
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



QUALITY FUNCTION DEPLOYMENT

OPTIMIZATION FROM GAME-THEORETIC

AND FUZZY PERSPECTIVES

YUNWEN MIAO

PhD

The Hong Kong Polytechnic University

2021



The Hong Kong Polytechnic University

Department of Industrial and Systems Engineering

Quality Function Deployment Optimization

from Game-theoretic and Fuzzy Perspectives

Yunwen MIAO

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

August 2020



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgment has been made in the text.

(Signed)

Yunwen MIAO (Name of student)

i



Abstract

In regard to the widely applied customer-centric product design nowadays, qual-

ity function deployment (QFD) can be viewed as one of the effective and efficient

tools to interpret customer requirements (CRs) of a certain product to engineering

characteristics (ECs) in the manufacturing aspect. Generally, the competitive-

ness and customer satisfaction of the product are expected to be enhanced after

implementing the QFD optimization procedure. Based on the traditional QFD

optimization framework, this research attempts to conduct product development

from the perspectives of cooperative games and fuzzy uncertainty, respectively.

For a certain manufacturing product, several CRs and ECs are selected in the

QFD procedure for optimization. Commonly, the respective importance weights

of CRs and ECs, and target values or target levels of ECs are significant research

points, which aim at maximizing the overall customer satisfaction of the product

under limited resources. Firstly, the angle of a two-stage cooperative game inte-

grating a quantitative Kano’s model in QFD is hardly considered in the previous

literature. More specifically, Shapley value is utilized to obtain the CR relative

importance weights, while Nash bargaining is applied to the objective function

in a deterministic optimization model to attain target values of ECs.

Secondly, as far as the QFD optimization under the fuzzy perspective is con-

cerned, some novel derivations on calculations for expected values of different

fuzzy events expressed by α-optimistic values of fuzzy variables are given. There-

fore, the fuzzy importance of ECs can be measured, and the expected return of
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the fuzzy objective and several expected constraints of a fuzzy optimization model

can be transformed into more simplified ones. On this basis, an improved hybrid

intelligent algorithm (iHIA), which consists of a novel fuzzy simulation technique

for the expected value of fuzzy events and a genetic algorithm, is proposed to

solve the simplified model.

Thirdly, in order to accomplish the novel fuzzy simulation procedure in the

iHIA, a series of improved fuzzy simulation techniques are generated. At the

beginning, a new operational law regarding membership functions of continuous

and strictly monotone functions of regular fuzzy numbers or intervals is set forth.

As a consequence, several novel fuzzy simulation techniques for the possibility

and expected value of fuzzy events are successively raised as a theoretical basis.

Another enhancement on the expected value simulation is based on the analytical

expressions of α-optimistic values of fuzzy variables.

On the whole, by applying the proposed QFD optimization methods from

two perspectives, research outcomes of CRs and ECs provide useful guidelines,

suggestions, and managerial implications for the decision-makers. The imple-

mentation of the methods to the case study of a notebook development in this

thesis can also be extended to other manufacturing products. Meanwhile, the

theoretical improvements on fuzzy simulation will also make contributions to the

development of fuzzy theories.
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Chapter 1

Introduction

1.1 Background

Many consumer products have undergone the evolution from the handicraft age,

to the commonly seen mass production nowadays and even a small batch of cus-

tomization. It is not difficult to explore the underlying reason for this unavoid-

able tendency. That is, during these three stages, the center of manufacturing

has shifted from the product to the customer gradually, and the participation

of customers is also enhanced [Tao18]. It implies that at present manufactur-

ers should focus more on customers’ multiple and diversified needs on products

[Hau88, Gri93]. The fulfillment degree of these expectations and perceptions will

directly affect the final customer satisfaction, which in turn determines whether

the product becomes a business success.

Therefore, for the sake of grasping targeted customers and occupying mar-

ket share in the long term, under today’s free market economies, manufacturers

should generate rapid productions by following customer needs accurately and

iteratively [Efe20]. Meanwhile, fierce competition emerges in the quality of prod-

ucts, and also in the supply chain and inventory management. High-level product

development becomes imperative for companies to gain superiority and compet-

itiveness. Under this circumstance, systematic approaches should be initiated to

assist manufacturers in coping with these upcoming opportunities and challenges.
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As far as the mainstream customer-centric product design is concerned, qual-

ity function deployment (QFD) proposed by Akao [Aka90] is regarded as a com-

prehensive and systematic method. It helps interpret “whats - customers’ voices”

to “hows - design attributes” to further improve the target product’s performance.

This useful tool was originated from Japan during the 1960s and later gained ex-

tensive support and acknowledgment worldwide. Many applications of QFD can

be seen in the areas of product design, quality management, decision making, and

team building, etc [Wol09]. QFD is also adopted by many renowned companies

in automobile, electronics, appliances, and garment industries [Xio09], such as

Haima Automobile, China Telecom, Kindee software, and Midea air conditioner.

A crucial step before implementing QFD is how to accurately identify and

understand customers’ voices, that is, customer requirements (CRs) [Gri93]. The

method of dealing with CRs is not standardized, and Kano’s model [Kan84] can

be a solution to this essential obstacle to manufacturers. According to differ-

ent features of customers’ voices, these needs are categorized into the major five

types, i.e., One-dimensional (O), Attractive (A), Must-be (M), Indifferent (I),

and Reverse (R). The former three kinds are primarily identified in Kano et al.

[Kan84]’s research, which were depicted by straight lines or curves. Currently, the

tendency of qualitative analyses based on Kano’s model has turned to quantitative

analyses by forming linear or non-linear functions or regressions [Che04, Liu14].

And some quantitative Kano’s models are aggregated with QFD so as to further

modify customers’ voices in a more analytical way [Ber93, Tin02, Wan10, Fin11].

A combination of Kano’s model with cooperative game theory is another direc-

tion [Con04, Con05]. As a consequence, the underlying perceptions of customers

can be observed and reached, even the pain points of a certain product can be

identified.

Technically, during the course of the QFD optimization procedure, CRs of

a certain product together with their relative importance weights are translated

2



into several engineering characteristics (ECs) in the manufacturing aspect. To

complete this transformation, a diagram named house of quality (HoQ) was put

forward by Hauser and Clausing [Hau88], whose layout resembles a house with

walls, rooms, and a roof. Critical matrices regarding CRs and ECs, along with

the competitor information and EC technical values are recorded in the HoQ.

CRs and their corresponding importance weights are displayed on the left wall of

the HoQ, and these weights are usually obtained from external rating methods

like analytic hierarchy process (AHP) or analytic network process (ANP) [Chu01,

Zai14]. After the weights of CRs are derived, with the aid of all the data listed

in the HoQ, deterministic, fuzzy or uncertain mathematical models can be built

to optimize the current design of the target product. Then, target values of ECs

are settled to realize the ultimate objective of obtaining a maximal degree of

customer satisfaction [Che04, Che05, Jip14, Mia17].

Notably, Kano’s model and QFD are two beneficial customer-driven quality

tools, and in this research the former will be embedded in the latter. Both of them

play significant roles when dealing with CRs and ECs of a certain manufacturing

product. In order to get closer to real-life applications and achieve research

improvements, the QFD optimization will be conducted from two different angles,

i.e., game-theoretic and fuzzy perspectives, respectively. The detailed motivation

of these two perspectives are elaborated in the forthcoming section.

1.2 Motivation

The first is the QFD optimization based on the perspective of cooperative game

theory. Here, the research gap is clarified. Although Kano’s model, QFD, and

cooperative game theory are respectively mature in both theory and practice,

the combination of these three approaches was less studied. On this basis, the

research in this part attempts to imitate the collaboration relationship among

3



several CRs by using a rigorous mathematical tool, cooperative game theory.

Whereas in traditional researches, this collaboration relationship among CRs was

not specified and clearly pointed out. And usually, these CRs were treated in-

dividually or were implemented by pairwise comparisons in the AHP and ANP

related methods in the importance rating [Chu01, Zai14].

More specifically, Shapley value and Nash bargaining adopted in this part are

familiar concepts in cooperative game theory. Nevertheless, the integration of

them with the whole QFD procedure from the CR weighting to the EC target

value determining is hardly considered. This novel cooperative game-theoretic

angle will endow both Shapley value and Nash bargaining with practical signifi-

cance in the QFD product planning.

The other is the QFD optimization based on the perspective of fuzzy theo-

ries. Such combinations were common in previous literature. Due to the rea-

son that experts’ evaluations in the matrices of the HoQ are usually expressed

by linguistic variables, fuzzy variables seem better than crisp values to describe

these subjective assessments [Che05, Zho14]. Subsequently, optimization models

with fuzzy parameters are formulated to derive target levels of ECs. In order to

solve the models, it is an alternative to transform the fuzzy objective function

and constraints into deterministic ones, e.g., fuzzy expected value models (EVM)

[Che05, Mia17]. In some simple cases, the optimal solution of the fuzzy EVM can

be directly obtained via analytical calculations. In some intricate cases, the fuzzy

EVM is needed to be solved by a heuristic algorithm, e.g., the hybrid intelligent

algorithm (HIA) proposed by Liu [Liu02a]. The HIA consists of a fuzzy simu-

lation process for expected values of functions of fuzzy variables and a genetic

algorithm.

The original fuzzy simulation process in the HIA is discovered to have some

deficiencies during the actual operation. Therefore, in this research, firstly, the
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fuzzy simulation of both the possibility and expected value of functions of fuzzy

variables are improved based on a newly raised operational law, and a series of

novel algorithms are put forward. In addition, an improved HIA equipped with

a novel fuzzy simulation technique is used to solve the fuzzy EVM in QFD. It is

noted that the improved HIA is also applicable to other optimization models in

the fuzzy environment.

1.3 Research Objectives

Currently, customer-centric manufacturing products still occupy a dominant po-

sition in the market. Many products are upgraded based on their former versions,

such as mobile phones and automobiles. The main factors that trigger these up-

grades are those diversified and changeable customer needs towards the target

product. Meanwhile, with the rapid growth of the Internet technology and E-

commerce, a variety of online shopping websites or online communities emerge,

which provide platforms for customers to express their views on products.

In order to adapt to the above situation, the main objective of the research

in this dissertation is to understand and analyze customer needs and to enhance

customer satisfaction degree of the target product by implementing the QFD

optimization procedure. On this basis, the target product is expected to acquire

considerable competitiveness in products of the same kind. Notably, the target

product here can be either the end user products or industry products. To achieve

this goal, the QFD optimization procedure will be studied from two different

perspectives, i.e., game-theoretic and fuzzy perspectives. The three objectives of

this research are described as follows:

(1) To generate theoretical and practical improvements in the fuzzy simulation

area, from the possibility to the expected value of fuzzy events. At the theoretical

level, the existing fuzzy simulation techniques for the possibility and expected
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value of fuzzy events are proved to be defective in their stochastic sampling pro-

cess. Therefore, novel fuzzy simulation techniques are proposed based on a newly

raised operational law. At the practical level, the original HIA is further revised

by employing a novel fuzzy simulation technique, which can be utilized to solve

fuzzy optimization models of real-life applications.

(2) To provide a systematic and effective guideline by Kano’s model, QFD, and

cooperative game theory for manufacturers to follow in improving the target prod-

uct. From the cooperative game-theoretic perspective, the marginal contributions

and bargaining among several CRs are considered. Kano’s model runs through

the entire QFD process, which includes analyzing critical CRs together with their

relative importance weights, and computing target values of ECs through a de-

terministic optimization model of maximizing the overall customer satisfaction.

(3) To propose a general methodological framework in the integration re-

searches of Kano’s model with QFD in the fuzzy environment for manufactur-

ers. In this regard, fuzzy variables are utilized to describe subjective evaluations

inside the HoQ of the QFD process. The fuzzy importance of ECs are ranked

through their expected values. Afterwards, a fuzzy expected value model inte-

grating Kano’s model is formulated, whose objective function is also to maximize

the overall customer satisfaction, and decision variables are target levels of ECs.

The expected return of the objective function and some expected constraints are

further derived, so as to be solved by an improved HIA.

1.4 Dissertation Overview

This dissertation is composed of two major parts, i.e., theoretical improvements

in fuzzy simulation, and QFD optimizations with crisp and fuzzy parameters.

The detailed structure is arranged as follows:

Chapter 2 firstly reviews some basic concepts of fuzzy arithmetic including
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fuzzy uncertainty, fuzzy variables and fuzzy measures. Then, the relevant litera-

ture regarding Kano’s model, QFD, and the integration researches of these two

quality tools with some methods are discussed, respectively.

Chapters 3 and 4 aim at theoretical improvements on fuzzy simulation tech-

niques for the possibility and expected value of fuzzy events, respectively. In

Chapter 3, originally, a stochastic discretization simulation (SDS) [Liu98a] was

generated to deal with the possibility simulation. However, it is proved that the

stochastic sampling process inside the SDS does not strictly follow Zadeh’s ex-

tension principle, which unavoidably leads to inaccurate simulation results. To

overcome this drawback, a new operational law is initiated to specify membership

functions of continuous and strictly monotone functions of regular fuzzy intervals.

On this basis, a uniform discretization algorithm (UDS) is proposed to approxi-

mate the possibility of individual fuzzy event. Furthermore, the UDS is extended

to the UDS-Joint to simulate the possibility of joint fuzzy events. Several nu-

merical examples are conducted to illustrate the deficiency of the SDS, and the

effectiveness of the UDS and the UDS-Joint.

Chapter 4 focuses on the improvements on fuzzy simulation techniques for

expected values of continuous and strictly monotone functions of fuzzy variables

based on two existing fuzzy simulation techniques. The new algorithms raised in

this chapter are called the improved stochastic discretization algorithm (iSDA),

and the special numerical integration algorithm (NIA-S), respectively. The orig-

inal SDA [Liu02b] shares the same stochastic sampling process with the SDS,

and the drawback of this sampling method is explained detailedly in Chapter 3.

The iSDA is also initiated in the light of the new operational law set forth in

Chapter 3, which revises two deficiencies in the original SDA. Subsequently, the

NIA-S is proposed to simplify the bisection procedure of the original NIA [Lix15].

Since the iSDA and NIA-S are designed for regular fuzzy numbers, after a series

of theorems for regular fuzzy intervals are proved, both algorithms are extended
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to approximate expected values of functions of regular fuzzy intervals with new

efforts, i.e., the TiSDA and TNIA-S. The feasibility and effectiveness of all the

proposed algorithms are validated through numerical examples, from which the

superiority of both the iSDA and NIA-S over others are conspicuously displayed

in aspects of accuracy, stability, and efficiency.

Chapters 5 and 6 target on QFD optimizations with crisp and fuzzy param-

eters, respectively. In Chapter 5, cooperative games are incorporated in QFD in

two sequential stages. The first stage is to obtain the CR relative importance

weights by applying customer satisfaction and dissatisfaction values of Kano’s

model to the Shapley value calculations. This procedure is simplified by propos-

ing two novel algorithms according to Conklin et al. [Con04, Con05]. The second

stage is to formulate a mixed integer non-linear programming model, whose ob-

jective function is a Nash bargaining function which contains the CR weights

and a quantitative Kano’s model presented in [Wan10, Jip14]. The model is

designed to obtain the maximal overall customer satisfaction and derive target

values of ECs. Finally, the proposed two-stage cooperative game is implemented

to an illustrative example of a notebook computer development to demonstrate

its performance. Target values of ECs are settled according to customer percep-

tions, and some discussions and managerial implications are addressed for the

decision-makers.

Chapter 6 conducts the QFD optimization procedure for a certain manu-

facturing product in the fuzzy environment. The CR importance weights and

relationships between CRs and ECs are evaluated by linguistic variables, which

are expressed by trapezoidal fuzzy numbers (TpFNs). The procedure starts from

the ranking of the fuzzy importance of ECs, to the determination of target levels

of ECs. The expected value of fuzzy variables and fuzzy events play an impor-

tant role no matter in calculating the expected value of the fuzzy importance of

ECs, or the establishment of a fuzzy expected value model (EVM). In order to
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solve the model, the objective function and constraints in the fuzzy EVM are

further derived into simplified ones with the aid of the definitions and theorems

on regular fuzzy intervals in Chapter 4. Afterwards, an improved hybrid intelli-

gent algorithm (iHIA), which integrates the TNIA-S with a genetic algorithm is

designed to attain optimal solutions. At last, the proposed method is applied to

the same case study in Chapter 5. The ranking of ECs are obtained, and differ-

ent combinations of target levels of ECs are computed with respect to different

confidence levels.

Chapeter 7 concludes the whole dissertation and proposes a future research

direction.
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Chapter 2

Literature Review

In this chapter, firstly, some basic concepts of fuzzy theories including the fuzzy

uncertainty, fuzzy variables, and fuzzy measures are introduced. Secondly, a series

of qualitative and quantitative researches on Kano’s model are reviewed. Subse-

quently, six research points in the HoQ of QFD are enumerated, and the relevant

literature is recalled in detail. At last, the researches on integration of QFD with

Kano’s model, fuzzy theories, and other useful methods are summarized.

2.1 Basic Concepts of Fuzzy Arithmetic

2.1.1 Introduction to fuzzy uncertainty

In real life, some events are considered to be deterministic with clear boundaries.

For example, “the sun rises from the east every day”, and “like charges repel each

other” are definite events. In the coin-tossing game, although appearing heads or

tails is a stochastic event, these two kinds of results are deterministic. Commonly,

the probability measure based on the probability theory is adopted to estimate

the occurrence of this kind of stochastic events.

However, sometimes a situation may be encountered that the boundary of an

event is unclear and is hard to be measured by the probability, like the division

of regions or the transition of four seasons, as well as in some adjectives“many,
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high, young, pretty, far” and some adverbs “approximately, perhaps”, etc. This

kind of uncertainty is different from the stochastic uncertainty, but more based on

humans’ subjective assessments from their own knowledge and experience. Just

as Shakespeare said, “there are a thousand Hamlets in a thousand people’s eyes.”

Therefore, corresponding to the probability theory, Zadeh [Zad65] established the

fuzzy set theory in 1965, and the uncertain judgment or the belief degree were

utilized to describe vague and ambiguous events.

Ever since then, fuzzy theories have been gradually developed and improved,

and they are still moving forward today. Inspired by the establishment of the

probability theory, several fuzzy measures were put forward to enrich theoretical

findings and facilitate practical applications. For example, the possibility mea-

sure [Zad78], the necessity measure (the dual of possibility) [Zad79], the λ-fuzzy

measure [Lee95], and the regular fuzzy measure [Nar00] were proposed over the

past three decades. Furthermore, Liu and Liu [Liu02b] defined the credibility

of a fuzzy event as the average of its possibility and necessity, to overcome the

absence of the self-duality of the possibility and necessity measures.

In order to derive the membership degrees for a real function f of fuzzy vari-

ables, Zadeh’s extension principle was raised in 1975 [Zad75], which is now served

as a basis in fuzzy theories. Even so, the computation of this principle towards

real-life problems with many fuzzy parameters is usually difficult, due to its inter-

nal operations of repeatedly calculating the maximal and minimal membership

degrees. Therefore, a variety of fuzzy simulation techniques were set forth to deal

with this obstacle. For instance, Liu and Iwamura [Liu98a] estimated the possi-

bility of a fuzzy event, Pos{f(ξ) ≤ 0}, by designing a Monte Carlo simulation-like

technique, which is called the stochastic discretization simulation (SDS). Later,

the similar idea was employed by Liu [Liu04] to approximate the credibility of

a fuzzy event, Cr{f(ξ) ≤ 0}. In addition, regarded as a significant notion in

mathematics, the expected value of a fuzzy event, E[f(ξ)], was simulated by Liu
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and Liu [Liu02b], which is called the stochastic discretization algorithm (SDA).

Thereafter, researchers showed their continuous interests in exploring the

simulation methods for the expected value. Liu [Liu06b] suggested a uniform

sampling-based simulation technique for E[f(ξ)], taking advantage of some newly

proved convergent results of sequences of fuzzy numbers. The accuracy of his ap-

proach was raised to a higher level compared with that of the SDA. However, its

computational complexity may lead to a lower deficiency when handling practical

problems. In recent years, Li [Lix15] firstly utilized a bisection algorithm to attain

α-optimistic values of f(ξ), and then the optimistic values were incorporated in

a numerical integration algorithm (NIA) to approach the exact value of E[f(ξ)].

The simulation method innovated by Li [Lix15] performed well in aspects of ac-

curacy, stability, and operation time. As a parallel research, Zhou et al. [Zho16c]

put forward a fuzzy operational law regarding the inverse credibility distribution

of fuzzy variables, which shared an analogous underlying principle with [Lix15]’s

theorems on α-optimistic values. By virtue of these fuzzy simulation techniques

and fuzzy arithmetic, practical applications in some areas [Duj17, Yan19, Guy19]

were settled.

The development and improvement of fuzzy simulation is a beneficial founda-

tion for solving real-life fuzzy optimization problems. In traditional mathematical

programming models, crisp decision vectors of optimal values are usually achieved

for objectives. In contrast, fuzzy decisions are obtained from fuzzy optimiza-

tion models. As introduced in Liu [Liu02a], three kinds of possibility/credibility

measure-based fuzzy optimization models were proposed to cope with the case

of fuzzy decisions. The first type is the expected value model (EVM), in which

a maximal expected return is subject to several expected fuzzy constraints. The

second type is the chance-constrained programming model (CCP), which is com-

posed of a maximal return and possibilistic/credibilistic constraints at different

confidence levels. And the last type is the dependent-chance programming model
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(DCP) with a possibilistic/credibilistic return. Sometimes, these three kinds of

models can be solved via analytical computations. For intricate models that are

hard to obtain analytical results, Liu and Liu [Liu02b] suggested a hybrid in-

telligent algorithm (HIA), which integrates different fuzzy simulation procedures

for fuzzy variables with genetic algorithms, neural network algorithms, or other

heuristic algorithms. Some recent implementations of the HIA-based algorithms

can be found in literature [Guo16, Wan18, Zho18].

2.1.2 Fuzzy variables and fuzzy measures

At first, the definitions of the possibility measure and a fuzzy variable together

with its membership function are given based on the possibility space as follows:

Definition 2.1 (Nahmias [Nah78]) Let Θ be a nonempty set, and P(Θ) be the

power set of Θ. For each A ∈ P(Θ), there is a nonnegative number Pos{A},

called its possibility, such that

(i) Pos{∅} = 0,Pos{Θ} = 1; and

(ii) Pos{∪kAk} = supk Pos{Ak} for any arbitrary collection {Ak} in P(Θ).

The triplet (Θ,P(Θ),Pos) is called a possibility space, and the function Pos is

referred to as a possibility measure.

Definition 2.2 (Liu [Liu02a]) A fuzzy variable is defined as a function from the

possibility space (Θ,P(Θ),Pos) to the real line R.

Definition 2.3 (Liu [Liu02a]) Let ξ be a fuzzy variable on the possibility space

(Θ,P(Θ),Pos). Then its membership function is derived from the possibility mea-

sure Pos by

µ(x) = Pos{θ ∈ Θ | ξ(θ) = x}.

The necessity measure is the dual of the possibility measure, which is defined

to evaluate the impossibility of the opposite set Ac as follows,
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Definition 2.4 (Liu [Liu02a]) Let (Θ,P(Θ),Pos) be a possibility space, and A

be a set in P(Θ). Then the necessity measure of A is defined by

Nec{A} = 1− Pos{Ac}.

The credibility measure takes the average of the possibility and necessity of a

fuzzy event, which is presented as follows:

Definition 2.5 (Liu and Liu [Liu02b]) Let (Θ,P(Θ),Pos) be a possibility space,

and A be a set in P(Θ). Then the credibility measure of A is defined by

Cr{A} =
1

2

(
Pos{A}+ Nec{A}

)
.

It can be seen that the credibility measure is self-dual, i.e., Cr{A}+ Cr{Ac} = 1

for any A ∈ P(Θ).

As a simple illustration, suppose that ξ is a fuzzy variable, µ is the membership

function of ξ, and r is a real number. Then the fuzzy event {ξ ≤ r} has the

following possibility, necessity, and credibility,

Pos{ξ ≤ r} = sup
x≤r

µ(x),

Nec{ξ ≤ r} = 1− Pos{ξ > r} = 1− sup
x>r

µ(x).

Cr{ξ ≤ r} =
1

2

(
Pos{ξ ≤ r}+ Nec{ξ ≤ r}

)
.

Notably, a specialized type of fuzzy variables, called LR fuzzy numbers were

defined by Dubois and Prade [Dub87], which derives as follows:

Definition 2.6 (Dubois and Prade [Dub78]) A shape function L (or R) is a

decreasing function from R+ → [0, 1] such that

(1) L(0) = 1;

(2) L(x) < 1, ∀x > 0;

(3) L(x) > 0, ∀x < 1;

(4) L(1) = 0 [or L(x) > 0, ∀x and L(+∞) = 0].
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Definition 2.7 (Dubois and Prade [Dub87]) A fuzzy number ξ is of LR-type if

there exist shape functions L (for left) and R (for right), and scalers γ > 0, β > 0

with membership function

µξ(x) =





L

(
c− x
γ

)
, if x ≤ c

R

(
x− c
β

)
, if x > c,

(2.1)

where the real number c is called the mean value or peak of ξ, and γ and β

are called the left and right spreads, respectively. Symbolically, ξ is denoted by

(c, γ, β)LR.

Meanwhile, a generalized definition for fuzzy intervals together with LR fuzzy

intervals were proposed by Dubois and Prade [Dub88], which are reviewed as

follows:

Definition 2.8 (Dubois and Prade [Dub88]) A fuzzy interval ξ̃ is a quantity with

a quasi-concave membership function µ, i.e., a convex fuzzy subset of the real line

R such that

µ(z) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, z ∈ [x, y]. (2.2)

Definition 2.9 (Dubois and Prade [Dub88]) A fuzzy interval ξ̃ is of LR-type if

there exist shape functions L (for left), R (for right) and four parameters (c, c) ∈

R2
⋃{−∞,+∞}, γ > 0, β > 0 with membership function

µξ̃(x) =





L

(
c− x
γ

)
, if x ≤ c

1, if c < x ≤ c

R

(
x− c
β

)
, if x > c,

(2.3)

and the fuzzy interval is represented as ξ̃ = (c, c, γ, β)LR.
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It is obtained that when c = c, an LR fuzzy interval is turned to be an LR

fuzzy number. This situation implies that an LR fuzzy number can be regarded

as a degradation form of an LR fuzzy interval.

2.2 Kano’s Model

Kano’s model [Kan84] was generated to get a better understanding of CRs (cus-

tomer requirements) as well as their influence on customer satisfaction, which

analyzed satisfaction qualitatively at the very beginning. Three different types

of CRs were defined in accordance with different fulfillment levels to customer

satisfaction, i.e., Attractive, One-dimensional, and Must-be attributes, which are

demonstrated in Figure 2.1. The horizontal axis represents the fulfillment level of

CR, and the vertical axis is the fulfillment level of customer satisfaction. Origi-

nally, the Kano questionnaire designs both functional and dysfunctional questions

for each customer need. And the Kano category is ascertained by the highest re-

sponse frequency through an evaluation table [Kan84].
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Figure 2.1: The diagram of traditional Kano’s model.
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From Figure 2.1, it can be seen that the fulfillment of a One-dimensional

attribute (O) is positively related to the fulfillment level of customer satisfaction

in a linear way, such as the camera function of a smart phone. And the fulfillment

of an Attractive attribute (A) leads to higher level of satisfaction proportionally.

Nevertheless, since Attractive attributes are not expected by customers, the lack

of this kind of attribute will not result in high customer dissatisfaction, such as

the appearance design of a smart phone. Lastly, as to a Must-be attribute (M),

if not satisfied, the customers will be very displeased, such as the calling function

of a phone. Apart from the aforementioned three types, there also exist three

other types, Indifferent (I), Reverse (R), and Questionable (Q) attributes, which

can be distinguished from their names. i.e., I, R, and Q indicate those attributes

that customers do not care at all, dislike the requirements, and a contradiction

may be caused with customers’ expectations, respectively. In Yang [Yan05], a

refined Kano’s model was proposed, where quality attributes were divided into

more distinct and precise categories by considering the importance of product

attributes from the customers’ point of view.

From the beginning of the 21st century, Kano’s model has been applied to

many areas and gains sufficient recognition from researchers. Matzler et al.

[Mat04] tried to apply Kano’s model to the employee satisfaction, and used a

regression analysis with dummy variables to find an asymmetric relationship be-

tween the satisfaction with different factors and the overall employee satisfaction.

Except for the employee satisfaction measurement of improving people manage-

ment, Kano’s model was also applied to other fields like web community service

quality [Kuo04, Ilb17], customer knowledge discovery [Che06b], analysis of the at-

tractive factors of regional characteristics [Che16b], and environmental correlates

of residential satisfaction [Yin16]. These ideas mainly focused on the classification

and qualitative analysis on different Kano categories of customer needs.

In terms of the two-dimensional quality model in Figure 2.1, some quantitative
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researches can be carried out, which was first suggested by Berger et al. [Ber93].

With respect to the asymmetric and non-linear relationship between different

store quality attributes and customer satisfaction, Ting and Chen [Tin02] verified

these relationships by a logarithm model. Wang and Ji [Wan10] employed an S-

CR relationship function between the fulfillment level of customer satisfaction

and the fulfillment level of CRs, which were plotted by linear and exponential

functions. Finn [Fin11] incorporated the prospect theory to depict the quality

attribute’s straight line or curve shape of customer satisfaction.

For the past few years, some enhancements on the traditional Kano’s model

have also been conducted, for example, modifying questionnaires, improving clas-

sification methods, or integrating Kano’s model with other tools. Lee and Huang

[Lee09] applied a kind of subjective fuzzy questionnaire to modify the original

Kano questionnaire, and calculated the fuzzy mode results as Kano’s classifi-

cations. Florez-Lopez and Ramon-Jeronimo [Flo12] developed an integration

framework of Kano’s model, fuzzy distances, and fuzzy models to handle lo-

gistics customer service. Wang [Wan13a] employed a fuzzy Kano’s model to

elicit customer perception on product attributes and then used information en-

tropy to derive their importance weights. Bu and Park [Buk16] utilized the

DAQ (directly-asked-question) model to find the most accurate fuzzy Kano cat-

egories in sports lesson programs. Kuo et al. [Kuo12] proposed the IPA-Kano

(importance-performance analysis) model to categorize and diagnose service qual-

ity attributes. This approach avoided the limitation of the original Kano’s model

of neglecting the attribute performance and importance, and also eliminated the

weakness of the IPA model to concern One-dimensional attributes only. Further,

a fuzzy Kano’s model was combined with the IPA model to investigate the ser-

vice quality in restaurant industry [Pai18]. Madzik [Mad18a] set forth a Type IV

approach, which was based on a modification of the requirement categorization

process, and intended to minimize the discrepancy zone between the calculated
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and the real position of a particular requirement. Kano’s model was integrated

with FMEA (failure mode and effects analysis) to determine the categories of

requirements more precisely, in which the Kano parameter k was calculated with

a novel risk priority number [Mad18b].

2.3 Quality Function Deployment (QFD)

As introduced in Section 1.1, the concept of QFD stems from Japan in the late

1960s [Aka90]. The house of quality (HoQ) [Hau88] is the core concept of QFD,

which is a diagram that resembles a house. Illustrated in Figure 2.2, the HoQ in-

cludes several matrices, i.e., CRs and their relative importance weights are listed

in the left wall, ECs (engineering characteristics) together with their correlations

are enumerated in the ceiling and roof separately. The relationship room of the

HoQ displays the relationships between CRs and ECs, and the data of compet-

ing products are listed in the strategic planning room. Besides, the technical

specifications of ECs are arranged in the technical priorities room.
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Figure 2.2: The diagram of house of quality (HoQ).
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It is seen that both Kano’s model and the left wall of the HoQ are utilized to

describe customers’ voices. However, it is hard to directly combine Kano’s model

into the HoQ to present a visual model, due to the reason that Kano’s model is

only a schematic diagram. Even so, the Kano category of each CR can be marked

in the left wall of the HoQ.

Substantially, each part of the HoQ can be a research point. The mainstream

researches regarding QFD lie on the following several aspects:

(a) The identification of customer requirements from customers’ voices.

Traditionally, if manufacturers want to get feedback of a product, question-

naires may be sent out or interviews are organized to collect customers’ voices,

such as the conventional Kano questionnaire [Kan84]. Sometimes, it is time-

consuming and only can cover a part of customers. The customer information

acquired are regarded as a sample in statistics, which means the obtained CRs

may be incomplete or even unilateral if the survey population and questionnaire

lack a proper planning. Nowadays, with the prosperity of information technology

and the spreading of E-commerce, it is very simple for customers to shop on-

line. The transformation from shop offline to online leads to a large quantity of

customer data, which contains customer search logs, purchasing behaviors, and

customer reviews, etc. Customer reviews are usually appeared as subjective or

objective linguistic statements in a positive or negative way. Negative comments

usually express the urgent customer pain points, or potential customer require-

ments. Therefore, to some extent it is more beneficial to identify and analyze

negative customer opinions to find out some critical CRs of a product.

The analysis towards big online customer data not only is an opportunity

facing manufacturers, but also has raised great interests in academic researches.

As one of the approaches, CRFs (conditional random fields) is widely utilized

to summarize online reviews. Jakob and Gurevych [Jak10] defined features of
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online comments by taking advantage of tokens, POS (part of speech) tags, short

dependency paths, and word distances, etc. Zhong et al. [Zho16a] reviewed some

representative researches on big data in the service and manufacturing sectors

detailedly, together with its challenges, opportunities and future perspectives. A

big data mining method which incorporated neural network analysis was adopted

by Chong et al. [Cho15] to build a platform for understanding and predicting

online consumer demands. A quadruple Q = <F, S, A, R> was originated by Jin

et al. [Jin16b] to describe online reviews, where F, S, A, and R stand for product

features, sentiment polarity, aspects of product features, and detailed reasons,

respectively. A framework constituted of several advanced data analytics was de-

signed by [Ire18] to understand customer needs through transforming qualitative

data to quantitative insights on products. The internal sentiment analysis was

achieved via natural language processing, POS tags, machine learning, etc.

Some other useful data mining techniques are based on the concept of biclus-

tering, which is capable of clustering the rows and columns simultaneously to find

biclusters of analogous information. The idea of biclustering method was first put

forward by Hartigan in 1972, but no one applied it for almost 30 years. Until the

beginning of 21st century, the analysis of microarray data brought biclustering

back into focus. Afterwards, many algorithms were proposed to find similarities

between biological gene expressions under different conditions, like CC algorithm

[Che00], Plaid algorithm [Laz00], Xmotifs algorithm [Mur03], Spectral algorithm

[Klu03], BCBimax algorithm [Pre06]. Except for applications in biological data

analysis, the biclustering method has gained extensive support in other areas,

such as text-mining [Dec07], market data analysis [Dol11], recommendation sys-

tems [Inb11], financial forecasting and trading [Hua11], collaborative filtering

[Sym08], and market segmentation [Wan16].

Actually, in the area of big data mining, a variety of technologies according

to different theories were set forth, like genetic algorithm, inductive learning
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theory, Bayesian network, decision tree, pattern recognition, high-performance

computing, and statistical analysis, the details of which can be found in Zhang

et al. [Zha16] and Sang et al. [San16]. Quite probably, the aforementioned data-

mining approaches can be employed and adapted in the future research to hear

customers’ voices by extracting online customer data of reviews or opinions of a

certain product.

(b) The determination of CR relative importance weights in the left wall of

the HoQ, which is the input of the QFD optimization procedure.

(c) The professional assessment of the relationship matrix between CRs and

ECs in the relationship room of the HoQ.

(d) The generation of ECs in the product design, as well as the determination

of their importance weights in the ceiling and roof of the HoQ.

The solutions of (b), (c), and (d) usually have overlapping areas due to the

reason that comparisons are generated during these determination processes, and

these evaluations are usually conducted by professionals or experts. As a conse-

quence, the following literature recalled may also have overlapping among these

three research points.

Before the optimization model is established, confirming the CR relative im-

portance weights, the internal relations and correlations are of great significance.

In the establishment of the house of quality, Hauser and Clausing [Hau88] de-

scribed that the QFD team is responsible for the priorities/importance weights

of CRs to balance the cost of fulfilling a need with the benefit to the customer.

The principle to decide the weights is to consider the importance of each CR to

customers. At beginning, these weights are determined through a direct market

research with customers.

Afterwards, the simplest and most intuitive way to prioritize CRs is based on

the rating systems of 1-2-3-4-5 or 1-3-5-7-9 [Gri93], which is marked as the relative
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importance degrees. Otherwise, according to the pairwise comparison system -

AHP (analytic hierarchy process) initiated by Saaty in 1980 [Saa80], the CR

relative importance weights were calculated [Fun98]. In Ho et al. [How11], AHP

was combined with QFD not only in the determination of relative importance

weights of CRs, but also the functional relationships between CRs and ECs,

which aimed at enhancing the effectiveness of sourcing decisions among diverse

suppliers. Chuang [Chu01] attached AHP to QFD for a location decision from

a requirement perspective, where the AHP method was applied to measure the

weight for each location requirement. As an advanced version, ANP (analytic

network process) was further proposed by Saaty in 1996 [Saa05], which is more

complicated than AHP, in which the computation complexity is largely raised

owing to the network design inside. Zaim et al. [Zai14] incorporated the ANP

weighted relative importance weights to prioritize CRs.

Naturally, the usage of crisp values will help decrease the calculation diffi-

culty in AHP or ANP related problems. However, researchers found that crisp

values may be inappropriate since the internal evaluations in (b), (c), and (d) are

subjective and ambiguous. Usually, these importance degrees or relationships are

expressed by linguistic statements from experts, like “quite important” or “a little

weak”, which cannot be mapped into crisp values directly. Therefore, stochas-

tic variables and fuzzy variables are more proper to represent them. As stated

in Section 2.1.1, stochastic variables are inclined to describe natural events, like

“the chance of raining tomorrow”, which belongs to the probability theory. Here

it seems quite suitable to adopt fuzzy variables to express subjective linguistic

data. On this basis, the previous introduction of the fuzzy uncertainty and fuzzy

arithmetic is essential.

Served as a crucial branch of the QFD research, an increasing number of

fuzzy QFD researches have arisen in recent decades. Shen et al. [She01] used

fuzzy variables to indicate the human perception and judgment in QFD as men-
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tioned, together with fuzzy arithmetic and the defuzzification techniques. A fuzzy

least-square regression approach to depict relationships in QFD was considered

by Kwong et al. [Kwo10], taking both the fuzziness and randomness into account.

Otherwise, fuzzy linear regressions or non-linear regressions were employed to link

the weighting of CRs, and the functional relationships between CRs and ECs with

the ultimate customer satisfaction. Notably, the h value is a vital parameter in

fuzzy linear regression models, which guarantees the observed crisp outputs are

included in the h intervals of the fuzzy outputs obtained from models. Other than

setting the h value in fuzzy linear models arbitrarily by the decision-makers, Liu

et al. [Liu15b] put forward an approach using the fuzzy linear regression mod-

els attached with optimized h values to identify the functional relationships in

QFD. And the coefficients inside were assumed to be symmetric triangular fuzzy

numbers. Soon after, another approach was proposed by Chen et al. [Che16a]

to optimize the h value for fuzzy linear regression analysis. It took advantage

of the minimum fuzziness criterion with symmetric triangular fuzzy coefficients

to obtain the maximum reliability. As to fuzzy non-linear regressions, Liu et al.

[Liu14] developed a fuzzy non-linear regression method to acquire the degree of

compensation among CRs. The overall customer satisfaction was derived in ac-

cordance with a trade-off strategy which consisted of the CR relative importance

weights and the degree of compensation among them. Even though the linear

and non-linear regressions appear to be more objective, sometimes the sparse

data obtained from them will result in less practicable solutions.

In regard to the determination of the priority of ECs in (d), due to the inher-

ent fuzziness in matrices in the HoQ, it is not simple to derive the importance

degrees of ECs straightforwardly. This situation generates great interests among

researchers. Chen et al. [Che06a] originated a fuzzy weighted average method

(the h-cut method) in a fuzzy expected value operator so as to rank technical

attributes in fuzzy QFD. Kwong et al. [Kwo07] set up an aggregated importance
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of ECs, which considered both the conventional meaning of EC importance as

well as the impacts of one EC on other ECs. In 2011, Kwong et al. [Kwo11] pro-

posed a fuzzy group decision-making method which combined a fuzzy weighted

average method with a consensus ordinal ranking technique by concerning two

types of uncertainties, human perception and customer heterogeneity, simultane-

ously. Wang [Wan12] viewed the group decision-making QFD problem as a series

of preferential combinations of customers and QFD team members, and priori-

tized ECs by comparing their normalized fuzzy technical importance ratings via

the method of centroid defuzzification. In recent years, Liu et al. [Liu16] pro-

posed an exact expected value-based method to prioritize technical attributes in

fuzzy QFD, in which the expected values of the importance of ECs were obtained

through the inverse credibility distribution of fuzzy numbers. Yu et al. [Yul18]

scored technical attributes by virtue of interval-valued intuitionistic fuzzy sets

and Choquet integral. Meanwhile, the CR relative importance weights were also

derived through converting interval-valued intuitionistic fuzzy numbers.

(e) The determination of target values of ECs in the improved product, which

is the output of the QFD optimization procedure.

As to a new or improved product, the product design procedure based on QFD

aims at determining a series of x1, x2, · · · , xn for ECs constrained to restricted

resources. The ultimate overall consumer satisfaction is supposed to be equal to

or larger than that of other potential competitors in the current market. During

this complex operation course, definitely diverse variables, trade-offs and multiple

contradictions will be involved.

Abundant fuzzy modelling studies regarding how to get a series of target val-

ues for ECs have been carried out. It is quite reasonable to absorb fuzziness to

depict inner indeterminate factors in the HoQ by means of fuzzy concepts. For

example, Chen et al. [Che05] brought up a fuzzy expected value model to deter-
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mine target values of ECs, which was in consideration of the maximum consumer

expectation or the minimum development expense, respectively. Erginel [Erg10]

set forth a fuzzy multi-objective decision model by integrating the information

from design failure and effect analysis. The means-end chain notion was incorpo-

rated by Chen and Ko [Che10] to establish a fuzzy linear modelling approach in

calculating the amount of contribution of individual “how” to the whole consumer

perception. Sener and Karsak [Sen10, Sen11] suggested some fuzzy mathematical

programming, including a fuzzy non-linear regression and optimization method,

and an integrated fuzzy linear regression with a fuzzy multiple objective program-

ming approach to determine target levels of ECs. Liu et al. [Liu14] embedded

the compensation degrees among CRs into QFD, which combined the minimized

fuzziness benchmark with the aid of a non-linear regression to realize it. Zhong

et al. [Zho14] set up a fuzzy chance-constrained programming model in setting

target values of technical attributes, which was solved by the HIA.

(f) The benchmark management with rival companies in the strategic planning

room of the HoQ.

The goal of the QFD optimization procedure is to give the decision-makers

a guided map and assist them in competing with their rival companies in the

current market. On this basis, considering the benchmark management or the

strategic planning is indispensable during the optimization.

Generally, there are two ways of setting the benchmark of the preferred cus-

tomer satisfaction degree towards a certain product. Firstly, as described in the

notebook computer design case in Ji et al. [Jip14], there existed four competitor

companies, and their customer satisfaction degrees of several CRs were outlined

in the strategic planning room of the HoQ. Then, the average values of four

companies were set as the lowest limits in the constraints of the proposed opti-

mization model. Besides, another way of benchmark setting was introduced in
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the motorcar design case in Chen et al. [Che05]. The technical specifications of

ECs for five competitor companies were accumulated in the HoQ. According to

the overall customer satisfaction calculation formula, the overall customer satis-

faction degree of each company can be readily obtained, which provided reference

substances for the design team of the motorcar. More academically, traditional

customer-competitive benchmarking based on customers’ perceptions towards a

set of products/service was analyzed [Fra18], and a new method was proposed to

transfer subjective judgements of customers to a collective cardinal scaling. On

the whole, compared with other research points in the HoQ, there are few articles

specifically studying the benchmark setting in QFD. In practice, the benchmark

management for enterprises is essential especially in a competitive market envi-

ronment.

2.4 Integration of Kano’s Model with QFD

Owing to the fact that Kano’s model is concerned about the attributes of di-

versified CRs, it helps provide an effective tool for measuring the input of the

QFD procedure. This attempt was first accomplished by Matzler and Hinterhu-

ber [Mat98] in 1998, who categorized CRs in QFD by Kano’s model according to

their different impacts on customer satisfaction. Their research was the pioneer

in the subsequent academic researches of integrating the Kano’s model with the

product development. Tan and Shen [Tan00] incorporated Kano’s model into the

planning matrix of QFD to help accurately and deeply understand the nature of

customers’ voices. In view of the Kano’s model analysis, an approximate trans-

formation function was proposed to adjust the improvement ratio of each CR.

In contrast to the former literature, Tontini [Ton07] provided a method which

adequately treated CRs according to their category in Kano’s model. And the

CR importance weights was modified with respect to the impacts on satisfaction
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or dissatisfaction that their presence or absence may cause to customers. Among

the relevant integration studies, Kano’s model was still viewed as a qualitative

measure of sorting. For example, in Chang and Chen [Cha11], Kano’s model was

generated to explore brand contact elements from customers of a hot spring ho-

tel, and QFD was employed to take the identified elements into design under the

compromise of a service provider’s technical considerations. Kuo et al. [Kuo16]

implemented the analytical model of Kano’s model and QFD to enhance the city

hotel service quality.

To deal with the vague and ambiguous information of the product development

procedure, fuzzy variables are introduced to enrich the integration researches, ei-

ther in the fuzzy Kano’s model or the fuzzy QFD framework. In terms of the

Kano’s two-dimensional quality classification, this qualitative relation is quanti-

fied by fuzzy logic in the QFD matrix [Che07] . Lee et al. [Lee08] presented a

combination approach by integrating Kano’s model with fuzzy mode into the QFD

matrix and adjusted the weights of CRs, which appeared to be more objective

during the course of weighting. Wang [Wan13b] incorporated Kano’s model into

QFD to recognize the degree of urgency with respect to the enhancement and pri-

ority of CRs, and the optimal aggregation weights were accomplished by a fuzzy

linguistic quantifier with a soft majority concept. Chen and Ko [Che08] adopted

fuzzy approaches to represent the importance weights of CRs, the relationships

between CRs and ECs, and the correlations among ECs. In consideration of the

traditional Kano category of CRs, they proposed a fuzzy non-linear model to

determine target values of ECs to obtain the maximal customer satisfaction. Mu

et al. [Mul08] suggested a fuzzy multi-objective model to reconcile the trade-off

between customer satisfaction and cost, where a quantitative Kano’s model of

three general functions was used to illustrate the linear and non-linear influence

between CRs and ECs. Yeh [Yeh10] integrated the refined Kano’s model proposed

by Yang [Yan05], with QFD and fuzzy integrals to ascertain the medical service
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improvement priority. Yeh and Chen [Yeh14] also adopted the refined Kano’s

model with QFD and grey relational analysis to improve the service quality of

nursing homes. Kano’s model was used to filter customer needs and transform

the Attractive ones into a kind of parameters, which was served as the corner-

stone in the subsequent QFD process [Hab18]. Avikal et al. [Avi20] utilized the

two quality tools to classify the aesthetic attributes of SUV car and compared

the performances of fuzzy Kano’s model with traditional Kano’s model.

Apart from some joint studies on Kano’s model and QFD, there are also a

small amount of literature were conducted on cooperative games with Kano’s

model or cooperative games with QFD. Conklin et al. [Con04] and Conklin and

Lipovetsky [Con05] applied the notion of Shapley value from cooperative game

theory to risk analysis and Kano theory, so as to identify the key drivers of CRs

that led to customer satisfaction. Their calculation procedure is also adopted

in this thesis. Meanwhile, the concept of Nash bargaining in cooperative game

theory was taken into account to obtain target levels of ECs by means of a

fuzzy optimization model [Yan14]. Lately, QFD was combined with other useful

tools or theories, such as MCDM (multiple criteria decision making) methods

including AHP [Abd18, Hab18], ANP [Asa17], and TOPSIS [Cho17]; DEA (data

envelopment analysis) [Zha19], FMEA [Kum18], Markov models [Asa17, Got18],

etc., which has brought a variety of new research and application opportunities.

2.5 Summary

The literature review in this chapter was divided into two major parts. The first

part introduced the development of fuzzy uncertainty, including fuzzy measures,

fuzzy simulation, and fuzzy programming. Some basic concepts in fuzzy arith-

metic were outlined as preliminaries for novel fuzzy simulation techniques to be

proposed in Chapters 3 and 4. The second part reviewed the researches on two
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quality tools, i.e., Kano’s model and QFD. Firstly, the origin of Kano’s model

and meanings of six attributes in Kano categorization were explained. Then,

both the qualitative and quantitative researches on Kano’s model were recalled

in detail. Subsequently, the origin of QFD and different matrices in the HoQ were

described. More specifically, six research points in the HoQ were elaborated with

a variety of references. Finally, relevant integration researches were displayed.

It is observed that the integration research of these two quality tools with

other methods is popular at present and is also the tendency in the future. Cor-

responding to the motivation and research objectives of this thesis expounded in

Sections 1.2 and 1.3, the integration researches will be conducted among Kano’s

model, QFD, cooperative game theory, and fuzzy theories. In particular, for the

QFD optimization procedure, The research points (b), (d), and (e) will be treated

as the main focus in Chapters 5 and 6.

The next chapter deals with the fuzzy simulation for the possibility of fuzzy

events. The principle and limitation of a commonly used simulation technique for

the possibility will be described. Then, two novel fuzzy simulation techniques are

proposed to approximate possibilities of individual and joint fuzzy events based

on a novel operational law.
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Chapter 3

A Uniform Discretization
Simulation for the Possibility of
Fuzzy Events

The possibility theory and the possibility measure were set forth by Zadeh in

1978, which is an accepted theoretical foundation for many subsequent theories

and measures in the fuzzy area. Later in 1998, Liu and Iwamura applied the

possibility measure to fuzzy constraints in fuzzy programming. And a stochastic

discretization simulation with a stochastic sampling process inside was firstly put

forward to estimate the possibility of fuzzy events. Nevertheless, in this chapter

their method is proved to have obvious flaws in the actual operation of sampling.

To overcome this drawback, two novel fuzzy simulation algorithms for individ-

ual and joint fuzzy events by virtue of a uniform sampling process are suggested,

which are based on two newly raised and proved theorems for a specialized type

of fuzzy variables - regular fuzzy intervals. In addition, from four progressive

numerical experiments, it can be seen that the simulation accuracy is greatly

enhanced and the computational time is also decreased when compared with Liu

and Iwamura’s method. The proposed uniform sampling process is also applicable

to other fuzzy simulations, like the expected value and credibility for functions of

fuzzy variables. Meanwhile, this innovative fuzzy simulation technique can also

be embedded in heuristic algorithms to solve fuzzy programming models with
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individual or joint possibilistic constraints.

3.1 Fuzziness and Its Measure

As stated in [Zad78], human decisions are mainly based on possibilistic rather

than probabilistic information in nature, since they focus more on the mean-

ing of the information. Commonly, the information is imperfect with a vague,

fuzzy, general or ambiguous content/value (called the imprecision), and its

truth/confidence can be subjectively assessed (called the uncertainty) [Dub88].

To deal with such uncertainty, the possibility theory was established by Zadeh in

1978 [Zad78], in which the fuzzy set theory [Zad65] was served as a natural basis.

Ever since then, the possibility theory has been gradually accepted to handle the

fuzziness, and the possibility measure, Pos, is used to evaluate the degree of belief

of fuzzy events.

Later, with the development of fuzzy programming and fuzzy optimization

problems [Liu02a], the fuzzy constraints are usually assumed to satisfy at a pos-

sibility of α. More specifically, as described in Liu and Iwamura [Liu98a], the

fuzzy constraints in a chance-constrained programming model with fuzzy param-

eters are frequently converted into the following crisp forms as individual and

joint possibilistic constraints, i.e.,

Pos{g(x, ξ) ≤ 0} ≥ α, (3.1)

or

Pos{gk(x, ξ) ≤ 0, k = 1, 2, · · · , s} ≥ β (3.2)

where x is a decision vector, ξ is a fuzzy vector, and α and β are predetermined

confidence levels to corresponding constraints. To cope with these two kinds of

possibilistic constraints, Liu and Iwamura first gave the respective crisp equiv-

alents for some special cases, whose results are discussed detailedly in [Liu98a].
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Simultaneously, for other intricate cases without known crisp forms, they fur-

ther suggested a more generalized fuzzy simulation technique to handle them,

called the stochastic discretization simulation (SDS). Subsequently, the SDS was

attached to a genetic algorithm as a hybrid intelligent algorithm (HIA) to find fea-

sible solutions to chance-constrained programming models in a fuzzy environment

[Mai06, Mai07, Dai14].

It can be seen that the SDS is conducted as an important part of the HIA,

whose outcomes have direct influence on the final solutions of fuzzy optimization

models. After the internal structure of the SDS is investigated, it is discovered

that its design principle is consistent with Zadeh’s extension principle in [Zad75]

while its actual operation is not. This discrepancy is caused by the stochastic

sampling process inside, which shares some similarities with Monte Carlo simu-

lation [Rub81, Rub98]. From both theory and practice, the stochastic sampling

is proved to inevitably generate deviations on simulation results in this chapter.

Analogously, another fuzzy simulation with a wide impact for the expected value

of functions of fuzzy variables adopted this stochastic sampling procedure as well

[Liu02b, Zha05, Keh10], and its performance was discussed by Li in [Lix15]. For

the sake of enhancing the performance of the HIA, a novel uniform discretization

simulation (UDS) for individual fuzzy events is initiated to substitute the SDS.

And the UDS is designed based on a newly raised operational law of continuous

and strictly monotone functions of regular fuzzy intervals (a specialized LR fuzzy

intervals with continuous and strictly decreasing shape functions). Meanwhile,

the UDS is also extended to the UDS-Joint to deal with joint fuzzy events as

another new theorem is developed.

The remaining content of this chapter is arranged as follows. Firstly, Sec-

tion 3.2 reviews the underlying philosophy of the SDS, and then clearly points

out its inherent deficiency through an analytical analysis, which is validated by

the simulation results from three progressive numerical examples. Subsequently,
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Section 3.3 elaborates the principle and algorithm design of the UDS. The distinc-

tions between the SDS and UDS are summarized as well, and their performances

are compared via the identical three numerical examples in Section 3.2. After-

wards, Section 3.4 expounds the details of the UDS-Joint, and another numerical

example is used to demonstrate its efficiency. Finally, Section 3.5 concludes the

whole chapter.

3.2 The Limitation of the SDS

3.2.1 Stochastic discretization simulation

The SDS has become a feasible way to approximate the possibility of fuzzy events

since its design. To start with, assume that an individual fuzzy event g(ξ) ≤ 0

exists, in which ξ = (ξ1, ξ2, · · · , ξn) and ξi are continuous fuzzy variables with

membership functions µξi , i = 1, 2, · · · , n, respectively. Then, g(ξ) is also a

continuous fuzzy variable according to Liu [Liu02a]. Through employing the

possibility theory established by Zadeh [Zad78] and Zadeh’s extension principle

[Zad75], the principle of the SDS to calculate the possibility, Pos{g(ξ) ≤ 0}, is

presented in the following theorem.

Theorem 3.1 (Liu [Liu02a]) Let ξ1, ξ2, · · · , ξn be fuzzy variables, and g : Rn → R

be a continuous function. Then the possibility of the fuzzy event g(ξ1, ξ2, · · · , ξn) ≤

0 is

Pos{g(ξ1, ξ2, · · · , ξn) ≤ 0} = sup
x1,x2,··· ,xn∈R

{
min

1≤i≤n
µξi(xi) | g(x1, x2, · · · , xn) ≤ 0

}
.

(3.3)

In order to achieve Pos{g(ξ) ≤ 0} through Theorem 3.1, the SDS operates the

simulation by transferring the continuous fuzzy variable g(ξ) into a discrete fuzzy

variable g(ξ)∗ through randomly generating sample points. The specific steps of

the SDS are illustrated as follows:
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Algorithm 1 (SDS of Liu & Iwamura [Liu98a])

Step 1. Initialize the number of sample points N , and set M = γ (γ > 0) as a
lower estimation.

Step 2. Randomly generate ui from the γ-level sets of ξi, i = 1, 2, · · · , n, respec-
tively, and denote u = (u1, u2, · · · , un).

Step 3. Set µ = µ1(u1) ∧ µ2(u2) ∧ · · · ∧ µn(un).

Step 4. If g(u) ≤ 0, and M < µ, then reset M = µ.

Step 5. Repeat steps 2, 3, and 4 for N times.

Step 6. Return M as the simulation value of Pos{g(ξ) ≤ 0}.

It can be seen that the estimated membership degree µ(a)∗ for g(ξ)∗ at a real

number a in the SDS can be obtained through its stochastic sampling process in

Steps 2 ∼ 5 and expressed as

µ(a)∗ = max
1≤k≤N

{
min

1≤i≤n
µi(u

k
i ) | g(uk1, u

k
2, · · · , ukn) = a

}
. (3.4)

Corresponding to the basic computing principle in Eq. (3.3), technically Eq. (3.4)

seems practicable to attain a specified membership degree when the number of

sample points N is large enough. However, when this stochastic sampling process

is meticulously inspected from the aspect of actual operation, it is noticed that two

unavoidable deficiencies emerge. Firstly, the general setting of N is relative small,

e.g., 3000, 5000, or 10000, in practical applications, which does not strictly follow

Zadeh’s extension principle. As a direct consequence, the simulated membership

degree µ(a)∗ may be inaccurate. Secondly, it is intuitive that, with the growing of

the size of fuzzy variables, n, inside the function g, the quantity of sample points

needed increases remarkably. For instance, in order to get a relative precise

membership degree when n = 5, the number of sample points N is required to

set to be at least 1010 in the SDS. Nevertheless, it is found that whatever the

size n is, N is generally set as 10000 for time-saving. As a natural result, either
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the membership degree or the membership function of the discrete fuzzy variable

g(ξ)∗ simulated by the SDS is deviated from those of the original continuous

fuzzy variable g(ξ). To more clearly demonstrate this deviation, three numerical

examples are conducted successively.

3.2.2 Three numerical examples for the SDS

The forthcoming three numerical examples contain two, four, and ten fuzzy vari-

ables, respectively. To observe the distance between the simulation value and the

exact value, the following equation is utilized to calculate the error rate, i.e.,

Error =
|Simulation value− Exact value|

Exact value
× 100%. (3.5)

Example 3.1 Suppose that η1 and η2 are two Gaussian fuzzy numbers G(2, 1)

and G(1, 1) with membership functions µη1(x) = exp[−(x − 2)2] and µη2(x) =

exp[−(x − 1)2], respectively. Let g1 = x1 − x2, η1 = (η1, η2), and calculate the

possibility of η1 ≤ η2 or Pos{g1(η1) ≤ 0} by the fuzzy simulation (see [Liu98a]).

Notably, the analytical result of Pos{η1 ≤ η2} can be easily figured out as

0.7788, according to Zadeh’s extension principle. As a comparison, the SDS is

applied to Example 3.1 to compute the simulation result simultaneously. Parallel

to the setting of N in [Liu98a], the distribution of 3000 sample points of g1(η1)

generated by the SDS is depicted in Figure 3.1. After rounding and employing

Eq. (3.4), the membership function of g1(η1) can be obtained approximately in

Figure 3.2. The horizontal axis is the value range of g1(η1), and the vertical axis

is the membership degree µ. On this basis, it is simple to acquire the simulation

result, i.e., Pos{g1(η1) ≤ 0} = 0.7739. Through Eq. (3.5), the error rate is

calculated as 0.63%, which shows a small difference with the exact value 0.7788.

Example 3.2 Let g2 = x2
1 + x2 ∗ x3 − x−1

4 , x1 > 0, and η2 = (η1, η2, η3, η4),

in which η1 is a Gaussian fuzzy number G(0, 1) with µη1(x) = exp[−x2], the
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Figure 3.1: The distribution of 3000
sample points in Example 3.1 gener-
ated by the SDS.
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Figure 3.2: The simulated member-
ship function of g1(η1) in Example 3.1
by the SDS.

membership function of η2 is µη2(x) = exp[−|x − 2|], η3 is a trapezoidal fuzzy

number A(−1, 1, 2, 3), and η4 is a triangular fuzzy number T (1, 2, 3). Calculate

the value of Pos{g2(η2) ≥ 4} by the fuzzy simulation (see [Liu98a]).

The exact value of Pos{g2(η2) ≥ 4} is 0.9086, which can also be derived an-

alytically. Similarly to Example 3.1, the distribution of 5000 sample points of

g2(η2) generated by the SDS is shown in Figure 3.3, and the simulated mem-

bership function of g2(η2) is attained in Figure 3.4. In contrast to Example 3.1,

this membership function is unclear and not coherent, and the simulation result

of Pos{g2(η2) ≥ 4} is extracted as 0.8752. With the increasing of both quantity

and type of fuzzy variables in g2(η2), the error rate between the simulation result

0.8752 and the exact value 0.9086 is 3.68%, which becomes larger than that of

Example 3.1.

From Examples 3.1 and 3.2, it is discovered that the accuracy of the possibility

simulated by the SDS is not guaranteed, which verifies the theoretical inference

of Eq. (3.4) in Section 3.2.1. To make this deviation more clearly, the quantity

of fuzzy variables, n, is expanded to ten in the following example.
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Figure 3.3: The distribution of 5000
sample points in Example 3.2 gener-
ated by the SDS.
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Figure 3.4: The simulated member-
ship function of g2(η2) in Example 3.2
by the SDS.

Example 3.3 It is assumed that ηi, i = 1, 2, · · · , 10, are ten independent trian-

gular fuzzy numbers listed in Table 3.1, and denote η3 = (η1, η2, · · · , η10). They

are incorporated in a continuous and increasing function g3 = x1 +x2 + · · ·+x10.

Calculate the value of Pos{g3(η3) ≥ 40} by the fuzzy simulation.

After plugging the values of ηi, i = 1, 2, · · · , 10 in Table 3.1, it is easy to

calculate that g3(η3) is also a triangular fuzzy number T (26, 38, 52). Then, the

exact possibility is calculated as 0.8571 in this example. When it comes to the

simulation aspect, among the outputs of 100 membership degrees generated by the

SDS in Table 3.2, the largest is 0.5128 and the smallest is 0.0006 (marked in bold).

As a further step, 10000 outputs of sample points are displayed in Figure 3.5 to

more aptly and credibly view the distribution of membership degrees, in which

the maximal and minimal values are 0.6276 and 0 accordingly. Then, by applying

Eq. (3.4), the simulated membership function of g3(η3) in Example 3.3 is acquired

and illustrated in Figure 3.6. Obviously, from Figures 3.5 and 3.6, it seems hard

for the SDS to generate membership degrees with larger values in [0.7,1] under

the circumstance of ten fuzzy variables in g3(η3). In other words, it is of a small
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Table 3.1: Ten triangular fuzzy numbers in Example 3.3.

Index Triangular fuzzy number

η1 T (2, 3, 4)

η2 T (5, 6, 8)

η3 T (6, 7, 8)

η4 T (4, 5, 6)

η5 T (3, 4, 6)

η6 T (7, 9, 10)

η7 T (−5,−3,−2)

η8 T (5, 6, 8)

η9 T (0, 1, 2)

η10 T (−1, 0, 2)

probability to compute a larger membership degree via the SDS. Consequently,

the membership function obtained through the SDS is greatly deviated from the

exact one. Back to Example 3.3, the simulation result of Pos{g3(η3) ≥ 40}

towards 10000 sample points is 0.4776, which shows a much greater deviation of

44.28% than those of Examples 3.1 and 3.2.

Table 3.2: The membership degrees in Example 3.3 via the SDS when N = 100.

0.0025 0.0225 0.0093 0.1711 0.0882 0.0006 0.0264 0.0763 0.2273 0.0150

0.0668 0.1841 0.2460 0.1053 0.0511 0.0081 0.2199 0.0884 0.0032 0.1108

0.0554 0.0060 0.1370 0.2178 0.1898 0.1984 0.0704 0.1190 0.2290 0.0614

0.0658 0.1600 0.0177 0.1328 0.0835 0.0440 0.2897 0.1323 0.1659 0.2046

0.0228 0.0881 0.0130 0.0143 0.0064 0.1946 0.0621 0.0364 0.0384 0.0111

0.0772 0.1181 0.1099 0.1406 0.0188 0.0744 0.2079 0.1333 0.1851 0.0556

0.0381 0.0450 0.0275 0.0041 0.0558 0.0949 0.0204 0.1753 0.0696 0.5128

0.1630 0.0099 0.0458 0.0185 0.0810 0.1749 0.1921 0.0026 0.0278 0.0421

0.0330 0.0019 0.0808 0.0222 0.1192 0.0620 0.0079 0.2497 0.0090 0.0858

0.0782 0.2367 0.0050 0.0035 0.1560 0.1351 0.0361 0.0013 0.0366 0.1230

To sum up briefly, the approximate possibilities obtained from the SDS in
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Figure 3.5: The distribution of 10000
sample points in Example 3.3 gener-
ated by the SDS.
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Figure 3.6: The simulated member-
ship function of g3(η3) in Example 3.3
by the SDS.

Examples 3.1 ∼ 3.3 have different extents of deviation with their respective exact

values. This deviation is more obviously seen on g3(η3) that contains a larger

quantity of fuzzy variables. Meanwhile, the increase of sample points from 3000,

5000 to 10000 cannot aggrandize the accuracy of simulation, but instead bring

up a more centralized distribution without larger membership degrees, e.g., in

Figure 3.5 of Example 3.3. Therefore, the membership function of the discrete

fuzzy variable g3(η3)∗ has a distinct disparity with that of the original continuous

fuzzy variable g3(η3) in Example 3.3.

In addition, two specific details in the algorithm design of the SDS are needed

to be expounded. Firstly, the SDS starts from a lower estimation in Step 1 of

Algorithm 1, and takes a hypercube containing the γ-cut set for fuzzy variables

as an interval, by the intuition that people are usually not interested in the points

with too low possibility [Liu02a]. In fact, this predetermined setting of interval is

tested to have subtle influence on the outcome, which is further indicated by the

numerical examples in the next section. Secondly, although the SDS is born with

some defects, it is applicable to all kinds of fuzzy variables and general functions.
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3.3 A Novel UDS

The fuzzy simulation discussed in this section is to approximate the value of

Pos{g(ξ) ≤ 0}, where g is a continuous and strictly monotone function, and ξ is

a fuzzy vector of regular fuzzy intervals. Firstly, a new operational law on the

membership function of a continuous and strictly monotone function of regular

fuzzy intervals is proposed and proved. Afterwards, based on the new opera-

tional law, a novel fuzzy simulation technique, called the uniform discretization

simulation (UDS) is put forward to estimate the value of Pos{g(ξ) ≤ 0}.

3.3.1 Some basic concepts

Before the new operational law is proposed, the notions of regular fuzzy num-

bers, regular fuzzy intervals, and continuous and strictly monotone functions are

introduced at first place.

Definition 3.1 (Zhou et al. [Zho16c]) An LR fuzzy number is said to be regular

if the shape functions L and R are continuous and strictly decreasing on the open

intervals {0 < L(x) < 1} and {0 < R(x) < 1}, respectively.

Definition 3.2 (Regular Fuzzy Interval) An LR fuzzy interval is said to be reg-

ular if the shape functions L and R are continuous and strictly decreasing on the

open intervals {0 < L(x) < 1} and {0 < R(x) < 1}, respectively.

In accordance with the preliminaries of LR fuzzy numbers and LR fuzzy inter-

vals in Section 2.1.2, the regular fuzzy number can be viewed as the degradation

form of the regular fuzzy interval. Meanwhile, the definition of regular fuzzy

numbers from the perspective of credibility distribution can also be found in

[Zho16c]. Generally, triangular, normal, Gaussian, and trapezoidal fuzzy num-

bers are commonly used regular fuzzy intervals in practice. With the aid of the
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shape functions L and R in Eq. (2.3), for any α ∈ (0, 1], the α-cuts of a regular

fuzzy interval can be formulated via the inverse functions L−1 and R−1 of L and

R as follows:

xLα = c− γL−1(α),

xRα = c̄+ βR−1(α).

(3.6)

For some frequently used regular fuzzy intervals as mentioned, the analytical

expressions of their L−1 and R−1 are usually not difficult to obtain. For instance,

as to the four different kinds of regular fuzzy intervals that appear in three nu-

merical examples in Section 3.2.2, their shape functions and α-cuts expressions

are presented in the following two examples.

Example 3.4 The shape functions L and R of a triangular fuzzy number ξ ∼

(c, γ, β)LR or T (c− γ, c, c+ β) and a trapezoidal fuzzy number ξ ∼ (c, c̄, γ, β)LR

or A(c− γ, c, c̄, c̄+ β) are written as

L(x) = R(x) = max{0, 1− x}.

Then, their α-cuts for α ∈ (0, 1], are formulated based on Eq. (3.6) as

ξ ∼ (c, γ, β)LR :





xLα = c− γ(1− α),

xRα = c+ β(1− α).

(3.7)

ξ ∼ (c, c̄, γ, β)LR :





xLα = c− γ(1− α),

xRα = c̄+ β(1− α).

(3.8)

Example 3.5 The shape functions L and R of a Gaussian fuzzy number ξ ∼

(c, w, w)LR or G(c, w) is written as

L(x) = R(x) = e−x
2

.
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And its α-cuts for α ∈ (0, 1] is expressed as

ξ ∼ (c, w, w)LR :





xLα = c− w
√
− ln(α),

xRα = c+ w
√
− ln(α).

(3.9)

For the regular fuzzy interval, η2 ∼ (c, p, p)LR, in Example 3.2, its shape functions

L and R are

L(x) = R(x) = e−|x|.

The α-cuts for α ∈ (0, 1] is displayed as

η2 ∼ (c, p, p)LR :





xLα = c+ p ln(α),

xRα = c− p ln(α).

(3.10)

Besides, another important notion, the continuous and strictly monotone func-

tion, is defined as follows:

Definition 3.3 (Liu [Liu15a]) A real-valued function f(x1, x2, · · · , xn) is said to

be strictly monotone if it is strictly increasing with respect to x1, x2, · · · , xm and

strictly decreasing with respect to xm+1, xm+2, · · · , xn, that is

f(x1, · · · , xm, xm+1, · · · , xn) ≤ f(y1, · · · , ym, ym+1, · · · , yn)

whenever xi ≤ yi, for i = 1, 2, · · · ,m and xi ≥ yi, for i = m + 1,m + 2, · · · , n,

and

f(x1, · · · , xm, xm+1, · · · , xn) < f(y1, · · · , ym, ym+1, · · · , yn)

whenever xi < yi, for i = 1, 2, · · · ,m and xi > yi, for i = m+ 1,m+ 2, · · · , n.

3.3.2 The new operational law

Based on the aforementioned basic concepts, a new operational law for the mem-

bership function of a fuzzy vector, ξ = (ξ1, ξ2, · · · , ξn), incorporated in a contin-

uous and strictly monotone function g is proposed and proved. The new opera-

tional law is initiated to substitute Theorem 3.1, and is given as follows:
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Theorem 3.2 Let ξ1, ξ2, · · · , ξn be independent regular fuzzy intervals. If

the continuous function g(x1, x2, · · · , xn) is strictly increasing in regard to

x1, x2, · · · , xh and strictly decreasing in regard to xh+1, xh+2, · · · , xn, then the

membership function of the fuzzy variable g(ξ1, ξ2, · · · , ξn) is

µ(x) = µ1(x1)
∣∣∣ x = g(x1, x2, · · · , xn), (x1, x2, · · · , xn) ∈ L ∪R, (3.11)

where µ1 is the membership function of ξ1, and

L = {(ξL1 (α),· · ·, ξLh (α), ξRh+1(α),· · ·, ξRn (α)) : 0 < α ≤ 1},

R = {(ξR1 (α),· · ·, ξRh (α), ξLh+1(α),· · ·, ξLn (α)) : 0 < α ≤ 1},
(3.12)

and [ξLi (α), ξRi (α)] is the α-level set of ξi, i = 1, 2, · · · , n, i.e.,

ξLi (α) = inf{r
∣∣ Pos{ξi ≤ r} ≥ α},

ξRi (α) = sup{r
∣∣ Pos{ξi ≥ r} ≥ α}.

Proof: Here, only the case that h = 1 and n = 2 is proved. That is, g(x1, x2) is

continuous and strictly increasing with respect to x1 and decreasing with respect

to x2. Suppose that there exist two different vectors, (x1, x2) ∈ L ∪ R and

(y1, y2) ∈ L ∪ R, such that g(x1, x2) = g(y1, y2). Without loss of generality,

assume that x1 < y1. Then it follows from the monotonicity of g that x2 < y2.

Since the two vectors are both in L ∪R, according to the definition of L and R,

there exist α1 and α2 such that





(x1, x2) = (ξL1 (α1), ξR2 (α1)) or (3.13)

(x1, x2) = (ξR1 (α1), ξL2 (α1)) (3.14)





(y1, y2) = (ξL1 (α2), ξR2 (α2)) or (3.15)

(y1, y2) = (ξR1 (α2), ξL2 (α2)) (3.16)
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There are four possible combinations, (3.13) + (3.15), (3.13) + (3.16), (3.14) +

(3.15), (3.14) + (3.16). Following the strictly monotonicity of the shape functions

of ξ1 and ξ2, it is easy to derive that any combination would lead to contradiction.

Take (3.13)+(3.15) as an example. Since x1 < y1, i.e., ξL1 (α1) < ξL1 (α2), it can be

deduced that α1 < α2, which follows that ξR1 (α1) > ξR1 (α2), equivalently, x2 > y2.

The contradiction proves the uniqueness.

Simple and similar proof can be provided to prove the contradiction of the

other three combinations. The proof is complete.

3.3.3 Uniform discretization simulation

In this part, the underlying principle and specific steps of the UDS to simulate

Pos{g(ξ) ≤ 0} are elaborated at first, and a comparison is also conducted between

the SDS and UDS regarding their algorithm designs. To complete the procedure of

UDS, a novel uniform sampling method taking advantage of the new operational

law in Theorem 3.2 is set forth.

More specifically, the continuous fuzzy variable g(ξ), ξ = (ξ1, ξ2, · · · , ξn) is

transformed into a discrete fuzzy variable g∗(ξ) from sets L and R uniformly

with respect to α ∈ (0, 1]. Let ξi ∼ (ci, c̄i, γi, βi)LR be the ith regular fuzzy

interval with shape functions Li and Ri, i = 1, 2, · · · , n. Uniformly split the

interval (0, 1] into N pieces and write θj = j/N, j = 1, 2, · · · , N , in which N is a

sufficiently large integer. Afterwards, based on Eq. (3.6), the discrete points in

terms of the left and right α-cuts, xLij and xRij, can be respectively formulated as

xLij = ci − γiL−1
i (θj), j = 1, 2, · · · , N − 1,

xRij = c̄i + βiR
−1
i (θj), j = 1, 2, · · · , N − 1.

(3.17)

Suppose that the function g is continuous and strictly increases in regard to

ξ1, ξ2, · · · , ξh, and strictly decreases in regard to ξh+1, ξh+2, · · · , ξn. Then, it is
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denoted that

xLj = (xL1j, x
L
2j, · · · , xLhj, xR(h+1)j, · · · , xRnj), j = 1, 2, · · · , N − 1,

xRj = (xR1j, x
R
2j, · · · , xRhj, xL(h+1)j, · · · , xLnj), j = 1, 2, · · · , N − 1,

c = (c1, c2, · · · , ch, c̄h+1, · · · , c̄n),

c̄ = (c̄1, c̄2, · · · , c̄h, ch+1, · · · , cn).

(3.18)

Apparently, xLj ⊂ L and xRj ⊂ R for j = 1, 2, · · · , N − 1, where L and R are

described in Theorem 3.2. By virtue of the above uniform sampling procedure, a

new discrete fuzzy variable g∗(ξ) is thereby defined to approach the continuous

fuzzy variable g(ξ) as

g∗(ξ) =





g(xLj ), with membership degree θj, j = 1, 2, · · · , N − 1

g(xRj ), with membership degree θj, j = 1, 2, · · · , N − 1

g(c), with membership degree 1

g(c̄), with membership degree 1.

(3.19)

Notably, when applying Eqs. (3.17)-(3.19) to the version of regular fuzzy num-

bers ξi ∼ (ci, γi, βi)LR, i = 1, 2, · · · , n, both ci and c̄i in Eq. (3.17) will be replaced

by ci, while both c and c̄ in Eq. (3.18) will be substituted by c = (c1, c2, · · · , cn),

and both f(c) and f(c̄) in Eq. (3.19) will be reduced to f(c), respectively. Take

h = 1 and n = 2 in Eq. (3.18) as an example, then the continuous function

g(x1, x2) is strictly increasing with x1, and strictly decreasing with x2. Suppose

that η1 and η2 are both triangular fuzzy numbers with membership functions

µ1(x) and µ2(x), respectively. Hereafter, the continuous fuzzy variable g(η),

η = (η1, η2) is approached by the following discrete fuzzy variable g∗(η) as

g∗(η) =





g(xL1j, x
R
2j), with membership degree θj, j = 1, 2, · · · , N − 1

g(xR1j, x
L
2j), with membership degree θj, j = 1, 2, · · · , N − 1

g(c), with membership degree 1,
(3.20)
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where xLj = (xL1j, x
R
2j) and xRj = (xR1j, x

L
2j), and they are depicted in Figures 3.7

and 3.8, respectively.
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j

N

1

x
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Figure 3.7: xLj = (xL1j, x
R
2j) in

Eq. (3.20).
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Figure 3.8: xRj = (xR1j, x
L
2j) in

Eq. (3.20).

Back to the general situation, now g∗(ξ) in Eq. (3.19) is a discrete fuzzy

variable, and due to the monotonicity, the relationship of f(c) < f(c̄) can be

easily obtained. Analogously to the SDS in Algorithm 1, here Pos{g(ξ) ≤ 0} can

be approximated by M ′ = Pos{g(ξ)∗ ≤ 0} as

M ′ =





max
1≤j≤N−1

{θj | g(xLj ) ≤ 0}, if g(c) > 0

1, if g(c) ≤ 0,

(3.21)

and Pos{g(ξ) ≥ 0} is estimated by M ′′ = Pos{g∗(ξ) ≥ 0} as

M ′′ =





max
1≤j≤N−1

{θj | g(xRj ) ≥ 0}, if g(c̄) < 0

1, if g(c̄) ≥ 0.

(3.22)

In accordance with the above detailed elaboration of a novel uniform sampling

method and the calculation formulae in Eqs. (3.21)-(3.22), the specific steps of the

UDS to approximate Pos{g(ξ) ≤ 0} and Pos{g(ξ) ≥ 0} are respectively arranged

as follows:

Algorithm 2 (UDS for Pos{g(ξ) ≤ 0})
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Step 1. Initialize the number of sample points N . Set M ′ = 0 and j = 1.

Step 2. Calculate g(c), where c = (c1, c2, · · · , ch, c̄h+1, c̄h+2, · · · , c̄n).

Step 3. If g(c) ≤ 0, return M ′ = Pos{g(ξ) ≤ 0} = 1. Otherwise, go to Step 4.

Step 4. Denote θj = j/N , calculate g(xLj ) with respect to Eq. (3.19).

Step 5. If g(xLj ) ≤ 0, and M ′ < θj, then reset M ′ = θj and j = j + 1.

Step 6. If j < N , go to Step 4. Otherwise go to Step 7.

Step 7. Return M ′ as the simulation value of Pos{g(ξ) ≤ 0}.

Algorithm 3 (UDS for Pos{g(ξ) ≥ 0})

Step 1. Initialize the number of sample points N . Set M ′′ = 0 and j = 1.

Step 2. Calculate g(c̄), where c̄ = (c̄1, c̄2, · · · , c̄h, ch+1, ch+2, · · · , cn).

Step 3. If g(c̄) ≥ 0, return M ′′ = Pos{g(ξ) ≥ 0} = 1. Otherwise, go to Step 4.

Step 4. Denote θj = j/N , calculate g(xRj ) with respect to Eq. (3.19).

Step 5. If g(xRj ) ≥ 0, and M ′′ < θj, then reset M ′′ = θj and j = j + 1.

Step 6. If j < N , go to Step 4. Otherwise go to Step 7.

Step 7. Return M ′′ as the simulation value of Pos{g(ξ) ≥ 0}.

The distinctions between the SDS and UDS regarding their corresponding ob-

jects, philosophies, and additional outcomes are summarized in Table 3.3. Com-

bining this comparison with the former three numerical examples conducted by

the SDS in Section 3.2.2, it can be seen that although the SDS is equipped with

a larger application range in objects, the internal stochastic sampling procedure

may lead to imprecise possibility simulations, and further affect the accuracy of

the membership function. The UDS is proposed to refine this defect and can also

provide a relatively fitted membership function, which will be validated vividly
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by numerical examples in the forthcoming section.

Table 3.3: Distinctions between the SDS and UDS in algorithm design.

Algorithm
SDS UDS

Liu & Iwamura [Liu98a] proposed in this chapter

Object
all kinds fuzzy variables regular fuzzy intervals

general functions strictly monotone functions

Philosophy
Theorem 3.1 Theorem 3.2

stochastic sampling uniform sampling by α-cuts

Attached membership function of a membership function of a

outcome discrete fuzzy number g(ξ)∗ discrete fuzzy number g∗(ξ)

3.3.4 Three numerical examples for the UDS

In order to test the performance of the UDS in contrast to that of the SDS,

the identical three numerical examples in Section 3.2.2 are also adopted here to

carry out comparisons on the simulation accuracy and time between these two

algorithms. The simulation results are computed and displayed in Table 3.4.

From Table 3.4, it is observed that in the SDS, a pair of outputs with or

without a hypercube are listed simultaneously. The reason of employing this

hypercube can be found in [Liu02a]. That is, as known a lower estimation of γ

(γ > 0) is given in Algorithm 1, then u1, u2, · · · , un are randomly generated from

the γ-level sets of ξ1, ξ2, · · · , ξn, respectively. However, if this γ-level is not easy

for computers to identify, then a larger region like a hypercube that contains the

γ-level set will be further defined. For the UDS part, Example 3.1 is simulated by

Algorithm 2, while Examples 3.2 and 3.3 are attained via Algorithm 3, in which

the calculations of α-cuts of the four regular fuzzy intervals incorporated in these

three numerical examples are illustrated in Eqs. (3.7)-(3.10) in Section 3.3.2.

Some conclusions can be drawn from Table 3.4. First of all, from the aspect

of accuracy, the preciseness of the UDS can be straightforwardly seen since its
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Table 3.4: Simulation results of the SDS and UDS in Examples 3.1 ∼ 3.3.

Example 3.1: Exact value: Pos{g1(η1) ≤ 0} = 0.7788, g1 = x1 − x2.

Sample points
SDS

Error Time(s)
SDS

Error Time(s)
(Hypercube) (None)

3000 0.7646 1.82% 0.000 0.7739 0.63% 0.000

5000 0.7646 1.82% 0.000 0.7739 0.63% 0.000

Sample points UDS Error Time(s)

3000 0.7787 0.01% 0.000

5000 0.7788 0.00% 0.000

Example 3.2: Exact value: Pos{g2(η2) ≥ 4} = 0.9086, g2 = x2
1 + x2 ∗ x3 − x−1

4 .

Sample points
SDS

Error Time(s)
SDS

Error Time(s)
(Hypercube) (None)

3000 0.8068 11.01% 0.001 0.7960 12.39% 0.001

5000 0.8752 3.68% 0.001 0.8581 5.56% 0.001

Sample points UDS Error Time(s)

3000 0.9087 0.01% 0.000

5000 0.9086 0.00% 0.001

Example 3.3: Exact value: Pos{g3(η3) ≥ 40} = 0.8571, g3 = x1 + x2 + · · ·+ x10.

Sample points
SDS

Error Time(s)
SDS

Error Time(s)
(Hypercube) (None)

3000 0.3883 54.70% 0.001 0.3988 53.47% 0.001

5000 0.5699 33.51% 0.002 0.4776 44.28% 0.002

10000 0.5699 33.51% 0.003 0.4776 44.28% 0.003

Sample points UDS Error Time(s)

3000 0.8570 0.01% 0.000

5000 0.8570 0.01% 0.000

10000 0.8571 0.00% 0.001
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simulation results are nearly the same as the corresponding exact values, 0.7788,

0.9086, and 0.8571, respectively. When it comes to the performance of the SDS,

neither the increase of sample points, or the presence or absence of a hypercube

does not greatly help enhance the accuracy of the final simulation results. Mean-

while, the adoption of a hypercube is not stable and reliable, e.g., hypercubes

involved in Examples 3.2 and 3.3 have a small positive impact while it performs

adversely in Example 3.1. In addition, with the increasing of the number of fuzzy

variables contained in the function g from two in g1 to four in g2, and ten in g3, it

is noticed that the error degree of the SDS becomes larger and larger accordingly.

The last but not the least, the computational time of both the SDS and UDS

are very short, and the UDS is slightly quicker when encoutering functions with

more fuzzy variables.

Apart from the simulation results of possibilities and the computational time,

the membership function of g∗(ξ) can also be acquired from the UDS as at-

tached outcomes. As an illustration, Figure 3.9 depicts the simulated mem-

bership function of g1(η1) = η1 − η2, which is similar to the one generated by

the SDS in Figure 3.2. Nonetheless, in terms of the membership function of

g3(η3) = η1 + η2 + · · ·+ η10 ∼ T (26, 38, 52), it is found that the simulated mem-

bership function of g3(η3) by the UDS in Figure 3.10 is of high accuracy. While

another simulated one by the SDS in Figure 3.6 is not clear enough and also not

capable of reaching larger membership degrees over 0.7.

3.4 The UDS-Joint for Pos{gk(ξ) ≤ 0, k =

1, 2, · · · , s}

In the former section, the scenario of individual possibilistic constraint is dis-

cussed, and detailed comparisons are generated between the SDS and UDS. Not

limited to this, in many fuzzy programming models, it is common to meet the
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Figure 3.9: The simulated member-
ship function of g1(η1) in Example 3.1
by the UDS.
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Figure 3.10: The simulated member-
ship function of g3(η3) in Example 3.3
by the UDS.

scenario of joint possibilistic constraints. Therefore, another theorem is proposed

as well as another UDS-based algorithm, UDS-Joint, is designed in this section

to handle this situation. Finally, the UDS-joint is implemented to a numerical

example to illustrate its effectiveness.

Theorem 3.3 Let ξ1, ξ2, · · · , ξn be independent regular fuzzy intervals, and de-

note ξ = (ξ1, ξ2, · · · , ξn). If the functions fk(x1, x2, · · · , xn), k = 1, 2, · · · , s, are

continuous and strictly monotone, then

Pos{fk(ξ) ≤ 0, k = 1, 2, · · · , s} = min
1≤k≤s

Pos{fk(ξ) ≤ 0}. (3.23)

where the values of Pos{fk(ξ) ≤ 0}, k = 1, 2, · · · , s are obtained according to

Theorem 3.2.

Proof: The proof is based on the condition that n = 2 and s = 2.

Case 1: f1 and f2 are both continuous and increasing functions. According

to Theorem 3.2, suppose that a pair of (x1, x2) = (ξL1 (α1), ξL1 (α1)) ∈ L ∪ R

will satisfy f1(x1, x2) ≤ 0, which does not satisfy f2(x1, x2) ≤ 0. Another pair

of (x′1, x
′
2) = (ξL1 (α2), ξL1 (α2)) ∈ L ∪ R holds for f2(x′1, x

′
2) ≤ 0. Due to the
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monotonicity, it is easy to figure out that x1 > x′1, and x2 > x′2, which means

α2 < α1, and under this condition, f1(x′1, x
′
2) ≤ 0 also holds.

Case 2: f1 is continuous and increasing, while f2 is a continuous and monotone

function which increases with x1 and decreases with x2. In this case, if (x1, x2) =

(ξL1 (α1), ξL1 (α1)) holds for f1 ≤ 0, and (x′1, x
′
2) = (ξL1 (α2), ξR1 (α2)) holds for f2 ≤ 0.

Then f1(ξL1 (α2), ξL1 (α2)) ≤ 0 will only hold when α2 < α1.

Case 3: f1 and f2 are both continuous and monotone functions which increase

with x1 and decrease with x2. In this case, (x1, x2) = (ξL1 (α1), ξR1 (α1)), and

(x′1, x
′
2) = (ξL1 (α2), ξR1 (α2)). In accordance with the monotonicity, it is obtained

that x1 > x′1, x2 < x′2 and α2 < α1, and meanwhile f1(x′1, x
′
2) ≤ 0 also holds.

From the above three cases, it is attained that

Pos

{
f1(ξ1, ξ2) ≤ 0

f2(ξ1, ξ2) ≤ 0

}
= min

{
Pos{f1(ξ1, ξ2) ≤ 0},Pos{f2(ξ1, ξ2) ≤ 0}

}

= min{α1, α2} = α2.
(3.24)

The proof is complete.

It is known that the possibility of an individual fuzzy event can be easily

solved by the UDS. Based on Theorem 3.3, an advanced algorithm called the

UDS-Joint is set up to obtain the minimum possibility among s individual fuzzy

events as the possibility of a joint fuzzy event, and the details are delivered as

follows:

Algorithm 4 (UDS-Joint for Pos{gk(ξ) ≤ 0, k = 1, 2, · · · , s})

Step 1. Initialize the number of sample points N .

Step 2. Simulate Pos{gk(ξ) ≤ 0} via the UDS in Algorithm 2 to attain the
approximation values M ′

k, k = 1, 2, · · · , s, respectively.
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Step 3. Return the minimum value in {M ′
1,M

′
2, · · · ,M ′

s} as the simulation value
for Pos{gk(ξ) ≤ 0, k = 1, 2, · · · , s}.

Example 3.6 Denote that ξ = (η1, η2, · · · , η10), where ηi, i = 1, 2, · · · , 10 are

ten independent triangular fuzzy numbers in Table 3.1. They are incorpo-

rated in three continuous and monotone functions g3 = x1 + x2 + · · · + x10,

g4 = x1 + · · · + x5 − x6 − · · · − x10, and g5 = −(x1 ∧ x2 ∧ · · · ∧ x10), respec-

tively. Calculate the possibilities of joint fuzzy events: (1) Pos

{
g3(ξ) ≤ 35

g4(ξ) ≤ 6

}
,

(2) Pos

{
g3(ξ) ≤ 35

g5(ξ) ≤ 2.6

}
, and (3) Pos

{ g3(ξ) ≤ 35

g4(ξ) ≤ 6

g5(ξ) ≤ 2.6

}
, respectively.

First of all, it is simple to find g3(ξ) ∼ T (26, 38, 52) and g4(ξ) ∼ T (0, 12, 26)

by means of a simple fuzzy computation. Further, the exact values can be figured

out as Pos{g3(ξ) ≤ 35} = 0.75, Pos{g4(ξ) ≤ 6} = 0.50, and Pos{g5(ξ) ≤ 2.6} =

0.60, respectively. According to Theorem 3.3, the exact values for the joint events

are 0.50, 0.60, and 0.50, respectively. The simulation results of the UDS-Joint

are listed in Table 3.5, in which the number of sample points N are all set to be

10000. Under this condition, both the UDS and UDS-Joint can return the precise

approximation results perfectly with no error. As to the computational time, it

is intuitive that the UDS-Joint may need some time when dealing with a joint

fuzzy event, especially when the expression of function g is complicated and the

number of s is large.

3.5 Summary

As is known, the possibility measure, Pos, was the first attempt to evaluate the

belief degree of fuzzy events, which plays a significant role in the fuzzy field.

As a further application, Pos was employed to modify fuzzy constraints into

possibilistic constraints in fuzzy chance-constrained programming models. This
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Table 3.5: Simulation results of the UDS in Example 3.6.

Algorithm Fuzzy event Exact value Simulation value Error Time(s)

UDS

Pos{g3(ξ) ≤ 35} 0.75 0.75 0.00% 0.001

Pos{g4(ξ) ≤ 6} 0.50 0.50 0.00% 0.001

Pos{g5(ξ) ≤ 2.6} 0.60 0.60 0.00% 0.002

UDS-Joint

(1) 0.50 0.50 0.00% 0.001

(2) 0.60 0.60 0.00% 0.003

(3) 0.50 0.50 0.00% 0.006

chapter introduced a novel fuzzy simulation technique on possibilistic constraints,

which can also be integrated in heuristic model-solving algorithms, like the HIA.

The main contributions of this chapter lie in the following three aspects.

Firstly, although the SDS was widely acknowledged as a pioneer technique for

simulating the possibility, its actual operation did not strictly follow Zadeh’s ex-

tension principle. This inherent deficiency of the SDS was detailedly analyzed

and verified from both theory and practice. Secondly, a new operational law

for the membership function of continuous and strictly monotone functions of

regular fuzzy intervals was raised and proved. On this basis, a novel simulation

technique is initiated, namely, the UDS with a uniform sampling process inside,

to compete with the SDS. It turns out that the UDS can return quite satisfactory

simulation results with nearly no error in a very short time period, whereas the

SDS deviates more from the exact values especially when encountering different

kinds of fuzzy variables or complicated functions. Lastly, since the UDS was de-

signed for individual fuzzy event, for the sake of handling joint fuzzy events in

practice, the UDS is further extended to the UDS-Joint for a larger application

region according to another new theorem.

It is noted that both the UDS and UDS-joint are applicable to continuous

and strictly monotone functions of regular fuzzy intervals, as one of the future
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directions, these two algorithms may be stretched to more kinds of fuzzy vari-

ables and general functions. Another direction is, the UDS and UDS-Joint can

be embedded in heuristic algorithms to solve fuzzy programming models with

possibilistic constraints towards real-life optimization problems, which may help

enhance the preciseness of the final solutions. In addition, the novel uniform

sampling procedure inside the UDS may provide insights for the subsequent new

fuzzy simulations of expected value, credibility, or other important notions in the

fuzzy area.

The next chapter deals with the fuzzy simulation for the expected value of

fuzzy events. Two improved fuzzy simulation techniques for the expected value

are put forward to compete with two existing techniques. One is partly based

on the new operational law in Chapter 3, and the other utilizes the analytical

expression of α-optimistic values of fuzzy variables.
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Chapter 4

On Fuzzy Simulations for
Expected Values of Functions of
Fuzzy Numbers and Intervals

In the previous chapter, several fuzzy simulation techniques on possibilities of in-

dividual and joint fuzzy events were discussed. Based on existing fuzzy simulation

algorithms, this chapter presents two innovative techniques for approximating the

expected values of fuzzy numbers’ monotone functions, which is of utmost impor-

tance in fuzzy optimization literature. In this regard, the stochastic discretization

algorithm presented by [Liu02b] is enhanced by updating the discretization pro-

cess for the simulation of the membership function and the calculation formula

for the expected values. This is achieved through initiating a novel uniform sam-

pling process and employing a formula for discrete fuzzy numbers, respectively,

as the generated membership function in the stochastic discretization algorithm

would adversely affect its accuracy to some extent.

What is more, in consideration of the fact that the bisection procedure in-

volved in the numerical integration algorithm in [Lix15] is time-consuming and

also not necessary for the specified types of fuzzy numbers, a special numeri-

cal integration algorithm is proposed. It simplifies the simulation procedure by

adopting the analytical expressions of α-optimistic values.
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Subsequently, as for the extensive applications of regular fuzzy intervals, sev-

eral theorems are introduced and proved as an extended effort to apply the im-

proved stochastic discretization algorithm and the special numerical integration

algorithm to the issues of fuzzy intervals. Throughout the chapter, a series of

numerical experiments are conducted from which the superiority of both the two

novel techniques over others are conspicuously displayed in aspects of accuracy,

stability, and efficiency.

4.1 Introduction

Intuitively, the expected value is a well documented measurement of great im-

portance in both academic literature and real-world applications. In particular,

for the mathematical study of the mean value of fuzzy numbers, several defini-

tions have been proposed by leading researchers in the relevant literature. In

this direction, Dubois and Prade [Dub87] constructed the expected value on the

foundations of possibility theory for a fuzzy number, and it was formulated as an

interval bounded by expected values obtained using the upper and lower distri-

bution functions. Further, Heilpern [Hei92] introduced the concepts of expected

interval and expected value of fuzzy numbers, and the latter was calculated as

the center of the former. Lower and upper possibilistic mean values were studied

by Carlsson and Fullér [Car01] as well as the relation between the interval-valued

possibilistic and probabilistic means. All the above definitions are framed upon

the possibility measure. However, the possibility alongside with the necessity

measure has been proved to have a lack of self-duality, which might unavoid-

ably lead to counterintuitive results. Thus, in this regard, Liu and Liu [Liu02b]

established the credibility measure by taking advantage of the average of the pos-

sibility and necessity measurements to compensate for this serious limitation. In

addition, they proposed an expected value operator by utilizing the credibility
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measure and Choquet integral.

In real-life projects, it seems reasonable that measuring expected values for

different functions that contain fuzzy parameters to obtain a general evaluation,

like the expected value of the wind speed [Zho19] or the expected value of the

lifetime of a certain product [Zha05, Zho18]. For a single fuzzy variable, based

on the credibility measure, Xue et al. [Xue08] derived a direct formula for calcu-

lating the exact expected value of a monotone function of a fuzzy variable with

a continuous membership function. However, the existence of a variety of struc-

tures for the fuzzy numbers, and particularly for their complex functions, derives

further challenges on the analytical calculation of the expected value when it is

compared with the single fuzzy number counterpart.

Alternatively, the use of fuzzy simulation techniques provides us with an ef-

fective method to approximate the expected value. In this regard, a stochastic

discretization algorithm (SDA) was employed by Liu and Liu [Liu02b] to simulate

the expected value. The basic idea of the SDA is firstly to transform continu-

ous fuzzy numbers to discrete ones through a stochastical generation of sample

points, and then to compute the mean values for functions of these discrete coun-

terparts. Since its establishment, the SDA has not only gained extensive support

in the fuzzy expected value simulation literature, but also played a critical role

in solving fuzzy expected value models whose target is to optimize the expected

objectives with respect to several expected constraints. The SDA along with the

SDA-based heuristic algorithms has been widely employed in handling fuzzy ex-

pected value models in various areas like portfolio selection with fuzzy returns

[Lix09, Zho16b], system reliability analysis [Lix18], project scheduling problem

[Keh10], amongst others.

Analogous to the SDA, Liu [Liu06b] proposed a uniform discretization algo-

rithm (UDA) from the perspective of uniformly generating sample points, whose
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guiding principle is the convergence concept of sequences for fuzzy numbers. In

practice, the UDA appears to be far more complex both as a concept and cal-

culation procedure. Li [Lix15] commented that both the SDA and UDA demon-

strate good performance of accuracy and computational time when it comes to

functions of fuzzy numbers with low dimensions, but they fail to return satisfac-

tory approximation values as the dimension increases substantially. Therefore,

Li [Lix15] introduced a numerical integration algorithm (NIA) to calculate ex-

pected values by means of α-optimistic values of strictly monotone functions of

regular fuzzy numbers (i.e., a special type of LR fuzzy numbers with continuous

and strictly decreasing shape functions, such as triangular, normal and Gaussian

fuzzy numbers in [Lix15, Zho16c]), which was proved to be stable and reliable.

The fact that the SDA would return inaccurate results when high-dimensional

functions occurred was reflected by the comparative results of numerical exper-

iments between the SDA and NIA in Li [Lix15]’s work. Chapter 3 further ex-

plained the reasoning behind it, indicating that the membership degrees utilized

in the SDA were not obtained by sticking strictly to Zadeh’s extension princi-

ple. In addition, it is known that the SDA is not merely designed for singular

use, but can also be served as a significant step in solving fuzzy expected value

models where the SDA is incorporated in a hybrid intelligent algorithm (HIA).

This sophisticated algorithm was first proposed by Liu [Liu02a] and later gained

great popularity in applications ([Zha05, Lix09, Keh10]). However, as pointed out

early, the computation of the SDA was proved to be not accurate both from the

scenarios of theory and practice. In order to better facilitate the integration of

expected value simulation to the HIA for more precise solutions of fuzzy expected

value models, the inherent deficiencies of the SDA are rectified in this chapter.

Therefore, on the basis of the contents in Chapter 3, this chapter proposes

an improved stochastic discretization algorithm (iSDA) to generate the expected

value simulation for continuous and strictly monotone functions involving regular
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fuzzy numbers, in which not only the stochastic sampling process in the SDA is

substituted by a novel uniform sampling process, but also the original calculation

formula of the expected value is replaced by another discrete calculation formula.

More specifically, a novel simulation method of sampling and fitting membership

functions of continuous and strictly monotone functions that contain regular fuzzy

numbers is proposed. Through this method, simulated membership functions

of higher accuracy are obtained compared with those attained from the SDA.

Afterwards, some analytical supplementaries for the NIA are carried out and a

special NIA (NIA-S) is thereby proposed so as to further simplify the NIA when

the analytical expressions of α-optimistic values of regular fuzzy numbers are

not so complicated to derive. In addition, due to the vast number of real-world

applications for regular fuzzy intervals (i.e., a special type of LR fuzzy intervals

with continuous and strictly decreasing shape functions, such as the trapezoidal

fuzzy numbers), some theorems about α-optimistic and α-pessimistic values, and

expected values of continuous and strictly monotone functions of regular fuzzy

intervals are proposed and proved. On this basis, for fuzzy intervals, the extension

algorithms of the iSDA and NIA are introduced, respectively. It should be noted

that the discussions in this chapter mainly focus on fuzzy numbers and fuzzy

intervals, while fuzzy variables cover a larger range.

The rest of the chapter is organized as follows. In Section 4.2, the concepts

of the SDA and iSDA are expounded, whose performances are demonstrated

by three numerical experiments. Subsequently, in Section 4.3, the algorithm

designs of the NIA and NIA-S, together with some connections and differences

between the iSDA, NIA, and NIA-S, are elaborated through other three numerical

examples. Section 4.4 introduces regular fuzzy intervals, related theorems, and

algorithms along with the conduction of two illustrative examples of four kinds

of functions. Finally, Section 4.5 presents some conclusions of the whole chapter.
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4.2 Improved Stochastic Discretization Algo-

rithm

In 1998, Liu and Iwamura [Liu98a, Liu98b] firstly proposed a fuzzy simulation

technique, known as the stochastic discretization simulation (SDS), which aims

at calculating the possibility of a fuzzy event (as discussed in Chapter 3). Later,

the SDS was extended to the SDA to simulate the expected value, where the

credibility measure [Liu02b] is employed.

In this section, the specific contents of the SDA including its basic princi-

ple and algorithm steps are reviewed first together with two derived deficiencies.

Then, a novel uniform sampling method of generating membership functions of

regular fuzzy numbers, and the expected value calculation formula for a discrete

fuzzy number are successively elaborated. Based on them, the iSDA is put for-

ward to handle the deficiencies derived by the SDA approach.

4.2.1 Stochastic discretization algorithm

Liu and Liu [Liu02b] defined the expected value of fuzzy variables in light of the

credibility measure (see Definition 2.5) as follows.

Definition 4.1 (Liu and Liu [Liu02b], Liu [Liu06a]) Let ξ be a fuzzy variable

with membership function µ. Then the expected value of ξ is defined by

E[ξ] =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr (4.1)

provided that at least one of the two integrals is finite, in which Cr is the credibility

measure with

Cr{ξ ≥ r} =
1

2

(
sup
x≥r

µ(x) + 1− sup
x<r

µ(x)
)
,

Cr{ξ ≤ r} =
1

2

(
sup
x≤r

µ(x) + 1− sup
x>r

µ(x)
)
.

62



Suppose that f is an n-ary real-valued function, and ξi are fuzzy num-

bers with respective membership functions µi, i = 1, 2, · · · , n. Then f(ξ),

ξ = (ξ1, ξ2, · · · , ξn), is also a fuzzy variable (Liu [Liu02a]), whose expected value

is given by

E[f(ξ)] =

∫ +∞

0

Cr{f(ξ) ≥ r}dr −
∫ 0

−∞
Cr{f(ξ) ≤ r}dr. (4.2)

For the purpose of estimating E[f(ξ)] as well as for solving a fuzzy expected value

model, the following process was proposed by Liu and Liu [Liu02b]. Randomly

generate uj1, uj2, · · · , ujn(j = 1, 2, · · · ,m) from the ε-level sets of ξ1, ξ2, · · · , ξn,

respectively, in which m is a sufficiently large integer, while ε is a sufficiently small

number. Denote uj = (uj1, u
j
2, · · · , ujn) and vj = µ1(uj1)∧µ2(uj2)∧ · · · ∧µn(ujn) for

j = 1, 2, · · · ,m. Accordingly, for any r ∈ R, the credibilities Cr{f(ξ) ≥ r} and

Cr{f(ξ) ≤ r} can be respectively estimated by

ER(r) =
1

2

(
max

j=1,2,··· ,m
{vj

∣∣ f(uj) ≥ r}+ 1− max
j=1,2,··· ,m

{vj
∣∣ f(uj) < r}

)
,

EL(r) =
1

2

(
max

j=1,2,··· ,m
{vj

∣∣ f(uj) ≤ r}+ 1− max
j=1,2,··· ,m

{vj
∣∣ f(uj) > r}

)
.

(4.3)

In Eq. (4.3), if one of the two sets is empty, then the maximal value is 0.

Through applying the SDA, continuous fuzzy numbers are converted to discrete

counterparts. Thus, the expected value of the function with respect to these

discrete fuzzy numbers can be derived by Eq. (4.2). To summarize, the steps of

the SDA are given in Algorithm 1.

Algorithm 1 (SDA of Liu and Liu [Liu02b])

Step 1. Initialize the numbers of sample points m and integration points N , and
a sufficient small number ε. Set E = 0.

Step 2. Randomly generate uj1, u
j
2, · · · , ujn from the ε-level sets of ξ1, ξ2, · · · , ξn,

respectively, and denote uj = (uj1, u
j
2, · · · , ujn) for j = 1, 2, · · · ,m.
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Step 3. Identify the minimal and maximal values p = f(u1)∧f(u2)∧· · ·∧f(um)
and q = f(u1) ∨ f(u2) ∨ · · · ∨ f(um), respectively.

Step 4. Randomly generate a real number r from [p, q].

Step 5. If r ≥ 0, reset E = E + ER(r).

Step 6. If r < 0, reset E = E − EL(r).

Step 7. Repeat the Steps 4, 5, 6 for N times.

Step 8. Return E[f(ξ)] = p ∨ 0 + q ∧ 0 + E · (q − p)/N .

Except for the initialization in Step 1 of Algorithm 1, the SDA mainly contains

two parts. The first part (Step 2) targets on transforming continuous fuzzy

numbers to discrete counterparts through random generation of sample points,

while the second part (Steps 3 to 8) intends to attain the mean value based on

Eqs. (4.2)-(4.3) via the integration simulation. As discussed in Section 3.2, the

limitation of the SDS was found and explicitly proved. And meanwhile, the SDS

and SDA share the same stochastic sampling process, whose membership degree

µ(a)∗ for f(ξ) at a real number a is expressed as

µ(a)∗ = max
1≤j≤m

{ min
1≤i≤n

µi(u
j
i )
∣∣ f(uj1, u

j
2, · · · , ujn) = a}. (4.4)

Technically, Eq. (4.4) is capable of obtaining a satisfactory membership degree

when the number of sample points m is large enough. However, from the aspect

of actual operation of this stochastic sampling process, the general setting of m

is a relatively small quantity of 103 or 104 level regardless of the dimension n,

which does not strictly follow Zadeh’s extension principle [Zad75].

With respect to the new operational law in Chapter 3, a novel uniform sam-

pling method and a novel simulation technique, namely iSDA, which concerns LR

fuzzy numbers are proposed here to improve the SDA. Additionally, in the iSDA,

the original calculation formula of the expected value, as illustrated in Step 8

of Algorithm 1, is also substituted. Both the basic principle and the iSDA are
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explained in detail in the following section.

4.2.2 Improved stochastic discretization algorithm

For this part, a specialized type of LR fuzzy numbers is considered (see Defini-

tion 2.7) with continuous and strictly decreasing shape functions L and R on the

open intervals {x | 0 < L(x) < 1} and {x | 0 < R(x) < 1} respectively, which are

called regular fuzzy numbers in [Zho16c] and utilized in [Lix15, Zho16c].

Three commonly used regular fuzzy numbers are given in Examples 4.1-4.3 as

follows, including the triangular, normal, and Gaussian fuzzy numbers.

Example 4.1 When the shape functions L and R are written by the following

form,

L(x) = R(x) = max{0, 1− x},

the corresponding LR fuzzy number is a triangular fuzzy number, whose member-

ship function is determined by the triplet (a, c, b) with a < c < b as

µT (x) =





x− a
c− a , if a ≤ x ≤ c

x− b
c− b , if c < x ≤ b

0, otherwise,

which can also be denoted as ξ = (c, c− a, b− c)LR or ξ ∼ T (a, c, b).

Example 4.2 When the shape functions L and R are written by the following

form,

L(x) = R(x) = 2
(

1 + exp(πx/
√

6)
)−1

,

the corresponding LR fuzzy number is a normal fuzzy number, whose membership

function is known as

µN (x) = 2
(

1 + exp
(
π|x− c|/

√
6σ
))−1

, x ∈ R, σ > 0,

which can also be expressed by ξ = (c, σ, σ)LR or ξ ∼ N (c, σ).
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Example 4.3 When the shape functions L and R are written by the following

form,

L(x) = R(x) = e−x
2

,

the LR fuzzy number is a Gaussian fuzzy number, whose membership function is

expressed as

µG(x) = e−(x−c
b

)2 , x ∈ R, b > 0,

and can also be represented by ξ = (c, b, b)LR or ξ ∼ G(c, b).

As for regular fuzzy numbers ξi(i = 1, 2, · · · , n) and a continuous and strictly

monotone function f defined in Definition 3.3 [Liu15a], the operational law for

the membership function of a fuzzy number f(ξ), ξ = (ξ1, ξ2, · · · , ξn), is given in

Theorem 4.1 in accordance with Theorem 3.2 in Chapter 3.

Theorem 4.1 Let ξ1, ξ2, · · · , ξn be independent regular fuzzy numbers. If the

continuous function f(x1, x2, · · · , xn) is strictly increasing in regard to x1, x2, · · · ,

xh and strictly decreasing in regard to xh+1, xh+2, · · · , xn, then the membership

function of the fuzzy number f(ξ1, ξ2, · · · , ξn) is

µ(x) = µ1(x1)
∣∣∣ x = f(x1, x2, · · · , xn), (x1, x2, · · · , xn) ∈ L ∪R,

where µ1 is the membership function of ξ1,

L = {(ξL1 (α),· · ·, ξLh (α), ξRh+1(α),· · ·, ξRn (α)) : 0 < α ≤ 1},

R = {(ξR1 (α),· · ·, ξRh (α), ξLh+1(α),· · ·, ξLn (α)) : 0 < α ≤ 1},

and [ξLi (α), ξRi (α)] is the α-level set of ξi, i = 1, 2, · · · , n, i.e.,

ξLi (α) = inf{r
∣∣ Cr{ξi ≤ r} ≥ α},

ξRi (α) = sup{r
∣∣ Cr{ξi ≥ r} ≥ α}.
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Based on Theorem 4.1, a novel uniform sampling method is initiated to approxi-

mate the continuous fuzzy number, f(ξ), by using a discrete counterpart, f ∗(ξ),

ξ = (ξ1, ξ2, · · · , ξn). First, denote the closure of the support of ξi by Si = [ai, bi]

for i = 1, 2, · · · , n (the support of ξi contains all x with µξi(x) > 0). When the

range of Si is not finite, a set including the most values is utilized to substitute

Si as an alternative. Since ξi is regular, it is easy to know that there exists one

and only one value ci ∈ Si such that µξi(ci) = 1 and ai < ci < bi. Second, define

xLij = ai + (ci − ai)× j
k
, j = 0, 1, · · · , k − 1,

xRij = bi − (bi − ci)× j
k
, j = 0, 1, · · · , k − 1,

(4.5)

and write

XL
j = (xL1j, · · · , xLhj, xRh+1j, · · · , xRnj), j = 0, 1,· · ·, k − 1,

XR
j = (xR1j, · · · , xRhj, xLh+1j, · · · , xLnj), j = 0, 1,· · ·, k − 1,

c = (c1, c2, · · · , cn).

(4.6)

Afterwards, a new discrete fuzzy number, f ∗(ξ), is defined as follows:

f ∗(ξ) =





f(XL
j ), with membership degree µ1(xL1j),

j = 0, 1, · · · , k − 1

f(XR
j ), with membership degree µ1(xR1j),

j = 0, 1, · · · , k − 1

f(c), with membership degree 1.

(4.7)

Denote L′ = {XL
0 ,X

L
1 , · · · ,XL

k−1} and R′ = {XR
0 ,X

R
1 , · · · ,XR

k−1}. Obviously

L′ and R′ are respectively subsets of L and R defined in Theorem 4.1.

It is easy to derive that the discrete fuzzy number f ∗(ξ) is in close proximity

to the continuous fuzzy number f(ξ), when k is large enough. As a consequence,

the mean value of f ∗(ξ) can be reasonably viewed to be an approximation of

the expected value of f(ξ). Subsequently, by taking advantage of the calculation
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formula of the expected value of discrete fuzzy numbers presented in both [Liu02a]

and [Liu02b], the expected value of f ∗(ξ) is calculated by

E[f ∗(ξ)] =
k−1∑

j=0

wjf(XL
j ) + wkf(c) +

k−1∑

j=0

wm−jf(XR
j ),m = 2k, (4.8)

where wj, j = 0, 1, · · · , 2k, are ascertained by

wj =
1

2

(
max
t≤j

µ(f(XL
t ))−max

t<j
µ(f(XL

t )) + max
t≥j

µ(f(XL
t ))−max

t>j
µ(f(XL

t ))
)
,

j = 0, 1, · · · , k − 1,

wk =
1

2

(
2− µ(f(XL

k−1))− µ(f(XR
k−1))

)
,

wm−j =
1

2

(
max
t≤j

µ(f(XR
t ))−max

t<j
µ(f(XR

t )) + max
t≥j

µ(f(XR
t ))−max

t>j
µ(f(XR

t ))
)
,

j = 0, 1, · · · , k − 1,
(4.9)

and µ represents the membership function of f ∗(ξ) in Eq. (4.7). Further, utilizing

the strict monotonicity of the shape functions of ξ1 (that is, µ1(xL1i) < µ1(xL1j)

and µ1(xR1i) > µ1(xR1j) hold for all i < j), Eq. (4.9) can be simplified as follows:

w0 =
1

2
µ1(xL10), wm =

1

2
µ1(xR10),

wj =
1

2

(
µ1(xL1j)− µ1(xL1(j−1))

)
, j = 1, 2, · · · , k − 1,

wk = 1− 1

2

(
µ1(xL1(k−1)) + µ1(xR1(k−1))

)
,

wm−j =
1

2

(
µ1(xR1j)− µ1(xR1(j−1))

)
, j = 1, 2, · · · , k − 1.

(4.10)

Therefore, a novel simulation technique, namely iSDA, to simulate the ex-

pected value E[f(ξ)] is proposed by combining the uniform sampling process

in Eqs. (4.5)-(4.7) and the expected value calculation formula for discrete fuzzy

numbers in Eqs. (4.8)-(4.10). And the detailed procedure of the iSDA is described

as follows:
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Algorithm 2 (iSDA)

Step 1. Initialize the number of sample points m. Set k = m/2, E = 0 and
j = 0.

Step 2. Calculate f(XL
j ) with Eqs. (4.5)-(4.6).

Step 3. Calculate wj with Eq. (4.10). Reset E = E + wjf(XL
j ) and j = j + 1.

Step 4. If j < k, go to Step 2. Otherwise, reset j = 0 and go to Step 5.

Step 5. Calculate f(XR
j ) with Eqs. (4.5)-(4.6).

Step 6. Calculate wm−j with Eq. (4.10). Reset E = E + wm−jf(XR
j ) and j =

j + 1.

Step 7. If j < k, go to Step 5. Otherwise, go to Step 8.

Step 8. Calculate f(c) and wk. Reset E = E + wkf(c).

Step 9. Return E as the simulation value of the expected value E[f(ξ)].

Similarly to the SDA, the calculation procedure of the iSDA basically consists

of two parts. Steps 2 and 5 indicate the uniform sampling process, and Steps 3,

6 and 8 represent the expected value calculation procedure for the discrete fuzzy

number, f ∗(ξ).

In order to clearly demonstrate the feasibility and effectiveness of the iSDA,

a series of contrast outcomes of the SDA and iSDA considering different fuzzy

variables and functions are presented in the following two subsections. Further-

more, since the calculation formula in Step 8 of Algorithm 1 is not easy to be

understood, and to observe the efficiency of this formula, an intermediate sim-

ulation algorithm, SDA∗, is specifically designed. It employs the same uniform

sampling process with the iSDA in Steps 2 and 5 of Algorithm 2 and utilizes the

same calculation procedure of the expected value with the SDA from Steps 3 to

8 of Algorithm 1.
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4.2.3 Comparative study between the SDA and iSDA: the
case of triangular fuzzy numbers

The comparative results between the SDA and iSDA as well as for the SDA∗ facil-

itating a numerical example are presented in this section, including the simulation

accuracy, computational time, and complexity analysis of each algorithm.

Example 4.4 Suppose that ηi, i = 1, 2, · · · , 10, are independent triangular fuzzy

numbers listed in Table 4.1, incorporated in a continuous and strictly increasing

function f1(x1, x2, · · · , x10) = x1 + x2 + · · · + x10. This example [Lix15] aims at

calculating the expected value, E[ξ], of the fuzzy number, ξ = f1(η1, η2, · · · , η10).

Table 4.1: Different kinds of regular fuzzy numbers utilized in examples.

Index Triangular Fuzzy Number Normal Fuzzy Number Gaussian Fuzzy Number

η1 T (2, 3, 4) N (0, 1) G(0, 1)

η2 T (5, 6, 8) N (0, 2) G(0, 2)

η3 T (6, 7, 8) N (1, 2) G(1, 2)

η4 T (4, 5, 6) N (2, 4) G(2, 4)

η5 T (3, 4, 6) N (4, 6) G(4, 6)

η6 T (7, 9, 10) N (5, 8) G(5, 8)

η7 T (−5,−3,−2) N (−1, 2) G(−1, 2)

η8 T (5, 6, 8) N (−3, 6) G(−3, 6)

η9 T (0, 1, 2) N (−5, 2) G(−5, 2)

η10 T (−1, 0, 2) N (−7, 7) G(−7, 7)

Before the simulation is conducted, in terms of the linearity towards the ex-

pected value operator for independent fuzzy numbers proved by [Liu02b], the

exact value of E[ξ] can be calculated in a straightforward manner, that is,

E[ξ] = E[η1] + E[η2] + · · ·+ E[η10] = 38.5.

With regard to Example 4.4, the SDA, SDA∗, and iSDA are operated ten times

for each and their simulation results are recorded in Table 4.2, accordingly. The
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quantity of integration points in the SDA is settled as 10000, while those of

sample points in the three algorithms are all set as 1000. In order to express the

relative error degree of all the results via the three algorithms, the same index

called “Error” is displayed on the fourth column of Table 4.2, which is defined in

Eq. (3.5) in Chapter 3. Note that the simulation value utilized in the calculation

of the Error in Table 4.2 is the average value of the ten times simulation results.

From Table 4.2, it is clear seen that both the stability and accuracy of the iSDA

are superior to those of the SDA and SDA∗.

Table 4.2: Ten comparative results among the SDA, SDA∗, and iSDA for Exam-
ple 4.4.

Algorithm Simulation Value of E[ξ] for Time 1-10 Deviation Error

SDA

38.8528 38.8765 38.8738

0.02 1.00%38.8918 38.8617 38.8764

38.9195 38.8955 38.8751 38.9079

SDA∗

38.4900 38.6885 38.2088

0.21 0.26%38.4986 38.0610 38.4801

38.2785 38.2741 38.7293 38.3066

iSDA

38.4990 38.4990 38.4990

0.00 0.00%38.4990 38.4990 38.4990

38.4990 38.4990 38.4990 38.4990

In order to further demonstrate the performance of the SDA, SDA∗, and iSDA,

their simulation values, deviation, and computational time are obtained through

the variation of the quantity of sample points m as well as that of integration

points N . Particularly, m in the SDA is changed when N is set to be 10000 or

20000 respectively to test whether the increasing of sample points will positively

affect the accuracy of the final results. Accordingly, the detailed results towards

the above-mentioned experiment are displayed in Table 4.3 and visualized in

Figure 4.1. It is noted that the simulation value and the computational time

listed in this table as well as in any subsequent tables are all the average values
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of running the corresponding algorithm for ten times.

Table 4.3: Comparative results among the SDA, SDA∗, and iSDA for Example 4.4.

Algorithm

Number of Number of
Simulation

Error CPU Time(s)Sample Integration
Value of E[ξ]

Points m Points N

SDA

1000 10000 38.8831 1.00% 0.180

3000 10000 38.7269 0.59% 0.527

5000 10000 38.8252 0.84% 0.843

10000 10000 38.8618 0.94% 1.907

15000 10000 38.7456 0.64% 2.866

20000 10000 38.7887 0.75% 3.898

1000 20000 38.8902 1.01% 0.328

3000 20000 38.7277 0.59% 0.845

5000 20000 38.8238 0.84% 1.950

10000 20000 38.8492 0.91% 3.643

15000 20000 38.7456 0.64% 5.938

20000 20000 38.8043 0.79% 7.800

SDA∗

1000 1000 38.4015 0.26% 0.022

3000 3000 38.4164 0.22% 0.169

5000 5000 38.4400 0.16% 0.393

10000 10000 38.4612 0.10% 1.777

15000 15000 38.4802 0.05% 4.053

20000 20000 38.4889 0.03% 7.294

iSDA

1000 none 38.4990 0.00% 0.001

3000 none 38.4997 0.00% 0.002

5000 none 38.4998 0.00% 0.003

10000 none 38.4999 0.00% 0.004

15000 none 38.4999 0.00% 0.005

20000 none 38.5000 0.00% 0.006

The detailed analyses of Table 4.3 and Figure 4.1 are presented here. First,

from the point of view of the derived accuracy, as shown in Figure 4.1, the

results of the iSDA are steadily converged and almost coincide with the exact

value 38.5, which nearly provide no error even when the number of integration

points m is small (e.g., m = 1000 in Table 4.3). It can also be seen that under
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Figure 4.1: The visualisation of comparative results in Table 4.3.

different combinations of m and N , the biggest error of the SDA is 1.01%, and

the changes of m in the SDA do not affect positively the final results. Second,

from the stability point of view, the experimental results of the SDA have a

larger deviation, while the iSDA is quite stable in returning the simulation values.

Third, the computational time of iSDA is hundreds of times faster than SDA.

More precisely, in Table 4.3 it is noticed that the longest time of the SDA is

7.800s and that of the iSDA is only 0.006s. It is known that the computational

time has a strong relationship with the algorithm complexity, whose expressions

of the SDA and iSDA are O(mN) and O(N), respectively. To summarize, the

iSDA is equipped with prominent advantages speaking of accuracy, stability, and

operation speed in contrast to the SDA.

As an intermediate algorithm, the results of the SDA∗ are listed in Table 4.3

and depicted in Figure 4.1 as well. It can be seen that both the accuracy and

the computational time of the SDA∗ are not comparable to those of the iSDA.

On the one hand, through comparing the SDA∗ with the SDA, it reveals that the

uniform sampling method is reasonable and effective, especially reflected on the

convergence of the simulation results in the SDA∗. On the other hand, through

comparing the SDA∗ with the iSDA, the effectiveness of the calculation formula
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of the expected value of discrete fuzzy numbers in Eqs. (4.8)-(4.10) utilized in the

iSDA can also be validated. These two comparisons demonstrate the feasibility

and reliability of the two improvements for the iSDA.

4.2.4 Comparative study between different functions and
fuzzy numbers

Two more examples are given in this section to further demonstrate the superi-

ority of the iSDA among the other two algorithms.

Example 4.5 This example targets on simulating the expected values of the same

function f1 of Example 4.4 using the SDA, SDA∗, and iSDA, but the fuzzy vari-

ables included are triangular, normal, and Gaussian fuzzy numbers, see Table 4.1,

respectively.

The simulation results are illustrated in Table 4.4, in which (m/N) represents

the number of sample points m, or integration points N , adopted in each algo-

rithm. Since the support Si of a normal fuzzy number N (ci, σi) or a Gaussian

fuzzy number G(ci, bi) is infinite, Si = [ci− gσi, ci + gσi] or Si = [ci− gbi, ci + gbi]

is obtained, where g is a positive integer. The range of the support Si in a tri-

angular fuzzy number is finite. It is known that ±6σ can cover a relative large

range of values to 99.99966%, then three values, 1, 3, and 6 are assigned to g to

observe the differences.

From Table 4.4, it is obvious that the iSDA is rather accurate, reliable, and fast

on the outputs. In addition, the iSDA performs better when g = 6 in contrast

to g = 1, which reflects its sensitivity to the support Si. Compared with the

SDA, the effect of the SDA∗ is enhanced due to the replacement of the stochastic

sampling process, but still is far from obtaining accurate values, especially for

normal and Gaussian fuzzy numbers.
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Table 4.4: Comparative results among the SDA, SDA∗, and iSDA for the case
that f1 = x1 + x2 + · · ·+ x10.

Algorithm (m/N) Triangular Normal Gaussian

SDA (3000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Simulation Value 38.7269 -3.5069 -4.2920 -7.5761 -4.3014 -5.6030 -9.2436

Error 0.59% 12.33% 7.30% 89.40% 7.54% 40.08% 131.09%

CPU Time (s) 0.527 0.476 0.479 0.498 0.468 0.498 0.495

SDA∗

(10000/10000)
g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Simulation Value 38.4612 -3.8402 -3.6853 -3.7063 -3.8285 -3.7282 -3.8002

Error 0.10% 4.00% 7.87% 7.34% 4.29% 6.80% 5.00%

CPU Time (s) 1.777 1.188 1.413 1.816 1.411 1.583 1.807

iSDA (10000/none) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Simulation Value 38.4999 -3.9983 -3.9995 -4.0000 -3.9985 -4.0000 -4.0000

Error 0.00% 0.04% 0.01% 0.00% 0.04% 0.00% 0.00%

CPU Time (s) 0.004 0.006 0.006 0.006 0.005 0.006 0.006

Example 4.6 A more complex function f2 = −(x1 ∧ x2 ∧ · · · ∧ x10) is employed

in this example. Calculate the expected values of f2 of triangular, normal, and

Gaussian fuzzy numbers by the SDA, SDA∗, and iSDA, respectively.

The simulation results of Example 4.6 are recorded in Table 4.5, which share

some similar conclusions with those of Example 4.5. From Tables 4.4 and 4.5,

several remarks on the three algorithms used are outlined. First, the results of

Examples 4.5 and 4.6 are similar with those derived from Example 4.4, as there

still exist great differences in accuracy and time between the SDA and iSDA.

Second, in terms of the parameter g, generally the performance of the SDA is

barely acceptable for g = 1, but when g gets larger, the results become worse.

Whereas the iSDA returns the simulation results of the highest accuracy at g = 6,

and the biggest error is 0.03%. Third, the SDA∗ reduces the error rate due to
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the incorporated uniform sampling process compared with the SDA. In summary,

the results of three examples demonstrate that the iSDA works better regardless

of different functions or kinds of fuzzy variables.

Table 4.5: Comparative results among the SDA, SDA∗, and iSDA for the case
that f2 = −(x1 ∧ x2 ∧ · · · ∧ x10).

Algorithm (m/N) Triangular Normal Gaussian

SDA (3000/10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664

Simulation Value 3.4669 8.1734 12.9329 22.9128 8.0238 13.1042 23.4327

Error 6.67% 7.44% 46.47% 159.49% 2.93% 58.52% 183.47%

CPU Time (s) 0.783 0.576 0.565 0.608 0.534 0.591 0.600

SDA∗

(10000/10000)
g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664

Simulation Value 3.2458 7.8663 8.7163 8.7785 7.9114 8.2307 8.2065

Error 0.13% 10.91% 1.29% 0.58% 4.29% 0.43% 0.72%

CPU Time (s) 1.753 1.565 1.688 1.844 1.682 1.713 1.810

iSDA (10000/none) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664

Simulation Value 3.2500 7.8745 8.7462 8.8271 7.9176 8.2657 8.2652

Error 0.00% 10.82% 0.95% 0.03% 4.22% 0.01% 0.01%

CPU Time (s) 0.004 0.006 0.006 0.006 0.006 0.006 0.006

4.3 Special Numerical Integration Algorithm

With respect to the particular case of continuous and strictly monotone func-

tions of regular fuzzy numbers (also called ordinary fuzzy variables in [Lix15]),

Li [Lix15] proposed a numerical integration algorithm (NIA) to approximate ex-

pected values by means of the concept of α-optimistic values. In this section,

the NIA and its related principles and concepts are primarily recalled. Subse-

quently, after the analytical expressions of α-optimistic values for regular fuzzy

numbers are derived, owing to the specific features of regular fuzzy numbers, a
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special numerical integration algorithm (NIA-S) is further proposed to simplify

the calculation procedure of the original NIA set forth by Li [Lix15] (renamed as

a general NIA, NIA-G for short, in this chapter for being distinguishable).

4.3.1 General numerical integration algorithm

Before the calculation procedure of the NIA-G proposed in [Lix15] is introduced,

the relevant definitions and theorems are brought in.

Definition 4.2 (Liu [Liu04]) The credibility distribution of a fuzzy variable ξ is

defined as

Φ(x) = Cr{ξ ≤ x}, ∀x ∈ R. (4.11)

Analogously, Ψ(x) = Cr{ξ ≥ x} is denoted, and Ψ + Φ ≡ 1 if ξ is a continuous

fuzzy variable, which implies that

Ψ(x) = 1− Φ(x). (4.12)

Definition 4.3 (Liu [Liu04]) For any α ∈ (0, 1], the α-optimistic value of a fuzzy

variable ξ is

ξsup(α) = sup{r
∣∣ Cr{ξ ≥ r} ≥ α}. (4.13)

Theorem 4.2 (Li [Lix15]) If ξ is a regular fuzzy number, for any α ∈ (0, 1], we

have that

ξsup(α) = Ψ−1(α). (4.14)

Assuming that the membership function, µξ, of a regular fuzzy number ξ is

known, Ψ can be deduced via µξ as follows,

Ψ(x) =





µξ(x)/2, if x ≥ c

1− µξ(x)/2, if x < c,

(4.15)

in which µξ(c) = 1.
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According to the mathematical property of µξ, it is found that Ψ is continuous

and strictly decreasing. Then in terms of Eqs. (4.14)-(4.15), Li [Lix15] designed

a bisection algorithm to simulate ξsup(α) for any given α ∈ (0, 1].

Algorithm 3 (Bisection Algorithm of Li [Lix15])

Step 1. Initialize a small enough number ε > 0, and [a, b] such that Ψ(a) > α >
Ψ(b).

Step 2. Denote d = (a+ b)/2.

Step 3. If Ψ(d) > α, reset a = d. If Ψ(d) < α, reset b = d. Otherwise, stop and
return d.

Step 4. If |Ψ(b)−Ψ(a)| ≤ ε, return (a+ b)/2. Otherwise, go to Step 2.

On this basis, α-optimistic values are derived, which can be further utilized

to obtain mean values for continuous and strictly monotone functions of regular

fuzzy numbers by the following theorem.

Theorem 4.3 (Li [Lix15]) Assume that ξ1, ξ2, · · · , ξn are independent regular

fuzzy numbers. If the function f(x1, x2, · · · , xn) is continuous and strictly in-

creases in regard to x1, x2, · · · , xh and strictly decreases in regard to xh+1, xh+2,

· · · , xn, for any α ∈ (0, 1], the expected value of f(ξ) = f(ξ1, ξ2, · · · , ξn) is given

by

E[f(ξ)] =

∫ 1

0

f
(

(ξ1)sup(α), · · · , (ξh)sup(α),

(ξh+1)sup(1− α), · · · , (ξn)sup(1− α)
)

dα.

(4.16)

According to Eq. (4.16), Li [Lix15] designed an integration simulation algo-

rithm NIA-G to calculate E[f(ξ)] by utilizing ξsup(α) obtained from the bisection

algorithm.

Algorithm 4 (NIA-G of Li [Lix15])
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Step 1. Initialize the number of integration points N . Set E = 0 and k = 1.

Step 2. Let α = k/N . Using Algorithm 3, for each 1 ≤ i ≤ n, calculate

xi =

{
(ξi)sup(α), if 1 ≤ i ≤ h

(ξi)sup(1− α), if h < i ≤ n.

Step 3. Reset E = E + f(x1, x2, · · · , xn)/N and k = k + 1.

Step 4. If k ≤ N , go to Step 2. Otherwise return E as the simulation value of
the expected value E[f(ξ)].

4.3.2 Special numerical integration algorithm

As a matter of fact, for the commonly used regular fuzzy numbers, deriving the

analytical expressions of their α-optimistic values is not difficult. Then, the bisec-

tion procedure in the NIA-G could be replaced by the clear calculation formula

of ξsup(α). Based upon this concept, the NIA-S is thus put forward to improve

NIA-G as follows:

As to a regular fuzzy number ξ, which is of LR-type with continuous and

strictly decreasing shape functions L and R, in regard to Eqs. (2.1) and (4.15),

it is obtained that

Ψ(x) =





1

2
R

(
x− c
β

)
, if x ≥ c

1− 1

2
L

(
c− x
γ

)
, if x < c.

(4.17)

Due to the strict monotonicity of L and R, their inverse functions exist and are

denoted by L−1 and R−1, respectively. Then the α-optimistic value of ξ, ξsup(α),

can be derived from Eqs. (4.14) and (4.17) as follows:

ξsup(α)=Ψ−1(α)=





c+ βR−1(2α), if 0 < α ≤ 0.5

c− γL−1(2− 2α), if 0.5 < α ≤ 1.

(4.18)
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According to Eqs. (4.17)-(4.18), the α-optimistic values of a triangular, nor-

mal, and Gaussian fuzzy number enumerated in Examples 4.1-4.3 can be respec-

tively obtained as

ξT sup(α) =





2αc+ (1− 2α)b, if 0 < α ≤ 0.5

(2α− 1)a+ (2− 2α)c, if 0.5 < α ≤ 1.

(4.19)

ξN sup(α) = c+ (ln(1− α)− lnα)
√

6σ/π, α ∈ (0, 1). (4.20)

ξG sup(α) =





c+ b
√
− ln(2α), if 0 < α ≤ 0.5

c− b
√
− ln(2− 2α), if 0.5 < α < 1.

(4.21)

Consequently, based on Theorem 4.3 and Eqs. (4.18)-(4.21), a special NIA is

then set forth by using the analytical expressions of α-optimistic values of regular

fuzzy numbers to substitute the bisection algorithm in the NIA-G. The steps of

the NIA-S are described as follows:

Algorithm 5 (NIA-S)

Step 1. Initialize the number of integration points N . Let E = 0 and k = 1.

Step 2. Set α = k/N . For each 1 ≤ i ≤ n, according to the calculation formula
of α-optimistic values in Eq. (4.18), calculate

xi =

{
(ξi)sup(α), if 1 ≤ i ≤ h,

(ξi)sup(1− α), if h < i ≤ n.

Step 3. Reset E = E + f(x1, x2, · · · , xn)/N and k = k + 1.

Step 4. If k ≤ N , go to Step 2. Otherwise, return E as the simulation value of
the expected value E[f(ξ)].

As a general rule, the clear analytical expressions of the inverse functions of

L and R are not difficult to obtain. Under this case, the NIA-S is more suitable
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to be chosen for the simulation of the expected value. But when it comes to

a situation that the inverse functions are too complex to figure out, then the

bisection algorithm is preferred to calculate the value of Ψ−1(α) (see Algorithm

3) or the “polyfit” function of Matlab to generate approximate functions for

Ψ−1(α).

4.3.3 Comparative study with different functions of dif-
ferent fuzzy numbers

In this section, three numerical examples considering expected values of contin-

uous and strictly monotone functions of regular fuzzy numbers are conducted to

compare the performances of the iSDA, NIA-G, and NIA-S based on the accuracy,

stability, and operation speed measurements.

Example 4.7 According to the data and function given in Example 4.4, accom-

plish the expected value E[ξ] of the fuzzy number ξ = f1(η1, η2, · · · , η10) by means

of the iSDA, NIA-G, and NIA-S, respectively, in which ηi, i = 1, 2, · · · , 10, are

triangular fuzzy numbers.

The final simulation results of the iSDA, NIA-G, and NIA-S are obtained

through altering the numbers of sample points or integration points and reported

in Table 4.6. Here the small enough number ε in the bisection part of the NIA-

G is set to be 10−3 on account of the trade-off between the accuracy and time.

Meanwhile, the analytical expression of the α-optimistic value of a triangular

fuzzy number in the NIA-S is Eq. (4.19).

From Table 4.6, it is seen that along with the increasing number of integra-

tion points N , the accuracy degrees for the NIA-G and NIA-S are both greatly

enhanced, and this point is not obviously reflected on the iSDA. On the whole,

regardless of the accuracy, stability, or operation speed, the performance of the

iSDA in Example 4.7 is clearly superior among all the three algorithms compared.
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Table 4.6: Simulation results for the iSDA, NIA-G, and NIA-S in Example 4.7.

Number of iSDA NIA-G NIA-S

Sample Points or Simulation CPU Simulation CPU Simulation CPU

Integration Points N Value Time (s) Value Time (s) Value Time (s)

1000 38.4990 0.000 38.4870 0.010 38.4870 0.000

3000 38.4997 0.000 38.4957 0.046 38.4957 0.005

5000 38.4998 0.000 38.4974 0.070 38.4974 0.010

10000 38.4999 0.000 38.4987 0.140 38.4987 0.015

15000 38.4999 0.010 38.4991 0.202 38.4991 0.020

20000 38.5000 0.010 38.4994 0.265 38.4994 0.030

106 38.5000 0.330 38.5000 10.256 38.5000 0.883

Example 4.8 This example is designed to find the expected value E[ξ] of ξ =

f1(η1, η2, · · · , η10) using the iSDA, NIA-G, and NIA-S, in which the function

f1 = x1 + x2 + · · · + x10, and the fuzzy variables ηi, i = 1, 2, · · · , 10, included

are respective triangular, normal, and Gaussian fuzzy numbers in Table 4.1.

The simulation outcomes are summarized in Table 4.7, in which the figure in ()

after each algorithm represents the number of sample points or integration points

involved. It is observed that there is no g in the NIA-S since it utilizes the inverse

functions directly rather than the range of the support Si. Not surprisingly, the

iSDA with the setting g = 6 still performs better either on the accuracy or with

respect to the time.

Example 4.9 Other conditions stay unchanged, only the function f1 in Exam-

ple 4.8 is replaced by f2 = −(x1 ∧ x2 ∧ · · · ∧ x10), and the mean value E[ξ] of

ξ = f2(η1, η2, · · · , η10) is obtained by using the iSDA, NIA-G, and NIA-S.

The simulation results of Example 4.9 are enumerated in Table 4.8 for com-

parison purposes. Analogously to Section 4.2.4, the computational time does not

change so much for the iSDA, but the performance is quite well when g = 6. The
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Table 4.7: Comparative results among the iSDA, NIA-G, and NIA-S for the case
that f1 = x1 + x2 + · · ·+ x10.

Triangular Normal Gaussian

iSDA (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Simulation Value 38.4999 -3.9983 -3.9995 -4.0000 -3.9985 -4.0000 -4.0000

Error 0.00% 0.04% 0.01% 0.00% 0.04% 0.00% 0.00%

CPU Time (s) 0.004 0.006 0.006 0.006 0.005 0.006 0.006

NIA-G (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 38.5000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000

Simulation Value 38.4987 -3.9996 -3.9996 -3.9996 -3.9996 -3.9996 -3.9996

Error 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

CPU Time (s) 0.140 0.402 0.419 0.411 0.333 0.348 0.353

NIA-S (10000)

Exact Value 38.5000 -4.0000 -4.0000

Simulation Value 38.4987 -3.9996 -3.9996

Error 0.00% 0.01% 0.01%

CPU Time (s) 0.008 0.036 0.017

NIA-S is also effective except for its computational time which is several times

longer than that of the iSDA. Certainly, the NIA-G is able to achieve a satisfac-

tory result when g = 6, nevertheless the time needed is hundreds times greater

than the iSDA.

Notably, for the iSDA or NIA-G, when it comes to the function f1, whatever

the value g is, the simulation results are already good enough. However, as for

the function f2, only when g = 6, a result of high accuracy can be obtained. The

main cause of this difference may come from the features of these two functions,

that is, f1 focuses on the overall sum while f2 aims at the minimum value only.

In summary, the three algorithms, the iSDA, NIA-S, and NIA-G, are much

better than the SDA in terms of the accuracy, stability, or computational time,

and their individual outputs are steady, unlike those of the SDA. Generally, the
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Table 4.8: Comparative results among the iSDA, NIA-G, and NIA-S for the case
that f2 = −(x1 ∧ x2 ∧ · · · ∧ x10).

Triangular Normal Gaussian

iSDA (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664

Simulation Value 3.2500 7.8745 8.7462 8.8271 7.9176 8.2657 8.2652

Error 0.00% 10.82% 0.95% 0.03% 4.22% 0.01% 0.01%

CPU Time (s) 0.004 0.006 0.006 0.006 0.006 0.006 0.006

NIA-G (10000) g = 1 g = 3 g = 6 g = 1 g = 3 g = 6

Exact Value 3.2500 8.8300 8.8300 8.8300 8.2664 8.2664 8.2664

Simulation Value 3.2497 7.8740 8.7455 8.8252 7.9170 8.2650 8.2650

Error 0.01% 10.83% 0.96% 0.05% 4.23% 0.02% 0.02%

CPU Time (s) 0.136 0.385 0.395 0.411 0.284 0.321 0.337

NIA-S (10000)

Exact Value 3.2500 8.8300 8.2664

Simulation Value 3.2499 8.8274 8.2650

Error 0.00% 0.03% 0.02%

CPU Time (s) 0.010 0.046 0.025

iSDA outperforms all the other algorithms in all aspects, i.e., it is highly efficient

and time-saving. The NIA-S is slightly inferior to the iSDA from the aspect of

time, but the good point is that its calculating procedure is not related to the

range of the support (no change of g). The main disadvantage of the NIA-G

lies on the computational time, due to the reason that there exists a bisection

circulation in its algorithm design.

As to the application of both the iSDA and NIA-S, firstly, they can be utilized

to calculate the expected value of fuzzy events. Secondly, they can be served

as the internal simulation procedure of heuristic algorithms for solving fuzzy

expected value models with expected returns of fuzzy objectives. Nevertheless,

the application scenarios of the two algorithms are not the same, and which one

to choose should depend on actual needs. Certainly, the accuracy of the iSDA

and NIA-S are comparable to each other. The iSDA computes a little faster than
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the NIA-S, which is more suitable for users have time requirements. For some

commonly used fuzzy variables, α-optimistic values are easy to obtain, the NIA-S

seems more appropriate. Meanwhile, the iSDA need to consider the range of ±6σ

when the closure of the support of a fuzzy variable is not finite, while there is no

such consideration in the NIA-S.

4.4 Extensions to Regular Fuzzy Intervals

It is clear that regular fuzzy intervals are also of great importance no matter

in theoretical developments like its variance research [Guy19] and the entropy

calculation and simulation [She19], or in practical applications like the portfolio

optimization [Liu15c]. One of the representative forms of regular fuzzy intervals

is the commonly used trapezoidal fuzzy number. Researchers have continued

interests in updating the fuzzy simulation of the expected value of functions

that contain trapezoidal fuzzy numbers ([Zha05],[Zho18]). In this section, to

calculate the expected value of a strictly monotone function f of regular fuzzy

intervals ξ̃1, ξ̃2, · · · , ξ̃n, the α-optimistic value ξ̃sup(α) and α-pessimistic value

ξ̃inf(α) of regular fuzzy intervals are deduced. Then, Theorem 4.3 is further

extended for the case of regular fuzzy intervals. On this basis, two extension

algorithms called the TiSDA and TNIA-S are proposed to simulate the expected

value E[f(ξ̃1, ξ̃2, · · · , ξ̃n)], respectively.

4.4.1 Regular fuzzy interval

The definition of regular fuzzy intervals based on LR fuzzy intervals (see Defini-

tion 2.9) is in accordance with that of regular fuzzy numbers, which is described

as follows:

Definition 4.1 An LR fuzzy interval is said to be regular if the shape functions

L and R are continuous and strictly decreasing functions on the open intervals
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{0 < L(x) < 1} and {0 < R(x) < 1}, respectively.

In this part, expected values of continuous and strictly monotone functions

of regular fuzzy intervals are considered. Before that, several properties of α-

optimistic values of regular fuzzy intervals are elaborated as follows:

Theorem 4.4 Let ξ̃ be a regular fuzzy interval. For any α ∈ (0, 1], it is obtained

that

Cr{ξ̃ ≥ ξ̃sup(α)} = α. (4.22)

Proof: For any α ∈ (0, 1] and α 6= 0.5, it follows from the continuity of the

distribution function and the definition of optimistic value in Eq. (4.13) that

Cr{ξ̃ ≥ ξ̃sup(α)} = lim
n→∞

Cr{ξ̃ ≥ ξ̃sup(α)− 1

n
} ≥ α, (4.23)

Cr{ξ̃ ≥ ξ̃sup(α)} = lim
n→∞

Cr{ξ̃ ≥ ξ̃sup(α) +
1

n
} ≤ α. (4.24)

If α = 0.5, it is calculated that

Cr{ξ̃ ≥ ξ̃sup(0.5)}

=
1

2

(
Pos{ξ̃ ≥ ξ̃sup(0.5)}+ 1− Pos{ξ̃ < ξ̃sup(0.5)}

)

=
1

2
(0.5 + 1− 0.5) = 0.5.

(4.25)

With Eqs. (4.23)-(4.25), the proof is complete.

Theorem 4.5 If ξ̃ is a regular fuzzy interval, for any α ∈ (0, 1], it is obtained

that

ξ̃sup(α) =





Ψ−1(α), if α 6= 0.5

c, if α = 0.5.

(4.26)

Proof: For any given α ∈ (0, 1], denote Ψ(x) = Cr{ξ̃ ≥ x} = α. Since Ψ(x)

is strictly decreasing in {x ≤ c} and {x ≥ c}, for any α ∈ (0, 1] and α 6= 0.5,
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x = Ψ−1(α). Combining the above with Eq. (4.22) in Theorem 4.4, it is obtained

that ξ̃sup(α) = Ψ−1(α). In addition, it follows immediately from the definition of

ξ̃sup that ξ̃sup(α) = c when α = 0.5.

According to Theorem 4.5, in order to obtain ξ̃sup(α), Ψ(x) of regular fuzzy

interval ξ̃ is needed to be calculated first. If the membership function µξ̃ of a

regular fuzzy interval ξ̃ is attained, Ψ(x) can be deduced via µξ̃ as follows:

Ψ(x) =





1− µξ̃(x)/2, if x < c,

1

2
, if c ≤ x ≤ c

µξ̃(x)/2, if x > c.

(4.27)

Based on Eqs. (2.3) and (4.27), it is attained that

Ψ(x) =





1− 1

2
L

(
c− x
γ

)
, if x < c

1

2
, if c < x ≤ c

1

2
R

(
x− c
β

)
, if x > c.

(4.28)

Since the shape functions L and R are both continuous and strictly decreasing,

the inverse functions L−1 and R−1 exist. Consequently, the analytical expression

of ξ̃sup(α) of a regular fuzzy interval in Eq. (4.26) is obtained as

ξ̃sup(α) =





βR−1(2α) + c, if 0 < α < 0.5

c, if α = 0.5

c− γL−1(2− 2α), if 0.5 < α ≤ 1.

(4.29)

Further, in order to better understand the following theorems, the concept of

the α-pessimistic value is also introduced in this section.
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Definition 4.4 (Liu [Liu04]) For any α ∈ (0, 1], the α-pessimistic value of a

fuzzy variable ξ is

ξinf(α) = inf{r
∣∣ Cr{ξ ≤ r} ≥ α}. (4.30)

Theorem 4.6 Let ξ̃ be a regular fuzzy interval. For any α ∈ (0, 1], it is obtained

that

Cr{ξ̃ ≤ ξ̃inf(α)} = α. (4.31)

Proof: Analogous to the proof of Theorem 4.4, it is calculated that

Cr{ξ̃ ≤ ξ̃inf(α)} = lim
n→∞

Cr{ξ̃ ≤ ξ̃inf(α) +
1

n
} ≥ α, (4.32)

Cr{ξ̃ ≤ ξ̃inf(α)} = lim
n→∞

Cr{ξ̃ ≤ ξ̃inf(α)− 1

n
} ≤ α, (4.33)

and if α = 0.5, it yields that

Cr{ξ̃ ≤ ξ̃inf(0.5)}

=
1

2

(
Pos{ξ̃ ≤ ξ̃inf(0.5)}+ 1− Pos{ξ̃ > ξ̃inf(0.5)}

)

=
1

2
(0.5 + 1− 0.5) = 0.5.

(4.34)

With Eqs. (4.32)-(4.34), the proof is complete.

Theorem 4.7 If ξ̃ is a regular fuzzy interval, for any α ∈ (0, 1], it is obtained

that

ξ̃inf(α) =





Ψ−1(1− α), if α 6= 0.5

c, if α = 0.5.

(4.35)

Proof: For any given α ∈ (0, 1], denote Φ(x) = Cr{ξ̃ ≤ x} = α. Since

Φ(x) = Cr{ξ ≤ x} is strictly increasing in {x ≤ c} and {x ≥ c}, for α ∈ (0, 1]

and α 6= 0.5, x = Φ−1(α). With Eq. (4.31) in Theorem 4.6, it is calculated that

ξ̃inf(α) = Φ−1(α). In terms of Eq. (4.12), Φ(x) = 1−Ψ(x) = α is attained, which
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follows that ξ̃inf(α) = Ψ−1(1−α). Besides, according to the definition of ξ̃inf that

when α = 0.5, ξ̃inf(α) = c can be obtained.

Analogously, the analytical expression of ξ̃inf(α) in Eq. (4.35) is derived based

on Eq. (4.29) as

ξ̃inf(α) =





c− γL−1(2α), if 0 < α < 0.5

c, if α = 0.5

βR−1(2− 2α) + c, if 0.5 < α ≤ 1.

(4.36)

On the basis of the above analytical analyses, some regular fuzzy intervals are

illustrated in Examples 4.10 ∼ 4.12, and their corresponding α-optimistic and

α-pessimistic values are deduced in light of Eqs. (4.29) and (4.36), respectively.

Example 4.10 When the shape functions L and R are

L(x) = R(x) = max{0, 1− x},

the corresponding LR fuzzy interval ξ̃ is a trapezoidal fuzzy number. The mem-

bership function of a trapezoidal fuzzy number ξ̃ with a < b < c < d is

µA(x) =





x− a
b− a , if a ≤ x < b

1, if b ≤ x ≤ c

d− x
d− c , if c < x ≤ d

0, otherwise,

(4.37)

which is denoted by ξ̃ ∼ A(a, b, c, d), and is illustrated in Figure 4.2.

Further, in light of Eqs. (4.29) and (4.36), the α-optimistic and α-pessimistic

values of a trapezoidal fuzzy number ξ̃ ∼ A(a, b, c, d) are derived as follows:

ξ̃A sup(α) =





d− 2(d− c)α, if 0 < α ≤ 0.5

2b− a− 2(b− a)α, if 0.5 < α ≤ 1

(4.38)
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ξ̃A inf(α) =





a+ 2(b− a)α, if 0 < α ≤ 0.5

2c− d+ 2(d− c)α, if 0.5 < α ≤ 1,

(4.39)

which are depicted in Figures 4.3 and 4.4, respectively.

0 a b c d

1

x

µ(x)

Figure 4.2: The membership function of A(a, b, c, d) in Eq. (4.37).

0 0.5 1

a

b

c

d

α

ξ̃sup(α)

•

◦

Figure 4.3: The ξ̃sup(α) value of A(a, b, c, d) in Eq. (4.38).

Example 4.11 When the shape functions L and R are

L(x) = max{0, 1− x}, R(x) = max{0, 1− x2},

a new LR fuzzy interval ξ̃ is established, whose membership function with a <
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a

b

c

d

α

ξ̃inf(α)

◦

•

Figure 4.4: The ξ̃inf(α) value of A(a, b, c, d) in Eq. (4.39).

b < c < d is

µB(x) =





x− a
b− a , if a ≤ x < b

1, if b ≤ x ≤ c

(x+ d− 2c)(d− x)

(d− c)2
, if c < x ≤ d

0, otherwise,

(4.40)

which is denoted by ξ̃ ∼ B(a, b, c, d). Similarly, its α-optimistic and α-pessimistic

values are respectively derived as

ξ̃B sup(α) =





c+ (d− c)
√

1− 2α, if 0 < α ≤ 0.5

2b− a− 2(b− a)α, if 0.5 < α ≤ 1

(4.41)

ξ̃B inf(α) =





a+ 2(b− a)α, if 0 < α ≤ 0.5

c+ (d− c)
√

2α− 1, if 0.5 < α ≤ 1.

(4.42)

Example 4.12 When the shape functions L and R are

L(x) = max{0, 1− x2}, R(x) = e−x,

another new LR fuzzy interval ξ̃ is built, whose membership function with a <
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b < c < d is

µc(x) =





(2b− a− x)(x− a)

(b− a)2
, if a ≤ x < b

1, if b ≤ x ≤ c

e
c−x
d−c , if c < x ≤ d

0, otherwise,

(4.43)

which is written as ξ̃ ∼ c(a, b, c, d). Correspondingly, it is obtained that

ξ̃c sup(α) =





c− (d− c) ln(2α), if 0 < α ≤ 0.5

b− (b− a)
√

2α− 1, if 0.5 < α ≤ 1

(4.44)

ξ̃c inf(α) =





b− (b− a)
√

1− 2α, if 0 ≤ α ≤ 0.5

c− (d− c) ln(2− 2α), if 0.5 < α < 1.

(4.45)

Theorem 4.8 Let ξ̃ be a regular fuzzy interval. Then

ξ̃inf(α) = ξ̃sup(1− α) (4.46)

holds for α ∈ (0, 1] except α = 0.5. Especially, if ξ̃ is a regular fuzzy number, Eq.

(4.46) holds for α ∈ (0, 1].

Proof: It follows immediately from Definitions 4.3 and 4.4, and Eqs. (4.26) and

(4.35). The proof is complete.

Theorem 4.9 Assume that ξ̃1, ξ̃2, · · · , ξ̃n are independent regular fuzzy intervals.

Denote ξ̃ = (ξ̃1, ξ̃2, · · · , ξ̃n). If the function f(x1, x2, · · · , xn) is continuous and

strictly increases in regard to x1, x2, · · · , xh and strictly decreases in regard to

xh+1, xh+2, · · · , xn, for any α ∈ (0, 1], it is obtained that

f(ξ̃)sup(α) = f
(

(ξ̃1)sup(α), · · · , (ξ̃h)sup(α), (ξ̃h+1)inf(α), · · · , (ξ̃n)inf(α)
)
.
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Proof: Without loss of generality, only the case of h = 1 and n = 2 will be

proved. On the basis that ξ̃1 and ξ̃2 are independent regular fuzzy intervals, for

any α ∈ (0, 1], it is calculated that

Cr{f(ξ̃1, ξ̃2) ≥ f((ξ̃1)sup(α), (ξ̃2)inf(α))}

≥ Cr{{ξ̃1 ≥ (ξ̃1)sup(α)} ∩ {ξ̃2 ≤ (ξ̃2)inf(α)}}

= Cr{ξ̃1 ≥ (ξ̃1)sup(α)} ∧ Cr{ξ̃2 ≤ (ξ̃2)inf(α)}

= α ∧ α
= α.

Then again, since the function f is continuous, for any ε > 0, there exists a real

number δ > 0 such that if |x1 − (ξ̃1)sup(α)| + |x2 − (ξ̃2)inf(α)| ≤ δ, |f(x1, x2) −

f((ξ̃1)sup(α), (ξ̃2)inf(α))| < ε holds. By taking advantage of the independence,

Cr{f(ξ̃1, ξ̃2) ≥ f((ξ̃1)sup(α), (ξ̃2)inf(α)) + ε}

≤ Cr{{ξ̃1 ≥ (ξ̃1)sup(α) + δ} ∪ {ξ̃2 ≤ (ξ̃2)inf(α)− δ}}

= Cr{ξ̃1 ≥ (ξ̃1)sup(α) + δ} ∨ Cr{ξ̃2 ≤ (ξ̃2)inf(α)− δ}
< α.

Eventually, it is attained that

f(ξ̃)sup(α) = f((ξ̃1)sup(α), (ξ̃2)inf(α)).

The proof is complete.

Theorem 4.10 Let ξ̃ be a regular fuzzy interval. If its expected value exists, then

E[ξ̃] =

∫ 1

0

ξ̃inf(α)dα =

∫ 1

0

ξ̃sup(α)dα. (4.47)

Proof: Denote ξ̃ = (c, c, γ, β)LR. Provided that c ≥ 0, it follows from the defi-

nition of the expected value operator in Eq. (4.1) and the credibility distribution
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in Eq. (4.11) that

E[ξ̃] =

∫ +∞

0

Cr{ξ̃ ≥ x}dx−
∫ 0

−∞
Cr{ξ̃ ≤ x}dx

=

∫ c

0

(1− Φ(x))dx+

∫ c

c

(1− Φ(x))dx+

∫ +∞

c

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx

=

∫ c

0

xdΦ(x) +

∫ +∞

c

xdΦ(x) +

∫ 0

−∞
xdΦ(x)

=

∫ 0.5

Φ(0)

Φ−1(α)dα +

∫ 1

α↓0.5
Φ−1(α)dα +

∫ Φ(0)

0

Φ−1(α)dα

=

∫ 1

0

Φ−1(α)dα =

∫ 1

0

ξ̃inf(α)dα.

(4.48)

With Theorem 4.8, Eq. (4.48) can be further written as

E[ξ̃] =

∫ 1

0

ξ̃inf(α)dα =

∫ 1

0

ξ̃sup(1− α)dα

= −
∫ 0

1

ξ̃sup(α)dα =

∫ 1

0

ξ̃sup(α)dα.

Similar proof procedure can be achieved to derive Eq. (4.47) if c ≤ 0. The

proof is complete.

By the results presented in Theorems 4.9 and 4.10, the calculation formula on

expected values of continuous and strictly monotone functions of regular fuzzy

intervals is provided in the following theorem as

Theorem 4.11 Suppose that ξ̃1, ξ̃2, · · · , ξ̃n are independent regular fuzzy inter-

vals. If the function f(x1, x2, · · · , xn) is continuous and strictly increases in re-

gard to x1, x2, · · · , xh and strictly decreases in regard to xh+1, xh+2, · · · , xn, for

any α ∈ (0, 1], the expected value of f(ξ̃) = f(ξ̃1, ξ̃2, · · · , ξ̃n) is

E[f(ξ̃)] =

∫ 1

0

f
(

(ξ̃1)sup(α), · · · , (ξ̃h)sup(α), (ξ̃h+1)inf(α), · · · , (ξ̃n)inf(α)
)

dα.
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Proof: The proof derives directly from Theorems 4.9 and 4.10, thus it is omitted.

Notably, on the basis of Theorem 4.8, Theorem 4.11 will be directly transformed

into Theorem 4.3 for obtaining expected values of functions of a series of inde-

pendent regular fuzzy numbers.

As illustrated in this chapter, regular fuzzy numbers can be observed as a

special case of regular fuzzy intervals. This means all the definitions and theo-

rems raised in this section for regular fuzzy intervals also hold for regular fuzzy

numbers, which is consistent with the results presented by Li [Lix15].

4.4.2 Simulation algorithms

For the purpose of carrying out expected values of continuous and strictly mono-

tone functions of regular fuzzy intervals, the iSDA and NIA-S are extended from

regular fuzzy numbers to their relevant interval versions, called the TiSDA and

TNIA-S, respectively.

The basic concept of the TiSDA resembles that of the iSDA except that the

interval range where the membership degree equals to 1 in regular fuzzy intervals

is not considered. Analogously, a continuous regular fuzzy interval is discretized

according to the extended version of Theorem 4.1 at the beginning. Without loss

of generality, as to a regular fuzzy interval ξ̃i, its closure of the support is denoted

by Si = [ai, bi]. And there exists an interval [ci, ci] ∈ Si such that its membership

degree corresponds to 1 and ai < ci < ci < bi. Then, the left part of ci and the

right part of ci in Si (i.e., [ai, ci] and [ci, bi]) are equally divided into k pieces,

respectively. The jth point of the left part is set as xLij and the (k − j)th point

of the right part is set as xRij for i = 1, 2, · · · , n, i.e.,

xLij = ai + (ci − ai)× j
k
, j = 0, 1, · · · , k − 1,

xRij = bi − (bi − ci)× j
k
, j = 0, 1, · · · , k − 1.

(4.49)
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The forms of XL
j and XR

j of regular fuzzy intervals are identical to those

in Eq. (4.6), in which xLij and xRij are listed in Eq. (4.49). Additionally,

c = (c1, · · · , ch, ch+1, · · · , cn) and c = (c1, · · · , ch, ch+1, · · · , cn) are included in

the discretization procedure. Similarly to Eq. (4.7), the discrete fuzzy inter-

val f ∗(ξ̃) is defined, where f(XL
j ) and f(XR

j ) are with membership degrees

µ1(xL1j) and µ1(xR1j) for j = 0, 1, · · · , k − 1, respectively, and f(c) and f(c) are

with the membership degree 1. Next, the mean value for f ∗(ξ̃) is calculated, in

which wkf(c) in Eq. (4.8) is needed to be replaced by wk1f(c) + wk2f(c), where

wk1 =
1

2

(
1− µ1(xL1(k−1))

)
, wk2 =

1

2

(
1− µ1(xR1(k−1))

)
. The calculation of other wj

for j = 1, 2, · · · ,m are based on Eq. (4.10).

As a result, after Steps 2 and 5 of the iSDA in Algorithm 2 are substituted

by the above discretization procedure of regular fuzzy intervals and “Reset E =

E + wkf(c)” in Step 8 is replaced by “Reset E = E + (wk1f(c) + wk2f(c))”, a

new simulation algorithm, the TiSDA is constituted for regular fuzzy intervals.

It is noted that there are some differences between the iSDA and TiSDA. The

peak value c in the iSDA is extended to c and c in the TiSDA. Meanwhile, the

number of discrete points in the iSDA is 2k+1, while that of the TiSDA is 2k+2.

Further, on the basis of Theorem 4.11 and the analytical expressions of ξ̃sup(α)

in Eq. (4.26) and ξ̃inf(α) in Eq. (4.35), the TNIA-S is proposed to approximate

expect values for continuous and strictly monotone functions of regular fuzzy

intervals, which shares a similar concept with the NIA-S. Likewise, when the

inverse functions of L and R are not easy to derive in some situations, with

the aid of the “polyfit” function in Matlab or taking advantage of the bisection

algorithm (see Algorithm 3), the value of Ψ−1(α) can be obtained directly.

96



4.4.3 Comparative study among the SDA, TiSDA, and
TNIA-S

Two numerical examples regarding the widely used trapezoidal fuzzy number and

other two regular fuzzy intervals are implemented in this section to indicate the

efficiencies of the TiSDA and TNIA-S. Since the SDA is suitable for simulating

expected values of general functions that contain all kinds of fuzzy variables, here

the simulation results of the SDA are also taken into account for the purpose of

comparison.

Example 4.13 Assume that η̃i, i = 1, 2, · · · , 10, are independent trapezoidal

fuzzy numbers summarized in Table 4.9 involved in two continuous and strictly

monotone functions f2 = −(x1∧x2∧· · ·∧x10), and f3 = x1+· · ·+x5−x6−· · ·−x10.

The expected value E[ξ̃] of the fuzzy number ξ̃j = fj(η̃1, η̃2, · · · , η̃10), j = 2, 3, is

needed to be accomplished.

Table 4.9: Different kinds of regular fuzzy intervals utilized in examples.

Index
Trapezoidal

Two regular fuzzy intervals
fuzzy number

η̃1 A(2, 3, 5, 8) B(2, 3, 5, 8) C(2, 3, 5, 8)

η̃2 A(4, 6, 7, 9) B(4, 6, 7, 9) C(4, 6, 7, 9)

η̃3 A(5, 6, 7, 8) B(5, 6, 7, 8) C(5, 6, 7, 8)

η̃4 A(2, 4, 5, 6) B(2, 4, 5, 6) C(2, 4, 5, 6)

η̃5 A(3, 5, 6, 9) B(3, 5, 6, 9) C(3, 5, 6, 9)

η̃6 A(6, 7, 9, 10) B(6, 7, 9, 10) C(6, 7, 9, 10)

η̃7 A(−5,−3,−2,−1)

η̃8 A(2, 6, 8, 9)

η̃9 A(0, 1, 2, 4)

η̃10 A(−1, 0, 2, 5)

Initially, the exact value of E[ξ̃3] is obtained on the basis of the linearity of
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the expected value operator, i.e.,

E[ξ̃3] = E[η̃1] + · · ·+ E[η̃5]− E[η̃6]− · · · − E[η̃10] = 12.75.

While the exact values of E[ξ̃2] is a little more challenging to derive, which are

calculated with Matlab and recorded in Table 4.10.

Table 4.10: Comparative results among the SDA, TiSDA, and TNIA-S for the
case of f2 and f3.

f2 f3

Algorithm −(x1 ∧ x2 ∧ · · · ∧ x10) x1 + x2 + · · · − x10
SDA (3000/10000)

Exact Value 2.7500 12.7500

Simulation Value 2.8448 12.6033

Error 3.45% 1.15%

CPU Time (s) 0.551 0.585

TiSDA (10000/none)

Exact Value 2.7500 12.7500

Simulation Value 2.7500 12.7500

Error 0.00% 0.00%

CPU Time (s) 0.001 0.000

TNIA-S (none/10000)

Exact Value 2.7500 12.7500

Simulation Value 2.7499 12.7477

Error 0.00% 0.02%

CPU Time (s) 0.007 0.008

The approximation results of the SDA, TiSDA, and TNIA-S are also listed

in Table 4.10, in which (m/N) indicates the numbers of sample points m, or

integration points N , involved in the experiment. Similarly to above, the outputs

of the SDA are unsteady, and thus the average value of ten times outputs is

employed in the table, while the simulation results of the TiSDA and TNIA-S

are identical every time. As to the two types of functions in Example 4.13, it

is explicit that the TiSDA and TNIA-S are reliable and stable regardless of the

accuracy or the operation speed. In contrast, the largest error degree of the SDA
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is 3.45% when it comes to the function f2 and the time consumed is hundreds

of times larger than the other two algorithms. Although both the TiSDA and

TNIA-S return satisfactory simulation results at the end, the overall performance

of the TiSDA is still better than the TNIA-S. It is expected that the accuracy of

the TNIA-S will be further enhanced as the number of integration points N rises,

but the time needed will grow as well which surely decreases its competitiveness.

Overall, the TiSDA outperforms the SDA in every aspects, and it is able to

compute a precise enough value in a relatively short time period.

Example 4.14 Three types of regular fuzzy intervals of Examples 4.10 ∼ 4.12 are

listed in Table 4.9, which are respectively incorporated in a continuous and strictly

increasing function f4 =
√
x2

1 + x2
2 + · · ·+ x2

6, xi ≥ 0, i = 1, 2, · · · , 6, and another

continuous and strictly monotone function f5 = x1x2x3/(x4x5x6). Calculate the

corresponding expected value of E[ξ̃] of the fuzzy number ξ̃ = f4(η̃1, η̃2, · · · , η̃6) or

ξ̃ = f5(η̃1, η̃2, · · · , η̃6) for three types of regular fuzzy intervals.

Six kinds of outputs of three regular fuzzy intervals under two continuous and

strictly monotone functions are clearly illustrated in Table 4.11. Firstly, as to

different functions, the SDA returns better computations in f4 than f5 for the

former two regular fuzzy intervals. Along with other two functions f2 and f3

in Example 4.13, it is observed that the SDA is not reliable when encountering

different functions. In contrast, the TiSDA and TNIA-S are more dependable,

flexible, and adaptable to changeable functions, and can both return perfect sim-

ulation results. Secondly, as to different regular fuzzy intervals, it is explicit

that the error degree in the SDA becomes larger as the form of the membership

function gets complicated, especially in C(a, b, c, d). This situation also happens

in the TiSDA and TNIA-S. However, their simulation outcomes are still quite

satisfactory. The performances of the TiSDA and TNIA-S in this example are

comparable to each other as well, whereas the TiSDA is more time-saving. These
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Table 4.11: Comparative results among the SDA, TiSDA, and TNIA-S for the
case of f4 and f5 of three regular fuzzy intervals.

Algorithm Trapezoidal fuzzy number B(a, b, c, d) C(a, b, c, d)

SDA
(3000/10000)

f4 f5 f4 f5 f4 f5

Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014

Simulation
Value

14.9497 1.8682 15.2901 2.0975 14.9121 2.3484

Error 0.36% 97.40% 0.20% 118.58% 5.39% 134.51%

CPU Time (s) 0.176 0.137 0.233 0.162 0.228 0.159

TiSDA
(10000/none)

f4 f5 f4 f5 f4 f5

Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014

Simulation
Value

14.8956 0.9464 15.2597 0.9596 15.7566 1.0013

Error 0.00% 0.00% 0.00% 0.00% 0.03% 0.01%

CPU Time (s) 0.001 0.000 0.002 0.001 0.002 0.001

TNIA-S
(none/10000)

f4 f5 f4 f5 f4 f5

Exact Value 14.8960 0.9464 15.2597 0.9596 15.7620 1.0014

Simulation
Value

14.8956 0.9465 15.2593 0.9597 15.7594 1.0015

Error 0.00% 0.01% 0.00% 0.01% 0.02% 0.01%

CPU Time (s) 0.004 0.002 0.007 0.002 0.009 0.003

results are consistent with previous analyses in numerical examples.

4.5 Summary

The regular fuzzy numbers which include triangular, normal and Gaussian fuzzy

numbers, and the regular fuzzy intervals which contain trapezoidal fuzzy numbers

are appeared in many real-world applications. In the corresponding literature,

there exist two mainstream fuzzy simulation algorithms in approximating ex-

pected values for fuzzy variables. The first one, namely the SDA, was proposed

by Liu and Liu [Liu02b], and it follows the concept that stochastically discretize
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continuous fuzzy numbers. The SDA is capable of simulating the expected value

for general functions containing different fuzzy variables. The second algorithm,

namely the NIA-G, was formulated by Li [Lix15], and it is based on the integra-

tion simulation and the bisection procedure.

In this chapter, two novel simulation techniques of calculating expected values

for continuous and strictly monotone functions of regular fuzzy numbers were put

forward. Firstly, the iSDA was proposed to revise the stochastic discretization

procedure and the calculation formula of the expected value of the SDA. These

two parts were substituted by a novel uniform sampling process and another

calculation formula applied to discrete fuzzy numbers, respectively. Secondly,

the NIA-S took advantage of the analytical expressions of α-optimistic values of

regular fuzzy numbers directly in its algorithm design to replace the bisection

procedure in the NIA-G. From the results obtained for regular fuzzy numbers,

although the iSDA and NIA-S were based on distinct simulation concepts, they

both performed better in the accuracy, stability, and computational time com-

pared with the SDA. In addition, as to regular fuzzy intervals, the iSDA and NIA-

S were extended to the TiSDA and TNIA-S according to a series of regular fuzzy

interval related theorems, respectively. The simulation results demonstrated that

either the TiSDA or TNIA-S outperforms the SDA. Besides, it is noted that the

continuous and strictly monotone functions f in the examples of this chapter are

not difficult. For every f , whether it is challenging to write the expression of f , it

is possible to conduct the expected value simulation by using the proposed novel

techniques.

So far, the improvements on fuzzy theories and fuzzy simulation in this dis-

sertation have been accomplished. In summary, the identical stochastic sampling

process in the original SDS for the possibility and the SDA for the expected value

of fuzzy events was substituted by two kinds of uniform sampling processes based

on the new operational law. In other words, both the UDS for the possibility
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of fuzzy events in Chapter 3 and the iSDA/TiSDA for the expected value of

fuzzy events in Chapter 4 were initiated according to the new operational law.

Meanwhile, the UDS, the iSDA/TiSDA, and the NIA-S/TNIA-S were applied to

continuous and strictly monotone functions of regular fuzzy numbers or regular

fuzzy intervals. Moreover, the novel theorems raised and proved on regular fuzzy

intervals in Chapter 4 will also be implemented to the fuzzy expected value model

formulation in Chapter 6. And the TNIA-S will be incorporated in a genetic al-

gorithm to solve this model.

The next chapter deals with the quality function deployment optimization

from the perspective of cooperative game theory. A two-stage cooperative game

which integrates a quantitative Kano’s model is proposed to determine the relative

importance weights of customer requirements, and target levels of engineering

characteristics of a manufacturing product.
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Chapter 5

A Two-stage Cooperative Game
for Integrating Kano’s Model to
QFD

The last two chapters elaborated the improvements on fuzzy simulation tech-

niques for the possibility and expected value of fuzzy events. This chapter focuses

on the determination of the relative importance weights of customer requirements

(CRs) and target values of engineering characteristics (ECs) in quality function

deployment (QFD) from a novel cooperative game-theoretic angle. QFD is a

systematic and effective quality tool, which aims at mapping diversified CRs into

several ECs.

To accomplish the aforementioned two goals, a two-stage cooperative game in

QFD is initiated. Shapley value and Kano’s model are involved in the first stage to

complete the CR weighting, and two algorithms are further designed to facilitate

its application. Subsequently, a mixed integer non-linear programming model is

formulated in the second stage to derive target values of ECs. The objective

function in this model reflects the bargaining among different fulfillment levels

of CRs by integrating the CR weights and a quantitative Kano’s model, so as to

maximize the overall customer satisfaction.

Finally, the proposed method is implemented to a notebook computer design
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case study for quality development, and target values of ECs are settled accord-

ing to customer perceptions. Additionally, some comparisons, discussions, and

managerial implications are also raised in terms of the whole methodology and

the case study.

5.1 Introduction

As a general rule, a comprehensive QFD optimization procedure contains two

critical sequential stages, the determination of relative importance weights of

CRs, and the determination of target values of ECs. It is investigated that many

researches only focus on one of the stages and weaken the other, and rarely

view these two stages together from the perspective of allocation in cooperative

games. More details of the relevant literature review can be found in Section 2.3

of Chapter 2.

Therefore, this chapter attempts to observe these two stages from a novel

cooperative game-theoretic angle. Stage 1 of the CR weighting is a marginal

contribution based allocation using Shapley value, and Stage 2 of the EC target

value setting is a resource based allocation handled by a mixed integer non-linear

programming model. The model is signified by a Nash bargaining objective which

involves the CR weights obtained from Stage 1 to optimize the satisfaction degree

of consumers. And a quantitative Kano’s model in [Wan10] is adopted and applied

to both stages to characterize the relationship between the fulfillment level of

each CR and its customer satisfaction. The literature review of Kano’s model

can be found in Section 2.2 of Chapter 2. These integrations will attach practical

significance to Shapley value and Nash bargaining in cooperative games in the

industrial product development.

Given a certain manufacturing product like computers, automobiles, or mobile

phones, several CRs have been accumulated and categorized according to the rou-
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tine of Kano’s model. Since the selected CRs focus on the current product, with

the aid of house of quality (HoQ), the next generation product can be improved

to fulfill diversified customer perceptions. During this optimization procedure,

two major problems should be solved. (1) The relative importance weights of

crucial CRs should be determined, which are listed in the HoQ and used in the

optimization model formulation later; (2) The objective function and constraints

of the model should be discreetly formulated to adapt to the practical production

scenario. Conventionally, maximizing the overall customer satisfaction (OCS) is

a mainstream objective, and decision variables are target values of ECs. The

optimization model is usually established based on the information displayed in

the HoQ.

In order to solve the above two problems, both the quantitative Kano’s model

and cooperative game theory related knowledge are adopted. As mentioned, the

importance weights of CRs are supposed to be settled prior to the optimization of

the existing design. These weights are usually acquired by utilizing the average or

normalization method based on the data in the Kano questionnaire. Unlike these

methods, marginal contributions of CRs are considered in this chapter through

employing a quantitative Kano’s model and Shapley value in cooperative games,

so as to derive the CR weighting in Stage 1. Then, this importance weight vector

is involved in a Nash bargaining function in Stage 2, which will be served as the

objective function of a mixed integer non-linear programming model in QFD.

Notably, there are commonality and distinctions between the game setups of

these two stages regarding the setting of players, objectives, strategy sets, value

functions, and calculation methods, which are explained detailedly in Table 5.1.

The involved notation in this chapter is summarized in Table 5.2. As illustrated,

there are n CRs, q ECs in the product design, and s competitor companies in the

current market.
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Table 5.1: The two-stage cooperative game setup in QFD.

Stage 1 Stage 2

Player Several specified CRs, which are indexed by CRi, i = 1, 2, · · · , n

Objective
Determine relative importance Maximize the overall

weights of CRs customer satisfaction

Strategy set
Cooperate or not to cooperate Target values set of ECs (x1, x2, · · · , xn)

in a coalition An agreement is reached among all players

Value function
customer satisfaction value di(yi) relationship functions

in Kano’s model in Kano’s model

Calculation

A simplified calculation A mixed integer non-linear

formula of Shapley value programming model, whose

and a normalization objective function is

formula of Shapley value a Nash bargaining function

The remaining contents are arranged as follows. Firstly, the complete method-

ology of the proposed two-stage cooperative game in QFD is elaborated in Sec-

tions 5.2 and 5.3. Afterwards, an illustrative example regarding a notebook com-

puter development is conducted in Section 5.4. Several model solutions, compar-

isons, discussions, and managerial implications are figured out to manifest both

the performance and effectiveness of the proposed method. Lastly, Section 5.6

illustrates some conclusions of this study.

5.2 Stage 1: The CR Weighting in QFD

5.2.1 Shapley value in the CR weighting

To consider whether customers are pleased or not in terms of one CR, the values

of customer satisfaction (CS) and dissatisfaction (DS) which raised by [Mat98],

are applied to this research as follows:

CSi =
fA + fO

fA + fO + fM + fI
(5.1)

DSi = − fO + fM
fA + fO + fM + fI

, (5.2)
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Table 5.2: Notation in this chapter.

Stage 1: the CR weighting in QFD

CSi customer satisfaction value of CRi, i = 1, 2, · · · , n
DSi customer dissatisfaction value of CRi, i = 1, 2, · · · , n
Si Shapley value of CRi, i = 1, 2, · · · , n
wi the relative importance weight of CRi, i = 1, 2, · · · , n

Stage 2: the EC target value setting in QFD

lj the target value of a continuous ECj , j = 1, 2, · · · , q
xj the fulfillment level of ECj , j = 1, 2, · · · , q

xjk =
{1

0

If the value k of a discrete ECj is chosen in the product design, k = 1, 2, · · · ,m
Otherwise

hkj the fulfillment rating of the value k of a discrete ECj (hkj 6= 0), k = 1, 2, · · · ,m
di the customer satisfaction degree of CRi, i = 1, 2, · · · , n
yi the fulfillment level of CRi, i = 1, 2, · · · , n
pti the performance of CRi in company t, t = 1, 2, · · · , s
rij the relationship between CRi and ECj

γjg the correlation between ECj and ECg

rnormij the normalized relationship between CRi and ECj in matrix R

cj the unit improvement cost for ECj , j = 1, 2, · · · , q
B the budget during the entire product design process

ECLj the lower bound of the technical constraints for ECj , j = 1, 2, · · · , q
ECHj the upper bound of the technical constraints for ECj , j = 1, 2, · · · , q

where i denotes the ith CR, and fA, fO, fM , and fI represent the total fraction

numbers of customers’ preferences on CRi through the categorization of A, O,

M, and I attributes in Kano’s model, respectively. The CS values will be utilized

in the Shapley value calculations later.

Since all chosen CRs are significant and regarded as consumers’ key needs

towards a certain product, the joining of any CR would have an impact on the

overall customer satisfaction. Thus, the angle can be switched to measure the

marginal contributions of CRs in this procedure as a cooperative game. Certainly,

CRs’ contributions to the cooperation are different from each other, and will be

expressed by their Shapley values in this section accordingly.
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Shapley [Sha53] proposed the efficacious tool of Shapley value to handle arbi-

tration between a pile of players, giving the definition of adding the player k into

the coalition M as follows:

Sk =
∑

allM

γn(M)[v(M ∪ {k})− v(M)], (5.3)

where the weights γn(M) is formulated by

γn(M) =
m!(n−m− 1)!

n!
. (5.4)

In Eqs. (5.3)-(5.4), n and m indicate the quantities of players inside the game

and the coalition M , respectively, and v(.) is the value function which represents

the utility of every combination. As defined, Shapley value computes a unique

solution that satisfies the basic requirements of the Nash equilibrium, and on the

basis of three axioms including symmetry of players, effectiveness, and additivity.

Corresponding to the problem in this chapter, the players in the first-stage

cooperative game are those CRs gathered and selected from the Kano question-

naire. During the computation of Shapley value, CS values for CRs in Eqs. (5.1)

are specified as the value function of each participant, which means v(k) = CSk

for CRk. As the difficulty of calculation grows with the number of players in

the original formula in Eq. (5.3), Conklin et al. [Con04] and [Con05] offered a

solution in consideration of the mean values of coalitions at different levels with

or without player k as follows:

Sk =
1

n− 1
(v(k)− Avg1) +

1

n− 2
(V2(k)− Avg2) +

1

n− 3
(V3(k)− Avg3)

+ · · ·+ 1

n− (n− 1)
(Vn−1(k)− Avgn−1) +

1

n
(v(all)).

(5.5)

In Eq. (5.5), Avg1 stands for the mean value of all combinations which only

contain one player at first level, and under this circumstance v(k) shows the

mean value of each player itself. Continually, Avg2 represents the average of all
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combinations at second level, and V2(k) is interpreted as the mean value of these

combinations include player k, and so on until the coalition of (n − 1) players.

The last one element equally allocates the utility value of all players together into

Shapley value of each participant. Further, Eq. (5.5) can be simplified into

Sk =
1

n
v(Mall) +

n−1∑

j=1

1

n− j (v̄(Mkj)− v̄(Mj)). (5.6)

5.2.2 Algorithm design in the CR weighting

In reality, sometimes customers may have various needs against the product (over

10 CRs or even more), then the number of coalitions will grow tremendously be-

cause of the factorial calculation. To handle this, following the idea of Eqs. (5.5)-

(5.6), a simple algorithm, called the Shapley Value Calculation Algorithm (short

for SVCA), is designed as follows:

Algorithm 1 (Shapley Value Calculation Algorithm, SVCA)

Step 1. Initialize the number n of players (CRs). Input the value function v(k)
of the player k, k = 1, 2, · · · , n, and let z = 1.

Step 2. Calculate the number of combinations that contain player k at the zth
level as Nz = Cz−1

n−1.

Step 3. Find combinations with z element(s) and also contain player k, k =
1, 2, · · · , n, respectively.

Step 4. Calculate the corresponding value functions of these combinations and
sum them as Sumz(k), k = 1, 2, · · · , n, and then get the corresponding

mean value Vz(k) =
Sumz(k)

Nz

, k = 1, 2, · · · , n, respectively.

Step 5. Calculate the mean value of all the combinations at the zth level as

Avgz =

∑n
k=1 Vz(k)

n
.

Step 6. If z < n− 1, z = z + 1, and go to Step 2. Otherwise, go to Step 7.

Step 7. Calculate the value function of all the players together as v(all).

Step 8. Return Sk via Eq. (5.5) as the Shapley value of player k, k = 1, 2, · · · , n.
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It is observed that the description of the summation value, Sumz(k), is not so

clear in Step 4 of the SVCA. To be more specific, the value functions of different

combinations are calculated according to the following disciplines. First of all,

the CS value of each CR is considered as the corresponding value function, i.e.,

v(k) = CSk for CRk, k = 1, 2, · · · , n. Meanwhile, for other zth level coalitions,

the maximum value function is served as the payoff of one coalition, e.g., in one

combination {CR1, CR2, CR3} at third level,

v(1 ∪ 2 ∪ 3) = v(1) ∨ v(2) ∨ v(3) = CS1 ∨ CS2 ∨ CS3. (5.7)

On this basis, another Value Function Calculation Algorithm (short for VFCA)

is developed as a complementary algorithm for Step 4 of the SVCA. Notably,

the VFCA is just applied to the case of similar value function derivations as in

Eq. (5.7).

Algorithm 2 (Value Function Calculation Algorithm, VFCA)

Step 1. Initialize the number n of players (CRs). Input the value function
v(k) = CSk for CRk, k = 1, 2, · · · , n.

Step 2. Find all non-repeating combinations at the zth level such that {
CRk,CRx1 ,CRx2 ,· · · ,CRxz−1} $ {CR1,CR2,· · · ,CRn} and label them
from Comb1 to CombNz . And let Sumz(k) = 0, and t = 1.

Step 3. If z > 1, calculate vz(Combt) = max{v(k), v(x1), v(x2), · · · , v(xz−1)}
and Sumz(k) = Sumz(k) + vz(Combt).

Step 4. If t < Nz, t = t+ 1, and go to Step 3. Otherwise, return Sumz(k).

At last, according to the Shapley value calculation procedure expounded

above, the following normalization equation is utilized to figure out the relative

importance weight wi of CRi, i.e.,

wi =
Si∑n
i=1 Si

× 100%. (5.8)
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5.3 Stage 2: The EC Target Value Setting in

QFD

5.3.1 A Nash bargaining objective function

From the former literature, the overall customer satisfaction, OCS, was attained

through a linearly additive operator of the fulfillment levels, yi, of all CRs in

[Poe07] as

OCS =
n∑

i=1

wiyi.

Similar to this idea, Ji et al. [Jip14] aggregated the OCS as a weighted summation

of relationship functions between CR and CS, di(yi), i.e.,

OCS(y1, y2, · · · , yn) =
n∑

i=1

widi. (5.9)

In regard to the CS and DS values introduced in Section 5.2.1, the analytical

expressions, di(yi), of the lines and curves of distinct attributes can be further

approximately derived through linear and exponential functions. Corresponding

to the Kano diagram in Figure 2.1, more detailed relationship functions of A, O,

and M attributes are obtained in Table 5.3.

Table 5.3: The di(yi) relationship functions employed from [Jip14].

KCa f(yi) di = aif(yi) + bi

A eyi di =
CSi −DSi

e− 1
eyi − CSi − eDSi

e− 1

O yi di = (CSi −DSi)yi +DSi

M −e−yi di = −e(CSi −DSi)

e− 1
e−yi +

eCSi −DSi

e− 1

aKC is short for Kano classification, which is indicated by the

attribute of most replies.

In this section, different from the viewpoint in Eq. (5.9), the problem of max-

imizing the OCS can be observed as a second-stage cooperative game in QFD,
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and the bargaining among the fulfillment levels of CRs is considered. As a start,

the basic notion of Nash bargaining is reviewed as follows. Assume that fi(x) is

the payoff function for player i, and each player aims to maximize his/her payoff

during the bargaining. As a basic principle, the bargaining function B(.) must

fulfill the following requirements,

min(f1, · · · , fn) < B(f1, · · · , fn) < max(f1, · · · , fn).

And the generalized bargaining function is written as

B(x) =
n∏

i=1

(fi(x)− fi(xw))wi , (5.10)

where fi(xw) represents the minimum value player i would pay in the payoff func-

tion fi(x), and wi signifies the weight of the payoff function such that
∑n

i=1wi = 1,

wi ∈ [0, 1] for i = 1, 2, · · · , n [Yan14].

Here in this research, the relative importance weight wi for CRi is obtained

from the first-stage cooperative game, and the relationship functions di(yi) are

adopted as payoff functions of CRs in the Nash bargaining function. Therefore,

Eq. (5.9) can be reconsidered to be a second-stage cooperative game version via

the application of Eq. (5.10) as

B(yi) =
n∏

i=1

(di(yi)−DSi)wi , (5.11)

where DSi is the customer dissatisfaction value of CRi in Eq. (5.2).

5.3.2 Normalization

For the sake of more accurately depicting the relationship between CRs and ECs,

a normalization procedure is used for the relationship element rij and the corre-

lation element γjg in the HoQ. According to [Was93], the normalized relationship
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between CRi and ECj, r
norm
ij in matrix R, can be attained as follows:

rnormij =

n∑

g=1

rig · γgj
n∑

j=1

n∑

g=1

rij · γjg
, i = 1, 2, · · · , n, j = 1, 2, · · · , q. (5.12)

Commonly, there exist two kinds of ECs, the discrete ones and continuous

ones. In order to get rid of the impact coming from different measures, two

normalization formulae will be used to convert target values of ECs to their ful-

fillment levels, xj, accordingly. For discrete ECs, several options with fulfillment

ratings are provided for selection. On this basis, the fulfillment level of a discrete

EC can be expressed as follows:

xj =
m∑

k=1

xjkhkj, j = 1, 2, · · · , q, (5.13)

where xjk is a binary variable and hkj stands for the fulfillment rating. For

continuous ECs, they are classified into two groups at the beginning, i.e., the cost

type (C-type) and the benefit type (B-type). Afterwards, the target value lj to

its fulfillment level xj can be scaled in line with [Che05] as follows:

xj =





lmaxj − lj
lmaxj − lminj

(C-type)

lj − lminj

lmaxj − lminj

(B-type)

(5.14)

where 0 ≤ xj ≤ 1. For those C-type ECs, lmax
j is the maximal target value that

matches the performance of competitors, while lmin
j indicates the lowest limit.

When it comes to B-type ECs, lmin
j denotes the minimal target value that matches

the performance of competitors, whereas lmax
j represents the largest limit.

5.3.3 A mixed integer non-linear programming model

Based on the contents above, for the purpose of maximizing the payoff function

of individual CR, a mixed integer non-linear programming model is established
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through an optimal trade, which shows as follows:





max
n∏

i=1

(di(yi)−DSi)wi

s.t.

xj =
m∑

k=1

xjkhkj (for discrete ECj, j = 1, 2, · · · , q)
m∑

k=1

xjk = 1 (for discrete ECj, j = 1, 2, · · · , q)
q∑

j=1

cjxj ≤ B

yi =

q∑

j=1

rnormij xj, i = 1, 2, · · · , n

yi ≥
∑s

t=1 p
t
i

s
, i = 1, 2, · · · , n

0 ≤ xj ≤ 1, j = 1, 2, · · · , q

ECLj ≤ xj ≤ ECHj, j = 1, 2, · · · , q

xjk ∈ (0, 1),

(5.15)

where the expressions of di(yi) are shown in Table 5.3. The first constraint in-

dicates the normalization of discrete ECs and the second constraint guarantees

that a unique k of a discrete EC is selected. The third constraint demonstrates

the budget control through the process, and the fourth constraint transfers the

fulfillment levels of ECs into those of CRs by means of the normalized relation-

ship matrix R. The average value among the competitor companies is used as

a benchmark for the fulfillment level of CS with respect to individual CR in the

fifth constraint. Since target values of both continuous and discrete ECs are nor-

malized into xj in Section 5.3.2, then xj is defined in the domain [0, 1]. Besides,

some ECs are equipped with lower or upper bounds for technical concerns.

For a simple mathematical derivation, suppose that there are two players

(two continuous CRs) in this bargaining now, i = 1, 2., and CR1 is an Attractive

attribute while CR2 is a One-dimensional attribute. Then, according to model
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(5.15), the following model can be formulated as





max (d1(y1)−DS1)w1(d2(y2)−DS2)w2

d1(y1) =
CS1 −DS1

e− 1
ey1 − CS1 − eDS1

e− 1

d2(y2) = (CS2 −DS2)y2 +DS2

s.t.

c1x1 + c2x2 + · · ·+ cqxq ≤ B

y1 = rnorm11 x1 + rnorm12 x2 + · · ·+ rnorm1q xq

y2 = rnorm21 x1 + rnorm22 x2 + · · ·+ rnorm2q xq

y1 ≥
∑s

t=1 p
t
1

s
, y2 ≥

∑s
t=1 p

t
2

s

0 ≤ xj ≤ 1, j = 1, 2, · · · , q,

(5.16)

where xj are decision variables of fulfillment levels of q ECs. The unit improve-

ment cost cj is positive as well as the relationship rnormij between CRi and ECj.

After plugging the expressions of di(yi) into the objective function in model (5.16),

it is obtained that

f(y1, y2) =
(CS1 −DS1

e− 1
(ey1 − 1)

)w1
(

(CS2 −DS2)y2

)w2

. (5.17)

For the purpose of better analyzing the above equation, we let E = (CS1 −

DS1)/(e − 1) and F = CS2 − DS2. Since CSi is positive and DSi is negative,

the values of E and F are both positive. After taking the first order derivative

of Eq. (5.17) with respect to y1, it is attained that

∂f

∂y1

= w1E(ey1 − 1)(w1−1)ey1 · (Fy2)w2 . (5.18)

Next, by taking the second order partial derivative towards y2, it is calculated

that

∂2f

∂y1∂y2

= w1E(ey1 − 1)(w1−1)ey1 · w2(Fy2)(w2−1)F. (5.19)
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In Eq. (5.19), since y1 and y2 are both positive, the second order partial derivative

is larger than 0, which means Eq. (5.17) is a convex function.

On the other hand, in Eq. (5.17),
(CS1 −DS1

e− 1
(ey1 − 1)

)w1

is increasing with

respect to y1 ∈ (0,+∞) and
(

(CS2 − DS2)y2

)w2

is increasing with respect to

y2 ∈ (0,+∞) as well. This indicates that the objective function f(y1, y2) in

model (5.16) is increasing both to y1 and y2 in the positive horizontal axis. If the

value of f(y1, y2) is expected to be maximized, the larger the values of y1 and y2,

the larger that of f(y1, y2). As a consequence, the cost constraint in model (5.16)

should be equal to the budget to get the largest yi, i.e., c1x1+c2x2+· · ·+cqxq = B.

When it comes to the objective function in model (5.15), two aspects should

be considered in practical computations. Firstly, as a product, the value of the

objective function is negatively related to the number of players, n. Secondly,

the existence of parameter wi will increase the difficulty of solving the model.

To evade these two concerns, a simple mathematical conversion of the objective

function is needed. Thereby, the objective function can be modified by applying

a logarithmic transformation as follows:

ln
n∏

i=1

(di(yi)−DSi)wi =
n∑

i=1

wi ln(di(yi)−DSi). (5.20)

5.4 Case Study: A Notebook Computer Devel-

opment

At first, seven major CRs of a notebook computer are extracted out of 125 valid

feedback, including Stylish design (CR1), Mobility (CR2), High computing speed

(CR3), Powerful graphics solution (CR4), Solid audio capability (CR5), Large

storage (CR6), and High network performance (CR7), and the details are sum-

marized in Table 5.4. It is noted that the original Kano questionnaire data and

Kano’s model analysis of this case can be found in [Jip14].
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Table 5.4: Kano questionnaire results in [Jip14].

Seven major CRs A O M I R Q Sum KC CS DS

a: Stylish design 70 25 14 15 0 1 125 A 0.7661 −0.3145

b: Mobility 15 75 27 7 1 0 125 O 0.7258 −0.8226

c: High computing speed 24 64 23 11 2 1 125 O 0.7213 −0.7131

d: Powerful graphics solution 69 31 15 9 1 0 125 A 0.8065 −0.3710

e: Solid audio capability 76 25 12 10 2 0 125 A 0.8211 −0.3008

f : Large storage 24 20 70 9 2 0 125 M 0.3577 −0.7317

High network performance 16 27 22 57 1 2 125 I 0.3525 −0.4016

The CS and DS values in Table 5.4 are acquired by means of Eqs. (5.1)-(5.2).

In terms of the calculation of CR1, the values of CS1 and DS1 can be obtained as

CS1 =
70
125

+ 25
125

70
125

+ 25
125

+ 14
125

+ 15
125

=
95

124
= 0.7661,

DS1 = −
25
125

+ 14
125

70
125

+ 25
125

+ 14
125

+ 15
125

= − 39

124
= −0.3145.

Analogously, the results of remaining CRs are attained, which will be served as

value functions in the following Shapley value calculations. Notably, the KC of

High network performance (CR7) is remarked by I in Table 5.4, which implies

that consumers feel indifferent to this function. As a consequence, the assignment

of relative importance weights will only focus on the other six CRs (labeled by

a-f for easier instructions later), and the sum of total weights is 1.

5.4.1 Results of Stage 1: the CR weighting

As introduced in Section 5.2, Shapley value is utilized to distribute the weights

of CRs in accordance with their marginal contributions. In this empirical study,

there exist six CRs in the current product planning, which means six levels of

coalitions in the cooperative game.

All the value functions and mean values of different combinations can be
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derived with the aid of the SVCA in Algorithm 1 and the VFCA in Algorithm 2

in Section 5.2.2, and the results are summarized in Table 5.5. In the “Coalition”

Table 5.5: The calculation procedure of Shapley value in Eq. (5.5).

zth Level Coalition
CR1 CR2 CR3 CR4 CR5 CR6

a b c d e f

1st level a, b, c, d, e, f
Avg1= v(1)= v(2)= v(3)= v(4)= v(5)= v(6)=

0.6998 0.7661 0.7258 0.7213 0.8065 0.8211 0.3577

2nd level

ab, ac, ad, ae, af,
Avg2= V2(1)= V2(2)= V2(3)= V2(4)= V2(5)= V2(6)=

bc, bd, be, bf, cd,
0.7868 0.7852 0.7691 0.7682 0.8094 0.8211 0.7682

ce, cf, de, df, ef

3rd level

abc, abd, abe, abf,

Avg3= V3(1)= V3(2)= V3(3)= V3(4)= V3(5)= V3(6)=
acd, ace, acf, ade,

0.8037 0.8002 0.7962 0.7962 0.8123 0.8211 0.7962
adf, aef, bcd, bce,

bcf, bde, bdf, bef,

cde, cdf, cef, def

4th level

abcd, abce, abcf,

Avg4= V4(1)= V4(2)= V4(3)= V4(4)= V4(5)= V4(6)=
abde, abdf, abef,

0.8135 0.8112 0.8112 0.8112 0.8153 0.8211 0.8112
acde, acdf, acef,

adef, bcde, bcdf,

bcef, bdef, cdef

5th level

abcde, abcdf,
Avg5= V5(1)= V5(2)= V5(3)= V5(4)= V5(5)= V5(6)=

abcef, abdef,
0.8187 0.8182 0.8182 0.8182 0.8182 0.8211 0.8182

acdef, bcdef

6th level abcdef
v(all)=

0.8211

column, all the combinations at the zth level for z = 1, 2, · · · , 6 are listed, and the

detailed meanings of Avgk, v(k), Vz(k), and v(all) can be found in Section 5.2.

Based on the primary results in Table 5.5, Shapley value S1 of CR1 is computed

by applying Eq. (5.5) as follows:

S1 =
1

5
∗ (0.7661− 0.6998) +

1

4
∗ (0.7852− 0.7868) +

1

3
∗ (0.8002− 0.8037)

+
1

2
∗ (0.8112− 0.8135) +

1

1
∗ (0.8182− 0.8187) +

1

6
∗ 0.8211 = 0.1469.

(5.21)

Similarly to Eq. (5.21), the values of S2 ∼ S6 can be easily figured out by the

SVCA and are displayed in Table 5.6. It is observed that CR5 possesses the most

marginal contribution whereas CR6 shows the least, which belong to Attractive
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and Must-be attributes, respectively. The sum
∑6

i=1 Si = 0.8211 in Shapley value

equals to the utility value when all the players collaborate in the sixth level in

Table 5.5. This consistency validates the effectiveness axiom of Shapley value.

Apart from that, it is noticed that CS5 (0.8211) is two times larger than CS6

(0.3577), and DS6 (−0.7317) is two times larger than DS5 (−0.3008) in Table 5.4.

Consequently, it seems quite convincing that Shapley value of CR5, S5, is three

times greater than that of CR6, S6.

Table 5.6: Shapley values and relative importance weights of CRs.

Shapley Value
S1 S2 S3 S4 S5 S6

0.1469 0.1335 0.1323 0.1671 0.1817 0.0596

Relative Importance w1 w2 w3 w4 w5 w6

Weight (%) 17.89 16.25 16.12 20.35 22.13 7.26

Then, in regard to Eq. (5.8), the relative importance weight wi of each CR

can be further generated. For example, the relative importance weight for CR1

is w1 = (0.1469/0.8211)× 100% = 17.89%. In correspondence with each Shapley

value, the relative importance weights of the remaining CRs are calculated in

Table 5.6, in which CR5 shows the most significance while CR6 is the least.

5.4.2 Results of Stage 2: the EC target value setting

In this section, the second-stage cooperative game regarding the notebook com-

puter design is conducted, which aims at determining target values of ECs in the

new generation product by using a mixed integer non-linear programming model.

The first step is to accomplish all the needed information in model (5.15).

Primarily, according to the quantitative Kano’s model describing A, O, and M

attributes in Table 5.3, the specific relationship functions between the fulfillment

level of CR and CS, i.e., the di(yi) functions of different attributes in this case

study are enumerated and calculated in Table 5.7.
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Table 5.7: The di(yi) functions for CRs of the notebook computer design.

Six crucial CRs KC ai bi f(yi) di = aif(yi) + bi

CR1: Stylish design A 0.8529 −0.9434 ey1 d1 = 0.6289ey1 − 0.9434

CR2: Mobility O 1.5484 −0.8226 y2 d2 = 1.5484y2 − 0.8226

CR3: High computing speed O 1.4344 −0.7131 y3 d3 = 1.4344y3 − 0.7131

CR4: Powerful graphics A 0.6852 −1.0562 ey4 d4 = 0.6852ey4 − 1.0562

solution

CR5: Solid audio capability A 0.6529 −0.9538 ey5 d5 = 0.6529ey5 − 0.9538

CR6: Large storage M 1.7235 0.9917 −e−y6 d6 = −1.7235e−y6 + 0.9917

Secondly, before the QFD analysis is conducted, the information of four ma-

trices are gathered in the HoQ of the notebook computer design in Table 5.8.

Notably, CRs together with their relative importance weights wi are obtained in

Section 5.4.1. Seven ECs are outlined by engineers to map into six crucial CRs,

i.e., CPU, RAM, hard disk, sound card, graphic card, LCD display, and battery.

Then, the normalized relationship matrix R with respect to Eq. (5.12) is assessed

and given by experts as follows:

R =
(
rnormij

)
n×q =




0.1172 0.1172 0.1176 0.0415 0.1176 0.2725 0.2163
0.1816 0.1683 0.1604 0.0923 0.1654 0.0283 0.2036
0.1876 0.1895 0.1686 0.1356 0.1628 0.0078 0.1481
0.1753 0.1702 0.1445 0.1101 0.1685 0.0829 0.1485
0.1909 0.1956 0.1603 0.1807 0.1458 0.0038 0.1230
0.1664 0.2081 0.2280 0.1119 0.1256 0.0060 0.1540



.

(5.22)

The benchmark information of Compti is listed in the right-side strategic room

containing four competitor companies. Lastly, the cost coefficient cj towards ECs

is summarized on the floor as well as some technical constraints with the lower

bound ECLj or the upper bound ECHj.

Thirdly, the detailed information on two kinds of ECs can be found in Ta-

ble 5.9. Among them, EC1 to EC6 are discrete and each one is provided with

several options for customers to choose. And their normalization is based on
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Table 5.8: The HoQ of the notebook computer design.
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Table 5.9: Seven discrete and continuous ECs.

Discrete ECs Option 1 Option 2 Option 3 Option 4 Option 5

EC1: CPU
1.8Ghz 2.4Ghz 2.9Ghz 3.6Ghz −

(h11 = 0.25) (h12 = 0.5) (h13 = 0.8) (h14 = 1)

EC2: RAM
1G 2G 4GB 8GB −

(h21 = 0.25) (h22 = 0.5) (h23 = 0.75) (h24 = 1)

EC3: Hard disk
64G 128G 256G 512G 1TB

(h31 = 0.2) (h32 = 0.4) (h33 = 0.6) (h34 = 0.85) (h35 = 1)

EC4: Sound card
Level I Level II Level III − −

(h41 = 0.33) (h42 = 0.66) (h43 = 1)

EC5: Graphic Level I Level II Level III − −
card (h51 = 0.33) (h52 = 0.66) (h53 = 1)

EC6: LCD 11.1” 12.2” 13.1” 15.1” 17.1”

display (h61 = 0.2) (h62 = 0.4) (h63 = 0.6) (h64 = 0.8) (h65 = 1)

Continuous ECs Category Min EC value Max EC value

EC7: Battery B-type 2hr 8hr

Eq. (5.13), in which hkj is the fulfillment rating. When it comes to the continu-

ous EC7 of the B-type, the normalization formula is Eq. (5.14).

After all necessary information is gathered, the mixed integer non-linear pro-

gramming model can be built to optimize the current design of the notebook

computer. Denote X = [x1, x2, · · · , x7]T as the fulfillment level vector for ECs,

and Y = [y1, y2, · · · , y6]T as the fulfillment level vector for CRs. Meanwhile, it is

evaluated by the decision-makers that the total financial investment during the

QFD procedure is 100 units. Then, the optimization model can be established

according to all the case study information (see next page).

The proposed model (5.23) is solved by the Lingo software, and the results

of decision variables xj, EC options together with their technical values, and the

relevant resource allocation are displayed in Table 5.10. It is easily observed that

the fulfillment level of EC6 (LCD display), 0.400, is barely satisfactory in contrast

to those of the remaining ECs. And the design cost calculated indicates that the
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



max
6∑

i=1

wi ln(di(yi)−DSi)

d1(y1)−DS1 = 0.6289(ey1 − 1)

d2(y2)−DS2 = 1.5484y2

d3(y3)−DS3 = 1.4344y3

d4(y4)−DS4 = 0.6852(ey4 − 1)

d5(y5)−DS5 = 0.6529(ey5 − 1)

d6(y6)−DS6 = −1.7235(ey6 − 1)

s.t.

x1 = 0.2x11 + 0.5x12 + 0.8x13 + x14

x2 = 0.25x21 + 0.5x22 + 0.75x23 + x24

x3 = 0.2x31 + 0.4x32 + 0.6x33 + 0.85x34 + x35

x4 = 0.33x41 + 0.66x42 + x43

x5 = 0.33x51 + 0.66x52 + x53

x6 = 0.2x61 + 0.4x62 + 0.6x63 + 0.8x64 + x65

x11 + x12 + x13 + x14 = 1

x21 + x22 + x23 + x24 = 1

x31 + x32 + x33 + x34 + x35 = 1

x41 + x42 + x43 = 1

x51 + x52 + x53 = 1

x61 + x62 + x63 + x64 + x65 = 1

Y = RX

y1 ≥ (0.85 + 0.74 + 0.7 + 0.76)/4

y2 ≥ (0.6 + 0.71 + 0.45 + 0.6)/4

y3 ≥ (0.72 + 0.55 + 0.4 + 0.47)/4

y4 ≥ (0.9 + 0.84 + 0.75 + 0.71)/4

y5 ≥ (0.54 + 0.55 + 0.61 + 0.6)/4

y6 ≥ (0.83 + 0.75 + 0.5 + 0.66)/4

19.8x1 + 17.5x2 + 14.5x3 + 14x4 + 16.5x5 + 15.5x6 + 13x7 ≤ 100

0 ≤ xj ≤ 1, j = 1, 2, · · · , 7
xjk ∈ (0, 1)

x1 ≥ 0.65, x3 ≤ 0.85

(5.23)
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total investment is distributed unevenly and inappropriately. Furthermore, this

circumstance leads to the result that the fulfillment level of CR1 (Stylish design),

0.8188, is the lowest as demonstrated in Table 5.11, while most of the remaining

CR fulfillment levels are larger than 0.95.

Table 5.10: The optimal solution of model (5.23).

Discrete ECs EC option
EC fulfillment

EC technical value
Resource

level (xj) allocation

EC1: CPU x14 1.000 3.6GHz 19.8

EC2: RAM x24 1.000 8GB 17.5

EC3: Hard disk x34 0.850 512G 12.3

EC4: Sound card x43 1.000 Level III 14

EC5: Graphic card x53 1.000 Level III 16.5

EC6: LCD display x62 0.400 12.2” 6.2

Continuous ECs
EC fulfillment

EC technical value
Resource

level (xj) allocation

EC7: Battery 1.000 8hr 13

Table 5.11: Results of CR fulfillment levels with regard to model (5.23).

CRs CR fulfillment level (yi)

CR1: Stylish design 0.8188

CR2: Mobility 0.9589

CR3: High computing speed 0.9700

CR4: Powerful graphics solution 0.9286

CR5: Solid audio capability 0.9738

CR6: Large storage 0.9622

The cause of this low fulfillment level is that CR1 is greater connected with

EC6 than other CRs in the normalized relationship matrix R. In addition to the

aforementioned imbalance in CR fulfillment levels, the technical value of EC6 is

12.2”, which seems not so acceptable for customers out of the five choices, i.e.,

11.1”, 12.2”, 13.1”, 15.1”, and 17.1”. The size of LCD display not only has an
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effect on the appearance of the notebook computer, but also on customers’ visual

experience.

In order to enhance customers’ perceptions on the stylish design and consider

the engineers’ desire for a more balanced design, model (5.23) is revised through

substituting “y1 ≥ (0.85+0.74+0.7+0.76)/4” by “y1 ≥ 0.9” directly. Then, after

the revised model is solved by the Lingo software, more reasonable results can be

obtained and are listed in Table 5.12. The data in bold are different solutions in

contrast to those in Table 5.10, including fulfillment levels and technical values

of EC4, EC6, and EC7.

Table 5.12: The solution of the revised model (5.23).

Discrete ECs EC option
EC fulfillment

EC technical value
Resource

level (xj) allocation

EC1: CPU x14 1.000 3.6GHz 19.8

EC2: RAM x24 1.000 8GB 17.5

EC3: Hard disk x34 0.850 512G 12.3

EC4: Sound card x42 0.660 Level II 9.2

EC5: Graphic card x53 1.000 Level III 16.5

EC6: LCD display x64 0.800 15.1” 12.4

Continuous ECs
EC fulfillment

EC technical value
Resource

level (xj) allocation

EC7: Battery 0.941 7.65hr 12.2

It can be seen that in the revised solution in Table 5.12, the size of LCD

display of the notebook computer becomes larger, which straightly leads to a

shorter battery endurance time. Meanwhile, the performance of sound card is a

bit lower compared with the former solution. Although the fulfillment level of

EC6 is improved by sacrificing those of EC4 and EC7, the customer satisfaction of

CR1 is explicitly enhanced to 0.9010 in Table 5.13. Now, all CR fulfillment levels

are above 0.9 and more evenly distributed. The customer satisfaction degree di

of each CR is also calculated in Table 5.13, and the OCS calculation in Eq. (5.9)
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and Table 5.6, i.e.,
∑6

i=1wi · di = 0.6073. Since di is proportional to CSi in the

quantitative Kano’s model, the full customer satisfaction degree is calculated as
∑6

i=1 wi · CSi = 0.7341. After the optimization, the product achieves an overall

satisfaction level of 0.6073 out of 0.7431, i.e.,

Satisfaction level =

∑6
i=1 wi · di∑6
i=1wi · CSi

=
0.6073

0.7431
= 81.73%, (5.24)

which is relatively satisfactory to the decision-makers.

Table 5.13: Results of CR fulfillment levels with regard to the revised
model (5.23).

CRs
CR fulfillment Customer

CSi

Satisfaction

level (yi) satisfaction (di) level (%)

CR1: Stylish design 0.9010 0.6050 0.7661 78.97

CR2: Mobility 0.9268 0.6125 0.7258 84.38

CR3: High computing speed 0.9183 0.6041 0.7213 83.75

CR4: Powerful graphics solution 0.9156 0.6556 0.8065 81.29

CR5: Solid audio capability 0.9066 0.6628 0.8211 80.72

CR6: Large storage 0.9175 0.3032 0.3577 84.77

Overall customer satisfaction (OCS) 0.6073 0.7431 81.73

Besides, for the sake of observing the effect of the budget setting on the final

results, the budget constraint in model (5.23) is modified to be “19.8x+ 17.5x+

14.5x+ 14x+ 16.5x+ 15.5x+ 13x ≤ 90”, while other conditions stay unchanged.

By solving this new model, the same results of xj as in Table 5.10 are obtained

except that x4 = 0.33. It means under a smaller budget limit of 90 units, EC4 is

the first to be affected and sacrificed, and the practitioners should choose Level

I sound card in the new notebook computer design. As a direct consequence,

the lowest and largest CR fulfillment level are y1 = 0.7910 and y2 = 0.8970,

respectively, which indicates all CR fulfillment levels are under 0.9. On this

basis, the satisfaction level will drop to 70.11% compared with 81.73%.

In this section, with the steps in the methodology part, the notebook computer
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development in the CR weighting stage and the product improvement stage are

successively conducted. The computational results are very reasonable in the

practical scenario by considering diverse variables and trade-offs. The sensitivity

of EC4 towards the overall customer satisfaction and the budget setting is also

analyzed. After the whole QFD procedure with a budget of 100 units, target

values of discrete and continuous ECs in a revised solution are settled and selected

according to customer perceptions.

5.5 Discussions

The proposed two-stage cooperative game-theoretic approach integrating Kano’s

model in QFD is a generalized and systematic method, which can be implemented

to the vast majority of manufacturing products in real life. As a close contrast,

in this part the performances between this research and Ji et al. [Jip14]’s method

in both stages in terms of the same case study will be respectively expounded.

As to the contents in Stage 1, the distinctions on relative importance weights

of both researches are extracted and outlined in Table 5.14 for further discus-

sion. Since Ji et al. [Jip14] put the focus on the derivation of a novel quantitative

Table 5.14: The comparison on relative importance weights of CRs.

CRs CR1 CR2 CR3 CR4 CR5 CR6

Kano category A O O A A M

The method in this chapter w1 w2 w3 w4 w5 w6

Weights 0.1789 0.1625 0.1612 0.2035 0.2213 0.0726

Ranking 3 4 5 2 1 6

Ji et al. [Jip14] w′1 w′2 w′3 w′4 w′5 w′6

Weights 0.1460 0.1562 0.1857 0.1624 0.1792 0.1705

Ranking 6 5 1 4 2 3

Kano’s model in that paper, the weights w′i, i = 1, 2, · · · , 6 are given directly with-

out a detailed elaboration. Notably, the weights w′i are relatively even distributed
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and CR3 (O), CR5 (A), and CR6 (M) are concerned about with larger degrees.

However, the outcome of the method raised in this chapter puts more efforts on

the three customer needs CR5, CR4, and CR1 of Attractive attribute, which is

intuitive and reasonable since this is the developing trend of the new product for

the sake of grasping current and potential customers. In addition, CR6 is entitled

with the least importance w6 and the lowest priority in this method owing to its

Must-be attribute. It means CR6 is just a basic requirement nowadays in the new

product design that should be well achieved without doubt. Through the com-

parison, it can be seen that the determination of CR weights based on Shapley

value is of CR weights is of more rationality and effectiveness. Meanwhile, this

structured method is also accompanied by two calculation algorithms to simply

facilitate the actual operation for the decision-makers.

When it comes to the contents in Stage 2, optimization models are built in

both researches by considering separate objective functions. The identical so-

lution of decision variables is computed, which validates the feasibility of the

proposed Nash bargaining based model. Even so, there exist different analyses

on the final results, and the efficiencies of two models are not the same as well.

Firstly, the final solution adopted is a revised one and whose reason is clearly ex-

plained in Section 5.4.2. Analogously, such a situation also happened in [Jip14],

however they omitted the relevant solution process description. Secondly, it is

noted that in the calculation formula of satisfaction level in Eq. (5.24), wi plays

an important role and has a direct effect on the outcome. This close connec-

tion indicates that the determination of CR weights is of great significance in

more precisely evaluating the satisfaction level of the upgraded product after op-

timization. Lastly, the budget analysis in Section 5.4.2 reflects the importance of

the capital investment on CR fulfillment levels and consumers’ satisfaction level

towards the product development.

On the whole, three pieces of managerial implications can be figured out in
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this case study. Firstly, the rational ascertaining of CR weights is the first and

vital step before formulating optimization models in the QFD procedure so as

to guarantee the feasibility and effectiveness of subsequent computations. Based

on this rule, this chapter helps provide a systematic and useful approach for

the decision-makers to obtain the CR weights for most manufacturing products.

Secondly, a revised solution sometimes should be considered when the original

solution seems not so reasonable in practice. And this research elaborates the

detailed reasoning behind it as a demonstration for the decision-makers. The last

but not the least, it is also vital to put a sufficient investment in new product

design. It is seen that the fulfillment level of each CR largely exceeds that of

other companies Comp1-Comp4 in Table 5.8, due to a budget of 100 units.

5.6 Summary

The research in this chapter combined another benefit or resource distribution

tool - cooperative game theory into product design process in two stages. Different

from traditional QFD which considers CRs individually or comparatively, CRs

were treated as a group with cooperation or bargaining. On this basis, the whole

QFD process was observed from a novel cooperative game-theoretic angle.

In summary, the major contributions lay in several aspects as follows. Firstly,

Shapley value was employed as each CR’s marginal contribution to the whole

customer satisfaction, and a Nash bargaining function among all customer re-

quirements was served as the objective function of an optimization model. As

a consequence, two critical issues in QFD were solved, i.e., the CR weighting

and the EC target value determination. Secondly, a quantitative Kano’s model

was also adopted through the whole QFD process, and the selected figures and

functions in Kano’s model were defined as corresponding value functions in the

Shapley value and Nash bargaining calculations. Thirdly, two simple algorithms
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to obtain the CR weighting were designed, which targeted on improving the feasi-

bility and execution of the proposed method in real-life applications. Finally, the

proposed method was implemented to a notebook computer design case study

for quality development in defeating rivals in the market, and target values of

ECs were determined according to customer perceptions. Meanwhile, compar-

isons and discussions with other researches were also conducted. The example

demonstrated that the proposed approach was able to model the practical product

planning process effectively and efficiently.

The next chapter deals with quality function deployment optimization from

the perspective of fuzzy theories. The analytical derivations on expected values of

different fuzzy events play a significant role. At first, the fuzzy importance of ECs

are ranked through expected values. Then, target levels of ECs are determined

through an expected value model with fuzzy parameters.
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Chapter 6

Determination of Fuzzy
Importance and Target Levels of
ECs in Fuzzy QFD

The previous chapter elaborated a two-stage cooperative game, which dealt with

the determination of CR relative importance weights and target values of ECs.

All parameters in the optimization procedure were settled to be crisp numbers.

In this chapter, the HoQ is evaluated by linguistic statements which correspond

to a group of trapezoidal fuzzy numbers, based on which two research points

regarding ECs in fuzzy QFD are conducted.

Primarily, the rating of the fuzzy importance of ECs is obtained with the aid

of a newly derived calculation formula, making use of the fuzzy weights of CRs

and fuzzy relationships between CRs and ECs. Afterwards, an expected value

model with fuzzy parameters integrating a quantitative Kano’s model is estab-

lished to determine target levels of ECs in accordance with all the information

listed in the fuzzy HoQ. An improved hybrid intelligent algorithm (iHIA), which

consists of a fuzzy simulation procedure for the expected value of fuzzy events,

the TNIA-S, and a genetic algorithm, is utilized to solve the proposed fuzzy op-

timization model. Finally, the whole method is implemented to the notebook

computer development case study to demonstrate its feasibility and effectiveness.

The priority of the fuzzy importance of ECs in the case study is attained. Mean-
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while, by applying the iHIA, different combinations of target levels of ECs are

computed in regard to varied confidence levels. In consideration of the preference

and trade-off of the decision-makers, a set of target levels at a certain confidence

level are ascertained as the ultimate solution.

6.1 Introduction

Since the HoQ in QFD is usually evaluated according to experts’ knowledge

and experience, the fuzzy set theory of describing vague and ambiguous events

seems appropriate to be incorporated in this subjective evaluation. The process

is, the judgments expressed by linguistic variables are firstly utilized to depict

the fuzzy elements in the HoQ. Then, the corresponding fuzzy variables of these

linguistic variables are defined, which will be listed in different matrices of the

HoQ. Commonly, the fuzzy elements include the CR importance weights, the

relationships between CRs and ECs, and the correlations among ECs, etc.

The fuzzy variables considered in this chapter are trapezoidal fuzzy numbers

(TpFNs), which is a kind of widely used fuzzy variables in applications like [Zha05,

Liu15c, Zho18]. Suppose that n CRs and q ECs are outlined from a manufacturing

product. Then, different TpFNs will be predefined to assess the fuzzy weights of

CRs, wi, i = 1, 2, · · · , n in matrix W , and the fuzzy relationships between CRs

and ECs, rij, i = 1, 2, · · · , n, j = 1, 2, · · · , q in matrix R.

Notably, the basic research points in the traditional QFD are also applicable

to the fuzzy QFD. Relevant literature review can be found in Section 2.3. In

particular, this chapter focuses on two of the research points regarding ECs, i.e.,

the determination of the priority of the fuzzy importance of ECs, and fulfillment

levels of ECs through a fuzzy optimization model. Generally, the fuzzy impor-

tance of ECs is obtained by calculating the expected value of the multiplication

of two fuzzy matrices, W and R. To simplify this calculation procedure, a direct
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formula for the expected value for the product of two TpFNs is given in this

chapter. When it comes to the setting of target levels of ECs in fuzzy QFD, ex-

pected value models (EVM) with fuzzy parameters are commonly built [Che05].

Then, the proposed fuzzy EVM is transformed into a deterministic and simplified

optimization model by virtue of several definitions and theorems on the expected

value of fuzzy variables and fuzzy events. In addition, an improved hybrid intel-

ligent algorithm (iHIA) which integrates the TNIA-S in Chapter 4 and a genetic

algorithm is combined to solve the proposed fuzzy EVM, through which a series

of target levels of ECs can be obtained.

The remaining contents of this chapter are arranged as follows. Firstly, the

detailed calculation procedure on the expected value for the fuzzy importance

of ECs is elaborated in Section 6.2. Subsequently, the model formulation and

solution of a fuzzy EVM in QFD are set forth in Section 6.3, respectively. In

Section 6.4, the fuzzy HoQ with six CRs and seven ECs of the same case study

of a notebook computer development is given at first. On this basis, the priority

of the fuzzy importance of ECs is addressed and different solutions of the fuzzy

EVM are discussed. Finally, Section 6.5 concludes the whole chapter.

6.2 The Fuzzy Importance of ECs

Corresponding to the CR importance weights, the acquisition of the EC fuzzy

importance or the prioritization of ECs is also an important research point in

QFD. As introduced above, the fuzzy importance of ECs can be obtained via the

multiplication of two matrices W and R in the HoQ. According to Chen et al.

[Che05], the EC importance, vj, for ECj can be formulated as

vj =
n∑

i=1

wirij, j = 1, 2, · · · , q, (6.1)

in which wi in matrix W represents the relative importance weight of CRi, i =

1, 2, · · · , n, and rij in matrix R stands for the relationship between CRi and ECj,
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i = 1, 2, · · · , n, j = 1, 2, · · · , q. Since both wi and rij are assumed to be fuzzy

variables in this chapter, the product of them is also fuzzy, which seems hard to

be measured in an intuitive way. On this basis, an expected value operator for

vj, E[vj], is utilized as a defuzzification approach [Che05], i.e.,

E[vj] = E
[ n∑

i=1

wirij

]
, j = 1, 2, · · · , q (6.2)

Nevertheless, the expected value for the product of two fuzzy variables is also

not simple to obtain. Chen et al. [Che06a] took advantage of a fuzzy weighted

average method through h-cuts in [0,1] to approximate the expected value. Com-

pared with the research in [Che06a], Liu et al. [Liu16] directly put forward a

calculation formula to derive the exact expected value for the product of two

triangular fuzzy numbers (TFNs). Notably, the fuzzy variables to describe the

ambiguous linguistic statements in matrices W and R in this chapter are TpFNs,

which belong to the area of regular fuzzy intervals. Thereby, in this section, by

means of the computation principle in [Liu16] and several newly proved theo-

rems on regular fuzzy intervals in Chapter 4, the calculation formula on the exact

expected value for the product of two TpFNs will be obtained.

First of all, according to Theorem 4.10, the expected value of a TpFN ξ ∼

A(a, b, c, d) can be derived as

E[ξ] =

∫ 1

0

ξA sup(α)

=

∫ 0.5

0

(
d− 2(d− c)α

)
dα +

∫ 1

0.5

(
2b− a− 2(b− a)α

)
dα

=
a+ b+ c+ d

4
,

(6.3)

in which the analytical expression of the α-optimistic value of a TpFN, ξA sup(α),

is in Eq. (4.38). It is easily verified that, the calculation result in Eq. (6.3)

based on the α-optimistic value is identical to the one acquired by virtue of the

original credibility measure-based definition on the expected value operator for
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fuzzy variables in [Liu02a, Liu02b]. A simple example regarding the expected

value of a TpFN is given as follows:

Example 6.1 Suppose that ξ is a TpFN, and is written as A(1, 2, 3, 5). Then,

in line with Eq. (6.3), the expected value of ξ is calculated as

E[ξ] =
1 + 2 + 3 + 5

4
=

11

4
.

Subsequently, assume that ξ1 ∼ A(a1, b1, c1, d1) and ξ2 ∼ A(a2, b2, c2, d2) are

two TpFNs with α-optimistic values ξ1 sup(α) and ξ2 sup(α), respectively. If both

ξ1 and ξ2 are nonnegative TpFNs (i.e., a1 ≥ 0 and a2 ≥ 0), then the product

ξ = ξ1ξ2 is strictly increasing with respect to ξ1 and ξ2, respectively. Therefore,

based on Theorems 4.10 and 4.11, the expected value for the product of two

TpFNs ξ = ξ1ξ2 can be formulated as

E[ξ] = E[ξ1ξ2] =

∫ 1

0

ξ1 sup(α)ξ2 sup(α)dα. (6.4)

Afterwards, by plugging the analytical expression of the α-optimistic value of a

TpFN in Eq. (4.38) into Eq. (6.4), it is attained that

E[ξ] = E[ξ1ξ2] =

∫ 1

0

ξ1 sup(α)ξ2 sup(α)dα

=

∫ 0.5

0

(
d1 − 2(d1 − c1)α

)
×
(
d2 − 2(d2 − c2)α

)
dα

+

∫ 1

0.5

(
2b1 − a1 − 2(b1 − a1)α

)
×
(

2b2 − a2 + 2(b2 − a2)α
)

dα

=
1

6

(
a1a2 + b1b2 + c1c2 + d1d2

)
+

1

12

(
a1b2 + a2b1 + c1d2 + c2d1

)
.

(6.5)

The following numerical example is served as a simple display of the above

calculation formula.

Example 6.2 Let ξ1 ∼ A(1, 2, 3, 5) and ξ2 ∼ A(3, 5, 7, 10). Then, in accordance

with Eq. (6.5), the expected value for the product of these two TpFNs is computed
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as

E[ξ1ξ2] =
1

6

(
1× 3 + 2× 5 + 3× 7 + 5× 10

)
+

1

12

(
1× 5 + 3× 2

+3× 10 + 7× 5
)

=
61

3
.

Afterwards, in order to obtain the expected value of the fuzzy importance of

ECs, a simplified expression of Eq. (6.2) can be further generated. That is, due to

the independence of w1r1q, w2r2q, · · · , wnrnq in the QFD process, and the linearity

of the expected value operator proved in [Liu02b], Eq. (6.2) is transformed into

E[vj] =
n∑

i=1

E[wirij] j = 1, 2, · · · , q. (6.6)

For instance, E[v1] can be represented as

E[v1] = E[w1r11] + E[w2r21] + · · ·+ E[wnrn1], (6.7)

in which each part can be achieved by applying Eq. (6.5). As a consequence, the

fuzzy importance of ECs can be correspondingly prioritized according to their

exact expected values, E[vj].

6.3 A Fuzzy Expected Value Model in QFD

Different from the mixed integer non-linear programming model with crisp pa-

rameters in Chapter 5, an expected value model (EVM) with fuzzy parameters

is established in this section. It is clearly that the fuzzy elements are the CR

importance weights and the relationships between CRs and ECs.

The fuzzy EVM is composed of an expected return of a fuzzy objective func-

tion and several constraints including constraints on the expected fulfillment levels

of CRs. The model will be formulated with a detailed elaboration of the objective

function and all the constraints. In particular, the analytical expressions of the

original objective function and some constraints will be further derived into sim-

plified ones, so as to be incorporated in the iHIA to get solutions. The TNIA-S
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for regular fuzzy intervals in Chapter 4 will be embedded in the iHIA to replace

the original fuzzy simulation procedure for the expected value of fuzzy events in

the HIA - the SDA. The specific algorithm steps of the iHIA for the fuzzy EVM

will also be provided.

6.3.1 Model formulation with fuzzy parameters

The objective function and constraints of the proposed fuzzy EVM are mainly

based on the optimization model from Ji et al. [Jip14], which are formulated as

follows:




max
n∑

i=1

E[wi · di(yi)] (6.8)

s.t.
q∑

j=1

cjxj ≤ B (6.9)

yi =
1

D′i

q∑

j=1

rijxj, i = 1, 2, · · · , n (6.10)

E[yi]

E[Yi]
≥ α, i = 1, 2, · · · , n (6.11)

0 ≤ xj ≤ 1, j = 1, 2, · · · , q (6.12)

Lj ≤ xj ≤ Hj, j = 1, 2, · · · , q (6.13)

In the above fuzzy EVM, decision variables are fulfillment levels of ECs, xj,

j = 1, 2, · · · , q. To make it easier to observe the changes of decision variables, all

ECs are supposed to be continuous ones of either the cost type (C-type) or the

benefit type (B-type) in Eq. (5.14). Normally, all xj ∈ [0, 1], j = 1, 2, · · · , q, as

written in (6.12), and under some circumstances, xj is expected to have a lower

bound Lj or an upper bound Hj as written in (6.13).

More specifically, the objective function (6.8) indicates the calculation on the

expected value for the overall customer satisfaction (OCS), which is consistent
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with Eq. (5.9) in Chapter 5. Nevertheless, the differences lie in two aspects,

i.e., wi, i = 1, 2, · · · , n, are known fuzzy parameters predetermined by experts,

and di(yi), i = 1, 2, · · · , n, contain three fuzzy relationship functions between the

fulfillment levels of CRs, yi, and their respective customer satisfaction in Kano’s

model. Analogously to the derivation process of Eq. (6.6), the expected return of

this fuzzy objective function undergoes the following transformation in line with

Eq. (5.9),

E[OCS] = E
[ n∑

i=1

wi · di(yi)
]

=
n∑

i=1

E[wi · di(yi)]. (6.14)

As to all the constraints, constraint (6.9) represents a budget limit, B, of

the whole product development with crisp cost coefficients, cj, for ECj, j =

1, 2, · · · , q. Apart from this, it can be seen that two particular constraints are

related to fulfillment levels of CRs, yi. Firstly, constraint (6.10) demonstrates

the fulfillment level of each CR, through the multiplication between the fuzzy

relationship matrix of CRs and ECs, (rij)n×q, and the decision variable vector,

X = [x1, x2, · · · , xq]T . Due to the reason that rij is evaluated by TpFNs in this

chapter, yi is calculated to be a new TpFN via basic fuzzy computations, i.e., yi ∼

A(Ai

D′i
, Bi

D′i
, Ci

D′i
, Di

D′i
) with 0 < Ai

D′i
< Bi

D′i
< Ci

D′i
< Di

D′i
. Secondly, in constraint (6.11),

the expected value for yi over the expected value for Yi is preferred to be larger

than a confidence level of α estimated by the decision-makers, in which α ∈ (0, 1).

The value of Yi is obtained based on (6.10) as follows:

Yi =
1

D′i

q∑

j=1

rij, i = 1, 2, · · · , n, (6.15)

where all xj, j = 1, 2, · · · , q are supposed to satisfy the maximum fulfillment

level of 1 in (6.10). Similarly, it is attained that Yi ∼ A(
A′i
D′i
,
B′i
D′i
,
C′i
D′i
,
D′i
D′i

) or

A(
A′i
D′i
,
B′i
D′i
,
C′i
D′i
, 1) with 0 <

A′i
D′i
<

B′i
D′i
<

C′i
D′i
< 1. And it is easily found that Di ≤ D′i.

Therefore, the values of E[yi] and E[Yi] can be formulated according to Eq. (6.3),
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and are respectively expressed as follows:

E[yi] =
Ai +Bi + Ci +Di

4D′i
, i = 1, 2, · · · , n (6.16)

E[Yi] =
A′i +B′i + C ′i +D′i

4D′i
, i = 1, 2, · · · , n. (6.17)

Notably, it can be further derived that if the fuzzy relationships, rij, i =

1, 2, · · · , n, j = 1, 2, · · · , q are settled, the value of E[Yi] is known. Besides,

constraint (6.11) can be rewritten as

E[yi]

E[Yi]
=
Ai +Bi + Ci +Di

A′i +B′i + C ′i +D′i
≥ α. (6.18)

6.3.2 Model solution with an improved HIA

The biggest obstacle of solving the proposed optimization model is the com-

putation of the objective function. Based on Theorem 4.11, the expression of

E[wi · di(yi)] in the objective function (6.8) can be equivalently transformed into:

E[wi · di(yi)] =

∫ 1

0

wi sup(α) · di(yi sup(α))dα, (6.19)

in which wi and yi are TpFNs, and wi sup(α) and yi sup(α) are their α-optimistic

values, respectively. The analytical expression of the α-optimistic value of a

TpFN can be found in Eq. (4.38). The detailed relationship functions, di(yi), are

exponential or linear functions displayed in Table 5.3 in Chapter 5. It is figured

out that fulfillment levels of CRs, yi, are fuzzy now, then the results of fuzzy

functions di(yi) are also fuzzy, for i = 1, 2, · · · , n.

According to Liu [Liu02a], the HIA can be employed to solve the proposed

optimization model. However, as proved by several numerical examples in Chap-

ter 4, its internal fuzzy simulation procedure, the SDA, for expected values of

fuzzy events lacks accuracy and stability. Since the α-optimistic value of a TpFN

is easily obtained, the TNIA-S is adopted here to substitute the original SDA in

the HIA to help solve the model. In order to adapt to the model formulation,
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the steps of TNIA-S especially designed for the objective function are described

as follows:

Algorithm 1 (TNIA-S for
∑n

i=1 E[wi · di(yi)])

Step 1. Initialize the number of integration points N . Let E = 0 and k = 1.

Step 2. Set α = k/N . For each 1 ≤ i ≤ n, according to the calculation formula
of α-optimistic values in Eq. (6.19), calculate the value of E[wi · di(yi)].

Step 3. Reset E = E +
∑n

i=1 E[wi · di(yi)]/N and k = k + 1.

Step 4. If k ≤ N , go to Step 2. Otherwise, return E as the simulation value of
the expected value

∑n
i=1E[wi · di(yi)].

On this basis, an improved HIA (iHIA) which incorporates the fuzzy simula-

tion for the objective function in Algorithm 1 and a genetic algorithm is provided

for solving the proposed fuzzy EVM. The detailed steps are listed as follows:

Algorithm 2 (iHIA for solving fuzzy EVM)

Step 1. Initialize pop-size chromosomes that satisfy constraints.

Step 2. Calculate the values of
∑n

i=1E[wi · di(yi)] for all chromosomes with the
aid of Algorithm 1.

Step 3. Compute the fitness of each chromosome by the rank-based evaluation
function based on the values obtained in Step 2.

Step 4. Select the chromosomes by spinning the roulette wheel.

Step 5. Update the chromosomes by crossover and mutation operations, and
check the feasibility of offsprings by constraints.

Step 6. Repeat Steps 2, 3, 4, and 5 for a given number of cycles.

Step 7. Report the best chromosome as the optimal solution.
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6.4 Case Study: A Notebook Computer Devel-

opment

In this section, the proposed methods of determining the fuzzy importance of

ECs and target levels of ECs will be implemented to the same case study of the

notebook computer development as in Chapter 5. The identical six major CRs

of the notebook computer are mapped into seven specific ECs. Above all, the

original crisp HoQ is reevaluated by some predefined linguistic variables, and are

expressed by a series of fuzzy variables accordingly, which are enumerated and

illustrated in Figure 6.1 as follows:

0 1.0

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

UI/VW SI/W MI/M I/S V I/V S

CR importance weight CR and EC relationship TFN/TpFN

UI : unimportant V W : very weak A(0, 0, 0.1, 0.2)

SI : some important W : weak A(0.1, 0.25, 0.35, 0.5)

MI : moderately important M : moderate T (0.4, 0.5, 0.6)

I : important S : strong A(0.5, 0.65, 0.75, 0.9)

V I : very important V S : very strong A(0.8, 0.9, 1, 1)

Figure 6.1: The linguistic variables and fuzzy variables in matrices W and R.

It can be seen that the CR importance weights are categorized into five

levels, that is, unimportant (UI), some important (SI), moderately important

(MI), important (I), and very important (VI). Meanwhile, five levels of strength
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are utilized to describe relationships between CRs and ECs, that is, very weak

(VW), weak (W), moderate (M), strong (S), and very strong (VS). The TpFNs

A(0, 0, 0.1, 0.2), A(0.1, 0.25, 0.35, 0.5), A(0.4, 0.5, 0.5, 0.6), A(0.5, 0.65, 0.75, 0.9),

and A(0.8, 0.9, 1, 1) are used to quantify the five levels of linguistic variables. In

fact, as explained in Chapter 4, a TFN can be viewed as a degradation form of

a TpFN. Thus, the third TpFN A(0.4, 0.5, 0.5, 0.6) will be replaced by the TFN

T (0.4, 0.5, 0.6) directly. The membership functions of all the fuzzy variables are

also illustrated in Figure 6.1. Notably, this scoring method is adopted and slightly

simplified from [Che06a].

Subsequently, the fuzzy HoQ of the notebook computer design can be attained

in Table 6.1. The evaluation of all the fuzzy elements in matrices W and R is

mutually agreed via the Delphi method of 20 relevant experts and professionals.

It is observed that four minus marks appear in the matrix R, which implies a

potential reverse relationship. For example, as to the relationship between CR1

(Stylish design) and EC7 (Battery), “S(-)” means the design of the battery, such

as its shape, size, and weight, may have a strong but negative effect on the stylish

design. Besides, the cost coefficients and technical measures with minimal and

maximal values for ECs in the current market are also listed on the bottom of

the fuzzy HoQ.

6.4.1 Ranking of the EC importance

In the previous chapter, half of the focus was put on the determination of the

CR importance weights, which is an in-depth understanding of customer needs.

Whereas, the determination of the EC importance is also a vital basis for the

decision-makers to allocate enterprise resources properly. According to the con-

tents in Section 6.1 and the fuzzy HoQ in Table 6.1, the fuzzy importance of ECs

can be obtained and prioritized through their expected values.
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Table 6.1: The fuzzy HoQ of the notebook computer design.

1. Stylish design (A) MI W W M(-) VW VW VS S(-)

2. Mobility (O) MI W W M(-) VW VW S VS(-)

3. High computing speed (O) VI VS VS M W VS VW S

4. Powerful graphics solution (A) I VS VS W VW VS S S

5. Solid audio capability (A) I M M VW VS VW VW W

6. Large storage (M) SI W W VS VW VW VW VW

19.8 17.5 15.5 14 16.5 14.5 13

GHz GB G KHz MHz Inch Hour

1.8 1 64 44.1 500 11.1 2

3.6 8 1024 192 1500 17.1 8

W  rating level Trapezoidal fuzzy numbers

Unimportant (UI)

Some important (SI)

Moderately important (MI)

Technical Constraints (ECH)

5
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 c
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Technical Constraints (ECL)

                                                   ECs
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               Weights w i  (%)

1
. 

C
P

U

2
. 

R
A

M

3
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4
. 
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R  rating level

Very weak (VW)

Weak (W)

Technical Measures

Moderate (M)

(0,0,0.1,0.2)

(0.1,0.25,0.35,0.5)

(0.4,0.5,0.5,0.6)
Firstly, the importance of EC1, v1, is calculated as a demonstration. In this

case study, the quantity of CRs, n = 6, in Eq. (6.7), i.e.,

E[v1] =
6∑

i=1

E[wiri1] = E[w1r11] + E[w2r21] + · · ·+ E[w6r61], (6.20)

where w1, w2, · · · , w6, and r11, r21, · · · , r61 are all independent and nonnegative

TFNs and TpFNs listed in Table 6.1. It is seen that w1 ∼ T (0.4, 0.5, 0.6),

and r11 ∼ A(0.1, 0.25, 0.35, 0.5), and after the fuzzy variables are plugged into

Eq. (6.20) via the simplified expression in Eq. (6.5), the values of E[w1r11] can

be attained as

E[w1r11] =
1

6
× (0.4× 0.1 + 0.5× 0.25 + 0.5× 0.35 + 0.6× 0.5)

+
1

12
× (0.4× 0.25 + 0.1× 0.5 + 0.5× 0.5 + 0.35× 0.6)

= 0.1575.

(6.21)
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Following the calculation steps in Eq. (6.21), the values of E[w2r21] ∼ E[w6r61]

are easily acquired. Then, the value of E[v1] can be computed as follows:

E[v1] =
6∑

i=1

E[wiri1] = E[w1r11] + E[w2r21] + · · ·+ E[w6r61]

= 0.1575 + 0.1575 + 0.8617 + 0.6575 + 0.3575 + 0.1075

= 2.2992.

(6.22)

Analogous to the calculation procedure for the expected value of the fuzzy

importance of EC1, E[v1], the expected values of the fuzzy importance of all the

remaining ECs from EC2 to EC7 are figured out and summarized in Table 6.2.

As a general rule, the larger the value of E[vj] is, the larger importance and the

higher priority ECj can get. Thereby, the ranking of the fuzzy importance of ECs

are shown in Table 6.2 in accordance with their corresponding values of E[vj],

j = 1, 2, · · · , 7. Apparently, EC1 (CPU) and EC2 (RAM) both score the highest

Table 6.2: The ranking of the fuzzy importance of ECs in the case study.

Seven ECs

EC1 EC2 EC3 EC4 EC5 EC6 EC7

CPU RAM
Hard Sound Graphic LCD

Battery
disk card card display

E[vj ] 2.2992 2.2992 1.5508 1.1233 1.6975 1.5017 2.2492

Ranking 1 1 5 7 4 6 3

and are equipped with a greater superiority compared with other ECs, while EC7

(Battery) is close behind at the third place. Then, EC5 (Graphic card) has a

slight advantage to win the fourth place, and is followed by EC3 (Hard disk) and

EC6 (LCD display) successively. Finally, EC4 (Sound card) is distinguished as

the least important. It is remarked that this ranking is calculated based on the

subjective evaluation on two matrices of fuzzy variables, and the expected value

is served as a defuzzification method.
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6.4.2 Results of the EC fulfillment levels

In order to establish the fuzzy EVM for the case study, the expressions of both

the objective function and constraints written by the case data are needed to be

derived. Firstly, based on the information listed in the fuzzy HoQ in Table 6.1,

all the constraints of the fuzzy EVM can be primarily obtained as follows:

Above all, the budget constraint is the same as the one in the case study

in Chapter 5, where the cost coefficient for each EC, cj, is enumerated in the

fuzzy HoQ, and the budget, B, is also 100 units. Then, since the relationship

matrix, (rij)n×q, is predetermined, according to Eq. (6.15), it is acquired that

Y1 ∼ A(1.9
3.9
, 2.55

3.9
, 3.15

3.9
, 1), Y2 ∼ A(1.9

3.9
, 2.55

3.9
, 3.15

3.9
, 1), Y3 ∼ A(3.4

5.2
, 4.1

5.2
, 4.7

5.2
, 1), Y4 ∼

A(3.5
5.5
, 4.25

5.5
, 4.95

5.5
, 1), Y5 ∼ A(1.7

3.3
, 2.15

3.3
, 2.65

3.3
, 1), and Y6 ∼ A( 1

2.8
, 1.4

2.8
, 2.1

2.8
, 1). It can be

found that, the values of D′1 ∼ D′6 are 3.9, 3.9, 5.2, 5.5, 3.3, and 2.8, respectively.

Thereby, by virtue of the formula in (6.10), the TpFNs for yi ∼ A(A1

D′1
, B1

D′1
, C1

D′1
, D1

D′1
)

can also be computed, which are represented in Table 6.3.

Afterwards, by applying Eq. (6.18), the expressions of
E[yi]

E[Yi]
in constraint

(6.11) can be further derived. For instance, the simplified expression of
E[y1]

E[Y1]

can be obtained as follows:

A1 +B1 + C1 +D1 = (0.1x1 + 0.1x2 + 0.4x3 + 0.8x6 + 0.5x7)

+(0.25x1 + 0.25x2 + 0.5x3 + 0.9x6 + 0.65x7)

+(0.35x1 + 0.35x2 + 0.5x3 + 0.1x4 + 0.1x5 + x6 + 0.75x7)

+(0.5x1 + 0.5x2 + 0.6x3 + 0.2x4 + 0.2x5 + x6 + 0.9x7)

= 1.2x1 + 1.2x2 + 2x3 + 0.3x4 + 0.3x5 + 3.7x6 + 2.8x7

A′1 +B′1 + C ′1 +D′1 = 1.9 + 2.55 + 3.15 + 3.9

E[y1]

E[Y1]
=
A1 +B1 + C1 +D1

A′1 +B′1 + C ′1 +D′1

=
1.2x1 + 1.2x2 + 2x3 + 0.3x4 + 0.3x5 + 3.7x6 + 2.8x7

1.9 + 2.55 + 3.15 + 3.9
(6.23)
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Analogously to the above procedure, the simplified expressions for
E[yi]

E[Yi]
, i =

2, 3, · · · , 6 can be easily derived. Consequently, the fuzzy EVM of the case study

is formulated as follows:





max
6∑

i=1

∫ 1

0

wi sup(α) · di(yi sup(α))dα

d1(y1 sup(α)) = 0.6289ey1 sup(α) − 0.9434

d2(y2 sup(α)) = 1.5484y2 sup(α)− 0.8226

d3(y3 sup(α)) = 1.4344y3 sup(α)− 0.7131

d4(y4 sup(α)) = 0.6852ey4 sup(α) − 1.0562

d5(y5 sup(α)) = 0.6529ey5 sup(α) − 0.9538

d6(yi6sup(α)) = −1.7235e−y6 sup(α) + 0.9917

s.t.

19.8x1 + 17.5x2 + 14.5x3 + 14x4 + 16.5x5 + 15.5x6 + 13x7 ≤ 100

1.2x1 + 1.2x2 + 2x3 + 0.3x4 + 0.3x5 + 3.7x6 + 2.8x7

1.9 + 2.55 + 3.15 + 3.9
≥ α

1.2x1 + 1.2x2 + 2x3 + 0.3x4 + 0.3x5 + 2.8x6 + 3.7x7

1.9 + 2.55 + 3.15 + 3.9
≥ α

3.7x1 + 3.7x2 + 2x3 + 1.2x4 + 3.7x5 + 0.3x6 + 2.8x7

3.4 + 4.1 + 4.7 + 5.2
≥ α

3.7x1 + 3.7x2 + 1.2x3 + 0.3x4 + 3.7x5 + 2.8x6 + 2.8x7

3.5 + 4.25 + 4.95 + 5.5
≥ α

2x1 + 2x2 + 0.3x3 + 3.7x4 + 0.3x5 + 0.3x6 + 1.2x7

1.7 + 2.15 + 2.65 + 3.3
≥ α

1.2x1 + 1.2x2 + 3.7x3 + 0.3x4 + 0.3x5 + 0.3x6 + 0.3x7

1 + 1.4 + 2.1 + 2.8
≥ α

0 ≤ xj ≤ 1, j = 1, 2, · · · , 7
(6.24)

As far as the objective function is concerned, the calculations on E[wi · di(yi)]

for i = 1, 2, · · · , 6 in the objective function are respectively expounded here. As is

known, w1 ∼ T (0.4, 0.5, 0.6) in Table 6.1, and y1 ∼ A(A1

3.9
, B1

3.9
, C1

3.9
, D1

3.9
) in Table 6.3.
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Then, according to Eq. (6.19), the detailed expression for E[w1 · d1(y1)] written

by the α-optimistic value is obtained as

E[w1 · d1(y1)] =

∫ 1

0

w1 sup(α) · d1(y1 sup(α))dα

=

∫ 0.5

0

(0.6− 0.2α)
(

0.6289e

(
D1
3.9
−2(

D1
3.9
−C1

3.9
)α
)
− 0.9434

)
dα

+

∫ 1

0.5

(0.6− 0.2α)
(

0.6289e

(
2B1
3.9
−A1

3.9
−2(

B1
3.9
−A1

3.9
)α
)
− 0.9434

)
dα,

(6.25)

where the derivations of w1 sup(α) and y1 sup(α) are based on Eq. (4.38), and

the exponential function d1(y1 sup(α)) for CR1 of Attractive attribute in Kano’s

model appears in model (6.24). Similarly, as to the calculation on E[w2 · d2(y2)],

w2 ∼ T (0.4, 0.5, 0.6), and y2 ∼ A(A2

3.9
, B1

3.9
, C1

3.9
, D1

3.9
), so it is calculated that

E[w2 · d2(y2)] =

∫ 1

0

w2 sup(α) · d2(y2 sup(α))dα

=

∫ 0.5

0

(0.6− 0.2α)
(

1.5484
(D2

3.9
− 2(

D2

3.9
− C2

D3.9
)α
)
− 0.8226

)
dα

+

∫ 1

0.5

(0.6− 0.2α)
(

1.5484
(2B2

3.9
− A2

3.9
− 2(

B2

3.9
− A2

3.9
)α
)
− 0.8226

)
dα.

(6.26)

Then, w3 ∼ A(0.8, 0.9, 1, 1), and y3 ∼ A(A3

5.2
, B3

5.2
, C3

5.2
, D3

5.2
), it is attained that

E[w3 · d3(y3)] =

∫ 1

0

w3 sup(α) · d3(y3 sup(α))dα

=

∫ 0.5

0

1 ∗
(

1.4344
(D3

5.2
− 2(

D3

5.2
− C3

5.2
)α
)
− 0.7131

)
dα

+

∫ 1

0.5

(1− 0.2α)
(

1.4344
(2B3

5.2
− A3

5.2
− 2(

B3

5.2
− A3

5.2
)α
)
− 0.7131

)
dα.

(6.27)

Both d2(y2 sup(α)) and d3(y3 sup(α)) are linear functions for CR2 and CR3

of One-dimensional attribute in Kano’s model. Afterwards, w4 and w5 ∼
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A(0.5, 0.65, 0.75, 0.9), and y4 ∼ A(A4

5.5
, B4

5.5
, C4

5.5
, D4

5.5
), y5 ∼ A(A5

3.3
, B5

3.3
, C5

3.3
, D5

3.3
), then it

is respectively obtained that

E[w4 · d4(y4)] =

∫ 1

0

w4 sup(α) · d4(y4 sup(α))dα

=

∫ 0.5

0

(0.9− 0.3α)
(

0.6852e

(
D4
5.5
−2(

D4
5.5
−C4

5.5
)α
)
− 1.0562

)
dα

+

∫ 1

0.5

(0.8− 0.3α)
(

0.6852e

(
2B4
5.5
−A4

5.5
−2(

B4
5.5
−A4

5.5
)α
)
− 1.0562

)
dα.

(6.28)

E[w5 · d5(y5)] =

∫ 1

0

w5 sup(α) · d5(y5 sup(α))dα

=

∫ 0.5

0

(0.9− 0.3α)
(

0.6529e

(
D5
3.3
−2(

D5
3.3
−C5

3.3
)α
)
− 0.9538

)
dα

+

∫ 1

0.5

(0.8− 0.3α)
(

0.6529e

(
2B5
3.3
−A5

3.3
−2(

B5
3.3
−A5

3.3
)α
)
− 0.9538

)
dα.

(6.29)

Both d4(y4 sup(α)) and d5(y5 sup(α)) are exponential functions, since CR4 and CR5

are of attractive attributes in Kano’s model. At last, w6 ∼ A(0.1, 0.25, 0.35, 0.5),

and y6 ∼ A(A6

2.8
, B6

2.8
, C6

2.8
, D6

2.8
), then it can be obtained that

E[w6 · d6(y6)] =

∫ 1

0

w6 sup(α) · d6(y6 sup(α))dα

=

∫ 0.5

0

(0.5− 0.3α)
(
− 1.7235e−

(
D6
2.8
−2(

D6
2.8
−C6

2.8
)α
)

+ 0.9917
)

dα

+

∫ 1

0.5

(0.4− 0.3α)
(
− 1.7235e−

(
2B6
2.8
−A6

2.8
−2(

B5
2.8
−A6

2.8
)α
)

+ 0.9917
)

dα,

(6.30)

in which d6(y6 sup(α)) is an exponential function for CR6 of Must-be attribute in

Kano’s model.

Although the analytical results of the integrals in Eqs. (6.26) and (6.27) are

not difficult to derive, it is not simple to obtain the analytical results of the

integrals in Eqs. (6.25), (6.28), (6.29), and (6.30), especially when Ai, Bi, Ci, Di,
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i = 1, 2, · · · , 6, all contain decision variables. On this basis, the iHIA is applied

to the fuzzy EVM for the case study in model (6.24) so as to figure out the

optimal solution. Before the fuzzy EVM is solved, some essential parameters in

the iHIA are predetermined. The population size (pop-size) is 30, the probability

of crossover Pc is 0.3, the probability of mutation Pm is 0.2, and the parameter

a in the rank-based evaluation function is set as 0.05. All the parameters setting

is adopted from [Liu02a]. Meanwhile, the number of integration points N in

Algorithm 1 is 5000 in consideration of both the accuracy and computational

time.

The confidence level α is scaled from 0.1 to 0.9 to observe the corresponding

changes of the fulfillment levels of ECs, the expected return, and the design cost,

whose results are illustrated in Table 6.4. Several conclusions can be drawn here.

Table 6.4: The fulfillment levels of ECs, the expected return, and the design cost
with respect to different confidence levels of α.

α x1 x2 x3 x4 x5 x6 x7
Expected Design

return cost

0.1 0.8960 0.8228 0.7466 0.1741 0.8589 0.7105 0.5135 0.4353 77.2630

0.2 0.8960 0.8228 0.7466 0.1741 0.8589 0.7105 0.5135 0.4353 77.2630

0.3 0.8677 0.9116 0.6147 0.7277 0.0432 0.6678 0.9765 0.5346 75.9926

0.4 0.8677 0.9116 0.6147 0.7277 0.0432 0.6678 0.9765 0.5346 75.9926

0.5 0.5463 0.9117 0.5226 0.7306 0.9993 0.9693 0.8674 0.7771 87.3664

0.6 0.7645 0.9379 0.7320 0.7466 0.9936 0.4348 0.9020 0.8264 87.4766

0.7 0.8787 0.8560 0.6006 05575 0.9544 0.9425 0.9958 0.9990 92.1937

0.8 0.9462 0.7902 0.8359 0.8949 0.8417 0.9926 0.9775 1.2066 99.1933

0.9 0.9587 0.9716 0.9232 0.8744 0.7721 0.8162 0.9979 1.2737 99.9767

Firstly, it is observed that the solutions for α = 0.1 and α = 0.2 are identical,

which may be caused by the relative low setting of the confidence level α. It

also brings the lowest result of the fulfillment level of EC4, x4. Such a situation

also happens to α = 0.3 and 0.4, where the fulfillment level of EC5, x5 is also
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severely low. In contrast to them, the solutions for α = 0.8 and 0.9 are much

better, in which the fulfillment levels for all ECs are more evenly distributed.

Most fulfillment levels of ECs achieve the largest at α = 0.8 or 0.9, except for the

fulfillment level of EC5. Besides, it is noted that the expected value of the fuzzy

return is increasing with the increasing of the confidence levels, and this tendency

is also depicted in Figure 6.2. It is intuitive that the decision-makers may have

more preference for the results at a relative high confidence level. Meanwhile,

as another natural result, the design cost also raises when the confidence level α

gets larger, and the biggest expense, 99.9767, occurs at α = 0.9. Whereas the

smallest expense, 75.9926, occurs at α = 0.3 and 0.4, which may be the reason for

generating the lowest fulfillment level of EC5, 0.0432. The changes of the design

cost are shown in Figure 6.3.

Figure 6.2: The expected return with respect to different confidence levels of α.

The changes of all the fulfillment levels of ECs are also visualized in Figure 6.4.

It is seen that there are no stable trends for individual EC, however, the results at

confidence levels of α ≥ 0.7 are more acceptable and satisfactory for the decision-

makers. Even so, in the solutions for α ≥ 0.8, not all xj ≥ 0.8. The fulfillment

level for EC2 is 0.7902 when α = 0.8, while the fulfillment level for EC5 is 0.7721

when α = 0.9. To view the difference, an additional setting of a lower bound
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Figure 6.3: The design cost with respect to different confidence levels of α.

Lj = 0.8 for xj, j = 1, 2, · · · , 7, is incorporated into model (6.24). However, this

compulsory setting of xj ∈ [0.8, 1] may bring a side effect. That is, when α ≤ 0.8,

the constraint (6.11) always holds. So it is not surprising the solutions for α from

0.1 to 0.7 are the same as that for α = 0.8. Meanwhile, due to the budget limit

of 100 units and the lower bound setting of xj, the confidence level cannot reach

values in (0.9,1] in this case. As a consequence, only the solutions for α = 0.8 and

α = 0.9 that expressed by x∗j , j = 1, 2, · · · , 7, are listed in Table 6.5 as follows:

Table 6.5: The fulfillment levels of ECs with respect to α = 0.8 and 0.9, where
xj ∈ [0.8, 1], j = 1, 2, · · · , 7.

α x1 x2 x3 x4 x5 x6 x7
Expected Design

return cost

0.8 0.9462 0.7902 0.8359 0.8949 0.8417 0.9926 0.9775 1.2066 99.1933

0.9 0.9587 0.9716 0.9232 0.8744 0.7721 0.8162 0.9979 1.2737 99.9767

α x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
Expected Design

return∗ cost∗

0.8 0.9162 0.9635 0.9077 0.8808 0.8523 0.8412 0.9378 1.2398 99.7878

0.9 0.9128 0.9993 0.8722 0.8248 0.8478 0.8506 0.9839 1.2588 99.7190

From Table 6.5, it seems that the modified x∗j , the expected return∗ at α = 0.8
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Figure 6.4: The fulfillment levels of EC1 ∼ EC7 with respect to different confi-
dence levels of α.
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are better than the original ones. Nonetheless, as explained above, under this

circumstance the constraint (6.11) is completely ineffective. When it comes to

α = 0.9, the modified solution is comparable to the original solution. Firstly,

x∗j , j = 1, 2, · · · , 7, are distributed with more balance by sacrificing a part of the

expected return, i.e., from 1.2737 to 1.2588. At the same time, a lower design

cost of 99.7190 is consumed in contrast to the original one, 99.9767. Secondly,

it is obviously observed that the expected return of the modified solution at

α = 0.8, 1.2398, is smaller than that at α = 0.9, 1.2588, while the design cost∗

needed, 99.7878, is larger than 99.7190. This counter-intuitive comparison will

rule out the modified solution at α = 0.8, and determine the modified solution

at α = 0.9 as the final fulfillment levels of ECs after the fuzzy optimization

procedure. For the decision-makers, this determination takes both the balance

of fulfillment levels of ECs and the expected return into account, and is marked

in blue in Table 6.5. Notably, if the number of CRs and ECs are of large-scale,

for the fuzzy optimization model, it may be hard for the heuristic algorithm to

obtain an optimal solution, and the computation may be more time-consuming.

6.5 Summary

In this chapter, a generalized methodology for two specific research points of QFD

in the fuzzy environment was proposed. One was the ranking of fuzzy importance

of ECs, and the other one was the setting of target levels of ECs through a fuzzy

expected value model.

The major contributions can be summarized in the following three aspects.

Firstly, the analytical expression of the expected value for the product of two

trapezoidal fuzzy numbers (TpFNs) was derived, which was utilized to measure

and prioritize the fuzzy importance of ECs. Secondly, a fuzzy expected value

model was established to determine target levels of ECs. The objective function
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was transformed by taking advantage of α-optimistic values of TpFNs, and the

constraints were rewritten by plugging the expected value of TpFNs. The fuzzy

optimization model was solved by an improved HIA, iHIA, which integrated the

TNIA-S in Chapter 4 with a genetic algorithm. Lastly, the proposed methodology

was applied to the same case study of a notebook computer development as in

Chapter 5, except that all ECs were assumed to be continuous ones in this chapter.

More specifically, the priority of seven ECs was ascertained, and discussions were

conducted towards the changes of fulfillment levels of ECs with respect to different

confidence levels in the model. According to the decision-makers’ preference and

trade-off, target levels of ECs, xj, j = 1, 2, · · · , 7, at the confidence level α = 0.9

were chosen, where xj ∈ [0.8, 1].

Up to this chapter, the main contents of this dissertation is completed. The

next chapter elaborates the concluding remarks, major contributions, and future

research directions of the current research.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Both quality function deployment (QFD) and Kano’s model are effective quality

tools that have been popular for decades. Various successful applications were

generated with the aid of these two tools no matter in the traditional manufac-

turing or the emerging service quality areas. The QFD optimization procedure in

this research was conducted from the cooperative game-theoretic and fuzzy per-

spectives, respectively. The main purpose was to provide guidelines, suggestions,

and managerial implications for the decision-makers of manufacturing products.

In conclusion, the three specific research objectives raised in Chapter 1 were re-

alized through the contents in the four chapters.

Chapters 3 and 4 achieved the first research objective, where several novel

fuzzy simulation techniques for the possibility and expected value of fuzzy events

were put forward, respectively. The original simulation techniques for the possi-

bility, the SDS, and the expected value, the SDA, shared the same stochastic sam-

pling process. Nevertheless, the lack of accuracy and efficiency of this process were

proved from the analytical inference and numerical examples. To substitute the

SDS and the SDA, a new operational law to generate a uniform sampling process

was initiated. On this basis, the UDS and UDS-Joint were respectively proposed

for possibilities of individual and joint fuzzy events, and the iSDA/TiSDA was
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designed for expected values of fuzzy events. Besides, another fuzzy simulation

technique for the expected value, the NIA-S/TNIA-S, was designed with respect

to the analytical expressions of α-optimistic values of some commonly used fuzzy

variables, like triangular, normal, Gaussian, and trapezoidal fuzzy numbers. It

should be noted that the contents in Chapters 3 and 4 not only presented the

improvements in fuzzy theories and fuzzy simulation, but also can be served as a

vital basis in the iHIA in Chapter 6.

Chapter 5 achieved the second research objective, where the relative impor-

tance weights of customer requirements (CRs) and target values of engineering

characteristics (ECs) were successively obtained. A quantitative Kano’s model

and two significant concepts in cooperative games, i.e., Shapley value and Nash

bargaining were taken advantage in two sequential stages. The first stage was to

ascertain the relative importance weights of CRs based on Shapley value, which

considered the marginal contribution of individual CR to the whole customer

satisfaction. During this course, the quantitative results of Kano’s model helped

provide the value functions in calculations. The second stage was to establish a

mixed integer non-linear programming model to determine target values of ECs

so as to maximize the overall customer satisfaction. The objective of this model

was a Nash bargaining function of the importance weights and the fulfillment

levels of CRs, which was different from conventional objectives in the literature.

Chapter 6 achieved the third research objective, where the fuzzy importance

of ECs and target levels of ECs were determined by means of the identical quan-

titative Kano’s model with fuzzy parameters and the expected values for different

fuzzy events. In particular, expected values for individual trapezoidal fuzzy num-

ber (TpFN), the product of two TpFNs, and continuous and strictly monotone

functions of TpFNs were calculated based on the definitions and theorems on

regular fuzzy intervals in Chapter 4. These outcomes played important roles in

accomplishing the aforementioned two tasks of ECs. More specifically, the fuzzy
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importance of ECs was defuzzified and prioritized through expected values, and

target levels of ECs were achieved through a fuzzy expected value model. The

proposed model was solved by an improved HIA, the iHIA, which integrated the

TNIA-S in Chapter 4 with a genetic algorithm.

Last but not the least, the QFD optimization procedures proposed from the

perspectives of cooperative game theory and fuzzy theories were implemented

into a case study of notebook computer development. Detailed elaborations were

addressed towards the determinations of the relative importance weights of CRs

via Shapley value, the fuzzy importance of ECs via the expected value of the

product of two TpFNs, target values of ECs via a deterministic mixed integer

non-linear programming model, and target levels of ECs via a fuzzy expected

value model, respectively. Corresponding suggestions were also outlined for the

decision-makers, taking the competitiveness in the market, the trade-off between

design cost and the overall customer satisfaction, and the decision-makers’ pref-

erence into account. Not limited to the case study chosen in this research, the

proposed QFD optimization framework is also applicable to other manufacturing

products.

7.2 Contributions

The contributions of this research are summarized as follows:

Firstly, for the research work in Chapter 3, the drawback of the SDS was

clearly pointed out and proved, and meanwhile a new operational law regarding

continuous and strictly monotone functions of regular fuzzy intervals was given

and proved. On this basis, the UDS and UDS-Joint were put forward to deal with

individual and joint fuzzy events, respectively, whose accuracy and computational

time were demonstrated by several numerical examples.

Secondly, for the research work in Chapter 4, according to the new operational
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law in Chapter 3 and another calculation formula on the expected value of discrete

fuzzy variables, the iSDA was set forth to improve the original SDA. Simultane-

ously, the NIA-S which utilized the analytical expressions of α-optimistic values

of fuzzy variables was proposed to get rid of the original bisection algorithm in the

NIA-G. In addition, both the iSDA and NIA-S were extended to their separate

versions of regular fuzzy intervals, i.e., the TiSDA and TNIA-S. Analogously, the

accuracy, stability, and computational time of the proposed simulation techniques

were illustrated by a series of numerical examples.

Thirdly, for the research work in Chapter 5, Shapley value and Nash bar-

gaining were incorporated in two stages from the determinations of the relative

importance weights of CRs to target values of ECs. The customer satisfaction and

dissatisfaction values, and the detailed mathematical functions obtained in the

quantitative Kano’s model were utilized. Moreover, two algorithms, the SVCA

and VFCA were put forward to calculate Shapley values of CRs, which were

intended to decrease the calculation complexity when over 10 CRs were identi-

fied for the target product. Combined the proposed deterministic mixed integer

non-linear programming model with the case study, some practical discussions on

target values of ECs, the development budget, and competitors were expounded.

Finally, for the research work in Chapter 6, simplified calculation formulae on

expected values for a TpFN and the product of two TpFNs were derived, which

were utilized to attain the expected value of the fuzzy importance of ECs. As

a consequence, the ECs were ranked according to these expected values. The

expected return of the objective function and some expected constraints in the

proposed fuzzy expected value model were transformed into more simplified ones

by virtue of the relevant definitions and theorems on α-optimistic values of TpFNs

in Chapter 4. The model was solved by an improved HIA which combined the

TNIA-S for the transformed objective function with a genetic algorithm. Dis-

cussions were also conducted on different combinations of target levels of ECs at
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different confidence levels, and an ultimate solution was settled for the consider-

ation of the decision-makers.

7.3 Future Research Work

The future research directions are divided into two parts. The first part elaborates

the potential improvements for the limitations of the current research. And the

second part sets forth further researches that based on current contents. As to

the first part, the following two major limitations and their future directions are

listed, which focus on the applications in the proposed QFD framework.

• At present, the critical CRs are extracted from a specially designed Kano

questionnaire. The Kano questionnaire can be further improved or the acquisition

of CRs can be reconsidered by some big data-based mining methods.

Firstly, in the Kano questionnaire, the questions on the preferred cost of

customers towards each CR can be added to observe customers’ perceptions and

willingness on the payment for different needs and functions. On this basis, the

real-life application of Kano’s model can be further strengthened. Secondly, in

order to identify CRs timely and dynamically under today’s big data environment,

online reviews of a manufacturing product can be paid more attention to.

Compared with the traditional methods of acquiring customers’ voices by

questionnaires, interviews, or feedback, nowadays it is intuitive to extract and

capture these needs from relevant online websites. Customers are able to post

product reviews on many websites, like JD.com and Amazon.com, based on which

a series of researches were conducted to inject new vitality to the classical QFD

[Jin15, Jin16a]. Additionally, some smart phone makers even have their own on-

line communities. Viewed as one of the upcoming stars in mobile phone industry

in recent years, Huawei’s online community is shared by different groups of users,

like programmers, engineers, Huawei fans, and common users. A market seg-
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mentation study was carried out with respect to another smart phone - Xiaomi’s

online community by using customer pain points [Wan16].

As stated in the research point (a) of QFD in Chapter 2, the extraction

of CRs can be viewed as a front end work and the input of the whole QFD

process. Due to the reason that the inaccurate identification of customer needs

will definitely lead to improper resource allocation of ECs in the subsequent

research and development process, the extraction method selection is vital and

crucial. In this context, some advanced web crawling and analyzing methods

can be incorporated in the future studies to accomplish the extraction of real-

time CRs. Apart from the extraction of CRs, other directions based on big online

reviews are listed for researchers to take. For instance, the lead user identification

in terms of the customer participation, and data-driven precision marketing. The

objectives of these researches target on developing new generation products that

fulfill customer needs to the largest extent.

• The quantitative Kano’s model between the the fulfillment level of CR

and fulfillment level of customer satisfaction (CS) is directly adopted from [Jip14]

without modification. Other kinds of functions except exponential functions can

also be reasonably formulated to simulate the Attractive and Must-be attributes

in the quantitative Kano’s model.

As reviewed in Chapter 2, Kano’s model is usually used to determine the

Kano category of CRs qualitatively. The quantification researches on the curves

in the Kano diagram is limited. The proposed QFD method does not attempt

to enhance the quantitative Kano’s model proposed in [Jip14] but just adopts

it. This innovation adoption strengthens the application of quantitative Kano’s

model and make the results more reasonable to convince users.

As mentioned above, the quantitative Kano’s model expressed by mathemat-

ical functions plays an important role in formulating either the deterministic or
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the fuzzy optimization model. It is noted that, as described in Ji et al. [Jip14],

the exponential functions were figured out based on two endpoints (0, DSi) and

(1, CSi), i = 1, 2, · · · , n for n CRs. If possible, a third coordinate can be de-

termined and used to obtain a more complicated analytical expressions of the

functions. Basically, the proposed methodology in this research is completed. If

other kinds of functions, like power functions and logarithmic functions for the

quantitative Kano’s model are generated, they can be embedded in the models

directly to substitute the current exponential functions.

As to the second part, the further researches mainly focus on the fuzzy opti-

mization models and fuzzy simulation, which are displayed as follows:

• The fuzzy parameters, the fuzzy objective function and constraints, and

the model type of the fuzzy optimization model proposed in Chapter 6 can be

further modified according to different considerations of the decision-makers.

Firstly, except for the fuzzy importance weights of CRs and the fuzzy rela-

tionship functions between CRs and ECs, more fuzzy parameters can be prede-

termined. For example, no matter in the the deterministic model or the fuzzy

model, the cost coefficients of ECs, cj, j = 1, 2, · · · , q, are assumed to be crisp

values, which are listed in the cost index row in Tables 5.8 and 6.1. As a matter

of fact, the market prices of raw materials are fluctuated and usually have a lower

or an upper quotation. Thereby, interval fuzzy numbers can also be employed

to represent this unit improvement cost cj. Meanwhile, these fuzzy parameters

can be evaluated by some multi-criteria decision making (MCDM) methods. It is

found that, the objective functions in the proposed two optimization models aim

at maximizing the overall customer satisfaction degree while the total design cost

is restricted to a settled budget. However, for some small-size enterprises, the

decision-makers may expect to minimize the total design cost while the overall

customer satisfaction degree only need to reach an acceptable level. Therefore,

162



different objective functions and constraints can be considered during the model

formulation. Meanwhile, the fuzzy expected value model proposed in Chapter 6

can be modified to other model types, like fuzzy chance-constrained programming

models with credibilistic constraints and dependent chance programming mod-

els, etc. Additionally, in contrast to tangible manufacturing products, intangible

services can also be optimized in an analogous way, which may need a detailed

investigation together with a practical case study in the future.

• The fuzzy simulation discussed in the current research are intended for

the possibility and expected value of fuzzy events, respectively. On this basis,

researches to enrich fuzzy arithmetic, fuzzy theories, and fuzzy simulation can be

generated with new efforts.

For instance, the simulation algorithms for the continuous and strictly mono-

tone functions can be extended to more generalized functions. And the successful

applications of regular fuzzy numbers and regular fuzzy intervals can be extended

to more generalized fuzzy variables. What is more, the new operational law raised

in Chapter 3 can also provide insights for other important notions in the fuzzy

area, like new simulation techniques on the credibility, the variance, the skewness,

and the entropy of fuzzy events.

In summary, this research project has developed two novel quality function de-

ployment optimization frameworks integrating a quantitative Kano’s model from

the game-theoretic and fuzzy perspectives, respectively. The relative importance

weights of customer requirements and the fuzzy importance of engineering char-

acteristics of manufacturing products are correspondingly studied. Meanwhile,

the overall customer satisfaction is maximized through deterministic and fuzzy

optimization models, respectively. In particular, a series of improved fuzzy simu-

lation techniques for the possibility and expected value of fuzzy events based on

the existing techniques are put forward. The improvements on the expected value
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simulation is further served as a basis for solving the fuzzy optimization model in

QFD by a heuristic-based algorithm. These two methods in QFD help provide

guided maps for the decision-makers to follow in improving the target product.

It is noted that the detailed elaborations of the case study under two perspec-

tives can be promoted to other manufacturing products. Future researches can

be directed to the extraction of customer requirements, other forms of quantitive

Kano’s models, fuzzy simulation for other concepts in the fuzzy area, and different

type of fuzzy optimization models towards the QFD optimization procedure.
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