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Abstract

This thesis studies the applications of nonlinear Kalman filters in solving problems

associated with the dynamic estimation of networked systems such as epidemic

tracking over networks and monitoring the operation of power networks in real

time. In particular, the epidemic spreading on networks is concerned with controlling

morbidity. A compartmental model is in general utilized for describing epidemic

transmission on networks. The compartmental model, however, is inadequate for

describing the dynamics of epidemic spreading without considering measurements

from transmission processes. A nonlinear Kalman filter can be utilized for solving

this problem by considering the inherent dynamic model together with epidemic

transmission processes. It is, however, non-trivial to choose appropriate nonlinear

Kalman filters for epidemic tracking over various networks, such as the Erdös and

Rényi (ER) network, the Newman and Watts (NW) network, and the Watts and

Strogatz (WS) network. A guideline will be provided for choosing traditional

nonlinear Kalman filters for studying epidemic spreading on commonly used complex

networks. Specifically, epidemic spreading on networks is described by compartmental

models, such as Susceptible-Infected-Recovered, Susceptible-Infected-Susceptible,

and Susceptible-Infected-Recovered-Susceptible models. The dynamic study of

epidemic spreading on various homogeneous networks is performed using nonlinear

Kalman filters, including the extended Kalman filter (EKF), the unscented Kalman

filter(UKF), and the cubature Kalman filter (CKF). Various traditional Kalman filters

are compared in terms of accuracy, stability, and complexity. These traditional Kalman
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filters are, however, based on the optimization of the minimum mean square error. As

a result, these nonlinear Kalman filters may have degraded filtering precision when

available measurements are corrupted by non-Gaussian noise. For solving this issue,

a novel generalized correntropy sparse Gauss-Hermite quadrature filter is proposed

by combining the generalized correntropy with the sparse Gauss-Hermite quadrature

filter. Dependent on the Susceptible-Infected-Recovered-Susceptible compartmental

model, the proposed generalized correntropy sparse Gauss-Hermite quadrature filter is

applied to tracking epidemic spreading on homogeneous networks in the presence of

non-Gaussian noise. In addition, the dynamic estimation of power systems is studied

with the aim of enhancing the operation of power distribution infrastructure. Since

the available measurements may be corrupted by non-Gaussian noise, a robust mixed

p-norm square root unscented Kalman filter is proposed for estimating the state of

power systems in the presence of non-Gaussian noise. The mixed p-norm square

root unscented Kalman filter applies a mixed p-norm for weighting measurement

errors for robustness improvement. Furthermore, unlike the generalized correntropy

sparse Gauss-Hermite quadrature filter, the mixed p-norm square root unscented

Kalman filter utilizes a piecewise function, i.e., multiple p-norms for handling varying

measurements. As a result, the mixed p-norm square root unscented Kalman filter is

more flexible in dealing with corrupted measurements but may be confronted with the

choice of multiple parameters in comparison with the generalized correntropy sparse

Gauss-Hermite quadrature filter. Simulation results demonstrate the efficiency of the p-

norm square root unscented Kalman filter in the WSCC (Western System Coordinating

Council) 3-machine system and the NPCC (Northeastern Power Coordinating Council)

48-machine system.
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Chapter 1

Introduction

1.1 Background

A complex system consists of a large number of components interacting with each

other. The emergence of network science has provided a network representation of

a complex system. In network science, these components are modeled as nodes and

the corresponding interactions among components are modeled as links, forming a

network or graph [1].

Network science has originated from a branch of mathematics referred to as graph

theory. In particular, the concept of graphs was first considered for solving a real-

life problem which has been known as the Seven Bridges of Königsberg in 1736.

Königsberg was a city in Prussia and contained four lands. These four lands were

separated by a river named Pregel and connected by seven bridges. A practical question

arouse as to whether there was a solution of walking through the city crossing each of

the seven bridges once and only once. Euler proved that the problem could not be

solved by formulating it in abstract mathematical terms. The four landmasses and

seven bridges were abstracted as four nodes and seven links, respectively. As a result,

the physical structure was transformed to a graph which allowed the solution to be

derived formally, i.e., an even number of links connected to each node being necessary

1



2 CHAPTER 1. INTRODUCTION

and sufficient for touring the whole city crossing each bridge exactly once.

There exist well-established network or graph models for studying the structures

and characteristics of real-world networks on the basis of network science. The

commonly used network models include the Erdös and Rényi (ER) network [2, 3],

the Newman and Watts (NW) network [4, 5], and the Watts and Strogatz (WS)

network [3, 6]. Paul Erdös and Alfréd Rényi introduced an algorithm for generating

random graphs in 1959 [2]. In particular, the Erdös and Rényi (ER) network is

generated by adding links according to a connecting probability p sequentially [3].

The connecting probability p is applied for determining whether a pair of nodes is

connected. For example, a pair of nodes in an ER network is connected when a

randomly generated number is smaller than the pre-determined connecting probability

p in the evolution of the ER network. Degree and the corresponding degree

distribution are two important concepts [7]. In particular, degree d j and corresponding

degree distribution P(d j) denote the number of nodes connected with node j and the

probability that a node has degree d j, respectively. A Poisson node degree distribution

has been observed for ER random networks. The ER random network is commonly

used to represent a complex network due to the simplicity of the ER random network.

The ER random network, however, fails to analyze real-world systems since it is

constructed by randomly adding links among nodes. This motivated the generation

of special networks like small-world networks [3] and scale-free networks [8] in the

late 1990s. In 1967, a small-world phenomenon was first found in the “six degrees of

separation” experiment conducted by Stanley Milgram [2]. This experiment aimed to

find the average shortest path length for the American social network. More concretely,

this experiment considered two persons randomly invited from Sharon and Boston as

two target points and two groups of volunteers from Kansas and Nebraska as start

points, respectively. Each volunteer was asked to send a letter to friends until the

letter was received by the target points. As shown in the experiment, the average path

length was 5.2 hops. This means that the letter could be received from the starting
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point to the target point via 5.2 intermediate friends on average. This was referred

to as the small-world phenomenon in a social network. Watts and Strogatz in 1998

identified a small-world network by analogy with the small-world phenomenon [9].

The Watts and Strogatz’s small-world network starts with a nearest-neighbor coupled

network consisting of N nodes arranged in a ring where each node is adjacent to its

neighbor nodes. A rewired procedure was then considered in the WS small-world

network to rewire the edges of the network with a probability p [3]. It has been found

that under an intermediate connection probability p, the rewired graph is a small-world

network, which is highly clustered similar to a regular graph and has a small shortest

path length, like a random graph. In addition, an alternative small-world model was

proposed by Newman and Watts (NW). In the NW model, one does not break any

connection between any two nearest neighbors, but instead, adds a connection between

a pair of nodes with a probability p. The NW model reduces to the original nearest-

neighbor coupled network with p = 0, while it becomes a globally coupled network

with p = 1.

A power-law degree distribution in the World Wide Web was found by Albert et

al. in 1999 [10]. In the World Wide Web, the Uniform Resource Locators (URLs)

and hypertext links are formulated as nodes and links, respectively. As a result, the

network can be characterized as a scale-free network, the degree distribution of which

follows a power-law [11]. This means that a large majority of nodes have low degree

and only a small number of nodes have relatively high degree. Barabási and Albert

introduced a procedure for generating a scale-free network [8, 12].

Since then, a series of applications with respect to the dynamics of information flow

over various networks have been studied, e.g., epidemic spreading on networks [13],

dynamic analysis of power systems [14] and so on. Different methods like

machine learning [15], dynamic model-based methods [16, 17] and nonlinear Kalman

filtering [18] are utilized for studying the dynamics of information flow. In particular,

machine learning-based approaches study dynamics by learning an unknown nonlinear
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function. This method has the advantage of not requiring an epidemic transmission

model on networks but requires a large number of samples for yielding an efficient

training result.

In comparison with the machine learning-based approach, dynamic model-based

method is dependent on a specific model for describing the dynamics of information

flow. The dynamics of information flow are mainly categorized into the propagation

dynamics and the dynamics of nonlinear systems. The epidemic spreading on networks

and dynamic analysis of power systems are two typical applications for considering

the propagation dynamics and the dynamics of nonlinear systems, respectively. In

particular, the propagation dynamics focus on describing the transmission dynamics in

applications such as the epidemic spreading in social networks [19], rumor propagation

in computer networks [20, 21], and virus spreading in wireless sensor networks [22].

The propagation dynamic models are adjustable and a great deal of propagation

dynamics models are presented for approximating the characteristics of transmission

processes as precisely as possible. The control of epidemic spreading, for example,

considers a commonly used compartmental model [19] for describing epidemic

propagation on networks. The compartmental model includes Susceptible-Infected-

Recovered (SIR) [23, 16], Susceptible-Infected-Susceptible (SIS) and Susceptible-

Infected-Recovered-Susceptible (SIRS) [17]. For the SIR model, the entire population

is divided into different groups, i.e., S, I, and R which denote the relative sizes

or proportions of the susceptible, infected, and recovered individuals. By contrast,

the dynamics of nonlinear systems focus on describing the uncertainty of nonlinear

systems. The dynamic model with respect to the dynamics of nonlinear systems is in

general a well-established model according to specific characteristics. In the dynamic

analysis of power systems [24, 25, 18, 26, 27], for example, a power system operates

under normal conditions within a set of pre-designed system parameters, which is

appropriate to the ratings of the power system elements. A well-established model

is constructed according to the electrical characteristics of power systems. However, it
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has been found inadequate for only using the propagation dynamics or the dynamics of

nonlinear systems for the dynamic study of information flow. Like in the application

of power control, for example, system parameters may remain unchanged at the pre-

designed values. When the power system suffers from varying system faults such as

short-circuit faults [28], these system parameters may diverge from the normal values.

The traditional dynamic model of the power system has been found inadequate for

studying its dynamics especially under fault conditions.

For solving this issue, machine learning is introduced in the dynamic model where

practical data are used for learning the factors of the dynamic model for fitting the

transmission process in practice [29]. This combined method is indeed beneficial for

studying dynamics but requires a large number of samples due to the introduction

of machine learning. In addition, it is difficult or even impossible to learn the

parameters of the dynamic model effectively in a highly nonlinear model. By contrast,

nonlinear Kalman filters [30, 31, 32] are effective for dynamic estimation with respect

to information flow through a network. More concretely, nonlinear Kalman filters are

used to perform dynamic estimation on the basis of a state space model consisting of a

state function and a measurement function. The state function is used to describe the

inherent dynamics of information flow without considering measurements. Therefore,

the propagation dynamics or the dynamics of nonlinear systems demonstrated above

can be used as the state function. In addition, a well-established measurement function

is further introduced for providing available measurements for further correcting the

predictive state obtained through the state function [33, 34]. In the application of

epidemic tracking, for example, nonlinear Kalman filters have been shown to be able to

capture the dynamics of epidemic spreading by considering the transmission model and

measurements obtained from epidemic propagation simultaneously. Different from the

aforementioned combined method, nonlinear Kalman filters study dynamics with no

need of a large number of samples. This also means that nonlinear Kalman filters

can perform epidemic tracking with stationary model parameters in comparison with
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the aforementioned combined method which has to train model parameters all the

time. In order to improve tracking accuracy, there also exist double nonlinear Kalman

filters which estimate the state and model parameters alternatively [30]. In addition,

the aforementioned combined method is a determined method which only provides

estimation. By contrast, nonlinear Kalman filters are derived in the framework of

the Bayesian theory which not only provides estimation but also the corresponding

covariance. The estimation is effectively updated towards the expected value with the

help of the corresponding error covariance. However, there are some cons of nonlinear

Kalman filters in studying dynamics. For example, nonlinear Kalman filters with high

accuracy are expected to be employed for studying the dynamics of information flow.

However, these nonlinear Kalman filters in general have relatively high computational

burden than the aforementioned combined method.

In general, nonlinear Kalman filters are categorized into global and local methods.

Without specific assumption with respect to the probability density functions of the

state variables, global approaches, e.g., the grid-based method [35], the particle

filter [36, 37] and the Gaussian mixture filter [38], can achieve more accurate estimates

at the cost of increasing computational complexity. The local approaches have been

introduced to reduce the computational burden imposed by global approaches. The

local approach is related on the application of aiming at minimizing the mean square

error in the presence of Gaussian noise. The extended Kalman filter (EKF) is one of

the most commonly used local methods by virtue of its simple first-order linearization

of a nonlinear function [39, 40]. However, the extended Kalman filter cannot

achieve the desirable filtering accuracy when the nonlinearity is severe. A second-

order EKF [41, 42] is presented for addressing this issue. The high computational

burden on calculating the Jacobian and Hessian matrices, however, greatly limits

the application of the second-order EKF. Apart from the second-order EKF, various

rules have also been proposed for approximating the Gaussian weighted integrals

required in nonlinear Kalman filters. For example, the unscented Kalman filter (UKF)
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calculates multiple integrals through a certain set of weighted sigma points using the

unscented transformation (UT) [43, 44]. However, the UKF may be confronted with

the choice of an optimal scaling parameter [28]. Nonlinear Kalman filters without

the need of the scaling parameter have been proposed, e.g., the cubature Kalman

filter (CKF) based on the spherical-radial rule [45, 46] and simplex spherical-radial

cubature Kalman filter (SSRCKF) based on the simplex spherical-radial rule [47].

In comparison with the EKF employing the first-order linearization, UKF, CKF and

SSRCKF achieve better filtering accuracy for nonlinear systems at the expense of

increased computational burden. In addition, numerous robust Kalman filters like the

Huber-based unscented Kalman filter (HUKF) and the maximum correntropy criterion-

based unscented Kalman filter (MCCUKF) have also been proposed for improving

robustness against outliers.

1.2 Motivation

Nonlinear Kalman filters have emerged as a powerful platform for dynamic estimation

based on a state model and a measurement model. The state model is either classified as

a propagation dynamic model or a nonlinear system model. The propagation dynamic

model is constructed for matching the characteristics of transmission processes. By

contrast, the nonlinear system model is generally developed for describing specific

characteristics of the given deterministic nonlinear system. The epidemic tracking

on networks and the dynamic analysis of power networks, for example, are two

representative applications involving the propagation (or spreading) dynamics and the

dynamics of nonlinear systems, and the representative problems will be considered in

this thesis.

In the application of the epidemic tracking on networks, the estimation accuracy

with respect to the epidemic tracking is determined by several factors including the

type of the complex network model, the form of the state model describing the
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epidemic spreading, and the type of nonlinear Kalman filters used. In particular,

the profile of transmission or disease spreading on networks is greatly dependent

on the type of networks, e.g., the Erdös and Rényi (ER) network, the Newman and

Watts (NW) network, and the Watts and Strogatz (WS) network. The constructed

state model is expected to be matched well with the transmission profile on networks.

The state model in the application of epidemic tracking on networks usually adopts a

compartmental model for studying the dynamic propagation of the epidemic spreading

on networks. There exist numerous compartmental models, such as Susceptible-

Infected-Recovered (SIR), Susceptible-Infected-Susceptible (SIS) and Susceptible-

Infected-Recovered-Susceptible (SIRS). Dependent on the chosen state model and

collected measurements, various types of Kalman filters can be used for epidemic

tracking on different networks. Commonly used nonlinear Kalman filters include the

extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the cubature

Kalman filter (CKF). The EKF performs state estimation by applying a first-order

linearization to a nonlinear function. In comparison with the EKF, the UKF uses

the unscented transformation (UT) for capturing the statistical characteristics of a

Gaussian variable through a nonlinear function. In the unscented Kalman filter, an

adjusted scaling parameter is introduced for controlling the spreading of samples. The

unscented Kalman filter reduces to the third-degree CKF with the appropriate choice

of the adjusted scaling parameter. In addition, the fifth-degree CKF [48] is proposed

for further improving the filtering performance in comparison with other nonlinear

Kalman filters. It is non-trivial to choose appropriate nonlinear Kalman filters with

multiple compartmental models for tracking epidemic spreading on different kinds of

networks. A concerned question arises as to whether there is a guideline for choosing

appropriate Kalman filters with different compartment models for epidemic tracking

on various networks, which is considered as the first work in this thesis.

Nonlinear Kalman filters perform epidemic tracking on the basis of a state model

and a set of collected measurements. Studies have demonstrated the filtering efficiency
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of traditional nonlinear Kalman filters in tracking epidemic spreading when the

measurements are corrupted by Gaussian noise. These nonlinear Kalman filters,

however, cannot adequately handle measurements contaminated by non-Gaussian

noise since these Kalman filters perform optimization based on the minimum mean

square error criterion. Several attempts have been made to overcome this issue, like

the Huber-based unscented Kalman filter (HUKF) [49] and maixmum correntropy

criterion (MCC)-based unscented Kalman filter [50]. These nonlinear Kalman filters

indeed achieve improved robustness against non-Gaussian noise in comparison with

traditional Kalman filters, but have limited precision improvement. This motivates

us to propose a more robust nonlinear Kalman filter for handling epidemic spreading

in the presence of non-Gaussian noise. The generalized correntropy is a preferable

choice for dealing with non-Gaussian noise in comparison with the maximum

correntropy criterion in the framework of information theoretical learning [51].

In addition, the sparse Gauss-Hermite quadrature filter has desirable precision in

comparison with other traditional Kalman filters. This motivates us to apply the

generalized correntropy into the sparse Gauss-Hermite quadrature filter, yielding a

generalized correntropy sparse Gauss-Hermite quadrature filter (GCSGHQF). The

novel generalized correntropy sparse Gauss-Hermite quadrature filter considered as

the second work is used to deal with tracking epidemic spreading well in the presence

of non-Gaussian noise. In particular, different types of non-Gaussian noise such

as the uniform noise and Laplace noise are all considered for better demonstrating

the filtering precision of the novel generalized correntropy sparse Gauss-Hermite

quadrature filter.

Unlike the use of a propagation dynamic model in epidemic tracking, the dynamics

of nonlinear systems are analyzed by state models. Therefore, it is not necessary to

study the choice of nonlinear Kalman filters with different state models in analyzing

the dynamics of power systems as in epidemic tracking on networks. Similar to

the epidemic tracking on networks, the dynamic estimation of power systems is
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also confronted with one issue, i.e., the presence of measurements corrupted by

non-Gaussian noise. More concretely, the power system is operating under normal

conditions where system parameters are pre-designed. These system parameters are

kept unchanged at the pre-designed values but may diverge from the normal values

when the power system is confronted with system faults [28]. Nonlinear Kalman

filters are required for dynamic estimation, aiming to reveal the dynamics of complex

power systems. In the control of power systems, the measurements collected from

the phasor measurement units (PMUs) [28, 52, 53, 54] stationed at generator buses

in a power system may be corrupted by non-Gaussian noise. This leads us to

develop a robust Kalman filter for handling contaminated measurements for efficiently

improving filtering precision. As corrupted measurements may exhibit varying levels

of sensitivity to non-Gaussian noise, a robust mixed p-norm square root unscented

Kalman filter (PSRUKF) is considered for estimating the state of power systems in

the presence of non-Gaussian noise. Different from the uniform noise and Laplace

noise considered in our second work in this thesis, i.e., the application of epidemic

tracking, a much more complex non-Gaussian noise called the alpha stable distribution

noise is used for demonstrating the filtering precision of the mixed p-norm square root

unscented Kalman filter.

The main objective of this thesis is to utilize Kalman filters for studying the

dynamics of information flow over various networks. Nonlinear Kalman filters

perform the state estimation on the basis of a state model and a set of collected

measurements. On the one hand, the state model is classified either as a propagation

dynamic model or a nonlinear system model. The epidemic spreading on networks and

the dynamic analysis of power systems are representative applications which involve

specific propagation dynamics and nonlinear system dynamics, respectively. On the

other hand, the collected measurements may be contaminated by different types of

non-Gaussian noise such as uniform noise, Laplace noise and alpha stable distribution

noise. This thesis provides a guideline for choosing traditional nonlinear Kalman filters
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with different compartmental models for tracking epidemic spreading in the presence

of Gaussian noise. For handling the non-Gaussian noise case, a robust generalized

correntropy sparse Gauss-Hermite quadrature filter (GCSGHQF) is then applied to

capturing the dynamics of epidemic transmission in the presence of non-Gaussian

noise. In addition to tracking epidemic transmission, the dynamics of power systems

are another issue studied in depth in this thesis. A novel robust nonlinear Kalman filter,

called mixed p-norm square root unscented Kalman filter (PSRUKF), is presented for

dealing with the dynamic estimation of power systems when collected measurements

are corrupted by non-Gaussian noise.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides a literature review including a brief introduction of complex

networks, nonlinear Kalman filters and robust nonlinear Kalman filters.

Chapter 3 considers epidemic tracking on networks using various Kalman filters

on the basis of degree-based compartmental models in the presence of Gaussian

noise. A comparison between nonlinear Kalman filters is made in terms of estimation

accuracy and stability. The performance comparison provides a guideline for

choosing appropriate nonlinear Kalman filters for studying the dynamics of epidemic

transmission over complex networks. Several strategies are also proposed for reducing

the computational burden caused by a high dimensional state vector for large networks.

Chapter 4 considers the dynamics of epidemic spreading on networks using

a novel robust generalized correntropy sparse Gaussian Hermite Quadrature filter

(GCSGHQF) that tackles the effects of non-Gaussian noise. The GCSGHQF uses

the generalized Gaussian density (GGD) function for substituting the Gaussian kernel

under the maximum correntropy criterion (MCC) so that the estimation accuracy and

numerical stability can be improved in the presence of non-Gaussian noise. An extra
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second-order statistical characteristic of the error is also considered in the GCSGHQF

for further enhancing the numerical stability in the presence of non-Gaussian noise.

Chapter 5 proposes a novel robust mixed p-norm square root unscented Kalman

filter (PSRUKF) for tackling abnormal measurements. The proposed mixed p-

norm utilizes a piecewise function, i.e., multiple p-norms, for handling varying

measurements. A threshold factor is utilized for determining the boundary of abnormal

errors and then mixed p-norm is applied to dealing with varying measurement errors.

The proposed mixed p-norm is a generalized p-norm defined over varying intervals,

which eliminates abnormal errors. In addition, an extra second-order statistical

characteristic of the error is also considered for reducing the negative effect caused

by the inappropriate choice of the threshold parameter.

Chapter 6 concludes the thesis, reiterating the major findings of the project and

providing some further thoughts for future work.



Chapter 2

Literature Review

This chapter provides a brief introduction of complex networks, nonlinear Kalman

filters, and robust nonlinear Kalman filters. In the study of the information flow on

various networks, nonlinear Kalman filters are essential for capturing flow dynamics

and characteristics over complex networks by utilizing appropriate state models

and measurement models simultaneously. Since practical measurements may be

contaminated by non-Gaussian noise, robust nonlinear Kalman filters are expected to

be useful for handling corrupted measurements for improving the estimation precision.

2.1 Brief Introduction to Complex Networks

This section briefly introduces the basic properties of complex networks and common

complex network models. The average node degree, node degree distribution, shortest

path length and clustering coefficient are common parameters for describing the

structures and characteristics of complex networks. In addition, the Erdös and Rényi

(ER) network, Newman and Watts (NW) network, Watts and Strogatz (WS) network,

and Barabási and Albert (BA) network are common network models that possess some

properties of real-world complex networks.

13
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2.1.1 Measures of Network Topology

Some measures have been proposed for exploring and analyzing real-world complex

networks. Commonly used measures include node degree, degree distribution, shortest

path length, and clustering coefficient.

Node Degree

A network can be described as a graph G = (N, E), where N and E denote the sets

of nodes and links in the graph G [55]. Denote the size of N and E by |N| and |E|,

respectively. The degree is a simple measure for assessing the topological criticality

of a node in a network. Since edges have no direction in an undirected network, the

degree ki of node i is defined as the number of edges incident on node i, i.e.,

k j =
∑

i

a ji (2.1)

where a ji ∈ {0, 1} is the j-th row i-th column element of the adjacency matrix A with

a ji = 1 denoting the connectivity of node j with node i. For a directed network, the

out-degree and in-degree of a node refer to the number of outgoing edges from this

node and the number of incoming edges to this node, respectively.

The node degree has an essential role in analyzing real-world networks. It is

easy to understand that nodes with high degree acting as hubs are in general more

important than those with low degree in facilitating the information flow on networks.

For example, nodes with high degree may offer more pathways and hence accelerate

the information flow through a complex network.

Average Node Degree

The average node degree ⟨k⟩ denotes the mean value of the degrees of all nodes of

a complex network which reflects the connection density of a network. Considering

the degrees of the nodes in a complex network {ki}Ni=1, we have the average node degree

as
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Figure 2.1: (a) Poisson distribution; (b) Power-law distribution.

⟨k⟩ = 1
N

N∑
i=1

ki, (2.2)

with N denoting the total number of nodes in the network. A higher ⟨k⟩ means that the

nodes are connected with each other more densely.

Node Degree Distribution

The node degree distribution is another statistical metric for describing the

collective topological feature associated with node degrees. The node degree

distribution P(k) refers to the probability that a randomly chosen node has degree k,

and is defined as

P(k) =
N(k)

N
(2.3)

where N(k) denotes the number of nodes having degree k.

The Poisson distribution and power-law distribution are two common types of

node degree distribution, as shown in Fig. 2.1(a) and Fig. 2.1(b), respectively. More

concretely, the Poisson distribution has the following form:

P(k) ∼ e−λλk/k! (2.4)

with λ representing the average node degree of the network. It can be seen from

Fig. 2.1(a) that the Poisson distribution reaches a maximum when degree k is around

the average node degree. The networks characterized by the Poisson distribution of
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node degrees are in general homogeneous networks. Moreover, the power-law degree

distribution is

P(k) ∼ k−γ (2.5)

where γ is the degree exponent. A network can be interpreted as a heterogeneous

network when the network has a power-law degree distribution as shown in Fig. 2.1(b).

For complex networks with a power-law degree distribution, only a small fraction of

nodes have a large number of edges while others have a few edges.

Shortest Path

In a network, the shortest path between nodes i and j is the path with the fewest

number of edges between nodes i and j. The corresponding distance between nodes i

and j, di j, is calculated as the number of edges along the shortest path. It is worth

noting that the shortest path with a specific distance is not unique. The shortest

path has been widely used in optimizing the efficiency of data transmission in a

communication network and of delivering payloads in a transportation network. There

has been research around the theme of finding the shortest path efficiently in computer

science [56]. The largest distance between any pair of nodes in a complex network is

termed as diameter.

The average shortest path length is considered as a measure of the separation

between two nodes in a network. Consider a complex network with N nodes. Average

shortest path length L is defined as the mean distance between all pairs of nodes, i.e.,

L =
1

N(N − 1)

∑
i, j

di j. (2.6)

In general, the value of L is not large for online social networks, and equal to 4 and 3.5

for Facebook in the year 2012 [57] and the year 2016 [58], respectively. This in fact

means that social distance has been shortened by the Internet.
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Clustering Coefficient

The clustering coefficient is a measure of the extent to which the neighbors of a

given node connect to each other in a network. Given a complex network with N

nodes and E edges, the clustering coefficient Γi is defined as the ratio of the number of

all edges connecting node i, i.e., Ei and the largest number of edges connected among

the neighbors of node i.

Γi =
2Ei

ki(ki − 1)
(2.7)

with ki denoting the degree of node i.

The average clustering coefficient is computed by averaging clustering coefficients

in a complex network, i.e.,

Γ =
1
N

N∑
i=1

Γi. (2.8)

In contrast to social networks which have a high clustering coefficient, hierarchical

networks, like the Internet and power grid [59], have a rather low clustering coefficient.

2.1.2 Models of Network Topology

There are several types of complex network models including the Erdös and Rényi

(ER) network, the Newman and Watts (NW) network, the Watts and Strogatz (WS)

network, and the Barabási-Albert (BA) scale-free network. These network models are

helpful for exploring the characteristics and structures of real-world networks.

ER Random Network

Erdös and Rényi in 1959 [2] first proposed a model for constructing a random

network in two steps. First, N isolated nodes are fixed, and then each pair of nodes

is connected according to a connection probability p. An ER random network with a

large N has pN(N − 1)/2 edges and an average node degree ⟨k⟩ = (N − 1)p ≈ N p. In
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addition, an ER random network has a Poission node degree distribution, i.e.,

P(k) = (⟨k⟩)k e−⟨k⟩

k!
. (2.9)

The ER network in general has a relatively small average path length Lrandom ∼

ln(N)/ln(⟨k⟩) and a low clustering coefficient Γrandom ∼ ⟨k⟩/N. The ER network is

simple, but fails to describe a complex real-world network.

WS and NW Small-World Network Models

In 1998, Watts and Strogatz [9] proposed a network model for studying the small-

world property of real-world networks:

(1) Begin with a nearest-neighbor coupled network consisting of N nodes arranged

in a ring, where each node is adjacent to its neighbor nodes.

(2) Randomly rewire each edge of the network with probability p.

As a small-world network, the WS network has a short average path length and a

relatively high clustering coefficient. These properties are found in most of real-world

networks and distinguish them from random and regular networks. The statistical

characteristics of the WS small-world network are well coincident with many large-

scale social networks. For example, the friends of one individual are in reality also

friends of each other. This means that many clusters exist in social networks. Since

most people know each other through a few common friends, the average shortest path

length of a social network is small.

Apart from the WS small-world network model, another constitution of small-

world networks was proposed by Newman and Watts (NW) [5]. Different from the

WS small-world network model, the NW small-world network is generated by adding a

connection between a pair of nodes with probability p without breaking any connection

between any two nearest neighbors. As a result, the NW model reduces to the original

nearest-neighbor coupled network and globally coupled network when p = 0 and

p = 1, respectively.
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BA Scale-Free Network Model

Networks with a Poission degree distribution are not commonly found in the real-

world. Instead, scale-free networks, where only a few nodes have high degree and

most of the nodes have low degree, are more prevalent.

Barabási and Albert [12] proposed a model for constructing scale-free networks in

two steps:

(1) One new node is added to the network with the connection of existing nodes in

the network at each time step.

(2) The probability Πi that a newly added edge between the new node and the

existing node i will be connected is given by Πi = ki/
∑

j k j, with ki denoting the

degree of node i .

This leads to a power-law degree distribution as the network grows. This property

is found in many real-world networks, like the online social network Wikipedia [60],

the protein-protein interaction network [61], and the citation network. New nodes in

these networks are likely to link with nodes having more connections.

2.2 Nonlinear Kalman Filters

Nonlinear Kalman filters estimate the hidden state of a nonlinear dynamical system on

the basis of a state-space model equipped with a state function f (·) and measurement

function h(·) [62]. The dynamic state function f (·) describes the inherent mechanism

of a nonlinear system for yielding a predictive state. A well-established measurement

function is constructed for providing observable measurements for correcting the

predictive state [30].
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Consider a discrete-time dynamical system [45]

xk = f (xk−1) + wk−1 (2.10)

yk = h (xk) + vk (2.11)

where xk ∈ Rnx×1 and yk ∈ Rny×1 denote the state and measurement, respectively. The

process noise wk−1 and the measurement noise vk obey the Gaussian distribution, i.e.,

wk−1 ∼ N(0,Qk−1), vk−1 ∼ N(0,Rk), respectively. The core of nonlinear Kalman filters

lies in the calculation of the predictive probability density p(xk|y1:k−1) and corrected

probability density p(xk|y1:k) at the predictive step and the update step, respectively.

Nonlinear Kalman filters are inferred by adopting the Bayesian rule [63] on the basis

of the process function given in (2.10) and measurement model given in (2.11).

(1) Predictive Step

Assume that the probability density at discrete time k − 1 is

p(xk−1|y1:k−1) = N(x̂k−1,Pk−1) (2.12)

where x̂k−1 and Pk−1 represent the estimated state and corresponding error covariance

at discrete time k − 1, respectively. The predictive state x̂k−1|k is calculated by

x̂k|k−1 = E[f (xk−1) |y1:k−1]

=

∫
Rnx

f (xk−1) p(xk−1|y1:k−1)dxk−1, (2.13)

and the corresponding estimation error is found by

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T|y1:k−1]

=

∫
Rnx

f (xk−1)fT (xk−1) p(xk−1|y1:k−1)dxk−1 − x̂k−1x̂T
k−1

+Qk−1. (2.14)
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(2) Update Step

A corrected probability density at discrete time k, p(xk|y1:k), can be calculated upon

receipt of the current measurement yk:

p(xk|y1:k) = N(x̂k,Pk) (2.15)

where x̂k and Pk represent the estimated state and corresponding error covariance at

discrete time k, respectively. The conditional joint Gaussian probability distribution,

denoted as p(x̄k|y1:k−1), with joint variable x̄k = [xT
k (yk)T]T can be found as

p(x̄k|y1:k−1) = N(x̂y
k−1,P

y
k−1) (2.16)

where x̂y
k−1 = [x̂T

k|k−1 (ŷk|k−1)T]T and covariance matrix Py
k−1 are given by

Py
k−1 =

 Pk|k−1 Pxy,k|k−1

PT
xy,k|k−1 Pyy,k|k−1

 . (2.17)

Also, Pyy,k−1|k represents the error covariance of the predictive measurement, and

Pyy,k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)T|y1:k−1]

=

∫
Rny

h (xk) (h (xk))T p(xk|y1:k−1)dxk − ŷk|k−1(ŷk|k−1)T

+ Rk. (2.18)

Furthermore, the cross covariance Pxy,k|k−1 is calculated by

Pxy,k|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)T|y1:k−1]

=

∫
Rnx

f (xk−1) (h (xk))T p(xk|y1:k−1)dxk − x̂k|k−1(ŷk|k−1)T. (2.19)
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The posterior probability density p(xk|y1:k) can then be found upon the receipt of the

current measurement yk, yielding the corrected state and the corresponding covariance

of state error as

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)) (2.20)

Pk = Pk|k−1 +KkPyy,k|k−1KT
k . (2.21)

The Kalman gain Kk is set as

Kk = Pxy,k|k−1P−1
yy,k|k−1 (2.22)

where covariance matrices Pyy,k|k−1 and Pxy,k|k−1 are defined in (2.18) and (2.19),

respectively.

Dependent on the method used in computing multiple integrals from (2.13) to

(2.19), different nonlinear Kalman filters can be derived. Nonlinear Kalman filters are

in general classified as global and local methods. Without making specific assumption

with regard to the probability density functions of the state variable, global approaches

like the grid-based method [35], the particle filter [36, 37] and the Gaussian mixture

filter [38], achieve accurate estimation at the expense of imposing large computational

burden.

By contrast, local approaches calculate multiple integrals using (2.13) to (2.19) by

making approximation with respect to nonlinear functions in (2.10) and (2.11) or the

probability density functions of the state variable. The extended Kalman filter (EKF) is

one of the most commonly used local methods by virtue of the first-order linearization

of a nonlinear function [39, 40], i.e.,

f (xk−1) ≈ f (x̂k−1) + Fk−1(xk−1 − x̂k−1) (2.23)

h (xk) ≈ h
(
x̂k|k−1

)
+Hk(xk − x̂k|k−1) (2.24)
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where x̂k−1 and x̂k|k−1 represent the estimated state and predictive state at discrete time

k − 1, respectively. In (2.23) and (2.24), Jacobian matrices Fk−1 and Hk are expressed

as

Fk−1 =
∂f (xk−1)

∂x
|x=x̂k−1 (2.25)

Hk =
∂h (xk)
∂x

|x=x̂k|k−1 . (2.26)

Substituting (2.23) and (2.24) into (2.10) and (2.11) yields

xk = Fk−1xk−1 + f (x̂k−1) − Fk−1x̂k−1 + wk−1 (2.27)

yk = Hkxk + h
(
x̂k|k−1

) −Hkx̂k|k−1 + vk. (2.28)

The predictive state x̂k|k−1 and measurement ŷk|k−1 are therefore derived as

x̂k|k−1 = f (x̂k−1) (2.29)

ŷk|k−1 = h
(
x̂k|k−1

)
. (2.30)

The corresponding estimated state is derived as [39, 40]

x̂k = x̂k|k−1 +Kk
(
yk − ŷk|k−1

)
(2.31)

with the Kalman gain Kk defined by

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + R−1
k

)
. (2.32)

Algorithm 1 summarizes the operation of the extended Kalman filter.

Apart from the extended Kalman filter (EKF), there exist numerous Kalman

filters calculating multiple integrals using (2.13) to (2.19) by making the Gaussian

assumption of the probability density functions of the state variables. These nonlinear
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Kalman filters include the unscented Kalman filter (UKF) and cubature Kalman

filters (CKF) like the third-degree cubature Kalman filter (CKF3) and the fifth-

order cubature Kalman filter (CKF5). In particular, the unscented Kalman filter

has the ability of achieving balanced filtering performance in terms of estimation

precision and computational complexity in comparison with the third-degree cubature

Kalman filter and fifth-order cubature Kalman filter. The unscented Kalman filter

utilizes an unscented transformation for computing multiple integrals where sampling

points {ξi}2nx
i=0 and corresponding weights {ωm

i , ω
c
i }

2nx
i=0 are considered for calculating the

posterior probability density functions of the state, p(xk|y1:k−1) and p(xk|y1:k). The

sampling points {ξi}2nx
i=0 are defined by


ξ0=x̄

ξi=x̄ +
(√

(nx + λ) Px

)
i
, i = 1, 2, · · · , nx

ξi=x̄ −
(√

(nx + λ) Px

)
i−nx

, i = nx + 1, · · · , 2nx

(2.33)

with the error covariance Px and
(√

(nx + λ) Px

)
i
denoting the i-th column vector of the

matrix
(√

(nx + λ) Px

)
. Here, ωm

i and ωc
i denote the weights for calculating the mean

and covariance, respectively. The weights ωm
i and ωc

i are given symmetrically by


wm

0 =
λ

nx+λ

wc
0 =

λ
nx+λ
+ 1 − α2 + β

wm
i = wc

i =
1

2(nx+λ) , i = 1, 2, · · · , 2nx.

(2.34)

Parameter λ is defined as λ = α2(nx + κ) − nx where α determines the spreading range

of sampling points at point x̄, and κ is a secondary scaling parameter. Parameter β in is

utilized for incorporating the prior information of the distribution of x̄. The unscented

Kalman filter reduces to the third-degree cubature Kalman filter with α = 1, β = 0 and
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Algorithm 1 Extended Kalman Filter
Prediction step
Compute the predicted mean x̂k|k−1 and predicted error covariance Pk|k−1

x̂k|k−1 = f (x̂k−1) (2.37)

Pk|k−1 = Fk−1Pk−1FT
k−1 +Qk−1 (2.38)

with the Jacobi matrix Fk−1

Fk−1 =
∂f (xk−1)

∂x
|x=x̂k−1 . (2.39)

Update step
1: Compute the Kalman gain Kk

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(2.40)

with the Jacobi matrix Hk

Hk =
∂h (xk)
∂x

|x=x̂k|k−1 . (2.41)

2: Compute the estimated mean x̂k and estimated error covariance Pk

x̂k = x̂k|k−1 +Kk
(
yk − h

(
x̂k|k−1

))
(2.42)

Pk = (I −KkHk) Pk|k−1. (2.43)

Output: x̂k, Pk

κ = 0. The third-degree cubature Kalman filter adopts following samples


ξi=x̄ +

(√
nxPx

)
i
, i = 1, 2, · · · , nx

ξi=x̄ −
(√

nxPx

)
i−nx

, i = nx + 1, · · · , 2nx.
(2.35)

The corresponding weights are given by

wi =
1

2nx
, i = 1, 2, · · · , 2nx. (2.36)

The fifth-degree cubature Kalman filter is also proposed for further improving filtering

performance at the cost of increasing computational burden. The fifth-degree cubature

Kalman filter calculates the multiple integrals using (2.13) to (2.19) by incorporating
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Algorithm 2 Nonlinear Kalman Filter Based on Deterministic Sampling
Prediction step
1: Calculate L sample points {ξi,k−1}Li=1 and weights {ωi}Li=1 where ξi,k−1 and ωi represent
the i-th sample point and i-th weight at the discrete time k − 1 [43, 46].
2: Compute the predicted mean x̂k|k−1 and predicted error covariance Pk|k−1

x̂k|k−1 =

L∑
i=1

ωif (ξi,k−1), (2.44)

Pk|k−1 = Ps
k|k−1 +Qk (2.45)

with the matrix

Ps
k|k−1 =

L∑
i=1

ωi(f (ξi,k−1) − x̂k|k−1)(f (ξi,k−1) − x̂k|k−1)T (2.46)

Update step
1: Calculate L sample points {ξi,k−1}Li=1 and weights {ωi}Li=1 [43, 46].
2: Compute the estimated mean x̂k and the corresponding error covariance of the state
Pk

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)), (2.47)

Pk = Pk|k−1 −KkPyy,k|k−1KT
k . (2.48)

The matrix Kk = Pxy,k|k−1P−1
yy,k|k−1 represents the Kalman gain with covariance matrix

Pxy,k|k−1 =

L∑
i=1

ωi(ξi,k|k−1 − x̂k|k−1)(h(ξi,k|k−1) − ŷk|k−1)T (2.49)

Pyy,k|k−1 = Rk +

L∑
i=1

ωi(h(ξi,k|k−1) − ŷk|k−1)(h(ξi,k|k−1) − ŷk|k−1)T (2.50)

and predicted measurement ŷk|k−1 =
∑L

i=1 ωih(ξi,k|k−1).
Output: x̂k, Pk

sampling points {ξi}2n2
x

i=0

ξi=x̄,

ξ1+i=x̄ +
√

(nx + 2) Pxp+,

ξ n(n−1)
2 1+i=x̄ −

√
(nx + 2) Pxp+,

ξn(n−1)+1+i=x̄ +
√

(nx + 2) Pxp−, i = 1, 2, · · · , nx(nx−1)
2

ξ 3n(n−1)
2 1+i=x̄ −

√
(nx + 2) Pxp−,

ξ2n(n−1)+1+i=x̄ +
√

(nx + 2) Pxei,

ξn(2n−1)+1+i=x̄ −
√

(nx + 2) Pxei, i = 1, 2, · · · , nx

(2.51)
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where vectors p+i and p−i are given by

p+i =

√
1
2 (e j + ek), j < k, j, k = 1, 2, · · · , n

p−i =

√
1
2 (e j − ek), j < k, j, k = 1, 2, · · · , n

(2.52)

with e j denoting the unit vector with j-th element equal to one, and the others equal to

zero. The corresponding weights {wi}2n2
x

i=0 are given by


w0 =

2
nx+2

wi =
1

(nx+2)2 , i = 1, 2, · · · , 2nx(nx − 1).

wi =
4−nx

2(nx+2)2 , i = 2nx(nx − 1) + 1, 2nx(nx − 1) + 2, · · · , 2n2
x.

(2.53)

The operation of nonlinear Kalman filters based on deterministic sampling is

summarized in Algorithm 2.

2.3 Robust Nonlinear Kalman Filters

Traditionally, nonlinear Kalman filters are based on minimizing the mean square error

in the estimation. Thus, traditional nonlinear Kalman filters may fail to achieve

adequate filtering precision in the presence of non-Gaussian noise. Since the available

measurements are corrupted by non-Gaussian noise in different ways such as additive

and multiplicative processes, robust nonlinear Kalman filters are expected to be derived

for dealing with non-Gaussian noise. The additive manner for imposing non-Gaussian

noise on measurements is mainly considered due to its universality.

There exist numerous robust nonlinear Kalman filters, e.g., robust Student’s t-

based Kalman filter (RSTKF) [64], particle filter (PF) [36, 37] and Gaussian sum

filter (GSF) [38]. In particular, the Gaussian sum filter considers a set of Gaussian

mixture distributions for computing the posterior distribution with respect to the

state [65]. In the particle filter, a large number of random particles are applied
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for calculating the posterior distribution [66]. The robust Student’s t-based Kalman

filter uses a Student’s t-distribution to model the heavy-tailed non-Gaussian noise for

yielding improved posterior estimates [64]. Furthermore, robust Kalman filters can be

designed by transforming the state estimation into a multi-dimensional optimization

problem. For example, a class of Huber-based Kalman filters [67, 68] has been

developed for improving robustness against abnormal measurements. In [67], an

improved Huber-based extended Kalman filter is derived on the basis of nonlinear

regression theory. The Huber technique is also applied to the fixed-interval smoothing

problem. Due to the improved filtering precision of the cubature Kalman filter, a robust

Huber-based cubature kalman filter has been proposed for robust improvement [68].

As the generalization of the cubature Kalman filter, the unscented Kalman filter

can be combined with the Huber technique for suppressing abnormal measurements

efficiently [69]. These nonlinear Kalman filters all aim to solve the optimization over

a piecewise Huber function [69, 70], i.e.,

Lh(e) =


1
2e2, |e| ≤ δ

δ|e| − 1
2δ

2, otherwise
(2.54)

with a positive threshold parameter δ for determining whether l1-norm or l2-norm is

used for scaling error. Fig. 2.2 shows the Huber function Lh(e) versus the error e

with a positive threshold parameter δ = 1.345. As shown in Fig. 2.2, the Huber

function is used for scaling measurement errors with l1-norm and l2-norm. This is

indeed beneficial for suppressing outliers efficiently, but also limits the improvement

of filtering accuracy due to the limited use of l1-norm and l2-norm.

Recently, information theoretical learning (ITL) [71, 72, 73] is proposed for

improving robustness in the presence of outliers for capturing a higher statistical

characteristic of errors. In particular, the maximum correntropy criterion (MCC) [74,

75, 76, 77] is a widely used information theoretical learning approach due to its
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Figure 2.2: Huber function Lh(e) versus error e.

simplicity. The correntropy of two arbitrary scalar random variables X and Y measures

their similarity, and is defined by [78]

V(X, Y) = EXY(κσ(X,Y)) =
∫

κσ (x, y) dFXY (x, y) (2.55)

where EXY(·) denotes the expectation with distribution function FXY , and κσ(·) is a

kernel function with kernel bandwidth σ. The Gaussian kernel [79] is the most

commonly used kernel function and is given by

κσ(x, y) =
1
√

2πσ
exp

(
− e2

2σ2

)
(2.56)

where σ > 0 denotes the Gaussian kernel bandwidth and e = x − y is the difference

between x and y. Equation (2.55), however, cannot be calculated since the probability

distribution function is unknown in practice. Thus, (2.55) is generally approximated

by utilizing Ñ available samples {xi, yi}Ñi=1, i.e.,

V̂(X, Y) ≈ 1
Ñ

Ñ∑
i=1

κσ(xi − yi). (2.57)
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Robust maximum correntropy-based Kalman filters are developed by combining the

maximum correntropy criterion given in (2.57) with traditional Kalman filters [78,

80, 81, 82]. In [78], a maximum correntropy Kalman filter (MCKF) is derived by

applying the maximum correntropy criterion to the linear Kalman filter for dealing

with non-Gaussian noise. Recently, a maximum correntropy-based nonlinear Kalman

filter, i.e., maximum correntropy unscented Kalman filter and its variant, i.e., iterated

maximum correntropy unscented Kalman filters have been proposed [80, 82]. Due

to the improved numerical stability of square root-based Kalman filters [45], a

maximum correntropy square-root cubature Kalman filter is proposed for improving

robustness as well as numerical stability [81]. These nonlinear Kalman filters

all have the ability of dealing with abnormal measurements. In comparison with

Kalman filters on the basis of the Huber technique, maximum correntropy-based

Kalman filters handle corrupted measurements in a soft manner which is beneficial for

retaining measurement information. Compared to the maximum correntropy criterion,

generalized correntropy is more flexible and efficient in dealing with corrupted

measurements. The generalized correntropy [83, 84] substitutes the Gaussian kernel

in (2.56) by a generalized kernel function, i.e.,

Gα,β (e) =
α

2βΓ (1/α)
exp

(
−
∣∣∣∣∣eβ

∣∣∣∣∣α) (2.58)

where Γ(·) is the gamma function; α (positive) and β denote the shape parameter and

bandwidth parameter, respectively. According to (2.58), the Laplace distribution is

obtained for α = 1. In addition, (2.58) reduces to the Gaussian distribution when

the shape parameter α is set to 2. The generalized correntropy density converges

to a uniform density on (−β, β) in a point-wise manner [73, 85]. Substituting (2.58)

into (2.55) gives

Vα,β(X,Y) = EXY(Gα,β(X − Y)). (2.59)
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Similar to (2.57), (2.59) can be approximated as

V̂α,β(X, Y) =
1
Ñ

Ñ∑
i=1

Gα,β (xi − yi) . (2.60)

Some important properties of (2.58) can be identified in [73]. Robust generalized

correntropy-based Kalman filters have already been presented in [83] and [84] for

dealing with non-Gaussian noise. In [83], a generalized maximum correntropy Kalman

filter has been proposed by using the generalized correntropy as the cost function in

deriving a linear Kalman filter. In [84], the generalized correntropy is applied to the

unscented Kalman filter (UKF) for estimating a power system’s state with forecasting

aid. The generalized correntropy-based Kalman filters exhibit superior filtering

precision in comparison with traditional Kalman filters and maximum correntropy-

based Kalman filters [83, 84].

Robust optimization-based nonlinear Kalman filters are in general derived by

constructing a novel batch regression model and performing an optimization process.

Consider the following state-space model [28]:

xk = f (xk−1) + wk−1 (2.61)

yk = h (xk) + vk. (2.62)

where xk ∈ Rnx×1 and yk ∈ Rny×1 denote the state and measurement, respectively.

The process noise wk−1 and the measurement noise vk obey the Gaussian distribution,

i.e., wk−1 ∼ N(0,Qk−1), vk−1 ∼ N(0,Rk), respectively. First, the following equation

consisting of the predictive state error and measurement error is constructed [86], i.e.,

 x̂k|k−1

yk − h(x̂k|k−1) +Hkx̂k|k−1

 =
 I

Hk

 xk + v̄k (2.63)

where x̂k|k−1 is the predictive state and Pk|k−1 is the corresponding error covariance. The



32 CHAPTER 2. LITERATURE REVIEW

measurement matrix Hk in (2.63) is expressed as [86]

Hk =
(
P−1

k|k−1Pxy,k|k−1

)T
. (2.64)

It should be noted that (2.63) utilizes a linearization method for handling non-linear

filtering. Apart from linearization, a novel algorithm without approximating the

measurement function has been proposed for handling nonlinear filtering [87]. In

(2.63), I ∈ Rn is the identity matrix, and v̄k takes the form of

v̄k =

−(xk − x̂k|k−1)

vk

 (2.65)

where v̄k has a second-order statistical characteristic E[v̄kv̄T
k ] given by

E[v̄kv̄T
k ] =

Pk|k−1 0

0 Rk

 (2.66)

=

P̂p,k|k−1P̂T
p,k|k−1 0

0 P̂v,kP̂T
v,k

 (2.67)

= P̂kP̂T
k (2.68)

and P̂k takes the form of

P̂k =

P̂p,k|k−1 0

0 P̂v,k

 . (2.69)

Applying Cholesky decomposition to E[v̄kv̄T
k ] generates matrix P̂k in (2.68). A linear

regression model can be developed by multiplying both sides of (2.63) by P̂−1
k , i.e.,

Γk = Πkxk + ek (2.70)
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where

Γk = P̂−1
k

 x̂k|k−1

yk − h(x̂k|k−1) +Hkx̂k|k−1

 ,Πk = P̂−1
k

 I

Hk

 . (2.71)

The linear measurement function, i.e., h(x̂k|k−1) = Hkx̂k|k−1 in (2.71), generates

Γk = P̂−1
k

x̂k|k−1

yk

 . (2.72)

The error ek = P̂−1
k v̄k in (2.70) is white for E[ekeT

k ] = I. The optimal value of the state

variable is then derived by optimizing a robust function such as the Huber function,

maximum correntropy or generalized correntropy over the error in (2.70).

These robust optimization-based Kalman filters are a preferable choice for dealing

with non-Gaussian noise. These optimization-based Kalman filters are derived by

solving a multi-dimensional optimization problem. As a result, robust Kalman filters

can be designed in a more flexible manner compared to other robust Kalman filters like

the Student’s t-based Kalman filter [64], the particle filter [66] and so on. In addition,

these optimization-based Kalman filters in general incur acceptable computational

burden in comparison with the original Kalman filters and other robust Kalman filters

such as the particle filter [66] and the Gaussian sum filter [65]. Most importantly,

these optimization-based Kalman filters all have greatly improved filtering precision

in dealing with abnormal measurements in the presence of non-Gaussian noise in

comparison with the original Kalman filters.

This thesis focuses on the dynamics of information flow on networks captured

using nonlinear Kalman filters in the presence of Gaussian noise and non-Gaussian

noise. Nonlinear Kalman filters are capable of capturing the dynamics of information

flow by utilizing a state model and a set of available measurements. The state model

can be either a propagation dynamic model or a nonlinear system model. In particular,
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the propagation dynamic model focuses on describing the dynamics of information

flow in applications such as epidemic spreading in human networks [19], rumor

propagation in social networks [20, 21], and malware spreading in wireless sensor

networks [22]. The propagation dynamics are not deterministic for approximating

the characteristics of transmission processes. Consider the epidemic spreading on

human networks, for example. Different compartmental models such as Susceptible-

Infected-Recovered (SIR), Susceptible-Infected-Susceptible (SIS) and Susceptible-

Infected-Recovered-Susceptible (SIRS) are used for demonstrating the characteristics

of epidemic transmission as accurately as possible. Unlike the propagation dynamic

model, the nonlinear system model aims to describe the deterministic properties of

nonlinear systems. The nonlinear system model is in general a well-established

model according to specific characteristics like the electrical characteristics in power

systems. The epidemic tracking and the dynamic analysis of power networks are

representative applications which consider the propagation dynamics and the dynamics

of nonlinear systems, respectively. In this thesis, application of nonlinear Kalman

filters is considered for tackling the representative problems associated with epidemic

spreading and nonlinear power networks, respectively.

Since the propagation dynamics are not deterministic for approximating the

characteristics of transmission processes as precisely as possible, a practical question

arises as to whether a guideline can be provided for choosing nonlinear Kalman filters

for tracking information spreading on networks, which will be discussed in Chapter 3.

Since the dynamic model of power systems is deterministic, the choice of Kalman

filters with the dynamic model is not necessary and hence not considered in this thesis.

In addition, nonlinear Kalman filters in the applications of epidemic tracking and the

dynamic analysis of power systems are confronted with the common issue of practical

measurements being contaminated by non-Gaussian noise, such as uniform noise,

Laplace noise, and alpha-stable distributed noise. Various kinds of robust Kalman

filters are expected to be provided for dealing with tracking epidemic spreading or the
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dynamic analysis of power systems under non-Gaussian noise. Consider a sequence

of measurement errors where measurements are corrupted by non-Gaussian noise.

Different mechanisms within multiple intervals of measurement errors can be designed

for dealing with measurement errors. This may be beneficial for improving the

filtering precision of Kalman filters but also introduce extra parameters which need

to be chosen appropriately. For example, the Huber-based Kalman filters introduce

the threshold parameter in (2.54) for determining whether l1-norm or l2-norm is

considered for weighting measurement errors. It is non-trivial to choose an appropriate

threshold parameter in different applications. An alternative way is about only using

single mechanism for dealing with all measurement errors. For example, maximum

correntropy criterion-based Kalman filters only consider the maximum correntropy

for handling measurement errors. In this thesis, single and multiple mechanisms

are all considered for handling non-Gaussian noise. More concretely, a novel

robust generalized correntropy sparse Gauss-Hermite quadrature filter (GCSGHQF)

is presented in Chapter 4. In the generalized correntropy sparse Gauss-Hermite

quadrature filter, a single mechanism, i.e., generalized correntropy based procedure,

is applied in the sparse Gauss-Hermite quadrature filter for handling all measurement

errors to improve robustness. Unlike the generalized correntropy sparse GaussHermite

quadrature filter, the mixed p-norm square root unscented Kalman filter studied

in Chapter 5 utilizes a piecewise function, i.e., multiple p-norms for handling varying

measurement errors. As a result, the mixed p-norm square root unscented Kalman

filter is flexible in dealing with corrupted measurements but may be confronted with the

choice of multiple parameters in comparison with the generalized correntropy sparse

Gauss-Hermite quadrature filter. These robust nonlinear Kalman filters are applied

to tracking epidemic spreading and the dynamic analysis of power systems in the

presence of non-Gaussian noise. Simulation results demonstrate the improved filtering

precision of these novel robust Kalman filters in comparison with traditional Kalman

filters.
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Chapter 3

Performance Comparison of

Nonlinear Kalman Filters in Epidemic

Tracking on Networks

The problem of tracking epidemic spreading on networks is relevant to the control of

morbidity. The transmission dynamics of an epidemic can be described by a simple

compartmental model. Specifically, the estimation of epidemic spreading on networks

can be achieved by a nonlinear Kalman filter, which is a tool for state estimation

of nonlinear systems. In this section, epidemic spreading on networks is described

by compartmental models, such as Susceptible-Infected-Susceptible, Susceptible-

Infected-Recovered and Susceptible-Infected-Recovered-Susceptible models. The

dynamics of epidemic spreading on homogeneous networks are estimated by several

nonlinear Kalman filters, including extended Kalman filter, unscented Kalman filter,

third-degree cubature Kalman filter and fifth-degree cubature Kalman filter. The

performance comparison in terms of accuracy and stability forms a guideline of

utilizing nonlinear Kalman filters for tracking epidemic spreading. The theoretical

analysis has been validated through numerical experiments.

37
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3.1 Introduction

Over the past decade, there has been renewed interest in the study of the dynamics of

epidemic spreading on networks [19, 88]. The dynamics of epidemic transmission

on different types of networks are different. Common types of networks include

random networks, e.g., the Erdös and Rényi (ER) network [3, 89], and small-world

networks, e.g., the Watts and Strogatz (WS) network [3, 90] and the Newman and

Watts (NW) network [5]. The ER network and NW network are generated by adding

links randomly. The WS network, however, can be obtained by removing and adding

links randomly. In addition, networks can also be categorized into homogeneous

and heterogeneous networks according to the degree distribution. For example,

homogeneous networks [7], such as ER networks, NW networks and WS networks,

possess a Poisson degree distribution, whereas heterogeneous networks like the scale-

free network [8] exhibit a power-law degree distribution.

The dynamics of epidemic spreading on networks can be described by various

models, such as agent models, time series models and compartmental models [19].

The compartmental model is generally utilized for modeling epidemic transmission

for its simplicity and well understood mechanism. In compartmental models, the

entire population is classified into different compartments according to the status of

the individuals. A string of letters is used to indicate the structural information

of the model. For example, Susceptible-Infected-Recovered (SIR) [16, 91] is a

common compartmental model for modeling epidemic transmission. For the SIR

model, the entire population is divided into three compartments or groups, i.e., S,

I and R representing the relative sizes or proportions of the susceptible, infected

and recovered individuals. In addition, Susceptible-Infected-Susceptible(SIS) and

Susceptible-Infected-Recovered-Susceptible (SIRS) models [17] are also common

models for studying the behavior of epidemic spreading. Since complex networks are

generally degree-correlated, the degree distribution-based compartmental model [23]
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is more relevant for epidemic spreading.

These modeling approaches can be adopted directly for forecasting the dynamic

transmission of epidemic, i.e., finding the proportions of the susceptible, infected and

recovered individuals as time elapses. However, forecast of dynamic propagation

without considering the transmission process in real-world networks will fall short

of the desired precision of epidemic tracking. Unlike traditional modeling methods,

nonlinear Kalman filtering [30, 31, 32] aims to explore transmission dynamics based

on the transmission model of epidemic dynamics and the available measurements.

The measurements related to epidemic propagation over networks can be utilized

for forecasting the transmission dynamics and further correcting the predictive

transmission. In comparison with traditional modeling approaches, nonlinear Kalman

filters therefore capture the dynamics of epidemic more accurately.

Commonly used nonlinear Kalman filters include the extended Kalman filter

(EKF) [39, 40], unscented Kalman filter (UKF) [43] and cubature Kalman filter

(CKF) [46, 45]. The EKF implements state estimation by utilizing the first-order

linearization of a nonlinear function. In comparison with the EKF, the UKF utilizes

the unscented transformation (UT) for capturing the statistical characteristics of a

Gaussian variable through a nonlinear function. However, the UKF becomes unstable

as the state dimension increases, degrading the filtering accuracy. In addition, the UKF

introduces an adjusted scaling parameter for controlling the spreading of samples.

Therefore, the CKF, including the third-degree CKF and the fifth-degree CKF [48],

has been proposed without the requirement of introducing any scaling parameter. In

addition, the third-degree CKF has a better stability in comparison with the UKF. The

fifth-degree CKF achieves a higher precision at the expense of a higher complexity and

being less stable than the third-degree CKF.

In this chapter, several nonlinear Kalman filters including the EKF, UKF and CKF

are employed to capture the dynamic behavior of epidemic spreading on homogeneous

networks. Specifically, the main contributions are as follows.
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• Nonlinear Kalman filters are utilized for tracking epidemic spreading over

complex networks on the basis of degree-based compartmental models. Since

degree-based compartmental models involve a high dimensional state vector

and incur heavy computational burden for large networks, several strategies are

proposed for the efficient use of nonlinear Kalman filters in tracking epidemic

transmission over large-scale complex networks.

• A comparison of various nonlinear Kalman filters is performed in terms of

estimation accuracy and stability. The performance comparison provides a

guideline for choosing appropriate nonlinear Kalman filters for tracking the

transmission dynamics of epidemic over complex networks.

3.2 State Estimation of Epidemic Spreading on Net-

works

3.2.1 Review of Networks

A network can be described as a graph G = (N, E), where N and E denote the

sets of nodes and links in graph G [55]. Let |N| and |E| be the size of N and E,

respectively. Common types of networks include ER networks [3], NW networks [4]

and WS networks [5, 6]. The topological structure of an ER network is determined by

the number of nodes |N| and the connecting probability p among nodes, i.e., (|N|, p)

where the connecting probability p determines whether the nodes are connected. For

example, the nodes in an ER network are connected when a randomly generated

number is smaller than the pre-determined connecting probability p in the evolution

of the ER network. In comparison with ER networks, NW and WS networks are

generated based on the nearest-neighbor coupling network with 2K nearest-neighbor

coupled nodes [92] and are therefore determined by (|N |,K, p).
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Different networks exhibit different properties such as the degree distribution [7].

Define a degree vector d = [d1, d2, · · · , d j, · · · , d|N|]. Degree d j of node j is the number

of links incident on the node [7], i.e.,

d j =
∑

i

a ji (3.1)

where a ji ∈ {0, 1} is the j-th row i-th column element of the adjacency matrix A with

a ji = 1 denoting connectivity of node j with node i. The degree of graph G can also

be represented by a collection of the types of degree D = [dp1 , dp2 , · · · , dpς , · · · , dp|D|]

with |D| denoting the size of the types of degree and dpς being the ς-th type of degree.

The set {dpς}|D|ς=1, is a subset of {d j}|N |j=1. The degree distribution P(dpς) is defined as the

probability that a node has degree dpς . In addition, Fig. 3.1 shows the plot of |D| versus

probability p in various networks. From Fig. 3.1, |D| is generally small for a small or

large connecting probability and otherwise becomes large in ER and NW networks.

However, |D| increases with p for the WS network.

3.2.2 State Space Model

The compartmental model [19] divides the population into different compartments.

The most commonly used two-compartment model is the SIS model [17], and

three-compartment models include the SIR [16] and SIRS [17] models. Define the

proportions of the infected, susceptible and recovered individuals having degree dpς at

discrete time k by Idpς ,k, S dpς ,k and Rdpς ,k, respectively. The SIS, SIR and SIRS models

are represented by

S dpς ,k = S dpς ,k−1 − αdpςS dpς ,k−1Iw
dpς ,k−1 + ∆S k−1 (3.2)

Idpς ,k = Idpς ,k−1 + αdpςS dpς ,k−1Iw
dpς ,k−1 − ∆Ik−1 (3.3)
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Figure 3.1: |D| versus connection probability p in networks.

with ∆S k−1 = ∆Ik−1 = ϵIdpς ,k−1 for the SIS model; ∆S k−1 = 0,∆Ik−1 = βIdpς ,k−1 for the

SIR model; ∆S k−1 = γRdpς ,k−1,∆Ik−1 = βIdpς ,k−1 for the SIRS model. In (3.2),

Iw
dpς ,k−1 =

|D|∑
m=1

p
(
dpm |dpς

)
Idpς ,k−1 (3.4)

where the scalar dpς denotes the degree, ranging from dp1 to dp|D| , and p(dpm |dpς) is

the conditional probability distribution that an edge departing from a node of degree

dpς is connected to a node of degree dpm . The SIS model as a closed-loop model only

includes two basic events, i.e., infection and susceptibility, with α being the infected

rate and ϵ being the transmission rate from the infected to the susceptible. Similarly,

the SIRS model is also a closed-loop model with α being the infected rate, β being the

removal or recovery rate and γ being the transmission rate from the recovered to the

susceptible. However, the SIR model is an open-loop model with α being the infected

rate and β being the removal or recovery rate.

Nonlinear Kalman filters perform state estimation based on a state-space model,

i.e.,

xk = f (xk−1) + wk (3.5)
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yk = h (xk) + vk (3.6)

where xk ∈ Rnx and yk ∈ Rny denote the state and the measurement, respectively;

the nonlinear functions f (·) and h(·) are the state function and measurement function,

respectively. The process noise wk and the measurement noise vk are both uncorrelated

zero-mean Gaussian white noise with covariances Qk and Rk, respectively. A nonlinear

Kalman filter calculates the predictive and estimated density functions of the state,

p(xk|y1:k−1) and p(xk|y1:k), by prediction step and update step, respectively. Different

methods for calculating the probability density function lead to different nonlinear

Kalman filters, e.g., EKF, UKF and CKF. In comparison with the EKF utilizing the

first-order linearization approximation of a nonlinear function, UKF and CKF are

common nonlinear Kalman filters based on deterministic sampling. Nonlinear Kalman

filters based on deterministic sampling are summarized in Algorithm 3 [43, 46].

To use nonlinear Kalman filters for tracking epidemic spreading, we define the state

vector xk = [(x1
k)T (x2

k)T]T, where x1
k and x2

k are defined as according to (3.2) and (3.3)

x1
k = Sk = [S dp1 ,k

, S dp2 ,k
, · · · , S dpς ,k, · · · , S dp|D|,k

]T (3.7)

x2
k = Ik = [Idp1 ,k

, Idp2 ,k
, · · · , Idpς ,k, · · · , Idp|D|,k

]T (3.8)

where Idpς ,k and S dpς ,k represent the proportions of the infected and susceptible

individuals having degree dpς at discrete time k, respectively. The SIS, SIR and SIRS

compartmental models in (3.2) and (3.3) can be rewritten as a state-space model by

defining the state process function and measurement function, i.e.,

x1
k = x1

k−1 − αx1
k−1 ◦ (Px2

k−1) +Πk−1 + w1
k (3.9)

x2
k = x2

k−1 + αx1
k−1 ◦ (Px2

k−1) − Ξk−1 + w2
k (3.10)

yk = Hkxk + vk (3.11)
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with Πk−1 = ϵx2
k−1 and Ξk−1 = ϵx2

k−1 for the SIS model; Πk−1 = 0 and Ξk−1 = βx2
k−1 for

the SIR model; Πk−1 = γ(Γ̄ − x1
k−1 − x2

k−1) and Ξk−1 = βx2
k−1 with Γ̄ = [1, 1, · · · , 1]T ∈

R|D|×1 for the SIRS model. In (3.9), P = diag(D)Pc, where diag(D) is a diagonal matrix

with entries taken from D. The i-th row j-th column element p(dp j |dpi) of Pc denotes

the conditional probability that a node of degree dpi connects a node of degree dp j , and

is dependent on the node with degree dpi . Also, C̃ = Ã◦B̃ is the Hadamard product [93]

and wk = [(w1
k)T (w2

k)T]T, w1
k ,w

2
k ∈ R|D|×1. The measurement matrix H is chosen by

H = [Γ,Γ] with identity matrix Γ ∈ R|D|.

In (3.9) and (3.10), parameters like α, β, ϵ and γ are assumed to be stationary.

Nonlinear Kalman filters not only consider epidemic spreading model but also take into

account the transmission process in practice. As a result, nonlinear Kalman filters still

perform satisfactorily even when stationary parameters are used. Apart from the work

using stationary parameters, there are numerous studying using updated parameters

like machine learning [15] and double nonlinear Kalman filters [30]. However,

machine learning is limited by the requirement of a large number of samples of high

quality. In addition, it is challenging for double nonlinear Kalman filters to yield an

accurate state as well as exact parameters. In our work, stationary parameters are

applied in nonlinear Kalman filters for tracking epidemic spreading. In addition, the

connection probability p in Fig. 3.1 is used to describe the connectivity of nodes and

is also stationary for a specific network.

Remark 1 In ER and NW networks, the number of links |E| increases with the

connecting probability p. Unlike ER and NW networks, WS networks can be generated

by removing and connecting randomly. Therefore, the values of P would likely increase

as the connecting probability increases in ER and NW networks, and would generally

decrease in the WS network. Morevoer, the increase of P may accelerate the infection

process and degrade the numerical stability of nonlinear Kalman filters for performing

epidemic tracking, thus deteriorating the filtering accuracy.
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Algorithm 3 Nonlinear Kalman Filter Based on Deterministic Sampling
Prediction step
1: Calculate L sample points {ξi,k−1}Li=1 and weights {ωi}Li=1 where ξi,k−1 and ωi represent
the i-th sample point and i-th weight at the discrete time k − 1 [43, 46].
2: Compute the predicted mean x̂k|k−1 and predicted error covariance P̂k|k−1

x̂k|k−1 =

L∑
i=1

ωif (ξi,k−1) (3.12)

P̂k|k−1 = P̂s
k|k−1 +Qk (3.13)

with the matrix P̂s
k|k−1

P̂s
k|k−1 =

L∑
i=1

ωi(f (ξi,k−1) − x̂k|k−1)(f (ξi,k−1) − x̂k|k−1)T. (3.14)

Update step
1: Calculate L sample points {ξi,k−1}Li=1 and weights {ωi}Li=1 [43, 46].
2: Compute the estimated mean x̂k and the corresponding error covariance of the state
P̂k

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)), (3.15)

P̂k = P̂k|k−1 −KkP̂yy,k|k−1KT
k . (3.16)

The matrix Kk = P̂xy,k|k−1P̂−1
yy,k|k−1 represents the Kalman gain with covariance matrices

P̂xy,k|k−1 and P̂yy,k|k−1

P̂xy,k|k−1 =

L∑
i=1

ωi(ξi,k|k−1 − x̂k|k−1)(h(ξi,k|k−1) − ŷk|k−1)T (3.17)

P̂yy,k|k−1 = Rk +

L∑
i=1

ωi(h(ξi,k|k−1) − ŷk|k−1)(h(ξi,k|k−1) − ŷk|k−1)T (3.18)

and predicted measurement

ŷk|k−1 =

L∑
i=1

ωih(ξi,k|k−1). (3.19)

Output: x̂k, P̂k

Remark 2 The filtering accuracy of nonlinear Kalman filters can be affected by the

dimension of the state [45]. In general, a high state dimension greatly degrades the

filtering precision of nonlinear Kalman filters. Fig. 3.1 gives the size of the types of
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degree in ER, NW and WS networks, which is positively correlated with the dimension

of the hidden state. Therefore, nonlinear Kalman filters perform epidemic tracking

with a smaller estimation error when ER or NW networks are generated by a smaller

or larger connecting probability and when WS networks are generated by a smaller

connecting probability. In [43], an extra matrix ∆Q is added to the covariance matrix

of estimation error for enhancing the stability at the expense of degrading the filtering

performance.

3.2.3 Observability of Discrete-Time Models

The observability property can be used for evaluating the existence of an estimator

of a model [39]. More concretely, a system is observable at discrete time k if for

the state at discrete time k, there is a finite kl > k so that there are sufficient amount

of measurements for determining the state at discrete time k [94]. It is also easy to

understand that an unobservable system is one where some states at discrete time k

cannot be determined from measurements regardless of the number of measurements

taken [95]. Theorem 1 gives sufficient conditions for guaranteeing the observability

of the model given in (3.5) and (3.6).

Theorem 1 The nonlinear dynamical system given by (3.9)-(3.11) is locally weakly

observable.

Proof: According to the results of [39], the nonlinear dynamical system given

by (3.5) and (3.6) is locally weakly observable if the nonlinear observability matrix at

xk ∈ Rnx , i.e.,

U (xk) :=


∂h(xk)
∂x
...

∂h(xk+nx−1)
∂x

∂f(xk+nx−2)
∂x · · · ∂f (xk)

∂x

 (3.20)
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has rank nx. The derivative ∂h (x)/∂x|x=xk in (3.20) is calculated by ∂h (x)/∂x|x=xk = Hk.

In addition, we have the derivative Fk−1 = ∂f (x)/∂x for SIS, SIR and SIRS models as

Fk−1 =

 ∆Fa − αΓ ◦ P̃I ∆Fb − αP̃S

αΓ ◦ P̃I ∆Fc + αP̃S

 (3.21)

with P̃I and P̃S defined by P̃I = P[Ik−1 · · · Ik−1], P̃S = P ◦ [Sk−1 · · · Sk−1]. In (3.21), for

the SIS model,

∆Fa = Γ,∆Fb = ϵΓ,∆Fc = (1 − ϵ)Γ. (3.22)

As for the SIR model, we have

∆Fa = Γ,∆Fb = 0,∆Fc = (1 − β)Γ. (3.23)

For the SIRS model,

∆Fa = (1 − γ)Γ,∆Fb = −γΓ,∆Fc = (1 − β)Γ. (3.24)

Therefore, we get rank(U (xk)) = nx = 2|D|. �

Remark 3 The nonlinear Kalman filter performs state estimation based on SIS, SIR

and SIRS models. The SIS and SIRS models are closed-loop models, for which the

proportions of the susceptible, infected and recovered individuals may not reduce to

zero. However, the SIR compartmental model is an open-loop model, for which the

proportions of the susceptible and infected people may become zero. Therefore, all

entries of predictive covariance matrix P̂k|k−1 in (3.13) may be close to zero under a

small covariance matrix Qk. The estimated error covariance P̂k may thus be non-

positive definite since the estimated error covariance P̂k is constructed by subtraction

of predictive covariance matrix P̂k|k−1 and P̂K
k|k−1 = KkP̂yy,k|k−1KT

k in (3.16). Since the
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sample points {ξi,k−1}Li=1 in Algorithm 3 are generated by implementing the Cholesky

decomposition on matrix P̂k, the non-positive definite matrix P̂k is not beneficial for

nonlinear Kalman filters choosing sample points {ξi,k−1}Li=1. Therefore, SIS and SIRS

models are more beneficial for nonlinear Kalman filters in performing state estimation

comparing to the SIR model in terms of filtering stability.

3.3 Accuracy, Complexity and Steady-State Analysis

3.3.1 Accuracy Analysis

Define the column vector x = [x1, x2, · · · , x j, · · · , xnx]
T ∈ Rnx , x = x̄ + ∆x̄ = x̄ + Ã∆x

with x ∼ N(x̄,P), ∆x̄ ∼ N(0,P), Ã =
√

P, ∆x̄ = [∆x̄1,∆x̄2, · · · ,∆x̄ j, · · · ,∆x̄nx]
T.

Expanding the function f (x) at x̄ by Taylor series expansion, we get [43]

f (x) = f (x̄) +
∞∑
j=1

D j
∆x̄ f
j!

(3.25)

where

D j
∆x̄ f =

 nx∑
ī=1

∆x̄ī

n∑
j̄=1

aī j̄
∂

∂x j̄


j

f |x=x̄ (3.26)

with aī j̄ being the ī-row j̄-column element of matrix Ã. Defining∇ =
[
∂
∂x1

∂
∂x2
· · · ∂

∂xnx

]T
,

we have

D∆x̄ f = (∆x̄)T∇ f ,

D2
∆x̄ f =

(
∇T∆x̄∆x̄T∇

)
f . (3.27)
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The expectation of (3.25) is given by [46]

f m(x) = f (x̄) +
1
2
∇T Px∇ + Ex̄c +

∞∑
j=2

τ̂

(2 j)!

nx∑
ĵ=1

 nx∑
j̄=1

a ĵ, j̄
∂

∂x j̄


2 j

f |x=x̄ (3.28)

where τ̂ = 1 × 3 × · · · (2 j − 1) and Ex̄c denotes the cross term. Also, L samples of the

UKF, third-degree CKF and fifth-degree CKF take the form {ξ : x̄+∆ξ̄i = x̄+ Ā∆ξi}Li=1

where Ā =
√

Px and the mean and variance of ∆ξ̄i are 0 and Px, respectively [48].

Similar to (3.28), the UKF generates the mean of state prediction [46], i.e.,

x̄UKF
k+1|k = f (x̄) +

∞∑
j=2

(nx + λ) j−1

(2 j)!

nx∑
ĵ=1

 nx∑
j̄=1

a ĵ j̄
∂

∂ξ j̄


2 j

f |ξ=x̄ +
1
2
∇TPx∇ + Ex̄u (3.29)

where Ex̄u is the cross term of state prediction of the UKF and the factor λ is an

adjustable parameter for sampling points and weights [43]. Similarly, the third-degree

CKF generates the mean of state prediction as

x̄CKF3
k+1|k = f (x̄) +

∞∑
j=2

n j−1
x

(2 j)!

nx∑
ĵ=1

 nx∑
j̄=1

a ĵ j̄
∂

∂ξ j̄


2 j

f |ξ=x̄ +
1
2
∇TPx∇ + Ex̄c3 (3.30)

where Ex̄c3 is the cross term of state prediction of the third-degree CKF. In addition,

the mean of state prediction for the fifth-degree CKF is

x̄CKF5
k+1|k = f (x̄) +

1
2
∇TPx∇ + ~b + ~l (3.31)

where ~b and ~l can be calculated by ~b = 2 (nx − 1)τ + Ex̄c51 and ~l = (4 − nx)τ +

Ex̄c52 where τ =
∞∑
j=2

(nx + 2) j−2
nx∑̂
j=1

 nx∑̄
j=1

a ĵ j̄
∂
∂ξ j̄

2 j

f /(2 j)!. Therefore, the fifth-degree CKF

generates the mean of state prediction as

x̄CKF5
k+1|k = f (x̄) +

1
2
∇TPx∇ + Ex̄c5 +

∞∑
j=2

(nx + 2) j−1

(2 j)!

nx∑
ĵ=1

 nx∑
j̄=1

a ĵ j̄
∂

∂ξ j̄


2 j

f |ξ=x̄ (3.32)
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with the cross term Ex̄c5.

Remark 4 From (3.28) to (3.32), the performances of UKF, third-order CKF, and fifth-

order CKF are compared through Taylor series expansion in terms of the captured

high-order statistical characteristic. For example, parameter λ in UKF is generally set

as nx +λ = 3 such that the UKF can capture the fourth-order statistical characteristic,

i.e., j = 2 in (3.28). Therefore, in comparison with the third-degree CKF, UKF gives a

higher filtering accuracy. As for the cubature rule, if d1 > d2, the d1-degree cubature

rule is more accurate than the d2-degree cubature rule. Therefore, the fifth-degree

CKF has a much higher filtering precision in comparison with the third-degree CKF.

In addition, the fifth-degree CKF performs better than the third-degree CKF and UKF

especially in the presence of high nonlinearities.

3.3.2 Complexity Analysis

The computational complexity of nonlinear Kalman filters based on deterministic

sampling is provided in Table 3.1. In Table 3.1, nx and ny represent the dimension of

the state and measurement, respectively. Notations C f and Ch denote the calculational

burden of nonlinear functions f and h acting on one scalar, respectively. Nonlinear

Kalman filters perform the dynamic estimation by two steps, i.e., prediction step

and update step. In prediction step, L samples {ξi,k−1}Li=1 and corresponding weight

ω(c)
i and ω(m)

i at discrete time k − 1 are used for calculating integrals by numerical

method as shown in Algorithm 2 in Chapter 2. In update step, L samples {ξi,k|k−1}Li=1

and corresponding weight ω(c)
i and ω(m)

i at discrete time k − 1 are also required for

computing integrals by numerical method in Algorithm 2 in Chapter 2. According to

Table 3.1, complexities of nonlinear Kalman filters like UKF, third-degree CKF and

fifth-degree CKF are all O((L + nx)n2
x + n3

y + n2
xny + n2

ynx). Since the dimension of the

measurement is lower than that of the state, these nonlinear Kalman filters all have

complexity O((L + nx)n2
x) in terms of scale.
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Table 3.1: Computational Complexity of Nonlinear Kalman Filter Based on
Deterministic Sampling

Computation Operation Cost of Operation Overall Cost
Sample points and weights
{ξi,k−1, ω

(c)
i , ω

(m)
i }Li=1 in [43, 46] Cholupdate decomposition O(n3

x) O(n3
x)

x̂k|k−1 =
∑L

i=1 ω
(m)
i f (ξi,k−1)

Evaluation of f L × nx ×C f

Scalar-vector products L × nx

Sum of vectors (L − 1) × nx O(2Lnx + LnxC f − nx)

Pk|k−1 =
∑L

i=1 ω
(c)
i ( f

(
ξi,k−1

) − x̂k|k−1)

Subtract of vectors f
(
ξi,k−1

) − x̂k|k−1 L × nx

Product of vectors(
f
(
ξi,k−1

) − x̂k|k−1
) (

f
(
ξi,k−1

) − x̂k|k−1
)T L × n2

x
Scalar-Matrix multiplication

(f (ξi,k−1) − x̂k|k−1)T +Qk−1 ω(c)
i

(
f
(
ξi,k−1

) − x̂k|k−1
) (

f
(
ξi,k−1

) − x̂k|k−1
)T L × n2

x
Sum of matrices L × n2

x O(3Ln2
x + Lnx)

Sample points and weights
{ξi,k|k−1, ω

(c)
i , ω

(m)
i }Li=1 in [43, 46] Cholupdate decomposition O(n3

x) O(n3
x)

ŷk|k−1 =
∑L

i=1 ω
(m)
i h(ξi,k|k−1)

Evaluation of h L × nx ×C f

Scalar-vector products L × ny

Sum of vectors (L − 1) × ny O(2Lny + LnxC f − ny)

Pyy,k|k−1 =
∑L

i=1 ω
(c)
i (h(ξi,k|k−1) − ŷk|k−1)

Subtract of vectors h(ξi,k|k−1) − ŷk|k−1 L × ny

Product of vectors(
h(ξi,k|k−1) − ŷk|k−1

) (
h(ξi,k|k−1) − ŷk|k−1

)T L × n2
y

Scalar-Matrix multiplication
(h(ξi,k|k−1) − ŷk|k−1)T + Rk ω(c)

i
(
h(ξi,k|k−1) − ŷk|k−1

) (
h(ξi,k|k−1) − ŷk|k−1

)T L × n2
y

Sum of matrices (L − 1) × n2
y O(3Ln2

y + Lny − n2
y)

Pxy,k|k−1 =
∑L

i=1 ω
(c)
i (ξi,k|k−1 − x̂k|k−1)

Subtract of vectors ξi,k−1 − x̂k|k−1 L × nx

Product of vectors(
ξi,k−1 − x̂k|k−1

) (
h(ξi,k|k−1) − ŷk|k−1

)T L × nx × ny

Scalar-Matrix multiplication
(h(ξi,k|k−1) − ŷk|k−1)T ω(c)

i
(
ξi,k−1 − x̂k|k−1

) (
h(ξi,k|k−1) − ŷk|k−1

)T L × nx × ny

Sum of matrices (L − 1) × nx × ny O(3Lnxny + Lnx − nxny)

Kk = Pxy,k|k−1P−1
yy,k|k−1

Inverse of matrix P−1
yy,k|k−1 O(n3

y)
Matrix-matrix multiplication Pxy,k|k−1P−1

yy,k|k−1 nx × n2
y + nx × (n2

y − ny) O(n3
y + nxn2

y)

x̂k = x̂k|k−1 +Kk
(
yk − h(x̂k|k−1)

) Subtract of vectors yk − h(x̂k|k−1) ny

Matrix-vector multiplication Kk
(
yk − h(x̂k|k−1)

)
2nxn2

y − nxny

Sum of vectors x̂k−1 +Kk
(
yk − h(x̂k|k−1)

)
nx 2nxn2

y − nxny + nx + ny

Pk = Pk|k−1 −KkPyy,k|k−1KT
k

Multiplication of matrices KkPyy,k|k−1KT
k 2nyn2

x − nxny + 2n2
xny − n2

x
Subtract of matrices Pk|k−1 −KkPyy,k|k−1KT

k n2
x O(2nyn2

x − nxny + 2n2
xny)

However, it is necessary to note that the fifth-degree CKF uses L = 2n2
x + 1 sample

points for calculating integrals in comparison with the third-degree CKF and UKF

with L = 2nx and L = 2nx + 1, respectively. This indicates that the fifth-degree

CKF has the highest burden O(n4
x) in comparison with the third-degree CKF and UKF

with complexity O(n3
x) in terms of scale. Although the third-degree CKF and UKF

all have complexity O(n3
x), the third-degree CKF and UKF have different complexity

in terms of computing flops. For example, UKF with 2nx + 1 samples has a slightly

higher computational burden in comparison with the third-degree CKF with 2nx sample

points. By contrast, the extended Kalman filter calculates multiple integrals by the first-
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order linearization of a nonlinear function instead of the deterministic sampling method

given in Algorithm 1 in Chapter 2. The extended Kalman filter therefore has the lowest

calculational complexity. In the extended Kalman filter, the calculations of the Kalman

gain Kk and estimated error covariance Pk given in Algorithm 1 in Chapter 2 pose a

significant computational burden O(n3
y + nyn2

x + nxn2
y). In consideration of ny < nx, the

extended Kalman filter has complexity O(nyn2
x) in terms of scale.

3.3.3 Steady-State State Estimation

This section presents the steady-state state estimation of nonlinear Kalman filters and

gives the upper bound of state estimation error in terms of mean square error.

Defining the state estimation error x̃k = xk − x̂k and prediction error x̃k|k−1 = xk −

x̂k|k−1, we have

x̃k|k−1 ≈ Fkx̃k−1 + wk

= βkFkx̃k−1 + wk (3.33)

where βk = diag(βk,1, βk,2, · · · , βk,nx). To improve the stability, an extra matrix ∆Qk is

included in the calculated covariance matrix P̂k|k−1 [43], i.e.,

P̂k|k−1 = E(x̃k|k−1x̃T
k|k−1)

= βkFkP̂k−1FT
kβk + Q̄k (3.34)

with the calculated covariance of estimation error at discrete time k − 1, P̂k−1. The

matrix Q̄k is calculated by

Q̄k = Pe
k|k−1 + P̂k|k−1 − Pk|k−1 +Qk + ∆Qk (3.35)
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with the covariance of the state prediction error

Pk|k−1 = βkFkP̂k−1FT
kβk + Pe

k|k−1 +Qk

Pe
k|k−1 = E(βkFkP̂k−1FT

kβk) − βkFkP̂k−1FT
kβk. (3.36)

Theorem 2 Suppose τmin, τmax, pmin, p̄min, qmin, qmax, q̄min, q̄max, rmin, rmax are real

positive numbers and βmin, βmax, f̄min, f̄max, hmin, hmax are real numbers. The mean

square estimation error x̃k is bounded, provided the following conditions are fulfilled.

β2
minΓnx ≤ βkβ

T
k ≤ β2

maxΓnx (3.37)

τminΓnx ≤ FkP̂k−1FT
k ≤ τmaxΓnx (3.38)

f̄ 2
minΓnx ≤ F̄kF̄T

k ≤ f̄ 2
maxΓnx (3.39)

pminΓnx ≤ P̂k ≤ Pu (3.40)

p̄minΓnx ≤ P̂−1
k ≤ P+u, 0 < δmin(P̂−1

k ) (3.41)

h2
minΓny ≤ HkHT

k ≤ h2
maxΓny (3.42)

q̄minΓnx ≤ Q̄k ≤ q̄maxΓnx (3.43)

qminΓnx ≤ Qk ≤ qmaxΓnx (3.44)

rminΓny ≤ Rk ≤ rmaxΓny (3.45)

where F̄k = βkFk; P̂k is bounded by Pu; δmin(·) denotes the minimum eigenvalue; and

the positive definite matrix P̂−1
k is bounded by P+u.

Proof: Construct the Lyapunov function by

Vk(x̃k) = x̃T
k P̂−1

k x̃k. (3.46)

According to (3.41), the positive definite matrix P̂−1
k is upper-bounded by P+u.
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Therefore, we can obtain the boundedness of the Lyapunov function Vk(x̃k) as

(p+u )−1||x̃k||2 ≤ Vk(x̃k) ≤ p̄−1
min||x̃k||2 (3.47)

where p+u is a positive number.

Substituting x̃k = x̃k|k−1 −Kkỹk in (3.15) into (3.46), we obtain

Vk(x̃k) =
(
x̃k|k−1 −Kkỹk

)T P̂−1
k

(
x̃k|k−1 −Kkỹk

)
(3.48)

where ỹk = Hkx̃k|k−1 + vk. Expanding (3.48), we obtain

Vk(x̃k) = x̃T
k|k−1P̂−1

k x̃k|k−1 − x̃T
k|k−1P̂−1

k Kkỹk − ỹT
k KT

k P̂−1
k x̃k|k−1 + ỹT

k KT
k P̂−1

k Kkỹk. (3.49)

Take the expectation of Vk(x̃k) conditional on x̃k−1 as

E(Vk(x̃k)|x̃k−1) = E((βkFkx̃k−1)T(βkFkP̂k−1FT
k βk + Q̄k)−1(βkFkx̃k−1) + vT

k R−1
k HkP̂kHT

k R−1
k vk

+ wT
k P̂−1

k|k−1wk − (Hkwk)T (HkP̂k|k−1HT
k + Rk)−1 (Hkwk)

− (HkβkFkx̃k−1)T(HkP̂k|k−1HT
k + Rk)−1 (HkβkFkx̃k−1) |x̃k−1). (3.50)

Based on matrix inequality [43]

Â−1 > B̂(B̂T ÂB̂ + Ĉ)−1B̂T (3.51)

with Â ∈ Rm×n, B̂ ∈ Rm×n, Ĉ ∈ Rm×n and Â, Ĉ > 0, we obtain

P̂−1
k|k−1 = (βkFkP̂k−1FT

k βk + Q̄k)−1

≤ (βkFkP̂k−1FT
k βk)−1 (3.52)

by letting Â = βkFkP̂k−1FT
k βk, B̂ = I and Ĉ = Q̄k. Therefore, (3.50) can be rearranged
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as

E[Vk(x̃k)|x̃k−1] − (1 − ϱk)Vk−1(x̃k−1) ≤ θ (3.53)

where Vk−1(x̃k−1) = E(βkFkx̃k−1)T(βkFkP̂k−1FT
k βk)−1(βkFkx̃k−1) = x̃T

k−1P̂−1
k−1x̃T

k−1, which

means that (βkFk)−1 exists. The scalar ϱk in (3.53) is defined by

ϱk = (HkβkFkx̃k−1)T (HkβkFkP̂k−1(HkβkFk)T +Hk

Q̄kHT
k + Rk)−1 (HkβkFkx̃k−1) /x̃T

k−1P̂−1
k−1x̃k−1. (3.54)

Letting Â = P̂k−1, B̂ = (HkβkFk)T and Ĉ = HkQ̄kHT
k + Rk, we have ϱk < 1. According

to (3.37) to (3.45), ϱk is lower bounded by positive number

ϱmin = pmin(hmin f̄min)2[(hmaxβmax)2τmax + q̄maxh2
max + rmax]−1. (3.55)

The scalar θ in (3.53) is given by

θ = E{wT
k [βkFkP̂k−1FT

k βk + Q̄k]−1 −HT
k (Hk(βkFkP̂k−1FT

k βk + Q̄k)HT
k + Rk)−1Hk]wk

+ vT
k R−1

k HkP̂kHT
k R−1

k vk|x̃k−1}

= E(tr(((βkFkP̂k−1FT
k βk + Q̄k)−1 −HT

k (Hk(βkFkP̂k−1FT
k βk + Q̄k)HT

k + Rk)−1Hk)wkwT
k )

+ tr(R−1
k HkP̂kHT

k R−1
k vkvT

k )|x̃k−1)

= tr(θkQk + R−1
k HkP̂kHT

k ) (3.56)

where the parameter θk is defined as

θk = (βkFkP̂k−1FT
k βk + Q̄k)−1 −HT

k (Hk(βkFkP̂k−1FT
k βk + Q̄k)HT

k + Rk)−1Hk. (3.57)
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Similarly, applying the same matrix inequality by letting

B̂ = HT
k , Â = βkFkP̂k−1FT

k βk + Q̄k, Ĉ = Rk, (3.58)

we obtain θk > 0. According to (3.40), P̂k is upper bounded by Pu, which gives the

boundedness of tr(R−1
k HkP̂kHT

k ) in (3.56) defined by ph. Therefore, the upper bound

of θ in (3.56) is

θ ≤ qmaxq̄−1
minnx + ph = θ̃. (3.59)

According to [43], we obtain E{∥x̃k∥2} ≤ τ̃ by (3.37) through (3.45), where τ̃ is defined

by

τ̃ =

k−1∑
i=1

p+u θ̃(1 − ϱmin)i +
p+u E{∥x̃0∥2}

pmin
(1 − ϱmin)k. (3.60)

�

It is necessary to note that Theorem 2 is a sufficient condition to ensure the stability

of UKF in theory since parameters like β in (3.33) are not available.

Remark 5 Inspecting Fk−1 of the SIS compartmental model, the increasing infection

rate α may not be beneficial for satisfying (3.38) and maintaining stability. A larger

recovery rate may be beneficial for enhancing stability. Same with the SIS model, SIR

and SIRS models are unstable for nonlinear Kalman filters performing nonlinear state

estimation under a large infection rate.

3.4 Simulation Results

This section compares the filtering performance of nonlinear Kalman filters for

tracking epidemic spreading on ER, NW and WS networks with N = 200 and K = 10.

When a small connecting probability p is chosen, the NW and WS networks reduce to
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the nearest-neighbor coupling network, and very few nodes are connected in the ER

network. In addition, a larger connecting probability makes the NW network a global

neighbor coupling network. In our experiments, the connecting probability is chosen

in the interval p ∈ [0.05, 0.95].

The compartmental models used include SIS, SIR and SIRS models with ϖSIS =

(α, ϵ), ϖSIR = (α, β), ϖSIRS = (α, β, γ). The observations in (3.11) are generated

synthetically for facilitating the study of epidemic tracking by nonlinear Kalman filters

on different networks. The nonlinear Kalman filters including EKF, UKF, third-degree

CKF denoted by CKF3 and fifth-degree CKF denoted by CKF5, are used to estimate

the dynamics of epidemic spreading. The parameters of nonlinear Kalman filters are

designed for balancing the filtering accuracy and stability.

In each experiment, 50 Monte Carlo simulations are run. The root mean square

error (RMSE) is used to evaluate the filtering performance, i.e.,

RMSE =
1
N̄

N̄∑
k=1

√√√ ℓ1+|D|∑
j=ℓ1+1

(x j,k
N̂ j−ℓ1

|N| − x̂ j,k
N̂ j−ℓ1

|N| )2 (3.61)

where N̂ =
[
|N|d̄1 , |N|d̄2 , · · · , |N |dpς

, · · · , |N|d̄|D|
]

with |N|dpς
denoting the number of

nodes of degree dpς , and N̄ denotes the number of samples. Column vectors xk =

[x1,k, x2,k, · · · , x2|D|,k]T and x̂k = [x̂1,k, x̂2,k, · · · , x̂2|D|,k]T denote the desired and estimated

state, respectively. Scalar ℓ1 = 0 is for calculating the RMSE of the proportion of the

susceptible individuals, denoted by RMSES, and ℓ1 = |D| is for calculating the RMSE

of the proportion of the infected individuals, denoted by RMSEI. The RMSE of the

ratio of the infected and susceptible individuals is denoted by RMSEIS.

3.4.1 Epidemic Spreading for SIR-Type Model

The SIR compartmental model is an open-loop model where the proportions of the

susceptible and infected individuals converge to zero at steady state. Therefore, the
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SIR model may be unstable in performing state estimation by nonlinear Kalman filters

in comparison with SIS and SIRS models.

Figs. 3.2(a) to 3.4(c) show the RMSE of nonlinear Kalman filters based on the

SIR model applied to tracking epidemic spreading in ER, NW and WS networks,

respectively. The parameter sets for the SIR model in these networks are ϖER,SIR =

(0.2, 0.1), ϖNW,SIR = (0.07, 0.1), ϖWS,SIR = (0.25, 0.35), respectively. The state and

measurement noises obey Gaussian distribution with zero mean and covariance set by

Qk = {10−8Γ2|D|, 10−10Γ2|D|, 10−10Γ2|D} and Rk = {10−2Γ|D|, 10−5Γ|D|, 10−2Γ|D} in these

three networks. The values of ∆Q for the UKF, CKF3, and CKF5 are set as {0, 0, 0.4}

in ER and NW networks and {10−10, 10−10, 10−2} in the WS network.

The mean of P in (3.9) for ER and NW networks increases with probability p.

In contrast, P is large under a smaller p and becomes smaller with increasing p in

the WS network. In ER and NW networks, when a small probability p is utilized

for generating networks, a larger infection parameter may be required for achieving a

better tracking function, degrading the stability of filtering since (3.38) is not satisfied.

The UKF with poor stability therefore has a lower filtering accuracy when adopting a

relatively smaller p. When adopting a larger probability, the UKF performs better than

the CKF3 since a higher order statistical characteristic can be captured. Due to the

larger ∆Q, the CKF5 cannot achieve the desired filtering performance in comparison

with the UKF and CKF3. The EKF performs the worst filtering due to the use of linear

approximation. In the WS network, the UKF has a lower filtering precision than the

CKF3 for a small p and outperforms CKF3 when choosing a large p. In addition, the

CKF5 performs worse than the UKF and CKF3 due to a larger ∆Q.

3.4.2 Epidemic Spreading for SIS-Type Model

Figs. 3.5(a) to 3.7(c) show the RMSE of nonlinear Kalman filters based on the SIS

model in ER, NW and WS networks, respectively. The parameters for the SIS
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Figure 3.2: (a) RMSES of nonlinear Kalman filters applied to SIR model for ER
network; (b) RMSEI of nonlinear Kalman filters applied to SIR model for ER network;
(c) RMSEIS of nonlinear Kalman filters applied to SIR model for ER network.
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Figure 3.3: (a) RMSES of nonlinear Kalman filters applied to SIR model for NW
network; (b) RMSEI of nonlinear Kalman filters applied to SIR model for NW
network; (c) RMSEIS of nonlinear Kalman filters applied to SIR model for NW
network.
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Figure 3.4: (a) RMSES of nonlinear Kalman filters applied to SIR model for WS
network; (b) RMSEI of nonlinear Kalman filters applied to SIR model for WS network;
(c) RMSEIS of nonlinear Kalman filters applied to SIR model for WS network.
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Figure 3.5: (a) RMSES of nonlinear Kalman filters applied to SIS model for ER
network; (b) RMSEI of nonlinear Kalman filters applied to SIS model for ER network;
(c) RMSEIS of nonlinear Kalman filters applied to SIS model for ER network.
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Figure 3.6: (a) RMSES of nonlinear Kalman filters applied to SIS model for NW
network; (b) RMSEI of nonlinear Kalman filters applied to SIS model for NW network;
(c) RMSEIS of nonlinear Kalman filters applied to SIS model for NW network.
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Figure 3.7: (a) RMSES of nonlinear Kalman filters applied to SIS model for WS
network; (b) RMSEI of nonlinear Kalman filters applied to SIS model for WS network;
(c) RMSEIS of nonlinear Kalman filters applied to SIS model for WS network.
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Figure 3.8: (a) RMSES of nonlinear Kalman filters applied to SIRS model for ER
network; (b) RMSEI of nonlinear Kalman filters applied to SIRS model for ER
network; (c) RMSEIS of nonlinear Kalman filters applied to SIRS model for ER
network.
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Figure 3.9: (a) RMSES of nonlinear Kalman filters applied to SIRS model for NW
network; (b) RMSEI of nonlinear Kalman filters applied to SIRS model for NW
network; (c) RMSEIS of nonlinear Kalman filters applied to SIRS model for NW
network.
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Figure 3.10: (a) RMSES of nonlinear Kalman filters applied to SIRS model for WS
network; (b) RMSEI of nonlinear Kalman filters applied to SIRS model for WS
network; (c) RMSEIS of nonlinear Kalman filters applied to SIRS model for WS
network.
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model are set by ϖER,SIS = (0.1, 0.12), ϖNW,SIS = (0.07, 0.1), ϖWS,SIS = (0.14, 0.1),

respectively. The state and measurement noises obey Gaussian distribution with

covariance Qk = {10−2Γ2|D|, 10−4Γ2|D|, 10−3Γ2|D} and Rk = {10−3Γ|D|, 10−5Γ|D|, 10−4Γ|D}.

The values of ∆Q for the UKF, CKF3, and CKF5 are set as {10−2, 10−2, 0.25},

{10−10, 10−10, 10−2}, {10−3, 10−3, 0.15} in ER, NW and WS networks, respectively.

From Figs. 3.5(a) to 3.7(c), RMSES, RMSEI and RMSEIS increase with the

growing dimension shown in Fig. 3.1. Unlike the SIR compartmental model, the SIS

model is a closed-loop model, which generates the non-zero ratio of the infected and

susceptible individuals. In ER and NW networks, the CKF5 achieves the best filtering

performance. In addition, with increasing the probability p in the ER network, the

UKF obtains a higher accuracy for capturing the high order statistical characteristic

than the CKF3. Due to the statistical characteristic of the P, the UKF cannot obtain

the desired accuracy under a larger p. In the NW network, the UKF and CKF3 achieve

almost same performance. In the WS network, the precision of the UKF is lower than

that of the CKF3 for a small probability p, but higher with increasing the probability

p for the statistical characteristic of the P. The CKF5 has the highest accuracy while

the precision of the EKF is the lowest due to the lack of the second-order statistical

characteristic.

3.4.3 Epidemic Spreading for SIRS-Type Model

Figs. 3.8(a) to 3.10(c) show the RMSE of nonlinear Kalman filters on the basis

of the SIRS model applied to tracking epidemic transmission in ER, NW and WS

networks, respectively. The parameter sets for the SIRS model in these networks are

ϖER,SIRS = (0.15, 0.1, 0.1), ϖNW,SIRS = (0.1, 0.1, 0.1), ϖWS,SIRS = (0.25, 0.35, 0.1),

respectively. The state and measurement noises in these networks obey Gaussian

distribution with zero mean and covariance set by Qk = {10−10Γ2|D|, 10−3Γ|D|, 10−20Γ2|D}

and Rk = {10−4Γ|D|, 10−1Γ|D|, 10−1.5Γ|D} in these three networks. The values of ∆Q for
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Table 3.2: Specific Choice of Kalman Filters
Networks ER NW WS
Interval Υ1 Υ2 Υ3 Υ1 Υ2 Υ3 Υ1 Υ2

CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51

SIS CKF32 UKF2 CKF32 UKF2 UKF2 UKF2 CKF32 UKF2

UKF3 CKF33 EKF3 CKF33 CKF33 CKF33 UKF3 CKF33

EKF4 EKF4 UKF4 EKF4 EKF4 EKF4 EKF4 EKF4

CKF31 UKF1 UKF1 CKF31 UKF1 UKF1 CKF31 UKF1

SIR UKF2 CKF32 CKF32 UKF2 CKF32 CKF32 UKF2 CKF32

CKF53 CKF53 CKF53 CKF53 CKF53 CKF53 EKF3 EKF3

EKF4 EKF4 UKF4 EKF4 EKF4 EKF4 CKF54 CKF54

CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51

SIRS CKF32 CKF32 CKF32 UKF2 UKF2 CKF32 CKF32 UKF2

UKF3 UKF3 UKF3 CKF33 CKF33 EKF3 UKF3 CKF33

EKF4 EKF4 UKF4 EKF4 EKF4 UKF4 EKF4 EKF4

Table 3.3: General Choice of Kalman Filters
Networks ER NW WS
Interval Υ1 Υ2 Υ3 Υ1 Υ2 Υ3 Υ1 Υ2

CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51

SIS CKF32 UKF2 CKF32 CKF32 UKF2 CKF32 CKF32 UKF2

SIR CKF31 UKF1 CKF31 CKF31 UKF1 CKF31 CKF31 UKF1

CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51 CKF51

SIRS CKF32 UKF2 CKF32 CKF32 UKF2 CKF32 CKF32 UKF2

the UKF, CKF3 and CKF5 are set as {10−10, 10−10, 0.45}, {10−3, 10−3, 0.55} in ER and

NW networks and {10−10, 10−10, 0.35} in the WS network. Same as the SIS model,

the SIRS model is a closed-loop model, which has the same conclusion as in the SIS

model. However, when a larger probability p is chosen for generating the NW network,

the UKF with poor stability has a higher estimation error than the other nonlinear

Kalman filters due to the higher mean of P as p increases in the NW network.

3.5 Discussions

3.5.1 Choice of Nonlinear Kalman Filters

Based on the accuracy analysis, stability analysis and numerical experiments, filtering

accuracy depends on the choice of the connecting probability p. For ER and NW

networks, the connecting probability p is split into three intervals, i.e., Υ1: 0 < p ≤ p1;

Υ2: p1 < p ≤ p2 and Υ3: p2 < p < 1. The connecting probability p for generating the
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WS network is split into two intervals, i.e., Υ1: 0 < p ≤ p3 and Υ2: p3 < p < 1. The

choice of parameters p1, p2 and p3 depends not only on the types of networks but also

the rates.

Table 3.2 compares nonlinear Kalman filters for tracking epidemic spreading on

networks in terms of RMSEIS as given in Section 3.4. Notation CKF51 denotes that the

CKF5 has the highest filtering accuracy. The UKF2 and CKF32 in an interval mean that

the UKF and CKF3 can achieve a similar filtering precision. Since parameters p1, p2

and p3 are not fixed, we provide a more general comparison in Table 3.3 for indicating

high filtering accuracy at specific intervals. Combining Table 3.2 and Table 3.3, we

may select nonlinear Kalman filters for tracking epidemic spreading as follows.

For epidemic spreading on ER or NW networks using SIRS and SIS models in

intervals Υ1 and Υ3, the CKF5 is the best choice in terms of filtering accuracy. For

reducing computational burden, the CKF3 is a favorable choice. In interval Υ1, the

mean of P is relatively small. Therefore, a larger infection parameter for performing

nonlinear Kalman filters may be required for tracking epidemic at the expense of

degrading the stability of the UKF. In addition, in interval Υ3, the mean of distribution

of P is generally large, which is not desirable for maintaining stability of the UKF. The

UKF therefore cannot be utilized in these two intervals for guaranteeing the filtering

accuracy. In the interval of Υ2, the CKF5 achieves the highest accuracy. For reducing

the complexity, the UKF is a better choice for capturing the high order statistical

characteristic in comparison with the CKF3.

For epidemic spreading on ER or NW networks modeled by the SIR compartmental

model, a larger matrix ∆Q is needed for guaranteeing the stability of the CKF5.

The CKF5 therefore cannot achieve a favorable filtering accuracy. For guaranteeing

filtering accuracy and stability, the same conclusion as for ER or NW networks

modeled by SIS and SIRS models can be drawn, i.e., the CKF3 is used for tracking

epidemic in intervals Υ1 and Υ3 whereas the UKF is chosen for interval Υ2.

For epidemic spreading on the WS network modeled by SIS and SIRS models, the
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filtering accuracy of the CKF5 is the highest in intervals Υ1 and Υ2. Since the values

of P are likely to decrease as the connecting probability increases in the WS network,

the UKF is a better choice for tracking epidemic in interval Υ2 in terms of complexity.

The CKF3, however, achieves a higher filtering accuracy in interval Υ1.

For epidemic spreading on the WS network modeled by the SIR compartmental

model, the CKF5 and EKF perform a worse filtering function in comparison with the

UKF and CKF3. In terms of reducing computational burden, the CKF3 can achieve

a higher accuracy in interval Υ1, and the UKF has a better filtering performance in

interval Υ2.

Based on the provided guideline, the proposed method can be applied to real data

by several steps, namely, studying the type of the complex network, calculating the

connection probability, choosing a compartmental model. More concretely, at first,

it is necessary to study the type of the complex network such as ER network, NW

network, or WS network. The connection probability of the studied network, then,

needs to be calculated directly or to be found by using network measures like clustering

coefficient [59]. After choosing a compartmental model, we can adopt different

nonlinear Kalman filters from aspects of accuracy, complexity, or numerical stability

for epidemic tracking over studied network with calculated connection probability.

3.5.2 Scaling of Networks

Nonlinear Kalman filters are used to estimate hidden states on the basis of a state-

space model. The filtering accuracy of nonlinear Kalman filters would be degraded by

the growing number of states [45]. Since the size of the types of degree D generally

increases with the scale of the network, nonlinear Kalman filters may not perform

epidemic tracking satisfactorily in large complex networks. Since there are numerous

complex networks of considerable scale, we discuss here the community detection-

based and sub-filter-based methods for applying nonlinear Kalman filters for tracking
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epidemic spreading over large-scale complex networks.

1) The community detection-based nonlinear Kalman filters tackle the tracking

problem by focusing on detected sub-networks of smaller scale called “communities”.

In general, a complex network can be represented by a graph consisting of dense

communities [96, 97]. The nodes within a community are connected densely in

comparison with those connecting across communities [97]. Recently, numerous

methods have been proposed for detecting communities of information networks,

biological networks and social networks in order to facilitate analysis of network

structure [98]. Community detection is effectively a way to split a large-scale network

into smaller interconnected communities. Consider a large-scale complex network C

having N nodes. Based on the community detection-based method, complex network

C can be segmented into Θ communities {CΘ}Θζ=1, where community CΘ has size NΘ,

NΘ ≪ N. A nonlinear Kalman filter can then be utilized for epidemic tracking over

different communities. Moreover, community detection can be executed repeatedly

if the network size of the community CΘ, NΘ ≪ N is not small enough to permit

manageable computation at the expense of degrading filtering precision.

2) The sub-filter-based nonlinear Kalman filters perform epidemic tracking by

breaking a high dimensional state into several low dimensional states. The high

dimensional state x ∈ R2|D| is directly into S sub-states {xs}Ss=1 with xs ∈ R2|Ds | and

|Ds| < |D|. In due consideration of the correlations of the sub-states, we split the high-

dimensional state into several low-dimensional states in terms of degree differences.

Given a collection of the types of degree D = [dp1 , dp2 , · · · , dpς , · · · , dp|D|], we divide

collection D into S sub-collections {Ds}Ss=1, where the differences between the degrees

in the s-th sub-collection are smaller than a pre-designed threshold parameter. Based

on the state segmentation, S nonlinear Kalman filters are used simultaneously in

estimating S sub-states {xs}Ss=1 with xs ∈ R2|Ds | and |Ds| < |D|. Therefore, the sub-filter-

based approach is applicable of studying dynamics of transmission over large-scale

networks with lowered computational burden and improved numerical stability due to
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the reduced dimension of the state variables.

3.5.3 Extended Applications

Table 3.2 and Table 3.3 provide a general guideline for using nonlinear Kalman filters

for performing epidemic tracking on the basis of constructed state-space models given

in (3.9), (3.10) and (3.11). In fact, these state-space models do not only describe the

dynamics of epidemic spreading but also capture the information dissemination over

real-world networks.

3.5.3.1 Rumor Propagation in Computer Networks

There has been renewed interest in rumor spreading over networks [20]. Rumors

are fabricated messages or information lacking of reliable evidence, originating from

subjective willingness instead of objectivity. On the Internet, rumors spread fast [21].

The study of rumor spreading over computer networks aims to identify the dynamic

behavior of rumor spreading. Similar to the diffusion of epidemic, rumor spreading

over computer networks can be captured by models of infectious diseases (3.2) and

(3.3). Therefore, the guideline given in Table 3.2 and Table 3.3 is also applicable for

choosing nonlinear Kalman filters for studying the dynamics of rumor spreading over

computer networks.

3.5.3.2 Malware Spreading in Wireless Sensor Networks

A Wireless Sensor Network (WSN) [22] consists of sensors which transmit numerous

observation data to control or processing centers. Wireless sensor nodes contain

devices characterized by resource-restrained and low defense capabilities. The sensor

nodes can therefore be attacked by emerging malicious software which aims to infect a

small number of nodes initially. The neighboring nodes can then be infected via regular

communications. In addition, the infected nodes can be recovered by some antivirus
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programs installed at each sensor node. An epidemic model given in (3.2) and (3.3)

can also be utilized for describing the transmission of communicable attack among

wireless sensors. The modeling of attack transmission is a useful tool for exploring

the dynamics of sensor attack in wireless sensor networks. Table 3.2 and Table 3.3 are

applicable of choosing nonlinear Kalman filters for revealing the state of sensor nodes

in wireless sensor networks.

3.6 Conclusion

This chapter studies the tracking of epidemic spreading on homogeneous networks by

nonlinear Kalman filters. The epidemic transmission on networks can be described

by compartmental models. The state estimation of epidemic transmission can be

performed by various kinds of Kalman filters including the unscented Kalman filter,

the third-degree cubature Kalman filter, the fifth-degree cubature Kalman filter, and

the extended Kalman filter. The performance comparison in terms of accuracy and

stability is provided for evaluating the filtering performance of various nonlinear

Kalman filters. The connecting probability used for generating complex networks

is split into several intervals. Specific and general choices of Kalman filters in each

interval for tracking the dynamics of epidemic spreading are provided in terms of

filtering precision and computational complexity. However, the scope of this study is

limited to homogeneous networks such as random and small-world networks. Further

work may assess performance comparison of nonlinear Kalman filters based on degree-

based compartmental models for epidemic tracking over different types of networks.



Chapter 4

Generalized Correntropy Sparse

Gauss-Hermite Quadrature Filter for

Epidemic Tracking on Complex

Networks

The dynamic estimation of epidemic spreading on networks is essential for controlling

morbidity. Nonlinear Kalman filters, which are capable of estimating the hidden

state of a nonlinear system, can be utilized for dynamic state estimation of epidemic

spreading. Traditional nonlinear Kalman filters perform optimization using the

minimum mean square error (MMSE) criterion. Since observable measurements

are generally corrupted by non-Gaussian noise, maximum correntropy criterion-

based nonlinear Kalman filters have been used for improving robustness against non-

Gaussian noise. In comparison with the maximum correntropy criterion, generalized

correntropy is more robust and flexible in the presence of non-Gaussian noise. In this

work, epidemic spreading is described by a compartmental model, i.e., susceptible-

infected-recovered-susceptible model. Based on the compartmental model, the

generalized correntropy-based sparse Gauss-Hermite quadrature filter (GCSGHQF)

69
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is proposed for epidemic tracking on homogeneous networks. The GCSGHQF

approximates the Gaussian-weighted integrals by utilizing the sparse Gauss-Hermite

quadrature rule. In addition, the generalized correntropy is applied to enhancing

robustness in the presence of non-Gaussian noise. Simulation results show that the

GCSGHQF exhibits a higher filtering accuracy and improves robustness compared to

traditional nonlinear Kalman filters.

4.1 Introduction

As mentioned in Chapter 3, nonlinear Kalman filters [30] can be used to perform

state estimation of epidemic transmission. A nonlinear Kalman filter aims to estimate

the hidden state by calculating the posterior probability of the state. Commonly

used nonlinear Kalman filters include the extended Kalman filter (EKF) [99, 100],

unscented Kalman filter (UKF) [101, 102, 103], cubature Kalman filter (CKF) [46]

and Gauss-Hermite quadrature filter (GHQF) [104]. The EKF calculates the posterior

probability of the state by using a linear approximation, whereas the UKF, CKF and

GHQF estimate the hidden state assuming a Gaussian distribution of the state. In

comparison with the UKF and CKF, the GHQF achieves the highest filtering accuracy

at the expense of increasing the computational burden, especially when the system

dimension increases [104]. Recently, a sparse GHQF (SGHQF) [35] has been proposed

for alleviating the computational load.

These nonlinear Kalman filters estimate the states by performing optimization

in accordance with the minimum mean square error (MMSE) criterion, which is,

however, sensitive to outliers. Recently, information theoretical learning (ITL) [51]

has been utilized for improving the robustness in the presence of outliers for capturing

a higher statistical characteristic of errors. In particular, the maximum correntropy

criterion (MCC) is a widely used ITL approach due to its simplicity [78, 105].

Recently, MCC-based Kalman filters have been proposed for alleviating the sensitivity
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to outliers. For example, the maximum correntropy Kalman filter (MCKF) [78] has

been developed by applying the maximum correntropy criterion into the Kalman

filter. Moreover, the use of the MCKF achieves a higher accuracy and stronger

robustness against non-Gaussian noise. These advantages are also realized in the

maximum correntropy sparse Gaussian Hermitian quadrature filter (MCSGHQF) [86]

by introducing a correntropy measure to the sparse Gaussian Hermitian quadrature

filter. In comparison with the MCC, the generalized correntropy [73] is more

robust and flexible in the presence of non-Gaussian noise. In this chapter, the

dynamics of epidemic transmission on networks are estimated by the proposed

generalized correntropy sparse Gaussian Hermite Quadrature filter (GCSGHQF) for

further improving the stability. Specifically, the main contributions are as follows.

• A robust nonlinear Kalman filter, referred to as generalized correntropy sparse

Gaussian Hermite Quadrature filter (GCSGHQF), is proposed for dealing with

non-Gaussian noises. In particular, the GCSGHQF utilizes the generalized

Gaussian density (GGD) function in place of the Gaussian kernel in MCC for

improving the robustness against non-Gaussian noises.

• An extra second-order statistical characteristic of the error is incorporated in the

GCSGHQF for further enhancing the numerical stability in the presence of non-

Gaussian noises.

• The proposed GCSGHQF is used for the state estimation of epidemic spreading

in the presence of Gaussian and non-Gaussian noises. In addition, the

GCSGHQF is also utilized for studying the behavior of epidemic spreading on

commonly used complex networks like ER networks, NW and WS networks.

Simulation results show the improved robustness of the GCSGHQF for tracking

epidemic spreading.

The remainder of the chapter is organized as follows. In Section 4.2, we briefly

review compartment models for describing epidemic spreading. Section 4.3 and
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Section 4.4 introduce the generalized correntropy and the sparse Gauss-Hermite

quadrature filter, respectively. In Section 4.5, the generalized correntropy sparse

Gauss-Hermite quadrature filter is proposed for guaranteeing the estimation robustness

under non-Gaussian noises. In Section 4.6, the robustness of the GCSGHQF is

demonstrated for different scenarios through numerical experiments. A conclusion

is given in Section 4.7.

4.2 Review of Compartmental Models

As mentioned previously, the SIS and SIRS models are closed-loop models which are

suited for implementing nonlinear Kalman filters due to their numerical stability. In

comparison with the SIS model, the SIRS model introduces an extra compartment

of recovered individuals for closer resemblance with practical epidemic spreading.

The SIRS compartmental model for describing epidemic transmission on a degree-

correlated network is given by

sdη j ,k
= sdη j ,k−1 − αdη j sdη j ,k−1iw

dη j ,k−1 + ∆sk−1 (4.1)

idη j ,k
= idη j ,k−1 + αdη j sdη j ,k−1iw

dη j ,k−1 − ∆ik−1 (4.2)

with ∆sk−1,∆ik−1 and iw
dη j ,k−1 expressed by

∆sk−1 = γrdη j ,k−1,∆ik−1 = βidη j ,k−1, iw
dη j ,k−1 =

|D|∑
m=1

p
(
dηm |dη j

)
idη j ,k−1. (4.3)

Also, sdη j ,k−1, idη j ,k−1 and rdη j ,k−1 denote the fractions of susceptible, infected and

recovered individuals associated with degree dη j at discrete time k − 1. Parameters

α, β and γ represent the infected rate, removal or recovery rate, and transmission rate,

respectively.

The SIRS compartmental model given in (4.1) and (4.2) describes epidemic
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spreading on degree-correlated networks. The networks, however, may have a large

size of the types of degree |D|, thus incurring a high computational cost for calculating

the overall ratios of the susceptible, infected and recovered individuals. Unlike the

SIRS model in (4.1) and (4.2), a simplified SIRS compartmental model, without

considering the degree distribution, is defined by

sk = sk−1 − αsk−1ik−1 + γrk−1 (4.4)

ik = ik−1 + αsk−1ik−1 − βik−1 (4.5)

where sk−1, ik−1 and rk−1 represent the fractions of susceptible, infected and recovered

individuals at discrete time k − 1. The simplified SIRS model without the requirement

of finding the degree distribution is less computational intensive, but it neglects degree

information when nonlinear Kalman filters perform state estimation.

Remark 6 The SIRS compartmental model given by (4.1) and (4.2) is utilized for

tracking the epidemic transmission by incorporating a prior information, i.e., degree

distribution, which may better demonstrate epidemic spreading. As the size of the types

of degree increases, however, the computational complexity increases significantly. In

addition, the fraction of the infected individuals may be close or equal to zero since

individuals with j-th type degree may be not infected. Similar conclusion can be

obtained for the fractions of the susceptible and recovered individuals. Unlike the

SIRS compartmental model in (4.1) and (4.2), the simplified SIRS model given by (4.4)

and (4.5) is constructed without considering the degree distribution and therefore may

not generate the fractions of individuals close or equal to zero, which is beneficial to

numerical stability of nonlinear Kalman filters. In addition, the simplified SIRS model

given by (4.4) and (4.5) has a significant advantage in terms of computational cost

over the degree-based SIRS model given by (4.1) and (4.2).
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4.3 Generalized Correntropy

The correntropy of two arbitrary scalar random variables X and Y measures their

similarity, and is defined by [78]

V(X, Y) = EXY(κσ(X,Y)) =
∫

κσ (x, y) dFXY (x, y) (4.6)

where EXY(·) denotes the expectation with distribution function FXY and κσ(·) is a

kernel function with kernel bandwidth σ. The Gaussian kernel [79] is the most

commonly used kernel function and is given by

κσ(x, y) =
1
√

2πσ
exp

(
− e2

2σ2

)
(4.7)

where σ > 0 denotes the Gaussian kernel bandwidth and e = x − y is the difference

between x and y.

Equation (4.6), however, cannot be calculated since the probability distribution

function is unknown in practice. Thus, (4.6) is generally approximated by utilizing Ñ

available samples {xi, yi}Ñi=1, i.e.,

V̂(X, Y) ≈ 1
Ñ

Ñ∑
i=1

κσ(xi − yi). (4.8)

The generalized correntropy substitutes the Gaussian kernel in (4.7) by a generalized

kernel function, i.e., [84]

Gα,β (e) =
α

2βΓ (1/α)
exp

(
−
∣∣∣∣∣eβ

∣∣∣∣∣α) (4.9)

where Γ(·) is the gamma function; α (positive) and β denote the shape parameter and

bandwidth parameter, respectively. According to (4.9), the Laplace distribution can

be obtained for α = 1. In addition, (4.9) reduces to the Gaussian distribution when
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the shape parameter α is set to 2. The generalized correntropy density converges to a

uniform density on (−β, β) in a point-wise manner [73, 85]. Equation (4.9) can also be

simplified as

Gα,σ (e) = ς exp
(
− |e|

2σ2

α)
(4.10)

where γ and σ are scaling factor and kernel width, respectively. Substituting (4.10)

into (4.6) gives

Vα,σ(X,Y) = EXY(Gα,σ(X − Y)). (4.11)

Similar to (4.8), (4.11) can be approximated as

V̂α,σ(X, Y) =
1
Ñ

Ñ∑
i=1

Gα,σ (xi − yi) . (4.12)

Some important properties of (4.12) can be found in [73].

4.4 Sparse Gauss-Hermite Quadrature Nonlinear Fil-

ter

4.4.1 State Space Model

Consider a nonlinear discrete-time dynamical system, with the state function f (·) and

measurement function h (·) given by [86]

xk = f (xk−1) + wk (4.13)

yk = h (xk) + vk (4.14)
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where xk ∈ Rn and yk ∈ Rm represent the state vector and measurement vector,

respectively; state noise wk and measurement noise vk are Gaussian distributed, i.e.,

wk ∼ N(0,Qk) and vk ∼ N(0,Rk), respectively. Comparing (4.13) and (4.14) with (4.4)

and (4.5), we define state variable xk = [sk ik]T . The nonlinear process function f (·)

is defined by (4.4) and (4.5). The measurement function h (·) takes a linear form with

the measurement matrix H = [0 1], generating a linear measurement function

yk = Hxk + vk. (4.15)

A nonlinear Kalman filter aims to estimate the hidden state by a prediction step and an

update step, which calculate the predictive and posterior density of the state at discrete

time k, p(xk|y1:k−1) and p(xk|y1:k), respectively [47]. The Chapman-Kolmogorov

equation [106] is generally utilized for calculating the predictive density of the state at

discrete time k, p(xk|y1:k−1), i.e.,

p(xk|y1:k−1) =
∫

p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.16)

where the disappearance of past measurements y1:k−1 is due to the Markov property of

the sequence {xk : k = 1, 2, . . .} [106]. The Bayes’ rule can be applied for calculating

p(xk|y1:k) at the update step [47], i.e.,

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
. (4.17)

Moreover, to the independence of p(y1:k) =
∫

p(yk|xk)p(xk|y1:k−1)dxk on the state, we

have

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (4.18)
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Algorithm 4 Nonlinear Kalman Filter Based on Deterministic Sampling
Time update
1: Obtain sample points {ξi,k−1}Θi=1 and the corresponding weightsωi, e.g., the unscented
transformation [103], cubature rule [46]. Herein, i = 1, 2, · · · ,Θ, where Θ denotes the
total number of the sample points.
2: Compute the predicted mean and the corresponding error covariance of state

x̂k|k−1 =

Θ∑
i=1

ωif (ξi,k−1), (4.19)

Pk|k−1 = Po
k|k−1 +Qk (4.20)

where Po
k|k−1 =

∑Θ
i=1 ωi(f (ξi,k−1) − x̂k|k−1)(f (ξi,k−1) − x̂k|k−1)T .

Measurement update
1: Obtain the sample points {ξi,k|k−1}Θi=1 and the corresponding weights ωi,
i = 1, 2, · · · ,Θ.

2: Compute the predicted mean and the corresponding error covariance of
measurements

ŷk|k−1 =

Θ∑
i=1

ωih(ξi,k|k−1), (4.21)

Pyy,k|k−1 = Po
yy,k|k−1 + Rk (4.22)

where matrix Po
yy,k|k−1 = Rk +

∑Θ
i=1 ωi(h(ξi,k|k−1) − ŷk|k−1)(h(ξi,k|k−1) − ŷk|k−1)T .

3: Compute the cross covariance of state and measurement

Pxy,k|k−1 =

Θ∑
i=1

ωi(ξi,k|k−1 − x̂k|k−1)(
h(ξi,k|k−1) − ŷk|k−1

)T . (4.23)

4: Compute the Kalman gain

Kk = Pxy,k|k−1P−1
yy,k|k−1. (4.24)

5: Compute the estimated mean and the corresponding error covariance of state

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)), (4.25)

Pk = Pk|k−1 −KkPyy,k|k−1KT
k . (4.26)

Therefore, a nonlinear Kalman filter estimates the hidden state by assuming a Gaussian

distribution of the probability density functions, and computes the multi-dimensional
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Algorithm 5 Points and Weights Based on Spare Grid Quadrature
FOR: q = L − n : L − 1

Determine Nn
q

For each element Ξ = (l1, · · · , ln) in Nn
q generates point [us1 , us2 , · · · , usn] in Xl1⊗

Xl2 · · · ⊗ Xln
FOR each point in Xl1 ⊗ Xl2 · · · ⊗ Xln

IF the point is new, add it to the sample set, assign a new index i and calculate
weight by wi = (−1)L−1−qCL−1−q

n−1

∏n
j=1 ω̄s j

ELSE update the old weight by
wi = wi + (−1)L−1−qCL−1−q

n−1

∏n
j=1 ω̄s j

END IF
END FOR

END FOR
END FOR

integrals in (4.16) and (4.17). Algorithm 4 summarizes the update procedure of the

nonlinear Kalman filter using different methods for calculating the multi-dimensional

integrals.

4.4.2 Sparse Gauss-Hermite Quadrature Rule

The Gauss-Hermite nonlinear filter uses the Gauss-Hermite rule [35] to approxi-

mate (4.16) and (4.17), incurring high computational cost [86]. In [35, 107, 108, 109],

a sparse grid approach is utilized for alleviating the computational burden without

degrading the filtering accuracy. Using the sparse grid method, the sparse Gauss-

Hermite quadrature filter extends the univariate quadrature points to generate l

multivariate quadrature points [35], i.e.,

ui =
[
us1 , us2 , . . . , usn

]T , ω̄i =

n∏
j=1

w̄s j , 1 ≤ i ≤ l (4.27)

where {us j}nj=1 denotes the univariate quadrature points [86] and w̄s j represents the

weight of the corresponding univariate quadrature point us j [86]. The multivariate

integrals shown in (4.16) and (4.17) are approximated by a linear combination of

the lower-level tensor products of the univariate quadrature rule in the sparse-grid
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approach on the basis of the Smolyak rule [78], given by

∫
Rn
f (x)N(x; 0, In)dx ≈ In,L(f )

=

L−1∑
q=L−n

(−1)L−1−qCL−1−q
n−1

∑
Ξ∈Nn

q

(Il1 ⊗ · · · ⊗ Iln)f
(4.28)

where x =
[
x(1), x(2), · · · , x(p), · · · , x(n)

]T ∈ Rn and In,L(f ) approximates the n-

dimensional integral of the function f with respect to the Gaussian distribution

N(x; 0, In) with the accuracy level L ∈ N, the set of natural numbers N [35] and the

identity matrix In ∈ Rn. Also, Il j is the univariate quadrature rule with accuracy level

of l j ∈ Ξ = (l1, · · · , ln). The Nn
q is the set of accuracy level sequences and defined by

Nn
q =


Ξ :

∑n
j=1 l j = n + q if q ≥ 0

∅ else
(4.29)

where ∅ is the null set and the auxiliary parameter q ranges from L − n to L − 1.

In (4.28), ⊗ denotes tensor product [35]; CL−1−q
n−1 represents the binomial coefficient

defined by Cν
n = n!/ [ν!(n − ν)!] with n! denotes the factorial of n.

It should be noted that (4.28) can also take an extended form as [104]

In,L (f ) =
L−1∑

q=L−n

∑
Ξ∈Nn

q

∑
us1∈Xl1

· · ·
∑

usn∈Xln

f
(
us1 , . . . , usn

)
(−1)L−1−qCL−1−q

n−1

n∏
j=1

w̄s j

 (4.30)

where Xli is the point set of the univariate quadrature rule Ili with accuracy level li.

Thus, the set of sparse-grid points Xn,L is given by [104]

Xn,L =

L−1∪
q=L−n

∪
Ξ∈Nn

q

(
Xl1 ⊗ Xl2 ⊗ · · · Xln

)
(4.31)

where
∪

denotes the union of the quadrature point sets.
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Algorithm 5 provides the detailed operation of points and weights on the basis of

sparse grid quadrature [35].

4.5 Generalized Correntropy Sparse Gauss-Hermite

Quadrature Filter

The generalized correntropy sparse Gauss-Hermite quadrature filter uses the general-

ized correntropy for further improving the robustness in the presence of outliers. To

incorporate the generalized correntropy into the SGHQF, a new measurement update

is constructed [86], i.e.,

 x̂k|k−1

yk − h(x̂k|k−1) +Hkx̂k|k−1

 =
 I

Hk

 xk + v̄k (4.32)

where I ∈ Rn is the identity matrix, and

v̄k =

−(xk − x̂k|k−1)

vk

 . (4.33)

In (4.33), v̄k has a second-order statistical characteristic E[v̄kv̄T
k ] given by

E[v̄kv̄T
k ] =

Pk|k−1 0

0 Rk

 (4.34)

=

P̃p,k|k−1P̃T
p,k|k−1 0

0 P̃v,kP̃T
v,k

 (4.35)

= P̃kP̃T
k (4.36)
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where P̃k takes the form of

P̃k =

P̃p,k|k−1 0

0 P̃v,k

 . (4.37)

Furthermore, the measurement matrix Hk in (4.32) is expressed as [86]

Hk =
(
P−1

k|k−1Pxy,k|k−1

)T
. (4.38)

Applying a Cholesky decomposition to E[v̄kv̄T
k ] generates the matrix P̃k in (4.36). A

linear regression model can be developed by multiplying both sides of (4.32) by P̃−1
k ,

i.e.,

Γk = Πkxk + ek (4.39)

where

Γk = P̃−1
k

 x̂k|k−1

yk − h(x̂k|k−1) +Hkx̂k|k−1

 ,Πk = P̃−1
k

 I

Hk

 . (4.40)

The linear measurement function, i.e., h(x̂k|k−1) = Hkx̂k|k−1 in (4.40), generates

Γk = P̃−1
k

x̂k|k−1

yk

 . (4.41)

The error ek = P̃−1
k v̄k in (4.39) is white for E[ekeT

k ] = I.

For getting the optimal values of the state variables, the generalized correntropy-

based cost function is considered as [84]

J(xk) =
1

m + n

m+n∑
i=1

Gα,σ(Γk(i) −Πk(i)xk) (4.42)
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where Γk(i) is the i-th element of Γk ∈ Rn+m and Πk(i) is the i-th row of Πk at

discrete time k. In addition, the extra second-order statistical characteristic of error

is incorporated into (4.42) for enhancing the numerical stability, giving

J (xk) =
m+n∑
i=1

Gα,σ (Γk (i) −Πk (i) xk) −
λ

2
(Γk (i) −Πk (i) xk)2 (4.43)

where the parameter λ is considered for balancing the generalized correntropy and

second-order statistical characteristic of error terms. Notations n and m represent

the dimensions of the state and available measurement defined in (4.13) and (4.14).

Therefore, the optimal estimate of xk can be obtained as

x̂k = arg max
x̂k

J (xk)

= arg max
x̂k

m+n∑
i=1

Gα,σ (ek (i)) − λ
2

(Γk (i) −Πk (i) xk)2 (4.44)

where error ek(i) denotes the i-th element of ek at discrete time k, defined by

ek(i) = Γk(i) −Πk(i)xk. (4.45)

Differentiating (4.44) with respect to xk gives

∂J (xk)
∂xk

|xk=x̂k =

m+n∑
i=1

Gα,σ (ek (i))
(
α|ek (i)|α−2

2σ2 ek (i)ΠT
k (i)

)
+ λek (i)ΠT

k (i) |xk=x̂k

= 0. (4.46)

The optimal state estimation can therefore be written as

x̂k =

m+n∑
i=1

(
G̃α,σ (ek (i)) + λ̄

)
ΠT

k (i)Πk (i)

−1

m+n∑
i=1

(
G̃α,σ (ek (i)) + λ̄

)
ΠT

k (i)Γk (i)

 (4.47)
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where G̃α, σ (ek (i)) = exp
(
−|ek (i)|α

/
2σ2

)
|ek (i)|α−2 and λ̄ = 2σ2λ/ας = σ2λ̃/α, λ̃ =

2λ/ς with the scaling factor ς defined in (4.10).

Define a weighted matrix Λk ∈ R(m+n)×(m+n) by

Λk =

Λx,k 0

0 Λy,k

 (4.48)

where matrixes Λx,k ∈ Rn×n and Λy,k ∈ Rm×m are defined by

Λx,k = diag(G̃α,σ (ek (1)) + λ̄, · · · , G̃α,σ (ek (n)) + λ̄), (4.49)

Λy,k = diag(G̃α,σ (ek (n + 1)) + λ̄, · · · , G̃α,σ (ek (n + m))) + λ̄). (4.50)

The Λx,k in (4.49) is a diagonal matrix with diagonal elements {G̃α,σ (ek ( j)) + λ̄}nj=1.

The diagonal matrix Λy,k in (4.50) has diagonal elements {G̃α,σ (ek ( j)) + λ̄} j=n+m
j=n+1 .

Equation (4.47) can therefore be simplified as

x̂k =
(
ΠT

kΛkΠk

)−1
ΠT

kΛkΓk

= Π−1
C,kΠD,k (4.51)

where ΠC,k = Π
T
kΛkΠk and ΠD,k = Π

T
kΛkΓk with Πk and Γk defined in (4.40).

According to (4.35), Πk and Γk can be further calculated as

Γk =

P̃
−1
p,k|k−1x̂k|k−1

P̃−1
v,kyk

 ,Πk =

P̃
−1
p,k|k−1

P̃−1
v,kHk

 . (4.52)

According to (4.33) and (4.52), ΠC,k in (4.51) can be expanded as

Π−1
C,k = (HT

k (P̃−1
v,k)

T
Λy,kP̃−1

v,kHk + (P̃−1
p,k|k−1)T

Λx,kP̃−1
p,k|k−1)−1 (4.53)

with P̃p,k|k−1 and P̃v,k given by (4.35). By using the matrix inverse lemma given in [79],
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i.e.,

(
Ā + B̄C̄D̄

)−1
= Ā−1 − Ā−1B̄

(
C̄−1 + D̄Ā−1B̄

)−1
D̄Ā−1 (4.54)

and letting Ā =
(
P̃−1

p,k|k−1

)T
Λx,kP̃−1

p,k|k−1, B̄ = HT
k , C̄ =

(
P̃−1

v,k

)T
Λy,kP̃−1

v,k and D̄ = Hk, (4.53)

can be further expanded by

Π−1
C,k = P̃p,k|k−1Λ

−1
x,kP̃

T
p,k|k−1 − P̃p,k|k−1Λ

−1
x,kP̃

T
p,k|k−1HT

k (P̃v,kΛ
−1
y,kP̃

T
v,k +HkP̃p,k|k−1Λ

−1
x,kP̃

T
p,k|k−1HT

k )−1

HkP̃p,k|k−1Λ
−1
x,kP̃

T
p,k|k−1. (4.55)

Likewise, ΠD,k in (4.51) can be derived by combining (4.33) and (4.52), i.e.,

ΠT
kΛkΓk = HT

k

(
P̃−1

v,k

)T
Λy,kP̃−1

v,kyk +
(
P̃−1

p,k|k−1

)T
Λx,kP̃−1

p,k|k−1x̂k|k−1. (4.56)

From (4.53) to (4.56), the estimated state x̂k and corresponding covariance P̄k are

represented by

x̂k = x̂k|k−1 + K̄k
(
yk −Hkx̂k|k−1

)
(4.57)

P̄k = (I − K̄kHk)Pk|k−1(I − K̄kHk)T + K̄kRkK̄T
k (4.58)

with the gain matrix K̄k defined by

K̄k = P̄k|k−1HT
k

(
HkP̄k|k−1HT

k + R̄k

)−1
. (4.59)

The modified prediction error covariance matrices P̄k|k−1 and R̄k are defined by

P̄k|k−1 = P̃p,k|k−1Λ
−1
x,kP̃

T
p,k|k−1 (4.60)

R̄k = P̃v,kΛ
−1
y,kP̃

T
v,k. (4.61)
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From (4.60) and (4.61), matrixΛk plays the role of weighting the prediction covariance

matrix Pk|k−1 and covariance matrix of measurement noise Rk. Due to the introduction

of the matrix Λk in (4.60) and (4.61), the proposed method has the ability of

suppressing abnormal measurements at non-Gaussian noise.

Remark 7 The generalized correntropy with varying parameter α has the ability of

suppressing abnormal errors. It is challenging to provide a specific guideline for

choosing parameter α for dealing with non-Gaussian noise. However, a general

guideline can be provided. In particular, a large value of α is suitable for dealing

with measurement errors where measurements are greatly contaminated. Otherwise,

a small parameter α is considered. In addition, a matrix inversion is calculated

in (4.47) and a relatively larger error may cause numerical divergence. For solving

this issue, a second-order statistical characteristic of errors is also introduced in (4.43)

for enhancing the numerical stability.

Remark 8 The proposed generalized correntropy sparse Gauss-Hermite quadrature

filter (GCSGHQF) is derived on the sparse Gauss-Hermite quadrature filter (SGHQF).

The SGHQF is a simplified version of the traditional Gauss-Hermite quadrature

filter but still achieves higher accuracy with appropriate parameters than methods

in [110] like CKF and UKF [35]. In addition, the proposed GCSGHQF is robust

by incorporating generalized correntropy and is suitable for dealing with various

non-Gaussian noises by adjusting exponential term in (4.10). The approach in

[111] also provides different degree of suppression with respect to varying magnitude

measurements. However, the proposed method not only achieves this goal but also

provides a soft way for dealing with non-Gaussian noises due to the use of exponential

function in (4.10). This is especially advantageous in retaining measurement

information for improving filtering precision.
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Table 4.1: RTAMSEs of Nonlinear Kalman Filter in the Presence of Gaussian and
Non-Gaussian Noises

Algorithm
CKF3 SGHQF GCSGHQF

α = 1 α = 2 α = 4 α = 6

RTAMSEG
s (10−1) 0.62 0.60 0.60 0.60 0.60 0.60

RTAMSEU
s (10−1) 0.75 0.71 0.68 0.70 0.68 0.60

RTAMSEL
s (10−1) 0.38 0.36 0.29 0.35 0.33 0.34

4.6 Results

This section compares the filtering accuracy of nonlinear Kalman filters for state

estimation of epidemic transmission on homogeneous networks, including the ER,

NW and WS networks. The proposed generalized correntropy sparse Gauss-Hermite

quadrature filter is compared with other nonlinear Kalman filters. In particular, the

extended Kalman filter in Chapter 3 has the lowest filtering precision among all filters.

Therefore, there is no need for making a comparison between extended Kalman filter

and proposed filter. The unscented Kalman filter and fifth-degree cubature Kalman

filter in Chapter 3 may be all confronted with the issue of numerical instability.

Therefore, these two Kalman filters are also not considered here. The third-degree

cubature Kalman filter has desirable filtering precision and numerical stability. As

a result, only third-degree cubature Kalman filter in Chapter 3 is considered here.

In addition, SGHQF and robust nonlinear Kalman filter like MCSGHQF (α = 2

for GCSGHQF) are also compared with the proposed nonlinear Kalman filter. The

proposed GCSGHQF is initially tested on synthetic data, which are generated by the

compartmental model shown in (4.4) and (4.5) in the presence of Gaussian and non-

Gaussian noises such as the uniformly distributed noise and Laplace distributed noise.

In addition, the superior performance of the proposed GCSGHQF for state estimation

on the ER, NW and WS networks is demonstrated.
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In each experiment, 50 Monte Carlo simulations are run. Different performance

metrics including the root mean square error (RMSE) [112] and root time averaged

mean square error (RTAMSE) [113] are introduced to evaluate the filtering precision

of nonlinear Kalman filters. For example, the RMSE of the fraction of susceptible

individuals at discrete time k and the corresponding RTAMSE over all discrete time

instants are defined by

RMSEs(k) =

√√
1
M

M∑
ℓ=1

(sℓk − ŝℓk)
2 (4.62)

RTAMSEs =

√√√
1
M

1
N̄

N̄∑
k=1

M∑
ℓ=1

(sℓk − ŝℓk)
2 (4.63)

where N̄ denotes the number of samples, and sℓk and ŝℓk represent the desired state

and estimated state at discrete time k at the ℓ-th Monte Carlo simulation, respectively.

Similar definitions can be applied for the RMSE and RTAMSE of the fraction of

the infected individuals. In consideration of the linear measurement matrix H shown

in (4.15), we focus on RMSEs and RTAMSEs in the numerical examples.

4.6.1 Epidemic Spreading in Gaussian Noise

The estimation accuracy of nonlinear Kalman filters is first compared in the presence of

Gaussian noise. The state noise follows the Gaussian distribution N(02, 10−3I2), where

I2 ∈ R2 represents the identity matrix. The measurement noise follows the Gaussian

distribution N(0, 0.05). The parameter set of the SIRS model, i.e., ω̄SIRS = (α, β, γ)

with the infected rate α, removal or recovery rate β and transmission rate γ from

the recovered to the susceptible, is set as ω̄SIRS = (0.7, 0.1, 0.1). The parameter

set ω̄KF = (α, β, γ) for nonlinear Kalman filters performing state estimation is set as

ω̄KF = (0.5, 0.073, 0.07). The kernel parameter σ in (4.47) is given by σ = 100. The

regularization factor λ̃ in (4.47) is set as λ̃ = 3 with λ = 0.75 and ς = 0.5. Fig. 4.1(a)
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shows the RMSE of sk corresponding to the Gaussian distributed noise. The values

of RTAMSEG
s , RTAMSEU

s and RTAMSEL
s in Table 4.1 represent the RTAMSE of

susceptible individuals in the presence of Gaussian and non-Gaussian noises including

the uniform noise and Laplace noise. From Fig. 4.1(a) and Table 4.1, we see that the

SGHQF achieves a higher precision than the CKF3. In addition, the GCSGHQF with

α = 1, 2, 4 and 6 achieves a similar filtering accuracy as the SGHQF.
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Figure 4.1: (a) RMSEs in Gaussian noise; (b) RMSEs in Uniform noise; (c) RMSEs in
Laplace noise.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0.04

0.06

0.08

0.1

0.12

0.14

0.16

 p

R
T

A
M

SE
 s

 

 

GCSGHQF(α=1)
GCSGHQF(α=2)
GCSGHQF(α=4)
GCSGHQF(α=6)
SGHQF
CKF3

(a)
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

 p

R
T

A
M

SE
 s

 

 

GCSGHQF(α=1)
GCSGHQF(α=2)
GCSGHQF(α=4)
GCSGHQF(α=6)
SGHQF
CKF3

(b)
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

 p

R
T

A
M

SE
 s

 

 

GMCSGHQF(α=1)

GMCSGHQF(α=2)

GMCSGHQF(α=4)

GMCSGHQF(α=6)

SGHQF
CKF3

(c)

Figure 4.2: (a) RTAMSEs in ER network; (b) RTAMSEs in NW network; (c) RTAMSEs

in WS network.

4.6.2 Epidemic Spreading in Non-Gaussian Noise

In practice, measurements are generally affected by non-Gaussian noise rather than

Gaussian noise. Therefore, we compare nonlinear Kalman filters for tracking epidemic

transmission in the presence of non-Gaussian noises such as uniformly distributed

noise and Laplace distributed noise.
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4.6.2.1 Epidemic Spreading in Uniform Noise

Measurements, corrupted by uniformly distributed noise, are utilized for demonstrating

the effectiveness of the proposed GCSGHQF in the presence of non-Gaussian noise.

The state noise obeys Gaussian distribution N(02, 10−3I2). The measurement noise

follows the uniform distribution U[−0.5, 0.5]. The parameter sets ω̄SIRS and ω̄KF are

given by ω̄SIRS = (0.9, 0.1, 0.1) and ω̄KF = (0.5, 0.07, 0.08), respectively. The kernel

parameter is set as 10. The regularization factor λ̃ of the GCSGHQF with α = 2 and 6

is set as 4×10−5 with λ = 10−5 and ς = 0.5, and that for the GCSGHQF with α = 1 and

4 is set as λ̃ = 0.4 with λ = 0.1 and γ = 0.5. The value of the RMSE of sk in uniformly

distributed noise is shown in Fig. 4.1(b). From Fig. 4.1(b) and Table 4.1, we can see

that the CKF3 has a higher estimation error than other nonlinear Kalman filters. In

addition, the GCSGHQF with α = 6 can achieve the highest filtering precision.

4.6.2.2 Epidemic Spreading in Laplace Noise

The effectiveness of the proposed GCSGHQF can be demonstrated by measurements

corrupted by the Laplace distributed noise. The state noise follows the Gaussian

distribution N(02, 10−4I2). Moreover, the measurement noise follows the Laplace

distribution rk ∼ Laplace(u, b) with mean u = 0 and parameter b = δ/
√

2 set by the

variance δ2 = 0.3. The parameter sets for the SIRS compartmental model and nonlinear

Kalman filters are ω̄SIRS = (0.7, 0.1, 0.1) and ω̄KF = (0.5, 0.07, 0.07), respectively.

The kernel parameter and regularization factor are set as σ = 0.7 and λ̃ = 0.4 with

λ = 0.1 and ς = 0.5, respectively. Fig. 4.1(c) shows the RMSE of sk for the Laplace

distributed noise. From Fig. 4.1(c) and Table 4.1, the CKF3 cannot achieve the desired

filtering performance in comparison with other nonlinear Kalman filters. In addition,

the GCSGHQF with α = 2, 4 and 6 achieves almost the same filtering precision as the

SGHQF. In contrast, the GCSGHQF with α = 1 has the lowest estimation error.
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4.6.3 Epidemic Spreading on Networks

The effectiveness of the proposed GCSGHQF for epidemic tracking on homogeneous

ER, NW and WS networks is assessed for different values of connecting probability

p. The number of nodes is 200 and connecting probability p ranges from 0 to 1.

When a small connecting probability is adopted, the NW and WS networks reduce

to a nearest neighbor coupled network, and very few nodes are connected in the ER

network. By contrast, a larger connecting probability makes the NW network reduce

to a global neighbor coupled network. In the numerical examples, the connecting

probability p is chosen in the interval p ∈ [0.05, 0.95]. In addition, the parameter

set ω̄SIRS = (α, β, γ) of the SIRS model is given by ω̄SIRS = (0.7, 0.5, 0.2) for

evolving epidemic transmission. For nonlinear Kalman filters, the parameter set for

performing dynamic estimation ω̄KF is chosen to balance the numerical stability and

filtering accuracy for the given connecting probability p. The kernel parameter σ and

regularization factor λ̃ in (4.47) are chosen for achieving the best filtering performance

for a given probability p.

4.6.3.1 Epidemic Spreading in ER Network

The process noise and measurement noise variances are set as Qk = 10−1I2 and Rk =

10−1. Fig. 4.2(a) plots the RMSE of sk, i.e., RMSEs. From Fig. 4.2(a), we can see

that the SGHQF has a higher accuracy than the CKF3. The proposed GCSGHQF with

α = 1 and α = 2 achieves a similar filtering accuracy as the SGHQF. In addition, the

proposed GCSGHQF with α = 4 and 6 achieves a higher estimation precision than the

SGHQF and CKF3 when a relatively larger connecting probability p is adopted.

4.6.3.2 Epidemic Spreading in NW Network

Consider the NW network generated by the parameter set (|N|,K, p) with K = 2. The

covariances of state noise and measurement noise are Qk = 10−1I2 and Rk = 10−1. The
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plot of the RMSE of sk is shown in Fig. 4.2(b). Similar to Fig. 4.2(a), the proposed

GCSGHQF with α = 2 has similar filtering performance as the SGHQF. In addition,

Fig. 4.2(b) demonstrates the superior filtering performance of the GCSGHQF with

α = 4 and 6 in comparison with the SGHQF and CKF3, especially when the connecting

probability p is relatively large.

4.6.3.3 Epidemic Spreading in WS Network

The WS network is developed by the parameter set (|N|,K, p) with K = 2. The

process noise and measurement noise variances are set as Qk = 10−5I2 and Rk = 0.03,

respectively. The plot of the RMSEs is shown in Fig. 4.2(c), from which we see that

the CKF3 and SGHQF cannot achieve the desired filtering accuracy in terms of the

RMSEs. In addition, the GCSGHQF with α = 2 has a similar estimation error as

the SGHQF. The GCSGHQF with α = 1, 4 and 6 gives a lower RMSEs than other

nonlinear Kalman filters.

4.7 Conclusion

The work described in this chapter aims to track epidemic transmission on networks

by a novel generalized correntropy sparse Gauss-Hermite quadrature filter. The

epidemic transmission is described by the susceptible-infected-recovered-susceptible

compartmental model. The proposed generalized correntropy sparse Gauss- Hermite

quadrature filter performs epidemic tracking by taking the susceptible-infected-

recovered-susceptible model as a state process. In comparison with traditional

Kalman filters based on the minimum mean square error criterion, the generalized

correntropy sparse Gauss-Hermite quadrature filter uses the generalized correntropy

and is therefore more robust in the presence of non-Gaussian noises. The effectiveness

and superior accuracy of the proposed generalized correntropy sparse Gauss-Hermite

quadrature filter for tracking epidemic spreading is demonstrated for selected
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homogeneous networks.



Chapter 5

Dynamic Estimation of Power Systems

by p-Norm Nonlinear Kalman Filter

The problem of dynamic state estimation of power systems is relevant to the

monitoring of real-time operation of essential power distribution infrastructure. The

nonlinear Kalman filter is utilized for dynamic state estimation of power systems

based on the available measurements from phasor measurement units. However,

these measurements are corrupted by non-Gaussian noise and exhibit varying levels

of sensitivity to outliers, thereby degrading the estimation accuracy. This chapter

proposes a robust mixed p-norm square root unscented Kalman filter for state

estimation of power systems. Unlike traditional nonlinear Kalman filters which utilize

the minimum mean square error criterion, the mixed p-norm square root unscented

Kalman filter utilizes a mixed p-norm optimization for weighting the measurement

errors to improve robustness against outliers and alleviate the filtering degradation

caused by abnormal measurements. The performance of the p-norm square root

unscented Kalman filter is demonstrated in the WSCC 3-machine system and the

NPCC 48-machine system. Simulation results demonstrate that the p-norm square

root unscented Kalman filter achieves excellent accuracy compared to other commonly

used nonlinear Kalman filters.

93
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5.1 Introduction

Recently, a considerable amount of effort has been devoted to the state estimation of

power systems [24, 18]. The state estimation of power systems is implemented for

the state tracking of generators based on the real-time data collected from observable

measurements. The phasor measurement units (PMUs) stationed at generator buses

can be used for providing measurements of voltage and current phasors [28]. Static

and dynamic estimations are then performed to estimate the real-time states of power

systems based on the phasor measurements. Static estimation [114, 115] has been

applied to system monitoring by providing a set of static states of a power system.

However, static states do not contain essential dynamic characteristics of practical

systems, especially under fault conditions [28]. In general, the power system operates

under normal conditions within a pre-designed set of system parameters, which is

appropriate to the ratings of the power system elements. These system parameters

may therefore remain at the pre-designed values. In the event of system faults such as

three phase faults [28], these system parameters may deviate from the normal values.

Therefore, dynamic state estimation [44] is more desirable for systems having high

uncertainty and wide parameter variations.

Nonlinear Kalman filters for state estimation [116, 36, 86] include the extended

Kalman filter (EKF) [102, 117, 118, 119], unscented Kalman filter (UKF) [103, 43,

120, 62] and cubature Kalman filter(CKF) [46, 48]. Moreover, the square root Kalman

filters [30] propagate the square root of error covariance directly, enhancing the

numerical stability and improving the filtering accuracy. Common square root Kalman

filters include the third-degree square root cubature Kalman filter (SRCKF), fifth-

degree square root cubature Kalman filter [45] and square root unscented Kalman filter

(SRUKF) [121]. In comparison with third-degree and fifth-degree SRCKF, SRUKF

can achieve a balance between filtering accuracy and computational burden, i.e., a

higher filtering precision than the third-degree SRCKF and a lower computational
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complexity than the fifth-degree SRCKF.

Traditionally, nonlinear Kalman filters are derived from the minimum mean square

error (MMSE) criterion, and therefore fail to achieve adequate filtering precision

using available measurements that are corrupted by outliers. Moreover, measurements

are corrupted by outliers in different ways such as additive and multiplicative

manners [122, 123], exhibiting varying effect on filtering precision. In this work,

the additive manner for imposing outliers on measurement is considered due to its

universality. Recently, numerous robust Kalman filters including the Huber-based

unscented Kalman filter (HUKF) [49] and maximum correntropy criterion-based

unscented Kalman filter (MCCUKF) [50] are proposed for enhancing the robustness

against outliers. The commonly used robust nonlinear Kalman filters indeed exhibit

robustness in the presence of outliers. However, these nonlinear Kalman filters still

cannot achieve desirable filtering precision because the available measurements may

exhibit varying levels of sensitivity to outliers. For example, the MCCUKF based

on information theoretical learning (ITL) [51] utilizes a kernel width for scaling all

estimation errors. The MCCUKF may therefore achieve undesirable filtering precision

to abnormal measurements which exhibit varying levels of sensitivity to outliers. By

contrast, the HUKF deals with measurements simply by the limited l1-norm and l2-

norm of the error, which limits the improvement of filtering accuracy.

The goal of this chapter is to develop a robust nonlinear Kalman filter for the state

estimation of the power system against large outliers. To be specific, the contributions

include the following:

• A robust mixed p-norm is proposed for suppressing outliers. In comparison

with traditional p-norm, the proposed mixed p-norm is characterized by stronger

robustness and therefore deals with outliers more efficiently. In addition, the

proposed mixed p-norm is deemed as a more generalized p-norm defined

over varying intervals, therefore suppressing outliers flexibly. Based on the
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appropriate choice of the mixed p-norm, a threshold parameter is utilized

for determining the boundary of the abnormal errors. An extra second-order

statistical characteristic of the error is utilized for alleviating the issue of the

inappropriate choice of the threshold.

• Applying the mixed p-norm in the square root unscented Kalman filter generates

a mixed p-norm square root unscented Kalman filter (PSRUKF) for improving

the robustness and enhancing the filtering accuracy of the state estimation.

• The proposed PSRUKF is applied to performing the state estimation of power

systems for dealing with the measurements corrupted by outliers. Simulation

results show the superior robustness of the proposed PSRUKF in performing

state estimation of power systems.

5.2 Review of Square Root Unscented Kalman Filters

Consider the discrete-time dynamical system which has a nonlinear state process f (·)

and measurement function h(·) [45].

xk = f (xk−1, uk−1) + wk−1 (5.1)

yk = h (xk,uk) + vk (5.2)

where xk ∈ Rnx×1, uk ∈ Rnu×1 and yk ∈ Rny×1 denote the state, input and measurement,

respectively. The process noise wk−1 and the measurement noise vk obey the Gaussian

distribution, i.e., wk−1 ∼ N(0,Qk−1), vk−1 ∼ N(0,Rk), respectively. A nonlinear

Kalman filter is expected to calculate the posterior probability density function of the

state, p(xk|y1:k) in two steps, i.e., prediction step and update step [106]. The square

root unscented Kalman filter propagates the square root of error covariance directly for

avoiding refactorizing and improving numerical stability at each time.
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Algorithm 6 Square Root Unscented Kalman Filter
Time update
1: Calculate predicted mean

x̂k|k−1 =

2nx∑
i=0

ωm
i f (ξi,k−1) (5.3)

with {ξi,k−1}2nx
i=0 and {ωm

i }
2nx
i=0 given by (5.11) and (5.12).

2: Calculate the predicted square root error covariance[
Q̂p

k , L̂p
k

]
← qr

([
Υ

p
k

√
Qk−1

]T
)

(5.4)

L̃p
k ← cholupdate

(
L̄p

k ,
√
|wc

0|f̄ (ξ0,k−1),′ s′
)

(5.5)

where s = sign(wc
0), L̄p

k is the upper triangular matrix of L̂p
k and Υp

k =√
wc

1(f (ξ1:2nx,k−1)−x̂k|k−1), f̄ (ξ0,k−1) = f (ξ0,k−1) − x̂k|k−1. Then, Sx in (5.11) is substituted
by the predicted square root error covariance L̃s

k = (L̃p
k )T, giving samples in

measurement update.
Measurement update
1: Obtain predicted mean ŷk|k−1 =

∑2nx
i=0 ω

m
i h(ξi,k|k−1) with {ξi,k|k−1}2nx

i=0 and {ωm
i }

2nx
i=0 given

by (5.11) and (5.12).
2: Find the measurement error ỹk|k−1 = yk − ŷk|k−1.
3: Obtain the covariance matrix L̃m

k :[
Q̃m

k , L̂m
k

]
← qr

([
Ῡm

k

√
Rk

]T
)

(5.6)

L̃m
k ← cholupdate

(
L̄m

k ,
√
|wc

0|h̄(ξ0,k−1),′ s′
)

(5.7)

where L̄m
k in (5.7) is the upper triangular matrix of L̂m

k , Ῡm
k =

√
wc

1(h(ξ1:2nx,k−1)− ŷk|k−1),
and h̄(ξ0,k−1) = h(ξ0,k−1) − ŷk|k−1.

4: Compute the cross covariance: Pxy,k|k−1 =
∑2nx

i=0 ω
c
i ξ̄i,k−1

(
h̄(ξi,k−1)

)T
with ξ̄i,k|k−1 =

ξi,k|k−1 − x̂k|k−1, and h̄(ξi,k|k−1) = h(ξi,k|k−1) − ŷk|k−1.
5: Calculate the Kalman gain:

Kk = Pxy,k|k−1

[
L̃m

k

]−1 [
(L̃m

k )T
]−1

. (5.8)

6: Compute the estimated mean and updated square root of error covariance:

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)) (5.9)

Lk = cholupdate
(
L̃p

k ,KkL̃o
k , ‘–’

)
, (5.10)

where L̃o
k = (L̃m

k )T, and let updated square root of error covariance L̃u
k = LT

k substitute
Sx in (5.11) for obtaining the sample points at the time step.
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The square root unscented Kalman filter utilizes sampling points {ξi}2nx
i=0 and

corresponding weights {ωm
i , ω

c
i }

2nx
i=0 for calculating the posterior probability density

function of the state, p(xk|y1:k). The sampling points {ξi}2nx
i=0 are defined by


ξ0=x̄

ξi=x̄ +
(√

(nx + λ)Sx
)

i
, i = 1, 2, · · · , nx

ξi=x̄ −
(√

(nx + λ)Sx
)

i−nx
, i = nx + 1, · · · , 2nx

(5.11)

where Sx is the square root of the error covariance Px and
(√

(nx + λ)Sx
)

i
denotes the

i-th column vector of the matrix
(√

(nx + λ)Sx
)
. Also, ωm

i and ωc
i denote the weights

for calculating the mean and covariance, respectively, i.e.,


wm

0 =
λ

nx+λ

wc
0 =

λ
nx+λ
+ 1 − α2 + β

wm
i = wc

i =
1

2(nx+λ) , i = 1, 2, · · · , 2nx.

(5.12)

Parameter λ is defined as λ = α2(nx+κ)−nx where α determines the spreading range of

sampling points at point x̄ and κ is a secondary scaling parameter. Parameter β in (5.12)

is utilized for incorporating the prior information of the distribution of x̄. The update

procedures of the square root unscented Kalman filter (SRUKF) [121] are summarized

in Algorithm 6.

Remark 9 The unscented Kalman filter utilizes the unscented transformation for

capturing the statistical characteristic of the variable through a nonlinear function.

However, the UKF may make the error covariance non-positive definite since the

first sampling point in (5.11) and (5.12) carries a large negative sampling weight for

calculating the error covariance. For example, it has been proved that the UKF can

capture a fourth-order statistical characteristic of the error by setting nx + λ = 3.

However, the instability becomes more serious as the dimension increases due to the

negative λ = 3 − nx under nx > 3. Therefore, an inappropriate choice of parameters
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may cause instability of the UKF. By contrast, SRUKF performs state estimation by

propagating the square root of the error covariance directly for avoiding this issue.

5.3 Robust Mixed p-Norm Square Root Unscented

Kalman Filter

The traditional square root unscented Kalman filter indeed achieves a desirable filtering

accuracy under a Gaussian noise environment but exhibits weak robustness against

outliers. The proposed p-norm square root unscented Kalman filter introduces a

mixed p-norm optimization for weighting measurement errors to alleviate the filtering

degradation in the presence of outliers.

Consider a linear measurement function in (5.2), i.e.,

yk = Hkxk + vk (5.13)

where matrix Hk ∈ Rny×nx represents a linear measurement matrix. Inspired by

MCCUKF [50] and HUKF [49], the following linear regression model can be

constructed for performing the p-norm optimization, i.e.,

x̂k|k−1

yk

 =
 I

Hk

 xk + v̄k (5.14)

with the identity matrix I ∈ Rnx×nx . The last term v̄k in (5.14) is given by

v̄k =

−(xk − x̂k|k−1)

vk

 (5.15)
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which is associated with covariance matrix E[v̄kv̄T
k ], i.e.,

E[v̄kv̄T
k ] =

Pk|k−1 0

0 Rk

 (5.16)

=

P̃w,k|k−1P̃T
w,k|k−1 0

0 P̃v,kP̃T
v,k

 . (5.17)

According to (5.17), E[v̄kv̄T
k ] can be rewritten as

E[v̄kv̄T
k ] = P̃kP̃T

k (5.18)

with the matrix P̃k

P̃k =

P̃w,k|k−1 0

0 P̃v,k

 (5.19)

where P̃k can be obtained by Cholesky decomposition of E[v̄kv̄T
k ]. Multiplying both

sides of (5.14) by P̃−1
k , we get

Γk = Πkxk + ek (5.20)

where

Γk = P̃−1
k

x̂k|k−1

yk

 ,Πk = P̃−1
k

 I

Hk

 . (5.21)

The error ek in (5.20) is given by

ek = P̃−1
k v̄k. (5.22)

The error ek in (5.20) is white due to E[ekeT
k ] = I.
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The p-norm square root unscented Kalman filter aims to minimize

J(xk) =
nx+ny∑

i=1

λi

pi
Ji(ek(i)) +

1 − λi

2
e2

k(i) (5.23)

where factors {λi}nx+ny

i=1 are incorporated into (5.23) for enhancing numerical stability.

Here, ek(i) denotes the i-th element of ek at discrete time k. Also, ek(i) is defined by

ek(i) = Γk(i) − Πr
k(i)xk where Γk(i) is the i-th element of Γk ∈ R(nx+ny)×1 and Πr

k(i) is

the i-th row of Πk at discrete time k in (5.21). Since measurements exhibit varying

levels of sensitivity to outliers, it is more reasonable and flexible to optimize (5.23) in

a mixed p-norm. The Ji(ek(i)) = |ek(i)|pi in (5.23) is defined by a mixed p-norm of the

error and chosen by

Ji(ek(i)) =


|ek(i)|p̃1 , |ek(i)| < ϑ

|ek(i)|p̃2 , ϑ ≤ |ek(i)| < 1

|ek(i)|p̃3 , |ek(i)| ≥ ϑ and |ek(i)| ≥ 1

(5.24)

with a positive threshold ϑ and p̃1 = 2. The newly defined p-norm satisfies the

properties of a norm [124]. Parameters p̃2 and p̃3 are positive numbers larger and

smaller than 2, respectively. As given in (5.24), the pi-order term of the J(xk), i.e.,

Ji(ek(i)), is a piece-wise function of the state estimation error |ek(i)|. Then, (5.24)

actually reduces to a piece-wise function defined over two intervals by setting ϑ ≥ 1,

i.e.,

Ji(ek(i)) =


|ek(i)| p̃1 , |ek(i)| < ϑ

|ek(i)| p̃3 , |ek(i)| ≥ ϑ
(5.25)

where parameters p̃1 and p̃3 are the same as those given in (5.24). Equation (5.23) can
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be expanded as

J (xk) =
nx+ny∑

i=1

λi

pi
|Γk(i) −Πr

k(i)xk|pi +
(1 − λi)

2

∣∣∣Γk(i) −Πr
k(i)xk

∣∣∣2. (5.26)

Therefore, the optimal estimate of xk can be obtained by

x̂k = arg min
x̂k

J (xk) . (5.27)

Taking the partial derivative of (5.26) with respect to xk, we obtain

∂J (xk)
∂xk

∣∣∣∣∣
xk=x̂k

=

nx+ny∑
i=1

λi|ek (i)|pi−2ek (i) (Πr
k(i))

T + (1 − λi)ek (i)(Πr
k(i))

T |xk=x̂k

= 0. (5.28)

After simplifying, the optimal state estimation can be derived as follows:

x̂k =

nx+ny∑
i=1

(
λi|ek (i)|pi−2 + (1 − λi)

)
(Πr

k(i))
TΠr

k(i)

−1

nx+ny∑
i=1

(
λi|ek (i)|pi−2 + (1 − λi))

)
(Πr

k(i))
TΓk(i)

 . (5.29)

Define a weighted matrix Ck ∈ R(nx+ny)×(nx+ny) by

Ck =

Cx,k 0

0 Cy,k

 (5.30)

where matrices Cx,k ∈ Rnx×nx and Cy,k ∈ Rny×ny are expressed as

Cx,k = diag(λ1|ek (1)|p1−2 + λ̃1, · · · , λnx |ek (nx)|pnx−2 + λ̃nx), (5.31)

Cy,k = diag((λnx+1|ek (nx + 1)|pnx+1−2) + λ̃nx+1,

· · · , λnx+ny

∣∣∣∣ek

(
nx + ny

)∣∣∣∣pnx+ny−2
+ λ̃nx+ny) (5.32)
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where λ̃i = (1 − λi). The Cx,k in (5.31) is a diagonal matrix with entries {λ j|ek ( j)|p j−2 +

λ̃ j}nx
j=1. The diagonal matrix Cy,k in (5.32) has entries {λ j|ek ( j)|p j−2 + λ̃ j} j=nx+ny

j=nx+1 .

Equation (5.29) can thus be rewritten as

x̂k = Π
−1
C,kΠD,k (5.33)

with ΠC,k = Π
T
k CkΠk and ΠD,k = Π

T
k CkΓk. According to (5.17) and (5.21), matrix Π−1

C,k

can be rewritten by

Π−1
C,k = (HT

k (P̃−1
v,k)

TCy,kP̃−1
v,kHk + (P̃−1

w,k|k−1)TCx,kP̃−1
w,k|k−1)−1. (5.34)

By using the matrix inverse lemma [79], i.e.,

(
Ā + B̄C̄D̄

)−1
= Ā−1 − Ā−1B̄

(
C̄−1 + D̄Ā−1B̄

)−1
D̄Ā−1

and letting Ā =
(
P̃−1

w,k|k−1

)T
Cx,kP̃−1

w,k|k−1, B̄ = HT
k , C̄ =

(
P̃−1

v,k

)T
Cy,kP̃−1

v,k and D̄ = Hk, (5.34)

can be further expanded as

Π−1
C,k = P̃w,k|k−1C−1

x,kP̃
T
w,k|k−1 − P̃w,k|k−1C−1

x,kP̃
T
w,k|k−1HT

k

(P̃v,kC−1
y,kP̃

T
v,k +HkP̃w,k|k−1C−1

x,kP̃
T
w,k|k−1HT

k )−1HkP̃w,k|k−1C−1
x,kP̃

T
w,k|k−1. (5.35)

Similar to (5.34), ΠD,k can be expanded to

ΠT
k CkΓk = HT

k

(
P̃−1

v,k

)T
Cy,kP̃−1

v,kyk +
(
P̃−1

w,k|k−1

)T
Cx,kP̃−1

w,k|k−1x̂k|k−1. (5.36)

From (5.34) to (5.36), equation (5.33) can be given in a recursive form, i.e.,

x̂k = x̂k|k−1 + K̄k
(
yk −Hkx̂k|k−1

)
(5.37)
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where K̄k takes the form of

K̄k = P̄k|k−1HT
k

(
HkP̄k|k−1HT

k + R̄k

)−1
. (5.38)

The prediction error covariance matrices P̄k|k−1 and R̄k are expressed as

P̄k|k−1 = P̃w,k|k−1C−1
x,kP̃

T
w,k|k−1 (5.39)

R̄k = P̃v,kC−1
y,kP̃

T
v,k. (5.40)

Also, matrix Ck is utilized for weighting the prediction covariance matrix Pk|k−1 and

covariance matrix of measurement noise Rk.

Consider a nonlinear measurement function in (5.2). The nonlinear regression

model can be constructed by

x̂k|k−1

yk

 =
 xk

h(xk)

 +
δxk

vk

 (5.41)

with δxk = x̂k|k−1 − xk. Define Γ̃k, Π̆k and ĕk as

Γ̃k = P̆−1
k

x̂k|k−1

yk

 , Π̆k = P̆−1
k

 xk

h(xk)

 , ĕk = P̆−1
k

δxk

vk

 (5.42)

where P̆k can be obtained by applying Cholesky decomposition as

PR,k =

Pk|k−1 0

0 Rk

 . (5.43)

Therefore, we have

Γ̃k = Π̆k + ĕk. (5.44)
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Similar to (5.23), the nonlinear p-norm square root unscented Kalman filter aims to

minimize

J̆ (xk) =
nx+ny∑

i=1

λi

pi
|ĕk(i)|pi +

(1 − λi)
2
|ĕk (i)|2. (5.45)

Define ϕ(ĕk(i)) = ∂J̆ (xk)/∂xk and minimize (5.45) to yield

∂J̆ (xk)
∂xk

|xk=x̂k=

nx+ny∑
i=1

ϕ(ĕk(i))
∂ĕk(i)
∂xk

|xk=x̂k (5.46)

where ϕ(ĕk(i)) = λi|ĕk (i)|pi−2ĕk (i) + (1 − λi)ĕk (i). Also, define ψ(ĕk(i)) = ϕ(ĕk(i))/ĕk(i),

i.e.,

ψ(ĕk(i)) = λi|ĕk (i)|pi−2 + (1 − λi) (5.47)

and S̃k+1 as

S̃k+1 = P̆kΓ̆
−1
k P̆T

k (5.48)

where Γ̆k = diag[ψ(ĕk(i))]. Since δxk is set to zero, the prediction error of state remains

unchanged, i.e.,

S̃k+1(1 : nx, 1 : nx) = Pk|k−1. (5.49)

Denote R̃k+1 as the updated measurement covariance and

R̃k = S̃k+1(nx + 1 : nx + ny, nx + 1 : nx + ny). (5.50)

Replacing Rk with R̃k in (5.6) in Algorithm 6 and performing square root UKF

measurement update will give the measurement update process for PSRUKF.
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Remark 10 Table 5.2 shows the computational complexity of PSRUKF in estimating

the hidden state xk using available measurements y1:k at discrete time k with xk ∈ Rnx×1,

yk ∈ Rny×1. From Table 5.2, PSRUKF introduces an extra computational burden

on calculating matrix R̃k at discrete time k in comparison to SRUKF. Since matrix

R̃k ∈ Rny×ny at discrete time k needs to be updated, we only focus on matrices

P̆k(nx+1 : nx+ny, nx+1 : nx+ny) ∈ Rny×ny and Γ̆−1
k (nx+1 : nx+ny, nx+1 : nx+ny) ∈ Rny×ny

in calculating matrix R̃k. The additional computational complexity of updating matrix

R̃k is almost the same as the burden of performing the Cholesky factorization in

SRUKF, which is acceptable for performing state estimation. Moreover, PSRUKF has

a different computational burden in calculating the weighted matrix Γ̆−1
k in comparison

with the maximum correntropy criterion unscented Kalman filter (MCCUKF) or

MCCSRUKF. Different from the diagonal entries of Γ̆−1
k in MCCUKF or MCCSRUKF,

the diagonal elements of Γ̆−1
k in PSRUKF and HSRUKF all consist of the p-norm of

the error, which has almost the same burden. In contrast, MCCUKF or MCCSRUKF

has a relatively large computational burden due to the introduction of diagonal entries

constructed by the exponent function of the error.

Remark 11 Robust nonlinear Kalman filters in Chapter4 and Chapter5 have no

advantage in comparison with traditional filters in Chapter3 at Gaussian noise and

are only considered at non-Gaussian noises. From aspect of filtering precision, the

generalized correntropy sparse Gauss-Hermite quadrature filter in Chapter4 has high

accuracy but not well numerical stability due to the implementation of Cholesky

decomposition. To increase the covariance of state noise is helpful for alleviating

this issue but may degrade filtering precision. As for calculational complexity, the

generalized correntropy sparse Gauss-Hermite quadrature filter in Chapter4 has

higher complexity than the mixed p-norm square root unscented Kalman filter in

Chapter5. As for the number of parameters, the generalized correntropy sparse

Gauss-Hermite quadrature filter has fewer parameters including kernel parameter σ,
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balanced parameter λ and exponential term α than the mixed p-norm square root

unscented Kalman filter including parameters p1, p2, p3, balanced parameter λ and

threshold factor ϑ. As a result, the generalized correntropy sparse Gauss-Hermite

quadrature filter is chosen if high accuracy or few adjustable parameters are required.

If high efficiency or numerical stability is in requirement, the mixed p-norm square

root unscented Kalman filter is a preferable choice.

Remark 12 In the proposed method, abnormal observations may be caused by system

faults or non-Gaussian noises from natural environment or measuring device like

the Phasor measurement unit (PMU). In our work, the proposed method suppresses

abnormal measurement errors by the proposed mixed p-norm without making any

distinction among these causes. The abnormal measurements with different causes

all pose negative effect on the update step of nonlinear Kalman filters. By adopting

appropriate parameters of the proposed mixed p-norm, a weakened updated step can

be used for alleviating the effect of abnormal errors due to varying different causes. It

is therefore not necessary to make any distinction among these causes.

5.4 Choice of Parameters and Robustness of Mixed p-

Norm Kalman Filter

The proposed mixed p-norm square root unscented Kalman filter (PSRUKF) utilizes a

mixed p-norm for weighting varying levels of the error for improving the robustness

against outliers. Apart from the mixed p-norm parameters including p̃1, p̃2 and p̃3

in (5.24), robustness or stability is also closely related to other parameters including

the threshold parameter ϑ in (5.24) and (5.25) and the balanced parameter λi in

(5.45). In this section, the robustness of PSRUKF is demonstrated in respect of

measurement update in the process of state estimation. In addition, the choice of these

parameters is discussed for improving robustness and filtering precision in comparison
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with traditional nonlinear Kalman filters.

5.4.1 Robustness of Mixed p-Norm Square Root Unscented Kalman

Filter

The PSRUKF improves the stability of the state estimation by alleviating the effect

of the measurement update when measurements are corrupted by outliers. Based on

the choice of the p-norm in (5.24) and (5.25), PSRUKF aims to design a relatively

small value of ψ(ĕk(i)) in (5.47) in the presence of outliers. Due to varying levels

of sensitivity of measurements to outliers, the corresponding estimation errors exhibit

varying orders of magnitude. According to the magnitudes of the errors ϑ ≤ |ĕk(i)| < 1

and |ĕk(i)| ≥ 1, |ĕk(i)| ≥ ϑ in (5.24) and (5.25), PSRUKF utilizes a mixed p-norm as

p̃2 > 2 for ϑ ≤ |ĕk(i)| < 1 and p̃3 < 2 for |ĕk(i)| ≥ 1 and |ĕk(i)| ≥ ϑ so that a relatively

small value of ψ(ĕk(i)) in the presence of outliers can be obtained.

Consider the measurement yk = [yk(1), yk(2), · · · , yk(ny)] at discrete time k and the

j-th measurement yk( j) being corrupted by outliers. Since the diagonal matrix R̃k in

(5.50) is constructed by a function of matrix Γ̆−1
k in (5.48) which consists of ψ(ĕk(i)),

the j-th diagonal element of R̃k in (5.50) is large on the basis of the choice of the mixed

p-norm. From matrix factorization of R̃k in (5.6) and (5.7), the factorization matrix S̃−k

in (5.6) and (5.7) is found to be crucial to suppress outliers. The factorization matrix

S̃−k has a large absolute value of the j-th diagonal element. Therefore, the absolute

values of the j-column elements of the gain matrix Kk are small since the Kalman

gain is constructed by a function of the inverse of matrix S̃−k . The PSRUKF utilizes

the measurement update for further correcting the predictive state in the form of an

update increment, which is constructed by multiplication of the Kalman gain Kk and

measurement errors in (5.9).

Therefore, the proposed PSRUKF estimates the hidden state by a time update and

a weakened measurement update, resulting in improved robustness against outliers.
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The simulation results given in Section 5.6 are used to demonstrate the robustness of

PSRUKF.

5.4.2 Choice of Mixed p-Norm Parameters

The choice of the mixed p-norm parameters is essential for improving the robustness

against outliers and filtering precision. Since a second-order statistical characteristic

of the error is suitable for dealing with normal measurements, p̃1 = 2 in (5.24) and

(5.45) is utilized for weighting the estimation error under the condition of |ĕk(i)| < ϑ.

By contrast, mixed p-norm parameters p̃2 > 2 and p̃3 < 2 in (5.24) and (5.45) are

generally adopted for dealing with abnormal errors corresponding to the measurements

corrupted by outliers. In comparison with parameter p̃2 utilized for suppressing the

abnormal error ϑ ≤ |ĕk(i)| < 1, parameter p̃3 is much more effective in dealing with

large error |ěk(i)| ≥ ϑ and |ĕk(i)| ≥ 1.

The PSRUKF resembles SRUKF when p̃2 = 2 and p̃3 = 2, which exhibits poor

robustness against outliers. Therefore, PSRUKF may not achieve the desirable filtering

precision when p̃2 or p̃3 approaches 2. In PSRUKF, a small p̃2 > 2 cannot reduce

ψ(ĕk(i)) in (5.47) efficiently and therefore may not be beneficial for improving the

precision. By contrast, a large p̃2 > 2 may make ψ(ĕk(i)) in (5.47) close to zero, which

is not beneficial for the inverse operation of matrix Γ̆k in (5.48). The second-order

statistical characteristic of the error in (5.23) and (5.45) can solve this problem. In

fact, parameter p̃2 > 2 (not close to 2) is helpful for PSRUKF to generate a higher

estimation precision than traditional nonlinear Kalman filters.

The PSRUKF indeed exhibits a stronger robustness against outliers than SRUKF

when 1 < p̃3 < 2 since the choice of 1 < p̃3 < 2 can be utilized for generating

a weakened measurement update, as shown in Section 5.4.1. However, the choice

of 1 < p̃3 < 2 is still not recommended since the measurement update may not be

weakened efficiently under 1 < p̃3 < 2. Considering that HSRUKF utilizes a piecewise
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Huber function with the l1-norm of the error dealing with abnormal measurements, a

positive number p̃3 ≤ 1 is adopted for guaranteeing the filtering robustness.

Therefore, PSRUKF generally adopts p̃1 = 2 for dealing with error |ĕk(i)| < ϑ

in (5.24) and (5.45). By contrast, p̃2 > 2 ( p̃2 not close to 2) can be utilized for

the hidden state estimation within a wide range. Although PSRUKF can achieve an

improved robustness against outliers than the SRUKF under p̃3 < 2, we aim to adopt

p̃3 ≤ 1 for guaranteeing robustness against outliers in comparison with traditional

nonlinear Kalman filters. In addition, the choice of mixed p-norm parameters including

parameters p̃1, p̃2 and p̃3 is also dependent on the sensitivity of measurements to

outliers and the varying magnitudes of outliers.

5.4.3 Choice of Balanced Parameters

The balanced parameters {λi}nx+ny

i=nx+1 in (5.23) and (5.45) play an essential role in

improving filtering accuracy and numerical stability. A small threshold parameter

ϑ in (5.24) and (5.25) means that the normal estimation error is weighted by the p-

norm with p , 2, which does not help improve filtering accuracy. Thus, the second-

order statistical characteristic of the error given in (5.23) and (5.45) can be used for

alleviating the effect of the inappropriate choice of the threshold parameter. In addition,

{λi}nx+ny

i=nx+1 in (5.23) and (5.45) can also be beneficial for operating the inverse of the

matrix Γ̆k in (5.48) since a large parameter p̃2 > 2 in (5.24) and (5.25) may make

Γ̆k in (5.48) close to zero. Generally, {λi}nx+ny

i=nx+1 can be chosen by trials, which is

complicated. Therefore, an adaptive scenario associated with factors {λi}nx+ny

i=nx+1, i.e.,

λi = exp(−e2
k(i)/(2ϱ2)) or λi = exp(−ĕ2

k(i)/(2ϱ2)) for a linear or nonlinear measurement

function in (5.13) and (5.1), respectively, is used with ϱ as the kernel width.

The kernel width ϱ therefore plays an essential role in estimation precision and

numerical stability. When a small kernel size is utilized, the mixed p-norm in

(5.45) may be alleviated or even completely eliminated, reducing to the traditional
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SRUKF. Therefore, PSRUKF has an undesirable filtering accuracy under a small kernel

size. In addition, the second-order statistical characteristic of the error in (5.45) is

alleviated under a large kernel size, which is not beneficial for addressing the issue of

inappropriate choice of the threshold parameter ϑ and the calculation of the inverse of

Γ̆k in (5.48). The choice of the kernel width ϱ is further demonstrated in Section 5.6.

5.4.4 Choice of Threshold Parameter

The threshold parameter ϑ in (5.24) and (5.25) generally indicates whether the error

is abnormal or the measurement is corrupted by outliers. An inappropriate choice

of threshold parameter ϑ degrades the filtering precision and stability. For example,

a large threshold may create abnormal errors weighted by the l2-norm, degrading the

filtering robustness against outliers. Moreover, a small threshold means that the normal

estimation error corresponding to measurements not corrupted by outliers is dealt with

using the p-norm with p , 2, which is not the desirable choice of the p-norm and may

degrade the filtering accuracy. However, it is hard to accurately find the boundary of the

abnormal error and therefore impossible to find the exact threshold parameter. In (5.23)

and (5.45), an extra second-order statistical characteristic of the error is introduced for

improving the filtering precision under a small threshold ϑ. Although the threshold

parameter is set to be small, the measurement error in accordance with measurement

not corrupted by outliers can also be handled by the l2-norm. Therefore, the threshold

parameter ϑ can be chosen as a relatively small value so that good filtering accuracy can

be guaranteed. Moreover, the extra second-order statistical characteristic of the error is

also beneficial for calculating the inverse of matrix Γ̆k in (5.48), which is constructed by

a nonlinear function of the error ψ(ĕk(i)) shown in (5.47). The choice of the threshold

ϑ is demonstrated in Section 5.6.
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5.5 Dynamic State Estimation of Power Systems

This section discusses how nonlinear Kalman filters are applied in the state estimation

of power systems. The generator and measurement model described in [125] is utilized

for multi-machine systems and allows varying order generator models.

LetΘ2,Θ4, andΘp denote the sets of generators described by second-order models,

fourth-order models and models where corrupted measurements are obtained from

PMUs. Variables and constants related with power systems are defined in Table

5.1. For generator η ∈ Θ4, the fast sub-transient dynamics and saturation effects

are neglected. This leads to the generator model expressed by a set of fourth-order

differential equations in the d-q domain [14].

δ̇η = ωη − ω0 (5.51)

ω̇η =
ω0

2Hη

(
Tmη − Teη −

KDη

ω0

(
ωη − ω0

))
(5.52)

ė
′

qη =
1

T ′
d0η

(
E f dη − e

′

qη −
(
xdη − x

′

dη

)
idη

)
(5.53)

ė
′

dη =
1

T ′
q0η

(
−e

′

dη +
(
xqη − x

′

qη

)
iqη

)
. (5.54)

For generator η ∈ Θ2, the second-order model is derived from the fourth-order model

directly by removing equations (5.53) and (5.54). For generator η ∈ Θp, terminal

voltage phasor Etη = eRη + jeIη and terminal current phasor Itη = iRη + jiIη are used as

outputs.

Comparing (5.1)–(5.2) with (5.51)–(5.54), we obtain the general state equations in

state space form as

ẋ = fc(x,u) (5.55)

y = hc(x,u) (5.56)

with fc and hc representing the column vectors of continuous state transmission
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function and measurement function. The state vector x, input vector u and observable

output y in (5.55) and (5.56) are given by

x =
[
δT ωT e

′T
q e

′T
d

]T
(5.57)

u =
[
TT

m ET
f d

]T
(5.58)

y =
[
eT

R eT
I iT

R iT
I

]T
(5.59)

where the input u =
[
TT

m ET
f d

]T
is considered as a known constant. Variables iqη, idη,

and Teη in (5.52), (5.53) and (5.54) are expressed as functions of the state x:

ΨRη = e
′

dη sin δη + e
′

qη cos δη (5.60)

ΨIη = e
′

qη sin δη − e
′

dη cos δη (5.61)

Itη = Ȳη (ΨR + jΨI) (5.62)

iRη = Re(Itη) (5.63)

iIη = Im(Itη) (5.64)

iqη =
S B

S Nη

(
iIη sin δη + iRη cos δη

)
(5.65)

idη =
S B

S Nη

(
iRη sin δη − iIη cos δη

)
(5.66)

eqη = e
′

qη − x
′

dηidη (5.67)

edη = e
′

dη + x
′

qηiqη (5.68)

Peη = eqηiqη + edηidη (5.69)

Teη =
S B

S Nη

Peη (5.70)

where Ȳη is the η-th row of the admittance matrix of the reduced network consisting

of generators Ȳ [28]. Since outputs iRη and iIη are the function of state x, outputs eRη
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Table 5.1: Variables and Constants

Symbols Definitions
δ Rotor angle in rad
ω Rotor speed in rad/s
ω0 Rated rotor speed in rad/s
E f d Internal field voltage in pu
Et Terminal voltage phasor
ed, eq Terminal voltage in d and q axes in pu

e
′

d, e
′
q Transient voltage in d and q axes in pu

eR, eI Real and imaginary parts of the terminal voltage phasor
xd, xq Synchronous reactance in d and q axes in pu

x
′

d, x
′
q Transient reactance in d and q axes in pu

It Terminal current phasor
id, iq Currents in d and q axes in pu
iR, iI Real and imaginary parts of the terminal current phasor in pu
Tm Mechanical torque in pu
Te Electric air-gap torque in pu
T
′
q0
,T

′

d0
Open-circuit time constants in q and d axes in second

S B, S N System and generator base MVA
Pe Electrical active output power in pu
KD Damping factor in pu

Ψ Voltage source vector

ΨR,ΨI
Column vectors of all generators’ real and imaginary
parts of the voltage source on system reference frame

and eIη are also expressed as functions of state x, i.e.,

eRη = edη sin δη + eqη cos δη (5.71)

eIη = eqη sin δη − edη cos δη. (5.72)

The discrete state space form can be obtained by discretizing the continuous models

given in (5.51)–(5.54) as [125]

xk = f (xk−1,uk−1) + ωk−1 (5.73)



5.5. DYNAMIC STATE ESTIMATION OF POWER SYSTEMS 115

Table 5.2: Computational Complexity of p-Norm Square Root Unscented Kalman
Filter

Computation Operation Cost of Operation Overall Cost

Sample points ξi, i = 0, · · · , 2nx

in (5.11)
Scalar-Matrix product

(√
(nx + λ)Sk

)
nx × nx

O(3n2
x)

Sum of vectors 2nx × nx

χi,k|k−1 = f (ξi,k−1), i = 0, · · · , 2nx Evaluation of f nxC f O(nxC f )

x̂k|k−1 =
∑2nx

i=0 ω
m
i χi,k|k−1

Scalar-vector products (2nx + 1) × nx

Sum of vectors 2nx × nx O(4n2
x)

Υk =
√

wc
1
(
χ1:2nx,k|k−1 − x̂k|k−1

) Subtract of matrices χ1:2nx,k|k−1 − x̂k|k−1 2nx × nx

Scalar-matrix product
O(4n2

x)

2nx × nx√
wc

1
(
χ1:2nx,k|k−1 − x̂k|k−1

)
qr

([
Υk
√

Qk−1

]T
)

QR decomposition O(6n3
x) O(6n3

x)

√
|wc

0|
(
χ0,k|k−1 − x̂k|k−1

) Subtract of vectors χ0,k|k−1 and x̂k|k−1 nx × 1

Scalar-vector product
nx × 1 O(2nx)√

|wc
0|
(
χ0,k|k−1 − x̂k|k−1

)
cholupdate

(
S−k ,

√
|wc

0|
(
χ0,k|k−1 − x̂k|k−1

))
Cholupdate decomposition O(n3

x) O(n3
x)

Sample points ξi, i = 0, · · · , 2nx in
(5.11)

Scalar-matrix product nx × nx

Sum of vectors 2nx × nx O(3n2
x)

χi,k|k−1 = h(ξi,k−1), i = 0, · · · , 2nx Evaluations of h nxCh O(nxCh)

ŷk|k−1 =
∑2nx

i=0 ω
m
i χi,k|k−1

Scalar-vector products (2nx + 1) × ny

Sum of vectors 2nx × ny O(4nxny)

Ῡk =
√

wc
1
(
χ1:2nx,k|k−1 − ŷk|k−1

) Subtract of matrices χ1:2nx,k|k−1 − ŷk|k−1 2nx × ny

Scalar-matrix product
O(4nxny)

2nx × ny√
wc

1
(
χ1:2nx,k|k−1 − ŷk|k−1

)
Calculation of the matrix P̆k O(n3

y)

Matrix-matrix product ĕk = P̆−1
k [δxk vk]T n3

y + n2
y + ny(ny − 1)

R̃k

Inverse of diagonal matrix Γ̆−1
O(n3

y)
ny

Matrix-matrix product P̆kΓ̆
−1
k P̆T

k n2
y + n3

y + n2
y(ny − 1)

qr
([
Ῡk

√
R̃k

]T)
QR decomposition O(4nxn2

y + 2n3
y) O(4nxn2

y + 2n3
y)

√
|wc

0|
(
χ0,k|k−1 − ŷk|k−1

) Subtract of vectorsχ0,k|k−1 and ŷk|k−1 ny × 1
Scalar-vector product O(2ny)√
|wc

0|
(
χ0,k|k−1 − ŷk|k−1

) ny × 1

cholupdate
(
S̃−k ,

√
|wc

0|
(
χ0,k|k−1 − ŷk|k−1

))
Cholupdate decomposition O(n3

y) O(n3
y)

Pxy,k|k−1 =
∑2nx

i=0 ω
c
i (χi,k|k−1 − x̂k|k−1) Vector-vector product (2nx + 1) × nx × ny(

h(χi,k|k−1) − ŷk|k−1
)T Scalar-matrix product (2nx + 1) × nx × ny O(6n2

xny)
Sum of matrix 2nx × nx × ny

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1))

Subtraction of vector yk − h(x̂k|k−1) ny

Vector-matrix product Kk(yk − h(x̂k|k−1)) 2nxny − nx O(2nxny)

Sum of vectors
nx

x̂k|k−1 +Kk(yk − h(x̂k|k−1))

U = KkS̃−k Matrix-matrix product 2nxn2
y − nxny O(2nxn2

y)

cholupdate
(
S−k ,U,

′ −′
)

Cholupdate decomposition O(n3
x) O(n3

x)
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yk = h (xk,uk) + vk. (5.74)

The modified Euler method [126] can be utilized for generating the state transition

functions f , i.e.,

x̃k = xk−1 + fc (xk−1,uk−1)∆t (5.75)

f̃ =
fc (x̃k,uk) + fc (xk−1,uk−1)

2
(5.76)

xk = xk−1 + f̃∆t (5.77)

where fc is the column vector of continuous state transition functions constructed

by (5.51)-(5.54).

The measurement function h in (5.74) is constructed through (5.63)-(5.64)

and (5.71)-(5.72). Based on the constructed state space model, nonlinear Kalman

filters can perform state estimation of power systems. The measurements from the

power system in (5.59), i.e., y =
[
eT

R eT
I iT

R iT
I

]T
, generally exhibit varying levels

of sensitivity to outliers, thus degrading the filtering accuracy of nonlinear Kalman

filters. Therefore, the proposed PSRUKF incorporating a mixed p-norm exhibits strong

robustness against outliers in comparison with traditional nonlinear Kalman filters.

Remark 13 A detailed model of the synchronous generator can be 5th-order [14], 6th-

order [14], 10th-order [127] or even up to 14th-order [128]. However, the 4th-order

model from (5.51) to (5.54) is the most commonly used model. From Table 5.2, the

computational burden of the proposed mixed p-norm square root unscented Kalman

filter (PSRUKF) is positively related to the dimension of the state. Therefore, the

complex high order model imposes a high computational complexity in the process

of state estimation. In addition, the complex high order model also needs to be

characterized by more parameters [129, 130]. Therefore, the 4th-order model is
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generally utilized for state estimation using nonlinear Kalman filters in comparison

with complex high order model like 5th-order [14], 6th-order [14], 10th-order [127]

or even up to 14th-order [128] models.

5.6 Simulation Results

This section compares the filtering accuracy of the proposed p-norm square root

unscented Kalman filter (PSRUKF) with traditional nonlinear Kalman filters including

the square root unscented Kalman filter (SRUKF), Huber-based square root unscented

Kalman filter (HSRUKF) and maximum correntropy criterion-based square root

unscented Kalman filter (MCCSRUKF) for state estimation of power systems. The

state estimation is executed by these nonlinear Kalman filters on the basis of the

discrete state-space model described in Section 5.5, which is generated at a sampling

rate of 120 samples per second. The observable measurements are obtained from the

PMUs installed at different terminal buses of generators and the PMU sampling rate is

set at 60 frames per second for sampling the measurements.

These nonlinear Kalman filters are tested on the WSCC 3-machine 9-bus system

[28, 131, 132] and the NPCC 48-machine 140-bus system [133, 134], extracted from

the Power System Toolbox [135, 136]. The efficiency of PSRUKF is demonstrated in

the presence of alpha stable distribution noise. The alpha stable distribution noise as a

non-Gaussian noise is represented by the following characteristic function [137, 138,

139]

f (t) = exp
{
jδt − γ|t|σ [

1 + jρsgn (t) S (t, σ)
]}

(5.78)

where parameter set V = (σ, ρ, γ, δ) includes the characteristic factor σ ∈ (0, 2], ρ ∈

(−1, 1) measuring asymmetry, dispersion parameter γ > 0, location parameter δ ∈
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Figure 5.1: WSCC 3-machine 9-bus system.

(−∞,∞), and

S (t, σ) =


tan σπ

2 , σ , 1

2
π

log |t|, σ = 1.
(5.79)

In each experiment, 50 Monte Carlo simulations are run. The root mean square

error (RMSE) is introduced for evaluating the filtering accuracy of nonlinear Kalman

filters, which is defined by

RMSE =
1
N̄

N̄∑
k=1

√√√ ℓ2∑
j=ℓ1

(xk( j) − x̂k( j))2 (5.80)

where xk = [xk(1), xk(2), · · · , xk(nx)]T and x̂k = [x̂k(1), x̂k(2), · · · , x̂k(nx)]T represent

the desirable and estimated states, respectively. Notation N̄ represents the number of

samples. Scalars ℓ1 = 1, ℓ2 = |Θ2| are utilized for calculating the RMSE of state

estimation of δ = [δ1, δ2, · · · , δη, · · · , δ|Θ2 |], where |Θ2| is the cardinality of set Θ2.

Scalars ℓ1 = |Θ2| + 1, ℓ2 = 2|Θ2| are for calculating state estimation error of ω =

[ω1, ω2, · · · , ωη, · · · , ω|Θ2 |]. In addition, ℓ1 = 2|Θ2| + 1, ℓ2 = 2|Θ2| + |Θ4| are utilized

for calculating the estimation error of e′q = [e
′

q,1, e
′

q,2, · · · , e
′
q,η, · · · , e

′

q,|Θ4 |]. The RMSE

of state estimation of e′d = [e
′

d,1, e
′

d,2, · · · , e
′

d,η, · · · , e
′

d,|Θ4 |] is calculated by setting ℓ1 =

2|Θ2| + |Θ4| + 1, ℓ2 = 2|Θ2| + 2|Θ4|.
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5.6.1 WSCC 3-Machine System

The WSCC 3-machine system is utilized for testing the efficiency of the proposed

p-norm square root unscented Kalman filter. It is assumed that generators are

modelled by a second-order model in the WSCC 3-machine system associated with

Θ2 = {1, 2, 3}, Θ4 = ∅, i.e., null set, and Θp = {3}, generating state variable xk ∈ R6×1

and measurements yk ∈ R4×1.

A three-phase fault is applied at bus 8 of line 8 − 9 in Fig. 5.1 and is cleared at

the near and remote end after 0.05 and 0.1 second. The initial estimated mean of the

system state is set to be the pre-contingency state. The dynamic state estimation is

implemented on the post-contingency system. The initial estimation error covariance

P0 is set as in [28], i.e.,

P0 =



ς2
δI
|Θ2 |
|Θ2 | 0|Θ2 |

|Θ2 | 0|Θ2 |
|Θ4 | 0|Θ2 |

|Θ4 |

0|Θ2 |
|Θ2 | ς2

wI|Θ2 |
|Θ2 | 0|Θ2 |

|Θ4 | 0|Θ2 |
|Θ4 |

0|Θ4 |
|Θ2 | 0|Θ4 |

|Θ2 | ς2
e′q

I|Θ4 |
|Θ4 | 0|Θ4 |

|Θ4 |

0|Θ4 |
|Θ2 | 0|Θ4 |

|Θ2 | 0|Θ4 |
|Θ4 | ς2

e′d
I|Θ4 |
|Θ4 |


(5.81)

with I|Θ2 |
|Θ2 | representing the identity matrix I ∈ R|Θ2 |×|Θ2 | and 0|Θ2 |

|Θ4 | being the zero matrix

0 ∈ R|Θ2 |×|Θ4 |. The parameters ςδ, ςw, ςe′q and ςe′d
are set by ςδ = 0.5π/180, ςw = 10−3ω0

and ςe′q
= ςe′d

= 10−3. The state noise follows the Gaussian distribution with

the covariance set as a diagonal matrix and entries being the square of 10% of the

largest state changes [136]. The measurements are corrupted by Gaussian noise with

statistical characteristic N(04, 10−2I4), where I4 ∈ R4×4 represents the identity matrix.

For better demonstration of the robustness of PSRUKF, the alpha stable distribution

noises with V = (0.3, 0, 0.5, 0), V = (0.4, 0, 0.5, 0) and V = (0.5, 0, 0.5, 0) are added on

the first three dimensional measurements of {yk : yk = [yk(1), yk(2), yk(3), yk(4)]T }N̄k=1,

i.e., {yk(1), yk(2), yk(3)}N̄k=1. Since the kernel width ϱ in (5.45) can alleviate the filtering

degradation caused by an inappropriate threshold, Figs. 5.2(a) to 5.2(c) show the effect
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Figure 5.2: (a) RMSE of nonlinear Kalman filters with kernel width ϱ ∈ [0, 50] under
the alpha stable distribution V = (0.3, 0, 0.5, 0); (b) RMSE of nonlinear Kalman filters
with kernel width ϱ ∈ [0, 50] under the alpha stable distribution V = (0.4, 0, 0.5, 0); (c)
RMSE of nonlinear Kalman filters with kernel width ϱ ∈ [0, 50] under the alpha stable
distribution V = (0.5, 0, 0.5, 0).
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Figure 5.3: (a) RMSE of nonlinear Kalman filters with threshold ϑ ∈ [0, 50] under
the alpha stable distribution V = (0.3, 0, 0.5, 0); (b) RMSE of nonlinear Kalman filters
withthreshold ϑ ∈ [0, 50] under the alpha stable distribution V = (0.4, 0, 0.5, 0); (c)
RMSE of nonlinear Kalman filters with threshold ϑ ∈ [0, 50] under the alpha stable
distribution V = (0.5, 0, 0.5, 0).
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Figure 5.4: (a) Ds under the alpha stable distribution V = (0.3, 0, 0.5, 0); (b) Ds

under the alpha stable distribution V = (0.4, 0, 0.5, 0); (c) Ds under the alpha stable
distribution V = (0.5, 0, 0.5, 0);
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Figure 5.5: (a) Cd under the alpha stable distribution V = (0.3, 0, 0.5, 0); (b) Cd

under the alpha stable distribution V = (0.4, 0, 0.5, 0); (c) Cd under the alpha stable
distribution V = (0.5, 0, 0.5, 0);

of the kernel width ϱ on estimating the hidden state xk ∈ R6 under alpha stable

distribution noises. All nonlinear Kalman filters perform state estimation with κ = 0,

α = 0.5 and β = 2. For PSRUKF, we set ϑ = 0.3, p̃1 = 2, p̃2 = 15 and p̃3 = 0.5.

In addition, the kernel parameter ϱ is in the range of ϱ ∈ [0, 50]. From Figs. 5.2(a) to

5.2(c), both PSRUKF and HSRUKF exhibit a higher filtering precision than traditional

SRUKF and MCCSRUKF. Moreover, PSRUKF utilizes a mixed p-norm for dealing

with measurements corrupted by outliers and achieves a higher filtering precision

than HSRUKF. When a small kernel size ϱ is utilized, the mixed p-norm in (5.45)

is alleviated, which approaches traditional SRUKF. Therefore, PSRUKF achieves

undesirable filtering accuracy under a small kernel size ϱ. In addition, a large kernel

size ϱ also affects the accuracy of the state estimation since the second-order statistical

characteristic of the error in (5.45) is alleviated. From Figs. 5.2(a) to 5.2(c), PSRUKF

performs state estimation with a higher filtering accuracy than nonlinear Kalman filters

within a wide range of kernel parameter ϱ.

The threshold ϑ in (5.24) and (5.25) plays an essential role in dealing with outliers.

Figs. 5.3(a) through 5.3(c) study the effect of the threshold parameter ϑ on estimating

the hidden state xk ∈ R6 in the presence of alpha stable distribution noises. All

nonlinear Kalman filters perform state estimation by setting κ = 0, α = 0.5 and β = 2.

For PSRUKF, the kernel width ϱ and parameters p̃1, p̃2 and p̃3 in (5.23) and (5.24)
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are set as ϱ = 0.001, p̃1 = 2, p̃2 = 15 and p̃3 = 0.5. In addition, threshold ϑ in

(5.24) and (5.25) is set in the range of ϑ ∈ [0, 50]. From Fig. 5.3(a) to 5.3(c), both

SRUKF and MCCSRUKF implement state estimation with a poor filtering precision.

In addition, HSRUKF estimates the hidden state of the power system at a higher

filtering precision than SRUKF and MCCSRUKF. By contrast, PSRUKF achieves

the highest precision in comparison with SRUKF, MCCSRUKF and HSRUKF. Since

PSRUKF may approach SRUKF under a large threshold in (5.24) and (5.25), PSRUKF

has a poor filtering accuracy under a large threshold ϑ. Although PSRUKF generates

an increasing RMSE under a large threshold parameter, PSRUKF still performs better

than other nonlinear Kalman filters. When threshold ϑ in (5.24) and (5.25) is set

very small, the measurement error corresponding to the measurement not corrupted

by outliers may be weighted by a p-norm with p , 2, which is not the desirable choice

and degrades the filtering accuracy. Since a second-order statistical characteristic of

the error in (5.45) is introduced for avoiding this issue, PSRUKF can still achieve a

desirable filtering precision with a small threshold ϑ.

As shown in Section 5.4.1, PSRUKF improves robustness against outliers by

adaptively calculating R̃k in (5.50). Since the alpha stable distribution noises are

added on the first three dimensional measurements, i.e., {yk(1), yk(2), yk(3)}N̄k=1, the first

three diagonal elements of R̃k in (5.50) are large based on the choice of the p-norm

in (5.24) and (5.25). The matrix decomposition in (5.7) generates the factorization

matrix S̃−k , and the absolute values of the first three diagonal elements are large.

This means that the absolute values of the first three columns’ elements of gain

matrix Kk are small because gain matrix Kk is constructed by the inverse of S̃−k .

Therefore, PSRUKF performs state estimation by utilizing a time update and weakened

measurement update in (5.9). Define the absolute values of the diagonal elements

of S̃−k ∈ R4 as Cd and maximum absolute values at each column of Kalman gain

Kk as Ds. Figs. 5.4(a) to 5.5(c) show Ds and Cd with parameter settings extracted

from the experiments shown in Figs. 5.2(a) to 5.3(c), i.e., kernel width ϱ = 0.001,
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Figure 5.6: A sequence of alpha-stable noise with V = (1.4, 0, 0.4, 0).

threshold parameter ϑ = 0.3, p̃1 = 2, p̃2 = 15 and p̃3 = 0.5 in the presence of

alpha stable distribution noises. It can be seen from Figs. 5.4(a) to 5.4(c) that the

absolute values of the first three diagonal elements of S̃−k , i.e., S̃−d,k(1), S̃−d,k(2) and

S̃−d,k(3), are generally larger than that of the last diagonal entry, i.e., S̃−d,k(4). Define the

maximum absolute value of the jth column elements of the Kalman gain at discrete

time k as Kmax,k( j). From Figs. 5.5(a) to 5.5(c), the values of Kmax,k(1), Kmax,k(2)

and Kmax,k(3) are generally smaller than Kmax,k(4). The PSRUKF uses a mixed p-

norm for dealing with measurements corrupted by outliers so that a relatively small

error ψ(ĕk(i)) in (5.47) can be obtained. The measurements not corrupted by outliers

occasionally generate a small error ψ(ĕk(i)) in (5.47). Therefore, Kmax,k(1), Kmax,k(2)

and Kmax,k(3) may occasionally exhibit relatively larger values than the Kmax,k(4).

From Figs. 5.4(a) to 5.5(c), PSRUKF improves the robustness of the state estimation

by utilizing a time update and weakened measurement update where the first three

dimensional measurements have less effect on state estimation.

5.6.2 NPCC 48-Machine System

The NPCC system [136] is a 48-machine system including 27 generators modelled by a

fourth-order model and 21 generators modelled by a second-order classical model, i.e.,
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Figure 5.7: RMSE of state estimation of the rotor angle {δη}48
η=1.

1 5 10 15 20 25 30 35 40 45 48
10
-3

10
-2

10
-1

10
0

10
1

10
2

 h

R
M
S
E

 

 SRUKF

PSRUKF

MCCSRUKF

HSRUKF

Figure 5.8: RMSE of state estimation of the rotor speed {ωη}48
η=1.

1 5 10 15 20 25 27
10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 h

R
M
S
E

 

 
SRUKF

PSRUKF

MCCSRUKF

HSRUKF

Figure 5.9: RMSE of state estimation of the transient voltage {e′qη}27
η=1 in the q-axis.
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Figure 5.10: RMSE of state estimation of the transient voltage {e′dη}27
η=1 in the d-axis.

|Θ2| = 21 and |Θ4| = 27. The measurements are obtained from the generators associat-

ed with index set Θp = {1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 27, 28, 31, 32,

35, 36, 38, 44, 45}, resulting in state variable xk ∈ R150×1 and measurement yk ∈

R96×1 [28].

Dynamic state estimation is performed when a three-phase fault is applied at the

bus of one of the 50 branches with the highest line flow as in [28] and is cleared at

the near and remote end after 0.05 and 0.1 second. Similar to that for the WSCC

3-machine system, the initial estimated mean of the system state is set by the pre-

contingency state. The dynamic state estimation is performed on the post-contingency

system. The initial estimation error covariance P0 is set similarly as that for the WSCC

3-machine system. The state estimation is implemented by nonlinear Kalman filters

parameterized by κ = 0, α = 0.5 and β = 2, respectively. The parameters of the

proposed PSRUKF, ϑ and { p̃i}3i=1 in (5.24) are set by ϑ = 0.05, p̃1 = 2, p̃2 = 3.5 and

p̃3 = 0.01. The kernel parameter ϱ is set as ϱ = 10−4 for achieving a better filtering

precision.

The state noise obeys the Gaussian distribution, with covariance set as a

diagonal matrix and entries being the square of 1% of the largest state changes.

The measurements are corrupted by Gaussian noise with statistical characteristic
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N(096, 10−4I96), where I96 ∈ R96×96 represents the identity matrix. In addition, alpha

stable distribution noise set by (1.4, 0, 0.4, 0) in Fig. 5.6 is added randomly on τ = 50

measurements.

Figs. 5.7 to 5.10 compare the filtering accuracy of several nonlinear Kalman filters

for δ ∈ R48×1, ω ∈ R48×1, e′q ∈ R27×1 and e′d ∈ R27×1. From Figs. 5.7-5.10, SRUKF is

sensitive to outliers and therefore gives the worst filtering accuracy. By contrast, both

HSRUKF and MCCSRUKF exhibit robustness against outliers by utilizing a piecewise

Huber function and information theoretical learning, respectively. The PSRUKF

achieves the highest precision by using a mixed p-norm for weighting measurement

errors efficiently. The PSRUKF achieves the highest precision by using a mixed p-

norm for weighting measurement errors efficiently.

5.7 Conclusion

State estimation of power systems is essential for tracking the inherent dynamics due

to various uncertainties. The nonlinear Kalman filter is often applied to dynamic state

estimation of power systems by utilizing the available measurements obtained from

phasor measurement units. Since measurements are corrupted by outliers and exhibit

varying levels of sensitivity to outliers, a p-norm square root unscented Kalman filter is

proposed for weighting measurement errors so that outliers can be handled efficiently.

The performance of the p-norm square root unscented Kalman filter is demonstrated

in different scenarios through numerical examples. Result shows superior filtering

accuracy of the p-norm square root unscented Kalman filter in comparison with

traditional square root unscented Kalman filters and robust nonlinear Kalman filters.



Chapter 6

Conclusions and Suggestions for

Future Work

In this chapter, we summarize the main contributions of the thesis and discuss some

potential research directions in the future.

6.1 Main Contributions of Thesis

This thesis aims to study the dynamics of information flow on networks by using

nonlinear Kalman filters in the presence of Gaussian and non-Gaussian noise.

Nonlinear Kalman filters capture the dynamics of information flow on the basis of

a state model and the available measurements simultaneously. The state model can

be used to describe the propagation dynamics or the dynamics of nonlinear systems.

The epidemic tracking and the dynamic analysis of power systems are representative

applications which consider the propagation dynamics and the dynamics of nonlinear

systems, respectively. This thesis specifically considers the applications of nonlinear

Kalman filters to the study of the dynamics of epidemic spreading and power networks.

The estimation of the dynamic profiles of epidemic spreading on networks is

important for controlling morbidity. Nonlinear Kalman filters have emerged as a

127
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powerful platform for studying the dynamics of epidemic spreading on networks.

However, it may be hard to find appropriate nonlinear Kalman filters for epidemic

tracking over various kinds of complex networks. A guideline is therefore provided

for selecting appropriate Kalman filtering methods for tracking epidemic spreading

on some common complex networks in the presence of Gaussian noise. In addition,

traditional Kalman filters perform optimization based on the minimum mean square

error criterion. Therefore, traditional nonlinear Kalman filters may be sensitive to

abnormal measurements. Considering that available measurements may be corrupted

by non-Gaussian noise, a novel nonlinear Kalman filter called generalized correntropy

sparse Gauss-Hermite quadrature filter (GCSGHQF) has been derived by combining

the information theoretical learning and the sparse Gauss-Hermite quadrature filter

for handling non-Gaussian noise. Apart from the application of epidemic spreading

over complex networks, the estimation of the dynamics of power systems is another

important issue relevant to the monitoring of the operation of power distribution

infrastructure. Similar to the available measurements in epidemic spreading on

networks, measurements collected from power systems may be also contaminated by

non-Gaussian noise. A robust mixed p-norm square root unscented Kalman filter is

presented for estimating the state of power systems in the presence of non-Gaussian

noise. Unlike the generalized correntropy sparse Gauss-Hermite quadrature filter

(GCSGHQF) used in the application of epidemic tracking, the mixed p-norm square

root unscented Kalman filter uses a piecewise function, i.e., multiple p-norms for

dealing with measurements corrupted by non-Gaussian noise in some power systems

including the WSCC (Western System Coordinating Council) 3-machine system and

the NPCC (Northeastern Power Coordinating Council) 48-machine system.

The main contributions of this thesis can be summarized as follows:

1. The performance comparison in terms of accuracy and stability forms a

guideline for utilizing nonlinear Kalman filters for tracking epidemic spreading

in the presence of Gaussian noise.
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A compartmental model is in general used for describing epidemic transmission

on networks. Moreover, a nonlinear Kalman filter is a more preferable choice

for the purpose of epidemic tracking by using an inherent dynamic model like the

compartmental model together with epidemic transmission in practice. It is non-trivial

to choose appropriate nonlinear Kalman filters for epidemic tracking over various

networks. This motivates us to provide a guideline where appropriate nonlinear

Kalman filters together with compartmental models are chosen for performing

epidemic tracking on different kinds of networks like the Erdös and Rényi (ER)

network, the Newman and Watts (NW) network, and the Watts and Strogatz (WS)

network. A comparison between nonlinear Kalman filters has been performed in

terms of estimation precision and stability. The performance comparison provides a

guideline for choosing appropriate nonlinear Kalman filters for studying the dynamics

of epidemic spreading over complex networks. Since compartmental models may yield

a high dimensional state and pose a heavy computational burden, several strategies are

provided for solving this issue especially for large-scale complex networks.

2. A novel generalized correntropy sparse Gauss-Hermite quadrature filter

(GCSGHQF) is proposed for epidemic tracking on homogeneous networks in the

presence of non-Gaussian noise.

A guideline has been provided for choosing appropriate nonlinear Kalman

filters for epidemic tracking in the presence of Gaussian noise. However, these

traditional Kalman filters are sensitive to abnormal measurements. A robust

nonlinear Kalman filter, referred to as generalized correntropy sparse Gaussian

Hermite Quadrature filter (GCSGHQF), has been proposed for dealing with non-

Gaussian noise. The generalized correntropy sparse Gaussian Hermite Quadrature

filter improves robustness by applying generalized correntropy into the sparse Gauss-

Hermite quadrature filter. The generalized correntropy in the framework of information

theoretical learning (ITL) is a preferable choice for retaining error information which

is beneficial for handling non-Gaussian noise. An extra second-order statistical
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characteristic of the error is also considered for further improving numerical stability.

The generalized correntropy sparse Gauss-Hermite quadrature filter is utilized for

exploring the behavior of epidemic spreading on complex networks such as the Erdös

and Rényi (ER) network, the Newman and Watts (NW) network, and the Watts and

Strogatz (WS) network.

3. A robust mixed p-norm square root unscented Kalman filter is proposed for

the state estimation of power systems in the presence of non-Gaussian noise.

A robust mixed p-norm square root unscented Kalman filter (PSRUKF) has been

developed by applying the mixed p-norm into the square root unscented Kalman

filter for improving robustness in the presence of non-Gaussian noise. In particular,

the proposed mixed p-norm is regarded as a more generalized p-norm over multiple

intervals, which deals with measurements corrupted by non-Gaussian noise efficiently.

A threshold parameter is used for determining the boundary of abnormal measurement

errors and then the mixed p-norm is applied to handling measurement errors. Also, an

extra second-order statistical characteristic of the error is used for reducing the effect

of the inappropriate choice of the threshold parameter. The proposed PSRUKF has

been applied for the state estimation of power systems including the WSCC (Western

System Coordinating Council) 3-machine system and the NPCC (Northeastern Power

Coordinating Council) 48-machine system at non-Gaussian noise.

6.2 Suggestions for Future Work

In this section, we present some possible research topics that deserve further in depth

study.



6.2. SUGGESTIONS FOR FUTURE WORK 131

6.2.1 Robust Clustering for Community Detection of Complex

Networks

Nonlinear Kalman filters are indeed a powerful platform for tracking information

flow through a complex network. Nonlinear Kalman filters, however, may be

confronted with large computational burden along with the increasing scale of complex

networks. As demonstrated in Section 3.5.2, we can perform community detection

before nonlinear Kalman filters perform state estimation. Then, state estimation is

implemented within each community with reduced computational effort.

Complex networks can be represented by graphs, in which the links represent

some relationship among nodes. Complex networks are commonly organized in dense

subgraphs referred to as communities [140]. The dense subgraph is an essential

concept in understanding and exploring complex networks since the community is

often used for explaining the functional characteristics of complex networks. The

nodes of intracommunity connections are connected densely in comparison with

those of intercommunity connections. Recently, there has been renewed interest in

detecting the communities of complex networks such as biological networks, social

networks and information networks for further analyzing network structures [98,

141, 142, 143]. Community detection can be interpreted as a clustering problem

in which standard clustering techniques are applied to clustering available samples

according to similarity, generating community structures in complex networks.

Community detection has been implemented by numerous clustering algorithms of

machine learning such as nonnegative matrix factorization (NMF) [144]. Community

detection is commonly executed on an adjacency matrix taking a binary form with

”1” representing node connectivity and ”0” for node disconnectivity. Traditional

community detection aims to find community structures without considering the binary

characteristic of the adjacency matrix. Therefore, a class of weighted nonnegative

matrix factorization including weighted least square errors-based nonnegative matrix
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factorization (WLSENMF) and weighted KL divergence-based nonnegative matrix

factorization (WKLNMF) can be considered by introducing a weighted matrix

exponentially in accordance with the numerical characteristic of the adjacency matrix.

The introduced weighted matrix compels the product of two nonnegative matrices to

be updated for resembling the adjacency matrix. In addition, the prior information

about communities into which some available samples are clustered can be known

in advance. Clustering accuracy can thus be improved by incorporating the prior

information [145] into the clustering task, constituting a semi-supervised community

detection of complex networks. For further improving the accuracy of community

detection, the use of prior information about the community to which nodes belong

is also recommended for WLSESNMF and WKLNMF, generating semi-supervised

weighted least square errors-based nonnegative matrix factorization (SWLSENMF)

and semi-supervised weighted KL divergence-based nonnegative matrix factorization

(SWKLNMF). By using SWLSENMF and SWKLNMF for community detection,

nonlinear Kalman filters perform state estimation within each community for reducing

the computational burden. Dynamic estimation of a large network can be performed

by integrating the estimations on all communities.

6.2.2 Deep Reinforcement Learning-Based Nonlinear Kalman

Filter

As demonstrated in (4.61) in Section 4.4.2, the robustness of nonlinear Kalman filters is

greatly affected by the covariance matrix of the measurement noise. Nonlinear Kalman

filters have desirable filtering precision if the covariance matrix of the measurement

noise can be intelligently adjusted.

Deep reinforcement learning [146] is expected to achieve an appropriate choice

of the covariance of the measurement noise via an agent that continuously interacts

with the environment. The traditional deep Q-network [147] in the framework of
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deep reinforcement learning utilizes a deep neural network for learning a nonlinear

function which maps the state or observation to accumulated rewards conditional upon

the current state and the agent action represented by the Q-value. In a deep Q-network,

the target Q-value and the estimated Q-value are calculated by the deep neural network

directly. The state or observation is in general corrupted by noise. The deep neural

network may be sensitive to noise and also greatly affected by unsatisfactorily trained

network parameters, giving undesirable Q-values.

It may therefore be beneficial to combine the deep Q-network with kernel-based

adaptive filters. Kernel methods aim to solve nonlinear filtering in a reproducing kernel

Hilbert space (RKHS) [148]. Commonly used kernel adaptive filters (KAFs) may

employ the kernel least mean square algorithm (KLMS) [149], kernel affine projection

algorithm (KAPA) [150] and kernel recursive least squares (KRLS) algorithm [151].

Among these algorithms, KLMS delivers desirable filtering performance with the

lowest computational cost, which can be considered. However, choosing an

appropriate step size is often non-trivial in KLMS. A small step size may not achieve a

desirable smoothing efficiency. In contrast, a large step size is beneficial for smoothing

but may cause over-smoothing. Therefore, a weighting procedure that uses past Q-

values can be further considered. In the weighting process, each sample within the

experience pool is equipped with a sub-pool which stores its corresponding past Q-

values. These past Q-values are considered for yielding the newest smooth output

without over-smoothing. A novel smooth deep Q-network (SDQN) can be developed

by incorporating the KLMS algorithm and a weighting procedure used in the deep

Q-network for smoothing the outputs produced by the deep neural network.

6.2.3 Quantized Nonlinear Kalman Filter

As shown in Section 4.4.1, the core of nonlinear Kalman filters lies in the calculation

of the predictive probability density and corrected probability density at the predictive
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step and the update step, respectively. Nonlinear Kalman filters may be confronted

with high computational complexity in solving the state estimation of complex

networks with large scale. Apart from strategies used for reducing computational

burden in Section 3.5.2, novel nonlinear Kalman filters are also expected to be

proposed for solving this issue. For example, a quantized nonlinear Kalman filter

can be utilized for alleviating the calculational burden [149]. More concretely, several

quantization areas can be constructed at first. Each quantization area includes the

predictive states, corrected states and measurements where the Euclidean distance

of any pair of predictive states and measurements is smaller than a pre-designed

threshold parameter. The corrected state at discrete time k can be directly calculated

by averaging all corrected states within one specific quantization area. As a result, the

computational complexity can be reduced greatly by neglecting the corrected step of

nonlinear Kalman filters.
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