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Abstract

Machine learning has achieved enormous successes in many different application

areas of data mining in the last twenty years. Regression is a big branch of learning

problems. This thesis investigates several topics in regression learning problems from

the perspective of learning theory and asymptotic theory.

First, we study a pairwise regularized least squares learning algorithm using the

Kronecker product kernels. This pairwise learning model covers both score-based

ranking problems and non-linear metric learning problems. A rank-independent non-

asymptotic convergence rate of the obtained pairwise learning algorithm is derived.

The pairwise learning algorithm achieves the minimax optimal learning rate, which is

also derived in this thesis.

Second, we propose an empirical feature-based sparse approximation algorithm for

privacy consideration. Instead of using sensitive private data, empirical features are

computed with published unlabeled data (without privacy issues). Summary statistics

instead of raw data are used to protect private information. This semi-supervised

learning algorithm achieves both sparsity and approximation accuracy.

Third, we study the asymptotic theory of a modified Poisson estimator for discrete

grouped and right-censored (GRC) count data. Asymptotic theoretical properties are

derived under milder conditions on the information matrix of observations and results

apply to both stochastic and fixed regressors. Results in this thesis improve existing

results on modified Poisson estimators for GRC counts, where stochastic regressors
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with strictly positive definite Fisher information matrices are studied, significantly.

The big data performance of this estimator is investigated with data on drug use in

America.
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Chapter 1

Introduction to Learning Theory

With a rapid development of computing hardware in the past decades, plentiful

information can be obtained from massive data through automatic machine learning

algorithms. As a result, data science, including image recognition, artificial intelligence,

and sensitive data protection, becomes an indispensable part in modern society.

Learning theory aims to provide a theoretical analysis of machine learning algorithms

and to refine the learning efficiency of existing algorithms based on mathematical

theory. An introduction to learning theory is given in this chapter.

1.1 Learning Problems

Consider an input space X and an output space Y. Here, X is a compact metric

space and Y is a subset of R. The product space X ×Y is equipped with a probability

distribution ρ. ρ can be decomposed as a conditional distribution ρ(y|x) on Y and a

marginal distribution ρX on X . Let ` : R×R→ R+ be a loss function. One objective

of machine learning is to recover the target function f `ρ : X → Y that minimizes the

risk

E`(f) =

∫
X×Y

`(f(x), y)dρ(x, y).

Specifically, a machine learning algorithm finds a function fD : X → Y auto-

matically from a class of functions F (hypothesis class), according to a sample
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D = {(xi, yi)}Ni=1 ⊂ X × Y drawn independently from ρ, to approximate f `ρ .

1.1.1 Least Squares Regression

One of the most fundamental problems in machine learning is the least squares

regression problem with the least squares loss

`(f(x), y) = (y − f(x))2.

The corresponding risk

E(f) =

∫
X×Y

(y − f(x))2dρ(x, y)

is minimized by the regression function taking the form

fρ(x) =

∫
Y
ydρ(y|x).

In general, E(fρ), also known as the Bayes risk, is not 0. For example, if y = fρ(x) + ε,

where the noise ε has zero-mean Gaussian distribution with variance σ2 > 0 and is

independent of x, then E(fρ) = σ2 > 0. The excess risk E(f)− E(fρ) is widely used

as a measurement of the accuracy of a machine learning algorithm. For least squares

problems, it is not difficult to verify that

E(f)− E(fρ) = ‖f − fρ‖2
ρ ,

where ‖ · ‖ρ is the L2
ρX

norm on the space of all square-integrable functions on X with

respect to ρX .

1.1.2 Classification

Consider a binary classification problem with Y = {±1}. In classification problems,

a frequently studied loss is the 0-1 loss

`0-1(f(x), y) = 1(f(x) 6= y),

2



where 1 is the indicator function. Then corresponding risk of the 0-1 loss is the

mis-classification error R(f) = ρ(y 6= f(x)). The minimizer of R(f) is the Bayes

classifier

fc(x) =

{
1, ρ (y = 1|x) > ρ (y = −1|x) ,
−1, ρ (y = −1|x) ≥ ρ (y = 1|x) .

Since 0-1 loss is non-convex and is intractable in practice, one may consider convex

surrogate loss functions for 0-1 loss [10,86], such as the hinge loss

`Hinge = max{0, 1− yf(x)}.

For hinge loss, there holds

R(sgn(f))−R(fc) ≤
√
E`Hinge

(f)− E`Hinge
(fc), (1.1)

for any measurable f : X → R, where sgn is the sign function. (1.1) implies that

the convergence of the excess risk of f with respect to the hinge loss leads to the

convergence of the excess risk of sgn(f) with respect to the 0-1 loss. (1.1) is a special

case of the comparison theorem [10, 20, 86]. Another widely used loss in classification

is the logistic loss

`logistic(y, f(x)) =
1

log 2
log(1 + exp(−yf(x))).

Logistic loss is a special case of the cross-entropy loss for multi-class classification

problems (for example, [29]).

1.1.3 Pairwise Learning

Pairwise learning aims to learn a bivariate function F : X × X → Y , that represents

the relationship between two points x, u ∈ X . Pairwise learning problems include,

for example, ranking [3, 23, 27,30], similarity and metric learning [16,19,52,83], and

AUC maximization [84,89].
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Scoring-based Ranking

Let x, x′ ∈ X , and let s and s′ be the score of x and x′, correspondingly. x is preferred

over x′ if s > s′. The target function fρ : X → Y is known as the scoring function.

One may consider minimizing the probability of ranking mistake (also known as the

ranking risk)

Prob

[(
s− s′

2

)
(fρ(x)− fρ(x′)) < 0

]
.

Similarity Learning

Similarity learning aims to learn the similarity between two points x, x′ ∈ X ⊂ Rd.

In bilinear similarity learning, the target function takes the form xTMρx
′ with Mρ

being a d× d symmetric positive semi-definite matrix. We will generalize the bilinear

similarity learning to the non-linear case in Chapter 2.

1.2 Kernel-based Least Squares Regression

Kernel methods [25,76,79], including kernel-based support vector machine [13, 24]

and regularized least squares (e.g. [67]) draws much attention in the past two decades.

Kernel-based learning algorithms are an important part of this dissertation. We give

an introduction to kernel methods for least squares regression and reproducing kernel

Hilbert spaces (RKHS) in this section.

1.2.1 Reproducing Kernel Hilbert Spaces

Consider a continuous symmetric positive semi-definite kernel (also known as a Mercer

kernel) K : X × X → R, that is

K(x, u) = K(u, x), for all x, u ∈ X

4



and

m∑
i,j=1

cicjK(ui, uj) ≥ 0, for all {ui}mi=1 ⊂ X , {ci}mi=1 ⊂ R,m ∈ N.

Let Kx : X → R be a function defined by Kx(u) = K(x, u) for any x, u ∈ X . The

inner product 〈·, ·〉K is defined such that

〈Kx, Ku〉 = K(x, u), for any x, u ∈ X .

The corresponding reproducing kernel Hilbert space is given by

HK := Span {Kx, x ∈ X},

where the completion is taken with respect to the norm ‖ · ‖K induced by 〈·, ·〉K . For

any f ∈ HK , there holds the reproducing property

f(x) = 〈f,Kx〉K .

Denote L2
ρX

(X ) the space of all the square integrable functions with respect to

ρX equipped with the L2
ρX

norm, and introduce the integral operator

LK : L2
ρX

(X )→ L2
ρX

(X )

f 7→
∫
X
f(x)KxdρX (x). (1.2)

LK is a compact, symmetric, positive semi-definite, and Hilbert-Schmidt operator [67].

Moreover, we have HK = L
1/2
K (L2

ρX
(X )) as shown in [25]. Thus, we can write the

eigensystem of LK as {(λi, φi)}∞i=1. Here the non-negative eigenvalues λ′is are arranged

in non-increasing order and the eigenfunctions φ′is are normalized in L2
ρX

(X ). There

holds the following Mercer’s expansion [54],

K(x, u) =
∞∑
i=1

λiφi(x)φi(u), for all x, u ∈ X . (1.3)

The convergence of the series of functions in (1.3) is absolute and uniform.
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1.2.2 Empirical Risk Minimization

Recall the (population) risk E`(f) =
∫
X×Y `(f(x), y)dρ(x, y). In practice, the distribu-

tion ρ is unknown and one may consider minimizing the empirical risk

ED` (f) =
1

N

N∑
i=1

`(f(xi), yi).

In kernel-based learning schemes, a regularization functional Ω : HK → R is frequently

adopted to prevent overfitting. A regularized learning algorithm has the form

fD`,λ = arg min
f∈HK

{
ED` (f) + λΩ(f)

}
,

where λ > 0 is a tuning parameter.

If Ω(f) = g(‖f‖) with some strictly increasing function g : [0,+∞) → R, then

the famous representer theorem [79] says that fD`,λ belongs to the finite-dimensional

space spanned by {Kxi}Ni=1.

1.2.3 Kernel-based Regularized Least Squares

Consider the regularized least squares learning algorithm

fDλ := arg min
f∈HK

{
1

N

N∑
i=1

(f(xi)− yi)2 + λ‖f‖2
K

}
. (1.4)

Thanks to the representer theorem, fDλ is in the class of functions taking the form∑N
i=1 ciKxi , with coefficient vector c = (c1, · · · , cN)T ∈ RN . Write x = {xi}Ni=1

and y = (y1, · · · , yN)T ∈ RN . Denote Kx = (K(xi, xj)) ∈ RN×N the Gram matrix.

Substitute

f =
N∑
i=1

ciKxi (1.5)

into (1.4) and we obtain

fDλ =
N∑
i=1

cDi Kxi ,
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where cD = (cD1 , · · · , cDN)T is solution to the quadratic programming

min
c∈RN

{
1

N
‖Kxc− y‖2

2 + λcTKxc

}
. (1.6)

The first order condition of (1.6) implies that cD = (NλI +Kx)−1y. Here I is the

identity matrix (or identity operator) whose dimension could be inferred from the

context.

The regularized least squares algorithm (1.4) with a penalty term λ‖f‖2
K is also

known as the kernel ridge regression (KRR). The convergence of fDλ to the regression

function fρ has been studied in literature [25,60,66,67,70] for a long time and the

convergence rate reaches the minimax optimal rate as shown in [17,69]. In Chapter 2,

we establish the learning theory of a novel regularized least squares learning algorithm

for pairwise learning with a ridge-type penalty term based on the so-called Kronecker

product kernels.

Define an empirical integral operator Lx
K by

Lx
K : HK → HK

f 7→ 1

N

N∑
i=1

f(xi)Kxi . (1.7)

Let {λxi }∞i=1 be the eigenvalues of Lx
K arranged in non-increasing order and let

{φx
i }∞i=1 be the associated eigenfunctions of Lx

K normalized in HK . φx
i ’s are called

the empirical features. Note that the rank (defined by the dimension of the image)

of Lx
K is at most N and the top-N empirical features {φx

i }
N
i=1 can be computed

through the eigendecomposition of Kx [38]. One may consider the hypothesis space{∑N
i=1 ciφ

x
i : c ∈ RN

}
[35, 38,91–93]. The coefficients of the output function can be

obtained by solving

min
c∈RN

 1

N

N∑
i=1

(
N∑
j=1

cjφ
x
j (xi)− yi

)2

+ λ

N∑
j=1

P (|cj|)

 ,
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which is an empirical feature-based least squares learning algorithm. Here P :

[0,+∞)→ R is a penalty function. The convergence of the output function of the

empirical feature-based learning are studied in literature [35, 38] with l1 penalty or a

general folded concave penalty.

Note that the sequence {φx
i }∞i=1 of empirical features is decided by the input part

x of data and is not related with the output y. In Chapter 3, we introduce a semi-

supervised learning algorithm with empirical features {φu
i }∞i=1 generated by another

unlabeled data set u = {ui} from ρX . Convergence analysis of this semi-supervised

learning algorithm is given in Chapter 3.

1.2.4 Neural Networks and Random Feature Kernels

In recent years, the research of data science develops rapidly due to the fast develop-

ment of computing equipment and deep learning (e.g. [46]). Deep neural networks,

which generate the hypothesis space used in deep learning, are nonlinear with respect

to the parameters to be trained in learning algorithms, which is different from the

kernel regime where functions in the hypothesis space are linear with respect to the

trainable parameters (for example, in (1.5), f is linear with respect to c).

The linearization of neural networks with respect to the parameters around a given

point (e.g. around the initialization in the stochastic gradient descent algorithm [21])

is related to learning with a random feature kernel [6, 63] called the neural tangent

kernel [43]. Kernel ridge regression based on random feature kernels is studied in [64].

It will be interesting to extend our theory in Chapter 2 and Chapter 3 to the random

feature kernel setting. However, since the theory based on the random feature kernels

is not our focus in this thesis, we will not expand the discussion here.
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1.3 Generalized Linear Models and Maximum Like-

lihood Estimation

In Chapter 4, we study the asymptotic theory of maximum likelihood estimators for

grouped and right-censored count data. In this section, we give an introduction to

classical generalized linear models (GLM) and maximum likelihood estimation. The

content of this section can be found in many textbooks, for example, [47, 53].

To be consistent with common notations in statistics, let (X, Y ) ∈ X × Y be a

random variable. The sample points {(xi, yi)}Ni=1 are i.i.d. copies of (X, Y ). Let X be

a subset of Rd with d ∈ N. In generalized linear models, the conditional distribution

of Y given X is assumed to be in the exponential family, that is, the conditional

density p(y|x) of Y given X has the form

p(y|x) = c(y) exp (θ(x)y − b(θ(x)))

with c(y) > 0. Here θ ∈ Θ ⊂ R, where Θ is a parameter space, θ is a parameter

depending on X and b : R→ R is a known function of θ. Assume that Θ is a natural

parameter space with non-empty interior where all derivatives of b(θ) exist for θ in

the interior of Θ. There holds

b′(θ(x)) = E[Y |X = x].

Assume further that E[Y |X = x] = µ(βTx), where β ∈ Rd is a parameter and

µ : R→ R is known as the mean function. µ−1 is called the link function. Then, we

have

θ(x) = (b′)−1(µ(βTx)).

When (b′)−1 = µ−1 and θ = βTx, µ−1 is named as the natural link function.

Define the likelihood function for the GLM by

LN(β) =
N∏
i=1

p(yi|xi).

9



The maximum likelihood estimator β̂N is the maximizer of LN(β) over a parameter

space of β. Since logarithmic function is strictly increasing, one can maximize the

log-likelihood function

lN(β) = log(LN(β)) =
N∑
i=1

log p(yi|xi)

to obtain β̂N . The asymptotic theory of β̂N has been established in literature

(e.g. [31, 47,75]) for a long time.
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Chapter 2

Pairwise Learning with Kronecker

Kernel Ridge Regression

Pairwise learning, including ranking and similarity learning, has been widely used

in many fields. Kronecker kernel ridge regression (KKRR) is a pairwise learning

algorithm based on the so-called Kronecker product pairwise kernels. To our best

knowledge, the theoretical analysis of KKRR is rare in literature. In this chapter,

properties of the Kronecker product kernels and the capacity of the corresponding

reproducing kernel Hilbert spaces are studied. Based on a sharp bound on the effective

dimension of the Kronecker product integral operators, we establish an upper bound

on the error of KKRR. The minimax lower bound for Kronecker product kernel based

learning algorithms is investigated. The convergence rate of the output function of

KKRR matches the lower bound and is optimal in the sense of minimax.

2.1 Pairwise Learning and Kronecker Kernel Ridge

Regression

Consider a probability space (X 2 × Y , ρ), where ρ is a joint probability distribution

that can be decomposed as dρ(x, u, y) = dρ(y|(x, u))dρX (x)dρX (u) with ρ(y|(x, u))

being a conditional distribution on Y given (x, u) ∈ X 2, and ρX being the marginal

distribution on X . Here we assume that ρX is a continuous distribution such that

11



ρX [x = u] = 0, for any x, u ∈ X . In pairwise learning, the sample usually has

the form z = {(xi, xj, yij)}Ni,j=1 ⊂ X 2 × Y, where the input part {xi}Ni=1 ⊂ X is

drawn independently from ρX and the output yij is drawn from ρ(y|(xi, xj)), for each

i, j = 1, · · · , N . Moreover, (xi, xj, yij) is independent with (xs, xt, yst) for distinct

positive integers i, j, s, t. In what follows, let Y = (yij)N×N be the output matrix.

The objective of pairwise regression is to recover a target function Fρ(x, u) that

measures the relationship between two points x and u in X , through the observations

z. In regression problems, the target function is the regression function defined by

Fρ(x, u) = arg min
α∈R

∫
Y

(y − α)2dρ(y|(x, u)) =

∫
Y
ydρ(y|(x, u)). (2.1)

This model is quite ubiquitous in regression problems. For example, (2.1) holds

true in the case y = Fρ(x, u) + ε with noise ε satisfying E[ε|(x, u)] = 0. And the

corresponding outputs can be written as yij = Fρ(xi, xj) + εij with E [εij|(xi, xj)] =

0, i, j = 1, 2, · · · , N .

2.1.1 Kronecker Kernel Ridge Regression

Kernel ridge regression (KRR) is a powerful tool for learning a univariate target

function fρ(x). For a given Mercer’s kernel

K : X × X → R, (x, u) 7→ K(x, u),

let (HK , 〈·, ·〉K) be the corresponding reproducing kernel Hilbert space (RKHS), and

let ‖ · ‖K be the norm induced by 〈·, ·〉K . In this chapter, we always assume that X

is compact. As a result,

κ := sup
x∈X

√
K(x, x) <∞.

Recall the notation Kx = K(x, ·) and the reproducing property

〈f,Kx〉K = f(x), for all f ∈ HK .

12



Based on the training set {(xi, yi)}Ni=1, the kernel ridge regression is defined by (1.4).

Let λ1 ≥ λ2 ≥ ... ≥ λi ≥ ... be the eigenvalues of the integral operator LK defined

by (1.2) and let φi be the eigenfunction of LK associated with λi. In this chapter,

{φi}∞i=1 is selected to be the orthonormal basis of HK .

In pairwise learning, the target function is bivariate. As a straightforward gener-

alization of the univariate case, we consider finding a function from a function class

F consists of bivariate functions of the form

F (x, u) =
∞∑

i,j=1

Fijφi(x)φj(u) with
∞∑

i,j=1

F 2
ij <∞. (2.2)

Define HK ⊗HK as the completion of the space{
F : X 2 → R

∣∣F (x, u) =
m∑
i=1

fi(x)gi(u), fi, gi ∈ HK ,m ∈ N

}

completed with respected to the inner product such that〈
F, F̃

〉
=

m∑
i=1

n∑
j=1

〈
fi, f̃j

〉
K
〈gi, g̃j〉K

for any two given functions F (x, u) =
∑m

i=1 fi(x)gi(u) and F̃ (x, u) =
∑n

j=1 f̃j(x)g̃j(u).

F equipped with the inner product

〈F,G〉F :=
∞∑

i,j=1

FijGij, ∀F,G ∈ F

is the same as HK ⊗HK according to [5]. Moreover, according to the properties of

the product between two reproducing kernels [5], HK ⊗HK is an RKHS (HK , 〈·, ·〉K )

spanned by a positive semi-definite pairwise kernel on X 2 ×X 2,

K ((x, u), (x′, u′)) := K(x, x′)K(u, u′). (2.3)

Similarly, we denote K(x,u)(x
′, u′) = K ((x, u), (x′, u′)) and there holds

F (x, u) =
〈
F,K(x,u)

〉
K
, for all F ∈ HK and x, u ∈ X .

13



Motivated by (1.4), the Kronecker kernel ridge regression (KKRR) is a pairwise

learning algorithm defined by

F z
λ = arg min

F∈HK

{
1

N2

N∑
i,j=1

(F (xi, xj)− yij)2 + λ ‖F‖2
K

}
. (2.4)

If we let MN be the set of all N × N matrices and let ‖ · ‖F be the Frobenius

norm on MN induced by the Frobenius inner product 〈A,B〉F :=
∑∞

i,j=1 aijbij,∀A =

(aij)N×N , B = (bij)N×N ∈MN , then thanks to the representer theorem [79], one can

obtain

F z
λ =

N∑
s,t=1

ĉλstK(xs,xt), (2.5)

where ĉλst is the (s, t)-th element of Ĉλ ∈MN such that

Ĉλ = arg min
C∈MN

{
1

N2
‖KxCKx − Y ‖2

F + λ
∥∥K1/2

x CK1/2
x

∥∥2

F

}
(2.6)

with Kx = (K(xi, xj))
N
i,j=1 being the kernel matrix. To see the existence of the

solution of (2.6), we introduce a symmetric (with respect to the Frobenius inner

product) positive semi-definite operator

Kx :MN →MN

A 7→ KxAKx.

By letting the gradient of (2.6) with respect to the Frobenius inner product vanish,

there holds

Ĉλ =
(
Kx +N2λI

)−1
Y, (2.7)

with I being the identity operator whose domain depends on the content. For two

matrices A = (aij)N×N , B = (bij)N×N ∈MN , define the Kronecker product between

A and B as

A⊗B =

a11B . . . a1NB
...

. . .
...

aN1B . . . aNNB

 .
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If we let vec(A) := (a11, · · · , aN1, a12, · · · , aN2, a1N , · · · , aNN)T be the vector of A ∈

MN , then we have

vec(KxA) = vec(KxAKx) = (Kx ⊗Kx) vec(A)

thanks to the symmetry of Kx and the properties of Kronecker product (Lemma

4.3.1, [41]).

In classical KRR, based on the universality of the kernel function K [68], there is

a regularity assumption on the target function that fρ ∈ LrK(L2
ρX

(X )) for some r > 0.

Specifically, for r ≥ 1/2, this assumption is equivalent to fρ ∈ Lr−1/2
K (HK) since for

any f, g ∈ L2
ρX

(X ), there holds L
1/2
K f ∈ HK , L

1/2
K g ∈ HK and

〈f, g〉L2
ρX

=
〈
L

1/2
K f, L

1/2
K g

〉
K
.

When K is a universal kernel, the universality of K has already been ensured in

literature, see, for example, [71, 72, 78]. Thus in this chapter, with the help of the

pairwise integral operator

LK : HK → HK ,

F 7→
∫
X×X

F (x, u)K(x,u)dρX (x)dρX (u), (2.8)

we modify the regularity assumption on the pairwise target function to be

Fρ = LrK (Gρ), for some Gρ ∈ HK and r ≥ 0. (2.9)

When r = 0, (2.9) is reduced to Fρ ∈ HK . The assumption (2.9) will be discussed in

Section 2.2.

In many applications, the training set is z′ = {(xi, ui, y′i)}ni=1 ⊂ X 2 × Y drawn

independently from ρ(x, u, y′), instead of z. Based on z′, the KKRR is defined as

F z′

λ = arg min
F∈HK

{
1

n

n∑
i=1

(F (xi, ui)− y′i)
2

+ λ ‖F‖2
K

}
. (2.10)
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According to the widely used average of “sums-of-i.i.d.” blocks technique in U -

statistics [23], later on, we will see that the convergence rate of F z
λ is dominated by

that of F z′

λ with n = bN
2
c, ui = xn+i and y′i = yi,n+i. Since n has the same order of N ,

this technique can reduce the analysis of z with correlated data points to analyzing

the i.i.d. sample z′ without spoiling the learning rate.

2.1.2 Related Works

Pairwise learning covers several machine learning problems including ranking [3,23,30],

similarity and metric learning [16,19,52]. In existing literature, the case considered

most frequently for ranking is scoring-based ranking [2,23,30] via a univariate scoring

function fρ. Kernel methods for pairwise learning are studied in literature [22, 85].

In Section 2.2, we will see that both ranking and bilinear similarity learning can be

formulated as learning problems with target functions belonging to HK .

Kernel ridge regression is a classical learning algorithm that has been widely studied

in literature [17, 25, 67, 69]. Pairwise-kernel-based learning algorithms are used in

chemistry [48], bio-informatics [77] and other subjects related to data science. Pairwise

learning via KKRR has also been established in the past several years [9, 58, 71].

However, to our best knowledge, comparing with its extensive application, results

on the properties of the Kronecker product kernels and the corresponding Kronecker

product integral operators are rare in existing literature. These properties, especially

the effective dimension of the integral operator [87], plays a notably significant role in

deriving the minimax rate of classical KRR [17]. As a result, the theoretical guarantee

of KKRR is scarce.

To reduce the high computational cost in classical KRR, a distributed learning

scheme of kernel ridge regression has been introduced and analyzed by [49,88]. There

are some other techniques to reduce the computation cost of KRR such as carrying

out randomized sketches to kernel matrices [82]. We believe that both distributed
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learning methods and randomized sketches can be applied to KKRR for computational

efficiency.

Waegeman et al. [78] introduces the symmetric part of K ,

K S((x, u), (x′, u′)) =
1

2
[K ((x, u), (x′, u′)) + K ((u, x), (x′, u′))] , (2.11)

and the skew-symmetric part of K ,

K SS((x, u), (x′, u′)) =
1

2
[K ((x, u), (x′, u′))−K ((u, x), (x′, u′))] , (2.12)

that can be applied to similarity learning and ranking with symmetric and skew-

symmetric target function, respectively. Pahikkala et al. [58] prove that the output

function of KKRR based on K is equivalent to that based on K S (K SS) when the

outputs of the observations are symmetric (skew-symmetric).

In this chapter, we study some further properties of K , K S and K SS based on

the theory of RKHS and the pairwise integral operators. Furthermore, we reveal

that K -based pairwise learning is a generalization of two specific ubiquitous pairwise

learning problems, the scoring-based ranking and bilinear similarity learning, in theory

with the help of centered reproducing kernels [37, 80] and linear kernels. In the view

of learning theory, we derive both an upper bound for the error of KKRR and a

minimax lower bound for K -based learning algorithms. The upper bound and the

lower bound match each other which means that the rate of KKRR established in

this chapter is minimax optimal. To our best knowledge, prior to his work, there is

no learning theory estimate about K -based pairwise regression problems.

2.1.3 Structure of this Chapter

In Section 2.2, properties of the Kronecker product kernels and the KKRR learning

scheme are introduced. The convergence results of KKRR and the minimax lower

bound of learning algorithms based on K are established in Section 2.3. For the sake

of completeness, the proof is provided in Section 2.4-Section 2.7.
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2.2 Properties and Applications of Kronecker Prod-

uct Kernels

In this section, some properties of K , especially the eigenvalues and eigenvectors of

LK , are studied. Moreover, we show in this section that K -based pairwise learning

is a generalization of two existing models in ranking and similarity learning.

2.2.1 Properties of Kronecker Product Pairwise Kernels

For the Kronecker product pairwise kernel K , it’s obvious that

sup
(x,u)∈X 2

(K ((x, u), (x, u)))1/2 = sup
x,u∈X

√
K(x, x)K(u, u) = κ2

and

sup
(x,u)∈X 2

∥∥K(x,u)

∥∥
K

= sup
(x,u)∈X 2

(K ((x, u), (x, u)))1/2 = κ2.

Thus, for any F ∈ HK , there holds

‖F‖∞ = sup
(x,u)∈X 2

|F (x, u)| ≤ sup
(x,u)∈X 2

∥∥K(x,u)

∥∥
K
‖F‖K = κ2‖F‖K .

Moreover, since ρX is a probability measure, we have

‖LK F‖K ≤ sup
(x,u)∈X 2

∥∥K(x,u)

∥∥2

K
‖F‖K ≤ κ4 ‖F‖K

and

‖LK ‖op ≤ κ4, (2.13)

where ‖ · ‖op is the spectral norm of an operator.

Recall the symmetric part K S and the skew-symmetric part K SS of K defined

in (2.11) and (2.12). Note that

K SS((x, u), (x′, u′)) =
1

4

〈
K(x,u) −K(u,x),K(x′,u′) −K(u′,x′)

〉
K
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and

K S((x, u), (x′, u′)) =
1

4

〈
K(x,u) + K(u,x),K(x′,u′) + K(u′,x′)

〉
K
.

It is not difficult to verify that both K S and K SS are Mercer’s kernels on X × X .

According to the properties of the sum of reproducing kernels [5], HK = HK S⊕HK SS .

We list some properties of K , K S, and K SS in the following Proposition that will

be proved in Section 2.5.

Proposition 2.1. Let {(λi, φi)}∞i=1 be the eigensystem of LK normalized in HK and

define Φij(x, u) = φi(x)φj(u). Then the following properties of K hold.

(a) {Φij}∞i,j=1 is the orthonormal basis of HK .

(b) Mercer’s expansion of K is given by

K ((x, u), (x′, u′)) =
∞∑

i,j=1

Φij(x, u)Φij(x
′, u′), (2.14)

where the convergence is absolute and uniform on X × X .

(c) Φij and Φji are the eigenvectors of LK associated with the eigenvalue λiλj.

Thus LK is positive semi-definite with Tr(LK ) = Tr2(LK) <∞.

(d) The subspace HK S of HK consists of all symmetric functions in HK with the

orthonormal basis
{

1√
2
(Φij + Φji)

}
i<j
∪ {Φii}∞i=1.

(e) The subspace HK SS of HK consists of all skew-symmetric functions in HK

with the orthonormal basis
{

1√
2
(Φij − Φji)

}
i<j

.

(f) 1√
2

(Φij + Φji) and 1√
2

(Φij − Φji) are the eigenvectors of LK S and LK SS, re-

spectively, associated with the eigenvalue λiλj. Thus, LK S and LK SS are the

constraints of LK on HK S and HK SS, respectively.
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Remark. According to Proposition 2.1, LK is a positive semi-definite operator

from HK to HK since λiλj ≥ 0, i, j = 1, 2, · · · . Moreover, for any function F ∈ HK ,

we can represent

F =
∞∑

i,j=1

FijΦij, with Fij = 〈F,Φij〉K , and ‖F‖2
K =

∞∑
i,j=1

F 2
ij.

Furthermore, for any given continuous function f of LK , Φij is the eigenvector of

f(LK ) corresponding to the eigenvalue f(λiλj). Thus the regularity assumption (2.9)

becomes

Fρ =
∞∑

i,j=1

λriλ
r
jGρijΦij, for some Gρ =

∞∑
i,j=1

GρijΦij ∈ HK .

Note that LrK(HK) is a subspace of HK and LrK(HK)⊗LrK(HK) is well-defined. It is

obvious that the following proposition holds.

Proposition 2.2. LrK(HK)⊗LrK(HK) is a subspace of LrK (HK ), where the completion

is taken with respect to the RKHS inner product.

Isometry between HK and HS(HK). We call an operator L from HK to HK

a Hilbert-Schmidt operator if
∑∞

i=1 ‖Lφi‖
2
K <∞. The Hilbert space HS(HK) is the

space of all Hilbert-Schmidt operators on HK equipped with the inner product

〈L1, L2〉HS(HK) :=
∞∑
i=1

〈L1φi, L2φi〉K ,∀L1, L2 ∈ HS(HK).

If we define the rank-1 operator f ⊗ g from HK to HK by (f ⊗ g)h = 〈g, h〉K f,

for any f, g, h ∈ HK , then {φi ⊗ φj}∞i,j=1 is the orthonormal basis of HS(HK). In

fact, it is easy to verify that for any L ∈ HS(HK), L =
∑∞

i,j=1 Lijφi ⊗ φj with

Lij = 〈φi, Lφj〉K = 〈L, φi ⊗ φj〉HS(HK) . Thus the map Φij 7→ φi ⊗ φj, i, j = 1, 2, · · ·

defined through the base vectors is obviously an isometry between HK and HS(HK).
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Connections between LK and LK. Consider the operator LK⊗̃LK defined by

LK⊗̃LK : HS(HK )→ HS(HK ),

B 7→ LKBLK .

Note that

LK⊗̃LK(φi ⊗ φj) = LK(φi ⊗ φj)LK = (LKφi)⊗ (LKφj) = λiλjφi ⊗ φj.

So {(λiλj, φi ⊗ φj)}∞i,j=1 is the eigensystem of LK⊗̃LK . In other words, if we regard

HK and HS(HK) as the same space, then we can rewrite LK = LK⊗̃LK .

In classical KRR, the error between the output function and the target function

is usually measured by the L2
ρX

norm

‖f‖L2
ρX

:=

(∫
X
f(x)2dρX (x)

)1/2

, for all f ∈ L2
ρX

(X ).

Moreover, it’s well-known [25,26] that

‖f‖L2
ρX

=
∥∥∥L1/2

K f
∥∥∥
K
, for all f ∈ L2

ρX
(X ). (2.15)

In this chapter, the learning efficiency of F z
λ and F z′

λ is measured by the L2
ρX×ρX

norm ‖ · ‖ρ defined by

‖F‖2
ρ =

∫
X×X

F (x, u)2dρX (x)dρX (u), for any F ∈ HK . (2.16)

Proposition 2.3. For F ∈ HK , there holds

‖F‖ρ =
∥∥∥L1/2

K F
∥∥∥

K
. (2.17)

Proposition 2.3 will be proved in Section 2.5.

2.2.2 Applications of Kronecker Product Pairwise Kernels

The target function belonging to HK can cover and generalize several models in

AUC-based ranking and similarity learning. In this chapter, we only study the least
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squares loss for regression. In fact, for pairwise SVM classifier based on the hinge

loss, one can easily obtain the bound of its generalization error (e.g. [16]) by a general

Rademacher complexity argument since the pairwise kernel is bounded.

Bipartite ranking

In bipartite ranking, the target function Fρ is used to compare two items xi, xj ∈ X .

Precisely, if Fρ(xi, xj) > 0, then we say that xi is preferred over xj.

Bipartite ranking via scoring functions. As a special case of bipartite ranking,

the target of scoring-based ranking is to recover a scoring function fρ via the sample

{(xi, si)}Ni=1 with si being the score of xi such that si > sj if xi is preferred over xj.

Consider the scores si and sj pairwisely, and we reformulate the scoring-based

ranking as yij = si − sj and Fρ(x, u) = fρ(x) − fρ(u). Then the bipartite ranking

problem can be studied under the framework of pairwise learning [85]. For fρ ∈ HK ,

there holds fρ(x) =
∑∞

i=1 fρiφi(x). In this setting,

Fρ(x, u) =
∞∑
i=1

fρi(φi(x)− φi(u)) =
∞∑
i=1

fρi(φi(x)1(u)− φi(u)1(x)) (2.18)

with 1(x) ≡ 1 for any x ∈ X . To make sure that Fρ is still in HK , the constant

function 1 should be the eigenfunction of LK , which is not always the case. For this

reason, [37] introduced a centered reproducing kernel

K̄(x, u) := K(x, u)−
∫
X
K(x, u)dρX (x)−

∫
X
K(x, u)dρX (u) +

∫
X×X

K(x, u)dρX (x)dρX (u).

In practice, K̄ can be approximated by

K̂(x, u) = K(x, u)− 1

N

N∑
i=1

K(xi, x)− 1

N

N∑
j=1

K(xj, u) +
1

N2

N∑
i,j=1

K(xi, xj).

HK̄ is perpendicular to constant functions in the sense of L2
ρX

inner product, that

is, for any f ∈ HK̄ ,
∫
X f(x)dρX (x) = 0. Note that K1(x, u) ≡ 1 is a reproducing

22



kernel with (HK1 , 〈·, ·〉K1) = (R, ·), where · is the product between two real numbers.

Consider a new kernel function K̃(x, u) = K̄(x, u) +K1(x, u). Then HK̃ = HK̄ ⊕ R

and φ0 = 1 is the eigenfunction of LK̃ with respect to the eigenvalue λ0 = 1. In fact,

LK̃(1) =

∫
X
K̄x + 1dρX (x) = 0 + 1 = 1.

Let φ̄i be the eigenfunction of LK̄ associated with the i-th eigenvalue λ̄i of LK̄ . We

have

LK̃ φ̄i =

∫
X
φ̄i(x)K̄x + φ̄i(x)dρX (x) = LK̄ φ̄i + 0 = λ̄iφ̄i.

As a consequence, φ̄i is the eigenfunction of LK̃ with respect to λ̄i. Then we replace

(2.18) with

Fρ(x, u) =

(
fρ(x)−

∫
X
fρ(x)dρX (x)

)
−
(
fρ(u)−

∫
X
fρ(u)dρX (u)

)

=
∞∑
i=1

f̄ρi
(
φ̄i(x)φ0(u)− φ0(x)φ̄i(u)

)
, (2.19)

which is a function in HK̃ SS with K̃ ((x, u), (x′, u′)) = K̃(x, x′)K̃(u, u′).

For bipartite ranking, we can assume that the target function has the form

Fρ(x, u) =
∞∑
i=1

∑
j<i

Fρij (φi(x)φj(u)− φi(u)φj(x))

=
∞∑
i=1

∑
j<i

Fρij (Φij(x, u)− Φji(x, u)) ∈ HK SS ,

which is a generalization of the scoring-based ranking (2.19).

Similarity learning

The target function of bilinear similarity learning [19,52] is the similarity function

Fρ(x, u) = xTMρu,∀x, u ∈ X = Rd, (2.20)
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with Mρ being a d× d symmetric positive semi-definite matrix.

We are now going to show that (2.20) can be formulated under the framework of

HK with respect to the linear kernel KL(x, u) = xTu, whose corresponding RKHS is

isometric to Rd equipped with the Euclidean inner product 〈x, u〉d := xTu. Precisely,

for any f ∈ HKL , there is one and only one yf ∈ Rd such that f(x) = yTf x = 〈yf , x〉d.

Moreover, for the integral operator LKL ,

LKLf(u) =

∫
X
yTf xx

TudρX (x) = (Myf )
Tu, where M =

∫
X
xxTdρX (x).

As a consequence, {(λi, yφi)}
d
i=1 is the eigensystem of M and {yφi}di=1 is the orthonor-

mal basis of Rd, where {(λi, φi)}di=1 is the eigensystem of LKL . Since Mρ is symmetric,

by letting Mρij := yTφiMρyφj = yTφjMρyφi = Mρji, we can rewrite Mρ as

Mρ =
d∑

i,j=1

Mρijyφiy
T
φj

=
∑
i<j

Mρij

(
yφiy

T
φj

+ yφjy
T
φi

)
+

d∑
i=1

Mρiiyφiy
T
φi
.

Thus (2.20) is equivalent to

Fρ(x, u) =
d∑

i,j=1

Mρijx
Tyφiy

T
φj
u =

d∑
i,j=1

Mρijφi(x)φj(u)

=
∑
i<j

Mρij (φi(x)φj(u) + φj(x)φi(u)) +
d∑
i=1

Mρiiφi(x)φi(u) ∈ HK S .

By replacing the linear kernel with general universal kernels, we can generalize

the bilinear similarity learning model to non-linear models.

2.2.3 Properties of KKRR

To study the solution of (2.4), like the classical KRR, we introduce the sampling

operator Sx : HK →MN , SxF := (F (xi, xj))N×N , for all F ∈ HK . Then its adjoint

is STx : MN → HK , STxA =
∑N

i,j=1 aijK(xi,xj),∀A = (aij)N×N ∈ MN . Moreover,
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define the empirical integral operator from HK to HK by

Lx
K F =

1

N2
STxSxF =

1

N2

N∑
i,j=1

F (xi, xj)K(xi,xj), for any F ∈ HK .

It is obvious that Lx
K is symmetric. To see the positive semi-definiteness, we introduce

two operators, Lx
K : HK → HK , f 7→ 1

N

∑N
i=1 f(xi)Kxi , which is positive semi-definite

according to the theory of classical KRR, and Lx
K⊗̃Lx

K : HS(HK)→ HS(HK), B 7→

Lx
KBL

x
K . We donte λxi , i = 1, 2, · · · , the eigenvalues of Lx

K arranged in non-increasing

order. Then, like the relations between LK and LK , it is not difficult to verify that

Lx
K = Lx

K⊗̃Lx
K by regarding HS(HK) and HK as a same space and λxi λ

x
j ≥ 0, i, j =

1, 2, · · · , are eigenvalues of Lx
K . As a result, Lx

K + λI is invertible and we can write

F z
λ = (Lx

K + λI)−1 1

N2
STx Y. (2.21)

For (2.10) based on z′ = {(xi, ui, y′i)}ni=1, similarly, if we denote x′ = {(xi, ui)}ni=1, Y
′ =

(y′1, ..., y
′
n)T , and introduce the sampling operator Sx′ : HK → Rn such that Sx′F =

(F (xi, ui)))
n
i=1, then STx′c =

∑n
i=1 ciK(xi,ui),∀c ∈ Rn and

F z′

λ =
(
Lx′

K + λI
)−1 1

n
STx′Y

′, (2.22)

where Lx′

K F := 1
n

∑n
i=1 F (xi, ui)K(xi,ui) is a symmetric positive semi-definite operator

since K is a Mercer’s kernel.

2.3 Convergence Results

We state the main convergence theorems in this section. Since the convergence rate

depends on a quantity known as the effective dimension of LK , the bounds of this

quantity and some corresponding convergence results are studied. In the end of this

section, the minimax rate for K -based pairwise regression is provided. Since both

the minimax rate and the final error bounds are determined by the eigenvalues of LK ,

25



according to Proposition 2.1, we study only the learning theory of K -based KKRR

and one can easily generalize the results to KKRR based on K S and K SS.

2.3.1 Main Theorems

In classical learning theory, the capacity of HK is usually measured by the effective

dimension of LK defined by

NK(λ) = Tr
(
LK(LK + λI)−1

)
=
∞∑
i=1

λi
λi + λ

.

As an analogy, we introduce the effective dimension of LK as

NK (λ) := Tr
(
LK (LK + λI)−1) =

∞∑
i,j=1

λiλj
λ+ λiλj

. (2.23)

As we can see in the following two theorems, NK (λ) is essential in the final error

bounds.

We first state the convergence of F z′

λ .

Theorem 2.1. Assume |y′| ≤ M . Under the regularity assumption (2.9) with

0 ≤ r < 1/2, there holds

E
[∥∥∥F z′

λ − Fρ
∥∥∥
ρ

]
≤ C ′

(
An,λ

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
+ λr+1/2

)
, (2.24)

where An,λ = 1
n
√
λ

+
√
NK (λ)

n
, and C ′ is a constant independent of n or λ that will be

specified in the proof.

For the output function F z
λ , we have the following error bound.

Theorem 2.2. Assume |y| ≤ M . Under the regularity assumption (2.9) with 0 ≤

r < 1/2, for N ≥ 4, there holds

E
[
‖F z

λ − Fρ‖ρ
]
≤ C

(
AN,λ

(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
+ λr+1/2

)
, (2.25)

26



where AN,λ = 1
N
√
λ

+
√
NK (λ)
N

, and C is a constant independent of N or λ that will

be specified in the proof.

2.3.2 Capacity Dependent Error Analysis

From the definition of NK (λ), we see that NK and NK has the relationship

NK (λ) =
∞∑

i,j=1

λj
λj + (λ/λi)

=
∞∑
i=1

NK
(
λ

λi

)
.

Moreover, there holds

N 2
K

(√
λ
)

=
∞∑

i,j=1

(
λi

λi +
√
λ

)(
λj

λj +
√
λ

)
≤

∞∑
i,j=1

λiλj
λiλj + λ

= NK (λ).

It is well understood that NK(λ) is closely related to the decay of {λi}∞i=1. For NK (λ),

we have similar results. The accurate bounds of NK (λ) can be obtained if we assume

that the eigenvalues decay polynomially or exponentially.

Proposition 2.4. There hold the following estimates of NK (λ).

(i) (Upper Bound.) If we assume λi ≤ D2i
−1/s2 , i = 1, 2, · · · , for some D2 < ∞

and 0 < s2 < 1, then there is a constant C0 <∞ such that

NK (λ) ≤ C0λ
−s2 log(1/λ), for 0 < λ ≤ e−1. (2.26)

(ii) (Lower Bound.) If we assume λi ≥ D1i
−1/s1 , i = 1, 2, · · · , for D1 > 0 and

0 < s1 < 1, then there is a constant D0 > 0 such that

NK (λ) ≥ D0λ
−s1 log(1/λ), for 0 < λ < 1. (2.27)

Remark. The bound of NK (λ) is sharp when s1 = s2 = s, that is, the upper bound

of eigenvalues matches the lower bound.
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Remark. In some literature [49], there is another assumption on NK(λ) that

NK(λ) ≤ C̃0λ
−s for some C̃0 <∞ and s > 0. (2.28)

When s = 1, this assumption is trivial since LK is of trace class. According to [17],

if (2.26) holds for s2 = s, then there is a constant C̃0 < ∞ such that (2.28) holds.

Thus, the upper bound (2.26) of NK (λ) is equivalent to that of NK(λ) subject to

the log(1/λ) factor. On the other hand, the following proposition tells us that the

polynomial upper bound of λi can be derived from (2.28).

Proposition 2.5. Suppose that there are constants 0 < C̃0 <∞ and s > 0 such that

NK(λ) ≤ C̃0λ
−s for any 0 < λ ≤ λ1. Then there holds λi ≤

(
i

2C̃0

)−1/s

for each i.

Corollary 2.1. Assume |y|, |y′| ≤M . Assume that λi ≤ D2i
−1/s, i = 1, 2, · · · , with

0 < D2 <∞ and 0 < s < 1. Under the regularity assumption (2.9) with 0 ≤ r < 1/2,

we have the following error bounds.

(i) For N ≥ max{4, e2r+1+s}, by taking λ = (N/ logN)−
1

2r+1+s , we have

E ‖F z
λ − Fρ‖ρ ≤ C∗

(
N

logN

)− r+1/2
2r+1+s

, (2.29)

where C∗ is a universal constant that will be specified in the proof.

(ii) For n ≥ e2r+1+s, by taking λ = (n/ log n)−
1

2r+1+s , we have

E
∥∥∥F z′

λ − Fρ
∥∥∥
ρ
≤ C∗′

(
n

log n

)− r+1/2
2r+1+s

, (2.30)

where C∗′ is a universal constant that will be specified in the proof.

Remark. The convergence rate of KKRR given in Corollary 2.1 matches the

minimax rate n−
r+1/2
2r+1+s for classical KRR [17] up to a logarithmic factor log

r+1/2
2r+1+s n.

This is reasonable since we now learn a function equivalent to an operator, whose
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rank can be infinity, in a more complicated space HS(HK). From the minimax lower

bound to be derived later, we shall see that this logarithmic factor is intrinsic and

cannot be eliminated.

Proposition 2.6. There hold the following estimates of NK (λ).

(i) (Upper Bound.) Assume λi ≤ D̂2 exp (−t2i) , i = 1, 2, · · · , with some constants

0 < D̂2 <∞ and t2 > 0. Then there is a constant Ĉ0 < +∞ such that

NK (λ) ≤ Ĉ0 log2(1/λ), for 0 < λ < e−1. (2.31)

(ii) (Lower Bound.) Assume λi ≥ D̂1 exp (−t1i) , i = 1, 2, · · · , with some positive

constants D̂1 and t1 < +∞. Then, for 0 < λ < 1 and

λ ≤ min
{
D̂4

1, D̂
2
1 exp(−8t1)

}
,

there holds

NK (λ) ≥ D̂0 log2(1/λ) (2.32)

with a universal constant D̂0 > 0.

Remark. For the above scenarios where the eigenvalues {λi} decay exponentially,

the bound derived in Proposition 2.6 is still sharp. It is easy to verify that NK(λ) =

O(log(1/λ)). Thus, the bound of NK (λ) is greater than that of NK(λ) due to the

log(1/λ) term that will tends to infinity as λ tends to 0.

Corollary 2.2. Assume |y|, |y′| ≤ M . Under the regularity assumption (2.9) with

0 ≤ r < 1/2 and the assumption λi ≤ D̂2 exp (−t2i) , i = 1, 2, · · · , with some constants

0 < D̂2 <∞ and t2 > 0, we have the following error bounds.

(i) If we take λ = N−1, then for N ≥ 4, there holds

E
[
‖F z

λ − Fρ‖ρ
]
≤ D∗N−1/2 logN, (2.33)

where D∗ is a universal constant that will be specified in the proof.
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(ii) If we take λ = n−1, then for n ≥ 3, there holds

E
[∥∥∥F z′

λ − Fρ
∥∥∥
ρ

]
≤ D∗′n−1/2 log n, (2.34)

where D∗′ is a universal constant that will be specified in the proof.

Remark. The rate λi = O(exp(−ti2)) of decay for some t > 0, also known as the

Gaussian-type decay, has been considered in some existing works of kernel ridge

regression [28, 88]. For this Gaussian-type decay, we have NK(λ) = O(log1/2(1/λ))

and NK (λ) = O(log(1/λ)). Since the technical proof (with the help of the polar

coordinate system) is similar to the case where eigenvalues decay exponentially, we

omit the details and the corresponding corollary here for conciseness.

2.3.3 Minimax Lower Bound for K -based Pairwise Regres-
sion

To our best knowledge, there is no result on the minimax rate of pairwise learning via

the Kronecker product kernels. Thus to evaluate the rate derived in (2.30), motivated

by [17,35], in what follows, we study the minimax rate for K -based pairwise learning.

The minimax rate is derived under the training set z′ = {(xi, ui, y′i)}ni=1 and is given

over all distributions in the following two classes.

Let P(s1, s2, r) be the set of Borel probability measures on X 2 × Y such that:

1. dρ(x, u, y′) = dρX (x)dρX (u)dρ(y′|(x, u)),

2. |y′| ≤M almost surely,

3. Fρ = LrK (Gρ) for some Gρ ∈ HK with ‖Gρ‖K ≤ R, where R > 0 is a constant.

4. D1i
−1/s1 ≤ λi ≤ D2i

−1/s2 for each i with universal constants D1 > 0, D2 <∞

and 0 < s1, s2 < 1.
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Let P(t1, t2, r) be another class of Borel probability measures satisfying the first three

conditions in the definition of P(s1, s2, r) and the condition that D̂1 exp(−t1i) ≤ λi ≤

D̂2 exp(−t2i) for each i with D̂1 > 0, D̂2 <∞ and 0 < t1, t2 < +∞ .

Theorem 2.3. Let Fz′ ∈ HK be the output of any learning algorithm according to

the observations z′ = {(xi, ui, y′i)}ni=1. Then, for 0 < δ < 1,we have

lim
n→∞

inf
Fz′

sup
ρ∈P(s1,s2,r)

Pz′∼ρn

{
‖Fz′ − Fρ‖2

ρ ≥
1

4
τδ

(n
δ

)− s2(2r+1)
s1(2r+1)+s1s2 log

s2(2r+1)
s1(2r+1+s2)

n

δ

}

≥ 1− δ (2.35)

and

lim
n→∞

inf
Fz′

sup
ρ∈P(t1,t2,r)

Pz′∼ρn

{
‖Fz′ − Fρ‖2

ρ ≥ τ̂δ

(
log2 n

δ

n/δ

)}
≥ 1− δ, (2.36)

where τδ, τ̂δ are constants independent of n (but they may depend on δ).

Remark. Comparing with the minimax rate given in (2.35) and (2.36), the rates

derived in (2.30) and (2.34) are optimal when s1 = s2 = s.

2.4 Proofs of Convergence Results

The results given in section 2.3 are proved in this section. We state some technical

lemmas in this section for the proof of the main theorems and provide a detailed

proof of these lemmas in Section 2.7.

2.4.1 Statement of Technical Lemmas

The sample-free analogy of (2.4),

Fλ := arg min
F∈HK

{
‖F − Fρ‖2

ρ + λ‖F‖2
K

}
, (2.37)

31



has been widely used in learning theory. Equation (2.17) implies that

Fλ = (LK + λI)−1 LK Fρ. (2.38)

We use the following decompositions,

F z
λ − Fρ = (F z

λ − Fλ) + (Fλ − Fρ) , (2.39)

F z′

λ − Fρ =
(
F z′

λ − Fλ
)

+ (Fλ − Fρ) . (2.40)

The error analysis of F z
λ − Fλ and F z′

λ − Fλ is based on the so-called first and second

order decomposition of the difference between the inverse of two operators proposed

by [49].

Lemma 2.1. Let A and B be two invertible operators on a Banach space. We have

A−1 −B−1 = B−1 (B − A)A−1 = A−1(B − A)B−1. (2.41)

Moreover,

A−1 −B−1 = B−1(B − A)B−1 +B−1(B − A)A−1(B − A)B−1. (2.42)

To bound F z′

λ − Fλ, we need the help of the following three quantities. Define

Qz′,λ =

∥∥∥∥(LK + λI)1/2
(
Lx′

K + λI
)−1

(LK + λI)1/2

∥∥∥∥
op

,

Pz′,λ =
∥∥∥(LK + λI)−1/2

(
LK − Lx′

K

)∥∥∥
op
,

Sz′,λ =

∥∥∥∥(LK + λI)−1/2

(
1

n
STx′Y

′ − LK Fρ

)∥∥∥∥
K

,

where ‖ ·‖op is the operator norm. We provide their estimates in the following Lemma.

Lemma 2.2. Assume |y′| ≤M . For any θ > 0, one has

ESθz′,λ ≤ Cθ,S′Aθn,λ, (2.43)

EPθz′,λ ≤ Cθ,P ′Aθn,λ, and (2.44)

EQθz′,λ ≤ Cθ,Q′

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)θ
, (2.45)

where Cθ,S′ , Cθ,P ′ and Cθ,Q′ are universal constants to be specified in the proof.
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Similarly, we introduce

Qz,λ =
∥∥∥(LK + λI)1/2 (Lx

K + λI)−1 (LK + λI)1/2
∥∥∥

op
,

Pz,λ =
∥∥∥(LK + λI)−1/2 (LK − Lx

K )
∥∥∥

op
, and

Sz,λ =

∥∥∥∥(LK + λI)−1/2

(
1

N2
STx Y − LK Fρ

)∥∥∥∥
K

,

for the error analysis of F z
λ − Fλ.

Lemma 2.3. Assume that |y| ≤M . Then there are constants CQ, CP , CS such that

EQ2
z,λ ≤ CQ

(A2
N,λ

λ
+
A4
N,λ

λ2

)
+ 2, (2.46)

EP2
z,λ ≤ CPA2

N,λ, and (2.47)

ES2
z,λ ≤ CSA2

N,λ. (2.48)

The proofs of Lemma 2.2 and Lemma 2.3 are given in Section 2.7.

2.4.2 Proofs of the Upper Bounds

For the error bound of Fλ − Fρ, motivated by [66], we have the following estimate.

Proposition 2.7. If (2.9) holds for 0 ≤ r < 1/2, then

‖Fλ − Fρ‖ρ ≤ ‖Gρ‖K λr+1/2. (2.49)

Proof. By (2.38) and (2.9), we have

Fρ =
∞∑

i,j=1

FρijΦij =
∞∑

i,j=1

(λiλj)
rGρijΦij,

Fλ = (LK + λI)−1 LK

∞∑
i,j=1

FρijΦij =
∞∑

i,j=1

(λiλj)
1+r

λiλj + λ
GρijΦij,

and

Fλ − Fρ =
∞∑

i,j=1

(λiλj)
r λ

λiλj + λ
GρijΦij.
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Thus

‖Fλ − Fρ‖2
ρ =

∥∥∥L1/2
K (Fλ − Fρ)

∥∥∥2

K
=

∞∑
i,j=1

(
(λiλj)

1/2+rλ

λiλj + λ
Gρij

)2

= λ2r+1

∞∑
i,j=1

(
λiλj

λiλj + λ

)1+2r (
λ

λiλj + λ

)1−2r

Gρ
2
ij ≤ λ2r+1‖Gρ‖2

K .

The next proposition is the analysis of F z
λ − Fλ.

Proposition 2.8. There holds

E
[
‖F z

λ − Fλ‖ρ
]
≤ C̃AN,λ

(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
, (2.50)

where C̃ is a constant that will be specified in the proof.

Proof. By (2.21) and (2.38), we have

F z
λ − Fλ = (Lx

K + λI)−1 1

N2
STx Y − (LK + λI)−1 LK Fρ

=

(
(Lx

K + λI)−1 1

N2
STx Y − (Lx

K + λI)−1 LK Fρ

)
+
(
(Lx

K + λI)−1 LK Fρ − (LK + λI)−1 LK Fρ
)

=: T1 + T2. (2.51)

For T1, since
∥∥∥L1/2

K (LK + λI)−1/2
∥∥∥

op
≤ 1 and

‖F‖ρ = ‖L1/2
K F‖K =

∥∥∥L1/2
K (LK + λI)−1/2 (LK + λI)1/2 F

∥∥∥
K

≤
∥∥∥(LK + λI)1/2 F

∥∥∥
K
,

we obtain

‖T1‖ρ ≤
∥∥∥(LK + λI)1/2 T1

∥∥∥
K

≤
∥∥∥(LK + λI)1/2 (Lx

K + λI)−1 (LK + λI)1/2
∥∥∥

op

∥∥∥∥(LK + λI)−1/2

(
1

N2
STx Y − LK Fρ

)∥∥∥∥
K

= Qz,λSz,λ.
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By (2.46), (2.48) and the Cauchy-Schwarz inequality, there holds

EQz,λSz,λ ≤
(
EQ2

z,λES2
z,λ

)1/2 ≤
√

(CQ + 2)CSAN,λ
(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
,

where the last inequality comes from the elementary inequality
√
a+ b ≤

√
a+
√
b,

for all a, b ≥ 0. In conclusion,

E‖T1‖ρ ≤
√

(CQ + 2)CSAN,λ
(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
. (2.52)

For T2, by the first order decomposition (2.41), we have

‖T2‖ρ ≤
∥∥∥(LK + λI)1/2 T2

∥∥∥
K

=
∥∥∥(LK + λI)1/2

(
(Lx

K + λI)−1 − (LK + λI)−1
)
LK Fρ

∥∥∥
K

≤
∥∥∥(LK + λI)1/2 (Lx

K + λI)−1 (LK − Lx
K ) (LK + λI)−1 LK Fρ

∥∥∥
K

=
∥∥∥(LK + λI)1/2 (Lx

K + λI)−1 (LK + λI)1/2 (LK + λI)−1/2 (LK − Lx
K ) (LK + λI)−1 LK Fρ

∥∥∥
K

≤ Qz,λPz,λ
∥∥∥(LK + λI)−1 LK Fρ

∥∥∥
K

= Qz,λPz,λ ‖Fλ‖K . (2.53)

As a result of (2.46) and (2.47), we obtain

EQz,λPz,λ ≤
√

EQ2
z,λEP2

z,λ ≤
√

(CQ + 2)CPAN,λ
(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
. (2.54)

Moreover, it holds

‖Fλ‖K =
∥∥(LK + λI)−1 LK Fρ

∥∥
K
≤
∥∥(LK + λI)−1 LK

∥∥
op
‖Fρ‖K ≤ ‖Fρ‖K .

(2.55)

Due to (2.53), (2.54) and (2.55), we obtain

E ‖T2‖ρ ≤ ‖Fρ‖K
√

(CQ + 2)CPAN,λ
(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
. (2.56)

Combining (2.51), (2.52) and (2.56) together, we conclude

E ‖F z
λ − Fλ‖ρ ≤ C̃AN,λ

(
AN,λ√
λ

+
A2
N,λ

λ
+ 1

)
,

where C̃ = ‖Fρ‖K
√

(CQ + 2)CP +
√

(CQ + 2)CS .
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Proof of Theorem 2.2. Since

‖F z
λ − Fρ‖ρ ≤ ‖F

z
λ − Fλ‖ρ + ‖Fλ − Fρ‖ρ ,

the proof of (2.25) is a direct corollary of Proposition 2.7 and Proposition 2.8 with

C = C̃ + ‖Gρ‖K .

Proposition 2.9. There holds

E
[∥∥∥F z′

λ − Fλ
∥∥∥
ρ

]
≤ C̃ ′An,λ

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
, (2.57)

with some universal constant C̃ ′ to be specified in the proof.

Proof. This proof parallels the proof of Proposition 2.8. First,∥∥∥F z′

λ − Fρ
∥∥∥
ρ
≤ Qz′,λSz′,λ +Qz′,λPz′,λ ‖Fλ‖K . (2.58)

By (2.43) and (2.45) with θ = 2, we have

EQz′,λSz′,λ ≤
√

EQ2
z′,λES2

z′,λ ≤
√
C2,Q′C2,S′An,λ

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
. (2.59)

Furthermore, thanks to (2.44) and (2.45), there holds

EQz′,λPz′,λ ≤
√

EQ2
z′,λEP2

z′,λ ≤
√
C2,Q′C2,P ′An,λ

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
. (2.60)

By substituting (2.59), (2.60) and (2.55) into (2.58), we conclude (2.57) with C̃ ′ =√
C2,Q′C2,S′ +

√
C2,Q′C2,P ′ ‖Fρ‖K .

Proof of Theorem 2.1. By Proposition 2.7 and Proposition 2.9, we obtain∥∥∥F z′

λ − Fρ
∥∥∥
ρ
≤
∥∥∥F z′

λ − Fλ
∥∥∥
ρ

+ ‖Fλ − Fρ‖ρ

≤ (C̃ ′ + ‖Gρ‖K )

[
An,λ

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
+ λr+1/2

]
.
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Proof of Corollary 2.1. From the selection of λ, it’s obvious that

AN,λ ≤

(√
C0

2r + 1 + s
+ 1

)
N−

r+1/2
2r+1+s log

r+1/2
2r+1+s N,

AN,λ√
λ
≤

(√
C0

2r + 1 + s
+ 1

)
.

Note that logN ≥ 1 and log2N ≥ logN . From (2.25),

E ‖F z
λ − Fρ‖ρ ≤ C∗0N

− r+1/2
2r+1+s log

r+1/2
2r+1+s N

with C∗ = C((
√
C0/(s+ 1) + 1)3 + 1).

The proof of (2.30) parallels that of (2.29) by replacing C with C ′. Here, C∗′ =

C ′((
√
C0/(s+ 1) + 1)3 + 1).

The proof of Corollary 2.2 is similar to that of corollary 2.1 and is omitted.

2.4.3 Proofs of the Minimax Lower Bounds

Proof of Theorem 2.3. For F = LrK G with G ∈ HK and ‖G‖K ≤ R, we define the

corresponding probability measure ρF by

dρF (x, u, y′) =

[
B + F (x, u)

2B
dδB(y′) +

B − F (x, u)

2B
dδ−B(y′)

]
dµ(x)dµ(u)

with B = 4κ4r+2R and dδB being the Dirac measure massing at B, where µ is a

probability measure on X such that D1i
−1/s1 ≤ λi ≤ D2i

−1/s2 for each i. Hence

ρF ∈ P(s1, s2, r) with |y′| ≤ B and F being the target function.

Let sγ be the cardinality of the set Sγ = {(i, j) : γ ≤ ij ≤ 2γ} for a given

integer γ > 0. According to Varshamov-Gilbert’s Lemma (c.f., Lemma 4.7, [51]), for

any integer sγ ≥ 8, there is Θ = {w0, w1, ..., wm} ⊂ {0, 1}2γ×2γ with w
(st)
i being the

(s, t)-th component of wi for s, t = 1, 2, · · · , 2γ, such that
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1. w0 = (0)2γ×2γ;

2. w
(st)
i = 0 for (s, t) /∈ Sγ and i = 1, 2, · · ·m;

2. For i 6= j, ‖wi − wj‖2
F =

∑
γ≤st≤2γ

(
w

(st)
i − w(st)

j

)2

≥ sγ/4;

3. logm ≥ sγ/8.

We construct a function

Gi =
∑

γ≤st≤2γ

w
(st)
i Rs−1/2

γ Φst,

which is obviously in HK with

‖Gi‖2
K =

∑
γ≤st≤2γ

(
w

(st)
i

)2

s−1
γ R2 ≤ R2.

Define Fi = LrK Gi. Then ρFi ∈ P(s1, s2, r). By the reproducing property, there holds

‖Fi‖∞ ≤ κ2 ‖LrK Gi‖K ≤ κ4r+2R ≤ B

4
.

Let ξm be a random variable drawn from the uniform distribution on {1, 2, · · · ,m}.

According to a standard argument through Fano’s Lemma, see, for example, [73], it

holds

inf
F ′z

sup
ρ∈P(s1,s2,r)

Pz′∼ρn

{
‖F ′z − Fρ‖2

ρ ≥
1

4
min
i 6=j
‖Fi − Fj‖2

ρ

}

≥ 1− EX′ [IX′(Y ′; ξm)] + log 2

logm
,

where IX′(Y ′; ξm) is the mutual information between Y ′ and ξm conditioned on X ′.

Let

DKL

(
ρFi‖ρFj

)
=

∫
X×X

{
B + Fi(x, u)

2B
log

(
1 +

Fi(x, u)− Fj(x, u)

B + Fj(x, u)

)

+
B − Fi(x, u)

2B
log

(
1− Fi(x, u)− Fj(x, u)

B − Fj(x, u)

)}
dµ(x)dµ(u)
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be the the KL-divergence between ρFi and ρFj . Since ‖Fi‖∞, ‖Fj‖∞ ≤ B/4, there

holds ∣∣∣∣Fi(x, u)− Fj(x, u)

B + Fj(x, u)

∣∣∣∣ ≤ 2/3 < 1

and ∣∣∣∣Fi(x, u)− Fj(x, u)

B − Fj(x, u)

∣∣∣∣ ≤ 2/3 < 1.

By the elementary inequality log(1 + t) ≤ t for t > −1, we obtain

DKL

(
ρFi‖ρFj

)
≤
∫
X×X

Fi(x, u)− Fj(x, u)

2B

{
B + Fi(x, u)

B + Fj(x, u)
− B − Fi(x, u)

B − Fj(x, u)

}
dµ(x)dµ(u)

≤ 16

15B2
‖Fi − Fj‖2

ρ .

Note that

16

15B2
‖Fi − Fj‖2

ρ =
16R2

15B2sγ

∑
γ≤st≤2γ

λ2r+1
s λ2r+1

t

(
w

(st)
i − w(st)

j

)2

≤ D2r+2
2

15κ2(4r+2)
γ
− 2r+1

s2 .

It holds that

IX′(Y ′; ξm) =
1

m

m∑
i=1

DKL

(
(ρFi)

n‖ 1

m

m∑
j=1

(ρFj)
n

)
≤ 1

m2

m∑
i,j=1

DKL

(
(ρFi)

n‖(ρFj)n
)

=
n

m2

∑
i 6=j

DKL

(
ρFi‖ρFj

)
≤ D

2(2r+2)
2

15κ2(4r+2)
nγ
− 2r+1

s2 .

Note that

sγ =

2γ∑
i=1

b2γ/ic −
γ−1∑
i=1

b(γ − 1)/ic ≥ γ log
4γ

e2
.

We introduce constants α > 0 and τ1 > 0 and take γ ≥ τ1(n/δ)
s2

2r+1+s2 / logα n
δ
. Then

logm ≥ sγ/8 ≥
1

8
γ log

4γ

e2
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and

IX′(Y ′; ξm)

logm
≤ δ

for τ1 and n large enough, 0 < δ < 1, and α = s2
2r+1+s2

.

By taking γ to be the smallest integer greater than or equal to τ1(n/δ)
s2

2r+1+s2 / logα n
δ
,

we obtain

‖Fi − Fj‖2
ρ =

∑
γ≤st≤2γ

R2s−1
γ λ2r+1

s λ2r+1
t

(
w

(st)
i − w(st)

j

)2

≥ R2s−1
γ (2D2

1γ)
− 2r+1

s1 ‖wi − wj‖2
F

≥ R2

(2D1)
2(2r+1)
s1 8

γ
− 2r+1

s1 ≥ τ(n/δ)
− s2(2r+1)
s1(2r+1)+s1s2 log

2r+1
s1

α n

δ
,

for some constants τ .

In conclustion,

inf
Fz′

sup
ρ∈P(s1,s2,r)

Pz′∼ρn

{
‖Fz′ − Fρ‖2

ρ ≥
1

4
τδ

s2(2r+1)
s1(2r+1)+s1s2 n

− s2(2r+1)
s1(2r+1)+s1s2 log

s2(2r+1)
s1(2r+1+s2)

n

δ

}
≥ 1− δ − log 2/ logm.

This completes the proof of (2.35) by noting that m→∞ as n→∞.

To prove (2.36), consider the set Rγ = {(i, j) : γ1 ≤ i+ j ≤ γ2} with cardinality

rγ, where γ1 and γ2 are two integers to be specified later. Note that for (i, j) ∈ Rγ,

there holds e−t1γ2 ≤ λiλj ≤ e−t2γ1 . We can obtain (2.36) by the similar argument as

a result of

rγ =

(
1

2
γ2

2 −
γ2

2

)
−
(

1

2
(γ1 − 1)2 − γ1 − 1

2

)
≥ Cδ

(
log2 n

δ
− log2 n

2δ

)
= 2Cδ log 2 log

n√
2δ

by taking γ2 = d 1
t1(2r+1)

(log n
δ
−2 log log n

δ
)e and γ1 = b 1

t2(2r+1)
(log n

2δ
− log

(
cδ log n

δ
)c
)
,

for some constants Cδ and cδ.
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2.5 Proofs of Propositions in Section 2.2

In this section, we prove the properties of Kronecker product pairwise kernels stated

in section 2.2.

Proof of Proposition 2.1. According to [5], Φij ∈ HK and

〈Φij,Φst〉K = 〈φi, φs〉K 〈φj, φt〉K = δ((i,j),(s,t)),

where δ is the Kronecker delta function. This proves the orthonormality of {Φij}∞i,j=1.

Moreover, by Mercer’s Theorem [54] and the definition of K , we obtain

K ((x, u), (x′, u′)) = K(x, x′)K(u, u′) =

(
∞∑
i=1

φi(x)φi(x
′)

)(
∞∑
j=1

φj(u)φj(u
′)

)

=
∞∑

i,j=1

(φi(x)φj(u)) (φi(x
′)φj(u

′)) =
∞∑

i,j=1

Φij(x, u)Φij(x
′, u′),

where the third equality is a result of the absolute and uniform convergence of∑∞
i=1 φi(x)φi(x

′) thanks to Mercer’s Theorem. We have finished the proof of (a) and

(b).

Item (c) is obtained by noting that

LK Φij(x
′, u′) =

∫
X 2

φi(x)φj(u)K(x, x′)K(u, u′)dρX (x)dρX (u)

=

∫
X
φi(x)K(x, x′)dρX (x)

∫
X
φj(u)K(u, u′)dρX (u)

= LKφi(x
′)LKφj(u

′) = λiλjΦij(x
′, u′).

Now we prove item (d), (e) and (f). Note that

Φij(x, u) = φi(x)φj(u) = φj(u)φi(x) = Φji(u, x).
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We obtain that

K S
(x,u) =

1

2

(
K(x,u) + K(u,x)

)
=

1

2

∞∑
i=1

∞∑
j=1

Φij(x, u) (Φij + Φji)

=
∑
i<j

Φij(x, u) (Φij + Φji) +
∞∑
i=1

Φii(x, u)Φii

and that K S
(x,u) is symmetric. As a consequence,

{
1√
2
(Φij + Φji)

}
i<j
∪ {Φii}∞i=1 is the

orthonormal basis of HK S spanned by K S
(x,u) and any F ∈ HK S is symmetric. On the

other hand, for any F =
∑∞

i,j=1 FijΦij ∈ HK such that F (x, u) = F (u, x), x, u ∈ X ,

it holds

2F (x, u) = (F (x, u) + F (u, x)) =
∞∑

i,j=1

Fij (Φij(x, u) + Φji(x, u)) ∈ HK S .

Since Φij(x, u) = Φji(u, x), item (f) is a result of

LK S (Φij − Φji) =
1

2

∫
X×X

(Φij(x, u)− Φji(x, u)) K(x,u)dρX (x)dρX (u)

− 1

2

∫
X×X

(Φij(x, u)− Φji(x, u)) K(u,x)dρX (x)dρX (u)

=
1

2
(LK (Φij − Φji)− LK (Φji − Φij)) = λiλj(Φij − Φji).

The proof of the properties of K SS is done in the same way.

Proof of Proposition 2.3. Recall that

F (x, u) =
∞∑

i,j=1

FijΦij(x, u) =
∞∑

i,j=1

Fijφi(x)φj(u).
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Thus

‖F‖2
ρ =

∫
X×X

(
∞∑

i,j=1

Fijφi(x)φj(u)

)2

dρX (x)dρX (u)

=
∞∑

i,j,s,t=1

FijFst

∫
X
φi(x)φs(x)dρX (x)

∫
X
φj(u)φt(u)dρX (u)

=
∞∑

i,j,s,t=1

FijFst 〈φi, φs〉L2
ρX
〈φj, φt〉L2

ρX
.

By (2.15) and the orthogonality of {φi}∞i=1 and {Φij}∞i,j=1, there holds

∞∑
i,j,s,t=1

FijFst 〈φi, φs〉L2
ρX
〈φj, φt〉L2

ρX

=
∞∑

i,j=1

λiλjF
2
ij‖φi‖2

K‖φj‖2
K =

∥∥∥∥∥
∞∑

i,j=1

√
λiλjFijΦij

∥∥∥∥∥
2

K

=

∥∥∥∥∥
∞∑

i,j=1

Fij

(
L

1/2
K Φij

)∥∥∥∥∥
2

K

=
∥∥∥L1/2

K F
∥∥∥2

K
.

2.6 Proofs of the bounds on NK (λ)

In this section, we derive the upper and lower bounds of NK (λ) given in section 2.3.2.

Proof of Proposition 2.4.

Proof of the upper bound. Without loss of generality, we assume D2 = 1 and λi ≤ i−1/s2 .

Otherwise, it can be scaled into λ without affecting the degree of λ. Since t
t+λ

is

increasing with respect to t on [0,+∞), by letting p2 = 1/s2 > 1, we get

NK (λ) =
∞∑

i,j=1

λiλj
λiλj + λ

≤ 2
∞∑
i=1

λi
λ+ λi

+
∞∑
i=2

∞∑
j=2

1

1 + λip2jp2
=: 2NK(λ) + TU .

(2.61)
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We bound TU by the decomposition

∞∑
i=2

∞∑
j=2

1

1 + λip2jp2
≤

∞∑
i=2

∫ ∞
1

1

1 + (λ1/p2ix)p2
dx

=
∞∑
i=2

λ−1/p2i−1

∫ ∞
λ1/p2 i

1

1 + tp2
dt ≤ λ−1/p2

∫ ∞
1

1

x

∫ ∞
λ1/p2x

dt

1 + tp2
dx

=λ−1/p2

(∫ λ−1/p2

1

1

x

∫ ∞
λ1/p2x

dt

1 + tp2
dx+

∫ ∞
λ−1/p2

1

x

∫ ∞
λ1/p2x

dt

1 + tp2
dx

)
.

Note that∫ λ−1/p2

1

1

x

∫ ∞
λ1/p2x

dt

1 + tp2
dx ≤

(∫ ∞
0

1

1 + tp2
dt

)∫ λ−1/p2

1

dx

x
= CU,1 log(λ−1/p2)

with CU,1 =
∫∞

0
1

1+xp2
dx <∞, and that∫ ∞

λ−1/p2

1

x

∫ ∞
λ1/p2x

dt

1 + tp2
dx ≤

∫ ∞
λ−1/p2

1

x

∫ ∞
λ1/p2x

dt

tp2
dx =

λ−1+1/p2

(p2 − 1)2

(
λ−1/p2

)−p2+1
.

We have

TU ≤λ−1/p2

[
CU,1 log(λ−1/p2) +

λ−1+1/p2

(p2 − 1)2

(
λ−1/p2

)−p2+1
]

=λ−1/p2

[
CU,1 log(λ−1/p2) +

1

(p2 − 1)2

]
.

Since λ ≤ e−1 implies log(1/λ) ≥ 1, we obtain

TU =
∞∑
i=2

∞∑
j=2

1

1 + λip2jp2
≤ CUλ

−1/p2 log(1/λ), (2.62)

with CU = max
{
CU,1/p2,

1
(p2−1)2

}
. The proof of (2.26) is finished by substituting

(2.62) into (2.61).

Proof of the lower bound. Since λi ≥ D1i
−p1 for p1 = 1/s1 and D1 > 0, we get

NK (λ) =
∞∑

i,j=1

λiλj
λiλj + λ

≥
∞∑

i,j=1

1

1 + (λ/D2
1)ip1jp1

.
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Since
∞∑

i,j=1

1

1 + (λ/D2
1)ip1jp1

≥
∞∑
i=1

∫ ∞
1

1

1 + ((λ/D2
1)1/p1ix)p1

dx

=
∞∑
i=1

λ−1/p1i−1

∫ ∞
(λ/D2

1)1/p1 i

1

1 + tp1
dt

≥ λ−1/p1

∫ ∞
1

1

x

∫ ∞
(λ/D2

1)1/p1x

1

1 + tp1
dtdx,

there holds

NK (λ) ≥ λ−1/p1

∫ ∞
1

1

x

∫ ∞
(λ/D2

1)1/p1x

1

1 + tp1
dtdx

≥ λ−1/p1

∫ λ−1/p1

1

1

x

∫ ∞
(λ/D2

1)1/p1x

1

1 + tp1
dtdx

≥ λ−1/p1

∫ λ−1/p1

1

1

x

∫ ∞
D

2/p1
1

1

1 + tp1
dtdx

=: CLλ
−1/p1 log(λ−1/p1).

Thus we obtain (2.27) with D0 = CL/p1.

Proof of Proposition 2.5. Since

NK(λ) =
∞∑
i=1

λi
λi + λ

≤ C̃0λ
−s, forλ ≤ λ1,

it holds

i∑
j=1

λj
λj + λi

≤ C̃0λ
−s
i

by taking λ = λi. Note that
λj

λj+λi
≥ 1/2 for any j ≤ i. Thus

i

2
≤

i∑
j=1

λj
λj + λi

≤ C̃0λ
−s
i .
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Proof of Proposition 2.6.

Proof of the upper bound. Without loss of generality, we assume D̂2 = 1. Then

λi ≤ exp(−t2i) and we have

NK (λ) ≤
∞∑

i,j=1

1

1 + λ exp(t2(i+ j))
≤
∫ ∞

0

∫ ∞
0

1

1 + (λ exp(t2(x+ y))
dydx. (2.63)

Since λ ≤ e−1 and log(1/λ) ≥ 1 > 0, we decompose the integral in (2.63) as∫ ∞
0

∫ ∞
0

1

1 + (λ exp(t2(x+ y))
dydx =

∫ ∞
0

∫ ∞
log λ+t2x

1

1 + es
dsdx

=

∫ log(1/λ)
t2

0

∫ ∞
log λ+t2x

1

1 + es
dsdx+

∫ ∞
log(1/λ)

t2

∫ ∞
log λ+t2x

1

1 + es
dsdx.

Note that∫ log(1/λ)
t2

0

∫ ∞
log λ+t2x

dsdx

1 + es
=

∫ log(1/λ)
t2

0

∫ 0

log λ+t2x

dsdx

1 + es
+

∫ log(1/λ)
t2

0

∫ ∞
0

dsdx

1 + es

≤
∫ log(1/λ)

t2

0

∫ 0

log λ+t2x

dsdx+

∫ log(1/λ)
t2

0

∫ ∞
0

dsdx

es

=
log2 1

λ

2t2
+

log(1/λ)

t2
≤ 3 log2(1/λ)

2t2
,

and ∫ ∞
log(1/λ)

t2

∫ ∞
log λ+t2x

1

1 + es
dsdx ≤

∫ ∞
log(1/λ)

t2

∫ ∞
log λ+t2x

dsdx

es
=

1

t2
.

We obtain NK (λ) ≤ 5 log2(1/λ)
2t2

.

Proof of the lower bound. For λi ≥ D̂1 exp(−t1i) and λ̃ = λ/D̂2
1, there holds

NK (λ) ≥ 1

1 + (λ/D̂2
1) exp(t1(i+ j))

≥
∫ ∞

1

∫ ∞
1

1

1 + λ̃et1(x+y)
.
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Since λ ≤ D̂2
1 exp(−8t1) ≤ D̂2

1 exp(−2t1) and 1
t1

log(1/λ̃)− 1 ≥ 1, we obtain∫ ∞
1

∫ ∞
1

1

1 + λ̃et1(x+y)
≥
∫ 1

t1
log(1/λ̃)−1

1

∫ 0

log λ̃+t1(x+1)

1

1 + es
dsdx

≥
∫ 1

t1
log(1/λ̃)−1

1

∫ 0

log λ̃+t1(x+1)

1

2
dsdx

=
1

2

(
1

2t1
log2

(
1

λ̃

)
− 2 log

(
1

λ̃

)
+ 2t1

)
.

Note that 1
4t1

log2(1/λ̃) ≥ 2 log(1/λ̃) for λ ≤ D̂1
2

exp(−8t1). There holds

NK (λ) ≥ 1

8t1
log2(1/λ̃).

Since 1
2

log(1/λ) + log(D̂2
1) ≥ 0 for λ ≤ D̂4

1, we obtain

1

8t1
log2(1/λ̃) ≥ 1

32t1
log2 1

λ
.

2.7 Proofs of Technical Lemmas

Lemma 2.2 and Lemma 2.3 are proved in this section.

2.7.1 Proof of Lemma 2.2

The proof of Lemma 2.2 is based on the following lemmas. The first one is Pinelis’

concentration inequality [59].

Lemma 2.4. For a random variable ξ on (Z, ρ) with values in a separable Hilbert

space (H, ‖ · ‖) satisfying ‖ξ‖ ≤M <∞ almost surely, and a random sample {zi}si=1

independently drawn according to ρ, there holds with confidence 1− δ,∥∥∥∥∥1

s

s∑
i=1

[ξ(zi)− Eξ]

∥∥∥∥∥ ≤ 2M log(2/δ)

s
+

√
2E(‖ξ‖2) log(2/δ)

s
. (2.64)
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The next Lemma is about the application of NK (λ).

Lemma 2.5. Let {z′i = (xi, ui, y
′
i)}ni=1 be a sequence of i.i.d. copies of z′ = (x, u, y′) ∈

(X 2 × Y , ρ). Then, the following statements hold true.

(a) E
∥∥∥(LK + λI)−1/2 K(x,u)

∥∥∥2

K
= NK (λ).

(b) For any bounded measurable real-valued function g and ξg(z
′) = g(z′)K(x,u),

with confidence at least 1− δ, it holds∥∥∥∥∥(LK + λI)−1/2

(
1

n

n∑
i=1

ξg(z
′
i)− E[ξg]

)∥∥∥∥∥
K

≤ 2‖g‖∞(κ2 + 1)An,λ log(2/δ).

(2.65)

Proof. Note that

K(x,u) =
∞∑

i,j=1

Φij(x, u)Φij,

and

(LK + λI)−1/2 K(x,u) =
∞∑

i,j=1

Φij(x, u)

(λiλj + λ)1/2
Φij.

Then

E
∥∥∥(LK + λI)−1/2 K(x,u)

∥∥∥2

K
=

∞∑
i,j=1

∫
X×X Φij(x, u)2dρX (x)dρX (u)

λiλj + λ

=
∞∑

i,j=1

‖Φij‖2
ρ

λiλj + λ
=

∞∑
i,j=1

∥∥∥L1/2
K Φij

∥∥∥2

K

λiλj + λ
=

∞∑
i,j=1

λiλj
λiλj + λ

= NK (λ).

The proof of (2.65) is a direct application of Lemma 2.4 by noting that

‖ (LK + λI)−1/2 ξg‖K ≤ ‖g‖∞
∥∥∥(LK + λI)−1/2

∥∥∥
op
‖K(x,u)‖K ≤

‖g‖∞κ2

√
λ

,

E‖ (LK + λI)−1/2 ξg‖2
K ≤ ‖g‖2

∞E
∥∥∥(LK + λI)−1/2 K(x,u)

∥∥∥2

K
= ‖g‖2

∞NK (λ).
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Based on the lemmas above, we derive the probabilistic bounds for quantities

defined above in Lemma 2.2.

Lemma 2.6. Assume that |y′| ≤M . Then for 0 < δ < 1, each of the following bound

holds with confidence 1− δ.

Sz′,λ ≤ CS′An,λ log(2/δ), (2.66)

Pz′,λ ≤ CP ′An,λ log(2/δ), (2.67)

Qz′,λ ≤ CQ′

(
An,λ√
λ

+
A2
n,λ

λ

)
log2(2/δ) + 1, (2.68)

with CS′ = 2M(κ2 + 1), CP ′ = 2(κ4 + κ2) and CQ′ = CP ′ + C2
P ′.

Proof. We first bound Sz′,λ. Note that

Ey′K(x,u) =

∫
X 2

∫
Y
y′dρ(y′|x, u)dρX (x)dρX (u) =

∫
X 2

Fρ(x, u)dρX (x)dρX (u) = LK Fρ

and

(LK + λI)−1/2

(
1

n
STx′Y

′ − LK Fρ

)
= (LK + λI)−1/2 1

n

n∑
i=1

(y′iK(xi,ui) − LK ).

Apply (2.65) to Sz′,λ with g(z′) = y′, and we obtain (2.66) as a result of ‖g‖∞ =

supy′∈Y |y′| ≤M .

Now we bound Pz′,λ. Apply Lemma 2.5 to ξF (z′) = F (x, u)K(x,u) for any F ∈ HK ,

and there holds∥∥∥(LK + λI)−1/2
(
Lx′

K F − LK F
)∥∥∥

K
=

∥∥∥∥∥(LK + λI)−1/2

(
1

n

n∑
i=1

ξF (z′i)− EξF (z′)

)∥∥∥∥∥
K

≤ 2 ‖F‖∞ (κ2 + 1)An,λ log(2/δ) ≤ 2κ2‖F‖K (κ2 + 1)An,λ log(2/δ),

where the last inequality follows ‖F‖∞ ≤ κ2‖F‖K . This implies (2.67) according to

the definition of the operator norm.
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To derive the bound of Qz′,λ, we use the following decomposition

Qz′,λ ≤
∥∥∥∥(LK + λI)1/2

[(
Lx′

K + λI
)−1

− (LK + λI)−1

]
(LK + λI)1/2

∥∥∥∥
op

+
∥∥∥(LK + λI)1/2 (LK + λI)−1 (LK + λI)1/2

∥∥∥
op

=: Qz′,0 + 1. (2.69)

Note that∥∥∥∥(Lx′

K + λI
)−1 (

LK − Lx′

K

)∥∥∥∥
op

=

∥∥∥∥(LK − Lx′

K

)(
Lx′

K + λI
)−1
∥∥∥∥

op

as a result of the symmetry of
(
Lx′

K + λI
)−1

and LK − Lx′

K . By applying the second

order decomposition (2.42) to
(
Lx′

K + λI
)−1 − (LK + λI)−1 , we have

Qz′,0 ≤
∥∥∥(LK + λI)−1/2

(
LK − Lx′

K

)
(LK + λI)−1/2

∥∥∥
op

+

∥∥∥∥(LK + λI)−1/2
(
LK − Lx′

K

)(
Lx′

K + λI
)−1 (

LK − Lx′

K

)
(LK + λI)−1/2

∥∥∥∥
op

≤ Pz,λ√
λ

+
P2

z,λ

λ
. (2.70)

We obtain (2.68) by substituting (2.67) and (2.70) into (2.69).

We use the following Lemma to derive expected error bounds from the probabilistic

error bounds.

Lemma 2.7. Let ξ be a positive random variable. If there are constants a > 0, b >

0, τ > 0 such that for any 0 < δ ≤ 1, with confidence at least 1 − δ, there holds

ξ ≤ a(log b
δ
)τ , then for any θ > 0 we have E[ξθ] ≤ aθbΓ(τθ + 1).

Lemma 2.7 is a standard result, of which the proof can be found, e.g., in [39].

Proof of Lemma 2.2. The proofs of (2.43) and (2.44) are direct applications of Lemma

2.7 to (2.66) and (2.67), respectively, with Cθ,S′ = 2Cθ
S′Γ(θ+ 1), Cθ,P ′ = 2Cθ

P ′Γ(θ+ 1).
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By noting that log(2/δ) > 1, (2.68) becomes

Qz′,λ ≤ CQ′

(
An,λ√
λ

+
A2
n,λ

λ

)
log2(2/δ) + 1 ≤ max{CQ′ , 1}

(
An,λ√
λ

+
A2
n,λ

λ
+ 1

)
log2 2

δ
.

(2.45) follows Lemma 2.7 with Cθ,Q′ = 2
(
max{C ′Q, 1}

)θ
Γ(2θ + 1).

2.7.2 Proof of Lemma 2.3

Average of sums of i.i.d. blocks. Consider a sequence of real numbers {aij}Ni,j=1.

We have

(N − 2)! bN/2c
∑
i 6=j

aij =
∑
π∈ΠN

bN/2c∑
i=1

aπ(i),π(bN/2c+i), (2.71)

where ΠN is the set of all the permutations of {1, 2, ..., N}. In fact, it is easy to see

that each aij with i 6= j, has been added (N − 2)!bN/2c times on the right-hand side

of (2.71). Equation (2.71) is widely used in U -statistics and is known as the average

of sums of i.i.d. blocks technique [23] since it can simplify the analysis of dependent

random variables to the independent case as shown in the following lemma.

Lemma 2.8 is a variant of (Lemma A.1, [23]) for random variables taking values

in a Hilbert space.

Lemma 2.8. Consider a sequence of random variables {ξij}Ni,j=1 taking values in a

Hilbert space (H, ‖ · ‖), such that for any distinct positive integers i, j, s, t, ξij and

ξst are independent and identically distributed. Then for any convex nondecreasing

function ψ : R→ R, there holds

Eψ

(∥∥∥∥∥ 1

N(N − 1)

∑
i 6=j

ξij

∥∥∥∥∥
)
≤ Eψ

∥∥∥∥∥∥ 1

bN/2c

bN/2c∑
i=1

ξi,bN/2c+i

∥∥∥∥∥∥
 . (2.72)

Proof. It is straightforward to generalize (2.71) to sequences in a Hilbert space by

doing inner product with each element in that space due to the linearity of inner
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products. Thus, we have

1

N(N − 1)

∑
i 6=j

ξij =
1

N !

∑
π∈ΠN

1

bN/2c

bN/2c∑
i=1

ξπ(i),π(bN/2c+i).

Then it holds∥∥∥∥∥ 1

N(N − 1)

∑
i 6=j

ξij

∥∥∥∥∥ =

∥∥∥∥∥∥ 1

N !

∑
π∈ΠN

1

bN/2c

bN/2c∑
i=1

ξπ(i),π(bN/2c+i)

∥∥∥∥∥∥
≤ 1

N !

∑
π∈ΠN

∥∥∥∥∥∥ 1

bN/2c

bN/2c∑
i=1

ξπ(i),π(bN/2c+i)

∥∥∥∥∥∥ .
Since ψ is convex and nondecreasing, (2.72) is proved by Jensen’s inequality and the

i.i.d. assumption on ξij, ξst for distinct positive integers i, j, s, t .

Proof of Lemma 2.3. We first bound Sz,λ. Note that

1

N2
STx Y =

1

N2

N∑
i,j=1

yijK(xi,xj) =
1

N2

N∑
i=1

yiiK(xi,xi) +
1

N2

∑
i 6=j

yijK(xi,xj).

Thus

Sz,λ ≤

∥∥∥∥∥(LK + λI)−1/2 1

N2

N∑
i=1

(
yiiK(xi,xi) − LK Fρ

)∥∥∥∥∥
K

+

∥∥∥∥∥(LK + λI)−1/2 1

N(N − 1)

∑
i 6=j

(
yijK(xi,xj) − LK Fρ

)∥∥∥∥∥
K

=: Sλ,1 + Sλ,2, (2.73)

as a result of 1/N2 ≤ 1/(N(N − 1)). Since |yii| ≤ M ,
∥∥K(x,u)

∥∥
K
≤ κ2 and

‖LK ‖op ≤ κ4, we obtain

Sλ,1 ≤
Mκ2 + κ4‖Fρ‖K

N
√
λ

≤
(
Mκ2 + κ4‖Fρ‖K

)
AN,λ. (2.74)
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For Sλ,2, by Lemma 2.8 and (2.43), there holds

ES2
λ,2 ≤ E

∥∥∥∥∥(LK + λI)−1/2 1

n

n∑
i=1

(
y′iK(xi,ui) − LK Fρ

)∥∥∥∥∥
2

K

= ES2
z′,λ ≤ C2,S′A2

n,λ,

(2.75)

thanks to the monotonicity and convexity of x2 for x > 0, where n = bN/2c, y′i = yi,n+i

and ui = xn+i. Note that for n = bN/2c and N ≥ 4,

An,λ ≤ 4AN,λ.

Thus (2.75) becomes

ES2
λ,2 ≤ 16C2,S′A2

N,λ. (2.76)

By choosing CS = 2(16C2,S′ + (Mκ2 + κ4‖Fρ‖K )
2
), according to (2.74), (2.76) and

(2.73), we obtain

ES2
z,λ ≤ 2

(
ES2

λ,1 + ES2
λ,1

)
≤ CSA2

N,λ.

Now we bound Pz,λ. Consider the decomposition

Pz,λ ≤

∥∥∥∥∥(LK + λI)−1/2 1

N2

N∑
i=1

(〈
·,K(xi,xi)

〉
K

K(xi,xi) − LK

)∥∥∥∥∥
op

+

∥∥∥∥∥∥(LK + λI)−1/2 1

N(N − 1)

∑
i 6=j

(〈
·,K(xi,xj)

〉
K

K(xi,xj) − LK

)∥∥∥∥∥∥
op

=: Pλ,1 + Pλ,2. (2.77)

For Pλ,1, similarly to (2.13), we have∥∥〈·,K(xi,xi)

〉
K

K(xi,xi)

∥∥
op
≤ κ4,

and

Pλ,1 ≤
2κ4

N
√
λ
. (2.78)
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To bound Pλ,2, by applying (2.72) again, there holds

EP2
λ,2 ≤ EP2

z′,λ ≤ C2,P ′A2
n,λ ≤ 16C2,P ′A2

N,λ. (2.79)

By (2.77), (2.78) and (2.79), we get

EP2
z,λ ≤ 2(EP2

λ,1 + P2
λ,2) ≤ CPA2

N,λ (2.80)

with CP = 32C2,P ′ + 8κ8.

To bound Qz,λ, we do the decomposition

Qz,λ ≤
∥∥∥(LK + λI)1/2 [(Lx

K + λI)−1 − (LK + λI)−1] (LK + λI)1/2
∥∥∥

op

+
∥∥∥(LK + λI)1/2 (LK + λI)−1 (LK + λI)1/2

∥∥∥
op

=: Qz,0 + 1. (2.81)

Use the second order decomposition (2.42) and we obtain

Qz,0 ≤
∥∥∥(LK + λI)−1/2 (LK − Lx

K ) (LK + λI)−1/2
∥∥∥

op

+
∥∥∥(LK + λI)−1/2 (LK − Lx

K ) (Lx
K + λI)−1 (LK − Lx

K ) (LK + λI)−1/2
∥∥∥

op

≤ Pz,λ√
λ

+
P2

z,λ

λ
. (2.82)

By (2.81) and (2.82), we have

EQ2
z,λ ≤ 2EQ2

z,0 + 2 ≤ 4

(EP2
z,λ

λ
+

EP4
z,λ

λ2

)
+ 2. (2.83)

By Lemma 2.8, (2.77) and (2.78),

EP4
z,λ ≤ 8

(
EP4

λ,1 + EP4
λ,2

)
≤ 128κ16

N4λ2
+ 8EP4

z′,λ

≤
(
128κ16 + 44 × 8C4,P ′

)
A4
N,λ =: C4,PA4

N,λ. (2.84)

Substitute (2.47) and (2.84) into (2.83), and we obtain (2.46) with

CQ = 4 max{CP , C4,P}.

.
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Chapter 3

Sparse Semi-supervised Learning

with Summary Statistics

Many kernel-based machine learning algorithms need the availability of input data

during the training process while the data may be unavailable in many circumstances

due to privacy issues. However, there are usually unlabeled data published without

privacy issues from the same distribution as the input of the private data [90].

The learning process with both labeled (a.k.a. supervised) and ublabeled (a.k.a.

unsupervised) data, is often called semi-supervised learning [11,18,36]. Based on the

unlabeled data and the summary statistics (a statistic generated with the labeled

data with the hope to reduce the leak of sensitive data), a novel algorithm for linear

models has been proposed [50, 90] and been extended to the kernel-based learning

scheme with empirical features [61]. In this chapter, we propose a semi-supervised

learning algorithm that achieves both sparsity and approximation accuracy based on

the summary statistics and empirical features.

3.1 Summary Statistics

Let X be an input space and Y = R be the output space. Here X × Y is equipped

with a Borel probability measure ρ that can be decomposed as a marginal measure

ρX on X and a conditional measure ρ(·|x) at x ∈ X on Y . Recall the target function
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fρ to be recovered in least-squares regression

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X .

Given a Mercer kernel K : X × X → R, let (HK , 〈·, ·〉K) be the corresponding

reproducing kernel Hilbert space (RKHS). Assume that κ2 := supx∈X K(x, x) <

+∞ and |y| ≤ M < +∞. Recall the integral operator defined by (1.2) and the

notation Kx(u) = K(x, u), x, u ∈ X . Let {(λi, φi)}∞i=1 be the eigensystem of LK

orthonormalized in HK . Based on the input observations x = {xi}mi=1, we can define

the empirical integral operator with respect to x as

Lx
K : HK → HK ,

f 7→ 1

m

m∑
i=1

f(xi)Kxi .

Since Lx
K is positive semi-definite with rank at most m [38], we can write its eigensys-

tem orthonormalized in HK as {(λxi , φx
i )}∞i=1 with λx1 ≥ λx2 ≥ · · · ≥ λxm ≥ 0 = λxm+1 =

· · · . Note that Lx
K depends only on x. With unlabeled data u = {ui}ni=1 ⊂ X , we can

define similarly Lu
K the empirical integral operator with respect to u and write the

corresponding eigensystem {(λui , φu
i )}∞i=1 with λu1 ≥ λu2 ≥ · · · ≥ λun ≥ 0 = λun+1 = · · · .

Recently, a novel estimator was introduced in linear regression for privacy con-

sideration. Consider a linear model Y = Xβ + ε and its least squares estimator

β̂ =
(
XTX

)−1
XTY . Since the access to the coefficient matrix X may be impossible

due to privacy issues, [50, 90] define a new estimator β̂′ =
(
X̃T X̃

)−1

XTY . Here

X̃ is from openly accessible and unlabeled data. To obtain β̂′, one need only the

summary statistics XTY and the covariance matrix X̃T X̃. Thus, the direct exposure

of private information in X is avoided. [61] generalized the summary statistics to

the non-parametric case. Based on the empirical features, the summary statistic is
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defined by du,z = (du,z1 , · · · , du,zn ) with

du,zi =

〈
φu
i ,

1

m

m∑
j=1

yjKxj

〉
K

, 1 ≤ i ≤ n. (3.1)

3.2 Algorithm

In [38], an empirical feature-based learning algorithm based on `1 regularization

was proposed that produce output function with both sparsity and approximation

accuracy. In particular, the output function is

fz
γ =

m∑
i=1

czγ,iφ
x
i

with cz
γ =

(
czγ,1, · · · , czγ,m

)T ∈ Rm defined by

cz
γ = arg min

c∈Rm

 1

m

m∑
i=1

((
m∑
j=1

cjφ
x
j

)
(xi)− yi

)2

+ γ ‖c‖1

 .

Here ‖·‖1 is the `1 norm of a vector, i.e., ‖c‖1 =
∑m

i=1 |ci| for any c = (c1, · · · , cm)T ∈

Rm. [38] reveals that czγ has a closed form representation as

czγ,i =


0, if 2 |dzi | ≤ γ or λxi = 0,
1
λxi

(dzi − γ/2) if dzi > γ/2 and λxi > 0,
1
λxi

(dzi + γ/2) if dzi < −γ/2 and λxi > 0,

with

dzi =
1

m

m∑
j=1

yjφ
x
i (xj) =

〈
φx
i ,

1

m

m∑
j=1

yjKxj

〉
K

, 1 ≤ i ≤ m.

Note that du,zi defined in (3.1) can be obtained by replacing φx
i with φu

i in the

definition of dxi . According to the idea of summary statistics and `1 regularized

empirical feature-based learning, we propose a new learning algorithm as

fu,z
γ =

n∑
i=1

cu,zγ,i φ
u
i
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with cu,z
γ =

(
cu,z
γ,1 , · · · , cu,z

γ,m

)
defined by

cu,zγ,i =


0, if 2 |du,zi | ≤ γ or λui = 0,
1
λui

(du,zi − γ/2) , if du,zi > γ/2 and λui > 0,
1
λui

(du,zi + γ/2) , if du,zi < −γ/2 and λui > 0.

In the following of this chapter, we simply drop the superscripts u and z and rewrite

d = du,z, cu,z
γ = cγ, di = du,zi , and cγ,i = cu,zγ,i .

3.3 Main Results

Theorem 3.1. Let p ∈ {1, 2, · · · , n} and assume that fρ = LrK(gρ) with some r > 0

and gρ ∈ HK. For any 0 < δ < 1/3, if we choose

γ ≥ 21+2r ‖gρ‖K λ
1+r
p + CK,ρ

(
1√
n

+
1√
m

)
log1+r 2

δ
,

where CK,ρ is a constant given in [38], then there is a universal constant C < ∞,

which will be specified in the proof, such that

∥∥fu,zγ − fρ
∥∥
K
≤ C

λrp+1 + λmin{r−1,0}
p

 ∞∑
i=p+1

λ
max{2r,2}
i

1/2

+
1

λp

(
1√
n

+
1√
m

)
log

2

δ
+

√
2pγ

λp


with confidence 1− 3δ.

Theorem 3.2. Assume that fρ = LrK(gρ) for some r > 0 and gρ ∈ HK and assume

that the eigenvalues satisfy

D1i
−α1 ≤ λi ≤ D2i

−α2 , for any i ∈ N,

with 0 < α2 ≤ α1 <∞. We have

(i) If r ≥ 1 with 1
2r
< α2 ≤ α1 < α2(1 + r)− 1

2
, then, by taking

γ = 21+2r ‖gρ‖K D
r+1
2 n

− α2(r+1)
2(α1+rα2) + CK,ρ

(
1√
n

+
1√
m

)
log1+r 2

δ
,
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there holds∥∥fu,z
γ − fρ

∥∥
K
≤ C1

(
1√
n

+
1√
m

+ n
− α2(1+r)

2(α1+rα2)

)
n

2α1+1
4(α1+rα2) log1+r 2

δ
,

where C1 is a universal constant to be specified in the proof.

(ii) If 0 < r < 1 and 1
2r
< α2 ≤ α1 < α2(1− r)− 1

2
, then, by taking

γ = 21+2r ‖gρ‖K D
r+1
2 n

− α2(r+1)
2(α2+rα1) + CK,ρ

(
1√
n

+
1√
m

)
log1+r 2

δ
,

there holds∥∥fu,z
γ − fρ

∥∥
K
≤ C2

(
1√
n

+
1√
m

+ n
− α2(1+r)

2(α2+rα1)

)
n

2α1+1
4(α2+rα1) log1+r 2

δ
,

where C2 is a universal constant to be specified in the proof.

When α1 = α2 = α, one takes n = dmse with s > 0 to see that the best choice of

s is s = 1, i.e., m = n. In this case, the convergence rate matches the rate of [38]

and is slower than the most up-to-date work on empirical features [35]. Bridging

the gap between our semi-supervised learning case and [35] is not trivial since the

analysis of [35] depends heavily on the orthogonality of φx
i restricted on x, which is

not satisfied when φu
i is restricted on x.

3.4 Proof

3.4.1 Technical Lemmas

Lemma 3.1. For 0 < δ < 1/3, there holds

n∑
i=1

(
di − λui 〈fρ, φu

i 〉K
)2 ≤ C2

3

(
1

n
+

1

m

)
log2 2

δ

with confidence 1− 3δ. Here C2
3 = 4

(
8Mκ+ 4κ2 ‖fρ‖K

)2
is a constant independent

of δ, n,m, or γ.
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Proof. Note that

λui 〈fρ, φu
i 〉K = 〈Lu

Kfρ, φ
u
i 〉K .

We obtain

di − λui 〈fρ, φu
i 〉K =

〈
1

m

m∑
j=1

yjKxj − Lu
Kfρ, φ

u
i

〉
K

and

n∑
i=1

(
di − λui 〈fρ, φu

i 〉K
)2

=
n∑
i=1

〈
1

m

m∑
j=1

yjKxj − Lu
Kfρ, φ

u
i

〉2

K

≤

∥∥∥∥∥ 1

m

m∑
j=1

yjKxj − Lu
Kfρ

∥∥∥∥∥
2

K

≤ 4

∥∥∥∥∥ 1

m

m∑
j=1

yjKxj − Lx
Kfρ

∥∥∥∥∥
2

K

+ ‖Lx
Kfρ − LKfρ‖

2
K + ‖Lu

Kfρ − LKfρ‖
2
K

 .

According to Lemma 2 and Lemma 3 of [38], for each 0 < δ < 1, each of the following

inequality holds with confidence 1− δ.∥∥∥∥∥ 1

m

m∑
j=1

yjKxj − Lx
Kfρ

∥∥∥∥∥
K

≤
8Mκ log 2

δ√
m

,

‖Lx
Kfρ − LKfρ‖K ≤ ‖LK − L

x
K‖op ‖fρ‖K ≤ ‖LK − L

x
K‖HS ‖fρ‖K ≤

4κ2 ‖fρ‖K log 2
δ√

m
,

‖Lu
Kfρ − LKfρ‖K ≤

4κ2 ‖fρ‖K log 2
δ√

n
.

Lemma 3.2. Assume that fρ = LrK(gρ) for some r > 0 and gρ ∈ HK. For any

p ∈ {1, 2, · · · , n} and 0 < δ < 1
3
, if we choose

γ ≥ 21+2r ‖gρ‖K λ
1+r
p + CK,ρ

(
1√
n

+
1√
m

)
log1+r 2

δ
,

then

cγ,i = 0, for any i = p+ 1, · · · , n,

with confidence 1− 3δ.
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Proof. According to Lemma 3.1, we see that

2|di| ≤ 2λui
∣∣〈fρ, φu

i 〉K
∣∣+ 2

∣∣di − λui 〈fρ, φu
i 〉K
∣∣ ≤ 2λui

∣∣〈fρ, φu
i 〉K
∣∣+ 2C3

(
1√
n

+
1√
m

)
log

2

δ
.

Thanks to Lemma 5 of [38], there holds

2λui
∣∣〈fρ, φu

i 〉K
∣∣ ≤ 2

(
λr1 ‖gρ‖K ‖LK − L

u
K‖HS + 2r ‖gρ‖K (λui )1+r)

≤ 2λr1 ‖gρ‖K
4κ2 log 2

δ√
n

+ 21+r ‖gρ‖K (λui )1+r . (3.2)

By the proof of Theorem 5 of [38],

(λui )1+r ≤ 2r
(
λ1+r
i + ‖LK − Lu

K‖
1+r
HS

)
≤ 2r

(
λ1+r
i +

4κ2 log1+r 2
δ√

n

)
.

In conclusion,

2|di| ≤ 21+2r ‖gρ‖K λ
1+r
p + CK,ρ

(
1√
n

+
1√
m

)
log1+r 2

δ
≤ γ

with CK,ρ = 4κ2 (2λr1 + 21+2r) ‖gρ‖K + 2C3.

3.4.2 Proof of Main Results

Proof of Theorem 3.1. Let S = {1 ≤ i ≤ p : λui > λp/2} for p ∈ {1, 2, · · · , n}. Due

to equation (3.2), we have

2λui
∣∣〈fρ, φu

i 〉K
∣∣ ≤ 2λr1 ‖gρ‖K ‖LK − L

u
K‖HS + 21+r ‖gρ‖K (λui )1+r

≤ 2λr1 ‖gρ‖K
4κ2 log 2

δ√
n

+ ‖gρ‖K λ
1+r
p ,

and 2|di| ≤ γ, for any i ∈ N\S. Thus cγ,i = 0 for any i ∈ N\S. Decompose∥∥fu,z
γ − fρ

∥∥2

K
=
∑
i∈N\S

〈fρ, φu
i 〉

2
K +

∑
i∈S

(
〈fρ, φu

i 〉K − cγ,i
)2

=: ∆1 + ∆2.
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Similarly as the proof of Theorem 4 of [38], we get

√
∆1 ≤ Cr,ρ

λrp+1 + λmin{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

+ ‖LK − Lu
K‖HS



≤ Cr,ρ
(
4κ2 + 1

)λrp+1 + λmin{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

+
log 2

δ√
n

 .

with some constants cr,ρ that is specified in [38].

For ∆2, we have

∆2 =
∑
i∈S

(
〈fρ, φu

i 〉K − cγ,i
)2 ≤

∑
i∈S

4

λ2
p

(
λui
(
〈fρ, φu

i 〉K − cγ,i
))2

≤ 8

λ2
p

 p∑
i=1

(di − λui 〈fρ, φu
i 〉)

2 +
∑

1≤i≤p,2|di|≤γ

d2
i

 ≤ 8

[
C2

3

(
1

n
+

1

m

)
log2 2

δ

λ2
p

+
pγ2

4λ2
p

]
.

We complete the proof by taking C = 2
√

2 (C3 + 1) + Cr,ρ(4κ
2 + 1).

Proof of Theorem 3.2. Let p = dnβe for some 0 < β < 1 to be decided later. Thus

nβ ≤ p ≤ 2nβ and

λrp +

(
1

λp
√
n

+
1

λp
√
m

)
log

2

δ
≤ Dr

2n
−α2βr +

2α1

D1

(
n−

1
2

+α1β +m−1/2nα1β
)

log
2

δ
.

For r ≥ 1, there holds

λmin{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

≤ Dr
2√

2rα2 − 1
n−

β(2rα2−1)
2 .

By the selection of γ, we have

√
2pγ

λp
≤
√

2p

(
21+2r ‖gρ‖K λ

r
p + CK,ρ

1

λp

(
1√
m

+
1√
n

)
log1+r 2

δ

)

≤ 2
(
21+2r ‖gρ‖K + CK,ρ

)
n
β
2

(
Dr

2n
−α2βr +

2α1

D1

(
n−

1
2

+α1β +m−
1
2nα1β

))
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We obtain the upper bound by taking β = 1
2(α1+α2r)

with

C1 = C

[(
Dr

2 +
2α1

D1

)(
2
(
21+2r ‖gρ‖K + CK,ρ

)
+ 1
)

+
Dr

2√
2α2r − 1

]
.

For 0 < r < 1, it holds

λmin{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i

)1/2

≤ Dr−1
1 p−α1(r−1)D2p

1−2α2
2

√
2α2 − 1

≤ Dr−1
1 D2√

2α2 − 1
n
β(−2α2+2α1(1−r)+1)

2 . (3.3)

We get the upper bound by taking p =
⌈
n

1
2(α2+rα1)

⌉
and

C2 = C

[(
Dr

2 +
2α1

D1

)(
2
(
21+2r ‖gρ‖K + CK,ρ

)
+ 1
)

+
Dr−1

1 D2√
2α2r − 1

]
.
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Chapter 4

Modified Poisson Estimators for
Grouped and Right-censored

Counts

Grouped and right-censored (GRC) count data are widely adopted to study some

sensitive topics or to collect information from less cognitive respondents in many

research fields, such as psychology, sociology, and criminology. However, theoretical

analysis of GRC counts is involved due to the co-existence of grouping schemes and

right-censoring schemes. Recently, a modified Poisson regression model has been

proposed to analyze GRC count data under the framework of maximum likelihood

estimation. In this chapter, we study the asymptotic properties of the maximum

likelihood estimators of GRC counts that can cover the modified Poisson estimator.

Existing results on modified Poisson estimators for GRC counts are only applicable

to stochastic regressors with strictly positive definite Fisher information matrices.

Results in this chapter are derived under a milder condition that the information

matrix of observations is divergent, which can cover the results for the stochastic case

in the almost sure sense. Real data simulations are provided to investigate drug use

in America.
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4.1 Grouped and Right-censored Count Data

Grouped and right-censored (GRC) counts, as the name suggests, combine both

grouped counts, where observations are groups (for example, “1-2 times”) instead

of separate categories (“once” and “twice”), and right-censored counts, where the

upper-end category is from a constant (or a bounded random variable, [57]) to infinity,

such as “40 or more times”. In many research fields, such as psychology [1] and

sociology [4, 7]), GRC counts are widely used to study some sensitive topics (e.g.,

marijuana use among adolescents [8], Monitoring the Future study among U.S. high

school seniors [44]), or to collect information from less cognitive populations [12].

In statistics, studies on right-censored counts have long been established [14,15,65]

and implemented [62]. Most of these articles focus on Poisson and zero-inflated Poisson

(ZIP) regression models [40, 45]. Sometimes random effects are considered in ZIP

regression [55,56]. In parametric regression, the maximum likelihood estimator (MLE)

is one of the most efficient estimators. The MLE for generalized linear models (GLM)

and its asymptotic theory have been established in statistics for a long time [31,47,74].

The maximum likelihood estimation of right-censored data has also been investigated

recently [57].

Methodologically, analyzing GRC count data is more complicated than the right-

censored data due to the existence of grouping schemes in right-censored data. Even

though grouped and right-censored counts are adopted in survey research for a long

time, statistical methods to analyze GRC count data just started recently from [33],

where they proposed a Poisson-multinomial mixture approach. A three-step M

algorithm was introduced to find the optimal grouping scheme that maximizes the

objective function of the Fisher information [32]. Based on MLE, the modified Poisson

estimator for GRC counts has been derived recently under a general framework that

can cover the Poisson and ZIP models for GRC count data [34].
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In this chapter, the asymptotic properties, counting asymptotic existence, (weak

and strong) consistency, and asymptotic normality, of MLE of GRC counts are studied

under assumptions on the information matrix of the first n observations Fn that will

be defined later. Precisely, we require that σminFn → +∞ as n tends to infinity. Here

σmin is the minimal eigenvalue of a matrix. In some recent work on ZIP regression for

right-censored data without grouping schemes [57], they proved the weak consistency

of MLE of right-censored data under the assumption that {n/σminFn}∞n=1 is a bounded

sequence, which is equivalent to that the limit matrix of Fn/n as n→ +∞ is strictly

positive definite. Comparing with [57], our results are applicable to the more involved

GRC data under the condition that σminFn → +∞ without further assumptions on

the divergence rate of σminFn. For stochastic regressors, the asymptotic properties of

MLE of GRC count data were proved under some conditions such that the Fisher

information exists and is strictly positive definite [34]. In this case, by the strong law

of large numbers, the Fisher information matrix is the (almost sure) limit of Fn/n as

n→ +∞. The results in the strong sense of this chapter (Theorem 4.2) is applicable

to both fixed and stochastic regressors. Thus our assumption is weaker than [34]

and the asymptotic results for stochastic regressors are given in Corollary 4.3 in this

chapter.

The rest of this chapter is organized as follows. In Section 4.2, the maximum

likelihood estimators for GRC counts are introduced. Section 4.3 investigates the

main results on the asymptotic theory of MLE for GRC counts. Proofs of asymptotic

results are provided in Section 4.4. Numerically, the large sample performance of

modified Poisson estimators with real data from the MTF (Monitoring the Future)

project [44] is studied in Section 4.5.
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4.2 Maximum Likelihood Estimators of Grouped

and Right-censored Counts

We start from a general framework. Let Y be a discrete random variable from a

distribution with the probability mass function Prob(Y = k) = θ(k, ξ), k = 1, 2, · · · ,

parameterized by ξ = (ξ1, · · · , ξr)T ∈ Rr, r ∈ N. Each component ξs, 1 ≤ s ≤ r,

is related to a linear combination of xs = (xs,0, · · · , xs,ds)
T ∈ Rds+1 with ds ∈ N

through a homeomorphic link function gs : R→ R, i.e., ξs = g−1
s

(
βTs xs

)
. Here each

xs,k is a covariate and βs = (βs,0, · · · , βs,ds)
T ∈ Rds+1 is a vector of parameters to

be estimated. When xs,0 = 1, βs,0 is known as an intercept term. For simplicity,

let β =
(
βT1 , · · · ,βTr

)T ∈ B ⊂ Rd and x =
(
xT1 , · · · ,xTr

)T ∈ X ⊂ Rd with d =

d1 + · · · + dr + r. Assume tacitly that the parameter space B of β is convex with

non-empty interior. Denote Ξ ⊂ Rr the parameter space of ξ ∈ Rr, that is, Ξ ={
ξ = ξ(β,x) ∈ Rr : ξs = g−1

s (βTs xs), 1 ≤ s ≤ r,β ∈ B,x ∈ X
}
.

The general framework above can cover two specific models that are ubiquitous

in statistics: the Poisson model (r = 1) and the zero-inflated Poisson (ZIP) model

(r = 2). For the Poisson regression model with a Poisson parameter µ > 0, where the

probability mass function is

θP(k, µ) = e−µ
µk

k!
, k = 0, 1, 2, · · · , (4.1)

the natural link function for µ is the log link glog(µ) = log µ with g−1
log(t) = et. The

Poisson distribution possesses the equi-dispersion property, that is, the mean and

the variance of the Poisson distribution are equal. However, it has been observed

that sometimes the equi-dispersion assumption is violated and one proposed the

ZIP model [40,45]. For the zero-inflated Poisson model with a Bernoulli parameter

0 < p < 1 and a Poisson parameter µ > 0, the probability mass function is

θZIP

(
k, (µ, p)T

)
=

{
p+ (1− p)e−µ, k = 0,

(1− p)e−µ µk
k!
, k = 1, 2, · · · .

(4.2)
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For the Poisson parameter µ of ZIP models, one can still use glog as a link function.

For the Bernoulli parameter p, one may select, for example, the logit link glogit(p) =

log
(

p
1−p

)
with g−1

logit(t) = (1 + e−t)
−1
.

For GRC counts, a grouping scheme G with M ∈ N groups is defined through

partitioning N by fixed integers 0 = l1 < l2 < · · · < lM+1 = +∞ with the k’th group

given by Groupk = {m ∈ N, lk ≤ m < lk+1} , 1 ≤ k ≤M. In this chapter, we consider

the case M < +∞, i.e., the number of groups is finite, which is general in practice.

Consider a random variable YG, that is the group in which Y lies, taking values in

{1, 2, · · · ,M}. YG is obviously from a multinomial distribution with the probability

mass function

Prob (YG = k) = θG(k, ξ) =

lk+1−1∑
j=lk

θ(j, ξ), 1 ≤ k ≤M.

Let {(xi, Y i
G)}ni=1 ⊂ X ×{1, 2, · · · ,M}, n ∈ N, be a sample drawn from a distribu-

tion with respect to the parameter β∗, that is, Prob
(
Y i
G = k

)
= θG(k, ξi∗ = ξ(β∗,xi)).

Here
{
Y i
G
}n
i=1

is a sequence of independent random variables. In most cases of this

chapter, let the regressors xi, i = 1, 2, · · · , n, be fixed and expectations are taken over

Y i
G ∈ {1, 2, · · · ,M}. As shown in Corollary 4.3, our results in the strong sense can

be extended to stochastic regressors by considering the conditional expectation as

conditioned on {xi}ni=1 and the law of total probability.

In parametric regression, the aim is to estimate the true parameter β∗ by generating

an estimator β̂n from the sample {(xi, Y i
G)}ni=1. In this chapter, we consider the

maximum likelihood estimator of GRC counts, i.e., β̂n is the maximizer of the

log-likelihood function

`n(β) =
n∑
i=1

log θG(Y i
G, ξ

i = ξ(β,xi)). (4.3)

Assume that the true parameter β∗ is contained in the interior of B. For simplicity,
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in the following of this chapter, we just write β and ξ without specifying the

corresponding parameter spaces B and Ξ.

Let ‖·‖ be the Frobenius norm of a matrix and the Euclidean norm of a vector,

respectively. The operator norm of a matrix is written as ‖·‖op. Eβ (Eξ) denotes the

expectation of a random variable with respect to the parameter β (ξ). Varβ is the

variance of a random variable with respect to β. σmin (σmax) denotes the minimal

(maximal) eigenvalue of a matrix. 0 and I are the zero matrix and the identity matrix

whose dimension can be verified from contexts, correspondingly. →d and →p mean

convergence in distribution and in probability, respectively.

4.3 Asymptotic Theory

Recall the log-likelihood function `n(β) of GRC counts defined by (4.3). Let sn(β) ∈

Rd and Hn(β) ∈ Rd×d be the gradient and the Hessian matrix of `n(β) with respect

to β, respectively. Since our error analysis is based on Taylor’s expansion

`n(β)− `n(β∗) = ∆βT sn(β∗) +
∆βTHn(β̃)∆β

2
, (4.4)

where ∆β = β−β∗ and β̃ is a point between β and β∗, we need some assumptions on

sn(β) and on the Fisher information of the first n observations Fn(β) := −Eβ [Hn(β)]

for β in a neighborhood around β∗.

The structure of Fn(β) for GRC counts is complicated. Let Xi = Diag{xi1, · · · ,xir},

which is a d× r block diagonal matrix, and

U(β,x) := Diag {U1(β,x), U2(β,x), · · · , Ur(β,x)} ∈ Rr×r

with Us(β,x) = (g−1
s )
′
(βTs xs), s = 1, 2, · · · , r. Simply rewrite Ui(β) = U(β,xi).

Straightforward but tedious calculations show that sn(β) =
∑n

i=1 XiUi(β)sY iG(ξ
i)

with

sYG(ξ) =

(
∂

∂ξ1

log θG(YG, ξ),
∂

∂ξ2

log θG(YG, ξ), · · · , ∂
∂ξr

log θG(YG, ξ)

)T
.
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Moreover, we have

Hn(β) =
n∑
i=1

[
−XiUi(β)IY iG(ξ

i)
(
XiUi(β)

)T
+ Ri(β)

]
. (4.5)

Here, for a given random variable YG ∈ {1, 2, · · · ,M}, IYG ∈ Rr×r is defined by

(
IYG(ξ)

)
st

= − ∂2

∂ξs∂ξt
log θG(YG, ξ), s, t = 1, 2, · · · , r,

and Ri(β) = XiWi(β)SY iG(ξ
i) (Xi)

T
with

Wi(β) = Diag
{(
g−1

1

)′′
(βT1 xi1), · · · ,

(
g−1
r

)′′
(βTr xir)

}
∈ Rr×r

and

SYG(ξ) = Diag

(
∂

∂ξ1

log θG(YG, ξ), · · · , ∂
∂ξr

log θG(YG, ξ)

)
∈ Rr×r.

Note that Eξ

[
∂
∂ξs

log θG(YG, ξ)
]

= ∂
∂ξs

∑M
j=1 θ

G(j, ξ) = ∂
∂ξs

1 = 0 and Eβ[sn(β)] = 0.

We obtain Eβ[Ri(β)] = 0 and

Fn(β) =
n∑
i=1

XiUi(β)IG(ξi)
(
XiUi(β)

)T
= Eβ

[
sn(β)sn(β)T

]
, (4.6)

where IG(ξ) = Eξ

[
IYG(ξ)

]
=
(
IGs,t(ξ)

)
r×r is the Fisher information of YG with respect

to ξ and the last equality is because

IGs,t(ξ) = Eξ

[
− ∂2

∂ξs∂ξt
log θG(YG, ξ)

]
= Eξ

[
∂

∂ξs
log θG(YG, ξ)

∂

∂ξt
log θG(YG, ξ)

]
.

When β = β∗, we simply drop the parameter β∗ and rewrite sn(β∗),Fn(β∗),Hn(β∗),

Ui(β∗),Eβ∗ ,Varβ∗ as sn,Fn,Hn,U
i,E,Var, accordingly.

Theorem 4.1. Let X be a compact set. Assume that, for any s = 1, 2, · · · , r,

(i) g−1
s is C2 with (g−1

s )
′
> 0.
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(ii) θG (YG, ξ) is C2 with respect to ξ such that IG(ξ) is strictly positive definite

everywhere.

(iii) σminFn → +∞, as n→ +∞.

Then, there is a sequence {β̂n}+∞
n=1 of random variables such that, as n→ +∞,

(i) P
[
sn(β̂n) = 0

]
→ 1 (asymptotic existence),

(ii) β̂n →p β
∗ (weak consistency),

(iii) F
T/2
n

[
β̂n − β∗

]
→d N (0, I) (asymptotic normality).

The assumption (i) of Theorem 4.1, which implies that the inverse function of

the link function is strictly increasing, is fulfilled by most link functions used in

practice. Specifically, for Poisson and ZIP models, it is obvious that
(
g−1

log

)′
(t) =

et > 0 and
(
g−1

logit

)′
(t) = e−t

(1+e−t)2
> 0. The assumption (ii) of Theorem 4.1 is satisfied

when M ≥ 2 for the Poisson model and M ≥ 3 for the ZIP case, according to [32].

The assumption that Fn is strictly positive definite for n ∈ N large enough with

σminFn → +∞, n→ +∞, (4.7)

is common in literature [31].

We now give another insight on the assumption (4.7). For any u =
(
uT1 , · · · ,uTr

)T ∈
Rd, denote ũi =

(
uT1 xi1, · · · ,uTr xir

)T ∈ Rr. Then

uTFnu =
n∑
i=1

(
ũi
)T

UiIG(ξi∗)Uiũi

≥
n∑
i=1

σmin

[
UiIG(ξi∗)Ui

] r∑
s=1

(
uTs xis

)2

≥
(

min
x∈X

{
σmin

[
U(β∗,x)IG(ξ(β∗,x))U(β∗,x)

]}) n∑
i=1

r∑
s=1

(
uTs xis

)2
.
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By the eigenvalue perturbation theory (Corollary 6.3.8, [42]), σmin and σmax are

(Lipschitz) continuous on the Hermitian matrix space. Thus, under assumptions (i)

and (ii) of Theorem 4.1,
(
minx∈X

{
σmin

[
U(β∗,x)IG(ξ(β∗,x))U(β∗,x)

]})
is bounded

away from 0, when X is compact. And (4.7) is implied by

σmin

(
n∑
i=1

xis
(
xis
)T)→ +∞, n→ +∞, for any s = 1, 2, · · · , r. (4.8)

Corollary 4.1. Let X be compact and assume (4.8). If assumptions (i) and (ii) of

Theorem 4.1 hold, then there is a sequence {β̂n}+∞
n=1 of random variables such that

there hold all conclusions of Theorem 4.1.

To state the strong consistency, for any given ε > 0, we define a ball Bε(β
∗) =

{β : ‖β − β∗‖ ≤ ε} .

Theorem 4.2. Let X be a compact set. Assume that

(i) For any s = 1, 2, · · · , r, g−1
s is C2 with (g−1

s )
′
> 0.

(ii) θG (YG, ξ) is C2 with respect to ξ such that IG(ξ) is strictly positive definite

everywhere.

(iii) σminFn → +∞, as n→ +∞.

(iv) There exist ε > 0 and a fixed number n0 ∈ N such that for any n ≥ n0 and

β ∈ Bε(β
∗), σminFn(β) ≥ cσmaxFn with a universal constant c > 0.

Then, there exist a sequence {β̂n}∞n=1 of random variables and a random number

ñ0 ∈ N such that

(i) P[sn(β̂n) = 0, for all n ≥ ñ0] = 1 (asymptotic existence),

(ii) β̂n → β∗, a.s., as n→ +∞ (strong consistency),
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(iii) F
T/2
n

[
β̂n − β∗

]
→d N (0, I), as n→ +∞ (asymptotic normality).

Corollary 4.2. Let X be a compact set. Assume that for any s ∈ {1, 2, · · · , r}, there

hold (4.8) and

σmin

(
n∑
i=1

Xi
(
Xi
)T) ≥ c̃σmax

(
n∑
i=1

Xi
(
Xi
)T)

, for all n ≥ n1, (4.9)

with a fixed number n1 ∈ N and a universal constant c̃ > 0. If, in addition, assumptions

(i) and (ii) of Theorem 4.2 are satisfied, then there exist a sequence {β̂n}∞n=1 of random

variables and a random number ñ0 ∈ N such that all conclusions of Theorem 4.2 hold.

In Corollary 4.2, equation (4.9) says that the sequence {κn}∞n=1 of condition

numbers of
∑n

i=1 Xi (Xi)
T

, i.e.,

κn :=
σmax

[∑n
i=1 Xi (Xi)

T
]

σmin

[∑n
i=1 Xi (Xi)T

] ,
is bounded uniformly for n ∈ N. By the definition of Xi, (4.9) is equivalent to

min
s∈{1,2,··· ,r}

{
σmin

(
n∑
i=1

xis
(
xis
)T)} ≥ c̃ max

s∈{1,2,··· ,r}

{
σmax

(
n∑
i=1

xis
(
xis
)T)}

. (4.10)

For stochastic regressors, consider Fn(β) = Eβ

[
−Hn(β)

∣∣{xi}ni=1

]
and Fn =

Fn(β∗), which is the same as the fixed design case. Thanks to the strong law of

large numbers, (4.8) and (4.10) are implied by that Ex

[
xsx

T
s

]
exists and is strictly

positive definite for each 1 ≤ s ≤ r, which is a condition required by [34]. Here the

expectation is taken with respect to the marginal distribution of xs, s = 1, 2, · · · , r.

Moreover, for stochastic regressors with a strictly positive definite Fisher information

matrix F := EF1 with the expectation taken over x1 ∈ X , from the proof of Corollary

3 of [31], one can obtain the following corollary easily according to Theorem 4.2.
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Corollary 4.3. Let X be a compact set. If assumptions (i) and (ii) of Theorem

4.2 are fulfilled and the Fisher information F exists and is strictly positive definite,

then there are a sequence {β̂n}∞n=1 of random variables and a random number ñ0 ∈

N such that conclusions (i) and (ii) of Theorem 4.2 hold with
√
n
(
β̂n − β∗

)
→d

N (0,F−1), as n→ +∞.

In Corollary 4.3, the strict positive definiteness of F is implied by the strict positive

definiteness of E
[
xsx

T
s

]
and IG(ξ), as pointed out by [34].

4.4 Proofs of Asymptotic Properties

For GRC count data, the Hessian matrix Hn(β) and the information matrix Fn(β),

as shown in (4.5) and (4.6), become much more involved, comparing with classical

analysis on the generalized linear models. The technical difficulties in analyzing GRC

counts are caused by the discrepancy between Fn(β) and −Hn(β). Most of the

auxiliary results in sections 4.4.1 and 4.4.2 are motivated by [31], but the technical

details are different.

4.4.1 Some Properties of the Information Matrix

We first derive some properties of Fn, which play important roles in the sequel

proofs. Since Fn is positive semi-definite, one can decompose it as Fn = F
1/2
n F

T/2
n

(for example, through the Cholesky decomposition or through the eigendecomposition

and taking the square root of each eigenvalue), where F
T/2
n =

(
F

1/2
n

)T
. To prove

the next proposition, we introduce the Loewner partial order “<” and “4” between

Hermitian matrices, that is, for two Hermitian matrices A and B, A < B (A 4 B) if

A−B is positive (negative) semi-definite. For properties of Loewner’s partial order,

one may refer to Chapter 7.7 of [42]. Let Tr(A) be the trace of a matrix A. We

summarize some properties of Fn in the following proposition.
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Proposition 4.1. Let X be compact. Under assumptions (i) and (ii) of Theorem

4.1, there is a constant C < +∞ such that
n∑
i=1

Tr
[(

Xi
)T

F−1
n Xi

]
≤ C, for n large enough. (4.11)

If we further assume (iii) of Theorem 4.1, then

Tr
[
(Xn)T F−1

n Xn
]
→ 0 (4.12)

and

max
1≤i≤n

Tr
[(

Xi
)T

F−1
n Xi

]
→ 0, (4.13)

as n→ +∞.

Proof. Denote Xn =
∑n

i=1 Xi (Xi)
T < 0 ∈ Rd×d. Then we have

∑n
i=1 Tr

[
(Xi)

T
F−1
n Xi

]
=

Tr [F−1
n Xn] = Tr

[
F
−1/2
n XnF

−T/2
n

]
. Rewrite

Fn =
n∑
i=1

XiUiIG(ξi∗)
(
XiUi

)T
=

n∑
i=1

XiC(β∗,xi)
(
Xi
)T

with C(β,x) = U(β,x)IG(ξ(β,x))U(β,x). Since (g−1
s )′(β∗s

Txs) > 0, for each s =

1, 2, · · · , r, which implies that U(β∗,x) is of full rank, and IG(ξ) is strictly positive

definite everywhere, we have C(β∗,x) is strictly positive definite, for any x ∈ X .

Since σmin is continuous on the Hermitian matrix space, we obtain that there is a

constant C < +∞ such that

min
x∈X
{σminC(β∗,x)} ≥ d/C > 0 and C(β∗,x) <

d

C
I, for any x ∈ X .

Thus Fn < d
C

Xn and

I = F−1/2
n FnF

−T/2
n <

d

C
F−1/2
n XnF

−T/2
n . (4.14)

We get (4.11) by taking trace to both sides of (4.14). Since Fn < (σminFn) I and

F−1
n 4 (σminFn)−1 I.

(4.12) and (4.13) are proved by the compactness of X and equation (4.7).
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4.4.2 Some Lemmas

We list some lemmas that will be used in the proofs of asymptotic results. For

simplicity, denote Vn(β) = −F
−1/2
n Hn(β)F

−T/2
n and introduce a neighborhood around

β∗ by Nn(δ) =
{
β :
∥∥∥FT/2

n [β − β∗]
∥∥∥ ≤ δ

}
, for any n = 1, 2, · · · , and δ > 0.

Lemma 4.1. Assume (4.7) and assume that, for any δ > 0,

P [σminVn(β) ≥ c1, for all β ∈ Nn(δ)]→ 1, as n→ +∞, (4.15)

with some constants c1 > 0 independent of δ, then there is a sequence {β̂n} of

estimators such that conclusions (i) and (ii) of Theorem 4.1 hold.

The proof of Lemma 4.1 follows mainly the proof of Theorem 1 of [31] by noting

that (4.15) is equivalent to

P [−Hn(β)− c1Fn is positive semi-definite for all β ∈ Nn(δ)]→ 1,

as n→ +∞, which is equivalent to the condition (C∗) in Section 4 of [31].

The next lemma is the asymptotic normality of F
−1/2
n sn.

Lemma 4.2. Let X be compact. If assumptions (i), (ii), and (iii) of Theorem 4.1

hold, then F
−1/2
n sn →d N (0, I).

Proof. Note that Esn = 0 and E
[
F
−1/2
n sns

T
nF
−T/2
n

]
= F

−1/2
n FnF

−T/2
n = I. It suf-

fices to check the Lindeberg-Feller condition (cf. Proposition 2.27, [74]) for vni :=

F
−1/2
n XiUisY iG(ξ

i
∗), i.e., to prove gn(δ) =

∑n
i=1 E

[
‖vni‖2 1[‖vni‖>δ]

]
→ 0, as n →

+∞, for any δ > 0. If we denote Zni = F
−1/2
n XiUi, then

gn(δ) ≤
n∑
i=1

‖Zni‖2
op E

∥∥∥sY iG(ξi∗)∥∥∥2

1[∥∥∥∥sY iG (ξi∗)

∥∥∥∥2>δ2/‖Zni‖2op
]


≤ max
1≤i≤n

E

∥∥∥sY iG(ξi∗)∥∥∥2

1[∥∥∥∥sY iG (ξi∗)

∥∥∥∥2>δ2/‖Zni‖2op
]


(
n∑
i=1

‖Zni‖2
op

)
. (4.16)
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According to (4.11) and the boundedness of U(β∗,x) with respect to x ∈ X , there

is a constant C̃ < +∞ such that

n∑
i=1

‖Zni‖2
op ≤

(
max
x∈X
‖U(β∗,x)‖2

op

)( n∑
i=1

Tr
[(

Xi
)T

F−1
n Xi

])
≤ C̃,

for all n ∈ N. According to (4.13),

max
1≤i≤n

‖Zni‖2
op ≤

[
max
1≤i≤n

∥∥F−1/2
n Xi

∥∥2

op

] [
max
x∈X
‖U(β∗,x)‖2

op

]
→ 0

and Cn := 1
max1≤i≤n‖Zni‖2op

→ +∞, as n → +∞. Since X is compact and gs is

homeomorphic, ξ(β∗,x) lies in a compact subset of Rr for x running over X and

sYG(ξ(β∗,x)) is bounded with respect to 1 ≤ YG ≤ M and x ∈ X . Thus, for any

δ > 0, there is a fixed number n2 such that for any n ≥ n2,

max
1≤i≤n

P
[∥∥∥sY iG (ξi∗)

∥∥∥2
> δ2Cn

]
≤ P

[
max

YG∈{1,2,··· ,M},x∈X

∥∥sYG (ξ(β∗,x))
∥∥2
> δ2Cn

]
= 0.

As a result,

max
1≤i≤n

E

∥∥∥sY iG(ξi∗)∥∥∥2

1[∥∥∥∥sY iG (ξi∗)

∥∥∥∥2>δ2/‖Zni‖2op
]


≤ max
1≤i≤n

E

∥∥∥sY iG(ξi∗)∥∥∥2

1[∥∥∥∥sY iG (ξi∗)

∥∥∥∥2>δ2Cn
]
→ 0,

as n→ +∞.

In conclusion, the right-hand-side of (4.16) tends to 0 as n→ +∞.

Lemma 4.3. Assume that, for any δ > 0,

max
β∈Nn(δ)

‖Vn(β)− I‖ →p 0, as n→ +∞. (4.17)

Then, under assumptions (i), (ii), and (iii) of Theorem 4.1, there hold all conclusions

of Theorem 4.1.
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Proof. It’s easy to verify that (4.15) is implied by (4.17). Thus Lemma 4.1 holds.

The proof of the asymptotic normality follows mainly Theorem 3 of [31], according

to Lemma 4.2.

The next lemma will be used in the proof of Theorem 4.2.

Lemma 4.4. Assume (4.7) and assume that there exist ε > 0 and a random number

n1 ∈ N such that for any n ≥ n1,

σmin [−Hn(β)] ≥ c2σmaxFn,β ∈ Bε(β
∗), almost surely, (4.18)

with a universal constant c2 > 0. Then there exist a random number ñ0 and a sequence

{β̂n}∞n=1 of estimators such that conclusions (i) and (ii) of Theorem 4.2 hold.

The proof of Lemma 4.4 follows mainly the proof of Theorem 2 in [31] since (4.18)

is equivalent to the condition
(

S∗1/2

)
in Section 4 of [31].

4.4.3 Proofs of Theorems and Corollaries

Proof of Theorem 4.1. It suffices to check (4.17) in Lemma 4.3. We decompose Vn(β)

as

−F−1/2
n Hn(β)F−T/2n =

n∑
i=1

F−1/2
n

{
Xi
[
Ci
Y iG

(β)−Ci
Y iG

(β∗) + Ci
Y iG

(β∗)
]

(Xi)T

−
[
Ri(β)−Ri(β∗) + Ri(β∗)

]}
F−T/2n

with CYG(β,x) = U(β,x)IYG(ξ(β,x))U(β,x) and Ci
Y iG

(β) = CY iG
(β,xi). Then we

have

Vn(β)− I = F−1/2
n [−Hn(β)− Fn] F−T/2n = An(β) + Bn + Cn(β) +Dn,
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where

An(β) =

n∑
i=1

Ani
[
Ci
Y iG

(β)−Ci
Y iG

(β∗)
]

(Ani)T ,

Bn =
n∑
i=1

Ani
[
Ci
Y iG

(β∗)−C(β∗,xi)
]

(Ani)T ,

Cn(β) =

n∑
i=1

F−1/2
n

(
Ri(β∗)−Ri(β)

)
F−T/2n

=
n∑
i=1

Ani
(
Wi(β∗)SY iG

(ξi∗)−Wi(β)SY iG
(ξi)

) (
Ani

)T
,

Dn = −
n∑
i=1

F−1/2
n Ri(β∗)F−T/2n = −

n∑
i=1

AniWi(β∗)SY iG
(ξi∗)

(
Ani

)T
,

with Ani = F
−1/2
n Xi and C(β,x) = U(β,x)IG(ξ(β,x))U(β,x) = Eβ

[
CYG(β,x)

]
.

By (4.11),

‖An(β)‖ ≤
[

max
1≤i≤n

∥∥∥Ci
Y iG

(β)−Ci
Y iG

(β∗)
∥∥∥] n∑

i=1

∥∥Ani
∥∥2

≤ C

[
max
1≤i≤n

∥∥∥Ci
Y iG

(β)−Ci
Y iG

(β∗)
∥∥∥] .

For any δ > 0 and β ∈ Nn(δ),

‖∆β‖2 ≤
∥∥FT/2

n ∆β
∥∥2
/(σminFn) ≤ δ2/(σminFn)→ 0, n→ +∞,

with ∆β = β − β∗. Note that

max
1≤i≤n

∥∥∥Ci
Y iG

(β)−Ci
Y iG

(β∗)
∥∥∥ ≤ max

YG∈{1,··· ,M},x∈X

∥∥CYG (β,x)−CYG (β∗,x)
∥∥ =: Cmax(β).

(4.19)

By the continuity of IYG , g−1
s , and (g−1

s )
′
, and the compactness of X , Cmax(β) is

continuous with respect to β. Let βC
n,δ = arg maxβ∈Nn(δ) Cmax(β) ∈ Nn(δ). We have

βC
n,δ → β∗ for any δ > 0 as n→ +∞ and

max
β∈Nn(δ)

‖An(β)‖ ≤ Cmax(βC
n,δ)→ Cmax(β∗) = 0, as n→ +∞, for any δ > 0.

(4.20)
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To bound Bn, since E[Bn] = 0, it suffices to show that E
[
(Bn)2

st

]
→ 0, n → +∞,

for any 1 ≤ s, t ≤ d, which implies Bn →p 0 as n → +∞, thanks to Chebyshev’s

inequality. Since

(Bn)st =
n∑
i=1

(
r∑
l=1

r∑
k=1

Ani
sl

[
Ci
Y iG

(β∗)−C(β∗,xi)
]
lk

Ani
tk

)

and E
[
Ci
Y iG

(β∗)−C(β∗,xi)
]

= 0, We obtain

E
[
(Bn)2

st

]
=

n∑
i=1

E

( r∑
l=1

r∑
k=1

Ani
sl

[
Ci
Y iG

(β∗)−C(β∗,xi)
]
lk

Ani
tk

)2


≤
n∑
i=1

∥∥Ani
∥∥4 E

( r∑
l=1

r∑
k=1

∣∣∣[Ci
Y iG

(β∗)−C(β∗,xi)
]
lk

∣∣∣)2


≤ K

(
max
1≤i≤n

{∥∥Ani
∥∥2
})( n∑

i=1

∥∥Ani
∥∥2

)
, (4.21)

where K = maxx∈X ,YG∈{1,2,··· ,M}

{(∑r
l=1

∑r
k=1

∣∣[CYG (β∗,x)−C(β∗,x)
]∣∣
lk

)2}
< +∞,

due to the continuity of CYG(β,x) and C(β,x) with respect to x and the com-

pactness of X . According to (4.11) and (4.13), the right-hand-side of (4.21) tends to

0 and Bn →p 0, as n→ +∞.

Thanks to the continuity of (g−1
s )
′′

and ∂ log θG(YG ,ξ)
∂ξs

, s = 1, 2, · · · , r, the proof of

maxβ∈Nn(δ) ‖Cn(β)‖ → 0 is similar to the proof of (4.20) and the proof of Dn →p 0 is

similar to the proof of Bn →p 0.

Proof of Theorem 4.2. The proof of the asymptotic normality follows mainly [31].

Now we are going to check (4.18) in Lemma 4.4. Rewrite −Hn(β) = Fn(β) + En(β),

where

En(β) =
n∑
i=1

{
XiUi(β)

[
IY iG(ξ

i)− IG(ξi)
] (

XiUi(β)
)T −Ri(β)

}
.
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If we denote σmax
n = σmaxFn, then we have σmin [−Hn(β)] /σmax

n ≥ σminFn(β)/σmax
n −

‖En(β)‖op /σ
max
n . According to the assumption (iv), σminFn(β)/σmax

n is bounded

below by c for n ≥ n0. It’s enough to show that ‖En(β)‖op /σ
max
n can be arbitrarily

small for n large enough and β ∈ Bε(β
∗) with sufficiently small ε > 0. Recall the

matrices Ci
Y iG

(β) and C(β,x) in the proof of Theorem 4.1. Decompose En(β) =

A′n(β) + B′n + C ′n(β) +D′n(β) + E ′n, where

A′n(β) =

n∑
i=1

Xi
[
Ci
Y iG

(β)−Ci
Y iG

(β∗)
] (

Xi
)T
,

B′n =
n∑
i=1

Xi
[
Ci
Y iG

(β∗)−C(β∗,xi)
] (

Xi
)T
,

C′n(β) =

n∑
i=1

Xi
[
C(β∗,xi)−C(β,xi)

] (
Xi
)T
,

D′n(β) =
n∑
i=1

[
Ri(β∗)−Ri(β)

]
,

E ′n = −
n∑
i=1

Ri(β∗).

For any λ ∈ Rd,

λTFnλ =
n∑
i=1

λTXiC(β∗,xi)
(
Xi
)T

λ

≥
(

min
x∈X
{σminC(β∗,x)}

)
λTXnλ =: c′λTXnλ,

where Xn =
∑n

i=1 Xi (Xi)
T

and c′ > 0 is a constant. Thus

σmax
n = σmaxFn = max

‖λ‖=1
λTFnλ ≥ c′σmaxXn. (4.22)

For any δ′ > 0, there is ε > 0 small enough such that for any β ∈ Bε(β
∗) and λ ∈ Rd

with ‖λ‖ = 1,∣∣λTA′n(β)λ
∣∣

σmax
n

≤
(

max
1≤YG≤M,x∈X

{∥∥CYG (β,x)−CYG (β∗,x)
∥∥

op

})(σmax [Xn]

σmax
n

)
≤ δ′,
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where the last equality comes from the boundedness of σmaxXn/σ
max
n due to (4.22)

and the continuity of CYG(β,x) with respect to β. Thus

max
β∈Bε(β∗)

‖A′n(β)‖op /σ
max
n = max

β∈Bε(β∗),λTλ=1

∣∣λTA′n(β)λ
∣∣ /σmax

n ≤ δ′.

Now we are going to bound B′n by the strong law of large numbers. For any

λ ∈ Rd with ‖λ‖ = 1, there is a constant C ′ < +∞ such that

Var
[
λTB′nλ

]
=

n∑
i=1

E
[((

ãi
)T [

Ci
Y iG

(β∗)−C(β∗,xi)
]

ãi
)2
]

≤
n∑
i=1

∥∥ãi∥∥4 E
[∥∥∥Ci

Y iG
(β∗)−C(β∗,xi)

∥∥∥2

op

]

≤
(

max
YG∈{1,2,··· ,M},x∈X

{∥∥CYG(β
∗,x)−C(β∗,x)

∥∥2

op

})

×
(

max
1≤i≤n

∥∥ãi∥∥2
)( n∑

i=1

∥∥ãi∥∥2

)

≤ C ′
n∑
i=1

∥∥ãi∥∥2

with ãi = (Xi)
T
λ, where the last inequality comes from the fact that CYG(β

∗,x),

C(β∗,x), and ãi are all bounded above since YG is finitely supported and X is compact.

Recall that Xn =
∑n

i=1 Xi (Xi)
T

. Thanks to (4.22), we have

n∑
i=1

∥∥ãi∥∥2
/σmax

n =
(
λTXnλ

)
/σmax

n ≤ σmax [Xn]

σmax
n

≤ 1/c′.

By the strong law of large numbers (cf., Lemma 2, [81]), λTB′nλ/σmax
n → 0 almost

surely, as n → +∞. Since B′n is symmetric, we get that each entry of B′n/σmax
n

converges to 0 as n → +∞ through suitable choices of λ. Thus, as n → +∞,

‖B′n‖op /σ
max
n → 0 almost surely.

Similarly, one can obtain that for any δ′ > 0, there is ε > 0 small enough

such that maxβ∈Bε(β∗) ‖C ′n(β)‖op /σ
max
n ≤ δ′, maxβ∈Bε(β∗) ‖D′n(β)‖op /σ

max
n ≤ δ′, and
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‖E ′n‖op /σ
max
n → 0, a.s. , n → +∞. By taking δ′ > 0 small enough, we obtain

that there exist a constant c2 > 0 and ε > 0 such that σmin [−Hn(β)] /σmax
n ≥

c2, for any β ∈ Bε(β
∗) and sufficiently large n.

Proof of Corollary 4.2. It’s enough to prove that the assumption (iv) of Theorem 4.2

is satisfied under (4.9). In fact, since (g−1
s )
′
> 0 and IG(ξ) is strictly positive definite

everywhere, by the continuity of g−1
s and IG(ξ), there exists ε > 0 such that

cmin = min
β∈Bε(β∗),x∈X

σmin

[
U(β,x)IG(ξ(β,x))U(β,x)

]
> 0,

and

cmax = max
β∈Bε(β∗),x∈X

σmax

[
U(β,x)IG(ξ(β,x))U(β,x)

]
<∞.

Thus, for any β ∈ Bε(β
∗) and n ≥ n1,

σminFn(β) = min
λ̃T λ̃=1

{
λ̃TFn(β)λ̃

}

≥cmin min
λ̃T λ̃=1

{
n∑
i=1

λ̃TXi
(
Xi
)T

λ̃

}
= cminσmin

(
n∑
i=1

Xi
(
Xi
)T)

≥cminc̃σmax

(
n∑
i=1

Xi
(
Xi
)T)

=
cminc̃

cmax

cmax max
λTλ=1

{
λT

(
n∑
i=1

Xi
(
Xi
)T)

λ

}

≥cminc̃

cmax

max
λTλ=1

{
λTFnλ

}
=
cminc̃

cmax

σmaxFn.

We finish the proof by noting that cminc̃
cmax

> 0.

4.5 Real Data Simulations

We experiment with the survey data concerning the marijuana use in America with

sample size n = 8478 from the project MTF (Monitoring the Future) [44]. The code

bases on an R package “GRCRegression” from [34]. Each response is the monthly

frequency of marijuana use of a respondent. The number of covariates considered here
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Table 4.1: Poisson Regression Estimates

Estimate 95% Confidence Interval
µ
Intercept -0.581*** (−0.668,−0.494)
Grade10 1.387*** (1.318, 1.455)
Grade12 1.986*** (1.916, 2.056)
Male 0.433*** (0.391, 0.475)
Black 0.037 (−0.021, 0.095)
Intact Family -0.780*** (−0.824,−0.737)
Parental Education -0.395*** (−0.440,−0.350)
Metropolitan Areas 0.134*** (0.082, 0.186)
McFadden’s Adj R2: 0.121
AIC: 52000
BIC: 52060

Note: *** p < 0.001, ** p < 0.01, * p < 0.05.

is 8, including: Intercept, grade (Grade 10 and Grade 12), male (versus female),

black (versus non-African American), Intact family (versus single- or no-parent

family), parental education (one of parents has completed college education or

not), metropolitan areas (the location of the school of a respondent is metropolitan

or not). We adopt the grouping scheme [never, 1-2 times, 3-5 times, 6-9 times, 10-19

times, 20-39 times, 40+ times] according to the optimal design theory of grouping

schemes [32].

For the Poisson regression model, we use the log link function glog to estimate the

Poisson parameter µ > 0. The estimates are given in Table 4.1. For the ZIP model,

we use glog for the Poisson parameter µ > 0 and the logit link function glogit for the

Bernoulli parameter 0 < p < 1. The results are provided in Table 4.2.

From both Poisson and ZIP models, we can draw conclusions that the monthly

marijuana use frequencies of students, from a junior grade, or from intact family,

or with college-educated parents, are lower than the frequencies of their opposite

parts, significantly, which are consistent with [34], where they studied the lifetime

frequencies. The results also show that females use marijuana less frequently than

85



Table 4.2: Zero-inflated Poisson Regression Estimates

Estimate 95% Confidence Interval
µ
Intercept 2.108*** (2.019, 2.198)
Grade10 0.456*** (0.388, 0.524)
Grade12 0.732*** (0.661, 0.802)
Male 0.187*** (0.142, 0.231)
Black -0.055· (−0.117, 0.006)
Intact Family -0.325*** (−0.372,−0.279)
Parental Education -0.111*** (−0.159,−0.064)
Metropolitan Areas -0.080** (−0.136,−0.024)
p
Intercept 2.411*** (2.161, 2.661)
Grade10 -1.042*** (−1.215,−0.870)
Grade12 -1.450*** (−1.641,−1.260)
Male -0.296*** (−0.426,−0.165)
Black -0.121 (−0.308, 0.065)
Intact Family 0.580*** (0.437, 0.723)
Parental Education 0.428*** (0.283, 0.574)
Metropolitan Areas -0.260** (−0.429,−0.091)
McFadden’s Adj R2: 0.061
AIC: 19950
BIC: 20070

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, · p < 0.1.

males. According to the Poisson model, students from metropolitan areas are more

likely to use marijuana which conflicts with the corresponding conclusion from the

ZIP model. Another conclusion contrasting to the study of lifetime frequencies is that

estimates of “black”, from both Poisson and ZIP models, are insignificant (versus the

null hypothesis), while [34] shows that black students are less likely to use marijuana

significantly. As shown by the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC), the ZIP model fits better than the Poisson model, which

is also in line with [34].
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Chapter 5

Conclusions

The thesis investigates several topics in regression learning, including topics in both

non-parametric estimation (such as kernel-based learning) and parametric estimation

(such as maximum likelihood estimation).

In Chapter 2, the properties of the Kronecker product kernels are investigated.

The analysis on the capacity of the reproducing kernel Hilbert spaces corresponding

to the Kronecker product kernels is sharp. Based on the Kronecker product kernels,

we study a pairwise learning algorithm called Kronecker kernel ridge regression. Both

the upper bound and the minimax lower bound of the error of this pairwise learning

algorithm are given. The convergence rate of the pairwise learning algorithm is

minimax optimal.

In Chapter 3, we propose a sparse empirical feature-based semi-supervised learning

algorithm. Sensitive information from the private data is avoided thanks to the

summary statistics generated by the raw data the empirical features generated by

published unlabeled data. This semi-supervised learning algorithm is a generalization

of the linear model with summary statistics to the non-parametric case. This sparse

learning algorithm achieves a fast convergence rate.

In Chapter 4, we established the asymptotic theory of the maximum likelihood

estimators for grouped and right-censored count data. Grouped and right-censored
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count data have been widely used in survey research. Yet the statistical analysis of

grouped and right-censored counts is rare in literature. Recently, a novel modified

Poisson estimator based on the maximum likelihood estimation has been proposed

and proved to have a methodological advantage comparing with classical models on

GRC regression. We derive the asymptotic properties of the maximum likelihood

estimators of grouped and right-censored counts with divergent information matrices

of the first n observations, which is a weaker condition than existing results. The

empirical performance of these estimators is investigated with data on marijuana

use in America. As further topics on GRC count data, one may study models with

random effects.
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[23] Stéphan Clémençon, Gábor Lugosi, and Nicolas Vayatis. Ranking and empirical
minimization of U -statistics. The Annals of Statistics, 36(2):844–874, 2008.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[25] Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
American Mathematical Society. Bulletin. New Series, 39(1):1–49, 2002.

[26] Felipe Cucker and Ding-Xuan Zhou. Learning theory: an approximation theory
viewpoint, volume 24 of Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, Cambridge, 2007.

[27] Ben Dai, Xiaotong Shen, Junhui Wang, and Annie Qu. Scalable collabora-
tive ranking for personalized prediction. Journal of the American Statistical
Association, 0(0):1–9, 2020.

[28] Lee H. Dicker, Dean P. Foster, and Daniel Hsu. Kernel ridge vs. principal
component regression: minimax bounds and the qualification of regularization
operators. Electronic Journal of Statistics, 11(1):1022–1047, 2017.

[29] John Duchi, Khashayar Khosravi, and Feng Ruan. Multiclass classification,
information, divergence and surrogate risk. The Annals of Statistics, 46(6B):3246–
3275, 2018.

[30] John C. Duchi, Lester Mackey, and Michael I. Jordan. The asymptotics of
ranking algorithms. The Annals of Statistics, 41(5):2292–2323, 2013.

[31] Ludwig Fahrmeir and Heinz Kaufmann. Consistency and asymptotic normality
of the maximum likelihood estimator in generalized linear models. The Annals
of Statistics, 13(1):342–368, 1985.

[32] Qiang Fu, Xin Guo, and Kenneth C Land. Optimizing count responses in
surveys: A machine-learning approach. Sociological Methods & Research, 2017.
https://doi.org/10.1177/0049124117747302.

[33] Qiang Fu, Xin Guo, and Kenneth C. Land. A Poisson-multinomial mixture
approach to grouped and right-censored counts. Communications in Statistics -
Theory and Methods, 47(2):427–447, 2018.

[34] Qiang Fu, Tianyi Zhou, and Xin Guo. Modified Poisson regression analysis
of grouped and right-censored counts. Journal of the Royal Statistical Society:
Series A, forthcoming.

91

https://doi.org/10.1177/0049124117747302


[35] Xin Guo, Jun Fan, and Ding-Xuan Zhou. Sparsity and error analysis of empirical
feature-based regularization schemes. Journal of Machine Learning Research
(JMLR), 17:Paper No. 89, 34, 2016.

[36] Xin Guo, Ting Hu, and Qiang Wu. Distributed minimum error entropy algorithms.
Journal of Machine Learning Research (JMLR), 21:Paper No. 126, 31, 2020.

[37] Xin Guo, Ting Hu, and Qiang Wu. Centered reproducing kernel for variable and
interaction selection. Manuscript in Preparation, 2021.

[38] Xin Guo and Ding-Xuan Zhou. An empirical feature-based learning algorithm
producing sparse approximations. Applied and Computational Harmonic Analysis.
Time-Frequency and Time-Scale Analysis, Wavelets, Numerical Algorithms, and
Applications, 32(3):389–400, 2012.

[39] Zheng-Chu Guo, Lei Shi, and Qiang Wu. Learning theory of distributed regression
with bias corrected regularization kernel network. Journal of Machine Learning
Research (JMLR), 18:Paper No. 118, 25, 2017.

[40] Daniel B. Hall. Zero-inflated Poisson and binomial regression with random
effects: a case study. Biometrics, 56(4):1030–1039, 2000.

[41] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge
University Press, Cambridge, 1994.

[42] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, second edition, 2013.

[43] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. In Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[44] Lloyd D. Johnston, Patrick M. O’Malley, Richard A. Miech, Jerald G. Bachman,
and John E. Schulenberg. Monitoring the future national survey results on
drug use, 1975-2016: Overview, key findings on adolescent drug use. https:

//files.eric.ed.gov/fulltext/ED578534.pdf, 2017. accessed July 17, 2019.

[45] Diane Lambert. Zero-inflated Poisson regression, with an application to defects
in manufacturing. Technometrics, 34(1):1–14, 1992.

[46] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[47] E. L. Lehmann and George Casella. Theory of point estimation. Springer Texts
in Statistics. Springer-Verlag, New York, second edition, 1998.

92

https://files.eric.ed.gov/fulltext/ED578534.pdf
https://files.eric.ed.gov/fulltext/ED578534.pdf


[48] Guanghui Li, Jiawei Luo, Qiu Xiao, Cheng Liang, and Pingjian Ding. Predic-
tion of microrna-disease associations with a kronecker kernel matrix dimension
reduction model. RSC Adv., 8:4377–4385, 2018.

[49] Shao-Bo Lin, Xin Guo, and Ding-Xuan Zhou. Distributed learning with regular-
ized least squares. Journal of Machine Learning Research (JMLR), 18:Paper No.
92, 31, 2017.

[50] J. Liu, C. Yang, Jiao Y., and Jian Huang. sslasso: A summary-statistic-based
regression using lasso. preprint, 2017.

[51] Pascal Massart. Concentration inequalities and model selection, volume 1896
of Lecture Notes in Mathematics. Springer, Berlin, 2007. Lectures from the
33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003,
With a foreword by Jean Picard.

[52] Andreas Maurer. Learning similarity with operator-valued large-margin classifiers.
Journal of Machine Learning Research (JMLR), 9:1049–1082, 2008.

[53] P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition.
Chapman & Hall, 1989.

[54] James Mercer. Xvi. functions of positive and negative type, and their connection
the theory of integral equations. Philos. Trans. Roy. Soc. London Ser. A,
209(441-458):415–446, 1909.

[55] Yongyi Min and Alan Agresti. Random effect models for repeated measures of
zero-inflated count data. Statistical Modelling, 5(1):1–19, 2005.

[56] Anthea Monod. Random effects modeling and the zero-inflated Poisson distri-
bution. Communications in Statistics - Theory and Methods, 43(4):664–680,
2014.

[57] Van Trinh Nguyen and Jean-François Dupuy. Asymptotic results in censored
zero-inflated Poisson regression. Communications in Statistics - Theory and
Methods, 2019. https://doi.org/10.1080/03610926.2019.1676442.

[58] Tapio Pahikkala, Antti Airola, Michiel Stock, Bernard De Baets, and Willem
Waegeman. Efficient regularized least-squares algorithms for conditional ranking
on relational data. Machine Learning, 93(2-3):321–356, 2013.

[59] Iosif Pinelis. Optimum bounds for the distributions of martingales in Banach
spaces. The Annals of Probability, 22(4):1679–1706, 1994.

[60] Tomaso Poggio and Steve Smale. The mathematics of learning: dealing with
data. Notices of the American Mathematical Society, 50(5):537–544, 2003.

93

https://doi.org/10.1080/03610926.2019.1676442


[61] Huihui Qin and Xin Guo. Semi-supervised learning with summary statistics.
Analysis and Applications, 17(5):837–851, 2019.

[62] Rafal Raciborski. Right-censored Poisson regression model. The Stata Journal,
11(1):95–105, 2011.

[63] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, volume 20. Curran
Associates, Inc., 2008.

[64] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning
with random features. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[65] Debajyoti Sinha, Martin A. Tanner, and W. J. Hall. Maximization of the
marginal likelihood of grouped survival data. Biometrika, 81(1):53–60, 1994.

[66] Steve Smale and Ding-Xuan Zhou. Shannon sampling. II. Connections to
learning theory. Applied and Computational Harmonic Analysis. Time-Frequency
and Time-Scale Analysis, Wavelets, Numerical Algorithms, and Applications,
19(3):285–302, 2005.

[67] Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral opera-
tors and their approximations. Constructive Approximation. An International
Journal for Approximations and Expansions, 26(2):153–172, 2007.

[68] Ingo Steinwart. On the influence of the kernel on the consistency of support
vector machines. Journal of Machine Learning Research (JMLR), 2(1):67–93,
2002.

[69] Ingo Steinwart, Don R Hush, and Clint Scovel. Optimal rates for regularized
least squares regression. In COLT, 2009.

[70] Ingo Steinwart and Clint Scovel. Mercer’s theorem on general domains: on the
interaction between measures, kernels, and RKHSs. Constructive Approximation,
35(3):363–417, 2012.

[71] Michiel Stock, Tapio Pahikkala, Antti Airola, Bernard De Baets, and Willem
Waegeman. A comparative study of pairwise learning methods based on kernel
ridge regression. Neural Computation, 30(8):2245–2283, 2018.
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