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Abstract

Tensor decompositions have been proved to be useful in a number of applications,

such as data completion, recommendation systems, multi-partite quantum systems,

etc. Some of these applications exploit low structural complexity of the data, ex-

pressed either as low rank for the matrices, or low tensor-rank under some tensor

decompositions, such as higher-order singular value decomposition (HOSVD), ten-

sor singular value decomposition (t-svd), etc. In this thesis, we focus on exploring

several novel applications of the tensor t-svd decomposition.

The t-svd decomposition extends the familiar matrix svd strategy to tensors and

perform matrix svd in the Fourier domain. However, the complexity of calculating

full t-svd is extremely high especially for large scale datasets. Hence in our work,

we present the first quantum t-svd algorithm for third-order tensors which achieves

polynomial speedup compared with its classical counterpart, and then extend it to

order p tensors. To our best knowledge, the efficiency of this algorithm beats any

known classical t-svd algorithms in the literature.

Quantum machine learning investigates how quantum techniques can be used to

speed up some classical machine learning problems. Based on the proposed quantum

t-svd algorithm, we next extend Kerenidis and Prakash’s matrix recommendation

system algorithm to third-order tensors, and propose a quantum machine learning

algorithm, context-aware recommendation systems algorithm, based on truncated

t-svd factorization. In fact, our algorithm offers recommendations by just sampling
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from an approximated preference matrix, which corresponds to measuring certain

times a quantum state representing a user’ approximated preference information,

instead of reconstructing the entire tensor as its classical counterpart does. Therefore,

the running time is polylogrithmic in the dimension of the preference tensor.

Inspired by the Monte-Carlo randomized algorithm for finding the low-rank ma-

trix approximations proposed by Frieze, Kannan and Vempala, we present a classical

Monte-Carlo low tubal-rank tensor approximation algorithm based on truncated t-

svd. The main idea is approximating the original tensor by performing truncated

matrix svd on every frontal slice of the small sampled tensor under Fourier domain.

In terms of time complexity, our algorithm achieves a polynomial speedup compared

with the classical truncated t-svd algorithm.

In the final part of our work, two schemes for the effective generation of large-

size Schrödinger’s cat states are proposed based on conditioned measurement, which

provides a powerful resource for quantum information technology based on the su-

perposition of coherent states. The schemes are based on the linear operation of

Fock states and squeezed vacuum states. The simulation results shows that odd cat

states with an amplitude of 2.001 with the fidelity of 0.99 could be obtained.
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Chapter 1

Introduction

1.1 Background

Machine learning is a branch of artificial intelligence and is increasingly ubiquitous

in various areas such as natural language processing, data mining, biological analy-

sis, etc. However, a major deficiency of many machine learning algorithms is their

high computational and storage cost when processing big data. On the other hand,

quantum computer is considered as one of the most promising and emerging tech-

nologies, and its development has made great progress in recent years. Considering

high demanding computational power of machine learning and the fast development

of quantum technology, researchers are developing a new interdisciplinary research

field, quantum machine learning.

Quantum machine learning explores the interaction between quantum computing

and machine learning, by investigating how quantum techniques, e.g., superposition

and entanglement, can be used to speed up some classical machine learning problems.

Successful examples are quantum support vector machine (QSVM) [63], quantum

principle component analysis (QPCA) [38], among others. In most cases, quantum

computing is supposed to deal with quantum data, as commented in [3]. Hence, the

classical data should be preprocessed into quantum data using some methods like

QRAM [20, 33] so that quantum algorithms can proceed as desired. As quantum
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features such as parallelism and entanglement can be used to accelerate some com-

putational procedures which classical operations are generally regarded as inefficient,

it is reasonable to assume that the performance of quantum computers outperforms

classical computers on certain machine learning problems.

The development of quantum computer has made some progress recently. Some

companies have produced actual prototype machines of universal quantum computers

based on the quantum circuit model, which make experiments can be conducted with

quantum computational operations on a small number of qubits via cloud platforms.

However, the general large-scale quantum computer is still being developed.

Tensor refers to a multi-dimensional array of numbers, thus it can represent more

complex structures of higher-order data. Applications involving tensors include im-

age deblurring, video recovery, denoising, data completion, multi-partite quantum

systems, networks and machine learning [34, 92, 93, 14, 95, 35, 58, 57, 67, 66, 25, 89,

59, 60, 64, 91, 87, 26, 43], due to the flexibility of tensors in representing data. Some

of these applications make use of various tensor decompositions including CANDE-

COMP/PARAFAC (CP) [9], TUCKER [84], higher-order singular value decomposi-

tion (HOSVD) [11, 89, 21], tensor-train decomposition (TT) [53], and tensor singular

value decomposition (t-svd) [34, 93, 43].

Plenty of research has been carried out on t-svd in the last decade. The concept

of t-svd was first proposed by Kilmer and Martin [34] for third-order tensors. Later,

Martin et al. [45] extended it to higher-order tensors. The t-svd algorithm is superior

to TUCKER and CP decompositions in the sense that it extends the familiar matrix

svd strategy to tensors, thus avoiding the loss of information inherent in flattening

tensors used in TUCKER and CP decompositions. Compared with HOSVD, t-svd

also has optimality properties similar to the truncated svd for matrices, hence t-svd

is shown to have better performance than HOSVD when applied to facial recognition

[22], tensor completion [92, 75]. Another advantage of t-svd is that it can be obtained
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by computing matrix svd in the Fourier domain; the similar idea allows other matrix

factorization techniques like QR decomposition to be extended to tensors easily.

However, the complexity of calculating full t-svd for third-order N dimensional

tensors is OpN4q, which is extremely high for large scale datasets. Hence many

works have devoted to low-rank approximated t-svd representation which gives up

the optimality property and has comparatively low comlexity. In [90], Zhang et

al. propose a randomized t-svd method which can produce a factorization with

similar66 properties to the t-svd, and the computational complexity is reduced to

OpkN3 `N3 logNq, where k is the truncated term.

In this dissertation, we present the first quantum t-svd algorithm for third-order

tensors which achieves polynomial speedup compared with its classical counterpart,

and present quantum algorithms for low rank approximation based on this quan-

tum t-svd algorithm. We next present a quantum algorithm for solving a machine

learning problem, namely, the context-aware recommendation systems based on that

quantum tensor approximation problem. Also, we present a classical low rank tensor

approximation based on t-svd and Monte-Carlo methods. Finally, we propose two

schemes for the effective generation of large-size Schrödinger’s cat states.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows.

In Chapter 2, we introduce some quantum computing preliminaries, together with

some relevant definitions of tensors. The classical (non-quantum) t-svd algorithm is

the theoretical basis of our quantum algorithms, so we will also introduce its relevant

results in this chapter.

In Chapter 3, we present a quantum t-svd algorithm for third-order tensors and

then extend it to order-p tensors. We prove that our quantum t-svd algorithm for a
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third-order N dimensional tensor runs in time O pNpolylogpNqq which is polynomial

faster than its classical counterpart.

In Chapter 4, we present a quantum algorithm for recommendation systems which

incorporates the contextual information of users to the personalized recommendation.

The preference information of users is encoded in a third-order tensor of dimension

N which can be approximated by the truncated tensor singular value decomposition

(t-svd) of the subsample tensor. Unlike the classical algorithm that reconstructs

the approximated preference tensor using truncated t-svd, our quantum algorithm

obtains the recommended product under certain context by measuring the output

quantum state corresponding to an approximation of a user’s dynamic preferences.

The algorithm achieves the time complexity Op
?
kNpolylogpNqq, compared to the

classical counterpart with complexity OpkN3q, where k is the truncated tubal-rank.

In Chapter 5, we present a Monte-Carlo low tubal-rank tensor approximation al-

gorithm based on t-svd. Our algorithm is inspired by the Monte-Carlo randomized al-

gorithm for finding the low rank matrix approximations proposed by Frieze, Kannan

and Vempala [17]. We first sample the slices of the original tensor by length-squared

sampling and then approximate the original tensor in Fourier domain using trun-

cated t-svd method. The complexity of our algorithm is only Opk5N{ε4 `N3logNq

for finding a description of the approximation tensor. On the other hand, if we need

to calculate the approximated tensor definitely, the complexity of our algorithm is

Opk5N{ε4 ` kN3 ` N3logNq, which is advantageous in the case of k ăă N when

compared with the classical t-svd whose complexity is OpN4 `N3logNq.

In Chapter 6, we propose two schemes for the effective generation of large-size

Schrödinger’s cat states based on conditioned measurement, which provides a pow-

erful resource for quantum information technology based on the superposition of

coherent states. The schemes are based on the linear operation of Fock states and

squeezed vacuum states, and the simulation results shows that odd cat states with

4



an amplitude of 2.001 with the fidelity of 0.99 could be obtained.
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Chapter 2

Preliminaries

In Section 2.1, we introduce some basic concepts in quantum computing including

quantum Fourier transform (QFT) and the quantum singular value estimation algo-

rithm (QSVE) [33]. In Section 2.2, we introduce some concepts of tensor. Also, we

review the concept of t-product and relevant definitions used in the classical t-svd

algorithm in Section 2.2.1.

2.1 Quantum Computing

Quantum bit (qubit) is a fundamental concept of quantum computation, just as

the classical computation and information is built on bits.

Definition 2.1. qubit

Two possible states for a qubit are the states |0y and |1y. A qubit can be in a state

which is the linear combinations of |0y and |1y:

|φy “ α |0y ` β |1y ,

where α, β P C and |α|2 ` |β|2 “ 1.

In other words, the state of a qubit can be regarded as a vector in a two-

dimensional complex vector space formed with an orthonormal basis

|0y ”

„

1
0



|1y ”

„

0
1



. (2.1)
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We shall denote by xφ| the conjugate-transpose of |φy. The joint state of two qubits

|φy, |ψy is given by |φyb|ψy. Accordingly, an n -qubit quantum state can be denoted

as

|φy “
ÿ

i1,...,in

αi1...in |i1 . . . iny

where ik P t0, 1u,
ř

i1...in
|αi1...in |

2
“ 1 and |i1 . . . iny ” |i1y b ¨ ¨ ¨ b |iny . The basis

t|i1 . . . iny | ik P t0, 1uu is called the computational basis in a 2n-dimensional complex

vector space.

Unitary operators and measurements are two operations which can perform on a

quantum state.

Definition 2.2. The unitary operator U on n qubits is a matrix of dimension 2nˆ2n

satisfying UU : “ U :U “ I.

Definition 2.3. Quantum measurements are described by a collection tMmu of mea-

surement operators. The operators satisfy the completeness condition:
ř

mM
:
mMm “

I. If the state of the quantum system is |ψy before the measurement, then the prob-

ability that result m occurs is

ppmq “ xψ|M :
mMm |ψy ,

and the state of the system immediately after measurement is

Mm |ψy
a

ppmq
.

2.1.1 Quantum Fourier transform

The quantum Fourier transform (QFT) under an orthonormal basis |xy P t|0y , . . . , |N ´ 1yu

is defined as the linear operator with the following action on the basis vectors:

QFT : |xy Ñ
1
?
N

N´1
ÿ

k“0

ωx¨k|ky,
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where ω “ e
2πi
N . The inverse QFT is then defined as

QFT: : |ky Ñ
1
?
N

N´1
ÿ

x“0

ω´k¨x|xy.

The circuit of QFT, shown in FIG. 2.1, is composed of a total number of O prlogN s2q

H gates, CNOT gates, and controlled phase gate Rm (see [52, Section 5.1]), where

H “
1
?

2

ˆ

1 1
1 ´1

˙

, Rm “

ˆ

1 0

0 e
2πi
2m

˙

with m “ 2, ¨ ¨ ¨ , n, n “ rlogN s.

Figure 2.1: The circuit of QFT.

2.1.2 Quantum singular value estimation

In [33], Kerenidis and Prakash propose a quantum singular value estimation

(QSVE) algorithm. They assume that the input data is stored in a classical bi-

nary tree data structure, as stated in the following lemma, such that the QSVE

algorithm with access to this data structure can efficiently create superpositions of

rows of the subsample matrix.

Lemma 2.1. [33, Theorem 5.1] Consider a matrix A P RN1ˆN2 with τ nonzero

entries. Let Ai be its i-th row, and sA “
1

||A||F
r||A0||2, ||A1||2, ¨ ¨ ¨ , ||AN1´1||2s

T . There

9



exists a data structure storing the matrix A in Opτ log2
pN1N2qq space such that a

quantum algorithm having access to this data structure can perform the mapping

UP : |iy |0y Ñ |iy |Aiy, for i “ 0, ¨ ¨ ¨ , N1 ´ 1 and UQ : |0y |jy Ñ |sAy |jy, for j “

0, ¨ ¨ ¨ , N2 ´ 1 in time polylogpN1N2q.

The following lemma summarizes the main idea of the QSVE algorithm and its

detailed description can be found in [33].

Lemma 2.2. [33, Theorem 5.2] Let A P RN1ˆN2 and x P RN2 be stored in the

data structure as mentioned in Lemma 2.1. Let the singular value decomposition

of A be A “
řr´1
l“0 σl |uly xvl|, where r “ minpN1, N2q. The input state |xy can be

represented in the eigenstates of A, i.e. |xy “
řN2´1
l“0 βl |vly. Let ε ą 0 be the

precision parameter. Then there is a quantum algorithm, denoted as USVE, that runs

in time OppolylogpN1N2q{εq and achieves

USVE p|xy |0yq “
N2´1
ÿ

l“0

βl |vly |σly

with probability at least 1´1{polypN2q, where σl is the estimated value of σl satisfying

|σl ´ σl| ď ε||A||F for all l.

Remark 2.1. With regard to the matrix A stated in Lemma 2.2, we can also choose

the input state as |Ay “ 1
||A||F

řr´1
l“0 σl |uly |vly, corresponding to the vectorized form

of the normalized matrix A
||A||F

represented in the svd form. This representation of

the input state is adopted in Section 3.3. Note that we are able to express the state

|Ay in the above form even if the singular pairs of A are not known. According to

Lemma 2.2, we can obtain σl, an estimate of σl, stored in the third register superposed

with the singular vectors t|uly , |vlyu after performing USVE, i.e., the output state is

1
||A||F

řr´1
l“0 σl |uly |vly |σly, where |σl ´ σl| ď ε||A||F for all l “ 0, ¨ ¨ ¨ , r ´ 1.
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2.2 Tensor background and notation

A tensor A “ pai1i2¨¨¨ipq P CN1ˆN2ˆ¨¨¨ˆNp is a multidimensional array of data, where

p is the order and pN1, ¨ ¨ ¨ , Npq is the dimension. The order of a tensor is the number

of modes. For instance, A P CN1ˆN2ˆN3 is a third-order tensor of complex values with

dimension Ni for mode i, i “ 1, 2, 3, respectively. In this sense, a matrix A can be

considered as a second-order tensor, and a vector x is a tensor of order 1. For a

third-order tensor, we use terms frontal slice Ap:, :, iq, horizontal slice Api, :, :q and

lateral slice Ap:, i, :q (see FIG.1). By fixing all indices but the last one, the result is

a tube of size 1 ˆ 1 ˆ N3, which is actually a vector. For example, Api, j, :q is the

pi, jq-th tube of A.

Figure 2.2: (a) frontal slices, (b) horizontal slices, (c) lateral slices of a third-order
tensor. (d) a lateral slice as a vector of tubes.

2.2.1 t-product

Definition 2.4. [34] circulant matrix

Given a vector u P RN and a tensor B P RN1ˆN2ˆN3 with frontal slices Bplq, l “

0, ¨ ¨ ¨ , N3 ´ 1, the matrices circpuq and circpBq are defined as
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circpuq fi

»

—

—

—

–

u0 uN´1 ¨ ¨ ¨ u1
u1 u0 ¨ ¨ ¨ u2
...

...
. . .

...
uN´1 uN´2 ¨ ¨ ¨ u0

fi

ffi

ffi

ffi

fl

, circpBq fi

»

—

—

—

–

Bp0q BpN3´1q ¨ ¨ ¨ Bp1q

Bp1q Bp0q ¨ ¨ ¨ Bp2q

...
...

. . .
...

BpN3´1q BpN3´2q ¨ ¨ ¨ Bp0q

fi

ffi

ffi

ffi

fl

.

Definition 2.5. circular convolution

Let u, v P RN . The circular convolution between u and v produces a vector x of the

same size, defined as

x ” uf v fi circpuqv.

As a circulant matrix can be diagonalized by means of the discrete Fourier trans-

form (DFT), from Definition 2.5, we have DFTpxq “ diagpDFTpuqqDFTpvq, where

diagpuq returns a square diagonal matrix with elements of the vector u on the main

diagonal. As a result, the circular convolution between two vectors in Definition 2.5

is better understood in the Fourier domain, which is given by the following result.

Theorem 2.1. Cyclic Convolution Theorem [81]

Given u,v P RN , let x “ uf v as defined in Definition 2.5. We have

DFTpxq “ DFTpuq dDFTpvq, (2.2)

where d denotes the element-wise product.

If a tensor A P RN1ˆN2ˆN3 is considered as an N1ˆN2 matrix whose pi, jq-th entry

is a tube of dimension N3, i.e., Api, j, :q, then based on Definition 2.5, the t-product

between tensors is defined as follows.

Definition 2.6. t-product [34]

Let M P RN1ˆN2ˆN3 and N P RN2ˆN4ˆN3. The t-product of M and N , i.e. A fi

M ˚N , is an N1 ˆN4 ˆN3 tensor pi, jq-th tube is

Api, j, :q “
N2´1
ÿ

k“0

Mpi, k, :q fN pk, j, :q (2.3)

for all i “ 1, . . . , N1 and j “ 1, . . . , N2.
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Similar as the circular convolution in Definition 2.5, the t-product in Definition

2.6 can be better interpreted in the Fourier domain. Specifically, let Â be the tensor

whose pi, jq-th tube is DFTpApi, j, :qq. Then by Theorem 2.1 and Definition 2.6, we

have

Âpi, j, :q “
N2´1
ÿ

k“0

M̂pi, k, :q d N̂ pk, j, :q, (2.4)

which is the Fourier counterpart of Equation (2.3). Interestingly, for a fixed index l in

the third mode, Equation (2.4) is equivalent to Âplq “ M̂ plqN̂ plq, which is the conven-

tional matrix product. This nice equivalence relations between t-product and matrix

multiplication (in the Fourier domain) are summarized in the following theorem.

Theorem 2.2. [34] For tensors M P RN1ˆN2ˆN3 and N P RN2ˆN4ˆN3, the equiva-

lence relation

A “M ˚N ðñ Âplq “ M̂ plqN̂ plq (2.5)

holds for l “ 0, ¨ ¨ ¨ , N3 ´ 1, where Âplq is the l-th frontal slice of Â.

In what follows, we list some definitions used in the classical t-svd algorithm.

Definition 2.7. tensor transpose [34]

The transpose of a tensor A P RN1ˆN2ˆN3, denoted by AT , is obtained by transposing

all the frontal slices and then reversing the order of the transposed frontal slices 1

through N3 ´ 1.

The tensor transpose defined in Definition 2.7 has the same property as the matrix

transpose, i.e., pA ˚ BqT “ BT ˚AT .

Definition 2.8. orthogonal tensor [34]

A tensor U P RN1ˆN2ˆN3 is an orthogonal tensor if it satisfies UT ˚ U “ U ˚ UT “ I,

where I P RN1ˆN1ˆN3 is an identity tensor, in other words, its first frontal slice Ip0q

is an N1 ˆN1 identity matrix and all the other frontal slices are zero matrices.
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Finally, we given the definition of tensor Frobenius norm as it is quite useful for

tensor approximation.

Definition 2.9. tensor Frobenius norm [34]

The Frobenius norm of a third-order tensor A “ paijkq is defined as ||A||F “

b

ř

i,j,k |aijk|
2.

Definition 2.10. identity tensor [34]

The identity tensor I P RN1ˆN1ˆN3 is a tensor whose first frontal slice Ip0q is an

N1 ˆN1 identity matrix and all the other frontal slices are zero matrices.

Similar to orthogonal matrices, the orthogonality defined in Definition 2.8 pre-

serves the Frobenius norm of a tensor, i.e., given an orthogonal tensor Q, we have

||Q ˚A||F “ ||A||F . Moreover, when the tensor is second-order, Definition 2.8 coin-

cides with the definition of orthogonal matrices. Finally, note that the frontal slices

of an orthogonal tensor are not necessarily orthogonal.

Definition 2.11. multi-rank [34]

The multi-rank of a tensor A P RN1ˆN2ˆN3 is a vector in RN3 whose i-th entry equals

to the rank of Âp:, :, iq.

Definition 2.12. tubal-rank [34]

The tubal-rank of a tensor A P RN1ˆN2ˆN3 is the number of nonzero tubes Spi, i, :q,

i “ 0, ¨ ¨ ¨ ,minpN1, N2q ´ 1, in t-svd factorization.

circpuq fi

»

—

—

—

–

u0 uN´1 ¨ ¨ ¨ u1
u1 u0 ¨ ¨ ¨ u2
...

...
. . .

...
uN´1 uN´2 ¨ ¨ ¨ u0

fi

ffi

ffi

ffi

fl

, circpBq fi

»

—

—

—

–

Bp0q BpN3´1q ¨ ¨ ¨ Bp1q

Bp1q Bp0q ¨ ¨ ¨ Bp2q

...
...

. . .
...

BpN3´1q BpN3´2q ¨ ¨ ¨ Bp0q

fi

ffi

ffi

ffi

fl

.
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Chapter 3

Quantum Tensor Singular Value

Decomposition

3.1 Introduction

As introduced in Chapter 2, due to the advantage of the classical t-svd algorithm

and its high cost, we present a quantum version of t-svd for third-order tensors which

reduces the complexity to OpNpolylogpNqq. To our best knowledge, the efficiency

of this algorithm beats any known classical t-svd algorithms in the literature. In

Section 3.4, we extend the quantum t-svd algorithm to order-p tensors.

An important step in a classical t-svd algorithm is to perform discrete Fourier

transform (DFT) along the third mode of a tensor A P RN1ˆN2ˆN3 , obtaining Â with

computational complexity OpN3logN3q for each tube Api, j, :q, i “ 0, ¨ ¨ ¨ , N1 ´ 1;

j “ 0, ¨ ¨ ¨ , N2 ´ 1. Thus, the complexity of performing the DFT on all tubes of

the tensor A is OpN1N2N3logN3q. In the quantum t-svd algorithm to be proposed,

this procedure is accelerated by the quantum Fourier transform (QFT) [52] whose

complexity is only OpplogN3q
2q. Moreover, due to quantum superposition, the QFT

can be simultaneously performed on the third register of the state |Ay, which is

equivalent to performing the DFT for all tubes ofA parallelly, so the total complexity

of this step is still OpplogN3q
2q.
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After performing the QFT, in order to further accelerate the second step in the

classical t-svd algorithm which performs the matrix svd for every frontal slice of

Â, we apply a modified quantum singular value estimation (QSVE) algorithm orig-

inally proposed in [33] to the frontal slices Âp:, :, iq parallelly with complexity at

most OpNpolylogpNqq for N dimensional tensors. Traditionally, the quantum sin-

gular value decomposition of non-sparse low-rank matrices involves exponentiating

matrices and outputs the superposition state of singular values and their associated

singular vectors. However, this Hamiltonian simulation method requires that the

matrix to be exponentiated be low-rank, which is difficult to be satisfied in gen-

eral. In our algorithm, we use the modified QSVE algorithm, where the matrix is

unnecessarily low-rank, sparse or Hermitian.

It should be notice that the original QSVE algorithm proposed in [33] has to be

carefully modified to become a useful subroutine in our quantum tensor-svd algo-

rithm. Specifically, the original QSVE, stated in Lemma 2.2, requires the matrix A

be stored in the classical binary tree structure, then the singular values of A can

be estimated efficiently. Given a tensor A P RN1ˆN2ˆN3 , in Algorithm 3, QSVE is

performed on the matrices Âpmq which are frontal slices of Â, m “ 0, ¨ ¨ ¨ , N3 ´ 1.

The difficulty lies in the fact that we cannot require all Âpmq be stored in the data

structure since they are obtained after QFT. It is more reasonable to assume that the

frontal slices of the original tensor A is stored in the binary tree structure. Therefore,

the main obstacle we need to overcome is how to estimate the singular values of Âpmq

on the condition that every frontal slice of the original tensor Apkq is stored in the

data structure. This problem is solved by Theorem 3.2, and whose proof presents a

detailed illustration of this process.

The rest of this chapter is organized as follows. A standard classical t-svd algo-

rithm and several related concepts are introduced in Section 3.2; Section 3.3 presents

our main algorithm, quantum t-svd, and its complexity analysis. We extend the
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quantum t-svd algorithm to order-p tensors in Section 3.4. In Section 3.5, we con-

clude the chapter.

3.2 Preliminaries

In this subsection, we present the classical t-svd as well as its pseudocode, Al-

gorithm 1. Simply speaking, the t-svd of a tensor can be interpreted as the usual

matrix svd in the Fourier domain, as can be seen in Algorithm 1.

Theorem 3.1. tensor singular value decomposition (t-svd) [34]

For A P RN1ˆN2ˆN3, its t-svd is given by A “ U ˚ S ˚ VT , where U P RN1ˆN1ˆN3 and

V P RN2ˆN2ˆN3 are orthogonal tensors, and every frontal slice of S P RN1ˆN2ˆN3 is a

diagonal matrix, and the entries of S are called the singular values of A.

The t-svd algorithm [34] utilizing the fast Fourier transform (fft) is presented as

followed.

Algorithm 1 t-svd for third-order tensors [34]

Input: A P RN1ˆN2ˆN3

Output: U P RN1ˆN1ˆN3 ,S P RN1ˆN2ˆN3 ,V P RN2ˆN2ˆN3

Â “ fftpA, rs, 3q;
for i “ 1, ¨ ¨ ¨ , N3 do
rU, S, V s “ svdpÂp:, :, iqq;
Ûp:, :, iq “ U ; Ŝp:, :, iq “ S; V̂p:, :, iq “ V ;

end for
U “ ifftpÛ , rs, 3q;S “ ifftpŜ, rs, 3q;V “ ifftpV̂ , rs, 3q;
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Figure 3.1: The t-svd of A P RN1ˆN2ˆN3 .

By this means, we can obtain the tensor decomposition for a tensor A using

t-product by performing matrix factorization strategies on Âplq. For example, the

tensor QR decomposition A “ Q ˚R is performed by the matrix QR decomposition

on each frontal slice of the tensor Â, i.e., Âplq “ Q̂plqR̂plq, for l “ 0, ¨ ¨ ¨ , N3 ´ 1,

where Q̂plq is an orthogonal matrix and R̂plq is an upper triangular matrix [22]. If

we compute the matrix svd on Âplq, i.e., Âplq “ Û plqŜplqV̂ plq:, the t-svd of tensor A is

obtained; see Algorithm 1. Before presenting this algorithm, we first introduce some

related definitions.

For an order-p tensor A P RN1ˆN2ˆ¨¨¨ˆNp , the frontal slices of A are referenced

using linear indexing by reshaping the tensor into anN1ˆN2ˆN3N4 ¨ ¨ ¨Np third-order

tensor, then the i-th frontal slice is Ap:, :, iq Using this representation, one version of

MATLAB pseudocode of the t-svd algorithm for order-p tensors is provided below.
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Algorithm 2 t-svd for order-p tensors [45]

Input: A P RN1ˆN2ˆ¨¨¨ˆNp , ι “ N3N4 ¨ ¨ ¨Np

for i “ 3, ¨ ¨ ¨ , p do
Â “ fftpA, rs, iq;

end for
for i “ 1, ¨ ¨ ¨ , ι do
rU, S, V s “ svdpÂp:, :, iqq;
Ûp:, :, iq “ U ; Ŝp:, :, iq “ S; V̂p:, :, iq “ V ;

end for
for i “ p, ¨ ¨ ¨ , 3 do
U “ ifftpÛ , rs, iq;S “ ifftpŜ, rs, iq;V “ ifftpV̂ , rs, iq;

end for

In the t-svd literature, the diagonal elements of the tensor S are called the singular

values of A. Moreover, the l2 norms of the nonzero tubes Spi, i, :q are in descending

order, i.e.,

||Sp0, 0, :q||2 ě ||Sp1, 1, :q||2 ě ¨ ¨ ¨

ě||SpminpN1, N2q ´ 1,minpN1, N2q ´ 1, :q||2.

However, it should be noticed that the diagonal elements of S may be unordered and

even negative due to the inverse DFT. Thus, the truncated t-svd method for data

approximation or tensor completion is designed by truncating the diagonal elements

of Ŝ instead of S, as the diagonal elements of the former are non-negative and ordered

in descending order; see Lemma 4.1 in Chapter 4.

3.3 Quantum t-svd for third-order tensors

3.3.1 The algorithm

In this section, we present our quantum quasilinear-time t-svd algorithm for third-

order tensors, provided that every frontal slice of the tensor is stored in the data

structure as introduced in Lemma 2.1 and the tensor as a quantum state can be
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efficiently prepared. We first present the algorithm (Algorithm 3) in Section 3.3.1,

then we analyze its computational complexity in Section 3.3.2.

Assumption 1. Every frontal slice of A is stored in a tree structure introduced in

Lemma 2.1.

Assumption 2. We can prepare the state

|Ay “ 1

||A||F

N1´1
ÿ

i“0

N2´1
ÿ

j“0

N3´1
ÿ

k“0

Api, j, kq |iy |jy |ky (3.1)

efficiently. Without loss of generality, we assume that ||A||F “ 1.
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Algorithm 3 Quantum t-svd for third-order tensors

Input: tensor A “ paijkq P RN1ˆN2ˆN3 prepared in a quantum state |Ay,
precision ε

pmq
SVE, m “ 0, ¨ ¨ ¨ , N3 ´ 1, r “ mintN1, N2u.

Output: state |φy .

1: Perform the QFT on the third register of the quantum state |Ay in (3.1) to get

|Ây “ 1
?
N3

N3´1
ÿ

m“0

˜

ÿ

i,j,k

ωkmaijk |iy
c
|jyd

¸

|mye . (3.2)

2: Perform the controlled operation

U fi

N3´1
ÿ

m“0

U
pmq
SVE b |my xm| (3.3)

on the state |Ây to obtain

U |Ây “
N3´1
ÿ

m“0

r´1
ÿ

l“0

σ̂
pmq
l |û

pmq
l y

c
|v̂
pmq
l y

d
|σ̂
pmq

l y
a

|mye , (3.4)

where σ̂
pmq

l is the estimated value of σ̂
pmq
l , and the singular value decomposition

of Âpmq is Âpmq “
řr´1
l“0 σ̂

pmq
l û

pmq
l v̂

pmq:
l .

3: Perform the inverse QFT on the last register of (3.4) and output the state |φy
expressed as

1
?
N3

N3´1
ÿ

t,m“0

r´1
ÿ

l“0

σ̂
pmq
i ω´tm |û

pmq
l y

c
|v̂
pmq
l y

d
|σ̂
pmq

l y
a

|tye , (3.5)

where ω “ e2πi{N3 .

The quantum circuit of Algorithm 3 is shown in FIG. 3.2, where the blocks U
pmq
SVE,

m “ 0, ¨ ¨ ¨ , N3 ´ 1, are illustrated in FIG. 3.3.

Before illustrating the algorithm, we first interpret the final quantum state |φy.

Similar to the quantum singular value decomposition for matrices [65] that the output

allows singular values and associated singular vectors to be revealed in a quantum

form, the output state |φy in our algorithm also finds the estimated values of σ̂
pmq
l ,
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σ̂
pmq

l , which are stored in the third register, in superposition with corresponding

singular vectors. Although the singular values of the tensor A are defined as σ
pkq
l “

1?
N3

řN3´1
m“0 ω

´kmσ̂
pmq
l , according to Algorithm 1 for the classical t-svd, the singular

values of Âpmq, σ̂
pmq
l , have wider applications than the singular values of A, σ

pkq
l . For

example, some low-rank tensor completion problems are solved by minimizing the

tensor nuclear norm of the tensor, which is defined as the sum of all the singular

values of Âpmq [93, 95]. Moreover, the theoretical minimal error truncation is also

based on the singular values of Âpmq; see Lemma 4.1. Therefore, in Algorithm 3,

we estimate the values of σ̂
pmq
l , m “ 0, ¨ ¨ ¨ , N3; l “ 0, ¨ ¨ ¨ , r ´ 1, and store them

in the third register of the final state |φy for future use. Furthermore, in terms

of the circulant matrix circpAq defined in Definition 2.4, 1?
N3

řN3´1
t“0 ω´tm |ty |v̂

pmq
l y

is the right singular vector corresponding to its singular value σ̂
pmq
l . Similarly, the

corresponding left singular vector is 1?
N3

řN3´1
t“0 ω´tm |ty |û

pmq
l y.

Next, we give a detailed explanation on Step 2. We first rewrite the state in (3.2)

for further use. For every fixed m, the unnormalized state

1
?
N3

ÿ

i,j,k

ωkmaijk |iy |jy (3.6)

in (3.2) corresponds to the matrix

Âpmq “
1
?
N3

ÿ

i,j,k

ωkmaijk |iy xj| , (3.7)

namely, the m-th frontal slice of the tensor Â. Normalizing the state in (3.6) produces

a quantum state

|Âpmqy fi
1

?
N3||Âpmq||F

ÿ

i,j,k

ωkmaijk |iy
c
|jyd . (3.8)
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Therefore, the state |Ây in (3.2) can be rewritten as

|Ây “
N3´1
ÿ

m“0

||Âpmq||F |Â
pmq
y
cd
|mye . (3.9)

In Step 2, we utilize a controlled operation U defined in (4.6) to estimate the

singular values of Âpmq parallelly, m “ 0, ¨ ¨ ¨ , N3´1. Due to the quantum parallelism,

the operator U performed on the superposition state |Ây is thus equivalent to U
pmq
SVE

performed on each of the components |Âpmqy as a single input. That is,

U |Ây “
N3´1
ÿ

m“0

||Âpmq||F

´

U
pmq
SVE |Â

pmq
y
cd
¯

|mye . (3.10)

Next, we focus on the result of U
pmq
SVE |Â

pmqy in (3.10). The state |Âpmqy can be

rewritten in the form

|Âpmqy “
r´1
ÿ

l“0

σ̂
pmq
l

||Âpmq||F
|û
pmq
l y

c
|v̂
pmq
l y

d
, (3.11)

where
σ̂
pmq
l

||Âpmq||F
is the rescaled singular value of Âpmq. The following theorem describes

U
pmq
SVE, a modified quantum singular value estimation process on each matrix Âpmq

utilizing the corresponding input |Âpmqy represented in (3.11).

Theorem 3.2. Given every frontal slice of the original tensor A stored in the data

structure (Lemma 2.1), there is a quantum algorithm, denoted as U
pmq
SVE, that uses the

input |Âpmqy in (3.11) and outputs the state

U
pmq
SVE |Â

pmq
y “

1

||Âpmq||F

r´1
ÿ

l“0

σ̂
pmq
l |û

pmq
l y

c
|v̂
pmq
l y

d
|σ̂
pmq

l y
a

(3.12)

with probability at least 1´1{polypN2q, where pσ̂
pmq
l , û

pmq
l , v̂

pmq
l q is the singular triplet

of the matrix Âpmq in (3.7), and ε
pmq
SVE is the precision such that |σ̂

pmq

l ´ σ̂
pmq
l | ď
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ε
pmq
SVE||Â

pmq||F for all l “ 0, ¨ ¨ ¨ , r´ 1. For tensor A with same dimension N on every

order, the running time to implement U
pmq
SVE is O

´

NpolylogN{ε
pmq
SVE

¯

.

Proof. See also the proof of Theorem 3.2.

Actually, the process U
pmq
SVE proposed in Theorem 3.2 is quite different from the

original QSVE technique introduced in Lemma 2.2. In Theorem 3.2, it is proved

that we can estimate the singular values of Âpmq on the condition that each frontal

slice of the original tensor Apkq is stored in the binary tree. The proof of Theorem

3.2 presents a detailed illustration of the procedure of U
pmq
SVE, and the circuit shown

in FIG. 3.3 can help to understand it.

Thus after Step 2, the state in (3.10) becomes the state in (3.4) based on Theorem

3.2.

Our quantum t-svd algorithm can be used as a subroutine of other algorithms,

that is, it is suitable for some specific applications where the singular values of

Âpmq are used. For example, some third order tensor completion problems can be

efficiently solved by extracting the singular values of Âpmq and only keeping the

greater ones. Moreover, some context-aware recommendation systems also utilize

tensor factorizations, such as the truncated t-svd [93] and the truncated HOSVD

[77].

Remark 3.1. Although the classical t-svd is essentially a matrix SVD in the Fourier

basis, but there are certain subtleties which makes it difficult to apply QSVE directly.

Specifically, given a third-order tensor A, in step 1 of the t-svd algorithm, DFT is

implemented on the tube Api, j, :q for each pair pi, jq, resulting in a linear combination

of elements in this tube. After that, in step 2, matrix SVD is performed on each

frontal slice of Â, namely Âp:, :, kq for each given k. Hence, DFT and matrix SVD

are performed on different directions.

Remark 3.2. Note that the input of U
pmq
SVE is |Âpmqy instead of an arbitrary quan-
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tum state commonly used in some quantum svd algorithms [65]. This input fits

our quantum t-svd algorithm better since it keeps the entire singular information

pσ̂
pmq
l , û

pmq
l , v̂

pmq
l q completely, thus our algorithm can output a quantum state whose

representation is similar to the matrix svd. Another consideration is that we do not

need the information unrelated to the tensor A (e.g. an arbitrary state) to be involved

in our algorithm.

Remark 3.3. In terms of the circulant matrix circpAq defined in Definition 2.4,

1?
N3

řN3´1
t“0 ω´tm |ty |v̂

pmq
l y is the right singular vector corresponding to its singular

value σ̂
pmq
l , the diagonal entry of the Ŝpmq. Similarly, the corresponding left singular

vector is 1?
N3

řN3´1
t“0 ω´tm |ty |û

pmq
l y.

In some works, the singular values of Âpmq are defined as the singular values

of the tensor A, and most of the tensor reconstruction algorithms are achieved by

truncating these singular values [93] because they are ordered and their theoretical

basis is Lemma 4.1. Also, some low-rank tensor completion problems based on

tensor factorization are solved by some optimization methods whose objective is to

minimize the TNN of the tensor [93, 95]. Therefore, the singular values of Âpmq

have wider applications. Inspired by this, our quantum t-svd outputs a state with

the third register storing the estimated singular values of Âpmq superposed with the

corresponding singular vectors.

3.3.2 Complexity analysis

For simplicity, we consider a tensor A P RNˆNˆN with the same dimensions on

each mode. In Steps 1 and 3 of Algorithm 3, performing the QFT or the inverse QFT

parellelly on the third register of the state |Ay has the complexity of OpplogNq2q,

compared with the complexity OpN3logNq of the DFT performed on N2 tubes of

the tensor A in the classical t-svd algorithm. Moreover, in the classical t-svd, the

25



complexity of performing the matrix svd (Step 2 of Algorithm 1) for all frontal slices

of Â is OpN4q. In contrast, in our quantum t-svd algorithm, this step is accelerated

by Theorem 3.2 (the modified QSVE) whose complexity is O pNpolylogpNqq on each

frontal slice Âpmq. Since we perform this modified QSVE on each Âpmq parallely,

m “ 0, ¨ ¨ ¨ , N ´ 1, the running time of Step 2 is still O pNpolylogpNqq. Therefore,

the total computational complexity of Algorithm 3 is O pNpolylogpNqq.

|0y
n2

n1

n1

n2

n3

a

b

c

d

e

|0y

|0y

|0y

|0y

UA

F

U
p0q
SVE U

p1q
SVE U

pN3´1q
SVE

F :
¨ ¨ ¨

Figure 3.2: Circuit for Algorithm 3. UA is the unitary operator for preparing the
state |Ay. The QFT is denoted by F. Ni “ 2ni , i “ 1, 2, 3. The blocks U

pmq
SVE are

further illustrated in FIG. 3.3.

|0y H

|0y

Um W20

m W21

m W2n2´1

m

n2

n1

n1

n2

a

b

c

d

F : Ufm

U:m

¨ ¨ ¨

Figure 3.3: Circuit for U
pmq
SVE, m “ 0, ¨ ¨ ¨ , N3´ 1. The initial state of register c and d

is |Âpmqy. Um refers to UQ̂m . Ufm is a unitary operator implemented through oracle
with a computable function fmpxq. The notation is further explained in the proof of
Theorem 4.1.
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3.4 Quantum t-svd for order-p tensors

Following a similar procedure, we can extend the quantum t-svd for third-order

tensors to order-p tensors easily.

We assume that the quantum state |Ay corresponding to the tensorA P RN1ˆ¨¨¨ˆNp

can be prepared efficiently, where Ni “ 2ni with ni being the number of qubits on

the corresponding mode and

|Ay “
N1´1
ÿ

i1“0

¨ ¨ ¨

Np´1
ÿ

ip“0

Api1, ¨ ¨ ¨ , ipq |i1, ¨ ¨ ¨ , ipy . (3.13)

Next, we perform the QFT on the third to the p-th mode of the state |Ay, and then

use |my to denote |m3y ¨ ¨ ¨ |mpy, i.e., m “ m3Π
p
i“4Ni`m4Π

p
i“5Ni`¨ ¨ ¨`mp. The value

of m ranges from 0 to ι´1, where ι “ N3N4 ¨ ¨ ¨Np`N4N5 ¨ ¨ ¨Np`¨ ¨ ¨`Np.Specially,

ι “ pNp´1 ´Nq {pN ´ 1q when N3 “ ¨ ¨ ¨ “ Np “ N . Then we obtain

|Ây “ 1
?
ι

ι´1
ÿ

m“0

ÿ

i1,¨¨¨ ,ip

ω
řp
j“3 ijmjApi1, ¨ ¨ ¨ , ipq |i1, i2y |my . (3.14)

Let the matrix

Âpmq “
1
?
ι

ÿ

i1,i2

ÿ

i3,¨¨¨ ,ip

ω
řp
j“3 ijmjApi1, ¨ ¨ ¨ , ipq |i1y xi2|

and perform the modified QSVE on Âpmq, m “ 0, ¨ ¨ ¨ , ι´1, parallelly using the same

strategy described in Section 3.3.1, we can get the state

|ψpy “
ι´1
ÿ

m“0

˜

r´1
ÿ

l“0

σ̂
pmq
l |û

pmq
l y |v̂

pmq
l y |σ̂

pmq

l y

¸

|my (3.15)

after Step 2.

Finally, we recover the |m3y ¨ ¨ ¨ |mpy expression and perform the inverse QFT on

the p-th to the third register, obtaining the final state

|φpy “
1

p
?
Nqp´2

N3´1
ÿ

m3“0

¨ ¨ ¨

Np´1
ÿ

mp“0

r´1
ÿ

l“0

σ̂
pmq
l ω´

řp
j“3 ijmj |û

pmq
l y |v̂

pmq
l y |σ̂

pmq

l y |i3y ¨ ¨ ¨ |ipy

(3.16)
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corresponding to the quantum t-svd of order-p tensor A.

Algorithm 4 Quantum t-svd for order-p tensors

Input: tensor A P RN1ˆ¨¨¨ˆNp prepared in a quantum state, precision ε
pmq
SVE,

m “ 0, ¨ ¨ ¨ , ι´ 1.
Output: state |φpy .

1: Perform the QFT parallelly from the third to the p-th register of quantum state
|Ay, obtain the state |Ây.

2: Perform the modified QSVE for each matrix Âpmq with precision ε
pmq
SVE parallelly,

m “ 0, ¨ ¨ ¨ , ι´ 1, by using the controlled-USVE acting on the state |Ây, to obtain
the state |ψpy.

3: Perform the inverse QFT parallelly from the third to the p-th register of the
above state and output the state |φpy.

For order-p tensor A P RNˆ¨¨¨ˆN , compared with the classical t-svd algorithm

[45] whose time complexity is OpNp`1q, our algorithm output a quantum state with

the classical t-svd information encoded, and the time complexity of our quantum

algorithm is O pNpolylogpNqq followed by a similar analysis.

3.5 Conclusion

In this chapter, we present a quantum t-svd algorithm for third-order tensors with

complexity OpNpolylogpNqq. The key tools that accelerate this process are quantum

Fourier transform and quantum singular value estimation, then we extend this third-

order tensor algorithm to order-p tensors. Moreover, based on the quantum t-svd

algorithm, a quantum 3D context-aware recommendations algorithm is proposed

in Chapter 4, which achieves a polynomial speedup compared with the classical

counterpart.
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Chapter 4

Quantum context-aware

recommendation systems

4.1 Introduction

It is well known that truncating k-term matrix svd provides the best rank-k ap-

proximation of a matrix in both `2 norm and Frobenius norm. This raises a question

whether the truncated tensor decompositions also have the similar optimality. The

CP decompostion expresses a tensor as a sum of outer products of vectors (rank-1

tensor), and CP-rank is defined as the minimal number of rank-1 tensor necessary to

construct the tensor, but calculating the CP-rank and the rank-k CP approximation

are numerically unstable. Also, truncated Tucker decomposition does not yield the

best fit of the original tensor [90]. In contrast, the t-svd gives an optimal approx-

imation of a tensor in Frobenius norm [90]. Unfortunately, the cost of computing

t-svd factorization is prohibitively expensive especially for very high dimensional ten-

sors, e.g., the cost is OpN4 ` N3logNq for a third-order tensor with dimension N .

Therefore, much work focuses on computing low-rank tensor approximations based

on t-svd with comparatively low cost. For example, randomized tensor low-rank

representations based on the t-svd can give the nearly optimal approximation with

complexity OpkN3 `N3logNq for a third-order tensor with dimension N [90].
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The quantum algorithm that we propose in this work implements a machine

learning task, namely, context-aware recommendation systems in which preference

information is encoded in a third-order tensor. For recommendation systems mod-

eled by an m ˆ n preference matrix, Kerenidis and Prakash designed a quantum

algorithm that offers recommendations by just sampling from an approximated pref-

erence matrix [33]. Therefore, the running time is only Oppolypkqpolylogpmnqq if

the preference matrix has a good rank-k approximation. To achieve this, they pro-

jected a state corresponding to a user’s preferences to the approximated row space

spanned by singular vectors whose corresponding singular values are greater than

the prescribed threshold. After measuring this projected state in a computational

basis, they got recommended product indices for the input user.

In recommendation systems algorithms, most model-based Collaborative Filter-

ing approaches, e.g. matrix factorization, fail to model context information [31].

Context is an important factor to consider in personalized recommendation systems.

In [88], it is demonstrated by an experiment that when a recommendation system is

modeled by a tensor whose third dimension is context (e.g. time), accuracy could be

improved compared to the non-contextual modeling. Hence, most recent research has

focused on developing context-aware recommendation systems modeled by tensors;

see, e.g., [77, 93, 61, 31]. The classical third-order tensor recommendation systems

algorithms based on tensor factorizations, such as the truncated t-svd [93] and the

truncated HOSVD (T-HOSVD) [77], all have the computational complexity at least

OpkN3q.

Taking into account the effectiveness of third-order tensor modeling and high cost

of the truncated t-svd algorithm, in this chapter we extend Kerenidis and Prakash’s

algorithm [33] from matrices to third-order tensors and propose a quantum context-

aware recommendation systems algorithm based on truncated t-svd factorization. In

general, a user’s preference in a certain context is very likely to affect the recommen-
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dation for him/her at other contexts. As the quantum Fourier transform (QFT) used

in our t-svd algorithm is performed to bind a user’s preferences in different context

together, our quantum algorithm is well suited to context-aware recommendation sys-

tems. The general idea of our algorithm is to approximate the observed preference

tensor using truncated matrix svd in the Fourier domain. Similar to the low-rank

assumption adopted in quantum 2D recommendation systems [33], we exploit low

structural and informational complexity of the data, expressed as low tubal-rank

hypothesis of the underlying data, by which it is feasible to predict the missing en-

tries. Moreover, taking advantage of the quantum parallelism, the quantum singular

value estimation of all frontal slices after QFT can be performed parallelly, which

dramatically reduces the time complexity to OpN
?
kpolylogpNqq.

In Section 4.5, our numerical experiments show that the truncated t-svd is better

than T-HOSVD and TT decompositions when applied to context-aware recommen-

dation systems. In fact, our quantum algorithm suits the context-aware recommen-

dation systems model very well since it is not necessary to reconstruct the entire

tensor. All we need is to recommend products that a user prefers, which corresponds

to measuring certain times a quantum state representing a user’ approximated pref-

erence, so our quantum algorithm can provide good recommendations with much

lower complexity.

The rest of this chapter is organized as follows. Preliminaries are given in Sec-

tion 4.2. In Section 4.3, we propose our main algorithm, quantum context-aware

recommendation systems algorithm. In Section 4.4, we calculate the quantum cost

of QSVE algorithm and our algorithm. In Section 4.5, we numerically validate the

classical counterpart of our model with real datasets. At last, we compare Tang’s 2D

quantum-inspired recommendation systems with our algorithm in Section 4.6 and

we conclude this chapter in Section 4.7.
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4.2 Preliminaries

In this section, we first present the definition of the tensor nuclear norm (TNN),

and then introduce Lemma 4.1 which is the theoretical basis of our quantum algo-

rithm for recommendation systems algorithm.

TNN is frequently used as an objective function to be minimized in many opti-

mization algorithms for data completion [92, 93, 14, 95]. Since directly minimizing

the tensor multi-rank (defined as a vector whose i-th entry is the rank of Âpiq) is

NP-hard, some works approximate the rank function by its convex surrogate, i.e.,

TNN [93]. It is proved that TNN is the tightest convex relaxation to l1 norm of the

tensor multi-rank [93] and the problem is reduced to a convex one when transformed

into minimizing TNN.

Definition 4.1. [93] Tensor nuclear norm

The tensor nuclear norm (TNN) of A P RN1ˆN2ˆN3, denoted by ||A||TNN , is defined

as the sum of the singular values of Âplq, i.e., ||A||TNN “
řN3´1
l“0 ||Âplq||˚, where || ¨ ||˚

refers to the matrix nuclear norm, namely the sum of the singular values.

Many important applications of the t-svd algorithm, such as data compression

and completion, utilize the optimality of truncated t-svd in the sense that it gives

an optimal approximation of a tensor measured by the Frobenius norm. The follow-

ing theorem describes this property, which is the theoretical basis of our quantum

algorithm for recommendation systems to be developed in Sections 4.3.2.

Lemma 4.1. [34, 90] Suppose the t-svd of the tensor A P RN1ˆN2ˆN3 is A “ U˚S˚VT .

Then we have

A “
minpN1,N2q´1

ÿ

i“0

Up:, i, :q ˚ Spi, i, :q ˚ Vp:, i, :qT ,

where the matrices Up:, i, :q and Vp:, i, :q and the vector Spi, i, :q are regarded as ten-

sors of order 3. For 1 ď k ă minpN1, N2q, define Ak fi
řk´1
i“0 Up:, i, :q ˚ Spi, i, :q ˚ Vp:
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, i, :qT . Then

Ak “ arg min
ÃPMk

||A´ Ã||F , (4.1)

where Mk “ tX ˚ Y |X P RN1ˆkˆN3 ,Y P RkˆN2ˆN3u. Therefore, ||A ´ Ak||F is the

theoretical minimal error, given by ||A´Ak||F “
b

řminpN1,N2q´1
i“k ||Spi, i, :q||22.

4.3 Quantum algorithm for recommendation sys-

tems modeled by third-order tensors

In this section, we will first introduce the notation adopted in this section and then

give an overview of Algorithm 5. In Section 4.3.1, the main ideas and assumptions of

the algorithm are summarized. In Section 4.3.2, we explain each step of our algorithm

in detail, followed by a summary in Algorithm 5. Error analysis is given in Section

4.3.3 and complexity analysis is conducted in Section 4.3.4.

The preference information of users is stored in a third-order tensor A P RNˆNˆN ,

called the preference tensor, whose three modes represent user(i), product(j) and

context(t) respectively. The tube Api, j, :q is regarded as the rating scores of the

user i for the product j under different contexts. For user i in context t, the entry

Api, j, tq takes value 1 indicating the product j is “good” and value 0 otherwise. In

this sense, a triplet pi, j, tq is called a good recommendation if Api, j, tq “ 1 or a bad

recommendation otherwise. Let tensor T be the random tensor obtained by sampling

from the tensor A with probability p and T̂ be the tensor obtained by performing

the QFT along the third mode of T . We use T̂ pmq to denote the m-th frontal slice of

tensor T̂ . T̂
pmq
ěτm is formed by projecting T̂ pmq onto the space spanned by the singular

vectors whose corresponding singular values are greater than the threshold τm. T̂ěτ

denotes the tensor whose m-th frontal slice is T̂
pmq
ěτm . Here, the threshold τ of tensor

T̂ actually denotes a list of thresholds tτ0, ¨ ¨ ¨ , τN´1u since different frontal slices
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T̂ pmq have their corresponding thresholds τm. Těτ denotes the tensor obtained by

performing the inverse QFT along the third mode of T̂ěτ .

4.3.1 Main ideas

We will propose Algorithm 5 which recommends a product j to a user i at a certain

context t0. The algorithm is inspired by the matrix recommendation systems method

[1, 33] and a tensor reconstruction algorithm [93]. The main ideas are summarized

in the following flow chart:

T pi, :, :q QFT
ÝÝÝÑ T̂ pi, :, :q tube

ÝÝÑ T̂ pi, :,mq approximation
ÝÝÝÝÝÝÝÝÑ

T̂ěτ pi, :,mq
stack up
ÝÝÝÝÑ T̂ěτ pi, :, :q

iQFT
ÝÝÝÑ Těτ pi, :, :q.

Suppose there is a hidden preference tensor A which is assumed to have a low

tubal-rank k. This low tubal-rank assumption is also adopted in the classical trun-

cated t-svd data completion problem [92, 75]. In practical applications, only a part

of the entries of A can be observed. Our goal is to predict the missing entries and

recommend product which has a high predicted value. This partially observed tensor

is called the subsample tensor T which is sparse in general. Here, we use the sub-

sampling method proposed in [1] to get T , which is also adopted in [33]. Specifically,

Tijt “ Aijt{p with probability p and Tijt “ 0 otherwise, where p is called the subsam-

pling probability. Clearly, the expectation EpT q “ A. In this sense, our algorithm

can be understood as an approximate reconstruction of the hidden preference tensor

A, of which we are only given a sample ratings in the form of the sparse tensor T .

Our algorithm recommends products according to the low tubal-rank tensor Těτ

which can be proved to an approximation of the hidden preference tensor A. Inspired

by the t-svd, this approximation process is conducted under the Fourier domain, as

shown in the above flow chart. Next we explain each step of the flow chart in detail.

Given a state |T pi, :, :qy representing the observed preference information of user i, we
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first perform QFT on its last register, obtaining the state |T̂ pi, :, :qy. For each T̂ pmq,

which is the m-th frontal slice of the tensor T̂ , we perform the modified QSVE on this

matrix using the input state |T̂ pi, :,mqy and truncate the resulting singular values

with threshold τm, m “ 0, ¨ ¨ ¨ , N3 ´ 1 obtaining the state |T̂ěτ pi, :,mqy. Stacking

tubes T̂ěτ pi, :,mq (m “ 0, . . . , N ´ 1) yields the horizontal slice T̂ěτ pi, :, :q which can

be regarded as an approximation of T̂ pi, :, :q. After the inverse QFT on T̂ěτ pi, :, :q,

the horizontal slice Těτ pi, :, :q is obtained. We prove in Section 4.3.3 that Těτ pi, :, :q is

an approximation of T pi, :, :q, hence it can approximate user i’s preference Api, :, :q.

The approximation tensor Těτ is non-sparse in general, thus we can get a rec-

ommended index based on the non-zero entries of Těτ . For a given context t, our

algorithm provides a recommended product index j for a user i by just measuring

the output quantum state |Těτ pi, :, :qy in the computational basis. In Theorem 4.2,

we provide an upper bound on the probability of the pair pi, j, tq being a bad rec-

ommendation. This upper bound could be small by taking reasonable values for the

related parameters.

Assumption 3. The following assumptions are used in Algorithm 5.

1. Every frontal slice of the subsample tensor T P RNˆNˆN is stored in the data

structure as mentioned in Lemma 2.1.

2. For all i,m “ 0, ¨ ¨ ¨ , N ´ 1, we assume the tubes Api, :,mq satisfy

1

1` γ

||A||2F
N2

ď ||Api, :,mq||22 ď p1` γq
||A||2F
N2

(4.2)

for a given γ ą 0.

The second assumption indicates that users are all typical users, that is, the

number of preferred products of users is close to the average in any context m.

These assumptions are also adopted in [33] for matrices, where they explain the

rationality of these assumptions.
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4.3.2 The algorithm

Given the hidden preference tensorA, the sampling probability p , the assumed low

tubal-rank k, and the precision ε
pmq
SVE of the modified QSVE on each T̂ pmq, Algorithm

5 outputs the state corresponding to the approximation of the i-th horizontal slice

Api, :, :q. The quantum circuits of Algorithm 5 is shown in FIG. 4.1. In what follows

we explain the steps of this algorithm.

The dynamic preference tensor A P RNˆNˆN can be interpreted as the preference

matrix Ap:, :, tq evolving over the context t. It is reasonable to believe that the tubes

Api, :, 0q, ¨ ¨ ¨ ,Api, :, N ´ 1q are related to each other because the preference of the

same user i in different contexts is mutually influenced. Considering these relations,

we merge tubes in the same horizontal slice together through the QFT after getting

the subsample tensor T . In other words, in Step 1, the QFT is performed on the

last register of the input state

|T pi, :, :qy “ 1

||T pi, :, :q||F

N´1
ÿ

j,t“0

T pi, j, tq |jyd |tye (4.3)

to get

|T̂ pi, :, :qy “ 1

||T pi, :, :q||F

N´1
ÿ

m“0

||T̂ pi, :,mq||2 |T̂ pi, :,mqy
d
|mye , (4.4)

where ω “ e2πi{N and

|T̂ pi, :,mqy “ 1
?
N ||T̂ pi, :,mq||2

N´1
ÿ

j,t“0

ωtmT pi, j, tq |jy . (4.5)

Note that ||T̂ pi, :, :q||F “ ||T pi, :, :q||F , since the Frobenius norm does not change

under the Fourier transform. In FIG. 4.1, the input state |T pi, :, :qy is represented in

lines d and e with rlogN s qubits, and the QFT is denoted as F in line e.
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In Step 2, a controlled operator

U “
N´1
ÿ

m“0

U
pmq
SVE b |my xm|

e (4.6)

is performed on the state |T̂ pi, :, :qy, where U
pmq
SVE denotes the modified quantum

singular value estimation process on the matrix T̂ pmq with the input |T̂ pi, :,mqy.

As U
pmq
SVE follows similar steps of QSVE, its circuit is also similar to that of QSVE

given in FIG. 4.2. The quantum cost of implementing the operator U is analyzed

in Appendix 4.4.2. Because of the quantum parallelism, the operator U performed

on the superposition state |T̂ pi, :, :qy is thus equivalent to U
pmq
SVE performed on each of

the components |T̂ pi, :,mqy as a single input, i.e.,

U |T̂ pi, :, :qy “ 1

||T pi, :, :q||F

N´1
ÿ

m“0

||T̂ pi, :,mq||2
´

U
pmq
SVE |T̂ pi, :,mqy

d
¯

|mye . (4.7)

Next, we focus on U
pmq
SVE |T̂ pi, :,mqy

d
in (4.7). Suppose

N´1
ř

j“0

σ̂
pmq
j û

pmq
j v̂

pmq:
j is the

svd of T̂ pmq, we first express |T̂ pi, :,mqy under the basis of v̂
pmq
j , j “ 0, ¨ ¨ ¨ , N ´ 1,

i.e.,

|T̂ pi, :,mqy “
N´1
ÿ

j“0

β
pimq
j |v̂

pmq
j y , (4.8)

then we perform the modified QSVE U
pmq
SVE on T̂ pmq, The detail of this operation is

further illustrated in the following theorem.

Theorem 4.1. Given every frontal slice of T stored in the data structure as men-

tioned in Lemma 2.1, there is a quantum algorithm, denoted as U
pmq
SVE, that uses the

input |T̂ pi, :,mqy in the form (4.8) and outputs the state

ÿ

j

β
pimq
j |v̂

pmq
j y

d
|σ̂
pmq

j y
b

(4.9)
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with probability at least 1´1{polypNq, where v̂
pmq
j is the right singular vector of T̂ pmq,

and σ̂
pmq

j is an estimate of σ̂
pmq
j satisfying |σ̂

pmq

j ´ σ̂
pmq
j | ď ε

pmq
SVE||T̂

pmq||F . The running

time to implement U
pmq
SVE is O

´

NpolylogN{ε
pmq
SVE

¯

.

Before proving Theorem 4.1, we would like to sketch the proof first. According

to Assumption 3, each frontal slice T pkq is stored in the binary tree structure. Hence,

based on the proof of Lemma 2.2 in [33], the states |T pi, :, kqy, corresponding to the i-

th row of T pkq, can be prepared efficiently by operators Pk. Based on these operators,

two new isometries P̂m and Q̂m are constructed in order to perform QSVE on T̂ pmq.

The detail of the proof is given below.

Proof. Since every T pkq, k “ 0, ¨ ¨ ¨ , N ´ 1, is stored in the binary tree structure, the

quantum computer can perform the following mapping in OppolylogpNqq time, as

shown in Theorem 5.1 in [33]:

UPk : |iy |0y Ñ |iy |T pi, :, kqy “ 1

||T pi, :, kq||2

N´1
ÿ

j“0

Tijk |iy |jy ,

(4.10)

where T pi, :, kq is the i-th row of T pkq.

Define the degenerate operator Pk P RN2ˆN related to UPk as

Pk : |iy Ñ |iy |T pi, :, kqy . (4.11)

That is,

Pk “
N´1
ÿ

i“0

|iy |T pi, :, kqy xi| . (4.12)

Based on the efficiently implemented operator UPk , we define another operator

UP̂m fi
1
?
N

N´1
ÿ

k“0

ωkmUPk. (4.13)
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It can be easily seen that the operator UP̂m achieves the state preparation of

the rows of the matrix T̂ pmq, i.e., UP̂m “
1?
N

řN´1
k“0

řN´1
i“0 ωkm |iy |T pi, :, kqy xi| x0| “

ř

i |iy |T̂ pi, :,mqy xi| x0|, where |T̂ pi, :,mqy is the state of the i-th row of T̂ pmq. Sim-

ilarly, the isometry corresponding to UP̂m is P̂m “
ř

i |iy |T̂ pi, :,mqy xi|. It can be

easily shown that P̂m is an isometry since P̂ :mP̂m “ IN . Since UPk can be imple-

mented in time OppolylogpNqq, UP̂m can be implemented in time OpNpolylogNq

using the linear combination of unitaries (LCU) technique [8, 72, 40, 73, 39].

The LCU technique was first proposed by Long in their work [39] in a more

general form, and Shao summarized this result in [73]. The problem of LCU can be

formulated as follows: Given αi P C and unitary operators Ui, i “ 0, 1, ¨ ¨ ¨ , N ´ 1,

implement linear operator L “
řN´1
j“0 αjUj. The algorithm stated in [8] implements

L in time OppTin ` logNqN maxj |αj|{||L |ψy ||q, where |ψy is any given initial state

and Tin is the time to implement U0, U1, ¨ ¨ ¨ , UN´1. In our case, Tin “ NpolylogN ,

αj “ ωkm{
?
N and the input state is chosen as |ψy “

řN
i“0 |iy |0y. Thus, ||L |ψy || “

|| 1?
N

řN´1
k“0 ω

kmUPk |ψy || “ || 1?
N

řN´1
k“0

řN´1
i“0 ωkm |iy |T pi, :, kqy || “

?
N . Therefore,

the complexity to implement UP̂m is OpNpolylogNq.

Next, we define the mapping

UQ̂m : |0y |jy Ñ |sT̂ pmqy |jy “
1

||T̂ pmq||F

ÿ

i

||T̂ pi, :,mq||2 |iy |jy , (4.14)

where sT̂ pmq is a vector whose i-th entry is ||T̂ pi,:,mq||
||T̂ pmq||F

. Similar with UP̂m , the corre-

sponding isometry is defined as Q̂m “
ř

j |sT̂ pmqy |jy xj| satisfying Q̂:mQ̂m “ IN , which

can be verified easily.

Now we perform QSVE on the matrix T̂ pmq. First, the factorization T̂ pmq

||T̂ pmq||F
“

P̂ :mQ̂m can be easily verified. Second, we can prove that 2P̂mP̂
:
m ´ IN2 is a reflection
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and it be implemented through UP̂m . Actually,

2P̂mP̂
:
m ´ IN2 “2

ÿ

i

|iy |T̂ pi, :,mqy xi| xT̂ pi, :,mq| ´ IN2

“UP̂m

«

2
ÿ

i

|iy |0y xi| x0| ´ IN2

ff

U :
P̂m
, (4.15)

where 2
ř

i |iy |0y xi| x0|´IN2 is a reflection. The similar result holds for 2Q̂mQ̂
:
m´IN2 .

Now denote

Wm “

´

2P̂mP̂
:
m ´ IN2

¯´

2Q̂mQ̂
:
m ´ IN2

¯

. (4.16)

Let T̂ pmq “
řr´1
i“0 σ̂

pmq
i û

pmq
i v̂

pmq:
i be the singular value decomposition of T̂ pmq. We can

prove that the subspace spanned by tQ̂m |v̂
pmq
i y , P̂m |û

pmq
i yu is invariant under the

unitary transformation Wm:

WmQ̂m |v̂
pmq
i y “

2σ̂
pmq
i

||T̂ pmq||F
P̂m |û

pmq
i y ´Q |v̂

pmq
i y ,

WmP̂m |û
pmq
i y “

˜

4σ̂2
i

||T̂ pmq||F
´ 1

¸

P̂m |û
pmq
i y ´

2σ̂i

||T̂ pmq||F
Q̂m |v̂

pmq
i y .

The matrix Wm can be calculated under an orthonormal basis using the Schmidt

orthogonalization. It is a rotation in the subspace spanned by its eigenvectors |ω
pmq
i˘ y

with correspondent eigenvalues e˘iθ
pmq
i , where θ

pmq
i is the rotation angle satisfying

cospθ
pmq
i {2q “

σ̂
pmq
i

||T̂ pmq||F
, (4.17)

that is,

Q̂m |v̂
pmq
i y “

?
2
´

|ω
pmq
i` y ` |ω

pmq
i´ y

¯

,

P̂m |û
pmq
i y “

?
2
´

eiθi{2 |ω
pmq
i` y ` e

´iθi{2 |ω
pmq
i´ y

¯

.
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Here, we choose the input state |T̂ pi, :,mqy represented in (4.8), then

Q̂m |T̂ pi, :,mqy “
N´1
ÿ

j“0

?
2β
pimq
j

´

|ω
pmq
i` y ` |ω

pmq
i´ y

¯

. (4.18)

Performing the phase estimation on Wm with running time O
´

NpolylogN{ε
pmq
SVE

¯

,

and computing the estimated singular value of T̂ pmq through oracle with a computable

function fpxq “ ||T̂ pmq||F cospx{2q. According to the relations between θ
pmq
i and σ̂

pmq
i

in (4.17), we obtain

N´1
ÿ

j“0

?
2β
pimq
j

´

|ω
pmq
i` y |θ

pmq

i y ` |ω
pmq
i´ y |´θ

pmq

i y

¯

|σ
pmq
i y . (4.19)

we next uncompute the phase estimation procedure and then apply the inverse of

UQ̂m to obtain the desired state (4.9) in Theorem 4.1.

Similar with the quantum singular value decomposition for matrices [65] that

the output allows singular values and associated singular vectors to be revealed in

a quantum form, the state in (4.9) also finds the estimated singular values of T̂ pmq

and store them in the third register, superposed with corresponding singular vectors.

Therefore, combining (4.7) and (4.9), the state after Step 2 is

1

||T pi, :, :q||F

ÿ

m,j

||T̂ pi, :,mq||2βpimqj |v̂
pmq
j y

d
|σ̂
pmq

j y
b

|mye fi |ξ1y , (4.20)

In Steps 3-5, our goal is to project each tube T̂ pi, :,mq onto the subspace spanned

by the right singular vectors v̂
pmq
j corresponding to singular values greater than the

threshold τm. As shown in FIG. 4.1, in Step 3, we first add an ancillary register |0ya

and then apply a unitary operator

V “
N´1
ÿ

m“0

V pmq b |my xm|e (4.21)

41



acting on the registers b and a controlled by the register e, where V pmq is a 2-qubit

conditional rotation gate that maps |hyb |0ya Ñ |hyb |1ya if h ă τm and |hyb |0ya Ñ

|hyb |0ya otherwise. Therefore, after Step 3, we get

|ξ2y “
1

||T pi, :, :q||F

N´1
ÿ

m“0

||T̂ pi, :,mq||2

¨

˚

˝

ÿ

j:σ̂
pmq
j ěτm

β
pimq
j |v̂

pmq
j y

d
|σ̂
pmq

j y
b

|0ya

`
ÿ

j:σ̂
pmq
j ăτm

β
pimq
j |v̂

pmq
j y

d
|σ̂
pmq

j y
b

|1ya

˛

‹

‚

|mye .

(4.22)

In Step 4, we apply the inverse modified QSVE which is denoted as U
pmq:
SVE in

FIG. 4.1, and discard the register b. Then we measure line a, i.e. the last register of

(4.22), and postselect the outcome |0ya, getting

|ξ3y “
1

α

N´1
ÿ

m“0

ÿ

j,ěτm

β
pimq
j ||T̂ pi, :,mq||2 |v̂pmqj y

d
|mye , (4.23)

where α “

g

f

f

e

N´1
ÿ

m“0

ÿ

j,ěτm

||T̂ pi, :,mq||22 ¨ |β
pimq
j |2. The probability that we obtain the

outcome |0y in Step 4 is

||T̂ěτ pi, :, :q||2F
||T pi, :, :q||2F

, (4.24)

where T̂ěτ denotes the tensor whose m-th frontal slice is T̂
pmq
ěτm obtained by truncating

T̂ pmq with threshold τm. Hence, based on amplitude amplification, we have to repeat

the measurement O
´

||T pi,:,:q||F
||T̂ěτ pi,:,:q||F

¯

times to ensure the success probability of getting

the outcome |0y is close to 1.
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Comparing (4.8) with (4.23), we find that the unnormalized state
ř

j,ěτm
β
pimq
j ||T̂ pi, :

,mq||2 |v̂
pmq
j y can be seen as an approximation of T̂ pi, :,mq, m “ 0, ¨ ¨ ¨ , N´1. Hence,

|ξ3y corresponds to an approximation of |T̂ pi, :, :qy .

In Step 5, we perform the inverse QFT, denoted as F : in line e of FIG. 4.1, on

|ξ3y in (4.23) to get the final state

|ξ4y “
1

α
?
N

N´1
ÿ

t,m“0

ÿ

j,ěτm

β
pimq
j ω´tm||T̂ pi, :,mq||2 |v̂pmqj y

d
|tye , (4.25)

which corresponds to an approximation of T pi, :, :q, and thus it can also be regarded

as an approximation of Api, :, :q.

In the last step, user i is recommended a product j varying with different

contexts as needed by measuring the output state |ξ4y. For example, if we need the

recommended index at a certain context t0, we can first measure the last register of

|ξ4y in the computational basis and postselect the outcome |t0y in line e, as is shown

in FIG. 4.1, obtaining the state propositional to (unnormalized)

N´1
ÿ

m“0

ÿ

j,ěτm

β
pimq
j ω´t0m||T̂ pi, :,mq||2 |v̂pmqj y

d
. (4.26)

We next measure this state in the computational basis to get an index j which is

proved to be a good recommendation for user i at context t0.

Algorithm 5 is summarized below, whose circuit is shown in FIG. 4.1.
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Algorithm 5 Quantum algorithm for recommendation systems modeled by third-
order tensors

Require: Assumption 3, a user index i, the state |T pi, :, :qy corresponding to

the preference information of user i, precision ε
pmq
SVE, the truncation threshold τm,

m “ 0, ¨ ¨ ¨ , N ´ 1, and a context t0.
Output: the recommended index j for the user i at the context

t0.

1: Perform the QFT on the last register of the input state |T pi, :, :qy, to obtain
|T̂ pi, :, :qy in (4.4).

2: Perform the modified QSVE on the matrix T̂ pmq parallelly, using the input
|T̂ pi, :, :qy with precision ε

pmq
SVE, m “ 0, ¨ ¨ ¨ , N ´ 1, to get the state |ξ1y defined in

(4.20).
3: Add an ancilla qubit |0ya and apply a unitary transformation V in (4.21) to

obtain the state |ξ2y in (4.22).
4: Apply the inverse modified QSVE and discard the register b, then measure the

ancilla register a in the computational basis and postselect the outcome |0y, then
delete the register a, obtaining the state |ξ3y in (4.23).

5: Perform the inverse QFT on the register e, to get |ξ4y in (4.25).
6: Measure the register e in the computational basis and postselect the outcome
|t0y. Then measure the register d in the computational basis to get the index j.

Figure 4.1: Circuit for Algorithm 5, and the process of U
pmq
SVE is given in the proof of

Theorem 4.1.

4.3.3 Error analysis

In this section, the i-th horizontal slice of the tensor Těτ is proved to be an

approximation of Api, :, :q. Then sampling from the matrix Těτ pi, :, :q yields good

recommendations for user i; see Theorem 4.2. The following two lemmas, Lemmas
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4.2 and 4.3, are used in the proof of Theorem 4.2.

Lemma 4.2. [33] Let Ã be an approximation of the matrix A such that ||A´ Ã||F ď

ε||A||F . Then, the probability that sampling from Ã provides a bad recommendation

is

Pr
pi,jq„Ã

rpi, jqbads ď

ˆ

ε

1´ ε

˙2

. (4.27)

Lemma 4.3. Let A P RNˆN be a matrix and Ak be the best rank-k approximation

such that ||A´Ak||F ď ε||A||F . If the threshold for truncating the singular values of

A is chosen as σ “ ε||A||F?
k

, then

||A´ Aěσ||F ď 2ε||A||F . (4.28)

Proof. Let σi denote the singular value of A and l be the largest integer for which

σl ě
ε||A||F?

k
. By the triangle inequality, ||A ´ Aěσ||F ď ||A ´ Ak||F ` ||Ak ´ Aěσ||F .

If k ď l, it’s easy to conclude that ||Ak ´ Aěσ||F ď ||A ´ Ak||F ď ε||A||F . If k ą l,

||Ak ´ Aěσ||
2
F “

řk
i“l`1 σ

2
i ď kσ2

l`1 ď k
´

ε||A||F?
k

¯2

ď pε||A||F q
2. In either case, we

have ||A´ Aěσ||F ď 2ε||A||F .

Theorem 4.2. Let Assumption 3 holds. For each m “ 0, . . . , N ´ 1, assume εpmq

satisfies ||T̂ pmq ´ T̂
pmq
k ||F ď εpmq||T̂ pmq||F . Define τm “

εpmq||T̂ pmq||F?
k

. Algorithm 5

outputs the state |Těτ pi, :, :qy corresponding to an approximation of Api, :, :q such

that there are at least p1´ δqN users, of which each user i satisfies

||Api, :, :q ´ Těτ pi, :, :q||F ď ε||Api, :, :q||F (4.29)

with probability at least p1 “ 1´ e´ζ
2p 1p´1q

||A||2F
3Np1`γq , where δ, γ, ζ P p0, 1q. The precision

ε in (4.29) is ε “ 10p1`ζqp1´pqδ`11ε0p1`γq
10δp

, where p is the subsampling probability and

ε0 “ 2 max
m

εpmq. Moreover, let t be chosen uniformly from 0 to N´1. The probability
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that sampling according to Těτ pi, :, tq (equivalent to measuring the state |Těτ pi, :, tqy

in the computational basis) provides a bad recommendation is

Pr
t„UN ,j„Těτ pi,:,tq

rpi, j, tqbads ď

ˆ

ε

1´ ε

˙2

(4.30)

Proof. Based on Lemma 4.3 in the main text, if the best rank-k approximation

satisfies ||T̂ pmq ´ T̂
pmq
k ||F ď εpmq||T̂ pmq||F , then

||T̂ pmq ´ T̂
pmq
ěτm ||F ď 2εpmq||T̂ pmq||F ď ε0||T̂

pmq
||F (4.31)

for m “ 0, ¨ ¨ ¨ , N ´ 1. By summing both sides of (4.31) over m, we get

||T̂ ´ T̂ěτ ||2F “
N´1
ÿ

m“0

||T̂ pmq ´ T̂
pmq
ěτm ||

2
F ď ε20||T̂ ||2F . (4.32)

Since the inverse QFT along the third mode of the tensor T cannot change the

Frobenius norm of its horizontal slice, (4.32) can be be re-written as

||T ´ Těτ ||2F ď ε20||T ||2F . (4.33)

Moreover, noticing that ||T ´ Těτ ||2F “
řN´1
i“0 ||T pi, :, :q ´ Těτ pi, :, :q||2F , we have

E p||T pi, :, :q ´ Těτ pi, :, :q||2F q ď
ε20||T ||2F

N
. Due to Markov’s Inequality ([68, Proposition

2.6]), for δ P p0, 1q,

Pr

ˆ

||T pi, :, :q ´ Těτ pi, :, :q||2F ą
ε20||T ||2F
δN

˙

ď
E p||T pi, :, :q ´ Těτ pi, :, :q||2F q δN

ε20||T ||2F
ď δ

(4.34)

holds. That means at least p1´ δqN users i satisfy

||T pi, :, :q ´ Těτ pi, :, :q||2F ď
ε20||T ||2F
δN

. (4.35)

Notice E p||T ||2F q “ ||A||2F {p. Using the Chernoff bound, we have

Pr p||T ||2F ą p1` θq||A||2F {pq ď e´θ
2||A||2F {3p for θ P r0, 1s, which is exponentially small.

Here, we choose θ “ 1{10, then ||T ||2F ď 11||A||2F {10p.
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Based on the second assumption in Assumption 3, we sum both sides of (4.2) for

m and i respectively, obtaining

1

1` γ

||A||2F
N

ď ||Api, :, :q||2F ď p1` γq
||A||2F
N

, (4.36)

and

1

1` γ

||A||2F
N

ď ||Apmq||2F ď p1` γq
||A||2F
N

. (4.37)

Then, (4.35) becomes

||T pi, :, :q ´ Těτ pi, :, :q||2F ď
11ε20p1` γq

10δp
||Api, :, :q||2F . (4.38)

Meanwhile, since

E
`

||Api, :, :q ´ T pi, :, :q||2F
˘

“

ˆ

1

p
´ 1

˙

||Api, :, :q||2F ,

then

Pr
`

||Api, :, :q ´ T pi, :, :q||2F ą ν||Api, :, :q||2F
˘

ď e´ζ
2p 1p´1q

||A||2F
3Np1`γq , (4.39)

where ν “ p1` ζq
´

1
p
´ 1

¯

and ζ P p0, 1q. That means with probability at least p1,

||Api, :, :q ´ T pi, :, :q||2F ď ν||Api, :, :q||2F . (4.40)

Combining (4.38) and (4.40) together and by triangle inequality, we obtain

||Api, :, :q ´ Těτ pi, :, :q||F ď ε||Api, :, :q||F . (4.41)

According to Lemma 4.2, the probability that sampling according to Těτ pi, :, :q pro-

vides a bad recommendation is

Pr
t„UN ,j„Těτ pi,:,tq

rpi, j, tqbads ď

ˆ

ε

1´ ε

˙2

. (4.42)

It should be noted that by taking reasonable values for the parameters δ, γ, ζ, p,

our algorithm can produce good recommendations with high probability, in order

words, the probability p1 is close to 1 and the precision ε could be comparatively

small.
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4.3.4 Complexity analysis

The complexity of Algorithm 5 is given by the following result.

Theorem 4.3. With notation given in Theorem 4.2, for at least p1 ´ δqN users,

Algorithm 5 outputs an approximation state of |Api, :, :qy with time complexity

O
ˆ

?
kNpolylogpNqp1`γq

min
m

εpmqp1`εq
?
p

˙

. For suitably chosen values of parameters δ, ζ, γ, p and εpmq,

the running time of Algorithm 5 is O
`
?
kNpolylogpNq

˘

.

Proof. According to Theorem 4.1, the modified QSVE algorithm performed on the

frontal slice T̂ pmq takes time O
´

NpolylogpNq{ε
pmq
SVE

¯

.

In Step 5 of Algorithm 5, we need to repeat the measurement O
´

||T pi,:,:q||F
||T̂ěτ pi,:,:q||F

¯

times in order to ensure the probability of getting the outcome |0y in this step is

close to 1. For most users, we can prove that ||T pi,:,:q||F
||T̂ěτ pi,:,:q||F

is bounded and the upper

bound is a constant for appropriate parameters. The proof is in the following.

Since E p||T pi, :, :q||2F q “
||T pi,:,:q||2F

p
ď p1` γq

||A||2F
pN

, then by Chernoff bound,

||T pi, :, :q||2F ď
2p1` γq||A||2F

pN
(4.43)

holds with probability close to 1. Moreover, by Theorem 4.2, there are at least

p1´ δqN users satisfying ||Api, :, :q´Těτ pi, :, :q||F ď ε||Api, :, :q||F , then p1` εq||Api, :

, :q||F ď ||Těτ pi, :, :q||F ď p1` εq||Api, :, :q||F . Since the Frobenius norm is unchanged

under the Fourier transform, we get

p1` εq||T̂piq||F ď ||T̂ěτ pi, :, :q||F ď p1` εq||T̂piq||F . (4.44)

Therefore,

||T̂ěτ pi, :, :q||2F ě p1` εq2||T̂piq||2F ě
p1` εq2

1` γ

||A||2F
N

. (4.45)
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Combining (4.43) and (4.45) together, we can conclude that for at least p1´ δqN

users, ||T pi,:,:q||F
||T̂ěτ pi,:,:q||F

is bounded, that is,

||T pi, :, :q||F
||T̂ěτ pi, :, :q||F

ď

¨

˝

p1` γq
2||A||2F
pN

p1`εq2

1`γ

||A||2F
N

˛

‚

1{2

“

?
2p1` γq

p1` εq
?
p
. (4.46)

The precision for the singular value estimation algorithm on the matrix ||T̂ pmq||F

can be chosen as ε
pmq
SVE “

τm
||T̂ pmq||F

. Therefore, the total time complexity of Algorithm

5 is

plogNq4 ¨
NpolylogpNq

min
m

ε
pmq
SVE

¨
||T pi, :, :q||F
||T̂ěτ pi, :, :q||F

ďplogNq4NpolylogpNqmax
m

||T̂ pmq||F
τm

¨

?
2p1` γq

p1` εq
?
p

u
?
kNpolylogpNqp1` γq

min
m

εpmqp1` εq
?
p

,

where εpmq and ε are defined in Theorem 4.2.

4.4 The quantum cost

Defining the cost of quantum circuits is not an easy task due to the fact that each

quantum computer model may have a different cost for a given quantum gate. Here,

the quantum cost of a reversible gate is defined to be the number of 1ˆ 1 and 2ˆ 2

reversible gates or quantum logic gates required in its design. The quantum costs of

all reversible 1 ˆ 1 and 2 ˆ 2 gates are taken as unity [4, 70, 82, 83]. The cost of

a circuit is calculated by summing up the costs of the gates composing the circuit.

First, we analysize the quantum cost of the QSVE circuit, then we analyze the cost

of each gate in FIG 4.1.
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4.4.1 The cost of QSVE

The QSVE algorithm, originally proposed in [33], is introduced in the preliminary

part of the manuscript. The QSVE algorithm and its circuit are respectively given

in Algorithm 6 and FIG. 4.2 below. In what follows, we focus on the quantum cost

of this algorithm.

Let A P RNˆN be a matrix with singular value decomposition A “
ř

i σiuiv
T
i

stored in the binary tree data structure. In Step 2 of Algorithm 6, the unitary UQ

corresponding to Q is defined as

UQ : |0y |jy Ñ | rA, jy “
1

}A}F

ÿ

iPrNs

}Ai} |i, jy (4.47)

for j “ 0, ¨ ¨ ¨ , N ´ 1, where rA is a vector whose i-th row is rAi “ }Ai} for i P rN s.

Since rA is stored in a classical binary tree with depth rlogN s, UQ can be implemented

by performing rlogN s controlled rotations on |0ybrlogNs (see [33, Appendix A]). To

implement each controlled rotation
ř

θ̃Pt0,1ubrlogNs |rθyxrθ| b e´iY θ̃ with Pauli Y matrix

Y “

„

0 ´i
i 0



, we use one rotation controlled on each qubit of the first register which

can be implemented with cost OprlogN sq (see [86, Lemma 2]). Therefore, the cost

of implementing UQ in Step 2 is
ř

rlogNs
rlogN s

2, i.e., OprlogN s
3
q.

Algorithm 6 Quantum singular value estimation

Input: A P RNˆN , x P RN in the data structure in Lemma 2.1, precision
parameter ε ą 0.

1: Create |xy “
ř

i αi |viy
2: Append a first register

ˇ

ˇ0rlogms
D

and create the state |Qxy “
ř

i αi |Qviy as in
(4.47).

3: Perform phase estimation with precision parameter 2ε ą 0 on the input |Qxy for
the unitary W and obtain

ř

i αi
ˇ

ˇQvi, θi
D

.

4: Compute σi “ cos
`

θi{2
˘

}A}F where θi is the estimate from phase estimation,
and uncompute the output of the phase estimation.

5: Apply the inverse of the transformation in Step 2 to obtain
ř

i αi |viy |σiy.
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|0y H

|0y

UQ W20 W21 W2w

F : Uf

U
:
Q

¨ ¨ ¨

Figure 4.2: The circuit of QSVE algorithm. Uf is a unitary operator implemented
through oracle with a computable function fpxq “ ||A||F cospx{2q. w “ logN ´ 1.

In Step 3, we can prove that the quantum cost of implementing the unitary W

is OpN rlogN s
3
q. To be specific, notice that W “ U ¨ V, where V “ 2QQT ´ IN2 ,

U “ 2PP T ´ IN2 “ UP p2
ř

i |iy|0yxi|x0| ´ IN2qU :P , and UP : |iy |0y Ñ |i, Aiy for

i P rN s. The unitary operator 2
ř

i |iy|0yxi|x0| ´ IN2 can be realized by the circuit

shown in FIG. 4.3. Since each row of the matrix A is stored in the classical binary

tree structure, UP can be implemented with cost OpN rlogN s
3
q, as compared to the

cost OprlogN s
3
q of implementing UQ. To summarize, a total cost of OpN rlogN s

3
q

is required to implement W if we ignore less significant cost. Next, we perform

phase estimation on W . When the singular values of W is precise to the rlogN s-th

bit, the total number of rotation gate invocations is O prlogN s2q (See [7, Section

5.2]). The sequence of controlled-W 2j , j “ 0, ¨ ¨ ¨ , rlogN s´ 1 operations in the phase

estimation procedure can be implemented using OprlogN s3q gates by the modular

exponentiation technique (see [52, Box 5.2]). Thus, the cost of Step 3 isOpN rlogN s
3
q,

which dominates the cost of QSVE algorithm.

Figure 4.3: Quantum circuit to run 2
ř

i |iy
bn
|0y xi|bn x0|´Ibpn`1q for the input state

with n` 1 qubits. The block Z is the Pauli Z gate.

To summarize, the quantum cost of QSVE is OpN rlogN s
3
q.
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4.4.2 The cost of Algorithm 5

In this section, we will analyze the quantum cost of Algorithm 5 whose circuit is

given in FIG. 4.1. As discussed in Section 2.1.1 in Chapter 2, the circuit of QFT in

Step 1 of Algorithm 2 is composed of OprlogN s2q H gates, CNOT gates, and 2-qubit

controlled phase gates.

In Step 2, we give a rough estimation of the cost of the controlled-unitary oper-

ator U defined in (4.6). Current standard methods for realizing controlled-unitary

gates rely on the decomposition of U
pmq
SVE into a set of 1 ˆ 1 and 2 ˆ 2 reversible

gates. Specifically, based on the method proposed in [96], the number of additional

operations required to add a control to each U
pmq
SVE will generally be far less than the

cost of the constructed U
pmq
SVE, so we next focus on estimating the cost of achieving

U
pmq
SVE,m “ 0, ¨ ¨ ¨ , N ´ 1. The most costy step of this process lies in constructing the

operator UP̂m in (4.13), m “ 0, ¨ ¨ ¨ , N ´ 1. According to the analysis in the para-

graph above (4.14), implementing all UPk in (4.10) for k “ 0, ¨ ¨ ¨ , N ´ 1 occupies the

major cost of achieving UP̂m ,m “ 0, ¨ ¨ ¨ , N ´1, which takes a total of OpN2rlogN s
3
q

1 ˆ 1 and 2 ˆ 2 reversible gates, since the cost of each UPk is OpN rlogN s
3
q based

on the cost of UP analyzed in Appendix 4.4.1. To summarize, the quantum cost of

implementing the operator U is OpN2rlogN s
3
q.

In conclusion, the quantum cost of implementing Algorithm 5 is OpN2rlogN s
3
q,

which is mainly concentrated in achieving the operator U if we ignore the insignificant

cost, such as the cost of implementing the operator V in (4.10). Actually, it is

reasonable that the cost of Algorithm 5 is N times more expensive than that of

the QSVE algorithm proposed in [33]. The cost of the QSVE algorithm on matrix

A P CNˆN mainly concentrates on the cost of quantum access to classical data with

N rows of A stored in N binary trees. By contrast, our algorithm deals with tensor

T P RNˆNˆN whose N2 tubes are assumed to be stored in N2 binary trees, so our
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algorithm needs N times more gates than the QSVE algorithm to quantum access

to the data structure.

Since implementing the physical operations depends on many factors, such as the

initial quantum circuit, the quantum computer to be performed on, or the Hamil-

tonian of the system, the cost presented here is not necessarily the true cost but

it provides a reference value. Also, it is not necessarily minimal because it can be

decreased by finding more efficient quantum circuits.

The number of 1ˆ1 and 2ˆ2 reversible gates required by our quantum algorithm

scales polynomially with the dimension of the preference tensor, which presents a

big obstacle to practical realization. In fact, not only our algorithm and the QSVE

algorithm, but also some benchmark algorithms, such as the HHL algorithm [23],

appear too expensive to be executed efficiently by a quantum computer and are not

likely to be feasible in the Noisy Intermediate-Scale Quantum (NISQ) era; see [56,

Sections 6.6 and 6.7], [73, Section 1.10]. Finally, we point out most quantum machine

learning algorithms focus on the time complexity rather than their quantum cost;

see, e.g., [23, 63, 32, 8, 64].

4.5 Simulations

In this section, we numerically validate our model with recommendation systems

tasks. As we do not have a large-scale quantum computer, to validate our quantum

algorithm, we investigate the performance of its classical counterpart, namely, trun-

cated t-svd [34], on real datasets in the classical computer. Due to the closeness, the

testing results should be true for a fault-tolerant quantum computer.

4.5.1 Experimental setting

We choose three multiverse recommendation systems algorithms that are based

on tensor decompositions: T-HOSVD [37], TT decomposition [53], a Collaborative
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Filtering method (TF & SGD) [31], and compare them to truncated t-svd. All the

experiments are performed under Windows 10, Python 3.7 and MATLAB R2016b

running on a desktop (Intel Core i7 @ 3.60 GHz, 32.0G RAM). In each experiment

we repeat 10 times and average the results.

In order to evaluate the performance of different methods, we compare the relative

square error (RSE) defined in dB, mean absolute error (MAE), and root mean square

error (RMSE), which are defined as follows

RSE “ 20 log10p}Těτ ´A}F {}A}F q, (4.48)

MAE “
1

K

ÿ

i,j,k

Dijk
ˇ

ˇ

ˇ
pTěτ qijk ´Aijk

ˇ

ˇ

ˇ
, (4.49)

RMSE “ }Těτ ´A}F {
?
K, (4.50)

where K is the total number of observed ratings, D P t0, 1uN1ˆN2ˆN3 is a binary

tensor with nonzero entries Dijk whenever Aijk is observed. These three measures

are widely used in the recommendation systems literature.

4.5.2 Data

We test these four algorithms on two real datasets: Yahoo! Webscope Movies and

Movielens, which are described as follows:

• For Yahoo! Webscope Movies dataset1 with 7642 users, 11915 movies and 221K

ratings in a t1, ¨ ¨ ¨ , 5u scale, we select the first 800 users and 4623 corresponding

movies. Besides, the original Yahoo! Webscope Movies dataset contains user

age and gender features. We choose user’s year of birth as the third dimension

and consider it as the context variable. Therefore, the size of resulting tensor

is 800ˆ 4623ˆ 51 with 23782 nonzero entries.

1 Webscope v1.0, http://research.yahoo.com/
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• Movielens2 is the benchmark dataset in recommendation systems. Here we

choose the ”Movielens-latest-small” dataset, which has 610 users, 9742 movies

and 100K ratings with a timestamp. For preprocessing the data, we divide the

timestamps that users give ratings into 60 timeslots, obtaining a third-order

tensor A P R610ˆ9742ˆ60 in which the three modes represents users, movies, and

time respectively.

4.5.3 Comparison result

In FIGs. 4.4 and 4.5, the RSE, MAE, and RMSE values obtained by different

methods are plotted for Yahoo! Webscope Movies and Movielens datasets respec-

tively with 80% sampling probability. We first compare truncated t-svd, T-HOSVD,

and TT methods since they do not require optimization and they all follow similar

procedures. T-HOSVD is composed of a core tensor and unitary matrices storing

the principal compoments of each mode. TT decomposition represents a tensor as

the link structure of each core tensor. The truncation rank is pk, k, kq for k rang-

ing from 5 to 50. Here, pk, k, kq refers to the multi-rank of t-svd, the multilinear

rank of T-HOSVD, and the TT rank of TT decomposition. We can observe that

the RSE values obtained by truncated t-svd are much lower than those obtained by

T-HOSVD and TT decompositions. When k is greater than 20 (for Yahoo!) or 8

(for Movielens), the RMSE and MAE values of truncated t-svd are also lower than

T-HOSVD and TT.

Moreover, to validate the effectiveness of our algorithm, we also evaluate the

average probability of providing a bad recommendation, denoted as Prrbads, when

we sample according to Těτ . Here, we calculate Prrbads by

Prrbads “
1

N

N´1
ÿ

i“0

ˆ

εi
1´ εi

˙2

, (4.51)

2 grouplens.org/datasets/movielens
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where εi “ }Těτ pi, :, :q ´Api, :, :q}F {}Api, :, :q}F and N refers to the number of users

in the dataset. Our theoretical basis is Lemma 4.2 and Theorem 4.2. The curves of

Prrbads are plotted in the bottom right of FIGs. 4.4 and 4.5. In summary, truncated

t-svd has better performance than T-HOSVD and TT when applied to context-aware

recommendation systems datasets.

Figure 4.4: The comparison results on Yahoo! Webscope Movies dataset. The top-
left, top-right and bottom-left figures plot the RSE, MAE, RMSE against truncation
rank k respectively. The bottom-right figure shows that the average probability of
providing a bad recommendation.

Figure 4.5: The comparison results on Movielens dataset.

In [31], the authors introduce a Collaborative Filtering method based on Tensor

Factorization (TF & SGD) in Multiverse Recommendation model. To train this

model, they minimize the regularized risk function by stochastic gradient descent

(SGD). Due to the use of SGD algorithm, the computational cost is increased and the

algorithm can be sensitive to initial guess. We compare the MAE values and average

running time of truncated t-svd and TF & SGD on Yahoo! Webscope Movies dataset;

see FIG. 4.6. For TF & SGD, the regularization parameters for factor matrices and
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core tensor are all set as 0.1, and their initial learning rates are all set as 0.001. The

multilinear rank is set as dU “ dM “ dC “ k. We can observe that the MAE values

of TF & SGD is comparatively stable with k. When k ě 14, the truncated t-svd

performs better than TF & SGD in MAE. Moreover, the average running time of

truncated t-svd is only around one fifth to one third of the time of TF & SGD.

Figure 4.6: The MAE and average running time of truncated t-svd and TF & SGD
algorithms on Yahoo! Webscope Movies dataset.

4.6 Relations with Tang’s algorithms

In this section, we compare our 3D quantum algorithm with Tang’s 2D quantum-

inspired recommendation systems algorithm. For a 2D recommendation system mod-

eled by an N ˆ N matrix, Tang’s quantum-inspired algorithm [79] was shown to

have complexity OppolypkqpolylogpNqq, an exponential speedup compared to other

classical methods, only polynomially slower than Kerenidis and Prakash’s quantum

algorithm [33]. This raised the question of whether Tang’s algorithm was actually

useful in practice. In order to study its practical performance, Lloyd et al. inves-

tigated Tang’s 2D recommendation systems algorithm [2]. They commented that

Tang’s algorithm is only advantageous for preference matrix with extremely large

dimension, very low rank and low condition number. However, it remains unclear

whether such kind of datasets actually exists in practice. They also found that Tang’s

algorithm takes more time and suffers higher inaccuracies than the classical exact

diagonalization method. Kerenidis and Prakash [32] also commented that this high
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dependence on the rank and other parameters makes Tang’s algorithm impractical.

Therefore, it is unlikely that Tang’s algorithm can replace Kerenidis and Prakash’s

algorithm in practical 2D recommendation systems.

Moreover, both Tang and Kerenidis and Prakash’s algorithms are for 2D rec-

ommendation systems, and our proposed quantum algorithm, Algorithm 5, is for

3D recommendation systems. To our best knowledge, there is no previous work on

quantum-inspired classical algorithm of 3D recommendation systems. Clearly, this

is a very interesting and practically important problem. Hence, here we would like

to share our understandings on how to extend Tang’s quantum-inspired techniques

to third-order recommendation systems.

To our understanding, there are at least two difficulties in extending quantum-

inspired classical algorithms from 2D to 3D recommendation systems. First, as the

product that a user prefers in a certain context is very likely to affect the recommen-

dation for him/her at other contexts, the relations among different frontal slices (a

matrix of users ˆ products) of the preference tensor should be taken into account.

Our quantum algorithm addresses this problem very well because the QFT is per-

formed to combine a user’s preferences in different contexts. On the other hand, if

we extend Tang’ idea to third-order recommendation systems, the immediate idea is

to apply Tang’s 2D recommendation systems algorithm to every frontal slice of the

preference tensor, but this idea fails to consider the preference correlations among

different contexts for a certain user. In order to take this factor into consideration,

the rough idea is to apply DFT to each horizontal slice of the preference tensor in

order to achieve the same effect as QFT. It is easy to see that the complexity of this

step is OpN3logpNqq. If we choose any unitary transformation to substitute DFT,

which is adopted in the transformed t-svd [75], the complexity will be OpN3.3q. In

either case, the complexity of this step alone exceeds that of our quantum algo-

rithm for 3D recommendation systems. Therefore, how to control the complexity of
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quantum-inspired classical algorithms for 3D recommendation systems is the first ob-

stacle we need to overcome. Another difficulty is how to guarantee that the designed

quantum-inspired algorithm is useful in practice, or suitable for real datasets.

4.7 Conclusion

In this chapter, we proposed the first quantum algorithm for context-aware rec-

ommendation systems modeled by third-order tensors. Moreover, we showed that

this quantum algorithm can provide good recommendations varying with contexts

and run in expected time Op
?
kNpolylogpNqq for some suitable parameters. The

numerical simulation validates our algorithm.
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Chapter 5

A Monte-Carlo algorithm for low

tubal-rank tensor approximations

5.1 Introduction

The low-rank randomized tensor approximations algorithms plays an crucial role

in many applications, such as machine learning, clustering, combinatorial optimiza-

tion, etc. [29]. In the next two sections, we introduce some related works on ran-

domized algorithms of low-rank matrix and tensor approximation respectively.

5.1.1 Randomized algorithms of low-rank matrix approxi-
mation

In this section, we give a outline of the low-rank matrix approximations random-

ized algorithms. The goal of computing a low-rank matrix approximation is to find

a low-dimensional subspace which has most of the properties of the given matrix.

Generally, the problem of low-rank matrix approximation falls into two categories:

fixed-rank approximation problems and fixed-precision approximation problems. In

the fixed-rank problem, the desired rank k (always together with the oversampling

parameter p) is given in advance, and our task is to find a matrix Q with k ` p

orthonormal columns satisfying

}A´QQ˚A} « min
rankpXqďk

}A´X}. (5.1)
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Fixed-precision problem, on the other hand, is to find Q with rank as small as possible

such that

||A´QQ˚A|| ď ε (5.2)

holds, for a given target precision parameter ε.

The process of low-rank randomized matrix approximations algorithms can al-

ways be divided into two stages. First, we compute the sampling probabilities, and

compress the input matrix into the sampled subspace. This sampled matrix is then

operated to compute the standard decompositions in the second stage. The most

common approximation schemes include, but not limited to, sparsification, column

selection methods, approximation by dimension reduction and submatrices. Spar-

sification is the simplest approach to matrix approximation and the subsampling

method adopted in our quantum context-aware recommendation systems algorithm

is a type of sparsification method. The randomized algorithms using the column

selection methods compute each column’s sampling probability by either length-

squared sampling or leverage scores. The length-squared sampling method is first

proposed in [17] and it samples columns according to the distribution of Euclidean

norm of the columns of the input matrix.

In [17], Frieze, Kannan and Vempala propose a Monte-Carlo randomized algo-

rithm (FKV) for finding the low-rank approximations of a matrix. The FKV al-

gorithm constructs a smaller matrix by first sampling r rows of A P Rmˆn using

the length-squared sampling technique, then rescaling each sampled row. Suppose

the obtained matrix is R. We then sample and rescale c columns of R again to get

the matrix C. The length-squared sampling guarantees that the entry of RRT is

an unbiased estimator of AAT and the sum of all variance of the entry of RRT is

bounded by ε2||A||4F . It can be proved that the length-squared sampling minimizes

the variance among all the unbiased estimators [30]. The space spanned by the top k
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left singular vectors of R is a good approximation to A, thus the problem of low-rank

approximation of A can be converted to computing the singular value decomposition

of R instead, which reduces computation cost remarkably. Similar properties also

holds for matrices R and C. Finally, we perform matrix SVD on this smaller matrix

C in order to retrieve some of the singular information of A. To be more specific, the

top-k singular values of C can be regarded as an approximation of the top-k singular

values of A, and the right singular vectors of a matrix A can be approximated by

ṽl “ RTwl{σ̃l while the left singular vector of A is given by ũl “ A
`

RTwl{σ̃l
˘

, where

σ̃l, wl are the singular value and left singular vectors of C.

The only requirement for the sampled number r and c is that they have to be

greater than the rank of A. Actually, they determine the quality of the approxima-

tion. They should be larger enough to capture the most features of A and much

smaller than the size of A so that the complexity of computing SVD of C is far less

than for the original matrix A. In [17], the authors show that the FKV algorithm can

provide an approximate SVD with error ε by setting r “ c “ Opmax k4{ε2, k2{ε4q.

5.1.2 Related works on randomized tensor factorization and
approximation

For matrices, there are polynomial time algorithms in finding optimal approxi-

mations, but this is not the case for high-order tensors. However, despite finding

the best low cp-rank approximation for tensors is NP-hard, there exist randomized

algorithms utilizing length-squared sampling to obtain a good approximation of a

tensor with high probability in polynomial time, where the approximated tensor is

expressed as the sum of k rank-1 tensors.

In [90], Jiani Zhang proposes a randomized t-svd method which can produce a

factorization with similar properties to the t-svd. The computational complexity of

computing t-svd is reduced from OpkN4q to OpkN3 `N3 logNq.
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Also in [12], the authors propose a randomized tensor approximation algorithm

based on HOSVD. This method first unfolds the tensor along each mode, then chooses

columns randomly from these unfolding matrices and projects the tensor along that

mode onto the space spanned by the sampled columns adaptively. The similar algo-

rithm also found in [47], in which the full SVD of each mode unfolding of HOSVD is

replaced with the matrix randomized SVD algorithm to obtain the factor matrix. In

[47], the authors propose an adaptive tensor approximation which adaptively finds a

low-rank representation satisfying a given tolerance. In [44], the authors propose a

tensor-CUR algorithm which computes an approximation tensor in the form of linear

combination of subtensors of the original data tensor. It applies the matrix-CUR to

one of the unfolding matrix modes (called the “distinguished” mode) and provides

an approximation based on those few tubes and frontal slices.

Compared with other tensor decompositions, t-svd has been shown to be supe-

rior in capturing the spatial-shifting correlation [75] that is ubiquitous in real-world

data, so it is suitable for tensors with strong relations between slices. Inspired by

the t-svd and randomized algorithms discussed above, we combine length-squared

sampling with truncated t-svd method, obtaining a good low tubal-rank tensor ap-

proximation. Our algorithm extends the fast Monte-Carlo methods for low-rank

matrix approximations to third-order tensors and approximates the original tensor

in Fourier domain. Similar to the idea of FKV, we select a random subset of data

instead of entire data, then perform the corresponding operations on this small sam-

pled tensor. As to the sampling method, it may be unreasonable to choose slices at

random uniformly especially for a tensor of which only a few slices are significant.

Therefore, we adopt the length-squared sampling method, i.e., sample according to

the distribution of Frobenius norm of slices, which leads to many provable error

bounds.

The rest of this chapter is organized as follows. In Section 5.2, we present our
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randomized low-rank approximation algorithm for third-order tensors; see Algorithm

7. Then in Section 5.3, a detailed theoretical error analysis of Algorithm 7 is pre-

sented. The complexity of Algorithm 7 is analysed in Section 5.4. In Section 5.5, we

show the effectiveness and accuracy of Algorithm 7 on real dataset and then compare

it with the random t-svd algorithm proposed in [90].

5.2 A Monte-Carlo algorithm for low tubal-rank

tensor approximations

In this section, we present our random algorithm for computing low-rank ap-

proximation of third-order tensors A P RN1ˆN2ˆN3 , provided that tubes Api, j, :q, i P

rN1s, j P rN2s satisfy certain norm constraint.
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Algorithm 7 A random Monte-Carlo method for finding low-rank approximation
of third-order tensors

Input: tensor A P RN1ˆN2ˆN3 , precision εpmq, m “ 0, ¨ ¨ ¨ , N3 ´ 1, truncation
number k.

Output: the approximated tensor Ã.

1: Perform the DFT along the third mode of tensor A, getting tensor Â.
2: Sample r1 horizontal slice indices i1, i2, ¨ ¨ ¨ , ir1 according to the norm square of

horizontal slices
||Âpi,:,:q||2F
||Â||2F

, i P rN1s. Let R be the tensor whose r-th horizontal

slice is ||Â||F?
r1

Âpir,:,:q
||Âpir,:,:q||F

, r P rr1s.

3: Sample s P rr1s uniformly, then sample a tube index j according to the distribu-

tion ||Rps,j,:q||2
||Rps,:,:q||2F

“
||Âpis,j,:q||2

||Âpis,:,:q||2F
. Repeat this procedure for r2 times to obtain sampled

indices j1, j2, ¨ ¨ ¨ , jr2 . Define tensor C to be the tensor whose r-th lateral slice is
||R||F?
r2

Rp:,jr,:q
||Rp:,jr,:q||F

, r P rr2s.

4: Query all elements of Â corresponding to the sampled indices of horizontal and
lateral slices. For each t P rN3s, compute the left singular vectors of each
frontal slice of Cptq, i.e. u1pC

ptqq, ¨ ¨ ¨ ,ukpC
ptqq corresponding to singular values

σ1pC
ptqq, ¨ ¨ ¨ , σkpC

ptqq.
5: Compute V ptq “ Rptq:U ptqΣptq

´1
for each t P rN3s, where U ptq P Cr1ˆk denotes

the matrix whose i-th column is uipC
ptqq and Σptq P Rkˆk is the diagonal matrix

whose i-th diagonal entry is σipC
ptqq. Note i P T “ ti : σ2

i pC
ptqq ě γ||Cptq||2F u.

6: Let
˜̂A be the tensor whose t-th frontal slice is

˜̂
Aptq fi ÂptqV ptqV ptq:, t P rN3s.

7: Perform the inverse FFT along the third mode of tensor
˜̂A to obtain the approx-

imated tensor Ã.

Remark 5.1. The probability of getting the sampled index j in Step 3 of Algorithm

7 is
||Rp:,j,:q||2F
||R||2F

. To be more specific,

Pj “

r1
ÿ

t“1

||Âpit, j, :q||22
r1||Âpit, :, :q||2F

“

r1
ÿ

t“1

Rpt, j, :q||22
||A||2F

“
||Rp:, j, :q||2F
||R||2F

. (5.3)

Thus the sampling method in Step 3 is similar to Step 2, i.e., sampling according to

the distribution of slice norms.

Remark 5.2. For the simplicity of analysis, we set the sampled number r1 “ r2 “

107k2

ε2
, where k and ε are the preset rank and precision respectively.

Our algorithm extends the fast Monte-Carlo methods for low-rank matrix ap-
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proximations proposed by A. Frieze et al. (FKV) to third-order tensors. Our general

idea is to approximate tensor A in Fourier domain. Specifically, after performing the

Fourier transform along the third mode of A, Â is obtained. It can be regarded as a

matrix whose pi, jq entry is a tube Âpi, j, :q, thus we can adopt a sampling approach

similar to matrix FKV algorithm (Step 2 to Step 4). After Step 5, it can be proved

that the column of matrix V ptq is an approximation of the right singular vector of

Âptq, thus ÂptqV ptqV ptq: represents projecting matrix Âptq onto the space spanned by

the columns of V ptq. Let the best rank-k approximation of Âptq computed by matrix

SVD be Â
ptq
k . Then for each Âptq, we can prove that

E
´

||Âptq ´ ÂptqV ptqV ptq:||2F

¯

ď ||Âptq ´ Â
ptq
k ||

2
F ` ε

ptq
||Âptq||2F . (5.4)

Thus, we have the result

E
`

||A´A ˚ V ˚ V:||2F
˘

ď ||A´Ak||2F ` ε||A||2F , (5.5)

where V denotes the tensor whose t-th frontal slice is V ptq, and ||A ´ Ak||2F is the

theoretical minimum error introduced in Lemma 4.1. Note that A ˚ V refers to the

t-product between tensors A and V .

Remark 5.3. Our algorithm can also be used to approximate the singular value,

singular vectors of a tensor based on t-svd, thus it can be seen as a fast Monte-Carlo

algorithm for approximated tensor singular value decomposition. Specifically, the top-

k singular values of A, i.e., the top-k singular values of Âptq for each t P rN3s, can

be approximated by the truncated-k singular values of Ĉptq. Moreover, the top-k right

singular vectors of Âptq can be approximated by the columns of V ptq calculated in Step

5 of Algorithm 7, while the top-k approximated left singular vectors of Âptq are given

by

ÂptqV ptqp:, lq

σlpCptqq
, l P rks. (5.6)
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5.3 Theoretical Analysis

The following theorems assert that sampling a certain number of slices can provide

a good approximation to the original tensor. That is, the sampled tensor R can be

proved to be approximations to tensor A in the sense that R: ˚R is close to A: ˚A.

Theorem 5.1. Suppose R is formed by sampling horizontal slices of tensor Â de-

scribed by Algorithm 7, then

E
`

Rptq:Rptq
˘

“ Âptq:Âptq (5.7)

holds for t P rN3s.

Proof. The expectation of the pr, sq-th entry of Rptq:Rptq is the corresponding entry

of Aptq:Aptq.

E
``

Rptq:Rptq
˘

rs

˘

“

r1
ÿ

k“1

E pRpik, r, tq˚Rpik, s, tqq (5.8)

“

r1
ÿ

k“1

N1
ÿ

i“1

Âpi, r, tq˚

||Âpi, :, :q||F
||Â||F
?
r1

Âpi, s, tq
||Âpi, :, :q||F

||Â||F
?
r1

||Âpi, :, :q||2F
||Â||2F

(5.9)

“

r1
ÿ

k“1

N1
ÿ

i“1

Âpi, r, tq˚Âpi, s, tq
r1

(5.10)

“

´

Âptq:Âptq
¯

rs
. (5.11)

Note A˚ denotes the conjugate of A and A: denotes the conjugate transpose of A.

Assumption 4. For i P rN1s, t P rN3s, suppose

||Âpi, :, tq||22 “
1

λi,tN3

||Âpi, :, :q||2F . (5.12)

Denote λ1t “ maxiPrN1s λi,t, λt “ miniPrN1s λi,t and αt fi
λ1t
λt

.
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Theorem 5.2. For all θ ą 0,

Pr
´

||Rptq:Rptq ´ Âptq:Âptq||F ě θ||Âptq||2F

¯

ď
αt
θ2r1

, (5.13)

where αt is introduced in Assumption 4.

Proof.

E
´

||Rptq:Rptq ´ Âptq:Âptq||2F

¯

“

N2
ÿ

r,s“1

E

ˆ

ˇ

ˇ

ˇ

´

Rptq:Rptq ´ Âptq:Âptq
¯

rs

ˇ

ˇ

ˇ

2
˙

(5.14)

ď

N2
ÿ

r,s“1

E
`ˇ

ˇ

`

Rptq:Rptq
˘

rs

ˇ

ˇ

˘2
(5.15)

“

N2
ÿ

r,s“1

r1
ÿ

k“1

E
`

|Rpik, r, tq˚Rpik, , s, tq|2
˘

(5.16)

“
1

r1

N1
ÿ

i“1

´

řN2

r“1 Âpi, r, tq2
¯2

||Â||2F
||Âpi, :, :q||2F

(5.17)

“
||Â||2F
r1

N1
ÿ

i“1

||Âpi, :, tq||42
||Âpi, :, :q||2F

. (5.18)

According to Assumption 4,

||Âptq||2F “
N1
ÿ

i“1

||Âpi, :, tq||22 “
N1
ÿ

i“1

||Âpi, :, :q||2F
λi,tN3

ě
||A||2F
λ1tN3

, (5.19)

thus

E
´

||Rptq:Rptq ´ Âptq:Âptq||2F

¯

“
||Â||2F
r1N3

N1
ÿ

i“1

||Âpi, :, tq||22
λi,t

(5.20)

ď

˜

||Â||2F
N3

¸

||Âptq||2F
r1λt

(5.21)

ď
αt
r1
||Âptq||4F . (5.22)
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According to Markov inequality, for any θ ą 0,

Pr
´

||Rptq:Rptq ´ Âptq:Âptq||F ě θ||Âptq||2F

¯

ď
αt
θ2r1

. (5.23)

Next, we introduce a notation for the convenience of the rest analysis. Denote

∆ pM ;xi, i P Iq “ ||M ||
2
F ´ ||M ´M

ÿ

iPI

xix
:

i ||
2
F (5.24)

for matrixM and vector xi. Specifically, if vectors xi are orthogonormal, ∆ pM ;xi, i P Iq

is the norm of the projection of M onto the subspace spanned by the xi.

In fact, Algorithm 7 needs that there exists a good low-rank approximation to

each frontal slice of the tensor Âptq in the subspace spanned by a part of its rows,

and the cumulative error is related to the tubal-rank k and the sampled number r1.

We have the following theorem.

Theorem 5.3. Given tensor A P RN1ˆN2ˆN3 and tensor R P Rr1ˆN2ˆN3 generated

by Algorithm 7. Then with probability at least 9{10, there exists a set of orthonormal

vectors y
ptq
1 ,y

ptq
2 , ¨ ¨ ¨ ,y

ptq
k in the row space of Rptq such that

∆
´

Âptq;y
ptq
j , j P rks

¯

ě

k
ÿ

i“1

σ̂
ptq2
i ´

10kαt
r1

||Âptq||2F , (5.25)

where σ̂
ptq
i is the singular value of Âptq with the corresponding left, right singular

vectors û
ptq
i , v̂

ptq
i respectively, t P rN3s.

Proof. Define

w
ptq
j “

||A||2F
r1

r1
ÿ

i“1

´

û
ptq
j

¯˚

i

||Âpi, :, :q||2F
Âpi, :, tq. (5.26)
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Based on the sampling method of Step 2 in Algorithm 7, we have

E
´

w
ptq
j

¯

“
||A||2F
r1

r1
ÿ

i“1

E

¨

˚

˝

´

û
ptq
j

¯˚

i

||Âpi, :, :q||2F
Âpi, :, tq

˛

‹

‚

(5.27)

“
||A||2F
r1

r1
ÿ

i“1

N1
ÿ

k“1

´

û
ptq
j

¯˚

k

||Âpk, :, :q||2F
Âpk, :, tq ||Âpk, :, :q||

2
F

||A||2F
(5.28)

“
1

r1

r1
ÿ

i“1

û
ptq:
j Âptq “ σ

ptq
j v̂

ptq
j . (5.29)

Also, according to Assumption 4, we get

E

ˆ

ˇ

ˇ

ˇ
w
ptq
j ´ σ

ptq
j v̂

ptq
j

ˇ

ˇ

ˇ

2
˙

ď
||A||2F
r1

N1
ÿ

i“1

ˇ

ˇ

ˇ

´

û
ptq
j

¯˚

i

ˇ

ˇ

ˇ

2

||Âpi, :, tq||2

||Âpi, :, :q||2F
(5.30)

“
||A||2F
r1

N1
ÿ

i“1

ˇ

ˇ

ˇ

´

û
ptq
j

¯˚

i

ˇ

ˇ

ˇ

2

λi,tN3

(5.31)

ď
αt||Â

ptq||2F

r1
. (5.32)

Let y
ptq
1 ,y

ptq
2 , ¨ ¨ ¨ ,y

ptq
l be an orthonormal basis of CN2 such that they span the space

spanned by 1

σ
ptq
1

w
ptq
1 ,

1

σ
ptq
2

w
ptq
2 ¨ ¨ ¨ , 1

σ
ptq
k

w
ptq
k , then

E

˜

||Âptq ´
l
ÿ

i“1

Âptqy
ptq
i y

ptq:
i ||

2
F

¸

ď

N2
ÿ

i“k`1

σ̂
ptq2
i `

k
ÿ

i“1

E

ˆ

ˇ

ˇ

ˇ
w
ptq
j ´ σ

ptq
j v̂

ptq
j

ˇ

ˇ

ˇ

2
˙

(5.33)

ď

N2
ÿ

i“k`1

σ̂
ptq2
i `

kαt
r1
||Âptq||2F . (5.34)

The result of Theorem 5.3 can be obtained directly from Markov inequality.

Before proving the main theorem (Theorem 5.4), we would like to introduce two

lemmas which are first adopted in [17].
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Lemma 5.1. [17] Let A and S be matrices with the same number of columns satis-

fying

||ATA´ STS||F ď θ||A||2F , (5.35)

then for any set of unit vectors z1, z2, ¨ ¨ ¨ , zl, l ď k in the row space of A,

|∆pA; zi, i P rlsq ´∆pS; zi, i P rlsq| ď k2θ||A||2F . (5.36)

Lemma 5.2. [17]

• ∆pRptq;v
ptq
i , i P T q ě ∆pRptq:;u

ptq
i , i P T q ´

ε
8
||Âptq||2F

• |vptqi |2 ď 1` ε{16

Theorem 5.4. Given a third-order tensor A P RN1ˆN2ˆN3, truncation number k,

precision ε, and δ, Algorithm 7 outputs the approximated tensor Ã “ A ˚ V ˚ V: of

rank at most k with probability at least 1´ δ such that

E
`

||A´A ˚ V ˚ V:||2F
˘

ď

N3
ÿ

t“1

rptq
ÿ

i“k`1

σ
ptq2
i ` ε||A||2F , (5.37)

where r is the multi-rank of A.

Proof. First, we apply Theorem 5.2 twice to row and column samples respectively.

Based on the analysis of Lemma 5.1, Step 3 of Algorithm 7 is equivalent to Step 2

except in the sampling direction. Therefore, with probability at least 9{10 and set

θ “ ε
k107{2

, we have

||Rptq:Rptq ´ Âptq:Âptq||F ď θ||Âptq||2F and ||Cptq:Cptq ´Rptq:Rptq||F ď θ||Rptq||2F .
(5.38)

According to Theorem 5.3, with probability at least 9{10, there exists a set of

orthonormal vectors yj, j P rks in the row space of Rptq such that

∆
´

Âptq;y
ptq
j , j P rks

¯

ě

k
ÿ

i“1

σ̂
ptq2
i ´

10kαt
r

||Âptq||2F ě
k
ÿ

i“1

σ̂
ptq2
i ´

ε

8
||Âptq||2F . (5.39)
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Then following from Lemma 5.1, we have

∆
´

Rptq;y
ptq
j , j P rks

¯

ě ∆
´

Âptq;y
ptq
j , j P rks

¯

´ k2θ||Âptq||2F (5.40)

ě

k
ÿ

i“1

σ̂
ptq2
i ´

3ε

16
||Âptq||2F , (5.41)

where k2θ ď ε{16 for the low-rank k ď 200. Suppose yj “
řr
i“1 β

pjq
i uipR

ptqq, j P rks,

we define zj “
řr
i“1 β

pjq
i vipR

ptqq, where uipR
ptqq P Cr, vipR

ptqq P CN2 are the left

and right singular vectors of Rptq respectively. Then zj in the column space of Rptq

satisfies

∆
´

Rptq:; z
ptq
j , j P rks

¯

“ ∆
´

Rptq;y
ptq
j , j P rks

¯

(5.42)

ě

k
ÿ

i“1

σ̂
ptq2
i ´

3ε

16
||Âptq||2F . (5.43)

Similarly, we apply Lemma 5.1 to Rptq: and Cptq: respectively,

∆
´

Cptq:; z
ptq
j , j P rks

¯

ě ∆
´

Rptq:; z
ptq
j , j P rks

¯

´ k2θ||Rptq||2F . (5.44)

The orthonormal vectors ujpC
ptqq calculated in Step 4 of Algorithm 7 are in the

column space of Cptq, also in the column space of Rptq, then (5.44) becomes

∆
`

Cptq:;ujpC
ptq
q, j P rks

˘

ě

k
ÿ

i“1

σ̂
ptq2
i ´

3ε

16
||Âptq||2F ´

ε

16
||Rptq||2F . (5.45)

Apply Lemma 5.1, and Lemma 5.2 to Âptq, Rptq and v
ptq
i , we get

∆pÂptq;v
ptq
i , i P T q ě ∆pRptq;v

ptq
i , i P T q ´ p1` ε{16qk2θ||Âptq||2F (5.46)

ě ∆pRptq:;u
ptq
i , i P T q ´ p1` 3ε{16qk2θ||Âptq||2F (5.47)

ě ∆pCptq:;u
ptq
i , i P T q ´ k

2θ||Rptq||2F ´ p1` 3ε{16qk2θ||Âptq||2F
(5.48)

ě ∆pCptq:;u
ptq
i , i P rksq ´ kγ||C

ptq
||
2
F ´ k

2θ||Rptq||2F ´ p1` 3ε{16qk2θ||Âptq||2F
(5.49)
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Here, we set the threshold for truncating singular values of Cptq, γ fi ε
8k

, then

kγ ď ε
8

and p1` 3ε{16qk2θ ď 9ε
16

. Taking these inequalities into (5.49), we have

∆pÂptq;v
ptq
i , i P T q ě

k
ÿ

i“1

σ̂
ptq2
i ´

3ε

4
||Âptq||2F ´

ε

8
||Rptq||2F ´

ε

8
||Cptq||2F . (5.50)

Then for the tensor A, we have

E
`

||A´A ˚ V ˚ V:||2F
˘

ď

N3
ÿ

t“1

E
´

||Âptq ´ ÂptqV ptqV ptq:||2F

¯

(5.51)

ď

N3
ÿ

t“1

rptq
ÿ

i“k`1

σ
ptq2
i `

N3
ÿ

t“1

ˆ

3ε

4
||Âptq||2F `

ε

8
||Rptq||2F `

ε

8
||Cptq||2F

˙

(5.52)

“

N3
ÿ

t“1

rptq
ÿ

i“k`1

σ
ptq2
i ` ε||Âptq||2F . (5.53)

Note ||A||2F “ ||Â||2F “ ||R||2F “ ||C||2F due to the normalization method adopted in

Algorithm 7.

5.4 Complexity analysis

For simplicity, we consider a tensor A P RNˆNˆN with the same dimensions. The

computational cost of classical trunated t-svd for tensor approximation isOpN4 `N3logNq,

where OpN4q is the cost of computing the SVD of all frontal slices and OpN3logNq

is for transforming to the Fourier domain. By contrast, the complexity of Algo-

rithm 7 for finding a description of the approximation tensor A ˚ V ˚ V: is only

Opk5N{ε4 `N3logNq. The first part of the cost is mainly focus on the truncated-k

SVD performed on each frontal slice of the small sampled tensor Cptq P Rrˆr, where

r “ Opk2{ε2q. The second part is for performing the DFT on all tubes Âpi, j, :q. On

the other hand, if we need to calculate the approximated tensor A ˚V ˚V: definitely,
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the complexity of Algorithm 7 is Opk5N{ε4`kN3`N3logNq and it is advantageous

in the case of k ăă N when compared with the classical t-svd.

In Table 5.1, we compare the computational and storage cost of several similar

works on randomized tensor approximation using different tensor decompositions.

The complexity of these algorithms are calculated without power iterations. It turns

out that our algorithm is the most efficient one either in computational or storage

complexity.

The random t-svd (rt-svd) approach proposed by Jiani Zhang et al. [90] is nearly

four times more expensive than our algorithm. Compared with rt-svd algorithm, our

algorithm calculates the compact matrix SVD on Cptq P Cr1ˆr2 and the projector

V ptq after random choosing the slices. Note that the cost of computing the projector

V ptq “ Rptq:U ptqΣptq
´1

is greatly reduced due to decrease on the dimension of Rptq

and U ptq. In Step 6, we project each Âptq on its approximated top rank-k space

just like the final step of rt-svd algorithm [90]. Therefore, our algorithm is more

computationally efficient than the rt-svd method. In terms of storage cost, unlike

the rt-svd method storing three SVD decomposition matrices of Bptq, our algorithm

only needs to store the information of projector matrices V ptq, so the storage cost is

only half of that of rt-svd.

The complexity of random Tucker3 method (r-Tucker3) [94] is nearly eight times

as expensive computationally compared with our algorithm. As to the storage cost, it

has to store all factor matrices and core tensor, so storage cost is much more expensive

than our algorithm. Moreover, truncated rank-pk1, k2, k3q tensor for HOSVD is not

an optimal approximation in most cases. By contrast, our algorithm is designed

based on the t-svd whose truncating form do yield an optimal approximation in the

Frobenius norm (see Lemma 4.1).

In [15], N. Benjamin Erichson et al. propose a randomized CP algorithm (r-cp).

They first apply random projections with power iteration to get a compressed tensor,
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then perform CPD on this compressed tensor by some optimizaton algorithms, and

finally utilize this compressed CPD to approximate the original CP factor matrices.

However, the cost of the step of compressing tensor alone is nearly 12 times as

computationally expensive as our algorithm, since it needs to multiply each tensor

mode with a Gaussian matrix, then applies QR decomposition on these products.

The storage cost is also greater than our algorithm since for compressing the tensor,

since it requires to save the projectors of all modes.

In [80], the authors propose a fast Monte-Carlo algorithm for tensor approxima-

tion and tensor decomposition (including tensor CX and CUR decompositions). For

rank-k approximation based on t-CX decomposition, this algorithm projects tensor

A onto the space spanned by the lateral slices of A chosen based on their leverage

scores. However, the cost for computing the leverage scores of the lateral slices of

A is extremely high, and it is still high if using leverage scores of C as a substitute.

Besides, this algorithm needs to calculate the tensor project operator with compu-

tational complexity OpN4q. By contrast, Algorithm 7 calculates the tubal rank-k

approximation of the sampled tensor with size rˆ rˆN3, and the cost is reduced to

only Opr3Nq.

Table 5.1: The complexity comparison of randomized tensor approximation methods
based on different tensor decompositons. The cost of r-cp algorithm listed below
refers to the cost of computing compressed tensor which is just one step of this
algorithm.

Algorithm computational cost storage cost
r-Tucker3 8kN3 k3 ` 3Nk

rt-svd 4kN3 `OpN3logNq 2kN2

r-cp p9k ` 3k2qN2 ` 12kN3 3kN
t-CX N4 ` 2cN3 ` kN3 kN2

Algorithm 7 kN3 ` kr1r2 ` kr1N
2 `OpN3logNq kN2
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5.5 Simulation result

In this section, we study the accuracy and the computational time of Algorithm 7

on several synthetic and real-world tensors. The results are organized as follows: In

Section 5.5.1, we investigate the accuracy of our proposed algorithms varying with

different parameters, including dimension, tubal-rank and the subsampled number

using randomized tensors. In Section 5.5.2, we compare the performance of our

algorithm to the matrix FKV algorithm [17] using synthetic data. Finally, in Section

5.5.3, we apply the proposed algorithm on datasets Movielens and Yahoo! Webscope

Movies and compare the result with the rt-svd algorithm proposed in [90].

All the experiments are performed under Windows 10, Python 3.7 and MATLAB

R2016b running on a desktop (Intel Core i7 @ 3.60 GHz, 32.0G RAM). In each

experiment we repeat 10 times and average the results.

In Theorem 5.4, we estimate the approximated error of Algorithm 7 by the stan-

dard of the theoretical minimum error. Here, the relative error RSE and the theo-

retical minimum relative error emin
k defined as

RSE fi
||A´ Ãk||F
||A||F

, (5.54)

emin
k fi

||A´Ak||F
||A||F

“
||Spk ` 1 : N, k ` 1 : Nq||F

||S||F
, (5.55)

respectively, are used as performance metrics of Algorithm 7.

5.5.1 Test on randomized tensors

We next test Algorithm 7 on randomized third-order tensors. A random data

tensor A P RNˆNˆN is generated by summarizing r outer product of three Gaussian

random vectors, where r is the CP-rank (also the tubal-rank) of the tensor. The

singular values of A are randomly generated using the quadrant law.

77



Table 5.2 shows the relative error RSE of Algorithm 7 decreases as the dimension

N and sampled number r1 increase. The sampling numbers r1 for horizontal slices

and r2 for lateral slices could be constant, independent of the dimension of tensor, or

logarithmic in the size of N . Thus, our algorithm can be performed efficiently even for

extremely high-dimensional data, outperforming other random tensor approximation

algorithms achieved by multiplying a Gaussian randomized tensor such as [44, 90].

In Table 5.2, we observe that our algorithm is only advantageous for very large

dimensional tensors. When the tensor dimension is low, even we decrease the tubal-

rank and truncation term, the relative error RSE is still much higher than emin, see

the first three lines of Table 5.2. For tensor A of dimension 300, we gradually increase

the sampled number from 80 to 200, and drop the tubal-rank and truncation term to

4. However, we only observe a minor decline in the relative error RSE, which is still

very large. That means we need to even increase the dimension in order to get a low

relative errorRSE. For large dimensional tensor 800 ˆ 800 ˆ 500, the relative error

RSE drops noticeably with tubal-rank. Specifically, when we drop the tubal-rank and

truncation term to 3, RSE can drop to very low 0.0483. In summary, our algorithm

can have comparatively low relative errors in short times even for extremely large-

dimensional tensors. However, our algorithm need the original tensor to be very low

tubal-rank.

It should be notice that the truncation term k is set to be the tubal-rank of A.

This follows the idea of matrix FKV algorithm [17], in which the truncate-k matrix

SVD is performed on the sampled matrix on the condition that the original matrix A

has a good rank-k approximation. Here in numerical experiment, in order to better

capture the change of RSE with truncation term k, we suppose that the truncation

term k is not greater than the tubal-rank.
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Table 5.2: The comparison of RSE with emin
k of tensor A P RNˆNˆN , where r1 “ r2.

N r k iter r1 RSE emin
k

100 16 10 30 80 0.3302 0.1467
100 8 7 30 80 0.3325 0.0413
100 3 3 30 80 0.1435 0
300 16 10 30 80 0.4330 0.1662
300 16 10 30 150 0.309 0.1662
300 16 10 30 200 0.2915 0.1662
300 4 4 30 150 0.1763 0
500 10 8 30 350 0.1801 0.0859
500 3 3 30 350 0.0713 0

800ˆ 800ˆ 500 10 8 30 350 0.1471 0.0831
800ˆ 800ˆ 500 3 3 30 350 0.0483 0

5.5.2 Comparison with matrix FKV

In this section, we compare the result of Algorithm 7 with the fast Monte-Carlo

algorithm for finding low-rank approximation proposed by Alan Frieze, Ravi Kannan

and Santosh Vempala [17].

In Table 5.3, we evaluate running time and the accuracy of the matrix FKV

algorithm, in terms of the relative error of approximated singular values and recon-

structed matrix A. To generate Gaussian random matrices, we follow the method-

ology adopted in [2]. That is, in order to generate a Gaussian random matrix A

of dimension m ˆ n, rank k, conditional number κ, we build the singular vectors

and singular values respectively, i.e., suppose A “ UΣV , we first generate an mˆ k

Gaussian random matrix U 1 whose entries drawn independently from the standard

normal distribution N p0, 1q, then perform a reduced QR decomposition on U 1 “ QR

and let U fi Q. A similar way is followed to generate V . For the given κ, we first

sample the largest singular value uniformly in r1, 500s and then the minimal singular

value is fixed. Other singular values are sampled using the quadrant law introduced
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in [74].

In Table 5.4, we test the same metrics of Algorithm 7. Here, we follow the

similar way to generate Gaussian randomized tensors with matrix FKV algorithm

[17]. We first generate a Gaussian random tensor U1 P RN1ˆkˆN3 with entries drawn

from the standard normal distribution, then perform DFT along the third mode,

getting Û1. Then we perform the reduced QR decomposition on every frontal slice

of Û1, i.e., Û1p:, :, tq “ Q̂p:, :, tqR̂p:, :, tq, for t P rN3s, and let Q̂ “ Û . Similarly, we

generate tensor V̂ in this way. Finally, the singular values of A are generated using

the quadrant law for matrices adopted in simulating matrix FKV.

From Tables 5.3 and 5.4, we can see that the accuracy of Algorithm 7 is better

than matrix FKV algorithm. It should be notice that Algorithm 7 can better capture

the relations between different frontal slices of the original tensor due to the DFT,

so it could have better performance in some applications where the relations of two

modes of the tensor are addressed. However, the computational time of Algorithm 7

is more than the matrix FKV due to the extra time of performing DFT on N2 tubes

of the tensor.

Table 5.3: The result of matrix FKV algorithm [17] performed on matrixA P Rmˆn. k
is the rank of A and r is the sample number. eA is the relative error for reconstructing
A using the approximated singular values σ̃l and singular vectors ũl, ṽl, i.e., eA “
||Ã ´ A||F {||A||F with Ã “

řk
l“1 σ̃lũlṽl. The mean relative error of approximated

singular values eσ “
1
k

řk
l“1 |σl ´ σ̃l|{σl.

m ˚ n k r eA eσ sampling time SVD on C and reconstruct A time
1000*3000 3 100 0.1475 0.089 5.9 1.34

10000*30000 5 100 0.1696 0.02 551 744
10000*30000 5 300 0.1434 0.033 543 760
10000*30000 3 300 0.08 0.063 540 462
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Table 5.4: The result of Algorithm 7. k is the tubal-rank of A and r is the sampled
number for sampling the horizontal and lateral slices.

N1 ˚N2 ˚N3 k r eA eσ sampling time SVD on C and reonstruct A time
1000*1000*3 3 100 0.105 0.0642 6.08 0.207
104 ˚ 104 ˚ 3 5 100 0.156 0.029 652 626
104 ˚ 104 ˚ 3 5 300 0.107 0.12 717 667
104 ˚ 104 ˚ 3 3 300 0.08 0.0622 686 607

5.5.3 Test on real datasets

In this section, we perform Algorithm 7 on Movielens and Yahoo! Webscope

Movies datasets. The Movielens dataset has 610 users, 9742 movies and 100K ratings

with a timestamp. For preprocessing the data, we divide the timestamps that users

give ratings into 60 timeslots, obtaining a third-order tensorA P R610ˆ9742ˆ60 in which

the three modes represent users, movies, and time respectively. The tubal-rank of

this dataset is 610.

The second dataset, Yahoo! Webscope Movies dataset, has 7642 users, 11915

movies and 221K ratings in a t1, ¨ ¨ ¨ , 5u scale. We select the first 800 users and

4623 corresponding movies. Besides, the original Yahoo! Webscope Movies dataset

contains user age and gender features. We choose user’s year of birth as the third

dimension and consider it as the context variable. Therefore, the size of resulting

tensor is 800ˆ 4623ˆ 51 with 23782 nonzero entries. The tubal-rank of this dataset

is 742.

The compared algorithm we choose is rt-svd algorithm proposed by Jiani Zhang

et al. [90]. This algorithm first performs DFT along the third mode of the tensor,

then combines the columns of Âptq by multiplying a Gaussian randomized tensor.

After that it performs QR decomposition to obtain the projector matrix Qptq, then

computes the compact SVD of Bptq “ Qptq:Âptq, finally multiply Qptq to get the ap-

proximated tensor Ã. We first apply rt-svd algorithm to the original Movielens
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dataset whose corresponding tensor has full rank 610. When we set the truncation

term as k “ 5, 6, 7, 8, 9 and the oversampling parameter p “ 2, the relative error is

r0.82 0.81 0.79 0.77 0.76s, corresponding to the the theoretical minimum rel-

ative error r0.81 0.79 0.77 0.75 0.74s. We can see that although the relative

error RSE and the theoretical minimum relative error emin
k are close, they are all

very large. Similar result also appears in our algorithm.

From the above discussion, we find that the original datasets have to be pre-

processed in order to satisfy the low tubal-rank assumption of Algorithm 7. Here,

we keep the top 10 tubes under Fourier domain and use this dataset as the original

dataset. The result of Algorithm 7 and rt-svd [90] can be found in Table 5.5. It can

be seen that Algorithm 7 outperforms rt-svd algorithm in terms of running time and

accuracy.

Table 5.5: The result of Algorithm 7 and rt-svd algorithm applied to Movielens
dataset. k denotes the truncate term. RSE, reA denote the relative errors, and t1, t2
denote the running time (seconds) of Algorithm 7 and rt-svd algorithm respectively.

k RSE emin
k t1 reA t2

7 0.3691 0.3388 1567 0.4117 3016
8 0.3012 0.2708 1595 0.3235 3146
9 0.2243 0.1861 1617 0.2254 3292
10 0.086 0 1618 0 3494

Table 5.6: The result of Algorithm 7 and rt-svd algorithm applied to Yahoo! Web-
scope Movies dataset.

k RSE emin
k t1 reA t2

7 0.3701 0.3354 2279 0.3743 3790
8 0.3033 0.2659 2306 0.2957 3965
9 0.2110 0.1810 2367 0.2034 4230
10 0.089 0 2409 0.1285 4421
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5.6 Conclusion

In this chapter, we introduce a randomized low tubal-rank tensor approximation

algorithm using length-squared sampling and the truncated t-svd algorithm. Our

algorithm extends the fast Monte-Carlo method for low-rank matrix approximations

to third-order tensors and approximates the original tensor in Fourier domain. It

can be effectively used in the approximation of high dimensional tensors with low

tubal-rank which is validated by numerical experiments.
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Chapter 6

Large-size Schrödinger cat states

generation

6.1 Introduction

As a typical mesoscopic system, Schrödinger cat states show the superposition of

two classically distinguishable states. Typical examples of optical Schrödinger cat

states are coherent states [10] represented by |βy+eiφ| ´βy for even cat and odd cat,

when φ “ 0 and φ “ π, respectively, where β and ´β are the amplitudes of coherent

states with opposite phase. |β| is defined as the size of Schrödinger cat states.

Such superpositions are different from statistical mixtures by revealing interference

features between superposed components, which plays an important role in validation

of quantum theory[27], quantum communication[69, 6, 36, 50], continuous-variable

quantum computation [24, 62, 42, 19] and quantum metrology[48, 28, 16].

Several protocols have been proposed to generate Schrödinger cat states with

small amplitudes, which are also called Schrödinge kitten states. The most popular

approach is to subtract odd/even photon(s) from a squeezed vacuum state [10] from

an optical parametric oscillator (OPO) to produce odd/even kittens at based band

[55, 51, 85, 49, 18] as well as sidebands[71]. The maximum amplitude of generated

odd cat state of |β| “ 1.76 and fidelity of 0.59 was reported[18]. Another method

85



is based on Fock state and homodyne detection[54], by which an even cat with

|β| “
?

2.6 was demonstrated.

However, the overlap between two superposed coherent states in a Schrödinger

cat state, i.e. xβ| ´ βy “ expp´2|β|2q, is required to approach zero to effectively

work as a qubit in quantum information science. As a result, the amplitude of a

Schrödinger cat state must satisfy |β| ě 2. Therefore, large-size Schrödinger cat

states generation attracted intense interest. An Schrödinger odd cat with |β| “ 1.15

was enlarged to be an Schrödinger even cat with |β| “ 1.85 with a fidelity of 0.77

[76] by combining two Schrödinger cat states with small size by a beam splitter and

conducting homodyne detection[41]. Recently, Eaton et al proposed a sequential

photon catalysis scheme to generated large-size squeezed Schrödinger cat states [13],

in which several-stage photon catalysis are required to breed the cat state. Takese et

al reported a high-generate-rate optical cat state scheme based on the general photon

subtraction of two squeezed vacua [78].

Recently, a new theory based on the α-representation in infinite Hilbert space was

developed, by which two schemes based on two-mode entangled state and separated

Fock states, respectively were proposed[46]. Schrödinger cat states of large-size |β| ą

2 with a fidelity around 0.99 based on a two-mode 9-photon entangled state and

|β| “ 2 with the maximum fidelity of 0.973 based on five Fock states, respectively,

were predicted[46].

In this chapter, we report an approach to generate large-size Schrödinger cat

states with high fidelity based on conditioned measurement. Besides photon sub-

traction from a squeezed vacuum state, photon adding is also implemented, which

effectively engineers the high-order photon number of the generated state. When two

sets of such scheme is combined, an amplification on the amplitude of Schrödinger

cat is obtained with high fidelity.

This chapter is organized as follows. In section 6.2, a Schrödinger cat state model
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is derived and the fidelity is quantitatively analysed. In section 6.3, an effective

approach to produce a large-size Schrödinger cat states is proposed and analysed.

Concluding remarks are provided in section 6.4.

6.2 Photon-adding-subtraction model

6.2.1 Schrödinger cat states

Optical Schrödinger cat states are the superposition state of two coherent states

of with opposite phase,|βy and | ´ βy[1], which can be written as

|βy “ e
´|β|2

2

8
ÿ

n“0

βn
?
n!
|ny, (6.1)

| ´ βy “ e
´|β|2

2

8
ÿ

n“0

p´βqn
?
n!
|ny. (6.2)

An even cat and odd are written as

|EvenCaty “ N`p|βy ` | ´ βyq “ N`e
´|β|2

2

8
ÿ

n“0

2βp2nq
a

p2nq!
|2ny, (6.3)

Where,

N` “
1

a

2p1` e´2|β|2q
(6.4)

and an odd cat is expressed as

|OddCaty “ N´p|βy ´ | ´ βyq “ N´e
´|β|2

2

8
ÿ

n“0

2βp2n`1q
a

p2n` 1q!
|2n` 1y, (6.5)

Where,

N´ “
1

a

2p1´ e´2|β|2q
. (6.6)
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To ensure two superposed coherent states are orthogonal, the overlap between |βy

and | ´ βy should approach to zero, i.e.

xβ | ´βy “ e´|β|
2
8
ÿ

n“0

p´β2q
n

n!
“ e´2|β|

2

! 0 (6.7)

When |β| ě 2, xβ| ´ βy « 0.

6.2.2 l-adding and k-subtraction squeezed vacuum state

Similar to an even cat state, a squeezed vacuum state only contains even-photon

distribution, which is written as [10, 5] when the squeezing angle is taken as zero,

Ŝpξq|0y “
8
ÿ

n“0

α2n|2ny, (6.8)

where

α2n “
1

?
cosh ξ

a

p2nq! tanhn ξ

2nn!
. (6.9)

Thus, squeezed vacuum states approximate even cat states with small size. Odd-

photon distribution can be obtained if odd photons such as 1 or 3 are subtracted

from a squeezed vacuum states. So it is an effective approach to produce odd cat

states with small amplitudes(|β| ď 1.2 for F “ 0.99)[41, 5]. To enlarge the size of

the generated Schrödinger cat state, we add lphotons while subtracting k photons

from a squeezed vacuum state as shown in Fig. 6.1.

The total input of the system can be written as,

|Ψiny “ |ly b
8
ÿ

n“0

α2n|2ny (6.10)

“

8
ÿ

n“0

α2n
1

a

N
l

?
2n!

l
ź

k“1

B˚1 pξ
1k
q

2n
ź

k“1

B˚2 pξ
2k
q|01y b |02y. (6.11)
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Figure 6.1: Schematic of Schrödinger cat state generation based on conditional mea-
surement

Where, B˚pξq is an creation operator in continuous mode, which is related to the

continuous-mode Fock state |ny by

|ny “
1
?
n!
pB˚pξqqn|0y, }ξ}2 “ 1. (6.12)

Let the first output channel is measured by means of the state |ky. Setting

`` j ´ i “ k we get i “ `´ k ` j. As 0 ď i ď `, we have j ě k ´ ` and j ď k. The

unnormalized state at the second output channel becomes

|Ψout,conditionedy “

8
ÿ

n“0

γn,lk|2n` l ´ ky (6.13)

(6.14)

Where,

γn,lk “
1
?
l!

α2n
a

p2nq!

minpk,2nq
ÿ

j“maxpk´`,0q

ˆ

`

`´ k ` j

˙ˆ

2n

2n´ j

˙

a

k!p2n` `´ kq!p´1qjT 2n`k´2jRl´k`2j. (6.15)

The fidelity between the generated state and the Schrödinger cat state is
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F pΨout,conditioned, ψq “ |xψ|Ψout,conditionedy|
2. (6.16)

When l´k is odd, an odd cat state is produced, while an even cat state is generated

when l´k is even. Generally, l “ 0, and k “ 1, i.e. one-photon-subtracted squeezed

vacuum state is set to generate odd cat states. However, such scheme can only

generate an approximate Schrödinger’s cat with the maximum amplitude of 1.2

6.3 Enlargement of Schrödinger kitten states

An approach to generate large-size Schrödinger cat states based on l-photon-added

and k-photon-subtracted squeezed vacuum states is proposed as shown in Fig. 6.2.

Figure 6.2: Schematic of Schrödinger cat state amplification based on conditional
measurement

Two Schrödinger kitten states generated with l-photon added and k-photon-

subtracted squeezed states are combined on the third beam splitter BS3. The input

state to the third beam splitter is |Ψ1
out,conditioned,l1k1

yb |Ψ2
out,conditioned,l2k2

y, which can

be written as

90



|Ψ1
out,conditioned,l1k1

yb|Ψ2
out,conditioned,l2k2

y “

8
ÿ

n“0

8
ÿ

m“0

γ1n,`1k1γ
2
m,`2k2

|2n``1´k1yb|2m``2´k2y,

(6.17)

Where, γ1n,`1k1 and γ2n,`1k1 have the same format to γnlk in Eq. (6.15).

The total input state is a linear combination of products |2n``1´k1yb|2m``2´

k2y, where n,m “ 0, . . . ,8. Identifying n1 with 2n``1´k1 and n2 with 2m``2´k2

respectively. After the third beamsplitter, the product will turn to

|2n` `1 ´ k1y b |2m` `2 ´ k2y

Ñ

1
a

p2n` `1 ´ k1q!p2m` `2 ´ k2q!

2n``1´k1
ÿ

j“0

2m``2´k2
ÿ

k“0

ˆ

2n` `1 ´ k1
j

˙ˆ

2m` `2 ´ k2
k

˙

p´1qk

T 2m``2´k2`j´k
3 R2n``1´k1´j`k

3

a

pj ` kq!p2n` `1 ´ k1 ` 2m` `2 ´ k2 ´ j ´ kq!

|j ` ky|2n` `1 ´ k1 ` 2m` `2 ´ k2 ´ j ´ ky.

“

2n``1´k1
ÿ

j“0

2m``2´k2
ÿ

k“0

γn,m,j,k|j ` ky|2n` `1 ´ k1 ` 2m` `2 ´ k2 ´ j ´ ky (6.18)

where

γn,m,j,k fi
1

a

p2n` `1 ´ k1q!p2m` `2 ´ k2q!

ˆ

2n` `1 ´ k1
j

˙ˆ

2m` `2 ´ k2
k

˙

p´1qk

ˆT 2m``2´k2`j´k
3 R2n``1´k1´j`k

3

a

pj ` kq!p2n` `1 ´ k1 ` 2m` `2 ´ k2 ´ j ´ kq!(6.19)

is the corresponding coefficient. Consequently, the final output state of the third

beamsplitter is

|Ψy “
8
ÿ

n“0

8
ÿ

m“0

γ1n,`1k1γ
2
m,`2k2

2n``1´k1
ÿ

j“0

2m``2´k2
ÿ

k“0

γn,m,j,k|j`ky|2n``1´k1`2m``2´k2´j´ky.

(6.20)
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n particular, if `1´ k1 “ 1 and `2´ k2 “ 1, then Eq.(6.19) and Eq.(6.20) become

γn,m,j,k “
1

a

p2n` 1q!p2m` 1q!

ˆ

2n` 1

j

˙ˆ

2m` 1

k

˙

p´1qk

ˆT 2m`1`j´k
3 R2n`1´j`k

3

a

pj ` kq!p2pn`m` 1q ´ j ´ kq!, (6.21)

and

|Ψy “
8
ÿ

n“0

8
ÿ

m“0

γ1n,`1k1γ
2
m,`2k2

2n`1
ÿ

j“0

2m`1
ÿ

k“0

γn,m,j,k|j ` ky|2pn`m` 1q ´ j ´ ky, (6.22)

respectively.

In particular, if `1 ´ k1 “ 1 and `2 ´ k2 “ 1, we rewrite Eq.(6.19) and Eq.(6.20)

below

γn,m,j,k “
1

a

p2n` 1q!p2m` 1q!

ˆ

2n` 1

j

˙ˆ

2m` 1

k

˙

p´1qk

ˆT 2m`1`j´k
3 R2n`1´j`k

3

a

pj ` kq!p2pn`m` 1q ´ j ´ kq!, (6.23)

|Ψy “
8
ÿ

n“0

8
ÿ

m“0

γ1n,`1k1γ
2
m,`2k2

2n`1
ÿ

j“0

2m`1
ÿ

k“0

γn,m,j,k|j ` ky|2pn`m` 1q ´ j ´ ky. (6.24)

In what follows, we discuss two special case: one and three photons are measured,

i.e. k “ 1, and k “ 3 in Fig. 6.2.

6.3.1 Amplification of kitten states with k “ 1

l1=l2=2 and k1=k2=1

When l1=l2=2 and k1=k2=1, when ξ “ 0.6 and the reflectivity of BS3, R3, is

optimized, the variation of β with fidelity is shown in Fig. 6.3. From Fig. 6.3, it can

be seen that the size of the kitten state is amplified from 1.225 to 1.241 by 1.01 times.
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Figure 6.3: Variation of fidelity with β when ξ “ 0.6 in the case of kitten state
amplification

l1=l2=3 and k1=k2=2

When ξ “ 0.68, Fig. 6.4(a) shows the variation between β and fidelity of an

odd Schrödinger cat state generated from the setup shown in Fig. 6.1 when l “ 3

and k “ 2. The maximum β can reach 1.6 to ensure that the fidelity is over 0.99.

While when two odd Schrödinger cat states with β “ 1.6 are combined with BS3 as

shown in Fig. 6.2, the amplitude is enlarged to 1.802 with an amplification of 1.13

as indicated in Fig. 6.4(b).

According to the results shown above, the amplification of odd Schrödinger cat

states is realized. Particularly, when l1=l2=3 and k1=k2=2, the amplification as

large as 1.13 is achievable in the proposed scheme shown in Fig. 6.2.

6.3.2 Large-size Schrödinger cat states generation

l=3, and k=2

By optimizing the reflectivity of BS1, BS2 and BS3 in Fig. 6.2, an odd Schrödinger

cat state with an amplitude as large as 1.991 and fidelity over 0.99 is obtained as
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Figure 6.4: Variation of fidelity with β when l “ 3 and k “ 2 (a) One beam splitter
(b) Amplified kitten state with three beam splitters.

shown in Fig. 6.5(a), which is 1.5 times of the odd cat generated from one-photon

subtracted squeezed vacuum state. When the squeezing parameter, ξ, of two input

squeezed vacuum states is enhanced to 0.7, a maximum odd cat state with β “ 2.001

can be obtained with F “ 0.99 as implied in Fig. 6.5(b). When the squeezing

parameter increases to 0.8, the amplitude of the odd cat state could be as large as

2.266 and 2.322 while keeping the fidelity as 0.99 and 0.98, respectively, as shown in

Fig. 6.5(c). Fig. 6.7 show the photon number distribution and the Wigner function

of generated cat state and the real odd cat state with β “ 2.266.

Therefore, large-size Schrödinger cat states are possible to be generated based on

the proposed scheme shown in Fig. 6.2.

l=0, and k=1

When two kitten states generated with the traditional approach, i.e. l1 “ l2 “ 0

and k1 “ k2 “ 1, are input into the scheme. Large-size cat states with amplitudes

of β “ 2.31, β “ 2.42, and β “ 2.58 and fidelity of 0.99 corresponding to ξ “ 0.6,

ξ “ 0.68, and ξ “ 0.8 are obtained by optimizing the reflectivity of three beam
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splitters as shown in Fig. 6.7. Kitten states with an amplitude of 1.39 and 1.51 and

fidelity of 0.975 and 0.9634 are amplified to a cat state with an amplitude of 2.42

and fidelity of 0.99 when ξ “ 0.68 as shown in Fig. 6.6.

Figure 6.5: Large-size Schrödinger cat state generated from the three-beam-splitters
scheme (a) β “ 1.991 when ξ “ 0.68 (b) β “ 2.001 when ξ “ 0.7 (c) β “ 2.266 when
ξ “ 0.8
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Figure 6.6: Photon number distribution and fidelity variation with β when l=0 and
k=1 (a)(d) Input kitten state 1 (b)(e) Input kitten state 2 (c)(f) Amplified cat state
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Figure 6.7: Photon number distribution and Wigner function when l=0 and k=1
(a) and (c) for the generated odd cat states; (b) and (d) for an ideal odd cat states
with β “ 2.42 in theory

6.4 Conclusion

In this chapter, we propose an effective approach to produce a large-size Schrödinger

cat states with high fidelity based on conditioned measurement. Through photon

subtraction from a squeezed vacuum state and photon adding, an amplification on

the amplitude of Schrödinger cat is obtained with high fidelity. The simulation re-

sults shows that odd cat states with an amplitude of 2.001 with the fidelity of 0.99

could be obtained.
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Chapter 7

Conclusions

In this thesis, we propose a quantum t-svd algorithm for third-order tensors and

then extend it to order-p tensors. It can be proved that our quantum t-svd algo-

rithm is polynomial faster than its classical counterpart if we do not recover clas-

sical information from the output state. Based on this algorithm, we next present

a quantum context-aware recommendation systems algorithm with time complexity

Op
?
kNpolylogpNqq, compared to the classical counterpart with complexity OpkN3q.

In fact, it extends Kerenidis and Prakash’s matrix recommendation system algorithm

to third-order tensors, so our algorithm can incorporate users’ contextual informa-

tion into recommendations. Our algorithm obtains the recommended product by

measuring the output quantum state corresponding to an approximation of a user’s

dynamic preferences in stead of reconstructing the whole tensor. Also, we present a

classical Monte-Carlo tensor approximation algorithm based on the truncated t-svd

and the randomized low-rank matrix approximations algorithm. At last, we provide

two schemes for the effective generation of large-size Schrödinger’s cat states. The

schemes are based on the linear operation of Fock states and squeezed vacuum states.

Through photon subtraction from a squeezed vacuum state and photon adding, an

amplification on the amplitude of Schrödinger cat is obtained with high fidelity.
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[5] A. M. Brańczyk and T. Ralph. Teleportation using squeezed single photons.
Physical Review A, 78(5):052304, 2008.

[6] J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen. Hy-
brid long-distance entanglement distribution protocol. Physical review letters,
105(16):160501, 2010.

[7] C.-F. Chiang. Quantum phase estimation with an arbitrary number of qubits.
International Journal of Quantum Information, 11(01):1350008, 2013.

[8] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Preconditioned quantum linear
system algorithm. Physical Review Letters, 110(25):250504, 2013.

[9] P. Comon. Tensor decompositions. Mathematics in Signal Processing V, pages
1–24, 2002.
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