

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MACHINE LEARNING ASSISTED SOFTWARE

DEFECT PREDICTION

ZHOU XU

PhD

The Hong Kong Polytechnic University

This programme is jointly offered by The Hong Kong

Polytechnic University and Wuhan University

2021

The Hong Kong Polytechnic University

Department of Computing

Wuhan University

School of Computer Science

Machine Learning Assisted Software
Defect Prediction

Zhou Xu

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

December 2020

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

Zhou Xu (Name of student)

iii

LIXian
图章

lbsys
Text Box

iv

Abstract

Software products have been integrated into every aspects of our daily life. However,

due to various factors in the process of software design, development and configuration,

the defects are inevitable in the software. The defect hidden in the software module (a

code snippet) threatens the security and decrease the reliability of the software products.

Therefore, it is essential to detect and fix the defective modules before delivering the

products. However, due to the continuous growth of the software scale and complexity,

it is an increasingly challenging task for software developers and testers to improve the

software quality.

As the limited testing resources are usually unaffordable for supporting thorough code

reviews, this requests a prioritization to better analyze the software product. In other

words, developers and testers should reasonably allocate the limited resources to test the

modules that have a high probability to contain defects. To seek for such prioritization,

researchers propose software defect prediction to identify such high-risk modules for

priority inspection. The most widely studied defect prediction methods are supervised

models which first train a classification model on labeled software modules and then use it

to determine whether or not the unlabeled modules contain defects. The supervised models

need the labeled modules of historical data of the current project or external projects as

the training set. According to the different sources of the training set, supervised defect

prediction can be divided into the inner version defect prediction scenario, cross version

i

defect prediction scenario, and cross project defect prediction scenario. In the three kinds

of scenarios, the training set comes from the same version of a project, the previous

version of a project, and other external projects, respectively. This thesis mainly studies

new machine learning technologies to solve the different difficulties faced in the three

kinds of defect prediction scenarios, aiming to further improve the performance of defect

prediction. The research contents are described as follows:

(1) In order to learn more discriminative feature representation and solve the inherent

class imbalance problem of defect data, this thesis proposes an inner version defect

prediction framework which combines a kernel principal component analysis method and

a weighted extreme learning machine. The framework firstly maps the training set and test

set into a high-dimensional feature space separately using the kernel principal component

analysis method. The feature mapping makes it easy to distinguish the modules which are

linearly inseparable in the original feature space. Then the framework uses the mapped

training set to construct a classification model based on a weighted extreme learning

machine to predict the labels of the mapped test set. This classification model solves the

class imbalance problem by assigning different weights to the defective and non-defective

software modules. We conduct experiments on ten projects in the NASA dataset and five

projects in the AEEEM dataset, and use six indicators to evaluate the performance of

the proposed framework. The results show that the performance of our proposed inner

version defect prediction framework is gererally better than its variant methods, some

feature selection methods, and class imbalanced learning methods.

(2) In order to select a subset of software modules from the previous version as the

training set which is optimal for the data of the current version, this thesis proposes a

two-stage training subset selection framework for cross version defect prediction. This

framework first uses the sparse modeling representation selection method to filter out

some useless software modules and keeps the software modules that can minimize the

ii

error of reconstructing original data. Since this process does not rely on the assistance of

the software modules from the current version, it is a self-simplification stage. Then, with

the participation of the data from the current version, the framework uses the dissimilarity-

based sparse subset selection method to further select a subset from the selected modules

in the previous stage to effectively represent the data of the current version. The model

constructed with the final selected module subset is more targeted to the data of the current

version. Since this process requires the assistance of the software modules from the current

version, it is an auxiliary refining stage. We conduct experiments on 67 versions from 17

projects in the PROMISE dataset and also use six indicators to evaluate the performance of

the proposed framework. The results show that, across a total of 50 cross-version pairs, the

overall performance of our proposed cross version defect prediction framework is superior

to other training subset selection methods and the variant methods based on one-stage

training subset selection.

(3) In order to further narrow the distribution difference between the two cross-project

data, this thesis proposes a new transfer learning based cross project defect prediction

framework by introducing a state-of-the-art balanced distribution adaptive model. Unlike

the previous transfer cross project defect prediction models which only considered the

marginal distribution differences across data, this model comprehensively considers the

marginal and conditional distribution differences across data. In addition, considering the

impacts of the similarity between cross project data on the relative importance degrees of

the two distribution differences, the model also assigns the weights to the two differences

for adapting different cross-project pairs. We conduct experiments on five projects in

the NASA dataset and five projects in the AEEEM dataset, and also use six indicators

to evaluate the performance of the proposed framework. The results show that, across a

total of 40 cross-project pairs, the overall performance of our proposed cross project defct

prediction framework performs better than other transfer learning based and training data

iii

filter based cross project methods.

In conclusion, this paper aims at solving difficult problems in different software defect

prediction scenarios and proposing new framework models to improve the performance of

defect prediction by combining new machine learning technologies. This paper expands

the application of machine learning technologies in the field of software engineering

and provides new solutions to the software defect prediction task, which is of great

significances for software quality assurance activities.

Keywords: Software Defect Prediction; Feature Learning; Class Imbalanced Learning;

Training Subset Selection; Transfer Learning

iv

Publications

1. Zhou Xu, Li Li, Meng Yan, Jin Liu, Xiapu Luo, John Grundy, Yifeng Zhang,

and Xiaohong Zhang, “A Comprehensive Comparative Study of Clustering-based

Unsupervised Defect Prediction Models”, Journal of Systems and Software (JSS),

2020: 110862.

2. Zhou Xu, Tao Zhang, Jacky Keung, Meng Yan, Xiapu Luo, Xiaohong Zhang,

Ling Xu, and Yutian Tang, “Feature Selection and Embedding Based Cross Project

Framework for Identifying Crashing Fault Residence”, Information and Software

Technology (IST), 2020: 106452.

3. Zhou Xu, Kunsong Zhao, Meng Yan, Peipei Yuan, Ling Xu, Yan Lei, and Xiaohong

Zhang, “Imbalanced Metric Learning for Crashing Fault Residence Prediction”,

Journal of Systems and Software (JSS), 2020, 170: 110763.

4. Zhou Xu, Jin Liu, Xiapu Luo, Zijiang Yang, Yifeng Zhang, Peipei Yuan, Yutian

Tang, and Tao Zhang, “Software Defect Prediction Based on Kernel PCA and

Weighted Extreme Learning Machine”, Information and Software Technology

(IST), 2019, 106: 182-200.

5. Zhou Xu, Shuai Li, Xiapu Luo, Jin Liu, Tao Zhang, Yutian Tang, Jun Xu,

Peipei Yuan, and Jacky Keung, “TSTSS: A Two-Stage Training Subset Selection

v

Framework for Cross Version Defect Prediction”, Journal of Systems and Software

(JSS), 2019, 154: 59-78.

6. Zhou Xu, Shuai Li, Jun Xu, Jin Liu, Xiapu Luo, Yifeng Zhang, Tao Zhang,

Jacky Keung, and Yutian Tang, “LDFR: Learning Deep Feature Representation for

Software Defect Prediction”, Journal of Systems and Software (JSS), 2019: 110402.

7. Zhou Xu, Shuai Pang, Tao Zhang, Xiapu Luo, Jin Liu, Yutian Tang, Xiao Yu, and

Lei Xue, “Cross Project Defect Prediction Via Balanced Distribution Adaptation

Based Transfer Learning”, Journal of Computer Science and Technology (JCST),

2019, 34(5): 1039-1062.

8. Zhou Xu, Peipei Yuan, Tao Zhang, Yutian Tang, Shuai Li, and Zhen Xia,

“HDA: Cross-Project Defect Prediction via Heterogeneous Domain Adaptation with

Dictionary Learning”, IEEE Access, 2018, 6: 57597-57613.

9. Kunsong Zhao, Zhou Xu*, Meng Yan, Yutian Tang, Ming Fan, and Gemma

Catolino, “Just-in-Time Defect Prediction for Android Apps via Imbalanced Deep

Learning Model”, in Proceedings of the 36th ACM/SIGAPP Symposium on Applied

Computing (SAC), 2021, accepted.

10. Zhou Xu, Tao Zhang, Yifeng Zhang, Yutian Tang, Jin Liu, Xiapu Luo, Jacky Keung,

and Xiaohui Cui, “Identifying Crashing Fault Residence Based on Cross Project

Model”, in Proceedings of the 30th International Symposium on Software Reliability

Engineering (ISSRE), 2019: 183-194.

11. Zhou Xu, Sizhe Ye, Tao Zhang, Zhen Xia, Shuai Pang, Yong Wang, and Yutian

Tang, “MVSE: Effort- Aware Heterogeneous Defect Prediction via Multiple-View

Spectral Embedding”, in Proceedings of the 19th International Conference on

Software Quality, Reliability, and Security (QRS), 2019:10-17.

vi

12. Zhou Xu, Shuai Li, Yutian Tang, Xiapu Luo, Tao Zhang, Jin Liu, and Jun

Xu, “Cross Version Defect Prediction with Representative Data via Sparse Subset

Selection”, in Proceedings of the 26th International Conference on Program

Comprehension (ICPC), 2018: 132-143.

13. Zhou Xu, Jin Liu, Xiapu Luo, and Tao Zhang, “Cross-Version Defect Prediction

via Hybrid Active Learning with Kernel Principal Component Analysis”, in

Proceedings of the 25th International Conference on Software Analysis, Evolution

and Reengineering (SANER), 2018: 209-220.

14. Zhou Xu, Jin Liu, Zhen Xia, and Peipei Yuan, “An Empirical Study on the

Equivalence and Stability of Feature Selection for Noisy Software Defect Data”,

in Proceedings of the 29th International Conference on Software Engineering and

Knowledge Engineering (SEKE), 2017: 191-196

15. Zhou Xu, Jin Liu, Zijiang Yang, Gege An, and Xiangyang Jia, “The Impact of

Feature Selection on Defect Prediction Performance: An Empirical Comparison”,

in Proceedings of the 27th International Symposium on Software Reliability

Engineering (ISSRE), 2016: 309-320.

16. Zhou Xu, Jifeng Xuan, Jin Liu, and Xiaohui Cui, “MICHAC: Defect Prediction

via Feature Selection Based on Maximal Information Coefficient with Hierarchical

Agglomerative Clustering”, in Proceedings of the 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), IEEE, 2016, 1: 370-

381.

17. Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo*, Hao Zhou, and Zhou Xu*, “All

Your App Links are Belong to Us: Understanding the Threats of Instant Apps based

Attacks”, in Proceedings of the 28th ACM Joint European Software Engineering

vii

Conference and Symposium on the Foundations of Software Engineering (FSE),

Accepted to appear, 2020. (co-corresponding author)

18. Xiaoyun Cheng, Naming Liu, Lin Guo, Zhou Xu*, and Tao Zhang*, “Blocking Bug

Prediction Based on XGBoost with Enhanced Features”, in Proceedings of the 44th

IEEE Annual Computer Software and Applications Conference (COMPSAC), 2020:

902-911. (co-corresponding author)

19. Yiheng Jian, Xiao Yu*, Zhou Xu*, Ziyi Ma, “A Hybrid Feature Selection Method

for Software Fault Prediction”, IEICE Transactions on Information and Systems,

2019, 102(10): 1966-1975. (co-corresponding author)

viii

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and assistance

from the nice people I have met. Here, I would like to express my heartfelt thanks to them.

I would first like to thank my supervisor, Associate Prof. Xiapu Luo, whose expertise,

valuable suggestion, in-depth discussion, and insightful feedback brought my work to a

higher level and support me to complete this thesis successfully.

I would also like to acknowledge Prof. Jin Liu, my supervisor in Wuhan University.

Thank him for recommending and supporting me to apply for joint PhD training program

with the Hong Kong Polytechnic University. This research experience in Hong Kong has

broadened my horizon and makes it possible for me to work with many domain experts,

which lays a solid foundation for my future research. I will never forget this precious

experience for the rest of my life.

In addition, I would like to thank many other teachers and classmates that helped me

a lot during my study period. The teachers, including Jifeng Xuan, Tao Zhang, Jacky

Keung, Meng Yan and Jun Xu, gave me a lot of constructive advice, helped me modify

the grammatical errors and improper expressions in papers to improve their quality, and

recommended the journals and conferences that are suitable for the topics of papers. The

final acceptance of my papers cannot be separated from their efforts. Beside, I would

also like to thank the group members in Hong Kong and mainland, including Lei Xue,

ix

Le Yu, Yutian Tang, Xiaoqi Li, Xian Zhan, Muhui Jiang, Ningning Hou, Shuai Li, Fang

Wang, Juan Li, Haoyu Luo, Pingyi Zhou, Jie Liu, Juncai Guo, Xiao Yu, Gege An, Yifeng

Zhang, Zhen Xia, Shuai Pang, and Kunsong Zhao. They have created a friendly working

environment for my research and often given me constant encouragement and help when

I got into difficulties in my research.

Last but not least, I would like to express my special thanks to my parents, wife and

daughter. My parents always offer me the best they can in my education and daily life.

The company of my wife, Lixian Li, and daughter, Shulin Xu always fills me with full of

passion and energy. Thanks to their love.

x

Table of Contents

Abstract i

Publications v

Acknowledgements ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Research Background . 1

1.1.1 The Existence and Harm of Software Defects 1

1.1.2 Basic Concepts of Software Testing 2

1.1.3 Software Defect Prediction . 3

1.2 A Brief Introduction of Three Studied Defect Prediction Scenarios 7

1.3 Challenges Faced in Each Defect Prediction Scenario 9

1.4 Research Methods used in Each Defect Prediction Scenario 11

1.5 Thesis Organization . 13

2 Literature Review 17

2.1 Studies on Defect Prediction Under Different Scenarios 17

2.1.1 Studies on IVDP . 18

2.1.2 Studies on CVDP . 19

xi

2.1.3 Studies on CPDP . 22

2.2 Studies on Different Methods for Defect Prediction 23

2.2.1 Feature Selection for Defect Prediction 23

2.2.2 Class Imbalanced Learning for Defect Prediction 25

2.2.3 Training subset selection for Defect Prediction 27

2.2.4 Transfer Learning for Defect Prediction 29

3 A hybrid Framework Based on Kernel PCA and Weighted Extreme Learning
Machine for Inner Version Defect Prediction 33

3.1 Motivation . 34

3.2 The Used Methods and Proposed IVDP Framework 36

3.2.1 Feature Extraction Based on KPCA 36

3.2.2 ELM . 40

3.2.3 Model Construction Based on WELM 43

3.2.4 The Proposed Framework . 44

3.3 Study Setup . 44

3.3.1 Research Questions . 44

3.3.2 Benchmark Dataset . 45

3.3.3 Evaluation Indicators . 46

3.3.4 Parameter Configuration . 54

3.3.5 Inner Version Scenario Setting 54

3.3.6 Statistic Test Method . 55

3.4 Experimental Results . 58

3.4.1 Results for RQ1 . 58

3.4.2 Results for RQ2 . 61

3.4.3 Results for RQ3 . 65

3.4.4 Results for RQ4 . 68

xii

3.5 Conclusion . 71

4 A Two-Stage Training Subset Selection Framework for Cross Version Defect
Prediction 73

4.1 Motivation . 73

4.2 The Used Methods and Proposed CVDP Framework 75

4.2.1 The SMRS Method . 75

4.2.2 The DS3 Method . 77

4.2.3 The Proposed Framework . 83

4.3 Study Setup . 84

4.3.1 Research Questions . 84

4.3.2 Benchmark Dataset . 85

4.3.3 Evaluation Indicators . 87

4.3.4 Parameter Configuration . 87

4.3.5 Cross Version Scenario Design 88

4.3.6 Statistic Test Method . 88

4.4 Experimental Results . 88

4.4.1 Results for RQ1 . 88

4.4.2 Results for RQ2 . 92

4.4.3 Results for RQ3 . 98

4.4.4 Results for RQ4 . 105

4.5 Conclusion . 108

5 Balanced Distribution Adaptation Based Transfer Learning for Cross Project
Defect Prediction 111

5.1 Motivation . 112

5.2 The Used Methods and Proposed CPDP Framework 113

5.2.1 Notation Definitions . 113

xiii

5.2.2 The BDA Model . 114

5.2.3 The Proposed Framework . 118

5.3 Study Setup . 119

5.3.1 Research Questions . 119

5.3.2 Benchmark Dataset . 121

5.3.3 Evaluation Indicators . 121

5.3.4 Parameter Configuration . 122

5.3.5 Cross Project Scenario Design 123

5.3.6 Statistic Test Method . 123

5.4 Experimental Results . 123

5.4.1 Results for RQ1 . 123

5.4.2 Results for RQ2 . 126

5.4.3 Results for RQ3 . 129

5.4.4 Results for RQ4 . 133

5.4.5 Results for RQ5 . 134

5.4.6 Results for RQ6 . 135

5.5 Conclusion . 137

6 Conclusion 139

6.1 Conclusion . 139

6.2 Future Work . 141

Bibliography 143

xiv

List of Figures

1.1 Research category for software defect prediction. 7

1.2 The organization chart of this thesis. 15

3.1 An example of the merit of feature mapping. 35

3.2 Feature extraction with KPCA. 39

3.3 The architecture of ELM. 41

3.4 Overview of our proposed IVDP framework. 44

3.5 The process to calculate the effort aware indicators. 53

3.6 An example of group division for Nemenyi test. 57

3.7 Comparison of KPWE and other five basic classifiers with Friedman test
and Nemenyi post-hoc test in terms of all six indicators. 60

3.8 Comparison of KPWE and its five variant methods with Friedman test and
Nemenyi post-hoc test in terms of all six indicators. 63

3.9 Comparison of KPWE and other eight feature selection methods with
WELM with Friedman test and Nemenyi post-hoc test in terms of all six
indicators. 66

3.10 Comparison of KPWE and other six imbalanced learning methods with
Friedman test and Nemenyi post-hoc test in terms of all six indicators. . . 70

4.1 An illustration of the function of DS3. 79

4.2 An example for the modules selected by DS3 with different λ2 on synthetic
data. 82

4.3 Overview of our proposed CVDP framework. 83

xv

4.4 Radar charts of average indicator values for our TSTSS framework under
different thresholds. 90

4.5 Comparison of TSTSS under different thresholds using Friedman test with
Nemenyi post-hoc test in terms of six indicators. 90

4.6 Radar charts of average indicator values for our TSTSS framework with
different classifiers. 91

4.7 Comparison of TSTSS with different classifiers using Friedman test with
Nemenyi post-hoc test in terms of six indicators. 91

4.8 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS, SMRS and
DS3. (Part 1) . 94

4.8 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS, SMRS and
DS3. (Part 2) . 95

4.8 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS, SMRS and
DS3. (Part 3) . 96

4.9 Comparison of TSTSS against SMRS and DS3 with Friedman test and
Nemenyi post-hoc test in terms of all six indicators. 98

4.10 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS and nine
baseline methods. (Part 1) . 101

4.10 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS and nine
baseline methods. (Part 2) . 102

4.10 Radar charts of average values of the six indicators on the cross-version
pairs of each project and across all projects in terms of TSTSS and nine
baseline methods. (Part 3) . 103

4.11 Comparison of TSTSS against nine baseline methods with Friedman test
and Nemenyi post-hoc test in terms of all six indicators. 104

4.12 Visualization results of the selected candidates on 3 cross-version pairs. . 109

5.1 An example of the feature transformation effect by BDA. 118

5.2 Overview of our Proposed CPDP framework. 119

xvi

5.3 Comparison of BDA and five training data filter methods with Friedman
test and Nemenyi post-hoc test in terms of all six indicators. 128

5.4 Comparison of BDA and six transfer learning methods with Friedman test
and Nemenyi post-hoc test in terms of all six indicators. 131

5.5 The six average indicator values of BDA when vary the thresholds of
feature dimension on each benchmark dataset. 133

5.6 The six average indicator values of BDA when vary the thresholds of
parameter λ on each benchmark dataset. 135

5.7 The six average indicator values of BDA with different classifiers on each
benchmark dataset. 136

xvii

xviii

List of Tables

3.1 Benchmark Datasets for Within Project Defect Prediction 47

3.2 The Common Features of the 10 Projects from the NASA Dataset 47

3.3 The Features Contained in Each Project of the NASA Dataset Except for
the Common Ones . 48

3.4 The Features of Projects from the AEEEM Dataset 49

3.5 Basic Indicators for Defect Prediction 49

3.6 Two Confusion Matrices . 51

3.7 Average Indicator Values of KPCA with Six Classifiers on Each Dataset
and Across All Datasets . 59

3.8 Average Indicator Values of KPWE and Its Five Variant Methods on Each
Dataset and Across All Datasets . 62

3.9 The Needed Node Number of Hidden Layer for KPWE and It Five Variants 63

3.10 Average Indicator Values of KPWE and Other Eight Feature Selection
Methods with WELM on Each Dataset and Across All Datasets 65

3.11 The Needed Node Number of Hidden Layer for KPWE and Eight Feature
Selection Methods with WELM . 66

3.12 Average Indicator Values of KPWE and Other Six Imbalanced Learning
Methods on Each Dataset and Across All Datasets 69

4.1 Benchmark Dataset for Cross Version Defect Prediction 86

4.2 The Features of Projects from the PROMISE Dataset 87

4.3 The Threshold of the Selected Module Number and the Corresponding λ2
Value. 97

xix

4.4 Detailed Statistic of Selected Modules by TSTSS and the Baseline Methods 106

5.1 Benchmark Datasets for Within Project Defect Prediction 122

5.2 Average Indicator Values of the BDA Method with Six Different Data
Normalization Techniques on Each Dataset and Across All Dataset 125

5.3 Average Indicator Values of BDA Model and five Training Data Filter
Methods on Each Dataset and Across All Datasets 127

5.4 Average Indicator Values of BDA Model and Six Transfer Learning
Methods on Each Dataset and Across All Datasets 130

xx

Chapter 1

Introduction

1.1 Research Background

1.1.1 The Existence and Harm of Software Defects

In recent years, with the rapid development of the information technology, the number

of software products has increased sharply. Software has gradually integrated into every

aspect of people’s daily life and is widely applied to various fields of social, economic and

military, such as mobile games, shopping software, and air control systems. Nowadays,

we can say that we live in an age where software defines everything. In addition, as the

breakthrough of various technologies and the increasing demand of people, many software

products with complex systems and powerful functions are emerging. However, due to

some uncontrolled factors, such as unclear definitions during the requirement analysis

stage, imperfect schemes during the system design stage, nonstandard implementations

during the coding stage and incorrect judgment during the testing stage, software systems

inevitably exist defects [69]. Mohan et al. [2] have shown that the defects introduced in the

software analysis and design stages account for 64% of the total defects, and the defects

introduced in other development stages account for 36% of the total defects. The defects

1

can affect the user’s experience and cause economic losses. For example, the defects in

mobile games may cause the game inexplicably interrupted, and the defects in shopping

software may cause the consumers being deceived. Furthermore, the defects may bring

serious casualties. For example, the defects of the sequence of input data in the Therac 25

radioactive therapeutic apparatus led to the deaths of more than 10 people between 1985

and 1987.

1.1.2 Basic Concepts of Software Testing

As software can affect all aspects of human society, economy and military life, people

pay more and more attention to the quality and reliability of software products. The

phenomenon of low quality is common in software products, especially in large and

complex software systems. How to guarantee the high quality and high reliability of

software products has become a hot issue that needs to be solved urgently. This is also

the goal pursued by software developers and testers. For this purpose, the software testing

technology emerges. Software testing conducts operations on the program in order to find

defects. Software testing generally includes four types: unit testing, integration testing,

system testing, and acceptance testing [29]. More specifically, the object of unit testing is

the smallest unit component of software, and the purpose is to check whether the basic unit

of software is correct. The object of integration testing is the interface between software

unit components, and the purpose is to check whether the interface and the function of

the integrated components are correct. The object of system testing is the whole system,

and the purpose is to check whether the function, performance, software and hardware

environments of the system are correct. Acceptance testing is the last test before a software

is delivered, and the purpose is to check whether the software system meets the original

requirements. According to whether the source code is reviewed or not, software testing

can be divided into white-box testing and black-box testing. The black-box testing regards

2

the software system as a black box and only focuses on the input and output data of the

software system instead of the structure inside the box. The white-box testing involves

examining and analyzing the constructs inside the box, i.e., the source code information.

According to whether the program is executed or not, software testing can be divided

into static testing and dynamic testing. Static testing does not need to run the code of

the software system under test. It determines whether the software contains defects by

checking the source code, measuring the static complexity of the program, and analyzing

the flow chart of the program. Dynamic testing requires to run the code of the software

system under test, and judges whether the program contains defects by comparing the

output results with the predicted ones.

1.1.3 Software Defect Prediction

As the software development life cycle progresses, the cost of detecting and fixing hidden

defects in the software system becomes higher. Therefore, software developers and testers

want to analyze the software with the help of some testing techniques of software quality

assurance, hoping to detect as many defective software modules as possible before the

software is released. According to different granularities, a software module can be a file,

a class or a function. In addition, considering that the software delivery date is approaching

and inspecting software modules is labor-intensive and time-consuming, it is impractical

to inspect all software modules with the limited and precious testing resources. In this

case, developers and testers should be able to identify the software modules that are most

likely to contain defects, and then allocate them test resources for checking to improve test

efficiency. To achieve this goal, researchers propose Software Defect Prediction (SDP)

techniques to accomplish this task.

In recent years, SDP has been one of the most active branches of the software

3

engineering research [42]. The general process of SDP is first to collect historical data

(such as the source code and bug reports) of software development from version control

systems (such as Subversion and Github) and bug tracking systems (such as Jira and

Bugzilla). The collected data with defect labels can be used to form an initial software

defect dataset. Then SDP applies different machine learning techniques to identify the

defect labels of new developed software modules [156]. The software modules that are

identified to contain defects with a high probability can be recommended for priority

review by software developers and testers. Thus, SDP is a software quality assurance

activity that can optimize test resource allocation and improve software testing efficiency

[57]. In addition, from the classification perspective of software testing, SDP belongs to

the static testing because it does not require to run the source code of software project.

SDP can be divided into static and dynamic SDP according to whether the time of

defect occurrence is considered or not. Dynamic SDP requires to analyze the distribution

of defects over time in the whole software life cycle. Static SDP constructs models on the

features (such as code complexity features of software modules and change features) that

measures characteristics of software defects to analyze whether other software modules

contain defects.

Since static SDP is a hot topic in the cross domains between software engineering

and artificial intelligence, a large number of related articles have emerged in recent

years. According to the defect content differences of software modules, these articles

can be divided into software defect number prediction, software defect density prediction,

and software defect tendency prediction. More specifically, software defect number

prediction mainly uses models to fit regression functions to calculate the number of

defects contained in new modules. There are relatively few researches in this category

[170, 113, 115, 116, 114, 20]. Software defect density prediction mainly predicts the

defect density or corresponding influencing factors of software modules. The relevant

4

research in this field is the least [98, 99]. The software defect tendency prediction mainly

uses machine learning methods to construct classification model and then judge whether

the new software modules contain defects or not. This kind of work is the focus of the

current research [38, 17, 124, 132]. SDP in this thesis refers to software defect tendency

prediction.

According to whether using labeled software modules and the corresponding amount

of labeled modules used, SDP can be divided into supervised defect prediction, semi-

supervised defect prediction and unsupervised defect prediction. More specifically,

supervised defect prediction requires sufficient and labeled software modules as training

sets to train a classification model, and then the model is used to predict whether the

unlabeled modules contains defects or not. This is the most studied defect prediction task

at present. The semi-supervised defect prediction assumes that only a small amount of

labeled software modules is used as the training set. However, the limited labeled data can

not accurately reflect the overall distribution of defect data, and can not train an effective

and discriminant classification model. Since the large number of unlabeled software

modules can describe the data distribution to a certain degree, thus some unlabeled

modules can be selected to add into the training set to expand the scale [82, 123, 174]. At

present, there is few work in this topic. Unsupervised defect prediction directly analyzes

the unlabeled software modules and assigns them defect labels without any involvement

of labeled modules.

For unsupervised defect prediction, according to different processing methods towards

the software modules, it can be further divided into clustering based unsupervised defect

prediction [105, 177, 11, 22, 173, 101, 160] and ranking based unsupervised defect

prediction [166, 31, 51, 159, 52]. More specifically, clustering based unsupervised defect

prediction uses clustering algorithm to group the unlabeled software modules into several

clusters (generally two clusters, i.e., the defective group and the non-defective group),

5

and then assigns the defect label to each cluster based on certain rules. The labels of the

software modules in one cluster are consistent with the label of the cluster [173]. Ranking

based unsupervised defect prediction uses the size of module feature value to sort the

modules, and then sets a threshold to label the modules. To be specific, the modules before

and after this threshold are assigned different defect labels [178]. Since unsupervised

defect prediction does not require the participation of labeled modules, it usually cannot

achieve promising performance. This leads to that the relevant researches are far less

concerned than supervised defect prediction.

For the supervised defect prediction, according to the different sources of the labeled

data, it can be further divided into three different scenarios: Inner Version Defect

Prediction (IVDP), Cross Version Defect Prediction (CVDP), and Cross Project Defect

Prediction (CPDP). The training data in IVDP scenario come from the labeled software

modules of the same version of one project. The training set are usually generated using

the cross validation method in experimental setting [138]. The training data in CVDP

scenario come from labeled software modules of the previous versions of one project. The

training data in CPDP scenario come from the labeled software modules of other external

projects.

For CPDP, according to whether the feature sets of defect data across projects are

the same or not, it can be further divided into homogeneous CPDP and heterogeneous

CPDP. Homogeneous CPDP refers to that the feature sets of defect data from two projects

are completely identical [86, 102, 152] or partially identical [142]. The latter one can

use the common feature set of defect data from two projects to carry out CPDP task.

Heterogeneous CPDP refers to that the feature sets of defect data from two projects are

completely different [58, 100, 76, 75, 74, 140]. At present, homogeneous CPDP is the hot

topic. The CPDP mentioned in this thesis refers to the scenario where the feature sets of

cross project data are exactly the same. Figure 1.1 summarizes the structure diagram of

6

the current SDP research.

Software Defect Prediction

Supervised Defect Prediction Semi-supervised Defect Prediction Unsupervised Defect Prediction

In
n

er
 V

er
si

o
n

 D
ef

ec
t

P
re

d
ic

ti
o

n

C
ro

ss
 V

e
rs

io
n

 D
ef

ec
t

P
r
ed

ic
ti

o
n

C
ro

ss
 P

ro
je

ct
 D

ef
ec

t
P

re
d

ic
ti

o
n

C
lu

st
er

in
g

 B
a

se
d

 D
ef

ec
t

P
r
ed

ic
ti

o
n

R
a

n
k

in
g

 B
a

se
d

 D
ef

ec
t

P
re

d
ic

ti
o

n

Homogeneous Cross Project

Defect Prediction

Heterogeneous Cross Project

Defect Prediction

Figure 1.1: Research category for software defect prediction.

1.2 A Brief Introduction of Three Studied Defect Predic-
tion Scenarios

In this thesis, we study machine learning assisted SDP under three defect prediction

scenarios, i.e., inner version defect prediction, cross version defect prediction, and cross

project defect prediction. The similarity of these three defect prediction scenarios lies in

that they all belong to the supervised defect prediction, that is, labeled software modules

are required as training sets to construct the classification model in advance. The difference

lies in that the sources of labeled software modules as training sets are different under

the three scenarios. Therefore, in different scenarios, the relationship between training

set modules and test set modules is different, which leads to that the machine learning

7

methods used to solve the difficulties in the three scenarios vary. We briefly describe the

basic content of each defect prediction scenario as follows:

(1) Inner Version Defect Prediction (IVDP)

IVDP is the most studied case among the three scenarios. For this prediction scenario,

researchers mainly carried out the work from the following three perspectives: applying

different feature engineering methods, classification models, and class imbalanced

learning methods. The feature engineering method selects an optimal subset of features

or learns new features to build the prediction model, rather than using all or original

features. The reason is that some original features may be useless, redundant or cannot

well reveal the structural information behind the data [155]. The commonly used feature

engineering methods include chi-square [33, 158], information gain [127] and principal

component analysis [96, 25]. The researches on classification models mainly explore the

impacts of different classifiers on defect prediction performance [68, 34]. Most studies

used classical classification models, such as random forest [37, 91, 163, 137], logistic

regression [137, 164, 165, 167], and Naive Bayes [137, 148, 141]. Few studies explored

and used novel classification models. The class imbalanced learning methods are mainly

used to alleviate the negative effect of the imbalance of the defect data for the prediction

performance. The widely used imbalanced learning methods include sampling based

methods [8, 136], ensemble learning methods [67, 108], and cost-sensitive learning based

methods [57, 80, 131].

(2) Cross Version Defect Prediction (CVDP)

CVDP is the least studied case among the three scenarios. For this prediction scenario,

existing studies mainly used all software modules of the previous version to train the

classification model, then the model was used to predict the labels of software modules in

the current version [9]. CVDP is closer to the deployment in the real application scenario,

8

which uses the historical version data of the project to help identify the defect tendency of

software modules in the current version under development [83].

(3) Cross Project Defect Prediction (CPDP)

CPDP is the second most studied defect prediction scenario. For the new software

projects without the historical development data to collect the labels, CPDP uses the

labeled data of other projects to conduct the prediction task for the unlabeled software

modules of the new projects. Since the distribution of defect data in different projects

generally has great dissimilarity, researchers have proposed two types of methods to

solve this problem, i.e., the training data filtering methods [142] and the transfer learning

methods [86]. Recently, researcher conducted an empirical analysis towards existing

CPDP studies and pointed out that there was still much improvement room for the CPDP

performance [43].

1.3 Challenges Faced in Each Defect Prediction Scenario

Due to the different sources of training sets under different defect prediction scenarios,

we should treat the datasets from different angles. Thus, the problems to be solved and

the used machine learning methods under different scenarios are different. The main

difficulties to be solved under each defect prediction scenario are described as follows:

(1) Study on the feature learning and class imbalance issue for IVDP

The initial features of software defect data generally represent the basic characteristics

of the code, such as code complexity and the changing characteristics. These initial

features are often unable to well reveal the intrinsic structure information hidden behind

the data [164, 149], that is, they may make it difficult to linearly distinguish the modules

9

of different labels. This will seriously reduce the performance of the classification model.

In addition, class imbalance is prevalent in defect data in which the non-defective modules

usually outnumber the defective ones. Class imbalance issue will degrade classifier

performance because it makes most classifiers tend to predict the minority samples (i.e.,

the defective modules) as the majority samples (i.e., the non-defective modules). Thus,

how to learn suitable feature representation to characterize the defect data and reduce the

negative impacts of class imbalance for performance improvement are the main challenges

in IVDP scenario.

(2) Study on the training data selection issue for CVDP

As the software development is an evolving process and software functions are

increasingly complicated, the software modules undergo frequent changes during the

version update. For example, the current version of the project inherits, refactories and

deletes some existing modules from the prior version or adds some new modules. Such

changes make that the modules from the prior version may not well represent the modules

from the current version. These unrepresentative software modules will negatively affect

the performance of the classification model for the CVDP task [153]. Thus, how to select

some representative modules from the prior version to build more effective and targeted

classification models for the performance improvement is the main challenge in CVDP

scenario.

(3) Study on the data distribution similarity issue for CPDP

For the defect data of different projects, due to the different programming styles of

developers, the different development platform environment, and the different functions

and complexities contained in the projects, these will lead to that the data distributions

of different projects vary. In order to build an effective CPDP model, the key is to

reduce the data distribution differences across projects. The data distribution generally

10

includes two types, i.e., the marginal distribution and the conditional distribution. The

marginal distribution refers to the distribution of module features themselves, while the

conditional distribution refers to the distribution of module labels with known feature

values. The similarity degree of two project data impacts the importance degree of the

marginal distribution and conditional distribution. More specifically, when the data of two

projects are much more dissimilar, the importance of the marginal distribution is higher

than that of the conditional distribution, whereas when the data of two projects are similar,

the conditional distribution is more important than the marginal distribution [145]. The

transfer learning based methods are the mainstreams to solve the CPDP problem, such as

the improved transfer component analysis [102]. However, existing CPDP methods based

on transfer learning methods mainly reduce the marginal distribution differences of the

defect data across projects without considering their conditional distribution differences.

This greatly limits the performance of the transfer learning methods for the CPDP task.

How to consider these two kinds of distribution differences simultaneously to adapt to

different cross project data for the performance improvement is the main challenge in

CPDP scenario.

1.4 Research Methods used in Each Defect Prediction
Scenario

To address the above difficulties under different defect prediction scenarios, we propose

different machine learning methods to solve them. The machine learning methods used in

each defect prediction scenario are briefly described as follows:

(1) Dealing with feature representation and class imbalance for IVDP

The purpose of feature representation is to learn more discriminative features from the

11

original feature set for better representing the original data by mapping the features into a

linearly separable space. The features in the new space help to improve the performance of

the classification model. In the field of machine learning, the kernel method works well in

feature representation learning. Thus, this thesis proposes a IVDP framework that applies

the kernel based feature extraction method to learn more effective feature representation

for the raw defect data.

The purpose of class imbalanced learning is to use some strategies to eliminate the bias

caused by the difference in the number of modules with different labels to the decision

of the classification model. It helps the model to identify defective software modules

belonging to the minority classes. Since the sampling based imbalanced learning methods

need change the data distribution and are not conducive to the model interpretation, and the

ensemble based imbalanced learning is sensitive to outliers, the proposed IVDP framework

uses a weighted classifier to alleviate the negative impact of the class imbalance.

(2) Dealing with training subset selection for CVDP

The purpose of training subset selection is to select an optimal module subset from the

data of the previous version to replace the original ones for the classification task. The

selected module subset can well represent the software modules in the current version.

The existing studies for CVDP mainly use all software modules in the previous version

to build the classification model, lacking related applications of training subset selection

methods in the CVDP scenario. This thesis proposes a two-stage training subset selection

framework based on the optimization solution to address this issue. First, the proposed

CVDP framework selects a simplified subset of software modules from the labeled data of

the previous version, and then picks up a module subset that is representative to the current

version as the candidate training set. The classification model constructed on the candidate

set is more targeted to the data of the current version and adapts to the classification task

12

for the data of the current version.

(3) Dealing with data distribution differences for CPDP

The purpose of distributed difference processing is to reduce the distribution differences

between the defect data of different projects, making that the classification model trained

on the processed data of one project can better fit the processed data of the other

project. Since different cross project data pay different attentions to the marginal

distribution difference and the conditional distribution difference, this thesis proposes a

CPDP framework by introducing a novel transfer learning model. The model considers

both the marginal distribution and conditional distribution, and minimizes the difference

between the two distributions across the transformed cross project data. In addition,

the model assigns different weights to the two distribution differences to better adapt to

different cross project data.

1.5 Thesis Organization

The thesis is organized as follows:

Chapter 1 introduces some background knowledge, including the harm of software

defects, the basic contents of software testing and software defect prediction. In addition,

this chapter briefly introduces the three defect prediction scenarios used in this thesis,

including the inner version defect prediction, cross version defect prediction, and cross

project defect prediction, and then analyzes the difficulties faced under various software

defect prediction scenarios. Finally, this chapter gives the corresponding machine learning

methods to solve the difficulties.

Chapter 2 presents a review of some previous studies related to the work in this thesis,

13

including the research progress of the related work under the three defect prediction

scenarios and the different machine learning assisted defect prediction techniques, such

as the feature engineering methods, class imbalanced learning methods, training subset

selection methods, and transfer learning methods for the defect prediction task.

Chapter 3 proposes a composite framework that combines a kernel function based

feature extraction and a state-of-the-art weighted version classifier to solve the problem

of feature learning and class imbalance issues respectively in the scenario of inner version

defect prediction (IVDP).

Chapter 4 proposes a two-stage instance selection framework based on optimization

method to address the training subset selection issue in the scenario of cross version defect

prediction (CVDP).

Chapter 5 introduces a transfer learning model which considers the marginal and

conditional distribution differences as well as their different weights to deal with the

data distribution difference issus across projects in the scenario of cross project defect

prediction (CPDP).

Chapter 6 summarizes the research contents under the three defect prediction scenarios

(i.e., IVDP, CVDP, and CPDP) in this thesis, and gives some unsolved or unexplored

problems that will be focused in the future.

14

C
h
a
p

te
r

1
:

In
tr

o
d

u
ct

io
n

Feature Engineering

Techniques

Class Imbalance

Learning Techniques

Instance Subset

Selection Techniques

Transfer Learning

Techniques

Inner Version

Defect Prediction

Chapter 3 : A hybrid Fram ework Based on

Kernel PCA and Weighted Extreme Learning

Machine for Inner Version Defect Prediction

Ch ap ter 4: A Two-Stage Training Subs et

Selection Framework for Cross Version Defect

Prediction

Chapter 5: Balanced Distribution Adaptation

Based Tr ansfer Learn ing fo r Cross P roject

Defect Prediction

Three Scenarios Solutions

Chapter 2

Related Techniques

Cross Version

Defect Prediction

Cross Project

Defect Prediction

C
h
a
p

te
r

6
:

C
o
n

cl
u

si
o
n

 a
n

d
 F

u
tu

re
 W

o
rk

Figure 1.2: The organization chart of this thesis.

15

16

Chapter 2

Literature Review

2.1 Studies on Defect Prediction Under Different Scenar-
ios

SDP builds models to predict software modules with possible defect risk by mining and

analyzing the rich historical development data in the software repository, so as to optimize

the strategy of test resource allocation, reduce the test cost, and improve the reliability

and security of the software. In general, SDP methods use labeled software defect data

to build statistical or machine learning models. Software defect data includes software

module features and label information. More specifically, module features include code

complexity features, code change features, network features of function call relationships,

and so on. The label information is usually a binary variable used to indicate whether a

software module contains defects or not. Whether the defective modules can be identified

using the historical development data is an important criteria to evaluate the performance

of the constructed defect prediction models.

Most of the existing researches regard defect prediction as a supervised learning task,

that is, the labeled defect data are first used as training set to construct a classification

17

model, and then the model is used to predict whether the unlabeled modules contain

defects or not. As mentioned in Chapter 1, according to the source of this training set, the

existing studies can be divided into three different defect prediction scenarios, including

IVDP, CVDP, and CPDP.

2.1.1 Studies on IVDP

For IVDP, the labeled software module data used as the training set come from the

historical data of the current version of the same project, and the remaining data of the

project version are used to evaluate the performance of the built classification model. This

scenarios is the most popular branch of research. Researchers have proposed various

methods, such as machine learning methods, to solve related problems. In addition,

different classification models were applied to the IVDP. This subsection mainly discusses

the existing research work on analyzing the impact of different classification models on

IVDP performance.

Various classification models have been applied to defect prediction. Malhotra [88]

evaluated the feasibility of seven classification models for defect prediction by conducting

a systematic literature review on the studies that published from January 1991 to October

2013. They discussed the merits and demerits of the classification models and found

that they were superior to traditional statistical models. In addition, they suggested that

new methods should be developed to further improve the defect prediction performance.

Malhotra [89] used the statistical tests to compare the performance differences among

18 classification models for defect prediction. They performed the experiments on seven

Android software projects and stated that these models have significant differences while

support vector machine and voted perceptron model did not perform well. Lessmann et

al. [68] conducted an empirical study to investigate the effectiveness of 21 classifiers

18

on NASA dataset. The results showed that the performances of most classifiers have

no significant differences. They suggested that some additional factors, such as the

computational overhead and simplicity, should be considered when selecting a proper

classifier for defect prediction. Ghotra et al. [34] expanded Lessmann’s experiment by

applying 31 classifiers to two versions of NASA dataset and PROMISE dataset. The

results showed that these classifiers achieved similar results on the noisy NASA dataset but

different performance on the clean NASA and the PROMISE datasets. Malhotra et al. [90]

investigated the performances of 18 classifiers on six projects with object-oriented features

and found that Naive Bayes classifier achieved the best performance. Some researchers

introduced KPCA into defect prediction [117, 84, 85] recently, and they aimed at building

asymmetrical prediction models with the kernel method by considering the relationship

between principal components and the class labels. In this thesis, we leverage KPCA

as a feature selection method to extract representative features for defect prediction. In

addition, Mesquita et al. [94] proposed a method based on Extreme Learning Machine

(ELM) with reject option (i.e., IrejoELM) for defect prediction. The results were good

because they abandoned the modules that have contradictory decisions for two designed

classifiers. However, in practice, such modules should be considered.

2.1.2 Studies on CVDP

For CVDP, the labeled software module data used as the training set come from the

historical data of the previous version of the same project, and data of current version are

used to evaluate the performance of the built classification model. From the fact that the

training set data also come from the same project, both CVDP and IVDP can belong to the

within project defect prediction. Compared with IVDP, CVDP is closer to the deployment

in a real-world application scenario in which the historical version data of the project is

used to assist in the identification of the defect-prone modules in its on-going version.

19

However, to the best of our knowledge, only a fewer related studies have been devoted to

CVDP.

Bennin et al. [9] evaluated the CVDP performance of 11 classification models on 25

open source software projects (each with two versions) with an effort-aware indicator.

The experimental results showed that M5 and K* models achieved the best performance

but were also greatly affected by the defect ratio and size of the defect data. However, the

performance differences among all 11 methods were not statistically significant. Holschuh

et al. [45] explored the CVDP performance on a large software system by collecting four

types of features. The experiments on six projects (each with three versions) showed that

the overall performance is unsatisfactory. Shukla et al. [130] treated CVDP as a multi-

objective optimization problem with two objective functions: i.e., maximizing recall by

minimizing misclassification cost and the cost of quality assurance activities on defect

prone modules. They used four traditional classification models to conduct experiments

on 11 open source projects with total 30 cross-version pairs and found that multi-objective

logistic regression outperformed four single-objective algorithms. Li et al. [73] compared

the CVDP performance of a multi-objective approach which optimized two objectives and

a single-objective approach which optimized the trade-off of the two objectives. They

conducted experiments on four open source software projects with a total of 10 cross-

version pairs. The results indicated that when the trade-off was known, single-objective

approach can achieve better performance which was not consistent with the conclusion in

[130]. Yang et al. [162] investigated the CVDP performance of two models, i.e., ridge

regression and lasso regression. They conducted experiments on 11 projects with a total

of 30 cross-version pairs and found that the two methods achieved better performance

compared with four baseline methods. But this work focused on the ranking task, not the

classification task as we do.

Although some previous studies [95, 64, 64, 168, 147] also mentioned the CVDP

20

concept, they did not specialize in CVDP, just treated it as one of multiple defect prediction

scenarios, like IVDP and CPDP. Thus, we do not discuss them here. All these mentioned

studies fed all modules of the prior version into the classification model without taking

the distribution differences caused by the representation of modules into account and

conducted a small scale experiments on a few project versions. Different from these

studies, this thesis focuses on selecting an optimal training modules to relieve the gap

of distribution differences across versions and conducts a large scale experiments on total

50 cross-version pairs for CVDP task.

Recently, there are two studies that have considered the issue of distribution differences

for CVDP task. Lu et al. [83] selected some unlabeled modules as candidate from the

current version with an active learning method and labeled these modules by querying

the software experts, then added them into the prior version to form a mixed training

set. They expected that these modules could alleviate the distribution differences by

supplementing some distribution information of the current version into the prior version.

The experimental results on three Eclipse projects with a total of six cross-version

pairs showed that their method could improve the CVDP performance. However, the

candidate modules selected by the active learning method were only informative while not

representative for the data of the current version [72, 53]. Inspected by Lu et al.’s work,

Xu et al. [153] proposed a hybrid active learning method to select both informative and

representative modules from the current version and merged them into the prior version

to construct an enhanced training set. They conducted experiments on 10 open source

projects with a total of 31 cross-version pairs and found that their method could further

improve the CVDP performance compared with Lu et al.’s method. Both studies selected

some modules from the current version and added them into the prior version. However,

their methods needed to label the modules selected from the current version which involves

in additional efforts.

21

2.1.3 Studies on CPDP

For CPDP, the labeled software module data used as the training set come from other

projects (also called source projects), and data from current project (also called target

project) are used to evaluate the performance of the built classification model. There are

two kinds of CPDP scenarios: one is that the feature sets of source project and target

project are the same of have a common part, also known as homogeneous CPDP and the

other is that the feature sets of source project and target project are different, also known

as heterogeneous CPDP. Since the homogeneous CPDP is the research hotspot, we focus

on this topic and introduce some related studies in this subsection.

To the best of our knowledge, Briand et al. [14] were the first to explore whether the

CPDP model built on one system for another system was worth investigating. However,

the experimental results on two java systems implied that such a model achieved poor

performance. Another early study about CPDP is performed by Zimmermann et al. [179].

The experimental results on a total of 622 cross-project pairs with logistic regression

classifier showed that only 3.4% pairs achieved satisfactory performances. The reason

of the disappointing results from these early studies is that they conducted CPDP by using

all modules of the source project to train the classification model without considering the

data distribution differences of the two projects. To address this issue, recently, researchers

have proposed different methods to narrow the gap of the distribution differences between

the cross project data. Existing related studies can be roughly divided into two groups:

the training data filter based CPDP methods and transfer learning based CPDP methods.

The related work about the two methods are described in Subsection 2.2.3 and Subsection

2.2.4. In this subsection, we mainly introduce some comprehensively empirical studies

about CPDP.

Hosseini et al. [46] made a systematic literature review of the CPDP studies and selected

22

part of work for detailed analysis. They identified the most commonly used performance

indicators, well-performing classification models, and widely used data sets. They pointed

out that CPDP remains a challenging task that deserves more attentions. To determine

which CPDP method performed best, Herbold et al. [42] reproduced some existing

CPDP methods and evaluated their performance on five datasets. The experimental

results showed that three methods could achieve the best performance in most cases,

and suggested that there was still room for improvement if the CPDP methods were put

into practical applications. Similarly, Porto et al. [109] replicated several existing CPDP

methods and compared them on 47 versions of 15 projects in the PROMISE dataset. They

identified four methods which could achieve the best performance and proposed a cross

project model with meta-learning.

2.2 Studies on Different Methods for Defect Prediction

In this section, we mainly introduce the related work of some machine learning methods

used under the above three defect prediction scenarios.

2.2.1 Feature Selection for Defect Prediction

Feature selection methods simplify the defect data by selecting part of representative

features from the original feature set. The commonly used methods include filter-based

feature ranking methods and wrapper-based feature subset selection methods. The former

one ranks the features according to their importance towards the labels and selects a certain

number of top ranked features. The latter one selects a feature subset that can achieve the

best result for a given classification model and performance measurement.

Some recent studies explored the effectiveness of feature selection methods for defect

23

prediction performance. Song et al. [133] suggested that feature selection is an

indispensable part of a general defect prediction framework. Menzies et al. [93] found

that naive Bayes classifier with information gain based feature selection can get good

performances over 10 projects from the NASA dataset. Shivaji et al. [128, 129] studied

the performance of filter-based and wrapper-based feature selection methods for bug

prediction. Their experiments showed that feature selection can improve the defect

prediction performance even remaining 10% of the original features. Gao et al. [151]

investigated four filter-based feature selection methods on a large telecommunication

system and found that the Kolmogorov-Smirnov method achieved the best performance.

Gao et al. [33] explored the performance of their hybrid feature selection framework based

on seven filter-based and three feature subset search methods. They found that the reduced

features would not adversely affect the prediction performance in most cases. Chen et al.

[21] modelled the feature selection as a multi-objective optimization problem: minimizing

the number of selected features and maximizing the defect prediction performance. They

conducted experiments on 10 projects from PROMISE dataset and found that their method

outperformed three wrapper-based feature selection methods. However, their method was

less efficient than two wrapper-based methods. Catal et al. [16] conducted an empirical

study to investigate the impact of the dataset size, the types of feature sets and the

feature selection methods on defect prediction. To study the impact of feature selection

methods, they first utilized a Correlation-based Feature Selection (CFS) method to obtain

the relevant features before training the classification models. The experiments on five

projects from NASA dataset showed that the random forest classifier with CFS performed

well on large project datasets and the Naive Bayes classifier with CFS worked well on

small projects datasets. Xu et al. [154] conducted an extensive empirical comparison to

investigate the impact of 32 feature selection methods on defect prediction performance

over three public defect datasets. The experimental results showed that the performance

of these methods had significant differences on all datasets and that PCA performed the

24

worst. Ghotra et al. [35] extended Xu et al.’s work and conducted a large-scale empirical

study to investigate the defect prediction performance of 30 feature selection methods

with 21 classification models. The experimental results on 18 projects from NASA and

PROMISE datasets suggested that CFS method with best-first search strategy achieved the

best performance among all other feature selection methods on most projects.

2.2.2 Class Imbalanced Learning for Defect Prediction

Since class imbalance issue can hinder defect prediction techniques to achieve satisfactory

performance, researchers have proposed different imbalanced learning methods to mitigate

such negative effects. Sampling based methods, ensemble based methods, and cost-

sensitive based methods are the most studied imbalanced learning methods for defect

prediction.

For the sampling based imbalanced learning methods, there are two main sampling

strategies to balance the data distribution. One is to decrease the number of non-defective

modules (such as under-sampling technique), the other is to increase the number of

the defective modules with redundant modules (such as over-sampling technique) or

synthetic modules (such as Synthetic Minority Over-sampling TEchnique, SMOTE).

Kamei et al. [60] investigated the impact of four sampling methods on the performance

of four basic classification models. They conducted experiments on two industry legacy

software systems and found that these sampling methods can benefit linear and logistic

models but were not helpful to neural network and classification tree models. Bennin

et al. [7] assessed the statistical and practical significance of six sampling methods

on the performance of five basic defect prediction models. Experiments on 10 projects

indicated that these sampling methods had statistical and practical effects in terms of some

performance indicators, such as Pd, Pf, G-mean, but had no effect in terms of AUC. Bennin

25

et al. [6] explored the impact of a configurable parameter (i.e, the percentage of defective

modules) in seven sampling methods on the performance of five classification models.

The experimental results showed that this parameter can largely impact the performance

(except AUC) of studied prediction models. Due to the contradictory conclusions of

previous empirical studies about which imbalanced learning methods performed the best

in the context of defect prediction models, Tantithamthavorn et al. [136] conducted a

large-scale empirical experiment on 101 project versions to investigate the impact of

four popularly-used sampling techniques on the performance and interpretation of seven

classification models. The experimental results explained that these sampling methods

increased the completeness of recall indicator but had no impact on the AUC indicator.

In addition, the sampling based imbalanced learning methods were not conducive to the

understanding towards the interpretation of the defect prediction models.

Ensemble based imbalanced learning methods usually combine with multiple weak

classifiers to improve the overall defect prediction performance [143]. Wang et al. [146]

compared sampling based, threshold moving based and ensemble learning methods. They

found that a variant of AdaBoost achieved the best overall performance. Sun et al. [135]

proposed a coding-based ensemble learning method which converted the imbalanced data

with two labels into multiple labels and then used a special coding strategy to build a defect

prediction model. Laradji et al. [67] combined the ensemble learning method and feature

selection method to alleviate class imbalance issue of defect data. Petric et al. [108]

first constructed an ensemble model with a weighted diversity technique to explore the

diversity of four classifiers, and then combined the classifiers using a stacking technique.

The experimental results on eight projects showed that the proposed method could achieve

good performance. Yang et al. [163] proposed a two-layer ensemble learning method

for just-in-time defect prediction. In the inner layer, the random forest models were

constructed by combining decision tree and bagging methods. In the outer layer, the

26

random undersampling technique was used to train various random forest models, and the

stacking technique was used to combine the models. Ensemble learning methods usually

requires iteratively sampling multiple module subsets to improve the performance.

The cost-sensitive based imbalanced learning methods alleviate the differences between

the instance number of two classes by assigning different weights to the two types of

instances. Khoshgottar et al. [63] proposed a cost-boosting method by combining multiple

classification models. Experiments on two industrial software systems showed that the

boosting method was feasible for defect prediction. Zheng et al. [175] proposed three cost-

sensitive boosting methods to boost neural networks for defect prediction. Experimental

results showed that threshold-moving-based boosting neural networks can achieve better

performance, especially for object-oriented software projects. Liu et al. [80] proposed

a novel two-stage cost-sensitive learning method by utilizing cost information in the

classification stage and the feature selection stage. Experiments on seven projects of

NASA dataset demonstrated its superiority compared with the single-stage cost-sensitive

classifiers and cost-blind feature selection methods. Siers et al. [131] proposed two cost-

sensitive classification models by combining decision trees to minimize the classification

cost for defect prediction. The experimental results on six projects of NASA dataset

showed the superiority of their methods compared with six classification methods. The

WELM technique used in this thesis for the IVDP task belongs to this type of imbalanced

learning methods.

2.2.3 Training subset selection for Defect Prediction

Training subset selection methods use some rules to select part of software modules from

the training set in which the reserved modules are important to the modules of the test set.

Turhan et al. [142] proposed a nearest neighbor filter method to select a module subset

27

from the source project. More specifically, for each module in the target project, this

method first selected its top-k nearest modules, then these candidate modules without

duplication constituted the training set. Peter et al. [107] proposed a subset selection

strategy with a clustering algorithm. More concretely, this method first combined the

data of the two projects, then used k-means clustering algorithm to cluster the mixed

data and discarded the clusters that did not contain any module of the target project.

For each module of the source project in the remaining clusters, the method found its

nearest neighbor module in the target project (called popular modules). Then, for each

popular module, this method selected its greatest fan (the nearest module in the source

project). Finally, these selected fans were fed into the classification model. The results

showed that this method led to the performance improvement compared with the method

in [142] and the IVDP performance. Kawata et al. [62] proposed a relevancy filter

method for source project data simplification. This method first used the DBSCAN

algorithm to cluster the mixed project data. For the clusters that contained at least one

module of the target project, the modules of the source project in such clusters formed

the final training data. Following Kawata et al.’s work, Yu et al. [171] proposed a

new subset selection method by just replacing the DBSCAN clustering algorithm with

agglomerative clustering. The experimental results showed that this method achieved

a small improvement compared with the method in [62]. Ryu et al. [119] proposed

a hybrid instance selection method based on nearest neighbor. This method learns the

local knowledge using k neighbor algorithm and learns the global knowledge using

Bayesian learning, and then comprehensively selects the appropriate module subset. The

experimental results on seven projects from the NASA dataset showed that this method

could obtain higher detection rate and lower rate of false positives. Herbold et al. [41]

proposed two training data selection methods based on distance measurement in which

one method is based on EM clustering algorithm and the other one is based on the nearest

neighbor algorithm. Their experimental results on 71 project versions from the PROMISE

28

dataset showed that their method improved CPDP performance, but achieved worse IVDP

performance. He et al. [39] proposed a similarity based training data selection method

which ranked all modules in the training set based on an improved scoring strategy. The

experimental results on 10 projects from the PROMISE dataset and five projects from the

AEEEM dataset demonstrated the effectiveness of the proposed method. In addition, the

results showed that the combination of Euclidean distance and linear normalization could

obtain the best performance.

2.2.4 Transfer Learning for Defect Prediction

Transfer learning based methods are mainly applied to CPDP scenario. This kind of

methods transform the source and target project data into a common feature space, aiming

to minimize the data distribution differences among the two project data. Thus, the

classification model built on the mapped source project data is more effective than that

built on the original source project data to predict the labels of the target project data.

To the best of our knowledge, Ma et al. [86] were among the first to introduce transfer

learning into CPDP. Instead of discarding some modules of the source project, they

proposed a transfer naive Bayes (TNB) method to transfer the valuable information of

the source project into the target project. TNB first utilizes the data gravitation formula

to measure the similarity of the modules of the source project to the modules of the target

project, and assigns different weights to the modules of the source project based on the

similarity, then integrates the weight information into the Bayes formula to develop a

weighted Naive Bayes method based transfer learning. The experiments on seven defect

data from NASA dataset and three defect data from SOFTLAB dataset showed that TNB

achieved better performances than the method in [142]. Nam et al. [102] proposed an

extended transfer component analysis (TCA) method, called TCA+, to learn some transfer

29

components for cross project data in a kernel Hilbert space. TCA+ first defines some

rules to find the optimum data normalization strategy, and then applies the original TCA

method to make the data distributions of the two projects closer. The experiments on

five defect data from AEEEM dataset and three defect data from RELINK dataset showed

that TCA+ achieved competitive performance compared with the IVDP setting and the

original TCA method. Chen et al. [19] proposed a transfer learning method, called

double transfer boosting (DTB), for CPDP. DTB first re-weights the modules of the source

project based on data gravitation formula and then applies a transfer boosting method to

eliminate some negative modules from the source project. The experiments showed that

DTB outperformed four baseline CPDP methods and achieved better performances than

three IVDP methods. The main drawback of DTB is that the used transfer boosting method

needs the participation of some labeled modules from the target project, which limits its

usage under the scenario in which the target project has no labeled modules. Ryu et al.

[120] proposed a transfer cost-sensitive boosting (TCSBoost) method that considers both

knowledge transfer and class imbalance for CPDP. TCSBoost first calculates the similarity

weight between the source and the target projects, and employs a resampling method to

rebalance the data distribution of the defective and non-defective classes of the source

project, then applies a cost-sensitive boost method to deal with the distribution differences

between the two project data. Like the DTB method, TCSBoost requires a small amount

of labeled modules of the target project, which hinders its usage in the general CPDP

scenario. Liu et al. [78] proposed a two-phase transfer learning (TPTL) model. In the first

stage, TPTL selects two source projects, having the highest distribution similarity to the

target project and the best performance, as candidates from a set of source projects. In the

second stage, TPTL utilizes the TCA+ method to build two transfer learning models based

on the two candidates to conduct CPDP. The focus of their work is on the selection of the

candidate source projects. Different from the above transfer learning methods that usually

only consider the marginal distribution difference of the cross project data, in this thesis,

30

we introduce a state-of-the-art transfer learning method which considers both marginal

and conditional distribution differences as well as their weights for the CPDP task.

31

32

Chapter 3

A hybrid Framework Based on Kernel
PCA and Weighted Extreme Learning
Machine for Inner Version Defect
Prediction

Software testing is an important part of software development life cycle for software

quality assurance [139, 97]. Defect prediction can assist the quality assurance teams to

reasonably allocate the limited testing resources by detecting the potentially defective

software modules (such as classes, files, components) before releasing the software

product. Thus, effective defect prediction can save testing cost and improve software

quality [124, 133, 161].

The majority of existing researches leverages various machine learning techniques

to build defect prediction methods. In particular, many classification techniques have

been used as defect prediction models, such as decision tree, Naive Bayes, random

forest, nearest neighbor, and logistic regression. Since irrelevant and redundant features

in the defect data may degrade the performance of the classification models, different

feature selection methods have been applied to select an optimal feature subset for defect

33

prediction [154, 35]. These methods can be roughly divided into three categories: the

filter-based feature ranking methods, wrapper-based feature subset evaluation methods,

and extraction-based feature transformation methods.

3.1 Motivation

Selecting optimal features that can reveal the intrinsic structures of the defect data

is crucial to build effective defect prediction models. The filter-based and wrapper-

based feature selection methods only select a subset of the original features without any

transformation [134]. However, such raw features may not properly represent the essential

structures of raw defect data [149]. Being a linear feature extraction method, PCA has

been widely used to transform the raw features to a low-dimensional space where the

features are the linear combinations of the raw ones [79, 15, 176, 65]. PCA performs well

when the data are linearly separable and follow a Gaussian distribution, whereas the real

defect data may have complex structures that can not be simplified in a linear subspace

[125, 36]. Therefore, the features extracted by PCA are usually not representative, and

cannot gain anticipated performance for defect prediction [92, 154]. To address this

issue, we exploit KPCA [121], a nonlinear extension of PCA, to project the original data

into a latent high-dimensional feature space in which the mapped features can properly

characterize the complex data structures and increase the probability of linear separability

of the data. When the original data follow an arbitrary distribution, the mapped data by

KPCA obey an approximate Gaussian distribution. Figure 3.1 shows the merit of the

feature mapping, where the data are linearly inseparable within the low-dimensional space

but linearly separable within the high-dimensional space. Existing studies have shown that

KPCA outperforms PCA [122, 66].

Although many classifiers have been used for defect prediction, Lessmann et al. [68]

34

Low-dimensional space High-dimensional space

feature mapping

Figure 3.1: An example of the merit of feature mapping.

suggested that the selection of classifiers for defect prediction needs to consider additional

criteria, such as computational efficiency and simplicity, because they found that there

are no significant performance differences among most defect prediction classifiers.

Moreover, class imbalance is prevalent in defect data in which the non-defective modules

usually outnumber the defective ones. It makes most classifiers tend to classify the

minority samples (i.e., the defective modules) as the majority samples (i.e., the non-

defective modules). However, existing defect prediction methods did not address this

problem well, thus leading to unsatisfactory performance. In this chapter, we exploit

Single-hidden Layer Feedforward Neural networks (SLFNs) called Weighted Extreme

Learning Machine (WELM) [180] to overcome this challenge. WELM assigns higher

weights to defective modules to emphasize their importance. In addition, WELM is

efficient and convenient since it only needs to adaptively set the number of hidden nodes

while other parameters are randomly generated instead of being tuned through iterations

like traditional neural networks [50].

In this chapter, we propose a new IVDP framework called KPWE that leverages the two

aforementioned techniques: KPCA and WELM. This framework consists of two major

35

stages. First, KPWE exploits KPCA to map original defect data into a latent feature space.

The mapped features in the space can well represent the original ones. Second, with the

mapped data, KPWE applies WELM to build an efficient and effective defect prediction

model that can handle the class imbalance issue.

3.2 The Used Methods and Proposed IVDP Framework

To deal with the feature representation and class imbalance issue of software modules in

the inner version scenario, we propose a new defect prediction framework KPWE. This

framework consists of two stages: feature extraction and model construction. Subsection

3.2.1 describes how to project the original data into a latent feature space using the

nonlinear feature transformation technique KPCA, subsection 3.2.2 introduces the basic

ELM model, subsection 3.2.3 presents how to build the WELM based classification model

with the extracted features by considering the class imbalance issue, subsection 3.2.4 gives

our proposed IVDP framework KPWE.

3.2.1 Feature Extraction Based on KPCA

In this stage, we extract representative features with KPCA to reveal the potentially

complex structures in the defect data. KPCA uses a nonlinear mapping function ϕ to

project each raw data point within a low-dimensional space into a new point within a

high-dimensional feature space F .

Given a dataset {xi, yi}, i = 1, 2, . . . , n, where xi = [xi1, xi2, . . . , xim]T ∈ Rm denotes

the feature set and yi = [yi1, yi2, . . . , yic]
T ∈ Rc (c = 2 in this work) denotes the label set.

Assuming that each data point xi is mapped into a new point ϕ(xi) and the mapped data

36

points are centralized, i.e.,

1
n

∑n
i=1 ϕ(xi) = 0 (3.1)

The covariance matrix C of the mapped data is:

C = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

T (3.2)

To perform the linear PCA in F , we diagonalize the covariance matrix C, which can be

treated as a solution of the following eigenvalue problem

CV = λV, (3.3)

where λ and V denote the eigenvalues and eigenvectors of C, respectively.

Since all solutions V lie in the span of the mapped data points ϕ(x1), ϕ(x2), . . . , ϕ(xn),

we multiply both sides of Eq.(3.3) by ϕ(xl)
T as

ϕ(xl)
TCV = λϕ(xl)

TV,∀l = 1, 2, . . . , n (3.4)

Meanwhile, there exist coefficients α1, α2, . . . , αn that linearly express the eigenvectors

V of C with ϕ(x1), ϕ(x2), . . . , ϕ(xn), i.e.,

V =
∑n

j=1 αjϕ(xj) (3.5)

Eq.(3.4) can be rewritten as following formula by substituting Eq.(3.2) and Eq.(3.5) into

it

1
n
ϕ(xl)

T
∑n

i=1 ϕ(xi)ϕ(xi)
T
∑n

j=1 αjϕ(xj) = λϕ(xl)
T
∑n

j=1 αjϕ(xj) (3.6)

Let the kernel function κ(xi, xj) be

κ(xi, xj) = ϕ(xi)
Tϕ(xj) (3.7)

37

Then Eq.(3.6) is rewritten as

1
n

∑n
l=1,i=1 κ(xl, xi)

∑n
i=1,j=1 αjκ(xi, xj) = λ

∑n
l=1,j=1 αjκ(xl, xj) (3.8)

Let the kernel matrix K with size n× n be

Ki,j = κ(xi, xj) (3.9)

Then Eq.(3.8) is rewritten as

K2α = nλKα, (3.10)

where α = [α1, α2, . . . , αn]T.

The solution of Eq (3.10) can be obtained by solving the eigenvalue problem

Kα = nλα (3.11)

for nonzero eigenvalues λ and corresponding eigenvectors α. As we can see, all the

solutions of Eq.(3.11) satisfy Eq.(3.10).

As mentioned above, we first assume that the mapped data points are centralized. If

they are not centralized, the Gram matrix K̃ be used to replace the kernel matrix K as

K̃ = K− 1nK−K1n + 1nK1n, (3.12)

where 1n denotes the n× n matrix with all values equal to 1/n.

Thus, we just need to solve the following formula

K̃α = nλα (3.13)

To extract the nonlinear principal components of a new test data point ϕ(xnew), we can

compute the projection of the k-th kernel component by

Vk · ϕ(xnew) =
∑n

i=1 α
k
i ϕ(xi)

Tϕ(xnew) =
∑n

i=1 α
k
i κ(xi, xnew) (3.14)

38

Figure 3.2 depicts the process of KPCA for feature extraction. KPCA simplifies the

feature mapping by calculating the inner product of two data points with kernel function

instead of calculating the ϕ(xi) explicitly. Various kernel functions, such as Gaussian

Radial Basic Function (RBF) kernel and polynomial kernel, can induce different nonlinear

mapping. The RBF kernel is commonly used in image retrieval and pattern recognition

domains [106, 70] that is defined as

κ(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (3.15)

where ‖ · ‖ denotes the l2 norm and 2σ2 = ω denotes the width of the Gaussian RBF

function.

Mapped new sample

Mapped samples

Inner product

The kth component

....

....

(x1·xnew) (x2·xnew) (xn·xnew)

x1 ϕ(x1) x2 ϕ(x2) xn ϕ(xn)

xnew ϕ(xnew)

α1
k α2

k αn
k

 αn
kκ(xi,xnew)

Figure 3.2: Feature extraction with KPCA.

To eliminate the underlying noise in the data, when performing the PCA in the latent

feature space F , we maintain the most important principal components that capture at

least 95% of total variances of the data according to their cumulative contribution rates

[1]. Finally, the data are mapped into a p-dimensional space.

39

After completing feature extraction, the original training data are transformed to a new

dataset {x′i, yi} ∈ Rp × Rc (i = 1, 2, . . . , n).

3.2.2 ELM

Before formulizing the WELM, we first introduce the basic ELM [50].

With the mapped dataset {x′i, yi} ∈ Rp × Rc (i = 1, 2, . . . , n), the output of

the generalized SLFNs with q hidden nodes and activation function h(x′) is formally

expressed as

oi =
∑q

k=1 βkhk(x′i) =
∑q

k=1 βkh(wk, bk, x
′
i), (3.16)

where i = 1, 2, . . . , n, wk = [wk1, wk2, . . . , wkp]
T denotes the input weight vector

connecting the input nodes and the k-th hidden node, bk denotes the bias of the k-th hidden

node, βk = [βk1, βk2, . . . , βkc]
T denotes the output weight vector connecting the output

nodes and the k-th hidden node, and oi denotes the expected output of the i-th sample.

The commonly-used activation functions in ELM include sigmoid function, Gaussian RBF

function, hard limit function, and multiquadric function [48, 26]. Figure 3.3 depicts the

basic architecture of ELM.

Eq.(3.16) can be equivalently rewritten as

Hβ = O, (3.17)

where H is called the hidden layer output matrix of the SLFNs and is defined as

H = H(w1, . . . , wq, b1, . . . , bq, x
′
1, . . . , x

′
n) =

h(x′1)
...

h(x′n)

=

h(w1, b1, x
′
1) · · · h(wq, bq, x

′
1)

...
h(w1, b1, x

′
n) · · · h(wq, bq, x

′
n)

n×q

,

(3.18)

40

1

p

1

j

q

1

c
. . .

. . .

. . .

. . .

Input Layer Hidden Layer Output Layer

h(w1, b1, x
'
i)

h(wj, bj, x
'
i)

h(wq, bq, x
'
i)

x'
i1

x'
ip

x'

yi1

yic

β11

βj1

βq1
yi

βic

βjc

βqc

Figure 3.3: The architecture of ELM.

where the i-th row of H denotes the output vector of the hidden layer with respect to input

sample x′i, and the k-th column of H denotes the output vector of the k-th hidden node

with respect to the input samples x′1, x
′
2, . . . , x

′
n.

β denotes the weight matrix connecting the hidden layer and the output layer, which is

defined as

β =

β
T
1
...
βT
q

q×c

(3.19)

O denotes the expected label matrix, and each row represents the output vector of one

41

sample. O is defined as

O =

o1
T

...
on

T

 =

o11 · · · o1c
...
on1 · · · onc

n×c

(3.20)

Since the target of training SLFNs is to minimize the output error, i.e., approximating

the input samples with zero error as follows

∑n
i=1 ‖oi − yi‖ = ‖O−Y‖ = 0 (3.21)

where Y =

y1
T

...
yn

T

 =

y11 · · · y1c
...
yn1 · · · ync

n×c

denotes the target output matrix.

Then, we need to solve the following formula

Hβ = Y (3.22)

Huang et al. [50, 49] proved that, for ELM, the weights wk of the input connection and

the bias bk of the hidden layer node can be randomly and independently designated. Once

these parameters are assigned, Eq.(3.22) is converted into a linear system and the output

weight matrix β can be analytically determined by finding the least-square solution of the

linear system, i.e.,

min
β
‖Hβ −Y‖ (3.23)

The optimal solution of Eq.(3.23) is

β̂ = H†Y = (HTH) (3.24)

where H† denotes the Moore-Penrose generalized inverse of the hidden layer output matrix

H [112, 59]. The obtained β̂ can ensure minimum training error, get optimal generalization

42

ability and avoid plunging into local optimum since β̂ is unique [50]. This solution can

also be obtained with Karush-Kuhn-Tucker (KKT) theorem [30].

Finally, we get the classification function of ELM as

f(x′) = h(x′)β̂ = h(x′)H†Y (3.25)

3.2.3 Model Construction Based on WELM

For imbalanced data, to consider the different importance of the majority class samples

(i.e., non-defective modules) and the minority class samples (i.e., defective modules) when

building the ELM classifier, we define a n×n diagonal matrix W whose diagonal element

Wii denotes the weight of training sample x′i. More precisely, if x′i belongs to the majority

class, the weight Wii is relatively lower than the sample that belongs to the minority class.

According to the KKT theorem, Eq.(3.24) is rewritten as

β̂ = H†Y = (HTWH)−1HTWT (3.26)

Then, Eq.(3.25) becomes

f(x′) = h(x′)β̂ = h(x′)(HTWH)−1HTWT (3.27)

There are mainly two schemes for assigning the weights to the samples of the two

classes as follows [180]:

W1 = Wii =

{
1/nP if x′i ∈ minority class

1/nN if x′i ∈ majority class
, (3.28)

or

W2 = Wii =

{
0.618/nP if x′i ∈ minority class

1/nN if x′i ∈ majority class
, (3.29)

43

Raw Data

 Stratified

Sampling

Training Set

Test Set

KPCA

Mapped Training Set

Mapped Test Set

Result
Calculation

Feature Mapping Model Construction

Raw Data

 Stratified

Sampling

Training Set

Test Set

KPCA

Mapped Training Set

Mapped Test Set

Result
Calculation

Feature Mapping Model Construction

Figure 3.4: Overview of our proposed IVDP framework.

where W1 and W2 denote two weighting schemes, nP and nN indicate the number of

samples of the minority and majority class, respectively. The golden ratio of 0.618:1

between the two classes in scheme W2 represents the perfection in nature [5].

3.2.4 The Proposed Framework

Figure 3.4 presents our proposed IVDP framework KPWE. The KPCA based feature

mapping learning phase is shown in the red rectangle and the WELM based classification

model construction and prediction phase is shown in the blue rectangle.

3.3 Study Setup

3.3.1 Research Questions

We design the following four Research Questions (RQ) to evaluate our KPWE framework.

RQ1: How effective is KPWE compared with basic classifiers with KPCA?

Since our method KPWE combines feature transformation and an advanced classifier,

this question is designed to explore the effectiveness of this new classifier compared

44

against some typical classifiers with the same process of feature extraction.

RQ2: Is KPWE superior to its variants?

Since the two techniques KPCA and WELM used in our framework are variants of the

linear feature extraction method PCA and the original ELM respectively, this question is

designed to investigate whether our framework is more effective than other combinations

of these four techniques.

RQ3: Are the selected features by KPCA more effective for performance

improvement than that by other feature selection methods?

To obtain the representative features of the defect data, previous researches [35, 154]

used various feature selection methods to select an optimal feature subset to replace the

original set. This question is designed to investigate whether the features extracted by

KPCA are more effective in improving the defect prediction performance than the features

selected by other feature selection methods.

RQ4: Is the prediction performance of KPWE comparable to that of other

imbalanced learning methods?

Since our framework KPWE is customized to address the class imbalance issue for

software defect data, this question is designed to study whether our framework can achieve

better or at least comparable performance than existing imbalanced learning methods.

3.3.2 Benchmark Dataset

To evaluate the performance of our proposed KPWE framework for the IVDP task, we

conduct extensive experiments on two public available datasets, including NASA dataset

and AEEEM dataset.

45

NASA dataset is the most popular defect data in previous defect prediction studies

[93, 125, 68, 34]. The project data are extracted from a software system or sub-system and

consist of a set of static code features, including McCabe complexity, Halstead complexity,

and some miscellaneous features. These features are informative predictors to the software

quality. The raw NASA dataset is cleaned by Shepperd et al. [125]. Since there are two

cleaned versions (D′ and D′′) of NASA dataset, in this chapter, we use the D′′ version as

our benchmark dataset as in previous work [34]. For the NASA dataset, a module mainly

denotes a function.

This dataset was denoted by D’Ambros et al. [23]. The name comes from the first letter

of its five projects, i.e., Apache Lucene (LC), Equinox (EQ), Eclipse JDT Core (JDT),

Eclipse PDE UI (PDE), and Mylyn (ML). Each project data have 61 features, including 17

source code features, 5 previous-defect features, 5 entropy-of-change features, 17 entropy-

of-source-code features, and 17 churn-of-source code features [23]. The linearly decayed

entropy based and weighted churn based features are verified to be closely related to defect

information. For the AEEEM dataset, a module mainly denotes a class.

Table 3.1 summarize the basic information of the two datasets, including the number

of features (# F), the number of modules (# M), the number of defective modules (# DM)

and the defect ratios (% DM). Table 3.2 lists the common features of the 10 projects in

the NASA dataset. Table 3.3 lists the features contained in each projects in the NASA

dataset except for the common features. Table 3.4 lists the features of the 5 projects in the

AEEEM dataset.

3.3.3 Evaluation Indicators

In this section, we describe the six evaluation indicators (including three traditional and

three effort-aware indicators) used to measure the IVDP performance of our proposed

46

Table 3.1: Benchmark Datasets for Within Project Defect Prediction

Dataset Project # F # M # DM % DM

NASA

CM1 37 327 42 12.84%
KC1 21 1162 294 25.30%
KC3 39 194 36 18.56%
MC1 38 1847 36 1.95%
MC2 39 125 44 35.20%
MW1 37 251 25 9.96%
PC1 37 696 55 7.90%
PC3 37 1073 132 12.30%
PC4 37 1276 176 13.79%
PC5 38 1679 459 27.34%

AEEEM

Equinox 61 324 129 39.81%
JDT 61 997 206 20.66%

Lucene 61 691 64 9.26%
Mylyn 61 1862 245 13.16%
PDE 61 1497 209 13.96%

framework. In terms of the traditional evaluation indicators, we choose F-measure, MCC,

and AUC which are widely used in previous defect prediction studies [149, 102, 58, 155,

111, 71, 93, 40, 57, 133, 146, 153]. In terms of the effort-aware indicators, we employ

Effort-Aware Precision (EAP), Effort-Aware Recall (EAR), and Effort-Aware F-measure

(EAF) [51, 52].

Table 3.2: The Common Features of the 10 Projects from the NASA Dataset

1.Line count of code 11.Halstead Volume
2.Count of blank lines 12.Halstead Level
3.Count of code and comments 13.Halstead Difficulty
4.Count of comments 14.Halstead Content
5.Line count of executable code 15.Halstead Effort
6.number of operators 16.Halstead Error Estimate
7.number of operands 17.Halstead Prog Time
8.Number of unique operators 18.Cyclomatic Complexity
9.Number of unique operands 19.Design Complexity
10.Halstead Length 20.Essential Complexity

47

Table 3.3: The Features Contained in Each Project of the NASA Dataset Except for the
Common Ones

Features CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC3 PC4 PC5

21.Number of lines
√ √ √ √ √ √ √ √ √

22.Cyclomatic Density
√ √ √ √ √ √ √ √ √

23.Branch Count
√ √ √ √ √ √ √ √ √ √

24.Essential Density
√ √ √ √ √ √ √ √ √

25.Call Pairs
√ √ √ √ √ √ √ √ √

26.Condition Count
√ √ √ √ √ √ √ √ √

27.Decision Count
√ √ √ √ √ √ √ √ √

28.Decision Density
√ √ √ √ √ √ √

29.Design Density
√ √ √ √ √ √ √ √ √

30.Edge Count
√ √ √ √ √ √ √ √ √

31.Global Data Complexity
√ √ √ √

32.Global Data Density
√ √ √ √

33.Maintenance Severity
√ √ √ √ √ √ √ √ √

34.Modified Condition Count
√ √ √ √ √ √ √ √ √

35.Multiple Condition Count
√ √ √ √ √ √ √ √ √

36.Node Count
√ √ √ √ √ √ √ √ √

37.Normalized CC
√ √ √ √ √ √ √ √ √

38.Parameter Count
√ √ √ √ √ √ √ √ √

39.Percent Comments
√ √ √ √ √ √ √ √ √

(1) Traditional Indicators

The three traditional indicators are derived from the basic indicators listed in Table 3.5

and described as follows

F-measure is a trade-off between recall and precision which is defined as

F-measure =
(1 + θ2) ∗ recall ∗ precision

θ2 ∗ precision + recall
. (3.30)

MCC measures the correlation coefficient between the actual and predicted outputs

which is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (3.31)

AUC calculates the area under and ROC curve which is a two-dimensional plane with

48

Table 3.4: The Features of Projects from the AEEEM Dataset

Coupling between objects (CBO)
Depth of inheritance tree (DIT)
Number of other classes that reference the class (FanIn)
Number of other classes referenced by the class (FanOut)
Lack of cohesion in methods (LCOM)
Number of children (NOC)
Number of attributes (NOA)

source code features, Number of attributes inherited NOAI
entropy of source code features, Number of lines of code (LOC)
churn of source code features Number of methods (NOM)

Number of methods inherited (NOMI)
Number of private attributes (NOPRA)
Number of private methods (NOPRM)
Number of public attributes (NOPA)
Number of public methods (NOPM)
Response for class (NFC)
Weighted method count (WMC)

entropy of change features

History of complexity metric (HCM)
Exponentially decayed HCM (EDHCM)
Linearly decayed HCM (LDHCM)
LoGarithmically decayed HCM (LGDHCM)
Weighted HCM (WHCM)

previous-defect features

Number of bugs found until
Number of critical bugs found untill
Number of high priority bugs found until
Number of major bugs found until
Number of non trivial bugs found until

Table 3.5: Basic Indicators for Defect Prediction

Predicted defective # Predicted non-defective

Actual defective True Positive (TP) False Negative (FN)

Actual non-defective False Positive (FP) True Negative (TN)

True Positive Rate (TPR) or recall TP
TP+FN

False Positive Rate (FPR) FP
FP+TN

precision TP
TP+FP

49

TPR as the y-axis and FPR as the x-axis.

The θ in Eq.(3.30) is a bias parameter to measure the relative importance of recall and

precision. There are three widely-used F-measure (F) variants, i.e., F1 (θ = 1) which

treats precision and recall equally, F0.5 (θ = 0.5) which prefers precision, and F2 (θ = 2)

which prefers recall. In the defect prediction task, the defective modules are the main

concerns and we always want to accurately detect as many defective modules as possible

[150]. Thus, the performance measurement should be evaluated bias to this purpose which

is consistent with the definition of recall. Thus, in this work, we emphasize more on the

importance of recall and choose F2 variant following the previous studies [55, 56].

Here, we gave an example to illustrate this issue. Assume one defect data with 1000

modules including 200 defective modules and 800 non-defective modules. Two methods

are applied to the defect data and obtain the following confusion matrices shown in Table

3.6. Method 1 correctly detects 100 defective modules while Method 2 only correctly

detects 50 defective modules. In terms of the two methods, intuitively, the developers

are likely to choose Method 1 as it can detect more real defective modules, even though

they need to detect more 150 (200-50) modules which are actually non-defective modules

if the test resources permit. In this case, for Method 1, precision = 100
100+300

= 1
4
,

recall = 100
100+100

= 1
2
; for Method 2, precision = 50

50+50
= 1

2
, recall = 50

50+150
= 1

4
.

If we used F-measure with θ = 1 to evaluate the performance, we could find that

the two methods have the same F-measure value (2∗1/2∗1/4
1/2+1/4

= 1
3
). In this case, we

could not determine which method is better. But if we use F-measure with θ = 2 to

evaluate the performance, for Method 1, F-measure = 5∗1/2∗1/4
4∗1/4+1/2

= 5
12

; for Method 2,

F-measure = 5∗1/2∗1/4
4∗1/2+1/4

= 5
18

. Since 5
12

> 5
18

, Method 1 is better which is consistent

with the initial intuition. From this point of view, choosing F-measure with θ = 2 as

the performance indicator is more appropriate than with θ = 1 in the context of defect

50

prediction scenario. A recent study [3] also pointed out that the F-measure with θ = 2 is a

better choice when data is unbalanced.

Table 3.6: Two Confusion Matrices

Method 1 Method 2

Confusion Matrix
actual label

Confusion Matrix
actual label

1 0 1 0

predicted label
1 TP=100 FP=300

predicted label
1 TP=50 FP=50

0 FN=100 TN=500 0 FN=150 TN=750

(2) Effort-Aware Indicators

The three traditional binary classification indicators do not consider the quality

assurance efforts required to review the modules [179, 142, 19]. However, inspecting

all the modules is not always practical due to the limited test resources. As suggested

by Mende et al. [91], it is more realistic to use effort-aware indicators to evaluate the

performance of defect prediction.

Effort-aware indicators evaluate the defect prediction performance within a limited

effort required to review the predicted defective modules [4, 61, 166]. In reality, we always

want to maximize the profit of any effort for quality assurance. Generally, the efforts

denote the LOC that need to be inspected, and the profit is the number or percentage

of defective modules discovered. In this thesis, we set the efforts as 20% of total LOC

following previous studies [54, 164, 152]. Smaller threshold, such as 5%, 10%, or 15%

will be considered in our future work.

To calculate the effort-aware indicators, the general way is to rank the modules

according to a specific rule first, then simulate an expert to inspect these modules one

at a time in order. In the meanwhile, the percentage of LOC reviewed and the number

of detected defective modules are counted. The process is terminated when 20% of total

LOC have been inspected. The proportion of detected defective modules among all the

51

actual defective modules is treated as an effort-aware indicator, which is called PofB20

(Percentage of Bugs) or CE20 (Cost Effectiveness) in [54, 152, 168, 165].

In previous studies, researchers ranked the modules in a descending order based on the

degree of their predicted risk values. The risk values are defined as the probability outputs

of a classification model for the modules [91, 54, 152] or the ratios of the probability

outputs to the corresponding LOC [164, 168, 165]. Recently, Huang et al. [51] proposed

a novel ranking method to calculate the effort-aware indicators for defective change

prediction, called Classifier Before Sorting (CBS). Their experimental results showed that

the derived indicator values significantly were improved based on their ranking method.

The basic idea of CBS is that among the changes that are predicted to be potentially

defective by a classifier, small changes that are measured by the modified LOC should

be inspected first, since they give the best bang for the buck [51]. However, this ranking

method only ranks the predicted defective changes. It may underestimate the performance

since the predicted non-defective changes can also contain actual defective changes. To

remedy this limitation, in this thesis, we propose an improved ranking method based on

CBS to rank the modules in our IVDP scenario. Figure 3.5 show the calculation process of

the effect-aware indicators based on our module ranking method. More specifically, 1 we

divide the modules into two parts (i.e., the predicted defective and non-defective modules)

according to their predicted labels by WELM classifier; 2 we rank the predicted defective

modules in a ascending order based on their LOC values, this process is identical to CBS.

In addition, we also rank the predicted non-defective module with the same process; 3

we concatenate the latter ranking results behind the former ranking results; 4 we obtain

the checked modules (i.e., the top nine modules in Figure 3.5) by inspecting 20% of total

LOC; 5 we count some statistical values to calculate the effort aware indicators.

We concisely describe how to calculate the three effort-aware indicators. Given a

current version of a project with n1 defective modules. After inspecting 20% of total

52

s1s2s3s4s5s6s7

s8s9s10s11s12

s1s2s3s4s5s6s7s8s9s10s11s12 s1s2s3s4s5s6s7s8s9

Ascending

Sort

① Classificatuion ③ Concatenation

Checked Modules
Inspection

20% of LOC

② Ranking

Predicted asPredicted asPredicted as

④ Inspection ⑤ Statistics

Count Basic

Statistics

Predicted asPredicted asPredicted as

Classification Model

Figure 3.5: The process to calculate the effort aware indicators.

LOC based on our improved ranking strategy, n′ modules and n1
′ defective modules have

been inspected.

The first effort-aware indicator is defined as the proportion of the inspected defective

modules among all actual defective modules, which is called Recall by Huang et al. [51].

To distinguish it from the traditional Recall indicator, we name it Effort-Aware Recall

(EAR). EAR is defined as

EAR =
n1
′

n1

. (3.32)

The second effort-aware indicator is defined as the proportion of the inspected defective

modules among all inspected modules, called Effore-Aware Precision (EAP). EAP is

defined as

EAR =
n1
′

n′
. (3.33)

Given the definitions of EAR and EAP, like traditional F-measure indicator, the third

effort-aware indicator Effort-Aware F-measure (EAF) is defined as

EAF =
(1 + θ21) ∗ EAR ∗ EAP

θ21 ∗ EAP + EAR
. (3.34)

In this thesis, we also set θ1 = 2 like the setting for the tradition F-measure. The worst

case is that EAR (or recall) and EAP (or precision) are all equal to 0. Thus, the value of

EAF (or F-measure) makes no sense since the denominator in Eq.(3.34) (or Eq.(3.30)) is

53

0. In this case, we set the value of EAF (or F-measure) as 0 which indicates the worst

IVDP performance.

3.3.4 Parameter Configuration

For the feature mapping, we choose the Guassian RBF as the kernel function of KPCA

which achieves promising performance in previous work [70]. The reasons are that this

kernel has the advantage to map the samples into a higher dimensional space and can

handle the case when the relationship between the class label and features is nonlinear. In

addition, it has fewer parameters than other kernels, such as polynomial kernel, which

makes the model less complicated. For parameter ω, we set is to 1002. For model

construction, we also choose Guassian RBF as the activation function which is the

preferences in previous work [169]. Since there are no theoretical guidances to determine

the optimal q for all situations and prior study [50] stated that the q value with far less

than the number of training module (i.e., n in this thesis) can usually achieve the best

performance, in this work, we set q from 5 to n
2

with an increment of 5 to conduct

experiments. For the weighting scheme, we choose the second one, i.e., W2.

3.3.5 Inner Version Scenario Setting

For each project, we use the 50:50 split with stratified sampling to constitute the training

and test set. More specifically, we utilize stratified sampling to randomly select 50%

instances as the training set and the remaining 50% instances as the test set. The stratified

sampling strategy guarantees the same defect ratios of the training set and test set which

conforms to the actual application scenario. In addition, such sampling setting helps

reduce sampling biases [44]. The 50:50 split and stratified sampling are commonly used

in previous defect prediction studies [57, 149, 47, 118]. To mitigate the impact of the

54

random division treatment on the experimental results and produce a general conclusion,

we repeat this process 30 times on each project by reshuffling the module order. In this

chapter, for the result groups using different q values, we reserve the group corresponding

to the best average EAF value. Finally, we report the average values of each indicator

across the 30-round experiments.

3.3.6 Statistic Test Method

The reason of using statistic test is that, if the average performance values of multiple

methods are different, we still cannot claim that the method with higher average

performance is superior to that with lower average performance in the statistical sense as

this performance differences may be explained by randomness [42]. In this case, statistic

test is used to identify whether the differences in performance between various methods

are randomness or statistically significant. In this thesis, we perform the non-parametric

Frideman test with the Nemenyi post-hoc test [24] at significant level 0.05 over all cross-

version pairs. This test holds no assumption on the distribution of the performance values

and is less susceptible to outliers [68, 91, 42]. The Friedman test evaluates whether the

average rankings of different methods exist statistically significant differences. The test

statistic of the Friedman test can be calculated as follows:

τχ2 =
12Q

L(L+ 1)
(
L∑
j=1

AR2
j −

L(L+ 1)2

4
), (3.35)

whereQ denotes the total number of cross-version pairs, L denotes the number of methods

needed to be compared, ARj = 1
Q

∑Q
i=1R

j
i denotes the average ranking of method j on

all cross-version pairs and Rj
i denotes the ranking of jth method on the ith cross-version

pair. τχ2 obeys the χ2 distribution with L− 1 degree of freedom [172]. Since the original

Friedman test statistic is too conservative, its variant τF is usually used to conduct the

55

statistic test. τF is calculated as the following formula:

τF =
(Q− 1)τχ2

Q(L− 1)− τχ2

. (3.36)

τF obeys the F-distribution with L − 1 and (L − 1)(Q − 1) degrees of freedom. Once

τF value is calculated, we can compare τF against critical values for the F distribution and

then determine whether to accept or reject the null hypothesis, i.e., all methods perform

equally.

If the null hypothesis is rejected, it means that the performance differences among

different methods are nonrandom, then a so-called Nemenyi post-hoc test is performed

to check which specific method differs significantly [68]. For each pair of methods, this

test uses the average ranking of each method and checks whether the ranking difference

exceeds a Critical Difference (CD) which is calculated with the following formula:

CD = qα,L

√
L(L+ 1)

6Q
, (3.37)

where qα,L is a critical value that related to the method number L and the significance level

α. The Frideman test with the Nemenyi post-hoc test is widely used in previous studies

[68, 91, 55, 23, 101, 77, 74].

However, the main drawback for post-hoc Nemenyi test is that it may generate

overlapping groups for the methods that are compared, which means that a method may

belong to multiple significantly different groups [34, 42]. In this thesis, we utilize the

strategy in [42] to address this issue. Figure 3.6 depicts an example of the division rules

as follows.

The post-hoc Nemenyi test divides the methods to a same group without significant

differences if the discrepancy of their ranks is lower that CD value. Thus, in Figure 3.6(a),

56

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

(a) One group

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

(b) Two groups

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

Method 1

Method 2 Method 3

CD=1

1 2 3 4

Method 4

(c) Three groups

Figure 3.6: An example of group division for Nemenyi test.

as the discrepancy of the best rank (1.2 for Method 1) and the worse rank (2 for Method 4)

among the method set is less than CD value, all methods belong to one group (linked with

red line).

In Figure 3.6(b), as the discrepancy of the best rank (1.2 for Method 1) and the worse

rank (3 for Method 4) among the method set is more than CD value but less than 2 CD

values, these methods belong to 2 groups. More specifically, the method (Method 2)

57

belongs to the top group because its rank (0.4) is closer to the best rank. Similarly, Method

3 belongs to the bottom group because its rank (2.5) is closer to the worst rank.

In Figure 3.6(c), as the discrepancy of the best rank (1.2 for Method 1) and the worse

rank (3.8 for Method 4) among the method set is more than 2 CD values, these methods

belong to 3 groups. More specifically, Method 2 belongs to the top group because its rank

discrepancy to the best rank is less than CD value. Only Method 4 belongs to the bottom

group because there exist no methods whose rank discrepancy to the worst rank is less

than CD value. Other methods (i.e., Method 3) whose rank discrepancies to the best rank

and worst rank are all larger than CD value belong to the middle group.

Using the rules, the generated groups are non-overlapping with significantly differences.

3.4 Experimental Results

3.4.1 Results for RQ1

Methods: Since many previous defect prediction studies applied classic classifiers as

prediction models [68, 34], in this work, we choose seven representative classifiers,

including Naive Bayes (NB), Nearest Neighbor (NN), Random Forest (RF), Logistic

Regression (LR), Classification and Regression Tree (CART).

Results: Table 3.7 presents the average indicator values of KPCA with six classifiers on

NASA dataset, AEEEM dataset, and across the two datasets (TOTAL). Note that KPNB

means the method combines KPCA and NB classifier. Figure 3.7 depicts the statistic test

results on the 15 projects across the two datasets. From Table 3.7 and Figure 3.7, we have

the following observations.

First, from Table 3.7, on the 10 projects of NASA dataset, our proposed KPWE

58

Table 3.7: Average Indicator Values of KPCA with Six Classifiers on Each Dataset and
Across All Datasets

Indicator Dataset KPNB KPNN KPLR KPCARF KPRF KPWE

F
NASA 0.262 0.306 0.245 0.298 0.190 0.448

AEEEM 0.453 0.403 0.365 0.390 0.283 0.476
TOTAL 0.326 0.338 0.285 0.329 0.221 0.457

MCC
NASA 0.212 0.174 0.232 0.164 0.167 0.272

AEEEM 0.333 0.273 0.344 0.250 0.271 0.329
TOTAL 0.252 0.207 0.269 0.193 0.202 0.291

AUC
NASA 0.714 0.586 0.742 0.611 0.689 0.721

AEEEM 0.762 0.635 0.772 0.651 0.753 0.715
TOTAL 0.730 0.602 0.752 0.625 0.710 0.719

EAP
NASA 0.313 0.238 0.284 0.238 0.206 0.336

AEEEM 0.419 0.336 0.366 0.325 0.298 0.417
TOTAL 0.348 0.270 0.311 0.267 0.237 0.363

EAR
NASA 0.232 0.306 0.259 0.291 0.258 0.419

AEEEM 0.349 0.358 0.348 0.342 0.359 0.408
TOTAL 0.271 0.323 0.288 0.308 0.291 0.415

EAF
NASA 0.219 0.257 0.214 0.250 0.193 0.377

AEEEM 0.353 0.325 0.297 0.316 0.279 0.402
TOTAL 0.264 0.280 0.242 0.272 0.222 0.386

framework achieves the best performance in terms of five indicators (except for AUC);

on the five projects of AEEEM dataset, our proposed KPWE framework achieves the best

performance in terms of three indicators (except for MCC, AUC, and EAP); across all

above 15 projects, our proposed KPWE framework achieves the best performance in terms

of five indicators (except for AUC).

Second, compared with the five baseline methods, for the average indicator values

of KPWE across the two datasets, KPWE achieves average improvements of 56.3%,

31.9%, 21.0%, 40.5%, and 52.0% in terms of F, MCC, EAP, EAR, and EAF, respectively.

Compared with the best average indicator values among the 5 baseline methods, KPWE

achieves average improvements of 39.1%, 8.2%, 4.1%, 28.3%, and 38.0% in terms of F,

59

1 2 3 4 5 6

KPWE
KPNN
KPNB KPCARF

KPLR
KPRF

CD = 1.947 Friedman p-value: 1.422e-07

(a) F

1 2 3 4 5 6

KPWE
KPLR
KPNB KPNN

KPRF
KPCARF

CD = 1.947 Friedman p-value: 9.367e-06

(b) MCC

1 2 3 4 5 6

KPLR
KPWE
KPNB KPRF

KPCARF
KPNN

CD = 1.947 Friedman p-value: 1.035e-09

(c) AUC

1 2 3 4 5 6

KPWE
KPNB
KPLR KPNN

KPCARF
KPRF

CD = 1.947 Friedman p-value: 4.197e-04

(d) EAP

1 2 3 4 5 6

KPWE
KPNN

KPCARF KPLR
KPRF
KPNB

CD = 1.947 Friedman p-value: 1.177e-06

(e) EAR

1 2 3 4 5 6

KPWE
KPNN

KPCARF KPNB
KPLR
KPRF

CD = 1.947 Friedman p-value: 6.185e-08

(f) EAF

Figure 3.7: Comparison of KPWE and other five basic classifiers with Friedman test and
Nemenyi post-hoc test in terms of all six indicators.

MCC, EAP, EAR, and EAF, respectively. In addition, the baseline method KPLR achieves

the best average AUC value which is 4.6% better than our KPWE framework.

Third, from Figure 3.7, we observe that the p values of Friedman test in all subfigures are

all less than 0.05, which means that there exist significant performance differences among

the six methods. Our proposed KPWE framework always belongs to the top-ranked group

in terms of all indicators and ranks the first in terms of five indicators (except for AUC).

In addition, KPWE is significantly superior to all five baseline methods in terms of two

indicators, i.e., EAR and EAF. But KPWE has no significant differences compared with 1,

2, 3, and 2 baseline methods in terms of F, MCC, AUC, and EAP, respectively.

Discussion: The reason why KPWE performs better than the 5 baseline methods is that

it uses an advanced classifier to consider the class imbalance issue of the software defect

data while traditional classifiers could not well copy with the imbalanced data.

Answer to RQ1: To sum up, the classifier that considers the class imbalance issue can

60

work better on the defect data mapped by KPCA. It means that the class imbalance of the

defect data in the data can hinder the model to obtain better defect prediction performance.

3.4.2 Results for RQ2

Methods: To answer this question, we first compare KPWE against the baseline methods

that combine WELM with PCA (short for PCAWELM) and none feature extraction (short

for WELM). It can be used to investigate the performance differences among the methods

using non-linear, linear and none feature extraction for WELM. Then, we compare KPWE

against the baseline methods that combine ELM with KPCA, PCA, and none feature

extraction (short for KPCAELM, PCAELM, and ELM respectively). It can be used to

compare the performance differences of our framework against its downgraded version

methods that do not consider the class imbalance issue. All these baseline methods are

treated as the variants of KPWE.

Results: Table 3.8 presents the average indicator values of KPWE and its 5 variant

methods on NASA dataset, AEEEM dataset, and across the two datasets. Table 3.9 reports

the node number of the hidden layer for the corresponding WELM and ELM classifiers of

the six methods when obtaining the optimal EAF values. Figure 3.8 depicts the statistic

test results on the 15 projects across the two datasets. From Table 3.8, Table 3.9, and

Figure 3.8, we have the following observations.

First, from Table 3.8, on the 10 projects of NASA dataset, our proposed KPWE

framework achieves the best performance in terms of all indicators; on the five projects

of AEEEM dataset, our proposed KPWE framework achieves the best performance in

terms of all indicators; across all above 15 projects, our proposed KPWE framework also

achieves the best performance in terms of all indicators.

61

Table 3.8: Average Indicator Values of KPWE and Its Five Variant Methods on Each
Dataset and Across All Datasets

Indicator Dataset ELM PCAELM KPCAELM WELM PCAWELM KPWE

F
NASA 0.253 0.241 0.327 0.357 0.366 0.448

AEEEM 0.255 0.274 0.349 0.380 0.394 0.476
TOTAL 0.254 0.252 0.334 0.365 0.375 0.457

MCC
NASA 0.119 0.119 0.206 0.143 0.156 0.272

AEEEM 0.167 0.188 0.252 0.177 0.201 0.329
TOTAL 0.135 0.142 0.221 0.154 0.171 0.291

AUC
NASA 0.622 0.619 0.653 0.632 0.642 0.721

AEEEM 0.671 0.678 0.629 0.643 0.660 0.715
TOTAL 0.639 0.638 0.645 0.636 0.648 0.719

EAP
NASA 0.186 0.186 0.304 0.229 0.235 0.336

AEEEM 0.234 0.247 0.368 0.279 0.294 0.417
TOTAL 0.202 0.207 0.325 0.246 0.254 0.363

EAR
NASA 0.297 0.304 0.308 0.333 0.337 0.419

AEEEM 0.369 0.369 0.343 0.345 0.354 0.408
TOTAL 0.321 0.326 0.320 0.337 0.343 0.415

EAF
NASA 0.235 0.238 0.278 0.299 0.291 0.377

AEEEM 0.277 0.282 0.313 0.338 0.327 0.402
TOTAL 0.249 0.253 0.290 0.312 0.303 0.386

Second, compared with the five baseline methods, for the average indicator values

of KPWE across the two datasets, KPWE achieves average improvements of 49.1%,

82.1%, 21.0%, 51.4%, 26.1%, and 38.4% in terms of F, MCC, AUC, EAP, EAR, and

EAF, respectively. Compared with the best average indicator values among the 5 baseline

methods, KPWE achieves average improvements of 21.9%, 31.6%, 11.0%, 11.6%, 21.1%,

and 23.7% in terms of F, MCC, AUC, EAP, EAR, and EAF, respectively.

Third, from Table 3.9, we observe that our proposed KPWE needs the fewest node

number of the hidden layer on 8 out of 10 project of NASA dataset and 4 out of 5 projects

of AEEEM dataset. This means that the mapped data preprocessed by KPCA can achieves

better prediction performance with fewer node number of hidden layer. In addition, using

fewer nodes of the hidden layer means that there are fewer parameters of the network that

62

Table 3.9: The Needed Node Number of Hidden Layer for KPWE and It Five Variants

Dataset Project ELM PCAELM KPCAELM WELM PCAWELM KPWE

NASA

CM1 110 140 110 80 55 10
KC1 150 145 110 110 150 80
KC3 115 10 40 45 35 40
MC1 90 115 150 90 85 30
MC2 125 65 80 135 130 55
MW1 60 70 50 30 20 10
PC1 150 145 100 130 140 35
PC3 145 150 130 100 70 40
PC4 150 140 140 135 110 95
PC5 5 5 150 105 145 145

AEEEM

EQ 90 75 120 85 65 95
JDT 140 140 150 135 140 135
LC 75 115 130 95 95 10
ML 145 105 140 150 150 85
PDE 150 150 150 110 145 25

1 2 3 4 5 6

KPWE
PCAWELM

WELM KPCAELM
PCAELM
ELM

CD = 1.947 Friedman p-value: 4.584e-09

(a) F

1 2 3 4 5 6

KPWE
KPCAELM
PCAWELM WELM

PCAELM
ELM

CD = 1.947 Friedman p-value: 2.777e-09

(b) MCC

1 2 3 4 5 6

KPWE
PCAWELM
KPCAELM PCAELM

ELM
WELM

CD = 1.947 Friedman p-value: 4.960e-04

(c) AUC

1 2 3 4 5 6

KPWE
KPCAELM
PCAWELM WELM

PCAELM
ELM

CD = 1.947 Friedman p-value: 8.882e-09

(d) EAP

1 2 3 4 5 6

KPWE
PCAWELM

WELM PCAELM
KPCAELM
ELM

CD = 1.947 Friedman p-value: 2.108e-04

(e) EAR

1 2 3 4 5 6

KPWE
WELM

PCAWELM KPCAELM
PCAELM
ELM

CD = 1.947 Friedman p-value: 1.975e-09

(f) EAF

Figure 3.8: Comparison of KPWE and its five variant methods with Friedman test and
Nemenyi post-hoc test in terms of all six indicators.

63

are needed to learn. This also implies that the corresponding model is more lightweight.

Fourth, from Figure 3.8, we observe that the p values of Friedman test in all subfigures

are all less than 0.05, which means that there exist significant performance differences

among the six methods. Our proposed KPWE framework always belongs to the top-ranked

group and ranks the first in terms of all indicators. In addition, KPWE is significantly

superior to all five baseline methods in terms of two indicators, i.e., AUC and EAR. But

KPWE has no significant differences compared with only one baseline method in terms of

F, MCC, EAP, and EAF, respectively.

Discussion: On the one hand, from the average performance across the two datasets,

KPWE and KPCAELM are superior to PCAWELM and PCAELM in terms of all 6

indicators respectively. On the other hand, KPWE and KPCAELM perform better than

WELM and ELM respectively. All these mean that the features extracted by the nonlinear

method KPCA are beneficial to ELM and WELM for the improvement of defect prediction

performance compared against the raw features or the features extracted by linear method

PCA. Moreover, KPWE, PCAWELM and WELM are superior to KPCAELM, PCAELM

and ELM respectively, which denotes that WELM is more appropriate to the class

imbalanced defect data than ELM for performance improvement.

Answer to RQ2: In sum, the mapped features by the nonlinear extraction method is

superior to the original features and features by the linear extraction method. In addition,

the weighted ELM (i.e., WELM) is more suitable to work well on imbalanced defect data

than the original ELM.

64

3.4.3 Results for RQ3

Methods: To answer this question, we choose eight representative feature selection

methods, include four filter-based feature ranking methods and four wrapper-based feature

subset selection methods, for comparison. The filter-based methods are Chi-Square (CS),

Fish Score (FS), Information Gain (IG) and ReliefF (ReF). The first two methods are

both based on statistics, and the last two are based on entropy and instance, respectively.

These methods have been proven to be effective for defect prediction [154, 126]. For

wrapper-based methods, we choose four commonly-used classifiers (i.e., NB, NN, LR,

and RF) and F-measure to evaluate the performance of the selected feature subset. The

four wrapper methods are abbreviated as NBWrap, NNWrap, LRWrap, and RFWrap,

respectively. Following the previous work [154, 33], we set the number of selected features

to dlog2me, where m is the number of original features.

Table 3.10: Average Indicator Values of KPWE and Other Eight Feature Selection
Methods with WELM on Each Dataset and Across All Datasets

Indicator Dataset CS FS IG ReF NBWrap NNWrap LRWrap RFWrap KPWE

F
NASA 0.337 0.392 0.337 0.404 0.390 0.418 0.406 0.407 0.448

AEEEM 0.291 0.468 0.279 0.438 0.449 0.449 0.436 0.464 0.476
TOTAL 0.322 0.417 0.318 0.416 0.409 0.429 0.416 0.426 0.457

MCC
NASA 0.144 0.192 0.129 0.222 0.198 0.223 0.214 0.223 0.272

AEEEM 0.049 0.322 0.048 0.288 0.282 0.300 0.294 0.306 0.329
TOTAL 0.112 0.235 0.102 0.244 0.226 0.249 0.241 0.251 0.291

AUC
NASA 0.619 0.651 0.600 0.679 0.661 0.684 0.671 0.676 0.721

AEEEM 0.532 0.752 0.532 0.702 0.705 0.717 0.710 0.730 0.715
TOTAL 0.590 0.685 0.577 0.686 0.675 0.695 0.684 0.694 0.719

EAP
NASA 0.232 0.271 0.220 0.291 0.264 0.287 0.283 0.287 0.336

AEEEM 0.186 0.382 0.190 0.364 0.356 0.367 0.373 0.372 0.417
TOTAL 0.216 0.308 0.210 0.315 0.295 0.313 0.313 0.315 0.363

EAR
NASA 0.308 0.364 0.310 0.370 0.357 0.374 0.360 0.372 0.419

AEEEM 0.362 0.359 0.367 0.364 0.364 0.378 0.360 0.371 0.408
TOTAL 0.326 0.362 0.329 0.368 0.359 0.376 0.360 0.372 0.415

EAF
NASA 0.268 0.323 0.266 0.333 0.314 0.335 0.326 0.331 0.377

AEEEM 0.265 0.352 0.263 0.352 0.351 0.357 0.348 0.361 0.402
TOTAL 0.267 0.333 0.265 0.339 0.326 0.342 0.334 0.341 0.386

65

Table 3.11: The Needed Node Number of Hidden Layer for KPWE and Eight Feature
Selection Methods with WELM

Dataset Project CS FS IG ReF NBWrap NNWrap LRWrap RFWrap KPWE

NASA

CM1 30 80 60 65 45 40 55 55 10
KC1 135 150 145 70 130 105 150 150 80
KC3 45 25 50 20 40 30 15 15 40
MC1 10 15 20 25 40 30 20 50 30
MC2 30 120 100 80 35 135 60 40 55
MW1 25 25 20 10 10 20 10 30 10
PC1 90 65 100 75 100 75 70 35 35
PC3 45 65 95 35 30 55 15 35 40
PC4 55 115 60 90 65 65 65 85 95
PC5 150 135 105 125 130 125 135 130 145

AEEEM

EQ 110 15 55 50 65 35 30 35 95
JDT 55 15 20 60 35 55 25 35 135
LC 30 10 40 15 15 20 30 15 10
ML 100 15 100 140 90 50 110 55 85
PDE 60 40 30 40 50 20 30 25 25

1 2 3 4 5 6 7 8 9

KPWE
NNWrap
RFWrap
LRWrap

ReF
FS
NBWrap
CS
IG

CD = 3.102 Friedman p-value: 7.365e-11

(a) F

1 2 3 4 5 6 7 8 9

KPWE
RFWrap
NNWrap

ReF
LRWrap

FS
NBWrap
CS
IG

CD = 3.102 Friedman p-value: 1.160e-08

(b) MCC

1 2 3 4 5 6 7 8 9

KPWE
RFWrap
NNWrap

ReF
LRWrap

FS
NBWrap
CS
IG

CD = 3.102 Friedman p-value: 7.511e-08

(c) AUC

1 2 3 4 5 6 7 8 9

KPWE
RFWrap
LRWrap

ReF
NNWrap

FS
NBWrap
CS
IG

CD = 3.102 Friedman p-value: 7.727e-10

(d) EAP

1 2 3 4 5 6 7 8 9

KPWE
NNWrap
RFWrap

ReF
LRWrap

FS
NBWrap
IG
CS

CD = 3.102 Friedman p-value: 8.212e-06

(e) EAR

1 2 3 4 5 6 7 8 9

KPWE
RFWrap
NNWrap

ReF
LRWrap

FS
NBWrap
CS
IG

CD = 3.102 Friedman p-value: 2.332e-11

(f) EAF

Figure 3.9: Comparison of KPWE and other eight feature selection methods with WELM
with Friedman test and Nemenyi post-hoc test in terms of all six indicators.

66

Results: Table 3.10 presents the average indicator values of KPWE and WELM with

eight feature selection methods on NASA dataset, AEEEM dataset, and across the two

datasets. Table 3.11 reports the node number of the hidden layer for the corresponding

WELM classifiers of the nine methods when obtaining the optimal EAF values. Figure

3.9 depicts the statistic test results on the 15 projects across the two datasets. From Table

3.10, Table 3.11, and Figure 3.9, we have the following observations.

First, from Table 3.10, on the 10 projects of NASA dataset, our proposed KPWE

framework achieves the best performance in terms of all indicators; on the five projects of

AEEEM dataset, our proposed KPWE framework achieves the best performance in terms

of five indicators (except for AUC); across all above 15 projects, our proposed KPWE

framework achieves the best performance in terms of all indicators.

Second, compared with the eight baseline methods, for the average indicator values

of KPWE across the two datasets, KPWE achieves average improvements of 17.6%,

58.7%, 9.3%, 30.4%, 16.7%, and 22.5% in terms of F, MCC, AUC, EAP, EAR, and

EAF, respectively. Compared with the best average indicator values among the 8 baseline

methods, KPWE achieves average improvements of 7.3%, 15.9%, 3.5%, 15.1%, 10.5%,

and 12.8% in terms of F, MCC, AUC, EAP, EAR, and EAF, respectively.

Third, Table 3.11 shows that, for the 10 projects in the NASA dataset, there is no specific

method that can achieve the best performance values on most projects with the lowest

node number of hidden layer. For the five projects in the AEEEM dataset, the FS method

obtains the best performance values with the least node number of hidden layer on four

projects, but this method does not obtain the best performance value with the least number

of hidden layer nodes on any project from the NASA dataset. This implies that on the

defect data preprocessed by these feature selection methods, the method that can obtain

the best performance value with the least hidden layer node varies on different projects.

67

Fourth, from Figure 3.9, we observe that the p values of Friedman test in all subfigures

are all less than 0.05, which means that there exist significant performance differences

among the nine methods. Our proposed KPWE framework always belongs to the top-

ranked group and ranks the first in terms of all indicators. In addition, KPWE has no

significant differences compared with 5, 4, 4, 4, 2, and 2 baseline methods in terms of F,

MCC, AUC, EAP, EAR, and EAF, respectively.

Discussion: The reason why the features extracted by KPCA are more effective is that,

the eight feature selection methods only select a subset of original features that are not

able to excavate the important information hidden behind the raw data, whereas KPCA

can eliminate the noise in the data and extract the intrinsic structures of the data that are

more helpful to distinguish the class labels of the modules.

Answer to RQ3: To sum up, compared with the feature subset selected from the original

features, the mapped features by the nonlinear extraction method can better reveal the

important structural information of the defect data, which makes it easier to distinguish

the software modules with different labels.

3.4.4 Results for RQ4

Methods: To answer this question, we employ three classic imbalanced learning methods

based on data sampling strategies, including Random Under-Sampling (RUS), Random

Over-Sampling (ROS) or SMOTE techniques to rebalance the modules of the two classes

in the training set. Also, we employ two widely-used ensemble learning methods

(i.e., Bagging (Bag) and Adaboost (Ada)) for comparison. Moreover, we use another

imbalanced learning method Asymmetric Partial Least Squares Classifier (APLSC) [110]

as one of the baseline methods.

68

Table 3.12: Average Indicator Values of KPWE and Other Six Imbalanced Learning
Methods on Each Dataset and Across All Datasets

Indicator Dataset ROS RUS SMOTE Bagging AdaBoost APLSC KPWE

F
NASA 0.382 0.455 0.445 0.232 0.265 0.510 0.448

AEEEM 0.448 0.529 0.503 0.388 0.383 0.567 0.476
TOTAL 0.404 0.480 0.465 0.284 0.305 0.529 0.457

MCC
NASA 0.225 0.186 0.218 0.224 0.214 0.270 0.272

AEEEM 0.294 0.263 0.280 0.385 0.331 0.346 0.329
TOTAL 0.248 0.211 0.239 0.278 0.253 0.296 0.291

AUC
NASA 0.626 0.636 0.646 0.753 0.736 0.758 0.721

AEEEM 0.656 0.671 0.670 0.806 0.773 0.783 0.715
TOTAL 0.636 0.648 0.654 0.771 0.748 0.767 0.719

EAP
NASA 0.288 0.183 0.233 0.242 0.250 0.229 0.336

AEEEM 0.354 0.250 0.297 0.371 0.366 0.320 0.417
TOTAL 0.310 0.205 0.254 0.285 0.289 0.259 0.363

EAR
NASA 0.365 0.350 0.374 0.260 0.274 0.367 0.419

AEEEM 0.382 0.429 0.413 0.371 0.357 0.425 0.408
TOTAL 0.370 0.376 0.387 0.297 0.301 0.386 0.415

EAF
NASA 0.317 0.274 0.312 0.202 0.223 0.306 0.377

AEEEM 0.361 0.350 0.369 0.315 0.310 0.383 0.402
TOTAL 0.332 0.299 0.331 0.240 0.252 0.331 0.386

Results: Table 3.12 presents the average indicator values of KPWE and six imbalanced

learning methods on NASA dataset, AEEEM dataset, and across the two datasets. Figure

3.10 depicts the statistic test results on the 15 projects across the two datasets. From Table

3.12 and Figure 3.10, we have the following observations.

First, from Table 3.12, on the 10 projects of NASA dataset, our proposed KPWE

framework achieves the best performance in terms of three effort-aware indicators; on

the five projects of AEEEM dataset, our proposed KPWE framework achieves the best

performance in terms of two effort-aware indicators (except for EAR); across all above 15

projects, our proposed KPWE framework achieves the best performance in terms of three

effort-aware indicators.

69

1 2 3 4 5 6 7

APLSC
RUS

SMOTE
KPWE

ROS
AdaBoost
Bagging

CD = 2.326 Friedman p-value: 3.210e-12

(a) F

1 2 3 4 5 6 7

APLSC
Bagging

KPWE
AdaBoost

ROS
SMOTE
RUS

CD = 2.326 Friedman p-value: 8.562e-06

(b) MCC

1 2 3 4 5 6 7

Bagging
APLSC

AdaBoost
KPWE

SMOTE
RUS
ROS

CD = 2.326 Friedman p-value: 6.541e-12

(c) AUC

1 2 3 4 5 6 7

KPWE
ROS

AdaBoost
APLSC

Bagging
SMOTE
RUS

CD = 2.326 Friedman p-value: 1.277e-06

(d) EAP

1 2 3 4 5 6 7

KPWE
SMOTE
APLSC

RUS
ROS
Bagging
AdaBoost

CD = 2.326 Friedman p-value: 8.684e-07

(e) EAR

1 2 3 4 5 6 7

KPWE
SMOTE
APLSC

ROS
RUS
AdaBoost
Bagging

CD = 2.326 Friedman p-value: 9.366e-10

(f) EAF

Figure 3.10: Comparison of KPWE and other six imbalanced learning methods with
Friedman test and Nemenyi post-hoc test in terms of all six indicators.

Second, compared with the six baseline methods, for the average indicator values of

KPWE across the two datasets, KPWE achieves average improvements of 38.3%, 19.1%,

and 32.1% in terms of EAP, EAR, and EAF, respectively. Compared with the best average

indicator values among the six baseline methods, KPWE achieves average improvements

of 17.1%, 7.3%, and 16.4% in terms of EAP, EAR, and EAF, respectively. In addition,

APLSC method achieves the best average F and MCC values, Bagging method achieves

the best average AUC value.

Third, from Figure 3.10, we observe that the p values of Friedman test in all subfigures

are all less than 0.05, which means that there exist significant performance differences

among the nine methods. Our proposed KPWE framework always belongs to the top-

ranked group in terms of all indicators and ranks the first in terms of three effort-aware

indicators. In addition, KPWE has no significant differences compared with 3, 2, 3, 2, 3,

and 3 baseline methods in terms of F, MCC, AUC, EAP, EAR, and EAF, respectively.

70

Discussion: The under-sampling methods may neglect the potentially useful

information contained in the ignored non-defective modules, and the over-sampling

methods may cause the model over-fitting by adding some redundancy defective modules.

Besides, data sampling based imbalanced learning methods usually change the data

distribution of the defect data. From this point, the learning methods (such as our KPWE

framework) which does not change the data distribution are better choices for imbalanced

defect data. In addition, the ensemble based imbalanced learning methods are sensitive to

the noises in the data, while our proposed KPWE framework can eliminate the data noises

to a certain extent by using the KPCA based feature extraction method.

Answer to RQ4: In sum, KPWE is superior to almost all 6 baseline methods (except for

EAR indication on AEEEM dataset), while Bagging and APLSC perform better in terms

of the traditional indicators.

3.5 Conclusion

In this chapter, we propose an IVDP framework KPWE combining a feature representation

learning method and imbalanced learning method. First, KPWE employs the KPCA

method to map the original features into a latent space in which the modules that are

linearly indivisible become easily divisible. Then, KPWE uses the WELM method to

construct the classification model on the mapped data to predict the labels of the test

data. We compare our KPWE framework with five classic classifiers, five variants, eight

feature selection methods and six imbalanced learning methods on 10 projects of NASA

dataset and five projects of AEEEM dataset. We use three tradition and three effort-aware

indicators to evaluate the performance of these methods. The experimental results show

that our proposed KPWE framework can achieve better performance in most cases.

71

72

Chapter 4

A Two-Stage Training Subset Selection
Framework for Cross Version Defect
Prediction

Many existing defect prediction work mainly studied the performance of different machine

learning methods for the IVDP task [68, 34, 35]. For the mature projects with multiple

historical versions, it is a more realistic application scenarios to use the labeled data of

previous versions to predict the module labels of the version under development, i.e.,

CVDP [83, 162]. However, there are not many studies on this topic.

4.1 Motivation

CVDP has some unique characteristics over IVDP. For example, in IVDP scenario, as the

training set and test set are usually derived from the same defect data of a specific project

version, the data distributions of the two sets are identical, which conforms to the similar

distribution assumption of the training set and test set for most classification models [10].

By contrast, in CVDP scenario, as the software functions are increasingly complicated, the

modules undergo frequent changes during the version update. For example, the current

73

version of the project inherits, refactories and deletes some existing modules from the

prior version, or adds some new modules [18, 83]. These operations can cause a certain

degree of distribution differences of the data across versions. Such distribution differences

may result in the CVDP model built on the data of the prior version failing to achieve

satisfactory prediction performance for the current version.

To narrow the gap of the distribution differences between the cross-version data, we

propose a novel Two-Stage Training Subset Selection (TSTSS) method to select a module

subset from the prior version that is optimal for the data of the current version. More

specifically, in the first stage, TSTSS employs a Sparse Modeling Representative Selection

(SMRS) method [144] to simplify the data of the prior version by selecting an important

module subset. The goal is to find a compact representation of the data in the prior version

and expect that these important modules can reconstruct the original data to the maximum

extent. In addition, the advantage of this simplification is beneficial to save memory,

improve the understanding and interpretation of the data [144]. As this step retains the

important modules towards the whole data and eliminates the unprofitable modules, it is

also helpful to improve the performance of models built on this module subset and save

the computational time. Since this module reduction process just selects a module subset

to well construct the original data without involving the participation of the data in the

current version, thus we call this stage as a self-simplification process. However, the

modules selected in this stage cannot guarantee to be representative for the data of the

current version, which means that the distribution differences of the data between the two

versions have not been addressed yet. Hence, in the second stage, we further utilize a

Dissimilarity-based Spare Subset Selection (DS3) method [27] to select a representative

module subset from the prior version based on the pairwise dissimilarities between the

modules of the two versions. The selected module subset can effectively represent each

module of the current version, which promotes to relieve the distribution differences.

74

As we preserve the modules of the prior version that well represent the modules of the

current version and eliminate the irrelevant modules, the classification models built on this

selected subset are more targeted to the data of the current version. Since this module

reduction process requires the assistance of the data in the current version to further refine

the selected modules in the first stage, thus we call this stage as an auxiliary-refining

process. After completing the two simplification processes, the selected module subset

not only contains the important information of the original data in the prior version, but

also well expresses the data of the current version. Thus, the resulting module subset is

expected to achieve encouraging performance of CVDP.

4.2 The Used Methods and Proposed CVDP Framework

To deal with the representation issue among the software modules in the cross version

scenario, we propose a new CVDP framework TSTSS. Subsection 4.2.1 introduces the

used SMRS method during the self-simplification stage, subsection 4.2.2 describes the

used DS3 method during the auxiliary-refining stage, subsection 4.2.3 gives our proposed

CVDP framework TSTSS.

4.2.1 The SMRS Method

As the goal of the first stage of TSTSS is to simplify the data of prior version by only

retaining part of important modules, we employ a self-representation learning method

SMRS to select a module subset that minimizes the reconstruction errors without losing

important information. To the best of our knowledge, there are no literatures related to the

self-simplifications task in defect prediction studies.

SMRS is a modification version of dictionary learning framework aiming at finding

75

a sparse representation of the original data. Considering traditional dictionary learning

framework usually selects some important data points which do not coincide with the

actual ones in the original data, Vidal et al. [144] improved it by replacing the dictionary

with the matrix of the data points. This guarantees to select the important points from the

actual data space. This section details the SMRS method as follows.

We denote the modules of the prior version as X = [x1,x2, ...,xM] ∈ Rr×M , where

xi = [xi1, xi2, ..., xir]
T ∈ Rr, M and r indicate the number of modules and features of the

prior version, respectively. SMRS aims to minimize the following objective function:

M∑
i=1

‖xi −Xci‖22 = ‖X−XC‖2F . (4.1)

where C = [c1, c2, ..., cM] ∈ RM×M represents the coefficient matrix, ci =

[ci1, ci2, ..., ciM] ∈ RM denotes the coefficient vector of xi over X, and ‖ · ‖F denotes

the Frobenius norm (or l2 norm). The motivation is to select a module subset whose linear

combination is used to restructure the original data of the prior version. For this purpose,

we add a term ‖C‖0,q ≤ k1 to constrain the selected module number, where the ‖ · ‖0,q

denotes the l0/lq norm and is defined as ‖C‖0,q =
∑M

i=1 I(‖ci‖q), ci denotes the ith row

of the coefficient matrix C and I(·) denotes the indicator function. In addition, we add a

term 1TC = 1T to constrain that the coefficient sum of each column in matrix C is equal

to 1. [28]. Thus, we have the following optimization formulation:

min
C
‖X−XC‖2F

s.t. ‖C‖0,q ≤ k1,1
TC = 1T.

(4.2)

However, Eq.(4.2) is a NP-hard problem as it needs to search all the subset of the k1

columns of X. To alleviate this problem, an alternative way is to use some strategies to

appropriately relax the harsh constraints, such as using l1 relaxation to replace the l0/lq

76

norm with l1/lq norm and relaxing the positive integer k1 to real number µ [144]. Then

Eq.(4.2) is relaxed to the formulation as

min
C
‖X−XC‖2F

s.t. ‖C‖1,q ≤ µ,1TC = 1T.

(4.3)

Using Lagrange multiplier method, Eq.(4.3) can be rewritten as:

min λ1‖C‖1,q +
1

2
‖X−XC‖2F

s.t. 1TC = 1T,

(4.4)

where λ1 is the regularization parameter used to control the number of the selected

modules. Eq.(4.4) can be solved under the Alternating Direction Method of Multipliers

(ADMM) optimization framework [32, 13].

Given a specific parameter λ1, we will select a simplified but important module subset

S with m modules as S = [s1, s2, ..., sm] ∈ Rr×m, where si = [si1, si2, ..., sir]
T ∈ Rr.

4.2.2 The DS3 Method

As the goal of the second stage of TSTSS is to reserve the modules of the prior version

that are representative to the ones in the current version, we utilize a cross-domain subset

selection method DS3 [27] to pick up a more refined module subset from S. This section

details the DS3 method based on the pairwise dissimilarities between the modules of the

two versions as follows.

Here, we denote the modules of the current version as T = [t1, t2, ..., tn] ∈ Rq×n, where

tj = [tj1, tj2, ..., tjq]
T ∈ Rq, n and q indicate the number of modules and features of the

current version, respectively. Note that r is equal to q in our CVDP scenario. In addition,

77

we define a dissimilarity matrix D = [dij] (i=1,...,m and j=1,...,n) between the modules of

the two versions, where dij indicates the dissimilarity between the module si and tj which

indicates how well si represents tj . The purpose of DS3 is to find a representative module

subset of S that can effectively represent each module of T.

Dissimilarity matrix D is formulated as

D =

d
T
1
...

dT
m

 =

d11 d12 · · · d1n
...

...
dm1 dm2 · · · dmn

 ∈ Rm×n, (4.5)

where di ∈ Rn is the ith row of D, i.e., the dissimilarities between the ith module of S

and each module of T.

To indicate whether a module in S is a representative of the module in T, we define a

0-1 indicator matrix P as

P =

p
T
1
...

pT
m

 =

p11 p12 · · · p1n
...

...
pm1 pm2 · · · pmn

 ∈ Rm×n, (4.6)

where pij ∈ {0, 1} is the indicator of si representing tj . pij = 1 indicates that si is a

representative of tj , otherwise not. To guarantee that each tj is represented by one si, we

have the constrain as
∑m

i=1 pij = 1.

To have a better understanding of the above description, we provide a graphic depiction

in Figure 4.1. Each red circle denotes a module of the prior version while each yellow

circle represents a module of the current version, and the dotted line signifies the

correlation (i.e., dissimilarity in DS3) between two modules. Note that if there exists a

dotted line between a red circle and a blue circle after conducting DS3 method, it means

that the red circle can well represent the yellow circle. Figure 4.1(a) shows the inputs of

78

(a) Pairwise dissimilarities between two versions

(b) Selected modules that represent the current version

Figure 4.1: An illustration of the function of DS3.

DS3 method, i.e., the pairwise dissimilarities between the modules of the two versions.

Figure 4.1(b) depicts the results after running DS3 method. It shows that DS3 method

selects 3 modules (i.e., s2, s4 and s6) from the prior version as the representatives to

represent each module of the current version. Note that there is only one dotted line

connecting with each yellow circle since we assign each module of the current version

with only one module of the prior version. However, there can have multiple dotted

lines connecting with each red circle since each module of the prior version can represent

multiple modules of the current version, for example, s2 can represent t1 and t3.

To select a representative subset of S based on the dissimilarity matrix D, DS3

simultaneously optimizes the following two terms: minimize the representing cost towards

79

T by S and the number of selected modules from S as follows:

min
{pij}

n∑
j=1

m∑
i=1

dijpij + λ2

m∑
i=1

I(‖pi‖q)

s.t.
m∑
i=1

pij = 1,∀j; pij ∈ {0, 1},∀i, j,

(4.7)

where the first term refers to the representing cost towards T by S, and the second term

denotes the number of selected representatives from S which corresponds to the number

of nonzero rows in matrix P. More specifically, if si is selected as a representative of

tj , then the representing cost towards tj by si is calculated as dijpij ∈ {0, dij}, thus the

representing cost towards T by S is
∑n

j=1

∑m
i=1 dijpij . In addition, if si is a representative

towards some modules of T, then not all elements in the ith row of P are zeros, i.e.,∑n
j=1 pij 6= 0. Lower control parameter λ2 means more candidates will be selected.

However, Eq.(4.7) is a non-convex optimization problem. Elhamifar et al. [27]

suggested to replace
∑m

i=1 I(‖pi‖q) with lq norm ‖pi‖q and relax the 0-1 constraint

pij ∈ {0, 1} to continuous interval constraint pij ∈ [0, 1]. Then Eq.(4.7) is relaxed to

the following formulation:

min
{pij}

n∑
j=1

m∑
i=1

dijpij + λ2

m∑
i=1

‖pi‖q

s.t.
m∑
i=1

pij = 1,∀j; pij ∈ [0, 1] ,∀i, j.

(4.8)

By using trace function, Eq.(4.8) is rewritten as the following matrix form:

min
P

tr(DTP) + λ2‖P‖1,q

s.t. 1TP = 1T,P ∈ [0, 1] ,

(4.9)

80

where ‖P‖1,q =
∑m

i=1 ‖pi‖q, 1 is a vector whose elements are all 1, and tr(·) denotes the

trace function used to calculate the sum of the diagonal elements in the matrix. Eq.(4.9)

can also be solved by the ADMM framework. After obtaining the optimal solution P̂, the

line numbers of the nonzero rows in matrix P̂ correspond to the indexes of the modules

in S that are selected to represent the modules of T. For example, for Figure 4.1(b) that

selected 3 representative modules of the prior version (i.e., S) to represent the 4 modules

of the current version (i.e., T), the optimal solution P̂ is like the following formula

0 0 0 0
1 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

, where the values in the positions with 1 are nonzero. The line numbers of

the nonzero rows in matrix P̂ is 2, 4, 6, which indicates that the second (i.e., s2), the fourth

(i.e., s4) and the sixth (i.e., s6) module of the prior version (i.e., S) are selected as the

representatives.

To have an intuitive feeling about the effect of DS3 for selecting the representative

modules, we conduct a case study on two synthetic datasets to simulate CVDP scenario.

We generate the non-defective modules of the prior version by drawing data points (red

hexagrams) from a mixture of Gaussians with means (2, 3.5) and (4, 5.5) with 120 points

in each set, and the defective modules by drawing 90 data points (green rhombuses) from

a mixture of Gaussians with means (6.5, 2.5), as showed in Figure 4.2(a). To reflect the

distribution differences between two versions, we generate the non-defective modules of

the current version by drawing data points (purple triangles) from a mixture of Gaussians

with means (1.5, 3) and (4.5, 6) with 60 points in each set, and the defective modules by

drawing 40 data points (blue pentagrams) from a mixture of Gaussians with means (6.5,

2.5), as showed in Figure 4.2(b). Figures 4.2(c), 4.2(d), and 4.2(e) depict the selected

non-defective modules (black hexagrams) and defective modules (black rhombuses) from

the prior version by DS3 with 3 different λ2 values. From the last 3 subfigures, we can

see that the selected modules are close to the positions of the modules in Figure 4.2(b).

81

0 2 4 6 8
1

2

3

4

5

6

7

8

(a) Prior Version

0 2 4 6 8
1

2

3

4

5

6

7

8

(b) Current Version

0 2 4 6 8
1

2

3

4

5

6

7

8

(c) λ = 0.005

0 2 4 6 8
1

2

3

4

5

6

7

8

(d) λ = 0.001

0 2 4 6 8
1

2

3

4

5

6

7

8

(e) λ = 0.0001

Figure 4.2: An example for the modules selected by DS3 with different λ2 on synthetic
data.

82

In addition, we observe that as the λ2 decreases, the number of selected modules by DS3

increases.

After the second subset selection process, we obtain a more refined modules subset

with m′′ modules from the prior version and denote it as S′ = [s′1, s
′
2, ..., s

′
m′′] ∈ Rr×m′′ ,

where s′i = [s′i1, s
′
i2, ..., s

′
ir]

T ∈ Rr. In addition, the corresponding label set is defined as

Y = [y1,y2, ...,ym′′] ∈ Rd′×m′′ , where yi = [yi1, ..., yid′]
T ∈ Rd′ . In this thesis, d′ = 2

since we only have two classes of modules: non-defective and defective ones.

4.2.3 The Proposed Framework

Figure 4.3 depicts the flow chart of our proposed two-stage training subset selection

method TSTSS for CVDP task. The SMRS based self-simplification stage is shown in the

red rectangle and the DS3 based auxiliary-refining stage is shown in the blue rectangle. In

this chapter, we use the same WELM method to construct the classification model as in

Chapter 3.

Prior Version

DM
Simplified DM

Simplified NDM

Simplified

Prior Version

SMRS

SMRS

DS3

Refined

Prior Version

NDM
Current Version

Self-simplification stage CVDP Model

Construction

Training

Predicting

Auxiliary-refining stage

Figure 4.3: Overview of our proposed CVDP framework.

83

4.3 Study Setup

4.3.1 Research Questions

We empirically evaluate our devised method TSTSS by answering the following four

research questions.

RQ1: How different classifiers impact the effectiveness of TSTSS on CVDP

performance?

The goal of TSTSS is to select a module subset from the prior version which is used to

train a defect prediction model. This question investigates whether the selected subset with

WELM classifier described in Section 3.2.3 perform better than that with other classifiers

for CVDP performance.

RQ2: Does our two-stage selection strategy select more effective module subset for

CVDP compared with only one-stage selection strategy?

As TSTSS contains two subset selection stages: the self-simplification process with

SMRS method and the auxiliary-refining process with DS3 method. This question is

designed to study whether the module subset selected by TSTSS is more effective for

CVDP than that selected by its 2 downgraded methods, i.e., with only one selection stage

of TSTSS.

RQ3: Can TSTSS achieve better CVDP performance than other training subset

selection methods?

Various subset selection methods select the module subsets based on different

mechanisms. This question compares the effectiveness of TSTSS with other training

subset selection methods.

84

RQ4: What are the differences of the modules selected by the training subset

selection methods in RQ3?

Distinct training subset selection methods differ in the selected modules which lead to

different CVDP performance. This question explores the differences among the module

subsets selected by the methods in RQ3.

4.3.2 Benchmark Dataset

In this chapter, we use 67 versions of 17 software projects provided by Madeyski and

Jureczko [87] as our benchmark dataset, called PROMISE dataset. Each software module

denotes a class file of the Java project and is characterized by 20 module features with

a defect label. The 20 features are calculate by a tool called CKJM and the defect label

is identified by a tool called BugInfo. The original defect label is the defect number of

the module. In this thesis, we transform it into a binary label by annotating the modules

without defect as 0, otherwise as 1.

Detailed statistic description of each version for all 17 projects is reported in Table 4.1,

where # M, # DM, % DM denote the number of modules, the number of defective modules

and the defect ratio, respectively. Note that the number in the bracket of the column with

DM measures the ratio of the common defective module number across the versions

to the defective module number of the prior version. Note that since the data of project

Prop1, Prop2, Prop3, Prop4, Prop5, Prop42 do not contain the module name, we could not

count this measure for the 6 projects. As a result, we count the percentages on total 30

cross-version pairs. From the table, we observe that the percentages on 22 out of 30 pairs

are higher than 40%, which means that in most cross-version pairs, at least 40% defective

modules in the prior version still remain in the next version. This observation indicates the

similar uneven distribution of defects across versions. In addition, our benchmark dataset

85

Table 4.1: Benchmark Dataset for Cross Version Defect Prediction

Project Version # M # DM % DM Project Version # M # DM % DM

ant

1.3 126 20 15.9%
velocity

1.4 196 147 75.0%
1.4 178 40 (30.0%) 22.5% 1.5 214 142 (53.7%) 66.4%
1.5 293 32 (17.5%) 10.9% 1.6.1 229 78 (40.1%) 34.1%

1.6 352 92 (53.1%) 26.1%

xerces

init 162 77 47.5%
1.7 745 166 (67.4) 22.3% 1.2 440 71 (41.6%) 16.1%

camel

1.0 339 13 3.8% 1.3 453 69 (23.9%) 15.2%
1.2 608 216 (84.6%) 35.5% 1.4.4 588 437 (50.7%) 74.3%

1.4 872 145 (44.9%) 16.6%

prop-1

9 4455 149 3.3%
1.6 965 188 (56.6%) 19.5% 44 4081 376 9.2%

ivy
1.1 111 63 56.8% 92 3670 1287 35.1%
1.4 241 16 (12.7%) 6.6% 128 3619 220 6.1%
2.0 352 40 (0.0%) 11.4% 164 3541 319 9.0%

jedit

3.2.1 272 90 33.1% 192 3692 85 2.3%

4.0 306 75 (52.2%) 24.5%

prop-2

225 1864 147 7.9%
4.1 312 79 (65.3%) 25.3% 236 2403 76 3.2%
4.2 367 48 (36.7%) 13.1% 245 2023 103 5.1%
4.3 492 11 (6.3%) 2.2% 256 2025 625 30.9%

log4j

1.0 135 34 25.2% 265 2372 229 9.7%

1.1 109 37 (64.7%) 33.9%

prop-3

285 1709 177 10.4%
1.2 205 189 (89.2%) 92.2% 292 2330 209 9.0%

lucene

2.0 195 91 46.7% 305 2388 89 3.7%
2.2 247 144 (71.4%) 58.3% 318 2440 365 15.0%

2.4 340 203 (72.2%) 59.7%

prop-4

347 2906 162 5.6%

poi

1.5 237 141 59.5% 355 2802 924 33.0%
2.0 314 37 (13.5%) 11.8% 362 2865 213 7.4%

2.5.1 385 248 (73.0%) 64.4%

prop-5

4 3514 264 7.5%
3.0 442 281 (77.8%) 63.6% 40 3815 466 12.2%

synapse
1.0 157 16 10.2% 85 3509 930 26.5%
1.1 222 60 (56.3%) 27.0% 121 3445 425 12.3%
1.2 256 86 (50.0%) 33.6% 157 2863 367 12.8%

xalan

2.4 723 110 15.2% 185 3260 268 8.2%

2.5 803 387 (64.5%) 48.2%
prop-42

452 317 33 10.4%
2.6 885 411 (57.1%) 46.4% 453 259 20 7.7%
2.7 909 898 (96.8%) 98.8% 454 295 13 4.4%

contains 11 open-source projects (the first 11 projects), 5 industrial projects belonging to

the insurance domain (prop1-prop5), and 1 industrial project (prop42) which is a support

tool for quality assurance in software development. Table 4.2 lists the features of these

projects in the PROMISE dataset.

86

Table 4.2: The Features of Projects from the PROMISE Dataset

1.Line of code 11.Efferent Couplings
2.Weighted Methods per Class 12.Inheritance Coupling
3.Number of Public Methods 13.Coupling Between Methods
4.Average Method Complexity 14.Lack of cohesion in methods
5.Max McCabes Cyclomatic Complexity 15.Lack of cohesion in methods
6.Avg McCabes Cyclomatic Complexity 16.Cohesion Among Methods of Class
7.Measure of Aggregation 17.Depth of Inheritance Tree
8.Coupling between object classes 18.Number of Children
9.Response for a Class 19.Measure of Functional Abstraction
10.Afferent Couplings 20.Data Access Metric

4.3.3 Evaluation Indicators

In this chapter, we use the same three traditional performance indicators (i.e., F, MCC,

and AUC) and three effort-aware performance indicators (i.e., EAP, EAR, and EAF) as in

Chapter 3.

4.3.4 Parameter Configuration

Regarding the implementation of the second stage of TSTSS, i.e., the DS3 method, we

measure the dissimilarity with Chi-square distance following the original work [27]. The

Chi-square distance of module si and tj is defined as
∑r

o=1
(sio−tjo)2
2∗(sio+tjo) , where r denotes

the feature dimension. In terms of the λ2 in Eq.(4.9) which is used to control the final

number of selected modules, a lower λ2 value means more representative modules will be

chosen. In this work, we determine the λ2 value based on a threshold which denotes the

desired proportion of the remaining modules. More specifically, we set the initial λ2 value

as 0.05 and gradually reduce it until the proportion of the selected modules towards the

reversed modules in the first stage is larger than the threshold for the first time. We set

9 thresholds, i.e., 10%, 20%,..., 90%, to determine the λ2 value. Note that we do not set

threshold to 100% as it means that only the first stage SMRS is used. According to the

87

above description, the final proportion of the selected modules may be a little higher than

the corresponding threshold.

4.3.5 Cross Version Scenario Design

In this work, we conduct the CVDP experiment between two nearest versions. The reason

of this setting is that the two closest versions share more identical architectural and design

characteristics, which results in a certain degree of similarity [130]. More specifically, we

assume that labels of modules in a lower version is known and treat them as the training

data, and assume that the labels of modules in the higher version is unknown and treat them

as the test data. We do not consider where a module in a lower version is decomposed or

refactorized into a few modules into the higher version. As a result, we have total 50

cross-version pairs.

4.3.6 Statistic Test Method

In this chapter, we use the same Friedman test with improved Nemenyi test as in Chapter

3 for significance analysis.

4.4 Experimental Results

4.4.1 Results for RQ1

Methods: Before studying this question, we design an experiment to determine how many

modules are reserved in the first subset selection stage of our TSTSS method. Since

keeping too many modules may not attain the goal of modules reduction while keeping

too fewer modules may lead to excessive loss of important information and increasing the

88

reconstruction error, we empirically set 4 thresholds with our basic classifier WELM for

comparison, including 80%, 70% 60%, 50%. As the parameter λ1 in Eq.(4.4) is used to

control the number of selected modules, we initial λ1 as 5 and increase it with 5 at each

time until the percentage of the selected modules first no less than the thresholds. As

mentioned in Section 4.3.4, we set 9 percentages (from 10% to 90%) for DS3 method to

control the proportion of selected modules in the second stage subset selection process.

Thus, we obtain total 9 sets of results for each indicator on each cross-version pair. In this

work, as we emphasize the importance and practicability of the effort-aware indicators on

CVDP performance especially for EAF, we only record the results corresponding to the

best EAF value among the 9 sets of results for each cross-version pair.

Results: Figure 4.4 and 4.5 show the average performance values across all cross-

version pairs for TSTSS under the 4 thresholds and the statistic test results, respectively.

From Figure 4.4, we observe that TSTSS with threshold 80% always achieves the best

average performance among all indicators. From Figure 4.5, we see that TSTSS with

threshold 80% always obtains the best rank on all indicators. It is significantly superior to

other 3 thresholds in terms of F-measure, MCC, and EAF but has no significant differences

compared with EAP and EAR. Overall, 80% is the optimum threshold observed for the

selected subset scale. We use this threshold for the following experiments.

To investigate the effect of different classifiers on the CVDP performance with our

method TSTSS, we compare the used WELM classifier with four traditional base

classifiers including k-NN, LR, CART and RF, which are commonly used in defect

prediction studies [34].

Figure 4.6 and 4.7 show the average performance values across all cross-version pairs

for TSTSS with the 5 classifiers and the statistic test results, respectively.

89

EAR

EAF

F

EAP

MCC

AUC

T50

T60

T70

T80

Figure 4.4: Radar charts of average indicator values for our TSTSS framework under
different thresholds.

From Figure 4.6, we observe that WELM achieves the best average F-measure, EAR,

and EAF, whereas RF achieves the best average MCC, and EAP. From Figure 4.7, we see

that WELM belongs to the top group in terms of F-measure, AUC, EAR and EAF, whereas

RF belongs to the top group in terms of MCC, AUC, and EAP. Overall, WELM and RF are

the appropriate classifiers for CVDP with our proposed method TSTSS. As we emphasis

1 2 3 4

T80
T70 T60

T50

CD = 0.663 Friedman p-value: 6.948e-07

(a) F-measure

1 2 3 4

T80
T70 T60

T50

CD = 0.663 Friedman p-value: 2.772e-08

(b) G-measure

1 2 3 4

T80
T70 T50

T60

CD = 0.663 Friedman p-value: 5.982e-04

(c) g-mean

1 2 3 4

T80
T70 T60

T50

CD = 0.663 Friedman p-value: 1.016e-01

(d) EAP

1 2 3 4

T80
T50 T60

T70

CD = 0.663 Friedman p-value: 7.397e-02

(e) EAR

1 2 3 4

T80
T70 T60

T50

CD = 0.663 Friedman p-value: 4.066e-07

(f) EAF

Figure 4.5: Comparison of TSTSS under different thresholds using Friedman test with
Nemenyi post-hoc test in terms of six indicators.

90

EAR

EAF

F

EAP

MCC

AUC

CART

LR

NN

RF

WELM

Figure 4.6: Radar charts of average indicator values for our TSTSS framework with
different classifiers.

more on the importance of the effort-aware indicators in this work, thus we choose WELM

as our basic classifier for the following experiments.

Answer to RQ1: Overall, our CVDP method TSTSS with WELM classifier under

threshold 80% can achieve satisfactory performance, especially in terms of effort-aware

indicators.

1 2 3 4 5

WELM
LR

CART
RF
NN

CD = 0.863 Friedman p-value: 6.984e-02

(a) F-measure

1 2 3 4 5

RF
LR

CART
WELM
NN

CD = 0.863 Friedman p-value: 1.553e-03

(b) G-measure

1 2 3 4 5

RF
WELM

LR
CART
NN

CD = 0.863 Friedman p-value: 1.216e-04

(c) g-mean

1 2 3 4 5

RF
LR

CART
WELM
NN

CD = 0.863 Friedman p-value: 5.340e-02

(d) EAP

1 2 3 4 5

WELM
NN
RF

CART
LR

CD = 0.863 Friedman p-value: 2.727e-13

(e) EAR

1 2 3 4 5

WELM
RF
NN

CART
LR

CD = 0.863 Friedman p-value: 5.507e-15

(f) EAF

Figure 4.7: Comparison of TSTSS with different classifiers using Friedman test with
Nemenyi post-hoc test in terms of six indicators.

91

4.4.2 Results for RQ2

Methods: To answer this question, we choose the subset selection scheme that only uses

SMRS method and the scheme that only uses DS3 method as the downgraded methods for

comparison. The parameter settings of the two baseline methods are the same as TSTSS

for a fair comparison.

Results: Figure 4.8 shows the radar charts of the average values of each performance

indicator on the cross-version pairs for each project as well as across all projects in terms of

TSTSS and the two baseline methods. In the radar chart, each axis denotes a performance

indicator and the value of the circle point (a.k.a vertex) on the axis corresponds to the

indicator value. The vertex far away from the center has greater value. All the vertices are

connected into a polygon. Each method corresponds to a polygon with a specific color.

For the cross-version pairs on each project, we draw a radar chart. The values of the points

on the charts are the average indicator values of these cross-version pairs. Since we have

17 different software projects, we draw 17 radar chart from Figure 4.8(a) to 4.9(q). In

addition, for all the cross-version pairs, we also draw a radar chart, i.e., Figure 4.9(r). So

we have total 18 radar charts in Figure 4.8.

For the ease of replicating our experimental results, we list the threshold and the

corresponding λ2 value corresponding to the best EAF in Table 4.3. From Figure 4.8

and Table 4.3, we have the following observations.

First, in terms of the three traditional indicators (i.e., F-measure (F), MCC, and AUC),

from Figure 4.9(r), we observe that TSTSS achieves the best average values on the three

indicators across the 50 cross-version pairs compared with the two downgraded baseline

methods. More specifically, TSTSS improves the SMRS and DS3 by 39.8% and 50.4% in

terms of average F-measure respectively, by 49.2% and 93.4% in terms of average MCC

92

respectively, and by 0.9% and 3.3% in terms of average AUC respectively.

Second, in terms of the three traditional indicators, from Figure 4.8(a), 4.8(c), 4.8(d),

4.8(f), 4.8(h), 4.9(k), 4.9(m), 4.9(n), and 4.9(q), the results show that all three average

indicator values of TSTSS are higher than the two baseline methods on project ant, ivy,

jedit, lucene, synapse, xerces, prop2, prop3, prop42, respectively. In addition, Figure

4.8(b), 4.8(g), 4.9(l), and 4.9(o) show that TSTSS achieves the best average F-measure and

MCC than the two baseline methods on project camel, poi, prop1, and prop4, respectively;

Figure 4.8(e) shows that TSTSS achieves the best average F-measure and AUC than the

two baseline methods on project log4j.

Third, in terms of the three effort-aware indicators, from Figure 4.9(r), we observe that

TSTSS achieves the best average values on the three indicators across the 50 cross-version

pairs compared with the two baseline methods. More specifically, TSTSS improves the

SMRS and DS3 by 10.4% and 13.7% in terms of average EAP respectively, by 7.0% and

7.6% in terms of average EAR respectively, and by 8.2% and 10.5% in terms of average

EAF respectively.

Fourth, in terms of the three effort-aware indicators, from Figure 4.8(a), 4.8(b), 4.8(c),

4.8(d), 4.8(f), 4.8(g), 4.8(h), 4.9(m), 4.9(n), and 4.9(q), the results show that all the

three average indicator values of our method TSTSS are higher than the two baseline

methods on project ant, camel, ivy, jedit, lucene, poi, synapse, prop2, prop3, and prop42,

respectively. In addition, Figure 4.8(e), 4.9(l), and 4.9(p) show that TSTSS achieves the

better average EAR and EAF than the two baseline methods on project log4j, prop1, and

prop5, respectively. Figure 4.9(k) and 4.9(o) show that TSTSS achieves the better average

EAP and EAF than the two baseline methods on project xerces and prop4, respectively.

93

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(a) ant

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(b) camel

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(c) ivy

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(d) jedit

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(e) log4j

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(f) lucene

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(g) poi

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(h) synapse

Figure 4.8: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS, SMRS and DS3. (Part 1)

94

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(i) velocity

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(j) xalan

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(k) xerces

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(l) prop1

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(m) prop2

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(n) prop3

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(o) prop4

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(p) prop5

Figure 4.8: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS, SMRS and DS3. (Part 2)

95

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(q) prop42

EAR

EAF

F

EAP

MCC

AUC

DS3

SMRS

TSTSS

(r) All Pairs

Figure 4.8: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS, SMRS and DS3. (Part 3)

Fifth, in terms of the threshold in Table 4.3 which indicates the approximate percentage

of the selected modules in the second stage of TSTSS, we observe that TSTSS obtains

the best EAF values with less than half of original module number (corresponding to the

threshold no more than 60% since we have already selected 80% of the original modules

in the first stage) on 29 out of 50 cross-version pairs. It indicates that TSTSS can select

only a small proportion of modules from the prior version to achieve encouraging CVDP

performance on more than half of all cross-version pairs.

Sixth, Figure 4.9 visualizes the results of Friedman test and Nemenyi post-hoc test for

TSTSS and the two baseline methods in terms of the six indicators. The p values (all

less than 0.05) of Friedman test above the sub-figures show that there exist significant

differences among the three methods on all indicators. The Nemenyi test results show that

TSTSS significantly performs better than the two variant methods on all indicators.

Discussion: The takeaway lesson of the fifth finding is that when conducting CVDP, it

is not necessary to use all the modules of the prior version to train the defect prediction

model for the current version, since some modules have no discriminant ability or even

negative impact on the classification performance. The reason why our method TSTSS

outperforms SMRS is that, since SRMS selects candidates from the prior version to self-

96

Table 4.3: The Threshold of the Selected Module Number and the Corresponding λ2 Value.

Cross Version Pairs Threshold λ2 Cross Version Pairs Threshold λ2

ant

1.3 1.4 90% 2.0E-04
velocity

1.4 1.5 60% 5.0E-04
1.4 1.5 80% 1.0E-03 1.5 1.6 80% 3.0E-04

1.5 1.6 40% 4.0E-03
xalan

2.4 2.5 90% 4.0E-04
1.6 1.7 50% 3.8E-03 2.5 2.6 50% 2.4E-03

camel
1.0 1.2 50% 2.9E-03

prop1

9 44 20% 2.0E-05
1.2 1.4 50% 1.4E-03 44 92 30% 5.0E-06
1.4 1.6 60% 6.0E-04 92 128 30% 2.0E-05

ivy
1.1 1.4 20% 1.0E-02 128 164 20% 7.0E-05
1.4 2.0 90% 1.0E-05 164 192 30% 1.0E-05

jedit

3.2.1 4.0 80% 3.0E-04

prop2

225 236 90% 1.0E-05
4.0 4.1 90% 1.0E-04 236 245 60% 1.0E-04
4.1 4.2 90% 4.0E-05 245 256 80% 1.0E-04
4.2 4.3 80% 2.0E-04 256 265 70% 2.0E-04

log4j
1.0 1.1 50% 4.0E-03

prop3
285 292 80% 4.0E-05

1.1 1.2 30% 1.4E-02 292 305 80% 7.0E-06

lucene
2.0 2.2 30% 1.0E-02 305 318 20% 3.6E-03

2.2 2.4 40% 3.5E-03
prop4

347 355 70% 2.0E-05

poi
1.5 2.0 70% 4.0E-04 355 362 40% 3.0E-04

2.0 2.5.1 90% 2.0E-04

prop5

4 40 60% 3.0E-04
2.5.1 3.0 20% 1.4E-02 40 85 20% 2.7E-03

synapse
1.0 1.1 40% 0.006 85 121 70% 3.0E-04
1.1 1.2 40% 4.0E-03 121 157 60% 3.0E-04

xerces

init 1.2 70% 1.3E-03 157 185 50% 7.0E-04

1.2 1.3 50% 1.7E-03
prop42

452 453 70% 6.0E-04
1.3 1.4.4 40% 3.4E-03 453 454 80% 1.7E-03

represent the original data without involving in the module information of the current

version, it cannot guarantee that the candidates well represent the current version data.

While TSTSS improves SMRS by combining a novel DS3 method to further refine the

candidates with the participation of the current version data.

Since using a module subset to conduct CVDP has the potential to save memory

and computing overheads to some extent compared with using the whole module set,

the advantage of TSTSS will become more apparent when the scale of the defect data

97

1 2 3

TSTSS
SMRS

DS3

CD = 0.469 Friedman p-value: 4.599e-10

(s) F-measure

1 2 3

TSTSS
SMRS

DS3

CD = 0.469 Friedman p-value: 1.434e-08

(t) MCC

1 2 3

TSTSS
SMRS

DS3

CD = 0.469 Friedman p-value: 1.111e-02

(u) AUC

1 2 3

TSTSS
SMRS

DS3

CD = 0.469 Friedman p-value: 1.189e-05

(v) EAP

1 2 3

TSTSS
DS3

SMRS

CD = 0.469 Friedman p-value: 3.927e-03

(w) EAR

1 2 3

TSTSS
SMRS

DS3

CD = 0.469 Friedman p-value: 1.042e-08

(x) EAF

Figure 4.9: Comparison of TSTSS against SMRS and DS3 with Friedman test and
Nemenyi post-hoc test in terms of all six indicators.

increases.

Answer to RQ2: To summary, TSTSS is superior to its two downgraded methods. This

means that the module subset selected by the two-stage selection strategy is more effective

than that selected by only one-stage selection strategy.

4.4.3 Results for RQ3

Methods: To our best knowledge, no subset selection method is tailored for CVDP. In

this work, we select some typical subset selection methods that are original designed for

CPDP task as our baseline methods. The modules of the prior (current) version in CVDP

scenario are treated as the ones of the source (target) project in CPDP scenario. In this

work, we also consider the variants of these methods as our baseline methods to enrich

our experiments. The descriptions of these baseline methods are as follows:

TF1: A variant of the TF method [142] as mentioned in Section 2.2.3 which set the k as

98

1. This comes from the fact the this parameter is directly related to the number of selected

modules, thus may affect the CVDP performance.

TF2: The original TF method [142] with k = 10.

PF1: The original PF method [107]. We follow the original study to set the parameter

k of k-means algorithm as M+n
10

(where M and n denote the initial number of modules

in the prior and current version respectively), expecting that each cluster tends to have

10 modules in average. Note that the k-means algorithm needs to randomly initialize the

central points, thus, we run PF1 30 times and record the average indicator values.

PF2: A variant of PF method. The difference between PF1 and PF2 is that, for each

popular module in the current version, PF1 only reserves its nearest neighbor module in

the prior version, while PF2 reserves all the modules of the prior version in the clusters

which contain at least one module of the current version. The setting is following the

original KF method [62].

YF1: A variant of original YF method [171]. For each popular module in the current

version, YF1 only select its nearest neighbor module of the prior version in the reserved

clusters as PF1.

YF2: The original YF method [171]. We also follow the original study to set the cluster

number as M+n
10

as the PF method.

KF1: The original KF method [62]. We follow the original study to set the

two parameters, i.e., the number of minimum records and the distance, as 10 and 1,

respectively.

KF2: A variant of original KF method [62] that sets the two parameters as 6 and 0.9,

respectively. This comes from the fact that the performance of KF is sensitive to the

99

parameter setting. So we also employ the default parameter in Weka tool [12] to implement

the KF2 method for comparison.

In addition, we consider the method ALL that does not perform any subset selection

strategy as the most basic method for comparison.

Results: Figure 4.10 shows the radar charts of the average performance values on the

cross-version pairs for each project as well as across all projects in terms of TSTSS and

the nine baseline methods. From the figure, we have the following findings:

First, in terms of the three traditional indicators, from Figure 4.11(r), we find that TSTSS

achieves the best average values in terms of F-measure and MCC across the 50 cross-

version pairs. More specifically, average F-measure by TSTSS gains the improvement

of 38.4% compared with the best average F-measure (for KF2) among the nine baseline

methods; average MCC by TSTSS gains the improvement of 44.3% compared with the

best average MCC (YF2) among the nine baseline methods. While average AUC by

TSTSS is 0.007 lower that the best average AUC (for TF1) among the nine baseline

methods.

Second, in terms of the three traditional indicators, from Figure 4.10(a), 4.10(c), 4.11(k),

4.11(m), and 4.11(n), the results show that all three average indicator values by TSTSS are

better than that by the nine baseline methods on project ant, ivy, xerces, prop2, and prop3,

respectively.In addition, Figure 4.10(b), 4.11(j), and 4.11(o) show that TSTSS achieves

the best average F-measure and MCC than the nine baseline methods on project camel,

xalan, and prop4, respectively.

100

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(a) ant

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(b) camel

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(c) ivy

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(d) jedit

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(e) log4j

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(f) lucene

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(g) poi

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(h) synapse

Figure 4.10: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS and nine baseline methods. (Part
1)

101

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(i) velocity

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(j) xalan

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(k) xerces

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(l) prop1

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(m) prop2

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(n) prop3

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(o) prop4

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(p) prop5

Figure 4.10: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS and nine baseline methods. (Part
2)

102

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(q) prop42

EAR

EAF

F

EAP

MCC

AUC

ALL

KF1

KF2

PF1

PF2

TF1

TF2

TSTSS

YF1

YF2

(r) All Pairs

Figure 4.10: Radar charts of average values of the six indicators on the cross-version pairs
of each project and across all projects in terms of TSTSS and nine baseline methods. (Part
3)

Third, in terms of the three effort-aware indicators, we also observe that TSTSS achieves

the best average values on the three indicators across the 50 cross-version pairs from

Figure 4.11(r). More specifically, average EAP by TSTSS gains the improvement of 5.1%

compared with the best average EAP (for TF1) among the nine baseline methods; average

EAR by TSTSS gains the improvement of 5.4% compared with the best average EAR

(ALL, TF2 and YF1) among the nine baseline methods; average EAF by TSTSS gains the

improvement of 6.9% compared with the best average EAF (TF1 and YF2) among the 9

baseline methods.

Fourth, in terms of the three effort-aware indicators, from Figure 4.10(a), 4.10(c),

4.10(d), 4.10(f), and 4.11(m), the results show that all three average effort-aware indicator

values of TSTSS are higher than the nine baseline methods on project ant, ivy, jedit, lucene,

and prop2, respectively. In addition, Figure 4.10(b), 4.10(e), 4.10(h), and 4.11(p) show that

TSTSS achieves the best average EAR and EAF than the nine baseline methods on project

camel, log4j, synapse, and prop5, respectively. Figure 4.10(g), 4.11(k), and 4.11(o) show

that TSTSS achieves the best average EAP and EAF than the nine baseline methods on

project poi, xerces, and prop4, respectively.

103

Fifth, Figure 4.11 visualizes the results of Friedman test and Nemenyi post-hoc test for

the 10 methods in terms of the six indicators. The p values of Friedman test are all less

than 0.05, which indicates that the differences among the 10 methods can be explained by

statistically significant in terms of all six indicators. The Nemenyi test results show that

TSTSS achieves the best average rank on five indicators except for AUC. TSTSS performs

significantly better than the nine baseline methods in terms of F-measure, MCC, and EAF,

whereas has no significant differences compared with 6, 3, 3 baseline methods in terms of

AUC, EAP, and EAR, respectively.

1 2 3 4 5 6 7 8 9 10

TSTSS
YF2
TF2

ALL
KF2 TF1

YF1
PF2
PF1
KF1

CD = 1.916 Friedman p-value: 1.453e-16

(s) F-measure

1 2 3 4 5 6 7 8 9 10

TSTSS
TF2
YF2
TF1

ALL YF1
PF2
KF2
PF1
KF1

CD = 1.916 Friedman p-value: 1.005e-16

(t) MCC

1 2 3 4 5 6 7 8 9 10

TF1
TF2

TSTSS
YF2
YF1 PF2

ALL
PF1
KF2
KF1

CD = 1.916 Friedman p-value: 7.486e-09

(u) AUC

1 2 3 4 5 6 7 8 9 10

TSTSS
YF2
TF2
TF1
YF1 PF2

ALL
PF1
KF2
KF1

CD = 1.916 Friedman p-value: 1.033e-08

(v) EAP

1 2 3 4 5 6 7 8 9 10

TSTSS
YF1
TF2
YF2
KF1 ALL

KF2
TF1
PF2
PF1

CD = 1.916 Friedman p-value: 1.230e-07

(w) EAR

1 2 3 4 5 6 7 8 9 10

TSTSS
YF2
TF2
YF1
TF1 ALL

PF2
KF2
KF1
PF1

CD = 1.916 Friedman p-value: 5.140e-19

(x) EAF

Figure 4.11: Comparison of TSTSS against nine baseline methods with Friedman test and
Nemenyi post-hoc test in terms of all six indicators.

Discussion: The principles of TSTSS and the nine baseline methods are different.

TSTSS selects the subset by solving an two-stage optimization problem, i.e., optimizing

the reconstruction error and the representing cost, instead of simple distance based and

clustering based selection as the baseline methods do. The characteristic of TSTSS is

104

that the selected modules are not only important to the data of the prior version but also

representative to the data of the current version, therefore, the elaborately selected module

subset by TSTSS is more refined and targeted. In addition, TSTSS can constrain the

number of the selected modules in each stage by adjusting the corresponding parameters,

while all the baseline subset selection methods cannot determine how many modules

are selected. This means that TSTSS is more flexible to control the proportion of the

training set according to the practice conditions, such as the constraints of the memory

and computing power.

Answer to RQ3: To sum up, TSTSS is more effective to select an optimum training

subset to enhance CVDP performance than other subset selection methods.

4.4.4 Results for RQ4

Methods: This question mainly focuses on two differences among these training subset

selection methods. The first one is the number of selected candidates since the method

that does not degrade performance with fewer selected candidate modules is desired.

The second one is the defect ratios of the selected training sets by these methods since

training data with higher defect ratios are helpful to train a more effective model for the

identification of the defective modules. For these purposes, we record the number of

selected modules by these methods and the corresponding percentages of the defective

modules.

Results: Table 4.4 reports the recorded results, where # SM and % SD denote the

number of the selected modules and the corresponding defect ratios. The defect ratio

values are with gray shade or bold when they are higher or the same compared with the

original ones, respectively. From the table, we have the following observations:

105

Table 4.4: Detailed Statistic of Selected Modules by TSTSS and the Baseline Methods

Cross-Version Pairs
TSTSS TF1 TF2 PF1 PF2 YF1 YF2 KF1 KF2

SM % SD # SM % SD # SM % SD # SM % SD # SM % SD # SM % SD # SM % SD # SM % SD # SM % SD

ant

1.3 1.4 91 15.4% 116 16.4% 126 15.9% 111 16.5% 126 15.9% 115 16.5% 125 16.0% 7 0.0% 7 14.3%
1.4 1.5 117 21.4% 143 23.8% 178 22.5% 137 22.9% 175 22.7% 138 23.2% 173 23.1% 31 25.8% 33 30.3%
1.5 1.6 110 14.5% 259 9.3% 293 10.9% 255 9.3% 293 10.9% 257 9.3% 290 10.3% 88 3.4% 99 2.0%
1.6 1.7 143 25.2% 315 26.3% 352 26.1% 297 25.0% 351 26.1% 298 25.5% 334 24.6% 118 9.3% 115 8.7%

camel
1.0 1.2 138 3.6% 270 4.1% 338 3.8% 241 3.8% 322 4.0% 255 3.1% 330 3.0% 73 0.0% 76 0.0%
1.2 1.4 253 39.9% 473 35.5% 599 35.7% 440 36.5% 577 36.7% 454 35.7% 586 35.7% 198 34.8% 203 33.5%
1.4 1.6 462 18.4% 693 16.9% 863 16.7% 656 16.2% 824 17.0% 675 15.9% 826 16.1% 355 7.6% 351 7.7%

ivy
1.1 1.4 19 68.4% 91 58.2% 111 56.8% 82 58.6% 111 56.8% 83 55.4% 105 54.3% 20 40.0% 28 39.3%
1.4 2.0 177 6.2% 194 6.2% 241 6.6% 183 5.7% 241 6.6% 179 3.9% 231 4.8% 58 1.7% 63 1.6%

jedit

3.2.1 4.0 185 31.9% 247 32.8% 272 33.1% 239 32.1% 272 33.1% 240 31.7% 268 32.5% 74 8.1% 82 11.0%
4.0 4.1 224 23.7% 259 22.8% 305 24.6% 252 22.5% 303 24.8% 258 23.3% 297 24.6% 88 9.1% 88 5.7%
4.1 4.2 228 25.0% 261 26.1% 311 25.4% 254 24.7% 311 25.4% 254 23.2% 304 24.0% 76 9.2% 82 8.5%
4.2 4.3 239 13.4% 301 13.3% 367 13.1% 281 13.3% 360 13.3% 290 12.4% 357 12.0% 86 2.3% 94 2.1%

log4j
1.0 1.1 56 28.5% 96 26.0% 133 25.6% 94 25.3% 135 25.2% 95 25.3% 133 25.6% 11 9.1% 21 4.8%
1.1 1.2 29 27.6% 100 32.0% 109 33.9% 96 32.0% 109 33.9% 97 30.9% 107 32.7% 15 20.0% 17 11.8%

lucene
2.0 2.2 49 55.1% 175 44.6% 194 46.9% 169 43.9% 195 46.7% 170 43.5% 189 45.5% 0 0.0% 5 0.0%
2.2 2.4 82 65.9% 212 56.6% 247 58.3% 199 55.9% 246 58.2% 202 56.4% 241 57.7% 7 42.9% 14 64.3%

poi
1.5 2.0 137 56.9% 179 58.7% 236 59.7% 171 58.4% 227 59.9% 169 56.8% 223 57.4% 105 61.0% 117 57.3%
2.0 2.5.1 235 12.8% 269 12.3% 314 11.8% 262 12.6% 311 11.9% 267 11.6% 311 10.9% 174 5.7% 178 6.2%

2.5.1 3.0 64 68.8% 283 56.9% 369 62.9% 263 54.5% 349 61.4% 275 56.0% 380 64.2% 199 73.4% 194 73.7%

synapse
1.0 1.1 56 12.5% 110 13.6% 155 10.3% 105 12.8% 151 10.6% 103 11.7% 154 10.4% 5 0.0% 8 0.0%
1.1 1.2 91 20.9% 179 21.8% 222 27.0% 175 21.4% 222 27.0% 176 21.0% 221 27.1% 51 9.8% 59 8.5%

velocity
1.4 1.5 100 89.0% 116 82.8% 195 75.4% 113 81.7% 175 74.2% 109 84.4% 182 78.0% 37 94.6% 46 91.3%
1.5 1.6 147 61.9% 176 64.2% 214 66.4% 174 64.1% 214 66.3% 175 64.0% 213 66.2% 80 43.8% 92 50.0%

xalan
2.4 2.5 532 13.5% 575 14.6% 719 15.2% 548 14.4% 680 15.7% 562 13.9% 702 14.0% 233 4.7% 252 5.2%
2.5 2.6 335 55.5% 649 49.3% 801 48.3% 635 49.4% 792 47.8% 649 49.6% 795 48.2% 315 41.6% 314 41.1%

xerces
init 1.2 94 53.2% 111 45.9% 162 47.5% 96 46.1% 141 44.6% 100 45.0% 153 45.8% 41 65.9% 42 64.3%
1.2 1.3 191 8.9% 331 14.5% 434 16.4% 326 14.1% 432 16.1% 328 13.7% 435 15.2% 244 13.5% 254 12.6%
1.3 1.4.4 147 22.4% 292 17.8% 447 15.4% 268 17.4% 444 15.3% 266 16.2% 424 13.4% 234 5.1% 252 5.2%

prop1

9 44 782 10.2% 2643 4.2% 4151 3.6% 2384 4.3% 3565 3.9% 2589 3.8% 4315 2.9% 3584 1.8% 3629 1.9%
44 92 985 16.8% 1948 11.1% 3393 9.4% 1715 11.1% 3366 8.5% 1889 10.2% 3680 9.1% 2901 6.8% 2929 7.4%
92 128 925 35.1% 2515 40.7% 3518 36.3% 2500 40.6% 3651 34.9% 2503 40.6% 3633 34.9% 2818 32.2% 2907 33.3%
128 164 580 16.0% 1568 7.3% 3300 6.5% 1350 7.0% 3245 5.3% 1430 6.2% 3286 5.1% 2652 3.4% 2653 3.3%
164 192 933 17.7% 1687 11.1% 3205 9.2% 1464 10.1% 3142 8.2% 1527 9.0% 3276 7.5% 2726 5.8% 2757 5.7%

prop2

225 236 1360 8.7% 1106 9.9% 1778 8.1% 963 10.4% 1513 8.7% 1063 9.4% 1791 7.3% 1272 4.2% 1269 4.4%
236 245 1278 4.3% 1153 4.3% 2169 3.5% 957 4.5% 1841 3.7% 1095 3.6% 2165 3.0% 1478 1.6% 1490 1.6%
245 256 1384 6.0% 1545 5.4% 1998 5.2% 1515 5.2% 1949 5.2% 1541 5.3% 2018 5.0% 1426 3.1% 1455 3.0%
256 265 1194 34.4% 1193 34.8% 1914 32.3% 905 33.5% 1401 33.1% 1157 34.5% 1927 30.8% 1384 30.5% 1388 31.2%

prop3
285 292 1118 11.9% 970 12.9% 1555 11.1% 755 12.9% 1191 12.3% 906 11.9% 1632 9.5% 1197 7.2% 1224 7.0%
292 305 1503 10.5% 1496 10.5% 2146 9.7% 1305 11.3% 1817 10.9% 1468 10.3% 2287 8.7% 1602 5.4% 1634 5.4%
305 318 385 10.4% 1764 4.1% 2247 3.9% 1699 3.8% 2141 3.9% 1757 4.0% 2372 3.7% 1655 1.7% 1709 1.8%

prop4
347 355 1749 5.8% 1522 5.1% 2708 5.6% 1246 4.9% 2321 5.2% 1431 4.4% 2635 4.9% 2148 4.2% 2190 4.5%
355 362 927 27.4% 1904 32.7% 2699 33.6% 1812 32.7% 2583 33.9% 1892 32.4% 2731 31.5% 2160 31.3% 2214 31.1%

prop5

4 40 1847 7.3% 1992 8.9% 3302 7.8% 1682 8.9% 2759 8.0% 1884 8.3% 3335 7.1% 1965 5.6% 1960 5.6%
40 85 630 16.8% 2445 10.9% 3653 11.2% 2398 10.5% 3714 11.6% 2416 10.5% 3720 11.7% 2395 9.8% 2458 9.5%
85 121 1991 25.5% 2543 27.8% 3429 26.0% 2520 27.6% 3491 26.4% 2533 27.6% 3477 26.2% 2150 22.0% 2219 22.4%
121 157 1672 17.5% 1779 17.0% 3181 13.2% 1493 17.4% 2583 14.5% 1733 16.4% 3208 12.4% 2004 7.6% 1947 7.9%
157 185 1222 19.7% 1819 15.1% 2752 13.3% 1498 15.5% 2290 14.4% 1720 14.1% 2813 12.1% 1788 6.4% 1785 6.8%

prop42
452 453 181 11.6% 192 10.9% 292 10.3% 172 11.7% 267 10.5% 187 11.2% 283 10.2% 97 4.1% 102 4.9%
453 454 169 7.7% 226 7.5% 259 7.7% 222 7.3% 258 7.7% 223 7.2% 259 7.7% 82 2.4% 105 1.9%

First, TSTSS selects the fewest modules on 42 out of 50 cross-version pairs compared

with the first 6 baseline methods. This observation indicates that TSTSS is more effective

for data reduction while still maintains the competitive CVDP performance as mentioned

in 4.4.3.

Second, in terms of KF1 and KF2, they select fewer modules on 24 out of total 29 cross-

106

version pairs than TSTSS over the first 11 open-source projects. The reason is that they

treat many modules as noises and discard them. However, they may select only one-class

modules on some cross-version pairs, such as on pairs 〈camel 1.0, camel 1.2〉, 〈lucene 2.0,

lucene 2.2〉, and 〈synapse 1.0, synapse 1.1〉. This drawback makes the classifier fail to

build a discriminative CVDP model. On the contrary, TSTSS selects fewer modules than

KF1 and KF2 on 18 out of total 21 cross-version pairs over the last 6 proprietary projects.

As the difference between the open-source and proprietary projects is that the scale of the

latter (expect for the prop42 project) is much larger than that of the former, this indicates

that TSTSS is more effective to reduce the training set on large-scale defect data than KF1

and KF2.

Third, the new training set by TSTSS has higher or similar defect ratios compared with

the original one on 33 out of 50 cross-version pairs, and the defect ratios of the new training

sets by the first 5 baseline methods are also improved on more than half of the total cross-

version pairs. While the last 3 baseline methods improve the defect ratios of the new

training set on few pairs. This indicates that the training subset selection methods have

greater advantages to improve the defect ratio, which is beneficial for the classification

models to the identification of defective modules.

Discussion: as the baseline methods select the nearest modules directly, or first cluster

the modules and then select the nearest modules in each cluster as the candidates, thus,

the positions of the selected modules are nearest to the ones of the current version in the

feature space. Here, we carry out an initial experiment to analyze what kind of modules are

selected by our TSTSS method. Since the defect data consist of multidimensional features,

we need to use a dimensional reduction technique to convert the original data into a visual

plane for easy observation. For this purpose, we utilize a classic and commonly-used

method Principal Component Analysis (PCA) to transform the defect data into a two-

dimensional data, and then randomly select several cross-version pairs (such as 〈log4j-1.0,

107

log4j-1.1〉, 〈synapse-1.1, synapse-1.2〉, and 〈velocity-1.4, velocity-1.5〉) for observation.

First, we apply our proposed TSTSS method to select the candidates from the prior version,

then use the PCA to convert the original data of two versions by maintaining 2 features

(i.e., the two largest eigenvectors corresponding to the two largest eigenvalues), finally,

visualize the scatter plots on a two-dimensional plane and mark the selected candidates.

Figure 4.12 show the visualization results on the 3 cross-version pairs. In the figure, the

blue triangle ‘∇’ represents the module in the current version, the red cross ‘+’ represents

the module in the prior version, and the red cross with a red circle ‘⊕’ represents the

selected candidate from the prior version. From the figure, we observe two general rules

about the selected modules by TSTSS: first, TSTSS selects more modules from the prior

version in the density regions; second, in sparse region, not all the nearest modules towards

the current version modules will be selected, instead, TSTSS chooses a few modules from

the neighbors as the representatives. This maybe the reason why TSTSS can select fewer

modules from the prior version.

Answer to RQ4: From the above observations, TSTSS selects fewer modules

(except compared with KF1 and KF2 on small scale defect data) with promising CVDP

performance. Thus, TSTSS is a more preferred training subset selection method for CVDP

task. Besides, TSTSS and the first 5 baseline methods have the potential to relieve the class

imbalance issue to a certain extent by increasing the defect ratios of the selected training

sets on most cross-version pairs.

4.5 Conclusion

In this chapter, we propose a two-stage training subset selection framework TSTSS for

the CVDP task. First, TSTSS employs the a novel SMRS method to self-reduce the

data of the previous version by retaining the software modules that play important roles

108

−5 0 5 10 15 20
−6

−5

−4

−3

−2

−1

0

1

2

3

(a) 〈log4j-1.0, log4j-1.1〉

−5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

(b) 〈synapse-1.1, synapse-1.2〉

−5 0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

(c) 〈velocity-1.4, velocity-1.5〉

Figure 4.12: Visualization results of the selected candidates on 3 cross-version pairs.

in the reconstruction of the original data and filtering the useless modules without the

participation of the software module of current version. Then, TSTSS uses the DS3

method to refine the previously selected training subset by retaining software modules

that can well represent the data of the current version and filtering out software modules

that have no effect on the data of the current version. We compare our proposed TSTSS

framework with two variants and nine training subset selection methods on 67 versions of

17 projects from the PROMISE dataset. We use six indicators to evaluate the performance

109

of these methods. The experimental results show that our proposed TSTSS framework can

achieve better performance in most cases.

110

Chapter 5

Balanced Distribution Adaptation Based
Transfer Learning for Cross Project
Defect Prediction

In previous two chapters, the training set and test set under IVDP and CVDP scenarios

come from the same project. Thus, the two scenarios can be also called within project

defect prediction which needs the labeled historical data of one project. But for the

ongoing or immature projects, they maybe not historical development data to collect the

labels. In this case, the work in previous two scenarios are not applicable.

Fortunately, there are publicly available labeled software defect data online whose

quality has been recognized by previous researchers. Existing studies proposed to utilize

the labeled data of an external project (called source project) to conduct the defect

prediction task on the project (called target project) with limited or no labeled training

data [103], which called CPDP. However, distinct projects have different scales and

functional complexity, which may lead to the distribution differences between the data

across projects. Thus, the difficulty that needs to be solved for CPDP is to eliminate

the differences. Transfer learning based and training data filter based CPDP methods are

111

adopted to address this issue. In this work, we focus on the former one which is the

mainstream of current researches.

5.1 Motivation

Transfer learning based CPDP methods transfer the knowledge of the source project to

annotate the target project with the aim to minimize the distribution differences of the data

between the two projects [86, 102]. There are two kinds of distribution differences, i.e.,

the marginal and conditional distribution differences. The former one is the distribution of

the module features themselves, and the later one is the distribution of the module labels

given the values of the module features. Previous transfer learning based CPDP methods,

like the method in [102], mainly focus on adapting the marginal distribution difference.

However, when the data of two projects are much more dissimilar, the importance of the

marginal distribution is higher than that of the conditional distribution, whereas when the

data of two projects are similar, the conditional distribution is more important than the

marginal distribution [145]. Thus only considering one distribution is not appropriate for

all cross-project pairs and will limit the CPDP performance on some cases. To overcome

this deficiency, the intuition here is to simultaneously adapt the two kinds of distributions.

In this work, we introduce a novel Balanced Distribution Adaptation (BDA) [145] based

transfer learning as our CPDP method to tackle the distribution adaptation problem. More

specifically, BDA not only considers both marginal and conditional distribution differences

between the data of two projects, but also assigns different importance degrees to the two

kinds of distributions. Thus, it can adapt to various cross-project pairs more effectively.

112

5.2 The Used Methods and Proposed CPDP Framework

To deal with the data distribution difference issue in the cross project scenario, we propose

to use a BDA model. Subsection 5.2.1 introduces some notation definitions, subsection

5.2.2 describes the solution process of the used BDA model, subsection 5.2.3 gives our

proposed CPDP framework.

5.2.1 Notation Definitions

Assume the source project as DS = {XS,YS} = {xis,yis}nsi=1, where xis denotes the ith

module, XS ∈ Rns×ds denotes the feature set of the source project, ds and ns separately

denote the feature dimension and number of modules. In other words, the row of matrix

XS denotes the software modules and the column of matrix XS denotes the module

feature. In addition, yis denotes the label of the ith module and YS ∈ Rns×1 denotes the

label set of the source project. Similarly, assume the target project as DT = {XT ,YT } =

{xjt,y
j
t}ntj=1, where xjt denotes the jth module, XT ∈ Rnt×dt denotes the feature set

of the target project, dt and nt separately denote the feature dimension and number of

modules. In our work, ds = dt, that is, the cross project data share the same feature

dimension. yjt denotes the label of the jth module and YT ∈ Rnt×1 denotes the label set

of the target project. Note that, the labels of the target project are unknown and need to

be predicted. In addition, we define the feature space of source and target projects as Xs

and Xt respectively, the label space of source and target projects as Ys and Yt respectively.

In CPDP scenario, the defect data of the two projects have the same feature space, i.e.,

Xs = Xt and the same label space, i.e., Ys = Yt, but have different marginal distributions,

i.e., P (xs) 6= P (xt) and different conditional distributions, i.e., P (ys|xs) 6= P (yt|xt).

For CPDP task, BDA adaptively minimizes the marginal distribution difference, i.e.,

d(P (xs), P (xt)), and the conditional distribution difference, i.e., d(P (ys|xs), P (yt|xt))

113

simultaneously, aiming at learning the labels yt of the data of the target project DT by

utilizing the labeled data of the source project DS .

5.2.2 The BDA Model

The ideal transfer learning for CPDP should consider both the marginal and conditional

distribution differences between the source and target projects. That is, it needs to

minimize the distance between DS and DT as follows:

d(DS,DT) =d(P (xs), P (xt))

+ d(P (ys|xs), P (yt|xt)).
(5.1)

However, the main drawback of Eq.(5.1) is that it treats the importance of the two kinds

of distributions equally. However, when the dissimilarity of the two projects is large, the

margin distribution should be paid more attention, whereas when the similarity of the

two projects is large, the conditional distribution should be more concerned. Therefore,

for different cross project data, it is not reasonable to simply combine the two kinds of

distributions with the same importance (i.e., weight). To overcome this deficiency, BDA

is proposed to solve this issue by adaptively assigning different weights to the two kinds

of distributions based on various cross-project pairs. BDA is formulated as follows:

d(DS,DT) ≈(1− µ)d(P (xs), P (xt))

+ µd(P (ys|xs), P (yt|xt)),
(5.2)

where µ ∈ [0, 1] is a balance factor that is used to highlight different importance degrees

of the two kinds of distributions. When the dissimilarity of the cross project data is larger,

µ tends to 0, which means that the importance of the marginal distribution is emphasized;

whereas when the cross project data are more similar, µ tends to 1, which means that the

conditional distribution is more important. Since the balance factor µ can adaptively adjust

114

the importance of the two kinds of distributions for specific cross-project pair, BDA has

the potential to generate a targeted training set for the CPDP task.

However, the labels of the target project are not available in advance because they are the

outputs of CPDP task. In other words, yt is unknown, which leads that it is not feasible to

calculate the term P (yt|xt). An alternative way is to use the class conditional distribution

P (xt|yt) to approximate the conditional distribution of the cross project data. The fact

here is that when the amount of modules is adequate, the values of P (xt|yt) and P (yt|xt)

are approximately equal according to the sufficient statistics [81]. To calculate the class

conditional distribution, a basic classifier is built on the source project data DS and the

trained model is used to predict the labels of the target project data DT . Since the predicted

labels may be not accuracy at first, multiple iterations are employed to refine the labels

until the results are stable.

To calculate the discrepancy between two marginal distributions, i.e., d(P (xs), P (xt)),

and the two conditional distributions, i.e., d(P (ys|xs), P (yt|xt)) in Eq.(5.2), maximum

mean discrepancy (MMD) method [104] is applied to empirically estimate them. Then

Eq.(5.2) is rewritten as follows:

d(DS,DT) = (1− µ)

∣∣∣∣∣
∣∣∣∣∣ 1

ns

ns∑
i=1

xis −
1

nt

nt∑
j=1

xjt

∣∣∣∣∣
∣∣∣∣∣
2

H

+ µ
C∑
c=1

∣∣∣∣∣
∣∣∣∣∣ 1

ncs

∑
xi
s∈D

(c)
S

xis −
1

nct

∑
xj
t∈D

(c)
T

xjt

∣∣∣∣∣
∣∣∣∣∣
2

H

,

(5.3)

where H means the reproducing kernel Hilbert space, C denotes the number of different

labels (C=2 in CPDP scenario), D(c)
S and D

(c)
T denote the modules with label c in the

source and target projects respectively, ncs = |D(c)
S | and nct = |D(c)

T | denote the number

of modules belonging to D
(c)
S and D

(c)
T respectively. The first term and the second term

115

in Eq.(5.3) represent the marginal distribution discrepancy and conditional distribution

discrepancy among the cross project data, respectively.

Using the matrix tricks and regularization, Eq.(5.3) is equal to the following formula:

min tr(A>X((1− µ)M0 + µ
C∑
c=1

Mc)X
>X) + λ‖A‖2F

s.t.A>XHX>A = I, 0 ≤ µ ≤ 1,

(5.4)

where X denotes the input data matrix that combines the feature sets of the source project

XS and the target project XT , A denotes a transformation matrix, I ∈ R(ns+nt)×(ns+nt)

denotes the identity matrix, and H = I − (1/n)1 denotes a centering matrix. In addition,

M0 and Mc are MMD matrices that can be calculated using Eq.(5.5) and Eq.(5.6) as

follows:

(M0)ij =

1
n2s
, xi,xj ∈DS

1
n2t
, xi,xj ∈DT

− 1
nsnt

, otherwise,

(5.5)

(Mc)ij =

1
ncs

2 , xi,xj ∈D
(c)
S

1
nct

2 , xi,xj ∈D
(c)
T

− 1
ncsn

c
t
,

{
xi ∈D

(c)
S ,xj ∈D

(c)
T

xi ∈D
(c)
T ,xj ∈D

(c)
S

0, otherwise.

(5.6)

The first term in Eq.(5.4) with balance factor µ is used to adapt the importance degrees

of the marginal and conditional distributions, and the second term with parameter λ is a

regularization term where ‖A‖2F is the Frobenius norm. The first constraint condition is

used to ensure that the transformed data A>X preserve the inner structure properties of

the original data, and the second one constrains the value range of the balance factor µ.

116

To solve Eq.(5.4), we define the Lagrange multipliers as Φ = (φ1, φ2, ..., φd), and then

Eq. 5.4 can be rewritten as follows:

L =tr(A>X((1− µ)M0 + µ

C∑
c=1

Mc)X
>X)

+ λ‖A‖2F + tr((I −A>XHX>A)Φ).

(5.7)

We set the first-order derivative of Eq.(5.7) in terms of A as 0, i.e., ∂L/∂A = 0, and the

optimization is transformed into a generalized eigendecomposition problem as follows:

(X((1− µ)M0 + µ

C∑
c=1

Mc)X
> + λI)A

= XHX>AΦ.

(5.8)

As a result, the optimum transformation matrix A is obtained as the solution of Eq.(5.8).

Given a threshold of feature dimension that we want to preserve for the new feature set,

we can get the transformed data of the source and the target projects.

We provide an example to show the feature transformation effect of the BDA method

using simulated data. For the source project, we generate 120 non-defective software

modules (red circles) from a mixture of Gaussian with means (1.5, 4), and 50 defective

software modules (blue circles) from a mixture of Gaussian with means (6, 3), as showed in

Figure 5.1(a). To reflect the distribution differences across projects, for the target project,

we generate 120 non-defective software modules (red pentagrams) from a mixture of

Gaussian with means (3.5, 5), and 60 defective software modules (blue pentagrams) from

a mixture of Gaussian with means (5.5, 1), as showed in Figure 5.1(b). Figures 5.1(c)

depicts the mapped data of two projects by BDA method with the equal weight in the

common feature space. From Figure 5.1, we observe that the new data of the two projects

117

mainly locate in two regions marked with black rectangles in the embedding feature space,

which reduces the data distribution differences between the two projects.

(a) source project (b) target project

(c) common feature space

Figure 5.1: An example of the feature transformation effect by BDA.

5.2.3 The Proposed Framework

Figure 5.2 depicts the flow chart of our proposed BDA model based CPDP framework. We

first use the z-score method to normalize the source project and target project individually.

118

Software Modules

Source project

with labels

Software Modules

Target project

without labels

BDA

Software Modules

Mapped Source

project

Software Modules

Mapped Target

project

Logistic Regression

Model

Results

Figure 5.2: Overview of our Proposed CPDP framework.

Then, we use the BDA model to map the two project data into a common feature space.

As we mainly focus on investigate the predictive effect of cross-project data mapped by

the BDA model and do not consider the impact of data class imbalance, in this chapter,

we use the Logistic Regression (LR) classifier for classification model construction and

prediction. The training process is to learn the weight vector associated to the module

features and the bias parameter.

5.3 Study Setup

5.3.1 Research Questions

We empirically evaluate the BDA model by answering the following six research

questions.

RQ1: How do different data normalization strategies impact the BDA

performance?

Nam et al. [102] have stated that different data normalization methods can impact the

performance of the CPDP model. This question is designed to investigate whether our

BDA based CPDP method is affected by different data normalization methods and to find

119

the most suitable one for our data preprocessing.

RQ2: Is BDA more effective than the training data filter based CPDP methods?

Training data filter based CPDP methods alleviate the data distribution differences of

two projects by selecting some modules from the source project that are representative to

the modules of the target project. Such methods do not change the feature spaces of the

two projects. However, some of the discarded modules may contain important information

to distinguish the modules of different classes. Different from this kind of methods, BDA

just transfers the feature spaces while reserves all modules of the source project avoiding

the information loss. This question is designed to investigate whether BDA is superior to

the training data filter based methods for CPDP performance improvement.

RQ3: Does BDA perform better than the transfer learning based CPDP methods?

The distribution differences of the cross project data come from two aspects: the

marginal and the conditional distribution differences. In addition, according to the

distinct similarity levels between the data of the two projects, the importance degrees

of the two kinds of distributions vary. However, existing transfer learning based CPDP

methods neither simultaneously consider the two kinds of distributions, nor focus on

their different importance degrees. This question is designed to investigate whether the

method considering both distributions and their importance degrees (i.e., BDA) will further

improve the CPDP performance compared with other transfer learning methods.

RQ4: How different parameter settings of the selected feature dimensions impact

the performance of BDA model based CPDP?

After transforming the original data of two projects into a new feature space, we

empirically select 5% of original feature dimensions to carry on our experiments. This

question discusses the impacts of different feature dimensions on the CPDP performance

120

of BDA.

RQ5: How different parameter λ values impact the performance of BDA model

based CPDP?

As we set the regularization parameter λ value to 0.1 without any prior knowledge, this

question discusses the impacts of different parameter λ values on the CPDP performance

of BDA.

RQ6: How different classifiers impact the performance of BDA model based

CPDP?

As we choose LR classifier as our basic classification model, this question discusses the

impacts of different classifiers on the CPDP performance of BDA.

5.3.2 Benchmark Dataset

In this chapter, we use the NASA datasete and AEEEM dataset the same as in Chapter

3 as our benchmark dataset. Since the CPDP experiments need that the projects in the

same dataset have the same feature set, we select all projects in the AEEEM dataset and

five projects with 37 features in the NASA dataset to conduct our experiments. Table 5.1

reports the detailed statistic description of these projects.

5.3.3 Evaluation Indicators

In this chapter, we use the same three traditional performance indicators (i.e., F, MCC,

and AUC) and three effort-aware performance indicators (i.e., EAP, EAR, and EAF) as in

Chapter 3 and Chapter 4.

121

Table 5.1: Benchmark Datasets for Within Project Defect Prediction

Dataset Project # F # M # DM % DM

NASA

CM1 37 327 42 12.84%
MW1 37 251 25 9.96%
PC1 37 696 55 7.90%
PC3 37 1073 132 12.30%
PC4 37 1276 176 13.79%

AEEEM

Equinox 61 324 129 39.81%
JDT 61 997 206 20.66%

Lucene 61 691 64 9.26%
Mylyn 61 1862 245 13.16%
PDE 61 1497 209 13.96%

5.3.4 Parameter Configuration

In the BDA model, there are 4 parameters that need to be specified. For the regularization

parameter λ in Eq.(4.8), we set it to 0.1. As mentioned in Subsection 5.2.2, we use multiple

iterations to refine the predicted labels. In our experiment, we set the maximal iterations

as 10. For the balance factor µ, it is a project-specific parameter, which means that the

µ value varies for different cross-project pairs. In other words, the µ value is estimated

based on the data distributions of the two projects. Unfortunately, there is no effective

way for such estimation [145]. In real application scenario, it is feasible to use the cross-

validation strategy to determine the optimum µ value. Since this work just makes an

initial exploration to investigate whether considering both two kinds of distributions with

different weights can further improve CPDP performance, we set 11 different µ values,

i.e., 0, 0.1,..., 0.9, 1, and run BDA on each µ value to search the optimum value. For the

desired feature dimensions of the transformed source and target projects, in this chapter,

we just choose to reserve 5% of total feature number.

122

5.3.5 Cross Project Scenario Design

In this work, we conduct the CPDP experiment on the projects in the same dataset and

only consider the one-to-one cross project prediction. For example, if the EQ project in

AEEEM dataset is treated as the target project, then the other 4 projects in AEEEM dataset

take turns as training sets. Thus, we have a total of 20 cross-project pairs on the AEEEM

dataset. Similarly, we have a total of 20 cross-project pairs on the NASA dataset. As a

result, we have a total of 40 cross-project pairs in this chapter.

5.3.6 Statistic Test Method

In this chapter, we use the same Friedman test with improved Nemenyi test as in Chapter

3 and Chapter 4 for significance analysis.

5.4 Experimental Results

5.4.1 Results for RQ1

Method: In this chapter, we employ a total of six normalization techniques in [102]

to answer this question. These techniques belong to two types of data normalization

schemes, i.e., min-max normalization and the z-score normalization. For each feature

vector x = {x1, x2, ..., xm} in the given data, in terms of min-max normalization, xi =

xi−min(x)
max(x)−min(x) , where min(x) and max(x) represent the minimum and maximum values

of the feature vector x respectively, xi and xi are the original and normalized i-th valued

of the feature vector x respectively. In terms of z-score normalization, xi = xi−mean(x)
std(x)

,

wheremean(x) and std(x) represent the mean value and standard deviation of the feature

123

vector x, respectively [157]. First, we briefly describe the six normalization techniques as

follows:

N0: Do not use any normalization on the original defect data.

N1: Applying min-max normalization to the defect data of each project.

N2: Applying z-score normalization to the defect data of each project.

N3: Applying z-score normalization to the defect data of each project with the mean

value and standard deviation from the source project. In other words, we normalize the

i-th feature in both projects using the mean value and standard deviation of the i-th feature

in the source project.

N4: Applying z-score normalization to the defect data of each project with the mean

value and standard deviation from the target project. In other words, we normalize the i-th

feature in both projects using the mean value and standard deviation of the i-th feature in

the target project.

NAS:Normalization Adaption Selection utilizes a heuristic strategy to select the

optimum normalization option from the above five techniques. This heuristic strategy

is based on the elements of a data characteristic vector which measures the similarity of

the data characteristic between two projects [102].

Results: Table 5.2 presents the average indicator values of the BDA method with

six different data normalization techniques on the cross project pairs of NASA dataset,

AEEEM dataset, and across the two datasets. From this table, we have the following

observations.

BDA combining two data normalization techniques, i.e., N0 and N1, achieves the worst

performance. In other words, using the original feature values without any normalization

124

Table 5.2: Average Indicator Values of the BDA Method with Six Different Data
Normalization Techniques on Each Dataset and Across All Dataset

Indicator Dataset BDA N0 BDA N1 BDA N2 BDA N3 BDA N4 BDA NAS

F
NASA 0.000 0.026 0.489 0.485 0.496 0.490

AEEEM 0.142 0.172 0.541 0.517 0.536 0.500
TOTAL 0.071 0.099 0.515 0.501 0.516 0.495

MCC
NASA 0.000 0.013 0.242 0.242 0.251 0.245

AEEEM 0.060 0.069 0.317 0.303 0.308 0.276
TOTAL 0.030 0.041 0.280 0.273 0.279 0.261

AUC
NASA 0.558 0.630 0.722 0.715 0.729 0.723

AEEEM 0.672 0.670 0.746 0.729 0.744 0.732
TOTAL 0.615 0.650 0.734 0.722 0.736 0.728

EAP
NASA 0.050 0.059 0.140 0.149 0.144 0.145

AEEEM 0.146 0.160 0.310 0.300 0.299 0.280
TOTAL 0.098 0.109 0.225 0.224 0.222 0.213

EAR
NASA 0.222 0.225 0.305 0.327 0.324 0.318

AEEEM 0.410 0.419 0.404 0.387 0.406 0.416
TOTAL 0.316 0.322 0.355 0.357 0.365 0.367

EAF
NASA 0.130 0.137 0.245 0.261 0.256 0.254

AEEEM 0.282 0.300 0.359 0.343 0.358 0.361
TOTAL 0.206 0.218 0.302 0.302 0.307 0.308

and using the maximum-minimum method to deal with the original feature values are not

helpful for our BDA model-based CPDP framework to achieve the good performance. In

addition, on all cross-project pairs from the NASA dataset, the average values of F, MCC,

AUC and EAP obtained by the BDA model with four normalized techniques, i.e., N2, N3,

N4 and NAS have very small differences. On all cross-project pairs from the AEEEM

dataset, the average values of F, MCC, AUC and EAP obtained by the BDA model with

the normalization technique N2 are much higher than those obtained by the BDA model

with the normalization techniques N3, N4 and NAS. On all cross-project pairs from the

two data sets, the average values of the six indicators obtained by the BDA model with

the four normalized techniques, i.e., N2, N3, N4, and NAS, have small differences. Based

125

on the above observations, on the whole, the performance values obtained by the BDA

model with the normalization technique N2 are no worse than those obtained by the BDA

model with the other three normalization techniques (except for N0 and N1). Considering

that (1) the normalization technique NAS needs to use a series of complex rules to choose

different normalization schemes for different cross-project pairs; (2) the BDA model with

the normalization technique NAS does not obviously improve the performance of the

cross-project defect prediction; (3) the normalization technique N2 is commonly used

in the existing defect prediction researches, we adopt the normalization technique N2 to

preprocess the defect data in the following research question in this chapter.

Answer to RQ1: Our proposed BDA model based CPDP framework is not suitable

to combine the raw defect data without normalization and the defect data preprocessed

by the maximum-minimum normalization technique. In addition, the performance of the

BDA model with different z-score normalization strategies and the normalization adaption

selection (NAS) strategy has small differences on the whole.

5.4.2 Results for RQ2

Methods: To answer this question, we employ some training data filter based CPDP

models as our baseline methods including ALL, NN-Filter [142], Peter-Filter [107], Yu-

Filter [171], and HISNN [119]. ALL means that we use all the modules of the source

project to train the classification model without any data filter process. We treat this

method as a special data filter method and the most basic setting for comparison. HISNN

method is a nearest-neighbor based hybrid training data selection method. This method

uses a k-nearest neighbor to learn the local knowledge and employ Naive Bayes to learn the

global knowledge. Note that HISNN method uses a hybrid rule to determine the module

labels of the target project, we could not calculate the AUC indicator without the output

126

probability. We also implement the Kawata-Filter method with the parameter setting in the

original paper and try some other settings. However, this method identifies many modules

as the noise and discards them on majority cross-project pairs, which makes it impossible

for us to get modules from the source project to form the training set in most cases. Thus

we do not choose this method for comparison. Note that, NN-Filter, Peter-Filter, and

Yu-Filter correspond to the TF2, PF1, and YF2 in Chapter 4. In order to distinguish

whether these methods are used in the CVDP scenario or CPDP scenario, we give them

different names. The first baseline method is a very classic CPDP method and the other

three baseline methods are also specifically designed for CPDP task. This implies that the

selected baseline methods are representative to some extent.

Table 5.3: Average Indicator Values of BDA Model and five Training Data Filter Methods
on Each Dataset and Across All Datasets

Indicator Dataset ALL NN-Filter Peter-Filter Yu-Filter HISNN BDA

F
NASA 0.391 0.419 0.315 0.389 0.213 0.489

AEEEM 0.409 0.424 0.408 0.448 0.267 0.541
TOTAL 0.400 0.422 0.362 0.419 0.240 0.515

MCC
NASA 0.152 0.187 0.065 0.192 0.044 0.242

AEEEM 0.215 0.218 0.163 0.220 0.169 0.317
TOTAL 0.184 0.203 0.114 0.206 0.107 0.280

AUC
NASA 0.645 0.686 0.563 0.687 0.000 0.722

AEEEM 0.668 0.663 0.611 0.686 0.000 0.746
TOTAL 0.657 0.675 0.587 0.687 0.000 0.734

EAP
NASA 0.131 0.134 0.099 0.167 0.101 0.140

AEEEM 0.284 0.281 0.242 0.275 0.344 0.310
TOTAL 0.208 0.208 0.171 0.221 0.223 0.225

EAR
NASA 0.268 0.262 0.235 0.244 0.230 0.305

AEEEM 0.303 0.322 0.325 0.333 0.274 0.404
TOTAL 0.286 0.292 0.280 0.289 0.252 0.355

EAF
NASA 0.218 0.218 0.178 0.218 0.169 0.245

AEEEM 0.273 0.287 0.273 0.292 0.242 0.359
TOTAL 0.246 0.253 0.226 0.255 0.206 0.302

127

1 2 3 4 5 6

BDA
NN-Filter
Yu-Filter ALL

Peter-Filter
HISNN

CD = 1.192 Friedman p-value: 1.503e-21

(a) F

1 2 3 4 5 6

BDA
Yu-Filter
NN-Filter ALL

Peter-Filter
HISNN

CD = 1.192 Friedman p-value: 9.440e-14

(b) MCC

1 2 3 4 5

BDA
NN-Filter
Yu-Filter

ALL
Peter-Filter

CD = 0.964 Friedman p-value: 9.170e-10

(c) AUC

1 2 3 4 5 6

Yu-Filter
BDA

NN-Filter ALL
HISNN
Peter-Filter

CD = 1.192 Friedman p-value: 3.326e-05

(d) EAP

1 2 3 4 5 6

BDA
NN-Filter
Yu-Filter Peter-Filter

ALL
HISNN

CD = 1.192 Friedman p-value: 2.846e-09

(e) EAR

1 2 3 4 5 6

BDA
NN-Filter
Yu-Filter ALL

Peter-Filter
HISNN

CD = 1.192 Friedman p-value: 5.930e-08

(f) EAF

Figure 5.3: Comparison of BDA and five training data filter methods with Friedman test
and Nemenyi post-hoc test in terms of all six indicators.

Results: Table 5.3 presents the average indicator values of BDA method and five

training data filter methods on the cross project pairs of NASA dataset, AEEEM dataset,

and across the two datasets. Figure 5.3 depicts the statistic test results on the 40 cross

project pairs across the two datasets. From Table 5.3 and Figure 5.3, we have the following

observations.

First, from Table 5.3, on the 20 cross project pairs of NASA dataset, our BDA method

achieves the best performance in terms of five indicators (except for EAP); on the 20 cross

project pairs of AEEEM dataset, our BDA model also achieves the best performance in

terms of five indicators (except for EAP); across all 40 cross project pairs, our BDA model

achieves the best performance in terms of all indicators.

Second, compared with the five baseline methods, for the average indicator values of

BDA across the two datasets, BDA achieves average improvements of 46.2%, 87.1%,

13.1%, 10.4%, 27.3%, and 28.4% in terms of F, MCC, AUC, EAP, EAR, and EAF,

respectively. Compared with the best average indicator values among the five baseline

128

methods, BDA achieves average improvements of 22.2%, 35.9%, 6.9%, 1.1%, 21.6%, and

18.4% in terms of F, MCC, AUC, EAP, EAR, and EAF, respectively.

Third, from Figure 5.3, we observe that the p values of Friedman test in all subfigures

are all less than 0.05, which means that there exist significant performance differences

among the six methods. Our BDA model always belongs to the top-ranked group in terms

of all indicators and ranks the first in terms of five indicators (except for EAP). In addition,

BDA is significantly superior to all five baseline methods in terms of two indicators, i.e.,

F and EAR. But BDA has no significant differences compared with 2, 2, 3, and 1 baseline

methods in terms of MCC, AUC, EAP, and EAF, respectively.

Discussion: The reason why BDA is superior to the training data filter methods is that

BDA transforms the source project data and target project data into a common feature

space to maximize their distributional similarity, while the training data filter methods

only select a module subset from the source project without conduct feature transformation

which cannot guarantee the similarity of data distribution between the source and target

projects.

Answer to RQ2: In summary, the cross project data whose features are mapped by the

BDA model can more promote the CPDP performance than the cross project data obtained

by the training data filter methods.

5.4.3 Results for RQ3

Methods: To answer this question, we select six transfer learning based baseline

methods for comparison. The brief descriptions of these baseline methods are as follows:

Transfer Component Analysis (TCA) method [104] only considers the margin distribution

differences across the project data. Before performing TCA, TCA+ method [102] selects

129

a specific data normalization strategy based on some designed rules to preprocess the data

of the two projects. We design Conditional Distribution based Transfer learning (CDT)

method that only considers the conditional distribution differences between the data of the

two projects for comparison. JDT (called JDA in [81]) is a joint distributions based transfer

learning method that considers both the marginal and conditional distribution differences

with equal weights. Transfer Naive Bayes (TNB) [86] introduces the weight information

of the modules into the Bayes formula. Feature Selection using Clusters of Hybrid data

(FeSCH) method [103] is a two-step feature selection based transfer learning method.

This method consists of a feature clustering stage with a density-based clustering method

and a feature selection stage with a ranking strategy.

Table 5.4: Average Indicator Values of BDA Model and Six Transfer Learning Methods
on Each Dataset and Across All Datasets

Indicator Dataset TCA TCA+ CDT JDT TNB FeSCH BDA

F
NASA 0.454 0.338 0.466 0.459 0.398 0.461 0.489

AEEEM 0.512 0.470 0.514 0.519 0.536 0.475 0.541
TOTAL 0.483 0.404 0.490 0.489 0.467 0.468 0.515

MCC
NASA 0.215 0.143 0.224 0.220 0.196 0.225 0.242

AEEEM 0.303 0.277 0.298 0.299 0.234 0.270 0.317
TOTAL 0.259 0.210 0.261 0.260 0.215 0.248 0.280

AUC
NASA 0.715 0.644 0.717 0.720 0.708 0.726 0.722

AEEEM 0.746 0.728 0.735 0.741 0.725 0.703 0.746
TOTAL 0.731 0.686 0.726 0.731 0.717 0.715 0.734

EAP
NASA 0.135 0.105 0.140 0.136 0.164 0.161 0.140

AEEEM 0.305 0.292 0.300 0.301 0.207 0.297 0.310
TOTAL 0.220 0.199 0.220 0.219 0.186 0.229 0.225

EAR
NASA 0.242 0.171 0.267 0.249 0.248 0.330 0.305

AEEEM 0.363 0.357 0.375 0.380 0.374 0.344 0.404
TOTAL 0.303 0.264 0.321 0.315 0.311 0.337 0.355

EAF
NASA 0.206 0.148 0.223 0.210 0.222 0.268 0.245

AEEEM 0.326 0.320 0.337 0.341 0.297 0.308 0.359
TOTAL 0.266 0.234 0.280 0.276 0.260 0.288 0.302

130

1 2 3 4 5 6 7

BDA
JDT

CDT
FeSCH

TCA+
TNB
TCA

CD = 1.424 Friedman p-value: 8.921e-09

(a) F

1 2 3 4 5 6 7

BDA
JDT

CDT
FeSCH

TCA
TCA+
TNB

CD = 1.424 Friedman p-value: 8.195e-07

(b) MCC

1 2 3 4 5 6 7

JDT
BDA
CDT

FeSCH
TNB
TCA
TCA+

CD = 1.424 Friedman p-value: 1.591e-05

(c) AUC

1 2 3 4 5 6 7

JDT
FeSCH

BDA
CDT

TCA+
TCA
TNB

CD = 1.424 Friedman p-value: 1.320e-04

(d) EAP

1 2 3 4 5 6 7

BDA
JDT

FeSCH
CDT

TNB
TCA
TCA+

CD = 1.424 Friedman p-value: 1.523e-11

(e) EAR

1 2 3 4 5 6 7

BDA
JDT

FeSCH
CDT

TNB
TCA
TCA+

CD = 1.424 Friedman p-value: 2.143e-10

(f) EAF

Figure 5.4: Comparison of BDA and six transfer learning methods with Friedman test and
Nemenyi post-hoc test in terms of all six indicators.

Results: Table 5.4 presents the average indicator values of BDA method and six transfer

learning methods on the cross project pairs of NASA dataset, AEEEM dataset, and across

the two datasets. Figure 5.4 depicts the statistic test results on the 40 cross project

pairs across the two datasets. From Table 5.4 and Figure 5.4, we have the following

observations.

First, from Table 5.4, on the 20 cross project pairs of NASA dataset, our BDA method

achieves the best performance in terms of two indicators (i.e., F and MCC); on the 20 cross

project pairs of AEEEM dataset, our BDA model also achieves the best performance in

terms of all six indicators; across all 40 cross project pairs, our BDA model achieves the

best performance in terms of five indicators (except for EAP).

Second, compared with the five baseline methods, for the average indicator values of

BDA across the two datasets, BDA achieves average improvements of 10.8%, 16.7%,

131

2.4%, 15.8%, and 13.6% in terms of F, MCC, AUC, EAR, and EAF, respectively.

Compared with the best average indicator values among the five baseline methods, BDA

achieves average improvements of 5.1%, 7.3%, 0.5%, 5.3%, and 4.9% in terms of F, MCC,

AUC, EAR, and EAF, respectively. In addition, the baseline method FeSCH achieves the

best average EAP value which is 1.7% better than our BDA model.

Third, from Figure 5.4, we observe that the p values of Friedman test in all subfigures

are all less than 0.05, which means that there exist significant performance differences

among the six methods. Our BDA model always belongs to the top-ranked group in terms

of all indicators. In addition, BDA is significantly superior to all five baseline methods in

terms of two indicators, i.e., F and EAR. But BDA has no significant differences compared

with 2, 3, 2, 3, 2, and 2 baseline methods in terms of F, MCC, AUC, EAP, EAR, and EAF,

respectively.

Discussion: The fact that BDA is superior to TCA and CDT indicates that the transfer

learning method that considers two distribution differences and their weights can more

promote the CPDP performance than the methods that only consider one distribution

difference. The fact that BDA performs better than JDT indicates that considering the

weights of the two distribution differences can further improve the CPDP performance.

Answer to RQ3: To sum up, compared with the methods that consider only one

distribution difference and the method that uses the same weight to combine the two

distribution differences, the method that consider both two distribution difference and their

weights is more appropriate for the CPDP task.

132

5.4.4 Results for RQ4

Methods: To answer this question, we set 20 different thresholds for feature dimensions,

from 5% to 100% with a step of 5%, for comparison.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (%)

F
MCC
AUC

EAP
EAR
EAF

(a) NASA dataset

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (%)

F
MCC
AUC

EAP
EAR
EAF

(b) AEEEM dataset

Figure 5.5: The six average indicator values of BDA when vary the thresholds of feature
dimension on each benchmark dataset.

Results: Figure 5.5 depicts the six average indicator values of BDA when varying the

thresholds of feature dimensions on each benchmark dataset.

133

From this figure, we observe that on NASA dataset, the six average indicator values

of the BDA model increase with the increasing of feature dimensions under thresholds

smaller than 20%, but the values keep almost unchanged under thresholds larger than

20%. On AEEEM dataset, the six average indicator values keep stable under thresholds

larger than 15%.

Overall, the feature dimension has little impact on the performance of the BDA model

under thresholds larger than 20%. When the threshold smaller than 20%, the BDA model

can achieve comparable performance when the threshold is set to 5% compared with the

performance under larger thresholds. From the above analysis, the thresholds with 5% can

be a good choice for the BDA model to achieve the acceptable CPDP performance.

5.4.5 Results for RQ5

Methods: To answer this question, we empirically set 15 different parameter λ values,

including 0.001∼0.009 with a step of 0.002, 0.01∼0.09 with a step of 0.02, and 0.1∼0.9

with a step of 0.2 for comparison.

Results: Figure 5.6 depicts the six average indicator values of BDA with different λ

values on each benchmark dataset.

From this figure, we observe that on NASA dataset, the six average indicator values of

the BDA model increase with the increase of parameter λ values. On AEEEM dataset,

the average values of MCC, AUC, and EAP increase with the increasing of parameter λ

values while the average values of other three indicators are not impacted by the parameter

λ values.

Overall, selecting the larger parameter λ value is helpful to improve the CPDP

performance of our BDA model.

134

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter (λ)

F
MCC
AUC

F
MCC
AUC

F
MCC
AUC

EAP
EAR
EAF

(a) NASA dataset

10
0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter (λ)

F
MCC
AUC

F
MCC
AUC

F
MCC
AUC

EAP
EAR
EAF

(b) AEEEM dataset

Figure 5.6: The six average indicator values of BDA when vary the thresholds of parameter
λ on each benchmark dataset.

5.4.6 Results for RQ6

Methods: To answer this question, we choose four classic classifiers, including NB, NN,

RF, and CART for observations.

Results: Figure 5.7 depicts the six average indicator values of BDA with different

classifiers on each benchmark dataset.

135

F MCC AUC EAP EAR EAF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Indicator

NB
NN
CART
RF
LR

(a) NASA dataset

F MCC AUC EAP EAR EAF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Indicator

NB
NN
CART
RF
LR

(b) AEEEM dataset

Figure 5.7: The six average indicator values of BDA with different classifiers on each
benchmark dataset.

From this figure, we observe that on NASA dataset, the three average traditional

indicator values of the BDA model with LR classifier is obviously superior to that of

the BDA model with other classifiers. In addition, the average EAR and EAF values of

the BDA model with LR classifier is similar to that of the BDA model with NN classifier,

but the average EAP vlaue of BDA model with LR classifier is lower than that of the BDA

model with NN and CART classifiers. On AEEEM dataset, the average values of five

indicators (except for EAP) of the BDA model with LR classifier is obviously superior to

136

that of the BDA model with other classifiers, but the average EAP value of the BDA model

with LR classifier is similar to that of the BDA model with NN and CART classifiers.

Overall, in order to obtain better CPDP performance, combining our BDA model with

LR classifier is the optimal choice.

5.5 Conclusion

In this chapter, we propose a transfer learning based CPDP framework by introducing

an advanced balanced distribution adaption BDA model. The BDA model not only

considers the marginal distribution difference of data between different projects, and also

the conditional distribution difference. In addition, BDA model does not simply combine

the two distribution differences, but assigns the two differences with distinct weights

for different cross project pairs, aiming to adapting the degree of similarity of different

cross project data. We compare our BDA model with five training data filter methods

and six transfer learning methods on five projects of NASA dataset and five projects of

AEEEM dataset. We use six indicators to evaluate the performance of these methods.

The experimental results show that our proposed BDA model based CPDP framework can

achieve better performance in most cases.

137

138

Chapter 6

Conclusion

6.1 Conclusion

Software has become ubiquitous in aspects of the society, politics, economy and military,

and our daily life also relies increasingly on the software. Developing high quality

software has always been the goal pursued by software developers. However, due to some

uncontrollable factors in the process of software design, development and configuration,

software inevitably contains defects which can cause bad consequences with different

degrees. Thus, it is critical for the improvement of the software reliability by detecting

as many defective software modules as possible and fixing them before delivering the

software product. For this purpose, the researchers proposed different defect prediction

techniques. They uses different statistic learning or machine learning methods to identify

the software modules that are most likely to contain defects by mining the historical

development data in the software repository. These high-risk software modules can

be recommended to software developers or testers for priority review, which greatly

optimizes the configuration of software testing resources, improves the efficiency of

software development and promotes the software quality assurance.

139

In this thesis, we mainly carry out in-depth researches on the difficulties faced

by three defect prediction scenarios (including IVDP, CVDP, and CPDP), and apply

different machine learning methods, including kernel learning, class imbalanced learning,

sparse representation learning and transfer learning methods, to assist in solving the

corresponding difficulties. The main work includes the following three aspects:

For the feature extraction and class imbalance issue under the IVDP scenario, we

propose a KPWE framework that combines the feature learning based on kernel principal

component analysis (KPCA) and class imbalanced learning based on weighted extreme

learning machine (WELM). In order to make it easier to distinguish software modules with

different labels in defect data, this framework first uses KPCA to map the original features

into a high-dimensional space, making the software modules linearly separable. Then, it

employs WELM to construct the classification model on the mapped training set and the

model is used to conduct prediction task on the mapped test set. WELM alleviates the

negative effects of class imbalance by assigning different weights to the software modules

with distinct labels. The experimental results on 10 projects from NASA benchmark

dataset and five projects from AEEEM benchmark dataset show that our proposed IVDP

framework is generally superior to 24 baseline methods.

For the training subset selection issue under the CVDP scenario, we propose an

optimization based two-stage training subset selection framework, called TSTSS. In the

first stage, TSTSS uses a sparse modeling representation selection (SMRS) method to

select a simplified subset to represent the original defect data of the previous version

without the participation of the defect data of the current version. The simplified subset

can minimize the error for reconstructing the original defect data. In the second stage,

TSTSS applies a dissimilarity-based spare subset selection sparse (DS3) method to select

a refined subset from the simplified subset in the previous step with the assistance of the

defect data of the current version. The obtained final module subset can well represent the

140

defect data of the current version. The experimental results on 50 cross-version pairs from

67 versions of 17 projects in the PROMISE benchmark dataset illustrate that our CVDP

framework performs better than 11 baseline methods on the whole.

For the data distribution difference issue under CPDP scenario, we propose a transfer

learning based framework by introducing a novel balanced distribution adaptation BDA

model. This model combines both marginal and conditional distribution differences

across project data, and also considers the importance degrees of the two differences

over different cross-project pairs. The experimental results on 40 cross project pairs from

five projects in the NASA benchmark dataset and five projects in the AEEEM benchmark

dataset manifest that our proposed CPDP framework achieves better performance than 11

baseline methods overall.

6.2 Future Work

In this thesis, we analyze and study some issues under 3 different defect prediction

scenarios, and propose feasible solutions to solve these problems. Although some progress

has been made in the current work, some aspects still need to be expanded and improved.

In addition, some work has not been studied yet and further exploration is needed. Here,

we list some work to be done in the future as follows:

In chapter 5, we mainly focuses on using machine learning methods to reduce the

distribution differences among cross-project data and investigating the performance of the

transfer learning method based cross-project prediction model. But we do not take the

impact of class imbalance on the prediction performance into account as in Chapter 3 and

Chapter 4. Therefore, in the future work, we intend to address the class imbalance issue

during the process of knowledge transfer between the source and target project data.

141

In Chapter 5, the considered CPDP scenario assumes that the feature sets of the two

projects are homogeneous. But in practice, due to the different project development

platforms, the varying development languages, and the distinct feature extraction tools, the

final extracted feature sets of distinct projects are usually different. In this case, besides the

data distributions across projects are different, the feature heterogeneous issue also need

to be solved. Thus, the heterogeneous CPDP issue is more difficult than the homogeneous

CPDP. Considering that there are not many researches on this topic at present, in the

future work, we will explore new machine learning methods to solve the difficulties under

heterogeneous CPDP scenarios.

Since the defect prediction tasks under the three scenarios in this thesis all require the

labeled training set to construct the classification model, they belong to the category of

supervised defect prediction. Compared with the supervised model, the unsupervised

model does not require the participation of the labeled software modules, which is

helpful to reduce the labeling cost of constructing the labeled training data. However,

the unsupervised defect prediction researches have not received as much attention as the

supervised defect prediction researches. Therefore, in future, we will carry out relevant

work on unsupervised defect prediction.

Currently, Android applications are becoming more and more popular in our daily life,

and its reliability has been widely concerned. However, the defect data used in this thesis

are all from traditional software projects. Therefore, in the future work, we plan to do

some relevant analysis and researches on defect prediction problems for Android software

projects.

The studies in this thesis mainly apply different machine learning methods to determine

whether a software module contains defects, regardless of the type of defect belongs to.

In the future research, we will take this point into consideration, i.e., carrying out relevant

142

researches on software defect type prediction.

This thesis mainly treats defect prediction task as a machine learning problem and

does not consider the interaction between software defect prediction and software design,

development, testing and maintenance processes. In future studies, we plan to combine

the results of defect prediction with software development process for discussion, aiming

to give full play to the application value of machine learning assisted defect prediction

methods.

143

144

Bibliography

[1] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[2] Supreeth Achar, Bharath Sankaran, Stephen Nuske, Sebastian Scherer, and Sanjiv
Singh. Self-supervised segmentation of river scenes. In 2011 IEEE International
Conference on Robotics and Automation, pages 6227–6232. IEEE, 2011.

[3] Josephine Akosa. Predictive accuracy: a misleading performance measure for
highly imbalanced data. In Proceedings of the SAS Global Forum, pages 2–5, 2017.

[4] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software (JSS), 83(1):2–17, 2010.

[5] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[6] Kwabena Ebo Bennin, Jacky Keung, and Akito Monden. Impact of the distribution
parameter of data sampling approaches on software defect prediction models. In
Proceedings of the 24th Asia-Pacific Software Engineering Conference (APSEC),
pages 630–635. IEEE, 2017.

[7] Kwabena Ebo Bennin, Jacky Keung, Akito Monden, Passakorn Phannachitta, and
Solomon Mensah. The significant effects of data sampling approaches on software
defect prioritization and classification. In Proceedings of the 11th International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
364–373. IEEE Press, 2017.

[8] Kwabena Ebo Bennin, Jacky Keung, Passakorn Phannachitta, Akito Monden, and
Solomon Mensah. Mahakil: Diversity based oversampling approach to alleviate the
class imbalance issue in software defect prediction. IEEE Transactions on Software
Engineering (TSE), 44(6):534–550, 2017.

145

[9] Kwabena Ebo Bennin, Koji Toda, Yasutaka Kamei, Jacky Keung, Akito Monden,
and Naoyasu Ubayashi. Empirical evaluation of cross-release effort-aware defect
prediction models. In Proceedings of 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pages 214–221. IEEE, 2016.

[10] Yi Bin, Kai Zhou, Hongmin Lu, Yuming Zhou, and Baowen Xu. Training
data selection for cross-project defection prediction: which approach is better?
In Proceedings of the 11th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 354–363, 2017.

[11] Partha S Bishnu and Vandana Bhattacherjee. Software fault prediction using quad
tree-based k-means clustering algorithm. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 24(6):1146–1150, 2011.

[12] Remco R Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann,
Alex Seewald, and David Scuse. Weka manual for version 3-6-1. The University of
Waikato: Hamilton, New Zealand, pages 1–341, 2009.

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[14] Lionel C Briand, Walcelio L. Melo, and Jurgen Wust. Assessing the applicability of
fault-proneness models across object-oriented software projects. IEEE Transactions
on Software Engineering (TSE), 28(7):706–720, 2002.

[15] Hui Cao, Zheng Qin, and Tao Feng. A novel pca-bp fuzzy neural network model
for software defect prediction. Advanced Science Letters, 9(1):423–428, 2012.

[16] Cagatay Catal and Banu Diri. Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem. Information
Sciences, 179(8):1040–1058, 2009.

[17] Cagatay Catal and Banu Diri. A systematic review of software fault prediction
studies. Expert Systems with Applications, 36(4):7346–7354, 2009.

[18] Gemma Catolino, Fabio Palomba, Andrea De Lucia, Filomena Ferrucci, and Andy
Zaidman. Developer-related factors in change prediction: an empirical assessment.
In Proceedings of the 25th International Conference on Program Comprehension
(ICPC), pages 186–195, 2017.

146

[19] Lin Chen, Bin Fang, Zhaowei Shang, and Yuanyan Tang. Negative samples
reduction in cross-company software defects prediction. Information and Software
Technology (IST), 62:67–77, 2015.

[20] Mingming Chen and Yutao Ma. An empirical study on predicting defect numbers.
In Proceedings of the 27th International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 397–402, 2015.

[21] Xiang Chen, Yuxiang Shen, Zhanqi Cui, and Xiaolin Ju. Applying feature selection
to software defect prediction using multi-objective optimization. In Proceedings
of the 41st Annual Computer Software and Applications Conference (COMPSAC),
volume 2, pages 54–59. IEEE, 2017.

[22] Rodrigo A Coelho, Fabrı́cio dos RN Guimarães, and Ahmed AA Esmin. Applying
swarm ensemble clustering technique for fault prediction using software metrics.
In Proceedings of the 13th International Conference on Machine Learning and
Applications, pages 356–361. IEEE, 2014.

[23] Marco DAmbros, Michele Lanza, and Romain Robbes. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering (EMSE), 17(4-5):531–577, 2012.

[24] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(Jan):1–30, 2006.

[25] N Dhamayanthi and B Lavanya. Improvement in software defect prediction
outcome using principal component analysis and ensemble machine learning
algorithms. In International Conference on Intelligent Data Communication
Technologies and Internet of Things, pages 397–406. Springer, 2018.

[26] Shifei Ding, Han Zhao, Yanan Zhang, Xinzheng Xu, and Ru Nie. Extreme learning
machine: algorithm, theory and applications. Artificial Intelligence Review,
44(1):103–115, 2015.

[27] Ehsan Elhamifar, Guillermo Sapiro, and S Shankar Sastry. Dissimilarity-based
sparse subset selection. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 38(11):2182–2197, 2016.

[28] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Proceedings of
the 22nd International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2790–2797, 2009.

147

[29] Emelie Engström and Per Runeson. Software product line testing–a systematic
mapping study. Information and Software Technology (IST), 53(1):2–13, 2011.

[30] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[31] Wei Fu and Tim Menzies. Revisiting unsupervised learning for defect prediction.
In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering
(FSE), pages 72–83, 2017.

[32] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite element approximation. Computers & Mathematics
with Applications, 2(1):17–40, 1976.

[33] Kehan Gao, Taghi M Khoshgoftaar, Huanjing Wang, and Naeem Seliya. Choosing
software metrics for defect prediction: an investigation on feature selection
techniques. Software: Practice and Experience (SPE), 41(5):579–606, 2011.

[34] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Revisiting the impact
of classification techniques on the performance of defect prediction models. In
Proceedings of the 37th IEEE International Conference on Software Engineering
(ICSE), volume 1, pages 789–800. IEEE, 2015.

[35] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. A large-scale study
of the impact of feature selection techniques on defect classification models. In
Proceedings of the 14th International Conference on Mining Software Repositories
(MSR), pages 146–157. IEEE, 2017.

[36] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The misuse
of the nasa metrics data program data sets for automated software defect prediction.
In Proceedings of the 15th Annual Conference on Evaluation & Assessment in
Software Engineering (EASE), pages 96–103. IET, 2011.

[37] Lan Guo, Yan Ma, Bojan Cukic, and Harshinder Singh. Robust prediction of fault-
proneness by random forests. In Proceedings of the 15th International Symposium
on Software Reliability Engineering (ISSRE), pages 417–428. IEEE, 2004.

[38] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell.
A systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering (TSE), 38(6):1276–1304,
2011.

148

[39] Peng He, Yao He, Lvjun Yu, and Bing Li. An improved method for cross-
project defect prediction by simplifying training data. Mathematical Problems in
Engineering, 2018, 2018.

[40] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. An investigation on
the feasibility of cross-project defect prediction. Automated Software Engineering
(ASE), 19(2):167–199, 2012.

[41] Steffen Herbold. Training data selection for cross-project defect prediction. In
Proceedings of the 9th International Conference on Predictive Models in Software
Engineering, page 6, 2013.

[42] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. A comparative study
to benchmark cross-project defect prediction approaches. IEEE Transactions on
Software Engineering (TSE), 44(9):811–833, 2017.

[43] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. A comparative study
to benchmark cross-project defect prediction approaches. IEEE Transactions on
Software Engineering (TSE), 44(9):811–833, 2017.

[44] Kim Herzig, Sascha Just, Andreas Rau, and Andreas Zeller. Predicting defects
using change genealogies. In Proceedings of the 24th International Symposium on
Software Reliability Engineering (ISSRE), pages 118–127. IEEE, 2013.

[45] Tilman Holschuh, Markus Pauser, Kim Herzig, Thomas Zimmermann, Rahul
Premraj, and Andreas Zeller. Predicting defects in sap java code: An experience
report. In Proceedings of the 31st International Conference on Software
Engineering (ICSE), pages 172–181, 2009.

[46] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. A systematic
literature review and meta-analysis on cross project defect prediction. IEEE
Transactions on Software Engineering (TSE), 45(2):111–147, 2017.

[47] Jaroslaw Hryszko, Lech Madeyski, Marta Dabrowska, and Piotr Konopka. Defect
prediction with bad smells in code. arXiv preprint arXiv:1703.06300, 2017.

[48] Gao Huang, Guangbin Huang, Shiji Song, and Keyou You. Trends in extreme
learning machines: A review. Neural Networks, 61:32–48, 2015.

149

[49] Guangbin Huang, Lei Chen, and Chee Kheong Siew. Universal approximation
using incremental constructive feedforward networks with random hidden nodes.
IEEE Transactions on Neural Networks (TNN), 17(4):879–892, 2006.

[50] Guangbin Huang, Qinyu Zhu, and Cheekheong Siew. Extreme learning machine:
theory and applications. Neurocomputing, 70(1):489–501, 2006.

[51] Qiao Huang, Xin Xia, and David Lo. Supervised vs unsupervised models: A
holistic look at effort-aware just-in-time defect prediction. In Proceedings of the
33rd International Conference on Software Maintenance and Evolution (ICSME),
pages 159–170, 2017.

[52] Qiao Huang, Xin Xia, and David Lo. Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction. Empirical Software
Engineering, 24(5):2823–2862, 2019.

[53] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying
informative and representative examples. Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 10(36):1936–1949, 2014.

[54] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction.
In Proceedings of the 28th International Conference on Automated Software
Engineering (ASE), pages 279–289, 2013.

[55] Yue Jiang, Bojan Cukic, and Yan Ma. Techniques for evaluating fault prediction
models. Empirical Software Engineering (EMSE), 13(5):561–595, 2008.

[56] Xiao-Yuan Jing, Fei Wu, Xiwei Dong, and Baowen Xu. An improved sda
based defect prediction framework for both within-project and cross-project
class-imbalance problems. IEEE Transactions on Software Engineering (TSE),
43(4):321–339, 2017.

[57] Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu. Dictionary
learning based software defect prediction. In Proceedings of the 36th International
Conference on Software Engineering (ICSE), pages 414–423. ACM, 2014.

[58] Xiaoyuan Jing, Fei Wu, Xiwei Dong, Fumin Qi, and Baowen Xu. Heterogeneous
cross-company defect prediction by unified metric representation and cca-based
transfer learning. In Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering (FSE), pages 496–507, 2015.

150

[59] Charles R Johnson. Matrix theory and applications, volume 40. American
Mathematical Soc., 1990.

[60] Yasutaka Kamei, Akito Monden, Shinsuke Matsumoto, Takeshi Kakimoto, and
Ken-ichi Matsumoto. The effects of over and under sampling on fault-prone module
detection. In Proceedings of the 1st International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 196–204. IEEE, 2007.

[61] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering (TSE), 39(6):757–
773, 2013.

[62] Kazuya Kawata, Sousuke Amasaki, and Tomoyuki Yokogawa. Improving relevancy
filter methods for cross-project defect prediction. In Applied Computing &
Information Technology, pages 1–12. 2016.

[63] Taghi M Khoshgoftaar, Erik Geleyn, Laurent Nguyen, and Lofton Bullard. Cost-
sensitive boosting in software quality modeling. In Proceedings of the 7th
International Symposium on High Assurance Systems Engineering, pages 51–60.
IEEE, 2002.

[64] Taghi M Khoshgoftaar and Naeem Seliya. Fault prediction modeling for software
quality estimation: Comparing commonly used techniques. Empirical Software
Engineering (EMSE), 8(3):255–283, 2003.

[65] Taghi M Khoshgoftaar, Ruqun Shan, and Edward B Allen. Improving tree-based
models of software quality with principal components analysis. In Proceedings
of the 11th International Symposium on Software Reliability Engineering (ISSRE),
pages 198–209. IEEE, 2000.

[66] Kwang In Kim, Matthias O Franz, and Bernhard Scholkopf. Iterative kernel
principal component analysis for image modeling. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 27(9):1351–1366, 2005.

[67] Issam H Laradji, Mohammad Alshayeb, and Lahouari Ghouti. Software defect
prediction using ensemble learning on selected features. Information and Software
Technology (IST), 58:388–402, 2015.

[68] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.
Benchmarking classification models for software defect prediction: A proposed

151

framework and novel findings. IEEE Transactions on Software Engineering (TSE),
34(4):485–496, 2008.

[69] Hui Li, Guofeng Gao, Rong Chen, Xin Ge, Shikai Guo, and Li-Ying Hao. The
influence ranking for testers in bug tracking systems. International Journal
of Software Engineering and Knowledge Engineering (IJSEKE), 29(01):93–113,
2019.

[70] JunBao Li, Shuchuan Chu, and Jeng-Shyang Pan. Kernel principal component
analysis (kpca)-based face recognition. In Kernel Learning Algorithms for Face
Recognition, pages 71–99. Springer, 2014.

[71] Ming Li, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. Sample-based software
defect prediction with active and semi-supervised learning. Automated Software
Engineering (ASE), 19(2):201–230, 2012.

[72] Xin Li and Yuhong Guo. Adaptive active learning for image classification. In
Proceedings of the 26th Conference on Computer Vision and Pattern Recognition
(CVPR), pages 859–866, 2013.

[73] Yuting Li, Jianmin Su, and Xiaoxing Yang. Multi-objective vs. single-objective
approaches for software defect prediction. In Proceedings of the 2nd International
Conference on Management Engineering, Software Engineering and Service
Sciences, pages 122–127, 2018.

[74] Zhiqiang Li, Xiao-Yuan Jing, Fei Wu, Xiaoke Zhu, Baowen Xu, and Shi Ying. Cost-
sensitive transfer kernel canonical correlation analysis for heterogeneous defect
prediction. Automated Software Engineering (ASE), 25(2):201–245, 2018.

[75] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. Heterogeneous fault prediction
with cost-sensitive domain adaptation. Software Testing, Verification and Reliability
(STVR), 28(2):e1658, 2018.

[76] Zhiqiang Li, Xiao-Yuan Jing, Xiaoke Zhu, and Hongyu Zhang. Heterogeneous
defect prediction through multiple kernel learning and ensemble learning. In
Proceedings of the 33rd International Conference on Software Maintenance and
Evolution (ICSME), pages 91–102, 2017.

[77] Zhiqiang Li, Xiao-Yuan Jing, Xiaoke Zhu, Hongyu Zhang, Baowen Xu, and Shi
Ying. On the multiple sources and privacy preservation issues for heterogeneous
defect prediction. IEEE Transactions on Software Engineering (TSE), 2017.

152

[78] Chao Liu, Dan Yang, Xin Xia, Meng Yan, and Xiaohong Zhang. A two-
phase transfer learning model for cross-project defect prediction. Information and
Software Technology (IST), 107:125–136, 2019.

[79] Fang Liu, Xing Gao, Bing Zhou, and Juan Deng. Software defect prediction model
based on pca-isvm. Computer Simulation, 2014.

[80] Mingxia Liu, Linsong Miao, and Daoqiang Zhang. Two-stage cost-sensitive
learning for software defect prediction. IEEE Transactions on Reliability (TR),
63(2):676–686, 2014.

[81] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S
Yu. Transfer feature learning with joint distribution adaptation. In Proceedings of
the 14th International Conference on Computer Vision (ICCV), pages 2200–2207,
2013.

[82] Huihua Lu, Bojan Cukic, and Mark Culp. Software defect prediction using
semi-supervised learning with dimension reduction. In Proceedings of the 27th
International Conference on Automated Software Engineering (ASE), pages 314–
317. IEEE, 2012.

[83] Huihua Lu, Ekrem Kocaguneli, and Bojan Cukic. Defect prediction between
software versions with active learning and dimensionality reduction. In Proceedings
of the 25th International Symposium on Software Reliability Engineering (ISSRE),
pages 312–322, 2014.

[84] Guangchun Luo and Hao Chen. Kernel based asymmetric learning for software
defect prediction. IEICE Transactions on Information and Systems, 95(1):267–270,
2012.

[85] Guangchun Luo, Ying Ma, and Ke Qin. Asymmetric learning based on kernel
partial least squares for software defect prediction. IEICE Transactions on
Information and Systems, 95(7):2006–2008, 2012.

[86] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. Transfer learning for cross-
company software defect prediction. Information and Software Technology (IST),
54(3):248–256, 2012.

[87] Lech Madeyski and Marian Jureczko. Which process metrics can significantly
improve defect prediction models? an empirical study. Software Quality Journal
(SQJ), 23(3):393–422, 2015.

153

[88] Ruchika Malhotra. A systematic review of machine learning techniques for software
fault prediction. Applied Soft Computing, 27:504–518, 2015.

[89] Ruchika Malhotra. An empirical framework for defect prediction using machine
learning techniques with android software. Applied Soft Computing, 49:1034–1050,
2016.

[90] Ruchika Malhotra and Rajeev Raje. An empirical comparison of machine
learning techniques for software defect prediction. In Proceedings of the
8th International Conference on Bioinspired Information and Communications
Technologies, pages 320–327. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2014.

[91] Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In
Proceedings of the 14th European Conference on Software Maintenance and
Reengineering (CSMR), pages 107–116. IEEE, 2010.

[92] Tim Menzies, Kareem Ammar, Allen Nikora, and Justin DiStefano. How simple is
software defect detection. Submitted to the Emprical Software Engineering Journal,
2003.

[93] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes
to learn defect predictors. IEEE Transactions on Software Engineering (TSE),
33(1):2–13, 2007.

[94] Diego PP Mesquita, Lincoln S Rocha, João Paulo P Gomes, and Ajalmar R Rocha
Neto. Classification with reject option for software defect prediction. Applied Soft
Computing, 49:1085–1093, 2016.

[95] Akito Monden, Takuma Hayashi, Shoji Shinoda, Kumiko Shirai, Junichi Yoshida,
Mike Barker, and Kenichi Matsumoto. Assessing the cost effectiveness of fault
prediction in acceptance testing. IEEE Transactions on Software Engineering
(TSE), 39(10):1345–1357, 2013.

[96] John C. Munson and Taghi M. Khoshgoftaar. The detection of fault-prone
programs. IEEE Transactions on Software Engineering (TSE), 18(5):423, 1992.

[97] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

154

[98] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early indicators of
pre-release defect density. In Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 580–586. IEEE, 2005.

[99] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of the 27th International Conference
on Software Engineering (ICSE), pages 284–292, 2005.

[100] Jaechang Nam, Wei Fu, Sunghun Kim, Tim Menzies, and Lin Tan. Heterogeneous
defect prediction. IEEE Transactions on Software Engineering (TSE), 44(9):874–
896, 2017.

[101] Jaechang Nam and Sunghun Kim. Clami: Defect prediction on unlabeled datasets
(t). In Proceedings of the 30th International Conference on Automated Software
Engineering (ASE), pages 452–463. IEEE, 2015.

[102] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect learning. In
Proceedings of the 35th International Conference on Software Engineering (ICSE),
pages 382–391, 2013.

[103] Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, and Qi-Guo
Huang. A cluster based feature selection method for cross-project software defect
prediction. Journal of Computer Science and Technology (JCST), 32(6):1090–1107,
2017.

[104] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural
Networks, 22(2):199–210, 2010.

[105] Witold Pedrycz, Giancarlo Succi, Petr Musılek, and Xiao Bai. Using self-
organizing maps to analyze object-oriented software measures. Journal of Systems
and Software (JSS), 59(1):65–82, 2001.

[106] Jing Peng and Douglas R Heisterkamp. Kernel indexing for relevance feedback
image retrieval. In Proceedings of the 10th International Conference on Image
Processing (ICIP), volume 1, pages I–733. IEEE, 2003.

[107] Fayola Peters, Tim Menzies, and Andrian Marcus. Better cross company defect
prediction. In Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR), pages 409–418, 2013.

155

[108] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Baddoo.
Building an ensemble for software defect prediction based on diversity selection.
In Proceedings of the 10th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–10, 2016.

[109] Faimison Porto, Leandro Minku, Emilia Mendes, and Adenilso Simao. A
systematic study of cross-project defect prediction with meta-learning. arXiv
preprint arXiv:1802.06025, 2018.

[110] Haini Qu, Guozheng Li, and Weisheng Xu. An asymmetric classifier based on
partial least squares. Pattern Recognition, 43(10):3448–3457, 2010.

[111] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling the
imprecision of cross-project defect prediction. In Proceedings of the 20th
International Symposium on the Foundations of Software Engineering (FSE), pages
1–11, 2012.

[112] Calyampudi Radhakrishna Rao and Sujit Kumar Mitra. Generalized inverse of
matrices and its applications. 1971.

[113] Santosh S Rathore and Sandeep Kumar. An empirical study of some software
fault prediction techniques for the number of faults prediction. Soft Computing,
21(24):7417–7434, 2017.

[114] Santosh Singh Rathore and Sandeep Kuamr. Comparative analysis of neural
network and genetic programming for number of software faults prediction. In
Proceedings of the 2015 National Conference on Recent Advances in Electronics &
Computer Engineering, pages 328–332. IEEE, 2015.

[115] Santosh Singh Rathore and Sandeep Kumar. Predicting number of faults in
software system using genetic programming. In Proceedings of 2015 International
Conference on Soft Computing and Software Engineering, pages 303–311, 2015.

[116] Santosh Singh Rathore and Sandeep Kumar. A decision tree regression based
approach for the number of software faults prediction. ACM SIGSOFT Software
Engineering Notes, 41(1):1–6, 2016.

[117] Jinsheng Ren, Ke Qin, Ying Ma, and Guangchun Luo. On software defect
prediction using machine learning. Journal of Applied Mathematics, 2014, 2014.

156

[118] Duksan Ryu, Okjoo Choi, and Jongmoon Baik. Value-cognitive boosting with a
support vector machine for cross-project defect prediction. Empirical Software
Engineering (EMSE), 21(1):43–71, 2016.

[119] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. A hybrid instance selection using
nearest-neighbor for cross-project defect prediction. Journal of Computer Science
and Technology (JCST), 30(5):969–980, 2015.

[120] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. A transfer cost-sensitive boosting
approach for cross-project defect prediction. Software Quality Journal (SQJ),
25(1):235–272, 2017.

[121] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal
component analysis. In Proceedings of the 7th International Conference on
Artificial Neural Networks (ICANN), pages 583–588. Springer, 1997.

[122] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299–1319, 1998.

[123] Naeem Seliya and Taghi M Khoshgoftaar. Software quality estimation with limited
fault data: a semi-supervised learning perspective. Software Quality Journal (SQJ),
15(3):327–344, 2007.

[124] Martin Shepperd, David Bowes, and Tracy Hall. Researcher bias: The use of
machine learning in software defect prediction. IEEE Transactions on Software
Engineering (TSE), 40(6):603–616, 2014.

[125] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality:
Some comments on the nasa software defect datasets. IEEE Transactions on
Software Engineering (TSE), 39(9):1208–1215, 2013.

[126] Shivkumar Shivaji. Efficient bug prediction and fix suggestions. PhD thesis,
University of California, Santa Cruz, 2013.

[127] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. Reducing
features to improve code change-based bug prediction. IEEE Transactions on
Software Engineering (TSE), 39(4):552–569, 2012.

157

[128] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. Reducing
features to improve code change-based bug prediction. IEEE Transactions on
Software Engineering (TSE), 39(4):552–569, 2013.

[129] Shivkumar Shivaji, Jr E James Whitehead, Ram Akella, and Sunghun Kim.
Reducing features to improve bug prediction. In Proceedings of the 24th
International Conference on Automated Software Engineering (ASE), pages 600–
604. IEEE Computer Society, 2009.

[130] Swapnil Shukla, T Radhakrishnan, K Muthukumaran, and Lalita Bhanu Murthy
Neti. Multi-objective cross-version defect prediction. Soft Computing, 22(6):1959–
1980, 2018.

[131] Michael J Siers and Md Zahidul Islam. Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the class imbalance
problem. Information Systems, 51:62–71, 2015.

[132] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A general
software defect-proneness prediction framework. IEEE Transactions on Software
Engineering (TSE), 37(3):356–370, 2010.

[133] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A general
software defect-proneness prediction framework. IEEE Transactions on Software
Engineering (TSE), 37(3):356–370, 2011.

[134] Qinbao Song, Jingjie Ni, and Guangtao Wang. A fast clustering-based feature
subset selection algorithm for high-dimensional data. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 25(1):1–14, 2013.

[135] Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. Using coding-based ensemble
learning to improve software defect prediction. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1806–1817, 2012.

[136] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Matsumoto. The impact
of class rebalancing techniques on the performance and interpretation of defect
prediction models. IEEE Transactions on Software Engineering (TSE), 2018.

[137] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. An empirical comparison of model validation techniques for defect
prediction models. IEEE Transactions on Software Engineering (TSE), 43(1):1–18,
2016.

158

[138] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. An empirical comparison of model validation techniques for defect
prediction models. IEEE Transactions on Software Engineering (TSE), 43(1):1–18,
2017.

[139] Jeff Tian. Software quality engineering: testing, quality assurance, and quantifiable
improvement. John Wiley & Sons, 2005.

[140] Haonan Tong, Bin Liu, and Shihai Wang. Kernel spectral embedding transfer
ensemble for heterogeneous defect prediction. IEEE Transactions on Software
Engineering (TSE), 2019.

[141] Burak Turhan and Ayse Basar Bener. Software defect prediction: Heuristics for
weighted naı̈ve bayes. In Proceedings of the Second International Conference on
Software and Data Technologies, pages 244–249, 2007.

[142] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On the relative
value of cross-company and within-company data for defect prediction. Empirical
Software Engineering (EMSE), 14(5):540–578, 2009.

[143] Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. In
Italian workshop on neural nets, pages 3–20. Springer, 2002.

[144] Rene Vidal, Guillermo Sapiro, and E Elhamifar. See all by looking at a few: Sparse
modeling for finding representative objects. In Proceedings of the 25th Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1600–1607, 2012.

[145] Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng, and Zhiqi Shen.
Balanced distribution adaptation for transfer learning. In Proceedings of the 17th
International Conference on Data Mining (ICDM), pages 1129–1134. IEEE, 2017.

[146] Shuo Wang and Xin Yao. Using class imbalance learning for software defect
prediction. IEEE Transactions on Reliability (TR), 62(2):434–443, 2013.

[147] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for
defect prediction. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 297–308, 2016.

[148] Tao Wang and Wei-hua Li. Naive bayes software defect prediction model. In
Proceedings of the 2010 International Conference on Computational Intelligence
and Software Engineering, pages 1–4. IEEE, 2010.

159

[149] Tiejian Wang, Zhiwu Zhang, Xiaoyuan Jing, and Liqiang Zhang. Multiple kernel
ensemble learning for software defect prediction. Automated Software Engineering
(ASE), 23(4):569–590, 2016.

[150] Shinya Watanabe, Haruhiko Kaiya, and Kenji Kaijiri. Adapting a fault prediction
model to allow inter language reuse. In Proceedings of the 4th International
Workshop on Predictor Models in Software Engineering, pages 19–24, 2008.

[151] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[152] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang.
Hydra: Massively compositional model for cross-project defect prediction. IEEE
Transactions on Software Engineering (TSE), 42(10):977–998, 2016.

[153] Zhou Xu, Jin Liu, Xiapu Luo, and Tao Zhang. Cross-version defect prediction via
hybrid active learning with kernel principal component analysis. In Proceedings
of the 25th International Conference on Software Analysis, Evolution, and
Reengineering (SANER), page to appear, 2018.

[154] Zhou Xu, Jin Liu, Zijiang Yang, Gege An, and Xiangyang Jia. The impact
of feature selection on defect prediction performance: An empirical comparison.
In Proceedings of the 27th International Symposium on Software Reliability
Engineering (ISSRE), pages 309–320. IEEE, 2016.

[155] Zhou Xu, Jifeng Xuan, Jin Liu, and Xiaohui Cui. Michac: Defect prediction
via feature selection based on maximal information coefficient with hierarchical
agglomerative clustering. In Proceedings of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 370–
381, 2016.

[156] Zhou Xu, Sizhe Ye, Tao Zhang, Zhen Xia, Shuai Pang, Yong Wang, and Yutian
Tang. Mvse: Effort-aware heterogeneous defect prediction via multiple-view
spectral embedding. In Proceedings of 2019 International Conference on Software
Quality, Reliability and Security (QRS), pages 10–17. IEEE, 2019.

[157] Zhou Xu, Tao Zhang, Jacky Keung, Meng Yan, Xiapu Luo, Xiaohong Zhang,
Ling Xu, and Yutian Tang. Feature selection and embedding based cross project
framework for identifying crashing fault residence. Information and Software
Technology, page 106452, 2020.

160

[158] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and
Xindong Wu. Towards effective bug triage with software data reduction techniques.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(1):264–280,
2014.

[159] Meng Yan, Yicheng Fang, David Lo, Xin Xia, and Xiaohong Zhang. File-level
defect prediction: Unsupervised vs. supervised models. In Proceedings of the 11th
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 344–353. IEEE, 2017.

[160] Jun Yang and Hongbing Qian. Defect prediction on unlabeled datasets by
using unsupervised clustering. In 2016 IEEE 18th International Conference on
High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pages 465–472. IEEE, 2016.

[161] Xiaoxing Yang, Ke Tang, and Xin Yao. A learning-to-rank approach to software
defect prediction. IEEE Transactions on Reliability (TR), 64(1):234–246, 2015.

[162] Xiaoxing Yang and Wushao Wen. Ridge and lasso regression models for cross-
version defect prediction. Transactions on Reliability (TR), 67(3):885–896, 2018.

[163] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction. Information and Software
Technology (IST), 87:206–220, 2017.

[164] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for
just-in-time defect prediction. In Proceedings of the 2015 International Conference
on Software Quality, Reliability and Security (QRS), pages 17–26. IEEE, 2015.

[165] Yibiao Yang, Mark Harman, Jens Krinke, Syed Islam, David Binkley, Yuming
Zhou, and Baowen Xu. An empirical study on dependence clusters for effort-aware
fault-proneness prediction. In Proceedings of the 31st International Conference on
Automated Software Engineering (ASE), pages 296–307, 2016.

[166] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. Effort-aware just-in-time defect prediction:
simple unsupervised models could be better than supervised models. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pages 157–168, 2016.

161

[167] Yibiao Yang, Yuming Zhou, Hongmin Lu, Lin Chen, Zhenyu Chen, Baowen Xu,
Hareton Leung, and Zhenyu Zhang. Are slice-based cohesion metrics actually
useful in effort-aware post-release fault-proneness prediction? an empirical study.
IEEE Transactions on Software Engineering (TSE), 41(4):331–357, 2014.

[168] Yibiao Yang, Yuming Zhou, Hongmin Lu, Lin Chen, Zhenyu Chen, Baowen Xu,
Hareton Leung, and Zhenyu Zhang. Are slice-based cohesion metrics actually
useful in effort-aware post-release fault-proneness prediction? an empirical study.
IEEE Transactions on Software Engineering (TSE), 41(4):331–357, 2015.

[169] Wenchao Yu, Fuzhen Zhuang, Qing He, and Zhongzhi Shi. Learning deep
representations via extreme learning machines. Neurocomputing, 149:308–315,
2015.

[170] Xiao Yu, Jin Liu, Zijiang Yang, Xiangyang Jia, Qi Ling, and Sizhe Ye. Learning
from imbalanced data for predicting the number of software defects. In Proceedings
of the 28th International Symposium on Software Reliability Engineering (ISSRE),
pages 78–89. IEEE, 2017.

[171] Xiao Yu, Peipei Zhou, Jiansheng Zhang, and Jin Liu. A data filtering method based
on agglomerative clustering. In Proceedings of the 29th International Conference
on Software Engineering and Knowledge Engineering (SEKE), pages 392–397,
2017.

[172] Jerrold H Zar et al. Biostatistical analysis. Pearson Education India, 1999.

[173] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In Proceedings of the
38th International Conference on Software Engineering (ICSE), pages 309–320.
IEEE, 2016.

[174] Zhi-Wu Zhang, Xiao-Yuan Jing, and Tie-Jian Wang. Label propagation based
semi-supervised learning for software defect prediction. Automated Software
Engineering (ASE), 24(1):47–69, 2017.

[175] Jun Zheng. Cost-sensitive boosting neural networks for software defect prediction.
Expert Systems with Applications, 37(6):4537–4543, 2010.

[176] Cheng Zhong. Software quality prediction method with hybrid applying
principal components analysis and wavelet neural network and genetic algorithm.

162

International Journal of Digital Content Technology and its Applications, 5(3),
2011.

[177] Shi Zhong, Taghi M Khoshgoftaar, and Naeem Seliya. Unsupervised learning
for expert-based software quality estimation. In Proceedings of the 8th IEEE
International Symposium on High-Assurance Systems Engineering, pages 149–155.
Citeseer, 2004.

[178] Yuming Zhou, Yibiao Yang, Hongmin Lu, Lin Chen, Yanhui Li, Yangyang Zhao,
Junyan Qian, and Baowen Xu. How far we have progressed in the journey? an
examination of cross-project defect prediction. ACM Transactions on Software
Engineering and Methodology (TOSEM), 27(1):1–51, 2018.

[179] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. Cross-project defect prediction: a large scale experiment on
data vs. domain vs. process. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the SIGSOFT Symposium on The
Foundations of Software Engineering (FSE), pages 91–100, 2009.

[180] Weiwei Zong, Guangbin Huang, and Yiqiang Chen. Weighted extreme learning
machine for imbalance learning. Neurocomputing, 101:229–242, 2013.

163

	thesis-main-0
	thesis-main
	Declaration
	Abstract
	Publications
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Background
	1.1.1 The Existence and Harm of Software Defects
	1.1.2 Basic Concepts of Software Testing
	1.1.3 Software Defect Prediction

	1.2 A Brief Introduction of Three Studied Defect Prediction Scenarios
	1.3 Challenges Faced in Each Defect Prediction Scenario
	1.4 Research Methods used in Each Defect Prediction Scenario
	1.5 Thesis Organization

	2 Literature Review
	2.1 Studies on Defect Prediction Under Different Scenarios
	2.1.1 Studies on IVDP
	2.1.2 Studies on CVDP
	2.1.3 Studies on CPDP

	2.2 Studies on Different Methods for Defect Prediction
	2.2.1 Feature Selection for Defect Prediction
	2.2.2 Class Imbalanced Learning for Defect Prediction
	2.2.3 Training subset selection for Defect Prediction
	2.2.4 Transfer Learning for Defect Prediction

	3 A hybrid Framework Based on Kernel PCA and Weighted Extreme Learning Machine for Inner Version Defect Prediction
	3.1 Motivation
	3.2 The Used Methods and Proposed IVDP Framework
	3.2.1 Feature Extraction Based on KPCA
	3.2.2 ELM
	3.2.3 Model Construction Based on WELM
	3.2.4 The Proposed Framework

	3.3 Study Setup
	3.3.1 Research Questions
	3.3.2 Benchmark Dataset
	3.3.3 Evaluation Indicators
	3.3.4 Parameter Configuration
	3.3.5 Inner Version Scenario Setting
	3.3.6 Statistic Test Method

	3.4 Experimental Results
	3.4.1 Results for RQ1
	3.4.2 Results for RQ2
	3.4.3 Results for RQ3
	3.4.4 Results for RQ4

	3.5 Conclusion

	4 A Two-Stage Training Subset Selection Framework for Cross Version Defect Prediction
	4.1 Motivation
	4.2 The Used Methods and Proposed CVDP Framework
	4.2.1 The SMRS Method
	4.2.2 The DS3 Method
	4.2.3 The Proposed Framework

	4.3 Study Setup
	4.3.1 Research Questions
	4.3.2 Benchmark Dataset
	4.3.3 Evaluation Indicators
	4.3.4 Parameter Configuration
	4.3.5 Cross Version Scenario Design
	4.3.6 Statistic Test Method

	4.4 Experimental Results
	4.4.1 Results for RQ1
	4.4.2 Results for RQ2
	4.4.3 Results for RQ3
	4.4.4 Results for RQ4

	4.5 Conclusion

	5 Balanced Distribution Adaptation Based Transfer Learning for Cross Project Defect Prediction
	5.1 Motivation
	5.2 The Used Methods and Proposed CPDP Framework
	5.2.1 Notation Definitions
	5.2.2 The BDA Model
	5.2.3 The Proposed Framework

	5.3 Study Setup
	5.3.1 Research Questions
	5.3.2 Benchmark Dataset
	5.3.3 Evaluation Indicators
	5.3.4 Parameter Configuration
	5.3.5 Cross Project Scenario Design
	5.3.6 Statistic Test Method

	5.4 Experimental Results
	5.4.1 Results for RQ1
	5.4.2 Results for RQ2
	5.4.3 Results for RQ3
	5.4.4 Results for RQ4
	5.4.5 Results for RQ5
	5.4.6 Results for RQ6

	5.5 Conclusion

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	Bibliography

