

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ARTIFICIAL INTELLIGENCE-BASED ANOMALY

DETECTION FOR THE EFFICIENT MANAGEMENT

AND SECURITY OF THE FUTURE CELLULAR

NETWORKS

BILAL HUSSAIN

PhD

The Hong Kong Polytechnic University

This programme is jointly offered by The Hong Kong Polytechnic

University and Xi’an Jiaotong University

2021

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

Xi’an Jiaotong University

Department of Information and Communications Engineering

Artificial Intelligence-Based Anomaly Detection

for the Efficient Management and Security of

the Future Cellular Networks

Bilal Hussain

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

May 2021

To my parents, for their unwavering love and support;

To my wife, for her steadfastness and encouragement through the toughest of

times;

To my son, RAYYAN HUSSAIN, for bringing comfort and joy in our lives

during this tiring journey.

Abstract

Existing communication systems are getting more intricate and a morass to

manage which is galvanized by ever-increasing network capacity demand, device

density, and the data traffic. Network operators in the United States alone de-

plete over USD 15 billion yearly to handle cellular outages, incurring escalated

operational expenditure (OPEX) as a result. Furthermore, congestion in a cell

degrades subscriber quality-of-experience and quality-of-service which results in

an increased churn rate and subsequently reduced operator’s revenue. Besides

the management aspect, the security of the cellular network is paramount to pre-

vent cyber-attacks against its infrastructure not just for its primary subscribers

but also for the fact that the networks can be exploited as a proxy to attack

the connected cyber-physical systems (CPSs). To unlock the full extent of 6G

networks, artificial intelligence (AI)-empowerment has paramount potential for

efficient network management and preventing cyber-attacks against their infras-

tructure.

Based on this backdrop, this thesis applies AI techniques to achieve a primary

objective of an efficient, scalable, and timely detection of outages and the situ-

ation leading towards congestion in a cell under the context of cellular network

management. It also aims to achieve a secondary objective of detecting various

cyber-attacks towards the availability of cellular network services in the context

of cyber-security of cellular infrastructure and CPSs. Cell outages, situation lead-

ing towards congestion in a cell, and cyber-attacks are treated as anomalies in

vii

this work and various machine learning (subset of AI) models and data analytic

tools are utilized to detect them by leveraging real subscriber data based on call

detail records (CDRs) extracted from a 4G LTE-A network.

List of Publications

Journals

1. B. Hussain, Q. Du, and J. Zhang, “A Prescriptive Analytics-Based Modu-

lar Framework for Proactive Cell Outage and Congestion Detection in Mo-

bile Networks,” IEEE Transactions on Network and Service Management

(Under-review).

2. B. Hussain, Q. Du, B. Sun, and Z. Han, “Deep Learning-Based DDoS-

Attack Detection for Cyber-Physical System over 5G network,” IEEE Trans-

actions on Industrial Informatics, vol. 17, no. 2, pp. 860-870, Feb. 2021.

3. B. Hussain, Q. Du, A. Imran, and M. A. Imran, “Artificial Intelligence-

powered Mobile Edge Computing-based Anomaly Detection in Cellular Net-

works,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp.

4986-4996, Aug. 2020.

4. B. Hussain, Q. Du, S. Zhang, A. Imran, and M. A. Imran, “Mobile Edge

Computing-Based Data-Driven Deep Learning Framework for Anomaly De-

tection,” IEEE Access, vol. 7, pp. 137656-137667, Sept. 2019.

5. B. Hussain, Q. Du, and P. Ren, “Semi-Supervised Learning Based Big

Data-Driven Anomaly Detection in Mobile Wireless Networks,” China Com-

munications, vol. 15, no. 4, pp. 41-57, Apr. 2018.

ix

Conference Proceedings

1. B. Hussain, Q. Du, and P. Ren, “Deep Learning-Based Big Data-Assisted

Anomaly Detection in Cellular Networks,” 2018 IEEE Global Communica-

tions Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec.

2018, pp. 1-6.

2. B. Hussain, Q. Du, and P. Ren, “Big data-driven anomaly detection in

cellular networks,” 2017 IEEE/CIC International Conference on Commu-

nications in China (ICCC), Qingdao, P. R. China, Oct. 2017, pp. 1-6.

Acknowledgments

All the praises to Almighty Allah who blessed me with this opportunity and

enabled me to complete this thesis. All respects to the Holy Prophet Muhammad

(May Allah grant peace and honor to him and his family).

Taking this opportunity, I would like to express my gratitude to all the people

who have supported, encouraged and guided me through out the course of my

PhD studies. I am particularly thankful to my supervisors Prof. Qinghe Du from

the Xi’an Jiaotong University and Dr. Jun Zhang from the Hong Kong Polytech-

nic University for their exceptional guidance, training, and support in terms of

extra funding. I am also thankful to Prof. Muhammad Imran from the University

of Glasgow, UK and Dr. Ali Imran from the University of Oklahoma, USA for

their support and guidance throughout my journey. I feel greatly indebted to the

Xi’an Jiaotong University and the Hong Kong Polytechnic University for their

generous financial support.

Finally, I would like to thank my family for always standing by me through

the hardest of times.

xi

Table of Contents

Abstract vii

Publications ix

Acknowledgments xi

Table of Contents xiii

List of Figures xix

List of Tables xxv

1 Introduction 1

1.1 Anomalies in Cellular Networks 1

1.2 Artificial Intelligence and Data Analytics for Anomaly Detection . 3

1.3 Motivation and the Rising Demand for Anomaly Detection in Com-

munication Networks . 5

1.4 Scope and Objectives of the Study 6

1.5 Outline of the Thesis . 7

2 Background 13

2.1 Anomalies Pertaining to Cellular Network Management 13

2.1.1 Cell Outages . 13

2.1.2 Congestion . 15

xiii

2.2 Anomalies Related to Cyber-security of the Cellular Networks in

Relation with Cyber-Physical Systems 16

2.2.1 Silent Call Attack . 17

2.2.2 Signaling Attack . 18

2.2.3 SMS Flooding Attack . 19

2.3 Big Data, Data Science, and Machine Learning 19

2.3.1 Big Data . 19

2.3.2 Data Science . 20

2.3.3 Machine Learning . 20

2.4 Common Datasets Utilized for Anomaly Detection 21

2.4.1 Minimization-of-drive-test Dataset 21

2.4.2 Call Detail Record Dataset 23

2.4.3 Datasets Utilized in this Work 23

2.5 Performance Metrics . 27

2.6 Challenges in the Applications of AI Techniques in the Anomaly

Detection . 29

2.7 Conclusion . 30

3 Design, Analysis and Performance Characterization of Semi-Supervised

Statistical-Based Cell Outage and Congestion Detection Frame-

work 31

3.1 Motivation for Utilizing Semi-Supervised Technique for Anomaly

Detection . 31

3.2 Overview and Contributions . 32

3.3 Literature Survey . 33

3.4 Anomaly Detection Framework Design 36

3.4.1 Data Preprocessing . 36

3.4.2 Splitting the Dataset . 38

3.4.3 Semi-Supervised Statistical Based Anomaly Detector . . . 39

3.4.4 Performance Metrics . 42

3.5 Experimental Results and Discussion 42

3.5.1 Performance Evaluation and Analysis of Overall Results . 45

3.6 Summary . 47

4 Feed-forward Deep Neural Network and Mobile Edge Computing-

Based Cell Outage and Congestion Detection 49

4.1 Motivation . 49

4.2 Overview and Contributions . 50

4.3 Literature Survey . 51

4.4 Preliminaries . 53

4.4.1 Data Preprocessing and Synthesis 53

4.4.2 Performance Metrics . 55

4.4.3 Software . 55

4.5 Implementation . 55

4.5.1 Deep Learning Based Anomaly Detector 55

4.5.2 Improving Performance of DNN 62

4.6 Experimental Results and Performance Evaluation 66

4.6.1 Number of Layers and Hidden Units 67

4.6.2 Activation Functions . 68

4.6.3 Weight Initializations . 68

4.6.4 Optimization Techniques 68

4.6.5 Training Time . 70

4.7 Conclusions and Insights for Future Work 70

5 Deep Convolutional Neural Network and Mobile Edge Computing-

Based Cell Outage and Congestion Detection 75

5.1 Motivation . 75

5.2 Overview and Contributions . 77

5.3 Relevant Work . 78

5.4 Preliminaries . 80

5.4.1 System Model . 80

5.4.2 Data Preprocessing and Synthesis 81

5.4.3 Shuffling and Splitting the Data 82

5.4.4 Performance Metrics . 83

5.4.5 Software . 83

5.5 Implementation of Anomaly Detector 83

5.5.1 CNN’s Generic Architecture 83

5.5.2 Why Choose CNN? . 86

5.5.3 Simple CNN Model . 87

5.5.4 Residual Network Model 88

5.6 Experimental Results and Performance Evaluation 91

5.7 Conclusion and Insights for Future Work 97

6 A Prescriptive Analytics-Based Modular Framework for Proac-

tive Cell Outage and Congestion Detection in Cellular Networks101

6.1 Motivation . 101

6.2 Overview and Contributions . 102

6.3 State of the Art . 103

6.4 Preliminaries . 105

6.4.1 Description of the Dataset 105

6.4.2 System Model . 105

6.4.3 Data Preprocessing . 106

6.4.4 Performance Metrics . 108

6.5 Implementation . 108

6.5.1 Forecaster . 108

6.5.2 Detector . 110

6.6 Experimental Results and Performance Analysis 111

6.6.1 Forecaster’s Preliminary Results 111

6.6.2 Forecaster’s Bird’s-eye Results 112

6.6.3 Rule-Based Detector’s Results and the Factors Affecting its

Accuracy . 114

6.6.4 ffDNN-based Detector for Comparative Analysis and Im-

provements . 118

6.7 Discussion and Conclusion . 118

7 Deep Convolutional Neural Network-Based Distributed Denial

of Service-Attack Identification for Cyber-Physical Systems over

5G Networks 123

7.1 Motivation . 123

7.2 Overview and Contributions . 124

7.3 Relevant Work . 125

7.4 Emulating Each Attack’s Effect 127

7.4.1 Silent Call Attack . 129

7.4.2 Signaling Attack . 129

7.4.3 SMS Spamming Attack . 130

7.4.4 Blended Attack . 131

7.5 Preliminaries . 131

7.5.1 System Model, Description of the Dataset, and Data Pre-

processing . 131

7.5.2 Data Synthesis and Splitting 132

7.5.3 Performance Metrics and Software Utilized 133

7.6 Realization of CNN Models . 133

7.6.1 Generic Architecture . 134

7.6.2 Residual Network Model 136

7.6.3 Deep Rudimentary CNN Model 141

7.7 Experimental Results and Performance Evaluation 143

7.8 Conclusion and Insights for future work 144

8 Conclusions and Future Insights 147

8.1 Summary . 147

8.2 Research Contributions / Major Findings 150

8.3 Potential Future Research Directions 151

8.3.1 Transfer Learning to Tackle Data-Shortage Challenge . . . 151

8.3.2 MEC-based Fully Proactive Anomaly Detection System . . 152

8.3.3 Applicability of Anomaly Detection Frameworks for IIoT

Networks . 153

8.3.4 A Consolidated Alarm System for Outage, Congestion, and

Cyber-attacks in Cellular Networks 153

Bibliography 155

List of Figures

1.1 Sources of Big Data in Cellular networks [1, Fig. 3]. 4

1.2 Thesis progression. 11

2.1 An abridged voice over LTE (VoLTE) call establishment procedure

adopted from [2, Fig. 4]. 17

2.2 5 V’s of Big Data . 20

2.3 LTE-A Architecture. 24

2.4 Visualization of Milan dataset. (a) 10, 000 subgrids are overlaid

with Milan’s map, each subgrid having a side length of 0.235 km.

(b) Cell ID 5638 located near the San Siro stadium is highlighted

(c) and (d) display spatial distribution of cell ID 5638’s SMS and

call, and Internet activities, respectively. 25

2.5 Spatial description of the Trentino dataset: Trentino grid and the

Italy’s map are superimposed by utilizing the GPS coordinates

(left). For reader’s clarity and understanding of the covered area,

we enlarge Trentino grid (right). 26

2.6 Precision and recall. 28

3.1 Dataset visualization: (a) Original CDR dataset represented as a

62×24 matrix. Each unit representing the activity (SMS and Call)

value registered in an hour. (b) Ribbon diagram for Grid 1’s traffic

activity. 37

xix

3.2 Illustration of complete dataset used for anomaly detection in Grid

1 for 1100 to 1200 hours. 39

3.3 Anomaly Detection for Grid 1, for User Activity between 11am

and 12pm . 43

3.4 Location of Grids 5638-5640 in Milan, Italy. 44

3.5 Anomaly detection for Grids 5638-5640 in Milan, Italy for different

time instances. 45

3.6 Different performance measures of our algorithm, calculated using

user activity data for 200 grids at three different hours. 46

3.7 Performance of our proposed algorithm. 47

4.1 (a) System model for the proposed feed-forward DNN and MEC-

based anomaly detection framework. (b) Functioning of the edge

server. 53

4.2 (a) Schema of the L-layer DNN model (b) Illustration of how gradi-

ent is computed using the chain rule of calculus in a simple 2-layer

network (c) Single building block of a DNN. 57

4.3 Demonstration of the Dropout technique using a 4-layer DNN. . 63

4.4 Effect of different configuration of number of layers and number of

hidden units(s) per layer on test accuracies. 67

4.5 Effect of using different activations on performance. 69

4.6 Effects of different weight initialization techniques on the perfor-

mance. 70

4.7 Effect of various optimization techniques on different performance

measures. 71

4.8 Comparison of training time of various optimization techniques. . 71

5.1 (a) System model for the proposed deep CNN and MEC-based

anomaly detection framework. (b) Functioning of the edge server. 76

5.2 Trentino dataset’s spatial description. 10 × 10 subgrid (red) is

chosen for our experiments while 15× 15 sub-grid (blue) is chosen

to demonstrate the scalability of our proposed method. 81

5.3 Architecture of (a) Simple model with the red box highlighting

pooling function deliniated in Figure 5.4 and (b) residual network

model with 50 layers (ResNet-50). (c) Conv and ID modules of

ResNet-50 model. 84

5.4 Max-Pooling Layer’s functioning. 86

5.5 Dispersion of accuracy (blue) and false positive rate (FPR) (green)

for the simple and ResNet-50 models along with the improvements

achieved by implementing the latter model. 92

5.6 Performance dispersions achieved through considering 15× 15× 5

input grid-image. 94

5.7 Dispersion of the accuracy using Feed-forward DNN model. 96

5.8 Comparison of performance of both models (simple and ResNet-

50) by utilizing the DNN proposed in [3]. Best performance is

highlighted as purple. 96

6.1 System Model. 103

6.2 Time series dataset L ∈ R
8,928×5. 106

6.3 Operation of a ConvLSTM model. 109

6.4 (Left) Milan’s map overlayed with GPS coordinates of the total

area associated with the 10,000 cell IDs (outer square black box)

with a zone zoomed in the bottom highlighting three cells (blue

boxes). (Right) Prediction results of the selected cell IDs alongside

the performance metrics. 110

6.5 Average ground truth and predicted Internet activity values over

a 3-hr duration consisting of 18 10-min timesteps (ts). The anno-

tated values show the difference between the two values. 112

6.6 Average mean absolute errors (MAEs) over a 3-hr duration con-

sisting of 18 10-min timesteps (ts). 113

6.7 Effect of varying coefficient (c) in Eq. 6.5 on the average percentage

of anomalies (Oc) in different sets. 114

6.8 Effect of varying coefficient (c) in Eq. 6.5 on the average detection

test accuracy (Ac,t) at different timings. Overall accuracies for each

timing at c = 1, 1.5, and 2 are highlighted separately. 116

6.9 Average accuracy distributions over 3-hr duration consisting of 18

10-min timesteps (ts) for the rule-based anomaly detector at dif-

ferent coefficients (c) and timings. 117

6.10 Average accuracy distributions over 3-hr duration consisting of 18

10-min timesteps (ts) for the ffDNN-based anomaly detector at

different coefficients (c) and timings. 119

7.1 System model for the proposed deep CNN-based DDoS Attack

Detector. 127

7.2 Preludes: (i) CDR Samples from Milan dataset. The red features

are ignored because of their irrelevance to this research. (ii) Se-

lected 9 × 9 sub-grid. (iii) Formation of the input image based

on the activity values from 81 cells. Each pixel value of the image

corresponds to the three user activity values of the corresponding

cell ID. (iv) Depiction of how data is aggregated in terms of time

slots to generate 1, 116 images. (v) Settings to generate training

and testing sets. 128

7.3 Architecture of residual network with 50 layers (ResNet-50). Red

notations indicate the hyperparameters values utilized in this work

and the blue ones show the layers’ output dimensions (pertaining

to stage 2). 136

7.4 Structure of (Top) Identity (ID) and (Bottom) Convolutional (Conv)

residual blocks. 137

7.5 (Bottom)Architecture of the deep rudimentary CNN (DRC) model

with (Top) the manifestation of convolution layer’s working. . . 140

7.6 Overall test performance. 141

7.7 Accuracy dispersions of our models under various attack scenarios.

(a)-(d) Results of our DRC model (e) ResNet-50 model’s perfor-

mance for blended attack scenario, in which it outperformed our

model. (f) Improvements we achieved with ResNet-50 model under

the blended attack scenario. 142

List of Tables

2.1 Sample CDR dataset extracted from the file pertaining to 1st Jan-

uary, 2014. 22

3.1 Performance Statistics of our Anomaly Detection Algorithm . . . 46

4.1 Values of Hyperparameters for various optimization techniques. . 58

4.2 Comparison of mini-batch gradient descent (GD) with ADAM and

Momentum. 66

5.1 Utilized ResNet-50 model’s hyperparameters 91

5.2 Performance statistics of Simple CNN and ResNet-50 models. . . 95

5.3 Performance statistics of Simple CNN and ResNet-50 models (when

15× 15× 5 grid-image is used). 95

6.1 Comparison of Test Accuracies of Different Detectors 118

8.1 Thesis progression . 149

xxv

Chapter 1

Introduction

1.1 Anomalies in Cellular Networks

6G cellular system is anticipated to realize advanced Internet of everything

(IoE) services applied for extended reality, flying vehicles, haptics, and various

other application domains [4]. Such services will enable communication between

billions of machines and humans. A study by Cisco [5] forecasts the global IP

networks-connected device population to exceed thrice the global human popu-

lation by 2023 with 14.7 billion machine-to-machine (M2M) connections—50%

of the global connected devices and connections. This imply a boost in network

density and consequently, an upsurge in node failures leading towards outages [6].

An outage occurs due to the malfunctioned soft or physical elements of the net-

work entities and depending on the severity, a base station either halts services

(full outage) or performs sub-optimally (partial outage).

In addition to outages, congestion can transpire at an abruptly high traffic

scenario (such as, ongoing match in a stadium, congregation, road traffic con-

gestion, etc.) when the allocable resources are inadequate to cater the demand

and if necessary efforts are delayed [7, 8]. Such necessary efforts may involve:

earmarking extra resources to the ROI [7], unloading traffic to the neighboring

1

1. Introduction

cells [9], and dynamic billing in QoS-enabled cellular networks [10]. This leads

to a poor network performance reflected by hefty connection breakdowns and

timeouts, and affecting a multitude of customers, which may increase churn rate

and hamper the revenue.

Besides the outages and congestion, cyber-security in future networks is of

prime importance due to the fact that cyber-physical systems (CPSs)—employed

in the vertical industries and critical infrastructures—will depend on the cellular

infrastructure for their functionality. A CPS is a large, complex, and networked

mixture of sensors, actuators, and computing nodes that monitor and control

physical processes [11, 12]. Due to its highly intricate and heterogeneous na-

ture, contributed by both cyber and physical aspects, it has many general and

application-specific vulnerabilities that can be exploited by an attacker to per-

form mischievous acts [11, Sec. IV, V]. Once compromised, cellular networks can

be exploited as powerful attack vectors against CPSs. CPS innovations applied

in the vertical industries will potentially account for more than USD 82 trillion

in economic activity by 2025 and sabotaging a CPS will equate to a significant

bump on an economy [13]. Hence, strong measures should be taken such that the

cellular network cannot be exploited as proxy to attack CPSs.

Anomaly is an eccentric demeanor and is defined contextually [14]. For ex-

ample, to execute network optimization, Wang et al. [15] specified city scene

(highway, tourist area, railway station, etc.) as an anomaly having a peculiar key

performance indicators (KPIs) and traits. Karatepe et al. [16] identified location-

based anomalies pertaining to the users (commuting from one city to another)

who have an abnormal movement behavior, to ameliorate system’s consistency.

A substantial deviation in user quality-of-experience (QoE) from the expected

QoE is described as an anomaly in [17], and it is used for network optimization.

In the backdrop of cellular network management, cell outages and congestion

are treated as anomalies in this work because they have an abnormal imprint

2

1. Introduction

on subscriber-level activities or traffic of a base station—abnormally high user

activity corresponds to a scenario leading towards congestion while an unusually

low user activity reflects an outage [3]. Similarly, in cyber-security’s context,

we consider various attacks (discussed thoroughly in Section 2.2) against cellular

networks as anomalies because of the similar reason that they reflect peculiarly

on the traffic of a base station.

1.2 Artificial Intelligence and Data Analytics for

Anomaly Detection

Due to the proliferating success and transformational effect of artificial in-

telligence (AI) techniques in various fields, AI has recently gained momentum

and popularity among wireless communication researchers from academia and

industry alike. Clamor regarding AI-utilization in cellular networks is evident as

various standardization bodies, MNOs, and network vendors have initiated ef-

forts and established alliances towards leveraging the technology [18]. Since cel-

lular networks are evolving into extremely complex and heterogeneous systems,

AI is one of the sought after technologies for smooth management of network

operations, optimization, and resource orchestration to execute 6G-enabled ser-

vices [19]. 5G networks adopted a conservative approach towards incorporating

AI-technologies for anomaly detection [20]; however, AI for anomaly detection is

anticipated to play a substantial part in the 6G (or later stages of 5G) networks

as AI has more room to grow in the 6G/post-5G era [21].

Big Data [22] (explained in detail in Ch. 2) is similar for AI algorithms as

the fuel for a combustion engine. They are spawned at various levels of a mobile

communication system including the cell, core network (CN), and subscriber lev-

els (depicted in Figure 1.1). Big Data analytics through sophisticated machine

3

1. Introduction

Sources of Big Data in Cellular Networks

Integrity KPIs
- Throughput, delay
- Data streaming quality
Retainability KPIs
- Session drop rate
- Application throughput
- IP throughput
Accessibility KPIs
- IP traffic flow
- Service setup time
- Data session success rate

Integrity KPIs
- Packet jitter, delay
- Speech quality (PESQ,
echo, delay, attenuation)
Retainability KPIs
- Call drop ratio, HO
success rate, call success
rate
Accessibility KPIs
- RRC signaling KPI’s
- Call success rate and
setup time
- HO failure rate and Access
failure

Data

Voice

- Preamble per cell
- PRB usage per cell
- Received random

access
- Number of active users

per cell

eNB layer-2 measurement

- MDT reports
- Received interference

power
- Channel baseband

power
- Thermal noise power

- RSRP , CQI
- RSRQ, time, CQI

Radio measurements

- Call data records (CDR)
- XDR (extended data
records) capturing the

detail recharging or
transaction information

such as song purchase etc.

Subscriber specific

- Accounting: resource
utilizing accounting records

- Fault: logs, historical
alarms

- Performance: network
performance monitoring

such as call drop ratio, link
utilization, S1-AP, X2-AP

related metrics, throughput
metric collection
- Configuration:

equipment logs, device
configuration records, ANR
- Security: authorization,

authentication, and auditing

Network specific

- Smartphone sensors
based data (i.e., sound,

BPS, video, accelerometer,
magnetic compus)

- Social media
- Mobility status

- Indoor/outdoor status
- Contextual information

time, location, week, day,
weather, year

App based data

Subscriber-level Cell-level Core network level Additional sources

- Customer complaint center
- Customer retention
management (CRM)

- Spectrum utility maps

Cross department

Figure 1.1: Sources of Big Data in Cellular networks [1, Fig. 3].

learning (ML) techniques is projected to be the core breakthrough and an essen-

tial component of 6G system which will enable smart network management and

optimization [23]. We can exploit the mammoth (big) data for various analytics:

Predictive, diagnostic, and prescriptive [24].

1. Predictive analytics assist in forecasting future events like traffic demand,

content popularity, resource handiness, etc. by utilizing historical data.

2. Diagnostic analytics empower the network to intelligently identify network

outages and performance degradations, determine the root causes, and com-

pensate the affected areas until their restoration—these actions evolve into

the functionalities of a self-healing network [8].

3. Prescriptive analytics capitalize on predictions to recommend decisions for

solving various problems, e.g., based on the traffic predictions we can design

4

1. Introduction

a more robust and proactive congestion detection system to pre-allocate

resources for a region of interest (ROI) where congestion is expected [25].

In this thesis, we present applications of various AI-based techniques for

anomaly detection using different data analytic approaches.

1.3 Motivation and the Rising Demand for Anomaly

Detection in Communication Networks

According to industry appraisals, cellular networks deplete almost quarter

of the total revenue on network operations; out of which, a large chunk is ex-

hausted on the management of cell outages [6]. Hence, the operational expen-

ditures (OPEX) of the mobile network operator (MNO) intensifies. Besides the

need to reduce OPEX in cellular networks, industrial Internet of things (IIoT)

networks also crave to reduce OPEX as IIoT asset management (identification,

troubleshooting, and fixing field-reported problems) account for up to 33 % of

the OPEX [26]. Additionally, cellular traffic congestion management is a key

challenge that requires meticulous orchestration of network resources. For an

effective congestion-control system, precise congestion detection is needed. It is

crucial for the QoS-enabled networks offering high QoS-assured services to the

consumers [10]. Outages as well as congestion can negatively impact QoE that

may in turn raise the churn rate; as irritated customers might be inclined to-

wards switching the mobile operator instead of contacting the customer support

center [3].

Towards the security-side, by 2025, CPS advancements pertaining to vertical

markets (transportation, energy, manufacturing, eHealth, etc.) are projected to

add over USD $82 trillion in the economic growth [13]. Researchers have excogi-

tated 5G technology to be disruptive, playing a critical role in supporting CPSs

5

1. Introduction

with communications and to empower new applications and services in the ver-

ticals where it is employed; [27, Fig. 4] demonstrates 5G system’s architecture

integrated with the vertical industry. As a consequence, vertical infrastructure

will have increased dependence on the cellular infrastructure [28], inferred from

the white papers [29] presented by 5G infrastructure public private partnership

(5G PPP). Industrial applications necessitate the communications infrastructure

to support the following rigid demands: low-latency, densely connected devices,

ultra-reliability, etc., for which 5G is foreseen to be a suitable candidate [27, 30].

Indeed, services enabling mission-critical and real-time applications will be sup-

ported by 5G, such as, smart vehicles’ assisted overtaking [28], smart grid’s state

estimation [31], etc. If CPS is sabotaged, it will significantly hamper the eco-

nomic growth; therefore, its and the cellular network’s security has a paramount

importance.

Early detection of anomalies could help reduce OPEX and ultimately improve

user QoE and network’s quality of service (QoS) because of the lesser network

downtime and timely allocation of required additional resources in the ROIs. In

the cybersecurity’s perspective, timely detection of anomalies could prevent a

major dent on critical infrastructure and a compromise on national security. Due

to the above-mentioned reasons, popularity of anomaly detection frameworks

among the industry and academia is rising and have also motivated this research.

1.4 Scope and Objectives of the Study

Anomaly detection has a broad application domain in which each definition

of the anomaly has its own unique flavor depending on the problem in hand [14].

Hence, we will be limiting the scope of our study to mainly outages and congestion

as anomalies that lie under the domain of wireless network management. It will

be the primary objective to detect them in an efficient, scalable, and timely

6

1. Introduction

manner. Additionally, we will also apply techniques implemented for detecting

the above-mentioned anomalies for detecting various cyber-attacks against the

cellular infrastructure which belong to the cyber-security domain—this makes

our secondary objective.

1.5 Outline of the Thesis

The thesis has been classified into eight chapters. Chapters 3-6 are dedicated

to achieve the primary objective (mentioned in the Section 1.4) while Chapter 7

is gearing towards achieving the secondary objective.

In Chapter 2, preliminary topics are presented before delving into the pro-

posed frameworks in later chapters. The topics mainly include the explanation

about various anomalies considered in this work; a brief description of big data,

data science and machine learning; and the elaboration of datasets utilized for

anomaly detection followed by the details and visualization of the CDR datasets.

In Chapter 3, a semi-supervised machine learning method is presented to

extract actionable knowledge out of the dark data (i.e. CDRs) by analyzing the

spatiotemporal information on hourly basis. The method is essentially model-

based, which assumes the data is distributed according to a Gaussian distribu-

tion and that the normal data instances exist in the high probability area while

abnormal data instances lie in the low probability area of a statistical model. It

generates a normal profile based on the observed pattern of the given data by

fitting the model to the given data and then evaluates unseen test data instances

with respect to how well they fit the model. Instances which differ significantly

from the normal profile are marked as anomalies. The method achieved an overall

detection accuracy of about 92%, about 2% higher than the reported accuracy in

the state-of-the-art literature.

In Chapter 4, the time resolution is shorten from one hour to 10 minutes

7

1. Introduction

for faster detection results and a feed-forward deep neural network (DNN)-based

anomaly detector is applied to improve the detection accuracy. Since feature

engineering is not necessary for deep learning models, Internet activity is inte-

grated in this chapter which was ignored in the previous one. The chapter takes

advantage of Mobile edge computing (MEC) mechanism in which heavy compu-

tational works are split among edge servers (ESs) spread across the network. The

servers are co-located with the base stations and oversee a small group of base

stations. For performance enhancement, the chapter also presents experimen-

tations on various weight initialization, activation functions, regularization, and

optimization techniques. The framework achieved 98.8% detection accuracy—a

notable improvement that surmount the deficiency of the past studies.

In Chapter 5, to expand the computation from detecting anomalies for one

base station at a time to 100 or more and to fully integrate MEC paradigm, a

novel framework is proposed. It preprocesses raw CDRs to create an image-like

volume which is then fed to a deep convolutional neural network (CNN) model.

After the training phase, the framework outputs a multilabeled vector identifying

anomalous cell(s) in the unseen test (image) data. It is fully compatible with

MEC because it is suffice for an edge server to train just one model for the

whole population of base stations that are being monitored instead of training a

different model for each base station (done in the previous chapter). The chapter

presents two CNN models, both having their own pros and cons: the over-the-

shelf residual network model with 50 layers and a customized simple CNN model

with 5 layers. At the end, the chapter presents some additional experimentation

results demonstrating the scalability of our proposed framework. The results

manifest the solution can detect anomalies for 100 cells at a time with up to 96%

overall test accuracy and with about 7 times lesser training time as compared

with the DNN-based model applied for just a single cell anomaly detection.

InChapter 6, prescriptive analytics is performed to achieve proactive anomaly

8

1. Introduction

detection. It proposes a modular framework that first employs a convolutional

long short-term memory (ConvLSTM) neural network to forecast the subscriber

traffic in a base station 3-hour in advance and then a feed-forward DNN to detect

anomalies in the predicted data to alert the MNO. The chapter demonstrates

a practical approach on how to integrate both neural networks to achieve the

proactiveness. It also presents extensive results: First, preliminary predictions

of the forecaster (ConvLSTM neural network) are presented for the chosen three

cell IDs which highlights the good, mild, and worst cases. Second, overall predic-

tion results are shown by considering randomly chosen 100 cell IDs with the aim

to show how the ConvLSTM performs on the available (Milan) dataset. Third,

efforts have been made to elaborate the ways from which the prediction accu-

racy can be improved and the corresponding results are presented. The results

demonstrate the effectiveness of utilizing the proactive approach as it yields over

92% anomaly detection accuracy when the overall number of anomalies in the

training set is under 5%.

In Chapter 7, an application of Chapter 5’s methodology in the cyber-

security domain is presented with a setting having CPSs connected to the cellular

network. The chapter proposes a deep CNN-based consolidated framework to

provide an early detection of various network availability-targeted attacks that

execute a collective distributed denial-of-service (DDoS) attack, orchestrated by

numerous malicious devices and controlled by a botmaster. These jeopardized

devices separately execute signaling, silent call, SMS spamming, or a blend of

these attacks aiming Internet, call, SMS, or a mixture of these services, respec-

tively, that can fracture the connected CPSs’ functions. The results demonstrate

that the framework can achieve higher than 91% normal and underattack cell

detection accuracy.

In Chapter 8, concluding remarks and future insights are presented.

Figure 1.2 illustrates progression of our work through the chapters in this

9

1. Introduction

thesis towards achieving the primary and secondary objectives. It also highlights

machine learning techniques employed in each chapter.

10

1. Introduction

Ch
ap

te
r 3

Ch
ap

te
r 4

Ch
ap

te
r 5

Ch
ap

te
r 6

Ch
ap

te
r 7

Ob
je

ct
ive

 1
 (C

el
lu

lar
 N

et
w

or
k

M
an

ag
em

en
t):

 E
ffi

ci
en

t,
sc

al
ab

le
, a

nd
 ti

m
el

y
ce

ll
ou

ta
ge

an

d
co

ng
es

tio
n

de
te

ct
io

n

Ob
je

ct
ive

 2
 (C

yb
er

-se
cu

rit
y)

:
De

te
ct

io
n

of
 v

ar
io

us
 a

va
ila

bi
lit

y-
ta

rg
et

ed
 cy

be
r-a

tta
ck

s

Se
m

i-S
up

er
vi

se
d

st
at

ist
ica

l-b
as

ed

M
L M

od
el

fe
ed

-fo
rw

ar
d

de
ep

ne

ur
al

 n
et

w
or

k
(D

NN
) M

od
el

Co
nv

ol
ut

io
na

l
ne

ur
al

 n
et

w
or

k
(C

N
N)

 M
od

el
s

CN
N

M
od

el
s

Co
nv

ol
ut

io
na

l l
on

g
sh

or
t-t

er
m

 m
em

or
y

(C
on

vL
ST

M
) a

nd

DN
N

 M
od

el
s

F
ig
u
re

1.
2:

T
h
es
is
p
ro
gr
es
si
on

.

11

1. Introduction

12

Chapter 2

Background

2.1 Anomalies Pertaining to Cellular Network

Management

2.1.1 Cell Outages

Cellular outage corresponds to a base station providing abnormal services to

its users and subsequently compromising the user QoE. It precipitates complete

or partial abjection of the base station performance which eventually leads to

customer dissatisfaction and conceivably escalates the churn rate. The major

challenge, also a hazard, is that it occurs placidly and stays undisclosed from the

operation, administration and maintenance (OAM) unit because the bases station

still seems to be functional from the network’s viewpoint [32]. Network failure de-

tection is a tiresome task in conventional monitoring system and is highly reliant

on pre-defined thresholds set for umpteen key performance indicators (KPIs), e.g.

access failures, dropped calls, handovers, etc. [33]. Above all, automatic alarm

triggering is nonfunctional in such scenarios because there is no way to convey

the alarm messages to the network because of the failures explained later in this

subsection [34]. The situation is unfolded when numerous complaints are received

13

2. Background

from the clients or through manual drive tests, which require up to a few days to

discover and even more to remedy [35]. A most recent example of a major large-

scale outage is from Rogers (a Canadian telecom provider) [36] during which Call,

SMS, and data services were severely affected because of a recent software update

that negatively impacted an equipment residing the core network and as a con-

sequence, service deteriorations were experienced all across the country. It took

several hours to fix the problem. This in turn escalates OPEX; indeed, MNOs

in United States alone consume over 15 billion USD per annum to cope with the

cell outages [37].

Classification of Outages

Generally, we can segregate the outages into the classes described below [33],

contingent on the extent of the deterioration:

1. Impaired/degenerated cell: hauls traffic lesser than the norm, causing de-

generated performance. As compared to the other classes, the impact of

impaired cell on the services is minimum.

2. Crippled cell: represents a severe case with the traffic capacity intensely

ablated than the normal conditions.

3. Catatonic cell: is the most crucial class which equates to a dead cell. It is

completely paralyzed and is incapable to ferry any traffic.

Causes

Outage occurs due to the following types of failures: logical/physical channel

breakdowns and hardware malfunctions [32]. Example of the former is a sit-

uation when user equipment (UE) is unable to handover to the malfunctioned

cell or establish a new connection. The culprit is the exorbitant burden, failed

14

2. Background

random access channel (RACH) procedure, or firmware/software trouble at the

base station. The situation is only valid for the new UEs while the existing

already-connected ones enjoy adequate services. Hence, the sleeping cell even-

tually transforms into the catatonic class after acting as impaired and then the

crippled class [33]. The latter type of failure (hardware malfunctions) arises be-

cause of the bidirectional antenna gain failure that converts a cell into a catatonic

cell—the main reason being the malfunctioned transmit and receive modules at

the base station [38].

Hence, prompt and automatic detection of outage cell is of utmost importance

in the current and upcoming cellular systems so that the remedial actions could

be timely executed. Such actions may include antenna tilt or reference signal

power adjustment in the concerned cell, installment of temporary cell-on-wheels

(COWs), dispatching unmanned aerial vehicles (UAVs) to cover the outage area,

etc.

2.1.2 Congestion

Congestion can be defined as a situation with heightened traffic but having a

relatively lesser throughput to gratify the users’ thirst, interrupting performance

of the network and ultimately hampering user’s QoE [39]. Sudden hike in the base

station’s traffic can transpire congestion if necessary efforts are delayed [7]. Such

necessary efforts may involve: earmarking extra resources to the ROI [7], unload-

ing traffic to the neighboring cells [9], and dynamic billing in QoS-enabled cellular

networks [10]. An efficient congestion-control procedure necessitates an accurate

congestion exposure and it is crucial for the QoS-enabled networks offering high

QoS-assured services to the consumers [10].

15

2. Background

2.2 Anomalies Related to Cyber-security of the

Cellular Networks in Relation with Cyber-

Physical Systems

Various attacks [40], [41, Table 1] compromising the availability, confidential-

ity, or integrity can be staged against the cellular systems. Denial-of-service (DoS)

attack aims at compromising the network resources’ availability in an area and has

an ability to bulldoze a network: contingent upon various such attacks executed in

scattered and coordinated fashion known as distributed denial-of-service (DDoS)

attack [40, 41]. As reported by Verizon [42], year 2017 witnessed DDoS attacks

as the most recurrent cybersecurity occurrences. They can be machinated as a

smoke screen or beachhead for cybersecurity specialists, following which some

other intension(s) (for example, data breach) are to be attained [42, 43]: since

DDoS attack cannot just severely harm the mobile wireless system and its legit-

imate subscribers but as a possible side effect, it can also disrupt the connected

CPSs’ operations which greatly depend on the wireless connectivity. Once the

cellular systems are jeopardized, they can be abused as strong attack vectors tar-

geting the CPSs; hence, adequate efforts shall be employed in order for them to

avoid being leveraged as proxy to strike the CPSs.

Besides a zero-day threat1, known vulnerabilities can also be exploited by

the malevolent user(s) in mobile networks to organize a DDoS attack—whose

mitigation is an open issue in 4G cellular system [40]. To stage a collective DDoS

attack, a botmaster (cybercriminal) can leverage a chain of bots called botnet2

and orchestrate various individual attacks for example signaling [44], silent call [2],

and SMS flooding [45] attacks (described in the next subsections) [40, 41, 46].

1a vulnerability unknown to the network users, operators, or IT experts; and which is only
discovered when they have been publicly exposed.

2a superimposed network containing heaps of malware-contaminated user devices capable of
receiving instructions from the botmaster and acting on them.

16

2. Background

Caller VoLTE Server Callee

1. SIP Invite

2. SIP Session Progress

4. SIP Update

6. SIP Ringing

1. SIP Invite

2. SIP Session Progress

4. SIP Update

6. SIP Ringing

3. Resource Reservation 3. Resource Reservation

5. Ringing

Figure 2.1: An abridged voice over LTE (VoLTE) call establishment procedure
adopted from [2, Fig. 4].

Malwares can disseminate and be injected into these devices by exploiting email

attachments, SMS, or other channels [41]. We can realize the botnet’s threat

severity from [42, Fig. 17], which illustrates global botnet violations in year 2017.

2.2.1 Silent Call Attack

Silent call attack is initiated by capitalizing on voice over LTE (VoLTE)’s3

elementary design defect in call initialization process, depicted in Figure 2.1. The

process sparks off when the VoLTE-supported device calls its prey and numerous

messages flow among the caller, callee, gateways, and VoLTE servers. During the

process, recourses are reserved for the call prior to the caller sending a “session

initiation protocol (SIP) Update” message which ultimately allow the callee’s

phone to ring—this is where the malicious caller averts the message dispatch to

skip the ringing. As a consequence and as resources have already been reserved

by the network to execute the call, the calee’s phone is obliged to remain in a

3VoLTE, a voice solution proposed for 4G LTE network

17

2. Background

radio recourse control (RRC) mode that promptly bleeds the battery without the

callee’s awareness [2]. To demonstrate the attack, Xie et al. [47] have developed

VoLTECaller, an Android application.

2.2.2 Signaling Attack

Signaling attack aims to overburden a CN entity (like a gateway) which deals

with RRC-based signaling messages—transported among various network ele-

ments to facilitate effective resource orchestration [41]. A mischievous device

appeals for a bearer arrangement (called random access) during the attack to

transmit data and acquire “Connected” status; after being assigned the resources,

it stands by till the timeout and repeatedly performs this action. Colossal sig-

naling messages are generated during this process for the various network units

(like UE, e-NodeB, mobility management entity(MME), serving gateway (SGW),

and packet data network gateway (PDN-GW)) to execute. In total, bearer acti-

vation and deactivation requires 24 messages [48]—the number of messages can

significantly amplify as an LTE/LTE-A device can trigger upto 8 bearers.

A similar attack procedure can occur in 3G networks, where a user tries to

have a “DCH (dedicated channel)” state assignment [49]. A situation having

multiple users synchronously performing the signaling attack can cause a DoS

attack, forbidding legitimate users to access the network [48]. Although the above

attacks in their corresponding studies are studied in the perspective of defending

against harming a single device/user (harm such as draining out device’s battery,

unwanted billing, or some resource denial of service (DoS) to the user); but if the

attacks are considered in a massive scale, it will result in distributed DoS attack

choking a cellular network.

18

2. Background

2.2.3 SMS Flooding Attack

SMS flooding attack (also known as SMS spamming attack against IP mul-

timedia subsystem (IMS)) counts on the security vulnerabilities emanated from

the technology transfer: from 3G circuit-switched (CS)-based networks conveying

SMSs through control-plane to 4G IMS and packet-switched (PS)-based networks

conveying SMS through data-plane. The main objective is to computationally

overburden the IMS server by implanting copious counterfeited SIP/SMS mes-

sages amid a SIP session (established during the exchange of SMSs) between IMS

server and the device’s SMS client [41, 50].

A blend of the above three attacks can be staged in a dispersed and coordi-

nated manner to disrupt availability of a cellular network in a region by leveraging

the botnet [41, 46].

2.3 Big Data, Data Science, and Machine Learn-

ing

2.3.1 Big Data

Big data is an umbrella term for any collection of datasets so gargantuan

or intricate that it becomes challenging to expeditiously process them by uti-

lizing current data management theory and technologies [51]. We can describe

them using 5 v’s (as depicted in Figure 2.2), which distinguish them from the

conventional data [22, 52]: volume (quantity), variety (diversity), velocity (data

collection speed), value (valuation of the derived knowledge after data analytics),

and veracity (data precision). We can measure the value in the form of shortened

network expenditure 4, additional revenue generated, or network improvement,

4There are fundamentally two categories of expenses that MNOs endure: Capital expendi-
ture (CAPEX) denoting procurement and upgradation of equipments needed for the network,

19

2. Background

Big Data

Volume Velocity Variety Veracity Value

Figure 2.2: 5 V’s of Big Data

etc.

2.3.2 Data Science

Data science, also known as data-driven research, is a wide area involving

utility of various methodologies for analyzing the mammoth (Big) data to reveal

the hidden knowledge and insights they possess in order to answer a particular

question or set of questions [51, 53].

2.3.3 Machine Learning

Machine learning (ML) is a subgroup of a wider area of artificial intelligence

(AI). It contains researches pertaining to the automatic large-scale (Big) data

analytics that enable processing entities to accomplish optimal performance by

learning from the example dataset (or past experiences) [54, 55]. Some of the

subfields of ML including supervised, semi-supervised, and unsupervised learning

and operational expenditure (OPEX) denoting spendings related to maintenance and manage-
ment of the network functions [6].

20

2. Background

[56], are described below:

1 The aim in supervised learning, having a labeled dataset, is to figure out

the input and output relationship so that the predicted output given a new

input is precise [54].

2 The aim in unsupervised learning, having an unlabeled dataset, is to

discover the data’s latent structure, distribution, and values [51].

3 Semi-supervised learning, an amalgam of the above two, relates to the

circumstances having inadequate labeled and copious unlabeled data. In

such circumstances, semi-supervised learning is favored over the supervised

counterpart especially when the data procurement is costly or airy [53].

2.4 Common Datasets Utilized for Anomaly De-

tection

2.4.1 Minimization-of-drive-test Dataset

Cellular networks can detect anomalies by leveraging various types of data.

LTE networks broached minimization-of-drive-test (MDT) [57,58] measurements

to avoid manual drive testing and to dwindle OPEX. Hence, various studies

[1, 35, 38, 59, 60] have utilized them for anomaly detection. However, MDT data

deplete scarce network resources (communication, computation, and storage). In

addition, since MDT measurements are mostly recorded at the user end, precise

localization of the associated base station is a major problem for inaccuracy in

anomaly detection which leads to high error rates. The above-mentioned limita-

tions of MDT measurements are further elaborated in Section 3.3.

21

2. Background

C
e
ll

ID
T
im

e
sta

m
p
a

(m
illise

co
n
d
s)

C
o
u
n
try

co
d
e

S
u
b
scrib

e
r
a
ctiv

itie
s
b

S
M

S
in

S
M

S
o
u
t

C
a
ll
in

C
a
ll
o
u
t

In
te
rn

e
t

...
...

...
...

...
...

...
...

3621
1388539800000

39
0.628319

0.274365
0.137755

0.058992
10.355361

3621
1388540400000

0
0.136609

3621
1388540400000

39
0.374871

0.373152
0.147633

0.059278
15.282042

3621
1388541000000

39
0.265904

0.509475
0.000286

0.118844
12.445180

...
...

...
...

...
...

...
...

a
E
ach

en
try

rep
resen

ts
b
egin

n
in
g
of

a
10

m
in
u
tes

in
terval

in
U
n
ix

ep
o
ch
.
F
or

ex
am

p
le,

1388539800000
in
terp

rets
as

W
ed
n
esd

ay,
01

J
an

u
ary

2014,
1:30:00

A
M

(G
M
T
).

W
e
can

calcu
late

en
d
of

th
e
in
terval

b
y

ad
d
in
g
600000

m
illisecon

d
s
to

th
is
valu

e.
b
S
om

e
en
tries

are
m
issin

g
th
at

in
d
icates

n
o
activ

ity
is
record

ed
for

th
e
sp
ecifi

ed
fi
eld

.

T
ab

le
2.1:

S
am

p
le

C
D
R

d
ataset

ex
tracted

from
th
e
fi
le

p
ertain

in
g
to

1st
J
an

u
ary,

2014.

22

2. Background

2.4.2 Call Detail Record Dataset

Due to the shortcomings of MDT dataset, we rather advocate the usage of

call detail records (CDRs)—already present in the network for various purposes,

primarily for billing [61]. They are extracted from LTE-A’s core network. Fig. 2.3

depicts a general LTE-A architecture with network components and standardized

interfaces. At the higher level, it mostly comprises user equipment (UE), access

network i.e. evolved UMTS terrestrial radio access network (E-UTRAN), and CN.

A node known as evolved NodeB (eNodeB or eNB) make up the access network

and multiple logical nodes form the CN. These logical nodes include packet data

network gateway (PGW), serving gateway (SGW), mobility management entity

(MME), gateway mobile location center (GMLC), home subscriber server (HSS),

policy control and charging rules function (PCRF), and evolved serving mobile

location center (E-SMLC).

CDRs contain valuable user behavior information about the network resource

(call, SMS, and Internet) utilization (see Table 2.1 for a sample of raw CDRs)

that acts as a proxy to identify anomalies in the cellular networks. Various stud-

ies [7, 8, 62–65] have widely employed them for this purpose. This is the reason

we assume that an abnormal user traffic behavior can sufficiently emulate the

anomalies—abnormally low subscriber activity signals an outage or performance

degradation in the cell, and abnormally high activity implies a possible conges-

tion. The similar concept applied in the context of cybersecurity, further elabo-

rated in details in Chapter 7. Hence, we leverage CDRs for anomaly detection

throughout this thesis.

2.4.3 Datasets Utilized in this Work

In this study, we utilize CDR datasets which are spatiotemporal in nature and

are made available by Telecom Italia [66]. They are geo-referenced and are based

23

2. Background

SGW PGW

MME

HSS GMLC E-SMLC

PCRF

External
Network

Rx

SGi
S5/S8

S11

Gx

SLsS6a SLg

S1-MME

eNB

S1-U

CN

Control Plane

E-UTRAN

UE

User Plane

LTE-Uu

Figure 2.3: LTE-A Architecture.

on the subscriber activities from Milan and Trentino in Italy. Temporally, both

datasets are split into 62 files each representing a recording day from 1st November

2013 to 1st January 2014. For each day, they contain subscriber activity logs

recorded for every 10-min duration (timestamp). Each log entry contains the

following information:

1. Cell/Grid ID containing the identification of the associated cell/grid during

which the activity (voice, SMS or Internet) values were recorded.

2. Timestamp, containing starting value (in milliseconds and in Unix epoch

format) of the 10 minute recording period,

3. Country code,

4. Received SMS (henceforth referred as SMS in) activity,

5. Sent SMS (henceforth referred as SMS out) activity,

6. Inbound calls (henceforth referred as Call in) activity,

7. Outbound calls (henceforth referred as Call out) activity, and

24

2. Background

Cell
5638

San Siro
Stadium

(a)

(b)

(c) (d)

Milan User activity for 9 to 10 pm,
on 22nd Dec., 2013

User activity for
2 to 3 pm, on 1st

Dec., 2013

1 100

100009901

201 300

9701 9800

Figure 2.4: Visualization of Milan dataset. (a) 10, 000 subgrids are overlaid
with Milan’s map, each subgrid having a side length of 0.235 km. (b) Cell ID
5638 located near the San Siro stadium is highlighted (c) and (d) display spatial
distribution of cell ID 5638’s SMS and call, and Internet activities, respectively.

8. Internet usage.

The activities (list items 5−8) measure the communication level of the subscribers

with the base station having the designated Grid ID over a 10-min interval. The

dataset conceals the precise activity values for privacy reason and anonymize

them by giving values proportional to the real ones [67]. For instance, the larger

the number of SMS or calls made by the subscribers, the larger is the activity of

the SMS or calls made, respectively.

Milan Grid

Spatially, CDR data from Milan consists of more than 319 million user-activity

logs (with each file, out of 62, containing an average of 5.15 million logs) for a

100 × 100 grid (known as Milan grid). This makes a total of 10, 000 cells spread

across the city. Each cell is a square sub-grid and has a 235 m length and the data

cover a total area of 23.5 km2. Figure 2.4 illustrates the 10, 000 grids overlaid on

the Milan’s map.

25

2. Background

Figure 2.5: Spatial description of the Trentino dataset: Trentino grid and the
Italy’s map are superimposed by utilizing the GPS coordinates (left). For
reader’s clarity and understanding of the covered area, we enlarge Trentino grid
(right).

For dataset visualization, we choose grid ID 5638 and highlight it in Fig-

ure 2.4(a) and (b). We display aggregated SMS and call (both inbound and

outbound) activities in Figure 2.4(c), as they have the identical measurement

scale; while Figure 2.4(d) demonstrates the Internet activity. The annotations

emphasizing abnormal traffic surges on 1st and 22nd December, 2013 corresponds

to the football contests happening at that time [62, Fig. 7(a)] and [7, Table 1].

Trentino Grid

Spatially, CDR data representing the Trentino’s subscriber activities consist

of more than 171.4 million records for a total of 6, 259 grid IDs. On average,

there are 2.76 million records in each file. The data covers a 117× 98 (Trentino)

grid [66] with a single unit’s side length of about 1 km. Figure 2.5 delineates the

superimposition of the grid and the Trentino’s map generated by utilizing the

actual GPS coordinates.

26

2. Background

2.5 Performance Metrics

Various widely-used performance metrics are utilized in the thesis. We start

with elaborating the confusion matrix [68], which is based on the following com-

ponents:

• T+ve (true positive): number of classifier (anomaly detector)-labeled abnormal

instances that are verified by the ground-truth data to also be abnormal.

• T−ve (true negative): number of classifier-labeled normal instances that are

verified by the ground-truth data to also be normal.

• F+ve (false positive): number of classifier-labeled abnormal instances that are

actually normal (verified by the ground-truth data).

• F−ve (false negative): number of classifier-labeled normal instances that are

actually abnormal (verified by the ground-truth data).

We further present additional metrics build on top of the confusion matrix:

• Precision is the fragment of the positive instances which are actually positive.

It is given as follows:

Precision =
T+ve

F+ve + T+ve

, (2.1)

It shows trustworthiness of the utilized model i.e. when the model pre-

dicts/classifies a test case to be an anomaly, it is more likely to be one. In

the cellular network management’s perspective, low precision value implies

that there would be too many false positives and a significant amount of

OPEX, in terms of sending technicians to the faulty sites which are actu-

ally not faulty (in case of outage detection) and utilizing extra resources in

an ROI where in reality there is no need (in case of detection of high user

traffic activity), would be wasted.

27

2. Background

T+ve

T-veF-ve

F+ve

Precision =

Recall =

Anomaly Normal
Figure 2.6: Precision and recall.

• Recall is the fragment of T+ve instances out of the population of all positive

instances and is given as follows:

Recall =
T+ve

F−ve + T+ve

, (2.2)

Figure 2.6 illustrates the above metrics. High recall implies that our model

can capture a large fraction of anomalies i.e. it has a wide breadth.

• F1 score is the harmonic mean of the previous metrics (i.e. precision and

recall). It describes the model performance in a single number and is given

as follows:

F1 = 2
Recall × Precision

Recall + Precision
. (2.3)

• Accuracy is the degree of success for the classifier (anomaly detector) and is

28

2. Background

given as follows:

Accuracy =
T+ve + T−ve

T−ve + T+ve + F−ve + F+ve

, (2.4)

• Error rate is the fraction of falsely classified instances and is given as follows:

Error rate =
F+ve + F−ve

T−ve + T+ve + F−ve + F+ve

= 1− Accuracy, (2.5)

• FPR, false positive rate, is defined as the fragment of F+ve instances out of the

population of all negative instances and is given as follows:

FPR =
F+ve

T−ve + F+ve

, (2.6)

2.6 Challenges in the Applications of AI Tech-

niques in the Anomaly Detection

There are a few challenges related to the application of AI techniques for the

detection of outages, congestion, and various attacks towards the availability of

network services. They are mainly related to the data preprocessing. In the

context of our work, each chapter applies a different AI technique and hence

requires the Data to be preprocessed so that they can be acceptable for the

applied model. The original data need to be carefully handled since they contain

empty spaces which we fill with 0 to avoid processing error at the later stages.

Additionally, for Chapter 7, in which we applied two different DL models, the

preprocessing needs a careful consideration so that the data are appropriate for

both models to work in sync.

Beside the preprocessing, another major challenge we face in this research is

the shortage of labeled dataset. Milan and Trentino dataset lack labels and hence

29

2. Background

we utilize a statistical technique to generate synthetic labels.

2.7 Conclusion

This chapter has presented preliminary topics before starting the proposed

frameworks in later chapters. The topics mainly included the explanation about

various anomalies considered in this work; a brief description of big data, data

science and machine learning; and the elaboration of datasets utilized for anomaly

detection followed by the details and visualization of the CDR datasets.

30

Chapter 3

Design, Analysis and

Performance Characterization of

Semi-Supervised

Statistical-Based Cell Outage and

Congestion Detection Framework

3.1 Motivation for Utilizing Semi-Supervised Tech-

nique for Anomaly Detection

The available CDR datasets utilized in this work are unlabeled. Since anoma-

lies as compared with the normal instances are lesser in practice, using super-

vised learning techniques becomes unfeasible as they demand labeled dataset

for the purpose of classification. In addition, as an anomaly can occur due to

multi-fold reasons contingent upon the application domain, it is usually costly

for the project managers/researchers to acquire data which represent every kind

31

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

of anomaly. Semi-supervised or unsupervised ML techniques can provide the so-

lution under such circumstances and can discover abnormalities, depending on

whether the available data is partially-labeled or unlabeled, respectively [14].

3.2 Overview and Contributions

In this chapter, we apply a semi-supervised statistical-based machine learning

method to detect network’s suspicious demeanor by analyzing the spatiotempo-

ral information (i.e. CDRs based on Milan grid) on hourly basis. The method

is essentially model-based, which assumes the data is distributed according to

a Gaussian distribution i.e. x ∼ N (μ, σ2) with mean μ and variance σ2 as pa-

rameters [69] and that the normal data instances exist in the high probability

area while abnormal data instances lie in the low probability area of a statistical

model [14]. It generates a normal profile based on the observed pattern of the

given data by fitting the model to the given data and then evaluates unseen test

data instances with respect to how well they fit the model. Instances which differ

significantly from the normal profile are marked as anomalies [70].

Following are the main contributions of this work:

1. A new approach for anomaly detection in wireless networks is proposed which

is independent of any key performance indicator (KPI) and rather requires

the already-available user-specific data (CDRs). As a consequence, outage

irrespective of the kind of failure which caused it can be detected.

2. A consolidated method is presented which also detects an anomaly correspond-

ing to the soared subscriber activity leading towards congestion, besides the

sleeping cell.

3. Instead of detecting anomalies in the past 1 week data (which was done in

Parwez et al. [7]), this method can successfully identify anomalies in the

32

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

past one hour by utilizing data science and machining learning tools to

leverage Big Data containing past 2 months user activity data.

3.3 Literature Survey

The problem of anomaly detection is an old one as it depends on the overall

context before defining the anomaly; this makes anomaly detection a broad area

and therefore it has been investigated in many works [16, 71, 72]. Various ML

algorithms have been employed in the literature based on unsupervised, super-

vised, and semi-supervised learning methods involving a variety of techniques like

knowledge-based or soft computing-based, clustering, classification, and statisti-

cal techniques [73].

To discover collective anomalies, Plessis et al. [71] presented an unsupervised

detection method utilized for a chain of captured events from the mobile network.

They simulated mobile devices behavior using a few days of data extracted from

a commercial LTE network to determine abnormal patterns and detect anomalies

precipitated due to (1) user and network device problems, and (2) development

of abnormal and abrupt events like earthquake.

The researchers in [72] proposed a semi-supervised framework for fuzzy classification-

based anomaly detection in self-organizing networks (SONs). Problems related

to capacity and coverage bring forth by lofty interference from the adjoining base

stations are equated as anomalies. Principal component analysis (PCA) is em-

ployed to convert the simulator data (constructed from terminal measurements

and KPIs) into a lower dimension form.

A knowledge-based, specifically a rule-based, technique is proposed by Karatepe

et al. [16] in which location-based anomalies are identified by analyzing CDRs

of the intercity traveling users. Anomalies can be caused by the network-side

misconfiguration of position information or the incorrect mappings of associated

33

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

location features in an IT system. The technique incorporates subscriber device’s

traveling velocity to set a pre-defined rule for the technique to utilize.

The above-mentioned works deal with a broad range of anomalies while the

following works treat outage or congestion situation as an anomaly. Detection

of catatonic cell caused by hardware malfunction is the focus in articles [32, 35,

38, 74, 75]. Mueller et al. [74] employed an algorithm that uses neighbor cell list

(NCL) reporting of mobile devices for anomaly detection. However, the algorithm

yields high false alarm rate which questions the practicality of the algorithm in

real-world applications.

K-means clustering, an unsupervised technique, is applied by Chernogorov et

al. [32] for anomaly detection after reducing the dataset dimensionality using dif-

fusion maps. Likewise, k-nearest neighbors (K-NN) and local outlier factor (LOF)

algorithms are employed by Zoha et al. in [38] along with one-class support vec-

tor machine (OCSVM) algorithm in their elongated work [35], after reducing the

dataset dimensionality using multidimensional scaling (MDS) method to identify

the anomalies. The authors used various KPIs extracted through MDT mea-

surement dataset for the purpose. Additionally, they utilized the geographical

data linked with the measurements to locate the outage cell. But, a major dis-

advantage of periodic measurements1 is they deplete ample user and network

resources [33]. Moreover, the cogency of the acquired location is questionable

because location information is not present in every MDT measurement and for

the samples in which it is present, the localization accuracy is not adequate to

pinpoint the source base station [58]. Research by Turkka et al. [75] also shares

the above-mentioned limitations.

In contrast to the above works, RACH (instead of hardware) failure is the

center of attention of the studies described below. Chernogorov et al. in [76] and

1There are 2 kinds of MDT measurements: logged and immediate. Immediate MDT mea-
surements are used in [35, 38], constituting 2 measurement modes: event-triggered and peri-
odic [33].

34

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

[33] proposed a N-gram analysis (a data-mining technique)-based semi-supervised

model for the purpose by analyzing event-triggered MDT measurements. Minor

component analysis (MCA) technique is utilized by the model to reduce the

dataset dimensions and K-NN anomaly score algorithm for anomaly detection.

The authors utilized different mapping techniques at the post-processing phase

for localizing the outages by using the abnormal MDT measurements; however,

the location accuracy is dubious.

Additionally, Parwez et al. [7] leveraged CDRs-based big data (Milan dataset)

to detect network’s abnormal conduct (anomaly) in terms of abrupt hike in traffic

activity which can initiate congestion. K-means and Hierarchical (unsupervised)

clustering algorithms were employed for this purpose and the proposed solution

yielded 90% accuracy. However, time-efficiency of the proposed method is a major

concern as it was utilizing past week data for the anomaly detection which might

loose the practical utility; as, by the time framework detects the anomaly, MNO

would have already gotten the information from the irritated customers.

This chapter attempts to overcome some of the above-mentioned limitations

of various works with the following salient features:

1. Since this work utilizes CDRs instead of MDT measurements, it provides

a lighter solution as unlike the latter the former are already present in the

network and hence save the precious network resources.

2. As MDT measurements face issues related to localization inaccuracy which

leads to misclassification of anomalous cells, CDRs don’t have such limita-

tions by design as they are generated in the core network rather than at the

user end. Each CDR log contains Cell ID which indicates the identification

of the base station which is linked with the recorded activity values. We

utilize Cell IDs to easily and accurately locate the anomalous cell in this re-

search. Our method basically processes the traffic activities in a chosen Cell

35

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

ID and contrast them with the previous activity values at the same hour

to detect an anomaly; this makes localization of individual user equipments

irrelevant.

3. Since we avoid MDTmeasurements containing various KPIs which are lever-

aged to detect different types of outage cells, as observed in this literature

survey section; our method is general and can detect outage cell irrespective

of the failure which initiated it.

4. In practice, outage stays undisclosed for several hours to a few days in

existing wireless networks [35]. Our proposed method detects and pinpoints

its location in an hour instead of taking a week (as was done in Parwez et

al. [7]).

5. Our work is dual-purpose as it not just detects outage but also a situation

leading towards congestion i.e. traffic activity hike.

3.4 Anomaly Detection Framework Design

3.4.1 Data Preprocessing

Below-mentioned are the reasons why the raw CDRs can’t be directly used

by our algorithm, which raises a demand for their preprocessing [53]:

1. The algorithm will generate error if data with empty entries are passed on.

Milan dataset contain high volume of such instances.

2. Original CDRs are split up into 62 files, each pertaining to a single day.

3. There are some needless parameters in the dataset which are not required

for this work, for example, “Internet” activity and “Country code”.

36

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

…
…

…
…

..…
…

…
…

…
…

…

…
…

…
…

..…
…

…
…

…
…

…

…
…

…
…

..…
…

…
…

…
…

…

…
…

…
…

..…
…

…
…

…
…

…

…
…

…
…

..…
…

…
…

…
…

…

…
…

…
…

..…
…

…
…

…
…

…

……………………..

……………………..
……………………..

……………………..
……………………..

……………………..
……………………..

……………………..
……………………..

Total 24 slots for activity of each hour
Contains measures of
SMS and Call activity

To
ta

l 6
2

Da
ys

(a) (b)

Figure 3.1: Dataset visualization: (a) Original CDR dataset represented as a
62×24 matrix. Each unit representing the activity (SMS and Call) value regis-
tered in an hour. (b) Ribbon diagram for Grid 1’s traffic activity.

Following are preprocessing steps (also given in Step 1 of Algorithm 1) which

ensure the final form of the data is compatible with our proposed algorithm [51]:

1. Cleansing: We impute 0 in the empty activity entries.

2. Combination. Since SMS and Call activities share the same scale [66], we

add them to create a single item; henceforth referred as “activity”. We then

aggregate activities in 10-minute timestamps to convert them into activities

collected for every hour. Lastly, we compose a 62 × 24 dataset, as shown

in Figure 3.1(a). It represents hourly activities for 24 hours in 62 days for

which the data is available.

3. Transformation. For a selected grid ID and an hour, we constitute a 62-row

vector which represents activities of 62 days. Although any hour can be

chosen, for this work we choose 11am to 12pm (a rush hour) for further

proceedings.

We utilized MATLAB version 2017a for preprocessing as it efficiently handled

the available dataset.

37

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

3.4.2 Splitting the Dataset

We split the dataset as follows:

1. Training set, containing 70% i.e. 44 examples of the total 62, is the set from

which our Gaussian-based algorithm learns by analyzing the normal traffic

behavior. These examples are unlabeled.

2. Cross-validation (CV) set and Test set, each contain 15% i.e. 18 examples

of the total 62 and are labeled. To determine the optimal threshold value,

we employ CV set and the test set is employed for anomaly detection since

it contains unseen instances by the algorithm.

The chosen dataset splitting ratio is a common practice, for example, as done

in [77]. We assume the original dataset mostly contains normal instances since it

is unlabeled and provided by the network operator itself; however some abnormal

instances can also be presented indicating high traffic activity which is actually

confirmed by the results in [7]. Our semi-supervised ML-based algorithm requires

a few labeled (both normal and abnormal) instances. In practice, labeled data can

be generated by utilizing information about the past anomalous occurrences in

the network for which outage or congestion occurred due to abrupt user activities.

In this connection, the CV set must contain small amounts of those anomalies

for its function and hence are artificially created, for example, by manually in-

serting low and high user activity values. Similarly, many artificial examples are

also injected into the test set and are labeled as anomalies if their value deviates

more than 2σ (standard deviation) from the mean of training set examples. An

instance at 0 is also considered which correspond to a catatonic cell condition

having no user activity and is labeled as an anomaly. The injection of instances

in the test set is performed in order to demonstrate the performance of our al-

gorithm by applying various performance metrics that requires labeled test set,

discussed later in this section.

38

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

0 20 40 60 80 100 120 140 160 180
Days

0

10

20

30

40

50

Ac
tiv

ity

Test Set (containing both,
Original and artificial examples)Training Set

CV Set (containing both,
Original and artificial
examples)

X 57
Y 58.72

Figure 3.2: Illustration of complete dataset used for anomaly detection in Grid 1
for 1100 to 1200 hours.

The test set instances can be considered as the cases that resemble what our

algorithm will be asked to process in the future. In general, given a new instance

x
(i)
test, the main purpose of the algorithm is to find if it is normal or anomalous and

thus, it can be treated as a binary classification problem. Figure 3.2 illustrates

the complete dataset including training, CV and test set, used for Grid 1 for

11am to 12pm.

3.4.3 Semi-Supervised Statistical Based Anomaly Detec-

tor

After splitting the dataset into training, CV, and test sets, the algorithm

estimates the distribution parameters, mean μ1.... . . μn and variance σ2
1.σ

2
n,

39

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

Algorithm 1 Semi-Supervised Statistical Based Anomaly Detection Method

Inputs: GRID ID: Identification of the current grid.
h: Selected hour for analysis.
CDR Dataset: Files containing user activities of SMS and Calls (both inbound
and outbound), and Internet in addition to other entities mentioned in Section
2.4.3.
Output: Anomalies detected in grid GRID ID for h hour.
Method:
1. For grid GRID ID, do the following steps for data preprocessing:
1.1. Fill missing entries in CDR with 0.
1.2. Add all the user activities (except internet) to form a single entity.
1.3. Aggregate the single entity for the 10 minute timestamps to make it for

one hour, for a total of 24 hours and for each day i.e. for every file.
1.4. Construct a 62× 24 matrix representing the user activity for 24 hours for

62 days.
1.5. Extract user activity for h hour and form a row vector containing activity

of each day.
2. Split the row vector into training, CV and test sets.
2.1. Add few artificial anomalies into the CV and test sets as mentioned in

Section 3.4.2.
3. Using training set, calculate μj and σ2

j from Eq. 3.1 and 3.2 respectively.

4. Calculate p(x
(i)
train) from Eq. 3.3.

5. Using CV set, select best ε (variable initialized 0 and outside the following
for loop) which maximizes F1 score in Eq. 2.3, by implementing the following:

5.1. Calculate p(x
(i)
CV) from Eq. 3.3 using old parameters.

5.2. for various values of ε
Mark anomalies if p(x

(i)
CV) < ε.

Compute TP, FP, TN and FN as per description given in Section 3.4.3.
Compute Precision, Recall and F1 score from Eq. 2.1, 2.2 and 2.2,
respectively.

if current F1 score > best F1 score (variable initialized 0 and outside
this for loop)

Update best F1 score to current F1 score.
Set the current ε to best ε.

end
end

6. Calculate p(x
(i)
test) using Eq. 3.3 using old parameters.

7. Mark xtest as anomaly if p(xtest) < best ε, normal if p(xtest) ≥ best ε.
8. Mark xtrain as anomaly if p(xtrain) < best ε, normal if p(xtrain) ≥ best ε.

from the training set {x(1), , x(m)}(x(i) ∈ R
n) using the following equations:

μj =
1

m

m∑
i=1

x
(i)
j , (3.1)

40

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

σ2
j =

1

m

m∑
i=1

(x
(i)
j − μj)

2, (3.2)

where, j is the index of the feature, n is the total number of features and m

is the total number of examples. Since our dataset is one-dimensional i.e. con-

taining single-entry user activity, j and n are equal to one. Then, we can apply

and adjust the general statistical anomaly-detection approach invented by the

machine-learning research community [30] to our specific problem in cellular net-

works. The specific scheme for our framework is summarized in Algorithm 1.

The algorithm fits Gaussian model on the training set by computing probability

density estimation p(x
(i)
train) for each training example:

p(x(i)) =
n∏

j=1

p(x
(i)
j ;μj, σ

2
j)

=
n∏

j=1

1√
2πσj

exp(−(x
(i)
j − μj)

2

2σ2
j

) (3.3)

We are interested to identify the anomalous examples which are more likely to

have a very low probability. This can be done by selecting a threshold ε based on

CV set {(x(1)
CV , y

(1)
CV),, (x

(mCV)
CV , y

(mCV)
CV)}, where the label y = 1 corresponds

to an anomalous example and y = 0 corresponds to a normal example. For each

CV example, density estimation p(x
(i)
CV) is computed by using Eq. 3.3 with old

parameters. Using all these probabilities {p(x(1)
CV),, p(x

(mCV)
CV)} and corre-

sponding ground truth labels {y(1)CV , ..., y
(mCV)
CV }, we run an iterative process where

a confusion matrix, elaborated in Section 2.5, is computed for many different

values of ε. Note, as the CV set is labeled, the anomalous examples in the CV

set is supposed to represent past occurrences of a network at which there was an

actual anomaly. Hence, we term the labels of CV set as ground truth labels in

this paper.

Using confusion matrix, Precision, Recall, and F1 score are subsequently calcu-

41

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

lated. The value of ε (denoted as best ε in Algorithm 1), which corresponds to the

highest F1 score is selected. Finally, given test set {(x(1)
test, y

(1)
test),, (x

(mtest)
test , y

(mtest)
test)},

the algorithm computes density estimation p(x
(i)
test) by using Eq. 3.3 with old pa-

rameters and uses selected value of threshold ε as a dividing line to differentiate a

corresponding normal instance from an anomaly which can formally be expressed

as follows:

xtest =

⎧⎪⎪⎨
⎪⎪⎩
Anomalous, if p(xtest) < ε

Normal, if p(xtest) ≥ ε

(3.4)

The algorithm also repeats the above for the training set to detect anomalous

instances in the past data for calibration, explained in the next section.

3.4.4 Performance Metrics

We employ labeled test set and utilize prediction Accuracy, Error rate, FPR,

F1 score, Precision, and Recall (elaborated in Section 2.5) for our algorithm’s

performance analysis.

3.5 Experimental Results and Discussion

It can be examined from Figure 3.3 that the algorithm has successfully traced

unusual network behaviors i.e. anomalies, in the test as well as in the training

set, which are represented by red diamond. The test instances that significantly

deviate from the training data (which is comprised mainly of normal instances),

are marked as anomalies by the algorithm. The detected anomalies on the right

and left hand side of the figure corresponds to the surge in the traffic activity and

the outage cell, respectively, in Grid 1 from 11am to 12pm. The values in the

middle are normal instances having an inbound and outbound traffic flow as per

norm. The anomalous instance on the right hand side having user activity value

42

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

0 10 20 30 40 50
SMS and Call (both Inbound and Outbound) Activities

Tr
ai

ni
ng

 S
et

 (B
ot

to
m

) a
nd

 T
es

t S
et

 (T
op

)

Anomaly Detection for Grid No. 1, For 1100 to 1200 hours

Training Set
Test Set
Anomaly detected in corresponding Set

Anomaly detected in Training set,
indicating high traffic activity in the

original data.

Anomalies detected in
Test set, indicating a

Sleeping Cell.

Anomalies detected in Test
set, indicating very high

traffic activity.

X 58.72
Y 0.5

Figure 3.3: Anomaly Detection for Grid 1, for User Activity between 11am and
12pm

of 58.72 can also be seen as an abnormality in Figure 3.1(b). The algorithm also

marked a test instance having 0 user activity as anomaly, denoting a catatonic

cell in Figure 3.3. The rest of the marked anomalies on the left hand side of the

figure denotes a crippled cell.

In addition, the algorithm also detected unusual network behavior in the

training set and marked it an anomaly. The value of that anomaly can be seen

as being considerably diverged from the majority of the data. As the training

set consists of real instances, having measure of user traffic activity from 1st

November till 14th December 2013 (i.e. 42 days data), the detected anomaly in

training set corresponds to a real situation where the traffic activity is unusual.

In this connection, we compare our results with the ones presented by the

authors in [7], for calibration. They reported anomalies in grids 5638 to 5640

43

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

Grid 5638 Grid 5639 Grid 5640

San Siro
Stadium

Milan

Figure 3.4: Location of Grids 5638-5640 in Milan, Italy.

which were detected using the data of the first week of December, 2013 (for our

algorithm, this data is included in the training set) and upon investigation, it was

found out that the unusual network behaviors were due to very high traffic flow

which occurred because of an ongoing football match and also because of a busy

hour. We used the coordinates to locate the stadium and the road where these

anomalies occurred, illustrated in Figure 3.4. It can be seen in the figure that

grid 5638 is near a stadium named “Stadio San Siro” and grids 5639 and 5640 are

located on a nearby road. Figure 3.5(a)-(d) shows the results of our algorithm for

these grids. It can be observed, that our algorithm has successfully detected these

anomalies corresponding to high traffic activity. In addition, the algorithm has

also falsely classified a few normal instances as anomalies which are interpreted

as sleeping cells, due to their very low user activity values. Figure 3.5(c) depicts

the detected anomalies for grid 5640 in a different perspective, showing a region

having normal instances. Figure 3.5(d) shows some additional marked anomalies

44

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

(a) (b)

(c) (d)

Figure 3.5: Anomaly detection for Grids 5638-5640 in Milan, Italy for different
time instances.

which can be interpreted as the instances where there was a busy hour for several

days.

3.5.1 Performance Evaluation and Analysis of Overall Re-

sults

We have selected 200 out of a total 10, 000 grids, and also selected three

different hours for the performance evaluation of our algorithm. The selected

hours are morning hour: 7−8 am, afternoon hour: 12−1 pm and night hour: 11

pm−12 am. Test dataset is utilized to determine various performance measures

mentioned in the earlier section, the cumulative distribution function (CDF) plots

of accuracy and FPR are illustrated in Figure 3.6.

45

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

(a) (b)

Figure 3.6: Different performance measures of our algorithm, calculated using
user activity data for 200 grids at three different hours.

Table 3.1: Performance Statistics of our Anomaly Detection Algorithm

Measures Morning Afternoon Night Overall

Hour Hour Hour

Accuracy 94.29% 93.36% 90.73% 92.79%

Error rate 5.71% 6.64% 9.27% 7.21%

F1 Score 95.63% 94.61% 92.55% 94.26%

FPR 13.91% 11.41% 17.08% 14.13%

Precision 92.45% 93.68% 90.89% 92.34%

Recall 99.33% 96.29% 95.52% 97.05%

We report the performance statistics of our algorithm in Table 3.1 and its

graphical representation in Figure 3.7. Our proposed method to detect anomalies

(pertaining to outage and high surge in traffic activity), is able to achieve an

overall detection accuracy of about 92% while retaining the overall error rate

within approx. 7%. The achieved accuracy of our algorithm is about 2% higher

than the reported accuracy of [7], which detected anomalies related to only high

surge in user traffic activity. Overall precision of 92% is an evidence for our

algorithm to be trustworthy. High recall of about 97% shows our algorithm’s

wide breadth. Lastly, F1 score achieved by our algorithm is about 94%.

It can also be observed that accuracy, F1 score and recall values are slightly

46

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

Accuracy

Error ra
te

F1-Score FPR
Precision

Recall

Performance Measures

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 (1

00
%

)

Morning Hour
Afternoon Hour
Night Hour
Overall

Figure 3.7: Performance of our proposed algorithm.

higher in morning hour as compared with afternoon and night hours, while pre-

cision value for afternoon hour is higher than the rest of hours. Holistically, the

performance of the algorithm degrades at the night hour, due to very low user ac-

tivity which results in normal values being assembled near the origin and marking

anomaly if there is a slight increase in the user activity. This is also reflected in

a relatively high FPR of 17% at night hour mentioned in Table 3.1 and depicted

in Figure 3.6(a).

3.6 Summary

The purpose of this work is to utilize data science and machine learning to

make inference from the large amount of dark data (big data), which in our case

is the CDR dataset collected in 4G LTE-A network mainly for billing purpose by

the customer services department but is never utilized or even accessed by the

OAM department to derive insights about the network operations and to improve

47

3. Design, Analysis and Performance Characterization of Semi-Supervised Statistical-Based Cell
Outage and Congestion Detection Framework

the overall network’s performance [78]. To extract actionable knowledge out of it,

we utilized semi-supervised statistical-based anomaly detection algorithm which

analyzed the spatiotemporal information on hourly basis and marked anomaly

when it observed an unusual network behavior in a particular region.

The identified anomaly is further categorized into two classes. First, an outage

cell (either crippled or catatonic, and caused by any of the discussed failure)

having very low or no user activity values, for which the drive test team or

technicians can be sent immediately to take appropriate actions. Second, a region

having a very high user activity such as a stadium having an ongoing sports

match, busy highway, etc. for which additional resources may require to be

allocated for a smooth run of the network.

From the perspective of a cellular network operator, our results show that our

method successfully leverages big data to identify ROIs in time i.e. in an hour,

which otherwise would take several hours or even days [35]. Our method also

provides business value in terms of reducing OPEX because of an automatic and

prompt detection of outage cell; provides a lightweight solution for anomaly detec-

tion in a sense that it requires lesser network resources due to utilization of CDR

data; prevents serious revenue loss as timely detection of anomalies contributes in

providing enhanced user QoE and consequently reduces churn rate; and increases

user satisfaction because additional resources, when the traffic demand is high,

can be provided upon successful detection of anomalies.

The proposed method can also contribute towards self-healing capability of

the SON and can trigger cell outage compensation (COC) function upon detec-

tion of sleeping cell to maintain as much normal services to the subscribers as

possible [38,79] for example, by serving the affected users by re-connecting them

to neighboring cells until the fault is solved. In addition, the anomaly detection

method can also be functional in the perspective of smart IoT community [80],

however it needs further investigation.

48

Chapter 4

Feed-forward Deep Neural

Network and Mobile Edge

Computing-Based Cell Outage

and Congestion Detection

4.1 Motivation

Deep learning (DL) surpassed many traditional ML models’ performances and

achieved breakthroughs in various fields: genomics, natural language processing,

and computer vision [81]. In addition, mobile edge computing (MEC)—with dis-

tributed computation, storage, and network management, in contrast to central-

ized cloud computation design—has lately grabbed recognition for its possible

service in 5G cellular networks to shift computation close to the borders (e.g.

base stations and access points). The aim is to aid core network (CN) in run-

ning bulky assignments and empower computation-intensive and latency-critical

services at resource-limited user devices by utilizing colossal resources accessible

at the edges [82, 83]. Motivated by the utility of MEC and popularity of DL

49

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

technology, we speculate that DL combined with MEC might have a significant

role to play in anomaly detection.

4.2 Overview and Contributions

We develop further our last work in Chapter 3 and propose an improved

framework for the anomaly detection that achieves better detection accuracy with

reduced false positive rate (FPR) values. Our framework is MEC-supported and

run at MEC servers which are overseeing a group of base stations, as depicted in

the system model in Figure 4.1 and described in Section 4.5. Each server executes

our framework to ease off the core network’s load.

This chapter makes the following prominent additions to the existing litera-

ture:

1. Employs a framework that takes advantage of various state-of-the-art DL

techniques to achieve optimum performance. Framework is designed to

be MEC-supported, which aids in easing off the CN from bulky computa-

tions by offloading them to MEC servers for efficient and robust anomaly

detection.

2. Capitalizes on the past information (based on CDRs) to learn from the old

traffic behavior and identifies anomaly in the recently-acquired 10-minute

user activity (test instance). Previously, detection on 1-hour data was exe-

cuted and hence this work presents faster anomaly detection.

3. Incorporates a surplus feature to achieve robustness by utilizing Internet ac-

tivity, which was ignored in the past research.

50

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

4.3 Literature Survey

Identification of outages invoked by hardware misfunction is performed in

[32, 35, 38, 74, 75] having catatonic cell in focus. While [33, 76] orient towards

identifying RACH failure-based crippled cell. K-nearest neighbor (KNN) method

was employed by Imran et al. [1] which yielded 94% accuracy. Masood et al. [59]

utilized deep autoencoders for the anomaly detection. Their proposed method

utilizes different KPIs (like reference signal received power (RSRP) and signal to

interference plus noise ratio (SINR)) related to the serving and neighboring base

stations. The KPI values are acquired through MDT functionality of the LTE

network. The above-mentioned researches, however, only take into account the

spatial information acquired for an individual time incident yielding immediate

outage detection; consequently, this could lead towards a momentary result with

a small imprint on QoS and may vanish quickly afterwards [6, Sec. IV C]. Besides

outage, congestion detection is performed by Ramneek et al. [10] for the networks

ensuring a guaranteed QoS to their clients.

In contrast, the following studies utilized CDRs instead of KPIs which makes

their proposed solution lighter. Parwez et al. [7] leveraged CDR-based big data

(Milan dataset) to detect network’s abnormal conduct in terms of abrupt hike

in traffic activity which can ignite congestion. K-means and Hierarchical (unsu-

pervised) clustering algorithms were employed for this purpose and the proposed

solution yielded 90% accuracy. However, time-efficiency of the proposed method

is a major concern as it was utilizing past week data for the anomaly detection

which might loose the practical utility. Ameliorating their work, our previous

chapter’s research published [62] also used CDR-based Milan dataset to detect

traffic activity surges (apart from both crippled and catatonic-type cells) within

an hour by employing semi-supervised statistical-based method. The proposed

solution is more accurate (yielding 92% instead of 90% accuracy), lighter (since

51

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Algorithm 2 Preprocessing of the Data

Inputs: CDRDataset : comprising subscriber events (in raw form), captured
every 10-minute interval and stored in (d =) 62 documents, each reflecting a
single date.
CID : Chosen cell’s identification.
TimeStampValues : Contains numeric values of the beginning of every 10-
minute time interval (in Unix epoch) during the intended 3-hours range.
Output: Xtotal

Methodology:
1: for d in CDRDataset
2: Import and save the contents of document d in a matrix.
3: Substitute voids with 0.
4: Delete “Country code” column.
5: Delete all entries in the matrix except the ones linked with CID.
6: Delete the CID column.
7: for timestamp t in TimeStampValues
8: Add all received SMS values and save them as SMSin.
9: Add all sent SMS activity values and save them as SMSout.
10: Add all inbound call activity values and save them as CALLin.
11: Add all sent call activity values and save them as CALLout.
12: Add all Internet activity values and save them as Internet.
13: Save Internet, CALLout, CALLin, SMSout, and SMSin as a single

instance in x vector.
14: Save instance x as a column entry in matrix Xtotal.
15: end
16: end
17: return Xtotal.

it utilizes spatio-temporal data instead of KPIs), and faster (since it detects

anomalies within an hour); however, it also yielded 14% false positive rate (FPR)

indicating the wastage of precious network resources due to false alarms leading

to heightened OPEX.

The proposed method in this chapter, in contrast to the above-discussed

works, is based on data analytic procedure in which we incorporate past in-

formation (based on CDRs) having temporal characteristics for the detection of

long—instead of instantaneous/short—term anomalies. It also applies latest DL

techniques to achieve maximal accuracy and minimal FPR along-with detecting

anomalies within a timestep duration (i.e. 10 minutes).

52

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Core
Network

Pre-
processing

Raw CDRs

Input layer
Hidden layers

Output layer

SMS-in

SMS-out

Call-in

Call-out

Internet
Traffic

Core Network

Edge Server
(ES) co-located

with eNB
eNodeB

Faulty
cell

Normal cell
monitored
by eNBs

eNB-1

eNB-2

eNB-3

eNB-4

eNB-1

eNB-2

eNB-3

eNB-4

eNB-3

eNB-2

eNB-1

eNB-4

(a)

(b)

Figure 4.1: (a) System model for the proposed feed-forward DNN and MEC-
based anomaly detection framework. (b) Functioning of the edge server.

4.4 Preliminaries

4.4.1 Data Preprocessing and Synthesis

In this research, we continue with Milan dataset. For each cell, day, and 10-

minute timeslot in a 24-hour period; original CDRs are pre-processed to obtain

attributes, which are then merged to form a vector x(i) ∈ R
5 (hereafter, denoted

as an instance), with i as an index of the instance. The DL model demands a

substantial number of instances to operate on (hundreds or even thousands),

53

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

which may equate to CDRs of over a year; but, we just have 62 instances (for

each timeslot and corresponding to 62 days). For data augmentation and to get

around this limitation, we treat all instances in a 3-hour period as the ones relating

to a single 10-minute timeslot. By doing so, we have 1, 116 instances (62 days × 3

hours × 6 instances/hour) and we arrange them as a matrix Xtotal ∈ R
5 × 1,116.

Since human behaviors change throughout the day, choosing a single 3-hour

range will limit the analysis of our findings to that time frame. As a result, we

use 3 distinct ranges in our experimentations: morning, from 6 to 9 a.m.; midday,

from 11 a.m. to 2 p.m.; and evening, from 5 to 8 p.m. We summarize the pre-

processing procedure in Algorithm 2. For improving the algorithm’s effectiveness

and to get an identical distribution, we synchronously shuffle the instances Xtotal

[84, Ch. 8]. They are then split into training and test sets with 781 (70% of the

total) and 335 instances, respectively.

Since the deep neural network (DNN) used in this study is focused on super-

vised learning, labeled data is compulsory for training and testing. We synthesize

the output label y(i) ∈ R
1 (for each instance in both sets) by utilizing Euclidean

norm as it is absent in the dataset. We consider an instance x(i) in 5D Euclidean

space and label its output y(i) as 1 (anomaly) if its norm ‖x(i)‖2 departs beyond

the norm of one standard deviation (SD) σSD ∈ R
5 from the mean μ ∈ R

5:

‖μ − σSD‖2> ‖x(i)‖2> ‖μ + σSD‖2; else 0 (cell functioning as per norm). Note

that a larger SD implies that more points are included as normal and that there

are less aberrant points; this may not function well for detecting performance

divergences in a cell, so we select one SD. Using traditional statistics formulas,

we can determine the components of mean and SD. For this reason, we use the

train set. We create Ytrain ∈ R
1 × 781 and Ytest ∈ R

1 × 335 matrices by arranging

the labels from both sets.

54

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

4.4.2 Performance Metrics

We employ prediction Accuracy, Error rate, FPR, F1 score, Precision, and Re-

call (elaborated in Section 2.5) for our model’s performance analysis by exploiting

expected test set Ŷtest ∈ R
1 × 335 and actual test set Ytest labels.

4.4.3 Software

The preprocessing and results are generated by exploiting MATLAB and the

complete DNN is actualized using Python (programming language). Experimen-

tation is performed in a commercial PC (i7-7700T CPU, 16GB RAM, and Win-

dows 10 64-bit operating system).

4.5 Implementation

In this section, we briefly discuss the implementation details of L-layer feedfor-

ward deep neural network (DNN), integrated in our anomaly detection framework

and how it is trained for each individual cell—optimally tuned in terms of number

of layers, number of units each hidden layer contains, weight initialization strat-

egy, regularization, and optimization method to yield maximum performance.

Once trained, the framework residing in the MEC server can utilize the DNN to

detect anomalies in the testing phase: when CDRs arrive after every 10-min du-

ration. The framework can occasionally re-train the network as the performance

degrades over time.

4.5.1 Deep Learning Based Anomaly Detector

We apply L-layer feedforward DNN having an input layer l = 0, hidden layers

from l = 1 to L− 1 and an output layer L, illustrated in Figure 4.1(b), where L

represents number of (hidden and output) layers in the network. In contrast to

55

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

a shallow neural network (consists of one hidden layer), a DNN consists of two

or more hidden layers. It also requires comparatively lesser (artificial) neurons

or units for achieving the same amount of performance and effectively deals with

more complex problems [85, 86]. Each layer has one or more units (represented

by circles in the figure) that uses one of the following mathematically expressed

non-linear activation functions to produce the output:

Sigmoid function:

g(z) = σ(z) =
1

1 + e−z
(4.1)

Hyperbolic tangent (tanh) function:

g(z) = tanh(z) =
ez − e−z

ez + e−z
(4.2)

Rectified linear unit (ReLU) function:

g(z) = relu(z) = max(0, z) (4.3)

Leaky ReLU (LReLU) function:

g(z) = max(0.01× z, z) (4.4)

Swish function:

g(z) = z × σ(z) (4.5)

During gradient descent (GD) algorithm, the derivative of sigmoid and tanh

functions becomes very small (≈ 0) for large positive and negative values of

z, known as vanishing gradient problem. It causes slow optimization conver-

gence [84]; thus, usage of sigmoid function is restricted to the output layer for

single-label classification [87]. Tanh function typically works better as compared

with sigmoid function for training a DNN, but ReLU function [88] is computa-

56

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Y

Figure 4.2: (a) Schema of the L-layer DNN model (b) Illustration of how gradient
is computed using the chain rule of calculus in a simple 2-layer network (c) Single
building block of a DNN.

tionally cheaper and yields equal or even better performance than tanh function.

ReLU avoids vanishing gradient problem when it is activated above 0; however,

the gradient becomes 0 when the unit is inactive which could lead to a situation

when a unit never activates [89]. In contrast, Leaky ReLU [89] has a non-zero

gradient over the entire domain which prevents it from the aforementioned prob-

lems. Swish—gated version of sigmoid activation function—is a new function,

reported to yield better results as compared with ReLU [90]. Sigmoid function is

utilized in the output layer and one of the aforementioned functions is applied in

the hidden layers.

The model is shown schematically in Figure 4.2(a). In the training process, an

57

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

T
ab

le
4.1:

V
alu

es
of

H
y
p
erp

aram
eters

for
variou

s
op

tim
ization

tech
n
iq
u
es.

H
y
p
e
rp

a
ra

m
e
te
rs

G
D

M
in
i-b

a
tch

M
in
i-b

a
tch

G
D

M
in
i-b

a
tch

G
D

G
D

w
ith

m
o
m
e
n
tu

m
w
ith

A
D
A
M

N
o.

of
Iteration

s/E
p
o
ch
s

1000
1000

1000
75-400

a

L
earn

in
g
rate

α
0.0075

0.0075
0.0075

0.0075
In
itialization

H
e

H
e

H
e

H
e

M
in
i-b

atch
size

781
b

64
32

64
M
om

en
tu
m

β
-

-
0.9

-
β
1
c

-
-

-
0.9

d

β
2
c

-
-

-
0.999

d

a
S
om

e
cells

con
verged

in
lesser

n
u
m
b
er

of
ep

o
ch
s
as

com
p
ared

w
ith

oth
ers.

b
F
u
ll
b
atch

size
of

th
e
train

in
g
set.

c
C
on

trols
th
e
ex
p
on

en
tially

w
eigh

ted
averages

in
A
D
A
M
.

d
S
u
ggested

d
efau

lt
valu

es
[84,

C
h
.
8].

58

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

input matrix X ∈ R
nx×m containing m (= 781) training examples, each having

nx (= 5) features, is fed into the network along with all the parameters. The

parameters are weight matrix W [l] ∈ R
n
[l]
h ×n

[l−1]
h containing weights, and bias

vector b[l] ∈ R
n
[l]
h containing biases, where n

[l]
h is the number of hidden units of

layer l. The contained weights and biases relate to each neuron of each layer

l. Weights are initialized to small random values, to break symmetry between

the hidden units, and biases to zero [84, Ch. 8]. The information flows forward

through the network, starting from the input and moving through the hidden

layers until generating the loss L: known as forward propagation (shown using

blue blocks in Figure 4.2(a)) [84, Ch. 6]. Each layer l computes the following

equations—vectorized over all the examples to avoid explicit for-loops in the

code [91, Sec. “Vectorization”]:

Z [l] = W [l]A[l−1] + b[l] (4.6)

A[l] = g[l](Z [l]) (4.7)

where, Z [l] ∈ R
n
[l]
h ×m is a linear function (denoted by blue “Linear” blocks in

Figure 4.2(a)), A[l] ∈ R
n
[l]
h ×m is the activation function (denoted by blue “ReLU”

blocks in Figure 4.2(a)), and A[l−1] is the previous layer’s output starting with

A[0] = X. The above two equations are repeated L − 1 times for layers l = 1 to

L − 1 that utilizes ReLU activation, followed by a last repetition for layer L in

which the activation g[L] is a sigmoid function, depicted as blue “Sigmoid” block

in Figure 4.2(a).

Cross-entropy cost J , which is an average of all the losses L (or errors) of

59

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

individual examples, is expressed as:

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i))

= − 1

m

m∑
i=1

(y(i)log(a[L](i)) + (1− y(i))log(1− a[L](i))) (4.8)

where, ŷ(i), y(i) ∈ R are predicted and labeled outputs, respectively, for an exam-

ple x(i).

After propagating forward and computing the loss, the information then flows

through all the hidden layers backward starting from layer L to compute gradient

of the loss function with respect to the parameters, known as backward propa-

gation (shown using orange blocks in Figure 4.2(a)). The partial derivatives

are derived using the chain rule of calculus, explicated in Figure 4.2(b) and are

mathematically expressed below [84, Ch. 6], [91].

At layer l = L :

dA[L] =
∂L
∂A[L]

= − Y

A[L]
+

1− Y

1− A[L]
(4.9)

dZ [L] =
∂L
∂Z [L]

= A[L] − Y (4.10)

where, Y ∈ R
1×m is labeled output vector and A[L] = Ŷ ∈ R

1×m is the predicted

output vector. The post-activation gradient dA[L] and dZ [L] (computed by orange

“Sigmoid” and “Linear” blocks, respectively, on the right side of Figure 4.2(a)) is

then used to further propagate backwards. The remaining orange “Linear” and

“ReLU” blocks compute the following equations for each corresponding layer [92]:

For l :

dZ [l] =
∂L
∂Z [l]

= dA[l] ∗ g′[l] (Z [l]
)

(4.11)

60

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

dW [l] =
∂L

∂W [l]
=

1

m
dZ [l]A[l−1]T (4.12)

db[l] =
∂L
∂b[l]

=
1

m

m∑
i=1

dZ [l](i) (4.13)

dA[l−1] =
∂L

∂A[l−1]
= W [l]T dZ [l] (4.14)

L-layer DNN can be perceived in terms of a sequence of blocks, each block rep-

resenting a layer l comprising a forward and a backward propagation function. A

single building block is illustrated in Figure 4.2(c), note that forward propagation

function shares some variables with back propagation function to calculate the

required gradient. GD algorithm then utilizes the gradient to perform learning

by finding the optimal solution corresponding to a minimum cross-entropy cost

J ; achieved by iteratively updating the parameters as per following equations:

W [l] = W [l] − α dW [l] (4.15)

b[l] = b[l] − α db[l] (4.16)

where, α is the learning rate.

Once the parameters (weights and biases) are fine-tuned, the trained DNN

uses forward propagation to predict the output Ŷtest by utilizing the test set. We

empirically evaluated the impact of L and n
[l]
h on the test accuracy of our DNN; L

was varied from 2 to 20 while n
[l]
h was varied from 1 to 50. GD was applied for this

purpose with values of hyperparameters given in Table 4.1. We also experimented

with different activations in hidden layers: sigmoid, tanh, ReLU, leaky ReLU, and

Swish; and observed their effect on the DNN’s performance in terms of error rate.

For this purpose, L and n
[l]
h were set to 17 and 25, respectively, with remaining

61

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

parameters same as before. The experiment was performed on the data of several

cells and different hours.

4.5.2 Improving Performance of DNN

We leveraged different modern DL techniques in our framework, described

below, to improve and render optimal performance.

Weight Initialization Methods

A problem in training a DNN occurs when the gradient explodes or van-

ishes, due to poor weight initialization, making learning difficult. We can remedy

the situation by heedfully choosing an initialization strategy (mentioned in Fig-

ure 4.2(a)), so that the values of weights are neither too small nor too large [87,

Ch. 6]. Weight initialization can strongly affect the performance of a DNN. A

commonly used heuristic [93] is to set all the weights to normally distributed

random numbers, centered at 0 and having a variance:

V arCommon(W
[l]) =

1

n[l−1]
(4.17)

where n[l−1] is the number of input units of layer l. Xavier initialization pro-

posed in [93] yields better results for a DNN having tanh activation functions as

compared with the previous strategy. Their derived variance of weights is:

V arXavier(W
[l]) =

2

n[l−1] + n[l]
(4.18)

where n[l] is the number of output units of layer l. For ReLU activation function,

He et al. [94] proposed the following variance:

V arHe(W
[l]) =

2

n[l−1]
(4.19)

62

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Iteration: 1

= 0.5

= 0.5

= 0.5

= 0.5

= 0.5

= 0.5

Iteration: 2

Figure 4.3: Demonstration of the Dropout technique using a 4-layer DNN.

We continued with our previous model configuration and utilized the above

weight initialization strategies for several cells and hours.

Regularization

A fundamental challenge to DNN is of overfitting, in which the model performs

well on training set but fails to generalize to new examples. Regularization, which

refers to modification of the learning algorithm, is used to control overfitting and

reduce the test error [84]. L2 regularization, also known as weight decay, is the

most common type of regularization. It penalizes the square values of the weights

in the cost function in order to drive all the weights to smaller values. Smaller

values lead to simpler hypotheses, which are most generalizable [87].

Dropout [95] is another regularization technique in which neurons (along with

their connections) are randomly shut down during training of a DNN; and hence

at each iteration, a different model is trained that uses only a subset of the

total neutrons. The dropped neurons do not contribute to the training in both

forward and backward propagations. A better generalization to an unseen data

can be achieved as this technique prevents the network to have dependency on any

particular neuron by making its presence unreliable [96]. Figure 4.3 demonstrates

dropout mechanism using a 4-layer network (for simplicity), in which p is the

63

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

retention probability.

Our experiments embed the above-discussed regularization techniques in the

DNN model.

Optimization Methods

Besides GD—also known as batch GD—we utilized mini-batch GD, which

converges relatively faster and yields superior results [97]. It divides the training

set (X, Y) into mini-batches (X{1}, Y {1}), ..., (X{t}, Y {t}), where {t} represents

the index of a mini-batch. It is computationally efficient because it employs a

single mini-batch at a time to compute gradient before performing an update

step; as compared with GD which has to read an entire batch of training set [87].

Due to the inherent nature of mini-batch GD, the direction of the update has

some variance and hence, the path taken by it oscillates towards convergence. To

further accelerate learning and reduce oscillations, an update technique known as

momentum [84, Ch. 8] (mentioned in Figure 4.2(a)) is used with mini-batch GD.

Momentum accumulates exponentially weighted moving averages of the pre-

vious gradients and continues to move in their direction. The method can be

utilized by using Eq. 4.20 and 4.21 during the update rule instead of using Eq.

4.15 and 4.16.

W [l] = W [l] − α vdW [l] (4.20)

b[l] = b[l] − α vdb[l] (4.21)

where, vdW [l] and vdb[l] are used to store the past gradients’ values and are given

as follows:

vdW [l] = βvdW [l] + (1− β)dW [l] (4.22)

64

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

vdb[l] = βvdb[l] + (1− β)db[l] (4.23)

where, β ∈ [0, 1) is the momentum which determines the number of past gradients

that should be taken into account.

ADAM [98] is one of the most effective adaptive learning rate optimization

algorithm for training a DNN that combines ideas from momentum (described

in detail in [99]) and RMSProp (another optimization method for the details of

which, readers can refer to [100]). ADAM uses the following update rule for

weight W [l]:

W [l] = W [l] − α
vcorrected
dW [l]√

scorrected
dW [l] + ε

(4.24)

where, vcorrected
dW [l] and scorrected

dW [l] (given below) are bias corrections, of first moment

and second raw moment estimates, respectively, to account for their zero initial-

ization [84, Ch. 8], [98]; and ε is a small number added for numerical stability.

vcorrecteddW [l] =
vdW [l]

1− (β1)t
(4.25)

scorrecteddW [l] =
sdW [l]

1− (β2)t
(4.26)

where, vdW [l] and sdW [l] (given below) are exponentially weighted moving averages

of historical gradient and the squared gradient, respectively; t counts the steps

carried by ADAM update; and β1, β2 ∈ [0, 1) are hyperparameters that control

the two averages.

vdW [l] = β1 vdW [l] + (1− β1) dW
[l] (4.27)

sdW [l] = β2 sdW [l] + (1− β2) (dW
[l])2 (4.28)

The update rule for bias parameter b[l] is similar to the above rule. We imple-

65

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Table 4.2: Comparison of mini-batch gradient descent (GD) with ADAM and
Momentum.

Metric
Average over 1, 000 cell IDs

Momentum ADAM Improvement

Accuracy 90.44% 98.8% 8.36%

Error rate 9.55% 1.19% 8.36%

Precision 86.11% 99.07% 12.96%

Recall 84.54% 97.27% 12.73%

FPR 6.66% 0.44% 6.22%

F1 85.32% 98.16% 12.84%

ment ADAM in our DNN model and compare its test performance (in terms of

various metrics mentioned in Sec. 2.5) with gradient descent (GD), mini-batch

GD, and momentum. For this purpose, the hyperparameter values mentioned in

Table 4.1 are used, along with ε = 1× e−8 (suggested default value [84, Ch. 8]).

Additionally, we investigate their training time.

4.6 Experimental Results and Performance Eval-

uation

We present various experimental results in this section. Although the CDR

dataset contains records pertaining to 10, 000 cells, our DNN model performs

anomaly detection for a single cell at a time. To demonstrate robustness and

transferability of our model, we present results based (averaged) on randomly

chosen 1, 000 cell IDs out of the total 10, 000 cell IDs (available in Milan dataset).

In addition, we also present results processed by using a small subset (up to ten

cell IDs) for a detailed analysis and comparison. Note that mentioning of morning,

afternoon or evening followed by a cell ID indicates that the model is trained and

tested on a corresponding 3-hours range data (discussed in Sec. 4.4.1).

66

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 4.4: Effect of different configuration of number of layers and number of
hidden units(s) per layer on test accuracies.

4.6.1 Number of Layers and Hidden Units

The performance of a DNN can vary across the spectrum of L and n
[l]
h . In

practice, framework would search for their optimum values that yield maximum

accuracy for each cell by empirically evaluating their impact on the test accuracy

of our DNN. To demonstrate this, we vary L from 2 to 20 and n
[l]
h from 1 to

50 using data from cell IDs 1 (Afternoon hours), 1943 (Evening hours), 5638

(Morning hours), and 9607 (Evening hours)—due to the inadequate space, we

only show outcomes of these four randomly chosen cell IDs.

Our empirical results in the form of heatmaps, illustrated in Figure 4.4, elu-

cidates the impact of various settings of n
[l]
h and L on the test accuracy. We also

highlighted three particular examples signifying maximum accuracies. It can be

seen that deeper layer having moderate number of hidden units yield the highest

accuracy. Dual maximum accuracies imply that one might be computationally

efficient to attain than other. For simplicity, we set L and n
[l]
h to 17 and 25,

67

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

respectively, for our further experiments (for all cell IDs).

4.6.2 Activation Functions

We run our model with mini-batch GD having hyperparameter values listed

in Table 4.1, to find an activation function that yields maximum performance.

Figure 4.5 (top) and (bottom) illustrates the effect of utilizing various activation

functions in terms of error rate by using a subset of total cell IDs and 1, 000

cell IDs, respectively. We can clearly observe that sigmoid achieved the feeblest

performance with highest error rate for most of the cell IDs in Figure 4.5 (top)

while Swish also yielded overall poor performance that is evident in Figure 4.5

(bottom). Interestingly, for cell ID 2321, all the activations performed uniformly.

Overall, ReLU surpassed other activation functions as evident in both of the

figures and hence we choose ReLU for further experiments.

4.6.3 Weight Initializations

We continue with our previous model configuration and the randomly chosen

cell IDs, and initialize weights according to Common, Xavier, and He initialization

methods. We also set ReLU activation in hidden layers for this purpose, as

discussed previously. Figure 4.6 exemplifies the impact of selecting various weight

initialization schemes on DNN’s test accuracy. We can observe that He surpassed

other initialization strategies and yielded highest average accuracy.

4.6.4 Optimization Techniques

The superiority of mini-batch GD with momentum and ADAM over ordinary

batch GD is clear in Figure 4.7. Although, in cell ID 4671, momentum has

slightly better performance than ADAM but overall mini-batch GD with ADAM

surpassed all other optimization techniques. It accomplished highest accuracy,

68

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 4.5: Effect of using different activations on performance.

recall, and F1; and also, lowest error rate and FPR in most of the cells. Note,

for cell ID 7816, ADAM achieved a perfect performance. In Table 4.2, we report

various performance measures of our anomaly detector, averaged over the results

from randomly selected 1, 000 cell IDs, along with the improvement we got by

utilizing ADAM as compared with the momentum.

69

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Average Accuracy vs. Weight initializations

Common He Xavier

Initializations

75

80

85

90

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y
(%

)

Figure 4.6: Effects of different weight initialization techniques on the perfor-
mance.

4.6.5 Training Time

Another advantage of utilizing ADAM is faster training time that is evident in

Figure 4.8 in which we compare the average training time of our model utilizing all

the discussed optimization methods. Mini-batch GD with momentum consumes

maximum training time, while ADAM deplete the lowest, and is the most suitable

optimization method.

4.7 Conclusions and Insights for Future Work

Performance-wise, our MEC-based DL framework eclipsed the previous anomaly

detection methods [1,7,62]. It can potentially improve network’s QoS and user’s

QoE; and truncate OPEX for the network operators. Our proposed framework

accomplished 0.44% FPR (Table 4.2), a significantly reduced value as compared

with the reported 14% in [62]; and 98.8% accuracy, a great improvement as com-

pared with the reported 94% accuracy in [1].

Our study endorses the concept of harnessing the largely untapped CDRs

70

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 4.7: Effect of various optimization techniques on different performance
measures.

Training time

21.93

14.51

4.05

3.28

0

5

10

15

20

25

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Momentum

Mini-batch GD
(Batch) GD
ADAM

Optimization Method

Figure 4.8: Comparison of training time of various optimization techniques.

(using big data analytics) instead of utilizing traditional measurements and ana-

lytical approaches for the network analysis [62,101]. Our research’s main innova-

tion is the incorporation of the Internet activity feature (disregarded in previous

works [7,62]) that makes our research more robust as our DL framework can detect

anomalies pertaining to a situation when Internet activity swiftly rises/declines

71

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

but the call and SMS activities are normal. An example of such situation could be

an abruptly increased Internet activity during a music festival inferring a neces-

sity of additional network resource allotment. In addition, MEC-based approach

reliefs core network from heavy computation tasks, offloaded to various MEC

servers spread across the network.

A deterrent in practical implementation of our deep learning approach is the

requirement of deluge of examples to extract a meaningful pattern in the CDR

data; however, utilizing larger dataset—the acquisition of which is another issue

due to privacy concerns—can surmount the difficulty. We can then preprocess

the dataset using more sophisticated software: Apache Hadoop or Spark [62].

Another restraint on fully employing our approach is the possession of labeled

data due to the supervised nature of our algorithm; affixing fault data, generated

at the core network and containing historical alarms’ logs [1], with CDRs and

then labeling them accordingly can overcome this restraint.

The timestamp interval of 10 minutes is crucial for the results and hence

more variation could be tested in the future studies to determine the impact of

increasing the time duration granularity to perform more coarse-grained analysis,

i.e. take three 10-min intervals instead of just one; or the granularity can also be

decreased to perform more fine-grained analysis, i.e. by considering even smaller

than a single 10-minute interval (the practical LTE network can be set to generate

CDR dataset in such settings). Hence it will be an interesting future direction

that could be explored. In this connection, our previous work in Chapter 3

considered a 1-hour interval instead of 10 minutes—we combined six 10-minute

timestamp activities—and detected anomalies in the 1-hour user activity data by

using semi-supervised machine learning method. In the current research work,

we however chose to decrease the interval so that the anomaly detection could be

performed quickly and hence the remedial or diagnostic actions could be taken

sooner.

72

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Because of the potential of upcoming cellular networks to have an AI-empowerment,

the implemented algorithms need to be quicker, increasingly proficient and less

perplexing: future works can explore meliorative methods. We can also extend

our study for anomaly detection in Internet of things (IoT) [80]; however, due to

the limited resources (such as power consumption) the IoT devices might have

entirely different activity pattern that will need more examination. With rising

fame of DL technology, which has an enormous potential for utility in 5G net-

works, our work applies DL to accomplish substantial performance betterments

for abnormality detection. This indicates reduction in OPEX for cellular opera-

tors along with an improvement in the network’s QoS and user’s QoE.

73

4. Feed-forward Deep Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

74

Chapter 5

Deep Convolutional Neural

Network and Mobile Edge

Computing-Based Cell Outage

and Congestion Detection

5.1 Motivation

In the previous chapter, we introduced MEC paradigm for anomaly detection

and presented a feed-forward DNN-based framework which was executed at an

MEC server collocated with a based station that oversaw a number of base sta-

tions. Although the aim to introduce MEC, in which computations are offloaded

from the core network (CN) to the edge servers, was achieved; however, each

server has to execute the framework separately for each connected base station

under the proposed setting.

40–50 is the range of base stations per square kilometers estimated for 5G net-

work [102]. For instance, city of Milan could demand 7, 270−9, 088 base stations

to fully cover its region, spread over 181.76 km2. If previously proposed solu-

75

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Edge Server
(ES) co-located

with BS

Base station
(BS)

Anomalous
cells

Normal cell
monitored

by ES-2

ES-2

ES-1

Normal cell
monitored

by ES-1

(a)

BS-2

BS-3

BS-4

BS-2

BS-3

Converts raw
CDR data into

an image

Identifies the
location of

anomalous cell(s)

Edge Server

Raw CDR Data
acquisition from CN

Anomalous cell’s
information is sent to CN

Database
(training
samples)

Performs Cell
Outage &

Congestion
Detection

(b)

BS-1 BS-1

BS-4

Figure 5.1: (a) System model for the proposed deep CNN and MEC-based
anomaly detection framework. (b) Functioning of the edge server.

tion is applied for such a gigantic amount of base stations for anomaly detection,

the cellular system could be computationally choked. In addition, the biggest

drawback of executing a feed-forward DNN is the necessity for rich resources in

terms of computation, storage and power—since every block in a given layer of a

DNN is fundamentally linked to all of the previous layer’s blocks, which require

processing and storing copious parameters.

This chapter harnesses deep convolutional neural networks (CNN) to overcome

the above limitations and enable anomaly detection for all the base stations con-

nected to the MEC server, at once. The decision of choosing deep CNN is further

elaborated in Section 5.5.2.

76

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

5.2 Overview and Contributions

This chapter takes inspiration from the milestones achieved by the CNNs

in computer vision domain [81] and MEC, and proposes an innovative anomaly

detection framework which alleviates the CN from heavy computations while con-

suming lesser resources in contrast to the feed-forward DNN (applied in the previ-

ous chapter). Rather than centralized processing where user activities belonging

to all the base stations are processed at the CN, this research takes advantage of

MEC paradigm in which heavy computational works are split among edge servers

(ESs) spread across the network. The servers are co-located with the base sta-

tions and oversee a small group of base stations, as shown in Figure 5.1. They are

AI-empowered and execute CDR (Trentino grid)-based data analytics: contrary

to the previous work in Chapter 4 which employed classic feed-forward DNN, this

work employs CNNs which are far more efficacious (further discussions in Section

5.5.1). Identification of abnormal cell(s) is then sent from the servers to the core

network for further intervention. In case of a cell outage, self-healing functions

(like diagnosis and compensation) [6] are invoked and in case of spiked activ-

ity, congestion-avoidance procedures are put into action. Similar to the MEC

paradigm having cloud server as a centralized entity for processing and computa-

tions, and MEC server promoting a decentralized design for connectivity, storage,

and computation; we can overall associate our framework with the paradigm in

which the core network equates to the cloud server and the ES equates to the

MEC server [82].

This chapter makes the following prominent additions to the existing litera-

ture:

1. Presents an innovative framework fully compatible with the MEC paradigm

because of utilization of deep CNN models.

2. Utilizes state-of-the-art deep residual network (a type of CNN) for enhanced

77

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

performance in contrast to an elementary CNN model. The chapter also

presents comparative analysis of these models with training time and per-

formance in focus.

3. Presents additional experimentations and insights about the expansion of the

CNN models from detecting anomalies in 100 cells at a time to 225.

5.3 Relevant Work

In this segment, we explore cell outage detection (COD) as well as congestion

detection research that focuses on the utility of deep learning (DL) technology.

For an extensive literature review on COD, the readers can consult [6] which

is split into complete and partial CODs, each focusing on works that utilize:

Heuristic (solutions based on pre-defined rules dictated by experts) and learning-

based (solutions based on ML) methods. Additionally, Kline et al. [73] covers

COD-related works that use machine learning approaches. However, neither [73]

nor [6] contain any researches that use DL technologies for COD.

Our work in Chapter 4 (published in [3, 99]) suggested a method for detect-

ing abnormalities in a single cell of a cellular network using feed-forward DNN.

It pre-processes activity data to generate a 5D vector (each dimension of which

corresponds to a single user activity of the designated base station), accepted as

the input. The binary output 0 indicates a normal condition while 1 indicates an

abnormality. However, because of the reasons described in the previous section,

the solution is computationally costly when extended to the entire network. Ma-

sood et al. [59] proposed a sleeping cell detector based on a deep autoencoder (a

form of feed-forward DNN) that uses simulator-generated user device data based

on minimize drive test (MDT) measurements. The data consists of adjacent and

serving BSs’ reference signal received power (RSRP) and signal to interference

78

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

plus noise ratio (SINR) values. The model was trained using data from a typi-

cal operation using seven macro cells, and it was tested using the data from an

outage situation. The main flaw in their method, as stated in [6, Sec. IV C], is

that they only took into account spatial data gathered for a single case, which

results in instantaneous identification of sleeping cells. As a result, the observed

anomaly may be transient, with no effect on QoS, and may disappear until it is

compensated.

Both, our previous work and Masood et al. [59] reported that their DL-based

anomaly detection methods outperformed traditional ML approaches: semi-supervised

statistical-based detection [62] and one-class support vector machine-based detec-

tion, respectively. Our preference for deep learning models over standard machine

learning models stems from this rationale.

As part of their paper, Ramneek et al. [10] proposed an empirical solution for

congestion detection in QoS-enabled networks. The key concept is to assess the

congestion level by monitoring network load using information derived from the

QoS-based scheduler. Parwez et al. [7] suggested a method for identifying region

of interests (ROIs) as anomalies of extraordinarily high consumer traffic behavior

using big-data (CDR) analytics and ML algorithms. Their method is inefficient

for applications that need immediate identification since they examined CDRs for

one week. To overcome this constraint and based on the fact that such ROIs will

have congestion if suitable steps are delayed, our work in Chapter 3 (published

in [62]) suggested a semi-supervised ML algorithm to detect surged user traffic

in a cell’s recent one hour CDR data by evaluating its past subscriber activity

behavior. We also suggested a DL method for the identification of such ROIs in

our subsequent work in Chapter 4 (published in [99]), which reduced the detection

time from one hour to ten minutes while also improving the efficiency.

In comparison to all of the previous works, our methodology is unique in that

it uses deep CNNs rather than feed-forward DNNs and a MEC-based structure

79

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

to distribute the computational load of the CN through many ESs, resulting in

a lighter solution for anomaly detection. Our strategy is agile because we use

already-available (CDR) data rather than requiring new KPI-based data [62]. It

senses irregularities (such as outages and spiked traffic activity that could cause

congestion) in several cells at once. Our method takes into account both spatial

and temporal aspects, allowing us to track long-term outages rather than the

instant ones.

5.4 Preliminaries

5.4.1 System Model

The system model is shown in Figure 5.1(a). For this work, we consider

Trentino grid, described in Sec. 2.4.3. The main idea is to divide a network

into regions called sub-grids, each consisting 100 cells and an edge server (ES)

co-located with one of the BSs. The ES is equipped with our proposed anomaly

detection framework that mainly handles preprocessing and comprises a deep

CNN model. For every subsequent 10-min duration, the following process (illus-

trated in Figure 5.1(b)) executes:

1. ES acquires raw CDR data of each cell in its sub-grid from the CN;

2. Framework pre-processes the data to construct a grid-image that is accept-

able as an input by the deep CNN model;

3. Model trains on a dataset (available in the attached database) containing

past user behavior of the cells and detects anomalous cell(s) in the current

example;

4. ES passes information of the faulty cell(s) to the CN that further takes

curative actions.

80

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 5.2: Trentino dataset’s spatial description. 10×10 subgrid (red) is chosen
for our experiments while 15 × 15 sub-grid (blue) is chosen to demonstrate the
scalability of our proposed method.

5.4.2 Data Preprocessing and Synthesis

CNN processes grid-like data such as a time-series or an image [84, Ch. 9].

In preprocessing stage, we convert raw CDRs into a 10×10×5 3D matrix x(i) ∈
R

n
[0]
H ×n

[0]
W×n

[0]
C henceforth referred as “grid-image”, where i is the index, n

[0]
H is the

height, n
[0]
W is the width, and n

[0]
C is the number of channels of the grid-image. The

height and width make up 100 entries representing cells chosen from the bottom

81

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

portion of the Trentino grid, illustrated as red squares in Figure 5.2. The channels

comprise 5 feature (subscriber activity) values of the selected cells: Call incoming,

SMS incoming, call outgoing, SMS outgoing, and Internet usage. Hence, each

pixel of the grid-image contains the above activity values of a corresponding cell,

recorded during a 10-min duration. In order to excavate meaningful pattern

in the dataset, an avalanche of examples each representing past instances are

required; however, only 62 instances are available in the current dataset for each

time-resolution. To remedy this, we combine timestamps for a 3-hour duration

and generate 1,116 grid-images (6 timestamps per hour × 3 hours × 62 days),

represented as a 4D matrix Xtotal ∈ R
m×n

[0]
H ×n

[0]
W×n

[0]
C , where m is the total number

of grid-images.

Since we are dealing with supervised learning and have unlabeled data, we

generate labels Ytotal ∈ R
m×100 on the basis of euclidean distance, where 100

represents the total number of output classes (each denoting a cell). An output

class indicating 1 means an anomaly and the corresponding cell is faulty, and 0

means the corresponding cell’s operation is normal. For each output class, we

mark 1 if ‖μ− σ‖2> ‖a‖2> ‖μ+ σ‖2, where a ∈ R
5 represents the corresponding

cell’s activity. The elements of mean μ ∈ R
5 and standard deviation σ ∈ R

5 can

be calculated using standard textbook equations (Eq. 3.1, 3.2).

5.4.3 Shuffling and Splitting the Data

The order of Xtotal and Ytotal is synchronously shuffled to make the algorithm

more effective since it is using mini-batches (a subset of the entire dataset). The

mini-batches enable the optimization algorithm (mini-batch gradient descent)

to rapidly compute approximate gradient estimates instead of computing exact

gradient, making the algorithm converge faster [84, Ch. 8]. The shuffled dataset

is then split into training and test sets according to a ratio of 7:3, each comprising

82

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

781 and 335 grid-images with labels, respectively.

5.4.4 Performance Metrics

For the performance evaluation of our framework, we utilized the following

common metrics of machine learning literature: precision, recall, accuracy, error

rate, false positive rate (FPR), and F1. They a re elaborated in Section 2.5.

5.4.5 Software

MATLAB was exploited for preprocessing, GPS mapping, and results genera-

tion. Keras [103] was also utilized to actualize the CNN models. Experimentation

was performed in a commercial PC (i7-7700T CPU, 16GB RAM, and Windows

10 64-bit operating system) with an in-built GPU (NVIDIA GeForce 930MX).

5.5 Implementation of Anomaly Detector

In this section, we describe generic architecture of the CNN followed by a

discussion on how it fits in with our research, the architecture’s utility in building

a relatively simple deep CNN model and lastly, we describe the ResNet-50 model.

5.5.1 CNN’s Generic Architecture

CNN [84, Ch. 9] has the following three fundamental layers, as can also be

found in Figure 5.3(a):

Convolution layer

It accepts an input volume (or activations of previous layer)A[l−1] ∈ R
m×n

[l−1]
H ×n

[l−1]
W ×n

[l−1]
C ,

where l represents number of the current layer; and filters F [l] ∈ R
f [l]×f [l]×n

[l−1]
C ×n

[l]
C ,

where f [l] is the filter size, f [l]×f [l]×n
[l−1]
C is the dimension of a single filter and n

[l]
C

83

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Zero
Padding

p

C
onv1

2 X 2, 8
(i.e. f

s

FC
2

Phase 1
Phase 2

Phase 3
Phase 4

Phase 5

p = 5

(B
inary cross

entropy loss
function)

f = 3
s = 2

7x7, 64
s = 2

C
onv M

odule

a
[l]

a
[l+3]

1x1, F
3

Stride s

3 x 3, F
2

p is “sam
e”

1x1, F
3

Skip
connections

M
ain paths a

[l]
a

[l+3]

1x1, F
1

3 x 3, F
2

p is “sam
e”

1x1, F
3

ID
 M

odule

1x1, F
1

Stride s

M
axPool1

f s
C

onv2

2 X 2, 16
(i.e. f

s

M
axPool2

f s

C
onv3

1 X 1, 32
(i.e. f

s

M
axPool3

f s

FC
1

F
igu

re
5.3:

A
rch

itectu
re

of
(a
)
S
im

p
le

m
o
d
el

w
ith

th
e
red

b
ox

h
igh

ligh
tin

g
p
o
olin

g
fu
n
ction

d
elin

iated
in

F
igu

re
5.4

an
d
(b

)
resid

u
al

n
etw

ork
m
o
d
el

w
ith

50
layers

(R
esN

et-50).
(c)

C
on

v
an

d
ID

m
o
d
u
les

of
R
esN

et-50
m
o
d
el.

84

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

is the total number of filters. The convolution layer performs parallel convolution

operations between input volume and each filter, adds bias, applies a rectified

linear unit (ReLU) [84, Sec. 6.3] function and lastly, stack up each result to form

an output A[l] ∈ R
m×n

[l]
H×n

[l]
W×n

[l]
C . The height n

[l]
H can be calculated as:

n
[l]
H = �n

[l−1]
H + 2p[l] − f [l]

s[l]
+ 1	 (5.1)

where, p[l] is the number of padding and s[l] is the stride. Padding is a technique

to add zeros around the border of the input image to prevent the height and

width from shrinking, as output dimension reduces due to convolution operation.

Stride is the distance between successive utilization of filter on the input volume.

Formula for width n
[l]
W can be written by replacing n

[l−1]
H with n

[l−1]
W in Eq. 5.1.

Pooling layer

It improves computational efficiency, reduces requirement for storing param-

eters and adds robustness to some of the detected features [84, Sec. 9.3]. Max

function is commonly utilized in pooling layers that pools maximum numbers

from regions of input volume (and from each channel, independently) depending

on the filter size f , to generate the output volume. If the dimension of input

volume is nH × nW × nC , the dimension of output volume can be derived using

Eq. 5.1 with p = 0 as �nH−f
s

+ 1	 × �nW−f
s

+ 1	 × nC .

As an example, we consider MaxPool1 layer, illustrated in Figure 5.4(a). The

pooling layer accepts an input volume having 13× 13× 8 dimension and results

a volume of 6 × 6 × 8 dimension—the height and width is calculated by using

Eq. 5.1. The layer utilizes following hyperparameters: filter size f = 2 and stride

s = 2. This combination of hyperparameter values is common and it shrinks

the input’s size by a factor of 2. For simplicity, we demonstrate the max pooling

operation in a single channel, illustrated in Figure 5.4(b). The layer slides a (f, f)

85

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

MaxPool1

f
s

(2, 2)
window

s=2
…….

…
…
.…
.

….

.…
.

Figure 5.4: Max-Pooling Layer’s functioning.

window over input and stores the maximum value of the window in the output.

It performs the same operation for each channel and finally stacks the results to

form the output volume.

Fully connected layer

It functions like the hidden layer of a feed-forward neural network (described

thoroughly in the previous chapter), in which each hidden unit is connected to

all hidden units of the previous layer.

5.5.2 Why Choose CNN?

Parameter sharing and sparse interactions [84, Sec. 9.2] are the main rea-

sons for CNN’s popularity and dramatic increase in computational efficiency as

compared with feed-forward neural networks; because these result in lesser pa-

86

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

rameters to compute and store. For example, consider a convolution layer Conv1

in Figure 5.3(a) having an input volume of dimensions 14 × 14 × 5, a filter size

f = 2, and 8 number of filters. Using Eq. 5.1 with p = 0 and aforementioned

values, we can calculate the dimension of output volume: 13× 13× 8. The total

number of parameters utilized in this (single convolution layer) operation is 40:

2 ∗ 2(for one filter) +1(for bias) = 5 parameters per filter and 40 parameters for

8 filters. However, if this was a feed-forward neural network, the input would

be 980 units (flatten version of the input volume: 14 ∗ 14 ∗ 5), the output would

be 1352 units (13 ∗ 13 ∗ 8), and the total number of required parameters would

be 1.32 million (980 ∗ 1352). CNN is hence faster and require lesser resources

(computation and storage). Due to the mentioned benefits and the fact that we

are dealing with grid-like data (of 100 cells), CNN is our natural choice.

5.5.3 Simple CNN Model

Many models available today have put together the building blocks in differ-

ent settings (in terms of number of layers and the approach of connecting them

together) to form a CNN. LeNet-5 [92], AlexNet [104] and VGG [105] are some

of the classical CNN models; while ResNet [106] and Inception-v4 [107] represent

some modern ones (readers can refer to [103, Sec. Applications] for an exhaustive

list of modern CNN models).

Our first approach, illustrated in Figure 5.3(a), is inspired from works of

the aforementioned classical models, in which we utilize the building blocks in

addition to batch normalization (thoroughly explained in the next paragraph)

to detect anomalies. Our model accepts a 10 × 10 × 5 grid-image as an input.

It then pads zero along the edges (zero-padding) with p = 2 and passes the

volume to a series of convolution and pooling layers (Conv1, MaxPool1, Conv2,

MaxPool2, Conv3, MaxPool3). The dimension of output volume of each layer

87

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

can be computed by utilizing Eq. 5.1. The resultant volume is finally flattened

and passed through two fully connected layers (FC1 and FC2). Finally, we

utilize binary cross entropy loss function for a multi-labeled output as each class

is not mutually exclusive.

Batch normalization (BN) [108] is a powerful technique of adaptive re-parametrization,

used to accelerate training process and make DNN more robust. Training a DNN

leads to a problem of covariance shift: distribution of earlier layers’ parameters

shifts, that affects the later layer’s capability to adopt accordingly and results in

a slow training process. Instead of just normalizing the input features values of

the network, the technique normalizes the activations of each hidden layer. It

makes the deeper layers’ parameters more robust to changes, to earlier layers’

parameters; hence, enhancing the network’s stability [84, Sec. 8.7], [108]. Read-

ers can refer to [109] for more detailed analysis on BN. We apply BN after the

convolution operation and before utilizing the activation function. Therefore in

Figure 5.3(a), each convolution layer incorporates BN in addition to convolution

operation and ReLU activation.

5.5.4 Residual Network Model

To enhance the performance of our framework, we utilized residual network

comprising 50 layers (ResNet-50), as shown in Figure 5.3(b). Depth of a neural

network plays a crucial role in accurately representing more complex functions and

in raising the overall network’s performance [105]. However, deeper networks are

harder to train as they suffer from gradient vanishing and exploding problems [84]

that hinder with the convergence of the network, making it unbearably slow.

Deeper networks also suffer from a degradation problem: as we add more layers

the accuracy saturates and then quickly reduces, leading to an elevated training

error [106].

88

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Residual network [106] effectively deals with these problems by stacking resid-

ual modules on top of one another, shown as Phase 2 − 5 in Figure 5.3(b). We

first elaborate functioning of a residual module used in the residual networks by

using ID module of Figure 5.3(c). In the figure, the information flows from input

a[l] to the output activation a[l+3] through two unique paths. The downward path,

called main path, has three parts. The information first goes via initial part con-

sisting three blocks having a convolution layer, BN, and a non-linear activation

function, respectively; governed by the following standard equations:

z[l+1] = W [l+1]a[l] + b[l+1] (5.2)

a[l+1] = g(z[l+1]) (5.3)

where, W [l+1] is the weight matrix, b[l] is the bias vector, g(.) is the non-linear

activation function, a[l] is the input, and a[l+1] is the output of the initial part.

The BN is utilized throughout the model to boost up the training.

Similarly, the blocks in the third part are governed by the following equations

(ignoring the other path and a summation operation):

z[l+3] = W [l+3]a[l+2] + b[l+3] (5.4)

a[l+3] = g(z[l+3]) (5.5)

In residual networks, a[l] is fast-forwarded to a deeper hidden layer in the neu-

ral network where it is summed up with the output of that layer before applying

a non-linear activation function. This is known as a skip connection, as shown in

the figure. Hence, Eq. 5.5 will be altered as follows:

a[l+3] = g(z[l+3] + a[l]) (5.6)

89

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

The addition of a[l] makes it a residual module and this enables the activations

of one layer to skip some layers and be directly fed to a deeper layer. This also

allows a gradient (during back-propagation) to be directly back-propagated to an

earlier layer. Here, we are assuming that the dimensions of both, input a[l] and

z[l+3] (and therefore output a[l+3]) are same in order to perform the summation.

This kind of residual module is known as identity (ID) module.

If the dimensions of input (a[l]) and output activations (a[l+3]) mismatch then

a convolution layer in the skip connection is introduced to adjust the input a[l] to

a different dimension, so that the dimensions match up in the final summation.

This type of residual module is called Convolutional (Conv) module, illustrated

in the Figure 5.3(c)(left).

Moreover, we can now analyze the residual network architecture with 50 layers

depicted in Figure 5.3(b). As an example, we can concentrate on the parts start-

ing from the input to Phase2 of the architecture. In the following, we will discuss

in term of dimensions so that the purpose of ID and Conv modules can be ex-

plained subsequently; and Eq. 5.1 is extensively utilized in computing the output

dimensions of various layers. The input grid-image having dimension 10× 10× 5

is zero-padded with padding p = 5 to have an output volume with dimension

20×20×5. It is then passed to Phase1 comprising a convolution layer with filter

size f = 7, total number of filters nC = 64, and stride s = 2; that transforms the

dimension to 7× 7× 64. Lastly, Max Pool having f = 3 and s = 2 generates the

output volume with dimension 3× 3× 64.

For Phase2, let’s focus on Figure 5.3 (c)(left) having Conv module that will

have an input dimension of 3 × 3 × 64 from the earlier layer. The main path

contains 3 parts. The initial part has convolution layer having f = 1, nC =

F1 = 64 (see Table 5.1), and s = 1. It yields volume with identical dimensions

as of the input’s. The convolution layer in the second part also results output

with same dimension as of the input’s because it is utilizing “same” convolution

90

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Table 5.1: Utilized ResNet-50 model’s hyperparameters

Phase
Number of filters used in the
layers [F1, F2, F3] of each module

Stride s

2 [64, 64, 256] 1
3 [128, 128, 512] 2
4 [256, 256, 1024] 2
5 [512, 512, 2048] 2

(in which padding is set so that the output’s dimension remains same as of the

input’s). The third part having a convolution layer with f = 1, nC = F3 = 256

(see Table 5.1), and s = 1 will convert the input’s dimension from 3 × 3 × 64

to 3 × 3 × 256. Finally, convolution layer in the skip connection, that has input

volume of dimension 3× 3× 64, scales up the input’s dimension to 3× 3× 256 by

utilizing the parameter values: f = 1, nC = F3 = 256 (see Table 5.1), and s = 1.

The outputs from both convolution layers (one in the skip connection and the

other in third part of the main path) can be added as they are now compatible:

have the same dimensions.

The ID modules of Phase2 have similar function as of the aforementioned

Conv module, with the exception of the skip connection’s design that does not has

any layer in it. This is because the input of the ID modules has same dimension as

of the output of convolution layer in it’s third part: 3×3×256; hence, convolution

layer is not needed in the skip connection.

The hyperparameter values used in our model can be found in Figure 5.3(b)

and (c) (in red annotations), and Table 5.1.

5.6 Experimental Results and Performance Eval-

uation

We demonstrate performances of our simple CNN and ResNet-50 models in

Figure 5.5 using the test set. The figure shows 10 × 10 heatmaps: blue ones

91

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 5.5: Dispersion of accuracy (blue) and false positive rate (FPR) (green)
for the simple and ResNet-50 models along with the improvements achieved by
implementing the latter model.

representing accuracy distributions and the green ones representing false positive

rate (FPR) distributions; with the left, middle and right ones pertaining to the

simple model, ResNet-50 model and improvements we achieved by implementing

ResNet-50 over simple model, respectively. Each position in a heatmap relates to

a corresponding cell of the sub-grid in Figure 5.2(bottom). The best and worst

performance values in the left and middle heatmaps are marked in black annota-

tions, while the annotations in right heatmaps represent maximum improvements

and degradations.

As we can observe in the figure that the performance results pertaining to

different cells vary; this is because fundamentally each cell has it’s own unique

distribution of user activity values in terms of call incoming, SMS incoming, call

outgoing, SMS outgoing, and Internet usage, from which our framework creates

grid-images. The model learns different underlying distributions and hence the

performance result for each cell is different.

The accuracy of cell 2976 (row 1, column 7)—the worst performing cell—using

the simple model is significantly improved from 68.4% to 75.5% by using ResNet-

50 model. Cell 3915 (9, 10) yielded maximum accuracy 94.3% using simple CNN,

and is slightly further improved to 95.5% using ResNet-50 model. Additionally,

92

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

the maximum and minimum FPRs using the simple model are 24.7% and 1.8%

for cell 3680 (7, 9) and 4032 (10, 10), respectively; they are further reduced to

17.7% and 1.1%, respectively, when ResNet-50 is utilized. The minimum FPR

in ResNet-50’s distribution is 1% for cell 2970 (1, 1), a 3× reduction from 3.2%

when simple model was utilized.

However, performance also degrades for some cells, as evident in the right-

hand heatmaps (indicated with negative values). For example, observe accuracy

of cell 3440 (5, 3) that worsened from 71.9% using simple model to 69.6% using

ResNet-50 model. Similarly, ResNet-50 model resulted in higher FPR of 28.8%

for cell 3087 (2, 1), a significant increase as compared with 17.5% when simple

model is used.

Based on the above observations, the individual cell’s performance can ei-

ther be ameliorated or degraded by using ResNet-50 model; however, the overall

performance of ResNet-50 model improves as compared with its counterpart, as

evident in Table 5.2. Also note the training time for ResNet-50 model is about

7× higher than of the simple model.

To proof scalability of our proposed method, we scaled-up the size of our grid-

image from 10×10×5 to 15×15×5, to include a total number of 225 grids. For

this purpose, we selected cell IDs starting from 5076 to 6728, depicted as inner

light-blue square grid in Figure 5.2 (top-right), and kept rest of the parameters

of each model same as before. Table 5.3 conveys the overall test performance

and training time of both models, and the improvements achieved by leveraging

ResNet-50 model over simple CNN model. Figure 5.6 demonstrates performance

(accuracy and FPR) distributions of both models for each of the chosen cell IDs

in the form of top and middle 15×15 heatmaps. The bottom heatmaps represent

the improvements.

Similar to our observations of Figure 5.5, we can also observe in Figure 5.6

that the performance of some cells has improved and for some cells, it has de-

93

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 5.6: Performance dispersions achieved through considering 15 × 15 × 5
input grid-image.

teriorated by applying ResNet-50 model. We can also observe that the overall

accuracy and error rate values in Table 5.3 resemble their counterparts in Ta-

ble 5.2. Additionally, similar to the trend we previously observed in Table 5.2,

ResNet-50 model in our current experiments has also achieved better performance

results as compared with the simple CNN model except for the recall. Hence, our

proposed method is scalable.

If we compare Table 5.3 with Table 5.2, it is interesting to observe that overall

94

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Table 5.2: Performance statistics of Simple CNN and ResNet-50 models.

Metric
Simple CNN
Model

ResNet-50
Model

Improvement

Accuracy 78.99% 81.06% 2.07%
Error Rate 21% 18.94% 2.06%
Precision 69.99% 73.59% 3.6%
Recall 64.59% 67.21% 2.62%
FPR 13.81% 12.03% 1.78%
F1 67.18% 70.26% 3.08%
Training Time 3.52 min 25.58 min -

Table 5.3: Performance statistics of Simple CNN and ResNet-50 models (when
15× 15× 5 grid-image is used).

Metric
Simple CNN
Model

ResNet-50
Model

Improvement

Accuracy 78.21% 80.4% 2.19%
Error Rate 21.78% 19.59% 2.19%
Precision 64.42% 72.5% 8.08%
Recall 61.9% 56.34% -
FPR 14.74% 9.21% 5.53%
F1 63.13% 63.41% 0.28%
Training Time 3.88 min 26.34 min -

training time do not proportionally increase as we increase the resolution of input

image. Hence, the resolution can be enhanced to accommodate anomaly detection

for a larger number of cells with the expense of slightly higher computation time.

This is because of the two properties of CNN discussed in Section 5.5.2—which

enable the number of parameters in a layer of CNN to remain constant even if

the input’s resolution is varied.

Finally, we compare our model’s performance with the performance of feed-

forward DNN proposed in Hussain et al. [3]. Hence for comparison, we adopt their

feed-forward DNN model with the same hyper-parameter values and implement

it on the 100 cells depicted in Figure 5.2 (red grid). Due to the space constraint,

we only show the test accuracy distribution in Figure 5.7, which can be compared

with our simple CNN model’s accuracy distribution in Figure 5.5. In addition,

comparison of overall test accuracy and training time of our simple CNN and

95

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

Figure 5.7: Dispersion of the accuracy using Feed-forward DNN model.

ResNet-50 models with feed forward DNN model is shown in Figure 5.8. Although

we can find some instances of cells having feed forward DNN outperformed other

models in Figure 5.7, but overall the DNN model performed poorly. As evident

in Figure 5.8, DNN yielded worst overall test accuracy as well as training time

as compared with both of our models.

Figure 5.8: Comparison of performance of both models (simple and ResNet-50)
by utilizing the DNN proposed in [3]. Best performance is highlighted as purple.

96

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

5.7 Conclusion and Insights for Future Work

We discovered that our AI-powered mobile edge computing (MEC)-based

anomaly detection system (deployed in an edge server (ES) co-located with a

base station) can effectively detect anomalous cell(s) in a 100-cell area with ac-

curacy of 70 − 96%, contingent upon the characteristics of each individual cell.

Our method is computationally lightweight in contrast to the state-of-the-art so-

lution [99]: it reduces computational burden on the core network (CN) by using

MEC approach and convolutional neural network (CNN)—which we analyzed to

be more effective in terms of using fewer parameters than feed-forward deep neural

network (DNN), as discussed and exhibited in Section 5.5.1. We further examined

two CNN models: simple model (conceived from the conventional CNN models)

and ResNet-50 model (adopted from a recent paper on residual learning [106]).

We discovered that while the latter produced better overall results than the for-

mal, it required considerably more training time, resulting in a trade-off between

training time and performance.

Since our scheme is devised to identify abnormalities within minutes—conventional

approaches include subscriber complaints and drive tests that take hours and

sometimes days to identify the anomaly (cell outage) [35]—this possibly boosts

QoS and reduces OPEX as prompt abnormal cell detection equates to a faster

issue settlement. The detection of soared traffic movement in a particular area

can also serve as an early warning system for possible network congestion. This

improves the user experience by preventing user frustration by early detection of

such situations. Our framework is robust as a result of inclusion of the Internet

activity feature that was unavailable in most of the previous studies [7, 62], as

it can identify events such as a sports match with marginally elevated SMS/call

behaviors that are regarded to be common but have intensified Internet activity

(as social media usage is typically high during such occasions).

97

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

In the existing (parametric and hardware) configuration, the simple CNN

model appears more suitable for online learning environment as it can capture

abnormalities within the arrival of next timestamp (10-min) unless we employ

more sophisticated hardware for timely detection using ResNet-50 model. Per-

haps, with a more efficient quantum processing hardware [110] in near-future,

the emerging and future cellular networks will be able to train even deeper and

sophisticated neural network models (ResNet-152 [106], Inception-v4 [107], etc.),

quicker and in less time, resulting in improved results. A further impediment to

our work’s practical applicability is the need for ground-truth labels that can be

subdued by generating labels based on the fault data having chronicles of alarms’

logs [1]. Selection of optimal values of hyperparameters can also improve perfor-

mance. Hyperparameter calibration is fundamentally an optimization cycle that

reruns the ML model with different hyperparameter compositions in a search

space (having ranges for all the hyperparameters) to achieve minimal error. We

can do calibration manually which involve domain experts’ intervention or imple-

ment an automatic but computationally costly method called grid search which

involve a discrete hyperparameter search space. Alternatively, random search

method [111] can be used which is relatively effective and can be considered for

our future research.

For the practical settings, since we can categorize the cellular network with our

proposed MEC-based approach as an MEC system with heterogeneous servers,

the decision to choose the number of cells monitored by an edge server can depend

on multifaceted reasons which mainly concerns resource management [82, Sec.

III. C.]. For example, determining whether to offload computation to an ES

or if the core network has sufficient computation power at a given instance to

perform all the calculations (server selection problem [82, Sec. III. C.], [112]);

for the case where the computations are offloaded to an ES, determining how

much calculations an ES can handle and then performing pre-processing and

98

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

subsequently allocating number of cells accordingly; etc.

We speculate our framework can also conform to the cloud radio access net-

work (C-RAN) architecture, where there are massive number (hundreds or even

thousands) of remote radio heads (RRHs) controlled by a centralized, collabora-

tive and cloud-based baseband unit (BBU) pool [113]. In our research context,

a BBU pool can act as an ES monitoring user activities pertaining to several

RRHs; however, this direction needs further investigation. In industrial Internet

of things, our work can also be extended to address anomaly (fault due to de-

vice malfunction, connectivity failures, delayed communication, etc.) detection

in which a middleware (fog) connected with various entities (actuators, robots,

machines, sensors, etc.) monitors their data to report anomalies [114–116]. Fog

computing is utilized in the industry for local computing to address delay and

security concerns, and a fog node can perform tasks similar to the ones performed

by the ES in our research.

In conclusion, this chapter presented a robust, scalable, and novel frame-

work based on MEC, powered by deep CNN (computationally efficient than

feed-forward DNN utilized in the latest research) and fueled by real CDR (spatio-

temporal) dataset to detect anomalies (pertaining to cell outage and performance

degradations, and surged cellular traffic activity leading to a potential congestion)

in a 100-cell sub-grid; relieving CN from tremendous computational load of doing

data analytics for each cell in the network.

99

5. Deep Convolutional Neural Network and Mobile Edge Computing-Based Cell Outage and
Congestion Detection

100

Chapter 6

A Prescriptive Analytics-Based

Modular Framework for

Proactive Cell Outage and

Congestion Detection in Cellular

Networks

6.1 Motivation

We have been using CDRs for anomaly detection in the previous works. Al-

though CDRs have advantages over MDT reports, but CDR usage also has a

challenging aspect. By the time network collects logs from all the base stations

(BSs), processes them to construct CDRs through various logical charging func-

tions [61, Sec. III], and sends them to the relevant computing server (mobile edge

computing (MEC) server in case of edge deployment [8]) for anomaly detection,

the anomalies and their damage would have already occurred. Therefore, a de-

101

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

mand for proactive anomaly detection arises. Moreover, past studies [77, 117],

attempting proactive cell outage detection, focus on the whole network rather

than forecasting at the base station-level that compromises the model’s efficacy

in a practical setting.

6.2 Overview and Contributions

Motivated by the above and inspired by a broader idea to enable proactive

self-healing in future networks [6, Fig. 7], this is the first study that proposes

a prescriptive analytic-based modular framework and investigates the applica-

tion of traffic forecasting for anomaly detection in cellular networks using deep

learning-based techniques. We utilize CDRs as time-series data to perform traffic

prediction by deploying a deep convolutional long short-term memory (ConvL-

STM) model—adopted because of its promising and high-precision prediction

performance in dealing with a similar problem of precipitation nowcasting in the

weather forecasting domain [118]. We then feed the output to a second feed-

forward deep neural network (ffDNN)-based model for the identification of the

anomalies in a BS, as shown in Figure 6.1 and described in Sec. 6.4.2. The frame-

work enables the network to prognosticate and detect anomalies up to 3 hours

(10-min resolution) in advance with an average accuracy of over 92% depending

on the overall anomalies in the dataset. The prominent contributions of our work

are as follows, it:

1. Proposes a framework based on multi-variate multi-step ConvLSTM and feed-

forward DNN models to predict cell’s traffic 3 hours in advance that enables

proactive anomaly detection at a BS.

2. Adopts a novel modular approach that could enable the network to reuse

the module outputs for other tasks. For example, the network can switch

102

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

Core Network

Preprocessor Forecaster
(ConvLSTM)

Detector
(ffDNN)

Raw Data
Multi-variate
Time Series

Data

Multi-variate
Multi-step
Predicted

Time Series
Data

1/0
1/0

.

.

.
1/0

Data accumulation,
Windowing, Pairing,

and Batching.
CDR Train

Data

Timing

Figure 6.1: System Model.

BSs to sleep mode during low-traffic hours for green communications [119]

according to the Forecaster’s output.

3. Investigates and illustrates the relationship between forecasting and anomaly

detection accuracies, and the factors affecting the latter.

4. Focuses not only on the degenerative performance and outages including the

sleeping cell but also circumstances leading towards congestion as anoma-

lies.

6.3 State of the Art

AI technologies have recently gained momentum in achieving higher efficiency

as compared with the traditional solutions for anomaly detection; however, they

are ignored in 5G standardization and rather anticipated to be adopted in the

later phases or in 6G networks, which also infers their potential [20]. In the

literature, there are several studies related to either time-series forecasting [118,

120] or anomaly detection [3, 7, 8, 62, 121] using the deep learning techniques in

cellular networks. However, only a few studies exist that combine both ideas [77],

[117].

103

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

Kumar et al. [77] utilized one-month time-series data containing fault-related

information in a network to predict the next failure’s timing. They utilized fault

occurrence (index of the fault) and inter-arrival time (time between the adjacent

faults, in hours) as variables for the learning models. They considered various

machine learning techniques including deep neural networks with autoencoders

in their study, which yielded the least error. With a bare 64.29% model accuracy,

another major limitation of their work is that the model considered the whole

network for the fault prediction as the data is unsegregated for each BS.

Kogeda et al. [117] proposed mobile intelligent agents (MIAs) and Bayesian

belief network-based fault prediction in wireless networks. MIAs are software pro-

grams that can independently roam around in different nodes to monitor them

and report if any fault is detected. They set up a miniature network having three

wired and wireless devices connected to a router and induced artificial faults like

switching off power to a randomly chosen node, etc. Their proposed model reg-

istered around 86% prediction accuracy. However, their work’s applicability on

a large-scale cellular network is questionable since the experiments are done in

limited settings. For a BS where hundreds of nodes (users) are present, MIAs

could cost the network heftily in terms of communication, storage, and compu-

tation resources. They will also affect privacy since they need to be installed on

user devices.

Our work addresses the above issues by forecasting the anomalies at BS-level

so that the anomalous cell can be pinpointed as CDRs are popular for their

accurate user mobility information [61]. Additionally, they are generated at and

extracted from the core network, without intervening the user devices to retain

privacy.

104

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

6.4 Preliminaries

6.4.1 Description of the Dataset

CDRs utilized in this study are based on spatio-temporal data collected from

the core network (CN) [61] of Telecom Italia, a network operator in Italy, released

to the public as part of the Big Data Challenge 2015 [66]. The data contain user

logs for 10, 000 cell IDs of Milan city (illustrated in Figure 6.4, top-left) for the

duration of 2 months (62 days) at 10 min granularity. For each slot (10-min du-

ration), there exist multiple records containing values of the following subscriber

activities: incoming SMSs (SMS in), outgoing SMSs (SMS out), incoming calls

(Call in), outgoing calls (Call out), and Internet.

6.4.2 System Model

The system model mainly consists of the following modules (depicted in Fig-

ure 6.1):

1. Preprocessor: it collects raw CDRs via CN and converts them into compatible

forms to be accepted by the Forecaster and Detector modules.

2. Forecaster: it accepts multivariate time series data, trains a ConvLSTM [118]

model, and outputs selected multivariate multi-step predicted time series

data (test dataset for Detector) that represent future activity values in the

cell. The selection is based on the “Timing” input.

3. Detector: it accepts CDR dataset from the Preprocessor for training a feed-

forward deep neural network (ffDNN) model. It also accepts the test dataset

from the Forecaster to test on, and outputs whether the cell at each future

timestep will be normal (0) or abnormal (1).

105

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

Day 1

Day 42

Day 44

Day 62
(dayTest=19)

6 am 9 am12 am

LTrain 6102x5

(6 timestamps x 24
hrs x 42 Days + 6

timestamps x 9 hrs x
1 Day = 6102)

having XTrain_LSTM,
YTrain_LSTM

LTest 2826x5

(6 timestamps x 15
hrs x 1 Day + 6

timestamps x 24 hrs
x 19 Days = 2826)

having XTest_LSTM,
YTest_LSTM

12 am 11:50 pm

DTrain

XTrain 774 x 5

YTrain 774

(6 timestamps x 3 hrs
x 43 Days = 774)

XTest, YTest (DTest)
XǻTest, ŶTest (L ǻTest)

Cell ID X
SMS in

SMS out
Call in

Call out
Internet

x 5

3 am

 19 x 18 x 5 or 342 x 5
(6 timestamps x 3 hrs x 19 Days = 342)

XPast 19x18x 5
(XTest_LSTM)

Ground Truth Slice XTest_ts 19 x 5, YTest_ts 19

and Predicted Slice XǻTest_ts 19 x 5,Ŷ Test_ts 19

Train set Slice
XTrain_ts 43 x 5

YTrain_ts 43

xts 5; yts 1

Day 43
(=dayTrain)

Figure 6.2: Time series dataset L ∈ R
8,928×5.

6.4.3 Data Preprocessing

We consider three 3-hour duration timings for diversity in our experimentation

and to conform our anomaly detection model with the one in [3] for performance

comparison in Sec. 6.6; hence preprocessing is executed accordingly. The timings

include Morning from 6-9 am, Afternoon from 11 am-2 pm, and Evening from

5-8 pm. For simplicity, we consider Morning timings to describe this section. We

preprocess raw CDRs according to the following steps, we:

1. Sum the corresponding activity values, for a given cell ID and a timestamp,

from different logs to form a vector x ∈ R
5 (highlighted in Figure 6.2)

representing the total amount of individual activities recorded during the

10-min duration.

2. Concatenate all the activity vectors to form a time series dataset L ∈ R
8,928×5

(illustrated in the figure) containing a total 8, 928(62 days ×24 hours/day

106

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

× 6 timestamps/hour) 5D vectors.

For the Forecaster, we:

3. Split L into a train set LTrain ∈ R
6,102×5 (blue units in the figure) and a

test set LTest ∈ R
2,826×5 (black units) in approx. 70 : 30 ratio, about 43

(dayTrain) days data for training and 19 (dayTest) days for testing. The

splitting is done at the end of 43rd day’s Morning timing: timestamp

6, 102 (42 days×24 hours/day ×6 timestamps/hour + 1 day ×9 hours/day

×6 timestamps/hour).

4. Perform normalization on both sets using the mean and standard deviation

μ, σ ∈ R
5 of LTrain.

5. Apply a single-step sliding window function with both history (Tx) and future

target (Ty) sizes of 18 timesteps (3 hours) to transform the normalized sets

into windowed train set havingXTrain LSTM ∈ R
6084×Tx×5 and YTrain LSTM ∈

R
6084×Ty , and windowed test set havingXTest LSTM ∈ R

2808×Tx×5 and YTest LSTM ∈
R

2808×Ty ; where 6084 and 2808 are the total number of windows in train

and test sets, respectively, and 5 is the number of activities.

6. Convert windowed train and test sets into batches before passing on to the

ConvLSTM model. The batch size is set to 256 for training and a unit-sized

batch is considered for the testing. Figure 6.3 (bottom) delineates the train

batches.

For the Detector, we:

7. Extract a data-block (highlighted in orange and subsequent green dotted por-

tion in Figure 6.2) pertaining to the Morning timings from L. We divide

it into a train set DTrain (orange) with XTrain ∈ R
774×5 examples and

107

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

YTrain ∈ R
774 labels, and test set DTest (green) with XTest ∈ R

342×5 exam-

ples and YTest ∈ R
342 labels; where 774 and 342 represent the number of

activity vectors formed during 43 and 19 days, respectively. The labels are

synthetically created according to [3], as they are unavailable in the original

dataset.

6.4.4 Performance Metrics

We utilize the following standard metrics to evaluate Forecaster’s perfor-

mance: mean absolute error (MAE), mean squared error (MSE), root MSE

(RMSE), and R-squared (R2) [120].

MAE =
1

N

N∑
i=1

|yi − ŷi| (6.1)

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (6.2)

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (6.3)

R2 = 1−
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳi)
2

(6.4)

where, yi is the ground truth, ŷi is the prediction, and ȳi is the mean of yi.

For the Detector, we utilize accuracy as a metric, elaborated in Section 2.5.

6.5 Implementation

6.5.1 Forecaster

As depicted in Figure 6.3, we deploy a multi-variate multi-step ConvLSTM

model [118] by passing the train batches that essentially have [x<1>, ..., x<Tx>] and

[y<1>, ..., y<Ty>] as inputs for the training. Here, we consider y ∈ R
1 as the ground

108

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

a[2]<1> a[2]<2> a[2]<17> a[2]<18>…………………………….a[2]<0>

a[3]<1> a[3]<2> a[3]<17> a[3]<18>…………………………….a[3]<0>

Conv Layer

ffDNN Layer

…………………………….

Future Target Size (Ty)= 18

.
.

.
.SMS in

SMS out
Call in

Call out
Internet

ŷ<1> ŷ<2> ŷ<17> ŷ<Ty>

.

.

.

.

…
…
..

.

.

.

.

…
… …
..

…
…

Batch 1

Batch N

History Size (Tx) = 18 Future Target Size (Ty)= 18
x<1>x<2>. x<17>x<Tx>

Call out
SMS outCall in

Internet

SMS in

…
…
..

y<1>y<2>. y<17>y<Ty>

Pair 1

Pair 256

Pair 1

Pair 256

Train Set

X 5
X 5

Figure 6.3: Operation of a ConvLSTM model.

truth (future) activity. We then select windows according to the (Morning, After-

noon, or Evening) timings from the windowed test set {XTest LSTM , YTest LSTM}
for the testing. For example, sub-dataset XPast ∈ R

dayTest×Tx×5(⊆ XTest LSTM),

as shown in Figure 6.2, is chosen for the Morning timings containing dayTest 5D

(multivariate) windows, each associated with a single day and of size Tx.

Although the model accepts multi-variate input, it generates a univariate

output of size Ty. Hence, it is executed five times to generate five univariate

109

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

5060

4259

5638

Milan

Milan

Worst case

MAE: 65.9678
MSE: 8084.8

RMSE: 89.9156
R2: -0.7774

Mild case

MAE : 8.5886
MSE: 111.2674
RMSE: 10.5483

R2: 0.0913

Good case

MAE: 1.7269
MSE: 5.1313

RMSE: 2.2652
R2: 0.8953

Area consisting of 10,000 Cell IDs
spread over 23.5 KM2.

Figure 6.4: (Left) Milan’s map overlayed with GPS coordinates of the total area
associated with the 10,000 cell IDs (outer square black box) with a zone zoomed
in the bottom highlighting three cells (blue boxes). (Right) Prediction results of
the selected cell IDs alongside the performance metrics.

predicted windows each pertaining to a different activity during testing. These

windows are then concatenated to form a 5D (multi-variate) predicted window

[ŷ<1>, ..., ŷ<Ty>], illustrated in Figure 6.3 (Top). Here, ŷ ∈ R
5 is the predicted

5D activity vector. Due to the page limitation, the remaining details of the

ConvLSTM model can be found in [118]. Finally, all the generated windows for

dayTest days are merged to form X̂Test ∈ R
dayTest×Ty×5, as shown in Figure 6.2,

containing the predicted traffic activities.

6.5.2 Detector

We implement an ffDNN based on [3] that trains on DTrain. We utilize the

Forecaster’s result X̂Test with labels ŶTest, synthetically generated according to [3],

110

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

as the test set L̂Test to perform anomaly detection while DTest act as the ground

truth data.

6.6 Experimental Results and Performance Anal-

ysis

6.6.1 Forecaster’s Preliminary Results

We select three cell sites for our preliminary experiments: San Sario stadium

(cell ID 5638), City center (cell ID 5060), and Bocconi university (cell ID 4259).

We utilize their GPS coordinates to overlay them as blue boxes with Milan’s

map in Figure 6.4 (left). For diversity, we select three different timings (evening,

afternoon, and morning), activities (Internet, call in, and SMS in), and days to

demonstrate the prediction results in the figure (right). We also utilize Eq. 6.1 -

6.4 with the ground truth (XTest) and predicted (X̂Test) values to calculate the

model’s performance metrics displayed alongside the graphs in the figure.

Performance-wise, the plot for cell ID 5638 on the 52nd day (22nd Dec. 2013)

represents a worst-case where the gap between predicted and ground-truth val-

ues drastically increases from 6:20 pm (8th future timestep) onwards due to an

ongoing soccer match at the coverage area [3]. The ground truth values (blue) in-

dicate anomalies pertaining to the surge in Internet traffic demand that may need

urgent additional resources otherwise this may cause congestion. Since predicted

data (L̂Test) from our forecasting model are later utilized by our anomaly detec-

tion model, the anomaly detector might mis-classify them as normal instances

resulting in false negatives. In contrast, the plot for cell ID 4259 represents a

good case where the gap at every time step remains small. Hence, the anomaly

detector will correctly classify the instances as true positives or true negatives,

accordingly. Finally, cell ID 5060 represents a mild case where we have a small

111

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

6.19

7.69

4.04

0.82

1.5

1.25

Figure 6.5: Average ground truth and predicted Internet activity values over a
3-hr duration consisting of 18 10-min timesteps (ts). The annotated values show
the difference between the two values.

gap at almost every time step. For each case, the displayed performance metrics

reflect the above-mentioned descriptions.

6.6.2 Forecaster’s Bird’s-eye Results

We scale up our experiments to observe Forecaster’s overall test performance

by randomly selecting 100 cell IDs out of the total 10, 000. For each chosen cell

ID, timing, and timestep (ts), we have co-located test set slices (as indicated in

Figure 6.2): Ground truth slice XTest ts ∈ R
dayTest×5(⊆ XTest) and predicted slice

X̂Test ts ∈ R
dayTest×5(⊆ X̂Test).

Due to the page-limitation and since Internet activities are dominant as com-

pared with other activities in the original dataset, we choose this activity for the

depiction of the overall performance in Figure 6.5 and 6.6. For this purpose, we

average (a total of dayTest = 19) values in each slice to have a corresponding pair

of ground truth and predicted Internet values. Since we have 18 such slices (for

112

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

Overall
averages:

2.88 (Morning)
2.54 (Afternoon)

4.08 (Evening)

Figure 6.6: Average mean absolute errors (MAEs) over a 3-hr duration consisting
of 18 10-min timesteps (ts).

the 3-hr duration), we have an equal number of such pairs. We finally take a

grand average involving all the cell IDs; constituting the three pairs at each ts in

Figure 6.5, each pair corresponding to a separate timing.

As observed in the figure, the gap between ground truth and predicted values

from the first ts to the last jumps about 7.5, 3, and 5 folds for the morning, after-

noon, and evening hours, respectively. The further our model forecasts the higher

the gap is, which infers the prediction accuracy of the Forecaster is inversely pro-

portional to the number of ts. Alternatively, this is also reflected in Figure 6.6

where the MAEs (equivalent to the respective gaps in Figure 6.5) mostly increase

with the ts.

113

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

27%

11%
4.5%

Figure 6.7: Effect of varying coefficient (c) in Eq. 6.5 on the average percentage
of anomalies (Oc) in different sets.

6.6.3 Rule-Based Detector’s Results and the Factors Af-

fecting its Accuracy

The increasing gap in Figure 6.5 leading towards the debased prediction accu-

racy also translates into the tendency of an anomaly detection accuracy to degrade

over the ts because of the potentially high classification error, as demonstrated

in Figure 6.9 and explained later in this subsection. Another factor contributing

towards the falling detection accuracy is the coefficient (c) in the following equa-

tion (adopted from [3] and utilized for artificially labeling the examples), which

can influence the percentage of anomalies (ones) or the accepted range for normal

instances (zeros) in YTrain:

yts =

⎧⎪⎨
⎪⎩

0, if ‖μts − c× σts‖2≤ ‖xts‖2≤ ‖μts + c× σts‖2
1, if otherwise

(6.5)

114

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

where xts ∈ R
5 and yts ∈ R

1 (indicated in Figure 6.2) are an example and

its label in the train (or test) set, respectively, pertaining to ts; and μts and

σts ∈ R
5 are mean and standard deviation, respectively, of the sub-train set

XTrain ts ∈ R
dayTrain×5(⊆ XTrain) which is a slice containing (dayTrain =) 43

training set examples associated with ts. c controls the number of instances to

be labeled as normal (or abnormal): with an increasing c, the anomalies in each

set decreases because the normal range widens. Figure 6.7 demonstrates the

relationship between c varying from 0 to 2 and the average percentage of ones

(anomalies) Oc at each value of c in the train, original test, and predicted test

sets. The figure is generated by utilizing the following general equation which

computes Oc by averaging the count of ones otsc in all the slice label vectors

(each pertaining to ts and composed from the components build using Eq. 6.5);

considering slices from all timings (t), cell IDs (cell), and ts:

Oc =
T∑
t=1

(CELLS∑
cell=1

(TS∑
ts=1

(otsc
DAY

× 100
) 1

TS

)
1

CELLS

)
1

T
(6.6)

where, T (= 3) refers to the total number of timings; CELLS(= 100) is the total

number of cells; TS(= 18) is the total number of timesteps; and DAY is the total

number of days in the set (dayTrain for train set or dayTest for test set) or the

length of the slice.

Moreover, Figure 6.8 depicts the effect of varying c from 0 to 2 on the average

detection test accuracy Ac,t ∈ R
1 given c and t. The plot is generated by utilizing

the following equation which calculates the accuracy by averaging the sub-test

sets’/slices’ accuracies atsc,t ∈ R
1 from all cell IDs and ts:

Ac,t =
CELLS∑
cell=1

(TS∑
ts=1

(
atsc,t

) 1

TS

)
1

CELLS
(6.7)

where, atsc,t is computed using Eq. 2.4 by employing original YTest ts and predicted

115

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

C = 1
69.19%
76.32%
74.64%

C = 1.5
79.3%
84.9%
82.2%

C = 2
90.21%
92.06%
90.04%

Figure 6.8: Effect of varying coefficient (c) in Eq. 6.5 on the average detection
test accuracy (Ac,t) at different timings. Overall accuracies for each timing at
c = 1, 1.5, and 2 are highlighted separately.

ŶTest ts ∈ R
dayTest sub-test set (slice) labels (calculated using Eq. 6.5) pertaining

to ts and for a particular c and t. Ac,t has a bell-shaped curve and increases

from the lowest point if c increases. Note, if c = 0 then only instances equal

to μts are marked normal (Eq. 6.5) as (almost) all the instances lie outside the

single-point normal region and are marked anomalies. Although this condition

is yielding 100% accuracy as the anomaly detection model is simply classifying

every instance as an anomaly, however, it is impractical.

We consider three values on the x-axis as c = 1, 1.5, and 2; and show their

accuracy distributions over ts in Figure 6.9. As can be observed, increasing c

positively impacts both overall (Figure 6.8) and individual (Figure 6.9) accuracies

and the trend for the latter also leans flat. For a visual demonstration, we plot

straight (green) lines in Figure 6.9 that best fit afternoon timing accuracies at

different c using the least-squares regression method and calculate their slopes

116

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

m = -0.44

m = -0.25

m = -0.09

Figure 6.9: Average accuracy distributions over 3-hr duration consisting of 18
10-min timesteps (ts) for the rule-based anomaly detector at different coefficients
(c) and timings.

(m) using the following standard equation:

m =
TS ×∑TS

ts=1(ts× ats)−
∑TS

ts=1 ts×
∑TS

ts=1 ats

TS ×∑TS
ts=1 (ts

2)−
(∑TS

ts=1 ts
)2 (6.8)

where, ats is the accuracy at ts. As we increase c, m moves closer to 0 inferring

we can have high classification accuracy even for the farther ts if c is large. For

example, when c = 2 (around 5% anomalies), we can achieve over 90% average

accuracy for each timing (Figure 6.8). In practical settings, c is usually high

because the anomaly is by nature rare. This is also evident in Figure 6.6 where

the overall averages (mean of 18 MAE values) are lesser than the MAE value of

the mild case discussed in Figure 6.4, which indicates the worst case is a seldom

event.

117

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

Table 6.1: Comparison of Test Accuracies of Different Detectors

c
Rule-Based Detector ffDNN-Based Detector

Predicted

Data

Original

Data

Predicted

Data
Difference

1 73.38% 85.51% 71.38% 14.14%

1.5 82.13 % 92.31% 85% 7.31%

2 90.77 94.4% 92.72% 1.68%

6.6.4 ffDNN-based Detector for Comparative Analysis and

Improvements

We show the test accuracies (averaged over all timings and chosen cell IDs)

for both models (rule-based and ffDNN-based) in Table 6.1. Note, labels (ŶTest)

are generated according to the values of c mentioned in the table. As can be

observed, the difference between the accuracies calculated by utilizing original

and predicted data through the ffDNN-based model keeps on minimizing with

the increase in c.

Moreover, if we compare Figure 6.10, where we show the accuracies (averaged

over all cell IDs) of the ffDNN-based model at each timestep, with Figure 6.9; the

ffDNN-based model yielded a slightly improved test accuracy as compared with

the rule-based model with the predicted test set. This is because of the superiority

of deep learning-based models over traditional models as also concluded in [3,8].

6.7 Discussion and Conclusion

We discovered that for higher coefficients (c)—equating to around 5% or fewer

anomalies in train set—our framework achieved over 92% average anomaly detec-

tion test accuracy (Table 6.1) by utilizing the forecasted traffic data with feed-

forward deep neural network (ffDNN)-based detector; having only a difference of

118

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

m = -0.27

m = -0.27

m = -0.05

Figure 6.10: Average accuracy distributions over 3-hr duration consisting of 18 10-
min timesteps (ts) for the ffDNN-based anomaly detector at different coefficients
(c) and timings.

1.68% lesser than the case where the original data is utilized. This highlights the

efficacy of our proposed framework and the potential of effectively enabling the

cellular network to rely on the forecasted traffic to perform proactive anomaly

detection for up to 3 hours in advance. We also observed that the further we fore-

cast traffic, the higher the gap between the ground truth and predicted values

(Figure 6.5) or MAEs (Figure 6.6); which in turn translates into lower anomaly

detection accuracies (Figure 6.9 and Figure 6.10) due to the larger misclassifica-

tion error. However, this deterrent is diluted with higher values of c suggesting

we can further stretch the 3-hour forecasting window—perhaps up to the 6-hour

design limit of the ConvLSTM model [118].

Our work concentrated on anomalies pertaining to the individual base station

(BS) rather than the whole network, overcoming the principal limitation in [77];

while also preserving user privacy since the processing occurs at the core net-

work (CN) instead of involving the user devices, which was one of the constraints

119

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

in [117]. Our work can be further extended (because of the modular approach)

to add extra features: 1) integrating the diagnosis and compensation modules to

support the proactive self-healing paradigm [6, Fig. 7]; 2) adding multi-source

data from social media to enable self-awareness; 3) updating the existing mod-

ules with other advanced ones for higher performance, such as replacing ffDNN

in the Detector with CNNs [8] to efficiently introduce edge computing for reliev-

ing CN from heavy computation; and 4) recycling the outputs of any module for

an additional problem-solving task in the cellular network, for instance, utiliz-

ing Forecaster’s output to switch BSs to sleep mode during low-traffic hours for

green communications [119]. Moreover, congestion detection is another strong

characteristic of our work that was also missing in the earlier studies. This will

empower the network to prepare for a situation in advance, e.g. if congestion is

expected after 30 minutes, perhaps due to an ongoing soccer match in the vicinity,

the network can pre-allocate the resources, such as deploying unmanned aerial

vehicles [122] to support additional users in the ROI.

On the other hand, the lack of fault-related information in CDRs limits our

work as we synthetically labeled the anomalies based on Eq. 6.5. This can

be compensated by bonding the fault data with the timestamps in the CDRs.

Moreover, the deep ConvLSTM model is computationally expensive which may

be difficult for the CN to execute for all the BSs. This limitation can be overcome

by promoting MEC-based infrastructure [8].

Given the financial incentive for the operators to have efficient solutions for

anomaly detection, our proactive approach can be expanded to various networks

and infrastructures, and can significantly aid in reducing their OPEX. For exam-

ple, our framework can play a vital role in smart-city IoT [121] and industrial

IoT infrastructure [26] where an exorbitant number of devices communicate with

each other and with the cellular network without human intervention making

it more difficult to identify the faults because of the lack of complaints about

120

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

the degraded services from the customers. For cyber–physical systems (CPSs)

connected via cellular networks, our framework can proactively identify anoma-

lous events such as distributed denial of service attacks to avoid (both, physical

and monetary) damages [63]. However, the conformity of our model to the in-

dustrial and smart-city IoT environments and CPS infrastructure needs further

investigation.

This work demonstrated prescriptive analytics in which the proposed modular

framework forecasted user activities 3 hours beforehand and employed them to

identify whether a base station will undergo an outage or congestion. Inspired

from the precipitation nowcasting problem in the weather forecasting domain, it

adopted the ConvLSTM model for the Forecaster module while for the Detector

it adopted an ffDNN-based model from the literature. Our framework manifested

the efficaciousness to achieve over 92% detection accuracy which could be even

further improved in the future. The proposed framework has the potential to be

integrated into later versions of 5G or future 6G networks.

121

6. A Prescriptive Analytics-Based Modular Framework for Proactive Cell Outage and Congestion
Detection in Cellular Networks

122

Chapter 7

Deep Convolutional Neural

Network-Based Distributed

Denial of Service-Attack

Identification for Cyber-Physical

Systems over 5G Networks

7.1 Motivation

AI/DL algorithms are gaining attention among the researchers from indus-

try/nation state [123] and academia [124] alike to implement them for the cyber-

security of CPSs utilized in critical infrastructures like financial networks, smart

grids, etc. Besides DL technology’s burgeoning success in image recognition do-

main [81], it is gaining popularity across a wider domain of applications which is

also apparent from the fact that the granted AI patent applications have recently

surged worldwide [125, Fig. 1].

123

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

This motivated the research carried out in this chapter to apply powerful DL-

based image recognition algorithms for the security of cellular networks in the

context of CPSs.

7.2 Overview and Contributions

This chapter extends the Chapter 5’s knowledge and applies DL (specifically,

convolutional neural networks (CNNs)) for detecting distributed denial-of-service

(DDoS) attack (involving SMS flooding, silent call, signaling, and their composite

attacks described in Section 2.2) in cellular networks under the backdrop of cyber-

physical system (CPS) security. The void in existing literature that this chapter

attempts to fill is that most of the existing works implement heavy-computational

solutions that analyze the actual contents of the user activities to execute attacks

detection; which also compromises user privacy [64, 126]. The proposed method

is lightweight and preserves privacy because: 1) actual contents of individual

activities i.e. SMS, call, or Internet, are not involved; and 2) it employs call detail

record (CDR) data which is already present in the system, rather than relying on

data demanding extra resources (communication, observation time, computation,

etc.) for their collection. Since record of users and network interactions are

contained in CDRs inferring behavior of a normal base station, they are a great

source to detect behavior of an under-attack base station [64, 65].

This chapter makes the below-mentioned salient additions to the existing lit-

erature:

1. Offers an original and joint framework to detect SMS spamming, signaling,

silent call, and their composite attacks that trigger DDoS attack in the

network infrastructure.

2. Proposes an expandable and scalable resolution to the availability-attack iden-

124

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

tification by employing CNNs. The input image resolution can be stretched

so that it includes more cells without any model modification.

3. Employs latest models which are very deep i.e. residual network having 50 lay-

ers (subsequently referred as ResNet-50). Additionally, this chapter deploys

a comparatively simpler model named as deep rudimentary convolutional

neural network (DRC) model with six layers. It results in improved identi-

fication accuracy for a majority of the attacks.

7.3 Relevant Work

A unified framework that offers detection of signaling, SMS flooding, and silent

call attacks’ detection is missing in the literature as most of the works focus on the

individual detection of these availability attacks—which is the reason of studying

them separately in this section. Past several works have employed content-based

methods for the detection having analyzed the original contents of the subscriber

activities (SMS messages, IP packets, etc.) [64, 126]. But, such approaches have

excessive computational burden and may be infeasible in practice.

Tu et al. in [2] and in their elongated paper [47] thoroughly discussed the

severity of the 4G network’s silent call attack. In [126], Ruan et al. monitored

crests and difference in the traffic data volume by employing game theory for

the attack’s detection. As compared to the past works which offered content-

based and computationally-rigorous solutions, they asserted their solution to be

lightweight.

Regarding the signaling attacks, authors in [127] presented a hidden semi-

Markov-based detection design which utilize the bearer wakeup packet formation

rate in wireless sensor and actuator network (WSAN). The problem with the

design is its craving for the training instances composed from the past network

data which might require up to several days of observations to obtain. A criteria

125

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

was set in [48] in which bearer requests/user/minute were utilized to identify the

attack i.e. if number of the requests are beyond a threshold, then the attack

is declared. But, the study failed to highlight a firm procedure to ascertain the

threshold which will heavily influence the performance of the detector. A method

using support vector machine (SVM) algorithm by analyzing a group of IP packets

of a user device was proposed by Gupta et al. [44] to detect the attacks. But,

the presented approach is computationally-rigorous because of using the actual

contents of the devices.

Authors in [50] presented an exhaustive discussion on SMS flooding /

spamming attack and Papadopoulos et al. [64, 65] studied the attack’s detec-

tion. Using a simulation to create SMS flooding and signaling attack scenarios,

the authors in [64] utilized the synthetically-generated CDRs (containing reflec-

tions of the attacks on user activities) for the attacks’ detection. By utilizing

graphs, a descriptor is proposed for the detection of abnormal cellular devices

within hourly data belonging to a cell. By utilizing clustering techniques the

authors in their subsequent article [65] clustered malicious users causing SMS

flooding attack into groups according to their distinctive traffic behaviors. In a

similar way and under the context of machine-to-machine (M2M) communica-

tions, Murynets et al. [45] proposed a clustering approach using graphs and SMS

activities (via CDRs) to discover DDoS attack triggered by SMS flooding attacks.

This chapter, in contrast to the above works, provides: (1) a lighter alternative

to the content-based methods by utilizing CDRs to identify the attacks; (2) a

unified framework by detecting all three attacks (SMS flooding, signaling, and

silent call); (3) a faster solution that detects attacks within 10 minutes; and (4) a

broad-scale identification mechanism as it can detect numerous cells concurrently

as it utilizes a deep CNN. Our study detects lasting attacks rather than the

instantaneous ones as it integrates historical user activities related to a cell into

the learning mechanism; since real CDRs contain the temporal features. To

126

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

Request radio
resource allocation

Call Victim

Send
SMS

Base station
(BS)

Test
Image

Raw CDRs

Training
examples

(iii) SMS
Spamming

Attack

(ii) Signaling
Attack

(i) Silent
Call Attack

Legitimate
users

Puppet
Device

Botmaster

Database

Under-attack
Cell ID(s)

Legend

Core Network

Pre-
processing

CNN
Engine

Post-
processing

Labels

Figure 7.1: System model for the proposed deep CNN-based DDoS Attack De-
tector.

elaborate this further, because of an instant hype in traffic activity which can be

caused due to several reasons (such as, when a base station is covering an airport

with frequent newly connected devices and executing traffic activities in bursts),

the detector could mistakenly identify such situations as an attack if previous

traffic trend is not taken into account.

7.4 Emulating Each Attack’s Effect

In order to preserve privacy, Telecom Italia has concealed the information

about the subscribers, including the number of user devices in each cell; hence,

127

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

24-hr
tim

eline
11
am

12
am

1
am

2
pm

12
pm

1
pm

11
pm

6 tim
e slots

18 tim
e slots

D
ay 1

D
ay 62

18 x 62 = 1,116 tim
e slots*

* Each tim
eslot yields one im

age

(i)
(ii)

(iii)
(iv)

(v)

Total 1,116 Im
ages &

 Labels

781 N
orm

al
Im

ages &
 Labels

335 A
bnorm

al
Im

ages &
 Labels

TR
A

IN
 SET

781 Im
ages &

 Labels

70%
30%

614
167

TEST SET
335 Im

ages &
 Labels

168
167

SM
S out

Internet

C
all out

Square
ID

: 5053
U

ser activity values:

9 x 9 x 3
D

im
ension Im

age
81 x 1 D

im
ension

Label

N
orm

al (0) or
U

nder-attack (1)
Square
ID

: 4254

4259

4456

5060

4253

4353

4453

4553

4653

4753

4853

4953

5053

4261

4361

4461

4561

4661

4761

4861

4961

5061

SM
S in

SM
S out

Call in
Call out

Internet
traffic

…
…

…
…

…
…

…
…

…
01-11-13

4259
1383260400000

0
3.4719

01-11-13
4259

1383260400000
385

0.0510
01-11-13

4259
1383260400000

39
8.2158

6.8014
3.7738

6.4455
261.6293

01-11-13
4259

1383260400000
44

0.0510
0.0510

01-11-13
4259

1383260400000
48

0.0510
…

…
…

…
…

…
…

…
…

Date
Square ID

Tim
estam

p
Country code

Activity

SM
S in

SM
S out

Call in
Call out

Internet
traffic

…
…

…
…

…
…

…
…

…
02-11-13

4259
1383346800000

0
0.1233

02-11-13
4259

1383346800000
39

5.5328
3.8728

1.1337
2.3449

117.5505
02-11-13

4259
1383346800000

421
0.0180

02-11-13
4259

1383346800000
49

0.0510
02-11-13

4259
1383347400000

0
0.4433

0.3923
…

…
…

…
…

…
…

…
…

Date
Square ID

Tim
estam

p
Country code

Activity

SM
S in

SM
S out

Call in
Call out

Internet
traffic

…
…

…
…

…
…

…
…

…
01-01-14

4259
1388530800000

20
0.3312

01-01-14
4259

1388530800000
221

0.0180
01-01-14

4259
1388530800000

351
0.3923

0.3923
01-01-14

4259
1388530800000

385
0.0510

01-01-14
4259

1388530800000
39

25.0201
26.8948

17.5864
15.7316

100.1597
…

…
…

…
…

…
…

…
…

Date
Square ID

Tim
estam

p
Country code

Activity

File / day 1

File / day 2

File / day 62

F
igu

re
7.2:

P
relu

d
es:

(i)
C
D
R

S
am

p
les

from
M
ilan

d
ataset.

T
h
e
red

featu
res

are
ign

ored
b
ecau

se
of

th
eir

irrelevan
ce

to
th
is

research
.

(ii)
S
elected

9×
9
su
b
-grid

.
(iii)

F
orm

ation
of

th
e
in
p
u
t
im

age
b
ased

on
th
e
activ

ity
valu

es
from

81
cells.

E
ach

p
ix
el

valu
e
of

th
e
im

age
corresp

on
d
s
to

th
e
th
ree

u
ser

activ
ity

valu
es

of
th
e
corresp

on
d
in
g
cell

ID
.
(iv

)
D
ep
iction

of
h
ow

d
ata

is
aggregated

in
term

s
of

tim
e
slots

to
gen

erate
1,116

im
ages.

(v
)
S
ettin

gs
to

gen
erate

train
in
g
an

d
testin

g
sets.

128

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

we approximate the number in an indirect way: 0.235 kilometer square (sub-

grid’s area [66]) × 7, 157 residents per kilometer square (population density of

Milan city in the year 2014 when the dataset was accumulated [128]) × 34%

(Telecom Italia’s market share [66]) × 1.509 (cellular subscribers per capita of

Italy in 2014 [129]) ≈ 863 cellular handsets/devices per sub-grip/cell of Milano

grid. According to [46], 6% botnet-controlled devices i.e. around 52 devices in

our case are adequate to initiate a 4G network DDoS attack. In the subsequent

section, we compute the amount of user activity values relevant to each attack

that we have to modify in order to emulate the corresponding attack’s effect.

7.4.1 Silent Call Attack

761.5 minutes per 30 days is the duration that a usual phone subscriber talks

[46], which makes 0.302 minutes per 10 minute period (we assume most calls

execute in 14 hours a day i.e. 8am - 10pm). 1 : 33 is the proportion of concurring

active with average users in a usual base station [46], leading towards ≈ 26 active

users in the cell. Under normal circumstances, there are 10/0.302 × 26 ≈ 861

CDRs or outgoing calls generated per 10 minute period. If 26 puppet devices are

assumed to be executing the attack, only 26 CDR logs will be rendered by them

while the legitimate users will be refused the services. As a result, this makes

around 861/26 ≈ 33.1 times reduced user activity/CDRs records greatened in the

base station.

7.4.2 Signaling Attack

A maximum of 8 devoted bearers can be initiated by a single malicious de-

vice. For each bearer, three activation and three deactivation messages (signaling

messages) are created within two minutes [48]. This aggregates into each device

generating a total of 240 messages during 10 minutes. As the CDR pertaining

129

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

to the Internet activity gets recorded every instance when a device initiates or

discontinues an Internet session [66], we can assume that every single message

out of the total 240 yields a CDR. Therefore, 12, 480 CDRs will be generated

by the 52 botnet-controlled devices. A plot representing number of user devices

versus HTTP requests in [130, Fig. 1(left)] can be analyzed to calculate approx.

number of CDRs produced by a usual (normally functioning) device. From the

linear trend in the plot, we can process the middle point as 105 (requests) /103

(devices) = 100 requests/device over 7 days ≈ 0.3404 CDRs per device in 10

minutes (considering 14 hours per day, as mentioned previously, and also each

HTTP request can generate two CDRs, each upon device connection and discon-

nection). Hence, a total of 12, 756 CDRs (12, 480 CDRs by 52 malicious devices

+ 276 CDRs by remaining 811 normal devices) will be generated under the at-

tack scenario; while only 294 CDRs (0.3404 × 863 users) will be generated in a

cell under normal condition. Overall, about 12, 756/294 ≈ 43.3× more Internet

CDRs/user activity will be logged.

7.4.3 SMS Spamming Attack

At most 30 SMSs in half an hour are allowed in an android-based phone to be

sent; however, HackFacebook app grants over 1002 SMS [50]. Let’s say a typical

user sends 10 SMS/day; a total of 103 SMS/10-min (assuming 14-hours a day, as

mentioned previously) can be send by all devices under normal conditions and a

total of 17, 465 SMS/10-min can be send under the attack scenario (17, 368 SMS

by 52 malicious devices + 97 SMS by the remaining 811 devices). In total, about

17, 465/103 ≈ 169.5× more SMS CDRs or user activity will be registered.

130

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

7.4.4 Blended Attack

We consider each compromised device carries out all the three attacks in this

intense case. As a result, we adjust the user activity values accordingly.

7.5 Preliminaries

7.5.1 System Model, Description of the Dataset, and Data

Preprocessing

We show the system model in Figure 7.1. Each cell is assumed to have legit-

imate and also illegitimate (botmaster-controlled) devices (such as IoT devices,

mobile phones, devices serving a CPS, etc.)—the exact number of devices is de-

termined in Section 7.4. The jeopardized devices trigger a mutual DDoS attack,

robbing genuine devices from using the resources, by separately executing the

signaling, silent call, or SMS flooding attack.

We use Milan dataset (elaborated in Section 2.4.3) and choose a 9 × 9 sub-

grid composed of 81 cells, illustrated in Figure 7.2(ii), for our experimentations,

since CNNs fundamentally accept data having a grid-like topology [84, Ch. 9].

We have chosen a smaller size of the sub-grid to smoothly illustrate and discuss

the results in later sections; however, a larger sub-grid size can also be chosen.

The highlighted cell IDs 5060, 4456, and 4259 in the figure are covering a few

renowned places in Milan: city center, nightlife places, and Bocconi university,

respectively. We can observe their phone usage plots illustrating the behavioral

trends in [66, Fig. 7].

Raw CDRs linked to the chosen 81 cell IDs are pre-processed by the framework

for each timestamp so that a 9×9×3 dimension image (shown in Figure 7.2(iii))

can be created. We denote the image as i(j) ∈ R
n
[0]
H ×n

[0]
W×n

[0]
C in which j represents

the index, and n
[0]
H , n

[0]
W , and n

[0]
C are the height, width, and depth/channels of

131

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

the image, respectively. The height and width denotes the selected cell IDs while

the channels contain the activity values. The framework then sends the image to

a CNN-based engine, illustrated in Figure 7.1. The engine contains a database

of past images (training examples) associated with all the 10-min slots in a 24-

hour duration. Given a test example i.e. current image associated with a certain

timeslot, the CNN model is trained using all the previous images belonging to

the exact timeslot. It then identifies under-attacked and normal cell ID(s) in the

test example. Lastly, the information is then transferred to the CN for further

actions.

7.5.2 Data Synthesis and Splitting

Typical DL models are data-hungry requiring thousands of training examples;

however, our dataset contain just 62 images per 10-min timeslot (each image

associated with a single day). Hence, as done in Chapter 4, we consider all

the images formed during a 3-hour period as linked to a single timeslot and we

consider the morning hours ranging from 11 am - 2 pm. This data augmentation

yields a total of 1, 116 images (62 days × 3 hours × 6 images per hour), with

activity data from 81 cells in each. These images reflect a normal demeanor and

therefore, we label each cell as 0 in the corresponding labeled output o(j) ∈ R
81×1

(illustrated in Figure 7.2(iii)) of the image.

For an image exhibiting behavior influenced by an attack, we would ide-

ally attack an operational 4G network and notice the changes in the recorded

CDRs—potentially resulting in, an economically and legally unfeasible, network

breakdown. We hence reserve a set of randomly chosen 335 images (30% of the

total) and for each attack scenario, we utilize the set to modify the relevant

user activity (call out, Internet or SMS out) values according to Section 7.4 to

mimic the effect of the attack (silent call, signaling or SMS spamming) on CDRs.

This step is inspired from [64] in which the authors utilize simulation software

132

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

to mimic the effect of different attacks and generate a synthetic CDR dataset for

their experiments. Practical networks deal with normal scenarios more often as

compared with the abnormal ones (anomalies), this is reflected in our model as

the normal instances are chosen to be in larger quantity (70%) than the abnormal

ones (30%). For the purpose of modification, we randomly choose about 50% cell

IDs in each image and also change their labels to 1 (under-attack).

As shown in Figure 7.2(v), our train set contains 781 images (70% of the total)

Itrain ∈ R
781×n

[0]
H ×n

[0]
W×n

[0]
C , and their corresponding labels Otrain ∈ R

781×81, and the

test set contains the remaining ones: Itest ∈ R
335×n

[0]
H ×n

[0]
W×n

[0]
C and Otest ∈ R

335×81.

Out of the 781 labeled images in train set, 614 are normal and the remaining

167 are the modified images. Similarly, out of the 335 labeled images in the

test set, 167 are normal and the remaining 168 are the modified images. Note,

for each attack scenario, we have a separate train and test sets because of the

modifications discussed previously.

7.5.3 Performance Metrics and Software Utilized

We utilize the following common metrics (described in Section 2.5) for the

performance evaluation: accuracy, error rate, precision, recall, false positive rate

(FPR), and F1. We use MATLAB and Keras (Python’s DL library) for the

preprocessing, GPS mapping, and building the CNN models. We perform exper-

imentation using a commercial PC (i7-7700T CPU, Windows 10 64-bit operating

system, and 16GB RAM) with an in-built GPU (NVIDIA GeForce 930MX).

7.6 Realization of CNN Models

Although the methodology utilized in this chapter resembles with the one in

previous chapter; however, there are a few modifications. Hence, for the sake of

completeness, we describe the methodology in this section.

133

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

7.6.1 Generic Architecture

CNN has the following three fundamental building blocks:

Convolution layer

processes images or previous layer’s activations A[l−1] ∈ R
m×n

[l−1]
H ×n

[l−1]
W ×n

[l−1]
C ,

having m as the total number of images in the (train or test) dataset and l

as an index of the present layer; and kernels K [l] ∈ R
k[l]×k[l]×n

[l−1]
C ×n

[l]
C , having

k[l] × k[l] × n
[l−1]
C as the single kernel’s dimension with k[l] as the kernel size,

and n
[l]
C as the total number of kernels. To demonstrate a convolution layer’s

functionality, we focus on an example highlighted in the red box of Figure 7.5.

Here, the index of present (output) layer l is 2, while the previous (input) layer’s

index will be l − 1 = 1. We also consider a single image as an example; hence,

m = 1. The input activations will then be represented as A[1] ∈ R
1×n

[1]
H ×n

[1]
W×n

[1]
C ,

having n
[1]
H = n

[1]
W = 13 and n

[1]
C = 3. The dimension of input activations is

13 × 13 × 3, as shown in the figure. Additionally, the kernels are represented as

K [2] ∈ R
k[2]×k[2]×n

[1]
C ×n

[2]
C , having a kernel size k[2] = 2 and total number of kernels

n
[2]
C = 8. A single kernel’s dimension is 2× 2× 3.

The convolution layer applies convolution operation between the input acti-

vations and each kernel separately, as shown in the figure. A general convolution

operation between input and a single kernel is demonstrated in [84, Fig. 9.1].

The output from each operation is then added with bias (a real number) and a

non-linear activation function called Swish is also utilized.

Swish is a gated version of sigmoid function which has some desirable proper-

ties that even the widely-used and most successful activation function like rectified

linear unit (ReLU) lacks: non-monotonicity and smoothness [90]. The inventors

of Swish function claim that it yields matching or outperforming results as com-

134

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

pared with ReLU for deeper neural networks. Mathematically, it is defined as:

g(z) = z × σ(z) (7.1)

where, σ(z) = (1 + e−z)−1 is the sigmoid function.

Finally, the layer piles up each result on top of one another to create an output

A[l] ∈ R
m×n

[l]
H×n

[l]
W×n

[l]
C which is represented as A[2] ∈ R

1×n
[2]
H ×n

[2]
W×n

[2]
C . The height

n
[2]
H or width n

[2]
W are computed by using:

n
[l]
H/W = �

n
[l−1]
H/W + 2p[l] − k[l]

s[l]
+ 1	 (7.2)

having, p[l] as number of zero-padding (a technique used to insert zeros around

the input image’s edge to prevent shrinking of output dimension during the con-

volution operation [84, Sec. 9.5]) and s[l] as stride (distance between consecutive

application of kernel on the input). For this example, the zero-padding is already

previously performed (see Figure 7.5 (bottom)), hence p[2] = 0 and s[2] is given

as 1. By utilizing Eq. 7.2, we can calculate n
[2]
H = n

[2]
W = 12. Hence, the output’s

dimension will be 12× 12× 8, which can also be observed in the figure.

In addition, batch normalization (BN) [108] technique is utilized to boost

training speed and make the model robust. It is applied between convolution

operation and the activation function.

Pooling layer

utilizes a max or avg function to pool maximum or average numbers, respec-

tively, from groups of its input (and from each channel, independently) depending

on the kernel size k, to generate the output volume. This reduces requirement for

storing parameters and improves model’s computational efficiency [84, Sec. 9.3].

If the input has nH ×nW ×nC dimension, the output’s dimension can be derived

135

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

ZeroPadding

Conv
BN

Swish
Max Pool

Conv Block
ID Block x 2

Flatten
FC 81

Stage 1

Stage 2

Stage 3

 Stage 4

Stage 5

Output

9 X 9 X 3

p = 5

Input
Image

k=3, s=2

7x7, 64, s=2

Shortcut
connections

a[l]

Conv
BN

Swish

Conv
BN

Swish

Conv
BN

Swish

a[l+3]

Conv
BN

1x1, K3
Stride s

1x1, K1
Stride s

3 x 3, K2
p is “same”

1x1, K3

Main
 paths

a[l]

Conv
BN

Swish

Conv
BN

Swish

Conv
BN

Swish

a[l+3]

1x1, K1

3 x 3, K2
p is “same”

1x1, K3

Conv Block ID Block

[K1,K2,K3]=
 [64,64,256], s=1

[K1,K2,K3]=
 [128,128,512], s=2

[K1,K2,K3]=
 [256,256,1024], s=2

[K1,K2,K3]=
 [512,512,2048], s=2

19x19x3

7x7x64

3x3x64 3x3x64

3x3x64

3x3x256

3x3x256

3x3x256

3x3x64 3x3x256

3x3x64

3x3x64

3x3x256

3x3x256

Figure 7.3: Architecture of residual network with 50 layers (ResNet-50). Red
notations indicate the hyperparameters values utilized in this work and the blue
ones show the layers’ output dimensions (pertaining to stage 2).

using Eq. 7.2 with p = 0: �nH−k
s

+ 1	 × �nW−k
s

+ 1	 × nC .

Fully connected layer

has the same purpose as of a feed-forward neural network’s hidden layer [99],

having each neuron connected with all other previous layer’s neurons.

7.6.2 Residual Network Model

The fundamental building blocks can be utilized in multiple settings (with

different number of layers and the way they are linked together) to create var-

ious CNN models like residual network comprising 50 layers (ResNet-50) [106],

illustrated in Figure 7.3. It is one of the most advanced CNN models that we

utilize in this study. Residual networks are effective in dealing with the prob-

lems encountered by a typical (very) deep neural network—gradient exploding or

vanishing [84] and degradation [106] problems—by adopting residual learning in

136

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

Co
nv BN Sw
ish

Co
nv BN Sw
ish

Shortcut connection

Main path

a[l] a[l+2]a[l+1] a[l+2]

a[l+2]a[l]

Main path

Shortcut connection

a[l+1] a[l+2]

Figure 7.4: Structure of (Top) Identity (ID) and (Bottom) Convolutional (Conv)
residual blocks.

which residual blocks are extensively used.

We first elaborate functioning of a residual block using Fig. 7.4 (top). In the

figure, the information flows from input a[l] to the output activation a[l+2] via

two different paths. In the downward path, known as main path, there are two

parts. The information first goes through the initial part having three modules

consisting of a convolution layer, batch normalization, and a non-linear activation

function, respectively; governed by the following standard equations:

z[l+1] = W [l+1]a[l] + b[l+1] (7.3)

a[l+1] = g(z[l+1]) (7.4)

where, W [l+1] is the weight matrix, b[l] is the bias vector, g(.) is the non-linear

activation function, a[l] is the input, and a[l+1] is the output of the first part. The

batch normalization module is added to accelerate the training.

137

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

Similarly, the modules in the second part are governed by the following equa-

tions (ignoring the other path and an addition operation):

z[l+2] = W [l+2]a[l+1] + b[l+2] (7.5)

a[l+2] = g(z[l+2]) (7.6)

In residual networks, a[l] is fast-forwarded to a deeper hidden layer in the

neural network where it is added with the output of that layer before applying a

non-linear activation function. This is known as a short-cut connection, as shown

in the figure. Hence, Eq. 7.6 will be modified as follows:

a[l+2] = g(z[l+2] + a[l]) (7.7)

The addition of a[l] makes it a residual block. Here, we are assuming that the

dimensions of both, input a[l] and z[l+2] (and therefore output a[l+2]) are same in

order to perform the addition. This kind of residual block is known as identity

(ID) block. If the dimensions of input (a[l]) and output activations (a[l+2]) do not

match then a convolution layer in the shortcut connection is inserted to resize the

input a[l] to a different dimension, so that the dimensions match up in the final

addition. This type of residual block is known as Convolutional (Conv) block,

as shown in the Fig. 7.4 (bottom). Note, we utilize residual blocks that skips 3

hidden layers in our paper instead of skipping 2 hidden layers as delineated in

the figure.

In ResNet-50 model, residual blocks are piled up on top of one another (see

Stage 2 − 5 in Figure 7.3 (left)) to grant activations of one layer to skip some

layers and be directly fed to the deeper layers. During back-propagation, shortcut

connections also allow a gradient to be directly back-propagated to the previous

layers. As can be seen in the figure that the input image having dimension 9×9×3

138

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

is zero-padded with padding p = 5 to have an output volume with dimension

19×19×3 (Eq. 7.2 can be utilized in calculating the output dimension of various

layers). The resultant volume is then passed to Stage 1 having a convolution

layer with kernel size k = 7, total number of kernels nC = 64, and stride s = 2;

that converts the dimension to 7 × 7 × 64. Finally, pooling layer (Max Pool)

having k = 3 and s = 2 yields the output volume with dimension 3× 3× 64.

For Stage 2, middle part of Fig. 7.3 having Conv block will have an input

dimension of 3× 3× 64 from the previous layer. The main path contains 3 parts.

The first part has convolution layer having k = 1, nC = K1 = 64, and s = 1. It

outputs volume with same dimensions as of the input’s. The convolution layer

in the second part also results output with same dimension as of the input’s,

because it is utilizing “same” convolution (in which padding is set so that the

output’s dimension remains same as of the input’s). The third part having a

convolution layer with k = 1, nC = K3 = 256, and s = 1 will transform the

input’s dimension from 3 × 3 × 64 to 3 × 3 × 256. Finally, convolution layer in

the shortcut connection, that has input volume of dimension 3×3×64, scales up

the input’s dimension to 3× 3× 256 by utilizing the following parameter values

k = 1, nC = K3 = 256, and s = 1. The outputs from both convolution layers

(one in the shortcut connection and the other in third part of the main path) can

be added as they are now compatible: have same dimensions.

The ID blocks of Stage 2 have similar function as of the above-mentioned

Conv block, with the exception of the shortcut connection’s design that does

not have any layer in it. This is because the input of the ID blocks has same

dimension as of the output of convolution layer in it’s third part: 3 × 3 × 256;

hence, convolution layer is not needed in the shortcut connection.

The rest of the stages (Stage 3 − 5) follow a similar pattern as above and

ultimately yield a resultant volume of dimension 1× 1× 32. It is then flattened

in the form of an array and passed on to a final fully-connected layer (50th layer)

139

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

9 X 9 X 3 13 X 13 X 3 12 X 12 X 8

Zero
Padding

p = 2

Conv1

k = 2, s = 1

1000
50081

Input Image

Output

k = 2
s = 2

6 X 6 X 8

Conv2k = 2, s = 1

5 X 5 X 16
MaxPool2

k = 2
s = 2

2 X 2 X 16
Conv3

k = 1
s = 1

2 X 2 X 32

MaxPool3

k = 2
s = 2

1 X 1 X 32

Flatten

32

FC1

MaxPool1

FC2

13 X 13 X 3

2 X 2 X 3

2 X 2 X 3

2 X 2 X 3

*

*

*

Swish (+ b1)

12 X 12 12 X 12

Swish (+ b2)

12 X 12 12 X 12

Swish (+ b8)

12 X 12 12 X 12

12 X 12 X 8

…
…

…
....…

…

…
...…

…
..

…
...…

…
..

Demonstration of the convolution layer’s functionality:

Input of
Conv 1 layer

Output of
Conv 1 layer

Figure 7.5: (Bottom) Architecture of the deep rudimentary CNN (DRC) model
with (Top) the manifestation of convolution layer’s working.

to be processed as a 81× 1 dimension output vector carrying normal and under-

attack cell IDs.

The hyperparameters used in our model and the above-described dimensions

of various layers from input layer to the layers utilized in Stage 2 can be found

in Figure 7.3 in the form of red and blue annotations, respectively. A softmax

function [84, Sec. 4.1] is typically utilized in the output layer for a multi-class

140

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

Figure 7.6: Overall test performance.

classification problem; however, since we are dealing with multi-label classification

problem, we use binary cross entropy loss function.

7.6.3 Deep Rudimentary CNN Model

Keeping in view the relatively lesser input image dimensions (9 × 9 × 3 i.e.

81 pixels) that we are dealing with, we design a relatively simple, 6-layer model

named as deep rudimentary CNN (DRC) model. It is built from the fundamental

(convolution, pooling, and fully connected) layers extensively described in Sec.

7.6.1; and is inspired from the designs of classical models like VGG [105], AlexNet

[104], and LeNet-5 [92]. It is illustrated in Figure 7.5 (Bottom).

The model takes an input image having dimension 9 × 9 × 3 and expands

it by padding zeros with p = 2 to yield a volume with dimension 13 × 13 × 3.

Then, the model passes the volume through a convolution layer to transform

its dimension to 12 × 12 × 8 (see Sec. 7.6.1 for complete details of this step).

141

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

(a) Silent call attack scenario: D
eep Rudim

entary CN
N (DR

C) m
odel's accuracy distribution

(c) Signaling attack scenario: D
RC

 m
odel's accuracy distribution

(d) Blended attack scenario: DR
C m

odel's accuracy distribution
(e) Blended attack scenario: ResN

et-50 m
odel's accuracy distribution

(f) Blended attack scenario: D
ifference betw

een ResNet-50 and D
RC

 m
odels

(b) SM
S flooding attack scenario: D

RC
 m

odel's accuracy distribution

F
igu

re
7.7:

A
ccu

racy
d
isp

ersion
s
of

ou
r
m
o
d
els

u
n
d
er

variou
s
attack

scen
arios.

(a)-(d
)
R
esu

lts
of

ou
r
D
R
C

m
o
d
el

(e)
R
esN

et-
50

m
o
d
el’s

p
erform

an
ce

for
b
len

d
ed

attack
scen

ario,
in

w
h
ich

it
ou

tp
erform

ed
ou

r
m
o
d
el.

(f)
Im

p
rovem

en
ts

w
e
ach

ieved
w
ith

R
esN

et-50
m
o
d
el

u
n
d
er

th
e
b
len

d
ed

attack
scen

ario.

142

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

Next, a max-pooling layer is utilized with k = s = 2. We can apply Eq. 7.2

to get the output volume’s dimension as 6 × 6 × 8. In a similar manner, the

DRC model then passes the resultant volume through a series of convolution

and pooling layers (Conv2, MaxPool2, Conv3, and MaxPool3), delineated in

the figure. The resultant volume is finally flattened and passed through the two

fully-connected layers (FC1 and FC2) to give a 81× 1 dimension output vector

(by utilizing binary cross entropy loss function), having identification of normal

and under-attack cells.

7.7 Experimental Results and Performance Eval-

uation

We utilize test set {Itest, Otest} (containing 335 images and their corresponding

labels) for performance evaluation of our models under various attack scenarios,

and report the results in Figure 7.6 and 7.7. Overall, for all the attack scenarios

except the blended attack, our deep rudimentary CNN (DRC) model surpassed

ResNet-50 model in terms of all the performance metrics, as evident in Figure 7.6.

Additionally, the maximum difference in the performance between the two models

is observed during the SMS flooding attack for which ResNet-50 model performed

poorly; while for signaling attack both models performed in a similar fashion.

Due to the limited space, we only illustrate accuracies yielded from the various

attack scenarios as heatmaps in Figure 7.7. Each 9×9 heatmap from part (a)-(e)

of the figure contains accuracy values of the corresponding cells in Figure 7.2(ii).

We can observe that the results are varied across the spectrum of cells depending

on the individual cellular activity levels and the consequent learning of the model.

Lowest accuracies for each attack scenario are marked by black ovals in the figure.

We can observe that our DRC model yielded more than 91% accuracy for every

143

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

cell in the sub-grid under every attack scenario (green sub-grids).

Since, ResNet-50 model has superior performance under blended attack sce-

nario, we also demonstrate accuracy heatmap (blue sub-grid) for our ResNet-50

model and the improvement (red sub-grid) it achieved as compared with DRC

model in Figure 7.7(e) and (f), respectively. The higher performance can also

be judged from the clear difference in minimum accuracy values yielded by both

models (annotated with black ovals) in Figure 7.7(d) and (e): 91% for DRC

model and 97% for ResNet-50 model. Additionally, it can also be observed in

Figure 7.7(d)-(f) that the worst performing cell 4855 (row 7, column 3) with 91%

accuracy under the blended attack scenario improves to have 97.6% by applying

ResNet-50 model.

Interestingly, it can also be noted that the cells covering the Bocconi university

(cell ID 4259: row 1, column 7) and the city center (cell ID 5060: row 9, column

8) have steady and high accuracy values (highlighted in black rectangles in the

figure) throughout all the attack scenarios and for both models. This might

be because of the relative high user activities in these popular areas during the

selected (lunch) timings (from 11 am to 2 pm), for which both models were able

to easily distinguish the hidden pattern and hence detected normal and under-

attacked cell(s) with high accuracies; in contrast to the relatively low accuracy

values for the cell covering nightlife places (ID 4456: row 3, column 4) that has

relatively low user activity values during the selected timings.

7.8 Conclusion and Insights for future work

Our framework achieved higher than 91% normal and under-attack cell de-

tection accuracy by utilizing deep rudimentary CNN (DRC) model for silent call,

signaling, and SMS flooding attacks that target a cellular network to cause DDoS

to the cellular connectivity-dependent legitimate devices, including the ones uti-

144

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

lized in the CPSs. The framework also attained higher than 97% accuracy for a

more sophisticated blended attack, in which each puppet device performs all the

three attacks, by using ResNet-50 model. Our results suggest that for an individ-

ual attack, where its effect is limited to a single user activity value modification

in the CDRs, our framework employing DRC model can more effectively detect

the cell ID(s) under attack as compared with utilizing a ResNet-50 model. While

for the blended attack ResNet-50 model can yield better accuracy due to its very

deep neural network design that can effectively learn the intricate structure in

the dataset.

Upon detection, the information can then be sent from our coarse-grained

analysis framework to the CPSs to trigger defensive/mitigative measures and can

also be utilized to further perform fine-grained analysis [41, Sec. VI. C.]. For

example, by acquiring more denser and richer under-attack cell’s data including

every user equipment’s data, and feeding them to a feed forward deep neural

network. This would heavily aid in identifying the bots/adversary devices within

a short time, such as in minutes—it usually takes a month for most organizations

to identify and clear the puppet devices [42, Fig. 18]. Our work can naturally

fit to support mobile edge computing (MEC) paradigm [82] in cellular networks

having MEC servers geographically located across the network and each server,

co-located with a base station, monitoring cellular activity of a sub-grid and

running our proposed framework. The benefit of such setting resides in dividing

computation-intensive tasks across the network (among MEC servers), easing

computation and storage for the core network. By leveraging voice CDRs, our

work can be extended to detect overcharging attacks that can potentially be

engineered to launch DDoS attacks [47].

Our robust framework can perform simultaneous analysis on multiple cells,

depending on the size of sub-grid, due to the inherent utilization of CNN architec-

ture. It can be scaled-up to consider a larger sub-grid; however, the computation

145

7. Deep Convolutional Neural Network-Based Distributed Denial of Service-Attack Identification for
Cyber-Physical Systems over 5G Networks

requirements need to be investigated keeping in view the on-line and off-line set-

tings. As we had a limited dataset, we combined 3 hours data of 62 days and

considered it as past data belonging to a 10-min slot (explained thoroughly in

Sec. 7.5); in practice, historical CDR dataset is maintained for record-keeping

within the cellular network and may easily be acquired. They might also yield im-

proved results as the model would learn from the data containing same temporal

characteristics (one 10-min slot instead of 18 slots).

Since many devices, including the ones utilized in CPSs, depend on cellular

infrastructure and its services for connectivity—for example, IoT devices use

voice services [47], wireless sensor and actuator network devices rely on Internet

services [127], and machine-to-machine (M2M) communication network devices

utilize SMS services [45]—our research is compatible as our framework leverages

each service’s usage data, and has solid applications in their security and earlier

detection of DDoS attacks against them.

In conclusion, this is a pioneering study that investigated the application of

CNNs for the cellular network’s security in a coarse-grained manner to detect

various attacks that lead to a DDoS (voice, Internet, and SMS) and achieved

more than 91% accuracy—contributing to resolve an open issue of DDoS attack

mitigation in cellular networks [40]. Besides the primary subscriber devices, our

study has solid implications in securing cellular-dependent CPS devices (utilized

in vertical industries and critical infrastructures) against cellular DDoS attacks

that could serve as a beachhead or smoke screen to attack the CPS infrastructure

and disrupt its services.

146

Chapter 8

Conclusions and Future Insights

8.1 Summary

The work presented in this thesis explored various ways to achieve an effi-

cient, scalable, and timely detection of cell outage and situation leading towards

congestion—Objective 1, defined in Section 1.4.

First, we applied a semi-supervised statistical-based algorithm in Chapter 3

for improved detection accuracy as compared with state-of-the-art and proposed

a consolidated method for detecting both (outages and a situation leading to-

wards congestion) anomalies [7]. A major limitation in our work was heightened

false positive rate (FPR) which can drastically increase operational expenditures

(OPEX). To overcome this and to have an efficient solution, we introduced pow-

erful deep neural network (DNN)-based model in Chapter 4 which significantly

reduced FPR and also further improved detection accuracy. We also introduced

mobile edge computing (MEC) paradigm to offload computations from the core

network (CN) to the edge servers (ESs) as training DNN models require heavy

computational resources. Although MEC can provide relief to the CN, however,

our solution suffers from scalability problem. An ES has to run a separate DNN

model for each base station which could work fine if the ES oversees a few base

147

8. Conclusions and Future Insights

stations; however, if we scale the system to tens or hundreds of base stations per

ES (a fair possibility since network density is increasing day by day), then the

anomaly detection system will probably collapse.

MEC for anomaly detection was fully realized in Chapter 5, in which we pro-

posed a novel framework executing deep convolutional neural networks (CNNs).

We discovered that CNNs can naturally align with MEC paradigm and offer

scalable and most efficient solution for the anomaly detection—surpassing the

deficiency of the previous chapter. With this work, heavy computations from

CN to the ESs can not just be divided but the ESs can execute the models and

process data in a much faster manner. We also demonstrated scalability in this

work. Finally, for a timely solution, we introduced proactive anomaly detection

in Chapter 6 which forecasted cellular traffic 3 hours in advance by utilizing

convolutional long short-term memory (ConvLSTM) model and detected anoma-

lies by utilizing a subsequent feed-forward DNN model and the forecasted traffic.

This yields proactiveness which could be leveraged by allocating required or extra

resources in advance to the region of interest (ROI).

The work in Chapter 7 attempted to achieve secondary objective of our thesis,

defined in Section 1.4. It applied the methodology of Chapter 5 involving CNNs in

the context of cybersecurity and detected attacks targeting the availability of the

network resources. As compared with many past studies which utilize content-

based methods for the attack detection, our solution preserves user privacy and

is lightweight since it utilized CDRs. It is also large-scale and expandable as it

utilized CNNs that can handle anomaly detection in numerous base stations at a

time.

Table 8.1 summarizes salient features of each chapter of the thesis.

148

8. Conclusions and Future Insights

C
h
a
p
te
r
#

F
o
cu

se
d

a
re
a
/

O
b
je
ct
iv
e

E
x
p
lo
re
d

M
L
/
D
L

M
o
d
e
ls

S
a
li
e
n
t
fe
a
tu

re
s

3
C
el
lu
la
r
N
et
w
or
k

S
em

i
S
u
p
er
v
is
ed

st
at
is
ti
ca
l-

-
In
tr
o
d
u
ce
d
C
D
R
s
in
st
ea
d
of

K
P
Is

M
an

ag
em

en
t
/
1

b
as
ed

M
L
M
o
d
el

-
C
on

so
li
d
at
ed

m
et
h
o
d
fo
r
th
e
d
et
ec
ti
on

of
ou

ta
ge
s
an

d
si
tu
at
io
n
es
ca
la
ti
n
g
to
w
ar
d
s
co
n
ge
st
io
n

-
A
n
om

al
y
d
et
ec
ti
on

w
it
h
in

an
h
ou

r
in
st
ea
d
of

1
w
ee
k

-
D
et
ec
ti
on

ac
cu
ra
cy

im
p
ro
ve
d
fr
om

90
%

to
92
%

4
C
el
lu
la
r
N
et
w
or
k

fe
ed
-f
or
w
ar
d
d
ee
p
n
eu
ra
l

-
In
tr
o
d
u
ce
d
M
E
C

M
an

ag
em

en
t
/
1

n
et
w
or
k
(D

N
N
)
M
o
d
el

-
In
co
rp
or
at
ed

In
te
rn
et

ac
ti
v
it
y
fe
at
u
re

(i
gn

or
ed

in
th
e

p
as
t
w
or
k
)

-
A
n
om

al
y
d
et
ec
ti
on

w
it
h
in

10
-m

in
d
u
ra
ti
on

in
st
ea
d

of
1
h
ou

r
-
D
et
ec
ti
on

ac
cu
ra
cy

in
cr
ea
se
d
to

97
%

an
d
F
P
R

re
d
u
ce
d
fr
om

p
re
v
io
u
sl
y
re
p
or
te
d
14
%

to
0.
44
%

5
C
el
lu
la
r
N
et
w
or
k

D
ee
p
co
n
vo
lu
ti
on

al
n
eu
ra
l

-
F
ra
m
ew

or
k
fu
ll
y
co
m
p
at
ib
le

w
it
h
M
E
C

M
an

ag
em

en
t
/
1

n
et
w
or
k
(C

N
N
)
M
o
d
el
s

-
S
ca
la
b
le
,
li
gh

tw
ei
gh

t,
an

d
m
os
t
effi

ci
en
t
so
lu
ti
on

-
D
et
ec
ts

an
om

al
ie
s
in

10
0
b
as
e
st
at
io
n
s
at

a
ti
m
e
as

co
m
p
ar
ed

to
on

ly
on

e
in

th
e
p
re
v
io
u
s
w
or
k

-
O
ff
er
ed

le
ss
er

tr
ai
n
in
g
ti
m
e
an

d
h
ig
h
er

ov
er
al
l
te
st

ac
cu
ra
cy

th
an

th
e
p
re
v
io
u
s
D
N
N
-b
as
ed

so
lu
ti
on

6
C
el
lu
la
r
N
et
w
or
k

C
on

vo
lu
ti
on

al
lo
n
g
sh
or
t-

-
T
ra
ffi
c
fo
re
ca
st
in
g
(3

h
ou

rs
in

ad
va
n
ce
)

M
an

ag
em

en
t
/
1

te
rm

m
em

or
y
(C

on
v
L
S
T
M
)

-
P
ro
ac
ti
ve

an
om

al
y
d
et
ec
ti
on

on
p
re
d
ic
te
d
C
D
R
s

an
d
D
N
N

M
o
d
el
s

-
In
tr
o
d
u
ct
io
n
of

a
m
o
d
u
la
r
fr
am

ew
or
k

7
C
y
b
er
se
cu
ri
ty

/
2

D
ee
p
C
N
N

M
o
d
el
s

-
C
on

so
li
d
at
ed

fr
am

ew
or
k
fo
r
va
ri
ou

s
at
ta
ck

d
et
ec
ti
on

s
-
L
ig
h
tw

ei
gh

t,
la
rg
es
ca
le
,
ex
p
an

d
ab

le
,
an

d
p
ri
va
cy
-p
re
se
rv
in
g
so
lu
ti
on

T
ab

le
8.
1:

T
h
es
is
p
ro
gr
es
si
on

149

8. Conclusions and Future Insights

8.2 Research Contributions / Major Findings

Overall, our work in the thesis added the following contributions to the exist-

ing literature:

1. Explored and experimented with various supervised and semi-supervised

machine learning techniques for the anomaly (both, pertaining to cellu-

lar network management and cybersecurity domains) detection in cellular

networks by keeping efficiency, scalability, and timely detecting in focus.

2. Promoted call detail record (CDR) dataset utilization instead of KPIs which

has multi-fold advantages: (a) we proposed consolidated frameworks for the

detection of both, cellular outages and a situation leading towards conges-

tion which were previously done separately because of different KPIs utilized

for their detection; (b) since MDT dataset requires additional resources for

collection, we can avoid unnecessary resource utilization by utilizing CDRs

which are already present in the networks. After the coarse-grained anal-

ysis which was largely done in our work, KPIs can then be requested for

a fine-grained analysis if required. (c) Unlike many studies which employ

subscriber content-based algorithms and compromise user privacy, CDRs

contain the activity values instead of the actual contents and the models

that utilize CDRs (employed in our works) preserve subscriber privacy. (d)

Better location accuracy is achieved as compared with MDT measurements,

which helps in pinpointing the anomalous region.

3. Demonstrated the powerful utility and a natural combination of integrating

deep convolutional neural networks (CNNs) with mobile edge computing

(MEC). This enables the anomaly detection framework to be applied in a

large-scale and more efficient manner.

4. Presented a consolidated framework for the detection of various availability-

150

8. Conclusions and Future Insights

related attacks towards the cellular networks.

8.3 Potential Future Research Directions

8.3.1 Transfer Learning to Tackle Data-Shortage Chal-

lenge

Throughout our work, we highlighted a limitation of having inadequate data

to train on. Deep learning (DL) models require a large number of examples and

their acquisition may take long observation time. An inherent assumption in

the machine learning algorithms applied in this research is that the training and

future instances belong to the same feature space having the same distribution.

This limits the scope of the application of deep learning (DL) models to the

targeted scenarios only and hinders in their generalization.

If we can elevate from the above-mentioned limitation and have two datasets

from different feature spaces having different distributions: Dataset A containing

copious examples pertaining to a base station (relevant when applying a feed-

forward DNN model as done in Chapter 4) or a cluster of base stations (relevant

when applying a CNN model as done in Chapter 5), and Dataset B containing

small amount of examples pertaining to another base station or cluster of base

stations. We train a DL model for anomaly detection using Dataset A (known as

pre-training phase) and then the knowledge (learned parameters) of the trained

model is transferred to another model which is utilizing Dataset B (known as

fine-tuning phase). This will enable the latter model to train on small number of

examples (Dataset B) but yield results as if it was trained using a dataset having

copious example (Dataset A).

This method is known as Transfer Learning [131]. It is a promising direction

to explore because learning from low-level features at the initial layers of a DL

151

8. Conclusions and Future Insights

model trained on Dataset A might be helpful and come handy when learning from

the Dataset B.

In practice, an extensive data collection drive can be initiated to acquire data

(denoted as Dataset A) from selected cell sites. The selection can be done on

the basis of unique location that these sites cover so that the acquired cellular

traffic data represent the user behaviors in those locations. Such cell sites may

include the ones covering parks, sports venues, restaurants, hospitals, schools and

universities, subway stations, places of worship, etc. A secondary short-duration

drive can be launched to capture another set of base station or cluster of base

stations (compiling Dataset B).

The benefit of this method is the significant reduction in data observation time

of a base station or cluster of base stations during which the data is collected.

This implies a quicker anomaly detection setup in a cellular network.

8.3.2 MEC-based Fully Proactive Anomaly Detection Sys-

tem

The Forecaster component in Chapter 6 accepted a single base station’s activ-

ity data and yielded traffic predictions which were later utilized by a feed-forward

DNN model for anomaly detection. We can integrate mobile edge computing

(MEC) paradigm to scale-up the proactive anomaly detection operation by mod-

ifying the Forecaster to rather accept and output images. Then, a CNN model

can be applied (like in Chapter 5) to detect anomalies in numerous base stations

at a time.

152

8. Conclusions and Future Insights

8.3.3 Applicability of Anomaly Detection Frameworks for

IIoT Networks

As mentioned in Section 1.3, cellular networks and industrial Internet of

Things (IIoT) networks share a common goal: reduction in operational expendi-

tures (OPEX). Efforts can be made to modify our methods, especially the ones

involving MEC, for anomaly detection in the context of IIoT networks. However,

this need further investigation and thorough analysis.

8.3.4 A Consolidated Alarm System for Outage, Conges-

tion, and Cyber-attacks in Cellular Networks

We can integrate both objectives in this thesis related to cellular network

management and cybersecurity to propose a single framework for the detection

of outages, situation leading towards congestion, and various cyber-attacks since

they can are detected by utilizing call detail record (CDR) dataset.

153

8. Conclusions and Future Insights

154

Bibliography

[1] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to empower

SON with big data for enabling 5G,” IEEE Netw., vol. 28, no. 6, pp. 27–33,

2014.

[2] G. Tu, C. Li, C. Peng, and S. Lu, “How voice call technology poses security

threats in 4G LTE networks,” in 2015 IEEE Conference on Communica-

tions and Network Security (CNS), 2015, pp. 442–450.

[3] B. Hussain, Q. Du, S. Zhang, A. Imran, and M. A. Imran, “Mobile edge

computing-based data-driven deep learning framework for anomaly detec-

tion,” IEEE Access, vol. 7, pp. 137 656–137 667, 2019.

[4] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems:

Applications, Trends, Technologies, and Open Research Problems,” IEEE

Network, vol. 34, no. 3, pp. 134–142, 2020.

[5] Cisco, “Cisco Annual Internet Report (2018–2023),” White Paper, vol.

2020, no. 3, p. 4, March 2020.

[6] A. Asghar, H. Farooq, and A. Imran, “Self-healing in emerging cellular

networks: Review, challenges, and research directions,” IEEE Communica-

tions Surveys and Tutorials, vol. 20, no. 3, pp. 1682–1709, 2018.

[7] M. S. Parwez, D. B. Rawat, and M. Garuba, “Big Data Analytics for User-

Activity Analysis and User-Anomaly Detection in Mobile Wireless Net-

155

Bibliography

work,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp.

2058–2065, 2017.

[8] B. Hussain, Q. Du, A. Imran, and M. A. Imran, “Artificial Intelligence-

Powered Mobile Edge Computing-Based Anomaly Detection in Cellular

Networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,

pp. 4986–4996, 2020.

[9] Y. Li, B. Shen, J. Zhang, X. Gan, J. Wang, and X. Wang, “Offloading in

HCNs: Congestion-Aware Network Selection and User Incentive Design,”

IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6479–

6492, 2017.

[10] Ramneek, P. Hosein, W. Choi, and W. Seok, “Congestion detection for

QoS-enabled wireless networks and its potential applications,” Journal of

Communications and Networks, vol. 18, no. 3, pp. 513–522, 2016.

[11] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems Security

- A Survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1802–1831,

2017.

[12] H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, Cyber-Physical Systems:

Foundations, Principles and Applications, 2016.

[13] 5G-PPP, “5G and the Factories of the Future,” 2015, White

Paper. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/

02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

[14] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”

ACM Comput. Surv., vol. 41, no. 3, Jul. 2009.

156

Bibliography

[15] Y. Wang, Z. Wu, Q. Li, and Y. Zhu, “A Model of Telecommunication

Network Performance Anomaly Detection Based on Service Features Clus-

tering,” IEEE Access, vol. 5, pp. 17 589–17 596, 2017.

[16] I. A. Karatepe and E. Zeydan, “Anomaly Detection In Cellular Network

Data Using Big Data Analytics,” in European Wireless 2014; 20th European

Wireless Conference, 2014, pp. 1–5.

[17] W. Sun, X. Qin, S. Tang, and G. Wei, “A QoE anomaly detection and diag-

nosis framework for cellular network operators,” in 2015 IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS), 2015,

pp. 450–455.

[18] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang,

“Artificial Intelligence-Enabled Cellular Networks: A Critical Path to

Beyond-5G and 6G,” IEEE Wireless Communications, vol. 27, no. 2, pp.

212–217, 2020.

[19] I. Ahmad, S. Shahabuddin, H. Malik, E. Harjula, T. Leppänen, L. Lovén,

A. Anttonen, A. H. Sodhro, M. Mahtab Alam, M. Juntti, A. Ylä-Jääski,

T. Sauter, A. Gurtov, M. Ylianttila, and J. Riekki, “Machine Learning

Meets Communication Networks : Current Trends and Future Challenges,”

IEEE Access, vol. 8, pp. 223 418–223 460, 2020.

[20] I. F. Akyildiz, A. Kak, and S. Nie, “6G and Beyond: The Future of Wireless

Communications Systems,” IEEE Access, vol. 8, pp. 133 995–134 030, 2020.

[21] S. Han, T. Xie, C. L. I, L. Chai, Z. Liu, Y. Yuan, and C. Cui, “Artificial-

Intelligence-Enabled Air Interface for 6G: Solutions, Challenges, and Stan-

dardization Impacts,” IEEE Communications Magazine, vol. 58, no. 10, pp.

73–79, 2020.

157

Bibliography

[22] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Ma-

chine Learning With Big Data: Challenges and Approaches,” IEEE Access,

vol. 5, pp. 7776–7797, 2017.

[23] K. David and H. Berndt, “6G Vision and Requirements: Is There Any Need

for Beyond 5G?” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80, 2018.

[24] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The Roadmap

to 6G: AI Empowered Wireless Networks,” IEEE Communications Maga-

zine, vol. 57, no. 8, pp. 84–90, 2019.

[25] B. Hussain, J. Zhang, and Q. Du, “A Prescriptive Analytics-Based Modular

Framework for Proactive Cell Outage and Congestion Detection in Mobile

Networks (Under-Review),” IEEE Transactions on Network and Service

Management, vol. X, no. X, pp. XXXX–XXXX, 2021.

[26] Cisco and Jasper, “The Hidden Costs of Delivering

IIoT Services: Industrial Monitoring & Heavy Equip-

ment,” April 2016, White Paper. [Online]. Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

[27] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial

Communication: Automation Networks in the Era of the Internet of Things

and Industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp.

17–27, 2017.

[28] C. Tranoris, S. Denazis, L. Guardalben, J. Pereira, and S. Sargento, “En-

abling cyber-physical systems for 5G networking: A case study on the auto-

motive vertical domain,” Proc. IEEE/ACM 4th Int. Workshop Softw. Eng.

Smart Cyber-Phys. Syst., pp. 37–40, 2018.

158

Bibliography

[29] 5G-PPP, White Papers. [Online]. Available: https://5g-ppp.eu/

white-papers/

[30] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial Internet of

Things: Cybermanufacturing Systems. Cham, Switzerland: Springer, 2017.

[31] M. Cosovic, A. Tsitsimelis, D. Vukobratovic, J. Matamoros, and C. Anton-

Haro, “5G Mobile Cellular Networks: Enabling Distributed State Estima-

tion for Smart Grids,” IEEE Commun. Mag., vol. 55, no. 10, pp. 62–69,

2017.

[32] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Averbuch, “Detection of

Sleeping Cells in LTE Networks Using Diffusion Maps,” in 2011 IEEE 73rd

Vehicular Technology Conference (VTC Spring), 2011, pp. 1–5.

[33] F. Chernogorov, S. Chernov, K. Brigatti, and T. Ristaniemi, “Sequence-

based detection of sleeping cell failures in mobile networks,” Wireless Net-

works, vol. 22, no. 6, pp. 2029–2048, Aug. 2016.

[34] R. Barco, P. Lazaro, and P. Munoz, “A unified framework for self-healing

in wireless networks,” IEEE Communications Magazine, vol. 50, no. 12, pp.

134–142, 2012.

[35] A. Zoha, A. Saeed, A. Imran, M. A. Imran, and A. Abu-Dayya, “Data-

driven analytics for automated cell outage detection in Self-Organizing Net-

works,” in 2015 11th International Conference on the Design of Reliable

Communication Networks (DRCN), 2015, pp. 203–210.

[36] K. Dangerfield, E. Bensadoun, and S. Boynton, “Rogers wireless services

restored for ‘vast majority’ of customers after mass outage,” Global News,

April 19, 2021.

159

Bibliography

[37] “ASSH: Designing Agile and Scalable Self-Healing Functionalities for Ultra

Dense Future Cellular Networks,” http://www.bsonlab.com/ASSH, note =

Accessed: 2021-03-25.

[38] A. Zoha, A. Saeed, A. Imran, M. A. Imran, and A. Abu-Dayya, “A SON so-

lution for sleeping cell detection using low-dimensional embedding of MDT

measurements,” in 2014 IEEE 25th Annual International Symposium on

Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014, pp.

1626–1630.

[39] Sandvine, “Network Congestion Management: Consider-

ations and Techniques,” 2015, White Paper. [On-

line]. Available: https://www.sandvine.com/hubfs/downloads/archive/

whitepaper-network-congestion-management.pdf

[40] S. Mavoungou, G. Kaddoum, M. Taha, and G. Matar, “Survey on Threats

and Attacks on Mobile Networks,” IEEE Access, vol. 4, pp. 4543–4572,

2016.

[41] L. He, Z. Yan, and M. Atiquzzaman, “LTE/LTE-A Network Security Data

Collection and Analysis for Security Measurement: A Survey,” IEEE Ac-

cess, vol. 6, pp. 4220–4242, 2018.

[42] Verizon, “2018 Data Breach Investigations Report, 11th ed.” 2018,

Research report. [Online]. Available: https://enterprise.verizon.com/

resources/reports/DBIR 2018 Report.pdf

[43] I. Kolochenko, “DDoS attacks: a perfect smoke screen for APTs and silent

data breaches,” Sept. 28, 2015.

[44] A. Gupta, T. Verma, S. Bali, and S. Kaul, “Detecting MS initiated sig-

naling DDoS attacks in 3G/4G wireless networks,” in 2013 Fifth Inter-

160

Bibliography

national Conference on Communication Systems and Networks (COM-

SNETS), 2013, pp. 1–60.

[45] I. Murynets and R. P. Jover, “Anomaly detection in cellular Machine-

to-Machine communications,” in 2013 IEEE International Conference on

Communications (ICC), 2013, pp. 2138–2143.

[46] M. Khosroshahy, D. Qiu, and M. K. Mehmet Ali, “Botnets in 4G cellular

networks: Platforms to launch DDoS attacks against the air interface,” in

2013 International Conference on Selected Topics in Mobile and Wireless

Networking (MoWNeT), 2013, pp. 30–35.

[47] T. Xie, C. Li, J. Tang, and G. Tu, “How Voice Service Threatens Cellular-

Connected IoT Devices in the Operational 4G LTE Networks,” in 2018

IEEE International Conference on Communications (ICC), 2018, pp. 1–6.

[48] R. Bassil, A. Chehab, I. Elhajj, and A. Kayssi, “Signaling Oriented Denial

of Service on LTE Networks,” in Proceedings of the 10th ACM International

Symposium on Mobility Management and Wireless Access, ser. MobiWac

’12. New York, NY, USA: Association for Computing Machinery, 2012,

p. 153–158. [Online]. Available: https://doi.org/10.1145/2386995.2387024

[49] G. Gorbil, O. H. Abdelrahman, M. Pavloski, and E. Gelenbe, “Model-

ing and Analysis of RRC-Based Signalling Storms in 3G Networks,” IEEE

Transactions on Emerging Topics in Computing, vol. 4, no. 1, pp. 113–127,

2016.

[50] G.-H. Tu, C.-Y. Li, C. Peng, Y. Li, and S. Lu, “New Security

Threats Caused by IMS-Based SMS Service in 4G LTE Networks,”

in Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’16. New York, NY, USA:

161

Bibliography

Association for Computing Machinery, 2016, p. 1118–1130. [Online].

Available: https://doi.org/10.1145/2976749.2978393

[51] D. Cielen, A. D. B. Meysman, and M. Ali, Introducing Data

Science: Big Data, Machine Learning, and more, using Python

tools. Shelter Island, NY: Manning Publications, 2016. [Online].

Available: http://bedford-computing.co.uk/learning/wp-content/uploads/

2016/09/introducing-data-science-machine-learning-python.pdf

[52] J. Debattista, C. Lange, S. Scerri, and S. Auer, “Linked ’Big’ Data: Towards

a Manifold Increase in Big Data Value and Veracity,” in 2015 IEEE/ACM

2nd International Symposium on Big Data Computing (BDC), 2015, pp.

92–98.

[53] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman,

“Data-Driven Design of Intelligent Wireless Networks: An Overview and

Tutorial,” Sensors, vol. 16, no. 6, 2016.

[54] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge, UK:

Cambridge University Press, 2016.

[55] E. Alpaydın, Introduction to Machine Learning. The MIT Press.

[56] S. Gollapundi, Practical Machine Learning. Packt Publishing Ltd.

[57] 3GPP, “Universal Mobile Telecommunications System (UMTS); LTE;

Universal Terrestrial Radio Access (UTRA) and Evolved Universal

Terrestrial Radio Access (E-UTRA); Radio Measurement Collection for

Minimization of Drive Tests (MDT); Overall Description; Stage 2

(3GPP TS 37.320 version 12.2.0 Release 12),” Sept., 2014, Technical

Specification Report. [Online]. Available: https://www.etsi.org/deliver/

etsi ts/137300 137399/137320/12.02.00 60/ts 137320v120200p.pdf

162

Bibliography

[58] W. A. Hapsari, A. Umesh, M. Iwamura, M. Tomala, B. Gyula, and B. Se-

bire, “Minimization of drive tests solution in 3GPP,” vol. 50, no. 6, 2012,

pp. 28–36.

[59] U. Masood, A. Asghar, A. Imran, and A. N. Mian, “Deep Learning Based

Detection of Sleeping Cells in Next Generation Cellular Networks,” in 2018

IEEE Global Communications Conference (GLOBECOM), 2018, pp. 206–

212.

[60] O. Onireti, A. Zoha, J. Moysen, A. Imran, L. Giupponi, M. Ali Imran, and

A. Abu-Dayya, “A Cell Outage Management Framework for Dense Hetero-

geneous Networks,” IEEE Transactions on Vehicular Technology, vol. 65,

no. 4, pp. 2097–2113, 2016.

[61] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-Scale Mobile Traffic

Analysis: A Survey,” IEEE Communications Surveys Tutorials, vol. 18,

no. 1, pp. 124–161, 2016.

[62] B. Hussain, Q. Du, and P. Ren, “Semi-supervised learning based big data-

driven anomaly detection in mobile wireless networks,” China Communi-

cations, vol. 15, no. 4, pp. 41–57, 2018.

[63] B. Hussain, Q. Du, B. Sun, and Z. Han, “Deep Learning-Based DDoS-

Attack Detection for Cyber-Physical System over 5G Network,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 2, pp. 860–870, 2021.

[64] S. Papadopoulos, A. Drosou, and D. Tzovaras, “A Novel Graph-Based De-

scriptor for the Detection of Billing-Related Anomalies in Cellular Mobile

Networks,” IEEE Transactions on Mobile Computing, vol. 15, no. 11, pp.

2655–2668, 2016.

163

Bibliography

[65] S. Papadopoulos, A. Drosou, I. Kalamaras, and D. Tzovaras, “Behavioural

Network Traffic Analytics for Securing 5G Networks,” in 2018 IEEE In-

ternational Conference on Communications Workshops (ICC Workshops),

2018, pp. 1–6.

[66] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,

F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source

dataset of urban life in the city of Milan and the Province of Trentino,”

Scientific Data, vol. 2, 2015.

[67] C. Quadri, S. Gaito, and G. P. Rossi, “Proximity-aware offloading of person-

to-person communications in LTE networks,” in 2016 13th IEEE Annual

Consumer Communications Networking Conference (CCNC), 2016, pp.

608–613.

[68] R. Bali, D. Sarkar, B. Lantz, and C. Lesmeister, R: Unleash Machine Learn-

ing Techniques. Birmingham, UK: Packt Publishing, Oct. 24, 2016.

[69] C. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag .

[70] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier Detection Techniques

for Wireless Sensor Networks: A Survey,” IEEE Communications Surveys

Tutorials, vol. 12, no. 2, pp. 159–170, 2010.

[71] Q. Plessis, M. Suzuki, and T. Kitahara, “Unsupervised multi scale anomaly

detection in streams of events,” in 2016 10th International Conference on

Signal Processing and Communication Systems (ICSPCS), 2016, pp. 1–9.

[72] Q. Liao and S. Stanczak, “Network State Awareness and Proactive Anomaly

Detection in Self-Organizing Networks,” in 2015 IEEE Globecom Work-

shops (GC Wkshps), 2015, pp. 1–6.

164

Bibliography

[73] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of Ma-

chine Learning Techniques Applied to Self-Organizing Cellular Networks,”

IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392–2431,

2017.

[74] C. M. Mueller, M. Kaschub, C. Blankenhorn, and S. Wanke, “A Cell Outage

Detection Algorithm Using Neighbor Cell List Reports,” in Proc. Interna-

tional Workshop on Self-Organizing Systems (IWSOS), 2008, pp. 218–229.

[75] J. Turkka, F. Chernogorov, K. Brigatti, T. Ristaniemi, and J. Lempiäinen,

“An Approach for Network Outage Detection from Drive-Testing

Databases,” Journal of Computer Networks and Communications, vol.

2012, pp. 1–13, 2012.

[76] F. Chernogorov, S. Chernov, and K. Brigatti, “Data Mining Approach to

Detection of Random Access Sleeping Cell Failures in Cellular Mobile Net-

works,” 2015.

[77] Y. Kumar, H. Farooq, and A. Imran, “Fault prediction and reliability anal-

ysis in a real cellular network,” in 2017 13th International Wireless Com-

munications and Mobile Computing Conference (IWCMC), 2017, pp. 1090–

1095.

[78] N. Baldo, L. Giupponi, and J. Mangues-Bafalluy, “Big Data Empowered

Self Organized Networks,” in European Wireless 2014; 20th European Wire-

less Conference, 2014, pp. 1–8.

[79] S. Hämäläinen, H. Sanneck, and C. Sartori, LTE Self-Organising Networks

(SON): Network Management Automation for Operational Efficiency. Wi-

ley, Jan. 2012.

165

Bibliography

[80] Q. Du, H. Song, and X. Zhu, “Social-Feature Enabled Communications

Among Devices Toward the Smart IoT Community,” IEEE Communica-

tions Magazine, vol. 57, no. 1, pp. 130–137, 2019.

[81] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, p. 436–444, May 2015.

[82] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey on

Mobile Edge Computing: The Communication Perspective,” IEEE Com-

munications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[83] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and

M. Shoaib, “Bringing Computation Closer toward the User Network: Is

Edge Computing the Solution?” IEEE Communications Magazine, vol. 55,

no. 11, pp. 138–144, 2017.

[84] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[85] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine Learning

for Wireless Networks with Artificial Intelligence: A Tutorial on Neural

Networks,” ArXiv, vol. abs/1710.02913, 2017.

[86] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends

Mach. Learn., vol. 2, no. 1, p. 1–127, Jan. 2009. [Online]. Available:

https://doi.org/10.1561/2200000006

[87] J. Patterson and A. Gibson. Sebastopol, CA, USA: O’Reilly Media, Inc.,

Aug. 2017.

[88] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural

Networks,” in Proceedings of the Fourteenth International Conference on

166

Bibliography

Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning

Research, G. Gordon, D. Dunson, and M. Dud́ık, Eds., vol. 15. Fort

Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323. [Online].

Available: http://proceedings.mlr.press/v15/glorot11a.html

[89] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve

Neural Network Acoustic Models,” in Proc. International Conference on

Machine Learning (ICML), vol. 30, no. 1, 2013, p. 3.

[90] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation

Functions.” [Online]. Available: http://arxiv.org/abs/1710.05941v2

[91] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates,

A. Maas, A. Hannun, B. Huval, T. Wang, and S. Tandon,

“Deep Learning Tutorial,” Stanford University. [Online]. Available:

http://deeplearning.stanford.edu/tutorial/

[92] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[93] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, ser. Proceedings of

Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9.

Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256.

[Online]. Available: http://proceedings.mlr.press/v9/glorot10a.html

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Sur-

passing Human-Level Performance on ImageNet Classification,” 2015.

167

Bibliography

[95] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: A Simple Way to Prevent Neural Networks from Overfit-

ting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958,

2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[96] N. Buduma, Fundamentals of Deep Learning . Sebastopol, CA, USA:

O’Reilly Media, Inc.

[97] Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” 2012.

[98] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

in 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:

http://arxiv.org/abs/1412.6980

[99] B. Hussain, Q. Du, and P. Ren, “Deep Learning-Based Big Data-Assisted

Anomaly Detection in Cellular Networks,” in 2018 IEEE Global Commu-

nications Conference (GLOBECOM), 2018, pp. 1–6.

[100] T. Tieleman and G. Hinton, “Neural Networks for Machine Learning:

Lecture 6.5 RMSProp,” 2012. [Online]. Available: http://www.cs.toronto.

edu/∼tijmen/csc321/slides/lecture slides lec6.pdf

[101] A. Zoha, A. Saeed, H. Farooq, A. Rizwan, A. Imran, and M. A. Imran,

“Leveraging Intelligence from Network CDR Data for Interference Aware

Energy Consumption Minimization,” IEEE Transactions on Mobile Com-

puting, vol. 17, no. 7, pp. 1569–1582, 2018.

[102] X. Ge, S. Tu, G. Mao, C. Wang, and T. Han, “5G Ultra-Dense Cellular

Networks,” IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79, 2016.

168

Bibliography

[103] “Keras,” https://keras.io/, accessed: 2021-04-12.

[104] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” Neural Information Processing Sys-

tems, vol. 25, 01 2012.

[105] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” in 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[Online]. Available: http://arxiv.org/abs/1409.1556

[106] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” 2015.

[107] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning,” in

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

ser. AAAI’17. AAAI Press, 2017, p. 4278–4284.

[108] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” 2015.

[109] Y. Cai, Q. Li, and Z. Shen, “A Quantitative Analysis of the

Effect of Batch Normalization on Gradient Descent,” in Proceedings

of the 36th International Conference on Machine Learning, ICML

2019, 9-15 June 2019, Long Beach, California, USA, ser. Proceedings

of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov,

Eds., vol. 97. PMLR, 2019, pp. 882–890. [Online]. Available:

http://proceedings.mlr.press/v97/cai19a.html

169

Bibliography

[110] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, “An artificial neu-

ron implemented on an actual quantum processor,” Nature partner journals

(npj) Quantum Information, vol. 5, no. 26, pp. 1–8, Mar. 2019.

[111] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Opti-

mization,” J. Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb. Jan.

2012.

[112] Z. Liao, J. Wang, S. Zhang, J. Cao, and G. Min, “Minimizing Movement

for Target Coverage and Network Connectivity in Mobile Sensor Networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 7, pp.

1971–1983, 2015.

[113] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent Advances in Cloud

Radio Access Networks: System Architectures, Key Techniques, and Open

Issues,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 2282–

2308, 2016.

[114] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing

in Industrial Internet of Things and Industry 4.0,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[115] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp.

2347–2376, 2015.

[116] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil,

M. Guizani, and A. Al-Fuqaha, “Smart Cities: A Survey on Data Manage-

ment, Security, and Enabling Technologies,” IEEE Communications Sur-

veys Tutorials, vol. 19, no. 4, pp. 2456–2501, 2017.

170

Bibliography

[117] O. P. Kogeda and J. I. Agbinya, “Proactive Cellular Network Faults Pre-

diction Through Mobile Intelligent Agent Technology,” in The 2nd Inter-

national Conference on Wireless Broadband and Ultra Wideband Commu-

nications (AusWireless 2007), 2007, pp. 55–55.

[118] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo,

“Convolutional LSTM Network: A Machine Learning Approach for Precip-

itation Nowcasting,” in Proceedings of the 28th International Conference on

Neural Information Processing Systems - Volume 1, ser. NIPS’15. Cam-

bridge, MA, USA: MIT Press, 2015, p. 802–810.

[119] J. Wu, Y. Zhang, M. Zukerman, and E. K. Yung, “Energy-Efficient Base-

Stations Sleep-Mode Techniques in Green Cellular Networks: A Survey,”

IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 803–826, 2015.

[120] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep Transfer

Learning for Intelligent Cellular Traffic Prediction Based on Cross-Domain

Big Data,” IEEE Journal on Selected Areas in Communications, vol. 37,

no. 6, pp. 1389–1401, 2019.

[121] O. G. Manzanilla-Salazar, F. Malandra, H. Mellah, C. Wetté, and B. Sansò,

“A Machine Learning Framework for Sleeping Cell Detection in a Smart-

City IoT Telecommunications Infrastructure,” IEEE Access, vol. 8, pp.

61 213–61 225, 2020.

[122] M. Mozaffari, W. Saad, M. Bennis, Y. H. Nam, and M. Debbah, “A Tuto-

rial on UAVs for Wireless Networks: Applications, Challenges, and Open

Problems,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp.

2334–2360, 2019.

[123] Department of Defense, USA, “Summary of the 2018 DoD

artificial intelligence strategy,” Feb. 2019, Report. [Online].

171

Bibliography

Available: https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/

SUMMARY-OF-DOD-AI-STRATEGY.PDF

[124] C. S. Wickramasinghe, D. L. Marino, K. Amarasinghe, and M. Manic,

“Generalization of Deep Learning for Cyber-Physical System Security: A

Survey,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial

Electronics Society, 2018, pp. 745–751.

[125] E. Ernst, R. Merola, and D. Samaan, “Economics of Artificial Intelligence:

Implications for the Future of Work,” International Labour Organization

(ILO) Research Paper Series, 2018.

[126] N. Ruan, Q. Hu, L. Gao, H. Zhu, Q. Xue, W. Jia, and J. Cui, “A Traffic

Based Lightweight Attack Detection Scheme for VoLTE,” in 2016 IEEE

Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[127] J. ho Bang, Y.-J. Cho, and K. Kang, “Anomaly detection of

network-initiated LTE signaling traffic in wireless sensor and actuator

networks based on a Hidden semi-Markov Model,” Computers &

Security, vol. 65, pp. 108–120, 2017. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0167404816301614

[128] B. Thomas, “CityPolulation.de,” https://www.citypopulation.de/php/

italy-lombardia.php?cityid=015146, accessed: 2021-04-13.

[129] The World Bank Group, “Mobile cellular subscriptions (per 100

people),” https://data.worldbank.org/indicator/IT.CEL.SETS.P2?view=

map&year=2014, accessed: 2021-04-13.

[130] X. An and G. Kunzmann, “Understanding mobile Internet usage behavior,”

in 2014 IFIP Networking Conference, 2014, pp. 1–9.

172

Bibliography

[131] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359,

2010.

173

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

