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Abstract

This thesis proposes and analyzes a new class of ultimate-Shannon-
limit approaching codes, namely protograph-based low-density parity-
check (PLDPC) Hadamard codes. This class of code has a low code
rate and can achieve excellent error performance even at a very low
bit-energy-to-noise-power-spectral-density ratio (i.e., Eb/N0 < 0 dB).
Application scenarios include multiple access wireless systems with
a huge number of non-orthogonal users and deep space communica-
tions.

Firstly, we describe the protograph structure and protomatrix of
a protograph-based low-density parity-check Hadamard block code
(PLDPCH-BC). To optimize the structure of the PLDPCH-BC, we
propose a low-complexity Protograph Extrinsic Information Transfer
(PEXIT) method based on Monte Carlo simulations. Given multiple
a priori information and channel information, the proposed method
can obtain multiple extrinsic mutual information (MI) from the
symbol-by-symbol maximum a posteriori probability (symbol-MAP)
Hadamard decoder. Moreover, this method is applicable to low/high
and/or even/odd order of Hadamard codes, and can compute
the theoretical thresholds of PLDPCH-BCs with degree-1 or/and
punctured variable nodes. Optimized designs for PLDPCH-BCs with
Hadamard codes of different orders are derived. Simulations are
performed on the constructed codes and the simulated error rates
are compared with those of traditional LDPC-Hadamard codes. In
addition, PLDPCH-BCs are punctured and their simulation results
are compared with unpunctured PLDPCH-BCs.

Secondly, we propose an efficient and effective layered decoding
algorithm for PLDPCH-BCs, and compare its convergence speed
with that of the standard decoding algorithm. We further implement
the proposed layered decoding algorithm onto hardware, namely
an FPGA board, and evaluate its error performance under different
throughputs. The error degradation due to fixed-point computation
is also evaluated.

Thirdly, we make use of the optimized PLDPCH-BC designs to
construct spatially-coupled PLDPC-Hadamard convolutional codes
(SC-PLDPCH-CCs), the error performance of which is also close
to the ultimate Shannon limit. We introduce the encoding of SC-
PLDPCH-CCs using their convolutional parity-check matrices. We
propose a pipelined decoding strategy with a layered decoding
algorithm so as to perform efficient and effective decoding for
the SC-PLDPCH-CCs. We simulate the error performance of SC-
PLDPCH-CCs with different rates and different number of processors
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contained in pipeline decoding. The error performance of the SC-
PLDPCH-CCs is compared with that of PLDPCH-BCs.
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Chapter 1
I N T R O D U C T I O N

1.1 development of ldpc codes

In 1943, Claude Shannon derived the channel capacity theorem [2],
based on which the maximum rate that information can be sent
through a channel without errors can be evaluated. In 1993, Berrou et
al. invented the turbo codes and demonstrated that with a code rate
of 0.5, the proposed turbo code and decoder could work within 0.7
dB from the capacity limit at a bit error rate (BER) of 10−5 [3], [4].
Besides turbo codes, other well-known capacity-approaching codes
are low-density parity-check codes (proposed by Gallager in 1960s
[5] and rediscovered by MacKay and Neal in 1990s [6]) and polar
codes (proposed by Arikan in 2009 [7]). These capacity-approaching
codes have since been used in many wireless communication systems
(e.g., 3G/4G/5G, Wifi, satellite communications) [8–10], optical com-
munication systems [11] and magnetic recording systems [12, 13]. The
progresses of the aforementioned three types of capacity-approaching
codes over the past decades can be found in the survey papers [14–18]
and the references therein.

In particular, an LDPC code can be represented by a matrix
containing a low density of “1”s and also by its corresponding Tanner
graph [19]. In the Tanner graph, there are two sets of nodes, namely
variables nodes (VNs) and check nodes (CNs), sparsely connected
by links. Messages are updated and passed iteratively along the
links during the decoding process [20, 21]. Density evolution (DE)
[22] is a kind of analytical method that tracks the probability
density function (PDF) of the messages after each iteration. It not
only can predict the convergence of the decoder, but also can
be used for optimizing LDPC code designs [21]. The extrinsic
information transfer (EXIT) chart is another common technique
employed to analyze and optimize LDPC codes [23–25]. An optimal
LDPC code design is found when the EXIT curves of the VNs
and CNs are “matched” with the smallest bit-energy-to-noise-power-
spectral-density ratio (Eb/N0).

For an LDPC code with given degree distributions and code length,
the progressive-edge-growth (PEG) method [26–28] is commonly
used to connect the VNs and CNs with an aim to maximizing the
girth (shortest cycle) of the code. The method is simple and the

3
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code can achieve good error performance. However, the code has
a quadratic encoding complexity with its length because it is un-
structured. The hardware implementation of the encoder/decoder
also consumes a lot of resources and has high routing complexity.

Subsequently, structured quasi-cyclic (QC) LDPC codes are pro-
posed [29]. QC-LDPC codes have a linear encoding complexity and
allow parallel processing in the hardware implementation. Other
structured codes, such as the repeat-accumulate (RA) codes and their
variants, can be formed by the repeat codes and the accumulators [30–
33]. They belong to a subclass of LDPC codes that have a fast encoder
structure and good error performance [34, 35]. Structured LDPC
codes can also be constructed by protographs [36]. By expanding
a protomatrix (corresponding to a protograph) with a small size,
a QC matrix (corresponding to a lifted graph) that possesses the
same properties as the protomatrix can be obtained. The codes
corresponding to the lifted graphs are called protograph-based
LDPC (PLDPC) codes. The traditional EXIT chart cannot be used
to analyze protographs where degree-1 and/or punctured variable
nodes exist. Subsequently, the protograph EXIT (PEXIT) chart method
is developed [37] for analyzing and designing PLDPC codes, and well-
designed PLDPC codes are found to achieve performance close to
the Shannon limit [17], [38]. Moreover, in the case of block-fading
channels, root-protograph LDPC codes are analyzed [39] and found
to achieve near-outage-limit performance [40].

Based on the LDPC block codes (LDPC-BCs) mentioned above,
memory is introduced into the code designs to construct LDPC
convolutional codes (LDPC-CCs). LDPC-CCs were first proposed in
[41] and characterized by the degree distributions of the underly-
ing LDPC-BCs. By applying a sliding window decoding [42, 43],
LDPC-CCs can achieve convolutional gains over their block-code
counterparts. In addition, spatially coupled LDPC (SC-LDPC) codes
are constructed by coupling L LDPC-BCs, which can enhance their
theoretical thresholds and decoding performance [44, 45]. As L

tends to infinity, spatially coupled LDPC convolutional codes (SC-
LDPC-CCs) are obtained. In [46] and [47], SC-LDPC-CCs have
been shown to achieve capacity over binary memoryless symmetric
channels under belief propagation (BP) decoding. Moreover, the
spatially coupled codes have been applied in multiuser detection [48]
and multiple access channels [49–52]. In [53], SC-LDPC-CCs have
been constructed from the perspective of protographs, forming SC-
PLDPC-CCs. Through the edge-spreading procedure on a protoma-
trix, the threshold, convergence behavior and error performance of
SC-PLDPC ensembles have also been systematically investigated.

In the Tanner graph of an LDPC code, the VNs are equivalent
to repeat codes while CNs correspond to single-parity-check (SPC)
codes. If other block codes, such as Hamming codes and BCH
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codes, are used to replace the repeat codes and/or SPC codes,
generalized LDPC (GLDPC) codes are obtained [54–56]. In [57–59],
doped-Tanner codes are formed by replacing the SPC component
codes in the structured LDPC codes with Hamming codes and
recursive systematic convolutional codes. Ensemble codeword weight
enumerators are used to find good GLDPC codes while Hamming
codes have been used to design medium-length GLDPC codes with
performances approaching the channel capacity (> 0 dB). In [60]
and [61], EXIT functions of block codes over binary symmetric
channels have been derived and used for analyzing LDPC codes.
The use of linear programming algorithm to optimize a rate-8/9
GLDPC code from the perspective of degree distribution is further
demonstrated [62]. To achieve good error performance (BER = 10−5)
at very low Eb/N0, say < −1.15 dB, Hadamard codes have been
proposed to replace the SPC codes, forming the low-rate (6 0.05)
LDPC-Hadamard codes [63], [1]. By adjusting the degree distribution
of the VNs and using the EXIT chart technique, the EXIT curves of
the Hadamard “super CNs” and VNs are matched and excellent error
performance at low Eb/N0 is obtained.

In practice, different channels possess different capacities, depend-
ing on factors such as modulation scheme, signal-to-noise ratio and
code rate. However, the “ultimate Shannon limit” over an additive-
white-Gaussian-noise (AWGN) channel remains at −1.59 dB, i.e.,
Eb/N0 = −1.59 dB [64]. Scenarios where digital communications may
need to work close to the ultimate Shannon limit include deep space
communications, multiple access (e.g. code-division multiple-access
[65] and interleave-division multiple-access [66–68]) with severe inter-
user interferences, or embedding low-rate information in a commu-
nication link. The most notable channel codes with performance
close to this limit are turbo-Hadamard codes [69–72], concatenated
zigzag Hadamard codes [73], [74], and LDPC-Hadamard codes
[63], [1]. When applying these codes in the scenarios above, we
can not only ensure reliable data transmission, but also increase
the transmission distance under the same transmission energy, or
reduce the transmission energy under the same transmission distance.
However, both turbo-Hadamard codes and concatenated zigzag
Hadamard codes require the use of forward/backward decoding
algorithms and hence will have long decoding latencies [69], [73].
The LDPC-Hadamard codes allow parallel processing and hence
the decoding latency can be made much shorter [1]. However, in
optimizing the threshold of LDPC-Hadamard codes, only the degree
distribution of the variable nodes has been found for a given order of
the Hadamard code used. Therefore, the method used in optimizing
LDPC-Hadamard codes has the following drawbacks.
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• For the same variable-node degree distribution, many different
code realizations with very diverse bit-error-rate performances
can be obtained.

• The code is unstructured, making both encoding and decod-
ing very complex to realize in practice. We take the LDPC-
Hadamard code with code rate R = 0.05 and Hadamard code
order r = 4 as an example. For an information length of 65, 536,
the degree distributions optimized by [1] indicate that there
are 113, 426 Hadamard check nodes and n = 178, 962 variable
nodes. When these large number of nodes are connected by
the PEG algorithm, the resultant graph has little structure
and is therefore not conducive to parallel encoding/decod-
ing and reduces encoding/decoding efficiency. In the hard-
ware implementation, the unstructured conventional LDPC-
Hadamard code further results in high routing complexity and
low throughput.

• The degree distribution analysis requires a minimum variable-
node degree of 2 because an EXIT curve cannot be produced
for degree-1 variable nodes. Moreover, LDPC-Hadamard codes
with punctured variable nodes cannot be analyzed.

The concept in [1] has been applied to designing other low-rate
generalized LDPC codes [75]. However, the main criterion of those
codes is to provide low latency communications and hence their
performance is relatively far from the ultimate Shannon limit [64].

1.2 thesis innovations

To solve the issues of traditional LDPC-Hadamard codes, we design
LDPC-Hadamard codes from the perspective of protographs. Hence,
this thesis consists of three main innovations: PLDPC-Hadamard
block codes (PLDPCH-BCs), layered decoding algorithm, and spa-
tially coupled PLDPC-Hadamard convolutional codes (SC-PLDPCH-
CCs).

Firstly, we propose a method to design LDPC-Hadamard codes
which possess degree-1 and/or punctured VNs. The technique is
based on applying Hadamard constraints to the CNs in a generalized
PLDPC code, followed by lifting the generalized protograph. We
name the codes formed protograph-based LDPC Hadamard (PLDPC-
Hadamard) codes [76]. We also propose a modified PEXIT algorithm
for analyzing and optimizing PLDPC-Hadamard code designs. Codes
with decoding thresholds ranging from −1.53 dB to −1.42 dB have
been found, and simulation results show a bit error rate of 10−5 can
be achieved at Eb/N0 = −1.43 dB. Moreover, the BER performances
of these codes after puncturing are simulated and compared. We
summarize the contributions as follows
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1) It is the first attempt to use protographs to design codes
with performance close to the ultimate Shannon limit [64]. By
appending additional degree-1 Hadamard VNs to the CNs
of a protograph, the SPC check nodes are converted into
more powerful Hadamard constraints, forming the generalized
protograph of PLDPC-Hadamard codes. After using the copy-
and-permute operations to lift the protograph, the matrix
corresponding to the lifted graph is a structured QC matrix
which is greatly beneficial to linear encoding, parallel decoding
and hardware implementation.

2) To analyze the decoding threshold of a PLDPC-Hadamard code,
we propose a modified PEXIT method. We replace the SPC mu-
tual information (MI) updating with our proposed Hadamard
MI updating based on Monte Carlo simulations. Different from
the EXIT method used in optimizing the degree distribution
of VNs in an LDPC-Hadamard code [1], our proposed PEXIT
method searches and analyzes protomatrices corresponding to
the generalized protograph of the PLDPC-Hadamard codes.
The proposed method, moreover, is applicable to analyzing
PLDPC-Hadamard codes with degree-1 VNs and/or punctured
VNs. Using the analytical technique, we have found PLDPC-
Hadamard codes with very low decoding thresholds (< −1.40
dB) under different code rates.

3) Extensive simulations are performed under an AWGN channel.
For each case, 100 frame errors are collected before the simu-
lation is terminated. Results show that the PLDPC-Hadamard
codes can obtain comparable BER performance to the tradi-
tional LDPC-Hadamard codes [1]. At a BER of 10−5, the gaps
to the ultimate Shannon limit [64] are 0.40 dB for the rate-0.0494
code, 0.35 dB for the rate-0.021 code, 0.24 dB for the rate-0.008
code and 0.16 dB for the rate-0.003 code, respectively.

4) Punctured PLDPC-Hadamard codes are studied. Puncturing
different VNs in the protograph of a PLDPC-Hadamard code
sometimes can produce different BER/FER performance im-
provement/degradation compared with the unpunctured code.
Moreover, when the order of the Hadamard code r = 5,
puncturing the extra degree-1 Hadamard VNs provided by the
non-systematic Hadamard encoding is found to degrade the
error performance.

Secondly, we propose a layered decoding algorithm for PLDPCH-
BCs with an aim of improving the convergence rate. Based on the
layered algorithm, we propose a hardware architecture for PLDPC-
Hadamard layered decoders. We summarize the contributions of this
part as follows.
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1) Compared with the standard decoding algorithm, the layered
decoding algorithm improves the convergence rate by about
two times. At a bit error rate of 2.0× 10−5, the layered decoder
using 20 decoding iterations shows a very small degradation of
0.03 dB compared with the standard decoder using 40 decoding
iterations. Moreover, the layered decoder using 21 decoding
iterations shows the same error performance as the standard
decoder using 41 decoding iterations.

2) For the implementation of PLDPC-Hadamard layered decoders,
it consists mainly of control logics, random address memories,
and Hadamard sub-decoders. Two slightly different pipelined
structures are designed to cater for different numbers of Hadamard
sub-decoders running in parallel. The latency and throughput
of these two different structures are derived. Implementation of
the decoder design on an FPGA board shows that a throughput
of 1.48 Gbps is achieved with a bit error rate (BER) of 10−5 at
around Eb/N0 = −0.40 dB. The decoder can also achieve the
same BER at Eb/N0 = −1.11 dB with a reduced throughput of
0.20 Gbps.

Thirdly, we make use of PLDPC-Hadamard block codes to de-
sign spatially coupled PLDPC-Hadamard convolutional codes (SC-
PLDPCH-CCs). We summarize the contributions of this part as
follows.

1) We propose spatially coupled PLDPC-Hadamard codes, which
are constructed by spatially coupling PLDPC-Hadamard block
codes.

2) We describe the encoding method of SC-PLDPCH-CCs and
propose a pipeline decoding structure to decode SC-PLDPCH-
CCs.

3) We make use of optimized PLDPCH-BCs to design good SC-
PLDPCH-CCs with different rates. Simulation results show that
SC-PLDPCH-CCs outperform their PLDPC-Hadamard block
code counterparts in terms of bit error performance. Moreover,
we find that error floors appear in PLDPC-Hadamard block
codes but not in SC-PLDPCH-CCs. For the rate-0.00295 SC-
PLDPCH-CC, a BER of 2× 10−7 is achieved at Eb/N0 = −1.45
dB.

1.3 thesis organization

The organization of the thesis is as follows.
Chapter 2 briefly describes some important channel codes such as

LDPC block codes, protograph-based LDPC block codes, spatially
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coupled LDPC codes, Hadamard codes, and LDPC-Hadamard codes.
Moreover, the basic analysis, encoding and decoding methods are
presented.

Chapter 3 introduces our proposed PLDPC-Hadamard block code,
including its structure, encoding and decoding methods, and code
rate. In particular, the cases in which the order of the Hadamard code
used is even or odd are described and analyzed. A low-complexity
PEXIT method for analyzing PLDPC-Hadamard codes is proposed
and an optimization algorithm is provided. Moreover, this chapter
presents the protomatrices of the PLDPC-Hadamard codes found by
the proposed algorithms, their decoding thresholds and simulated
error results. The error performance of these codes after puncturing
are further evaluated.

Chapter 4 presents the standard decoding algorithm and our
proposed layered decoding for PLDPCH-BCs. This chapter then
presents the BER results for the standard and layered decoders.
Based on the layered algorithm, this chapter proposes a hardware
architecture of PLDPCH-BC layered decoders, derives the latency and
throughput, and report the implementation results.

Chapter 5 introduces the structure and encoding process of SC-
PLDPCH-CCs. It proposes a pipelined strategy combined with lay-
ered scheduling for decoding SC-PLDPCH-CCs. Using the proposed
pipeline decoding, error performance of SC-PLDPCH-CCs with dif-
ferent rates and different number of processors is evaluated. This
chapter also compares the simulated BER results of the SC-PLDPCH-
CCs with those of the underlying PLDPCH-BCs.

Chapter 6 concludes this thesis and suggests some possible future
works.
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Chapter 2
B A C K G R O U N D

In this chapter, we review some channel codes that are related to this
thesis.

2.1 low-density parity-check codes

This section briefly introduces traditional LDPC block codes, protograph-
based LDPC (PLDPC) block codes and spatially coupled LDPC codes.
We also review their analysis method, encoding and decoding.

2.1.1 Traditional LDPC Block Codes

An LDPC code with code length N, information length k = N−M

and code rate R = k/N can be represented by a M × N parity-
check matrix HM×N whose entries only include 0 or 1. Moreover,
the matrix HM×N needs to satisfy the following conditions:

1. The number of “1"s in the matrix should be much less than the
number of elements MN, i.e., a low density of “1"s.

2. The codeword bits corresponding to the “1"s in each row of
the matrix must take part in the same parity-check equation,
i.e., each LDPC codeword c satisfies cHT

M×N = , where 
represents a zero vector of appropriate length.

The matrix HM×N can also be represented by a Tanner graph,
as shown in Fig. 1. The circles denote the variable nodes (VNs)
corresponding to the columns of the matrix; the squares denote the
check nodes (CNs) corresponding to the rows of the matrix; and the
edges connecting the VNs and CNs correspond to the “1"s in the
matrix. Moreover, the number of edges connecting each VN/CN is
called the degree of the VN/CN and corresponds to the column/row
weight. Denote λ = {λj} and ρ = {ρi} as the fraction of degree-dj
VNs and the fraction of degree-di CNs, respectively. If λ = {1} and
ρ = {1}, we call such code as a regular LDPC code; otherwise, it is
called an irregular LDPC code. The degree distribution (λ,ρ) not only
determines the “1"s distribution in HM×N, but also can be used by
the extrinsic information transfer (EXIT) chart technique to estimate
the theoretical threshold of the LDPC code [23], [24].

12
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dj

di

Figure 1: Representation of an LDPC code by a Tanner graph.

To illustrate the EXIT method, different types of mutual informa-
tion (MI) are defined as follows:

• Iav: a priori MI value of VNs;

• Iac: a priori MI value of CNs;

• Iev: extrinsic MI value of VNs;

• Iec: extrinsic MI value of CNs;

• Ich: MI value from the channel.

We summarize the method as follows

1. Select a relatively large Eb/N0.

2. Set all MI values to 0.

3. Initialize Ich based on Eb/N0 and the code rate.

4. Compute Iev based on Iav, Ich and λ.

5. Set Iac = Iev.

6. Compute Iec based on Iac and ρ.

7. Set Iav = Iec.

8. Repeat Steps 4) to 7) Iiter times.

9. Plot the two EXIT curves (Iav, Iev) and (Iec, Iac). If the two
curves in the EXIT chart only intersects at the point (1, 1),
reduce Eb/N0 and go to Step 2); otherwise set the previous
Eb/N0 when the two curves intersect only at the point (1, 1) as
the threshold (Eb/N0)th and stop.

In the EXIT chart method and based on degree distribution (λ,ρ), we
compute

Iac = Iev =

dv∑
j=2

λj · J
(√(

dj − 1
)
(J−1 (Iav))

2
+ (J−1 (Ich))

2

)
(1)
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and

Iav = Iec = 1−

dc∑
i=2

ρi · J
(√

(di − 1) (J−1 (1− Iac))
2

)
, (2)

where dv and dc are denoted as the maximum degrees of VNs and
CNs, respectively. Moreover, the functions I = J(σ) and σ = J−1(I)

are given by [17, 23]

J(σ) =


a1σ

3 + b1σ
2 + c1σ, 0 6 σ 6 1.6363

1− e(a2σ
3+b2σ

2+c2σ+d2), 1.6363 < σ < 10

1, 10 6 σ

(3)

and

J−1(I) =

{
a ′1I

2 + b ′1I+ c
′
1

√
I, 0 6 I 6 0.3646

−a ′2 ln[b ′2(1− I)] − c
′
2I, 0.3646 < I < 1

(4)

where

• a1 = −0.0421061, a2 = 0.00181491, b1 = 0.209252, b2 =

−0.142675, c1 = −0.00640081, c2 = −0.0822054, d2 = 0.0549608;
and

• a ′1 = 1.09542, a ′2 = 0.706692, b ′1 = 0.214217, b ′2 = 0.386013,
c ′1 = 2.33727 and c ′2 = −1.75017.

We use the EXIT method to analyze the (3,6) regular LDPC code and
obtain a threshold of 1.127 dB. The matched (not crossed) EXIT curves
from VNs and CNs are plotted in Fig. 2 when Eb/N0 = 1.127 dB.

2.1.2 Protograph-based LDPC Block Codes

When an LDPC code contains degree-1 VNs or punctured VNs,
the traditional EXIT chart cannot evaluate its decoding performance.
However, for LDPC codes constructed based on protographs, their
theoretical performance can be estimated by the protograph EXIT
(PEXIT) algorithm even if they contain degree-1 VNs or punctured
VNs [37].

A protograph can be denoted by G = (V ,C,E) where V is a set of
VNs, C is a set of CNs and E is a set of edges [36]. Fig. 3 illustrates
a protograph, and the corresponding protomatrix (also called base
matrix) is given by

Bm×n=


1 3 · · · 0 1

2 1 · · · 2 0
...

...
. . .

...
...

1 1 · · · 1 2

 . (5)
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Figure 2: The EXIT curves for (3,6) regular LDPC code at the threshold of
1.127 dB.

The entries in Bm×n = {bi,j : i = 0, 1, 2 . . . ,m− 1; j = 0, 1, 2 . . . ,n− 1}

are allowed to be larger than 1 and they correspond to the multiple
edges connecting the same pair of VN and CN in the protograph. The
parity-check matrix HM×N of a protograph-based LDPC (PLDPC)
code can be constructed by expanding the protomatrix Bm×n where
m�M and n� N.

To obtain a larger HM×N, the following copy-and-permute opera-
tions can be used to expand Bm×n.

1. Duplicate the protograph z times.

2. Permute the edges which connect the same type of VNs and
CNs among these duplicated protographs.

This expansion process is also called lifting and the parameter z is
called the lifting factor. The equivalent process in the “matrix domain”
is to replace each bi,j by

• a z× z zero matrix if bi,j = 0; or

• a summation of bi,j non-overlapping z× z permutation matrices
if bi,j 6= 0.

As mentioned, permutations occur only among the edges connecting
to the same type of nodes and the lifted matrix HM×N (where M =
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Figure 3: A protograph corresponding to the protomatrix in (5).

zm and N = zn) keeps the same degree distribution and code rate as
Bm×n. The code represented by HM×N is called a PLDPC code.

To make the lifted matrix having quasi-cyclic (QC) structure, this
thesis uses a two-step lifting method [77]. In the first step, we “lift”
a base matrix {b(i, j)} by replacing each non-zero entry b(i, j) with
a summation of b(i, j) different z1 × z1 permutation matrices and
replacing each zero entry with the z1 × z1 zero matrix. After the first
lifting process, all entries in the lifted matrix are either “0” or “1”.
In the second step, we lift the resultant matrix again by replacing
each entry “1” with a z2 × z2 circulant permutation matrix (CPM),
and replacing each entry “0” with the z2 × z2 zero matrix. As can be
seen, the final connection matrix can be easily represented by a series
of CPMs. Note that in each lifting step, the permutation matrices
and CPMs are selected using the progressive-edge-growth (PEG)
algorithm [28] such that the girth (shortest cycle) in the resultant
matrix can be maximized.

To analyze the decoding performance of a PLDPC code, the PEXIT
algorithm is applied to Bm×n. In the PEXIT method, the MI values
on all types of edges are updated separately and iteratively [37].

To illustrate the method, different types of MI are first defined as
follows:

• Iac(i, j): a priori MI from j-th VN to i-th CN in Bm×n;

• Iav(i, j): a priori MI from i-th CN to j-th VN in Bm×n;

• Iev(i, j): extrinsic MI from j-th VN to i-th CN in Bm×n;

• Iec(i, j): extrinsic MI from i-th CN to j-th VN in Bm×n;

• Iapp(j): a posteriori MI value of the j-th VN;

• Ich: MI from the channel.

Without going into the details, the steps below show how to deter-
mine the threshold (Eb/N0)th.
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1. Select a relatively large Eb/N0.

2. Set all MI values to 0.

3. Initialize Ich based on Eb/N0 and the code rate.

4. Compute Iev(i, j) and set Iac(i, j) = Iev(i, j) ∀i, j.

5. Compute Iec(i, j) and set Iav(i, j) = Iec(i, j) ∀i, j.

6. Repeat Steps 4) to 5) Iiter times.

7. Compute Iapp(j).

8. If Iapp(j) = 1 ∀j, reduce Eb/N0 and go to Step 2); otherwise set
the previous Eb/N0 that achieves Iapp(j) = 1 ∀j as the threshold
(Eb/N0)th and stop.

In the PEXIT method, for bi,j > 0

Iac (i, j) = Iev (i, j)

= J

√∑
s6=i

bs,j(J−1 (Iav (s, j)))
2
+
(
bi,j − 1

)
· (J−1 (Iav (i, j)))2 + (J−1 (Ich))

2


∀ i, j; (6)

Iav (i, j) = Iec (i, j)

= 1− J

√∑
s6=j

bi,s(J−1 (1− Iac (i, s)))
2
+
(
bi,j − 1

)
· (J−1 (1− Iac (i, j)))2


∀ i, j; (7)

and

Iapp (j) = J

√∑
i

bi,j(J−1 (Iav (i, j)))
2
+ (J−1 (Ich))

2

 ∀ j. (8)

The above analytical process can be regarded as the repeated compu-
tation and exchange between the a priori MI matrices {Iav(i, j)}/{Iac(i, j)}
and extrinsic MI matrices {Iev(i, j)}/{Iec(i, j)}. Moreover, these matri-
ces have the same size as Bm×n. Note that the PEXIT algorithm can
be used to analyze protographs with degree-1 VNs, i.e., columns in
the protomatrix with weight 1. Protographs with punctured VNs will
also be analyzed in a similar way, except that the code rate will be
changed accordingly and the corresponding Ich will be initialized as
0.
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2.1.3 Spatially Coupled LDPC Codes

2.1.3.1 LDPC convolutional codes

Given an LDPC block code, an LDPC convolutional code can be
constructed by introducing memory in the code design and allowing
multiple consecutive block codes to become related [41]. The parity-
check matrixHCC of an LDPC convolutional code is semi-infinite and
structurally repeated, and can be written as

HCC =



H0 (1)

H1 (1) H0 (2)
... H1 (2)

. . .

Hms
(1)

...
. . . H0 (t)

Hms
(2)

. . . H1 (t)
. . .

. . .
...

. . .

Hms
(t)

. . .

. . .



,

where each Hi(t) (i = 0, 1, . . . ,ms) is a M ×N component matrix,
t denotes the time index, and ms is the syndrome former memory.
Each codeword c should satisfy cHCC

T = , where  is the semi-
infinite zero vector.

2.1.3.2 Spatially coupled PLDPC codes

Spatially coupled PLDPC codes are constructed based on underlying
PLDPC block codes. We denote W as the coupling width (equivalent
to the aforementioned syndrome former memory ms) and L as
the coupling length. Based on the m × n protomatrix B of an
underlying PLDPC code, an edge spreading procedure can be first
used to obtain W + 1 split protomatrices Bi (i = 0, 1, . . . ,W) under
the constraint B =

∑W
i=0Bi. Then L sets of such protomatrices

are coupled to construct a spatially coupled PLDPC (SC-PLDPC)
code [53, 78]. Depending on how the coupling ends, three types of
SC-PLDPC codes, namely SC-PLDPC terminated code (SC-PLDPC-
TDC), SC-PLDPC tail-biting code (SC-PLDPC-TBC) and SC-PLDPC
convolutional codes (SC-PLDPC-CC), are formed.
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When the L sets of protomatrices are coupled and then directly
terminated, the resultant protomatrix is given by

BSC−PLDPC−TDC =

nL︷ ︸︸ ︷

B0

B1 B0
... B1

. . .

BW
...

. . . B0

BW
. . . B1
. . .

...

BW





m(L+W). (9)

Such code is called a SC-PLDPC-TDC. The code rate equals

RSC−PLDPC−TDC =
nL−m(L+W)

nL

= 1−
L+W

L
(1− RPLDPC−BC) ,

(10)

where RPLDPC−BC = 1 − m
n is the code rate of its underlying block

code.
Example: We make use of the protomatrix (11) to construct the
protomatrix of a SC-PLDPC-TDC.

B =

 2 0 2 2

0 2 2 2

3 2 0 1

 . (11)

We assume a coupling width W = 1. Hence we split B into B0 and
B1 under the constraint B = B0 +B1, and obtain

B0 =

 1 0 0 2

0 1 1 1

1 2 0 1

 (12)

and

B1 =

 1 0 2 0

0 1 1 1

2 0 0 0

 . (13)
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Figure 4: Constructing the protograph of a SC-PLDPC-TDC from the
protographs of a PLDPC block code. W = 1 and L = 3.

Assuming a coupling length L = 3, we can construct the protomatrix
of a SC-PLDPC-TDC as

BTDC,W=1,L=3 =


B0

B1 B0

B1 B0

B1

 . (14)

The protograph of the above SC-PLDPC-TDC is shown in Fig. 4,
which is formed by coupling L = 3 PLDPC-BC protographs. The blue
edges (connecting P-VNs and SPC-CNs) correspond to B0 (12) while
the red ones correspond to B1 (13). According to edge spreading
operations, the edges from the P-VNs at time t will be spread to
connect the SPC-CNs at time t+ 1, t+ 2, . . . , t+W in addition to the
SPC-CNs at time t. As W = 1 in Fig. 4, the P-VNs at time t = 1

connect SPC-CNs at time t = 1 and t = 2; and P-VNs at time t = 2

connect SPC-CNs at time t = 2 and t = 3.
In Fig. 5, we illustrate another example where W = 2 and L = 4.

The B in (12) is split into

B0 =

 1 0 0 1

0 0 1 1

0 1 0 0

 , (15)
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Figure 5: The protograph of a SC-PLDPC-TDC with W = 2 and L = 4. The
P-VNs corresponding to t = 5 and t = 6 and their associated
connections do not exist.

B1 =

 1 0 1 0

0 1 1 1

2 0 0 0

 (16)

B2 =

 0 0 1 1

0 1 0 0

1 1 0 1

 . (17)

under the constraint B = B0 +B1 +B2. With L = 4, the protomatrix
of the SC-PLDPC-TDC is given by

BTDC,W=2,L=4 =



B0

B1 B0

B2 B1 B0

B2 B1 B0

B2 B1

B2


. (18)

In Fig. 5, the blue edges correspond to B0 (15), the red ones
correspond to B1 (16), and the green ones correspond to B2 (17).



22 Chapter 2: background

Note that the “connections” represented by the dashed (red and blue)
lines do not exist.

When the protograph of a spatially coupled code is terminated
with “end-to-end” connections, the corresponding code is called SC-
PLDPC-TBC, whose protomatrix can be written as

BSC−PLDPC−TBC =
nL︷ ︸︸ ︷

B0 BW · · · B1

B1 B0
. . .

...
... B1 B0 BW

BW
... B1

. . .

BW
...

. . . B0

BW
. . . B1 B0
. . .

...
. . . B0

BW · · · B1 B0





mL

(19)

The code rate RSC−PLDPC−TBC of a SC-PLDPC-TBC is the same as that
of its underlying block code, i.e.,

RSC−PLDPC−TBC =
nL−mL

nL
= RPLDPC−BC. (20)

Using the example shown in Fig. 4 and allowing the spatially coupled
protographs connected end-to-end, we obtain the spatially coupled
tail-biting protograph shown in Fig. 6. The protomatrix of the SC-
PLDPC-TBC is given by

BTBC,W=1,L=3 =

 B0 B1

B1 B0

B1 B0

 . (21)
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Figure 6: The protograph of a SC-PLDPC-TBC derived from Fig. 4. W = 1
and L = 3.

By extending the coupling length L of a SC-PLDPC-TDC to infinite,
a SC-PLDPC-CC is formed. The semi-infinite protomatrix of a SC-
PLDPC-CC is given by

BSC−PLDPC−CC =



B0

B1 B0
... B1

. . .

BW
...

. . . B0

BW
. . . B1

. . .
. . .

...
. . .

BW
. . .
. . .



. (22)

The code rate of SC-PLDPC-CC equals that of the underlying LDPC
block code [53], i.e.,

RSC−PLDPC−CC = lim
L→∞RSC−PLDPC−TDC

= lim
L→∞ 1− L+WL (1− RPLDPC−BC)

= RPLDPC−BC (23)
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Figure 7: The protograph of a SC-PLDPC-CC derived from Fig. 4. W = 1
and L =∞.

Fig. 7 depicts part of the spatially coupled convolutional protograph
when the coupling length L of the SC-PLDPC-TDC shown in Fig. 4 is
extended to infinity.

Once the protomatrix of a spatially coupled code is derived, the
two-step lifting can be used to construct the SC-PLDPC code (SC-
PLDPC-TDC, SC-PLDPC-TBC or SC-PLDPC-CC).

2.1.4 Encoding

Given a M × N parity-check matrix HM×N, any length-N LDPC
codeword c needs to satisfy cHT

M×N = . One direct encoding
method for LDPC codes is to use Gaussian elimination to convert
HM×N into the lower triangular matrix H ′M×N shown in Fig. 8. The
entries on the red diagonal are all 1’s, the entries in the white part
are all 0’s, and the entries in the gray part can be ether 0 or 1. We can
use H ′M×N to systematically encode the length-(N−M) information
sequence u = [u0 u1 . . . uN−M−1] into length-N codeword c = [u p],
where p = [p0 p1 . . . pM−1] denotes the M parity-check bits.
Assuming that H ′M×N = {hi,j}, p can be obtained by backward
recursion [79], i.e.,

pi =

N−M−1∑
j=0

ujhi,j+

i−1∑
j=0

pjhi,j+N−M; i = 0, 1, . . . ,M− 1. (24)

We also can encode LDPC codes using parity-check matrices with an
approximate lower triangular form [80]. For encoding of PLDPC or
SC-LDPC codes, we can use Gaussian elimination to adjust their lifted
matrices or directly design their protomatrices with lower triangular
structures.
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N M M

M

N

Figure 8: Use Gaussian elimination way to generate H ′M×N for encoding.

2.1.5 Decoding

Once receiving the channel observations, which is denoted as a
length-N vector y = [y0 y1 . . . yN−1], we can use the classic belief
propagation (BP) algorithm to decode LDPC codes. When the BP
algorithm is calculated in the logarithmic domain, its operations only
involve addition and multiplication, thus it is also called the sum-
product algorithm (SPA) [21]. We denote

• Rα as the set of VNs connected to the α-th CN (α = 1, 2, . . . ,M);

• Rα\β as the set of VNs connected to the α-th CN excluding the
β-th VN (α = 1, 2, . . . ,M);

• Cβ as the set of CNs connected to the β-th VN (β = 1, 2, . . . ,N);

• Cβ\α as the set of CNs connected to the β-th VN excluding the
α-th CN (β = 1, 2, . . . ,N);

• LVN
ch (β) as the channel LLR value of the β-th VN (β =

1, 2, . . . ,N);

• LVN
app(β) as the a posteriori (APP) LLR value of the β-th VN (β =

1, 2, . . . ,N);

• LVN
ex (α,β) as the extrinsic LLR sent from the β-th VN to the α-th

CN (α = 1, 2, . . . ,M; β = 1, 2, . . . ,N);

• LCN
ex (α,β) as the extrinsic LLR sent from the α-th CN to the β-th

VN (α = 1, 2, . . . ,M; β = 1, 2, . . . ,N).

Assuming that the variance σ2 of the zero-mean AWGN channel is
known at the receiving end, the SPA is described as follows
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1. Initialization: Set LVN
ex (α,β) = LVN

ch (β) = 2yβ/σ
2, ∀α = 1, 2, . . . ,

M and β = 1, 2, . . . ,N.

2. CN processor: For α = 1, 2, . . . , M, compute

LCNex (α,β) = 2tanh−1

 ∏
β ′∈Rα\β

tanh
(
LVNex

(
α,β ′

)
/2
) ∀ β ∈ Rα.

3. VN processor: For β-VN (β = 1, 2, . . . , N), compute

LVNex (α,β) = LVNch (β) +
∑

α ′∈Cβ\α

LCNex
(
α ′,β

)
∀ α ∈ Cβ.

4. Repeat Step 2 to 3 I times and make decisions based on the sign
of LPVN

app (β) (β = 1, 2, . . . ,N), where

LVN
app(β) = L

VN
ch (β) +

∑
α ′∈Cβ

LCNex
(
α ′,β

)
.

Based on the SPA decoding algorithm, the shuffled decoding algo-
rithm [81, 82] and layered decoding algorithm [83, 84] have been
proposed to speed up the convergence rate while maintaining the
same computational complexity. The simplified decoding algorithms
such as normalized or offset BP-based decoding [85–87] and bit-
flipping decoding methods [88–91] have also been proposed. For
decoding of (spatially coupled) LDPC convolutional codes, we can
use a windowed decoding strategy or pipeline decoding arrangement
[42, 43, 92] to perform the BP decoding.

2.2 traditional ldpc-hadamard block codes

2.2.1 Hadamard Codes

We first review the Hadamard codes and their decoding. A Hadamard
code with an order r is a class of linear block codes. We consider a
q × q positive Hadamard matrix +Hq = {+hj, j = 0, 1, . . . ,q − 1},
which can be constructed recursively using

+Hq =

[
+Hq/2 +Hq/2

+Hq/2 −Hq/2

]
(25)

with q = 2r and ±H1 = [±1]. Each column +hj is a Hadamard
codeword and thus ±Hq contains 2q = 2r+1 codewords ±hj. Note
that Hadamard codewords can also be represented by mapping +1

in ±hj to bit “0” and −1 to bit “1”.
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Considering an information sequence u ∈ {0, 1}r+1 of length r+ 1
and denoted by u = [u0 u1 . . . ur]

T , the Hadamard encoder
encodes u into a codeword cH of length q, i.e., cH ∈ {0, 1}2

r
=

[cH0 cH1 . . . cH2r−1]
T , where (·)T represents the transpose operation.

Assuming that the +hj or −hj corresponding to c, i.e., by mapping
bit “0” in c to +1 and bit “1” to −1, is uniformly transmitted through
an AWGN channel with mean 0 and variance σ2ch, we denote the
received signal by y = [y0 y1 . . . y2r−1]

T . Given yi, the log-likelihood
ratio (LLR) value L(cHi | yi) is computed by the ratio between the
conditional probabilities Pr(cHi = “0" | yi) and Pr(cHi = “1" | yi), i.e.,

L(cHi | yi) = ln
Pr(cHi = “0" | yi)
Pr(cHi = “1" | yi)

i = 0, 1, ..., 2r − 1. (26)

Applying the following Bayes’ rule to (26)

Pr(cHi | yi) =
p(yi | c

H
i ) · Pr(cHi )
p(yi)

, (27)

we obtain

L(cHi | yi) = ln
p(yi | c

H
i = “0") · Pr(cHi = “0")

p(yi | c
H
i = “1") · Pr(cHi = “1")

(28)

where p(yi | cHi = “0") and p(yi | cHi = “1") denote the channel
output probability density function (PDF) conditioned on the code bit
cHi = “0" and cHi = “1", respectively, being transmitted; Pr(cHi = “0")
and Pr(cHi = “1") denote the a priori probabilities that cHi = “0" and
cHi = “1" are transmitted, respectively; and p(yi) denotes the PDF of
received signal yi. We denote LHch(i) as the channel LLR value of the
i-th bit, i.e.,

LHch(i) = ln
p(yi | c

H
i = “0")

p(yi | c
H
i = “1")

=
2yi

σ2ch
, i = 0, 1, ..., 2r − 1; (29)

and denote LHapr(i) as the a priori LLR of the i-th bit, i.e.,

LHapr(i) = ln
Pr(cHi = “0")
Pr(cHi = “1")

, i = 0, 1, ..., 2r − 1. (30)

Thus, (28) is rewritten as

L(cHi | yi) = L
H
ch(i) + L

H
apr(i), i = 0, 1, ..., 2r − 1. (31)

We also define

LHch = [LHch(0) L
H
ch(1) · · · LHch(2r − 1)]T ; (32)

LHapr = [LHapr(0) L
H
apr(1) · · · LHapr(2r − 1)]T . (33)
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In [69], a symbol-by-symbol maximum a posteriori probability
(symbol-MAP) Hadamard decoder has been developed, in which the
a posteriori LLR values of the code bits are computed based on the
received vector y. In the following, we show the steps to derive the a
posteriori LLR values.

1. We re-write (26) for i = 0, 1, . . . , 2r − 1 into

Pr(cHi = “0" | yi) =
exp(L(cHi | yi)/2)

exp(L(cHi | yi)/2) + exp(−L(cHi | yi)/2)
(34)

and

Pr(cHi = “1" | yi) =
exp(−L(cHi | yi)/2)

exp(L(cHi | yi)/2) + exp(−L(cHi | yi)/2)
. (35)

We also denote ±H[i, j] as the i-th bit in ±hj. Given y and
applying (34) and (35), the a posteriori probabilities of the
transmitted Hadamard codeword cH being +hj or −hj (j =

0, 1, · · · , 2r − 1) are given by

Pr
(
cH = ±hj | y

)
=
∏
i

Pr
(
cHi = ±H[i, j] | yi

)
=
∏
i

exp
(
±H[i, j] · L(cHi | yi)/2

)
exp(L(cHi | yi)/2) + exp(−L(cHi | yi)/2)

= κ · γ
(
±hj

)
(36)

where

κ =

[∏
i

[
exp

(
L(cHi | yi)/2

)
+ exp

(
−L(cHi | yi)/2

)]]−1
is independent of ±hj;

γ
(
±hj

)
= exp

(
1

2

〈
±hj,LHch +LHapr

〉)
(37)

represents the a posteriori “information” of the codeword ±hj;
and 〈·〉 denotes the inner-product operator.
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2. Based on Pr
(
cH = ±hj | y

)
, the a posteriori LLR of the i-th

(i = 0, 1, ..., 2r − 1) code bit, which is denoted by LHapp(i), is
computed using

LHapp(i) = ln
Pr(cHi = “0" | y)
Pr(cHi = “1" | y)

= ln

∑
±H[i,j]=+1

Pr(cH = ±hj | y)∑
±H[i,j]=−1

Pr(cH = ±hj | y)

= ln

∑
±H[i,j]=+1

γ
(
±hj

)
∑

±H[i,j]=−1

γ
(
±hj

) . (38)

We define

LHapp = [LHapp(0) L
H
app(1) · · · LHapp(2r − 1)]T . (39)

Based on the butterfly-like structure of the Hadamard matrix, LHapp
can be computed using the fast Hadamard transform (FHT) and the
dual FHT (DFHT) [69, 71, 72]. Hard decisions can then be made on
LHapp(i) to estimate code bits. In the case of iterative decoding, the
Hadamard decoder subtracts the LHapr(i) from LHapp(i) and feeds back
“new” extrinsic information to other component decoders.

2.2.2 LDPC-Hadamard Codes

In the Tanner graph of an LDPC code, a VN with degree-dj emits
dj(dj > 1) edges connecting to dj different CNs and forms a (dj, 1)
repeat code; whereas a CN with degree-di emits di(di > 1) edges
connecting di different VNs and forms a (di,di − 1) single-parity-
check (SPC) code. A generalized LDPC code is obtained when the
repeat code and/or SPC code is/are replaced by other block codes.

In [1], the SPC codes of an LDPC code are replaced with Hadamard
codes, forming an LDPC-Hadamard code. Fig. 9 depicts the Tanner
graph of an LDPC-Hadamard code. In particular, the code possesses
the following characteristics.

• Structure: Hadamard parity-check bits are added to the CNs
in the Tanner graph such that the SPC constraints become the
Hadamard constraints (see the Hadamard check node shown in
Fig. 9).

• Encoding: LDPC coded bits are first generated based on
LDPC parity-check matrix and then the LDPC coded bits are
used to generate Hadamard parity-check bits (corresponding to
Hadamard degree-1 variable nodes).
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dj

di

Figure 9: Tanner graph of LDPC-Hadamard codes. The unfilled circles
denote variable nodes which are the same as variable nodes in
Tanner graph of LDPC codes, while SPC-CNs in Tanner graph of
LDPC codes are replaced with Hadamard check nodes (denoted as
squares with symbol “H”) with some attached Hadamard degree-1
variable nodes (denoted as filled circles).

• Decoding: LDPC-Hadamard decoding retains the same variable-
node updating method while replacing the check-node updat-
ing method with the symbol-MAP Hadamard decoding.

• Optimization: With a fixed Hadamard order and a given code
rate, the EXIT method is used to adjust the degree distribution
of VNs. The aim is to find an optimal degree distribution of the
VNs such that the EXIT curves of the repeat codes (i.e., VNs)
and Hadamard codes are matched under a low Eb/N0.

2.3 summary

In this chapter, we have reviewed some important component codes,
i.e., LDPC code ensembles, Hadamard codes and LDPC-Hadamard
codes, their code structures, analysis techniques, and encoding and
decoding methods. In the next chapter, we begin introducing our own
works, i.e., PLDPC-Hadamard codes.
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Chapter 3
P R O T O G R A P H - B A S E D L D P C - H A D A M A R D B L O C K
C O D E S

In this chapter, we propose a variation of LDPC-Hadamard code
called protograph-based LDPC Hadamard (PLDPC-Hadamard) code [93,
94]. We provide the detailed decoding for even/odd-order Hadamard
decoder when evaluating the error performance of PLDPC-Hadamard
codes. We also propose a PEXIT chart method to compute the thresh-
old of PLDPC-Hadamard codes while providing the optimization
criterion. By the proposed methods, we search for protomatrices with
low thresholds for PLDPC-Hadamard codes. Extensive simulations
and the corresponding analysis for unpunctured/punctured PLDPC-
Hadamard codes are conducted.

3.1 code structure

The base structure of a PLDPC-Hadamard code is shown in Fig. 10,
where

• each blank circle denotes a protograph variable-node (P-VN);

• each square with an “H” inside denotes a Hadamard check-
node (H-CN); and

• each filled circle denotes a degree-1 Hadamard variable-node
(D1H-VN).

We assume that there are n P-VNs and m H-CNs. The protomatrix of
the proposed PLDPC-Hadamard codes is then denoted by Bm×n =

{bi,j}, where bi,j represents the number of edges connecting the i-
th H-CN (i = 0, 1, . . . ,m− 1) and the j-th P-VN (j = 0, 1, . . . ,n− 1).
Moreover, we denote the weight of the i-th row by dci =

∑n−1
j=0 bi,j,

which represents the total number of edges connecting the i-th H-CN
to all P-VNs. For example in Fig. 10, the number of edges connecting
each of the three displayed H-CNs to all P-VNs is equal to dci = 6.
These dci edges are considered as (input) information bits to the
i-th Hadamard code while the connected D1H-VNs represent the
corresponding (output) parity bits in the Hadamard code. Recall
that an order-r Hadamard code contains 2r+1 codewords with each
codeword containing r + 1 information bits. Suppose a Hadamard
code of order-(dci −1) is used to encode these dci inputs and generate

33
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Figure 10: The protograph of a PLDPC-Hadamard code.

2(dci−1) − dci Hadamard parity-check bits. As these dci = r + 1

bits take part in the same parity-check equation of an LDPC code
and need to fulfill the SPC constraint 1, the number of possible
combinations of these dci bits is only 2(dci−1) and thus 2(dci−1) = 2r

Hadamard codewords will be generated. In other words, only half
of the 2r+1 available Hadamard codewords are used, making the
encoding process very inefficient.

Same as in LDPC-Hadamard codes [1], we utilize Hadamard codes
with order r = dci − 2 (r > 2) in the proposed PLDPC-Hadamard
codes. With such an arrangement,

• all possible Hadamard codewords, i.e., 2(dci−1) = 2r+1 can be
utilized;

• fewer Hadamard parity bits compared with the case of r =

dci − 1 need to be added (only (2(dci−2)−dci) and (2(dci−2)− 2)
Hadamard parity-check bits are generated for r is even and odd,
respectively);

• the encoding process becomes most efficient;

• the overall code rate is increased; and

• the decoding performance is improved.

Note that a Hadamard code with order r = 2 is equivalent to
the (4, 3) SPC code. No extra parity-check bits (i.e., D1H-VNs) will

1 If these dci = r+ 1 input bits are not required to satisfy a SPC constraint, two other
types of LDPC-Hadamard codes can be formed and they are briefly described in
Appendix A.
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Figure 11: Example of encoding a length-6 SPC codeword into a length-16

(r = 4) Hadamard codeword.

be generated if such an Hadamard code is used in the PLDPC-
Hadamard code. Thus Hadamard codes with order r = 2 are not
considered.

In the following, we consider the cases when r is even and odd
separately. It is because systematic Hadamard encoding is possible
when r is even and non-systematic Hadamard encoding needs to be
used when r is odd.

3.1.1 r = dci − 2 Is An Even Number

We denote a Hadamard codeword by cH =
[
cH0 c

H
1 . . . cH2r−1

]
. For r

being an even number, it has been shown that [1][
cH0 ⊕ cH1 ⊕ cH2 ⊕ · · · ⊕ cH2k−1 ⊕ · · · ⊕ cH2r−1

]
⊕ cH2r−1 = 0. (40)

Viewing from another perspective, if there is a length-(r + 2) SPC
codeword denoted by cµ = [cµ0 cµ1 . . . cµr cµr+1 ], these bits can
be used as inputs to a systematic Hadamard encoder and form a
Hadamard codeword where

cH0 = cµ0 , c
H
1 = cµ1 , · · · , cH2k−1 = cµk , · · · , cH2r−1 = cµr , c

H
2r−1 = cµr+1

(41)

correspond to r+ 2 P-VNs and the remaining Hadamard parity bits
in cH correspond to 2r − (r+ 2) D1H-VNs. Fig. 11 shows an example
in which a (6, 5) SPC codeword is encoded into a length-16 (r = 4)
Hadamard codeword. For the length-6 SPC code, we use the order
r = 6− 2 = 4Hadamard matrix, i.e., ±H16, to generate 10Hadamard
parity bits. Suppose +1 is mapped to bit “0” and −1 to bit “1” in
Hadamard matrix. We show ±H16 in Fig. 12, where ±h0,j ⊕±h1,j ⊕
±h2,j ⊕±h4,j ⊕±h8,j ⊕±h15,j = 0 ∀ j and cµ0 = ±h0,j, cµ1 = ±h1,j,
cµ2 = ±h2,j, cµ3 = ±h4,j, cµ4 = ±h8,j, cµ5 = ±h15,j.

Referring to Fig. 10, the links connecting the P-VNs to the i-th
H-CN always form a SPC. These links can make use of the above
mechanism to derive the parity bits of the Hadamard code (denoted
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Figure 12: Hadamard matrix ±H16 and the Hadamard codewords {±hj :
j = 0, 1, . . . , 15}. When +1 is mapped to bit “0” and −1 is mapped
to bit “1”, ±h0,j⊕±h1,j⊕±h2,j⊕±h4,j⊕±h8,j⊕±h15,j = 0 ∀ j.

as D1H-VNs of the Hadamard check node in Fig. 10) if dci is
even. In this case, the Hadamard code length equals 2dci−2, and
the number of D1H-VNs equals 2dci−2 − dci . Assuming dci is even
for all i = 0, 1, . . . ,m− 1, the total number of D1H-VNs is given by∑m−1
i=0

(
2dci−2 − dci

)
. When all VNs are sent to the channel, the code

rate of the protograph given in Fig. 10 equals

Reven =
n−m

m−1∑
i=0

(
2dci−2 − dci

)
+n

. (42)

If we further assume that all rows in Bm×n have the same weight
which is equal to d, i.e., dci = d for all i, the code rate is simplified to

Reven
dci=d

=
n−m

m (2d−2 − d) +n
. (43)

When np(< n) P-VNs are punctured, the code rate becomes

Reven
punctured =

n−m

m (2d−2 − d) +n−np
. (44)

3.1.2 r = dci − 2 Is An Odd Number

For r being an odd number, the 2r Hadamard codewords in +Hq can
satisfy (40) but all the 2r Hadamard codewords in −Hq cannot. We
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Figure 13: Example of encoding a length-5 SPC codeword into a length-8
(r = 3) Hadamard codeword.

apply the same non-systematic encoding method in [1] to encode the
SPC codeword 2. Supposing cµ is a SPC codeword, we preprocess
cµ =

[
cµ0 cµ1 . . . cµr+1

]
to obtain c ′µ =

[
c ′µ0 c

′
µ1 . . . c

′
µr+1

]
, and

then we perform Hadamard encoding for c ′µ to obtain cH =[
cH0 c

H
1 . . . cH2r−1

]
, where

cH0 = c ′µ0 = cµ0

cH1 = c ′µ1 = cµ1 ⊕ cµ0
...

cH2k−1 = c ′µk = cµk ⊕ cµ0 (45)
...

cH2r−1 = c ′µr = cµr ⊕ cµ0
cH2r−1 = c ′µr+1 = cµr+1 .

Fig. 13 shows an example in which a (5,4) SPC codeword is encoded
into a length-8 (r = 3) Hadamard codeword. It can be seen that after
the non-systematic encoding, only the first and last code bits are
the same as the original information bits, i.e., cH0 = c ′µ0 = cµ0 and
cH2r−1 = c

′
µr+1

= cµr+1 . Thus we send the remaining code bits, i.e., cH1
to cH2r−2, to provide more channel observations for the decoder and
the number of D1H-VNs equals 2dci−2− 2. For example, the code bits[
cH1 c

H
2 c

H
3 c

H
4 c

H
5 c

H
6

]
shown in Fig. 13 will be sent.

2 Note that there are other non-systematic encoding methods, e.g., preprocess cµ =[
cµ0

cµ1
. . . cµr+1

]
to obtain c ′µ =

[
c ′µ0

c ′µ1
. . . c ′µr+1

]
, where c ′µi

= cµi
for i =

0, 1, 2, . . . , r; and c ′µr+1
= cµr+1

⊕ cµ0
.
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Figure 14: Block diagram of a PLDPC-Hadamard decoder. The repeat
decoder is the same as the variable-node processor used in LDPC
decoder. For the symbol-MAP Hadamard decoder, the number of
outputs is always r+ 2; the number of inputs is 2r when r is even;
the number of inputs is 2r + r when r is odd.

Assuming all the rows in Bm×n have the same weight d, the code
rate is given by

Rodd
dci=d

=
n−m

m (2d−2 − 2) +n
. (46)

If np (< n) P-VNs are punctured, the code rate becomes

Rodd
punctured =

n−m

m (2d−2 − 2) +n−np
. (47)

Note that for k = 1, 2, . . . , r,

• cH
2k−1

= c ′µk = cµk ⊕ c0 and hence cµk = c
H
2k−1
⊕ c0;

• cµk is transmitted as P-VN; and

• cH
2k−1

is transmitted as D1H-VN.

Thus the r information bits cµk can have both the a priori information
provided by the extrinsic information from P-VNs and the channel
information of cH

2k−1
= c ′µk = cµk ⊕ c0 from D1H-VNs. However, the

two information bits cµ0 and cµr+1 only have the a priori information
from P-VNs and the 2r − (r + 2) Hadamard parity bits only have
the channel information from D1H-VNs. Supposing for every H-CN,
nh (6 r) D1H-VNs corresponding to code bits cH

2k−1
(k = 1, 2, . . . , r)

are also punctured. The code rate further becomes

Rodd
punctured D1H−VN =

n−m

m (2d−2 − 2−nh) +n−np
. (48)

3.2 decoder of pldpc-hadamard codes

To evaluate the performance of PLDPC-Hadamard codes, the iterative
decoder shown in Fig. 14 is used. It consists of a repeat decoder and a
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symbol-MAP Hadamard decoder. The repeat decoder is the same as
the variable-node processor used in an LDPC decoder. The operations
of a repeat decoder can be found in (65) and (66) in Section 4.1.

As described in the previous section, each H-CN with an order-r
Hadamard constraint is connected to r+ 2 P-VNs in the protograph
of a PLDPC-Hadamard code. The symbol-MAP Hadamard decoder
of order-r has a total of 2r or 2r + r inputs, among which r+ 2 come
from the repeat decoder and are updated in each iteration; and the
remaining inputs come from the channel LLR information which do
not change during the iterative process. Moreover, the symbol-MAP
Hadamard decoder will produce r+ 2 extrinsic LLR outputs which
are fed back to the repeat decoder. The iterative process between the
repeat decoder and symbol-MAP Hadamard decoder continues until
the information bits corresponding to all Hadamard codes (after hard
decision) become valid SPCs or the maximum number of iterations
has been reached. In the following, we show the details of the
operations of the symbol-MAP Hadamard decoder.

3.2.1 Even-Order Hadamard Decoder

A H-CN has r + 2 links to P-VNs and is connected to 2r − (r + 2)

D1H-VNs. Specifically, we denote

• LRex = [LRex(0) L
R
ex(1) · · · LRex(r+ 1)]T as the r+ 2 extrinsic LLR

information values coming from the repeat decoder (P-VNs),

• LHapr = [LHapr(0) L
H
apr(1) · · · LHapr(2r − 1)]T as the 2r a priori

LLR values of cH,

• yHch = [yHch(0) y
H
ch(1) · · · yHch(2r− 1)]T as the length-2r channel

observation vector corresponding to cH and is derived from the
D1H-VNs (note that r+ 2 channel observations are zero),

• LHch = [LHch(0) L
H
ch(1) · · · LHch(2r− 1)]T as the length-2r channel

LLR observations corresponding to cH.

Based on (41) and the transmission mechanism, a priori LLR values
exist only for the r+ 2 information bits in cH and they are equal to the
extrinsic LLR values LRex from the repeat decoder. Correspondingly,
channel LLR values only exist for the 2r− r− 2 Hadamard parity bits
in cH and they are obtained from the received channel observations
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Figure 15: Operations in the symbol-MAP Hadamard decoder for r = 4, i.e.,
16 LLR inputs and 6 output LLR values for the information bits.

yHch. In other words, only 2r − r− 2 entries in yHch and also LHch are
non-zero. Thus the entries of LHch and LHapr are assigned as LHapr(k) = L

R
ex(0)

LHch(k) =
2yHch(0)

σ2ch
= 0

for k = 0;

 LHapr(k) = L
R
ex(i)

LHch(k) =
2yHch(k)

σ2ch
= 0

for k = 1, 2, · · · , 2i−1, · · · , 2r−1;

 LHapr(k) = L
R
ex(r+ 1)

LHch(k) =
2yHch(k)

σ2ch
= 0

for k = 2r − 1;

 LHapr(k) = 0

LHch(k) =
2yHch(k)

σ2ch

for the 2r − r− 2 remaining k.

(49)

The symbol-MAP Hadamard decoder then computes the a posteriori
LLR (LHapp) of the code bits using (38) and (37). By subtracting the
a priori LLR values from the a posteriori LLR values, the extrinsic
LLR values (LHex) can be obtained. Fig. 15 illustrates the flow of the
computation of LHapp and hence LHex for r = 4, which corresponds
to r+ 2 = 6 information bits (and 2r − (r+ 4) = 10 Hadamard parity
bits).
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3.2.2 Odd-Order Hadamard Decoder

A H-CN is connected to r+2 P-VNs and 2r−2D1H-VNs, and the bits
corresponding to the r+ 2 P-VNs form a SPC codeword cµ. Similar
to the “r is an even number" case, we denote

• LRex = [LRex(0) L
R
ex(1) · · · LRex(r+ 1)]T as the r+ 2 extrinsic LLR

information values coming from the repeat decoder (P-VNs),

• LHapr = [LHapr(0) L
H
apr(1) · · · LHapr(2r − 1)]T as the 2r a priori

LLR values of cH,

• yHch = [yHch(0) y
H
ch(1) · · · yHch(2r− 1)]T as the length-2r channel

observation vector corresponding to cH and is derived from the
D1H-VNs (note that the first and the last channel observations
are zero),

• LHch = [LHch(0) L
H
ch(1) · · · LHch(2r− 1)]T as the length-2r channel

LLR observations corresponding to cH.

Since non-systematic Hadamard code is used, cµ does not represent
the information bits in cH for cµ0 = “1". Thus, we cannot directly
apply (38) to obtain the a posteriori LLR of cµ. Here, we present the
decoding steps when r is odd. Detailed derivations are shown in
Appendix B.

Referring to (45), the assignment of LHapr depends on cµ0 . For
convenience of explanation, we denote L+H

apr/L
−H
apr as the assignment

of LHapr for cµ0 = “0"/“1", respectively. We use (B4) to assign L±Hapr
and (B5) to assign LHch. Since the first bit in all +hj/− hj is “0"/“1"
(+1 mapped to “0" and −1 to “1"), we apply L±Hapr and LHch to
compute γ(±hj), i.e.,

γ
(
±hj

)
= exp

(
1

2

〈
±hj,LHch +L±Hapr

〉)
. (50)

We define the r+ 2 a posteriori LLR values (LHapp) of the original bits
cµ by

LHapp = [LHapp(0) L
H
app(1) · · · LHapp(2i−1) · · ·

LHapp(2
r−1) LHapp(2

r − 1)]T . (51)

We use (37) and (38) to compute LHapp(0) and LHapp(2
r − 1); (B9)

to obtain γ ′(−hj) and then DFHT to compute (B10) to obtain
LHapp(2

k−1) k = 1, 2, · · · , r. Fig. 16 illustrates for the case r = 3, the
transformation from γ(−hj) to γ ′(−hj), i.e., γ ′(−hj) = γ(−h2r−1−j).
Then LHex = LHapp −L

R
ex of length r+ 2 is computed and fed back to

the repeat decoder. The steps to compute LHex for the case r = 3 is
shown in Fig. 17.
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Figure 16: Illustration of γ ′(−hj) = γ(−h2r−1−j) for r = 3.

Remark: If some more bits in cH
2k−1

for k = 1, 2, . . . , r are punctured,
the corresponding channel observation yHch(2

k−1) and LLR values of
LHch(2

k−1) are set to 0 and the overall code rate will slightly increase.

3.3 code design optimization

We propose a low-complexity PEXIT algorithm for analyzing PLDPC-
Hadamard codes. Our low-complexity PEXIT algorithm uses the
same MI updating method as the original PEXIT algorithm [37]
for the P-VNs. However, our algorithm computes extrinsic MI for
the symbol-MAP Hadamard decoder whereas the original PEXIT
algorithm computes extrinsic MI for the SPC decoder. We use Monte
Carlo method in obtaining the extrinsic MI values of the symbol-MAP
Hadamard decoder. The algorithm not only has a low complexity, but
also is generic and applicable to analyzing both systematic and non-
systematic Hadamard codes.

We define the following symbols.

• Iav(i, j): the a priori mutual information (MI) from the i-th H-
CN to the j-th P-VN;

• Iev(i, j): extrinsic MI from the j-th P-VN to the i-th H-CN;

• Iah(i,k): the a priori MI of the k-th information bit in the i-th
H-CN;

• Ieh(i,k): extrinsic MI of the k-th information bit in the i-th H-
CN;

• Iapp(j) the a posteriori MI of the j-th P-VN.

Referring to Fig. 10, the channel LLR value Lch follows a normal dis-
tribution N(σ2Lch/2,σ

2
Lch

) where σ2Lch = 8R · Eb/N0 and R is the code
rate. When the output MI of a decoder is I, the corresponding LLR
values of the extrinsic information obeys a Gaussian distribution of
(±σ2/2,σ2). The relationship between I and σ can be approximately
computed by functions I = J(σ) (3) and σ = J−1(I) (4) [17, 23].

3.3.1 Modified PEXIT Algorithm

To generate the PEXIT curves for the repeat decoder and symbol-
MAP Hadamard decoder, we apply the following steps for a given
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B3×4 =

 2 0 2 2

0 2 2 2

3 2 0 1

 (52)

Iev(i, j) = J

√∑
s6=i

bs,j
(
J−1 (Iav (s, j))

)2
+
(
bi,j − 1

)
·
(
J−1 (Iav (i, j))

)2
+ σ2Lch


(53)

Iev =

 Iev (0, 0) 0 Iev (0, 2) Iev (0, 3)
0 Iev (1, 1) Iev (1, 2) Iev (1, 3)

Iev (2, 0) Iev (2, 1) 0 Iev (2, 3)

 (54)

Iah =

 Iah (0, 0) Iah (0, 1) Iah (0, 2) Iah (0, 3) Iah (0, 4) Iah (0, 5)
Iah (1, 0) Iah (1, 1) Iah (1, 2) Iah (1, 3) Iah (1, 4) Iah (1, 5)
Iah (2, 0) Iah (2, 1) Iah (2, 2) Iah (2, 3) Iah (2, 4) Iah (2, 5)


=

 Iev (0, 0) Iev (0, 0) Iev (0, 2) Iev (0, 2) Iev (0, 3) Iev (0, 3)
Iev (1, 1) Iev (1, 1) Iev (1, 2) Iev (1, 2) Iev (1, 3) Iev (1, 3)
Iev (2, 0) Iev (2, 0) Iev (2, 0) Iev (2, 1) Iev (2, 1) Iev (2, 3)


(55)

IE =
1

2

∑
x∈{0,1}

∫∞
−∞ pe (ξ|X = x)log2

2 · pe (ξ|X = x)

pe (ξ|X = “0") + pe (ξ|X = “1")
dξ (56)

Ieh =

 Ieh (0, 0) Ieh (0, 1) Ieh (0, 2) Ieh (0, 3) Ieh (0, 4) Ieh (0, 5)
Ieh (1, 0) Ieh (1, 1) Ieh (1, 2) Ieh (1, 3) Ieh (1, 4) Ieh (1, 5)
Ieh (2, 0) Ieh (2, 1) Ieh (2, 2) Ieh (2, 3) Ieh (2, 4) Ieh (2, 5)


(57)

Iav =

 Iav (0, 0) 0 Iav (0, 2) Iav (0, 3)
0 Iav (1, 1) Iav (1, 2) Iav (1, 3)

Iav (2, 0) Iav (2, 1) 0 Iav (2, 3)



=



1
2

1∑
k=0

Ieh(0,k) 0 1
2

3∑
k=2

Ieh(0,k) 1
2

5∑
k=4

Ieh(0, k)

0 1
2

1∑
k=0

Ieh(1,k) 1
2

3∑
k=2

Ieh(1,k) 1
2

5∑
k=4

Ieh(1, k)

1
3

2∑
k=0

Ieh(2,k) 1
2

4∑
k=3

Ieh(2,k) 0 Ieh(2, 5)


(58)
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set of protomatrix Bm×n (e.g., (52)), code rate R and Eb/N0 in dB
(denoted as Eb/N0(dB)).

i) Compute σLch = (8 · R · 10(Eb/N0(dB))/10)
1/2

for Lch.

ii) For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . ,n− 1, set Iav (i, j) = 0.

iii) For i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . ,n − 1, compute (53) if
bi,j > 0; else set Iev(i, j) = 0. Taking the 3× 4 protomatrix in
(52) as an example, the weight of each row is d = 6 and hence
r+ 2 = 6 ⇒ r = 4. After analyzing the MI of the P-VNs, the
corresponding 3× 4 {Iev(i, j)} MI matrix can be represented by
(54).

iv) Convert the m×n {Iev(i, j)} MI matrix into an m× d {Iah(i,k)}
MI matrix by eliminating the 0 entries and repeating {Iev(i, j)}
bi,j(> 1) times in the same row. Using the previous example, the
3× 4 {Iev(i, j)} MI matrix is converted into the 3× 6 {Iah(i,k)}
MI matrix shown in (55).

v) For i = 0, 1, . . . ,m − 1, using the d entries in the i-th row of
Iah and σ2Lch , generate a large number of sets of LLR values as
inputs to the symbol-MAP Hadamard decoder and record the
output extrinsic LLR values of the k-th information bit (k =

0, 1, . . . ,d − 1). Compute the extrinsic MI of the information
bit using (56), where pe(ξ|X = x) denotes the PDF of the LLR
values given the bit x being “0” or “1”. Form the extrinsic
MI matrix {Ieh(i,k)} of size m × d. (Details of the method is
shown in Appendix C.) Using the previous example, the matrix
is represented by (57).
Remark: Our technique makes use of multiple a priori MI
values ({Iah(i,k)}) as well as channel information σLch and
produces multiple extrinsic MI values ({Ieh(i,k)}). In [95], an
EXIT function of symbol-MAP Hadamard decoder under the
AWGN channel is obtained. However, the function involves
very high computational complexity, which increases rapidly
with an increase of the Hadamard order r. The function also
cannot be used for analyzing non-systematic Hadamard codes.
In [1], simulation is used to characterize the symbol-MAP
Hadamard decoder but the method is based on a single a priori
MI value as well as channel information and produces only one
output extrinsic MI.

vi) Convert the m× d {Ieh(i,k)} MI matrix into an m×n {Iav(i, j)}
MI matrix. For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . ,n− 1; if bi,j >
0, set the value of Iav(i, j) as the average of the corresponding
bi,j MI values in the i-th row of {Ieh(i,k)}; else set Iav(i, j) = 0.
In the above example, {Iav(i, j)} becomes (58).
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vii) Repeat Steps iii) to vi) until the maximum number of iterations
is reached; or when Iapp(j) = 1 for all j = 0, 1, . . . ,n− 1 where

Iapp (j) = J

(√
m−1∑
i=0

bi,j(J−1 (Iav (i, j)))
2
+ σ2Lch

)
.

Note that our PEXIT algorithm can be used to analyze PLDPC-
Hadamard designs with degree-1 and/or punctured VNs. In case of
puncturing, the corresponding channel LLR values in the analysis
will be set to zero.

3.3.2 Optimization Criterion

For a given code rate, our objective is to find a protograph of the
PLDPC-Hadamard code such that it achieves Iapp(j) = 1 ∀ j within a
fixed number of iterations and with the lowest threshold Eb/N0. To
reduce the search space, we impose the following constraints:

• the weights of all rows in the protomatrix are fixed at d;

• the maximum column weight, the minimum column weight,
and the maximum value of each entry in protomatrix are preset
according to the code rate and order of the Hadamard code;

• the maximum number of iterations used in the PEXIT algorithm
is set to 300; and

• a target threshold is set to below −1.40 dB.

Algorithm 1 shows the steps to find a protomatrix with a low
threshold. A protomatrix is first randomly generated according
to the constraints above 3. Then it is iteratively analyzed by the
PEXIT algorithm to see if the corresponding PEXIT curves converge
under the current Eb/N0 (dB). If the protomatrix is found satisfying
Iapp(j) = 1 for all j, Eb/N0 (dB) is reduced by 0.01 dB and the
protomatrix is analyzed again. If the number of iterations reaches
300 and the condition Iapp(j) = 1 for all j is not satisfied, the analysis
is terminated and the Eb/N0 threshold is determined. The process
is repeated until a protomatrix with a satisfactory Eb/N0 threshold
is found. (On average, the PEXIT algorithm takes 35s (for r = 4) to
120s (for r = 10) to determine the threshold of a protomatrix. For the
case of r = 4, we generate 659 protomatrices to find the protomatrix
presented in our thesis, which takes about 6.4 hours. Among the 659
protomatrices, 18 protomatrices have a threshold less than or equal
to −1.40 dB. Using annealing approaches or genetic algorithms to
generate the protomatrices would speed up the search and should be
looked into in the future.)

3 We randomly generate each row, satisfying that each entry is less than or equal
to maximum entry value and row weight equals d; while satisfying each column
weight greater than or equal to minimum column weight, and less than or equal to
the maximum column weight.
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Algorithm 1: Searching Bm×n with a low threshold
1 Generate a random protomatrix Bm×n according to the

corresponding constraints;
2 Eb/N0(dB) = −1.40 dB;
3 while Eb/N0(dB) > −1.59 dB do
4 σLch =

√
8 · R · 10(Eb/N0(dB))/10;

5 Ich(j) = J(σLch) for ∀ j;
6 Iav(i, j) = 0 for ∀ i, j;
7 It = 0;
8 while It < 300 do
9 Use the proposed PEXIT algorithm to analyze Bm×n and

obtain Iapp(j) for j = 0, 1, . . . ,n− 1;
10 if Iapp(j) = 1 for ∀ j then
11 Eb/N0(dB) = Eb/N0(dB) − 0.01 dB; Goto line 3;

12 It = It+ 1;

13 Break;

14 Threshold equals Eb/N0(dB) + 0.01 dB.

3.4 simulation results

In this section, we report our simulation results. Once a protomatrix
with low threshold is found, we use a two-step lifting mechanism
together with the PEG method [28] to construct an LDPC code.
(See Appendix D for details of the lifting process.) Subsequently,
each CN will be replaced by a Hadamard CN connected to an
appropriate number of D1H-VNs. Without loss of generality, we
transmit all-zero codewords. Moreover, the code bits are modulated
using binary phase shift keying and sent through an AWGN channel.
The maximum number of iterations performed by the decoder is 300.
At a particular Eb/N0, we run the simulation until 100 frame errors
are collected. Then we record the corresponding bit error rate (BER),
frame error rate (FER) and average number of iterations per decoded
frame.

3.4.1 Unpunctured PLDPC-Hadamard Codes

3.4.1.1 r = 4 and d = r+ 2 = 6

We attempt to find a PLDPC-Hadamard code with a target code rate
of approximately 0.05. We substitute R ≈ 0.05 and d = 6 into (43),
and obtain m

n ≈ 0.63. We therefore select a protomatrix B7×11 of
size 7× 11, i.e., m = 7 and n = 11, and hence the code rate equals
R = 0.0494. Moreover, we set the minimum column weight to 1,
maximum column weight to 9, and maximum entry value to 3. The
overall constraints of the protomatrix are listed as follows:

• size equals 7× 11,
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Figure 18: The PEXIT chart of the PLDPC-Hadamard code given in (59) with
R = 0.0494 and r = 4.

• row weight equals
∑10
j=0 bi,j = d = 6,

• minimum column weight equals
∑6
i=0 bi,j = 1,

• maximum column weight equals
∑6
i=0 bi,j = 9, and

• maximum entry value in B7×11 equals 3.

Using the proposed analytical method under the constraints above,
we find the following protomatrix which has a theoretical threshold
of −1.42 dB.

B7×11 =



1 0 0 0 0 0 1 0 3 0 1

0 1 2 0 0 0 0 0 0 2 1

2 1 0 0 1 1 0 0 0 0 1

0 1 0 3 0 0 0 0 0 2 0

2 0 0 0 0 0 0 1 0 3 0

3 0 0 2 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0 1 2 0


(59)

Fig. 18 plots the PEXIT curves of the repeat decoder and the symbol-
MAP Hadamard decoder under Eb/N0 = −1.42 dB. It can be
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Figure 19: BER (red curve) and FER (pink curve) performance of the
proposed PLDPC-Hadamard code compared with the BER of the
LDPC-Hadamard code (blue curve) in [1]. r = 4 and k = 65, 536.

observed that the two curves are matched. By lifting the protomatrix
with factors of z1 = 32 and z2 = 512, we obtain a PLDPC-Hadamard
code with information length k = z1z2(n −m) = 65, 536 and code
length Ntotal = z1z2[m(2d−2 − d) +n] = 1, 327, 104. (See Table 13 in
Appendix D for details of the code structure after the lifting process.)

The BER and FER results of the PLDPC-Hadamard code found are
plotted in Fig. 19. Our code achieves a BER of 10−5 at Eb/N0 = −1.19
dB, which is 0.23 dB from the threshold. Table 1 lists the detailed
results at −1.19 dB. A total of 832, 056 frames need to be sent before
100 frame errors are collected. Hence a FER of 1.2× 10−4 is achieved.
Fig. 20 plots the average number of iterations versus Eb/N0. Our code
requires an average of 127 iterations for decoding at Eb/N0 = −1.19
dB. At a BER of 10−5, the gaps of our rate-0.0494 PLDPC-Hadamard
code to the Shannon capacity for R = 0.05 and to the ultimate
Shannon limit are 0.25 dB and 0.40 dB, respectively. The comparison
of gaps is also listed in Table 2.

In Fig. 21, we further compare the BER results of the rate-0.05
LDPC-Hadamard code in [1] at Eb/N0 = −1.18 dB and our rate-
0.0494 PLDPC-Hadamard code at Eb/N0 = −1.18 dB and −1.19 dB
under different number of iterations. Note that the result of the LDPC-
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Table 1: Detail results achieving a BER of 10−5 for r = 4 PLDPC-Hadamard
code with rate-0.494 until 100 frame errors are reached.

Eb/N0 −1.19 dB

No. of frame sent 832, 056

FER 1.2× 10−4

BER 9.1× 10−6

Avg. no. of iterations 127

Hadamard code is the average from 20 simulations [1], whereas our
result is the average from 10, 000 simulations. In other words, our
simulation results are statistically very accurate due to the large
number of simulations involved. For the same number of iterations
at Eb/N0 = −1.18 dB, our PLDPC-Hadamard code produces a lower
BER compared with the LDPC-Hadamard code in [1]. When our
proposed PLDPC-Hadamard code operates at a slightly lower Eb/N0,
i.e., −1.19 dB, the BER of the proposed code still outperforms the
conventional code except for iteration numbers beyond 200. Thus,
we conclude that the proposed code achieves a faster convergence
rate compared with the conventional code. In particular, our results
are more precise because 10, 000 simulations are used for our code
compared with only 20 simulations used for the conventional code in
[1].

Compared with the LDPC-Hadamard code in [1] which uses R =

0.05 and r = 4, our proposed PLDPC-Hadamard code has a slight
performance improvement. The relatively advantage of our proposed
PLDPC-Hadamard code over the LDPC-Hadamard code is probably
due to degree-1 VNs in the protograph. Such degree-1 VNs are
regarded as a kind of precoding structure which can increase the
linear minimum distance [17, 33].

3.4.1.2 r = 5 and d = 7

We attempt to search a PLDPC-Hadamard code with a target code
rate of approximately R ≈ 0.02. Using (46), we obtain m = 6, n = 10

and m
n ≈ 0.61. Hence the actual code rate is R = 0.021. The constraints

of the protomatrix are as follows:

• size equals 6× 10,

• row weight equals
∑9
j=0 bi,j = d = 7,

• minimum column weight equals
∑5
i=0 bi,j = 1,

• maximum column weight equals
∑5
i=0 bi,j = 9,
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Figure 20: Average number of iterations required to decode the PLDPC-
Hadamard code versus Eb/N0 with r = 4 and k = 65, 536.

• maximum entry value in B6×10 equals 3.

The following protomatrix with a threshold of −1.51 dB is found.

B6×10=



3 2 0 0 1 0 0 0 1 0

0 0 2 0 0 2 1 2 0 0

0 0 0 3 1 0 0 1 0 2

0 1 0 1 0 0 0 2 0 3

0 0 0 2 0 0 1 2 0 2

2 0 1 1 0 0 0 2 0 1


. (60)

The same lifting factors z1 = 32 and z2 = 512 are used to expand
B6×10. The rate-0.021 PLDPC-Hadamard code has an information
length of k = z1z2(n−m) = 65, 536 and a code length of Ntotal =
z1z2[m(2d−2 − 2) +n] = 3, 112, 960. Fig. 22 shows the PEXIT chart of
the code at Eb/N0 = −1.51 dB. We can observe that the two curves
do not crossed and are matched.

Fig. 23 plots the BER and FER performance of the PLDPC-
Hadamard code. The code achieves a BER of 1.4× 10−5 and a FER of
1.3× 10−4 at Eb/N0 = −1.24 dB (red curve), which is 0.27 dB away
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Figure 21: BER performance versus number of iterations for the LDPC-
Hadamard code in [1] (Eb/N0 = −1.18 dB) and PLDPC-
Hadamard code (Eb/N0 = −1.18 and −1.19 dB). r = 4 and
k = 65, 536.

from the designed threshold. Compared with the BER curve (blue
curve) of the rate-0.022 LDPC-Hadamard code in [1], our PLDPC-
Hadamard code can achieve comparable results. Table 3 shows that
at Eb/N0 = −1.24 dB, 780, 660 frames have been decoded with an
average of 119 decoding iterations per frame. Fig. 24 plots the average
number of iterations for the code at different Eb/N0 values. At a BER
of 10−5, the gaps to the Shannon capacity of R = 0.020 and to the
ultimate Shannon limit are 0.29 dB and 0.35 dB, respectively, which
are listed in Table 4.

3.4.1.3 r = 8 and d = 10

A rate-0.008 PLDPC-Hadamard code is constructed using m = 5 and
n = 15. The constraints of the protomatrix are as follows:

• size equals 5× 15,

• row weight equals
∑14
j=0 bi,j = d = 10,

• minimum column weight equals
∑4
i=0 bi,j = 1,
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Table 2: Gaps to theoretical threshold, rate-0.05 Shannon limit and ultimate
Shannon limit for r = 4 LDPC-Hadamard and PLDPC-Hadamard
codes at a BER of 10−5.

Type of Code
[1] Rate-0.05
LDPCH code

Rate-0.0494
PLDPCH code

Theoretical
threshold

−1.35 dB by
EXIT chart

−1.42 dB by
PEXIT chart

Eb/N0 at a
BER of 10−5

−1.18 dB −1.19 dB

Gap to theoretical
threshold

0.17 dB 0.23 dB

Gap to rate-0.05
Shannon limit

(−1.44 dB)

0.26 dB 0.25 dB

Gap to ultimate
Shannon limit

(−1.59 dB)

0.41 dB 0.40 dB

• maximum column weight equals
∑4
i=0 bi,j = 11,

• maximum entry value in B5×15 equals 3.

Compared with the constraints for low-order (r = 4 or 5) PLDPC-
Hadamard protomatrices, the maximum column weight is increased
to 11. Based on these constraints and using our proposed analytical
method, the following protomatrix is found with a threshold of −1.53
dB.

B5×15 =

2 0 1 0 0 0 0 3 2 0 0 1 0 0 1

0 2 0 1 1 0 0 0 0 0 0 3 0 3 0

0 0 1 0 0 2 2 0 0 1 1 2 1 0 0

0 0 0 2 2 0 0 0 0 1 0 3 0 0 2

0 0 0 0 0 1 1 0 1 1 1 2 3 0 0


(61)

We use lifting factors of z1 = 16 and z2 = 1280. The rate-
0.008 PLDPC-Hadamard code thus has an information length of
k = 204, 800 and a code length of Ntotal = 25, 497, 600. This code
has the same theoretical threshold as the rate-0.008 LDPC-Hadamard
code in [1]. The FER and BER curves of our code and the BER of the
code in [1] are plotted in Fig. 25. At Eb/N0 = −1.35 dB, the PLDPC-
Hadamard code achieves a FER of 2.1× 10−4, and a BER of 3.8× 10−6
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Figure 22: The PEXIT chart of the PLDPC-Hadamard code given in (60) with
R = 0.021 and r = 5.

which is 0.18 dB away from the designed threshold. Compared with
the BER curve of [1], there is a performance gap of about 0.03 dB at a
BER of 10−5. At the same BER, the gaps of our code to the rate-0.008

Shannon limit and to the ultimate Shannon limit are 0.22 dB and 0.24
dB, respectively, as shown in Table 5. The convergence rate of the
code can be found in Fig. 26 and the average number of iterations is
139 at Eb/N0 = −1.35 dB.

3.4.1.4 r = 10 and d = 12

A rate-0.00295 PLDPC-Hadamard code is constructed using m = 6

and n = 24. (The target rate is approximately 0.003.) The constraints
of the protomatrix are as follows:

• size equals 6× 24,

• row weight equals
∑23
j=0 bi,j = d = 12,

• minimum column weight equals
∑5
i=0 bi,j = 1,

• maximum column weight equals
∑5
i=0 bi,j = 11,

• maximum entry value in B6×24 equals 4.
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Figure 23: BER (red curve) and FER (pink curve) performance of the
proposed PLDPC-Hadamard code compared with the BER of the
LDPC-Hadamard code (blue curve) in [1]. r = 5 and k = 65, 536.

B6×24 =

1 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 1 4 0 1 0

0 0 0 3 2 0 0 0 1 1 0 0 1 0 0 0 3 1 0 0 0 0 0 0

0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 3 0 4 0 0 0

0 0 0 0 0 0 0 1 0 0 3 3 0 0 0 0 0 0 0 0 2 2 0 1

2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 0 0 1 1

0 0 0 0 0 1 0 3 3 2 0 0 1 1 0 0 0 0 0 0 1 0 0 0


(62)

Note that the maximum value of the entries in B6×24 is increased
to 4. For the rate-0.00295 PLDPC-Hadamard code, the protomatrix in
(62) with a theoretical threshold of −1.53 dB is found by the proposed
analytical method. The threshold is slightly higher (0.02 dB) than that
of the LDPC-Hadamard code in [1]. We use lifting factors of z1 = 20

and z2 = 1280. The information length equals k = 460, 800 and the
code length equals Ntotal = 156, 057, 600.

Fig. 27 plots the error performance of our constructed code and that
in [1]. Our PLDPC-Hadamard code achieves a BER of 2.8× 10−6 at
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Table 3: Detail results achieving a BER of 10−5 for r = 5 PLDPC-Hadamard
code until 100 frame errors are reached.

Eb/N0 −1.24 dB

No. of frame sent 780, 660

FER 1.3× 10−4

BER 1.4× 10−5

Avg. no. of iterations 119

Eb/N0 = −1.43 dB, which is 0.01 dB higher compared with the LDPC-
Hadamard code in [1]. However, our code is 29.11% shorter compared
with the code in [1]. This performance has 0.10 dB gap from the
designed threshold. The gaps of our code to the rate-0.003 Shannon
limit and to the ultimate Shannon limit are 0.15 dB and 0.16 dB,
respectively. Table 6 lists the detailed comparison. The convergence
rate of the code can be found in Fig. 28 and the average number of
iterations is 202 at Eb/N0 = −1.43 dB.

Remark: For cases with r = 5, 8 and 10 (Figs. 23, 25 and 27), the
BER results may appear that our proposed PLDPC-Hadamard codes
are slightly outperformed by the LDPC-Hadamard codes in [1] at the
high Eb/N0 region. For our codes, we keep running the simulations
until 100 block errors are recorded. Thus our reported results have a
high degree of accuracy. However, the stopping criterion of the LDPC-
Hadamard code simulation in [1] is not known. If an inadequate
number of simulations are performed, there could be some statistical
difference between the actual error performance and the reported
results.

3.4.2 Punctured PLDPC-Hadamard Codes

When a code is punctured, the code rate increases. The signals
corresponding to the punctured variable nodes are not sent to the
receiver and hence their channel LLR values are initialized to zero. In
this section, we evaluate the performance of the PLDPC-Hadamard
codes designed in the previous section when the codes are punctured.
(Note that our proposed PEXIT chart method can be used to design
good punctured PLDPC-Hadamard codes.)

We use α to denote a column number in a protomatrix and β to
denote the weight of a column. For example in the protomatrix shown
in (59), [4, 6] refers to the 4-th column [0 0 0 3 0 2 1]T which has
a column weight of 6. Thus we use “punctured [α,β]” to denote a
PLDPC-Hadamard code in which the P-VN corresponding to the α-
th column in the protomatrix is punctured. Moreover, the punctured
P-VN has a degree of β.
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Figure 24: Average number of iterations required to decode the PLDPC-
Hadamard code with r = 5 and k = 65, 536.

3.4.2.1 r = 4

We first consider the rate-0.0494 PLDPC-Hadamard code shown
in (59) and puncture one P-VN with the largest degree (i.e., 9)
or lowest degree (i.e., 1). Four cases are therefore considered, i.e.,
[1, 9], [10, 9], [6, 1] and [8, 1]. After puncturing, all codes have a
rate of 0.0500 (by applying (44)). Fig. 29 shows that at a BER of
10−4, punctured [10, 9], [1, 9], [6, 1] and [8, 1] have performance losses
of about 0.075 dB, 0.065 dB, 0.012 dB and 0.004 dB, respectively,
compared with the unpunctured code. Fig. 30 plots the FER of the
unpunctured/punctured codes and it shows a similar relative error
performance. We also simulate the code when both [6, 1] and [8, 1] P-
VNs are punctured. The code rate is further increased to 0.0506. The
error performance of the code, as shown in Figs. 29 and Fig. 30, is
found to be between punctured [6, 1] and [8, 1].

Fig. 31 plots the average number of iterations required to decode
a codeword at different Eb/N0. Punctured [8, 1] has the fastest
convergence speed compared with other punctured codes and has
almost the same convergence speed as the unpunctured code. Table 7

lists (i) the number of frame sent, (ii) BER, (iii) FER and (iv) average
number of iterations until 100 frame errors are reached, at Eb/N0 =
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Table 4: Gaps to theoretical threshold, rate-0.02 Shannon limit and ultimate
Shannon limit for r = 5 LDPC-Hadamard and PLDPC-Hadamard
codes at a BER of 10−5.

Type of Code
[1] Rate-0.022
LDPCH code

Rate-0.021
PLDPCH code

Theoretical
Threshold

−1.50 dB by
EXIT chart

−1.51 dB by
PEXIT chart

Eb/N0 at a
BER of 10−5

−1.26 dB −1.24 dB

Gap to theoretical
Threshold

0.24 dB 0.27 dB

Gap to rate-0.020
Shannon limit

(−1.53 dB)

0.27 dB 0.29 dB

Gap to ultimate
Shannon limit

(−1.59 dB)

0.33 dB 0.35 dB

−1.19 dB for the unpunctured/punctured PLDPC-Hadamard codes
with r = 4. The aforementioned results conclude that punctured [8, 1]
outperforms other punctured codes being considered and has a very
similar performance as the unpunctured code.

3.4.2.2 r = 5

We consider the rate-0.021 PLDPC-Hadamard code shown in (60);
and puncture [8, 9] (largest degree) and [9, 1] (lowest degree), re-
spectively. After puncturing, both codes have a rate of 0.02116 (by
applying (47)). Fig. 32 shows that punctured [9, 1] achieves the lowest
BER while punctured [8, 9] achieves the lowest FER. Fig. 33 plots
the average number of decoding iterations. The results indicate that
punctured [8, 9] converges faster than the unpunctured code, which
in turn converges faster than punctured [9, 1].

We further consider puncturing D1H-VNs corresponding to code
bits cH

2k−1
(k = 1, 2, . . . , r) for every H-CN. The rate of such punctured

codes is computed using (48). We use [cH1 c
H
2 · · · cH2k−1 ] (1 6 k 6 r)

to denote the set of bits being punctured. Three sets of punctured
bits are being considered. They are [cH8 cH16], [cH2 cH4 cH8 cH16] and
[cH1 c

H
2 c

H
4 c

H
8 c

H
16]; and their corresponding rates are 0.022, 0.024 and

0.025, respectively. Fig. 34 shows that in terms of BER and FER, all
the punctured codes are degraded compared with the unpunctured
rate-0.022 PLDPC Hadamard code. Particularly compared with the
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BER: LDPCH with R = 0.008 and k = 238,000
BER: PLDPCH with R = 0.008 and k = 204,800
FER: PLDPCH with R = 0.008 and k = 204,800

PLDPC−Hadamard code
R = 0.008, threshold = −1.53dB

ultimate Shannon limit

LDPC−Hadamard code
R = 0.008, threshold = −1.53dB

R = 0.008, capacity = −1.57dB

Figure 25: BER (red curve) and FER (pink curve) performance of the
proposed PLDPC-Hadamard code compared with the BER of the
LDPC-Hadamard code (blue curve) in [1]. r = 8.

unpunctured code, punctured [cH8 cH16] has a 0.02 dB performance
loss at a BER of 3.6 × 10−5; punctured [cH2 cH4 cH8 cH16] has a
0.03 dB performance loss at a BER of 4.7 × 10−5; and punctured
[cH1 c

H
2 c

H
4 c

H
8 c

H
16] has a 0.04 dB performance loss at a BER of 1.4×

10−5. The BER/FER results indicate that the channel observations
corresponding to these D1H-VNs provide very useful information for
the decoder to decode successfully. Fig. 35 plots the average number
of decoding iterations. It shows that the unpunctured code requires
the lowest number of decoding iterations.

3.4.2.3 r = 8

We consider the rate-0.008 PLDPC-Hadamard code shown in (61);
and puncture [12, 11] (largest degree) and [2, 2] (lowest degree),
respectively. The code rate is increased slightly from 0.008032 to
0.008038. Figs. 36 and 37 show that compared with the unpunctured
code, the punctured ones are degraded only very slightly in terms of
BER/FER and have almost the same convergence rates.
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Table 5: Gaps to theoretical threshold, rate-0.008 Shannon limit and ultimate
Shannon limit for r = 8 LDPC-Hadamard and PLDPC-Hadamard
codes at a BER of 10−5.

Type of Code
[1] Rate-0.008
LDPCH code

Rate-0.008
PLDPCH code

Theoretical
Threshold

−1.53 dB by
EXIT chart

−1.53 dB by
PEXIT chart

Eb/N0 at a
BER of 10−5

−1.38 dB −1.35 dB

Gap to theoretical
Threshold

0.15 dB 0.18 dB

Gap to rate-0.008
Shannon limit

(−1.57 dB)

0.19 dB 0.22 dB

Gap to ultimate
Shannon limit

(−1.59 dB)

0.21 dB 0.24 dB

3.4.2.4 r = 10

We consider the rate-0.002950 PLDPC-Hadamard code shown in
(62); and puncture [21, 11] (largest degree) and [3, 2] (lowest degree),
respectively. The code rate is increased slightly from 0.002950 to
0.002953. Figs. 38 and 39 show that compared with the unpunctured
code, the punctured ones have almost the same performance in terms
of BER/FER and convergence rate.
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Figure 26: Average number of iterations required to decode the PLDPC-
Hadamard code with r = 8 and k = 204, 800.

Table 6: Gaps to theoretical threshold, rate-0.003 Shannon limit and ultimate
Shannon limit for r = 10 LDPC-Hadamard and PLDPC-Hadamard
codes at a BER of 10−5.

Type of Code
[1] Rate-0.003
LDPCH code

Rate-0.00295
PLDPCH code

Theoretical
Threshold

−1.55 dB by
EXIT chart

−1.53 dB by
PEXIT chart

Eb/N0 at a
BER of 10−5

−1.44 dB −1.43 dB

Gap to theoretical
Threshold

0.11 dB 0.10 dB

Gap to rate-0.003

Shannon limit
(−1.58 dB)

0.14 dB 0.15 dB

Gap to ultimate
Shannon limit

(−1.59 dB)

0.15 dB 0.16 dB
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BER: LDPCH with R = 0.003 and k = 650,000
BER: PLDPCH with R = 0.00295 and k = 460,800
FER: PLDPCH with R = 0.00295 and k = 460,800

ultimate Shannon limit

PLDPC−Hadamard code
R = 0.00295, threshold = −1.53dB

LDPC−Hadamard code
R = 0.003, threshold = −1.55dB

R = 0.003, capacity = −1.58dB

Figure 27: BER (red curve) and FER (pink curve) performance of the
proposed PLDPC-Hadamard code compared with the BER of the
LDPC-Hadamard code (blue curve) in [1]. r = 10.
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Figure 28: Average number of iterations required to decode the PLDPC-
Hadamard code with r = 10 and k = 460, 800.
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Figure 29: BER performance of unpunctured/punctured PLDPC-Hadamard
codes. One or two P-VNs is/are punctured. r = 4 and k = 65, 536.
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Figure 30: FER performance of unpunctured/punctured PLDPC-Hadamard
codes. One or two P-VNs is/are punctured. r = 4 and k = 65, 536.
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Unpunctured with R = 0.0494
Punctured [1,9] with R = 0.0500
Punctured [10,9] with R = 0.0500
Punctured [6,1] with R = 0.0500
Punctured [8,1] with R = 0.0500
Punctured [6,1]&[8,1] with R = 0.0506

Figure 31: Average number of iterations required to decode unpunc-
tured/punctured PLDPC-Hadamard codes. One or two P-VNs
is/are punctured. r = 4 and k = 65, 536.
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BER: Unpunctured with R = 0.02105
FER: Unpunctured with R = 0.02105
BER: Punctured [8,9] with R = 0.02116
FER: Punctured [8,9] with R = 0.02116
BER: Punctured [9,1] with R = 0.02116
FER: Punctured [9,1] with R = 0.02116

Figure 32: BER/FER performance of unpunctured/punctured PLDPC-
Hadamard codes. One P-VN is punctured. r = 5 and k = 65, 536.
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Unpunctured with R = 0.02105
Punctured [8,9] with R = 0.02116
Punctured [9,1] with R = 0.02116

Figure 33: Average number of iterations required to decode unpunc-
tured/punctured PLDPC-Hadamard codes. One P-VN is punc-
tured. r = 5 and k = 65, 536.



3.4 simulation results 67

−1.36 −1.34 −1.32 −1.3 −1.28 −1.26 −1.24 −1.22 −1.2 −1.18
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Eb/N0 (dB)

B
E
R
/
F
E
R

 

 

BER: Unpunctured with R = 0.021

FER: Unpunctured with R = 0.021

BER: Punctured [cH
8

cH
16
] with R = 0.022

FER: Punctured [cH
8

cH
16
] with R = 0.022

BER: Punctured [cH
2

cH
4

cH
8

cH
16
] with R = 0.024

FER: Punctured [cH
2

cH
4

cH
8

cH
16
] with R = 0.024

BER: Punctured [cH
1

cH
2

cH
4

cH
8

cH
16
] with R = 0.025

FER: Punctured [cH
1

cH
2

cH
4

cH
8

cH
16
] with R = 0.025

Figure 34: BER/FER performance of unpunctured/punctured PLDPC-
Hadamard codes. Two, four and five D1H-VNs are punctured.
r = 5 and k = 65, 536.
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Unpunctured with R = 0.021

Punctured [cH8 cH16] with R = 0.022

Punctured [cH2 cH4 cH8 cH16] with R = 0.024

Punctured [cH1 cH2 cH4 cH8 cH16] with R = 0.025

Figure 35: Average number of iterations required to decode unpunc-
tured/punctured PLDPC-Hadamard codes. Two, four and five
D1H-VNs are punctured. r = 5 and k = 65, 536.
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BER: Unpunctured with R = 0.008032
FER: Unpunctured with R = 0.008032
BER: Punctured [12,11] with R = 0.008038
FER: Punctured [12,11] with R = 0.008038
BER: Punctured [2,2] with R = 0.008038
FER: Punctured [2,2] with R = 0.008038

Figure 36: BER/FER performance of unpunctured/punctured PLDPC-
Hadamard codes. One P-VN is punctured. r = 8 and k = 204, 800.
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Unpunctured with R = 0.008032
Punctured [12,11] with R = 0.008038
Punctured [2,2] with R = 0.008038

Figure 37: Average number of iterations required to decode unpunc-
tured/punctured PLDPC-Hadamard codes. One P-VN is punc-
tured. r = 8 and k = 204, 800.
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BER: Unpunctured with R = 0.002952
FER: Unpunctured with R = 0.002952
BER: Punctured [21,11] with R = 0.002953
FER: Punctured [21,11] with R = 0.002953
BER: Punctured [3,2] with R = 0.002953
FER: Punctured [3,2] with R = 0.002953

Figure 38: BER/FER performance of unpunctured/punctured PLDPC-
Hadamard codes. One P-VN is punctured. r = 10 and k =
460, 800.
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Unpunctured with R = 0.002952
Punctured [21,11] with R = 0.002953
Punctured [3,2] with R = 0.002953

Figure 39: Average number of iterations required to decode unpunc-
tured/punctured PLDPC-Hadamard codes. One P-VN is punc-
tured. r = 10 and k = 460, 800.
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3.5 summary

In this chapter, we have proposed an alternate method of design-
ing ultimate-Shannon-limit-approaching LDPC-Hadamard codes —
- protograph-based LDPC-Hadamard (PLDPC-Hadamard) codes. By
appending degree-1 Hadamard variable nodes (D1H-VNs) to the pro-
tograph of LDPC codes, a generalized protograph can be formed to
characterize the structure of PLDPC-Hadamard codes. We have also
proposed a low-complexity PEXIT algorithm to analyze the threshold
of the codes, which is valid for PLDPC-Hadamard protographs with
degree-1 variable nodes and/or punctured variable nodes/D1H-VNs.
Based on the proposed analysis method, we have found good PLDPC-
Hadamard codes with different code rates and have provided the
corresponding protomatrices with very low thresholds (< −1.40 dB).

Reliable BER, FER and average number of decoding iterations are
derived by running simulations until 100 frame errors are obtained.
At a BER of 10−5, the gaps of our codes to the ultimate-Shannon-
limit range from 0.40 dB (for rate = 0.0494) to 0.16 dB (for rate =
0.003). Moreover, the error performance of our codes is comparable
to that of the traditional LDPC-Hadamard codes. We have also
investigated punctured PLDPC-Hadamard codes. When the order
of the Hadamard code r = 4, puncturing different variable nodes
in the protograph produces quite different BER/FER performance
degradations compared with the unpunctured code. When r = 5,
puncturing one VN can actually improve the BER/FER performance
slightly. When r = 8 or 10, puncturing one VN does not seem to
have any effect. Moreover, we conclude that when r = 5, puncturing
the extra D1H-VNs provided by the non-systematic Hadamard code
degrades the error performance quite significantly.

In the next chapter, we look into the decoding algorithms of
PLDPC-Hadamard codes. We will propose a layered decoder, simu-
late its decoding performance, and design its hardware architecture.



Chapter 4
L AY E R E D D E C O D E R F O R P L D P C - H A D A M A R D
B L O C K C O D E S

In this chapter, we first review the standard decoding algorithm
for PLDPC-Hadamard block codes (PLDPCH-BCs). To speed up the
decoding convergence rate, we propose a layered decoding algorithm
for PLDPCH-BCs [96]. We also compare the complexity between the
standard and layered decoding algorithms. Finally, we design and
implement the layered decoder onto an FPGA board [97].

4.1 standard decoding algorithm

The receiver obtains the channel log-likelihood-ratio (LLR) values of
the P-VNs and D1H-VNs, based on which the transmitted PLDPCH-
BC is decoded. We denote

• LPVN
ch (β) as the channel LLR value of the β-th P-VN (β =

1, 2, . . . ,N);

• LD1H(α)
ch as a vector consisting of the channel LLR values of the

D1H-VNs connected to the α-th H-CN (α = 1, 2, . . . ,M);

• LPVN
app(β) as the a posteriori (APP) LLR value of the β-th P-VN

(β = 1, 2, . . . ,N);

• LPVN
ex (α,β) as the extrinsic LLR sent from the β-th P-VN to the
α-th H-CN (α = 1, 2, . . . ,M; β = 1, 2, . . . ,N);

• LH
app(α,β) as the APP LLR computed by the α-th H-CN for the
β-th P-VN (α = 1, 2, . . . ,M; β = 1, 2, . . . ,N);

• LH
ex(α,β) as the extrinsic LLR sent from the α-th H-CN to the
β-th P-VN (α = 1, 2, . . . ,M; β = 1, 2, . . . ,N).

We also denote

• P(α) as the set of P-VNs connected to the α-th H-CN;

• H(β) as the set of H-CNs connected to the β-th P-VN.

The standard PLDPC-Hadamard decoder [76, 94] consists of two
component decoders, i.e., repeat decoder and Hadamard decoder,
which are shown in Fig. 40 and Fig. 41, respectively. The repeat

71
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Figure 40: A repeat decoder for P-VN message processing.
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Figure 41: A symbol-MAP Hadamard decoder for H-CN message process-
ing when r is even.

decoder is the same as the variable-node processor used in an LDPC
decoder. The check node processor used in an LDPC decoder is
replaced by a symbol-by-symbol maximum a posteriori probability
(MAP) Hadamard decoder. Referring to Fig. 41, the symbol-MAP
Hadamard decoder receives d = r+2 inputs from the repeat decoders
and 2r− r−2 inputs from the D1H-VNs, and computes d outputs and
feeds them back to the repeat decoders.

The standard decoding method is described as follows.

1. Initialization: Set LPVN
ex (α,β) = LPVN

ch (β), ∀α = 1, 2, . . . , M and
β = 1, 2, . . . ,N.

2. Symbol-MAP Hadamard decoder: For the α-th H-CN (α =

1, 2, . . . ,M), compute the following.

a) Compute LH
app(α,β) for the β-th P-VN (β ∈ P(α)) using

LH
app(α) = {LH

app(α,β) : β ∈ P(α)}

= T
[
{LPVN
ex (α,β) : β ∈ P(α)},LD1H(α)

ch

]
(63)



4.2 layered decoding algorithm 73

where T is a transformation involving the fast Hadamard
transform (FHT) and the dual FHT (DFHT) operations
[1, 94]. Fig. 8 and Fig. 9 illustrate the arrangement of the
2r = 16 / 2r × 2 = 16 inputs when they are fed to the
FHT block in a symbol-MAP Hadamard decoder for the
case r = 4 / r = 3. In the example of Fig. 8, the r + 2
extrinsic LLR values from P-VNs are assigned to the 1st,
2nd,. . .,(2k−1 + 1)-th, . . ., (2r−1 + 1)-th and 2r-th positions;
while the channel LLR values of the D1H-VNs are assigned
to the remaining 2r − r− 2 positions [94].

b) Compute LH
ex(α,β) by subtracting LPVN

ex (α,β) from LH
app(α,β),

i.e.,

LH
ex(α,β) = LH

app(α,β) − LPVN
ex (α,β); ∀β ∈ P(α). (64)

3. Repeat decoder: For the β-th P-VN (β = 1, 2, . . . ,N), compute
the following.

a) Compute LPVN
app(β) for the β-th P-VN using

LPVN
app (β) =

∑
α∈H(β)

LH
ex(α,β) + LPVN

ch (β) . (65)

b) Compute LPVN
ex (α,β) by subtracting LH

ex(α,β) from LPVN
app(β),

i.e.,

LPVN
ex (α,β) = LPVN

app(β) − L
H
ex(α,β); ∀α ∈ H(β). (66)

4. Decoding: Repeat Step 2 and Step 3 I times and make decisions
based on the sign of LPVN

app (β) (β = 1, 2, . . . ,N).

4.2 layered decoding algorithm

It is well known that using layered BP decoding for LDPC codes
can accelerate the convergence and to reduce the hardware require-
ments compared with using standard BP decoding [98]. In [99], an
efficient check-node-update scheduling has been proposed for rate-
compatible punctured LDPC codes, and is shown to outperform
conventional scheduling and conventional BP decoding in terms of
convergence speed. In [100], an efficient dynamic scheduling scheme
has been proposed to speed up the convergence rate of LDPC
decoders at medium to high signal-to-noise (SNR) region. In [101],
a safe early termination strategy has been developed for layered
LDPC decoding in order to help saving resources such as power
and processing time. To improve the convergence rate of the PLDPC-
BC decoder, we propose a layered decoding algorithm. Moreover, we
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conduct a complexity analysis and compare the simulation results for
the standard and layered decoding algorithms.

4.2.1 Proposed Layered Decoding Algorithm

Recall in Appendix D that the base matrix Bm×n is lifted twice using
factors z1 and z2, respectively, to form HM×N which has a size of
M×N (= mz1z2 × nz1z2). Here we divide HM×N into mz1 layers,
where each layer is composed of 1× nz1 CPMs each of size z2 × z2
(or equivalently a block-row of size z2 ×nz1z2). In other words, each
layer consists of z2 H-CNs, each connected to d independent P-VNs.
(d = r+ 2 is the row weight of Bm×n and also that of HM×N.)

We use the same symbols in Section 4.1. Moreover, we define k as
the layer number (k = 1, 2, . . . ,mz1) and L(k) as the set of H-CNs in
layer k. Our layered decoding algorithm is described as follows.

1. Initialization: Set LPVN
app(β) = LPVN

ch (β), ∀β = 1, 2, . . . ,N; and set
LHex(α,β) = 0 ∀α = 1, 2, . . . , M and β = 1, 2, . . . ,N.

2. Symbol-MAP Hadamard layered decoder: Set k = 1.

a) For the α-th H-CN in layer k (α ∈ L(k)), compute the
following.

i. For β ∈ P(α), compute LPVN
ex (α,β) by subtracting

LH
ex(α,β) from LPVN

app(β), i.e.,

LPVN
ex (α,β) = LPVN

app(β) − L
H
ex(α,β); ∀β ∈ P(α). (67)

ii. Compute LH
app(α,β) for the β-th P-VN (β ∈ P(α))

using

LH
app(α) = {LH

app(α,β) : β ∈ P(α)}

= T
[
{LPVN
ex (α,β) : β ∈ P(α)},LD1H(α)

ch

]
. (68)

iii. Update LH
ex(α,β) and LPVN

app(β) using

LH
ex(α,β) = LH

app(α,β) − LPVN
ex (α,β);
∀β ∈ P(α) (69)

LPVN
app(β) = LH

app(α,β); ∀β ∈ P(α). (70)

b) If k is smaller than the number of layers, i.e., k < mz1,
increment k by 1 and goto Step 2a).

3. Repeat Step 2 I times and make decisions based on the sign of
LPVN
app (β) (β = 1, 2, . . . ,N).

Note that (70) is derived as follows. We consider the associated P-
VNs in layer k. Note that each of the associated P-VNs is connected
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to one and only one H-CN in layer k. We suppose the β-th P-VN is
connected to the α-th H-CN in layer k. After this layer is processed,
the updated APP for the β-th P-VN is given by

LPVN
app(β) =

∑
α∈H(β)

LH
ex(α,β) + LPVN

ch (β)

= LH
ex (α,β) +

∑
α ′∈H(β)
α ′/∈L(k)

LH
ex

(
α ′,β

)
+ LPVN

ch (β)

= LH
ex (α,β) + LPVN

ex (α,β)

= LH
app(α,β). (71)

4.2.2 Complexity Analysis

We compare the complexity of the proposed layered decoding al-
gorithm and the standard decoding algorithm in terms of memory
requirement and computational logic.

4.2.2.1 Memory requirement

Considering the layered decoding algorithm in Section 4.2.1, memory
storage (i.e., RAM) for the following sets of LLRs is required —
{LPVN
ch (β)}, {LPVN

app(β)}, {LH
ex(α,β)} and {L

D1H(α)
ch }. Moreover, {LH

app(α,β)}
and {LPVN

ex (α,β)} are only intermediate variables generated during
the computation process and thus need no storage. Note also that
{LPVN
ch (β)} is only required during the initialization process but not in

the iterative process. Thus, it can be immediately released for storing
the LLRs for the next codeword.

For the standard decoding algorithm in Section 4.1, besides {LPVN
ch (β)},

{LPVN
app(β)}, {LH

ex(α,β)} and {L
D1H(α)
ch }, {LPVN

ex (α,β)} needs to be stored
after the computation in (66). On the other hand, we can observe that
LH
ex(α,β), after being used to update LPVN

ex (α,β) in (66), is no longer
needed. The memory location used to store LH

ex(α,β) can therefore
be used to store LPVN

ex (α,β). Similarly, LPVN
ex (α,β) is no longer needed

after computing (64), and its memory location can be used to store
LH
ex(α,β) afterwards. In other words, {LH

ex(α,β)} and {LPVN
ex (α,β)} can

share the same set of memory locations. But unlike in the layered
decoding algorithm, {LPVN

ch (β)} in the standard decoding algorithm
is required throughout the iterative process (in (65)). Thus another
set of memory is required to store {LPVN

ch (β)} for the next codeword.
Note that the number of LPVN

ch (β) is equal to number of P-VNs, i.e.,
N = nz1z2. For the r = 4 PLDPCH-BC optimized in [76], N equals
11× 32× 512 = 180224, which implies quite a large memory.
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4.2.2.2 Computational logic

Both the layered decoding algorithm and the standard decoding
algorithm involve FHT, DFHT and simple additions/subtractions.
Moreover, the summation term in (65) of the standard decoding
algorithm requires the addition of all LH

ex(α,β) terms corresponding
to the same P-VN. The number of terms equals the column weight
and varies from column to column. In the example given in Fig.
42, the column weight ranges from 1 to 9. When 9 values are to
be added together, more combinational logics (especially many P-
VNs are processed in parallel) are required and a slightly larger
latency is needed. However, for layered decoding algorithm, (70)
updates LPVN

app without consuming any combinational logics (i.e., use
100% less combinational logics compared with the standard decoding
algorithm).

In summary, the layered decoding algorithm requires less memory
storage and computational logic compared with the standard decod-
ing algorithm.

4.2.3 Simulation Results

We simulate the r = 4 and R = 0.0494 PLDPCH-BC optimized
in Section 3.4.1.1 [76] (whose base matrix is shown in (72) and
protograph is shown in Fig. 42).

B7×11 =



1 0 0 0 0 0 1 0 3 0 1

0 1 2 0 0 0 0 0 0 2 1

2 1 0 0 1 1 0 0 0 0 1

0 1 0 3 0 0 0 0 0 2 0

2 0 0 0 0 0 0 1 0 3 0

3 0 0 2 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0 1 2 0


(72)

We transmit all-zero codewords using binary-phase-shift-keying
modulation over an additive white Gaussian noise channel. To
compare with the BER performance of the standard decoder used
in Section 3.4.1.1 [76], we use the same lifting factors, i.e., z1 = 32 and
z2 = 512, and the same code length, i.e., l = 1, 327, 104 (See Appendix
D for details of the code structure after the lifting process).

Fig. 43 plots the bit error rate (BER) results of the standard and
layered decoders. We denote the maximum number of decoding iter-
ations used by the layered decoder as I. When I = 30, 40, 50, 60, 75, 150,
the layered decoding algorithm using I iterations has almost the
same error rate as the standard decoder using 2I iterations. When
I = 20, there is a 0.03 dB difference between the layered decoding
algorithm using I = 20 iterations and the standard decoder using
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Figure 43: Comparison of BER performance of the standard PLDPC-
Hadamard decoder and the layered PLDPC-Hadamard decoder.
The maximum number of decoding iterations ranges from 40 to
300 for the standard decoder; and ranges from 20 to 150 for the
layered decoder. r = 4 and R = 0.0494.

2I = 40 iterations at a bit error rate of 2.0× 10−5. Note that in most
scenarios, a 0.03 dB difference is considered as insignificant, but has
been shown in our figure to be a relatively large gap due to the scale
being used. We further find that when I = 21, the layered decoding
algorithm outperforms the standard decoder using 40 iterations and
has the same performance of the standard decoder using 41 iterations.
Thus we can conclude that compared with the standard decoding
algorithm, the layered decoding algorithm improves the convergence
rate by about two times. Fig. 44 plots the corresponding average
number of iterations required to decode a codeword. At a given
Eb/N0, the average number of iterations required by the layered
decoder is about half of that required by the standard decoder.

Remark: The simulation results reported in this section are obtained
by software simulation. To improve decoding efficiency, we run
our programs on GPU platform. Since there is sufficient memory
on this platform, we can design our decoders with high-degree
parallelism. For the standard decoding, in one iteration, we can
update all the P-VNs at the same time, and then update all the
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Figure 44: Average number of iterations required for a standard PLDPC-
Hadamard decoder and a layered PLDPC-Hadamard decoder to
decode a codeword. The maximum numbers of iterations allowed
are given next to the curves.

H-CNs at the same time. However, for the layered decoding, in
one iteration, we can only update the H-CNs in the same layer
at the same time, and then update the remaining layers layer-by-
layer. Therefore, computation time for the standard decoding will be
less than that for the layered decoding. But our proposed layered
decoding algorithm will play an important role when implementing
it on hardware. Because the resource on hardware is limited, the
decoder with high-degree parallelism cannot be realized. Compared
with the standard decoding, the layered decoding consumes less
memory and computational logics, has faster convergence rate, which
is beneficial to achieving high working frequency, high-throughput
and low-latency.

4.3 hardware architecture of layered decoders

Based on the layered decoding algorithm, we propose a hardware
architecture of layered decoders for PLDPC-BCs [97]. In our pro-
posed layered decoder for the PLDPCH-BC, there are four types of
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random access memory (RAM) which are used to store, respectively,
{LPVN
ch (β)}, {LPVN

app(β)}, {LH
ex(α,β)} and {L

D1H(α)
ch }. As can be seen in

the previous section, {LPVN
ex (α,β)} in (67) and {LH

app(α,β)} in (68) are
only temporary values in the computation process and thus need no
storage. Moreover, dual-port RAMs are used in our design, meaning
that two memory locations can be accessed (read and/or write) at the
same time.

4.3.1 Operation of a symbol-MAP Hadamard sub-decoder

Referring to Step 2a) of the decoding algorithm, the inputs to
each symbol-maximum-a-posterior (symbol-MAP) Hadamard sub-
decoder are {LPVN

app(β)} (or {LPVN
ch (β)} in the first iteration), {LH

ex(α,β)}

(or 0 in the first iteration) and {L
D1H(α)
ch } while the outputs of the

decoder are updated {LPVN
app(β)} and {LH

ex(α,β)}. We suppose each
H-CN connects to d = 6 P-VNs. Thus, |P(α)| = 6 and 6 sets of
LPVN
app(β) and LH

ex(α,β) need to be read from the RAMs and input
to decoder according to (67). Since dual-port RAMs are used, two
memory addresses can be accessed at the same time and it takes d/2
clock cycles to retrieve the required LPVN

app(β) and LH
ex(α,β) values.

Note that {LPVN
ex (α,β)} in (67) is computed in the same clock cycle

as LPVN
app(β) and LH

ex(α,β) are retrieved. At the d/2-th clock cycle, we

also load the required LD1H(α)
ch vector from one address location to

the decoder.
Subsequently, LPVN

ex (α,β) andLD1H(α)
ch are passed to the transforma-

tion block T. The transformation block T is based on the FHT block
and the DFHT block [94]. First, there are r stages in the FHT block
and hence a latency of r clock cycles is incurred. The structure of a
DFHT block is similar to that of a FHT, but with twice the number of
inputs and outputs. Same as the FHT block, the DFHT block contains
r stages and has a latency of r clock cycles. Thus the transformation
block T has a latency of 2r clock cycles. Then, it takes one clock cycle
to compute LH

ex(α,β) and LPVN
app(β) using (69) and (70), respectively.

Finally, it takes another d/2 clock cycles to write the updated LPVN
app(β)

and LH
ex(α,β) values to the RAMs.

To summarize,

1. Clock cycle no. 1 to d/2: read LPVN
app(β) and LH

ex(α,β) from
memory, and at the same time compute {LPVN

ex (α,β)} using (67);

2. Clock cycle no. d/2 (in parallel with above): read LD1H(α)
ch ;

3. Clock cycle no. d/2+1 to d/2+2r: process the inputs {LPVN
ex (α,β)}

and LD1H(α)
ch by the transformation block T using (63);

4. Clock cycle no. d/2 + 2r + 1: compute LH
ex(α,β) and LPVN

app(β)

using (69) and (70);



82 Chapter 4: layered decoder for pldpch-bcs

Nh

Nh

Nh

Nh

Nh

Figure 45: Proposed layered PLDPC-Hadamard decoder with Nh sub-
decoders.

5. Clock cycle no. d/2+ 2r+ 2 to d/2+ 2r+ 1+d/2: write LPVN
app(β)

and LH
ex(α,β) to memory.

Since d = r+ 2, the whole process takes d/2+ 2r+ 1+ d/2 = 3r+ 3

clock cycles. To minimize the latency and maximize the throughput
of the decoder, one can employ z2 symbol-MAP Hadamard sub-
decoders to process all the H-CNs in each layer simultaneously
because these H-CNs are independent of one another. However, it
consumes a lot of hardware resources and may not be practical. As
in the decoding of other LDPC codes [102], we propose here dividing
the H-CNs in each layer into G groups, where Nh = z2/G is an
integer. Then each group of H-CNs are processed in parallel at the
same time by Nh individual Hadamard sub-decoders.

4.3.2 Decoder Architecture

Fig. 45 shows the architecture of our proposed PLDPC-Hadamard
layered decoder which operates with four types of RAM. The
control logics are dependent on the structure of adjacency matrix
which has a relatively simple quasi-cyclic format. They are used
to ensure that the correct data are loaded into the individual
Hadamard sub-decoder and the updated data are written to the
correct memory locations. Moreover, each Hadamard sub-decoder
can be realized with additions and look-up tables, which can reduce
the implementation complexity.

To ensure that no conflict of memory access occurs when the
Nh Hadamard sub-decoders are operating on Nh individual sets of
independent data, we design the size and storage of RAMs as follows.
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• Nh RAMs, denoted by PVN-CH-RAM, are used to store {LPVN
ch (β) :

β = 0, . . . ,N − 1}. Each RAM has a width of wPVN
ch bits (to

represent the quantized LLR value) and a depth of nz1G. The
g-th location (g = 0, 1, . . . ,nz1G − 1) in the l-th RAM (l =

0, 1, . . . ,Nh − 1) stores LPVN
ch (β) where β = bg/Gcz2 + lG + (g

mod G), bxc denotes the greatest integer less than or equal to x
and “mod” denotes the modulus operation. Note that {LPVN

ch (β)}

is needed only once during the first decoding iteration. After
the first iteration, the content in PVN-CH-RAM is overwritten
by the incoming channel LLR values of the next codeword.

• Nh RAMs, denoted by PVN-APP-RAM, are used to store
{LPVN
app(β) : β = 0, . . . ,N− 1}. Each RAM has a width of wPVN

app

bits and a depth of nz1G. Data are stored in the same way as
in PVN-CH-RAM, i.e., the g-th location (g = 0, 1, . . . ,nz1G− 1)
in the l-th RAM (l = 0, 1, . . . ,Nh − 1) stores LPVN

app(β) where
β = bg/Gcz2 + lG+ (g mod G).

• Nh RAMs, denoted by H-EX-RAM, are used to store {LH
ex(α,β) :

α = 0, . . . ,M − 1;β ∈ {β0,β1,β2,β3,β4,β5} = P(α)}. Each
RAM has a width of wH

ex bits and a depth of mdz1G. The
p-th location (p = 0, 1, . . . ,mdz1G − 1) in the l-th RAM (l =

0, 1, . . . ,Nh− 1) stores {LH
ex(α,β)} where α = bp/(dG)cz2+ lG+

b∆/dc, β = βδ, ∆ = p mod (dG) and δ = ∆ mod d.

• Nh RAMs, denoted by D1H-CH-RAM, are used to store {L
D1H(α)
ch :

α = 0, . . . ,M− 1}. Each RAM has a width of wD1H
ch = wPVN

ch ×
(2r− r− 2) bits and a depth ofmz1G. Each address stores all the
2r− r−2 channel LLR values for D1HVNs connected to a H-CN.
The q-th location (q = 0, 1, . . . ,mz1G− 1) in the l-th RAM (l =
0, 1, . . . ,Nh − 1) stores {L

D1H(α)
ch } where α = bq/Gcz2 + lG+ (q

mod G). (To allow the decoding to proceed while receiving the
incoming channel LLR values of the next codeword, either two
sets of D1H-CH-RAM are used or the depth of D1H-CH-RAM
is doubled to 2mz1G. We double the depth of D1H-CH-RAM
to 2mz1G in our design.) Moreover, one port reads the data
in D1H-CH-RAM used for decoding and the other port writes
incoming channel LLR values into the same RAM.

4.3.3 Latency and Throughput

Using the proposed decoder architecture, G groups of H-CNs (each
consisting of Nh H-CNs) are sequentially processed in each layer.
Referring to the timing details in Section 4.3.1 and with the use of our
RAM designs, it takes d/2 clock cycles to load the data of one group
of H-CNs. We use a pipelined structure and load the G groups of data
to the sub-decoders in a consecutive manner. To complete loading all
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G groups of data, it takes tloading = dG/2 clock cycles. Moreover,
the first set of outputs (i.e., LPVN

app(β) and LH
ex(α,β)) is available at the

t1st output = (d/2+ 2r+ 1)-th clock cycle.

4.3.3.1 Case I: tloading 6 t1st output

When tloading 6 t1st output, all the required data are read from
the RAMs before the Hadamard sub-decoders generate the updated
results. The total time taken to complete updating one layer equals
“loading time of all groups + processing time of last group + writing
time of last group”, i.e.,

tl1 = tloading + (2r+ 1) + d/2 = (r/2+ 1)G+ 5r/2+ 2 (73)

using d = r + 2. Supposing I iterations are needed and the clock
frequency is fc, the latency for decoding each codeword equals

tc1 = Imz1tl1/fc = Imz1[(r/2+ 1)G+ 5r/2+ 2]/fc, (74)

where mz1 is the number of layers in layered decoding. For a given
m× n base matrix, the latency tc1 can be reduced by (a) lowering
I and/or z1 and/or G; or (b) increasing fc. As the codeword length
is l = nz1z2 +mz1z2 (2

r − r− 2), the throughput of the decoder is
expressed as

T1 =
l

tc1
=

[nz1z2 +mz1z2 (2
r − r− 2)] fc

Imz1tl1

=
[n/m+ (2r − r− 2)] z2fc
I[(r/2+ 1)G+ (5r/2+ 2)]

. (75)

To improve the throughput, we can (a) increase z2 and/or fc; or (b)
decrease I and/or G.

4.3.3.2 Case II: tloading > t1st output

When tloading > t1st output, the Hadamard sub-decoders start to
output the updated results while all the required data are being read
from the RAMs. In this case, we need to use first-in-first-out (FIFO)
RAMs to temporarily store the updated results (i.e., LPVN

app(β) and
LH
ex(α,β)) from the Hadamard sub-decoders. Once all the required

data are read from the RAMs, the updated results stored in the FIFO
RAMs are written to the RAMs. The total time taken to complete
updating one layer equals “loading time of all groups + writing time
of all groups”, i.e.,

tl2 = dG/2+ dG/2 = (r+ 2)G. (76)
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Table 10: Quantization schemes used to represent different LLR values; at
the input, different stages and output of the FHT and DFHT blocks
for a r = 4 PLDPC-Hadamard layered decoder.

Width wPVN
ch wH

ex wPVN
app

FHT block DFHT block
In Stage 1 2 3 4 Out In Stage 1 ∼ 4 Out

No. of
sign bits

1 1 1 1 1 1 1 1 1 1 1 1

No. of
int. bits

1 4 4 4 5 6 7 8 6 6 6 4

No. of
frac. bits

3 3 3 3 3 3 3 3 2 2 2 3

The latency to decode one codeword equals

tc2 = Imz1G(r+ 2)/fc, (77)

and the throughput equals

T2=
[n/m+ (2r − r− 2)] fcz2

IG(r+ 2)
(78)

which can be improved by (a) increasing fc and/or z2; or (b)
decreasing I and/or G. The difference from the first case is that we
use FIFO RAMs to temporarily store the “updated" LLR values until
all the required data are loaded into Hadamard sub-decoders.

Note that in both Case I and Case II, it requires d/2 clock cycles to
complete loading one group of data to the Hadamard sub-decoders.
Thus the throughput can potentially be increased by d/2 times if
the Hadamard sub-decoders are allowed to process d/2 different
codewords at the same time. The extra requirement would be d/2
times increase in memory storage and a bit more control logics.

4.3.4 Implementation Results

We implement the PLDPC-Hadamard decoder for the r = 4 and
R = 0.0494 PLDPCH-BC optimized in Section 3.4.1.1 [76] (whose
base matrix is shown in (72) and protograph is shown in Fig. 42) on
a Xilinx VCU118 FPGA board. The maximum operating frequency
is fc = 130 MHz. All-zero codewords, binary phase shift keying
(BPSK) modulation and an additive white Gaussian noise channel
are assumed. To compare with the floating-point results in Section
4.2.3 [96], we use the same lifting factors, i.e., z1 = 32 and z2 = 512,
and the same code length l = 1, 327, 104.
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Table 11: Total number of four types of LLRs required in RAMs and width
of four types of RAMs. d = r+ 2 = 6, N = nz1z2 = 11× 32× 512
and M = mz1z2 = 7× 32× 512 for r = 4 PLDPCH-BC.

LLRs {LPVN
ch (β)} {LPVN

app(β)} {L
H
ex(α,β)} {LD1H(α)

ch }

Number N N Md M

width 5 bits 8 bits 8 bits 50 bits

Table 12: Comparison of implementation results for PLDPC-Hadamard
decoder with 64 and 128 Hadamard sub-decoders. Hadamard
order r = 4, code rate R = 0.0494, code length l = 1327104, and
clock frequency fc = 130 MHz. LUT: Look-up Table; BRAM: Block
RAM.

No. of
sub-decoders

Nh = 64 Nh = 128

LUT
Utilization

41.10% 81.76%

BRAM
Utilization

33.26% 33.10%

No. of
iterations

I = 150 I = 20 I = 150 I = 20

Latency 12.92 ms 1.72 ms 6.72 ms 0.896 ms

Throughput 0.10 Gb/s 0.77 Gb/s 0.20 Gb/s 1.48 Gb/s

We implement two designs with Nh = 128 (G = 4) and Nh = 64

(G = 8) Hadamard sub-decoders, respectively, which belong to Case I
and Case II in Section 4.3.3. Table 10 shows the quantization schemes
used, and Table 11 lists the total number of four types of LLRs
required in RAMs and width of four types of RAMs. Note that
{LD1H
ch (β)} is a vector corresponding to 2r − r − 2 = 10 D1H-VNs

and hence the width for its RAM equals 10WPVN
ch = 50 bits. Section

4.2.2 have mentioned that the standard decoding algorithm needs
another set of memory to store {LPVN

ch (β)} for the next codeword. If
implementing this algorithm on hardware, based on Table 11, we
need to use one more memory with size of 5N = 880 kb (i.e. use

5N
5N+8N+48M+50M ≈ 6.63% more memory compared with layered
decoder).

Fig. 46 plots the BER results. It can be observed that the two designs
produce almost the same BER curves. The minute difference arises
only because the same noise samples generated have been assigned
to different code bits in the two different designs. The results in Fig.
46 also show that a BER of 10−5, the fixed-point decoder suffers
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Figure 46: Floating-point and fixed-point BER performance of the layered
PLDPC-Hadamard decoders. r = 4 and l = 1327104.

from a small degradation of 0.08 dB compared with the floating-point
computation when I = 150 iterations are used; and a degradation of
0.10 dB when I = 20. Moreover, no error floor appears at a BER of
10−5 for both floating-point or fixed-point results.

For r = 4 (hence d = r + 2 = 6), t1st output = (d/2 + 2r + 1) =

12 cycles. When G = 4, tloading = dG/2 = 12 = t1st output
which belongs to Case I in Section 4.3.3. The decoding latency per
layer equals tl1 = 24 cycles. 1 Similarly when G = 8, tloading =

dG/2 = 24 > t1st output which belongs to Case II. The decoding
latency per layer equals tl2 = 48 cycles. Table 12 lists the hardware
implementation results of the proposed layered decoder for Nh = 64

(G = 8) and Nh = 128 (G = 4). Since the code lengths are identical,
the two designs consume almost the same amount of block RAMs
(BRAMs). Compared with the decoder with Nh = 64 Hadamard sub-
decoders, the one with Nh = 128 sub-decoders produces about twice
the throughput, reduces the latency by about half, and utilizes about
twice the amount of look-up tables (LUTs).

1 In practice, there is a fixed delay tδ when operating RAMs. In our designs, tδ = 2

cycles and are included in deriving the latency and throughput in Table 12.
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4.4 summary

In this chapter, we have proposed a layered decoding algorithm
for the ultimate-Shannon-limit-approaching PLDPC-Hadamard block
code. Simulation results have verified that the layered decoding
method can speed up the PLDPC-Hadamard decoder by about two
times compared with the standard decoder. Though an even-order
PLDPCH-BC is illustrated, the proposed algorithm can be readily
applied to odd-order PLDPCH-BCs and other generalized LDPC
codes by making appropriate modifications.

Based on the layered decoding algorithm, we have designed a
hardware architecture of the PLDPC-Hadamard layered decoder and
implemented it onto an FPGA. A throughput of 1.48 Gbps is achieved
when 20 decoding iterations are used. If the Hadamard sub-decoders
in the decoder are fully utilized, the throughput will be increased by
d/2 = 3 times to almost 4.5 Gbps in the example used. Our decoder
architecture is generic and can be readily modified to decode LDPC-
Hadamard codes with the order r being odd and to decode other
LDPC-derived codes when the Hadamard constraints LDPC-HC are
replaced by other code constraints.

In the next chapter, we proceed to introducing and evaluat-
ing a derivative of PLDPCH-BC, namely spatially coupled PLDPC-
Hadamard convolutional codes.



Chapter 5
S PAT I A L LY C O U P L E D P L D P C - H A D A M A R D
C O N V O L U T I O N A L C O D E S

In this chapter, we show the details of our proposed spatially
coupled PLDPC-Hadamard convolutional codes (SC-PLDPCH-CC).
First, we show the way of constructing SC-PLDPCH codes, includ-
ing SC-PLDPCH tail-biting code (SC-PLDPCH-TBC), SC-PLDPCH
terminated code (SC-PLDPCH-TDC) and SC-PLDPCH-CC, from its
block code counterpart. Second, we briefly explain the encoding
process of SC-PLDPCH-CCs. Third, we describe an efficient decoding
algorithm for SC-PLDPCH-CC, which combines the layered decoding
used for decoding PLDPCH-BC [96] and the pipeline decoding used
for decoding SC-PLDPC-CC [43]. Finally, we compare the bit error
rate (BER) performance of SC-PLDPCH-CCs with their block code
counterparts.

5.1 code construction

Spatially coupled PLDPC-Hadamard codes are constructed in a
similar way as the SC-PLDPC codes shown in Section 2.1.3. We
also denote the coupling width as W and coupling length as L in
a SC-PLDPCH code. Given a PLDPC-Hadamard block code with a
protomatrixB, we apply the edge spreading procedure to splitB into
W + 1 protomatrices Bi (i = 0, 1, . . . ,W) under the constraint B =∑W
i=0Bi. Then we couple L sets of these matrices to construct the

protomatrix of a spatially coupled PLDPC-Hadamard code. Similar
to the SC-PLDPC codes described in Section 2.1.3, a SC-PLDPCH-
TDC is formed if the coupled matrices are directly terminated; a
SC-PLDPCH-TBC is formed if the coupled matrices are connected
end-to-end; and a SC-PLDPCH-CC is formed if the coupling length L
becomes infinite. Since the constructed protomatrices only represent
the connections between P-VNs and H-CNs, SC-PLDPC-Hadamard
codes have protomatrix structures similar to those of SC-PLDPC
codes, i.e., (79) for SC-PLDPCH-TDC; (80) for SC-PLDPCH-TBC; and
(81) for SC-PLDPCH-CC.

89
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BSC−PLDPCH−TDC =

nL︷ ︸︸ ︷

B0

B1 B0
... B1

. . .

BW
...

. . . B0

BW
. . . B1
. . .

...

BW





m(L+W). (79)

BSC−PLDPCH−TBC =
nL︷ ︸︸ ︷

B0 BW · · · B1

B1 B0
. . .

...
... B1 B0 BW

BW
... B1

. . .

BW
...

. . . B0

BW
. . . B1 B0
. . .

...
. . . B0

BW · · · B1 B0





mL

(80)

BSC−PLDPCH−CC =



B0

B1 B0
... B1

. . .

BW
...

. . . B0

BW
. . . B1

. . .
. . .

...
. . .

BW
. . .
. . .



. (81)

Unlike the protographs of SC-PLDPC codes which consist of P-VNs
and SPC-CNs, the protographs of SC-PLDPCH codes contains P-VNs
and H-CNs connected with some appropriate D1H-VNs.
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Figure 47: A protograph of PLDPC-Hadamard code. Number of D1H-VNs
connected to each HCN is 2r − d = 10 using order-r = d− 2 = 4
Hadamard code.

Example: Assuming that

B =

 2 0 2 2

0 2 2 2

3 2 0 1

 (82)

represents the 3× 4 protomatrix of a PLDPC-BC, Fig. 47 illustrates
the corresponding protograph consisting of m = 3 H-CNs and n = 4

P-VNs. The inputs to each H-CN fulfills the Hadamard constraint
which is denoted by a box with the letter “H” inside. In Fig. 47, each
H-CN connects d = 6 P-VNs. Thus, the Hadamard code has an order
of r = d− 2 = 4 and generates 2r − d = 10 Hadamard parity-check
bits, which are denoted as D1H-VNs and depicted as filled circles.

Assuming that W = 1, Fig. 48 shows the protograph of a SC-
PLDPCH-CC which is derived from the PLDPCH-BC in Fig. 47.
Two other types of terminated protographs of SC-PLDPCH codes,
i.e., protographs of SC-PLDPCH-TDC and SC-PLDPCH-TBC, are
shown in Fig. 49 and Fig. 50, respectively. In Figs. 48, 49 and 50,
blue connections between P-VNs and H-CNs correspond to split
protomatrix B0 (83) and red ones correspond to split protomatrix
B1 (84), satisfying the constraint B0 +B1 = B.

B0 =

 1 0 0 2

0 1 1 1

1 2 0 1

 (83)
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Figure 48: Protograph of a SC-PLDPCH-CC derived from the PLDPCH-BC
in Fig. 47. W = 1.

and

B1 =

 1 0 2 0

0 1 1 1

2 0 0 0

 . (84)

Using a similar two-step lifting process as that in Appendix D, SC-
PLDPCH codes can be constructed from the coupled protographs.
Assuming that B has a constant row weight of d and hence an order-
r (= d− 2) Hadamard code is used, it can be readily shown that the
code rates of the SC-PLDPCH codes are as follows. For SC-PLDPCH-
TDCs, the code rate equals

Reven
SC−PLDPCH−TDC =

nL−m (L+W)

nL+m (L+W) (2r − d)

=
n−m

(
1+ W

L

)
n+m

(
1+ W

L

)
(2r − d)

(85)
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Figure 49: Protograph of a SC-PLDPCH-TDC derived by terminating SC-
PLDPCH-CC protograph in Fig. 48. W = 1 and L = 3.

when r is even, and

Rodd
SC−PLDPCH−TDC =

nL−m (L+W)

nL+m (L+W) (2r − 2)

=
n−m

(
1+ W

L

)
n+m

(
1+ W

L

)
(2r − 2)

(86)

when r is odd. For SC-PLDPCH-TBCs and SC-PLDPCH-CCs, their
code rates are the same as the block code counterparts, i.e.,

Reven
SC−PLDPCH−TBC = Reven

SC−PLDPCH−CC

= Reven
PLDPCH−BC =

n−m

n+m (2r − r− 2)
(87)

when r is even, and

Rodd
SC−PLDPCH−TBC = Rodd

SC−PLDPCH−CC

= Rodd
PLDPCH−BC =

n−m

n+m (2r − 2)
(88)

when r is odd.

5.2 encoding of sc-pldpch-cc

From this point forward and unless otherwise stated, we focus our
study on SC-PLDPCH-CC. We also assume that the row weight of
B equals d = r+ 2 and is even. After performing a two-step lifting
process on (81), we obtain the semi-infinite parity-check matrix of a
SC-PLDPCH-CC in Fig. 51.

Denoting the two lifting factors by z1 and z2, each Hi (i =

0, 1, . . . ,W) has a size of M×N = mz1z2 × nz1z2. At time t, M−N

information bits denoted by b(t) ∈ {0, 1}M−N are input to the SC-
PLDPCH-CC encoder. The output of the SC-PLDPCH-CC encoder
contains N coded bits corresponding to P-VNs, which are denoted by
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Figure 50: Protograph of a SC-PLDPCH-TBC derived by terminating SC-
PLDPCH-CC protograph in Fig. 48. W = 1 and L = 3.

P (t); and M(2r − r− 2) Hadamard parity-check bits corresponding
to D1H-VNs, which are denoted by D(t). Referring to Fig. 51, we
generate the output bits as follows.

1. t = 1: Given b(1), P (1) is generated based on the first block row
of HSC−PLDPC−CC, i.e., H0. Moreover, D(1) is computed based

on [
W︷ ︸︸ ︷

 · · · P (1)] and the structure [HW · · · H1 H0], where
each  is a length-N zero vector.

2. t = 2: Given b(2) and P (1), P (2) is generated based on the
second block row of HSC−PLDPC−CC, i.e., [H1 H0]. Moreover,

D(2) is computed based on [
W−1︷ ︸︸ ︷
 · · · P (1) P (2)] and the struc-

ture [HW · · · H1 H0].

3. t 6 W: Given b(t) and [P (1) P (2) · · · P (t− 1)], N coded bits
P (t) are generated based on the t-th block row ofHSC−PLDPC−CC,
i.e., [Ht−1 · · · H1H0].D(t) corresponding to theM(2r− r− 2)

D1H-VNs are computed based on [
W+1−t︷ ︸︸ ︷
 · · ·P (1) · · · P (t)] and

the structure [HW HW−1 · · · H0].
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Figure 51: Encoding of a SC-PLDPCH-CC. Coded bits P (1), P (2), . . .,
P (t−1), P (t), . . . correspond to P-VNs at time 1, 2, . . . , t−1, t, . . ..
Hadamard parity-check bits D(1),D(2), . . . ,D(t − 1),D(t), . . .
correspond to D1H-VNs at time 1, 2, . . . , t− 1, t, . . ..

4. t > W: Given b(t) and [P (t−W) P (t−W + 1) · · · P (t− 1)],
P (t) is generated based on the t-th block row ofHSC−PLDPC−CC,
i.e., [HW · · · H1 H0]. Then, D(t) is computed based on [P (t−

W) · · · P (t− 1) P (t)] and the structure [HW HW−1 · · · H0].

Remarks: The values of D(t) are generated during the encoding
corresponding to the t-th block row. They are not needed for
generating other D(t ′) where t 6= t ′. When t 6 W, W + 1− t length-
N zero vectors are inserted in front of P (1) for computing D(t). But
these zero vectors are not transmitted through the channel.

5.3 pipeline decoding

At the receiving end, we receive channel observations regarding the
coded bits P (t) (corresponding to P-VNs) and Hadamard parity-
check bits D(t) (corresponding to D1H-VNs). We denote the log-
likelihood-ratio (LLR) values corresponding to P (t) by LPch(t) and
the LLR values corresponding to D(t) by LDch(t). We consider
a pipeline decoder which consists of I identical message-passing
processors [41, 43, 102]. Each processor is a PLDPC-Hadamard block
sub-decoder corresponding to [HW HW−1 · · · H0]. Thus, each
processor operates on W + 1 sets of P-VNs and one set of D1H-VNs
each time, i.e., a total ofN(W+ 1) P-VNs andM(2r− r− 2) D1H-VNs
(when r is even). Hence the pipeline decoder operates on (W + 1)I

sets of P-VNs and I sets of D1H-VNs each time. Each processor (sub-
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decoder) can apply either the standard decoding algorithm or the
layered decoding algorithm to compute/update the a posteriori LLR
(APP-LLR) values of the coded bits P (t) and the related extrinsic LLR
information. Here, we apply the layered decoding algorithm (See the
details in Section 4.2.1) [96] in each of these PLDPC-Hadamard block
sub-decoders.

We denote the APP-LLR values of the coded bits P (t) by LPapp(t).
Referring to Fig. 52, {LPch(1),L

D
ch(1)} is first input to the pipeline

decoder and Processor #1 updates the APP-LLR of all P-VNs in-
side, i.e., LPapp(1). In addition, extrinsic LLR information is up-
dated and stored in the processor but is not depicted in the fig-
ure. Then, {LPch(2),L

D
ch(2)} is input to the pipeline decoder while

{LPch(1),L
D
ch(1),L

P
app(1)} and related extrinsic LLR information are

shifted to the left in the decoder. Processor #1 updates the APP-
LLRs of all P-VNs inside, i.e., LPapp(1) and LPapp(2). Again, extrinsic
LLR information is updated and stored in the processor but is not
depicted. Subsequently, {LPch(t),L

D
ch(t)} (t = 3, 4, . . .) are input into

the decoder one set by one set. Every time, all sets of LLRs inside
the decoder are shifted to the left by one “Hi” block, and all APP-
LLRs of all P-VNs inside the different I processors are updated.
Referring to Fig. 52, when {LPch((W + 1)I + 1),LDch((W + 1)I + 1)}

is input to the pipeline decoder, the APP-LLRs LPapp(1) have gone
through the iterative process and are output from the decoder. Hard
decisions are made based on these APP-LLRs to determine the
values of the coded bits P (1). The process continues and every time
{LPch((W + 1)I+ t ′),LDch((W + 1)I+ t ′)} (t ′ = 1, 2, . . .) is input to the
decoder, the APP-LLRs LPapp(t ′) are output and the values of the
coded bits P (t ′) are determined.

5.4 simulation results

We set W = 1 in our simulations. We use the edge spread-
ing procedure to randomly split the optimized protomatrix B of
PLDPCH-BCs (obtained in Section 3.4) into B0 and B1, where
B0 +B1 = B. Following Section 5.1, we use B0 and B1 to construct
the protomatrix of a SC-PLDPCH-CC. Using the two-step lifting
method, we lift the protomatrix to obtain a convolutional parity-
check matrix, where the two lifted factors are denoted as z1 and
z2, respectively. We use binary phase-shift-keying (BPSK) modulation
over an AWGN channel. Based on the lifted matrix, we apply the
pipeline decoder with the layered decoding algorithm to evaluate the
error performance of the constructed SC-PLDPCH-CC.
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5.4.1 Rate-0.0494 and r = 4

Based on the 7× 11 protomatrix

B =



1 0 0 0 0 0 1 0 3 0 1

0 1 2 0 0 0 0 0 0 2 1

2 1 0 0 1 1 0 0 0 0 1

0 1 0 3 0 0 0 0 0 2 0

2 0 0 0 0 0 0 1 0 3 0

3 0 0 2 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0 1 2 0


(89)

of the optimized rate-0.0494 PLDPCH-BC in Section 3.4.1.1 [93, 94],
we find two 7× 11 protomatrices

B0 =



1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0


(90)

and

B1 =



0 0 0 0 0 0 1 0 3 0 0

0 1 1 0 0 0 0 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 3 0

2 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 2 0


. (91)

We use the lifting factors z1 = 16 and z2 = 1024 to expand
the protomatrix such that the sub-block length of the SC-PLDPCH-
CC equals 1, 327, 104, which is identical to the code length of the
PLDPCH-BC with z1 = 32 and z2 = 512, i.e., N+M(2r − r− 2) =

1, 327, 104. Table 14 in Appendix D shows the details of lifted matrix
corresponding to [B1 B0]. The BER performance of the SC-PLDPCH-
CC with different number of processors I contained in pipeline
decoding is shown in Fig. 53. We observe that the decoder with I = 80
processors in pipeline decoding achieves a BER of 10−5 at about
Eb/N0 = −1.235 dB, which outperforms that with I = 70 by about
0.03 dB, and that with I = 60 by about 0.06 dB. In the same figure, we
also see that the SC-PLDPCH-CC outperforms the PLDPCH-BC using
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Figure 53: BER performance comparison between the rate-0.0494 PLDPCH-
BC and rate-0.0494 SC-PLDPCH-CC. r = 4.

300 standard decoding iterations (equivalent to 150 layered decoding
iterations) by about 0.045 dB at a BER of 10−5. The gaps of the SC-
PLDPCH-CC (with I = 80 and BER of 10−5) to the Shannon capacity
(−1.44 dB) of R = 0.05 and to the ultimate Shannon limit (−1.59 dB)
are about 0.205 dB and 0.355 dB, respectively.

As mentioned in Section 5.3, pipeline decoding with I processors
operates on (W + 1)I sets of P-VNs and I sets of D1H-VNs. When
the product of the two lifting factors (z1 × z2) is the same, pipeline
decoding involves more P-VNs and D1H-VNs than PLDPCH-BC
decoding. To increase the number of P-VNs and D1H-VNs for the
rate-0.0494 PLDPCH-BC, we increase the code length of PLDPCH-BC
by 80 times, i.e., z1 = 16 and z2 = 81920 (= 1024 × 80). The BER
result of the lengthened PLDPCH-BC using 160 standard decoding
iterations (equivalent to 80 layered decoding iterations) is shown
in Fig. 53. The lengthened PLDPCH-BC slightly outperforms the
SC-PLDPCH-CC with I = 80 but suffers from an error floor at
a BER of 10−7. However, no error floor is observed at a BER of
10−8 for the proposed SC-PLDPCH-CC. We further study the lifted
matrices corresponding to the PLDPCH-BC and the SC-PLDPCH-CC.
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We find that both matrices have a girth of 10 (girth refers to the
minimum cycle length and plays an important role in the error-floor
performance of LDPC-based codes). Thus the SC-PLDPCH-CC has an
advantage over the PLDPCH-BC in terms of error floor even though
both codes have the same girth.

5.4.2 Rate-0.021 and r = 5

Based on the 6× 10 protomatrix

B=



3 2 0 0 1 0 0 0 1 0

0 0 2 0 0 2 1 2 0 0

0 0 0 3 1 0 0 1 0 2

0 1 0 1 0 0 0 2 0 3

0 0 0 2 0 0 1 2 0 2

2 0 1 1 0 0 0 2 0 1


(92)

of the optimized rate-0.021 PLDPCH-BC in Section 3.4.1.2 [93, 94], we
find two 6× 10 protomatrices

B0 =



2 0 0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 2 0 0

0 0 0 1 1 0 0 0 0 0

0 1 0 1 0 0 0 1 0 1

0 0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 1 0 1


(93)

and

B1 =



1 2 0 0 1 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0

0 0 0 2 0 0 0 1 0 2

0 0 0 0 0 0 0 1 0 2

0 0 0 1 0 0 0 1 0 1

2 0 1 1 0 0 0 1 0 0


. (94)

We use the same lifting factors, i.e., z1 = 32 and z2 = 512, as
those used in the PLDPCH-BC to expand the protomatrix such that
the sub-block length of the SC-PLDPCH-CC equals 3, 112, 960. The
BER performance of the SC-PLDPCH-CC with different number of
processors I is shown in Fig. 54. The pipeline decoder with I = 80

processors achieves a BER of 10−5 at about Eb/N0 = −1.30 dB,
which outperforms that with I = 70 by about 0.02 dB, and that with
I = 60 by about 0.05 dB. In the same figure, we also see that the
SC-PLDPCH-CC outperforms the PLDPCH-BC using 300 standard
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Figure 54: BER performance comparison between the rate-0.021 PLDPCH-
BC and rate-0.021 SC-PLDPCH-CC. r = 5.

decoding iterations by about 0.06 dB at a BER of 10−5. The gaps of
the SC-PLDPCH-CC (with I = 80 and BER of 10−5) to the Shannon
capacity (−1.53 dB) of R = 0.02 and to the ultimate Shannon limit
(−1.59 dB) are about 0.23 dB and 0.29 dB, respectively.

We again increase the code length of PLDPCH-BC by 80 times, i.e.,
z1 = 32 and z2 = 40960 (= 512×80). The BER result of the lengthened
PLDPCH-BC using 160 standard decoding iterations is shown in
Fig. 54. The lengthened PLDPCH-BC performs similarly as the SC-
PLDPCH-CC with I = 80 but suffers from an error floor at a BER of
4× 10−8. However, no error floor is observed at a BER of 10−8 for the
proposed SC-PLDPCH-CC. Both the lifted matrices corresponding to
the PLDPCH-BC and the SC-PLDPCH-CC are found to have a girth
of 10.

5.4.3 Rate-0.008 and r = 8

The 5× 15 protomatrix B of the optimized rate-0.008 PLDPCH-BC
in Section 3.4.1.3 [93, 94] and the two protomatrices B0 and B1 are
shown in (95), (96) and (97), respectively.
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B =



2 0 1 0 0 0 0 3 2 0 0 1 0 0 1

0 2 0 1 1 0 0 0 0 0 0 3 0 3 0

0 0 1 0 0 2 2 0 0 1 1 2 1 0 0

0 0 0 2 2 0 0 0 0 1 0 3 0 0 2

0 0 0 0 0 1 1 0 1 1 1 2 3 0 0


(95)

B0 =



1 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 2 0 1 0

0 0 1 0 0 2 0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(96)

B1 =



1 0 0 0 0 0 0 2 2 0 0 1 0 0 1

0 0 0 1 1 0 0 0 0 0 0 1 0 2 0

0 0 0 0 0 0 2 0 0 1 0 1 0 0 0

0 0 0 1 2 0 0 0 0 1 0 3 0 0 2

0 0 0 0 0 1 1 0 1 1 1 2 3 0 0


(97)

We lift the SC-PLDPCH-CC with factors z1 = 16 and z2 = 1280

such that its sub-block length is the same as that of the PLDPCH-
BC in Section 3.4.1.3 [93, 94]. Fig. 55 shows the BER performance
of the two codes. SC-PLDPCH-CC pipeline decoder with I = 100

processors achieves a BER of 10−5 at about Eb/N0 = −1.40 dB, which
outperforms that with I = 90 by about 0.01 dB, and that with I = 80

by about 0.03 dB. It does not suffer from any error floor down to a
BER of 10−8. It also outperforms the PLDPCH-BC using 300 standard
decoding iterations by about 0.05 dB at a BER of 10−5. At a BER of
10−5, the gaps (for the SC-PLDPCH-CC with I = 100 iterations) to
the Shannon capacity (−1.57 dB) of R = 0.008 and to the ultimate
Shannon limit (−1.59) dB are 0.17 dB and 0.19 dB, respectively.

5.4.4 Rate-0.00295 and r = 10

The 6× 24 protomatrix B of the optimized rate-0.00295 PLDPCH-BC
in Section 3.4.1.4 [93, 94], and the two split protomatrices B0 and B1
are shown in (98), (99) and (100), respectively. We lift the SC-PLDPCH-
CC with factors z1 = 20 and z2 = 1280 such that its sub-block length
is the same as that of the PLDPCH-BC in Section 3.4.1.4 [93, 94]. Fig.
56 shows the BER performance of the two codes. SC-PLDPCH-CC
decoder with I = 140 processors achieves a BER of 10−5 at about
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SC-PLDPCH-CC with z1 = 16, z2 = 1280, W = 1, I = 90

SC-PLDPCH-CC with z1 = 16, z2 = 1280, W = 1, I = 100

Figure 55: BER performance comparison between the rate-0.008 PLDPCH-
BC and rate-0.008 SC-PLDPCH-CC. r = 8.

Eb/N0 = −1.46 dB, which outperforms that with I = 120 by about
0.01 dB, and that with I = 100 by about 0.03 dB. It does not suffer from
any error floor down to a BER of 2× 10−7. It also outperforms the
PLDPCH-BC using 300 standard decoding iterations by about 0.03
dB at a BER of 10−5. At a BER of 10−5, the gaps (for the SC-PLDPCH-
CC with I = 140 iterations) to the Shannon capacity (−1.58 dB) of
R = 0.003 and to the ultimate Shannon limit (−1.59) dB are 0.12 dB
and 0.13 dB, respectively.

B =

1 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 1 4 0 1 0

0 0 0 3 2 0 0 0 1 1 0 0 1 0 0 0 3 1 0 0 0 0 0 0

0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 3 0 4 0 0 0

0 0 0 0 0 0 0 1 0 0 3 3 0 0 0 0 0 0 0 0 2 2 0 1

2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 0 0 1 1

0 0 0 0 0 1 0 3 3 2 0 0 1 1 0 0 0 0 0 0 1 0 0 0


(98)
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B0 =

1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0

0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 3 0 0 0 0 0 0 0

0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0


(99)

B1 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 1 0

0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 2 0 0 0

0 0 0 0 0 0 0 1 0 0 2 3 0 0 0 0 0 0 0 0 1 1 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0

0 0 0 0 0 0 0 3 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0


(100)

Remark: Compared with long length PLDPCH-BC, our proposed
convolutional codes possess lower error floor. The error floor for
channel codes is related to the minimum distance. Paper [45] shows
that when using spatially coupled method to construct spatially
coupled LDPC ensembles, the minimum distance can grow linearly
with block length such that this property can suppress error floor. We
think our spatially coupled PLDPCH convolutional codes also inherit
such property and hence promise low error floor in high BER region.

5.5 summary

In this chapter, we have derived another type of ultimate-Shannon-
limit-approaching code called spatially coupled PLDPC-Hadamard
convolutional codes (SC-PLDPCH-CCs). As the name implies, SC-
PLDPCH-CCs are formed by spatially coupling PLDPCH block codes
(PLDPCH-BCs). We develop a pipeline decoding with the layered
decoding algorithm to efficiently and effectively decode SC-PLDPCH-
CCs. Based on the protograph of a PLDPCH-BC, we have found
the protomatrices of good SC-PLDPCH-CCs with rates 0.0494, 0.021,
0.008 and 0.00295. When the product of two lifting factors is the
same, these found SC-PLDPCH-CCs outperform their block code
counterparts in terms of bit error performance. Moreover, at a BER
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Figure 56: BER performance comparison between the rate-0.00295 PLDPCH-
BC and rate-0.00295 SC-PLDPCH-CC. r = 10.

of 10−5, the SC-PLDPCH-CCs of rates 0.0494, 0.021, 0.008 and
0.00295 are only 0.36 dB, 0.29 dB, 0.19 dB and 0.13 dB from the
ultimate Shannon limit, i.e., −1.59 dB. They are also the closest to
ultimate Shannon limit in these four code rates compared with other
published results.
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C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusions

The ultimate-Shannon-limit approaching channel codes can be ap-
plied in space communications, multiple access with severe inter-
user interferences. Among the existing channel codes with error
performance close to this limit, LDPC-Hadamard codes are one
of the competitive candidate codes because they allow parallel
processing and hence can achieve low decoding latency. However,
the traditional LDPC-Hadamard block codes are unstructured and
the corresponding EXIT chart analysis method is not valid for codes
with degree-1 or/and punctured variable nodes. To analyze and
design LDPC-Hadamard codes more comprehensively, we have pro-
posed protograph-based LDPC-Hadamard block codes in Chapter 3.
Moreover, we have proposed an efficient layered decoding algorithm
for PLDPCH-BCs and the corresponding hardware architecture in
Chapter 4. To further approach the ultimate Shannon limit, we have
proposed the spatially coupled PLDPC-Hadamard convolutional
codes in Chapter 5. We conclude our contributions as follows.

• In Chapter 3, we have proposed a new type of ultimate-
Shannon-limit-approaching channel codes, i.e., protograph-based
LDPC-Hadamard block codes (PLDPCH-BCs). Unlike tradi-
tional LDPC-Hadamard block codes designed by degree dis-
tributions, we design LDPC-Hadamard codes from the per-
spective of protographs. We have proposed a low-complexity
PEXIT chart method to evaluate the threshold of PLDPCH-
BCs, which can effectively analyze protographs containing
degree-1 or/and punctured P-VNs. Based on the analysis
method, we have proposed optimization criterion to deign the
PLDPCH-BCs. Using the proposed method, we have found
good PLDPCH-BCs with different code rates and very low
thresholds (< −1.40 dB). We have shown that our proposed
PLDPCH-BCs can achieve comparable error performance to the
tradition LDPC-Hadamard block codes. We have also studied
punctured PLDPCH-BCs. We have observed that puncturing
the P-VNs with different degrees produces different BER/FER
performance while puncturing extra D1H-VNs (when r = 5)
degrades the error performance quite significantly.
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• In Chapter 4, we have proposed a layered decoding algorithm
to fast decode PLDPCH-BCs and have implemented the layered
decoder of PLDPCH-BCs onto an FPGA board. Compared
with the standard decoding algorithm, our proposed layered
decoding algorithm not only consumes less memory storage
and computational logic, but also improves the convergence
rate by about two times. Based on the layered decoding algo-
rithm, we have proposed a hardware architecture of the PLDPC-
Hadamard layered decoder, and analyzed the latency and
throughput of the decoder. We have shown that a throughput
of 1.48 Gbps is achieved when 20 decoding iterations are used.
If we fully utilize the Hadamard sub-decoders, the throughput
will be increased to almost 4.5 Gbps. Moreover, the proposed
even-order PLDPCH-BC decoder architecture is generic and can
be readily applied to odd-order PLDPCH-BC decoders.

• In Chapter 5, we make use of PLDPCH-BCs proposed in
Chapter 3 to design another type of ultimate-Shannon-limit-
approaching channel codes, i.e., spatially coupled PLDPC-Hadamard
convolutional codes (SC-PLDPCH-CCs). We have described
the code constructions for three types of SC-PLDPCH codes,
i.e., spatially coupled PLDPC-Hadamard terminated codes (SC-
PLDPCH-TDCs), spatially coupled PLDPC-Hadamard tail-biting
codes (SC-PLDPCH-TBCs) and SC-PLDPCH-CCs. We introduce
the encoding of a SC-PLDPCH-CC based on its convolutional
parity-check matrix, which is derived by lifting the protomatrix.
We have proposed an effective pipeline decoder with layered
decoding processors to evaluate the error performance of SC-
PLDPCH-CCs. We have shown that our SC-PLDPCH-CCs can
outperform their block code counterparts in terms of bit error
performance. The BER performance of these SC-PLDPCH-CCs
(with rates of 0.0494, 0.021, 0.008 and 0.00295) is the closest to
ultimate Shannon limit compared with other published results.

6.2 future work

Based on the research in this thesis, we list the following future work
that can be performed.

• In Chapter 3, by directly puncturing our proposed PLDPC-
Hadamard codes, punctured codes are obtained and evaluated.
However, these punctured codes, strictly speaking, are not
optimized. In the future, we plan to apply the proposed
analytical technique to find optimal PLDPC-Hadamard codes
with punctured VNs and compare their results with those
presented in this thesis.
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Figure 57: The flowchart of genetic algorithm for finding optimal protoma-
trices.

• In Chapter 4, the PLDPCH-BC layered decoder uses 128 symbol-
MAP Hadamard sub-decoders in parallel in order to obtain
a high throughput. The design also consumes a lot of look-
up tables of the FPGA board. Another possible future work
is therefore to simplify the hardware of the Hadamard sub-
decoder with an aim to reducing the look-up-table utilization.
During this simplification, however, minimal performance loss
should be allowed.

• In Chapter 5, the BER performance of SC-PLDPCH-CCs are
simulated but the theoretical thresholds are not derived. In
the future, we can propose analytical techniques to derive the
thresholds of SC-PLDPCH-CCs and compare their accuracies
with the simulation results.

• In Chapters 3 and 5, the optimized protomatrices of PLDPCH-
BCs and SC-PLDPCH-CCs are found through random searches.
In the future, we can investigate annealing approaches or
genetic algorithms to systematically search for optimal pro-
tomatrices under some given constraints. Fig. 57 is a basic
procedure of genetic algorithm to find optimal protomatrices
based on generation group, fitness function, selection, crossover
and mutation.
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Appendix A
T W O O T H E R T Y P E S O F L D P C - H A D A M A R D C O D E S

As mentioned in Section 3.1, dci = r + 1 bits from P-VNs need to
fulfill the SPC constraint. However, if the inputs to the H-CNs are not
required to satisfy the SPC constraint, two other types of codes can
be formed.

Fig. A1 shows the first type, in which the information bits (infor-
mation VNs) are first encoded into an LDPC codeword (with the
generation of the parity-check VNs) based on the SPC constraints
(SPC-CNs). Subsequently, these VNs (including both information
VNs and parity-check VNs) are repeated and interleaved. Then they
are used as inputs to the Hadamard check nodes (H-CNs) and to
generate the Hadamard parity-check bits (D1H-VNs). Suppose the
order of the Hadamard codes used is r and hence there are 2r+1

possible Hadamard codewords. As the inputs to the Hadamard check
nodes may not satisfy the SPC constraint, the number of inputs
would be r+ 1 (instead of r+ 2 in our PLDPC-Hadamard code) and
the number of Hadamard parity-check bits (D1H-VNs) generated
in each H-CN equals 2r − (r + 1) (instead of 2r − (r + 2) in our
PLDPC-Hadamard code when r is even). Compared with our PLDPC-
Hadamard code, the code in Fig. A1 will have a lower code rate
when r is even. The decoder structure of the code in Fig. A1 will
also be different from ours. The decoder structure of the code in
Fig. A1 will consist of a traditional LDPC decoder and a Hadamard
decoder, which will iteratively exchange the extrinsic information
of the variable nodes (i.e., the VNs shown in the middle layer of
Fig. A1). There will be also two interleavers in the code in Fig. A1,
as opposed to only one interleaver in our PLDPC-Hadamard code.
Thus the decoder is more complicated compared with ours.

Fig. A2 depicts the second type of code in which the SPC
constraints are not required. In this case, the information bits (shown
as VNs at the top) are repeated and interleaved. Then they are used
as inputs to the Hadamard check nodes (H-CNs) and to generate the
Hadamard parity-check bits (D1H-VNs). The code can be viewed as
a concatenation of repeat codes and Hadamard codes, and the code
structure is very different from our PLDPC-Hadamard code.
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Figure A1: First type of code in which the inputs to the H-CNs do not need
to satisfy the SPC constraint.

Figure A2: Second type of code in which the inputs to the H-CNs do not
need to satisfy the SPC constraint.



Appendix B
C O M P U T I N G A P P L L R S O F I N F O R M AT I O N B I T S I N
A N O N - S Y S T E M I C H A D A M A R D C O D E

We convert the extrinsic LLR values LHex of the SPC code bits cµ to
the a priori LLR values of the information bits c ′µ in cH. In (45), cH0 =

c ′µ0 = cµ0 and cH2r−1 = c ′µr+1 = cµr+1 . Hence, the a priori information
for cH0 = c ′µ0 and cH2r−1 = c ′µr+1 equals the extrinsic information for
cµ0 and cµr+1 , that is,

LHapr(0) = LRex(0);

LHapr(2
r − 1) = LRex(r+ 1). (B1)

For k = 1, 2, . . . , r, (45) shows that cH
2k−1

= c ′µk = cµk ⊕ cµ0 . LRex(k) is
the a priori information for cµk , i.e.,

LRex(k) = ln
Pr(cµk = “0")
Pr(cµk = “1")

= ln
Pr(c ′µk ⊕ cµ0 = “0")
Pr(c ′µk ⊕ cµ0 = “1")

. (B2)

Alternatively,

LHapr(2
k−1) = ln

Pr(cH
2k−1

= “0")
Pr(cH

2k−1
= “1")

= ln
Pr(c ′µk = “0")
Pr(c ′µk = “1")

= ln
Pr(cµk ⊕ cµ0 = “0")
Pr(cµk ⊕ cµ0 = “1")

=

 LRex(k) if cµ0 = “0"

−LRex(k) if cµ0 = “1"
. (B3)

The 2r − r− 2 remaining LHapr values should be 0. Thus, the assign-
ment of L+H

apr (if cµ0 = “0") and L−H
apr (if cµ0 = “1") is as follows:

L±Hapr(k) = L
R
ex(0) for k = 0; L+Hapr(k) = L
R
ex(i)

L−Hapr(k) = −LRex(i)
for k = 1, 2, · · · , 2i−1, · · · , 2r−1;

L±Hapr(k) = L
R
ex(r+ 1) for k = 2r − 1;

L±Hapr(k) = 0 for the 2r − r− 2 remaining k.

(B4)
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The 2r − 2 channel observations corresponding to the code bits cH1 to
cH2r−2 are received and the assignment of LHch is as follows: LHch(k) =

2yHch(k)

σ2ch
for k = 1, 2, · · · , 2r − 2;

LHch(k) =
2yHch(k)

σ2ch
= 0 for k = 0, 2r − 1.

(B5)

cµ0 and cµr+1 : Since cµ0 = c ′µ0 = cH0 and cµr+1 = c ′µr+1 = cH2r−1 in
(45), we can apply DFHT directly to (38) to obtain the a posteriori LLR
values LHapp(0) for cµ0 and LHapp(2r − 1) for cµr+1 .
cµk for k = 1, 2, · · · , r: Based on the relationship between cµk and
c ′µk , we derive (B6) for computing LHapp(2

k−1). Note that the first
element in +hj is always +1 (corresponds to bit “cH0 = “0"’). Thus,
the term

∑
+H[2k−1,j]=+1 Pr(cH = +hj | y

H
ch) can be used to compute

Pr(cH
2k−1

= “0", cH0 = “0" | yHch) in (B6). Using a similar argument, we
arrive at the other three summation terms.

LHapp(2
k−1) = ln

Pr(cµk = “0" | yHch)
Pr(cµk = “1" | yHch)

= ln
Pr(c ′µk ⊕ cµ0 = “0" | yHch)
Pr(c ′µk ⊕ cµ0 = “1" | yHch)

= ln
Pr(c ′µk = “0", cµ0 = “0" | yHch) + Pr(c ′µk = “1", cµ0 = “1" | yHch)
Pr(c ′µk = “1", cµ0 = “0" | yHch) + Pr(c ′µk = “0", cµ0 = “1" | yHch)

= ln
Pr(cH

2k−1
= “0", cH0 = “0" | yHch) + Pr(cH

2k−1
= “1", cH0 = “1" | yHch)

Pr(cH
2k−1

= “1", cH0 = “0" | yHch) + Pr(cH
2k−1

= “0", cH0 = “1" | yHch)

= ln

∑
+H[2k−1,j]=+1

Pr(cH = +hj | y
H
ch) +

∑
−H[2k−1,j]=−1

Pr(cH = −hj | y
H
ch)∑

+H[2k−1,j]=−1

Pr(cH = +hj | y
H
ch) +

∑
−H[2k−1,j]=+1

Pr(cH = −hj | y
H
ch)

= ln

∑
+H[2k−1,j]=+1

γ
(
+hj

)
+

∑
−H[2k−1,j]=−1

γ
(
−hj

)
∑

+H[2k−1,j]=−1

γ
(
+hj

)
+

∑
−H[2k−1,j]=+1

γ
(
−hj

) . (B6)

In (38), the numerator only needs to consider the case ±H [i, j] = +1

while the denominator only needs to consider the case ±H [i, j] = −1.
However, in (B6), both the numerator and denominator need to
consider both ±H [i, j] = +1 and ±H [i, j] = −1; and thus DFHT
cannot be used directly to compute LHapp(2k−1). To apply DFHT, the
following simple transformation is required.

Considering the 2k−1-th row (k = 1, 2, · · · , r) of an order-r
Hadamard matrix, there are 2r−1 entries with −H[2k−1, j] = +1 and
2r−1 entries with −H[2k−1, j] = −1. (In other words, there are 2r−1

−hj’s in which the 2k−1-th entry (k = 1, 2, · · · , r) equals +1; and there
are 2r−1 −hj’s in which the 2k−1-th entry (k = 1, 2, · · · , r) equals −1.)
We denote
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• Jk+1 as the set of column indexes s.t. the element −H[2k−1, j] =
+1

• Jk−1 as the set of column indexes s.t. the element −H[2k−1, j] =
−1

It can also be readily proven that if −H[2k−1, j] = ±1 in −hj (j =
0, 1, . . . , 2r − 1), then −H[2k−1, 2r − 1− j] = ∓1 in −h2r−1−j. Thus we
have

Jk+1 = {2r − 1− j | j ∈ Jk−1}

and
Jk−1 = {2r − 1− j ′ | j ′ ∈ Jk+1}.

It means that ∑
j∈Jk+1

γ
(
−hj

)
=
∑
j ′∈Jk−1

γ
(
−h2r−1−j ′

)
(B7)

and ∑
j∈Jk−1

γ
(
−hj

)
=
∑
j ′∈Jk+1

γ
(
−h2r−1−j ′

)
. (B8)

By using the simple transformation

γ ′(−hj) = γ(−h2r−1−j), j = 0, 1, . . . , 2r − 1; (B9)

(B6) can be rewritten as

ln

∑
+H[2k−1,j]=+1

γ
(
+hj

)
+

∑
−H[2k−1,j]=+1

γ
(
−h2r−1−j

)
∑

+H[2k−1,j]=−1

γ
(
+hj

)
+

∑
−H[2k−1,j]=−1

γ
(
−h2r−1−j

)

= ln

∑
+H[2k−1,j]=+1

γ
(
+hj

)
+

∑
−H[2k−1,j]=+1

γ ′
(
−hj

)
∑

+H[2k−1,j]=−1

γ
(
+hj

)
+

∑
−H[2k−1,j]=−1

γ ′
(
−hj

) .

(B10)

As the numerator only needs to consider the case ±H [i, j] = +1 while
the denominator only needs to consider the case ±H [i, j] = −1, DFHT
can be readily applied to compute (B10).



Appendix C
M O N T E C A R L O M E T H O D F O R F O R M I N G T H E m × d
M I M AT R I X { I eh ( i , k ) }

We define the following symbols:

• σµ = [σµ0 σµ1 . . . σµd−1
] : d (= r + 2 ) noise standard

deviations;

• cµ = [ cµ0 cµ1 . . . cµd−1
] : a length-d SPC codeword;

• cp = [ cp0 cp1 . . . cpg−1
] : g Hadamard parity bits gen-

erated based on the SPC cµ ; g = 2 r − d and g = 2 r −

2 , respectively, for systematic (r =even) and non-systematic
coding (r =odd);

• nµ = [nµ0 nµ1 . . . nµd−1
] : d samples following a normal

distribution;

• np = [np0 np1 . . . npg−1
] : g samples following a normal

distribution;

• Lµ = [Lµ0 Lµ1 . . . Lµd−1
] : d LLR values corresponding to

the SPC codeword cµ ;

• Lp = [Lp0 Lp1 . . . Lpg−1
] : g channel LLR values corre-

sponding to the Hadamard parity bits cp ;

• L e = [L e0 L e1 . . . L ed−1
] : d extrinsic LLR values generated

by the Hadamard decoder;

• U : a w × d matrix in which each row represents a length-d
SPC codeword; and the k-th column (k = 0 , 1 , . . . , d − 1)
corresponds to the k-th bit (cµk ) of the SPC codeword;

• V : a w × d matrix in which each row represents a set of (d)
extrinsic LLR values generated by the Hadamard decoder; and
the k-th column (k = 0 , 1 , . . . , d − 1) corresponds to the
extrinsic LLR value for the k-th bit (cµk ) of the SPC codeword;

• p e0 = [p e (ξ | cµ0 = “ 0 " ) p e (ξ | cµ1 = “ 0 " ) · · · p e (ξ |
cµd−1= “0 " ) ] : PDFs for cµk = “ 0 " (k = 0 , 1 , . . . , d − 1);

• p e1 = [p e (ξ | cµ0 = “ 1 " ) p e (ξ | cµ1 = “ 1 " ) · · · p e (ξ |
cµd−1= “1 " ) ] : PDFs for cµk = “ 1 " (k = 0 , 1 , . . . , d − 1).
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The m × d MI matrix { I eh ( i , k ) } is updated with following steps.

i) Given the standard deviation σL ch .

ii) Set i = 0.

iii) For the i-th row in the MI matrix {Iah(i,k)}, use the J-function
in [23] to compute the standard deviation σµk = J−1(Iah(i,k))
for k = 0, 1, . . . ,d− 1.

iv) Set j = 0.

v) Randomly generate a length-d SPC codeword cµ; further en-
code cµ into a Hadamard codeword using systematic (when
r = d− 2 is even) or non-systematic (when r is odd) coding and
generate the g Hadamard parity bits cp.

vi) Randomly generate a sample vector nµ where each nµk (k =

0, 1, . . . ,d−1) follows a different normal distribution N(σ2µk/2,σ
2
µk

).

vii) Randomly generate a sample vector np where all npk ′ ’s (k ′ =
0, 1, . . . ,g−1) follow the same normal distribution N(σ2Lch/2,σ

2
Lch

).

viii) For k = 0, 1, . . . ,d− 1, set Lµk = +nµk if cµk = “0”; otherwise
set Lµk = −nµk if cµk = “1”.

ix) For k ′ = 0, 1, . . . ,g− 1, set Lpk ′ = +npk ′ if cpk ′ = “0”; otherwise
set Lpk ′ = −npk ′ if cpk ′ = “1”.

x) Input Lµ and Lp, respectively, as the a priori and channel
LLRs to the Hadamard decoder. Use the decoding algorithm
described in Section 3.2 to compute the d output extrinsic LLR
values Le.

xi) Assign cµ to the j-th row of U and assign Le to the j-th row of
V .

xii) Set j = j+ 1. If j < w, go to Step v). (We set w = 10, 000.)

xiii) The k-th columns (k = 0, 1, . . . ,d − 1) of both U and V

correspond to bit cµk . Obtain the PDFs pe(ξ|cµk = “0") and
pe(ξ|cµk = “1") (k = 0, 1, . . . ,d− 1) based on U and V .

xiv) Use pe(ξ|cµk = “0") and pe(ξ|cµk = “1") to compute (56) and
hence Ieh(i,k) (k = 0, 1, . . . ,d− 1).

xv) Set i = i+ 1. If i < m, go to step iii).



Appendix D
T W O - S T E P L I F T I N G O F A B A S E M AT R I X

In the first step, we “lift” a base matrix {b(i, j)} by replacing each
non-zero entry b(i, j) with a summation of b(i, j) different z1 × z1
permutation matrices and replacing each zero entry with the z1 × z1
zero matrix. After the first lifting process, all entries in the lifted
matrix are either “0” or “1”. In the second step, we lift the resultant
matrix again by replacing each entry “1” with a z2 × z2 circulant
permutation matrix (CPM), and replacing each entry “0” with the
z2 × z2 zero matrix. As can be seen, the final connection matrix can
be easily represented by a series of CPMs. Note that in each lifting
step, the permutation matrices and CPMs are selected using the PEG
algorithm [28] such that the girth (shortest cycle) in the resultant
matrix can be maximized.

Take the PLDPC-Hadamard code with code rate R = 0.0494 and
Hadamard code order r = 4 as an example, i.e.,

B7×11 =



1 0 0 0 0 0 1 0 3 0 1

0 1 2 0 0 0 0 0 0 2 1

2 1 0 0 1 1 0 0 0 0 1

0 1 0 3 0 0 0 0 0 2 0

2 0 0 0 0 0 0 1 0 3 0

3 0 0 2 0 0 1 0 0 0 0

1 0 0 1 1 0 0 0 1 2 0


. (D1)

The size of the optimized base matrix is 7× 11. After lifting the base
matrix twice with factors z1 = 32 and z2 = 512, respectively, we
can obtain a 114, 688(= 7 × 32 × 512) by 180, 224(= 11 × 32 × 512)
connection matrix between the variable nodes and the Hadamard
check nodes. The 114, 688 by 180, 224 connection matrix can simply be
represented by a 224(= 7×32) by 352(= 11×32) matrix whose entries
are CPMs. Such a connection matrix is a structured quasi-cyclic
(QC) matrix which greatly facilitates parallel encoding/decoding and
enhances the throughput. In this example, there are only 6(= r+ 2)

non-zero CPMs in each row. To simplify the representation, we only
record the positions of these non-zero CPMs in each row and their
“cyclic-shift” values.

In Table 13, we show the details of the structured QC matrix of the
rate-0.0494 PLDPC-Hadamard block code. Besides the header row,
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121 Appendix D: two-step lifting of a base matrix

there is a total of 224 rows. In each row, there are 6 entries each
represented as (c, s). The symbol c denotes the column index where
the non-zero CPM locates and it ranges from 1 to 352; while the
symbol s denotes the “cyclic-shift” value of this non-zero CPM and
ranges from 0 to 511. For example, the entry (20, 379) in the first row
shows that in the first row, (i) there is a non-zero CPM in the 20-th
column and (ii) this CPM is constructed by cyclically left-shifting the
512× 512 identity matrix by 379 columns.

To construct the convolutional protomatrix of SC-PLDPCH-CC, we
split (D1) of rate-0.0494 PLDPC-Hadamard block code into two 7× 11
protomatrices B0 and B1, where B0 +B1 = B7×11. We lift the
convolutional protomatrix with factors z1 = 16 and z2 = 1024 so as
the sub-block length also equals 1, 327, 104. Since the convolutional
protomatrix is obtained by repeating [B1 B0] in a row-wise manner,
we only need to record the lifted matrix of [B1 B0]. The size of
[B1 B0] is 7 × 22 and its lifted matrix can be denoted by a 112(=
7 × 16) × 352(= 22 × 16) matrix whose entries are CPMs with size
of 1024 × 1024. Table 14 shows the details of the lifted matrix and
has a total of 7 × 16 = 112 rows except for the header row. Other
descriptions are similar to Table 13.

B0 =



1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0


(D2)

and

B1 =



0 0 0 0 0 0 1 0 3 0 0

0 1 1 0 0 0 0 0 0 1 1

1 1 0 0 1 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 3 0

2 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 2 0


. (D3)
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Table 13: QC matrix for rate-0.0494 PLDPC-Hadamard block code
ROW ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM )

1 (20, 379) (211, 194) (261, 380) (267, 266) (278, 320) (345, 449)

2 (5, 85) (210, 114) (263, 47) (275, 313) (282, 78) (335, 369)

3 (21, 220) (224, 422) (258, 237) (268, 304) (287, 344) (348, 120)

4 (4, 212) (222, 342) (258, 435) (273, 374) (286, 164) (343, 269)

5 (32, 40) (218, 107) (259, 41) (271, 216) (283, 337) (339, 226)

6 (10, 205) (200, 292) (262, 156) (278, 94) (280, 501) (340, 57)

7 (13, 390) (217, 294) (266, 214) (276, 26) (286, 46) (326, 176)

8 (14, 102) (219, 122) (260, 356) (269, 363) (287, 230) (323, 464)

9 (3, 7) (198, 71) (264, 323) (276, 218) (277, 307) (338, 206)

10 (11, 364) (199, 230) (258, 475) (274, 101) (283, 82) (346, 238)

11 (15, 388) (221, 109) (263, 284) (272, 475) (284, 459) (333, 75)

12 (8, 436) (214, 193) (262, 385) (272, 509) (281, 412) (349, 491)

13 (18, 236) (202, 472) (265, 372) (273, 62) (285, 438) (330, 324)

14 (2, 353) (207, 431) (259, 132) (278, 446) (279, 272) (336, 328)

15 (28, 173) (212, 297) (262, 349) (271, 250) (288, 44) (324, 475)

16 (27, 30) (194, 170) (267, 448) (269, 405) (282, 453) (342, 493)

17 (29, 33) (196, 319) (267, 46) (274, 453) (285, 113) (321, 102)

18 (19, 84) (193, 318) (260, 84) (270, 127) (286, 63) (329, 388)

19 (24, 332) (223, 28) (265, 18) (271, 320) (287, 149) (327, 174)

20 (7, 99) (195, 444) (263, 15) (277, 297) (283, 183) (337, 148)

21 (25, 387) (204, 465) (257, 276) (277, 43) (280, 474) (347, 490)

22 (22, 338) (215, 362) (261, 48) (273, 253) (284, 195) (331, 413)

23 (12, 50) (209, 231) (266, 227) (272, 159) (285, 384) (344, 279)

24 (16, 383) (216, 91) (259, 69) (275, 115) (288, 265) (351, 180)

25 (31, 37) (201, 143) (265, 223) (276, 81) (282, 450) (325, 442)

26 (17, 212) (205, 37) (257, 453) (269, 231) (281, 376) (350, 507)

27 (6, 436) (203, 110) (261, 272) (270, 275) (288, 197) (332, 280)

28 (30, 252) (206, 5) (266, 85) (268, 347) (279, 379) (341, 432)

29 (1, 247) (213, 143) (264, 125) (270, 325) (279, 465) (322, 16)

30 (23, 245) (208, 246) (264, 469) (274, 75) (281, 373) (328, 429)

31 (26, 115) (197, 275) (260, 142) (275, 250) (280, 172) (334, 156)

32 (9, 509) (220, 28) (257, 246) (268, 414) (284, 251) (352, 164)

33 (53, 9) (68, 451) (94, 230) (289, 323) (307, 367) (345, 381)

34 (40, 226) (76, 35) (95, 234) (290, 287) (309, 174) (327, 97)

35 (39, 31) (69, 138) (87, 234) (289, 445) (309, 67) (328, 74)

36 (35, 79) (71, 1) (84, 264) (292, 29) (320, 133) (347, 426)

37 (52, 2) (78, 194) (89, 474) (302, 215) (311, 255) (329, 125)

38 (34, 79) (75, 299) (93, 272) (293, 177) (315, 89) (340, 383)

39 (37, 254) (67, 254) (86, 127) (291, 228) (306, 132) (349, 278)

40 (50, 172) (73, 403) (92, 500) (303, 367) (317, 126) (337, 198)

41 (44, 388) (79, 413) (85, 94) (292, 95) (315, 177) (325, 309)
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42 (49, 206) (72, 233) (87, 489) (301, 220) (313, 174) (344, 86)

43 (58, 247) (66, 351) (90, 231) (295, 3) (305, 85) (348, 411)

44 (43, 248) (71, 476) (91, 160) (296, 232) (311, 208) (326, 60)

45 (54, 151) (66, 218) (84, 403) (298, 160) (313, 72) (336, 6)

46 (61, 219) (76, 441) (94, 417) (298, 326) (306, 54) (333, 371)

47 (46, 462) (80, 117) (82, 63) (295, 507) (318, 431) (339, 268)

48 (60, 443) (72, 83) (81, 508) (291, 164) (307, 354) (343, 413)

49 (55, 163) (80, 474) (92, 335) (290, 429) (312, 41) (350, 140)

50 (47, 462) (70, 120) (96, 346) (301, 428) (318, 495) (342, 108)

51 (59, 312) (67, 324) (95, 277) (299, 16) (314, 270) (322, 189)

52 (41, 79) (68, 219) (83, 456) (304, 507) (316, 283) (338, 182)

53 (57, 361) (65, 229) (83, 212) (294, 358) (310, 463) (324, 10)

54 (56, 203) (77, 264) (82, 57) (303, 488) (304, 201) (341, 419)

55 (48, 75) (70, 237) (91, 332) (302, 217) (310, 489) (330, 128)

56 (45, 288) (74, 319) (96, 324) (297, 367) (320, 209) (335, 52)

57 (63, 468) (73, 266) (85, 286) (300, 67) (308, 276) (334, 159)

58 (38, 355) (65, 464) (89, 142) (305, 360) (319, 342) (351, 168)

59 (42, 207) (69, 31) (93, 50) (297, 273) (314, 100) (352, 24)

60 (36, 286) (77, 454) (88, 442) (296, 154) (308, 457) (323, 164)

61 (51, 319) (78, 444) (81, 316) (294, 368) (312, 288) (321, 190)

62 (64, 162) (79, 398) (90, 507) (293, 48) (316, 207) (331, 139)

63 (62, 493) (74, 119) (86, 314) (300, 15) (317, 186) (346, 303)

64 (33, 336) (75, 237) (88, 325) (299, 119) (319, 161) (332, 5)

65 (6, 54) (27, 239) (51, 398) (140, 119) (187, 166) (341, 493)

66 (10, 336) (22, 303) (47, 82) (147, 332) (177, 119) (328, 252)

67 (16, 259) (24, 241) (61, 115) (144, 176) (162, 59) (352, 252)

68 (13, 498) (17, 8) (33, 426) (159, 429) (191, 453) (346, 378)

69 (12, 460) (22, 283) (55, 283) (158, 334) (184, 430) (330, 367)

70 (7, 283) (20, 73) (56, 497) (133, 415) (161, 373) (322, 481)

71 (14, 368) (26, 277) (50, 493) (157, 490) (164, 217) (324, 217)

72 (3, 485) (27, 283) (54, 426) (154, 499) (186, 261) (321, 332)

73 (12, 458) (30, 386) (38, 334) (141, 408) (180, 225) (332, 131)

74 (4, 189) (23, 467) (64, 154) (142, 43) (169, 485) (344, 63)

75 (7, 31) (25, 262) (44, 173) (150, 474) (165, 183) (351, 171)

76 (15, 129) (17, 478) (40, 477) (149, 43) (171, 440) (334, 38)

77 (9, 56) (29, 331) (63, 413) (136, 322) (163, 300) (342, 499)

78 (9, 198) (20, 194) (43, 467) (160, 501) (189, 242) (349, 457)

79 (3, 159) (32, 427) (62, 304) (138, 1) (176, 19) (329, 410)

80 (11, 77) (18, 413) (45, 367) (153, 378) (175, 377) (338, 507)

81 (8, 30) (19, 166) (59, 204) (139, 151) (178, 62) (336, 343)

82 (15, 272) (28, 142) (53, 193) (146, 163) (174, 421) (326, 92)

83 (13, 114) (18, 221) (48, 484) (155, 254) (190, 315) (348, 202)

84 (1, 315) (28, 204) (46, 467) (143, 485) (172, 13) (345, 271)
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85 (2, 159) (24, 355) (37, 199) (134, 480) (183, 250) (331, 309)

86 (5, 43) (19, 83) (49, 252) (148, 273) (181, 271) (327, 483)

87 (4, 2) (31, 15) (36, 157) (156, 417) (179, 438) (335, 419)

88 (8, 487) (31, 308) (39, 259) (129, 405) (185, 178) (339, 75)

89 (5, 444) (29, 450) (41, 286) (137, 385) (167, 271) (343, 87)

90 (2, 222) (32, 341) (52, 191) (130, 201) (170, 270) (350, 143)

91 (14, 397) (21, 350) (57, 134) (151, 62) (166, 485) (347, 464)

92 (16, 101) (23, 319) (35, 166) (132, 195) (173, 234) (323, 401)

93 (11, 41) (30, 256) (34, 61) (131, 193) (192, 403) (333, 206)

94 (6, 239) (26, 343) (58, 311) (145, 133) (188, 312) (340, 96)

95 (1, 83) (25, 416) (60, 447) (152, 461) (182, 407) (337, 265)

96 (10, 411) (21, 36) (42, 278) (135, 442) (168, 179) (325, 467)

97 (54, 145) (102, 200) (115, 140) (123, 341) (297, 438) (307, 12)

98 (37, 272) (106, 100) (109, 414) (120, 103) (290, 69) (319, 3)

99 (57, 68) (97, 491) (113, 466) (125, 207) (291, 314) (305, 151)

100 (33, 214) (101, 103) (112, 485) (118, 94) (304, 413) (317, 236)

101 (35, 384) (106, 201) (110, 83) (128, 348) (300, 106) (312, 447)

102 (53, 260) (103, 218) (117, 285) (126, 416) (294, 274) (311, 85)

103 (40, 191) (101, 209) (110, 488) (123, 215) (295, 464) (320, 30)

104 (49, 51) (106, 404) (114, 400) (127, 311) (292, 261) (320, 279)

105 (47, 447) (99, 468) (117, 17) (119, 337) (303, 213) (314, 352)

106 (56, 393) (103, 19) (118, 60) (120, 418) (292, 206) (308, 185)

107 (45, 30) (100, 53) (115, 496) (126, 199) (303, 464) (305, 480)

108 (41, 423) (98, 443) (115, 280) (124, 129) (289, 100) (310, 179)

109 (62, 433) (104, 215) (113, 246) (123, 283) (304, 301) (309, 336)

110 (60, 130) (99, 132) (110, 85) (122, 92) (297, 74) (315, 509)

111 (51, 414) (100, 326) (113, 230) (121, 375) (302, 283) (318, 48)

112 (52, 157) (103, 360) (114, 50) (124, 429) (291, 478) (317, 104)

113 (34, 403) (98, 285) (108, 263) (119, 446) (290, 491) (313, 467)

114 (43, 93) (105, 308) (111, 505) (121, 109) (301, 435) (312, 282)

115 (50, 139) (100, 39) (116, 486) (127, 347) (293, 161) (306, 350)

116 (58, 292) (104, 397) (112, 104) (119, 289) (296, 413) (310, 95)

117 (59, 390) (107, 201) (111, 298) (118, 259) (295, 46) (307, 178)

118 (46, 486) (99, 338) (107, 451) (124, 247) (293, 385) (319, 397)

119 (42, 448) (97, 294) (111, 161) (127, 211) (298, 491) (308, 506)

120 (44, 126) (98, 459) (109, 331) (122, 136) (299, 307) (311, 481)

121 (39, 259) (102, 44) (112, 459) (122, 126) (298, 344) (316, 407)

122 (38, 149) (102, 346) (117, 130) (128, 408) (301, 213) (306, 408)

123 (55, 387) (104, 312) (116, 333) (120, 172) (302, 192) (316, 438)

124 (61, 302) (107, 267) (109, 18) (125, 452) (294, 126) (315, 192)

125 (36, 295) (105, 348) (114, 413) (125, 139) (289, 372) (318, 197)

126 (64, 178) (101, 340) (108, 270) (121, 464) (300, 272) (309, 271)

127 (63, 8) (105, 246) (116, 311) (128, 153) (299, 16) (313, 56)
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128 (48, 424) (97, 58) (108, 296) (126, 77) (296, 471) (314, 98)

129 (3, 182) (21, 262) (242, 13) (291, 188) (304, 43) (310, 270)

130 (5, 399) (25, 106) (238, 371) (295, 352) (306, 159) (310, 254)

131 (7, 251) (26, 77) (244, 260) (299, 312) (306, 366) (316, 223)

132 (3, 383) (22, 484) (240, 132) (292, 429) (307, 322) (318, 197)

133 (5, 276) (23, 75) (252, 182) (294, 153) (307, 225) (319, 40)

134 (14, 89) (30, 245) (233, 416) (289, 95) (304, 426) (314, 258)

135 (9, 437) (21, 38) (232, 196) (297, 480) (302, 454) (317, 169)

136 (8, 46) (32, 119) (245, 104) (294, 363) (305, 26) (314, 468)

137 (9, 431) (28, 144) (254, 499) (291, 257) (303, 75) (311, 345)

138 (6, 460) (19, 123) (227, 151) (298, 426) (310, 128) (320, 393)

139 (16, 114) (32, 358) (229, 285) (297, 154) (308, 84) (319, 443)

140 (4, 477) (17, 157) (243, 440) (293, 69) (300, 189) (318, 158)

141 (4, 43) (27, 228) (248, 296) (298, 234) (303, 226) (315, 449)

142 (12, 14) (16, 372) (256, 217) (289, 189) (300, 309) (320, 250)

143 (17, 49) (19, 327) (225, 193) (297, 210) (309, 78) (312, 408)

144 (13, 240) (29, 292) (236, 481) (292, 461) (301, 387) (311, 360)

145 (15, 102) (20, 141) (228, 362) (293, 330) (299, 345) (312, 139)

146 (8, 357) (29, 148) (239, 304) (290, 270) (308, 487) (315, 209)

147 (2, 304) (26, 135) (249, 398) (292, 113) (305, 450) (317, 463)

148 (6, 39) (22, 223) (247, 487) (289, 74) (303, 2) (313, 165)

149 (10, 119) (31, 362) (230, 464) (294, 105) (309, 50) (317, 468)

150 (12, 171) (20, 284) (231, 119) (295, 306) (308, 210) (313, 507)

151 (11, 207) (31, 78) (234, 177) (293, 58) (301, 240) (320, 222)

152 (11, 149) (27, 474) (241, 274) (296, 42) (306, 80) (313, 306)

153 (15, 116) (24, 318) (255, 306) (290, 100) (304, 298) (311, 259)

154 (13, 139) (24, 20) (253, 297) (296, 196) (302, 77) (312, 63)

155 (2, 184) (25, 30) (250, 303) (291, 156) (301, 240) (316, 342)

156 (1, 235) (30, 377) (226, 430) (296, 337) (307, 511) (316, 489)

157 (14, 162) (28, 468) (251, 323) (299, 193) (302, 307) (315, 361)

158 (7, 244) (18, 342) (237, 458) (295, 10) (309, 167) (319, 191)

159 (10, 252) (23, 112) (246, 305) (290, 4) (305, 265) (318, 351)

160 (1, 294) (18, 485) (235, 370) (298, 6) (300, 272) (314, 447)

161 (8, 389) (18, 442) (23, 246) (110, 47) (126, 74) (215, 125)

162 (12, 482) (21, 195) (31, 398) (100, 241) (119, 141) (199, 85)

163 (5, 62) (13, 66) (28, 49) (111, 5) (128, 370) (204, 223)

164 (9, 334) (14, 140) (32, 183) (109, 419) (117, 440) (209, 481)

165 (2, 390) (11, 299) (29, 18) (99, 494) (113, 508) (201, 360)

166 (1, 492) (19, 75) (32, 206) (97, 471) (120, 46) (211, 356)

167 (10, 451) (16, 334) (28, 68) (100, 134) (118, 71) (219, 308)

168 (7, 256) (16, 74) (29, 469) (112, 360) (128, 52) (213, 202)

169 (6, 221) (17, 403) (25, 167) (107, 317) (123, 216) (202, 258)

170 (11, 111) (16, 421) (26, 299) (101, 489) (127, 457) (198, 489)
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171 (3, 96) (15, 30) (30, 418) (108, 86) (116, 178) (218, 7)

172 (8, 273) (12, 62) (27, 372) (111, 337) (117, 209) (203, 369)

173 (8, 202) (20, 321) (24, 283) (112, 36) (125, 243) (216, 465)

174 (3, 495) (18, 292) (28, 80) (102, 150) (114, 189) (195, 11)

175 (1, 265) (15, 268) (22, 157) (105, 277) (122, 495) (207, 459)

176 (5, 32) (12, 342) (26, 399) (105, 446) (123, 408) (222, 447)

177 (9, 93) (11, 421) (32, 440) (98, 266) (118, 430) (196, 397)

178 (7, 332) (19, 183) (31, 189) (108, 452) (114, 77) (194, 294)

179 (1, 64) (20, 127) (26, 187) (106, 259) (119, 296) (205, 252)

180 (10, 196) (13, 51) (27, 81) (98, 325) (127, 490) (224, 454)

181 (4, 455) (21, 122) (22, 60) (106, 215) (115, 392) (210, 121)

182 (6, 178) (20, 150) (29, 122) (103, 230) (122, 289) (223, 197)

183 (7, 260) (17, 421) (30, 171) (104, 268) (126, 179) (212, 171)

184 (5, 200) (21, 91) (27, 207) (99, 112) (120, 402) (220, 113)

185 (4, 390) (14, 91) (25, 46) (104, 92) (124, 429) (208, 227)

186 (3, 199) (13, 312) (23, 216) (103, 440) (113, 88) (221, 351)

187 (10, 446) (15, 239) (25, 2) (109, 455) (121, 483) (197, 152)

188 (6, 58) (23, 443) (24, 85) (97, 510) (115, 228) (206, 279)

189 (4, 347) (19, 359) (24, 43) (102, 71) (116, 202) (217, 65)

190 (9, 511) (17, 299) (22, 289) (110, 43) (125, 468) (214, 135)

191 (2, 89) (14, 242) (31, 81) (107, 170) (121, 99) (200, 295)

192 (2, 248) (18, 4) (30, 163) (101, 352) (124, 128) (193, 73)

193 (25, 106) (108, 407) (151, 412) (273, 425) (297, 464) (305, 267)

194 (19, 133) (113, 45) (131, 70) (259, 491) (293, 151) (311, 266)

195 (11, 47) (117, 254) (154, 194) (265, 215) (300, 208) (316, 431)

196 (27, 68) (128, 9) (145, 34) (276, 238) (291, 231) (309, 409)

197 (2, 481) (111, 373) (144, 360) (286, 457) (289, 101) (315, 311)

198 (31, 83) (104, 185) (150, 405) (266, 21) (291, 510) (308, 261)

199 (21, 280) (97, 357) (146, 129) (275, 129) (303, 501) (306, 295)

200 (18, 32) (121, 95) (135, 71) (281, 362) (304, 373) (315, 253)

201 (16, 46) (116, 246) (129, 48) (263, 50) (295, 295) (312, 185)

202 (32, 120) (127, 145) (132, 103) (272, 126) (294, 36) (320, 267)

203 (3, 369) (120, 508) (160, 381) (269, 321) (289, 445) (311, 328)

204 (6, 509) (106, 431) (159, 45) (279, 122) (302, 463) (308, 359)

205 (14, 283) (122, 464) (136, 319) (283, 189) (292, 155) (313, 321)

206 (15, 354) (114, 216) (138, 67) (288, 429) (295, 147) (314, 170)

207 (30, 178) (102, 324) (140, 53) (262, 376) (290, 510) (310, 192)

208 (4, 56) (103, 65) (139, 488) (274, 33) (301, 180) (314, 391)

209 (22, 301) (124, 103) (134, 292) (257, 11) (298, 84) (309, 0)

210 (28, 180) (107, 108) (149, 7) (258, 197) (296, 278) (320, 179)

211 (8, 49) (119, 277) (152, 87) (261, 373) (304, 255) (319, 493)

212 (20, 327) (105, 474) (143, 273) (260, 33) (290, 390) (317, 371)

213 (29, 51) (125, 31) (153, 200) (284, 60) (303, 91) (319, 471)
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214 (24, 426) (98, 230) (141, 71) (277, 219) (297, 121) (306, 73)

215 (9, 63) (112, 5) (148, 323) (267, 426) (293, 409) (307, 108)

216 (1, 294) (115, 470) (147, 357) (280, 464) (301, 221) (317, 373)

217 (5, 447) (110, 106) (133, 360) (285, 73) (302, 435) (313, 58)

218 (10, 239) (123, 73) (130, 286) (264, 30) (292, 496) (316, 412)

219 (7, 408) (99, 40) (155, 114) (270, 454) (296, 49) (318, 327)

220 (17, 361) (118, 2) (156, 195) (271, 508) (299, 343) (305, 319)

221 (23, 221) (109, 415) (158, 323) (287, 423) (300, 467) (310, 207)

222 (26, 64) (100, 470) (137, 39) (278, 87) (298, 490) (312, 123)

223 (12, 226) (126, 194) (142, 122) (282, 260) (299, 272) (307, 105)

224 (13, 451) (101, 146) (157, 69) (268, 154) (294, 153) (318, 267)
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Table 14: Part of the QC matrix for rate-0.0494 SC-PLDPCH-CC with W = 1,
i.e., [B1 B0]

ROW ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM ) ( COL, CPM )

1 (100, 0) (133, 0) (135, 0) (144, 0) (191, 737) (343, 257)

2 (110, 0) (132, 0) (135, 0) (142, 0) (192, 189) (350, 595)

3 (106, 0) (130, 0) (137, 0) (141, 0) (184, 979) (341, 807)

4 (111, 0) (129, 0) (136, 0) (143, 0) (182, 366) (348, 474)

5 (102, 0) (131, 0) (137, 0) (143, 2) (183, 560) (349, 868)

6 (105, 0) (131, 0) (138, 0) (143, 3) (177, 218) (338, 740)

7 (108, 0) (132, 0) (134, 0) (140, 0) (178, 106) (351, 429)

8 (103, 0) (132, 0) (136, 0) (139, 0) (189, 123) (352, 973)

9 (109, 0) (133, 0) (137, 0) (142, 2) (185, 849) (340, 7)

10 (112, 0) (134, 0) (135, 1) (141, 2) (186, 822) (345, 221)

11 (97, 0) (133, 0) (136, 1) (141, 4) (179, 576) (344, 156)

12 (104, 0) (130, 0) (138, 1) (140, 1) (188, 1014) (339, 675)

13 (101, 0) (129, 0) (139, 1) (142, 4) (181, 820) (342, 700)

14 (98, 0) (129, 0) (138, 0) (140, 2) (190, 52) (346, 607)

15 (107, 0) (131, 0) (139, 0) (144, 2) (187, 100) (347, 29)

16 (99, 0) (130, 0) (134, 0) (144, 4) (180, 853) (337, 414)

17 (26, 999) (40, 0) (151, 0) (173, 0) (216, 505) (333, 782)

18 (32, 327) (35, 0) (160, 0) (170, 0) (211, 325) (325, 701)

19 (19, 151) (46, 0) (154, 0) (176, 0) (222, 997) (332, 901)

20 (24, 236) (45, 0) (155, 0) (165, 0) (221, 783) (322, 851)

21 (23, 775) (41, 0) (156, 0) (164, 0) (217, 949) (328, 531)

22 (17, 713) (33, 0) (159, 0) (171, 0) (209, 468) (324, 607)

23 (20, 670) (48, 0) (152, 0) (174, 0) (224, 144) (329, 287)

24 (30, 246) (38, 0) (145, 0) (161, 0) (214, 846) (323, 241)

25 (21, 735) (47, 0) (146, 0) (162, 0) (223, 669) (336, 165)

26 (28, 205) (36, 0) (149, 0) (168, 0) (212, 656) (327, 994)

27 (27, 881) (42, 0) (153, 0) (163, 0) (218, 955) (335, 516)

28 (18, 83) (43, 0) (147, 0) (167, 0) (219, 476) (334, 612)

29 (25, 372) (44, 0) (148, 0) (169, 0) (220, 425) (330, 166)

30 (22, 866) (37, 0) (158, 0) (175, 0) (213, 122) (321, 64)

31 (29, 926) (34, 0) (150, 0) (172, 0) (210, 595) (331, 179)

32 (31, 879) (39, 0) (157, 0) (166, 0) (215, 885) (326, 586)

33 (6, 0) (26, 0) (66, 947) (85, 791) (167, 0) (192, 0)

34 (3, 0) (17, 0) (75, 285) (82, 340) (163, 0) (189, 0)

35 (9, 0) (28, 0) (79, 149) (95, 982) (165, 0) (183, 0)

36 (13, 0) (31, 0) (69, 486) (84, 560) (168, 0) (179, 0)

37 (14, 0) (22, 0) (67, 760) (83, 755) (166, 0) (186, 0)

38 (12, 0) (27, 0) (80, 665) (90, 180) (169, 0) (178, 0)

39 (10, 0) (30, 0) (77, 330) (87, 337) (171, 0) (180, 0)

40 (4, 0) (18, 0) (78, 171) (96, 803) (164, 0) (187, 0)

41 (8, 0) (20, 0) (70, 853) (88, 371) (161, 0) (188, 0)
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42 (5, 0) (19, 0) (72, 158) (89, 968) (176, 0) (184, 0)

43 (2, 0) (21, 0) (65, 188) (91, 2) (175, 0) (190, 0)

44 (15, 0) (29, 0) (68, 205) (92, 556) (162, 0) (177, 325)

45 (16, 0) (32, 0) (73, 85) (94, 591) (173, 0) (181, 0)

46 (7, 0) (25, 0) (71, 840) (81, 94) (170, 0) (191, 0)

47 (1, 508) (23, 0) (76, 755) (86, 764) (174, 0) (185, 0)

48 (11, 0) (24, 0) (74, 687) (93, 103) (172, 0) (182, 0)

49 (25, 0) (231, 971) (234, 400) (240, 746) (327, 0) (330, 0)

50 (24, 0) (225, 195) (230, 602) (231, 0) (328, 0) (333, 0)

51 (32, 0) (229, 135) (232, 760) (240, 0) (324, 0) (336, 0)

52 (26, 0) (228, 466) (237, 269) (240, 0) (321, 0) (334, 0)

53 (30, 0) (226, 707) (238, 507) (239, 652) (322, 0) (333, 1)

54 (21, 0) (226, 0) (233, 945) (238, 0) (322, 0) (331, 0)

55 (18, 0) (225, 0) (237, 0) (239, 0) (323, 0) (332, 0)

56 (29, 0) (231, 0) (236, 487) (238, 2) (326, 0) (331, 3)

57 (20, 0) (229, 0) (234, 0) (235, 428) (326, 0) (330, 1)

58 (22, 0) (227, 468) (236, 0) (237, 0) (328, 0) (332, 9)

59 (23, 0) (230, 0) (233, 0) (234, 2) (325, 0) (335, 0)

60 (27, 0) (232, 0) (235, 0) (239, 0) (323, 1) (329, 0)

61 (19, 0) (230, 0) (235, 2) (236, 0) (325, 6) (329, 5)

62 (28, 0) (225, 0) (226, 1) (227, 0) (321, 0) (335, 15)

63 (17, 0) (228, 0) (232, 0) (233, 0) (327, 1) (336, 3)

64 (31, 0) (227, 0) (228, 0) (229, 1) (324, 1) (334, 6)

65 (5, 0) (11, 1) (127, 474) (146, 0) (155, 7) (156, 20)

66 (1, 111) (10, 0) (119, 342) (146, 0) (151, 1) (157, 5)

67 (2, 0) (13, 0) (123, 492) (147, 12) (155, 20) (158, 15)

68 (8, 0) (9, 0) (122, 719) (147, 14) (154, 8) (156, 31)

69 (3, 0) (12, 2) (120, 389) (145, 10) (154, 21) (159, 27)

70 (6, 0) (15, 1) (118, 179) (146, 10) (151, 0) (160, 21)

71 (9, 0) (15, 3) (116, 349) (148, 6) (153, 4) (155, 27)

72 (1, 59) (12, 0) (115, 602) (149, 0) (150, 5) (159, 28)

73 (6, 0) (16, 2) (117, 129) (145, 5) (154, 27) (159, 53)

74 (4, 0) (8, 0) (125, 977) (149, 11) (151, 16) (157, 23)

75 (5, 0) (14, 1) (128, 416) (147, 17) (152, 9) (158, 27)

76 (2, 0) (10, 0) (121, 663) (149, 19) (152, 15) (156, 55)

77 (7, 0) (16, 4) (113, 170) (148, 9) (152, 5) (158, 34)

78 (7, 0) (14, 0) (124, 489) (148, 11) (153, 24) (160, 44)

79 (4, 0) (11, 2) (126, 441) (150, 4) (153, 19) (157, 30)

80 (3, 0) (13, 1) (114, 380) (145, 4) (150, 13) (160, 40)

81 (6, 0) (8, 0) (186, 0) (230, 1) (236, 6) (288, 881)

82 (4, 0) (7, 0) (187, 2) (233, 0) (237, 3) (275, 887)

83 (4, 0) (8, 1) (182, 0) (234, 5) (240, 0) (279, 503)

84 (11, 3) (16, 8) (180, 0) (229, 0) (239, 5) (276, 970)
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85 (12, 0) (16, 6) (181, 0) (231, 0) (240, 7) (285, 646)

86 (11, 0) (15, 3) (178, 0) (231, 2) (235, 6) (281, 92)

87 (5, 0) (9, 0) (188, 1) (227, 1) (228, 2) (287, 853)

88 (1, 215) (13, 2) (189, 0) (233, 3) (238, 0) (274, 575)

89 (3, 0) (12, 3) (183, 0) (232, 4) (237, 10) (280, 161)

90 (2, 0) (14, 2) (191, 0) (225, 0) (230, 4) (282, 322)

91 (5, 0) (7, 0) (190, 1) (227, 5) (235, 12) (278, 63)

92 (3, 0) (15, 2) (192, 2) (226, 2) (238, 7) (283, 962)

93 (10, 0) (14, 3) (177, 972) (225, 4) (226, 6) (286, 301)

94 (1, 835) (9, 0) (179, 0) (228, 7) (232, 10) (277, 941)

95 (6, 0) (13, 1) (184, 0) (229, 1) (239, 9) (273, 546)

96 (2, 0) (10, 1) (185, 0) (234, 10) (236, 1) (284, 806)

97 (8, 0) (58, 6) (79, 0) (147, 2) (156, 44) (309, 311)

98 (6, 0) (54, 6) (71, 0) (146, 8) (153, 31) (308, 339)

99 (2, 0) (64, 1) (77, 0) (150, 8) (158, 46) (305, 222)

100 (13, 0) (60, 0) (78, 0) (152, 13) (159, 49) (320, 835)

101 (7, 0) (55, 6) (75, 0) (148, 16) (157, 41) (313, 246)

102 (1, 226) (53, 0) (76, 0) (147, 12) (158, 52) (315, 860)

103 (11, 0) (62, 0) (70, 0) (149, 8) (156, 59) (310, 642)

104 (14, 0) (57, 0) (69, 0) (152, 23) (154, 34) (319, 732)

105 (4, 0) (59, 0) (80, 0) (146, 5) (153, 27) (312, 863)

106 (16, 0) (51, 1) (74, 0) (150, 15) (159, 72) (317, 131)

107 (15, 0) (49, 6) (66, 0) (151, 12) (154, 42) (314, 545)

108 (9, 0) (50, 3) (72, 0) (145, 12) (157, 3) (307, 824)

109 (10, 0) (56, 2) (65, 0) (151, 15) (160, 10) (306, 1017)

110 (5, 0) (63, 8) (67, 0) (145, 3) (155, 29) (311, 214)

111 (3, 0) (61, 3) (68, 0) (149, 17) (160, 63) (316, 961)

112 (12, 0) (52, 3) (73, 0) (148, 16) (155, 31) (318, 679)
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