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Abstract 

The intrinsic characteristics of multi-core fibers (MCFs) comprising of several 

cores in a single cladding make them helpful in various applications due to spatial 

multiplexing capabilities, whilst making them promising candidates for the design of 

multi-dimensional sensors in fiber optic sensing. As a result of the development of 

multi-core fiber fan-out devices, it is possible to monitor individual cores inside the 

MCF separately. Therefore, fiber Bragg grating (FBG) based MCF is of great value 

which can be utilized as a two-dimensional or three-dimensional sensor, depending 

on the choice of a single set of gratings or an array of gratings inscribed in the fiber. 

This thesis focuses on inscribing FBGs in MCFs and developing them as 

multi-dimensional sensors suitable for various applications, such as vibration 

detection, inclination measurement, and displacement monitoring. 

A novel orientation-sensitive two-dimensional accelerometer based on FBGs 

inscribed in a silica seven-core MCF was designed. Performance of the proposed 

accelerometer in terms of frequency, acceleration and vibration orientation were 

experimentally investigated. The designed two-dimensional accelerometer is capable 

of obtaining the vibration frequency, acceleration and orientation, simultaneously. A 

sensitivity which is strongly dependent on the orientation is achieved, with a best 

orientation accuracy of 0.127° over a range of 0-180°. In order to verify the stability 

of the performance, different sets of chosen outer cores were utilized to retrieve the 
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orientation.  

An all-fiber two-dimensional inclinometer was proposed under the FBG-based 

MCF structure, with the capability of measuring the azimuthal angle and the 

inclination angle, simultaneously. The sensor performance was theoretically 

optimized and experimentally investigated. Excellent agreement between simulated 

and experimental results was achieved, with sensitivities of 3.42 and 3.41 pm/° for 

azimuthal and inclination angles, respectively. Through detection of the wavelength 

shifts of the FBGs inscribed in the central core and two outer cores of a silica 

seven-core MCF, a minimum error of 0.0056° for the azimuthal angle, and 0.025° for 

the inclination angle, were obtained. The detection range of the former ranges from 0 

to 360°, while the latter ranges from 0 to 90°.  

This thesis further elaborates on the development of a two-dimensional vector 

displacement sensor with the capability of distinguishing the direction and amplitude 

of the displacement simultaneously, while its performance was enhanced by machine 

learning algorithms. It was designed with a displacement direction range of 0-360°, 

and the amplitude range related to the length of the sensor body. The displacement 

information was obtained under a random circumstance, where the performance was 

investigated under the comparison of a theoretical model as well as a machine 

learning model. The maximum positive sensitivities are obtained as 11.47, 12.31, and 

11.73 pm/mm. The validity of the theoretical model is limited to a linear range (from 

0 to 9mm) whereas the sensor enhanced by machine learning model outperformed in 
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two aspects, an enlarged measurement range (from 0 to 45mm) and a reduced 

measurement error of displacement. Mean absolute errors of direction and amplitude 

reconstruction were decreased by 60% and 98%, respectively with the help of the 

machine learning algorithm. 
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Chapter 1 Introduction 

1.1  Background and Research Motivation 

Multi-dimensional (Vector) detection is essential in industrial applications, such 

as in petroleum industry, seismic exploration, robotic arms and structural health 

monitoring [1-4], where sensing technology is an effective method to determine the 

information of both direction and amplitude. Traditional electrical sensors have 

several disadvantages, such as large transmission loss, poor multiplexing capability, 

and are easily susceptible to external electromagnetic fields, making them 

inconvenient to be applied in strong radiation and high electromagnetic interference 

environments, which extremely limit their applications. However, the fiber-optic 

sensors can be an excellent candidate under these special environments. Optical fiber 

sensing technology is an increasingly popular sensing technology developed in the 

late 1970s. It has made great progress over the past few decades due to their intrinsic 

properties, including small and compact size, light weight, immunity of 

electromagnetic interference, corrosion resistance, and long-term stability. Commonly, 

fiber-optic sensors are designed based on fiber interferometry, fiber Bragg gratings 

and fiber backscattering. Optical fiber interferometers have a variety of structures, 

providing the possibility for measurement of numerous parameters. Usually, fiber 

interferometers are of high sensitivity. For fiber grating sensors, they have a stable 

response to strain and temperature, suitable for point-based or quasi-distributed 
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optical sensing systems. In addition, fiber backscattering enables high spatial 

resolution and high sensitivity, which is applied in long distance distributed optical 

sensing systems. 

There are two major issues in the development process of the fiber-optic sensors, 

one is the higher sensitivity or resolution, and the other is the sensor miniaturization 

or integration. Basically, optical sensing can be considered as the detection of 

different physical properties of the optical field. Therefore, according to the operating 

principle, fiber-optic sensors are able to detect the phase, intensity, wavelength, 

frequency and polarization. During the sensing process, all these parameters are 

needed to be monitored as the optical fiber is subjected to external perturbations. For 

example, most of the phase modulated sensors have interferometric structure and 

through phase detection before and after the sensor, they are supposed to achieve 

monitoring of physical parameters. For the intensity modulated sensors, they operate 

based on the detection of optical power difference before and after the measurement. 

When it comes to the wavelength modulated sensors, we are mainly referring to the 

fiber grating sensors, where wavelength shift is used for detection. Also, for the 

frequency modulated sensors, the fiber backscattering is majorly concerned, where 

frequency is the parameter used for sensing. Finally, for polarization modulated 

sensors, variation in the polarization state is demodulated for operation. Schematic 

figure of the operation principle for the fiber-optic sensors is shown in Figure 1.1. 

Therefore, through detection of the changes of these parameters, external 
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perturbations can be analyzed. 
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Figure 1.1. Schematic figure of operation principles for fiber-optic sensors. 

Although, there are different kinds of fiber-optic sensors, some of them are 

inconvenient to be integrated as a multi-dimensional or a multi-parameter sensor, due 

to the complexity of multiplexing [5-7], such as fiber interferometers, which limit the 

capability of time and spatial multiplexing. Since the late 1970s, Hill et al. first 

demonstrated the photosensitivity of the optical fiber and periodically changed the 

refractive index along the fiber core [8], fiber Bragg grating (FBG) has been 

commonly applied in optical communication as fiber laser, filter, dispersion 

compensator, as well as in the optical sensing industry. Due to the Bragg wavelength 

dependency on the external perturbation, FBGs are effectively applied for the 

environment variation detection. Meanwhile, they are possible to be wavelength 

division multiplexed through the integration of several FBGs for multi-parameter 

sensing. However, for the conventional FBG in the commercial single mode fiber 

(SMF), the grating structure is located in the fiber core, which is the center of a 

cylindrical waveguide, causing directional insensitivity. Additionally, the guided 

mode is confined in the fiber core, which is insensitive when implementing 
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multi-dimensional measurements. Recently, a number of methods, including specialty 

fibers and different grating structures have been introduced to grating-based 

multi-dimensional sensing. However, there still remains the problem of 

cross-sensitivity, such as temperature. Noticeably, most of the multi-dimensional 

sensors are developed only to be directional sensitive, instead of obtaining the actual 

directional information. From this point of view, the multi-core fiber (MCF) together 

with the fan-in/out, a commercially available device, are great candidates to solve 

these complications. The spatial diversity inherent to MCFs due to the presence of 

several individual cores in a single cladding makes it helpful to achieve 

multi-dimensional sensing, together with performance improvement of the existing 

sensors. 

In this thesis, the study of inscribing FBGs in MCFs and applying them to 

different multi-dimensional sensing applications are presented. The FBG-based MCF 

sensors are used to detect two-dimensional sensing characteristics. Through 

investigation of the theoretical models and conduction of the experiments, the sensors 

are applied in the measurements of acceleration, inclination and displacement. In the 

aspect of signal reconstruction, direction and other physical parameters are retrieved 

based on the theoretical models and machine learning models. The proposed sensors 

can reconstruct the original signals under unknown scenarios, without the 

cross-sensitivity of other physical parameters such as temperature, refractive index 

etc., representing their potential applicability in multi-dimensional sensing 
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applications. 

1.2  Research Objectives 

Research objectives of this study are summarized as follows: 

 To develop and characterize a two-dimensional vibration sensor using an 

FBG-based seven-core MCF, with simultaneous determination of the vibration 

orientation, frequency and acceleration in a single measurement, when the 

source of vibration is unknown. 

 To study and demonstrate an all-fiber two-dimensional inclination sensor based 

on FBGs in an MCF, with the capability of measuring two directional angles, 

including the azimuthal angle and the inclination angle, simultaneously with the 

utilization of a mechanical model to theoretically and experimentally investigate 

the performance of the sensor, through simulations of the MCF-based inclination 

sensor and the optimization of the sensing parameters using experimental 

approaches. 

 To investigate and analyze a two-dimensional displacement sensor with the 

capability of distinguishing both the direction and amplitude of the displacement, 

through proposition of a theoretical model to develop the displacement sensor 

and implementation of the theoretical model and a random forest model, one of 

the machine learning algorithms, to help during the retrieval process. And to 

compare the retrieval performance under these two models, in terms of the 
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displacement direction and amplitude.  

1.3  Outline of the Thesis 

The research contributions of this thesis contain 6 chapters. 

Chapter 1 gives an introduction to the thesis, including a brief overview on the 

fiber-optic sensors, motivation for carrying out multi-dimensional sensing 

investigations, research objectives and outline of the thesis. 

Chapter 2 reviews the background of the fiber-optic multi-dimensional sensors, 

together with the MCF-based fiber-optic sensors. Previous research of the related 

sensors are concluded. Emphasis is put on the MCF-based FBG. A brief introduction 

on different FBG inscription technology is provided, with highlighting the results and 

characteristic of the MCF-based FBGs. Theories of MCF-based FBGs to be applied 

for both two-dimensional and three-dimensional sensing applications are investigated 

as well. 

Chapter 3 describes the application of MCF in the two-dimensional vibration 

sensing area. Previous research on both one-dimensional and two-dimensional 

vibration sensors are investigated and summarized. An orientation-sensitive 

two-dimensional vibration sensor based on the FBG inscribed in the seven-core MCF 

is proposed. Detailed performance in terms of length of the sensor body, frequency, 

acceleration and vibration orientation are investigated, with information on vibration 

orientation as well as acceleration are obtained simultaneously within a single 
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measurement. Orientation sensitivity, together with the vibration performance 

reconstructed under various scenarios is analyzed as well.  

Chapter 4 is a discussion on an all-fiber two-dimensional inclination sensor 

based on MCF-based FBGs. A brief introduction on earlier related research of 

fiber-optic inclination sensors is firstly presented. Then, the theoretical model of the 

MCF-based inclination sensor is investigated, through the simulation of the 

MCF-based inclinometer and the optimization of the sensing parameters. Conduction 

of the experiment and the experimental results are illustrated, while an excellent 

agreement is shown between the experimental results and the simulated ones. Sensing 

capability of retrieving the two directional angles including the azimuthal angle and 

the inclination angle, simultaneously is investigated when the inclination source is 

unknown. 

Chapter 5 presents a two-dimensional displacement sensor, with the sensing 

performance assisted by random forest, a powerful machine learning algorithm. A 

short overview on multi-dimensional displacement sensor is introduced, as well as the 

application of machine learning algorithms on fiber-optic sensors. Theoretical model 

of the proposed two-dimensional displacement sensor is studied, through the 

simulation and optimization of the sensing performance. The introduction of random 

forest algorithm and its application on the displacement sensor are provided. 

Experiment is conducted, with retrieval of results for the direction and amplitude of 

the displacement under random circumstances. A comparison between the 
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displacement reconstruction of two models is analyzed as well.  

Chapter 6 summarizes the thesis with highlights of the current research results 

and possible suggestions for the following work in terms of grating fabrication 

technologies, grating categories, potential sensing applications and machine 

learning-based retrieval methods. 
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Chapter 2 Background Review and Principle of Fiber 

Bragg Gratings (FBGs) in Multi-Core Fibers (MCFs) 

2.1  Multi-Dimensional Fiber-Optic Sensors 

Multi-dimensional sensors (vector sensors) are desirable in many structural 

applications, where more than one axis of information at a single point can be 

measured. A multi-dimensional sensor enables simultaneous measurement for 

direction and amplitude, which can accordingly reconstruct the original signal. In 

general, multi-dimensional sensing involves two major parts, including the strain 

measurement along the axial direction and the bending-induced measurement in the 

radial direction. The sensing performance is usually achieved based on an asymmetric 

structure in the fiber. Due to diverse responses in different directions, directional 

sensing is performed. 

There are many multi-dimensional sensors designed to measure various 

parameters, such as curvature, magnetic field, vibration [9-11], etc. Commonly, most 

of the multi-dimensional sensors are designed based on interferometric structure due 

to their advantages of high sensitivity and easy configuration. According to the 

working principles, four types of interferometric sensors exist, namely Fabry-Pérot 

interferometer (FPI), Mach-Zehnder interferometer (MZI), Michelson interferometer 

(MI), and Sagnac interferometer (SI). The sensors use the interference between two 

beams that propagate through different optical paths of a single fiber or two different 
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fibers, with one of the paths easily affected by external perturbations [12]. Therefore, 

sensing indicators including phase, intensity, bandwidth, etc. are sensitive to the 

environmental change, bringing remarkable performance to the sensor. Additionally, 

when specific configurations are introduced to interferometers, such as offset splicing 

and asymmetric structures, the sensors are supposed to be directional sensitive.  

For example, in 2012, Zhang et al. proposed an MZI based on up-taper and 

lateral-offset splicing for curvature measurement, where interference happened 

between the core and cladding modes. The interference pattern's red and blue shifts 

indicated the directional sensitivity in a pair of opposite directions, with a maximum 

bending sensitivity of 11.987 nm/m-1 [13]. In 2015, they introduced another MZI for 

vector curvature sensor through cascading two hump-shaped tapers. It was achieved 

by offset splicing two single mode fibers (SMFs), which broke the symmetric 

structure and brought the directional sensitivity in two directions. Except for the SMF, 

specialty fibers such as photonic crystal fiber (PCF) were also utilized for 

multi-dimensional sensing [14]. It was obtained based on PCF and SMF interrogation, 

with small voids of the PCF collapsed. The propagating beam diffracted in the 

collapsed zone, resulting in the excitation of different PCF modes, where the 

interference occurred. The refractive index along the fiber core was changed during 

bending, causing the interferometer sensitive along a specific direction. In addition to 

offset-splicing, tapering, and specialty fibers, researchers fabricate microstructures 

inside the fiber for the design of multi-dimensional sensors. For instance, an offset 
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hollow ellipsoid was fabricated in SMF with the usage of the femtosecond laser 

micromachining and fusion splicing techniques [15]. Due to the asymmetric position 

of the elliptical hole, the fabricated MZI was enabled for bending measurement in 

two principal axes of the hole. Chen et al. also applied the femtosecond laser to 

off-axially modify the refractive index in an SMF core [16]. The fundamental mode 

in SMF excited a new fundamental and a higher-order mode in the modified zone, 

where the interference happened. Wavelength and intensity of the interference pattern 

were monitored in the MZI for curvature detection, bringing a direction response in 

two orthogonal axes. In 2019, Li et al. sandwiched a side polished no core fiber 

between two SMFs to measure the magnetic fluid [17]. The side polished fiber 

brought the axially asymmetry in the sensor structure, which helped achieve the 

magnetic fluid sensing in different directions. Apart from the popular MZI, there are 

other structures such as FPI designed for multi-dimensional sensing. In 2016, Liu et 

al. used four silicon FPIs to build a vector flow sensor, with one situated in the center 

and the other three equally arranged around [18]. Through the temperature 

distribution on different FPIs, the direction of the flow was detected. Although 

interferometers bring a lot of advantages when designing multi-dimensional sensors, 

a number of limitations still remain. The most frequent drawback is the 

cross-sensitivity. Interferometers may be responsive to other physical parameter, 

when monitoring the target parameter such as temperature. Besides, the configuration 

is usually fragile, and has weak mechanical strength and long-term durability. The 
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interferometer’s performance could be influenced during long time measurement. 

Additionally is the insertion loss. The sensor’s structure is sometimes highly complex, 

and a high insertion loss is possible to be introduced during the fabrication process, 

i.e., offset splicing, tapering, side polishing etc. The complexities in multiplexing can 

be considered as another challenge. Due to the difference between modulation and 

demodulation process, it is inconvenient to apply them in long-distance sensing 

scenarios. 

On the other hand, a grating-based fiber-optic sensor is more suitable to be 

incorporated as multi-dimensional sensors, owing to their advantages of easy 

fabrication, low loss and multiplexing capabilities. In 2000, Udd et al. proposed 

inscribing FBGs in the birefringent fiber, such as polarization maintaining fiber (PMF) 

[19]. Two gratings dependent on the effective refractive index of the guided modes in 

PMF were obtained, resulting the sensor being responsive along the polarization axes. 

Strain responses in both the axial and transverse directions were investigated. Other 

fibers, such as D-shaped fiber, polymer optical fiber (POF), multimode fiber (MMF), 

depressed-cladding fiber (DCF) [9, 20-22], etc. were also demonstrated for 

FBG-based multi-dimensional sensors. Zhu et al. fabricated the Bragg grating off the 

fiber center based on the femtosecond laser and near-field phase mask method [9]. 

Since FBGs in different modes were activated, they experienced a uniform 

wavelength shift under the thermal effect, whilst the bending responses were different. 

Owing to the off-center position of the FBGs, they showed the directional sensing 
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capability in two orthogonal directions. In 2009, Chen et al. inscribed FBG in an 

off-centered core of the POF for curvature sensing [21]. Wavelength response was 

investigated in two orthogonal directions, with a higher sensitivity than the silica fiber. 

In 2018, Bao et al. used femtosecond laser together with the phase mask method to 

inscribe an FBG in a DCF for three-dimensional displacement measurement [22]. 

Due to the special profile of the DCF, consisting of a dip in the fiber core and a 

depressed layer in the cladding, the grating inscribed in the entire core region 

generated a fundamental core mode and several high-order modes. Sensing 

performance including the two-dimensional radial bending and one-dimensional 

longitudinal strain were investigated, from which the three-dimensional displacement 

was reconstructed. In addition to normal FBGs, other gratings such as tilted fiber 

Bragg grating (TFBG) and long-period grating (LPG) have also been proposed for 

multi-dimensional sensing [10, 23-25]. In 2012, Guo et al. inscribed a TFBG in an 

MMF, and spliced it with an SMF [23]. Because of the polarization orientation 

sensitivity of the asymmetric linearly polarized (LP) modes during vibration, the 

sensor was proposed as a vector vibroscope. In 2013, Lin et al. immersed a TFBG in 

magnetic fluid to achieve a two-dimensional magnetic field sensor [10]. While for the 

LPG, Wang et al. utilized a high-frequency CO2 laser to inscribe an LPG array in an 

SMF [26]. The side incident CO2 laser pulse caused an asymmetric index modulation 

in the LPFG, made the sensor sensitive in a 360° range. In 2015, Feng et al. inscribed 

two orthogonal TFBGs in the SMF for three-dimensional sensing [27]. The coupling 
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of cladding modes in each TFBG was different under bending condition, while the 

core modes in two gratings performed similarly under axial strain. Through the 

combination of two-dimensional bending and one-dimensional strain response, 

three-dimensional sensing was achieved. There are also researchers writing uniform 

FBGs in the off-center region. In 2016, Feng et al. used ultraviolet (UV) irradiation to 

inscribe FBGs in the off-axis portion of the core, causing a similar resonance to the 

TFBG [28]. Amplitude of the cladding mode resonance varied under bending in 

different directions, while wavelength response was investigated for temperature 

calibration. As a result, bending measurement in a two-dimensional range was 

achieved with thermal insensitivity. Although various methods, including specialty 

fibers and different grating structures are introduced to the grating-based 

multi-dimensional sensing, there still remains the issue of cross-sensitivity of 

temperature. Another inevitable complication is, for most of the exiting 

multi-dimensional sensors, they are only demonstrated to be direction sensitive in two 

orthogonal directions while the actual direction during the measurement still remains 

unknown. 

2.2  MCF-based Fiber-Optic Sensors 

It is worth mentioning that in conventional SMF, the area of the fiber core 

accounts for less than one percent of the cross-sectional area of the fiber, meaning the 

spatial dimension of the fiber waveguide is not fully utilized. Over the past decade, 
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multi-core fiber (MCF) based space division multiplexing (SDM) technology has 

been intensively studied in the field of high-capacity optical communication [29] and 

has been considered as one of the most competitive methods in the next generation 

communication system for capacity expansion [30]. Meanwhile, in the optical sensing 

area, due to the limitation of the simple structure of the SMF, it is inconvenient to 

implement the multi-dimensional measurement and multi-functional signal 

processing. There are two reasons that limit the conventional FBG sensors for 

multi-dimensional measurement. One is that the grating structure usually being 

located symmetrically in the fiber core, which is in the central region of the 

cylindrical waveguide, causing directional insensitivity. Another is the confinement of 

guided modes in the fiber core, making it insensitive to bending. However, the 

inherent spatial diversity of having several individual cores in a single fiber provided 

by MCF makes it possible for the implementation of the multi-dimensional and 

multi-parameter sensing, together with the performance improvement of existing 

sensors. Here, the multi-dimensional is defined in a spatial aspect, including 

two-dimensional and three-dimensional. Specifically, different cores in a single MCF 

perform individually, which can be considered as individual channels during 

measurement. Hence, through detecting the information transmitted in the different 

cores of the MCF, multi-dimensional sensing can be achieved. 

Obviously, MCF represents an optical fiber consisted of several cores inside one 

fiber cladding. Figure 2.1 represents a few cross-section images of the reported MCFs 
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with different number of cores and fiber structures [31-38]. The introduction of MCF 

into the optical sensing industry makes it possible for the SDM technology to be 

applied in fiber-optic sensors. Common choices of MCFs are twin-core, three-core, 

four-core and seven-core fiber.  

 

Figure 2.1. Cross-sectional images of reported MCFs with different number of cores and fiber 

structures. 

Normally, there are two categories of the MCF-based fiber-optic sensors, 

including MCF-based mode interferometric sensor and MCF-based FBG sensor. 

These MCF-based sensors are mostly used for the implementation of strain sensing, 

or the improved measurements of the stain-induced bend, curvature, acceleration, etc. 

Also, some of them have reported applications of MCF-based temperature, force and 

refractive index measurements. Except for these point based sensing technologies, 

MCF-based distributed sensing has also raised research interest. 

In 2006, Yuan et al. reported an in-fiber MI using the twin-core fiber, based on 

the detection of the variation of the output laser intensity. Due to the bending-induced 
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phase difference between the two arms of the MI, the sensor was designed to be of 

bending sensitivity. However, the actual bending direction was not able to be 

confirmed. Furthermore, they also proposed a flow velocity sensor [39] and an 

accelerometer [40] based on the twin-core fiber MI. The cantilever-based flow 

velocity sensor was sensitive to the flow-induced strain, causing a phase difference in 

two cores of the twin-core fiber. However, due to the periodic output of the signal, the 

linear dynamic range was limited. Additionally, Peng et al. fabricated an 

accelerometer using MI, with the measurement of the phase difference for the 

definition of the acceleration. The limitation was that it needed another accelerometer 

for calibration during the mounting process. In 2011, Zhou et al. reported a refractive 

index sensor using the MI structure based on a different twin-core fiber, where the 

symmetric twin-core fiber was changed to an asymmetric one, with one of them 

located in the center of the fiber and the other located with an offset [41]. Through 

chemical etching of the cladding, the side core was exposed, causing the effective 

refractive index of the fundamental mode in the side core sensitive to the variation of 

the environmental refractive index. In 2020, Chu et al. from the same research group 

used the symmetric twin-core fiber as a phase shifter by side polishing one of the two 

cores and coating with graphene [42]. Due to the photothermal effect produced by the 

laser, the refractive index was influenced under the ohmic heating of the graphene, 

causing a phase shift in the MI. Twin-core fiber was also used for the biomedical 

sensing. In 2019, Tan et al. used a twin-core fiber based MZI for respiration and 
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heartbeat measurements [43]. Through sandwiching the twin-core fiber in between 

two SMFs, mode coupling between two adjacent cores was obtained for vital signs 

signal detection. 

Apart from research on the twin-core fiber, interferometer was also proposed 

with other kinds of fibers. There is research on the three-core fiber. In 2015, Newkirk 

et al. proposed a bending sensor based on the combination of the strongly coupled 

three-core fiber with the mode selective photonic lantern [44]. The bending was 

directional sensitive through measuring the variation of the energy of different output 

modes. After that, Villatoro et al. used the same fiber for a curvature sensor based on 

the reflection super-modes excited in the three-core fiber [45]. Through the 

measurement of the wavelength shift of the interference pattern, the sensor was found 

to be sensitive in different directions. Concerning the research on the four-core fiber, 

Li et al. spliced a segment of the fiber between two SMFs and designed the 

interference fringe to be sensitive to the variation of curvature, temperature and 

refractive index [46]. At the same time, they demonstrated a fiber ring cavity laser 

using the similar structure, through detecting the wavelength of the fiber laser, strain, 

refractive index and curvature were monitored [47]. 

Furthermore, researchers have also paid their attention on the seven-core fiber. 

Zhao et al. reported a multipath MZI based on the usage of the weakly coupled 

seven-core fiber for the temperature sensing while it was kept stain insensitive [48]. 

The sensor was designed under the configuration of a MCF off-center spliced with 
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two segments of SMF. The multipath interference made the sensor to be more 

sensitive compared with a two-path interference. Similarly, Duan et al. represented a 

multipath MI based on the same structure [49], however, one of the SMF ends was 

converted to a specially tailored spherical end in order to enhance the extinction ratio 

of the interfered spectrum. The sensor was also designed for high temperature 

measurements. Moreover, Gan et al. demonstrated an MZI using the same seven-core 

fiber with two ends of the fiber having tapered regions, for a simultaneous 

measurement of strain and temperature [50]. In 2011, Silva et al. used a suspended 

MCF for curvature measurement. The interference between the propagation modes 

guided in cores contributed to the simultaneous measurement of strain and curvature 

[51]. In 2015, the strongly coupled seven-core MCF was used by Salceda-Delgado et 

al. for curvature sensing using the super-mode interference excited in the fiber [52]. 

But the sensor was designed to be sensitive to bending under different curvatures in 

only one dimension. And in 2017, Villatoro et al. used this fiber for an interferometric 

vibration sensor [53]. The strongly coupled seven-core fiber was spliced to the SMF, 

and the other end of the MCF was cleaved and placed in a cantilever position. 

Through monitoring the intensity of the reflection mode, the vibration-induced strain 

was detected. Moreover, Zhang et al. twisted the seven-core fiber into a helical 

structure and spliced it in between two sections of multimode fibers [54]. The 

proposed MZI was designed for the simultaneous measurement of the strain and 

temperature. In 2018, Tan et al. fabricated the MZI-based torsion sensor through 
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tapering the seven-core fiber [55]. The clockwise and counterclockwise direction can 

be discriminated by the blue or red shifts of the interference pattern. 

The interferometric MCF sensors have shown their great advantages on the 

small and compact size, high sensitivity and easy fabrication, while most of the 

interferometers are sensitive in only one direction for the strain, curvature, 

acceleration and flow velocity measurement. In other words, these interferometers are 

mainly designed as one-dimensional sensor. In order to achieve a multi-dimensional 

sensing, several interferometric sensors can be integrated. However, the number of 

the integrated sensors are limited, and the complexity of the sensor system is 

enhanced. Under this circumstance, the introduction of FBG technique into the MCF 

application can be of great value to achieve multi-dimensional sensing in a single 

fiber, due to the intrinsic spatial multiplexing of the MCF. Also, different cores in the 

MCFs are possible to be considered as individual transmission channels, with the 

help of fan-in/out devices. The investigation of FBG-based four-core fiber was as 

early as 2003 [56]. At that time, Flockhart et al. reported a two-axis curvature 

measurement. FBGs were inscribed in three of the four cores simultaneously, and the 

curvature can therefore be determined in two-axis range through measuring the strain 

difference applied on different FBGs in individual cores. However, the results only 

showed the direction related characteristics, the bending radius and direction were not 

retrieved exactly. After that, in 2006, Fender et al. used the FBG integrated with 

arrayed waveguide gratings (AWGs) in MCF for the two-axis curvature analysis [57]. 
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Through monitoring the Bragg wavelength of the FBG during the fabrication process, 

it was designed to be located in between two AWG channels. As a result, the 

measurement of wavelength shift could be converted to the intensity analysis. The 

differential strain in orthogonal pairs of FBGs were able for the curvature retrieve. 

They also used the same four-core fiber for the design of the two-axis vibration 

sensor, inclination sensor and displacement sensor [58-60]. These sensors 

demonstrated a good direction-related response and sensitivity, but the actual 

orientations were not obtained. In 2015, a four-core based two-dimensional curvature 

sensor was proposed by Barrera et al. [61]. Two different sets of FBG arrays were 

prepared for the uniform and non-uniform curvature measurement, respectively. Size 

of the FBG array decided the spatial resolution of the designed curvature sensor. 

Zhang et al. used a specially designed seven-core MCF for the vector bend sensing, 

with the refractive index of the central core being a little lower than the six outer 

cores [62]. FBGs were written in all seven cores simultaneously, and the reflection 

spectrum of the FBG in the center core is separated from those in the outer cores due 

to this difference. As a result, the bending response can be analyzed. Apart from the 

previous research study, Hou et al. also used the FBG-based seven-core MCF for a 

two-dimensional bend sensing in 2018 [63]. At this time, the result represented not 

only a direction dependent response, the bending direction and curvature value can be 

confirmed simultaneously. 

While the research on MCF-based two-dimensional sensors attracting great 
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interests, the MCF-based three-dimensional sensing, which is also called the shape 

sensing has also raised concern. And this technology is not only essential for the 

physical parameter detection, but they have also been widely investigated in medical 

and biomedical areas. Duncan et al. from Luna Innovations Incorporated used an 

FBG array inscribed in a three-core fiber for shape reconstruction [64]. By using the 

position of the fiber end as the initial coordinate, the travelled distance by the fiber 

together with the strain measurements in the first FBG triplet allow the position and 

direction of the next triplet to be determined with optical frequency domain 

reflectometry (OFDR) technology. Moore et al. from NASA Langley research center, 

also reported their three-dimensional shape sensing works using FBG array in a 

three-core fiber [65]. The FBG array was inscribed along the three-core fiber. 

Through monitoring of Bragg wavelength shifts at different positions, together with 

the OFDR and Frenet-Serret formulas, the shape of the object was finally achieved. In 

2014, Ryu et al. reported the use of three FBGs mounted to a polymer tube as a shape 

sensor, with an optimized strain transfer model between the fiber and tube to improve 

the sensor accuracy [66]. Westbrook et al. from OFS labs utilized twisted seven-core 

MCF grating arrays for the shape reconstruction [67, 68]. In Westbrook’s works, in 

addition to the shape, the twist induced Bragg wavelength shift can also be 

distinguished because a permanent twist was added to the outer cores. Meanwhile, the 

FBG-based MCF shape sensing is also applied to reconstruct the shape of medical 

instruments. Recently, the FBG-based MCF shape sensing is also applied to 
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reconstruct the shape of medical instruments. In 2019, Khan et al. validated the usage 

of a four-core MCF to calculate the shape of the catheter, with four MCFs inscribed 

with FBGs connected with the catheter [69]. Curvature and torsion at each FBG 

position were retrieved with small errors. Except for the FBG-based shape sensing 

technology, the distributed shape sensing is also investigated based on the Brillouin 

scattering, Brillouin optical time domain reflectometry (BOTDR) and optical time 

domain reflectometry (OTDR) in MCF [70-72], which has greatly enhanced the 

shape sensing distance. 

The aforementioned investigations indicate a great research value for MCF to be 

developed in multi-dimensional sensing applications, including the design of both the 

two-dimensional and three-dimensional sensors. However, most of the reported 

MCF-based research are aimed at interferometric structures. For those FBG-based 

MCF sensors, the intrinsic advantage of having several individual transmission 

channels in the MCF is not fully developed, causing mainly of those reported 

two-dimensional sensors just represented the orientation related response, without 

retrieving the actual direction. Also, for the three-dimensional shape sensing devices, 

usually the results only showed the curvature and torsion at testing points, the real 

shape for the objects undertest is not yet achieved. 

2.3  FBG Inscription Technology and Characterization 

FBG is an essential technique applied in the fiber-optic devices, which is a 
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permanent and periodical refractive index variation in the core along the fiber length. 

The generation of Bragg gratings was firstly observed by Hill et al. in 1978 [8], 

through exposure of the germanosilicate fiber to an argon-ion laser at a wavelength of 

488 nm. Generally, the periodical structure is caused by the high-power UV, which is 

induced by the fiber photosensitivity phenomenon. Over the past decades, a 

considerable effort, such as hydrogen loading, high concentration rare earth dopants 

and flame brushing has been put to investigate the enhancement of fiber 

photosensitivity.  

Among them, hydrogen loading is the most common technique to obtain a high 

photosensitivity level, which was first discovered by Lemaire et al. in 1993 [73]. 

Prior to UV exposure, the fiber is supposed to be immersed in the hydrogen chamber 

at a temperature of 25 to 80 °C and a pressure of 150 atm for one week (a shorter 

immersion time at higher temperature). This process introduces a diffusion of the 

hydrogen molecules into the fiber. When the fiber is UV exposed, the hydrogen 

molecules react to Si-O-Ge bonds and formatting the OH absorbing species, leading 

to the localized index increase. Another common method to enhance the 

photosensitivity is the rare earth doping in the fiber, such as Germanium (Ge), Boron 

(B), Nitrogen (N), Lead (Pb), Titanium (Ti), and Fluorine (F) etc. [74-77], with each 

dopant having its own characteristics. For example, GeO2 is the most widely applied 

dopant in fiber, while an increased photosensitivity is observed with B2O3 co-doped. 

And TiO2 is usually doped in the outer-cladding of the fiber due to the higher 
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mechanical strength. In addition to dopants, flame brushing is also an effective 

technique to enhance the photosensitivity, where a hydrogen flame together with a 

limited amount of oxygen is used to brush the specific region of the waveguide at a 

temperature of 1700 °C [78].  

Basically, only if the fiber has the characteristic of photosensitivity, it is possible 

to inscribe FBGs by refractive index modulation using a UV excimer laser with 

specific wavelengths, such as 193 nm, 248 nm and solid-state laser at 213 nm, 266 

nm. However, the necessity of photosensitivity feather is removed under different 

laser sources. For example, FBGs are also supposed to be fabricated with the help of 

the femtosecond laser. It needs no more photosensitivity [79], which is caused by the 

interaction between the femtosecond laser and the dielectric material with nonlinear 

photoionization mechanisms [80, 81]. In most cases, femtosecond laser causes a 

physical damage to the fiber and forms the grating structure [82]. The laser pulse has 

a high energy without too much thermal effect, making the femto-inscribed FBGs a 

high thermal robustness [83]. In addition, the CO2 laser irradiation is an alternative 

method for grating inscription, especially for LPG, due to the relaxation of 

residual-stress induced during fiber drawing [84]. Usually, for the silica fiber, shorter 

wavelength lasers, e.g., 193 nm, 213 nm, 248 nm and 266 nm are used due to their 

higher energy. Meanwhile, for polymer fibers, such as the PMMA-based polymer 

fiber, the 325 nm laser is a typical choice for FBG fabrication [85], while 248 nm 

laser is an another great candidate for the ZEONEX-based polymer fibers [86].  
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Figure 2.2. Talbot interferometer technique for FBG inscription. 

There are several techniques widely used for the FBG inscription, such as the 

Talbot interferometer, the phase mask technique, and the point-by-point inscription 

technique. Schematic figure of the Talbot interferometer technique is represented in 

Figure 2.2. Laser beam which transmits after the phase mask is diffracted into 

different directions, with the main energy concentrated on the +1 and -1 orders of the 

diffraction beam. Generally, phase mask is fused silica substrate with a 

one-dimensional pattern etched into the surface, which splits the laser beam into 

several diffractive beams [87]. The phase mask maximizes energy in +1 and -1 orders, 

with each containing approximately 35% of the transmitted power and suppresses the 

zero order below 3% at the targeted wavelength. After reflection of two mirrors, the 

±1 order beams are recombined and focused on the fiber. Changing of the 

recombining angle θ will leads to the variation on the period of the interference fringe, 
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which is influenced by rotating the mirror direction. Correspondingly, the interference 

pattern and the period of the FBG are changed. The Talbot interferometer method 

requires a UV source with good spatial coherence, while the interference fringe is 

highly sensitive to the alignment of the optical system. Furthermore, the maintenance 

of a good fringe contrast requires high mechanical stability and isolation from the 

ambient vibration, which enhance the requirement of the system. 

Figure 2.3 depicts the schematic representation of the typical set up for the phase 

mask based FBG inscription technology. Laser beam transmits through the phase 

mask, after which the interference pattern between various orders is focused on the 

fiber and creates the periodical change of the refractive index. The laser is placed on 

the translation stage, which helps conduct the beam scanning during the inscription 

process. The phase mask technology is simple for implementation, and far less 

sensitive to vibrations and system alignment, which makes it generally more suitable 

for the FBG fabrication. However, the Bragg wavelength depends greatly on the 

period of the phase mask, causing the demand for different phase masks. 
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Figure 2.3. Phase mask technique for FBG inscription. 

Different from the aforementioned two methods, the point-by-point irradiation 

method requires neither phase masks nor photosensitivity. It is performed through 

collimating the laser beam on the fiber after intensity modulation and collimation, and 

then modulate the refractive index of the fiber. The point-by-point inscription method 

enables the advantages of high flexibility and short time consuming. Generally, there 

are two types, including the femtosecond laser-based and CO2 laser-based technology. 

Figure 2.4 describes the system of a femtosecond laser based FBG inscription 

technology. Laser beam is firstly focused by microscopic objectives and then to the 

fiber. The fiber is placed on a stable and high precision translation stage, with the 

capability of movement along the fiber axis at a constant speed. Therefore, each laser 

pulse produces a grating pitch at the focal point of the beam in the fiber core [88]. 

Laser

Translation stage

Cylindrical lens

Phase mask

Mirror

Fiber
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Figure 2.4. Point-by-point technique for FBG inscription. 

After the FBG fabrication, when a broadband source is launched into the fiber 

and reaches the FBG position, part of the light with specific wavelength is reflected, 

which is named as Bragg wavelength. As is shown in Figure 2.5, there is a reflective 

peak in the reflection spectrum, and a corresponding dip in the transmission 

spectrum. 

 

Figure 2.5. Reflection and transmission spectra of an FBG. 

The FBG is resulted from the permanent index perturbation, and the refractive 

index along the fiber ( z  direction) can be expressed as [89]: 

Laser
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
  

 
= + = +  + +  

  (2.1) 

where 0n  represents the refractive index of the fiber core,   is the grating period, 

( )n z  is the index change spatially averaged over a grating period, ( )z  describes 

the grating chirp and   is the fringe visibility of the index change. The intensity of 

FBG is proportion to the index modulation. Due to the index modulation, the 

effective refractive index effn  of the guided mode in the fiber is changed. Based on 

the couple-mode theory, which is an effective tool for the quantitative information on 

the diffraction efficiency of the grating, the coupling equations of the optical field in 

the Bragg grating can be written as [89]: 

 

( ) ( )

( ) ( )*

ˆ

.

ˆ

dR
i R z i S z

dz

dS
i S z i R z

dz

 

 


= +


 = − −


  (2.2) 

Here, R and S represents the reflection mode and counter-propagating mode, 

respectively, where the amplitude can be expressed as [89]: 

 
( ) ( ) ( )
( ) ( ) ( )

exp 2
.

exp 2

R z A z i z

S z B z i z

 

 

 = −


= − +
  (2.3) 

Also in Equation (2.2),   is the coupling coefficient, while ̂  is the 

self-coupling coefficient and   is the detuning, which are determined through: 
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As a result, in Equation (2.4), the specific wavelength has a maximum 

reflectivity when   equals to 0, which is named as Bragg wavelength B ,  

 =2 .B effn    (2.5) 

The Bragg wavelength is also determined by phase-match condition in [90]. 

Based on Equation (2.5), B  is dependent on two parameters, including the 

effective refractive index of the guided modes effn  and the period of the grating  , 

which are influenced when environmental variation happens, such as strain and 

temperature. Changes of them induce a red or blue shift of the Bragg wavelength, 

which relates to a longer or shorter wavelength shift, and can be expressed as follows 

[91]: 

 ( )
2

12 11 12

1
=2 1 ,

2

eff

B eff

eff

dnn
n P p p T

n dT
   

   
   − − + + +           

 (2.6) 

where   is the strain applied along the fiber, 11p  and 12p  are the Pockel’s 

coefficients;   is the Poisson’s ratio,   is the thermal expansion coefficient of the 

fiber material, e.g. silica, which may be effected according to the different dopants in 

the fiber core, and T  is the temperature variation at the specific FBG. According 

to [91], the factor 
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is also considered as the effective photo-elastic coefficient, while the factor 
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eff
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is the thermal-optic coefficient. 

Hence, the strain and temperature influence on the Bragg wavelength shift can 

be rewritten individually as: 
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， (2.9) 

where there is a numerical value of 0.22 for ep  in silica fiber. For the 

conventional SMF, the measured strain response at a constant temperature and 

thermal responsivity at constant strain are summarized as [91]: 
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 (2.10) 

The strain and temperature sensitivity are also measured in the silica fiber, with a 

wavelength resolution of 1 pm  required to resolve a temperature variation of 0.1 

C , or a strain variation of 1  . 

2.4  FBG Inscription in MCFs 

For a weakly-coupled MCF with low core-to-core crosstalk, FBGs inscribed in 
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all the fiber cores are possible to be monitored individually with the help of a 

fan-in/out device, which is named as the MCF coupler. The FBG inscription process 

in the MCF is similar compared with the SMF. All the inscription techniques, 

including the Talbot interferometer, side-writing phase mask and point-to-point can 

help achieve the MCF-based FBG. Usually, prior to the FBG inscription process, the 

fiber is loaded in the hydrogen chamber at the temperature of ~80 C  under a 

pressure of ~100 bar for 3 days to enhance the photosensitivity, and all the MCFs 

used in this work are hydrogen loaded. Figure 2.6 depicts the schematic figure of 

using UV exposure and phase mask technology to inscribe FBGs in MCF. 

Laser

Cylindrical Lens

Phase Mask

Multi-Core Fiber  

Figure 2.6. Schematic figure of using UV exposure to inscribe FBGs in MCF. 

2.4.1  Characteristics of MCF-based FBGs 

During inscription, the laser is focused onto the MCF. Here we consider the fiber 
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direction as z  axis, and the distance from the phase mask to the fiber as y  axis, 

the intensity of the interference pattern is concluded as [92]: 

 ( ) ( ) ( ) ( )
2

0, , ,
i z

yI y z f y z u z ay u w z ay e e



−

−  = − − − −   (2.11) 

where ( , )I y z  is the laser intensity, ( , )f y z  is a shaping function representing the 

profile of the interference pattern, ( )u z  is the step function that confines the 

interference pattern within the laser beam size, a  is a reduction constant of 

interference length related to the distance from fiber to the phase mask, 0w  is the 

waist of the laser beam,   is the attenuation and   is the period of interference 

pattern (half of the period of the phase mask). Based on Equation (2.11), the power 

efficiency degrades when the fiber to phase mask distance gets larger. 

 

Figure 2.7. SEM image of the homogeneous seven-core MCF. 

In this work, a seven-core MCF (YOFC, China) is used to demonstrate the 

inscription of a single FBG set, together with the phase mask technology using 

different UV lasers, including 193 nm, 248 nm and 213 nm laser. Figure 2.7 shows 

the scanning electron microscopic (SEM) image of the seven-core MCF, including its 
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central core and six outer cores. The diameters of the cores and cladding are ~8 and 

~150 μm, respectively. In order to make the fiber bend insensitive and reduce the 

crosstalk among cores, the low-index trench structure is added surrounding each core. 

The pitch between two adjacent cores is ~42 μm. The splicing between the MCF and 

the MCF coupler can be completed with the help of a polarization maintaining splicer, 

under the mode of “End View” to adjust the rotation angle. 

 

Figure 2.8. Reflection spectra of the FBGs inscribed in seven-core MCF using 193 nm laser. 

According to Equation (2.5), the Bragg wavelength of each core in the MCF is 

dependent on the period of phase mask and the guided modes in individual cores. 

First, we used an 193 nm ArF excimer laser (Coherent) and phase mask (Bragg 

Photonics) to write FBGs in the MCF. The laser power was 100 mJ and the pitch of 
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phase mask was 1068 nm. In order to obtain a stable FBG response, the beam 

scanning technology with a scanning speed of 0.1 mm/s was adopted. After 

inscription, the MCF was firstly spliced to the MCF coupler (YOFC, China) with the 

help of a polarization maintain fiber fusion splicer (Fujikura, LZM-100), after which 

an interrogator (Micron Optics, si155) was used to analyze the reflection and 

transmission spectra of different cores. Reflection spectra of 10-mm long gratings are 

shown in Figure 2.8. Bragg wavelengths for cores from 1 to 7 (except 3 due to the 

breakage of the MCF coupler) are 1545.35, 1545.33, 1545.57, 1545.41, 1544.98, 

1545.36 and 1545.37 nm, respectively. 

Furthermore, a 248 nm KrF excimer laser (Coherent) was used to inscribe FBGs 

in MCF, with a phase mask (Ibsen Photonics) period of 1065.42 nm. The spectra of 

the 10-mm long gratings are represented in Figure 2.9. The laser pulse energy was 85 

mJ, with a scanning speed of 0.1 mm/s. Bragg wavelengths for cores from 1 to 7 are 

1541.55, 1541.77, 1541.7, 1541.24, 1541.67, 1541.71, and 1541.54 nm, respectively. 
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Figure 2.9. Reflection spectra of the FBGs inscribed in seven-core MCF using 248 nm laser. 

In addition, a 213 nm solid-state laser (Xiton Photonics, Impress 213) and a 

phase mask (Ibsen Photonics) with a period of 1061.97 nm were used to inscribe 

FBGs in MCF. The laser power was 95 mW and the scanning speed was of 0.1 mm/s. 

Figure 2.10 shows the reflection spectra of the 10-mm gratings, with the Bragg 

wavelengths for core 1 to 7 of 1537.26, 1537.24, 1537.41, 1537.24, 1537.27, 1537.4 

and 1537.48 nm, individually. 
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Figure 2.10. Reflection spectra of the FBGs inscribed in seven-core MCF using 213 nm laser. 

In an MCF, except for the central core as the SMF’s, there are cores sitting away 

from the center of the cylindrical waveguide, which brings an asymmetric structure 

into the fiber. Besides, with the help of a MCF coupler, FBG signals in the cores that 

off the center are monitored, which causes a directional sensitivity. As a result, the 

FBG set module is capable of distinguishing the orientation in the two-dimensional 

range due to the spatial distribution of individual cores. 

Except for a single FBG set, an FBG array with several FBG sets could be 

managed on the MCF based on the aforementioned technology. The only difference is, 

in the single FBG set inscription process, only one phase mask with a fixed pitch 

length is needed, while in the FBG array several phase masks are applied, which is 
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dependent on the number of the grating sets. Figure 2.11 represents the reflection 

spectra of FBGs in all cores of the MCF. The length of each grating is 10 mm, with 

15 mm space between two adjacent ones. FBGs were inscribed using the 213 nm 

solid-state laser, together with four phase masks (Canada Limited), with periods of 

1057.94, 1064.86, 1075.23 and 1082.15 nm, respectively. It is obvious that the FBG 

array can be inscribed in all the cores at the same time, with little Bragg wavelength 

difference between individual cores at each FBG point. Compared with the one FBG 

set scenario, the MCF-based FBG array introduces a new dimension, which is along 

the fiber axis. As a result, the MCF-based FBG array can be designed for the 

three-dimensional sensing applications. 

 

Figure 2.11. Reflection spectra of the FBG array inscribed in the seven-core MCF. 
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2.4.2  Lensing Effect 

An apparent slight difference in the Bragg wavelengths of individual cores exists 

in one FBG set. Due to the spatial distribution of different cores in the MCF, using 

side illumination to inscribe gratings simultaneously in the fiber bring several issues 

to the nonuniformity in gratings. Since the fiber is a cylindrical waveguide, the glass 

fiber acts as a converging lens which narrows the incident beam when it passing 

through the air-cladding interface [93]. As a result, for cores that are out of the beam 

range, reduced illumination occurs on them, where the incident beam power varies 

from each other. 

There are researchers trying to overcome the lensing effect during MCF 

inscription, through putting a lens in front of the fiber to diverge the beam before it 

encounters the fiber interface [93, 94]. The MCF was placed into a side polished 

capillary tube, with laser liquid filled in the cavity. Under the circumstance, the flat 

surface and index matching oil helped the achievement of a better uniformity in 

illumination theoretically. 

2.4.3  Shadowing Effect 

There is another factor that reduces the uniformity of the MCF-based FBGs, 

which is the shadowing effect that causes the shadowing of the nearest cores on the 

furthest cores in the illumination axis [93]. However, a slight rotation can result in a 

significant variation of the laser intensity on individual cores. For example, in [95], 
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Idrisov et al. theoretically and experimentally investigated the influence of orientation 

on the illumination intensity. Result comes that when the core is aligned in the 

illumination axis, a rotation within -2° and +2° is enough for a full illumination of all 

the cores, and exceeding this range may cause the shadowing effect.  

2.4.4  Uniformity of Cores in MCF 

Another element that influence the uniformity of the MCF-based FBGs is the 

imperfections in the cores during fiber production [96]. In order to check the fiber 

characterization, we used the equipment from Interfiber Analysis (IFA-100) to 

measure the refractive index (RI) difference profile of the MCF used in this work, as 

shown in Figure 2.12. The RI is measured under the wavelength of 633 nm, with a RI 

for the matching oil of 1.4587. The maximum RI differences compared with the 

cladding in cores from 1 to 7 are 0.00422, 0.00273, 0.00302, 0.00339, 0.00277, 

0.00326 and 0.00312, with a maximum difference of 0.00149 among cores. The 

refractive index in each core may also bring Bragg wavelength variation during FBG 

inscription. 
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Figure 2.12. Refractive index difference of individual cores in MCF. 

However, there are several factors causing Bragg wavelength difference for 

FBGs in individual cores. In this work, we used the MCF coupler to demodulate 

separate FBGs in each core. Since the fiber in this work is a weakly-coupled MCF 

with core-to-core pitch up to 42 μm, crosstalk among cores is small enough for 

isolation [97]. When the MCF is designed for multi-dimensional sensing applications, 

only the Bragg wavelength shifts in individual cores are monitored, the absolute 

values of the Bragg wavelength in specific cores at the starting point are not 

concerned. 

2.5  FBG-based MCFs for Multi-Dimensional Sensing 

2.5.1  Two-Dimensional Vector Sensing 

When the MCF is applied for the sensing applications, the fiber experiences the 
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change of physical environment, which is reflected in the variation of these essential 

parameters in fiber-optic sensors. Under the FBG structure, the Bragg wavelength of 

FBG is changed due to the environment change. For the MCF-based FBG sensors, 

the outside changes directly induce the wavelength shifts of all the cores in MCF at 

the same time. Detection of the physical environment changes can be converted to the 

monitoring of strain applied on the fiber, except the detection of temperature. 

However, when the strain is applied, the FBG response in separate cores are different 

from each other.  

 

Figure 2.13. Schematic of the cross-section for a seven-core MCF. 

For example, in the seven-core MCF, with the cross-section figure shown in 

Figure 2.13, the outer cores (e.g., core 2-7) are sensitive to the applied strain, while 

the central one (e.g., core 1) is insensitive. The schematic figure of the FBG-based 

MCF under bending situation is shown in Figure 2.14. In other words, if the fiber 

experiences a uniform strain, Bragg wavelengths in the outer cores are shifted, while 

the Bragg wavelength in the central core is kept unchanged. Also, based on the theory 
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of the wavelength shift, a blue shift occurs when the core is compressed, while a red 

shift appears when the core is stretched. However, due to the symmetric structure of a 

cylindrical fiber, one side of the fiber is stretched while the other side compressed, 

causing different FBG responses of separate outer cores. 

 

Figure 2.14. Schematic figure of the FBG-based MCF under bending. 

The Bragg wavelength shift   can be expressed by [91]: 

 ( )1 ,i e i ip   = −    (2.12) 

where i  is the Bragg wavelength in each core i , and i  is the strain applied on 

the corresponding core, which can be described as [66]: 

 ( )sin ,i
i i

d

R
  = +   (2.13) 

where id  is the distance between the outer core i  and the core 1.   and i  

represent the orientation of the applied strain and angular position of each outer core 

i , respectively, and R  is the strain-induced bending radius. 
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During the measurement, the Bragg wavelength shift   is obtained through 

the usage of interrogator, while 
i  is confirmed in advance. As a result, Equation 

(2.12) can be revised as follows: 

 ( ) ( )1 sin ,i i
e i

i

d
p

R


 




= − +   (2.14) 

and the strain is related to the wavelength shift via: 
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It is noticeable that in Equation (2.14), i  for each core i  can be determined 

from Figure 2.13 since the angular position is fixed when the fiber direction is 

confirmed. Also, pitch d  remains the same for all cores, while R  is much larger 

than d . If two of the six outer cores are taken for the calculation, through the ratio of 

two equations, the strain direction can be derived as: 
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  (2.16) 

where i  and j  are two different outer cores. From Equation (2.16) it is 

apparent that the phase difference between i  and j  could be any value except  , 

which means the value 0 cannot appear in the denominator. In other words, when 

choosing the two outer cores, they should not be aligned in a straight line together 

with the central core. The physical explanation is also straightforward, for those two 
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cores that are central symmetric by the central core, e.g., core 3 and 6 in Figure 2.13, 

the FBG responses share the same information except for the blue or red shift under 

strain, meaning the which is not helpful when retrieving an orientation-related 

parameter. 

Based on the two-dimensional operation principles, the MCF inscribed with 

FBGs is capable of being designed as accelerometers, inclinometers and several other 

fiber-optic sensors. More details of these applications are introduced in the following 

chapters. 

2.5.2  Three-Dimensional Shape Sensing 

In order to conduct the shape sensing in a three-dimensional space, the most 

essential parameters are the curvature and torsion, which determine the bend and 

twist phenomenon in a shape of the fiber. Different from the two-dimensional 

measurement, an FBG array is necessary in the three-dimensional sensors. Curvature 

and torsion in the three-dimensional space can be described through the famous 

Frenet-Serret formulas [98]. Firstly, we determine the point r  in the 

three-dimensional space as follows: 

 ( ) ( ) ( ) ( ) ˆˆ ˆ ,r s x s i y s j z s k= + +   (2.17) 

where î , ĵ  and k̂  are the unit vectors in the 3R  space along the x , y  and z  

coordinate, respectively. The Frenet-Serret frame is defined by three-unit vectors, 

including tangent ( )sT , normal ( )sN  and binormal ( )sB , and according to the 
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Frenet-Serret formulas they are related to each other, which can be summarized as: 
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where ( )s  and ( )s  are the scalar-valued curvature and torsion functions. The 

schematic figure of a three-dimensional shape sensor based on the MCF-based FBG 

array is shown in Figure 2.15. 

 

Figure 2.15. The schematic figure of a three-dimensional shape sensor based on an MCF-based 

FBG array. 

In order to calculate the curvature using the information obtained from the FBG 

in individual cores, we define a curvature vector of core i , where the value is 

dependent on the strain applied on the 
thi  core and the distance between the specific 

core to the fiber center, while the direction is related to the direction from the fiber 

center to the 
thi  core.  
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In Equation (2.19), î  and ĵ  are the unit vectors align with the local x- and 

y-axes. Considering N  cores used in the calculation, the vector sum of the curvature 

vector is: 
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where the local bending direction   is defined as 
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When take Equation (2.13) into Equation (2.20), together with the relationship 

between curvature   and bending radius R , which is: 

 
1

R
 = ，  (2.22) 

the curvature vector is described as: 
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As a result, the value of the curvature vector is given as: 
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Based on Equation (2.24), curvature   is described as: 
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where ( )s  is derived based on Equation (2.20) by: 
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which means   is expressed via: 
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  (2.27) 

It is worth mentioning that Equation (2.27) is a general solution for all kinds of 

core distributions. However, for those symmetric MCFs, it can be simplified. 

Firstly, full expression of Equation (2.24) is: 
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Then with the usage of the relationship for sin 2 2sin cos  =  and 

2 2cos 2 cos sin  = − , the Equation (2.28) can be converted to: 
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For the reason that in the symmetric distributed MCF, angular position of the 

outer cores 
i  can be described as: 

 ( )1

2
1 .i i

N


 = + −   (2.30) 

Therefore, 
1
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Similarly, 
1

sin 2
N

i
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Based on Equations (2.31) and (2.32), the value of the curvature vector is 

simplified to: 
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which represents the curvature: 
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Based on Equation (2.15), the Equation (2.26) can be revised to the expression 

related to the wavelength shift in an FBG sensor: 
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with the curvature expressed by: 
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where N  is the number of symmetric core used for shape reconstruction. Hence, 

Equations (2.21) and (2.36) give the measurement of curvature and bend direction. 

Meanwhile, the torsion function is obtained from differentiating the bend direction 

with respect to the fiber length, which is expressed by: 

 ( )
( )

.
d s

s
ds


 =   (2.37) 

With the combination of curvature, bend direction and torsion, the origin shape 

is retrieved with the help of Frenet-Serret formulas. 
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2.6  Summary 

In this chapter, a comprehensive review of different types of multi-dimensional 

fiber-optic sensors, including both interferometric and grating-based sensors are 

introduced. With a brief introduction to the characteristic of MCFs, fiber-optic 

sensors using different MCFs are reviewed, as well as the MCF-based 

multi-dimensional sensors. For the purpose of using MCF-based FBGs for 

multi-dimensional sensing, three main grating inscription technologies are presented, 

with emphasis on the phase mask technology to inscribe FBGs in the MCF. 

Characteristic of MCF-based FBGs is investigated, together with the factors that 

cause the nonuniformity of Bragg wavelengths in a single FBG set. In order to utilize 

the MCF-based FBGs for multi-dimensional sensing, theories of both 

two-dimensional vector sensing and three-dimensional shape sensing are 

demonstrated. 

 

 

  



53 

 

Chapter 3 Two-Dimensional Accelerometer 

3.1  Overview on Fiber-Optic Accelerometers 

Accelerometers (vibration sensors) have been widely incorporated in numerous 

applications such as in seismic exploration [99], navigation systems [100] and in 

industrial and health monitoring applications [101]. A variety of them exist and are 

specialized on specific applications. For example, accelerometers used in the 

detection of seismic waves are required to be sensitive to low frequencies (<100 Hz) 

[2] and in mechanical equipment such as rotating machinery and aero-engines, 

sensitive to high frequencies is required [102]. Besides the frequency factor, 

information on the orientation is another critical detail in vibration systems, such as 

cantilevered microwire [103]. Various approaches have been reported to achieve a 

high sensitivity and a dynamic range of frequency responses. However, mechanical 

measurements in an acceleration system capable of distinguishing vector orientations 

remain challenging [104]. Generally, multiple single-axis accelerometers have been 

used to map the vibration directions, thereby, increasing the system complexity. 

During the past two decades, fiber-optic accelerometers have attracted 

widespread interests. Generally, acceleration measurements can be carried out by 

detection of strain or displacement induced by the movement of the inertial mass 

attached to the sensor body. In the process of orientation determination, 

accelerometers vary according to their respective axes of vibration. The most 
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fundamental accelerometers are single-axis, denoting their sensitivity to a single 

direction of vibration. For example, Cranch et al. reported an accelerometer 

comprising of a fiber coil embedded in an epoxy disk [105]. Using this design, the 

strain caused by acceleration has been measured by a Michelson interferometer. 

However, only the vibration which was vertical to its plane caused the disk to flex. 

Villatoro et al. has introduced another interferometric sensor through splicing a 

segment of a strongly-coupled multi-core fiber (MCF) to a conventional single-mode 

fiber (SMF) [106]. The vibration waves have induced local pressure in the MCF, 

leading to a periodic shift of the interference pattern. Moreover, Rong et al. has 

demonstrated a fiber Bragg grating (FBG) based accelerometer in a 

depressed-cladding fiber [107] where acceleration measurements have been achieved 

from power detection of the fundamental core mode resonance.  

In addition, there are several sensors designed as two-axis optical accelerometers, 

based on deflection of the sensing element, with its axis perpendicular to the applied 

acceleration. Fender et al. has proposed an accelerometer using FBGs inscribed in a 

four-core MCF to sense the strain difference between two cores [58]. When the 

vibration was normal to the plane formed by the two cores, FBGs in these two cores 

can only detect acceleration in a certain direction while the other two FBGs remained 

insensitive, and vice versa. Thus, such a sensor requires two pairs of FBGs to detect 

accelerations in two orthogonal directions. However, the actual vibration angle during 

random accelerations remains unexplored. Li et al. has combined two vibration 
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sensors for detection of acceleration sensitivity in two dimensions [108], where a 

cantilever has been directly fabricated on the SMF itself to measure the deflection 

caused by vibration. Besides, Linessio et al. has implemented a biaxial optical 

accelerometer based on four FBGs placed in opposite positions [109], capable of 

detecting acceleration in two orthogonal directions, simultaneously. However, these 

structures are sophisticated to fabricate and control, and are sensitive only in two 

directions. 

Recently, the fiber-optic two-dimensional vector accelerometers have greatly 

raised research interests. The accelerometer can discriminate orientation in 360°, 

providing more directional information during vibration, especially when the 

vibration source is unknown [110]. In order to distinguish the vibration direction, 

Rong et al. has introduced an orientation-sensitive fiber-optic accelerometer based on 

tilted FBGs (TFBGs) inscribed in the cladding of a thin-core fiber [110]. Strong 

orientation dependent vibration measurements have been achieved by power 

detection of the cladding resonance. Moreover, Bao et al. has demonstrated another 

vector accelerometer based on output power detection of orthogonal FBGs in a 

multi-clad fiber [104]. However, both of these accelerometers indicate only an 

orientation dependent acceleration response over a range of 0-360° with the absence 

of actual vibration orientation at random accelerations. As a result, distinguishing 

both the orientation as well as the acceleration simultaneously, using a 

two-dimensional vector accelerometer remains challenging. In other words, 
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information on both parameters should be obtained with the use of a two-dimensional 

accelerometer under random circumstances. 

3.2  Principle of the Two-Dimensional Accelerometer 

In order to solve the problem of obtaining vibration orientation and acceleration 

simultaneously in a vibration sensor, a seven-core MCF with FBGs inscribed is used 

to fabricate a two-dimensional accelerometer. The fiber is the same as the one 

introduced in Chapter 2, with the geometrical parameters represented in Figure 3.1. 

Prior to FBG inscription, the seven-core MCF was loaded in a chamber with 

hydrogen under a pressure of 100 bar at a temperature of ~80 °C for 3 days to 

enhance its photosensitivity. FBGs were then inscribed in all seven cores 

simultaneously through laser beam scanning method, using a 248 nm KrF excimer 

laser (Coherent) together with the phase mask (Ibsen Photonics, 1065.4 nm) 

technique. The scanning speed and the grating length were 0.01 mm/s and 10 mm, 

respectively. Schematic illustration of the FBGs inscribed in the seven core MCF is 

shown in Figure 3.3(b). 
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Figure 3.1. Cross-section of the fiber cores with the defined geometrical parameters. 

After FBG inscription, the MCF was connected to a 7-to-1 MCF coupler (YOFC) 

with the help of a polarization maintaining fiber fusion splicer (Fujikura, LZM-100). 

When the MCF in the fan-out device and the tested MCF are placed together at the 

two sides of the splicer, they can be spliced through monitoring each of the end-view 

figure with the help of an “End View” program. As a result, FBGs in each core can be 

monitored individually during the experiment. An interrogator (Micron Optics, 

sm130) was used to analyze the reflection spectra. Due to the symmetrical geometry 

of the cores in MCF, FBGs in three cores including the central core, together with two 

outer cores, which are not aligned in a straight line are sufficient to develop the 

vibration sensor. Under this condition, at least three cores are enough to help design 

the vibration sensor, with the capability of obtaining the vibration orientation, 

frequency and acceleration at the same time. Figure 3.2 shows the individual 

reflection spectra of the FBGs in the cores 1, 2, 4 and 6. 
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Figure 3.2. Reflection spectra of the FBGs written in core 1, 2, 4 and 6. 

The basic principle of the FBG based vibration sensor is to monitor the Bragg 

wavelength shifts of the gratings inscribed in different cores when vibration occurs. 

During the vibration process, the outer cores of the MCF, indicate a red shift in the 

Bragg wavelength when the fiber is stretched. On the contrary, a blue shift occurs 

when the core is compressed. However, the central core (i.e. core 1) is insensitive to 

vibration since its transversal position is located on the strain neutral plane at all 

times. Thus, the FBG in core 1 can be used for temperature compensation. According 

to Chapter 2.3 , the Bragg wavelength shift of each FBG is dependent on the strain 

applied on it, while the strain is induced by the vibration in the vibration sensor. As a 

result, Equation (2.13) is changed to: 

 ( )sin ,i
i v i

d

R
  = +   (3.1) 

where v  indicates the vibration orientation. 
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Since three individual cores, i.e. core 1, 2 and 4, were used to record the periodic 

change in strain during vibration. For vibrations that occur in random directions, the 

wavelength shifts of core 2 and 4 appear to have an opposite trend, if they are 

arranged at opposite sides of the neutral plane, which means one of them experiences 

a blue shift whereas the other experiences a red shift and vice versa. The wavelength 

shifts can be formulated as follows. 
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In these equations, 2  and 4  are obtained from Figure 3.1 as 0 and 2π/3, 

respectively, while it is -2π/3 for core 6. Pitch d  remains the same for both cores, 

while R  is much larger than d . It is also noticeable that the choice of the set for 

core 2 and 4 can be any two from the six outer cores, except for those who are central 

symmetric to the central core. For example, they can be the set of core 2 and 4, or the 

set of core 2 and 6. Thereby, taking into account the values of maximum wavelength 

shifts of these FBGs at a certain acceleration, vibration orientation can be calculated 

from the following equation. 
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Once the orientation of vibration is determined, using the measured sensitivities 
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under varying orientations, together with the wavelength shifts of the corresponding 

fiber cores, the acceleration value is identified. As a result, orientation and 

acceleration can be obtained simultaneously in a two-dimensional range. 

3.3  Characterization of the Two-Dimensional Accelerometer 

The experimental setup of the two-dimensional accelerometer is depicted in 

Figure 3.3(c). The seven-core MCF with the inscribed FBGs is used as the sensing 

probe, which is fixed on a fiber rotator (Thorlabs, HFR007) to tune the vibration 

orientation from 0 to 180° in steps of 10°. A detailed illustration of the free-fiber is 

shown in Figure 3.3(b), where the grating end is placed 2 mm away from the fixed 

point of the rotator. 

 

Figure 3.3. (a) Definition of distance D from the core of interest to the neutral plane and (b) 

detailed illustration of the free-fiber with length L; (c) schematic setup for the vibration test of the 

two-dimensional vibration sensor. 

Here, we define the orientation of 0° when core 2, 1 and 5 are maintained 

horizontal as shown in Figure 3.1. According to the structure, length of the suspended 
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fiber is vital, since it behaves as an inertial mass, which determines the resonance 

frequency. In our experiments, different fiber lengths, including 66, 44.5 and 25 mm 

were detected under the same structure. Afterwards, the accelerometer was mounted 

on the top of a shaker (Bruel & Kjaer, Type 4808) to characterize its performance. 

During the experiment, the shaker was excited by a sinusoidal-signal generator. For 

the length of 45.5 mm scenario, the acceleration was increased up to 10 g (g = 9.8 

m/s2) with vibration frequencies ranging from 5 to 160 Hz. A high-resolution 

interrogator with a data acquisition rate of 2000 Hz was used to record the 

wavelength shifts of the four FBGs. Consequently, the vibration measurements were 

carried out under the conditions with various orientations, frequencies and 

acceleration values. 

 

Figure 3.4. (a) Real-time wavelength shifts of FBGs in core 1, 2, 4 and 6 with the following 

values: L = 45.5 mm, f = 40 Hz, θv = 90° and a = 10 g. The corresponding (b) FFT spectrum with 

a = 10 g, and (c) wavelength shifts versus applied acceleration with values from 0 g to 10 g. 

core1 core2 core4 core6core1 core2 core4 core6core1 core2 core4 core6

L = 45.5 mm

θv = 90°

f = 40 Hz

(a) (b) (c)

L = 45.5 mm

θv = 90°

a = 10 g

f = 40 Hz
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Figure 3.5. (a) Real-time wavelength shifts of FBGs in core 1, 2, 4 and 6 with the following 

values: L = 66 mm, f = 20 Hz, θv = 90° and a = 10 g. The corresponding (b) FFT spectrum with a 

= 10 g, and (c) wavelength shifts versus applied acceleration with values from 1 g to 10 g. 

In the experiment, a series of sine vibration waves with various vibration 

frequencies was applied to the accelerometer. When the fiber length L  was 66 mm, 

the applied range was from 8 to 60 Hz, while it converted to 8-35 Hz when the fiber 

was shortened to 45.5 mm. Curves in Figure 3.4(a) present the wavelength shifts of 

the FBGs in core 1, 2, 4 and 6 in time domain, at vibration frequency f  of 40 Hz, 

vibration orientation v  of 90 and acceleration value a  of 10 g. During the test, 

the acceleration was increased from 0.2 g to 10 g for each frequency. From the results, 

it can be observed that the FBGs in core 2 and 4 experience an opposite wavelength 

shift since the neutral plane is located in between them, while it remains the same 

between core 4 and 6, since they are located at the same side of the neutral plane 

which is different from core 2, under a vibration orientation of 90. In addition, 

amplitude of the wavelength shift is dependent on the strain i  applied to each FBG 

during vibration, which is proportional to the distance iD  (i.e. i = 2 and 4) from the 

core of interest to the neutral plane, as shown in Figure 3.3(a). When the vibration 

L = 66 mm

θv = 90°

a = 10 g

f = 20 Hz

core1 core2 core4 core6core1 core2 core4 core6 core1 core2 core4 core6

(a) (b) (c)

L = 66 mm
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f = 20 Hz



63 

 

orientation is set to be 90, 4D  and 6D  have the same value due to their angular 

positions. As a result, they share a similar curve in the time domain waveforms. In 

contrast to the vibration responses of the outer cores, FBG inscribed in the central 

core shows insensitivity to vibration because it lies on the neutral plane. Figure 3.4(b) 

demonstrates the fast Fourier transfer (FFT) spectra of the time-domain results shown 

in Figure 3.4(a). The measured frequency matches well with the excited frequency 

from the signal generator. Furthermore, the maximum wavelength shifts as a function 

of the applied accelerations are plotted for the scenario where, 45.5L mm= , 

40f Hz=  and 90v = , and the results are shown in Figure 3.4(c). Slopes of the 

linear responses represent the measurement sensitivities under this condition for the 

four cores, which are 0.17 pm/g, 111.51 pm/g, 50.78 pm/g and 54.11 pm/g for core 1, 

2, 4 and 6, respectively. Similarly, Figure 3.5 displays the vibration information of the 

FBGs in core 1, 2 ,4 and 6 at f  of 20 Hz, v  of 90 and a  of 10 g when L  was 

66 mm, with the sensitivity of 0.27, 136.48, 63.58 and 67.55 pm/g for core 1, 2, 4 and 

6, respectively. It is noted that, there is slight difference between the sensitivity for 

core 4 and 6, which may result from the installation error when mounting the fiber on 

the shaker, possibly due to a minute tilt of core 2, 1 and 5 which are supposed to be 

horizontal. 

In order to further investigate the performance of the accelerometer, the 

sensitivity-frequency response was considered, which can reflect the resonance 

frequency and the flat response range. Basically, the free-fiber length L  can 
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influence the resonance frequency significantly as the additional weight of the fiber 

functions as the inertial mass. The responses for three different L , i.e. 66, 45.5 and 

25 mm, were characterized accordingly. The length between the grating end and the 

fixed point was kept at 2 mm for consistency during all the tests, as shown in Figure 

3.3(b), and L  was shortened by cutting the free-fiber end.  

 

Figure 3.6. Sensitivity-frequency responses of the FBG in core 2 when θv = 90°, L = 66, 45.5 and 

25 mm with or without a glue mass. Inset shows the theoretical resonance frequencies under 

different fiber lengths. 

Figure 3.6 displays the vibration sensitivity versus the exciting frequency for the 

FBG in core 2 when v  is 90° under different L . When L  is 66 mm as shown in 

the blue curve, a resonance frequency of 22 Hz appears in the range from 5 to 35 Hz, 

with a peak sensitivity of 224.1 pm/g. To increase the resonance frequency, L  was 

shortened to 45.5 and then 25 mm. As a result, the resonance frequency appears at 42 

and 149 Hz, with the peak sensitivities reduced to 196.9 and 61.19 pm/g, respectively. 

Experimental

Theoretical
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Meanwhile, theoretical resonance frequencies under different fiber lengths are plotted 

as shown in the inset in Figure 3.6, together with the experimental results represented 

in corresponding colors. It is clearly observed that the experimental results of the 

resonance frequency measurements match well with the theoretically obtained results. 

However, there is a tradeoff between the sensitivity and the resonance frequency, 

which can be tuned according to the requirement of the application. One approach to 

increase the sensitivity at a relatively high frequency is to attach additional mass on 

the end of the free-fiber. As a demonstration, a small amount of glue was attached to 

the end of the free-fiber to increase the weight of the inertial mass. The sensitivity 

curve under same conditions under 25L mm=  condition is plotted in Figure 3.6, 

which has a resonance frequency of 68 Hz and a peak sensitivity of 274.8 pm/g. 

3.4  Orientation Discrimination 

The capability of orientation discrimination for the proposed two-dimensional 

vibration sensor is investigated by applying different accelerations with various 

orientations. Due to the fact that wavelength shift is caused by the vibration-induced 

strain to individual FBG, the maximum shift relies on the distance from fiber core to 

the neutral plane, as shown in Figure 3.3(a). Typically, the distance for a particular 

core (i.e. iD ) changes with the vibration orientation, signifying that the sensitivity 

varies periodically with the change of orientation. When the fiber is rotated in 

different orientations over a range of 0-180°, 2D , 4D  and 6D  are different. Thus, 
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the strain applied in these FBGs would change accordingly with different orientations, 

which can be distinguished by monitoring the wavelength shifts in the outer cores. 

Figure 3.7 shows the dependence of vibration sensitivity on the orientation of core 2, 

4 and 6 over a range of 0-180° in steps of 10°. Owing to the feature of vibration in 

one direction, the orientations with π differences are identical within 360° (e.g. 30° 

and 210°). Therefore, the orientation within 180° covers the entire two-dimensional 

plane. Figure 3.7(a) demonstrates the measured sensitivities with respect to the 

various orientations under the condition of L = 66 mm and f = 20 Hz, whereas Figure 

3.7(b) shows the results for the case of L = 45.5 mm and f = 40 Hz. As expected, at a 

certain orientation, the sensitivity is different for each cores, i.e., core 2 and 4. There 

is a phase shift between the results of core 2 and 4, i.e. 60, which is the same as the 

geometrical angle between these two cores and the central core. 

 
Figure 3.7. Orientation dependence of the sensitivities of FBGs in core 1, 2, 4 and 6 under 

different conditions. (a) L = 66 mm and f = 20 Hz; (b) L = 45.5 mm and f = 40 Hz. 

It is possible that the same wavelength shift can be measured for the cases with 

different accelerations and orientations. As for an unknown vibration, information on 

core1 core2 core4 core6core1 core2 core4 core6

(a) (b)

L = 66 mm

f = 20 Hz
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f  = 40 Hz
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its frequency, acceleration as well as the orientation should be extracted 

simultaneously from a single accelerometer by detecting the wavelength shifts of the 

FBGs. It is easy to obtain the frequency by conducting the FFT from the time-domain 

wavelength shifts. Then the acceleration can be obtained by referring to the calibrated 

sensitivities in Figure 3.7 if the orientation is known in advance. According to 

Equation (3.3), vibration orientation 
v  can be computed from the maximum 

wavelength shifts of two FBGs and their relative positions. Figure 3.8 shows the 

results of the orientation discrimination for the scenario of 45.5L mm=  and 

30f Hz= . The fitting line of the experimental results is plotted, together with the 

measured values under different vibration orientations. It can be seen that the 

measured orientation values stay consistent with the set values. Different 

accelerations from 1 g to 10 g at certain orientations are characterized, with the result 

under 60° shown in the inset. The error bars represent the orientation accuracy, which 

is defined by the absolute difference between the set values and the reconstructed 

values. Results show that the vibration direction can be achieved regardless of the 

acceleration, with accuracy ranges from 0.127 to 2.888° in 0-180° range, depending 

on the accelerations. From the magnified figure, a relatively low accuracy is found at 

high accelerations, which may be attributed to the fact that the free-fiber is slightly 

away from the vibration plane. However, it is insignificant for small accelerations. 

For a certain orientation value, e.g. 60°, the measured one is supposed to be the same. 

However, it is noted that there is an offset between the ideal and the measured ones 
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obtained from the fitting line, which is calculated to be 1.75°. The offset value is 

probably caused when mounting the accelerometer to a certain orientation (e.g. 0°), 

which can be avoided if the mounting process is precisely controlled. 

 

Figure 3.8. Input and measured orientation values under specific orientations from 0 to 180° when 

L = 45.5 mm and f = 30 Hz. Inset shows the corresponding accuracy ranges. 

Besides, the orientation reconstruction performance was also investigated under 

different sets of the aimed cores when fiber length was set to 66 mm. For example, as 

shown in Figure 3.9(a), the accuracy ranges from 0.01 to 2.789° for core 2 and core 4 

(set 1), and 0.01 to 2.963° for core 2 and core 6 (set 2). Moreover, various 

accelerations from 1 to 10 g were applied to the sensor under each orientation. Figure 

3.9(b) shows the measured orientations under different accelerations when the actual 

vibration orientation is set to be 20°. It is noted that both groups of the outer cores can 

distinguish the orientation well, while lacking any obvious difference in the 

reconstructed orientations under a specific acceleration. 

Fitting line
1 g
2 g
3 g
4 g
5 g

6 g
7 g
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Figure 3.9. (a) Orientation accuracy under different combinations of outer cores when fiber length 

L = 66 mm. (b) Measured orientations applied with different accelerations when θv = 20° under 

different combinations of outer cores. 

3.5  Summary 

In this chapter, a short description of the existing structures for both 

one-dimensional and two-dimensional vibration sensors is presented. Previous 

research studies, lack detailed information on vibration including the vibration 

direction, acceleration and frequency when source of vibration is unknown. The 

proposed two-dimensional vibration sensor is designed to distinguish the value of 

orientation and acceleration simultaneously, based on the FBGs inscribed in the MCF. 

A seven-core MCF with 10-mm long FBGs inscribed in the cores is used as an 

inertial mass to be the accelerometer probe, which is immune to temperature 

fluctuations since the central core stays on the neutral plane at all times during 

vibration. The maximum resonance frequency is measured at 149 Hz, which can be 

optimized by adjusting the free-fiber length and weight. Through monitoring the 

wavelength shifts of only three cores, including the central and two outer cores which 

(a) (b)
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are not aligned in a straight line, vibration orientation can be obtained with an error 

range of 0.127 to 2.888°, which can be improved when orientation-sensitive factors 

are considered. Furthermore, different outer cores are chosen for the orientation 

reconstruction, with errors ranging from 0.01 to 2.789° and 0.01 to 2.963° under 

different combinations. The similar accuracy makes the sensor more reliable in 

differentiating the orientation. With the use of this structure, orientation information 

as well as the acceleration can be obtained in a single fiber concurrently. Furthermore, 

the compact size of the sensor is beneficial for orientation-sensitive acceleration 

measurement applications. 
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Chapter 4 Two-Dimensional Inclinometer 

4.1  Overview on Fiber-Optic Inclinometers 

Inclinometers (tilt sensors) are important sensing devices widely used in many 

industrial applications, such as aircraft flight control [111], ground subsidence 

detection [112], and monitoring of slope deformation [113]. In order to detect tilt 

angles, various kinds of techniques have been proposed to develop these 

inclinometers based on mechanical, convection, and magnetics approaches. Although, 

mechanical inclinometers perform well under small tilt motion detection conditions, 

the measurement range is limited and the folded pendulum structure is fragile [114]. 

In contrast, the convective inclinometers have an increased inclination measurement 

range, but are thermally sensitive, which decreases the accuracy of the sensor [115] 

and the magnetic inclinometers which are insensitive towards temperature, are 

restricted to operation in electromagnetic environments [116]. As a result, there is a 

need to investigate inclinometers based on a different technique to overcome these 

constraints. 

Generally, fiber-optic based tilt detection is carried out through strain 

measurements in a fiber gauge, which is introduced by an angular deflection of the 

sensor body from a reference plane or a line. In practice, there are two angles that 

determine a tilt, namely the azimuthal angle in the axial plane and the inclination 

angle in the vertical plane. Based on the discrimination of these tilt angles, 
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one-dimensional or two-dimensional inclinometers have been proposed. 

One-dimensional inclinometers are only sensitive to the inclination angle. For 

example, Chen et al. has reported a SMF based tilt sensor with an FBG embedded in 

an aluminum box to compensate the temperature-induced wavelength shifts [117]. 

However, the information of the azimuthal angle is unknown. On the contrary, 

two-dimensional inclinometers are considerably practical as they can measure two tilt 

angles, simultaneously. The practicality of an inclinometer in a real-world application 

relies on its capability of retrieving two different angles simultaneously, under a 

random circumstance where the tilt direction is unknown. Accordingly, several 

two-dimensional tilt sensors have been demonstrated with different measurement 

ranges and accuracies. In 2004, Guan et al. reported a pendulum-based inclinometer 

with two pairs of FBGs, where each pair was assigned to detect inclination in one of 

the two orthogonal dimensions, through the measurement of their wavelength shifts 

[118]. The experiment was conducted by changing the inclination in one direction 

while the other direction remained unchanged. In 2009, Miller et al. implemented a 

cantilever-based tilt sensor with a MCF, by monitoring bend-induced strain through 

interferometric interrogation [119]. The sensor showed an inclination-sensitive 

response over a wide range, and one of the inclinations was able to be calibrated 

when the other was fixed. In 2016, Chiang et al. introduced a two-dimensional tilt 

sensor using two etched chirped FBGs [120]. Results of the wavelength response 

were dependent on the aforementioned two angles, however, the information of tilt is 
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not apparent. As a result, distinguishing inclination and azimuthal angles 

simultaneously in an inclinometer under an unknown scenario remains challenging. 

In other words, with the use of a two-dimensional inclinometer, both the inclination 

and azimuthal angles could be reconstructed under random circumstances. 

4.2  Principle of the Two-Dimensional Inclinometer 

The principle of an FBG-based inclinometer is based on monitoring of the 

wavelength shifts of the FBGs induced by a tilt. The aimed fiber is the same as the 

one used in Chapter 2, together with the fabrication process for the FBG inscribed in 

the fiber. The grating length was 10 mm and a pitch of 1048.16 nm. Schematic 

illustration of the inclinometer with FBGs inscribed in the MCF is shown in Figure 

4.2. During the tilt measurement, the sensor body is shifted away from its original 

position, in the vertical direction. Two angles, including the azimuthal angle   and 

the inclination angle   contribute towards the tilt measurement together. The former 

is defined as the angle between the tilt orientation and the neutral plane, while the 

latter is defined as the angle between the tilt and vertical direction, which are 

illustrated in Figure 4.1(a) and Figure 4.2, respectively. 
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Figure 4.1. (a) Definition of the geometrical parameters from the cross-section of the MCF and (b) 

reflection spectra of the FBGs inscribed in fiber cores. 

After FBG inscription, the MCF was connected to a 1-to-7 fan-out device 

(YOFC) with the help of a polarization maintaining fiber fusion splicer (Fujikura, 

LZM-100). As a result, FBGs in each core can be monitored individually during the 

experiment. An interrogator (Micron Optics, sm130) with a resolution of 1 pm was 

used to analyze the reflection spectra, which are shown in Figure 4.1(b). In general, 

the Bragg wavelength of each core is slightly different from each other, due to the 

non-uniform UV exposure which occurs as a result of the different spatial distribution 

of the cores [94]. In the experiment, three of the seven cores, including the central 

core 1 as well as two outer cores 2 and 4 were chosen for the tilt measurement. 
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Figure 4.2. Schematic illustration of the inclinometer under different inclinations. (a) φ = 0° and θ 

= 0°, (b) φ = 0° and θ = 20°, and (c) φ = 0° and θ = 60°. 

During the tilt measurement process, the FBGs in all the fiber cores experience 

different strain induced wavelength shifts. For the outer cores, the Bragg wavelengths 

show a blue shift when they are compressed, and a red shift when stretched. However, 

the FBG in the central core is insensitive towards bending since it is in the neutral 

plane. As a result, the central core can be used for temperature compensation. The 

wavelength shift   of an FBG in core i  can be described as, 

 ( ) ( )1 sin ,i e i i

d
p

R
    = −   +   (4.1) 

where i  is the Bragg wavelength of core i , while 0.22ep  , is the effective 

photo-elastic coefficient. Furthermore, i  represents the angular position of core i  

with respect to the neutral plane, and R  is the tilt-induced bending radius. The 

designed inclinometer is based on a cantilever structure, where a small mass is 

y

y
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x
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attached to the free end of the sensor body while the other end is fixed. The FBGs are 

located near the fixed point, as depicted in Figure 4.2. When the fiber is tilted, the 

free-fiber end moves away from the vertical direction while the other end remains 

fixed. Under this situation, R  is composed of two parts, namely the mass-induced 

MassR  and free-fiber-induced 
FiberR , which are described in Equations (4.2) and (4.3), 

respectively [121], 
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E  is the Young’s modulus of the fiber, and I  is the second moment of the 

cross-sectional area, which is defined as 4 64D . L  is the length of the free-fiber, 

and gx  represents the distance between the grating and the fixed point. w  is the 

fiber weight per unit length and m  is the weight of the applied mass, while g = 9.8 

m/s2 is the gravitational acceleration. As a result, the tilt-induced Bragg wavelength 

shift in core i  can be expressed by Equation (4.4), 

 ( ) ( )
iber

1 sin .i e i i

F Mass

d d
p

R R
   

 
 = −  +  + 

 
  (4.4) 

The Bragg wavelength shifts are related to both   and  . When wavelength 

shifts in two outer cores are considered, for example, core i  and core j , the 

azimuthal angle   can be described as, 
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From Equation (4.5) it is apparent that the phase between 
i  and j  can be 

any value except  , which means the chosen two cores should not be aligned in a 

straight line with the central core. Consequently, once the orientation of φ is 

determined, θ can be obtained via Equations (4.5) and (4.4), which can be deduced as, 
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  (4.6) 

In other words, knowing the value of   and the wavelength shift in a specific 

core,   can be successfully determined. Hence, both   and   can be obtained 

simultanesouly under any tilting condition by detecting the Bragg wavelength shifts, 

indicating that the inclinometer has the capability of distinguishing the tilt in a 

two-dimensional range. 

4.3  Theoretical Model of the Two-Dimensional Inclinometer 

Before experimental verification, the performance of the sensor was simulated 

based on the parameters of the seven-core MCF. The mass weight m  chosen in the 

simulation was 10 mg , and E  of the MCF was 73 GPa . The free-fiber length L  

was 73 mm , with gx  set to 5 mm . The simulation results of the Bragg wavelength 

shifts obtained with respect to the azimuthal angle and inclination angle are shown in 
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Figure 4.3 and Figure 4.4, respectively where the former indicates the response of the 

wavelength shift versus   for core 2 and 4, when   varies from 0 to 90° in steps 

of 10°. Figure 4.4(a) and Figure 4.4(b) show the response of the wavelength shift 

versus   for core 2 and 4, when   varies from 0 to 330° in steps of 30°. In this 

simulation, 
2  and 

4  are   and 5 3 , respectively which is based on the 

geometric position of core 2 and 4, as illustrated in Figure 4.1(a). However, the 

angular position is adjustable in real applications by choosing any two cores. This 

initial angle information can also be verified by the initial phase of the response 

curves as shown in Figure 4.3. 

 

Figure 4.3. Simulation results of wavelength shift versus φ for (a) core 2 and (b) core 4 with θ 

over a range from 0 to 90° in steps of 10°. 

From Figure 4.3, it can be observed that there is a phase difference of 60° in the 

responses of the two cores, which is identical to their geometric angle with respect to 

the 0° plane, as shown in Figure 4.1(a). Particularly, the phase of the wavelength shift 

curve in Figure 4.3(a) is influenced by the angular position of a specific core. 

(a) (b)
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According to Figure 4.3, it is evident that when   is 0°, the wavelength shift is zero 

for all of the azimuthal angles ( ), representing the initial vertical direction of the 

inclinometer. For a specific , the wavelength shift increases with increasing  . 

Figure 4.4 describes the wavelength shift as a function of  , which shows a 

sinusoidal response. It is observed that the inclinometer is less sensitive at large 

inclination angles. The simulation results demonstrate that the Bragg wavelength shift 

of the FBGs is dependent on both   and  , denoting that the two-dimensional 

inclinometer is sensitive to two angular directions. 

 

Figure 4.4. Simulation results of wavelength shift versus θ for (a) core 2 and (b) core 4 with φ 

over a range from 0 to 330° in steps of 30°. 

In order to improve the sensitivity of the proposed inclinometer, different 

parameters of the MCF were investigated to optimize the sensing performance. 

According to Equation (4.4), it is apparent that the wavelength shift is closely related 

to three main parameters, i.e. the pitch d , Young’s modulus E  and the weight of 

the mass m . Therefore, the sensitivity can be enhanced by adjusting these 
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parameters. Simulation results of wavelength shift versus the azimuthal angles  , 

under different parameters are summarized in Figure 4.5, under the condition that   

was fixed at 60° while the other parameters were maintained the same as described in 

the first paragraph of this section. Figure 4.5(a) describes the response of the 

wavelength shift with d  changing from 10 to 50 m , in which the wavelength shift 

increases when d  is increased, signifying that the sensor is more sensitive when the 

pitch is larger. In order to investigate the effect of the material of the fiber on the 

sensitivity of the FBG, two materials with different Young’s moduli namely, 

borosilicate and silica glass were taken into account. Results from Figure 4.5(b) 

demonstrate that as E  increases, the FBG is less sensitive, denoting that an 

inclinometer with a softer material can have a higher sensitivity. In addition, the 

response of the wavelength shift under different m  values varying from 5 to 25 mg , 

is shown in Figure 4.5(c). Evidently, the wavelength drift becomes larger with 

increasing weight, which is caused by the larger mass-induced strain. After 

comparing the obtained results of the wavelength shift under the influence of these 

three parameters at a certain azimuthal angle range, it is revealed that m  dominates 

the wavelength shift response exhibiting the maximum wavelength shift at the same 

azimuthal angle. The comparison result of the wavelength shift under specific 

parameters are concluded in Figure 4.5. This indicates that the most effective way to 

improve the performance of the inclinometer is by increasing the weight of the 

applied mass. 
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Figure 4.5. Simulation results of wavelength shift versus φ with θ fixed at 60° under varying 

conditions of (a) pitch d, (b) Young’s modulus E, and (c) weight of mass m. (d) Wavelength shift 

comparison among three parameters. 

4.4  Characterization of the Two-Dimensional Inclinometer 

The schematic setup of the two-dimensional inclinometer is depicted in Figure 

4.6, where Figure 4.6(a) illustrates the details of the two-dimensional inclinometer. A 

fiber rotator (Thorlabs, HFR007) was used to tune the tilt orientation ( ) in the range 

from 0 to 360°, while a 6-axis kinematic mount (Thorlabs, K6XS) was used to adjust 

  from 0 to 90°. Based on Figure 4.6(b), the seven-core MCF inscribed with FBGs 

was firstly spliced to a 1-to-7 fan-out device, and the multiple SMF ends, 

(a) (b)

(c) (d)
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corresponding to core 1, 2, 4, and 6, were connected to an interrogator with a 

resolution of 1 pm and a sampling rate of 2000 Hz. As a result, the MCF functioning 

as a sensing probe can detect a tilt within a two-dimensional range. In this experiment, 

the used fiber length was 73 mm and the distance between the grating and its fixed 

point was 5 mm, which are as same as the simulation parameters. The weight of the 

mass m , was 10 mg. During the experiment, tilt measurements were carried out 

under different azimuthal and inclined orientations in two dimensions. 

 

Figure 4.6. (a) Illustration of the tilt sensor, including a fiber rotator and a 6-axis kinematic mount 

introducing φ and θ respectively, to the MCF inscribed with FBGs. (b) Schematic setup of the 

two-dimensional inclinometer system used for the tilt measurement. 
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Figure 4.7. Raw data of the Bragg wavelength shifts in (a) core 2, (b) core 4, and (c) core 6, and 

self-compensated data of the Bragg wavelength shifts in (d) core 2, (e) core 4, and (f) core 6, with 

φ varying from 0 to 360° in steps of 10°, and θ varying from 0 to 90° in steps of 10°. 

The experimental results are shown in the Figure 4.7 and Figure 4.8. Raw data 

of the Bragg wavelength shifts are shown in Figure 4.7(a)-(c), representing the 
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responses of core 2, 4 and 6, respectively. The azimuthal angle   varies from 0 to 

360° in steps of 10°, and the inclination angle   varies from 0 to 90° in steps of 10°. 

Due to the regular variation of the tilt angle, the shape of the wavelength shift curve is 

sinusoidal. Noticeably, there is a 60° phase shift between two different cores, which is 

the same with the angular difference of the fiber cores. However, it is clearly 

observed that the period of each curve in each figure within Figure 4.7(a)-(c) is 

slightly different, which is caused by the offset of the sensor body during the tilt 

measurement. Consequently, the response in core 1 can be used for the offset 

compensation, as shown in Figure 4.7(d)-(f). Considering the results in Figure 4.7(d) 

and Figure 4.7(e), there is a phase shift in each core when compared with the 

simulation results in Figure 4.3, e.g., 18  for core 2, which can be used to obtain 

the actual angular position of the fiber core. As a result, in the experiment 2  and 

4  are 17 18  and 29 18 , respectively. Apart from the phase of the wavelength 

shift curves, the values of the responses are in accordance with that of the simulation 

results, demonstrating high reliability and good repeatability can be achieved with the 

proposed inclinometer. The maximum sensitivity of   is 3.24 pm/°, with the fitting 

range from 150° to 210°, and an 2R  value of 0.9989. Similarly, Figure 4.8 illustrates 

the compensated experimental results of the Bragg wavelength shift as a function of 

 , while   varies from 0 to 330° in steps of 30°. A maximum sensitivity of 3.2208 

pm/° is obtained, within an angle variation from 0 to 30°, with an 2R  value of 

0.9991. After accounting for the resolution of the interrogator (1 pm), the resolution 
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of these two angles is 0.31°. It is notable that the sensitivity can be largely improved 

through enhancing the weight of the mass. Furthermore, other Bragg wavelength 

shifts detected by core 1, such as temperature fluctuations, can also be compensated 

which makes the system to be temperature insensitive and more reliable. 

 

Figure 4.8. Compensated experimental results of wavelength shift versus θ for (a) core 2 and (b) 

core 4 with φ in the range from 0 to 330° in steps of 30°. 

4.5  Orientation Discrimination 

The main functionality of a two-dimensional inclinometer relies on its capability 

of angle detection in two dimensions. During measurement, the tilt angle of an 

FBG-based inclinometer is determined by the wavelength shift of the FBG(s). 

However, it is possible to obtain the same wavelength shift under two different 

scenarios. Therefore, distinguishing two different angles simultaneously, is necessary 

in a tilt measurement. According to Equation (4.5), the azimuthal angle   can be 

calculated through the maximum wavelength shift of the two FBGs and their relative 

positions. Figure 4.9 shows the theoretically results of   against the reconstructed 
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ones from the measured wavelength shifts at different input angles using the results in 

core 2 and 4. It can be observed that the measured orientation values remain 

consistent with the set values over the range from 0 to ±180°. The (0, -180°) and (0, 

+180°) ranges are determined by the blue and red wavelength shift of a specific FBG 

in the fiber core. For example, when the measured   is 40°, this means the actual 

value can be either 40° or 220°. Nevertheless, with the help of Figure 4.7, it is clear 

that at 40°, a red shift occurs in the wavelength of the FBGs in both the cores, on the 

contrary to the conditions at 220° which indicates a blue shift in the wavelength of 

the FBGs. Therefore,   can be determined unambiguously over the range of 0 to 

360°.  

 

Figure 4.9. Input and measured azimuthal angles at specific orientations from 0 to 360° with the 

use of wavelength shifts in core 2 and 4. 
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Figure 4.10. Orientation error of azimuthal angle over the range from 0-360°, under three 

different combinations of the used fiber core, including (a) core 2 and 4, (b) core 2 and 6, and (c) 

core 4 and 6. 

In order to evaluate the performance of the angle reconstruction, the orientation 
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error of   under different   values was investigated and is described in Figure 

4.10. The measurement error is defined by the difference between the set values and 

the reconstructed values. Figure 4.10(a)-(c) show the error of azimuthal angle over 

the range from 0-360° in steps of 10°, under three different combinations of the used 

fiber core, e.g., core 2 and 4, core 2 and 6, and core 4 and 6, respectively.  

The results show that for  , the error of the reconstructed angle varies from 

0.0056 to 2.668° under the combination of core 2 and 4, while it is 0.0001 to 3.09° 

when the fiber cores are changed to core 2 and 6, and 0.24 to 4.464° when the fiber 

cores are 4 and 6. Also, there is a prominent sinusoidal trend in the accuracy at a 

specific inclination angle, which is caused by the sinusoidal period of the experiment 

results in Figure 4.7, and the results show that a large error occurs when the 

sensitivity is relatively low.  
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Figure 4.11. Orientation error of inclination angle over the range from 10-90°, under three 

different combinations of the used fiber core, including (a) core 2 and 4, (b) core 2 and 6, and (c) 

core 4 and 6. 

Once the information of   is retrieved, the value of   can be further 
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investigated according to Equation (4.6). The error of   is illustrated in Figure 4.11 

under three different combinations of the used fiber core, at different   values 

ranging from 0 to 330° in steps of 30°. It is apparent that inclination angle 

reconstruction performs well under small inclinations, i.e., 10 to 70°. Large errors 

occur at large inclination angles due to the relatively low slope in the wavelength 

shift-inclination angle curve, which corresponds to a relatively small sensitivity. 

However, this issue can also be resolved through several other methods, such as 

increasing the weight of the mass, elongating the free-fiber length or by reducing the 

Young’s modulus. The performance can also be improved through changing the 

parameters of the tilt sensor, such as enhancing the mass weight or increasing the 

pitch of the fiber. Also, the accuracy in different combinations of the used fiber cores 

shows consistency. The minimum error in Figure 4.11(a)-(c) is 0.025°, 0.585° and 

0.079°, respectively, demonstrating the stable characteristics of the tilt sensor. 

4.6  Summary 

This chapter focuses on the introduction of an FBG-based MCF for 

two-dimensional inclination measurement. Detection of the actual tilt angle is absent 

in the existing research of two-dimensional inclination sensors. As a result, the 

proposed inclinometer is designed with the capability of distinguishing the value of 

tilt angles in two different planes, including the azimuthal and the inclination angle, 

under random circumstances. In the design, a 73-mm long seven-core MCF 
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consisting of 10-mm long FBGs inscribed in the cores, together with a free-fiber end 

mass is utilized as the sensor body of the inclinometer. With the help of the central 

core, which remains on the neutral plane, the designed sensor is temperature 

compensated. The achieved sensitivity during the measurement of the angles is 3.24 

pm/°, which can be further improved by increasing the weight of the mass, decreasing 

the Young’s modulus, extending the length of the free-fiber, and by varying the pitch 

of the MCF. Through monitoring the wavelength shifts of three of the seven cores, 

including the central and two outer cores which are not aligned in a straight line, the 

azimuthal angle is obtained within the measurement error range of 0.0056 to 2.668° 

in a 0-360° range, while the minimum error is 0.025° for the inclination angle over a 

range from 10° to 90°. Furthermore, the sensor is easy to fabricate and has a compact 

size, allowing it to be incorporated in applications where space is a limitation. The 

obtained repeatable results of the sensor further ensure its robustness and reliability 

which is ideal for industrial applications, such as the structural health monitoring and 

robotic arms. 
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Chapter 5 Two-Dimensional Displacement Sensor Assisted 

with Machine Learning Algorithms 

5.1  Overview on Displacement Sensors 

Displacement is one of the most important parameters in mechanical engineering. 

The displacement information of objects is crucial in various industrial fields 

including structural health monitoring [122], biomedical measurement [123] and 

aerospace applications [124], etc. Due to the capability of precise alignment, 

displacement sensor is one of the essential methods to achieve accurate positing. 

Numerous approaches have been proposed to achieve the displacement measurement 

of different amplitudes with accuracies. However, in order to achieve 

two-dimensional vector sensing, the direction of displacement turns out to be another 

essential physical quantity that needs to be measured when developing a position 

tracking sensor in practical applications, such as robotic arms [125]. It requires the 

designed sensor to be sensitive to both the amplitude and direction of the applied 

displacement, simultaneously.  

Generally, fiber-optic displacement sensors are developed based on the 

measurement of deflection induced by fiber bending or stretching. Through 

monitoring the variation of intensity, wavelength and phase of the optical signal, the 

displacement performance is analyzed. For example, Dong et al. reported a FBG 

based displacement sensor with the characteristic of temperature insensitivity [126]. 
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The sensor used an FBG that was glued on the lateral side of a cantilever in a slanted 

direction, and the displacement was measured by detecting the variation of the 

bandwidth and the reflected optical power of the FBG. Besides, Rong et al. presented 

a configuration consisting of the combination of thin-core fiber and FBG for 

displacement sensing [127]. The structure exploited the core-cladding coupling 

mechanism, where the coupled intensity was referenced for displacement 

measurement. Chen et al. proposed a Michelson interferometer based displacement 

sensor [128]. Through the demodulation of optical path difference between the 

sensing and reference fiber, the displacement detection was converted to the 

differential phase measurement. However, the aforementioned sensors can only allow 

for one dimensional displacement measurement, while the direction information of 

the displacement was not considered, which hinders it from developing into a 

position tracking sensor. 

In order to obtain the direction information of the displacement, several 

fiber-optic two-dimensional displacement sensors were reported, with the direction 

dependency resulted from an asymmetric geometry. For example, Yang et al. 

introduced a direction-dependent displacement sensor by inscribing gratings in the 

core and the inner cladding of a multi-cladding fiber [129]. Due to the intensity 

modulation difference between the two FBGs, displacement induced output optical 

signal showed direction sensitivity. In addition, Bao et al. demonstrated a 

displacement sensor by inscribing an eccentric FBG in the core/cladding interface 
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using a depressed-cladding fiber [22], which introduced a cylindrical asymmetry into 

the fiber. The direction related displacement response was obtained through intensity 

detection. Although these sensors are displacement direction sensitive, the variation 

of displacement amplitude in a random direction is unknown. Essentially, all the 

aforementioned sensors are not able to retrieve the displacement direction and 

amplitude simultaneously. The displacement sensor response is caused by the 

displacement induced fiber bending. In order to retrieve the displacement information 

during the displacement measurement process, the relationship between the 

displacement and corresponding fiber bending is kept linear, which limits the 

measurement range within several micrometers (dependent on the length of the tested 

fiber). In addition, the reconstruction performance is mainly dependent on the 

accuracy of the corresponding theoretical model, where small variation may result in 

large error for each retrieval. Moreover, the system error is inevitable during the setup 

process, which may introduce larger error in each calculation process. To improve the 

displacement performance, an accurate method for the amplitude and direction 

reconstruction should be investigated. 

5.2  Machine Learning in Fiber-Optic Sensors 

Recently, different machine learning algorithms have been used to improve 

estimation accuracy in optical fiber sensors. For example, in distributed optical fiber 

sensing systems, researchers utilized algorithms such as support vector machine 
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(SVM), principal component analysis (PCA), artificial neural networks (ANN), 

convolutional neural network (CNN), etc. to extract the Brillouin gain spectrum 

(BGS) [130-133], which was usually obtained using Lorentzian curve fitting (LCF) 

[133]. However, the accuracy of the extraction of BGS with the LCF approach is 

influenced by the fitting parameters. These machine learning algorithms enhance the 

sensing performance with an accurate and efficient BGS extraction, producing better 

performance over the conventional fitting method. In addition to the distributed 

optical fiber sensing, the point-based optical fiber sensing systems are also benefited 

from the machine learning tools. For instance, the Gaussian process regression (GPR) 

was introduced to an FBG-based temperature sensor for accurate temperature 

calculation [134]. It provided a direct mapping between the temperature and FBG 

spectrum to improve the detection accuracy, while conventional fitting methods were 

largely dependent on the quality of the FBG spectrum. In particular, there are 

researches using machine learning algorithms to distinguish multi-parameters in the 

point-based sensing systems, such as the discrimination of both the magnitude and 

location of applied normal force in an FBG-based tactile sensor using neural 

networks [135], and simultaneous measurement for amplitude and direction of the 

transverse load in a long-period grating (LPG) -based force sensor, where different 

regression algorithms were investigated for performance comparison [136]. In this 

work, we applied machine learning to the FBG-based vector displacement sensor for 

improvement on the measurement range and accuracy. 
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Various categories of machine learning algorithms are being applied to improve 

performance in optical sensors, such as neural networks and regression methods. 

Among them, random forest is regarded as one of the most precise prediction 

algorithms for classification and regression, due to its capability of modeling complex 

variable interactions [137]. It consists of a combination of tree predictors where each 

tree is generated using a random vector sampled independently from the input vector. 

Random forest algorithm has many advantages such as high efficiency for large 

datasets, insensitivity to noise or over-fitting, and fewer parameters when compared 

with other machine-learning algorithms (e.g., ANN or SVM). However, few studies 

have employed the random forest regression algorithm in fiber-optic sensing, 

especially for the vector displacement sensor. In this chapter, we demonstrated that 

the application of random forest algorithm can enhance the performance of vector 

displacement sensor substantially. 

5.3  Theoretical Model of the Two-Dimensional Displacement Sensor 

As shown in Figure 5.1(a), the seven-core MCF used to develop the 

displacement sensor is the same as the description in Chapter 3, with diameters for 

core 0D  and cladding D  of ~8 and ~150 μm, respectively. The pitch d , the 

distance between two adjacent cores, is ~42 μm. The fiber was loaded in a hydrogen 

chamber for 3 days under a pressure of 100 bar at a temperature of ~80 °C to enhance 

the photosensitivity. Then FBGs were inscribed using a 248 nm KrF excimer laser 
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(Coherent) based on the phase mask (Ibsen Photonics, 1075.23 nm) and beam 

scanning technique, with grating length of 10 mm and scanning speed of 0.01 mm/s, 

respectively. After the FBG inscription, the MCF was spliced to a 1-to-7 fan-out 

device (YOFC, China) using a polarization maintaining fiber fusion splicer (Fujikura, 

LZM-100).  
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Figure 5.1. (a) Geometrical definition of parameters based on the cross-section of the MCF. (b) 

Schematic structure demonstration of the FBG and MCF in the displacement sensor design, with 

the FBGs inscribed in MCF shown in the expanded view. 

During the displacement measurement, four of the seven cores, including the 

central one (i.e., core 1) and three outer ones (i.e., core 3, 5 and 7) are monitored. The 

applied displacement can be determined by measuring the Bragg wavelength shifts in 

these cores based on fiber displacement-induced bending. Due to the spatial 

distribution of the cores, some outer cores are compressed, which introduces a blue 

shift in the Bragg wavelength while the others are stretched and experienced a red 

shift. However, core 1 is insensitive to the applied displacement since it lies in the 

neutral plane, which can be utilized for temperature compensation. As a result, the 
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Bragg wavelength shift   in a specific core i  can be expressed as [138] 

 ( ) ( )1 sin ,i e i D i

d
p

R
    = −   +   (5.1) 

where ep  representing the effective photo-elastic coefficient is ~0.22 [139], and i  

is the Bragg wavelength of core i . When displacement is applied to the MCF, the 

displacement angle is defined by D  as shown in Figure 5.1(a), where i  indicates 

the corresponding angular position of each core i  with respect to the 0° plane. In 

addition, R represents the displacement-induced bending radius. The designed sensor 

is based on a cantilever structure, as is shown in Figure 5.1(b), with the displacement 

  applied on the free-fiber end and the other end kept fixed. The discrete points in 

Figure 5.1(b) represent the recorded displacements, which are the projections of the 

free-fiber end with different directions and amplitudes. Based on the bending effect at 

a single FBG group at a short section along the fiber, and using the mechanical model 

between the displacement-induced bending radius and displacement amplitude, the 

displacement of an object on a plane can be monitored. The FBGs are located along 

the sensor body, with the structure shown in the expanded view. During measurement, 

the free-fiber end is shifted away from its origin position due to the applied 

displacement. As a result, the displacement-induced bending radius at a given 

position along the fiber length is defined as [140] 

 ( )
( ) ( )

,
EI EI

R x
M x F L x

= =
− −

  (5.2) 
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where E  and I  are the Young’s modulus and the moment of inertia respectively, 

and ( )M x  indicates the bending moment at a specific position, which is related to 

the position x , free fiber length L  and the applied force F  at the free fiber end. 

Under this situation, the displacement   can be expressed by [140] 

 
3

.
3

FL

EI
 =   (5.3) 

Based on Equations (5.2) and (5.3), the relationship between displacement and 

bending radius is obtained as follows 

 
( )( )

3

,
3

L

R x x L
 =

−
  (5.4) 

which indicates that the displacement is dependent on the free fiber length L  and 

position x . 

As a result, when Bragg wavelength shifts in two of the outer cores are 

considered, such as core i  and j , the displacement angle D  can be deduced by 

Equation (5.5), 
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  (5.5) 

where the denominator should be non-zero, meaning the phase between i  and j  

can be any value except  . In other words, core i  and j  should not be aligned in 

a straight line with the central one to determine the displacement direction. Once D  
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is determined, the displacement amplitude is obtained via substituting Equation (5.4) 

to Equation (5.1), which can be expressed as 

 

( ) ( )( )

3

.

3 1 sini
e D i

L

p d x L




 


=

−   + −


  (5.6) 

Consequently, by measuring the Bragg wavelength shifts in different cores, D  

and   can be reconstructed from a random position, meaning that the proposed 

sensor has the capability of determining the direction and amplitude of the 

displacement simultaneously in the two-dimensional plane. 

(a) (b)Core3 Core5

 

Figure 5.2. Simulation results of wavelength shift versus displacement direction varying from 0 to 

360° in steps of 10° for (a) core 3 and (b) core 5, with displacement amplitude fixed at 0, 3, 6, and 

9 mm. 

In order to evaluate the performance before the experimental demonstration, the 

proposed sensor was firstly investigated theoretically. The free fiber length L  was 

set to be 111 mm, with the displacement direction changing from 0 to 360°. In the 

proposed sensor structure illustrated in Figure 5.1(b), the displacement distance 

determines the shifted angle   of the sensing fiber at the fixed point, which was 
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limited to less than 5° to keep a linear response between the displacement and the 

Bragg wavelength shift. The responses for Bragg wavelength shift in core 3 and core 

5 with displacement direction varying from 0 to 360° in steps of 10° are represented 

in Figure 5.2, when displacement is fixed at 0, 3, 6, and 9 mm, respectively. It is 

obvious that there is a sinusoidal response for wavelength shift under different 

directions, and the shift amplitude increases when the applied displacement amplitude 

is larger. The initial phases of the sinusoidal curves in Figure 5.2 are related to the 

angular position of the specific core, i.e. π/3 for core 3, and π for core 5. When 

comparing the phases of the curves in Figure 5.2(a) and Figure 5.2(b), there is an 

obvious 2π/3 shift, corresponding to the angular difference between these two cores. 

Besides, the relationship between Bragg wavelength shift and the applied 

displacement of core 3 is indicated in Figure 5.3, with the displacement amplitude 

changing from 0 to 9 mm in steps of 1 mm, and the displacement direction varying 

from 0 to 330° in steps of 30°. It is worth mentioning that the slopes of the curves in 

Figure 5.3 represent the sensitivities of sensor at each displacement direction, which 

is also dependent on the fiber length. In order to quantify the dependency, the 

sensitivity-length response under a specific displacement direction, such as 90° is 

described in Figure 5.4. It indicates that a higher sensitivity can be achieved when 

shorten the free fiber length. In addition, it is pointed out that the location of FBG on 

the sensing fiber has an impact on the sensitivity of the sensor, due to the 

non-uniform displacement-induced bending radius along the fiber length. As a result, 
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different strains are generated at distinct positions of the sensing fiber. Here, we 

define the fixed point with a position of 0. The inset in Figure 5.4 illustrates the 

displacement sensitivity for various FBG positions along the free fiber with a total 

length of 111 mm. The results denote that the FBG inscribed at the fixed point 

experiences the maximum strain during the displacement measurement. 

0° 30° 60° 90°

120° 150° 180° 210°

240° 270° 300° 330°330°300°270°240°

210°180°150°120°

90°60°30°0°

(a) (b)Core3 Core5

 

Figure 5.3. Simulation results of wavelength shift versus displacement amplitude changing from 0 

to 9 mm in steps of 1 mm for (a) core 3 and (b) core 5, with displacement direction varying from 

0 to 330° in steps of 30°. 

The simulation result gives a guidance on the adjustment of parameters for the 

sensor development, including the choice of the fiber length, detectable distance for 

the displacement and the FBG position, in order to be applied in the real application. 

Evidently, there is a trade-off between the detectable range and the sensor sensitivity, 

which can be optimized during the application. 
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Figure 5.4. Simulation results of displacement sensitivity as a function of different free fiber 

length. Inset shows the displacement sensitivity response with respect to the position of FBG 

along the fiber length. 

5.4  Two-Dimensional Displacement Sensor under Random Forest  

5.4.1  Principle of Random Forest Regression 

Random forest is an effective tool in prediction, which is a combination of tree 

predictors for classification and regression. As defined in [141], the random forest is a 

classifier consisting a aggregation of tree-shaped classifiers ( ) , , 1,2,...kh x k = , 

where  k  are independent random vectors and each tree votes for the most 

popular label at input x . Random forest regression is an ensemble machine learning 

algorithm [141], where tree predictor ( ),h x   takes on numerical values instead of 

class labels. It uses a large set of regression trees as base learners to constitute a forest 

for data training and predication [142]. 

Regression trees are run in parallel without interaction, where each of them 
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grows on an individual bootstrap sample derived from the initial training data. 

Different from the node that uses the best splitting among all variables in standard 

trees, in random forest, each node is split based on the best from a randomly chosen 

subset of the predictors [143]. The best split at each node in a tree represents a binary 

test against the variable of the chosen predictor. The variables at each node are 

selected to minimize the residual sum of squares of both branches. The reason behind 

is its outperformance when compared to many other predictions and its robustness 

against overfitting and underfitting [141, 144].  

To get an ensemble model with strong generalization, the regression tree in the 

model is set as uncorrelated as possible [141]. Random forest uses bagging [145], a 

parallel ensemble model to increase the diversity of trees. Bagging is the acronym of 

the “bootstrap aggregating”. For example, in a learning set   that comprises data 

( ) , , 1,2,...,n nx y n N= , the procedure that forming replicate data sets  k  which 

consisting of N  cases, drawn at random but with replacement from   is called 

bagging [145]. Each case in   may appear zero or multiple times in any particular 

k , while about one-third of   are left in each set k , what is called the out-of-bag 

(OOB) estimators. In random forest, there are two reasons to use bagging. One is the 

usage of bagging is able to enhance the accuracy when random features are utilized. 

The other is using OOB estimators to continuously estimate the error of the 

ensembled trees, as well as the strength of individual trees in the forest and 

correlation between trees [141]. In random forest regression, number of variables (m) 
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used at each node for tree generation and the number of trees (k) are two user-defined 

parameters [141]. Usually, the results is insensitive to number of variables at each 

node, and therefore k is the only user-defined parameter. 

For an initial dataset with N samples, a bootstrap sample is created by randomly 

selecting N samples from the initial dataset with replacement (selected sample is 

returned to the initial dataset after one sampling, making it possible to be chosen 

during the next sampling). Prediction is constructed based on averaging the separate 

decisions from each tree in the forest. This characteristic makes random forest more 

robust when there is slight variation in input data, which enhances both the prediction 

accuracy and stability [145]. In random forest regression, the output values are 

numerical. Since the training set is independently selected from the random vector, 

the random forest predictor is obtained through average over k of the trees 

( ) , kh x  . 

5.4.2  Random Forest-based Displacement Sensor 

In this work, a Python-based random forest regression algorithm from the 

scikit-learn library was adopted for modelling. Since wavelength shifts of four of the 

seven cores were monitored during the measurement, a dataset constituting 8325 

samples with four input variables was used. Two dependent variables, including the 

direction and amplitude of the displacement were correspondingly used as outputs. 

Flow chart of the random forest algorithm used for this sensor is illustrated in Figure 
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5.5, with a tree number k chosen as 100. 
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Figure 5.5. Flow chart of random forest algorithm in displacement sensor. 

To ensure better fitting of the model, the input data was preprocessed. Ideally, 

the central core should always stay in the neutral plane during the measurement. 

However, there was an inevitable offset during the experiment. In addition, the central 

one was aimed for temperature compensation, representing the information it carried 

independent from the other three. As a result, we subtracted the response of the 

central core from the rest of the input variables, meaning the sensor is still 

temperature-insensitive based on the random forest reconstruction. After 

preprocessing dataset, 80% of the dataset was randomly divided for training, while 
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the left 20% was for testing. 

5.5  Experiment Setup of the Two-Dimensional Displacement Sensor 

Schematic of the experimental setup is illustrated in Figure 5.6. The seven-core 

MCF inscribed with FBGs was mounted to a fiber rotator (Thorlabs, HFR007). 

Displacement was applied to the free end of the sensing fiber, and the other end was 

spliced to a 1-to-7 fan-out device. The MCF was clamped on the fiber rotator with the 

FBG-inscribed section free to bend. In order to interrogate the FBGs in different 

cores of the MCF, an interrogator (Micron Optics, sm130) with 1 pm resolution was 

connected to the SMFs of the fan-out device, such as core 1, 3, 5, and 7. Only the 

FBGs in four cores were measured, which was limited by our interrogator having four 

channels. Length of the free fiber was kept as 111 mm, with a displacement amplitude 

range of 0 to 45 mm, and the fiber rotator was used to change the direction within 

360°. During the measurement, the displacement amplitude was varied by 1 mm and 

the direction was changed with a step of 10°. 
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Figure 5.6. Schematic experimental setup for the two-dimensional vector displacement sensor. 

During the experiment, FBG responses in core 1, 3, 5, and 7 were recorded, 

including a central core and three outer cores which were arranged in a regular 

triangle shape. The measured responses of the Bragg wavelength shift in core 3 and 

core 5 were recorded in Figure 5.7(a) and Figure 5.7(b), representing the 

experimental results in terms of displacement direction and amplitude, respectively. 

Moreover, Figure 5.8(a)-(c) give the Bragg wavelength shift as a function of applied 

displacement amplitude for three outer cores under different directions in the linear 

range (1 to 9 mm in steps of 1 mm), with the dots in different shapes representing the 

experimental data, and the lines indicating the fitting curves (an average fitting R2 of 

0.9995). The full range of the displacement amplitude was from 0 to 45 mm during 

the measurement, and the relationship became nonlinear with increasing amplitude. 

Therefore, the wavelength response of core 3 in the full range (1 to 45 mm in steps of 
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2 mm) is shown in Figure 5.8(d) for demonstration, where dots represent the 

experimental results and lines are connecting curves. The theoretical model is not 

applicable for large displacements because the response becomes nonlinear. 

Disp=0mm

Disp=3mm

Disp=6mm

Disp=9mm

Disp=0mm

Disp=3mm

Disp=6mm

Disp=9mm(a) (b)Core 3 Core 5

 

Figure 5.7. Experimental results of wavelength shift versus displacement direction in the 

two-dimensional range in (a) core 3 and (b) core 5 with displacement amplitude changing from 0 

to 9 mm in steps of 1 mm. 

In addition, the displacement sensitivities were recorded based on the slopes of 

the fitting lines in Figure 5.8(a)-(c), which were displayed in a polar coordinate as 

shown in Figure 5.9. An ‘8’-shaped sensitivity response was observed, indicating a 

strong direction dependence. For a specific core, such as core 3, the sensitivities are 

divided into the positive and negative parts, corresponding to the situation of 

stretching and compressing the FBGs during the measurement, respectively. The 

positive range for core 3 is recorded as 110°-200°-290°, while it is 290°-20°-110° for 

the negative sensitivity. Moreover, there is a 120° phase shift among the sensitivity 

response for individual cores, which is the same with their angular position difference 

as shown in Figure 5.1(a). The maximum positive sensitivities are obtained as 11.47, 
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12.31, and 11.73 pm/mm for core 3, 5, and 7 individually, corresponding to the 

displacement directions of 200°, 80°, 320°. There is a slight variation among the 

obtained sensitivity values, which is caused by the difference in the inscribed sensor 

depth during the fabrication process [63]. 
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Figure 5.8. Experimental results of wavelength shift versus displacement amplitude in linear 

range of (a) core 3, (b) core 5, (c) core 7, and wavelength response of (d) core 3 in full range. The 

displacement direction varies from 0 to 330° in steps of 30°, with the dots indicating the 

experimental results while the lines in (a)-(c) representing the fitting ones, and (d) representing 

the connecting curves. 
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Figure 5.9. Experimental results of sensitivity-direction response in core 3, 5 and 7, with 

displacement direction changing from 0 to 360° in steps of 10°. 

5.6  Displacement Reconstruction 

5.6.1  Theoretical Model 

Equation (5.5) indicates that the displacement direction can be retrieved through 

monitoring the Bragg wavelength shifts in two of the outer cores, which are not 

aligned in a straight line with the central core, while the direction is independent on 

the displacement amplitude. In addition, due to the hexagonal structure of the 

arrangement for the seven-core MCF, there is one fiber core which locates at the 

central of the cladding, which can be utilized for the compensation of fiber 

mechanical offset and temperature change, as it is located in the neutral axis and thus 
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is not affected by the fiber bending. Therefore, a combination of three cores is enough 

to reconstruct the displacement information based on the theoretical model. Here, two 

of the four outer cores are chosen, such as core 3 and core 5 (combination 1), core 3 

and core 7 (combination 2), or core 5 and core 7 (combination 3), to retrieve the 

displacement direction, with the absolute error plotted in Figure 5.10, which is 

defined as the absolute difference between the set direction and the measured one. 

Mean absolute errors (MAEs), defined as  

 ( )
1

1
ˆ-

N

i i

i

MAE y y
N =

=  ，  (5.7) 

of different combinations for direction are 3.23°, 3.52° and 2.43°, respectively, where 

yi and iy  are the true and prediction value. Also, the root mean squared errors 

(RMSEs) are calculated, which is defined as 
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ˆ= = - .
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i

RMSE MSE y y
N =

   (5.8) 

The RMSEs under each combination are 10.3°, 9.95°, and 9.3°. Based on Figure 5.10, 

there are three characteristics of the direction error. First is the direction error found 

to be direction sensitive. A regular sinusoidal shape is observed in error maps, which 

is related to the sensitivity dependency of displacement direction, meaning there is a 

relatively smaller error under the direction with high sensitivity. Secondly, the error 

gets smaller when the displacement gets larger, which may be caused by the little 

variation under small displacement. Finally, there is a 120° phase shift between 
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different combinations, which is matched with the sensitivity curve properly. 

 

Figure 5.10. Absolute errors of displacement direction based on different combinations of the 

outer cores using theoretical model, with the direction and displacement ranges of 0-360° and 1-9 

mm, respectively. 

After the determination of the displacement direction, the amplitude can be 

calculated with the help of Equation (5.6). The displacement amplitude is obtained 

based on the combination of the reconstructed displacement direction and the angular 

position of one of the cores used in the direction calculation process. Hence, there are 

in total six combinations for the amplitude reconstruction. In addition, we only 

consider the linear range for reconstruction using the theoretical model. The 

displacement amplitude is set to change from 0 to 9 mm. Different from the direction, 
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the amplitude is highly dependent on the value of the measured direction, meaning 

the errors introduced from the direction would have a negative impact on the 

reconstruction of the amplitude owing to the propagation of error. Figure 5.11 

summarizes the displacement amplitude error based on different combinations, with 

each combination for direction calculation having two branches (a and b). MAEs are 

12.67, 14.63, 9.7, 9.92, 11.58, and 8.29 mm for combination 1(a) to 3(b), while 

RMSEs are 29.3, 40.7, 18.74, 21.54, 24.45 and 16.12 mm, respectively. It is clear that 

the errors are too large for meaningful retrieval. However, there is still a sinusoidal 

trend in the amplitude error map, where a small error happens under a high direction 

sensitivity with an interval of 180°, which is similar to the performance of the 

direction. 

The poor performance of the amplitude retrieval based on the theoretical model 

could be caused by several factors, including the unprecise model, system error and 

the errors carried from the direction. In addition, the limited range is another 

disadvantage for the application of the displacement sensor. Overall, the retrieval 

performance based on the theoretical model greatly depends on the quality of the 

theoretical model, while little variation may cause large errors during the retrieval 

process. 
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Figure 5.11. Absolute errors of displacement amplitude based on different combinations of the 

outer cores using theoretical model, with the direction and displacement ranges of 0-360° and 1-9 

mm, respectively. 
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5.6.2  Random Forest Model 

To assess the effectiveness of random forest regression, coefficient of 

determination (score) R2 is used to evaluate the performance, which is defined as  
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where yi and iy  are the true and prediction value, and iy  indicates the mean of 

label. The best is 1.0, and we get a score of 0.997, reflecting the good accuracy 

obtained with random forest algorithm. 

Similar to the evaluation of the theoretical model, the retrieval performance is 

also investigated for random forest, and the absolute error maps of the two parameters 

are shown in Figure 5.12. Since the algorithm concerns only about the training data, 

the linearity is no longer a restriction during the retrieval process. The calculation 

range for amplitude is extended to 0-45 mm, while the direction range remains 

unchanged. MAEs of direction and amplitude are 1.22° and 0.14 mm, respectively.  

On the one hand, for the direction reconstruction, it is evident that the absolute 

error is smaller when increasing the displacement amplitude, which is similar to the 

performance of theoretical model. However, there remains no longer characteristic of 

direction sensitivity. With the increase of the amplitude, the direction retrieval 

becomes stable at most time, however it becomes failure at very few points, which 

can be solved through enlarging size of the database. When comparing with the 

results obtained from theoretical model, the overall performance for the direction is 
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enhanced by 60% with the random forest algorithm. On the other hand, there is a 

great enhancement in the retrieval of displacement amplitude, including the enlarged 

measurement range and decreased error. Since random forest predicts the amplitude 

based on averaging the predictions of trees, which is not a linear process compared to 

the theoretical model, where the linearity restriction disappears. As a result, the 

measurement range is enlarged by 5 times, which can be further enhanced through 

adjusting length of the fiber. In addition, the measurement error is reduced by 98% 

when comparing with the results from theoretical model, representing a perfect 

performance for the amplitude retrieval.  

(a) (b)

 

Figure 5.12. Absolute errors of displacement (a) direction and (b) amplitude using random forest, 

with the direction and displacement ranges of 0-360° and 1-45 mm, respectively. 

It is possible that a model obtains a high score based on the existing labels, but 

fail on prediction when meeting unseen data, which is kind of overfitting. Therefore, 

a cross-validation is adopted to avoid it, called a n-fold cross-validation, where the 
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training set is divided to n smaller sets. The model is trained based on the left (n-1) of 

folds, while the result is validated on the remaining part of the data. In this work, a 

5-fold cross-validation is adopted, with the description shown in Figure 5.13. 

Dataset (8325 samples, 4 input variables, [x1, x2, x3, x4])

Training set 

(6660 samples)

Testing set 

(1665 samples)

80% 20%

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Split 2

Split 3

Split 4

Split 5

 

Figure 5.13. Procedure of 5-fold cross-validation. 

Table 5.1 collects the results of 5-fold cross-validation, including the score, 

MAEs of direction and amplitude, as well as RMSEs of the model. 

Table 5.1. Results of 5-fold cross-validation 

 Score 
Direction Amplitude 

MAEs RMSEs MAEs RMSEs 

Split 1 0.996 1.29° 7.49° 0.22 mm 0.58 mm 

Split 2 0.996 1.39° 8.25° 0.2 mm 0.34 mm 

Split 3 0.992 1.64° 13.36° 0.19 mm 0.37 mm 

Split 4 0.998 1.27° 7° 0.19 mm 0.33 mm 

Split 5 0.993 1.69° 12.63° 0.21 mm 0.42 mm 

Furthermore, Table 5.2 summaries the comparison results of the reconstructed 

displacement information under two models, including the measurement range, and 

MAEs of displacement direction and amplitude. 
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Table 5.2. Comparison between reconstructed results using two models 

 Theoretical model Random Forest model 

Range 0-9 mm 0-45 mm 

MAEs of direction 

Combination 1 3.23° 

1.22° 
Combination 2 3.52° 

Combination 3 2.43° 

Average 3.06° 

MAEs of 

amplitude 

Combination 1a 12.67 mm 

0.14 mm 

Combination 1b 14.63 mm 

Combination 2a 9.7 mm 

Combination 2b 9.92 mm 

Combination 3a 11.58 mm 

Combination 3b 8.29 mm 

Average 11.13 mm 

5.7  Summary 

In this chapter, the design of an FBG-based MCF two-dimensional displacement 

measurement is discussed, where the sensing performance is investigated under both 

theoretical model and machine learning model. Development of the two-dimensional 

fiber-optic displacement sensor is overviewed, indicating a limited measurement 

range and an absence characteristic of obtaining actual displacement information. The 

proposed sensor is capable of getting the direction and amplitude of the displacement 

in a two-dimensional range, with its performance assisted by the random forest, one 

of the most popular machine learning algorithms. Theoretical model of the 

displacement sensor is investigated, with an optimized sensing parameter based on 

the simulation results. Attention is put to highlight the characteristics of random 

forest, as well as the model used to develop the displacement sensor. Displacement 
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measurements are conducted, followed by the reconstruction performance under both 

theoretical and random forest models. Results indicate that a much better 

performance is provided by random forest model, with an enhanced measurement 

range (from 0 to 45 mm) and a reduced measurement error. MAEs of direction and 

amplitude reconstruction are decreased by 60% and 98%, separately by using the 

random forest model. The application of random forest in the FBG-based 

two-dimensional displacement sensor enhanced the performance in both accuracy and 

measurement range. It also showed the potential for the machine learning methods to 

be applied in point-based optical sensing areas, especially for multi-parameter 

sensing. 
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Chapter 6 Conclusion and Future Work 

6.1  Conclusion 

The contribution of this thesis is concentrated on the fabrication of the 

multi-core fiber (MCF)-based fiber Bragg gratings (FBGs), and the application of 

them for measurements of acceleration, inclination and displacement. Theoretical 

models are investigated to reconstruct the actual information, while machine learning 

algorithms are also introduced to improve the sensing performance. 

Several lasers, including two excimer lasers (193 and 248 nm) and one 

solid-state laser (213 nm) were utilized to inscribe FBGs in MCFs. Factors that 

compromise the uniformity of these FBGs in MCFs were investigated. Theoretical 

models of using MCF-based FBGs or FBG arrays for two or three-dimensional 

sensing were proposed.  

An orientation-sensitive two-dimensional vibration sensor was proposed, based 

on FBGs inscribed in a silica seven-core MCF, with temperature insensitivity. 

Vibration information, including vibration orientation, frequency as well as 

acceleration, were obtained simultaneously through monitoring of the wavelength 

shifts of three of the seven cores, including the central core and two outer cores which 

were not aligned in a straight line. Performance of the proposed vibration sensor in 

terms of free-fiber length, frequency, acceleration and vibration orientation were 

experimentally investigated. A sensitivity which is strongly dependent on the 
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orientation was achieved, with a best orientation accuracy of 0.127° over a range of 

0-180°. In order to verify the stability of the performance, different sets of chosen 

outer cores were utilized to achieve the orientation retrieval. Moreover, the resonance 

frequency and the sensitivity can be optimized through adjusting the length and 

weight of the free fiber. The ease of fabrication as well as the versatility of the 

proposed sensor makes it potentially useful in dynamic monitoring for industrial 

applications. 

An all-fiber two-dimensional inclination sensor is also reported, with the 

capability of measuring the azimuthal angle and the inclination angle, simultaneously, 

through the usage of the FBG inscribed MCF. The sensor performance was 

theoretically optimized and experimentally investigated. Excellent agreement 

between simulated and experimental results was achieved. Through detection of the 

wavelength shifts of the FBGs inscribed in the central core and two outer cores of a 

silica seven-core MCF, a minimum error of 0.0056° for the azimuthal angle, and 

0.025° for the inclination angle, were obtained. The detection range of the former 

ranges from 0 to 360°, while the latter ranges from 0 to 90°. Meanwhile, the FBG in 

the central core can be used for temperature-compensation since it remains in the 

neutral plane of the fiber under bending conditions. The proposed fiber sensor is easy 

to fabricate and robust, increasing its potential in practical applications. 

In addition, a two-dimensional vector displacement sensor is described based on 

a similar structure, with the capability of obtaining the displacement direction and 
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amplitude, simultaneously. The reconstruction performance was investigated under 

both a theoretical model and a random forest algorithm. The displacement direction 

ranges from 0 to 360°, while the measurable amplitude range relates to the choice of 

the reconstruction method. For the performance based on theoretical model, the 

displacement amplitude range was dependent on the length of the fiber. It was 

performed under a linear range (from 0 to 9 mm). Meanwhile, the measurement error 

was greatly compromised by the model quality and the system’s error. However, the 

random forest model outperforms the theoretical model with an enhanced 

measurement range (from 0 to 45 mm) and a reduced measurement error for 

displacement. Mean absolute errors (MAEs) of direction and amplitude 

reconstruction decreased by 60% and 98%, separately by using the random forest 

model. The application of random forest in the FBG-based two-dimensional 

displacement sensor enhances the performance in both the accuracy and range. It also 

shows the potential for the machine learning methods to be applied in point-based 

optical sensing areas, especially for multi-parameter sensing. 

6.2  Future Work 

As well as the interest of inscribing FBGs in MCF, there are other kinds of 

gratings, such as phase-shifted fiber Bragg grating (PSFBG), tilted fiber Bragg 

grating (TFBG), chirped fiber Bragg grating (CFBG) and long-period grating (LPG) 

that can be inscribed. For example, the PSFBG has a narrower linewidth compared 
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with the uniform FBG, suitable for the application where a higher sensitivity is need. 

Apart from these different types of gratings, lasers such as the femtosecond laser is 

also a promising candidate for the MCF-based grating inscription. Since the 

femtosecond laser can be focused on individual cores of the MCF, it is possible to 

fabricate different grating structures on them. 

In regards of sensing applications, two-dimensional vector sensing parameters, 

including twist and force are able to be detected with the use of these FBG inscribed 

MCFs, while three-dimensional shape sensing can be considered as another popular 

research area for these MCFs. Also, design and fabrication of different kinds of MCFs, 

such as air-hole-assisted MCFs and polymer-based MCFs are of great value, which 

can be applied for multi-dimensional sensing in various disciplines. 

In the characterization of the grating inscription, manufacturing of the MCF 

coupler which provides the possibility to monitor individual cores in the MCF is of 

tremendous importance. Development of these MCF couplers with high efficiency 

can bring huge convenience for the application of MCFs in multi-dimensional 

sensing. 

Machine learning algorithms can be further extended to be applied in 

multi-dimensional sensing area. Utilization and optimization of machine learning 

algorithms in point-based optical sensing is yet to be fully investigated, where the 

algorithms have superiority over traditional methods, especially when the accuracy of 

theoretical models are low.  
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