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ABSTRACT 

Vibration-based structural damage detection involves the acquisition of vibration data, 

extraction of damage-sensitive features, and identification of novelty. These procedures 

intrinsically contain uncertainties arising from the measurement noise, varying 

environmental and operational conditions, and modeling errors. Probabilistic machine 

learning (ML) techniques have the ability of autonomous feature extraction and model 

optimization from uncertain data, thus stand out as the natural approach for vibration-

based damage detection. This thesis attempts to develop advanced techniques for 

structural damage identification based on probabilistic ML techniques and Bayesian 

inference. 

The vibration-based damage detection methods have two branches, data-based and 

inverse model-based. The Bayesian theorem can be introduced to both kinds of methods 

by incorporating the engineering knowledge or researcher’s belief about the unseen 

model parameters as the prior information for the damage detection.  

The Bayesian theorem is first introduced to the data-driven data normalization 

techniques for automatic model optimization. A linear sparse Bayesian factor analysis 

(FA) method is developed to discriminate the environmental effects on structural 

dynamic features from damage. The automatic relevance determination (ARD) prior is 

defined on the factor loading matrix to determine the number of underlying 

environmental factors automatically. The method is applied to two laboratory-tested 

examples (a reinforced concrete slab and a steel frame) under changing environmental 

conditions for damage detection. Later, an improved method on the basis of the 

probabilistic kernelized model is developed to remove nonlinear environmental effects. 

The unknown kernel parameters and the latent variables are estimated automatically in 

the Bayesian probabilistic framework. The method is finally applied to the benchmark 

Z24 bridge for damage detection. 
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Next, the sparse Bayesian learning (SBL) technique is introduced to the finite element 

(FE) model updating-based damage identification. An SBL technique is developed using 

the normalized damage sensitive modal parameters. The ARD prior is defined on the 

damage index to induce sparsity to the results. Due to the nonlinear relationship 

between the damage index and modal parameter, the evidence involves a complex 

integral that cannot be calculated directly. The Laplace approximation method and the 

combination of variational Bayesian inference (VBI) and delayed rejection adaptative 

Metropolis (DRAM) algorithm are developed to circumvent the intractable evidence. 

Both methods are applied to the laboratory-tested steel frame for damage detection. The 

comparison indicates that the analytical Laplace approximation technique is markedly 

efficient for low-dimensional problems as no sampling is required. The VBI-DRAM 

algorithm is substantially efficient in dealing with high-dimensional problems. 

The last contribution of the thesis is to develop a cutting-edge domain adaptation (DA) 

technique for structural damage detection that can transfer knowledge from the 

numerical FE model to the experimental structure and from one structure to the other 

with different sizes, in which re-collecting the labeled damage data from the new 

structure is not required. A re-weighting mechanism is introduced to deal with 

inconsistent label spaces between the labeled source domain and unlabeled target 

domain, given that structural damage scenarios may be different. The numerical and 

experimental studies demonstrate the effectiveness of the proposed method. The 

comparison analysis indicates the superiority of the method, as compared with the 

models without DA or without the re-weighting mechanism. 
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CHAPTER 1   
 

INTRODUCTION 
 

 

 

1.1 Damage Detection Methods 

 

Civil structures are subjected to extreme natural or man-made hazards during the service 

life, such as earthquakes, typhoons, fires, and collisions. Small damages can accumulate 

incrementally with the material fatigue or corrosion, deteriorate rapidly in the case of 

critical fracture, and jeopardize the entire structure. Therefore, the damage should be 

detected as early as possible to prevent the catastrophic collapse of the structures that 

cause life losses and economic and social impacts.  

 

Vibration-based structural damage detection methods are developed on the premise that 

structural vibration properties (such as frequencies and mode shapes) are functions of 

structural physical properties (e.g. mass, stiffness, damping and boundary condition). 

Therefore, monitoring the variations of the vibration quantities makes it possible to 

detect the changes in the physical properties, that is, the damage. The process typically 

involves the long-term monitoring of structures for data acquisition, feature extraction, 

and novelty detection. Some damage identification methods are based on the structural 

finite element (FE) model updating, which is a process to minimize the discrepancy 

between the model predictions and measured vibration data in either time-domain or 

frequency-domain. This kind of approach is referred to as the model-based approach, 

which is a typical inverse problem. By contrast, the data-based approach gets rid of 

physics-based modeling. The relationship between the uncovered features and damage 

state of the structure is learned by the data analysis models. The model parameters, 

outputs or the model prediction errors then become the damage index.  
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Both kinds of approaches have their pros and cons. The data-driven approaches are 

efficient whereas require a large amount of data to cover the range of variations. The 

model-based approaches could attain the damage localization and quantification in the 

element level, while heavily depend on an accurate FE model, which inevitably involves 

modeling errors (e.g. boundary conditions, joints, and materials). In general, almost all 

vibration-based damage detection approaches intrinsically involve uncertainties, which 

arise from the measurement noise, varying environmental and operational factors, and 

modeling errors.  

 

1.2 Probabilistic Machine Learning  

 

Machine learning (ML) refers to the data analysis methods that imitate the way that 

human learns. The goal of ML is to develop models or algorithms to learn from data for 

underlying feature extraction, automatic pattern recognition and then use the uncovered 

patterns for classification, prediction or other tasks of decision making (Jordan and 

Mitchell, 2015). Unlike traditional data analysis methods that need to pre-select models 

and model parameters, ML automates analytical model building and optimization. For 

example, the nonlinear problem can be estimated by the kernel function in the 

reproducing kernel Hilbert space without defining a specific mapping function 

explicitly. 

 

ML has been a mainstay of data-driven damage detection methods in past decades 

through establishing non-parametric (e.g. clustering, k-nearest neighbor, and support 

vector machine) or parametric models (e.g. perceptron and neural network) for data 

analysis (Farrar and Worden, 2012). Most ML methods can be divided into two types 

according to whether the labels of damage data are available or not, namely, supervised 

or unsupervised learning. In the supervised learning, when the label is real-valued, the 

regression model is established and optimized to fit the relationship between the input 

data and label; and when the label is categorical, the data are classified for damage 

pattern recognition (Murphy, 2012). In the unsupervised learning, the training data are 

unlabeled. The goal is to recognize and classify the data according to the pre-defined 
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metric (e.g. similarity of the underlying features or reconstruction error of the 

measurement data). A small number of studies fall between supervised and 

unsupervised methods, which are semi-supervised with a small portion of labeled data 

only. It is noteworthy that the scope of using ML for damage detection is not limited to 

the data-driven methods, but also can be physics-based (Farrar and Worden, 2012). 

Particularly, if the FE model has been updated and validated, the data-driven method 

can also be improved by exploiting information from the physical models, such as the 

physics-guided ML methods. Specifically, the updated FE model could simulate labeled 

damage data to guide the training of deep learning (DL) models for damage 

identification. 

 

The Bayesian theorem that interprets the uncertainties quantitively can be introduced to 

the ML models for data mining. The ML model incorporating the probability theory is 

referred to as probabilistic ML, rather than Bayesian ML, considering that the Bayesian 

theorem strictly corresponds to the MAP estimate while some probabilistic methods, 

such as the maximum likelihood estimate, do not strictly contain the prior information 

(Murphy, 2012). The incorporation of the Bayesian theorem could add prior knowledge 

to the data probability distribution, to encode researcher’s belief about the unseen model 

parameters. For example, the Bayesian theorem can be introduced to regression and 

classification tasks for desired model optimization. One representative is the 

development from support vector machine (SVM) to relevance vector machine (RVM) 

(Tipping, 2001). The DL can also be interpreted in a probabilistic manner, such as the 

variational autoencoder and Bayesian neural network that consider all possible values of 

parameters rather than a point estimate (Kendall and Gal, 2017).  

 

As vibration-based damage detection intrinsically contains uncertainties, the 

probabilistic ML approaches stand out as the natural approach. The probabilistic theory 

can be introduced to the existing non-probabilistic ML-based damage detection 

methods. There are several aspects worthy of attention and development: 
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(1) Some ML techniques are not originally proposed for the engineering problem, thus 

need to be adjusted or improved by incorporating the engineering knowledge as the 

prior information for the damage detection. For example, for most engineering 

systems, there are only a few relevant factors that account for the variations of a 

collection of observations. Besides, in the preliminary failure stage, the damage 

occurs in limited locations (elements). The sparse Bayesian learning (SBL) can be 

introduced for automatic model optimization. 

(2) Most unsupervised methods are limited to the first level of damage detection, that is, 

the presence of damage. The supervised damage detection methods could attain 

damage localization and quantification while face the challenge of lacking labeled 

damage data from practical structures. The structural FE model can be built to 

generate labeled damage data under all possible damage scenarios (DSs). However, 

the FE model cannot perfectly predict the structural behavior even has been updated. 

Instead of expecting to build an error-free FE model, a more feasible idea is to 

explore the similarity between the labeled data from the FE model and unlabeled 

data from the real structure, and then extract the invariant damage-sensitive features 

shared by the two datasets. 

(3) Civil structures always have different materials, geometries, and topologies and are 

under varying environmental conditions. The data-driven DL techniques need to be 

re-trained by re-collecting labeled data when the environmental conditions or 

structural properties change. The methods that can facilitate the knowledge transfer 

between different but similar structures are worth studying. 

 

1.3 Research Objectives 

 

This study aims to develop advanced techniques for structural damage detection based 

on probabilistic ML techniques and Bayesian inference. The research objectives are: 

1) To develop probabilistic ML-based data normalization techniques for damage 

detection by incorporating the Bayesian framework: 

• Develop a sparse Bayesian latent variable method to detect the underlying 



 

5 

 

environmental factors automatically; 

• Develop an improved probabilistic kernelized method to remove nonlinear 

environmental effects with model parameters optimized automatically; 

2) To develop an SBL method for structural damage identification based on the model 

updating: 

• Develop an analytical Laplace approximation-based method to circumvent the 

intractable integration due to the nonlinear relationship between the damage 

index and modal parameters; 

• Develop a method applicable to all kinds of probability distributions (standard 

and nonstandard) by combing variational Bayesian inference (VBI) and delayed 

rejection adaptative Metropolis (DRAM) sampling together; 

3) To develop an unsupervised data-driven DL technique for structural damage 

identification that could transfer the knowledge between structures with 

discrepancies:  

• Attain knowledge transfer from the FE model to an experimental structure 

allowing the existence of modeling errors; 

• Attain knowledge transfer from one structure to the other with different sizes. 

 

1.4 Thesis Organization 

 

The thesis is organized into eight chapters, as illustrated in Figure 1.1. Chapter 1 

introduces the background and objectives of the thesis in general. Chapter 2 conducts a 

literature review of vibration-based damage detection methods. Moreover, the 

limitations and challenges of existing studies are issued. The rest five chapters introduce 

the newly developed methods. 

 

In Chapter 3, a sparse Bayesian factor analysis (FA) technique is developed to assess 

the structural state under unknown and changing environmental conditions. The 
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automatic relevance determination (ARD) prior is defined on the factor loading matrix 

to determine the number of environmental factors automatically.  

 

The environmental influence may be nonlinear due to the non-uniform sensitivities of 

different materials to the environmental variations. Therefore, an improved method 

based on the probabilistic kernelized model is developed In Chapter 4, to eliminate the 

nonlinear environmental effects. The Gaussian kernel is employed to deal with the 

nonlinearity.  

 

An SBL method is developed in Chapter 5 for structural damage identification based on 

the Laplace approximation technique. The item to be integrated into the evidence is 

assumed to be a Gaussian distribution. The posterior PDFs of the variable and hyper-

parameters associated with the uncertainties are then derived in a closed-form. 

 

Chapter 6 further improves the Bayesian method for damage detection by integrating 

the VBI and DRAM algorithms. A full Bayesian analysis of the posterior PDFs is 

conducted. The merit of the VBI-DRAM method is that it is not limited to the Gaussian 

distribution but is applicable to all kinds of distributions. 

 

In Chapter 7, a re-weighted adversarial domain adaptation (RADA) method is 

developed to transfer knowledge between structures for damage detection using time 

series responses. The novelty of the method is that it considers the label space 

inconsistency. Consequently, it can transfer the knowledge learned from an FE model to 

an experimental structure and from one structure to the other with different sizes. 

 

Chapter 8 concludes the thesis and discusses the future work. 
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CHAPTER 2   
 

LITERATURE REVIEW 
 

 

 

2.1 Introduction 

 

The vibration-based structural damage detection methods can be classified into data-

based (or non-model-based) and model-based methods (Doebling et al., 1998; Farrar 

and Worden, 2012). The former relies on the data processing and comparison of 

dynamic features in the intact state and the counterpart to be predicted without 

establishing structural physical models. The latter requires to build an FE model of the 

structure, and then update and predict model parameters by minimizing the discrepancy 

between the model-predicted and monitored structural vibration properties. 

 

The prerequisite of the data-based methods is that damage induces variations in 

structural vibration properties; thus anomaly can be detected by comparing the vibration 

properties over time (Doebling et al., 1996, 1998). However, normal environmental and 

operational variations (EOVs) may also produce changes in the structural dynamic 

features. If the environmental and operational effects are not considered appropriately, 

the damage may be masked, leading to a false structural condition assessment result. 

Therefore, removing environmental and operational effects on the extracted features 

before they are applied to structural damage detection is of high necessity. The process 

to remove the normal environmental and operational effects from the damage-sensitive 

dynamic features is referred to as data normalization (Farrar and Worden, 2012). 

 

In the model-based methods, an objective function is generally established to evaluate 

the discrepancy between the model-predicted and measured properties (Sohn et al., 
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2003). The structural model parameters are identified by minimizing the objective 

function. However, measurement data are generally contaminated with noise, which 

introduces uncertainties in future extraction and damage detection processes. Most of 

the traditional damage detection methods treat the problem as deterministic and neglect 

the uncertainties. During the recent decades, researchers have developed probabilistic 

model updating or damage identification techniques, such as perturbation techniques 

(Xia and Hao, 2003), Monte Carlo simulations (Hjelmstad and Shin, 1997), and 

Bayesian inference methods (Beck and Katafygiotis, 1998; Katafygiotis and Beck, 

1998). 

 

Additionally, the huge amount of data generated in the long-term monitoring stage also 

imposes significant challenges on the efficient, effective and accurate damage detection. 

The era of big data has witnessed the development and progress of artificial intelligence 

technology, paving the way for the implementation of structural health monitoring 

(SHM) utilizing DL techniques, which have powerful ability and high efficiency in 

processing a large amount of data. The DL technique prevails recently with the 

development of a few powerful algorithms such as deep autoencoder, convolutional 

neural network (CNN), recurrent neural network (RNN) and so on (Sun et al., 2020). 

Conducting structural damage detection by adopting state-of-the-art deep learning 

techniques is a research hotspot. 

 

Given the fast development of SHM in the past decades, there have been several 

comprehensive literature reviews in the area (Doebling et al., 1998; Salawu, 1997; Sohn 

et al., 2003; Sun et al., 2020). In this chapter, SHM techniques in three aspects are 

focused on and reviewed, including the data normalization, Bayesian inference, and 

data-driven DL techniques, without exhausting all aspects in this broad topic. 

 

2.2 Data Normalization Techniques  

 

In the following, the environmental and operational factors influencing structural 
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dynamic features are firstly summarized, followed by the data normalization methods, 

which can be classified into regression methods with environmental data and ML-based 

methods without environmental data. 

 

2.2.1 Environmental and Operational factors 

 

2.2.1.1 Environmental Factors 

 

Temperature is a major factor that may affect structural dynamic characteristics. The 

temperature’s effects arise from several aspects. First, the Young’s modulus of structural 

materials varies with temperature. Second, structural boundary conditions may be 

affected when the temperature changes. Third, the non-uniformly distributed 

temperature over a large-scale structure may cause an asynchronous change in structural 

physical parameters. Roberts and Pearson (1998) monitored a 9-span, 840 m long 

bridge and found that temperature accounted for a 3%~4% frequency change in a year. 

Farrar et al. (1996) reported that the first modal frequency of the Alamosa Canyon 

bridge varied by nearly 5% during a day caused by temperature variations. Peeters and 

De Roeck (2001) monitored the Z24 bridge for around ten months before it was 

artificially damaged. The results indicated that the first four frequencies varied by 

14%~18% during the monitored period. They also found that the structural stiffness 

increased significantly below 0℃, which was due to the frozen asphalt layer of the 

bridge deck. The one-year monitoring of the Ting Kau Bridge in Hong Kong (Ni et al. 

2005) revealed that the bridge’s natural frequencies varied from 0.2% to 1.52% when 

the temperature changed from 2.8 to 53.5 ℃. Xia et al. (2006) periodically monitored 

the vibration properties of a reinforced concrete (RC) slab for around two years. The 

first two modal frequencies were observed to decrease by 0.13% ~ 0.23% when the 

temperature increases one degree, whereas no obvious relationship between mode 

shapes and the temperature was found. Moser and Moaveni (2011) showed that the first 

six natural frequencies of the Dowling Hall Footbridge on the campus of Tufts 

University varied by 4% ~ 8% as the corresponding temperature ranged from −14 to 
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39 ℃. 

 

Humidity is another factor that may lead to variations in the structural vibration 

properties. Several studies reported that the concrete structures absorbed moisture in wet 

weather. As a result, the structural mass increased, and the frequencies were altered. 

Bendat and Piersol (1980) found that the bridge’s mass increased by 3%~6% as a result 

of the absorption of moisture. Xia et al. (2006) found that the natural frequencies of an 

RC slab was reduced by 0.03% when the environmental humidity increased by 1%. 

Sohn (2007) reported that the mass of the Alamosa Canyon bridge increased by 1.6% 

due to moisture. However, Peeters and De Roeck (2001) reported that no obvious 

relation between humidity and the first four natural frequencies of the Z24 bridge was 

observed.  

 

Additionally, the wind-induced variability in the vibration properties of long-span 

bridges was investigated. In Fujino et al. (2000), natural frequencies of the cable-stayed 

and suspension bridges were observed to decrease with the increase of the wind speed. 

The structural damping may also be altered when wind velocity exceeded a certain level 

(Fujino et al. 2000). Mahmoud et al. (2001) monitored the Hakucho Suspension Bridge 

and found that the amplitude of the structural vertical response was nearly a quadratic 

function of the wind speed. Besides, the wind speed mainly influenced the low natural 

frequencies of the bridge. Nagayama et al. (2005) studied the relationship between wind 

speed and structural vibration properties of a full-scale suspension bridge. They 

observed that the frequencies decreased with the increase of root mean square 

accelerations. Siringoringo and Fujino (2008) reported that the natural frequencies of a 

suspension bridge decreased as the wind velocities increased while the damping ratios 

increased. Martins et al. (2014) investigated the influence of wind and temperature 

variations on structural modal properties and responses by monitoring the Braga 

stadium suspension roof for eight months. The results indicated that the wind in 

particular directions led to a sag reduction and further resulted in the reduction of the 

cable tension and structural frequencies. 
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2.2.1.2 Operational Factors 

 

Operational variabilities such as loadings and boundary conditions also affect structural 

dynamic responses. Alampalli (2000) showed that the freezing of accumulated moisture 

at the boundary support increased the stiffness of embedded girders and caused an 

increase in the natural frequencies of a steel girder bridge. In the long-term monitoring 

of the Z24 bridge (Peeters et al., 2001), a piecewise linear relationship between 

temperature and natural frequencies was observed. This phenomenon was attributed to 

the asphalt layer, which significantly increased the stiffness of the structural boundary 

condition on cold days.  

 

The influence of traffic loading on the structural responses has also been investigated. 

Zhang et al. (2002) conducted 24 h vibration monitoring on a cable-stayed bridge under 

a relative steady wind and temperature environment. The results indicated that the 

natural frequencies exhibited nearly 1% change due to the traffic variability. The 

damping ratios increased significantly when the deck vibration exceeded a certain level. 

Kim et al. (2001) investigated the effect of vehicle loads on the vibration properties of 

three bridges with varied scales. The traffic-induced vibration tests were conducted 

individually. It was concluded that the effect of traffic loads on the structural dynamic 

characteristics depended on the relative magnitude of the traffic loads compared with 

the structural mass. The frequency varied by 5.4% for the short-span bridge, while no 

obvious variations were observed for the middle- and long-span bridges. 

 

All these studies indicated that the influence of the environmental and operational 

variations on the structural dynamic characteristics should not be neglected. Instead of 

directly adopting the modal parameters for damage detection, data normalization 

methods should be employed to consider or eliminate the effects of the ambient 

variations. 
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2.2.2 Regression Methods with EOV Data 

 

When the EOV data are available, the regression model is built to explore the 

relationship between the structural dynamic characteristics and EOV data, particularly 

the temperature. The models can be generally divided into linear and nonlinear ones. 

 

2.2.2.1 Linear Regression Models 

 

Most studies assume that structural natural frequencies vary with temperature linearly 

and establish a linear regression model to describe their relationship. 

 

Sohn et al. (1999) proposed a linear adaptive filter to describe the frequency changes of 

the Alamosa Canyon bridge caused by temperature variations. The regression model 

was optimized by minimizing the mean square error between the model-predicted and 

measured frequencies. The well-trained regression model was then utilized to 

discriminate the temperature effect from structural damage and other environmental 

factors. As mentioned by the authors, a perfect match of the predicted and measured 

frequencies was not available due to the incompleteness of the model and the 

measurement noises. In this connection, a confidence interval was defined to account 

for the existence of uncertainties. For a new temperature profile, the defined confidence 

interval served as the reference to judge the change in the frequencies was caused by 

temperature variations or damage. 

 

Peeters et al. (2001) used a dynamic linear Auto-Regressive and eXogeneous (ARX) 

model to explain the variations in frequencies of the Z24 Bridge due to changing 

temperature. The advantage of the dynamic ARX model over static regression models 

was that the input and output at previous time instants were taken into consideration to 

decide the current output. A confidence interval was estimated for damage prediction. 

When a new identified modal parameter lay outside the confidence interval, the bridge 
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was deemed to be damaged. A comparative study showed that a single-output ARX 

model outperformed multiple static linear regression models. 

 

Xia et al. (2006) developed a linear regression model to express the relationship 

between the natural frequencies of an RC slab and temperature and humidity. The 

results implied that the linear model could simulate the correlation between the 

frequency and temperature very well. A quantitative analysis indicated that the variation 

of the modal properties was primarily attributed to the variation of materials’ elastic 

modulus. 

 

Bao et al. (2012) proposed a Bayesian-based technique for damage detection of a 

laboratory tested frame. A linear relation between the frequencies and temperature was 

assumed. The temperature effect on structural frequencies was then eliminated. The 

proposed method was applied to a two-story steel frame under changing temperature 

conditions for damage identification. Hou et al. (2020) later improved the Bayesian 

method in Bao et al. (2012) by incorporating the sparsity information into the regression 

model for damage detection. 

 

2.2.2.2 Nonlinear Regression Models 

 

In practice, the environmental effect on structural dynamic characteristics may be 

nonlinear. Specifically, different materials in the structures have non-uniform 

sensitivities to the environmental variations. The bridge’s boundary conditions may also 

change due to the expansion and contraction of joints, leading to a nonlinear effect. In 

this case, the linear model may be unable to reveal their relation accurately, and 

nonlinear models need to be explored. 

 

Moaveni and Behmanesh (2012) compared four models in describing the relationship 

between natural frequencies and temperature of the Dowling Hall Footbridge, including 
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a linear regression model, an ARX model, a bilinear model, and a fourth-order 

polynomial model. The fourth-order static polynomial model was finally chosen. Two 

sets of natural frequencies, before and after removing the temperature effects using the 

developed model, were used for FE model updating. The results indicated that the 

variations of parameters in the model updating were reduced, and the probability of 

false identification decreased after the environmental effect decreased. 

 

Ding and Li (2011) proposed an n-order polynomial equation to model the correlation 

between the daily varying frequency of the Runyang Suspension Bridge and 

temperature. The order n increased from 1 to 10, and the sixth-order polynomial model 

with the least error was selected. The 40-day measured temperature data were then input 

to the regression model to predict the frequency variations. The result indicated that the 

proposed model could estimate the correlation between the structural frequency and 

temperature. 

 

However, as mentioned by many researchers (Yan et al., 2015a, b; Hsu and Loh, 2010), 

several issues exist in the regression methods. The main limitation is that the model 

efficiency heavily relies on the accurate measurement of the environmental and 

operational factors. In contrast, ML-based data normalization methods do not need the 

EOV data. 

 

2.2.3 ML-based Methods without EOV Data 

 

When EOV data are not available, ML-based methods are developed to eliminate the 

environmental effects using structural dynamic responses only. The corresponding 

environmental factors are considered as embedded variables and not required to be 

measured. These ML-based methods can be further divided into linear and nonlinear 

dimensionality reduction models, black-box models, and others. 
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2.2.3.1 Linear Dimensionality Reduction Models 

 

Principal component analysis (PCA) is a linear data dimensionality reduction technique 

and has been extensively employed in SHM. The latent dimensionality of the 

measurement data is determined in advance. Through projecting the measurement data 

onto the principal components, the influences from different sources are decoupled, and 

then the ambient impacts can be eliminated. Yan et al. (2005a) employed the PCA to 

discriminate the influence of environmental variations from that of damage. The 

damage detection was conducted based on the novelty analysis. Debarshi et al. (2019) 

applied the PCA for damage detection in a continuous beam structure under 

environmental and operational variations. The results indicated that PCA could detect 

the discontinuities in the measurement data at the onset of damage. 

 

FA is another linear model that searches for the latent variables and explains the 

correlation between the variables and measurement data. Kullaa (2011) employed the 

FA to remove the environmental and operational effects on structural dynamic 

characteristics. The FA model was constructed using the measurement data from an 

undamaged structure. The structural health condition was determined according to the 

reconstructed data from the FA model and the original measurements. The effectiveness 

of the proposed method was verified by its application to a wooden bridge in the 

laboratory. Deraemaeker and Worden (2018) further compared the PCA and FA 

models. The results confirmed the ability of these two methods to filter out 

environmental influences. 

 

Independent component analysis (ICA), also named the blind source separation, 

decomposes the given data into a linear combination of statistically independent latent 

variables using the observations only. Several researchers (Zang et al., 2004; Yang et 

al., 2014) applied the ICA for structural system identification and damage detection and 

verified its robustness for feature extraction and pattern recognition.  
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Singular value decomposition (SVD) is also a linear decomposition method that has 

been extensively used for dimensionality reduction. Ruotolo and Surace (1999) 

employed SVD to detect structural damage under environmental variation. A structure 

was treated as damaged when the number of singular values exceeded a threshold. Liu 

et al. (2015) developed a novel damage-sensitive feature extraction using SVD. The 

changes produced by the damage could be separated from those caused by EOVs. 

 

2.2.3.2 Nonlinear Dimensionality Reduction Models 

 

When the ambient influences are nonlinear during a long-term monitoring period, the 

kernel PCA can be adopted, in which the latent dimensions are projected to reproduce 

the kernel Hilbert space. The kernel PCA has the advantage that defining a specific 

nonlinear relationship is unnecessary and the calculation is simplified by using the 

kernel function. 

 

Oh et al. (2009) employed the kernel PCA as a data normalization technique to remove 

the environmental effects on measurement data. Data collected from the normal 

conditions served as the baseline data. A Gaussian kernel PCA was applied to the 

baseline data to calculate the principal eigenvectors. The discrepancy between the most 

recent measured modal parameters and the reconstructed counterparts based on the 

kernel PCA was calculated and quantified by a novelty index. A threshold value was set 

as a reference to judge the data was normal or not. The application to the Yeongjong 

Grand Bridge in Korean indicated that the proposed KPCA method was able to detect 

the abnormality using the output data only. Reynders et al. (2014) proposed an 

improved kernel PCA to build the relationship between changing environmental factors 

and structural frequencies. The optimal parameters in the kernel function were 

determined automatically. The proposed method was applied to a three-span concrete 

bridge which was monitored for one year and damaged in the end. The proposed kernel 

PCA was able to detect the onset of damage accurately, whereas the linear PCA could 

not. 
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In addition to the kernel PCA, Yan et al. (2005b) used the local PCA models for local 

regions in the data space. The nonlinear problem was tackled in the way of a piecewise 

linearization. Kullaa (2014) employed the mixture of FA models, which allows different 

local linear factor models for different regions in the data space, to compensate for the 

nonlinear effects between the natural frequencies of the Z24 bridge and temperature. 

 

2.2.3.3 Black-box Models 

 

All techniques above share one common feature, that is, the models are established in an 

interpretable manner. By contrast, the auto-associative neural network (AANN) deals 

with the problem in a black-box and separates the environmental influences by training 

the NN automatically. 

 

Sohn et al. (2001, 2007) adopted the AANN, which actually is equivalent to nonlinear 

PCA in a black-box form, to reveal the correlation between the measured structural 

modal parameters and unmeasured latent variables. The AANN network was composed 

of three hidden layers, namely, the mapping, the bottleneck and de-mapping layers. The 

number of neurons in the bottleneck layer represented the latent dimensionality of the 

measurement data. The discrepancy between the AANN-predicted data and measured 

data was calculated. A threshold value was determined as a reference to evaluate the 

structural health condition. The proposed method was verified through the application 

to a computer hard disk. 

 

Hsu and Loh (2010) also used AANN to extract the underlying environmental factors 

and detect structural stiffness reduction. The effectiveness of the proposed method was 

verified through the application to a synthetic bridge model under varying ambient 

conditions, including temperature, humidity, loading and support condition. The results 

showed that AANN was able to accurately identify the structural stiffness reduction. 
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2.2.3.4 Other models 

 

Gaussian mixture model (GMM) is a linear mixture of multiple Gaussian components, 

aiming at simulating a complex distribution rather than a single Gaussian. It has been 

widely used in data mining, pattern recognition, machine learning and statistical 

analysis. Kullaa (2014) used the GMM to eliminate the environmental effects from 

measurement data. The GMM was based on the mixture of multiple linear models, each 

corresponding to a local region in the input space. The data labels were regarded as 

latent variables in the GMM model, and the expectation-maximization (EM) algorithm 

was employed to identify the mixture model. The proposed method was validated using 

the measured natural frequencies of the Z24 Bridge under varying temperatures. 

 

SVM can be used to learn relationships in data in a supervised manner. Ni et al. (2005) 

used SVM to model the correlation between structural frequencies of the Ting Kau 

cable-stayed bridge and temperature. In their study, the measurement data were divided 

into two groups, one for training the SVM model, and the other for model validation. 

The results indicated that such a strategy was able to tackle the problem of over-fitting. 

The well-trained SVM exhibited more superior generalization than the conventional 

method. 

 

2.3 Bayesian Inference Techniques 

 

Uncertainties exist in the vibration-based damage detection process, including 

measurement noises, methodology errors, and modeling errors. Most traditional damage 

identification techniques adopt a deterministic approach and ignore the uncertainties. 

Besides, the FE model updating for damage identification is usually an ill-posed inverse 

problem. A small perturbation of the measurement data will lead to a significant 

variation in the damage identification result. To address this challenge, researchers have 

incorporated the regularization technique in the objective function of model updating. 
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However, the regularization parameter needs to be selected in advance. Since the 1990s, 

the Bayesian theorem has been developed for structural system identification and 

damage detection. In comparison with the traditional deterministic approach, the 

Bayesian theorem treats the discrepancy between the model-predicted modal properties 

and measurement data in a probabilistic manner. Besides, all unknown hyper-parameters 

can be optimized automatically.  

 

In the Bayesian inference methods, one needs to derive the posterior probability density 

function (PDF) and calculate the most probable value (MPV) by maximizing the 

posterior function, which is equivalent to minimizing the objection function in the 

deterministic methods. The challenging issue is to calculate the high-dimensional 

integral. A few techniques have been developed to circumvent the problem. These 

techniques include the Laplace approximation technique, expectation-maximization 

(EM) technique, VBI, hierarchical model, Markov chain Monte Carlo (MCMC) 

estimation, and so on. In the following, the application of Bayesian inference for 

structural damage detection and techniques will be reviewed according to the techniques 

employed. 

 

2.3.1 Laplace Approximation 

 

The Laplace approximation is an analytical technique that directly solves the 

computationally prohibited integral in the Bayesian equation. The PDF to be integrated 

is approximated as a Gaussian distribution, which is centered at the MPV with the 

covariance matrix equal the inverse Hessian matrix. In contrast to the numerical 

methodologies, the Laplace approximation results in the analytical solution and 

possesses a unique solution. It has been utilized to develop asymptotic expansions of 

posterior interests and expectations, especially in the Bayesian framework. 
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Beck and Katafygiotis (1998) are pioneers to apply the Laplace approximation to the 

Bayesian model updating for structural system identification using modal parameters. 

The denominator in the proposed Bayesian equation, termed as the evidence, contains a 

complex nonlinear and high-dimensional integral and thus is intractable. To solve this 

problem, systems were classified into globally identifiable, locally identifiable, and 

unidentifiable cases based on the measurements (Beck and Katafygiotis, 1998; 

Katafygiotis and Beck, 1998; Katafygiotis et al., 1998). For the globally identifiable 

system, the posterior PDF is highly peaked and thus can be approximated as a Gaussian 

distribution (Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998). Finding the 

MPV of the variables is equivalent to calculating the mean of the posterior Gaussian 

distribution. For the locally identifiable systems, the PDF is derived as a weighted 

combination of Gaussian distributions centered at the isolated optimal modes 

(Katafygiotis et al., 1998). 

 

The globally identifiable, locally identifiable, and unidentifiable systems defined above 

have laid a foundation for later studies. For example, Yuen et al. (2006) utilized the 

Laplace approximation technique to approximate the posterior PDF in model updating 

using incomplete modal data without mode matching. Huang et al. (2015, 2017) 

combined the Laplace approximation technique and the hierarchical model to estimate 

the full posterior PDF. Yang et al. (2019) utilized the Laplace approximation to evaluate 

the uncertainties of the posterior PDF in an autoregressive model for system 

identification. Ni et al. (2016) proposed a fast Bayesian method for modal identification 

using free vibration data, in which the posterior uncertainties are evaluated based on the 

Laplace approximation. 

 

2.3.2 EM Algorithm 

 

The EM algorithm can be utilized to solve the posterior PDF in the Bayesian framework 

with latent variables. The algorithm consists of iterative E and M steps. In the E step, 

the expectation of the complete-data likelihood function with respect to the latent 

variable is calculated. Then in the M step, the expectation is maximized to calculate the 
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MPVs of variables. Through the iterative E and M steps, the variables converge to the 

definite values.  

 

Ching and Beck (2004) proposed a two-step Bayesian approach for probabilistic 

structural model updating using incomplete measurement data. Given that the problem 

belongs to the non-concave and non-linear optimization problem, the EM algorithm was 

employed to convert the problem into two coupled concave quadratic optimization 

problems. The effectiveness and robustness of the proposed method were verified using 

the IASC-ASCE Phase II Simulation Benchmark data. The results indicated that the EM 

algorithm was more robust than the nonlinear optimization algorithm in searching for 

the MPV of the stiffness parameter. Hou et al. (2019) proposed an SBL framework for 

structural damage detection, in which the damage index was contained in the Bayesian 

equation as the latent variable. The EM algorithm was utilized to calculate the latent 

damage index via an iterative process. 

 

2.3.3 Variational Inference 

 

VBI provides an approximation solution to the intractable posterior PDF of variables in 

the Bayesian probabilistic framework. It proposes a tractable PDF to approximate the 

intractable target PDF by minimizing the Kullback–Leibler (KL) divergence (Bishop, 

2006) between the proposed and target PDFs. The mean field theory (Parisi, 1988) is 

generally utilized to factorize the proposed PDF and independently derive the posterior 

PDFs of each individual unknown. In combination with the EM algorithm, the variables 

and parameters in the VBI model can be computed in an iterative approach. 

 

Zhou et al. (2007) developed a structural damage classification method based on the 

hidden Markov model, where the VBI was employed to determine the model 

parameters. They pointed out that the VBI was capable to automatically select a model 

with appropriate complexity and alleviate the overfitting in the traditional maximum 
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likelihood method. Fujimote et al. (2011) developed a state-space model for system 

identification based on the VBI, which was applicable to a wide category of systems. 

Baldacchino et al. (2016) developed a mixture of expert models trained by VBI for 

systems exhibiting nonlinear properties. Li and Der Kiureghian (2017) employed the 

VBI to approximate the evidence in the Bayesian operational modal analysis. The 

effectiveness and superiority were demonstrated through application to the One Rincon 

Hill Tower in San Francisco, USA. 

 

2.3.4 Hierarchical Models 

 

The hierarchical Bayesian model (HBM) expands the intractable posterior PDF as a 

series of coupled hierarchical linear PDFs. The technique simplifies the calculation and 

results in the posterior PDF analytically tractable posterior PDFs. The HBM contains a 

multi-level structure, in which the parameter in the prior PDF relies on other introduced 

parameters. These parameters are named the hyper-parameters and are assumed to 

follow designated distributions. 

 

There have been many applications of HBM in system identification and damage 

detection. For example, Sedehi et al. (2019) developed a hierarchical Bayesian 

operational modal analysis for system identification using vibration data. Nagel and 

Sudret (2016) have developed a hierarchical model using noise-free vibration data. 

Huang et al. (2015, 2017) applied the HBM to structural damage detection and extended 

the complex nonlinear problem as the product of a series of coupled hierarchical linear 

PDFs. Behmanesh et al. (2015) applied the HBM to model updating, predicted the 

uncertainties of the parameters, and then extended this model for structural damage 

identification. Sedehi et al. (2019) compared the performance of the hierarchical 

Bayesian probabilistic framework with the non-hierarchical counterpart. The results 

indicated that the HBM is superior for its reliability and robustness in calculating 

uncertainty bounds. 
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2.3.5 MCMC Estimation 

 

For the unidentifiable problem, no matter how complicated the PDF is, if the 

probabilistic expression proportional to the target PDF is available, the MCMC 

simulation can generate samples following the target PDF and obtain the corresponding 

statistical characteristics. However, the basic MCMC technique is extraordinarily time-

consuming for models containing a large number of parameters or involving partial 

differential equations. In recent decades, the basic MCMC algorithm has been 

developed and improved to promote computational efficiency, including the 

Metropolis-Hastings (MH) algorithm, Gibbs sampling, transitional MCMC, delayed 

rejection (DR) technique, importance sampling, and so on. 

 

The MH algorithm is from the MCMC and applies to high-dimensional problems. In the 

algorithm, the proposal distribution and the stopping criterion for sampling are two key 

factors that will largely affect the accuracy of the uncertainty evaluation, whereas they 

are uneasy to ascertain. Yuen et al. (2004) developed an adaptive MCMC simulation 

based on the MH algorithm for structural damage detection. The numerical integration 

was solved in conjunction with the adaptive MCMC to identify the important regions of 

the updated PDF. Lam et al. (2015) developed an enhanced MH algorithm for Bayesian 

model updating, in which the stopping criterion for sampling was adjusted 

automatically according to the important region in the posterior PDF. 

 

Gibbs sampling is a popular MCMC technique with a straightforward idea. It carries out 

sampling by sweeping through the conditional PDF of each variable and keeping the 

rest variables fixed. Ching et al. (2006) employed the Gibbs sampling for the 

unidentifiable problem in the Bayesian model updating. The uncertain parameters were 

classified into three groups, so that the numerical sampling can be directly carried out 

on any group conditional on the rest. Huang et al. (2017) applied the Gibbs sampling to 

generate samples following the posterior PDFs of unknowns in the hierarchical 

Bayesian model and then calculated the statistics from the generated samples. Li et al. 

https://www.thesaurus.com/browse/extraordinarily
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(2018) employed the Gibbs sampling to calculate the posterior PDF of a Bayesian 

equation using operational modal analysis for system identification. 

 

The transitional MCMC has been developed for the cases when the proposed 

distribution is difficult to ascertain, and successive intermediate PDFs are used to 

gradually approach the target PDF. Muto and Beck (2008) employed the transitional 

MCMC approach to tackle the unidentifiable problem in Bayesian application. Ching 

and Chen (2007) developed a Bayesian model updating using the transitional MCMC 

approach, in which a series of intermediate PDFs were used to approach the target 

posterior PDF step by step, and the direct sampling on the posterior PDF was then 

avoided. 

 

Importance sampling simulation is a popular variance reduction technique that can be 

utilized to compute the failure probability of structures. Au and Beck (2003) 

investigated the applicability of the importance sampling to high-dimensional problems 

and recommended that the importance sampling could be utilized when the covariance 

matrix associated with each design point did not deviate obviously from the identity 

matrix. Au (2004) developed a probabilistic approach for failure analysis based on the 

importance sampling simulation, based on which the generated samples were used to 

compute the structural reliability. 

 

Given that the acceptance ratio in the sampling process is usually low in high 

dimensional models, the delayed rejection (DR) technique was proposed to improve the 

efficiency. In recent years, the DRAM algorithm, as a combination of adaptive MH 

algorithm and DR, has been widely used. For example, Zhang et al. (2013) utilized the 

DRAM algorithm for a Bayesian model updating. With this technique, the responses 

were quantitatively predicted, and the corresponding confidence interval was obtained. 

Wan and Ren (2016) demonstrated that the accuracy of the DRMA algorithm for model 

updating outperforms the Laplace’s approximation when the posterior PDF is non-

normal shaped. The validity of the DRAM algorithm to large-scale structures was also 

verified. 
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2.3.6 Others 

 

In addition to the aforementioned techniques, other representative techniques are also 

employed in the Bayesian methods such as particle swarm optimization and Gaussian 

Process (GP). 

 

Chen et al. (2017) defined a multi-sample objective function for structural damage 

detection based on the Bayesian theorem. The particle swarm optimization algorithm 

and an improved Nelder-Mead method were combined to optimize the objective 

function. The particle swarm optimization technique is a straightforward and efficient 

convergence algorithm and is prevalent in solving optimization problems. The proposed 

method was applied to the ASCE 4-storey benchmark frame. 

 

Wan and Ni (2018) adopted GP with a Gaussian prior and Gaussian likelihood for 

structural response prediction. A moving window was proposed to reduce the size of the 

input data and further result in a reduced-order GP model. The GP model allows 

uncertainty evaluation and is not restricted to a definite algebraic structure. The 

effectiveness of the proposed approach was demonstrated using the measurement data 

of the Canton Tower. 

 

2.4 Data-driven DL Techniques 

 

DL techniques have a powerful capability to learn from and make predictions on a huge 

amount of data (LeCun et al., 2015). In recent years, DL techniques have been 

extensively explored for SHM and structural damage detection. According to the input 

of the DL models, these studies can be classified into data-driven and visual-based 

methods (Sun et al., 2020). The former category is the major concern in this study, 
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although the latter has also been extensively explored. We reviewed the data-driven DL 

studies from two aspects, supervised and unsupervised learning, according to whether 

the labels of the training dataset are available or not.  

 

2.4.1 Supervised Learning 

 

Supervised learning refers to the task of learning a model that maps inputs to outputs 

using labeled datasets. The labels act as a “teacher” instructing the model what output is 

related to the specific input value. Each sample in the training dataset is a pair 

consisting of the input and the desired output that are both known. In terms of the 

architectures employed, existing supervised DL studies can be classified into CNN-

based, RNN-based, deep autoencoder-based, and deep multilayer perceptron (MLP)-

based. 

 

2.4.1.1 CNN Architectures 

 

CNN, as the state-of-the-art deep learning technique, has been a research hotspot since 

the AlexNet was proposed in 2012 (Krizhevsky et al., 2012). CNN consists of multiple 

convolutional layers, pooling layers (also named sub-sampling layer), fully-connected 

layers, and a decision-making layer (classification or regression) (Krizhevsky et al., 

2012). The feature of the convolutional layer is local receptive field and weight sharing. 

The pooling layer, as a sub-sampling layer, plays the role to lower the spatial size of the 

feature map and improve the computation efficiency (Krizhevsky et al., 2012). The max 

and average pooling operations are the most frequently used ones. After multiple 

convolution-pooling operations, the fully-connected layer connects all previous feature 

maps and refines the features extracted by the convolutional layers. The dropout 

technique is usually employed to avoid over-fitting in this process. The final layer of 

CNN, namely, the softmax classifier, is implemented for classification. 
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CNN has the following advantages (LeCun et al., 2015; Goodfellow and Bengio, 2016). 

First, the number of parameters in CNN is significantly reduced with the strategy of 

weight sharing and local receptive field, making the CNN much easier to be trained and 

less likely to suffer from over-fitting. Second, CNN can extract features from the real-

time measurement data without knowing the excitations and without data pre-

processing and post-processing. Besides, CNN is efficient and suitable for real-time 

online applications. 

 

According to the input data type, the CNN studies on structural damage detection can be 

further divided into time domain (i.e., accelerations, strain), frequency domain (i.e., fast 

Fourier transform data, transmissibility function, modal parameters), and time-

frequency domain. 

 

(1) Time domain data 

 

Abdeljaber et al. (2017) developed an adaptive one dimensional (1D) CNN for damage 

detection of the Qatar University grandstand simulator using the raw accelerometer 

data. The damage was simulated experimentally by loosening the bolt in the joints. Each 

CNN was responsible for one individual joint in the structure. The proposed CNN was 

composed of an input layer, two hidden CNN layers consisting of the convolutional and 

sub-sampling layers, two fully-connected layers, and one output layer for decision 

making. The results demonstrated the effectiveness of the proposed 1D CNN for 

damage detection. Later, the same grandstand simulator was studied by Avci et al. 

(2018) with wireless sensors for real-time damage detection using the 1D CNN. Each 

CNN was assigned to each wireless sensor in the network and processed the local data 

only. The study processed the vibration data in three directions and identified the most 

distinctive damaged direction. Zhang et al. (2019) applied the 1D CNN to a short steel 

girder bridge for state identification using the raw vibration data. The results showed 

that CNN with a simple architecture was very sensitive to tiny mass and stiffness 

changes. 
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Training CNNs for structural damage detection requires a huge amount of training data 

of multiple DSs. However, sufficient data in all damage cases are difficult to be 

acquired especially for large-scale structures. In this regard, Abdeljaber et al. (2018) 

developed an enhanced 1D CNN, which requires only two measurement sets 

corresponding to the undamaged and the fully damaged cases for training. The results 

indicated that the well-trained CNN was able to detect all nine separate DSs accurately. 

 

The above studies regard damage detection as the classification task, where the cross-

entropy function is used as the loss function. The regression analysis using the mean 

square error function has also been explored. Lin et al. (2017) proposed a damage 

identification approach based on a customized 1D CNN. In addition to the common 

layers including the convolutional, pooling, fully-connected and softmax layers, the 

batch normalization layer as a regularization technique was also inserted into the CNN 

before the nonlinear activation stage in a few convolutional layers. For the damage 

location task, the cross entropy was used as the objective function. Whereas for the 

damage severity quantification, the error function was a mean square error regression 

equation that measures the difference between the true and predicted labels. The 

numerical FE model of a simply supported Euler-Bernoulli beam was utilized as an 

example. The proposed CNN was verified to have the robustness to noise and excellent 

performance of damage localization and quantification. Wu et al. (2019) also employed 

CNN for the regression task to predict dynamic responses of a linear single-degree-of-

freedom system, a nonlinear single-degree-of-freedom system, and a 3-story multi-

degree-of-freedom steel frame. A comparison study showed that CNN was more robust 

to noise-contaminated data and more suitable for the response prediction than the MLP.  

 

In addition to the acceleration responses, strain data have also been used as the input. 

For example, Gulgec et al. (2019) used the normalized strain data as the input of CNN 

for damage detection and localization. The ABAQUS software was employed to 

simulate the damage state and generate training data. The detection task was a 

classification problem, while the localization was treated as a regression problem. For 

simplicity and efficiency, both tasks utilized the identical layers in the former 
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architecture of CNN. The results verified the high accuracy, high efficiency and 

robustness of the proposed CNN model for damage diagnosis and localization. 

 

In the 1D CNN, the measurement data should be concatenated and processed into 1D 

data, which will inevitably increase the length of the input. In this regard, 2D raw data-

based CNN has been developed for SHM. This was inspired by the fact that multiple 

raw responses are generally measured by multiple sensors in practice. Khodabandehlou 

et al. (2019) developed a 2D deep CNN for structural condition assessment with a 

limited number of acceleration data. Each time-series response was transformed to a 

122×70 matrix as the input of CNN. Results showed that both damage location and 

severity were accurately predicted using the well-trained network.  

 

(2) Frequency domain data 

 

In some studies, the raw time series data are transformed into frequency-domain 

features for preliminary feature extraction. A few representative methods are reviewed 

as follows.  

 

Yu et al. (2019) developed a deep CNN-based method to assess and localize damages of 

a numerical building with several isolators designed underneath. The time domain 

signals were transformed into frequency domain features, which were compressed to a 

2D matrix (5×2832) as the input of a 2D CNN. The output was a vector consisting of 

each floor’s health condition. The proposed CNN consisted of ten layers, including an 

input layer, three convolutional and subsampling layers, two fully connected layers, and 

an output layer. The network was trained in a supervised manner. The limitation was 

that only numerical investigations were conducted in this study. 

 

Liu and Zhang (2019) utilized the short time Fourier transformation to transform the 

measurement data to image format, which is compatible with the visual-based CNN 
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model. The input data were two dimensional, one was corresponding to the time 

coordinate, and the other was frequency, whose magnitude was represented by varying 

color shades. Transfer learning was also employed in this study to simplify the design 

and training of the CNN model. 

 

Cofre-Martel et al. (2019) proposed a novel deep CNN model for damage detection and 

quantification using the image of structural transmissibility functions. The 

transmissibility function is the ratio of the output to input in the frequency domain. Its 

peak, deep and magnitude are all related to the structural health state. In the study, the 

input of CNN contained the values of the logarithmic magnitude of the transmissibility 

function and was contaminated with additional noise. The CNN was trained for damage 

quantification, which was a regression task. 

 

(3) Time-frequency domain data 

 

Some researchers combined the raw time domain data and its transformation in the 

frequency domain as the input.  

 

Tang et al. (2019) split the raw response data into sections and used the data in both 

time and frequency domains to form the dual-channel image as the input of CNN for 

anomaly detection. The whole data set was manually labeled as the training data for 

supervised learning. Oh et al. (2019) developed a CNN model for wind-induced 

response estimation using three types of data together as the input, including the time 

domain responses at the top floor, frequency domain displacement response, and 

frequency domain wind speed. Wang et al. (2021) processed the vibration data using the 

Hilbert-Huang transform and then used the time-frequency graphs as the input of the 

proposed CNN model for damage detection. The proposed method had a better 

performance as compared with the traditional artificial neural network (ANN) and SVM 

models. 
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2.4.1.2 RNN Architectures 

 

The RNN is a kind of ANN where connections between nodes form a temporal 

sequence. The difference between RNNs and other DL techniques is that the input 

comes from two sources: the current input data and previously perceived data. In other 

words, an RNN takes individual input data at a time, and the output is combined with 

the next input together to produce another output. Such a topology structure allows the 

RNN to relate the current state to historical states and thus makes it suitable for dynamic 

systems.  

 

Seker et al. (2003) verified the capability of the RNN for condition monitoring and 

diagnosis in nuclear power plants and rotating machineries. The study illustrated that 

RNN was a powerful network for real time applications to grasp the system’s dynamic 

change. Graf et al. (2010) proposed to employ the RNN for structural response 

prediction. The RNN model trained by time-series measurement data enabled the fuzzy 

data processed in a temporary sequence, which had a high degree of flexibility and 

generality due to its independence on structural materials and components. A textile 

reinforced concrete plate was employed to verify the effectiveness of the proposed RNN 

in response prediction. 

 

Zhao et al. (2020) developed a strain data-driven model for structural state evaluation 

based on deep learning and clustering techniques. The long-short term memory 

network, as a special RNN to alleviate gradient disappearance problems, was employed 

to classify the non-stationary and stationary vehicle-induced strain. The model was 

trained by the adaptive moment estimation optimizer. The results indicated that the test 

accuracy of the classification was over 99%. The proposed RNN can be utilized as an 

indicator for the bridge inspection, truck-weight-limit and reinforcement work. 

 

Perez-Ramirez et al. (2019) developed a nonlinear ARX based RNN model for 

predicting dynamic responses of buildings. The methodology integrated three concepts: 
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the empirical mode decomposition for signal processing, mutual information index to 

determine the number of neurons, and Bayesian algorithm for uncertainties evaluation. 

The model was applied to a scaled high-rise residential building and five-story steel 

frame. The results showed that the proposed methodology was able to predict structural 

responses despite the material’s mechanical properties. The required training data was 

also reduced attributed to the Bayesian regularization.  

 

2.4.1.3 Deep Autoencoder Architectures 

 

The traditional autoencoder is unsupervised, which consists of two network 

components, namely, the encoder and decoder. The encoder maps the original input data 

to feature space by reducing the dimensionality of the input data to preserve the 

important information, and the decoder reconstructs the data based on the features. In 

recent years, researchers in SHM employed the autoencoder for supervised learning. 

The decoder was trained to learn the relationship between the features and the stiffness 

reduction parameters of the structure. The deep auto-encoder has more layers and is 

powerful for the feature extraction of complex problems, as compared with the 

traditional auto-encoders.  

 

Pathirage et al. (2018) used the deep auto-encoder for modal based structural damage 

detection. The modal parameters were used as the input of the framework and the 

element stiffness reduction as the output. Two hidden layers were designed for 

dimensionality reduction with 100 neurons each. The hyperbolic tangent and linear 

activation functions were employed in the pre-training stage. Afterwards, the hyperbolic 

tangent function was adopted in the hidden layers. The robustness and effectiveness of 

the proposed algorithm for damage detection were demonstrated through the numerical 

and experimental examples.  

 

Wang et al. (2018) developed a novel parallel deep autoencoder framework for damage 

detection using a multi-scale dataset. The modal parameters as the input were separately 
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processed for dimensionality reduction and then combined for relationship learning. It 

was demonstrated that the proposed framework was able to learn the relationship 

between the structural modal parameters and stiffness. 

 

2.4.1.4 Deep MLP Architectures 

 

Deep MLP is a type of ANN with multiple hidden layers between the input and output 

layers, which enables it to learn high-level features of the input.  

 

Several researchers directly utilized structural raw responses as the input of deep MLP. 

For example, Arangio and Beck et al. (2012) developed a two-step Bayesian multilayer 

perceptron network for damage identification and quantification of a long suspension 

bridge. In the first step, different networks were trained for structural response 

approximation. Damage location and severity were identified in the second step. The 

Bayesian model selection and ARD model improved the performance of the proposed 

neural network.  

 

Raw data responses can also be directly transformed into the image format as the input 

of the deep MLP. For example, Bao et al. (2019) transformed structural acceleration 

response data into image vectors and fed them into the autoencoder deep MLP as the 

training data for damage detection. Three network layouts, including the parallel, fusion 

and multi-group layouts, were proposed. The proposed method considerably reduced 

false alarms induced by anomalies in the SHM system. 

 

2.4.2 Unsupervised Learning 

 

In practice, labeled damage data are difficult to obtain as the structural condition is 

unknown in advance. Therefore, supervised learning is challenging in this case. In 
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contrast, unsupervised learning needs input data only and does not need the 

corresponding output; that is, the datasets are unlabeled. Unsupervised learning 

techniques discover hidden patterns in the dataset, cluster the dataset into groups 

according to similarities, or represent the dataset in a compressed format. Due to the 

lack of supervision, most unsupervised learning methods are limited to the first level of 

damage detection, that is, novelty detection or detecting the damage existence. For the 

second and third levels of damage detection tasks (damage localization and 

quantification), transfer learning-based unsupervised methods have been developed. 

These two types of unsupervised damage detection studies are reviewed in the 

following sections. 

 

2.4.2.1 Novelty Detection 

 

The novelty detection methods aim to discriminate the abnormal or unusual 

observations from the normal data in an unsupervised manner. The models are 

estimated using the normal data, and then the consistency of new observations with the 

estimated model is checked. An inconsistency that exceeds the threshold indicates the 

abnormality, that is, the emergence of damage. Different unsupervised deep 

architectures, such as the deep restricted Boltzmann machine (DRBM), deep belief 

network (DBN), and deep autoencoder, have been developed to detect the existence of 

damage.  

 

The DRBM is a network composed of symmetrically connected stochastic binary units. 

No within-layer connection exists in DRBM. The network is trained layer by layer, and 

then finetuned through the back propagation (Salakhutdinov and Hinton, 2009). Rafiei 

and Adeli (2018) developed an unsupervised DRBM-based method for the condition 

assessment of the entire structural and substructure systems. The DRBM was composed 

of an encoder and decoder for feature extraction. Structural responses in the time 

domain under ambient excitations were transformed into the frequency domain by the 

fast Fourier transform and then used as the input of the DRBM. The damage index was 

defined on the reconstruction error of the network. The effectiveness of the proposed 
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method was validated using the vibration data of a 1:20 scaled 38-story residential 

concrete high-rise building in Hong Kong.  

 

The  DBN is a multi-layered probabilistic generative model constructed by multiple 

RBMs (Salakhutdinov and Hinton, 2009). Different from the DBRM, the DBN does not 

incorporate top-down feedback. Each RBM is trained to predict the probabilities of each 

variable in the present layer from the pre-determined layer. Through stacking such 

models, the network can probabilistically reconstruct the input data without supervision 

(Salakhutdinov and Hinton, 2009). Pan et al. (2018) developed a Bayesian DBN for 

damage detection of a four-story frame. Comparative studies revealed that the deep 

networks achieved more accurate damage diagnostics than traditional shallow learning 

techniques.  

 

The deep autoencoder has also been extensively explored for unsupervised damage 

detection. Ni et al. (2020) developed a deep convolutional autoencoder for anomaly 

detection through data compression and reconstruction. The effectiveness of the 

proposed method was verified using the one-month acceleration data of a long-span 

bridge in China. Shang et al. (2021) proposed a deep denoising autoencoder for damage 

detection using the cross-correlation functions of acceleration data as the input. The 

exponentially weighted moving average control charts were employed to determine the 

threshold for anomaly detection. The proposed method was applied to an experimental 

continuous beam under changing temperature conditions for damage detection.  

 

2.4.2.2 Transfer Learning-based Methods 

 

To mitigate the dependency on labeled data, transfer learning has been developed for 

learning from an unlabeled or few-labeled target domain with the help of a source 

domain where abundant labeled data are available (Pan and Yang, 2009). As a 

subcategory of transfer learning, unsupervised domain adaptation (DA) aims to handle 
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the data distribution divergence between source and target domains, so that the 

knowledge learned from the labeled source domain could be intelligently applied to the 

unlabeled target domain (Pan et al., 2010; Ganin and Lempitsky, 2015). DA seeks to 

extract domain-invariant and target-discriminate features shared by both domains. In the 

last few years, DA has achieved considerable progress in computer vision tasks, such as 

digit recognition and semantic segmentation (Zou et al., 2018; Wang and Deng, 2018). 

DA methods have also been developed for structural damage detection, which can be 

classified into the following two categories. 

 

The first category is the moment matching method, which aims to minimize the 

distribution divergence between the source and target domains in the reproducing kernel 

Hilbert space. For example, Garden et al. (2020) studied the knowledge transfer 

between different structures by developing the transfer component analysis and joint 

DA-based methods, where the maximum mean discrepancy (MMD) distance was 

utilized as the criterion. The method belongs to the shallow model that has difficulties in 

feature extraction and adaptation from raw measurement data. Lin et al. (2021) further 

developed an MMD-based deep DA network for damage localization by using structural 

dynamic responses as the input. The source domain consisted of labeled damage data 

generated from a numerical FE model, and the target data to be classified were the real-

word experimental data. The domain-invariant damage sensitive features were extracted 

by minimizing the MMD distance between the distributions of both domains. The 

results indicated that the damage of the experimental beam could be accurately localized 

without pre-collecting labeled damage data of the beam. 

 

The second category adopts the deep adversarial DA network. The basic deep 

adversarial network consists of a feature generator (extractor), classifier and domain 

discriminator (Ganin et al., 2016). The feature extractor and domain discriminator are 

trained in an adversarial manner. Thus, features extracted by the generator are shared by 

both domains and cannot be recognized by the domain discriminator. Xu and Noh 

(2021) developed a physics-informed domain adversarial network for knowledge 

transfer between structures with different stories for damage detection and 
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quantification. The network was trained to extract damage-sensitive features that were 

robust to different structures without any labeled data. A weight parameter was designed 

in the loss function of DA based on the physical similarities of the building to improve 

the positive transfer. The proposed method achieved 90.13% and 84.46% accuracy for 

damage detection and quantification tasks on numerical structures with different stories, 

respectively, and 100% damage detection accuracy and 69.93% damage quantification 

accuracy when transferring from numerical to experimental structures. 

 

2.5 Summary and Challenges 

 

The data normalization, Bayesian inference and DL techniques for structural damage 

detection have been reviewed. In summary, the data normalization techniques 

(including the regression model, PCA, FA and other machine learning techniques) build 

effective models to remove the environmental and operational effects on structural 

vibration properties, and then evaluate the damage condition by comparing the damage-

sensitive features before and after damage. The model updating-based Bayesian 

methods build a probabilistic framework that considers the uncertainties and evaluates 

the unknown parameters automatically. The data-driven DL techniques use structural 

dynamic responses as the input for supervised or unsupervised damage-sensitive feature 

extraction. 

 

Although these techniques have achieved considerable progress, there are several 

challenges to be addressed: 

(1) In the existing dimensionality reduction-based data normalization techniques, the 

latent dimensionality in the feature space is usually selected by the trial-and-error 

methods or according to engineers’ experience, which is tedious and time 

consuming in processing high-dimensional data. For example, the kernel PCA 

involves the data projection to a high-dimensional feature space. 

(2) Structural damage usually occurs at limited locations only, particularly in the initial 
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stage. The l1 regularization technique can be introduced to the model updating for 

sparse damage detection. However, the optimal regularization parameter needs to be 

decided in advance manually. The Bayesian method could optimize unknown 

parameters automatically. The sparsity can be incorporated into the Bayesian 

equation for damage detection. However, an analytical posterior PDF is not 

available due to the computationally prohibited integration in the evidence, which is 

resulted from the high-dimension and the nonlinear relationship between the 

measured modal data and structural parameters. 

(3) Most DL-based damage detection methods face the challenge of lack of labeled 

damage data in practical structures, as the damage state is unreversible and the 

structural condition is unknown in advance. Some researchers built the FE model of 

a real structure to generate labeled damage data, which could consider all possible 

DSs for network training. However, the FE model may suffer from modeling errors. 

The discrepancy between the FE model and real structure may lead to performance 

degradation when the DL model trained on the basis of the FE model is applied to 

the real structure. Besides, the well-trained model performs well only in the specific 

structure that the training data arise from. The performance of the model drops 

significantly when it is applied to another structure. Labeled data should be re-

collected to re-train a DL model for a different structure, which is often expensive 

and infeasible in practice. Although the unsupervised DA-based methods have been 

developed, they are limited to the case where the source and target data have the 

identical label space, which is not realistic as structures may have different DSs. 

 

This study will address the above difficulties and carry out studies in the following 

chapters. 
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CHAPTER 3   
 

SPARSE BAYESIAN FACTOR ANALYSIS FOR 

STRUCTURAL DAMAGE DETECTION UNDER 

UNKNOWN ENVIRONMENTAL CONDITIONS 
 

 

 

3.1 Introduction 

 

The dimensionality reduction techniques are a main branch of data normalization 

methods without measuring the environment data, as summarized in Section 2.1. 

However, most methods suffer from the limitation that the number of latent dimensions 

to be retained is typically selected according to engineers’ experiences or by a trial-and-

error manner, which is tedious and time-consuming, especially for high-dimensional 

problems. The FA provides a multi-variate statistical model to interpret the variation of 

observations in terms of latent variables. In the present FA-based studies on damage 

detection (Kullaa, 2011; Deraemaeker et al., 2018), a diagonal covariance matrix is 

adopted for the error vector in the FA model, which means that each dimension in the 

observations is treated uncorrelated and independent. This assumption is questionable 

when structural vibration modes are used, given that different modes are extracted from 

the same set of time series responses, and thus the observed modal data should be 

correlated. Besides, the number of latent factors was also determined on the basis of the 

researchers’ experience in their studies. 

 

In practice, most physical systems have only a few relevant items that account for the 

variations. The underlying environmental factors that influence structural vibration 

properties are also deemed to be limited. In this chapter, a novel sparse Bayesian FA 

method is developed for structural damage detection method under unknown 

environmental conditions. The study contains two novelties: 1) A full rather than a 
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diagonal covariance matrix is adopted, and 2) The sparsity is introduced to the Bayesian 

FA model such that the number of underlying factors can be determined automatically. 

 

3.2 FA in Sparse Bayesian Framework 

 

FA was developed on the basis of the assumption that, for a collection of observations, 

there are a set of latent variables that can describe the variabilities of the observations. 

The latent variables are named factors. Denote the observations as 𝐃 =

[𝐃1, 𝐃2,. . . , 𝐃𝑁] ∈ ℝ𝑁𝑚×𝑁 , the basic FA model is expressed as (Bishop, 2006; 

Bartholomew et al., 2011) 

𝐃𝑛 = 𝓦𝐳𝑛 + 𝛍 + 𝛆𝑛 (𝑛 = 1,2, … , 𝑁) (3.1) 

where 𝓦 is the factor loading matrix with the dimension of 𝑁𝑚 × 𝑀 ; 𝐳𝑛  is an 𝑀 -

dimensional vector whose entries consist of 𝑀 independent variables with the standard 

Gaussian prior 𝓝(𝐳𝒏|𝟎, 𝐈); 𝛍 is the global mean of all vectors in D; and 𝛆𝑛 is an 𝑁𝑚-

dimensional error vector that accounts for the uncertainties and model prediction errors. 

A Gaussian prior function 𝓝(𝛆𝒏|𝟎, 𝚿) is adopted for 𝛆𝑛. The conventional FA model 

restricts the matrix 𝚿 ∈ ℝ𝑁𝑚×𝑁𝑚 to be diagonal, which is equivalent to modeling the 

elements in 𝐃𝑛 as uncorrelated and independent. 

 

In this study, 𝐃 comprises the evolution of structural natural frequencies under changing 

environmental conditions. As different dynamic models in 𝐃𝑛 (𝑛 = 1,2, . . . , 𝑁)  are 

correlated and dependent, the covariance matrix 𝚿 is treated as a full matrix instead of a 

diagonal matrix. In Eq. (3.1), only 𝐃𝑛 are available while the remaining variables and 

parameters are all unknown and need to be evaluated. Calculating 𝐳𝑛, 𝓦, 𝛍 and 𝚿 from 

𝐃𝑛 is a classical inverse problem from the data space to the latent feature space. To this 

end, the Bayesian theorem that is an inverse probability function is employed.  
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The overall Bayesian equation to calculate the latent variable 𝐳 = [𝐳1, 𝐳2, … , 𝐳𝑁] ∈

ℝ𝑀×𝑁 is expressed as (Bishop, 2006) 

𝑝(𝐳|𝐃, 𝛏) = 𝑐0
−1𝑝(𝐃|𝐳, 𝛏)𝑝(𝐳) (3.2) 

where 𝑝(𝐳|𝐃, 𝛏) is the posterior PDF of the latent variable 𝐳 given the observations D 

and parameters 𝛏 = {𝐖, 𝛍, 𝚿}; 𝑝(𝐃|𝐳, 𝛏) is the observed-data likelihood function; 𝑝(𝐳) 

is the prior PDF of 𝐳; and 𝑐0 = ∫ 𝑝(𝐃|𝐳, 𝛏)𝑝(𝐳)𝑑𝐳 = 𝑝(𝐃|𝛏) is the evidence that serves 

normalization. Note that in Eq. (3.2), the actual observations are substituted for 𝐃, 

whereas Eq. (3.1) defines a probabilistic FA model that the observations should be. 

 

The overall Bayesian equation of the posterior PDF of the parameters 𝛏 is expressed as  

𝑝(𝛏|𝐃, 𝐳) = 𝑐1
−1𝑝(𝐃, 𝐳|𝛏)𝑝(𝛏) (3.3) 

where 𝑝(𝐃, 𝐳|𝛏) is the complete-data likelihood function; 𝑝(𝛏) is the prior of 𝛏; and 

𝑐1 = ∫ 𝑝(𝐃, 𝐳|𝛏)𝑝(𝛏)𝑑𝛏 = 𝑝(𝐃, 𝐳) is the evidence. All items in Eqs. (3.2) and (3.3) are 

given as follows. 

 

3.2.1 Prior PDF 

 

Parameters 𝛏 = {𝓦, 𝛍, 𝚿} are assumed to be independent. Therefore, 𝑝(𝛏) is expressed 

as 𝑝(𝛏) = 𝑝(𝓦)𝑝(𝛍)𝑝(𝚿). 𝓦 is defined as an 𝑁𝑚 × 𝑀 matrix, where 𝑀 denotes the 

dimension size of each latent variable and is unknown. In this study, 𝑀 represents the 

number of environmental factors that significantly influence observations 𝐃 . In 

traditional methods, 𝑀  is usually determined according to engineers’ experiences in 

advance. In this study, a specific ARD prior (Bishop, 1999) is adopted for 𝐖  for 

automatic model selection, enabling the automatic determination of 𝑀  through an 

optimization process. An independent standard Gaussian distribution is defined over 

each column of 𝓦 as follows: 
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𝑝(𝓦|𝜶) = ∏ (
𝛼𝑖

2𝜋
)

𝑁𝑚
2

𝑒𝑥𝑝 {−
1

2
𝛼𝑖𝐰𝑖

T𝐰𝑖}

𝑀

𝑖=1

 (3.4) 

where the factor loading 𝐰𝑖 is the ith (i=1, …, 𝑀) column of 𝓦, 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑀]T 

and 𝛼𝑖 is the hyper-parameter, which governs the precision of 𝐰𝑖. 𝑀 is initially set to 

𝑁𝑚, making 𝓦 an 𝑁𝑚 × 𝑁𝑚 matrix. In the optimization process, some items in 𝜶 will 

tend to infinity, forcing the corresponding columns in 𝓦 to zero. Accordingly, 𝑀 will 

be optimized to a value denoting the number of underlying factors that significantly 

influence 𝐃. For simplicity, non-informative priors are adopted for 𝛍 and 𝚿. In Eq. 

(3.2), a standard Gaussian distribution is adopted as the prior 𝑝(𝐳), that is, 

𝑝(𝐳) = ∏ 𝑝(𝐳𝑛)

𝑁

𝑛=1

= (
1

2𝜋
)

𝑀𝑁
2

∏ 𝑒𝑥𝑝 {−
𝐳𝑛

T𝐳𝑛

2
}

𝑁

𝑛=1

 (3.5) 

and 𝑝(𝐳, 𝛏) = 𝑝(𝐳)𝑝(𝛏), where 𝐳 and 𝛏 are chosen to be independent a priori. 

 

3.2.2 Observed-data Likelihood Function 

 

According to Eq. (3.1), the statistics, including the mean and covariance of the 

likelihood function, are given by 

𝔼[𝐃𝑛|𝛏, 𝐳𝑛] = 𝓦𝐳𝑛 + 𝛍 + 𝔼[𝛆𝑛] = 𝓦𝐳𝑛 + 𝛍 (3.6) 

Cov[𝐃𝑛|𝛏, 𝐳𝑛] = 𝔼[(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T] = 𝔼[𝛆𝑛𝛆𝑛
T] = 𝚿 (3.7) 

Thus 𝑝(𝐃𝑛|𝛏, 𝐳𝑛)  follows the Gaussian distribution 𝒩(𝐃𝑛|𝓦𝐳𝑛 + 𝛍, 𝚿) . Given that 

𝛆𝑛(𝑛 = 1,2, … , 𝑁) are mutually independent, the observed-data likelihood function is 

expressed as 

𝑝(𝐃|𝛏, 𝐳) = ∏ 𝑝(𝐃𝑛|𝛏, 𝐳𝑛)

𝑁

𝑛=1

 

= (
1

2𝜋
)

𝑁𝑚𝑁
2

|𝚿|−
𝑁
2 ∏ 𝑒𝑥𝑝 {−

1

2
(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)}

𝑁

𝑛=1

 

(3.8) 
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where |𝚿| denotes the determinant of 𝚿. 

 

3.2.3 Complete-data Likelihood Function 

 

For each observation 𝐃𝑛 there is a latent variable 𝐳𝑛. {𝐃, 𝐳} is named the complete-data 

set. In corresponding, 𝑝(𝐃, 𝐳|𝛏)  is termed the complete-data likelihood function. 

𝑝(𝐃, 𝐳|𝛏) is a joint distribution that is a product of the observed-data likelihood function 

𝑝(𝐃|𝛏, 𝐳) and the prior PDF 𝑝(𝐳) (Bishop, 2006), derived as  

𝑝(𝐃, 𝐳|𝛏) = 𝑝(𝐃|𝛏, 𝐳)𝑝(𝐳) (3.9) 

Substituting Eqs. (3.5) and (3.8) into Eq. (3.9), one has 

𝑝(𝐃, 𝐳|𝛏) = (
1

2𝜋
)

(𝑀+𝑁𝑚)𝑁
2

|𝚿|−
𝑁
2  

                 × ∏ 𝑒𝑥𝑝 {−
1

2
(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍) −

𝐳𝑛
T𝐳𝑛

2
}

𝑁

𝑛=1

 

(3.10) 

 

3.2.4 Posterior PDF 

 

Based on Eq. (3.2), the posterior PDF of the latent variable 𝐳 conditional on parameters 

𝛏 is derived as 

𝑝(𝐳|𝐃, 𝛏) = 𝑐0
−1𝑝(𝐃|𝛏, 𝐳)𝑝(𝐳) = 𝑐0

−1𝑝(𝐃, 𝐳|𝛏) 

∝ ∏ 𝑒𝑥𝑝 {−
1

2
(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍) −

𝐳𝑛
T𝐳𝑛

2
}

𝑁

𝑛=1

 

∝ ∏ 𝑒𝑥𝑝 {𝐳𝑛
T𝓦T𝚿−1(𝐃𝑛 − 𝛍) −

1

2
𝐳𝑛

T(𝐈 + 𝓦T𝚿−1𝓦)𝐳𝑛}

𝑁

𝑛=1

 

(3.11) 
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which is found to be quadratic in terms of 𝐳𝑛  and follows a standard Gaussian 

distribution as  

𝑝(𝐳|𝐃, 𝛏) = ∏ 𝒩(𝐳𝑛|�̅�𝑛, 𝐂𝐳)

𝑁

𝑛=1

∝ ∏ 𝑒𝑥𝑝 {−
1

2
(𝐳𝑛 − �̅�𝑛)T𝐂𝐳

−1(𝐳𝑛 − �̅�𝑛)}

𝑁

𝑛=1

 

∝ ∏ 𝑒𝑥𝑝 {𝐳𝑛
T𝐂𝐳

−1
�̅�𝑛 −

1

2
𝐳𝑛

T𝐂𝐳
−1

𝐳𝑛}

𝑁

𝑛=1

 

(3.12) 

By comparing Eq. (3.11) and (3.12), the posterior mean and covariance matrix of 𝐳𝑛 are 

seen to be  

�̅�𝑛 = 𝐂𝐳𝓦T𝚿−1(𝐃𝑛 − 𝛍) ∈ ℝ𝑀 (3.13) 

𝐂𝐳 = (𝐈 + 𝓦T𝚿−1𝓦)−1 ∈ ℝ𝑀×𝑀 (3.14) 

The posterior covariance matrix 𝐂𝐳 in Eq. (3.14) is observed to be independent of 𝐃𝑛, 

whereas the posterior mean �̅�𝑛 is related to 𝐃𝑛. For a Gaussian distribution, the MAP 

estimate is equal to the mean. Therefore, the MAP estimate of 𝐳𝑛, denoted as �̂�𝑛 , is 

given by  

�̂�𝑛 = 𝔼𝐳[𝐳𝑛|𝐃𝑛,𝛏] = �̅�𝑛 (3.15) 

The posterior second moment of 𝐳𝑛 is then computed as  

𝔼𝐳[𝐳𝑛𝐳𝑛
T|𝐃𝑛,𝛏] = 𝐂𝐳 + �̅�𝑛�̅�𝑛

T (3.16) 

 

By substituting Eqs. (3.4) and (3.10) into Eq. (3.3), the posterior PDF of parameters 𝛏 =

{𝓦, 𝛍, 𝚿} conditional on 𝐳 and 𝜶 is derived as 

𝑝(𝛏|𝐃, 𝐳, 𝜶) = 𝑐1
−1𝑝(𝐃, 𝐳|𝛏)𝑝(𝓦|𝜶) 

∝ |𝚿|−
𝑁
2 ∏ 𝑒𝑥𝑝 {−

1

2
(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍) −

𝐳𝑛
T𝐳𝑛

2
}

𝑁

𝑛=1

 

    × ∏ 𝑒𝑥𝑝 {−
1

2
𝛼𝑖𝐰𝑖

T𝐰𝑖}

𝑀

𝑖=1

 

(3.17) 
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where the hyper-parameter vector 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑀]T  is unknown and needs to be 

estimated. Different from the latent variable 𝐳𝑛 whose posterior statistics can be directly 

obtained from Eq. (3.11), Eq. (3.16) is quite complicated, and the MAP estimate of 𝛏 =

{𝓦, 𝛍, 𝚿}  cannot be directly identified. The intractable posterior PDF is a major 

challenge in applying the Bayesian theorem to the high-dimensional or nonlinear 

problems. As summarized in Section 2.3.2, the EM algorithm is a general technique 

applicable to the Bayesian models with latent variables. In this connection, the EM 

algorithm is utilized in this chapter. 

 

3.3 EM Algorithm 

 

The EM algorithm consists of two steps, namely, the E step and M step. For the 

maximum likelihood estimate, the E step calculates the expectation of the logarithm of 

the complete-data likelihood function with respect to the latent variable, and then the M 

step maximizes this expectation. The algorithm starts by initializing the parameters, and 

then proceeds with the iterative E and M steps before the convergence is achieved. For 

the MAP estimate in this study, the M step maximizes the sum of the expectation and 

the prior (Bishop, 2006). The procedures are detailed as follows. It is noteworthy that 

the expectation with respect to 𝐳 is the posterior one throughout this chapter.  

 

In the E step, the expectation of the logarithm of Eq. (3.10) with respect to 𝐳  is 

calculated as 

𝔼𝐳[𝑙𝑛 𝑝 (𝐃, 𝐳|𝛏)] 

 

=
(𝑀+𝑁𝑚)𝑁

2
ln (

1

2𝜋
) −

𝑁

2
ln|𝚿| 

  + ∑ 𝔼𝐳 [−
1

2
(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝓦𝐳𝑛 − 𝛍) −

𝐳𝑛
T𝐳𝑛

2
]

𝑁

𝑛=1

 

(3.18) 
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=
(𝑀+𝑁𝑚)𝑁

2
ln (

1

2π
) −

N

2
ln|𝚿| − ∑ [

1

2
(𝐃𝐧 − 𝛍)𝐓𝚿−𝟏(𝐃𝐧 − 𝛍)]

𝑁

𝑛=1

 

+ ∑ [(𝐃𝑛 − 𝛍)T𝚿−1𝓦𝔼𝐳[𝐳𝑛] −
1

2
𝔼𝐳(𝐳𝑛

T𝓦T𝚿−1𝓦𝐳𝑛)]

𝑁

𝑛=1

− ∑
1

2
𝔼𝐳(𝐳𝑛

T𝐳𝑛)

𝑁

𝑛=1

 

 

The sum of Eqs. (3.18) and (3.4) is calculated as  

𝐽(𝛏) = 𝔼𝐳[ln 𝑝 (𝐃, 𝐳|𝛏)] + ln 𝑝 (𝓦|𝜶) 

=
(𝑀+𝑁𝑚)𝑁

2
ln (

1

2𝜋
) −

𝑁

2
ln|𝚿| − ∑ [

1

2
(𝐃𝑛 − 𝛍)T𝚿−1(𝐃𝑛 − 𝛍)]

𝑁

𝑛=1

 

   + ∑ [(𝐃𝑛 − 𝛍)T𝚿−1𝓦𝔼𝐳[𝐳𝑛] −
1

2
𝔼𝐳(𝐳𝑛

T𝓦T𝚿−1𝓦𝐳𝑛)]

𝑁

𝑛=1

 

   − ∑
1

2
𝔼𝐳(𝐳𝑛

T𝐳𝑛)

𝑁

𝑛=1

+
𝑁𝑚𝑀

2
ln (

𝛼𝑖

2𝜋
) − ∑ (

1

2
𝛼𝑖𝐰𝑖

T𝐰𝑖)

𝑀

𝑛=1

 

(3.19) 

 

The M step maximizes Eq. (3.19) with respect to 𝛏 by keeping 𝜶 fixed. Setting the 

derivative of Eq. (3.19) with respect to 𝓦, 𝛍 and 𝚿−1 separately to zero, we have  

𝜕𝐽

𝜕𝓦
= ∑ 𝚿−1(𝐃𝑛 − 𝛍)𝔼𝐳[𝐳𝑛]T

𝑁

𝑛=1

− ∑ 𝚿−1𝓦𝔼𝐳[𝐳𝑛𝐳𝑛
T] − 𝓦diag(𝛼𝑖)

𝑁

𝑛=1

= 0 (3.20) 

𝜕𝐽

𝜕𝚿−1
=

1

2
∑[𝚿 − (𝐃𝑛 − 𝛍)(𝐃𝑛 − 𝛍)T]

𝑁

𝑛=1

 

                + ∑(𝐃𝑛 − 𝛍)𝔼𝐳[𝐳𝑛]T𝓦T

𝑁

𝑛=1

−
1

2
∑ 𝐖𝔼𝐳[𝐳𝑛𝐳𝑛

T]𝓦T

𝑁

𝑛=1

= 0 

(3.21) 

𝜕𝐽

𝜕𝛍
= − ∑[𝚿−1𝛍 − 𝚿−1𝐃𝑛] − ∑ 𝚿−1𝓦𝔼𝐳[𝐳𝑛]

𝑁

𝑛=1

𝑁

𝑛=1

= 0 (3.22) 

 

According to Eq. (3.21) and (3.22), the MAP values of 𝚿 and 𝛍 can be calculated in the 

closed-form and expressed as 
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�̂� =
1

𝑁
∑{(𝐃𝑛 − 𝛍)(𝐃𝑛 − 𝛍)T − 2(𝐃𝑛 − 𝛍)𝔼𝐳[𝐳𝑛]T𝓦T

𝑁

𝑛=1

+ 𝓦𝔼𝐳[𝐳𝑛𝐳𝑛
T]𝓦T} 

(3.23) 

�̂� =
1

𝑁
∑ 𝐃𝑛

𝑁

𝑛=1

 (3.24) 

where Eq. (3.24) is derived by substituting Eq. (3.14) into (3.22). 𝔼𝐳[𝐳𝑛] and 𝔼𝐳[𝐳𝑛𝐳𝑛
T] 

in Eqs. (3.23) and (3.24) are the posterior estimates, which are calculated in Eq. (3.15) 

and (3.16). However, the analytical solution of 𝓦 cannot be directly obtained from Eq. 

(20). In this regard, Eq. (20) is transformed into the form of the Sylvester equation as 

𝐀�̂� + �̂�𝐁 = 𝐂 (3.25) 

where 𝐀 = 𝚿−1 , 𝐁 = diag(𝛼𝑖)(∑ 𝔼𝐳[𝐳𝑛𝐳𝑛
T]𝑁

𝑛=1 )−1  and 𝐂 = 𝚿−1(∑ (𝐃𝑛 −𝑁
𝑛=1

𝛍)𝔼𝐳[𝐳𝑛]T)(∑ 𝔼𝐳[𝐳𝑛𝐳𝑛
T]𝑁

𝑛=1 )−1 . The MAP value �̂�  is then calculated using the 

Sylvester function in MATLAB.  

 

The Hessian matrix, which is the negative second derivative of 𝐽(𝛏) with respect to 𝛏, 

should be positive definite to ensure that the solution in Eqs. (3.23)–(3.25) is a local 

maximum instead of a minimum or a saddle point. As defined, 𝓦 ∈ ℝ𝑁𝑚×𝑀 , 𝚿 ∈

ℝ𝑁𝑚×𝑁𝑚  and 𝛍 ∈ ℝ𝑁𝑚 . Therefore, the Hessian matrix 𝐇 ∈

ℝ(𝑁𝑚∙𝑀+𝑁𝑚∙𝑁𝑚+𝑁𝑚)×(𝑁𝑚∙𝑀+𝑁𝑚∙𝑁𝑚+𝑁𝑚) . The high dimension of the Hessian matrix 

prohibits the explicit form. In this study, the Symbolic Math Toolbox in MATLAB is 

used to calculate the analytical expression of each entry in the Hessian matrix. In the 

subsequent experimental examples, the numerical solutions of �̂�, �̂� and �̂� computed in 

each iteration are substituted into these entries in 𝐇 , based on which the positive 

definiteness is examined by calculating all eigenvalues. 

 

A non-informative prior is adopted for hyper-parameter 𝜶, thus the MAP value of 𝜶 is 

given by 
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�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 
𝜶

𝑝(𝜶|𝐃, 𝛍, 𝚿) = 𝑎𝑟𝑔𝑚𝑎𝑥 
𝜶

𝑝(𝐃|𝛍, 𝚿, 𝜶)

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜶

∫ 𝑝(𝐃|𝓦, 𝛍, 𝚿)𝑝(𝓦|𝜶)𝑑𝓦 
(3.26) 

However, it is difficult to obtain the closed-form solution of the integral. The Laplace 

approximation is then utilized. The item inside the integral is assumed to follow the 

Gaussian distribution, then the integral is computed. Assuming that the distribution 

𝑝(𝐃|𝓦, 𝛍, 𝚿) has a unique peak at �̂�, the asymptotic solution of the integral is then 

obtained as  

ln 𝑝 (𝐃|𝛍, 𝚿, 𝜶) = ln 𝑝 (𝐃|�̂�, 𝛍, 𝚿) + ln 𝑝 (�̂�|𝜶) +
𝑁

2
ln( 2𝜋) −

1

2
ln|𝐏| (3.27) 

where �̂� is the MAP value of 𝓦 computed from Eq. (25), and 𝐏 is the Hessian matrix 

expressed as 

𝐏 = −∇∇ ln 𝑝 (𝐃|�̂�, 𝛍, 𝚿)𝑝(�̂�|𝜶) (3.28) 

According to Eq. (3.27), setting the derivative of ln 𝑝 (𝐃|𝛍, 𝚿, 𝜶) with respect to 𝜶 to 

zero, the analytical solution of 𝜶 is derived as 

�̂�𝑖 =
𝑁𝑚

𝐰𝑖
T𝐰𝑖 + [𝐏−1]𝑖𝑖

 (3.29) 

In the Bayesian PCA, Bishop proposed to treat all parameters as well-determined, Eq. 

(3.29) is thus further simplified as 

�̂�𝑖 =
𝑁𝑚

𝐰𝑖
T𝐰𝑖

 (3.30) 

 

All solutions of �̂�𝑛 �̂�, �̂�, �̂� and �̂� in Eqs. (3.15), (3.23)–(3.25) and (3.30) are mutually 

coupled and thus should be computed in an iterative way. The EM algorithm starts by 

initializing �̂� and �̂� and calculating �̂�, and then proceeds with computing the posterior 

statistics of 𝐳 in Eqs. (3.15) and (3.16), followed by updating �̂�, �̂� and �̂� using Eqs. 

(23)–(3.25) and (3.30). The iteration is stopped until the convergence is achieved, for 

example, ‖𝚿(𝑗) − 𝚿(𝑗−1)‖/‖𝚿(𝑗)‖ ≤ 𝑇𝑜𝑙  (e.g. 𝑇𝑜𝑙 = 1×10
−5) . The number of 



 

51 

 

underlying factors is first assumed to equal the original dimensionality 𝑁𝑚  and 𝓦 is 

thus initialized as an 𝑁𝑚 × 𝑁𝑚 matrix. As the optimization proceeds, some of 𝛼𝑖 will 

approach infinity, forcing the corresponding column 𝐰𝑖  in 𝓦  to zero. To ensure a 

unique solution of the Sylvester equation in Eq. (3.25), the zero column 𝐰𝑖 is removed 

in the iterative process. 𝓦 converges to an 𝑁𝑚 × 𝑀 matrix, where 𝑀 equals the number 

of latent factors. In this manner, the underlying environmental factors that are 

significantly related to the variations of structural dynamic modes are identified 

automatically.  

 

The proposed damage detection method based on the sparse Bayesian factor analysis is 

summarized as follows: 

1. Extract structural vibration properties from the measurement data under changing 

environmental conditions as the entire dataset 𝐃 and divide the entire dataset as the 

training and test data;  

2. Set 𝑀 = 𝑁𝑚 first, initialize parameters 𝓦(0) and 𝚿(0), and calculate the mean 𝛍 of 

the training data according to Eq. (3.24); 

3. Use the training data to estimate the unknown variables and parameters iteratively. 

At the jth iteration: 

(1) Set M to be the number of nonzero columns in 𝓦(𝑗−1). Update 𝓦(𝑗−1) as an 

𝑁𝑚 × 𝑀 matrix by removing the zero columns 𝐰𝑖; 

(2) Given 𝛍, 𝚿(𝑗−1) and 𝓦(𝑗−1): 

Update 𝔼𝐳[𝐳𝑛](𝑗) and 𝔼𝐳[𝐳𝑛𝐳𝑛
T](𝑗) according to Eqs. (3.15) and (3.16); 

Update 𝜶(𝑗) using Eq. (3.30); 

(3) Update 𝚿(𝑗) and 𝓦(𝑗) according to Eqs. (3.23) and (3.25), respectively; 

4. Let 𝑗 = 𝑗 + 1, repeat Step 3 until the convergence is achieved, that is, ‖𝚿(𝑗) −

𝚿(𝑗−1)‖/‖𝚿(𝑗)‖ ≤ 𝑇𝑜𝑙 (e.g. 𝑇𝑜𝑙 = 1×10
−5). 

5. Given the estimated 𝓦, 𝛍 and 𝚿, calculate �̂�𝑛 of the entire dataset 𝐃 according to 
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Eq. (3.15), and then re-generate the dataset using 𝐃′ = 𝓦�̂� + 𝛍 + 𝛆. 

6. Compute the Euclidean norm of the error vector ‖𝐞‖2 = ‖𝐃 − 𝐃′‖2 as the damage 

indicator for structural condition assessment.   

 

The proposed method has the following advantages. First, the number of environmental 

factors that significantly affect structural dynamic responses could be determined 

automatically without measuring the environmental data. Second, the EM algorithm can 

be implemented in an online form, that is, each data sample 𝐃𝑛 can be processed and 

then discarded before the following data comes in.  

 

3.4 Case Studies 

 

The proposed method is applied to two experimental structures under varying 

environmental conditions, one is an RC slab (Xia et al., 2006), and the other is a two-

story steel frame (Bao et al., 2012). 

 

3.4.1 The RC Slab 

 

The entire RC slab measures 6400 mm × 800 mm × 100 mm with two equal spans of 

3000 mm and 200 mm overhang at each end, as shown in Figure 3.1. The structure was 

monitored for almost two years, from June 2003 to March 2005. A set of hammer tests 

were conducted on the slab, and the acceleration responses were recorded by 12 

accelerometers with a sampling frequency of 500 Hz. The positions of accelerometers 

are depicted in Figure 3.2. The modal parameters of the slab were extracted using the 

Rational Fraction Polynomial method (Formenti and Richardson, 2002). The air 

temperature and humidity were also recorded using a thermohygrometer.  
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Figure 3.1 RC slab 

        

Figure 3.2 Sensor layout on the RC slab 

 

A total of 136 sets of modal properties were collected over the monitoring period. 

Although the environmental data are available, they are assumed to be unknown and not 

used in this study. The variations of the first four frequencies are used as the dataset 𝐃, 

which are plotted in Figure 3.3. It is noteworthy that the fourth frequency of Nos. 39~51 

data fail to be identified in the hammer test. Thus the first 100 sets of frequencies except 

the lost data are set to the training data, based on which the unknown parameters are 

estimated. 𝓦 and 𝚿 are initialized, and the mean of the training data is computed first. 

In this study, the 𝑁𝑚 × 𝑁𝑚 entries in 𝓦(0) are randomly generated from the uniform 

distribution in the interval (0, 1). 𝚿  is the covariance matrix related to the model 

prediction error. 𝚿 is initialized as a semi-positive definite matrix by assuming that the 

coefficient of variation of each natural frequency is 1% and the correlation coefficient 

between modes is 0.5. The convergence criterion is set to ‖𝚿(𝑗) − 𝚿(𝑗−1)‖/‖𝚿(𝑗)‖ ≤

1×10
−5

 in this study. 
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Figure 3.3 Variations of the first four frequencies (blue dots: training data in the 

undamaged state (N=100); green circles: test data) 

 

𝓦(0) and 𝚿(0) are shown in Table 3.1. The EM algorithm took fifteen iteration steps 

before the convergence criterion is satisfied. The variations of the latent variable and 

parameters are listed in Table 3.1. 𝓦, 𝚿 and 𝛍 estimated in each step are substituted 

into the analytical expression of each entry in the Hessian matrix, which is calculated by 

the Symbolic Math Toolbox in MATLAB. The Hessian matrix keeps positive definite in 

each step, that is, all eigenvalues are positive, implying that the solutions of parameters 

correspond to a local maximum of 𝐽(𝛏) in Eq. (3.19). As the iteration progresses, two 

entries in 𝐳𝑛 become zero. The remaining two nonzero entries in 𝐳𝑛 indicate that two 

latent factors account for the variations of structural frequencies. This result is 

consistent with the finding in Xia et al. (2006), where the correlation analysis between 

structural frequencies and environmental factors were conducted, and two factors, the 

humidity and temperature, were found to have a strong correlation with the slab’s 

frequencies. This example indicates that the proposed sparse Bayesian FA method can 

identify the number of environmental factors that significantly affect the structural 

vibration properties without measuring the environmental factors. This is promising in 

practical applications since the latent variables are usually unknown.  
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Table 3.1 Variation of the unknown variable and parameters in the iteration process 

Iteration 

No. 
𝜶 𝓦 𝐳1 𝑀 𝚿 

0    4  

1    4  

8    3  

15    2  

Note: The number of training data N equals 100 in this RC slab example. In corresponding, there are 

100 components in 𝐳 = [𝐳1, 𝐳2, … , 𝐳𝑁] ∈ ℝ𝑀×𝑁. Only the first component 𝐳1 is listed here due 

to the space limit. All 100 variable 𝐳1, 𝐳2, … , 𝐳100 are initialized to four-dimensional vectors 

and are optimized to two-dimensional vectors upon convergence.  

 

Upon convergence, 𝚿 converges to a full matrix where each diagonal entry represents 

the variance of the prediction errors of each dimension, and the off-diagonal entries 

reveal the correlations between different dimensions. Specifically, the correlation 

coefficient between the dimensions i and j can be computed as 𝜌𝑖𝑗 =
𝚿𝑖𝑗

√𝚿𝑖𝑖√𝚿𝑗𝑗
 (i, j =1, 2, 

3, and 4). With the estimated 𝓦(15) and 𝚿(15), the MAP values of the latent variables 

corresponding to the entire dataset are calculated using Eq. (15), and then the dataset 𝐃′ 

are re-generated according to Eq. (1). The Euclidean norm of the error vector is then 

calculated as the damage indicator, that is, ‖𝐞‖2 = ‖𝐃 − 𝐃′‖2. The damage indicators 

of the entire dataset are then plotted in Figure 3.4. The values of the damage indicators 

of the test data are comparable with those of the training data, reflecting that the RC 
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slab is in a health condition. This result is consistent with the reality as no damage was 

introduced to the slab during the monitoring period.  

 

Figure 3.4 Damage indicator in the RC slab example 

 

3.4.2 The Steel Frame 

 

The two-story steel frame in Bao et al. (2012) shown in Figure 3.5 is utilized to 

demonstrate the effectiveness of the proposed method for damage detection. The frame 

is 0.5 m wide and 1.0 m high with two equal stories. The young’s modulus of the 

material is 2.0 × 1011 N/m2, and the mass density is 7.67 × 103 kg/m3. The cross-

sections of the column and beam are 50.0 × 4.4 mm2 and 50.0 × 8.8 mm2, respectively. 

 

The frame in the health condition was exposed to sunlight from morning to afternoon. 

The hammer test was conducted on the frame five times every 20 minutes. Fourteen 

accelerometers were installed on the frame to record acceleration responses with a 

sampling frequency of 2,048 Hz. The detailed sensor locations are depicted in Figure 

3.6. The modal parameters were extracted using the Rational Fraction Polynomial 

method. The temperature was simultaneously measured by eight thermocouples (T1-T8) 
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shown in Figure 3.6. A total of 140 sets of modal data were collected throughout the 

day. 

 

 

Figure 3.5 Experimental steel frame 

 

 

Figure 3.6 Sensor layout and damage location of the steel frame 
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The damage was then introduced to the steel frame. A saw cut with a length of 20 mm 

and a width of 4.4 mm was designed at the left column of the first story, as shown in 

Figure 3.6. The depth of the cut sequentially increased to 5, 10 and 15 mm, resulting in 

three DSs. In each DS, the frame was exposed to sunlight in one day. The hammer test 

was conducted on the frame in each DS, similar to that in the health condition. 140 sets 

of modal data were obtained in each DS.  

 

The frequency variations in DS0–DS3 under varying environmental conditions are 

plotted in Figure 3.7. The averages of 140 sets of frequencies of the steel frame in 

undamaged and damaged states are listed in Table 3.2. The intact condition is denoted 

as DS0. DS1 resulted in an average frequency reduction of 0.26%, and DS2 and DS3 

led to 0.64% and 0.79% frequency change on average, respectively. The entire dataset 

𝐃 includes 560 sets of the first six frequencies, of which the first 140 sets in health 

condition are used as the training data for parameters estimation, and the rest 420 sets 

are the testing data. The temperature variations were also recorded in this example as 

plotted in Figure 3.8, but they are assumed to be unknown, and only the frequencies are 

used. 

 

Figure 3.7 Variations of structural first six frequencies (blue circles: DS0; red 

pentagrams: DS1; carmine triangles: DS2; and green squares: DS3) 
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Figure 3.8 Temperature variations in each DS (Hou et al., 2020) 

 

Table 3.2 Average of frequencies in undamaged and damaged states (unit: Hz) 

Mode DS0 DS1 DS2 DS3 

1 6.20 6.19(−0.19) 6.17(−0.43) 6.19(−0.13) 

2 17.57 17.49(−0.49) 17.48(−0.52) 17.45(−0.72) 

3 61.07 60.97(−0.17) 60.83(−0.39) 60.74(−0.55) 

4 77.01 76.97(−0.05) 76.65(−0.47) 76.32(−0.89) 

5 80.83 80.73(−0.13) 80.16(−0.83) 80.05(−0.97) 

6 98.09 97.58(−0.52) 96.91(−1.20) 96.66(−1.46) 

Average (%) (−0.26) (−0.64) (−0.79)             

Note: Values in the parentheses are the frequency change ratios (%) after damage relative to the 

undamaged state. 

 

The proposed method is then applied. The parameters 𝓦(0)  and 𝚿(0)  are similarly 

initialized as described in Section 3.5.1. The method took nine iteration steps before 

convergence. The variations of the latent variable and parameters are listed in Table 3.3. 

Their values in each step are also substituted into the Hessian matrix for the positive 

definiteness examination. In the optimization process, some entries in 𝜶 get larger and 

approach to infinity, enforcing the corresponding columns in 𝓦  to zero. Upon 

convergence, five columns in 𝓦 become zero, and only one column remains nonzero, 

representing that only one environmental factor is strongly related to the frequency 

variations.  
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Table 3.3 Variations of the latent variable and parameters in the steel frame example 

No. 𝜶 𝓦 𝐳1 𝑀 𝚿 

0  
 

 6 
 

1 
   

6 
 

5 
   

3 
 

9 
   1 

 

 

The estimated parameters are then used to calculate the latent variables corresponding to 

the entire dataset, and then re-generate the dataset. The damage indicators are then 

calculated based on the error vector and plotted in Figure 3.9. The damage-induced 

deviations in the damage indicators can be observed from the figure. When the damage 

severity is slight (i.e. DS1), the deviation is relatively small but still noticeable. When 

the damage gets severe (i.e. DS2 and DS3), the deviation gets larger significantly. A 

normal distribution test on the reconstruction errors of each DS is conducted. The chi-

squared goodness-of-fit test method (Press et al., 1992) is used. The 140 points in each 

DS are ranked and divided into 15 nonoverlapped groups (Press et al., 1992). Figure 

3.10 shows the probability histogram in each DS. The test results are shown in Table 

3.4 when the level of significance 𝛼 = 0.05. Note that the group with observed numbers 

less than 5 is merged with others, thereby the critical bounds are different for each DS. 
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Table 4 shows that the chi-square statistic is less than the critical bound, indicating that 

the normal distribution hypothesis is accepted. Based on the Gaussian distribution, the 

threshold can be calculated at a significance level of 𝛼 = 0.05. The threshold is 0.89 as 

shown in Figure 3.9. The probabilities of three DSs in the damaged state can be then 

calculated. Specifically, the probability of DS1 being damaged is around 50%, and the 

probabilities of DS2 and DS3 being damaged are larger than 95%. 

 

Figure 3.9 Damage indicator in each DS 
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(c) DS2 (d) DS3 

Figure 3.10 Chi-square goodness-of-fit test for four DSs 

 

Table 3.4 Results of goodness-of-fit test for normality (α = 0.05) 

DS No. DS0 DS1 DS2 DS3 

Chi-square value 6.21 7.84 3.29 3.36 

Critical bound 18.31 19.68 18.31 16.92 

 

Structural higher frequency modes are generally difficult to measure in practice. In this 

connection, we further investigate the performance of the proposed method when higher 

modes are not available. Only the first five frequencies are used as the dataset. The 

proposed method is then applied, and the calculated damage indicators are plotted in 

Figure 3.11. As the figure turns out, the damage indicators in DS1 have no noticeable 

deviation compared with those in DS0 when the sixth mode is removed. This result 

reflects that the sixth mode is more sensitive to the minor damage.  

 

When only the first five modes are used for analysis, a false-negative damage diagnosis 

happens, that is, DS1 is falsely assessed as undamaged. In this situation, the 

measurement data in DS1 may be falsely used as the training data. To investigate the 

performance of the proposed method when the damage data are falsely used for model 

training, the first five frequencies in DS0 and DS1 are both used as the training data. 

The estimated parameters and damage indicators are shown in Table 3.5 and Figure 
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3.12. The nonzero columns in 𝓦 converge to one after 11 iterations, and the number of 

factors is also one. Significant deviations of the damage indicators are observed in the 

test data. The result implies that although the minor damage was falsely recognized as 

undamaged and incorporated into the training data, the proposed method can still detect 

damage correctly at the later stage as the damage gets severe. The results verify the 

effectiveness of the proposed method for structural damage detection under varying 

temperature conditions. 

 

Figure 3.11 Damage indicator using the first five frequencies as the dataset 

 

Figure 3.12 Damage indicator using both DS0 & DS1 as training data 
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Table 3.5 Variations of variables and parameters using DS0 & DS1 as training data 

No. 𝜶 𝓦 𝐳1 𝑀 𝚿 

0    5  

11    1  

 

3.5 Summary 

 

A sparse Bayesian FA-based method is developed in this chapter for structural damage 

detection under changing environmental conditions without knowing the environment 

data. By adopting the ARD prior in the SBL framework, the number of underlying 

environment factors is automatically identified. The uncertainties are evaluated upon 

convergence. The residual error matrix is then calculated as the damage indicator 

according to the generative FA model.  

 

The proposed method is applied to two experimental examples under varying 

environmental conditions. The RC slab example demonstrates that the sparse Bayesian 

FA-based method can automatically identify the number of environmental factors that 

influence the structural vibration properties, without measuring the corresponding 

varying factors. The steel frame example verifies that the method can successfully 

detect the existence of damage under varying environmental conditions. 
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CHAPTER 4   
 

STRUCTURAL DAMAGE DETECTION CONSIDERING 

NONLINEAR ENVIRONMENT EFFECTS BY 

PROBABILISTIC KERNELIZED METHOD 
 

 

 

4.1 Introduction 

 

The Bayesian FA proposed in Chapter 3 is a linear model, which is limited to the cases 

where the environmental influence is linear or weakly nonlinear. In some applications, 

nonlinearities may arise since the multiple materials in bridges may have varied 

temperature-sensitive mechanical properties (Peeters and De Roeck, 2001). The 

bridge’s boundary conditions may also change due to the expansion and contraction of 

joints, leading to nonlinear correlations (Peeters et al., 2001). For the nonlinear 

applications, the kernel PCA has been developed, which maps the measurement data 

onto a high-dimensional feature space wherein a hyperplane could separate samples (Oh 

et al., 2019; Reynders et al., 2014). The dimension reduction is then performed on the 

high-dimensional feature space. However, the non-probabilistic kernel PCA suffers 

from limitations. First, the covariance matrix needs to be computed as an intermediate 

variable, followed by the eigenvalue decomposition. Second, the optimal kernel 

parameters need to be determined in advance, which requires high computational costs 

for high-dimensional problems, given that the kernel PCA involves the data projection 

to a high-dimensional space. 

 

This chapter develops an improved probabilistic kernelized model to eliminate the 

nonlinear environmental influence. The Gaussian kernel is employed to introduce 

nonlinearity. The unknown kernel parameters and the latent variables are estimated 

automatically in the Bayesian probabilistic framework. The proposed method is applied 
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to the benchmark Z24 bridge for damage detection. Comparisons between the proposed 

method and non-probabilistic kernel PCA are presented. 

 

4.2 Background of Z24 bridge 

 

The Z24 bridge is an example wherein the environment factor has a nonlinear effect on 

the vibration properties. It provides the rare long-term monitoring data of a full-scale 

bridge under the undamaged and realistic damaged states. The dataset of the bridge has 

served as the benchmark in numerous studies, including vibration-based system 

identification (Peeters and De Roeck, 2001), damage detection (Kullaa, 2003), and data 

normalization to remove environmental effects on structural vibration properties 

(Peeters et al., 2001; Kullaa, 2011). 

 

4.2.1 Description of the Bridge 

 

The Z24 bridge is a post-tensioned concrete box-girder bridge consisting of a 30 m long 

main span and two 14 m side spans, as depicted in Figure 4.1. The bridge is located in 

Switzerland and was monitored from 11 November 1997 to 11 September 1998 (Peeters 

and De Roeck, 2001). A total of 49 sensors were installed on the bridge to record the 

variations of environmental conditions, including the temperature, wind, humidity, etc. 

Another 16 accelerometers were installed to record acceleration responses. In the later 

monitoring period, progressive damages were artificially introduced to the bridge in a 

controlled manner. The first damage was introduced by lowing the pier on 10 August 

1998, followed by several other sequential DSs, including foundation inclination, 

concrete spalling, anchor head failure, and tendon rupture. More specific information 

about the experiment can be found in Peeters and De Roeck (2001). 
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Figure 4.1 Side view of the Z24 bridge (unit: meter) (Peeters and De Roeck, 2001) 

 

The bridge’s responses under the ambient excitations were recorded, and the stochastic 

subspace identification method was used to extract the modal parameters (Peeters and 

De Roeck, 2001). 5624 sets of the first four frequencies were obtained during the entire 

304 monitoring days. The variations of the first four frequencies of the bridge and the 

temperature over time are plotted in Figure 4.2. The first damage was artificially 

introduced around day 266, which corresponds to No. 4789 data. The relation between 

the temperature and natural frequencies is plotted in Figure 4.3. 

 

(a) Variation of frequencies  

(Blue dots: data in the health state; red dots: data in the damaged state) 
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(b) Variation of the temperature  

Figure 4.2 Frequency and temperature variations over time 

  

(a) First frequency (b) Second frequency 

  

(c) Third frequency (d) Fourth frequency 

Figure 4.3 The relation between the frequency and temperature  
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Figure 4.3 reflects that the natural frequencies have a nonlinear relation with the 

temperature. The nonlinearity is attributed to the asphalt layer on the bridge’s surface, 

which froze on cold days (lower than 0 oC) and significantly increased the stiffness of 

the structure (Peeters and De Roeck, 2001).  

 

4.2.2 The Application of the Linear Model 

 

The linear Bayesian FA method proposed in Chapter 3 is first applied to the Z24 bridge 

for damage detection. As mentioned, the first 4788 data points are in the health state, 

and the rest 836 are in the damaged state. To investigate the influence of training data, 

the first 3000 data points are set as the training data, which accounts around 50% of the 

entire data set, and the rest 1788 data points in the health state and 836 data points in the 

damaged state are set as the validation data and test data, respectively, as shown in 

Figure 4.4. 

 

Figure 4.4 Dataset division  

(blue dots: training data; green dots: validation data; red dots: test data) 

 

The parameters in the Bayesian FA model are initialized as follows: M is set to the 
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dimension of the original measurement data, that is 𝑀 = 𝑁𝑚 = 4; The factor loading 

matrix 𝓦(0) is randomly initialized from the uniform distribution 𝜇(0,1); 𝚿 is similarly 

initialized as described in Chapter 3, that is, the entries are initialized by assuming that 

the coefficient of variation of each natural frequency is 1% and the correlation 

coefficient between modes is 0.5; and the convergence criterion is set to ‖𝚿(𝑗) −

𝚿(𝑗−1)‖/‖𝚿(𝑗)‖ ≤ 1×10
−5

. 

 

The EM algorithm is applied, and the convergence is achieved after 23 iterations. The 

variations of the parameters are listed in Table 4.1. Upon convergence, two columns in 

𝓦 are penalized to zero, and the rest two keep nonzero.  

 

Table 4.1 Variation of the unknown variable and parameters in the iteration process 

Iteration 

No. 
𝜶 𝓦 𝑀 𝚿 

0   4  

10   4  

23   2  

 

With the estimated 𝓦 and 𝚿, the latent variables 𝐳𝑛 corresponding to the training data, 

validation data and test data are estimated. The measurement data are then regenerated 

from the trained Bayesian FA model. The squared prediction error (SPE) statistic is then 

defined as 

SPE𝑛 = (𝒆𝑛)T𝒆𝑛 (4.1) 
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0.12 0.17 0.31 0.70

−

 
 
 
 
 
 



 

71 

 

where 𝒆𝑛 denotes the regeneration error, which is the discrepancy between the model 

predictions and measurement data. The SPE statistic can be used as the index for 

novelty detection. Denoting the mean and variance of the SPEs of training data as 𝑚 

and 𝑣, the SPE statistic can be well approximated by a weighted 𝜒2 distribution (Box, 

1954a, b; Nomikos and MacGregor, 1995), and the confidence limit is 

SPE𝛼 = 𝑔 ∙ 𝜒ℎ,𝛼
2  (4.2) 

where 𝑔 = 𝑣/2𝑚; ℎ = 2𝑚2/𝑣; and 𝜒ℎ,𝛼
2  is the critical value of the 𝜒2 distribution with 

ℎ degree of freedom at a significance level of 𝛼. The control limit is a threshold to 

judge whether the process is under the normal condition. The SPE statistic and the 

corresponding threshold with 𝛼 = 0.01 are calculated and plotted in Figure 4.5. 

 

Figure 4.5 SPE statistic of Bayesian FA 

 

As Figure 4.5 turns out, the SPEs of the test data in the damaged condition (red points) 

are not significantly larger than those of the training data and validation data, making it 

difficult to timely detect the damage. An abnormality occurs in the health data around 

days 80~90, where the SPEs are comparable with those in the damaged state. As 

mentioned previously, the temperature in these days went below zero and exerted a 

bilinear influence on the structural frequencies. The nonlinear relation cannot be well 

explained by the linear Bayesian FA. As a result, a false-positive damage indication 
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occurs when the temperature goes below zero, although the structure remains intact. In 

addition, the SPEs of the validation data also exceed the threshold. The reason is that 

the training data (the first 3000 data points) only cover part of the environmental 

variations. The temperature of the validation data goes beyond the range of the training 

data, as shown in Figure 4.2(b), resulting in the increased SPEs in the validation data. 

Consequently, the linear Bayesian FA cannot timely and correctly detect the damage in 

the Z24 bridge example. 

 

4.3 Nonlinear Environmental Model 

 

This section studies the nonlinear environmental effects using the probabilistic 

kernelized model. First, the nonlinear probabilistic PCA, also named the Gaussian 

process latent variable model (GPLVM) (Lawrence, 2005), is discussed. We will then 

explain how the damage can be detected. Finally, the proposed method is compared 

with the non-probabilistic kernelized model. 

 

4.3.1 GPLVM 

 

GPLVM provides a nonlinear probabilistic interpretation of standard PCA by 

employing the Gaussian process. The model between the data sample and latent variable 

is defined as (Lawrence, 2005) 

𝐃𝑛 = 𝒇(𝐳𝑛) + 𝛆𝑛 (4.3) 

where 𝒇 is the nonlinear mapping function; and 𝐳𝑛 and 𝛆𝑛 are the same as the definition 

of the Bayesian FA model in Eq. (3.1). Different from the Bayesian FA, GPLVM 

marginalizes the parameters and optimizes with respect to the latent variable. 

Specifically, the prior is defined over 𝓦, and the likelihood function is marginalized 

with respect to 𝓦. For simplicity, a Gaussian prior conjugate to the likelihood function 

is adopted as 𝑝(𝓦) = ∏ 𝒩(𝒘𝑖|𝟎, 𝐈)𝐷
𝑖 , where 𝒘𝑖  is the ith row of 𝓦 . Then the 

marginalization with respect to 𝓦 is 
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𝑝(𝐃𝑑,:|𝐳, 𝛽) = ∫ 𝑝(𝐃𝑑,:|𝐰𝑖, 𝛽, 𝐳)𝑝(𝒘𝑖)𝑑𝒘𝑖 = 𝒩(𝐃𝑑,:|𝟎, 𝐳T𝐳 + 𝛽−1𝐈) (4.4) 

where 𝐃𝑑,:  represents the dth row of D  ∈ ℝ𝑁𝑚×𝑁 . In corresponding, the objective 

function of the likelihood function in the logarithm form is obtained as 

𝐿 = −
𝑁𝑚𝑁

2
ln 2𝜋 −

𝐷

2
ln|𝕂| −

1

2
tr(𝕂−1𝐃T𝐃) (4.5) 

where 𝕂 = 𝐳T𝐳 + 𝛽−1𝐈 is the covariance matrix or kernel function. The kernel function 

here is defined on the latent variable z. By replacing the inner product 𝕂 with nonlinear 

kernel functions, GPLVM achieves the nonlinear projection. The advantage of the 

kernel function is that the nonlinear mapping function is not required to be known 

explicitly, thereby efficiently reducing the complexity of searching for the high-

dimensional feature space. According to the Mercer’s theorem, the kernel function must 

be continuous and symmetric, and the corresponding kernel matrix must be positive 

semi-definite. The representative kernel functions include the polynomial, sigmoid and 

radial basis function (RBF) kernel. For example, the RBF kernel is adopted as 

𝑘(𝐳𝑖 , 𝐳𝑗) = 𝜃rbfexp [−
𝛾

2
(𝐳𝑖 − 𝐳𝑗)

T
(𝐳𝑖 − 𝐳𝑗)] + 𝜃bias + 𝜃white𝛿𝑖𝑗 (4.6) 

where 𝜃rbf is the process variance and influences the scale of the output functions; 𝛾 is 

the inverse width parameter; 𝜃bias corresponds to the prior variance; 𝜃white is the white 

noise term; and 𝛿𝑖𝑗 is the Kronecker delta function. 

 

After the kernel function has been selected, the next step of GPLVM is to optimize the 

latent variables 𝐳𝑛 and parameters of the kernel functions, including 𝛾, 𝜃rbf, 𝜃bias and 

𝜃white. The likelihood of the latent variables and parameters are estimated by setting the 

gradient of the log-likelihood in Eq. (4.6) to zero. In particular, the gradient with respect 

to 𝐳 is computed through the chain rule as 

𝜕𝐿

𝜕𝐳
=

𝜕𝐿

𝜕𝕂
×

𝜕𝕂

𝜕𝐳
= 0 (4.7) 
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where 
𝜕𝐿

𝜕𝕂
= 𝕂−1𝐃𝐃T𝕂−1 − 𝑁𝑚𝕂−1; and 

𝜕𝕂

𝜕𝐳
 can be directly obtained from Eq. (4.6). 

However, it is not easy to solve Eq. (4.7) as the log-likelihood L has a highly nonlinear 

relationship with the latent variable and kernel parameters. To solve this problem, the 

scaled conjugate gradient approach (Lawrence, 2005) is utilized for the gradient-based 

optimization. Another problem is the computational complexity of GPLVM, which 

makes it inefficient in dealing with a large number of data samples. Lawrence et al. 

(2003) developed the informative vector machine as a sparsification mechanism to 

improve the computational efficiency. The active set, denoted as 𝐃𝐼 , is sequentially 

selected from the overall training dataset and then used to optimize the kernel 

parameters and latent variables. The informative vector machine reduces the dominant 

computational cost to 𝛰(𝑑2 ∙ 𝑁), where d is the number of data in the active set (d < N). 

 

With the parameters of the kernel function and the latent variables of the active data set 

optimized, the latent variables 𝐳new of the new measured data samples 𝐃new, including 

the inactive subset of the training data and the test data, are obtained from the scaled 

conjugate gradient optimization. Then the likelihood of 𝐃new
∗  generated from 𝐳new can 

be calculated using the GP (Lawrence, 2005): 

𝑝(𝐃new
∗ |𝐳new) = 𝒩(𝐃new

∗ |𝝁new, 𝛔new
2 𝐈) (4.8) 

where 𝝁new = 𝐃𝐼𝕂𝐼
−1𝕜(𝐳𝐼 , 𝐳new), 𝕂𝐼

−1 is the kernel matrix calculated from the latent 

variables of the active set, 𝕜(𝐳𝐼 , 𝐳new) is a column vector with elements of kernels 

between each sample in the active set and the new data sample; and 𝛔new
2 =

𝕜(𝐳new, 𝐳new) − 𝕜T(𝐳𝐼 , 𝐳new)𝕂𝐼
−1𝕜(𝐳𝐼 , 𝐳new), 𝕜(𝐳new, 𝐳new) is the value of the kernel 

function between 𝐳new  and itself. As the likelihood of 𝐃new
∗  follows the Gaussian 

distribution, whose mean is the most probable value, 𝝁new in Eq. (4.8) can be used as 

the prediction result, that is, 𝐃new
∗ = 𝝁new. 

 

GPLVM also has a Bayesian interpretation that could automatically determine the latent 

dimensions by using the ARD prior. An ARD prior is defined on the kernel function of 

the latent variable z 
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𝑘𝑓(ard)(𝐳𝑖, 𝐳𝑘) = 𝜎ard
2  exp [−

1

2
∑

(𝑧𝑖,𝑗 − 𝑧𝑘,𝑗)
2

𝑙𝑗
2

𝑀

𝑗=1

] (4.9) 

where 1 𝑙𝑗
2⁄  is a weight parameter. Similar to the Bayesian factor analysis, some items 

of 1 𝑙𝑗
2⁄  will approach zero and automatically penalize the surplus dimensions, thereby 

realize the dimensionality selection. A full Bayesian analysis is conducted to avoid the 

risk of overfitting, which implements an Ockham’s Razor in the model selection process 

by integrating out all irrelevant variables. Then the posterior PDF of predictions 

𝑝(𝐃new
∗ ) = 𝒩(𝐃new

∗ |𝝁new, 𝜮new)  is derived using the variational inference. More 

detailed are presented in Lawrence (2005). 

 

The reconstruction errors of both inactive training data and test data are then calculated 

as 

𝒆𝑛 = 𝐃new − 𝐃new
∗  (4.10) 

where 𝐃new is the measurement data, and 𝐃new
∗  is the prediction result of GPLVM. The 

SPE statistic is defined as 

SPE𝑛 = (𝒆𝑛)T𝒆𝑛 = (𝐃new − 𝝁new)T(𝐃new − 𝝁new) + 𝛔new
2  (4.11) 

where 𝛔new
2  should be replaced by 𝜮new when the Bayesian GPLVM is adopted. As the 

nonlinear projection is involved in this process, the kernel density estimation (KDE) 

(Silverman, 2018) is applied here to compute the threshold of the SPE statistic. 

 

4.3.2 Damage Detection Results 

 

Parameters of the kernel functions need to be initialized first. The RBF kernel in Eq. 

(4.6) is employed. As suggested in Lawrence (2005), 𝜃rbf , 𝛾 , 𝜃bias  and 𝜃white  are 

initialized as 𝜃rbf = 𝛾 = 1  and 𝜃bias = 𝜃white = exp (−1) . The active set d in the 
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informative vector machine algorithm is set to 𝑑 =400 in this example. The latent 

dimension M is set to 𝑀 = 𝑁𝑚 = 4 in the beginning. 

 

Using the Bayesian GPLVM (Damianou et al., 2011), two of four parameters 1/𝑙𝑗
2 (j=1, 

2, 3, 4) are automatically optimized to zero. The rest two nonzero parameters indicate 

that the latent dimension of the latent space is 2. M is then set to 2 in GPLVM, and 

kernel parameters are optimized iteratively using the the scaled conjugate gradient 

approach. Parameters of the kernel function are optimized as 𝜃rbf = 1.5905 , 𝛾 =

1.9598, 𝜃bias = 0.1360 and 𝜃white = 1.1487×10
−4

 when the first 3000 data are set as 

the training data. With the estimated parameters, the measurement data are regenerated 

using the Gaussian process in Eq. (4.8). The SPE statistic is then calculated according to 

Eq. (4.11), and the corresponding threshold with 𝛼 = 0.01 is computed and plotted in 

Figure 4.6. 

 

Figure 4.6 SPE statistic of GPLVM  

 

As Figure 4.6 turns out, the SPEs of the damaged data are obviously larger than those of 

the health data, and the phenomenon of false-positive damage identification is 

eliminated by using GPLVM. In addition, the validation data are correctly identified to 

be in the health state, indicating that the proposed method performs well even when the 

training data have not covered the temperature variation. The entire process, including 

the automatic dimensionality determination, parameter optimization and SPE statistic 
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computation, takes around 8 minutes only in a personal desktop computer with Intel 

Core I7-8700 CPU and 20 GB RAM. Consequently, the damage detection method 

based on GPLVM is efficient, accurate and robust.  

 

4.3.3 Comparison with Non-probabilistic Kernelized Model 

 

A non-probabilistic kernel PCA is also studied for comparison. The data vectors 𝐃𝑛 are 

mapped onto a high-dimensional feature space wherein a hyperplane could separate 

samples, and then eigenvalue decomposition is performed on the feature space. The 

non-probabilistic kernelized model is expressed as 

𝚽(𝐃𝑛) = 𝓦𝐳𝑛 + 𝛆𝑛 (4.12) 

where 𝚽  is a nonlinear function that maps the measurement data onto a high-

dimensional feature space ℱ; and 𝓦, 𝐳𝑛  and 𝛆 are the same as the definition in Eq. 

(3.1). The eigenvalue decomposition is performed on the covariance matrix, which is 

the dot product of 𝚽(𝐃𝑛). 

 

The inner product 𝚽(𝐃𝑚)T𝚽(𝐃𝑛) is directly defined in the reproducing kernel Hilbert 

space by the kernel function 𝕜𝐃(𝐃𝑚, 𝐃𝑛) . The Gaussian kernel function, which 

involves an infinite-dimensional feature space using merely a unique parameter, is 

adopted here and defined as  

𝕜𝐃(𝐃𝑚, 𝐃𝑛) = exp (−
1

2𝜎2
(𝐃𝑚 − 𝐃𝑛)T(𝐃𝑚 − 𝐃𝑛)) (4.13) 

where 𝕜𝐃(𝐃𝑚, 𝐃𝑛) is the element in the mth row and the nth column of the kernel 

matrix 𝕂𝐃; and 𝜎2 is the variance parameter controling the bandwidth of 𝕂𝐃. Notably, 

the kernel function in Eq. (4.13) is defined on the measurement data 𝐃 rather than on 

the latent variable 𝐳 in Eq. (4.6). 
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After determining the kernel function, the eigenvalue decomposition is conducted on 

the decentralized kernel matrix �̃�𝐃 with the entries �̃�𝐃(𝐃𝑚, 𝐃𝑛) as 

�̃�𝐃(𝐃𝑚, 𝐃𝑛) = 𝕜𝐃(𝐃𝑚, 𝐃𝑛) −
1

𝑛
∑ 𝕜𝐃(𝐃𝑚, 𝐃𝑟)

𝑁

𝑟=1

−
1

𝑛
∑ 𝕜𝐃(𝐃𝑟 , 𝐃𝑛) +

1

𝑛2

𝑁

𝑟=1

∑ 𝕜𝐃(𝐃𝑟 , 𝐃𝑠)

𝑁

𝑟,𝑠=1

 

(4.14) 

The eigenvectors 𝒗𝑙(𝑙 = 1, … , 𝑀)  corresponding to the first M eigenvalues 𝜆𝑙(𝑙 =

1, … , 𝑀)  of �̃�𝐃(𝐃𝑚, 𝐃𝑛)  are retained for dimensionality reduction. The principal 

component 𝒕𝑙 is then obtained by projecting 𝚽(𝐃) onto the eigenvector 𝒗𝑙 

𝒕𝑙 = 〈𝒗𝑙 , 𝚽(𝐃)〉 = ∑ 𝛼𝑖
𝑙�̃�𝐃(𝐃𝑖, 𝐃)

𝑁

𝑖=1

 (4.15) 

where 𝛼𝑖
𝑙 is the ith element of the vector 𝜶𝑙, which is the normalized eigenvector 𝒗𝑙 and 

satisfies that ‖𝜶𝑙‖2 = 1/𝜆𝑙. 

 

Since the explicit form of 𝚽(𝐃𝑛) is not defined, it is not clear how to re-project back to 

the measurement data space. Therefore, the SPE statistic is defined in the reproducing 

kernel Hilbert space as (Lee et al., 2004) 

SPE = [𝚽(𝐃) − ∑ 𝒕𝑙𝒗𝑙

𝑀

𝑙=1

]

T

∙ [𝚽(𝐃) − ∑ 𝒕𝑙𝒗𝑙

𝑀

𝑙=1

] = ∑ 𝒕𝑗
2

𝑛

𝑗=1

− ∑ 𝒕𝑗
2

𝑀

𝑗=1

 (4.16) 

where 𝑛 is the number of nonzero eigenvalues of the decentralized kernel matrix �̃�𝐃 in 

Eq. (4.14). However, the SPE statistic may not strictly follow the standard 𝜒2 

distribution due to the nonlinear projection. The KDE is employed to compute the 

threshold of the SPE statistic. Assume that the SPE statistic follows the unknown PDF 

𝑝(𝑥): 
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𝑝(𝑥) =
1

ℎ𝐿
∑ 𝜑 (

𝑥 − SPE𝑛

ℎ
)

𝑁

𝑛=1

 (4.17) 

where ℎ is the kernel width and 𝜑(∙) denotes the selected kernel function. The Gaussian 

kernel function 𝜑(𝑦) =
𝑒

−𝑦2

2

√2𝜋
 is generally used. The control limit SPE𝛼 is then computed 

by  

∫ 𝑝(𝑥)𝑑𝑥
SPE𝛼

−∞

= 1 − 𝛼 (4.18) 

where 𝛼 is the significance level. 

 

The parameter 𝜎2 of the kernel function needs to be determined. Widjaja et al. (2012) 

proposed two different criteria for the optimal value selection of 𝜎2 , namely, the 

entropy criterion and the eigenvalue criterion. Here the second one is employed. The 

range of 𝜎2 is set to be from 𝜎2̂/100 to 100 ∙ 𝜎2̂  (Widjaja et al., 2012), where 𝜎2̂ =

𝑁𝑚 ∙ mean(var(𝐃𝑛)). The optimal value of 𝜎2  can be estimated by maximizing the 

difference between the first eigenvalue and the sum of the remaining eigenvalues of the 

kernel matrix (Widjaja et al., 2012). 𝑁 = 3000  in this example. Therefore, the 

eigenvalue decomposition is conducted on the 3000×3000  kernel matrix  �̃�𝐃 . In 

corresponding, a total of 3000 eigenvalues and eigenvectors will be generated. The 

optimal value of 𝜎2 is found by trial-and-error and is determined to be 𝜎2 = 0.58 here. 

The number of retained principal subspaces (eigenvectors) preserves the 95% variance, 

leading to a value 𝑀 = 16. The SPE statistic is then calculated according to Eq. (4.16). 

The corresponding threshold at the significance level 𝛼 = 0.01 is computed by the KDE 

(Silverman, 2018). The result is plotted in Figure 4.7. 
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Figure 4.7 SPE statistic of kernel PCA  

 

In Figure 4.7, the SPEs of the health data in cold days are much smaller than those in 

the damage state, and the false-positive damage identification is eliminated. However, 

when the temperature variations exceed the range of those in the training data, the SPEs 

increase and the validation data is falsely identified to be in the damaged state. Besides, 

the kernel PCA is at the expense of increased computational cost. The selection of the 

optimal value of 𝜎2  is conducted by trial-and-error, which is time-consuming. The 

entire process, including the selection of the optimal kernel parameters, eigenvalue 

decomposition of the covariance matrix in the reproducing kernel Hilbert space, 

selection of dimension to be retained and SPE statistic computation, takes 135 minutes 

approximately in the same computer, which is around 17 times of that using GPLVM. 

 

4.3.4 Summary of Models 

 

The models of the Bayesian FA, kernel PCA and GPLVM can be unified as 

𝚽(𝐃𝑛) = 𝒇(𝐳𝑛) + 𝛆 (4.19) 

The model corresponds to the linear Bayesian FA when both 𝚽 and 𝒇  are linear 

functions, that is, 𝚽(𝐃𝑛) = 𝐃𝑛  and 𝒇(𝐳𝑛) = 𝓦𝐳𝑛 ; it becomes kernel PCA when 𝚽 
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changes into nonlinear function and 𝒇 remains linear, and it becomes GPLVM when 𝒇 

is nonlinear while 𝚽 remains linear. The comparisons among these three models are 

summarized in Table 4.2. Compared with the non-probabilistic kernel PCA, the method 

based on GPLVM could automatically determine the optimal kernel parameters and is 

more efficient. 

 

Table 4.2 Comparison of different models 

Models Probabilistic Nonlinear Dominant Computational Cost SPE Threshold 

Bayesian FA YES NO 𝛰(𝑁𝑚 ∙ 𝑀 ∙ 𝑁) 𝑔 ∙ 𝜒ℎ,𝛼
2  

Kernel PCA NO YES 𝛰(𝑁3) KDE 

GPLVM YES YES 𝛰(𝑑2 ∙ 𝑁) KDE 

Note: 𝑁𝑚 is the dimension of the original measurement data, 𝑀 is the dimensions to be retained for 

data compression (𝑀 ≤ 𝑁𝑚), 𝑁 is the number of training data samples, and 𝑑 is the number of 

data in active set (d < N). 

 

4.4 Summary 

 

This chapter develops a structural damage detection method on the basis of the 

probabilistic kernelized model to eliminate the nonlinear environmental effects. The 

nonlinear model is estimated automatically in the Bayesian probabilistic framework 

without knowing the environment data. The method is validated with the monitoring 

data from the benchmark Z24 bridge, whose frequencies have a nonlinear relationship 

with the temperature. The results indicate that the method could discriminate damage 

from the varying environment factors, and accurately detect the onset of damage. 

Besides, the proposed method could eliminate the false-positive damage identification 

when the training data have not covered the temperature variation. As compared with 

the non-probabilistic kernel PCA, the method proposed in this chapter is more efficient 

and robust.  
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CHAPTER 5   
 

SPARSE BAYESIAN LEARNING FOR STRUCTURAL 

DAMAGE IDENTIFICATION BASED ON LAPLACE 

APPROXIMATION 
 

 

 

5.1 Introduction 

 

In Chapters 3 and 4, probabilistic ML-based methods are developed for the first level 

damage detection, that is, to determine the existence of the damage. This chapter aims at 

a higher level of damage identification, that is, damage localization and quantification 

based on the Bayesian inference. The sparse damage information is incorporated into 

the Bayesian probabilistic framework, forming the SBL model. One major challenge is 

that the denominator in the SBL equation, named the evidence, involves a too complex 

integral to be calculated analytically. Specifically, this item is high dimensional and 

involves a nonlinear relationship. As a result, the posterior PDF of the damage index 

cannot be obtained explicitly. This study addresses this issue and develops a Laplace 

approximation-based SBL method for structural damage identification. The unknown 

variables and hyper-parameters are optimized automatically without the need to be 

determined in advance. 

 

5.2 Bayesian Probabilistic Framework 

 

Assuming that the first Nm vibration modes of a structure are available, namely, the 

eigenvalue vector �̂� = [λ̂1, λ̂2, ⋯ , λ̂𝑁𝑚
] ∈ ℝ1×𝑁𝑚  and the mode shape matrix �̂� =

[�̂�1, �̂�2, ⋯ , �̂�𝑁𝑚
] ∈ ℝ𝑁𝑃×𝑁𝑚 , where �̂�𝑟 ∈ ℝ𝑁𝑝  is the rth mode shape vector 

corresponding to 𝑁𝑝 measured degrees of freedoms.  
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5.2.1 Definition of A Model Class 

 

A linear structural model is assumed. The mass matrix is regarded as known, and the 

stiffness matrix K is parameterized as a combination of n element stiffness matrix 𝐊𝑖 

(𝑖=1, 2, …, n) (Zhou et al., 2015) 

𝐊 = ∑ 𝑠𝑖

𝑛

𝑖=1

𝐊𝑖 
(5.1) 

where 𝑠𝑖 is the stiffness parameter of the ith element. 

 

Suppose that the structural mass matrix M keeps unchanged in the damaged state while 

the stiffness matrix reduces to �̅�, expressed as: 

�̅� = ∑ �̅�𝑖

𝑛

𝑖=1

𝐊𝑖 (5.2) 

where �̅�𝑖 is the ith element stiffness parameter in the damaged condition. The structural 

stiffness reduction factor (SRF) is then defined as (Zhou et al., 2015): 

𝜃𝑖 =
�̅�𝑖 − 𝑠𝑖

𝑠𝑖
 (5.3) 

where 𝜃𝑖 is larger than −1 and no more than 0, particularly, a value of 0 represents the 

intact state of the element and −1 denotes a complete damage. Thus 𝜃𝑖 is treated as the 

damage index that reflects both the damage localization and severity.  

 

The analytical eigenvalues and mode shapes calculated from the FE model are governed 

by the eigenequation, defined as 

(�̅� − λ𝑟𝐌)𝝓𝑟 = 𝟎 (5.4) 

where λ𝑟 and 𝝓𝑟 represent the rth analytical eigenvalue and mode shape, respectively.  
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5.2.2 Bayesian Model Updating Framework 

 

With the selected model class ℳ and measurement data, the overall Bayesian equation 

can be expressed as (Beck and Katafygiotis, 1998) 

𝑝(𝜽|𝓓, ℳ) = 𝑐−1𝑝(𝓓|𝜽, ℳ)𝑝(𝜽|ℳ) (5.5) 

where 𝓓 denotes the measured structural modal parameters including frequencies and 

mode shapes 〈�̂�𝑟 , �̂�𝑟〉; 𝜽 is the damage index defined in Eq. (5.3); 𝑝(𝓓|𝜽, ℳ) denotes 

the posterior PDF of 𝜽 given 𝓓 and ℳ; 𝑝(𝓓|𝜽, ℳ) is the likelihood function; 𝑝(𝜽|ℳ) 

is the prior PDF of 𝜽; and 𝑐 = 𝑝(𝓓|ℳ) is the normalization constant, termed evidence. 

 

5.2.3 Likelihood Function for Structural Modal Parameters 

 

For simplicity, items dependent on ℳ are herein omitted, and the likelihood function is 

expressed as 𝑝(𝓓|𝜽). The modal parameters are deemed independent from frequencies 

and mode shapes and from mode to mode (Vanik, 2020) as 

𝑝(𝓓|𝜽) = 𝑝(�̂�|𝜽)𝑝(�̂�|𝜽) = ∏ 𝑝(λ̂𝑟|𝜽)𝑝(�̂�𝑟|𝜽)

𝑁𝑚

𝑟=1

 (5.6) 

 

The discrepancy between analytical and measured modal parameters, denoted as 𝜺𝑟 and 

𝒆𝑟 , is assumed to follow the Gaussian distributions with a zero mean and diagonal 

variance matrix, and respectively expressed as 

𝜺𝑟 =
�̂�𝑟 − 𝜆𝑟(𝜽)

�̂�𝑟

 ~𝑁(0, 𝛽−1) (5.7) 

𝒆𝑟 = �̂�𝑟−𝝓𝑟(𝜽) ~𝑁(𝟎,  𝛾−1𝑰) (5.8) 

where 𝜆𝑟(𝜽) and 𝝓𝑟(𝜽) represent the model-predicted eigenvalues and mode shapes, 

respectively; λ̂𝑟 and �̂�𝑟 are the measured counterparts, and the hyper-parameters 𝛽 and 
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 𝛾  equal the reciprocal of the variance, reflecting the precision of the measured 

eigenvalue and mode shapes, respectively. 

 

The likelihood functions are then given by 

𝑝(�̂�|𝜽, 𝛽) = (
𝛽

2𝜋
)

𝑁𝑚
2

𝑒𝑥𝑝 {−
𝛽

2
∑ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

} (5.9) 

𝑝(�̂�|𝜽, 𝛾) = (
𝛾

2𝜋
)

𝑁𝑝∙𝑁𝑚

2
𝑒𝑥𝑝 {−

𝛾

2
∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2

𝑁𝑚

𝑟=1

} (5.10) 

 

5.2.4 Prior PDF of Damage Index 

 

In the Bayesian framework, the prior is generally determined according to engineering 

judgements or objectives. In this study, the prior PDF of 𝜽 serves as the regularization 

item for the ill-posed damage detection problem, and the ARD prior (Tipping, 2001) 

following the Gaussian distribution is defined. Moreover, each damage index 𝜃𝑖  is 

defined by an individual hyper-parameter 𝛼𝑖  associated with the uncertainty of 𝜃𝑖 . 

Consequently, the prior PDF of 𝜽 is the product of n independent Gaussian distributions 

as follows, each corresponding to one damage index, 

𝑝(𝜽|𝜶) = ∏ 𝑝(𝜃𝑖|𝛼𝑖)

𝑛

𝑖=1

= (
1

2𝜋
)

𝑛
2

∏ [𝛼
𝑖

1
2 𝑒𝑥𝑝 {−

1

2
𝛼𝑖𝜃𝑖

2}]

𝑛

𝑖=1

 (5.11) 

where 𝛼𝑖 reflects the precision of 𝜃𝑖. 

 

5.2.5 Posterior PDF of Damage Index 

 

The posterior PDF is then derived according to Eq. (5.5), that is,  

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝛽, 𝛾) = 𝑐−1𝑝(�̂�|𝜽, 𝛽)𝑝(�̂�|𝜽, 𝛾)𝑝(𝜽|𝜶) (5.12) 
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where the evidence 𝑐 is calculated by integrating the numerator 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) in Eq. 

(5.5) with respect to 𝜽, expressed as 

𝑐 =  𝑝(𝓓| ℳ) = 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) = ∫ 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾)𝑑𝜽 

= ∫ 𝑝(�̂�|𝜽, 𝛽)𝑝(�̂�|𝜽, 𝛾)𝑝(𝜽|𝜶)𝑑𝜽 

= ∫ (
𝛽

2𝜋
)

𝑁𝑚
2

(
 𝛾

2𝜋
)

𝑁𝑝∙𝑁𝑚

2
(

1

2𝜋
)

𝑛
2

(∏ 𝛼
𝑖

1
2

𝑛

𝑖=1

)  𝑒𝑥𝑝 {−
𝛽

2
∑ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

 

      −
 𝛾

2
∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2

𝑁𝑚

𝑟=1

−
1

2
∑(𝛼𝑖𝜃𝑖

2)

𝑛

𝑖=1

}  𝑑𝜽 

(5.13) 

 

5.3 Bayesian Inference based on Laplace Approximation 

 

The MPV of the damage index 𝜽 equals the MAP estimate of 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝛽, 𝛾), that is  

�̅� = arg max 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝛽, 𝛾) 

    = arg max 𝑐−1𝑝(�̂�|𝜽, 𝛽)𝑝(�̂�|𝜽, 𝛾)𝑝(𝜽|𝜶) 

    = arg max 𝑐−1 (
𝛽

2𝜋
)

𝑁𝑚
2

(
 𝛾

2𝜋
)

𝑁𝑝𝑁𝑚

2
(

1

2𝜋
)

𝑛
2

(∏ 𝛼
𝑖

1
2

𝑛

𝑖=1

) × 

         𝑒𝑥𝑝 {−
𝛽

2
∑ [

λ̂𝑟−𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

−
 𝛾

2
∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2

𝑁𝑚

𝑟=1

−
1

2
∑(𝛼𝑖𝜃𝑖

2)

𝑛

𝑖=1

} 

(5.14) 

 

For the convenience of calculation, the negative natural logarithm of the right-hand side 

in Eq. (5.14) is used, that is, 

�̅� = arg  min  𝐽(𝜽) 

  = arg  min  𝛽 ∑ [
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

+ 𝛾 ∑ ∑[�̂�𝑗,𝑟 − 𝜙𝑗,𝑟(𝜽)]
2

𝑁𝑝

𝑗=1

𝑁𝑚

𝑟=1

+ ∑(𝛼𝑖𝜃𝑖
2)

𝑛

𝑖=1

 

(5.15) 
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where the items unrelated with 𝜽 are dropped for simplicity.  

 

In addition to the damage index 𝜽, the hyper-parameters {𝜶, 𝛽, 𝛾} in Eq. (5.15) are also 

unknown, which need to be estimated first. The MPVs of {𝜶, 𝛽, 𝛾} can be estimated by 

maximizing their posterior PDF 𝑝(𝜶, 𝛽, 𝛾|�̂�, �̂�) with respect to 𝜶, 𝛽 and 𝛾, respectively. 

In particular,  

𝑝(𝜶, 𝛽, 𝛾|�̂�, �̂�) =
𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾)𝑝(𝜶, 𝛽, 𝛾)

𝑝(�̂�, �̂�)
∝ 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) (5.16) 

where a uniformly distributed (non-informative) prior PDF is adopted for {𝜶, 𝛽, 𝛾}. 

According to Eq. (5.16), {𝜶, 𝛽, 𝛾}  can be estimated by maximizing 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) , 

which is the evidence in Eq. (5.13). 

 

Due to the high dimensional integral involved in the evidence and the nonlinear 

relationship between 〈𝜆𝑟 , 𝝓𝑟〉 and 𝜽, a closed-form solution of the evidence is difficult 

to obtain. Therefore, asymptotic or numerical techniques are required. In Chapter 3, the 

EM algorithm is utilized. However, the posterior statistics of 𝜽  cannot be directly 

identified from Eq. (5.14). Hence the expectation in the E step cannot be calculated 

analytically here. The Laplace approximation is a desirable technique that can be 

applied to obtain the asymptotic solution of the integral, provided that the system is 

globally or locally identifiable based on the available measurements (Beck and 

Katafygiotis, 1998), as explained in Section 2.3.1. Assuming that the problem is 

globally identifiable with the measured modal parameters, the item within the integral in 

Eq. (5.13), 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) can be approximated as a Gaussian distribution based on 

the Laplace approximation, that is, 

𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) ≅ 𝑝(�̂�, �̂�, �̅�|𝜶, 𝛽, 𝛾)𝑒𝑥𝑝 {−
1

2
(𝜽 − �̅�)T𝚨(𝜽 − �̅�)} (5.17) 

where �̅� denotes the mode of 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) and equals the MAP estimate calculated 

by Eq. (5.15). The matrix 𝚨  denotes the Hessian matrix, which equals the second 

derivatives of the objective function with respect to the damage index, that is, 
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Α = −∇∇ ln 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) |𝜽=�̅� =
𝜕

𝜕𝜃𝑖𝜕𝜃𝑗
𝐽(𝜽)|𝜽=�̅� = W+𝛽𝚮 + 𝛾𝚸 (5.18) 

In Eq. (5.18), the Hessian matrix 𝚨 is decomposed into three items, i.e., W is a diagonal 

matrix with entries W𝑖𝑖 = 𝛼𝑖, and H and 𝚸 are computed as 

          𝐇𝑖𝑗 =
𝜕

𝜕𝜃𝑖𝜕𝜃𝑗

1

2
∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

 

   = ∑
1

λ̂𝑟
2 ⋅

𝜕𝜆𝑟(�̅�)

𝜕𝜃𝑖
∙

𝜕𝜆𝑟(�̅�)

𝜕𝜃𝑗
− ∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

] ∙
1

λ̂𝑟

𝑁𝑚

𝑟=1

⋅
𝜕𝜆𝑟(�̅�)

𝜕𝜃𝑖𝜕𝜃𝑗

𝑁𝑚

𝑟=1

 

(5.19) 

           𝚸𝑖𝑗 =
𝜕

𝜕𝜃𝑖𝜕𝜃𝑗

1

2
∑ ∑[�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)]

2

𝑁𝑝

𝑘=1

𝑁𝑚

𝑟=1

 

                = ∑ ∑
𝜕𝜙𝑘,𝑟(�̅�)

𝜕𝜃𝑖

𝑁𝑝

𝑘=1

∙
𝜕𝜙𝑘,𝑟(�̅�)

𝜕𝜃𝑗
− ∑ ∑[�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)] ∙

𝑁𝑝

𝑘=1

𝑁𝑚

𝑟=1

𝑁𝑚

𝑟=1

𝜕𝜙𝑘,𝑟(�̅�)

𝜕𝜃𝑖𝜕𝜃𝑗
 

(5.20) 

In the above equations, the first and second derivatives of the eigenvalues and 

eigenvectors with respect to the stiffness parameter can be calculated by employing the 

Nelson’s method (Nelson, 1976) or the substructural approach (Weng et al., 2011, 

2013). 

 

A normalized Gaussian distribution proportional to 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾) is expressed as 

𝑞(𝜽) =
|𝚨|1/2

(2𝜋)𝑛/2
𝑒𝑥𝑝 {−

1

2
(𝜽 − �̅�)T𝚨(𝜽 − �̅�)} = 𝒩(𝜽|𝜽 ̅, 𝚨−1) (5.21) 

where |𝚨| denotes the determinant of the matrix 𝚨. On the basis that the integral of a 

normalized Gaussian distribution equals one, the evidence 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾)  can be 

computed as 

𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) = ∫ 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝛽, 𝛾)𝑑𝜽 

                             ≅ 𝑝(�̂�, �̂�, �̅�|𝜶, 𝛽, 𝛾) ∫ 𝑒𝑥𝑝 {−
1

2
(𝜽 − �̅�)T𝚨(𝜽 − �̅�)} 𝑑𝜽 

(5.22) 
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                             =  𝑝(�̂�, �̂�, �̅�|𝜶, 𝛽, 𝛾)
(2𝜋)𝑛/2

|𝚨|1/2
 

Hence the asymptotic analytical solution of the evidence is obtained. For the 

convenience of optimization, the logarithm of Eq. (5.22) is adopted, that is  

ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) = ln 𝑝(�̂�, �̂�, �̅�|𝜶, 𝛽, 𝛾) +
𝑛

2
ln(2π) −

1

2
ln|𝚨| 

= ln 𝑝(�̂�|�̅�, 𝛽) + ln 𝑝(�̂�|�̅�, 𝛾) + ln 𝑝(�̅�|𝜶) +
𝑛

2
ln(2π) −

1

2
ln|𝚨| 

=
𝑁𝑚

2
ln (

𝛽

2𝜋
) +

𝑁𝑝𝑁𝑚

2
ln (

𝛾

2𝜋
) +

𝑛

2
ln (

1

2𝜋
) +

1

2
∑ ln 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ (𝛼𝑖�̅�𝑖

2
)

𝑛

𝑖=1

 

    −
𝛽

2
∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

−
 𝛾

2
∑‖�̂�𝑟 − 𝝓𝑟(�̅�)‖

2

2

𝑁𝑚

𝑟=1

+
𝑛

2
ln(2π) −

1

2
ln|𝚨| 

(5.23) 

 

Based on Eq. (5.16), the MPVs of {𝜶, 𝛽, 𝛾}  can be calculated by maximizing 

𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾). Setting the derivative of ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) in Eq. (5.23) with respect 

to 𝜶 to zero, we have 

              
𝜕ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾)

𝜕𝛼𝑖
=

1

2𝛼𝑖
−

�̅�𝑖
2

2
−

1

2

𝜕ln |W+𝛽𝚮 + 𝛾𝚸|

𝜕𝛼𝑖
 

               =
1

2𝛼𝑖
−

�̅�𝑖
2

2
−

1

2
𝑇𝑟 [(W+𝛽𝚮 + 𝛾𝚸)−1

𝜕(W+𝛽𝚮 + 𝛾𝚸)

𝜕𝛼𝑖
] 

               =
1

2𝛼𝑖
−

�̅�𝑖
2

2
−

1

2
[(W+𝛽𝚮 + 𝛾𝚸)−1]𝑖𝑖 

               = 0 

(5.24) 

where 𝑇𝑟[·] denotes the trace of a matrix, which equals the sum of the leading diagonal 

entries. In Eq. (5.24), the derivative equation of a matrix is used: 

𝜕ln |A|

𝜕𝜶
= 𝑇𝑟 (A−1

𝜕A

𝜕𝜶
) (5.25) 

Since W is a diagonal matrix with 𝐖𝑖𝑖 = 𝛼𝑖 , 
𝜕(W+𝛽𝚮+𝛾𝚸)

𝜕𝛼𝑖
 is a diagonal zero matrix 

except a nonzero item at the ith entry. Based on Eq. (5.24), the MPV of 𝛼𝑖 is calculated 

as 
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𝛼𝑖 =
1

�̅�𝑖
2

+ [(W+𝛽𝚮 + 𝛾𝚸)−1]𝑖𝑖

 (5.26) 

 

Similarly, the MPV of 𝛽 is obtained by setting the derivative of ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) with 

respect to 𝛽 to zero, that is, 

𝜕ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾)

𝜕𝛽
=

𝑁𝑚

2𝛽
−

1

2
∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

−
1

2

𝜕ln |W+𝛽𝚮 + 𝛾𝚸|

𝜕𝛽
 

=
𝑁𝑚

2𝛽
−

1

2
∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

−
1

2
𝑇𝑟[(W+𝛽𝚮 + 𝛾𝚸)−1𝚮] 

=
𝑁𝑚

2𝛽
−

1

2
∑ [

λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

−
1

2
∑[(W+𝛽𝚮 + 𝛾𝚸)−1𝚮]𝑖𝑖

𝑛

𝑖=1

 

= 0 

(5.27) 

According to Eq. (5.27), 𝛽 is calculated as 

𝛽 =
𝑁𝑚

∑ [
λ̂𝑟 − 𝜆𝑟(�̅�)

λ̂𝑟

]

2
𝑁𝑚
𝑟=1 + ∑ [(W+𝛽𝚮 + 𝛾𝚸)−1𝚮]𝑖𝑖

𝑛
𝑖=1

 
(5.28) 

 

Setting the derivative of ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾) with respect to 𝛾 to zero, we have 

𝜕ln 𝑝(�̂�, �̂�|𝜶, 𝛽, 𝛾)

𝜕𝛾
 

=
𝑁𝑚𝑁𝑝

2𝛾
−

1

2
∑ ∑[�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)]

2

𝑁𝑝

𝑘=1

𝑁𝑚

𝑟=1

−
1

2

𝜕ln |W+𝛽𝚮 + 𝛾𝚸|

𝜕𝛾
 

=
𝑁𝑚𝑁𝑝

2𝛾
−

1

2
∑ ∑[�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)]

2

𝑁𝑝

𝑘=1

𝑁𝑚

𝑟=1

−
1

2
𝑇𝑟[(W+𝛽𝚮 + 𝛾𝚸)−1𝚸] 

=
𝑁𝑚𝑁𝑝

2𝛾
−

1

2
∑ ∑[�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)]

2

𝑁𝑝

𝑘=1

𝑁𝑚

𝑟=1

−
1

2
∑[(W+𝛽𝚮 + 𝛾𝚸)−1𝚸]𝑖𝑖

𝑛

𝑖=1

 

= 0 

(5.29) 
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𝛾 is then computed as 

𝛾 =
𝑁𝑚𝑁𝑝

∑ ∑ [�̂�𝑘,𝑟 − 𝜙𝑘,𝑟(�̅�)]
2𝑁𝑝

𝑘=1
𝑁𝑚
𝑟=1 + ∑ [(W+𝛽𝚮 + 𝛾𝚸)−1𝚸]𝑖𝑖

𝑛
𝑖=1

 (5.30) 

 

Note that the MPVs of �̅� in Eq. (5.15) and {𝜶, 𝛽, 𝛾} in Eqs. (5.26), (5.28) and (5.30) are 

coupled with each other. Therefore, they can be calculated in an iterative manner. The 

algorithm starts with initializing the parameters, and proceeds with estimating the 

damage index using the current parameters and updating the parameters based on the 

damage index, until the convergence criterion is satisfied.  

 

The procedure of the proposed algorithm is summarized as: 

Algorithm based on Laplace Approximation 

1. Initialize  𝜶(0), 𝛽(0), 𝛾(0) and 𝜽(0); 

2. For 𝑗 = 1, 2 , … , update 𝜽 ̅(𝑗) using Eq. (5.15) with 𝜶(𝑗−1), 𝛽(𝑗−1), 𝛾(𝑗−1); 

3. Update 𝛼𝑖
(𝑗) using Eq. (5.26) with 𝜽 ̅(𝑗), 𝛽(𝑗−1), 𝛾(𝑗−1); 

4. Update 𝛽(𝑗) using Eq. (5.28) with 𝜽 ̅(𝑗), 𝛼𝑖
(𝑗), 𝛾(𝑗−1); 

5. Update 𝛾(𝑗) using Eq. (5.30) with 𝜽 ̅(𝑗), 𝛼𝑖
(𝑗), 𝛽(𝑗); 

6. Let 𝑗 = 𝑗 + 1 , repeat Steps 2~5 until the convergence criterion is met (e.g. 

‖�̅�(𝑗) − �̅�(𝑗−1)‖
2

‖�̅�(𝑗)‖
2

⁄ ≤ 𝑇𝑜𝑙). 

 

 

5.4 Case Study 

 

5.4.1 Model Descriptions 

 

The proposed method is applied to a laboratory-tested three-story steel frame (Hou et 

al., 2018). The structure was firmly fixed on the strong floor through a steel plate. 

Therefore, the boundary condition of the frame is regarded as fixed. The frame has a 0.5 
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m span and 1.5 m height with three similar stories. The beam and column have an 

identical cross-section of 75.0×5.0 mm2. The Young’s modulus of the steel material is 

assumed to be 2.0×1011 N/m2, and the mass density is 7.92×103 kg/m3. The entire 

frame is divided into 225 Euler-Bernoulli beam elements, each being 20 mm long. In 

this study, the damage is identified at the element level. 

 

 

Figure 5.1 Overview of the three-story steel frame 

 

A total of 39 measurement points with a space of 100 mm was determined to obtain the 

modal parameters (i.e., frequencies and mode shapes) of the frame through the hammer 

test. Accelerometers were installed to record the acceleration responses under the 

excitation of the hammer with a rubber tip. The rational fraction polynomial method 

(Formenti and Richardson, 2002) is utilized to extract the first seven frequencies and 

mode shapes of the frame in the intact state. The measured first seven mode shapes are 

plotted in Figure 5.2. 
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Mode 1 (4.23Hz) Mode 2 (14.03Hz) Mode 3 (25.45 Hz) Mode 4 (44.81 Hz) 

   

Mode 5 (58.12Hz) Mode 6 (68.36Hz) Mode 7 (72.27 Hz) 

Figure 5.2 The first seven frequencies and mode shapes in the undamaged state 

measured in the hammer test 

 

Afterwards, three saw cuts in different locations were introduced to the frame in 

sequence, as shown in Figure 5.3. Cuts 1–3 were located at elements No. 1, 12 and 176. 

Three cuts have the same length of 20 mm and different depths of 22.5, 22.5, and 30 

mm. The cut has the same length as the beam element. Hence, the damage severity 

quantified by the SRF in Eq. (5.3) equals the reduction in the moment of inertia of the 

cross-section. That is, the SRFs of the three damaged elements are −60%, −60% and 

−80%, respectively. The detailed information of the three DSs is listed in Table 5.1. 
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Figure 5.3 Location of accelerometers and damages (unit: mm) 

 

Table 5.1 Damage locations and severities in three DSs 

Damage 

Scenario 

Cut  

No. 

Element 

No. 

Cut depth 

(mm) 

Damaged 

component 
SRF (𝜃) 

DS1 Cut 1 1 22.5 Column 𝜃1 = −60% 

DS2 
Cut 1 

Cut 2 

1 

176 

22.5 

22.5 

Column 

Beam 

𝜃1 = −60% 

𝜃176 = −60% 

DS3 

Cut 1 1 22.5 Column 𝜃1 = −60% 

Cut 2 

Cut 3 

176 

12 

22.5 

30 

Beam 

Column 

𝜃176 = −60% 

𝜃12 = −80% 

 

The number of damaged elements in three DSs is one, two and three, respectively, 

which is much less than the total number of the elements (e.g. 225). Therefore, the SRF 

vector is very sparse. That is, most entries are zero, except several entries corresponding 

1
0
0

1
0
0

100

2
2
0

1
5
0
0

1
0
0

Cut 2 (60%)

100

Cut 1 (60%)

75

1
0
0

1
0
0

5

Cut 3 (80% )

Accelerometer

5
0
0

1
0
0

100

1
0
0

5

1
0
0

1
0
0

5
0
0

5
0
0

100

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

500

100
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to the damage locations are nonzero. The hammer test mentioned previously was 

similarly conducted in each DS, and the modal data (frequencies and mode shapes) were 

extracted. Table 5.2 compares the first seven frequencies in the undamaged state and 

three DSs. The structural frequencies decrease with the increase of damage severity. 

The modal assurance criterion (MAC) is utilized for mode shape matching, so that the 

measured mode shapes match the analytical counterparts of the FE model (Allemang, 

2003).  

 

Table 5.2 Frequencies of the frame in undamaged and damaged states (units: Hz) 

Mode Undamaged DS1 DS2 DS3 

1 4.23 4.13 (−2.31) 4.08 (−3.53) 4.06 (−3.88) 

2 14.03 13.75(−1.96) 13.45(−4.11) 13.42(−4.32) 

3 25.45 25.14(−1.19) 25.13(−1.23) 25.09(−1.41) 

4 44.81 44.70(−0.23) 44.69(−0.27) 44.62(−0.42) 

5 58.12 57.39(−1.24) 57.28(−1.44) 56.55(−2.69) 

6 68.36 67.34(−1.49) 66.11(−3.29) 65.31(−4.46) 

7 72.27 72.06(−0.28) 71.42(−1.18) 70.74(−2.12) 

Average (%)     (−1.44) (−2.32) (−3.37)             

Note. Values in parentheses are the frequency change ratios (%) between the damaged and 

undamaged states. 

 

5.4.2 Damage Identification 

 

The algorithm starts with initializing the parameters. The modal testing experiences 

indicate that structural frequencies may contain 1% noise level and measured mode 

shapes are generally less accurate than the frequencies (Mottershead and Friswell, 

1993). Therefore, a noise level of 1% and 5% are assigned to the frequencies and mode 

shapes, respectively, namely, 𝛽(0)=1/(0.01)
2
=1×10

4
 and 𝛾(0)=1/(0.05)

2
= 400. The noise 

level of the damage index in the prior is estimated to be 10% of the true value, that is, 

𝛼𝑖
(0)

= 1 (10%)2⁄ =100 (i = 1, 2, …, 225). The actual damage location and severity are 

unknown, thus the initial damage index is assumed to be a zero vector, that is, 

𝜽(0)= {0, …, 0}T . The convergence criterion of the proposed algorithm is set to be 
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‖�̅�(𝑗) − �̅�(𝑗−1)‖
2

‖�̅�(𝑗)‖
2

⁄ ≤ 0.01. To evaluate the accuracy of damage quantification, an 

error index is defined as 

𝛿 = √‖𝜽 − �̅�‖
2

2

𝑛
 

(5.31) 

where �̅� is the damage index identified by the proposed algorithm. 

 

DS1. In DS1, only the first element was damaged. The damage identification results in 

the iterative process are shown in Figure 5.4. Due to the space limitation, only the 

results in the first two and last two iterations are presented here. In the first two 

iterations, multiple elements are mistakenly identified as damaged. After six iterations, 

the identification results converge, and the actual damage in the first element is 

identified. The identification error is 0.37%. 

 

DS2. In DS2, No. 1 and 176 elements were damaged. The proposed algorithm is 

applied, and the identification results converge after five iterations. Figure 5.5 shows the 

results in the first two and last two iterations. Two damage are accurately localized upon 

convergence, with the severity identification error of 1.29%. 

  

(a) Iteration No.1 (b) Iteration No.2 
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(c) Iteration No.5 (d) Iteration No.6 

Figure 5.4 Damage identification results of DS1 

 

  

(a) Iteration No.1 (b) Iteration No.2 

  

(c) Iteration No.4 (d) Iteration No.5 

Figure 5.5 Damage identification results of DS2 
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DS3. In DS3, three elements (No. 1, 12 and 176) are damaged. The convergence is 

attained after four iterations. The damage identification results are presented in Figure 

5.6. Again, all damages are localized correctly with the severity identification error of 

1.36%. 

 

All damaged elements in three DSs are detected accurately with minor quantification 

errors, all of which are less than 2%. It can be concluded that the proposed Laplace 

approximation-based sparse Bayesian method is able to locate and quantify the sparse 

damage. 

  

(a) Iteration No.1 (b) Iteration No.2 

  

(c) Iteration No.3 (d) Iteration No.4 

Figure 5.6 Damage identification results of DS3 
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5.4.3 Variation of Hyper-parameters 

The hyper-parameters also alter as the iterations proceed. Figures 5.7 shows the 

variations of a few parameters in DS3. Although all 𝛼𝑖 are initialized identically to be 

100, they converge to different values. Specifically, 𝛼𝑖 corresponding to the undamaged 

elements (for example, 𝛼100, 𝛼150  and 𝛼225)  converge to a significant value, as 

compared with 𝛼𝑖 associated with the damaged elements (𝛼1, 𝛼12 and 𝛼176). This result 

is consistent with the mechanism of the ARD model, where each variable is assigned 

with an individual hyper-parameter. Most hyper-parameters in the optimization process 

become significant. Hence, the associated variables are penalized more, enforcing these 

variables to zero and inducing the sparse results. In DS3, most 𝛼𝑖 are significantly larger 

than the rest three counterparts. In corresponding, all damage indices except the three 

ones corresponding to damaged locations (𝜃1, 𝜃12  and 𝜃176 ) are optimized to zero, 

realizing the sparse damage detection. 

  

(a) 𝛼1  (b) 𝛼12  

  

(c) 𝛼100  (d) 𝛼150 



 

101 

 

  

(e) 𝛼176 (f) 𝛼225 

Figure 5.7 Variation of hyper-parameters during the iteration process of DS3 

 

5.5 Comparison with lp (p=0, 1 and 2) Regularization Technique 

 

The SBL developed in this study is compared with the lp (p=0, 1, and 2) regularization 

technique in the sparse recovery.  

 

Eq. (5.21) is similar to the objection function in regularization methods. The first two 

terms correspond to the weighted model fitting terms, and the third term corresponds to 

the regularization term. However, the ARD prior assigns an independent “regularization 

parameter” 𝛼𝑖 to each damage index 𝜃𝑖. Some 𝛼𝑖 converge to a significant value in the 

optimization process, enforcing the corresponding damage index to zero and induce 

sparsity to the results. Eq. (5.26) reveals that the regularization parameter is at the level 

of 1/𝜃2 , reflecting that Eq. (5.21) closely resembles the l0 regularization technique 

(Daubechies et al., 2010). If all 𝛼𝑖 are set to the same value, Eq. (5.26) is equivalent to 

the l2 regularization technique. And if the Laplace prior is defined on the damage index 

rather than the Gaussian prior, Eq. (5.26) is equivalent to the l1 regularization technique 

(Babacan et al., 2009). It is noteworthy that lp (p=0, 1, and 2) regularization parameters 

need to be determined in advance. Consequently, the proposed SBL method is preferred 

given that all unknown parameters are optimized automatically. 
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5.6 Summary 

 

The chapter proposes a sparse Bayesian model for structural damage detection based on 

the Laplace approximation. The ARD model is adopted as the sparsity prior in the 

Bayesian probabilistic framework, which equivalently functions as the regularization 

item to tackle the ill-posed inverse problem in the structural damage detection. For the 

problem of the intractable posterior PDF resulted by the nonlinear relationship between 

the damage index and modal parameters, the Laplace approximation is utilized. The 

item to be integrated within the evidence is approximated as a Gaussian distribution. In 

this manner, the posterior PDFs of the damage index and hyper-parameters are 

expressed in an analytical form, based on which the MPVs are solved iteratively. 

 

The proposed method is applied to a three-story steel frame, to which three damages 

were sequentially introduced. The results indicate that the sparse damage in all three 

DSs can be accurately localized with minor severity quantification errors. The 

effectiveness of the proposed method is thus verified. 
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CHAPTER 6   
 

STRUCTURAL DAMAGE IDENTIFICATION BASED ON 

VARIATIONAL BAYESIAN INFERENCE AND DELAYED 

REJECTION ADAPTIVE METROPOLIS ALGORITHM 
 

 

 

6.1 Introduction 

 

The Laplace approximation technique in Chapter 5 only works well when the model 

updating problem is globally or locally identifiable. In most cases, the condition may 

not be satisfied due to the limitation of measurement data. In locally identifiable and 

unidentifiable cases, finding all optimal modes or eligible points is computationally 

challenging and nontrivial, especially in the high-dimensional and nonconvex 

optimizations. Besides, the Hessian matrix in high-dimensional problems also requires a 

high computation cost. In this chapter, an improved SBL is developed for damage 

identification based on VBI and DRAM, which is applicable to both standard and 

nonstandard distributions and is highly efficient for high-dimensional problems. A 

comparative study between the method in Chapter 5 and the VBI-DRAM algorithm is 

conducted. 

 

6.2 Sparse Bayesian Method for Model Updating 

 

The definitions of the Bayesian equation and the prior PDF are the same as Eqs. (5.5) 

and (5.11). The difference lies in the likelihood function, which considers the different 

uncertainties of each mode. In corresponding, the posterior PDF is also different. The 

likelihood function and posterior PDF are detailed as follows. 
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6.2.1 Likelihood Function 

 

The discrepancy between the model predictions and measurement data arises from the 

measurement noises and modelling errors. The two sources do not exhibit an identical 

error for each frequency and mode shape. In Section 3.2.3, the uncertainties of different 

modes are assumed equally, which may affect the accuracy of the uncertainty 

assessment. In this Chapter, the uncertainty of each modal parameter is individually 

evaluated as 

𝜺𝑟 =
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

    ~𝒩(0, 𝛽𝑟
−1) (6.1) 

𝒆𝑟 = �̂�𝑟 − 𝝓𝑟(𝜽)   ~𝒩(𝟎,  𝛾𝑟
−1𝑰) (6.2) 

where 𝛽𝑟 and 𝛾𝑟 reflect the uncertainty level of each mode. 

 

Then the likelihood function of each modal parameter is individually expressed as 

𝑝(λ̂𝑟|𝜽, 𝛽𝑟) = (
𝛽𝑟

2𝜋
)

1
2

𝑒𝑥𝑝 {−
1

2
𝛽𝑟 ∙ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

} (6.3) 

𝑝(�̂�𝑟|𝜽, 𝛾𝑟) = (
 𝛾𝑟

2𝜋
)

𝑁𝑝

2
𝑒𝑥𝑝 {−

 1

2
𝛾𝑟 ∙ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
} 

(6.4) 

The modal parameters are assumed to be independent from mode to mode. Therefore, 

the resulting likelihood functions of 𝜽 based on measured modal parameters �̂� and �̂� 

are formulated as 

     𝑝(�̂�|𝜽, 𝜷) = ∏ 𝑝(λ̂𝑟|𝜽, 𝛽𝑟)

𝑁𝑚

𝑟=1

 

= (∏
𝛽𝑟

2𝜋

𝑁𝑚

𝑟=1

)

1
2

𝑒𝑥𝑝 {−
1

2
∑ (𝛽𝑟 ∙ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)

𝑁𝑚

𝑟=1

} 

(6.5) 
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     𝑝(�̂�|𝜽, 𝜸) = ∏ 𝑝(�̂�𝑟|𝜽, 𝛾𝑟)

𝑁𝑚

𝑟=1

 

       = (∏
 𝛾𝑟

2𝜋

𝑁𝑚

𝑟=1

)

𝑁𝑝

2

𝑒𝑥𝑝 {−
 1

2
∑ (𝛾𝑟 ∙ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
)

𝑁𝑚

𝑟=1

} 

(6.6) 

where 𝑁𝑚 is the number of measured modes. 

 

6.2.2 Posterior PDF 

 

The posterior PDF of the damage index is then formulated as 

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸) =
𝑝(�̂�, �̂�|𝜽, 𝜷, 𝜸)𝑝(𝜽|𝜶)

𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸)
=

𝑝(�̂�|𝜽, 𝜷)𝑝(�̂�|𝜽, 𝜸)𝑝(𝜽|𝜶)

∫ 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)𝑑𝜽
 

=  𝑐−1 𝑝(�̂�|𝜽, 𝜷)𝑝(�̂�|𝜽, 𝜸)𝑝(𝜽|𝜶) 

= 𝑐−1 (∏
𝛽𝑟

2𝜋

𝑁𝑚

𝑟=1

)

1
2

(∏
 𝛾𝑟

2𝜋

𝑁𝑚

𝑟=1

)

𝑁𝑝

2

(
1

2𝜋
)

𝑛
2

(∏ 𝛼
𝑖

1
2

𝑛

𝑖=1

) 𝑒𝑥𝑝 {−
1

2
∑(𝛼𝑖𝜃𝑖

2)

𝑛

𝑖=1

 

−
1

2
∑ (𝛽𝑟 ∙ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)

𝑁𝑚

𝑟=1

−
 1

2
∑ (𝛾𝑟 ∙ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
)

𝑁𝑚

𝑟=1

} 

(6.7) 

Similarly, the MPVs of the variables cannot be directly obtained from Eq. (6.7) due to 

the high-dimensional evidence and unknown parameters. The VBI and DRAM 

algorithms is integrated to solve this problem, as detailed in the following section. 

 

6.3 VBI-DRAM Algorithm 

 

6.3.1 VBI 

 

The mechanism of VBI is to approximate the target PDF by a proposed PDF. In this 
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study, the target PDF to be approximated is the posterior PDF 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸), and 

the proposed PDF is symbolized as 𝑸(𝜽, 𝜶, 𝜷, 𝜸). For simplicity, the proposed PDF is 

denoted as 𝑸. 

 

According to Eq. (5.13), the evidence can be calculated as 

𝑐 = 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸) =
𝑝(�̂�|𝜽, 𝛽)𝑝(�̂�|𝜽, 𝛾)𝑝(𝜽|𝜶)

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)
=

𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)
 (6.8) 

Taking the logarithm of both sides in Eq. (6.8), one has 

               ln 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸) = ln
𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)
 

                                        = ln
𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)

𝑸
− ln

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)

𝑸
 

(6.9) 

Taking the expectation of both sides in Eq. (6.9) with respect to 𝑸, we have 

               ∫ 𝑸 ln 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸) 𝑑𝜽 

= ∫ 𝑸 ln
𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)

𝑸
𝑑𝜽 − ∫ 𝑸 ln

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)

𝑸
𝑑𝜽 

(6.10) 

Considering that ln 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸) is irrelevant to 𝜽, the left-hand side of Eq. (6.10) 

equals ln 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸), as the integral of 𝑸 with respect to 𝜽 equals 1. Hence, Eq. 

(6.10) can be further simplified as   

ln 𝑝(�̂�, �̂�|𝜶, 𝜷, 𝜸) = 𝓛(𝑸) + 𝐷𝐾𝐿{𝑸||𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)} (6.11) 

where 

𝓛(𝑸) = 𝔼𝑸 [ln
𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)

𝑸
] (6.12) 

𝐷𝐾𝐿{𝑸||𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)} = ∫ 𝑸 ln
𝑸

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸)
𝑑𝜽 (6.13) 
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where 𝔼𝑸 denotes the expectation with respect to 𝑸, 𝓛(𝑸) represents the lower bound 

of 𝑸 and 𝐷𝐾𝐿  represents the KL divergence (Bishop, 2006) between 𝑸 and posterior 

PDF 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸).  

 

It is demonstrated that 𝐷𝐾𝐿 ≥ 0 and 𝐷𝐾𝐿 = 0 when 𝑸 = 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸). Therefore, 

increasing the proximity of 𝑸 to 𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸) can be attained by minimizing 𝐷𝐾𝐿. 

However, the minimization of 𝐷𝐾𝐿  cannot be realized directly as the posterior PDF 

𝑝(𝜽|�̂�, �̂�, 𝜶, 𝜷, 𝜸) is unknown. According to Eq. (6.11), minimizing 𝐷𝐾𝐿 is equivalent 

to maximizing 𝓛(𝑸) . To decouple the posterior PDF of the damage index 𝜽  and 

parameters {𝜶, 𝜷, 𝜸}, 𝑸 is further factorized into two items according to the mean field 

theory (Parisi, 1988), expressed as 

𝑸(𝜽, 𝜶, 𝜷, 𝜸) = 𝑞(𝜽)𝑞(𝜶, 𝜷, 𝜸) (6.14) 

 

The maximization of 𝓛(𝑸) can be attained by optimizing each factor in turn through 

calculating the expectation of the numerator 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸) in 𝓛(𝑸) with respect to 

other factors. Therefore, 𝑞(𝜶, 𝜷, 𝜸) can be obtained by computing the expectation of 

ln 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸) with respect to 𝜽, shown as 

ln 𝑞(𝜶, 𝜷, 𝜸) = 𝔼𝜽[ ln 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)] + const 

= 𝔼𝜽[ ln 𝑝(�̂�|𝜽, 𝛽) + ln 𝑝(�̂�|𝜽, 𝛾) + ln 𝑝(𝜽|𝜶)] + const 

=
1

2
∑ ln 𝛽𝑟

𝑁𝑚

𝑟=1

−
1

2
∑ {𝛽𝑟 ∙ 𝔼𝜽 ([

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)}

𝑁𝑚

𝑟=1

+
𝑁𝑝

2
∑ ln 𝛾𝑟

𝑁𝑚

𝑟=1

  

−
1

2
∑ {𝛾𝑟 ∙ 𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2
)}

𝑁𝑚

𝑟=1

+
1

2
∑ ln 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑{𝛼𝑖𝔼(𝜃𝑖

2)} + const

𝑛

𝑖=1

 

(6.15) 

 

Parameters {𝜶, 𝜷, 𝜸} are assumed to be independent from each other and from mode to 

mode, resulting in the factorization as 
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𝑞(𝜶, 𝜷, 𝜸) = 𝑞(𝜶)𝑞(𝜷)𝑞(𝜸) (6.16) 

𝑞(𝜶) = ∏ 𝑞(𝛼𝑖)

𝑛

𝑖=1

 (6.17) 

𝑞(𝜷) = ∏ 𝑞(𝛽𝑟)

𝑁𝑚

𝑟=1

 (6.18) 

𝑞(𝜸) = ∏ 𝑞(𝛾𝑟)

𝑁𝑚

𝑟=1

 (6.19) 

Therefore, we have 

ln 𝑞(𝜶, 𝜷, 𝜸) = ∑ ln 𝑞(𝛼𝑖) +

𝑛

𝑖=1

∑ ln 𝑞(𝛽𝑟) + ∑ ln 𝑞(𝛾𝑟)

𝑁𝑚

𝑟=1

𝑁𝑚

𝑟=1

 (6.20) 

According to Eq. (6.20), the logarithm of each posterior PDF is then derived as 

ln 𝑞(𝛼𝑖) =  
1

2
ln 𝛼𝑖 −

1

2
𝛼𝑖𝔼(𝜃𝑖

2) + const (6.21) 

ln 𝑞( 𝛽𝑟) =
1

2
ln 𝛽𝑟 −

𝛽𝑟

2
𝔼𝜽 ([

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

) + const (6.22) 

ln 𝑞(𝛾𝑟) =
𝑁𝑝

2
ln 𝛾𝑟 −

 𝛾𝑟

2
𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
) + const (6.23) 

All parameters are found to follow the gamma distribution, expressed as 

𝑞(𝛼𝑖) ∝ (𝛼𝑖)
1
2 ∙ exp {−

 𝛼𝑖

2
∙ 𝔼(𝜃𝑖

2)} (6.24) 

𝑞(𝛽𝑟) ∝ (𝛽𝑟)
1
2 ∙ exp {−

𝛽𝑟

2
∙ 𝔼𝜽 ([

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)} (6.25) 

𝑞(𝛾𝑟) ∝ (𝛾𝑟)
𝑁𝑝

2 ∙ exp {−
 𝛾𝑟

2
∙ 𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
)} (6.26) 

Therefore, the statistics of each parameter are obtained as 

𝔼(𝛼𝑖) =
3

𝐸(𝜃𝑖
2)

;  Var(𝛼𝑖) =
6

[𝔼(𝜃𝑖
2)]𝟐

 (6.27) 
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𝐸(𝛽𝑟) =
3

𝔼𝜽 ([
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)

 ;  Var(𝛽𝑟) =
6

{𝔼𝜽 ([
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

)}

2 
(6.28) 

𝐸(𝛾𝑟) =
𝑁𝑝 + 2

𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖
2

2
)

;  Var(𝛾𝑟) =
2𝑁𝑝 + 4

[𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖
2

2
)]

2 (6.29) 

 

Factor 𝑞(𝜽)  can be similarly optimized by computing the expectation of 

ln 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸) with respect to parameters {𝜶, 𝜷, 𝜸}, that is 

ln 𝑞(𝜽) = 𝔼𝜶,𝜷,𝜸[ln 𝑝(�̂�, �̂�, 𝜽|𝜶, 𝜷, 𝜸)] + const 

= 𝔼𝜶,𝜷,𝜸[ln 𝑝(�̂�|𝜽, 𝜷)𝑝(�̂�|𝜽, 𝜸)𝑝(𝜽|𝜶)] + const 

= 𝔼𝜷[ln 𝑝(�̂�|𝜽, 𝜷)] + 𝔼𝜸[ ln 𝑝(�̂�|𝜽, 𝜸)] + 𝔼𝜶[𝑝(𝜽|𝜶)] + const 

= −
1

2
∑ {𝔼(𝛽𝑟) ∙ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2

}

𝑁𝑚

𝑟=1  

−
1

2
∑ {𝔼(𝛾𝑟) ∙ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
}

𝑁𝑚

𝑟=1

 

     −
1

2
∑{𝔼(𝛼𝑖) ∙ 𝜃𝑖

2}

𝑛

𝑖=1

+ const 

(6.30) 

where items irrelevant to 𝜽 are merged into the item of constant. Therefore, we have 

𝑞(𝜽) ∝  exp {− ∑ [
𝔼(𝛽𝑟)

2
∙ (

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

)

2

]

𝑁𝑚

𝑟=1

 

                           − ∑ [
𝔼(𝛾𝑟)

2
∙ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2
] −

𝑁𝑚

𝑟=1

∑ [
𝔼(𝛼𝑖)

2
∙ 𝜃𝑖

2]

𝑛

𝑖=1

} 

(6.31) 

 

Eqs. (6.27)–(6.29) and (6.31) are coupled and thus can be calculated recursively. The 

iterative procedures correspond to the variational Bayesian expectation and 

maximization step and converge to determined values. Given that the EM algorithm 

does not guarantee the convergence of global optimum, it is recommended to assign 

different initializations to the parameters. Three expectations are required to be 
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calculated, namely, 𝔼(𝜃𝑖
2), 𝔼𝜽 ([

λ̂𝑟−𝜆𝑟(𝜽)

λ̂𝑟
]

2

) and 𝔼𝜽 (‖�̂�𝑟 − 𝝓𝑟(𝜽)‖
2

2
), which is a full 

Bayesian treatment by taking posterior uncertainties of 𝜽 into consideration. However, 

the statistics of 𝜽 cannot be directly recognized from Eq. (6.31) due to the nonlinear 

relationship between 𝜽 and the modal parameters, which hinders the iteration progress 

in the VBI. In next section the numerical DRAM algorithm is employed to obtain the 

statistics of 𝜽. 

 

6.3.2 DRAM Algorithm 

 

The MH algorithm is an improved MCMC simulation that can be employed to generate 

numerical samples of the target PDF whose statistics cannot be obtained directly. Based 

on the proposed PDF 𝑆 and the formulation 𝑞(𝑦) that is proportional to the target PDF, 

the basic MH algorithm are described as follows (Chib and Greenberg, 1995): 

(1) Generate the candidate sample 𝑦 ~ 𝑆(∙ |𝑥𝑗), where 𝑥𝑗  is the current sample, 

(2) Compute the acceptance ratio of the candidate sample, 

       ξ(𝑥𝑗 , 𝑦) = min {1, 
𝑞(𝑦)𝑆(𝑦|𝑥𝑗)

𝑞(𝑥𝑗)𝑆(𝑥𝑗|𝑦)
} 

(3) The next sample is  

        𝑥𝑗+1 = {
𝑦         with the acceptance ratio ξ(𝑥𝑗 , 𝑦)

𝑥𝑗     with the rejection ratio 1 − ξ(𝑥𝑗 , 𝑦)
 

 

The samples will converge to their equilibrium distribution after the burn-in period 

(Andrieu et al., 2003). However, when the MH algorithm is applied to high-dimensional 

problems, the rejection ratio is usually high due to the large sampling space. This will 

lead to a long burn-in period and a low sampling efficiency. To solve this problem, the 

DR algorithm (Green and Mira, 2001) has been developed to improve the acceptance 

ratio of sampling. When the candidate sample is supposed to be rejected, a secondary 

candidate sample is generated according to an adjusted proposal PDF instead of getting 

a repeated sample, and the acceptance ratio is recalculated. This process is termed DR 

and the procedures are shown as (Green and Mira, 2001): 



 

111 

 

(1) Generate the candidate sample 𝑦1 ~ 𝑆(∙ |𝑥𝑗), where 𝑥𝑗  is the current sample, 

(2) Compute the acceptance ratio of the candidate sample, 

       ξ1(𝑥𝑗 , 𝑦1) = min {1, 
𝑞(𝑦1)𝑆(𝑦1|𝑥𝑗)

𝑞(𝑥𝑗)𝑆(𝑥𝑗|𝑦1)
} 

(3) The next sample is  

     𝑥𝑗+1 = {
𝑦1 and go to Step (7)        with the acceptance ratio ξ1(𝑥𝑗 , 𝑦1)

go to Step (4)                  with the rejection ratio 1 − ξ1(𝑥𝑗 , 𝑦1)
 

(4) Generate the candidate sample 𝑦2 ~ 𝑆(∙ |𝑥𝑗 , 𝑦1 ), 

(5) Compute the acceptance ratio of the secondary candidate sample, 

       ξ2(𝑥𝑗 , 𝑦1, 𝑦2) = min {1, 
𝑞(𝑦2)𝑆(𝑦1|𝑦2)𝑆(xj|𝑦1, 𝑦2)(1 − ξ1(𝑦2, 𝑦1))

𝑞(𝑥𝑗)𝑆(𝑦1|𝑥𝑗)𝑆(𝑦2|𝑥𝑗 , 𝑦1)(1 − ξ1(𝑥𝑗 , 𝑦1))
} 

(6) The next sample is  

     𝑥𝑗+1 = {
𝑦2    with the acceptance ratio ξ2(𝑥𝑗 , 𝑦1, 𝑦2)

𝑥𝑗               with rejection ratio ξ2(𝑥𝑗 , 𝑦1, 𝑦2)
 

(7) End 

 

In addition, the proposed PDF also will influence the sampling efficiency. The higher 

the proximity of the proposed PDF to the target PDF, the higher the acceptance ratio 

will be. The Gaussian distribution is adopted as the proposed PDF due to its operability 

and large entropy. In the MH algorithm, the mean of the Gaussian distribution is 

consistently adjusted with the generated sample, whereas the variance is generally 

determined according to experience. The value of the variance is also important. A 

small variance will lead to a slow convergence, especially when the sample severely 

deviates from the equilibrium distribution, and a large variance will result in a high 

sampling rejection ratio. In this connection, the AM algorithm is developed to 

automatically adjust the variance using the generated samples. A certain number of 

samples are required before the adjustment to ensure the semi-positive definite property 

of the covariance matrix. The adjustment rule is (Haario et al., 1999, 2001) 

𝐶 = {
𝐶, 𝑗 + 1 < 𝑁𝑡

𝑆𝑑 cov (𝜽(1), 𝜽(2),…,𝜽(𝑗+1) )+𝑆𝑑𝜀𝑰𝑑, 𝑗 + 1 ≥ 𝑁𝑡 
 (6.32) 
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where 𝐶  is the covariance matrix that is initialized based on experience, 𝑆𝑑  is a 

parameter related to the dimension of the covariance matrix and is generally set to 

2.42/𝑑 (𝑑 is the dimension of 𝜽) (Haario et al., 2006), 𝜀 is an extremely small constant, 

𝑰𝑑 is an identity matrix, and 𝑁𝑡 is the bound number of samples before adjusting the 

covariance matrix. 

 

In view of the advantages of DR and AM algorithms, researchers have combined them 

to generate a novel algorithm named the DRAM algorithm (Haario et al., 2006). The 

DRAM algorithm is applicable to all kinds of complicated probabilistic distributions 

(etc. standard and non-standard probabilistic distributions), provided that the 

formulation proportional to the target PDF is available. The DRAM algorithm has a 

high efficiency for high-dimensional problems (Wan and Ren, 2016). 

 

In this study, the DRAM algorithm is employed to generate samples of 𝜽 using Eq. 

(6.31). A two-layer delayed rejection scheme is adopted in this study. Specifically, if the 

secondary sample is rejected, a repeated sample is adopted and the third-layer sampling 

is not carried out any more. A Gaussian distribution 𝒩(𝜇, 𝐶) is adopted as the proposed 

PDF. To accelerate the convergence and shorten the burn-in period, the mean of the 

proposed PDF, 𝜇, is initially set as �̅� that is calculated by minimizing the objective 

function in Eq. (5.14). Both the values of the mean 𝜇  and covariance matrix 𝐶  are 

adjusted with the progress of sampling. The procedures are described as follows: 

 

DRAM algorithm 

Given the proposed sampling PDF 𝒩(𝜇, 𝐶), the first sample 𝜽(1), the scale factor 𝜌 

to adjust the covariance matrix (𝜌 < 1), the bound 𝑁𝑡, the trivial constant 𝜀, and the 

number of samples 𝑛𝑠 

1. Generate the candidate sample 𝑥1 ~ 𝒩(𝜇, 𝐶). 

2. Compute the acceptance ratio of the candidate sample, 

       ξ𝑗1(𝜽(𝑗), 𝑥1 ) = min {1, 
𝑞(𝑥1)𝒩𝜽(𝑗)(𝑥1, 𝐶)

𝑞(𝜽(𝑗))𝒩𝒙𝟏
(𝜽(𝑗), 𝐶)

} 
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3. Randomly generate 𝝁 from the uniform distribution 𝒰(0, 1). 

4. If 𝝁 < ξ𝑗1(𝜽(𝑗), 𝑥1 ), let 𝜽(𝑗+1) = 𝑥1 and go to Step 8. Otherwise, go to Step 5. 

5. Generate the secondary candidate sample 𝑥2 ~ 𝒩(𝜇, 𝜌𝐶). 

6. Compute the acceptance ratio of the secondary candidate sample, 

       ξ21(𝑥2, 𝑥1 ) = min {1, 
𝑞(𝑥1)𝒩𝑥2(𝑥1,𝐶0)

𝑞(𝑥2)𝒩𝑥1(𝑥2,𝐶0)
}  

       ξj2(𝜽(𝑗), 𝑥2 ) = min {1, 
𝑞(𝑥2)𝒩𝑥1

(𝑥2, 𝐶)𝒩𝜽(𝑗)(𝑥2, 𝐶)[1 − ξ21(𝑥2, 𝑥1 )]

𝑞(𝜽(𝑗))𝒩𝑥1
(𝜽(𝑗), 𝐶)𝒩𝑥2

(𝜽(𝑗), 𝐶)[1 − ξ𝑗1(𝜽(𝑗), 𝑥1 )]
} 

7. If 𝝁 < ξ𝑗2(𝜽(𝑗), 𝑥2 ), then 𝜽(𝑗+1) = 𝑥2. Otherwise, 𝜽(𝑗+1) = 𝜽(𝑗). 

8. Adjust the sampling covariance 

        𝐶 = {
𝐶, 𝑗 + 1 < 𝑁𝑡

𝑆𝑑 cov (𝜽(1), 𝜽(2),…,𝜽(𝑗+1) )+𝑆𝑑𝜀𝑰𝑑, 𝑗 + 1 > 𝑁𝑡 
 

9. Let 𝜇 = 𝜽(𝑗+1). 

10. Let 𝑗 = 𝑗 + 1, repeat Steps 1–8 until 𝑗 = (𝑛𝑠 − 1). 

11. The samples following the posterior PDF of 𝜽  are obtained, 

(𝜽(1), 𝜽(2), … , 𝜽(𝑛𝑠)). The MPV and uncertainty of 𝜽 are calculated according to 

these samples. 

 

6.3.3 Summary of the VBI-DRAM Method 

 

The procedure of the proposed method is illustrated as Figure 6.1, which begins with 

the initialization of parameters and progresses by iteratively updating all unknowns. The 

damage index 𝜽 is sampled using the DRAM algorithm according to Eqs. (5.14) and 

(6.31), and 𝜽MAP is calculated from the generated samples. The parameters {𝜶, 𝜷, 𝜸} are 

updated according to Eqs. (6.27)–(6.29). These procedures are carried out iteratively 

until the defined convergence criterion is satisfied. 
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Figure 6.1 Flowchart of the proposed VBI-DRAM method 

 

6.4 Case Study 

 

6.4.1 Model Description 

 

The proposed algorithm is applied to a laboratory-tested two-story steel frame for 

damage identification. As shown in Figure 6.2, the frame is fixed on the strong floor 

through a steel plate. The frame is 1.0 m high with two equal stories of 0.5 m high. The 
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span is 0.5 m. The cross-section of all beams and columns is 50.0×5.0 mm2. The mass 

density measures 7.92×103 kg/m3, and the Young’s modulus is estimated to be 2.0×1011 

N/m2. The frame is modeled by 150 Euler–Bernoulli beam elements, each being 20 mm 

long.  

 

 

Figure 6.2 Overview of the two-story steel frame 

 

The frame was excited by a hammer with a rubber tip. Accelerometers were installed at 

26 locations to collect the vibration response, as shown in Figure 6.3. The first eight 

frequencies and mode shapes were then extracted using the rational fraction polynomial 

method (Formenti and Richardson, 2002). 

 

Three cuts were then introduced to the frame at different locations in sequence. 

Specifically, Cut 1 was located at the clamped end, that is, element No.1. Cuts 2 and 3 

were introduced to the beam-column joint and the middle of the bottom column, that is, 

elements No. 126 and No. 12, respectively. Three cuts had the same length of 20 mm 

and different depths of 10 mm, 15 mm and 15 mm. Considering that the cuts have 

identical length as the element, the damage severity is estimated to be the reduction in 
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the moment of inertia of the cross-section. Hence, the SRFs of elements No. 1, 126 and 

12 are 40%, 60% and 60%, respectively, that is, 𝜃1 = −40%, 𝜃126 = −60% and 𝜃12 =

−60%. The damage locations and severities in the three DSs are summarized in Table 

6.1. 

 

Figure 6.3 Damage locations and sensor arrangements 

 

Table 6.1 Damage locations and severities in three DSs 

Damage 

Scenario 

Cut  

No. 

Element 

No. 

Cut depth 

(mm) 

Damaged 

component 
SRF (𝜽) 

DS1 Cut 1 1 10 Column 𝜃1 = −40% 

DS2 
Cut 1 

Cut 2 

1 

126 

10 

15 

Column 

Beam 

𝜃1 = −40% 

𝜃126 = −60% 

DS3 

Cut 1 1 10 Column 𝜃1 = −40% 

Cut 2 

Cut 3 

126 

12 

15 

15 

Beam 

Column 

𝜃126 = −60% 

𝜃12 = −60% 

 

The hammer test was similarly conducted in each DS to obtain the first eight modal 

frequencies and mode shapes, as compared in Table 6.2. The sixth mode was observed 

1
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to be very close to the seventh mode, which may be due to modal identification errors. 

In this connection, these two modes were not used. Only the first five and eighth modes 

were used in the subsequent damage identification. 

 

Table 6.2 Modal data of the frame in undamaged state and three DSs (units: Hz) 

Mode  Undamaged 
DS1   DS2  DS3 

Freq. (HZ)  MAC  Freq. (HZ) MAC  Freq. (HZ) MAC 

1 6.27 6.19(−1.39) 0.99  6.17(−1.60) 0.91  6.16(−1.78) 0.96 

2 20.64 20.45(−0.92) 0.99  20.16(−2.33) 0.99  20.17(−2.28) 0.87 

3 44.35 44.17(−0.40) 0.98  43.89(−1.03) 0.96  43.94(−0.90) 0.93 

4 62.63 62.41(−0.36) 0.99  61.69(−1.51) 0.99  61.40(−1.96) 0.98 

5 71.29 70.62(−0.93) 0.97  69.98(−1.84) 0.97  69.60(−2.37) 0.95 

8 106.52 105.6(−0.90) 0.94  105.1(−1.32) 0.91  104.2(−2.21) 0.88 

Average (%)     (−0.82) 0.98  (−1.61) 0.96     (−1.92) 0.93 

Note. (1) Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

   (2) MAC refers to the Modal Assurance Criterion of the mode shapes in the damaged and undamaged states 

 

6.4.2 Damage Identification  

 

The proposed VBI-DRAM algorithm requires initializing the parameters first. As 

previously mentioned, the global optimum upon convergence is not ensured in the VBI, 

thereby different initializations of parameters are recommended. Nevertheless, the 

DRAM algorithm is a global technique which compensates for the limitation of VBI. 

Specifically, the DRAM algorithm generates samples from the entire sampling space 

and is applicable to both standard and non-standard distributions. Therefore, 𝜽MAP 

computed on the basis of the samples generated by the DRAM algorithm is supposed to 

be the global maximum of the posterior PDF theoretically (more rigorously, near the 

global maximum due to the randomness of the samples). As defined, parameters 𝜷 and 

𝜸 are associated with the uncertainties of the measured modal parameters. Therefore, 𝜷 

and 𝜸 are supposed to converge to determined values under different initializations, 

which will be investigated later. The uncertainty levels of the damage index, frequency 

and mode shape are initially assumed to be 10%, 1% and 5%, respectively. All entries 

in one vector are initialized identically, that is, 𝛼𝑖
(0)

=1/(10%)2 =100 (i =1, 2,…, 150), 
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𝛽𝑟
(0)

=1/(1%)2 =1×104 (r =1, 2,…, 5, 6), and 𝛾𝑟
(0)=1/(5%)2 =400 (r =1, 2,…, 5, 6). 𝜽MAP 

is initialised to 𝟎, that is, 𝜽MAP
(0) = 𝟎. 

 

�̅�  is firstly calculated by substituting the initialized parameters to Eq. (6.14). The 

DARM algorithm is then applied to sample 𝜽 according to the target PDF in Eq. (6.31). 

The initial sample 𝜽(1) and mean 𝜇 of the proposed PDF are set to �̅�, that is, 𝜽(1) = 𝜇 =

�̅� . The covariance matrix 𝐶  in Step 1 is initialized to a diagonal matrix with the 

diagonal entry of 0.05, which will be adjusted in Step 8 as the sampling process 

proceeds. The bound 𝑁𝑡 is set to 100. 𝜀 is set to 10−5 to ensure the semi-definiteness of 

the covariance matrix. The number of samples to be generated is set to 5000, that is, 

𝑛𝑠 = 5000 . 𝜽MAP and three expectations 𝐸(𝜃𝑖
2) , 𝐸 ([

λ̂𝑟−𝜆𝑟(𝜽)

λ̂𝑟
]

2

) and 𝐸 (‖�̂�𝑟 −

𝝓𝑟(𝜽)‖
2

2
) are then calculated on the basis of the generated samples. According to Eqs. 

(6.27)–(6.29), parameters {𝜶, 𝜷, 𝜸} are then updated. The recursive procedures are then 

repeated until the convergence criterion is met, that is, Tol ≤0.02. Upon convergence, 

the damage index and parameters are valued as 𝜽 = 𝜽MAP , 𝛼𝑖 = 𝐸(𝛼𝑖), 𝛽𝑟 =

𝐸(𝛽𝑟) and 𝛾𝑟 = 𝐸(𝛾𝑟). 

 

DS1. In DS1, the actual damage is 𝜃1 = −40%. In the first iteration step, 5,000 samples 

of 𝜽 are generated by the DRAM algorithm, and the probability histograms are plotted 

in Figure 6.4. Due to the space limitation, only the samples of 𝜃1 (the damaged element) 

and 𝜃50 (the undamaged element) are presented here. As observed in Figures 6.4(a) and 

6.4(b), the burn-in period in the sampling process is very short, and the samples quickly 

converge to the region nearby the actual damage severity. The may be because the mean 

of the proposed PDF and the initial sample in the sampling process are set to �̅�, which is 

computed by minimizing the objective function in Eq. (6.14), thus the effective 

sampling is accelerated. The corresponding probability histograms and fitted PDF 

curves are plotted in Figures 6.4(c) and 6.4(d), respectively. The posterior PDFs of the 

damage indices are found to be non-standard distributions. 
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(a) Samples of 𝜃1 (b) Samples of 𝜃50 

  

(c) Posterior PDF of 𝜃1 (d) Posterior PDF of 𝜃50 

Figure 6.4 Samples and posterior PDFs in the first iteration (DS1) 

 

As the iteration proceeds, the damage detection results are shown in Figure 6.5. For 

brevity, only the results in the first two and last two iterations are presented. A few 

elements are mistakenly identified as damaged in the beginning, as shown in Figure 

6.5(a). The convergence is attained after five iterations. The final damage detection 

results are shown in Figure 6.5(d). The damage is accurately identified with no false 

identification. The samples of 𝜃1 and 𝜃50 and their probability distributions in the final 

iteration are plotted in Figure 6.6. Again the posterior PDFs are not standard Gaussian 

distributions. 
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(a) Iteration No. 1 (b) Iteration No. 2 

  

(c) Iteration No. 4 (d) Iteration No. 5 

Figure 6.5 Damage identification results in DS1 

 

  

(a) Samples of 𝜃1 (b) Samples of 𝜃50 
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(c) Posterior PDF of 𝜃1 (d) Posterior PDF of 𝜃50 

Figure 6.6 Samples and posterior PDFs in the final iteration (DS1) 

 

DS2. The actual damage in DS2 are 𝜃1 = −40% and 𝜃126 = −60% . The proposed 

VBI-DRAM algorithm is similarly applied to the data in DS2. The samples and 

probability distributions are not presented here for brevity. The damage detection results 

during the iteration process are plotted in Figure 6.7. The converge is achieved after six 

iterations. Notably, element No. 50 is falsely identified as damaged in the second 

iteration. The reason may be that the element is located at the top of the left column and 

is adjacent to the damage element No. 126. This error disappears upon convergence. 

The two damages are accurately identified with no false identification, as shown in 

Figure 6.7 (d). 

 

  

(a) Iteration No. 1 (b) Iteration No. 2 
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(c) Iteration No. 5 (d) Iteration No. 6 

Figure 6.7 Damage identification results in DS2 

 

DS3. Three damages exist in DS3, that is, 𝜃1 = −40% , 𝜃126 = −60%  and 𝜃12 =

−60%. The damage identification results in each iteration are presented in Figure 6.8. 

The identification results converge after seven iterations. Three damage locations are 

correctly identified, and the damage severities are accurately identified, as depicted in 

Figure 6.8(d). Figure 6.9 shows the samples of 𝜃1  and 𝜃50  in the fourth iteration. 

Although the initial sample �̅� deviates far from the global minimum of the objective 

function in Figure 6.9 (a), the samples converge to the equilibrium distribution after a 

short burn-in period. The DRAM sampling technique is efficient in the high-

dimensional problem. 

 

  

(a) Iteration No. 1 (b) Iteration No. 2 
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(c) Iteration No. 6 (d) Iteration No. 7 

Figure 6.8 Damage identification results in DS3 

 

  

(a) Samples of 𝜃12 (b) Samples of 𝜃50 

Figure 6.9 Samples in the fourth iteration (DS3) 

 

6.4.3 Variations of Parameters 

 

The parameters also change as the iteration process progresses. Figure 6.10 shows the 

variations of {𝜶, 𝜷, 𝜸}  in DS1. Particularly, although all 𝛼𝑖  (i = 1, 2, …, 150) are 

initialized with the identical value, 𝛼1 converges to a small value close to 1, whereas the 

remaining 𝛼𝑖  (i =2, 3, …, 150) increase significantly, enforcing the corresponding 

damage indices of the undamaged elements to zero in Eq. (5.14) and resulting in a 

sparse SRF result. The variations of parameters 𝛽𝑟 and 𝛾𝑟 in DS1 are plotted in Figures 

Burn-in period 
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6.9(b) and 6.9(c). These parameters are different, reflecting the different uncertainties of 

each mode.  

  

(a) 𝛼 (b) 𝛽 

 
(c) 𝛾 

Figure 6.10 Variation of parameters in DS1 during the iteration process 

 

In addition, the performance of the proposed VBI-DRAM algorithm with different 

initializations is also investigated. Two extra groups of initializations are assigned to the 

parameters in DS1, that is, β(0) = 1/(2%)2 = 2.5×103, γ(0) = 1/(10%)2 = 100 and β(0) = 

1/(0.5%)2 = 4×104, γ(0) = 1/(2.5%)2 = 1600. The iterative values of 𝛽1, 𝛽6, 𝛾1 and 𝛾6 

under different initializations are compared in Figure 6.11. The results indicate that the 

parameters converge to the identical values even being initialized differently. 

Specifically, β1
 = 2.8×104, β6 = 5.2×103, γ1 = 2.5×103 and γ6 = 2.9×102. In 

corresponding, the uncertainties of the first and eighth eigenvalues are 0.6% and 1.4%, 

respectively, and those of modal shapes are 2.0% and 5.9%, respectively. 
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(a) 𝛽1  (b) 𝛽6  

  
(c) 𝛾1 (d) 𝛾6 

Figure 6.11 Parameters with different initializations 

 

6.5 Comparison with EM and Laplace Approximation Techniques 

 

A SBL method based on the EM technique is proposed by Hou et al. (2019) where the 

evidence is maximized through expectation and maximization steps. In short, in the E 

step the expectation of the logarithm of the complete-data likelihood function is solved 

as 

𝐸{ln 𝑝 (𝜽, �̂�, �̂�|𝛏)} 

=
𝑁𝑚

2
ln (

𝛽

2𝜋
) −

𝛽

2
𝐸 {∑ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

} +
𝑁𝑝 ∙ 𝑁𝑚

2
ln (

𝛾

2𝜋
) 

(6.33) 
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−
 𝛾

2
𝐸 {∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2

𝑁𝑚

𝑟=1

} +
𝑛

2
ln (

1

2𝜋
) +

1

2
∑ ln 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝐸(𝜃𝑖

2)

𝑛

𝑖=1

 

In the M step, Eq. (6.33) is maximized with respect to 𝜶, 𝛽, and 𝛾 . By setting the 

derivative of Eq. (6.33) with respect to each parameter to zero, one has 

𝜕𝐸{ln 𝑝 (𝜽, 𝛏|�̂�, �̂�)}

𝜕𝛼𝑖
=

1

2𝛼𝑖
−

1

2
𝐸(𝜃𝑖

2) = 0 (6.34) 

𝜕𝐸{ln 𝑝 (𝜽, 𝛏|�̂�, �̂�)}

𝜕𝛽
=

𝑁𝑚

2

1

𝛽
−

1

2
 𝐸 {∑ [

λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2𝑁𝑚

𝑟=1

} = 0 (6.35) 

𝜕𝐸{ln 𝑝 (𝜽, 𝛏|�̂�, �̂�)}

𝜕𝛾
=

𝑁𝑝 ∙ 𝑁𝑚

2

1

𝛾
−

1

2
𝐸 {∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖

2

2

𝑁𝑚

𝑟=1

} = 0 (6.36) 

The MPV of each parameter is then solved as 

𝛼𝑖 =
1

𝐸(𝜃𝑖
2)

 (6.37) 

𝛽 =
𝑁𝑚

𝐸 {∑ [
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

]

2
𝑁𝑚
𝑟=1 }

 
(6.38) 

𝛾 =
𝑁𝑝 ∙ 𝑁𝑚

𝐸 {∑ ‖�̂�𝑟 − 𝝓𝑟(𝜽)‖
2𝑁𝑚

𝑟=1 }
 (6.39) 

The damage index θ is similarly calculated by minimizing the objective function Eq. 

(5.14). Since the expectations in Eqs. (6.37)–(6.39) cannot be calculated directly, Hou et 

al. (2020) proposed to use the likelihood numerical sampling technique. 

 

The performances of the Laplace approximation method in Chapter 5, the VBI-DRAM 

algorithm in this chapter, and the EM algorithm in Hou et al. (2019) are compared by 

applying them to a numerical beam and the experimental frame in Section 5.4. 
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6.5.1 Numerical Example 

A numerical cantilever beam in Figure 6.12 is first utilized for comparison. The mass 

density and Young’s modulus are 7.67×10
3
 kg/m3  and 7.0×10

10
 N/m2, respectively. 

The beam is modeled with 45 equal Euler–Bernoulli beam elements (i.e., n=45), 20-mm 

long each. Damage is simulated by the reduction of the bending stiffness while mass 

remains unchanged. Element 1 at the clamped end and Element 23 at the mid-span are 

damaged by 50% (i.e., 𝜃1 = 𝜃23 = −0.5). The first six natural frequencies are used for 

damage identification. Table 6.3 lists the frequencies in the undamaged and damaged 

conditions. A noise level of 1% is assigned to the frequencies. 

 

Figure 6.12 Geometric configuration of the beam structure (unit: mm) 

 

Table 6.3 Frequencies of the beam in the undamaged and damaged states 

Mode no. 
Undamaged Damaged Change ratio 

(%) Freq. (Hz) Freq. (Hz) 

1     6.02     5.75 −4.56 

2    37.75    35.67 −5.50 

3   105.73   102.44 −3.11 

4   207.25   197.69 −4.61 

5   342.70   333.96 −2.55 

6   512.07   492.45 −3.83 

Average of frequency change (%) −4.03 
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Damage index and hyper-parameters should be initialized first. The initializations are 

the same, that is,  𝛽(0)=1/(1%)
2
=1×10

4
and 𝛼𝑖

(0)
= 1 (10%)2⁄ = 100 (𝑖 = 1, 2, … , 45). 

Initial damage indexes are set as 𝜽(0) = {0, … ,0}𝑇, indicating a lack of damage. Given 

that only frequencies are used for model updating, the items associated with mode 

shapes in the objective function Eq. (5.14) are dropped. The convergence criterion is set 

as 𝑇𝑜𝑙 =  0.01. The damage identification results of three methods are plotted in Figure 

6.13.  

 

   

(a) Laplace approximation (b) VBI-DRAM algorithm (c) EM algorithm 

Figure 6.13 Damage identification results of the beam 

 

The identification errors of Laplace approximation, VBI-DRAM algorithm and EM 

algorithm are calculated to be 0.45%, 0.42% and 0.41% according to Eq. (5.31), 

respectively. The corresponding computation times are 116 s, 319 s and 5082 s, 

respectively, which are obtained using a PC with Intel Core I7-8700 CPU and 20 GB 

RAM. Laplace approximation costs the least computational time since no sampling is 

required. The VBI-DRAM algorithm that conducts the posterior sampling is efficient 

than the EM technique that conducts the likelihood sampling.  

 

6.5.2 Experimental Study 

 

The three-story steel frame in Section 5.4 is employed here as the experimental study. 

The frame is modeled by 225 Euler-Bernoulli beam elements as described in Section 
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5.4. The damage identification results of three models are plotted in Figure 6.14. 

 

(a) Laplace approximation 

 

(b) VBI-DRAM algorithm 

 

(c) EM algorithm 

Figure 6.14 Damage identification results of the three-story frame 

 

The identification errors of the Laplace approximation, VBI-DRAM and EM algorithm 

are 1.29%, 1.73% and 1.71%, respectively. The corresponding computation times are 

246 mins, 73 min and 657 mins, respectively. The three techniques have good accuracy 

even though damage identification errors increase compared with those in the numerical 

example. The possible reason is that the number of unknowns in the experimental 
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example is substantially larger than that in the numerical one. Similarly, the EM 

technique requires the most computational time. However, the VBI-DRAM algorithm is 

more efficient than the Laplace approximation for this case (n=225) because the 

calculation of the large-scale Hessian matrix in high-dimensional problem is extremely 

time-consuming. 

 

In summary, both the numerical and experimental examples show that the damage 

detection results using the three techniques are accurate. The EM technique is the least 

efficient. Laplace approximation is markedly efficient for low-dimensional problems 

because no sampling is required. The VBI-DRAM algorithm is substantially efficient in 

dealing with high-dimensional problems. Therefore, the VBI-DRAM algorithm is 

recommended for large-scale structures with thousands of elements, in which case 

substructuring methods may be combined.  

 

6.6 Summary 

 

This chapter proposes an improved Bayesian method for structural damage detection 

based on the combination of VBI and DRAM algorithms. The posterior PDFs of the 

damage index and parameters are derived, and a full Bayesian treatment of all posterior 

uncertainties is conducted. The damage index and parameters are iteratively solved. 

 

The proposed VBI-DRAM method was applied to a laboratory-tested frame. The results 

demonstrate that the damage location and severity can be accurately detected. The 

uncertainty of each mode is different, verifying the independence of each mode 

assumed in this study. The proposed method has the advantages of high accuracy and 

wide applicability for structural damage detection. The proposed method is applicable to 

standard and nonstandard probability distributions. Besides, the VBI-DRAM algorithm 

is more efficient for high-dimensional problems as compared with the Laplace 

approximation technique. 
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CHAPTER 7   
 

KNOWLEDGE TRANSFER FOR STRUCTURAL 

DAMAGE IDENTIFICATION THROUGH RE-WEIGHTED 

ADVERSARIAL DOMAIN ADAPTATION 
 

 

 

7.1 Introduction 

 

The damage identification methods developed in Chapters 5 and 6 are based on modal 

parameters, which requires pre-processing the time-domain data and extracting the 

modal properties. This chapter explores DL-based damage identification techniques 

using the time series data directly. As summarized in Chapter 2, despite DL methods 

have been developed extensively, data-driven DL-based structural damage identification 

is far from mature, particularly in damage localization and quantification tasks, which 

belong to supervised learning. The major challenge is the lack of labels in the 

measurement data of practical structures, as the structural condition is unknown in 

advance. A few researchers used the FE model of a real structure to simulate labeled 

damage data, which could comprise all possible DSs for DL network training. However, 

the FE model may inevitably suffer from modeling errors. The discrepancy between the 

FE model and the real structure may lead to performance degradation when the AI 

model trained on the FE model is applied to the real structure. Another challenge is that 

the well-trained DL network only performs well on the structure where the training data 

arise from. When the network is applied to the other structure, the performance 

degrades significantly. Thus, the network should be re-trained from scratch by re-

collecting labeled damage data, which is expensive and infeasible in SHM.  

 

The reason behind the performance degradation is that the datasets from different 

datasets have varied distributions in feature spaces. To mitigate the dependency on 
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labeled data, transfer learning has been developed for learning in an unlabeled or few-

labeled target domain with the help of a source domain where abundant labeled data are 

available. DA, as a subcategory of unsupervised transfer learning, explores the 

knowledge transfer from labeled source domain to unlabeled target domain for label 

prediction. Section 2.4.2.2 summarizes the DA-based structural damage detection 

method that have been developed.  

 

Despite the progress, two major challenges exist in the application of DA to structural 

damage identification. First, the common DA assumes that the source and target 

domains share an identical label space, that is, the label categories are the same. 

However, damage in the practical structure is a rare and irreversible event, which 

generally occurs at limited positions. Consequently, the DSs of a real structure are 

always limited and may be one or a small subset of the source label space that 

comprises all possible DSs. This label space inconsistency may lead to a negative 

transfer in DA (Cao et al., 2018). Second, the generator in the adversarial DA merely 

focuses on extracting features that could fool the domain discriminator while neglects 

the task-specific classifier boundaries between classes in the target domain (Saito et al., 

2018). Hence, features generated near the classifier boundaries may be ambiguous and 

further deteriorating the classification accuracy. 

 

This chapter develops an RADA method that considers the label space inconsistency 

and classifier boundaries. A re-weighting mechanism is introduced to down-weigh the 

importance of irrelevant source DSs in the DA and promote the positive transfer by 

matching the feature distributions in the shared label space.  

 

7.2 Preliminary Knowledge 

 

The definitions and basic operations about CNN, DenseNet, and DA are briefly 

introduced.  
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7.2.1 CNN Architecture 

 

CNN, as the state-of-the-art DL technique, has the features of the receptive field, weight 

sharing, and spatial down-sampling (Krizhevsky et al., 2012). The basic operations in 

CNN consist of convolution, nonlinear activation, pooling, fully-connection, and 

decision-making. Besides, some techniques are particularly proposed to facilitate the 

network training, such as dropout (DP) (Srivastava et al., 2014) and batch normalization 

(BN) (Ioffe and Szegedy, 2015). 

 

Conv-ReLU-Pooling module. The convolutional layer is the core of a CNN. The 

convolutional kernel slides across the height and weight of the input in the two-

dimensional CNN, calculating the dot product between the kernel parameters and 

kernel-sized region over the feature map. In the one-dimensional CNN, the kernel slides 

across the width of the input whereas extends through the height and channel. The 

kernel size affects the width and height of the output feature map, and the number of 

kernels decides the channels of the output. After the convolution operation, the features 

are further processed by the nonlinear activation functions for nonlinear transformation. 

The representative nonlinear activation functions include the hyperbolic tangent 

function, sigmoid function, and rectified linear units (ReLU) (Nair and Hinton, 2010) 

activation function. Among them, the ReLU is most widely used as it mitigates the risk 

of gradient vanishing in the DL network training. After the nonlinear transformation, 

the features pass through the pooling layer, which can be regarded as a special 

convolutional layer. Different from the common convolution operations whose results 

are related to the kernel parameters, the pooling layer has no kernel parameters. Thus 

the pooling operations are deterministic when the size is chosen. The pooling layer 

serves a dual purpose of spatially down-sampling features maps and improving the 

robustness of the extracted features. The average and max pooling are two 

representative pooling techniques, which compute the average and maximum of the 

non-overlapping fixed-shape region, respectively. The Conv-ReLU-Pooling is a crucial 

module of a CNN. 
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Fully-connection and decision module. The fully-connected layers are generally 

placed after multiple Conv-ReLU-pooling modules, forming the last few layers of a 

CNN. The fully-connected operation is the same as that of a traditional multilayer 

perceptron. For the classification task, the softmax function that computes the 

probabilities of the output belonging to each category is usually utilized for decision-

making. 

 

DP and BN. DP (Srivastava et al., 2014) is a regularization technique that alleviates the 

overfitting problems in the DL network training. Neurons are randomly and temporarily 

dropped with the pre-designed probability to prevent the network from co-adapting too 

much. BN (Ioffe and Szegedy, 2015) is generally placed after the convolutional layer 

and before the nonlinear activation operation. A simple CNN architecture designed for 

the classification task is depicted in Figure 7.1. 

 

Figure 7.1 Architecture of a simple CNN for classification task 

 

7.2.2 DenseNet Architecture 

 

The densely connected convolutional network (DenseNet) proposed by Huang et al. 

(2015) is a special CNN, in which the convolutional layers are connected in a special 

skipping manner, enhancing the information flow between layers. The basic operations 

and components of a DenseNet are introduced as follows.  
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Dense block (DB). A DB is composed of multiple convolutional layers with the 

identical size of feature maps. Each convolutional layer connects to other layers in a 

feed-forward pattern and receives features from all preceding layers. Hence, the feature 

maps of all layers with one DB should maintain the same size for feature concatenation, 

and no pooling layer that conducts the down-sampling is involved in one DB. As 

compared with traditional DL networks that pass the information flow from layer to 

layer, the dense connection alleviates the gradient vanishing problem and strengthens 

the features of feed-forward and back-propagation. 

 

Transition layer (TL). Down-sampling is crucial in reducing the size of feature maps 

for feature extraction. However, the convolutional layers within one DB are required to 

maintain the same size of feature maps. In this connection, the entire DenseNet is 

divided into several DBs, and the adjacent two are connected by the transition layer, 

which typically conducts the pooling operation for feature down-sampling. 

 

Growth rate. Supposed that each convolutional layer produces k feature maps, then the 

lth layer in one DB receives 𝑘0 + (𝑙 − 1) × 𝑘 feature maps and outputs k feature maps, 

where 𝑘0 denotes the channels (number of feature maps) of the input to one DB, and k 

is the growth rate. If a DB has n convolutional layers, then the TL behind it will receive 

𝑘0 + 𝑛 × 𝑘 feature maps. Figure 7.2 shows a simple DenseNet composed of two DBs 

and one TL. 

 

Figure 7.2 Architecture of a simple DenseNet 
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7.2.3 Adversarial DA 

 

Some symbols and definite about the DA are first introduced. Denote the data and labels 

in the source domain as 𝐷𝑠 = {𝑋𝑖
𝑠, 𝑌𝑖

𝑠}(𝑖 = 1, … , 𝑛𝑠) , which consists of 𝑛𝑠  labeled 

samples with 𝑁𝑠 categories. The target domain is denoted as 𝐷𝑡 = {𝑋𝑖
𝑡} (𝑖 = 1, … , 𝑛𝑡) 

that consists of 𝑛𝑡 unlabeled samples with 𝑁𝑡 classes. The data distribution of the source 

and target domains 𝑃𝑠(𝑋) ≠ 𝑃𝑡(𝑋) because of the domain dataset bias (Pan and Yang, 

2009). The target of the DA is to design a feature extractor G and classifier C to 

minimize the classification error 𝜖 = 𝔼(𝑋𝑖
𝑡,𝑌𝑖

𝑡)~𝑃𝑡(𝑋)[𝐶(𝐺(𝑋𝑡)) ≠ 𝑌𝑡]  in the target 

domain, where 𝑌𝑡 is unknown in the model training process. 

 

Ganin et al. (2015) first proposed the adversarial DA network, which consists of a 

feature generator G, a label predictor C, and a domain discriminator D, as depicted in 

Figure 7.3. All three components are composed of neural networks. The entire network 

is trained in a minimax manner. Specifically, D is trained to discriminate whether the 

features extracted by G come from the source or target domain, whereas G is trained to 

extract features that couldn’t be discriminated by D. Meanwhile, G is also trained to 

extracted source class-sensitive features that could be classified by C. Such an 

adversarial training methodology attempts to match feature distributions of both 

domains, such that the model trained on source domain generalizes well to the target 

domain. Denote the parameters in G, C and D as 𝜃𝑐 , 𝜃𝑑 , and 𝜃𝑓 , respectively. The 

adversarial DA network is trained to minimize the objective function (Ganin et al., 

2015):  

𝐽(𝜃𝑓 , 𝜃𝑐 , 𝜃𝑑) =
1

𝑛𝑠
∑ L𝑦(G𝑦(G𝑓(𝑥𝑖)), 𝑦𝑖)

𝑥𝑖𝜖𝑋𝑠

−
𝜆

𝑛𝑠 + 𝑛𝑡
∑ L𝑑(G𝑑(G𝑓(𝑥i)), 𝑑𝑖)

𝑥𝑖𝜖𝑋𝑠∪𝑋𝑡

 

 (7.1) 

where 𝑑𝑖 denotes the domain labels of 𝑥𝑖, that is, 𝑑𝑖 = 0 when 𝑥𝑖 comes from the source 

domain and 𝑑𝑖 = 1 otherwise; L𝑦 is the loss of label prediction of the source domain; L𝑑 
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is the loss of domain discrimination; and 𝜆 is a trade-off parameter between two losses 

that changes from 0 to 1 incrementally as the training process proceeds (Ganin et al., 

2015). The parameters 𝜃𝑐 , 𝜃𝑑 , and 𝜃𝑓  are trained in a two-player minimax manner. 

Specifically, G is trained to maximize L𝑑 , and D is trained to minimize L𝑑 . 

Mathematically, the parameters are optimized as: 

(𝜃𝑓 , 𝜃𝑐) = argmin
𝜃𝑓,𝜃𝑐

 𝐽(𝜃𝑓 , 𝜃𝑐 , 𝜃𝑑) (7.2) 

(𝜃𝑑) = argmax
𝜃𝑑

 𝐽(𝜃𝑓 , 𝜃𝑐 , 𝜃𝑑) (7.3) 

 

 

Figure 7.3 Domain adversarial training of neural network 

 

However, the basic domain-adversarial DA network suffers from limitations. First, the 

above training methodology merely aims to extract domain-invariant and class-

discriminative features while neglects the classifier boundaries (Saito et al., 2018). As a 

result, the extracted features may be ambiguous near the classifier boundary, as shown 

in Figure 7.4, deteriorating the classification accuracy on the target domain. Second, the 

source and target domains are assumed to have an identical label space. This assumption 

does not hold in structural damage identification because the DSs (labels) in the target 
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domain are always less than those in the source domain that comprise all possible DSs. 

This label space inconsistency may cause negative transfer due to the significant 

mismatch between the label sets (Cao et al., 2018), as depicted in Figure 7.5. 

 

Figure 7.4 Ambiguous features near classifier boundary 

 

 

Figure 7.5 Classifier inconsistency 

 

7.3 RADA Network for Damage Detection 

 

This study develops an RADA network that maximizes the classifier discrepancy and 

considers the label space inconsistency. The method is inspired by the study of Saito et 

al. (2018), where a network with two task-specific classifiers was designed to maximize 

the classifier discrepancy. The training process of their study is illustrated in Figure 7.6, 

where red lines represent classifier boundaries. The discrepancy between the two 

classifiers was measured. The generator and two classifiers were trained in an 

adversarial manner. Specifically, the two classifiers attempted to maximize the 

discrepancy based on the extracted features, while the generator was trained to extract 

features from the target domain that minimize the discrepancy. Such an adversarial 

training methodology avoids generating ambiguous features outside the support of the 

source classifier boundary (Saito et al., 2018), thus instructs the network to learn class-

separate and domain-invariant features. However, the source and target domains are 
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assumed to have identical label spaces (Saito et al., 2018), which is inconsistent with the 

present damage identification problem, as explained previously. This study will 

improve the network for the problem with inconsistent label spaces. The main idea is to 

identify the label space shared by both domains, and then adapt the features from both 

domains in the consistent label spaces for knowledge transfer, as depicted in Figure 7.7. 

 

Figure 7.6 DA method proposed by Saito et al. (2018) 

 

 

Figure 7.7 Proposed RADA method 

 

7.3.1 RADA Network Architecture 

 

The architecture of the proposed RADA network (Figure 7.8) consists of a generator G 

and two classifiers 𝐶1  and 𝐶2 . The specific connection patterns between layers are 

introduced as follows. 
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Generator G adopts the architecture of DenseNet with three DBs and two TLs. Each DB 

has three convolutional layers. The growth rate of the three DBs is 32, 64 and 126. 

Three consecutive operations are carried out in each convolutional layer of one DB, that 

is, BN, ReLU, and conv operation. The size of the convolutional kernel is set to 7 × 1 

with a stride of 1. The zero-padding strategy is adopted to ensure the unchanged size of 

feature maps after the conv operation. Two TLs are designed with a down-sampling rate 

of 0.5. Similar to Huang et al. (2017), a convolutional layer is designed before the first 

DB for data pre-processing. 

 

𝐶1 and 𝐶2 consist of two fully-connected layers. The DP with a rate of 0.5 is introduced 

to alleviate overfitting. Notably, the global average pooling (GAP) (Lin et al., 2013) is 

applied before the features extracted by G enters the classifier. The advantage of GAP 

lies in that the average of each feature map is directly calculated without defining any 

parameters. In addition, the size of the feature map after the GAP operation changes to 

1. Thus the input size to the classifier is related to the channels only, and not to the input 

size. The network gets rid of re-designing parameters when the input size changes. We 

suppose that the size of data samples is 1000 × 1 and the output size is m × 1. Table 1 

lists the detailed configuration of each layer. The input shape to 𝐶1 and 𝐶2 depends on 

the channels only and is not related to the size of data samples.  

 

Figure 7.8 Architecture of the proposed RADA network 
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Table 7.1 Configuration of the network (input size 1000×1 and output size m×1) 

Type Layer 
Kernel 

size 

Kernel 

number 
Stride 

Pad- 

ding 

Input 

size 

Output 

size 
BN DP 

Conv  
Conv1D 

Max-Pooling 

5 

3 

64 

None 

2 

2 

2 

1 

1000×1 

64-[500×1] 

64-[500×1] 

64-[250×1] 

YES 

NO 

NO 

NO 

DB1 

Conv1D 7 32 1 3 64-[250×1] 32-[250×1] YES NO 

Conv1D 7 32 1 3 96-[250×1] 32-[250×1] YES NO 

Conv1D 7 32 1 3 128-[250×1] 32-[250×1] YES NO 

TL1 
Conv1D 1 80 1 0 160-[250×1] 80-[250×1] YES NO 

Max-Pooling 2 None 2 0 80-[250×1] 80-[125×1] NO NO 

DB2 

Conv1D 7 64 1 3 80-[125×1] 64-[125×1] YES NO 

Conv1D 7 64 1 3 144-[125×1] 64-[125×1] YES NO 

Conv1D 7 64 1 3 208-[125×1] 64-[125×1] YES NO 

TL2 
Conv1D 1 136 1 0 272-[125×1] 136-[125×1] YES NO 

Max-Pooling 2 None 2 0 136-[125×1] 136-[62×1] NO NO 

DB3 

Conv1D 7 126 1 3 136-[62×1] 126-[62×1] YES NO 

Conv1D 7 126 1 3 262-[62×1] 126-[62×1] YES NO 

Conv1D 7 126 1 3 388-[62×1] 126-[62×1] YES NO 

GAP None None None None 514-[62×1] 514×1 NO NO 

𝐶1/

𝐶2 

Fully-connected None None None None 514×1 256×1 YES 0.5 

Fully-connected None None None None 256×1 m×1 NO NO 

Softmax None None None None m×1 m×1 NO NO 

 

7.3.2 Loss Function 

 

Two kinds of loss functions are used. The first one is the categorical cross-entropy 

function, which calculates the classification error of the source data: 

𝐿(𝑋𝑆, 𝑌𝑆) = −𝔼(𝑥𝑠,𝑦𝑠)~(𝑋𝑠,𝑌𝑠) ∑ 1[𝑘=𝑦𝑠]

𝐾

𝑘=1

log 𝑝(𝑦|𝑥𝑠) (7.4) 

where 1[𝑘=𝑦𝑠] equals 1 if 𝑘 = 𝑦𝑠 and 0 otherwise; 𝐾 denotes the number of categories 
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(𝐾 = 𝑁𝑠  in the source domain); and 𝑝(𝑦|𝑥𝑠) is the probability of the source data 𝑥𝑠 

belonging to each category, which is estimated by the softmax function. 

 

The second loss function used is the discrepancy loss between the two classifiers. With 

the ith input, the discrepancy between the probabilistic outputs of the two classifiers is 

defined as (Saito et al., 2018): 

𝑑(𝑝1(𝑦|𝑥𝑖), 𝑝2(𝑦|𝑥𝑖)) = ‖𝑝1(𝑦|𝑥𝑖) − 𝑝2(𝑦|𝑥𝑖)‖1 =
1

𝐾
∑‖𝑝1𝑘 − 𝑝2𝑘‖1

𝐾

𝑘=1

 (7.5) 

where 𝑝1(𝑦|𝑥𝑖) and 𝑝2(𝑦|𝑥𝑖) denote the softmax output of 𝐶1 and 𝐶2, respectively; and 

𝑝1𝑘 and 𝑝2𝑘  represent the probabilistic outputs for class k of the two classifiers. The 

discrepancy loss of the entire target dataset is defined as the average of all samples’ 

discrepancies, that is: 

𝐿𝑎𝑑𝑣 = 𝔼(𝑥𝑡)~(X𝑡)𝑑(𝑝1(𝑦|𝑥𝑡), 𝑝2(𝑦|𝑥𝑡)) =
1

𝑛𝑡
∑ 𝑑(𝑝1(𝑦|𝑥𝑖), 𝑝2(𝑦|𝑥𝑖))

𝑛𝑡

𝑖=1

 (7.6) 

 

7.3.3 Network Training 

 

Denote the parameters in networks G, 𝐶1 , and 𝐶2  as 𝜃𝑓 , 𝜃𝑐1
, and 𝜃𝑐2

, respectively. 

Although two classifiers have identical architecture, their parameters are initialized 

differently to result in different classifier boundaries and generate a classification 

discrepancy from the beginning of the training. The entire training process of the 

RADA network consists of four steps. 

 

Step A: Categorize the source data. In the first step, the entire network, including G, 

𝐶1, and 𝐶2, is trained using the labeled source data to classify the categories. As shown 

in Figure 7.9, all parameters 𝜃𝑓, 𝜃𝑐1
, and 𝜃𝑐2

 are updated to minimize the loss function:  

min
𝜃𝑓, 𝜃𝑐1 , 𝜃𝑐2

𝐿𝑦 = 𝐿𝑠𝑟𝑐 = 𝐿1(𝑋𝑆, 𝑌𝑆) + 𝐿2(𝑋𝑆, 𝑌𝑆) (7.7) 
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where 𝐿𝑠𝑟𝑐 denotes the classification error of the source data, which is computed by the 

cross-entropy function in Eq. (7.4) on the basis of the outputs of 𝐶1 and 𝐶2. The Adam 

optimization algorithm (Kingma and Ba, 2014) is adopted throughout this chapter, with 

the initial learning rate of 1×10
−4

 and the weight decay of 1×10
−6

. The first step is 

crucial to evaluate the weight vector in the next step. 

 

Figure 7.9 First step in the training process 

 

Step B: Calculate the weight vector. When the source and target domains have 

inconsistent label spaces, the core is to identify the label space shared by both domains 

and lower the importance of the outlier source classes in the DA. To attain this, we 

attempt to compute a weight vector 𝐖, whose elements reveal the probability that each 

category in the source domain belongs to the label space shared by both domains. We 

take 𝐖 = [1, 0.1, 1] as an example with three categories. This vector indicates that the 

first and third categories have a high probability of belonging to the share label space, 

and the second category probably belongs to the outlier label space. Then the weight 

vector can be introduced to the cross-entropy function to decrease the importance of the 

outlier source classes in the DA. 

 

However, the challenge in estimating 𝐖  is that the labels of the target data are 

unknown. After Step A, the network can evaluate the probability of source data samples 

belonging to each category. In the process of DA, features extracted from the source and 

target domains are adapted to follow the identical distribution. Thus, when the target 

data are used as the input, the network can also predict the probability of each data 

sample in the target domain belonging to each category, although the result may be 
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inaccurate in the preliminary stage. By summarizing all target data samples and 

comparing the predicted classes with the source classes, the probability of each category 

belonging to the shared label space or outlier space. Therefore, the average of the 

outputs of all data samples in the target domain can be calculated as the weight vector: 

𝐖 =
1

2𝑛𝑡
∑[𝑝1(𝑦|𝑥𝑖

𝑡) +  𝑝2(𝑦|𝑥𝑖
𝑡)]

𝑛𝑡

𝑖=1

 (7.8) 

where 𝐖 is an 𝑁𝑠-dimensional vector, and 𝑝1(𝑦|𝑥𝑖
𝑡) and 𝑝2(𝑦|𝑥𝑖

𝑡) denote the softmax 

output of 𝐶1  and 𝐶2  corresponding to the ith target samples, respectively. Notably, 

∑ w𝑗
𝑁𝑠
𝑗 = 1  according to the properties of the softmax function. In the preliminary 

stage, 𝐖  may not be accurate. To alleviate the problem that some underestimated 

elements with trivial values may have low participation in the early stage of network 

training, 𝐖 is normalized as (Cao et al., 2018): 

𝐖 = 𝐖/max (w1, 𝑤2, … , 𝑤𝑁𝑠
) (7.9) 

All parameters of the generator and two classifiers are fixed in this step, and there is no 

model training, as presented in Fig. 10. 

 

Figure 7.10 Second step in the training process 

 

Step C: Train classifiers 𝑪𝟏 and 𝑪𝟐. In this step, two classifiers 𝐶1, and 𝐶2 are trained 

to maximize the discrepancy between their outputs, and thus, the ambiguous features 

out of source classifier boundaries (the discrepancy region in Figure 7.6) are detected. 

Saito et al. (2018) considered the classification error of the source domain in this step to 

prevent significant performance dropping. The weight vector 𝐖 calculated in Step B is 

able to evaluate the importance of each source category in DA. Thus, 𝐖 is introduced to 

instruct the DA to focus on the shared label space. The loss function used in this step is 

defined as: 
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min
𝜃𝑐1 , 𝜃𝑐2

𝐿𝑦 = 𝐿𝑤𝑠𝑟𝑐 − 𝐿𝑎𝑑𝑣 

= −𝔼(𝑥𝑠,𝑦𝑠)~(𝑋𝑠,𝑌𝑠) ∑[𝑤𝑘 1[𝑘=𝑦𝑠] log 𝑝1(𝑦|𝑥𝑠) + w𝑘 1[𝑘=𝑦𝑠] log 𝑝2(𝑦|𝑥𝑠)]

𝐾

𝑘=1

− 𝐿𝑎𝑑𝑣 

(7.10) 

where 𝐿𝑤𝑠𝑟𝑐 denotes the re-weighted classification loss of the source data. Take 𝐖 =

[1, 0, 1] as an example, only the classification errors corresponding to the first and third 

categories participate in 𝐿𝑤𝑠𝑟𝑐 . The parameters in G keep fixed, thereby the features 

extracted by G remain unchanged. Only the parameters in 𝐶1, and 𝐶2 are updated, as 

shown in Figure 7.11. 

 

Figure 7.11 Third step in the training process 

 

Step D: Train generator G. In the last step, G is trained to minimize the classifier 

discrepancy, that is, to extract features within the support of the source classifier 

boundary. The parameters in G are updated to minimize the loss function as: 

min 
𝜃𝑓

𝐿𝑦 = 𝐿𝑎𝑑𝑣 (7.11) 

Notably, the parameters in 𝐶1, and 𝐶2 are fixed, meaning that the classifier boundaries 

remain unchanged, and only the parameters in G are updated, as depicted in Figure 7.12.  
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Figure 7.12 Fourth step in the training step 

 

These four steps are iterated to extract the classifier-discriminate and domain-invariant 

features for the classification task of the unlabeled target data. In this study, G is deep 

with many layers as listed in Section 7.3, so G may be more difficult to be trained than 

𝐶1 and 𝐶2. In this regard, Step D is designed to repeat four times for each mini-batch 

before proceeding to the next step. 

 

7.3.4 Summary of the proposed RADA Method 

 

The training process is summarized below. 

Algorithm: Training of the RADA network 

Set the mini-batch size and epochs. The Adam optimization algorithm is utilized with 

the initial learning rate of 1 × 10−4 and the weight decay of 1 × 10−6. 

1. For i = 1 to No. of epochs (i.e., 200): 

2.   For j = 1 to No. of batches ( = No. of data samples /batch size) 

3.       Train G, 𝐶1, and 𝐶2 to classify the source data by minimizing Eq. (7.7); 

4.       Estimate the weight vector W according to Eqs. (7.8) and (7.9); 

5.       Train 𝐶1 and 𝐶2 to maximize the discrepancy by minimizing Eq. (7.10); 

6.       For k = 1 to n (i.e., n = 4) 

Train G to minimize the discrepancy in Eq. (7.11); 

End 

7.   End 

8. End  

9. Use the well-trained G, 𝐶1, and 𝐶2 for the classification of unlabeled target data. 

F
ea

tu
re

s

Ladv

Fix 

Target data
G

  Update

C2

C1



 

147 

 

7.4 Knowledge Transfer between Structures 

 

7.4.1 Knowledge Transfer between Structures with Different Sizes 

 

This subsection studies the knowledge transfer between structures of different sizes. A 

simply-supported steel beam shown in Figure 7.13 is taken as an example,. Beam A is 

assumed to have labeled damage data under all possible DSs, whereas Beams B and C 

have damage data only without any labels. The target is to transfer the DL model trained 

on Beam A to B or C for damage detection. The length of Beam A is 1 m and the cross-

section is 50 mm × 5 mm. The Young’s modulus and mass density of the steel material 

are 2.0×1011 N/m2 and 7.67×103 kg/m3, respectively. Beams B and C have the same 

material properties and cross-sections as Beam A but different lengths, i.e., 0.7 m and 

1.3 m long, respectively, as shown in Figure 7.13. The Rayleigh damping is adopted: 

𝐶 = 𝛼𝑲 + 𝛽𝑴 (7.12) 

where 𝛼 = 2𝜉𝜔𝑖𝜔𝑗 (𝜔𝑖 + 𝜔𝑗)⁄  and 𝛽 = 2𝜉 (𝜔𝑖 + 𝜔𝑗)⁄ . The first and second 

frequencies are used for damping estimation, that is, 𝜔𝑖 = 𝜔1, 𝜔𝑗 = 𝜔2 and 𝜉 is set to 

0.05. 

 

Figure 7.13 Configuration of beams with different lengths 

 

The source data are collected from Beam A. The beam is divided into 10 equal Euler-

Bernoulli beam elements. A random white Gaussian noise is applied to beam supports 
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in the vertical direction. Each excitation sample has 1,000 data points at the time step of 

5 × 10−4 s, accounting for a duration of 0.5 s. The Newmark’s method is employed to 

calculate the structural dynamic responses. The acceleration responses of Nodes 1 to 9 

in the vertical direction are collected as the input to the RADA network. The responses 

of the nine nodes with a duration of 0.5 seconds are concatenated into one-dimensional 

data. Consequently, each data sample has a size of 9,000 × 1. For comparison, the data 

samples are directly used in the two-dimensional form in Section 7.4, showing that the 

proposed RADA network can avoid re-designing parameters when the input size 

changes. In practice, the measurement noise may exist. The accelerations are 

additionally contaminated with 2% white Gaussian noise. The target data are similarly 

collected from Beam B or C. The labels of the target data are treated as unknown in the 

network training stage and are only used for estimating the accuracy of the damage 

identification results. 

 

7.4.1.1 Damage localization 

 

Damage is introduced by decreasing the elemental stiffness. The source data come from 

Beam A. Nine levels of damage are introduced to each element of Beam A in sequence 

by reducing the elemental stiffness 10%, 20%, and up to 90%. At each damage level, 40 

excitations are applied repeatedly. Hence, 360 data samples are generated for each 

damaged element and a total of 3,600 samples for all damaged scenarios. Besides, 360 

more samples are also generated in the intact state of the structure so that the intact state 

has the identical number of samples as one DS. For the damage localization task, all 

3960 samples are classified into 11 categories (10 damage locations + 1 intact 

condition) labeled by the one-hot encoding method, where only one entry is one 

whereas the rest are all zero. Thereby, the size of the RADA network output is 11×1, 

where the first entry corresponds the probability of the undamaged condition, and the 

rest ten correspond to the damage locations from the first element to the tenth. The 

target data are similarly collected from Beam B or C. Consistent and inconsistent label 

spaces between the source and target domains are designed to investigate the 

performance of the proposed network. All calculations are conducted on a desktop with 
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a CPU of Intel Core i7-8700, 48 GB RAM, and GPU acceleration of NVIDE GeForce 

RTX 2080Ti. 

 

(1)  Consistent label spaces 

 

First, consistent label spaces between the source and target domains are investigated. 

3960 target samples with 11 label categories are collected from Beam B or C. The 

network is first trained to classify the labeled source data from Beam A without DA, 

that is, only Step A in Section 3.3 is conducted whereas the rest three steps are 

neglected. The batch size and number of epochs are set to 60 and 200, respectively. The 

two classifiers 𝐶1 and 𝐶2 are trained in parallel. The training accuracies over epochs and 

final classification results are plotted in Figure 7.14.  

  

(a) Training accuracies over epochs (b) Classification results of Beam A 

Figure 7.14 Accuracies trained on source data using CNN without DA 

 

Two classifiers achieve an accuracy of 95.8% and 95.9% on the source data. However, 

when the model trained on the source data are applied to the unlabeled target data, the 

classification accuracies are 37.2% and 37.2% only for Beam B, and 15.9% and 16.1% 

for Beam C, respectively. The t-distributed stochastic neighbor embedding (t-SNE) 

technology (Van der Maaten and Hinton, 2008) is employed to visualize the features 
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extracted from the last layer of the network. Different categories are clearly separated in 

the source data but mixed in the target data, as shown in Figure 7.15. 

   

(a) Source data from Beam A (b) Target data from Beam B (c) Target data from Beam C 

Figure 7.15 Feature visualization through t-SNE using CNN without DA (0 refers to 

the undamaged state and 1–10 denote damage at elements 1–10) 

 

This performance degradation indicates that the network only performs well on the 

structure where the training data arise from. The proposed RADA is then carried out. 

Four steps in Section 7.3.3 are iterated for 200 epochs. Within one epoch, Step D is 

repeated four times. The weight vector W is initialized to an 11-dimensional vector with 

all entries being one. The variations of W in the DA process between Beams A and C 

are listed in Table 2. Upon convergence, all entries in W are larger than zero, indicating 

that the label space of the target domain is consistent with that of the source domain.  

 

Table 7.2 Variations of W in RADA with inconsistent label spaces (from Beam A to C) 

Epochs W Accuracies of 𝐶1 /𝐶2 

0 [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 15.8% / 15.7% 

1 [0.99, 1.00, 1.00, 0.97, 0.93, 0.99, 0.93, 0.98, 0.92, 0.96, 0.97] 16.1% / 15.1% 

50 [0.33, 0.47, 0.47, 1.00, 0.49, 0.31, 0.66, 0.56, 0.70, 0.49, 0.19] 34.8% / 33.4% 

100 [1.00, 0.65, 0.75, 0.13, 0.84, 0.23, 0.89, 0.87, 0.73, 0.97, 0.68] 77.3% / 76.8% 

150 [1.00, 0.71, 0.85, 0.90, 0.46, 0.81, 0.92, 0.82, 0.55, 0.77, 0.80] 80.1% / 80.2% 

200 [1.00, 0.86, 0.79, 0.96, 0.76, 0.89, 0.94, 0.81, 0.79, 0.91, 0.89] 84.9% / 85.3% 
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With the proposed RADA technique, the classification results of the unlabeled target 

data of Beam B and C are shown in Figure 7.16 and 7.17, respectively. Upon 

convergence, Beam B and C achieves approximately 89% and 85% accuracy, 

respectively, which are much more accurate than those directly using the model trained 

on the source data.  

 

 

(a) Training accuracies over epochs (b) Classification results of Beam B 

Figure 7.16 Accuracy and classification results of Beam B using RADA 

 

 
 

(c) Training accuracies over epochs (d) Classification results of Beam C 

Figure 7.17 Accuracy and classification results of Beam C using RADA 
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Fig. 7.18 shows the t-SNE visualization (Van der Maaten and Hinton, 2008) results of 

Beam B and Bean C. Compared with Figure 7.15, different categories are well separated 

when the RADA technique is adopted, indicating that the proposed method could attain 

accurate classification of unlabeled target data. 

  

(a) Target data from Beam B (b) Target data from Beam C 

Figure 7.18 Feature visualization through t-SNE using RADA 

 

(2)  Inconsistent label spaces 

 

In practice, structural damage is a rare and irreversible process. Therefore, the target 

data do not comprise all DSs. For example, Beam B has a damage in No. 5 element. 

Then, the target data only contain the intact and damaged states with different damage 

levels from 10% to 90% at element 5. They do not contain damage at other elements. In 

this case, the target data contain two categories with 720 data samples only (40 

excitations ×  9 damage levels ×  1 damage locations +  360 excitations ×  1 intact 

condition). By contrast, the source data comprise 11 categories and cover the categories 

in the target data.  

 

If the model trained on the source data from Beam A is directly applied to the target 

data from Beam B or C, the classification accuracies of the two classifiers 𝐶1 and 𝐶2 are 

17.1% and 16.7% for Beam B, and 1.94% and 1.39% for Beam C, respectively. The 

RADA is then carried out between the source and target data. W is similarly initialized 

to an 11-dimensional vector with all entries being one. Four steps in Section 7.3.3 are 
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iterated for 200 epochs, and step D repeats four times within one epoch. Figures 7.19 

and 7.20 plot the training accuracy and final classification results of Beam B and Beam 

C, respectively. Upon convergence, the classification accuracies of 𝐶1 and 𝐶2 are 97.1% 

and 96.9% for Beam C, and 94.6% and 95.3% for Beam B, respectively, which are 

significantly improved compared with those of using the network trained on the source 

data directly.  

 
 

(a) Training accuracies over epochs (b) Classification results of Beam B 

Figure 7.19 Accuracy and classification results of Beam B using the RADA 

  

(c) Training accuracies over epochs (d) Classification results of Beam C 

Figure 7.20 Accuracy and classification results of Beam C using the RADA 
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Table 7.3 presents the variations of the weight parameter in the iteration process in the 

DA between beam A and C. The first and sixth entries in W converge to near one, 

whereas the rest elements approach zero, reflecting that the label space of the target 

domain is a small subset of the source domain. Particularly, the first entry in W 

corresponds to the undamaged condition, and the sixth corresponds to the damage in the 

fifth element. Therefore, the optimization results are consistent with the actual DS. The 

t-SNE feature visualization results are shown in Figure 7.21, where two categories in 

the target data are separated. 

 

Table 7.3 Variations of W in RADA with inconsistent label spaces (from Beam A to C) 

Epochs W Accuracies of 𝐶1 /𝐶2 

0 [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 0.00% / 0.04% 

1 [0.84, 0.91, 0.91, 1.00, 0.86, 0.84, 0.95, 0.85, 0.80, 0.89, 0.81] 1.53% / 1.67% 

50 [0.22, 0.34, 0.05, 0.13, 0.36, 0.22, 0.00, 0.05, 0.01, 0.10, 1.00] 43.5% / 7.50% 

100 

150 

[0.94, 0.02, 0.00, 0.04, 0.01, 1.00, 0.00, 0.03, 0.03, 0.00, 0.00] 89.6% / 89.6% 

[1.00, 0.01, 0.00, 0.00, 0.00, 0.97, 0.00, 0.00, 0.00, 0.00, 0.00] 95.7% / 96.0% 

200 [1.00, 0.00,0.00, 0.00, 0.00, 0.99, 0.00, 0.00, 0.00, 0.00, 0.00] 97.1% / 96.9% 

 

  

(c) Target data from Beam B (d) Target data from Beam C 

Figure 7.21 Feature visualization via t-SNE using the RADA 

 

(3) Comparison with DA without the re-weighting mechanism 
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For comparison, the performance of the adversarial DA network without the re-

weighting mechanism is also investigated. The network is referred to as the common 

adversarial DA (CADA). All parameters are set identically to the RADA network, 

except that Step B and the weight parameter W in Step C in Section 3.3 are neglected. 

The results of the CADA on Beam C for the problem with consistent label spaces are 

shown in Fig. 22. The accuracies are comparable to the results using the RADA 

network. By contrast, the results for the problem with inconsistent label spaces are 

depicted in Fig. 23. The accuracies of 𝐶1 and 𝐶2 drop to 45.3% and 44.7%, respectively. 

Table 4 compares the classification results using different methods, where the ensemble 

accuracy is calculated from the average of the outputs of 𝐶1  and 𝐶2 . The RADA 

network with the re-weighting mechanism performs much better than the CNN without 

DA and CADA for problems with inconsistent label spaces. 

 

 
 

(a) Training accuracies over epochs (b) Classification results of Beam C 

Figure 7.22 Accuracy and classification results of Beam C using CADA for problems 

with consistent label spaces 
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(a) Training accuracies over epochs (b) Classification results of Beam C 

Figure 7.23 Accuracy and classification results of Beam C using CADA for problems 

with inconsistent label spaces 

 

Table 7.4 Identification accuracy for damage localization task 

Label Method 
Beam B  Beam C 

𝐶1 𝐶2 Ensemble 𝐶1 𝐶2 Ensemble 

Consistent label 

spaces 

RADA 88.6% 89.2% 89.1% 84.9% 85.3% 85.2% 

CNN 37.2% 37.2% 37.2% 15.9% 16.1% 16.0% 

CADA 88.0% 87.2% 87.6% 86.6% 86.8% 86.6% 

Inconsistent label 

spaces 

RADA 94.6% 95.3% 95.1% 97.1% 96.9% 97.0% 

CNN 17.1% 16.7% 16.9% 1.94% 1.39% 1.53% 

CADA 51.1% 49.7% 50.6% 45.3% 44.7% 45.1% 

Note: CNN refers to the network trained on source data only without DA, and CADA refers to the 

common adversarial DA network without a re-reweighting mechanism. 

 

7.4.1.2 Damage quantification 

 

The damage severity is quantified on the basis of the damage localization results. After 

the damage has been localized, the source data involved in the DA process contain those 
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with specified locations merely. The irrelevant source data are removed in advance, 

which improves the efficiency of the DA and mitigates the risk of negative transfer. In 

practice, the damage severity may be minor in the initial stage. Detecting the minor 

damage and issuing alarming are of practical importance and challenging as the minor 

damage causes small changes in the modal data. Here we suppose that damage occurs in 

the fifth element and only consider five damage levels from 10% to 50%. At each 

damage level, 400 excitations are applied repeatedly. Accordingly, the source data 

comprise 2,000 data samples (400 excitations ×  5 damage levels). Five patterns (5 

damage levels) are labeled by the one-hot encoding method. Correspondingly, the 

output of the RADA network has a size of 5×1. The inconsistent label spaces are 

designed between the source and target data. The target data are assumed to contain 

three categories only, as shown in Table 7.5. The target data contain 1200 data samples 

(400 excitations × 3 damage levels) with the potential damage levels to be quantified. 

The batch size is set to be 50. 

 

Table 7.5 Damage levels and labels of the target data 

Damaged element  Category no. Elemental damage level Label of target data 

5 

0 [−10%], 

[−30%], 

[−40%], 

[1,0,0,0,0]  

[0,0,1,0,0]  

[0,0,0,1,0]  

2 

3 

 

The damage quantification accuracies of Beam B and Beam C adopting the RADA 

network are summarized in Table 7.6. Although the damage quantification results are 

not as accurate as those in the single-damage localization task, the proposed RADA 

technique obviously improves the accuracy compared with that directly using the 

network without DA. The results reflect that damage severity-sensitive features are 

more difficult for the network to directly learn from structural acceleration responses 

under ambient excitations. Data pre-processing or physics-guided model training 

methods (Zhang et al., 2020) may be explored in the future to further improve the 

damage quantification results. 
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Table 7.6 Identification accuracy for damage quantification task 

Method 
Beam B Beam C 

𝐶1 𝐶2 Ensemble 𝐶1 𝐶2 Ensemble 

RADA 62.8% 61.3% 61.7% 67.6% 67.2% 67.3% 

CNN 2.11% 2.11% 2.11% 34.6% 34.6% 34.6% 

 

7.4.2 Knowledge Transfer from Numerical to Experimental Structures 

 

Many DL-based damage identification techniques work well on numerical simulations 

while fail on real structures, as the numerical FE model may have a discrepancy from 

the real structure. The main challenge of transferring knowledge from a numerical FE 

model to a real structure lies in the fact that the measurement data from the real 

structure are unlabeled and the DSs are always one or a small subset of all DSs. 

Consequently, the target data from the real structure have much fewer label categories 

than the source data from the FE model. In this section, the proposed RADA technique 

is applied to migrate the network trained from the numerical FE model to the 

experimental structure. A laboratory-tested steel cantilever beam (Hou et al., 2018) 

shown in Figure 7.24 is studied. The length and cross-section of the beam are 1.0 m and 

49.6 mm × 5.0 mm, respectively. The Young’s modulus of the material is estimated to 

2.0×1011 N/m2, and mass density is 7.67×103 kg/m3. The beam is divided into 10 equal 

Euler-Bernoulli beam elements. 

 

(a) FE model (unit: mm) 

100×10 = 1000  

Clamped
5.0

49.61 2 3 4 5 6 7 8 9 10

Node:1 2 3 4 5 6 7 8 9 10
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(b) Laboratory-tested beam 

Figure 7.24 Configuration of the cantilever beam 

 

The target data are collected from the experiment. The beam was excited by an 

instrumented hammer with a rubber tip. Ten accelerometers were evenly installed on the 

beam to record the acceleration responses with the sampling frequency of 2,000 Hz. 

Ten-second structural responses (20,000 data points) to the hammer excitation were 

recorded. Twenty sets of hammer excitations were conducted. To increase the data 

samples of the experiment, each data segment is divided into 20 samples with a size of 

1000 × 10, resulting in 400 sets of data samples in the undamaged state. Damage was 

then simulated by introducing a cut in the first element in sequence, as listed in Table 

7.7. Correspondingly, the equivalent stiffness reduction of the first element is 10% and 

22% for the two DSs. The beam was tested similarly in each DS. Correspondingly, the 

experimental data have 1200 samples (400 samples × 3 DSs) in total. 

 

Table 7.7 Damage locations and severities for three DSs 

DS 
Element  

no. 

Cut width 

(mm) 

Cut depth 

(mm) 

Element stiffness 

reduction 

Sample 

no. 

Undamaged ─ ─ ─ ─ 400 

DS1 1 10 20 −10% 400 

DS2 1 10 30 −22% 400 

 

The source data are generated from the FE model. To minimize the modeling error, the 

FE model is first updated using the measured first six frequencies and mode shapes by 

minimizing the discrepancy between the measured modal data and model predictions in 
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the intact condition (Zhou et al., 2015): 

𝐽 = ∑ (
λ̂𝑟 − 𝜆𝑟(𝜽)

λ̂𝑟

)

2𝑁𝑚

𝑟=1

− ∑‖�̂�𝑟 − 𝝓𝑟(𝜽)‖
2

2

𝑁𝑚

𝑟=1

 (7.13) 

where 𝑁𝑚 = 6. The updated FE model is then utilized to generate the source data. 

 

7.4.2.1 Damage localization 

 

To generate the source data in the undamaged state, an impact force simulating the 

hammer excitation is applied to nine locations of the first element of the FE model and 

repeated four times at each location. Newmark’s method is utilized to calculate 0.5-sec 

structural responses with a time step of 5 × 10−4 s. A total of 25 damage levels are then 

simulated at each element by reducing the elemental stiffness by 2%, 4%, and up to 

50%. The structural responses to the impact force are then similarly calculated using 

Newmark’s method. The source data thus contain 9,900 data samples in total (4 

excitations × 9 excitation positions × (25 damage levels ×  10 damage locations + 25 × 

1 intact condition). All data samples are labeled according to the damage locations. The 

label has a size of 11×1, where the first entry being 1 represents the intact condition, 

and the rest represent the damage locations.  

 

Three DSs in the target data with 1,200 samples are also labeled, as shown in Table 7.8. 

Data samples are directly used in the two-dimensional form without any concatenation. 

Consequently, the size of the network input is 1000×10. The proposed RADA network 

can be directly used without re-designing parameters when the input size changes, as 

explained in Section 3.1. The labels of the target data are assumed to be unknown in the 

model training process and will be detected using the proposed RADA technique. 
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Table 7.8 Labels of target data in the tasks of damage localization and quantification 

Damage  

scenario 

Damage localization Damage quantification 

Sample no. Labels (size: 11×1) Sample no. Labels (size: 10×1) 

Undamaged 400 [1,0,0,0,0,0,0,0,0,0,0] ─ ─ 

DS1 
800 [0,1,0,0,0,0,0,0,0,0,0] 

400 [0,1,0,0,0,0,0,0,0,0] 

DS2 400 [0,0,0,0,1,0,0,0,0,0] 

 

The network is first trained on the source data without DA. The batch size is set to 50. 

The convergence is achieved within 50 epochs, as shown in Figure 7.25, which is much 

faster than that in Section 4.1. The reason may be that the structural responses to the 

impact hammer force in this example are easier for the network to learn than those 

under the white Gaussian noise excitation. The accuracy is 51.1% when the model 

trained on the source data is directly applied to the target data. 

 

 
 

(a) Accuracies over epochs (b) Classification result without DA 

Figure 7.25 Accuracy and classification results on the experimental data using CNN 

without DA 
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The DA between the FE model and real beam is then conducted using the proposed 

RADA technique. Table 7.9 presents the variation of W in the DA process. Upon 

convergence, the classification accuracies of two classifiers 𝐶1 and 𝐶2 improve to 88.6% 

and 88.7%, respectively, as shown in Figure 7.24. We note that the classification 

accuracy of the source data in Figure 7.26 is relatively low, which is only 21%. The 

reason may be that the network trained in Step A is re-updated in Step C in the training 

process, and then the network focuses on the shared label spaces while neglects the 

outlier label space in the source domain. Nevertheless, this does not affect the 

classification accuracy of the unlabeled target data, which is the focus of this study. 

 

Table 7.9 Variations of W in RADA for damage localization task 

Epochs W Accuracies of 𝐶1 /𝐶2 

0 [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 5.33% / 56.8% 

10 [0.84, 0.91, 0.91, 1.00, 0.86, 0.84, 0.95, 0.85, 0.80, 0.89, 0.81] 10.5% / 10.3% 

30 [0.46, 1.00, 0.00, 0.00, 0.02, 0.00, 0.00, 0.03, 0.23, 0.00, 0.00] 91.0% / 90.9% 

50 [0.44, 1.00,0.00, 0.00, 0.01, 0.01, 0.00, 0.00, 0.26, 0.00, 0.00] 88.6% /88.7% 

 

 
 

(a) Accuracies over epochs (b) Classification result without DA 

Figure 7.26 Accuracy and classification results of damage localization using RADA 
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7.4.2.2 Damage quantification 

 

After the damage has been localized, the damage severity is then quantified. The source 

data merely consider the case where the damage occurs in the first element. Fifty levels 

of elemental stiffness reduction from 1%, 2%, and up to 50% are contained in the 

source data. The hammer excitation is similarly applied to nine locations between the 

fixed boundary and the first node and repeats 20 times at each location. Thus, we obtain 

9,000 data samples (50 damage levels × 9 excitation positions × 20 excitations) in total. 

All samples are classified into 10 categories in sequence, each having five damage 

levels and 900 samples. For example, the first category contains the damage levels from 

1% to 5%, and the second contains the damage levels from 6% to 10%. Ten categories 

are labeled by the one-hot encoding method. Correspondingly, the output of the RADA 

network has a size of 10×1. The target data only contain two DSs with 800 samples, of 

which 400 samples correspond to 10% damage severity and the rest 400 samples 

correspond to 22% damage severity. The labels of the target data to be predicted are 

listed in the last column of Table 7.10. 

 

The proposed RADA technique is then applied, and the variation of W is listed in Table 

7.10. The accuracy and classification results are shown in Figure 7.27. DS1 is labeled 

“1”, which is corresponding to the damage severity from 6% and 10%. DS2 is labeled 

“4”, corresponding to the damage severity from 21% and 25%. Upon convergence, two 

DSs are quantified with the accuracy of 95% and 85%. For comparison, the CNN 

trained on the FE model without DA is also applied. The damage identification results 

are compared in Table 7.11. The RADA method significantly improves the damage 

identification accuracy compared with the CNN without DA, indicating that the 

proposed RADA technique enhances the application of the DL technique to the actual 

structural damage detection. The damage data with labels can be collected easily and 

economically from the FE model, and the knowledge can be then transferred to practical 

structures for damage detection without collecting the labeled data from the structures in 

advance. 
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Table 7.10 Variations of W in RADA for damage quantification task 

Epochs W Accuracies of 𝐶1 /𝐶2 

0 [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 46.8% / 44.1% 

1 [0.11, 0.62, 0.14, 0.14, 1.00, 0.22, 0.36, 0.47, 0.14, 0.37] 33.6% / 30.8% 

20 [0.00, 1.00, 0.00, 0.00, 0.85, 0.00, 0.10, 0.05, 0.00, 0.00] 90.1% / 90.1% 

31 [0.00, 0.96, 0.00, 0.00, 1.00, 0.00, 0.12, 0.27, 0.00, 0.00] 85.5% / 85.5% 

50 [0.00, 0.99,0.00, 0.00, 1.00, 0.00, 0.10, 0.03, 0.00, 0.00] 90.1% / 90.0% 

 

 

 

(a) Accuracies over epochs (b) Classification result using RADA 

Figure 7.27 Accuracy and classification results of damage quantification using RADA 

 

Table 7.11 Identification accuracy in tasks of damage localization and quantification 
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Damage localization 
RADA 88.6% 88.7% 88.7% 

CNN 51.4% 51.1% 51.0% 

Damage quantification 
RADA 90.1% 90.0% 90.0% 

CNN 18.6% 18.5% 18.5% 
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7.5 Summary 

 

This chapter develops a RADA network to transfer the knowledge between structures 

for damage detection, so that the DL network trained on one structure can be applied to 

other structures without re-collecting labeled data. The network is composed of a 

feature generator with the DenseNet architecture and two classifiers with fully 

connected layers. In view of inconsistent DSs between different structures, a re-

weighting mechanism is designed to mitigate negative transfer. The entire network is 

trained in an adversarial manner to extract domain-invariant and damage-sensitive 

features for damage detection.  

 

The proposed network is applied to two types of knowledge transfer, namely, from one 

structure to the other with different sizes and from a numerical model to an 

experimental structure. Both examples indicate that the RADA network significantly 

improves the classification accuracy of the unlabeled target data in comparison with that 

of directly using the network without DA. The proposed RADA technique enhances the 

application of the DL technique to damage detection of practical structures. 
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CHAPTER 8   
 

CONCLUSIONS AND FUTURE WORK 
 

 

 

8.1 Conclusions  

 

Structural damage identification methods based on probabilistic ML and Bayesian 

inference have been developed in this study. The Bayesian theorem is first introduced to 

the data-driven data normalization techniques. The environmental effects on structural 

vibration properties are discriminated from the damage detection using the sparse 

Bayesian FA and an improved probabilistic kernelized method. Next, an SBL technique 

is developed for structural damage detection using the normalized damage sensitive 

modal parameters. The damage index is estimated by employing the Laplace 

approximation and the combination of VBI and DRAM algorithms. Subsequently, An 

RADA method is developed for unsupervised damage localization and quantification. 

The results and findings are summarized as follows. 

 

The Bayesian inference-based linear and nonlinear damage detection methods have 

been developed. 

1. The sparse Bayesian FA technique is able to assess the structural condition under 

unknown and changing environmental conditions. The ARD prior defined on the 

factor loading matrix can automatically determine the number of underlying 

environmental factors that significantly affect the structural vibration properties. All 

parameters and unknowns in the Bayesian probabilistic framework are optimized 

automatically by the EM method. 

2. The probabilistic kernelized method is able to eliminate nonlinear environmental 

effects by defining the Gaussian kernel to introduce nonlinearity. The nonlinear 
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mapping function does not need to be defined explicitly. The probabilistic method 

outperforms the non-probabilistic kernel PCA-based method in two aspects. First, 

the unknown kernel parameters are estimated automatically in the Bayesian 

probabilistic framework. Second, the computation efficiency is significantly 

improved. 

 

The SBL-based model updating has been developed for damage localization and 

quantification at the element level.  

1. The SBL method based on the Laplace approximation technique has the advantage 

that the variable and hyper-parameters associated with the uncertainties are derived 

in a closed form without numerical sampling.  

2. The VBI-DRAM method is not limited to the Gaussian distribution but applies to all 

kinds of distributions. Besides, the computational efficiency is significantly 

improved for high-dimensional problems, as compared with the Laplace 

approximation technique. 

 

An RADA method is developed to transfer knowledge from the FE model to the 

experimental structure and from one structure to the other with different sizes for 

damage detection using time series responses. 

1. The proposed RADA network is able to learn damage-sensitive and domain-

invariant features for damage detection by exploiting the labeled source data and 

unlabeled target data. The damage identification accuracy of the unlabeled target 

data is significantly improved after the DA process, as compared with that of 

directly using the DL model trained on the source data without DA. By using the 

proposed RADA method, re-collecting labeled data is not needed for a new 

structure. The damage knowledge can be transferred even the structure discrepancy 

exists. 

2. The weight parameter designed in the loss function increases the importance of 

shared label space and downplays the outlier label space in the DA process, 
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facilitating the positive transfer. The proposed method outperforms the DA without 

the re-weighting mechanism when the structures have inconsistent label spaces. 

 

8.2 Future Work  

 

Despite the improvements made, the methods developed in this thesis can be improved 

and extended in the following aspects: 

 

1. The RADA method developed for damage knowledge transfer is limited to 

homogeneous structures with identical topology and material. For the heterogeneous 

structures with significant differences, for example, from a two-story frame to a 

three-story frame or from a two-span bridge to a three-span bridge, how to attain the 

effective and positive knowledge transfer will be further explored.  

2. The damage localization in the RADA method is processed by a single-label 

classification task. However, structural damage may occur in multiple locations. 

Accordingly, the damage localization problem becomes a multi-label supervised 

classification task. The multiple damage localization task can be simplified to the 

damage existence determination of each location by using the binary entropy 

function. However, such processing treating the label of each location independent 

may not be realistic. The damage localization using DL techniques needs further 

improvement.  

3. The global damage-sensitive features (i.e., frequency and mode shape) are not 

sensitive to minor damages in large-scale structures. The RADA method adopts the 

black-box DL model, thus the damage-sensitive feature extracted by the feature 

generator are not interpretable. New interpretable damage-sensitive features that are 

sensitive to minor damages may be explored in the future with the aid of 

interpretable ML methods.  

4.  For large-scale civil structures whose FE models may contain thousands of 

elements, the methods developed in this thesis for damage localization and 
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quantification in the elemental level need further studies. For example, the damage 

is sparser, and the problem indeterminacy may increase in the model-based 

methods. Besides, the label indicating the damage location will be of a large size in 

the DL-based method and the model training process will be very time consuming. 

The methods should be further improved for the damage identification of real large-

scale structures.  
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