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ABSTRACT

This thesis proposes and analyzes a new class of ultimate-Shannon-
limit approaching codes, namely protograph-based low-density parity-
check (PLDPC) Hadamard codes. This class of code has a low code
rate and can achieve excellent error performance even at a very low
bit-energy-to-noise-power-spectral-density ratio (i.e., E,/No < 0 dB).
Application scenarios include multiple access wireless systems with
a huge number of non-orthogonal users and deep space communica-
tions.

Firstly, we describe the protograph structure and protomatrix of
a protograph-based low-density parity-check Hadamard block code
(PLDPCH-BC). To optimize the structure of the PLDPCH-BC, we
propose a low-complexity Protograph Extrinsic Information Transfer
(PEXIT) method based on Monte Carlo simulations. Given multiple
a priori information and channel information, the proposed method
can obtain multiple extrinsic mutual information (MI) from the
symbol-by-symbol maximum a posteriori probability (symbol-MAP)
Hadamard decoder. Moreover, this method is applicable to low /high
and/or even/odd order of Hadamard codes, and can compute
the theoretical thresholds of PLDPCH-BCs with degree-1 or/and
punctured variable nodes. Optimized designs for PLDPCH-BCs with
Hadamard codes of different orders are derived. Simulations are
performed on the constructed codes and the simulated error rates
are compared with those of traditional LDPC-Hadamard codes. In
addition, PLDPCH-BCs are punctured and their simulation results
are compared with unpunctured PLDPCH-BCs.

Secondly, we propose an efficient and effective layered decoding
algorithm for PLDPCH-BCs, and compare its convergence speed
with that of the standard decoding algorithm. We further implement
the proposed layered decoding algorithm onto hardware, namely
an FPGA board, and evaluate its error performance under different
throughputs. The error degradation due to fixed-point computation
is also evaluated.

Thirdly, we make use of the optimized PLDPCH-BC designs to
construct spatially-coupled PLDPC-Hadamard convolutional codes
(SC-PLDPCH-CCs), the error performance of which is also close
to the ultimate Shannon limit. We introduce the encoding of SC-
PLDPCH-CCs using their convolutional parity-check matrices. We
propose a pipelined decoding strategy with a layered decoding
algorithm so as to perform efficient and effective decoding for
the SC-PLDPCH-CCs. We simulate the error performance of SC-
PLDPCH-CCs with different rates and different number of processors
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contained in pipeline decoding. The error performance of the SC-
PLDPCH-CCs is compared with that of PLDPCH-BCs.
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CHAPTER 1

INTRODUCTION

1.1 DEVELOPMENT OF LDPC CODES

In 1943, Claude Shannon derived the channel capacity theorem [2],
based on which the maximum rate that information can be sent
through a channel without errors can be evaluated. In 1993, Berrou et
al. invented the turbo codes and demonstrated that with a code rate
of 0.5, the proposed turbo code and decoder could work within 0.7
dB from the capacity limit at a bit error rate (BER) of 107> [3], [4].
Besides turbo codes, other well-known capacity-approaching codes
are low-density parity-check codes (proposed by Gallager in 1960s
[5] and rediscovered by MacKay and Neal in 1990s [6]) and polar
codes (proposed by Arikan in 2009 [7]). These capacity-approaching
codes have since been used in many wireless communication systems
(e.g., 3G/4G/5G, Wifi, satellite communications) [8-10], optical com-
munication systems [11] and magnetic recording systems [12, 13]. The
progresses of the aforementioned three types of capacity-approaching
codes over the past decades can be found in the survey papers [14-18]
and the references therein.

In particular, an LDPC code can be represented by a matrix
containing a low density of “1”s and also by its corresponding Tanner
graph [19]. In the Tanner graph, there are two sets of nodes, namely
variables nodes (VNs) and check nodes (CNs), sparsely connected
by links. Messages are updated and passed iteratively along the
links during the decoding process [20, 21]. Density evolution (DE)
[22] is a kind of analytical method that tracks the probability
density function (PDF) of the messages after each iteration. It not
only can predict the convergence of the decoder, but also can
be used for optimizing LDPC code designs [21]. The extrinsic
information transfer (EXIT) chart is another common technique
employed to analyze and optimize LDPC codes [23—25]. An optimal
LDPC code design is found when the EXIT curves of the VNs
and CNs are “matched” with the smallest bit-energy-to-noise-power-
spectral-density ratio (Ey,/No).

For an LDPC code with given degree distributions and code length,
the progressive-edge-growth (PEG) method [26—28] is commonly
used to connect the VNs and CNs with an aim to maximizing the
girth (shortest cycle) of the code. The method is simple and the
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code can achieve good error performance. However, the code has
a quadratic encoding complexity with its length because it is un-
structured. The hardware implementation of the encoder/decoder
also consumes a lot of resources and has high routing complexity.

Subsequently, structured quasi-cyclic (QC) LDPC codes are pro-
posed [29]. QC-LDPC codes have a linear encoding complexity and
allow parallel processing in the hardware implementation. Other
structured codes, such as the repeat-accumulate (RA) codes and their
variants, can be formed by the repeat codes and the accumulators [30-
33]. They belong to a subclass of LDPC codes that have a fast encoder
structure and good error performance [34, 35]. Structured LDPC
codes can also be constructed by protographs [36]. By expanding
a protomatrix (corresponding to a protograph) with a small size,
a QC matrix (corresponding to a lifted graph) that possesses the
same properties as the protomatrix can be obtained. The codes
corresponding to the lifted graphs are called protograph-based
LDPC (PLDPC) codes. The traditional EXIT chart cannot be used
to analyze protographs where degree-1 and/or punctured variable
nodes exist. Subsequently, the protograph EXIT (PEXIT) chart method
is developed [37] for analyzing and designing PLDPC codes, and well-
designed PLDPC codes are found to achieve performance close to
the Shannon limit [17], [38]. Moreover, in the case of block-fading
channels, root-protograph LDPC codes are analyzed [39] and found
to achieve near-outage-limit performance [40].

Based on the LDPC block codes (LDPC-BCs) mentioned above,
memory is introduced into the code designs to construct LDPC
convolutional codes (LDPC-CCs). LDPC-CCs were first proposed in
[41] and characterized by the degree distributions of the underly-
ing LDPC-BCs. By applying a sliding window decoding [42, 43],
LDPC-CCs can achieve convolutional gains over their block-code
counterparts. In addition, spatially coupled LDPC (SC-LDPC) codes
are constructed by coupling L LDPC-BCs, which can enhance their
theoretical thresholds and decoding performance [44, 45]. As L
tends to infinity, spatially coupled LDPC convolutional codes (SC-
LDPC-CCs) are obtained. In [46] and [47], SC-LDPC-CCs have
been shown to achieve capacity over binary memoryless symmetric
channels under belief propagation (BP) decoding. Moreover, the
spatially coupled codes have been applied in multiuser detection [48]
and multiple access channels [49-52]. In [53], SC-LDPC-CCs have
been constructed from the perspective of protographs, forming SC-
PLDPC-CCs. Through the edge-spreading procedure on a protoma-
trix, the threshold, convergence behavior and error performance of
SC-PLDPC ensembles have also been systematically investigated.

In the Tanner graph of an LDPC code, the VNs are equivalent
to repeat codes while CNs correspond to single-parity-check (SPC)
codes. If other block codes, such as Hamming codes and BCH
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codes, are used to replace the repeat codes and/or SPC codes,
generalized LDPC (GLDPC) codes are obtained [54-56]. In [57-59],
doped-Tanner codes are formed by replacing the SPC component
codes in the structured LDPC codes with Hamming codes and
recursive systematic convolutional codes. Ensemble codeword weight
enumerators are used to find good GLDPC codes while Hamming
codes have been used to design medium-length GLDPC codes with
performances approaching the channel capacity (> 0 dB). In [60]
and [61], EXIT functions of block codes over binary symmetric
channels have been derived and used for analyzing LDPC codes.
The use of linear programming algorithm to optimize a rate-8/9
GLDPC code from the perspective of degree distribution is further
demonstrated [62]. To achieve good error performance (BER = 107°)
at very low Ey/Np, say < —1.15 dB, Hadamard codes have been
proposed to replace the SPC codes, forming the low-rate (< 0.05)
LDPC-Hadamard codes [63], [1]. By adjusting the degree distribution
of the VNs and using the EXIT chart technique, the EXIT curves of
the Hadamard “super CNs” and VNs are matched and excellent error
performance at low Ey /Ny is obtained.

In practice, different channels possess different capacities, depend-
ing on factors such as modulation scheme, signal-to-noise ratio and
code rate. However, the “ultimate Shannon limit” over an additive-
white-Gaussian-noise (AWGN) channel remains at —1.59 dB, i.e.,
Eb/No = —1.59 dB [64]. Scenarios where digital communications may
need to work close to the ultimate Shannon limit include deep space
communications, multiple access (e.g. code-division multiple-access
[65] and interleave-division multiple-access [66-68]) with severe inter-
user interferences, or embedding low-rate information in a commu-
nication link. The most notable channel codes with performance
close to this limit are turbo-Hadamard codes [69—72], concatenated
zigzag Hadamard codes [73], [74], and LDPC-Hadamard codes
[63], [1]. When applying these codes in the scenarios above, we
can not only ensure reliable data transmission, but also increase
the transmission distance under the same transmission energy, or
reduce the transmission energy under the same transmission distance.
However, both turbo-Hadamard codes and concatenated zigzag
Hadamard codes require the use of forward/backward decoding
algorithms and hence will have long decoding latencies [69], [73].
The LDPC-Hadamard codes allow parallel processing and hence
the decoding latency can be made much shorter [1]. However, in
optimizing the threshold of LDPC-Hadamard codes, only the degree
distribution of the variable nodes has been found for a given order of
the Hadamard code used. Therefore, the method used in optimizing
LDPC-Hadamard codes has the following drawbacks.

5
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e For the same variable-node degree distribution, many different
code realizations with very diverse bit-error-rate performances
can be obtained.

e The code is unstructured, making both encoding and decod-
ing very complex to realize in practice. We take the LDPC-
Hadamard code with code rate R = 0.05 and Hadamard code
order r =4 as an example. For an information length of 65,536,
the degree distributions optimized by [1] indicate that there
are 113,426 Hadamard check nodes and n = 178,962 variable
nodes. When these large number of nodes are connected by
the PEG algorithm, the resultant graph has little structure
and is therefore not conducive to parallel encoding/decod-
ing and reduces encoding/decoding efficiency. In the hard-
ware implementation, the unstructured conventional LDPC-
Hadamard code further results in high routing complexity and
low throughput.

e The degree distribution analysis requires a minimum variable-
node degree of 2 because an EXIT curve cannot be produced
for degree-1 variable nodes. Moreover, LDPC-Hadamard codes
with punctured variable nodes cannot be analyzed.

The concept in [1] has been applied to designing other low-rate
generalized LDPC codes [75]. However, the main criterion of those
codes is to provide low latency communications and hence their
performance is relatively far from the ultimate Shannon limit [64].

1.2 THESIS INNOVATIONS

To solve the issues of traditional LDPC-Hadamard codes, we design
LDPC-Hadamard codes from the perspective of protographs. Hence,
this thesis consists of three main innovations: PLDPC-Hadamard
block codes (PLDPCH-BCs), layered decoding algorithm, and spa-
tially coupled PLDPC-Hadamard convolutional codes (SC-PLDPCH-
CCs).

Firstly, we propose a method to design LDPC-Hadamard codes
which possess degree-1 and/or punctured VNs. The technique is
based on applying Hadamard constraints to the CNs in a generalized
PLDPC code, followed by lifting the generalized protograph. We
name the codes formed protograph-based LDPC Hadamard (PLDPC-
Hadamard) codes [76]. We also propose a modified PEXIT algorithm
for analyzing and optimizing PLDPC-Hadamard code designs. Codes
with decoding thresholds ranging from —1.53 dB to —1.42 dB have
been found, and simulation results show a bit error rate of 10~> can
be achieved at Ey,/Ng = —1.43 dB. Moreover, the BER performances
of these codes after puncturing are simulated and compared. We
summarize the contributions as follows
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1) It is the first attempt to use protographs to design codes
with performance close to the ultimate Shannon limit [64]. By
appending additional degree-1 Hadamard VNs to the CNs
of a protograph, the SPC check nodes are converted into
more powerful Hadamard constraints, forming the generalized
protograph of PLDPC-Hadamard codes. After using the copy-
and-permute operations to lift the protograph, the matrix
corresponding to the lifted graph is a structured QC matrix
which is greatly beneficial to linear encoding, parallel decoding
and hardware implementation.

2) To analyze the decoding threshold of a PLDPC-Hadamard code,
we propose a modified PEXIT method. We replace the SPC mu-
tual information (MI) updating with our proposed Hadamard
MI updating based on Monte Carlo simulations. Different from
the EXIT method used in optimizing the degree distribution
of VNs in an LDPC-Hadamard code [1], our proposed PEXIT
method searches and analyzes protomatrices corresponding to
the generalized protograph of the PLDPC-Hadamard codes.
The proposed method, moreover, is applicable to analyzing
PLDPC-Hadamard codes with degree-1 VNs and/or punctured
VNs. Using the analytical technique, we have found PLDPC-
Hadamard codes with very low decoding thresholds (< —1.40
dB) under different code rates.

3) Extensive simulations are performed under an AWGN channel.
For each case, 100 frame errors are collected before the simu-
lation is terminated. Results show that the PLDPC-Hadamard
codes can obtain comparable BER performance to the tradi-
tional LDPC-Hadamard codes [1]. At a BER of 107, the gaps
to the ultimate Shannon limit [64] are 0.40 dB for the rate-0.0494
code, 0.35 dB for the rate-0.021 code, 0.24 dB for the rate-0.008
code and 0.16 dB for the rate-0.003 code, respectively.

4) Punctured PLDPC-Hadamard codes are studied. Puncturing
different VNs in the protograph of a PLDPC-Hadamard code
sometimes can produce different BER/FER performance im-
provement/degradation compared with the unpunctured code.
Moreover, when the order of the Hadamard code r = 5,
puncturing the extra degree-1 Hadamard VINs provided by the
non-systematic Hadamard encoding is found to degrade the
error performance.

Secondly, we propose a layered decoding algorithm for PLDPCH-
BCs with an aim of improving the convergence rate. Based on the
layered algorithm, we propose a hardware architecture for PLDPC-
Hadamard layered decoders. We summarize the contributions of this
part as follows.
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1) Compared with the standard decoding algorithm, the layered
decoding algorithm improves the convergence rate by about
two times. At a bit error rate of 2.0 x 107, the layered decoder
using 20 decoding iterations shows a very small degradation of
0.03 dB compared with the standard decoder using 40 decoding
iterations. Moreover, the layered decoder using 21 decoding
iterations shows the same error performance as the standard
decoder using 41 decoding iterations.

2) For the implementation of PLDPC-Hadamard layered decoders,
it consists mainly of control logics, random address memories,
and Hadamard sub-decoders. Two slightly different pipelined
structures are designed to cater for different numbers of Hadamard
sub-decoders running in parallel. The latency and throughput
of these two different structures are derived. Implementation of
the decoder design on an FPGA board shows that a throughput
of 1.48 Gbps is achieved with a bit error rate (BER) of 107> at
around E,/Ng = —0.40 dB. The decoder can also achieve the
same BER at Ey,/No = —1.11 dB with a reduced throughput of
0.20 Gbps.

Thirdly, we make use of PLDPC-Hadamard block codes to de-
sign spatially coupled PLDPC-Hadamard convolutional codes (SC-
PLDPCH-CCs). We summarize the contributions of this part as
follows.

1) We propose spatially coupled PLDPC-Hadamard codes, which
are constructed by spatially coupling PLDPC-Hadamard block
codes.

2) We describe the encoding method of SC-PLDPCH-CCs and
propose a pipeline decoding structure to decode SC-PLDPCH-
CCs.

3) We make use of optimized PLDPCH-BCs to design good SC-
PLDPCH-CCs with different rates. Simulation results show that
SC-PLDPCH-CCs outperform their PLDPC-Hadamard block
code counterparts in terms of bit error performance. Moreover,
we find that error floors appear in PLDPC-Hadamard block
codes but not in SC-PLDPCH-CCs. For the rate-0.00295 SC-
PLDPCH-CC, a BER of 2 x 10~/ is achieved at E, /Ng = —1.45
dB.

1.3 THESIS ORGANIZATION

The organization of the thesis is as follows.
Chapter 2 briefly describes some important channel codes such as
LDPC block codes, protograph-based LDPC block codes, spatially
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coupled LDPC codes, Hadamard codes, and LDPC-Hadamard codes.
Moreover, the basic analysis, encoding and decoding methods are
presented.

Chapter 3 introduces our proposed PLDPC-Hadamard block code,
including its structure, encoding and decoding methods, and code
rate. In particular, the cases in which the order of the Hadamard code
used is even or odd are described and analyzed. A low-complexity
PEXIT method for analyzing PLDPC-Hadamard codes is proposed
and an optimization algorithm is provided. Moreover, this chapter
presents the protomatrices of the PLDPC-Hadamard codes found by
the proposed algorithms, their decoding thresholds and simulated
error results. The error performance of these codes after puncturing
are further evaluated.

Chapter 4 presents the standard decoding algorithm and our
proposed layered decoding for PLDPCH-BCs. This chapter then
presents the BER results for the standard and layered decoders.
Based on the layered algorithm, this chapter proposes a hardware
architecture of PLDPCH-BC layered decoders, derives the latency and
throughput, and report the implementation results.

Chapter 5 introduces the structure and encoding process of SC-
PLDPCH-CCs. It proposes a pipelined strategy combined with lay-
ered scheduling for decoding SC-PLDPCH-CCs. Using the proposed
pipeline decoding, error performance of SC-PLDPCH-CCs with dif-
ferent rates and different number of processors is evaluated. This
chapter also compares the simulated BER results of the SC-PLDPCH-
CCs with those of the underlying PLDPCH-BCs.

Chapter 6 concludes this thesis and suggests some possible future
works.
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CHAPTER 2

BACKGROUND

In this chapter, we review some channel codes that are related to this
thesis.

2.1 LOW-DENSITY PARITY-CHECK CODES

This section briefly introduces traditional LDPC block codes, protograph-
based LDPC (PLDPC) block codes and spatially coupled LDPC codes.
We also review their analysis method, encoding and decoding.

2.1.1 Traditional LDPC Block Codes

An LDPC code with code length N, information length k = N — M
and code rate R = k/N can be represented by a M x N parity-
check matrix Hyxn Whose entries only include 0 or 1. Moreover,
the matrix Hn N needs to satisfy the following conditions:

1. The number of “1"s in the matrix should be much less than the
number of elements MN, i.e., a low density of “1"s.

2. The codeword bits corresponding to the “1"s in each row of
the matrix must take part in the same parity-check equation,
i.e., each LDPC codeword c satisfies cH {AXN = 0, where o
represents a zero vector of appropriate length.

The matrix HypmxN can also be represented by a Tanner graph,
as shown in Fig. 1. The circles denote the variable nodes (VNs)
corresponding to the columns of the matrix; the squares denote the
check nodes (CNs) corresponding to the rows of the matrix; and the
edges connecting the VNs and CNs correspond to the “1"s in the
matrix. Moreover, the number of edges connecting each VN/CN is
called the degree of the VN/CN and corresponds to the column/row
weight. Denote A = {A;} and p = {pi} as the fraction of degree-d;
VNs and the fraction of degree-d; CNs, respectively. If A = {1} and
p = {1}, we call such code as a regular LDPC code; otherwise, it is
called an irregular LDPC code. The degree distribution (A, p) not only
determines the “1"s distribution in HnxnN, but also can be used by
the extrinsic information transfer (EXIT) chart technique to estimate
the theoretical threshold of the LDPC code [23], [24].

12
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Variable Nodes

Check Nodes

Figure 1: Representation of an LDPC code by a Tanner graph.

To illustrate the EXIT method, different types of mutual informa-
tion (MI) are defined as follows:

o I4y: a priori MI value of VNs;

o Iqc: apriori MI value of CNs;

e I.,: extrinsic MI value of VNs;

e I..: extrinsic MI value of CNs;

e I .1: MI value from the channel.
We summarize the method as follows

1. Select a relatively large E,/No.

2. Set all MI values to 0.
Initialize 1., based on Ey,/Ng and the code rate.
Compute I, based on Iy, Ich and A.

Set Iqc = Iev.

SN L

Compute I¢. based on I, and p.
7. Set Iqy = Lec.
8. Repeat Steps 4) to 7) Liter times.

9. Plot the two EXIT curves (Igy, lev) and (Iec,Iqc)- If the two
curves in the EXIT chart only intersects at the point (1,1),
reduce Ey/Np and go to Step 2); otherwise set the previous
Ev/No when the two curves intersect only at the point (1,1) as
the threshold (Ev,/No)th and stop.

In the EXIT chart method and based on degree distribution (A, p), we
compute

dy
lac =lev =) Aj-J (x/(dj —1) (7 (Ia)* + (- (Ich)ﬁ) (1)
j=2
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and

dc
Iavzlec:1—Zp1-1<wdi—m1‘(1—1ac))2>, )
i=2

where d, and d. are denoted as the maximum degrees of VNs and
CNs, respectively. Moreover, the functions I = J(o) and o = =11
are given by [17, 23]

aj03 +bj0+c¢cyo, 0<0<1.6363
J(6) =4 1—elaz0’+bao?+cro4da) 16363 < o< 10 (3)
1, 10< 0o
and
1) = a2 +bjI+ciVi, 0 < 1<0.3646 @
—abIn[b)(1—1)] —c4l, 03646 <1< 1
where
e a; = —0.0421061, a; = 0.00181491, b; = 0.209252, by =
—0.142675, ¢; = —0.00640081, ¢; = —0.0822054, d; = 0.0549608;
and

e af = 1.09542, a5 = 0.706692, b} = 0.214217, b5 = 0.386013,
¢ =2.33727 and ¢ = —1.75017.

We use the EXIT method to analyze the (3,6) regular LDPC code and
obtain a threshold of 1.127 dB. The matched (not crossed) EXIT curves
from VNs and CNs are plotted in Fig. 2 when Ey, /N = 1.127 dB.

2.1.2  Protograph-based LDPC Block Codes

When an LDPC code contains degree-1 VNs or punctured VNs,
the traditional EXIT chart cannot evaluate its decoding performance.
However, for LDPC codes constructed based on protographs, their
theoretical performance can be estimated by the protograph EXIT
(PEXIT) algorithm even if they contain degree-1 VNs or punctured
VNs [37].

A protograph can be denoted by G = (V, C,E) where V is a set of
VNs, Cis a set of CNs and E is a set of edges [36]. Fig. 3 illustrates
a protograph, and the corresponding protomatrix (also called base
matrix) is given by

1 ...
Byxn= S .o . (5)
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Figure 2: The EXIT curves for (3,6) regular LDPC code at the threshold of
1.127 dB.

The entries in Byyxn ={bi;:1=0,1,2...,m—1;=0,1,2...,n—1}
are allowed to be larger than 1 and they correspond to the multiple
edges connecting the same pair of VN and CN in the protograph. The
parity-check matrix Hymxn of a protograph-based LDPC (PLDPC)
code can be constructed by expanding the protomatrix By, xn where
m < Mand n < N.

To obtain a larger Hn1x N, the following copy-and-permute opera-
tions can be used to expand By xn.-

1. Duplicate the protograph z times.

2. Permute the edges which connect the same type of VNs and
CNs among these duplicated protographs.

This expansion process is also called lifting and the parameter z is
called the lifting factor. The equivalent process in the “matrix domain”
is to replace each b;; by

e a z x z zero matrix if bj; = 0; or

e asummation of b; ; non-overlapping z x z permutation matrices
if by; #0.

As mentioned, permutations occur only among the edges connecting
to the same type of nodes and the lifted matrix Hyp N (Where M =

15
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Variable Nodes

Check Nodes

Figure 3: A protograph corresponding to the protomatrix in (5).

zm and N = zn) keeps the same degree distribution and code rate as
B xn. The code represented by Hp 1« is called a PLDPC code.

To make the lifted matrix having quasi-cyclic (QC) structure, this
thesis uses a two-step lifting method [77]. In the first step, we “lift”
a base matrix {b(i,j)} by replacing each non-zero entry b(i,j) with
a summation of b(i,j) different z; x z; permutation matrices and
replacing each zero entry with the z; x z7 zero matrix. After the first
lifting process, all entries in the lifted matrix are either “0” or “1”.
In the second step, we lift the resultant matrix again by replacing

“"_r7

each entry “1” with a z; x z, circulant permutation matrix (CPM),
and replacing each entry “o” with the z, x z; zero matrix. As can be
seen, the final connection matrix can be easily represented by a series
of CPMs. Note that in each lifting step, the permutation matrices
and CPMs are selected using the progressive-edge-growth (PEG)
algorithm [28] such that the girth (shortest cycle) in the resultant
matrix can be maximized.

To analyze the decoding performance of a PLDPC code, the PEXIT
algorithm is applied to By xn. In the PEXIT method, the MI values
on all types of edges are updated separately and iteratively [37].

To illustrate the method, different types of MI are first defined as
follows:

o Iuc(i,j): a priori MI from j-th VN to i-th CN in By xn;
o o (1,j): a priori MI from i-th CN to j-th VN in By xn;
o I.(i,j): extrinsic MI from j-th VN to i-th CN in By, xn;
o I.c(i,j): extrinsic MI from i-th CN to j-th VN in By, xn;
® Lapp(j): a posteriori MI value of the j-th VN;

e I.n: MI from the channel.

Without going into the details, the steps below show how to deter-
mine the threshold (Ev,/Ng)in.



2.1 LOW-DENSITY PARITY-CHECK CODES 17

1. Select a relatively large Ey,/No.

2. Set all MI values to 0.

3. Initialize I, based on Ey, /Ny and the code rate.
4. Compute I¢,(i,j) and set I4c(1,j) = Lev(i,j) Vi, j.
5. Compute Icc(i,j) and set Iqy(1,j) = Lec(i,j) Vi, ).
6. Repeat Steps 4) to 5) Liter times.

7. Compute Iqpp(j).

8. If Iqpp(j) = 1j, reduce Ey,/Ng and go to Step 2); otherwise set
the previous Ey, /Ny that achieves Iqpp(j) = 1 Vj as the threshold
(Eb/No)tn and stop.

In the PEXIT method, for b;; >0

Iac (i/j) = Iev (i/j)

( Y boi U (Tav (5,))% + (biy = 1) - (0" (Taw (,1))) + (! (Ichnz)
. Vij  (6)
Lav (i,§) = Lec (i,)
= ( > i (1= Tac (i,8))% + (by; —1) - (J mlacm)))z)
7 Vi,j; (7)
and

Tapp ( I<\/wa avu)))zwwlch))z) Vi ®

The above analytical process can be regarded as the repeated compu-
tation and exchange between the a priori MI matrices {Iqv(1,j)}/{Iac(1,7)}
and extrinsic MI matrices {Icy(1,j)}/{lec(1,j)}. Moreover, these matri-
ces have the same size as By, «n. Note that the PEXIT algorithm can
be used to analyze protographs with degree-1 VN, i.e., columns in
the protomatrix with weight 1. Protographs with punctured VNs will
also be analyzed in a similar way, except that the code rate will be
changed accordingly and the corresponding I.; will be initialized as
0.
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2.1.3 Spatially Coupled LDPC Codes

2.1.3.1  LDPC convolutional codes

Given an LDPC block code, an LDPC convolutional code can be
constructed by introducing memory in the code design and allowing
multiple consecutive block codes to become related [41]. The parity-
check matrix Hcc of an LDPC convolutional code is semi-infinite and
structurally repeated, and can be written as

Hy (1)
H; (1) Hy(2)
H, (2)
H, (1) : H, (t)
Hee = ,
- Hy, (2) H, (1)

where each Hi(t) 1 = 0,1,...,mg) is a M x N component matrix,
t denotes the time index, and m; is the syndrome former memory.
Each codeword c should satisfy cHce' = o, where o is the semi-
infinite zero vector.

2.1.3.2  Spatially coupled PLDPC codes

Spatially coupled PLDPC codes are constructed based on underlying
PLDPC block codes. We denote W as the coupling width (equivalent
to the aforementioned syndrome former memory ms) and L as
the coupling length. Based on the m x n protomatrix B of an
underlying PLDPC code, an edge spreading procedure can be first
use