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Abstract

The information uncertainty is quite common for decision makers in operations management.

This thesis includes three different settings with information uncertainty, where the Bayesian

updating framework is adopted as a parametric learning approach. In the first topic, we

consider that an airline company offers early-bird-discount seats to customers and aims to

maximize the expected profit via optimally allocating the seats for discount sales. The be-

liefs on demand parameters and buy-up substitution probability are updated using demand

observations considering an “exploration-exploitation” tradeoff. Classic literature finds that

unobservability of lost sales is a driving force for the “stock more” result, namely the Bayesian-

optimal inventory level shall be kept higher than the myopic one to allow a better observability

of demand. In contrast, we find that one can infer some information about lost sales from

the substitution behavior of unsatisfied customers and hence may “stock less”. We also find

that to better observe the primary demand for the regular-price seat, one shall “stock more”

discounted seats to reduce the chance of tangling the substitution demand with the primary

demand. And, to better observe the substitution probability, one shall “stock less” discounted

seats to observe substitutions.

In the second topic, we consider a single-server queueing system whose service quality is

either high or low. The server knows the actual quality level, and can signal it to customers

via revealing or concealing his queue length. A signaling game is formed, and we adopt the

sequential equilibrium concept to solve our game and apply the perfect sequential equilibrium

as an equilibrium-refinement criterion. Under a general scenario in which the market is com-

posed of both quality informed and uninformed customers, the unique equilibrium outcome is

a pooling strategy when the market size is either below a lower threshold or above an upper

threshold. And the separating equilibria may exist only when the market size falls between

these two thresholds, under which uninformed customers can fully infer the server’s quality

type based on his queue disclosure behavior.

v



In the third topic, we study a server’s best queue-disclosure strategy in a single-server

service system with uncertain quality level. We consider this problem as a Bayesian per-

suasion game. The server can commit to a strategy that states whether or not the queue

length will be revealed to customers upon their arrival, given a realized quality level. We

reformulate the server’s decision problem as looking for the best Bayes-plausible distribution

of customers’ posteriors on service quality, which can be solved via a geometric approach.

We also show that when the market size is sufficiently small (resp. large), the server always

conceals (resp. reveals) the queue regardless of the realized service quality. In a medium-sized

market, however, we numerically find that the server’s optimal commitment strategy is often

hybrid or mixed, that is, randomized over queue disclosure and concealment. We also extend

our analysis to another scenario where the server is a social planner.
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Chapter 1

Introduction

1.1 Information Uncertainty and Bayesian Updating

In the practice of operations management, the information uncertainty is a common phe-

nomenon, where some players in the process lack necessary information in their decision

makings. For example, an inventory manager, who is deciding how many to order, may not

know the exact demand information; or a customer, who is deciding whether or not to join a

queue to gain service, may not know the service quality of the server. They have to learn the

needed information from related observations and signals, and such learnings can affect the

whole operations process.

In this thesis, the information learning issues under three different settings in operations

management are investigated. Under each setting, the decision maker knows that the con-

cerned information follows some distribution, but is not sure of the exact parameter value of

this distribution. In this sense, the Bayesian updating framework becomes a desirable para-

metric approach since we can incorporate previous experiences and intuitive knowledge as the

prior belief on the unknown parameter and use new observations or information to update it.

Another advantage of Bayesian updating is that it well depicts the nervous mechanism behind

human’s cognition and learning (Knill and Pouget, 2004; Doya et al., 2007; and Glimcher and

Fehr, 2013).

For readers’ interests, we provide a brief review on the Bayesian updating process as

follows. The uncertain state of the world (e.g., the parameter of demand distribution, or the

quality level of the server) is denoted by a parameter θ with θ ∈ Θ, where Θ is the parameter

space. Before obtaining new observations, we hold a prior belief p(θ), which describes the
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probability that the true state is θ. The observations make up a dataset x with x ∈ X, where

X the sample space. Given θ ∈ Θ and x ∈ X, the likelihood function p(x|θ) describes the

probability that the observation would be x if θ is the true state. Once we observe x, we get

the posterior belief p(θ|x) according to the Bayes’ rule as

p(θ|x) =
p(x|θ)p(θ)∫

Θ
p(x|θ′)p(θ′)dθ′

.

1.2 Layout of the Thesis

Now, let us see the three settings with information uncertainty and Bayesian updating in this

thesis. We first focus on the information learning at the individual level, where a decision

maker’s learning and optimizing behaviors affect only his own profit. In Chapter 2, we

consider an airline seat allocation problem. The airline company offers early-bird discount to

customers. Those who purchase the tickets early before a deadline can get the discount. And

if some demands for the discount are not satisfied, they may choose to buy the regular-price

ticket as the substitute, which is referred to as the buy-up substitution. The manager needs

to decide how many seats for discount among a fixed capacity of seats on a single flight to

maximize the expected revenue. To make the allocation decision, the demand information and

buy-up substitution probability are needed. The manager can adopt the myopic optimization

policy, where he maximizes only the current-period profit using his beliefs and updates the

beliefs using new sales information. Such a myopic policy neglects the impact of the current-

period inventory decision on the demand realization and all the following periods, and thus

fails to be optimal. An optimal policy should consider both the profit in the current period

and the above impact, i.e., the “exploration-exploitation” tradeoff. The inventory management

literature with such a tradeoff is named as Bayesian inventory management. In Chapter 2, we

analyze the Bayesian inventory management under the airline setting, and investigate how the

“exploration-exploitation” tradeoff can influence the optimal inventory level compared with

the myopic optimal one. We consider four information scenarios based on whether or not lost

sales can be observed and whether or not the substitution demands can be separated from

the primary demands for the regular-price seats. The demand observations under different

scenarios are different, which result in different analytical results. The classical structural

result under Bayesian inventory management is that unobservable lost sales lead to the “stock

more” result, i.e., the Bayesian optimal inventory level shall be set higher than the myopic
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optimal one to yield more accurate demand observation (Lariviere and Porteus, 1999; Ding

et al., 2002; and Chen and Plambeck, 2008). However, this result may not hold under our

setting. We find the amount of the substitution demands also contains some information on

the primary demand for the discounted seats. So, when the manager only gains very limited

demand information directly from manipulating the inventory levels, he has the incentive

to stock less discounted seats to induce more demand information from the substitutions.

Other main findings include that the demand tangling causes a “stock more” driving force in

learning the primary demand for the regular-price seats to yield better observation on it, and

estimating the buy-up substitution probability requires “stock less” to let more substitution

trials happen. Our analysis and results not only extend the Bayesian inventory management

literature to a setting with two kinds of demands and a limited capacity of substitutes, but

also provide managerial insights and heuristic bounds for the practical airline seat allocation.

We then turn the information learning model from the individual level to the game theo-

retical level, where the learning and optimizing behaviors of one player affect the profits of all

players in the concerned operations process. Specifically, there are at least two players. Some

players have private informations (named as senders), who try to signal such informations

to other players (named as receivers). The payoff of each player is determined by his private

information and the actions adopted by all players. In Chapters 3 and 4, we study such

information uncertainty issues under two different but related queueing settings.

In Chapter 3, we consider that a server’s quality level, which can be high or low, is

uncertain to the customers. Debo et al. (2012) show that the queue length can be a quality

signal. Intuitively, a longer queue length indicates a higher quality level. We take a step

further, and investigate whether the observability of the queue length itself can be a quality

signal. To achieve this, we formulate the problem as a signaling game between a server and

the customers. At first, nature decides whether the quality type is high or low according to the

prior belief, which is a common knowledge to all players. After the server knows his quality

type, he chooses to either reveal or conceal the queue length to maximize the customers’

effective arrival rate. The customers observe the server’s queue-disclosure action, update

their beliefs based on the server’s action and the queue length in case of an observable queue,

and finally decide whether to join or not. We use the sequential equilibrium concept (Kreps

and Wilson, 1982) to analyze the equilibrium outcomes of the signaling game, and apply

the perfect sequential equilibrium (Grossman and Perry, 1986) as the refinement criterion.

The major takeaway is that the separating equilibria, where different quality types of the
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server adopt totally different queue-disclosure actions, may appear in a medium-sized market

when some customers are informed while others are not. Under such separating equilibria,

the observability of the queue length becomes a quality signal, from which those uninformed

customers can fully infer the quality type. Our results thus extend the finding in Debo et

al. (2012). Compared with the research tradition where the queue disclosure action is not

regarded as a quality signal, such a signaling effect increases (resp. decreases) the effective

arrival rate to the high-quality (resp. low-quality) server, and increases the total utility of all

customers from the low-quality server.

In the above signaling game, when all customers are uninformed, we prove that the queue-

disclosure action signals no quality information. Notice that the server can only decide his

action after the quality type is realized. What will happen if, before the quality type is

realized, the server owns a commitment power whereby he can pre-determine his queue-

disclosure action in case of different quality type? This is the research question of Chapter

4. To analyze it, we adopt the Bayesian persuasion framework in Kamenica and Gentzkow

(2011). In their work, the persuasion signal is only restricted to some costless ones, such

as words or announcements, which do not affect the payoffs directly. Indeed, the signals

can be broadly in any forms as long as it can be used to persuade the receivers so as to

improve the payoff of the sender. In our setting, the persuasion signal becomes the server’s

queue-disclosure action (i.e., revealing or concealing the queue length), which directly affects

the payoffs of both the server and customers. We transform the problem into finding out

the optimal Bayes-plausible distribution of customers’ posteriors on service quality, and this

can then be solved via a geometric approach. Specifically, the maximal expected effective

arrival rate, as a function of the prior, can be graphed as the upper envelope of all convex

combinations of points on the effective arrival rate function of the revealed queue and those of

the concealed queue. The key finding is that in a medium-sized market, the server can design

and commit to a randomized queue-disclosure policy to persuade more customers to join the

queue compared with the traditional either-revealing-or-concealing paradigm. Our geometric

approach has wide suitability, and we further apply it to another scenario where the server is

a social planner.
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Chapter 2

Manage Inventories with Learning on

Demands and Buy-up Substitution

Probability

In this chapter, we consider information uncertainty and learning with only one decision

maker. An airline manager aims to optimize the airline seat allocation to maximize the

expected profit from one flight with a fixed capacity of seats, but he does not know the exact

demand information. The manager updates his belief using demand observations dynamically.

Further, the “exploration-exploitation” tradeoff is involved in the model, and the manager

needs to not only maximize the profit in the current period but also consider the impact of

the current decision on all the following periods. Due to a severe curse of dimensionality

inherent in the Bayesian dynamic programming problem, the exact optimal solution cannot

be obtained theoretically, and our focus is to get some structural properties of the Bayesian

optimal inventory level, which can provide some managerial insights and heuristic bounds for

practical use.

2.1 Introduction

Airline companies often offer early-bird booking discounts for passengers. Those who satisfy

the advance purchase requirement can get the best flight rate and those who purchase near

the departure date may have to pay a much higher price. This practice is based on market

segmentation – customers have different price sensitivity and time sensitivity – and offering the
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early-bird booking discounts can help to stimulate more demands to fill some otherwise vacant

seats. According to Shaw (1982), customers like the business travelers are time-sensitive but

price-insensitive and they generally purchase late due to the tight time schedules and are

willing to pay a high fare. For convenience, we call these customers regular customers. Others,

like the leisure or vacation travelers, are not that time-sensitive, and would like to purchase

early for a lower fare. We call them early-bird customers.

For airline companies, in order to maximize their revenues, an important decision is to

determine how to allocate seats under multiple fares.2.1 For example, U.S. Department of

Transportation (2019) points it out that “Some airlines set aside only a few seats on each

flight at the lower rates.” Such decision is also called booking limit decision or seat protection

level decision for different fare seats. A tradeoff exists with such an inventory decision: on

one hand, reserving few seats for the low-fare tickets may result in the revenue loss by losing

some price-sensitive passengers; on the other hand, reserving too many seats for the low-fare

tickets can lead to fewer passengers purchasing the high-fare seats.

According to U.S. Department of Transportation (2019), the discounted seats can often

be sold out very quickly. In practice, when some customers come for the discounted seats

but find that they stock out, they may choose to buy high-fare tickets for substitution. This

phenomenon is named as the buy-up substitution. According to Belobaba (1987), it is a

very important concept in the airline seat allocation problem. And ignoring such buy-up

substitution could result in a severe spiral-down effect as demonstrated by Cooper et al.

(2006): setting a low protection level of the high-fare seats (or reserving too many low-fare

tickets) results in a low estimation on the demand for high-fare seats, which, in turn, causes

an even lower protection level of the high-fare seats in the following periods. Cooper et al.

(2006) state that considering the buy-up substitution can effectively avoid such a spiral-down

effect, and Cooper and Li (2012) further demonstrate the benefit of incorporating the buy-up

substitution into the airline seat management problem.

We can formulate the seat allocation problem as a newsvendor-type model, and the optimal

seat protection level for different fare seats can then be obtained by solving such a model;

see Littlewood (1972) and Belobaba (1987). To make the optimal decision on the airline seat

inventory control problem, managers shall have the information on the demand distributions

2.1Another important approach in the revenue management is dynamic pricing. However, according to
Belobaba (1987), the dynamic price changes may lead to an irrational price war with the competitors. Unlike
the price adjustment, the seat inventory control aims to allocate the seats under multiple fares properly, which
is easy to manipulate and hidden from the competitors, and thus it becomes a practically feasible strategy in
revenue management.
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for different fare tickets and the buy-up substitution probability. For the airline industry, the

demand learning is very essential. Jack Bovey, the revenue optimization manager at British

Airways, said that “For us, it was the first step towards what will hopefully become an

important part of how we forecast, and hence price, flights.” (see The Alan Turing Institute,

2020) The information on the demand and the buy-up substitution probability has to be

learned from historical sales data, which, in turn, are affected by the past inventory allocation

decisions. How to dynamically allocate seats among different fare tickets through multiple

time periods, with learning on both demand distribution and buy-up substitution probability?

This is an important decision problem faced by airline managers. Here, we aim to investigate

this problem and provide a solution.

Considering the tractability of analysis, we restrict to a representative simplified setting

in this work. There exists a fixed amount of seats, which can be sold in two phases, an early-

bird phase with price discount followed by a regular-price phase. Customers are segmented

into two types, early-bird customers who prefer the discounted seats and regular customers

who prefer the regular-price seats. If the stock-out occurs, unsatisfied early-bird customers

may simply leave or choose to buy regular-price seats for substitution. We first present a

baseline single-period inventory decision problem with buy-up substitution. Based on the

optimal inventory allocation of the single-period model, we consider a myopic policy for the

airline company in a multi-period setting: in each period, the company updates its belief on

demand and substitution probability and then based on the updated belief, it adopts the one-

period optimal inventory allocation decision. With a numerical example, we show that with

and without considering buy-up substitution yield quite different outcomes, and ignoring

buy-up substitution could lead to a 53.31% loss in revenue. The myopic policy, though

easy to be implemented in practice, does not consider the impact on the future information

gaining of the seat allocation decision. Hence, we then construct a dynamic programming

model to investigate the optimal multi-period inventory management problem with learning

on the demand and buy-up substitution probability. To generate insights and inspire heuristic

algorithms for inventory managers, we mainly compare the Bayesian optimal inventory levels

with the corresponding myopic inventory levels. In the following analysis, the “stock more

(resp. less)” result means that the inventory level under the Bayesian inventory management

is larger (resp. smaller) than the corresponding one under the myopic decision rule.

There exist two types of censored data in our setting. If lost sales are unobservable, the

sales data provide censored demand information for the airline company. For example, if the
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airline company sells out all early-bird tickets of a flight, say 50 seats, then the company knows

that the early-bird demand is at least 50 but it does not have the exact number for it. The

second type of censored data comes from early-bird customers’ buy-up substitution behavior:

the primary demand and the substitution demand are tangled. For example, suppose that

the company observes that stockout happens during the early-bird-discount phase and in the

following regular-price phase, the sales amount of regular-price seats is 100. Then the airline

company does not know how many of these 100 sales come from the regular customers and

how many from early-bird customers who encounter stockout of discounted seats. According

to whether or not lost sales are observable and whether or not the substitution demand can be

separated out from the primary demand for the regular-price seat, we have four information

scenarios as listed in Table 2.1. The complete observation case is scenario OS and the least

observation case is UT . There are two partial observation cases: scenario OT and scenario

US.

Table 2.1: Four Information Scenarios with Acronyms

Substitution Demand
Separated Tangled

Lost Sales
Observable OS OT

Unobservable US UT

For each information scenario, we derive the Bayesian updating formula and the Bellman

equation of our dynamic programming model for finding the optimal inventory allocation

decisions. Our focus is on investigating whether the classical “stock more” or “stock less”

result still holds in our setting.

Table 2.2 summarizes our main comparison results under different information scenarios

and pinpoints our contributions to the Bayesian inventory management literature. In the

table, the symbol “≷” represents that the relationship can be either “≥” or “≤”.

We first consider the setting where the substitution probability is known and only the

demand parameter needs to be estimated. We reach the following conclusions.

• In the complete-observation scenario OS, the inventory manager does not need to in-

crease the inventory level to gain more information on the demand, yielding the same

decision as the myopic one.

• In the partial-observation scenario OT , lost sales are observable but there exist tan-

gling demands for the regular-price seat. To better estimate the primary demand for
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the regular-price seat, one needs to stock more discounted seats so as to reduce the

occurrence of the buy-up demand substitution.

• In the partial-observation scenario US, lost sales are unobservable. There is a famous

“stock more” result in the Bayesian inventory management literature, that is, the opti-

mal inventory level shall be set higher than the myopic inventory level to gain a better

observation of demand; see, e.g., Lariviere and Porteus (1999). Chen and Plambeck

(2008) further demonstrate that the unobservable lost sales still lead to the “stock

more” result under the assumption that the substitute product is always available. Dif-

ferent from their setting, the limited seat capacity here does not guarantee the complete

observations on the substitution demand. And we provide an example showing that the

unobservability of lost sales may even be a “stock less” driving force. Intuitively, the

information on the primary demand can be obtained not only directly through the sales

amounts but also indirectly from the observation of buy-up substitutions. Since one can

infer demand parameter from the substitutions, discounted seats can be stocked less to

induce more substitution trials.

We then consider the setting where both the demand parameter and the substitution prob-

ability need to be estimated. To better learn the information on the substitution probability

requires “stocking less” discounted seats so that substitution can happen more frequently.

Such a “stock less” driving force is similar to the one in Chen and Plambeck (2008). Due to

the interplay of the multiple driving forces, there are generally ambiguous results on “stock

more” or “stock less” when at least one source of demand censoring exists.

The total inventory level is assumed to be a constant in our model. This fits well the airline

industry where the size of the airplane is fixed. We also consider a more general setting with

the total inventory level to be a decision variable. This might fit some other two-phase selling

situations, such as food catering with the early-bird discount policy. We find that our main

insights still hold in such a general setting. We refer the interested readers to the online

Appendix A.1 for the detailed analysis and discussion of this generalized model.

Our main contributions are as follows. First, our results can help the airline company to

optimally determine the booking limit for the discounted seats using the effective Bayesian

inventory management. Second, we identify conflicting driving forces behind the optimal

inventory level decision and find that the classic “stock more” result may not hold anymore,

which enriches the Bayesian inventory management literature.

The remainder of this chapter is organized as follows. We review related literature in
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Table 2.2: Bayesian Optimal Inventory Levels versus the Corresponding Myopic Ones under
Different Information Scenarios

Information scenario
Relationship between

Bayesian-optimal solutions
and myopic-optimal ones

Contributions to the Bayesian inventory manage-
ment literature

Updating demand
parameter only

(see Section 2.4.2)

OS yOS = ym Consistent with the literature.

OT yOT ≥ ym
We identify a new driving force for “stocking
more” the discounted product: reduce the tan-
gling of the primary demand and the substitution
demand.

US & UT yUS(\UT ) ≷ ym

1. Under a special scenario ŨS, we extend the
traditional “stock more” result driven by the un-
observable lost sales from one kind of demand to
two kinds, the observations on which are affected
by the decision variable at the same time.
2. Another striking finding is that the unobserv-
able lost sales may become a “stock less” driv-
ing force. Chen and Plambeck (2008) get the
“stock more” result by assuming that the sub-
stitute is always available, which may not hold
anymore with a limited capacity of substitutes.
When the sales amounts contain limited demand
information, then one can further deduce such
information from the substitutions, which drives
the “stock less” result to generate more substi-
tution trials.

Updating both
demand parameter
and substitution

probability
(see Section 2.4.3)

OS yOS ≤ ym

Better estimation of the substitution probability
requires “stocking less” the discounted product,
a result consistent with that in Chen and Plam-
beck (2008). Yet, it generalizes from a setting
with unlimited capacity of substitutes and sole
source of demands for the substitutes in Chen
and Plambeck (2008) to a setting with limited ca-
pacity of substitutes and two sources of demands
for the substitutes.

OT & US & UT yOT (\US\UT ) ≷ ym

Multiple driving forces co-exist. The numeric
study shows that the final comparison result re-
lies on factors such as Bayesian manager’s prior
beliefs and seats’ prices.
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Section 2.2. In Section 2.3, we present a baseline one-period model of optimizing the booking

limit of the discounted seats under the airline setting. After that, we construct a multi-

period model with learning about the demand parameter and the substitution probability

under Bayesian inventory management in Section 2.4, where we mainly compare the Bayesian

optimal inventory level with the corresponding myopic one under four information scenarios.

In Section 2.5, we provide the numeric study. Section 2.6 concludes this chapter. We analyze

the case in which both the total inventory level and the inventory level of the discounted

product are decision variables in the online Appendix A.1. All the proofs are relegated to the

online Appendix A.2.

2.2 Literature Review

Our study is closely related to the literature on Bayesian inventory management. In the

early stage of this research stream, researchers mainly consider settings with observable lost

sales. Scarf (1959) formulates a Bayesian inventory dynamic programming model with two

state variables (inventory level and demand parameter). It is shown later in Scarf (1960)

that the problem can be reduced into one state variable with a gamma demand distribution.

Succeeding studies such as Azoury (1985) and Miller (1986) extend Scarf’s method to other

demand distributions. Lovejoy (1990) provides myopic policies by reducing the single state to

zero-dimensional state space, i.e., a static optimization problem. Later, researchers start to

consider settings with lost sales being unobservable. Such demand censoring brings difficulty

to the demand estimation. According to Braden and Freimer (1991), only special types

of distribution, namely the newsvendor distributions defined by them, allow parsimonious

information updating. By utilizing the newsvendor distribution and Scarfs method on state-

space reduction, Lariviere and Porteus (1999) successfully obtain analytical results on the

optimal inventory decision in a multi-period newsvendor setting with unobservable lost sales.

They demonstrate that the “stock more” result holds. Ding et al. (2002) further extend

their model by considering a general demand distribution with perishable products and show

that the “stock more” conclusion still holds. The proof of this conclusion is later rectified by

Lu et al. (2005) and further simplified by Bensoussan et al. (2009). Chen (2010) develops

bounds and heuristics for the optimal solutions by considering a single-product periodic-review

inventory control problem. Here, we also develop an upper bound for our early-bird-discount

model when both the total inventory level and the inventory level of the discounted product are

11



decision variables (see the online Appendix A.1). As the structure of our model is much more

complicated, we adopt an enlarging technique to make the upper bound analysis feasible. Jain

et al. (2015) and Bensoussan and Guo (2015) utilize the information on the stock-out time

to estimate demand distribution with perishable and non-perishable products, respectively.

Both papers demonstrate that when lost sales are unobservable, managers can utilize this little

bit more information about stock-out times to improve the profit. Bensoussan et al. (2016)

consider the incomplete inventory and demand information caused by the invisible demand

such as spoilage, damage, pilferage and returns. They study the inventory management

problem with only sales information and develop an iterative algorithm to solve the problem

approximately.

Among all the studies on Bayesian inventory management, Chen and Plambeck (2008)

is the first one considering the substitution issue when the stockout occurs. Our research

also considers the substitution issue but it differs greatly from Chen and Plambeck (2008).

First, Chen and Plambeck (2008) assume that the substitutable product is always available

when customers’ desired product is stocked-out. However, our work considers the buy-up

substitution of using the regular-price product to substitute the early-bird-discount product,

and thus the capacity of the substitutable product in our model is limited. Additionally, the

demand for the substitutable product in Chen and Plambeck (2008) only comes from the

stockout-based substitution, while in our model, such demand comes from two sources, the

buy-up substitution and the primary demand for the regular-price product.

In contrast to the multi-period setting in the aforementioned studies, there exists a stream

of literature studying profit maximization in a one-period setting with Bayesian learning.

This type of studies ignore the estimation-and-optimization cycle but focus on issues such

as shrinkage and pricing; see, e.g., Li and Ryan (2011), Harrison et al. (2012) and Li et al.

(2019).

Our work is also related with studies of inventory management with demand estima-

tion based on censored demand observation. Some studies utilize expectation-maximization

(EM) algorithm to estimate the demand and substitution probability parameters, including

Anupindi et al. (1998), Kök and Fisher (2007), Ulu et al. (2012), Vulcano et al. (2012) and

Chen and Chao (2019). Some studies utilize non-parametric approaches in demand learning,

including Huh and Rusmevichientong (2009), Feng and Shanthikumar (2017), Chen and Chao

(2020) and Yuan et al. (2021), and some develop operational statistics to integrate demand

estimation and inventory optimization together including Liyanage and Shanthikumar (2005)
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and Chu et al.(2008).

Finally, our study is related with the seat allocation problem in the airline revenue man-

agement literature. According to McGill and van Ryzin (1999), the early bird discount selling

strategy was first adopted by the airline companies such as BOAC (now British Airways) in

the early 1970s. By doing so, airline companies could gain extra revenue from selling the seats

that would be empty without offering discounts. Littlewood (1972) provides an optimal rule

for this from the perspective of benefit maximization, which lays a foundation for many yield

control models. This rule is extended by Belobaba (1987) to multiple fare classes by using the

Expected Marginal Seat Revenue Model (EMSR) and Pfeifer (1989) obtains a similar result

but in a different approach. Using the marginal analysis as in Belobaba (1987), Brumelle

et al. (1990) formally prove that a variant of Littlewoods rule could be optimal under a

general model of the seat allocation problem. van Ryzin and McGill (2000) provide a simple

adaptive approach to optimize seat protection levels. Cooper et al. (2006) demonstrate that

simply following the Littlewood’s rule without considering the buy-up substitution can cause

a serious spiral-down effect, resulting in a big revenue loss. Cooper and Li (2012) further

demonstrate the benefit of incorporating the buy-up substitution into the airline seat man-

agement problem. All of these studies do not combine the learning and inventory decision

together. Ours is the first one combining the dynamic learning of the demand distribution

and substitution probability and inventory decision together for the airline seat inventory

management problem.

In our two-phase selling model, the first-phase price is lower than that of the second

phase. A symmetric setting exists in business practice with the first-phase price higher than

the second phase’s. Hu et al. (2015) study such a markdown inventory management problem.

In their model, there are also two selling phases in each period, a clearance phase (modeled

as the first phase) with a lower price and a regular-sales phase (modeled as the second phase)

with a full price. Those customers who do not get the products in the clearance phase can

choose to substitute in the following regular-sales phase. The main differences between their

markdown model and our early bird discount model are that the inventory used in their

clearance phase is part of those unsold leftover products from the previous period, that is,

they are not newly produced, and the leftover products from the clearance phase cannot be

sold in the following regular-sales phase. Thus, the selling periods in their markdown setting

are inter-correlated, while the selling periods are independent in our early bird discount model.

Another main difference is that Hu et al. (2015) only consider a static model and there is
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no learning about the demand parameter and the substitution probability while we consider

learning of both.

2.3 One-period Model

In this section, we first review a baseline one-period inventory management problem with

two selling phases. The optimal inventory decision can be expressed in a similar way as a

newsvendor-problem solution. Next, we present a myopic decision policy where the company

repeatedly makes the one-period decision along the time line, with demand and substitution

probability information updated according to Bayes’ rule. We then construct a numerical

example to illustrate the importance of incorporating the buy-up substitution probability

into the model.

2.3.1 Model Description

Past studies on airline seat protection problems mainly focus on a single period setting, see,

e.g., Brumelle et al. (1990). For completeness, we briefly review this model and state it with

our notations. Consider a single selling period with two selling phases: an early-bird-discount

phase and a regular-price phase. The corresponding selling prices are denoted as p1 and p2,

respectively, where p1 < p2. The primary demands for the discounted seat and the regular-

price seat are D1 and D2, respectively, which can be correlated. In this work, we consider

them to be discrete random variables. Let f12(·, ·|θ) be their joint probability mass function,

where θ is an unknown parameter with θ ∈ Θ. (Note that θ can be a vector of unknown

parameters.) Denote the marginal probability mass functions of D1 and D2 as f1(·|θ) and

f2(·|θ), respectively. Let M be the total number of available seats of the flight, which is a

fixed number. The firm’s objective is to determine the optimal amount of the discounted

seats, denoted as y, to maximize its total expected profit over the two selling phases.

There exists a tradeoff associated with the inventory decision y. When the firm allocates

too few seats for the early-bird-discount sales (i.e., y is very small), the primary demand for

the early-bird-discount seat may not be fully satisfied and some of them may be lost, losing

the opportunity to sell more. On the other hand, if the firm allocates too many seats for

the early-bird-discount sales (i.e., y is very big), the firm may lose a chance to force some

customers to buy-up their seats, because when stockout happens for the discounted seats,

some customers who come for the discounted seats may choose to buy the regular-price seats.
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As the primary demand for the discounted seat is D1, the realized sales of the discounted

seat can be expressed as D1 ∧ y, where a ∧ b = min(a, b). If there are leftover seats at the

end of the early-bird-discount phase, they are sold in the regular-price phase as well. Thus,

the amount of inventory available for the regular-price sales is (M − y ∧D1). Note that the

demand for the regular-price seat comes from two sources: those from unsatisfied customers

in the early-bird-discount phase who choose the buy-up substitution, denoted by a random

variable K, and the primary demand for the regular-price seat (i.e., D2). We assume that each

unsatisfied customer’ substitution decision is a Bernoulli trial with probability α, called the

buy-up substitution probability. The random variable K then follows a binomial distribution

with parameters ((D1 − y)+, α), where x+ = max(0, x). Under given values of θ and α,

the firm makes the inventory level decision to maximize its total expected profit π(y|θ, α) as

follows:

max
y
π(y|θ, α) = p1E[D1 ∧ y|θ] + p2E[(K +D2) ∧ (M − y ∧D1)|θ, α] (2.1)

s.t. 0 < y ≤M.

According to Brumelle et al. (1990), the optimal inventory level of the discounted seat y∗

can be expressed as follow:

y∗ = max

{
0 < y ≤M : Pr(K +D2 > M − y|D1 ≥ y, θ, α) <

p1 − αp2

(1− α)p2

}
. (2.2)

Specifically, if the substitution probability α is 0 (i.e., K = 0 with probability 1), the above

optimal solution y∗ reduces to the result of Littlewood’s rule (Littlewood, 1972).

We have the following conclusion about the sensitivity of the optimal decision y∗ with

respect to the substitution probability α.

Proposition 2.1. The profit function π(y|θ, α) is submodular in (y, α); that is, ∂[π(y +

1|θ, α) − π(y|θ, α)]/∂α < 0. Therefore, the optimal level of the discounted inventories y∗

decreases with the substitution probability α.

Proposition 2.1 shows that, if the substitution probability is larger, the inventory manager

should set a lower inventory level for the discounted seats. The behind reason is that those

unsatisfied customers are more likely to buy the regular-price seats.
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2.3.2 Repeated Decision Making

The one-period model assumes that the demand and substitution probability parameters are

known. In practice, such information is often unknown to the inventory manager, who may

not even realize the existence of buy-up substitution. When decisions are made repeatedly

across multiple periods, unknown parameters can be learned from past sales. We construct a

simple numerical example to illustrate repeated inventory decisions with learning on demand

information through Bayesian updating. In particular, we consider scenarios with and without

incorporating the buy-up substitution into demand estimation and compare the results.

Example 2.1. (Repeated Decisions with and without Incorporating Buy-up Sub-

stitution) Consider that an airline company offers an early bird sale of a flight with a

medium-sized jet. The total number of seats is M = 120. The regular price is set at p2 = 2000,

and the early-bird-discount price p1 = 750. Lost sales are unobservable, and the substitution

demand and the primary demand for the regular-price seat cannot be separated. The primary

demands for the discounted and normal-price seats are D1 and D2 following truncated Poisson

distributions (0 ≤ D1 ≤ 160, 0 ≤ D2 ≤ 160) with parameters λ1 and λ2, respectively. The

demand parameter θ may take value 1 or 2. When θ = 1, λ1 = 36 and λ2 = 20; and when

θ = 2, λ1 = 80 and λ2 = 0. The substitution probability α may be low (α = 0.1) or high

(α = 0.8).

When the inventory manager is aware of buy-up substitution, the repeated decisions can be

made as follows. At the beginning of the first selling period, the inventory manager holds the

prior beliefs (Pr(θ = 1), P r(θ = 2)) = (0.8, 0.2) and (Pr(α = 0.1), P r(α = 0.8)) = (0.5, 0.5).

The optimal inventory allocation in period 1 can be calculated based on the one-period optimal

inventory decision formula (2.2). In the following period, the inventory manager first updates

the beliefs on demand and substitution probability based on the observed sales data, and then

makes the optimal inventory allocation decision by adopting again the formula (2.2). This

policy repeats for the remaining periods. In a similar vein, one can calculate the correspond-

ing optimal inventory allocation decisions when the manager ignores the buy-up substitution.

Denote the optimal solutions in period i (i ≥ 1) with and without considering the buy-up

substitution as ysubi and ynoi , respectively.

Now suppose that the underlying true parameter values are θ = 2 and α = 0.8. That

is, all customers belong to early-bird customers and they will buy regular-price seats with a

probability of 0.8 if the discounted seats are stocked out.

When the inventory manager does not realize the buy-up substitution issue, we can calcu-
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late his optimal inventory decision on the discounted seats in the first period as yno1 = 106.

His belief is then updated according to Bayes’ rule. It can be shown that, with a probability of

0.99, the observed sales data is (k, 0), where 59 ≤ k < 106. That is, under this situation, the

company only observes the sales in the early-bird-discount phase. Hence, for 59 ≤ k < 106, it

follows from Bayes’ rule that the posterior belief that θ = 2 is

Pr(θ = 2|(k, 0)) =
0.2× 80ke−80/k!∑160

i=0 80ie−80/i!

0.2× 80ke−80/k!∑
i=016080ie−80/i!

+ 0.8× 36ke−36/k!∑160
i=0 36ie−36/i!

× 200e−20/0!∑160
i=0 20ie−20/i!

≈ 1.00.

Therefore, after the first period, the optimal inventory decision for the second period be-

comes yno2 = 120. As the protection level of the regular-price seats reduces to 0, the manager

can never observe the sales of the regular-price seats. It then follows that the zero protection

level shall be kept in all the following periods. By contrast, when the substitution issue is

considered, the belief of the inventory manager can be updated very close to the underlying

true value (i.e., Pr(θ = 2, α = 0.8) > 0.95) on almost all the sample paths after five periods

according to our simulation study, and the optimal inventory level correspondingly becomes

ysubi = 1 (i ≥ 6). The simulation result shows that from the sixth period, the ignorance of the

substitution issue causes a 53.31% loss in revenue on average.

Example 2.1 shows that, when demand information is updated according to Bayes’ rule,

ignoring substitution can cause a severe loss of revenue. This finding is similar to the spiral-

down effect illustrated in Cooper et al. (2006), who demonstrate that, if buy-up substitution

is ignored by the manager, the protection level for regular-price seats will be low, and the

regular-price sales will decrease, resulting in lower future estimates of demand for regular-

price seats, which, in turn, leads to a lower protection level. In Cooper et al. (2006), demand

information is updated in a non-Bayesian way. Here, we demonstrate that the similar spiral-

down effect also exists if demand is updated according to Bayes’ rule.

Repeated decision making based on the one-period model, although it is simple and easy

to implement, has a big defect: it ignores the effect of the current inventory decision on

learning demands and substitution probability in the following periods. Hence, we call it

the myopic decision in a multi-period setting. In the following section, we will present a

dynamic programming model, which considers not only the current-period revenue but also

the efficiency of learning on demands and substitution probability in the following periods.
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2.4 Multi-period Bayesian Inventory Management

We now consider a multi-period inventory management model with learning on the unknown

demand parameter θ and the unknown buy-up substitution probability α. The firm’s objective

is to maximize the total discounted expected profit in N periods, where the discount factor

is denoted by δ (0 < δ ≤ 1). The selling phases in each period are the same as those in the

one-period setting.

We first describe the four information scenarios and derive the Bayesian learning formula

for unknown parameters in each scenario. We then specifically consider two settings. In the

first setting, the inventory manager cares most about the demand parameter by assuming that

the value of the substitution probability parameter α is known from the prior knowledge and

experience. Thus, only the demand parameter θ needs to be learned. In the second setting,

both the demand parameter θ and the substitution probability α need to be learned. For

each setting, we formulate the corresponding dynamic programming model for the optimal

inventory decisions. Recall that the decision variable is the inventory level of the discounted

seats y. We shall conduct the comparison between the Bayesian optimal inventory level and

the corresponding myopic one, where the myopic one maximizes only that period’s expected

profit without considering the decision’s impact on the future demand-information learning.

2.4.1 Four Information Scenarios and Bayesian Learning

In our study, there are two sources of demand censoring. One, lost sales may not be observable.

Two, the demand for the regular-price seat is composed of both the substitution demand and

the primary demand for the regular-price seat, which may not be separated. We then have four

information scenarios based on whether or not lost sales are observable and the substitution

demand can be separated out, as shown in Table 2.3.

Table 2.3: Four Information Scenarios with Available Information

Substitution Demand
Separated Tangled

Lost Sales
Observable OS(x1, x21, x22) OT (x1, x2)

Unobservable US(s1, s21, s22) UT (s1, s2)

When lost sales are observable and the substitution demand can be separated out (de-

noted as the OS scenario), we have the complete observations: the realized demands for the
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discounted and regular-price seats, x1 and x2 are both observable. Moreover, in the compo-

sition of x2, the substitution demand x21 and the primary demand for the regular-price seat

x22 are also known. This separation observation is feasible under some cases where according

to experience, all primary demands for the discounted seats can be reasonably assumed to

arrive only in the early-bird-discount phase and all primary demands for the regular-price

seats arrive only in the regular-price phase. And thus, the substitutions happen only in the

early-bird-discount phase, and the sales of the regular-price seats in the early-bird-discount

(resp. regular-price) phase come only from the substitution demands (resp. primary demands

for the regular-price seats).

Given the inventory level y, the demand parameter θ and the substitution probability α,

the likelihood of observing demand realizations x1, x21 and x22 can be written as

f yOS(x1, x21, x22|θ, α) =

f12(x1, x22|θ)
(
x1−y
x21

)
αx21(1− α)x1−y−x21 , if x1 > y;

f12(x1, x22|θ), if x1 ≤ y.

When lost sales are unobservable but the substitution demand can be separated out (de-

noted as the US scenario), sales for the discounted seats s1 and that for the regular-price seats

s2 are both observable. Moreover, s2 can be separated as sales from the substitution demand

s21 and sales from the primary demand for the regular-price seat s22. Note that sales quanti-

ties s1, s21 and s22 are censored data of demand realizations x1, x21 and x22, respectively. The

likelihood function takes different expressions depending on whether the stockout happens

and if it indeed happens, which kind of seats is stocked out. For example, consider s1 = y,

s21 < M − y and s22 = M − y − s21. The condition s1 = y indicates that the discounted seat

is sold out. Among those excess demands in D1, only s21 unsatisfied customers choose to buy

the regular-price seats as substitutes, which is observable. Hence, the primary demand for the

discounted seat shall be no less than y + s21. When s22 = M − y − s21, it indicates that the

regular-price product is sold out in the regular-price phase, and hence the primary demand

for the regular-price seat shall be no less than M − y − s21. The likelihood of observing the

aforementioned sales quantities in two phases can be written as

+∞∑
i=y+s21

+∞∑
j=M−y−s21

f12(i, j|θ)
(
i− y
s21

)
αs21(1− α)i−y−s21 .

Analogously, we can derive the likelihood functions of other observations. We can show that
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under the US scenario, the likelihood of observing sales quantities (s1, s21, s22) is

f y,MUS (s1, s21, s22|θ, α)

=



f12(s1, s22|θ), if s1 < y, s21 = 0 and s22 < M − s1;
+∞∑

j=M−s1
f12(s1, j|θ), if s1 < y, s21 = 0 and s22 = M − s1;

+∞∑
i=y+s21

f12(i, s22|θ)
(
i−y
s21

)
αs21(1− α)i−y−s21 ,

if s1 = y, s21 < M − y and s22 < M − y − s21;
+∞∑

i=y+s21

+∞∑
j=M−y−s21

f12(i, j|θ)
(
i−y
s21

)
αs21(1− α)i−y−s21 ,

if s1 = y, s21 < M − y and s22 = M − y − s21;
+∞∑

j=M−y

+∞∑
i=y+j

f1(i|θ)
(
i−y
j

)
αj(1− α)i−y−j, if s1 = y, s21 = M − y and s22 = 0.

In some other real settings, some customers may strictly prefer the regular-price seat, and

purchase it once it is available. So, some primary demands for the regular-price seats may

arrive in the early-bird-discount phase after the discounted seats sell out and the regular-price

ones become available. On the other hand, some unsatisfied demands for the discount may

choose to substitute in the regular-price phase considering that they may hesitate to pay a

higher price. In this case, the airline manager cannot distinguish the substitution demands

and the primary demands for the regular-price seats after the stockout of the discounted seats.

The OT information scenario considers observable lost sales and such tangled demands for

the regular-price seat.

If the demand realization for the discounted seat x1 satisfies x1 ≤ y, no substitution

will happen. Then, the demand realization for the regular-price seat x2 fully represents the

realized primary demand D2. Hence, the likelihood of observing the demand realization

(x1, x2), where x1 ≤ y, is f12(x1, x2|θ). When x1 > y, there must exist some unsatisfied

demand in the early-bird-discount phase, and hence x2 can be the sum of the substitution

demand from those unsatisfied customers in the early-bird-discount phase and the primary

demand for the regular-price seat. Suppose that the substitution demand is i. Then, the

likelihood of observing (x1, x2) can be written as

(
x1 − y
i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ).
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As the substitution demand i is latent, one needs to sum up above likelihoods over all the

possible values of i, which fall within the range [0, (x1 − y) ∧ x2]. Hence, the likelihood of

observing the demand realization (x1, x2), where x1 > y, is

(x1−y)∧x2∑
i=0

(
x1 − y
i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ).

In summary, under the OT scenario, the likelihood of observing the demand realization

(x1, x2) can be written as

f yOT (x1, x2|θ, α) =


(x1−y)∧x2∑

i=0

(
x1−y
i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ), if x1 > y;

f12(x1, x2|θ), if x1 ≤ y.

The least information scenario is the one where lost sales are unobservable and the pri-

mary demand for the regular-price seat is tangled with the substitution demand from those

unsatisfied customers in the early-bird-discount phase (denoted as the UT scenario). Under

the UT scenario, one can only observe sales quantities s1 and s2 for the discounted seat and

the regular-price seat, respectively. The exact expression of the likelihood function depends

on whether the inventory stockout happens or not and, if it happens, which seat is stocked-

out. For example, consider s1 = y and s2 = M − y. s1 = y implies that the discounted

seats are sold out, and s2 = M − y indicates that the regular-price seats are also sold out.

Therefore, we can infer that the primary demand for the discounted seat is no less than y and

the tangled demand (the sum of the substitution demand and the primary demand for the

regular-price seat) is no less than M − y. In this case, to derive its likelihood, we shall first

consider the complete observation of a realized primary demand i in the early-bird-discount

phase, the substitution demand j, and the realized tangled demand k for the regular-price

seat. The corresponding likelihood can be written as(
i− y
j

)
αj(1− α)i−y−jf12(i, k − j|θ).

We can then sum over all the possible values of i, j and k to obtain the likelihood of observing

sales quantities (s1, s2). Note that the substitution demand j should be no more than both

i− y, the excess (unsatisfied) demand for the discounted seat and k, the tangled demand for

the regular-price seat. Then, the likelihood of observing sales quantities s1 = y and s2 = M−y
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can be derived as

+∞∑
i=y

+∞∑
k=M−y

(i−y)∧k∑
j=0

(
i− y
j

)
αj(1− α)i−y−jf12(i, k − j|θ)

 .
Similarly, we can derive the likelihoods of all the possible observations, which are summarized

as follows:

f yUT (s1, s2|θ, α)

=



f12(s1, s2|θ), if s1 < y and s2 < M − s1;
+∞∑

k=M−s1
f12(s1, k|θ), if s1 < y and s2 = M − s1;

+∞∑
i=y

[
(i−y)∧s2∑
j=0

(
i−y
j

)
αj(1− α)i−y−jf12(i, s2 − j|θ)

]
, if s1 = y and s2 < M − y;

+∞∑
i=y

+∞∑
k=M−y

[
(i−y)∧k∑
j=0

(
i−y
j

)
αj(1− α)i−y−jf12(i, k − j|θ)

]
, if s1 = y and s2 = M − y.

Let Iyscen denote the information set that contains all the available information for a given

inventory level y under the information scenario scen, where scen ∈ {OS,OT ,US,UT }. For

example, under the OS scenario where lost sales are observable and the substitution demand

can be separated out, IyOS = {(x1, x21, x22) : 0 ≤ x21 ≤ (x1−y)+, x1, x21, x22 ∈ N+}, where N+

is a set of all nonnegative integers; that is, the information set contains all possibilities of both

the realized primary demands in two phases and the substitution demand. Similarly, under

the UT scenario where lost sales are unobservable and the substitution demand is tangled

with the primary demand, IyUT = {(s1, s2) : 0 ≤ s1 ≤ y, 0 ≤ s2 ≤ M − s1, s1, s2 ∈ N+}; that

is, the information set contains all possibilities of observed sales quantities.

Denote the joint prior distribution of θ and α in period i (i = 1, 2, . . . , N) as φi(θ, α). Given

φi(θ, α) for period i, the posterior distribution φi+1(θ, α) derived based on the information

observed in period i serves as the prior for the following time period i + 1. Under each

information scenario scen ∈ {OS,OT ,US,UT }, given the data observations for period i,

ξ ∈ Iyscen, the posterior distribution φi+1(θ, α) can be derived by using the corresponding

likelihood function according to Bayes’ rule as follow:

φi+1(θ, α|ξ, y, φi) =
f yscen(ξ|θ, α)φi(θ, α)∫ 1

0

∫
Θ
f yscen(ξ|θ′, α′)φi(θ′, α′)dθ′dα′

. (2.3)
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Let vsceni (φi) be the firm’s maximum total discounted expected profit over periods i to

N with a prior distribution φi for period i (i = 1, 2, . . . , N) under the information scenario

scen, where scen ∈ {OS,OT ,US,UT }. Then, we can write the Bayesian dynamic optimality

equations as

vsceni (φi) = max
0<y≤M

Eφi(θ,α)

π(y|θ, α) + δ
∑

ξ∈Iyscen

vsceni+1 (φi+1)f yscen(ξ|θ, α)

 , i = 1, · · · , N − 1,

and

vscenN (φN) = max
0<y≤M

EφN (θ,α) {π(y|θ, α)} .

For ease of exposition, we use Gscen
i (y, φi) to denote the corresponding objective function of

vsceni (φi) (i = 1, · · · , N), which means that

Gscen
i (y, φi) = Eφi(θ,α)

π(y|θ, α) + δ
∑

ξ∈Iyscen

vsceni+1 (φi+1)f yscen(ξ|θ, α)

 , i = 1, · · · , N − 1,

and

Gscen
N (y, φN) = EφN (θ,α) {π(y|θ, α)} .

The myopic inventory level in period i (i = 1, · · · , N) maximizes only that period’s ex-

pected profit and is denoted as ymi . Hence, it is the optimal solution of the corresponding

one-period model with prior belief φi(θ, α). For ease of exposition, we use Gm
i (y, φi) and

vmi (φi) to denote the firm’s objective function and the corresponding optimal value function

in period i under the myopic setting, respectively.

2.4.2 Updating Only Demand Parameter θ

In this subsection, we consider the substitution probability α to be known and we only need

to estimate the demand parameter θ. Doing this allows us to study the driving forces to have

a better estimation of the demand parameter. We are particularly interested in examining

whether the inventory level shall be kept higher than the myopic one in order to better

learn demand information. Since α is given, φi(θ, α), the prior joint distribution for period
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i (i = 1, · · · , N), reduces to a one-variable distribution. Let φ′i(θ) denote the prior marginal

distribution of θ for period i, where φ′i(θ) = φi(θ,α)∫
Θ φi(θ′,α)dθ′

.

Below, we first consider the OS scenario where we have complete observations. For period

i (i = 1, · · · , N), the impact of increasing the inventory level of the discounted seats y by one

unit satisfies

GOSi (y + 1, φ′i)−GOSi (y, φ′i) = Eφ′i(θ) {π(y + 1|θ, α)− π(y|θ, α)}

= Gm
i (y + 1, φ′i)−Gm

i (y, φ′i). (2.4)

Equation (2.4) implies that the marginal impact of increasing the inventory level y on the

objective function under the Bayesian inventory management scheme remains the same as

that under the myopic decision scheme. It then follows that the Bayesian optimal inventory

level shall be the same as the myopic one, which is formally stated in the following proposition.

Proposition 2.2. When the substitution probability α is known, for any period i (i =

1, · · · , N), given the same prior distribution φ′i(θ), the Bayesian optimal inventory level under

the OS scenario is equal to the corresponding myopic one; that is, yOSi = ymi .

The underlying reason is that when we have complete observations, there is no need to

manipulate the inventory level to observe more demand information. Hence, the decision

maker only needs to maximize the current-period expected profit. Such an equality between

yOSi and ymi serves as a benchmark for the following comparisons in other scenarios.

Next, we turn to the OT scenario where the substitution demand is tangled with the pri-

mary demand for the regular-price seat. One may believe that the information is complete to

estimate the demand parameter. However, there exists tangled demand that does not provide

the complete observation of D2, the primary demand for the regular-price seat. Consider the

marginal impact of increasing the inventory level y. For period i (i = 1, · · · , N − 1), we can

show that

GOTi (y + 1, φ′i)−GOTi (y, φ′i) = Eφ′i(θ)

{
π(y + 1|θ, α)− π(y|θ, α)

+ δ
[∑

x1

∑
x2

vOTi+1(φ′i+1)f y+1
OT (x1, x2|θ, α)−

∑
x1

∑
x2

vOTi+1(φ′i+1)f yOT (x1, x2|θ, α)
]}
. (2.5)

To investigate the relationship between the Bayesian optimal inventory level yOTi and the
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myopic one ymi , we need to consider the following term stated in (2.5):

Eφ′i(θ)

{∑
x1

∑
x2

vOTi+1(φ′i+1)f y+1
OT (x1, x2|θ, α)−

∑
x1

∑
x2

vOTi+1(φ′i+1)f yOT (x1, x2|θ, α)

}
.

Lemma 2.1. When the substitution probability α is known, under the OT scenario, given

any prior distribution φi(θ) for period i (i = 1, · · · , N − 1) with 0 < y < M , we have

Eφi(θ)

{∑
x1

∑
x2

vOTi+1(φ′i+1)f y+1
OT (x1, x2|θ, α)

}
≥ Eφi(θ)

{∑
x1

∑
x2

vOTi+1(φ′i+1)f yOT (x1, x2|θ, α)

}
.

Lemma 2.1 implies that increasing the discounted seat’s inventory level y in a period yields

a larger total discounted expected profit for the following periods. From Lemma 2.1, we can

further obtain that

GOTi (y + 1, φ′i)−GOTi (y, φ′i) ≥ Gm
i (y + 1, φ′i)−Gm

i (y, φ′i). (2.6)

The inequality (2.6) allows us to obtain the following “stock more” result.

Proposition 2.3. When the substitution probability α is known, for any period i (i =

1, · · · , N), given the same prior distribution φ′i(θ), the Bayesian optimal inventory level under

the OT scenario is no less than the corresponding myopic one; that is, yOTi ≥ ymi .

In inventory management literature, “stock more” is mainly driven by the lack of observ-

ability of lost sales (Lariviere and Porteus, 1999; Ding et al., 2002; and Chen and Plambeck,

2008). Here, Proposition 2.3 provides another driving force for the “stock more” result: reduc-

ing demand substitution so as to better observe the primary demand. With a higher inventory

level of the discounted seat, the chance of buy-up substitution is less, which results in a better

observation of the primary demand for the regular-price seat.

We now consider the US scenario where lost sales are unobservable but the substitution

demand can be separated out in the sales data. Is the unobservable lost sales still a driving

force to “stock more” under our model setting? To answer this question, let us first consider

a special scenario ŨS where we assume that the two primary demands D1 and D2 are inde-

pendent and no unsatisfied demand chooses to substitute (i.e., α = 0). In this scenario, φ′i(θ),

the prior marginal distribution of θ for period i, can be further specified as φ′i,1(θ1)φ′i,2(θ2)

with θi ∈ Θi (i = 1, 2), where φ′i,1(θ1) and φ′i,2(θ2) are the marginal distributions of D1 and

D2, respectively. Since the number of substitution demands s21 is always 0, the likelihood of
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observing sales quantities (s1, s22) can be expressed as

f y
ŨS

(s1, s22|θ1, θ2)

=



f1(s1|θ1)f2(s22|θ2), if s1 < y and s22 < M − s1;

f1(s1|θ1)
+∞∑

j=M−s1
f2(j|θ2), if s1 < y and s22 = M − s1;

+∞∑
i=y

f1(i|θ1)f2(s22|θ2), if s1 = y and s22 < M − y;

+∞∑
i=y

f1(i|θ1)
+∞∑

j=M−y
f2(j|θ2), if s1 = y and s22 = M − y.

It is easy to verify that the posterior distributions of D1 and D2 are still independent. For

the ŨS scenario, we obtain the following result.

Proposition 2.4. In the ŨS scenario, when the demand parameter θ1 (resp. θ2) is unknown

but θ2 (resp. θ1) is known, for any period i (i = 1, · · · , N), given the same prior distribution

φ′i,1(θ1) (resp. φ′i,2(θ2)), the Bayesian optimal inventory level under the ŨS scenario is no less

(resp. no larger) than the corresponding myopic one; that is, yŨSi ≥ ymi (resp. yŨSi ≤ ymi ).

According to Proposition 2.4, the unobservable lost sale is still a “stock more” driving

force considering either kind of the primary demands under the ŨS scenario. Intuitively,

when only one kind of primary demands needs to be learned but another kind is already

known, we should stock more seats for the unknown demand to better estimate it. As a

change in the decision variable y affects the observations on two primary demands D1 and

D2, the “stock more” result here can be regarded as an extension of the traditional “stock

more” result driven by the unobservable lost sales when there is only one kind of demand

(Lariviere and Porteus, 1999; Ding et al., 2002; and Chen and Plambeck, 2008).

The result in Proposition 2.4 is obtained through assuming that the substitution proba-

bility is 0. Will the unobservable lost sale still be a “stock more” driving force when α > 0

under our setting? Surprisingly, the answer is no; see the following “stock less” result under

a special case.

Proposition 2.5. Consider that the primary demand for the regular-price seat D2 is always

zero and the substitution probability are known with α > 0. Only the demand parameter of

D1, θ1, is unknown. The value of D1 cannot be 1; i.e., f1(1|θ1) = 0 for all θ1 ∈ Θ1. The

total number of available seats is M = 2. Then, for any period i (i = 1, · · · , N), given the

26



same prior distribution φ′i,1(θ1), the Bayesian optimal inventory level is no larger than the

corresponding myopic one; that is, yUSi ≤ ymi .

In Proposition 2.5, no matter whether the inventory decision y is set to be 1 or 2, given

the same realized early-bird demand, the observed early-bird sales amount conveys the same

demand information. For example, if the realized demand is 0, the sales amount is 0 in both

y = 1 and y = 2 cases. If the realized demand is 2 or larger, then the sales amount is s1 = 1 in

the case y = 1 and s1 = 2 in the case y = 2. However, both s1 = 1 and s1 = 2 convey the same

demand information D1 ≥ 2 because the demand cannot be 1. Hence, setting the different

values of y here does not affect the demand information gaining in the first phase. However,

the inventory manager can infer some demand information from the substitution demand

when y = 1. In other words, “stocking less” discounted seats can induce more information

about the early-bird demand, in sharp contrast to the literature result.

The next example shows that the strict less ‘<’ in Proposition 2.5 can be achieved. More-

over, such a “stock less” phenomenon can appear in more general settings with other common

demand distributions and larger M .

Example 2.2. (“Stock Less” Driven by Unobservable Lost Sales) Under the US
scenario, the following cases show that the “stock less” result can hold when only the demand

parameter of D1 is learned. In all three cases, the inventory manager aims to determine

the optimal number of discounted seats to maximize the total expected profit in two periods

(with discount factor δ = 1). The optimal inventory levels of the discounted seat in the first

period under the Bayesian inventory management and myopic optimization are yUS1 and ym1 ,

respectively.

(a) One-point Distribution with M = 2

The discount and regular prices are set at p1 = 800 and p2 = 1200, respectively. The

primary demand for the discounted seat D1 follows a one-point distribution with an

unknown parameter θ, and the primary demand for the regular-price seats D2 is known

as 0. The demand parameter θ takes value 1 or 2: when θ = 1, D1 = 2; otherwise,

D1 = 3. The buy-up substitution probability α is known as 0.5. At the beginning of the

first selling period, when the inventory manager holds the prior beliefs Pr(θ = 1) = 0.35

and Pr(θ = 2) = 0.65, the optimal inventory levels for this period satisfy that (yUS1 =

1) < (ym1 = 2).

(b) Two-point Distribution with M = 150
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The discount and regular prices are set at p1 = 700 and p2 = 1200, respectively. The

primary demand for the discounted seat D1 follows a two-point distribution with an

unknown parameter θ, and the primary demand for the regular-price seats is known as

D2 = 0. The demand parameter θ takes value 1 or 2: when θ = 1, Pr(D1 = 150) =

Pr(D1 = 180) = 1
2
; otherwise, Pr(D1 = 200) = Pr(D1 = 230) = 1

2
. The buy-up

substitution probability α is known as 0.1. At the beginning of the first selling period,

when the inventory manager holds the prior beliefs Pr(θ = 1) = 0.4 and Pr(θ = 2) =

0.6, the optimal inventory levels for this period satisfy that (yUS1 = 147) < (ym1 = 148).

(c) Truncated Poisson Distribution with M = 100

The discount and regular prices are set as p1 = 700 and p2 = 1200, respectively. The

primary demand for the discounted seat D1 follows a truncated Poisson distribution

(0 ≤ D1 ≤ 300) with an unknown parameter λ1, and the primary demand for the

regular-price seats D2 also follows a truncated Poisson distribution (0 ≤ D2 ≤ 30)

whose parameter is known as 5. The unknown demand parameter λ1 takes value 150 or

256. The buy-up substitution probability α is known as 0.2. At the beginning of the first

selling period, when the inventory manager holds the prior beliefs Pr(λ1 = 150) = 0.8

and Pr(λ1 = 256) = 0.2, the optimal inventory levels for this period satisfy that (yUS1 =

77) < (ym1 = 79).

Intuitively, besides the sales amount of the discounted seats s1, the observed substitution

demand s21 can convey some information about the primary demand for the discounted seat

D1, which yields a “stock less” driving force. This is different from the conclusion in Chen

and Plambeck (2008), in which they assume that the substitute product is always available.

Thus, in their paper, complete observations on the substitution demand can be achieved, and

unobservable lost sales lead to “stock more”. Here, observations on the substitution demand

are limited due to the total inventory constraint. “Stocking less” discounted inventory induces

more observations on substitutions. Hence, the “stock more” result no longer holds.

The above analysis implies that the unobservable lost sale contains counter “stock more”

and “stock less” driving forces, which makes the relationship between yUSi and ymi generally

uncertain. For the UT scenario where both unobservable lost sales and tangled demands

exist, there is an additional “stock more” driving force due to the tangled demands compared

with the US scenario, which brings more uncertainty to the final comparison result.
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2.4.3 Updating Both Demand Parameter θ and Substitution Prob-

ability α

In this subsection, we consider that both the demand parameter θ and substitution probability

α are unknown.

Let us still first investigate the simplest OS scenario. This scenario actually provides

complete observations to estimate the demand parameter: lost sales are observable and the

substitution demand can be separated from the primary demand. However, due to the need

of estimating the substitution probability, inventory levels shall be manipulated so that we

can obtain more observations on the customer’s substitution behavior. For this scenario, we

can obtain the following comparison result regarding the marginal impact of increasing the

inventory level y between the Bayesian-inventory-management setting and the myopic setting,

where the proof of inequality (2.7) can be found in the online Appendix A.2:

GOSi (y + 1, φi)−GOSi (y, φi) ≤ Gm
i (y + 1, φi)−Gm

i (y, φi), (2.7)

Based on (2.7), we can obtain the following result.

Proposition 2.6. For any period i (i = 1, · · · , N), given the same prior φi(θ, α), the Bayesian

optimal inventory level under the OS scenario is no larger than the corresponding myopic one;

that is, yOSi ≤ ymi .

In comparison with the setting where only the demand parameter θ needs estimation,

Proposition 2.6 shows that introducing a new parameter, the substitution probability, gener-

ates a driving force for “stock less”. Note that under the OS scenario, although the inventory

level of the discounted seats y is reduced to allow more substitution demands, the observa-

tions on the primary demands are unaffected. Such a “stock less” result is similar to that

obtained in Chen and Plambeck (2008). Yet, our result generalizes from their setting with

unlimited capacity of substitutes and sole source of demands for the substitutes to a setting

with limited capacity of substitutes and two sources of demands for the substitutes.

For the other three information scenarios, those driving forces identified in Section 2.4.2

still exist besides the “stock less” result driven by learning the substitution probability. This

brings more uncertainty to the aggregate effect on the optimal inventory level. The final

comparison result generally depends on factors such as the Bayesian inventory manager’s

prior beliefs and seats’ prices (see Section 2.5).
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2.4.4 Comparison of Expected Profits under Four Information Sce-

narios

We now compare the system performance under the four information scenarios. The following

proposition lists the comparison results, which help us to understand the value of information.

Proposition 2.7. For period i (i = 1, · · · , N), given the same prior distribution φi,

(a) the objective functions under the four information scenarios satisfy the following rela-

tionship:
∑N−i

n=0 δ
n · π(y, φi) ≤ GUTi (y, φi) ≤ GOTi (y, φi)(G

US
i (y, φi), resp.) ≤ GOSi (y, φi);

(b) the optimality value functions under the four information scenarios satisfy the follow-

ing relationship:
∑N−i

n=0 δ
n · max0<y≤M π(y, φi) ≤ vUTi (φi) ≤ vOTi (φi)(v

US
i (φi), resp.) ≤

vOSi (φi).

In Proposition 2.7, the term
∑N−i

n=0 δ
n · π(y, φi) represents the discounted profit without

any learning. This lemma shows that an inventory system with Bayesian learning can always

achieve a profit at least as high as the one without any learning. As shown in Proposition 2.7,

among the four information scenarios, the most informative OS scenario generates the highest

profit while the least informative UT scenario generates the lowest profit. The performances

of the OT and US scenarios lie in between and cannot be simply compared: the former one

has censored observations on the primary demand due to demand tangling while the latter

one has unobservable lost sales.

2.5 Numeric Study

In this section, we conduct the numerical experiments to analyze our Bayesian inventory

management in the airline setting. We examine the system parameters’ impact on the “stock

more” and “stock less” results by varying the parameter values including the Bayesian in-

ventory manager’s prior beliefs and seats’ prices under a two-period setting. In particular,

we consider the US scenario under a two-period setting, under which we can easily solve

the dynamic programming model. Such a setting is also enough for us to identify the key

“exploration-exploitation” tradeoff.

An airline company offers an early bird sale of a flight with a medium-sized jet. The total

number of seats is M = 120. The regular price is set at p2 = 1200. The inventory manager

aims to determine the optimal number of discounted seats to maximize the total expected
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profit in two periods (with discount factor δ = 1) under the US scenario. The primary

demands for the discounted and regular-price seats are D1 and D2 following truncated Poisson

distributions (0 ≤ D1 ≤ 300, 0 ≤ D2 ≤ 100) with parameters λ1 and λ2, respectively. The

two parameters λ1 and λ2 are correlated, and their relationship is indicated by a parameter

θ, which takes value 1, 2 or 3. When θ = 1, λ1 = 160 and λ2 = 5; when θ = 2, λ1 = 160

and λ2 = 20; and when θ = 3, λ1 = 270 and λ2 = 5. The buy-up substitution probability

α may be low (α = 0.2) or high (α = 0.7). At the beginning of the first selling period,

the inventory manager holds the prior beliefs ũ = (Pr(θ = 1), P r(θ = 2), P r(θ = 3)) and

w̃ = (Pr(α = 0.2), P r(α = 0.7)). Let the optimal inventory levels of the discounted seat in

the first period under the Bayesian inventory management and myopic optimization be yUS1

and ym1 , respectively.

We first fix the early-bird-discount price at p1 = 700, and then investigate how different

prior beliefs affect the “stock more” and “stock less” results.

Case (i). Unknown D1 with ũ = (u1, 0, 1− u1) (0 ≤ u1 ≤ 1) and w̃ = (1, 0).

In this case, the demand parameter of D2 is known as λ2 = 5 and the buy-up substitution

probability α = 0.2. Only the primary demand for the discounted seat D1 is unknown. Note

that when we vary the prior belief ũ, a larger u1 leads to a lower expectation of D1. Table 2.4(i)

summarizes the changes of the optimal inventory levels and the corresponding expected profits

under the Bayesian inventory management and the myopic optimization as u1 increases. We

can see that under the myopic optimization, the optimal inventory level ym1 increases, but the

corresponding total expected profit decreases as u1 becomes larger. According to Table 2.4(i),

when u1 = 0, the inventory manager is sure that the demand parameter of D1 is λ1 = 270,

and the two optimal inventory levels yUS1 and ym1 are equal. As u1 becomes 0.1, the demand

information on D1 becomes uncertain, and the manager raises the inventory level of the

discounted seats to better observe D1. However, when u1 takes larger values (i.e., 0.2 to 0.5),

the myopic optimal inventory level ym1 also becomes larger such that the benefit brought by

“stock more” is less than the loss caused by it, and thus the manager should not manipulate

the inventory level. After u1 further increases to 0.6, ym1 becomes large enough. In this case,

reducing discounted seats induces more substitution trials, from which the manager can infer

more demand information, leading to the “stock less” result. And under larger u1 (i.e., 0.7

to 0.9), such a “stock less” result still holds. Especially, the gap between yUS1 and ym1 reaches

the maximum at u1 = 0.8, where ym1 is very large and the uncertainty on D1 is still relatively

high. But as u1 increases to 0.9, the uncertainty on D1 weakens, and so does the incentive to
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Table 2.4: The Impacts of System Parameters on Optimal Inventory Levels (yUS1 and ym1 ) and
Corresponding Expected Profits (vUS1 (φ1) and vm1 (φ1) + vm2 (φ2)) under Bayesian Inventory
Management and Myopic Optimization

(i) Unknown D1:
ũ = (u1, 0, 1− u1) and w̃ = (1, 0)

(ii) Unknown D2:
ũ = (u2, 1− u2, 0) and w̃ = (1, 0)

u1 yUS
1 ym1 yUS

1 −ym1
vUS
1

(×105)
vm1 + vm2
(×105)

u2 yUS
1 ym1 yUS

1 −ym1
vUS
1

(×105)
vm1 + vm2
(×105)

0 77 77 0 2.0505 2.0505 0 84 84 0 1.9710 1.9710
0.1 78 77 +1 2.0141 2.0140 0.1 86 86 0 1.9470 1.9470
0.2 79 79 0 1.9790 1.9790 0.2 87 87 0 1.9242 1.9242
0.3 80 80 0 1.9450 1.9450 0.3 88 89 -1 1.9019 1.9018
0.4 84 84 0 1.9128 1.9128 0.4 90 91 -1 1.8809 1.8808
0.5 90 90 0 1.8840 1.8840 0.5 93 95 -2 1.8612 1.8606
0.6 97 98 -1 1.8622 1.8618 0.6 95 98 -3 1.8435 1.8423
0.7 99 100 -1 1.8435 1.8428 0.7 98 100 -2 1.8278 1.8268
0.8 99 102 -3 1.8254 1.8241 0.8 100 102 -2 1.8151 1.8144
0.9 101 103 -2 1.8088 1.8066 0.9 102 103 -1 1.8057 1.8054
1 104 104 0 1.7995 1.7995 1 104 104 0 1.7995 1.7995

(iii) Unknown α:
ũ = (1, 0, 0) and w̃ = (w, 1− w)

(iv) Varying p1:
ũ = ( 1

3 ,
1
3 ,

1
3 ) and w̃ = ( 1

2 ,
1
2 )

w yUS
1 ym1 yUS

1 −ym1
vUS
1

(×105)
vm1 + vm2
(×105)

p1 yUS
1 ym1 yUS

1 −ym1
vUS
1

(×105)
vm1 + vm2
(×105)

0 1 1 0 2.7305 2.7305 600 1 1 0 2.1445 2.1445
0.1 1 1 0 2.5923 2.5923 650 1 1 0 2.1670 2.1670
0.2 1 1 0 2.4541 2.4541 700 25 29 -4 2.1933 2.1932
0.3 1 1 0 2.3159 2.3159 750 60 69 -9 2.2390 2.2344
0.4 8 8 0 2.1785 2.1785 800 65 75 -10 2.2920 2.2868
0.5 52 52 0 2.0611 2.0611 850 71 79 -8 2.3501 2.3383
0.6 95 98 -3 1.9960 1.9928 900 72 83 -11 2.4092 2.3853
0.7 96 100 -4 1.9412 1.9344 950 72 86 -14 2.4689 2.4358
0.8 97 102 -5 1.8876 1.8700 1000 73 91 -18 2.5290 2.5016
0.9 97 103 -6 1.8333 1.8097 1050 74 97 -23 2.5900 2.5874
1 104 104 0 1.7995 1.7995 1100 98 103 -5 2.6788 2.6762

1150 102 107 -5 2.7737 2.7714
1200 120 120 0 2.8800 2.8800
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stock less, shortening the gap between yUS1 and ym1 . Finally, such a gap disappears when the

manager is sure that u1 = 1.

Case (ii). Unknown D2 with ũ = (u2, 1− u2, 0) (0 ≤ u2 ≤ 1) and w̃ = (1, 0).

In this case, the demand parameter ofD1 is known as λ1 = 160 and the buy-up substitution

probability α = 0.2. Only the demand parameter of D2 is unknown. As we vary the prior

belief ũ by increasing u2, the expectation of D2 decreases, making the optimal inventory level

ym1 under the myopic policy increase and the corresponding total expected profit decrease; see

Table 2.4(ii). On the whole range of u2, learning D2 drives the “stock less” result whereby the

Bayesian inventory manager can better observe it. Further, according to Table 2.4(ii), when

the demand uncertainty regarding D2 is relatively low (i.e., u2 ≤ 0.2), yUS1 is equal to ym1 . As

the uncertainty becomes higher (i.e., u2 > 0.2), the extra demand information gained from

lowering the inventory level of discounted seats brings more profit to the manager, driving

him to stock less. Specifically, as u2 increases from 0.3 to 0.6 and then to 1, the gap between

yUS1 and ym1 first increases, then reaches the maximum at u2 = 0.6, and finally decreases to 0.

Case (iii). Unknown α with ũ = (1, 0, 0) and w̃ = (w, 1− w) (0 ≤ w ≤ 1).

In this case, the demand parameters of both D1 and D2 are known as λ1 = 160 and λ2 = 5

but the buy-up substitution probability is unknown. We then vary the prior belief on the

substitution probability α by changing the parameter value of w to investigate its impact

on the “stock more” and “stock less” results. In accord with Proposition 2.1, as α becomes

smaller (i.e., with a larger w), the optimal inventory level ym1 under the myopic policy increases

and the corresponding total expected profit decreases as shown in Table 2.4(iii). In Section

2.4.3, we show that under the OS scenario, learning α yields a “stock less” driving force to

generate more substitution trials. In this example, under the US scenario, “stock less” is still

the dominant driving force. In Table 2.4(iii), when w ≤ 0.5, ym1 is very small, and thus it

is not good to stock less for very limited extra substitution observations at the cost of a big

revenue loss. Things become different when w is larger than 0.5. In these cases, ym1 becomes

relatively large, and now “stocking less” for more substitution observations dominates the

final comparison result, yielding yUS1 ≤ ym1 . Especially, as w increases from 0.6 to 0.9, the

gap between yUS1 and ym1 becomes larger. This implies that the biggest difference between

yUS1 and ym1 does not necessarily appear when the uncertainty is highest. Indeed, besides the

uncertainty in belief, such a difference is affected by the magnitudes of expected profits and

inventory levels. In this example, at w = 0.9, although the uncertainty on the substitution

probability is not that large, “stocking less” still brings much benefit and causes little revenue
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loss since the myopic optimal inventory level ym1 is very close to the total amount of seats M .

Decomposing the prior belief into the above three cases enables us to have a better picture

of what driving forces the learning on each kind of demands and the buy-up substitution

probability can generate. Besides the prior beliefs, the difference between the two prices is

another important factor that affects the comparison result between the Bayesian optimal

inventory level and the corresponding myopic one. Below, we investigate the effect of the

price difference between p1 and p2.

Case (iv). Varying p1 (600 ≤ p1 ≤ 1200) with ũ = (1
3
, 1

3
, 1

3
) and w̃ = (1

2
, 1

2
).

In this case, we fix both the regular price p2 = 1200 and the prior beliefs about the demands

and the buy-up substitution probability ũ and w̃. We then vary the early-bird-discount price

p1 to investigate its impact on the optimal inventory level decisions. As p1 increases, both the

optimal inventory level ym1 under the myopic policy and the corresponding total expected profit

increase. From Table 2.4(iv), we can see that the change of p1 complicates the comparison

result. When the early-bird-discount price p1 is very low (i.e., p1 ≤ 650), ym1 takes the

smallest value 1. Under this situation, the value of gaining more demand information is less

than the potential revenue loss caused by stocking more discounted seats than the myopic

ones due to the extremely low discounted price. Hence, yUS1 = ym1 . As p1 becomes larger (i.e.,

700 ≤ p1 ≤ 1050), the inventory level of the discounted seats under the myopic policy becomes

relatively high, “stocking less” can help to gain some information on demands and the buy-up

substitution probability, which yields more value than the potential revenue loss induced by

it due to the moderate early-bird-discount price p1. Thus, “stock less” occurs. Note that

as p1 increases, the difference between yUS1 and ym1 does not necessarily show monotonicity

because it depends jointly on the uncertainty in belief and the magnitudes of expected profits

and inventory levels. As p1 further increases (i.e., p1 ≥ 1100), the price difference between

the early-bird-discount price p1 and the regular price p2 reduces. Now, “stocking less” is still

the dominant driving force, but the manager should reduce the gap between yUS1 and ym1 to

avoid much revenue loss due to the high p1.

The above four cases systematically show how various system parameters, i.e., the prior

beliefs and prices, separately affect the results regarding “stock more” or “stock less”. For

a general problem, one should take all possible driving forces into consideration, and try to

identify those dominant ones to design heuristic algorithms for practical use.
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2.6 Conclusions and Suggestions for Future Research

In this study, we investigate an airline company’s optimal seat allocation decision when it

provides the early-bird booking discount under a multi-period setting. The number of total

seats is fixed and within each period, the company offers the price discount in the early-bird-

discount phase and charges the full price in the regular-price phase. Setting a proper inventory

level for the early-bird-discount phase is critical for the company’s revenue management. Too

few seats reserved for the early bird discount, on one hand, could lead to the loss of some

potential sales, but on the other hand, could achieve the goal of forcing some unsatisfied

customers in the early-bird-discount phase to purchase the regular-price seats as substitutes.

An optimal decision on the inventory level requires the decision maker to have knowledge of

the primary demands for the seats under the two prices and the buy-up substitution probabil-

ity of those unsatisfied early-bird customers purchasing the regular-price seats. In this chapter,

we consider a dynamic inventory management model with Bayesian learning on both the de-

mand parameter and the buy-up substitution probability. We adopt the Bayesian inventory

management to dynamically learn and optimize. Specifically, we examine four information

scenarios based on whether or not lost sales are observable and the substitution demand from

those unsatisfied early-bird customers can be separated from the primary demand for the

regular-price seat. Under each scenario, we compare the Bayesian optimal inventory level of

the discounted seat with the corresponding myopic one. Such comparison results can provide

insights to the heuristic algorithms considering the “exploration-exploitation” tradeoff.

When the buy-up substitution probability is known and only the demand parameter needs

to be learned, we identify a new driving force for the classical “stock more” result: demand

tangling between the substitution demand and the primary demand. When lost sales are

observable but the substitution demand cannot be separated from the primary demand, we

should increase the inventory level of the discounted seat in order to reduce the likelihood of

substitution so that we can better learn the primary demand. In the literature on Bayesian

inventory management, such as Lariviere and Porteus (1999) and Ding et al. (2002), the

unobservable lost sale is regarded as a driving force of “stock more”. This is also identified by

Chen and Plambeck (2008) in which they consider the stock-out-based substitution and the

amount of available substitutes is infinite. Here, we show that the unobservable lost sale still is

a driving force of “stock more” to better learn each kind of demands when there is no buy-up

substitution. However, if the substitution probability is non-zero, the unobservable lost sale

may now become a driving force of “stock less”. The behind reason is that in our setting, the
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capacity of substitutes is limited; when very limited demand information is contained in the

sales amounts, one can further infer some information from the observed substitutions, which

induces the manager to “stock less” discounted seats to yield more substitution trials. When

we need to update both the demand parameter and the buy-up substitution probability, we

find that there exists a driving force for “stock less” as in Chen and Plambeck (2008): reducing

the inventory level of the discounted seat can induce more substitution events to occur,

benefiting the learning on the substitution probability. The interplay of the aforementioned

multiple driving forces determines the final inventory outcome regarding whether to “stock

more” or “stock less”. The numeric study shows that the final result relies on factors such as

Bayesian manager’s prior beliefs and seats’ prices, and is determined by the strongest driving

force.

To gain deeper understanding of the two-phase early bird policy, we further extend the

model with a fixed total inventory level to a setting where both the total inventory level

in two phases and the inventory level of the discounted product are decision variables, and

analyze it in the online Appendix A.1. We find that the above driving forces still exist.

Also, when lost sales are unobservable, the “stock more” result still may not hold. Instead,

we may need to stock less one kind of the product as a result of the tradeoff between the

revenue that can be improved by utilizing the demand information and the corresponding

overstocking risk. We then derive the upper bound on the Bayesian optimal inventory levels

for this two-decision-variable problem, which enriches the Bayesian inventory management

literature.

Overall, our two-fare model has identified the main “exploration-exploitation” tradeoffs

under the early bird policy. A direct extension of this study is to develop efficient heuris-

tic algorithms for multi-fare and multi-flight airline problems based on those driving forces.

It is also worthwhile to apply Bayesian inventory management to the markdown inventory

management problem (see, e.g., Hu et al., 2015), where new tradeoffs may appear. Although

the markdown model seems quite similar to our early-bird model, the related analysis will

be much more complex and challenging due to the quasiconvex single-period profit function

and inter-correlated demands over the two adjacent periods. We would like to leave them to

future research.
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Chapter 3

Signaling Service Quality via Queue

Disclosure

In Chapter 2, there is only one decision maker who tries to learn the unknown information

for decision making. From this chapter, we extend the setting to multiple players, where the

information senders own private information on their types, and try to signal such information

to the receivers. Specifically, we consider the queueing setting. A server knows his quality

type, but the customers do not. The server chooses the optimal queue disclosure strategy

to attract customers to join the queue as many as possible. From the server’s action, the

customers infer some information on the quality type, and then decide the joining strategy.

In this chapter, we consider that the server decides the queue disclosure strategy after he

realizes the quality type. This leads to a signaling game. And we mainly investigate whether

the server’s queue-disclosure action (i.e., revealing or concealing) itself can be a quality signal,

and if so, what impacts it can exert. In the next chapter, we will consider that the server

can design and commit to a queue disclosure strategy before the quality type is realized.

This different timing yields a totally different Bayesian persuasion game. And we will mainly

investigate the underlying mechanism and find out the optimal queue disclosure strategy.

3.1 Introduction

In many service systems, the service quality of a server (he) is unknown to some customers

(she). Take the restaurant as an example. The food quality depends on the chefs’ skills and

the sources of the ingredients, and the nearby residents are likely to know the food quality
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while outsiders might not. As another example, the service quality of online consulting or

call centers relies on the professional knowledge and seniority of the consultant or operator.

Those regular customers can be regarded as informed of the service quality, while others

are not. Upon customers’ arrivals, a server may decide to reveal the queue length to the

customers or not before they make the joining-or-balking decisions. For example, when a

customer enters a restaurant, she should order the meal or reserve a seat first, and then waits

for the service. Before the customer places her order, the server can display the number of

waiting customers on the display screens or queueing machines (take KFC and McDonald’s

as examples). If so, the customer is informed of the queue length, based on which she decides

whether to join the queue (i.e., place an order or make a reservation) or not. Otherwise,

the queue is unobservable to her. Similarly, for the online queueing setting, the server can

achieve revealing (resp. concealing) the queue length through informing (resp. not informing)

an incoming customer of the waiting line through the softwares, telephones, or mobile apps,

etc.

The values of the services mentioned above cannot be easily communicated. Debo et al.

(2012) point out that uninformed customers can infer the server’s quality by inspecting the

queue length and then follow a ‘hole-avoiding’ strategy: they behave almost the same as the

customers informed of high quality, except that at a certain queue length, called the hole,

they do not join. Based on the pioneering work of Debo et al. (2012), one can further ask the

following questions: Why is a server willing to reveal the queue length to customers? Isn’t the

visibility of the queue length itself a signal indicating the service quality? In this chapter, we

aim to investigate these questions by considering the visibility of queue length as a signal of

service quality. Correspondingly, in our setting, when the queue is observable, an uninformed

customer can infer some quality information by inspecting not only the queue length but also

the server’s queue-disclosure action itself.

Consider the following signaling game setting between a server and customers. Customers

arrive to a single-server queueing system according to a Poisson process. Their service times

follow an exponential distribution. The server’s service quality is either high or low, which is

determined by nature via a Bernoulli trial. A fraction of customers are informed ones who

know exactly the server’s quality level. They can be either positively informed if the server is

of high quality or negatively informed if the server is of low quality. Uninformed customers,

however, hold some prior belief on the service quality. Customers are otherwise identical, i.e.,

they receive the same service reward and bear the same per-unit-time delay cost. The server
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knows his own quality and can fine-tune the queue disclosure action (revealing or concealing

his queue length) to signal the quality type to maximize the system demand, that is, the

effective arrival rate. Upon observing the server’s queue disclosure action and the actual

queue length of an observable queue, customers update their beliefs (if uninformed), and then

decide whether to join the queue or balk.

To solve this signaling game, we investigate the sequential equilibrium (Kreps and Wilson,

1982), and use the perfect sequential equilibrium (Grossman and Perry, 1986) as the refinement

criterion. Three types of sequential equilibria are considered: the pure strategy in which both

high- and low-quality types of the server choose to either always reveal or always conceal the

queue, the mixed strategy in which both types of the server randomize between revealing and

concealing the queue, and the hybrid strategy in which one type of the server chooses to either

always reveal or always conceal the queue and the other type randomizes between these two

actions. Furthermore, for the pure strategy, when both types of the server adopt the same

action, we call it a pooling strategy ; but when their actions are different, we call it a separating

strategy.

We first consider a basic scenario where all customers are uninformed of the service quality.

Hence, the effective arrival rate to an observable or unobservable queue is independent of the

quality type as all customers hold the same belief. This property leads to the result that

except at some discrete values of the market size (i.e., the potential arrival rate), the unique

pure-strategy perfect sequential equilibrium is that both types choose to conceal (resp. reveal)

the queue when the market size is below (resp. above) a threshold. We further prove that

the pooling perfect sequential equilibria generate larger effective arrival rates to two types of

the server compared with the hybrid or mixed sequential equilibria. Under pooling equilibria,

the queue disclosure action conveys no quality information, and the effective arrival rates to

the high-quality and low-quality servers remain the same as the ones under the non-signaling

case where the queue-disclosure action is not regarded as a quality signal.

The situation becomes quite different when the customers become heterogeneous, i.e.,

some of them are informed but others are uninformed. We first identify the heterogeneous

customers’ equilibrium queueing strategies in both the unobservable and observable queues,

and then analyze the sequential equilibria of the whole signaling game. Similarly to the

homogeneous-customer scenario, we show that there exist two thresholds with respect to the

market size, below the lower one both types of the server choose to always conceal the queue

in equilibrium, and above the upper one both choose to always reveal the queue. That is, the
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unique sequential equilibrium is still a pooling strategy when the market size is small or large

enough. We further show that when the market size falls between these two thresholds, the

separating sequential equilibria can be sustained as the equilibrium outcome, and their exact

existence ranges are depicted. Intuitively, as the positively informed customers are always

more likely to join the queue than the negatively informed ones, the effective arrival rate to the

high-quality server in an observable or unobservable queue is larger than the corresponding

one to the low-quality server under a fixed belief of uninformed customers. And this may

generate different incentives for two server types to reveal or conceal the queue length in a

medium-sized market, which makes it possible for separating sequential equilibria to appear.

Under the separating sequential equilibria, the uninformed customers can infer full infor-

mation on the quality type from the queue-disclosure action, and thus behave in the same way

as the informed customers. When the separating sequential equilibria exist, the maximal ef-

fective arrival rate to the high-quality (resp. low-quality) server considering all pure-strategy

perfect sequential equilibria is larger (resp. smaller) than the maximal one in the non-signaling

case. Uninformed customers cause an overcrowded queueing system of the low-quality server,

which may hurt the total utility of all customers and make it negative. But after they com-

pletely infer the quality type under the separating sequential equilibria, their incentives to join

become weaker. This makes the system back to ‘normal’, and thus improves customers’ total

utility to be nonnegative. However, we cannot guarantee a similar definite result regarding

the high-quality server. On one hand, a larger effective arrival rate to the high-quality server

under the separating sequential equilibrium may either reduce or improve the total utility.

On the other hand, the high-quality server may adopt different queue-disclosure actions in

the signaling and non-signaling cases. Finally, we conduct some sensitivity analyses to ex-

amine how the customer type composition (i.e., the proportion of informed customers in the

market) and the service price affect the separating sequential equilibria. And we find that

the relationships are non-monotone.

Besides the aforementioned equilibrium results of the signaling game, our study also con-

tributes to a better understanding of the customer queueing strategies with unknown service

quality in a twofold way. First, we fully characterize customers’ equilibrium queueing strate-

gies with unknown service quality when the queue is unobservable. Our result complements the

queueing game literatures on unknown service quality, which all consider observable queues

(see, e.g., Debo et al., 2012). Second, when the queue disclosure action itself is treated as

a quality signaling device, uninformed customers’ ‘hole-avoiding’ queueing strategy obtained
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in Debo et al. (2012) shall be rectified for a medium-sized market, under which a separat-

ing equilibrium could exist and uninformed customers behave exactly the same as informed

customers.

The remainder of this chapter is organized as follows. We review the related literature

in Section 3.2. In Section 3.3, we present the signaling game and introduce the definitions

of sequential equilibrium and perfect sequential equilibrium. The sequential equilibria of a

basic model with all customers uninformed are analyzed in Section 3.4. And the equilibrium

analyses under the general scenario with heterogeneous customers are presented in Section

3.5. Furthermore, we conduct the sensitivity analyses to investigate the impacts of customer

type composition and service price on the separating sequential equilibria in Section 3.6.

Concluding remarks are provided in Section 3.7. All supplementary contents for readers’

interest are relegated to Appendixes B.1-B.4, and all the proofs can be found in Appendix

B.5.

3.2 Literature Review

Our research is closely related to the literature on signaling games in queueing systems. Allon

et al. (2011) considers a cheap talk game in which a server sends a queue-length-dependent

signal to the customers. Yu et al. (2018) further study a cheap talk game with heterogeneous

customers, and they show that the server can infer customer types through customers’ reaction

toward the server’s delay announcement. Veeraraghavan and Debo (2009, 2011) consider

two parallel queues, where uninformed customers can infer some quality information from

observable queue lengths. Debo et al. (2012) consider an observable queue with both informed

and uninformed customers. They show that uninformed customers’ pure equilibrium joining

strategy is a hole-avoiding one. Many recent studies consider other quality signals, such as

service or waiting time (Debo and Veeraraghavan, 2014; Kremer and Debo, 2016), price and

wait lines (Debo et al., 2020) and information generated by customers (Yu et al., 2016; Wang

and Hu, 2020). Different from the aforementioned work, here we consider a signaling game

where the server’s queue disclosure behavior is a signal of his quality level.

Under the signaling game, the sender takes a signaling action after the realization of the

state of the world. We note that some recent studies about the queueing system consider

a different timing sequence of the game by adopting Bayesian persuasion (Kamenica and

Gentzkow, 2011), under which the sender pre-commits to a strategy before the state of the
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world is realized. Lingenbrink and Iyer (2019) apply Bayesian persuasion to a queueing setting.

They consider that the server pre-commits to a queue-length-dependent signaling strategy.

Guo et al. (2020) consider the uncertain service quality and the server can ex ante commits to

a quality-dependent queue-disclosure strategy to persuade more customers to join the system.

In their paper, the queue-disclosure strategy commitment is made before the service quality

is realized. By contrast, our research considers that the server has no commitment power and

makes his queue disclosure decision after the quality type is realized.

Our research is also related to the stream of research on information provision and purchase

in queues. Hassin and Haviv (1994) examine a parallel queuing system in which customers

could buy information on the queue lengths to join the shorter queue. Hassin (2007) studies a

scenario in which the server knows his service quality and other system parameters and decides

whether or not to disclose such information. In Hassin and Roet-Green (2017), customers

may balk, join directly, or buy the queue-length information first and then make their joining-

or-balking decisions. Hassin and Roet-Green (2018) further consider a setting with parallel

servers in which an uninformed customer becomes informed after paying for inspecting the

queues. In our research, we do not consider information purchase. Instead, uninformed

customers can infer the server’s quality based on his queue disclosure action.

The research considering strategic customers in queueing systems originates from Naor

(1969). In this research stream, our work is related to those studies on delay announcements.

Hassin (1986) investigates a server’s incentive to disclose the queue length information and find

that the server prefers concealing (resp., revealing) the queue in a small-sized (resp., large-

sized) market. Other studies that investigate the impact of delay announcements include

Whitt (1999), Armony and Maglaras (2004a, 2004b), Burnetas and Economou (2007), Guo

and Zipkin (2007), Armony et al. (2009), Guo and Hassin (2011), Yu et al. (2016), Ibrahim

et al. (2017), Yu et al. (2017), Hu et al. (2018), and Yu et al. (2021), etc. We refer the

interested readers to the two survey books, Hassin and Haviv (2003) and Hassin (2016), and

the review papers of Aksin et al. (2007) and Ibrahim (2018) and references therein for the

works in this research stream.

3.3 Model Setup and Equilibrium Concepts

In this section, we first describe our signaling game, and then present the equilibrium concepts

used in the game analysis.
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3.3.1 Timing of Signaling Game

Consider a single-server queueing system. Nature moves first and determines the server’s

quality type t according to a Bernoulli distribution: with probability δ, the server (he) is of

the high-quality type (labelled H) and with probability 1 − δ, he is of the low-quality type

(labelled L), where 0 < δ < 1. After observing his own quality type t, t ∈ T := {H,L},
the server can use the queue disclosure action, i.e., revealing the queue denoted by R or

concealing the queue denoted by C as a signal to convey his quality information to customers.

Let S = {R,C} denote the server’s signal set. Customers arrive at the server according to a

Poisson process with rate λ, and they are all uninformed of the service quality. Service times

are independent and identically distributed exponential random variables with rate parameter

µ. Let ρ := λ/µ. Customers who join the system receive the same quality of service and incur

the same waiting cost of θ per unit time in the system (waiting time plus service time). When

a customer (she) is served by a high-quality (resp. low-quality) server, she receives a monetary

reward VH (resp. VL). The inequality VH > VL >
θ
µ

is required to ensure that at least one

customer joins the system. Upon observing the server’s queue disclosure behavior (revealing

or concealing), uninformed customers update their beliefs about the server being the high-

quality type accordingly, denoted by δR and δC , respectively. Customers then decide whether

or not to join the system. When the server conceals the queue, the queue is unobservable

(labelled U), and each (identical) customer has two pure strategies: to join the queue or not

to join. Then, a pure or mixed strategy can be expressed as the joining probability. When

the server reveals the queue, the queue becomes observable (labelled O). In steady state,

the probability of the queue length being i (i = 0, 1, · · · ) in case of the high-quality (resp.

low-quality) server is denoted as πi,H(δR) (resp. πi,L(δR)). And after observing the queue

length i (i = 0, 1, · · · ), the uninformed customers further update their belief (denoted as the

probability of high quality) as Pr(H|i, δR). Then, the customers make their joining-or-balking

decisions at each queue length. We normalize the server’s reward from serving a customer

to be one, and hence the server’s payoff is equal to the customers’ effective arrival rate. In

summary, the timing of our signaling game is as follows:

(1) Nature chooses the server’s service quality type t ∈ T := {H,L} from a Bernoulli

distribution.

(2) The server learns his quality type and then chooses a queue disclosure action from the

set S = {R,C} with some probability.
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(3) Uninformed customers update their beliefs about the server’s service quality based on

his queue disclosure action and the queue length in a revealed queue.

(4) Customers make their respective joining-or-balking decisions.

And we can present the signaling game using the extensive form in Figure 3.1.
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Figure 3.1: The extensive-form representation of the signaling game (with payoffs ignored for
simplicity)

3.3.2 Definitions of Sequential Equilibria and Perfect Sequential

Equilibria

In this work, we apply the sequential equilibrium concept (Kreps and Wilson, 1982) to solve

our signaling game. The sequential equilibrium of our signaling game is defined as below.

Definition 3.1. (Sequential Equilibrium) A sequential equilibrium of the signaling game is

a behavior-belief profile consisting of the server’s signaling rules f(s|t), where f(s|t) specifies

the probability that the type-t (t ∈ T) server chooses signal s (s ∈ S), customers’ joining rules,

and customers’ beliefs δC, δR and Pr(H|i, δR) (i = 0, 1, · · · ), which shall satisfy the following

two conditions:

(i) ( Sequential Rationality) No player deviates from the equilibrium strategy on his or

her each information set under the belief specified on it.

44



(ii) ( Consistency) When the server sends signal s ∈ S with positive probability, customers

update their beliefs using signal s according to the Bayes’ rule; that is, if δf(s|H) +

(1 − δ)f(s|L) > 0, then δs = δf(s|H)
δf(s|H)+(1−δ)f(s|L)

. And after observing queue length i

(i = 0, 1, · · · ) in a revealed queue, the uninformed customers further update their belief

as Pr(H|i, δR) =
δRπi,H(δR)

δRπi,H(δR)+(1−δR)πi,L(δR)
.

In an equilibrium, if the server sends a signal with a positive probability, we say that

this signal is on the equilibrium path; otherwise, it is off the equilibrium path. The condition

(ii) in the above definition does not put any restriction on the customers’ off-equilibrium-

path posterior beliefs after seeing R or C. This may lead to multiple equilibria, and some of

them may be unreasonable. We then adopt the perfect sequential equilibrium (Grossman and

Perry, 1986) as a further refinement criterion to impose restrictions on the off-equilibrium-

path beliefs. Besides the above-described two conditions, the perfect sequential equilibrium

essentially requires the following credibility (of the updating rule) for our signaling game.

Definition 3.2. (Credible Updating Rule) For a signal s off the equilibrium path, given

the customers’ equilibrium queueing strategies under the signal s and new belief (satisfying

the credible updating rule), denote the set of types of the server that can be strictly better off

by deviating from the equilibrium path to s by T′, and the set of types of the server that are

indifferent between deviating to s and staying at the equilibrium path by T′′. Let h(t) be the

probability of type-t (t ∈ T) server deviating from the equilibrium path to s, which shall satisfy

h(t) = 1 if t ∈ T′, h(t) ∈ [0, 1] if t ∈ T′′, and h(t) = 0 if t ∈ T/(T′ ∪ T′′). If there exists a

nonempty set T′ ∪ T′′, then

(a) the customers’ posterior belief on type t upon observing the signal s is w(t)h(t)∑
t′∈T′∪T′′ w(t′)h(t′)

(we require
∑

t∈T′∪T′′ h(t) > 0), where we use w(·) to denote the prior belief (i.e., w(H) =

δ and w(L) = 1− δ),3.1

(b) sets T′ and T′′ remain unchanged under the above posterior beliefs;

otherwise, there is no restriction on customers’ posterior belief after seeing the off-equilibrium-

path signal s.

Under Definition 3.2, when the uninformed customers hold a posterior belief γ satisfying

the credible updating rule after seeing an off-equilibrium-path signal, their corresponding

3.1There may exist many posterior beliefs satisfying the credible updating rule. The perfect sequential
equilibrium concept, however, dose not specify the selection criteria.
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equilibrium queueing strategy will make the server of the quality type in the set T′ strictly

better off by deviating with probability 1 and the server of the type in the set T′′ indifferent

between staying and deviating with some probability of deviating such that the customers’

posterior belief is γ. The process of identifying a belief satisfying the credible updating rule

is essentially a fixed-point argument.

3.4 Equilibrium Analysis

Below, we first analyze customers’ equilibrium queueing strategies in both the revealed and

concealed queues under any given beliefs δR ∈ [0, 1] and δC ∈ [0, 1], and then conduct the

sequential equilibrium analysis for the whole signaling game.

3.4.1 Customers’ Equilibrium Queueing Strategies and Effective

Arrival Rates

Since all customers are regarded as indifferent, we only consider symmetric strategies in the

customer games in a revealed or concealed queue. If the server reveals his queue, uninformed

customers update their beliefs as Pr(H|i, δR) =
δRπi,H(δR)

δRπi,H(δR)+(1−δR)πi,L(δR)
after observing queue

length i (i = 0, 1, · · · ). As all customers are uninformed, the probabilities for the queue

length being i are the same for both the high-quality and low-quality servers (i.e., πi,H(δR) =

πi,L(δR)). Hence, we can get that Pr(H|i, δR) = δR for all queue length i. Based on Naor

(1969), we know that the uninformed customers all join if and only if the queue length

(including the one in service) upon arrival does not exceed the threshold n(δR) := b[δRVH +

(1− δR)VL]µ/θc − 1, where b·c is the floor function. In the following analysis, we simply use

n(δR) to denote the customers’ equilibrium queueing strategy in a revealed queue. In steady

state, the system under a revealed queue is an M/M/1/(n(δR) + 1) queue with a capacity

constraint of n(δR) + 1. Let pn(δR)+1 be the probability that the queue length is n(δR) + 1.

Then, pn(δR)+1 = ρn(δR)+1
/∑n(δR)+1

i=0 ρi. Denote the customers’ effective arrival rate to this

observable queue as λO(δR). We then have

λO(δR) = λ(1− pn(δR)+1) =
λ
∑n(δR)

k=0 ρk∑n(δR)+1
i=0 ρi

. (3.1)
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Notice that we can rewrite λO(δR) = µ− µ∑n(δR)+1
i=0 ρi

, from which we can easily see that λO(δR)

is strictly increasing with the potential arrival rate λ.

Next, consider the case where the server conceals the queue with uninformed customers’

belief as δC . According to Edelson and Hildebrand (1975), we know that if the potential

arrival rate λ is small enough (λ < µ− θ/[δCVH + (1− δC)VL]), all customers join the system;

otherwise, customers in equilibrium adopt a mixed strategy, joining the system with prob-

ability µ−θ/[δCVH+(1−δC)VL]
λ

. Denote the customers’ equilibrium joining probability by p(δC).

Then, we have

p(δC) =

 1, if λ < µ− θ/[δCVH + (1− δC)VL];

µ−θ/[δCVH+(1−δC)VL]
λ

, otherwise.
(3.2)

Let λU(δC) be the customers’ effective arrival rate to this unobservable queue, which then

can be derived as

λU(δC) =

 λ, if λ < µ− θ/[δCVH + (1− δC)VL];

µ− θ/[δCVH + (1− δC)VL], otherwise.
(3.3)

3.4.2 Sequential Equilibria Analysis

We are now ready to derive the server’s equilibrium signaling strategy. When all customers are

uninformed, the sequential rationality condition in Definition 3.1 is indeed equivalent to the

following requirements: the customers’ joining rule is (n(δR), p(δC)), and the server’s signaling

rule maximizes his expected payoff such that ∀t ∈ T, f(R|t) > 0 (resp. f(C|t) > 0) only if

λO(δR) ≥ λU(δC) (resp. λU(δC) ≥ λO(δR)). And we can express a sequential equilibrium as

[(f(R|H), f(R|L)), (n(δR), p(δC)), δR, δC ].

In particular, there exist three kinds of signaling strategies: a pure strategy in which both

high- and low-quality types of the server choose to either always reveal or always conceal the

queue (i.e., both f(R|H) and f(R|L) are either 0 or 1), a mixed strategy in which both types

of the server randomize between revealing and concealing the queue (i.e., both f(R|H) and

f(R|L) are strictly between 0 and 1), and a hybrid strategy in which one type of the server

chooses to either always reveal or always conceal the queue but the other type randomizes

between these two actions (i.e., exactly one of the two probabilities f(R|H) and f(R|L) is
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either 0 or 1 but the other one is strictly between 0 and 1). The pure strategies can be further

classified into two types: the pooling strategy in which both types of the server send the same

signal, and the separating strategy in which two types of the server send different signals.

In our signaling game with two types of the server and two possible signals, there are four

possible pure-strategy sequential equilibria. In the following analysis, we first analyze the

pure strategies and then the hybrid and mixed ones.

Pure strategy analysis

We now investigate the four pure strategies one by one. For simplicity, let (s′, s′′) with

s′, s′′ ∈ {R,C} denote the pure strategy played by two types of the server under which the

high-quality type server always chooses signal s′ while the low-quality one always chooses s′′,

i.e., f(s′|H) = 1 and f(s′′|L) = 1.

(1) (R,R), i.e., Pooling on R. Then, R is on the equilibrium path, and by Bayes’ rule,

customers’ updated belief after observing R is still δR = δ. Hence, the payoffs to both types

of the server are the same, λO(δ). To check whether both types of the server are willing to

stay on R, we need to specify the off-equilibrium-path belief δC . The sequential equilibrium

concept does not put any restriction on δC . As long as the off-equilibrium-path belief δC leads

to λU(δC) ≤ λO(δ), both types of the server have no incentive to deviate to C. So, a pooling

sequential equilibrium [(R,R), (n(δR), p(δC)), δR = δ, δC ] with δC satisfying λU(δC) ≤ λO(δ)

is an equilibrium outcome.

(2) (C,C), i.e., Pooling on C. Similarly, a pooling sequential equilibrium [(C,C), (n(δR), p(δC)),

δR, δC = δ] with the off-equilibrium-path belief δR satisfying λO(δR) ≤ λU(δ) is an equilibrium

outcome.

(3) (R,C), i.e., Separation with the H-type sending R and L-type sending C. If the server

adopts this separating strategy, then both R and C are on the equilibrium path, and by

Bayes’ rule, customers’ beliefs upon observing the signal are updated as δR = 1 and δC = 0.

We now check when this separating strategy can be sustained. Note that if λO(1) > λU(0),

the low-quality server becomes better off by deviating to R, while if λO(1) < λU(0), the high-

quality server benefits by deviating to C. That being so, only when λO(1) = λU(0) can the

separating sequential equilibrium [(R,C), (n(δR), p(δC)), δR = 1, δC = 0] be sustained as an

equilibrium outcome.

(4) (C,R), i.e., Separation with H-type sending C and L-type sending R. Similarly, the

separating sequential equilibrium [(C,R), (n(δR), p(δC)), δR = 0, δC = 1] can be sustained as

48



an equilibrium outcome only when λO(0) = λU(1).

Denote the unique crossing point of λO(δ) and λU(δ) as λ̂. From above analyses, we can

obtain the following result.

Proposition 3.1. Consider that all customers are uninformed of service quality. Then, if

λ < λ̂, the unique pure-strategy perfect sequential equilibrium is pooling on C (i.e., (C,C));

otherwise, it is pooling on R (i.e., (R,R)), except at those potential arrival rates under which

λO(1) = λU(0) and λO(0) = λU(1).

Proposition 3.1 shows that the separating equilibria exist only when the potential arrival

rate λ takes some specific values; otherwise, the pure-strategy perfect sequential equilibria

must be pooling. We can see that when all customers are uninformed, there exists a potential

arrival rate threshold, below which both types of the server prefer to conceal the queue and

above which they both prefer to reveal the queue. Similar results have been obtained in Hassin

(1986) and Chen and Frank (2004). The only difference is that in both papers, there is no

signaling issue and the server simply compares his payoffs under observable and unobservable

queues to decide whether or not to reveal his queue. Here, we consider a signaling game under

which the server’s queue disclosure behavior is a signal of service quality and obtain similar

results.

Hybrid and mixed strategies

The hybrid and mixed strategies can be similarly analyzed. To simplify the presentation, we

relegate the detailed analysis to Appendix B.1. We next compare the server’s payoffs (i.e.,

effective arrival rates) under different types of sequential equilibria and obtain the following

proposition.

Proposition 3.2. The effective arrival rates of both types of the server under the pure-strategy

perfect sequential equilibria are larger than the respective ones under the mixed- and hybrid-

strategy sequential equilibria.

We now provide a numerical example illustrating it; see Figure 3.2.

Example 3.1. Suppose VH = 3, VL = 2, µ = 1, θ = 0.5, and δ = 0.5. From Figure

3.2, we can see that the pure-strategy perfect sequential equilibria exist on the whole range of

λ, while the hybrid- or mixed-strategy sequential equilibria can be sustained only on several

bounded ranges of λ. Note that no matter what the equilibria are, the effective arrival rates to
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Figure 3.2: Comparison of effective arrival rates under various sequential equilibria: VH = 3,
VL = 2, µ = 1, θ = 0.5 and δ = 0.5

the high- and low-quality servers are always the same when all customers are homogeneously

uninformed. Hence, in Figure 3.2, we do not distinguish the server type for each effective

arrival rate. Figure 3.2 confirms that the effective arrival rates under the hybrid or mixed

sequential equilibria indeed cannot exceed the ones under the pure-strategy perfect sequential

equilibria.

Impact of the signaling effect

We refer to our setting with the signaling effect of the queue disclosure action as the signaling

case and the setting without as the non-signaling case. Under the non-signaling case, it can

be easily verified that the server prefers to conceal the queue if λU(δ) > λO(δ) and to reveal

it otherwise. The non-signaling case then performs the same as the signaling case when we

consider the pooling perfect sequential equilibria. That being so, by Propositions 3.1 and 3.2,

we have the following result.

Corollary 3.1. When all customers are uninformed of service quality, the effective arrival

rate under the pooling perfect sequential equilibria is the same as the maximal one under the

non-signaling case.

Corollary 3.1 implies that due to pooling being the equilibrium strategy of the server,

using the queue disclosure action as a signal of service quality has no effect on the server’s

effective arrival rate when all the customers are uninformed.
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3.5 Signaling Game with Heterogeneous Customers

Until now, we have considered homogeneous customers who are all uninformed of the service

quality. In this section, we extend this assumption by allowing some of the customers to

be informed of the service quality. The informed customers can either be positively informed

customers if the server is of high quality or negatively informed customers if the server is of low

quality. We use the variable q (0 < q < 1) to represent the fraction of the informed customers.

The signaling game with such heterogeneous customers becomes more complicated. In the

following analysis, we first investigate the equilibrium queueing strategies of both the informed

and uninformed customers in unobservable and observable queues, and then analyze the

sequential equilibria.

3.5.1 Customers’ Equilibrium Queueing Strategies and Effective

Arrival Rates

We now analyze the customers’ equilibrium queueing strategies and derive the effective arrival

rates given that the queue is concealed from or revealed to customers.

Concealed Queue

Consider the case where the server conceals the queue. Assume that upon observing the

server’s queue concealment behavior, uninformed customers hold a belief that the server’s

service quality is high with probability δC (0 < δC < 1).3.2 Uninformed customers then join

the system with probability pun(δC). As to the informed customers who know the service

quality, they join the system with probability pH(δC) (resp. pL(δC)) when the server’s service

quality is high (resp. low). In such a static game with incomplete information, we denote the

customer queueing strategy by the triplet (pL, pun, pH) and the equilibrium strategy profile

by (pUL , p
U
un, p

U
H) with δC omitted for notational convenience in the following analysis.

Given customers’ queueing strategy (pL, pun, pH), the expected utility of a positively in-

formed customer is uH(pun, pH) := VH − θ
µ−λ(qpH+(1−q)pun)

, the one of a negatively informed

customer is uL(pL, pun) := VL − θ
µ−λ(qpL+(1−q)pun)

, and the one of an uninformed customer is

uun(pL, pun, pH) := δC
[
VH − θ

µ−λ(qpH+(1−q)pun)

]
+ (1− δC)

[
VL − θ

µ−λ(qpL+(1−q)pun)

]
. The equi-

librium queueing behaviors of all types of customers are totally determined by the above

3.2The special cases where δC is 0 or 1 are analyzed in Appendix B.2.
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Table 3.1: Equilibrium joining strategy (pUL , p
U
un, p

U
H) in unobservable queues

Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

] (
min (λ1, λ2) , λ̄

] (
λ̄,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1: λ1 < λ2 (1, 1, 1) (pUL , 1, 1) (0, 1, 1) (0, pUun, 1) (pUL , p
U
un, p

U
H)

Case 2: λ1 ≥ λ2 (1, 1, 1) (pUL , 1, 1) (pUL , p
U
un, p

U
H)

three utilities. The following proposition shows customers’ equilibrium queueing strategies

(pUL , p
U
un, p

U
H) under various cases. When any one element in the triplet (pUL , p

U
un, p

U
H) equals

zero or one, we simply write it as 0 or 1. For example, the triplet (0, pUun, 1) represents that

pUL = 0, pUH = 1 and 0 ≤ pUun ≤ 1.

Proposition 3.3. When the queue is unobservable, customers’ equilibrium queueing strate-

gies (pUL , p
U
un, p

U
H) under various cases are summarized in Table 3.1 with the parameter values

specified as follows: λ1 = µ−θ/VL
1−q , λ2 = µ − θ

VH
, λ̄ is the unique solution for λ satisfying

0 < λ < µ in the equation uun(0, 1, 1) = 0, the value of pUL in (pUL , 1, 1) is µ−θ/VL
λq
− 1−q

q
, pUun

in (0, pUun, 1) is the unique solution for pun satisfying 0 < pun < min
{

µ−qλ
(1−q)λ , 1

}
in the equa-

tion uun(0, pun, 1) = 0, and (pUL , p
U
un, p

U
H) represents a continuum of equilibria with any pUun ∈[

max
{

0, µ−θ/VH
λ(1−q) −

q
1−q

}
,min

{
1, µ−θ/VL

λ(1−q)

}]
and the corresponding pUH = µ−θ/VH

λq
− (1−q)pUun

q
and

pUL = µ−θ/VL
λq
− (1−q)pUun

q
.

As illustrated in Table 3.1, under Case 1, as the potential arrival rate λ increases across
θ(VH−VL)
qVHVL

, the equilibrium outcome evolves from a unique equilibrium to multiple equilibria.

Let us investigate this interesting phenomenon in detail. For λ < θ(VH−VL)
qVHVL

, the expected

utility of at least one type of customers is strictly positive, and at least one of the three prob-

abilities (pUL , pUun and pUH) is specified as 0 or 1 with others uniquely identified by making the

corresponding expected utility as 0, which makes the final equilibrium triplet unique. How-

ever, when λ > θ(VH−VL)
qVHVL

, the expected utilities of all types of customers are 0 in equilibrium,

and this yields three equations uH(pUun, p
U
H) = 0, uun(pUL , p

U
un, p

U
H) = 0 and uL(pUL , p

U
un) = 0,

any one of which is redundant given the other two. Then, two equations with three vari-

ables yield multiple equilibria with pUun ∈
[
max

{
0, µ−θ/VH

λ(1−q) −
q

1−q

}
,min

{
1, µ−θ/VL

λ(1−q)

}]
. When

λ = θ(VH−VL)
qVHVL

, we get that 0 < µ−θ/VH
λ(1−q) −

q
1−q = µ−θ/VL

λ(1−q) < 1, and thus the value of pUun is uniquely

as qVHVL(µ−θ/VL)
(1−q)θ(VH−VL)

with the uniquely corresponding pUH = 1 and pUL = 0. As λ becomes a little

bit larger than θ(VH−VL)
qVHVL

, we get that 0 < µ−θ/VH
λ(1−q) −

q
1−q <

µ−θ/VL
λ(1−q) < 1, and thus the length of

the feasible range of pUun becomes strictly positive, yielding multiple equilibria immediately.

Similarly to the above analysis, the evolution from a unique equilibrium to multiple equilibria
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Table 3.2: Effective joining rates λUH(δC) and λUL(δC) in unobservable queues

Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

] (
min (λ1, λ2) , λ̄

] (
λ̄,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1:
λ1 < λ2

λUH(δC) λ x(λ) µ− θ
VH

λUL (δC) λ µ− θ
VL

(1− q)λ x(λ)− qλ µ− θ
VL

Case 2:
λ1 ≥ λ2

λUH(δC) λ µ− θ
VH

λUL (δC) λ µ− θ
VL

in Case 2 can be illustrated.

An interesting observation is that, in Case 1, the negatively informed customers surely

join in a small-sized market and join with some probability in a large-sized market. However,

they never join when the market size is moderate (i.e., λ ∈
(
λ1,

θ(VH−VL)
qVHVL

]
). Intuitively,

the expected quality level of uninformed customers is higher than the one of the negatively

informed customers. In that moderate market range, the uninformed customers join the

queue at a positive probability. But this makes the expected utility of a negatively informed

customer strictly negative (i.e., uL(0, pUun) < 0), preventing them from joining.

Based on Proposition 3.3, we can further derive the effective arrival rates under any given

market size λ for both high- and low-quality servers. Denote λUH(δC) and λUL(δC) as the

effective arrival rates of the high- and low-quality servers when the uninformed customers

hold the belief that the server is of high quality with probability δC , respectively. Then, we

can get the following result.

Proposition 3.4. When the queue is unobservable, λUH(δC) and λUL(δC), the effective arrival

rates of the high- and low-quality servers, are summarized in Table 3.2, where x(λ) is the

unique solution for x satisfying qλ < x < µ in the equation δCVH + (1 − δC)VL = δC θ
µ−x +

(1− δC) θ
µ−(x−qλ)

, and all other parameter values are specified in Proposition 3.3.

In Case 1, λUH(δC) is non-decreasing with the potential arrival rate λ, and λUL(δC) is

decreasing with λ when λ ∈
(
λ̄, θ(VH−VL)

qVHVL

]
and non-decreasing otherwise. While in Case 2,

both λUH(δC) and λUL(δC) are non-decreasing with λ.

Although this queueing game may have multiple equilibria on some ranges of the potential

arrival rate, Proposition 3.4 shows that the effective arrival rates for both types of the server

are in fact unique.3.3 This is because multiple equilibria occur only when all types of customers

3.3Different from the general case 0 < δC < 1, when δC = 0 or 1, such uniqueness does not hold any
more. For the convenience and consistency of the following sequential equilibrium analysis, we only consider
λUH(0) = limδC→0+ λ

U
H(δC) and λUL (1) = limδC→1− λ

U
L (δC) based on the continuities of λUH(δC) and λUL (δC) in

δC (0 < δC < 1). This part of analysis can be found in Appendix B.2.
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obtain an expected utility of zero (see Proposition 3.3 and its proof). Under such a scenario,

different equilibria only affect the composition of the effective arrival rate, i.e., the proportion

of those joining customers who are informed or uninformed.

In the first case of Proposition 3.4, when the market size (reflected by the potential arrival

rate) falls into the range λ ∈
(
λ̄, θ(VH−VL)

qVHVL

]
, increasing the market size actually reduces the

demand (reflected by the effective arrival rate) for the low-quality server. This is quite counter-

intuitive. The explanation is as follows. When the server is of low quality and the potential

arrival rate λ falls into this range, informed customer will not join the system. Only part of

the uninformed customers join with an expected utility uun(0, pUun, 1) = 0. However, for the

uninformed customers, as λ increases, pUun need be decreased to keep uun(0, pUun, 1) = 0, which

means that uninformed customers have less incentives to join, leading to λUL(δC) decreasing

with λ. Figure 3.3 illustrates the changes of effective arrival rates to both high- and low-quality

servers under Case 1 of Proposition 3.4.
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Figure 3.3: Illustration of effective arrival rates to the high- and low-quality servers under a
concealed queue: VH = 7, VL = 2, µ = 1, θ = 1, δC = 0.5 and q = 0.3

Revealed Queue

When the server reveals the queue, all customers, both informed and uninformed, inspect

the queue length upon arrival and then decide whether or not to join. Upon observing the

server’s queue revelation behavior, uninformed customers hold a belief that the server is of

high quality with probability δR. Next, we first focus on the general case 0 < δR < 1, and then
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analyze two special cases where δR is 0 or 1. For simplicity and notational convenience in the

following analysis, we omit the term δR. For an informed customer, the equilibrium strategy

is simple and definite: when the server is of high (resp. low) quality, they join the queue unless

it is longer than a threshold n(1) := bVHµ/θc−1 (resp. n(0) := bVLµ/θc−1). In other words,

a positively informed customer joins the queue with probability pOH(i) = 1 at queue length

i when i = 0, 1, · · · , n(1), and with probability pOH(i) = 0 otherwise; a negatively informed

customer joins the queue with probability pOL (i) = 1 at queue length i when i = 0, 1, · · · , n(0),

and with probability pOL (i) = 0 otherwise. For uninformed customers with 0 < δR < 1, they

can infer quality information from the queue length (see Debo et al., 2012), and thus the

decision making of an uninformed customer is much more complicated. Clearly, if the queue

is shorter than or equal to n(0), the uninformed customer joins the system, i.e., her joining

probability pOun(i) = 1 for i = 0, 1, · · · , n(0). Likewise, if it is longer than n(1), she balks,

i.e., her joining probability pOun(i) = 0 for i = n(1) + 1, · · · . We now need to derive the

uninformed customers’ joining probability at queue length i for i = n(0) + 1, · · · , n(1). We

assume that the joining decision of uninformed customers is made only based on the current

queue length when they arrive (see Debo et al., 2012). In this dynamic game with incomplete

information, the customers’ equilibrium queueing strategy profile is denoted by a set of the

triplet {(pOL (i), pOun(i), pOH(i))}+∞
i=0 .

Here, our game, where the service rate is the same for two types of the server, is a special

case of the “consumer game” in Debo et al. (2012), where different types of the server can

adopt different service rates. According to Debo et al. (2012), an equilibrium pure strategy

for an uninformed customer is a hole-avoiding strategy. Specifically, an uninformed customer

behaves as a positively informed customer except at queue length denoted by nhole (namely,

the hole) where she plans not to join. The queue-length joining set is hence {0, . . . , nhole −
1, nhole+1, . . . , n(1)}. The underlying reason behind such hole-avoiding strategy is as follows.

Given that all uninformed customers behave in this way, the fact that an uninformed customer

observes a queue length longer than nhole upon arrival implies that sometime in the past, an

informed customer had inspected a queue length of nhole and joined the system. The service

quality hence must be high as otherwise the informed customer would have balked. For the

sake of reading convenience, we illustrate the hole-avoiding decision process of uninformed

customers in Debo et al. (2012) using our terms. To keep brevity, we relegate the related

review to Appendix B.3. Note that we let λi,H (resp. λi,L) be the effective arrival rate at

queue length i and πi,H (resp. πi,L) the limiting probability that the number of customers in
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the system equals i when the server is of high (resp. low) quality, where i = 0, 1, · · · , n(1)+1.

Denote λOH(δR) and λOL (δR) as the effective arrival rates of the high- and low-quality servers

in equilibrium when uninformed customers hold the belief that the server is of high quality

with probability δR, respectively. Then, according to the time reversibility of the above

ergodic BD processes in steady state, we can easily get that

λOH(δR) = µ(1− π0,H) = µ

(
1− 1∑nhole

i=0 ρi + q
∑n(1)+1

i=nhole+1 ρ
i

)
,

and

λOL (δR) = µ(1− π0,L) = µ

(
1− 1∑n(0)+1

i=0 ρi +
∑nhole

i=n(0)+2(1− q)i−n(0)−1ρi

)
.

For two special cases where δR is 0 or 1, the analyses are as follows.

(i) When uninformed customers believe that the server’s service quality is low (i.e., δR = 0),

if the server is indeed of low quality, then customers, both informed and uninformed,

hold the same belief δR = 0. Hence, the queue-length joining set of all customers is

{0, . . . , n(0)}, and the effective arrival rate is λOL (0) = λO(0). While if the server is of

high quality, then uninformed customers and positively informed customers hold totally

opposite beliefs, and the queue-length joining sets of the uninformed customers and

positively informed customers are {0, . . . , n(0)}3.4 and {0, . . . , n(1)}, respectively. So,

the effective arrival rate becomes λOH(0) = µ

(
1− 1∑n(0)+1

i=0 ρi+
∑n(1)+1
i=n(0)+2

qi−n(0)−1ρi

)
.

(ii) When uninformed customers believe that the server’s service quality is high (i.e., δR =

1), if the server is indeed of high quality, then all customers hold the same belief δR = 1.

Hence, the queue-length joining set of all customers is {0, . . . , n(1)}, and the effective

arrival rate is λOH(1) = λO(1). While if the server is of low quality, then uninformed

customers and negatively informed customers hold totally opposite beliefs, and their

queue-length joining sets are {0, . . . , n(1)} and {0, . . . , n(0)}, respectively. So, the ef-

fective arrival rate becomes λOL (1) = µ

(
1− 1∑n(0)+1

i=0 ρi+
∑n(1)+1
i=n(0)+2

(1−q)i−n(0)−1ρi

)
.

3.4The belief δR = 0 means that the uninformed customers make sure that the service quality is low
after seeing a revealed queue, and they do not further infer quality information from the queue length. In
other words, a queue longer than n(0) + 1 does not convey any quality-related information to all convinced
uninformed customers. In the following sequential equilibrium analysis, the term λOH(0) only serves for judging
an equilibrium, but cannot be the final equilibrium effective arrival rate.
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3.5.2 Sequential Equilibria Analysis

The sequential equilibrium of the signaling game with heterogeneous customers can be defined

after Definition 3.1 in section 3.3.2. Now, the Sequential Rationality requires that the cus-

tomers’ joining rules are (pUL , p
U
un, p

U
H) and {(pOL (i), pOun(i), pOH(i))}+∞

i=0 , and the server’s signaling

rule maximizes his expected payoff such that ∀t ∈ T, f(R|t) > 0 (resp. f(C|t) > 0) only if

λOt (δR) ≥ λUt (δC) (resp. λUt (δC) ≥ λOt (δR)). Then, we can express a sequential equilibrium in

this setting as

[(f(R|H), f(R|L)),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, δR, δC ].

We are now ready to analyze the sequential equilibria of the signaling game. In the

following analysis, we theoretically investigate the pure strategies and examine whether and

when they can be sustained as an equilibrium outcome of our signaling game. The hybrid

and mixed strategies can only be analyzed numerically, and the related sequential equilibrium

analysis can be found in Appendix B.4. There are still four pure strategies in this signaling

game with heterogeneous customers, which are specified one by one as follows.

(1) (R,R), i.e., Pooling on R, under which both types of the server choose to always reveal

their queues. Then, R is on the equilibrium path, and by Bayes’ rule, uninformed customers’

updated belief after observing R is still δR = δ. Let the effective arrival rates to the high-

and low-quality servers be λOH(δ) and λOL (δ), respectively. To check whether both types of

the server are willing to stay on R, we need to specify the off-equilibrium-path belief δC . As

long as the off-equilibrium-path belief δC leads to λUH(δC) ≤ λOH(δ) and λUL(δC) ≤ λOL (δ), both

types of the server have no incentive to deviate to C. Hence, with such off-equilibrium-path

beliefs, this pooling strategy can be sustained as a sequential equilibrium outcome.

(2) (C,C), i.e., Pooling on C, under which both types of the server choose to always conceal

their queues. Then, C is on the equilibrium path, and by Bayes’ rule, uninformed customers’

updated belief after observing C is still δC = δ. Similarly, as long as the off-equilibrium-

path belief δR leads to λOH(δR) ≤ λUH(δ) and λOL (δR) ≤ λUL(δ), both types of the server have no

incentive to deviate to R. Then, with such off-equilibrium-path beliefs, this pooling sequential

equilibrium can be sustained as an equilibrium outcome.

The following proposition summarizes the sufficient conditions under which the sequential

equilibrium is uniquely a pooling one.

Proposition 3.5. When the market consists of both informed and uninformed customers,
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there exist two potential arrival rate thresholds, λ̂C and λ̂R satisfying λ̂R > λ̂C,3.5 such

that when λ < λ̂C, (C,C), pooling on C is the unique sequential equilibrium with the off-

equilibrium-path belief δR ∈ [0, 1], while when λ > λ̂R, (R,R), pooling on R is with the

off-equilibrium-path belief δC ∈ [0, 1].

Proposition 3.5 shows that for the signaling game with heterogeneous customers, conceal-

ing (resp. revealing) is still the unique dominant strategy for two types of the server when

the market size is small (resp. large) enough. For a medium-sized market, the separating

sequential equilibria may exist. We then depict the ranges of the market size λ on which the

separating strategies can be sustained as sequential equilibria.

(3) (R,C) , i.e., Separation with the H-type sending R and L-type sending C, under which the

high-quality server always reveals the queue while the low-quality server always conceals the

queue. If the server adopts this separating strategy, then both R and C are on the equilibrium

path, and by Bayes’ rule, uninformed customers’ beliefs upon observing the signal are updated

as δR = 1 and δC = 0. We now check whether this separating strategy can be sustained. Note

that if λOL (1) > λUL(0), the low-quality server becomes strictly better off by deviating to R,

and if λUH(0) > λOH(1), the high-quality server benefits by deviating to C. That being so,

only when λOH(1) ≥ λUH(0) and λUL(0) ≥ λOL (1) can this separating sequential equilibrium be

sustained.

(4) (C,R), i.e., Separation with H-type sending C and L-type sending R, under which the

high-quality server always conceals the queue while the low-quality server always reveals the

queue. If the server adopts this separating strategy, then both R and C are on the equilibrium

path, and by Bayes’ rule, uninformed customers’ beliefs upon observing the signal are updated

as δC = 1 and δR = 0. Similarly, this separating sequential equilibrium can be sustained only

if λUH(1) ≥ λOH(0) and λOL (0) ≥ λUL(1).

Intuitively, since some of the customers are informed of the true quality type, the high-

and low-quality servers may have different incentives to reveal or conceal the queue in a

medium-sized market. At some market sizes, the high-quality (resp. low-quality) server

prefers revealing (resp. concealing). In this case, the uninformed customers can infer the

true quality type from the queue disclosure action. If the high-quality (resp. low-quality)

server deviates to concealing (resp. revealing), he knows that the uninformed customers must

believe that he is of the low-quality (resp. high-quality) type after observing a concealed

(resp. revealed) queue, and he finds that such a deviation will make him worse off, which

3.5The detailed expressions of λ̂C and λ̂R can be found in the proof of Proposition 3.5.
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makes the separating sequential equilibrium (R,C) sustained. Similarly, another separating

sequential equilibrium (C,R) can be intuitively understood.

Based on the above analysis, the separating sequential equilibrium (R,C) can be sustained

only if λOH(1) ≥ λUH(0) and λUL(0) ≥ λOL (1), and another one (C,R) can be sustained only if

λUH(1) ≥ λOH(0) and λOL (0) ≥ λUL(1). Let Λ
(R,C)
O≥U := {λ|λOH(1) ≥ λUH(0)}, Λ

(R,C)
U≥O := {λ|λUL(0) ≥

λOL (1)}, Λ
(C,R)
O≥U := {λ|λOL (0) ≥ λUL(1)}, and Λ

(C,R)
U≥O := {λ|λUH(1) ≥ λOH(0)}. Then, we can get

the following results on the separating sequential equilibria.

Proposition 3.6. For a medium-sized market λ ∈ (λ̂C , λ̂R) (except at several threshold

points), at most one of the two separating strategies ((R,C) and (C,R)) can be sustained

as an equilibrium outcome. Specifically, the ranges of the market size λ where the separating

sequential equilibria (R,C) and (C,R) exist can be expressed as Λ(R,C) := Λ
(R,C)
O≥U ∩Λ

(R,C)
U≥O and

Λ(C,R) := Λ
(C,R)
O≥U ∩ Λ

(C,R)
U≥O , respectively.

In a separating sequential equilibrium, the server’s queue disclosure behavior, revealing

or concealing the queue, exactly signals his service quality. Note that we cannot rule out

the possibility that pooling and separating sequential equilibria coexist in a medium-sized

market. Proposition 3.6 depicts the exact ranges of the market size λ where separating

sequential equilibria exist. For t ∈ {H,L} and d ∈ {0, 1}, the expressions of λUt (d) and

λOt (d) can be explicitly got. And thus, given the values of all system parameters, we can

definitely identify the key ranges Λ(R,C) and Λ(C,R) in Proposition 3.6. For example, when

(µ− θ/VL)/(1− q) ≥ µ− θ/VH , according to Proposition 3.4 and Lemma B.1 (see Appendix

B.5), we can get the unique crossing point of λOH(1) and λUH(0) as λ̂H1, of λOL (1) and λUL(0)

as λ̂L1, of λOH(0) and λUH(1) as λ̂H0, and of λOL (0) and λUL(1) as λ̂L0. Then, if λ̂H1 ≤ λ̂L1,

(R,C) is the unique separating sequential equilibrium for λ ∈ [λ̂H1, λ̂L1]; and if λ̂H0 ≥ λ̂L0,

(C,R) is the unique separating sequential equilibrium for λ ∈ [λ̂L0, λ̂H0]. By contrast, when

(µ−θ/VL)/(1−q) < µ−θ/VH , the corresponding crossing points may not be unique, and this

may make each concerned range (i.e., Λ(R,C) or Λ(C,R)) composed of several separate ranges

of λ.

In section 3.4.2 where all customers are uninformed, the effective arrival rates to both the

high-quality and low-quality servers are always the same under any sequential equilibrium.

However, such a result does not hold any more under the heterogeneous-customers scenario.

The comparison result is shown in the following corollary.

Corollary 3.2. When the market consists of both informed and uninformed customers, the
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effective arrival rate of the high-quality server is weakly larger than that of the low-quality

server under any (pure, mixed or hybrid) sequential equilibrium.

Clearly, a positively informed customer is always more likely to join a queue than a neg-

atively informed one. An uninformed customer, however, cannot make the exact inference

about the service quality, and thus her joining decision is the same regardless of the server’s

type. A combination of the above observations then leads to the result stated in Corollary

3.2.

Below, we provide a simple example to illustrate the pure-strategy sequential equilibria.

We also numerically show the hybrid- and mixed-strategy equilibria as well. For the equilib-

rium queueing strategy of uninformed customers in an observable queue, we give priority to

the pure strategy with the smallest hole value.

Example 3.2. Consider the parameter values to be VH = 2.5, VL = 2, µ = 1, θ = 0.5,

δ = 0.5, and q = 0.5. Under this setting, we have (µ − θ/VL)/(1 − q) > µ − θ/VH , and thus

the above-mentioned crossing points are unique as λ̂C = λ̂L1(= 0.8580) < λ̂L0(= 0.8882) <

λ̂H1(= 0.9265) < λ̂R = λ̂H0(= 0.9579).

By Proposition 3.5, we know that the unique pure-strategy sequential equilibrium is (C,C)

with the off-equilibrium-path belief δR ∈ [0, 1], namely pooling on C, when the potential arrival

rate λ < λ̂C, and it is (R,R) with the off-equilibrium-path belief δC ∈ [0, 1], namely pooling

on R, when λ > λ̂R. When λ̂L0 ≤ λ ≤ λ̂H0, according to Proposition 3.6, the strategy

(C,R) in which the high-quality server conceals the queue and the low-quality server reveals

the queue, is a pure-strategy separating sequential equilibrium. Also, for λ̂L0 < λ < λ̂H0, no

pooling sequential equilibrium can be sustained. Another separating strategy (R,C) can never

be sustained as a sequential equilibrium. For the remaining range λ̂C ≤ λ < λ̂L0, we can show

that λOH(δR) < λUH(δ) always holds for any belief δR ∈ [0, 1]. Then, as long as the belief δR

satisfies λOL (δR) ≤ λUL(δ) (i.e., 0 ≤ δR < 1 in this example), the pure strategy (C,C) can be

sustained as a sequential equilibrium. Also, note that in this situation, the set T′∪T′′ is empty.

Therefore, the credible updating rule does not put any restriction on δR. As such, (C,C) is a

perfect sequential equilibrium for λ ∈ [λ̂C , λ̂L0) with the off-equilibrium-path belief δR ∈ [0, 1).

See Figure 3.4 for the illustration of our pure-strategy sequential equilibrium outcome and the

corresponding effective arrival rates to both types of the server. Figure 3.4 also reconfirms

Corollary 3.2 that in equilibrium, the effective arrival rate to the high-quality server is always

no less than the one to the low-quality server.

Next, we investigate the mixed and hybrid strategies following the analysis in Appendix
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Figure 3.4: Sequential equilibrium outcome and effective arrival rates in equilibrium: VH =
2.5, VL = 2, µ = 1, θ = 0.5, δ = 0.5 and q = 0.5

B.4. First, consider the hybrid strategy f(R|H) = 1 and 0 < f(R|L) < 1. By Bayes’ rule,

the posterior beliefs of uninformed customers are δC = 0 and δR = δ
δ+(1−δ)f(R|L)

∈ (δ, 1).

When λOL (δR) = λUL(0), we find that the high-quality server strictly prefers to deviate from

revealing (R) to concealing (C), improving his effective arrival rate from λOH(δR) to λUH(0).

So, this hybrid strategy cannot be sustained as an equilibrium. Similarly, the hybrid strategy

0 < f(R|H) < 1 and f(R|L) = 0 cannot be sustained as an equilibrium. Then, consider

the hybrid strategy f(R|H) = 0 and 0 < f(R|L) < 1. Under this strategy, the posterior

beliefs of uninformed customers are δR = 0 and δC = δ
δ+(1−δ)(1−f(C|L))

∈ (δ, 1). Only at the

unique crossing point of λOL (0) and λUL(δC) (i.e., λ = λ̂L0) is the low-quality server indifferent

between R and C. It can be verified that the high-quality server has no incentive to deviate

at this crossing point, and thus this hybrid strategy can be sustained at λ = λ̂L0. Similarly,

we can show that the hybrid strategy 0 < f(R|H) < 1 and f(R|L) = 1 can be sustained as

an equilibrium only at λ = λ̂H0; see Figure 3.4 for the illustration of the existence of the

hybrid-strategy sequential equilibrium. Finally, the mixed strategy with 0 < f(R|H) < 1 and

0 < f(R|L) < 1 requires that λOt (δR) = λUt (δC), t = H,L. It can be verified that the mixed

strategy can never be sustained as a sequential equilibrium in this example.
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3.5.3 Effects of Using Queue Disclosure as Signal

Here, we conduct a comparison of the system performances with and without using the queue-

disclosure action as a signaling device. Since the hybrid and mixed sequential equilibria

can only be numerically identified and their existence ranges of λ are rather limited (see

Example 3.2 as an illustration), we only consider the pure-strategy sequential equilibria in

this subsection. In the non-signaling case, uninformed customers make their joining decisions

based on their prior beliefs when the queue is concealed; while when the queue is revealed,

they adopt the ‘hole-avoiding’ strategy discussed in Debo et al. (2012) by utilizing the queue-

length information. Anticipating customers’ joining decisions, the server then makes his

queue disclosure decision. Specifically, the t-type (t = H,L) server conceals the queue if

λUt (δ) ≥ λOt (δ) and reveals it if λUt (δ) < λOt (δ). By comparing the equilibrium outcomes

in the signaling and non-signaling cases, we can obtain the following results regarding the

effective arrival rates.

Proposition 3.7. When the market is composed of both informed and uninformed customers,

(i) the equilibrium effective arrival rates of both types of the server under the signaling

case equal the corresponding maximal ones under the non-signaling case if the potential

arrival rate λ is either smaller than λ̂C or larger than λ̂R.

(ii) for λ ∈ [λ̂C , λ̂R], when a separating sequential equilibrium can be sustained, the maximal

effective arrival rate to the high-quality (resp. low-quality) server under all pure-strategy

perfect sequential equilibria is no less (resp. no greater) than the maximal one in the

non-signaling case.

Proposition 3.7 implies that in both small and large-sized markets, the queue revelation

and concealment convey no further quality information to customers. Only in a medium-sized

market may the signaling mechanism work. This is caused by the existence of separating

equilibria in which uninformed customers can fully infer the server’s type and behave the

same as informed customers. Such signaling effects lead to a non-larger effective arrival rate

for the low-quality server and a non-smaller effective arrival rate for the high-quality server

compared to those in the non-signaling case.

We then turn to customers’ total utility and investigate the impact of separating equilibria

on it. In a revealed queue with the belief of uninformed customers as δR, the total utility of
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all customers from the type-t (t ∈ T) server can be derived as

uOt (δR) =

n(1)∑
i=0

λi,tπi,t

(
Vt −

(i+ 1)θ

µ

)
. (3.4)

Similarly, in a revealed queue with the belief of uninformed customers as δC , the total utility

of all customers from the type-t (t ∈ T) server can be written as

uUt (δC) = λUt (δC)

(
Vt −

θ

µ− λUt (δC)

)
. (3.5)

The following proposition shows that the separating equilibria benefit customers’ total utility

from the low-quality server. Since multiple pure-strategy sequential equilibria may be sus-

tained at the same time, when we mention customers’ total utility from the high-quality (resp.

low-quality) server in the signaling case, we consider by default the pure-strategy perfect se-

quential equilibrium where the high-quality (resp. low-quality) server obtains the maximal

effective arrival rate, which is consistent with Proposition 3.7(ii).

Proposition 3.8. When a separating sequential equilibrium can be sustained, the total utility

of all customers from the low-quality server in the signaling case is no less than the one in

the non-signaling case.

Intuitively, under the separating sequential equilibria, all customers become negatively

informed when the server is of low quality. As the expected quality level of uninformed

customers is higher than the low quality level VL, the effective joining rate of the low-quality

server with heterogeneous customers is larger than the one with only negatively informed

customers. Such an overcrowded queueing system makes the actual utility of some uninformed

customers negative, which can be improved to be nonnegative after uninformed customers

infer the true quality type according to the separating sequential equilibria.

Then, consider the high-quality server. Since the expected quality level of uninformed

customers is lower than the high quality level VH , the effective joining rate of the high-quality

server with heterogeneous customers is smaller than the one with only positively informed

customers. However, a larger effective joining rate in the signaling case cannot definitely

yield a benefit or loss for customers from the high-quality server. On one hand, it increases

the workload of the queueing system, which is a driving force of reducing utility. On the

other hand, the joining probability of uninformed customers may be properly increased in

a concealed queue or at a not-that-long queue length in a revealed queue, which leads to a
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counter driving force of increasing utility. Additionally, the uncertain relationship between

the total utilities from the high-quality server may be caused by different queue disclosure

actions in two cases.

Next, we use two numerical examples to illustrate all above comparison results on the

effective arrival rates and customers’ total utility.

Example 3.3. Consider the parameter values to be VH = 4, VL = 1, µ = 2, θ = 1, δ = 0.25,

and q = 0.3. The values of the key points in Figure 3.5 are λ̂C = λ̂L1(= 1.0749) < λ̂Lδ(=

1.1224) < λ̂L0(= 1.2361) < λ̂Hδ(= 2.3208) < λ̂′Hδ(= 2.3429) < λ̂R = λ̂H0(= 3.2997).
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Figure 3.5: Comparisons of the maximal effective arrival rates to the high-quality (resp. low-
quality) server, λnonH and λsigH (resp. λnonL and λsigL ), and the corresponding customers’ total
utilities from the high-quality (resp. low-quality) server, unonH and usigH (resp. unonL and usigL )
in the non-signaling and signaling cases: VH = 4, VL = 1, µ = 2, θ = 1, δ = 0.25 and q = 0.3

In the non-signaling case, the high-quality server conceals (resp. reveals) the queue when

λ ≤ λ̂Hδ (resp. λ > λ̂Hδ), and the low-quality server conceals (resp. reveals) the queue

when λ ≤ λ̂Lδ (resp. λ > λ̂Lδ). In the signaling case, by Propositions 3.5 and 3.7(i), we

know that only a pooling strategy can be sustained as a sequential equilibrium when λ < λ̂C

and λ > λ̂R, and the equilibrium effective arrival rates to both types of the server remain

unchanged regardless of whether the queue disclosure action is used as a signaling device or

not; see Figure 3.5. When λ̂L0 ≤ λ ≤ λ̂H0, the separating sequential equilibrium (C,R) can

be sustained as an equilibrium outcome. In the subrange λ̂L0 < λ < λ̂′Hδ, (C,R) is the unique

pure-strategy perfect sequential equilibrium, and we have λUH(1) > λOH(δ) and λUH(1) ≥ λUH(δ);
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while in the subrange λ̂′Hδ < λ ≤ λ̂H0, we get that λOH(δ) > λUH(1), and the pooling strategy

(R,R) can also be sustained as a perfect sequential equilibrium with the off-equilibrium-path

belief δC ∈ [0, 1]. Therefore, for λ̂L0 ≤ λ ≤ λ̂H0, signaling through the queue disclosure

can make the high-quality server better off and the low-quality server worse off considering all

pure-strategy perfect sequential equilibria, which is consistent with Proposition 3.7(ii). For the

remaining range λ̂C ≤ λ < λ̂L0, only the pooling sequential equilibrium (C,C) can be sustained

with the off-equilibrium-path belief δR satisfying λOL (δR) ≤ λUL(δ) (e.g., δR = 0), which is also

a perfect sequential equilibrium because the credible updating rule puts no restriction on the

off-equilibrium-path belief δR. Now, the high-quality server conceals the queue under both the

signaling and non-signaling cases, and thus the optimal effective arrival rates to the high-

quality server under two cases keep the same. This observation holds for the low quality

server when λ̂C ≤ λ ≤ λ̂Lδ. However, for λ̂Lδ < λ < λ̂L0, although the signaling effect does

not change the belief of uninformed customers, the effective arrival rate to the low-quality

server in the signaling case becomes strictly smaller than the one under the non-signaling

case due to different queue-disclosure actions: without considering the signaling effect, the

low-quality server reveals the queue, while at this moment, (C,C) is the unique pure-strategy

perfect sequential equilibrium in the signaling case.

Regarding the customers’ total utility from the low-quality server, for λ̂L0 ≤ λ ≤ λ̂H0

where the separating sequential equilibrium (C,R) exists, we can see that it becomes weakly

larger in the signaling case than the one in the non-signaling case, which echoes Proposition

3.8. But the total utility from the high-quality server in the signaling case becomes weakly

smaller than the one in the non-signaling case. Intuitively, for λ̂L0 ≤ λ ≤ λ̂Hδ, concealing

is the choice of the high-quality server in both the signaling and non-signaling cases, but the

larger effective arrival rate under the signaling case decreases the total expected utility from a

concealed queue; and in the subrange λ̂Hδ < λ ≤ λ̂′Hδ, the high-quality server conceals (resp.

reveals) the queue in the signaling (resp. non-signaling) case, which generates a zero (resp.

positive) total utility. Note that a relatively larger effective arrival rate in a concealed queue

does not always decreases the total utility from the high-quality server.3.6 Another interesting

observation is that for λ̂Lδ < λ < λ̂L0, the total utility from the low-quality server in the

signaling case becomes strictly less than the one under the non-signaling case, which is caused

3.6For example, when the parameter values are VH = 10, VL = 1, µ = 2, θ = 1, δ = 0.01 and q = 0.3, at the
market size λ = 1.5450, the high-quality server conceals the queue in both the signaling and non-signaling case
with the effective arrival rates as λUH(1) = 1.5451 and λUH(δ) = 1.5370, respectively. And the corresponding
total utilities are uUH(1) = 12.0544 and uUH(δ) = 12.0503, respectively. In this case, uUH(1) > uUH(δ).
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by different queue-disclosure actions in two cases as mentioned before.

In Example 3.3, only one kind of the separating sequential equilibria, (C,R), appears.

Next, let us turn to another example where another separating sequential equilibrium (R,C)

exists, and mainly see what impacts (R,C) can cause to the system performances.

Example 3.4. Consider the parameter values as VH = 1.01, VL = 0.91, µ = 2, θ = 1,

δ = 0.3, and q = 0.9. Figure 3.6 shows the comparison results, where the values of the key

points are λ̂C = λ̂H1(= 1.2539) < λ̂H0(= 1.2905) < λ̂L1(= 1.5239) < λ̂R = λ̂L0(= 1.6400). In

the non-signaling case, the high-quality server conceals (resp. reveals) the queue when λ ≤ λ̂H0

(resp. λ > λ̂H0), and the low-quality server conceals (resp. reveals) the queue when λ ≤ λ̂L0

(resp. λ > λ̂L0). In the signaling case, only a pooling strategy can be sustained as a sequential

equilibrium when λ < λ̂C and λ > λ̂R; for λ̂H1 < λ < λ̂L1, (R,C) is the unique pure-strategy

perfect sequential equilibrium; and for λ̂L1 < λ < λ̂L0, no (pure, hybrid or mixed) sequential

equilibrium exists even though all possibilities of customers’ equilibrium queueing strategies

are considered. The classic results show that the sequential equilibria exist for every finite

extensive game (see Selten, 1975; and Kreps and Wilson, 1982). However, since the players

in our game involve infinite customers, our signaling game is not a finite one, and thus the

existence of sequential equilibria cannot be guaranteed.3.7 Even so, we have provided some key

definite results on the existence of the sequential equilibria (see Propositions 3.1, 3.5 and 3.6).

Here, we only focus on the effect caused by the separating sequential equilibrium (R,C)

for λ̂H1 ≤ λ ≤ λ̂L1. In both the signaling and non-signaling cases, the low-quality server

conceals the queue. Since only a few of customers are uninformed (i.e., 1 − q = 0.1), the

overall performance of the queueing system is not affected by the different beliefs in two cases,

and thus the effective arrival rates to the low-quality server keep the same. Also, the total

utilities of all customers from the low-quality server in two cases are equal. Then, consider the

high-quality server. As the uninformed customers become fully informed in the signaling case,

the effective arrival rate to it is strictly larger than the one in the non-signaling case. For

λ̂H0 ≤ λ ≤ λ̂L1, the high-quality server reveals the queue in both cases. And the larger effective

arrival rate in the signaling case decreases the total utility. Then, for λ̂H1 ≤ λ < λ̂H0, the

high-quality server conceals the queue in the non-signaling case, which makes the total utility

as 0, but the total utility in the signaling case is strictly larger than 0 in the signaling case

because the high-quality server now reveals the queue.
3.7The Nash equilibrium, which is weaker than the sequential equilibrium, must exist in our signaling game.

For example, the Nash equilibria where the server adopts the pooling strategy (C,C) or (R,R) can always be
sustained for all λ ∈ (0,+∞) (see the proof in Appendix B.5).
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Figure 3.6: Comparisons of the maximal effective arrival rates to the high-quality (resp. low-
quality) server, λnonH and λsigH (resp. λnonL and λsigL ), and the corresponding customers’ total
utilities from the high-quality (resp. low-quality) server, unonH and usigH (resp. unonL and usigL )
in the non-signaling and signaling cases: VH = 1.01, VL = 0.91, µ = 2, θ = 1, δ = 0.3 and
q = 0.9

3.6 Discussions

Section 3.5.3 shows that the signaling effect of the queue disclosure action influences the

system performances only under separating sequential equilibria in a medium-sized market.

Through helping the uninformed customers to identify the true quality type, it generates a

larger effective arrival rate to the high-quality server and improves the customers’ total utility

in case of low quality. In this section, we focus on the existence of the separating sequential

equilibrium and investigate how the customer type composition and service price affect it.

3.6.1 The Impact of Customer Type Composition

A close look at the results stated in §3.4.2 and §3.5.2 reveals that the existence of a separating

equilibrium in our signaling game requires the coexistence of informed and uninformed cus-

tomers in the market. This makes us wonder whether increasing q, the proportion of informed

customers in the market, can induce the separating sequential equilibria to occur more likely.

We examine this question in this subsection.

Proposition 3.6 depicts the exact existence ranges of the separating sequential equilibria,

and basically they are determined by eight effective-arrival-rate functions (i.e., λUt (d) and
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λOt (d) with t ∈ {H,L} and d ∈ {0, 1}). Then, the impact of q on the separating sequential

equilibria can be equivalently converted to its impact on these eight functions. Next, we

investigate its impact under two cases.

Case 1. The fraction of informed customers is large enough (i.e., q ≥ q̂ := 1− µ−θ/VL
µ−θ/VH

).

In this case, a small number of uninformed customers do not affect the resulting effective

arrival rates in concealed queues (see Appendix B.2), and thus λUt (d) (t ∈ {H,L} and

d ∈ {0, 1}) is independent of q, which implies that the impact of q is exerted through

changing the effective arrival rates to revealed queues.

Then, let us first consider the separating sequential equilibrium (C,R). Under (C,R),

the uninformed customers hold a posterior belief δC = 1 when seeing a concealed queue

and δR = 0 when seeing a revealed queue. Then, all customers become negatively

informed faced with a revealed queue, and thus the resulting effective arrival rate λOL (0)

does not change as q varies, which means that a change in q does not affect the low-

quality server’s incentive to stay at R. However, as more customers become informed,

the effective arrival rate to a revealed queue in case of high quality server (i.e., λOH(0))

becomes larger, and this increases the high-quality server’s incentive to deviate from C

to R, making the equilibrium (C,R) less likely to be sustained. Therefore, the range for

which the separating sequential equilibrium (C,R) can be sustained, if exists, becomes

smaller as q increases.

Similarly, we can analyze the separating sequential equilibrium (R,C). The uninformed

customers update the belief as δC = 0 when seeing a concealed queue and δR = 1

when seeing a revealed queue. Then, all customers become positively informed faced

with a revealed queue, and thus the resulting effective arrival rate λOH(1) is irrelevant to

q, implying that changing q does not affect the high-quality server’s incentive to stay

at R. By contrast, as more customers become informed, the effective arrival rate to

a revealed queue in case of low quality server (i.e., λOL (1)) becomes smaller. Hence,

a larger value of q reduces the low-quality server’s incentive of mimicking the high-

quality server’s behavior, making the separating equilibrium (R,C) more likely to be

sustained. Therefore, the range for which the separating sequential equilibrium (R,C)

can be sustained, if exists, becomes larger as q increases.

Case 2. The fraction of informed customers is small enough (i.e., q < q̂).
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In this case, a substantial amount of uninformed customers play a crucial role in the

resulting effective arrival rates to concealed queues, making λUt (d) (t ∈ {H,L} and

d ∈ {0, 1}) dependent on q. This leads to an uncertain relationship between the ex-

istence of the separating sequential equilibria and the fraction of informed customers

q. For example, let us consider the separating sequential equilibrium (C,R). As q

increases, for the high-quality server, the increasing number of positively informed cus-

tomers improves the effective arrival rate to a revealed queue (i.e., λOH(0)), and thus the

high-quality server has a stronger incentive to deviate from C to R, causing a driving

force of narrowing the existence ranges. On the other hand, according to Appendix B.2,

as more customers are negatively informed, the effective arrival rate to the concealed

queue in case of low-quality server becomes weakly smaller (i.e., λUL(1) is nonincreas-

ing in q). This reduces the low-quality server’s incentive of mimicking the high-quality

server’s behavior, leading to a driving force of expanding the existence ranges. Taken

altogether, increasing q changes both high- and low-quality servers’ queue-disclosure in-

centives, and causes a pair of counter driving forces that determine the existence ranges

of (C,R). So, there is no monotonic relationship between q and the existence ranges of

the separating sequential equilibrium (C,R). Similarly, it can be verified that such an

uncertain relationship applies to the separating sequential equilibrium (R,C).

We now use the following numeric example to illustrate the impact of q on the occurrence

of separating sequential equilibria.
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Figure 3.7: Impact of q on the ranges of λ where separating sequential equilibria exist: (a)
VH = 4, VL = 1, µ = 2, θ = 1; (b) VH = 1.01, VL = 0.91, µ = 2, θ = 1
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Example 3.5. We use two different sets of parameter values to illustrate the impact of q

on the existence ranges of (C,R) and (R,C) separately. First, consider the same set of

parameter values used in Example 3.3 except that now we vary the value of q from 0 to 1. In

this case, if q < q̂ := 0.4286, (µ− θ/VL)/(1− q) < µ− θ/VH ; otherwise, (µ− θ/VL)/(1− q) ≥
µ−θ/VH . Figure 3.7(a) depicts the change of the range(s) of the potential arrival rate λ where

the separating sequential equilibrium (C,R) exists as the fraction of informed customers q

increases. From Figure 3.7(a), we can see that for q ∈ [0, q̂), q has a non-monotonic impact on

the occurrence of the separating sequential equilibrium (C,R): when q ≤ 0.2899, the existence

ranges expand as q increases, where the fishtail shape is caused by the bulge shape of λUL(1)

(see Figure 3.3 for illustration); and when 0.2899 < q < q̂, the existence ranges narrow as

q increases. Once q surpasses the threshold q̂, further increasing q surely makes (C,R) less

likely to appear.

Then, consider parameter values used in Example 3.4 except that we vary the value of q

from 0 to 1. Under this scenario, the key threshold of q becomes q̂ := 0.1077. Figure 3.7(b)

shows that the separating sequential equilibrium (R,C) exists only when q > q̂. And as q

increases, the existence range of the separating sequential equilibrium (R,C) monotonically

expands.

3.6.2 The Impact of Service Price

Until now, the service price is normalized to one, and customers’ monetary rewards gained

from service (i.e., VH and VL) are indeed the service value minus the service price. In this

subsection, we investigate the impact of the service price p, which is exogenously given. The

service value of the high-quality (resp. low-quality) server is denoted as VH (resp. VL), and

then a customer receives a monetary reward VH = VH − p (resp. VL = VL− p) if she is served

by the high-quality (resp. low-quality) server. Next, we study the relationship between p and

the existence ranges of the separating sequential equilibria. Note that since we require that

VL >
θ
µ
, the service price should satisfy that 0 ≤ p < VL − θ

µ
.

Similarly to section 3.6.1, the impact of p on the separating sequential equilibria can be

equivalently converted to its impact on eight effective arrival rates (i.e., λUt (d) and λOt (d) with

t ∈ {H,L} and d ∈ {0, 1}). It can be easily verified that these effective arrival rates are all

decreasing in p. Intuitively, the higher the service price p is, the lower the monetary rewards

that customers gain from service become, and thus the less motivated the customers are to

join the queue. There is a difference in the decreasing patterns of eight effective arrival rates:
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the decreasing of λUt (d) (t ∈ {H,L} and d ∈ {0, 1}) happens in a continuous way, while

λOt (d) (t ∈ {H,L} and d ∈ {0, 1}) keeps piecewise constant due to the floor function in n(0)

and n(1) and only decreases (or down jumps) at several threshold values of p at which Vtµ
θ

(t ∈ {H,L}) takes integer values. Then, the impact of p on the equilibrium outcome can be

analyzed in the following two cases.

Case 1. For the ranges of the service price p on which both n(0) and n(1) keep unchanged, λOt (d)

(t ∈ {H,L} and d ∈ {0, 1}) is constant in p, and thus the changes of the existence

ranges of the separating sequential equilibria are induced by the decreasing of λUt (d)

in p (t ∈ {H,L} and d ∈ {0, 1}). Such decreases result in the existence ranges of two

separating sequential equilibria shifting towards smaller λ. Intuitively, for the separating

sequential equilibrium (C,R) (resp. (R,C)), the increasing p attracts fewer and fewer

customers to join the concealed queue. This makes the low-quality (resp. high-quality)

server more likely to reveal the queue at a smaller market size λ. By contrast, the

high-quality (resp. low-quality) server has less incentive to conceal the queue at a larger

market size λ. These two factors together lead to the down shifting of the existence

ranges of the separating sequential equilibrium (C,R) (resp. (R,C)).

Case 2. At those threshold values of p where VHµ
θ

or VLµ
θ

takes integer values, λUt (d) (t ∈ {H,L}
and d ∈ {0, 1}) can be regarded as constant, but λOt (d) (t ∈ {H,L} and d ∈ {0, 1})
jumps down as p increases across these thresholds. This makes each existence range

of separating sequential equilibrium, if still exists at these values of p, shifts towards

larger λ.3.8 The behind mechanism can be intuitively understood following the analysis

in Case 1.

We now use the following numeric example to illustrate the impact of p on the occurrence

of separating sequential equilibria.

Example 3.6. In this example, we use two different sets of parameter values to illustrate the

impact of the service price p on the existence ranges of (C,R) and (R,C) separately. First,

consider VH = 6, VL = 3, µ = 2, θ = 1 and q = 0.5. We vary the value of p from 0

to 2.5−. Figure 3.8(a) shows that the separating sequential equilibrium (C,R) always exists

for all p ∈ [0, 2.5) and how its existence ranges change as the service price p increases. We

3.8The bulge shape of λUL (1) (see Figure 3.3 for illustration) may narrow some subrange of λ where (C,R)
can be sustained as a separating sequential equilibrium. But the direct effect of these threshold values of p
is still to raise up the existence ranges. So, we do not mention the special change caused by the bulge shape
when analyzing the impact of p.
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Figure 3.8: Impact of p on the ranges of λ where separating sequential equilibria exist: (a)
VH = 6, VL = 3, µ = 2, θ = 1, q = 0.5; (b) VH = 5, VL = 4.9, µ = 2, θ = 1, q = 0.9

can see that the changing patterns mentioned in Cases 1 and 2 happen. For example, for

p ∈ (1, 1.5], we have that n(0) = 3 and n(1) = 9, and the shadowed range shifts downwards

as p increases. When p increases a little bit to be larger than 1.5, n(0) and n(1) decrease to

2 and 8, respectively, and the shadowed range jumps up at p = 1.5+.

Then, consider VH = 5, VL = 4.9, µ = 2, θ = 1 and q = 0.9. We vary the value of p from

0 to 4.4. Figure 3.8(b) shows that the separating sequential equilibrium (R,C) only appears

when the service price p falls into several separate intervals, and on each of these continuous

intervals of p, the shadowed existence range shifts downwards as p increases. For example,

for p ∈ (p1, 2] with p1 = 1.9, we have that n(0) = 5 and n(1) = 6, and the shadowed range

shifts downwards as p increases. When p is slightly larger than 2, the separating sequential

equilibrium (R,C) does not hold until p increases to be slightly larger than p2 := 2.4 where

n(0) = 4 and n(1) = 5.

3.7 Conclusions and Suggestions for Future Research

In many service systems, the service quality is unknown to some incoming customers. Un-

informed customers often gather quality information through multiple sources, among which

a simple way is to inspect the queue length. The queue length can convey some quality

information because it contains some information about those informed customers’ behav-

ior. Analysis of customers’ equilibrium queueing strategy in observable queues with unknown

service quality has been well done in Debo et al. (2012). One can further think about the
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following question: why does a server allow his queue to be observable/unobservable? To

examine this question, we study a signaling game for the server with the queue disclosure

action as a signaling device. In our model, customers in an observable queue obtain the ser-

vice quality information not only through inspecting the queue length but also by considering

the server’s incentives on the queue disclosure actions. For this signaling game, we investi-

gate its sequential equilibria and adopt the perfect sequential equilibrium concept as further

refinement of the equilibrium concept whenever needed.

Specifically, we consider two scenarios, a basic one with only uninformed customers and a

general one with both informed and uninformed customers existing in the system. Our major

takeaway is that a separating equilibrium exists only when the market size is moderate and the

system has both informed and uninformed customers. This has multiple implications. One, in

a circumstance where all customers are uninformed, the pooling equilibrium dominates other

equilibria, and thus the queue disclosure action itself conveys no valuable quality information.

Two, considering heterogeneous customers, when the market size is very small, both types of

the server tend to conceal their queues. Hence, customers cannot infer service quality from

their queue concealment behavior. Similarly, if the market size is very large, both types of the

server tend to reveal their queues and hence the quality cannot be inferred there either. Three,

in a circumstance where a separating equilibrium prevails, the queue disclosure action fully

conveys the service quality information to uninformed customers. Consequently, uninformed

customers behave exactly the same as informed ones in determining their queueing strategies.

Furthermore, the effective arrival rate of the high-quality (resp. low-quality) server is weakly

larger (resp. smaller) than that without considering the queue disclosure action as a signal

of service quality, and the total utility of all customers from the low-quality server can be

improved considering such a signaling effect.

In our study, the server uses his queue disclosure action as a signaling device. In reality,

a server can also signal his quality information through other devices such as price; see Debo

et al. (2020) for the study on this. It would be interesting to consider a signaling game in

which the server employs price and queue disclosure action jointly to signal his quality. We

leave it for future research.

73





Chapter 4

Optimal Queue Length Information

Disclosure When Service Quality Is

Uncertain

Let us still follow the setting in Chapter 3 and consider that all customers are uninformed.

From the results in the signaling game, we know that with all customers uninformed, the

server’s queue disclosure strategy signals no quality information, and the customers make the

joining decision still based on the prior belief.

In reality, customers can tolerate a higher level of congestion when facing a higher level

of service quality. By taking this into account, when no other quality signal is available, the

server can tailor-make its queue-disclosure strategy, according to the realized service quality,

to attract more customers to join. Now, consider that before the quality type is realized,

the server owns a commitment power that enables him to design and commit to an ex-ante

queue-disclosure policy that states whether or not the queue length will be revealed to cus-

tomers upon their arrival, given a realized quality level. Then, some quality information

can be inferred from in the server’s queue disclosure action. Can such a commitment strat-

egy persuade more customers to join compared with the traditional revealing-or-concealing

paradigm? We formulate this problem as a Bayesian persuasion model, and use a graphical

geometric approach to solve it following the one in Kamenica and Gentzkow (2011). Such a

geometric approach can be applied to various scenarios such as profit maximizer and social

planner.
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4.1 Introduction

Whether queue length information should be provided to customers, who in turn decide

whether or not to join the queue, is a classic research topic. It is well documented in the

queueing game literature (e.g., Hassin and Haviv, 2003, p. 51) that there exists a threshold

on the arrival rate below which the server conceals the queue length and above which he

reveals it. The underlying reason is that when the potential arrival rate is low, all customers

join a concealed queue due to their positive expected utility, while a disclosed queue always

comes with a chance, albeit small, for blocking away some incoming customers who face a long

queue upon their arrival. By contrast, when the potential arrival rate is sufficiently high, a

concealed queue’s effective arrival rate is fixed to the one that comes with an expected utility

of zero in case of joining, while that of a revealed queue always increases with the potential

arrival rate as some customers, albeit a small fraction, may nevertheless face a short queue

upon their arrival.

The foregoing queue-disclosure strategy is based on a setting with known service quality.

In real practice, service quality provided by service providers may be uncertain. For example,

the food quality of restaurants may be uncertain as it is affected by factors such as the

ingredients’ freshness and the chefs’ skill. The service quality of online consulting, like online

healthcare diagnosis and telephone hotline, heavily relies on the skills and expertise levels of

consultants/agents, which are uncertain to customers particularly when consultants/agents

are taking rotations in their schedules. Our research question is: in such service systems with

uncertain service quality, how shall the server conduct his queue-disclosure strategy?

A simple way is that the server commits to fully revealing or concealing the queue re-

gardless of the realized service quality. Under such a commitment, customers cannot infer

any quality information from the server’s queue-disclosure action and they have to make

their joining-or-balking decisions based on their prior beliefs. Consequently, the server’s ex-

ante commitment problem degenerates to the one without commitment, as illustrated in the

following example.

Example 4.1. (The Decoupling of Queue-Disclosure Strategy from Service Qual-

ity) A server (he) provides some service with uncertain quality level. Nature decides whether

the service quality is high with a value of 2 or low with a value of 1, according to a Bernoulli

trial with probabilities 0.33 and 0.67, respectively. Customers’ service times follow an expo-

nential distribution with rate 1.1. Potential customers (she) arrive according to a Poisson
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process with rate 0.5. The unit time waiting cost is 1. Both the server and the customers hold

the same prior belief regarding the service quality.

When the queue length is always revealed to customers, customers’ belief on the service

quality is the expected one 1.33. Under this scenario, customers join the observable queue if

and only if the queue is empty, and the effective arrival rate can be calculated to be 0.3438.

Similarly, when the queue is always concealed from customers, customers’ belief on the quality

is still the expected one 1.33; the effective arrival rate can be derived by setting the customer

joining utility to be zero (since the potential arrival rate is high enough), which yields an

equilibrium arrival rate of 0.3481. Thus, the optimal strategy for the server is to conceal the

queue length.

In the foregoing example, the queue-disclosure strategy is decoupled from the realized

quality level. As such, customers have to make their queueing decisions based on the ex-

pected service quality. Perhaps, the server can persuade more customers to join the system

by linking the queue-disclosure strategy with the realized service quality. Speaking mathe-

matically, the server can design a queue disclosure strategy characterized by two conditional

queue-disclosure probabilities, π(·|high) and π(·|low), which correspond to the realized service

quality being high or low, respectively. The server then commits to it before the realization

of service quality. Clearly, if the server commits to a strategy with π(concealing|high) = 1

and π(revealing|low) = 1, incoming customers can exactly infer the service quality by the

visibility of the queue and thus do not rely on the quality expectation to make their queueing

decision. In fact, one can show that the above quality-dependent queue-disclosure strategy

can improve the expected effective arrival rate to 0.3953, a 13.56% improvement over the one

when the server always conceals the queue.

As we will show in Section 4.4.1, the optimal disclosure strategy for the server under the

setting given in Example 4.1 shall be

π(revealing|high) = 0, π(revealing|low) = 0.7537;

π(concealing|high) = 1, π(concealing|low) = 0.2463.

That is, when the service quality turns out to be low, instead of fully disclosing the queue

length to the customers (as discussed above), the server randomizes queue length disclosure

and concealment with the probability of revealing being 0.7537. Then, with probability

0.5050 (resp. 0.4950), customers see a revealed (resp. concealed) queue. Thus, the posterior
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probability for the service quality being high becomes 0 (resp. 0.6667), leading to an effective

arrival rate of 0.3438 (resp. 0.5). As a result, the effective arrival rate of a concealed queue

is still 0.5 but the probability of its occurrence increases from 0.33 to 0.4950. The expected

effective arrival rate is now 0.4211, a further 6.53% improvement over the above one under

the full quality revelation strategy. This example provides two important insights for service

providers. One, for a server with uncertain service quality, it is better to link the queue-

disclosure strategy with the realized quality level. Two, a randomization strategy on queue

disclosure may make the server better off as customers cannot fully infer the realized quality.

The above example indicates that the quality-linked queue-disclosure strategy can be

beneficial to the server. However, it requires the server to pre-commit to his queue-disclosure

strategy and, once the quality level is realized, the corresponding queue-disclosure action

has to be performed without manipulations. One way to interpret such pre-commitment

towards the randomized queue-disclosure strategy is to consider a “long-run” server who aims

to maximize his long-run average profit when facing “short-run” customers (see, e.g., Rayo

and Segal, 2010). Customers can then infer the server’s randomization strategy from their

long-term experiences/observations of the server’s queue-disclosure actions. Note that with

the advancement in information technology, it becomes relatively easy for service providers to

change the visibility status of their queue. For example, through turning on or off the display

screens or through controlling the provision of the real-time queue information on online

platforms or mobile apps such as Dianping.com and Yelp.com, the queue length information

can be revealed to or concealed from customers.

In this study, our main target is to illustrate the underlying mechanism why a randomized

quality-linked queue-disclosure strategy can yield a larger effective arrival rate for the server.

We also provide an approach to find such a strategy. The quality-linked queue-disclosure

strategy considered in our study can help service providers to persuade more customers to

join their system. The well-constructed quality-linked queue-disclosure strategy can also help

a social planner to better regulate customer arrivals.

Specifically, we consider a stylized single-server service system. Customers arrive accord-

ing to a Poisson process and service times are exponentially distributed. The server’s service

quality, however, is random and takes the value of either high type (labeled as h) or low

type (labeled as l). The server can observe the realized quality but customers cannot. The

probability for the quality being high is common knowledge and hence is customers’ prior

belief about service quality. Customers are homogeneous: they have the same prior knowl-
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edge, receive the same service reward, and incur the same unit-time delay cost. Before service

quality is realized, the server announces his queue-disclosure strategy, characterized by condi-

tional probabilities of disclosing the queue length given each type of realized service quality,

and commits to it. Once the service quality is realized, the corresponding queue-disclosure

action is performed. Based on the visibility of the queue, customers update their beliefs about

the service quality according to Bayes’ rule and then make their joining-or-balking decisions

accordingly to maximize their utilities.

By Bayes’ rule, the expected posterior probability regarding the server’s service quality

equals its prior. In reverse, if a distribution of posteriors satisfies this property, it is called

Bayes plausible (see Kamenica and Gentzkow, 2011). We show that any Bayes-plausible

distribution of customers’ posteriors corresponds to a unique queue disclosure strategy that

can induce it. Thus, searching for the optimal disclosure strategy is equivalent to searching for

the optimal Bayes-plausible distribution of customers’ posteriors. Such a reformulation of the

problem provides a useful geometric approach to our aim of deriving the optimal disclosure

strategy. First, we can plot the effective arrival rates of the revealed and concealed queues

as two functions of the probability for the service quality being high. Next, we demonstrate

that any convex combination of the two points from these two functions can be generated

through a properly-designed queue-disclosure strategy. We further show that any point on

the upper envelope of all the convex combinations represents the maximal effective arrival

rate under the corresponding prior. As such, we can graphically determine whether the server

can benefit from the randomized queue-disclosure strategy by simply checking whether the

upper envelope is strictly above the two effective arrival rate functions.

After the derivation of the optimal disclosure strategy, we turn to examining the impact of

market size (i.e., the potential total arrival rate) on the optimal disclosure strategy. We show

that when the market size is sufficiently small, the server always conceals the queue length

information no matter whether the realized service quality is high or low; however, when the

market size is very large, the server always reveals the queue. These two results are consistent

with those stated in the literature when the service quality is known (see, e.g., Hassin and

Haviv, 2003, p. 51). However, when the market size is medium, we numerically find that it is

often optimal for the server to adopt a quality-dependent queue-disclosure strategy, which can

help to increase the server’s effective arrival rate. Moreover, such a strategy is often hybrid

or mixed, that is, randomizing queue disclosure and concealment actions.

We then extend our analysis to a setting where the server acts as a social planner and
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aims to maximize the social welfare. We show that we can still apply our geometric approach

to find out the best queue-disclosure strategy for the social planner. In contrast to the classic

literature result that revealing the queue length is always socially optimal (see, e.g., Hassin

and Haviv, 2003; and Hassin and Roet-Green, 2017), we find that when service quality is

uncertain, a randomized queue-disclosure strategy can make the social planner better off.

The rest of this chapter is organized as follows. Section 4.2 reviews the related literature.

The formal model is presented in Section 4.3. We investigate the optimal queue disclosure

strategy in Section 4.4. Section 4.5 examines a situation in which the server is a social planner.

Concluding remarks are provided in Section 4.6. All the proofs are relegated to Appendix C.

4.2 Literature Review

Our work is closely related to the studies on quality disclosure. In economics, Grossman

(1981) investigates product quality disclosure problems through ex post verifiable disclosure

and warranties. Grossman shows that the seller would voluntarily disclose the private infor-

mation in equilibrium if the disclosure is costless and information is verifiable. Milgrom (1981)

characterizes the favorableness of news and introduces the novel persuasion game. Milgrom

shows that, in a sales encounter model, the salesman always reports the most favorable data

about his product. In operations management, there are some studies on customers’ queue-

ing strategy with unknown service quality. Veeraraghavan and Debo (2009, 2011) consider

the quality issue in a two-parallel-observable-queue setting. They show that in equilibrium it

might be optimal for customers to join a longer queue. Debo et al. (2012) examine customers’

queueing strategy when queues are observable and service quality is unknown to certain cus-

tomers. They conclude that uninformed customers adopt a hole-avoiding strategy; i.e., they

do not join when the queue is at certain length (called hole) but otherwise behave in the same

way as the positively-informed customers. In these works, customers are heterogeneous, with

some customers being informed with the quality information, and thus the queue length can

provide some information for the uninformed customers. Different from the above works, in

our model, customers are all uninformed and thus the queue length itself cannot convey the

quality information. It is the server’s disclosure action –concealing or revealing the queue

–that provides some information on service quality.

Our work is related to studies on product and service quality revelation by signaling games,

including Debo and Veeraraghavan (2014), Kremer and Debo (2016), Yu et al. (2016), Wang
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and Özkan-Seely (2018), Debo et al. (2020), Wang and Hu (2020), Guo et al. (2020), etc. The

main difference between a quality-signaling game and our queue-disclosure game is the timing

difference. In a signaling game, the server signals his type after his quality type is realized.

However, in our persuasion game, the server commits to a queue-disclosure strategy before

his quality type is realized. Also, in our game, the server must commit to his pre-determined

queue-disclosure strategy once the quality is realized, but there is no such requirement in a

signaling game.

The solution technique we are using is closely related to the one used in Bayesian per-

suasion games as introduced in Kamenica and Gentzkow (2011). They study how a sender

designs a signaling system and commits to it in order to induce preferred actions from an

information receiver. Kamenica and Gentzkow (2011) demonstrate that the concavification

of the value function identifies whether the sender benefits from persuasion, but the structure

of the optimal signal can be very hard to derive when the state space is large. Gentzkow

and Kamenica (2016) show the optimal signal structure of a particular class of Bayesian-

persuasion games where the receiver’s optimal action depends only on the expectation of the

unknown state and sender’s payoff is independent of the state. Lingenbrink and Iyer (2019)

pioneer in introducing the Bayesian persuasion game into a queueing setting. There, the un-

known state of the world is only the queue length and they prove that the optimal signaling

mechanism is a binary threshold signal that is queue-length-dependent. Different from Lin-

genbrink and Iyer (2019) where service quality is given, we consider uncertain service quality.

Despite this key difference, both Lingenbrink and Iyer (2019) and our work demonstrate that

by pre-committing to a queue-disclosure strategy, the server can persuade more customers to

join.

Our work is also related to studies on information provision and purchase in queues. Hassin

and Haviv (1994) consider a case in which customers arriving at two parallel queues can choose

to buy information on queue length at a price so as to join the shorter queue. Hassin (2007)

examines a scenario where service quality and some other system parameters are known to

the server but not to the customers. The server can choose whether or not to disclose his

private information to customers. Hassin and Roet-Green (2017) study information purchase

in a one-server queue setting. In their study, incoming customers can buy information on the

queue length. Hassin and Roet-Green (2018) consider a setting where customers coming to

parallel servers try to deduce from the queue length of one server whether to join this queue

or to inspect another queue. Those who have inspected other queues play a role of informed
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customers. The fraction of informed customers is not predetermined but rather an artifact

of the strategy used by customers. Yang et al. (2019) further study the consumers’ search

among queues when both the quality and queue length are uncertain.

The study on the impact of delay announcements on queues is also related. Allon et al.

(2011) consider a cheap talk game between the server and the customers, where the server

knows the state of the system and then sends a signal and the customers use the signal to

update their belief on the expected waiting time. The difference between the cheap talk game

and our ex-ante commitment approach is that there the sender is not committed to a signaling

rule. Another key difference is that Allon et al. (2011) do not consider quality issues while

we do. Yu et al. (2018) further study such a cheap talk game in a setting with heterogeneous

customers and show that customers’ response to a delay announcement can be used to elicit

information on customer types. Other related works in this stream include Hassin (1986),

Whitt (1999), Armony and Maglaras (2004a, 2004b), Burnetas and Economou (2007), Guo

and Zipkin (2007), Armony et al. (2009), Guo and Hassin (2011), Yu et al. (2016), Yu et al.

(2017), Hu et al. (2018), and Yu et al. (2021), etc. We refer the interested readers to two

survey books, Hassin and Haviv (2003) and Hassin (2016), and the survey papers by Aksin

et al. (2007) and Ibrahim (2018) for more works in this research stream. Recently, Li et

al. (2020) study the optimal queue disclosure strategy but consider that service quality is

known. They demonstrate that it is socially optimal to disclose the queue length only if the

queue is either very short or very long. Different from them, we consider the server’s optimal

queue-disclosure strategy when service quality is uncertain and our queue disclosure strategy

is service-quality-dependent.

Interestingly, our conclusion on the optimal queue disclosure strategy in different sized

markets is similar to the findings of Hassin and Roet-Green (2017) and Hu et al. (2018).

Their studies and ours all find that to maximize the effective arrival rate, queue concealment

shall be adopted in a small-size market, queue revealing shall be adopted in a large-size market,

and partial queue disclosure is optimal in a moderate-size market. However, the settings and

underlying driving forces are quite different. In Hassin and Roet-Green (2017), the partial

information disclosure is achieved through imposing an inspection cost while in Hu et al.

(2018), it is achieved through informing part of customers. In contrast, in our setting, partial

queue disclosure is scenario-based: based on the realized service quality, incoming customers

are either all informed or all uninformed of the queue length according to the server’s pre-

determined probability. Customer-based information disclosure in Hassin and Roet-Green
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(2017) and Hu et al. (2018) helps the server to extract customers’ surplus in certain conditions.

Scenario-based information disclosure in our work helps the server to manipulate customers’

posterior belief about the uncertain state (quality level) so as to attract arrivals.

4.3 Model Description

Consider a single-server queueing system. Potential customers arrive according to a Poisson

process with rate λ. Their service times follow an exponential distribution with mean 1/µ.

Let ρ := λ/µ. Service quality can be of high value Vh with probability δ0 or of low value Vl

with probability 1 − δ0. All customers (she), in case of joining the queue, receive the same

quality of service and incur a waiting cost of θ per unit time. We require Vh > Vl >
θ
µ

to

ensure that at least one customer joins the system. Customers make their joining-or-balking

decisions to maximize their own utility. Nature decides the value of service quality and the

lottery is done once. All the above information is common knowledge, known to both the

server and customers. Before the realization of service quality, the server decides his queue

length disclosure strategy by selecting two conditional probabilities, fh and fl, that represent

the probabilities that the queue length information is revealed to all incoming customers when

the realized service quality is high and low, respectively. Then, 1 − fh (resp. 1 − fl) is the

corresponding probability of concealing the queue length information from customers when

the realized service quality is high (resp. low). The server then commits to this strategy and

announces it to all customers. The goal of the server is to maximize the expected effective

arrival rate of his service system.

After the service quality is realized, the corresponding queue-disclosure action is con-

ducted, following the pre-announced strategy. Upon observing the server’s queue length

disclosure action, customers update their beliefs about the service quality according to Bayes’

rule. Specifically, when the queue length is revealed, customers assess the service quality

to be high with probability PH|R(fh, fl) = δ0fh
δ0fh+(1−δ0)fl

and to be low with complementary

probability 1 − PH|R(fh, fl). They then decide whether or not to join the queue under the

assumption that the expected service value is VR(fh, fl) = PH|R(fh, fl)Vh+(1−PH|R(fh, fl))Vl.

According to Naor (1969), customers adopt a threshold policy for joining: they join the queue

if and only if the queue length is smaller than some threshold ne(fh, fl) := bVR(fh, fl)µ/θc.
Thus, the queue in equilibrium becomes an M/M/1/ne(fh, fl) system and the corresponding
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effective arrival rate, denoted by λRe (fh, fl), can be calculated as

λRe (fh, fl) = λ

(
1− ρne(fh,fl)∑ne(fh,fl)

j=0 ρj

)
.

In a similar way, define PH|C(fh, fl) and VC(fh, fl) for the case where the server conceals his

queue length. When the queue is concealed, the customers’ equilibrium queueing strategy

can be represented by their joining probability (see Edelson and Hildebrand, 1975), denoted

as pe(fh, fl), which equals 1 if λ < µ − θ/VC(fh, fl) and equals µ−θ/VC(fh,fl)
λ

otherwise. The

effective arrival rates, denoted as λCe (fh, fl), are then λ and µ− θ/VC(fh, fl), respectively.

Given the pre-determined queue-disclosure strategy, the queue is revealed (resp. con-

cealed) with probability δ0fh+(1−δ0)fl (resp. δ0(1−fh)+(1−δ0)(1−fl)), and the posterior

probability of high-quality service is PH|R(fh, fl) (resp. PH|C(fh, fl)). The distribution of

posteriors is Bayes plausible because the expected posterior is equal to the prior, i.e.,

δ0 = [δ0fh + (1− δ0)fl]PH|R(fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]PH|C(fh, fl).

The summary of the sequence of events is as follows. First, the server chooses a queue-

disclosure strategy profile (fh, fl) and commits to it. After that, nature determines the service

quality and the server makes his queue-disclosure decision based on (fh, fl). Upon observing

the server’s disclosure action, customers update their beliefs about the service quality being

high PH|R(fh, fl) (if the queue length is revealed) or PH|C(fh, fl)) (if the queue length is

concealed). Customers then make their corresponding joining-or-balking decisions. See Figure

4.1 for an illustration. Backward induction is adopted to derive the game outcome.

 The server commits to a 
queue-disclosure strategy. 

time 

0 1 2 

Nature decides the quality type, 
and the corresponding queue-

disclosure strategy is conducted. 

Customers arrive, 
update their beliefs, and 

decide to join or balk. 迅
捷
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辑
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Figure 4.1: The sequence of events

First, given the queue-disclosure strategy profile (fh, fl) and the server’s action, we can

derive customers’ queueing strategy (ne(fh, fl), pe(fh, fl)). We then solve the optimization
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problem for the server who aims to maximize his expected effective arrival rate

λe(fh, fl) = [δ0fh + (1− δ0)fl]λ
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]λCe (fh, fl).

Denote the optimal queue-disclosure strategy for the server as (f eh, f
e
l ).

Given the server’s queue-disclosure strategy profile (fh, fl), the total utility of all customers

under a revealed queue can be derived as

uRe (fh, fl) = λ

ne(fh,fl)−1∑
j=0

p
ne(fh,fl)
j

(
VR(fh, fl)−

(j + 1)θ

µ

)
,

where pmj = ρj∑m
k=0 ρ

k (0 ≤ j ≤ m). Similarly, the total utility of all customers under a concealed

queue can be written as

uCe (fh, fl) = λpe(fh, fl)

(
VC(fh, fl)−

θ

µ− λpe(fh, fl)

)
.

Then, the expected total utility across customers can be expressed as

ue(fh, fl) = [δ0fh + (1− δ0)fl]u
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]uCe (fh, fl).

The optimal disclosure strategy may turn out to be a pure strategy, in which the server

commits to fully disclosing or concealing his queue length at both quality levels (i.e., fh and

fl can only be 0 or 1), or a mixed strategy, in which the server randomizes queue revealing

and queue concealing at both quality levels (i.e., fh and fl are both larger than 0 and less

than 1), or a hybrid strategy, in which the server randomizes revealing and concealing at one

quality level and fully reveals/conceals the queue length at the other level (i.e., one of fh

and fl is either 0 or 1 and the other is strictly between 0 and 1). We further call a queue

disclosure strategy quality-independent if the server reveals the queue length with the same

probability at both high and low quality levels and quality-dependent if these two probabilities

are different. Clearly, the quality-independent disclosure strategy conveys no information on

service quality and hence the posterior equals the prior. Only a quality-dependent disclosure

strategy conveys some quality information to customers.
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4.4 Optimal Queue Disclosure Strategy

In this section, we analyze the server’s optimal queue disclosure strategy. First, we reformulate

the server’s decision problem into a nonlinear programming, the optimal solution of which

can be derived in a geometric way through convex combination. After that, we investigate

the impact of market size on system performances.

4.4.1 Geometric Approach

One can directly maximize the server’s expected effective arrival rate by considering the

disclosure probabilities (fh, fl) as decision variables. This approach does not yield closed-

form solutions and thus cannot provide useful insights. Below, we consider the problem from

another angle. We first demonstrate that there exists a one-to-one correspondence between

the server’s queue disclosure strategy and the Bayes-plausible posterior probabilities. We then

transform the server’s optimization problem into a new problem of finding the best Bayes-

plausible posterior distribution. Based on that, we provide a geometric approach for deriving

the optimal disclosure strategy.

In Section 4.3, we have shown that the server’s queue disclosure strategy yields a unique

Bayes-plausible posterior distribution. Conversely, any Bayes-plausible posterior distribution

corresponds to a unique queue disclosure strategy. The details are as follows. Suppose that

customers observe a revealed queue with probability pR and a concealed queue with probability

pC = 1− pR. The posterior belief on the service quality being high conditional on a revealed

queue is pH|R and the effective arrival rate is a function of this posterior belief, denoted by

λRe (pH|R). Similarly, denote the posterior belief on the service quality being high conditional

on a concealed queue by pH|C and the corresponding effective arrival rate as a function of this

belief by λCe (pH|C). We have the following proposition.

Proposition 4.1. Consider a prior δ0 and two posteriors, pH|R with probability pR when the

queue length is revealed and pH|C with probability pC when the queue length is concealed. If

such a distribution of posteriors is Bayes-plausible (i.e., δ0 = pRpH|R + pCpH|C), it can be

induced by a queue disclosure strategy with fh = pRpH|R/δ0 and fl = pR(1− pH|R)/(1− δ0).

Based on Proposition 4.1, we can transform the problem of searching for the optimal

disclosure strategy into a problem of searching for the best Bayes-plausible distribution of

posteriors. Mathematically, we can rewrite the server’s effective arrival rate maximization
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problem as follows:

λe(f
e
h, f

e
l ) = max

pR, pC , pH|R, pH|C
pRλRe (pH|R) + pCλCe (pH|C)

s.t. pR + pC = 1

δ0 = pRpH|R + pCpH|C (4.1)

0 ≤ pR, pC , pH|R, pH|C ≤ 1.

This optimization problem can be solved through a geometric approach, which we now de-

scribe in detail. Let δ represent the parameter of the posterior belief (i.e., the probability

for the service quality being high). The effective arrival rate conditional on a revealed queue

or a concealed queue, is a function of the expected service quality, which is determined by

customers’ posterior belief δ. Therefore, we can express the effective arrival rates as functions

of the posterior belief δ. Now, consider the two effective arrival rate functions λRe (δ) and λCe (δ)

in the domain δ ∈ [0, 1]. Recall that pR + pC = 1. When pR changes from 0 to 1, the value of

pRλRe (pH|R) + pCλCe (pH|C) lies on the line segment connecting the two points (pH|R, λ
R
e (pH|R))

and (pH|C , λ
C
e (pH|C). The crossing point of this line segment with the vertical line δ = δ0

satisfies the Bayes plausibility requirement (4.1). Therefore, to find the optimal solution, we

only need to consider all the segments connecting a point on the function curve of λRe (δ) and

a point on the function curve of λCe (δ). The highest crossing point of all the possible line

segments with the vertical line δ = δ0 represents the maximal effective arrival rate that can

be achieved through the server’s queue disclosure strategy.

To facilitate the derivation of structural properties of this reformulated optimization prob-

lem, we first provide the following lemma on the shapes of the two effective arrival rate

functions.

Lemma 4.1. The two effective arrival rate functions, λRe (δ) and λCe (δ), exhibit the following

properties:

(i) λRe (δ) is a piecewise constant function with some up jumps as δ increases from 0 to 1;

(ii) λCe (δ) is concave and nondecreasing in δ.

The shapes of two effective arrival rate functions can be used to derive the optimal queue

disclosure strategy. For the sake of analysis, we further define the point set

co(λRe (·), λCe (·)) = {α(δ1, λ
R
e (δ1)) + (1− α)(δ2, λ

C
e (δ2))|0 ≤ α, δ1, δ2 ≤ 1},
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which is the convex combination of one point (δ1, λ
R
e (δ1)) on the function λRe (·) and another

point (δ2, λ
C
e (δ2)) on the function λCe (·), where 0 ≤ δ1, δ2 ≤ 1. The significance of constructing

co(λRe (·), λCe (·)) is demonstrated in the following proposition.

Proposition 4.2. Given a prior belief δ0, there exists a queue disclosure strategy (fh, fl)

that results in an expected effective arrival rate λe(fh, fl) if and only if (δ0, λe(fh, fl)) ∈
co(λRe (·), λCe (·)).

Proposition 4.2 ensures that the maximal effective arrival rate needs to be searched only

in the set co(λRe (·), λCe (·)). Define

Λe(δ) := max{Λ|(δ,Λ) ∈ co(λRe (·), λCe (·))}. (4.2)

Then, function Λe(δ), δ ∈ [0, 1], is the upper envelope of the set co(λRe (·), λCe (·)).

Based on Proposition 4.2, we have the following conclusion on the optimal queue disclosure

strategy.

Proposition 4.3. Given the prior δ0, the server’s maximal payoff under the optimal queue

disclosure strategy is Λe(δ0).

Proposition 4.3 indicates that a pre-committed queue-disclosure strategy helps at the

given prior δ0 only if Λe(δ0) > max
{
λRe (δ0), λCe (δ0)

}
. A similar upper envelope is provided

in Kamenica and Gentzkow (2011). However, in Kamenica and Gentzkow (2011), different

signals correspond to the same value function of the sender, and thus the upper envelope is

formed through the concavification of that value function. Differently, in our work, signals are

the queue-disclosure actions– revealing and concealing the queue length. These two signals

correspond to two different value functions. Under the Bayes plausibility condition, the upper

envelope is formed through the convex combination of these two value functions. We now

illustrate the aforementioned geometric approach in the following example.

Example 4.2. (Illustration of the Upper Envelope) Consider the parameter values to

be Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 0.6. The dashed curve in Figure 4.2 represents the

effective arrival rate function λCe (δ) and the dotted piecewise flat line represents the effective

arrival rate function λRe (δ). Clearly, the upper envelope formed by all the segments connecting

two arbitrary points on these two effective arrival rate functions is the solid line connecting the

two points (0, λRe (0)) and (1, λCe (1)). The first point (0, λRe (0)) represents the effective arrival

rate of a revealed queue with a posterior belief pH|R = 0, and the second point (1, λCe (1))
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Figure 4.2: The upper envelope Λe: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 0.6

represents the effective arrival rate of a concealed queue with a posterior belief pH|C = 1.

Given any prior belief δ0, say δ0 = 0.3, we can recover the probability pR by solving the

Bayes plausibility condition pR ∗ 0 + (1 − pR) ∗ 1 = 0.3, which yields pR = 0.7. Then,

according to Proposition 4.1, we can recover the optimal queue disclosure strategy as follows:

fh = pRpH|R/δ0 = 0 and fl = pR(1 − pH|R)/(1 − δ0) = 1. One can easily check that for any

prior belief δ0 ∈ (0, 1), the optimal queue disclosure strategy is to always conceal the queue

length when the realized service quality is high but to always reveal it when the realized service

quality is low, i.e., (f eh, f
e
l ) = (0, 1). That is, the server’s optimal queue-disclosure strategy is

pure and quality-dependent, which fully conveys the quality information to customers.

Example 4.2 shows that a pure queue-disclosure strategy can be the server’s optimal

strategy. Below, we will demonstrate that a hybrid disclosure strategy works best for the

server under the setting given in Example 4.1 (stated in the Introduction).

Example 4.3. (Illustration of Example 4.1 via Geometric Approach) The moti-

vating Example 4.1 is illustrated in Figure 4.3. In this example, the effective arrival rate

function of the concealed queue reaches a flat line at d12 = 0.6667. The upper envelope formed

by all the segments connecting two arbitrary points of the two effective arrival rate functions

is represented by the solid line. Given the prior belief δ0 = 0.33, the maximal effective ar-

rival rate is on the segment connecting the two points (0, λRe (0)) and (d12, λ
C
e (d12)). The first

point (0, λRe (0)) represents the effective arrival rate in a revealed queue with a posterior belief
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Figure 4.3: The upper envelope Λe: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 0.5

pH|R = 0, and the second point (d12, λ
C
e (d12)) represents the effective arrival rate in a concealed

queue with a posterior belief pH|C = 0.6667. Given δ0 = 0.33, we can recover the probability

pR by solving the Bayes plausibility condition pR ∗ 0 + (1− pR) ∗ 0.6667 = 0.33, which yields

pR = 0.5050. Then, according to Proposition 4.1, we can recover the optimal queue disclosure

strategy as follows: fh = pRpH|R/δ0 = 0 and fl = pR(1 − pH|R)/(1 − δ0) = 0.7537. This is

a hybrid strategy and it conveys partial information about service quality to customers. By

checking the graph of the upper envelope, we can see that for any prior belief δ0 ∈ (0, d12),

Λe(δ0) is located above the two effective arrival rate functions and the corresponding hybrid

queue-disclosure strategy is beneficial to the server.

It is worth mentioning that, although the maximal effective arrival rate is unique for a

given prior belief δ0, the corresponding optimal queue-disclosure strategy is not necessarily

unique. A point on the upper envelope may correspond to multiple pairs of posteriors whose

distribution is Bayes-plausible. Let us revisit Example 2 and the upper envelope plotted

in Figure 2. We still keep the parameter values Vh = 2, Vl = 1, µ = 1.1 and θ = 1, but

change the value of λ from 0.6 to 0.7160. In such a setting, the up-jumping point of λRe (δ),

(0.8182, 0.5698), happens to locate on the upper envelope Λe(δ) that is a segment connecting

the two points (0, λRe (0)) and (1, λCe (1)), where λRe (0) = 0.4337 and λCe (1) = 0.6000. When

the prior is δ0 = 0.8182, we can obtain the following two optimal queue-disclosure strategies:

(f eh, f
e
l ) = (0, 1) or (1, 1).
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Based on the above geometric approach, we can further obtain the following lemma.

Lemma 4.2. The optimal queue disclosure strategy is pure and quality-independent in the

following two situations:

(i) (f eh, f
e
l ) = (0, 0) if λCe (δ) ≥ λRe (δ) for all δ ∈ [0, 1].

(ii) (f eh, f
e
l ) = (1, 1) if λRe (δ) is a constant function (i.e., a horizontal line) and λRe (δ) ≥

λCe (δ) for all δ ∈ [0, 1].

The first statement of Lemma 4.2 requires that the effective arrival rate function of a con-

cealed queue is located above that of a revealed queue. By considering its concavity property

(see Lemma 4.1), we can conclude that the upper envelope function coincides with the effec-

tive arrival rate function of a concealed queue. Hence, the optimal queue disclosure strategy

is to always conceal the queue regardless of the realized service quality. The second statement

of Lemma 4.2 provides a sufficient condition for the optimal queue disclosure strategy to be

always revealing, regardless of the realized service quality. Note that this condition not only

requires the effective arrival rate function of a revealed queue to be located above that of a

concealed queue but also requires the former to be a constant function, that is, no jumps

occur for this function in the whole domain δ ∈ [0, 1].

4.4.2 The Impact of Market Size

In this section, we fix the prior belief δ0 and explore the impact of market size (i.e., the

potential arrival rate) λ on the server’s optimal queue disclosure strategy.

When the service quality is certain, the impact of market size on the delay announcement

strategy has been well studied in the literature. According to Hassin (1986) and Chen and

Frank (2004), when the market size λ is below a threshold value, concealing the queue makes

the server better off; otherwise, revealing the queue is preferred. Moreover, when λ is very

small, customers ‘all join’ in the unobservable queue setting while some customers balk in

the observable queue setting. Hence, concealing the queue-length information is the better

option for servers with very small λ. As λ becomes large enough, the effective arrival rate

becomes a constant in unobservable queues because customers’ joining utility is now zero

and no more customers want to join. However, in an observable queue setting, the queue is

stochastically longer as λ increases and hence the effective arrival rate is strictly increasing

in λ: there always exists a chance for the increased amount of customers to observe a short
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queue and join. Therefore, revealing the queue is preferred by the server when λ is very large.

In our work, the aforementioned results and insights can still hold for the sufficiently small

and sufficiently large markets under certain conditions, as implied by Lemma 4.2. We now

formally show that these results also hold for our optimal queue disclosure strategy.

Proposition 4.4. The optimal queue disclosure strategy (f eh, f
e
l ) satisfies the following two

properties:

(i) If the potential arrival rate λ < µ− θ
δVh+(1−δ)Vl

, then the server’s optimal strategy is to

always conceal the queue; that is, (f eh, f
e
l ) = (0, 0).

(ii) There exists a threshold denoted by λ̄e (which is greater than µ− θ
δVh+(1−δ)Vl

) such that if

λ > λ̄e,4.1 the server’s optimal strategy is to always reveal the queue; that is, (f eh, f
e
l ) =

(1, 1).

Indeed, when the market size is very small, all customers join the concealed queue re-

gardless of the value of service quality and thus concealing the queue is the server’s optimal

strategy. Similarly, when the market size is very large, revealing the queue is the optimal

strategy. However, when the market size λ is intermediate, things become tricky and the

optimal disclosure strategy depends on the tradeoff between the value of informing customers

of the queue length and the value of providing partial quality information. We will use the

following numerical example to illustrate.

Example 4.4. (Sensitivity Analysis: The Impact of Market Size λ on the Server’s

Optimal Queue Disclosure Strategy and System Performance) Consider the param-

eter values Vh = 18, Vl = 3, µ = 3, θ = 8 and δ0 = 0.1. There are three key market size

thresholds as shown in Figure 4.4: λA3 = 1.2222, λB3 = 2.0621 and λC3 = 17.2492. There,

the bottom subplot depicts the server’s optimal queue disclosure strategy (f eh, f
e
l ) as a function

of λ, the middle subplot shows the customers’ total utility, while the upper subplot depicts

the maximal effective arrival rate that can be achieved by adopting the pre-committed optimal

queue disclosure strategy (f eh, f
e
l ).

Figure 4.4 shows that when the market size is small (λ < λA3), fully concealing the queue

(i.e., (f eh, f
e
l ) = (0, 0)) is the dominant strategy because in such a situation, all customers join

the concealed queue. When the market size reaches the threshold λA3, balking is possible as

customers’ expected joining utility is now reduced to zero. As the market size further increases

4.1The definition of λ̄e can be found in the proof of Proposition 4.4.
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Figure 4.4: The impact of market size on the optimal queue disclosure strategy, maximal
effective arrival rate and customers’ total utility: Vh = 18, Vl = 3, µ = 3, θ = 8 and δ0 = 0.1

and becomes larger than λA3, the server still conceals the queue when the realized service quality

is high but starts to randomize concealing and revealing when the realized service quality is

low, with the probability of revealing the queue increasing in the market size λ. Performing

such a randomization, on the one hand, can strengthen the customers’ belief on the high

quality when they observe that the queue length is concealed but, on the other hand, provides a

chance for the customers to see a revealed queue, from which they then infer that the service

quality is low. Overall, the increase of the customers’ effective arrival rate in the former

case surpasses the reduction of the customers’ effective arrival rate in the latter case, thereby

benefiting the server. When the market size reaches λC3 and keeps further increasing, it is no

longer beneficial to conceal the queue if the realized service quality is high as now revealing

the queue induces more customers to join. Then, fully revealing the queue is the dominant

strategy; that is, (f eh, f
e
l ) = (1, 1).

Consequently, as shown in the upper subplot of Figure 4.4, in a small-sized market (λ ∈
(0, λA3)), the maximal effective arrival rate coincides with that of a fully concealed queue,

while in a large-sized market (λ ∈ (λC3,+∞)), it coincides with that of a fully revealed queue.

However, for a medium-sized market (λ ∈ (λA3, λC3)), the maximal effective arrival rate is

strictly larger than that of either a fully revealed or fully concealed queue. The difference be-

tween them can be used as a measure of the value of providing the quality-dependent disclosure
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strategy.

Regarding the customers’ total utility, to better understand the impact of the quality-

dependent queue disclosure strategy, we also derive the quality-independent optimal queue

disclosure strategy, denoted by (f̂ eh, f̂
e
l ), and the corresponding customers’ total utility. The

middle subplot of Figure 4.4 shows that compared to a quality-independent queue disclosure

strategy, our quality-dependent queue disclosure strategy can improve customers’ total utility

only when the market size λ falls into a relatively small range (λA3, λB3). However, in a

relatively large market size range λ ∈ (λB3, λC3), customers’ total utility is smaller under our

quality-dependent optimal queue disclosure strategy than that under the quality-independent

optimal queue disclosure strategy. Therefore, although the pre-committed queue disclosure

strategy can be used to attract more customers to join the service system, it does not neces-

sarily benefit them.

Note that in Example 4.4, when the market size falls into the range λ ∈ (λA3, λC3), the

equilibrium is hybrid: the server randomizes concealing and revealing the queue only when

the realized service quality is low. We also conduct other numerical examples and find that it

is also possible that the equilibrium is fully mixed; that is, the server randomizes the queue

disclosure and concealment at both the high- and low-quality states.

4.5 Social Planner

In the previous section, we consider a profit-maximizing server and study his optimal queue

disclosure strategy. In reality, however, servers can be social planners whose aim is to maxi-

mize the overall social welfare (i.e., customers’ total utility in our work). We now extend our

commitment game into this setting. We will show that our geometric approach is robust and

provides some new insights on the optimal queue-disclosure strategy.

The social welfare in our setting is the sum of customers’ utilities, defined as

ue(fh, fl) = [δ0fh + (1− δ0)fl]u
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]uCe (fh, fl),

and the details on uRe (fh, fl) and uCe (fh, fl) are provided in section 4.3. To analyze the

social planner’s optimal queue disclosure strategy, we first investigate the geometry behind

the functions involved, and obtain the following results regarding the shapes of two utility

functions, uRe (·) and uCe (·).
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Lemma 4.3. The two utility functions, uRe (δ) and uCe (δ), exhibit the following properties:

(i) uRe (δ) is a piecewise linear and increasing function, with some down jumps, as δ increases

from 0 to 1;

(ii) if λ ≥ µ − θ
Vh

, uCe (δ) equals 0 for all δ ∈ [0, 1]; if λ ≤ µ − θ
Vl

, uCe (δ) is linear and

increasing in δ for δ ∈ [0, 1]; otherwise, uCe (δ) equals 0 for δ ∈
[
0, θ/(µ−λ)−Vl

Vh−Vl

]
and linear

and increasing in δ for δ ∈
(
θ/(µ−λ)−Vl
Vh−Vl

, 1
]
;

(iii) uRe (δ) > uCe (δ) for all δ ∈ [0, 1].

The third statement of Lemma 4.3 shows that from the viewpoint of welfare maximization,

revealing the queue is always better than concealing it (see also Hassin and Haviv, 2003; and

Hassin and Roet-Green, 2017). This is intuitive as revealing the queue can help customers to

make an informed decision. However, considering the optimal queue disclosure strategy, this

classical result no longer holds. We will show that concealing the queue length with a strictly

positive probability can be socially desired under some situations.

Using the geometric approach, we can construct the convex-combination point set

co(uRe (·), uCe (·)) = {α(δ1, u
R
e (δ1)) + (1− α)(δ2, u

C
e (δ2))|0 ≤ α, δ1, δ2 ≤ 1},

and the upper envelope of it

Ue(δ) := max{U |(δ, U) ∈ co(uRe (·), uCe (·))},

from which the social planner’s optimal queue disclosure strategy (f̃ eh, f̃
e
l ) can be derived.

Example 4.5. (Illustration of the Social Planner’s Optimal Queue Disclosure

Strategy) Consider a setting with Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 10. The

dotted piecewise increasing line in Figure 4.5 represents the utility function uRe (δ), the flat

line represents the utility function uCe (δ), and the upper envelope formed by all the segments

connecting two arbitrary points on these two utility functions is the solid line. Given the

prior belief δ0 = 0.83, the maximal effective arrival rate is on the segment connecting the two

points (δ̂−, uRe (δ̂−)) and (1, uCe (1)), where δ̂ is the down-jumping point of the utility function

uRe (δ), δ̂− = lim
δ→δ̂,δ<δ̂

δ and uRe (δ̂−) is the left-hand limit of uRe (·) at the point δ̂. The first

point (δ̂−, uRe (δ̂−)) represents the effective arrival rate in a revealed queue with a posterior
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belief pH|R = 0.8181, and the second point (1, uCe (1)) represents the effective arrival rate in

a concealed queue with a posterior belief pH|C = 1. Given δ0 = 0.83, we can recover the

probability pR by solving the Bayes plausibility condition pR ∗ 0.8181 + (1 − pR) ∗ 1 = 0.83,

which yields pR = 0.9346. Then, according to Proposition 4.1, we can obtain the optimal

queue disclosure strategy: f̃ eh = pRpH|R/δ0 = 0.9212 and f̃ el = pR(1 − pH|R)/(1 − δ0) =

1.0000. Clearly, this optimal strategy is a hybrid one. Figure 4.5 indicates that under the

prior δ0 = 0.83, the expected total utility under the optimal queue disclosure strategy (i.e.,

Ue(δ0) = 0.8419) achieves a 659% improvement over the one under the ‘always revealing’

strategy (i.e., uRe (δ0) = 0.1109).
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Figure 4.5: The upper envelope Ue: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 10

Let ∆̂ denote the set of values of δ where uRe (δ) jumps down (or specifically, the term

[δVh + (1 − δ)Vl]µ/θ takes integer values). Then, consider any prior δ0 ∈ [δ̂, δ̂ + ε) where

δ̂ ∈ ∆̂, ε is sufficiently small and δ̂ + ε < 1. For the point (δ0, ū) on the segment connecting

two points (δ̂−, uRe (δ̂−)) and (1, uCe (1)), ū is strictly larger than uRe (δ0), which implies that

the optimal queue disclosure strategy must achieve a larger expected utility than the ‘always

revealing’ strategy does. Also, we note that δ̂ is independent of the market size λ. To

summarize, we have the following conclusion.

Proposition 4.5. Given any prior δ0 ∈ [δ̂, δ̂ + ε) where δ̂ ∈ ∆̂, ε is sufficiently small and

δ̂ + ε < 1, the optimal queue disclosure strategy achieves a larger expected customer utility

than the ‘always revealing’ strategy does; that is, Ue(δ0) > uRe (δ0) for all λ ∈ (0,+∞).

96



Proposition 4.5 implies that full disclosure is not necessarily socially desired, and it may

be in the best interest of the social planner to conceal the queue length information with

positive probability. This conclusion echoes the ones in Cui and Veeraraghavan (2016), Hu

et al. (2018) and Li et al. (2020). According to Naor (1969), tolls/taxes can be levied in

queueing systems to control arrivals in order to improve welfare. The lack of information,

according to Cui and Veeraraghavan (2016), acts as an information tax that deters admission,

leading to improved welfare. Similar rationale holds here.

Different from the profit-maximizing case where the server’s optimal queue disclosure

strategy is ‘always concealing’ (resp. ‘always revealing’) when the market size λ is small

(resp. large) enough, the optimal queue disclosure strategy of a social planner can be quality-

dependent over the whole range of λ, as illustrated in the following example.
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Figure 4.6: The impact of market size on the social planner’s optimal queue disclosure strategy
and customers’ total utility: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and δ0 = 0.83

Example 4.6. (Sensitivity Analysis: The Impact of Market Size λ on the Social

Planner’s Optimal Queue Disclosure Strategy and System Performance) Con-

sider the setting in Example 4.5, where the prior belief δ0 is very close to the down-jumping

point δ̂. Figure 4.6 indicates that on the whole range of the market size (λ ∈ (0,+∞)), the

optimal queue disclosure strategy (f̃ eh, f̃
e
l ) achieves a strictly larger expected utility than the

‘always revealing’ strategy (f̃h, f̃l) = (1, 1).
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In the profit-maximizing case, more arrivals are always preferred. But in the welfare

maximization case, it is sometimes socially desired to persuade fewer customers to join as

an overly crowded system can reduce the overall utility for customers. To discourage some

customers from joining, the social planner should convince customers that the service quality

can be low. In Figure 4.6, for 0 < λ < λD(= 0.1000), the optimal queue disclosure strategy

is a pure one with (f̃ eh, f̃
e
l ) = (0, 1), which indirectly provides full information on the quality

type. In this case, as the market size λ is very small, the expected total utility from joining a

concealed queue is strictly positive when the posterior belief pH|C is 1, which is even larger than

the one from joining a revealed queue with prior belief δ0 = 0.83. This provides an incentive

for the social planner to conceal the queue in case of high quality. And to achieve a higher

overall utility, the server should reveal the queue in case of low quality. For λD ≤ λ < +∞,

the utility from a concealed queue becomes relatively small, and the one from a revealed queue

with the prior δ0 = 0.83 is also not that large. In this case, the social planner should randomize

revealing and concealing to reduce customers’ belief about the service quality being high (i.e.,

pH|R). Just like the special case with λ = 10 in Example 4.5, the optimal queue disclosure

strategy is (f̃ eh, f̃
e
l ) = (0.9212, 1.0000). Under such a strategy, the customers’ belief about the

service quality being high after seeing a revealed queue becomes 0.8181(< δ0), which decreases

the maximal queue length from 2 to 1 and achieves a higher expected utility than the ‘always

revealing’ strategy does.

4.6 Conclusions and Suggestions for Future Research

In some service systems, the service quality is generally uncertain. In this work, we examine a

situation in which before the realization of service quality, the server can design for his benefit

a queue-disclosure strategy that links the queue concealment and revelation with the realized

service quality and ex-ante commits to it. We demonstrate that the commitment to such a

disclosure strategy helps the server to attract more customers to join the service system than

otherwise.

We transfer the problem of searching for the optimal queue disclosure strategy to an

equivalent problem of searching for the optimal Bayes-plausible posterior distribution. Based

on the reformulated optimization problem, we then provide a geometric approach to obtain the

optimal strategy. We show that as long as the upper envelope of all the convex combinations

of one point from the effective arrival rate function of a concealed queue and another point
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from that of a revealed queue is located above these two functions, a properly designed queue

disclosure strategy (which might involve randomization) can be utilized to help attracting

more customers to join the service system. We also investigate the impact of the market size

on the server’s optimal queue disclosure strategy. We show that it is always in the server’s

best interest to conceal the queue in a very small-sized market but to reveal it in a very

large-sized market. In a medium-sized market, through the numeric study, we find that it is

often optimal for the server to randomize queue concealment and revelation to either fully or

partially convey the service quality information to customers. We then extend our analysis to

a setting where the server is a welfare-maximizing social planner. We show that the geometric

approach can be easily applied to this situation. We find that it may be beneficial for the

social planner to randomize revealing and concealing the queue over the whole range of the

market size. This result is in sharp contrast to the one stated in the classical literature (see,

e.g., Hassin and Haviv, 2003; and Hassin and Roet-Green, 2017) that it is always socially

optimal to reveal the queue.

Our work demonstrates that the quality-linked queue-disclosure strategy can be used to

persuade more customers to join a queueing system. We further present an intuitive geometric

approach on how to find such an optimal strategy. Admittedly, our model has limitations.

First, we restrict the signal to be a binary one, namely concealing or revealing the queue.

Under this assumption, the effective arrival rates can be easily calculated. It would be an

interesting topic to extend our approach to other types of delay announcements such as

informing customers about the exact waiting time (Guo and Zipkin, 2007) or announcing

the waiting time of the last customer to enter service (Ibrahim et al., 2017). Second, in our

information disclosure scheme, only the quality type is regarded as the uncertain state of the

world. It would be an interesting research to find out the optimal persuasion mechanism

by taking both the quality type and queue length as the joint uncertain states of the world.

Despite such limitations, we hope that our work can serve as a stepping stone for further

studies on the combination of information disclosure and Bayesian persuasion in queueing

systems.
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Appendix A

Supplements and Proofs for Chapter 2

A.1 A General Two-Decision-Variable Problem

In this extension part, we consider a general setting where both M and y are decision variables.

Such an extended model corresponds to some real settings, especially in the catering industry.

For example, in restaurants, the early-bird discount on menu items has been an effective way

to shift customers’ dining time to off-peak hours (see Susskind et al., 2004).A.1 There, the

product becomes the meal on the menu, and the limited seat capacity generally does not affect

the sales of meals because those customers who find no available seats can choose to wait or do

the order take-out. Our two-decision-variable analysis extends the existing Bayesian inventory

management literature in which only one decision variable is considered. We also provide the

upper bounds of the myopic- and Bayesian-optimal inventory levels.

A.1.1 One-period Model

To be consistent with the main content, hereafter we call the inventories reserved for the early

bird discount ‘the discounted product’ and the inventories reserved for the regular-price sales

‘the regular-price product’. The baseline one-period model and all notations are all the same

as those in §2.3 except an extra cost term cM that is proportional to the total inventory level

M with a per-unit cost parameter c > 0. Given the demand parameter θ and the buy-up

substitution probability α, the inventory manager determines the optimal two-dimensional

A.1Take Cafe De Coral, a representative restaurant in Hong Kong, as an example. It provides an early-bird-
discount price on hot-pot meals to those customers arriving during one hour before the regular dinner time from
Monday to Friday (except public holidays); for more details, see https://www.jetsoclub.com/2019/09/cafe-
de-coral-hot-pot-early-bird-offer-0930.html.
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inventory levels (y,M)A.2 to maximize the total expected profit π(y,M |θ, α) over the two

selling phases as follows:

max
y,M

π(y,M |θ, α) = p1E[D1 ∧ y|θ] + p2E[(K +D2) ∧ (M − y ∧D1)|θ, α]− cM (A.1)

s.t. 0 < y ≤M,

We get the following important supermodularity properties (Topkis, 2011) that will be

used in the analysis of Bayesian inventory management and upper bounds.

Proposition A.1. The profit function π(y,M) is supermodular in (y,M); that is, π(y +

1,M + 1|θ, α) + π(y,M |θ, α) ≥ π(y + 1,M |θ, α) + π(y,M + 1|θ, α). It is also supermodular

in y and p1, i.e., ∂[π(y + 1,M |θ, α)− π(y,M |θ, α)]
/
∂p1 ≥ 0.

Proposition A.1 indicates that the optimal value of the inventory level of the discounted

product y is increasing in both the total number of the product M and the early-bird-discount

price p1, and the optimal value of the total inventory level M is increasing in the inventory

level of the discounted product y.

A.1.2 Multi-period Bayesian Inventory Management

The multi-period setting is quite similar to the one stated in §2.4 except that we now have

two decision variables y and M . The likelihood functions under the OS and OT scenarios

have nothing to do with M . Hence, the relationships between the Bayesian optimal inventory

level of the discounted product and the corresponding myopic one remain intact under these

two scenarios, and the comparison over the total inventory level is determined only by the

supermodularity between y and M as stated in Proposition A.1. In summary, we can directly

obtain the following results.

Corollary A.1. For any period i (i = 1, · · · , N), when the buy-up substitution probability α

is known, given the same prior distribution φ′i(θ),

(a) the Bayesian optimal inventory levels under the OS scenario are equal to the corre-

sponding myopic ones; that is, yOSi = ymi and MOS
i = Mm

i ; and

A.2To keep consistency, in all the following one-period and multi-period analysis, when there exist multiple
optimal inventory-level pairs, we first pick out those optima with the smallest total inventory level M , from
which we then choose the one with the smallest inventory level of the discounted product y as the final optimal
solution.
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(b) the Bayesian optimal inventory levels under the OT scenario are no less than the cor-

responding myopic ones; that is, yOTi ≥ ymi and MOT
i ≥Mm

i .

When both the demand parameter θ and the buy-up substitution probability α are unknown,

given the same prior φi(θ, α), the Bayesian optimal inventory levels under the OS scenario

are no larger than the corresponding myopic ones; that is, yOSi ≤ ymi and MOS
i ≤Mm

i .

Next, we turn to the US and UT scenarios, and mainly investigate whether the unob-

servable lost sale only yields the “stock more” result when α is known. Following the similar

analysis stated in the proof of Lemma 2.1, we can obtain the following results.

Lemma A.1. When the buy-up substitution probability α is known, under the scen scenario

(scen ∈ {US,UT }), for any period i (i = 1, · · · , N − 1) with 0 < y ≤ M , given the prior

distribution φi(θ), we have

Eφi(θ)

 ∑
ξ∈Iy+1,M+1

scen

vsceni+1 (φ′i+1)f y+1,M+1
scen (ξ|θ, α)

 ≥ Eφi(θ)

 ∑
ξ∈Iy,Mscen

vsceni+1 (φ′i+1)f y,Mscen(ξ|θ, α)

 ,

and

Eφi(θ)

 ∑
ξ∈Iy,M+1

scen

vsceni+1 (φ′i+1)f y,M+1
scen (ξ|θ, α)

 ≥ Eφi(θ)

 ∑
ξ∈Iy,Mscen

vsceni+1 (φ′i+1)f y,Mscen(ξ|θ, α)

 .

Lemma A.1 implies that increasing the inventory level of either the discounted or regular-

price product can increase the total discounted expected profit for the following periods, which

seems to verify that the “stock more” result applies here. Is this conjecture true? The answer

is no. To illustrate this, let us consider the following example under the UT scenario.

Example A.1. Consider a two-period Bayesian inventory management problem under the

UT scenario. The related parameter values are set as follows: the discounted price p1 = 100,

the regular price p2 = 110, the per-unit cost c = 97, the buy-up substitution probability α = 0.5

and the discount factor δ = 1. The demand parameter θ can only be 1 or 2. When θ = 1, the

primary demand for the discounted product is D1 = 4 and that for the regular-price product

is D2 = 2; when θ = 2, D1 = 4 and D2 = 4. At the beginning of the first selling period,

if the inventory manager holds a prior belief that Pr(θ = 1) = 0.3 and Pr(θ = 2) = 0.7,

the optimal inventory levels for this period satisfy that (yUT1 = 1) < (ym1 = 4) and (MUT
1 =
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5) < (Mm
1 = 6); if the prior belief is that Pr(θ = 1) = 0.2 and Pr(θ = 2) = 0.8, we have

(yUT1 = 4) > (ym1 = 1) and (MUT
1 = 7) > (Mm

1 = 5).

As the UT scenario contains the stronger “stock more” driving forces compared with

the US scenario, Example A.1 implies that the unobservable lost sale cannot guarantee the

occurrence of “stock more”, which is again in sharp contrast to the existing “stock more”

finding (Lariviere and Porteus, 1999; Ding et al., 2002; and Chen and Plambeck, 2008).

Intuitively, the marginal benefit gained from increasing one unit of inventory differs between

the discounted and regular-price products due to factors such as the prices and the degree

of demand uncertainty. When the marginal benefit gained from increasing one type of the

product dominates that of the other type, the Bayesian inventory manager has the incentive

to hold more its inventory. However, doing that might increase the overstocking risk. One

way to mitigate such risk is to reduce the inventory level of the other type. Furthermore, we

can show in the following proposition that under the scen scenario (scen ∈ {US,UT }), once

the inventory level of one type of the product is reduced, the inventory level of the other one

must be increased.

Proposition A.2. Under the scen scenario (scen ∈ {US,UT }), for any period i (i =

1, · · · , N), we have

(a) if the Bayesian optimal inventory level of the discounted product is lower than its myopic

one (ysceni < ymi ), then the Bayesian optimal inventory level of the regular-price product

shall be higher than its myopic one, i.e, M scen
i − ysceni > Mm

i − ymi ;

(b) if the Bayesian optimal inventory level of the regular-price product is lower than its

myopic one (M scen
i − ysceni < Mm

i − ymi ), then the Bayesian optimal inventory level of

the discounted product shall be higher than its myopic one, i.e, ysceni > ymi .

Under the US and UT scenarios, stocking more to gain more information about demands

is still a trend. It may be necessary for us to enhance the inventory levels of both discounted

and regular-price products, and it is also possible to lower the inventory level of one type of

the product to mitigate the overstocking risk. However, it is never true that we lower the

inventory levels of both types of products simultaneously. Proposition A.2 tells us that the

aim of such inventory level reduction is to allocate more inventory for the other type as the

marginal benefit of increasing that type’s inventory level is larger.
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A.1.3 Upper Bounds on Optimal Inventory Levels

We now derive the upper bounds for the optimal total inventory level y and the inventory

level of the discounted product M . First, let us consider the one-period setting. To obtain the

globally optimal values of y and M , one can numerically conduct the one-dimensional search

through the variable space such as M . Given each M , one can then compute the optimal

y∗(M) based on equation (2.2) stated in §2.3. Note that one can notably reduce the search

range and shorten the computational time with the knowledge about the upper bounds of the

optimal y and M . Using the supermodularity properties in Proposition A.1, we can obtain an

upper bound for the two optimal inventory levels by solving the optimization problem with

p1 = p2. When the early-bird-discount price p1 is increased to p2, there is no discount. Hence,

the inventory decision problem is reduced to be a newsvendor problem. We then only need

to consider the total demand for the regular-price product, which can be written as (D1 ∧
M +KM +D2), where KM follows a binomial distribution with parameters ((D1 −M)+, α).

Next, we consider a stochastically larger demand D1 + D2 to replace (D1 ∧M + KM + D2),

with which we can derive an upper bound for the optimal inventory levels.

Similarly, using the above enlarging technique, we can develop the upper bounds for the

Bayesian optimal inventory levels in a multi-period setting. As the first step, we derive an

enlarged concave objective function by increasing p1 to p2. Then, we have the regular-price

product only. Again, we can simply consider a stochastically larger demand D1+D2 as the de-

mand for the regular-price product. Here, we use a superscript p2 to represent this case. Then,

the objective function becomes πp2(M,M |θ), which relies only on the demand parameter θ

and is a concave function of M . In Bayesian inventory management, the inventory decision

for the current period will affect all the following periods. To simplify the upper bound anal-

ysis, we need to toss out such delayed effect. Let πp2,sup := supθ∈Θ {maxM>0 π
p2(M,M |θ)},

denoting a constant upper bound on πp2(M,M |θ). Then, based on the results in the one-

period model, we can show that for any information scenario scen ∈ {OS,OT ,US,UT }, its

objective function satisfies

Gscen
i (y,M, φi) ≤ Gp2,sup

i (M,φ′i) := Eφ′i(θ){π
p2(M,M |θ)}+

N−i∑
n=1

δn · πp2,sup, i = 1, · · · , N,

where φ′i(θ) =
∫ 1

0
φi(θ, α)dα, which is the marginal prior distribution of θ for period i. In this

way, we enlarge the objective functions under all the information scenarios into a newsvendor-
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type objective function Gp2,sup
i (M,φ′i), which is concave in the inventory stocking decision M .

Denote the optimal solution of maxM>0G
p2,sup
i (M,φ′i) as Mp2,sup

i (φ′i). Then, we can derive

the upper bound by following a similar procedure stated in the proof of Proposition 3 of Chen

(2010). For i = 1, · · · , N , let

Mi(φ
′
i) = min

{
M ∈ N+ : M ≥Mp2,sup

i (φ′i), G
p2,sup
i (M,φ′i) ≤

N−i∑
n=0

δn · max
0<y≤M

π(y,M, φi)

}
.

(A.2)

Then, as Gp2,sup
i (M,φ′i) is concave, Gp2,sup

i (M,φ′i) ≤
∑N−i

n=0 δ
n ·max0<y≤M π(y,M, φi) for any

M ≥ Mi(φ
′
i). It can be easily verified that the comparison results stated in Proposition 2.7

still hold in this two-decision-variable problem. And thus, we can get that for any 0 < y ≤M

(M ≥Mi(φ
′
i)),

Gscen
i (y,M, φi) ≤ Gp2,sup

i (M,φ′i) ≤
N−i∑
n=0

δn · max
0<y≤M

π(y,M, φi) ≤ vsceni (φi).

This implies that Mi(φ
′
i) must be an upper bound on the Bayesian optimal inventory levels

in period i (i = 1, · · · , N) under all the information scenarios, which is formally stated in the

following proposition and can be easily computed.

Proposition A.3. For period i (i = 1, · · · , N), given the prior distribution φi(θ, α), the

Bayesian optimal inventory levels ysceni and M scen
i (scen ∈ {OS,OT ,US,UT }) are bounded

above by Mi(φ
′
i) stated in (A.2).

A.2 Proofs for Chapter 2 and Appendix A.1

Proof of Proposition 2.1. With some derivation effort, we can get that

π(y + 1|θ, α)− π(y|θ, α)

= (p1 − p2)
+∞∑
i=y+1

f1(i|θ)

+ (1− α)p2

+∞∑
i=y+1

{
M−y−1∑
j=0

(
i− y − 1

j

)
αj(1− α)i−y−j−1

[
M−y−j−1∑

k=0

f12(i, k|θ)

]}
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= (p1 − p2)
+∞∑
i=y+1

f1(i|θ) + (1− α)p2

+∞∑
i=y+1

f1(i)Pr(K +D2 ≤M − y − 1|D1 = i, θ, α),

where Pr(·) denotes probability. Consider two substitution probabilities α1 and α2 (α1 < α2),

and the corresponding variables of K are K1 and K2, respectively. It is obvious that the

variable K2 +D2 is stochastically larger than K1 +D2. And thus, we get that

Pr(K1 +D2 ≤M − y − 1|D1 = i, θ, α1) ≥ Pr(K2 +D2 ≤M − y − 1|D1 = i, θ, α2).

Then, it is easy to verify that ∂[π(y+1|θ,α)−π(y|θ,α)]
∂α

< 0, based on which the result in Proposition

2.1 can be got.

Lemma A.2. For any given θ ∈ Θ, α ∈ [0, 1], and 0 < y < M , the likelihood functions

f yOT (x1, x2|θ, α) and f y+1
OT (x1, x2|θ, α) satisfy the following relationship:

f yOT (x1, x2|θ, α) =


f y+1
OT (x1, x2|θ, α), if x1 ≤ y;

(1− α)f y+1
OT (x1, x2|θ, α), if x1 > y and x2 = 0;

(1− α)f y+1
OT (x1, x2|θ, α) + αf y+1

OT (x1, x2 − 1|θ, α), if x1 > y and x2 > 0.

Proof of Lemma A.2. Here, we only investigate the case where x1 > y and x2 > 0, since

the results under other cases can be easily obtained. When x1 > y and x2 > 0, we can show

that

f yOT (x1, x2|θ, α) =

(x1−y)∧x2∑
i=0

(
x1 − y
i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ)

=

(x1−y)∧x2∑
i=0

(
x1 − y − 1

i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ)

+

(x1−y)∧x2∑
i=0

(
x1 − y − 1

i− 1

)
αi(1− α)x1−y−if12(x1, x2 − i|θ)

=

(x1−y−1)∧x2∑
i=0

(
x1 − y − 1

i

)
αi(1− α)x1−y−if12(x1, x2 − i|θ)

+

(x1−y−1)∧(x2−1)∑
i=0

(
x1 − y − 1

i

)
αi+1(1− α)x1−y−i−1f12(x1, x2 − i− 1|θ)
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=(1− α)

(x1−y−1)∧x2∑
i=0

(
x1 − y − 1

i

)
αi(1− α)x1−y−i−1f12(x1, x2 − i|θ)

+ α

(x1−y−1)∧(x2−1)∑
i=0

(
x1 − y − 1

i

)
αi(1− α)x1−y−i−1f12(x1, x2 − i− 1|θ)

=(1− α)f y+1
OT (x1, x2|θ, α) + αf y+1

OT (x1, x2 − 1|θ, α).

Proof of Lemma 2.1. We prove the proposition for the case α > 0. We can easily get the

result for the case α = 0 by following the same steps. Since α is known, we write f yOT (x1, x2|θ)
as shorthand for f yOT (x1, x2|θ, α). By utilizing Lemma A.2, we first show that the followings

hold: for i = 1, · · · , N − 1, 0 < y < M , and any φi(θ),

Eφ′i(θ)
{
vOTi+1(φ′i+1)f yOT (x1, x2|θ)

}

≤



Eφ′i(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}
, if x1 ≤ y;

(1− α)Eφ′i(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}
, if x1 > y and x2 = 0;

(1− α)Eφ′i(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}

+ αEφ′i(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2 − 1|θ)
}
,

if x1 > y and x2 > 0.

For above inequalities, below we prove the one under the case that x1 > y and x2 > 0 for

illustration purpose only. Similarly, we can easily show that other ones also hold.

According to the backward induction, when i = N − 1,

EφN−1(θ)

{
vOTN (φ′N)f yOT (x1, x2|θ)

}
=

∫
Θ

max
0<y′≤M

{∫
Θ

π(y′|θ′)φ′N(θ′|x1, x2, y, φN−1)dθ′
}
f yOT (x1, x2|θ)φN−1(θ)dθ

= max
0<y′≤M

{∫
Θ

π(y′|θ′) f yOT (x1, x2|θ′)φN−1(θ′)∫
Θ
f yOT (x1, x2|θ)φN−1(θ)dθ

dθ′
}
·
∫

Θ

f yOT (x1, x21, x22|θ)φN−1(θ)dθ

= max
0<y′≤M

∫
Θ

π(y′|θ)f yOT (x1, x2|θ)φN−1(θ)dθ

= max
0<y′≤M

∫
Θ

π(y′|θ)
[
(1− α)f y+1

OT (x1, x2|θ) + αf y+1
OT (x1, x2 − 1|θ)

]
φN−1(θ)dθ

≤(1− α) max
0<y′≤M

∫
Θ

π(y′|θ)f y+1
OT (x1, x2|θ)φN−1(θ)dθ

+ α max
0<y′≤M

∫
Θ

π(y′|θ)f y+1
OT (x1, x2 − 1|θ)φN−1(θ)dθ
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=(1− α)EφN−1(θ)

{
vOTN (φ′N)f y+1

OT (x1, x2|θ)
}

+ αEφN−1(θ)

{
vOTN (φ′N)f y+1

OT (x1, x2 − 1|θ)
}
.

Assume the result holds for period i+1 (i = 1, · · · , N−2). Next, we check that for period

i as follows.

Eφi(θ)
{
vOTi+1(φ′i+1)f yOT (x1, x2|θ)

}
= max

0<y′≤M

{∫
Θ

π(y′|θ)f yOT (x1, x2|θ)φi(θ)dθ

+ δ
∑
x′1

∑
x′2

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2, y|φi))f yOT (x′1, x
′
2|θ)f

y
OT (x1, x2|θ)φi(θ)dθ

}

= max
0<y′≤M

{∫
Θ

π(y′|θ)f yOT (x1, x2|θ)φi(θ)dθ

+ δ
∑
x′1

∑
x′2

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2, y|φi))f yOT (x1, x2|θ)f yOT (x′1, x
′
2|θ)φi(θ)dθ

}

= max
0<y′≤M

{∫
Θ

π(y′|θ)f yOT (x1, x2|θ)φi(θ)dθ

+ δ
∑
x′1

∑
x′2

Eφ′i+1(θ|x1,x2,y,φi)

[
vOTi+2(φ′i+2(θ′|x1, x2, y, φ

′
i+1))f yOT (x1, x2|θ)

]
·
∫

Θ

f yOT (x′1, x
′
2|θ)φi(θ)dθ

}
≤ max

0<y′≤M

{∫
Θ

π(y′|θ)f yOT (x1, x2|θ)φi(θ)dθ

+ δ
∑
x′1

∑
x′2

Eφ′i+1(θ|x1,x2,y,φi)

[
(1− α)vOTi+2(φ′i+2(θ′|x1, x2, y + 1, φ′i+1))f y+1

OT (x1, x2|θ)

+ αvOTi+2(φ′i+2(θ′|x1, x2 − 1, y + 1, φ′i+1))f y+1
OT (x1, x2 − 1|θ)

] ∫
Θ

f yOT (x′1, x
′
2|θ)φi(θ)dθ

}
= max

0<y′≤M

{∫
Θ

π(y′|θ)
[
(1− α)f y+1

OT (x1, x2|θ) + αf y+1
OT (x1, x2 − 1|θ)

]
φi(θ)dθ

+ δ
∑
x′1

∑
x′2

(1− α)

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2, y + 1|φi))

· f yOT (x′1, x
′
2|θ)f

y+1
OT (x1, x2|θ)φi(θ)dθ

+ δ
∑
x′1

∑
x′2

α

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2 − 1, y + 1|φi))

· f yOT (x′1, x
′
2|θ)f

y+1
OT (x1, x2 − 1|θ)φi(θ)dθ

}
≤(1− α) max

0<y′≤M

{∫
Θ

π(y′|θ)f y+1
OT (x1, x2|θ)φi(θ)dθ
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+ δ
∑
x′1

∑
x′2

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2, y + 1|φi))f yOT (x′1, x
′
2|θ)f

y+1
OT (x1, x2|θ)φi(θ)dθ

}

+ α max
0<y′≤M

{∫
Θ

π(y′|θ)f y+1
OT (x1, x2 − 1|θ)dθ

+ δ
∑
x′1

∑
x′2

∫
Θ

vOTi+2(φ′i+2(θ′|x1, x2, y|x1, x2 − 1, y + 1|φi))

· f yOT (x′1, x
′
2|θ)f

y+1
OT (x1, x2 − 1|θ)φi(θ)dθ

}
=(1− α)Eφi(θ)

{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}

+ αEφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2 − 1|θ)
}
.

Now, we can show that

Eφi(θ)

{∑
x1

∑
x2

vOTi+1(φ′i+1)f yOT (x1, x2|θ)

}

=

y∑
x1=0

+∞∑
x22=0

Eφi(θ)
{
vOTi+1(φ′i+1)f yOT (x1, x2|θ)

}
+

+∞∑
x1=y+1

Eφi(θ)
{
vOTi+1(φ′i+1)f yOT (x1, 0|θ)

}
+

+∞∑
x1=y+1

+∞∑
x2=1

Eφi(θ)
{
vOTi+1(φ′i+1)f yOT (x1, x2|θ)

}
≤(1− α)

+∞∑
x1=y+1

+∞∑
x2=1

Eφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}

+ α
+∞∑

x1=y+1

+∞∑
x2=1

Eφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2 − 1|θ)
}

+

y∑
x1=0

+∞∑
x22=0

Eφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}

+ (1− α)
+∞∑

x1=y+1

Eφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, 0|θ)
}

=
+∞∑
x1=0

+∞∑
x2=0

Eφi(θ)
{
vOTi+1(φ′i+1)f y+1

OT (x1, x2|θ)
}

=Eφi(θ)

{∑
x1

∑
x2

vOTi+1(φ′i+1)f y+1
OT (x1, x2|θ)

}
.

Proof of Proposition 2.4. Under the ŨS scenario, we first assume that the demand pa-

rameter θ2 is known. Then, we can write f y
ŨS

(s1, s22|θ1) as shorthand for f y
ŨS

(s1, s22|θ1, θ2, α).

We first show that the followings hold: for i = 1, · · · , N − 1, 0 < y < M , and any φi,1(θ),
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(a) when s1 < y and s22 < M − s1,

Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f y

ŨS
(s1, s22|θ1)

}
= f2(s22|θ2) · Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(s1|θ1)

}
;

(b) when s1 < y and s22 = M − s1,

Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f y

ŨS
(s1,M − s1|θ1)

}
=

[
+∞∑

j=M−s1

f2(j|θ2)

]
·Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(s1|θ1)

}
;

(c) when s1 = y and s22 < M − y,

Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f y

ŨS
(y, s22|θ1)

}
= f2(s22|θ2) · Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y

f1(i|θ1)

}

≤f2(s22|θ2)Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(y|θ1)

}
+ f2(s22|θ2)Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}
;

(d) when s1 = y and s22 = M − y,

Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f y

ŨS
(y,M − y|θ1)

}
=

[
+∞∑

j=M−y

f2(j|θ2)

]
· Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y

f1(i|θ1)

}

≤

[
+∞∑

j=M−y

f2(j|θ2)

]
Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(y|θ1)

}
+

[
+∞∑

j=M−y

f2(j|θ2)

]
Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}
.

The above four relationships can be proved following the procedure in Lemma 2.1 through

splitting off the likelihood function f y
ŨS

(s1, s22|θ1). Here, we omit the details. Then, with

some derivation effort, we can get that

Eφi,1(θ1)

{∑
s1

∑
s22

vŨSi+1(φ′i+1,1)f y
ŨS

(s1, s22|θ1)

}

≤

[
+∞∑

j=M−y

f2(j|θ2)

]
Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(y|θ1)

}
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+

[
+∞∑

j=M−y

f2(j|θ2)

]
Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}

+

M−y−1∑
s22=0

f2(s22|θ2)Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(y|θ1)

}
+

M−y−1∑
s22=0

f2(s22|θ2)Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}

+

y−1∑
s1=0

M−s1−1∑
s22=0

f2(s22|θ2)Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(s1|θ1)

}
+

y−1∑
s1=0

[
+∞∑

j=M−s1

f2(j|θ2)

]
Eφ′i,1(θ1)

{
vŨSi+1(φ′i+1,1)f1(s1|θ1)

}
=Eφi,1(θ1)

{∑
s1

∑
s22

vŨSi+1(φ′i+1,1)f y+1

ŨS
(s1, s22|θ1)

}
,

which implies that yŨSi ≥ ymi .

Following the same procedure, we can prove that under the ŨS scenario, when the demand

parameter θ1 is known, for any period i (i = 1, · · · , N), and given the same prior distribu-

tion φ′i,2(θ2), learning the demand parameter θ2 requires yŨSi ≤ ymi . In this case, we write

f y
ŨS

(s1, s22|θ2) as shorthand for f y
ŨS

(s1, s22|θ1, θ2, α). Now, the following four relationships are

needed: for i = 1, · · · , N − 1, 1 < y ≤M , and any φi,2(θ),

(a’) when s1 < y and s22 < M − s1,

Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f y

ŨS
(s1, s22|θ2)

}
= f1(s1|θ1) · Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f2(s22|θ2)

}
;

(b’) when s1 < y and s22 = M − s1,

Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f y

ŨS
(s1,M − s1|θ2)

}
= f1(s1|θ1) · Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)

+∞∑
j=M−s1

f2(j|θ2)

}
;

(c’) when s1 = y and s22 < M − y,

Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f y

ŨS
(y, s22|θ2)

}
=

[
+∞∑
i=y

f1(i|θ1)

]
· Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f2(s22|θ2)

}
;
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(d’) when s1 = y and s22 = M − y,

Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f y

ŨS
(y,M − y|θ2)

}
=

[
+∞∑
i=y

f1(i|θ1)

]
· Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)

+∞∑
j=M−y

f2(j|θ2)

}

≤

[
+∞∑
i=y

f1(i|θ1)

]
· Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)f2(M − y|θ2)

}
+

[
+∞∑
i=y

f1(i|θ1)

]
· Eφ′i,2(θ2)

{
vŨSi+1(φ′i+1,2)

+∞∑
j=M−y+1

f2(j|θ2)

}
.

Proof of Proposition 2.5. Under the setting of Proposition 2.5, since D2 is always 0 and

α is known, we can write f yUS(s1, s21|θ1) as shorthand for f yUS(s1, s21, s22|θ, α). As M = 2, the

value of y can only be 1 or 2. We can get the following relationship between two likelihood

functions f 1
US(s1, s21|θ1) and f 2

US(s1, s21|θ1) based on the assumption that f1(1|θ1) = 0 for all

θ1 ∈ Θ1:

f 2
US(s1, s21|θ1)

=


f1(0|θ1), if s1 = 0 and s21 = 0,
+∞∑
i=2

f1(i|θ1), if s1 = 2 and s21 = 0,

=


f1(0|θ1), if s1 = 0 and s21 = 0,
+∞∑
i=2

f1(i|θ1)(1− α)i−1 +
+∞∑
i=2

i−1∑
k=1

f1(i|θ1)
(
i−1
k

)
αk(1− α)i−k−1, if s1 = 2 and s21 = 0,

=

f
1
US(0, 0|θ1), if s1 = 0 and s21 = 0,

f 1
US(1, 0|θ1) + f 1

US(1, 1|θ1), if s1 = 2 and s21 = 0,

Following the same logic in Lemma 2.1 and Proposition 2.3, we can get the “stock less”

result.

Proof of Inequality (2.7). For i = 1, · · · , N − 1, we have that

GOSi (y + 1, φi)−GOSi (y, φi)

=Eφi(θ,α)

{
π(y + 1|θ, α)− π(y|θ, α)
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+ δ

+∞∑
x1=y+1

+∞∑
x22=0

[ x1−y−1∑
x21=0

vOSi+1(φi+1)

(
x1 − y − 1

x21

)
αx21(1− α)x1−y−1−x21

−
x1−y∑
x21=0

vOSi+1(φi+1)

(
x1 − y
x21

)
αx21(1− α)x1−y−x21

]
f12(x1, x22|θ)

}
.

Similarly to the proof of Proposition 4 in Chen and Plambeck (2008), we can get that for

any i = 1, · · · , N − 1 and prior φi(θ, α),

Eφi(θ,α)

{ +∞∑
x1=y+1

+∞∑
x22=0

x1−y−1∑
x21=0

vOSi+1(φi+1)

(
x1 − y − 1

x21

)
αx21(1− α)x1−y−1−x21f12(x1, x22|θ)

}

≤Eφi(θ,α)

{ +∞∑
x1=y+1

+∞∑
x22=0

x1−y∑
x21=0

vOSi+1(φi+1)

(
x1 − y
x21

)
αx21(1− α)x1−y−x21f12(x1, x22|θ)

}
.

Thus, the inequality (2.7) holds.

Proof of Proposition 2.7. We can see that (a) implies (b) by taking the maximum over

the inequalities in (a). So, we only need to prove (a) here. Moreover, below we focus on

proving
N−i∑
n=0

δn · π(y, φi) ≤ GUTi (y, φi) ≤ GOTi (y, φi) ≤ GOSi (y, φi).

Similarly, we can show that GUTi (y, φi) ≤ GUSi (y, φi) ≤ GOSi (y, φi).

First, we use the backward induction to show that
∑N−i

n=0 δ
n · π(y, φi) ≤ GUTi (y, φi) for

i = 1, · · · , N . When i = N , it holds for sure. Assume the result holds for period i +

1 (i = 1, · · · , N − 1), which means that
∑N−i−1

n=0 δn · π(y, φi+1) ≤ GUTi+1(y, φi+1), and thus∑N−i−1
n=0 δn · max

0<y≤M
π(y, φi+1) ≤ vUTi+1(φi+1). Now, for period i, we have

GUTi (y, φi)

=Eφi(θ,α)

{
π(y|θ, α)

+ δ

y−1∑
s1=0

M−s1−1∑
s2=0

vUTi+1(φi+1)f yUT (s1, s2|θ, α) + δ

M−y−1∑
s2=0

vUTi+1(φi+1)f yUT (y, s2|θ, α)

+ δ

y−1∑
s1=0

vUTi+1(φi+1)f yUT (s1,M − s1|θ, α) + δvUTi+1(φi+1)f yUT (y,M − y|θ, α)

}
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≥Eφi(θ,α)

{
π(y|θ, α) + δ

y−1∑
s1=0

M−s1−1∑
s2=0

[N−i−1∑
n=0

δn · max
0<y≤M

π(y, φi+1)
]
f yUT (s1, s2|θ, α)

+ δ

y−1∑
s1=0

[N−i−1∑
n=0

δn · max
0<y≤M

π(y, φi+1)
]
f yUT (s1,M − s1|θ, α)

+ δ

M−y−1∑
s2=0

[N−i−1∑
n=0

δn · max
0<y≤M

π(y, φi+1)
]
f yUT (y, s2|θ, α)

+ δ
[N−i−1∑

n=0

δn · max
0<y≤M

π(y, φi+1)
]
f yUT (y,M − y|θ, α)

}
≥Eφi(θ,α){π(y|θ, α)}

+
N−i∑
n=1

δk
y−1∑
s1=0

M−s1−1∑
s2=0

π(y, φi+1(θ′, α′|s1, s2, y, φi))Eφi(θ,α){f yUT (s1, s2|θ, α)}

+
N−i∑
n=1

δk
y−1∑
s1=0

π(y, φi+1(θ′, α′|s1,M − s1, y, φi))Eφi(θ,α){f yUT (s1,M − s1|θ, α)}

+
N−i∑
n=1

δk
M−y−1∑
s2=0

π(y, φi+1(θ′, α′|y, s2, y, φi))Eφi(θ,α){f yUT (y, s2|θ, α)}

+
N−i∑
n=1

δkπ(y, φi+1(θ′, α′|y,M − y, y, φi))Eφi(θ,α){f yUT (y,M − y|θ, α)}

=
N−i∑
n=0

δn · π(y, φi),

where the last equality is based on the law of total expectation, whose formal proof is similar

to that of Lemma 1(a) in Chen (2010).

Next, we use the backward induction to show GUTi (y, φi) ≤ GOTi (y, φi) (i = 1, · · · , N).

When i = N , it holds for sure. Assume that the result holds for period i+1 (i = 1, · · · , N−1),

which means that GUTi+1(y, φi+1) ≤ GOTi+1(y, φi+1), and thus vUTi+1(φi+1) ≤ vOTi+1(φi+1). Then, for

period i, we have

GUTi (y, φi)

=Eφi(θ,α)

{
π(y|θ, α) + δ

y−1∑
s1=0

M−s1−1∑
s2=0

vUTi+1(φi+1)f yUT (s1, s2|θ, α) + δvUTi+1(φi+1)f yUT (y,M − y|θ, α)

+ δ

y−1∑
s1=0

vUTi+1(φi+1)f yUT (s1,M − s1|θ, α) + δ

M−y−1∑
s2=0

vUTi+1(φi+1)f yUT (y, s2|θ, α)

}

115



=Eφi(θ,α){π(y|θ, α)}

+ δ

y−1∑
s1=0

M−s1−1∑
s2=0

vUTi+1(φi+1(θ′, α′|x1 = s1, x2 = s2, y, φi))Eφi(θ,α){f yUT (s1, s2|θ, α)}

+ δ

y−1∑
s1=0

vUTi+1(φi+1(θ′, α′|x1 = s1, x2 ≥M − x1, y, φi))Eφi(θ,α){f yUT (s1,M − s1|θ, α)}

+ δ

M−y−1∑
s2=0

vUTi+1(φi+1(θ′, α′|x1 ≥ y, x2 = s2, y, φi))Eφi(θ,α){f yUT (y, s2|θ, α)}

+ δvUTi+1(φi+1(θ′, α′|x1 ≥ y, x2 ≥M − y, y, φi))Eφi(θ,α){f yUT (y,M − y|θ, α)}

≤Eφi(θ,α){π(y|θ, α)}

+ δ

y−1∑
s1=0

M−s1−1∑
s2=0

vOTi+1(φi+1(θ′, α′|x1 = s1, x2 = s2, y, φi))Eφi(θ,α){f yUT (s1, s2|θ, α)}

+ δ

y−1∑
s1=0

vOTi+1(φi+1(θ′, α′|x1 = s1, x2 ≥M − x1, y, φi))Eφi(θ,α){f yUT (s1,M − s1|θ, α)}

+ δ

M−y−1∑
s2=0

vOTi+1(φi+1(θ′, α′|x1 ≥ y, x2 = s2, y, φi))Eφi(θ,α){f yUT (y, s2|θ, α)}

+ δvOTi+1(φi+1(θ′, α′|x1 ≥ y, x2 ≥M − y, y, φi))Eφi(θ,α){f yUT (y,M − y|θ, α)}

≤Eφi(θ,α){π(y|θ, α)}+ δ

y−1∑
x1=0

M−x1−1∑
x2=0

vOTi+1(φi+1(θ′, α′|x1, x2, y, φi))Eφi(θ,α){f yOT (x1, x2|θ, α)}

+ δ

y−1∑
x1=0

+∞∑
x2=M−x1

vOTi+1(φi+1(θ′, α′|x1, x2, y, φi))Eφi(θ,α){f yOT (x1, x2|θ, α)}

+ δ

+∞∑
x1=y

M−y−1∑
x2=0

vOTi+1(φi+1(θ′, α′|x1, x2, y, φi))Eφi(θ,α){f yOT (x1, x2|θ, α)}

+ δ
+∞∑
x1=y

+∞∑
x2=M−y

vOTi+1(φi+1(θ′, α′|x1, x2, y, φi))Eφi(θ,α){f yOT (x1, x2|θ, α)}

=GOTi (y, φi),

where the last inequality can be formally proved by following the procedure stated in the

proof of Lemma 1(b) in Chen (2010). Here, we omit the details. Similarly, we can prove that

GOTi (y, φi) ≤ GOSi (y, φi) (i = 1, · · · , N).

Proof of Proposition A.1. We can easily obtain the results by using the expression of

π(y + 1,M |θ, α)− π(y,M |θ, α) in the proof of Proposition 2.1. We thus omit the detail.
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Proof of Proposition A.2. We prove the results by contradiction under scen scenario

(scen ∈ {US,UT }). For (a), assume that if ysceni < ymi , M scen
i − ysceni ≤ Mm

i − ymi (i =

1, · · · , N), which implies M scen
i < Mm

i . First, we can increase ysceni to ymi and keep the

difference between M scen
i and ysceni unchanged through increasing both ysceni and M scen

i by

the same amount. Then, with ysceni = ymi , we increase M scen
i to Mm

i . In this way, we increase

ysceni to ymi and increase M scen
i to Mm

i simultaneously. Thus, according to Lemma A.1, we

have

Eφ′i(θ)

{∑
s1

∑
s2

vsceni+1 (φ′i+1)f
ymi ,M

m
i

scen (s1, s2|θ, α)

}

≥ Eφ′i(θ)

{∑
s1

∑
s2

vsceni+1 (φ′i+1)f
ysceni ,Mscen

i
scen (s1, s2|θ, α)

}
.

In addition, based on the results in the baseline one-period model, we can obtain that

Eφ′i(θ) {π(ymi ,M
m
i |θ, α)} > Eφ′i(θ) {π(ysceni ,M scen

i |θ, α)} according to the optimality of ymi and

Mm
i . Combining the above results, we have Gscen

i (ymi ,M
m
i , φ

′
i) > Gscen

i (ysceni ,M scen
i , φ′i), which

contradicts the Bayesian optimality of ysceni and M scen
i .

Similarly, we can prove that if M scen
i − ysceni < Mm

i − ymi , ysceni > ymi (i = 1, · · · , N).

117



118



Appendix B

Supplements and Proofs for Chapter 3

B.1 Sequential Equilibria Analysis of Hybrid and Mixed

Strategies with Homogeneous Customers

In both the hybrid and mixed strategies, two signals R and C are on the equilibrium path. In

the basic model where all customers are uninformed, the effective arrival rate to an observable

or unobservable queue remains the same to both types of the server under a given belief. When

one type of the server randomizes, he must be indifferent between R and C. This means that

the condition λO(δR) = λU(δC) must be satisfied. Below, we consider various hybrid and

mixed strategies one by one.

(1) f(R|H) = 1 and 0 < f(R|L) < 1. Only the low-quality server sends the signal C with

positive probability, and thus δC = 0. When the customers see the signal R, they update

their belief as δR = δ
δ+(1−δ)f(R|L)

by the Bayes’ rule. In this case, we have δ < δR < 1.

When λO(δR) = λU(0), the high-quality server has no incentive to deviate to C. Also, the

low-quality server is indifferent between the two signals, and he randomizes between them.

So, this hybrid strategy [(f(R|H) = 1, 0 < f(R|L) < 1), (n(δR), p(δC)), δR, δC = 0] can be

sustained as an equilibrium if λO(δR) = µ− θ/VL with the belief δ < δR < 1.

Considering the floor function in n(δR), denote NO := {i ∈ N+|i = n(δR), δ < δR < 1} as

the set of all possible largest queue lengths for customers to join, where N+ is the set of all

nonnegative integers. It is clear that λO(·) is uniquely determined by n(δR), and thus each

element in NO corresponds a unique increasing line of λO(·)(λ) in λ. Each above increasing

line has a unique crossing point with the function λU(0). The condition λO(δR) = µ − θ/VL
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holds only at these crossing points. And the total number of these crossing points is the

cardinality of the set |NO|. In other words, only when the potential arrival rate λ takes

several discrete values may this hybrid equilibrium appear.

(2) 0 < f(R|H) < 1 and f(R|L) = 1. In this case, we have δC = 1 and 0 < δR = δf(R|H)
δf(R|H)+1−δ <

δ. The hybrid strategy [(0 < f(R|H) < 1, f(R|L) = 1), (n(δR), p(δC)), δR, δC = 1] can be

sustained as an equilibrium if λO(δR) = µ− θ/VH with the belief 0 < δR < δ, which holds at

several discrete values of the potential arrival rate λ due to the floor function in λO(δR).

(3) f(R|H) = 0 and 0 < f(R|L) < 1. Now, we have δR = 0 and δ < δC = δ
δ+(1−δ)(1−f(C|L))

< 1.

The hybrid strategy [(f(R|H) = 0, 0 < f(R|L) < 1), (n(δR), p(δC)), δR = 0, δC ] can be

sustained as an equilibrium if λO(0) = λU(δC) with the belief δ < δC < 1. Denote the unique

crossing point of λO(0) and λU(δ) as λ0δ and that of λO(0) and λU(1) as λ01. Then, it can be

easily verified that the condition λO(0) = λU(δC) (δ < δC < 1) holds only for λ ∈ (λ0δ, λ01).

(4) 0 < f(R|H) < 1 and f(R|L) = 0. Similarly, we have δR = 1 and 0 < δC = δ(1−f(R|H))
δ(1−f(R|H))+1−δ <

δ. The hybrid strategy [(0 < f(R|H) < 1, f(R|L) = 0), (n(δR), p(δC)), δR = 1, δC ] can be

sustained as an equilibrium if λO(1) = λU(δC) (0 < δC < δ). Denote the unique cross-

ing point of λO(1) and λU(0) as λ10 and that of λO(1) and λU(δ) as λ1δ. Then, only for

λ ∈ (λ10, λ1δ) can the condition λO(1) = λU(δC) (0 < δC < δ) hold with a corresponding

value of f(R|H) ∈ (0, 1).

(5) 0 < f(R|H) < 1 and 0 < f(R|L) < 1. Under this mixed strategy, the posterior beliefs

satisfy that 0 < δR = δf(R|H)
δf(R|H)+(1−δ)f(R|L)

< 1 and 0 < δC = δf(C|H)
δf(C|H)+(1−δ)f(C|L)

< 1. Then, the

mixed strategy [(0 < f(R|H) < 1, 0 < f(R|L) < 1), (n(δR), p(δC)), δR, δC ] (0 < δR, δC < 1)

can be sustained if λO(δR) = λU(δC).

B.2 Customers’ Equilibrium Queueing Strategies in Un-

observable Queues with δC = 0 or 1

When δC = 0, the uninformed customers believe that the quality level must be low. Then,

given customers’ queueing strategy (pL, pun, pH), both the expected utilities of a negatively

informed customer and an uninformed one are uL(pL, pun) := VL − θ
µ−λ(qpL+(1−q)pun)

. Then,

customers’ equilibrium queueing strategies (pUL , p
U
un, p

U
H) evolve as follows.

First, when λ ≤ µ − θ/VL, it is still true that joining is a dominant strategy for all

customers, and thus (1, 1, 1) is the unique equilibrium profile. After λ becomes larger than
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Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

] (
min (λ1, λ2) ,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1: λ1 < λ2 (1, 1, 1) (pUL , 1, 1) (0, pUun, 1) (0, pUun, p
U
H)

Case 2: λ1 ≥ λ2 (1, 1, 1) (pUL , 1, 1) (0, pUun, p
U
H)

Table B.1: Equilibrium joining strategy (pUL , p
U
un, p

U
H) in unobservable queues with δC = 0

µ − θ/VL, it is still dominant for the positively informed customers to join. However, the

negatively informed and uninformed customers now adopt mixed strategies pL and pun such

that

uL(pL, pun) = VL −
θ

µ− (qpLλ+ (1− q)punλ)
= 0. (B.1)

Thus, the equilibrium is (pUL , p
U
un, 1) with pUL and pUun solve uL(pUL , p

U
un) = 0. When λ further

increases to µ−θ/VH
q+(1−q)pUun

, we get that uH(pUun, 1) = 0. Then, the equilibrium joining strategy is

(pUL , p
U
un, p

U
H), where pUL and pUun solve uL(pUL , p

U
un) = 0 and pUH solves uH(pUun, p

U
H) = 0 given

pUun.

Then, based on λUL(0) = λ(qpUL + (1− q)pUun) and λUH(0) = λ(qpUH + (1− q)pUun), we can get

the effective arrival rates of the low- and high-quality servers. The effective arrival rate of the

low quality server equals λ when λ ≤ µ − θ/VL and µ − θ/VL otherwise. However, different

from the general case 0 < δC < 1 in Proposition 3.4 where the effective arrival rates for both

types of the server are finally unique, as now pUL and pUun sometimes are only determined by

uL(pUL , p
U
un) = 0, the resulting effective arrival rate of the high quality server λUH(0) may not

be unique depending on the composition of pUL and pUun. In our research, we specify the value

of λUH(0) based on the continuity of λUH(δC) in δC as stated in the following corollary.

Corollary B.1. In unobservable queues, both the effective arrival rates λUH(δC) and λUL(δC)

are nondecreasing as the belief of all uninformed customers δC(∈ (0, 1)) increases.

According to Corollary B.1, λUH(δC) is nondecreasing in δC . To simplify and unify the

sequential equilibrium analysis, we focus on the case where λUH(0) = limδC→0+ λUH(δC). This

corresponds to the equilibrium queueing strategies in Table B.1 and the effective arrival rates

in Table B.2.

Following the above analysis, we can analyze the case where δC = 1. Now, the uninformed

customers believe that the quality level must be high. Then, given customers’ queueing

strategy (pL, pun, pH), both the expected utilities of a positively informed customer and an

uninformed one are uH(pun, pH) := VH − θ
µ−λ(qpH+(1−q)pun)

. Then, customers’ equilibrium

queueing strategies (pUL , p
U
un, p

U
H) evolve as follows.
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Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

] (
min (λ1, λ2) ,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1:
λ1 < λ2

λUH(0) λ µ− θ
VL

+ qλ µ− θ
VH

λUL (0) λ µ− θ
VL

Case 2:
λ1 ≥ λ2

λUH(0) λ µ− θ
VH

λUL (0) λ µ− θ
VL

Table B.2: Effective arrival rates λUH(0) and λUL(0) corresponding to the equilibrium joining
strategies in Table B.1

Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

]
(min (λ1, λ2) , λ2]

(
λ2,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1: λ1 < λ2 (1, 1, 1) (pUL , 1, 1) (0, 1, 1) (0, pUun, 1) (pUL , p
U
un, p

U
H)

Case 2: λ1 ≥ λ2 (1, 1, 1) (pUL , 1, 1) (pUL , p
U
un, p

U
H)

Table B.3: Equilibrium joining strategy (pUL , p
U
un, p

U
H) in unobservable queues with δC = 1

First, when λ ≤ µ−θ/VL, we still get the unique equilibrium profile (1, 1, 1). As λ becomes

larger than µ−θ/VL, it is still dominant for the uninformed and positively informed customers

to join. However, the negatively informed now adopts a mixed strategy pL such that

uL(pL, 1) = VL −
θ

µ− (qpLλ+ (1− q)λ)
= 0. (B.2)

Hence, the equilibrium is (pUL , 1, 1), where pUL = max{0, pL} with pL solving (B.2). When

λ further increases to µ − θ/VH , we get that uH(1, 1) = 0. Then, the equilibrium joining

strategy is (pUL , p
U
un, p

U
H), where pUun and pUH solve uH(pUun, p

U
H) = 0 and pUL = max{0, pL} with

pL solving uL(pL, p
U
un) = 0 given pUun.

Then, based on above analysis, we can get the effective arrival rates. The effective arrival

rate of the high quality server equals λ when λ ≤ µ−θ/VH and µ−θ/VH otherwise. Different

compositions of pUun and pUH may still yield different values of λUL(1). Using the nondecreasing

property of λUL(δC) in δC (see Corollary B.1), we only consider λUL(1) = limδC→1− λ
U
L(δC).

This corresponds to the equilibrium queueing strategies in Table B.3 and the effective arrival

rates in Table B.4.

122



Range of λ
(

0, µ− θ
VL

] (
µ− θ

VL
,min (λ1, λ2)

]
(min (λ1, λ2) , λ2]

(
λ2,

θ(VH−VL)
qVHVL

] (
θ(VH−VL)
qVHVL

,+∞
)

Case 1:
λ1 < λ2

λUH(1) λ µ− θ
VH

λUL (1) λ µ− θ
VL

(1− q)λ µ− θ
VH
− qλ µ− θ

VL

Case 2:
λ1 ≥ λ2

λUH(1) λ µ− θ
VH

λUL (1) λ µ− θ
VL

Table B.4: Effective arrival rates λUH(1) and λUL(1) corresponding to the equilibrium joining
strategies in Table B.3

B.3 Review of Hole-avoiding Decision Process in Debo

et al. (2012)

Since some customers are informed and others are not, and the join-or-balk actions of the

informed customers vary with the information they possess, the progression of the queue

length is quality-dependent. Both high-quality and low-quality queues can be modeled as

birth-and-death (BD) processes. Recall that λi,H (resp. λi,L) is the effective arrival rate at

queue length i in case the service quality is high (resp. low), where i = 0, 1, · · · , n(1) + 1.

Then, we have λi,H = λ[qpOH(i)+(1− q)pOun(i)] and λi,L = λ[qpOL (i)+(1− q)pOun(i)]. And recall

that πi,H (resp. πi,L) is the limiting probability that the number of customers in the system

equals i when the server is of high (resp. low) quality, i = 0, 1, · · · , n(1) + 1. Clearly,

πi,H = π0,HΠi−1
j=0λj,H/µ

i, (B.3)

where

π0,H =

1 +

n(1)+1∑
i=1

Πi−1
j=0λj,H/µ

i

−1

. (B.4)

And similar expressions can be derived for πi,L, i ≥ 0. Suppose that the queue length is i.

Then, the posterior probability that the service is of high quality equals

Pr(H|i) ≡ δRπi,H
δRπi,H + (1− δR)πi,L

=
δR

δR + (1− δR)
π0,L

π0,H

∏i−1
j=0

λj,L
λj,H

. (B.5)

If the decision problem for a customer is whether to join or not, then, on seeing a queue length

i, one should join iff

Pr(H|i) ≥ θ(i+ 1)/µ− VL
VH − VL

. (B.6)
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Note that the right hand side (rhs) of (B.6) is a linear increasing function of i.

After finding the best response of both informed and uninformed customers, we then search

for the equilibrium, i.e., the determination of nhole. The value of nhole is uniquely determined

by the likelihood ratio φ0, where φ0 ≡ π0,L/π0,H , in the following way. Given φ0, one can

calculate Pr(H|1) according to (B.5) and check whether the inequality (B.6) is violated or not

to determine the decision of uninformed customers at state 1; if the decision is to join, one

can further determine Pr(H|2) and check the decision of uninformed customers at state 2.

Doing this recursively, one would find the first state violating inequality (B.6), namely nhole.

Therefore, instead of searching for an equilibrium nhole, one can alternatively search for the

equilibrium value of φ0. Note that φ0 is a function of nhole, denoted as φ0(nhole). Following

the standard analysis of BD processes for both high-quality and low-quality queues, we obtain

that

φ0(nhole) =
1 +

∑n(1)+1
i=1 Πi−1

j=0λj,h/µ
i

1 +
∑nhole

i=1 Πi−1
j=0λj,l/µ

i
=

∑nhole
i=0 ρi + q

∑n(1)+1
i=nhole+1 ρ

i∑n(0)+1
i=0 ρi +

∑nhole
n(0)+2(1− q)i−n(0)−1ρi

. (B.7)

In order to find the equilibrium value of nhole, the following two algorithms are designed.

Algorithm 1: Consider all the integers in the set {nl+1, . . . , nh+1} as potential integers for

the position of the hole. Suppose all other uninformed customers are adopting a hole-avoiding

strategy with a hole positioned at mhole. Let nhole(mhole) be the best response strategy for

the tagged uninformed customer. Given mhole, the corresponding φ0(mhole) can be calculated

according to (B.7). Then one can derive nhole(mhole), the smallest queue length violating the

condition (B.6). The crossing point, if exists, of this best response function with the 45-degree

line in the coordinate plane would be the equilibrium hole.

Algorithm 2: Directly search over φ0. First, for each given φ0, one can derive the correspond-

ing nhole(φ0), the smallest queue length violating condition (B.6). This is a non-increasing

step function. Second, for each given nhole(φ0), one can calculate the corresponding φ0 ac-

cording to (B.7) and obtain φ0(nhole(φ0)). This, too, is a step function. The equilibrium value

of φ0 is then the crossing point, if exists, of this step function with the 45-degree line in the

coordinate plane, from which the equilibrium nhole can be calculated.
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B.4 Sequential Equilibria Analysis of Hybrid and Mixed

Strategies with Heterogeneous Customers

For the general scenario where both informed and uninformed customers exist, we investigate

various hybrid and mixed strategies one by one as follows. Note that both signals R and C

are on the equilibrium path here.

(1) f(R|H) = 1 and 0 < f(R|L) < 1. Only the low-quality server sends the signal C with

positive probability, and thus δC = 0. When uninformed customers see the signal R, they

update their belief as δR = δ
δ+(1−δ)f(R|L)

by the Bayes’ rule. In this case, δ < δR < 1. We

need the first condition that λOL (δR) = λUL(0), under which the low-quality server is indifferent

between the two signals and thus randomizes between them. The second condition is that

λOH(δR) ≥ λUH(0), and then the high-quality server has no incentive to deviate to C. So, this

hybrid-strategy sequential equilibrium

[(1, f(R|L)),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, δR, 0]

can be sustained if λOH(δR) ≥ λUH(0) and λOL (δR) = λUL(0), where δR satisfies δ < δR < 1.

(2) 0 < f(R|H) < 1 and f(R|L) = 1. In this case, we have δC = 1 and 0 < δR = δf(R|H)
δf(R|H)+1−δ <

δ. Similarly to (1), we can get that the hybrid-strategy sequential equilibrium

[(f(R|H), 1),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, δR, 1]

can be sustained if λOH(δR) = λUH(1) and λOL (δR) ≥ λUL(1) with δR satisfying 0 < δR < δ.

(3) f(R|H) = 0 and 0 < f(R|L) < 1. Now, we have δR = 0 and δ < δC = δ
δ+(1−δ)(1−f(C|L))

< 1.

We can get that the hybrid-strategy sequential equilibrium

[(0, f(R|L)),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, 0, δC ]

can be sustained if λUH(δC) ≥ λOH(0) and λOL (0) = λUL(δC) with δC satisfying δ < δC < 1.

(4) 0 < f(R|H) < 1 and f(R|L) = 0. We have δR = 1 and 0 < δC = δ(1−f(R|H))
δ(1−f(R|H))+1−δ < δ.

And the hybrid-strategy sequential equilibrium

[(f(R|H), 0),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, 1, δC ]
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can be sustained if λOH(1) = λUH(δC) and λUL(δC) ≥ λOL (1) with δC satisfying 0 < δC < δ.

(5) 0 < f(R|H) < 1 and 0 < f(R|L) < 1. Under this mixed strategy, the posterior beliefs

satisfy that 0 < δR = δf(R|H)
δf(R|H)+(1−δ)f(R|L)

< 1 and 0 < δC = δf(C|H)
δf(C|H)+(1−δ)f(C|L)

< 1. Then, the

mixed-strategy sequential equilibrium

[(f(R|H), f(R|L)),
{

(pUL , p
U
un, p

U
H), {(pOL (i), pOun(i), pOH(i))}+∞

i=0

}
, δR, δC ]

can be sustained if λOH(δR) = λUH(δC) and λOL (δR) = λUL(δC) with δR and δC satisfying 0 <

δR, δC < 1.

B.5 Proofs for Chapter 3 and Appendix B.2

Proof of Proposition 3.1. First consider pooling on C. For λ ∈ (λ̂,+∞), the set T′ in

Definition 3.2 is equal to T = {H,L}, and the credible updating rule must set δR = δ. The

behind reason is that if one type of the server benefits by deviating, then so does the other

type because they share the same payoff functions. This means that the two types of the

server always have the same incentive to deviate, leading to the off-equilibrium-path beliefs

being equal to the prior based on the credible updating rule. Then, under the belief δR = δ,

both types of the server deviate to R. So, pooling on C cannot be sustained as a perfect

sequential equilibrium on λ ∈ (λ̂,+∞). By contrast, for λ ∈ (0, λ̂), it can be verified that the

set T′∪T′′ in Definition 3.2 is empty, and thus the credible updating rule puts no restriction on

customers’ posterior belief after observing the off-equilibrium-path signal R. So, the pooling

strategy [(C,C), (n(δR), p(δC)), δR, δC = δ] with the off-equilibrium-path belief δR satisfying

λO(δR) ≤ λU(δ) can be sustained as a perfect sequential equilibrium for λ ∈ (0, λ̂).

The same argument applies to pooling on R. It can be easily verified that the credible

updating rule requires that δC = δ and thus filters out pooling on R as a perfect sequential

equilibrium for λ ∈ (0, λ̂). While for λ ∈ (λ̂,+∞), the credible updating rule exerts no

restriction on δC , and the pooling strategy [(R,R), (n(δR), p(δC)), δR = δ, δC ] with the off-

equilibrium-path belief δC satisfying λU(δC) ≤ λO(δ) can be sustained as a perfect sequential

equilibrium.

Proof of Proposition 3.2. Considering the relationship between f(R|H) and f(R|L) in the

hybrid or mixed equilibria, we prove the result based on the following three cases.

1. f(R|H) > f(R|L). We have that 0 ≤ δC < δ < δR ≤ 1 in the equilibria, and thus
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the corresponding effective arrival rates to two types of the server must be smaller than

those under the pooling-on-C equilibrium.

2. f(R|H) < f(R|L). In this case, we have 0 ≤ δR < δ < δC ≤ 1 in the equilibria, and

thus the corresponding effective arrival rates to two types of the server must be no larger

than those under the pooling-on-R equilibrium.

3. f(R|H) = f(R|L). In this case, we have 0 < f(R|H) = f(R|L) < 1 and δR = δC = δ in

the equilibria. Such a mixed-strategy sequential equilibrium can only be sustained at

λ̂ with the resulting effective arrival rates equal to λO(δ)(= λU(δ)), which are just the

ones under the pooling perfect sequential equilibria.

Proof of Proposition 3.3. When λ ≤ µ − θ/VL, we have VL − θ
µ−λ ≥ 0. This means a

negatively informed customer should join even when all other customers (positively informed

as well as uninformed) join. This makes joining a dominant strategy for all and therefore

(1, 1, 1) is the unique equilibrium profile.

When λ increases and becomes larger than µ − θ/VL, it is still strictly dominant for the

positively informed and uninformed customers to join. However, the negatively informed

customers now adopt a mixed strategy pL such that

uL(pL, 1) = VL −
θ

µ− (qpLλ+ (1− q)λ)
= 0. (B.8)

Thus, the equilibrium is (pUL , 1, 1), where pUL is the solution of (B.8), i.e.,

pUL =
µ− θ/VL

λq
− 1− q

q
. (B.9)

When λ further increases, exactly one of the following two cases occurs: (1) Case 1:

pUL reaches the value of zero while all others still strictly prefer to join (i.e., uH(1, 1) > 0

and uun(0, 1, 1) > 0); or (2) Case 2: before or when pUL decreases to 0, both uH(1, 1) and

uun(pUL , 1, 1) become 0 (recall that we already have uL(pUL , 1) = 0).

We now consider Case 1 and its condition. According to (B.9), we see that pUL reaches

the value of zero when λ = λ1 := µ−θ/VL
1−q . Note that uL(0, 1) = 0 for λ = λ1. If the condition

uH(1, 1) > 0 holds for this value of λ, then uun(0, 1, 1) > 0, and thus (0, 1, 1) is the unique

equilibrium. Plugging λ = λ1 into this condition, we have λ1 < λ2 := µ− θ
VH

, which coincides

with the condition stated for Case 1 in the proposition.
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Further increasing λ makes uL(0, 1) < 0, uun(0, 1, 1) > 0 and uH(1, 1) > 0. And thus

the equilibrium keeps as (0, 1, 1) until λ reaches a level where uninformed customers begin

to randomize between joining and balking. This threshold value of λ solves the equation

uun(0, 1, 1) = 0, which means that uninformed customers get a utility zero. Denote its unique

solution satisfying 0 < λ < µ by λ̄.

Increasing λ further leads to the equilibrium (0, pUun, 1). And as λ increases, pUun decreases.

The equilibrium (0, pUun, 1) stays for a while until λ reaches the point where the utility of a

negatively informed customer becomes zero (i.e., uL(0, pUun) = 0). In this case, recall that we

already have uun(0, pUun, 1) = 0, implying uH(pUun, 1) = 0. Then, solving any two of the three

equations uH(pUun, 1) = 0, uun(0, pUun, 1) = 0 and uL(0, pUun) = 0 yields the critical value of λ

as θ(VH−VL)
qVHVL

.

When λ further increases, the expected utilities of all customers become zero in equi-

librium, which leads to the three equations uH(pUun, p
U
H) = 0, uun(pUL , p

U
un, p

U
H) = 0 and

uL(pUL , p
U
un) = 0. Among these three equations, any one of them is redundant given the

other two. So, the equilibrium queueing strategy is identified by a system of two nonlinear

equations with three variables. As a result, multiple equilibria typically exist. Specifically,

any choice of pUun leads to the corresponding pUH = µ−θ/VH
λq
− (1−q)pUun

q
and pUL = µ−θ/VL

λq
− (1−q)pUun

q
,

which are uniquely identified by uH(pUun, p
U
H) = 0 and uL(pUL , p

U
un) = 0, respectively. It is clear

that pUL < pUH but what remains to be needed is that 0 ≤ pUL , p
U
un, p

U
H ≤ 1. Since pUL and pUH are

both decreasing with pUun, the smallest possible value for pUun should be no less than the one

where the corresponding pUH is 1. Solving µ−θ/VH
λq

− (1−q)pUun
q

= 1 leads to pUun = µ−θ/VH
λ(1−q) −

q
1−q .

And thus, pUun ≥ max
{

0, µ−θ/VH
λ(1−q) −

q
1−q

}
. As pUun starts to increase from this value, to com-

pensate for that, both pUH and pUL have to be reduced. Then, the largest possible value for pUun

should be no larger than the one where the corresponding pUL is 0. Solving µ−θ/VL
λq
− (1−q)pUun

q
= 0

leads to pUun = µ−θ/VL
λ(1−q) . Since now λ > µ−θ/VL

(1−q) , we get that µ−θ/VL
λ(1−q) < 1. Therefore, the feasible

range for pUun is
[
max

{
0, µ−θ/VH

λ(1−q) −
q

1−q

}
, µ−θ/VL
λ(1−q)

]
.

Next, consider Case 2 where λ1 ≥ λ2. When λ > λ2, it can be verified that the expected

utilities of all customers become zero in equilibrium. Similarly to the arguments in Case

1, we can show that the next pattern is (pUL , p
U
un, p

U
H) with max

{
0, µ−θ/VH

λ(1−q) −
q

1−q

}
≤ pUun ≤

min
{

1, µ−θ/VL
λ(1−q)

}
.

Proof of Proposition 3.4. Below we provide the detailed proof for the high-quality server

under Case 1. As the proofs of other parts follow a similar logic, we omit the details.

First, note that λUH(δC) = λ(qpUH + (1− q)pUun). According to Proposition 3.3, qpUH + (1−
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q)pUun = 1 for λ ≤ λ̄. Second, for λ̄ < λ ≤ θ(VH−VL)
qVHVL

, pUun is between 0 and 1, pUH = 1 and pUL = 0,

which means that the arrivals into a high-quality server consist of all informed customers (a

rate of qλ) and some of uninformed customers, while the arrivals into the low-quality server

consist of only that part of uninformed customers. Hence, denote the effective arrival rate

of the high-quality server as x and thus, the effective arrival rate of the low-quality server is

x− qλ. Since uninformed customers adopt a mixed strategy, their expected utility is 0, and

thus x is the unique solution satisfying qλ < x < µ in the following equation

δCVH + (1− δC)VL = δC
θ

µ− x
+ (1− δC)

θ

µ− (x− qλ)
. (B.10)

Note that the right hand side (rhs) of (B.10) is increasing in x and decreasing in λ con-

sidering qλ < x < µ, resulting in the increasing property of x(λ) in λ. Similarly, to show that

y := x(λ)− qλ is decreasing in λ, one only need to rewrite (B.10) as follow:

δCVH + (1− δC)VL = δC
θ

µ− (y + qλ)
+ (1− δC)

θ

µ− y
. (B.11)

Finally, for λ ≥ θ(VH−VL)
qVHVL

, the expected utility is 0 in a high-quality-server queue, and thus the

effective arrival rate of the high-quality server solves VH − θ
µ−λUH(δC)

= 0 or λUH(δC) = µ− θ
VH

.

Lemma B.1. When the queue is observable, the effective arrival rate of the type-t server

(t = H,L) λOt (δR) satisfies λOt (0) ≤ λOt (δR) ≤ λOt (1), where both λOt (0) and λOt (1) are strictly

increasing in λ.

Proof of Lemma B.1. If δR = 0 (resp. δR = 1), i.e., when all uninformed customers

believe that the service quality must be low (resp. high), they will behave as negatively (resp.

positively) informed customers and join the queue if the queue length does not exceed n(0)

(resp. n(1)). For 0 < δR < 1, according to Debo et al. (2012), uninformed customers join

with a probability at queue length i (i ∈ {n(0) + 1, . . . , n(1)}). Both the queues of two types

of the server can be modeled as birth-and-death processes. And the idle probability of the

queueing system with 0 < δR < 1 is no less than the one with δR = 1 and no larger than

the one with δR = 0. Therefore, we can use the time reversibility of an ergodic BD process

in steady state to obtain that λOt (0) ≤ λOt (δR) ≤ λOt (1) (t = H,L). Additionally, from the

analysis in section 3.5.1, we can directly see that λOt (0) and λOt (1) (t = H,L) are all strictly

increasing functions in λ.
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Proof of Proposition 3.5. Using the result in Lemma B.1, we have that λOt (δ) ≥ λOt (0)

(t = H,L). Furthermore, denote the unique crossing point of λUH(1) and λOH(0) as λ̂R1, and

the maximal crossing point of λUL(1) and λOL (0) as λ̂R2. Let λ̂R = max{λ̂R1, λ̂R2}. Then, for

λ > λ̂R, no matter what value δC takes, we must have that λOt (δ) ≥ λOt (0) > λUt (1) ≥ λUt (δC)

(t = H,L), and thus R is the unique strictly dominant strategy for two types of the server.

So, we get a unique sequential equilibrium of pooling on R with the off-equilibrium-path belief

δC ∈ [0, 1].

Similarly, for pooling on C, denote the minimal crossing point of λUH(0) and λOH(1) as

λ̂C1, and the unique crossing point of λUL(0) and λOL (1) as λ̂C2. Let λ̂C = min{λ̂C1, λ̂C2}.
It can be easily verified that λ̂C < λ̂R. From Lemma B.1, we have that λOt (δ) ≤ λOt (1)

(t = H,L). So, for 0 < λ < λ̂C , no matter what value δR takes, we must have that λOt (δR) ≤
λOt (1) < λUt (0) ≤ λUt (δ) (t = H,L), and thus C is the unique strictly dominant strategy for

two types of the server. So, we get a unique sequential equilibrium of pooling on C with the

off-equilibrium-path belief δR ∈ [0, 1].

Proof of Proposition 3.6. To get rid of the effect of some threshold values of λ, we consider

the open intervals of λ where a separating sequential equilibrium exists. In any open interval

where (R,C) can be sustained as a sequential equilibrium, we must have that λOH(1) > λUH(0)

and λUL(0) > λOL (1). So, another separating sequential equilibrium (C,R) cannot be sustained

on this interval because λUL(1) ≥ λUL(0) > λOL (1) ≥ λOL (0), which means that the low-quality

server will deviate from R to C. Similarly, it is easy to prove that when the separating

sequential equilibrium (C,R) exists on some open intervals, then (R,C) cannot be sustained

as a sequential equilibrium at the same time.

Proof of Corollary 3.2. Let us first consider the pure-strategy sequential equilibria. Given

the belief of uninformed customers, the effective arrival rate to an unobservable (resp. ob-

servable) queue is larger when the service quality is high than that when it is low. So, the

result holds under any pooling equilibrium. For the separating equilibria, we prove the result

by contradiction. Assume that the result does not hold under some separating equilibrium;

i.e., the effective arrival rate to the low-quality server is larger than that to the high-quality

server. If the high-quality server deviates and mimics the low-quality server, then he can

obtain an effective arrival rate that is no less than that of the low-quality server, which is

larger than the one he obtains by staying on the equilibrium path. This implies that such an

equilibrium cannot be sustained, leading to a contradiction.

Above argument applies to the hybrid or mixed sequential equilibria. Note that in the
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hybrid or mixed sequential equilibria, when one type of the server randomizes between queue

revelation and concealment, the effective arrival rates to his revealed and concealed queues

must be the same.

Proof of Proposition 3.7.

(i) For 0 < λ < λ̂C , the unique sequential equilibrium is pooling on C. According to the

definition of λ̂C in Proposition 3.5, we have λUt (δ) > λOt (δ) (t = H,L). So, both the high-

and low-quality servers choose to conceal the queue length in the non-signaling case with the

corresponding effective arrival rates λUH(δ) and λUL(δ), which are equal to the ones under the

pooling sequential equilibrium. Similarly, we can easily prove the result for λ > λ̂R.

(ii) For λ̂C ≤ λ ≤ λ̂R, let us first suppose that the separating strategy (R,C) can be sustained

as a sequential equilibrium on some intervals of λ. We must have that λOH(1) ≥ λUH(0) and

λUL(0) ≥ λOL (1). Then, we get that λUL(δ) ≥ λUL(0) ≥ λOL (1) ≥ λOL (δ). So, in the non-signaling

case, concealing the queue length yields the maximal effective arrival rate of the low-quality

server as λUL(δ)(≥ max{λUL(0), λUL(δ)}). This means that the low-quality server under the

signaling case becomes worse off. Next, we show that the high-quality server becomes better

off by considering two cases. Note that we always have λOH(1) ≥ λOH(δ). In the first case where

λOH(1) ≥ λUH(δ), the result is obvious. In the second case where λOH(1) < λUH(δ), we can easily

obtain that pooling on C can also be sustained as a perfect sequential equilibrium: when

λUL(δ) > λOL (0), the off-equilibrium-path belief satisfies δR ∈ [0, 1]; and when λUL(δ) = λOL (0),

the off-equilibrium-path belief is δR = 0 according to the credible updating rule. Then, the

result can be proved.

Following the above procedure, the result for the separating strategy (C,R) can be proved.

Here, we omit the details.

Proof of Proposition 3.8. First, assume that the separating strategy (R,C) can be sus-

tained as a sequential equilibrium. According to the proof of Proposition 3.7, the low-quality

server obtains the maximal effective arrival rate under either (R,C) or (C,C) in the signaling

case, and must conceal the queue length in the non-signaling case. Then, the total utilities of

all customers from the low-quality server in the signaling and non-signaling cases are uUL(0)

(or uUL(δ)) and uUL(δ), respectively. Based on Proposition 3.4 and Appendix B.2, the difference

between uUL(0) and uUL(δ) exists for λ ∈
(
λ1,

θ(VH−VL)
qVHVL

)
when λ1 < λ2, where λUL(δ) > µ− θ

VL
,

leading to uUL(δ) < 0 = uUL(0). And under other cases, we have uUL(δ) = uUL(0). Therefore, we

can conclude that uUL(0) ≥ uUL(δ), implying that the customers’ total utility becomes weakly

larger in the signaling case.
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Similarly, let us investigate the separating sequential equilibrium (C,R). The low-quality

server obtains the maximal effective arrival rate under either (C,R) or (R,R) in the signaling

case, and must reveal the queue in the non-signaling case. Then, the total utilities of all

customers from the low-quality server in the signaling and non-signaling cases are uOL (0) (or

uOL (δ)) and uOL (δ), respectively. Note that in the utility function (3.4) with the low-quality

server, the effective arrival rate at queue length i, λi,L, and the limiting probability of queue

length i, πi,L, are dependent on δR, which can be further specified as λi,L(δR) and πi,L(δR).

According to the definition of n(0), it can be easily verified that λi,L(0) = λi,L(δ) = λ for

i = 0, 1, · · · , n(0), πi,L(δ) ≤ πi,L(0) for i = 0, 1, · · · , n(0), and VL − (i+1)θ
µ

< 0 for i =

n(0) + 1, · · · , n(1). So, we can get that

uOL (δ) ≤
n(0)∑
i=0

λi,L(δ)πi,L(δ)

(
VL −

(i+ 1)θ

µ

)
≤

n(0)∑
i=0

λi,L(0)πi,L(0)

(
VL −

(i+ 1)θ

µ

)
= uOL (0),

which indicates that the customers’ total utility becomes weakly larger in the signaling case.

Proof of the statement “the Nash equilibria where the server adopts the pooling

strategy (C,C) or (R,R) can always be sustained for all λ ∈ (0,+∞)”: When both

the high-quality and low-quality servers choose to conceal the queue, then the customers’

equilibrium queueing strategy profile in a concealed queue is indeed equivalent to the one

specified in section 3.5.1 with the belief of the uninformed customers equal to the prior δ. Since

no path with positive probability arrives at the terminal nodes following each possible queue

length in a revealed queue, no matter what the customers’ queueing strategy in a revealed

queue is, the expected utilities of all customers are equal to the ones under a concealed queue.

In this case, we can assume that no (informed and uninformed) customer joins a revealed

queue, which leads to zero effective arrival rates in revealed queues of both the high-quality

and low-quality servers. And such an assumed strategy makes no player in the game deviate,

which sustains the strategies of all players mentioned above as a Nash equilibrium of the

overall signaling game.

Similarly, we can show that when both types of the server reveal the queue, there exist some

customers’ equilibrium queueing strategies that make the corresponding Nash equilibrium

sustained. Here, we omit the details.

Proof of Corollary B.1. We have two cases on λUH(δC) and λUL(δC) as stated in Proposition

3.4. Case 2 is trivial as both effective arrival rates are independent of δC . And the result
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under Case 1 holds as a result of the following three facts.

Fact 1. dλ̄
dδC

> 0. Recall that in Proposition 3.3, λ̄ is the unique solution for λ satisfying

0 < λ < µ in the equation:

δCVH + (1− δC)VL = δC
θ

µ− λ
+ (1− δC)

θ

µ− λ(1− q)
.

Let F (δC , λ̄) := δC [VH − θ/(µ− λ̄)] + (1− δC){VL − θ/[µ− λ̄(1− q)]}. Then, we have that

dλ̄

dδC
= −∂F/∂δ

C

∂F/∂λ̄
=

[VH − θ/(µ− λ̄)]− {VL − θ/[µ− λ̄(1− q)]}
δCθ/(µ− λ̄)2 + (1− δC)(1− q)θ/[µ− λ̄(1− q)]2

.

From the proof of Proposition 3.3, we can see that VH > θ/(µ− λ̄) and VL < θ/[µ− λ̄(1− q)].
Therefore, we can get that dλ̄

dδC
≥ 0.

Fact 2. dx(λ)
dλ

> 0 for λ ∈
(
λ̄, θ(VH−VL)

qVHVL

)
. The behind logic is similar to the one of Fact 1, and

thus we omit the details here.

Fact 3. x(λ) < λ for λ ∈
(
λ̄, θ(VH−VL)

qVHVL

)
. This inequality holds because x(λ) = λ[qpUh + (1 −

q)pUun] where pUh = 1 and 0 < pUun < 1 for λ ∈
(
λ̄, θ(VH−VL)

qVHVL

)
.
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Appendix C

Proofs for Chapter 4

Proof of Proposition 4.1. If a queue disclosure strategy (fh, fl) can induce the Bayes-

plausible distribution of posteriors as presented in Proposition 4.1, it should satisfy that

pR = δ0fh + (1− δ0)fl and pH|R = PH|R(fh, fl) = δ0fh
δ0fh+(1−δ0)fl

. From these two equations, we

obtain that fh = pRpH|R/δ0 and fl = pR(1− pH|R)/(1− δ0).

Proof of Lemma 4.1. First, λRe (δ) = λ

(
1− ρn(δ)∑n(δ)

i=0 ρi

)
= µ− µ∑n(δ)

k=0 ρ
k
, where n(δ) = b[δVh +

(1− δ)Vl)]µ/θc. So, λRe (δ) increases in n(δ). Second, as δ increases from 0 to 1, n(δ) repeats

the following pattern: it first remains unchanged for a while, then increases by 1, and then

remains unchanged, etc. The change of λRe (δ) in δ is a consequence of this change pattern of

n(δ) in δ.

Note that when λ ≥ µ− θ/Vh, λCe (δ) = µ− θ
δVh+(1−δ)Vl

for all 0 ≤ δ ≤ 1, which is concave

and increasing in δ. When λ < µ− θ/Vh, λCe (δ) consists of two pieces, first an increasing and

concave function µ− θ
δVh+(1−δ)Vl

on the domain δ ∈
[
0, θ−(µ−λ)Vl

(µ−λ)(Vh−Vl)

]
and then a constant λ on

the domain δ ∈
[

θ−(µ−λ)Vl
(µ−λ)(Vh−Vl)

, 1
]
. The overall function is still concave.

Proof of Proposition 4.2. As shown in Section 4.3, any queue disclosure strategy (fh, fl)

yields a Bayes-plausible distribution of posteriors (i.e., δ0 = [δ0fh + (1 − δ0)fl]PH|R(fh, fl) +

[δ0(1 − fh) + (1 − δ0)(1 − fl)]PH|C(fh, fl)), and an objective value λe(fh, fl) = [δ0fh + (1 −
δ0)fl]λ

R
e (fh, fl) + [δ0(1 − fh) + (1 − δ0)(1 − fl)]λ

C
e (fh, fl). It is straightforward to show

that the point (δ0, λe(fh, fl)) can be regarded as the convex combination of two points

(PH|R(fh, fl), λ
R
e (PH|R(fh, fl))) and (PH|C(fh, fl), λ

C
e (PH|C(fh, fl))), and thus (δ0, λe(fh, fl)) ∈

co(λRe , λ
C
e ). On the other hand, given (δ0,Λ) ∈ co(λRe , λCe ), there exist δ1, δ2 and α̂ such that

α̂δ1 + (1− α̂)d2 = δ0 and α̂λRe (δ1) + (1− α̂)λCe (δ2) = Λ (0 ≤ δ1, δ2, α̂ ≤ 1). This indicates that
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when the prior probability for the service quality to be high is δ0, we can always identify a

queue disclosure strategy that yields the corresponding payoff value Λ for the server according

to Proposition 4.1.

Proof of Proposition 4.3. According to Proposition 4.2, under the given prior δ0, all

effective arrival rates that can be induced by feasible queue disclosure strategies constitute

the set {Λ|(δ0,Λ) ∈ co(λRe (·), λCe (·))}. The conclusion then follows by the definition of Λe(δ0).

Proof of Lemma 4.2. Since λCe (δ) ≥ λRe (δ) for all δ ∈ [0, 1] and λCe (δ) is concave in δ,

all convex combinations between a point on λRe (·) and a point on λCe (·) fall on or below the

function curve λCe (·). Therefore, Λe(δ) = λCe (δ) and (f eh, f
e
l ) = (0, 0). Similarly, when λRe (δ)

is a horizontal line and λRe (δ) ≥ λCe (δ) for all δ ∈ [0, 1], these convex combinations fall on or

below the flat line λRe (·). Therefore, Λe(δ) = λRe (δ), and (f eh, f
e
l ) = (1, 1).

Proof of Proposition 4.4. Part (i) clearly holds because, in this case, the effective arrival

rate equals the potential arrival rate under the ‘always concealing’ strategy.

For part (ii), based on the relationship between fh and fl, we consider two cases: fh < fl

and fh ≥ fl. In the first case, PH|R < δ0 (and hence, PH|C > δ0). It then follows that

λRe (0, 1) ≤ λRe (fh, fl) ≤ λRe (1, 1) and λCe (0, 0) ≤ λCe (fh, fl) ≤ λCe (0, 1). We know that the

function λCe (0, 1) becomes flat when λ increases to a certain value while λRe (1, 1) always strictly

increases with λ. Hence, λRe (1, 1) crosses λCe (0, 1) exactly once and from below as λ increases.

Denote this crossing point by λ̄e1. It then follows that as long as λ > λ̄e1, λRe (1, 1) > λCe (fh, fl).

Together with λRe (1, 1) ≥ λRe (fh, fl), we can conclude that ‘always revealing’ is the optimal

choice for the service provider.

We now show the case where fh ≥ fl. In this case, PH|R ≥ δ0 (and hence, PH|C ≤ δ0),

and thus, λRe (1, 1) ≤ λRe (fh, fl) ≤ λRe (1, 0) and λCe (1, 0) ≤ λCe (fh, fl) ≤ λCe (0, 0). To show

that ‘always revealing’ is the best strategy, we first introduce an arrival rate function which

is always no less than λe(fh, fl), and then show that the effective arrival rate under ‘always

revealing’ can still outperform this arrival rate. Define

λ̄e(fh, fl) := [δ0fh + (1− δ0)fl]λ
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]λCe (0, 0).

This new function replaces the term λCe (fh, fl) in the expression of λe(fh, fl) with a larger

value term λCe (0, 0) and thus λe(fh, fl) ≤ λ̄e(fh, fl). Denote the optimal solution of maximizing

λ̄e(fh, fl) by (f̄ eh, f̄
e
l ). Then, λe(f

e
h, f

e
l ) ≤ λ̄e(f̄

e
h, f̄

e
l ).

We now show that there exists a threshold λ̄e2 such that when λ > max{λ̄e1, λ̄e2}, ‘always
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revealing’ yields an effective arrival rate no less than λ̄e(f
e
h, f

e
l ). Recall that when the server

reveals the queue length, customers join if and only if the queue length upon arrival (including

themselves) is no greater than ne(fh, fl), where ne(fh, fl) = bVR(fh, fl)µ/θc. Define a set of

integers S := {n ∈ N+ : ne(1, 1) < n ≤ ne(1, 0)}, where N+ is the set of all nonnegative

integers. Clearly, when queue is observable, incoming customers’ threshold ne(fh, fl) always

falls into the set S ∪ {ne(1, 1)}, because the strategy (1, 1) yields the lowest expected service

value and the strategy (1, 0) yields the largest expected service value for incoming customers.

Therefore, we must have ne(f̄
e
h, f̄

e
l ) ∈ S ∪ {ne(1, 1)}. If the set S is empty, let λ̄e2 = 0;

otherwise, we define λ̄e2 through the following procedure. Let n1, · · · , n|S| be all the elements

in set S, where |S| is the cardinality of S. We now fix the joining threshold ne(fh, fl) = ni

(i = 1, · · · , |S|) and consider the range λ > λ̄e1. Consider the constrained maximization

problem as follows:

(f̄ ih, f̄
i
l ) = arg max(fh,fl)

{λ̄e(fh, fl)|ne(fh, fl) = ni, λ > λ̄e1}.

According to the definition of λ̄e1, we have that when λ > λ̄e1, λRe (1, 1) > λCe (0, 1) > λCe (0, 0).

Also, as fh ≥ fl, we have λRe (fh, fl) ≥ λRe (1, 1). Considering these two inequalities together, we

get λRe (fh, fl) > λCe (0, 0). With this inequality, we can then check the expression of λ̄e(fh, fl).

Now, the value of the term λRe (fh, fl) is fixed due to a fixed joining threshold ni and the term

λCe (0, 0) reaching a fixed value when λ > λ̄e1. Maximizing λ̄e(fh, fl) then requires to maximize

the term δ0fh + (1 − δ0)fl, which yields f̄ ih = 1 and 0 ≤ f̄ il < 1 (note that f̄ il cannot equal 1

under the constraint ne(fh, fl) = ni). Therefore, within the range λ > λ̄e1, (f̄ eh, f̄
e
l ) must be

(1, 1) or one of (1, f̄ il ) (i = 1, · · · , |S|). Furthermore, we have that

lim
λ→+∞

[λe(1, 1)− λ̄e(1, f̄ il )] = µ−
{

[δ0 + (1− δ0)f̄ il ]µ+ (1− δ0)(1− f̄ il )
(
µ− θ

Vl

)}
> 0.

Then, for λ̄e(f̄
i
h, f̄

i
l ), we can find a threshold for the potential arrival rate, λ̄i2 (λ̄i2 ≥ 0),

such that when λ > λ̄i2, λe(1, 1) > λ̄e(f̄
i
h, f̄

i
l ). Let λ̄e2 be max{λ̄1

2, · · · , λ̄
|S|
2 } when the set S is

nonempty. It follows that when λ > max{λ̄e1, λ̄e2}, λe(1, 1) ≥ λ̄e(fh, fl) ≥ λe(fh, fl) for fh ≥ fl.

Finally, let λ̄e := max{λ̄e1, λ̄e2}. We can then conclude that (1, 1) = arg max(fh,fl) λe(fh, fl)

for λ > λ̄e.

Proof of Lemma 4.3.

(i) Recall that uRe (δ) = λ
∑ne(δ)−1

j=0 p
ne(δ)
j

[
δ(Vh − Vl) + Vl − (j+1)θ

µ

]
, with ne(δ) = b[δVh + (1−
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δ)Vl)]µ/θc. As δ increases from 0 to 1, ne(δ) repeats the following pattern: it first remains

unchanged for a while, then increases by 1, and then remains unchanged, etc. When ne(δ)

remains unchanged, uRe (δ) is a linear function in δ with the slope being λ(Vh−Vl)
(

1− pne(δ)ne(δ)

)
.

And when ne(δ) increases by 1 at some δ = δ̂, we have that δ̂(Vh−Vl)+Vl− ne(δ̂)θ
µ

= 0. Notice

that p
ne(δ̂)−1
j < p

ne(δ̂)
j for j = 0, · · · , ne(δ̂)− 2. Then, we can get that

lim
δ→δ̂−

uRe (δ) = λ

ne(δ̂)−2∑
j=0

p
ne(δ̂)−1
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]

>λ

ne(δ̂)−2∑
j=0

p
ne(δ̂)
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]
= λ

ne(δ̂)−1∑
j=0

p
ne(δ̂)
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]
=uRe (δ̂),

which means that uRe (δ) jumps down at δ = δ̂.

(ii) Recall that uCe (δ) = λpe(δ)
[
δ(Vh − Vl) + Vl − θ

µ−λpe(δ)

]
with pe(δ) = 1 if λ < µ− θ

δ(Vh−Vl)+Vl

and pe(δ) = µ−θ/[δ(Vh−Vl)+Vl]
λ

otherwise. If λ ≥ µ − θ
Vh

, then pe(δ) = µ−θ/[δ(Vh−Vl)+Vl]
λ

for all

δ ∈ [0, 1], which makes uCe (δ) constant as 0; if λ ≤ µ− θ
Vl

, pe(δ) = 1 for all δ ∈ [0, 1], and thus

uCe (δ) is linear increasing in δ with the slope λ(Vh − Vl); otherwise, pe(δ) = µ−θ/[δ(Vh−Vl)+Vl]
λ

for δ ∈
[
0, θ/(µ−λ)−Vl

Vh−Vl

]
, which makes uCe (δ) equal to 0, and pe(δ) = 1 for δ ∈

(
θ/(µ−λ)−Vl
Vh−Vl

, 1
]
,

which makes uCe (δ) linear increasing in δ.

(iii) Now, let us compare uRe (δ) and uCe (δ) under a given δ (0 ≤ δ ≤ 1). First, when

λ ≥ µ − θ
δVh+(1−δ)Vl

, we have uRe (δ) > 0 but uCe (δ) = 0, which directly yield uRe (δ) > uCe (δ).

Then, consider 0 < λ < µ − θ
δVh+(1−δ)Vl

. Under this case, we have 0 < ρ < 1 and pe(δ) = 1.

Note that in an M/M/1/ne(δ) queue, the expected queue length is E[L] :=
∑ne(δ)

j=0 jp
ne(δ)
j =

ρ
1−ρ −

[ne(δ)+1]ρne(δ)+1

1−ρne(δ)+1 . Then, we can express uRe (δ) as

uRe (δ) = λ[δVh + (1− δ)Vl]−
(E[L] + 1)λθ

µ
− λpne(δ)ne(δ)

[
δVh + (1− δ)Vl −

(ne(δ) + 1)θ

µ

]
.

According to the definition of ne(δ), we have δVh + (1− δ)Vl − (ne(δ)+1)θ
µ

< 0. To sum up, we

can get that

uRe (δ)− uCe (δ) >λ[δVh + (1− δ)Vl]−
(E[L] + 1)λθ

µ
− λ

[
δVh + (1− δ)Vl −

θ

µ− λ

]
=

λθ

µ− λ
− (E[L] + 1)λθ

µ
=

[ne(δ) + 1]ρne(δ)+1λθ

(1− ρne(δ)+1)µ
> 0.
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Wang, S. and G. F. Özkan-Seely. 2018. Signaling product quality through a trial period.

Operations Research 66(2): 301-312.

Whitt, W. 1999. Improving service by informing customers about anticipated delays. Man-

agement Science 45(2): 192-207.

Yang, L., Debo, L. and V. Gupta. 2019. Search among queues under quality differentiation.

Management Science 65(8): 3605-3623.

Yu, M., Debo, L. and R. Kapuscinski. 2016. Strategic waiting for consumer-generated quality

information: Dynamic pricing of new experience goods. Management Science 62(2): 410-

435.

Yu, Q., Allon, G. and A. Bassamboo. 2017. How do delay announcements shape customer

behavior? An empirical study. Management Science 63(1): 1-20.

Yu, Q., Allon, G. and A. Bassamboo. 2021. The reference effect of delay announcements: A

field experiment. Management Science Articles in Advance: 1-19.

Yu, Q., Allon, G., Bassamboo, A. and S. Iravani. 2018. Managing customer expectations and

priorities in service systems. Management Science 64(8): 3942-3970.

Yuan, H., Luo, Q. and C. Shi. 2021. Marrying stochastic gradient descent with bandits:

Learning algorithms for inventory systems with fixed costs. Management Science Articles

in Advance: 1-27.

145



146


	Title Page
	Certificate of Originality
	Abstract
	Publications Arising from the Thesis
	Acknowledgements
	Table of Contents
	Introduction
	Information Uncertainty and Bayesian Updating
	Layout of the Thesis

	Manage Inventories with Learning on Demands and Buy-up Substitution Probability
	Introduction
	Literature Review
	One-period Model
	Model Description
	Repeated Decision Making

	Multi-period Bayesian Inventory Management
	Four Information Scenarios and Bayesian Learning
	Updating Only Demand Parameter 
	Updating Both Demand Parameter  and Substitution Probability 
	Comparison of Expected Profits under Four Information Scenarios

	Numeric Study
	Conclusions and Suggestions for Future Research

	Signaling Service Quality via Queue Disclosure
	Introduction
	Literature Review
	Model Setup and Equilibrium Concepts
	Timing of Signaling Game
	Definitions of Sequential Equilibria and Perfect Sequential Equilibria

	Equilibrium Analysis
	Customers' Equilibrium Queueing Strategies and Effective Arrival Rates
	Sequential Equilibria Analysis

	Signaling Game with Heterogeneous Customers
	Customers' Equilibrium Queueing Strategies and Effective Arrival Rates
	Sequential Equilibria Analysis
	Effects of Using Queue Disclosure as Signal

	Discussions
	The Impact of Customer Type Composition
	The Impact of Service Price

	Conclusions and Suggestions for Future Research

	Optimal Queue Length Information Disclosure When Service Quality Is Uncertain
	Introduction
	Literature Review
	Model Description
	Optimal Queue Disclosure Strategy
	Geometric Approach
	The Impact of Market Size

	Social Planner
	Conclusions and Suggestions for Future Research

	Supplements and Proofs for Chapter 2
	Appendix A Supplements and Proofs for Chapter 2
	A General Two-Decision-Variable Problem
	One-period Model
	Multi-period Bayesian Inventory Management
	Upper Bounds on Optimal Inventory Levels

	Proofs for Chapter 2 and Appendix A.1

	Supplements and Proofs for Chapter 3
	Appendix B Supplements and Proofs for Chapter 3
	Sequential Equilibria Analysis of Hybrid and Mixed Strategies with Homogeneous Customers
	Customers' Equilibrium Queueing Strategies in Unobservable Queues with C=0 or 1
	Review of Hole-avoiding Decision Process in Debo et al. (2012)
	Sequential Equilibria Analysis of Hybrid and Mixed Strategies with Heterogeneous Customers
	Proofs for Chapter 3 and Appendix B.2

	Proofs for Chapter 4
	Appendix C Proofs for Chapter 4
	References



