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Abstract

Linear preserver problem is an active and popular research topic in matrix theory

and functional analysis. The main goal of linear preserver problems is to characterise

the structure of linear maps on matrix spaces or operator spaces that preserve certain

functions, subsets or relations. Let Mn denote the n×n complex matrix space. The

first linear preserver problem proposed by Frobenius in 1896 was to characterise

linear maps φ : Mn →Mn such that

det(φ(A)) = det(A) for all A ∈Mn.

In recent years, partly due to the development of quantum science, much attention

has been paid to the study of linear maps leaving invariant tensor products or certain

propositions of tensor products.

Fošner et al. characterised linear preservers for Schatten p-norms and Ky Fan k-

norms of tensor products of square matrices. In this thesis, we generalize their results

by characterising the form of linear maps preserving the γ-norms or the (p, k)-norms

with 2 < p <∞ of tensor products of square matrices. Let m ≥ 2 and n1, . . . , nm be

integers larger than or equal to 2. Suppose that ‖ ·‖ is the γ-norm or the (p, k)-norm

with 2 < p < ∞. We show in this thesis that a linear map φ : Mn1···nm → Mn1···nm

satisfies

‖φ(A1 ⊗ · · · ⊗ Am)‖ = ‖A1 ⊗ · · · ⊗ Am‖ for all Ai ∈Mni
, i = 1, . . . ,m,
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if and only if there exist unitary matrices U, V ∈Mn1···nm such that

φ(A1 ⊗ · · · ⊗ Am) = U(ϕ1(A)⊗ · · · ⊗ ϕm(A))V for all Ai ∈Mni
, i = 1, . . . ,m,

where ϕi is the identity map or the transposition map A 7→ AT for i = 1, . . . ,m.

We develop some new techniques to show that φ(Eii ⊗ Ejj) and φ(Err ⊗ Ess)

are orthogonal for any distinct (i, j) 6= (r, s), which is a key step in our proof.

Suppose that γ = (γ1, . . . , γn) with γ1 ≥ · · · ≥ γk > 0 = γk+1 = · · · = γn. Our

characterization of linear preservers for γ-norms mainly relies on the observation

that if ‖E + F‖γ = ‖E‖γ + ‖F‖γ, then UEV = E1 ⊕ E2 and UFV = F1 ⊕ F2

for some unitary matrices U and V with E1, F1 ∈ Mk and E2, F2 ∈ Mn−k. Some

equalities have been applied to obtain our results on (p, k)-norms.

Keywords: linear preserver problems, matrix space, unitarily invariant norms, γ-

norms, (p, k)-norms, singular values, tensor products

v



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor

Dr. Nung-Sing Sze for his detailed guidance, full support, strict regulation, and warm

encouragement. His dedication and enthusiasm for research and life always motivate

me to overcome the challenges and difficulties during my MPhil study.

I must express my sincerest gratitude to Dr. Zejun Huang of Shenzhen University

for his patient guidance and useful advices. I will never forget those days I spent in

Shenzhen under his support. Without his help, I can not complete this thesis.

Last but not least, I am grateful to my family and friends for their companies

and supports.

vi



Contents

Abstract iv

Acknowledgements vi

List of Notations viii

1 Introduction 1

1.1 Linear preserver problems . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Unitarily invariant norms . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Linear preservers on tensor products . . . . . . . . . . . . . . . . . . 9

2 Linear maps preserving γ-norms of tensor products of matrices 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Bipartite system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Multipartite system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Linear maps preserving (p, k)-norms of tensor products of matrices 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Bipartite system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Multipartite system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Rectangular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Conclusion and future work 60

Bibliography 62

vii



List of Notations

LPP Linear preserver problem

AT the transpose of A

A∗ the conjugate transpose of A

Eij a matrix which the (i, j)-th entry is equal to one and
all the other entries are zeros.

Mn the n× n complex matrix space

Mm,n the m× n complex matrix space

Hn the n× n Hermitian matrix space

GLn the set of n× n nonsingular matrices

Un the set of n× n unitary matrices

In the identity matrix of size n

A⊗B the tensor product of A and B

R the set of real numbers

C the set of complex numbers

R+ the set of positive real numbers

Rn the n-dimensional vector space over R
Cn the n-dimensional vector space over C
‖ · ‖γ the γ-norm

‖ · ‖(p,k) the (p, k)-norm

‖ · ‖tr the trace norm

x � y x majorizes y

x �w y x weakly majorizes y

rank(A) the rank of A

det(A) the determinant of A

tr(A) the trace of A

viii



A ⊥ B A and B are orthogonal

A1 ⊗ · · · ⊗ Ak the tensor product of A1 through Ak⊗k
i=1Ai the tensor product A1 ⊗ · · · ⊗ Ak

diag(a1, . . . , an) the n×n diagonal matrix with a1, . . . , an as its diagonal
entries

ix



Chapter 1

Introduction

1.1 Linear preserver problems

Linear preserver problem is an active and popular research topic in matrix theory

and functional analysis. The main goal of linear preserver problems (LPPs) is to

characterise the structure of linear maps on matrix spaces or operator spaces that

preserve certain functions, subsets or relations. Suppose F is a field. Let Mm,n(F)

denote the m×n matrix space over F. For simplicity, we denote by Mm,n the m×n

complex matrix space, and in particular denote by Mn the n × n complex matrix

space. Let Un, GLn and Hn denote the sets of n× n unitary matrices, nonsingular

matrices and Hermitian matrices, respectively. Denote by C and R the complex

number field and real number field, respectively. In 1897, Frobenius [9] first initiated

linear preserver problem by studying linear maps φ : Mn →Mn such that

det(φ(A)) = det(A) for all A ∈Mn, (1.1)

where det(A) denotes the determinant of A. It was shown that such linear maps

φ : Mn →Mn have the form

φ(A) = UAV or φ(A) = UATV for all A ∈Mn, (1.2)

where AT denotes the transpose of A and U, V ∈ GLn satisfy det(UV ) = 1. In the

past few decades, much effort has been devoted to this topic and there were many
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great works and results on LPPs. The following are some some typical problems.

(I) Suppose that P is a certain property of matrices. The first type is to deter-

mine the structure of linear maps φ leaving the property P invariant, i.e.,

φ(A) satisfies P whenever A satisfies P.

One example of this type is the rank-one LPP, that is, to characterise linear maps φ

such that

rank(φ(A)) = 1 whenever rank(A) = 1, (1.3)

where rank(A) denotes the rank of A. Marcus and Moyls characterised rank-one

linear preservers on Mn [30]; Johonson and Pierce [16] characterised nonsingular

rank-one linear preservers on the n × n Hermitian matrix space Hn; Chooi and

Lim [3] characterised rank-one preservers on upper triangular matrix space; Li and

Rodman et al. [19] characterised rank-one preservers from Mm×n(F) to Mp×q(F) for

any given field F and integers m,n, p, q. The study of rank-one LPP is an important

topic and many LPPs can be reduced to the characterisation of rank-one preservers.

In fact, the above problem proposed by Frobenius can also be reduced rank-one LPP.

It was shown that if φ satisfies (1.1), then it will send rank-one matrices to rank-one

matrices.

(II) Suppose that S is a subset or a subgroup of a given matrix space. The second

type is to characterise linear maps φ such that

φ(S) ⊆ S.

Recall that GLn and Un denote the sets of n × n nonsingular matrices and n × n

unitary matrices, respectively. Marcus and Purves [28, 31] characterised linear maps

φ on Mn mapping GLn or Un into itself. It was shown that such linear maps also

have the standard form in (1.2) with U, V ∈ GLn and U, V ∈ Un, respectively. Let

In denote the identity matrix of size n. Cheung and Li [2] extended these results by
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showing that if φ : Mn → Mm is a linear map such that φ(Un) ⊆ Um, then m is a

multiple of n and

φ(A) = U [(A⊗ Is)⊕ (AT ⊗ Ir)]V

for some matrices U, V ∈ Um. Note that the type (I) and type (II) might overlap.

For example, suppose that S is the set of all rank-one matrices, the problem to

characterise linear maps satisfying φ(S) ⊆ S falls in both type (I) and type (II).

(III) Suppose that f is a given (scalar-valued, vector-valued or set-valued) func-

tion of matrices. Problems of the third category aim at determining the structure of

linear maps φ on a matrix space M preserving f i.e.,

f(φ(A)) = f(A) for all A ∈M. (1.4)

One active topic is the study of linear maps preserving functions of singular values.

For example, let Er be the r-th elementary symmetric function. Then a function f

on Mm,n can be defined as f(A) = Er(s1(A), . . . , sn(A)), where r ≤ min{m,n} and

s1(A), . . . , sn(A) are the singular values of A in decreasing order. Given a complex

number x ∈ C, we denote by |x| the absolute value of x. Marcus and Gordon [29]

proved that if a linear map φ on Mm,n leaves the above function f invariant, then

one of the following statements holds.

(a) if r < m = n, then φ has the form in (1.2) with U ∈ Un, V ∈ Um;

(b) if r < min{m,n} and m 6= n, then φ has the form A 7→ UAV with U ∈ Un, V ∈

Um;

(c) if r = m < n, then φ has the form A 7→ UAV with |det(U)| = 1 and V ∈ Un;

(d) if r = n < m, then φ has the form A 7→ UAV with |det(V )| = 1 and U ∈ Um;

(e) if r = m = n, then φ has the form in (1.2) with |det(UV )| = 1.
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Their proof mainly relies on some results on rank-one linear preservers.

(IV) Suppose that ∼ is a relation. The fourth type is to find all linear maps φ

such that

φ(A) ∼ φ(B) whenever A ∼ B

or

φ(A) ∼ φ(B) if and only if A ∼ B.

For example, there are many works targeting on characterising linear maps preserving

similarity. Two matrices A,B ∈ Mn are said to be similar if A = SBS−1 for some

matrix S ∈ GLn. Hiai [13] characterised linear maps φ on Mn such that φ(A) and

φ(B) are similar whenever A and B are similar. Then the result was improved and

extended by Lim, Li and Tsing [14, 25, 34]. Scholars also considerd linear maps φ

such that φ(A) and φ(B) are commutative if A and B are commutative, i.e.,

φ(A)φ(B) = φ(B)φ(A) whenever AB = BA. (1.5)

Suppose that n ≥ 3 and F = C or R. Then a nonsingular linear map φ on Mn(F)

satisfies (1.5) if and only if there exist nonsingular matrix S ∈ Mn(F), real number

α ∈ R and a linear function f on Mn(F) such that

φ(A) = αS−1AS + f(A)In

or

φ(A) = αS−1ATS + f(A)In

for all A ∈Mn(F); See [24, 35].

1.2 Unitarily invariant norms

For simplicity, we may assume that m ≤ n in this section. Recall that Un denotes

the set of n×n unitary matrices. A norm ‖ · ‖ on Mm,n is called a unitarily invariant
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norm if

‖A‖ = ‖UAV ‖ for all A ∈Mm,n, U ∈ Un and V ∈ Um.

Denote by s1(A) ≥ s2(A) ≥ · · · ≥ sm(A) the singular values of A ∈ Mm,n in

decreasing order. Common examples of unitarily invariant norms include

(i) the spectral norm defined by ‖A‖op = s1(A);

(ii) the trace norm defined by ‖A‖tr =
m∑
i=1

si(A);

(ii) the Frobenius norm defined by ‖A‖F = {tr(AA∗)} 1
2 .

One important class of unitarily invariant norms is the Ky Fan k-norms. Suppose

that k is an integer with 1 ≤ k ≤ m. The Ky Fan k-norm of A ∈Mm,n is defined as

‖A‖(k) =
k∑
i=1

si(A).

Evidently, the spectral norm and the trace norm are also Ky Fan k-norms with k = 1

and k = m, respectively. The following theorem called Fan Dominance Principle is

a beautiful and useful result on Ky Fan norms.

Theorem 1.1. (Fan Dominance Principle [5]) Let A,B ∈ Mn. If ‖A‖(k) ≤ ‖B‖(k)

for all 1 ≤ k ≤ n, then ‖A‖ ≤ ‖B‖ for any unitarily invariant norm ‖ · ‖.

Readers can also see Theorem 4.25 in [39] for the proof of the above theorem.

Grone and Marcus proposed a further generalization of Ky Fan k-norm to the (p, k)-

norm. Suppose that 1 ≤ k ≤ m is an integer and 1 ≤ p ≤ ∞. The (p, k)-norm of

A ∈Mm,n is defined by

‖A‖(p,k) =

[
k∑
i=1

spi (A)

] 1
p

.
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Obviously, the (p, k)-norm reduces to the Ky Fan k-norm when p = 1 and reduces to

the Frobenius norm when p = 2 and k = m. Besides, the (p, k)-norm on Mm,n with

k = m is also called the Schatten p−norm denoted by ‖A‖p for A ∈Mm,n, that is,

‖A‖p =

[
m∑
i=1

spi (A)

] 1
p

,

which corresponds to the lp norm on Rn, the n-dimensional vector space over the

real number field R. Clearly, all the above unitarily invariant norms are functions

of singular values of matrices. In fact, one can conclude from the singular value

decomposition that any unitarily invariant norm is a function of singular values of

matrices, but not vice versa. In other words, not all functions of singular values could

be a norm of matrices. So naturally, one may wonder what kind of functions can be

unitarily invariant norms. Von Neumann answered this problem by giving Theorem

1.2. To show this interesting result, we first introduce some related definitions and

notations.

Let F be a field. The set Fn of n-tuples with entries from F forms an n-dimensional

vector space over F. In particular, Rn and Cn denote the vector spaces over the real

number field R and the complex number field C, respectively. Let R+ denote the set

of positive real numbers. For x = (x1, . . . , xn) ∈ Cn, denote |x| = (|x1|, . . . , |xn|). A

norm ‖ · ‖ on Cn(Rn) is called absolute if ‖|x|‖ = ‖x‖ for all x ∈ Cn(Rn).

Definition 1.1. A function f : Rn → R+ is said to be a symmetric Gauge function

if f is an absolute norm on Rn and

f(xj1 , . . . , xjn) = f(x1, . . . , xn)

for all (x1, . . . , xn) ∈ Rn and permutation (j1, . . . , jn) of (1, . . . , n).

Let x = (x1, . . . , xn) ∈ Rn. One can easily verify that the l∞ norm, defined by

‖x‖∞ = max
i=1,...,n

|xi|, is a symmetric Gauge function. Suppose that |xj1| ≥ · · · ≥ |xjn|
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for some permutation (j1, . . . , jn) of (1, . . . , n), we define |x|↓ = (|xj1|, . . . , |xjn|).

Denote Rn
+,↓ = {(x1, . . . , xn) | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}. A function f on Rn

+,↓ can

be extended to a function f̃ on Rn as

f̃(x) = f(|x|↓) for all x ∈ Rn. (1.6)

Theorem 1.2. [39, Theorem 4.23] Let f be a function on Rn
+,↓ and ‖ · ‖f be defined

by

‖A‖f = f(s1(A), . . . , sm(A)) for all A ∈Mm,n.

Then ‖ · ‖f is a unitarily invariant norm on Mm,n if and only if f̃ is a symmetric

Gauge function.

Readers can refer to Chapter 4 of [39] for more results on unitarily invariant

norms and functions of singular values of matrices. Below we focus on the study of

LPPs about unitarily invariant norms. Schur [37] showed that an analytic map φ on

Mm,n satisfies

‖φ(A)‖op = ‖A‖op for all A ∈Mm,n,

if and only if φ has the form in (1.2) when m = n, or the form A 7→ UAV when m 6= n

with U ∈ Um and V ∈ Un. Later, Morita [33] and Sugawara [38] reproved this result

based on Morita’s result on rank-one preservers. Suppose that ‖·‖ is a norm on Mm,n.

The unit sphere in Mm,n with respect to ‖ · ‖ is the set {A : ‖A‖ = 1, A ∈ Mm,n}.

Suppose that S is a set, then x ∈ S is said to be an extreme point of S if there do

not exist x1, x2 ∈ S and 0 < t < 1 such that x1 6= x2 and x = tx1 +(1− t)x2, in other

words, x = tx1+(1−t)x2 for some 0 < t < 1 implies that x = x1 = x2. Let E be the set

of all the extreme points of the unit sphere {A : ‖A‖ = 1, A ∈Mm,n}. One can easily

check that a nonsingular linear map φ on Mm,n that preserves ‖·‖ maps E into itself.

This observation was applied to characterise many norm preservers. For instance,

Russo [36] showed that the set of extreme points of the unit sphere with respect to
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the trace norm, {A : ‖A‖tr, A ∈Mn}, is simply the set of those matrices of rank one

and trace norm one. It follows that a linear map φ on Mn preserves the trace norm

only if it preserves rank one, that is, φ satisfies (1.3). With this, he characterised

unital linear maps on Mn that preserve the trace norm. Li and Tsing [22] applied

a special property of unit sphere with respect to (p, k)-norms to characterize linear

maps on Mm,n preserving (p, k)-norms. Let B = {A : ‖A‖(p,k) = 1, A ∈ Mm,n} with

(p, k) 6= (2,m) and 1 < p < ∞. It was shown by them that a matrix A ∈ B is of

rank greater than k − 1 if and only if there exists B ∈ B such that B 6= A and

αA+ (1− α)B ∈ B for all 0 ≤ α ≤ 1.

With this result, they proved that a linear map φ on Mm,n preserves (p, k)-norms if

and only if φ maps the set of all matrices of rank greater than k−1 into itself. Grone

and Marcus [11] showed that linear maps φ on Mn preserving Ky Fan k−norms have

the form in (1.2) with matrices U, V ∈ Un. And then this result was extended to the

space of rectangular matrices [10]. Suppose that γ = (γ1, . . . , γm) ∈ Rm
+,↓. Another

generalization of the Ky Fan k−norm is the γ-norm defined by

‖A‖γ =
m∑
i=1

si(A)γi for all A ∈Mm,n.

In [21], Li and Tsing proved that there exist linear maps φ on Mm,n such that

‖φ(A)‖γ = ‖A‖γ̂, A ∈Mm,n for some given γ = (γ1, . . . , γm), γ̂ = (γ̂1, . . . , γ̂m) ∈ Rm
+,↓

only if γ is a scalar multiple of γ̂ and in this case there exist matrices U ∈ Um and

V ∈ Un such that

φ(A) =
γ1
γ̂1
UAV

or when m = n

φ(A) =
γ1
γ̂1
UATV
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for all A ∈Mm,n. Clearly, when m = n and γ = γ̂, φ reduces to the form in (1.2).

As we can see, all the above linear preservers on Mm,n have the standard form

A 7→ UAV or when m = n A 7→ UATV with U ∈ Um and V ∈ Un. Actually, linear

preservers for any unitarily invariant norm have this structure. Suppose that ‖ · ‖ is

a unitarily invariant norm, then a linear map φ : Mm,n →Mm,n satisfies

‖φ(A)‖ = ‖A‖ for all A ∈Mm,n

if and only if φ has the form A 7→ UAV or when m = n A 7→ UATV with matrices

U ∈ Um and V ∈ Un; See [23]. One might think that corresponding results on

Mm,n(R) could also be obtained. However, this is not true for the case when m =

n = 4; See [1, 23] for details. Readers can also refer to [1] for an excellent survey of

LLPs on unitarily invariant norms.

1.3 Linear preservers on tensor products

In recent years, partly due to the development of quantum science, much attention

has been paid to the study of linear maps leaving invariant tensor products or certain

propositions of tensor products. Let A = [aij] ∈ Mm,` and B ∈ Mn,t. The tensor

product of A and B, denoted by A⊗B, is defined as

A⊗B =


a11B a12B · · · a1`B
a21B a22B · · · a2`B

...
...

...
am1B am2B · · · am`B

 ∈Mmn,`t.

The tensor product is also called the Kronecker product. Denote by A∗ the conjugate

transpose of A ∈Mn. Then A is said to be a Hermitian matrix if A = A∗. Recall that

Hn denotes the set of all n×n Hermitian matrices. In quantum science, the state of

an n-physical-state quantum system is represented by a density matrix, which is a

positive semidefinite matrix of trace one in Hn. Let A ∈ Hm and B ∈ Hn be density
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matrices describing two quantum systems. Then A ⊗ B ∈ Hmn is a quantum state

of the composite system. A density matrix C ∈ Hmn is said to be separable if

C =
k∑
i

piAi ⊗Bi, (1.7)

for some density matrices Ai ∈ Hm, Bi ∈ Hn and real number 0 < pi ≤ 1 with

k∑
i=1

pi = 1. In particular, if k = 1, C is called a pure separable state. Otherwise,

C is said to be an inseparable state or an entangled state. Generalizations of these

definitions to multipartitle systems Hn1⊗· · ·⊗Hnm with m ≥ 3 are obvious. Clearly,

the set of separable states is the convex hull of the set of pure separable states.

Entangled states have many applications in quantum information and quantum

computation. One significant problem in quantum science is to distinguish separable

states from entangled states efficiently. Unfortunately, it was proved in [12] that this

problem is NP hard. Nevertheless, it is well worth finding transformations which can

simplify a given state so that it is easier to determine whether it is separable or not.

Obviously, such a transformation should not change the separability of a state. This

leads to the study of linear operators preserving the set of separable states. It was

shown in [8] that a linear transformation φ on Hm1···mk
preserving the set of pure

separable states {A1 ⊗ · · · ⊗ Ak | Ai ∈ Hmi
} or its convex hull if and only if there

exists a permutation (j1, . . . , jk) of (1, . . . , k) such that

φ(A1 ⊗ · · · ⊗ Ak) = ψ1(Aj1)⊗ · · · ⊗ ψk(Ajk) for all Ai ∈ Hmi
, i = 1, . . . , k,

where ψi has the form

A 7→ UiAU
∗
i or A 7→ UiA

TU∗i

with matrices Ui ∈ Umi
and mji = mi for i = 1, . . . , k. The evolution of a closed

quantum system is described by a unitary transformation. Moreover, let ρ1, ρ2 be
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the states of a system at time t1 and t2, respectively. There exists a unitary matrix

U which only depends on time t1 and t2 such that ρ1 = Uρ2U
∗. Therefore, it is well

worth studying the similarity orbits U(C), defined by U(C) = {UCU∗ | U ∈ Un}, of

a matrix C ∈ Hn. Suppose that Ci, Di ∈ Hmi
for i = 1, . . . , k. Let

S1 = {X1 ⊗ · · · ⊗Xk | Xi ∈ U(Ci), i = 1, . . . , k},

S2 = {X1 ⊗ · · · ⊗Xk | Xi ∈ U(Di), i = 1, . . . , k}.

Authors in [18] characterised linear transformations on Hm1···mk
satisfying φ(S1) =

S2. In [7], authors characterised linear maps φ : Hmn → Hmn that preserve the

spectrum or the spectral radius of tensor products A ⊗ B for all A ∈ Hm and

B ∈ Hn. Another interesting topic is the study of preservers for rank of tensor

products of matrices. In [26], Lim gave the structure of additive maps between

tensor products of two real vector spaces of Hermitian matrices that preserve the

rank of tensor products of rank-one matrices. Zheng et al. [40] showed that a linear

map φ : Mm1···mk
→Mm1···mk

satisfying

rank(φ(A1 ⊗ · · · ⊗ Ak)) = rank(A1 ⊗ · · · ⊗ Ak) for all Ai ∈Mmi
, i = 1, . . . , k,

if and only if

φ(A1⊗· · ·⊗Ak) = U(ψ1(A1)⊗· · ·⊗ψk(Ak))V for all Ai ∈Mmi
, i = 1, . . . , k, (1.8)

where U, V ∈ Mm1···mk
are nonsingular matrices and ψi is the identity map or the

transposition map A 7→ AT for i = 1, . . . , k. Next Lim [27] extended this result to

arbitrary field F by showing that a linear map φ : Mm1···mk
(F)→Mp,q(F) satisfying

rank(φ(A1 ⊗ · · · ⊗ Ak)) = 1 for all rank one matrix Ai ∈Mmi
(F), and

rank(φ(A1 ⊗ · · · ⊗ Ak)) =
k∏
i=1

mi for all rank mi marix Ai ∈Mmi
(F)

also have the structure in (1.8). Hang et al. [15] extended the above result by

characterising linear maps sending tensor products of rank-one complex matrices
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to rank-one matrices. It is worth noting that such preservers might have a more

complicated form. One challenging problem is to characterise linear maps preserving

determinant of tensor products of matrices. The following theorem is one recent

result on this problem obtained by Ding et al. in [4].

Theorem 1.3. Let φ : Hmn → Hmn be a linear map such that φ(R⊗S) is a positive

or negative definite matrix for some R ∈ Hm, S ∈ Hn. Then φ satisfies

det(φ(A⊗B)) = det(A⊗B) for all A ∈ Hm and B ∈ Hn (1.9)

if and only if there exists U ∈ Hmn such that det(UU∗) = 1 and

φ(A⊗B) = εU(ψ1(A)⊗ ψ2(B))U∗ for all A ∈ Hm and B ∈ Hn, (1.10)

where ψi is the identity map or the transposition map A 7→ AT for i = 1, 2, ε = 1

when φ(R⊗ S) is positive definite, and ε = −1 when φ(R⊗ S) is negative definite.

The assumption that φ(R⊗S) is positive or negative definite is essential. In fact,

one can check that a linear map φ : H4 → H4 defined by

φ(A⊗B) =

[
0 AB
BA 0

]
for all A,B ∈ H2.

satisfies (1.9) but does not have the form in (1.10).

There are many results on linear maps preserving unitarily invariant norms of

matrices (without the tensor structure). Naturally, one may want to extend these

results to tensor products of matrices. For example, authors of [6] considered lin-

ear maps preserving Ky Fan k-norms and Schatten p−norms of tensor products of

matrices.

In this thesis, we extend their results to another two classes of unitarily invariant

norms by giving the structure of linear maps preserving γ-norms or (p, k)-norms of

tensor products of matrices. Denote by Eij the matrix which the (i, j)-th entry is
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equal to one and all the other entries are equal to zero, where the size of Eij should

be clear in the context. Let A,B ∈Mm,n be two matrices. Then A and B are said to

be orthogonal, denoted by A ⊥ B, if AB∗ = 0 and A∗B = 0. In Chapter 2, we focus

on linear maps preserving γ-norms of tensor products of square matrices. Suppose

that γ = (γ1, . . . , γmn) with γ1 ≥ · · · ≥ γk > 0 = γk+1 = · · · = γmn for some integer

2 ≤ k ≤ mn. Let A = φ(Eii ⊗ Ejj) and B = φ(Eii ⊗ Ess) with j 6= s. We observe

that a linear map φ on Mmn such that ‖φ(C ⊗ D)‖γ = ‖C ⊗ D‖γ for all C ∈ Mm

and D ∈Mn should satisfy that

‖2A+ (x+ 1)eiθB‖γ = ‖A+ eiθB‖γ + ‖A+ xeiθB‖γ

for all 0 < x ≤ 1 and θ ∈ [0, 2π). With this observation, we develop some techniques

to show that there exist some matrices U, V ∈ Umn such that

A = U(A1 ⊕ A2)V and B = U(B1 ⊕B2)V

with A1, B1 ∈Mk and A1 ⊥ B1. Then we use some methods to show that A2 ⊥ B2.

It follows that A ⊥ B, which is a key step of our proof of the main result in Chapter 2.

In Chapter 3, we apply some equalities about the eigenvalues of positive semidefinite

matrices, which are crucial to our characterisation of linear maps preserving (p, k)-

norms of tensor products of matrices.
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Chapter 2

Linear maps preserving γ-norms of

tensor products of matrices

2.1 Introduction

Let m,n ≥ 2 be two integers. Given any nonzero γ = (γ1, γ2, . . . , γmn) ∈ Rmn
+,↓, in

this chapter, we aim at characterising linear maps φ : Mmn →Mmn satisfying

‖φ(C ⊗D)‖γ = ‖C ⊗D‖γ for all C ∈Mm and D ∈Mn. (2.1)

Obviously, if γ2 = 0, then the γ-norm reduces to a scalar multiple of the Ky Fan

1-norm, also called the spectral norm. In [6], Fošner et al. showed that linear maps

φ on Mmn preserving spectral norms of tensor products of matrices have form

φ(C ⊗D) = U(ϕ1(C)⊗ ϕ2(D))V for all C ∈Mm and D ∈Mn,

where U, V ∈ Umn and φs is the identity map or the transposition map for s = 1, 2.

It follows that if γ2=0, then a linear map φ satisfying (2.1) also has the above form.

So in the following sections, we only need consider the case when γ2 > 0. Denote by

In and 0n the n × n identity matrix and zero matrix, respectively. Recall that two

matrices A,B ∈Mn are said to be orthogonal, denote by A ⊥ B, if A∗B = AB∗ = 0.

It was shown in [20] that A and B are orthogonal if and only if there exist matrices

U, V ∈ Un such that UAV = diag(a1, . . . , an) and UBV = diag(b1, . . . , bn) with

aibi = 0 for i = 1, . . . , n.
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Suppose that ‖ · ‖ is a norm on Mmn. Note that C1 ⊗ D1 + C2 ⊗ D2 may not

be of the form C ⊗ D with C ∈ Mm and D ∈ Mn. So even if a linear map φ

satisfies that ‖φ(C ⊗ D)‖ = ‖C ⊗ D‖ for all C ∈ Mm, D ∈ Mn, we may not have

‖φ(C1⊗D1 +C2⊗D2)‖ = ‖C1⊗D1 +C2⊗D2‖. Thus, some techniques and methods

applied to characterise linear maps φ : Mn → Mn preserving a certain norm cannot

be used to characterise linear preservers for norms of tensor products of matrices.

One key step in the characterisation of linear maps φ on Mmn preserving Ky Fan k-

norms of tensor products is to show that φ(Eii⊗Ejj) and φ(Err⊗Ess) are orthogonal

for any distinct pairs (i, j) and (r, s); See [6]. Similar methods can also be seen in

the characterisation of linear maps on Hmn preserving the spectrum or the spectral

radius of C ⊗D for all C ∈ Hm and D ∈ Hn; See [6, 7].

However, approaches to complete the key step in these previous literatures do

not work for our problem. So we have to develop some new techniques to solve this

problem. Let A = φ(Eii ⊗ Ejj) and B = φ(Eii ⊗ Ess) with j 6= s. Our proof mainly

relies on the observation that

‖2A+ (x+ 1)eiθB‖γ = ‖A+ eiθB‖γ + ‖A+ xeiθB‖γ

and

‖A+ xeiθB‖γ = γ1 + xγ2

for all θ ∈ [0, 2π) and 0 < x ≤ 1. In Section 2.2, with the above observation, we will

prove in Assertion 2.1 that A and B are orthogonal. Notice that similar equations

also hold for G = φ(Eii⊗ (Ejj +Ess)) and H = φ(Ett⊗ (Ejj +Ess)). Then with this,

we will prove in Assertion 2.2 that G and H are orthogonal, too. The results in the

first two assertions directly imply Assertion 2.3 that φ(Eii ⊗ Ejj) and φ(Err ⊗ Ess)

are orthogonal for any distinct (i, j) 6= (r, s). At last, we will complete the proof of

our main result in Assertion 2.4. In Section 2.3, we will extend the result on bipartite

system to multipartite system.
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2.2 Bipartite system

Theorem 2.1. Let m,n ≥ 2 be integers. For any given γ = (γ1, . . . , γmn) ∈ Rmn
+,↓

with γ2 > 0, a linear map φ : Mmn →Mmn satisfies

‖φ(C ⊗D)‖γ = ‖C ⊗D‖γ for all C ∈Mm and D ∈Mn, (2.2)

if and only if there exist matrices U, V ∈ Umn such that

φ(C ⊗D) = U(ϕ1(C)⊗ ϕ2(D))V for all C ∈Mm and D ∈Mn,

where ϕs is the identity map or the transposition map X 7→ XT , for s = 1, 2.

To prove the Theorem, we need the following lemmas.

Lemma 2.1. Let A,B ∈Mm,n. Then A ⊥ B if and only if there exist some matrices

U ∈ Um, V ∈ Un, Â ∈Mr and B̂ ∈Mm−r,n−r such that

UAV =

[
Â 0
0 0

]
and UBV =

[
0r 0

0 B̂

]
Proof. The sufficiency part is clear and we only need to prove the necessity part.

If A = 0, then there is nothing to prove. Suppose that A is nonzero, then by the

singular value decomposition, we have

UAV =

[
Â 0
0 0

]

for some matrices U ∈ Um, V ∈ Un and nonsingular matrix Â ∈ Mr with 1 ≤ r ≤

min{m,n}. Let UBV be partitioned as

UBV =

[
B11 B12

B21 B22

]
with B11 ∈Mr and B22 ∈Mm−r,n−r. We conclude from A ⊥ B that

(UAV )∗(UBV ) = V A∗BV = 0 and (UAV )(UBV )∗ = UAB∗U∗ = 0,
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that is, [
Â∗B11 Â∗B12

0 0

]
= 0 and

[
ÂB∗11 ÂB∗21

0 0

]
= 0.

Since Â is nonsigular, it follows that B11 = 0, B12 = 0 and B21 = 0. Let B̂ = B11.

Then we have

UBV =

[
0r 0

0 B̂

]
.

This completes the the proof.

Lemma 2.2. Let A,B,C ∈Mm,n. If (A+B) ⊥ C and A ⊥ B, then

A ⊥ C and B ⊥ C.

Proof. Since A ⊥ B, we apply Lemma 2.1 to conclude that there exist some matrices

U ∈ Um, V ∈ Un, Â ∈Mr and B̂ ∈Mm−r,n−r such that

UAV =

[
Â 0
0 0

]
and UBV =

[
0r 0

0 B̂

]
.

Then we have

U(A+B)V =

[
Â 0

0 B̂

]
.

Let UCV be partitioned as

UCV =

[
C11 C12

C21 C22

]
with C11 ∈Mr and C22 ∈Mm−r,n−r. We conclude from (A+B) ⊥ C that

(U(A+B)V )∗(UCV ) = V ∗(A+B)∗CV = 0, and

(U(A+B)V )(UCV )∗ = U(A+B)C∗U∗ = 0,

that is, [
Â∗C11 Â∗C12

B̂∗C21 B̂∗C22

]
= 0 and

[
ÂC∗11 ÂC∗21
B̂C∗12 B̂C∗22

]
= 0.
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This implies that

(UAV )∗(UCV ) =

[
Â∗C11 Â∗C12

0 0

]
= 0 and (UAV )(UCV )∗ =

[
ÂC∗11 ÂC∗21

0 0

]
= 0,

and therefore A∗C = 0 and AC∗ = 0, that is, A ⊥ C. Similarly, we can also conclude

that B ⊥ C.

Lemma 2.3. Let E,F ∈Mn. Given γ = (γ1, . . . , γn) with γ1 ≥ γ2 ≥ · · · ≥ γk > 0 =

γk+1 = · · · = γn for some integer 2 ≤ k ≤ n. Suppose ‖E +F‖γ = ‖E‖γ + ‖F‖γ and

there exist matrices U, V ∈ Un such that

U(E + F )V = diag (s`1(E + F ), . . . , s`n(E + F ))

for some permutation (`1, `2, . . . , `n) of (1, 2, . . . , n). Let L = {j : `j ≤ k} and

L̄ = {j : `j > k} be the index sets, and let aij and bij be the (i, j)-th entries of UEV

and UFV , respectively. Then

1. ‖E‖γ =
∑
j∈L

ajjγ`j and ‖F‖γ =
∑
j∈L

bjjγ`j ,

2. the (i, j)-th entries of UEV and UFV are zero for all (i, j) ∈ (L×L̄)
⋃

(L̄×L),

and

3. the two k × k submatrices of UEV and UFV obtained the columns and rows

from the index L are positive semidefinite with s1(E), . . . , sk(E) and s1(F ), . . . ,

sk(F ) as their eigenvalues, respectively.

Proof. By replacing (U, V ) with (PU, V P T ) for some permutation P , if necessary,

we may assume that (`1, . . . , `n) = (1, . . . , n), i.e.,

U(E + F )V = diag (s1(E + F ), . . . , sn(E + F )) . (2.3)
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In this case, L = {1, . . . , k} and L̄ = {k + 1, . . . , n}. Then we aim to show that

‖E‖γ =
k∑
j=1

ajjγj and ‖F‖γ =
k∑
j=1

bjjγj

and

UEV = E1 ⊕ E2 and UFV = F1 ⊕ F2,

where E1, F1 ∈ Mk are positive semidefinite with s1(E), . . . , sk(E) and s1(F ), . . . ,

sk(F ) as their eigenvalues, respectively.

Notice that

r∑
j=1

|ajj| ≤
r∑
j=1

sj(UEV ) =
r∑
j=1

sj(E) for r = 1, . . . , n.

Recall that γ1 ≥ · · · ≥ γk > γk+1 = 0. Thus,

k∑
j=1

|ajj|γj =
k∑
r=1

[
(γr − γr+1)

r∑
j=1

|ajj|

]
≤

k∑
r=1

[
(γr − γr+1)

r∑
j=1

sj(E)

]

=
k∑
j=1

sj(E)γj.

(2.4)

Furthermore, the equality holds if and only if

(γr − γr+1)
r∑
j=1

|ajj| = (γr − γr+1)
r∑
j=1

sj(E)

for r = 1, . . . , k. In particular, (γk − γk+1)
k∑
j=1

|ajj| = (γk − γk+1)
k∑
j=1

sj(E) implies

k∑
j=1

|ajj| =
k∑
j=1

sj(E). By the same argument, these observations also hold for F .
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Now by our assumption in (2.3) and the above observations, we have

‖E + F‖γ =
k∑
j=1

sj(E + F )γj =
k∑
j=1

(ajj + bjj)γj ≤
k∑
j=1

|ajj|γj +
k∑
j=1

|bjj|γj

≤
k∑
j=1

sj(E)γj +
k∑
j=1

sj(F )γj

= ‖E‖γ + ‖F‖γ.

(2.5)

The assumption that ‖E + F‖γ = ‖E‖γ + ‖F‖γ implies that the two equalities in

(2.5) both hold. It follows that

‖E‖γ =
k∑
j=1

sj(E)γj =
k∑
j=1

|ajj|γj and ‖F‖γ =
k∑
j=1

sj(F )γj =
k∑
j=1

|bjj|γj,

and ajj, bjj ≥ 0 for all j = 1 . . . k. With the inequality (2.4) and the discussion after

that, we can further conclude that
k∑
j=1

ajj =
k∑
j=1

sj(E) and
k∑
j=1

bjj =
k∑
j=1

sj(F ). Then

applying Corollary 3.2 in [17], we have

UEV = E1 ⊕ E2 and UFV = F1 ⊕ F2,

where E1, F1 ∈ Mk are positive semidefinite with eigenvalues s1(E), . . . , sk(E) and

s1(F ), . . . , sk(F ), respectively.

Lemma 2.4. Let A ∈Mn be a nonzero matrix and U ∈ Un. Suppose that V,W ∈ Un

are matrices such that

A = V (A1 ⊕ 0n−r)W
∗,

where 1 ≤ r ≤ n and A1 ∈Mr is positive definite. Then UA is positive semidefinite

if and only if

U = W (Ir ⊕ Û)V ∗

for some matrix Û ∈ Un−r.
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Proof. The sufficiency part is obvious, here we only need prove the necessity part.

By replacing (U,A) with (W ∗UV, V ∗AW ), we may assume that V = W = In, i.e.,

A = A1 ⊕ 0n−r.

We aim to show that U = Ir ⊕ Û for some matrix Û ∈ Un−r.

Let U be partitioned as

U =

[
U11 U12

U21 U22

]
with U11 ∈Mr and U22 ∈Mn−r. Then

UA =

[
U11A1 0
U21A1 0

]

is positive semidefinite. It follows that U11A1 is positive semidefinite and U21A1 = 0.

Recall that A1 is positive definite. Therefore, U21A1 = 0 implies that U21 = 0. With

the assumption that U is unitary, we have

In = UU∗ =

[
U11U

∗
11 + U12U

∗
12 U12U

∗
22

U22U
∗
12 U22U

∗
22

]
,

and therefore U11U
∗
11 + U12U

∗
12 = Ir, U22U

∗
22 = In−r and U12U

∗
22 = 0. It follows that

U12 = 0 and U11 and U22 are unitary, i.e., U = U11 ⊕ U22 with unitary matrices

U11 ∈ Mr and U22 ∈ Mn−r. Recall that U11A1 is positive semidefinite and A1 is

positive definite. Let P = U11A1. Then we can conclude that

P 2 = P ∗P = (U11A1)
∗(U11A1) = A∗1A1 = A2

1.

It follows that P = A1. Hence we can conclude from P = U11A1 that U11 = Ir. It

follows that U = Ir ⊕ U22. Let Û = U22. This completes our proof.

Proof of Theorem 2.1. With the assumption stated in Theorem 2.1, we can

conclude that there exists an integer 2 ≤ k ≤ mn such that γ1 ≥ γ2 ≥ · · · ≥ γk >
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0 = γk+1 = · · · = γmn. Since the sufficiency part is clear, we consider only the

necessity part. Suppose the linear map φ : Mmn → Mmn satisfies (2.2). We will

prove the necessity part through the following assertions.

Assertion 2.1. For any matrices X ∈ Um and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XEiiX

∗ ⊗ Y EssY ∗) whenever j 6= s. (2.6)

And similarly,

φ(XErrX
∗ ⊗ Y EjjY ∗) ⊥ φ(XEttX

∗ ⊗ Y EjjY ∗) whenever t 6= r.

Also rank(φ(XEiiX
∗ ⊗ Y EjjY ∗)) < k for i = 1, . . . ,m and j = 1, . . . , n.

Proof. Without loss of generality, we need only prove the claim in (2.6) holds. For

simplicity, we denote φ(XEiiX
∗ ⊗ Y EjjY ∗) and φ(XEiiX

∗ ⊗ Y EssY ∗) by A and B,

respectively. Let h = rank(A) and x0 = min
{ sh(A)

2s1(B)
, 1
2

}
. We divide the proof into

the following steps.

Step 1. We claim that there exist an integer T and matrices U , V ∈ Umn such that

UAV =
T⊕
j=1

Ãj and UBV =
T⊕
j=1

B̃j (2.7)

and for each θ ∈ [0, 2π), there exists a nonzero subset J(θ) ⊆ {1, . . . , T} satisfying

(1.a) AJ(θ) =
⊕

j∈J(θ)
Ãj ∈Mk and BJ(θ) =

⊕
j∈J(θ)

B̃j ∈Mk, and

(1.b) sj
(
2AJ(θ) + (x0 + 1)eiθBJ(θ)

)
= sj

(
2A+ (x0 + 1)eiθB

)
for j = 1, . . . , k.

We prove the above claims by showing that for some integer T and matrices U, V ∈

Umn, the direct sum decomposition (2.7) satisfies (1.a) and (1.b). First of all, the

decomposition clearly exists when T = 1 with U = V = Imn i.e., Ã1 = A1 and
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B̃1 = B1. If (1.a ) and (1.b) both hold for such Ã1 and B̃1, then Step 1 is correct.

Otherwise, we can consider the following decomposition

UAV =
T⊕
j=1

Ãj and UBV =
T⊕
j=1

B̃j,

where T ≥ 1 is an integer and Ãj, B̃j ∈Mnj
with

T∑
j=1

nj = mn. Clearly,

U(2A+ (x0 + 1)eiθB)V =
T⊕
j=1

2Ãj + (x0 + 1)eiθB̃j.

Then for each θ ∈ [0, 2π), there exist k1, . . . , kT with 0 ≤ kj ≤ nj and
T∑
j=1

kj = k such

that the largest k singular values of U(2A + (x0 + 1)eiθB)V , as well as the largest

k singular values of 2A + (x0 + 1)eiθB, come from the largest kj singular values of

2Ãj + (x0 + 1)eiθB̃j. That is,

(
s1(2Ã1 + (x0 + 1)eiθB̃1), . . . , sk1(2Ã1 + (x0 + 1)eiθB̃1),

s1(2Ã2 + (x0 + 1)eiθB̃2), . . . , sk2(2Ã2 + (x0 + 1)eiθB̃2),

. . . . . .

s1(2ÃT + (x0 + 1)eiθB̃T ), . . . , skT (2ÃT + (x0 + 1)eiθB̃T )
)

(2.8)

is equal to (
sj1(2A+ (x0 + 1)eiθB), . . . , sjk(2A+ (x0 + 1)eiθB)

)
for some permutation (j1, . . . , jk) of (1, . . . , k). Here the integers k1, . . . , kT depend

on θ. Suppose for some θ ∈ [0, 2π), there exists 1 ≤ j ≤ T such that 0 < kj < nj.

Without loss of generality, we may assume j = 1, i.e., 0 < k1 < n1. By the singular
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value decomposition, there exist matrices Ûj, V̂j ∈ Unj
such that

Ûj(2Ãj + (x0 + 1)eiθB̃j)V̂j =

diag
(
s1(2Ãj + (x0 + 1)eiθB̃j), . . . , snj

(2Ãj + (x0 + 1)eiθB̃j)
)
.

Let Û =

(
T⊕
j=1

Ûj

)
U and V̂ = V

(
T⊕
j=1

V̂j

)
. Then

Û(2A+ (x0 + 1)eiθB)V̂ =

T⊕
j=1

diag
(
s1(2Ãj + (x0 + 1)eiθB̃j), . . . , snj

(2Ãj + (x0 + 1)eiθB̃j)
)

is an mn×mn diagonal matrix. From (2.8), the first k1×k1 block diagonal submatrix

of Û(2A+ (x0 + 1)eiθB)V̂ is

diag
(
s1(2Ã1 + (x0 + 1)eiθB̃1), . . . , sk1(2Ã1 + (x0 + 1)eiθB̃1)

)
= diag

(
sj1(2A+ (x0 + 1)eiθB), . . . , sjk1 (2A+ (x0 + 1)eiθB)

)
. (2.9)

By the assumption in (2.2), we have

‖2A+ (x+ 1)eiθB‖γ = ‖XEiiX∗ ⊗ Y (2Ejj + (x+ 1)Ess)Y
∗)‖γ = 2γ1 + (x+ 1)γ2,

‖A+ xeiθB‖γ = ‖XEiiX∗ ⊗ Y (Ejj + xEss)Y
∗)‖γ = γ1 + xγ2, and

‖A+ eiθB‖γ = ‖XEiiX∗ ⊗ Y (Ejj + Ess)Y
∗)‖γ = γ1 + γ2

for all 0 < x ≤ 1. It follows from the above equations that

‖2A+ (x0 + 1)eiθB‖γ = ‖A+ eiθB‖γ + ‖A+ x0e
iθB‖γ. (2.10)

Applying Lemma 2.3 with (E,F ) = (A + eiθB,A + x0e
iθB), we can conclude that

the (i, j)-th entries of Û(A + eiθB)V̂ and Û(A + x0e
iθB)V̂ are zero for all (i, j) ∈
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(
{1, . . . , k1} × {k1 + 1, . . . , n1}

)⋃ (
{k1 + 1, . . . , n1} × {1, . . . , k1}

)
, so as ÛAV̂ and

ÛBV̂ . Notice that

ÛAV̂ =
T⊕
j=1

ÛjÃjV̂j and ÛBV̂ =
T⊕
j=1

ÛjB̃jV̂j.

Then we can conclude from the above observation that the (i, j)-th entries of Û1Ã1V̂1

and Û1B̃1V̂1 are zero for all (i, j) ∈
(
{1, . . . , k1}×{k1+1, . . . , n1}

)⋃ (
{k1+1, . . . , n1}×

{1, . . . , k1}
)
. With the assumption that 0 < k1 < n1, we can write

Û1Ã1V̂1 = Â1 ⊕ Â2 and Û1B̃1V̂1 = B̂1 ⊕ B̂2

with Â1, B̂1 ∈Mk1 and Â2, B̂2 ∈Mn1−k1 . Let Âj+1 = ÛjÃjV̂j and B̂j+1 = ÛjB̃jV̂j for

j = 2, . . . , T . Then we can conclude that

ÛAV̂ =
T+1⊕
j=1

Âj and ÛBV̂ =
T+1⊕
j=1

B̂j.

With the new unitary matrices Û and V̂ , we can re-define n1, . . . , nT+1, and k1, . . . ,

kT+1 accordingly. If there still exists some θ ∈ [0, 2π) such that 0 < kj < nj for some

1 ≤ j ≤ T + 1, we can repeat the above argument again so that for some matrices

U, V ∈ Umn,

UAV =
T+2⊕
j=1

Ãj and UBV =
T+2⊕
j=1

B̃j.

Since the number of diagonal blocks is at most mn, the above argument can be

repeated for finitely many times only. Therefore, we may conclude that, after finitely

many times, for all θ ∈ [0, 2π), either kj = 0 or kj = nj for all j = 1, . . . , T , where

n1, . . . , nT , and k1, . . . , kT are the quantities defined with respect to the diagonal

block decomposition,

UAV =
T⊕
j=1

Ãj and UBV =
T⊕
j=1

B̃j.
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With (2.8), this is equivalent to say, for each θ ∈ [0, 2π), there exists an index set

J(θ) ⊆ {1, . . . , T} such that
∑

j∈J(θ)
nj =

∑
j∈J(θ)

kj = k and

sj

⊕
j∈J(θ)

2Ãj + (x0 + 1)eiθB̃j

 = sj
(
2A+ (x0 + 1)eiθB

)
for j = 1, . . . , k.

Now we have completed the proof of Step 1.

Step 2. There exist matrices U, V ∈ Umn and an infinite subset Θ ⊆ [0, 2π) such

that

UAV = A1 ⊕ A2 and UBV = B1 ⊕B2 (2.11)

with A1, B1 ∈Mk and A2, B2 ∈Mmn−k, and for any θ ∈ Θ,

sj(2A1 + (x0 + 1)eiθB1) = sj(2A+ (x0 + 1)eiθB) for j = 1, . . . , k. (2.12)

From Step 1, A and B have the decomposition (2.7) and satisfy (1.a) and (1.b).

Since [0, 2π) is an infinite set and the number of subsets of {1, 2, . . . , T} is finite, we

can conclude that J(θ) are the same for infinitely many θ ∈ [0, 2π). Denote by Θ

and J the set of these infinitely many θ and the common subset J(θ), respectively.

Then we have for any θ ∈ Θ,

sj
(
2AJ + (x0 + 1)eiθBJ

)
= sj

(
2A+ (x0 + 1)eiθB

)
for j = 1, . . . , k,

where AJ =
⊕
j∈J

Ãj ∈ Mk and BJ =
⊕
j∈J

B̃j ∈ Mk. By replacing (U, V ) with

(PU, V P T ) for some permutation P , if necessary, we may assume that J = {1, . . . , T̂}

for some 1 ≤ T̂ ≤ T. Let

A1 =
T̂⊕
j=1

Ãj, A2 =
T⊕

j=T̂+1

Ãj, B1 =
T̂⊕
j=1

B̃j and B2 =
T⊕

j=T̂+1

B̃j.
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Then we have UAV = A1 ⊕ A2 and UBV = B1 ⊕ B2. This completes the proof of

Step 2.

Step 3. The matrices A1 and B1 obtained in Step 2 are orthogonal, and hence there

exist matrices W, Ŵ ∈ Uk and some integer 0 ≤ r ≤ k such that

WA1Ŵ = diag(a1, . . . , ar)⊕ 0k−r and WB1Ŵ = 0r ⊕ diag(br+1, . . . , bk) (2.13)

with aj > 0 for j = 1, . . . , r and bj ≥ 0 for j = r + 1, . . . , k.

If A1 = 0 or B1 = 0, then there is nothing to prove. So we may suppose that A1

and B1 are both nonzero matrices. For simplicity, we may assume that U = V = Imn

in the equation (2.11). Then (2.11) and (2.12) imply that for any θ ∈ Θ, there exist

matrices Xθ, Yθ ∈ Uk and X̂θ, Ŷθ ∈ Umn−k such that

(
Xθ ⊕ X̂θ

)(
2A+ (x0 + 1)eiθB

)(
Yθ ⊕ Ŷθ

)
=

Xθ

(
2A1 + (x0 + 1)eiθB1)Yθ ⊕ X̂θ(2A2 + (x0 + 1)eiθB2)Ŷθ =

diag
(
s1(2A+ (x0 + 1)eiθB), . . . , smn(2A+ (x0 + 1)eiθB)

)
. (2.14)

Recall that

‖2A+ (x0 + 1)eiθB‖γ = ‖A+ eiθB‖γ + ‖A+ x0e
iθB‖γ.

Applying Lemma 2.3 again with (E,F ) = (A+ eiθB,A+ x0e
iθB), we conclude from

the above two equations that Xθ(A1 + eiθB1)Yθ and Xθ(A1 + x0e
iθB1)Yθ are both

positive semidefinite with eigenvalues s1(A + eiθB), . . . , sk(A + eiθB) and s1(A +

x0e
iθB), . . . , sk(A + x0e

iθB), respectively. It follows that YθXθ(A1 + eiθB1) and

YθXθ(A1 + x0e
iθB1) are positive semidefinite. For simplicity, we denoted YθXθ by

Uθ. Clearly, Uθ is unitary. By now, we have showed that for any θ ∈ Θ, there exists

a matrix Uθ ∈ Uk such that

Uθ(A1 + eiθB1) and Uθ(A1 + x0e
iθB1) are both positive semidefinite. (2.15)
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Thus, UθA1 is Hermitian. We claim that UθA1 is also positive semidefinite. Oth-

erwise, since UθA1 is Hermitian, there exists an eigenvalue λ of UθA1 such that

λ = −s(UθA1) for some nonzero singular value s(UθA1) of UθA1. Let y be a unit

eigenvector corresponding to λ, that is, UθA1y = λy. Then we have

y∗UθA1y = λ = −s(UθA1). (2.16)

Furthermore, Uθ is unitary implies that s(UθA1) is also a nonzero singular value of A1,

therefore, as well as a nonzero singular value of A. It follows that s(UθA1) ≥ sh(A).

Then with the assumption that x0 = min
{ sh(A)

2s1(B)
, 1
2

}
, we have

y∗Uθ(A1 + x0e
iθB1)y ≤ −s(UθA1) + x0s1(B1) ≤ −sh(A) + x0s1(B) < 0,

contrary to (2.15). Thus, our claim is correct, i.e., UθA1 is positive semidefinite. Let

G,W ∈ Uk be matrices such that

G∗A1W = A11 ⊕ 0k−r and G∗B1W =

[
B11 B12

B21 B22

]
, (2.17)

where B11, A11 ∈ Mr for some 1 ≤ r ≤ k and A11 is positive definite. Applying

Lemma 2.4, we have Uθ = W (Ir ⊕ Xθ)G
∗ with Xθ ∈ Uk−r. Recall our assumption

that B1 is nonzero. We claim that B22 is nonzero. Otherwise, B22 = 0, then we have

Uθ(A1 + eiθB1) = W

[
A11 + eiθB11 eiθB12

Xθe
iθB21 0

]
W ∗.

Recall that Uθ(A1 + eiθB1) is positive semidefinite and A11 is positive definite. It

follows that B12 = 0, B21 = 0 and eiθB11 = −eiθB∗11. Since this is true for all θ ∈ Θ

and Θ is an infinite set, it follows that B11 = 0 and therefore B1 = 0, which is

contrary to our assumption that B1 is nonzero. Thus, our claim is correct, that

is, B22 is nonzero. So by replacing G∗ and W with (Ir ⊕ G∗1)G∗, and W (Ir ⊕W1)

28



respectively, for some G1,W1 ∈ Uk−r, we can further rewrite equations in (2.17) as

G∗A1W = A11 ⊕ 0k−r and G∗B1W =

B11 B12 B13

B21 B22 0
B31 0 0

 ,
where A11 ∈Mr and B22 ∈M` are positive definite and B11 ∈Mr for some 1 ≤ r ≤ k

and 1 ≤ ` ≤ k − r. And we still have Uθ = W (Ir ⊕ Xθ)G
∗ with Xθ ∈ Uk−r. Recall

that Uθ(A1 + eiθB1) is positive semidefinite. This implies that eiθXθ(B22 ⊕ 0k−r−`)

is positive semdefinite. Clearly, eiθXθ is also unitary. We use Lemma 2.4 again to

conclude that eiθXθ = I`⊕Yθ with Yθ ∈ Uk−r−`, or equivalently, Xθ = e−iθI`⊕e−iθYθ.

Then we have Uθ = W
(
Ir ⊕ e−iθI` ⊕ e−iθYθ

)
G∗. It follows that

Uθ(A1 + eiθB1) = W

A11 + eiθB11 eiθB12 eiθB13

B21 B22 0
YθB31 0 0

W ∗

is positive semidefinite. Recall that A11 ∈Mr is positive definite. Therefore, B31 = 0,

B13 = 0, eiθB12 = B∗21 and eiθB11 = e−iθB∗11. Since this is true for all θ ∈ Θ and Θ is

an infinite set, it follows that B12, B21 and B11 are all zero matrices. Then we have

G∗B1W = 0r ⊕B22 ⊕ 0k−r−`. (2.18)

Clearly, it follows that A1 and B1 are orthogonal. This confirms the Step 3.

Step 4. The matrices A and B are orthogonal and rank(A) < k. Thus, Assertion

2.1 holds.

For simplicity, we may assume that U = V = Imn in (2.11) and W = Ŵ = Ik in

(2.13). It follows that for some 0 ≤ r ≤ k,

A = diag(a1, . . . , ar)⊕ 0k−r ⊕ A2 and B = 0r ⊕ diag(br+1, . . . , bk)⊕B2 (2.19)

with aj > 0 for j = 1, . . . , r and bj ≥ 0 for j = r+ 1, . . . , k. Choose a certain θ0 from

Θ. Denote the singular values of 2A + (x0 + 1)eiθ0B by s1 ≥ s2 ≥ · · · ≥ smn. Then
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(2.12) implies that

(
s`1 , . . . , s`k

)
=
(
2a1, . . . , 2ar, (x0 + 1)br+1, . . . , (x0 + 1)bk

)
for some permutation (`1, . . . , `k) of (1, . . . , k). Let X̂, Ŷ ∈ Umn−k such that

X̂
(
2A2 + (x0 + 1)eiθ0B2

)
Ŷ = diag

(
sk+1, . . . , smn

)
.

Let U = Ir ⊕ e−iθ0Ik−r ⊕ X̂ and V = Ir ⊕ Ik−r ⊕ Ŷ . Then we have

U(2A+ (x0 + 1)eiθ0B)V = diag(s`1 , . . . , s`k , sk+1, . . . , smn),

U(A+ eiθ0B)V = diag(a1, . . . , ar, br+1, . . . , bk)⊕ X̂(A2 + eiθ0B2)Ŷ ,

and U(A+ x0e
iθ0B)V = diag(a1, . . . , ar, x0br+1, . . . , x0bk)⊕ X̂(A2 + x0e

iθ0B2)Ŷ .

We apply Lemma 2.3 with (E,F ) = (A+ eiθ0B,A+ x0e
iθ0B) to conclude that

‖A+ eiθ0B‖γ =
r∑
j=1

ajγ`j +
k∑

j=r+1

bjγ`j , and

‖A+ x0e
iθ0B‖γ =

r∑
j=1

ajγ`j + x0

k∑
j=r+1

bjγ`j .

With the assumption that φ : Mmn →Mmn satisfies (2.2), we have

‖A+ xeiθ0B‖γ = ‖(XEiiX∗ ⊗ Y EjjY ∗) + xeiθ0(XEiiX
∗ ⊗ Y EssY ∗)‖γ = γ1 + xγ2

for all 0 < x ≤ 1. The above three equations imply that

‖A+ xeiθ0B‖γ = γ1 + xγ2 =
r∑
j=1

ajγ`j + x
k∑

j=r+1

bjγ`j for all 0 < x ≤ 1. (2.20)

Notice that ‖A‖γ = ‖XEiiX∗ ⊗ Y EjjY ∗‖γ = γ1 and γ1 ≥ · · · ≥ γk > 0 with k ≥ 2.

Then we conclude from (2.20) that

r∑
j=1

ajγ`j = γ1 = ‖A‖γ and
k∑

j=r+1

bjγ`j = γ2. (2.21)
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It follows from the right equation in (2.21) that r < k. We claim that A2 = 0.

Otherwise, since rank(A1) ≤ r < k, we must have ‖A‖γ > ‖A1‖γ ≥
r∑
j=1

ajγ`j ,

contrary to (2.21). Therefore, A = A1 ⊕ 0n−k and B = B1 ⊕ B2. Since A1 and B1

are orthogonal, so as A and B. Furthermore, rank(A) = rank(A1) ≤ r < k. This

completes the proof.

Assertion 2.2. For any matrices X ∈ Um and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y (Ejj + Ess)Y

∗) ⊥ φ(XEttX
∗ ⊗ Y (Ejj + Ess)Y

∗),

whenever i 6= t and j 6= s.

Proof. For simplicity, we denote φ(XEiiX
∗ ⊗ Y (Ejj + Ess)Y

∗) and φ(XEttX
∗ ⊗

Y (Ejj+Ess)Y
∗) by G and H, respectively. Let h = rank(G) and x0 = min{ sh(G)

2s1(H)
, 1
2
}.

By the assumption in (2.2), we can use a similar argument as used in (2.10) to show

that

‖2G+ (x0 + 1)eiθH‖γ = ‖G+ eiθH‖γ + ‖G+ x0e
iθH‖γ

for all θ ∈ [0, 2π). We can use the same argument in Assertion 2.1 to conclude that

there exist matrices U, V ∈ Umn such that for some 0 ≤ r ≤ k,

UGV = diag(a1, . . . , ar)⊕ 0k−r ⊕G2

UHV = 0r ⊕ diag(br+1, . . . , bk)⊕H2

(2.22)

with aj > 0 for j = 1, . . . , r and bj ≥ 0 for j = r + 1, . . . , k, and

‖G+ x0e
iθ0H‖γ =

r∑
j=1

ajγ`j + x0

k∑
j=r+1

bjγ`j

‖G+ eiθ0H‖γ =
r∑
j=1

ajγ`j +
k∑

j=r+1

bjγ`j

(2.23)
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for some θ0 ∈ [0, 2π) and permutation (`1, . . . , `k) of (1, . . . , k). With the assumption

that φ : Mmn →Mmn satisfies (2.2), we have

‖G+ xeiθH‖γ = γ1 + γ2 + x(γ3 + γ4) for all 0 < x ≤ 1 and θ ∈ [0, 2π). (2.24)

It follows from (2.23) and (2.24) that

r∑
j=1

ajγ`j = γ1 + γ2 = ‖G‖γ and
k∑

j=r+1

bjγ`j = γ3 + γ4.

If k ≥ 3, then
k∑

j=r+1

bjγ`j = γ3 + γ4 > 0, and hence r < k. Then we can use the same

argument in Step 4 of Assertion 2.1 to show that G2 = 0, and therefore G ⊥ H. We

now turn to the case when k = 2. In this case, by the result of Assertion 2.1, we have

rank
(
ϕ(XEiiX

∗ ⊗ Y EjjY ∗)
)

= 1 for i = 1, . . . ,m and j = 1, . . . , n. It follows that

‖ϕ(XEiiX
∗ ⊗ Y EjjY ∗)‖γ = s1(ϕ(XEiiX

∗ ⊗ Y EjjY ∗))γ1. (2.25)

Besides, by the assumption in (2.2), we have

‖ϕ(XEiiX
∗ ⊗ Y EjjY ∗)‖γ = ‖XEiiX∗ ⊗ Y EjjY ∗‖γ = γ1. (2.26)

The above equations imply that s1(ϕ(XEiiX
∗ ⊗ Y EjjY ∗)) = 1 for all i = 1, . . . ,m

and j = 1, . . . , n. Notice that G = φ(XEiiX
∗ ⊗ Y EjjY ∗) + φ(XEiiX

∗ ⊗ Y EssY ∗).

Then with the result in Assertion 2.1, we have

rank(G) = 2 and s1(G) = s2(G) = 1.

The same observations also hold for H. It follows that

aj = 1 for j = 1, . . . , r and bj ∈ {0, 1} for j = r + 1, . . . , 2.

However, with the equations in (2.23), bj = 0 for some r + 1 ≤ j ≤ 2 leads to

‖G+ eiθH‖γ =
r∑
j=1

ajγ`j +
2∑

j=r+1

bjγ`j < γ1 + γ2,
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contrary to (2.2). Thus, bj = 1 for j = r + 1, . . . , 2. Next we show that G2 and H2

are orthogonal. If G2 = 0, then there is nothing to prove. If G2 6= 0, we may assume

that

G2 =

[
I` 0
0 0

]
and H2 =

[
H11 H12

H21 H22

]
with H11 ∈M` for some 1 ≤ ` ≤ 2. Then

G2 + eiθH2 =

[
I` + eiθH11 eiθH12

eiθH21 eiθH22

]
.

We claim that H11 = 0, H12 = 0, H21 = 0, and hence H = 0 ⊕ H22. Otherwise,

s1(G2 + eiθ0H2) > 1, and therefore s1(G+ eiθ0H) > 1 for some θ0 ∈ [0, 2π). It follows

that ‖G + eiθ0H‖γ > γ1 + γ2, contrary to (2.2). Thus, our claim is correct, that is,

H = 0⊕H22. It follows that G ⊥ H. This completes our proof.

Assertion 2.3. For any matrices X ∈ Um and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y EssY ∗) whenever (i, j) 6= (r, s).

Proof. If i = r or j = s, then the result in Assertion 2.1 directly implies that

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y EssY ∗).

Next, we suppose that i 6= r and j 6= s. With Assertion 2.1, we have

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XEiiX

∗ ⊗ Y EssY ∗) (2.27)

and

φ(XErrX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y EssY ∗). (2.28)

By Assertion 2.2, we have

φ(XEiiX
∗ ⊗ Y (Ejj + Ess)Y

∗) ⊥ φ(XErrX
∗ ⊗ Y (Ejj + Ess)Y

∗). (2.29)
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Applying Lemma 2.2, we conclude from (2.27) and (2.29) that

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y (Ejj + Ess)Y
∗). (2.30)

Then we apply Lemma 2.2 again to conclude from (2.28) and (2.30) that

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y EssY ∗).

This completes the proof.

Assertion 2.4. There exist matrices U and V in Umn such that

φ(C ⊗D) = U(ϕ1(C)⊗ ϕ2(D))V for all C ∈Mm and D ∈Mn,

where ϕs is the identity map or the transposition map for s = 1, 2.

Proof. For any Y ∈ Un, by Assertion 2.3,

{φ(Eii ⊗ Y EjjY ∗) : i = 1, . . . ,m and j = 1 . . . , n}

is a set of mn orthogonal matrices in Mmn. It follows that all of the matrices in this

set are of rank one. Then there exist matrices UY , VY ∈ Umn such that

φ(Eii ⊗ Y EjjY ∗) = UY (Eii ⊗ Ejj)V ∗Y for all i = 1, . . . ,m and j = 1, . . . , n. (2.31)

Without loss of generality, we may assume that UI = VI = Imn, i.e.,

φ(Eii ⊗ Ejj) = Eii ⊗ Ejj for all i = 1, . . . ,m and j = 1, . . . , n. (2.32)

With (2.31) and (2.32), we have

(i) Imn = φ(Im ⊗ In) = UY (Im ⊗ In)V ∗Y ;

(ii) Eii ⊗ In = φ(Eii ⊗ In) = UY (Eii ⊗ In)V ∗Y for all i = 1, . . . ,m.
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It follows that UY = VY and UY commutes with Eii ⊗ In for all i = 1, . . . ,m.

Therefore, we have UY commuting with E11 ⊗ In + 2E22 ⊗ In + · · · + mEmm ⊗ In,

which implies that UY =
m⊕
i=1

Ui with Ui ∈ Un for all i = 1, . . . ,m. It follows that

φ(Eii⊗Y EjjY ∗) = Eii⊗UiEjjU∗i . Now, we have showed that for any Y ∈ Un, there

exists Ui ∈ Un depending on i and Y such that

φ(Eii ⊗ Y EjjY ∗) = Eii ⊗ UiEjjU∗i for j = 1, . . . , n.

By the linearity of φ, we conclude from the above equation that for any i = 1, . . . ,m,

there is a linear map ψi such that

φ(Eii ⊗B) = Eii ⊗ ψi(B) for all B ∈Mn.

Let γ̂ = (γ1, . . . , γn). Then it is easy to check that

‖ψi(B)‖γ̂ = ‖Eii ⊗ ψi(B)‖γ = ‖Eii ⊗B‖γ = ‖B‖γ̂ for all B ∈Mn.

That is, ψi is a linear map on Mn preserving γ̂-norm. Thus, by Theorem 4 in [21],

ψi has form B 7→ WiBW̃i or B 7→ WiB
T W̃i for some matrices Wi, W̃i ∈ Un. Let

W =
m⊕
i=1

Wi and W̃ =
m⊕
i=1

W̃i. It follows that for any i = 1, . . . ,m,

φ(Eii ⊗B) = W (Eii ⊗ ϕi(B))W̃ for all B ∈Mn,

where ϕi is the identity map or the transposition map. Recall that Imn = φ(Im⊗In).

Thus, we have W̃ = W ∗. Applying Assertion 2.3 again, we can repeat the same

argument above to show that for any unitary matrix X ∈ Mm and 1 ≤ i ≤ n, there

exists unitary matrix WX such that

φ(XEiiX
∗ ⊗B) = WX(Eii ⊗ ϕi,X(B))W ∗

X for all B ∈Mn, (2.33)
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where ϕi,X is the identity map or the transposition map. For simplicity, we may

further assume that WI = Imn, i.e.,

φ(Eii ⊗B) = Eii ⊗ ϕi,In(B) for all B ∈Mn, (2.34)

where ϕi,In is the identity map or the transposition map. Next, we use the same

arguments in the last two paragraphs of the proof of Theorem 2.1 in [6] to show that

ϕi,X are the same for all i = 1, . . . ,m and X ∈ Um. With (2.33) and (2.34), we have

for any real symmetric S ∈Mn and X ∈ Um,

Im ⊗ S = φ(Im ⊗ S) =
m∑
i=1

φ(XEiiX
∗ ⊗ S) = WX(Im ⊗ S)W ∗

X .

It follows that WX commutes with Im⊗S for all real symmetric S ∈Mn. This yields

that WX = ZX ⊗ In for some ZX ∈ Un, and hence

φ(XEiiX
∗ ⊗B) = (ZXEiiZ

∗
X)⊗ ϕi,X(B) for all i = 1, . . . ,m and B ∈Mn.

Define linear maps tr1 : Mmn →Mn and Tr1 : Mmn →Mn as

tr1(A⊗B) = (trA)B and Tr1(A⊗B) = tr1(φ(A⊗B))

for all A ∈Mm and B ∈Mn. The map tr1 is also called the partial trace function in

quantum science. Then

Tr1(XEiiX
∗ ⊗B) = ϕi,X(B),

where ϕi,X is the identity map or the transposition map. Note that Tr1 is linear and

therefore continuous and the set

{XEiiX∗ | 1 ≤ i ≤ m,X ∈ Un} = {xx∗ ∈Mm | x∗x = 1}

is connected. So, all the maps ϕi,X are the same. By replacing φ with the map

A⊗ B 7→ φ(A⊗ BT ), if necessary, we may assume that ϕi,X is the identity map for
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all i = 1, . . . ,m and unitary X ∈Mn. It follows that

φ(A⊗B) = ϕ1(A)⊗B for all A ∈Mm,

where ϕ1 is a linear map on Mm. Let γ̃ = (γ1, . . . , γm). It is easy to verify that ϕ1 is

a linear map on Mm preserving γ̃-norm. Hence, ϕ1 also has the form A 7→ UAV or

A 7→ UATV for some matrices U, V ∈ Um. This completes our proof.

2.3 Multipartite system

We now consider the multipartite case.

Theorem 2.2. Given an integer m ≥ 2. Let ni ≥ 2 be integers for i = 1, . . . ,m and

N =
m∏
i=1

ni. For any γ = (γ1, . . . , γN) ∈ RN
+,↓ with γ2 > 0, a linear map φ : MN →MN

satisfies

‖φ(A1 ⊗ · · · ⊗ Am)‖γ = ‖A1 ⊗ · · · ⊗ Am‖γ for all Ai ∈Mni
, i = 1, . . . ,m, (2.35)

if and only if there are unitary matrices U, V ∈MN such that

φ(A1 ⊗ · · · ⊗ Am) = U(ϕ1(A1)⊗ · · · ⊗ ϕm(Am))V for all Ai ∈Mni
, i = 1, . . . ,m,

where ϕi is the identity map or the transposition map A 7→ AT , for i = 1, . . . ,m.

Proof. The sufficiency part is clear. To prove the necessity part, we use induction

on m. By Theorem 2.1, we already know that the statement of Theorem 2.2 holds

for m = 2. So, we assume that m ≥ 3 and the result holds for any (m − 1)-partite

system. We need to prove that the same is true for any m-partite system.

With the assumption for γ, we can conclude that there exists an integer 2 ≤

k ≤ N such that γ1 ≥ γ2 ≥ · · · ≥ γk > 0 = γk+1 = · · · = γN . Given any matrices

Xi ∈ Uni
, i = 1, . . . ,m, we first claim that

φ(X1Ei1i1X
∗
1 ⊗ · · · ⊗XmEimimX

∗
m) ⊥ φ(X1Ej1j1X

∗
1 ⊗ · · · ⊗XmEjmjmX

∗
m) (2.36)
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for any distinct (i1, . . . , im) 6= (j1, . . . , jm).

Without loss of generality, we may assume that Xi are identity matrices for

i = 1 . . . ,m. Then it is sufficient to show that for all s = 1, . . . ,m,

φ

(
s−1⊗
u=1

(Eiuiu + Ejuju)⊗ Eisis ⊗
m⊗

u=s+1

Eiuiu

)

⊥ φ

(
s−1⊗
u=1

(Eiuiu + Ejuju)⊗ Ejsjs ⊗
m⊗

u=s+1

Eiuiu

)

for any i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s. We denote by

As(i, j) and Bs(i, j) the above matrices accordingly. It is easy to check that

‖2As(i, j) + (x+ 1)eiθBs(i, j)‖γ = ‖As(i, j) + eiθBs(i, j)‖γ + ‖As(i, j) + xeiθBs(i, j)‖γ

(2.37)

for all s = 1, . . . ,m, 0 < x ≤ 1 and θ ∈ [0, 2π).

Case 1. Suppose that k > 2m−1. For simplicity, denote As = As(i, j) and Bs =

Bs(i, j). Let h = rank(As) and x0 = min
{
sh(As)
2s1(Bs)

, 1
2

}
. With (2.37), we apply the

same argument in the proof of Assertion 2.1 to conclude that there exist matrices

U, V ∈ UN such that for some integer 0 ≤ r ≤ k,

UAsV = diag(a1, . . . , ar)⊕ 0k−r ⊕ Ãs and UBsV = 0r ⊕ diag(br+1, . . . , bk)⊕ B̃s,

(2.38)

with aj > 0 for j = 1, . . . , r and bj ≥ 0 for j = r + 1, . . . , k, and

‖As + x0e
iθ0Bs‖γ =

r∑
j=1

ajγ`j + x0

k∑
j=r+1

bjγ`j

‖As + eiθ0Bs‖γ =
r∑
j=1

ajγ`j +
k∑

j=r+1

bjγ`j

for some θ0 ∈ [0, 2π) and permutation (`1, . . . , `k) of (1, . . . , k). With the assumption
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that φ : MN →MN satisfies (2.35), we have

‖As + xBs‖γ =
2s−1∑
j=1

γj + x

2s∑
j=2s−1+1

γj for all 0 < x ≤ 1.

Notice that ‖As‖γ =
2s−1∑
j=1

γj. It follows from the above three equations that

r∑
j=1

ajγ`j =
2s−1∑
j=1

γj = ‖As‖γ and
k∑

j=r+1

bjγ`j =
2s∑

j=2s−1+1

γj.

Since k > 2m−1, we have k ≥ 2s−1 + 1, that is, γ2s−1+1 > 0, for s = 1, . . . ,m.

Therefore,
k∑

j=r+1

bjγ`j =
2s∑

j=2s−1+1

γj > 0. Then we can use the same argument in

Assertion 2.1 to show that Ãs = 0, and therefore As ⊥ Bs for all s = 1, . . . ,m.

Furthermore, by replacing U and V with (Ik ⊕ Û)U and V (Ik ⊕ V̂ ) for some unitary

matrices Û , V̂ ∈MN−k, the equations in (2.38) can be rewritten as

UAsV = diag(a1, . . . , ar)⊕ 0N−r and UBsV = 0r ⊕ diag(br+1, . . . , bN).

Case 2. Suppose that k ≤ 2m−1. Then there exists an integer 1 ≤ s0 ≤ m − 1 such

that 2s0−1 < k ≤ 2s0 . We can use the same argument in the Case 1 to conclude that

for any i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s,

(2.a) As(i, j) ⊥ Bs(i, j) for all s = 1, . . . , s0;

(2.b) There exist unitary matrices U, V ∈MN such that

UAs0(i, j)V = diag(a1, . . . , ar)⊕0N−r and UBs0(i, j)V = 0r⊕diag(br+1, . . . , bN),

with ‖As0(i, j) + eiθ0Bs0(i, j)‖γ =
r∑
t=1

atγ`t +
k∑

t=r+1

btγ`t for some θ0 ∈ [0, 2π) and

permutation (`1, . . . , `k) of (1, . . . , k).
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Next, we use induction on s to show that for all s = s0, . . . ,m, rank(As(i, j)) = 2s−1,

As(i, j) ⊥ Bs(i, j) and st(As(i, j)) = 1 for t = 1, . . . , 2s−1 (2.39)

for all j = (j1, . . . , jm), i = (i1, . . . , im) with iu 6= ju, 1 ≤ u ≤ s. First, we claim

that at and bt obtained in (2.b) are not larger than one for t = 1, . . . , N. Otherwise,

we can conclude from (2.a) that the largest singular value of φ
( m⊗
u=1

Eiuiu

)
is larger

than one for some (i1, . . . , im), and thus
∥∥∥φ( m⊗

u=1

Eiuiu

)∥∥∥
γ
> γ1, contrary to (2.35).

Therefore, our claim is correct. It follows that

‖As0(i, j) + eiθ0Bs0(i, j)‖γ =
r∑
t=1

atγ`t +
k∑

t=r+1

btγ`t ≤
k∑
t=1

γt.

On the other hand, with (2.35), we have ‖As0(i, j) + eiθ0Bs0(i, j)‖γ =
k∑
t=1

γt, in other

words, the above equality holds. This implies that at = 1 for t = 1, . . . , r. Notice

that

‖As0(i, j)‖γ =
2s0−1∑
t=1

γt. (2.40)

If r < 2s0−1, then we have ‖As0(i, j)‖γ =
r∑
t=1

γt <
2s0−1∑
t=1

γt; If r > 2s0−1, then we have

‖As0(i, j)‖γ =
r∑
t=1

γt >

2s0−1∑
t=1

γt. Both of them are contrary to (2.35). Thus, we have

r = 2s0−1. By now, we have showed that (2.39) holds for s = s0.

Suppose that (2.39) holds for s − 1 with s − 1 ≥ s0. With (2.37), we apply the

same argument in Assertion 2.1 again to conclude that there exist unitary matrices

U, V ∈MN such that for some integer 0 ≤ r ≤ k,

UAs(i, j)V = diag(a1, . . . , ar)⊕ 0k−r ⊕ Ã

UBs(i, j)V = 0r ⊕ diag(br+1, . . . , bk)⊕ B̃

40



with a1 ≥ · · · ≥ ar > 0 and br+1 ≥ · · · ≥ bk ≥ 0, and

‖As(i, j) + eiθ1Bs(i, j)‖γ =
r∑
t=1

atγ`t +
k∑

t=r+1

btγ`t (2.41)

for some θ1 ∈ [0, 2π) and permutation (`1, . . . , `k) of (1, . . . , k). Notice that As(i, j) =

As−1(̂i, ĵ) + Bs−1(̂i, ĵ) for some ĵ = (ĵ1, . . . , ĵm), î = (̂i1, . . . , îm). Thus, with our

assumption, we have

rank(As(i, j)) = 2s−1 and st(As(i, j)) = 1 for t = 1, . . . , 2s−1.

The same observation also holds for Bs(i, j). It follows that at = 1 for t = 1, . . . r

and bt = 1 or 0 for t = r + 1, . . . , k. Then with (2.41), we use the same argument

in last part of the proof of Assertion 2.2 to conclude that Ã ⊥ B̃, and therefore

As(i, j) ⊥ Bs(i, j). By now, we can conclude that (2.39) holds for all s = s0, . . . ,m.

Therefore, As(i, j) ⊥ Bs(i, j) for all s = 1 . . . ,m. This proves our claim in (2.36).

It follows that for any unitary matrix Xm ∈ Mnm , there exist unitary matrices

UXm and VXm such that

φ

(
m−1⊗
i=1

Ejiji ⊗XmEjmjmX
∗
m

)
= UXm(Ej1j1 ⊗ · · · ⊗ Ejmjm)V ∗Xm

(2.42)

for all ji = 1, . . . , ni with 1 ≤ i ≤ m. For simplicity, we may assume that UI = VI = I,

i.e.,

φ(Ej1j1 ⊗ · · · ⊗ Ejmjm) = Ej1j1 ⊗ · · · ⊗ Ejmjm (2.43)

It follows that φ(IN) = IN . Applying a similar argument in Assertion 2.4, one can

conclude from (2.42) and (2.43) that there are unitary matrices W, W̃ ∈ MN such

that for any 1 ≤ ji ≤ ni with 1 ≤ i ≤ m− 1,

φ

(
m−1⊗
i=1

Ejiji ⊗B

)
= W

(
m−1⊗
i=1

Ejiji ⊗ ϕj1,...,jm−1(B)

)
W̃ ,
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where ϕj1,...,jm−1 is the identity map or the transposition map. It follows that

φ(IN) = WW̃ . Recall that φ(IN) = IN and W and W̃ are both unitary matrices.

Thus, we have W̃ = W ∗. For any unitary matrices Xi ∈ Mni
, i = 1, . . . ,m − 1,

denote (X1, . . . , Xm−1) by X, i.e., X = (X1, . . . , Xm−1). In particular, let I =

(In1 , . . . , Inm−1). Following a similar argument as above, one can show that for any

X = (X1, . . . , Xm−1) and 1 ≤ ji ≤ ni with 1 ≤ i ≤ m − 1, there exists a unitary

matrix WX ∈MN such that

φ

(
m−1⊗
i=1

XiEjijiX
∗
i ⊗B

)
= WX

(
m−1⊗
i=1

Ej1j1 ⊗ ϕj1,...,jm−1,X(B)

)
W ∗
X (2.44)

for all B ∈ Mnm , where ϕj1,...,jm−1,X is the identity map or transposition map. For

simplicity, we may further assume that WX = IN when X = (In1 , . . . , Inm−1), i.e., for

any 1 ≤ ji ≤ ni with 1 ≤ i ≤ m− 1,

φ

(
m−1⊗
i=1

Ejiji ⊗B

)
=

m−1⊗
i=1

Ej1j1 ⊗ ϕj1,...,jm−1,I(B) for all B ∈Mnm , (2.45)

where ϕj1,...,jm−1,I is the identity map or the transposition map. Next we show that

ϕj1,...,jm−1,I are the same. Considering all symmetric real matrix as in the proof of

Assertion 2.4, one can conclude that there exists some unitary matrix ZX ∈Mn1···nm−1

such that

φ

(
m−1⊗
i=1

XiEjijiX
∗
i ⊗B

)
= ZX

(
m−1⊗
i=1

Ej1j1

)
Z∗X ⊗ ϕj1,...,jm−1,X(B)

for all B ∈ Mnm and 1 ≤ ji ≤ ni with 1 ≤ i ≤ m − 1. Define linear maps

tr1 : MN →Mnm and Tr1 : MN →Mnm by

tr1(A⊗B) = tr(A)B and Tr1(A⊗B) = tr1(φ(A⊗B))

42



for all A ∈Mn1···nm−1 and B ∈Mnm . Then

Tr1

(
m−1⊗
i=1

XiEjijiX
∗
i ⊗B

)
= ϕj1,...,jm−1,X(B).

Notice that Tr1 is a linear and therefore continuous. Besides, the set

{
m−1⊗
i=1

XiEjijiX
∗
i | 1 ≤ ji ≤ ni and Xi ∈ Uni

for i = 1, . . . ,m− 1

}

=

{
m−1⊗
i=1

xix
∗
i | xi ∈ Cni with x∗ixi = 1 for i = 1, . . . ,m− 1

}

is connected. So, all the maps ϕj1,...,jm−1,X are the same. Denote the common map

by ϕm, which is either the identity map or the transposition map. With the linearity

of φ, we can conclude that for all B ∈Mnm and Ai ∈Mni
with 1 ≤ i ≤ m− 1,

φ(A1 ⊗ · · · ⊗ Am−1 ⊗B) = ψ(A1 ⊗ · · · ⊗ Am−1)⊗ ϕm(B),

where ψ is a linear map on Mn1···nm−1 . Let γ̂ = (γ1, . . . , γn1···nm−1). It is easy to check

that

‖ψ(A1 ⊗ · · · ⊗ Am−1)‖γ̂ = ‖A1 ⊗ · · · ⊗ Am−1‖γ̂ for all Ai ∈Mni
, i = 1, . . . ,m− 1.

Hence, by the induction hypothesis, we conclude that there exist unitary matrices

Ũ , Ṽ such that

ψ(A1 ⊗ · · · ⊗ Am−1) = Ũ(ϕ1(A1)⊗ · · · ⊗ ϕm−1(Am−1))Ṽ ,

where ϕi is the identity map or the transposition map for i = 1, . . . ,m− 1. Then φ

has the desired form and the proof is completed.
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Chapter 3

Linear maps preserving

(p, k)-norms of tensor products of

matrices

3.1 Introduction

In this chapter, we turn to the characterization of linear preservers for (p, k)-

norms of tensor products of matrices. Recall that Hn denotes the set of n × n

Hermitian matrices. For A,B ∈ Hn, we denote by A ≥ B, or equivalently B ≤ A,

to mean that A − B is positive semidefinite. In particular, A ≥ 0 means that A is

positive semidefinite. Let 1 ≤ k ≤ min{m,n} be an integer and 1 ≤ p ≤ ∞. Recall

that the (p, k)-norm of A ∈Mm,n is defined by

‖A‖(p,k) =

[
k∑
i=1

spi (A)

] 1
p

.

Clearly, the (p, k)-norm reduces to the spectral norm when p = ∞. In [22], Li and

Tsing determined the form of linear preservers for (p, k)-norms on Mm,n. It was

shown that such linear maps have the form

A 7→ UAV or when m = n A 7→ UATV
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for some matrices U ∈ Um and V ∈ Un. Notice that if k = min{m,n}, then the

(p, k)-norm reduces to the Schatten p-norm. In [6], the authors characterised the

form of linear preservers for Schatten p-norms of tensor products of square matrices.

We will extend this result to (p, k)-norms for 2 < p < ∞. Our proof relies on some

equalities, which do not hold for the case when 1 < p ≤ 2. So some other methods

and techniques may be needed to tackle this case.

In the following sections, we first characterise linear preservers on bipartite system

and then use induction on m to characterise corresponding linear preservers on m-

partite system. Suppose that A ∈ Mn is a positive semidefinite matrix. We denote

the eigenvalues of A by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Rearrange x = (x1, . . . , xn) ∈

Rn in decreasing order as x[1] ≥ · · · ≥ x[n]. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈

Rn. Then x is said to weakly majorize y, denote by x �w y, if

k∑
i=1

x[i] ≥
k∑
i=1

y[i] for all k = 1, . . . , n.

Futhermore, if x �w y and
n∑
i=1

xi =
n∑
i=1

yi, then x is said to majorize y, denoted by

x � y.

3.2 Bipartite system

Theorem 3.1. Let m,n, k ≥ 2 be integers with k ≤ mn. Given a real number

2 < p <∞, a linear map φ : Mmn →Mmn satisfies

‖φ(C ⊗D)‖(p,k) = ‖C ⊗D‖(p,k) for all C ∈Mm and D ∈Mn, (3.1)

if and only if there exist matrices U, V ∈ Umn such that

φ(C ⊗D) = U(ϕ1(C)⊗ ϕ2(D))V for all C ∈Mm and D ∈Mn, (3.2)

where ϕs is the identity map or the transposition map X 7→ XT , for s = 1, 2.
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To prove the theorem, we need some preliminary results. Notice that x 7→ xγ

(x ≥ 0) is a convex function for any real number 1 ≤ γ < ∞. With this, one can

easily conclude the following lemma.

Lemma 3.1. Let a, b ∈ R. If −a ≤ b ≤ a. then for any real number 1 ≤ γ <∞,

(a+ b)γ + (a− b)γ ≥ 2aγ.

We also need the following lemmas from [32, 39]

Lemma 3.2. [32, Lemma 2.1] Let A ∈Mn be a positive semidefinite matrix. Then

x∗Aγx ≥ (x∗Ax)γ‖x‖2(1−γ) for all x ∈ Cn and 1 ≤ γ <∞.

Lemma 3.3. [39, Lemma 3.7] Let A ∈ Hn. Then

k∑
i=1

λi(A) = max
U∗U=Ik

tr(U∗AU) and
k∑
i=1

λn−i+1(A) = min
U∗U=Ik

tr(U∗AU),

where Ik is the identity matrix of order k and U ∈Mn,k.

Lemma 3.4. Let C,D ∈ Hn such that −C ≤ D ≤ C. Then for any real number

1 ≤ γ <∞,

k∑
i=1

λγi (C +D) +
k∑
i=1

λγi (C −D) ≥ 2
k∑
i=1

λγi (C).

Proof. Let U ∈ Un such that

UCU∗ = diag(λ1(C), λ2(C), . . . , λn(C)).

Denote by ui the i-th column of U for i = 1, . . . , n. Let Û = [u1, u2 . . . , uk]. Then

applying Lemma 3.3, we have

k∑
i=1

λγi (C +D) ≥ tr(Û∗(C +D)γÛ) and
k∑
i=1

λγi (C −D) ≥ tr(Û∗(C −D)γÛ).
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Since −C ≤ D ≤ C, we have

C +D ≥ 0, C −D ≥ 0,

and

−x∗Cx ≤ x∗Dx ≤ x∗Cx for all x ∈ Cn.

By Lemma 3.2, we have

u∗i (C +D)γui ≥ (u∗i (C +D)ui)
γ and u∗i (C −D)γui ≥ (u∗i (C −D)ui)

γ

for i = 1, . . . , n. Applying Lemma 3.1 with a = u∗iCui and b = u∗iDui, we get

(u∗i (C +D)ui)
γ + (u∗i (C −D)ui)

γ ≥ 2(u∗iCui)
γ for all i = 1, . . . , n.

It follows from the above inequalities that

k∑
i=1

λγi (C +D) +
k∑
i=1

λγi (C −D) ≥tr(Û∗(C +D)γÛ) + tr(Û∗(C −D)γÛ)

=
k∑
i=1

u∗i (C +D)γui +
k∑
i=1

u∗i (C −D)γui

≥
k∑
i=1

(u∗i (C +D)ui)
γ +

k∑
i=1

(u∗i (C −D)ui)
γ

≥2
k∑
i=1

(u∗iCui)
γ = 2

k∑
i=1

λγi (C).

Corollary 3.1. Let 2 < p <∞ be a real number and A,B ∈Mn. Then

‖A+B‖p(p,k) + ‖A−B‖p(p,k) ≥ 2
k∑
i=1

λ
p
2
i (A∗A+B∗B). (3.3)
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Proof. Notice that

‖A+B‖p(p,k) =
k∑
i=1

spi (A+B) =
k∑
i=1

λ
p
2
i

(
(A∗A+B∗B) + (A∗B +B∗A)

)
and

‖A−B‖p(p,k) =
k∑
i=1

spi (A−B) =
k∑
i=1

λ
p
2
i

(
(A∗A+B∗B)− (A∗B +B∗A)

)
.

Let C = A∗A + B∗B and D = A∗B + B∗A. Then C + D = (A + B)∗(A + B) and

C − D = (A − B)∗(A − B) are positive semidefinite. Applying Lemma 3.4, we get

(3.3).

Lemma 3.5. Let A,B ∈Mn be nonzero matrices and k ≥ 2 be an integer. Given a

real number 0 < p <∞, if

‖A+B‖p(p,k) = ‖A‖p(p,k) + ‖B‖p(p,k) and A ⊥ B,

then rank(A+B) ≤ k.

Proof. With the assumption that A ⊥ B, we can suppose that the largest k singular

values of A+B are s1(A), . . . , s`(A), s1(B), . . . , sk−`(B) for some 0 ≤ ` ≤ k. Then

‖A+B‖p(p,k) =
∑̀
i=1

spi (A) +
k−∑̀
i=1

spi (B) ≤
k∑
i=1

spi (A) +
k∑
i=1

spi (B). (3.4)

On the other hand, ‖A+B‖p(p,k) = ‖A‖p(p,k) +‖B‖p(p,k) =
k∑
i=1

spi (A)+
k∑
i=1

spi (B). Thus,

the equality in (3.4) holds, which implies

∑̀
i=1

spi (A) =
k∑
i=1

spi (A) and
k−∑̀
i=1

spi (B) =
k∑
i=1

spi (B).
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Since A and B are both nonzero, we have
k∑
i=1

spi (A) > 0 and
k∑
i=1

spi (B) > 0. It follows

that ` ≥ 1 and k − ` ≥ 1, i.e., 1 ≤ ` ≤ k − 1, and

k∑
i=`+1

spi (A) = 0,
k∑

i=k−`+1

spk(B) = 0.

This implies that s`+1(A) = 0 and sk−`+1(B) = 0. Then we can conclude that

rank(A) ≤ ` and rank(B) ≤ k − `. Since A ⊥ B, this implies that rank(A + B) =

rank(A) + rank(B) ≤ `+ k − ` = k.

Lemma 3.6. Let A,B ∈ Mn be positive semidefinite matrices and 1 < γ < ∞ be a

real number. Suppose

k∑
i=1

λγi (A+ αB) ≤
k∑
i=1

λγi (A) +
k∑
i=1

λγi (αB) for all 0 < α < 1, (3.5)

and U∗AU = diag(λ1(A), . . . , λn(A)) for some matrix U ∈ Un.

(a) If λk(A) = 0, then A ⊥ B.

(b) If λk(A) > 0, then U∗BU = 0k+` ⊕ B̂ with B̂ ∈ Mn−k−`, where ` is the largest

integer such that λk+`(A) = λk(A).

Proof. Denote the i-th diagonal entry of U∗BU by bi. Then λi(A) + αbi is the i-th

diagonal entry of U∗(A+ αB)U . It follows that

(
λ1(A+ αB), . . . , λk(A+ αB)

)
�w

(
λ1(A) + αb1, . . . , λk(A) + αbk

)
.

Notice that g(x) = xγ (x > 0) is an increasing convex function when 1 < γ < ∞.

We can apply the Theorem 3.26 in [39] to obtain

(
λγ1(A+ αB), . . . , λγk(A+ αB)

)
�w

(
(λ1(A) + αb1)

γ, . . . , (λk(A) + αbk)
γ
)
.
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Thus,
k∑
i=1

λγi (A + αB) ≥
k∑
i=1

(λi(A) + αbi)
γ. With the assumption in (3.5), we can

conclude that

k∑
i=1

(λi(A) + αbi)
γ ≤

k∑
i=1

λγi (A) +
k∑
i=1

λγi (αB) for all 0 < α < 1. (3.6)

Let f(α) =
k∑
i=1

(λi(A) + αbi)
γ −

k∑
i=1

λγi (A) −
k∑
i=1

λγi (αB) be a function on α. Then

we have

f(α) = f(0) + f
′
(0)α + o(α) =

[
k∑
i=1

λγ−1i (A)biγ

]
α + o(α) (3.7)

when α is sufficiently small. Since A and B are both positive semidefinite, we have

λi(A) ≥ 0 and bi ≥ 0 for all i = 1, . . . , n. It follows that
k∑
i=1

λγ−1i (A)biγ ≥ 0. We

claim that
k∑
i=1

λγ−1i (A)biγ = 0. Otherwise,
k∑
i=1

λγ−1i (A)biγ > 0 leads to f(α) > 0

when α > 0 is sufficiently small, which contradicts (3.6). It follows that

λi(A)bi = 0 for i = 1, . . . , k.

For the case λk(A) = 0, we may assume that t is the largest integer such that

λt(A) > 0. Then U∗AU = diag(λ1(A), . . . , λt(A))⊕ 0n−t and bi = 0 for i = 1, . . . , t.

Recall that B is positive semidefinite. Thus, U∗BU = 0t ⊕ B̂ with B̂ ∈ Mn−t. It

follows that A ⊥ B.

For the case λk(A) > 0, we first have bi = 0 for all i = 1, . . . , k. Since B is

positive semidefinite, it follows that B = 0k ⊕ C with C ∈ Mn−k. Recall that ` is

the largest integer such that λk+`(A) = λk(A). If ` = 0, then the proof is completed.

If ` > 0, then for any i = k + 1, . . . , k + `, replacing the role of λk(A) + αbk with
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λi(A) + αbi in the above argument, we can conclude bi = 0. Thus, we have bi = 0

for i = 1, . . . , k + `. It follows that B = 0k+` ⊕ B̂ with B̂ ∈Mn−k−`.

Proof of Theorem 3.1. Since the sufficiency part is clear, we consider only the

necessity part. So, suppose the linear map φ : Mmn → Mmn satisfies (3.1), we will

prove that φ has the form in (3.2) through the following 3 steps.

Step 1. For any matrices X ∈ Um and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XEiiX

∗ ⊗ Y EssY ∗)

and rank(φ(XEiiX
∗ ⊗ Y (Ejj + Ess)Y

∗)) ≤ k for all i = 1, . . . ,m and j 6= s.

For simplicity, we denote φ(XEiiX
∗ ⊗ Y EjjY ∗) and φ(XEiiX

∗ ⊗ Y EssY ∗) by T

and S, respectively. We aim to show that T ⊥ S and rank(T + S) ≤ k. With the

assumption in (3.1), we have

‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) = 2‖T‖p(p,k) + 2‖xS‖p(p,k) for all 0 < x < 1. (3.8)

Applying Corollary 3.1 with A = T and B = xS, we get

‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) ≥ 2
k∑
i=1

λ
p
2
i (T ∗T + x2S∗S) for all 0 < x < 1. (3.9)

Since ‖T‖p(p,k) =
k∑
i=1

λ
p
2
i (T ∗T ) and ‖xS‖p(p,k) =

k∑
i=1

λ
p
2
i (x2S∗S), It follows from (3.8)

and (3.9) that

k∑
i=1

λ
p
2
i (T ∗T + x2S∗S) ≤

k∑
i=1

λ
p
2
i (T ∗T ) +

k∑
i=1

λ
p
2
i (x2S∗S) for all 0 < x < 1. (3.10)

Note the above observations also hold if (T, S) is replaced by (T ∗, S∗), that is

k∑
i=1

λ
p
2
i (TT ∗ + x2SS∗) ≤

k∑
i=1

λ
p
2
i (TT ∗) +

k∑
i=1

λ
p
2
i (x2SS∗) for all 0 < x < 1. (3.11)
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Let U, V ∈ Umn be matrices such that V ∗TU = diag(s1(T ), . . . , smn(T )). Then we

have

U∗T ∗TU = diag(s21(T ), . . . , s2mn(T )) and V ∗TT ∗V = diag(s21(T ), . . . , s2mn(T )).

We claim that sk(T ) = 0. Otherwise, sk(T ) > 0. Then let ` be the largest integer

such that sk+`(T ) = sk(T ). Since λi(T
∗T ) = λi(TT

∗) = s2i (T ) for all i = 1, . . . ,mn,

we have λk(TT
∗) = λk(T

∗T ) > 0 and ` is the largest integer such that λk+`(T
∗T ) =

λk(T
∗T ) and λk+`(TT

∗) = λk(TT
∗). With (3.10) and (3.11), we can apply Lemma

3.6 twice to obtain

U∗S∗SU = 0k+` ⊕ C and V ∗SS∗V = 0k+` ⊕D

with C,D ∈Mmn−k−`. It follows that

V ∗SU = 0k+` ⊕ Ŝ

with Ŝ ∈Mmn−k−`. Thus, there exists sufficiently small x > 0 such that the largest k

singular values of T + xS are s1(T ), . . . , sk(T ). Since ‖T‖p(p,k) = ‖Eii ⊗Ejj‖p(p,k) = 1,

this implies that

‖T + xS‖p(p,k) =
k∑
i=1

spi (T + xS) =
k∑
i=1

spi (T ) = ‖T‖p(p,k) = 1,

which contradicts the fact that

‖T + xS‖p(p,k) = ‖Eii ⊗ (Ejj + xEss)‖p(p,k) = 1 + xp for all 0 < x < 1.

So, our claim is correct, that is, sk(T ) = 0. Then we have λk(T
∗T ) = λk(TT

∗) = 0.

We can apply Lemma 3.6 twice to obtain T ∗T ⊥ S∗S and TT ∗ ⊥ SS∗. It follows that

T ⊥ S. Notice that ‖T + S‖p(p,k) = ‖T‖p(p,k) + ‖S‖p(p,k). Then we can apply Lemma

3.5 to conclude that rank(T + S) ≤ k.
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Step 2. For any matrices X ∈ Um and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y (Ejj + Ess)Y

∗) ⊥ φ(XEttX
∗ ⊗ (Y Ejj + Ess)Y

∗) whenever i 6= t.

For simplicity, we denote T = φ(XEiiX
∗⊗Y (Ejj+Ess)Y

∗) and S = φ(XEttX
∗⊗

Y (Ejj + Ess)Y
∗). We aim to show that T ⊥ S. Applying Corollary 3.1 with A = T

and B = xS, we get

‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) ≥ 2
k∑
i=1

λ
p
2
i (T ∗T + x2S∗S) for all 0 < x < 1. (3.12)

With the assumption in (3.1), we have

(i) ‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) = 2‖T‖p(p,k) + 2‖xS‖p(p,k) for the case k ≥ 4;

(ii) ‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) = 2‖T‖p(p,k) + ‖xS‖p(p,k) for the case k = 3;

(iii) ‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) = 2‖T‖p(p,k) for the case k = 2.

So we can conclude that for any integer k ≥ 2,

‖T + xS‖p(p,k) + ‖T − xS‖p(p,k) ≤ 2‖T‖p(p,k) + 2‖xS‖p(p,k)

= 2
k∑
i=1

λ
p
2
i (T ∗T ) + 2

k∑
i=1

λ
p
2
i (x2S∗S).

(3.13)

It follows that

k∑
i=1

λ
p
2
i (T ∗T + x2S∗S) ≤

k∑
i=1

λ
p
2
i (T ∗T ) +

k∑
i=1

λ
p
2
i (x2S∗S) for all 0 < x < 1. (3.14)

The above observations also hold if (T, S) is replaced by (T ∗, S∗), that is,

k∑
i=1

λ
p
2
i (TT ∗ + x2SS∗) ≤

k∑
i=1

λ
p
2
i (TT ∗) +

k∑
i=1

λ
p
2
i (x2SS∗) for all 0 < x < 1. (3.15)

53



If sk(T ) = 0, then we can use the same argument in Step 1 to conclude that T ∗T ⊥

S∗S and TT ∗ ⊥ SS∗, and hence T ⊥ S. Next, we consider the case when sk(T ) > 0.

Notice that the result in Step 1 implies that rank(T ) ≤ k. Thus, there exist some

matrices U, V ∈ Umn such that

V ∗TU = diag(s1(T ), . . . , sk(T ))⊕ 0mn−k.

With (3.14) and (3.15), we can use the same argument in Step 1 to conclude that

V ∗SU = 0k ⊕ Ŝ

with Ŝ ∈Mmn−k. It follows that T ⊥ S.

Step 3. With the results in the first two steps, we have for any matrices X ∈ Um

and Y ∈ Un,

φ(XEiiX
∗ ⊗ Y EjjY ∗) ⊥ φ(XErrX

∗ ⊗ Y EssY ∗) for any (i, j) 6= (r, s).

Then we can use the same argument in Assertion 2.4 of Chapter 2 to conclude that

φ has the form in (3.2).

3.3 Multipartite system

Theorem 3.2. Given m ≥ 2. Let ni ≥ 2 be integers for i = 1, . . . ,m and N =
m∏
i=1

ni.

Then for any given 2 < p <∞ and k ≥ 2, a linear map φ : MN →MN satisfies

‖φ(A1⊗· · ·⊗Am)‖(p,k) = ‖A1⊗· · ·⊗Am‖(p,k) for all Ai ∈Mni
, i = 1, . . . ,m, (3.16)

if and only if there exist U, V ∈ UN such that

φ(A1 ⊗ · · · ⊗ Am) = U(ϕ1(A1)⊗ · · · ⊗ ϕm(Am))V for all Ai ∈Mni
, i = 1, . . . ,m,

(3.17)

where ϕi is the identity map or the transposition map A 7→ AT , for i = 1, . . . ,m.
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Proof. We use induction on m to prove Theorem 3.2. By Theorem 3.1, Theorem

3.2 obviously holds for m = 2. Thus, we may suppose that m ≥ 3 and Theorem 3.2

holds for any (m− 1)-partite system. Then we aim to show that Theorem 3.2 holds

for any m-partite system.

We first show that for any Xi ∈ Uni
, i = 1, . . . ,m,

φ(X1Ei1i1X
∗
1 ⊗ · · · ⊗XmEimimX

∗
m) ⊥ φ(X1Ej1j1X

∗
1 ⊗ · · · ⊗XmEjmjmX

∗
m) (3.18)

for any distinct (i1, . . . , im) 6= (j1, . . . , jm). Without loss of generality, we need only

prove that (3.18) holds when Xi are identity matrices for i = 1 . . . ,m. It is sufficient

to show that for all s = 1, . . . ,m,

φ

(
s−1⊗
u=1

(Eiuiu + Ejuju)⊗ Eisis ⊗
m⊗

u=s+1

Eiuiu

)

⊥ φ

(
s−1⊗
u=1

(Eiuiu + Ejuju)⊗ Ejsjs ⊗
m⊗

u=s+1

Eiuiu

)
(3.19)

for i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s. Denote by As(i, j)

and Bs(i, j) the two matrices in (3.19) accordingly. It is easy to check that for all

s = 1, . . . ,m,

‖As(i, j) +xBs(i, j)‖p(p,k) +‖As(i, j)−xBs(i, j)‖p(p,k) ≤ 2‖As(i, j)‖p(p,k) + 2‖xBs(i, j)‖p(p,k).

Then apply the same argument in the proof of Theorem 3.1, we have

k∑
i=1

λ
p
2
i

(
A∗s(i, j)As(i, j

)
+B∗s (i, j)Bs(i, j)

)

≤
k∑
i=1

λ
p
2
i

(
A∗s(i, j)As(i, j)

)
+

k∑
i=1

λ
p
2
i

(
x2B∗s (i, j)Bs(i, j)

)
(3.20)

55



and

k∑
i=1

λ
p
2
i

(
As(i, j)A

∗
s(i, j) +Bs(i, j)B

∗
s (i, j)

)

≤
k∑
i=1

λ
p
2
i

(
As(i, j)A

∗
s(i, j)

)
+

k∑
i=1

λ
p
2
i

(
x2Bs(i, j)B

∗
s (i, j)

)
(3.21)

for all s = 1, . . . ,m and i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s.

Case 1. Suppose that k > 2m−1. For simplicity, we denote As = As(i, j) and

Bs = Bs(i, j). Then

‖As + xBs‖p(p,k) = 2s−1 + asx
p for 0 < x < 1, (3.22)

where as = 2s−1 for s = 1, . . . ,m− 1 and am = min{k− 2m−1, 2m−1}. We claim that

sk(As) = 0 for all s = 1, . . . ,m. Otherwise, sk(As) > 0 for some 1 ≤ s ≤ m. Then

with (3.20) and (3.21), we use the same argument in Step 1 to conclude that there

exists sufficiently small x > 0 such that

‖As + xBs‖p(p,k) = ‖As‖p(p,k) = 2s−1,

which is contrary to (3.22). Thus, our claim is right, that is, sk(As) = 0 for s =

1, . . . ,m. Then we can apply Lemma 3.6 to conclude that AsA
∗
s ⊥ BsB

∗
s and A∗sAs ⊥

BsB
∗
s , and therefore As ⊥ Bs for all s = 1, . . . ,m.

Case 2. Suppose that k ≤ 2m−1. Let s0 be the integer such that 2s0−1 < k ≤ 2s0 . We

can use the same argument in Case 1 to show that

As(i, j) ⊥ Bs(i, j) and sk(As(i, j)) = 0 (3.23)

for all s = 1, . . . , s0, i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s.

Next, we use induction on s to prove that for any s = s0+1, . . . ,m, i = (i1, . . . , im)

and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s. There exist matrices U, V ∈ UN
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depending on s and (i, j) such that

UAs(i, j)V = I2s−1 ⊕ 0N−2s−1 and As(i, j) ⊥ Bs(i, j). (3.24)

First with (3.23), we have As0(i, j) ⊥ Bs0(i, j) and there exist matrices U, V ∈ UN

and integer 0 ≤ r < k such that

UAs0(i, j)V = diag(a1, . . . , ar)⊕ 0 and UBs0(i, j)V = 0r ⊕ diag(br+1, . . . , bN),

where a1 ≥ · · · ≥ ar > 0 and br+1 ≥ · · · ≥ bN ≥ 0. If a1 > 1, then with (3.23), we

have s1

(
φ
( m⊗
u=1

Eiuiu
))

> 1 for some (i1, . . . , im). It follows that
∥∥∥φ( m⊗

u=1

Eiuiu

)∥∥∥
(p,k)

>

1, contrary to (3.16). Thus, a1 ≤ 1, and similarly br+1 ≤ 1. It follows that

r∑
j=1

apj +
k∑

j=r+1

bpj ≤ k. (3.25)

Clearly a1 ≥ · · · ≥ ar ≥ xbr+1 ≥ · · · ≥ xbk are the largest k singular values of

As0(i, j) + xBs0(i, j) for all 0 < x ≤ ar
br+1

. Thus, we have

‖As0(i, j) + xBs0(i, j)‖
p
(p,k) =

r∑
j=1

apj + xp
k∑

j=r+1

bpj for all 0 < x ≤ ar
br+1

.

On the other hand, with (3.16), we have

‖As0(i, j) + xBs0(i, j)‖
p
(p,k) = 2s0−1 + xp(k − 2s0−1) for all 0 < x ≤ 1.

It follows from the above two equations that
r∑
j=1

apj = 2s0−1 and
k∑

j=r+1

bpj = k− 2s0−1.

Therefore,
r∑
j=1

apj +
k∑

j=r+1

bpj = k, in other words, the equality in (3.25) holds, which

implies that aj = 1 for j = 1, . . . , r. Notice that ‖As0(i, j)‖
p
(p,k) = 2s0−1. Thus,

57



r = 2s0−1, that is, UAs0(i, j)V = I2s0−1 ⊕ 0N−2s0−1 . By now, we have showed that

(3.24) holds for s0.

Suppose that (3.24) holds for s− 1 with s0 < s ≤ m. Then we will show that this

also holds for s. Notice that As(i, j) = As−1(̂i, ĵ) +Bs−1(̂i, ĵ) for some î = (̂i1, . . . , îm)

and ĵ = (ĵ1, . . . , ĵm) with îu 6= ĵu, 1 ≤ u ≤ s− 1. Then with our assumption, we have

UAs(̂i, ĵ)V = I2s−1 ⊕ 0N−2s−1 and UBs(̂i, ĵ)V = 02s−1 ⊕ I2s−1 ⊕ 0N−2s

for some matices U, V ∈ UN . It follows that

UAs(i, j)V = I2s ⊕ 0.

Then with (3.20) and (3.21), we apply Lemma 3.6 twice to conclude that

UBs(i, j)V = 02s ⊕ B̂

for some B̂ ∈ MN−2s . It follows that As(i, j) ⊥ Bs(i, j). Now we have proved that

(3.24) holds for s. Then we can conclude from the above discussion that for any

s = 1, . . . ,m,

As(i, j) ⊥ Bs(i, j)

for all i = (i1, . . . , im) and j = (j1, . . . , jm) with iu 6= ju, 1 ≤ u ≤ s, that is, (3.18)

holds. At last we can use the same argument in the last paragraph of the proof of

Theorem 2.2 to conclude that φ has the form in (3.17) . This completes our proof.

3.4 Rectangular case

We have characterised linear maps preserving (p, k)-norms of tensor products of

square matrices with 2 < p < ∞ in the above two sections. It is expected that

our main results, Theorem 3.1 and Theorem 3.2, can be extended to the space of

rectangular matrices. In fact, one can use the same argument in Step 1 and Step 2

of the proof of Theorem 3.1 to conclude the following result.
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Lemma 3.7. Let m,n, `, t ≥ 2 be integers. If φ : Mmn,`t → Mmn,`t is a linear map

satisfying

φ(A⊗B) = U(ϕ1(A)⊗ ϕ2(B))V for all A ∈Mm,` and B ∈Mn,t,

then for any unitary matrices X1 ∈Mm, X2 ∈M`, Y1 ∈Mn and Y2 ∈Mt,

φ(X1EiiX2 ⊗ Y1EjjY2) ⊥ φ(X1ErrX2 ⊗ Y1EssY2) for any (i, j) 6= (r, s).
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Chapter 4

Conclusion and future work

In this thesis, we have characterised linear maps preserving γ-norms or (p, k)-

norms with 2 < p < ∞ of tensor products of square matrices. It has been shown

that such linear maps have the form

A1 ⊗ · · · ⊗ Am 7→ U (ψ1(A1)⊗ · · · ⊗ ψm(Am))V

where U and V are unitary matrices and ψs is either the identity map or the transpose

map for s = 1, . . . ,m. It is expected that our main result on the (p, k)-norm can be

extended to the space of rectangular matrices. However, our techniques used in the

characterization of linear preservers for (p, k)-norms with 2 < p < ∞ can not be

applied to tackle the case when 1 < p < 2. Notice that the (p, k)-norm and the γ-

norms are both unitarily invariant norms. It is naturally to expect that linear maps

preserving any unitarily invariant norm would have the above form. In the future,

we will devote to the following problems.

• We will try to extend our results to the tensor products space of rectangular

matrices, that is, to characterise linear maps preserving (p, k)-norms or γ-norms

of tensor products of rectangular matrices.

• We will consider the linear preservers for (p, k)-norms of tensor products of

matrices for 1 < p < 2.
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• Given any unitarily invariant norm ‖ · ‖. We will consider linear maps φ :

Mmn → Mmn such that ‖φ(A⊗ B)‖ = ‖A⊗ B‖ for all A ∈ Mm and B ∈ Mn,

and its extension to multipartite system.
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