 1. INTRODUCTION

burden based on a new concept which is yet under construction in R CRAN.

We conclude that thanks to the benefit brought by HMC, Stan is efficient with a

higher effective sample size and MCMC efficiency, especially when parallel computing

is implemented. On the other side of the coin, Stan suffers from discrete parameters

and randomness of the posterior caused by the resampling scheme during the sam-

pling procedure owning to the gradient element of HMC. NIMBLE aims to serving

users who are accustomed to the R software and the use of both MH and Gibbs

sampler enables it to adjust to various models. But it is less efficient compared to

Stan in the indices like effective sample size and MCMC efficiency.

The rest of the thesis is organized as follows. In Chapter 2 we review the literature

in Bayesian robust regression. In Chapter 3, We discuss the difference between Stan

and NIMBLE, and including R in some situations, based on their samplers and

Bayesian inference under the trimmed mean regression setting. In Chapter 4 we

have a summary flow.

— 4 —



Chapter 2

Bayesian robust regression

2.1 Robust Bayesian analysis

Robust Bayesian analysis studies the sensitivity analysis of the impact of subjective

input on output in a specific range (Insua and Ruggeri (2012)). MCMC inherits the

basic statistical concept of sample inference population. With the development of

MCMC, people can analyze how different prior information affects posterior distri-

bution. Therefore, it is necessary to discuss Bayesian robustness analysis. Robust

Bayesian analysis focuses on the impact of input changes on output. So people begin

to pay attention to the robustness of the likelihood function or loss function. The

purpose is to find a general method for robust analysis of all components in the

Bayesian paradigm. We will review some research status on Bayesian robustness

analysis on priors, models and loss functions. Compared with traditional Bayesian

analysis, robust Bayesian has lower requirements for a prior. In the next chapter, we

will discuss the weakly informative prior and informative prior.

Robust analyses on priors

According to Ferguson (1973), the priors should have two suitable properties: 1) the

support set should be large to include all beliefs, and 2) when a sample is given, the

posterior distribution is analytically treatable. Most sensitivity studies focused on

5



CHAPTER 2. BAYESIAN ROBUST REGRESSION

the function form of priors. The typical choice is conjugate priors, including Gauss,

Beta, Poisson, and others. Berger (2013) mentioned that the flat-tailed distribution

might be more robust than the standard conjugate selection. Goldstein (1980) con-

sidered a prior with the mean and variance, while Ruggeri (1990) considered quantile

classes. One way to distinguish a prior is to select a baseline prior and see what hap-

pens when another prior is chosen in a specific neighborhood (chapter 21, Dey and

Rao (2005)). A comprehensive method is global robustness, which considers all in-

put values compatible with a prior, and calculates the robustness measure when the

input in the class changes. Another approach is to use the derivative to study the

local robustness of the change rate of Bayesian decision-making.

Robust analyses on models

When estimating the parameters and giving the posterior probability of the model

parameters, the model class is considered in all parametric reasoning problems. Simi-

lar to robust analysis on prior, one may try different models and measure the changes.

Robust analyses on loss

Although a prior choice will lead to some losses, some are still related to the loss

function. Therefore, loss robustness focuses on a class of loss functions. The loss

robustness measure is defined by taking multiple loss functions and calculating a

posterior range.

Bayesian robust regression and Bayesian robust analysis are entirely different con-

cepts. The former focuses on the robustness of sensitivity, while the latter focuses on

the resistance of abnormal data. A robust regression model can reduce the impact

of aberrant data.

— 6 —



CHAPTER 2. BAYESIAN ROBUST REGRESSION

2.2 Bayesian robust regression

Wang and Blei (2018) mentioned that the goal of robust statistics aim to prevent

deviations that are difficult to diagnose. The classical ordinary linear regression is

”non-robust” to outliers, seriously affected by abnormal data. Robust regression can

be considered as an alternative to regression error to normal distribution. Data with

outliers, heavy tails, skewness, or heteroscedasticity are ubiquitous, so it is of great

significance to study robust regression in the Bayesian paradigm. We introduce the

characteristics of these abnormal data through the following examples.

Outliers

Rousseeuw and Yohai (1987) collected data on the average brain and body weight of

terrestrial animals. Figure 2.1 is a scatter diagram of logarithmic conversion data.

We can see that the species in the graph have a roughly linear relationship with the

brain and body weight. There are three points named “Triceratops”, “Dipliodocus”

and “Brachiosaurus,” which are different from the linear parameter. These three

species may be outliers in the data.
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Figure 2.1: Scatter plot of the relationship between brain and body weight of terrestrial animals
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CHAPTER 2. BAYESIAN ROBUST REGRESSION

Heavy tails

Outliers may also cause the heavy tail distribution of the data (Resnick et al. (1997)).

Afify et al. (2020) analyzed a heavy-tailed real data set from the insurance field. The

data is a monthly indicator of unemployment insurance in the United States from

July 2008 to April 2013. Figure 2.2 shows the probability density diagram of 58

observations, from which we can see that the image presents a long-tail property.
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Figure 2.2: The probability density plot of 58 observations of monthly indicators of unemployment
insurance in the United States

Skewness

Skewness measures the shape and asymmetry of univariate continuous distribution

based on third-order moments. We drew the histogram, probability density diagram

and block diagram of the length of stay (LOS) data set. The New York state govern-

ment health data website recorded the data set of more than 2.3 million patients in

1-20 days. As shown in Figure 2.3, the density distribution is right (positive) skew,

and the box diagram also presents asymmetric results.
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Figure 2.3: The box plot of the length of stay in the hospital (left panel) and the histogram plot
(right panel)

heteroscedasticity

Heteroskedasticity occurs when the variance for all observations in a data set is not

the same. In Chapter 3 of (Hill et al., 2018, page 298), the author studies the

relationship between mean household expenditure on food expenditure and house-

hold income. Figure 2.4 shows that the higher the income, the more scattered the

observations. Thus, the equal variance is not satisfied.
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Figure 2.4: Scatter plot of food expenditure and income (left panel), residual plot of food expen-
diture and income (right panel)
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CHAPTER 2. BAYESIAN ROBUST REGRESSION

There are lots of articles on robust regression from the perspective of Bayesian. Box

and Tiao (1968) used the Bayesian method to solve outlier problems. They consid-

ered a linear model, and they proposed that each error could draw from either one

or two distributions. They allowed the error term from a distribution with contami-

nants. Therefore, they believe that each error term may draw from a mixed normal

distribution, one component for the consists of a “nonoutliers” normal distribution

# (0, f2) and a “outliers” one # (0, :2f2), where k is a constant. West (1984) assumed

the error term Y8 is a set of zero-mean exchangeable random variables with standard

distribution continuous on R, unimodal and symmetric. He used the heavy-tailed

distribution to model the error, constructed as a scale mixture of normals, including

the student distribution. Verdinelli and Wasserman (1991) showed that the Gibbs

sampler provides a simple method to calculate the posterior distribution, allows the

probability of outliers to be unknown, and introduces an additional parameter into

the model. They used Gaussian distribution, C distribution and other regression

to illustrate their point of view. Peña et al. (2009) showed that the C distribution

is not robust when the outliers reach infinity. They proposed a heteroscedasticity

model in which the weight of each observation decreases with the distance between

observation and data. Ruggeri (2010) assumed that the sampling distribution is

from a Dirichlet process and consider Bayesian robust regression from a nonpara-

metric perspective. Gagnon et al. (2020) used the assumption of super-heavy tailed

(log-Pareto-tailed normal) distribution instead of traditional assumptions to ensure

overall robustness. They showed that the error modeling with fat tail distribution

eliminated the influence of infinite outliers.
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2.3 Bayesian quantile regression

Although the least-squares (LS) estimator of the parameter vector is efficient when

the error follows normal distribution, the estimator is inefficient when the distribution

has a heavier tail than the Gaussian distribution. The estimator is highly sensitive

to spurious observation. Therefore, it is not appropriate to use conventional regres-

sion techniques to deal with aberrant data. Thus, to find some robust models and

estimations against outliers, lower or upper conditional quantiles might be estimated

instead. Through quantile regression, a more detailed description of the relationship

between variables can be obtained. As a supplement of the ordinary mean regression

model, quantile regression is commonly used in statistics for its strong robustness

against outliers.

Following Koenker and Bassett Jr (1978), the g-th (0 < g < 1) conditional

quantile function of .8 given -8 defined as

&.8 (g |-8) = �−1.8 (g |-8) = b8 (g) = -
>V(g) (2.1)

where V is coefficient for the g-th quantile level.

2.3.1 Literature review of Bayesian quantile regression

The idea of quantile regression is to model the conditional quantiles of response vari-

ables. I roughly divide the literature into the following parts.

Parametric

Yu and Moyeed (2001) utilized the asymmetric Laplace likelihood (ASL) func-

tion for error term to develop a Bayesian method for quantile regression. The most

significant difference from the view of frequentists is that the actual distribution of

the data is not considered. The Bayesian inference of quantile regression is performed

by forming a likelihood function based on the asymmetric Laplace distribution. They
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set Bayesian quantiles in the generalized linear model. They found that choosing an

inappropriate uniform prior to parameters resulted in a proper joint posterior dis-

tribution. Lee and Neocleous (2010) extended Yu and Moyeed (2001)’s method for

count data and applied their methodologies in environmental epidemiology. Lan-

caster and Jae Jun (2010) considered the empirical likelihood of tilted exponential

to Bayesian quantile regression and gave an unambiguous form and comparison of the

posterior density of the quantile. Also, note that combining multiple quantile values

in the Lancaster and Jun framework is very simple. Yuan and Yin (2010) proposed a

shared-parameter Bayesian quantile regression model of the longitudinal process with

the missing data model. They assumed that the missing data is associated with the

longitudinal outcome process through potential shared random effects. Kozumi and

Kobayashi (2011) considered a pseudo asymmetric Laplace distribution for the error

term and proposed a Gibbs algorithm based on the position-scale hybrid repre-

sentation. Their method can easily include a scale parameter and can be directly

extended to Tobit quantile regression. Yang et al. (2012) considered the quantile

regression model and then used the Bayesian empirical likelihood to show that

the resultant posterior from any fixed prior is asymptotically normal. They focused

on estimating several quantiles together and use the empirical likelihood (EL). Luo

et al. (2012) assumed that the error term followed the ASL distribution and estab-

lished a hierarchical Bayesian quantile regression inference model for longitudinal

data. They explained the dependence between the data by adding random effects to

the model. They used Metropolis Hastings algorithm and Gibbs sampling to perform

MCMC simulations. Sriram et al. (2013) proved that under the assumption of ASL

misspecification, the method of asymptotic property and empirical verification can

still be widely used. They studied the posterior behavior of a misspecification ASL

model with independent but non identically distributed responses. Rahman (2016)

considered Bayesian analysis of quantile regression models for ordered univariate

— 12 —



CHAPTER 2. BAYESIAN ROBUST REGRESSION

data. They assumend the error term follows the normal–exponential mixture rep-

resentation of the ASL distribution. Bernardi et al. (2016) extended the Bayesian

quantile regression framework of the asymmetric Laplace distribution and used the

skewed exponential power (SEP) distribution to explain the fat tail. They

used linear and generalized additive models (GAM) with penalty splines to show

the flexibility of SEP in the context of Bayesian quantile regression. Yang et al.

(2016) proposed adjusting the posterior covariance based on the ASL likelihood

function, in the case of complete data and fixed censored data. This adjustment

can make posterior reasoning more effective. They pointed out that through sim-

ple adjustments, misspecified ASL likelihood can also derive the correct posterior.

Zhang and Tang (2017) estimated the parameters and latent varibles based on the

Bayesian empirical likelihood method. Tong et al. (2021) proposed a Bayesian

robust growth curve modeling method using the conditional median. They trans-

formed the estimation problem into the maximum likelihood estimation problem of

the transformation model by using asymmetric Laplace distribution. Moreover, they

used RStan to implement their model.

Semiparametric and nonmiparametric

Kottas and Gelfand (2001) proposed two Bayesian modeling methods for the er-

ror distribution: semiparametric and completly nonparametric. They considered

nonparametric median zero distribution as median regression of error term in lin-

ear regression model. Dunson and Taylor (2005) proposed a substitution likelihood

characterized by a vector of quantiles and found that it has excellent frequency

operation characteristics for several real distribution shapes. Kottas and Krnjajić

(2009) considered nonparametric working likelihoods, the Dirichlet process mixture

models. Chen and Yu (2009) used regression quantiles to create Markov chains to

estimate quantile curves instead of drawing samples from the posterior. Reich et al.
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(2010) proposed that the error term distribution follows a unspecified distribution,

and the infinite mixture of Gaussian density is considered as the likelihood. Reich

et al. (2011) proposed a Bayesian spatial model. Their model does not assume

the response is Gaussian by such setting and allows complex relationships between

covariates and response. Reich (2012) developed a spatiotemporal model that allows

the entire distribution of responses to change over time and space. They took the

Reich et al. (2011) model and allow the closed form expression of response distribu-

tion, so that the Bayesian model can be applied to large spatiotemporal data sets.

Reich and Smith (2013) proposed a Bayesian quantile regression model for processing

a censored survival data. They adopted a semi-parametric method to represent

the quantile process as a linear combination of basis functions. Hu et al. (2013)

They proposed Bayesian quantile regression for the single-index model. They used

the Gaussian process prior of unknown nonparametric link function and the Lapla-

cian distribution on the index vector to deal with high-latitude nonparametric and

proposed a method to deal with high-dimensional nonparametric Effective methods

of estimating problems. Feng et al. (2015) considered using linear interpolation of

quantiles to approximate the likelihood.

longitudinal/ missing/ censored/ special data

Lee and Neocleous (2010) proposed a Bayesian quantile regression model. Their

model combined the Yu and Moyeed (2001) method of processing continuous data

based on MCMC simulation. Yu et al. (2012) developed a flexible Bayesian frame-

work for regularization in the quantile regression model, similar to Reich et al. (2010),

but introducing a hierarchical model framework makes the unimportant coefficient

of precise reasoning and contraction zero. They assumed that the error distribution

is an infinite mixture of Gaussian densities.d Alhamzawi and Ali (2018) proposed a

random effects ordinal quantile regression model to analyze longitudinal data with
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ordinal results. They assumed that the error term followed a location-scale mixture

representation of the skewed double-exponential distribution and gave an effective

the Gibbs algorithm. Xu et al. (2019) used Bayesian quantile regression to analyze

macro data, and they conducted data research on the impact of industrial emissions

on health in China. Huang (2016) proposed a semiparametric nonlinear mixed effect

(QR-SPNLME) model based on Quantile Regression to solve the simultaneous im-

pact of all these typical data features on reasoning in longitudinal research under the

Bayesian framework. Huang and Chen (2016) proposed a nonlinear mixed-effects

joint (QR-NLMEJ) model based on Quantile Regression. They assumed the co-

variate model error following a multivariate skew-t distribution. Tian et al. (2016)

discussed Bayesian joint quantile regression for mixed effect models. A Bayesian

hierarchical model is established under the assumption of asymmetric Laplace er-

ror distribution, and the posterior distribution of all unknown parameters is derived

based on the Gibbs sampling algorithm. Huang et al. (2017) studied the longitudinal

data of the QR based nonlinear mixed effect (NLME) joint model and the covari-

ates of non center position and outliers and / or heavy tail response, non normality

and measurement error under the Bayesian framework. They assumed the covariate

model error following a multivariate skew-normal distribution. Zhang et al. (2019)

established a partially linear mixed-effects joint model (QRPLMJM). They used the

covariate measurement error process of skew-normal and skew-t distribution.

variable selection for quantile regression

Li et al. (2010) introduced Bayesian regularized quantile regression and generally

treated three different types of penalties: lasso, elastic net penalty and group lasso.

Bayesian hierarchical models for each regularized quantile regression problem and

Gibbs sampling are derived. Their results show that Bayesian quantile regression is

not sensitive to the ASL assumption, even if it is generated from other distributions.
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Alhamzawi and Yu (2013) proposed a quantile-related conjugate prior distribution,

and their method is based on the regression coefficients of the conditional conjugate

prior distribution. They used the bending percentage correlation to obtain an ap-

propriate prior in the model space. Fabrizi et al. (2020) introduced the Bayesian

analysis small region estimation of quantile regression model to predict the limited

population description. This small area estimation complements from the specific

region sample and all other regions in the sample. Their distributional assumptions

are very flexible but keep normality, which often plays a central role in small area

estimation, as a particular case. They used JAGS to implement their model.

2.3.2 Flexible Bayesian quantile regression

From Reich et al. (2010), I have learned that they assumed the data is (x8, H8),

8 = 1, .., =, and the heteroskedastic the linear regression model

H8 = x
>
8 V + x>8 γY (2.2)

Then the H8’s gth qunatile,

g = �. (bg) = P(. ≤ bg) = P(x# + (x$)Y ≤ bg) = P(Y ≤
bg − x#

x$
) := ΨY (

bg − x#
x$

),

where ΨY denotes the cumulative distribution function of Y. Then we have

Ψ−1Y (g) =
bg − x#

x$
⇒ x$Ψ−1Y (g) = bg − x#⇒ bg = x# + x$Ψ−1Y (g)

Since

H = xβ + xγY and �−1. (g) = xβ + xγΨ−1Y (g)

then

H = �−1. (g) + x$(Y −Ψ−1Y (g)) ⇒ H = x#(3) + x$(3)Y(g)
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Then model (2.2) may be rewritten as

H8 = xi#
(3) + xi$(3)Y(g)8 , 8 = 1, . . . , = (2.3)

where Y(g)
8
= Y8 − Ψ−1Y (g), It is worth noting here that Y(g)

8
has gth quantile equal to

zero. since,

g = ΨY (bg) = P(Y ≤ bg) = P(Y −Ψ−1Y (g) ≤ bg −Ψ−1Y (g)) = P(Y(g) ≤ bg −Ψ−1Y (g))

= P(Y(g) ≤ 0) = ΨY (g) (0)

Through simple algebraic calculations, we have the following conclusions, model (2.2)

may be written as (2.3), and the error term 4
(g)
8

has gth quantile equal to zero.

A flexible residual distribution ℎ established as an infinite mixture of simple densities,

ℎ(Y |µ,σ2) =
∞∑
:=1

?: 5 (Y |µ8,σ2
: , @: ) =

∞∑
:=1

?: (@:q(`1: ,f2
1: )
+ (1 − @: )q(`2: ,f2

2: )
)

where @: = {Φ(−`1:/f1: ) − Φ(−`2:/f2: )}−1{g − Φ(−`2:/f2: )}, and ?: = +: (1 −∑
9<: ? 9 ), with Φ being the cumulative distribution function of standard normal.

They took `1: , `2:
883∼ �(! : _−1exp[−`_−1{g − � (` ≤ 0)}], and f1: , f2: ∼ U(0, 21)

for some sizeable constant 21. This leads to the truncated prior

%(`1: , `2: , f1: , f2: |_, g, 21) ∝ exp{−`1:
_
(g − � [`1: ≤ 0]) − −`2:

_
(g − � [`2: ≤ 0])}

× � [0 ≤ f1 ≤ 21] × � [0 ≤ f2 ≤ 21] × � [0 ≤ @: ≤ 1]

(2.4)

Recall that the multivariate normal distribution has density

5X (x1, . . . ,x: ) =
1√

(2c): |σ |
exp{−1

2
(x− µ)>σ−1(x− µ)}
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where x is a real k-dimensional column vector and |σ | ≡ detσ is the determinant

of σ. Following Savage (2016) the typical workflow and inference can be shown as

follow. The full conditional distribution for V.

For model:

.
=×1 =Xn×pβn×1 + (Xn×pγp×1

>diag(Y
=×1))>

where . =
©­«
H1
...

H=

ª®¬, - =
©­«
G11 ... G1?
... ... ...

G=1 ... G=?

ª®¬, V =
©­«
V1
...

V=

ª®¬, W =
©­«
W1
...

W=

ª®¬, Y =
©­«
Y1
...

Y=

ª®¬
The prior

• V 9 ∼ N(0, 22), 9 = 1, ..., ?,

V?×1 ∼ N(0,�I2), where Σ�2 = diag(22),

• Y8 ∼ N(`Y, f2
Y ), 8 = 1, ..., =

Y=×1 ∼ N(`Y,ΣY), where ΣY = diag(f2
Y ).

• W ∼ Gamma(0.1, 0.1).

• H8 ∼ N(G>
8
V + G8W`Y, (G>8 WfY)2), 8 = 1, ..., =.

• �8 ∈ {1, 2, 3, ...}, �8 ∼ Categorical(?1, %2, ...)

• �8 ∈ {1, 2}, ℎ8 ∼ Categorical(@�8, 1 − @�8).

• . ∼ N(-V + -W`Y,Σ"), 8 = 1, ..., =, Σ" = diag((-W)>)ΣYdiag(-W).

• 5 (H1, ..., H= |G1, ..., G=, V, W, Y) = Π=8=1
1

G8WfY

√
2c

exp{− (H8−G8V−G8W`Y)
2

2(G8Wf2
Y )2

}

• 5 (. |-, V, W, Y) = (2c)− =
2 ((-W)> |ΣY |-W)−

1
2 exp{−1

2 (. − -V − -W`Y)
>(Σ")−1(. −

-V − -W`Y)}

• ?(V1, ..., V=) = Π?9=1
1√
2c22

exp{− V2
9

222
}
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• ?(V) = (2c)−
?

2 |Σ22 |−
1
2 exp{−1

2 V
>Σ−122 V}

The inference procedure:

?(V |-,., W, Y) = 5 (. |-, V, W, Y)%(V)%(W)%(Y) .

∝ 5 (. |-, V, W, Y)%(V)

= (2c)− =
2 ((-W)> |ΣY |-W)−

1
2 exp{−1

2
(. − -V − -W`Y)>(Σ")−1

(. − -V − -W`Y)}(2c)−
?

2 |Σ22 |−
1
2 exp{−1

2
V>Σ−122 V}

∝ exp{−1

2
(. − -V − -W`Y)>(Σ")−1(. − -V − -W`Y)}exp{−1

2
V>Σ−122 V}

= exp{−1

2
(' − -V)>(Σ")−1(' − -V)}exp{−1

2
V>Σ−122 V} (' = . − -W`Y)

= exp{−1

2
('> − V>->) (Σ")−1(' − -V)}exp{−1

2
V>Σ−122 V}

= exp{−1

2
['>(Σ")−1' − '>(Σ")−1-V − V>->(Σ")−1'+

V>->(Σ")−1-V)]}exp{−1

2
V>Σ−122 V}

then '>(Σ")−1-V = (V>->(Σ")−1')>(since M is diagonal matrix,"> = ")

∝ exp{−1

2
[V>->(Σ")−1-V − 2V>->(Σ")−1']}exp{−1

2
V>Σ−122 V}

Mean: (->(Σ")−1- + Σ−122 )
−1->(Σ")−1'

Variance: (->(Σ")−1- + Σ−122 )
−1
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Comparison of Stan with

NIMBLE: illustrated by Bayesian

trimmed mean regression

Bayesian methods are often associated with a large number of calculations. It is not

an inherent property of the Bayesian paradigm. Bayesian computing is designed to

estimate the posterior distribution, analogous to frequentist computing estimating

the sampling distribution. The MCMC produces a large sample of representative

values, and the sample size of the data does not limit the accuracy of the approx-

imation. However, the MCMC approximation can be arbitrarily precise even for

non-Gaussian posteriors by increasing the computational effort. For multivariate

models with ? > 1 parameters, the samples \ (1)
9
, . . . , \

(()
9

follow the marginal poste-

rior distribution of \ 9 , ?(\ 9 |Y). Critically, we do not need to analytically integrate

?(\ 9 |Y) =
∫
5 (θ |Y)3\1 . . . 3\ 9−13\ 9+1 . . . 3\?. Because each sample consists of a

random draw from all parameters, MC sampling automatically produces samples

from the marginal distribution \ 9 accounting for uncertainty in the other parame-

ters. Once we have posterior samples, summarizing the posterior or even complicated

functions of the posterior is straightforward and this is one of the appeals of MC

sampling. However, generating valid samples from the posterior distribution is not
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always straightforward. We will focus on three sampling algorithms in Section 3.2.

3.1 Why Bayesian trimmed mean regression

3.1.1 What is Trimmed mean

The trimmed mean is a statistical measure that takes advantage of the mean and

quantile. It shows the primary trend and very robust. The basic idea of the trimmed

mean is discarding parts of the sample or distribution. Welsh et al. (1987) defined the

sample trimmed mean and assumed the median regression is exactly equal to mean

regression. Serfling (2009) and Dhar and Chaudhuri (2012) gave the definition of

trimmed mean under symmetric conditions distributions. We give a general definition

as follows.

Definition 3.1 (Trimmed mean). A random variable - ∼ �, where � is the cumu-

lative distribution function. Denote the g8-th quantile of � to be �−1(g8) = inf{C :

� (C) ≥ g8} for 8 = 1, 2. Let 0 ≤ g1 ≤ 1
2 ≤ g2 ≤ 1. The (g1, g2)− trimmed mean for a

random variable X with distribution � is written as

)g1,g2 (�) := ) (g1, g2; �) =
1

g2 − g1

∫ �−1 (g2)

�−1 (g1)
C3� (C).

For a trimmed mean regression, it is general and flexible to include both quantile

regression and general mean regression. The dependent variable can be regarded as

the sum of two parts: (1) the linear function of the independent variable, (2) the

random error. Let us look into the main mean regression part as follows. Taking

a continuous random variable with density function 5 (H) = �′(H) for instance. Let

g2 = g, g1 → g. By the mean value theorem, we have

lim
g1→g

)g1,g2 (�) = lim
g1→g

[�−1(g) − �−1(g1)]b 5 (b)
g − g1

, b ∈ [�−1(g1), �−1(g)] .
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If 5 [�−1(g)] ≠ 0, it is easy to see that this limit is �−1(g) based on the facts [�−1(g)−

�−1(g1)] (g − g1)−1 → 5 [�−1(g)]−1, b → �−1(g) and 5 (b) → 5 [�−1(g)]. This shows

that trimmed mean regression can deduce quantile regression. In addition, trimmed

mean regression may also reduce to the general mean regression if we do not trim

on both sides. Therefore, trimmed mean regression is a robust regression. This

robustness can handle many abnormal data, which is widespread in the field of

economics, social sciences, and biomedical, (Dolmas et al. (2005), Atkinson et al.

(2016), Pusparum et al. (2017), Rydell et al. (2009), Chahal et al. (2020), Hovik

et al. (2016)). A real data example can be found in Johnson et al. (2007). This book

provides data on the mineral content of the arm bones of 25 subjects. Figure 3.1

shows the residual plot based on ;1-norm. From the residual plot we may conclude

that there may be some outliers in the data, such as subjects with numbers 19 and

23. This data will be discussed later in the Section 3.4.
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Figure 3.1: Residual plot of the mineral context of arm bones of 25 subjects based on ;1-norm.

3.1.2 Literature review of trimmed mean regression

The trimmed mean regression has emerged as a valuable supplement to ordinary

mean regression. The popularity of the trimmed mean seems attributable to both

theoretical and practical contestations. Tukey and McLaughlin (1963) put forward

the idea of the trimmed mean. They defined the trimmed mean estimator based

— 22 —



CHAPTER 3. STAN VS. NIMBLE: ILLUSTRATED BY BAYESIAN TRIMMED MEAN REGRESSION

on ordering deviations. They also mentioned Winsorized mean which means the

arithmetic mean of the n values obtained by replacing each of the 6 lowest values by

the value H6 of the nearest other value H6+1, and each of the highest value H6+ℎ of

the nearest other value H=−6. Bickel et al. (1965) defined the U-trimmed mean of the

sample -1, . . . , -= based on order statistics. Similarly, they defined the U-Winsorized

mean and extend the method to higher dimensions. Bickel (1973) considered the

general linear regression model with independent symmetric errors. He constructed

an estimator based on a preliminary estimate and has good asymptotic properties.

He considered a linear regression and supposed the error term is independent and

identically distributed with common density 5 concerning the Lebesgue measure. He

discussed three different classes estimate for a location model, " estimates, linear

combinations of order statistics and rank tests proposed. Koenker and Bassett Jr

(1978) proposed the trimmed mean to be the least-squares estimator calculated after

discarding those observations. Ruppert and Carroll (1980) proposed trimmed least

squares estimation in the linear model. They used residuals from a preliminary

estimator and estimator defied by Koenker and Bassett Jr (1978) to define trimmed

mean. Welsh et al. (1987) considered a linear regression model and assumed the

error term is independent and identically distributed draw from �, and without loss

of generality suppose that � (0) = 1
2 . He examined the structure of the estimator

)= = ) (�=) defined in

) (�) = (V − U)−1
∫ V

U

�−1(C)3C,

where �−1(C) = inf{B : � (B)}. Then )= = ) (�=). Chen (1997) considered the lin-

ear regression model and assumed that the error term independent and identically

distributed with a distribution function � of zero mean and constant variance. He

constructed the weighted trimmed mean through the symmetric quantile. Following

Chen and Chiang (1996), defined the weighted trimmed mean based on symmet-
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ric quantile function. When non-normal data are not symmetric, researchers have

proposed that data be trimmed asymmetrically (De Wet and Van Wyk (1979) and

Hogg (1974)). Accordingly, rather than trim an equal amount from each tail of the

distribution, they suggest that different amounts of data should be trimmed from

the right and left tails of the distribution. Furthermore, the number of observations

to be trimmed from each tail is determined by the characteristics of the sample data.

Accordingly, these estimators are referred to as adaptive robust estimators. However,

adaptive estimators that deal with estimating regression parameters must estimate

a score function, including the derivative of the logarithm of an unknown density

function, which makes them computationally complicated. Moreover, unlike most

nonadaptive estimators, the adaptive estimators cannot naturally be generalized to

other statistical problems, especially when the Fisher information is unknown.

3.1.3 Bayesian trimmed mean regression (BTMR)

We consider a heteroscedasticity model similar to Reich et al. (2010) and He (1997).

H = x>β + exp(x>W)Y (3.1)

where coefficients β and γ are two vectors of parameters and Y8 are independent and

identically distributed (i.i.d.) follow the unknown distribution �Y (B) with density

5Y (B). By adding an exponential operation, the models do not place restrictions on

G>W > 0.

We build a semiparametric model in which the treatment effect of response vari-

able H8 depends on covariates variable x8 is reflected in mean and variance. For mean

function, we use β to describe the mean function relationship between the indepen-

dent and dependent variable. In terms of variance function, we use the function of γ

and covariates to describe. For parameterizations, as long as we estimate the value

of β and γ, we can know how the response variable depends on the covariates for
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mean and variance. However, the difficulty of nonparametric part is that the residual

distribution is unknown.

We consider a flexible density 5Y (B) for errors Y8 as an infinite mixture of simple

densities 5η (B) that each satisfy the desired trimmed constraint, which is g1 and g2

trimmed-mean-zero. We assume density 5Y (B) can be represented with a mixture

form with the kernel 5η (B) and mixing distribution � (η) :

5Y (B) =
∫

5η (B)3� (η). (3.2)

The kernel 5η (B) should be designed to satisfy the equations

�−1η (g1) = \1, �−1η (g2) = \2, �g1,g2 (�η) = 0, (3.3)

which is equivalent to

∫ \1

−∞
5η (B)3G = g1,

∫ \2

−∞
5η (B)3G = g2,

∫ \2

\1

G 5η (B)3G = 0, (3.4)

where �η (B) is the distribution of 5η (B). It means that the g-trimmed mean of �η

is zero. Here parameters \1 and \2 are the g1- and g2- quantiles of �η (B) for any

η = (µ,σ2). All those constraints make sure that the density 5Y (B) is also g1 and

g2-trimmed mean-zero and \1, \2 are its g1 and g2-quantiles.

Constraint 3.1.
∑4
8=1 U8Φf8 (\1 − `8) = g1

Constraint 3.2.
∑4
8=1 U8Φf8 (\2 − `8) = g2

Constraint 3.3.
∑4
8=1 U8 = 1

Constraint 3.4.
∑4
8=1 U838 = 0

where Φ is the standard normal distribution function and 38 =
∫ \2

\1
BΦf8 (B − `8)3B.
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Table 3.1: Comparison of quantile regression and trimmed mean regression

Quantile regression Trimmed mean regression
model H = x>β(g) + (x>γ (g))Y(g) H = x>β + exp(x>γ)Y

5Y (B) ∼ DPM
∑∞
:=1 ?: 5[ (B)

∫
5η (B)3� (η)

5[ (B)
∑2
8=1 @8:if8: (B − `8: )

∑4
8=1 U8if8 (B − `8)

constraints
∑2
8=1 @8: = 1, 0 < @8: < 1

@8: =
g−Φ(−`2:/f2: )

Φ(−`1:/f1: )−Φ(−`2:/f2: )

∑4
8=1 U8 = 1, 0 < U8 < 1∫ \1

−∞ 5η (B)3B = g1,∫ \2

−∞ 5η (B)3B = g2,∫ \2

\1
B 5η (B)3B = 0,

Trimmed mean expression can be regarded as a supplement to the quantile regres-

sion, Reich et al. (2010) assumed that the residual distribution function is an infinite

Gaussian mixture, and we assume density 5Y (B) can be represented with a mixture

form with the kernel 5η (B) and mixing distribution � (η). In both QR and TMR

models, the probability distribution of the error term is unspecified. But the method

here is more complicated since the kernel has four components determined by an

equation system without a close form of a solution, whereas the QR in Reich et al.

(2010) has only one equation with a close form of solution. Also, in the Bayesian

framework, Reich et al. (2010) assumed prior is stochastically centered on the asym-

metric Laplace density. Reich and Ghosh (2019) adjusted the model so that it has

only one restriction. However, to satisfy the goal of trimmed-mean-zero, we establish

four constraints.
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3.2 Stan vs. NIMBLE: MCMC samplers

The question that a Bayesian analyst is most interested in is how to approximate

the posterior distribution. When accuracy and stability of the approximation are the

most concerned, simulation-based (stochastic) methods, which are aimed to generate

samples from the posterior distribution, are widely used (Wang and Park, 2020).

Particularly, the MCMC uses a Markov process to obtain collections of dependent

variables. When implementing an MCMC process, selecting a proper MCMC sampler

from the posterior distribution is important to Bayesian statistics (van de Schoot

et al., 2021).

The MCMC technique plays an important role in both Stan and NIMBLE. The

essential difference between Stan and NIMBLE is the MCMC samplers on which

their MCMC are based. Stan’s MCMC techniques are based on two samplers, one is

Hamiltonian Monte Carlo (HMC) and the other is the No-U-Turn sampler (NUTS),

a modification of HMC, which indicates the execution of Stan should be taken under

the HMC framework. However, NIMBLE provides different MCMC samplers, in-

cluding MH and Gibbs samplers, except HMC. The use of different samplers makes

a great difference in the application of these two languages, including model speci-

fication, model estimation, and posterior inference. The selection of a good MCMC

sampler from the posterior distribution is important to Bayesian statistics (van de

Schoot et al., 2021). Therefore, to compare the difference between Stan and NIM-

BLE, we should first discuss the MCMC samplers.

3.2.1 A brief introduction to Stan and NIMBLE

Stan

Users can find a detailed introduction about Stan on its official website (Link3

(2021)). Stan was designed specifically for defining and fitting statistical models.
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Stan must be called from another more general-purpose language such as R, MAT-

LAB, Julia, or Python. Stan designed an interface at R, and users can use rstan to

call Stan in R (Link4 (2021)). For faster compilation speed, stan is written in C++

syntax. You can download its user manual (Stan Development Team (2020)) on the

official website, which contains a large number of examples using Stan to complete

Bayesian inference.

NIMBLE

NIMBLE is also a contemporary Bayesian programming tool. NIMBLE is a package

that can only interface with R. NIMBLE can be used for statistical calculations of

general model structures, especially hierarchical models. Users can find detailed in-

formation on its website (Link5 (2021)). The emergence of NIMBLE has increased

the flexibility of Bayesian programming. Users can balance between programming al-

gorithm languages of different models and advanced programmability and execution

efficiency. NIMBLE sets the setup function to be executed in R but not compiled,

and one or more run functions complete MCMC iteration. NIMBLE inherits the

syntax of JAGS and BUGS, which is friendly to traditional users.

R software environment

We briefly discuss the use of R in MCMC and Bayesian statistics. R is a flexible

platform that can call Stan and NIMBLE. More than this, R is a strong program-

ming language that users can directly construct different MCMC samplers, including

the aforementioned MH, Gibbs, and HMC. Programs written in R using appropriate

samplers may be more effective for specific problems than using Stan or NIMBLE,

such as Zhou et al. (2020). However, for users who are not well trained in Bayesian

analysis and computational science, it is always difficult to write a well R program.

Therefore, Stan and nimble may be more attractive from an application perspective.
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3.2.2 Metropolis-Hastings sampler

MH algorithm was developed by Metropolis et al. (1953) and subsequently general-

ized by Hastings (1970). We first briefly introduce the algorithm of the MH sampler

in Algorithm 1. MH sampling replaces the exact full conditional distribution with

a draw from a candidate distribution followed by an accept/ reject step. Here, we

call the distribution @ a jump distribution that the parameter \ jumps from state

C − 1 to state C. In each iteration, we make a random walk from the previous state to

jump to an updated state. Then one should determine whether this state is suitable

to correct the previous state by a rejection-acceptance step. The acceptance rate is

the ratio of a posterior distribution in a consecutive state. The higher the ratio, the

more likely it is to accept the update status. Once the update state is rejected, the

Markov chain will remain in the previous state.

Algorithm 1 Metropolis-Hastings algorithm sampler

1: Initialize \ (0) ∼ @(\)
2: for iteration C = 1, 2, . . . do
3: Propose: \20=3 ∼ @(\ (C) |\ (C−1))
4: Acceptance Probability:

5: U(\20=3 |\ (C−1)) = min{1, @(\
(C−1) |\20=3)c(\20=3)

@(\20=3 |\ (C−1) )c(\ (C−1) ) }
6: D ∼ Uniform (0, 1)
7: if D < U then
8: Accept the proposal \ (C−1)) ← \20=3

9: else
10: Reject the proposal \ (C−1)) ← \20=3

11: end if
12: end for

The sampler, also known as random walking MH sampler, is designed based on

MCMC convergence theory. There are two steps to prove the convergence of sample

chain. One is to prove that the sample chain is a Markov chain and the stationary

distribution is unique. The other is to prove that the stationary distribution is
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the target marginal posterior distribution. If the transition between two states is a

random walk on an appropriate distribution, we can easily get the proof of the first

step. The term ”appropriate” means that the transition distribution, or the jump

distribution at the C-th iteration, has a positive probability of jumping to all states.

The second step of the proof is a bit complicated, and one can find details in Gelman

et al. (2013). However, we can conclude that the reject accept step in the algorithm

is related to the second step.

The MH sampler is quite simple since the transition step relies only on the random

walk without any information of the form of the posterior density. In particular, it

is flexible to select the appropriate jump distribution. In most cases, the Gaussian

distribution is the proper choice for continuous variables, and the standard deviation

is the tuning parameter (Reich and Ghosh, 2019). The tuning parameter plays

a role of ”jump size” in the transition, and its selection is important. Since the

Gaussian distribution is symmetrical, the MH sampler is simplified to a metropolis

sampler, a simpler algorithm. However, enjoying the simplicity needs to pay effort

in computational efficiency. The acceptance rate of the MH sampler is low (Hoffman

and Gelman, 2014), which requires long iterations to achieve convergence and extract

enough effective samples. The word “effective samples” means weak auto-correlation.

They are used as analogous independent samples. MH sampler has no mechanism

to improve the acceptance rate other than tuning the jumping distribution. Thus, a

longer chain is required when using the MH sampler, especially a complicated model.

3.2.3 Gibbs sampler

The Gibbs sampling is a special case of MH with careful selection of the candidate

distributions. The methods to determine the transition distribution for state C − 1 to

C are various. To derive the marginal density of a parameter \ 9 ∈ θ, an intuitive way

is to fix other parameters θ− 9 at a certain value and therefore take the conditional
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posterior distribution given other parameters and data as the transition distribution.

The Gibbs sampler is based on this idea. It is first proposed by Geman and Geman

(1984) illustrating by image-processing models.

Algorithm 2 Gibbs sampler

1: Initialize θ(0) ∼ @(θ)
2: for iteration C = 1, 2, . . . do

3: \
(C)
1 ∼ ?

(
θ1 = \1 | θ2 = \ (C−1)2 , θ3 = \

(C−1)
3 , . . . , θ? = \

(C−1)
?

)
4: \

(C)
2 ∼ ?

(
θ2 = \2 | θ1 = \ (C)1 , θ3 = \

(C−1)
3 , . . . , θ? = \

(C−1)
?

)
5:

...

6: \
(C)
? ∼ ?

(
θ? = \? | θ1 = \ (C)1 , θ2 = \

(C)
2 , . . . , θ? = \

(C)
?−1

)
7: end for

We write the Gibbs sampler algorithm in Algorithm 2. The generation of initial-

ization is similar to the MH sampler. In this algorithm, each iteration is implemented

by ? steps. In the 9-th step, \ 9 is updated by a conditional posterior distribution on

other parameters fixed in the current state. Then the ( 9 +1)-th step is to update the

parameter \ 9+1 in the same way. The iteration is finished until all parameters are

updated. In a word, each parameter \ 9 is updated conditional on the latest values

of the other components of θ, which are the iteration C values for the components

already updated and the iteration C − 1 values for the others. The advantage of this

algorithm is that it simplifies the sampling problem of multivariate distribution into

a sequence of simple univariate problems. This assumes that the full conditional

distributions are easy to sample. Nevertheless, even for high-dimensional large prob-

lems, the full conditional distribution usually follows the common conjugate pairs

conducive to sampling.

Unlike MH, Gibbs sampler avoids the rejection procedure. The Gibbs sampler re-

quires one to derive the full conditional posterior distribution. Ideally, the conditional

posterior density is considered to come from a parametric family. An important para-
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metric family is a conjugate family, which allows the posterior distribution to follow

the same parametric form as the prior distribution. If all parameters are assumed

to come from a conjugate family, the derivation of a conditional posterior density is

very straightforward. Therefore, even if the dimension of the parameter space goes

higher, the update procedure can be effectively calculated using the closed-form.

Consequently, the sample parameter chains are expected to converge quickly. The

commonly used conjugate families include Gaussian, Gamma, Beta, and others for

continuous parameters. Poisson and Dirichlet are also conjugate in terms of discrete

parameters. In the simulation research in the next section, we will use Gaussian

prior and Beta prior in our MCMC algorithm.

In many cases, it is not easy or even impossible to derive a full conditional poste-

rior density. Therefore, the Gibbs sampler is not suitable for these situations. Like

MH sampler, Gibbs sampler has no mechanism to avoid high autocorrelation between

samples. If one wants to obtain more effective samples, it is not satisfactory.

3.2.4 Hamiltonian Monte Carlo

The MH sampler and Gibbs sampler can be regarded as samplers based on a random

walk because the MH takes a random walk on the jump distribution. In contrast,

the Gibbs sampler “walks” on the conditional posterior distribution. However, the

acceptance rate of random walk behavior is low, resulting in a long time to generate

more effective samples. To overcome this problem, HMC takes a series of steps

notified by gradient information. Here we briefly introduce the principle of HMC

based on Brooks et al. (2011) and Stan reference manual (Link6 (2020)).

The motivation of HMC is again to draw samples from the posterior distribution

?(θ |�). Notice that here we do not use sample parameters marginally but jointly.

For simplicity, we note the posterior as ?(θ) in this section. Then by introducing an

auxiliary momentum vector d, we have the joint distribution of (d, \ 9 ) be ?(d, θ) =
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?(d |θ)?(θ). Generally, independent of θ, the auxiliary density of d is assumed to be

a multivariate Gaussian with mean 0 and covariance matrix Σ scaled to the Hessian

of log ?(θ). In many cases, including Stan, Σ is set to be identity. The joint density

?(d, θ) defines a Hamiltonian joint system:

� (d, θ) = − log ?(d, θ) = − log ?(d |θ) − log ?(θ) = ) (d, θ) ++ (θ),

where ) is so-called “kinetic energy” and + is so-called “potential energy”. By

definition, our interest is the potential energy. The potential energy in the form

of −log(?(\)) is considered by HMC and also in Stan. The Hamiltonian dynamics

systems of equations with respect to the time C are:

mθ

mC
=
m)

md
;

md

mC
=
−m+
mθ

.

Therefore, it is transformed to solving differential equations. The solving algorithm is

approximated by a “leapfrog” algorithm. Finally, the update status is again rejected

or accepted by the Metropolis rejection or acceptance process. We summarize the

steps of the algorithm into Algorithm 3.

Brooks et al. (2011) proved that theoretically, the time cost in sampling an in-

dependent/ effective sample with ?-dimension of θ is roughly $ (?5/4), whereas the

cost of MH is $ (?2). However, HMC was not widely popularized until the advent of

No-U-Turn-Sampler (NUTS) Hoffman and Gelman (2014). The traditional HMC is

very sensitive to Y, the “step size” of leapfrog algorithm and !, the depth of leapfrog

and one has to tune these two parameters to get better performance, which is very

time-consuming. The NUTS does not need to tune these two parameters, which

significantly improves the efficiency. The details of NUTS can be found in Hoffman

and Gelman (2014).
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Algorithm 3 Hamiltonian Monte Carlo

1: Given \0, Y, !, %, ":
2: for < = 1 to " do
3: Sample d0 ∼ # (0, �)
4: Set \< ← \<−1, \̃ ← \<−1, d̃ ← d0

5: for C = 1 to ! do
6: Set \̃, d̃ ← Leapfrog(\̃, d̃, Y).
7: end for

8: with probability U = min{1, exp{%(\̃)− 1
2 d̃·d̃}

exp{%(\<−1)− 1
2 d

0·d0} }, set \< ← \̃, d< ← −d̃.

9: end for Leapfrog \,d,Y
10: Set d̃ ← d + (Y/2)∇\%(\).
11: Set \̃ ← \ + Yd̃
12: d̃ ← d̃ + (Y/2)∇\%(\̃)
13: return \̃, d̃.

As an algorithm using gradient information, HMC requires all parameters to be

continuous. This can be problematic when some parameters are discrete. Possible

solutions include smoothing discrete parameters and setting them as tuning parame-

ters. Another problem that HMC may encounter is the nature of a posterior density.

Suppose some parameters have “bad” partial gradients that are not easy to sample

from leapfrog. For example, in the conditional function that arises discontinuity or

not well-defined gradients, the leapfrog may either fail to run or be forced to take

very long depth by these parameters. The algorithm will be possibly inefficient and

unstable. And since the HMC is computed in a somewhat “black box” procedure,

one cannot know how to modify the algorithm exactly.

3.2.5 Summary

Since the MCMC techinques in Stan and NIMBLE are based on different MCMC

samplers, they have to share the pleasant and unpleasant points of MCMC samplers.

The use of the HMC and its modification, the NUTS, enables Stan to be computation-

ally efficient with many effective samples. But it also constraints that all parameters

have to be continuous with well-defined posteriors. NIMBLE is flexible to both Gibbs
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and MH samplers. But to ease the deriving of full conditional posterior, NIMBLE

can only automatically assign Gibbs sampler to some models with a known close form

of conditional posterior, such as the stick-breaking process. Other parameters are au-

tomatically assigned the MH sampler with the jump distribution tuned by NIMBLE

itself. That makes NIMBLE flexible to various models but not demonstrating the

acceptance rate and the number of effective samples. Details can be found on page

72, version 0.11.1, NIMBLE user manual (de Valpine et al. (2021)). The next sub-

section will discuss the implementation of trimmed mean regression model in Stan

and NIMBLE using a simulation study. The character of the MCMC samplers used

by them is well illustrated through posterior inspection.

3.3 Stan vs. NIMBLE: Bayesian trimmed mean

regression

This subsection compares Stan with NIMBLE by estimating the regression coeffi-

cients in the trimmed mean regression model (3.1). We also include the comparison

with an R software program. A simulation study is designed, and widely used assess-

ments of the posterior will be computed as the comparison standard. We demonstrate

this under different posterior scenarios through the following two aspects: Estima-

tion results, MCMC diagnosis and efficiency. In contemporary statistics, visualiza-

tion plays an essential role in Bayesian analysis, especially when accessing posterior

inference. For example, the trace plot of posterior sample chains is a good choice to

evaluate the acceptance rate in which the denser sticks of samples are obtained. The

higher acceptance rate is computed. In evaluating the auto-correlation of samples,

the number of lags of auto-correlation function (ACF) plot makes it quite intuitive.

3.3.1 Simulation settings and evaluation
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This subsection will conduct a simulation study implementing model (3.1) in Stan,

NIMBLE, and R for comparison. In our simulation setting, we set the sample size

= = 50, indicating a small sample size. The dimension of covariates is set to be ? = 2

and -8 = (G81, G82)>, where G8 9 ∼ * (−2, 2) for 9 = 1, 2, which yields non Gaussian

variables. The distribution for error term is set as Y ∼ C (5), leading to a heavy tail.

We here simply set the regression V = (1, 1)> and the heteroscedasticity coefficients

W = (0.5, 0.5)>. We generate 200 independent data sets and for each data set, we

run MCMC in Stan, NIMBLE, and R. On each data set, we run 4 MCMC chains,

and each of the chains takes 5, 000 iterations with the first 2, 500 times burn-in,

aggregating to a total of 20, 000 iterations with the first 10, 000 times burn-in. This

is sufficient in terms of convergence. To compare the MCMC performance of different

tools, we set the same MCMC scenario in each tool. In Stan’s software, we set “chains

= 4, iter = 5000, warmup = 2500, thin = 1” to achieve the purpose of parallel

calculation. In each calculation, MCMC simulation calculation generates 4 chains.

Each chain generates 5000 samples and saves the 2501-5000-th samples. NIMBLE

package and R software rely on foreach package to conduct parallel computing. we

set “niter = 5000, nburnin = 2500, thin = 1”.

In the simulation study, all three tools converge under the same MCMC scenario.

We then focus on the result of estimation, MCMC diagnosis and MCMC efficiency.

The result of estimation reflects how well an MCMC chain approximates the poste-

rior distribution. The convergence diagnosis of MCMC is used to decide whether the

simulated posterior is reliable or not. The MCMC efficiency measures the efficiency

of the MCMC process for generating posterior samples. It depends on how well the

MCMC chains are mixed and how fast they compute.

Estimation results

In terms of the estimation results, the frequency type assessments , bias and square
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root of mean square error (RMSE) are always considered. A bias of unknown pa-

rameter \ is defined as bias(\) = )−1 ∑)
C=1(\̂C − \0). where \0 is the true value of an

unknown parameter, ) is the total number of simulations and \̂C is the C-th replica-

tion of \. The root of the estimator’s mean squared error (RMSE) is the average of

the squares of the measurement errors, RMSE2(\) = )−1 ∑)
C=1(\̂C − \0)2. Generally

speaking, the more efficient the lower RMSE. The effective sample size (ESS) is cal-

culated by, ESS = #/[1 + 2
∑)
C=1 ACF(C)], Where # is the number of total MCMC

samples, ) is a truncation number, and ACF(C) is the chain’s auto-correlation at lag

C (Kass et al., 1998, p.99).

MCMC diagnosis and efficiency

Visualization always plays an important role in the MCMC diagnosis. The first is to

take a view of the trace plot of the MCMC chains. A graph of sampled parameter

values as a function of the step length in the chain is called a trace graph. Ideally, a

converged MCMC chain should be horizontal with no trend, and the length of sticks

of samples is expected to be distributed around a certain value. Thus convergence

is often assessed by visual inspection of the trace plots (Reich and Ghosh, 2019).

Generally, in an MCMC procedure, a user follows the chain until it has converged

and discards all previous samples from its burn-in period. Thus we only plot the

trace of the after burn-in iterations in the following pages. Another term people

are concerned with is the MCMC representativeness, which evaluates whether the

MCMC samples are representative to the posterior. If so, the different initial values

of MCMC chains will not affect the target distribution. Therefore, to check for the

representativeness, one can create multiple independent chains (say 4 in our case)

and see whether they are well-mixed. The goodness of the mixture of the chains

from visualization implies the goodness of the MCMC representativeness. In the
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simulation studies, 4 independent chains are included in each simulation parallelly.

The posterior samples are not independent since they are generated from a

Markov chain. But since the central limiting theorem requires independent samples,

we would expect the posterior samples to be weakly dependent or weakly correlated.

A common way to describe the correlation between samples is the ACF. Thus we

will use ACF plots to evaluate the dependence between samples. A group of samples

with lower ACF is considered “better” than that with higher ACF.

Guided by the same philosophy, we need to count the “effective number of in-

dependent simulation draws” in an MCMC chain. We call this number ESS, an

important quantity in Bayesian analysis. In general, a larger ESS indicates better

MCMC performance. As Stan development team suggested, the R package coda is

not recommended especially when multiple chains are considered, so we turn to use

the ess bulk function provided by Stan to compute the “bulk” ESS. The bulk ESS

estimates ESS of the “bulk” (the body of the density except for the tail) of posterior

samples after rank normalization.

When we evaluate the MCMC efficiency, the ESS generated per second can be

used as an assessment. The higher MCMC efficiency implies the higher ability of

a computing tool to simulate an effective sample. Since an MCMC chain contains

the burn-in period to be discarded, we have to omit the ESS by burn-in period

and the time consumed in the burn-in period. One can easily compute the MCMC

efficiency in Stan and R environment. But, in NIMBLE, particularly in a replicate

Monte Carlo study, the MCMC efficiency might be a little bit underestimated. The

reason is that in NIMBLE, when a new data set is imported, the computer needs to

recompile the NIMBLE code into a C++ file, which takes a long time. We cannot

ignore the compiling time when computing MCMC efficiency, but the compile-time

also covers the burn-in time; thus, the MCMC efficiency for NIMBLE will be slightly

underestimated. To improve Bayesian computation, one can run several independent
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chains parallely in Stan, NIMBLE and R. Stan itself can easily activate MCMC

parallel computing. Still, NIMBLE needs help from other parallel packages in R. We

use the parallel and foreach package in the R to accomplish the parallel MCMC

sampling in NIMBLE guided by de Valpine et al. (2021).

3.3.2 The weakly informative kernel

In the trimmed mean regression model, in order to characterize the heteroscedas-

ticity, we introduce a Dirichlet process mixture(DPM) model with a mixture kernel

of four components of Gaussian densities as the nonparametric prior. We here con-

clude two key points of the prior: one is the kernel that is made up by a mixture 4

Gaussian densities and the other is the 4 densities and their weights should satisfy

the constraints 3.1 to 3.4. One can first generate either the weight U or location and

scale parameters (`1, . . . , `4, f1, . . . , f4)> for Gaussian densities and use the gener-

ated one to specify the other. But this procedure may suffers difficult y that their

supports are not isometric to each other and one should be cautious to the sampling

scheme due to this problem, which will be discussed in the next subsection.

Dirichlet prior for U

The aforementioned difficulty can be eased when the distribution of the random error

is believed to be symmetric. By simple algebra, the median regression is the same

as the mean regression for symmetric density. In this case, the equation g2 = 1 − g1

always holds, such as the trimmed mean between g1 and g2 will always be the exact

expectation. In Section 3 we have shown that the trimmed mean zero constraint is

guaranteed by a mixture of 4 Gaussian densities with constraint 3.1 to constraint

3.4. However, since in this case the selection of g1 is arbitrary, both constraint 3.1

and constraint 3.2 can be eliminated. To fulfill constraint 3.3, an intuitive way is

to draw U randomly from a Dirichlet distribution. This prior of U yields a kind of
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weakly informed kernel for the nonparametric prior, which limits the posterior ker-

nel with a possibly quadra-modal shape but unconstrained trimmed mean. In other

words, using this weakly informative prior, the problem is transformed to the point

estimation of the trimmed mean of the random error, where the choice of the priors

for the other parameters are unconstrained. Another justification to this weakly in-

formed prior is pointed by (Gelman et al., 2013, page 55), “in general any problem

has some natural constraints that would allow a weakly informative model”, and in

our simulation study this prior is proved to be computationally efficient with satis-

factory estimation accuracy. We demonstrate the simulation by Stan (Listing 3.1)

and NIMBLE (Listing 3.2).

Listing 3.1: Stan program with weakly informative prior for simulation

1 data {

2 int <lower=1> n; // sample size

3 int <lower=1> p; //dim of beta

4 int <lower=1> q; //dim of eta

5 int <lower=1> L;// length of the truncated Dirichlet process

6 real <lower=0> alpha; // mass para

7 vector[n] Y; // response

8 matrix[n,p] X; // covariates

9 vector[p] beta_init0;

10 vector[L-1] w_init0;

11 }

12 parameters {

13 vector[p] beta;

14 vector[q] eta;

15 matrix[L, 4] mu;

16 matrix <lower = 0>[L, 4] sigma;

17 vector <lower=0, upper=1>[L-1] w;

18 simplex [4] v[L]; // prior of weight alpha

19 }

20 transformed parameters {

21 simplex[L] DP_weights;

22 DP_weights [1] = w[1];

23 for (s in 2:(L-1)) {

24 DP_weights[s] = w[s] * prod(1 - w[1:(s - 1)]);

25 }

26 DP_weights[L] = 1- sum(DP_weights [1:(L-1)]);

27 }

28 model {

29 beta ~ normal(beta_init0 , 100); // non informative

30 eta ~ normal(0, 1);

31 for(l in 1:L){
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32 mu[l, 1:4] ~ normal(0, 1);

33 sigma[l, 1:4] ~ inv_gamma(1, 1);

34 v[l] ~ dirichlet(rep_vector (1, 4)); // dirichlet prior

35 }

36 for (j in 1:n){

37 real eps;

38 vector[L] lp_ik;

39 eps = (Y[j] - X[j, 1:p]*beta) * exp(-X[j, 1:p]*eta);

40 for(l in 1:L){

41 vector [4] lp_piece;

42 lp_ik[l] = log(DP_weights[l]) ;

43 for(cat in 1:4){

44 lp_piece[cat] = normal_lpdf(eps|mu[l, cat], sigma[l, cat])+

log(v[l,cat]);

45 }

46 lp_ik[l] += log_sum_exp(lp_piece);

47 }

48 target += log_sum_exp(lp_ik);

49 }

50 }

Listing 3.2: NIMBLE program with weakly informative prior for simulation

1 TMRcode <- nimbleCode ({

2 for (i in 1:N) {

3 y[i] ~ dnorm(mu_y[i], sd = sigma_y[i])

4 exp_tem[i] <- exp( gamma [1] * x1[i] + gamma [2] * x2[i])

5 mu_y[i] <- beta [1] * x1[i] + beta [2] * x2[i] + exp_tem[i] * mu[

h[i], g[i]]

6 sigma_y[i] <- exp_tem[i] * sigma[h[i], g[i]]

7 g[i] ~ dcat(prob [1:M])

8 h[i] ~ dcat(alpha [1:4, g[i]])

9 }

10 for (j in 1:p) {

11 beta[j] ~ dnorm(0, sd = 100)

12 gamma[j] ~ dunif(0, 1)

13 }

14 prob [1:M] <- stick_breaking(v[1:(M-1)])

15 for (j in 1:(M-1)) {

16 v[j] ~ dbeta(1, v_alpha)

17 }

18 v_alpha ~ dgamma (1,1)

19 ## truncated normal prior for theta1 and theta2 , the inverse of

the cdf

20 theta1 ~ T(dnorm (0 ,0.01) ,,0)

21 theta2 ~ T(dnorm (0 ,0.01) ,0,)

22 for (j in 1:M) {

23 alpha [1:4, j] ~ ddirch(aa [1:4]) ## Dir prior

24 }

25 for (i in 1:4) {

26 for (j in 1:M) {

27 mu[i, j] ~ ddexp(0, 1)
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28 sigma[i, j] ~ dunif(min_sig , max_sig)

29 }

30 }

31 })

Estimation results

In the trimmed mean regression model, we simply implement the Dirichlet prior for

U in Stan and NIMBLE, without constraints 3.1 to 3.4. Thus, the other parame-

ters (`1, . . . , `4, f1, . . . , f4)> are independently given an non-informative prior. The

estimation results are given in Table 3.2.

Table 3.2: The estimation results using the weakly informative kernel

Parameters
Stan NIMBLE

BIAS RMSE SSD ESD ESS BIAS RMSE SSD ESD ESS
V1 0.006 0.11 0.11 0.101 9362 -0.013 0.106 0.106 0.103 308
V2 -0.008 0.1 0.1 0.101 9444 0.015 0.099 0.098 0.1 318
W1 -0.037 0.227 0.224 0.144 10679 -0.014 0.124 0.124 0.134 167
W2 -0.015 0.214 0.214 0.143 10828 -0.001 0.112 0.112 0.135 164

BIAS, the average bias; RMSE, square root of mean square error; SSD, sample standard

deviation; ESD, the average estimated standard error; ESS, effective sample size

It can be seen from Table 3.2 that the results by both tools closed to each other

and the bias is acceptable, which means that the Dirichlet prior for U is suitable. We

use the Dirichlet prior for U as the weakly informative prior because U is a weight and

the Dirichlet distribution is a natural choice. In terms of RMSE, NIMBLE has lower

RMSE in all parameters than Stan, which indicates that the parametric estimation

of NIMBLE is more efficient. NIMBLE has lower RMSE because NIMBLE has lower

SSD, and thus it seems that the point estimator given by NIMBLE is more robust.

MCMC diagnosis and efficiency

The first indicator for evaluating MCMC samples is whether the chains are well in-

tegrated. Figure 3.2 displays the trace plots of the samples generated by Stan and
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NIMBLE. All the trace plots show that all four chains mix quite well in both Stan and

NIMBLE. It illustrates that after enough length of burn-in period, the posterior is

representative. In addition, the trajectory is horizontal and has no trend, so we con-

clude that all the chains have converged. It is worth mentioning that the trace plots

of samples by NIMBLE are significantly more “sparse” than Stan. In other words,

the count of successful transition times is less than that in Stan, which implies a

lower acceptance rate. A possible reason may be that the gradient of the posterior

is easy-computing, which makes samples generated by NUTS easier to converge.

Figure 3.2: The MCMC trace plots of samples for parameters using weakly informative kernel
simulated by Stan (upper panel) and NIMBLE (down panel)

The large sample theory (Gelman et al., 2013, page 87) illustrates that as the

sample size = goes to infinity, the posterior density is asymptotically normal. In our

simulation setup, we have four parameters. We present the posterior density and

Q-Q plots of V1 and W1 in Figures 3.3(a) and 3.3(b). When the chains converge,

the improved Gelman-Rubin (GR) statistic is close to 1 (Gelman and Rubin (1992)

Brooks and Gelman (1998), Vehtari et al. (2021)). The trace plots show that the

MCMC chains overlap very well, which corresponds to the improved Gelman-Rubin

statistic very close to 1. We further give the dynamic plot of improved GR statistics
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in Figure 3.4, where one can find that with the progress of iteration, the improved

GR statistic of all chains becomes close to 1 in both Stan and NIMBLE, but Stan

converges even faster than NIMBLE.
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Figure 3.3: The density plot and Q-Q plots for samples of parameters using weakly informative
kernel simulated by Stan and NIMBLE

0.975

1.000

1.025

1.050

1.075

1.100

0 500 1000 1500 2000 2500

beta[1]

Stan   

0.98

1.00

1.02

1.04

1.06

0 500 1000 1500 2000 2500

gamma[1]

          

1.0

1.1

1.2

1.3

0 500 1000 1500 2000 2500

NIMBLE

1.0

1.2

1.4

1.6

0 500 1000 1500 2000 2500

          

chains

chain 1

chain 2

chain 3

chain 4

Figure 3.4: The dynamic improved Gelman-Rubin plot of samples by weakly informative kernel
simulated by Stan and NIMBLE

Samples generated by MCMC are impossible to be independent since they are in

a Markov chain. People are more concerned about the weak-dependence samples in

the chains, which can be viewed by the plot of the auto-correlation function (ACF).

It can be seen from Figure 3.5 that the autocorrelation of samples of both V and

W generated by Stan is almost equal to 0. For comparison, the samples of V generated
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by NIMBLE share significant autocorrelations until the time lag exceeds 20, and the

autocorrelation of samples of W in NIMBLE is significant within 40 time lags. It

indicates that the ESS of Stan is larger than that of NIMBLE, and each successive

step simulated by NIMBLE is partially redundant with the previous step.
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Figure 3.5: The ACF plot of samples by weakly informative kernel simulated by Stan and NIM-
BLE

When using the weakly informative kernel, the ESS provided by Stan is much

higher than that provided by NIMBLE for all parameters (Figure 3.6(a)). The dom-

inating reason is that the NUTS used in Stan is much more possible to generate

effective samples than the MH sampler used in NIMBLE, just as mentioned by Hoff-

man and Gelman (2014). The interesting question is that why in some cases the

ESS computed by Stan is larger than 10000, the total number of MCMC iterations.

That’s because Stan uses an antithetic Markov chain that has negative odd lag auto-

correlations (Vehtari et al., 2021). It is clear when we get negative auto-correlations

on odd lags in the chain, and the effective sample size can also be larger than the

total sample size. Some parameters often have strong auto-correlation in practical

applications, so a long chain is needed to achieve sufficient ESS. This is not nec-

essary when using Stan to generate data. This shows that Stan’s computational
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efficiency is much higher when using a weak information kernel than NIMBLE. (Fig-

ure 3.6(b)). However, benefit of high efficiency is limited when one is to estimate

some relevant quantities, like the variance. As shown in table, the ESD of W1 and W2

is underestimated because of the “super-efficiency” of ESS (Vehtari et al., 2021).
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Figure 3.6: Box-plots of ESS and the MCMC efficiency of parameters weakly informative kernel.
In each plot, the left box is computed by NIMBLE; and the right box is computed by Stan.

3.3.3 The informative prior

In the above subsection we reported and discussed the result estimated by using

a weakly informative nonparametric kernel without constraints 3.1 to 3.4 but to

generate U randomly from a Dirichlet distribution. In this subsection we discuss the

method using the informative kernel that includes constraints 3.1 to 3.4. We call this

kernel “informative” since we have proved that quantile regression is a sub-problem

of trimmed mean regression. Thus, the density of random error is surely trimmed

mean zero.

Resampling scheme to include constraints 3.1 to 3.4

When defying a weakly informative kernel, the support of the prior of U is the sim-

plex in '4. In order to include 3.1 to 3.4, one possible way is to determine the

parameters vector (`1, . . . , `4, f1, . . . , f4)> by specified U. However, it is known
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difficult to determine the 8-dim parameter vector by a specified U since to find

the dual space of the 4-dim transformation in an 8-dim linear space is mathemat-

ically challenging. Consequently, one may consider to determine U by specified

(`1, . . . , `4, f1, . . . , f4)>, which indicates the U should be constrained into a subspace

of the simplex in '4 such as the U should be fully determined by the randomly gen-

erated parameters (`1, . . . , `4, f1, . . . , f4)> so as to construct a trimmed mean zero

kernel. However, this may lead to a contradict that the determined U may not be a le-

gal weight. In other words, with randomly generated vector (`1, . . . , `4, f1, . . . , f4)>,

the support prior of U is a subspace of '4, which can not fully cover the support

of target distribution of U, the simplex of '4. For example, when (`1, . . . , `4) =

(−0.596, 0.785, 1.478, 0.410)>, and (f1, . . . , f4) = (0.465, 1.484, 0.591, 1.987)>, the

determined U = (152.191,−604.358, 355.420, 97.746), which is obviously not a legal

weight. This problem calls for resampling when running MCMC procedure. That

is, once we determine an U from the sampled (`1, . . . , `4, f1, . . . , f4)>, we have to

check whether this U is a legal weight and if not, we should go to another sample of

(`1, . . . , `4, f1, . . . , f4)> until the U is legal.

Stan does not work!!

This resampling procedure brings uncertainty to the posterior density since we insert

an if-else step in the routine sampling procedure. We here point out that this makes

an unsolvable problem in Stan or any other HMC based computing tools. Recall

that the transition in sampling procedure using HMC is transformed to solve the

Hamiltonian dynamics and thus no random number generation is needed when sam-

pling. Particularly, Stan’s architecture forbids using the random number generator

in sampling procedure such as the model block in Stan program, in order to avoid

any possible randomness of posterior, which means resampling is impossible in Stan.

One may consider defining an if-else like function to define the kernel but the if-else
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condition always brings discontinuity to the posterior and thus brings illness to the

gradient of the posterior. We have tried defying such a function in Stan but the

algorithm can not converge at all. Thus, we conclude that Stan is unsuitable for

realizing the method using an informative kernel and we don’t compare the result

given by Stan here. We demonstrate the simulation by NIMBLE (Listing 3.3) and

R (Listing 3.4). We omit the routine part of R in the code below.

Listing 3.3: NIMBLE program with informative prior for simulation

1 # function to determine alpha

2 make.alpha <- function(mu ,sig ,tau1 ,tau2 ,theta1 ,theta2){

3 b <- c(tau1 ,tau2 ,1,0)

4 C <- pnorm ((theta1 -mu)/sig ,0,1)

5 C <- rbind(C,pnorm ((theta2 -mu)/sig ,0,1))

6 C <- rbind(C,rep(1,4))

7 C <- rbind(C,(dnorm(theta1 ,mu,sig)-dnorm(theta2 ,mu,sig))*(sig)^2

8 +mu*(pnorm(theta2 ,mu,sig)-pnorm(theta1 ,mu,sig)))

9 alpha <- ginv(C)%*%b

10 c(alpha)

11 }

12 # call function from R into NIMBLE

13 alpha_r <- nimbleRcall(function(mu = double (1), sig = double (1),

tau1 = double (0),tau2 = double (0), theta1 = double (0), theta2 =

double (0)){}, Rfun = "make.alpha",returnType = double (1))

14 TMRcode <- nimbleCode ({

15 for (i in 1:N) {

16 y[i] ~ dnorm(mu_y[i], sd = sigma_y[i])

17 exp_tem[i] <- exp( gamma [1] * x1[i] + gamma [2] * x2[i])

18 mu_y[i] <- beta [1] * x1[i] + beta [2] * x2[i] + exp_tem[i] * mu[

h[i], g[i]]

19 sigma_y[i] <- exp_tem[i] * sigma[h[i], g[i]]

20 g[i] ~ dcat(prob [1:M])

21 h[i] ~ dcat(alpha [1:4, g[i]])

22 }

23 for (j in 1:p) {

24 beta[j] ~ dnorm(0, sd = c2)

25 gamma[j] ~ dnorm(0, 1)

26 }

27 prob [1:M] <- stick_breaking(v[1:(M-1)])

28 for (j in 1:(M-1)) {

29 v[j] ~ dbeta(1, v_alpha)

30 }

31 v_alpha ~ dgamma (1,1)

32 theta1 ~ T(dnorm (0 ,0.01) ,,0)

33 theta2 ~ T(dnorm (0 ,0.01) ,0,)

34 for (j in 1:M) {

35 alpha [1:4, j] <- alpha_r(mu[1:4,j], sigma [1:4,j], tau1 , tau2 ,

theta1 , theta2)
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36 constraint_data[j] ~ dconstraint(alpha[1,j] > 0 &

37 alpha[2,j] > 0 &

38 alpha[3,j] > 0 &

39 alpha[4,j] > 0)

40 ## dconstraint for prior with constraints

41 }

42 for (i in 1:4) {

43 for (j in 1:M) {

44 mu[i, j] ~ ddexp(0, 1)

45 sigma[i, j] ~ dunif(min_sig , max_sig) }}

46 })

Listing 3.4: R program with informative prior for simulation

1 # This is the R code for MCMC procedure of trimmed mean regression

2 # beta and stick breaking process are updated by Gibbs sampler and

others are updated by MH. Here we simply list the key part of the

code since others are routine.

3 # solve the equations for informative constraints

4 make.alpha <- function(mu ,sig ,tau1 ,tau2 ,theta1 ,theta2){

5 b <- c(tau1 ,tau2 ,1,0)

6 C <- pnorm ((theta1 -mu)/sig ,0,1)

7 C <- rbind(C,pnorm ((theta2 -mu)/sig ,0,1))

8 C <- rbind(C,rep(1,4))

9 C <- rbind(C,(dnorm(theta1 ,mu,sig)-dnorm(theta2 ,mu,sig))*(sig)^2+

mu*(pnorm(theta2 ,mu,sig)-pnorm(theta1 ,mu ,sig)))

10 alpha <- ginv(C)%*%b

11 alpha }

12 # compute the stick -breaking weights

13 makeprobs <- function(v)

14 {N <- length(v)

15 probs <- v

16 probs [2:N] <- probs [2:N]*cumprod(1-v[2:N-1])

17 probs }

18 # resampling scheme to determine alpha

19 for(k in 1:M) ### M: the number of truncated dirichlet process{

20 while(alpha[1,k]<0|alpha[1,k]>1|alpha[2,k]<0|alpha[2,k]>1|alpha

[3,k]<0| alpha[3,k]>1| alpha[4,k]<0| alpha[4,k]>1)

21 { mu[1,k] <- rnorm (1,2*theta1 ,1)

22 mu[2:3,k] <- rnorm (2,0,1)

23 mu[4,k] <- rnorm (1,2*theta2 ,1)

24 sig[,k] <- runif(4,mn.sig ,mx.sig)

25 alpha[,k] <- make.alpha(mu[,k],sig[,k],tau1 ,tau2 ,theta1 ,theta2)

26 ind[k] <- ind[k]+1}

27 }

28 v <- rbeta(M,1,D)

29 v[M] <- 1

30 probs <- makeprobs(v)

31 g <- sample (1:M,n,replace=T,prob=probs)

32 h <- rep(0,M)

33 for(i in 1:n) {h[i] <- sample (1:4,1, alpha[,g[i]],replace=F)}
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Estimation results

The MCMC using informative kernel can easily be realized in R and NIMBLE. In

R, we extend the R program provided by Reich et al. (2010) that uses the Gibbs

sampler for the updating of 14C0 and other parameters are updated by MH. In

NIMBLE, we simply follow the automatically assigned sampler, such as the stick-

breaking parameter @; in DP is updated by conjugate distribution by the Gibbs

sampler, and other parameters are updated by default the MH sampler. We again

run both 10000 times of sampling iterations and 10000 warm-up iterations in both

R and NIMBLE, and their estimation results are given in Table 3.3.

Table 3.3: The estimation results using the informative kernel

Parameters
NIMBLE R

BIAS RMSE SSD ESD ESS BIAS RMSE SSD ESD ESS
V1 -0.012 0.11 0.11 0.107 260 0.007 0.109 0.109 0.123 110
V2 0.015 0.099 0.099 0.105 265 -0.003 0.109 0.109 0.126 114
W1 -0.013 0.14 0.139 0.152 134 -0.016 0.155 0.155 0.179 37
W2 0.007 0.122 0.122 0.155 130 -0.018 0.17 0.169 0.179 35

BIAS, the average bias; RMSE, square root of mean square error; SSD, sample standard

deviation; ESD, the average estimated standard error; ESS, effective sample size

From table we find the RMSE for V and W given by NIMBLE using the informa-

tive kernel is lower than using the weakly informative kernel, which means that the

trimmed mean information is helpful to improve parametric estimation efficiency.

The results by R are similar to NIMBLE yielding that the two computing tools

have no significant difference in the implementation of this model in this simulation.

Again, we find NIMBLE provides lower RMSE for all parameters with lower SSD,

which demonstrates the robustness of the estimation by NIMBLE.

MCMC diagnosis and efficiency
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From the trace plot, both NIMBLE and R can demonstrate the convergence of

MCMC chains (Figure 3.7). In contrast, the four chains generated by NIMBLE are

better mixed than those generated by R.

Figure 3.7: The MCMC trace plot of samples for parameters using informative kernel simulated
by NIMBLE and R.

The density plot and Q-Q plot of parameters V1 and W1 are shown in Figure 3.8.

We find the density of posterior samples generated by NIMBLE is more likely to be

normal than that generated by R.
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Figure 3.8: The density plot and Q-Q plot for samples of parameters using informative kernel
simulated by NIMBLE and R.
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Figure 3.9 demonstrates that along with the chains, the improved GR statistic

converges to 1 in NIMBLE. Nimble converges faster and better than R. The posterior

samples in R share higher auto-correlation than NIMBLE (Figure 3.10). A possibly

better choice is to thin the posterior samples by a larger number of lags, but this

always requires longer chains of iterations and we do not thin the samples here. For

instance, in terms of the thinning of chains, for instance, one can consider drawing

a sample in every 20 samples in NIMBLE for the estimation of W1, which requires

20×10000 samples, a quite long chain. But in R, one may need an even longer chain

as the order of ACF is much higher.
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Figure 3.9: The dynamic improved Gelman-Rubin plot of samples by informative kernel simulated
by NIMBLE and R

When we focus on V1, we find that the R program provides slightly lower ESS

than NIMBLE (Figure 3.11(a)). NIMBLE and R use Gibbs sampling algorithm

when estimating V, and NIMBLE has a slightly better effect. When estimating W,

NIMBLE and R uses MH sampler, NIMBLE produced significantly higher ESS than

R. This is may because NIMBLE could tune parameters automatically better than

R. Recall the ACF plots, we also get the same conclusion. It can be found that the

samples generated by R in estimating W have high autocorrelation than NIMBLE.
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Figure 3.10: The ACF plot of samples by informative kernel simulated by NIMBLE and R
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Figure 3.11: Box-plot figures of ESS and the MCMC efficiency of parameters (V1 and W1). In
each sub figure, the left box is simulated by NIMBLE; and the right box is simulated by R.

The result of MCMC efficiency is given in Figure 3.11(b). Interestingly, the MCMC

efficiency of estimation of V by NIMBLE is slightly lower than that of R, possibly

implying the Gibbs sampler might be the better choice when sampling conjugate

distributions. However, the MCMC efficiency of estimation of W by NIMBLE is

much better than that of R. We conjecture that the tuning parameter in the jump

distribution of the MH sampler used in NIMBLE is better than that used in R, which

is tuned by us.
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3.3.4 Thinning v.s. unthinning

In this subsection we discuss the thinning method in MCMC techniques. In case one

gets the posterior samples with high autocorrelation, one may consider thinning the

sample by saving every : number of samples for a positive integer :. This is an effec-

tive way to improve the ESS and to deduct the autocorrelation. Nevertheless, this

method does not help improve MCMC efficiency and will bring a higher computing

burden.

Figure 3.12: The MCMC trace plot of samples for parameters using informative kernel simulated
by R (thin=1 and thin =100).

We demonstrate analysis of thinning procedure in R. The results of thinning in

NIMBLE code are analog to R and skipped. Figure 3.12 shows the trace plot of

chains after thinning. We find that the sticks of samples in the trace plot of MCMC

chains after thinning are denser, which means more weakly-dependant MCMC jumps

are taken. Naturally, more weakly-dependant MCMC jumps indicate that the auto-

correlation between samples after thinning is lower. Figure 3.13 shows the density

and Q-Q plot of posterior samples. The probability density after thin is closer to the

normal distribution than unthin.
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(a) thin=1
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(b) thin=100

Figure 3.13: The posterior density and Q-Q plot of samples for parameters using informative
kernel simulated by R (thin=1 and thin =100).
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Figure 3.14: The ACF plot of samples for parameters using informative kernel simulated by R
(thin=1 and thin =100).

Figure 3.14 shows the ACF plot of posterior samples. We can obviously observe

that the auto-correlation between samples with thin = 100 is significantly lower than

that with thin = 1. Through thinning the chain of MCMC, the auto-correlation

between samples can be effectively reduced. Figure 3.15 shows the dynamic plot of

the Gelman-Rubin statistic of different chains. The value of the improved Gelman-

Rubin statistic with thin=100 is closer to 1 than that with thin = 1. In summary, one

can conclude from these plots that the thinning improves the MCMC performance

by giving a better mixture of chains, deducting auto-correlation and speeding up the

convergence of chains.
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Figure 3.15: The dynamic improved Gelman-Rubin plot of samples by informative kernel simu-
lated by R (thin=1 and thin =100)

3.3.5 Computational burden

Effective sample size (ESS) can measure the accuracy and stability of the approxi-

mation of posterior distribution. MCMC efficiency is ESS per second. If we use the

computation time as the measurement of computational burden, the computation

time is computed by dividing total ESS and MCMC efficiency. That is,

Computation time = ESS / MCMC Efficiency.

Another metric of interest is the average time needed to generate each effective

sample, called MCMC Pace. Stan team emphasized the importance of MCMC Pace,

and the NIMBLE team gives the definition formulae, as the inverse of computational

efficiency,

MCMC Pace = Computation time / ESS = 1 / MCMC Efficiency.

The above two measures have different interpretations when averaging over multi-

ple runs and/or multiple parameters. Here we take the estimation of V1 as an example

to compare the computational burden between Stan and NIMBLE, NIMBLE and R.
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Table 3.4: The computation time and MCMC Pace computation based on V1.

Weakly informative Informative
Stan NIMBLE Ratio 1 NIMBLE R Ratio 2

ESS 9362 425 22.03 1284 737 1.74
MCMC efficiency 63.86 6.80 9.39 2.67 2.69 0.99
Computation time 146.60 62.50 2.35 480.90 273.98 1.76
MCMC Pace 0.016 0.147 0.11 0.375 0.372 1.01

Ratio 1: Stan / NIMBLE; Ratio 2: NIMBLE / R

From Table 3.4, we observe when using the weakly informative prior, Stan spends

more than twice the total computation time than NIMBLE, but a much less average

time (nearly 10%) to generate each effectively independent sample. It seems that

Stan has a heavier computational burden. Nevertheless, recall that for fairness, we

set the length of the MCMC chains to be the same for all tools in subsection 3.3.1.

This comparison implies that Stan may not need chains that are as long as NIMBLE

to generate sufficient effective samples. In other words, one can run a shorter chain

in Stan to achieve the same MCMC computational efficiency.

In terms of the informative prior, the MCMC efficiency and MCMC Pace for

estimation of V1 in NIMBLE is almost equivalent to in R. This means that it takes

NIMBLE and R almost the same average time to generate each effectively indepen-

dent sample. That’s not surprising since both R and NIMBLE in this example call

the resampling scheme, severely reducing the MCMC efficiency in both tools.

In addition, the average time to generate effectively independent samples of NIM-

BLE under weakly informative prior (MCMC Pace 0.147) is significantly lower than

under informative prior (MCMC Pace 0.375). The main reason is the resampling

scheme used for informative prior is too inefficient to generate effective samples.
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3.3.6 Summary

In this section, we briefly review the use of two computing tools, Stan and NIM-

BLE. For comparison, a simulation study for the trimmed mean regression model

is designed and we compare their results with a well-written R program. In terms

of the model estimation, we here introduce two nonparametric priors, one is weakly

informative and the other is informative. Under the weakly informative prior, both

Stan and NIMBLE give similar estimation results. Due to the difference between

HMC and MH, Stan enjoys better MCMC performance than NIMBLE using the

weakly informative kernel with much higher ESS and lower ACF. With more effort

paid for generating an effective sample, NIMBLE is able to provide a more efficient

parametric estimator. The informative kernel we defined here calls for a resampling

scheme during the MCMC transition but resampling is illegal in Stan and therefore

Stan can not be implemented when using an informative kernel. That means when

one is about to use Stan she/he should be cautious about the properties of the pos-

terior and its gradient. Compared to the method using weakly informative prior,

the informative prior provides better estimation results with cost in computation ef-

ficiency. The computing time of using the informative kernel is almost 10 times to

the time using the weakly informative kernel in NIMBLE, and the computing time

of R is similar to the time in NIMBLE. We point out that the time consumption is

mainly caused by the resampling procedure since it is quite possible to sample a lot of

many times to generate suitable (`1, . . . , `4, f1, . . . , f4)> so as to determine the legal

U. NIMBLE and R program give similar estimation results but the Gibbs sampler

called by R is a little more efficient to parameters with the conjugate distribution.

Therefore if a conjugate prior is given to a parameter and one can derive its full

conditional posterior, Gibbs sampler may be more preferable. The tuning parameter

used in MH is well-tuned in NIMBLE and in general better than that tuned by the
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user artificially. Hence when one decides to use the MH sampler (in most cases MH

works), especially when the HMC fails, NIMBLE is an ideal choice.

In addition, the performances of parallel computing in Stan, NIMBLE, and R are

quite different. In the simulation studies, all independent chains are sampled paral-

lelly. The parallel computing is an inherent function of Stan. Thus in Stan the users

can run multiple parallel chains without extra setting and effort. However, NIMBLE

and R rely on packages such as foreach in R to conduct parallel computing. For

NIMBLE, notice that, it must contain lines of codes for memory protection. When

using the foreach function in foreach package to engine the parallel computing

in a series of repeated Monte Carlo simulations in NIMBLE, we have to repeat the

procedure of stopping-registering the cluster of CPUs at each repeated simulation;

otherwise the heavy computational burden might slow down the implementation to

cease the computing. We conjecture this might be owing to running out of memory

of the computer. As an evidence, we search out the example that the amount of

memory required by NIMBLE sharply increases as the number of parallel chains in-

creases (page 26, Beraha et al. (2021)). This seems inevitable because NIMBLE has

to compile the NIMBLE code into C++ for every parallel chain. On the contrary,

in R, the parallel computing is efficient and does not suffer from the problem of the

consuming of memory.

3.4 Stan vs. NIMBLE: real data analysis

In this subsection, we compare the Bayesian estimation performance under the

trimmed mean regression model setting by the tools, Stan, NIMBLE, and R for the

data set of the mineral content of the arm bones (page 43, Johnson et al. (2007)).

The data set was analyzed by Chen et al. (2001) through the so called ALWO esti-

mation in the meaning of the approach of a generalization of the linear Winsorized
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mean (Section 5, page 153). The data contain 25 subjects including the dominant

radius (H) and 4 covariates, mineral content in the dominant humerus (G1), mineral

content in the remaining humerus (G2), mineral content in the dominant ulna (G3),

and mineral content in the remaining ulna (G4).

On the one hand, we compare the fitting results of the proposed weakly informa-

tive and informative estimation methods under the TMR model with a) the approach

by Reich et al. (2010) under the QR model, and b) the frequency approach ALWO

presented by Chen, Welsh and Chan under the multivariate regression model. On

the other hand, we make a companion comparison of MCMC performance when im-

plementing the proposed two estimation procedures under the TMR model for the

data set aforementioned in Stan, NIMBLE and R.

Data aberration checking

First we inspect the possible data features and distribution shape. Figure 3.16 dis-

plays the approximate shape of the distribution of the data and residual plot against

the fitted value for multivariate regression. The box plot shows that the data have

a long lower tail and a heavy upper tail. One outlier is detected in the lower tail.

No skewness is detected by box plot since the sample median and the sample mean

are almost coincided. Thus we analyze the method by Reich et al. (2010) under the

median regression model directly later. The residual plot is not in a horizontal band

and hence the variance is not a constant. Furthermore, the subjects of 17, 19, and

23 are highly suspected outliers in both tails. Therefore, heteroscedastic regression

is reasonable to model the data.

Next we take a view on the ordinary residual against the subject number and the

Q-Q plot in Figure 3.17. The plot of ordinary residuals shows that the traditional

multivariate regression is not adequate to fit the data. In the Q-Q plot, the main
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centre fits pretty well, whereas the two tails are aberrant with obvious outliers. It

looks as if the underlying distribution of the error term is a three piecewise func-

tion. Therefore, it is rational to approximate the unknown error distribution by the

proposed 4-component mixture (Table 3.1).
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Figure 3.16: The box plot (left panel) and residual plot (right panel) of multivariate regression
for the arm bones data set
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Figure 3.17: Plot of ordinary residual against the subject number and Q-Q plot of residual of
multivariate regression the mineral content of the arm bones data set

Taking the data aberration into consideration, we use the following linear regres-

sion model to fit the data:

H = V0 + G1V1 + G2V2 + G3V3 + G4V4 + exp(G1W1 + G2W2 + G3W3 + G4W4)Y, (3.5)

where V = (V1, · · · , V4)) denotes the effect of the regressors on the mean function, V0

denotes the intercept term and W = (W1, · · · , W4)) denotes the effect of regressors on

the variance.
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The MCMC settings and choice of priors

We implement the TMR model in Stan, NIMBLE and R. Similarly to the simulation

study, in Stan, we use the weakly informative nonparametric prior. In NIMBLE, both

weakly informative and informative priors are implemented, whereas we only use the

informative prior in R.

Table 3.5: MCMC settings and choice of priors for real data analysis

Weakly informative Informative
Stan NIMBLE NIMBLE R

LoC 6,000 100,000, 30,000 100,000
LoB 1,000 50,000 5,000 50,000
Thin 1 10 5 10
V prior N(0, 1) N(0, 1002) N(0, 1002) N(0, 1002)
W prior N(0, 1) N(0, 1) N(0, 1) N(0, 102)
` prior N(0, 1) DExp(0,1) DExp(0,1) N(0,22)
f prior Inv Gamma(2, 1) U(0.01,100) U(0.01,100) N(0, 1)� (G > 0)

LoC: Length of the MCMC chains; LoB: Length of burn-in steps; DExp: double
exponential distribution.

In order to get better estimation performance, we adjust different MCMC settings

in different computing tools in this part. The details about the MCMC settings and

the choice of priors in different tools are shown in Table 3.5. In NIMBLE, most

priors are diffuse except the prior for `, where we use the double exponential prior

as a special case of ASL prior (Reich et al., 2010). We have to point out that in Stan

and R we have to choose the prior carefully. Otherwise, either the estimation or the

MCMC performance would behave even worse. We also set different initial values

for MCMC in different tools. In NIMBLE, we simply use the randomly generated

number from standard normal distribution as the initials for V, W and ` and set all

f = 1 as the initial. However, in Stan and R, we use the estimated V by multiple

linear regression as the initial for V. To some extent, in this example, NIMBLE allows

the user to choose arbitrary possible but legal priors and initials, whereas in Stan
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and R, the user needs to be cautious about the choice of priors and initial values.

We run Stan, NIMBLE and R program in the R environment of version 4.0.3.

The CPU is a 2.3GHz 8-core Intel Core i9 processor and the platform is the x86 64

Apple. We record the time cost of sampling by MCMC. In weakly informative esti-

mation, the time cost of sampling in Stan and in NIMBLE is about 84 seconds and

about 86 seconds, respectively; in informative estimation, the time cost in NIMBLE

and in R is about 690 seconds and about 683 seconds, respectively.

Estimation performance

Table 3.6: The parametric estimation results of weakly informative estimation

Stan NIMBLE
Parameter Estimate SD ESS Estimate SD ESS
V0 0.080 0.890 19907 0.236 0.122 151
V1 0.292 0.855 20593 0.127 0.099 57
V2 -0.185 0.854 20441 -0.046 0.122 52
V3 0.351 0.973 19616 0.286 0.150 249
V4 0.401 0.952 20015 0.380 0.209 74
W1 1.187 0.819 19404 -1.630 0.731 253
W2 1.226 0.836 19471 -1.073 0.721 282
W3 0.539 0.969 19903 -0.528 0.953 1266
W4 0.554 0.954 19558 -0.410 0.942 1198

SD: the standard deviation; ESS: the effective sample size .

We use the mean of posterior samples as the estimator of parameters. The parametric

estimation results given by the weakly informative estimation method in Stan and

NIMBLE are shown in Table 3.6 and the results of the informative estimation method

in NIMBLE and R are in Table 3.7. Since the underlying truth is unknown, we

cannot evaluate the bias or RMSE here. We list ESS here as a reference that a larger

ESS indicates a more reliable approximation to the posterior distribution. It can be

found that the results of the estimations by different tools are not similar to each
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other. We conjecture that the sample size of data is not large enough to cover the

uncertainty of the Bayesian estimator, especially when the ratio of sample size over

the dimension of parameters is not large.

Table 3.7: The parametric estimation results of informative estimation

NIMBLE R
Parameter Estimate SD ESS Estimate SD ESS
V0 0.025 0.133 2855 0.100 0.234 3
V1 0.081 0.126 1149 0.085 0.133 17
V2 0.076 0.142 1123 0.125 0.134 17
V3 0.443 0.220 3029 0.057 0.227 2
V4 0.285 0.227 1967 0.455 0.223 10
W1 -1.165 0.717 1297 -0.039 1.085 8
W2 -0.313 0.729 1221 0.659 0.848 4
W3 -0.326 0.889 6726 -2.8118 5.557 7
W4 0.217 0.892 6017 -3.961 3.419 9

SD: the standard deviation; ESS: the effective sample size .

To evaluate the estimation results, similar to the simulation study, we use the

mean square error (MSE) and median of absolute distance (MAD) as the assessments

for estimation performance. The comparison with other methods is shown in Table

3.8. Since no skewness is detected from the box plot, we compare with the median

regression given by Reich et al. (2010) by fixing g = 0.5 (MDR for short).

From Table 3.8 we find the estimation given by trimmed mean regression has the

ultra best performance in MSE. That’s not surprising since the trimmed mean is

expected to minimize the square type error. Unlike the frequency approaches which

simply remove the Winsorized observations out of the data, the proposed method

analyzes all data together, which efficiently adjusts the influence of the outliers. In

terms of the MAD, both the ALWO estimator and the weakly informative estimation

in NIMBLE have the lowest MAD. ALWO performs well in MAD since it aims to

minimize the ;1 error. But the results given by weakly informative estimation under
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the TMR model are comparable. We find the result of weakly informative estimation

in NIMBLE performs overwhelmingly better than other methods for the Bayesian

trimmed mean regression model in both MSE and MAD, indicating NIMBLE is the

preferable choice to analyze this data set.

Table 3.8: Evaluation of the estimation performance

TMR QR Frequency
W+S W+N I+N I+R MDR ALWO

MSE 0.005 0.004 0.005 0.005 0.04 0.04
MAD 0.046 0.021 0.047 0.031 0.027 0.021

W+S: Weakly informative prior by Stan;
W+N: Weakly informative prior by NIMBLE;
I+N: Informative priorr by NIMBLE;
I+R: Informative prior by R;
MDR: median regression;
ALWO: the method by Chen, Welsh and Chan;
MSE: mean square error;
MAD: the median of the absolute distance.

MCMC performance

In this subsection we conclude the MCMC performance of the implementation of

trimmed mean regression model for the real data example in Stan, NIMBLE and R

by visualization including the trace plots, density plots, Q-Q plots, ACF plots and

dynamic plots of improved Gelman-Rubin statistics.

Weakly informative estimation

We first take a glance at Figure 3.18 to view the trace plot of MCMC chains for V1

and W1 in Stan and NIMBLE using the weakly informative prior. All the chains in

the picture converge, but the sticks of samples generated by Stan are much denser

than that of NIMBLE and the chains have a better mixture. The density plots of

posterior samples by Stan and NIMBLE using weakly informative prior are shown

in figure 3.19. We find that the posteriors produced by Stan and NIMBLE are all
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bell-shaped. The posterior produced by Stan is more nearly normal since the ESS

by Stan is much higher than that of NIMBLE and therefore by MCMC central limit

theorem, the posterior density is more likely to be normal.

Figure 3.18: The MCMC trace plots of the mineral content of the arm bones data set for param-
eters (V1 and W1) using weakly informative kernel simulated by Stan and NIMBLE
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(b) NIMBLE

Figure 3.19: The density plot and Q-Q plots of the mineral content of the arm bones data set of
parameters (V1 and W1) using weakly informative kernel simulated by Stan and NIMBLE

The ACF plots in Figure 3.20 also demonstrate that the ACF between the samples

generated by NIMBLE is much higher than that of Stan. That implies the NUTS

used by Stan is more powerful to generate effective samples in the sampling procedure

than the MH used by NIMBLE. The power of generating effective samples will affect

the speed of convergence of MCMC chains. From Figure 3.21, we can find the chains
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generated by Stan converges quite well in the early period of the chains, whereas

NIMBLE pays more effort to achieve the convergence.
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Figure 3.20: The ACF plot of the mineral content of the arm bones data set of parameters (V1
and W1) using weakly informative kernel simulated by Stan and NIMBLE
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Figure 3.21: The dynamic improved Gelman-Rubin plot of the arm bones data set of parameters
(V1 and W1) using weakly informative kernel simulated by Stan and NIMBLE

Informative estimation

Here we compare the MCMC performance of the implementation of trimmed mean

regression model for the real data example in NIMBLE and R. The trace plot of
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MCMC chains for V1 and W1 in NIMBLE and in R are shown in Figures 3.22. From

that we find the chains generated by NIMBLE are well mixed and convergent but

those generated by R are not. We point out that for this data example, we have to

tune the standard deviation parameter in the MH sampler in R by ourselves, which

is fully experience based. By the time of the submission of this thesis, we cannot find

ideal tuning parameters s.t all the chains are well-mixed. We think it is a general

problem to practitioners of Bayesian when using R, that they might struggle it with

the tuning process even though they have correctly modeled the data.

Figure 3.22: The MCMC trace plots of the mineral content of the arm bones data set for param-
eters (V1 and W1) using informative kernel simulated by NIMBLE and R
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(b) R

Figure 3.23: The density plot and Q-Q plots of the mineral content of the arm bones data set of
parameters (V1 and W1) using informative kernel simulated by NIMLE and R
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The posterior density of samples produced by NIMBLE is very close to the normal

distribution, but the posterior density produced by R software is irregular and has

double peaks (Figures: 3.23(a) and 3.23(b)). The main reason is that the chains

generated by R contain very few effective samples. Thus, the sample distribution is

not guaranteed to be Gaussian.

The auto-correlation of samples generated by R is very high, which implies that

we might take higher thinning parameters (Figure 3.24). However, the thinning

process seriously slows down the program with low efficiency. Therefore, we do not

try higher thinning here. By examining the dynamic plot of improved G-R statistics

(Figure 3.25), we find that the statistics finally converge to 1 in NIMBLE for all

chains. However, it is worth mentioning that the statistics of W in R do not converge

to 1, which indicates the posterior of W simulated by R may not be reliable. We

conjecture this is because we don’t tune the parameters in MH jump distributions

well. By the time we submitted the thesis, we had not tuned it well. Actually,

tuning such parameters in R is not friendly to practitioners of Bayesian who are not

experienced experts.
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Figure 3.24: The ACF plot of the mineral content of the arm bones data set of parameters (V1
and W1) using informative kernel simulated by NIMBLE and R
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Figure 3.25: The dynamic improved Gelman-Rubin plot of the arm bones data set of parameters
(V1 and W1) using informative kernel simulated by NIMBLE and R
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Chapter 4

Conclusion

4.1 The miscellaneous

In addition to the official website, there are some useful user forums for user to dis-

cuss about installation, programming, or debugging. On Link7 (2021) the users or

Research and development staff will answer some questions for you. Also there are

some useful tutorials on how to use the above programming tools. (Link1 (2020)).

Here we have listed some user comments.

• “Stan is easy to troubleshoot which saves the user time. ”(Link8 (2021)).

• “I am using NIMBLE on two different terminals at the same time on Mac. I

am very much looking forward to the parallel NIMBLE to take advantage of super-

clusters although I am very satisfied with NIMBLE so far.” (Link9 (2021))

• “Don’t get the impression that NIMBLE wins because it shows the fastest mean

MCMC Efficiency. What matters more is that Stan is much more efficient at shar-

ing good mixing among all parameters, as shown by its faster minimum MCMC

Efficiency.” (Link2 (2021))

4.2 Discussion: our view

In this thesis, we compare the Stan with NIMBLE, the two recent statistical packages

for Bayesian analysis. In conclusion, we plot the relationship between the popular
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computing tools and the three widely used MCMC samplers in Figure 4.1. The

random walk behavior allows a resampling scheme to be available when using MH

and Gibbs sampler. However, resampling might be unsolvable to the gradient-based

sampler HMC and NUTS, and possibly a reparameterization is needed. NIMBLE

extends the BUGS and JAGS since it can call both MH and Gibbs sampler.

We treat R as a higher level of programming language since all the other tools

in Figure 4.1 can be called from R directly and R is freely to any kind of samplers.

But deriving of posterior or parameter tuning is required. The tuning and deriving

free computing tools in the picture dramatically ease the application of MCMC in

practice and in most time their performance is appealing.

The basic MCMC sampler used by Stan is the HMC and NUTS, which are

gradient-based and avoid random walk behavior, leading to high computational effi-

ciency and nice properties of simulated samples. One cannot think of many sensible

use cases where randomness in the posterior density would be desirable. Alterna-

tively, if one is just trying to “invert” the R code, that is, to build a model that takes

the resulting data and can make inference about some unobserved parameters, than

one would usually “replace random number generator with sampling statements”.

But one may need something else, such as the program background, data features,

data-based inference of interest.. As pointed out by a Stan developer at the Stan

forum, “Stan needs the posterior density to be completely deterministic, without any

randomness”, and thus when we call for a resampling scheme in the MCMC, just

like the example we discussed in Section 3.3.3, Stan cannot handle. Actually, Stan

replaces the process that draws a sample from distribution into a process solving

differential equations based on the gradient of posterior, which denies any kind of

discreteness. When discrete variables are considered, a smoothing procedure might

be indispensable to call Stan.

In contrast, NIMBLE, which assigns Gibbs and MH sampler to different type of
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parameters, is not so strict with the properties of posterior. In the trimmed mean

regression example, the resampling scheme is simply activated by the dconstraint

function in NIMBLE. NIMBLE is friendly to users of BUGS, JAGS and R, but one

possible challenge that NIMBLE will bring to the user is the definition of random

number generation function (rFUN). As de Valpine et al. (2021) points out, if the user

simulates the samples from a user defined distribution, the rFUN is necessary. Gen-

erally used mixture model such as the DPM can be easily expressed as a categorical

variable nested with a certain density, which has been defined in NIMBLE already,

and thus this will not trouble user. This challenge may occur when a complicated

nested model is considered.

From our perspective, we may conjecture the philosophy of Stan, NIMBLE are

totally different. Although both Stan and NIMBLE are fully Bayesian, their target

users are different. Stan is so ambitious that it can be called from other platforms

(such as R, Python, Julia, Matlab), which enables it to solve even large-scaled data.

Stan and its relative package such as Bayesplot (Gabry and Mahr, 2021) makes the

visualization of MCMC and posterior shiny and charming. That is reason why Stan

is popularly welcomed by Bayesianists. But NIMBLE is actually an R package and

is R-oriented such that any user of R can pick it up easily. For example, the “RCall”

command in NIMBLE makes it easy to call various functions defined in R and thus

the R user can realize some key computation in R rather than in NIMBLE code.

Further more, the BUGS style of language used in NIMBLE is easily understood by

an R user such that one is able to construct an MCMC conveniently even though

the user is not a Bayesian statistician.
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Figure 4.1: Relation of MCMC samplers to Bayesian programming language/ soft-
ware tools. On the left, It is an unnecessary decision to decide whether resampling
is allowed or not. The items in the middle are MCMC samplers. The third column
is the various programming languages/ packages/ software or tools.
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