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Abstract

In this thesis, we consider hypothesis testing in high-dimensional models, where
the dimension of covariates p is greater than the sample size n, which is common in
data analysis currently. Novel test statistics are proposed in both linear model and
single-index model for high-dimensional settings.

First, we focus on the simple linear model and propose a novel test statistic
for the problem of testing global regression coefficients. The proposed test is con-
structed based on the technique of random projection. Concretely, we first randomly
project high-dimensional data into a lower-dimensional space and then apply the
projected data to the classical F-test. The proposed test has a simple form and intu-
itive interpretation. The advantages of this random-projection-based approach are
demonstrated both theoretically and numerically. Under mild conditions, we derive
the asymptotic normality and the asymptotic local power functions of the proposed
test. By comparison with some recent developed methods, our proposed test shows
higher asymptotic relative efficiency in a sufficient condition. The proposed method
is further extended to the problems of testing partial regression coefficients and we
derive its asymptotic properties. Through simulation studies, we evaluate the finite-
sample performances of the proposed tests and demonstrate its superior performance
than the competing tests. Applications to real high-dimensional gene expression data
are also provided for illustration.

Next, we investigate the single-index model, which includes many commonly used
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models. First, we study the feasibility of applying the classical F-test to a single-
index model where p/n — ¢ € (0,1). We derive its asymptotic null distribution
and asymptotic local power function. For the ultrahigh-dimensional single-index
model where p > n, we construct F-statistics based on lower-dimensional random
projections of the data. For the hypothesis testing of global and partial parameters
in the p > n settings, the asymptotic null distribution and the asymptotic local
power function of the proposed test statistics are analyzed. The newly proposed test
possesses the advantages of intuitive interpretation and simplified computation. We
compare the proposed test with other high-dimensional tests and show our test is
more efficient in a sufficient condition. We conduct simulation studies to evaluate the
finite-sample performances of the proposed tests and demonstrate that it has higher
power than some existing methods in the models we consider. The application of real
high-dimensional gene expression data is also provided to illustrate the effectiveness
of the method.

Overall, we propose new tests applicable to general models in high-dimensional
settings. The proposed tests are easy to implement and would present a reasonable
performance under mild conditions. For the testing power, it is shown to hold for
a wide range of alternatives and possess certain advantages in sparse cases. As a
result, our proposed method provides a practicable choice for hypothesis testing in

modern data analysis.

Key Words: High-dimensional inference; Hypothesis testing; Linear model; Single-

index model; Random projection.
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Chapter 1

Introduction

1.1 Background

In the modern data analysis, there will always be a typical situation where the
dimension of covariates p is much greater than the sample size n. For example, in
genomic studies, the dimension of data such as gene expression and genetic marker
data are typically far greater than the sample size. This phenomenon brings chal-
lenges to the classical statistical testing procedures, even in many basic settings.
For example, the Hotelling T2 statistic for the two-sample testing problem cannot
be well-defined when p is greater than n, since the sample covariance matrix is no
longer invertible in this setting. Similarly, in high-dimensional regression models,
many existing methods for statistical inference about regression coefficients are no
longer applicable. Therefore, it is important to develop new testing procedures in
high-dimensional models. In this thesis, we mainly focus on linear model and single-
index model for their representativeness and ubiquitous application. This section

will introduce their basic forms and problems in high-dimensional settings.
1.1.1 Linear Model

We first consider a linear regression model, given as

y=a+x"B+e, (1.1)
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where y is a response variable, x is a p x 1 covariate vector, « is an intercept term,
3 is a p x 1 vector of unknown coefficients, and € is a random error term with mean

zero and variance o2. We are interested in testing the hypothesis
Hy:3=0 versus H;:8#0. (1.2)

In low-dimensional settings, a basic test statistic for this problem is the F-test (Searle
and Gruber, 2017). The idea behind this test is the least squares method which is
based on projecting the vector of response variables onto the space generated by co-
variates. Under conditions p < n and y|x ~ N(a +x'3,0?), the exact distribution
of the F-test is known and has certain optimal properties, since it can be considered
as a likelihood ratio statistic. Without the normality assumption, Wang and Cui
(2013) proposed a generalized F-test statistic and showed that it is asymptotically
normal when p/n — v with v € (0, 1). However, neither the F-test nor the general-
ized F-test is well-defined when p > n. Even when p < n, Zhong and Chen (2011)
showed that the F-test would have a poor performance as the result of increasing

covariate dimension.

1.1.2 Single-Index Model

For the single-index model (SIM), it is defined as

Yy = f(xTO, €), (1.3)

where y is a response variable, x is a p X 1 covariate vector, 0 is a p x 1 vector of
unknown coefficients, € is a random error independent of x, and f is an unspecified
link function. Many commonly used parametric and semi-parametric models are
included in SIM, such as linear, generalized linear and Cox models. However, the
high flexibility of model assumption increases the difficulty to make statistical infer-

ence, especially in high-dimensional problems. In the classical settings, Li and Duan
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(1989) demonstrated that maximum likelihood-type estimators are consistent for 6
up to a scalar, even though a misspecified link function f might be assumed in model
(1.3). In addition, with the assumption that x had an elliptically symmetric distri-
bution, Li and Duan (1989) showed that the Wald test as well as the likelihood ratio
test were workable. Recently, this approach was considered in the usage of LASSO
to the nonlinear model (1.3) by Neykov, Liu, and Cai (2016) and Thrampoulidis,
Abbasi, and Hassibi (2015), where effective sparse recovery and explicit expressions
for the mean-squared-error were obtained, respectively. In addition, Thrampoulidis,
Abbasi, and Hassibi (2015) illustrated that the estimation performance of the gen-
eralized LASSO in the nonlinear model is asymptotically the same as that of the
linear model. However, there is little systematic research on hypothesis testing for

high-dimensional SIM at this stage.

1.2 Literature Review

In recent years, many efforts have been devoted to the problems of hypothesis
testing in high-dimensional models. For the linear regression model, Zhong and Chen
(2011) proposed a test based on a U-statistic of order four and extended it to ac-
commodate factorial designs. This approach was further considered in Cui, Guo, and
Zhong (2018) by implementing a new variance estimation method of Fan, Guo, and
Hao (2012). Specifically, Cui, Guo, and Zhong (2018) constructed the proposed test
from an estimated U-statistics of order two and applied the refitted cross-validation
approach for variance estimation to reduce bias. The numerical comparison with
the method in Zhong and Chen (2011) indicated the advantages of the proposed
method, which were reflected in its less running time and higher empirical powers.
From another direction, Lan, Wang, and Tsai (2014) and Lan et al. (2016) proposed

novel tests motivated by the limited application range of the method in Zhong and



Chen (2011). Specifically, Lan, Wang, and Tsai (2014) proposed a test for general
random design. And Lan et al. (2016) focused on the covariate generated from a
latent factor structure, where high correlation among covariates could lead to viola-
tion of one critical assumption in Zhong and Chen (2011). The above methods were
mainly developed for the testing problems of global or large proportional regression
coefficients. In Zhang and Cheng (2017), a more general testing problem was con-
sidered. It included the testing problem of any subset of the regression coefficients.
For this problem, Zhang and Cheng (2017) introduced a bootstrap-assisted testing
procedure, where the test statistic was a maximal-absolute-error type constructed
from the debiased estimation and the critical value was built from a multiplier boot-
strap method. The proposed method was workable on a sparse setting and was very
sensitive in detecting sparse alternatives. In Zhang and Zhang (2014), the testing
problems of single or finite number of regression coefficients was studied.

For a more general model, the generalized linear model (GLM), Goeman, van
Houwelingen, and Finos (2011) proposed a global test based on empirical Bayes,
where p can be greater than n. Later, the feasibility of this test with diverging p
was proved in Guo and Chen (2016), and the test was modified to gain more power.
Applying the debiased method, Van de Geer et al. (2014) considered the testing
problems of single or finite number of regression coefficients. And Ma, Cai, and Li
(2020) constructed a maximal-absolute-error-type test statistic for the global testing
problem in the high-dimensional logistic regression model.

As mentioned above, testing methods constructed from the debiased method
were extensively developed. This kind of estimation method was first proposed in
Zhang and Zhang (2014) and was demonstrated to possess various advantages. One
of its critical merits was its ability to make direct statistical inference. Compared
with other variable-selection-based approaches, the method was applicable in a more
general setting. Considering the testing approaches based on the debiased method,
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statistical tests for single or low-dimensional components of the regression coefficients
in the linear regression models (Zhang and Zhang , 2014), GLMs (Van de Geer et
al. , 2014) and general models (Ning and Liu , 2017) were developed. For the high-
dimensional global testing problem, Zhang and Cheng (2017) and Ma, Cai, and Li
(2020) constructed maximal-absolute-error-type test statistics in the linear and lo-
gistic regression models, respectively. However, for the need of available estimators,
these methods all required certain strong sparsity condition. It leaded to a prob-
lem of whether the application setting satisfied the sparsity condition, which became
particularly significant in practical data analysis. Recently, related problems have
received attention. For example, Zhu and Bradic (2018) and Bradic, Fan, and Zhu
(2018) investigated testing problem when sparsity condition might be absent. Car-
pentier and Verzelen (2021) studied the problem of testing sparsity of the regression
coefficients.

Another widely applied technique was the random projection. There were many
testing methods developed from it, including independence testing (Huang and Huo ,
2017), two-sample testing (Lopes, Jacob, and Wainwright , 2011) and nonparametric
testing (Liu, Shang, and Cheng , 2018). An important advantage of the methods
based on random projection was its ability to preserve the significant information
in data while reducing its dimension. This made the random projection appealing,
especially in high dimensions.

At last, we would like to provide a general comparison. Specifically, the test
statistics for the testing problem of global regression coefficients were investigated.
Generally, there were two common types of testing approaches: one was the sum-
of-squares-type test statistics, such as Zhong and Chen (2011) and Cui, Guo, and
Zhong (2018), and the other was maximal-absolute-error-type test statistic, such as
Zhang and Cheng (2017) and Ma, Cai, and Li (2020). Concerned with the appli-
cation range, the second type of testing approaches required sparsity restriction on
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the setting. This condition might be rigorous in certain situations, and the perfor-
mance of the test statistics could be uncertain when the condition was absent. For
the power, these two types of testing approaches showed the advantages in different
alternatives. When there was a large proportion of small-to-moderate nonzero regres-
sion coefficients, the first type of testing approaches tended to be more powerful. By
contrast, when there were only few nonzero regression coefficients, the second type of
testing approaches might show stronger testing power. However, when the sparsity
condition was unknown in prior, the selection of the type of test statistic become
important and it motivated us to consider an applicable choice to provide reasonable
performance for both types of alternatives. In addition, test statistics for both types

were relatively complicated in form and had certain computation complexity.

1.3 Motivation and Outline

As shown above, there are still many problems to be solved in high-dimensional
hypothesis testing problem. Motivated by this, we aim to develop novel testing
methods to make some developments for the topic.

For the global hypothesis testing problem in the linear regression model, the exist-
ing test statistics are relatively complicated in form and tend to be computationally
expensive. This motivates us to propose a novel test statistic that has a simple form
and is easy to compute. Specifically, we consider the technique of random projec-
tion. This method has been widely implemented in many fields, such as electrical
and electronic engineering as well as computer science, and it is recently investigated
in statistics. An important advantage of the approach based on random projection
comes from its ability to preserve the significant information in data while reducing
dimensionality. In addition, according to the results that almost all low-dimensional

projection data is close to normal, some theoretical results of the normal distribu-



tion is applicable to randomly projected data. According to the above ideas, we
apply the technique of random projection to reduce dimension of data and construct
F-statistics based on projected data which live in lower-dimensional space. Our pro-
posed test statistic has no explicit restriction on the relationship between n and p,
which makes it accommodate extremely high-dimensional settings. And it is shown
to be applicable in a general situation under some mild conditions, where no sparsity
restriction is required.

Since the linearity assumption of the linear regression model has certain limitation
and may be violated in several practical cases, there is a vast literature devoted
to developing statistical inference methods that are tailored for nonlinear models.
However, according to the results in Li and Duan (1989), as shown in Section
1.1.2, it motivates us to reconsider the possibility of applying the statistical inference
methods of linear model to nonlinear models. We study the F-statistic in a relatively
high-dimensional SIM, where p/n — ¢ with ¢ € (0,1), and we demonstrate its
feasibility by deriving its asymptotic normality and asymptotic local power function.
Combining this idea with the technique of random projection, we propose novel
test statistics for the testing problems in high-dimensional SIM when p > n. The
proposed test is simple in form and is easy to compute. And it has a wide application
range in terms of general model assumption and mild conditions on the distribution.

The reminder of the thesis is organized as follows.

In Chapter 2, we investigate the testing problems in the high-dimensional linear
regression models. Specifically, we propose novel test statistics for the testing prob-
lems of global and partial regression coefficients and derive the asymptotic normality
and asymptotic local power functions. By comparison with some recent developed
methods, our proposed test shows large asymptotic relative efficiency in a sufficient
condition. Through simulation studies, we evaluate the finite-sample performances

of the proposed tests and demonstrate that it has stronger testing power than the
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competing tests in considered models. Applications to real high-dimensional gene
expression data are also provided for illustration.

In Chapter 3, we study the problems of hypothesis testing in high-dimensional
SIMs. First, we demonstrate the feasibility of applying the classical F-test to a SIM
in the p/n — ¢ € (0,1) regime. For the ultrahigh-dimensional SIM in the p > n
settings, we construct F-statistics based on lower-dimensional random projections
of the data. We derive the asymptotic null distribution and the asymptotic local
power function of the proposed test statistics for the hypothesis testing of global and
partial regression coefficients in the p > n settings. We compare the proposed tests
with other high-dimensional tests and provide sufficient conditions under which the
proposed tests are more efficient. According to the simulation studies, the finite-
sample performance of the proposed tests is evaluated. The simulation results also
indicate higher power of our proposed tests than some existing methods in the models
we consider. The application of real high-dimensional gene expression data is also
provided to illustrate the effectiveness of the method.

A brief summary of the thesis is provided in Chapter 4, where we also make a

short discussion for future research.



Chapter 2

New Tests for High-Dimensional
Linear Regression Based on
Random Projection

2.1 Introduction

In this chapter, we consider a linear regression model
y:a—l—XTﬁ‘i‘E, (21)

where y is a response variable, x is a p X 1 covariate vector, « is an intercept term,
B is a p x 1 vector of unknown coefficients, and ¢ is a random error term with mean
zero and variance o2. We focus on the high-dimensional settings when p can exceed

the sample size n. We are interested in testing the hypothesis
Hy:8=0 versus H;:3#0. (2.2)

We propose a new statistical test for hypothesis (2.2) in high-dimensional settings.
Using the technique of random projection to reduce the data dimension, we construct
F-statistics based on projected data which live in lower-dimensional space. The F-
test based on projected data has a simple form and is easy to compute. An important
advantage of random-projection-based approach stems from its ability in dimension

reduction while preserving the significant information in data simultaneously. The
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proposed test is shown to be applicable in a general situation under some mild
conditions. The usage of random projection injects extra randomness to the test
statistic, which requires further investigation of the relationship between the response
and the projected data as well as the performance of the new hat matrix. Our analysis
is inspired by the results that almost all low dimensional projection data is close to
normal, according to Diaconis and Freedman (1984). Under the null hypothesis, it
is shown that the proposed test statistic is asymptotically normal as (n,p) — oc.
We also derive the asymptotic local power functions of the proposed tests. The
results show that the asymptotic performance of the test statistics is similar to that
in the setting when the data is normal, and demonstrate the benefit of the using
random projection for reducing the dimension of the data. Finally, we extend the
proposed random-projection-based test procedure for the global hypothesis (2.2) to
the problem of testing partial regression coefficients and derive its asymptotic null
distribution and local power function.

The rest of this chapter is organized as follows. In Section 2.2, we propose our
test statistic and give the intuition for its design. In Section 2.3, we establish the
asymptotic null distribution of the proposed test statistic and derive its asymptotic
local power function. We also derive the asymptotic relative efficiency of the proposed
test in comparison with some recent tests. In Section 2.4, we extend the proposed test
to the problem of testing partial regression coefficients and establish its asymptotic
theoretical results. In Section 2.5.1, we conduct simulation studies to evaluate the
finite-sample behavior of the proposed test in terms of type I error and power, and
compare it with the competing tests. We also illustrate its applications to high-
dimensional gene expression data sets in Section 2.5.2. The proofs of lemmas and

theorems are relegated to Section 2.6.
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2.2 Test Statistic

Suppose that (x1,%1),. .., (Xn, yn) are ii.d. copies of (x,y) from the linear re-
gression model (2.1). Let x; = (zy1,...,7;)" be the i-th row of the design matrix

X =(X1,...,%,) andy = (y1,...,yn) . It follows that y and X satisfy
y=al+XB+e€ (2.3)

with the error vector € = (e1,...,€,)  and 1 = (1,...,1)".
To motivate the proposed test, we first recall the classical F-test of overall sig-
nificance for regression in the n > p settings. For simplicity, we consider the model

without intercept

y = XB +e. (2.4)

We assume X is full column rank. Let H = X(X"X)™'X" be the projection matrix

(or hat matrix) for the regression. The F-statistic for testing Hy : 3 = 0 is

H
R y Hy/p

=y A-Hy/n—p) (25)

Under the normality assumption y|X ~ A(Xg3, 02I), F}, has a noncentral F-distribution
with degrees of freedom (p,n — p). The F-test can be derived in different ways. For
example, it can be derived based on the distribution of the least squares estimator
of B, and it can also be derived as a likelihood ratio test. Indeed, F-test is the most
widely used methods for testing hypothesis about regression coefficients in linear
models and enjoys certain optimality properties. In addition, it has a known finite-
sample distribution and it is uniformly most powerful invariant (Lehmann, 1959).
Clearly, the F-test in (2.5) is not applicable to high-dimensional data with n < p.
To overcome this difficulty, we first project high-dimensional predictors onto a
lower-dimensional space, and then apply the F-test to the projected data. Specifi-
cally, for an integer 1 < k < min{n, p}, let P, € R?** denote a random projection

11



matrix with random entries, drawn independently of the data. Define uy; = Png'-

Let Uy = (Wg1, ..., Ug,) " = XPy. We consider a working model
y=Um+e (2.6)

We use this model to motivate the proposed test statistic. Of course, model (2.6)
is generally different from model (2.4). However, for the purpose of constructing
a valid test, it suffices that the null hypothesis Hy : 3 = 0 under model (2.4) is
equivalent to the null hypothesis Hy : 7 = 0 under (2.6). To see this, we focus on
a random projection Py with i.i.d. AN(0,1) entries. First, for n = 0, model (2.6)
can be written as y = € = X0 + €. Therefore, y has the same distribution in model
(2.4) for B = 0. Second, for n # 0, Pxn # 0 holds with probability 1, since Pyn is
distributed as N(0, ||n||2I). Consequently, 3 = 0 in model (2.4) implies 7 = 0 in
model (2.6), otherwise, a contradiction will be led by Pxn # 0. Now suppose Uy,
is full column rank (this can be guaranteed if k¥ < n and X is full row rank). The

projection matrix for (2.6) is
H, = U,(U/U,)'U|.

The F-statistic based on (2.6) is

T y Hyy/k
oy @ -Hy)y/(n—k)

(2.7)

For the model with an intercept, y = al + X3 + €, we can simply center the

design matrix and modify the test statistic as:

T y Hyy/k
TyTI-Pi-Hy)y/(n—k—1)

(2.8)

where P; = 1117 and Hy = Uy(U,U;)"'U; is a new hat matrix with U, =

(I— P,)XP,.
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Note that the matrix UgUk is of full rank with probability 1 when Pj, has i.i.d.
N(0,1) entries, which ensures the new hat matrix is well-defined even when p > n
as shown in the proof of Theorem 2.1.

From the definition, the new test is based on a projection of the response vector
y onto the space spanned by the columns of Uy, which is a linear subspace of the
space spanned by the columns of the centered X.

A convenient way to construct Pj is to generate its entries as i.i.d. random
variables from the standard normal distribution N'(0,1). Li, Hastie, and Church

(2006) suggested that one can also generate other types of random projections
P,, for example, sparse random projections, to achieve asymptotically the same
performance as the normal random projection at a fast convergence rate. A sparse

random projection consists of entries p;; that are i.i.d. from distributions satisfying

P(pi; = V1) = P(py; = —V1) = % P(p; =0)=1— % (2.9)

where the choice of [ is recommended to be \/p. Under this case, Li, Hastie, and
Church (2006) showed that the entries of projected data converge to normal at a rate
of O(p~/4).

In our theoretical analysis, we will focus on random projections consisting of i.i.d.
normal random entries. The results can be applied to some non-normal projections.
We will use the above sparse random projection and evaluate the performance of

non-normal projections in the simulation studies.

2.3 Main Results

This section consists of the statements of our main theoretical results and related
discussions. Specifically, we derive the asymptotic normality and the asymptotic
power function for the new random-projection-based test. We also conduct a com-

parison with one of the latest tests in terms of asymptotic relative efficiency.
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2.3.1 Asymptotic Normality

Our first main result demonstrates the asymptotic normality of the standardized T;,

under the null hypothesis. We work under the following assumptions.

Assumption Al. x;, = p + I'z;, where ' is a p X m matriz with m > p, p is a

p-dimensional vector and z; = (21,...,2m)' 48 an m-variate random vector with

E(z) = 0,Var(z) = I, and Var(%) = O(m™'). For any nonnegative integers

Qis- - Gm, With Z;nzl q; = 4, the mized moments E(H;’";lzfj) are bounded, and equal

to 0 when at least one of the g; is odd.

Assumption A2. 4 = F(e}) < 00,

)

Assumption A3. p > n and there is a constant p € (0,1) such that % — p.

As stated in Assumptions A1l and A3, we do not place any concrete relationships
between n and p, allowing the dimension p, mean vector g and covariance matrix
3 =TT to implicitly vary as n goes to infinity. This makes our test accommodate
extremely high-dimensional problems. Taking a closer look at Assumption Al, we
find it resembles a factor model structure which has a linear relationship between
x; and z;. It can be proved that the following two kinds of assumptions are both

included in Assumption Al.

D1 (Pseudo-independence assumption.) Suppose the p-variate random vector x;
follows the general multivariate model: x; = p+I'z;, where p is a p-dimensional
real vector, I is a p x m matrix, and z; = (z;,... 7Zim)T is an m-variate
random vector with E(z;) = 0 and Var(z;) = I,. Furthermore, each z;;
satisfies E(z};) = 3 + A < oo for some constant A, and E(zfjl1 : zfjd) =
E(zgl) e E(zfjd) for any Zgzl l, <4 and j; # -+ # jaq, where d is a positive

integer. Integers m and p satisfy m > p.
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D2 (Elliptical distribution assumption.) Suppose the p-variate random vector
x; satisfies the stochastic representation: x; = p + I'rju;, where p is a p-
dimensional real vector, I' is a p X p matrix, u; is a random vector uniformly
distributed on the unit sphere in R” and r; is a nonnegative random variable

independent of u; satisfying E(r?) = p and Var(r?) = O(p).

The pseudo-independence assumption and its similar versions were used in Bai and
Saranadasa (1996), Zhong and Chen (2011), and Cui, Guo, and Zhong (2018).
Such assumptions are similar to Assumption A1, but imposing stricter conditions

Z. Z;

on each element of z;. This is because z; in D1 satisfies Var(’TT) = Z2 TIn the
multivariate statistical analysis, elliptical distribution is often assumed to facilitate
study. It includes a flexible family of distributions, including multivariate normal
distribution, multivariate t-distribution and multivariate logistic distribution. Let
z; = r;u; and m = p, D2 and Assumption Al enjoy a similar form. Furthermore,

Lemma 2.1, together with Lemma 2.3, indicates that the distributions satisfying D2

are included in Assumption Al.

Since T, is invariant to the location shift of y and X, we assume that o = 0 and

p = 0 in the rest of the paper.

Lemma 2.1. Suppose u; is a random vector uniformly distributed on the unit sphere
in R? and 71 is a nonnegative random variable independent of u, satisfying E(r?) = p

and Var(r?) = O(p). Let zy = ryuy. Then

ZI 21

)= Op™).

E(z) =0, Var(z) = I,, Var(

Therefore, our assumption for the distribution of x; is relatively flexible. For
example, there is no specific condition on the covariance matrix 3. For the error

term, we only assume that ¢; is generated from a distribution having a finite fourth
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moment. The projection dimension k is assumed to be asymptotically proportional
to n with a coefficient p € (0,1). The choice of p will be discussed in the subsequent
Section 2.3.3.

Clearly, to derive the asymptotic distribution of 7;,, we need to study the proper-
ties of the hat matrix Hy. Since H;, = Uk(U,IUk)_lU;, the properties of H;, can be
established when Uy, is generated from Gaussian variables. Diaconis and Freedman

(1984) showed that the empirical distribution of randomly projected data tends to
be approximately Gaussian. Inspired by this result, we will show in Lemmas 2.9 and
2.10 that Uy is asymptotically close to Gaussian, which demonstrates the advan-
tage of the random projection method. We state the asymptotic distribution of the

standardized T}, under the null hypothesis.

Theorem 2.1. Suppose the random projection matrix Py consists of i.i.d. the stan-
dard normal random variables. Under Assumptions A1-A3 and Hy, as n — 0o, we

have
T, —1
2/np(1 = p)

25 N(0,1).

This asymptotic normality result justifies the following test procedure. Given an

a-level of significance, the proposed test rejects Hy if

where z, is the upper a-quantile of A(0,1).

2.3.2 Asymptotic Power Function

We now investigate the asymptotic power function of the proposed test. Addi-
tional assumptions are needed to facilitate our analysis.
Assumption A4. 83733 = o(1).
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Assumption A4 is known as a local alternative, which is commonly used in study-
ing the asymptotic properties of a statistical test. Detailed discussions can be found
in Van der Vaart (1998, Section 14.1).

In the classical F-test in (2.5), the hat matrix H enjoys the properties X 'H = X"

and HX = X. Hence,
y ' Hy = 3"X"XB8+28"X" e+ e He,

where € He does not involve the parameter value. It indicates that the power of the
F-test relies on 87X "X3 and 8" X "e. Thus, we can use the properties of H in the
power analysis of the F-test without the need to consider the inverse of X' X.
However, the properties of H do not hold for the hat matrix Hj. Fortunately, we
can get around this problem based on the properties of random projection. Specifi-
cally, the fact that randomly projected variable is asymptotically normal yields a new
representation for the model (2.3) by y = XP.£€ + e, where £ = (P, XP;)'P, X3
and e = y — XP,£. Note that « is assumed to be zero here. It can be shown
that the new error term e is asymptotically conditional independent of XPj, making
the conventional analysis for the F-test applicable here. To rigorously show this,

additional requirement for z; is needed as follows.

Assumption A5. The m-variate random vector z; = (21, .. ., zim)T has a Lebesque
density f, and satisfy E(z;) = 0 and Var(z) = I,. For j =1,...,m, the compo-
nents z;; are assumed to be independent, satisfy E(z?jo) < C for a constant C, and

have the marginal density bounded by a constant D > 1.

Define 67 = 02 + BTE8 — £€'P/ XP.£ to be the variance of the new error. We

derive the asymptotic power function of the proposed test.

Theorem 2.2. Suppose that Assumptions A1-A5 hold. Let WEP(3; Py) denote the
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power function of the proposed random-projection-based test T,,. Then

n(1—p) 5TP;2Pk§)
2p 62 ’

U (B; Py) — ®(—24 +

where ®(+) is the cumulative distribution function of the standard normal distribution,

and z, s the upper a-quantile of ®.

It is remarked that there is no extra assumption made for 3, showing that the
power property of the proposed test holds over a wide range of alternatives. The
asymptotic power function relies on P, and is a increasing function of the product
£TP,€TZP,€£. It is found that the product is upper bounded by B8"33, which can
be reached when the vector I'" 3 is in the space generated by I''P;. To make the

bound achieved asymptotically, we give a sufficient condition.

Assumption A6. (Tail eigenvalue condition.) There exists an integer s and a real

number v > 0 such that s < k and */TEHBH% Y er1di = o(n™7), where d; are the

etgenvalues of X satisfying di > dy > -+ > d, > 0.
We call Assumption A6 a tail eigenvalue condition, as it requires the product of

|3]]3 and the sum of tail eigenvalues of ¥ to be of order less than p//n.

Lemma 2.2. Let Py, € RP** consist of i.i.d. N'(0,1) entries. Suppose that Assump-

tion A6 holds, we have

Va||[T' B~ T Py = o(1),
for some n € R¥ with probability tending to one.

This lemma indicates that we can approximate I'' 3 by I'" P,n with negligible
approximation error. In this case, we denote the asymptotic power function as
UEP(3) since it is not related to Py. A formal result is given in the following

corollary.
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Corollary 2.1. Suppose that Assumptions A1-A6 hold. Then

n(l—p)B'8
2p o?

VP (B) — (—2a + ) =0,
where ®(+) is the cumulative distribution function of the standard normal distribution,

and z, 1s the upper a-quantile of ®.

2.3.3 Choice of p

As demonstrated by Theorem 2.1, the proposed test can be practicable with any
projection dimension k that satisfies Assumption A3. However, when the asymptotic
power is considered, the value of k shows a significant influence through the ratio p,
as shown in Theorem 2.2. In this subsection, we will give a detailed discussion for
the choice of p.

From Theorem 2.2, the asymptotic local power function satisfies

n(l—p) &P, EPE
2 » )+ o(1). (2.10)

\II§P<167 Pk) = (I)(_Za +

Let A = £'P/XP.£. Tt can be derived by projecting the vector I'' 3 onto the
space generated by I'' Py, where the dimension is k. Intuitively, larger value of p
would lead to larger A?) since the projection space becomes bigger. However, with
the increase of p, the value of function /(1 — p)/p would decrease. Therefore, we
show that choice of p is a compromise between these two values.

First, we consider a situation, where the condition given in Corollary 2.1 is satis-
fied. In this case, A? becomes a deterministic value, even with randomly generated
projection matrix P;. The asymptotic local power function is a decreasing function
of p and we confirm this through the simulation studies. Therefore, the value of p

can be arbitrarily small as long as the tail eigenvalue condition is satisfied.

19



Then, we consider the other situation, where 3 = I. In this case, the eigenvalues
of & are equally significant with A? = BTP.(P.P;)'P, 3. Suppose that the
direction of @3 is uniformly generated on the unit sphere. From Proposition 1 in

Lopes, Jacob, and Wainwright (2011), quantity A? satisfies

2 2
P(i2%>—>1andp(ig%)—>1,
1813~ p 18115~ »

for some constants ¢ and C. This indicates A? scales linearly in k& up to random

fluctuations. Combining this result with (2.10), the influence of p on the testing
power is mainly achieved based on the function g(p) = 4/ PTP - p, which is maximized

when p = 0.5. Therefore, choice of £ = [0.5n] may be asymptotically optimal in a
general sense.

For most applications, where no prior information of ¥ might be available, the
above discussion suggests that p around 0.5 would be an applicable choice, since
the setting above can make the performance of the test reasonable, even in extreme
cases. For some situations, where estimation methods of ¥ or related function of X
are available, p could be selected based on the estimators. For example, the ratio
tr(X)?/tr(X?%), which lies between 1 and p, can be viewed as measuring the decay
rate of the spectrum of ¥ (Lopes, Jacob, and Wainwright, 2011). And the tail
eigenvalue condition could be satisfied when tr(X)?/tr(X?) < p. Consequently, we
could determine p according to estimation of the ratio, which is available based on

the estimators of ¢r(X) and tr(X?) proposed in Chen, Zhang, and Zhong (2010).

2.3.4 Asymptotic Relative Efficiency (ARE)

The asymptotic power function of the proposed random-projection-based test in
Corollary 2.1 has the same form as the F-test, which was studied in Zhong and Chen

(2011). However, our test accommodates high-dimensional settings and has milder

20



assumptions on X and €. As it is well-known that the F-test has good performance
in low dimensions, the new test, as an extension of the F-test to high dimensions, is
expected to perform well under certain conditions. To confirm this, we compare the
performance of our test with the test proposed by Cui, Guo, and Zhong (2018), which
is one of the latest tests designed for the testing problem (2.2) and is demonstrated
to have superior performance over the existing tests for the problem considered. We
denote this competing test by RCV test and show our test outperforms it in some
situations. In this subsection, we suppose Assumption A6 holds.

With a slight abuse of notation, we also denote the asymptotic power function of

our random-projection-based (RP) test as

Y
V) = 0z [P

).

The asymptotic power function of RCV test proposed by Cui, Guo, and Zhong
(2018) is given by

nBT323

RCV _ o
\Iln (,6) - (I)( Zo t+ 2t7’(22)

).

Since the term added to —z, inside the ®(-) function is what controls power, the
ratio of such terms can be defined as the asymptotic relative efficiency (ARE). For

comparison, we define the ARE of our test to RCV test as

ARE(\Ifij,\IfijV):< nd=r)gryg) BT(E;ZB)) . (2.11)

Whenever the ARE is larger than 1, the proposed test is asymptotically more pow-
erful than the competing test. Therefore, we search for sufficient conditions under
which the ARE is greater than 1.

Write 3 as ||3][20, where § = is the direction of 8. Under Assumptions A4

IIﬁH
and A6, we further require the sum of tail eigenvalues satisfying Y7 | d;/6" 26 =
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O(pn=°77), where v is a small constant greater than zero. By Jensen’s inequality,

we have

B L—p> b 1 d; 6758 Jl-p (6736)*

A \I;RP.\I]RCV 2
RE( n ) ¥n ) 0 n (6T225) = 0 (6T225)2

O(pn=*77).

(2.12)
Clearly, if ((‘?TZTQ;)); = o(pn~27%7), the right side of the inequality goes to infinity as n
goes to 0o, which sufficiently demonstrates that the proposed test is more powerful
than RCV test. In addition, this inequality shows that p is preferred to be the
smallest value such that the tail eigenvalue condition holds.
(67 324)2

We give two examples to illustrate situations where ETEeT — o(pn=2727) is

satisfied.

Example 2.1. Suppose B is an eigenvector of X, then %TTET?))f = 1. Giwen that

n = o(p"/ %20 for a constant v > 0, which frequently happens when p > n, we have

(67325)2

Tz — olpn ).

Example 2.2. Suppose the covariance matriz 3 has the spectral decomposition
¥ = OAO" = O diag(d,,...,d,) O",

where O is an orthogonal matrix with i-th column denoted by o;, and d; are the
etgenvalues of 3 satisfying 0 < dy < dy < --- < d,. We assume there exist integers
1 < 51 < 59 < p and constants r1 < ro such that, for v = s1,..., 89, the order of d;
is between n™ and n" in the sense that 1/d; = O(n™"™) and d; = O(n™?). Consider
B € Span{os,,...,0s,}. Then we get

57 325)2 ryer
((6T26)>4 < O(n'=7),

When n and p satisfy n = o(p'/?0T7F22=2r)) for o constant v > 0, we have

B 20" _ o(pn=2"%), and th RCYV test in these situati
TEe T o(pn ), and thus our test outperforms test wn these situations.
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2.4 Testing Partial Regression Coefficients

In Section 2.3, we proposed a random-projection-based test for testing the hy-
pothesis (2.2). In many studies, we are also interested in investigating the signifi-
cance of partial covariates. In this section, we generalize the test in Section 2.3 to the
hypothesis testing of partial linear regression coefficients and derive its asymptotic
results.

Consider a linear regression model
y=a+x{B+x;08: +¢ (2.13)

where « is an intercept term, x; is a p;-dimensional covariate and x5 is a po-
dimensional covariate, 3; and By are vectors of unknown regression coefficients cor-
respondingly, and € is a random variable with mean zero and variance o?. We are

interested in testing the hypotheses

H,10:082=0 versus Hp,q: B2 #0. (2.14)
Suppose that (x1,91), ..., (Xn, yn) are i.i.d. copies of (x,y) from the linear regression
model (2.13), where x; = (x{;,%5;)" and x = (x{,x5)". Let y = (y1,...,y,)" and
x1; = (@}, ..., 2}, )" be the i-th row of the matrix X; = (x11,...,X1,)". Similarly,

let Xy = (Xa1,...,X2,) . It follows that y, X; and X, satisfy
Yy = al + X1,81 + XQ,BQ + € (215)

with the error vector € = (ey,...,6,)" and 1 = (1,...,1)".
Following the same idea in Section 2.3, we develop a new test for testing the
hypothesis (2.14). For an integer 1 < ky < min{n — p1, pa}, let Py, € RP2Xk2 he a

matrix with i.i.d. A(0,1) entries, drawn independently of the data. We define the
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following projection matrices:

1
P, =-11",
n

Px, = (I-P)Xy(X{ (I -P)X,) ' X[ (I-Py),

H,, = (I- PYW(W (1 - P)W)"'W (1 - P,)
where W = (X, X,P;,). Note that the matrix W' (I — P;)W is of full rank with
probability 1 when Py, has i.i.d. N(0,1) entries and ko is appropriately selected.

This ensures the projection matrix Hy, is well-defined, even when p, > n. We

propose a new test statistic

T _
Tope = Y (Hi, = P)y/k, (2.16)

y' (I=Py—Hg,)y/(n —1—p1 — k)

From the definition, the numerator of 7,, ,, presents the part of y that can only be
explained by XyPj,, while the denominator of T, ,, estimates the variance of the

error term.

2.4.1 Asymptotic Null Distribution

To study the asymptotic null distribution and the asymptotic power of the pro-

posed test, we make the following assumptions.

Assumption S1. x; = (z],,z),)" = p + Tz, where z;; € RP' and x; € RP? are
covariates, p s a p-dimensional mean vector, I' is a p X m matriz with m > p, and
z; is an m-variate random vector with E(z;) = 0,Var(z;) = I, and Var(%) =
O(m™Y). For any nonnegative integers qu, ..., qm, with Z;nzl q; = 4, the mized mo-
ments E(H;-”zlzgj) are bounded, and equal 0 when at least one of the q; is odd.

Assumption S2. uy = F(e}) < oo.

Assumption S3. p = p;+py > n, py > p1, and there exist constants p1, p2 € (0,1),
with py + py < 1, such that 2 — py and % — pa.
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Since T, p, is invariant to the location shift of y, X; and Xj, we assume o = 0
and g = 0 in the following. The dimensions of the covariates are assumed to satisfy
P2 > p1, so Xy is the high-dimensional component. In addition, p; is assumed to be
less than but can be comparable with n. The projection dimension ks needs to be

asymptotically proportional to n and the choice of p, will be discussed below.

Theorem 2.3. Under Assumptions S1-S3 and Hy,, as n — 0o, we have

Tnp -1 D
2 — N(0,1).
V2(1 = p1)/npa(1 — p1 — p2) 0D

The asymptotic normality of the standardized test statistic provides the testing

procedure. Given a a-level of significance, H,q, is rejected when

n,p2 B 1

\/2(1 — p1)/np2(1 — p1 — p2)

> Za,

where z, is the upper a-quantile of A/ (0,1).

2.4.2 Asymptotic Power Function

We are now in a position to study the asymptotic power of the test. We first
divide I' = (I'{,T'y)" with I'; € RP*™ and Ty € RP2X™, Define ¥y, = I''T'],
222 = ]_-‘2]_-‘;—7 212 = ]_-‘1]_1;— and 221 = I‘QFI Following the same idea in Section 23,

we give additional assumptions to facilitate our analysis.
Assumption S4. ,8;222,62 = 0(1), and ,8;22121_1121262 = 0(1)

Assumption S5. The m-variate random vector z; = (21, ..., 2m)" has a Lebesque
density f, and satisfy E(z) = 0 and Var(z;) = I,. For j =1,...,m, the compo-
nents z;; are assumed to be independent, satisfy E(zizjo) < C for a constant C, and

have the marginal density bounded by a constant D > 1.

25



Define V = diag(I,,, Py,) and v = (V' V)1V 3. We write the p-dimensional
vector Vy = (£],&])" with & € RP and & € RP2. Let 72 = o2 + 37203 —
~TV T2 V~. We derive the asymptotic power function of the proposed test.

Theorem 2.4. Under Assumptions S1-S5, we have

\117}"0%7];2(162;1)162)_‘1)(_2@4'\/”( pr—p2)(1 = p1) & (B2 — In B, 12)§2>_>0’

2p2 7']3

where ®(+) is its cumulative distribution function of the standard normal distribution,

and z, is the upper a-quantile of ®.

Note that no extra assumption is made for ¥. From the expression of the
asymptotic power function, we can see that the product & (Xg — Zo1 21 312)&:
is preferred to be larger, which is dependent on Pj, and is upper bounded by
By (o — 91 371! 212)B2. We give a sufficient condition such that the upper bound

can be reached.

Assumption S6. There exist an integer sy < ko and a real number vo > 0, such
that \;—fHﬁgH% 2 1 di = o(n™72), where d; are the eigenvalues of Xy satisfying
di >dy > --->dp, > 0.

This assumption ensures Lemma 2.2 is valid for 85 and 39, leading to a negligible

distance between the vector I'" 3 and the space generated by I'" V. In this case, we

denote the power function of the proposed random-projection-based test T, ,, as
\11717?52 (IB 2)'

Corollary 2.2. Under Assumptions S1-S6, we have

UEP (B,) — @ (—za n \/n(l — p1 — p2)(1— p1) B (Baz — 22121—11212)g2> Lo

n,p2 2p2 0—2

where ®(+) is its cumulative distribution function of the standard normal distribution,

and z, s the upper a-quantile of ®.
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2.5 Numerical Studies

2.5.1 Simulation Studies

We conduct simulations to evaluate the finite-sample performance of the proposed
tests and compare it with RCV test.
The first simulation study was designed for testing the hypothesis: Hy : 8 =

0 versus H; : B # 0 in the linear regression model
yi=a+xBte, i=1...n

Set av = 2. Suppose that ¢; was generated from N(0,1) or ¢(5)/ \/_3 and covariate
x; was generated from p + XY2z; where g = (1, ..., u,)" with p; independently
generated from U(2,3), and each entry of z; = (z;1,...,2;) was i.id. from (i)
N(0,1) or (ii) U(—=+v/3,v/3). The matrix 3'/? was generated by Uy/DU', where
U was an orthogonal matrix generated from the uniform distribution on the p x p
orthogonal group with the i-th column denoted by u; and vD = diag(v/dy, . . \/_
Let s = [n%™] and L = [n°®]. To achieve the tail eigenvalue condition, we set
d; =1, fori <s,and d; = (L — s)(w;/W), for i = s+ 1,...,p, where w; = 1/(i — s)*
and W = 377 w;. Under the alternative hypothesis, the vector of regression
coefficients 3 was randomly selected from Span{ui,...,usy} with ||3]]3 taking
0.1, 0.2 and 0.3. Different values of M were considered in the simulations: (i)
M =0 and (ii) M = 50. Working under high-dimensional settings, we set (n,p) =
(300, 3000), (400, 5000), (800, 5000).

In the simulations, we implemented three types of random-projection-based tests
according to the choice of random projection: (i) RP test: applying the normal
random projection; (ii) multi-RP test: independently generating the normal random
projection for 10 times and utilizing their mean; (iii) S-RP test: applying the sparse

random projection defined in (2.9) with I = 400.
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We first report the kernel density estimation of the proposed test statistics under
Hj in Figures 2.1(a) and 2.1(b), showing that the asymptotic null distribution of the
proposed tests can be well approximated by the standard normal distribution. Here
we chose p = 0.4. The good resemblance to the normal distribution confirms the

theoretical result in Theorem 2.1.
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(a) Norm z, norm ¢ and (n,p) = (300,3000). (b) Norm z, norm ¢ and (n,p) = (800, 5000).
Figure 2.1: The kernel density estimation of RP,multi-RP and S-RP tests under Hj.

Tables 2.1 and 2.2 report the type I errors and empirical powers of the proposed
tests and RCV test for e distributed from A(0,1) and +/3/5¢(5) based on 2000 sim-
ulations. It can be observed that the performances of three proposed tests have
negligible differences, which confirms the discussion in Section 2.2 and suggests the
feasible usage of different random projection in the test. The type I errors of the
proposed tests and RCV test are close to 0.05 under the null hypothesis. The em-
pirical powers of the proposed tests are decreasing functions of p, which is consistent
with the result in Theorem 2.2. Moreover we can see that the power of the tests
are increasing functions of the Ly norm of 3. Compared with the RCV test, the

proposed tests are more powerful.
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Table 2.1: Type I errors and empirical powers of RP, multi-RP, S-RP and RCV tests
at the significance level 0.05 when e ~ N (0, 1).

M p ||,3H§ ZNU(_\/§7\/§) Z ~N(0,1)
RP  multi-RP S-RP RCV ~RP multi-RP S-RP RCV
(n,p) = (300, 3000)
0.2 0 0.062 0.066 0.061 0.065 0.062 0.062 0.060 0.062
0.4 0 0.064 0.065 0.069 0.065 0.069 0.065 0.064 0.062
0.1 0.637 0.623 0.637 0.120 0.647 0.655 0.654 0.120
0.2 0.2 0.956 0.954 0.954 0.188 0.961 0.960 0.959 0.195
0 0.3 0.998 0.996 0.998 0.310 0.999 0.998 0.998 0.327
0.1 0.437 0.440 0.439 0.120 0.442 0.435 0.441 0.120
04 02 0.822 0.837 0.834 0.188 0.833 0.836 0.838 0.195
03 0971 0.968 0974 0.310 0.976 0.971 0974 0.327
0.1  0.402 0.339 0.392  0.095 0.382 0.374 0.381 0.095
0.2 02 0.762 0.748 0.755 0.135 0.770 0.754 0.755 0.144
50 03 0.926 0.929 0.933 0.190 0.940 0.942 0.936 0.191
0.1  0.276 0.272 0.276 0.095 0.268 0.252 0.247 0.095
04 02 0.555 0.559 0.546 0.135 0.547 0.544 0.542 0.144
0.3 0.781 0.780 0.779 0.190 0.783 0.779 0.785 0.191
(n,p) = (400, 5000)
0.2 0 0.067 0.062 0.066 0.068 0.067 0.065 0.065 0.069
0.4 0 0.068 0.065 0.064 0.068 0.061 0.065 0.062 0.069
0.1 0.788 0.794 0.784 0.120 0.797 0.794 0.796 0.126
0.2 02 0.993 0.992 0.992 0.202 0.992 0.992 0.991 0.204
0 0.3 1.000 1.000 1.000 0.333 1.000 1.000 1.000 0.335
0.1  0.521 0.519 0.529 0.120 0.527 0.515 0.513 0.126
04 0.2 0.906 0.912 0.915 0.202 0.919 0.914 0.910 0.204
0.3  0.99 0.994 0.996 0.333 0.992 0.994 0.992 0.335
0.1 0.585 0.572 0.587 0.341 0.599 0.593 0.595 0.357
0.2 02 0.939 0.941 0.943 0.585 0.942 0.946 0.941 0.593
50 0.3 0.993 0.994 0.994 0.758 0.996 0.998 0.997 0.771
0.1  0.362 0.364 0.382 0.341 0.366 0.360 0.359 0.357
04 02 0.742 0.741 0.744 0.585 0.747 0.748 0.743  0.593
03 0.931 0.937 0.939 0.758 0.942 0.941 0.942 0.771
(n,p) = (800, 5000)
0.2 0 0.057 0.058 0.057 0.068 0.058 0.052 0.056 0.062
0.4 0 0.058 0.057 0.057 0.068 0.059 0.059 0.059 0.062
0.1 0.959 0.959 0.958 0.145 0.951 0.957 0.954 0.127
0.2 0.2 1.000 1.000 1.000 0.229 1.000 1.000 1.000 0.201
0 0.3 1.000 1.000 1.000 0.383 1.000 1.000 1.000 0.345
0.1 0.745 0.763 0.747 0.145 0.758 0.763 0.753 0.127
04 02 0.992 0.994 0.995 0.229 0.993 0.993 0.993 0.201
0.3 1.000 1.000 1.000 0.383 1.000 1.000 1.000 0.345
0.1 0.849 0.839 0.841 0.325 0.857 0.858 0.866 0.332
0.2 02 0.999 0.999 0.999 0.583 1.000 1.000 0.999 0.596
50 0.3  1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.792
0.1 0.554 0.551 0.551 0.325 0.568 0.559 0.562 0.332
04 0.2 0.947 0.951 0.951 0.583 0.955 0.952 0.952 0.596
0.3 0.997 0.998 0.999 0.778 0.998 0.999 0.997 0.792
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Table 2.2:  Type I errors and empirical powers of RP, multi-RP, S-RP and RCV
tests at the significance level 0.05 when € ~ /3/5t(5).

M (1813 Z ~U(—/3,V/3) Z ~ N(0,1)

RP multiRP S-RP RCV ~RP multi-RP S-RP RCV

(n,p) = (300, 3000)
02 0 0062 0059 0055 0064 0052 0060 0.063 0.066
04 0 0063 0062 0062 0064 0066 0066 0.071 0.066
0.1 0.637 0.646  0.640 0.118 0.639  0.648  0.648 0.117
0.2 02 0947 0935 0952 0.120 0951 0958  0.956 0.204
0 0.3 0993 0994 0995 0.326 0.995  0.996  0.995 0.332
0.1 0.452 0.441 0.431 0.118 0.464 0.459 0.463 0.117
04 02 0829 0821 0834 0120 082 0829  0.835 0.204
0.3 0971 0967 0966 0.326 0.968  0.969  0.967 0.332
01 0381 0381 0380 0.097 0.390  0.390  0.400 0.095
0.2 02 0757 0762 0754 0.142 0.753  0.748  0.735 0.132
50 0.3 0931 0927 0926 0190 0.925  0.925 0921 0.182
0.1 0271 0260 0262 0.097 0273 0272 0273 0.095
04 02 0539 0538 0548 0.142 0547 0552  0.554 0.132
0.3 0788 0780  0.778 0.190 0.778  0.783  0.789 0.182

(n, p) = (400, 5000)
0.2 0 0.066 0.061 0.060 0.071 0.065 0.067 0.064 0.066
04 0 0071 0062 0064 0071 0064 0064  0.063 0.066
01 0788 0788  0.798 0.124 0.790 0.785  0.796 0.131
0.2 02 0993 0990 0991 0215 0991 0993  0.993 0.208
0 0.3 1.000  1.000  1.000 0.351 1.000  1.000  1.000 0.349
0.1 0533 0535 0523 0124 0533 0533  0.548 0.131
04 02 0914 0913 0909 0215 0905 0911  0.909 0.208
0.3 0.992 0993 0992 0351 0.991  0.993  0.992 0.349
0.1 0588 0599 0592 0.345 0.589  0.596  0.596 0.361
0.2 02 0937 0939 0940 0592 0942 0946  0.947 0.608
50 0.3 0995 0993 0994 0.757 0.997  0.997  0.998 0.758
01 0372 038 0367 0.345 0.367  0.359  0.373 0.361
04 02 0757 0750  0.740 0.592 0.738  0.741  0.754 0.608
0.3 0932 0936 0936 0757 0935 0939 0934 0.758

(n, p) = (800, 5000)
02 0 0060 0057 0059 0061 0051 0054 0.051 0.066
04 0 0058 0055 0059 0061 0061 0055 0.051 0.066
0.1 0957 0955  0.957 0.128 0.961  0.962  0.960 0.127
0.2 02 1.000 0999 1.000 0212 1.000 1.000  1.000 0.201
0 0.3 1.000 1.000 1.000 0.366 1.000  1.000  1.000 0.349
01 0742 0737 0744 0.128 0.757  0.755  0.757 0.127
04 02 0995 0992 0991 0212 0994 0992  0.993 0.201
0.3 1.000  1.000  1.000 0.366 1.000  1.000  1.000 0.349
0.1 0.837 0832 0.834 0338 0866 0.864 0.868 0.345
0.2 02 0999 0999 0998 0587 0999 0999  0.999 0.596
50 0.3 1000  1.000  1.000 0.791 1.000  1.000  1.000 0.784
0.1 0541 0551  0.553 0.338 0.562  0.573  0.571 0.345
04 02 0947 0942 0942 0587 0948 0940  0.948 0.596
0.3 0.999 0998  0.998 0.791 0.997  0.999  0.998 0.784
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Table 2.3: Type I errors and empirical powers of multi-RP, LWT, LDFF and RCV
tests at the significance level 0.05.

d B I8} multi-RP LWT LDFF RCV
0 0.062  0.052 0.050 0.458
0.04 0249  0.087 0.086 0.502

d=3 5=5 (08 0532 0116 0118 0.544
., 004 0735 0218 0216 0787
=90 008 0984 0409 0.388 0.951
0 0.052  0.071 0.069 0.843
_. 004 0295 0183 0181 0917
d=b S=9 08 0605 0312 0308 0959
0.04 0764 0387 0.384 0.999
s =50

0.08 0.987 0.698 0.681 1.000

In the second simulation, we conducted numerical comparison with LWT test
and LDFF test proposed in Lan, Wang, and Tsai (2014) and Lan et al. (2016),
respectively. The data were generated from y; = o + x; 3 + ¢;, where a = 0 and ¢;
was generated from N(0,1). The covariate x; followed a latent factor structure in
Lan et al. (2016). Specifically, x; = vyz; + VDX, where z; is a d-dimensional latent
factor, v € RP*? is an associated factor loadings, X; is a p-dimensional factor profiled
predictor that is independent of z;, and D is a diagonal matrix. From Lan et al.
(2016), the factor profiled predictor X; represents the information that is contained
in x; but cannot be fully explained by the low-dimensional latent factor z;. In the
simulation, each element of z; and X; was independently generated from A(0, 1), and
each entry of v € RP*? was independently generated from A(0,d~!). The elements
of /D were generated in the same way as that in the first set of simulation, when
s = [n%] and L = [n'5]. For the alternative hypothesis, we considered 3 = ||3||.9,
where § = (6y,...,6,)" with §; = s7/2 for j < s, and otherwise, §; = 0. The
integer s took values 5 and 50 to denote different levels of sparsity, and the norm

|18]]3 = 0.04 and 0.08. In the simulation, (n,p) = (300, 3000).
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As shown in Table 2.3, the type I errors of multi-RP, LWT and LDFF tests
are around 0.05, which indicates that the type I error can be well controlled at the
nominal level by the tests. But for RCV test, the type I errors are alarmingly larger
than the given significance level, which indicates the test might not be applicable
in this experimented setting, where the covariates have high correlations based on
the latent factor structure. Therefore, the comparison for the empirical powers is
only considered among multi-RP test, LWT test and LDFF test. Table 2.3 indicates
that empirical powers grow when ||3||2 increases and the performances of LWT and
LDFF tests are similar. The large empirical powers indicate that our proposed
test has superior performances in all the experimented alternatives. Therefore, the
simulation results demonstrate that our proposed test is applicable in the highly
correlated setting and has higher testing power than the competing tests in some
cases.

In the third simulation study, we consider the problem of testing partial regression

coefficients in the linear regression model

yi=a+ X0 +X3,8:+€, i=1....n

The covariate (x;,xJ;) | was generated from g + X'/2z;. The setup was almost the

same as the first simulation study with differences lying in the design of 3;, B2 and
3172, Specifically, we generated X'/2 by
aUvDU! U, (v/Dy,0)U)
0 U,vD,U, 7
where U; (U,) was an orthogonal matrix generated from the uniform distribution
on the p; X p; (pa X p2) orthogonal group, the entries of diagonal matrix D; were
from N (0,1,,) with absolute values taken and the entries of diagonal matrix Dy were
generated in the same way as the first simulation study for the small tail eigenvalue
requirement. We used an indicator R for the different cases: (i) uncorrelated case
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(R=0) ¢, =1, ¢y = 0; (ii) correlated case (R = 1): ¢; = ¢; = 1/v/2. Here
the values of ¢; and ¢y were selected to ensure the variances of xi; and xo; kept
unchanged in the two cases. The vector of regression coefficients 3, was generated
from N(0,1,,) and B, was randomly selected from the space generated by the first
s columns of U, with ||3s]|3 taking 0.1, 0.2 and 0.3. This selection was aimed for
a better display of the impact from the correlation on the power of the tests. For a
high-dimensional design, we chose (n, p1, p2) to be (400,40, 3960).

Figures 2.2(a) and 2.2(b) display the kernel density estimation of the proposed
test statistics under Hy,, ¢, indicating that the asymptotic null distribution of the
proposed tests can be well approximated by the standard normal distribution. Here
p takes the value 0.2. We show both the correlated and uncorrelated cases. The good
resemblance to the normal distribution confirms the theoretical results in Theorem

2.3.
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(a) Norm z, norm € and R=0. (b) Norm z, norm € and R=1.

Figure 2.2: The kernel density estimation of RP,multi-RP and S-RP tests under
Hpart,O'

Table 2.4 reports the type I errors and empirical powers of the proposed tests for

error term e distributed from N (0, 1) and +/3/5t(5) based on 2000 simulations. It can
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be observed that the performances of three proposed tests have negligible differences.
The type I errors of the proposed tests are close to 0.05 and the power of the tests
are increasing functions of the norm ||3;||3. Compared with the correlated case, the
tests show large power when there is no correlation between x;; and x5;, which is
consistent with the feature of the asymptotic power in Theorem 2.4.2. Moreover, we
find the empirical power is close to the asymptotic power, which further confirms the

result in Theorem 2.4.2.

Table 2.4: Type I errors and empirical powers of RP, multi-RP, S-RP at the signif-
icance level 0.05 when (n, p1,p2) = (400,40, 3960) and p = 0.2.

~ 4/3/5t(5 ~ N(0,1
z R By VIO N
RP  multi-RP S-RP RP  multi-RP S-RP

0 0.056 0.059 0.053 0.063 0.057 0.060
0.1 0.715 0.729 0.717 0.704 0.707 0.715

0 0.2 0.981 0.978 0.979 0.980 0.982 0.980

N(0,1) 0.3 0.999 0.998 0.999 1.000 0.999 0.999
0 0.063 0.060 0.064 0.063 0.060 0.062

1 0.1 0.533 0.548 0.532 0.544 0.532 0.545

0.2 0.903 0.897 0.904 0.898 0.900 0.904

0.3 0.988 0.983 0.985 0.992 0.991 0.990

0 0.064 0.058 0.060 0.063 0.066 0.065

0 0.1 0.716 0.716 0.720 0.717 0.711 0.722

0.2 0.983 0.981 0.984 0.981 0.981 0.986
0.3 1.000 1.000 1.000 1.000 1.000 1.000

0 0.058 0.057 0.056  0.059 0.062 0.060
0.1 0.533 0.537 0.539 0.533 0.542 0.542
0.2 0.901 0.895 0.901 0.905 0.911 0.916
0.3 0.991 0.992 0.991 0.991 0.992 0.993

2.5.2 [Illustrative Examples
To illustrate the proposed methods, we consider here two examples.
2.5.2.1 Example 1

We considered a real data set of riboflavin (vitamin B2) production by bacillus

subtilis. The data was analyzed by Van de Geer et al. (2014) and is available in R

34



package “hdi”. The real-valued response variable is the logarithm of the riboflavin
production rate and there are p = 4088 covariates (genes) measuring the logarithm
of the expression level of 4088 genes. These measurements are from n = 71 samples
of genetically engineered mutants of bacillus subtilis. We modeled the data with a
high-dimensional linear model and obtained the p-values of the proposed tests and
RCV test in Table 2.5. It is illustrated that all the tests reject the null hypothesis,
indicating a considerable significance of genes expression in predicting riboflavin
production rate.

Then we were interested in the significance of partial gene expressions. We ran-
domly divided the data into two subsets. Based on the LASSO for the first subset,
we divided coefficients into two parts 3; and 3., where the index of (35 corresponded
to the index of the zero part in 8@, We conducted testing for 85 on the second
subset of data and the results are shown in Table 2.5. These large p-values indicate

that H,,, o is accepted and this is consistent with the LASSO result.
2.5.2.2 Example 2

We applied the proposed tests to a more recent data set, which is available
for download under accession number GSE50948 in the Gene Expression Omnibus
(GEO). In this data set, gene expression profiling using RNA from n = 114 sam-
ples of pretreated patients with HER2-positive (HER2+) tumors was performed. As
multiple probes might represent the same gene, measurement for each gene was from
the probe with the highest interquartile range. After a natural logarithm transfor-
mation, we obtained expression values of 20592 genes. In Prat et al. (2014), the
implement of researched-based prediction analysis of microarray 50 (PAM50) sub-
type predictor to the data reported the predominated subtype within HER2+ disease
is HER2-enriched (HER2-E) tumors, which has been found the high expression of
HER2-regulated genes (for example, ERBB2, GRB7 and FGFR4) is one of the most
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important characteristics. To have more understanding of HER2-E subtype, we stud-
ied the association between HER2-regulated genes and residual genes, with ERBB2
as an example.

Let the response variable be the gene expression level of ERBB2 and the residual
p = 20591 gene expression levels be the covariates. Suppose that the data follow a
linear model, RCV test and our proposed tests reported a significant relationship by
rejecting the null hypothesis, which is shown in Table 2.6. We moved on to identify-
ing strongly associated genes based on the cooperation of the proposed tests and the
LASSO estimation. Let the regression coefficients corresponding to the zeros in the
LASSO estimator denote as (B, the proposed tests for the testing problem of this
vector of partial regression coefficients were conducted. The p-values of the global
and partial hypothesis testing in the table suggest that genes with nonzero coeffi-
cient, ESR1, MAP4K3, TLK1 ect., have significant influences on the gene expression
of ERBB2, some of which have already been shown to be important to breast cancer.
For example, Prat et al. (2014) indicated the lower expression of luminal-related
gene ESR1 is one of important characteristics of HER2-enriched (HER2-E) tumors.
Gamez-Pozo et al. (2014) found gene expression of MAP4K3 related to the PI3K
pathway, which is strongly associated with response to trastuzumab in HER2 breast
cancer. Consequently, the new testing procedures can be helpful in confirming exist-

ing knowledge and making new discoveries.

Table 2.5: The p-values of the proposed tests and RCV test for Example 1.

| Hy:8=0vsH;:3+#0 | Hpart,0: B2 =0vs Hpgrp1: B2 #0
Tests | RP multi-RP S-RP RCV | RP multi-RP S-RP
p-value | 0.00 0.00 0.00 0.00 | 0.54 0.74 0.58
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Table 2.6: The p-values of the proposed tests and RCV test for Example 2.

‘ H()Z,@:OVSHlZﬁ?éO ‘Hpm«t’()I,aQ:OVSHpart,l2,627&0
Tests | RP multi-RP S-RP RCV | RP multi-RP S-RP
p-value | 0.00 0.00 0.00 0.00 | 0.42 0.47 0.64

2.6 Proofs of the Technical Results
In this section, we provide the proofs of Lemmas 2.1-2.2 and Theorems 2.1-2.4.

2.6.1 Proof of Lemma 2.1

We first state a result from Fang, Kotz, and Ng (1990, Section 3.1), which shows

some properties of uniform distribution on the surface of an unit sphere.

Lemma 2.3. Let u; = (uqq, . .. ,ulp)T be a random vector uniformly distributed on

the unit sphere in RP. Then wy satisfies E(uy) = 0,Var(u;) = %Ip. For Vj # k,

E(uj;) = m, E(ui;ufy) = m. And for any monnegative integers qu, ..., qp,
with m = >7%_, q;, the mized moments E(H?Zlulf;) = 0 if at least one of the g; is
odd.

Proof of Lemma 2.1. From the definition of r1, u; and Lemma 2.3, we have
E(Zl) = E(Tlul) = E(T1>E(u1) = 0,

Var(z,) = Var(E(zi|r)) + E(Var(zi|r))) = E(r?Var(u,)) = L.

By definition that z; = (211, ..., 21,) = r1u;, we have, for Vi # j,

E(Z@ = E(r%ui) =3+ O(pfl)a E(zizfj) = E(r%u%iu%j) =1+ O(pfl)-

Hence we have

T P B + Y.L B2 T
Va’r’(zl Zl) _ L=l ( 1 ) 22#; ( 1 1;) _ E(Zl Z1)2 _ O(pil),
p p p
and complete the proof. O
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2.6.2 Auxiliary Lemmas

We first present a result of asymptotic normality of quadratic form that was

discussed by Bhansali, Giraitis, and Kokoszka (2007).

Lemma 2.4. Consider a general quadratic form

Qn = TAnZ = Z ZitijZg,
ij=1
where z; are i.i.d. variables with E(z;) = 0 and Var(z;) = 1, and a;; are entries of

a symmetric matriz A,.

(1) If E(z}) < 0o and % — 0, then

Var(Q.)2(Qn — E(Q,)) 3 N(0,1).

(2) If nlle g E(22%%) < oo (for some § > 0), and 3.7, a2 = o(||A,||%), then

[|An|lF i=1 Qi

1

m(Qn — E(Qn)) = N(0,1).

Lemma 2.5 (Woodbury’s formula). Suppose G is an n X n nonsingular matriz, U
and V are n x k matrices with n > k. If the matriz (I, + V' G U) is invertible,
we have

(G+UVH)'=G@'-G'UL+V U ' VG

Suppose w and v are vectors. Define H= uwv' and g = tr(HG™"). If g # —1, we

have

L G 'HG™'.

G —1:G—1_
(G+ H) Ty

We then depict some results about sample covariance matrix in high dimensions.

The first is the celebrated work of Marc¢enko and Pastur (1967), which is named the
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M-P law by some authors. The second is concerned with the extreme eigenvalues

from Bai and Yin (1993, Theorem 2).

Lemma 2.6. Let X = (z;;) € RF™ be a matriz of i.i.d. entries with zero mean
and unit variance. Define S, = %XXT. Suppose the eigenvalues of S, are \;,
j=1,... k, the empirical spectral distribution (ESD) of the matrixz S,, is defined as
FSn = %Z?Zl 1y, <oy If E(z])) < 00, as (n, k) — oo with relationship k/n — p €
(0,1), we have

(1) F5* tends to the standard M-P law with probability 1, where the standard M-P

law F,(z) has a density function

p(z) = {2Trxp\/(b_ )z —a), ifa<z<b,

0, otherwise,

where a = (1 — /p)* and b= (1 + /p)*.

(2) The extreme eigenvalues of S, satisfy

Amax(sn> — (1 + \/5)2 a.s

and

Amin(Sn) = (1 — /p)* a.s..

Lemma 2.7. Let X = (x,...,®,) be a random matriz with z; i.i.d. from N (0, I,).

As (k,n) — oo with relationship k/n — p € (0,1), we have

(1) X(I— P)X" and z are independent, where =137 ;.

(2) E((z%2) 8, @, — 1£)%) = o(1), where S,_; = -1 123 L x;x], and

] )

E((z](XX") 'z — p) o(1), ] (XX") e < —L—5, a.s..

N
SN—
I
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Proof. (1) We first define an orthogonal matrix O by

[ 1 n—1 ]
w00 —
1o _v i
O - (017 . 7OTL) = \/ﬁ 0 \/g w/'n,('n,—l)
1 1 1 1
\/_7; _75 76 v/ n(n—1)
1 1 1 1
i \/_ﬁ 7§ 76 o w/n(n—l) i

Let V = X O with the i-th column denoted as v;. Then the design of orthogonal
matrix O implies XX' = XO00'X" = Y7 viv/, v = y/nx and X(I —
P)X'" = Yo, viv, . To study the properties of v;, the random matrix X is
divided by rows and denoted as (ry,...,r;)" with k independent variables from
N(0,1,). It follows that v; = (ry,...,1%)"0; and is distributed as N (0,1;).
Let C = (C! ll)’“

s,l=

L = Cov(v;,v;), for i # j. Then we have
Cil = E(r]oir/0j) — E(r]0;)E(r[0;) =0, s #1,
Cil =E(rloxr)o;) — E(rlo)E(r]0;) = E(o/r,r]0;) =0, s=1,...,k,

which indicates v; and v; are independent. This is sufficient to show that

X(I - P)X" and x are independent.

(2) From the direct calculation, the standard M-P law F},(z) in Lemma 2.6 satisfies

/ide@):/: D) a)de

2wx?p

I
"~ 2mp —2p (1+P+Z

s \/4p — 2%dz (With v = 1 + p + 2)

1 4pcos? f
C2mp ) (1+ p42y/psing)?

1 —2,/pcost /2 +/”/2 —2,/psind 50
/2 _ﬂ/21+p+2\/ﬁsin0

df (with z = 2,/psin6)

B 2rp \ 1+ p+2,/psind
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S B |
=—— 4+ — ——df (with ¢ = 2,/p(1 1<
2p + 2mp J_zjo 1+ csinf (Wl ¢ Vel +p) )

1 1 (/2 1
=5 t5— 0 20 0 df
2p  2mp J_y 5 cos? 5(1 4 tan® 5 + 2ctan 5)

1 1t 2
=—c+ / dt (with t = tan g)

2p  2mp ) 1+t2+ 2t

L1 2 san( t+c )1
=——+ —" arctan

20 2mp J1-—¢2 Vi—¢c2'|
B 1
=1

We first study the asymptotic behavior of —X TS 1 x,. From the normality

of x;, Lemma 2.6 and the above calculation, we have

1 Ta-1 _ k tr(S;il)
k P
= [ 8.
n—l/ —d — T , @.S.,
2
Var( xS x,[Sn-1) — 5l ((8511)2)
1 (n—1)
2k 1
< 250, a.s..
SR CESIE WA L
Therefore,
E( ! x, S, %) = E(B( X, S, 1% [S0-1)) — P and
n_lnnln nlnnlnn—l 1_ o
Var( TS 1x,) =0
n—




From Lemma 2.5, we have

T e X X% )T X
x, (XX ') 7%, = -
L5, (2 e X% ) 1

B ﬁxZS;}lxn
1+ ﬁxgsr_;lxn'
Let function f(x) = . Its derivative satisfies fi(z) = ﬁ <1, forz > 0.
From xS ' x, > 0 and the mean value theorem, we get
T T\-1 L P
‘Xn(XX ) Xn_p‘ < ‘—annflxn_— )

n— 1—0p

which implies
1
B ((e] (XXT) 0 = p)°) < B0 S, i = 77)7) =0

n—1 1—p
Furthermore, from —-x[S: 1 x, < Al (S,-1)-1x1x, — m a.s., we
obtain

1
x,) (XXT")™! a.s.,

and complete the proof.

]

Lemma 2.8. Let X = (x,...,®,) be a random matriz with z; i.i.d. from N (0, I,).
The matriz H is defined as H= (I— P))X' (X(I— P))X") "' X(I— Py) and has

its entries denoted by Hy;. As (k,n) — oo with k/n — p € (0,1), we have

Proof. From Lemma 2.7, we get

E((nx" (XA -P)X ) 'x— ——)) =0, (2.17)



1
1+ (1—yp)?*

E((x{ (XX 'x; - p)?) — 0. (2.19)

E((nx"(XX") 'x—p)?) = 0,nx" (XX ") 'x < a.s., (2.18)

The proof proceeds in two steps. First, we study x| (X(I — Pl)XT)_lxl and show
that it converges to p in quadratic mean. Second, we divide H;; into three parts
and investigate them separately. Then we reach the statement in the lemma and

complete the proof.

In the first step, we would show x| (XX ) ~!x; is a well approximation to x| (X (I—

P)X") ~'x; and then the convergence is guaranteed by (2.19). Lemma 2.5 and (2.18)

imply

1
T (XX hxx (XX )T

(XI-P)X'") = (XX") g

where g = —nx!| (XX ') 'x > — T2 0-5- is lower-bounded. Then, we have

T

X (XA -P)XT) %y — x| (XXT) x|

1
- = XXT s 1 XXT -1
] (XX (XX

n

= T O (XXT) s

< L[%(xl (XX le (XX ") ™x,)%].

1
g J#l

_|_

Based on (2.19), the expectation of the first part in the sum goes to 0. Then we show

the second part %(Z#l x| (XX ") ~'x;)? would also converge to 0 in the first mean.

Define Ay j = > xpx, and Sy ; = -5 Ay ;. We have XX"=Ay; +X1X]| +X;X,

From Lemma 2.5,

X
x| (XX")™'x; =
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where Dy ; = (1 + XITAL}Xl)(l + ijAi}xj) - (XlTAijl-Xj)2 > 1. Then

1 T Ty—1y 12 1 x| A%,
E(-Q_x (XXT) %)) = B(-(3_ —5 )
X : Lj
J#1 J#1
YR (x] A ))+Z (TA ATx
— 2 '
j#1 nby, e MPribue
For any j # ¢ # 1, we have
(OTAL),) g LA, | p S AL g Al
D%,j DiQ Dl,le,Z D1,2D1,3
Therefore,
1 n—1_ (x]A73x2)? (n—1)(n—2) . X3 A3A{ix3
E(=() x{ (XX 1x;)?) = E ’ + E ol
(n(g 1( ) J) ) n ( D%Q ) n D172D173
(2.20)

Lemma 2.6 asserts the first part in (2.20) converges to 0 by

) < B Arkea)?) = o= 2>2E<”<Sl72)

(x{ A 5x2)?
D3,

E(

Next, we study the second part and show it would also go to 0. Let Ajs3 =
257&172,3 XeX,, S103 = H%?,Al&g. Then, g3 = X?TAI_’;?)X;; > 0 and Lemma 2.5 gives

the relationship
1 1

1 _ A-— -1 T A1
A1,2 = A1,273 I T A1,2,3X3X3 A172,3-

From calculations and Lemma 2.6, we have

TA—1 \2 _ Tra—-1 \20 3\2 . tr((S;%B)‘l) _ _3
E(x, (A1,2,3) x3) = 0, E((XQ (A1,2,3) X3) ‘A172,3) = W =0(n),
_ _ 1 _ _
E(szAl’;gxg) =0, E((X;A1’§73X3)2|A172,3) = mtr((sl %,3)2) =0(n™ "),
2

(X2TA1_,%73X3)2 < (X;Al_é,3x2)(X:’TA1_é,3X3) <

T vir
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k(n—2) _, Xq X3 )
A S W < .S..
(n _ 3)2 Amln(sl,2,3) L = (1 _ \/ﬁ)4 a.s

(n— 2)X;(Ai§,3)zx2 <

These give two upper bounds

-1
(x;—A1,2,3X3)2

1 +n (14+92)(1+g3) <1+ p2 - a.s.,
= D15D1 3 (1- \/ﬁ)
xT(A_yl’ )2x2 xT(Ajly )2x3
e e e D VR
2 D12Dq 3 - (1=yp)?
Then, we can get
1 + (X;—Al_,é,axfi)Q
(n— 2 E((x] (Apbs) x5~ 20SH)2) ),
=D 2D 3
n—1 ) )
XT(Afé 3)2x2 x;(A;é 3)2X3
(n 2L sa)
E TAfl +92 1+g3 2 0.
((X2 1,2,3%3 1 Dy2Dyg ) )

These together show

=D =2) X5 ALK,
n D12Dq 3
14 <xJA;),(§,3X3);
— El(n-2 XT A—l 2X (1+g2)(1+gs3
[(n = 2)x, (A1 3)"xs 5 DyiaDis

-1 -1
XJ(A1,2,3)2X2 X3T(A1,2,3)2X3)

(n - 2)( 1+g2 + 1+g3 ]
S5 D12D1 3

Hence, from (2.20), we derive E(5(3>2; x| (XX ")7'x;)?) — 0. This together with

an upper-bound inferred from (2.19) and (2.18) leads to
E[(x{ (X(I-P)X") ' —x{ (XX)"'%x1)?] = 0.
And then (2.19) further shows

E[(x{ (X(I-P1)X") "% — p)?] — 0. (2.21)
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For any i € {1,...,n}, we divide Hj; into three parts
H;; = (x; —%)7 (X(I-P)X") " (x; - %)
= xT(XI-P)X") 'x—2x] (XT-P)X ") 'x
+x (XIT-P)X") 'x;.
Based on (2.17) and (2.21), we obtain
E[(Hi —p)’] = E[((x; = %) (X(T = P)XT) " (s = %) — )]
= E[((a =) (XT-P)X) (1 —%) = )]
< E[3(x] (XA -P)X ") 'xy — p)” +3(x"(X(T - P)X ) ')

+12(x] (X(I - P)XT)'%)"]

=o(1).
Therefore,
ZinaXnE[(H“ —p)’] =0,
which completes the proof. O]
Lemma 2.9. Let z,...,2, be i.i.d. m-variate random vectors satisfying E(z;) =

0,Var(z) = I, and V@r(zi:nzi) = O(m™Y). Suppose matriz A is uniformly dis-

tributed on the Stiefel manifold Vy(R™) = {A € R™* . ATA = I} and is indepen-

dent of z;. Let Z= (z1,...,2,)" and
H=(I-P)ZA(A"Z (I- P))ZA) ' ATZ (I- P)).

Asn, k,m — oo, with k/n — p € (0,1) and m sufficiently larger than n, we have

n

1

ﬁ (-E[n - 0)2 = Op(l)v
i=1

where H;; denote the i-th diagonal entries of H.
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Proof. Let UAO" be the singular value decomposition (SVD) of Z, where U is an
n x n orthogonal matrix, O is an m x m orthogonal matrix, and A = (D, 0) with
D = diag(dy, . ..,d,). Let O, be the matrix consisting of first n columns of O, then

Z can be denoted as

Z =UDO, . (2.22)

In the first step, we study the properties of the entries of D. Based on (2.22), we

have

1 1
— 77" = —UD?U".
m m

This indicates the diagonal entries of %DQ are the eigenvalues of %ZZT, then

d2 2 1 2 1 2
‘max (—l — ) = Amax <—zzT - I) <tr (—zzT — I)
i=1,....n \ M m m

From the properties of z;, we have

oG )-S5 b5 {5)]

T 2
=nVar (Zl Zl) + n n

m

= O(n*m™).
Therefore, from Markov’s inequality, for any ¢ > 0,

d; 2 @2 2
P < max (—Z — 1) >t < P<{ max <—Z — ) >ty <OMm*m it ),
i=1,....n \ A/M i=1,..n \'M

(2.23)
which shows the eigenvalues of %ZZT are close to 1 when m is sufficiently larger

than n.

47



Let X = (I-P;)UO,/A and Z = (I1— P)) U%OIA. Since the hat matrix for

Z and (I — Py) ZA are the same, the hat matrix for Z and X are denoted as

IXT

Y

H——Z(ZTZ)JZT, S =X (X'X)"

where H is the target matrix of the lemma. Let S;; denote the i-th diagonal entry
of the matrix S. We will show H;; and S;; are close. Let e; denote the vector with 1
in the i-th coordinate and 0’s elsewhere. Define 4} = (XTX)_1 X "e;. Based on the
least square, then 4/ satisfies

4{* = argmin|| (I — P1) ; — X+ ‘; (2.24)

~ERF

~ T ~ 1.
Similarly, define 7l = (ZTZ> ZTei. Then, it satisfies

e = argmkinH I-Py)e — Z?7| ‘; (2.25)

neRr

Based on (2.24) and (2.25), we have

[ (1= P)e:—Za¥| [} < [| (1 P) e — Z55||;

1 —

= || (@ =P1)e; — X4+ (X - 2)5"[ (2.26)

~ 2
< (Ila=Poye = X5, + | (X = 2)57],) -
and

[T —Pi)e; — XAE| < || X P1)e; — Xl

2
cll,

=||X=Pr)e; — Zn" + (Z - X)n;®

5 (2:27)
L)

To study (2.26) and (2.27), we first investigate the value of ||(X — Z)'Ayfsﬂ2 and

o+ [[(Z = X)n?

< (lla-Pyye — 2z

H (Z —-X) ﬁfs| ‘2. From Theorem 2.2.1 in Chikuse (2003), matrix A can be expressed
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asA=G (GTG)_1/2, where the elements of m X k matrix G are i.i.d. from N(0,1).

Let E=0/G. Then O/ A = E (GTG)fl/Z. From Lemma 2.13, for any h; > 0 and

hs > 0, the independence between A and Z leads to

lgr n 4 )| < exp (—nh2/2)
P[)\max(nE E)z(1+\/ﬁ+h)}< p (—nh?/2) .

P {/\min (%ETE) < (1—k/n— h2)2} < exp (—nh3/2) .

For any matrix M, SVD shows the nonzero eigenvalues of MM and MM ' are the
same. Therefore, with k£ < n, it indicates Ani, (ETUT (I — Pl)UE) = Anin (ETE)
and Apin (ET\/L%UT (I — Pl)U%E) = Amin (ET%QE). Based on the property that
Amax(MTM) = Apax (MM ") and (2.28), we have

A (X(XTX) "AT0,0]A(X'X) "X ") = A (B (B'U” (T~ P1)UE) 'ET)

1 1

S /\max (EETE)

< (L+v/k/n+ )
T (1= VE/n = hy)?

(2.29)

and

D

vm vm

Amin(LE'UT(I-P;)UE)

-1
Aoax (2(2'2) 'ATO,0]A(Z'2) 2 ) = (E <ET£UT (I— Pl)U—E> ET)

1 1

< Amax(—E'E)

" Vi
__ 1 A VEnt )
B )\mm(%Q) (1 Y, k/n - h2)2

(2.30)

with probability at least 1 — exp (—nh?/2) — exp (—nh3/2). Based on (2.23), (2.29)
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and (2.30), upper bounds can be derived as follows.

~ D _
(X = 2)3¢ 2 = | (- P U - )0 AKTX) "X e
d; _
< max ( \/ﬁ)zHOIA(XTX) Xeil], (2.31)
(1++/k/n+ hy)?
<t-
(1= +/k/n — hy)?
and
~ ls D ~T T
12 = X)at ;= [0~ PO U - 2)07AZ'2) 2 el
d; AT 1~T
< max (1= —2)|07A(Z 2)"'Z o,
4 2 (2.32)
< max (1— d; 1 (1+\/k/n+h)

=l \/ﬁ) ‘ I{linn(fn—?) . (1- \/W— hs)?

with probability at least 1—O(n?*m~'t~1)—exp (—nh?/2)—exp (—nh3/2). Combining
(2.26), (2.27), (2.31) and (2.32), with h; = n~Y4 hy = n~* and t = n™¢, where c is

a positive constant, we have

_ . — 7Rl B Sls| |2 2 L k/n+n"1"
|[I-P))e n }2<\| (I-Py)e; +3n = Jhjn—
3 k/n+n~1/4

| (I—Py)e; — X5)°

P<lla-Pe

ne/2—1 1 \//’ﬂ/n—n—l/4
with probability at least 1 — O(n***m=") — 2exp (—n'/?/2). Since || (I—P;)e; —
Zi¢|3=e/ (I-P))e;—H,; and || (I-Py)e; — X422 =] (I-P1)e; — Sy, and

the above derivation is valid for any e;, we obtain

3 1+ +/k/n+n1/4
n? =1 1—\/k/n—n-1/4
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with probability at least 1 — O(n***m™!) — 2exp (—n1/2/2). When n — oo and

n*t*m=1 = o(1), there is a constant C' > %ﬁ such that

P | max [Hjy — S;| > Cn~?| = o(1). (2.33)

i=1.
According to the definitions of X and A, the hat matrix S can be denoted as
S—(1-P,)UOG(GT0,UT(I-P,)UOJG)  GT0,UT(I-Py),

where UQ, is independent of G and satisfies UO, O, U" = I,,. From the definition

of G, Lemma 2.8 and the dominated convergence theorem, we obtain

E

%Z (Sii — pf] 0.

=1

Then, £ 37" | (Si — p)? = 0,(1) can be derived based on Markov’s inequality. Com-

bining this with (2.33) and Slutsky’s theorem, it shows

n

1 < 1
EZ (H; —/))2 = HZ (Hi; — Sii + Sii —P)2
i=1

=1

< - (Hz‘z‘—Sz‘z‘)Z—F%Z(SM—P)Q

which completes the proof. O]

Conditional on A"z, Theorem 2.1 in Steinberger and Leeb (2018) showed that
the mean of z is approximately linear in Az under certain conditions. Based on
this result, we derived the following lemma.
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Lemma 2.10. Suppose m-variate random vector z = (z1,...,2m)" has a Lebesque
density f, and satisfies E(z) = 0 and E(zz') = I,,. For alli = 1,...,m, the
components z; are independent and the moments satisfy E(22°) < C' for some con-
stants C. And all the marginal densities of the components of z are bounded by a
constant D > 1. Suppose matrixz A is uniformly distributed on the Stiefel manifold
Ve(R™) = {A € R™** . ATA = I,}. Let v, denote the uniform distribution on
Ve(R™). Let z, ..., 2z, be the i.i.d. copies of z and A be independent of z;. For any
nonzero vector b € R™, as n — oo, with k/n — p € (0,1) and m sufficiently larger
than n, there is a series of Borel set F,, C Vi(R™) such that

sup P (Z (E(b 2|ATz)— bTAATZ)" > ||b||§> = o(1),

A€F, P

AcFy,

sup P <% Z ‘Var(szﬂATzi) ~b' (I, — AA") b| > 5||b||§> =o(1),
i=1

and Vp, x(F,) — 1.

Proof. Based on Example 3.1 and Theorem 2.1 given in Steinberger and Leeb (2018),

for each 7 € (0,1), there is a Borel set F,, C V(R™) such that

m—T/lO

T\ T V2 2k
:g}%P(HE(ﬂA z) — AA ZH2 > 1) < ; + T Togm’

me/IO Yo 2%

t +1—Tlogm’

sup P (||E(zz"|AT2) = (I, — AAT + AAT22 AAT)|| > 1) <

AcF,

122 10k )

for each ¢ > 0, and such that v, x(F?) < rom 700" g

, where ko and v, are

1/2

constants. Therefore, when ¢t = n~"/¢, we have

v (Z 1E(|AT5) ~ AAT5 2> 1) <> swp P(|[B(nlAT%) - AATz|, > 1)

A€F, P i=1 Ak

Y2 2nk

< 2y T/0 4 ’
1 —7logm

(2.34)
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AecF,

sup P (% S O||E [z |ATz)] - AATzz] AAT — (T, — AAT)|| > 1)
=1

< Z sup P (|| (22 |AT2:] ~ AAT22] AAT — (I, — AAT)||, > 1)

Aan

2nk
§n3/2m—‘r/10+ 2 n :
1 —7logm
(2.35)

and vy (FS) < kg~ 1002520,

For each i, define r; = E(szi|ATzi) —b"AA"z, and ¢; = bz, — E(szi]ATzi).

Based on the definition of the conditional variance, we could derive
Var(qi|ATzi) =b'FE [zizﬂATzi} b-F [szi|ATzi]2 ,

then

% i \Var(¢;|A"z;) —b" (I, — AAT)Db|

_ % S b7 {E [2:2] |ATz] - AATz,2] AAT — (I, — AAT)} b— 2b" AA Tz — 17
=1

1 n
< [|b|[? vn Y ||E [z2] |AT2] — AATz2] AAT — (L, — AAT)|[
i=1

i=1

bTAA z;)
—l—QJ E ( J E T +\/_E r
(2.36)

From the calculation,
Var {(b"AATz)"} < (€74 1)(bTAATH)”,
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Markov’s inequality leads to

"\ (bTAATzZ,;)? /541
P (Z (b AA z) 2bTAATb> Lerrt (2.37)

- n n
=1

According to Cauchy—Schwarz inequality,

= {E(b uATm) b AA T} <[[b]- ||B(z|A 2) —~ AATL[;

Therefore, combining (2.34), (2.35), (2.36) and (2.37), we can derive

AcF,

sup P (% Z \Var(q;|A'z;) — b' (L, — AAT)b| > 5||b\|§>
i=1

n n T T \2
< sup P() _r?>|[b|l3) + sup P(ZM >2b'AATD)
Cl'n

n
i=1 i=1

+ sup P(% Z HE[zizﬂATzi} — AATziziTAAT — (Im — AAT) ‘ |Sp > 1)
i=1

AcF,

dnk 20

< 23210 4 02
1l—7logm n

When m is sufficiently large such that n? = o(logm), as n — oo, we have

sup P (Z'r’f > HbH%) =o(1).
i=1

AcF,
and
sup P (L Zn: \Var(¢;|A"z;) —b" (I, — AAT)b| > 5Hb||§> =o(1),
e WS
where v, (F,) — 1. The proof is completed. O

2.6.3 Proof of Lemma 2.2

First we present a trace inequality (Lopes, Jacob, and Wainwright, 2011, Lemma
2).
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Lemma 2.11. If A and B are square matrices of the same size with A = 0 and
B = B", then
Amin(B)tr(A) < tr(AB) < Apnax(B)tr(4).

Some results for Gaussian concentration inequalities will be introduced. The
following concentration bounds for Gaussian quadratic forms are given in Bechar

(2009).
Lemma 2.12. Let A € RP*? with A = 0 and z~ N (0, L,). For anyt > 0, we have
P [zTAz > tr(A) + 2||A|| sVt + 2\|A||5pt] <exp(—t), and
P [zTAz < tr(A) — 2]|A|\F\/Z] < exp(—1).
Davidson and Szarek (2001, Theorem 2.13) gave an upper-bound and a lower-

bound on the extreme eigenvalues of Wishart matrices.

Lemma 2.13. For k < p, let P, € RP* be a random matriz with i.i.d. N(0,1)

entries. Then, for allt > 0, we have
1
P {)\max( PTPk 1++k/p+1) } < exp(—pt?/2), and
P {)\min( P/ P)<(1-Vk/p— t)Q] < exp(—pt?/2).
As a restatement of partial proof in Lopes, Jacob, and Wainwright (2011, Lemma

5), we obtain an upper bound for tr(P, ZPy).

Lemma 2.14. For k < p, let P, € R?** be a random matriz with i.i.d. N(0,1)
entries. Suppose matriz X € RP*P satisfies ¥ = 0. Then, as (k,p) — oo, for any

constant C' > 1, we have

P [tr(P{XP;) < Cktr(%)] — 1.
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Proof. Let U'DU be a spectral decomposition of X. Then PkTZPk can be written
as (UP;,) "D(UP;). As UP}, has the same distribution as Py, P, £P}, is distributed
as PgDPk. In the following, we work under PZDPk.

Let & be the i-th column of P, and Z" = (£],...,&]). Then Z € RP**! and is
distributed as N (0,L,;). Likewise, let D € Rekxpk he g diagonal matrix obtained by

arranging k copies of D along the diagonal, i.e.

D
D :=

Consider the diagonal entries of P, DP
k ~
tr(P,DP;) =Y ¢/Dg =Z'DZ.
i=1

Applying Lemma 2.12 to the quadratic form Z' DZ, and noting that U:?l”)’; and uﬁ‘]‘)“)”

are at most 1, we get

tr(P{DPy) < tr(D) + 2||D||pv/t1 + 2||D||5pta
— ktr(D) + 2||D|| 11k + 2||D|]sts

N

< ktr(2)(1 + NG - )

with probability at least 1 — exp(—t;).
Choose t; = vk. The probability of the event tends to 1 as (k,p) — oo with
2Vt 2t

+
N

(1+ ) — 1.

Hence, for large k and any constant C' > 1, we can obtain (1 + 2\‘/5? + 2%) < C and

complete the proof. O
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Proof of Lemma 2.2. Let U'DU be a spectral decomposition of X, where D =

diag(dy,...,d,) and dy > dy > --- > d, > 0. From this decomposition,

Va|ITT 8 — T Pynl[3 = v/n|[VDUB — VDUP;n[3. (2.38)

To cover general cases, we assume 3/||3|]2 distributed uniformly on the unit sphere.
Then, we work under the assumption 3/||8||2 = d//p, where § follows N'(0,1,). In
light of this, UB/||8||2 and 3/||3||2 have the same distributions and then UZ/||3||2
is denoted by &/,/p for simplicity. For the same reason, we denote UP}, as P,.

For the s given in Assumption A6, we let § = (d,,6,_,)", where d;, € R®

and d,_; € RP™*. Correspondingly, D is divided into Dy and D,_s, where Dy =

diag(ds,...,ds) and D,_, = diag(dss1,...,d,). Let P, = (P, P,

posk)  With

P, € R®* and P, ., € RP=)*k We define 1y € R¥ as

ds
\/]_?.

N = PsT,k(PS,k‘PsT,k)_l

Plugging 7o into (2.38), we have

_V/n||[T'8 —T Pn|[3

min
neRk 18113

)
= mi D——vVvDP 2
nellRfll“ V||V 7 vDP.1||5

d;
P

Vi
& Op—s
< \/EH V DS(% - Ps,kno)H% + \/EH V Dp—S(% - Pp—S,kno)Hg

neRrk

= min v (VDL ~ P + H\/Dp—s(dp—\/; ~Ppan)l)

Ops 1 0s
= \/EH V Dp—S% - Dp—SPp—s,kP;k(Ps,szT,k) ! \/}3”%

Ops 1 0s
< 2v/n[ly/D,- \”/ﬁ 13+ 2v/nl[/DpiPpsi P (PpPyy) ™! \/23”3
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Next we show that ||3||371 and ||3]|3T% both converge to 0 with probability tending
to 1.
In the first step, the concentration inequality for quadratic forms in Lemma 2.12

gives an upper bound on 77, that is
2\/n
P|1i < 22 (1r(Dy) + 2/ RIID, -l + 21Dyl | 2 1= expl-u),

where h; is a positive real number that may vary with n. From Assumption A6 and

the properties of || - ||p and || - ||5p , we select hy = n” and get

2/nl|B]|?
18137, < 2B (4D, ) + 2Vl ID, e + 211D, )

< Mtr(m_s) (1 +2v/h + 2h1> (2.40)
1007 BB (D, )
P

with probability at least 1 — exp(—n?).

In the next step, Lemmas 2.14 and 2.13 give upper bounds by

1 1
FAmax (PssP 1) 7") = = =
(( ’k S’k) ) min(Ps,kkP;r,k> - (1 — S/k - k71/4)27
tr(P,)_, :DpsPp_s
T( p—s,k—P p 7k) S QtT(Dp_S)

k
with probability converging to 1. These inequalities together with Lemma 2.11 lead

to
tr ((P&kPlk)*1PsykP;_s’kDp,st,S7kP;r7k(PS,kPZk)*l)

tr(P;—s,kDp—st—Sk)
k

S k)\max (P;l—,k (PS,kPIk)72P57k)

2.41
tr(P;—s,kDp—st—s,k> ( )

k

- kj)\max((Ps,kP;r,k)_l)

< 2tr(Dy_s)
= (= ok -
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with probability converging to 1. To study the randomness from d,, we apply the
same method in the first step of investigating ||3||37} with the help from upper
bound in (2.41) and get

20n" 7| B 5tr(Dy-s)

p(1 = /s/k — k=1/4)?2

1811372 < =o(1) (2.42)

with probability tending to 1.
Combining (2.39), (2.40) and (2.42), we have

min v/n||TT8 — T TPwn|[5 = o(1)
nERk

with probability tending to 1 and complete the proof. O
2.6.4 Proof of Theorem 2.1
Proof. Under Hy, we have

€ Me
I-P;,—Hpe/(n—1—k)’

T,~1= =

where M = (m;;) = % — I_nfilkilf’“. The property that Hj, is idempotent with rank

k leads to tr(M) =0 and M'M = 2 + I(;_P;:gg Therefore,

H I-P1—H
M5 A MTM)_ Amax(GE) + Amax (GZ=178)

IMIE r(MT™M) PR —om
And we have
E(e"Me|M) = o*tr(M) = 0,
Var(e MelM) = (11— 30%) 3 i + 20+ + ——),
n—k—1

i=1
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where the error term € = (ey,...,¢,)" has E(¢;) =0, Var(e;) = 02 and E(e}) = 4.
When M is given, these together with Lemma 2.4 imply

€ Me

WVar (@ MeM) N1

The randomness brought from M in fact does not influence the asymptotic normality.

From the law of total expectation, we have, for Vao € R,
™ ™
P(——= =5 <a) = B(P(—— = <
\/Var(e"MelM) V/Var(e"MelM)

a/M)).

And the aforementioned result shows

Pl €' Me
v/ Var(e"Me[M)

< aM) = O(a).

Based on the dominated convergence theorem, we get

€' Me
o/ =) i md + 2} + o)

2 N(0,1). (2.43)

Let G, = Y1, mZ. Next we will show nG,, = op(1). From the definition,

" e - A0 -5H)
.3 - L3 {00

=1

(2.44)
- 2 <~ {( )i — p} + {p— 50~ %)}2

< 2
n i=1 %(1_%)}

Let 3, = P;EPk. From Lemma 2.6, we find the smallest eigenvalue of %P;Pk is
bounded away from 0 a.s., showing Pj is of full column rank with probability 1.
Therefore, 3 is of full rank with probability 1. Define Uj, = XP;,X; "%, Since Hy,
is invariant to the full rank linear transform of Uy, the hat matrix can be expressed
as

H, = U,(U]U,)"'U] = (I - P)UL(U, 1—P,)U,) U, 1-P)).
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From Assumption A1, U, can be denoted by ZA, where A = I‘TPkEl_l/2 isanmxk
matrix. From Section 2.4.2 in Chikuse (2003), matrix A is on the Stiefel manifold
Vi(R™) with probability 1, which demonstrates U} Uy, is of full rank with probability

1. From Lemma 2.9 and (2.44), we obtain nG,, = op(1).

1

Assumption A3 implies 7 + —p— — STy A = 00, Therefore, (2.43) leads
to
™
€ re 2, N(0,1).
o2y/2/np(1 = p)
In addition, from E(W) = o2, Var(%) < T‘Zf;i — 0 and
Markov’s inequality, we have
e (I-P,—Hy)e
1 = 0%+ 0,(1).
Hence, under Hy,
T,—1
= N(0,1),
2/np(1—p)
which completes the proof. ]

2.6.5 Proof of Theorem 2.2

Proof. First, we derive a decomposition of x; 3. Let & = (P, XP,)"'P/¥3. For

each i, define
Ty = E(XZTB‘PIIXJ - XiTPk£> q; = XiTﬁ - E(X?ﬁ!ngi)-

Then, we have x;/ 3 = x/Pr€ + r; + ¢;, where ¢; satisfies E(qi|ngi) = 0. Let
w? =BTEB - ¢'P.IP¢ and 7; = Var(q;|P, x;) — w?. According to Lemma 2.10

and the condition B3TX3 = o(1), it shows

n

S 12 = 0,(1) and % > Il = 01, (2.45)

i=1
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when the event A € F,, is satisfied, where F}, is a series of sets that satisfy v,, x(F,) —
1,as n — oo, and A = T'"P, (P, XP,)~"/2. The probability of the event tends to 1,
based on the randomness of Py,.
Define a new error term e; = ¢;+¢;. Let 02 = Var(e;). The model can be denoted
as
y=al+XPr{+r+e, (2.46)

T and e = (e1,...,e,) with each element of e satisfying

where r = (r1,...,75)
E(e;) = 0, E(e;|Pix;) = 0, Var(e;|P.x;) = 0% + w? + 7, and E(e|P.x;) = pg +
602V ar(q;|P)x;) + E(q}|P, x;). For matrix M = (m;;) = Bt — ERL=I calculation

shows

E(e'Me|XP,) = Z MiTi,
i=1

Var(e'Me|XPy) = > " m? { E(e}|XPy) — 3E(e}|XPy)*}
=1

+2)  m E(e}|XPy) E(e3| XPy)

i?j

=2(0% + w)tr(M™™M) + g(M, X, €, P),

where g(M, X, €, Py) = >, mj {E(ef|XPy) — 3E(ef|XPy)*} + 23, imi{(0? +
w?)(7; 4+ 7;) + 77} For a constant a < 2/p(1 — p) and large n, M satisfies || M]|s, <

a/n and |m;| = |e] Me;| < ||M]||sp. Then, (2.45) leads to
VnE(e'Me|XPy) = o,(1). (2.47)

To investigate the conditional variance, based on (2.44) and Lemma 2.9, we can

derive

> mi {E(e}|XPy) = 3E(e}[XPy)*} <> m? {s — 30* + E(¢/|XPy)} = 0,(n").
=1

i=1
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In addition, >3 m7; = e/ MM e; < ||M]|?, < a*/n? and (2.45) lead to

ij

no no12
Zm?j {(02 +w?) (7 + i) + TiTj} < 2(0*+w?)a® 22212 7l +a? (Z’:;JTZD = op(n_l).
,J
Therefore, g(M, X, €, Py) = 0,(n™"), from which we obtain
Var(e'Me|XP}) = 2(0? + w?)2tr(M'M) + 0,(n1). (2.48)

According to tr(M'M) = 1 + —+—, (2.47), (2.48) and the condition k/n — p,

Lemma 2.4 shows
WeTMe —0,(1)

EROEW ey = N(0,1). (2.49)

To investigate the numerator of the test statistic, (2.45) shows that r satisfies

1 1
—1"Er < —r'r =o,(n""?), (2.50)

Vi Vi

for any n xn idempotent matrix E. Based on Jensen’s inequality, the fourth moment

of ¢; satisfies E(q}) < 16E{(x,8)*}. According to

E{(x{B)'} = Y (LTB)IE() +3) (LA B)IE(=A21)),
i=1 i#j

and Var(q;) < w? < 873, the condition B8'X3 = o(1) leads to E(g}) = o(1) and
|B(e}) —pal <aB'BB=0(1), BE{r} < E(g)+w' < a(B'36)" =o(1), (251)

for a constant ¢;. In addition, the calculation shows

'E (eT(I—Pl—Hk)e E{Z”; (1;2:1]:1,07}

n—1—k =

< Z ﬁ\/ E{7?} =o(1),
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Sr L E(ef)  2(0? +w?)? dn(o® +w?) 3L VE(T?) + 23,4/ E(T)E(T})
S(71—1—16)24_71—1—]{;—’— (n—1—k)?

Var {E (eT(In__Pf__ ,:{ k)e|XPk> } ~ Var <i Uk H’“)”TZ)

Consequently, Markov’s inequality leads to

e (I-P,—He

e — =0? + w? +0,(1).

This combines with (2.50) shows

(e—i—r)T(I—Pl —Hk)(e—l—r)

= o2 2 1). 2.52
1% o +w” + 0,(1) (2.52)

Next, we study \/TEETP,IXT(I — P)XPr£. From Assumption Al, we have

n—1

0 £'PYPE (2.53)

1
E {%gpgxm - PI)XPke} =

and the fourth moment of x| P¢ satisfies

m

E{(x{Pi&)'} = ) (TTP&){E(zy;) +3) (TTP)}(LTPLE)TE (] 21)).

i=1 i#£j

Based on ¢ 'P, XP.¢£ = BTEP.(P.XP,) P/ X8 < 828 = o(1), we have

Var (%eTPZXWI - Pl)XPk£> < E{(x/Pr)'} +2(§"PyZP1E)* = o(1).
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From Markov’s inequality and k/n — p , we have
\/TE(STP,CTXT(I —P)XP.¢ = ?gTP,IEPkﬁ + 0,(1). (2.54)

To investigate \/TﬁﬁTP,IXT(I — P))e, the condition B'E8 = o(1), (2.51) and
(2.53) lead to

E { (%ﬁTP;XT (I- Pl)e)Q}
{( ngTPTXT (I-Py) )2 ]XPk}

1 n
{ (0% +w? —|—Tz X, PkE——ZXTPkE }
=1

< (0? +wW)E {%ETPgXT(I - P1)XPk€}

(RN wmeFome)

< (0* + )€ PIEPE + mﬂﬂ 2 {E > (XIPk€)4}

i=1

= o(1).
Therefore, Markov’s inequality and k/n — p demonstrate
%gTP,—IXT(I ~Pl)e=o,(1).
This combines with (2.50) and (2.54) implies

VIETRIXT(I - P)(e + 1) = o,(1). (2.55)
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Based on the new expression (2.46), together with (2.50), (2.52), (2.54) and (2.55),

we have
_ np(l;p) {ngng(Ik_Pl)XPkg i 2£Tp,ij(]:—P1)(e+r) + (e + r)TM(e + r)}
2/Inp(L = p)] e R e

V2 (AETPISPLE + e Me) + 0,(1)

02 + w? + 0,(1)

Define 62 = 0% + B3'28 — £'P] XP,£. From (2.49), the asymptotic power function

of the proposed test T, is

T, —1
\IISP</8’P/€) = P( > Za)
2/Inp(1 —p)]
n(l—p) € P.EPE
= o(— 1
which completes the proof. n

2.6.6 Proof of Theorem 2.3

Proof. Recall the definitions of projection matrices.

1
P, =-11",
n

Px, = (I-P)X,(X{(I-P)X;)'X{(I-Py),
H;, =1-P)WW'(I-P)W) 'W (I-Py),
where W = (X3, XyPy,). Under Hy,,1 0, we have

GT(Hk2 — le)e/k'g
e'I-P,—Hg)e/(n—1—p; — ko)

T”:PZ -

Define M = (m;;) = B Py P18 prom Span{(I—P1)X,} € Span{(I—

ko n—1—p1—ka "~

P1)W} and properties of projection matrices, we have

Px,H;, = H,,Px, = Px,.
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Hence, tr(M) =0, M'M = kaQle L LPiHy

k3 (n—1—p1—k2)2> and

H;, —Px, I-P;—Hy,

||MH§p o )\max<MTM) < Amax( k2 )+ )‘max((n—l—pl—kzp) - O( 71)
IMIE ~ oM™ S R
F ko

n—1—p1—ks

For given M, we have

E(e"Me|M) = ¢*tr(M) = 0,

u 1 1
Var(e" MelM) = (uy — 30 2 495t ([ — .
ar(e €M) = (uq a);m“—l— o k2+n—1—p1—k2

Then, Lemma 2.4 leads to

€ Me

\/Var(eTMe|M) —NOL).

This together with the law of total expectation and the dominated convergence the-

orem shows

P ¢ Me <a|=E
V/Var(eTMeM) —

for Va € R. Therefore,

€' Me
i <\/var(eTMe|M) = O"M)] =,

€ Me
o JIE{() = 3 Sy ml + 20 + o)

25 N(0,1).

When n Y"1, m% = 0,(1), Assumption S3 and Slutsky’s lemma demonstrate

€' Me
02\/2(1 - :01)/”/32(1 —p1— PQ)

25 N(0,1). (2.56)

Let G, = Y i, mZ. Next, we will verify nG,, = o0,(1). From the definition, m; =
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1
(Hpy)ii—(Pxy )i 1*;*(1‘11@)1‘1‘. Then
ko n—1—p1—kso

2
n 1 (1—l—72)((H,€)--—M) (Px, )i — &
2 n n u n n n
nG":an”:EZ{ o 2 5 — 1k_2
i=1 i=1 n

n

n

SQ—hlZ{(Hkg)ii—plekQ}QvLQ—hz {(le)u’—%}Q
| | (2.57)

where by = (1—1—2)2/(f2(1 L _PL_R})2 4nd hy = n?/k}. Based on Assumption

(1—p1)?
p3(1 — p1 — p2)?’

1
hl—) h2—>—2.
2

Consequently, we only need to consider the sum parts in (2.57). From the definition,

W= (X, X,P,)—zr" (I O ) 2gzpTy
0 Py

where Z = (zy,...,2,)" and V is a full column rank matrix with probability 1. Define
3, = VI SV. The matrix 3, is of full rank with probability 1, then TTVE;"? is
well-defined on the Stiefel manifold V,, ,(R™). Let W, = W, /2 = 2z Tve; /2,

The hat matrix Hy, can be denoted as

H;, = 1-P )W, (W (I-P) )W) "W/ (I-P)).

According to Lemma 2.9 and the condition (p; + k2)/n — p1 + ps, we obtain

%Z {(nw - k} = 0,(1).

Let Ry = ZI‘lEﬂlm. The hat matrix Px, can be denoted as

Px, = (I-P)R;(R; (I—-P)Ry) 'R/ (I-P,).
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Based on Lemma 2.9 and the condition p;/n — p;, we obtain

%i {(PX1)ii - %}2 = op(1).

Therefore, nG,, = 0,(1) is verified, and then (2.56) is demonstrated.

To study the denominator of 7}, ,,, calculation shows

E{eT(I—Pl _H@)e} . [E{eT(I—Pl _H@)G}HMH _

n—1—p —k n—1—p —ky

Var (GTG L H’”)e) —F {Var (J(I L H’“Q)G{HkQ)} = o(1).

n—l—pl—kg n—l—pl—kg
From Markov’s inequality, we have

e (I-P;—Hy,)e
n—1-=p—k

= o+ 0,(1).

Combining this with (2.56), we obtain

Top, — 1
V2(1 = p1)/npa(1 — p1 — p2)

25 N(0,1),

which completes the proof. O]

2.6.7 Proof of Theorem 2.4

Proof. Define V = diag(1,,, Px,). The matrix is a full column rank matrix with prob-
ability 1, and W = XV, with the i-throw w; = V'x;. Let v = (V' ZV)~'V'TT] 3,.

For each i, define
ri=~F (X;QQ‘VTxi) — xiTV"y, ¢ = x;ﬂg - F (X;,@2|VTXZ'> .

Then, a decomposition of x4, can be derived, given as x,8; = w; v +7; + ¢;. Let
w? = BBy — v 'V EVy and 7; = Var(¢|V'x;) — w?. According to Lemma
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2.10 and the condition By X9532 = o(1), we have

n

;rf — 0,(1) and %m — 0,(1), (2.58)
when the event A € F), is satisfied, where A = TTV(V'XV)~/2 and F, is a series
of sets that satisfy v, (p,+k,)(Fn) — 1, as n — oo. The probability of the event tends
to 1, based on the randomness of Py, .
Define a new error term e; = ¢; + ¢;. Let 02 denote the variance of ¢;. The model
can be expressed as
y=al+X;8:+Wvy+r+e, (2.59)

T

where r = (r1,...,7,)", and e = (e1,...,e,)’ with each element of e satisfying

E(e) = 0, E(e)]V'x;)) = 0, Var(e;|[V'x;) = 0> + w? + 75, and E(e}|[V'x,) =
) 1-P,—H,,

pa+60°Var(q;|VTx;) + E(g}[VTx;). Define M = Z2-2% — 2750 | The matrix
. T
satisfies tr(M) = 0, tr(MM ') = é + ma and HMng < é + m'

Based on the condition p;/n — p; and ko/n — po, then for large n, there is a
constant a < 2/ps(1— p; — pa) such that ||M]||s, < a/n. With a similar proof method
in Section 2.6.5, we can derive

no2(1=p1—p2) ST\ — Op(l)

2(1-p1) D
1). 2.
(0% 1) V1T o) — N(0,1) (2.60)

The condition By Y9232 = o(1) leads to E(q}) = o(1) as well as

|E(ei) — nal < 1By BnfBo = o), E{7} < B(q)) + w' < e1(By Tnf)” = 0(1),
(2.61)
for a constant ¢;, from which we could obtain
(e+1) (I-P; —Hy,)(r+e)
n—1—p — ks
70
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Let Vy = (&],&))7 with & € RP' and & € RP2. Define 1?2 = &) (X9 —
Eglzfllzlg)gg. Then

V=BT, (FTV(VTEV) VT -r/%] 'T1) T B < By (Bo—3n 21 £12) B2 = o(1).

To investigate v W' (I — P, — Px, )W+, the term could be denoted as
v W' (I-P; - Px,)Wry

—¢'Z2"1-P)Zp — ¢ Z (1 - P)ZT] (1,Z (1 - P)ZT, ) 'T,Z (1 - P)Z¢

where ¢ = (I — T[] X'T1)T5 & and ¢ ¢ = v> = o(1). From the calculation

E {%quzT(I - Pl)z¢} - ”Jﬁl V2,
Var {%q&TZT(I - Pl)qu} < 6v* = o(1)

Markov’s inequality implies \%(ﬁTZT(I —P1)Z¢p = /nv? + 0y(1). From a similar

derivation method for (2.62), we obtain

1
%quZT(I —P)ZT] (T,ZT (1 - P,)ZT] ) ' TWZT (1 - Py)Z¢p = %y + 0,(1).
Therefore,
1 n—mp
ﬁﬂyTWT(I — P, — Px, )W~ = NG L2 4 0,(1). (2.63)

To study v "W ' (I — P, — Px,)(e + 1), (2.58) and (2.63) lead to

"WI(I-P,—Px,)r|<Vr'r \/ YTWT(I—P; — Px, )W~ =0,(1).

=

The condition By Y9532 = o(1), (2.61) and (2.63) lead to

E { (%fﬂWT(I -P, - le)e)Q} = FE|E { <%7TWT(I -P, - le)e)2 |WH

<(c3+o*+ WQ)ﬁzTEQQ,Bz

= o(1),
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where c3 is a constant. Therefore, we obtain

%7TWT(I - Py - PX1)<e + I‘) - Op(l)‘ (264)

From the new expression (2.59), together with (2.58), (2.62), (2.63) and (2.64),

we have
npa(l—pi—p2) {7 W' (I-P1—Px )(W~v+2e+2r) T
Tt e - e (e 4 e))
_ _ . _ o (r+e)T(I-P1—Hy,)(r+e)
V2(1 = p1)/npa(1 — p1 — p2) o g

np2(l—p1— 1—
Pzé(lipgl)pz) {( p2pl)V2 —|—eTMe} +0p(1)

0% + w? + 0,(1)

Define 77 = 02 + w? Then, v? and 72 can also be calculated as follows. Let 4 =
(VIEV)"'V'S8 and VA = (£ ,€])7, where £ € R” and &, € RP2. Then,
V=6, (T'V(VIEV)'VT -T2/ T, B
=8 T(T'V(VIEV)'VIT-T/=/T)T'3

=& (Do — S0 X )b

and 77 = 0% + 3, X998 — ~FNTVIEVy =624+8"T28-7TVIEVA.
From (2.60), the asymptotic power function of the proposed test T}, ,, is

Thp, — 1

U (B2 Pr,) = P( > Za)

o V2(1 = p1)/npa(1 — p1 — p2)
n(l—pi—pa)(1 — p1) V?
= (I)(—Za + \/ 2p2 ﬁ) + 0(1)7
ki
which completes the proof. ]
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Chapter 3

A Random Projection Approach
to Hypothesis Tests in
High-Dimensional Single-Index
Models

3.1 Introduction

In this chapter, we consider the single-index model (SIM)

Yy = f(XTO, €), (3.1)

where y is a response variable, x is a p X 1 covariate vector, 8 is a p x 1 vector of
unknown coefficients, € is a random error independent of x, and f is an unspecified

link function. We are interested in testing the hypothesis
Hy:0=0 versus H;:0 #0. (3.2)

We propose new statistical tests for hypothesis (3.2) in high-dimensional SIM (3.1).
First, the testing problem is investigated in a relatively high-dimensional regime,
where p/n — ¢ with ¢ € (0,1) and x is assumed to follow the normal distribution.
According to the results in Li and Duan (1989), the vector of regression coefficients

in SIM (3.1) can be obtained by the least square up to a scalar. Motivated by
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this, we propose the F-statistic, whose asymptotic normality and asymptotic local
power function are derived in high-dimensional SIM. While this approach seems to
ignore the nonlinear link function f for simplification, the theoretical results are
asymptotically the same as one working on the linear regression model y = cyx' 0 +
oe, where e is the standard normal error, and ¢y, c are constants depending on f.
To investigate more high-dimensional settings, we study testing problem (3.2) in an
ultrahigh-dimensional regime, where p can be much greater than n. The technique
of random projection is used to reduce the data dimension, and the F-statistics is
constructed based on the projected data which live in a lower-dimensional space.
We prove that the proposed test statistic is asymptotically normal under the null
hypothesis as (n,p) — oo. We also derive the asymptotic local power function of the
proposed test. With no extra sparsity assumption required, our proposed test has a
wide application range in terms of general model assumption and mild conditions on
the distribution. And the test is still applicable to misspecified models. In addition,
it is simple in form and easy to compute. Finally, we extend the proposed testing
procedures for global hypothesis (3.2) to the problem of testing partial coefficients
and derive their asymptotic null distributions and asymptotic local power functions.

The rest of this chapter is organized as follows. In Section 3.2, we introduce
the model and establish the theoretical foundation for the design of our proposed
methods. In Section 3.3, we focus on a relatively high-dimensional regime, where we
consider the problem of testing global and partial regression coefficients, and derive
the asymptotic normality and the asymptotic local power function of the F-test. In
Section 3.4, for an ultrahigh-dimensional regime, we establish the asymptotic null
distribution of the random-projection-based test statistics and derive the asymptotic
local power functions. In particular, we compare the proposed test with other com-
peting tests in Section 3.4.3. In Section 3.5.1, we conduct simulations to evaluate the

finite-sample behaviors of the proposed test in terms of type I error and empirical
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power, and compare it with the competing tests. We also illustrate its applications
in high-dimensional gene expression data in Section 3.5.2. The proofs of technical

lemmas and theorems are relegated to Section 3.6.

3.2 Preliminaries

In this section, we introduce the target model and establish the theoretical foundation
for the design of our proposed methods, which can be applied as the theoretical
premise for our new tests both in relatively and extremely high-dimensional regimes.

For SIM in (3.1), the response variable y is generated from x based on a linear
combination x '@, while the conditional distribution of y given x can be completely
arbitrary, which includes a wide range of models, such as the GLM and the Cox
model. When the information obtained from the data is insufficient, the high flexi-
bility makes the above model an reasonable choice. However, with the introduction
of general model assumption, the difficulty of statistical inference increases rapidly.
In this paper, we focus on the hypothesis testing problem (3.2) in SIM.

To motivate the proposed test, we first consider a risk function for the estimation
problem,

R(a,b) = E (L(a+u'b,y)), (3.3)

where L(u,y) is a loss function, and u is a k-dimensional random variable with
k < min{n,p}. When u = x, this criterion is often used for estimating SIM in the
classical settings, where the estimator of @ can be obatined by solving a minimization
problem of an empirical version of (3.3). For other types of u, specifically, when u has
a certain relationship with x, Lemma 3.1 indicates the possibility to develop a testing
procedure based on u for (3.2) in the p > n settings. Therefore, the selection of u is
an important ingredient in our proposed method and will be concretely discussed in

Sections 3.3 and 3.4.
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The following lemma is obtained from the proof in Li and Duan (1989, Theorem

2.2).

Lemma 3.1. Assume the observation (x,y) is generated from SIM (3.1) with E(x) =
0 and x' 0 being normally distributed. Let uw € R* be a random vector independent of
€ with w ~ N(0,I) and k < min{n, p}. Denote n = E(uz'0). Suppose there is an

unique solution (a*,b*) to the minimization problem  min kR(&, b), when n # 0,
a€eR,beR

we have

b* = c'n,
where the scalar ¢ = n' b /||nl|3.

The lemma indicates that the direction of 1) can be estimated correctly even if the
model is misspecified, which is of great significance in practice, since the underlying
true model is unknown in prior for most of the cases.

In this paper, the particular loss function L(u,y) = (y — u)? is analyzed. When
p < n and u = x, the minimization problem of (3.3) becomes the least square
problem, for which the solution is unique and has a closed form. From Lemma 3.1,

the least square solution b" is proportional to 6 with a scalar, expressed as
b = c,0, o= E(0 xy)/||0]|3. (3.4)

In fact, ¢y might perform like a linear approximation coefficient for f, which can
be explained from the special case below. When the response y and the covariate
x satisfies F(y|x) = g(x'8) for a differentiable function g, it can be found ¢y =
E{g'(x"8)}, which is obtained from the normality assumption and Stein’s lemma.
From the property of the least squares and (3.4), model (3.1) can be written in a
linear form

y=FE(y) +cx'0+e, (3.5)
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where the residual e satisfies F(e) = 0 and E(xe) = 0. The scalar coefficient ¢, is
set to be 0 when 8 = 0. It is noted that the linear coefficients in the linear form
are cpf, which brings out implicit information of @ contained in the unknown link
function f. When ¢y # 0. This makes it possible for us to do statistical inference
about @ without estimation of the link function. Motiviated by this, we study the

F-statistic in SIM. And its feasibility is investigated in Section 3.3.

3.3 The F-Test in Relatively High Dimensions

In this section, we focus on a relatively high-dimensional regime where p and n sat-
isfy p/n — ¢ € (0,1). For the problems of testing global and partial coefficients, the
F-statistic is investigated in SIM. In this setting, we derive the asymptotic null dis-
tribution and the asymptotic local power functions of the F-statistic. For simplicity,
we assume E(x) =0 and E(y) = 0.

Suppose that (x1,y1), ..., (Xn,ys) are i.i.d. copies of (x,y) from SIM (3.1). Let
x; be the i-th row of the design matrix X = (x1,...,%,)" andy = (y1,..., %) .

The F-statistic is defined as

.
H
o y Hy/p

-y I-H)y/(n—p) (30

where the hat matrix H = X(X"X)"'X". The test statistic F,, is well-defined, since
the matrix XX is invertible with the probability 1 when p < n and x follows the

normal distribution.

3.3.1 Asymptotic Normality
First, the F-statistic is studied under Hy. We make the following assumptions.
Assumption L1. z ~ N(0,I) and x is independent of e.

Assumption L2. E(y) =0 and E(y*) < oo.
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Assumption L3. There is a constant ¢ € (0,1) such that 2 — (.

The asymptotic normality of the test statistic F, is established in the following

theorem.

Theorem 3.1. Under Hy and Assumptions L1-L3, as n — oo, we have

F,—1

25 N(0,1).
2/n¢(1 = ¢)

This asymptotic normality result justifies the following testing procedure. Given

an a-level of significance, the test rejects Hy if

F, -1
>
2/n¢(1—¢)

ZOH

where z, is the upper a-quantile of AV (0,1).

3.3.2 Asymptotic Local Power Function

We study the property of F,, under H; to derive the asymptotic local power function.

We need the following additional assumption.
Assumption L4. ¢2||6]]3 = o(1).

This is known as a local alternative, which is commonly used to study the asymp-
totic properties of a statistical test. Detailed discussions can be found in Van der
Vaart (1998, Section 14.1). To derive the asymptotic local power function, our anal-
ysis method is based on the linear form (3.5) and the analysis method of the F-test
in the linear model. Because the residual e in (3.5) does not satisfy the conditions in
a linear model, where the residual is often assumed to be conditionally independent
of x. The method is further modified to adapt to our nonlinear high-dimensional

settings. The normality assumption of x is of great significance. It allows us to
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establish the independence between e and a new hat matrix, which is derived from a
decomposition of the hat matrix H. The scalar ¢y = F(0"xy)/||0||2. The following

theorem gives the asymptotic local power function.

Theorem 3.2. Suppose Assumptions L1-L4 hold. Let V,(0) denote the power func-

tion of the test statistic F,. As n — oo, we have

n(1—¢) 311013
2( o?

U,(0) — d(—2, + ) — 0,
where 0® = Var(y) — c2||0|3, ®(-) is the cumulative distribution function of the

standard normal distribution, and z, is the upper a-quantile of .

This result shows that the power of the test becomes stronger as c¢2||6]]3 increases
or ¢ decreases. As shown in the linear form (3.5), c2||0||3 is related to the level of
linearity between y and x. Hence, it is reasonable to gain more testing power with
larger c2||@]|3. We note that an increase in the value of ¢ leads to decrease of testing
power. Therefore, the F-test is adversely affected by the effect of high dimensionality

and becomes powerless when the limit ¢ of the ratio p/n is close to 1.

3.3.3 Partial Test

In this subsection, we investigate the problem of testing partial coefficients in a
relatively high-dimensional regime. Specifically, the classical F-statistic designed for
testing partial coefficients is studied. We derive the asymptotic normality and the
asymptotic local power function of the proposed test.

T

Let x = (x{,%, )", where X, is a p;-dimensional nuisance covariate and x, is a

po-dimensional covariate of interest. SIM (3.1) is then denoted as

y = f(x{ 01 +x,0s,¢). (3.7)
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Suppose that B is a b x p, matrix of full row rank. We are interested in testing the

following linear hypothesis problem
Hop:B'6,=0 versus H;p:B'6, #0, (3.8)

When B =1, the problem is converted to detecting the significance of x,. Therefore,
hypothesis testing problem (3.8) is general. We rewrite the model to highlight the
part of testing interest. Let Hg = B(B'B)"'B', Sg be a p, x b matrix such
that Hg = SBSE and SESB = I, and Sg: be a py X (ps — b) matrix such that
I-Hp =Sgz: Sgi and SELSBL = I. The existences of Sg and Sg. are proved in
Section 3.6.4. Let w = (x],x9Sp1)" and v = (6,0, Sg.)". Based on linear form

(3.5), model (3.7) can be denoted as
Y = CQWT")’ + C()X;—SBSEOQ + e, (39)

where w is the nuisance covariate, xJ Sg is the b-dimensional covariate of testing
interest, and e is the residual term.

Suppose that observations (x1,v1),. .., (Xn,yn) are ii.d. from SIM (3.7). Let
x4 be the i-th row of the matrix Xy, for £ = 1,2, and y = (y1,...,%,) . Define
W = (X4, X5Sg1). The F-statistic for testing problem (3.8) is defined as

F _ yT(H - HW)Y/b
P yT(I-H)y/(n—p)’

where Hw = W(W'W)"!'W'. The test statistic F),,, is well-defined, since the
matrix W' W is invertible with the probability 1 when p < n and w has the normal

distribution.
3.3.3.1 Asymptotic Normality

First, we derive the asymptotic normality of F}, ,, under Hyg. The following as-

sumptions are needed.
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Assumption L5. =~ N (0,X) and x is independent of €.

Assumption L6. There are constants ¢,(1 € (0,1), with ¢ < ¢, such that 2 —

b
and > — (1.

From Assumption L6, the orders of b and p are asymptotically the same, indicat-
ing that linear hypothesis testing (3.8) is a high-dimensional testing problem. The

asymptotic normality of the test statistic is shown as follows.
Theorem 3.3. Under Hy p and Assumptions L2, L5 and L6, as n — oo, we have

Fnapz -1 D
Ai—craman=g Vo

This asymptotic normality result justifies the following test procedure. Given an

a-level of significance, the test rejects Hy g if

F,

n,p2 ]'

V2(1 =+ G)/nGi(1—¢)

Zas

where z, is the upper a-quantile of A(0,1).
3.3.3.2 Asymptotic Local Power Function

Then, we move to investigate the asymptotic local power function of F, ,,. Let
D = diag(I,Sg.). Then w = D'x. Let gy = Var(xy), 12 = Cov(xy,%,) and
391 = Cov(xa,x1). Define
_ by
7 =0, Hp | X9 — (29, Ty) D(D'ED)'D’ < EZ )] Hg0,.

The scalar ¢y = E(0"xy)/||0||3. Additional assumption is needed for the study.

Assumption L7. 272 = o(1).
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Theorem 3.4. Suppose Assumptions L2, L5-L7 hold. Let U, (0y; B) denote the

power function of the test statistic F),,,. Asn — oo, we have

U, (60 B) — D(—z, + \/n(l — C)(;Cl_ ¢+ (1) 052;22) Lo

where 02 = Var(y) — c20"X0, ®(-) is the cumulative distribution function of the

standard normal distribution, and z, s the upper a-quantile of ®.

It indicates that ¥, (02; B) is an increasing function of ¢27%. In addition, when
( increases, the loss of testing power demonstrates that the test is influenced by the

effect of high dimensionality, and the test becomes powerless when ( is close to 1.

3.4 New Test in Ultrahigh Dimensions

In this section, we consider a higher dimensional regime where the dimension p is
much greater than the sample size n. In this case, the F'-statistic cannot be well-
defined due to the singularity of the matrix X' X, for which a new high-dimensional
test statistic is required to address the problem. Using the technique of random
projection, we propose a new test statistic based on the F-statistic of the projected
data. The new test has a less restriction on the distribution of x and is applicable
for many commonly used distributions. We derive the asymptotic normality and
the asymptotic local power function of the proposed test. We also compare the
properties of the proposed test with competing tests and derive sufficient conditions

that guarantee its superior performance.

First, we concentrate on testing the global hypothesis
Hy:0=0 versus H;:0 #0. (3.10)

With the normality assumption of x, when n > p, the feasibility of applying the

F-test in SIM has been carefully investigated in Section 3.3. However, the F-test
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becomes invalid in the p > n settings. To solve the problem, we randomly project
the high-dimensional covariates into a lower-dimensional space, and then apply the
F-test to the projected data. Specifically, for an integer 1 < k < min{n, p}, let Py €
RP*k denote a random projection matrix with random entries, drawn independently

of the data. Define u = P} x. We consider a model

Yy = f(uTn, €). (3.11)

Note that the distribution of y in model (3.1) under hypothesis Hy : @ = 0 is the
same as that in model (3.11) under hypothesis Hy : 7 = 0. In addition, when 1 # 0
and Py has i.i.d. N(0, 1) entries, the probability of Pyn # 0 is 1. We propose a test

statistic

T, — y Hyy/k
™ y'@I—-P, —Hyy/(n—k—1)

(3.12)

where P, = %11T and H, = Uk(U,;rUk)_lU,I is a new hat matrix with U, =
(I-Py)XPy.

The test statistic 7}, can be well defined even when p > n, for the reason that
the matrix U, Uy is of full rank with probability 1, where P, has ii.d. A(0,1)
entries. This is shown in the proof of Theorem 3.5.

One of the convenient ways to construct Py, is to generate its i.i.d. entries from
N(0,1). Furthermore, Li, Hastie, and Church (2006) proposed that it is possible to
generate other types of random projections Py, such as sparse random projections
to obtain the same asymptotic performance as the normal random projections with
a fast convergence speed. A sparse random projection is composed of entries p;; that

are i.i.d. from distributions satisfying

Poy =)= Plpy = VD)= 35, Poy=0)=1-7. (313

where the recommended value of [ is \/p. In the theoretical analysis, we will focus
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on the random projection consisting of i.i.d. N(0, 1) entries. The results are also ap-
plicable to some non-normal projections. The sparse random projections mentioned
above will be used as the theoretical basis to evaluate the performance of non-normal

projections in the simulation studies in Section 3.5.

3.4.1 Asymptotic Normality

The first main result demonstrates the asymptotic normality of the proposed test

under Hy. We work under the following assumptions.

Assumption H1. = pu + I'z, where I' is a p X m matriz with m > p, @ is

T

a p-dimensional vector and z = (z1,...,2m) ' 1S an m-variate random vector with

E(z) = 0,Var(z) = I and Var(%z) = O(m™'). For any nonnegative integers

4;

Qis- - Gm, With Z;n:l q; = 4, the mized moments E(H}”:lz ) are bounded, and equal

J

to 0 when at least one of the q; is odd.
Assumption H2. ¢ is independent of z, and E(y*) < co.
Assumption H3. p > n and there is a constant p € (0,1) such that % — p.

As stated in Assumptions H1 and H3, there is no specific relationship between n
and p, so that the dimension p, mean vector g and covariance matrix ¥ = I'T'" im-
plicitly vary as n goes to infinity, making our test applicable to ultrahigh-dimensional
problems. The covariate x is generated from a similar structure of the factor model,
which has no specific conditions for the covariance matrix 3. It includes a flexible
family of distributions, with the elliptical distributions as special cases. The similar
assumptions were adopted in Bai and Saranadasa (1996), Zhong and Chen (2011),
Guo and Chen (2016) and Cui, Guo, and Zhong (2018), where stricter conditions
were imposed on each element of z. Suppose that the projection dimension k is
asymptotically proportional to n with a coefficient p. The selection of p will be

discussed in Section 3.5.
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Since T, is invariant to the location shift of y and X, we assume that E(y) =0
and p = 0 in the rest of the paper.

Under Hj, the response y is independent of u, as the result of the independence
between y and x. Therefore, it is sufficient to study the proposed test under the
linear model. The asymptotic normality of the test statistic 7;, ;, is established in the

following theorem.

Theorem 3.5. Suppose that the random projection matriz Py consists of i.i.d.

N(0,1) entries. Under Hy and Assumptions HI-H3, as n — oo, we have

Tni — 1 25 N(0,1).
2/np(1 = p)

This asymptotic normality result justifies the following test procedure. Given an

a-level of significance, the proposed test rejects Hy if

where z, is the upper a-quantile of A (0,1).

3.4.2 Asymptotic Local Power Function

In this section, we analyze the asymptotic local power function of the proposed

test. Additional assumption is shown below.
Assumption H4. E(yz" )X 1E(yzx) = o(1).

This is known as a local alternative. In the linear model, Assumption H4 is
converted to 8736 = o(1). Considering a family of models where E(y|x) = g(x'8)
for a differentiable function g while x follows the normal distribution, Assumption
H4 can be denoted as ¢ 07360 = o(1) with co. = E{g (x"0)}. Specifically, GLM
is included in this case.

85



In the study of the asymptotic local power function, the analysis method of the
F-test proposed in Section 3.3 is considered. According to Diaconis and Freedman
(1984), the empirical distribution of randomly projected data tends to be approx-
imately normal. Therefore, it is expected that the result of the asymptotic local
power function will be valid when the p-dimensional data are not generated from the
normal distribution. The idea is illustrated by the simulation in Section 3.5. Let
n = ZfngEB with X, = P,IEP,C, the scalar ¢p, = E(n'uy)/(n'Xn) with Py
considered as deterministic in the expectation, and w? = " Xn. The formal result

is shown as follows.

Theorem 3.6. Suppose that Assumptions HI-H4 hold and z follows the standard
normal distribution. Let WEP(0; Py,) denote the power function of the proposed test

Thr. Then

UEP(9: Pp) — ®(—2, +

where 0* = Var(y) — c§ yw?®, ®(:) is the cumulative distribution function of the stan-

dard normal distribution, and z, is the upper a-quantile of ®.

The asymptotic local function relies on P}, and is an increasing function of ¢Z ,w?.

2

When the vector I'"@ is in the space generated by I'" P, w? can reach its upper

bound 6"X8. To reach the boundary asymptotically, we give a sufficient condition.

Assumption H5. (Tail eigenvalue condition) There is an integer s and a real num-
ber v > 0 such that s < k and ‘/Tﬁ||0||§ Y er1di = o(n™7), where d; are the eigen-

values of 3 satisfying dy > dy > --- > d,, > 0.

Assumption H5 is denoted as a tail eigenvalue condition, since it requires that
the product of ||@]|3 and the sum of tail eigenvalues of 3 to be of order less than

p/Vn.
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Lemma 3.2. Let P, € RP** be composed of entries from i.i.d. N(0,1) entries.

Suppose that Assumption H5 holds. Then we have
VallTTo =TT Pl = o(1),
for some ¢ € R* with probability tending to 1.

This lemma indicates that we can approximate I''@ by I'"P,¢ with a negligi-
ble approximation error. In this case, the asymptotic local power function for the

proposed test is shown as follows.

Corollary 3.1. Suppose that Assumptions HI-H5 hold and z follows the standard
normal distribution. As n — oo, we have

n(l — p) cakeTEH

U, (0; Pr) — D(—za + ;

—0
2% =)0,

where 0 = Var(y) — 5,030, ®(-) is the cumulative distribution function of the

standard normal distribution, and z, is the upper a-quantile of ®.

In the corollary, w? is regarded as a deterministic value inside the asymptotic local
power function, even when Py, is randomly generated. In addition, when F(y|x) =
g(x"0) for a differentiable function g, we have c¢y), = E{g (x"0)}, that is, ¢y, can
be determined by the model. Therefore, it is proved that WZF(6;P}) can be a
nonrandom function in some certain conditions, and it is a decreasing function of p.

We give some examples to illustrate the forms of ¢y and 0. Let \2 = 67260

and x follow the normal distribution.
Example 3.1 (Linear model). Suppose the observation (x,y) is generated from
y=1x'0+e€, € is independent of . (3.14)

Then co =1 and o = Var(e).
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Example 3.2 (Logistic model). Suppose the observation (x,y) is generated from

ylz ~ Bernoulli(g(z'0)), g(t) = %. (3.15)

2

The scalar co, and the variance o can be derived by

cox = E{g(x'0)} and

0® = Var(y) — ¢’ = E{g(z'0)} (1 - E{g(x'0)}) — cfw”.

This result is also available to the probit model, where the link function satisfies

g(t) = @(t).
Example 3.3 (Poisson model). Suppose the observation (x,y) is generated from

yl@ ~ Poisson(g(z"8)), g(t) = exp(t).

2

The scalar coj, and the variance o can be derived by

cox = E{g (70)} = exp(0.5\%) and

o’ =Var(y) — ¢ yw? = exp(N?) (exp(A?) + exp(—0.5)%) — 1 — w?)
where coy, is an increasing function of A%
Example 3.4 (Sin model). Suppose the response y is generated from
y = sin(x'0) + ¢, e ~ N(0,1) and is independent of .

Then, we have
cor = E{cos(z'0)} = exp(—0.5\?) and

o? =Var(y) — caka = 1.5 — 0.5exp(—2)\?) — w?exp(—\?).

This indicates that coy is a decreasing function of A\2.
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(a) Logistic model. (b) Poisson model.

Figure 3.1: The asymptotic local power functions of logistic and Poisson models as
A2 increases when w? = d?)\? for a given d.

Therefore, explicit expressions of the asymptotic local power functions can be
derived in these models. In addition, it is found that the ratio w?/\? has a significant
influence on the testing power. The ratio is determined by @, ¥ and P and is in
the range [0,1]. As shown in Lemma 3.2, the ratio is close to 1 when Assumption
H5 is satisfied by @ and X. We consider a simple situation where w? = d?)? for a
specific value d, and we study the influence of the ratio w?/A\? on the asymptotic local
power function. When n = 600 and p = 0.4, Figure 3.1 illustrates the asymptotic
local power functions of the logistic and Poisson models for different values of d. It
is found that, for a given A2, the largest value of the asymptotic local power can be

derived when d is close to 1.

3.4.3 Theoretical Comparison

From the analysis in Sections 3.4.1 and 3.4.2, our new test is appropriate for ex-
tremely high-dimensional settings with mild assumptions about the model and the

covariate. In this section, we will further research into the testing performance of
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the proposed test by comparing it with other tests. Specifically, we compare our test
with the GLM test proposed in Guo and Chen (2016) and the test developed by Ma,
Cai, and Li (2020), which focused on the logistic model in sparse settings. These
tests are designed for high-dimensional testing problem (3.10) and have been demon-
strated to have powerful testing performance. We denote these competing tests as
GC test and MCL test, respectively. First, GC test is adopted in a certain class
of GLM for comparison. For theoretical analysis, the criterion asymptotic relative
efficiency (ARE) is used, for which we give a sufficient condition to guarantee that
the proposed test is asymptotically more powerful than GC test. Since MCL test has
no closed form of the asymptotic power function, principal comparison with MCL
test is conducted through a simulation study, shown in Section 3.5, where GC test
is also investigated. In this section, we compare the proposed test with MCL test
in terms of model assumptions to demonstrate the general application range for our
test.

For the GLM with the canonical link, the response variable y satisfies E(y|x) =
g(x"8) and Var(y|x) = ¢g (x"0), where g is a monotone differentiable function and
¢ is a dispersion parameter. When x ~ N(0, X), the asymptotic power function of

GC test proposed by Guo and Chen (2016) is denoted as

—2, + nHA&OHgH
V2tr ({36(0) + Zg0}?)

U7C(0) = o ), (3.16)
where the matrices satisfy Agg = ¢ E{g (x'0)}X0, 6(0) = ¢ 'E{g (x"0)xx"},
and Zgo = ¢ 2E [{g(x"0) — g(0)}*xx"] .

With a slight abuse of notation, we also denote the asymptotic power function of

our random-projection-based (RP) test by

UEP(9:P)) = B(—24 + ), (3.17)
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where ¢ = F{g' (x"8)} in the current setting.
Since the term added to —z, inside function ® is the component controlling
power, the ratio of such terms is defined as the ARE. More explicitly, we define

1—p w4 r({e(0) + Zgo}?)

ARE(UEP. ¢GCy — .
( n ) n ) np <0T220)2 0_4

(3.18)

Whenever the ARE is larger than 1, our procedure is considered to have a greater
asymptotic power than the competing test. For this purpose, an inequality for (3.18)
is derived below. Let 79 = y — ¢(0) and F(0) = /2 (I — Pxy/29) 32, where Py /2¢
denotes the projection matrix for 3'/26. Then,

$*{36(0) +Zp0} = E(rixx")

x'0)’ $60TS
:E(TS)F(OH—E(T(Q)(HTEL) TS0

Plugging this into (3.18), under the conditions in Guo and Chen (2016), where X
satisfies tr(X*4) = o(tr?(X?)), we obtain

IL—p w' ¢r({Ze(0) + Z6,0}?)
np (07320)2 ot

ARE(T,7 W) =

1—p Wt E(r?

)? >
> =L rsegp g (F()) (3.19)

1—p
>
= Cn np (607320)

2
Ftr(X7),

where C,, converges to 1 as n — oo. Let § = £0. Then w? = § ' P.(P, P,)"'P/ 4.
Clearly, when the right side in the last inequality in (3.19) is larger than 1, it is
sufficient for the ARE to give the conclusion that the proposed test has a superior
performance. To derive this, with the analysis method given in Theorem 2 of Lopes,

Jacob, and Wainwright (2011), we obtain the following result.

Lemma 3.3. Suppose that § follows a spherical distribution with P(6 = 0) =0, and
is independent of Py. There is a constant v € [0,1) such that k/p — . And assume
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1 tr(®)
\/E p>\min (2)

than

= o(1). For a fized value ¢ > 0, let c¢(e1) be any constant strictly greater

1 .
PP A—vA)E If the condition

n > c(e)

holds for all large n, then P(ARE(VEY; WGC) > 1/e) — 1, as n — oo.

It is remarked that 6 is assumed to follow a spherical distribution, that is, the
direction 6/||d||2 is uniformly generated on the unit sphere. In this case, when
tr(X)?/tr(X?) has slower growing speed compared with the sample size n, the ARE
will be large enough to demonstrate the advantages of our test.

Under the conditions in Corollary 3.1, w? becomes a deterministic value, for which
(3.19) leads to the following inequality.

1—p (6736)?
np (07320)2

ARE(VEP ¢4 > ¢, tr(3?). (3.20)

A sufficient condition can be derived to ensure that the right hand side in (3.20) is

larger than 1. Specifically, when % = o(n~?7), where € = 0/|0]]> and 7 is a
sufficiently small positive constant, the right hand side in (3.20) goes to infinity as n
— 00. This adequately demonstrates that the proposed test is asymptotically more
powerful than GC test.

Next, we conduct a comparison with MCL test. Ma, Cai, and Li (2020) studied
global testing problem (3.10) in the high-dimensional logistic model and constructed
MCL test based on a bias-corrected estimator. The distribution of covariate x is
limited to the multivariate normal and the bounded design, with a strong assumption
about its covariance matrix. In particular, it is assumed to have bounded eigenvalues
and sparse inverse. Therefore, for the reason that a larger class of models and

more flexible families for the distribution of x are applicable in our setting, the new
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proposed test has a wider range of application. For alternative hypothesis, Ma, Cai,
and Li (2020) was concerned about sparse alternative, shown as H; : 8 € {0 €
R? : [|6]|s > 7,[|0]]o < s} for some v > 0. It indicates that our test have testing
property over more general alternatives. A further study via simulation is given in

Section 3.5.

3.4.4 Partial Test

In this subsection, we focus on the problem of testing partial regression coeffi-
cients in an ultrahigh-dimensional regime. Specifically, we propose a new testing
procedure and derive its asymptotic null distribution and asymptotic local power
function. While our theoretical analysis focuses on the normal distribution, the
proposed testing procedure can also be applicable for general cases, based on the
property of randomly projected data, which can be demonstrated by the simulation
in Section 3.5.

To emphasize the target model, SIM is restated as follows.
y = f(x]{ 6 +x,0s,¢), (3.21)

where x; is a p;-dimensional nuisance covariate and x» is a ps-dimensional covariate
of interest. Suppose that B is a b x py matrix of full row rank, we are interested in

testing the linear hypothesis
Hop:B'6,=0 versus H;p:B'6,#0, (3.22)
With the same definitions of Hg, Sg, Sg., w and « in Section 3.3.3, we obtain
X, 01 + %, 0, = W'~y +x, SpS50,.

For an integer 1 < ky < min{n + b — p,b}, let P, € R>* denote a random

projection matrix with random entries, drawn independently of the data. Define
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W = (X,X:Sg:) and Ugy = (W, X3SgPy,). Their projection matrices are given
as

Hw = I -P)WW' (I-P)W)'W'(I-P,),

HUkQ - (I - Pl)UkQ(ng(I - Pl)UkQ)_lUsz(I - Pl)
We propose a test statistic

yT(HUkz — HW)Y/kQ
y'I-P,—Hy,,)y/(n+b—p—Fky—1)

Tn,k’g -

3.4.4.1 Asymptotic Normality

We first derive the asymptotic normality of the test statistic under Hy g, for

which the following assumption is made to facilitate our analysis.

Assumption H6. p = p; + p2 > n, b > py, and there are constants py, ps € (0,1),

with p1 + p2 < 1, such that pT*b — p1 and %2 — pa.

Since T}, x, is invariant to the location shift of y, X; and X, we assume E(y) =0

and F(x) = 0 in the following.

Theorem 3.7. Suppose that Assumptions H1, H2 and H6 hold and z follows the

standard normal distribution. Under Hy g, as n — oo, we have

Thog, — 1
\/2(1 — p1)/np2(1 — p1 — p2)

25 N(0,1).

This asymptotic normality result justifies the following test procedure. Given a

a-level of significance, Hy g is rejected when

Ty — 1
V2(1 = p1)/nps(1 = p1 — p2)

> Za

where z, is the upper a-quantile of A(0,1).
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3.4.4.2 Asymptotic Local Power Function

We now investigate the asymptotic local power function of the test statistic.
With the same definitions of D, 355, 315, and ¥ in Section 3.3.3, we define Ry, =
(D, (0,P,,Sg)") and & = (R, XRy,) 'R} 6. Then Uy, = XRy,. We divide the

p-dimensional vector Ry, & = (0, ,m, )", where n; € RP! and 1, € RP2. Let
2 T T R T [ X
vt =1, |:222 — (221 222) D(D ED) D ( 222 ):| 2,

212

and 72 = 6] Hg lzn — (3, ) D(D'ED)'DT ( 5
22

)] Hg0,. Conditional on

Py,, define cor, = E(§'R) xy)/¢ "R, ERy,£. Additional assumption is needed to

facilitate the study.
Assumption H7. (07X0) 'E(yz)" S 'E(yz)r? = o(1).

This is known as a local alternative. In the linear model, Assumption H7 is
converted to 72 = o(1). Considering a family of models where E(y|x) = g(x'8) for
a differentiable function g and x follows the normal distribution, Assumption H7 is

converted to E{g (x'0)}>1% = o(1).

Theorem 3.8. Suppose that Assumptions H1, H2, H6 and H7 hold and z follows
the standard normal distribution. Let WEF(0y; B, Py,) denote the power function of

the proposed test T, ,. As n — oo, we have

1 — i 1 — C2 V2
WS (65 B, Py,) — @ (—za + \/"( o)) ) -0,
P2 o

where o = Var(y) — ca,@éTR,LERkQﬁ, O (-) is the cumulative distribution function

of the standard normal distribution, and z, is the upper a-quantile of P.
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From the result, the asymptotic local power function is an increasing function
of ¢ ,v%. It is found that v* < 72, We give a sufficient condition when the upper

bound is asymptotically reached.

Assumption H8. There is an integer so < ko and a real number v, > 0, such that
\/TEHS£02||§ E?:SQH d; = o(n=2), where d; are the eigenvalues of Sp¥9,Sp satisfying
di >dy>--->dy > 0.

This assumption ensures that Lemma 3.2 is valid for SEOQ and SEEQQSB. In this

case, the asymptotic local power function of the proposed test statistic is shown as

below.

Corollary 3.2. Suppose that Assumptions H1, H2, H6, H7 and H8 hold and z follows

the standard normal distribution. As n — oo, we have

1—p1—po)(1 = p1) G g, T°
VST (05; B, Py,) — @ (—za + \/”( o) o ) -0,
P2 9

where 0* = Var(y) — ¢} ,,0'%0, ®(-) is the cumulative distribution function of the

standard normal distribution, and z, is the upper a-quantile of P.

When E(y|x) = g(x'8) for a differentiable function g, the scalar coz, = E{g (x'0)}.
Hence, it is proved that W2 (8,; B, Py,) can be a nonrandom function in some cer-
tain conditions, and it is a decreasing function of p;. According to the examples
illustrated in Section 3.4.2, for a given 72, large values of the asymptotic local power

function can be reached when the ratio v?/72% is close to 1.

3.5 Numerical Studies

3.5.1 Simulation Studies

We conducted simulations to evaluate the finite-sample performance of the pro-

posed tests and compare it with GC and MCL tests.
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The first simulation study was designed for testing the global hypothesis
Hy:0=0 versus H;:0 #0.

Two SIMs were analyzed: logistic model and Poisson model. For both the exper-
imented models, the covariate x was generated from 3'/2?z, where each entry of z
was i.i.d. from N(0,1) or U(—+/3,v/3). The condition of ¥ with different category
was studied, which includes the settings that 3 is sparse and non-sparse. Con-
cretely, 3 was generated based on ODO', where O was an orthogonal matrix and
D = diag(dy, ...,dp). Let s = [n"®] and L = n. The diagonal entries of D were set
asd; =1, fori < s,and d; = (L — s)w;/W, fori=s+1,...,p, where w; = (i —s)™*
and W = 77 w;. The design of O came from the block-wise diagonal matrix
structure. Specifically, O = diag(Oy,...,Op) was a block-wise diagonal matrix in-
cluding B blocks, and each block was independently and uniformly generated on the
m X m orthogonal group, with p = Bm. To study different types of 3, two differ-
ent settings were analyzed as follows: (i) 3;: B = 1. (ii) ¥5: B = 100 for strong
sparsity. To create regimes of high dimensionality, we considered (n, p) = (400, 1000)
and (n,p) = (600,3000) in the simulation.

For alternative, both sparse and non-sparse cases were investigated. The vector
of coefficients was generated by 6 = bd/ V8TX8, where b was a positive real value
and d was an p-dimensional vector determining the sparsity of 8. In the simulation,
two different types of § were considered as follows: (i) 6;: d;; =1, for j € S, where
the set S was randomly selected over {1,...,p} and had size |S| = 10, otherwise,
915 = 0. (ii) d2: randomly selected from Span{uy,..., w100}, where u; was the i-th
column of O. The value of b* was selected in the range such that ¢j,b* < 0.25.
Specifically, for the logistic model, b*> = 0.4, 0.8 were investigated in the simulation.
For the Poisson model, b> = 0.1,0.2 were considered in the simulation.

In Tables 3.1 and 3.2, we report the type I errors and the empirical powers of RP
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test, GC test and MCL test in the experimented models and settings based on 1000
simulations. It shows that the type I errors for RP and GC tests are around 0.05,
which verifies the result in Theorem 3.5. And for MCL test, when the covariance
matrix is set to X, the type I errors might exceed 0.1. The results illustrate the
strong sparsity requirement of MCL test, indicating that our proposed test has a
wider range of application as discussed in Section 3.4.3. For empirical powers, since
MCL test is designed for the binary response, a comparison with MCL test was
only considered in the logistic model. As shown in the tables, the empirical power
increases as b? grows. And for RP test, for different p, larger empirical powers are
shown in the cases with p = 0.4. This may be the result of a higher probability of
deriving a larger value of w? in a larger projection space. However, for the settings
with fixed w?, that is, Assumption H5 is satisfied by @ and X, larger empirical
powers will be given in the case with smaller p, which is demonstrated in the second
simulation study. Hence, the selection of p depends on the setting. According to
Lopes, Jacob, and Wainwright (2011), the ratio tr(X)?/tr(X?) can be viewed as
measuring the decay rate of the spectrum of X, with the tail eigenvalue condition
satisfied when tr(X)?/tr(X?) < p. It indicates that p could be determined by an
estimation of the ratio, which is available based on the results in Chen, Zhang, and
Zhong (2010). Compared with GC test, the advantages of our test are illustrated
in all the experimented models and settings. This demonstrates our theoretical
comparison in Section 3.4.3. In comparison with MCL test, our proposed test shows
higher testing power in most settings, including the alternative generated from 9y,
which has strong sparsity. Consequently, our test has powerful performance and
provides an applicable solution for the condition that the property of the vector of

coefficients is unknown in advance, which often happens in practice.
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Table 3.1: Type I errors and empirical powers of RP, GC and MCL tests at the
significance level 0.05 in logistic models.

Type of z Type of ¥ Type of @ 1? p=02 p=04 GC MCL

Logistic model when (n,p) = (400, 1000).
0 0 0.053 0.058  0.058 0.112

5 0.4 0.445 0483 0.371 0.260
¥, 1 0.8 0.765 0811 0.737 0.561
5 0.4 0.425 0480 0272 0.136
N(0,1) 2 0.8 0.767  0.829 0.595 0.263
’ 0 0 0.049 0.054 0.062 0.071
5 0.4 0.446 0469 0.287 0.306
Y, 1 0.8 0.784 0836 0.654 0.683
5 0.4 0.451 0434 0261 0.078
2 0.8 0.760  0.824 0.613 0.179
0 0 0.054  0.056 0.058 0.091
5 0.4 0.451 0442 0.321 0.248
¥, 1 0.8 0.756  0.806 0.711 0.575
5 0.4 0.463 0481 0278 0.151
U(—v3.v/3) 2 0.8 0.776  0.812  0.629 0.265
’ 0 0 0.051  0.055 0.059 0.065
5 0.4 0.522 0471 0.300 0.296
Y, 1 0.8 0.855  0.839 0.690 0.703
5 0.4 0471 0462 0265 0.083
2 0.8 0.773  0.839 0.588 0.193
Logistic model when (n,p) = (600, 3000).
0 0 0.052  0.054 0.057 0.051
0.4 0.582  0.583  0.339 0.288
¥, 01 0.8 0.930 0938 0.815 0.684
5 0.4 0.586  0.574 0.347 0.174
N(0,1) 2 0.8 0.909 0929 0.794 0.385
’ 0 0 0.051  0.058 0.057 0.042
5 0.4 0.614 0580 0.339 0.733
Y, 1 0.8 0.914 0926 0.772 0.993
5 0.4 0.606  0.569 0.372 0.081
2 0.8 0939 0926 0.812 0.180
0 0 0.052  0.057 0.054 0.060
5 0.4 0.601  0.562 0.345 0.300
¥, 1 0.8 0.937 0940 0.810 0.709
5, 0.4 0.630  0.609 0.381 0.225
U(—v/3.v/3) 0.8 0938 0934 0819 0.397

0 0 0.054 0.058  0.061 0.030

5 0.4 0.595 0.582 0.346 0.722

3 ! 0.8 0.914 0.919 0.760 0.990
5 0.4 0.607  0.588 0.343 0.086

2 0.8 0.921 0.926 0.787 0.187
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Table 3.2: Type I errors and empirical powers of RP, GC and MCL tests at the
significance level 0.05 in Poisson models.

RP
Type of z Type of ¥  Typeof @ b? p=02 p=04 GC

Poisson model when (n,p) = (400, 1000).
0 0 0.059 0.058  0.059

5 0.1 0.509 0.545 0.391
3 1 0.2 0.872 0.920  0.838
5, 0.1 0.468 0.563  0.332
N(0,1) 0.2 0.866 0.916  0.747
0 0 0.050 0.052  0.060
5 0.1 0.521 0.542  0.343
3 1 0.2 0.876 0.935  0.809
5 0.1 0.505 0.549  0.317
2 0.2 0.872 0.932  0.767
0 0 0.056 0.057  0.055
5 0.1 0.507 0.517  0.386
> 1 0.2 0.873 0.928  0.844
5, 0.1 0.506 0.533  0.323
U(—v3.73) 0.2 0.873 0908  0.765
0 0 0.058 0.056  0.061
5 0.1 0.527 0.525  0.353
3 1 0.2 0.879 0.920  0.807
5 0.1 0.511 0.513  0.331
2 0.2 0.872 0.914  0.758
Poisson model when (n,p) = (600, 3000).
0 0 0.057 0.054  0.060
5 0.1 0.671 0.659  0.445
3 1 0.2 0.974 0.983  0.913
5 0.1 0.677 0.668  0.442
N(0,1) 0.2 0.977 0.986  0.927
0 0 0.055 0.059  0.062
5 0.1 0.615 0.657  0.305
3 1 0.2 0.940 0.983  0.775
5 0.1 0.698 0.667  0.438
2 0.2 0.978 0.985  0.923
0 0 0.055 0.060  0.058
5 0.1 0.689 0.681  0.451
3 1 0.2 0.980 0.985  0.920
5, 0.1 0.685 0.648  0.457
U(—+/3,V3) 0.2 0.984 0985  0.918

0 0 0.059 0.056  0.060

5 0.1 0.586 0.645  0.298

3 1 0.2 0.941 0.981  0.769
5 0.1 0.689 0.673  0.437

2 0.2 0.980 0.987  0.902
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Figure 3.2: Type I errors and empirical powers of RP, GC and MCL tests for the
logistic model when p = 0.4 and (n,p) = (400, 1000).
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Figure 3.3: Type I errors and empirical powers of RP and GC tests for the Poisson
model when p = 0.4 and (n, p) = (400, 1000).
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Figure 3.2 illustrates the numerical comparison between RP test and the com-
peting tests in the logistic model when the nominal significance level varies from 0.1
to 0.9. Figures 3.2(a) and 3.2(b) report the type I errors of the tests. In the figures,
the blue lines are close to the diagonal black lines, which indicates that RP test has
well control of the type I error. In Figures 3.2(c)-3.2(f), the empirical powers of tests
under different alternatives and covariance matrices of x are presented. As shown in
the figures, the blue lines keep above the other lines. It illustrates the higher testing
power of our tests, which clearly demonstrates the advantages. In Figure 3.3, the

comparison between RP test and GC test in the Poisson model is reported.

The second simulation study was designed for testing the hypothesis
H07p2 . 02 =0 versus I‘Il’p2 . 02 % 0.

The logistic model was analyzed and the covariate x was generated from 3'/?z.
Each entry of z was i.i.d. from N(0,1), U(—v/3,v/3), or Rademacher distribution.
A specific type of /2 was considered. We generated the matrix from 32 =
diag(O1v/D10; , 02y/D50, ), where Oy (Os) was an orthogonal matrix that was
generated from the same way as the matrix O in the first simulation study, when
p took p; (p2) and B = 1 (B = 100). The entries of diagonal matrix D; were
from N(0,I) with absolute values taken and the entries of diagonal matrix Dy were

0'72J and

generated in the same way as the first simulation study, when s = [n
L = [n%%]. In the simulation, we considered (n, p1, p2) = (400, 40, 1000).
For the alternative, we generated 6; from N(0,I) and then scaled it to have
[|61]]2 = 1. The vector of coefficients 6, was generated from 0y = byds/ \/m,
where b3 took values 0.4,0.8 in the simulation and 8, was a py-dimensional vector
determining the sparsity level of 85. Two types of d2 were analyzed as follows: (i)
0211 021, = 1, for j € S, where the set S was randomly selected over {1,...,p,} and

had size |S| = 10, otherwise, 051 ; = 0. (ii) d22: randomly selected from the space
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that was spanned by the eigenvectors corresponding to the largest 100 eigenvalues
of Yos.

To demonstrate the feasibility of implementing other random projection, we inves-
tigated two other random-projection-based tests: (i) multi-RP test: independently
generating normal random projection for 10 times and utilizing their mean; (ii) S-RP

test: applying sparse random projection defined in (3.13) with [ = 400.

Table 3.3: Type I errors and empirical powers of RP, multi-RP and S-RP tests at
the significance level 0.05 when (n, py, pa) = (400, 40, 1000).

Type of z  Type of 6 b3 p2 =02 p2 =04
RP  multi-RP S-RP RP  multi-RP S-RP
- 0  0.053 0.057 0.054 0.062 0.064 0.050
N, 1) 5 0.4 0575 0.558 0.518 0.357 0.389 0.366
) 2.1 0.8  0.906 0.905 0.870 0.716 0.700 0.686
5 0.4  0.559 0.553 0.548 0.351 0.349 0.354
2,2 0.8  0.905 0.893 0.887 0.683 0.668 0.687
- 0  0.061 0.056 0.050 0.060 0.053 0.052
0.4  0.554 0.554 0.539 0.387 0.368 0.371
U(=V3,V3) 62 0.8 0.892 0.894 0.857 0.683 0.694 0.691
5 0.4 0527 0.532 0.517 0.336 0.366 0.336
2,2 0.8  0.904 0.901 0.890 0.701 0.710 0.689
- 0  0.052 0.050 0.058 0.060 0.056 0.057
Rad L 5 0.4  0.555 0.548 0.544 0.400 0.362 0.365
ademacher 02,1 0.8  0.901 0.897 0.875 0.706 0.716 0.711
5 0.4 0556 0.558 0.541 0.328 0.358 0.342
2,2 0.8  0.909 0.903 0.885 0.692 0.700 0.713

Table 3.3 reports the type I errors and empirical powers of the random-projection-
based tests based on 1000 simulations. The type I errors are around 0.05, and
the performances of three tests have negligible differences, indicating the feasible
implementing of other random projection. For both alternatives, the empirical power
increases as b3 grows. And larger empirical powers are shown with smaller p,, which

is consistent with the result in Corollary 3.1. When z belongs to other types of
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distribution rather than the normal distribution, the results are similar to that when
z is normal. Therefore, it is possible for the proposed method to be applied in
general situations while controlling the type I error well. And for alternatives, the
results indicate that the derived asymptotic power function might also be valid for

non-normal distribution.

3.5.2 Application

The breast cancer is known to have biologically heterogeneity characterized by
variant pathological features, disparate response to therapeutics, etc. Traditional
breast cancer treatment methods are guided by a classification based on the ex-
pression levels of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). In the last decade, research on global
gene expression analyses indicated a more complex breast cancer portrait and iden-
tified at least four intrinsic molecular subtypes, which have significant differences in
terms of response to therapies. To identify the subtypes, a clinically gene expression-
based test, named as prediction analysis of microarray 50 (PAM50) was introduced
(Parker et al. , 2009), which is based on the expression measurement of 50 genes and
shows a high accuracy of identification.

In this study, we illustrate our proposed methods by analyzing a real data set
of breast cancer, which is available under accession number GSE50948 in the Gene
Expression Omnibus (GEO). In the data set, the gene expression analysis was per-
formed for 156 samples from the enrolled patients in the NOAH trail, which consists
of 114 patients with HER2+ locally advanced or inflammatory breast cancer and 42
patients with HER2-disease. According to completeness of the information, n = 152
samples were used in the study. The detail of the data set was given in Prat et al.

(2014). As multiple probes might represent the same gene, the measurement for

each gene was from the probe with the highest interquartile range. Then, expression
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values of 20592 genes were obtained. In addition, some standard clinicopathologic
variables were also considered in the analysis, including age at diagnosis, histologic
grade, tumor size, histology, and hormonal receptor status with values of 1 and 0
corresponding to positive and negative status, respectively.

First, we studied the overall association between the status of HER2, ER, PR with
other standard clinicopathologic features and gene expression levels. To illustrate our
analysis method, the case considering HER2 was given as an example. The status of
HER2 was set as the response variable and the covariates were composed of the rest
standard clinicopathologic features and gene expression levels. The testing problem
considered a extremely high-dimensional setting where n = 152 and p = 20601. The
calculation of our proposed testing procedure reported a significance association with
a p-value < 0.001. And the same conclusion was also obtained by GC test and MCL
test under the assumption that the data follows the logistic model. Hence, it showed
that HER2 was associated with the clinicopathologic features and gene expression.
As the dimension of the genes was extremely high, it was impractical to examine all
of them in practice. Then, we proposed a conjecture that there was a representative
subsets of genes to explain almost all the influence from the genes given in the first
study. Specifically, the set of 50 genes from the PAM50 was considered. We divided
the covariates by setting the clinicopathologic features and the set of genes as the
nuisance variables, and the rest genes as the interested variables. The result of
our proposed methods are given in Table 3.4, which indicates a weak association
between HER2 and the rest genes. This confirms our conjecture and demonstrates
that HER2 can be explained by a much smaller amount of genes together with some
clinicopathologic features. It also helps to understand the powerful classification
ability of PAM50. Similarly, the cases where the response variable was the status of

ER or PR were also considered. The results are reported in the Table 3.4.
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Table 3.4: The p-values of the proposed tests, CG test and MCL test in the global
and partial testing problems.

The p-values of the following tests in the global testing problem:

Response variable RP GC MCL
HER2 <0.001 <0.001 <0.001
ER <0.001 <0.001 <0.001
PR 0.002 <0.001 <0.001
The p-values of the following tests in the partial testing problem:
Response variable RP multi-RP S-RP
HER2 >0.999 >0.999 >0.999
ER >0.999 >0.999 >0.999
PR >0.999 >0.999 >0.999

3.6 Proofs of the Technical Results

3.6.1 Proof of Lemma 3.1

Proof. As x'8 follows the normal distribution and u ~ N(0,I), we could make a
division
x'0=u'n+g,
where 7 = F(ux'8) and ¢ is independent of u.
When 1 # 0, for any b € R”| it could be expressed as a sum b = ¢ + r, where
c=mn"b/||n||? and r = b—cn. The orthogonality between n and r implies that u'n

T

and u'r are independent, which further leads to the independence between u'r and

the response y. Consequently, we have
R(a,b)=F {L (04 + uTb,y)}
=F {L (a +ecu'n+u'r, y)}

=E[E{L(a+u'r+cu'n,y)|u'r}]
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> mgnE {L(@+cu'n,y)}
> min B {L(a+ cu'n,y)}.
Since there is an unique solution to the minimization problem, we have
b* = c™n,
where ¢* is a constant and could be calculated through ¢* = n"b*/||n||3. O

3.6.2 Proof of Theorem 3.1

Lemma 3.4. Suppose (x1,vy1), ..., (Tn,yn) are i.i.d. from a distribution satisfying
E(z;) = E(y;) = 0, Var(z;) = o}, Var(y;) = o, and E(zy;) = 7. Let ¢ =
(z1,...,2,)" and y= (y1,...,yn)". For a symmetric n x n matriv M = (m;;), we
have

E (2" My) = rtr(M) and

Var (2" My) = (E(z}y;) — 27° — olor) Z m?; + (12 + olo,) tr(MP).

i=1
The property of the diagonal entries of the hat matrix is investigated by the

following lemma, whose proof is deferred to Section 3.6.11.

Lemma 3.5. Suppose X is an n X p random matriz, where each entry is i.i.d. from
N(0,1). Let H= (hy) = X(XTX)_lXT. As (p,n) — oo with p/n — ¢ € (0,1), we
have

.....

We present a result of asymptotic normality of quadratic form that was discussed

by Bhansali, Giraitis, and Kokoszka (2007).
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Lemma 3.6. Consider a general quadratic form

n
T
Qn = AnZZE ZiQijZj,

1,j=1

where A,, = (a;;) is a symmetric matriz, and z; are i.i.d. variables satisfying E(z;) =

0 and Var(z) = 1. When E(2}) < oo and ‘||Ii |‘|‘S” — 0, then

Var(Q.)2(Q. — E(Q,)) 3 N(0,1).

Proof of Theorem 3.1. Under Hy, the response y is independent of x and satisfies y =

e, where e is the residual defined in the linear form (3.5). Let M = (m;;) = % - In_Tp.

The matrix is independent of y and satisfies tr(M) = 0 and M? = ]% + ﬁ. Hence,

IM][2,/[[M[[% < O(n™!) and tr(M?) = 5+ 7 From Lemma 3.4, we have

E (yTMy|1\/I) =0 and

Var (y ' My|M) = (E(y*) — 3E(y Z mz, + 2E(y?)*tr(M?).

Under the condition n Y, mZ = o0,(1), which will be verified subsequently, Lemma

3.6 demonstrates that
y ' My

=0 25 N(0,1), (3.23)

where 0% = Var(e) = Var(y).

Let G, =n) ., m3. It can be written as

where h;; denotes the ij-th entry of H. Based on the assumption p/n — ¢, Lemma 3.5
implies that E(G),) = o(1). Therefore, we have G,, = 0,(1) by Markov’s inequality.
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To study y ' (I — H)y, the calculation shows

E(y'I-H)y)=0%(n—p), Var (y' (I-H)y) <3E(y")(n —p).

From Markov’s inequality,

-
y (I-H)y 2
= 1). 3.24
Y=o, (324
Consequently, (3.23) and (3.24) lead to
F,—1
5 N(0, 1),
2/n¢(1 =)
which completes the proof. O]

3.6.3 Proof of Theorem 3.2

First, we introduce a decomposition of the projection matrix in the following

lemma, whose proof is deferred to Section 3.6.11.

Lemma 3.7. Suppose X is an n X p random matriz, where each entry is i.i.d. from
N(0,1). Consider a decomposition X = (w, G), where w € R® and G € R™*P~1),

Let H= X(X' X)"'X". We have

HcH,Hg
1~ tr(HgH,)

H:Hw‘f‘(I_Hw)[HG"‘ ](I_Hw>a

where H, = w(w' w) 'w' and Hg = G(G' G)'G". Suppose e = (e1,...,e,)"
is a random vector composed of i.i.d. entries, satisfying E(e;) = 0 and E(e}) < oo.
In addition, e is independent of G. For i # j, e; is independent of w;, otherwise,
E(e;w;) = 0, where w; denotes the i-th entry of w. As (p,n) — oo with p/n — ¢ €

(0,1), for any § > 0, we have
e He = e Hge + Re,

where Re = 0,(n?).
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Proof of Theorem 3.2. From the linear form (3.5) and the condition E(y) = 0, the
model can be written as

y = co X0 + e,

where e = (ey,...,e,) . The direct calculation shows that
y Hy = C%OTXTXO +2¢00'X" e + e He and

y I-H)y=e¢'(I-H)e.

First, we investigate the quadratic form e He. Let w = ﬁ and G = X(&1,...,&,-1),

where {ﬁ,&, ..., &—1} forms an orthonormal basis of RP. The normality of X
implies that w is independent of G, which further indicates that e and G are inde-
pendent, since e; is determined by x; @ and ¢;. When X is replaced by XO, where

O is a p x p orthogonal matrix, H stays the same. Based on Lemma 3.7, we have

e'He = e ' Hge + Re,

where Re = 0,(n°) with sufficiently small § > 0. Define M = He — IHa = e
p n—p+1

matrix is independent of e. With a similar method in 3.6.2, we have

e Me

o?y/2/n¢(1 = ()

25 N(0,1)

and
e’ (I-Hg)e 9
B Sl A 1
n—op o+ Op( )7
where 0% = Var(e;) = Var(y) — ¢2|10]]3.
To investigate c207 X" X0 + 2,0 X e, the calculation shows
E(c20TXTX0) = nck||0]]2, Var(ci0"X"X0) = 2nci||0)]3,

E(c0"X"e) =0, Var(c®'X"e) < 4nc?||0||2E(et)"/2.
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Under the condition ¢||0]]3 = o(1), Markov’s inequality implies that

1

1
\/ﬁc(z)OTXTXO = nca||0]]3 +0,(1), —=co@ X e =o0,(1).

vn

Consequently,

n(1—¢) [ 20TXTX0 2c00TXT T
F,—1 A/ 3 {O > +cop € te

V2/n¢(1 () e (-t

n(l— n¢(1—
M6l + /e TMe + 0,(1)

B 02+ 0,(1)

oY
|
3T
é‘m
N———
(¢}
H—/

It shows that the power function satisfies

F,—1
U,.(0) = P( - > Zy)
2/n¢(1 <)
_ n(l—¢) clle]]3
=P(—z, + 2 2 )+ o(1),
which completes the proof. n

3.6.4 Proof of Theorem 3.3

Proof. First, we prove the existences of Sp and Sg.. For the matrix B, based
on the Gram-Schmidt process, we can derive an orthonormal basis of R”?, denoted
as {by,...,by,}, such that Span{B} = Span{bi,...,by}. Let Sg = (by,...,by)
and Sgr = (bps1,...,by,). The required conditions are satisfied by the matrices.

Therefore, the existences of Sg and Sz are shown.

Under Hy g, according to the linear form (3.9), the model can be written as
y = coW + e,
where e = (ey,...,e,)". Then,
y (H-Hw)y=e¢ (H-Hw)e, y' (I-H)y=e"(I-H)e.
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Hence, we have

eT(H — Hw)e/b
e'(I-H)e/(n—p)

Fn,p? - (325)

First, we investigate e He and e Hwe. Let X = XX V2 and W = WE,"?,
where ¥ and 3, are the covariance matrices of x and w, respectively. Then,

H=XX"X)"'X"=X(X X)'X and
T - 1w T AR R — 1R
Hw = WW W) 'WT = WW W) 'W |

where the entries of X and W are ii.d. from N(0,1), respectively. Let 4 = 2327
and §: »1/2¢, where € = (6] ,0] (I — Hg))". Then, f(g: VV%/, since X¢§ = W+.
Based on this relationship, we make decomposition to the projection matrices. For
the matrix H, let v = % and G = i(fl,...,ﬁp,l), where {ﬁ,él,...,fl,,l}

forms an orthonormal basis of RP. The orthogonality implies that v and G are
independent, which further shows that e is independent of G, since ¢e; is determined

by w, v and ¢;. From Lemma 3.7, we obtain

e'He = e'Hge + Re, (3.26)
where Hg = G(G'G)7!G", and Re; = 0,(n’) with sufficiently small §, > 0. For
the matrix Hyy, let F = W (Y1, -+ Yp—b-1), Where {ﬁ,%, oo s Yp—b—1} forms an
orthonormal basis of RP~*. According to 5&5 = W%, there is a constant ¢ such that

Wy _

B, = ¢V The orthogonality implies that v and F are independent, which then

shows that e is independent of F. From Lemma 3.7, we obtain
e Hwe = e Hpe + Res, (3.27)

where Hp = F(F'F)"'F" and Re; = 0,(n%) with sufficiently small d, > 0. Let
02 = Var(ey). The calculation yields
E{le'(I-Hg)e} =c*(n+1—p), Var{e'I—Hg)e} <3E(e})(n+1—p).
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Markov’s inequality implies

Combining (3.25), (3.26) and (3.27), we obtain

Fopy — 1 i creg® Me + oy(1) (3.28)
V2(1 = ¢+ ¢)/n¢i(1—¢) o? + 0p(1) ’ '

where M = (m;;) = HerHe ifl{f;

To study e” Me, we follow a similar method as that given in Section 3.6.2. First,
note that Span{F} C Span{G}. The property of the projection matrix shows that
HcHr = HrHg = Hp,

and tr(M) = 0. Then, M'M = He He 4
O(n™') and

S eading to |[MI[2,/[[M[ <

Var(e'Me|M) = (E(e}) — 30%) Zzlmzzz + 2‘74(3 + nal —p).

We show that ny " m2 = o0,(1). Let (Hg); and (Hp); denote the i-th diagonal
entries of Hg and Hp, respectively. Then,

2h2 & p—117 22 < p—b—1)2
2 <L § Hg), — —— 72 Hy) -2~ ~
ni:l m”_ n =1 ( G)ZZ n i n =1 ( F>“ n ’
_pP b1
where h; = 1 §+"+” =t

TP D) 400 and hy = 7 — Cil as n — 0o. From the definitions of

G and F, Lemma 3.5 demonstrates that

E{(He)ii - ]%1}2 0, E{(HF)H _ ﬂ}z o

n
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It leads to E(n ), mZ) = o(1). Hence, n Y\, m% = 0,(1) by Markov’s inequality.

=1 %

From Lemma 3.6, we obtain

e'Me

02y/2(1 = C+ G)/néi (1= Q) — N,

Taking this into (3.28), we have

Fn,pg - ]- D
V20 =+ $) /G (1 =0) — N1,

which completes the proof. O
3.6.5 Proof of Theorem 3.4
Proof. Let

oot (32 )mu o= (g g )

where X, is the covariance matrix of w. Then, w = D'x and ¥, = D'ED. From

the normality assumption of x, we derive a decomposition
xs Hpby = w' 9 + ¢,

where ¢ is independent of w. Let 72 = Var(q). It satisfies

_ >
7 =0JHg |Xy — (T3 ) DD'ED)'DT ( ZZ )] Hg6,.

Based on the linear form (3.9), the model can be written as
y=cow' (7 +) +coq +e.

Then, we obtain
y' (H—-Hw)y = ciq' (I - Hw)q +2coq' (I — Hw)e +e' (H — Hw)e and
y'I-H)y=e'(I-He,
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where q = (q1,...,¢,)" and e = (e1,...,¢e,) .

To investigate c2q' (I — Hw)q, Lemma 3.4 indicates

E{a'(I-Hw)a} = *(n —p+b), Var {q'(I-Hw)q} = 27'(n —p+ ).

Under the condition c27? = o(1), Markov’s inequality shows

Vi (I-Hw)q _ /(1 — ¢+ Cl)chQ + 0,(1). (3.29)

b C1

Next, we study e” (H — Hy)e and e (I — H)e. Let X and W have the same
definitions as that in Section 3.6.4 and define § = 3V/20. We introduce another
matrix R = (W, q) with its projection matrix defined as Hg = R(R'R)"'R".
Let v. = X0. Then, v € Span{R} C Span{X}. Let F = X(&,...,Ep_b) and
G = )2(51, ...,&-1), where & are selected to make {ﬁ,ﬁl,...,ép,l} form an
orthonormal basis for R? and Span{R} = Span{F,v}. It indicates that v is inde-

pendent of F and G. Then, e is independent of F and G, since e; is determined by

¢; and x; 6. From Lemma 3.7, we have
e'Hre = e Hpe + Re;, e He =e'Hge + Res, (3.30)

where Re; = 0,(n®) and Rey = o0,(n) for sufficiently small &;,d, > 0. Since
Span{F} C Span{G},
HcHyr = HrHg = Hp.

Let M = HijlHF — TIZ:EG . The matrix is independent of e and satisfies tr(M) = 0
p

and MM = H(f_*lgF + (HIIE %)27 leading to

|IM[3, _ 1 1
—2 <0, nlM|Z=—+-—+0(1).

With a similar method in Section 3.6.4, we have

e Me
0%\/2(1 =+ ¢1)/nGi(1 - ()
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where 0% = Var(e) = Var(y) — c20'X6.

We then study the relationship between e Hge and e Hye, since the test statis-
tic contains Hw rather than Hg. From the definition of R, the matrix Hgr could be
divided based on q and Hy. Under the condition that 7-'e"Hwq = 0,(n?*%%) for

any v > 0, which will be verified subsequently, the proof of Lemma 3.7 shows
T T
e Hgre = e Hwe + Res, (3.32)

with Rez = 0,(n%) for any d3 > 0. Note that e might not be independent of W. To
verify the condition, let £ = 2%2(7 +1) and E = W('yl, ooy Yp—b—1), Where ~; are

selected to make {ﬁ, Y15+ Yp—b—1} form an orthonormal basis for RP~°. Then, e

is independent of E, since W¢ and E are independent. From Lemma 3.7, it gives a
decomposition, Hw = Hg + K, where K satisfies e’ Ke = 0,(n’) for any §, > 0.

The calculation shows
E(e"Hgq) =0, Var(e"Hgq) < 4(p — b — 1)72E(e*)Y/?
and
le"Kq| < VeTKey/qTq = 70,(n’0?).

Hence, 77 le"Hwq = 0,(n?™??) for any v > 0. This together with the condition

c5m = o(1) implies

=" (1~ Hy)e = o,(1) (3.33)

Finally, we combine the above results to derive the asymptotic local power func-

tion. For any idempotent matrix A, Lemma 3.4 shows
E(e'Ae) = o*tr(A), Var(e'Ae) < 3E(e")tr(A).
This together with Markov’s inequality and the derived independence indicates

eT(HG — HF)e
b—1

e’ (I-Hg)e
n—p+1

=0°+0,(1) and =07+ 0,(1).
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Combining it with (3.29), (3.30), (3.31), (3.32) and (3.33), we have

Fop, —1
V21 = ¢+ ¢)/nG (1 -¢)

PO (a0 Hwa | 2uqT0oHwe 4 o7 (HHw _ L))

oV 2(1-¢+6) nTp
- e’ (I-H)e
n(1-¢)(1-¢+ n¢(1—
- ( C)Q(CIC Cl)C%T2+ 2(1<£(<+§1))eTMe+op(1)
B o? + op(1)

Therefore, the asymptotic power function satisfies

F,

n,p2 1

V21— C+G)/nG(l-¢)

= O(—z0+ \/n(1 — C)(;Cl— e Cif

‘I’n<92;B) = P(

> Z4)

) +o(1),

which completes the proof. ]

3.6.6 Proof of Theorem 3.5

An upper-bound and a lower-bound on the extreme eigenvalues of Wishart ma-

trices were given in Davidson and Szarek (2001, Theorem 2.13) .

Lemma 3.8. For k < p, let P, € RP* be a random matriz with i.i.d. N(0,1)

entries. Then, for allt > 0, we have

1
P {)\max(]—gP;Pk) > (1++k/p+ t)z} < exp(—pt?/2) and
1
P {)\min(—Png) <(1—+k/p— t)Q] < exp(—pt?/2).
p
Proof of Theorem 3.5. Under Hy, the model becomes

y=f(e). (3.34)



Consider a linear regression model
y=a+u'n+e, (3.35)

where « is an intercept, u = ng, 1 is a vector of coefficients and e is a error term
independent of x. When a = E(f(¢)), n =0, and e = f(e) — E(f(€)), (x,y) from

model (3.34) has the same distribution as that of (x,y) from model 5). Hence,

(3.3
it suffices to study the test statistic under (3.35). Let M = (m;;) = B — ERi=The
Under the condition n ), = 0,(1), which will be verified subsequently, with a

similar proof method in Section 3.6.2, we can derive

Thr—1

25 N(0,1).
2/np(1 - p)

Therefore, the asymptotic normality of the test statistic is demonstrated.

To verify the condition n ) ), m;;, = 0,(1), it is sufficient to prove

% Z(hzz - P)2 = 0p(1),

where h;; is the i-th diagonal entry of Hy. For simplicity of notation, we denote Hy,

by H in the following. Based on Assumption H1, the matrix H can be denoted as
H=(I-P)ZA (ATZ(I-P)ZA)  ATZT(1-Py),

where Z = (z1,...,2,)" and A belongs to the Stiefel manifold V,(R™) = {A €
R™k . ATA = I}. Considering the randomness of Py, to cover general cases, we
assume that the matrix A is uniformly distributed on V;(R™) and is independent of
Z. Let UAO be the SVD of Z, where U is an n x n orthogonal matrix, O is an
m X m orthogonal matrix, and A = (D, 0) with D = diag(dy,...,d,). Let O, be the

matrix consisting of first n columns of O, then Z can be denoted as Z = UDO,).

119



The diagonal entries of %D2 are the eigenvalues of %ZZT. The calculation shows

2 2 1 2
max (i — > tr { (—ZZT — I)
i=1,..,n \'M m

Therefore, from Markov’s inequality, for any ¢ > 0, we have

d‘ 2 dQ 2
P<{ max (—2 — 1) >ty < P<{ max (—1 - > >t < O(an’lt’l).
i=1,....,n \ A/ i=1,....,n \ M

<FE = O(n*m™").

Let V= (I1-P;)UO/A and Z = (I Pl)U%OIA. The hat matrix for Z

and V can be denoted as

-1

H = (hy) = z(z z)lzT;n@ S=(s;)) =V(VIV)'VT,

where H is the target matrix. We will show that h;; and s;; are close. Let e; denote
the unit vector with 1 in the i-th coordinate. Define 4 = (VTV)f1 V'e; and
-1 T
N = (Z Z) Z e;. Then, 4% and n!* are the solutions to the least square problems
~YERF

min || (I-P;)e; — V7 |z and mi{%H I-Py)e; — Zn‘ !;, respectively. Therefore,
ne

| (@T—P1)e; — Zn¥

‘2 = H (I-P)e _ZAZSHQ

(3.37)
< (Ila=Poye.— V4|, +[|(V - 2)5 H)

and

H(I—Pl)ez‘—v’%suz < H(I_Pl)ei—VAls

2

(3.38)

+ H 7 — V)nf-s

B

)

To study (3.37) and (3.38), we first investigate the value of ||(V — Z)'Ayfsﬂ2 and

<(lla-Pye -zl

H (Z -V) ﬁfs| ‘2. From Theorem 2.2.1 in Chikuse (2003), matrix A can be expressed
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as A =G (GTG)_I/Q, where each element of m x k matrix G is i.i.d. from N(0,1).
Lt E=0/G. Then O] A = E (GTG)fl/Q. From Lemma 3.8 and the independence
between A and Z, for any hy > 0 and hy > 0, we have

17 n 4 hi)?| <exp(—nh? an
P{Amax(nE E)Z<1+\/W+h)}< plonlif?) e (3.39)

P {Amm (%ETE) < (1 —+k/n— h2)2] < exp (—nh3/2).

Based on SVD, for any matrix B, the nonzero eigenvalues of B'B and BB are the
same. Hence, we have
Anax (V(VTV) 'AT0,0]A(VTV)'VT)

1 1
< )\max _ETE
- (n ))\mm(%ETUT (I-P,)UE) (3.40)

and
Anax (2(2'2)'AT0,0]A(2'2)'2")
1 1
< /\max _ETE
G )Amm(iET\%UT(I—Pl)U\%E) (3.41)

1 1+ Vk/n+ hi)?
/\min(%Q) (1 Y, k/n - h2)2

with probability at least 1 — exp (—nh?/2) — exp (—nh2/2). Based on (3.36), (3.40)

<

and (3.41), upper bounds can be derived as follows:
D

IV =238 = |- P U= 2

O A(VTV) Ve,

d; _
< max, (1- ﬁ)Q\ 0, A(VTV) Ve, (3.42)
(1++/k/n+ hy)?
<t
= (1= /k/n — hy)?
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d; )2 ‘ 1 1+ VEn+ hy)? (3.43)

ot (L VE/n A+ )
T (1=V? (1= k/n - hy)?

with probability at least 1—O(n?*m~'t1)—exp (—nh?/2)—exp (—nh3/2). Combining

(3.37), (3.38), (3.42) and (3.43), with hy = n~4 hy = n~Y* and t = n=°, where c is
a positive constant, we have

2 _ L ~ls| |2 —c/2 1+ k/n+n_1/4
|2§H(I Pi)e; V%’H2+3n i 1— /k/n —n-U/A and

- Pyye; -z

‘2 3 1+ +/k/n+n1/4

R Ry

with probability at least 1 — O(n**m™") — 2exp (—n'/?/2). As the above derivation

[(T-Pi)e; — VAL < || (X Py)e; — Za¥

(2

is valid for any e;, when n — co and m is sufficiently large, we obtain

max \hii — sal” = 0,(1). (3.44)
According to the definitions of V and A, the hat matrix S can be denoted as

S— (I-P,)UO/G (GT0,UT(I-P,)UOJG) G0, U (I1-Py),

where UO), is independent of G and satisfies UO, O, U" = I. From the definition

of G, Lemma 3.5 and the dominated convergence theorem, we obtain

E{%Z (s —p)Q} 0.



Combining this with (3.44) and Markov’s inequality, we obtain

n

%Z (hii —,0)2 = lz (hn‘ — Sii + Sii —,0)2
i—1

n
i=1

< max Q(hu‘ — Su‘)2 + o Z (Sii — 0)2

i=1...,n
= 0y(1),

which completes the proof.

3.6.7 Proof of Theorem 3.6

Proof. Let U = XP; X[ "2, with the i-th row denoted by u; and £ = P} ZP.
Define n = £;/?P] 360 and w? = ||n||2. Based on the normality assumption, we
derive a decomposition, x, @ = u,n + ¢;, where ¢; is independent of u;. According

to Lemma 3.1, the model can be written as
Yi = C(),kll;r'l’] + €;, (345)

where ¢p = E(n"uyy;)/w? when n # 0, and e; satisfies E(e;) = 0 and E(ue;) = 0.

Let 0® denote the variance of e;. It satisfies 0® = Var(y) — ¢f ,w®. The calculation

shows that
T — 1 o) <Cg’wTUTISI_P”UT’ 4 2o0un U (-Pije | eTFe) (3.46)
2/np(t = p) el B tiue |

where F = Bt — EP1He and e = (eq,...,e,)".

According to Assumption H4, ¢§ ,w® = o(1). The calculation shows
En'U'I-P)Un) = (n— 1w? Var(n'U (I -P,)Un) < 10(n — 1)w*,
EM'UTI-P)e) =0, Var(n'U(I - Py)e) < 16y/2+ E(y*)(n — 1)
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By Markov’s inequality, we have

n
£c3 T UT(I-P,)Un = £c§ W2+ op(1), %co,knTUT(I “Plle=o,(1).

(3.47)

For the study of e' Fe, we follow a similar method in Section 3.6.3 and derive

Too—1 ;ppco,{:w + 4/ 2 1 ne(l—e) TMe—l—op

2/mp(l—p) 0% + 0p(1

where M = k—G — % with the projection matrix Hg independent of e. Based

on a similar method in Section 3.6.6, we can derive

e'Me

25 N(0,1).
2/np(1 = p)

Consequently, the asymptotic power function satisfies

WEP(9;Py) = P(—ti L > 2
2/np(1 = p)
= B~z + ”“2; 2) C?’jj’ )+ of1),

which completes the proof. O
3.6.8 Proof of Lemma 3.2
Proof. The proof follows a similar method in Section 2.6.3. ]
3.6.9 Proof of Theorem 3.7
Proof. Under Hy g, the model becomes

y=f(wy,e). (3.48)
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Define

I 0 I o 0
D_(o SBL>’R’@_<0 Spe SBPk2)'

Then, w = D 'x and uy, = R;Qx. Consider a working model

Y= f(u;2€7 6)7 (349>

where u,& = w'~y + xy SgPy, & with & being a ky-dimensional vector. When
& = 0, the distribution of y under model (3.49) is the same as that in model (3.48).
Therefore, it is sufficient to study the test statistic under model (3.49) with & = 0.

With a similar analysis in Section 3.6.4, we can derive

T, —1

N ) 9
\/2(1 —p1)/np2(1 — p1 — p2) ~ N

which completes the proof. O]

3.6.10 Proof of Theorem 3.8

Proof. Let the definition of D, Ry, are the same as that in Section 3.6.9. Let

Yo =D'ED and ¥, = RZQER;Q, which are the covariance matrix of w and uys,
respectively. Define U = XRkQZl_l/ ? and denote its i-th row by u;. The assumption
of normality leads to a decomposition, x; 0 = uiTE}/Qﬁ + r;, where £ = EIIRL 30

and r; is independent of u;. Therefore, the model can be written as
vi = Fu 2% +ri.e), (3.50)

where r; and ¢; are independent of u;. Consider w;. It can be denoted as w; = D 'x;

and satisfies u; 21> = (w], x,SpPy,). Let § = 2,'D SR, =7 'R, 20. Then,

7

u?E}/Zﬁ = WIE + q;,
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where ¢; is independent of w;. Let n = Ry,& = (n),ny )", where 1, € RP* and
1, € RP2. Define v? = Var(q;). The calculation yields
2 T T R T [ 2
vt =1, 222 — (221 222) D(D ED) D ( 222 ):| 2.
Let cop, = ETE}/QE(uiyi)/£T21£, where Py, is treated as fixed in the expecta-
tion. Under the condition c§7k2y2 = 0(1), the method in Section 3.6.5 is applicable.

Therefore, we obtain

Ty — 1
V2(1 = p1)/npa(1 — p1 — p2)

n(1 = p1)(1 = p1 = pa) G,V
= B(—z, ’ 1),
( z+\/ 2 = )+ o(1)

URP(0,; B, Py,) = P > )

where 0% = Var(y) — ¢§ ,,& " 21€. The proof is completed. O

3.6.11 Proof of Auxiliary Lemmas

Proof of Lemma 3.5. Let S, _1 = ﬁ Z?;ll XiXiT, where x; denotes the i-th row of X.
According to Bai and Yin (1993, Theorem 2), it shows that the extreme eigenvalues
of S,,—1 satisfy Apax(Sn_1) = (1 4+ v/€)? and Apin(Sn_1) — (1 — /()% a.s.. Based on

the result in Marcenko and Pastur (1967), %tr(S;il) — 1714“ Then, we obtain

1 ) p tr(S;l) ¢
E T 1 B — n—1
(n— 1ann_1xn|Sn 1) P R— =1 e and
_ 2 _ 2p 1
S ixalSn1) = tr (S,2,) <
VorGrmpaSeeoalSe) = ot (85 < e 7
Therefore,
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From Woodbury formula,

X (o X% )X

T Ty-1
XX n =
X )% LHx) (30,2, %%, )%,

n

Let f(z) = 35 It satisfies f'(x) <1, for z > 0. Based on the mean value theorem,
we get

X (XX ) 1x, — ¢| < —1szn X — ng

Y

which implies

n

E{(hwm —()°} <E { ( i 1x7fs;11xn — 1f—<) } — 0. (3.51)

Fori=1 1, we follow a similar method and derive
2
2 1 ¢
E{(hi =} <EQ|— dox iT1_¢
J#i
(3.52)
1 2
) (S B
n—1 1—-¢
Therefore,
max E{(hi—¢)’} =0,
which completes the proof.
O

Proof of Lemma 3.7. According to Woodbury formula, we have
H=H,+(I-H,)G[G'(I-H,)G]'G"(I-Hy)

HcH, Hg
1-— t?"(HgHw)
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This leads to
HcH, Hg

T T
He=e H, +(I-Hy)H I-H,
e He=e [Hy + ( ) G+1—tr(HGHW))( )]e
= e Hge + Re,
where Re is defined as
Re — T’_% " r3 _ 2rmirs 2rirors 21y 2y

ry  r4(l—g) T4 ril—g) i ri(l—yg)

with r; =e'w, r, = w Hgw, r3 =e ' Hgw, ry, = w'w, and g = tr(HgH,,).

For r, Lemma 3.4 shows that F(ry) = 0,Var(r;) = nE(e?w}). Then, r;, =
0,(n 0 for any v; > 0, based on Markov’s inequality. For ry, the independence
between w and G implies that E(ry) = p — 1 and Var(r:) = 2(p — 1). Then,

2 = ( + 0p(1) by Markov’s inequality. For 73, Lemmas 3.4 and 3.5 show that
E(r3) =0 and E(r}) < Cn(l1+o0(1)) + (p — 1)E(e])

for a constant C'. Then, 73 = 0,(n727°?), for any 7, > 0, based on Markov’s inequal-
ity. For r4, the strong law of large numbers shows that  — 1, a.s.. From g = ry/ry,
we obtain g = ( + 0,(1). Consequently, for any § > 0, Re = 0,(n’), which completes

the proof. O
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Chapter 4

Concluding Remarks

In this thesis, the tests are studied in ultrahigh-dimensional settings, where p
can be much greater than n. We derive theoretical and numerical results in the
linear regression model and SIM, respectively. Although the linear regression model
is included in SIM, the proposed testing approaches have different intuitions and
theoretical analysis methods.

In Chapter 2, we investigate the proposed test in the linear regression model.
The proposed test statistic could be naturally considered as an extension of the clas-
sical F-statistic, which is undefinable under the p > n settings. The extension is
mainly summarized from two aspects. First, with the proposed test, there is little
explicit restrictions on the relationship between n and p, for which the test could be
implemented in ultrahigh-dimensional cases and is more adaptable to modern data
analysis. Second, the proposed test needs mild assumption on the setting, where a
general class of distributions of the covariate and the error are included. The ad-
vantage of the wide application range is contributed by the implement of random
projection. Motivated by the result that randomly projected data is asymptotically
close to the normal distribution, we give rigorous theoretical analysis and demon-
strate that the performance of the proposed test statistic is similar to the case where

the covariate follows the normal distribution. In addition, we provide a sufficient
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condition where the asymptotic testing power could be deterministic and reach the
optimal value, even with randomness form random projection. Another significant
problem is the choice of p, which is the proportion of the dimension of the ran-
dom projection data over the dimension p of the covariate. We provide a detailed
discussion and give suggestion on its selection under different situations. Through
simulation study, our proposed test is shown to have a well control of the type I error
and a powerful performance on the empirical power. It is also demonstrated to have
certain advantages in sparse or highly correlated cases.

In Chapter 3, we investigate the proposed test in a more general class of mod-
els, known as SIM. In the high-dimensional hypothesis testing problem, the idea of
studying a nonlinear model in a linear way is proposed for the first time. One of
the significant benefits of this method is its ability to complete statistical test on the
vector of regression coefficients @ without estimating the link function. Specifically,
we transform SIM into a linear form and find that the linear regression coefficients
is @ up to a scalar ¢y # 0. This makes it possible to design simple and effective
methods for testing the significance of 6. In the high-dimensional regime where
p/n — ¢ € (0,1), we provide a detailed analysis of asymptotic null distribution and
asymptotic local power function of the F-statistic and demonstrate the effect of ¢ on
the power of the test. In an ultrahigh-dimensional setting, theoretical and numerical
studies demonstrate that the proposed test has good power over a wide range of
alternatives and possesses certain advantages in sparse cases. In addition, the strong
testing power of the proposed method can be guaranteed with a sufficient condition.
The usage of random projection is significant in our proposed test. It reduces the
dimension of the data while preserving the main information. Besides, the property
of randomly projected data suggests that the theoretical analysis might be available
for general distributions. The selection of p is analyzed in several different settings.

In practice, a value around 0.5 is recommended.
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Overall, our proposed tests provide effective approaches to hypothesis testing in
high-dimensional linear regression model and SIM. The proposed test statistics have
the advantages of simple structure and straightforward application. And they are
computationally simple to implement. Therefore, it is an useful contribution to the
literature on statistical inference in high-dimensional models.

For future research, several directions can be considered. First, the developed
method could be investigated in more complicated models. This method could be
extended to the multiple-index model. In addition, there are more challenges and
interests to studying other types of structural nonparametric regression models, such
as the additive models (Friedman and Stuetzle , 1981) and varying-coefficient mod-
els (Hastie and Tibshirani , 1993; Fan and Zhang , 2008). These models have more
flexibility and arise in many practical applications. In addition, applications of the
theoretical analysis of the proposed tests could be further studied, such as multiple
testing problems. Second, it is worthy investigating the possibility of applying ran-
dom projection to some other statistical inference problems. Recent literature have
already contributed to some areas, such as hypothesis testing, nonparametric regres-
sion estimation (Yang, Pilanci, and Wainwright , 2017) and classification (Cannings
and Samworth , 2017). It is demonstrated that random projection could perform
successfully to simplify the computation, while preserving certain statistical perfor-
mance. Third, the theoretical development of projected data is of significance. Many
basic statistical methods assume that the conditional mean is linear and the condi-
tional variance is constant, such as sufficient dimension reduction methods. Since
the normal distribution is the only distribution satisfying the both properties, the
assumptions seem to be relatively rigorous. However, this concern can be alleviated
to a certain extent through projection in high-dimensional settings. Specifically, from
Hall and Li (1993), Leeb (2013) and Steinberger and Leeb (2018), the both prop-
erties hold in an approximate sense by a large class of distributions when conditional
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on lower-dimensional projections. Motivated by this result, other significant proper-
ties of the normal distribution might be considered to be satisfied by the projected
data, such as Stein’s lemma and the property that uncorrelateness and indepen-
dence are equivalent. Considering another series of literature, known as projection
pursuit, methods were proposed to detect interesting low-dimensional structures in
high-dimensional data. For example, Diaconis and Freedman (1984) studied the be-
havior of the empirical distributions of univariate projections of the data and showed
that almost all of them were asymptotically close to the normal. Bickel, Kur, and
Nadler (2018) considered the problem in high-dimensional settings. They demon-
strated that there were projections whose corresponding empirical distribution can
approximate any arbitrary distribution, and this was shown to be significant in many
statistical methods, such as non-Gaussian component analysis methods. Other ap-
plications of these results are still needed to be explored. Fourth, considering the
statistical inference methods developed based on sparse structures, the criterion for
when to implement these methods needs to be further considered. For example, in
a practical setting, it is not clear whether the maximal-absolute-error-type testing
methods can be applied, and it is uncertain how the performance can be expected
when the sparsity condition is violated. This kind of question is common in real data
analysis, since the level of sparsity is usually unknown in advance. In addition, there
is little reason to believe that the sparsity condition holds without any inspection
measures available. Recently, related problems have gain much interest. For exam-
ple, in Cai and Guo (2017) and Javanmard and Montanari (2018), the question
whether the strong sparsity conditions were needed was investigated. In Carpentier
and Verzelen (2021), the problem of testing sparsity of the regression coefficients was
considered. And the statistical inference when sparsity condition might be absent

was studied in Zhu and Bradic (2018) and Bradic, Fan, and Zhu (2018).
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