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Abstract 

 

The first part of this study concerns the modelling of the flow sensing of primary cilia 

via their passive deflection in an oscillating viscous flow. A two-way fluid-cilia 

interaction is considered in the modelling using an immersed boundary-lattice 

Boltzmann method (IB-LBM). Typically, the primary cilium is modelled as a slender 

filament with its basal end connecting to a nonlinear rotational spring to reproduce the 

experimentally observed basal rotation.  

The developed algorithm and code are first validated against some benchmark 

problems, and then applied to study the dynamics of a three-dimensional cilia array in 

an oscillating Newtonian flow. The simulation result indicates that the primary cilia do 

an in-plane flapping motion which is symmetrical in term of the cilium profiles. During 

the deflection, the flow-induced curvature at the lower part of the primary cilium 

synchronizes well with the applied pressure gradient signal, while an obvious phase lag 

in the curvature can be found for the rest parts of the cilium. Therefore, the lower part 

of primary cilia may be most responsible for detecting the variations of the flow 

information as it can provide real-time response. The simulation result also suggests 

that the location of the maximal tensile stress (MTS) may not always stay at the cilium’s 

base region, instead is able to propagate from the cilium’s base point to its tip for a 

certain distance. The presence of primary cilia is found to reduce the average wall shear 

stress (WSS) level and affect the oscillation characteristic of the WSS field by making 

the WSS in some regions less oscillatory. 
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  A follow-up parametric study which covers the peak Reynolds number (Repeak), the 

Womersley number (Wo), the cilium length, and the spacing interval, is also performed 

to investigate how these parameters affect the flow-cilia interaction. By examining the 

variations of curvature direction in the cilium profile, our simulations capture three 

typical stretch states. For primary cilia with short and medium length, an increase in the 

maximal tip deflection is accompanied with a greater propagation distance of the MTS 

location. While this may not be true for long primary cilia that extend into 1/3 of the 

lumen, as the possible emergence of the third stretch state could greatly suppress such 

propagation. Under the same flow condition, the decrease in the average WSS is found 

to be more significant when a cilium undergoes a larger span of deflection and/or when 

the spacing interval is reduced. Compared with the spacing interval, the span of 

deflection plays a marginal role in decreasing WSS. For the parameter ranges 

considered, an increase in the Repeak or cilium length is found to bring a larger cilium 

deflection and maximal curvature. An increase in the Wo, however, is found to decrease 

these two quantities. For a constant spacing interval, a larger span of deflection is found 

to correspond to a more uneven OSI distribution. The interacting between neighboring 

cilia becomes weaker as the spacing interval increases. A sparser cilia array therefore 

tends to have a larger deflection, maximal curvature, and propagation distance of the 

MTS location. For a medium Repeak and Wo, a spacing interval greater than twice the 

cilium length is found to effectively reduce the interference from the neighboring cilia 

thus improves the cilium’s sensing accuracy. This could be the reason why there is only 

one primary cilium at most for each endothelial or epithelial cell whose diameter 
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happens to be about 2-3 times the length of primary cilium. 

  The power-law model is also integrated into our IB-LBM framework to study cilium 

dynamics in oscillating no-Newtonian fluids. The simulation result suggests that a 

sensory failure may occur when n=1.5, as the primary cilia could no longer capture the 

symmetry of the input pressure signal via their passive deflection. No significant 

difference in the flow structure is observable for different n values. However, as n 

increases, a larger affected area with smaller OSI value can be observed in the OSI 

distribution. Compared with the Newtonian fluid case, the decrease in the average WSS 

is more dramatic for a shear-thinning fluid while less obvious for shear-thickening fluid. 

Therefore, modelling a shear-thinning fluid as Newtonian underestimates the cilium’s 

impact on the WSS while modelling a shear-thickening fluid as Newtonian tends to 

overestimate such impact. 

The second part of the thesis focus on the simulation of circulating tumor cell (CTC) 

adhesion in a three-dimensional curved microvessel. A comparative study is first 

performed to characterize the differences between the adhesion of CTC in straight and 

curved vessels. After that, a parametric study is performed to investigate the effect of 

the flow driven force density f (or Re) and membrane bending modulus 𝐾𝐾𝑏𝑏 on CTC 

adhesion. Our simulation results suggest that the CTC is more likely to adhere to the 

curved vessel as more bonds will form around the curvature transition regions due to 

centrifugal effect which increases cell-wall contact. The parametric study indicates that 

an increase in the f or a decrease in the 𝐾𝐾𝑏𝑏 (e.g., the cell becomes softer), increases the 

bond formation probability and cell-wall contact sites in the curved vessel. Increasing 
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the f brings a larger centrifugal force while decreasing the Kb enables a more complete 

cell-wall contact by increasing the contact area, both of which promotes bond formation. 

In the curved-vessel case, the site where bonds are formed the most (hotspot) is found 

to vary with the applied f and the Kb. For the vessel geometry considered, the hotspot 

tends to be within the first bend of the vessel when the applied f is relatively low; 

however, the hotspot is found to shift to the second bend of the vessel as f increases or 

Kb decreases.  

 

Keywords: cilium dynamics, cell adhesion, IB-LBM, DPD, oscillating flow, curved 

vessel 
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Chapter 1 Introduction 

 

1.1 Primary cilia as a flow sensor 

1.1.1 Background and significance 

Primary cilia are filament-like, immotile organelles solitarily protruding into 

extracellular space from the apical surface of nearly every mammalian cell [1, 2]. 

Though primary cilia were originally discovered over a century ago, their exact 

functions remain incompletely understood. Indeed, they were once believed to be 

vestigial organelles [3]. However, in the past few decades, increasing studies have 

revealed the primary cilium to be a multifunctional antenna, sensing both mechanical 

(e.g., fluid drag, pressure, vibration) and chemical (e.g., light, odor) changes in the 

extracellular environment [4]. 

The primary cilia have an anatomical structure similar to that of the motile cilia but 

in a relatively simper manner. They both have a membrane enclosed axoneme, which 

contains nine circumferentially arranged doublet microtubules. However, unlike the 

motile cilia, the primary cilia do not have any central pairs at their axonemes, thus have 

a 9+0 microtubule doublet structure (see Fig. 1.1). The primary cilia also lack some 

other axonemal components that are found in motile cilia, including radial spokes, 

dynein arms and nexin links. Consequently, the primary cilia are less stiff and unable 

to spontaneously generate internal forces like motile cilia [5].  
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Fig. 1.1 Sketch of structures of primary cilium and motile cilium 

 

Proper function and homeostasis of a wide range of cells and tissues require 

mechanical stimuli from extracellular environment. Variation of these stimuli, such as 

the oscillation of the blood flow and changes of osmolality and hydrostatic pressure in 

renal tubule flow, needs to be sensed and transduced among different cell components. 

Recent studies have revealed that the primary cilium, an immotile extension from cell 

surface, acts as a sensor for the perceiving and mechanotransduction of these 

mechanical stimuli, as it has been experimentally demonstrated that the passive bending 

of the primary cilium is correlated with initiation of a variety of signaling cascades [6-

9]. For example, in ciliated kidney cells, the passive deflection of epithelium primary 

cilia induced by the flow drag or directly via a micropipette (mechanical load), could 

lead to an increased intracellular calcium level, an important second messenger 
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communicating the extracellular activities with the cell nucleus. In contrast to the 

ciliated cells, kidney cells without a cilium are unable to translate such mechanical 

stimulation into the cell nucleus by increasing intracellular calcium levels. This 

deflection-triggered calcium increase, is reported to rely on the opening of PC2 cation 

channel which localizes to the membrane of primary cilia and more importantly, these 

channels are believed to be stretch-activated [8, 9]. The resulting change in intracellular 

calcium concentration then helps to regulate numerous molecular activities inside the 

cell that contributes to tissue and organ development [6]. Similar mechanism has also 

been found in the blood-pressure maintenance mechanism in vasculatures, where 

endothelial primary cilia sense the flow information and regulate the vessel diameter 

via adjusting nitric oxide production [10].  

These observations and measurements indicate that the primary cilia sense flow 

information via their passive deflection which contributes to the activation of various 

signaling pathways. But how do primary cilia encode/response to the spatial and 

temporal patterns of natural stimuli? and what is the relationship between the activation 

of signaling pathways and the cilium deflection? These are still open questions. This 

study aims to address the first question and explore how the fluid-cilium interaction 

affects cilium deflection and the near-wall flow pattern. The deflection of primary 

cilium not only results in the change of force and stress distributions in the cilium 

membrane but could also alter the regime of the near-wall flow. Understanding this 

fluid-cilia/cilium interaction will greatly help to interpret the role of primary cilium as 

a flow sensor and may have rich practical implications. For instance, it may shed light 
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on the design of artificial flow sensors, especially for biological applications that 

usually involve low-Reynolds-number and pulsatile flow conditions.  

On the other hand, defects of primary cilium in ciliary protein or its physical structure 

are linked with numerous diseases which known as ciliopathies, for instance, polycystic 

kidney disease [11, 12], cystic and fibrotic liver disease [13], osteoarthritis [14], obesity 

[15] and even cancer [16, 17]. So, one tentative idea for treating those ciliopathies is by 

rescuing or regulating corresponding cilium form and its mechanosensing function. It 

has already been suggested that through adjusting the parameters of primary cilium, for 

instance, its length and bending module, one can alter the deflection response of cilium 

to mechanical stimuli, and further manage to manipulate the mechanosensitivity of 

primary cilium [18]. Recently, an experiment aimed to alter the bending modulus of 

primary cilia via pharmacological treatment was successfully performed [19], adding 

credit to the idea of treating ciliopathies through cilium manipulation. Other ideas such 

as using magnetic force to manipulate the dynamics of artificial cilia to generate a 

directional local flow were also reported [20]. Successful treatment of ciliopathies 

through cilium manipulation depends on the understanding of cilium deflection. 

Performing numerical studies on the fluid-cilium interaction system will contribute to 

the development of possible therapeutic treatment of ciliopathies in the long run. 

 

1.1.2 Models for studying cilium deflection 

The length of endothelial primary cilia usually ranges from 1.8 to11.1μm, while the 

diameter is about 0.2μm [21]. At such scale, experimental measurements of the force 
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and stress that involved during the deflection process are still highly challenging to 

obtain at present. Simulations can complement experiments by providing information 

that is not easily obtained through direct measurement, thus could be helpful in 

elucidating and quantifying this process and mechanism. In fact, primary cilium, as a 

kind of filiform hair structure, has already been numerically studied with various 

mathematical models in the past few decades. In this section, we will give a brief review 

on the previous models for such structures. 

 

1.1.2.1 Inverted pendulum model 

The first mathematical model developed for modelling the deflection of a filiform hair 

structure may be the inverted pendulum model proposed by Shimozawa and Kanou [22, 

23]. In this model, the filiform hair is approximated as an inverted, rigid pendulum with 

its basal end connecting to a spring and a damper (viscous resistance) to resist angular 

displacement as shown in Fig. 1.2. The fluid drag in this model is approximated using 

Stokes’s solution. 
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Fig. 1.2 A schematics of the inverted pendulum model 

 

Humphrey et al. [24, 25] improved the original inverted pendulum model by adding 

a virtual mass forces into the hair angular momentum equation to account for the effect 

of fluid inertia on the hair motion. However, their model does not consider the impact 

of hair on the flow field thus does not involves any interactions between the hairs. To 

make the flow feels the existence of the hairs, Cummins et al.[26] modified the velocity 

by adding a perturbation velocity caused by the presence of hairs. The perturbation 

velocity is calculated based on the steady Stokes flow approximated. They applied this 

model to study the fluid-mediated interaction between multiple hairs. 

The inverted pendulum model is simple and naturally accounts for the basal rotations 

of the hair. However, it assumes that the hair is rigid thus is likely to have a low 

prediction accuracy for those complaint filiform hair structures (e.g., the primary 

cilium). 

 

Viscous 
resistence

Spring

Filiform hair (rigid)

Fluid flow

Rotational motion
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1.1.2.2 Cantilevered Euler-Bernoulli beam model 

The cantilevered Euler-Bernoulli beam model may be the simplest model for studying 

the deflection of an elastic primary cilium. In this model, the primary cilium is 

considered as a one-dimensional (i.e., represented by its the neutral line) homogeneous 

slender cantilevered beam whose bending behavior is governed by a Euler-Bernoulli 

beam formulation. For the equilibrium case, the formulation yields 

𝜕𝜕2𝜃𝜃
∂s2

+ 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 (1) 

where s is the distance of a considering point 𝑋𝑋 to the free end of the beam, 𝜃𝜃 is the 

angle of slope of beam at that point, and 𝛽𝛽 is a constant which dependent on beam size, 

shape material and the applied load. The temporal form of Euler-Bernoulli beam 

formulation can be expressed as 

𝐸𝐸𝐸𝐸
𝜕𝜕4𝑋𝑋
∂s4

+ 𝜌𝜌𝑙𝑙
𝜕𝜕2𝑋𝑋
∂𝑡𝑡2

= 𝑝𝑝 (2) 

where 𝐸𝐸𝐸𝐸 is the flexural rigidity of the beam, 𝜌𝜌𝑙𝑙 is the beam linear density, and 𝑝𝑝 is the 

load applied to the point 𝑋𝑋. However, just like the inverted pendulum model, the fluid 

drag in the cantilevered Euler-Bernoulli beam model is usually obtained based on the 

Stokes flow approximation, rather than solving the Navier–Stokes equations. Because 

of the Stokes flow approximation, this model is usually unable to consider the full 

interaction between the fluid and the structure (the impact of the structure on the flow 

is usually not considered). Thus, this model is not very accurate in non-Stokes flow 

cases or in the cases when the interplay between the fluid and the cilium is strong (e.g., 

to model the fluid propulsion due to the beating of motile cilia).   

Nevertheless, the cantilevered Euler-Bernoulli beam model is used extensively to 
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determine the mechanical properties of primary cilia under static load. Schwart et al. 

firstly used this model to evaluate the flexural rigidity of primary cilium based on an 

imaged-informed approach [27]. By assuming a constant flow velocity distribution 

along the cilium length, the Euler-Bernoulli equation was solved using both quadruple 

integration model and heavy elastic model, and the final bending profile of the cilium 

was obtained. The flexural rigidity was then iteratively updated during each calculation 

until the predicted bending shape matched the experimentally observed deflection. As 

a result, their approach yielded a flexural rigidity of 3.1 ± 0.8 × 10−23𝑁𝑁𝑚𝑚2  for the 

primary cilium, which is about one order less in magnitude than that of the motile cilium. 

Following their steps, this model is further developed to account for the initial cilium 

shape and base orientation [28, 29]. While Schwart et al. [27] estimated the flow drag 

based on two-dimensional (2D) laminar flow around a cylinder, Liu et al. [30] estimated 

it by numerically solving the Stokes equations, which improved the prediction accuracy 

greatly. They used the developed model to study the hydrodynamic interactions 

between multiple cilia. Their calculations suggested that shear stress experienced by 

the apical cell membrane alone may not be enough to elicit a calcium response, thus the 

primary cilium must assist to mediate such response via its deflection.  

Despite that the cantilevered Euler-Bernoulli beam model is simple and popular in 

study cilium deflection, experimental observations deviate from this model have been 

reported in [5, 28, 31], where the base of the primary cilium can experience a certain 

degree of rotation rather than remain clamped or cantilevered. To incorporate basal 

rotation into the Euler-Bernoulli beam model, Resnick [5] modelled the basal end of 
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the primary cilium as a nonlinear rotational spring. The reverse bending moment 

generated by the spring is then incorporated into the Euler-Bernoulli beam formulation 

as a boundary condition. With properly chosen linear and nonlinear spring constants, 

their model predicts a resultant oscillation amplitude and frequency well match their 

experimental measurements which are obtained with optical trap technique.  

 

1.1.2.3 Slender body theory 

The slender body theory is widely used to simulate the dynamics of large-aspect ratio 

fibers immersed in Stokes flow, for instance in [32-34]. Its basic idea is to approximate 

the effect of the obstacle on its surrounding flow field by a distribution of singularities, 

whose strength is dependent on the imposed boundary conditions. In 2012, Young et al. 

used this theory to study the dynamics of primary cilium in shear flow [35]. In their 

simulations, the anchoring effect of the basal body is incorporated as a damped 

rotational spring, i.e., by coupling the elastic cilium with a cylindrical elastic shell. A 

good agreement is obtained between experimental measurements and numerical 

calculations, and the distribution of tension force along cilium and the membrane is 

investigated. Later, combined with an image-informed approach [36], the slender body 

theory is adopted to study mechanical and structural properties primary cilia of Madin-

Darby Canine Kidney (MDCK) cells. The advantage of the slender body theory lies in 

its capability to handle large deformation of the slender object, because no fluid grid is 

required in the simulation due to the Stoke flow assumption. However, this conversely 

limits its application in many engineering problems where non-Stokes and even 
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turbulent flow conditions are involved.  

 

1.1.2.4 Three-dimensional finite element model 

The deflection of primary cilia can be also modelled by finite element method, 

especially in three-dimensional (3D) applications. Roydholm et al. [37] developed a 3D 

finite element (FE) model which includes three sub-ciliary components, i.e. the cilium 

microtubule core, the ciliary membrane, and the apical plasma membrane. In combined 

with an image-informed method, this model was used to study cilium bending and the 

resulting calcium signal. Based on their results, they speculated that the dynamic 

mechanical properties of the cilium and cell membrane serve to decode slow 

fluctuations in fluid flow. A more sophisticated FE model that aims to simulate the 

whole cell-cilium system was proposed by Khayyeri et al. [18] , in which the cell 

components includes nucleus, cortex, cytoplasm, microtubules and actin bundles, are 

carefully modelled in order to investigate the transmitting of mechanical stimuli among 

different organelles when the primary cilium is deflected. Their results suggest that the 

maximal strains induced by cilium deflection are located at the cilium base and in the 

cytoplasm. Despite of the robustness of FE model in 3D sub-ciliary modelling, the 

boundary condition used for each component still need further experimental 

verification as those additional degrees of freedom (masses, spring constants, etc.) have 

not yet been constrained. Besides, this method brought an increased computational load 

which would be when multiple cilia are needs to be simulated. Moreover, in the above-

mentioned simulations which adopted these FE models, only a one-way decoupled 
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fluid-structure interaction (FSI) were considered. This may reduce the overall accuracy 

of the simulations, as the recent two-way FSI studies on cilium dynamics suggests that 

the cilia array could have a considerable impact on the near-wall flow pattern [38]. 

 

1.1.2.5 Filament model 

The filament model is different to the Euler-Bernoulli beam formulation which is 

derived based on small deflection assumption. The filament model drops this 

assumption thus can well describe the motion of the primary cilium which could 

undergo very large deformations. The model also includes a stretching force term to 

enforce the inextensibility condition. In this model, the motion equation for the filament 

is described as [39, 40] 

𝜌𝜌𝑑𝑑
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑡𝑡2

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑇𝑇(𝑠𝑠)

∂𝑿𝑿
∂s
� − 𝐾𝐾𝑏𝑏

𝜕𝜕4𝑿𝑿
𝜕𝜕𝑠𝑠4

+ 𝑭𝑭𝒆𝒆 (3) 

where 𝑿𝑿 is the position vector of the filament, 𝑠𝑠 the Lagrangian coordinate along the 

length of filament. 𝑇𝑇(𝑠𝑠) is the tension. 𝑭𝑭𝒆𝒆 is the external load exerted on the filament, 

which can be a hydrodynamics force or simply a gravitational force.  𝐾𝐾𝑏𝑏 is bending 

rigidity of the filament, and 𝜌𝜌𝑑𝑑  denotes the difference in the linear density between the 

filament and the fluid. 𝜌𝜌𝑑𝑑 = 0 therefore represents the neutrally buoyant, in that case 

the inertial term in the left-hand side can be dropped. 

The filament model usually works under the framework of the immersed boundary 

method [41-43] and has been extensively used to study the flapping of a one-end 

tethered filament in a viscous flow [44-48]. The model was also used by Heys et al. [49] 

to study filiform hair (a structure locates on a pair of abdominal cerci of cricket which 
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functions to sense the surrounding environment) motion in oscillating fluid flow, and 

more recently by Zhu et al. [50] to study the dynamics of motile cilia in respiratory tract. 

O'Connor et al. [38] exploited this model to study the dynamics of primary cilium in 

Poiseuille and Womersley flows, and Cui et al. [51] used this model to investigate the 

dynamics of primary cilia in a pulsatile blood flow. These simulations on cilium 

dynamics all considered a two-way FSI, however, most of them are limited only to 2D 

scenarios.  

 

1.1.3 Research gap on the modelling of cilium dynamics 

Based on the literature review given above, we have noticed some drawbacks of 

previous studies on cilium dynamics. The first one is the improperly modelling of the 

cilium basal body. A clamped boundary condition imposed at the cilium basal end fails 

to reproduce the basal rotation behaviors and can also not correctly predict the resonant 

oscillation amplitude and frequency in [52]. The second one is that, in many earlier 

studies, the flow is simplified (by using a steady Stokes flow approximation rather than 

solving the Navier–Stokes equations) and the influence of the primary cilia on the flow 

is assumed to be negligible. This assumption works only for the case of a single cilium 

or for a very sparse cilia array, however, would introduce a significant error when the 

cilia array is relatively dense. There are also some other studies such as [51, 52] that 

manage to simulate cilium deflection in a viscous fluid with a full-way FSI considered. 

However, these simulations are only 2D. One apparent drawback of the 2D simulations 

is that it may predict inaccurate drag force, as flow can only past above the primary 
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cilia and has no variations in the third direction. Thus, in those 2D simulations, the 

authors are simulating the deflection of an infinitely wide elastic plate rather than a 

filament-like primary cilia. A 2D simulation is also unable to reproduce out of plane 

cilium motions which have been observed in [53]. 

 

1.2 Adhesion of a circulating tumor cell 

1.2.1 Background and significance 

The ability to metastasize is one of the most dangerous aspect of cancer. After detaching 

from the primary tumor, the tumor cells become circulating via invading either the 

blood circulatory or lymphatic system. After a successful invasion, the tumor cells 

become circulating and may be transported to a new site where they proliferate to form 

a new tumor [54]. During the metastasis, the majority of circulating tumor cells (CTCs) 

are trapped or lethally damaged on their way being delivered to various target organs, 

leading to cell death and ‘metastatic inefficiency’ [55]. To colonize a distant organ, one 

important and necessary step the CTCs must accomplish is to successfully adhere to 

the endothelial cells that form the wall of the microvessels, specifically, the post-

capillary venules [56, 57]. Blocking tumor cell adherence to vessels therefore could be 

a promising stagey to prevent the metastasis of cancer. However, the mechanism behind 

the CTC adhesion is yet not fully revealed. The dynamics and adhesion of CTCs greatly 

depend on the circulation of the blood. CTCs usually are trapped in the first set of 

capillaries they encounter downstream from the point of entry. As a principal step in 

cancer metastasis, the adhesion of CTCs to the walls of a blood microvessel has 
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attracted tremendous attention in the past few decades. A detailed review on the 

adhesion of tumor cells under hydrodynamic conditions can be found in [58] and a more 

recent review in [59]. Lots of progress has been made already, among them the 

recognition of receptor-ligand bonds for their role in mediating the adhesive dynamics 

of cells [60]. A successful cell adhesion not only relies on the competition between the 

adhesive and anti-adhesive forces, but also on the rates that bonds get formed and 

ruptured [61]. Apart from that, the adhesion process could also affected by the local 

microenvironment, such as the geometric features and local hemodynamic factors of 

the vasculature [62], and the tumor-derived and tumor associated-endothelial cell-

derived exosomes uptaken by the organ-specific cells, which prepare the pre-metastatic 

niche [63].  

Dong et al. [64] performed experiments on the adhesion and migration of human 

melanoma cells in shear flow using a modified Boyden chamber. Guo et al. [57] 

experimentally explored the arrest and adhesion of MDA-MB-231 cells (breast cancer) 

in rat mesenteric microvasculature. Marshall et al. [65] measured the force history in a 

receptor-ligand dissociation process using atomic force microscopy (AFM). In situ 

analysis on the adhesion of single CTC has also performed by Mao et al. [66] using 

microfluidic approaches. However, due to the complexity of tumor cell adhesion, 

rigorous measurement of the cellular interactions and the forces involved are still highly 

challenging to conduct in vivo at present. Simulations which can provide much detailed 

information would be a valuable tool in exploring the mechanism of cell adhesion under 

complex flow conditions. Rejniak [67] investigated the impact of cell deformability on 
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their adhesion using a 2D numerical simulation. In their simulations, they examined the 

several parameters that related to the structure of the actin network, the adhesion links 

and the cell nucleus. Xiao et al. [68] numerically studied the adhesion of a CTC in a 

microvessel using the dissipative particle dynamics (DPD) method. Their study mainly 

focused on the impact of RBC aggregation on the CTC adhesion. Therefore, a straight 

vessel geometry was used in their simulations and no curvature effect was considered 

in their simulations 

 

1.2.2 Research gap on CTC adhesion 

Quite a few studies, both experiments and simulations, have investigated cell adhesions 

in a straight vessel. However, the recent experimental studies by Liu et al. [69], Guo et 

al. [57] and Zhang et al. [70, 71] reveal that CTCs are more likely to adhere to curved 

vessels and bifurcations of the microvasculature. To explore the mechanism underlying 

such adhesion phenomena, Yan et al. [72, 73] studied the effect of vessel curvature and 

wall shear stress on the adhesion of a circulating cell using a lattice Boltzmann 

simulation. Their simulation suggests that the simultaneous bond number will be 

increased when the vessel becomes curved, therefore the vessel curvature could 

enhance the adhesion probability of the CTC. However, the simulations performed by 

Yan et al. [72, 73] are two-dimensional, which cannot describe the cell’s motion in the 

third direction. Apart from that, the cell in their simulations is assumed to be rigid, 

which may not reflect the real case. More importantly, the study by Rejniak [8] indicates 

that the cell deformability is closely related to its adhesion activity.  
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1.3 Objectives of this thesis 

The first part of the thesis focuses on the modelling of cilium dynamics in 

pulsatile/oscillating flows. Its objectives include: 

(1) To develop a proper 3D model for studying the dynamics of primary cilia in 

pulsatile/oscillating flow conditions.  

(2) To numerically investigate the fluid-cilia interaction system, and evaluate the 

influence of some governing parameters, such as the peak Reynolds number, 

Womersley number, the cilium length, and the spacing interval on the system.  

(3) To study cilium dynamics in generalized Newtonian fluid, and evaluate the impact 

of no-Newtonian effect on cilium dynamics. 

The second part of the thesis aims to study the adhesion of a CTC in a curved 

microvessel using a 3D numerical modelling. Its objectives include: 

(1) To characterize the differences in the dynamics and adhesion of a CTC in the 

straight and curved vessels. 

(2) To investigate the effect of the applied driven force density (or the flow Reynolds 

number) and membrane bending modulus on CTC adhesion. 

 

1.4 Organization of this thesis 

The present thesis is organized in the following manner. Chapter 2 gives a brief 

introduction on our numerical method. In Chapter 3, our algorithm and codes are 

validated by simulating some benchmark problems. A grid independence study is also 
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performed to find the effective grid resolutions for the present fluid-cilium interaction 

problem. In Chapter 4, we numerically study the dynamics of an cilia array in an 

oscillating Newtonian flow. The effect of the Repeak, the Wo, the cilium length, and the 

spacing interval on fluid-cilia interaction are evaluated and discussed. The dynamics of 

primary cilia in oscillating no-Newtonian fluids is studied in Chapter 5. In Chapter 6, 

the adhesion of a CTC in a 3D curved microvessel is simulated, and the effect of the 

Reynolds number and bending stiffness of the membrane on the CTC adhesion is 

investigated. Chapter 7 presents the concluding remarks of this study with some 

recommendations for the future work. 
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Chapter 2 Methodology 

 

In this chapter, the methodologies involved in our modelling will be briefly introduced. 

For the cilium dynamics, the lattice Boltzmann method will be used to solve the flow 

dynamics. The primary cilium will be modelled as a filament with its basal end 

connected to a nonlinear rotational spring. The fluid-structure interaction will be 

handled by the immersed boundary method (IBM). For the CTC adhesion in a 3D 

curved vessel, the DPD is used to model the blood plasma and cytoplasm. The 

deformation of the cell is modeled by a spring-based network membrane model and the 

adhesion modeled by a probabilistic adhesive dynamics model. 

 

2.1 Lattice Boltzmann method 

The governing equations (or the Navier-Stokes (N-S) equations) for the incompressible 

viscous flow with external force is given by 

∇ ∙ 𝒖𝒖 = 0 (4) 

ρ �
𝜕𝜕𝒖𝒖
∂t

+ 𝒖𝒖 ∙ ∇𝒖𝒖� = −∇p + μ∆𝒖𝒖 + 𝒇𝒇𝒆𝒆 (5) 

where  𝒖𝒖 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤)  is the fluid velocity, ρ  and  μ  are the density and dynamic 

viscosity of the fluid, respectively. p is the pressure and 𝒇𝒇𝒆𝒆 is the external force from 

the immersed structural boundary.  

Solving the N-S equations analytically is usually extremely difficult. We therefore 

turn to seek their approximate solutions using numerical approaches such as finite 

difference, finite volume, finite element, and boundary element methods.  
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In the past few decades, the LBM has evolved into a promising and versatile 

numerical tool for computational fluid dynamics (CFD). It has drawn tremendous 

attention in the past few decades due to its simple implementation and intrinsic parallel 

nature. Since its conception in 1980s, the LBM has been successfully applied to the 

simulations of a diversity of complex problems including multiphase flow [74, 75], 

turbulence flow [76, 77], particulate flow [78, 79], non-Newtonian fluid flow [80, 81] 

and even chemical reaction flow [82]. A more detailed review on the LBM and its 

applications can be found in [83, 84].  

  Historically, the LBM originated from the lattice gas automata (LGA), which is a 

simple particle-based approach to simulate fluid flows with a discrete lattice. In LGA, 

the fluid is considered as a cluster of particles residing on a regular lattice node, where 

they collide and stream following some prescribed rules. The first LGA model is 

introduced by Hardy, Pomeau, and de Pazzis (i.e., the HPP model) [85], which uses a 

2D square lattice. In this model, the particles at a lattice node can stream to any of the 

four nearest neighboring nodes along those lattice links. The evolution of particles can 

be described by the following discrete kinetic equation 

𝑁𝑁𝑖𝑖(𝒙𝒙 + 𝒆𝒆𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑁𝑁𝑖𝑖(𝒙𝒙, 𝑡𝑡) + Ω𝑖𝑖�𝑁𝑁𝑖𝑖(𝒙𝒙, 𝑡𝑡)� (6) 

where 𝑁𝑁𝑖𝑖(𝒙𝒙, 𝑡𝑡) = 0  or 1 denotes the particle number that moving with velocity 𝒆𝒆𝑖𝑖 at 

position 𝒙𝒙  and time t, and Ω𝑖𝑖  is called the collision operator which alters the value 

of 𝑁𝑁𝑖𝑖(𝒙𝒙, 𝑡𝑡) via collisions.  

In the HPP model, a collision happens when two particles arrive at the same node but 

with opposite velocities, and as a result, their velocities will turn around 90° after the 
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collision. However, due to the insufficient symmetry of the used lattice, the 

hydrodynamics variables in the HPP model do not satisfy the continuum equations. This 

drawback is removed in the later HFP model [86], which increases the lattice symmetry 

by using a triangular lattice (i.e. with six nearest neighbors). Despite the improvement, 

the LGA still suffers from statistical noise arising from the Boolean variables, the 

violation of the Galilean invariance, and the velocity- dependent pressure. 

  To eliminate the statistical noise in the LGA, McNamara and Zametti [87] proposed 

the first lattice Boltzmann equation (LBE) in 1988, where the Boolean variable 𝑁𝑁𝑖𝑖 is 

replaced by a distribution function 𝑓𝑓𝑖𝑖, which is a real variable that ∈ [0, 1]. In the LBE, 

the evolution of 𝑓𝑓𝑖𝑖 is similar to that of 𝑁𝑁𝑖𝑖 in LGA, 

𝑓𝑓𝑖𝑖(𝒙𝒙 + 𝒆𝒆𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) − 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) = Ω𝑖𝑖�𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡)� (7) 

where 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) is the distribution function which denotes the possibility to find a particle 

with velocity 𝒆𝒆𝑖𝑖 at node 𝒙𝒙, and time t. 

The LBE retains the advantage of LGA in treating the collision operation locally. 

However, efficiently calculating this collision operator Ω𝑖𝑖 is still a problem due to its 

complexity (it involves double integral over the velocity space). Apart from that, other 

problems in the LGA still exists because the equilibrium distribution is still Fermi-Dirac. 

To solve these problems, Chen et al. [88] and Qian et al. [89] proposed LBE models in 

which Fermi-Dirac statistics were abandoned, and therefore provided the freedom 

required for the equilibrium distribution to satisfy isotropy, Galilean invariance and to 

make the pressure independent of the velocity. In their models, a much simpler BGK 

collision operator was proposed, which locally relaxes the distribution function towards 
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its equilibrium at a constant rate. The LBE with the BGK collision operator is known 

as the LBGK model, which is later been widely used in the LBM community due to its 

simplicity. The BGK collision operator is expressed as, 

Ω𝑖𝑖�𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡)� = −
1
𝜏𝜏
�𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)� (8) 

where 𝜏𝜏 is the relaxation time which defines the speed of this equilibration. 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡) is 

the equilibrium distribution function, which is chosen so that the LBE can recover the 

macroscopic N-S equations. It is calculated by, 

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡) = 𝜔𝜔𝑖𝑖𝜌𝜌 �1 +

 𝒆𝒆𝑖𝑖 ∙  𝒖𝒖
𝑐𝑐𝑠𝑠2

+
 (𝒆𝒆𝑖𝑖 ∙  𝒖𝒖)2

2𝑐𝑐𝑠𝑠4
−

 𝒖𝒖2

2𝑐𝑐𝑠𝑠2
� (9) 

where 𝜔𝜔𝑖𝑖 is the weighting coefficient specific to the chosen velocity set 𝒆𝒆𝑖𝑖, and 𝑐𝑐𝑠𝑠 is the 

model’s speed of sound. In the D3Q19 (three-dimensional nineteen-velocity) lattice 

model (see Fig. 2.1) that used in our simulations, 𝑐𝑐𝑠𝑠 = 𝑐𝑐/√3 , and 𝑐𝑐 = ∆𝑥𝑥/∆𝑡𝑡  is the 

lattice speed, where ∆𝑥𝑥 and ∆𝑡𝑡 are the grid spacing and timestep size, respectively. In 

the D3Q19 lattice model, the weighting coefficients are given as, 

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧  

1
3 , 𝑖𝑖 = 0

 
1

18 , 𝑖𝑖 = 1~6

 
1

36
, 𝑖𝑖 = 7~18

 (10) 

The relaxation time 𝜏𝜏 is related to the kinetic viscosity 𝜐𝜐 by, 

𝜐𝜐 = (𝜏𝜏 − 0.5)𝑐𝑐𝑠𝑠2∆𝑡𝑡 (11) 

In the practical implementation of an LBM code, the evolution is usually separated 

into a collision step and a streaming step as follows, 

Collison: 𝑓𝑓𝑖𝑖∗(𝒙𝒙, 𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 1
𝜏𝜏
�𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)� (12) 
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Streaming: 𝑓𝑓𝑖𝑖(𝒙𝒙 + 𝒆𝒆𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝑖𝑖∗(𝒙𝒙, 𝑡𝑡) (13) 

Hereafter, the distribution function with an asterisk  denotes the post-collision 

distribution function.  

With all the updated distribution functions at hand, the macroscopic density, velocity, 

and pressure can be conveniently obtained by 

𝜌𝜌 = �𝑓𝑓𝑖𝑖
𝑖𝑖

 (14) 

𝒖𝒖 =
1
𝜌𝜌
�𝒆𝒆𝑖𝑖
𝑖𝑖

𝑓𝑓𝑖𝑖 (15) 

𝑝𝑝 = 𝑐𝑐𝑠𝑠2𝜌𝜌 (16) 

 

 

Fig. 2.1 The D3Q19 lattice model 

   

To couple the LBM with the immersed boundary method, we need the LBE with a 

𝒆𝒆1𝒆𝒆2
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𝒆𝒆1 = 1, 0, 0 c
𝒆𝒆2 = −1, 0, 0 c
𝒆𝒆3 = 0, 1, 0 c
𝒆𝒆4 = 0, −1, 0 c
𝒆𝒆5 = 0, 0, 1 c
𝒆𝒆6 = 0, 0, −1 c
𝒆𝒆7 = 1, 1, 0 c
𝒆𝒆8 = −1, 1, 0 c
𝒆𝒆9 = 1, −1, 0 c
𝒆𝒆10 = −1, −1, 0 c
𝒆𝒆11 = 1, 0, 1 c
𝒆𝒆12 = −1, 0, 1 c
𝒆𝒆13 = 1, 0, −1 𝑐𝑐
𝒆𝒆14 = −1, 0, −1 𝑐𝑐
𝒆𝒆15 = 0, 1, 1 c
𝒆𝒆16 = 0, −1, 1 c
𝒆𝒆17 = 0, 1, −1 c
𝒆𝒆18 = 0, −1, −1 c
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forcing term. In this study, we adopt the split-forcing scheme proposed by Guo et al. 

[90] to handle external forces, which recovers the N-S equations with second-order 

accuracy. In this scheme, the forcing term is directly inserted to the evolution equation 

of the LBE (known as the second-forcing step). 

𝑓𝑓𝑖𝑖(𝒙𝒙 + 𝒆𝒆𝑖𝑖∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) −
1
𝜏𝜏
�𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)� + 𝑭𝑭𝑖𝑖∆𝑡𝑡 (17) 

And the forcing term 𝑭𝑭𝑖𝑖 is given as, 

𝑭𝑭𝑖𝑖 = �1 −
1

2𝜏𝜏�
𝜔𝜔𝑖𝑖 �

𝒆𝒆𝑖𝑖 − 𝒖𝒖
𝑐𝑐𝑠𝑠2

+
𝒆𝒆𝑖𝑖 ∙ 𝒖𝒖
𝑐𝑐𝑠𝑠4

𝒆𝒆𝑖𝑖� 𝒇𝒇𝒆𝒆 (18) 

where 𝒇𝒇𝒆𝒆 is the external force density. The velocity (momentum) in the split-forcing 

LBE is also redefined to include the external force effect as following (known as the 

first-forcing step). 

𝒖𝒖 =
1
𝜌𝜌 �

�𝒆𝒆𝑖𝑖
𝑖𝑖

𝑓𝑓𝑖𝑖 +
∆𝑡𝑡
2
𝒇𝒇𝒆𝒆� (19) 

 

2.1.1 LBM with MRT collision operator 

The LBGK model greatly alleviates the complexity in calculating the collision term in 

the LBE. However, it may face stability issues due to that all moments relax to their 

equilibria with the same rate [91, 92]. Moreover, the result in the LBGK model may 

exhibit unphysical viscosity-dependent feature, which contradicts to the fundamental 

physical requirement that the solutions should be uniquely determined by their non-

dimensional physical parameters [93]. These defects can be removed by using the 

multiple-relaxation-time (MRT) collision operator, in which the moments relax to their 

equilibria at their own rates that are not necessarily equal. The MRT-LBM has been 

proved to have a better stability and accuracy over the LBGK model [94], thus is more 
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preferable to incorporate with IBM to solve fluid-structure-interaction problems. 

As the MRT-LBM enables the local prescription of the relaxation parameters without 

any change in viscosity, the solutions obtained can be viscosity-independent. 

  In the MRT frame, the evolution equation of the LBE is rewritten in the moment 

form, and the one with forcing term is given below [95]. 

|𝑓𝑓(𝒙𝒙 + 𝒆𝒆𝜶𝜶∆𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡)⟩ − |𝑓𝑓(𝒙𝒙, 𝑡𝑡)⟩

= −𝐌𝐌−𝟏𝟏 �𝐒𝐒�[|𝑚𝑚(𝒙𝒙, 𝑡𝑡)⟩ − |𝑚𝑚𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)⟩] + �𝐈𝐈 −
𝐒𝐒�
2
� |F(𝒙𝒙, 𝑡𝑡)⟩� 

(20) 

where the notation  |∙⟩  denotes column vector, i.e.  |𝑓𝑓⟩ ≡ (𝑓𝑓0, 𝑓𝑓1,⋯ , 𝑓𝑓18)𝑇𝑇 . 𝐈𝐈  is the 

identity matrix. |𝑚𝑚⟩  is the moment form of  |𝑓𝑓⟩  and  |𝑚𝑚𝑒𝑒𝑒𝑒⟩  is its corresponding 

equilibrium value, and in our D3Q19 lattice model, they are defined respectively as 

[96], 

|𝑚𝑚⟩ = (𝜌𝜌, 𝑒𝑒, 𝜀𝜀, 𝑗𝑗𝑥𝑥 , 𝑗𝑗𝑦𝑦 , 𝑞𝑞𝑥𝑥 , 𝑗𝑗𝑦𝑦, 𝑞𝑞𝑦𝑦 , 𝑗𝑗𝑧𝑧, 𝑞𝑞𝑧𝑧, 3𝑝𝑝𝑥𝑥𝑥𝑥, 3𝜋𝜋𝑥𝑥𝑥𝑥 ,𝑝𝑝𝑤𝑤𝑤𝑤,𝜋𝜋𝑤𝑤𝑤𝑤, 𝑝𝑝𝑥𝑥𝑥𝑥, 𝑝𝑝𝑦𝑦𝑦𝑦, 𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦 , 𝑡𝑡𝑧𝑧)T (21) 

and 

|𝑚𝑚𝑒𝑒𝑒𝑒⟩ = �𝜌𝜌, −𝜌𝜌(11 − 19|𝒖𝒖|2), 𝜌𝜌(𝛼𝛼 − 𝛽𝛽|𝒖𝒖|2), 𝑗𝑗𝑥𝑥 , −
2
3 𝑗𝑗𝑥𝑥, 𝑗𝑗𝑦𝑦, −

2
3 𝑗𝑗𝑦𝑦, 𝑗𝑗𝑧𝑧, −

2
3 𝑗𝑗𝑧𝑧

, 

1
𝜌𝜌0
�𝑗𝑗𝑥𝑥2 − 𝑗𝑗𝑦𝑦2 − 𝑗𝑗𝑧𝑧2�,

𝛾𝛾
𝜌𝜌0
�𝑗𝑗𝑥𝑥2 − 𝑗𝑗𝑦𝑦2 − 𝑗𝑗𝑧𝑧2�,

1
𝜌𝜌0
�𝑗𝑗𝑦𝑦2 − 𝑗𝑗𝑧𝑧2�,

𝛾𝛾
𝜌𝜌0
�𝑗𝑗𝑦𝑦2 − 𝑗𝑗𝑧𝑧2�,

1
𝜌𝜌0
𝑗𝑗𝑥𝑥𝑗𝑗𝑦𝑦 

1
𝜌𝜌0
𝑗𝑗𝑦𝑦𝑗𝑗𝑧𝑧,

1
𝜌𝜌0
𝑗𝑗𝑧𝑧𝑗𝑗𝑥𝑥 , 0, 0, 0�

T

 

(22) 

where 𝑒𝑒 is the energy. 𝑗𝑗𝑥𝑥,  𝑗𝑗𝑦𝑦 and 𝑗𝑗𝑧𝑧 are the components of the moment density 𝜌𝜌𝒖𝒖. 𝑞𝑞𝑥𝑥, 

𝑞𝑞𝑦𝑦, and 𝑞𝑞𝑧𝑧 are the energy flux components, 𝑝𝑝𝑥𝑥𝑥𝑥,  𝑝𝑝𝑤𝑤𝑤𝑤 and 𝑝𝑝𝑥𝑥𝑥𝑥, 𝑝𝑝𝑦𝑦𝑦𝑦, and  𝑝𝑝𝑦𝑦𝑦𝑦 relate to 

the symmetric and traceless strain-rate tensors. 𝜋𝜋𝑥𝑥𝑥𝑥  and  𝜋𝜋𝑤𝑤𝑤𝑤  are the fourth-order 

moments while 𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦 , and 𝑡𝑡𝑧𝑧  are the third-order moments. 𝛼𝛼, 𝛽𝛽,  and  𝛾𝛾  are free 

parameters, and they are chosen as 3, -5.5, and -0.5 in our simulations, respectively. 

  𝐌𝐌 is a 19×19 transformation matrix which defines the mapping between 𝑓𝑓 and 𝑚𝑚, 
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i.e., |𝑚𝑚⟩ = 𝐌𝐌|𝑓𝑓⟩, and in the D3Q19 lattice model, 

𝐌𝐌 = 

�

�

�

�

�

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

−2
0
0
0
0
0
0

−2
0
0
0
0
0
0

2
0
0
0
0
0
0

2
0
0
0
0
0
0

1
1
0
0
1
−1
0

1
−1
0
0
−1
−1
0

1
−1
0
0
1
1
0

1
1
0
0
−1
1
0

−1
0
0
1
−1
0
1

−1
0
0
1
1
0
1

−1
0
0
−1
−1
0
−1

−1
0
0
−1
1
0
−1

0
0
1
0
0
1
−1

0
0
−1
0
0
−1
−1

0
0
−1
0
0
1
1

0
0
1
0
0
−1
1

�

�

�

�

�

 

   𝐒𝐒� is the non-negative 19×19 diagonal collision matrix, whose element defines the 

relaxation rate for its specific moment. Based on linear stability analysis [97], the 

relaxation parameters are chosen as, 

𝐒𝐒� ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠6, 𝑠𝑠7, 𝑠𝑠8, 𝑠𝑠9, 𝑠𝑠10, 𝑠𝑠11, 𝑠𝑠12, 𝑠𝑠13, 𝑠𝑠14, 𝑠𝑠15, 𝑠𝑠16, 𝑠𝑠17, 𝑠𝑠18} (23) 

where 𝑠𝑠1 =1.19, 𝑠𝑠2 =𝑠𝑠10 =𝑠𝑠12 =1.4, 𝑠𝑠4 =𝑠𝑠6 =𝑠𝑠8 =1.2, 𝑠𝑠16 =𝑠𝑠17 =𝑠𝑠18 =1.98, and 𝑠𝑠9 =𝑠𝑠11 =𝑠𝑠13 = 

𝑠𝑠14=𝑠𝑠15= 1/(3ν/∆t + 0.5). In the MRT-LBM without the forcing term, the value of the 

relaxation times for the conserved moments (𝑠𝑠0, 𝑠𝑠3, 𝑠𝑠5, and 𝑠𝑠7) are usually set to zero 

as they will not affect the result at all. However, in the case when forcing term is 

included, their values are no longer insignificant and they need to be nonzero [98, 99]. 

In our study we follow Premnath et al.[100] to set them to unity. 

  In the MRT frame, |F(𝒙𝒙, 𝑡𝑡)⟩ = 𝐌𝐌|𝑓𝑓𝑒𝑒(𝒙𝒙, 𝑡𝑡)⟩, and |𝑓𝑓𝑒𝑒(𝒙𝒙, 𝑡𝑡)⟩ can be calculated as [101, 

102], 
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|𝑓𝑓𝑒𝑒(𝒙𝒙, 𝑡𝑡)⟩ =
[𝒆𝒆𝜶𝜶 − 𝒖𝒖(𝒙𝒙, 𝑡𝑡)]𝒇𝒇𝒆𝒆(𝒙𝒙, 𝑡𝑡)

ρc𝑠𝑠2
|𝑓𝑓𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)⟩ (24) 

where  𝒇𝒇𝒆𝒆(𝒙𝒙, 𝑡𝑡)  is the external force density on the fluid, and �𝑓𝑓𝑒𝑒𝑒𝑒(𝒙𝒙, 𝑡𝑡)�  are the 

equilibrium distribution functions. 

In this study, the BGK collision operator was used for the simulation of Non-

Newtonian fluid flow only due to its efficiency (as will be introduced in Chapter 5 that 

the Non-Newtonian fluid flow simulation will greatly increase the computational cost). 

For the other simulations, the MRT collision operator was adopted due to its improved 

stability and accuracy. 

 

2.1.2 Frequently used boundary conditions in the LB simulations 

Boundary conditions (BCs) play a significant role in the LB simulations and should be 

treated with great care. The LBM is theoretically second-order accurate for the weakly 

compressible Navier-Stokes (N-S) equation [103, 104]. However, the accuracy order 

can be degraded if BCs are not properly constructed or specified (to accommodate the 

second-order accuracy of LBM in a grid-independent manner, the boundary scheme 

need to have a higher-order accuracy). The BCs also affect the stability of the LB 

simulations [105], though they are applied to only a small portion of the simulation 

domain. The way to specify a BC in the LB simulation is very different with that in 

conventional N-S solvers where the macroscopic variables of interest (e.g. velocity or 

pressure) are usually specified. In LB simulations, one must specify all the unknown 

distribution functions of the boundary nodes that are pointing to the fluid domain to 

attain a desired macro quantity indirectly. This is usually a more difficult task as the 
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distribution functions have more degrees of freedom. There are many LB boundary 

schemes proposed in the literature and we will give a brief introduction on a few of 

them which are frequently used. For simplicity and without lose generality, we will use 

the D2Q9 lattice model and a 2D computational domain shown in Fig. 2.2 as an 

example to illustrate how to implement them. Note that most of them can be 

straightforwardly extended to 3D scenarios. 

 

Fig. 2.2 Schematics of the distribution functions at the four boundaries with D2Q9 

lattice model 

 

2.1.2.1 Periodic boundary condition 

The periodic BC may be the simplest BC to implement in the LB simulations. In a 

periodic flow pattern, the fluid leaving the domain on one side will, instantaneously, re-

enter at the opposite side. This can be easily achieved in the LBM by making the two 

opposite boundary nodes neighbors during the streaming of distribution functions. This 

BC must work in pairs. Taking the west and east boundaries in Fig. 2.2 as an example, 
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the periodicity in x-direction can be achieved by 

𝑓𝑓𝑖𝑖(𝑥𝑥 = 0, 𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖∗(𝑥𝑥 = 𝑁𝑁, 𝑡𝑡) (25) 

𝑓𝑓𝑗𝑗(𝑥𝑥 = 𝑁𝑁, 𝑡𝑡 + 1) = 𝑓𝑓𝑗𝑗∗(𝑥𝑥 = 0, 𝑡𝑡) (26) 

where i=1, 5, 8 and j=3, 6, 7, are the indexes of the unknown distribution functions at 

the west and east boundaries, respectively.  

 

2.1.2.2 No-slip boundary conditions 

For stationary solid walls, the no-slip BC can be easily implemented with the bounce-

back (BB) scheme. The BB scheme assumes that when a particle distribution function 

hits a solid wall, it will be reflected back to where it comes from in the streaming step. 

In our simulations, we used the halfway bounce-back scheme due to its second-order 

accuracy for walls aligned with the grids and it is more accurate in unsteady flow 

simulations [106]. Taking the south boundary in Fig. 2.2 as an example, the no-slip BC 

can be achieved by  

𝑓𝑓2(𝒙𝒙𝑏𝑏, 𝑡𝑡 + 1) = 𝑓𝑓4∗(𝒙𝒙𝑏𝑏, 𝑡𝑡) 

𝑓𝑓5(𝒙𝒙𝑏𝑏, 𝑡𝑡 + 1) = 𝑓𝑓7∗(𝒙𝒙𝑏𝑏, 𝑡𝑡) 

𝑓𝑓6(𝒙𝒙𝑏𝑏, 𝑡𝑡 + 1) = 𝑓𝑓8∗(𝒙𝒙𝑏𝑏, 𝑡𝑡) 

(27) 

where 𝒙𝒙𝑏𝑏 stands for the boundary nodes. However, it should be noted that in the halfway 

BB scheme, the wall is actually placed approximately a half lattice away from the 

boundary nodes. This can be easily understood by looking at the bounce-back process 

depicted in Fig. 2.3. 
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Fig. 2.3 Schematics of the halfway bounce-back process 

 

The BB scheme is a big strength of the LBM. When combined with a “staircase” 

approximation on the boundary, the BB scheme can efficiently handle complex solid 

geometries, such as porous media. Besides its easy implementation, the BB scheme can 

also exactly conserve the mass at rest walls and has a sound stability even when the 

relaxation time 𝜏𝜏  is close to 0.5. However, the solution will be viscosity-dependent 

when the BB scheme is used in the BGK-LBM. The exact location of the wall will vary 

with the 𝜏𝜏. In the cases when the wall is not aligned with the grids, the BB scheme will 

have to approximate the wall with “staircase” shapes, which decreases its accuracy to 

first-order [107, 108]. 

In the case when the wall is not stationary, one can use the corrected BB scheme [78]. 

In this scheme, when a distribution function hits the wall, it will bounce back with an 

appropriate adjustment of its momentum. 

𝑓𝑓−𝑖𝑖(𝒙𝒙𝑏𝑏, 𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖∗(𝒙𝒙𝑏𝑏, 𝑡𝑡) − 2𝜔𝜔𝑖𝑖𝜌𝜌𝑤𝑤
𝒆𝒆𝑖𝑖 ∙ 𝑼𝑼𝑤𝑤

𝑐𝑐𝑠𝑠2
 (28) 

where -i denotes the opposite direction of i, i.e., 𝒆𝒆−𝑖𝑖 = −𝒆𝒆𝑖𝑖. 𝜌𝜌𝑤𝑤 and 𝑼𝑼𝑤𝑤 are the density 

and velocity of the wall, respectively.  

  One can also enforce the no-slip BC with the non-equilibrium extrapolation method 
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t

Reverse direction

1
2t+ t 1
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(NEEM) proposed by Guo et al. [109]. Unlike the BB scheme which focusing on 

finding the unknown distribution functions, the NEEM will replace the boundary 

distribution functions at all directions (nine for D2Q9 lattice model). The distribution 

function consists of an equilibrium and a non-equilibrium part. In the NEEM, the 

equilibrium part of the distribution function is computed locally, while the non-

equilibrium part (the part that related to the velocity gradient) comes from the nearest 

fluid node at the boundary normal direction. The NEEM can be expressed by 

𝑓𝑓𝑖𝑖(𝒙𝒙𝑏𝑏, 𝑡𝑡) = 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝜌𝜌𝑤𝑤,𝒖𝒖𝑤𝑤) + �𝑓𝑓𝑖𝑖(𝒙𝒙𝑛𝑛, 𝑡𝑡) − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝜌𝜌𝑛𝑛,𝒖𝒖𝑛𝑛)� (29) 

where 𝒙𝒙𝑛𝑛 is the neighboring fluid node of 𝒙𝒙𝑏𝑏 along the boundary normal direction and 

𝜌𝜌𝑛𝑛 and 𝒖𝒖𝑛𝑛 are the density and velocity of 𝒙𝒙𝑛𝑛, respectively.  

  The NEEM is second-order accurate [109] and is naturally appliable to both 2D and 

3D applications. However, this method may not strictly conserve the mass and could 

be a source of instability in the LB simulations.  

  The halfway BB scheme and the NEEM are second-order accurate for flat boundaries 

that are aligned with lattice links. For curved or inclined wall boundaries, their accuracy 

both degenerate to first order. In those cases, one can use the curved BCs proposed in 

[107, 110, 111] to achieve a higher-order accuracy. 

 

2.1.2.3 Symmetry boundary condition 

When there is a symmetry plane exists, one can half the simulation domain and use a 

symmetry boundary condition to reduce computation cost. The symmetry boundary 

condition can be implemented easily by obtaining those unknown distribution functions 
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through mirroring. Considering a symmetry boundary aligned with the lattice links, the 

symmetry boundary condition can be implemented with  

𝑓𝑓𝑗𝑗(𝒙𝒙𝑏𝑏, 𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝒙𝒙𝑏𝑏, 𝑡𝑡) (30) 

where i and j denote those known and unknown distribution functions respectively at a 

boundary node 𝒙𝒙𝑏𝑏. The tangential and normal velocities of the jth distribution function 

are related to that of the ith distribution function by 𝒆𝒆𝑗𝑗,𝑡𝑡 = 𝒆𝒆𝑖𝑖,𝑡𝑡, and 𝒆𝒆𝑗𝑗,𝑛𝑛 = −𝒆𝒆𝑖𝑖,𝑛𝑛. 

 

2.1.2.4 Open boundary conditions 

It is always convenient to specify a velocity or pressure boundary at the inlet/outlet with 

the NEEM. However, the Chapman-Enskog analysis suggests that a boundary scheme 

with second-order accuracy is not enough to support the level of exactness of the LB 

solution in the bulk [93]. 

The non-equilibrium bounce-back method (NEBBM, also called the Zou-He 

boundary scheme) [112] has a superior accuracy over the NEEM. It has a formally 

third-order accuracy for straight boundaries that aligned with the grids. To use the 

NEBBM, one needs to specify two macro quantities out of three (i.e. 𝜌𝜌𝑖𝑖𝑖𝑖, 𝑢𝑢𝑥𝑥, and 𝑢𝑢𝑦𝑦) 

at the boundary. Consider a pressure (density) inlet at the west boundary in Fig. 2.2, 

and a given tangential velocity component 𝑢𝑢𝑦𝑦 at the boundary, we immediately have 

the following three equations. 

𝜌𝜌𝑖𝑖𝑖𝑖 = 𝑓𝑓0 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 + 𝑓𝑓6 + 𝑓𝑓7 + (𝑓𝑓1 + 𝑓𝑓5 + 𝑓𝑓8) (31) 

𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥 = (𝑓𝑓1 + 𝑓𝑓5 + 𝑓𝑓8) − 𝑓𝑓3 − 𝑓𝑓6 − 𝑓𝑓7 (32) 

𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑦𝑦 = (𝑓𝑓5 − 𝑓𝑓8) + 𝑓𝑓2 − 𝑓𝑓4 + 𝑓𝑓6 − 𝑓𝑓7 (33) 
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Consistency of Equations (31) and (32) gives, 

𝑢𝑢𝑥𝑥 = 1 −
[𝑓𝑓0 + 𝑓𝑓2 + 𝑓𝑓4 + 2(𝑓𝑓3 + 𝑓𝑓6 + 𝑓𝑓7)]

𝜌𝜌𝑖𝑖𝑖𝑖
 (34) 

There are 4 unknown variables (i.e. 𝑓𝑓1, 𝑓𝑓5, 𝑓𝑓8, and 𝑢𝑢𝑥𝑥) to be determined, yet we 

have only three equations at hand. To close the system, Zou and He [112] proposed the 

fourth equation by evaluating the non-equilibrium part of the wall-normal distribution 

function using the bounce-back rule. In our example, the equation is 

𝑓𝑓1 − 𝑓𝑓1
𝑒𝑒𝑒𝑒 = 𝑓𝑓3 − 𝑓𝑓3

𝑒𝑒𝑒𝑒 (35) 

which yields 

𝑓𝑓1 = 𝑓𝑓3 +
2
3
𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥 (36) 

The other two unknown f then can be determined as follows 

𝑓𝑓5 = 𝑓𝑓7 −
1
2

(𝑓𝑓2 − 𝑓𝑓4) +
1
6
𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥 +

1
2
𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑦𝑦 (37) 

𝑓𝑓8 = 𝑓𝑓6 +
1
2

(𝑓𝑓2 − 𝑓𝑓4) +
1
6
𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑥𝑥 −

1
2
𝜌𝜌𝑖𝑖𝑖𝑖𝑢𝑢𝑦𝑦 (38) 

The velocity BC in the NEBBM can be determined in a similar manner. Compared 

with the NEEM, the NEBBM has one-order higher accuracy for straight boundaries. 

However, in NEBBM, the corner nodes need to be specially treated and the NEBBM is 

also difficult to apply in 3D scenarios. In 3D cases where velocity or pressure BCs are 

desired, we recommend to use the boundary scheme proposed in [113].  

If the flow domain to be simulated is ideally very large or infinite in one or more 

dimensions, one can truncate the domain to a finite size and use an outflow BC to save 

computational cost. In LB simulations, there are three frequently used outflow BCs. 

The first one is the Neumann boundary condition (NBC), which is usually applied when 

the flow at the outlet is fully developed. The NBC can be expressed as, 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (39) 

where 𝜑𝜑 is the interested variable such as 𝜌𝜌 and 𝒖𝒖. x is the boundary normal direction. 

The NBC can be implemented in the LBM easily as, 

𝑓𝑓𝑖𝑖(𝑥𝑥 = 𝑁𝑁, 𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑥𝑥 = 𝑁𝑁 − 1, 𝑡𝑡) (40) 

The second one is the convective boundary condition (CBC), 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (41) 

where 𝑈𝑈 is a typical velocity normal to the outlet boundary [114], which is usually taken 

as the average u-velocity in the upstream. The CBC can be discretized by a first-order 

finite difference scheme as following.  

𝜑𝜑(𝑁𝑁, 𝑡𝑡 + 1) − 𝜑𝜑(𝑁𝑁, 𝑡𝑡)
∆𝑡𝑡

+ 𝑈𝑈
𝜑𝜑(𝑁𝑁, 𝑡𝑡 + 1) − 𝜑𝜑(𝑁𝑁 − 1, 𝑡𝑡 + 1)

∆𝑥𝑥
= 0 (42) 

which yields 

𝜑𝜑(𝑁𝑁, 𝑡𝑡 + 1) =
𝜑𝜑(𝑁𝑁, 𝑡𝑡) + 𝛼𝛼 ∙ 𝜑𝜑(𝑁𝑁 − 1, 𝑡𝑡 + 1)

1 + 𝛼𝛼
 (43) 

where 𝛼𝛼 = 𝑈𝑈∆𝑡𝑡/∆𝑥𝑥. The CBC is implemented in the LBM by calculating the boundary 

distribution functions with, 

𝑓𝑓𝑖𝑖(𝑁𝑁, 𝑡𝑡 + 1) =
𝑓𝑓𝑖𝑖(𝑁𝑁, 𝑡𝑡) + 𝛼𝛼 ∙ 𝑓𝑓𝑖𝑖(𝑁𝑁 − 1, 𝑡𝑡 + 1)

1 + 𝛼𝛼
 (44) 

  The third outflow BC is the extrapolation boundary condition which is specially 

designed for LB simulations. It can be expressed as, 

𝑓𝑓𝑖𝑖(𝑁𝑁, 𝑡𝑡 + 1) = 2𝑓𝑓𝑖𝑖(𝑁𝑁 − 1, 𝑡𝑡 + 1) − 𝑓𝑓𝑖𝑖(𝑁𝑁 − 2, 𝑡𝑡 + 1) (45) 

 

2.1.3 Shear stress and wall shear stress evaluation in the LBM 

In conventional N-S solvers, one needs to calculate the velocity gradient ∇𝒖𝒖 through 

finite-difference method to obtain the shear stress field, which require a lot of 
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computation. In the LBM, the shear stress tensor can be calculated efficiently with no 

need to calculate ∇𝒖𝒖. Moreover, the calculation is totally local, which could be a big 

advantage if the code is being implemented in parallel. These features make LBM a 

popular tool in blood flow simulations, where the shear stress field and the wall-shear 

stress (WSS) distribution are usually paid special attention to [80, 115]. In the LBM, 

the deviatoric stress tensor in 𝐷𝐷 spatial dimensions can be locally evaluated by [116], 

𝜏𝜏𝛼𝛼𝛼𝛼 = −�1 −
1

2𝜏𝜏�
��𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 −

𝛿𝛿𝛼𝛼𝛼𝛼
𝐷𝐷

𝒆𝒆𝑖𝑖 ∙ 𝒆𝒆𝑖𝑖� 𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖

 (46) 

where 𝛿𝛿𝛼𝛼𝛼𝛼 is the Kronecker delta, and 𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑖𝑖 − 𝑓𝑓

𝑖𝑖
𝑒𝑒𝑒𝑒. The hydrostatic stress (pressure) 

in the LBM is given by 𝑝𝑝 = 𝑐𝑐𝑠𝑠2𝜌𝜌. The stress tensor then can be obtained by, 

𝜎𝜎𝛼𝛼𝛼𝛼 = −𝑝𝑝 𝛿𝛿𝛼𝛼𝛼𝛼 + 𝜏𝜏𝛼𝛼𝛼𝛼 (47) 

The WSS is a vector that is defined as the tangential force per unit area exerted by a 

solid boundary on a fluid in motion. With the stress tensor 𝝈𝝈 , the WSS vector 𝝉𝝉𝑤𝑤𝑤𝑤𝑤𝑤 can 

be computed by [117], 

𝝉𝝉𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑻𝑻 − (𝑻𝑻 ∙ 𝒏𝒏)𝒏𝒏 (48) 

or in tensor notation, 

τ𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 =  𝛿𝛿𝛼𝛼𝛼𝛼 𝑛𝑛𝛽𝛽 − �𝜎𝜎𝛽𝛽𝛽𝛽𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾�𝑛𝑛𝛼𝛼 (49) 

where 𝑻𝑻 = 𝝈𝝈 ∙ 𝒏𝒏 is the traction vector.  𝒏𝒏 = (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3) is the unit normal vector at the 

wall, which needs to be determined before calculating the WSS vector. It is common to 

report only the magnitude of the WSS vector, simply called the WSS (𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤=|𝝉𝝉𝑤𝑤𝑤𝑤𝑤𝑤|). In 

the case when halfway bounce-back scheme is used at the boundary, the wall location 

is shifted a half lattice away from the boundary. To evaluate the WSS on site, it is 

recommended to first evaluate the WSS at the boundary and near-boundary nodes, then 
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interpolate the WSS at the wall nodes. This will bring a higher order accuracy in WSS 

evaluation according to [118].  

 

2.2 Cilium dynamics 

As the primary cilium has a large aspect ratio (its length usually ranges from 1.8 

to11.1μm, while its diameter is about 0.2μm [21]), its dynamics can be reduced to a 

one-dimensional description (i.e. treated as a filament) by averaging the underlying 

balance laws over its cross-sections. Based on this, it’s motion equation can be 

described as [39, 40] 

𝜌𝜌𝑑𝑑
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑡𝑡2

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑇𝑇(𝑠𝑠)

∂𝑿𝑿
∂s
� − 𝐾𝐾𝑏𝑏

𝜕𝜕4𝑿𝑿
𝜕𝜕𝑠𝑠4

+ 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 (50) 

where 𝑿𝑿 is the position of the cilium, 𝑠𝑠 the Lagrangian coordinate along the length of 

cilium. 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  is the hydrodynamic force exerted on the cilium, and 𝐾𝐾𝑏𝑏  the bending 

rigidity of the cilium. 𝜌𝜌𝑑𝑑  is the difference in the linear density between the cilium and 

the fluid it immersed in (i.e., 𝜌𝜌𝑑𝑑 = (𝜌𝜌𝑐𝑐 − 𝜌𝜌 ) ∗ 𝐴𝐴, where 𝜌𝜌𝑐𝑐  is the density of the cilium 

and 𝐴𝐴 the cross-sectional area of the cilium), so 𝜌𝜌𝑑𝑑 = 0 represents the neutrally buoyant 

case. The first and second terms in the right-hand side of Equation (50) represent the 

tensile and bending forces, respectively. 𝑇𝑇(𝑠𝑠)  is the tension which enforces the 

inextensibility condition and can be calculated by 

𝑇𝑇(𝑠𝑠) = 𝐾𝐾𝑠𝑠 ��
∂𝑿𝑿
∂s

∙
∂𝑿𝑿
∂s�

1
2
− 1� (51) 

where 𝐾𝐾𝑠𝑠 is a stretching coefficient that defines the extensibility of the cilium. In our 

problems of interest, stretching of the primary cilium is not significant compared to its 

bending. Thus, we assume that the primary cilium is inextensible, and use a large value 
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of 𝐾𝐾𝑠𝑠 in our simulations to enforce this constraint, as did by Zhu and Peskin [48] and 

Tian et al. [46]. The value of 𝐾𝐾𝑠𝑠  is chosen that the maximal stretch ratio is less than 

0.5% throughout the simulations. Here, a small stretch ratio is allowed because an 

exceeding large value of  𝐾𝐾𝑠𝑠  could make the simulation unstable, however, a too 

small 𝐾𝐾𝑠𝑠 should be avoid as it will introduce unacceptable error to the solution [45]. 

  While the fluid is defined on these fixed Eulerian points, the cilium is represented by 

a set of isometric Lagrangian points  𝑿𝑿(𝑠𝑠𝑖𝑖 , t) , i=0,1,…,Nb. In our modelling, s0=0 

represents the cilium’s basal end, and sNb=L the cilium’s distal end (i.e. cilium tip), 

where L is the cilium length. We discretize the right-hand side of Eq. (50) in space with 

a central finite difference (FD) scheme. 

𝜌𝜌𝑑𝑑
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑡𝑡2 =

𝑇𝑇
𝑖𝑖+1

2
�∂𝑿𝑿∂s �𝑖𝑖+1

2
−𝑇𝑇

𝑖𝑖−1
2
�∂𝑿𝑿∂s �𝑖𝑖−1

2
∆𝑠𝑠

−𝐾𝐾𝑏𝑏
𝑿𝑿𝑖𝑖+2 − 4𝑿𝑿𝑖𝑖+1 + 6𝑿𝑿𝑖𝑖 − 4𝑿𝑿𝑖𝑖−1 +𝑿𝑿𝑖𝑖−2

∆𝑠𝑠4 + 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

(52) 

where ∂𝑿𝑿/ ∂s is the local unit tangent vector which is evaluated at the segment center 

via a first-order central FD stencil as following. 

�
∂𝑿𝑿
∂s
�
𝑖𝑖+12

=
𝑿𝑿𝑖𝑖+1 − 𝑿𝑿𝑖𝑖

∆𝑠𝑠
, and �

∂𝑿𝑿
∂s
�
𝑖𝑖−12

=
𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑖𝑖−1

∆𝑠𝑠
 (53) 

Similarly, the tension at the segment center is calculated by  

𝑇𝑇
𝑖𝑖+12

= 𝐾𝐾𝑠𝑠 ��
𝑿𝑿𝑖𝑖+1 − 𝑿𝑿𝑖𝑖

∆𝑠𝑠
� − 1� , and 𝑇𝑇

𝑖𝑖−12
= 𝐾𝐾𝑠𝑠 ��

𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑖𝑖−1
∆𝑠𝑠

� − 1� (54) 

The treatment of the left-hand side of Eq. (50) (the temporal discretization) requires 

more care, as it is closely related to the stability of the explicit structure solver whose 

time-marching scheme should not violate the Courant–Friedrichs–Lewy (CFL) 

condition. Here the three-step Runge–Kutta method is adopted to advance the position 
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and velocity of the Lagrangian points from time step 𝑛𝑛 to 𝑛𝑛 + 1.  

Step 1 

𝑼𝑼(1) = 𝑼𝑼𝑛𝑛 + ∆𝑡𝑡
𝜕𝜕2𝑿𝑿𝑛𝑛

𝜕𝜕𝑡𝑡2
 (55) 

𝑿𝑿(1) = 𝑿𝑿𝑛𝑛 + ∆𝑡𝑡𝑼𝑼𝑛𝑛 (56) 

Step 2 

𝑼𝑼(2) =
3
4
𝑼𝑼𝑛𝑛 +

1
4
�𝑼𝑼(1) + ∆𝑡𝑡

𝜕𝜕2𝑿𝑿(1)

𝜕𝜕𝑡𝑡2
� (57) 

𝑿𝑿(2) =
3
4
𝑿𝑿𝑛𝑛 +

1
4
�𝑿𝑿(1) + ∆𝑡𝑡𝑼𝑼(1)� (58) 

Step 3 

𝑼𝑼𝑛𝑛+1 =
1
3
𝑼𝑼𝒏𝒏 +

2
3
�𝑼𝑼(2) + ∆𝑡𝑡

𝜕𝜕2𝑿𝑿(2)

𝜕𝜕𝑡𝑡2
� (59) 

𝑿𝑿𝑛𝑛+1 =
1
3
𝑿𝑿𝑛𝑛 +

2
3
�𝑿𝑿(2) + ∆𝑡𝑡𝑼𝑼(2)� (60) 

where superscript  𝑛𝑛  and  𝑛𝑛 + 1  are the time-step index.  𝑼𝑼(1)  and  𝑼𝑼(2)  are the 

intermediate velocities, 𝑿𝑿(1) and 𝑿𝑿(2) the intermediate positions. 

 

2.3 Fluid-structure interaction 

The interaction between the fluid and the cilium is handled by the immersed boundary 

method (IBM). The IBM is a mathematical framework originally developed by Peskin 

in 1972 to simulate blood flow through a heart valve [41-43]. Since its conception, the 

IBM has found a wide variety of applications in computational biofluid mechanics (e.g. 

the deformation of red blood cells [119], the swimming of sperm [120] and eel [121], 

and the insect flight [122]) and has evolved into a generalized framework for studying 

fluid-structure interaction (FSI) problems. In the IBM, fluid and structures are 
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discretized by sperate, independent grids (Eulerian grid for fluid and Lagrangian grid 

for structures) which do not need to conform at the interfaces (see Fig. 2.4). This is a 

big advantage of IBM in solving moving and/or deformable boundary problems, as it 

saves the tedious remeshing process and is independent of the complexity of the 

boundary geometry. As the solution evolves on two separate grids, information needs 

to be exchanged at those interfaces through interpolation. The fluid feels the existence 

of the immersed object through a boundary force which is inserted into the momentum 

equations, and the immersed object is forced to deform and/or move so that the no-slip 

condition at the boundary is satisfied.  

The IBM can be easily incorporated with the LBM to solve moving boundary 

problems. Based on the way to represent the fluid–structure interfaces, the IBM can be 

classified as diffused interface and sharp interface methods. In the upcoming 

subsections, we will give a brief introduction on them and for convenience, hereafter, 

we will represent Eulerian variables in lowercase, while the Lagrangian variables in 

uppercase.  
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Fig. 2.4 Schematics of the grids used in our IB-LBM simulations 

 

2.3.1 Diffused-interface IBM 

The diffused-interface IBM is widely adopted in the study of FSI problems. In this 

method, the immersed boundaries are smeared due to the distribution of singular forces 

to the surrounding fluid using the Dirac delta function. In the original IBM developed 

by Peskin [41-43], the boundary forces from the solid to the fluid are calculated based 

on the constitutive laws (e.g. Hook's law) of the elastic boundary, 

𝑭𝑭(𝑿𝑿, 𝑡𝑡) = 𝐺𝐺(𝑿𝑿, 𝑡𝑡) (61) 

where 𝐺𝐺 is the boundary force generating operator, which is related to the properties of 

the boundary. To incorporate the boundary effect in fluid dynamics, the boundary forces 

are distributed to the neighboring fluid nodes to obtain the Eulerian force density, 

𝒇𝒇(𝒙𝒙, 𝑡𝑡) = �𝑭𝑭(𝑿𝑿, 𝑡𝑡)𝛿𝛿ℎ(𝒙𝒙 − 𝑿𝑿)∆𝑠𝑠
𝑿𝑿

 (62) 

where 𝛿𝛿ℎ is the Dirac delta function, ∑  𝑿𝑿 denotes the summations over all Lagrangian 
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grid points, and  ∆𝑠𝑠  denotes the surface area (in 2D cases, the arc length) that a 

Lagrangian point occupies. The no-slip boundary condition is enforced explicitly by 

letting the boundary points move with the local fluid velocity, 

𝜕𝜕𝑿𝑿(𝑠𝑠, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝑼𝑼(𝑠𝑠, 𝑡𝑡) = �𝒖𝒖(𝒙𝒙, 𝑡𝑡)𝛿𝛿ℎ(𝒙𝒙 − 𝑿𝑿)(∆𝑥𝑥)𝐷𝐷
𝒙𝒙

 (63) 

where ∆𝑥𝑥 is the Eulerian grid spacing, and 𝐷𝐷 is the spatial dimension of the problem, 

and ∑  𝒙𝒙 denotes the summations over all Eulerian grid points.  

  This version of IBM is fully explicit and can be implemented with relative ease. 

However, it could face stability issues when the timestep is chosen too large or the 

boundary is too stiff [123, 124]. To improve the numerical stability, implicit [125, 126] 

and semi-implicit [127-129] IBM were proposed. The original IBM by Peskin is 

designed to handle elastic boundaries only. For rigid boundaries with no deformation 

allowed, alternative way to compute the boundary forces must be constructed. There 

are several ways exist to do this, interested readers can refer to [130]. In the following 

subsections, we will give a brief introduction on three frequently used boundary-force 

evaluation approaches. 

 

2.3.1.1 The direct-forcing method 

The explicit direct-forcing method may be the most popular boundary force evaluation 

scheme in IBM. In this method, the boundary force density can be easily evaluated by 

𝑭𝑭(𝑿𝑿, 𝑡𝑡) = 2𝜌𝜌
𝑼𝑼(𝑿𝑿, 𝑡𝑡) − 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡)

∆𝑡𝑡
 (64) 

where 𝑼𝑼(𝑿𝑿, 𝑡𝑡)  is the desired velocity of the boundary which can be determined by 

solving the structure dynamics. 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡)  is the could-be boundary velocity without 
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considering the boundary influence on the flow, which can be interpolated from the 

unforced flow velocity 𝒖𝒖∗(𝒙𝒙, 𝑡𝑡) in the LBM (i.e. 𝒖𝒖∗(𝒙𝒙, 𝑡𝑡) = (∑ 𝑓𝑓𝑖𝑖𝑖𝑖 𝒆𝒆𝒊𝒊)/𝜌𝜌). 

𝑼𝑼∗(𝑿𝑿, 𝑡𝑡) = �𝒖𝒖∗(𝒙𝒙, 𝑡𝑡)𝛿𝛿(𝒙𝒙 − 𝑿𝑿)(∆𝑥𝑥)𝐷𝐷
𝒙𝒙

 (65) 

The explicit direct-forcing method is easy to implement and well adapted in the LBM. 

However, it may face unphysical streamline penetration problem [131], as the no-slip 

boundary condition is approximately enforced at the interface. To solve the problem, 

implicit direct-forcing methods have been proposed, for example in [132, 133]. The 

implicit schemes require to solve complicated banded matrix equations, which make 

the direct-forcing method less efficient and cumbersome to implement. A multi-direct 

forcing approach [134] is then introduced, which only requires to iterate the forcing 

procedures several times until the no-slip condition is well enforced. More recently, a 

non-iterative force correction approach for the direct-forcing method is proposed by 

Tao et al. [135], which is efficient and easy to implement. In this method, the boundary 

force computed from the explicit direct-forcing method is corrected by multiplying a 

local adjustment parameter 𝜆𝜆, i.e.,  

𝑭𝑭(𝑿𝑿, 𝑡𝑡) = 2𝜆𝜆(𝑿𝑿, 𝑡𝑡)𝜌𝜌
𝑼𝑼(𝑿𝑿, 𝑡𝑡) − 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡)

∆𝑡𝑡
 (66) 

For an immersed boundary that represented by Nb+1 Lagrangian points, the 

corresponding 𝜆𝜆 for the point 𝑿𝑿𝑛𝑛, 𝑛𝑛 = 0, 1,⋯ ,𝑁𝑁𝑁𝑁, can be explicitly calculated by the 

following equation in 3D, respectively, 

𝜆𝜆𝑛𝑛 =
1

∆𝑠𝑠∆𝑥𝑥5 ∑ ∑ 𝛿𝛿�𝒙𝒙𝑖𝑖,𝑗𝑗,𝑘𝑘 −  𝑿𝑿𝑚𝑚�𝑚𝑚𝑖𝑖,𝑗𝑗,𝑘𝑘 𝛿𝛿�𝒙𝒙𝑖𝑖,𝑗𝑗,𝑘𝑘 −  𝑿𝑿𝑛𝑛�
 (67) 

where 𝒙𝒙𝑖𝑖,𝑗𝑗,𝑘𝑘 is the position of the Eulerian point. ∑  𝑖𝑖,𝑗𝑗,𝑘𝑘 and ∑  𝑚𝑚 represent summations 
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over all Eulerian and Lagrangian points, respectively. 

 

2.3.1.2 The momentum-exchange method 

The momentum-exchange method is originally devised by Ladd [78, 79] for the LB 

simulation of particulate suspension. Inherited from the kinetic theory, the momentum-

exchange method can evaluate the hydrodynamic force in LBM conveniently by 

summation over the momenta passing through the solid boundary. Although the 

momentum-exchange method can be directly used in LB simulations to handle FSI 

problems, it is a little difficult to implement and is not efficient for moving boundaries 

problem (it requires to identify fluid-solid links in every timestep). Niu et al. [136] 

combined the momentum-exchange method with the IBM, making it robust and 

efficient to handle both rigid and elastic boundaries. In their method, the first step is to 

interpolate the boundary distribution functions, as the Lagrangian points may not 

coincident with the background Eulerian points. It is always convenient to use the Dirac 

delta function for this interpolation [137], 

𝑓𝑓𝑖𝑖(𝑿𝑿, 𝑡𝑡) = �𝑓𝑓𝑖𝑖(𝒙𝒙, 𝑡𝑡)𝛿𝛿 (𝒙𝒙 − 𝑿𝑿)
𝒙𝒙

(∆𝑥𝑥)3 (68) 

By applying the bounce-back rules, a new set of boundary distribution functions can 

be obtained at all lattice directions. 

𝑓𝑓−𝑖𝑖(𝑿𝑿, 𝑡𝑡 + ∆𝑡𝑡) = 𝑓𝑓𝑖𝑖(𝑿𝑿, 𝑡𝑡) − 2𝜔𝜔𝑖𝑖𝜌𝜌
𝒆𝒆𝑖𝑖𝑼𝑼(𝑿𝑿, 𝑡𝑡)

𝑐𝑐𝑠𝑠2
 (69) 

where −𝑖𝑖 denotes the opposite direction of  𝑖𝑖, i.e., 𝒆𝒆−𝑖𝑖 = 𝒆𝒆𝑖𝑖 . The boundary force (from 

the structure to the fluid) then can be computed via momentum exchange method, 
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𝑭𝑭(𝑿𝑿, 𝑡𝑡) = −�𝒆𝒆𝑖𝑖 
𝑖𝑖

[ 𝑓𝑓𝑖𝑖(𝑿𝑿, 𝑡𝑡 + ∆𝑡𝑡) −  𝑓𝑓−𝑖𝑖(𝑿𝑿, 𝑡𝑡)] (70) 

  The momentum-exchange based IB-LBM is efficient and easy to implement. 

However, it faces the streamline penetration problem as the direct-forcing method does. 

To remove this drawback, an iterative technique for the momentum-exchange based IB-

LBM is introduced in [138]. 

 

2.3.1.3 The feedback forcing method 

The feedback forcing method that originally used by Peskin [41-43] to compute the 

restoring force of an elastic boundary is further developed by Goldstein et al. [139] to 

handle rigid boundaries. In their method, the neighboring fluid points are assumed to 

connect with the immersed boundary through a set of stiff springs with damping. By 

applying the feedback law, the boundary force is evaluated by, 

𝑭𝑭(𝑿𝑿, 𝑡𝑡) = 𝛼𝛼� �𝒖𝒖(𝑿𝑿, 𝑡𝑡) − 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡)�𝑑𝑑𝑡𝑡′ + 𝛽𝛽�𝒖𝒖(𝑿𝑿, 𝑡𝑡) − 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡)�
𝑡𝑡

0
 (71) 

where  𝒖𝒖(𝑿𝑿, 𝑡𝑡) and 𝑼𝑼∗(𝑿𝑿, 𝑡𝑡) are the interpolated and the desired velocity (obtained by 

solving the motion equations of the immersed boundary) at the boundary. 𝛼𝛼 and 𝛽𝛽 are 

two large negative free constants to be tuned depending on the flow conditions. In the 

feedback forcing method, the requirement of specifying two proper parameters 

introduces some complexity in its practical implementations especially in unsteady 

flow conditions. These two parameters, if not properly chosen, may impose a restraint 

on the simulation timestep, and thus reduces the computational efficiency. 
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2.3.2 Sharp-interface IBM 

In the diffused-interface IBMs, the fluid-structure interface is not precisely simulated 

at its actual location but within a localized region around the interface. The sharp-

interface IBMs allows for a sharp representation of the immersed boundary, thus can 

obtain a higher accuracy at the interface. There are various sharp-interface IBM exist 

in the literature, such as [140, 141]. In the next, we will briefly introduce the direct-

forcing sharp-interface IBM which can be easily incorporated with the LBM. 

  The very first step of a sharp-interface IBM is to do a solid-fluid demarcation. A 

Eulerian node outside the solid boundary is termed “fluid node”, otherwise termed 

“solid node”. Such node-type identification needs to be done only once for stationary 

boundaries. However, for moving and/or deformable boundaries, this identification is 

required at every timestep, thus a sharp-interface IBM is usually less efficient than a 

diffused-interface IBM. Once the solid-fluid demarcation has been completed, the 

followed step is to determine the forcing nodes (note that in a sharp-interface IBM, the 

immersed boundary no longer acts as a force-generator as in the diffused-interface 

IBM), which are inside the immersed object and have at least one neighboring fluid 

node (see Fig. 2.5).  
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Fig. 2.5 Schematics of the forcing nodes and the interpolation schemes 

 

In the direct-forcing sharp-interface IBM, to evaluate the boundary force density on 

the forcing nodes, the desired velocity at these forcing nodes needs to be interpolated 

so that the corresponding boundary points can satisfy the no-slip boundary condition. 

In 2D applications, we can use the second-order linear and bilinear interpolations from 

the velocities of the nearby fluid nodes and the boundary points based on the 

arrangement of the nearby fluid nodes [142], as shown in Fig. 2.5. For 3D applications, 

we can use the tri-linear interpolation if there are seven neighboring fluid nodes 

available for the interpolation. Otherwise, the interpolation degenerates into bilinear or 

linear interpolations, as explained in the 2D case. With the interpolated velocity in the 

forcing points, we can easily calculate the force at these points by, 

𝑭𝑭�𝒙𝒙𝑓𝑓, 𝑡𝑡� = 2𝜌𝜌
𝒖𝒖′�𝒙𝒙𝑓𝑓 , 𝑡𝑡� − 𝒖𝒖∗�𝒙𝒙𝑓𝑓, 𝑡𝑡�

∆𝑡𝑡
 (72) 

where 𝒖𝒖′�𝒙𝒙𝑓𝑓, 𝑡𝑡� and 𝒖𝒖∗�𝒙𝒙𝑓𝑓, 𝑡𝑡� are the interpolated and unforced velocities at the forcing 

node 𝒙𝒙𝑓𝑓 , respectively.  𝒖𝒖∗�𝒙𝒙𝑓𝑓, 𝑡𝑡�  is calculated in the macro quantities update in the 

LBM without considering the forcing effect. The calculated force is then used to update 

Boundary

Type 1: bilinear
 interpolation

Type 2: linear
 interpolation

Neighboring fluid node Boundary nodeForcing node
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the velocity at the forcing point and no force distribution step is required. 

𝒖𝒖�𝒙𝒙𝑓𝑓 , 𝑡𝑡� = 𝒖𝒖∗�𝒙𝒙𝑓𝑓, 𝑡𝑡� +
∆𝑡𝑡
2𝜌𝜌

𝑭𝑭�𝒙𝒙𝑓𝑓, 𝑡𝑡� (73) 

Via this interpolated velocity, the boundary effect is considered in the LBM through the 

following collision and stream steps. 

The sharp-interface IBMs may model the boundary with a higher accuracy. However, 

they could also cause spurious pressure oscillation in moving and/or deformable 

boundary problems [140, 143]. This undesirable feature is usually diminished in the 

diffused-interface IBM via the force-spreading process [144]. Spreading the force with 

the smoothed delta function, works as smoothing mechanism at the immersed 

boundaries. The sharp-interface IBMs also greatly increase the computational load and 

are not easy to implement. Therefore, in our study we will use the diffused-interface 

IBM to solve the fluid-cilium interaction. 

 

2.3.3 The Dirac delta function 

The Dirac delta function 𝛿𝛿 is defined as 

𝛿𝛿(𝒙𝒙 − 𝑿𝑿) =
1
ℎ3
𝜙𝜙 �

𝑥𝑥 − 𝑋𝑋
ℎ �𝜙𝜙 �

𝑦𝑦 − 𝑌𝑌
ℎ �𝜙𝜙 �

𝑧𝑧 − 𝑍𝑍
ℎ � (74) 

where x, y, and z are the components of the Eulerian point 𝒙𝒙, and X, Y, and Z are the 

components of the Lagrangian point 𝑿𝑿 , respectively. h is a parameter defining the 

effective thickness of the boundary (in our case, the radius of the primary cilium) [145], 

and it is usually set to some multiple of the grid spacing ∆𝑥𝑥, i.e. ℎ = 𝑚𝑚∆𝑥𝑥, where m is 

the grid number that the boundary thickness covers. There are a variety of stencils for 

function 𝜙𝜙 exist in literature. In this study, we adopted the four-point stencil which is 
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given by 

∅(𝑟𝑟) =

⎩
⎨

⎧�3 − 2|𝑟𝑟| + �1 + 4|𝑟𝑟| − 4𝑟𝑟2� /8, |𝑟𝑟| ≤ 1 

�5 − 2|𝑟𝑟| −�−7 + 12|𝑟𝑟| − 4𝑟𝑟2� /8, 1 ≤ |𝑟𝑟| ≤ 2
0, |𝑟𝑟| ≥ 2

 (75) 

This stencil has a profile shown in Fig. 2.6, and it gives a second-order approximation. 

The way to construct𝛿𝛿 and  ∅(𝑟𝑟)  is discussed in [43], and a comparison between 

different delta functions can be found in [144]. The support of 𝛿𝛿 is a 4ℎ × 4ℎ × 4ℎ  

cube around each Lagrangian point.  

 

 

Fig. 2.6 The ∅(𝑟𝑟) with four-point stencil 

 

2.4 Coupling strategy 

There are basically two kinds of coupling strategy in the IBM for handling elastic 

boundaries with mass. The first one is initially used in Zhu and Peskin [48], where the 

boundary velocity is directly interpolated from the fluid velocity rather than determined 

by solving its motion equation. By doing this, the no-slip boundary condition is 

naturally enforced by definition. The updated boundary velocity is then taken as an 

input to the motion equation (Eq. (50)), to obtain the hydrodynamic force Ffluid. In the 

next step, the reaction force of Ffluid   (i.e. the boundary force) is distribute to the 

neighboring fluid nodes with Eq. (62).  
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The IBM by Huang et al. [45] and Yuan et al. [47] provided a different coupling 

strategy. In their approaches, the boundary force (or its reaction force, the 

hydrodynamic force) is evaluated first, which is then used as an input to obtain the 

boundary velocity by solving the motion equation (Equation (50). Finally, the boundary 

force is spread/distributed to the nearby fluid to make it move at the same velocity as 

the boundary (i.e., to enforce the no-slip condition).  

  In our study, we used the second coupling strategy as it can handle both rigid and 

elastic boundaries, thus is more robust and versatile (the original coupling strategy by 

Zhu and Peskin only works for elastic boundary) for solving FSI problems. The direct-

forcing method is used to evaluate boundary forces due to that it’s efficient and easy to 

implement. To eliminate the streamline penetration problem, the no-iterative force 

correction technique proposed by Tao et al. [135] is adopted to well enforce the no-slip 

boundary condition. The coupling procedure used in our simulations is illustrated in 

Fig. 2.7. 
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Fig. 2.7 The coupling procedure used in our simulations 

 

2.5 Modelling the cilium basal end 

The primary cilium is connected to the cytoskeletal microtubules of the cells through 

its basal body, which has a rather complex structure. Inappropriate modelling of the 

basal body may predict wrong or less accurate cilium dynamics. The effect of the basal 

body was frequently modelled with a cantilevered or clamped boundary condition at 

the cilium basal end. Such simplification tends to give inconsistence result with 

experimental measurements as the basal end can experience a certain rotation during 

the deflection process of cilium [28, 31]. In this study, we adopt the approach proposed 

by Resnick [5], to model the cilium basal body as a nonlinear rotational spring 

connected to the cilium basal end (see Fig. 2.8). Similar treatment has also been used 

by Young et al. [35] to study cilium dynamics in a shear flow and their results compared 
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favorably with experimental observations. In this approach, a basal rotation induced by 

the flow drag will generate a reverse bending moment at the attached spring. This can 

be described in mathematics as 

𝑿𝑿 = 𝑿𝑿0 

𝑑𝑑2𝑿𝑿
𝑑𝑑𝑠𝑠2

=
𝐿𝐿
𝐾𝐾𝑏𝑏

�𝑘𝑘
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑

+ 𝛼𝛼 �
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑�

2

� ,   𝑎𝑎𝑎𝑎 𝑠𝑠 = 0 

 

(76) 

where  𝐿𝐿  is the length of the cilium, 𝑘𝑘  and  𝛼𝛼  are the linear and nonlinear spring 

constants, respectively. 

 

 

Fig. 2.8 The nonlinear rotational spring model for cilium basal end 

 

2.6 Dissipative particle dynamics 

To study CTC adhesion in a curved microvessel, the DPD is adopted to model the blood 

flow. As a kind of mesoscopic simulation methods, the DPD is frequently used in the 

modelling of dynamic and rheological properties of complex fluids [146, 147]. The 

fluid is represented by a sufficient large number of particles in the DPD. Each particle 

can be viewed as a molecular cluster of mass 𝑚𝑚𝑖𝑖, position 𝒓𝒓𝑖𝑖, and velocity 𝒗𝒗𝑖𝑖. The 
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Endothelial cell

Flow

Rotational
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properties of the fluid are reflected via the interaction between particles. The interaction 

is achieved through the introduction of three forces, i.e. a conservative (repulsive) 

force  𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶  , a dissipative (friction) force  𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷  , and a random force  𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅  . The resultant 

force 𝑭𝑭𝑖𝑖 for each individual particle then can be written as, 

 𝑭𝑭𝑖𝑖 = 𝑭𝑭𝑒𝑒 + �  𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 +
𝑗𝑗≠𝑖𝑖

𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅   (77) 

where 𝑭𝑭𝑒𝑒 denotes the external force and the sum runs over the neighbors of particle i 

within a cutoff radius 𝑟𝑟𝑐𝑐. Each interaction force is calculated respectively as follows, 

𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 = �
𝑎𝑎𝑖𝑖𝑖𝑖�1 − 𝑟𝑟𝑖𝑖𝑖𝑖�𝒓𝒓�𝑖𝑖𝑖𝑖 ,   𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑖𝑖 ≤  𝑟𝑟𝑐𝑐
0,                            𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑖𝑖 >  𝑟𝑟𝑐𝑐

,  (78) 

𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 = −𝛾𝛾𝜔𝜔𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖��𝒓𝒓�𝑖𝑖𝑖𝑖 ∙ 𝒗𝒗𝑖𝑖𝑖𝑖�𝒓𝒓�𝑖𝑖𝑖𝑖  (79) 

𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅 = −𝜎𝜎𝜔𝜔𝑅𝑅�𝑟𝑟𝑖𝑖𝑖𝑖� ∙
𝜉𝜉𝑖𝑖𝑖𝑖
√𝑑𝑑𝑑𝑑

𝒓𝒓�𝑖𝑖𝑖𝑖 ,  (80) 

where  𝒓𝒓�𝑖𝑖𝑖𝑖 = 𝒓𝒓𝑖𝑖𝑖𝑖/𝑟𝑟𝑖𝑖𝑖𝑖 ,𝒓𝒓𝑖𝑖𝑖𝑖 = 𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑗𝑗 ,𝒗𝒗𝑖𝑖𝑖𝑖 = 𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑗𝑗 .  𝑎𝑎𝑖𝑖𝑖𝑖 ,  𝛾𝛾 , and  𝜎𝜎  are the respective 

coefficients. 𝜉𝜉𝑖𝑖𝑖𝑖  is a random number with zero mean and unit variance. 𝜔𝜔𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖� and 

𝜔𝜔𝑅𝑅�𝑟𝑟𝑖𝑖𝑖𝑖� are weight functions that rely on the distance. In order to satisfy the fluctuation-

dissipation theorem in the DPD system, they have the following relationship, 

𝜔𝜔𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖� = �𝜔𝜔𝑅𝑅�𝑟𝑟𝑖𝑖𝑖𝑖��
2
=��1 − 𝑟𝑟𝑖𝑖𝑖𝑖

 𝑟𝑟𝑐𝑐
�
1/2

,  𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑖𝑖 ≤  𝑟𝑟𝑐𝑐
0,                      𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑖𝑖𝑖𝑖 >  𝑟𝑟𝑐𝑐

,     𝜎𝜎2 = 2𝛾𝛾𝑘𝑘𝐵𝐵𝑇𝑇  (81) 

where 𝑘𝑘𝐵𝐵 is the Boltzmann constant and T the temperature of the system. For a more 

detailed introduction of the DPD, interested readers can refer to [148]. The dynamics 

of the particles follows Newton’s second law. 

𝑑𝑑𝒓𝒓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒗𝒗𝑖𝑖 , 𝑚𝑚𝑖𝑖
𝑑𝑑𝒗𝒗𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑭𝑭𝑖𝑖  (82) 

where the mass for each particle 𝑚𝑚𝑖𝑖 is assumed to be unity. A modified velocity-Verlet 

algorithm [149, 150] is implemented to update the position and velocity of the particles 
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at each timestep, which makes the integration more stable. 

 

2.7 Cell membrane model 

To well describe the deformations of the cell membrane, a spring-based network model 

is integrated into the DPD. In this model, the membrane is represented by a set of 

triangular meshes whose nodes are connected through linear springs. The elastic force 

generated on each membrane node i is calculated by 

𝑭𝑭𝑖𝑖membrane = −
𝜕𝜕𝜕𝜕{(𝒓𝒓𝑖𝑖)}
𝜕𝜕𝒓𝒓𝑖𝑖

  (83) 

where 𝐸𝐸{(𝒓𝒓𝑖𝑖)} is the total energy of the network which the following components, i.e., 

𝐸𝐸{(𝒓𝒓𝑖𝑖)} = 𝐸𝐸𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  (84) 

where  𝐸𝐸𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  are the in-plane elastic energy and bending energy, 

respectively. 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  are the energies that account for the conservation 

constraints of the surface area and volume.  

As we adopted WLC-POW network model, this energy can be calculated by 

𝐸𝐸𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = � �
𝑘𝑘𝐵𝐵𝑇𝑇𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

4𝑝𝑝
3𝑥𝑥𝑙𝑙 − 2𝑥𝑥𝑙𝑙3

1 − 𝑥𝑥𝑙𝑙
+

𝑘𝑘𝑝𝑝
(𝑚𝑚 − 1)𝑙𝑙𝑚𝑚−1�

all edges 

  (85) 

where 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum spring length allowed during the deformation, which 

is chosen as 2.2 times the equilibrium spring length based on our chosen WLC model 

[151]. 𝑥𝑥𝑙𝑙 = 𝑙𝑙/𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 , where 𝑙𝑙  is the instantaneous spring length. 𝑝𝑝  is the persistence 

length, and 𝑘𝑘𝑝𝑝 is the spring constant in the POW model. The system temperature 𝑇𝑇 is 

chosen as 310K in our simulations. m is a specified exponent which takes the value of 

2 in our simulations as suggested bt Fedosov et al. [151]. 

The bending energy 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is defined as, 
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𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = � 𝐾𝐾𝑏𝑏�1 − cos�𝜃𝜃𝛼𝛼𝛼𝛼 − 𝜃𝜃0��
all triangle 
adjacent 

  (86) 

where  𝐾𝐾𝑏𝑏  is the bending stiffness of the cell membrane. 𝜃𝜃0  and  𝜃𝜃𝛼𝛼𝛼𝛼  represent the 

spontaneous and instantaneous angles between two adjacent meshes. 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 are calculated respectively by, 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 (𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴0𝑡𝑡𝑡𝑡𝑡𝑡)

2𝐴𝐴0𝑡𝑡𝑡𝑡𝑡𝑡
+ �

𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴 − 𝐴𝐴0)2

2𝐴𝐴0all triangles  

  (87) 

𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉0𝑡𝑡𝑡𝑡𝑡𝑡)2

2𝑉𝑉0𝑡𝑡𝑡𝑡𝑡𝑡
 

 (88) 

where 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 , 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 denotes the constraint constants for the global cell 

area, local element (mesh) area, and cell volume, respectively. 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 ,  𝐴𝐴 , and  𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 

represent the instantaneous global cell area, local element area, and global cell volume, 

respectively, and their corresponding spontaneous values are indexed with “0”. 

The cell membrane in our simulations is assumed to be incompressible and its 

thickness assumed to be very small thus negligible. These means the membrane surface 

area would remain almost constant when it gets deformed. To impose such constraint, 

a larger value of  𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡  is chosen so that the membrane area can be well conserved. 

 

2.8 Cell adhesion model 

The adhesion of the CTC to the vessel wall is modeled with the probabilistic model 

proposed by Hammer and Apte [152]. The adhesive dynamics in this model is mediated 

by the interactions between ligands and receptors coating respectively on the vessel 

wall and CTC (see Fig. 2.9). The formation and dissociation of the bond between the 

receptors and ligands obey the following rule. For a receptor, its distance 𝑙𝑙𝑏𝑏 to all free 
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ligand (i.e., a ligand not bound to any receptors) will be calculated at each timestep. If 

this distance is within the reactive distance  𝑑𝑑on , a new bond could form with a 

probability of  𝑃𝑃on . A preexisting bond will get ruptured if the distance exceeds a 

disassociation distance of 𝑑𝑑off. However, if the distance is below 𝑑𝑑off, the bond may get 

ruptured at a probability of 𝑃𝑃off. 𝑃𝑃on and 𝑃𝑃off are defined as 

𝑃𝑃on = � 1 − 𝑒𝑒−𝑘𝑘on∆𝑡𝑡,   𝑙𝑙𝑏𝑏 < 𝑑𝑑on
 0,                       𝑙𝑙𝑏𝑏 ≥ 𝑑𝑑on

  (89) 

𝑃𝑃off = � 1 − 𝑒𝑒−𝑘𝑘off∆𝑡𝑡,   𝑙𝑙𝑏𝑏 < 𝑑𝑑off
 1,                       𝑙𝑙𝑏𝑏 ≥ 𝑑𝑑off

  (90) 

where ∆𝑡𝑡 is the time step interval, 𝑘𝑘on and 𝑘𝑘off are the association and dissociation rates 

which are calculated by, 

𝑘𝑘on = 𝑘𝑘on0 exp �−
𝜎𝜎on(𝑙𝑙𝑏𝑏 − 𝑙𝑙𝑏𝑏0)2

2𝑘𝑘𝐵𝐵𝑇𝑇
� 

 (91) 

𝑘𝑘off = 𝑘𝑘𝑜𝑜ff0 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝜎𝜎off(𝑙𝑙𝑏𝑏 − 𝑙𝑙𝑏𝑏0)2

2𝑘𝑘𝐵𝐵𝑇𝑇
� 

 (92) 

where  𝑘𝑘on0   and  𝑘𝑘𝑜𝑜ff0   are the unstressed reaction rates which are obtained when the 

distance 𝑙𝑙𝑏𝑏 equals to the equilibrium spring length 𝑙𝑙𝑏𝑏0. 𝜎𝜎on and 𝜎𝜎off are effective on and 

off strengths. For each bond, there exist a spring force 𝐹𝐹𝑠𝑠 along the receptor and ligand 

link to make the receptor adhere to the vessel wall. 

𝐹𝐹𝑠𝑠(𝑙𝑙𝑏𝑏) = 𝐾𝐾𝑠𝑠(𝑙𝑙𝑏𝑏 − 𝑙𝑙𝑏𝑏0)  (93) 

A stochastic Monte Carlo technique is used in this study to determine the state of the 

bond. For each ligand-receptor pair that is under the effective distance 𝑑𝑑on , and 

existing bond under the effective distance  𝑑𝑑off , two uniformly distributed random 

number 𝜉𝜉1 and 𝜉𝜉2 ∈ [0, 1] will be generated. A new bond will form if 𝑃𝑃on > 𝜉𝜉1, and an 

existing bond will rupture if 𝑃𝑃off > 𝜉𝜉2. 
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Fig. 2.9 Schematic diagram of the adhesion model 

 

CTC
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Chapter 3 Validations and grid independence study 

 

3.1 Planar Poiseuille flow 

A 3D planar Poiseuille flow is simulated to validate our LBM code. The planar 

Poiseuille flow has the following analytical solution. 

𝑈𝑈(𝑧𝑧) =
∆𝑃𝑃

2𝐿𝐿𝐿𝐿𝐿𝐿
(𝐻𝐻𝐻𝐻 − 𝑧𝑧2) (94) 

where 𝐻𝐻  is the distance between the two infinite plates which are parallel to the z-

direction and 𝐿𝐿 is the length of the computational domain in the flow direction. 𝜌𝜌 is the 

density and 𝜐𝜐 the kinetic viscosity of the fluid. ∆𝑃𝑃/𝐿𝐿 is the applied pressure gradient.  

In our simulation, a periodic boundary conditions are assumed in the x- and y-

directions. Instead of imposing pressure boundary conditions at the inlet and outlet, the 

pressure gradient is generated by applying a body force density 𝑓𝑓𝑑𝑑 at each fluid node. 

This is a widely used trick in the LBM community to simulate pressure-gradient driven 

Poiseuille flow, as in [38, 153]. The applied body force density is equivalent to a 

pressure gradient under the relation of 

∆𝑃𝑃
𝐿𝐿

= 𝑓𝑓𝑑𝑑 (95) 

The simulation domain is a cuboid, and the grid resolution is 30 × 30 × 150 . The 

simulation parameters are chosen that the result will give a maximal U-velocity of 0.009 

at Re=10. Periodic boundary conditions are imposed in the x- and y- directions and a 

half-way bounce-back scheme is applied at the plates to enforce the no-slip wall 

boundary condition. When the simulation converges, the simulated result was 

compared with the analytical solution   and a favorable agreement was obtained, as 
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shown in Fig. 3.1. 

 

 

Fig. 3.1 Comparison of the LBM simulation result and the analytical solution 

 

3.2 A flexible rope pendulum swings under gravity 

The structure solver is validated by simulating the swinging motion of a flexible rope 

pendulum under gravity with the absence of ambient fluid. The schematic diagram is 

illustrated in Fig. 3.2a. A flexible pendulum is pivoted and initially hanging sideways 

(with an initial angle of θ) from the vertical direction where gravity 𝐠𝐠 applies. Both the 

length 𝐿𝐿 and linear density 𝜌𝜌𝑓𝑓 of the pendulum are set to unity, and the magnitude of 

the gravity |𝐠𝐠| is 10. The dynamics of the pendulum is governed by Equation (50) with 

the hydrodynamic and repulsive forces being replaced by a gravity. The equation is 

solved with a finite-difference method described in Section 2.2. A typical cycle obtained 

is demonstrated in Fig. 3.2b, where asymmetry in the swinging motion can be observed 
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which is likely due to the flexibility of the pendulum. When θ is very small, an 

analytical solution for the tip displacement can be derived using a perturbation method 

[45], given that θ is very small and a hinged and a free-end boundary condition applied 

at the two ends of the pendulum. The analytical solution is given as following, 

𝑥𝑥(𝑠𝑠, 𝑡𝑡) = �
4𝜃𝜃𝜃𝜃
𝑧𝑧𝑖𝑖2

𝐽𝐽2(𝑧𝑧𝑖𝑖)
𝐽𝐽12(𝑧𝑧𝑖𝑖)

∞

𝑖𝑖=1

𝐽𝐽0 �𝑧𝑧𝑖𝑖�
𝐿𝐿 − 𝑠𝑠
𝐿𝐿 � cos�

𝑧𝑧𝑖𝑖
2
�|𝐠𝐠|
𝐿𝐿 �

 (96) 

where 𝐽𝐽0,  𝐽𝐽1and 𝐽𝐽2 are the Bessel function of the first kind of order zero, one and two, 

respectively. 𝑧𝑧𝑖𝑖 is the 𝑖𝑖𝑖𝑖ℎ positive root of 𝐽𝐽0(𝑧𝑧). 

For a totally flexible pendulum with a zero bending rigidity and a small initial angle 

(θ=0.01), the comparison of the simulated and analytically calculated tip x-

displacement at successive time is shown in Fig. 3.2c. We can see the results match 

closely. 
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Fig. 3.2 The schematic diagram of the swinging pendulum problem (a) simulated 

superposition of the pendulum in one cycle (𝐾𝐾𝑏𝑏 = 1 × 10−3,𝜃𝜃 = 0.15𝜋𝜋) (b) 

comparison of the tip 𝑥𝑥-displacement between numerical and analytical solutions 

(𝐾𝐾𝑏𝑏 = 0,𝜃𝜃 = 0.01) (c) 

 

3.3 An oscillating sphere in a quiescent fluid 

The flow solver and the immersed boundary method are validated by simulating an 

oscillating sphere in a quiescent fluid, which is a typical moving boundary problem that 

has been studied by Mei [154] and Tian et al. [155]. The sphere with a radius 𝑅𝑅  is 

initially placed at the center of a cuboid domain which has the size of 40𝑅𝑅 × 36𝑅𝑅 ×

θ

s

g

pivot
x

y(a) (b)
forth
back

(c)
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36𝑅𝑅, as shown in Fig. 3.3a. The sphere is represented by 4000 uniformly distributed 

Lagrangian points using the method of Saff and Kuijlaars [156]. The oscillation speed 

of the sphere is 𝑈𝑈 = 𝑈𝑈𝑚𝑚 cos(𝜔𝜔𝜔𝜔), where 𝑈𝑈𝑚𝑚 is the amplitude of the velocity and 𝜔𝜔 is 

the angular frequency of the oscillation. The problem is governed by two dimensionless 

number, i.e. the Reynolds number  𝑅𝑅𝑅𝑅 = 2𝑈𝑈𝑚𝑚𝑅𝑅/𝜐𝜐 , and the Stokes number  𝜀𝜀 =

�𝜔𝜔𝑅𝑅2/2𝜐𝜐 . A uniform grid is used to solve the problem with the resolution that 

each 𝑅𝑅 covers 20 grid points, and to improve computational efficiency, our algorithm 

is parallelized. To compare with the literature, the 𝑅𝑅𝑅𝑅 and 𝜀𝜀 are chosen as 40 and 4, 

respectively. The unsteady drag force is evaluated using the scheme proposed by Suzuki 

and Inamuro [157],  

𝐹𝐹𝐷𝐷 =
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

𝑉𝑉𝑠𝑠
− � 𝑓𝑓𝑥𝑥𝑑𝑑𝑑𝑑

 

𝑉𝑉𝑠𝑠∪𝑉𝑉𝑓𝑓
 (97) 

where  𝑉𝑉𝑠𝑠  and  𝑉𝑉𝑓𝑓  denote the solid and fluid domains, respectively. 𝑓𝑓𝑥𝑥  is the x-

component of the boundary force that exerted on the fluid points. After the flow 

becomes periodic, we compare the dimensionless drag force, defined by  𝐶𝐶𝐷𝐷 =

𝐹𝐹𝐷𝐷/6𝜋𝜋𝜋𝜋𝜐𝜐𝑈𝑈𝑚𝑚𝑅𝑅, with that of Mei [154] and Tian et al. [155]. The comparison is shown 

in Fig. 3.3b, where a good agreement is obtained, and Fig. 3.3c and Fig. 3.3d shows the 

instantaneous velocity and vorticity fields respectively at 0.6T. 
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Fig. 3.3 The schematic of the oscillating sphere problem (a) and comparison of the 

dimensionless drag force (b) the velocity (c) and vorticity (d) contours at t=0.6T 

 

3.4 Grid independence study 

The solution accuracy gets improved when more grid is used in the simulations. 

However, this will inevitably bring a heaver computational load as the required run time 

and memory surge in 3D cases. We therefore need to find a proper balance between the 

simulation accuracy and the computational cost. To that purpose, we performed a grid 

independence study to figure out the maximal effective grid spacing for the simulation 

problem (i.e., prove that the chosen grid spacing is sufficiently small).  

In this section, we performed the grid independence study by simulating the 
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deflection of a primary cilium in a steady flow. The flow 𝑅𝑅𝑅𝑅 based on the maximal 

upstream velocity and the channel height is 0.02. The cilium is anchored at the center 

of the bottom wall which is formed by endothelial cells, and the cilium initially orients 

perpendicularly to the bottom wall as shown in Fig. 3.4a. The domain is assumed 

periodic in the x- and y- directions to represent a bed of cilia. While in the z-direction, 

a no-slip boundary is imposed to the bottom plane and a symmetry boundary condition 

is applied to the top plane as we also assumed that the primary cilia present 

symmetrically in both the upper and bottom walls. For the cilium tip, a free-end 

boundary condition is applied.  

𝜕𝜕2𝑿𝑿
𝜕𝜕𝑠𝑠2

= 0,  
𝜕𝜕3𝑿𝑿
𝜕𝜕𝑠𝑠3

= 0 (98) 

At the basal end of the cilium, it is attached to a nonlinear rotational spring as depicted 

in Fig. 1, thus boundary condition can be written as, 

𝑿𝑿 = 𝑿𝑿0,  
𝑑𝑑2𝑿𝑿
𝑑𝑑𝑠𝑠2

−
𝐿𝐿
𝐾𝐾𝑏𝑏

�𝑘𝑘
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑

+ 𝛼𝛼 �
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑�

2

� = 0,  for s=0 (99) 

where  𝐿𝐿  is the length of the cilium, 𝑘𝑘  and  𝛼𝛼  are the linear and nonlinear spring 

constants, respectively. 

In the IBM, the Lagrangian points should be distributed neither too sparsely nor too 

densely. In a too sparse distribution, the fluid will leak between those Lagrangian points. 

When the distribution is too dense, two neighboring points may never get separated 

[158]. It is thus usually recommended to choose the Lagrangian grid spacing ∆s 

somewhere between 0.5-1 times the Eulerian grid spacing ∆x [93]. In our simulations, 

to save the computational cost, ∆s is set equal to the ∆x.  

In each simulation, the grid spacing ∆𝑥𝑥 is refined by a factor of 1.5, and to inhibit the 
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compressibility error in the LBM, the time step ∆t is scaled accordingly to ensure that 

∆𝑡𝑡/∆𝑥𝑥 is kept unchanged. Moreover, as mentioned above, the parameter h in the Dirac 

delta function has a physical meaning. To keep the cilium radius a constant during the 

grid refinement process, the value of h is also varied accordingly to make the function’s 

supporting distance remain unchanged. The time evolution of the deflection of the 

cilium tip 𝛿𝛿 at different grid spacing is shown in Fig. 3.4b. We can conclude that the 

solution is found grid independent at ∆x=1/60, as little difference can be observed when 

the grid spacing further gets refined to ∆x=1/90. 

 

 

Fig. 3.4 The schematic of a primary cilium deflected in a steady flow (a) and the time 

evolution of the deflection of the cilium tip 𝛿𝛿 at different grid spacing with the inset 

showing the equilibrium cilium profile (b) 
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Chapter 4 The dynamics of an array of primary cilia in an 

oscillating Newtonian fluid flow 

 

4.1 Model formation and simulation setup 

In this chapter, we simulated the dynamics of primary cilia in an oscillating Newtonian 

fluid flow. We first consider the scenario that primary cilia periodically and 

symmetrically present at the bottom and upper plates, which can be viewed as two 

infinite cilia arrays, and more importantly, all the primary cilia are assumed to move 

synchronously. This allows us to solve only one motion equation for the primary cilia 

with periodic and symmetry boundary conditions, as shown in Fig. 4.1. The primary 

cilium in our simulations is anchored at the center of the bottom plate (wall) of the 

simulation box. The two plates in Fig. 4.1 are only a rough approximation of the support 

substrate (such as the inner wall of blood vessels and the collecting duct in renal tubules) 

for primary cilia. Here we do not take the geometry curvature into consideration and 

the plates/walls are assumed to be rigid and impermeable. The flow is assumed to be 

incompressible, laminar, Newtonian, and oscillatory, and it can be characterized by two 

dimensionless numbers, i.e., the peak Reynolds number Repeak and the Womersley 

number Wo. As we simulated only half of the domain by using a symmetry boundary 

condition, these two numbers are defined as, 

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑢𝑢0𝐷𝐷
𝜐𝜐

, 𝑊𝑊𝑊𝑊 = 𝐷𝐷�
2𝜋𝜋𝜋𝜋
𝜐𝜐

 
 (100) 

where 𝐷𝐷 is the distance between the upper and bottom plates where primary cilia anchor 

at. 𝑢𝑢0 is the maximal flow speed when the oscillating frequency 𝑓𝑓 = 0, i.e. there is no 
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oscillation. We also introduce the following non-dimensionalization 

𝐿𝐿∗ =
𝐿𝐿
𝐷𝐷

, 𝐿𝐿𝑑𝑑∗ =  
𝐿𝐿𝑑𝑑
𝐿𝐿

 , 𝑊𝑊𝑑𝑑
∗ =  

𝑊𝑊𝑑𝑑

𝐿𝐿
    (101) 

where the quantities with asterisk denote their non-dimensional counterparts. 

The pulsatile flow is driven by a temporally oscillating pressure gradient which has 

a sinusoidal waveform.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴sin(2𝜋𝜋𝜋𝜋𝜋𝜋)  (102) 

where A is amplitude of the waveform, which is determined by 𝐴𝐴 = 8𝜌𝜌𝜌𝜌0𝜐𝜐/𝐷𝐷2.  

As we are focusing on the dynamics of primary cilia in relatively small vessels, the 

physiological-relevant Repeak and Wo chosen here are relatively small, which indicate 

that the viscous effects dominate over the inertial and pulsatile effects in the flow. The 

basic parameters of this fluid-cilium coupling system are tabulated in Table 4.1.  

 

 

Fig. 4.1 The schematics of the considered problem 

 

Table 4.1 Basic parameters of the fluid-cilium coupling system in physical units 

Parameter Symbol Physical value 

D

Ld

Ld

Hd

L

Symmetry plane

Primary cilium

Simulation box

x

yz

Flow
Wd

Wd
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Distance between the two plates 𝐷𝐷 24μm 

Cilium length 𝐿𝐿 4, 6, 8μm 

Cilium diameter 𝑑𝑑 0.2μm [21] 

The height of the computational 

domain 
𝐻𝐻𝑑𝑑 =

1
2
𝐷𝐷 12μm 

Cilium spacing interval in x-direction 

(i.e. the length of the computational 

domain) 

𝐿𝐿𝑑𝑑 3, 6, 12, 18μm 

Cilium spacing interval in y-direction 

(i.e. the width of the computational 

domain) 

𝑊𝑊𝑑𝑑 4.8μm 

Fluid density 𝜌𝜌𝑓𝑓 1000kg/m3 

Cilium density 𝜌𝜌𝑐𝑐 1110kg/m3 [159] 

Cilium linear density 𝜌𝜌𝑙𝑙 = 𝜌𝜌𝑐𝑐
𝜋𝜋𝑑𝑑2

4  8.72 × 10−12kg/m 

Fluid kinematic viscosity 𝜐𝜐 1.2 × 10−6m2/s 

Bending rigidity of cilium 𝐾𝐾𝑏𝑏 1. 5 × 10−23Nm2 

Linear spring constant 𝑘𝑘 4.6× 10−12N/rad [5] 

Nonlinear spring constant 𝛼𝛼 −1 × 10−10N/rad2 [5] 

Peak Reynolds number Repeak 0.05-0.3 

Womersley number Wo 0.4-1.5 

 

For the boundary conditions, the periodic boundary condition described in Section 

2.1.3.1 is applied to the x- and y- directions. A symmetry boundary condition is imposed 

to the upper plate while the bottom plate is assumed to be no-slip which is implemented 

with the half-way bounce-back scheme described in Section 2.1.3.2. For the primary 

cilium, a free-end boundary condition is imposed at its distal end (i.e., cilium tip), which 
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means that the bending moment and transverse stress vanish at this end. In mathematics, 

this would require that, 

𝑑𝑑2𝑿𝑿
𝑑𝑑𝑠𝑠2

=
𝑑𝑑3𝑿𝑿
𝑑𝑑𝑠𝑠3

= 0,   𝑎𝑎𝑎𝑎 𝑠𝑠 = 𝐿𝐿  (103) 

The basal end of the cilium is applied with a torque due to the deformation of the 

attached rotational spring, in that case the boundary condition becomes [5] 

𝑿𝑿 = 𝑿𝑿0 

𝑑𝑑2𝑿𝑿
𝑑𝑑𝑠𝑠2

=
𝐿𝐿
𝐾𝐾𝑏𝑏

�𝑘𝑘
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑

+ 𝛼𝛼 �
𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑�

2

� ,   𝑎𝑎𝑎𝑎 𝑠𝑠 = 0 

 

(104) 

where  𝐿𝐿  is the length of the cilium, 𝑘𝑘  and  𝛼𝛼  are the linear and nonlinear spring 

constants, respectively. 

 

4.2 A baseline case 

We first look at how these synchronized primary cilia get deflected and examine their 

impact on the flow pattern. Without losing generality, a baseline case with Repeak and 

Wo at 0.2 and 0.6, respectively, is chosen and studied. The length ratio 𝐿𝐿∗ is 1/4 and the 

cilium spacing intervals in x- and y-directions are  𝐿𝐿𝑑𝑑∗ = 2.0  and  𝑊𝑊𝑑𝑑
∗ = 0.8 , 

respectively. The simulated cilium initially orients perpendicularly to the bottom wall 

and is unstressed. An oscillating flow comes and deflects the cilium, making it flaps left 

and right. After several oscillating cycles, the cilium’s flapping motion becomes 

periodic, and then we start to record data for analysis.  

The cilium profile in a typical flapping cycle is shown in Fig. 4.2, where the flapping 

motion is decomposed into a forward stroke and a backward stroke. Here a forward 

stroke denotes a clockwise deflection process while a backward stroke refers to a 
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counterclockwise deflection process. We can see that the flapping is two-dimensional 

and totally symmetrical in term of the cilium profile, which means that the forward and 

backward stokes are proceeded in the same fashion but in opposite directions. No 

straight cilium profile can be observed during the entire flapping cycle, indicating that 

the cilium is tressed all the time during this process. It is also noticed that no out-of-

plane cilium motion is observable for such cilia arrangement. In each stroke, the middle 

section of the cilium seems to lead the rest section in the flapping, while there is an 

obvious lag at the cilium’s tip section. The flapping dynamics of primary cilium we 

observed is similar with the ciliary oscillation captured in renal tubular flow by 

O’Connor et al. [160]. Therefore, it is very likely that the flow in the renal tubular is 

oscillatory rather than unidirectional. 

 

 

Fig. 4.2 The forward and backward strokes in a flapping cycle 

 

When the cilium gets deflected, one side of its membrane will be stretched while the 

other side will be compressed at the same location. For the chosen case, two typical 

stretch states are observed during the deflection process, as shown in Fig. 4.3. In the 

first stretch state, the cilium is distorted in one direction, and the direction of the profile 

curvature (i.e., its principal normal) does not vary along the cilium length. This makes 
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one side of the membrane under stretch while the other under compression throughout 

the cilium length. In the second stretch state, the direction of the profile curvature is 

found to vary once along the cilium length. As a result, each side of the cilium 

membrane will be partially under stretch and partially under compression due to the 

simultaneously exist of two curvature directions in the profile. 

 

 

Fig. 4.3 The observed two stretch states during the deflection process 

 

The time evolution of the cilium height (scaled by the cilium length) is shown in Fig. 

4.4a. The cilium is observed to lie low and never reach its initial height L (the maximal 

and average heights are 0.79L and 0.55L, respectively) in a flapping cycle, which is 

endowed by its low bending rigidity. By adopting a more streamlined profile during the 

deflection, the primary cilium can decrease the hydrodynamic resistance and at the 

same time alleviate its disturbance to the fluid flow, making itself less intrusive as a 

flow sensor. The time evolution of the basal rotation angle is presented in Fig. 4.4b, 

where the basal rotation angle of the cilium is observed to vary between −14. 2° and 

14. 2°. The evolution curve of the angle is also found to be distinct from the applied 

pressure gradient waveform and there is a rapid decrease after the value reaches its 

peaks and valleys. 
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Fig. 4.4 The time evolution of the scaled cilium height (a) and basal rotation angle (b) 

 

The time evolutions of the scaled tip deflection and tip angular speed (TAS) are 

shown in Fig. 4.5a, and b, respectively, where the normalized pressure gradient 

waveform is appended for reference. Compared with the applied pressure gradient 

(input signal), a phase lag (more than 1/4 oscillating cycle) in the tip defection curve 

can be observed in Fig. 4.5a, which is consistent with the two-dimensional result of 

O’Connor et al [38]. The phase lag is due to the low but nonnegligible bending rigidity 

of the primary cilium, which resists the deformation caused by the flow drag. 

Interestingly, unlike the tip deflection, a very limited phase lag is observable in the TAS 

(see Fig. 4.5b), suggesting that the TAS and the pressure gradient signal can be better 

synchronized during the deflection/sensing process. Therefore, the TAS is better in 

identifying the variations of pressure gradient signal due to its fast response speed 

which will cause little delay. We also noticed that the peak and valley values of the TAS 

are obtained when the cilium’s deflection is around zero (i.e., when the cilium tip 

swings over its basal end). 

(a) (b)
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As it has been experimentally verified that the opening of the ion channels in the 

cilium membrane is correlated with the local tensile stress [8, 9]. The tensile stress of a 

primary cilium is approximately proportional to its curvature due to its large aspect 

ratio. Therefore, the term “maximal curvature” and the “maximal tensile stress (MTS)” 

in this study can be used synonymously. As a result, the stretch-sensitive ion channels 

localized at membrane area with larger curvature would be prioritized and more likely 

to get activated during the deflection process. The location of the MTS (scaled by the 

cilium length) as a function of time is plotted in Fig. 4.5c. The previous numerical 

studies by Rydholm et al. [37] and Young et al. [35] on cilium deflection in a steady 

flow predicted an MTS location at the cilium base region. However, when it comes to 

an oscillating flow, we observe that the MTS location may not always stay at the base 

region, instead it is found to periodically varies (relocated) during the deflection process 

(see Fig. 4.5c). To be more specific, starting from the base point (where the MTS 

location is found at for roughly half of a flapping cycle), the MTS location is found to 

propagate forward to the cilium tip by a certain distance. With the chosen simulation 

parameters, the propagation distance can be as far as 0.56L. Beyond this observation, 

the relocation of MTS is found to typically happen in the first halves of the forward and 

backward stokes, where the value of TAS is increasing.  
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Fig. 4.5 Time evolutions of the scaled tip deflection (a), tip angular speed (b), and 

scaled MTS location (c) 

 

To investigate the local curvature distribution along the cilium length during the 

deflection, three equally spaced sites on the cilium are selected (see Fig. 4.6a), which 

represent the lower, middle, and upper parts of the cilium, respectively. Fig. 4.6b shows 

the time evolutions of the curvature at these sites. A significantly lower maximal 

curvature can be found at Site A. Site C has the largest maximal curvature among these 

three sites, though its average curvature is lower than that of Site B. Despite its low 

value, the curvature at Site A is found to be almost in synchronization with the applied 

pressure gradient, while an obvious phase difference exists for the other two sites. A 
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smaller phase difference means a fast respond speed and less delay. Therefore, it would 

be reasonable to speculate that the lower part of primary cilia may be most responsible 

for detecting the variations of those flow information. 

 

 

Fig. 4.6 Location of the three sites (a) and time evolutions of the curvature at the three 

sites (b) 

 

The flow pattern in the deflection plane during a flapping cycle is given in Fig. 4.7, 

where the fluid motion is captured by streamlines. T1-T5 are some typical moments 

picked from a forward stroke while T6-T10 are chosen from the subsequent backward 

stroke. The flow features in T6-T10 are almost identical to those in T1-T5, only in the 

opposite direction. Due to the presence of primary cilium, the flow is disturbed 

especially in the near-wall region. However, unlike the moderate-Re cases that reported 

in [38], no interspersed recirculation regions are observable between the cilium spacing 

in our low-Re case. When the cilium approaches to its deflection limit, the disturbance 

becomes even stronger and a recirculation zone is formed around the cilium.  
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Fig. 4.7 The flow pattern in the deflection plane during a flapping cycle 

 

Fig. 4.8a and b show the evolutions of the recirculation zone and the corresponding 

u-velocity contour during T5-T6. It is observed that, the recirculation zone initially 

forms around the lower section of the primary cilium with a very limited size. However, 

as time progresses, the zone gradually gets expanded and will eventually span the entire 

length of the cilium as the cilium deflects more to its deflection limit. During this 

process, the center of the recirculation zone is observed to move from the cilium’s lower 

section to its tip section (see Fig. 4.8a). The presence of the primary cilium decelerates 

the fluid motion near the cilium surface due to the viscous effects (known as the no-slip 

condition). As a result, the adjacent fluid seems to stick to the cilium surface, as can be 
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seen from Fig. 4.8b. During the deflection process, it is noticed that each node of the 

cilium does not reach its deflection limit (i.e., zero velocity moment) synchronously, 

and as mentioned earlier, the lower section synchronized better with the applied 

pressure signal. Therefore, the cilium’s section closer to the basal end tends to reach its 

deflection limit more quickly. The lower section could already start its reversal motion 

when the tip section is about to reach its deflection limit. This brings opposite 

movements at different sections of the cilium. Due to the no-slip condition, two 

opposite fluid motions are generated, which further creates a recirculation zone (see Fig. 

4.9a) at the lower section. The zone goes up as the reversal motion propagates towards 

the cilium tip. The 3D vortical structure (identified using the Q criterion [161]) at T5 is 

shown in Fig. 4.9b, where the tooth-like vortex is mainly found at the cilium tip section, 

but is not strong enough to shed from the cilium surface. 

 

 

Fig. 4.8 The evolution of the recirculation zone (a) and the u-velocity field (b) during 

T5 to T6 

(a)

(b)
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Fig. 4.9 A schematics of the formation of the recirculation zone (a) 3D vortical 

structure at T5 with the iso-surface of 𝑄𝑄 = 4 × 10−10 (b) 

 

The flow-induced wall shear stress (WSS) is a kind of stimulus that endothelial cells 

forming the vessel wall are particularly sensitive to. Both low and oscillatory WSS have 

been implicated as potential causes for cardiovascular diseases such as atherosclerosis 

[162]. To examine the influence of primary cilia on the WSS distribution (hereafter the 

WSS in this study refers to the magnitude of the WSS vector unless otherwise stated), 

the WSS contour at the bottom plate is evaluated and shown in Fig. 4.10. As the 

variation of the WSS is also symmetric in a flapping cycle, only the WSS distribution 

in a forward stroke is presented. A uniform WSS distribution can be expected when the 

cilium is absent in the flow field. However, in the case when primary cilia are presented, 

the WSS distribution no longer remains uniform but varies in space. The region around 

the site where the primary cilium anchors tend to have a lower WSS. The presence of 

cilium also has a larger impact on the downstream WSS distribution compared with that 

in the upstream. When the flow becomes stronger (i.e., the velocity field increases in 

magnitude), the cilium’s impact also gets strengthened as the affected area is extended 

along the flow direction. The time evolutions of the average WSS in cases with and 
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without cilia are shown in Fig. 4.11. We can see that the presence of cilia reduces the 

average WSS. 

 

 

Fig. 4.10 The snapshots of the WSS distribution in a forward stroke 
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Fig. 4.11 Time evolutions of the average WSS in cases with and without cilia 

 

To characterize the oscillatory features of the WSS field during oscillating cycles, we 

follow James et al. [163] to define an oscillatory shear index (OSI) which represents 

the disturbed flow patterns developed that result in the reverse flow velocity 

components occurring near the vessel walls. The OSI is calculated by 

OSI =
1
2

 �1 −
�∫ 𝜏𝜏𝑥𝑥𝑑𝑑𝑑𝑑

𝑇𝑇
0 �

∫ |𝜏𝜏𝑥𝑥|𝑑𝑑𝑑𝑑𝑇𝑇
0

�   (105) 

where T is the oscillating cycle, 𝜏𝜏𝑥𝑥 is the component of the WSS vector in the flow 

direction (i.e., the x-component). The value of OSI ranges from 0 to 0.5, with the value 

of 0 denoting a totally unidirectional WSS and the value of 0.5 denoting a purely 

unsteady and oscillatory flow with a net amount of zero WSS.  

As the flow is driven by a sinusoidal pressure gradient waveform, the OSI at the 

bottom plate should be uniformly distributed with a value of 0.5 when there is no cilium 

presented. The OSI distribution in the presence of cilium is shown in Fig. 4.12. We can 

see that the OSI is not uniformly distributed, indicating that the presence of primary 

cilia affects the oscillation characteristic of the WSS. Though the primary cilium 

occupies only a very small portion of the wall area, its effect on the OSI distribution 

should not be underestimated: the affected region (i.e., the area has an OSI value less 

than 0.5) is taking up more than 50% of the wall area for the chosen case. Moreover, 

the regions in front of and behind the anchor points would be affected more 

considerably, while the regions above and below the anchor points turn out to be less 
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affected. Each affected region in Fig. 4.12 resembles the shape of “8” and the cilium’s 

impact on the OSI value diminishes with distance. 

 

 

Fig. 4.12 OSI distribution due to the presence of primary cilia 

 

4.3 Parametric study 

4.3.1 Effect of the Repeak 

In this section, the dynamics of primary cilium at various Repeak is investigated. The 

Repeak is chosen at 0.05, 0.1, 0.15, 0.2, 0.3, and 0.4, respectively, while the Wo is fixed 

at 0.6. The length ratio 𝐿𝐿∗ is set to 1/4 while the cilium spacing intervals in x- and y-

directions are chosen as 𝐿𝐿𝑑𝑑∗ = 2.0 and 𝑊𝑊𝑑𝑑
∗ = 0.8, respectively. 

  The simulated superpositions of the cilium profile at four different Repeak are shown 

in Fig. 4.13, where the trajectories of the tip positions are highlighted. When the Repeak 

increases, a larger flow drag will be applied to the primary cilium. As a result, the span 

of deflection increases, and the cilium behaves more complaint which further decreases 

the overall cilium length during the deflection process. At Repeak=0.05, the tip 
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trajectories between the forward and backward strokes nearly get overlapped. However, 

as the Repeak increases, the two trajectories start to make a difference, and when the 

Repeak exceeds 0.2, the tip trajectory resembles the shape of “8”.  

 

 

Fig. 4.13 Superpositions of the cilium profile at four different Repeak 

 

The time evolutions of the tip deflection at four different Repeak is shown in Fig. 4.14a. 

We can see that increasing the Repeak brings a larger tip deflection, which is an 

anticipated result and consistent with the result of Heys et al. [164]. It is also found that 

varying the Repeak will not change the phases of the tip deflection (i.e., the tip deflection 

varies synchronously at different Repeak). Fig. 4.14b plots the maximal tip deflection as 

a function of Repeak. The maximal tip deflection increases nonlinearly with the Repeak, 

and we find the data can be well fitted by the following curve: 

Repeak=0.05 Repeak=0.2

Repeak=0.1 Repeak=0.3
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δ𝑚𝑚∗ = 0.93378 − 0.93256 ∗ (9.1352e − 6)Repeak   (106) 

where δ𝑚𝑚∗ = 𝛿𝛿𝑚𝑚/𝐿𝐿  is the dimensionalized maximal tip deflection. The TAS at four 

different Repeak is plotted versus time in Fig. 4.15. An increase in the TAS can be 

observed when the flow Repeak increases, and when the Repeak is above 0.2, abrupt 

changes in the TAS can be observed when the cilium tip swings over its basal point due 

to the increased radical movement of the cilium tip. 

 

 

Fig. 4.14 Time evolutions of the tip deflection at four different Repeak (a) and the 

maximal tip deflection as a function of Repeak (b) 

 

 

(b)(a)
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Fig. 4.15 Time evolutions of the TAS at four different Repeak 

 

The time evolutions of the maximal curvature and MTS location at four different 

Repeak are shown in Fig. 4.16a and b, respectively. When the Repeak is increased, a larger 

curvature can be obtained, and the evolution curve fluctuates more sharply. Propagation 

of the MTS location can be found in all chosen Repeak cases. The MTS location can only 

propagate for a maximal distance of 0.42L from the base at Repeak=0.05. However, the 

distance increases to 0.62L when the Repeak is increased to 0.3. This suggests that the 

higher the Repeak, the closer the MTS location can be propagated to the cilium tip. Apart 

from that, increasing the Repeak also promotes such propagation as the MTS location is 

observed to stay at the base region for a reduced time period when Repeak increases. 

 

 

(a)

(b)
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Fig. 4.16 Time evolutions of the maximal curvature (a) and MTS location (b) at four 

different Repeak 

 

The time evolutions of the average WSS for cases with and without cilia at three 

different Repeak are shown in Fig. 4.17a. The average WSS is found to increase 

monotonically with the Repeak. Compared with the corresponding without-cilia case, a 

decrease (time-averaged) in the spatially-averaged WSS can be observed in all the 

simulated Repeak cases when primary cilia are presented. Fig. 4.17b plots the decrease 

in the average WSS caused by the presence of cilia at various Repeak. The decrease is 

found to increase first and then decrease with the Repeak. The turning point is found at 

Repeak=0.2, where the decrease in the average WSS reaches its maximum, at a 

percentage of nearly 19%. The OSI distributions at four different Repeak are depicted in 

Fig. 4.18. A larger affected region with lower OSI values can be observed for a higher 

Repeak.  

 

 

Fig. 4.17 Time evolutions of the average WSS in cases with and without cilia at 

different Repeak (a) decrease in the average WSS due to the presence of cilia at various 

(a) (b)
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Repeak (b) 

 

 

Fig. 4.18 OSI distributions at four different Repeak 

 

 

4.3.2 Effect of the Wo 

The Wo is another important dimensionless number in cardiovascular system, which 

expresses the ratio of the oscillatory inertia force to the viscous/shear. In different types 

of human blood vessels, this number varies significantly due to the variations in vessel 

size across the vasculature system. Based on the vessel size we chose, simulations of 

the deflections of the primary cilium at a Wo range of 0.4-1.5 were performed at a fixed 

Repeak of 0.2. Varying of Wo here is achieved by altering the oscillating frequency 𝑓𝑓 in 

Equation (100) to save computational cost. The length ratio 𝐿𝐿∗ is set to 1/4 while the 

cilium spacing intervals in x- and y-directions are chosen as 𝐿𝐿𝑑𝑑∗ = 1.5 and 𝑊𝑊𝑑𝑑
∗ = 0.6, 

respectively. 
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  The simulated cilium profiles in one oscillating cycle at four different Wo are shown 

in Fig. 4.19. An increase in the Wo will lead to a decrease in the span of deflection, and 

the primary cilium appears to be more flexible at low-Wo cases as it deforms more 

significantly. The primary cilium deflects (its potential energy increases) because of the 

kinetic energy it harvested from the fluid flow. When the Wo increases, the kinetic 

energy that a cilium can harvest will decrease in an oscillating cycle T due to the rapid 

change of the pressure gradient (T will decrease, thus the summation of the driven force 

over T (i.e. applied energy) will also decrease). Fig. 4.20a plots the maximal tip 

deflection at various Wo cases. It is found that the maximal tip deflection is inversely 

related to the Wo, and their relationship can be well fitted by the following polynomial: 

δ𝑚𝑚∗ = 0.3525 + 3.5869𝑊𝑊𝑊𝑊 − 7.2810𝑊𝑊𝑊𝑊2 + 5.0141𝑊𝑊𝑊𝑊3 − 1.1905𝑊𝑊𝑊𝑊4  (107) 

Compared with the applied pressure gradient, a phase lag in the tip deflection can be 

observed for all simulated Wo cases (see Fig. 4.20b). The minimal phase lag is found at 

Wo=0.4 among the selected cases. For the cases with Wo>0.4, the phase lags between 

different cases are quite close, and the value is about 0.6π.  
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Fig. 4.19 Superpositions of the cilium profile at four different Wo 

 

 

Fig. 4.20 The maximal tip deflection as a function of Wo (a) and phase lags in tip 

deflection for different Wo (b) 

 

The phasic evolutions of the TAS and maximal curvature at four different Wo are 

displayed in Fig. 4.21a and b, respectively. A phase difference in both these two 

quantities is observable among different Wo. The amplitude of the TAS only varies 

Normalized dp/dx

(a) (b)
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slightly with the Wo. However, the profiles of the curve at different Wo can be very 

different. The curve is smooth for the cases with Wo larger than 0.8. For the other cases, 

the TAS varies more sharply and there are small fluctuations observable around those 

peaks and valleys. Increasing the Wo will also lead to a decrease in the maximal 

curvature (see Fig. 4.21b) and the maximal propagation distance of the MTS location 

(see Fig. 4.21c).  

 

 

Fig. 4.21 Phasic evolutions of the TAS (a), maximal curvature (b), and scaled MTS 

location (c) at four different Wo 

 

(a)

(b)

(c)
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Fig. 4.22a shows the phasic evolutions of the average WSS in the cases with and 

without cilia for various Wo. When the primary cilia are absent, the phasic evolution of 

the average WSS does not vary with the Wo. Therefore, we do not show them repeatedly 

in the figure while only present one of them. For all the selected Wo, the average WSS 

tends to be lower when cilia are presented, and the smaller the Wo, the lower the average 

WSS. Fig. 4.22b plots the decrease in the average WSS due to the presence of cilia at 

various Wo. We can see that the decrease drops almost linearly with the Wo, which 

shows a similar trend with the maximal tip deflection shown in Fig. 4.20a. The effect 

of primary cilia on the OSI distribution at four different Wo is presented in Fig. 4.23. A 

larger affected region (the region with OSI value less than 0.5) with smaller OSI value 

can be observed in the case with a lower Wo. 

 

 

Fig. 4.22 Phasic evolutions of the average WSS in cases with and without cilia for 

various Wo (a) decrease in the average WSS due to the presence of cilia at various Wo 

(b) 

 

(a) (b)
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Fig. 4.23 OSI distributions at four different Wo 

 

4.3.3 Effect of the cilium length 

The primary cilium can dynamically alter its length to regulate its mechanosensitive 

response [159, 165, 166]. We therefore investigated the effect of the length ratio L* (i.e. 

𝐿𝐿 ∗= 𝐿𝐿/𝐷𝐷, which characterizes how much the cilium extends into the lumen) on the 

cilium dynamics. In our current study, three different cilium length are considered by 

setting the length ratios as L*=1/6 (short), 1/4 (medium), and 1/3 (long), respectively. 

The chosen Repeak and Wo is 0.2 and 0.6, respectively, and the spacing intervals are set 

as 𝐿𝐿𝑑𝑑∗=2.0 and 𝑊𝑊𝑑𝑑
∗=0.8. 

  The simulated superpositions of the cilium profile in a flapping cycle at three 

different L* are presented in Fig. 4.24. There is an obvious difference among these 

superpositions. Due to the fluid viscosity, the velocity at the near-wall region is much 

lower compared to that in the center region. A larger velocity will bring a larger flow 

drag. Therefore, a shorter cilium is observed to has a smaller deflection and a more rigid 
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(straighter) profile (see Fig. 4.24). When L* increases, the cilium extends more into the 

lumen, which allows the cilium to collect more flow information. In the meanwhile, it 

is exposed to a larger hydrodynamic load, which will deflect it more significantly (see 

Fig. 4.26a). Therefore, in the case of sensing a weak flow, a primary cilium can amplify 

the flow information by increasing its length extending into the lumen. Interestingly, 

for a long cilium that extends into 1/3 of the lumen, some of its profiles are found to 

vary twice in the curvature direction due to the increased inertial force obtained at its 

tip section. In that case, the base, middle and tip sections of the cilium will be under 

their own stress sates different from their neighbors’. This is the third stretch state 

observed in our simulation (see its schematic diagram in Fig. 4.25). Though a longer 

cilium will have a larger tip deflection under the same flow condition (see Fig. 4.26a), 

the scaled cilium deflections for different L* turn out to be very close, as can be seen 

from Fig. 4.26b.  

From Fig. 4.26a and c, we can see that a smaller phase lag in both the tip deflection 

and TAS is observed when the length ratio is reduced to L*=1/6, whereas no obvious 

phase differences in these two quantities are observable between the medium and long 

cilia. This implies that a primary cilium may be able to adjust its response speed via 

altering its length. Unlike the tip deflection, a decrease in the TAS is observable when 

the cilium becomes longer, as shown in Fig. 4.26c.  
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Fig. 4.24 Simulated superpositions of the cilium profile in a flapping cycle at three 

different L* (each profile is scaled by its own cilium length L) 

 

 

Fig. 4.25 Stretch state 3 observed for L*=1/3 

 

L*=1/6
(short)

L*=1/4
(medium)

L*=1/3
(long)

L*

L

D

1/6 1/4 1/3
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Fig. 4.26 Time evolutions of the unscaled (a) and scaled (b) tip deflection and TAS (c) 

at three different L* 

 

Fig. 4.27 shows the time evolutions of the maximal curvature for three different L*. 

The maximal curvature increases nonlinearly with the length ratio L*. A dramatic 

increase in the maximal curvature is observed when the L* is increased from 1/6 to 1/4. 

However, the further increase of L* to 1/3 only leads to a very limited increment in the 

maximal curvature. Nonetheless, a longer cilium can still be viewed as a more sensitive 

mechanotransducer due to its increased membrane strain (i.e., the curvature in our study) 

at the same flow condition.  

 

(a) (b)

(c)

Normalized 
dp/dx

Normalized 
dp/dx
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Fig. 4.27 Time evolutions of the maximal curvature for three different L* 

 

The time evolutions of the scaled MTS location for three different L* are shown in 

Fig. 4.28a. Propagation of the MTS location is observable in all the three simulated 

cases. Fig. 4.28b plots the maximal propagation distances (scaled) as a function of L*. 

An increase in the propagation distance is observed when the L* is increased from 1/6 

to 1/4. However, the distance starts to drop as the length ratio further increases to 

L*=1/3. The drop is very likely due to a third curvature direction (see Fig. 4.25) occurs 

during the cilium deflection in the case of L*=1/3. 

 

 

Fig. 4.28 Time evolutions of the scaled MTS location for three different L* (a) and the 

scaled maximal propagation distances as a function of L* (b) 

(a) (b)

1/6 1/4 1/3
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The time evolutions of the average WSS in the cases with and without cilia for 

various L* are shown in Fig. 4.29a. Fig. 4.29b shows the decrease in the average WSS 

due to the presence of cilia at various L*. The decrease increases monotonically with 

the L*, indicating that a longer cilium will reduce the WSS more remarkably. The effect 

of L* on the OSI distribution is shown in Fig. 4.30, where the cilium with a medium 

length ratio has a larger impact on the OSI distribution compared to the short one. 

 

 

Fig. 4.29 Time evolutions of the average WSS in cases with and without cilia for 

various L* (a) decrease in the average WSS due to the presence of cilia at various L* 

(b) 

 

 

Fig. 4.30 OSI distributions at three different L* 

 

(a) (b)
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4.3.4 Effect of the spacing interval 

The effect of cilium spacing interval on cilium dynamics was also investigated in this 

study. Since the spacing interval in the y-direction (Wd*) has a far less significant impact 

on cilium deflection, this study only covers the spacing interval in the flow direction 

(i.e. the x-direction, denoted by Ld*). Simulations were run at Repeak=0.2, Wo=0.6, 

L*=1/4, and Wd*=0.8. The chosen Ld* is 0.5, 1.0, 2.0, and 3.0, respectively. A smaller 

value of Ld* represents a denser arrangement of the cilia array in the x-direction, while 

a larger value means a sparser arrangement. 

Fig. 4.31 shows respectively the time evolutions of the scaled tip deflection and TAS 

at different Ld*. Fig. 4.32a shows the time evolution of the maximal curvature at four 

different Ld* and Fig. 4.32b plots the maximal propagation distance as a function of 

Ld*. For cilia arrays with spacing intervals Ld*≤ 2.0, an increase in the tip deflection, 

maximal curvature, and maximal propagation distance can be observed when the 

arrangement becomes sparser. However, for those cilia arrays with spacing intervals 

Ld*≥ 2.0, these quantities turn out to be nearly identical.  

 

 

Fig. 4.31 Time evolutions of the scaled tip deflection (a) and TAS (b) at four different 

(a) (b)
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Ld* 

 

 

Fig. 4.32 Time evolution of the maximal curvature at four different Ld* (a) and the 

scaled maximal propagation distance as a function of Ld* (b) 

 

The recirculation zones at three different spacing intervals are presented in Fig. 4.33. 

In synchronized cilia arrays, neighboring cilia interact with each other via surrounding 

fluid. For a denser cilia array, the two adjacent recirculation zones interact with each 

other. However, as the spacing interval grows, the interacting becomes weaker. Once 

the spacing interval exceeds twice the cilium length (i.e. Ld*≥ 2.0), the spacing interval 

is found to have a nearly negligible impact on the cilium dynamics. A sufficiently large 

spacing interval (i.e. Ld*≥ 2.0) thus can be beneficial to improve the sensing accuracy 

of primary cilia as it reduces the interference from the neighboring cilia. This could be 

the reason why there is only one primary cilium at most for each endothelial or 

epithelial cell whose diameter happens to be about 2-3 times the length of primary 

cilium, which falls into this range. 

 

(a) (b)



97 
 

 

 

Fig. 4.33 Recirculation zones at three different spacing intervals 

 

The time evolutions of the average WSS in the cases with and without cilia for 

various Ld* are shown in Fig. 4.34a, where a lower average WSS is found for the case 

with a denser cilia array. The decrease in the average WSS due to the presence of cilia 

at various Ld* is plotted in Fig. 4.34b. The greatest decrease is found in the case of 

Ld*=0.5 at a percentage more than 50%, meaning the average WSS is more than halved 

at such spacing interval compared to that of the without-cilia case. The decrease in the 

average WSS is also observed to be sharper for a denser cilia array.  

 

(a) Ld*=1.0 (b) Ld*=2.0

(c) Ld*=3.0
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Fig. 4.34 Time evolutions of the average WSS in the cases with and without cilia for 

various Ld* (a) decrease in the average WSS due to the presence of cilia at various Ld* 

(b) 

 

The OSI distributions at four different Ld* are shown in Fig. 4.35, where the affected 

region (i.e., region with OSI value less than 0.5) are divided into different subregions 

based on their locations. When Ld*≤ 2.0 , the shapes of the affected region vary 

significantly with the spacing interval. When Ld*=0.5, there are only two subregions 

(i.e., subregion 2 and 3) visible, and the region in front of and behind the cilium (i.e., 

subregion 1) is too small to be noticed. For a spacing interval sparser than 0.5, we can 

observe three subregions, and as Ld* increases, subregion 1 will get expanded while 

subregion 2 and 3 will diminish. When Ld*≥ 2.0, subregion 1 dominates the affected 

region and the no significant variation on the OSI distribution can be observed when 

the Ld* further get increased, indicating that an enough separated cilium arrangement 

is obtained. 

 

(a) (b)
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Fig. 4.35 OSI distributions at four different Ld* 

 

4.4 Summary 

The dynamics of primary cilia in an oscillating Newtonian flow is numerically studied 

in this chapter. The oscillating flow is driven by a sinusoidal pressure gradient 

waveform. The primary cilia are assumed to move synchronously, and present at the 

bottom and upper plates periodically and symmetrically. The deflection process and the 

impact of primary cilia on the flow field are analyzed and discussed first. After that, a 

parametric study which covers the Repeak, the Wo, the cilium length, and the spacing 

interval, is performed to investigate how these parameters affect the flow-cilia 

interaction. Based on our simulation results, the following conclusions can be drawn. 

(1). The primary cilia are observed to do an in-plane flapping motion which is 

symmetrical in term of the cilium profile. Among all the simulated cases, three typical 

stretch states are captured. In the first stretch state, the direction of the profile curvature 
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does not vary along the cilium length, making one side of the ciliary membrane under 

stretch while the other under compression throughout the cilium length. In the second 

stretch state, the direction of the profile curvature is found to vary once along the cilium 

length. As a result, each side of the ciliary membrane will be partially under stretch and 

partially under compression. The third stretch state is observed for a long cilium that 

extends into 1/3 of the lumen. In this state, the cilium’s profile is found to vary twice in 

the curvature direction. In that case, the base, middle and tip sections of the cilium will 

be under their own stress sates which may be different from each other. 

(2). The MTS location may not always stay at the cilium’s base region, instead it is 

found to periodically propagate from the cilium’s base point to its tip by a certain 

distance. For primary cilia with short and medium length, an increase in the maximal 

tip deflection is accompanied with a greater propagation distance. While this may not 

necessarily apply to long primary cilia, as the possible occurrence of the third stretch 

state may greatly suppress the propagation of the MTS location. 

(3). The flow-induced curvature at the lower part of the primary cilium is well 

synchronized with the applied pressure signal, while an obvious phase lag in the 

curvature is observed for the rest parts of the cilium. A smaller phase lag means a fast 

respond speed and less delay. Therefore, it would be reasonable to speculate that the 

lower part of primary cilia may be responsible for detecting the variations of the flow 

information. 

(4). The presence of primary cilia slows down the velocity in the near-wall region and 

decreases the average WSS level. Under the same flow condition, the decrease is found 
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to be more significant when a cilium undergoes a larger span of deflection and/or when 

the spacing interval is reduced. Compared with the spacing interval, the span of 

deflection plays a marginal role in decreasing WSS. The presence of primary cilia is 

also found to affect the oscillation characteristic of the WSS by making the WSS in 

some regions less oscillatory. 

(5). For the ranges of parameters considered, an increase in the Repeak or cilium length 

is found to bring a larger span of cilium deflection and maximal curvature. An increase 

in the Wo, however, is found to decrease these two quantities. For a constant spacing 

interval, a larger span of deflection is found to correspond to a more uneven OSI 

distribution.  

(6). In a cilia array, neighboring cilia interact with each other via surrounding fluid. The 

interacting becomes weaker as the spacing interval increases. A sparser cilia array 

therefore tends to have a larger span of cilium deflection, maximal curvature, and 

propagation distance of the MTS location. For a medium Repeak and Wo, our simulation 

suggests that a spacing interval greater than twice the cilium length could effectively 

reduce the interference from the neighboring cilia thus improves cilium’s sensing 

accuracy. This could be the reason why there is only one primary cilium at most for 

each endothelial or epithelial cell whose diameter happens to be about 2-3 times the 

length of primary cilium. 
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Chapter 5 Cilium dynamics in an oscillating non-

Newtonian fluid flow 

 

In the previous chapter, we have studied the dynamics of primary cilia embed in a 

Newtonian fluid. Actually, this is the case considered in most of the published papers 

that involve the simulation of the dynamics of primary cilium. However, what happens 

when the fluid becomes non-Newtonian? This situation should be expected when it 

comes to the blood flow. The blood is a concentrated suspension containing a variety 

of blood cells. Experimental studies have demonstrated that blood flow exhibits non-

Newtonian behavior such as shear thinning, thixotropy, viscoelasticity, and yield stress 

[167]. Thus, it is more appropriate to consider blood as non-Newtonian fluid, especially 

in microvessels (vessels that have a diameter of 100μm or less) where its non-

Newtonian nature becomes even more obvious. As the flow’s non-Newtonian effect 

may play a role in governing cilium dynamics, in this chapter, the dynamics of primary 

cilium in non-Newtonian fluid will be numerically investigated. 

 

5.1 Power-law model 

The viscosity of the non-Newtonian fluid is characterized by a power-law model. As 

one of the most popular non-Newtonian viscosity models, the power-law model can 

model both pseudo-plastic and dilatant material behavior. In this model, the viscosity 𝜐𝜐 

of the fluid is assumed shear-rate 𝛾̇𝛾 dependent, and their relationship can be expressed 

as: 
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𝜐𝜐 = 𝑚𝑚𝛾̇𝛾𝑛𝑛−1 (108) 

where 𝑚𝑚  is the consistency index, which has the units m2s𝑛𝑛−2 . 𝑛𝑛  is the power-law 

index, which determines the response of the fluid to the variation of shear rate. For n < 

1, the fluid is shear thinning (pseudo-plastic), for n = 1 the fluid is Newtonian and for 

n > 1 the fluid is shear thickening (dilatant). The shear rate can be calculated by: 

𝛾̇𝛾 = �2𝐷𝐷𝐼𝐼𝐼𝐼 (109) 

where 𝐷𝐷𝐼𝐼𝐼𝐼 is the second invariant of the strain rate tensor, and it is defined as, 

𝐷𝐷𝐼𝐼𝐼𝐼 = � 𝑆𝑆𝛼𝛼𝛼𝛼 𝑆𝑆𝛽𝛽𝛽𝛽

3

𝛼𝛼,𝛽𝛽=1

 (110) 

in three-dimensional, where 𝑆𝑆𝛼𝛼𝛼𝛼 is the strain rate tensor, which is defined as, 

𝑆𝑆𝛼𝛼𝛼𝛼 =
1
2
�∇𝛽𝛽𝑢𝑢𝛼𝛼 + ∇𝛼𝛼𝑢𝑢𝛽𝛽� (111) 

  In N-S solvers, it is necessary to calculate the derivations of the velocity gradient to 

obtain  𝑆𝑆𝛼𝛼𝛼𝛼 , which complicates the non-Newtonian flow simulation and greatly 

increases the computational load. In the LBM with body force presents, the strain rate 

tensor can be calculated locally and efficiently at each grid point by  

𝑆𝑆𝛼𝛼𝛼𝛼 =
−3

2𝜌𝜌0𝑐𝑐2𝜏𝜏∆𝑡𝑡
�𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖�𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒� + 𝑆𝑆𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖

 (112) 

In Guo et al.’s split forcing scheme, 𝑆𝑆𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 is computed by [168], 

𝑆𝑆𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 =
(1 − 1

2𝜏𝜏)
𝑐𝑐𝑠𝑠2

𝑭𝑭 ∙ 𝑭𝑭 (113) 

The Reynolds number for non-Newtonian fluid simulated with power-law model can 

be defined as, 

𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 =
𝑢𝑢02−𝑛𝑛𝐷𝐷𝑛𝑛

𝑚𝑚
 (114) 

where 𝑢𝑢0 is the maximal (central) velocity of the channel and D the characteristic length 
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(in our case the distance between the two parallel plates). 

 

5.2 Validations of the power-law model 

The LBM with power-law non-Newtonian viscosity model was validated by simulating 

a pressure gradient driven non-Newtonian fluid flow in a 3D box, which is bounded by 

two infinite parallel plates. The half-way BB scheme was implemented to enforce the 

no-slip boundary condition at the plates and for the rest boundaries, periodic boundary 

conditions are assumed. The pressure gradient is generated by applying a body force 

density on each lattice node. Simulations were run at 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 =0.3, and the power-law 

index is chosen as n=0.5, 1.0, and 1.5, respectively. Our simulated results were 

compared to the analytical solution, which is given by [169], 
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where ∆𝑃𝑃/𝐿𝐿 is the pressure gradient in the flow direction. 

The comparison of the LB simulation result and the analytical solution at various n 

is shown in Fig. 5.1, where we can see that our simulated velocity profiles closely match 

the analytical ones. When n=1.0, m=ν, the fluid is Newtonian, thus the velocity shows 

a parabolic profile. As n is decreased to 0.5, the fluid becomes shear-thinning, and its 

viscous effect becomes less significant in the high-shear region (near-wall region), thus 

its velocity profile is flatter. When n=1.5, the fluid behaves shear thickening, and the 

viscous effect is more obvious in the high-shear region. As a result, greater curvature is 

observed around the central peak velocity. 
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Fig. 5.1 The simulated velocity profiles (normalized) at different n 

 

5.3 Simulation setup 

With the power-law model been well validated, we now apply it to study the cilium 

dynamics in oscillating non-Newtonian fluid flow. The flow is still driven by a 

sinusoidal pressure gradient waveform, and the simulation domain is a cuboid box 

similar to the one used in Chapter 4, with a dimension of 1.5𝐿𝐿(𝐿𝐿𝑑𝑑) × 0.5𝐿𝐿(𝑊𝑊𝑑𝑑) ×

2𝐿𝐿(𝐻𝐻𝑑𝑑) . We keep the grid spacing, boundary conditions, and the other physical 

parameters the same as the studied Newtonian case in Chapter 4. The chosen 

peak 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃  is 0.3 and Wo 0.8. Five power-law indexes are considered in our simulations 

with the value of n being 0.5, 0.7, 1.0, 1.2, and 1.5, respectively, where n=1.0 

corresponds to the Newtonian case. 

 

5.4 Simulation results 
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The simulated superpositions of the cilium profile in a flapping cycle at five different n 

are presented in Fig. 5.2. The symmetry in the superposition is perfectly maintained for 

n below 1.2, as can be seen clearly from the tip trajectories highlighted in Fig. 5.2. 

However, this symmetry is found to be broken in the case of n=1.5, where the fluid 

shows an apparently shear-thickening characteristics. This could lead to a sensory 

failure, as the primary cilium does not successfully capture the symmetry of the input 

pressure signal through its passive deflection. In the asymmetric case, the cilium is 

observed has a lower profile during the forward stroke while its profile in the backward 

stroke tends to be higher. 

 

 

Fig. 5.2 Superpositions of the cilium profile for various n 

 

n=0.5

n=1.0

n=1.5

n=0.7

n=1.2
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  Fig. 5.3a shows the time evolutions of the scaled tip deflection at three different n 

(for clarity purpose, we only show three typical cases though our simulations covered 

five cases), where only a very limited difference in the phase and amplitude can be 

observed among them. Fig. 5.3b shows the temporal fluctuations of the TAS. An 

increase in the n leads to a decrease in the maximal TAS. The time evolutions of the 

maximal curvature and MTS location (scaled) for various n are presented in Fig. 5.4a 

and b, respectively. The maximal curvature is found to increase as n increases. This 

increase is more significant when the fluid is shear thinning (i.e., n<1). Relocation of 

the MTS can be observed in all the simulated cases, while the maximal propagation 

distances for the three n have no significant difference. Due to the asymmetric flapping 

pattern occurs in the case of n=1.5, the MTS location varies differently between the 

forward and backward strokes. 

 

 

(a)

(b)
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Fig. 5.3 Time evolutions of the scaled tip deflection (a) and TAS (b) for various n 

 

 

Fig. 5.4 Time evolutions of the maximal curvature (a) and scaled MTS location (b) for 

various n 

 

  The flow patterns captured in a forward stroke for various n are shown in Fig. 5.5. 

No significant difference in the flow structure is observable among the three cases. For 

all the three chosen n values, recirculation regions can be observed when the cilium is 

about to reach its deflection limit. Fig. 5.6 shows the snapshots of the u-velocity contour 

(scaled by the maximal u-velocity at the current timestep) for various n. As n increases, 

the shear effect between the fluid and the cilium becomes more significant, and as a 

(a)

Backward 
stroke

Forward 
stroke

(b)
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result, a greater portion of fluid seems to attach to the cilium surface, causing a lower 

velocity region around the cilium. Apart from that, as cilium deflects, the mixing 

between adjacent fluid layers is also more remarkable in the case of n=0.5. 

 

 

Fig. 5.5 Flow patterns captured in a forward stroke for various n 

 

n=0.5

n=1.0

n=1.5
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Fig. 5.6 Snapshots of the scaled u-velocity contour for various n 

 

Fig. 5.7a presents the time evolutions of the average WSS in the cases with and 

without cilia for various n. Compared with the corresponding without-cilia cases, a 

decrease in the average WSS can be observed for all simulated n with cilia presented. 

Fig. 5.7b plots the time-averaged decrease in the average WSS due to the presence of 

cilia. Compared with the Newtonian fluid case (i.e., n=1.0), the decrease is more 

dramatic for a shear-thinning fluid (i.e., n<1) while less obvious for shear-thickening 

fluid. As a kind of non-Newtonian fluid, the blood flow exhibits shear-thinning 

characteristics. Simply modelling the blood flow as a Newtonian fluid thus 

underestimates cilium’s impact on the WSS. From the figure, it is found that the 

maximal decrease is obtained in the case of n=0.7, at a percentage of 24.3%. When 
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n>0.7, the percentage is found to drop almost linearly with n. Fig. 5.8 presents the OSI 

distributions for three different n. Increasing the n brings a larger affected area (the area 

with OSI value less than 0.5) with smaller OSI value. Due to the cilium’s asymmetric 

flapping in the case n=1.5, its corresponding OSI distributions is also found to be 

asymmetric. 

 

 

Fig. 5.7 Time evolutions of the average WSS in cases with and without cilia for 

various n (a) decrease in the average WSS due to the presence of cilia for various n (b) 

 

(a) (b)

Shear thinning

Shear thickening
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Fig. 5.8 OSI distributions for three different n 

 

5.5 Summary 

In this chapter, we implemented the power-law model into our IB-LBM algorithm to 

study cilium dynamics in oscillating no-Newtonian fluid. By varying the power-law 

index n from 0.5 to 1.5, we studied and compared the cilium dynamics in shear-thinning, 

Newtonian, and shear-thickening fluid. Our numerical simulations suggest that: 

(1). The symmetry in flapping is found to be broken when n=1.5. In that case, a sensory 

failure may occur as the primary cilium fails to capture the symmetry of the input 

pressure signal via its passive deflection. 

(2). No significant difference in the flow structure is observable for different n values. 

However, as n increases, a greater portion of fluid seems to attach to the cilium surface 

due to the increased shear effect and a larger affected area with smaller OSI value can 
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be observed in the OSI distribution. 

(3). The decrease in average WSS is most significant for shear-thinning fluid, then 

followed by Newtonian fluid. The shear-thickening fluid causes the least decrease in 

the average WSS. Modelling a shear-thinning fluid as Newtonian thus underestimates 

cilium’s impact on the WSS while modelling a shear-thickening fluid as Newtonian will 

overestimate such impact. 
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Chapter 6  The adhesion of a circulating tumor cell in a 

curved microvessel 

 

6.1 Physical model and simulation setup 

The geometry of the curved vessel is shown in Fig. 6.1, which is the three-dimensional 

version of the one used by Yan et al. [73]. Another improvement of our model over the 

one in Yan et al. [73] is that the elasticity of the cell membrane is considered. Both the 

blood plasma and cytoplasm are modeled as DPD fluid of the same property. The 

curved part of the microvessel is consisted of three bends and the vessel geometry is 

bilaterally symmetric, as shown in Fig. 6.1. The origin of the coordinate system locates 

at point O. A spherical CTC of diameter 𝑑𝑑c is released at a vertical position 𝐻𝐻0 in the 

straight section of the vessel. A constant azimuthal body force density 𝒇𝒇d is applied to 

all DPD particles to produce a pressure gradient to drive the fluid. The flow is assumed 

periodic in the y-direction, and the vessel wall is rigid, impermeable and imposed with 

a no-slip condition. The basic parameters used in our simulations are tabulated in Table 

6.1, where a length scaling factor 𝐶𝐶l = 1 × 10−6m , a viscosity scaling factor 𝐶𝐶μ =

5.1 × 10−5Pa ∙ s , and an energy scaling factor 𝐶𝐶e = 4.28 × 10−21J  are used for unit 

conversion. The simulation is based on our in-house code which has been well validated 

in our previous research [170-172]. 
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Fig. 6.1Geometry of the curved microvessel (a) front view (b) side view 

 

Table 6.1 Basic parameters used in our simulations 

Parameters Physical value Simulation input 

CTC diameter (𝑑𝑑c) 9μm 9 

Vessel diameter (D) 14μm 14 

𝑅𝑅1 28μm 28 

𝑅𝑅2 42μm 42 

Initial vertical position (𝐻𝐻0) 7μm 7 

Blood plasma viscosity (𝜇𝜇) 1.2 × 10−3Pa ∙ s [173] 1.43 

𝑘𝑘𝐵𝐵𝑇𝑇 (𝑇𝑇 = 310K) 4.28 × 10−21J 1 

Driven force density (𝑓𝑓) 1.284 × 105N/m3 30 

Membrane bending modulus 

(𝐾𝐾𝑏𝑏) 

3.6 × 10−18J [151] 841.12 

Global area constraint 

constant (𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 ) 

3.35 × 10−3N/m [68] 7.83 × 105 

Local area constraint constant 

(𝐾𝐾area) 

5.2 × 10−6N/m [68] 1.21 × 103 

Volume constraint constant 

(𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

3.35 × 10−3N/m [68] 7.83 × 105 

Unstressed on rate (𝑘𝑘on0 ) 1 × 104s−1 [174] 1960 

Unstressed off rate (𝑘𝑘off0 ) 20𝑠𝑠−1 [175] 3.92 

dc

H0
D

L=224μm

Inlet

CTC
First bend Third bend

Second bend
(a) (b)

Outlet

40μm o
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Effective on strength (𝜎𝜎on) 5 × 10−7N/m [176] 116.82 

Effective off strength (𝜎𝜎off) 5 × 10−8N/m [176] 11.68 

Association distance (𝑑𝑑on) 0.1μm 0.1 

Disassociation distance (𝑑𝑑off) 0.1μm 0.1 

Spring constant (𝐾𝐾𝑠𝑠) 2 × 10−3N/m [177] 4.67 × 105 

Equilibrium spring length (𝑙𝑙𝑏𝑏0) 0.025μm [176] 0.025 

Receptor density (𝑛𝑛𝑟𝑟) 4.63/μm2 4.63 

Ligand density (𝑛𝑛𝑙𝑙) 1.73/μm2 1.73 

Timestep (∆t) 4.9 × 10−5s 2.5 × 10−4 

Cut off radius (𝑟𝑟c) 1.0μm 1.0 

 

6.2 CTC adhesion in straight and curved vessels 

A comparative study is first performed by simulating the adhesion of a CTC 

respectively in a curved and a straight vessel. Despite the curvatures, all the other 

parameters are kept identical between these two vessels (i.e., the CTC needs to travel 

the same distance to reach the vessel outlet). The evolutions of the CTC in the two 

vessels are presented in Fig. 6.2a and b, respectively, where the cell-wall contact areas 

are highlighted. A deformation in the CTC can be observed in both two vessels as the 

CTC migrates to the downstream of the vessels. In the curved-vessel case, the CTC is 

found to contact the wall for several times during its migration. However, the contact 

happens for only once in the straight-vessel case. The increased contacts in the curved 

vessel case may be caused by the centrifugal effect as the CTC is found to move 

outwards, away from the center of curvature. Fig. 6.2c demonstrates a typical 

unsuccessful adhesion in the curved vessel. The cell membrane is flattened once it has 

a direct contact with the vessel inner wall. This then leads to in an increase in the contact 
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surface area, which further promotes bond formation as more receptors will fall into the 

reactive distance 𝑑𝑑on of the ligands which localize to the endothelium. The adhesive 

spring force from those bonds will drag the CTC and stop it from escaping that site (i.e., 

cell arrest). The anti-adhesive force (e.g., the hydrodynamic force and the reaction force 

from the wall), on the contrary, suppresses the cell from getting arrest. A successful cell 

arrest this depends on the competition between the anti-adhesive and adhesive forces. 

Once the anti-adhesive force wins (just like the simulated case here), the adhesion fails 

and the CTC can migrate forward. When the cell is trying to escape from the wall’s 

arrest, a spike is formed due to the adhesive drag force. The anti-adhesive force will 

eventually rupture all the formed bonds and the CTC will recover to a more spherical 

shape. 

 

 

Fig. 6.2 The evolution of the CTC in a curved vessel (a) and in a straight vessel (b). A 

typical unsuccessful adhesion process captured in the curved-vessel case (c). 

 

The trajectories of the CTC (represented by the cell center) in the curved and straight 
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vessels are plotted in Fig. 6.3a and b, respectively. The CTC’s trajectory is found to be 

three-dimensional and it deviates from the vessel axis. Compared with the straight-

vessel case, a greater deviation in the CTC trajectory is observed for the curved-vessel 

case possibly due to the centrifugal effect. The deviation increases bond formations, as 

it makes more receptors fall into the effective range of the ligands. Once a bond is 

formed, the adhesive force will further pull the CTC toward the vessel wall and makes 

a possible cell-wall contacts. This explains why cell-wall contacts happens in our low-

Re flow case, where the viscous effect dominates the fluid motion. 

 

 

Fig. 6.3 Trajectories of the center of CTC in the curved (a) and straight (b) vessels 

 

Fig. 6.4a shows the how the velocity magnitude of the CTC varies with time, where 

the CTC’s vertical position (dash-dot-dash line) in the curved vessel is also appended 

to indicate its transient location. We can see that the CTC migrates faster in the straight 

vessel as the time needed to migrate over the entire length of the vessel nearly gets 

halved compared to that in the curved vessel. The velocity magnitude shows an 

increasing trend at the beginning for both cases. However, in the curved-vessel case, 

the velocity magnitude starts to fluctuate after the CTC enters the first vessel bend. On 
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the contrary, the CTC in the straight vessel is found to accelerate throughout the journey, 

though a short fluctuation is still observable in the middle of the migration possibly due 

to the cell-wall contact. Fig. 6.4c-d show the time evolutions of the bond number in the 

two vessels. In the curved-vessel case, intensive bond formations are observed at three 

different sites with a maximum bond number of 7. However, no bonds are formed 

during the migration of CTC in the straight vessel, suggesting that the curvature of the 

vessel greatly affects the CTC adhesion. Interestingly, bond formations occur more 

frequently around those curve transition regions (the regions where vessel curvature is 

varying), where cell-wall contacts are also more prevalent (see Fig. 6.2a). Fig. 6.4b 

plots the probability to form bonds at a specified number during the migration. The 

probability of bond formation seems to be low (<10%) even for the curved-vessel case, 

it is a significant improvement over the straight-vessel case, in which we have observed 

no bond formations at all. Since the probability of the bond formation also depends on 

the receptor and ligand densities, for the densities chosen in the current study, it is at 

the low end, which may reflect the real situation that the arrest and adhesion of the 

CTCs do not happen frequently. 

The time evolutions of CTC’s volume and surface area are shown in Fig. 6.5a and b, 

respectively. A shrinkage in the volume while a slight expansion in the surface area 

(less than 6%, for we use a large 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡  in our simulations) are observed when the CTC 

contacts the wall. That explains those sudden changes observed in Fig. 6.5a and b. The 

shrinkage in the cell volume tends to decrease the flow resistance, while the expansion 

in the surface area leads to a more complete contact. Both changes are favorable to a 
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successful cell adhesion. 

 

 

Fig. 6.4 The time evolutions of the velocity magnitude of a CTC (a), the probability to 

form bonds at a specified number (b), and the number of bonds formed in the curved 

(c) and straight (d) vessels. The dash-dot-dash line in (a) and (c) represents the 

vertical position of the CTC with the scale shown at the right axis. 

 

 

Fig. 6.5 The time evolution of the volume (a) and surface area (b) of CTC in the 

curved and straight vessels 
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6.3 Effect of the driven force density 

The effect of the flow Re on the cell dynamics and adhesion is investigated by varying 

the applied driven force density f. Three different f values are chosen (e.g., f=15, 30, 

and 45, respectively). Fig. 6.6a-c show how the bond number varies with the time in 

the three cases. The probability to form bonds at a specified number is presented in Fig. 

6.6d. An increase in the average bond number and bond formation probability is 

observable as the Re increases. In the case of f=15, bond formation can be found in two 

sites of the vessel and the maximum and average bond number are 3 and 0.0658, 

respectively. As f increases to 30, bond formation can be found in three sites and the 

average and maximum bond number become 0.159 and 7, respectively. The average 

bond number reaches to 0.191, as the applied f further increases to a value of 45. Apart 

from that, the cell is found to form bonds in four different sites, even in the downstream 

straight section of the vessel. This is an anticipated result. When a larger value of f is 

applied, the velocity magnitude of the CTC will get increased (see Fig. 6.6e), which 

brings a larger centrifugal force. As a result, the trajectory of the CTC will deviate more 

from the vessel axis, which tends to increase cell-wall contacts. However, it should be 

noted that an increase in the bond number may not necessarily enhance the cell adhesion 

possibility, as the increase of f also brings a larger hydrodynamic force (part of the anti-

adhesive force) that prevents the adhesion of the CTC. From Fig. 7a-c, one can also 

observe a shift of the hotspot for bond formation. In the case of f=15, the most active 

site (hotspot) for bond formation locates at the first bend of the vessel. However, as the 
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value of f increase to 30, the hotspot is found at the left half of the second bend of the 

vessel, even at the third bend. 

 

 

Fig. 6.6 The time evolutions of the bond number at f=15 (a), f=30 (b) and f=45 (c), 

the probability to form bonds at a specified number (d) and the velocity magnitude of 

a CTC as a function of the y-coordinate of the cell center (e). The short-dashed line in 

(a-c) represents the vertical position of the CTC with the scale shown at the right axis. 

 

6.4 Effect of the membrane bending modulus 

The migration of a softer CTC (𝐾𝐾𝑏𝑏 = 500) is simulated at f=15 in this section. The 

results will be compared with that of the prior case (𝐾𝐾𝑏𝑏 = 841.12) to explore the effect 
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of the membrane bending modulus 𝐾𝐾𝑏𝑏  on CTC adhesion. Fig. 6.7a shows the time 

evolutions of the cell’s velocity magnitude, where two curves are found to get nearly 

overlapped. Thus, the  𝐾𝐾𝑏𝑏  will not greatly affect the velocity magnitude of CTC. 

However, the 𝐾𝐾𝑏𝑏 of the CTC is found to closely related to the cell adhesion, as can be 

seen from Fig. 6.7c-d. When the 𝐾𝐾𝑏𝑏 of CTC reduced from 841.12 to 500, the average 

bond number increases nearly by 104%, from 0.0658 to 0.134. Fig. 6.8a shows the 

probability to form bonds at a specified number in the two cases. The probability is 

found to increase significantly when the value of 𝐾𝐾𝑏𝑏  decreases from 841.12 to 500, 

indicating that a softer CTC tends to be more adhesive during its migration in a curved 

microvessel. Fig. 6.7b shows the time evolution of the CTC surface area. A cell-wall 

contact will induce a leap in the surface area of CTC, which is severer for a softer CTC. 

The leap in the surface area makes the cell contact the wall more comprehensively (see 

Fig. 6.8b). Apart from that, that bonds form intensively at four sites of the vessel in the 

softer-CTC case while only two sites are found in the stiffer-CTC case (see Fig. 6.7c-

d). Furthermore, the hotspot for bond formation is found to shift to the left half of the 

second bend of the vessel. 
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Fig. 6.7 The velocity magnitude of CTC as a function of the y-coordinate of the cell 

center (a), and the time evolution of the CTC surface area (b), and the number of 

bonds formed when 𝐾𝐾𝑏𝑏 = 500 (c) and 𝐾𝐾𝑏𝑏 = 841.12 (d). The dashed line in (c-d) 

represents the vertical position of the CTC with the scale shown at the right axis. 

 

 

Fig. 6.8 The probability to form bonds at a specified number (a) and a comparison of 

the cell-wall contact at the second bend of the vessel with each snapshot taken when a 

Average:0.0658
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full-contact happens (b) 

 

6.5 Summary 

In this chapter, the adhesion of a CTC in a curved microvessel is numerical investigated. 

The DPD is used to solve the flow dynamics, the membrane of the CTC is modelled 

with the spring-based network, and the adhesion behavior is solved by the probabilistic 

adhesion model. A comparative study is performed to characterize the differences 

between the adhesion of CTC in straight and curved vessels. After that, a parametric 

study is performed to investigate the effect of the Re and membrane bending 

modulus 𝐾𝐾𝑏𝑏 on CTC adhesion. Our simulation results suggests that: 

(1). It’s easier for a CTC to get adhered in a curved vessel as the centrifugal effect cause 

a deviation of the cell trajectory and increases bond formations. Compared to that in 

the straight vessel, the velocity magnitude of the CTC tends to be lower and more 

fluctuant in the curved vessel due to the increased cell-wall contact. 

(2). In the curved-vessel case, an increase in the Re or a decrease in the 𝐾𝐾𝑏𝑏  could 

promote the formation of bond and outspread the bond formation sites. The former 

brings a larger centrifugal force while the latter increases the contact surface area in a 

cell-wall contact. In addition, the most active site for bond formations in the curved 

vessel is found to vary with the Re and the 𝐾𝐾𝑏𝑏. For the curved vessel considered, the 

most active site for bond formation locates at the first bend of the vessel when the Re 

is relatively low. However, as Re increases or 𝐾𝐾𝑏𝑏 decreases, the site is found to shift to 

the left half of the second bend of the vessel. 
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Chapter 7  Conclusions and future works 

 

7.1 Conclusions 

This thesis explores the FSI arising in the flow sensing and cell adhesion problems. The 

thesis is mainly presented in two parts. The first part concerns the modelling of the 

dynamics of primary cilia in an oscillating flow. The two-way FSI is solved by the IB-

LBM, and the primary cilium is modelled as a slender filament whose basal end is 

attached to a nonlinear rotational spring. In this way, the basal rotation of primary cilium 

can be well considered. After being well validated, the developed algorithm is used to 

study the dynamics of a 3D cilia array in an oscillating Newtonian flow. A parametric 

study covering the Repeak, the Wo, the cilium length, and the spacing interval, is also 

performed to investigate how these parameters affect the flow-cilia interaction. Based 

on our simulation results, the following conclusions can be drawn. 

(1). The primary cilia are observed to do an in-plane flapping motion which is 

symmetrical in term of the cilium profile. Among all the simulated cases, three typical 

stretch states are captured. In the first stretch state, the direction of the profile curvature 

does not vary along the cilium length, making one side of the ciliary membrane under 

stretch while the other under compression throughout the cilium length. In the second 

stretch state, the direction of the profile curvature is found to vary once along the cilium 

length. As a result, each side of the ciliary membrane will be partially under stretch and 

partially under compression. The third stretch state is observed for a long cilium that 

extends into 1/3 of the lumen. In this state, the cilium’s profile is found to vary twice in 
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the curvature direction. In that case, the base, middle and tip sections of the cilium will 

be under stress sates different from their neighbors’. 

(2). The MTS location may not always stay at the cilium’s base region, instead it is 

found to periodically propagate from the cilium’s base point to its tip by a certain 

distance. For primary cilia with short and medium length, an increase in the maximal 

tip deflection is accompanied with a greater propagation distance. While this may not 

necessarily apply to long primary cilia, as the possible occurrence of the third stretch 

state may greatly suppress the propagation of the MTS location. 

(3). The flow-induced curvature at the lower part of the primary cilium is well 

synchronized with the applied pressure signal, while an obvious phase lag in the 

curvature is observed for the rest parts of the cilium. A smaller phase lag means a fast 

respond speed and less delay. Therefore, it would be reasonable to speculate that the 

lower part of primary cilia may be most responsible for detecting the variations of the 

flow information. 

(4). The presence of primary cilia slows down the velocity in the near-wall region and 

decreases the average WSS level. Under the same flow condition, the decrease is found 

to be more significant when a cilium undergoes a larger span of deflection and/or when 

the spacing interval is reduced. Compared with the spacing interval, the span of 

deflection plays a marginal role in decreasing WSS. The presence of primary cilia is 

also found to affect the oscillation characteristic of the WSS by making the WSS in 

some regions less oscillatory. 

(5). For the ranges of parameters considered, an increase in the Repeak or cilium length 
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is found to bring a larger span of cilium deflection and maximal curvature. An increase 

in the Wo, however, is found to decrease these two quantities. For a constant spacing 

interval, a larger span of deflection is found to correspond to a more uneven OSI 

distribution.  

(6). In a cilia array, neighboring cilia interact with each other via surrounding fluid. The 

interacting becomes weaker as the spacing interval increases. A sparser cilia 

arrangement therefore tends to have a larger span of cilium deflection, maximal 

curvature, and propagation distance of the MTS location. For a medium Repeak and Wo, 

our simulation suggests that a spacing interval greater than twice the cilium length could 

effectively reduce the interference from the neighboring cilia thus improves the sensing 

accuracy of primary cilia. This could be the reason why there is only one primary cilium 

at most for each endothelial or epithelial cell whose diameter happens to be about 2-3 

times the length of primary cilium. 

  The developed model is further extended to study cilium dynamics in oscillating no-

Newtonian fluids with the power-law model. The simulation result suggests that: 

(1). The symmetry in flapping is found to be broken when n=1.5. In that case, a sensory 

failure may occur as the primary cilium fails to capture the symmetry of the input 

pressure signal via its passive deflection. 

(2). No significant difference in the flow structure is observable for different n values. 

However, as n increases, a greater portion of fluid seems to attach to the cilium surface 

due to the increased shear effect and a larger affected area with smaller OSI value can 

be observed in the OSI distribution. 



129 
 

(3). The decrease in average WSS is most significant for shear-thinning fluid, then 

followed by Newtonian fluid. The shear-thickening fluid causes the least decrease in 

the average WSS. Modelling a shear-thinning fluid as Newtonian thus underestimates 

cilium’s impact on the WSS while modelling a shear-thickening fluid as Newtonian will 

overestimate such impact. 

The second part of the thesis focus on the simulation of CTC adhesion in a curved 

microvessel. The flow dynamics is solved by the DPD, the membrane of the CTC is 

modelled with the spring-based network, and the adhesion behavior is solved by the 

probabilistic adhesion model. A comparative study is performed to characterize the 

differences between the adhesion of CTC in straight and curved vessels. After that, a 

parametric study is performed to investigate the effect of the Re and membrane bending 

modulus 𝐾𝐾𝑏𝑏 on CTC adhesion. Our simulation resultson this problem suggests that: 

(1). It’s easier for a CTC to get adhered in a curved vessel as the centrifugal effect cause 

a deviation of the cell trajectory and increases bond formations. Compared to that in 

the straight vessel, the velocity magnitude of the CTC tends to be lower and more 

fluctuant in the curved vessel due to the increased cell-wall contact. 

(2). In the curved-vessel case, an increase in the Re or a decrease in the 𝐾𝐾𝑏𝑏  could 

promote the formation of bond and outspread the bond formation sites. The former 

brings a larger centrifugal force while the latter increases the contact surface area in a 

cell-wall contact. In addition, the most active site for bond formations in the curved 

vessel is found to vary with the Re and the 𝐾𝐾𝑏𝑏. For the curved vessel considered, the 

most active site for bond formation locates at the first bend of the vessel when the Re 
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is relatively low. However, as Re increases or 𝐾𝐾𝑏𝑏 decreases, the site is found to shift to 

the left half of the second bend of the vessel. 

 

7.2 Future work 

7.2.1 For the flow sensing of primary cilia 

We are aware that our current simulations are rather simplified compared to the in vivo 

cilium deflection cases. The endothelial primary cilium in vivo may also be subjected 

to other hemodynamic forces (e.g., the force due to cell-cilium collisions), and physical 

constraints imposed by the glycocalyx layer and organic constraints when in blood 

vessels.  

(1). Therefore, a possible future improvement over our current model is to include the 

effect of the glycocalyx layer (a layer made of proteoglycans and glycoproteins serving 

as a mechano-sensor for WSS [178]) on the cilium deflection. This requires us to treat 

the fluid as two immiscible layers and use a proper multiphase and multicomponent 

model, such as the popular Shan-Chen model [75] and free-energy model [179] for LB 

modelling. 

(2). Our current model can also be improved by considering the interaction between the 

cells (red blood cells (RBCs) and leukocytes) and the primary cilia. Such interaction is 

expected in micro-vessels where the blood flow should be treated as a suspension of 

RBCs (in large size vessels, such as arteries, the cell-cilium collisions are less unlikely 

duo to that the RBCs tend to flow to the center of the vessels, forming a cell free layer 

near the vessel wall [180]). 
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(3). The primary cilia are found to be prevalent in the arterial bifurcations and the inner 

curvature of arched arteries, where the flow is low and disturbed [181]. The future 

studies thus can focus on the cilium dynamics in these sites. This means we should use 

more realistic vessel geometries, such as cylindrical, curved and even bifurcated vessel 

shapes. In a curved vessel, the centrifugal effect may give rise to a secondary flow 

(known as Dean vortices), which may induce out-of-plane cilium motions. In the vessel 

bifurcation regions, the vortical flow structures could make the flow more distributed 

and complicated. It would be interesting to find out the cilium dynamics in these sites 

and its impact on the WSS distribution there. 

(4). We currently use a MPI and OpenMP parallel computation strategy to speed up our 

simulations. They work well for our current small-scale simulations, however, may be 

not efficient for large-scale simulations that involve several tens even hundreds of 

primary cilia. Future studies thus can integrate in and takes the advantage of the GPU 

parallel computing, which can significantly improve the computational efficiency. 

 

7.2.2 For cell adhesion problem 

The present study is an initial step towards the investigation on CTC adhesion in real 

microvasculature with complicated geometric patterns. We list here some possible 

future studies that will follow the research described in the current study.  

(1). One is to explore the influence of the circulating blood cells on the CTC adhesion. 

As blood is a concentrated suspension of a variety of cells, the blood cells (e.g., RBCs, 

leukocytes, and platelets) certainly should play an important role in the migration and 
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adhesion of CTCs.  

(2). A few studies have observed clusters of the CTCs in the circulation [182, 183]. 

How will the CTC clusters respond in a curved vessel? Will the CTC clusters promote 

or inhibit CTC adhesion compared to the single-cell case? Further studies are required 

to answer these questions.  

(3). Most tumor cells have their specific metastatic organs, for instance, colon cancer 

preferentially metastasizes to the liver [184], and the receptors-ligands bond can be 

activated by both mechanical (e.g., blood flow) and chemical (e.g., cytokines) stimuli 

[71, 185, 186]. Therefore, it is necessary to develop a model with spatial-temporal 

distributions of the receptors and ligands, and varied bond formation kinetics, to reflect 

the local mechanochemical factors in the specific organ on the CTC adhesion and 

transmigration.  

(4). The impact of some other relevant factors on CTC adhesion is also worth 

investigating, e.g., other vessel geometry types (e.g., bifurcated vessels) and the initial 

position of the CTC. 
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