
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



CALCULUS OF
KURDYKA- LOJASIEWICZ

EXPONENTS AND ITS
APPLICATIONS IN THE ANALYSIS OF

FIRST-ORDER METHODS

PEIRAN YU

PhD

The Hong Kong Polytechnic University

2021



ii



The Hong Kong Polytechnic University

Department of Applied Mathematics

Calculus of Kurdyka- Lojasiewicz
exponents and its applications in the

analysis of first-order methods

Peiran YU

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

April 2021



iv



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

YU Peiran (Name of student)

v



vi



Abstract

In this thesis, we study calculus rules of the Kurdyka- Lojasiewicz (KL) exponents

and show how KL exponents are applied in analyzing first-order methods for widely

used optimization problems.

First, we focus on calculus rules that derive the KL exponents of new functions

from functions with known KL exponents. These include deriving the KL exponent

of the inf-projection of a function from that of its original function, the KL exponent

of the sum of a continuous function and the indicator function defined by a set of

constraints from that of its Lagrangian and the KL exponent of a fractional function

from the difference between the numerator and (a suitable scaling of) the denominator.

Using these rules, we derive explicit KL exponents of some concrete optimization

models such as the fractional model in [115,116], the model of minimizing `1 subject

to logistic/Poisson loss, some semidefinite-programming-representable functions and

some functions with C2-cone reducible structures.

Second, we show how KL exponents are employed in analyzing an existing first-

order method, the sequential convex programming method with monotone line search

(SCPls) in [83] for difference-of-convex (DC) optimization problem with multiple

smooth inequality constraints. By imposing suitable KL assumptions, we analyze

the convergence rate of the sequence generated by SCPls in both nonconvex and

convex settings. We also discuss how the various conditions required in our analysis

can be verified for minimizing `1−2 [123] subject to residual error measured by `2
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norm/Lorentzian norm [36].

To further illustrate the applications of KL exponents, finally, we focus on the

minimization of the quotient of `1 and `2 (denoted as `1/`2) subject to one possibly

nonsmooth constraint [97]. We show that the sum of `1/`2 and the indicator function

of an affine constraint set satisfies the KL property with exponent 1/2; this allows us

to establish linear convergence of the algorithm proposed in [116, Eq. 11] under mild

assumptions. We next extend the `1/`2 model to handle compressed sensing problems

with noise. We establish the solution existence for some of these models under the

spherical section property [114, 128], and extend the algorithm in [116, Eq. 11] for

solving these problems. We prove the subsequential convergence of our algorithm under

mild conditions, and establish global convergence of the whole sequence generated

by our algorithm by imposing additional KL and differentiability assumptions on a

specially constructed potential function. Finally, we perform numerical experiments

on robust compressed sensing and basis pursuit denoising with residual error measured

by `2 norm or Lorentzian norm via solving the corresponding `1/`2 models by our

algorithm. Our numerical simulations show that our algorithm is able to recover the

original sparse vectors with reasonable accuracy.
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Chapter 1

Introduction

Many problems in machine learning, signal processing and data analysis involve large-

scale nonsmooth nonconvex optimization problems. These problems are typically

solved using first-order methods, which are noted for their scalability and ease of

implementation. Commonly used first-order methods include the proximal gradient

method and its variants, and splitting methods such as Douglas-Rachford splitting

method and its variants; see the recent expositions [30, 92] and references therein for

more detail. In the general nonconvex nonsmooth setting, convergence properties of

the sequences generated by these algorithms are typically analyzed by assuming a

certain potential function to have the so-called Kurdyka- Lojasiewicz (KL) property.

Moreover, when it comes to estimating local convergence rate, the so-called KL

exponent plays a key role; see, for example, [6, Theorem 2], [54, Theorem 3.4]

and [74, Theorem 3]. We now give a more detailed introduction about the KL

property and KL exponent in Section 1.1. In Sections 1.2 and 1.3, we introduce the

applications of KL properties in the analysis of algorithms for optimization models.

1.1 KL property and KL exponent

The KL property originates from the seminal  Lojasiewicz inequality that bounds the

function value deviation of a real-analytic function in terms of its gradient; see [80].
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This inequality was extended to the case of C1 subanalytic functions by Kurdyka in [66]

using the notion of desingularizing function. An important breakthrough was made

in [20, 21], where the  Lojasiewicz inequality was further generalized to nonsmooth

cases by using tools of modern variational analysis and semialgebraic geometry. This

generalization significantly broadened the applicability of the aforementioned KL

inequality to nonconvex settings, and it allowed us to perform convergence rate

analysis for various important algorithms in nonsmooth optimization and subgradient

dynamical systems.

The KL property1 is satisfied by a large class of functions such as proper closed

semi-algebraic functions; see, for example, [7]. It has been the main workhorse

for establishing convergence of sequences generated by various first-order methods,

especially in nonconvex settings [6–8,24]. Moreover, when it comes to estimating local

convergence rate, the so-called KL exponent plays a key role; see, for example, [6,

Theorem 2], [54, Theorem 3.4] and [74, Theorem 3]. Roughly speaking, an exponent

of α ∈ (0, 1
2
] of a suitable potential function corresponds to a linear convergence

rate, while an exponent of α ∈ (1
2
, 1) corresponds to a sublinear convergence rate,

see for example [6, 54, 74]. However, as noted in [85, Page 63, Section 2.1], explicit

estimation of KL exponent for a given function is difficult in general. Nevertheless,

due to its significance in convergence rate analysis, KL exponent computation has

become an important research topic in recent years and some positive results have

been obtained. For instance, we now know the KL exponent of the maximum

of finitely many polynomials [73, Theorem 3.3] and the KL exponent of a class

of quadratic optimization problems with matrix variables satisfying orthogonality

constraints [77]. In addition, it has been shown that the KL exponent is closely

related to several existing and widely-studied error bound concepts such as the Hölder

1 See Definition 2.1 for the precise definition.
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growth condition and the first-order error bound mentioned in [22,86,110];2 see for

example, [22, Theorem 5], [48, Theorem 3.7], [48, Proposition 3.8], [49, Corollary 3.6]

and [75, Theorem 4.1]. Taking advantage of these connections, we now also know that

convex models that satisfy the second-order growth condition have KL exponent 1
2
,

so do models that satisfy the first-order error bound condition together with a mild

assumption on the separation of stationary values; see the recent work [43,75,129] for

concrete examples. This sets the stage for developing calculus rules for KL exponent

in [75] to deduce the KL exponent of a function from functions with known KL

exponents. For example, it was shown in [75, Corollary 3.1] that under mild conditions,

if fi is a KL function with exponent αi ∈ [0, 1), 1 ≤ i ≤ m, then the KL exponent

of min1≤i≤m fi is given by max1≤i≤m αi. This was then used in [75, Section 5.2]

for showing that the least squares loss with smoothly clipped absolute deviation

(SCAD) [53] or minimax concave penalty (MCP) regularization [127] has KL exponent

1
2
.

In Chapter 3 of this thesis, we will further explore this line of research and study

three types of calculus of KL exponent:

1. Lagrangian of functions:

• For equality constraints We determine the KL exponent of F + δG−1{0}

from its Lagrangian relaxation, where F and G are continuously differen-

tiable functions with ∇G being injective, δG−1{0} is the indicator function

of the set G−1{0} := {x : G(x) = 0} with G−1{0} 6= ∅; see Theorem 3.1.

• For inequality constraints We determine the KL exponent of P1(x) +

δg(·)≤0(x) from its Lagrangian (see Theorem 3.2) under suitable assump-

tions, where P1 is convex continuous, the function g(x) is of the form

(l1(A1x), . . . , lm(Amx)) with each Ai ∈ IRqi×n and li : IRqi → IR being

2 This type of first-order error bound is sometimes called the Luo-Tseng error bound; see [75, 126].
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strictly convex, and {x : g(x) ≤ 0} 6= ∅. This enables us to deduce that

the function F corresponding to minimizing `1 subject to logistic/Poisson

loss is a KL function with exponent 1
2

under mild conditions, see Remark

3.2.

2. Fractional functions We establish a calculus rule for deducing the KL expo-

nent of a fractional objective from the difference between the numerator and (a

suitable scaling of) the denominator, see Theorem 3.3. As we can see in Section

5.2, this can be used in deducing the explicit convergence rate of the sequence

generated by the algorithm proposed in [116, Eq. 11].

3. Inf-projection This is a generalization of the operation of taking the minimum

of finitely many functions. Precisely speaking, let X and Y be two finite

dimensional Hilbert spaces and let F : X × Y → IR ∪ {∞} be a proper

closed function,3 we call the function f(x) := infy∈Y F (x, y) for x ∈ X an

inf-projection of F . The name comes from the fact that the strict epigraph

of f , defined as {(x, r) ∈ X × IR : f(x) < r}, is equal to the projection

of the strict epigraph of F onto X × IR. Functions represented in terms of

inf-projections arise naturally in sensitivity analysis as value functions; see,

for example, [25, Chapter 3.2]. Inf-projection also appears when representing

functions as optimal values of linear programming problems, or more generally,

semidefinite programming (SDP) problems; see [58] for SDP-representable

functions. It is known that inf-projection preserves nice properties of F such as

convexity [100, Proposition 2.22(a)]. In this thesis, we show that, under mild

assumptions, the KL exponent is also preserved under inf-projection. Based on

this result and the ubiquity of inf-projection, we are then able to obtain KL

exponents of various important convex and nonconvex models that were out of

3 We refer the readers to Chapter 2 for relevant definitions.
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reach in the previous study. These include convex models such as a large class

of SDP-representable functions, and some functions with C2-cone reducible

structures, as well as nonconvex models such as difference-of-convex functions

and Bregman envelopes. These models are discussed in details in Section 3.3.1

with the general strategy for deducing their KL exponents outlined.

1.2 KL property in the convergence analysis of a

sequential convex programming method with

line search (SCPls)

Constrained optimization problems naturally arise when one attempts to find a

solution that minimizes a certain objective under some restrictions, see [10,17,31,36,59].

In this section and Chapter 4, we consider the following specific type of difference-of-

convex (DC) constrained optimization problem:

min
x∈IRn

F (x) := f(x) + P1(x)− P2(x) + δg(·)≤0(x), (1.1)

where f : IRn → IR is smooth, P1 : IRn → IR and P2 : IRn → IR are convex continuous,

the function g(x) = (g1(x), . . . , gm(x)) with each gi : IRn → IR is continuous and

{x : g(x) ≤ 0} 6= ∅. In typically applications, the f in (1.1) arises as measures for

data fidelity, g is used for modeling restrictions on the decision variable x, and P1−P2

is a regularizer for inducing desirable structures; see [57, Table 1] for examples of such

regularizers. In our subsequent algorithmic development for (1.1), we also consider

the following additional assumption.

Assumption 1.1. Let f , g and F be as in (1.1).

(i) f : IRn → IR has Lipschitz continuous gradient with Lipschitz modulus Lf .

(ii) Each gi has Lipschitz continuous gradient with Lipschitz modulus Lgi.
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(iii) The function F is level-bounded.

Under Assumption 1.1, the solution set of (1.1) is nonempty and inf F > −∞.

To design algorithms for solving (1.1) under Assumption 1.1, one common approach

is to resort to the majorization-minimization (MM) procedure: in this procedure, one

iteratively constructs and minimizes a surrogate function that locally majorizes F ; see

[23,48,49,51,107] for related models and discussions. For (1.1) under Assumption 1.1,

one natural way to construct surrogate function is to make use of the 2nd-order Taylor’s

expansions of f and g: the resulting algorithms are the moving balls approximation

method (MBA) proposed in [10] (for P1 = P2 = 0) and its variants [19,23]. In each

iteration, these algorithms approximate the constraint g(x) ≤ 0 in (1.1) by

Ḡ(x, y, w) :=

 g1(y) + 〈∇g1(y), x− y〉+ w1

2
‖x− y‖2

...
gm(y) + 〈∇gm(y), x− y〉+ wm

2
‖x− y‖2

 ≤ 0 (1.2)

for some fixed (y, w): the feasible region of the resulting subproblem is an intersection

of m balls. For the sequence generated by MBA, global convergence to a minimizer

was established in [10] when {f, g1, . . . , gm} are in addition convex and the Slater

condition holds. The linear convergence of the sequence generated by MBA was

also proved in [10] when f in (1.1) is additionally strongly convex. In [23], when

{f, g1, . . . , gm} are semi-algebraic and P1 = P2 = 0 in (1.1), the whole sequence

generated by an MBA variant was shown to converge to a critical point and its

convergence rate was also established, under the Mangasarian-Fromovitz constraint

qualification (MFCQ).

When the possibly nonsmooth DC function P1 − P2 in (1.1) is nonzero (these

nonsmooth functions arise naturally as regularizers in applications such as sparse

recovery [36, 57, 123]), the aforementioned MBA-type methods such as the multiprox

method in [19] cannot be directly applied to (1.1). Fortunately, under Assumption 1.1,
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problem (1.1) has DC objective and DC constraints: indeed, one can write f and

each gi in (1.1) as the difference of two convex functions as follows:

f(x) =
Lf
2
‖x‖2 −

(
Lf
2
‖x‖2 − f(x)

)
and gi(x) =

Lgi
2
‖x‖2 −

(
Lgi
2
‖x‖2 − gi(x)

)
.

DC algorithms (DCA) (see, for example, [69, 71]) can thus be applied. A variant

that specializes in functional constraints is the sequential convex programming (SCP)

method proposed in [83] 4; see also [96, Remark 5]. When applied to (1.1) under

Assumption 1.1, this method maintains feasibility at each iteration5 and each sub-

problem is constrained over an intersection of balls: thus, this method can also

be viewed as a variant of MBA. It was shown that any accumulation point of the

sequence generated by SCP is a stationary point under Slater’s condition. However,

convergence and convergence rate of the whole sequence generated remain unknown.6

For empirical acceleration, a variant of MBA that involves a line search scheme was

proposed in [19], which is called the Multiproximal method with backtracking step sizes

(Multiproxbt). When applied to (1.1) under Assumption 1.1, the sequence generated

by Multiproxbt converges to a minimizer when {f, g1, . . . , gm} are additionally convex,

P1 = P2 = 0 and the Slater condition holds. However, Multiproxbt uses monotone

initial step sizes, i.e., α̃ in [19, Eq. (37)] is nondecreasing as the algorithm progresses,

which rules out widely used choices such as the truncated Barzilai-Borwein step

sizes [12, 18]. On the other hand, the line search variant of SCP proposed in [83]

can incorporate flexible line search schemes like the truncated Barzilai-Borwein step

4 We would like to point out that the methods proposed in [83] (including SCP and its variant)
were designed to solve more general models than (1.1). In particular, they can deal with problems
with nonsmooth constraints, and allow for nonmonotone line search.

5 There are some DCA variants for solving (1.1) under Assumption 1.1 that do not maintain
feasibility throughout. We refer the interested readers to [70,71,76,105,109] for more discussions.

6 We point out that convergence of the whole sequence and the convergence rate generated by
some DCA variants were considered in [5,69] under suitable Kurdyka- Lojasiewicz (KL) assumptions;
however, their problem formulations do not explicitly involve functional constraints as in (1.1).
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size and is general enough to be applied to (1.1) under Assumption 1.1 with possibly

nonsmooth P1 − P2. In [83], the well-definedness of the proposed algorithm was

established, and it was also shown that any accumulation point of it is a stationary

point under Slater’s condition. However, convergence of the whole sequence generated

and the corresponding convergence rate is still open.

In Chapter 4, we further study the line search variant of the SCP method proposed

in [83] with its line search being monotone, i.e., M in [83, Eq. (22)] being 0. We call

this variant SCPls; see Algorithm 2.1 below. We analyze the convergence properties

of the sequence generated by SCPls for solving (1.1) under Assumption 1.1. The

main convergence rate analysis of SCPls is presented in Section 4.1. We derive global

convergence rate of the sequence generated by SCPls in the following two scenarios:

• F in (1.1) is possibly nonconvex with each gi being twice continuously differen-

tiable and P2 being Lipschitz continuously differentiable on an open set Γ that

contains the set of stationary points of F .

Our analysis is based on the following specially constructed potential function:

F̄ (x, y, w) = f(x) + P1(x)− P2(x) + δḠ(·)≤0(x, y, w), (1.3)

where Ḡ is defined as in (1.2). Under MFCQ, we characterize the local con-

vergence rate of the sequence generated by SCPls according to the Kurdyka-

 Lojasiewicz (KL) exponent of F̄ . Note the mapping (x, y) 7→ F̄ (x, y, L) with

P1 = P2 = 0 and L being a constant positive vector (related to the step size)

was used previously in [23] for establishing the convergence of an MBA variant

when P1 = P2 = 0 and {f, g1, . . . , gm} in (1.1) are semi-algebraic. This kind

of potential functions was called “value function” in [94] and was used there

for deducing the global convergence properties of the composite Gauss-Newton

method for composite optimization problems. Our potential function F̄ allows

us to deal with more flexible stepsize rules than those studied in [23,94].
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• {f, g1 . . . , gm} in (1.1) are convex and P2 = 0.

This same convex setting was considered in [19, Section 3.2.3]. In this setting, we

impose KL assumptions directly on F in (1.1) (instead of on F̄ ). In particular,

a local linear convergence rate is established when F is a KL function with

exponent 1
2
, under MFCQ. This is different from many existing analysis (see,

for example, [7, 23,74,90]), which typically make use of the KL property of a

potential function constructed out of F instead of F itself.

In Section 4.2, we study a relationship between the KL property of F̄ in (1.3) and

that of F in (1.1).

In Section 4.3, we discuss some concrete models to which SCPls can be applied.

Specifically, we consider models of the following form:

min
x

‖x‖1 − µ‖x‖
s.t. `(Ax− b) ≤ δ,

(1.4)

where µ ∈ [0, 1], A ∈ IRq×n has full row rank, b ∈ IRq, ` : IRq → IR+ is analytic with

Lipschitz continuous gradient and satisfies `(0) = 0, and δ ∈ (0, `(−b)). This model

arises in compressed sensing where the measurements b may be corrupted by different

types of noise; see [35]. We focus on two concrete choices of `: the square of norm (for

noise following Gaussian distribution) and the Lorentzian norm (for noise following

Cauchy distribution). For these two choices, we provide suitable conditions on the

problem data so that the assumptions in our convergence results are satisfied. Then

we perform numerical tests on solving (1.4) with ` being either the square of norm or

the Lorentzian norm via two methods: SCPls and SCP [83]. We observe that SCPls

appears to converge linearly and is much faster.
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1.3 KL property in `1/`2 minimization

In compressed sensing (CS), a high-dimensional sparse or approximately sparse signal

x0 ∈ IRn is compressed (linearly) as Ax0 for transmission, where A ∈ IRm×n is the

sensing matrix. The CS problem seeks to recover the original signal x0 from the

possibly noisy low-dimensional measurement b ∈ IRm. This problem is NP-hard in

general; see [88].

When there is no noise in the transmission, i.e., Ax0 = b, one can recover x0

exactly by minimizing the `1 norm over A−1{b} if x0 is sufficiently sparse and the

matrix A satisfies certain assumptions [34,39]. To empirically enhance the recovery

ability, various nonconvex models like `p (0 < p < 1) minimization model [37] and

`1−2 minimization model [81] have been proposed, in which the `p quasi-norm and

the difference of `1 and `2 norms are minimized over A−1{b}, respectively. Recently,

a new nonconvex model based on minimizing the quotient of the `1 and `2 norms was

introduced in [97,122] and further studied in [115,116]:

ν∗cs := min
x∈IRn

‖x‖1

‖x‖
s.t. Ax = b, (1.5)

where A ∈ IRm×n has full row rank and b ∈ IRm\{0}. As discussed in [97], the

above `1/`2 model has the advantage of being scale-invariant when reconstructing

signals and images with high dynamic range. An efficient algorithm was proposed for

solving (1.5) in [116, Eq. 11] and subsequential convergence was established under

mild assumptions.

In practice, however, there is noise in the measurement, i.e., b = Ax0 + ε for some

noise vector ε, and (1.5) is not applicable for (approximately) recovering x0. To deal

with noisy situations, it is customary to relax the equality constraint in (1.5) to an

inequality constraint [33]. In this section and Chapter 5, we consider the following
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model that minimizes the `1/`2 objective over an inequality constraint:

ν∗ncs = min
x∈IRn

‖x‖1

‖x‖
s.t. q(x) ≤ 0, (1.6)

where q(x) = P1(x)−P2(x) with P1 : IRn → IR being continuously differentiable with

globally Lipschitz continuous gradient and P2 : IRn → IR being convex continuous,

and we assume that {x : q(x) ≤ 0} 6= ∅ and q(0) > 0. Our assumptions on q are

general enough to cover commonly used loss functions for modeling noise in various

scenarios:

1. Gaussian noise: When the noise in the measurement follows the Gaussian

distribution, the least squares loss function y 7→ ‖y − b‖2 is typically employed

[33,39]. One may consider the following `1/`2 minimization problem:

min
x∈IRn

‖x‖1

‖x‖
s.t. ‖Ax− b‖2 − σ2 ≤ 0, (1.7)

where σ > 0, A ∈ IRm×n has full row rank and b ∈ IRm satisfies ‖b‖ > σ.

Problem (1.7) corresponds to (1.6) with q(x) = P1(x) = ‖Ax − b‖2 − σ2 and

P2 = 0.

2. Cauchy noise: When the noise in the measurement follows the Cauchy

distribution (a heavy-tailed distribution), the Lorentzian norm7 ‖y‖LL2,γ :=∑m
i=1 log (1 + γ−2y2

i ) is used as the loss function [35,36], where γ > 0. Note that

the Lorentzian norm is continuously differentiable with Lipschitz continuous

gradient. One may then consider the following `1/`2 minimization problem:

min
x∈IRn

‖x‖1

‖x‖
s.t. ‖Ax− b‖LL2,γ − σ ≤ 0, (1.8)

7 We refer the readers to [36, Equation (12)] for the definition and notation of Lorentzian norm.
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where σ > 0, A ∈ IRm×n has full row rank, and b ∈ IRm with ‖b‖LL2,γ > σ.

Problem (1.8) corresponds to (1.6) with q(x) = P1(x) = ‖Ax− b‖LL2,γ − σ and

P2 = 0.

3. Robust compressed sensing: In this scenario, the measurement is corrupted

by both Gaussian noise and electromyographic noise [36,95]: the latter is sparse

and may have large magnitude (outliers). Following [79, Section 5.1.1], one may

make use of the loss function y 7→ dist2(y, S), where S := {z ∈ IRm : ‖z‖0 ≤ r},

‖z‖0 is the number of nonzero entries in z and r is an estimate of the number

of outliers. One may then consider the following `1/`2 minimization problem:

min
x∈IRn

‖x‖1

‖x‖
s.t. dist2(Ax− b, S)− σ2 ≤ 0, (1.9)

where σ > 0, S = {z ∈ IRm : ‖z‖0 ≤ r} with r ≥ 0, A ∈ IRm×n has full row

rank and b ∈ IRm satisfies dist(b, S) > σ. Notice that

dist2(Ax− b, S)− σ2 = ‖Ax− b‖2 − σ2︸ ︷︷ ︸
P1(x)

−max
z∈S
{〈2z, Ax− b〉 − ‖z‖2}︸ ︷︷ ︸

P2(x)

, (1.10)

with P1 being continuously differentiable with Lipschitz continuous gradient

and P2 being convex continuous. So this problem corresponds to (1.6) with P1

and P2 as in (1.10) and q = P1 − P2.

In the literature, algorithms for solving (1.7) with `1 norm or `p quasi-norm in place

of the quotient of the `1 and `2 norms have been discussed in [17,40,103], and [125]

discussed an algorithm for solving (1.8) with `1 norm in place of the quotient of the

`1 and `2 norms. These existing algorithms, however, are not directly applicable for

solving (1.6) due to the fractional objective and the possibly nonsmooth continuous

function q in the constraint.
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In Chapter 5, we further study properties of the `1/`2 models (1.5) and (1.6),

and propose an algorithm for solving (1.6). In particular, we first argue that an

optimal solution of (1.5) exists by making connections with the s-spherical section

property [114, 128] of kerA: a property which is known to hold with high probability

when n is much greater than m for Gaussian matrices. We then revisit the algorithm

proposed in [116, Eq. 11] (see Algorithm 5.1 below) for solving (1.5). Specifically, we

consider the following function

F (x) :=
‖x‖1

‖x‖
+ δA−1{b}(x), (1.11)

where A ∈ IRm×n has full row rank and b ∈ IRm\{0}. We show in Section 5.2.1

that F is a Kurdyka- Lojasiewicz (KL) function with exponent 1
2
. This together with

standard convergence analysis based on KL property [6–8] allows us to deduce local

linear convergence of the sequence {xt} generated by Algorithm 5.1 when {xt} is

bounded. The KL exponent of F is obtained based on the calculus rule deduced in

Section .

Next, for the model (1.6), we also relate existence of solutions to the s-spherical

section property of kerA when q takes the form in (1.7) and (1.8). We then propose

an algorithm, which we call MBA`1/`2 (see Algorithm 5.2), for solving (1.6), which can

be seen as an extension of Algorithm 5.1 by incorporating moving-balls-approximation

(MBA) techniques. The MBA algorithm was first proposed in [10] for minimizing a

smooth objective function subject to multiple smooth constraints, and was further

studied in [19, 23, 125] for more general objective functions. However, the existing

convergence results of these algorithms cannot be applied to MBA`1/`2 because of

the possibly nonsmooth continuous function q and the fractional objective in (1.6).

Our convergence analysis of MBA`1/`2 relies on a specially constructed potential

function, which involves the indicator function of the lower level set of a proper closed
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function related to q (see (5.22)). We prove that any accumulation point of the

sequence generated by MBA`1/`2 is a so-called Clarke critical point (see 5.3 for explicit

definition), under mild assumptions; Clarke criticality reduces to the usual notion of

stationarity when q is regular. Moreover, by imposing additional KL assumptions on

this potential function and assuming P1 is twice continuously differentiable, we show

that the sequence generated by MBA`1/`2 is globally convergent, and the convergence

rate is related to the KL exponent of the potential function. Finally, we perform

numerical experiments to illustrate the performance of our algorithm on solving (1.7),

(1.8) and (1.9).
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Chapter 2

Notation and Preliminaries

In this chapter, we first present the notation and preliminary results used throughout

this thesis in Section 2.1. Sections 2.2, 2.3 and 2.4 give the notation and preliminaries

that are only used in Chapters 3, 4 and 5 respectively.

2.1 Basic notation and preliminaries

Throughout this thesis, we use X and Y to denote two finite dimensional Hilbert

spaces. We use 〈·, ·〉 to denote the inner product of the underlying Hilbert space and

use ‖ · ‖ to denote the associated norm. We let IR denote the set of real numbers

and N+ denote the set of positive integers. The n-dimensional Euclidean space is

denoted by IRn, and the nonnegative orthant is denoted by IRn
+. For two vectors

x and y ∈ IRn, we write x ≥ y if xi ≥ yi for all i. The `0 norm (the number of

nonzero entries) of x by ‖x‖0 and the `1 norm of x is denoted by ‖x‖1. For x ∈ IRn

and r ≥ 0, we let B(x, r) denote the closed ball centered at x with radius r, i.e.,

B(x, r) = {y : ‖x− y‖ ≤ r}.

We say that an extended-real-valued function f : IRn → (−∞,∞] is proper if its

domain domf := {x : f(x) <∞} 6= ∅. A proper function f is said to be closed if it

is lower semicontinuous. For a proper function f , the regular subdifferential of f at

x ∈ domf is defined by
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∂̂f(x) :=

{
ζ : lim inf

z→x,z 6=x

f(z)− f(x)− 〈ζ, z − x〉
‖z − x‖

≥ 0

}
.

The (limiting) subdifferential of f at x ∈ domf is defined by

∂f(x) :=

{
ζ : ∃xk f→ x, ζk → ζ with ζk ∈ ∂̂f(xk) for each k

}
,

where xk
f→ x means both xk → x and f(xk) → f(x). Moreover, we set ∂f(x) =

∂̂f(x) = ∅ for x /∈ dom f by convention, and we write dom ∂f := {x : ∂f(x) 6= ∅}.

It is known that ∂h(x) = {∇h(x)} if h is continuously differentiable at x [100,

Exercise 8.8(b)]. When f is proper convex, thanks to [83, Proposition 8.12], the

limiting subdifferential and regular subdifferential of f at an x ∈ dom f reduce to

the classical subdifferential, which is given by

∂f(x) = {ζ : 〈ζ, y − x〉 ≤ f(y)− f(x) for all y}.

The convex conjugate of a proper closed convex function h is defined as

h∗(y) = sup
x∈IRn
{〈x, y〉 − h(x)}.

We recall the following relationship concerning convex conjugate and subdifferential

of a proper closed convex function h; see [100, Proposition 11.3]:

y ∈ ∂h(x) ⇔ x ∈ ∂h∗(y) ⇔ h(x)+h∗(y) ≤ 〈x, y〉 ⇔ h(x)+h∗(y) = 〈x, y〉. (2.1)

For a proper closed convex function f , its asymptotic (or recession) function f∞ is

defined by f∞(d) := lim inft→∞,d′→d
f(td′)
t

; see [9, Theorem 2.5.1]. Finally, for a proper

function f , we say that it is level-bounded if, for each α ∈ IR, the set {x : f(x) ≤ α}

is bounded.

For a locally Lipschitz function h, its Clarke subdifferential at x̄ ∈ IRn is defined

by

∂◦h(x̄) :=

{
υ : lim sup

x→x̄,t↓0

h(x+ tw)− h(x)

t
≥ 〈υ, w〉 for all w ∈ IRn

}
;
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it holds that ∂h(x̄) ⊆ ∂◦h(x̄); see [27, Theorem 5.2.22].

For a nonempty set C, the indicator function δC is defined as

δC(x) :=

{
0 x ∈ C,
∞ x /∈ C.

The normal cone (resp., regular normal cone) of C at an x ∈ C is defined as

NC(x) := ∂δC(x) (resp., N̂C(x) := ∂̂δC(x)), and the distance from a point x ∈ IRn to

C is denoted by dist(x,C). If D is in addition convex, we define its tangent cone at

x ∈ D by TD(x) := [ND(x)]◦.

We next recall the Kurdyka- Lojasiewicz (KL) property and the notion of KL

exponent; see [6–8,66,75,80]. This property has been used extensively in analyzing

convergence of first-order methods; see, for example, [6–8,24,119].

Definition 2.1 (Kurdyka- Lojasiewicz property and exponent). We say that

a proper closed function h : X → IR ∪ {∞} satisfies the Kurdyka- Lojasiewicz (KL)

property at x̂ ∈ dom ∂h if there are a ∈ (0,∞], a neighborhood V of x̂ and a continuous

concave function ϕ : [0, a)→ [0,∞) with ϕ(0) = 0 such that

(i) ϕ is continuously differentiable on (0, a) with ϕ′ > 0 on (0, a);

(ii) For any x ∈ V with h(x̂) < h(x) < h(x̂) + a, it holds that

ϕ′(h(x)− h(x̂))dist(0, ∂h(x)) ≥ 1. (2.2)

If h satisfies the KL property at x̂ ∈ dom ∂h and the ϕ(s) in (2.2) can be chosen as

c̄ s1−α for some c̄ > 0 and α ∈ [0, 1), then we say that h satisfies the KL property at

x̂ with exponent α.

A proper closed function h satisfying the KL property at every point in dom ∂h is

said to be a KL function, and a proper closed function h satisfying the KL property

with exponent α ∈ [0, 1) at every point in dom ∂h is said to be a KL function with

exponent α.
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KL functions is a broad class of functions which arise naturally in many appli-

cations. For instance, it is known that proper closed semi-algebraic functions are

KL functions with exponent α ∈ [0, 1); see, for example, [7]. KL property is a key

ingredient in many contemporary convergence analysis for first-order methods, and

the KL exponent plays an important role in identifying local convergence rate; see, for

example, [6, Theorem 2], [54, Theorem 3.4] and [74, Theorem 3]. In this thesis, we will

study how the KL exponent behaves under inf-projection, and use the rules developed

to compute the KL exponents of various functions and to derive new calculus rules

for KL exponent.

2.2 Notation and preliminaries in Chapter 3

For a linear map A : X → Y, we use A∗ to denote its adjoint. We also let IRm×n

denote the set of all m×n matrices. The (trace) inner product of two matrices A and

B ∈ IRm×n is defined as 〈A,B〉 := tr(ATB), where tr denotes the trace of a square

matrix. The Fröbenius norm of a matrix A ∈ IRm×n is denoted by ‖A‖F , which is

defined as ‖A‖F :=
√

tr(ATA). Finally, the space of n × n symmetric matrices is

denoted by Sn, the cone of n × n positive semidefinite matrices is denoted by Sn+,

and we write X � 0 (resp., X � 0) to mean X ∈ Sn+ (resp., X ∈ intSn+, where intSn+

is the interior of Sn+).

The closure (resp., interior) of D is denoted by clD (resp., intD). For a convex

set C ⊆ X, we denote its relative interior by riC, and use C◦ to denote its polar, which

is defined as

C◦ := {z ∈ X : 〈x, z〉 ≤ 1 for all x ∈ C}.

We use σD to denote its support function, which is defined as σD(x) := supz∈D〈x, z〉

for x ∈ X.

For a mapping Θ : X→ Y that is continuously differentiable on X, we use DΘ(x)
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to denote the derivative mapping of Θ at x ∈ X: this is the linear map defined by

[DΘ(x)]h := lim
t→0

Θ(x+ th)−Θ(x)

t
for all h ∈ X.

We denote the adjoint of the derivative mapping by ∇Θ(x). This latter mapping is

referred to as the gradient mapping of Θ at x. Then, following [101, Definition 3.1],

we say that a closed set D ⊆ X is C2-cone reducible at w̄ ∈ D if there exist a closed

convex pointed cone K ⊆ Y, ρ > 0 and a mapping Θ : X→ Y that maps w̄ to 0 and

is twice continuously differentiable in B(w̄, ρ) with DΘ(w̄) being onto, such that

D ∩B(w̄, ρ) = {w : Θ(w) ∈ K} ∩B(w̄, ρ).

We say that the set D is C2-cone reducible if, for all w̄ ∈ D, D is C2-cone reducible

at w̄. It is known that convex polyhedral sets, the positive semidefinite cone and

the second-order cone are all C2-cone reducible; see, for example, the discussion

following [101, Definition 3.1]. Finally, following the discussion right after [43,

Definition 6], we say that an extended-real-valued function is C2-cone reducible if its

epigraph is a C2-cone reducible set, where the epigraph of an extended-real-valued

function f : X→ [−∞,∞] is defined as epi f := {(x, t) ∈ X× IR : f(x) ≤ t}.

For a proper function F : X×Y→ IR∪{∞}, following [100, definition 1.16], we say

that F is level-bounded in y locally uniformly in x if for each x̄ ∈ X and α ∈ IR there

is a neighborhood V of x̄ such that the set {(x, y) ∈ X×Y : x ∈ V and F (x, y) ≤ α}

is bounded. When a function F is level-bounded in y locally uniformly in x, its

inf-projection f(x) := infy F (x, y) has the following properties, which can be found

in [100]. We include the proof here.

Lemma 2.1. Let F : X × Y → IR ∪ {∞} be a proper closed function and define

f(x) := infy∈Y F (x, y) and Y (x) := Arg miny∈Y F (x, y) for x ∈ X. Suppose F is

level-bounded in y locally uniformly in x. Then the following statements hold:
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(i) The function f is proper and closed, and the set Y (x) is nonempty and compact

for any x ∈ dom ∂f .

(ii) For any x ∈ dom ∂f , it holds that

∂f(x) ⊆
⋃

y∈Y (x)

{ξ ∈ X : (ξ, 0) ∈ ∂F (x, y)}. (2.3)

(iii) For any x̄ ∈ dom ∂f , it holds that

lim sup
dom ∂f3x f→x̄

Y (x) ⊆ Y (x̄); (2.4)

(iv) For any x̄ ∈ dom ∂f and any ν > 0, there exists ε > 0 such that

dist(y, Y (x̄)) ≤ ν

2

whenever y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and |f(x)− f(x̄)| < ε.

Proof. Since F is proper, closed and level-bounded in y locally uniformly in x, we

have from [100, Theorem 1.17] that f is proper and closed, and Y (x) is a nonempty

compact set whenever x ∈ dom ∂f . Applying [100, Theorem 10.13], we conclude that

(2.3) holds for any x ∈ dom ∂f .

We now prove (iii) and (iv) respectively. For (iii), fix any x̄ ∈ dom ∂f and

any y∗ satisfying y∗ ∈ lim sup
dom ∂f3x f→x̄

Y (x) and recall from [100, Section 5B] that

lim sup
dom ∂f3x f→x̄

Y (x) equals to

{
y : ∃xk f→ x̄, yk → y with yk ∈ Y (xk) and xk ∈ dom ∂f for each k

}
.

So, there exist xk
f→ x̄ with xk ∈ dom ∂f and yk → y∗ such that yk ∈ Y (xk) for all k.

Then we have

F (x̄, y∗)
(a)

≤ lim inf
k

F (xk, yk)
(b)
= lim inf

k
f(xk)

(c)
= f(x̄),
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where (a) is due to the closedness of F , (b) holds because yk ∈ Y (xk), and (c) holds

because xk
f→ x̄. The above relation implies that y∗ ∈ Y (x̄). This proves (2.4).

Finally, for (iv), fix any x̄ ∈ dom ∂f and any ν > 0. Since F is level-bounded in

y locally uniformly in x, there exist ε̃ > 0 and a bounded set D so that whenever

x ∈ B(x̄, ε̃) ∩ dom ∂f , we have {y : F (x, y) ≤ f(x̄) + 1} ⊆ D. Thus, for any x

satisfying x ∈ B(x̄, ε̃) ∩ dom ∂f and f(x) < f(x̄) + 1, we obtain

Y (x) = {y : F (x, y) ≤ f(x)} ⊆ {y : F (x, y) ≤ f(x̄) + 1} ⊆ D. (2.5)

Since (2.4) holds, by picking η > 0 so that D ⊆ B(0, η) and following the proof

of [100, Proposition 5.12(a)], we see that for this η, there exists ε ∈ (0,min{ε̃, 1})

such that

Y (x) = Y (x) ∩D ⊆ Y (x) ∩B(0, η) ⊆ Y (x̄) +B(0, ν/2),

whenever x ∈ B(x̄, ε)∩ dom ∂f and |f(x)− f(x̄)| < ε, where the first equality follows

from (2.5) and the facts that ε < ε̃ and ε < 1. This further implies that

dist(y, Y (x̄)) ≤ ν

2
.

for any y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and |f(x)− f(x̄)| < ε.

Before ending this section, we present one auxiliary lemma that concerns the

uniformized KL property and will be used in Chapter 3. It is a specialization

of [24, Lemma 6] and explicitly involves the KL exponent.

Lemma 2.2 (Uniformized KL property with exponent). Suppose that h :

X→ IR ∪ {∞} is a proper closed function and let Ω be a nonempty compact set with

Ω ⊆ dom ∂h. If h takes a constant value on Ω and satisfies the KL property at each

point of Ω with exponent α, then there exist ε, a, c > 0 such that

dist (0, ∂h(x)) ≥ c (h(x)− h(x̄))α

21



for any x̄ ∈ Ω and any x satisfying h(x̄) < h(x) < h(x̄) + a and dist(x,Ω) < ε.

Proof. Replace the ϕi(t) in the proof of [24, Lemma 6] by cit
1−α for some ci > 0. The

desired conclusion can then be proved analogously as in [24, Lemma 6].

The next lemma is a direct consequence of results in [106]; see [106, Theorem 3.3]

and the discussion following [106, Eq. (1.4)] concerning the degree of singularity for

semidefinite feasibility system.

Lemma 2.3 (Error bound for standard SDP problems under strict comple-

mentarity). Let C ∈ Sd, A : Sd → IRm be a linear map, b ∈ Range (A) and define

the function G : Sd → IR ∪ {∞} by

G(X) := 〈C,X〉+ δL(X),

where L = A−1{b} ∩ Sd+. Suppose that A−1{b} ∩ intSd+ 6= ∅ and there exists X̄ ∈ L

satisfying 0 ∈ ri ∂G(X̄). Then for any bounded neighborhood U of X̄, there exists

c > 0 such that for any X ∈ U ∩ L,

dist (X,Arg minG) ≤ c
(
G(X)−G(X̄)

) 1
2 .

Proof. Observe that

0 ∈ ri ∂G(X̄)
(a)
= C + riNL(X̄)

(b)
= C + ri

(
NA−1{b}(X̄) +NSd+(X̄)

)
(c)
= C + riNA−1{b}(X̄) + riNSd+(X̄),

(2.6)

where (a) follows from [100, Exercise 8.8], (b) follows from [99, Theorem 23.8] and

the assumption A−1{b} ∩ intSd+ 6= ∅, and (c) follows from [99, Corollary 6.6.2]. Since

NA−1{b}(X̄) = Range (A∗), we deduce further from (2.6) the existence of ȳ satisfying

A∗ȳ − C ∈ riNSd+(X̄). (2.7)
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Next, since 0 ∈ ∂G(X̄), we have that X̄ ∈ Arg minG and thus

Arg minG = {W : AW = b} ∩ {W : 〈C,W 〉 = inf G} ∩ Sd+ 6= ∅.

This together with (2.7) implies that the singularity degree of the semidefinite

feasibility system
(
{W : AW = b} ∩ {W : 〈C,W 〉 = inf G} ,Sd+

)
is one. Combining

this with [50, Theorem 2.3], we conclude that for any bounded neighborhood U of X̄,

there exists c1 > 0 such that for any X ∈ U ∩ L,

dist (X,Arg minG) ≤ c1

√
dist (X, {W : AW = b} ∩ {W : 〈C,W 〉 = inf G })

≤ c (〈C,X〉 − inf G)
1
2 = c

(
G(X)−G(X̄)

) 1
2 ,

where the second inequality holds for some c > 0 thanks to the Hoffman error bound

[52, Lemma 3.2.3]. This completes the proof.

Remark 2.1. In the above lemma, the Slater’s condition A−1{b}∩intSd+ 6= ∅ together

with the relative interior (ri) condition 0 ∈ ri ∂G(X̄) implies that (2.7) holds. The

condition (2.7) is widely used in the SDP literature and is often referred to as the strict

complementarity condition; see [93, 102, 111] for detailed discussions. In particular,

it is known that if strict complementarity condition (2.7) holds , then the singular

degree of the associated semidefinite feasibility system is one (see [82, Proposition 7]

or the discussion following [106, Eq. (1.4)]).

As we shall see in Section 3.4, this strict complementarity condition is crucial for

deriving a KL exponent of 1
2

for some SDP representable functions.

2.3 Notation and preliminaries in Chapter 4

Now we recall the definition of stationary points of (1.1) when gi are smooth.

23



Definition 2.2 (Stationary point). Consider (1.1) and assume that each gi is

smooth. We say that an x ∈ IRn is a stationary point of (1.1) if there exists λ ∈ IRm
+

such that (x, λ) satisfies

g(x) ≤ 0, λigi(x) = 0 for all i, and 0 ∈ ∇f(x) + ∂P1(x)− ∂P2(x) +
m∑
i=1

λi∇gi(x).

The following assumption will be used repeatedly in Chapter 4.

Assumption 2.1. Each gi in (1.1) is smooth and the Mangasarian-Fromovitz con-

straint qualification (MFCQ) holds in the whole domain of F in (1.1), i.e., for every

x satisfying g(x) ≤ 0, there exists d ∈ IRn such that

〈∇gi(x), d〉 < 0 for each i ∈ I(x) := {j : gj(x) = 0}.

Under Assumptions 1.1 and 2.1, it is routine to show that any local minimizer

of (1.1) is a stationary point in the sense of Definition 2.2. In fact, let x̂ be a local

minimizer of (1.1). Using [100, Theorem 10.1], we have

0 ∈ ∂F (x̂)
(a)

⊆ ∇f(x̂) + ∂P1(x̂) + ∂(−P2)(x̂) + ∂δg(·)≤0(x̂)

(b)

⊆ ∇f(x̂) + ∂P1(x̂) + ∂◦(−P2)(x̂) + ∂δg(·)≤0(x̂)

(c)
= ∇f(x̂) + ∂P1(x̂)− ∂◦P2(x̂) + ∂δg(·)≤0(x̂)

= ∇f(x̂) + ∂P1(x̂)− ∂P2(x̂) + ∂δg(·)≤0(x̂),

(2.8)

where (a) follows from [100, Exercise 10.10], the inclusion (b) uses [27, Theorem 5.2.22],

where ∂◦(−P2) is the Clarke subdifferential of −P2, the equality (c) uses [41, Proposi-

tion 2.3.1] and the last equality holds because of the convexity of P2 and [25, Theo-

rem 6.2.2]. In addition, we can deduce that

∂δg(·)≤0(x̂) = Ng(·)≤0(x̂) =

{
m∑
i=1

λi∇gi(x̂) : λ ∈ N−IRm+
(g(x̂))

}

=

{
m∑
i=1

λi∇gi(x̂) : λ ∈ IRm
+ , λigi(x̂) = 0 for i = 1, . . . ,m

}
,
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where the second equality follows from MFCQ and [100, Theorem 6.14] and the last

equality follows from the definition of normal cone. The above display together with

(2.8) shows that x̂ is a stationary point of (1.1). In passing, we would like to point

out that x∗ is a stationary point of (1.1) in the sense of Definition 2.2 if and only

if there exists ξ∗ such that 0 ∈ ∂F̃ (x∗, ξ∗), where F̃ (x, ξ) := f(x) + P1(x)− 〈ξ, x〉+

P ∗2 (ξ) + δg(·)≤0(x), with {P1, P2} given in (1.1) and P ∗2 being the Fenchel conjugate

of P2. This type of stationary points is widely used in the DC literature; see, for

example, [108,109,119]. Note that there are other concepts of stationarity used in the

literature, such as the Clarke stationarity, d-stationarity and B-stationarity; we refer

to [1, 64, 91] for more discussions. The notion of stationarity defined in Definition 2.2

is in general weaker than these aforementioned notions.

Before ending this section, we introduce the algorithm we consider here and

in Chapter 4 and present some auxiliary results for our subsequent analysis. The

algorithm, SCPls proposed in [83], is presented in Algorithm 2.1, where Ḡ is defined

as in (1.2). Notice that by rearranging terms of the constraint functions of the

subproblem (2.10), we can see that the constraint there is equivalent to

x ∈
m⋂
i=1

B

(
s̃i,

√
R̃i

)
, (2.9)

where s̃i := xt − 1

(L̃g)
i

∇gi(xt) and R̃i :=

∥∥∥∥∇gi(xt)(L̃g)
i

∥∥∥∥2

− 2

(L̃g)
i

gi(x
t). Thus, when m = 1,

the constraint reduces to a single ball constraint and a simple root-finding scheme

was discussed in [103] for exactly and efficiently solving the subproblem (2.10) with

m = 1, P2 = 0 and P1 being the `1 norm or the nuclear norm, etc. However, solving

subproblem (2.10) in general requires an iterative solver; see [10, Section 6] for the

case when P1 = P2 = 0.
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Algorithm 2.1. Sequential convex programming method with mono-
tone line search (SCPls) for (1.1) under Assumption 1.1

Step 0. Choose parameters c > 0, 0 < L
¯
< L̄, τ > 1 and an x0 with g(x0) ≤ 0.

Set t = 0.

Step 1. Pick any ξt ∈ ∂P2(xt).

Step 2. Choose Lt,0f ∈[L
¯
, L̄] and Lt,0g ∈[L

¯
, L̄]m arbitrarily. Set L̃f=L

t,0
f and L̃g=L

t,0
g .

Step 3. Compute

x̃ = arg min
x

{
〈∇f(xt)− ξt, x− xt〉+

L̃f
2
‖x− xt‖2 + P1(x)

}
s.t. Ḡ(x, xt, L̃g) ≤ 0.

(2.10)

Step 3a) If g(x̃) ≤ 0 and

F (x̃) ≤ F (xt)− c

2
‖x̃− xt‖2 (2.11)

holds, go to step 4.

Step 3b) If g(x̃) 6≤ 0, let L̃g ← τL̃g and go to step 3.

Step 3c) If (2.11) does not hold, let L̃f ← τL̃f and go to step 3.

Step 4. If a termination criterion is not met, set Ltg = L̃g, L
t
f = L̃f and xt+1 = x̃.

Update t← t+ 1 and go to Step 1.

In the next lemma, we discuss the well-definedness of SCPls and also establish

some inequalities needed in our analysis below. Note that the well-definedness of

SCPls was already proved in [83, Theorem 3.6] in a more general setting. Here we

include its proof for completeness.

Lemma 2.4. Consider (1.1) and suppose that Assumptions 1.1 and 2.1 hold. Then

the following statements hold:

(i) SCPls is well defined, i.e., the subproblems (2.10) are well defined and there

exists a k0 ∈ N+ (independent of t) such that in any iteration t ≥ 0, the inner

loop stops after at most k0 iterations.

(ii) The sequence {(Ltf , Ltg)} generated by SCPls is bounded.
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(iii) For each i ∈ {1, . . . ,m}, each t ≥ 0 and each (L̃f , L̃g), the R̃i in (2.9) is positive.

(iv) For each t ≥ 0 and each (L̃f , L̃g), the problem (2.10) has a Lagrange multiplier

λ̃. Let L̃fg := L̃f + 〈λ̃, L̃g〉 and let x̃ be as in (2.10). Then

λ̃i

(
gi(x

t) + 〈∇gi(xt), x̃− xt〉+
(L̃g)i

2
‖x̃− xt‖2

)
= 0 for all i, (2.12)

and

0 ∈ ∇f(xt)− ξt + L̃fg(x̃− xt) + ∂P1(x̃) +
m∑
i=1

λ̃i∇gi(xt), (2.13)

where {xt} and {ξt} are generated by SCPls. Moreover, if g(x̃) ≤ 0, then for

any x ∈ IRn we have

F (x̃)≤f(xt)+
〈
∇f(xt)− ξt, x−xt

〉
+
L̃fg
2
‖x−xt‖2+P1(x)−P2(xt)

+
m∑
i=1

λ̃i
(
gi(x

t) + 〈∇gi(xt), x− xt〉
)
− L̃fg

2
‖x− x̃‖2− L̃f − Lf

2
‖x̃− xt‖2.

(2.14)

Proof. Let an xt satisfying g(xt) ≤ 0 be given for some t ≥ 0. We will first show

that the corresponding subproblems (2.10) are well defined (for any (L̃f , L̃g)) and

the conclusions of items (iii) and (iv) hold for this t. Using these, we will then show

that there exists k0 (independent of t) so that the inner loop in Step 3 terminates

after k0 iterations and returns an xt+1 that satisfies g(xt+1) ≤ 0. This together with

g(x0) ≤ 0 and an induction argument will show that SCPls is well defined and that

items (iii) and (iv) hold for all t ≥ 0. Finally, we show that {(Ltf , Ltg)} is bounded.

Suppose that an xt satisfying g(xt) ≤ 0 is given for some t ≥ 0. Notice that

for any (L̃f , L̃g), the feasible region of (2.10) is nonempty (it contains xt) and the

subproblem is to minimize a strongly convex continuous function over a nonempty
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closed convex set. Thus, x̃ exists and is unique. Now, fix any i ∈ {1, . . . ,m}. Since

g(xt) ≤ 0 and (L̃g)i > 0, we have − 2

(L̃g)i
gi(x

t) ≥ 0 and thus R̃i ≥ 0. Suppose to

the contrary that R̃i = 0. Then we have ∇gi(xt) = 0 and gi(x
t) = 0, contradicting

Assumption 2.1. Thus, we must have R̃i > 0 at the tth iteration.

Next, using a similar proof of [10, Proposition 2.1(iii)], we deduce using MFCQ that

the Slater condition holds for (2.10) for this t. Therefore, using [99, Corollary 28.2.1,

Theorem 28.3], for problem (2.10), there exists a Lagrange multiplier λ̃ ∈ IRm
+ such

that (2.12) holds at the tth iteration and x̃ is a minimizer of the following function:

Lt(x, λ̃) :=f(xt) +
〈
∇f(xt), x− xt

〉
+
L̃f
2
‖x− xt‖2 + P1(x)− P2(xt)

−
〈
ξt, x− xt

〉
+ 〈λ̃, Ḡ(x, xt, L̃g)〉.

This together with [100, Theorem 10.1, Exercise 8.8] shows that (2.13) holds at the

tth iteration.

In addition, note that x 7→ Lt(x, λ̃) is strongly convex with modulus L̃fg. Then

we see that for any x ∈ IRn,

f(xt)+
〈
∇f(xt), x̃−xt

〉
+
L̃f
2
‖x̃−xt‖2+P1(x̃)−P2(xt)−

〈
ξt, x̃−xt

〉
= Lt(x̃, λ̃) ≤ Lt(x, λ̃)− L̃fg

2
‖x−x̃‖2

= f(xt)+
〈
∇f(xt), x−xt

〉
+
L̃fg
2
‖x−xt‖2+P1(x)−P2(xt)−

〈
ξt, x−xt

〉
+

m∑
i=1

λ̃i
(
gi(x

t)+〈∇gi(xt), x−xt〉
)
− L̃fg

2
‖x−x̃‖2,

(2.15)

where the first equality makes use of (2.12). On the other hand, since f has Lipschitz

continuous gradient (with modulus Lf), if g(x̃) ≤ 0, then we have for any x ∈ IRn
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that

F (x̃) = f(x̃) + P1(x̃)− P2(x̃)

≤ f(xt) +
〈
∇f(xt), x̃− xt

〉
+
Lf
2
‖x̃− xt‖2 + P1(x̃)− P2(x̃)

= f(xt)+
〈
∇f(xt), x̃−xt

〉
+
L̃f
2
‖x̃−xt‖2+P1(x̃)−P2(x̃)− L̃f−Lf

2
‖x̃−xt‖2

(a)

≤ f(xt) +
〈
∇f(xt), x̃− xt

〉
+
L̃f
2
‖x̃− xt‖2 + P1(x̃)

−P2(xt)−
〈
ξt, x̃− xt

〉
− L̃f − Lf

2
‖x̃− xt‖2

≤ f(xt) +
〈
∇f(xt), x− xt

〉
+
L̃fg
2
‖x− xt‖2 + P1(x)− P2(xt)−

〈
ξt, x− xt

〉
+

m∑
i=1

λ̃i
(
gi(x

t) + 〈∇gi(xt), x− xt〉
)
− L̃fg

2
‖x− x̃‖2 − L̃f − Lf

2
‖x̃− xt‖2,

where (a) uses the convexity of P2 and the fact that ξt ∈ ∂P2(x
t), while the last

inequality holds due to (2.15). This shows that (2.14) holds at the tth iteration.

Now we show that there exists k0 (independent of t) so that the inner loop

in Step 3 terminates after finitely many iterations at the tth iteration and returns

an xt+1 satisfying g(xt+1) ≤ 0. To this end, let k1 ∈ N+ be such that L
¯
τ k1 >

max{1
2
(c+ Lf ), Lg1 , . . . , Lgm}. Then k1 does not depend on t and we have

Lt,0f τ
k1 − Lf

2
≥ L

¯
τ k1 − Lf

2
>
c

2
and (Lt,0g )iτ

k1 ≥ L
¯
τ k1 ≥ Lgi for i = 1, . . . ,m. (2.16)

Note that for each i, since gi has Lipschitz gradient with Lipschitz modulus Lgi , we

have for any (L̃g)i > 0 that

gi(x̃) ≤ gi(x
t) + 〈∇gi(xt), x̃− xt〉+

Lgi
2
‖x̃− xt‖2

= Ḡ(x̃, xt, L̃g) +
Lgi − (L̃g)i

2
‖x̃− xt‖2.
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This together with (2.16) and the update rule of L̃g in Step 3b) shows that after at

most k1 calls of Step 3b), we have g(x̃) ≤ 0. Whenever x̃ satisfies g(x̃) ≤ 0, we can

apply (2.14) with x being xt to conclude that

F (x̃)≤f(xt)+P1(xt)−P2(xt)+〈λ̃, g(xt)〉− L̃fg
2
‖xt−x̃‖2−

[
L̃f − Lf

2

]
‖xt − x̃‖2

≤ f(xt) + P1(xt)− P2(xt)− 〈λ̃, L̃g〉
2
‖xt − x̃‖2 −

[
L̃f −

Lf
2

]
‖xt − x̃‖2

≤ F (xt)−
[
L̃f −

Lf
2

]
‖xt − x̃‖2,

where the second inequality holds because λ̃ ∈ IRn
+ and g(xt) ≤ 0; we also used the

fact that L̃fg = L̃f + 〈λ̃, L̃g〉. Thus, in view of the above two displays, the conditions

in Step 3a) must hold when (L̃g)i ≥ Lgi for all i and L̃f ≥ Lf
2

; according to the

update rules of L̃f and L̃g, this happens after at most k1 calls of Step 3b) and k1

calls of Step 3c). Thus, at iteration t, the inner loop stops after at most k0 := 2k1

iterations and outputs an xt+1 satisfying g(xt+1) ≤ 0.

Finally, since g(x0) ≤ 0 to start with, by induction, we know that for any t ≥ 0,

the inner loop stops after at most k0 iterations. This together with the fact that

{(Lt,0f , Lt,0g )} ⊆ [L
¯
, L̄]m+1 implies that {(Ltf , Ltg)} is bounded. Therefore, SCPls is well

defined and items (ii), (iii) and (iv) hold. This completes the proof.

2.4 Notation and preliminaries in Chapter 5

We give the definition of (subdifferential) regularity which will be needed in our

discussion later ; see [100, Definition 6.4] and [100, Definition 7.25].

Definition 2.3. A nonempty closed set C is regular at x ∈ C if NC(x) = N̂C(x), and

a proper closed function h is (subdifferentially) regular at x ∈ domh if its epigraph

epih := {(x, t) ∈ IRn × IR : h(x) ≤ t} is regular at (x, h(x)).
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According to [100, Example 7.28], continuously differentiable functions are regular

everywhere. Thus, the constraint functions in (1.7) and (1.8) are regular everywhere.

In addition, a nonsmooth regular function particularly relevant to our discussion is

the objective function of (1.5). Indeed, in view of [87, Corollary 1.111(i)], it holds

that:

At any x̄ 6= 0,
‖ · ‖1

‖ · ‖
is regular and ∂

‖x̄‖1

‖x̄‖
=

1

‖x̄‖
∂‖x̄‖1 −

‖x̄‖1

‖x̄‖3
x̄. (2.17)

We will also need the following auxiliary lemma concerning the subdifferential of a

particular class of functions in our analysis in Section 5.4.

Lemma 2.5. Let q = P1 − P2 with P1 : IRn → IR being continuously differentiable

and P2 : IRn → IR being convex continuous. Then for any x ∈ IRn, we have

∂◦q(x) = ∇P1(x)− ∂P2(x). (2.18)

Proof. Note that for any x ∈ IRn, we have

∂◦q(x)
(a)
= ∇P1(x) + ∂◦(−P2)(x)

(b)
= ∇P1(x)− ∂◦P2(x)

(c)
= ∇P1(x)− ∂P2(x),

where (a) follows from Corollary 1 of [41, Proposition 2.3.3], (b) holds because

of [41, Proposition 2.3.1] and (c) follows from [41, Proposition 2.2.7].
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Chapter 3

KL Exponents and KL Calculus

Rules

In this chapter, we provide a collection of KL calculus rules and provide some examples

showing how these rules can be applied to obtain explicit KL exponents.

3.1 KL exponents concerning Lagrangian function

3.1.1 Equality constrained problems

In this section, we consider the following model:

g(x) := h(x) + δG−1{0}(x), (3.1)

where h : X → IR and G : X → Y be continuously differentiable with G−1{0} 6= ∅

and the linear map ∇G(x̄) : Y→ X being injective.

Theorem 3.1. Let g be defined as in (3.1). Define the function g1 by

g1(x, λ) := h(x) + 〈λ,G(x)〉.

Let x̄ ∈ dom ∂g. Then the following statements hold:

(i) There exists ε > 0 so that for each x ∈ B(x̄, ε), the function λ 7→ ‖∇h(x) +

∇G(x)λ‖ has a unique minimizer.

33



(ii) If g1 satisfies the KL property at (x̄, λ(x̄)) with exponent α, then g satisfies

the KL property at x̄ with exponent α, where λ(x̄) is the unique minimizer of

λ 7→ ‖∇h(x̄) +∇G(x̄)λ‖.

Proof. We first prove (i). Since ∇G(x̄) is an injective linear map and x 7→ ∇G(x)

is continuous, there exists an ε > 0 so that ∇G(x) is an injective linear map

whenever x ∈ B(x̄, ε). Then statement (i) follows immediately because the function

λ 7→ ‖∇h(x) +∇G(x)λ‖ is minimized if and only if the quantity ‖∇h(x) +∇G(x)λ‖2

is minimized, and this latter function is a strongly convex function in λ whenever

x ∈ B(x̄, ε), thanks to the fact that ∇G(x) is an injective linear map from Y to X.

We now prove (ii). Let x ∈ B(x̄, ε) and λ(x) denote the unique minimizer

of λ 7→ ‖∇h(x) + ∇G(x)λ‖. Then λ(x) is also the unique minimizer of λ 7→

‖∇h(x) +∇G(x)λ‖2. Using the first-order optimality condition, we see that λ(x) has

to satisfy the relation ∇G(x)∗ (∇h(x) +∇G(x)λ(x)) = 0, which gives

λ(x) = −(∇G(x)∗∇G(x))−1(∇G(x)∗∇h(x));

here the inverse exists because ∇G(x) is injective. Since h and G are continuously

differentiable, we conclude that λ is a continuous function on B(x̄, ε).

Since g1 satisfies the KL property at (x̄, λ(x̄)) with exponent α, there exist

a, ν, c > 0 such that whenever (x, λ) ∈ B ((x̄, λ(x̄)), ν) and g1(x̄, λ(x̄)) < g1(x, λ) <

g1(x̄, λ(x̄)) + a, it holds that

‖∇g1(x, λ)‖ ≥ c (g1(x, λ)− g1(x̄, λ(x̄)))α . (3.2)

Next, using [100, Exercise 8.8], for any x ∈ B(x̄, ε) ∩ dom ∂g, we have

∂g(x) = ∇h(x) +NG−1{0}(x) ⊆ ∇h(x) + {∇G(x)λ : λ ∈ Y} ,

where the inclusion follows from [100, Corollary 10.50] and the injectivity of ∇G(x).

This implies that for any x ∈ B(x̄, ε) ∩ dom ∂g,

dist (0, ∂g(x)) ≥ inf
λ
‖∇h(x) +∇G(x)λ‖ = ‖∇h(x) +∇G(x)λ(x)‖, (3.3)
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where the equality follows from the definition of λ(x) as the unique minimizer.

On the other hand, we have for any x ∈ dom ∂g and any λ that

∇g1(x, λ) =

[
∇h(x) +∇G(x)λ

G(x)

]
=

[
∇h(x) +∇G(x)λ

0

]
, (3.4)

where the second equality holds because G(x) = 0 whenever x ∈ dom ∂g. Combining

(3.4) with (3.3), we then obtain for any x ∈ B(x̄, ε) ∩ dom ∂g that

dist (0, ∂g(x)) ≥ ‖∇g1(x, λ(x))‖. (3.5)

Now, choose 0 < ε′ < min{ε, ν√
2
} small enough so that when x ∈ B(x̄, ε′)∩dom ∂g,

we have ‖λ(x)− λ(x̄)‖ ≤ ν√
2
; such an ε′ exists thanks to the continuity of λ(·). This

implies that (x, λ(x)) ∈ B ((x̄, λ(x̄)), ν) whenever x ∈ B(x̄, ε′)∩dom ∂g. Therefore, for

x ∈ B(x̄, ε′)∩dom ∂g with g(x̄) < g(x) < g(x̄)+a, we have (x, λ(x)) ∈ B ((x̄, λ(x̄)), ν)

and

g1(x̄, λ(x̄)) = g(x̄) < g(x) = g1(x, λ(x)) < g(x̄) + a = g1(x̄, λ(x̄)) + a.

For these x, combining (3.2) with (3.5), we have

dist (0, ∂g(x)) ≥ c
(
g1(x, λ(x))− g1(x̄, λ(x̄))

)α
= c (g(x)− g(x̄))α ,

where the equality holds because G(x) = 0 whenever x ∈ dom ∂g. This completes

the proof.

Remark 3.1. As we shall see in Section 3.5.3, the above relation can be used in

deducing the explicit KL exponent of the sum of least squares and the indicator

function of a rank constraint.

3.1.2 Inequality constrained problems

In this subsection, we consider the following multiply constrained optimization

problem:

min
x∈IRn

P1(x) + δG(·)≤0(x), (3.6)
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where P1 is convex continuous, the function G(x) = (g1(A1x), . . . , gm(Amx)) with

each Ai ∈ IRqi×n and gi : IRqi → IR being strictly convex, and {x : G(x) ≤ 0} 6= ∅.

Define

F (x) := P1(x) + δG(·)≤0(x)= P1(x) +
m∑
i=1

δgi(·)≤0(Aix). (3.7)

We will derive rules to deduce the KL exponent of F in (3.7) from its Lagrangian.

Similar rules were introduced in [75] and [124], which studied the KL exponent of F

in (3.7) respectively when m = 1 and when the constraint set is defined by equality

constraints, under suitable assumptions. Here, we look at (3.7) that involves multiple

inequality constraints.

Theorem 3.2 (KL exponent of (3.7) from its Lagrangian). Let F be as in (3.7)

and x̄ ∈ Arg minF . Suppose the following conditions hold:

(i) There exists a Lagrange multiplier λ̄ ∈ IRm
+ for (3.6) and x 7→ P1(x) + 〈λ̄, G(x)〉

is a KL function with exponent α ∈ (0, 1).

(ii) The strict complementarity condition holds at (x̄, λ̄), i.e., for every i satisfying

λ̄i = 0, it holds that gi(Aix̄) < 0.

Then F satisfies the KL property with exponent α at x̄.

Proof. Let Fλ̄(x) := P1(x) + 〈λ̄, G(x)〉. By the definition of Lagrange multiplier, we

have

F (x̄) = inf F = P1(x̄) = inf Fλ̄ ≤ Fλ̄(x̄) ≤ F (x̄), (3.8)

where the second inequality holds because G(x̄) ≤ 0 and λ̄ ∈ IRm
+ . On the other hand,

thanks to (ii), it holds that {i : λ̄i > 0} = I(x̄). This together with [99, Theorem 28.1]

gives

x̄ ∈ Arg minF =
⋂
i∈I(x̄)

{x : gi(Aix) = 0} ∩
⋂
i 6∈I(x̄)

{x : gi(Aix) ≤ 0} ∩ Arg minFλ̄.

(3.9)
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Since gi is strictly convex and λ̄i > 0 for i ∈ I(x̄), we see that Aix is constant over

Arg minFλ̄ for each i ∈ I(x̄). This together with the fact that gi(Aix̄) = 0 for i ∈ I(x̄)

and (3.9) implies that

x̄ ∈ Arg minF =
⋂
i 6∈I(x̄)

{x : gi(Aix) ≤ 0} ∩ Arg minFλ̄. (3.10)

Next, since gi(Aix̄) < 0 for each i 6∈ I(x̄), there exists ε0 > 0 such that

gi(Aix) < 0, ∀x ∈ B(x̄, ε0), ∀ i 6∈ I(x̄).

This together with (3.10) implies that

x̄ ∈ Arg minF ∩B(x̄, ε0) = Arg minFλ̄ ∩B(x̄, ε0). (3.11)

Now, using (i) and [22, Theorem 5(i)] together with the fact that x̄ ∈ Arg minFλ̄,

we see that there exist ā > 0, c̄ > 0 and 0 < ε < ε0 such that

dist(x,Arg minFλ̄) ≤ c̄(Fλ̄(x)− Fλ̄(x̄))1−α (3.12)

whenever ‖x− x̄‖ ≤ ε and Fλ̄(x̄) ≤ Fλ̄(x) < Fλ̄(x̄) + ā. Note that for any x satisfying

F (x̄) < F (x) < F (x̄) + ā, we have gi(Aix) ≤ 0 for each i and

F (x̄) = Fλ̄(x̄) ≤ Fλ̄(x) ≤ F (x) < F (x̄) + ā = Fλ̄(x̄) + ā, (3.13)

where the first and the last equalities follow from (3.8) and the second inequality

holds because λ̄i ≥ 0 and gi(Aix) ≤ 0 for each i = 1, . . . ,m. Therefore, for any x

satisfying F (x̄) < F (x) < F (x̄) + ā and ‖x− x̄‖ ≤ ε, we have

dist(x,Arg minF ) ≤ dist(x,Arg minF ∩B(x̄, ε0))
(a)
= dist(x,Arg minFλ̄ ∩B(x̄, ε0))

(b)

≤ 4 max {dist(x,Arg minFλ̄), dist(x,B(x̄, ε0))} (c)
= 4dist(x,Arg minFλ̄)

(d)

≤ 4c̄(Fλ̄(x)− Fλ̄(x̄))1−α ≤ 4c̄(F (x)− F (x̄))1−α,

where (a) follows from (3.11), (b) follows from [72, Lemma 4.10], (c) holds because

ε < ε0, (d) follows from (3.12) and (3.13) and the last inequality holds because of (3.8)
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(so that Fλ̄(x̄) = F (x̄)), gi(Aix) ≤ 0 for each i and λ̄ ∈ IRm
+ . The desired conclusion

now follows immediately from this and [22, Theorem 5(ii)].

Now, we give a corollary that deals with (3.6) with m = 1. This result is different

from [75, Theorem 3.5] because, here, it is the constraint function that is a composition

of strictly convex function and a linear map, but not the objective function.

Corollary 3.1. Let F be defined as in (3.7) with m = 1. Suppose the following

conditions hold:

(i) It holds that inf P1 < inf F .

(ii) There exists a Lagrange multiplier1 λ̄ ≥ 0 for (3.6) and x 7→ P1(x) + λ̄g1(A1x)

is a KL function with exponent α ∈ (0, 1).

Then F is KL function with exponent α.

Proof. Let Fλ̄(x) := P1(x) + λ̄g1(A1x). In view of [75, Lemma 2.1] and the convexity

of F , it suffices to show that F has KL property at every point in {x : 0 ∈

∂F (x)} = Arg minF with exponent α. Fix any x̄ with 0 ∈ ∂F (x̄). Then one can

see from condition (i) and the definition of Lagrange multiplier that λ̄ > 0 and thus

g1(A1x̄) = 0. Therefore, Assumption (ii) of Theorem 3.2 is satisfied. This together

with (ii) and Theorem 3.2 shows that F satisfies the KL property at x̄ with exponent

α.

Remark 3.2. When P1(·) = ‖ · ‖1 in (3.6), we deduce from [75, Corollary 5.1] and

Corollary 3.1 that the KL exponent of F in (3.7) is 1
2

if m = 1 and g1 takes one of

the following forms with b ∈ IRq and δ > 0 chosen so that the Slater condition holds

and the origin is not feasible:

1 Following [99, Page 274], we say that λ̄ is a Lagrange multiplier for (3.7) if λ̄ ≥ 0 and
inf

x∈IRn
{P1(x) + λ̄g1(Ax)} = inf

x∈IRn
{P1(x) + δg1(·)≤0(A1x)} > −∞.
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(i) (Basis pursuit denoising [32]) g1(z) = 1
2
‖z − b‖2 − δ.

(ii) (Logistic loss [60, 65]) g1(z) =
∑q

i=1 log(1 + exp(bizi))− δ for some b ∈ IRq.

(iii) (Poisson loss [56, 67, 130]) g1(z) =
∑q

i=1(−bizi + exp(zi))− δ for some b ∈ IRq.

3.2 KL exponent of fractional functions

Let f : IRn → IR∪{∞} be proper closed and g : IRn → IR be a continuous nonnegative

function that is continuously differentiable on an open set containing dom f . Suppose

that inf f ≥ 0 and infdom f g > 0. We consider the following fractional programming

problem:

min
x
G(x) :=

f(x)

g(x)
. (3.14)

In algorithmic developments for solving (3.14) (see, for example, [42, 46]), it is

customary to consider functions of the following form

Hu(x) := f(x)− f(u)

g(u)
g(x), (3.15)

where u typically carries information from the previous iterate. In the literature,

KL-type assumptions are usually imposed on G or Hu for establishing the global

convergence of the sequence generated by first-order methods for solving (3.14); see,

for example, the discussions in [28, Theorem 16] and [29, Theorem 5.5]. Here, we

study a relationship between the KL exponent of G in (3.14) and that of Hx̄ in (3.15)

when x̄ is a stationary point of G.

Theorem 3.3 (KL exponent of fractional functions). Let f : IRn → IR ∪ {∞} be a

proper closed function with inf f ≥ 0 and g : IRn → IR be a continuous nonnegative

function that is continuously differentiable on an open set containing dom f with

infdom f g > 0. Assume that one of the following conditions hold:
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(i) f is locally Lipschitz.

(ii) f = h+ δD for some continuously differentiable function h and nonempty closed

set D.

(iii) f = h + δD for some locally Lipschitz function h and nonempty closed set D,

and h and D are regular at every point in D.

Let x̄ be such that 0 ∈ ∂G(x̄), where G is defined as in (3.14). Then x̄ ∈ dom ∂Hx̄.

If Hx̄ defined as in (3.15) satisfies the KL property with exponent θ ∈ [0, 1) at x̄, then

so does G.

Proof. It is clear that domHx̄ = dom f = domG. We first argue that under the

assumptions on f and g, we have for any x ∈ domG that

∂Hx̄(x) = ∂f(x)−G(x̄)∇g(x) and ∂G(x) =
1

g(x)
(∂f(x)−G(x)∇g(x)) . (3.16)

Indeed, in all cases, the first relation in (3.16) follows from [100, Exercise 8.8(c)]. When

f is locally Lipschitz, the second relation in (3.16) follows from [87, Corollary 1.111(i)].

When f = h+δD for some continuously differentiable function h and nonempty closed

set D, the second relation in (3.16) follows by first applying [100, Exercise 8.8(c)] to

G = h
g

+ δD, then applying the usual quotient rule to the differentiable function h
g
,

and subsequently using ∂f = ∇h+ ∂δD (thanks to [100, Exercise 8.8(c)]). Finally,

when f = h+ δD for some locally Lipschitz function h and nonempty closed set D

with h and D being regular at every point in D, we have that the function h
g

is regular

for all x ∈ D in view of [87, Corollary 1.111(i)]. This together with the regularity of
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D gives

∂G(x) = ∂

(
h

g

)
(x) + ∂δD(x)

=
g(x)∂h(x)− h(x)∇g(x)

g(x)2
+ ∂δD(x)

=
g(x)∂f(x)− f(x)∇g(x)

g(x)2
,

where the first and the last equalities follow from [100, Corollary 10.9] and [100,

Exercise 8.14], and the second equality follows from [87, Corollary 1.111(i)].

Now, in view of (3.16), we have dom ∂Hx̄ = dom ∂f = dom ∂G. In addition, in

all three cases, it holds that dom f = dom ∂f . Indeed, when f is locally Lipschitz,

this claim follows from Exercise 8(c) of [25, Section 6.4]. When f = h + δD as

in (ii), the claim follows from [100, Exercise 8.8(c)], while for case (iii), we have

dom f = dom ∂f = D in view of [100, Corollary 10.9], [100, Exercise 8.14] and

Exercise 8(c) of [25, Section 6.4]. Consequently, in all three cases, we have

Ξ := domG = dom ∂G = domHx̄ = dom ∂Hx̄ = dom f = dom ∂f,

and Hx̄ is continuous relative to Ξ. In particular, x̄ ∈ dom ∂G = dom ∂Hx̄.

Let U be the open set containing dom f on which g is continuously differentiable.

Since Hx̄ satisfies the KL property with exponent θ at x̄ and is continuous relative to

Ξ, there exist ε > 0 and c > 0 so that B(x̄, 2ε) ⊆ U and

dist(0, ∂Hx̄(x)) ≥ c(Hx̄(x)−Hx̄(x̄))θ = c(Hx̄(x))θ (3.17)

whenever x ∈ Ξ, Hx̄(x) > 0 and ‖x−x̄‖ ≤ ε. LetM:= sup‖x−x̄‖≤ε max{g(x), ‖∇g(x)‖},

which is finite as g is continuously differentiable on U ⊇ B(x̄, 2ε). Using the facts that

θ ∈ [0, 1), Hx̄ is continuous relative to Ξ, Hx̄(x̄) = 0 and infdom f g > 0, we deduce

that there exists ε′ ∈ (0, ε) such that

|Hx̄(x)|1−θ ≤ c infdom f g

2M
whenever ‖x− x̄‖ ≤ ε′ and x ∈ Ξ, (3.18)
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where c is given in (3.17).

Now, consider any x ∈ Ξ satisfying ‖x − x̄‖ ≤ ε′ and G(x̄) < G(x) < G(x̄) + ε′.

Then we have from (3.16) that

dist(0, ∂G(x)) =
1

g(x)
inf

ξ∈∂f(x)
‖ξ −G(x)∇g(x)‖

(a)

≥ 1

M
inf

ξ∈∂f(x)
‖ξ −G(x)∇g(x)‖

(b)

≥ 1

M
inf

ξ∈∂f(x)
‖ξ −G(x̄)∇g(x)‖ − 1

M
|G(x)−G(x̄)|‖∇g(x)‖

(c)

≥ 1

M
inf

ξ∈∂f(x)
‖ξ −G(x̄)∇g(x)‖ − (G(x)−G(x̄))

=
1

M
dist(0, ∂Hx̄(x))− 1

g(x)
Hx̄(x)

(d)

≥ 1

M
dist(0, ∂Hx̄(x))− 1

infdom f g
Hx̄(x)

(e)

≥ c

M
(Hx̄(x))θ − 1

infdom f g
Hx̄(x)

(f)

≥ c

2M
(Hx̄(x))θ

=
c(g(x))θ

2M
(G(x)−G(x̄))θ

(g)

≥ c(infdom f g)θ

2M
(G(x)−G(x̄))θ,

where (a) holds because g(x) ≤M , (b) follows from the triangle inequality, (c) holds

because ‖∇g(x)‖ ≤ M and G(x) > G(x̄), (d) holds because Hx̄(x) > 0 (thanks

to G(x) > G(x̄)), (e) then follows from (3.17) and (f) follows from (3.18) and the

fact that Hx̄(x) > 0. Finally, (g) holds because G(x) > G(x̄). This completes the

proof.

Remark 3.3. As we shall see in Section 5.2, the above fractional rule plays a key

role in deducing the linear convergence of the sequence generated by the algorithm

proposed in [116, Eq. 11] for `1/`2 minimization problem.

3.3 KL exponent via inf-projection

In this section, we study how the KL exponent behaves under inf-projection. Specifi-

cally, given a proper closed function F : X×Y→ IR∪{∞} with known KL exponent,

we would like to deduce the KL exponent of infy∈Y F (·, y) under suitable assumptions.
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Theorem 3.4 (KL exponent via inf-projection). Let F : X × Y → IR ∪

{∞} be a proper closed function and define f(x) := infy∈Y F (x, y) and Y (x) :=

Arg miny∈Y F (x, y) for x ∈ X. Suppose that the function F is level-bounded in y

locally uniformly in x. Let α ∈ [0, 1) and x̄ ∈ dom ∂f .2 Suppose in addition the

following conditions hold:

(i) It holds that ∂F (x̄, ȳ) 6= ∅ for all ȳ ∈ Y (x̄).

(ii) The function F satisfies the KL property with exponent α at every point in

{x̄} × Y (x̄).

Then f satisfies the KL property at x̄ with exponent α.

Proof. Using the nonemptiness and compactness of Y (x̄) given by Lemma 2.1(i), and

the facts that F (x, y) ≡ f(x̄) on Ω := {x̄} × Y (x̄)⊆ dom ∂F and F satisfies the KL

property with exponent α at every point in Ω, we deduce from Lemma 2.2 that there

exist ν, a, c > 0 such that

dist (0, ∂F (x, y)) ≥ c (F (x, y)− f(x̄))α (3.19)

for any (x, y) satisfying

f(x̄) < F (x, y) < f(x̄) + a and dist((x, y),Ω) < ν. (3.20)

By decreasing a if necessary, without loss of generality, we may assume a ∈ (0, 1).

Next, using Lemma 2.1(iv), we see that there exists ε ∈ (0,min{ν/2, a}) such that

dist(y, Y (x̄)) ≤ ν

2

whenever y ∈ Y (x) with x ∈ B(x̄, ε) ∩ dom ∂f and f(x̄) < f(x) < f(x̄) + ε. Hence,

for any x ∈ B(x̄, ε)∩dom ∂f with f(x̄) < f(x) < f(x̄) + ε and any y ∈ Y (x), we have

dist((x, y),Ω) ≤ ‖x− x̄‖+ dist(y, Y (x̄)) ≤ ε+
ν

2
< ν,

2 Here, f is a proper closed function, thanks to Lemma 2.1(i).
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where the last inequality follows from the choice of ε. The above relation together

with the fact that ε < a shows that the relation (3.20) holds for any such x and any

y ∈ Y (x). Thus, using (3.19) we conclude that for any such x and any y ∈ Y (x),

dist (0, ∂f(x)) = dist

(
0,

[
∂f(x)

0

])
≥ inf

y∈Y (x)
dist (0, ∂F (x, y))

≥ inf
y∈Y (x)

c (F (x, y)− f(x̄))α = c (f(x)− f(x̄))α ,

where the first inequality follows from (2.3) and the last equality follows from the

definition of Y (x). This completes the proof.

Theorem 3.4 can be viewed as a generalization of [75, Theorem 3.1], which studies

the KL exponent of the minimum of finitely many proper closed functions with known

KL exponents. Indeed, let fi, 1 ≤ i ≤ m, be proper closed functions. If we let Y = IR

and define F : X× IR→ IR ∪ {∞} by

F (x, y) =

{
fy(x) if y = 1, 2, . . . ,m,

∞ otherwise,
(3.21)

then it is not hard to see that this F is a proper closed function, and infy∈IR F (x, y) =

min1≤i≤m fi(x) for all x ∈ X. Moreover, one can check directly from the definition

that

∂F (x, y) =

{
∂fy(x)× IR if y = 1, 2, . . . ,m,

∅ otherwise.
(3.22)

Thus, we have the following immediate corollary of Theorem 3.4, which is a slight gen-

eralization of [75, Theorem 3.1] by dropping the continuity assumption on min1≤i≤m fi.

Corollary 3.2 (KL exponent for minimum of finitely many functions). Let

fi, 1 ≤ i ≤ m, be proper closed functions, and define f := min1≤i≤m fi. Let x̄ ∈

dom ∂f ∩
⋂
i∈I(x̄) dom ∂fi, where I(x̄) := {i : fi(x̄) = f(x̄)}. Suppose that for each
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i ∈ I(x̄), the function fi satisfies the KL property at x̄ with exponent αi ∈ [0, 1).

Then f satisfies the KL property at x̄ with exponent α = max{αi : i ∈ I(x̄)}.

Proof. Define F as in (3.21). Then F is proper and closed, and f(x) = infy∈IR F (x, y).

Moreover, I(x) = Y (x) := Arg miny∈IR F (x, y). It is clear that this F is level-bounded

in y locally uniformly in x. Moreover, in view of (3.22) and the assumption that

x̄ ∈
⋂
i∈I(x̄) dom ∂fi, we see that ∂F (x̄, ȳ) 6= ∅ whenever ȳ ∈ Y (x̄). Finally, it is

routine to show that F satisfies the KL property with exponent αi at (x̄, i) for

i ∈ I(x̄). Thus, F satisfies the KL property with exponent α = max{αi : i ∈ I(x̄)}

on {x̄} × I(x̄). The desired conclusion now follows from Theorem 3.4.

The next corollary can be proved similarly as [75, Corollary 3.1] by using Corol-

lary 3.2 in place of [75, Theorem 3.1].

Corollary 3.3. Let fi, 1 ≤ i ≤ m, be proper closed functions with dom fi = dom ∂fi

for all i, and define f := min1≤i≤m fi. Suppose that for each i, the function fi is

a KL function with exponent αi ∈ [0, 1). Then f is a KL function with exponent

α = max{αi : 1 ≤ i ≤ m}.

Finally, we show in the next corollary that one can relax some conditions of

Theorem 3.4 when F is in addition convex.

Corollary 3.4 (KL exponent via inf-projections under convexity). Let F :

X×Y→ IR∪{∞} be a proper closed convex function and define f(x) := infy∈Y F (x, y)

and Y (x) := Arg miny∈Y F (x, y) for x ∈ X. Suppose there exists ū such that f(ū) ∈ IR

and Y (ū) is nonempty and compact. Then the following statements hold:

(i) The function f is proper and closed, and Y (x) is nonempty and compact for

any x ∈ dom ∂f .

(ii) It holds that ∂F (x, y) 6= ∅ for all x ∈ dom ∂f and y ∈ Y (x).
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(iii) If x̄ ∈ dom ∂f , α ∈ [0, 1) and the function F satisfies the KL property with

exponent α at every point in {x̄} × Y (x̄), then f satisfies the KL property at x̄

with exponent α.

Proof. For (i), we first show that F is level-bounded in y locally uniformly in x.

Suppose to the contrary that there exist x0 ∈ X and β ∈ IR so that C := {(x, y) :

x ∈ B(x0, 1) and F (x, y) ≤ β} is unbounded. Then there exists {(xk, yk)} ⊂ C with

‖yk‖ → ∞. By passing to a subsequence if necessary, we may assume limk→∞
yk

‖yk‖ = d

for some d with ‖d‖ = 1. Since F (xk, yk) ≤ β and {xk} ⊂ B(x0, 1) is bounded, we

have

F∞(0, d) ≤ lim inf
k→∞

F (xk, yk)

‖(xk, yk)‖
≤ lim inf

k→∞

β

‖(xk, yk)‖
= 0,

where F∞ is the asymptotic function of F and the first inequality follows from [9,

Theorem 2.5.1]. This together with the convexity of F and [9, Proposition 2.5.2]

shows that

F (x, y + td) ≤ F (x, y) for all t > 0 and for all (x, y) ∈ domF.

Since Y (ū) 6= ∅ and f(ū) ∈ IR, we have {ū} × Y (ū) ⊆ domF . Hence, we can

take v̄ ∈ Y (ū) and set x = ū and y = v̄ in the above display to conclude that

F (ū, v̄ + td) ≤ F (ū, v̄) for all t > 0. This further implies that v̄ + td ∈ Y (ū) for all

t > 0, which contradicts the compactness of Y (ū). Thus, for any x0 ∈ X and β ∈ IR,

the set {(x, y) : x ∈ B(x0, 1) and F (x, y) ≤ β} is bounded. Using Lemma 2.1(i), we

see that (i) holds.

Next, we prove (ii). To this end, fix any u ∈ dom ∂f and v ∈ Y (u). Note

that the function f is convex as inf-projection of the convex function F ; see [100,

Proposition 2.22(a)]. Now, for the proper convex function f , we have from the

definition that f ∗(w) = supx{〈w, x〉 − f(x)} = supx,y{〈w, x〉 − F (x, y)} = F ∗(w, 0)
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for any w ∈ X. Taking a w̄ ∈ ∂f(u) and using (2.1), we see further that for any

v ∈ Y (u),

F (u, v) + F ∗(w̄, 0) = f(u) + f ∗(w̄) = 〈u, w̄〉,

where the equality F (u, v) = f(u) holds because v ∈ Y (u). In view of (2.1), the

above relation further implies that (w̄, 0) ∈ ∂F (u, v). This proves (ii).

Now, suppose in addition that x̄ ∈ dom ∂f , α ∈ [0, 1) and the function F satisfies

the KL property with exponent α at every point in {x̄} × Y (x̄). Recall that we have

shown that F is level-bounded in y locally uniformly in x in the proof of item (i) and

we have {x̄} × Y (x̄) ⊆ dom ∂F from item (ii). The conclusion (iii) now follows by

applying Theorem 3.4.

Remark 3.4. In addition to the inf-projection, another closely related operation,

which appears frequently in optimization, would be taking the supremum over a family

of functions. However, we would like to point out that, as opposed to the inf-projection,

the supremum operation may not preserve KL exponents. For example, consider

F : IR2 → IR defined by F = max{f1, f2} with f1(x) = x2
1 and f2(x) = (x1+1)2+x2

2−1.

Clearly, f1 and f2 are both quadratic and are KL functions with exponent 1
2
. On the

other hand, it was shown in [63, Page 1617] that F has an optimal solution at (0, 0)

and the KL exponent of F at (0, 0) is 3
4

and cannot be 1
2
. It would be of interest to

see, under what additional conditions, the supremum operation can preserve the KL

exponents. This could be one interesting future research direction.

3.3.1 Optimization models that can be represented as inf-
projections

Inf-projection is ubiquitous in optimization. In this section, we present some commonly

encountered models that can be written as inf-projections. This includes a large

class of semidefinite-programming-representable (SDP-representable) functions, rank
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constrained least squares problems, and Bregman envelopes. These are important

convex and nonconvex models whose explicit KL exponents were out of reach in

previous studies. In Sections 3.4 and 3.5, we will study their KL exponents based on

their inf-projection representations, Theorem 3.4 and Corollary 3.4.

Convex models that can be written as inf-projections

(i) SDP-representable functions Following [58, Eq. (1.3)], we say that a func-

tion f : IRn → IR ∪ {∞}, is semidefinite-programming-representable (SDP-

representable) if its epigraph can be expressed as the feasible region of some

SDP problems, i.e.,

epi f =

{
(x, t)∈ IRn×IR : ∃u∈ IRN s.t. A00+A0t+

n∑
i=1

Aixi+
N∑
j=1

Bjuj � 0

}
(3.23)

for some {A00, A0, A1, . . . , An, B1, . . . , BN} ⊂ Sd, d ≥ 1 and N ≥ 1. These

functions arise in various applications and include important examples such as

least squares loss functions, `1 norm, and nuclear norm, etc; see, for example, [16,

Section 4.2] for more discussions. Using the symmetric matrices in (3.23), we

define a linear map A : Sd → IRn+N+1 as

A(W ) := [〈A1,W 〉 · · · 〈An,W 〉 〈B1,W 〉 · · · 〈BN ,W 〉 〈A0,W 〉]T . (3.24)

Then it is routine to show that A∗ : IRn+N+1 → Sd is given by A∗(x, u, t) =

A0t+
∑n

i=1 Aixi +
∑N

j=1Bjuj for (x, u, t) ∈ IRn × IRN × IR. Now, if we define

F (x, u, t) := t+ δD(x, u, t) with D = {(x, u, t) : A00 +A∗(x, u, t) � 0} ,
(3.25)

then it holds that f(x) = infu,t F (x, u, t) for all x ∈ IRn. We will show in Theo-

rem 3.5 (using Corollary 3.4) that a proper closed SDP-representable function

has KL property with exponent 1
2

at points satisfying suitable assumptions on

the SDP representation of F in (3.25).
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(ii) Sum of LMI-representable functions We say that a function h : IRn →

IR ∪ {∞}, is LMI-representable (see [58, Eq. (1.1)]) if there exist symmetric

matrices A00, Aj, j = 0, . . . , n, such that

epih =

{
(x, t) ∈ IRn × IR : A00 +

n∑
j=1

Ajxj + A0t � 0

}
.

It is clear that LMI-representable functions form a special class of SDP-

representable functions. Many commonly used functions are LMI-representable

such as the least squares loss function, the `1, `2, `∞ norm functions, the indi-

cator functions of their corresponding norm balls, and the indicator function of

the matrix operator norm ball, etc.

Let f =
∑m

i=1 fi be the sum of m proper closed LMI-representable functions. In

Theorem 3.6, we show that f has KL property with exponent 1
2

at points under

suitable assumptions. Different from Theorem 3.5, which imposes the “strict

complementarity condition” on the corresponding F in (3.25), Theorem 3.6

directly imposes such kind of condition on the original function f . Explicit

optimization models which can be written as sum of LMI-representable functions

include (non-overlapping) group Lasso and group fused Lasso, and are discussed

in Example 3.1.

(iii) Sum of LMI-representable functions and the nuclear norm In various

applications, the nuclear norm has been used for inducing low rank of solutions;

see, for example, [98] for more discussions. Noticing that the nuclear norm

is a special SDP-representable function, we further consider the sum of LMI-

representable functions and the nuclear norm:

f(X) :=

p∑
k=1

fk(X) + ‖X‖∗, (3.26)
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where X ∈ IRm×n, ‖X‖∗ denotes the nuclear norm of X (the sum of all

singular values of X) and each fk : IRm×n → IR ∪ {∞} is a proper closed

LMI-representable function. Define a function F : Sn+m → IR ∪ {∞} by

F (Z) :=

p∑
k=1

fk(X) +
1

2
(tr(U) + tr(V )) + δSm+n

+
(Z); (3.27)

here, we partition the matrix variable Z ∈ Sn+m as follows:

Z =

[
U X
XT V

]
, (3.28)

where U ∈ Sm, V ∈ Sn and X ∈ IRm×n. Then one can show that f(X) =

infU,V F (Z); see (3.62) below. In Theorem 3.7, we will show that f in (3.26)

satisfies KL property with exponent 1
2

at points X̄ such that 0 ∈ ri ∂f(X̄),

under mild conditions. Explicit optimization models of the form (3.26) are

introduced in Remark 3.7.

(iv) Convex models with C2-cone reducible structure SDP representable func-

tions are all semi-algebraic. As an attempt to go beyond semi-algebraicity,

we analyze functions involving C2-cone reducible structure. Specifically, we

consider the following function f : X→ IR ∪ {∞}:

f(x) := `(Ax) + 〈v, x〉+ γ(x), (3.29)

where γ is a closed gauge3 whose polar gauge4 is C2-cone reducible, the function

` : Y → IR is strongly convex on any compact convex set and has locally

Lipschitz gradient, A : X→ Y is a linear map, and v ∈ X.

Notice that f(x) = inft F (x, t), where

F (x, t) := `(Ax) + 〈v, x〉+ t+ δD(x, t), (3.30)

3 A gauge is a nonnegative positively homogeneous convex function that vanishes at the origin.

4 See [55, Proposition 2.1(iii)].
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with D = {(x, t) ∈ X× IR : γ(x) ≤ t}. In Section 3.4.4, we will deduce that f in

(3.29) has KL property with exponent 1
2

at points satisfying assumptions involv-

ing relative interior of some subdifferential sets; see Corollary 3.5. Optimization

models in the form of (3.29) are presented in Example 3.2.

Nonconvex optimization models that can be written as inf-projections

(i) Difference-of-convex functions We consider difference-of-convex (DC) func-

tions of the following form:

f(x) = P1(x)− P2(Ax), (3.31)

where P1 : X→ IR ∪ {∞} is a proper closed convex function, P2 : Y→ IR is a

continuous convex function and A : X → Y is a linear map. These functions

arise in many contemporary applications including compressed sensing; see, for

example, [2,112,119,123] and references therein. In the literature, the following

function is a typically used majorant for designing and analyzing algorithms for

minimizing DC functions. It is obtained from (3.31) by majorizing the concave

function −P2 using the Fenchel conjugate P ∗2 of P2:

F (x, y) = P1(x)− 〈Ax, y〉+ P ∗2 (y). (3.32)

Note that f(x) = infy F (x, y) thanks to the definition of Fenchel conjugate

and [99, Theorem 12.2]. In Theorem 3.9, we will deduce the KL exponent of f

in (3.31) from that of F in (3.32).

(ii) Bregman envelope The Bregman envelope of a proper closed function f : X→

IR ∪ {∞}, is defined in [15] as follows:

Fφ(x) := inf
y
{f(y) + IBφ(y, x)} (3.33)

where φ : X→ IR is a differentiable convex function and

IBφ(y, x) = φ(y)− φ(x)− 〈∇φ(x), y − x〉 (3.34)
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is the Bregman distance. Note that Fφ is an inf-projection by definition. In

Section 3.5.2, we will show that if φ satisfies Assumption 3.1 and f is a KL

function with exponent α ∈ (0, 1] and satisfies inf f > −∞, then Fφ in (3.33) is

also a KL function with exponent α ∈ (0, 1]. As we shall see in Remark 3.9, the

Fφ with φ satisfying Assumption 3.1 covers the widely studied Moreau envelope

(see, for example, [100, Section 1G]) and the recently proposed forward-backward

envelope [104].

(iii) Least squares loss function with rank constraint Consider the following

least squares loss function with rank constraint:

f(X) :=
1

2
‖AX − b‖2 + δrank(·)≤k(X), (3.35)

where X ∈ IRm×n, A : IRm×n → IRp is a linear map, b ∈ IRp and k is an

integer between 1 and min{m,n} − 1. The model above is considered in many

applications such as principal components analysis (PCA); see [113] for more

details. Notice that f in (3.35) is an inf-projection in the following form:

f(X) = inf
U

{
1

2
‖AX − b‖2 + δD̂(X,U)

}
, (3.36)

where

D̂ := {(X,U) ∈ IRm×n × IRm×(m−k) : UTX = 0 and UTU = Im−k},

and Im−k is the identity matrix of size m− k. In Section 3.5.3, we first establish

an auxiliary KL calculus rule concerning Lagrangian in Theorem 3.1. Then,

using this result together with Theorem 3.4, we give an explicit KL exponent

(dependent on n, m and k) of f in (3.35) in Theorem 3.11.
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3.4 KL exponents via inf-projection for some con-

vex models

3.4.1 Convex models with SDP-representable structure

In this section, we explore the KL exponent of SDP-representable functions introduced

in Section 3.3.1(i). More specifically, we will deduce the KL exponent of a proper

closed function f with its epigraph represented as in (3.23), under suitable conditions

on F in (3.25). To this end, we collect the u components in D in (3.25) for each fixed

x ∈ dom ∂f and define the following set:

Dx =
{
u ∈ IRN : (x, u, f(x)) ∈ D

}
. (3.37)

Roughly speaking, these are extra variables that correspond to the “x-slice” in the

“lifted” SDP representation. As we shall see in the proof of Theorem 3.6, when f is

the sum of LMI-representable functions (which is SDP-representable), one can have

Dx = {(f1(x), . . . , fm(x))}.

We begin with three auxiliary lemmas. The first one relates the KL exponent of

f , whose epigraph is represented as in (3.23), to that of F in (3.25).

Lemma 3.1. Let f : IRn → IR ∪ {∞} be a proper closed SDP-representable function

with its epigraph represented as in (3.23). Then the function F defined in (3.25) is

proper, closed and convex.

Next, suppose in addition that x̄ ∈ dom ∂f , α ∈ [0, 1), and that the following

conditions hold:

(i) The set Dx̄ defined as in (3.37) is nonempty and compact.

(ii) The function F defined in (3.25) satisfies the KL property with exponent α at

every point in {x̄} ×Dx̄ × {f(x̄)}.

Then f satisfies the KL property at x̄ with exponent α.
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Proof. Observe from the definition that

f(x) = inf
u,t
F (x, u, t).

First, note that D 6= ∅ because f is proper. Since D is clearly closed and convex, we

conclude that F is proper, closed and convex. We will now check the conditions in

Corollary 3.4 and apply the corollary to deduce the KL property of f from that of F .

To this end, by assumption, we see that F satisfies the KL property with exponent

α on {x̄} ×Dx̄ × {f(x̄)} = {x̄} × Arg minu,t F (x̄, u, t) and that Dx̄ is nonempty and

compact. The desired conclusion now follows from a direct application of Corollary 3.4.

This completes the proof.

The second lemma relates the KL exponent of F in (3.25) to that of another

SDP-representable function with carefully constructed matrices involved in its repre-

sentation.

Lemma 3.2. Let f be a proper closed function and x̄ ∈ dom f . Suppose that f is

SDP-representable with its epigraph represented as in (3.23), and that there exists

(xs, us, ts) such that A00 +A∗(xs, us, ts) � 0, where A00 and A are given in (3.23) and

(3.24) respectively. Let F be defined as in (3.25) and Dx̄ be defined as in (3.37).5 Let

ū ∈ Dx̄ and suppose that 0 ∈ ∂F (x̄, ū, f(x̄)). Then the following statements hold:

(i) It holds that A0 6= 0. Moreover, the set span {A1, . . . , An, B1, . . . , BN , A0} has

an orthogonal basis {Â0, . . . , Âp}, where p ≥ 0 and Â0 6= 0, such that

[
a1 . . . an b1 . . . bN a0

]
=
[
â1 . . . âp â0

]
U

for some U ∈ IR(p+1)×(n+N+1) having full row rank and the entries of the (p+1)th

row of U are 0 except for Up+1,n+N+1 = 1; here, ai, bj and âk ∈ IRd2 are the

columnwise vectorization of the matrices Ai, Bj and Âk, respectively.

5 Notice that F is proper and closed thanks to the existence of the Slater point (xs, us, ts).
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(ii) Define F1 : IRp+1 → IR ∪ {∞} by

F1(z, t) := t+ δD1(z, t) with D1 =

{
(z, t) : A00 + Â0t+

p∑
w=1

Âwzw � 0

}
,

(3.38)

where p ≥ 0 and {Â0, . . . , Âp} is the orthogonal basis constructed in (i).6 Suppose

that U(x̄, ū, f(x̄)) ∈ dom ∂F1 and F1 satisfies the KL property at U(x̄, ū, f(x̄))

with exponent α ∈ [0, 1), where U is the same as in (i).7 Then F satisfies the

KL property at (x̄, ū, f(x̄)) with exponent α.

Proof. Since 0 ∈ ∂F (x̄, ū, f(x̄)), we have in view of [100, Exercise 8.8] that

0n+N+1 ∈ (0n, 0N , 1) +ND(x̄, ū, f(x̄)), (3.39)

where D is defined as in (3.25), and 0k is the zero vector of dimension k. Next, since

δD(x, u, t) = [δSd+−A00
◦ A∗](x, u, t) and we have A∗(xs, us, ts) � −A00 by assumption,

using [99, Theorem 23.9], we deduce that

ND(x̄, ū, f(x̄)) = ∂
[
δSd+−A00

◦ A∗
]
(x̄, ū, f(x̄)) = ANSd+−A00

(A∗(x̄, ū, f(x̄))).

This together with (3.39) implies that there exists Y ∈ NSd+−A00
(A∗(x̄, ū, f(x̄))) such

that

〈A1, Y 〉 = · · · = 〈An, Y 〉 = 〈B1, Y 〉 = · · · = 〈BN , Y 〉 = 0 but 〈A0, Y 〉 = −1;

in particular, A0 6∈ span {A1, . . . , An, B1, . . . , BN} and hence A0 6= 0.

If span {A1, . . . , An, B1, . . . , BN} = {0}, then Ai = Bj = 0 for i = 1, . . . , n and

j = 1, . . . , N . In this case, set Â0 = A0. We see that {Â0} is an orthogonal set and

we have [
a1 . . . an b1 . . . bN a0

]
= â0

[
0Tn+N 1

]
,

6 Note that F1 is proper and closed thanks to the existence of the Slater point (xs, us, ts).

7 Here and henceforth, U(x̄, ū, f(x̄)) is a short-hand notation for the matrix vector product

U

 x̄
ū

f(x̄)

.
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where 0n+N is the zero vector of dimension n+N . Thus, the conclusion in (i) holds

in this case.

Otherwise, span {A1, . . . , An, B1, . . . , BN} 6= {0} and we let {Ā1, . . . , Āp} be a

maximal linearly independent subset of {A1, . . . , An, B1, . . . , BN}. Then there exists

M0 ∈ IRp×(n+N) with full row rank such that [a1 . . . an b1 . . . bN ] = [ā1 . . . āp]M0,

where āi ∈ IRd2 is the columnwise vectorization of Āi. Thus

[a1 . . . an b1 . . . bN a0] = [ā1 . . . āp a0]

[
M0 0
0 1

]
. (3.40)

Using Gram-Schmidt process followed by a suitable scaling to {Ā1, . . . , Āp, A0}, there

exists an invertible upper triangle matrix U0 ∈ IR(p+1)×(p+1) with the (U0)p+1,p+1 = 1

and an orthogonal basis {Â1, . . . , Âp, Â0} of span {Ā1, . . . , Āp, A0} such that

[ā1 . . . āp a0] =
[
â1 . . . âp â0

]
U0,

where âi is the columnwise vectorization of Âi. This together with (3.40) shows that

[
a1 . . . an b1 . . . bN a0

]
= [ā1 . . . āp a0]

[
M0 0
0 1

]
=
[
â1 . . . âp â0

]
U,

where U := U0

[
M0 0
0 1

]
has full row rank and the entries of the (p+ 1)th row of U

are 0 except for Up+1,n+N+1 = 1. This proves (i).

Now, using the definition of F1 in (3.38), we have F (x, u, t) = F1(U(x, u, t)).

Since U is surjective and the KL exponent of F1 is α at U(x̄, ū, f(x̄)), using a similar

argument as in [75, Theorem 3.2], the KL exponent of F at (x̄, ū, f(x̄)) equals α.

This completes the proof.

Finally, we rewrite F1 in (3.38) suitably as a function on Sd that satisfies a

certain “strict complementarity” condition so that Lemma 2.3 can be readily applied

to deducing the KL exponent of F1 explicitly.
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Lemma 3.3. Let f be a proper closed function and x̄ ∈ dom f . Suppose in addition

that f is SDP-representable with its epigraph represented as in (3.23). Let F be

defined as in (3.25), Dx̄ be defined as in (3.37), and ū ∈ Dx̄. Suppose that the

following conditions hold:

(i) (Slater’s condition) There exists (xs, us, ts) such that A00 +A∗(xs, us, ts) � 0,

where A00 and A are given in (3.23) and (3.24) respectively.8

(ii) (Strict complementarity) It holds that 0 ∈ ri ∂F (x̄, ū, f(x̄)).

Let F1 be defined as in (3.38). Then U(x̄, ū, f(x̄)) ∈ dom ∂F1 and F1 satisfies the KL

property at U(x̄, ū, f(x̄)) with exponent 1
2
, where U is given in Lemma 3.2(i).

Proof. Define Ā : Sd → IRp+1 by

Ā(W ) :=
[
〈Â1,W 〉 . . . 〈Âp,W 〉 〈Â0,W 〉

]T
,

where {Â0, . . . , Âp} is given by Lemma 3.2(i). Since {Â0, . . . , Âp} is orthogonal, we

see that Ā is surjective and Ā∗ : IRp+1 → Sd with Ā∗(z, t) := Â0t +
∑p

w=1 Âwzw is

injective. Also, for any (z, t) ∈ IRp+1, by orthogonality,

ĀĀ∗(z, t) = Ā

(
Â0t+

p∑
w=1

Âwzw

)
=
(
‖Â1‖2

F z1, . . . , ‖Âp‖2
F zp, ‖Â0‖2

F t
)
.

Choose a basis {H1, H2, . . . , Hr} of ker Ā and define a linear map H : Sd → IRr

by9

H(W ) := [〈H1,W 〉 · · · 〈Hr,W 〉]T . (3.41)

Define a proper closed function F2 : Sd → IR ∪ {∞} by

F2(X) := ‖Â0‖−2
F 〈Â0, X〉+ δD2(X) with D2 :=

{
X ∈ Sd+ : HX = HA00

}
. (3.42)

8 Note that this condition implies that both F in (3.25) and F1 in (3.38) are proper and closed.

9 In the case when ker Ā = {0} so that the basis is empty (i.e., r = 0), we define H to be the
unique linear map that maps Sd onto the zero vector space.

57



Thanks to the identity (ker Ā)⊥ = Range (Ā∗) and the fact that HX = HA00 if and

only if X − A00 ∈ (ker Ā)⊥, we have the following relations concerning D2 and the

D1 defined in (3.38):

(z, t) ∈ D1 =⇒ A00 + Ā∗(z, t) ∈ D2,

X ∈ D2 ⇒ ∃ unique (z, t) s.t. A00 + Ā∗(z, t) = X, and (z, t) ∈ D1,
(3.43)

where the second implication also makes use of the injectivity of Ā∗. We then deduce

further that for any (z, t) ∈ IRp+1,

F2(A00 + Ā∗(z, t))− ‖Â0‖−2
F 〈Â0, A00〉

= 〈Ā
(
‖Â0‖−2

F Â0

)
, (z, t)〉+ δD2(A00 + Ā∗(z, t))

= t+ δD2(A00 + Ā∗(z, t)) = F1(z, t),

(3.44)

where the last equality follows from (3.43).

Next, let U be as in Lemma 3.2(i). Since the entries in the (p+ 1)th row of U are

0 except for Up+1,n+N+1 = 1, there exists z̄ ∈ IRp such that10

U(x̄, ū, f(x̄)) = (z̄, f(x̄)). (3.45)

Now, define

X̄ := A00 + Ā∗(z̄, f(x̄)). (3.46)

We claim that 0 ∈ ri ∂F2(X̄). We first show that

0 ∈ ri ∂F1(z̄, f(x̄)). (3.47)

In fact, using [99, Theorem 23.9] (note that U(xs, us, ts) ∈ intD1 thanks to assumption

(i)) together with the assumption (ii), we have

0 ∈ ri ∂F (x̄, ū, f(x̄)) = ri
[
UT∂F1 (U(x̄, ū, f(x̄)))

]
= UT ri ∂F1 (U(x̄, ū, f(x̄))) ,

10 Recall that p ≥ 0. When p = 0, we interpret z̄ as a null vector so that U(x̄, ū, f(x̄)) = f(x̄).
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where the second equality follows from [99, Theorem 6.6]. Since U has full row rank

and thus UT is injective, recalling the definition of z̄ in (3.45), we deduce further that

(3.47) holds. Now, using this and [100, Exercise 8.8], we have

0 ∈ ri ∂F1(z̄, f(x̄)) = (0, . . . , 0︸ ︷︷ ︸
p entries

, 1) + riND1(z̄, f(x̄)). (3.48)

Now, notice that δD1(z, t) =
[
δSd+−A00

◦ Ā∗
]

(z, t) and

D2 3 Xs := A00 + Ā∗(zs, ts) = A00 +A∗(xs, us, ts) � 0 (3.49)

with (zs, ts) = U(xs, us, ts), where the inclusion holds thanks to (3.43). Using these

and [99, Theorem 23.9], we see that

riND1(z̄, f(x̄)) = ri ∂
[
δSd+−A00

◦ Ā∗
]
(z̄, f(x̄)) = ri ĀNSd+

(X̄) = Ā riNSd+
(X̄),

where the last equality follows from [99, Theorem 6.6]. This together with (3.48)

implies that there exists Ỹ ∈ riNSd+
(X̄) such that

〈Â1, Ỹ 〉 = · · · = 〈Âp, Ỹ 〉 = 0 and 〈Â0, Ỹ 〉 = −1. (3.50)

The second relation in (3.50) gives 〈Â0, Ỹ +‖Â0‖−2
F Â0〉 = 〈Â0, Ỹ 〉+1 = 0. In addition,

in view of the first relation in (3.50) and the orthogonality of {Â0, . . . , Âp}, we have

〈Âi, Ỹ + ‖Â0‖−2
F Â0〉 = 〈Âi, Ỹ 〉 + 〈Âi, ‖Â0‖−2

F Â0〉 = 0 for all i = 1, . . . , p. Thus, it

holds that Ỹ + ‖Â0‖−2
F Â0 ∈ ker Ā. Hence, there exists ω ∈ IRr such that

Ỹ + ‖Â0‖−2
F Â0 =

r∑
i=1

Hiωi (3.51)

with r and Hi defined as in (3.41).11 Using (3.51) and the definition of Ỹ , we have

further that

0 = Ỹ + ‖Â0‖−2
F Â0 −

r∑
i=1

Hiωi ∈ riNSd+(X̄) + ‖Â0‖−2
F Â0 + RangeH∗. (3.52)

11 In the case when ker Ā = {0} (i.e., r = 0), we have Ỹ + ‖Â0‖−2F Â0 = 0. In this case, we interpret
ω as a null vector.
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On the other hand, using the definition of F2 in (3.42), we have

ri ∂F2(X̄) = ‖Â0‖−2
F Â0 + ri ∂δD2(X̄) = ‖Â0‖−2

F Â0 + ri
(
NH−1{HA00}(X̄) +NSd+(X̄)

)
= ‖Â0‖−2

F Â0 + riNH−1{HA00}(X̄) + riNSd+(X̄) = ‖Â0‖−2
F Â0 + RangeH∗ + riNSd+(X̄),

where the second equality follows from [99, Theorem 23.8] and (3.49), and the third

equality follows from [99, Corollary 6.6.2]. This together with (3.52) shows

0 ∈ ri ∂F2(X̄). (3.53)

In view of (3.49) and (3.53), we can now apply Lemma 2.3 and deduce that, for a

given compact neighborhood U of X̄, there exists c > 0 such that for any X ∈ U∩D2,

dist (X,Arg minF2) ≤ c
(
F2(X)− F2(X̄)

) 1
2 . (3.54)

Thus, fix an ε > 0 so that A00 + Ā∗(z, t) ∈ U whenever (z, t) ∈ B((z̄, f(x̄)), ε); such

an ε exists thanks to the definitions of z̄ in (3.45) and X̄ in (3.46). Now, consider any

(z, t) satisfying (z, t) ∈ B((z̄, f(x̄)), ε) and F1(z̄, f(x̄)) < F1(z, t) < F1(z̄, f(x̄)) + ε.

Then (z, t) ∈ domF1, which means A00 + Ā∗(z, t) ∈ D2 according to (3.43). Hence,

using (3.54), we have

dist 2((z, t),Arg minF1) ≤ ‖(z, t)− (z∗, t∗)‖2
(a)

≤ c1

∥∥Ā∗(z, t)− Ā∗(z∗, t∗)∥∥2

F

= c1‖A00 + Ā∗(z, t)−X∗‖2
F = c1dist 2(A00 + Ā∗(z, t),Arg minF2)

≤ c2c1

(
F2(A00 + Ā∗(z, t))− F2(X̄)

) (b)
= c2c1 (F1(z, t)− F1(z̄, f(x̄))) ,

where X∗ denotes the projection of A00 + Ā∗(z, t) on Arg minF2 and (z∗, t∗) is the

corresponding element in Arg minF1 such that X∗ = A00 +Ā∗(z∗, t∗) (the existence of

(z∗, t∗) follows from (3.43) and (3.44)), (a) holds for some c1 > 0 because Ā∗ is injective,

and (b) follows from (3.44). Combining this with [22, Theorem 5], we conclude that

F1 satisfies the KL property with exponent 1
2

at (z̄, f(x̄)) = U(x̄, ū, f(x̄)).

We are now ready to state and prove our main result in this section.
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Theorem 3.5 (KL exponent of SDP-representable functions). Let f be a

proper closed function and x̄ ∈ dom ∂f . Suppose in addition that f is SDP-

representable with its epigraph represented as in (3.23) and that the following condi-

tions hold:

(i) (Slater’s condition) There exists (xs, us, ts) such that A00 +A∗(xs, us, ts) � 0,

where A00 and A are given in (3.23) and (3.24) respectively.

(ii) (Compactness) The set Dx̄ defined as in (3.37) is nonempty and compact.

(iii) (Strict complementarity) It holds that 0 ∈ ri ∂F (x̄, u, f(x̄)) for all u ∈ Dx̄,

where F is defined as in (3.25) and Dx̄ is defined as in (3.37).12

Then f satisfies the KL property at x̄ with exponent 1
2
.

Remark 3.5. In Theorem 3.5, we require 0 ∈ ri ∂F (x̄, u, f(x̄)) for all u ∈ Dx̄ with

Dx̄ defined as in (3.37). This can be hard to check in practice. In Sections 3.4.2

and 3.4.3, we will impose additional assumptions on f so that this condition can be

replaced by 0 ∈ ri ∂f(x̄), which is a form of strict complementarity condition imposed

on the original function f (rather than the representation F in the lifted space).

Proof. In view of Lemma 3.1, it suffices to show that F satisfies the KL property

with exponent 1
2

at every point in {x̄} × Dx̄ × {f(x̄)}. Fix any ū ∈ Dx̄. From

Lemma 3.3, we know that F1 defined as in (3.38) has KL property with exponent 1
2

at

U(x̄, ū, f(x̄)) ∈ dom ∂F1, where U is given in Lemma 3.2(i). Using this together with

Lemma 3.2, we know that F satisfies the KL property with exponent 1
2

at (x̄, ū, f(x̄)).

This completes the proof.

12 We note that because of the Slater’s condition, the function F in (3.25) is proper and closed.
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We would like to point out that the third condition in Theorem 3.5 cannot be

replaced by “0 ∈ ri ∂f(x̄)” in general. One concrete counter-example is f(x) = x4.

Indeed, for this function, the global minimizer is 0 and we have ∂f(0) = {∇f(0)} =

{0}, which implies that 0 ∈ ri ∂f(0). Moreover, this function is SDP-representable:

epi f =

(x, t)∈ IRn × IR :


1 y 0 0
y t 0 0
0 0 1 x
0 0 x y

 � 0 for some y

 .

It is easy to check that the first two conditions of Theorem 3.5 are satisfied for

x̄ = 0. However, it can be directly verified that this f does not have KL property

with exponent 1
2

at 0. This concrete example suggests that the third condition in

Theorem 3.5 cannot be replaced by 0 ∈ ri ∂f(x̄) in general.

Next, in Sections 3.4.2 and 3.4.3, we will look at special SDP-representable

functions and show that the third condition in Theorem 3.5 can indeed be replaced

by 0 ∈ ri ∂f(x̄) in those cases.

3.4.2 Sum of LMI-representable functions

In this section, we discuss how the KL exponent of the sum of finitely many proper

closed LMI-representable functions as defined in Section 3.3.1(ii) can be deduced

through Theorem 3.5. Compared with Theorem 3.5, the strict complementarity

condition in this section is now imposed directly on the original function.

Theorem 3.6 (KL exponent of sum of LMI-representable functions). Let

f =
∑m

i=1 fi, where each fi : IRn → IR∪{∞} is proper and closed. Suppose that each fi

is LMI-representable, i.e., there exist di ≥ 1 and matrices {Ai00, A
i
0, A

i
1, . . . , A

i
n} ⊂ Sdi

such that

epi fi =

{
(x, t) ∈ IRn × IR : Ai00 +

n∑
j=1

Aijxj + Ai0t � 0

}
.
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Suppose in addition that there exist xs ∈ IRn and ss ∈ IRm such that for i = 1, . . . ,m,

Ai00 +
n∑
j=1

Aijx
s
j + Ai0s

s
i � 0.

If x̄ ∈ dom ∂f satisfies 0 ∈ ri ∂f(x̄), then f satisfies the KL property at x̄ with

exponent 1
2
.

Proof. We first derive an SDP representation of epi f . To this end, define

D̂ :=

{
(x, s, t) : t ≥

m∑
i=1

si and si ≥ fi(x), ∀i = 1, . . . ,m

}
.

Then it holds that (x, s, t) ∈ D̂ if and only if
t−
∑m

i=1 si 0 · · · 0

0 A1
00 +

∑n
j=1A

1
jxj + A1

0s1
...

...
. . .

0 · · · Am00 +
∑n

j=1 A
m
j xj + Am0 sm

 � 0.

(3.55)

Since

(x, t) ∈ epi f ⇐⇒ t ≥
m∑
i=1

fi(x) ⇐⇒ ∃s ∈ IRm s.t. (x, s, t) ∈ D̂, (3.56)

we see that f is SDP-representable. Moreover, if we define

F (x, s, t) := t+ δD̂(x, s, t), (3.57)

then it holds that f(x) = infs,t F (x, s, t) for all x ∈ IRn. We next show that f and

the F defined in (3.57) satisfy the conditions required in Theorem 3.5.

First, from the definition of xs ∈ IRn and ss ∈ IRm, we have
ts −

∑m
i=1 s

s
i 0 · · · 0

0 A1
00 +

∑n
j=1A

1
jx

s
j + A1

0s
s
1

...
...

. . .

0 · · · Am00 +
∑n

j=1 A
m
j x

s
j + Am0 s

s
m

 � 0,
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where ts :=
∑m

i=1 s
s
i + 1. This together with (3.55) and (3.56) shows that condition

(i) in Theorem 3.5 holds.

Next, note that the set {s : (x̄, s, f(x̄)) ∈ D̂} = {(f1(x̄), . . . , fm(x̄))}, which is

clearly nonempty and compact. In view of this and (3.57), we conclude that condition

(ii) in Theorem 3.5 is satisfied.

Finally, we look at the strict complementarity condition, i.e., condition (iii) in

Theorem 3.5. Notice that the definition of xs ∈ IRn implies

xs ∈
m⋂
i=1

int dom fi. (3.58)

Write s̄ := (f1(x̄), · · · , fm(x̄)) for notational simplicity. Define

C0 =

{
(x, s, t) : t ≥

m∑
i=1

si

}
and Ci = {(x, s, t) : si ≥ fi(x)}, ∀i = 1, . . . ,m.

Then D̂ =
⋂m
i=0 Ci. Moreover, using [99, Theorem 7.6], we have for i = 1, . . . ,m that

riCi = ri {(x, s, t) : gi(x, s, t) ≤ 0} = {(x, s, t) ∈ ri dom gi : gi(x, s, t) < 0}

= {(x, s, t) ∈ ri dom fi × IRm × IR : gi(x, s, t) < 0} ,

where gi(x, s, t) = fi(x) − si for each i. This together with (3.58) shows that⋂m
i=0 riCi 6= ∅. Using this, [99, Theorem 23.8] and the definition of F in (3.57), we

have

∂F (x̄, s̄, f(x̄)) = (0n+m, 1) +
m∑
i=0

NCi(x̄, s̄, f(x̄)), (3.59)

where 0p is the zero vector of dimension p, and recall that s̄ = (f1(x̄), · · · , fm(x̄)).

We claim that 0 ∈ ri ∂F (x̄, s̄, f(x̄)). To this end, note first that the assumption

0 ∈ ri ∂f(x̄) and (3.58) together with [99, Theorem 23.8] imply that x̄ ∈
⋂
i dom ∂fi.
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Hence, we have from [99, Theorem 23.7] that for each i = 1, . . . ,m,

NCi(x̄, s̄, f(x̄)) = cl [cone ∂gi(x̄, s̄, f(x̄))] = cl
⋃
λi≥0

(λi∂fi(x̄), 0i−1,−λi, 0m+1−i)

(3.60)

where the second equality follows from [100, Proposition 10.5] and coneB denotes

the convex conical hull of B. Similarly, we also have

NC0(x̄, s̄, f(x̄)) = cl
⋃
λ0≥0

(0n, λ0 · 1m,−λ0) , (3.61)

where 1m is the m-dimensional vector of all ones. Using (3.59), (3.60) and (3.61), we

have

ri ∂F (x̄, s̄, f(x̄))
(a)
= (0n+m, 1) +

m∑
i=0

riNCi(x̄, s̄, f(x̄))

(b)
= (0n+m, 1)+

m∑
i=1

ri

[
cl
⋃
λi≥0

(λi∂fi(x̄), 0i−1,−λi, 0m+1−i)

]
+ ri

[
cl
⋃
λ0≥0

(0n, λ0 · 1m,−λ0)

]

(c)
= (0n+m, 1) +

m∑
i=1

⋃
λi>0

(λi ri ∂fi(x̄), 0i−1,−λi, 0m+1−i) +
⋃
λ0>0

(0n, λ0 · 1m,−λ0)

where (a) follows from (3.59) and [99, Corollary 6.6.2], (b) follows from (3.60) and

(3.61), and (c) follows from [99, Theorem 6.3] and [99, Corollary 6.8.1]. This together

with 0 ∈ ri ∂f(x̄) yields

0 ∈ (ri ∂f(x̄), 0m, 0) = (0n, 0m, 1) + (ri ∂f(x̄),−1m, 0) + (0n, 1m,−1)

= (0n, 0m, 1) +

(
m∑
i=1

ri ∂fi(x̄),−1m, 0

)
+ (0n, 1m,−1) ⊆ ri ∂F (x̄, s̄, f(x̄)),

where the second equality follows from [99, Theorem 23.8] and [99, Corollary 6.6.2],

thanks to (3.58). Thus, condition (iii) in Theorem 3.5 is also satisfied. The desired

conclusion now follows from Theorem 3.5.
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Example 3.1. Note that `1-norm, `2-norm, convex quadratic functions and indicator

functions of second-order cones are all LMI-representable. Using these, we can infer

from Theorem 3.6 that the following functions f satisfy the KL property with exponent

1
2

at any x̄ that verifies 0 ∈ ri ∂f(x̄):

(i) Group Lasso with overlapping blocks of variables:

f(x) =
1

2
‖Ax− b‖2 +

s∑
i=1

wi‖xJi‖,

where b ∈ IRp, A ∈ IRp×n, Ji ⊆ {1, . . . , n} with
⋃s
i=1 Ji = {1, . . . , n}, xJi is the

subvector of x indexed by Ji, and wi ≥ 0, i = 1, . . . , s. We emphasize here that

Ji ∩ Jj can be nonempty when i 6= j.

(ii) Least squares with products of second-order cone constraints:

f(x) =
1

2
‖Ax− b‖2 + δ∏s

i=1 SOC ni
(x),

where b ∈ IRp, A ∈ IRp×n, x = (x1, . . . , xs) ∈
∏s

i=1 IRni with xi ∈ IRni, i =

1, . . . , s, and SOCni is the second-order cone in IRni.

(iii) Group fused Lasso [3]:

f(x) =
1

2
‖Ax− b‖2 +

s∑
i=1

wi‖xJi‖+
s∑
i=2

νi‖xJi − xJi−1
‖,

where b ∈ IRp, A ∈ IRp×n with n = rs for some r ∈ N , Ji is an equi-partition of

{1, . . . , n} in the sense that
⋃s
i=1 Ji = {1, . . . , n}, Ji∩Jj = ∅ and |Ji| = |Jj| = r

for i 6= j, wi, νi ≥ 0, i = 1, . . . , s.

3.4.3 Sum of LMI-representable functions and the nuclear
norm
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In this section, we apply Theorem 3.6 and Corollary 3.4 to derive the KL exponent of

the function in (3.26) under suitable assumptions. It is known (see, for example [98])

that the nuclear norm can be expressed as

‖X‖∗ =
1

2
inf
U,V

{
tr(U) + tr(V ) :

[
U X
XT V

]
� 0, U ∈ Sm, V ∈ Sn

}
(3.62)

for any X ∈ IRm×n. This fact plays an important role for our analysis later on, and

shows that the nuclear norm is an SDP representable function. To the best of our

knowledge, it is not known that whether the nuclear norm is LMI representable. Our

analysis is an attempt to generalize our results on the sum of LMI representable

functions (with strict complementarity assumption on the original function) to a large

subclass of SDP representable functions that arises in many important areas such as

matrix completion [98].

Theorem 3.7 (KL exponent of sum of LMI-representable functions and

the nuclear norm). Let f be defined as in (3.26) and let symmetric matrices Ak00,

Ak0, Akij, i = 1, . . . ,m and j = 1, . . . , n, be such that

epi fk =

{
(X, t) : Ak00 +

m∑
i=1

n∑
j=1

AkijXij + Ak0t � 0

}
.

Suppose in addition that there exist Xs ∈ IRm×n and ss ∈ IRp such that for k =

1, . . . , p,

Ak00 +
m∑
i=1

n∑
j=1

AkijX
s
ij + Ak0s

s
k � 0.

If X̄ ∈ dom ∂f satisfies 0 ∈ ri ∂f(X̄), then f satisfies the KL property at X̄ with

exponent 1
2
.

Remark 3.6. Similar to Theorem 3.6, the “ri-condition” here is also imposed on f

itself, while such a condition is imposed on the F in (3.25) in Theorem 3.5.
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Proof. Let F be defined as in (3.27) with the matrix variable Z ∈ Sn+m partitioned

as in (3.28). Then f(X) = infU,V F (Z), thanks to (3.62). Let r = rank(X̄) and

X̄ = [P+ P0]

[
Σ+ 0
0 0

]
[Q+ Q0]T = P+Σ+Q

T
+,

be a singular value decomposition of X̄, where Σ+ ∈ IRr×r is a diagonal matrix

whose diagonal entries are the r positive singular values of X̄, [P+ P0] is orthogonal

with P+ ∈ IRm×r and P0 ∈ IRm×(m−r), [Q+ Q0] is orthogonal with Q+ ∈ IRn×r and

Q0 ∈ IRn×(n−r). Define13

Z̄ :=

[
P+Σ+P

T
+ X̄

X̄T Q+Σ+Q
T
+

]
.

Then Z̄ � 0. Now, using [99, Theorem 23.8], the definition of F and [99, Corol-

lary 6.6.2], we have

ri ∂F (Z̄) =

{
1

2

[
Im Λ
ΛT In

]
+ Y : Λ ∈ ri ∂

(
p∑

k=1

fk

)
(X̄) and Y ∈ riNSm+n

+
(Z̄)

}
.

(3.63)

Next, since 0 ∈ ri ∂f(X̄) and the nuclear norm is continuous, we see from [99,

Theorem 23.8] and [99, Corollary 6.6.2] that

0 ∈ ri ∂f(X̄) = ri ∂

(
p∑

k=1

fk

)
(X̄) + ri ∂‖X̄‖∗. (3.64)

Moreover, recall from [118, Example 2] and [99, Corollary 7.6.1] that

ri ∂‖X̄‖∗ =

{
[P+ P0]

[
Ir 0
0 W

]
[Q+ Q0]T : W ∈ IR(m−r)×(n−r), ‖W‖2 < 1

}
, (3.65)

where ‖W‖2 is the operator norm of W , that is, the largest singular value of W .

Combining (3.64) and (3.65), we conclude that there exist C ∈ ri ∂ (
∑p

k=1 fk)(X̄) and

13 When r = 0, we set Z̄ = 0 ∈ Sm+n.
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W0 with ‖W0‖2 < 1 such that

0 = C + [P+ P0]

[
Ir 0
0 W0

]
[Q+ Q0]T = C + P0W0Q

T
0 + P+Q

T
+. (3.66)

On the other hand, using the definition of Z̄ and a direct computation, we have

Z̄ =

[
1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]
︸ ︷︷ ︸

P̂


2Σ+ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


[

1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]T
.

(3.67)

Note that P̂ T P̂ = P̂ P̂ T= Im+n, meaning that (3.67) is an eigenvalue decomposition

of Z̄. Thus, we can compute that

riNSm+n
+

(Z̄) = ri
[
(−Sm+n

+ ) ∩
{
Z̄
}⊥]

= P̂

[
0 0
0 −intSm+n−r

+

]
P̂ T

3

[
1√
2
P+ P0 0 1√

2
P+

1√
2
Q+ 0 Q0 − 1√

2
Q+

]
0 0 0 0
0 −1

2
Im−r

1
2
W0 0

0 1
2
W T

0 −1
2
In−r 0

0 0 0 −Ir




1√
2
P T

+
1√
2
QT

+

P T
0 0
0 QT

0
1√
2
P T

+ − 1√
2
QT

+


=

1

2

[
−Im −C
−CT −In

]
,

where the inclusion holds because ‖W0‖2 < 1, and the last equality follows from (3.66)

and a direct computation. This together with (3.63) and the definition of C implies

that 0 ∈ ri ∂F (Z̄). Moreover, one can see that F is the sum of p+ 1 proper closed

LMI-representable functions and the Slater’s condition required in Theorem 3.6 holds.

Thus, we conclude from Theorem 3.6 that F in (3.27) has KL property at Z̄ with

exponent 1
2
.

Finally, recall that for the F defined in (3.27), we have

inf
U,V

F (Z) = f(X) and Arg min
U,V

F

([
U X̄
X̄T V

])
=
{

(P+Σ+P
T
+ , Q+Σ+Q

T
+)
}
.14

14 When r = 0, this set is {(0, 0)} and Z̄ = 0.
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These together with Corollary 3.4 and the fact that the KL exponent of F at Z̄ is 1
2

shows that f satisfies the KL property at X̄ with exponent 1
2
.

Remark 3.7. In [129, Proposition 12], it was shown that if ` : IRp → IR is strongly

convex on any compact convex set with locally Lipschitz gradient and A : IRm×n → IRp

is a linear map, then the function

f(X) = `(AX) + ‖X‖∗

satisfies the KL property with exponent 1
2

at any X̄ that verifies 0 ∈ ri ∂f(X̄).

In particular, the loss function X 7→ `(AX) is smooth. The more general case

where the nuclear norm is replaced by a general spectral function was considered

in [43, Theorem 3.12], and a sufficient condition involving the relative interior

of the subdifferential of the conjugate of the spectral function was proposed in

[43, Proposition 3.13], which, in general, is different from the regularity condition

0 ∈ ri ∂f(X̄).

On the other hand, using our Theorem 3.7, we can deduce the KL exponent of

functions in the form of (3.26) at points X̄ satisfying the condition 0 ∈ ri ∂f(X̄),

but with a different set of conditions on the loss function. For instance, one can

prove using Theorem 3.7 that the following functions f satisfy the KL property with

exponent 1
2

at a point X̄ verifying 0 ∈ ri ∂f(X̄):

(i) f(X) = 1
2
‖AX − b‖2 + µ

∑
i,j |Xij| + ν‖X‖∗, where µ > 0 and ν > 0, b ∈ IRp

and A : IRm×n → IRp is a linear map.

(ii) f(X) = ‖AX − b‖+ µ
∑

i,j |Xij|+ ν‖X‖∗, where µ > 0 and ν > 0, b ∈ IRp and

A : IRm×n → IRp is a linear map.

In view of [43, Theorem 3.12], it would be of interest to extend Theorem 3.7 to

cover more general spectral functions. However, since our analysis in this subsection
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is based on LMI or SDP representability, it is not clear how this can be achieved at

this moment. This would be a potential important future research direction.

Remark 3.8 (Discussion of the relative interior conditions). In Theorems 3.5,

3.6 and 3.7, the conclusions of KL exponent being 1/2 were derived under relative

interior conditions. If these relative interior conditions were dropped, then the

corresponding conclusions could fail, in general. For example, in [129, equation (53)],

the authors provided an example of f̃(X) := f1(X)+‖X‖∗ for X ∈ IR2×2, where f1 is a

convex quadratic function on IR2×2, and showed that 0 /∈ ri ∂f̃(X) for some X ∈ IR2×2

and the first-order error bound is not satisfied at X. Recalling [22, Theorem 5]

and [49, Corollary 3.6], this means that f̃ cannot have a KL exponent of 1
2

at X.

We also would like to point out that, when the relative interior condition fails,

one can follow the approach in Section 3.4.1 and the general error bound result for

ill-posed semidefinite programs [50, 106] to derive a KL exponent that depends on the

degree of singularity of a certain semidefinite system in the lifted representation. In

general, this KL exponent will approach 1 quickly as the dimension grows, which can

be of less interest. For simplicity, we do not discuss this in detail.

3.4.4 Convex models with C2-cone reducible structure

In this section, we explore the KL exponent of functions that involve C2-cone reducible

structures. Our first theorem concerns the sum of the support function of a C2-

cone reducible closed convex set and a specially structured smooth convex function.

In the theorem, we will also make use of the so-called bounded linear regularity

condition [13, Definition 5.6]. Recall that {D1,D2} is said to be boundedly linearly

regular at x̄ ∈ D1 ∩D2 if for any bounded neighborhood U of x̄, there exists c > 0

such that

dist (x,D1 ∩D2) ≤ c[dist (x,D1) + dist (x,D2)] for all x ∈ U.
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It is known that if D1 and D2 are both polyhedral, then {D1,D2} is boundedly linearly

regular at any x̄ ∈ D1 ∩D2; moreover, if D1 is polyhedral and D1 ∩ riD2 6= ∅, then

{D1,D2} is also boundedly linearly regular at any x̄ ∈ D1 ∩D2; see [14, Corollary 3].

Theorem 3.8 (Composite convex models with C2-cone reducible structure).

Let ` : Y→ IR be a function that is strongly convex on any compact convex set and

has locally Lipschitz gradient, A : X→ Y be a linear map, and v ∈ X. Consider the

function

h(x) := `(Ax) + 〈v, x〉+ σD(x)

with D being a nonempty C2-cone reducible closed convex set. Suppose 0 ∈ ∂h(x̄).

Then, one has

x̄ ∈ ND(−A∗∇`(Ax̄)− v).

If we assume in addition that {A−1{Ax̄}, ND(−A∗∇`(Ax̄)−v)} is boundedly linearly

regular at x̄, then h satisfies the KL property at x̄ with exponent 1
2
.

Proof. Since 0 ∈ ∂h(x̄), we see from [100, Exercise 8.8] that

w̄ := −A∗∇`(Ax̄)− v ∈ ∂σD(x̄) = ∂δ∗D(x̄) = (∂δD)−1(x̄),

where the last equality follows from [100, Proposition 11.3]. This implies x̄ ∈ ∂δD(w̄) =

ND(w̄).

We now assume in addition the bounded linear regularity condition and prove the

alleged KL property. First, since D is a C2-cone reducible closed convex set, there

exists ρ̃ > 0 and a mapping Θ : X → V which is twice continuously differentiable

on B(w̄, ρ̃) and a closed convex pointed cone K ⊆ V such that Θ(w̄) = 0, DΘ(w̄) is

onto and D ∩B(w̄, ρ̃) = {w : Θ(w) ∈ K} ∩B(w̄, ρ̃).

Fix any ρ ∈ (0, ρ̃) so that DΘ(w) is onto whenever w ∈ B(w̄, ρ). Then, we have

from [100, Exercise 10.7] that

ND(w) = DΘ(w)∗NK(Θ(w)) for all w ∈ B(w̄, ρ). (3.68)
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Now, fix any δ > 0. Take w ∈ D ∩ B(w̄, ρ) and x ∈ ND(w) ∩ B(x̄, δ). Then

x = DΘ(w)∗ux for some ux ∈ NK(Θ(w)) according to (3.68). For such a ux, one can

observe that

DΘ(w̄)∗ux ∈ DΘ(w̄)∗NK(Θ(w)) ⊆ DΘ(w̄)∗K◦ = DΘ(w̄)∗NK(Θ(w̄)) = ND(w̄),

where K◦ is the polar of K, the set inclusion follows from the definition of normal

cone and the fact that K is a closed convex cone, the first equality holds because

Θ(w̄) = 0 and the last equality follows from (3.68). Thus, for any w ∈ D ∩ B(w̄, ρ)

and x ∈ ND(w) ∩B(x̄, δ), we have

dist (x,ND(w̄)) ≤ ‖x−DΘ(w̄)∗ux‖ = ‖DΘ(w)∗ux −DΘ(w̄)∗ux‖ ≤ L‖ux‖‖w − w̄‖,

(3.69)

where L is the Lipschitz continuity modulus of DΘ over the set B(w̄, ρ), which is

finite because Θ is twice continuously differentiable.

Next, for each z ∈ B(w̄, ρ), define the linear map

W(z) =
(
DΘ(z)DΘ(z)∗

)−1
DΘ(z).

Then W is continuously differentiable on B(w̄, ρ) because Θ is twice continuously

differentiable on B(w̄, ρ) with surjective gradient map. Moreover, for any w ∈

D ∩ B(w̄, ρ) and x ∈ ND(w) ∩ B(x̄, δ), it follows from the definition of ux that

[W(w)](x) = ux. Let M be the Lipschitz continuity modulus of w 7→ W(w) on

B(w̄, ρ), which is finite because W is continuously differentiable on B(w̄, ρ). Then

we have for any w ∈ D ∩B(w̄, ρ) and x ∈ ND(w) ∩B(x̄, δ) that

‖ux − ux̄‖ = ‖[W(w)](x)− [W(w̄)](x̄)‖

≤ ‖[W(w)](x)− [W(w̄)](x)‖+ ‖[W(w̄)](x)− [W(w̄)](x̄)‖

≤M‖x‖ ‖w − w̄‖+ ‖W(w̄)‖‖x− x̄‖

≤Mρ(‖x̄‖+ ‖x− x̄‖) + ‖W(w̄)‖‖x− x̄‖,
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where the last inequality follows from triangle inequality and the fact that w ∈ B(w̄, ρ).

In particular, ‖ux‖ ≤ ‖ux̄‖+Mρ(‖x̄‖+ δ) +‖W(w̄)‖δ =: κ. This together with (3.69)

implies that

ND(w) ∩B(x̄, δ) ⊆ ND(w̄) + κL ‖w − w̄‖B(0, 1) for all w ∈ B(w̄, ρ).

This means that the mapping w 7→ ND(w) is calm at w̄ with respect to x̄; see [47,

Page 182]. Thus, according to [47, Theorem 3H.3], the mapping x 7→ (ND)−1(x) is

metrically subregular at x̄ with respect to w̄; see [47, Page 183] for the definition.

Noting also that ∂σD = (ND)−1 according to [100, Example 11.4], we then deduce

from [4, Theorem 3.3] that there exist δ′ ∈ (0, δ) and c0 > 0 such that

σD(x)− σD(x̄)− 〈w̄, x− x̄〉 ≥ c0 dist (x, (∂σD)−1(w̄))2 = c0 dist (x,ND(w̄))2 (3.70)

whenever ‖x−x̄‖ ≤ δ′. We now follow a similar line of argument used in [129, Theorem

2] and [49, Theorem 4.2] to show the desired conclusion. Observe that

Arg minh = {z : 0 ∈ ∂h(z)}

= {z : Az = Ax̄ and −A∗∇`(Az)− v ∈ (ND)−1(z)}

= {z : Az = Ax̄ and z ∈ ND(−A∗∇`(Ax̄)− v)}.

Then it follows that for any bounded convex neighborhood U of x̄ with U ⊆ B(x̄, δ′),

there exists c1 > 0 such that for any z ∈ U,

dist (z,Arg minh) = dist (z,A−1{Ax̄} ∩ND(w̄))

(a)

≤ α[dist (z,A−1{Ax̄}) + dist (z,ND(w̄))]

(b)

≤ α[c1 ‖Ax̄−Az‖+ dist (z,ND(w̄))]

(c)

≤ α
[
c1 ‖Ax̄−Az‖+ c

− 1
2

0

√
σD(z)− σD(x̄)− 〈w̄, z − x̄〉

]
;

(3.71)
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here, (a) holds for some α > 0 because of the bounded linear regularity assumption,

(b) holds for some c1 > 0 thanks to the Hoffman error bound, and (c) follows from

(3.70). Now, as ` is strongly convex on compact convex sets, there exists β > 0 such

that for all z ∈ U, we have

β‖Ax̄−Az‖2 ≤ `(Az)− `(Ax̄)− 〈A∗∇`(Ax̄), z − x̄〉.

Combining this with (3.71), we have for any z ∈ U that

dist (z,Arg minh) ≤ α

(
c1 ‖Ax̄−Az‖+ c

− 1
2

0

√
σD(z)− σD(x̄)− 〈w̄, z − x̄〉

)
≤ α

(
c1β

− 1
2

√
`(Az)−`(Ax̄)−〈A∗∇`(Ax̄), z−x̄〉+c−

1
2

0

√
σD(z)− σD(x̄)−〈w̄, z−x̄〉

)
Note that

√
a+
√
b ≤
√

2
√
a+ b for a, b ≥ 0, and

h(z)− h(x̄) = `(Az)− `(Ax̄)− 〈A∗∇`(Ax̄), z − x̄〉+ σD(z)− σD(x̄)− 〈w̄, z − x̄〉.

Thus, there exists c > 0 such that for all z ∈ U, dist (z,Arg minh) ≤ c
√
h(z)− h(x̄).

Combining this with [22, Theorem 5], we conclude that h satisfies the KL property

at x̄ with exponent 1
2
.

As a corollary of the preceding theorem, we consider the KL exponent of a class

of gauge regularized optimization problems. Recall that a convex function γ : X→

IR ∪ {∞} is called a gauge if it is nonnegative, positively homogeneous, and vanishes at

the origin. It is clear that any norm is a gauge. In the next corollary, we make explicit

use of the gauge structure and replace the relative interior condition in Theorem 3.8

by one involving the so-called polar gauge. Recall from [55, Proposition 2.1(iii)] that

for a gauge γ, its polar can be given by γ◦(x) = supz{〈x, z〉 : γ(z) ≤ 1}; moreover,

polar of norms are their corresponding dual norms.
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Corollary 3.5. Let f be defined as in (3.29). Suppose that 0 ∈ ∂f(x̄) and γ(x̄) > 0.

Then γ◦(−A∗∇`(Ax̄)− v) = 1. Suppose in addition that −A∗∇`(Ax̄)− v ∈ dom ∂γ◦

and the following relative interior condition holds:

A−1{Ax̄} ∩

(⋃
λ>0

λ (ri ∂γ◦(−A∗∇`(Ax̄)− v))

)
6= ∅. (3.72)

Then f satisfies the KL property at x̄ with exponent 1
2
.

Proof. Since 0 ∈ ∂f(x̄), we see from [100, Exercise 8.8] that

w̄ := −A∗∇`(Ax̄)− v ∈ ∂γ(x̄).

Since we have from [55, Proposition 2.1(iv)] that γ∗ = δC with C = {x : γ◦(x) ≤ 1},

we conclude from (2.1) that γ◦(w̄) ≤ 1 and γ(x̄) = 〈x̄, w̄〉. Since γ(x̄) > 0, we also

have from γ(x̄) = 〈x̄, w̄〉 and [55, Proposition 2.1(iii)] that

1 =
〈x̄, w̄〉
γ(x̄)

≤ sup
z
{〈w̄, z〉 : γ(z) ≤ 1} = γ◦(w̄).

Thus, it holds that γ◦(w̄) = 1.

Next, suppose in addition that w̄ ∈ dom ∂γ◦ and (3.72) holds. Let F (x, t) be

defined as in (3.30). Observe that

F (x, t) = `(Ã(x, t)) + 〈(v, 1), (x, t)〉+ σD◦(x, t)

where Ã(x, t) := Ax and D◦ is the polar of D, which is given by D◦ = {(x, t) :

γ◦(x) + t ≤ 0} according to the proof of [99, Theorem 15.4]. From our assumption,

the set {(x, t) : γ◦(x) ≤ t} is a C2-cone reducible closed convex set, which implies

that D◦ is also C2-cone reducible. Now, observe from [99, Theorem 23.7] that for any

(u, s) ∈ dom ∂γ◦ × IR satisfying γ◦(u) + s = 0, we have

ND◦(u, s) = cl

(⋃
λ≥0

λ
(
∂γ◦(u), 1

))
,
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which together with [99, Theorem 6.3] and [99, Corollary 6.8.1] gives

riND◦(u, s) =
⋃
λ>0

λ
(
ri ∂γ◦(u), 1

)
.

Applying this relation with (u, s) = (w̄,−γ◦(w̄)) = (w̄,−1) together with the relative

interior condition (3.72) shows that

(
A−1{Ax̄} × IR

)
∩ riND◦(w̄,−1) 6= ∅.

In view of this and [14, Corollary 3], we obtain that {
(
A−1{Ax̄} × IR

)
, ND◦(w̄,−1)}

is boundedly linearly regular. It follows from Theorem 3.8 that F satisfies the KL

property at (x̄, γ(x̄)) with exponent 1
2
. Since f(x) = inft∈IR F (x, t), we see from

Corollary 3.4 that f satisfies the KL property at x̄ with exponent 1
2
.

While checking C2-cone reducibility directly using the definition can be difficult,

a sufficient condition related to standard constraint qualifications was given in [101,

Proposition 3.2].15 Specifically, let K ⊆ Y be a C2-cone reducible closed convex set

and G : X→ Y be a twice continuously differentiable function. If G(x̄) ∈ K and G is

nondegenerate at x̄ in the sense that

DG(x̄)X +
(
TK(G(x̄)) ∩

[
− TK(G(x̄))

])
= Y, (3.73)

then G−1(K) is a C2-cone reducible set. In particular, if g1, . . . , gm are C2 functions

with {∇gi(x̄) : i ∈ I(x̄)} being linearly independent, where I(x̄) := {i : gi(x̄) = 0},

then the set {x : gi(x) ≤ 0, i = 1, . . . ,m} is C2-cone reducible at x̄.

We will now present a few concrete examples of functions to which Theorem 3.8

and Corollary 3.5 can be applied, taking advantage of the aforementioned sufficient

condition (3.73) for checking C2-cone reducibility.

15 The quoted result is for C1-cone reducibility. However, it is apparent from the proof how to
adapt the result for C2-cone reducibility.
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Example 3.2. Let ` : Y→ IR be a function that is strongly convex on any compact

convex set and has locally Lipschitz gradient, A : X→ Y be a linear map, and v ∈ X.

(i) (Entropy-like regularization) Let X = IRn and Y = IRm. Denote

p(x) =


n∑
i=1

xi log(xi)− (
n∑
i=1

xi) log(
n∑
i=1

xi) if x ∈ IRn
+,

∞ else,

with the convention that 0 log 0 = 0. This function is proper closed convex and

arises in the study of maximum entropy optimization [100, Example 11.12]. We

claim that f(x) = `(Ax) + 〈v, x〉+ p(x) satisfies the KL property with exponent

1
2

at any stationary point x̄. To see this, recall from [100, Example 11.12] that

p(x) = σD(x), where D = {x ∈ IRn : g(x) ≤ 0},

and g(x) = log(
∑n

i=1 e
xi). Then we have from Theorem 3.8 that −A∗∇`(Ax̄)−

v ∈ D. Moreover, for all x ∈ D, ∇g(x) = ( ex1∑n
i=1 e

xi
, . . . , exn∑n

i=1 e
xi

) 6= 0. Thus, in

view of the discussion preceding this example, D is C2-cone reducible. Finally,

notice that for any x ∈ D, the set

ND(x) =

{⋃
λ≥0 λ{∇g(x)} if g(x) = 0,

{0} if g(x) < 0,

is polyhedral, and hence, {A−1{Ax̄}, ND(−A∗∇`(Ax̄)−v)} is boundedly linearly

regular [13, Corollary 5.26]. So, Theorem 3.8 implies that f satisfies the KL

property with exponent 1
2

at any stationary point x̄.

(ii) (Positive semidefinite cone constraints) Let X = Sn and Y = IRm. Using

the C2-cone reducibility of Sn+, one can see that f(X) = `(AX)+〈V,X〉+δSn+(X)

satisfies the KL property with exponent 1
2

at any stationary point X̄ under the
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relative interior condition A−1{AX̄} ∩ ri
(
N−Sn+(−A∗∇`(AX̄)− V )

)
6= ∅. We

note that this result has also been derived in [44] via a different approach.

(iii) (Schatten p-norm regularization) Let X = Sn and Y = IRm. Let p ∈

[1, 2] ∪ {∞} and consider the following optimization model with Schatten p-

norm regularization:

f(X) = `(AX) + 〈V,X〉+ τ‖X‖p for all X ∈ Sn,

where ‖X‖p =
(∑n

i=1 |λi(X)|p
) 1
p and λn(X) ≥ λn−1(X) ≥ · · · ≥ λ1(X) are

eigenvalues of X. The dual norm of ‖ · ‖p is the Schatten q-norm with 1
p

+ 1
q

= 1

where q ∈ {1} ∪ [2,∞]. Let g(λ1, . . . , λn) =
(∑n

i=1 |λi|q
) 1
q . It can be directly

verified that g is convex, symmetric and C2-cone reducible. So, ‖X‖q = g(λ(X))

is also C2-cone reducible [43, Proposition 3.2]. Thus, from Corollary 3.5, f

satisfies the KL property with exponent 1
2

at any nonzero stationary point X̄

under the relative interior condition (3.72) with γ(X) = ‖X‖p.

3.5 KL exponents via inf-projection for some non-

convex models

3.5.1 Difference-of-convex functions

In this section, we study a relationship between the KL exponents of the difference-

of-convex (DC) function f in (3.31) and the auxiliary function F in (3.32). In [79,

Theorem 4.1], it was shown that if f in (3.31) satisfies the KL property at x̄ ∈ dom ∂f

with exponent 1
2

and P2 has globally Lipschitz gradient, then F in (3.32) satisfies

the KL property at (x̄,∇P2(Ax̄)) ∈ dom ∂F with exponent 1
2
. Here we study the

converse implication as a corollary to Theorem 3.4.
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Theorem 3.9 (KL exponent of DC functions). Suppose that f and F are defined

in (3.31) and (3.32) respectively. If F is a KL function with exponent α ∈ [0, 1), then

f is a KL function with exponent α.

Proof. Let x̄ ∈ dom ∂f . We will show that f satisfies the KL property at x̄ with

exponent α.

Note that we have dom ∂f = dom ∂P1 thanks to [100, Corollary 10.9] and the fact

that continuous convex functions are locally Lipschitz continuous. Hence, we actually

have x̄ ∈ dom ∂P1.

Now, using [100, Exercise 8.8] and [100, Proposition 10.5], we have for any

ξ̄ ∈ ∂P2(Ax̄) that

∂F (x̄, ξ̄) =

[
∂P1(x̄)−A∗ξ̄
∂P ∗2 (ξ̄)−Ax̄

]
⊇
[
∂P1(x̄)−A∗ξ̄

0

]
. (3.74)

where the inclusion follows from the fact that ∂P ∗2 = ∂P−1
2 (see [100, Proposition 11.3]).

Since x̄ ∈ dom ∂P1, we see further from (3.74) that {x̄} × ∂P2(Ax̄) ⊆ dom ∂F .

Then condition (i) of Theorem 3.4 holds because one can show using (2.1) that

Arg miny F (x̄, y) = ∂P2(Ax̄). On the other hand, the assumption on KL property

of F shows that condition (ii) of Theorem 3.4 holds. Now, it remains to prove that

F is level-bounded in y locally uniformly in x before we can apply Theorem 3.4 to

establish the desired KL property.

To this end, we will show that for any x∗ ∈ X and β ∈ IR, the following set is

bounded:

{(x, y) : ‖x− x∗‖ ≤ 1, F (x, y) ≤ β}. (3.75)

Suppose to the contrary that the above set is unbounded for some x∗ and β. Then

there exists a sequence

{(xk, yk)} ⊆ {(x, y) : ‖x− x∗‖ ≤ 1, F (x, y) ≤ β} (3.76)
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with ‖yk‖ → ∞. Passing to a subsequence if necessary, we may assume without loss

of generality that xk → x̃ for some x̃ ∈ B(x∗, 1) and that limk
yk

‖yk‖ exists. Denote

this latter limit by d. Then ‖d‖ = 1. Next, using the definition of {(xk, yk)} in (3.76)

and the definition of F , we have for all sufficiently large k that

β ≥ F (xk, yk) = P1(xk)− 〈Axk, yk〉+ P ∗2 (yk) ≥ f(xk) (3.77)

⇒ β

‖yk‖
≥ P1(xk)

‖yk‖
−
〈
Axk, yk

‖yk‖

〉
+
P ∗2 (yk)

‖yk‖
, (3.78)

where the second inequality in (3.77) follows from the definition of Fenchel conjugate.

Then we see in particular from (3.77) and the closedness of f that x̃ ∈ dom f = domP1.

Using this, the closedness of P1 and the definition of d, we have upon passing to limit

inferior in (3.78) that

0 ≥ −〈Ax̃, d〉+ lim inf
k→∞

P ∗2 (yk)

‖yk‖
(a)

≥ −〈Ax̃, d〉+ (P ∗2 )∞(d)

(b)
= −〈Ax̃, d〉+ σdomP2(d) = −〈Ax̃, d〉+ sup

x∈domP2

{〈x, d〉},

where (a) follows from [9, Theorem 2.5.1] and (b) follows from [9, Theorem 2.5.4].

Since domP2 = Y, we deduce from the above inequality that d = 0, which contradicts

the fact that ‖d‖ = 1. Thus, we have shown that (3.75) is bounded for any x∗ ∈ X

and any β ∈ IR, which implies that F is level-bounded in y locally uniformly in x.

This completes the proof.

3.5.2 Bregman envelope

In this section, we discuss the KL exponent of the Bregman envelope (3.33) of a

proper closed function. We consider the following assumption on φ in (3.34), which

is general enough for the corresponding (3.33) to include the celebrated Moreau

envelope and the forward-backward envelope introduced in [104] as special cases.

Further comments on this assumption will be given in Remark 3.9 below.
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Assumption 3.1. The function φ in (3.34) is twice continuously differentiable and

there exists a1 > 0 such that for all x ∈ X,

∇2φ(x)− a1I � 0; (3.79)

here I is the identity map, and for a linear map A : X → X, A � 0 means it is

positive semidefinite, i.e., A = A∗ and 〈h,Ah〉 ≥ 0 for all h ∈ X.

Given a proper closed function f and a function φ satisfying Assumption 3.1, we

first analyze the KL property of the following auxiliary function:

F (x, y) := f(y) + IBφ(y, x) (3.80)

with IBφ defined in (3.34). For this function, applying [100, Proposition 8.8] and [100,

Proposition 10.5], we have the following formula for ∂F at any x ∈ X and y ∈ dom f ,

∂F (x, y) =

[
−∇2φ(x)(y − x)

∂f(y) +∇φ(y)−∇φ(x)

]
. (3.81)

This formula will be used repeatedly in our discussion below.

Lemma 3.4. Let f : X→ IR ∪ {∞} be a KL function with exponent α ∈ [1
2
, 1). Let

F be defined in (3.80) with φ satisfying Assumption 3.1. Then F is a KL function

with exponent α.

Proof. Thanks to [75, Lemma 2.1], it suffices to show that F satisfies the KL property

at any point (x, y) with 0 ∈ ∂F (x, y). Let (x̄, ȳ) be such that 0 ∈ ∂F (x̄, ȳ). Then in

view of (3.81), we see that 0 ∈ ∂F (x̄, ȳ) implies that ∇2φ(x̄)(ȳ − x̄) = 0. Combining

this with (3.79) we deduce that ȳ = x̄.

Next, since f is a KL function with exponent α, there exist c, η, ε > 0 such that

1

c
dist

1
α (0, ∂f(y)) ≥ f(y)− f(x̄) (3.82)

whenever y ∈ B(x̄, ε) ∩ dom ∂f and f(y) < f(x̄) + η. Since φ is twice continuously

differentiable, by shrinking ε further if necessary, we see that there exists b1 > a1 with
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a1 being as in (3.79) such that for any (x, y) ∈ B((x̄, x̄), ε), there exists x0 ∈ B(x̄, ε)

so that

‖∇φ(y)−∇φ(x)‖ ≤ b1‖y−x‖ and 〈y−x,∇φ(y)−∇φ(x)〉 = 〈y−x, [∇2φ(x0)](y−x)〉.

To the second relation in the above display, apply Cauchy-Schwartz inequality to the

left hand side and apply (3.79) to the right hand side to obtain ‖y − x‖‖∇φ(x) −

∇φ(y)‖ ≥ a1‖y − x‖2. Combining this with the first relation in the above display, we

obtain that

b1‖y − x‖ ≥ ‖∇φ(y)−∇φ(x)‖ ≥ a1‖y − x‖. (3.83)

Now, combining (3.81) with [75, Lemma 2.2], we deduce that there exists C0 > 0

such that for (x, y) ∈ B((x̄, x̄), ε) with y ∈ dom ∂f ,

dist
1
α (0, ∂F (x, y)) ≥ C0

(
‖∇2φ(x)(y − x)‖

1
α + inf

ξ∈∂f(y)
‖ξ +∇φ(y)−∇φ(x)‖

1
α

)
(a)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α + (a1b

−1
1 )

1
α inf
ξ∈∂f(y)

‖ξ +∇φ(y)−∇φ(x)‖
1
α

)
(b)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α + (a1b

−1
1 )

1
α inf
ξ∈∂f(y)

η1‖ξ‖
1
α − (a1b

−1
1 )

1
αη2‖∇φ(y)−∇φ(x)‖

1
α

)
(c)

≥ C0

(
a

1
α
1 ‖y − x‖

1
α + (a1b

−1
1 )

1
α inf
ξ∈∂f(y)

η1‖ξ‖
1
α − a

1
α
1 η2‖y − x‖

1
α

)

≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖

1
α + ‖y − x‖

1
α

)
,

(3.84)

where (a) follows from (3.79) and the fact that
(
a1
b1

) 1
α
< 1, (b) follows from [75,

Lemma 3.1] for some η1 > 0 and η2 ∈ (0, 1), (c) follows from the first inequality in

(3.83), and the last inequality holds with C1 := C0 min{(1− η2)a
1
α
1 , η1(a1b

−1
1 )

1
α} > 0.

Next, since ∇φ is Lipschitz continuous on B(x̄, ε/2) with Lipschitz constant b1

in view of (3.83), by shrinking ε further, we may assume 2b1ε
2 < 1 and that for any
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(x, y) ∈ B((x̄, x̄), ε),

0 ≤ IBφ(y, x) = φ(y)− φ(x)− 〈∇φ(x), y − x〉 ≤ b1

2
‖y − x‖2 ≤ b1

2
(2ε)2 < 1, (3.85)

where the first inequality follows from the convexity of φ. Combining this with (3.84),

we deduce further that for (x, y) ∈ B((x̄, x̄), ε) with y ∈ dom ∂f and F (x, y) <

F (x̄, x̄) + η,

dist
1
α (0, ∂F (x, y)) ≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖

1
α +

(
2b−1

1 IBφ(y, x)
) 1

2α

)
(a)

≥ C1

(
inf

ξ∈∂f(y)
‖ξ‖

1
α + (2b−1

1 )
1
2α IBφ(y, x)

)
(b)
= C1c

(
inf

ξ∈∂f(y)
c−1‖ξ‖

1
α + (2b−1

1 )
1
2α c−1IBφ(y, x)

)
(c)

≥ C2

(
inf

ξ∈∂f(y)
c−1‖ξ‖

1
α + IBφ(y, x)

)
(d)

≥ C2 (f(y)− f(x̄) + IBφ(y, x))

= C2 (F (x, y)− F (x̄, x̄))

where (a) holds because 1
2α
≤ 1 and IBφ(y, x) < 1, thanks to (3.85), the constant c for

(b) comes from (3.82), (c) holds with C2 := C1cmin{1, (2b−1
1 )

1
2α c−1}, (d) follows from

(3.82) because (x, y) ∈ B((x̄, x̄), ε), y ∈ dom ∂f and f(y) ≤ F (x, y) < F (x̄, x̄) + η =

f(x̄) + η, and the last equality holds because f(x̄) = F (x̄, x̄). This completes the

proof.

We are now ready to analyze the KL property of the Bregman envelope Fφ in

(3.33).

Theorem 3.10 (KL exponent of Bregman envelope). Let f : X → IR ∪ {∞}

be a proper closed function with inf f > −∞. Suppose that φ satisfies Assumption

3.1 and that f is a KL function with exponent α ∈ [1
2
, 1). Then Fφ defined in (3.33)

is a KL function with exponent α.
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Proof. Let F be defined as in (3.80). We will use Theorem 3.4 to deduce the KL

exponent of Fφ from that of F . To this end, we need to check all the conditions

required by Theorem 3.4.

First, we claim that F is level-bounded in y locally uniformly in x. To prove this,

fix any x0 ∈ X and t ∈ IR. Define

Ux0 := {(x, y) : ‖x− x0‖ ≤ 1, F (x, y) ≤ t}.

Thus, it suffices to show that Ux0 is bounded. To this end, note that φ is strongly

convex with modulus a1 according to Assumption 3.1. We have from this and the

definition of Bregman distance that for any (x, y) ∈ Ux0 ,

a1

2
‖x− y‖2 ≤ IBφ(y, x).

Since inf f > −∞ by assumption, we deduce further that for any (x, y) ∈ Ux0 ,

inf f +
a1

2
‖x− y‖2 ≤ inf f + IBφ(y, x) ≤ f(y) + IBφ(y, x) = F (x, y) ≤ t.

Since x ∈ B(x0, 1), we deduce from the above inequality that Ux0 is bounded. Thus,

we have shown that F is level-bounded in y locally uniformly in x.

Next, using [100, Exercise 8.8], we have for any x ∈ dom ∂Fφ and any ȳ ∈

Arg miny F (x, y) that

0 ∈ ∂f(ȳ) +∇IBφ(·, x)(ȳ),

which implies that ∂f(ȳ) 6= ∅. This together with (3.81) implies that ∂F (x, ȳ) 6= ∅

for any such x and ȳ. In particular, condition (i) in Theorem 3.4 is satisfied.

Finally, note that condition (ii) in Theorem 3.4 is also satisfied thanks to

Lemma 3.4. Thus, we deduce from Theorem 3.4 that Fφ satisfies the KL prop-

erty with exponent α at any x ∈ dom ∂Fφ.
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Remark 3.9. The Bregman envelope (3.33) with φ satisfying Assumption 3.1 covers

several envelopes studied in the literature.

(i) When φ(·) = 1
2λ
‖ · ‖2 with some λ > 0, the function Fφ in (3.33) becomes

Fφ(x) = inf
y

{
f(y) +

1

2λ
‖x− y‖2

}
=: eλf(x).

This function is known as the Moreau envelope of f . In [75, Theorem 3.4], it

was proved that if f is a convex KL function with exponent α ∈ (0, 2
3
) that is

continuous on dom ∂f , then eλf is a KL function with exponent max
{

1
2
, α

2−2α

}
.

Here, without the convexity and continuity assumptions, we can obtain a tighter

estimate on the KL exponent of eλf via Theorem 3.10: if f is a KL function

with exponent α ∈ [1
2
, 1) and inf f > −∞, then eλf is a KL function with

exponent α.

(ii) If the function f in (3.33) takes the form h+g, where g is a proper closed function,

and h is twice continuously differentiable with Lipschitz gradient whose modulus

is less than 1
γ
, then the function φ(x) := 1

2γ
‖x‖2 − h(x) is convex and satisfies

Assumption 3.1. The forward-backward envelope ψγ of the function f = h+ g

was defined in [104] as follows (see also the discussion in [78, Section 2]):

ψγ(x) = inf
y
{h(y) + g(y) + IBφ(y, x)}.

In [78, Theorem 3.2], it was shown that if the first-order error bound condition

(or error bound condition in the sense of Luo-Tseng) holds for h + g, with h

being in addition analytic and g being in addition convex, continuous on dom ∂g,

subanalytic and bounded below, then ψγ is a KL function with exponent 1
2
. Here,

in view of Theorem 3.10, we can deduce the KL exponent of ψγ without the

convexity and (sub)analyticity assumptions: if f = h+ g is a KL function with
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exponent α ∈ [1
2
, 1) and inf f > −∞, g is a proper closed function, and h is

twice continuously differentiable with Lipschitz gradient whose modulus is less

than 1
γ

, then ψγ is a KL function with exponent α.

(iii) The φ(x) satisfying Assumption 3.1 can also be chosen as 1
4
‖x‖2 + 1

2
‖x‖2, which

was proposed in [84, Section 2.1].

3.5.3 Least squares loss function with rank constraint

In this section, we compute an explicit KL exponent of the function f in (3.35), which

can be rewritten as an inf-projection as in (3.36). Now, observe further that one can

relax the orthogonality constraint and introduce a penalty function without changing

the optimal value in (3.36), i.e.,

f(X) = inf
U

{
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2

F + δD̃(X,U)︸ ︷︷ ︸
f̃(X,U)

+δB̃(X,U)

}
, (3.86)

where

D̃ := {(X,U) ∈ IRm×n × IRm×(m−k) : UTX = 0},

B̃ := {(X,U) ∈ IRm×n × IRm×(m−k) : 0.5Im−k � UTU � 2Im−k},

where A � B means the matrix B − A is positive semidefinite. In view of (3.86), as

another application of Theorem 3.4, we will deduce the KL exponent of f via that of

f̃ + δB̃.

We now make use of Theorem 3.1 to deduce the KL exponent of f̃ + δB̃ in (3.86)

at points (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k. For notational simplicity, we

write

τ := mn+m(m− k) + n(m− k)− 1. (3.87)
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Lemma 3.5. The function f̃ + δB̃ given in (3.86) satisfies the KL property with

exponent 1 − 1
4·9τ at points (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k, where τ is

given in (3.87).

Proof. Define the function G : IRm×n × IRm×(m−k) → IR(m−k)×n by G(X,U) := UTX,

one can rewrite f̃ as

f̃(X,U) =
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2

F + δG−1{0}(X,U).

Now, for X ∈ IRm×n, U ∈ IRm×(m−k) and Λ ∈ IR(m−k)×n, define

f̃1(X,U,Λ) :=
1

2
‖AX − b‖2 +

1

2
‖UTU − Im−k‖2

F + tr(ΛTUTX).

Note that f̃1 is a polynomial of degree 4 on IRτ where τ is given in (3.87). We deduce

from [45, Theorem 4.2] that f̃1 is a KL function with exponent 1− 1
4·9τ .

Next, since (X̄, Ū) ∈ dom ∂(f̃ + δB̃) with ŪT Ū = Im−k, we see that (X̄, Ū) lies in

the interior of B̃. Thus, we have (X̄, Ū) ∈ dom ∂f̃ . We will now check the conditions

in Theorem 3.1 for the functions f̃1 and f̃ (in place of g1 and g, respectively) at (X̄, Ū).

Notice first that the functions (X,U) 7→ 1
2
‖AX − b‖2 + 1

2
‖UTU − Im−k‖2

F and G are

continuously differentiable, and G−1{0} is clearly nonempty. We next claim that the

linear map ∇G(X̄, Ū) is injective. To this end, let Y ∈ ker∇G(X̄, Ū). Then, using

the definition of the derivative mapping of G, for any (H,K) ∈ IRm×n × IRm×(m−k),

we have

0 = 〈(H,K), [∇G(X̄, Ū)](Y )〉 = 〈[DG(X̄, Ū)](H,K), Y 〉

= 〈ŪTH +KT X̄, Y 〉 = 〈H, ŪY 〉+ 〈X̄Y T , K〉.

Since H and K are arbitrary, we deduce that

ŪY = 0 and X̄Y T = 0.
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These together with ŪT Ū = Im−k imply that Y = 0. Thus, we have ker (∇G(X̄, Ū)) =

{0}, i.e., ∇G(X̄, Ū) is an injective linear map. Now, using Theorem 3.1, we conclude

that f̃ satisfies the KL property at (X̄, Ū) with exponent 1− 1
4·9τ .

Finally, since (X̄, Ū) ∈ int B̃, one can verify directly from the definition that, at

(X̄, Ū), the KL exponent of f̃ + δB̃ is the same as that of f̃ . This completes the

proof.

Now we are ready to compute the KL exponent of f in (3.35). Interestingly,

the derived KL exponent can be determined explicitly in terms of the number of

rows/columns of the matrix involved and the upper bound constant in the rank

constraint.

Theorem 3.11. The function f given in (3.35) is a KL function with exponent

1− 1
4·9τ , where τ is given in (3.87).

Proof. Notice that f(X) = infU(f̃ + δB̃)(X,U) and that for any X ∈ dom ∂f ,

Arg min
U

(f̃ + δB̃)(X,U) = {U : UTX = 0 and UTU = Im−k}, (3.88)

where f̃ + δB̃ is given in (3.86). We will check the conditions in Theorem 3.4 and

apply the theorem to deducing the KL exponent of f .

First, the function f̃ + δB̃ is clearly proper and closed. Next, for any fixed X, the

U with (X,U) ∈ D̃ ∩ B̃ satisfies 0.5Im−k � UTU � 2Im−k. This shows that f̃ + δB̃

is bounded in U locally uniformly in X. Furthermore, for any X ∈ dom ∂f and any

U ∈ Arg minU(f̃ + δB̃)(X,U), we have using (3.88) and [100, Exercise 8.8] that

∂(f̃ + δB̃)(X,U) = (A∗(AX − b), 0) +ND̃∩B̃(X,U) 6= ∅.

These together with (3.88) and Lemma 3.5 implies that the conditions required by

Theorem 3.4 are satisfied. Applying Theorem 3.4, we conclude that f is a KL function

of exponent 1− 1
4·9τ .
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Chapter 4

KL property in the study of SCPls

In this chapter, we show how KL property can be applied in the convergence analysis

of the SCPls method for multiply constrained difference-of-convex model introduced

in Section 1.2.

4.1 Convergence properties of SCPls

4.1.1 Convergence analysis in nonconvex settings

In this section, we analyze SCPls when F in (1.1) is possibly nonconvex. We first

prove some basic properties of the sequence generated by SCPls. Item (iii) in the

following theorem was already proved in [83, Theorem 3.7]; we include its proof here.

Theorem 4.1. Consider (1.1) and suppose that Assumptions 1.1 and 2.1 hold. Let

{(xt, Ltg)} be generated by SCPls. Then the following statements hold:

(i) The sequence {xt} is bounded.

(ii) The sequence {F̄ (xt+1, xt, Ltg)} is nonincreasing and convergent to some real

number F̄ ∗, where F̄ is defined as in (1.3). Moreover, for any t ≥ 1, we have

F̄ (xt+1, xt, Ltg) ≤ F̄ (xt, xt−1, Lt−1
g )− c

2
‖xt+1 − xt‖2. (4.1)

(iii) It holds that lim
t→∞
‖xt+1 − xt‖ = 0.

91



Proof. Let F be defined as in (1.1). Then for any t ≥ 0, we have

F (xt+1)− F (x0) =
t∑
i=0

[F (xi+1)− F (xi)] ≤ −
t∑
i=0

c

2
‖xi+1 − xi‖2 ≤ 0, (4.2)

where the first inequality follows from (2.11). Since F is level-bounded by Assump-

tion 1.1(iii), we deduce that {xt} is bounded and the conclusion in item (i) holds.

We now prove (ii). Since for any t ≥ 0, the xt+1 belongs to domF and is feasible

for (2.10) with (L̃f , L̃g) = (Ltf , L
t
g), it holds that

F̄ (xt+1, xt, Ltg) = F (xt+1) for t ≥ 0. (4.3)

This together with (2.11) shows that {F̄ (xt+1, xt, Ltg)} is nonincreasing and (4.1)

holds for all t ≥ 1. Also, thanks to (4.3) and Assumption 1.1, we have

inf
t
F̄ (xt+1, xt, Ltg) = inf

t
F (xt) ≥ inf F > −∞,

implying that {F̄ (xt+1, xt, Ltg)} is bounded from below. Thus, we conclude that the

sequence {F̄ (xt+1, xt, Ltg)} is convergent. We denote this limit by F̄ ∗.

Finally, we prove (iii). Since {F̄ (xt+1, xt, Ltg)} converges to F̄ ∗, passing to the

limit as t goes to infinity in (4.2) and invoking (4.3), we have

∞∑
i=0

c

2
‖xi+1 − xi‖2 ≤ F (x0)− lim

t→∞
F̄ (xt+1, xt, Ltg) = F (x0)− F̄ ∗ <∞.

Therefore, item (iii) holds. This completes the proof.

Next, we show that {λt} with each λt being a Lagrange multiplier1 of (2.10) with

(L̃f , L̃g) = (Ltf , L
t
g) is bounded and any cluster point of the sequence {xt} generated

by SCPls is a stationary point of (1.1) in the sense of Definition 2.2. The latter

conclusion was also proved in [83, Theorem 3.7]. We include its proof for completeness.

1 The existence of λt follows from Lemma 2.4(iv).
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Theorem 4.2. Consider (1.1) and suppose that Assumptions 1.1 and 2.1 hold. Let

{xt} be the sequence generated by SCPls and λt be a Lagrange multiplier of (2.10)

with (L̃f , L̃g) = (Ltf , L
t
g). Then the sequence {λt} is bounded and any accumulation

point of {xt} is a stationary point of (1.1).

Proof. Suppose to the contrary that {λt} is unbounded and let {λtj} be a subsequence

of {λt} such that ‖λtj‖ j→∞. Passing to a further subsequence if necessary, we may

assume that there exist λ∗ ∈ IRm
+ and x∗ such that lim

j→∞
λtj

‖λtj ‖ = λ∗ and lim
j→∞

xtj = x∗,

where the existence of x∗ is due to Theorem 4.1(i).

Using (2.13), the definition of L̃fg there and the fact (L̃f , L̃g) = (Ltf , L
t
g), we have

ηt :=
m∑
i=1

λti
[
∇gi(xt)+(Ltg)i(x

t+1 − xt)
]
∈−∇f(xt)− Ltf (xt+1 − xt)− ∂P1(xt+1) + ξt.

Since the functions ∇f , P1 and P2 are continuous, and {(xt, Ltf )} is bounded thanks

to Theorem 4.1(i) and Lemma 2.4(ii), we deduce from the above display that {ηt} is

bounded. Then, dividing ηtj by ‖λtj‖ and letting j →∞, using the continuity of ∇g

and Theorem 4.1(iii) together with Lemma 2.4(ii), we deduce further that

m∑
i=1

λ∗i∇gi(x∗) = 0. (4.4)

On the other hand, using (2.12) with (x̃, λ̃, L̃g) = (xt+1, λt, Ltg), the continuity of

∇gi for each i, Lemma 2.4(ii) and Theorem 4.1(iii), we see that λ∗i gi(x
∗) = 0 for all

i = 1, . . . ,m. This further implies that

λ∗i = 0 for i 6∈ I(x∗).

The above display and (4.4) imply that

∑
i∈I(x∗)

λ∗i∇gi(x∗) = 0.
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Combining this with MFCQ (Assumption 2.1) and recalling that λ∗ ∈ IRm
+ , we

conclude that λ∗i = 0 for i ∈ I(x∗). Therefore, we have λ∗ = 0, contradicting the fact

that ‖λ∗‖ = 1. Thus, the sequence {λt} is bounded.

For the second conclusion of this theorem, let x̄ be an accumulation point of

{xt} with lim
k→∞

xtk = x̄. Since {λt} is bounded, passing to a further subsequence if

necessary, we assume without loss of generality that lim
k→∞

λtk = λ̄ for some λ̄. Since

the sequence {(Ltf , Ltg, λt)} is bounded thanks to Lemma 2.4(ii) and the boundedness

of {λt}, using Theorem 4.1(iii), we have that lim
k→∞

(
Ltkf + 〈λtk , Ltkg 〉

)
(xtk+1 − xtk) = 0.

Using this fact together with the closedness of ∂P1 and ∂P2, the Lipschitz continuity

of ∇f and ∇g and Theorem 4.1(iii), we have upon passing to the limit as k goes to

infinity in (2.13) with (x̃, λ̃, L̃f , L̃g) = (xtk+1, λtk , Ltkf , L
tk
g ) and t = tk that

0 ∈ ∇f(x̄) + ∂P1(x̄)− ∂P2(x̄) +
m∑
i=1

λ̄i∇gi(x̄). (4.5)

On the other hand, using (2.12) with (x̃, λ̃, L̃g) = (xtk+1, λtk , Ltkg ) and t = tk,

letting k → ∞, we have upon using the continuity of ∇g, Theorem 4.1(iii) and

Lemma 2.4(ii) that

λ̄igi(x̄) = 0 for all i = 1, . . . ,m. (4.6)

Finally, since λt ≥ 0 for any t ≥ 0, we have λ̄ ≥ 0. Also, since gi is continuous for

each i and g(xt) ≤ 0 thanks to Step 3a) of SCPls, we have g(x̄) ≤ 0. These together

with (4.5) and (4.6) imply that x̄ is a stationary point of (1.1).

Lemma 4.1. Consider (1.1) and suppose that Assumptions 1.1 and 2.1 hold. Let

{(xt, Ltg)} be the sequence generated by SCPls and let Ω be the set of accumulation

points of the sequence {(xt+1, xt, Ltg)}. Then Ω 6= ∅ and F̄ ≡ F̄ ∗ on Ω, where F̄ is

defined as in (1.3) and F̄ ∗ is given in Theorem 4.1(ii).
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Proof. From Theorem 4.1(i) and Lemma 2.4(ii) we know that Ω 6= ∅. Fix any

(xΩ, yΩ, LΩ) ∈ Ω and let {(xtj+1, xtj , L
tj
g )} be a subsequence that converges with

lim
j→∞

(xtj+1, xtj , L
tj
g ) = (xΩ, yΩ, LΩ). Since each ∇gi is continuous and xtj+1 belongs to

domF and is feasible for (2.10) with t = tj and (L̃f , L̃g) = (L
tj
f , L

tj
g ), we have

g(xΩ) = lim
j→∞

g(xtj+1) ≤ 0, Ḡ(xΩ, yΩ, LΩ) = lim
j→∞

Ḡ(xtj+1, xtj , Ltjg ) ≤ 0 (4.7)

and F (xtj+1) = F̄ (xtj+1, xtj , L
tj
g ) for all j. Then, using the continuity of F on its

closed domain, we have

F (xΩ) = lim
j→∞

F (xtj+1) = lim
j→∞

F̄ (xtj+1, xtj , Ltjg ) = F̄ ∗,

where the last equality follows from Theorem 4.1(ii). Thus, we deduce that

F̄ (xΩ, yΩ, LΩ) = F (xΩ) = F̄ ∗,

where the first equality follows from (4.7). Since (xΩ, yΩ, LΩ) ∈ Ω is arbitrary, we

conclude that F̄ ≡ F̄ ∗ on Ω.

To analyze the global convergence properties of SCPls, we need a bound on

the subdifferential of F̄ in (1.3). To this end, we consider the following additional

differentiability assumption on gi.

Assumption 4.1. Each gi in (1.1) is twice continuously differentiable.

Lemma 4.2. Consider (1.1) and suppose that Assumption 4.1 holds. Let (x, y, w) ∈

IRn × IRn × IRm and assume that P2 is continuously differentiable around x. Then

∂F̄ (x, y, w) ⊇

∇f(x)−∇P2(x) + ∂P1(x) +
∑m

i=1 λi[∇gi(y) + wi(x− y)]∑m
i=1 λi[∇2gi(y)(x− y)− wi(x− y)]

1
2
‖x− y‖2λ

 (4.8)

whenever λ ∈ N−IRm+
(Ḡ(x, y, w)), where F̄ and Ḡ are defined as in (1.3).
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Proof. We only consider the case where (x, y, w) ∈ domF̄ , since (4.8) holds trivially

otherwise. Using [100, Exercise 8.8, Corollary 10.9, Proposition 10.5], we have

∂F̄ (x, y, w) ⊇ ∂̂F̄ (x, y, w) ⊇

∇f(x)−∇P2(x) + ∂̂P1(x)
0
0

+ ∂̂δḠ(·)≤0(x, y, w)

(a)
=

∇f(x)−∇P2(x) + ∂P1(x)
0
0

+ N̂Ḡ(·)≤0(x, y, w)

(b)

⊇

∇f(x)−∇P2(x) + ∂P1(x)
0
0

+
m∑
i=1

λi

 ∇gi(y) + wi(x− y)
∇2gi(y)(x− y)− wi(x− y)

1
2
‖x− y‖2ei

 ,

where (a) uses the convexity of P1 and [100, Proposition 8.12], ei ∈ IRm is the ith stan-

dard basis vector and (b) holds for any λ ∈ N̂−IRm+
(Ḡ(x, y, w)) = N−IRm+

(Ḡ(x, y, w)),

thanks to [100, Theorem 6.14].

We also need the following assumption to derive the desired bound on ∂F̄ . This

assumption was also used in [119] for analyzing the global convergence property of

the sequence generated by the proximal DCA with extrapolation (pDCAe).

Assumption 4.2. Each gi in (1.1) is smooth, and the P2 in (1.1) is continuously

differentiable on an open set Γ that contains all stationary points of (1.1). Moreover,

the function ∇P2 is locally Lipschitz continuous on Γ.

Using this assumption and Lemma 4.2, we can prove the following property of

∂F̄ .

Lemma 4.3. Consider (1.1) and suppose that Assumptions 1.1, 2.1, 4.1 and 4.2

hold. Let {(xt, Ltg)} be the sequence generated by SCPls and let F̄ be defined as in

(1.3). Then there exist κ > 0 and t ∈ N+ such that

dist(0, ∂F̄ (xt+1, xt, Ltg)) ≤ κ‖xt+1 − xt‖ for all t > t. (4.9)
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Proof. From Theorem 4.1(i), we know that {xt} is bounded. Thus, denoting the

set of accumulation points of {xt} as Ωx, we have that Ωx is compact and Ωx ⊆ Γ

thanks to Theorem 4.2, where Γ is the open set give in Assumption 4.2. Choose an

ε > 0 so that Γε := {x : dist(x,Ωx) < ε} ⊆ Γ and ∇P2 is Lipschitz continuous with

modulus LP2 on Γε, which exists thanks to the compactness of Ωx and Assumption 4.2.

Moreover, since Ωx is compact, from the definition of cluster points, we see that

there exists t0 ∈ N+ such that dist(xt,Ωx) < ε whenever t > t0. In particular, P2 is

continuously differentiable around each xt whenever t > t0. In addition, thanks to

Theorem 4.1(iii), we can further choose t > t0 + 1 such that for t > t, we have

‖xt+1 − xt‖2 ≤ ‖xt+1 − xt‖. (4.10)

Now, let λt be a Lagrange multiplier of (2.10) with (L̃f , L̃g) = (Ltf , L
t
g), which

exists thanks to Lemma 2.4(iv). Then it holds that λt ∈ N−IRm+
(Ḡ(xt+1, xt, Ltg)).

Therefore, using (4.8) with λ = λt for any t > t, we have that

∂F̄ (xt+1, xt, Ltg) ⊇

 J t∑m
i=1 λ

t
i

(
∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)

)
1
2
‖xt+1 − xt‖2λt

 (4.11)

with J t := ∇f(xt+1) + ∂P1(xt+1)−∇P2(xt+1) +
∑m

i=1 λ
t
i

(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
)
.

For this J t, using (2.13) with x̃ = xt+1 and recalling the definition of ξt, we have that

J t 3∇f(xt+1)−∇P2(xt+1) +
m∑
i=1

λti
(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
)

+

(
−∇f(xt)− Ltf (xt+1 − xt) +∇P2(xt)−

m∑
i=1

λti
(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
))

=∇f(xt+1)−∇f(xt) +∇P2(xt)−∇P2(xt+1)− Ltf (xt+1 − xt).
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Using this together with Cauchy-Schwarz inequality, for t > t, it holds that

‖J t‖2≤3

(
‖∇f(xt+1)−∇f(xt)‖2+‖∇P2(xt+1)−∇P2(xt)‖2+‖Ltf (xt+1−xt)‖2

)
(a)

≤ 3L2
f‖xt+1 − xt‖2 + 3L2

P2
‖xt+1 − xt‖2 + 3(Ltf )

2‖xt+1 − xt‖2

=

(
3L2

f + 3(Ltf )
2 + 3L2

P2

)
‖xt+1 − xt‖2,

(4.12)

where (a) makes use of the fact that t > t (so that xt ∈ Γε) and the Lipschitz

continuity of ∇f and ∇P2.

On the other hand, since {(xt, Ltg, λt)} is bounded thanks to Theorem 4.1(i),

Lemma 2.4(ii) and Theorem 4.2, using the continuity of ∇2gi for each i, there exists

D1 > 0 such that∥∥∥∥ m∑
i=1

λti

(
∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)

)∥∥∥∥2

≤m
m∑
i=1

(λti)
2‖∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)‖2≤D1‖xt+1 − xt‖2,

(4.13)

where the first inequality uses the Cauchy-Schwarz inequality.

Therefore, since {(Ltf , λt)} is bounded thanks to Lemma 2.4(ii) and Theorem 4.2,

combining (4.10), (4.11), (4.12) and (4.13), we conclude that there exists κ > 0 such

that (4.9) holds. This completes the proof.

Now, if we suppose in addition that F̄ is a KL function with exponent α ∈ [0, 1),

then using the results above and following the analysis in [6–8, 24, 79, 119], we can

deduce the convergence of the sequence {xt} generated by SCPls to a stationary point

of (1.1) and estimate its local convergence rate. Specifically, using similar proofs as

in [79,119], we have the following results. The lines of arguments are standard and

we omit its proof for brevity.
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Theorem 4.3 (Convergence rate of SCPls in nonconvex settings). Consider

(1.1). Suppose that Assumptions 1.1, 2.1, 4.1 and 4.2 hold, and F̄ in (1.3) is a KL

function. Let {(xt, Ltg)} be the sequence generated by SCPls and let Ω be the set

of accumulation points of the sequence {(xt+1, xt, Ltg)}. Then {xt} converges to a

stationary point x∗ of (1.1). Moreover, if F̄ satisfies the KL property with exponent

α ∈ [0, 1) at every point in Ω, then there exists t ∈ N+ such that the following

statements hold:

(i) If α = 0, then {xt} converges finitely, i.e., xt ≡ x∗ for t > t.

(ii) If α ∈ (0, 1
2
], then there exist a0 ∈ (0, 1) and a1 > 0 such that

‖xt − x∗‖ ≤ a1a
t
0 for t > t.

(iii) If α ∈ (1
2
, 1), then there exists a2 > 0 such that

‖xt − x∗‖ ≤ a2t
− 1−α

2α−1 for t > t.

4.1.2 Convergence analysis in convex settings

In this section, we study the convergence properties of SCPls under the following

convex settings:

Assumption 4.3. Suppose that in (1.1), P2 = 0 and {f, g1, . . . , gm} are convex.

Assumption 4.3 was also considered in [19, Section 3.2.3] for analyzing MBA,

and in [19, Section 4] for its line search variant Multiproxbt [19, Eq. (37)]. Here, we

would like to point out that the line search criterion in Multiproxbt [19, Eq. (37)]

is different from the criterion (2.11) used in SCPls. The criterion in Multiproxbt

relies on a local majorant of the objective function, while (2.11) uses the objective

function directly, and is originated from SpaRSA; see [120, Eq. (22)]. We will establish

global convergence of the whole sequence generated by SCPls in the above convex
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settings, under suitable assumptions. Unlike the analysis in the previous subsection,

our analysis here is based on KL property of F in (1.1) instead of that of F̄ , and

we will not assume g to be twice continuously differentiable (i.e., we do not require

Assumption 4.1). We start with two auxiliary lemmas. The first lemma is an analogue

of [24, Lemma 6] and follows immediately from an application of [22, Theorem 5] and

standard compactness argument. We omit the proof for brevity.

Lemma 4.4. Let f : IRn → (−∞,+∞] be a level-bounded proper closed convex

function with Λ := Arg min f 6= ∅. Let f := inf f . Suppose that f satisfies the KL

property at each point in Λ with exponent α ∈ [0, 1). Then there exist ε > 0, r0 > 0

and c0 > 0 such that

dist(x,Λ) ≤ c0(f(x)− f)1−α

for any x ∈ dom∂f satisfying dist(x,Λ) ≤ ε and f ≤ f(x) < f + r0.

The next lemma is an analogue of Lemma 4.1 for F in (1.1).

Lemma 4.5. Consider (1.1) and suppose that Assumptions 1.1 and 2.1 hold. Let

{xt} be the sequence generated by SCPls for (1.1) and let Ωx be the set of accumulation

point of {xt}. Then the following statements hold:

(i) It holds that Ωx 6= ∅ and F ≡ F̄ ∗ on Ωx, where F is defined as in (1.1) and F̄ ∗

is given in Theorem 4.1(ii).

(ii) The sequence {F (xt)} is nonincreasing and convergent to F̄ ∗.

Proof. We note first from Theorem 4.1(i) that Ωx 6= ∅. In addition, since xt ∈ domF

and is feasible for (2.10) (with (t− 1, Lt−1
f , Lt−1

g ) in place of (t, L̃f , L̃g)), we have

F (xt) = f(xt) + P1(xt)− P2(xt) = F̄ (xt, xt−1, Lt−1
g ), for all t ≥ 1. (4.14)
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Fix any x∗ ∈ Ωx and let lim
j→∞

xtj = x∗. Using the continuity of F on its closed domain

and (4.14), we see that

F (x∗) = lim
j→∞

f(xtj) + P1(xtj)− P2(xtj) = lim
j→∞

F̄ (xtj , xtj−1, Ltj−1
g ) = F̄ ∗,

where the last equality makes use of Theorem 4.1(ii). This proves (i). The conclusion

in (ii) now follows immediately upon combining the above display and (4.14) with

Theorem 4.1(ii). This completes the proof.

Now we present our main result in this subsection.

Theorem 4.4 (Convergence rate of SCPls in convex settings). Consider (1.1)

and suppose that Assumptions 1.1, 2.1 and 4.3 hold. Let {xt} be the sequence generated

by SCPls. Then {xt} converges to a minimizer x∗ of (1.1). If in addition F in (1.1)

is a KL function with exponent α ∈ [0, 1), then the following statements hold:

(i) If α ∈ [0, 1
2
], then there exist c0 > 0, Q1 ∈ (0, 1) and t ∈ N+, such that

‖xt − x∗‖ ≤ c0Q
t
1 for t > t.

(ii) If α ∈ (1
2
, 1), then there exist c0 > 0 and t ∈ N+ such that

‖xt − x∗‖≤c0 t
− 1−α

2α−1 for t > t.

Proof. Let S := Arg minF for notational simplicity. Note that S 6= ∅ thanks to

Assumption 1.1. Since P2 = 0 and {f, g1, . . . , gm} are convex by Assumption 4.3,

using Theorem 4.2 and [99, Theorem 28.3], we see that

∅ 6= Ωx ⊆ S, (4.15)

where Ωx is as in Lemma 4.5. This together with Lemma 4.5 implies that F̄ ∗ = inf F .

Next, let λt be a Lagrange multiplier of (2.10) with (L̃f , L̃g) = (Ltf , L
t
g), which

exists thanks to Lemma 2.4(iv). Since P2 = 0 and g(xt) ≤ 0 for all t, for any x̄ ∈ S,
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using (2.14) with x = x̄, x̃ = xt+1, λ̃ = λt, L̃f = Ltf and L̃fg = Ltfg := Ltf + 〈λt, Ltg〉,

we deduce that

F (xt+1) ≤ f(xt) +
〈
∇f(xt), x̄− xt

〉
+ P1(x̄) +

Ltfg
2
‖x̄− xt‖2 −

Ltfg
2
‖x̄− xt+1‖2

+
m∑
i=1

λti
(
gi(x

t) + 〈∇gi(xt), x̄− xt〉
)
−
Ltf − Lf

2
‖xt+1 − xt‖2

(a)

≤ f(x̄) + P1(x̄) +
Ltfg
2
‖x̄− xt‖2 −

Ltfg
2
‖x̄− xt+1‖2 −

Ltf − Lf
2

‖xt+1 − xt‖2

(b)

≤ f(x̄) + P1(x̄) +
Ltfg
2
‖x̄− xt‖2 −

Ltfg
2
‖xt+1− x̄‖2 +

(Lf − Ltf )+

c
(F (xt)− F (xt+1))

≤ f(x̄) + P1(x̄) +
Ltfg
2
‖x̄− xt‖2 −

Ltfg
2
‖xt+1− x̄‖2 +

M0

c
(F (xt)− F (xt+1)),

where (a) holds because {f, g1, . . . , gm} are convex, and λti ≥ 0 and gi(x̄) ≤ 0 for all

i, (b) follows from (2.11), and the M0 in the last inequality is an upper bound of

{(Lf −Ltf )+}, which exists thanks to Lemma 2.4(ii). Rearranging terms in the above

inequality and noting F̄ ∗ = inf F = f(x̄) + P1(x̄) whenever x̄ ∈ S, we have for any

x̄ ∈ S that

F (xt+1)− F̄ ∗

Ltfg
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 +

M0

cLtfg

(
F (xt)− F (xt+1)

)
.

Let Lmax be the upper bound of {Ltfg} (which exists according to Lemma 2.4(ii) and

Theorem 4.2) and recall that Ltfg ≥ Ltf ≥ L
¯
> 0 for all t, where L

¯
is the one used in

Step 2 of SCPls. Then we have from the above display that for any x̄ ∈ S,

γ
(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 + θ

(
F (xt)− F (xt+1)

)
,

where γ := 1
Lmax

and θ := M0

cL
¯

. Rearranging terms in the above inequality, we have

(γ + θ)
(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 + θ

(
F (xt)− F̄ ∗

)
. (4.16)
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The inequality above in particular implies that for any x̄ ∈ S,

1

2
‖xt+1 − x̄‖2 ≤ 1

2
‖x̄− xt‖2 + θ

(
F (xt)− F̄ ∗

)
− (γ + θ)

(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 + (γ + θ)

(
F (xt)− F (xt+1)

)
,

(4.17)

where the last inequality holds because F̄ ∗ = inf F ≤ F (xt). Since {F (xt)−F (xt+1)}

is nonnegative and summable thanks to Lemma 4.5(ii), using (4.15), (4.17) and [62,

Proposition 1], we conclude that {xt} converges to a minimizer x∗ of (1.1).

Now, we suppose in addition that F is a KL function with exponent α ∈ [0, 1).

Let x̄t ∈ S satisfy ‖xt− x̄t‖ = dist(xt, S). Since x̄t ∈ S, it holds that −‖xt+1− x̄t‖2 ≤

−dist2(xt+1, S). Using this and applying (4.16) with x̄t in place of x̄ gives

(γ + θ)
(
F (xt+1)− F̄ ∗

)
≤ 1

2
dist2(xt, S)− 1

2
dist2(xt+1, S) + θ

(
F (xt)− F̄ ∗

)
. (4.18)

For notational simplicity, let

βt := F (xt)− F̄ ∗ +
1

2(γ + θ)
dist2(xt, S). (4.19)

Using this, rearranging terms and dividing γ + θ from both sides of (4.18), we have

βt+1 ≤
θ

γ + θ

(
F (xt)− F̄ ∗

)
+

1

2(γ + θ)
dist2(xt, S). (4.20)

Since F is a proper closed convex level-bounded KL function with exponent

α ∈ [0, 1), using Lemma 4.4, there exist 0 < ā < 1, c̄ > 0 and 0 < ε < 1 such that

dist(x, S)
1

1−α ≤ c̄
(
F (x)− F̄ ∗

)
(4.21)

for any x ∈ dom∂F satisfying dist(x, S) ≤ ε and F̄ ∗ ≤ F (x) < F̄ ∗ + ā.

Clearly, {xt} ⊂ dom∂F = {x : g(x) ≤ 0}. Next, since {xt} is bounded thanks to

Theorem 4.1(i), using (4.15), there exists t1 such that

dist(xt, S) ≤ dist(xt,Ωx) < ε, for t > t1. (4.22)
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On the other hand, using Lemma 4.5(ii), we see that there exists t2 such that

F̄ ∗ ≤ F (xt) < F̄ ∗ + ā, for t > t2. (4.23)

We now consider the cases when α ∈ [0, 1
2
] and α ∈ (1

2
, 1) separately.

Case (i) α ∈ [0, 1
2
]. Combining (4.21), (4.22) and (4.23), we conclude that for any

t > t3 := max{t1, t2},

dist2(xt, S) ≤ dist
1

1−α (xt, S) ≤ c̄
(
F (xt)− F̄ ∗

)
, (4.24)

where the first inequality holds because 1
1−α ≤ 2 and dist(xt, S) < ε < 1. Next, let

ζ := 2θ+c̄
2(γ+θ)+c̄

∈ (0, 1). Then one can show that

θ

γ + θ
+

(1− ζ)c̄

2(γ + θ)
= ζ. (4.25)

Using this and (4.20), we have for all t > t3 that

βt+1 ≤
θ

γ + θ
(F (xt)− F̄ ∗) +

1− ζ
2(γ + θ)

dist2(xt, S) +
ζ

2(γ + θ)
dist2(xt, S)

(a)

≤
(

θ

γ + θ
+

(1− ζ)c̄

2(γ + θ)

)
(F (xt)− F̄ ∗) +

ζ

2(γ + θ)
dist2(xt, S)

(b)
= ζ

(
F (xt)− F̄ ∗ +

1

2(γ + θ)
dist2(xt, S)

)
= ζβt,

where (a) follows from (4.24) and (b) follows from (4.25). Combining the above

inequality with the definition of βt in (4.19) gives

F (xt)− F̄ ∗ ≤ βt ≤ ζt−t3−1βt3+1 for t > t3. (4.26)

Then, for t > t3, we have

‖x∗ − xt‖ ≤
∞∑

j=t+1

‖xj − xj−1‖ ≤
∞∑

j=t+1

√
2

c

√
F (xj−1)− F (xj)

≤
∞∑

j=t+1

√
2

c

√
F (xj−1)− F̄ ∗ ≤

∞∑
j=t+1

√
2

c

√
ζj−t3−2βt3+1 =

√
2βt3+1

cζt3+1

(
√
ζ)t

1−
√
ζ
,
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where the second inequality follows from (2.11), the third inequality follows from

Lemma 4.5(ii) and the last inequality follows from (4.26). This proves (i).

Case (ii) α ∈ (1
2
, 1). Using (4.20) and the definition of βt in (4.19), for any

t > t3 = max{t1, t2}, we have

βt+1 ≤ βt −
γ

γ + θ

(
F (xt)− F̄ ∗

)
= βt −

1

2
c3

[
F (xt)− F̄ ∗ + c̄

(
1

2(γ + θ)

) 1
2(1−α) (

F (xt)− F̄ ∗
)]

(a)

≤ βt −
1

2
c3

[
F (xt)− F̄ ∗ +

(
1

2(γ + θ)

) 1
2(1−α)

dist(xt, S)
1

1−α

]

(b)

≤ βt −
1

2
c3

[(
F (xt)− F̄ ∗

) 1
2(1−α) +

(
1

2(γ + θ)
dist2(xt, S)

) 1
2(1−α)

]
,

where c3 = 2
γ
γ+θ

1+c̄( 1
2(γ+θ))

1
2(1−α)

, (a) follows from (4.21), (4.22), (4.23) and the fact that

{xt} ⊂ dom∂F = {x : g(x) ≤ 0}, and (b) holds because 0 ≤ F (xt) − F̄ ∗ < ā < 1

(thanks to (4.23)) and 1
2(1−α)

> 1. Since the mapping w 7→ w
1

2(1−α) is convex, for

t > t3, we obtain further that

βt+1 ≤ βt − c3c4

(
F (xt)− F̄ ∗ +

1

2(γ + θ)
dist2(xt, S)

) 1
2(1−α)

= βt − c3c4β
1

2(1−α)
t = βt

(
1− c3c4β

1
2(1−α)−1

t

)
,

where c4 := 2−
1

2(1−α) . Since 1
2(1−α)

− 1 = 2α−1
2(1−α)

> 0, using the above inequality

and [26, Lemma 4.1], we have

βt ≤
(
β
− 2α−1

2(1−α)
t3+1 +

2α− 1

2(1− α)
c3c4(t− t3 − 1)

)− 2(1−α)
2α−1

for t > t3. (4.27)
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Then, for any t > t3 and t′ ≥ 0, we have

‖xt − xt+t′‖2 ≤ 2
(
‖xt − x̄t‖2 + ‖x̄t − xt+t′‖2

)
(a)

≤ 2
(
‖xt − x̄t‖2 + ‖x̄t − xt‖2 + 2(γ + θ)

(
F (xt)− F (xt+t

′
)
))

= 2
(

2dist2(xt, S) + 2(γ + θ)
(
F (xt)− F (xt+t

′
)
))

(b)

≤ 2
(
2dist2(xt, S) + 4(γ + θ)

(
F (xt)− F̄ ∗

))
(c)
= 8(γ + θ)βt ≤ 8(γ + θ)

(
β
− 2α−1

2(1−α)
t3+1 +

2α− 1

2(1− α)
c3c4(t− t3 − 1)

)− 2(1−α)
2α−1

,

where (a) follows from (4.17) and the first equality uses the definition of x̄t (i.e., the

projection of xt onto S), (b) follows from Lemma 4.5(ii), (c) uses the definition of

βt and the last inequality follows from (4.27). Letting t′ → ∞ and recalling that

xt → x∗, we see that the conclusion in (ii) holds. This completes the proof.

Remark 4.1. From the proof of the above theorem, we can actually deduce that

the sequence
{
F (xt)− F̄ ∗ + c0dist2(xt, S)

}
(with some suitable c0 > 0) is Q-linearly

convergent when F is a KL function with exponent α ∈ [0, 1
2
], and is sublinearly

convergent when F is a KL function with exponent α ∈ (1
2
, 1); see (4.26) and (4.27).

4.2 KL properties of F̄ and F

In Section 4.1, we deduced the rate of convergence of the sequence {xt} generated by

SCPls under nonconvex and convex settings by imposing KL assumptions on F̄ in

(1.3) and F in (1.1), respectively; see Theorem 4.3 and Theorem 4.4. Note that the

assumptions in Theorem 4.3 and Theorem 4.4 for (1.1) are different as follows:

• Assumptions 1.1, 2.1, 4.1 and 4.2 are used in Theorem 4.3.

• Assumptions 1.1, 2.1, 4.3 are used in Theorem 4.4.
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Thus, it is interesting to find a relationship between KL exponent of F̄ and that of F

when all the above assumptions hold. In this regard, we have the following theorem.

Theorem 4.5 (Relation between the KL exponents of F̄ and F ). Let F be

defined as in (1.1) and suppose that Assumptions 1.1, 2.1, 4.1 and 4.3 hold. If F̄

defined in (1.3) is a KL function with exponent α ∈ [0, 1), then F is also a KL

function with exponent α.

Proof. Fix any x0 ∈ dom∂F and w0 ∈ IR. Using (4.8) and noting that P2 = 0

(Assumption 4.3), we have for any x ∈ dom∂F that

∂F̄ (x, x, w0)

⊇


∇f(x) + ∂P1(x) +

∑m
i=1 λi∇gi(x)

0
0

 : λ ∈ N−IRm+
(Ḡ(x, x, w0))


(a)
=


∇f(x) + ∂P1(x) +

∑m
i=1 λi∇gi(x)

0
0

 : λ ∈ N−IRm+
(g(x))


(b)
=

∇f(x) + ∂P1(x) +Ng(·)≤0(x)
0
0

 (c)
=

∂F (x)
0
0

 ,

(4.28)

where (a) follows from the fact that g(x) = Ḡ(x, x, w0), (b) follows from Assump-

tion 2.1 and [100, Theorem 6.14], and (c) holds due to [100, Exercise 8.8] and [99, The-

orem 23.8] together with the convexity of P1 and g and the continuity of P1. Using

this together with the assumption that x0 ∈ dom∂F , we have (x0, x0, w0) ∈ dom∂F̄ .

Then, from the KL assumption on F̄ , we see that there exist a > 0, ε > 0 and c0 > 0

such that

dist(0, ∂F̄ (x, y, w)) ≥ a(F̄ (x, y, w)− F̄ (x0, x0, w0))α (4.29)

whenever 0 < F̄ (x, y, w)− F̄ (x0, x0, w0) < c0 and ‖(x, y, w)− (x0, x0, w0)‖ ≤ ε.
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In addition, thanks to the fact that g(x) = Ḡ(x, x, w0), for any x ∈ dom∂F

satisfying F (x0) < F (x) < F (x0) + c0, we have

F̄ (x0, x0, w0) < F̄ (x, x, w0) < F̄ (x0, x0, w0) + c0. (4.30)

On the other hand, for x such that ‖x−x0‖ ≤ 1
2
ε, we have ‖(x, x, w0)−(x0, x0, w0)‖ ≤ ε.

Using this and (4.30), for x ∈ dom∂F satisfying ‖x− x0‖ ≤ 1
2
ε and F (x0) < F (x) <

F (x0) + c0, we have

dist(0, ∂F (x))
(a)

≥ dist(0, ∂F̄ (x, x, w0))
(b)

≥ a(F̄ (x, x, w0)− F̄ (x0, x0, w0))α

(c)
= a(F (x)− F (x0))α,

where (a) follows from (4.28), (b) uses (4.29) and (c) holds thanks to g(x) =

Ḡ(x, x, w0). This completes the proof.

4.3 Applications in compressed sensing

In this section, we consider applications of (1.1) and discuss how the various assump-

tions required in our analysis of SCPls can be verified. We focus on the problem of

compressed sensing, which attempts to reconstruct sparse signals from possibly noisy

low-dimensional measurements; see [36] for a recent review. We specifically look at

the following model:

min
x
‖x‖1 − µ‖x‖

s.t. `(Ax− b) ≤ δ,
(4.31)

where µ ∈ [0, 1], A ∈ IRq×n has full row rank, b ∈ IRq, ` : IRq → IR+ is an analytic

function whose gradient is Lipschitz continuous with modulus L` and satisfies `(0) = 0,

and δ ∈ (0, `(−b)). The ` in (4.31) is typically chosen according to different types

of noise. We will look at two specific choices in Section 4.3.1 and Section 4.3.2,

respectively.
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Problem (4.31) is a special case of (1.1) with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖

and g(x) = `(Ax− b)− δ.2 Then the F from (1.1) corresponding to (4.31) is

F (x) = ‖x‖1 − µ‖x‖+ δ`(A·−b)≤δ(x), (4.32)

and the F̄ from (1.3) corresponding to (4.31) is

F̄ (x, y, w) = ‖x‖1 − µ‖x‖+ δḠ(·)≤0(x, y, w) (4.33)

with

Ḡ(x, y, w) = `(Ay − b) + 〈AT∇`(Ay − b), x− y〉+
w

2
‖x− y‖2 − δ. (4.34)

Our next theorem concerns the KL conditions needed in Theorems 4.3 and 4.4.

Theorem 4.6. Let F and F̄ be defined as in (4.32) and (4.33), respectively, and let

Ξ and Υ be compact subsets of domF and dom F̄ , respectively. Then there exists

α ∈ [0, 1) so that F (resp., F̄ ) satisfies the KL property with exponent α at every

point in Ξ (resp., in Υ).

Proof. Let D0 := {x : `(Ax− b) ≤ δ} and D1 = {(x, y, w) : Ḡ(x, y, w) ≤ 0}, where

Ḡ is as in (4.34). Since ` and Ḡ are analytic, we have that D0 and D1 are semianalytic;

see [52, Page 596] for the definition.

On the other hand, since x 7→ ‖x‖1 − µ‖x‖ is semialgebraic, it holds that F0 :=

{(x, z) : z = ‖x‖1−µ‖x‖} and F1 := {(x, y, w, z) : z = ‖x‖1−µ‖x‖} are subanalytic

(see [52, Page 597(p2)] for the subanalyticity of F1). Therefore,

gph(F ) = F0 ∩ (D0 × IR) and gph(F̄ ) = F1 ∩ (D1 × IR)

are subanalytic, thanks to [52, Page 597(p1)&(p2)]. Also, the functions F and F̄ have

closed domains and are continuous on their respective domains. Thus, the desired

conclusion follows from [20, Theorem 3.1] and a standard compactness argument as

in the proof of [6, Lemma 1].

2 Note that {x : g(x) ≤ 0} 6= ∅ because A has full row rank and `(0) = 0 < δ.

109



We next focus on two common choices of ` in (4.31): `(·) = 1
2
‖ · ‖2 (for Gaussian

noise [17]) and `(·) = ‖ · ‖LL2,γ being the Lorentzian norm (for Cauchy noise [35]) for

some γ > 0. We will discuss how to verify the other assumptions necessary for the

applications of Theorem 4.3 or Theorem 4.4 to (4.31) with these two choices of `.

4.3.1 When `(·) = 1
2‖ · ‖

2

In this case, the model (4.31) becomes

min
x

‖x‖1 − µ‖x‖
s.t. 1

2
‖Ax− b‖2 ≤ δ,

(4.35)

and the corresponding F in (1.1) becomes:

F (x) = ‖x‖1 − µ‖x‖+ δg(·)≤0(x), (4.36)

with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖ and g(x) = 1
2
‖Ax− b‖2− δ for A, b, δ and µ

as in (4.31). Then, for (4.35), P1 and P2 are convex continuous, and Assumption 1.1(i)

and (ii) and Assumption 4.1 are satisfied. Moreover, A having full row rank and

δ ∈ (0, 1
2
‖b‖2) imply that Slater condition holds for (4.35). Hence, it holds that

{x : g(x) ≤ 0} 6= ∅, and we also have Assumption 2.1 hold, thanks to [25, Section 3.2,

Exercise 10]. In addition, this P2 satisfies Assumption 4.2 since its only possible point

of nondifferentiability (the origin) is not feasible thanks to the fact that δ < 1
2
‖b‖2.

Furthermore, the required KL conditions follow from Theorem 4.6.3 In order to apply

Theorem 4.3 (or Theorem 4.4), we now demonstrate how conditions can be imposed

so that Assumption 1.1(iii) (level-boundedness) is satisfied.

Proposition 4.1. Let F be defined as in (4.36). The following statements hold:

(i) If µ ∈ [0, 1), then F is level-bounded.

3 Specifically, if µ = 0, then F is convex and level-bounded, and the set of stationary points
(minimizers) is compact. We can then deduce from Theorem 4.6 that F is a KL function with
some exponent α ∈ [0, 1). On the other hand, the KL property required in the nonconvex case (see
Theorem 4.3) follows directly from Theorem 4.6.
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(ii) If µ = 1 and A does not have zero columns, then F is level-bounded.

Proof. Note first that if 0 ≤ µ < 1, then x 7→ ‖x‖1−µ‖x‖ is level-bounded and hence

(i) holds trivially. We next focus on the case where µ = 1.

Suppose to the contrary that there exists σ and {xt} ⊆ {x : F (x) ≤ σ} such that

‖xt‖ → ∞. By passing to a further subsequence if necessary, we may assume that

there exists d with ‖d‖ = 1 and lim
t→∞

xt

‖xt‖ = d. Since 1
2
‖Axt − b‖2 ≤ δ thanks to

F (xt) ≤ σ for each t, we have

1

2
‖Ad‖2 = lim

t→∞

1

2

‖Axt − b‖2

‖xt‖2
≤ lim

t→∞

δ

‖xt‖2
= 0. (4.37)

On the other hand, since F (xt) ≤ σ, it holds that

0 ≤ ‖xt‖1 − ‖xt‖ ≤ σ =⇒ 0 ≤ lim
t→∞

‖xt‖1 − ‖xt‖
‖xt‖

= ‖d‖1 − 1 ≤ 0.

This together with ‖d‖ = 1 implies that exactly one coordinate of d is nonzero. Since

A does not have zero columns, we obtain that ‖Ad‖ 6= 0, which contradicts (4.37).

Thus, the statement in (ii) holds.

Therefore, if the assumptions in the above proposition hold, one can apply

Theorem 4.3 or Theorem 4.4 to deducing the convergence rate of the sequence

generated by SCPls when applied to solving (4.35). When µ = 0 in (4.35), since

we assumed δ ∈ (0, 1
2
‖b‖2) and A has full row rank, we know from Remark 3.2

that x 7→ ‖x‖1 + δ 1
2
‖A(·)−b‖2≤δ(x) is a KL function with exponent 1

2
. Consequently,

the sequence {xt} generated by SCPls for (4.35) converges locally linearly. When

µ ∈ (0, 1], although no explicit KL exponent is known for the corresponding F̄ , we

still observe in our numerical experiments below that the sequence {xt} generated by

SCPls for (4.35) appears to converge linearly.
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4.3.2 When ` is the Lorentzian norm

Recall that, given γ > 0, the Lorentzian norm of a vector y ∈ IRq is defined as

‖y‖LL2,γ :=

q∑
i=1

log

(
1 +

y2
i

γ2

)
.

In this case, the model (4.31) becomes

min
x
‖x‖1 − µ‖x‖

s.t. ‖Ax− b‖LL2,γ ≤ δ,

(4.38)

and the corresponding F in (1.1) now takes the following form:

F (x) = ‖x‖1 − µ‖x‖+ δg(·)≤0(x), (4.39)

with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖ and g(x) = ‖Ax− b‖LL2,γ− δ for A, b, δ and

µ defined as in (4.31). One can show that the mapping z 7→ ‖z‖LL2,γ−δ has Lipschitz

gradient with modulus L` = 2
γ2

and is twice continuously differentiable. From these

one can readily see that P1 and P2 are convex continuous, and Assumption 1.1(i)

and (ii) and Assumption 4.1 are satisfied. Also, since A has full row rank and

δ ∈ (0, ‖b‖LL2,γ), we see that {x : g(x) ≤ 0} 6= ∅. In addition, this P2 satisfies

Assumption 4.2 since its only possible point of nondifferentiability is not feasible,

thanks to δ ∈ (0, ‖b‖LL2,γ). Furthermore, the required KL conditions follow from

Theorem 4.6. In order to apply Theorem 4.3, we show below that Assumption 2.1

holds and impose conditions so that Assumption 1.1(iii) is satisfied.

Proposition 4.2. Let F be defined as in (4.39). The following statements hold:

(i) The MFCQ holds in the whole feasible set of (4.38).

(ii) If µ ∈ [0, 1), then F is level-bounded.

(iii) If µ = 1 and A does not have zero columns, then F is level-bounded.
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Proof. For (i), using the definition of MFCQ, it suffices to show that for every feasible

point x with g(x) = 0, it holds that ∇g(x) 6= 0. Suppose to the contrary that there

exists x̂ such that g(x̂) = 0 and

∇g(x̂) = AT
(

2(Ax̂− b)1

γ2 + (Ax̂− b)2
1

, . . . ,
2(Ax̂− b)q

γ2 + (Ax̂− b)2
q

)T
= 0.

Since A is surjective, we deduce that
(

2(Ax̂−b)1
γ2+(Ax̂−b)21

, . . . , 2(Ax̂−b)q
γ2+(Ax̂−b)2q

)
= 0. This shows

that Ax̂ − b = 0 and thus g(x̂) = ‖Ax̂ − b‖LL2,γ − δ = −δ 6= 0, a contradiction.

Therefore, the MFCQ holds in the whole feasible set of (4.38).

The assertion in (ii) holds trivially. We now prove (iii). Suppose to the contrary

that there exist σ and {xt} ⊆ {x : F (x) ≤ σ} such that ‖xt‖ → ∞. By passing to

a further subsequence if necessary, we may assume that there exists d with ‖d‖ = 1

and d = lim
t→∞

xt

‖xt‖ . Since `(Axt − b) ≤ 0 thanks to F (xt) ≤ σ for each t, and the

Lorentzian norm is level-bounded, we see that there exists ξ such that ‖Axt − b‖ ≤ ξ

for all t. The rest of the proof is then the same as that of Proposition 4.1(ii).

Therefore, if the assumptions in the above proposition hold, one can apply

Theorem 4.3 to deducing the convergence rate of the sequence {xt} generated by

SCPls when applied to solving (4.38). Although no explicit KL exponent is known

for the corresponding F̄ , in our numerical experiments below, we observe empirically

that the sequence {xt} generated by SCPls for (4.38) appears to converge linearly.

4.3.3 Numerical experiments

In this subsection, we perform numerical experiments to illustrate the convergence

results of SCPls established in Section 4.1. We apply SCPls to (4.31) with ` being

either 1
2
‖ · ‖2 (as in (4.35)) or the Lorentzian norm (as in (4.38)). We also consider

the SCP in [83] in our experiments below.
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Algorithms and their parameters We consider the following algorithms:

(i) SCPls: We solve the corresponding subproblem (2.10) through a root-finding

scheme outlined in Section 4.3.4. Moreover, we let τ = 2, c = 10−4, L
¯

= 10−8,

L̄ = 108. For t = 0, we choose Lt,0f = 1 and Lt,0g = 1. For t ≥ 1, we choose:

Lt,0f = 1, Lt,0g =

{
max

{
10−8,min

{
〈∆x,∆g〉
‖∆x‖2 , 108

}}
if 〈∆x,∆g〉 ≥ 10−12,

max
{

10−8,min
{
Lt−1
g /τ, 108

}}
else,

where ∆x = xt− xt−1 and ∆g = ∇g(xt)−∇g(xt−1). We initialize SCPls at A†b

and terminate it when ‖xt+1 − xt‖ < 10−8 max{1, ‖xt+1‖}.

(ii) SCP: This was proposed in [83]. The subproblem of SCP is solved using a

root-finding scheme outlined in Section 4.3.4. We initialize SCP at A†b and

terminate it when ‖xt+1 − xt‖ < 10−8 max{1, ‖xt+1‖}.

Numerical results All codes are written in Matlab, and the experiments are

performed in Matlab 2019b on a 64-bit PC with an Intel(R) Core(TM) i7-4790 CPU

(3.60GHz) and 32GB of RAM.

For both models (4.35) and (4.38), we consider either µ = 0 or 1. In our tests,

we let q = 720i and n = 2560i with i = 5. We generate an A ∈ IRq×n with i.i.d

standard Gaussian entries, and then normalize this matrix so that each column of A

has unit norm. Then we choose a subset T of size s0 = [ q
9
] uniformly at random from

{1, 2, . . . , n} and an s0-sparse vector xorig having i.i.d. standard Gaussian entries on

T is generated.

For (4.35), we let b = Axorig + 0.01 · n̂ with n̂ ∈ IRq being a random vector

with i.i.d. standard Gaussian entries. We then set the δ in (4.35) to be 1
2
σ2 with

σ = 1.1‖0.01 · n̂‖.

For (4.38), we let b = Axorig + 0.01 · n̄ with n̄i ∼ Cauchy(0, 1), i.e., n̄i :=

tan(π(ñi − 1/2)) with ñ ∈ IRm being a random vector with i.i.d. entries uniformly
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chosen in [0, 1]. We set the δ in (4.38) to be 1.1‖0.01n̄‖LL2,γ with γ = 0.02.

We compare the approximate solution obtained by SCPls and the original sparse

solution in Figures 4.1 and 4.2 to illustrate the recovery ability of SCPls. In Figures 4.3

and 4.4, we plot ‖xt − xout‖ (in logarithmic scale) against the number of iterations,

where xt and xout are respectively the tth iterate and the approximate solution obtained

by the algorithm under study. As we can see, SCPls always appears to converge

linearly and is also faster than SCP.

Figure 4.1: Recovery results by solving model (4.35) with µ = 0 (left) and µ = 1
(right) via SCPls. The approximate solution obtained by SCPls is marked by asterisk,
and xorig is marked by circle.

Figure 4.2: Recovery results by solving model (4.38) with µ = 0 (left) and µ = 1
(right) via SCPls. The approximate solution obtained by SCPls is marked by asterisk,
and xorig is marked by circle.
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Figure 4.3: Plot of ‖xt − xout‖ (in log scale) for model (4.35) with µ = 0 (left) and
µ = 1 (right). The number in the parenthesis is the CPU time taken.

Figure 4.4: Plot of ‖xt − xout‖ (in log scale) for model (4.38) with µ = 0 (left) and
µ = 1 (right). The number in the parenthesis is the CPU time taken.

4.3.4 Exactly solving the subproblem of SCPls with P1 being
the `1 norm, P2 = 0 and m = 1

We discuss how the subproblem (2.10) that arises in our numerical tests when SCPls

is applied to (4.31) can be solved efficiently. Our approach is based on a root-

finding strategy for solving the dual, which was also adopted in [103] for solving the

subproblem that arises in the MBA variant there. Comparing with the subproblem

considered in [103], our subproblem has an additional quadratic term, which slightly

complicates the derivation and implementation.

At the tth iteration, the corresponding subproblem (2.10) that arises when SCPls
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is applied to (4.31) takes the following form:

min
x
‖x‖1 + α

2
‖x− y‖2

s.t. ‖x− s‖2 ≤ r,
(4.40)

where y, s ∈ IRn, α > 0 and r > 0.4

Recall that the Lagrangian function for (4.40) is given by

L̃(x, λ) = ‖x‖1 +
α

2
‖x− y‖2 + λ(‖x− s‖2 − r).

Using [99, Corollary 28.2.1, Theorem 28.3], we know that there exists (x∗, λ∗) with

λ∗ ≥ 0 such that x∗ is optimal for (4.40) and

min
x∈IRn

L̃(x, λ∗) = min
x∈IRn

‖x‖1 +
α

2
‖x− y‖2 + δ‖(·)−s‖2≤r(x).

If λ∗ = 0, then the solution x̌ of min
x∈IRn

‖x‖1 + α
2
‖x− y‖2 lies in {x : ‖x− s‖2 ≤ r} and

x̌ solves (4.40). Moreover, x̌ is given explicitly as sign(y) ◦max{|y| − 1
α
, 0}, where ◦

denotes the entrywise product, and the sign function, absolute value and maximum

are taken componentwise.

If λ∗ > 0, using [99, Theorem 28.3], we obtain that

0 ∈ ∂‖x∗‖1 + α(x∗ − y) + 2λ∗(x∗ − s) and ‖x∗ − s‖2 = r. (4.41)

Using the first relation in (4.41), we have

x∗ = Prox 1
α+2λ∗ ‖·‖1

(
α

α + 2λ∗
y +

2λ∗

α + 2λ∗
s

)
, (4.42)

where Proxh(u) := arg min
v∈IRn

{
h(v) + 1

2
‖u− v‖2

}
for a proper closed convex function h.

Plugging this into the second relation in (4.41), we see that λ∗ can be obtained by

4 The fact that r > 0 follows from Lemma 2.4(iii).
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solving the following one-dimensional nonsmooth equation and the solution x∗ can

then be recovered via (4.42):

∥∥∥∥Prox 1
α+2λ∗ ‖·‖1

(
α

α + 2λ∗
y +

2λ∗

α + 2λ∗
s

)
− s
∥∥∥∥2

= r.

Upon the transformation t∗ = α
α+2λ∗

, the above equation becomes piecewise linear

quadratic and can be solved efficiently by a standard root-finding procedure.

In passing, we note that a solution procedure for the subproblem that arises when

SCP is applied to (4.31) can be derived similarly, where the subproblem takes the

form

min
x
‖x‖1 − 〈ξ, x〉

s.t. ‖x− s‖2 ≤ r,

for some ξ, s ∈ IRn and r > 0. We omit the details for brevity.
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Chapter 5

KL property in `1/`2 Minimization

In this chapter, we will focus on the `1/`2 minimization problems (1.5) and (1.6), and

show how the KL property and KL exponent are applied to analyze the convergence

properties of the algorithms for solving (1.5) and (1.6) respectively.

5.1 Solution existence of model (1.5)

In this section, we establish the existence of optimal solutions to problem (1.5) under

suitable assumptions. A similar discussion was made in [97, Theorem 2.2], where the

existence of local minimizers was established under the strong null space property

(see [97, Definition 2.1]) of the sensing matrix A. It was indeed shown that any

sufficiently sparse solution of Ax = b is a local minimizer for problem (1.5), under

the strong null space property. Here, our discussion focuses on the existence of

globally optimal solutions, and our analysis is based on the spherical section property

(SSP) [114,128].

Definition 5.1 (Spherical section property [114, 128]). Let m, n be two positive

integers such that m < n. Let V be an (n−m)-dimensional subspace of IRn and s be

a positive integer. We say that V has the s-spherical section property if

inf
v∈V \{0}

‖v‖1

‖v‖
≥
√
m

s
.
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Remark 5.1. According to [128, Theorem 3.1], if A ∈ IRm×n (m < n) is a random

matrix with i.i.d. standard Gaussian entries, then its (n−m)-dimensional nullspace

has the s-spherical section property for s = c1(log(n/m) + 1) with probability at least

1− e−c0(n−m), where c0 and c1 are positive constants independent of m and n.

We now present our analysis. We first characterize the existence of unbounded

minimizing sequences of (1.5): recall that {xt} is called a minimizing sequence of

(1.5) if Axt = b for all t and limt→∞
‖xt‖1
‖xt‖ = ν∗cs. Our characterization is related to the

following auxiliary problem, where A is as in (1.5):

ν∗d := inf

{
‖d‖1

‖d‖
: Ad = 0, d 6= 0

}
. (5.1)

Lemma 5.1. Consider (1.5) and (5.1). Then ν∗cs = ν∗d if and only if there exists a

minimizing sequence of (1.5) that is unbounded.

Proof. We first suppose that there exists an unbounded minimizing sequence {xt}

of (1.5). By passing to a subsequence if necessary, we may assume without loss of

generality that ‖xt‖ → ∞ and that limt→∞
xt

‖xt‖ = x∗ for some x∗ with ‖x∗‖ = 1.

Then we have ‖x∗‖1 = ν∗cs using the definition of minimizing sequence, and

Ax∗ = lim
t→∞

Axt

‖xt‖
= lim

t→∞

b

‖xt‖
= 0. (5.2)

One can then see that

ν∗d ≤
‖x∗‖1

‖x∗‖
= ‖x∗‖1 = ν∗cs <∞. (5.3)

Next, fix any x such that Ax = b and choose any d 6= 0 satisfying Ad = 0 (these exist

thanks to ν∗d ≤ ν∗cs <∞). Then it holds that

ν∗cs ≤
‖x+ sd‖1

‖x+ sd‖
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for any s ∈ IR. It follows from the above display that

ν∗cs ≤ lim
s→∞

‖x+ sd‖1

‖x+ sd‖
=
‖d‖1

‖d‖
.

Then we have ν∗cs ≤ ν∗d by the arbitrariness of d. This together with (5.3) shows that

ν∗cs = ν∗d .

We next suppose that ν∗cs = ν∗d . Since ν∗cs < ∞ (thanks to A−1{b} 6= ∅), there

exists a sequence {dk} satisfying Adk = 0 and dk 6= 0 such that limk→∞
‖dk‖1
‖dk‖ = ν∗d .

Passing to a further subsequence if necessary, we may assume without loss of generality

that limk→∞
dk

‖dk‖ = d∗ for some d∗ with ‖d∗‖ = 1. It then follows that

Ad∗ = lim
k→∞

Adk

‖dk‖
= 0 and ‖d∗‖1 = lim

k→∞

∥∥∥∥ dk

‖dk‖

∥∥∥∥
1

= ν∗d .

Now, choose any x0 such that Ax0 = b and define xt = x0 + td∗ for each t = 1, 2, . . .

Then we have Axt = b for all t. Moreover ‖xt‖ → ∞ as t→∞ and

lim
t→∞

‖xt‖1

‖xt‖
=
‖d∗‖1

‖d∗‖
= ν∗d = ν∗cs.

Thus, {xt} is an unbounded minimizing sequence for (1.5). This completes the

proof.

We are now ready to present the theorem on solution existence for (1.5).

Theorem 5.1 (Solution existence for (1.5)). Consider (1.5). Suppose that kerA has

the s-spherical section property for some s > 0 and there exists x̃ ∈ IRn such that

‖x̃‖0 < m/s and Ax̃ = b. Then the optimal value ν∗cs of (1.5) is attainable, i.e., the

set of optimal solutions of (1.5) is nonempty.

Proof. According to the s-spherical property of kerA and the definition of ν∗d in (5.1),

we see that ν∗d ≥
√

m
s

. It then follows that

ν∗cs
(a)

≤ ‖x̃‖1

‖x̃‖
(b)

≤
√
‖x̃‖0

(c)
<

√
m

s
≤ ν∗d ,
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where (a) follows from the definition of ν∗cs and the fact that Ax̃ = b, (b) follows from

Cauchy-Schwarz inequality and (c) holds by our assumption. Invoking Lemma 5.1

and noting ν∗cs < ∞, we see that there is a bounded minimizing sequence {xt} for

(1.5). We can then pass to a convergent subsequence {xtj} so that limj→∞ x
tj = x∗

for some x∗ satisfying Ax∗ = b. Since b 6= 0, this means in particular that x∗ 6= 0. We

then have upon using the continuity of ‖·‖1‖·‖ at x∗ and the definition of minimizing

sequence that

‖x∗‖1

‖x∗‖
= lim

j→∞

‖xtj‖1

‖xtj‖
= ν∗cs.

This shows that x∗ is an optimal solution of (1.5). This completes the proof.

5.2 KL exponent of F in (1.11) and global conver-

gence of Algorithm 5.1

In this section, we discuss the KL exponent of (1.11) and its implication on the

convergence rate of the algorithm proposed in [116, Eq. 11] for solving (1.5). For

ease of reference, this algorithm is presented as Algorithm 5.1 below. It was shown

in [116] that if the sequence {xt} generated by this algorithm is bounded, then any

accumulation point is a stationary point of F in (1.11).

Algorithm 5.1. The algorithm proposed in [116, Eq. 11] for (1.5)

Step 0. Choose x0 with Ax0 = b and α > 0. Set ω0 = ‖x0‖1/‖x0‖ and t = 0.

Step 1. Solve the subproblem

xt+1 = arg min
x∈IRn

‖x‖1 −
ωt
‖xt‖
〈x, xt〉+

α

2
‖x− xt‖2

s.t. Ax = b.
(5.4)

Step 2. Compute ωt+1 = ‖xt+1‖1/‖xt+1‖. Update t← t+ 1 and go to Step 1.

Here, we first remark that if the sequence {xt} generated by Algorithm 5.1 is
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bounded, then it converges to a stationary point x∗ of F in (1.11). The argument is

standard (see [7, 8, 24]), making use of H1, H2, H3 in [8, Section 2.3]. We include

the proof here.

Proposition 5.1 (Global convergence of Algorithm 5.1). Consider (1.5). Let {xt}

be the sequence generated by Algorithm 5.1 and suppose that {xt} is bounded. Then

{xt} converges to a stationary point of F in (1.11).

Proof. First, according to [116, Lemma 1], the sequence {ωt} generated by Algo-

rithm 5.1 enjoys the following sufficient descent property:

ωt − ωt+1 ≥
α

2‖xt+1‖
‖xt+1 − xt‖2. (5.5)

Now, if we let λt denote a Lagrange multiplier of the subproblem (5.4) at iteration t,

one then see from the first-order optimality condition that

− ATλt +
‖xt‖1

‖xt‖2
xt − α(xt+1 − xt) ∈ ∂‖xt+1‖1. (5.6)

On the other hand, using (2.17) and noting that xt 6= 0 for all t, we have

1

‖xt+1‖
∂‖xt+1‖1 −

‖xt+1‖1

‖xt+1‖3
xt+1 +

ATλt

‖xt+1‖

= ∂
‖xt+1‖1

‖xt+1‖
+

ATλt

‖xt+1‖
⊂ ∂
‖xt+1‖1

‖xt+1‖
+NA−1{b}(x

t+1) = ∂F (xt+1),

where the last equality follows from [100, Corollary 10.9], the regularity at xt+1 of

‖·‖1
‖·‖ (see (2.17)) and δA−1{b}(·) (see [100, Theorem 6.9]), and the definition of F in

(1.11). Combining (5.6) and the above display, we obtain that

1

‖xt+1‖

(
‖xt‖1

‖xt‖2
xt − ‖x

t+1‖1

‖xt+1‖2
xt+1

)
− α

‖xt+1‖
(xt+1 − xt) ∈ ∂F (xt+1).
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On the other hand, since ‖xt‖ ≥ infy∈A−1{b} ‖y‖ > 0 for all t (thanks to Axt = b and

b 6= 0) and {xt} is bounded, we see that there exists C0 > 0 so that∥∥∥∥‖xt‖1

‖xt‖2
xt − ‖x

t+1‖1

‖xt+1‖2
xt+1

∥∥∥∥ ≤ C0‖xt+1 − xt‖ for all t.

Thus, in view of the above two displays, we conclude that

dist(0, ∂F (xt+1)) ≤ C0 + α

infy∈A−1{b} ‖y‖
‖xt+1 − xt‖ for all t.

Using the boundedness of {xt}, (5.5), the above display and the continuity of F on

its domain, we see that the conditions H1, H2, H3 in [8, Section 2.3] are satisfied.

Since F is clearly proper closed semi-algebraic and hence a KL function, we can

then invoke [8, Theorem 2.9] to conclude that {xt} converges to a stationary point of

F .

While it is routine to show that the sequence {xt} generated by Algorithm 5.1

is convergent when it is bounded, it is more challenging to deduce the asymptotic

convergence rate: the latter typically requires an estimate of the KL exponent of F in

(1.11), which was used in the above analysis. In what follows, we will show that the

KL exponent of F is 1
2
. To do this, we will first establish a calculus rule for deducing

the KL exponent of a fractional objective from the difference between the numerator

and (a suitable scaling of) the denominator: this is along the line of the calculus rules

for KL exponents developed in [75,79,124], and can be of independent interest.

5.2.1 KL exponent of F in (1.11)

Before proving our main result concerning the KL exponent of F in (1.11), we also

need the following simple proposition.

Proposition 5.2. Let p be a proper closed function, and let x̄ ∈ dom p be such that

p(x̄) > 0. Then the following statements hold.

124



(i) We have ∂(p2)(x) = 2p(x)∂p(x) for all x sufficiently close to x̄.

(ii) Suppose in addition that x̄ ∈ dom ∂(p2) and p2 satisfies the KL property at x̄

with exponent θ ∈ [0, 1). Then p satisfies the KL property at x̄ with exponent

θ ∈ [0, 1).

Proof. Since p(x̄) > 0 and p is closed, there exists ε > 0 so that

0 < p(x) <∞

whenever ‖x− x̄‖ ≤ ε and x ∈ dom p. Then we deduce from [89, Lemma 1] that

∂̂(p2)(x) = 2p(x)∂̂p(x) whenever x ∈ dom p and ‖x− x̄‖ ≤ ε. (5.7)

Using (5.7), and invoking the definition of limiting subdifferential and by shrinking

ε if necessary, we deduce that

∂(p2)(x) = 2p(x)∂p(x) whenever x ∈ dom p and ‖x− x̄‖ ≤ ε. (5.8)

In particular, if x̄ ∈ dom ∂(p2), then x̄ ∈ dom ∂p.

When p2 also satisfies the KL property at x̄ with exponent θ, by shrinking ε

further if necessary, we see that there exists c > 0 so that

dist(0, ∂(p2)(x)) ≥ c(p2(x)− p2(x̄))θ, (5.9)

whenever p2(x̄) < p2(x) < p2(x̄) + ε(2p(x̄) + ε) and ‖x− x̄‖ ≤ ε. Thus, for x ∈ dom ∂p

satisfying ‖x− x̄‖ ≤ ε and p(x̄) < p(x) < p(x̄) + ε, we have from (5.8) that

dist(0, ∂p(x)) =
1

2p(x)
dist(0, ∂(p2)(x)) ≥ 1

2p(x̄) + 2ε
dist(0, ∂(p2)(x))

(a)

≥ c

2p(x̄) + 2ε
(p2(x)− p2(x̄))θ =

c

2p(x̄) + 2ε
(p(x) + p(x̄))θ(p(x)− p(x̄))θ

≥ c[p(x̄)]θ

21−θ(p(x̄) + ε)
(p(x)− p(x̄))θ,

where (a) follows from (5.9). This completes the proof.
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We are now ready to show that the KL exponent of F in (1.11) is 1
2
. We remark

that if the set X := {x : 0 ∈ ∂F (x)} is empty, then this claim holds trivially in view

of [75, Lemma 2.1]. However, in general, one can have X 6= ∅. Indeed, according to

Theorem 5.1 and [100, Theorem 10.1], we have X 6= ∅ with high probability when A

is generated in a certain way.

Theorem 5.2. The function F in (1.11) is a KL function with exponent 1
2
.

Proof. In view of [75, Lemma 2.1], it suffices to look at the KL exponent at a

stationary point x̄ of F . For any x̄ satisfying 0 ∈ ∂F (x̄), we have F (x̄) > 0 since

b 6= 0. Moreover, we have 0 ∈ ∂(F 2)(x̄) in view of Proposition 5.2(i). Next, note that

the function

F1(x) := ‖x‖2
1 −
‖x̄‖2

1

‖x̄‖2
‖x‖2 + δA−1{b}(x)

can be written as minσ∈R{Qσ(x) + Pσ(x)}, where R = {u ∈ IRn : ui ∈ {1,−1} ∀i},

and Qσ are quadratic functions (nonconvex) and Pσ are polyhedral functions indexed

by σ: indeed, for each σ ∈ R, one can define Pσ as the indicator function of

the set {x : Ax = b, σ ◦ x ≥ 0}, where ◦ denotes the Hadamard product, and

Qσ(x) := (〈σ, x〉)2 − ‖x̄‖21
‖x̄‖2‖x‖

2. Then, in view of [75, Corollary 5.2], F1 is a KL

function with exponent 1
2
. Since the convex function ‖ · ‖2

1 is regular everywhere and

the convex set A−1{b} is regular at every x ∈ A−1{b} (thanks to [100, Theorem 6.9]),

we deduce using Theorem 3.3 that the function

x 7→ ‖x‖
2
1

‖x‖2
+ δA−1{b}(x)

satisfies the KL property at x̄ with exponent 1
2
. The desired conclusion now follows

from this and Proposition 5.2(ii).

Equipped with the result above, by following the line of arguments in [6, Theo-

rem 2], one can conclude further that the sequence {xt} generated by Algorithm 5.1
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converges locally linearly to a stationary point of F in (1.11) if the sequence is

bounded. The proof is standard and we omit it here for brevity.

Theorem 5.3 (Convergence rate of Algorithm 5.1). Consider (1.5). Let {xt} be the

sequence generated by Algorithm 5.1 and suppose that {xt} is bounded. Then {xt}

converges to a stationary point x∗ of F in (1.11) and there exist t ∈ N+, a0 ∈ (0, 1)

and a1 > 0 such that

‖xt − x∗‖ ≤ a1a
t
0 whenever t > t.

5.3 Compressed sensing with noise based on `1/`2

minimization

In the previous sections, we have been focusing on the model (1.5), which corresponds

to noiseless compressed sensing problems. In this section and the next, we will be

looking at (1.6). We will discuss conditions for existence of solutions and derive some

first-order optimality conditions for (1.6) in this section. An algorithm for solving

(1.6) will be proposed in the next section and will be shown to generate sequences

that cluster at “critical” points in the sense defined in this section, under suitable

assumptions.

5.3.1 Solution existence

Clearly, if q in (1.6) is in addition level-bounded, then the feasible set is compact

and hence the set of optimal solutions is nonempty. However, in applications such

as (1.7), (1.8) and (1.9), the corresponding q is not level-bounded. Here, we discuss

solution existence for (1.7) and (1.8). Our arguments are along the same line as those

in Section 5.1. We first present a lemma that establishes a relationship between the

problems (1.7), (1.8) and (5.1).
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Lemma 5.2. Consider (5.1) and (1.6) with q given as in (1.7) or (1.8). Then

ν∗ncs = ν∗d if and only if there exists a minimizing sequence of (1.6) that is unbounded.

The proof of this lemma is almost identical to that of Lemma 5.1. Here we omit

the details and only point out a slight difference concerning the derivation of (5.2).

Take (1.7) as an example and let {xt} be an unbounded minimizing sequence of it

with limt→∞
xt

‖xt‖ = x∗ for some x∗ satisfying ‖x∗‖ = 1. Then one can prove Ax∗ = 0

by using the facts that ‖Axt − b‖ ≤ σ for all t and ‖xt‖ → ∞. Similar deductions

can be done for (1.8).

Using Lemma 5.2, we can deduce solution existence based on the SSP of kerA

and the existence of a sparse feasible solution to (1.7) (or (1.8)). The corresponding

arguments are the same as those in Theorem 5.1 and we omit the proof for brevity.

Theorem 5.4 (Solution existence for (1.7) and (1.8)). Consider (1.6) with q given

as in (1.7) or (1.8). Suppose that kerA has the s-spherical section property and there

exists x̃ ∈ IRn such that ‖x̃‖0 < m/s and q(x̃) ≤ 0. Then the optimal value of (1.6)

is attainable.

5.3.2 Optimality conditions

We discuss first-order necessary optimality conditions for local minimizers. Our

analysis is based on the following standard constraint qualifications.

Definition 5.2 (Generalized Mangasarian-Fromovitz constraint qualifications). Con-

sider (1.6). We say that the general Mangasarian-Fromovitz constraint qualifications

(GMFCQ) holds at an x∗ satisfying q(x∗) ≤ 0 if the following statement holds:

• If q(x∗) = 0, then 0 /∈ ∂◦q(x∗).

The GMFCQ reduces to the standard MFCQ when q is smooth. One can then

see from Sections 5.1 and 5.2 of [125] that the GMFCQ holds at every x feasible for
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(1.7) and (1.8) for all positive σ and γ, because A is surjective. We next study the

GMFCQ for (1.9), in which A is also surjective.

Proposition 5.3. The GMFCQ holds in the whole feasible set of (1.9).

Proof. It is straightforward to see that the GMFCQ holds for x ∈ {x : q(x) < 0}.

Then it remains to consider those x satisfying q(x) = 0. Let q be as in (1.9) and x̄

satisfy q(x̄) = 0. Notice that a ξ ∈ ProjS(Ax̄− b) takes the following form:

ξj =

{
[Ax̄− b]j if j ∈ I∗,
0 otherwise,

where I∗ is an index set corresponding to the r-largest entries (in magnitude). Then

for any ξ ∈ ProjS(Ax̄− b), we have

〈Ax̄− b, ξ〉 = ‖ξ‖2,

‖Ax̄− b‖2 = ‖ξ‖2 + ‖Ax̄− b− ξ‖2

= ‖ξ‖2 + dist2(Ax̄− b, S)
(a)
= ‖ξ‖2 + σ2,

(5.10)

where (a) holds because 0 = q(x̄) = dist2(Ax̄− b, S)− σ2. Furthermore, since A is

surjective, we can deduce from [100, Example 8.53], [100, Exercise 10.7] and [100,

Theorem 8.49] that

∂◦q(x̄) = conv{2AT (Ax̄− b− ξ) : ξ ∈ ProjS(Ax̄− b)}.

Now, suppose to the contrary that 0 ∈ ∂◦q(x̄). Using Carathéodory’s theorem,

we see that there exist λi ≥ 0 and ξi ∈ ProjS(Ax̄ − b), i = 1, · · · ,m + 1 such that∑m+1
i=1 λi = 1 and

∑m+1
i=1 λiA

T (Ax̄− b− ξi) = 0. Since A is surjective, we then have

m+1∑
i=1

λi(Ax̄− b− ξi) = 0.
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Multiplying both sides of the above equality by (Ax̄− b)T , we obtain further that

0 =
m+1∑
i=1

λi〈Ax̄− b, Ax̄− b− ξi〉 =
m+1∑
i=1

λi[‖Ax̄− b‖2 − 〈Ax̄− b, ξi〉]

(a)
=

m+1∑
i=1

λi[‖ξi‖2 + σ2 − ‖ξi‖2] = σ2 > 0,

where (a) follows from (5.10) and the fact that ξi ∈ ProjS(Ax̄− b) for each i, and the

last equality holds because
∑m+1

i=1 λi = 1. This is a contradiction and thus we must

have 0 /∈ ∂◦q(x̄). This completes the proof.

In the next definition, we consider some notions of criticality. The first one is the

standard notion of stationarity while the second one involves the Clarke subdifferential.

Definition 5.3. Consider (1.6). We say that an x̄ ∈ IRn satisfying q(x̄) ≤ 0 is

(i) a stationary point of (1.6) if

0 ∈ ∂
(
‖·‖1
‖·‖ + δ[q≤0](·)

)
(x̄); (5.11)

(ii) a Clarke critical point of (1.6) if there exists λ̄ ≥ 0 such that

0 ∈ ∂ ‖x̄‖1‖x̄‖ + λ̄∂◦q(x̄) and λ̄q(x̄) = 0. (5.12)

As mentioned above, Definition 5.3(i) is standard and it is known that every local

minimizer of (1.6) is a stationary point; see [100, Theorem 10.1]. We next study some

relationships between these notions of criticality, and show in particular that every

local minimizer is Clarke critical when the GMFCQ holds.

Proposition 5.4 (Stationarity vs Clarke criticality). Consider (1.6) and let x̄ be

such that q(x̄) ≤ 0. Then the following statements hold.
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(i) If x̄ is a stationary point of (1.6) and the GMFCQ holds at x̄, then x̄ is a Clarke

critical point.

(ii) If x̄ is a Clarke critical point of (1.6) and q is regular at x̄, then x̄ is stationary.

Remark 5.2. Since local minimizers of (1.6) are stationary points, we see from

Proposition 5.4(i) that when the GMFCQ holds in the whole feasible set, local mini-

mizers are also Clarke critical.

Proof. Suppose that x̄ is a stationary point of (1.6) at which the GMFCQ holds.

Then (5.11) holds and we consider two cases.

Case 1: q(x̄) < 0. Since q is continuous, (5.11) implies 0 ∈ ∂ ‖x̄‖1‖x̄‖ and hence (5.12)

holds with λ̄ = 0. Thus, x̄ is a Clarke critical point.

Case 2: q(x̄) = 0. Since the GMFCQ holds for (1.6) at x̄, we see that 0 /∈ ∂◦q(x̄).

Then we can deduce from (5.11) and [100, Exercise 10.10] that

0 ∈ ∂ ‖x̄‖1

‖x̄‖
+N[q≤0](x̄)

(a)

⊆ ∂
‖x̄‖1

‖x̄‖
+
⋃
λ≥0

λ∂◦q(x̄),

where (a) follows from [27, Theorem 5.2.22], the first corollary to [41, Theorem 2.4.7]

and the fact that 0 /∈ ∂◦q(x̄). Thus, (5.12) holds with some λ̄ ≥ 0 (recall that

q(x̄) = 0), showing that x̄ is a Clarke critical point. This proves item (i).

We now prove item (ii). Suppose that x̄ is a Clarke critical point and that q is

regular at x̄. Then there exists λ̄ ≥ 0 so that (5.12) holds. We again consider two

cases.

Case 1: λ̄ = 0. In this case, we see from (5.12) that 0 ∈ ∂ ‖x̄‖1‖x̄‖ , which implies

0 ∈ ∂ ‖x̄‖1

‖x̄‖
(a)
= ∂̂
‖x̄‖1

‖x̄‖
⊆ ∂̂
‖x̄‖1

‖x̄‖
+ N̂[q≤0](x̄)

(b)

⊆ ∂̂

(
‖ · ‖1

‖ · ‖
+ δ[q≤0](·)

)
(x̄)

(c)

⊆ ∂

(
‖ · ‖1

‖ · ‖
+ δ[q≤0](·)

)
(x̄),
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where (a) follows from (2.17) and [100, Corollary 8.11], (b) holds thanks to [100,

Corollary 10.9], and (c) follows from [100, Theorem 8.6]. Thus, x̄ is a stationary

point.

Case 2: λ̄ > 0. In this case, we have from (5.12) that q(x̄) = 0. Since q is regular at

x̄, we see from [100, Corollary 8.11] and the discussion right after [100, Theorem 8.49]

that

∂̂q(x̄) = ∂q(x̄) = ∂◦q(x̄). (5.13)

Now, in view of (5.13), q(x̄) = 0 and [100, Proposition 10.3], we have

N̂[q≤0](x̄) ⊇
⋃
λ≥0

λ∂̂q(x̄) =
⋃
λ≥0

λ∂◦q(x̄). (5.14)

We then deduce that

∂

(
‖ · ‖1

‖ · ‖
+ δ[q≤0](·)

)
(x̄)

(a)

⊇ ∂̂
‖x̄‖1

‖x̄‖
+ N̂[q≤0](x̄)

(b)

⊇ ∂
‖x̄‖1

‖x̄‖
+
⋃
λ≥0

λ∂◦q(x̄),

where (a) follows from [100, Theorem 8.6] and [100, Corollary 10.9], and (b) follows

from (5.14), (2.17) and [100, Corollary 8.11]. This together with the definition of

Clarke criticality shows that (5.11) holds. This completes the proof.

5.4 A moving-balls-approximation based algorithm

for solving (1.6)

In this section, we propose and analyze an algorithm for solving (1.6), which is an exten-

sion of Algorithm 5.1 by incorporating moving-balls-approximation (MBA) techniques

[10]. Our algorithm, which we call MBA`1/`2 , is presented as Algorithm 5.2 below.
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Algorithm 5.2. MBA`1/`2: Moving-balls-approximation based algorithm
for (1.6)

Step 0. Choose x0 with q(x0) ≤ 0, α > 0 and 0 < lmin < lmax. Set ω0 = ‖x0‖1/‖x0‖
and t = 0.

Step 1. Choose l0t ∈ [lmin, lmax] arbitrarily and set lt = l0t . Choose ζt ∈ ∂P2(xt).

(1a) Solve the subproblem

x̃ = arg min
x∈IRn

‖x‖1 −
ωt
‖xt‖
〈x, xt〉+

α

2
‖x− xt‖2

s.t. q(xt) + 〈∇P1(xt)− ζt, x− xt〉+
lt
2
‖x− xt‖2 ≤ 0.

(5.15)

(1b) If q(x̃) ≤ 0, go to Step 2. Else, update lt ← 2lt and go to Step (1a).

Step 2. Set xt+1 = x̃ and compute ωt+1 = ‖xt+1‖1/‖xt+1‖. Set l̄t := lt. Update
t← t+ 1 and go to Step 1.

Unlike previous works [19,23,125] that made use of MBA techniques, our algorithm

deals with a fractional objective and a possibly nonsmooth continuous constraint

function. Thus, the convergence results in [19, 23, 125] cannot be directly applied

to analyze our algorithm. Indeed, as we shall see later in Section 5.4.2, we need

to introduce a new potential function for our analysis to deal with the possibly

nonsmooth q in the constraint.

We will show that Algorithm 5.2 is well defined later, i.e., for each t ∈ N+, the

subproblem (5.15) has a unique solution for every lt and the inner loop in Step 1

terminates finitely. Here, it is worth noting that (5.15) can be efficiently solved using

a root-finding procedure outlined in [125, Appendix A] since (5.15) takes the form of

min
x
‖x‖1 +

α

2
‖x− ct‖2 s.t. ‖x− st‖2 ≤ Rt

for some ct ∈ IRn, st ∈ IRn and Rt ≥ 0.
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5.4.1 Convergence analysis

In this subsection, we establish subsequential convergence of MBA`1/`2 under suit-

able assumptions. We start with the following auxiliary lemma that concerns well-

definedness and sufficient descent. The proof of the sufficient descent property in

item (iii) below is essentially the same as [116, Lemma 1]. We include it here for

completeness.

Lemma 5.3 (Well-definedness and sufficient descent). Consider (1.6). Then the

following statements hold:

(i) MBA`1/`2 is well defined, i.e., for each t ∈ N+, the subproblem (5.15) has a

unique solution for every lt and the inner loop in Step 1 terminates finitely.

(ii) The sequence {l̄t} is bounded.

(iii) Let {(xt, ωt)} be the sequence generated by MBA`1/`2. Then there exists δ > 0

such that ‖xt‖ ≥ δ for every t ∈ N+, and the sequence {ωt} satisfies

ωt − ωt+1 ≥
α

2‖xt+1‖
‖xt − xt+1‖2, t ∈ N+. (5.16)

Proof. Suppose that an xt satisfying q(xt) ≤ 0 is given for some t ∈ N+. Then xt 6= 0

since q(0) > 0. Moreover, for any lt > 0, xt is feasible for (5.15) and the feasible set

is thus nonempty. Since (5.15) minimizes a strongly convex continuous function over

a nonempty closed convex set, it has a unique optimal solution, i.e., x̃ exists.

Let Lp be the Lipschitz continuity modulus of ∇P1. Then we have

q(x̃) = P1(x̃)− P2(x̃) ≤ P1(xt) + 〈∇P1(xt), x̃− xt〉+ Lp
2
‖x̃− xt‖2 − P2(x̃)

(a)

≤P1(xt)− P2(xt) + 〈∇P1(xt)− ζt, x̃− xt〉+ Lp
2
‖x̃− xt‖2

(b)

≤ Lp−lt
2
‖x̃− xt‖2,

(5.17)

where (a) holds because of the convexity of P2 and the definition of ζt, and (b) follows

from the feasibility of x̃ for (5.15). Let k0 ∈ N+ be such that Lp − 2k0lmin ≤ 0. Then
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by (5.17) and the definition of lt we see that q(x̃) ≤ 0 after at most k0 calls of Step

(1b). Moreover, it holds that l̄t ≤ 2k0lmax. Therefore, if q(xt) ≤ 0, then the inner loop

of Step 1 stops after at most k0 iterations and outputs an xt+1 satisfying q(xt+1) ≤ 0

(in particular, xt+1 6= 0) with l̄t ≤ 2k0lmax. Since we initialize our algorithm at an x0

satisfying q(x0) ≤ 0, the conclusions in items (i) and (ii) now follow from an induction

argument.

Next, we prove item (iii). Since q(0) > 0, we see immediately from the continuity

of q that there exists some δ > 0 such that ‖x‖ ≥ δ whenever q(x) ≤ 0. Thus,

‖xt‖ ≥ δ for all t ∈ N+, thanks to q(xt) ≤ 0. Now consider (5.15) with lt = l̄t. Then

xt is feasible and xt+1 is optimal. This together with the definition of ωt yields

‖xt+1‖1−
‖xt‖1

‖xt‖2

〈
xt+1, xt

〉
+
α

2
‖xt+1−xt‖2 ≤ ‖xt‖1−

‖xt‖1

‖xt‖2

〈
xt, xt

〉
+
α

2
‖xt−xt‖2 = 0.

Dividing both sides of the above inequality by ‖xt+1‖ and rearranging terms, we have

‖xt+1‖1

‖xt+1‖
+

α

2‖xt+1‖
‖xt − xt+1‖2 ≤ ‖x

t‖1

‖xt‖2

〈xt+1, xt〉
‖xt+1‖

≤ ‖x
t‖1

‖xt‖2

‖xt+1‖‖xt‖
‖xt+1‖

=
‖xt‖1

‖xt‖
.

This proves (iii) and completes the proof.

We next introduce the following assumption.

Assumption 5.1. The GMFCQ for (1.6) holds at every point in [q ≤ 0].

Recall from Proposition 5.3 and the discussions preceding it that Assumption 5.1

holds for (1.7), (1.8) and (1.9) since A is surjective. We next derive the Karush-Kuhn-

Tucker (KKT) conditions for (5.15) at every iteration t under Assumption 5.1, which

will be used in our subsequent analysis.

Lemma 5.4 (KKT conditions for (5.15)). Consider (1.6) and suppose that Assump-

tion 5.1 holds. Let {xt} be the sequence generated by MBA`1/`2. Then the following

statements hold:
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(i) The Slater’s condition holds for the constraint of (5.15) at each t ∈ N+.

(ii) For each t ∈ N+, ζt ∈ ∂P2(xt) and lt > 0, the subproblem (5.15) has a Lagrange

multiplier λt ≥ 0. Moreover, if x̃ is as in (5.15), then it holds that

λt

(
q(xt) +

〈
∇P1(xt)− ζt, x̃− xt

〉
+
lt
2
‖x̃− xt‖2

)
= 0, (5.18)

0 ∈ ∂ ‖x̃‖1 −
ωtx

t

‖xt‖
+ λt(∇P1(xt)− ζt) + (α + λtlt)(x̃− xt). (5.19)

Proof. Notice that we can rewrite the feasible set of (5.15) as B
(
st,
√
Rt

)
with

st := xt − 1
lt

(∇P1(x
t) − ζt) and Rt := 1

l2t
‖∇P1(x

t) − ζt‖2 − 2
lt
q(xt), where Rt ≥ 0

because q(xt) ≤ 0. Suppose to the contrary that Rt = 0. Then we have q(xt) = 0

and ∇P1(x
t)− ζt = 0. The latter relation together with (2.18) implies 0 ∈ ∂◦q(xt),

contradicting the GMFCQ assumption at xt. Thus, we must have Rt > 0 and hence

the Slater’s condition holds for (5.15) at the tth iteration.

Since the Slater’s condition holds for (5.15), we can apply [99, Corollary 28.2.1]

and [99, Theorem 28.3] to conclude that there exists a Lagrange multiplier λt such that

the relation (5.18) holds at the tth iteration and x̃ minimizes the following function:

Lt(x) :=‖x‖1 −
ωt
‖xt‖
〈x, xt〉+

α

2
‖x− xt‖2

+ λt

(
q(xt) +

〈
∇P1(xt)− ζt, x− xt

〉
+
lt
2
‖x− xt‖2

)
.

This fact together with [100, Exercise 8.8] and [100, Theorem 10.1] implies that (5.19)

holds at the tth iteration. This completes the proof.

Now we are ready to establish the subsequential convergence of Algorithm 5.2.

In our analysis, we assume that the GMFCQ holds and that the {xt} generated by

MBA`1/`2 is bounded. The latter boundedness assumption was also used in [116]

for analyzing the convergence of Algorithm 5.1. We remark that this assumption is
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not too restrictive. Indeed, for the sequence {xt} generated by MBA`1/`2 , in view of

Lemma 5.3(i), we know that q(xt) ≤ 0 for all t. Thus, if q is level-bounded, then {xt} is

bounded. On the other hand, if q is only known to be bounded from below (as in (1.7),

(1.8) and (1.9)) but the corresponding (1.6) is known to have an optimal solution,

then one may replace q(x) by the level-bounded function qM (x) := q(x) + (‖x‖−M)2
+

for a sufficiently large M . As long as M > ‖x∗‖ for some optimal solution x∗ of (1.6),

replacing q by qM in (1.6) will not change the optimal value.

Theorem 5.5 (Subsequential convergence of MBA`1/`2). Consider (1.6) and suppose

that Assumption 5.1 holds. Let {(xt, ζt, l̄t)} be the sequence generated by MBA`1/`2

and λt be a Lagrange multiplier of (5.15) with lt = l̄t. Suppose in addition that {xt}

is bounded. Then the following statements hold:

(i) limt→∞ ‖xt+1 − xt‖ = 0;

(ii) The sequences {λt} and {ζt} are bounded;

(iii) Let x̄ be an accumulation point of {xt}. Then x̄ is a Clarke critical point of

(1.6). If q is also regular at x̄, then x̄ is a stationary point.

Proof. Since {xt} is bounded, there exists M > 0 such that ‖xt‖ ≤M for all t ∈ N+.

Using (5.16), we obtain

∞∑
t=0

α

2M
‖xt − xt+1‖2 ≤ ω0 − lim inf

t→∞
ωt ≤ ω0,

which proves item (i).

Now we turn to item (ii). The boundedness of {ζt} follows from the boundedness

of {xt} and [112, Theorem 2.6]. We next prove the boundedness of {λt}. Suppose to

the contrary that {λt} is unbounded. Then there exists a subsequence {λtk} such that

limk→∞ λtk = ∞. Passing to a subsequence if necessary, we can find subsequences
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{xtk} and {λtk} such that limk→∞ x
tk = x∗ and λtk > 0 for all k ∈ N+, where the

existence of x∗ is due to the boundedness of {xt}. According to (5.18) and the

definition of xtk+1, we obtain

q(xtk) + 〈∇P1(xtk)− ζtk , xtk+1 − xtk〉+
l̄tk
2

∥∥xtk+1 − xtk
∥∥2

= 0.

Since {xt} is bounded and ∇P1 is Lipschitz continuous, we then see that {∇P1(xt)}

is bounded. Moreover, {l̄tk} is bounded thanks to Lemma 5.3(ii) and we also know

that {ζt} is bounded. Using these facts, item (i) and the continuity of q, we have

upon passing to the limit in the above display that q(x∗) = 0. Since the GMFCQ

holds for (1.6) at x∗, we then have 0 /∈ ∂◦q(x∗).

Let t = tk, lt = l̄tk , x̃ = xtk+1 in (5.19), and divide both sides of (5.19) by λtk .

Then

∇P1(xtk)− ζtk ∈ − 1

λtk
∂‖xtk+1‖1 +

ωtkx
tk

λtk‖xtk‖
−
(
l̄tk +

α

λtk

)
(xtk+1 − xtk).

Thus, there exists a sequence {ηk} satisfying ηk ∈ ∂‖xtk+1‖1 and

∇P1(xtk)− ζtk = − 1

λtk
ηk +

ωtkx
tk

λtk‖xtk‖
−
(
l̄tk +

α

λtk

)
(xtk+1 − xtk).

Note that {ηk} is bounded since ∂‖x‖1 ⊆ [−1, 1]n for any x ∈ IRn. Moreover, {ωtk}

is bounded since ‖x‖ ≤ ‖x‖1 ≤
√
n‖x‖ for any x ∈ IRn. Furthermore, we have

the boundedness of {l̄tk} from Lemma 5.3(ii). Also recall that limk→∞ λtk = ∞

and ζt ∈ ∂P2(x
t). Using these together with item (i), we have upon passing to

the limit in the above display and invoking the closedness of ∂P2 (see Exercise 8

of [25, Section 4.2]) that ∇P1(x∗) ∈ ∂P2(x∗). This together with (2.18) further implies

0 ∈ ∂◦q(x∗), leading to a contradiction. Thus, the sequence {λt} is bounded.

We now turn to item (iii). Suppose x̄ is an accumulation point of {xt} with

limj→∞ x
tj = x̄ for some convergent subsequence {xtj}. Since {λt, l̄t} and {ζt} are
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bounded (thanks to Lemma 5.3(ii) and item (ii)), passing to a further subsequence if

necessary, we may assume without loss of generality that

lim
j→∞

(λtj , l̄tj) = (λ̄, l̄) for some λ̄, l̄ ≥ 0, lim
j→∞

ζtj = ζ̄ for some ζ̄ ∈ ∂P2(x̄); (5.20)

here, ζ̄ ∈ ∂P2(x̄) because of the closedness of ∂P2 (see Exercise 8 of [25, Section 4.2]).

On the other hand, according to Lemma 5.3(iii), we have ‖xt‖ ≥ δ > 0 for all

t ∈ N+. This together with the definition of x̄ yields ‖x̄‖ 6= 0. It then follows that

‖·‖1
‖·‖ is continuous at x̄. Thus, we have, upon using this fact, the definition of ωt, the

continuity of ∇P1, the closedness of ∂‖ · ‖1, item (i), (5.20), and passing to the limit

as j →∞ in (5.19) with (x̃, λt, lt) = (xtj+1, λtj , l̄tj) and t = tj that

0 ∈ ∂‖x̄‖1 −
‖x̄‖1

‖x̄‖2
x̄+ λ̄(∇P1(x̄)− ζ̄).

We then divide both sides of the above inclusion by ‖x̄‖ and obtain

0 ∈ 1

‖x̄‖
∂‖x̄‖1 −

‖x̄‖1

‖x̄‖3
x̄+

λ̄

‖x̄‖
(∇P1(x̄)− ζ̄) = ∂

‖x̄‖1

‖x̄‖
+

λ̄

‖x̄‖
(∇P1(x̄)− ζ̄), (5.21)

where the equality holds due to (2.17). In addition, using (5.18) with (x̃, λt, lt) =

(xtj+1, λtj , l̄tj) and t = tj, we have

lim
j→∞

λtj

[
q(xtj) + 〈∇P1(xtj)− ζtj , xtj+1 − xtj〉+

l̄tj
2
‖xtj+1 − xtj‖2

]
= 0.

This together with item (i) and (5.20) shows that λ̄q(x̄) = 0. Combining this with

(5.21), ζ̄ ∈ ∂P2(x̄) (see (5.20)), (2.18) and the fact that q(x̄) ≤ 0 (because q(xt) ≤ 0

for all t) shows that x̄ is a Clarke critical point. Finally, the claim concerning

stationarity follows immediately from Proposition 5.4. This completes the proof.
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5.4.2 Global convergence under KL assumption

We now discuss global convergence of the sequence {xt} generated by Algorithm 5.2.

Our analysis follows the line of analysis in [6–8, 19, 23, 125] and is based on the

following auxiliary function:

F̃ (x, y, ζ, w) :=
‖x‖1

‖x‖
+ δ[q̃≤0](x, y, ζ, w) + δ‖·‖≥ρ(x), (5.22)

with

q̃(x, y, ζ, w) := P1(y) + 〈∇P1(y), x− y〉+ P ∗2 (ζ)− 〈ζ, x〉+
w

2
‖x− y‖2, (5.23)

where P1 and P2 are as in (1.6), and ρ > 0 is chosen such that {x : q(x) ≤ 0} ⊂

{x : ‖x‖ > ρ}. Some comments on F̃ are in place. First, recall that in the potential

function used in [23] for analyzing their MBA variant, the authors replaced P1(x) by

a quadratic majorant P1(y) + 〈∇P1(y), x− y〉+ Lp
2
‖x− y‖2, where Lp is the Lipschitz

continuity modulus of ∇P1. In this section, we will also assume P1 to be twice

continuously differentiable. Here, as in [125], we further introduce the variable w to

handle the varying l̄t. Finally, to deal with the possibly nonsmooth −P2, we replaced

−P2(x) by its majorant P ∗2 (ζ)− 〈ζ, x〉 as in [79].

The next proposition concerns the subdifferential of F̃ and will be used for deriving

global convergence of the sequence generated by MBA`1/`2 .

Proposition 5.5. Consider (1.6) and assume that P1 is twice continuously differen-

tiable. Suppose that Assumption 5.1 holds. Let {(xt, ζt, l̄t)} be the sequence generated

by MBA`1/`2 and suppose that {xt} is bounded. Let F̃ and q̃ be given in (5.22) and

(5.23) respectively. Then the following statements hold:

(i) For any t ∈ N+, we have q̃(xt+1, xt, ζt, l̄t) ≤ 0.
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(ii) There exist κ > 0 and t ∈ N+ such that

dist(0, ∂F̃ (xt+1, xt, ζt, l̄t)) ≤ κ‖xt+1 − xt‖ for all t > t.

Proof. We first observe that

q̃(xt+1, xt, ζt, l̄t)

= P1(xt) + 〈∇P1(xt), xt+1 − xt〉+ P ∗2 (ζt)− 〈ζt, xt+1〉+
l̄t
2
‖xt+1 − xt‖2

= P1(xt) + 〈∇P1(xt)− ζt, xt+1 − xt〉+ P ∗2 (ζt)− 〈ζt, xt〉+
l̄t
2
‖xt+1 − xt‖2

(a)
= P1(xt)− P2(xt) + 〈∇P1(xt)− ζt, xt+1 − xt〉+

l̄t
2
‖xt+1 − xt‖2

= q(xt) + 〈∇P1(xt)− ζt, xt+1 − xt〉+
l̄t
2
‖xt+1 − xt‖2 ≤ 0,

(5.24)

where (a) follows from (2.1) because ζt ∈ ∂P2(x
t), and the last inequality holds

because xt+1 is feasible for (5.15) with lt = l̄t. This proves item (i).

Now, note that NIR−(q̃(xt+1, xt, ζt, l̄t)) = {0} if q̃(xt+1, xt, ζt, l̄t) < 0. Using

this together with [100, Proposition 10.3], we conclude that at any (xt+1, xt, ζt, l̄t)

(regardless of whether q̃(xt+1, xt, ζt, l̄t) < 0 or q̃(xt+1, xt, ζt, l̄t) = 0), the relation

N̂[q̃≤0](x
t+1, xt, ζt, l̄t) ⊇ λ∂̂q̃(xt+1, xt, ζt, l̄t)

holds for any λ ∈ NIR−(q̃(xt+1, xt, ζt, l̄t)). Thus, for any λ ∈ NIR−(q̃(xt+1, xt, ζt, l̄t)),

we have that

N̂[q̃≤0](x
t+1, xt, ζt, l̄t) ⊇ λ∂̂q̃(xt+1, xt, ζt, l̄t)

(a)
=


λ[∇P1(xt)− ζt + l̄t(x

t+1 − xt)]
λ[∇2P1(xt)(xt+1 − xt)− l̄t(xt+1 − xt)]

λ∂P ∗2 (ζt)− λxt+1

λ
2
‖xt+1 − xt‖2

 (b)
3


λV t

1

λV t
2

λ(xt − xt+1)
λ
2
‖xt+1 − xt‖2

, (5.25)

with

V t
1 := ∇P1(xt)− ζt + l̄t(x

t+1 − xt),
V t

2 := ∇2P1(xt)(xt+1 − xt)− l̄t(xt+1 − xt),
(5.26)
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where (a) uses the definition of q̃, [100, Exercise 8.8(c)], [100, Proposition 10.5]

and [100, Proposition 8.12] (so that ∂P ∗2 (ζt) = ∂̂P ∗2 (ζt)), and (b) uses (2.1) and the

fact that ζt ∈ ∂P2(xt). On the other hand, we have from [100, Theorem 8.6] that

∂F̃ (xt+1, xt, ζt, l̄t) ⊇ ∂̂F̃ (xt+1, xt, ζt, l̄t)

(a)

⊇


1

‖xt+1‖∂ ‖x
t+1‖1 −

‖xt+1‖1
‖xt+1‖3x

t+1

0
0
0

+ N̂[q̃≤0](x
t+1, xt, ζt, l̄t),

(5.27)

where (a) uses [100, Corollary 10.9], (2.17) and [100, Corollary 8.11], and the facts

that ∂̂δ[q̃≤0](x
t+1, xt, ζt, l̄t) = N̂[q̃≤0](x

t+1, xt, ζt, l̄t) and N̂‖·‖≥ρ(x
t+1) = {0}.

Let λt ≥ 0 be a Lagrange multiplier of (5.15) with lt = l̄t, which exists thanks to

Lemma 5.4. In view of the inequality and the last equality in (5.24) and using (5.18)

with (x̃, lt) = (xt+1, l̄t), we deduce that λt ∈ NIR−(q̃(xt+1, xt, ζt, l̄t)), which in turn

implies that λt
‖xt+1‖ ∈ NIR−(q̃(xt+1, xt, ζt, l̄t)). We can hence let λ = λt

‖xt+1‖ in (5.25)

to obtain an element in N̂[q̃≤0](x
t+1, xt, ζt, l̄t). Plugging this particular element into

(5.27) yields

∂F̃ (xt+1, xt, ζt, l̄t) ⊇


1

‖xt+1‖∂ ‖x
t+1‖1 −

‖xt+1‖1
‖xt+1‖3x

t+1 + λt
‖xt+1‖V

t
1

λt
‖xt+1‖V

t
2

λt
‖xt+1‖(x

t − xt+1)
λt

2‖xt+1‖ ‖x
t+1 − xt‖2

 , (5.28)

where V t
1 and V t

2 are given in (5.26). On the other hand, applying (5.19) with

(x̃, lt) = (xt+1, l̄t) and recalling that ωt = ‖xt‖1/‖xt‖, we obtain

∂‖xt+1‖1 3
‖xt‖1

‖xt‖2
xt − λt(∇P1(xt)− ζt)− (α + λtl̄t)(x

t+1 − xt)

=
‖xt‖1

‖xt‖2
xt − λtV t

1 − α(xt+1 − xt).

(5.29)
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Combining (5.28) and (5.29), we see further that

∂F̃ (xt+1, xt, ζt, l̄t) 3


J t1
λt

‖xt+1‖V
t

2
λt

‖xt+1‖(x
t − xt+1)

λt
2‖xt+1‖ ‖x

t+1 − xt‖2

 , (5.30)

where

J t1 :=
1

‖xt+1‖

(
‖xt‖1

‖xt‖2
xt − ‖x

t+1‖1

‖xt+1‖2
xt+1

)
− α

‖xt+1‖
(xt+1 − xt).

Next, recall from Lemma 5.3(iii) that

‖xt+1‖ ≥ δ, for all t ∈ N+. (5.31)

Using this together with our assumption that {xt} is bounded, we see that there

exists L1 > 0 such that

∥∥∥∥‖xt‖1

‖xt‖2
xt − ‖x

t+1‖1

‖xt+1‖2
xt+1

∥∥∥∥ ≤ L1‖xt+1 − xt‖ for all t.

Combining the above three displays, we deduce that

∥∥J t1∥∥ ≤ L1 + α

δ
‖xt+1 − xt‖. (5.32)

On the other hand, one can see from (5.31), the definition of V t
2 (see (5.26)), the

boundedness of {λt, l̄t} (see Theorem 5.5(ii) and Lemma 5.3(ii)), the continuity of

∇2P1 and the boundedness of {xt} that there exist L2 > 0 and L3 > 0 such that

λt
‖xt+1‖

≤ L2

δ
and

∥∥∥∥ λt
‖xt+1‖

V t
2

∥∥∥∥ ≤ L3‖xt+1 − xt‖. (5.33)

Moreover, we can see from Theorem 5.5(i) that there exists t ∈ N+ such that

‖xt+1 − xt‖2 ≤ ‖xt+1 − xt‖
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whenever t ≥ t. Now we can conclude from (5.30), (5.32), (5.33) and the above

display that there exists κ > 0 such that

dist(0, ∂F̃ (xt+1, xt, ζt, l̄t)) ≤ κ‖xt+1 − xt‖

for all t ≥ t. This completes the proof.

When the sequence {xt} generated by MBA`1/`2 is bounded, one can show that

the set of accumulation points Ω of {(xt+1, xt, ζt, l̄t)} is compact. This together with

Lemma 5.3(iii) and the continuity of F̃ on its domain shows that F̃ is constant on

Ω ⊆ dom ∂F̃ . Using this together with Proposition 5.5 and Lemma 5.3(iii), one can

prove the following convergence result by imposing additional KL assumptions on F̃ .

The proof is standard and follows the line of arguments as in [6–8,24,79,119]. We

omit the proof here for brevity.

Theorem 5.6 (Global convergence and convergence rate of MBA`1/`2). Consider (1.6)

and assume that P1 is twice continuously differentiable. Suppose that Assumption 5.1

holds. Let {xt} be the sequence generated by MBA`1/`2 and assume that {xt} is

bounded. If F̃ in (5.22) is a KL function, then {xt} converges to a Clarke critical

point x∗ of (1.6) (x∗ is stationary if q is in addition regular at x∗). Moreover, if F̃

is a KL function with exponent θ ∈ [0, 1), then the following statements hold:

(i) If θ = 0, then {xt} converges finitely.

(ii) If θ ∈ (0, 1
2
], then there exist c0 > 0, Q1 ∈ (0, 1) and t ∈ N+ such that

‖xt − x∗‖ ≤ c0Q
t
1 for t > t.

(iii) If θ ∈ (1
2
, 1), then there exist c0 > 0 and t ∈ N+ such that

‖xt − x∗‖ ≤ c0t
− 1−θ

2θ−1 for t > t.
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Remark 5.3 (KL property of F̃ corresponding to (1.7), (1.8) and (1.9)). (i) In both

(1.7) and (1.8), we have q = P1 being analytic and P ∗2 = δ{0}. Hence F̃ becomes

F̃ (x, y, ζ, w) = ‖x‖1
‖x‖ +δ∆(x, y, ζ, w) with ∆ = {(x, y, ζ, w) : P1(y)+〈∇P1(y), x−

y〉+ w
2
‖x− y‖2 ≤ 0, ζ = 0, ‖x‖ ≥ ρ}. Hence, the graph of F̃ is

{
(x, y, ζ, w, z) :

‖x‖1 = z‖x‖, ‖x‖ ≥ ρ, ζ = 0,
P1(y) + 〈∇P1(y), x− y〉+ w

2
‖x− y‖2 ≤ 0.

}
,

which is semianalytic [52, Page 596]. This means that F̃ is subanalytic [52,

Definition 6.6.1]. Moreover, the domain of F̃ is closed and F̃ |dom F̃ is continuous.

Therefore, F̃ satisfies the KL property according to [20, Theorem 3.1].

(ii) For (1.9), first note that P2 is a convex piecewise linear-quadratic function

(see, for example, the proof of [79, Theorem 5.1]). Then P ∗2 is also piecewise

linear-quadratic function thanks to [100, Theorem 11.14]. Thus, one can see

that q̃ corresponding to (1.9) is semialgebraic and so is the set Θ = {(x, y, ζ, w) :

q̃(x, y, ζ, w) ≤ 0}. Therefore F̃ is semialgebraic as the sum of the semialgebraic

functions x 7→ ‖x‖1
‖x‖ + δ‖·‖≥ρ(x) and δΘ, and is hence a KL function [7].

Using Theorem 5.6, Remark 5.3, Proposition 5.3 and the discussions preceding

it, and recalling that continuously differentiable functions are regular, we have the

following immediately corollary.

Corollary 5.1 (Global convergence of MBA`1/`2 for problems (1.7), (1.8) and (1.9)).

The following conclusions hold:

1. If we apply MBA`1/`2 to (1.7) or (1.8), then the sequence generated converges

to a stationary point of the problem if the sequence is bounded.

2. If we apply MBA`1/`2 to (1.9), then the sequence generated converges to a Clarke

critical point of the problem if the sequence is bounded.
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5.5 Numerical simulations

In this section, we perform numerical experiments on solving random instances of

(1.7), (1.8) and (1.9) by MBA`1/`2 . All numerical experiments are performed in

MATLAB 2019b on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz)

and 32GB of RAM.

We set lmin = 10−8, lmax = 108 and α = 1 in MBA`1/`2 . We let l00 = 1 and compute,

for each t ≥ 1,

l0t =

max
{
lmin,min

{
〈dtx,dtg〉
‖dtx‖2

, lmax

}}
if 〈dtx, dtg〉 ≥ 10−12,

max
{
lmin,min

{
lt−1

2
, lmax

}}
otherwise,

where dtx = xt − xt−1 and dtg = ξt − ξt−1 with ξt = ∇P1(xt)− ζt: specifically, ζt = 0

when solving (1.7) and (1.8), while for (1.9), we pick any ζt ∈ ProjS(Axt − b), which

can be obtained by finding the largest r entries of Axt − b.

We initialize MBA`1/`2 at some feasible point xfeas and terminate MBA`1/`2 when

‖xt − xt−1‖ ≤ tol ·max{‖xt‖, 1}; (5.34)

we will specify the choices of xfeas and tol in each of the subsections below.

5.5.1 Robust compressed sensing problems (1.9)

We generate a sensing matrix A ∈ IR(p+ι)×n with i.i.d standard Gaussian entries and

then normalize each column of A. Next, we generate the original signal xorig ∈ IRn as

a k-sparse vector with k i.i.d standard Gaussian entries at random (uniformly chosen)

positions. We then generate a vector zι ∈ IRι with i.i.d. standard Gaussian entries,

and set z ∈ IRp+ι to be a vector with the first p entries being zero and the last ι entries

being 2 sign(zι). The vector b in (1.9) is then generated as b = Axorig − z + 0.01ε,

where ε ∈ IRp+ι has i.i.d. standard Gaussian entries. Finally, we set σ = 1.2‖0.01ε‖
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and r = 2ι. In MBA`1/`2 , we set xfeas = A†b,1 and tol = 10−6 in (5.34).

In our numerical tests, we consider (n, p, k, ι) = (2560i, 720i, 80i, 10i) with i ∈

{2, 4, 6, 8, 10}. For each i, we generate 20 random instances as described above. The

computational results are shown in Table 5.1. We present the time tqr for the (reduced)

QR decomposition when generating xfeas, the CPU times tmba and tsum,2 the recovery

error RecErr =
‖xout−xorig‖

max{1,‖xorig‖} , and the Residual = dist2(Axout − b, S) − σ2, averaged

over the 20 random instances, where xout is the approximate solution returned by

MBA`1/`2 . We see that xorig are approximately recovered in a reasonable period of

time.

Table 5.1: Random tests on robust compressed sensing

i tqr tmba(tsum) RecErr Residual
2 0.5 1.2 ( 1.7) 3.3e-02 -3e-11
4 3.1 4.1 ( 7.2) 3.3e-02 -5e-11
6 9.8 8.3 ( 18.1) 3.3e-02 -9e-11
8 24.0 14.3 ( 38.4) 3.3e-02 -1e-10
10 43.6 21.5 ( 65.3) 3.3e-02 -2e-10

5.5.2 CS problems with Cauchy noise (1.8)

Similar to the previous subsection, we generate the sensing matrix A ∈ IRm×n with

i.i.d standard Gaussian entries and then normalize each column of A. We then

generate the original signal xorig ∈ IRn as a k-sparse vector with k i.i.d standard

Gaussian entries at random (uniformly chosen) positions. However, we generate b as

b = Axorig + 0.01ε with εi ∼ Cauchy(0, 1), i.e., εi = tan(π(ε̃i− 1/2)) for some random

vector ε̃ ∈ IRm with i.i.d. entries uniformly chosen in [0, 1]. Finally, we set γ = 0.02

and σ = 1.2‖0.01ε‖LL2,γ.

1 We compute A†b via the MATLAB commands [Q,R] = qr(A’,0); xfeas = Q*(R’\b).
2 tmba is the run time of MBA`1/`2 , while tsum includes the run time of MBA`1/`2 , the time for

performing (reduced) QR factorization on AT and the time for computing Q(R−1)T b.
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We compare the `1 minimization model (which minimizes `1 norm in place of `1/`2

in (1.8); see [125, Eq. (5.8)] with µ = 0) with our `1/`2 model. We use SCPls in [125]

for solving the `1 minimization model. We use the same parameter settings for SCPls

as in [125, Section 5], except that we terminate SCPls when (5.34) is satisfied with

tol = 10−6 in Table 5.2. We initialize MBA`1/`2 at the approximate solution xscp given

by SCPls, and terminate MBA`1/`2 when (5.34) is satisfied with tol = 10−6.

In our numerical experiments, we consider (n,m, k) = (2560i, 720i, 80i) with

i ∈ {2, 4, 6, 8, 10}. For each i, we generate 20 random instances as described above.

Our computational results are presented in Table 5.2, which are averaged over the

20 random instances. Here we show the CPU time tqr for performing (reduced) QR

decomposition on AT , the CPU time,3 the recovery error RecErr =
‖xout−xorig‖

max{1,‖xorig‖} and

the residual Residual = ‖Axout− b‖LL2,γ − σ of both SCPls and MBA`1/`2 , where xout

is the approximate solution returned by the respective algorithm. We see that the

recovery error is significantly improved by solving the nonconvex model.

Finally, as suggested by one reviewer, we investigate the effect of initialization

on the performance of MBA`1/`2 . Specifically, we test SCPls and MBA`1/`2 on the

same set of instances used in Table 5.2, but terminate SCPls when (5.34) is satisfied

with tol = 10−3. We then initialize MBA`1/`2 at the approximate solution returned

by SCPls, and terminate MBA`1/`2 when (5.34) is satisfied with tol = 10−6. The

computational results are presented in Table 5.3. Not too surprisingly, we can see

that MBA`1/`2 can result in large recovery errors with this initialization, though the

recovery errors may still be small sometimes (see i = 6). Thus, the performance of

MBA`1/`2 is quite sensitive to its initialization.

3 For MBA`1/`2 , the time in parenthesis is the total run time including the time for computing the

initial point A†b for SCPls and the run times of SCPls and MBA`1/`2 , the time without parenthesis
is the actual run time of MBA`1/`2 starting from xfeas = xscp.
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Table 5.2: Random tests on CS problems with Cauchy noise (tol = 10−6 for SCPls)

i tqr
CPU RecErr Residual

SCPls MBA`1/`2 SCPls MBA`1/`2 SCPls MBA`1/`2

2 0.5 10.0 0.6 ( 11.1) 1.3e-01 6.5e-02 -2e-07 -8e-08
4 3.0 52.4 2.0 ( 57.5) 1.3e-01 6.6e-02 -6e-07 -2e-07
6 9.4 87.3 4.1 ( 100.9) 1.3e-01 6.6e-02 -9e-07 -2e-07
8 23.4 281.6 7.0 ( 312.1) 1.3e-01 6.5e-02 -1e-06 -3e-07
10 42.4 285.5 11.4 ( 339.5) 1.3e-01 6.5e-02 -2e-06 -4e-07

Table 5.3: Random tests on CS problems with Cauchy noise (tol = 10−3 for SCPls)

i tqr
CPU RecErr Residual

SCPls MBA`1/`2 SCPls MBA`1/`2 SCPls MBA`1/`2

2 0.5 3.0 50.8 ( 54.3) 1.8e+00 1.6e+00 -3e+01 -6e-05
4 3.0 11.8 457.6 ( 472.5) 4.3e+00 4.2e+00 -1e+02 -5e-04
6 9.5 30.5 4.9 ( 44.9) 2.1e-01 6.6e-02 -9e-01 -2e-07
8 22.9 37.7 78.5 ( 139.2) 9.7e+00 9.6e+00 -6e+01 -9e-03
10 41.5 71.9 3164.0 (3277.6) 2.1e+00 1.7e+00 -1e+02 -2e-04

5.5.3 Badly scaled CS problems with Gaussian noise (1.7)

In this section, we generate test instances similar to those in [116]. Specifically, we

first generate A = [a1, · · · , an] ∈ IRm×n with

aj =
1√
m

cos

(
2πwj

F

)
, j = 1, · · · , n,

where w ∈ IRm have i.i.d. entries uniformly chosen in [0, 1]. Next, we generate the

original signal xorig ∈ IRn using the following MATLAB command:

I = randperm(n); J = I(1:k); xorig = zeros(n,1);

xorig(J) = sign(randn(k,1)).*10.^(D*rand(k,1));

We then set b = Axorig + 0.01ε, where ε ∈ IRm has i.i.d standard Gaussian entries.

Finally, we set σ = 1.2‖0.01ε‖.

We compare the `1 minimization model (which minimizes `1 norm in place of `1/`2

in (1.7); see [125, Eq. (5.5)] with µ = 0) with our `1/`2 model. The `1 minimization
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model is solved via SPGL1 [17] (version 2.1) using default settings. The initial point

for MBA`1/`2 is generated from the approximate solution xspgl1 of SPGL1 as follows:

Specifically, since xspgl1 may violate the constraint slightly, we set the initial point of

MBA`1/`2 as

xfeas =

{
A†b+ σ

xspgl1−A†b
‖Axspgl1−b‖

if ‖Axspgl1 − b‖ > σ,

xspgl1 otherwise.

We terminate MBA`1/`2 when (5.34) is satisfied with tol = 10−8.

In our numerical tests, we set n = 1024, m = 64 and consider k ∈ {8, 12},

F ∈ {5, 15} and D ∈ {2, 3}. For each (k, F,D), we generate 20 random instances

as described above. We present the computational results (averaged over the 20

random instances) in Table 5.4. Here we show the CPU time,4 the recovery error

RecErr =
‖xout−xorig‖

max{1,‖xorig‖} , the Residual = ‖Axout−b‖2−σ2 of both SPGL1 and MBA`1/`2 ,

where xout is the approximate solution returned by the respective algorithm. We

again observe that the recovery error is significantly improved (on average) by solving

the nonconvex model in most instances, except when (k, F,D) = (12, 15, 3). In this

case, we see that the xspgl1 can be highly infeasible and thus the starting point xfeas

provided to MBA`1/`2 may not be a good starting point. This might explain the

relatively poor performance of MBA`1/`2 in this case.

4 For MBA`1/`2 , the time in parenthesis is the total run time including the time for computing the

feasible point A†b and the run times of SPGL1 and MBA`1/`2 , the time without parenthesis is the
actual run time of MBA`1/`2 starting from xfeas.
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Table 5.4: Random tests on badly scaled CS problems with Gaussian noise

k F D
CPU RecErr Residual

SPGL1 MBA`1/`2 SPGL1 MBA`1/`2 SPGL1 MBA`1/`2
8 5 2 0.07 0.13 ( 0.20) 3.2e-02 2.3e-03 -4e-05 -1e-13
8 5 3 0.06 0.14 ( 0.20) 3.2e-03 6.8e-04 -4e-05 -2e-11
8 15 2 0.08 3.92 ( 4.01) 4.7e-01 1.5e-01 -9e-05 -7e-13
8 15 3 0.11 31.46 ( 31.58) 3.8e-01 5.3e-02 2e-02 -5e-11
12 5 2 0.06 2.26 ( 2.32) 1.4e-01 3.6e-02 -3e-04 -8e-13
12 5 3 0.08 4.05 ( 4.14) 6.0e-02 3.8e-03 1e-04 -7e-11
12 15 2 0.09 8.32 ( 8.41) 5.2e-01 2.0e-01 -1e-04 -1e-12
12 15 3 0.11 403.80 (403.91) 5.2e-01 1.5e+00 6e-02 -3e-10
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Chapter 6

Conclusion

In this thesis, we develop a collection of KL calculus rules and provide some examples

showing how these rules can be applied to obtain explicit KL exponents. In the

second part, we show how KL property and KL exponent are applied in deducing the

convergence rate of the sequence generated by SCPls. In the last part, we consider

an `1/`2-based constrained optimization problem.

In the future, we will explore more KL calculus rules as well as the explicit KL

exponents of functions. For example, the explicit KL exponent for

F (x) :=
∥∥Y Tx

∥∥
1

+ δ‖·‖=1(x) (6.1)

is still unknown, where Y ∈ IRn×p is a given matrix with full row rank. Minimizing the

above function has applications in dual principal component pursuit and orthogonal

dictionary learning; see [11, 38] for more introduction. Next, we plan to study the

convergence properties of first-order algorithms whose convergence properties have not

been fully unraveled. For example, the explicit local convergence rates of the whole

sequences generated by the manifold proximal point algorithm and the alternating

direction method of multipliers studied in [38, 121] respectively are still unknown.

We will also investigate efficient methods to solve optimization models in different

applications such as sparse clustering [117], robust subspace recovery (RSR) [68] and

robust low-rank matrix completion [61].
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