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ABSTRACT 

Globally, one in six people is expected to age 65 years by 2050. Not only is the global 

population ageing, but also the built environment infrastructure in many cities and communities 

are approaching their design life. This phenomenon is referred to as “double ageing”. Ageing 

built environment infrastructure with defects are likely to result in environmental barriers with 

excessive demands; humans experience stress and/or their mobility is limited when the 

environmental demands exceed their functional capability. Given that human’s functional 

capability declines with ageing, there is more likelihood for older adults to experience stressful 

environmental interactions that could limit their mobility than the average person. Current 

approaches to detect environmental barriers are inefficient, time-consuming, and costly, which 

may limit the frequency and scope of the built environment assessment. In order to promote 

active ageing in cities and communities, urban planners and municipal decision-makers need a 

more efficient approach to assess and detect excessively demanding environmental conditions. 

The aim of this research is to promote older adults’ mobility by reducing environmental 

demands. The overall goal of this research is in two folds: (1) to enable practitioners to detect 

stressful older adults-environment interactions in near real-time and (2) to bring to the limelight 

the influence of urban environment configurations on older adults’ stress response. To achieve 

this goal, this research harnessed the current advances in wearable sensing technologies to 

collect older adults’ bodily responses (i.e., physiological, behavioural, and cognitive responses) 

to their interaction with the environment as a means of assessing and detecting environmental 

barriers. 

 

Specifically, a methodological framework was developed for researchers and practitioners to 

determine the relevance and informativeness of people’s bodily responses in the context of 

their study. Based on this framework, it was identified that older adults’ physiological response 
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is more informative than the cognitive and behavioural responses. The informativeness of the 

cognitive response was affected by the walking activity, and the gait abnormality among older 

adults affected their behavioural responses. A statistical, spatial and space-time pattern mining 

was conducted to understand the relationships in older adults’ physiological responses to the 

built environment. The results demonstrate that the relationships between older adults’ 

physiological response and the environmental condition are less apparent at the individual 

level. However, using collective sensing (i.e., aggregating multiple participants’ physiological 

responses) can accommodate the individual variability and capture any normality in the data, 

which is indicative of an environment’s condition. An optimised environmental stress hot spot 

detection framework was developed using an Ensemble bagged tree algorithm that achieved 

98% accuracy. A simulation-based approach was used to examine areas within the study area 

that are sufficiently powered to detect stress hot spots that pose high risk to older adults. The 

results demonstrate that urban planners and municipal decision-makers can use this approach 

to detect and alleviate stressful environmental conditions more efficiently; as a result, 

improving older adult’s mobility in the built environment. An integrated methodology based 

on machine learning and an evolutionary rule-based system was developed to further 

understand the influence of visuospatial configurations (specifically, isovist indicators) of 

urban space on older adults’ physiological stress. The results demonstrate that isovist minimum 

visibility, occlusivity and isovist area are the most influential determinants of older adults’ 

physiological stress and non-stress response. Older adults prefer urban configurations where 

they can be seen. The generated visuospatial configurations can be used to inform urban design 

and planning.  
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CHAPTER 1  

 

INTRODUCTION1 

 

1.1 Background 

Ageing is not new to humans, but longevity is. The global population is ageing with increasing 

life expectancy. The proportion of the global population aged 65 years or over (referred to as 

older adults in this study) has increased substantially over the years. The people in the global 

population aged 65 and over are projected to increase from 9.3% in 2020 to 16.0% in 2050 

(United Nations, 2020). Globally, one in six people is expected to age 65 years by 2050 (United 

Nations, 2020). With the changing age structure of the projected population, many countries 

are confronted with unprecedented challenges. An effective local approach for responding to 

population ageing is by creating environments that are inclusive and accessible to promote 

active ageing (WHO, 2007). Active ageing is a concept developed by the World Health 

 
1 This chapter is based on studies that are currently under consideration for publication. 
 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). The influence of urban visuospatial 

configuration on older adults’ stress: A wearable physiological-perceived stress sensing and 

data mining based-approach, Building and Environment, 108298. 

https://doi.org/10.1016/j.buildenv.2021.108298 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Wearable sensing and mining of the 

informativeness of older adults’ bodily responses to detect demanding environmental 

conditions, Environment and Behavior. (Under Review). E&B-20-0532.R2 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Learning to detect older adults’ 

environmental stress hotspots to improve neighbourhood mobility: A multimodal physiological 

sensing, machine learning and risk hotspot analysis-based approach, Cities (Under Review). 

JCIT-D-21-01443 
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Organisation (WHO), which emphasises creating an enabling environment for older adults to 

continue participating in social, economic, civic engagement and physical activity in order to 

enhance their quality of life as they age (WHO, 2018; Torku et al., 2021). Since the launch of 

the Global Network for Age-friendly Cities and Communities in 2010, an increasing number 

of cities, communities and organisations are committed to listening to the needs of their ageing 

population, assessing, and monitoring their age-friendliness and working collaboratively with 

older people and across sectors to create age-friendly physical and social environments (WHO, 

2020). For instance, there are currently 1000 cities and communities in 41 countries, covering 

over 240 million people worldwide committed to becoming more age-friendly (WHO, 2020). 

The older adult’s mobility—their ability to achieve access to their desired places (physical 

environment) and people (social environment)—is critical for such an enabling environment 

(referred to as age-friendly cities and communities) to adequately function. Mobility is 

essential to accessing commodities, using neighbourhood facilities, engaging in social, 

cultural, and physical activity; thus, fundamental to active ageing (Rantanen, 2013). Although 

mobility restrictions are more common in older adults, they are not typically the result of the 

individual’s conditions but arise from interactions between individual factors and 

environmental demand (Webber et al., 2010; Verbrugge, 2020; WHO, 2001). The two main 

interventions to promote mobility is either by increasing capability or reducing demand 

(Verbrugge and Jette, 1994; Verbrugge, 2020). This study focuses on the modification of the 

built environment to reduce environmental demand. Environmental demand is the collective 

influence of elements constituting the environment to produce expectations for certain human 

actions and reactions (Hagedorn, 2001; Lee et al., 2020). When environmental demand meets 

a person’s capability, the person can achieve successful mobility. On the other hand, the person 

experience stress and/or their mobility is limited when the environmental demand exceeds his 
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or her capability (Mair et al., 2011; Yang and Matthews, 2010; Lawton, 1982; Webber et al., 

2010).  

 

Stress is a type of relationship between person and environment which occurs when demands 

tax or exceed the person capability (Lazarus, 1990). Given that an individual’s functional 

capability increases in childhood, peaks in early adulthood, and eventually decline (WHO, 

2007; Kalache and Kickbusch, 1997), it more likely for older adults to experience stress in the 

urban environment than other age groups. In fact, recent studies have reported that the desire 

to reduce encounter with environmental barriers (an environmental barrier is an environmental 

condition or physical feature that can impede older adult’s mobility [Rantanen, 2013]) has led 

to a significant reduction in mobility of older adults in the built environment (van Heezik et 

al., 2020; Portegijs et al., 2017). As a result, there has been a rapid decline in mobility indices, 

including trip frequency, trip distance, and unmet travel demands among older adults 

(Shumway‐Cook et al., 2003; Portegijs et al., 2017). Therefore, detecting environmental 

barriers with excessive demand for older adults is an important step to alleviate stressful 

interactions with the urban environment; as a result, promoting mobility and the effectiveness 

of age-friendly cities and communities. 

 

1.2 The Problem: Current Approaches to Assess and Detect Environmental Barriers 

It is important to mention that previous approaches have been developed and deployed to detect 

environmental conditions that inhibit older adult’s mobility. A common approach for detecting 

such conditions is the Older Adults Senior Walking Environmental Assessment Tool (Michael 

et al., 2009; Cunningham et al., 2005). This tool consists of four attributes: (1) functionality, 

(2) safety, (3) aesthetics, and (4) destination. This type of assessment is often completed by 

trained observers or older adults. Participatory assessment method such as interviews, visual 
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inspection and photovoice are among the commonly used methods to assess people’s 

perception of environmental condition (Aghaabbasi et al., 2018; Moura et al., 2017; Cerin et 

al., 2011). Although these methods have improved the detection of environmental barriers, 

thereby increasing older adult’s mobility in neighbourhood environments, several issues limit 

its practicability in age-friendly cities. For instance, assessment tools with several attributes are 

time-consuming to complete and are not user-friendly for older adults and people without 

expert knowledge or skill (Michael et al., 2009). Visual inspections and photovoice are often 

influenced by the inspector or older adult’s attachment with the environment, recent 

experiences, and momentary emotions. These assessment methods are also costly and labour 

intensive (e.g., trained inspectors and staff), which may limit the frequency and scope of the 

built environment assessment (Yameqani and Alesheikh, 2019). For a city or community to 

remain age-friendly, it needs to be continuously assessed (Van Hoof et al., 2018) and relying 

on these assessment methods will severely interfere and obstruct older people’s daily lives. 

 

Another emerging approach is the use of passively generated urban data such as infrastructure 

data, global positioning system (GPS) and street view imagery to audit neighbourhood 

environments (Yin, 2017; Wan et al., 2018; Knöll et al., 2018; Zhou et al., 2019). Although 

passively generated urban data are less obstructive and can increase the frequency and scope 

of the built environment assessment, they cannot adequately capture older adult’s stressful 

interaction with the environment. The dynamic nature of human-environment interactions 

significantly impacts what an individual will perceive as a stressful environmental feature with 

excessive demand (Kim et al., 2016). In this regard, passively generated data may be 

misleading since it depends on a specific objective criterion and cannot distinguish between an 

environmental feature that is stressful for one person and non-stressful for another person. 

Therefore, there is a need for a more human-centred assessment approach that takes into 
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consideration the individual older adult’s interaction with the environment while facilitating a 

continuous assessment of the environment without obstructing older people’s daily lives. 

 

1.3 The Proposal and Research Aim: An Elderly-Centric and Wearable Sensing 

Approach 

Presently, sensing technologies offer great potential to improve continuous monitoring, real-

time measurement, and assessment of the built environment. The advancement in wearable 

sensing technology provides the opportunity to objectively study and collect continuous 

unbiased data on humans’ bodily responses to their interactions with the environment 

(Birenboim et al., 2019; Twardzik et al., 2019; Kim et al., 2019; Neale et al., 2017). This 

concept is termed “human-centric sensing”, which sought to transform human users’ into 

sensors (Kim et al., 2016). However, the term “elderly-centric sensing” adapted from “human-

centric sensing” is used in this study because the focus is on older adults. This concept is 

motivated by the fact that involving older adults is very important in evaluating the age-

friendliness of the environment (WHO, 2007). 

 

The human experience in the environment is the human state of being affected by the 

surrounding environments (Kaplan, 1988). Signals for inferring changes in demanding 

environmental conditions are regulated by the autonomic nervous system (ANS) (van den Berg 

et al., 2015; Ulrich et al., 1991). The ANS consist of the sympathetic and parasympathetic 

nervous systems that usually act involuntarily to regulate human response to stress (Birenboim 

et al., 2019; van den Berg et al., 2015). When the body is stressed, the ANS provoke responses 

in humans which are reflected in the physiological, behavioural, and cognitive signals (Ulrich 

et al., 1991; Alberdi et al., 2016). The physiological signals are involuntary actions or responses 

that are almost impossible to notice by external observation because they relate to how a living 
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organism or bodily part functions. Behavioural signals are somewhat voluntary actions that can 

be externally observed. The cognitive signals relate to the activities of the brain or mental state 

(Alberdi et al., 2016). 

 

This research harnesses the current advances in wearable sensing technologies to collect older 

adults’ bodily responses to their interaction with the environment as a means of assessing and 

detecting environmental barriers. The bodily responses (i.e., physiological, behavioural, and 

cognitive responses) that the older adults naturally and unconsciously portray while interacting 

with different environmental conditions may offer vital information about the environment’s 

condition. Given the rate of population ageing coupled with the ageing of built environment 

infrastructures, a phenomenon now referred to as “double ageing” (Ling and Lee, 2019), there 

is more likelihood of older adults encountering excessive environmental demands during their 

daily trips. Adopting an elderly-centric sensing approach is essential to efficiently and timely 

understand older adults-environment interactions to inform urban planning and design. 

 

1.4 Research Aim and Objectives 

This study aims to promote older adults’ mobility by reducing environmental demands. Given 

the above proposal, the overall goal of this research is in two folds: (1) to enable practitioners 

to detect stressful older adults-environment interactions in near real-time and (2) to bring to 

limelight the influence of urban environment configurations on older adults’ stress response. 

The specific objectives of this research are as follows.  

1. To assess the informative of people’s bodily responses (i.e., physiological, 

behavioural, and cognitive responses) to different environmental conditions: 

Deploying wearable sensors in an ambulatory, real-world environment poses several 

challenges that can diminish the signals’ informativeness. An approach to determine 
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the informative bodily responses is essential for the effectiveness of elderly-centric 

sensing. 

2. To examine the relationships in older adult’s bodily responses resulting from their 

interaction with the environment: Human responses to environmental conditions are 

complicated and are inherently subject to greater variability. Therefore, it is important 

to understand the variability in older adults’ bodily responses to different environmental 

conditions before adopting elderly-centric sensing. 

3. To detect older adults’ stressful environmental interactions in near-real time: 

Current approaches are costly and time-consuming when deployed on a large scale 

because they are manually planned. A smart and more efficient approach that enables 

a near real-time assessment is needed. 

4. To examine the influence of visuospatial configuration of urban space on older 

adults’ stress response: The affordance for older adults’ involvement in the 

environment differs from the average person. In order to guide universal designs and 

the creation of age-friendly cities and communities, it is important to further our 

understanding of the relationship between the visuospatial configuration of urban space 

and older adults’ stress. 

 

1.5 Research Design and Approach  

An interdisciplinary design and approach were used to achieve the research objectives. The 

flowchart depicting the research design, approach and the interrelations between the objectives 

is depicted in Figure 1.1. First, a field experiment was designed to collect three different types 

of data. The first data was from two observers who audited the conditions of the experimental 

path using an integrated version of the Environment in Asia Scan Tool—Hong Kong version 

and Older adults Senior Walking Environmental Assessment Tool—Revised developed in this 
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study (Appendix C). The second data were older adults’ bodily response and location data 

collected using non-intrusive wearable sensors. The bodily responses included physiological 

response (heart rate, heart rate variability, and electrodermal activity), cognitive response 

(electroencephalography), behavioural response (foot plantar pressure distribution and contact 

forces, and 3-axis acceleration data), and location and environmental data (GPS coordinates, 

temperature, humidity, time-of-day, and recorded video). The third data type was older adults’ 

perceived assessment of the conditions of the experimental path. Prior to the field data 

collection, older adults were recruited and screened to meet the eligibility criteria. Only ten 

eligible older adults participated in the research.  

 

The collected bodily responses were pre-processed to remove artefacts and baseline normalised 

to reduce inter-individual variance. The first analytical approach in this research was based on 

information entropy. In information theory, the concept of entropy was introduced to quantify 

the amount of uncertainty involved in the value of a random variable or the outcome of a 

random process (Wehrl, 1978). This concept enabled the assessment of the relevance of the 

information in older adults’ bodily response signals (Research Objective 1). Statistically 

analysis (Wilcoxon signed-rank test), spatial clustering analysis (Getis-Ord General G statistic 

and Getis-Ord Gi* statistics) and space-time pattern mining were used to infer the relationships 

in older adults’ bodily responses to the environment (Research Objective 2). Several machine 

learning algorithms, including Gaussian Support Vector Machine, Ensemble bagged tree, and 

deep belief network were trained and tested to detect older adult’s stressful interactions. The 

Ensemble bagged tree achieved the best performance. Kernel density estimation was used to 

estimate the density of the detected older adult’s stressful interactions. A simulation-based 

approach was used to examine areas within the study area that are sufficiently powered to 

detect stress hot spots that pose higher risk to older adults (Research Objective 3). Finally, self-  
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Figure 1.1: Flowchart of research design, approach and the interrelations between the 

objectives. 

Note. HRV = heart rate variability; EDA = electrodermal activity; EEG = 

electroencephalography; GPS = Global Positioning System. 
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organising maps, supervised machine learning and evolutionary fuzzy rule-based system were 

integrated to examine the influence of visuospatial configuration of urban space on older 

adults’ stress response. The perceived visual elements of the urban environment were extracted 

using isovist analysis (Research Objective 4). 

 

1.6 Research Significance 

Overall, this research will enable urban planners and municipal decision-makers to detect and 

alleviate stressful environmental conditions more effectively, particularly in cities and 

communities whose built environment infrastructures are approaching their design life (e.g., 

old districts which require urban renewal). As a result, older adults will be more likely to 

achieve successful mobility within their neighbourhoods, thereby promoting active ageing.  

 

1.7 Organisation of the Thesis 

The rest of the thesis consists of five parts and eight chapters. The rest of PART I is a literature 

review on the conceptualisation of age-friendly cities and communities, and the current built 

environment assessment approaches. PART II describes the research methodology, which 

covers Chapter 3. The experiment design, field data collection of bodily responses, perceived 

response, and observers’ audit, are presented in this chapter. The pre-processing and analysis 

of bodily responses are discussed in this chapter. PART III describes the detection of stressful 

older adults-environment interactions, where Chapter 4 presents an assessment of the 

informativeness of the bodily response, Chapter 5 focuses on understanding the relationships 

in older adults’ physiological response resulting from their interaction with the environment, 

Chapter 6 introduces a machine learning approach for representing human-environment 

interaction using an optimum set of informative physiological features and for detecting older 

adults’ stressful environmental hot spot. Part IV, which includes Chapter 7, aims to further our 
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understanding of the relationship between the visuospatial configuration of urban space and 

older adults’ physiological stress response using current advances in machine learning and 

evolutionary computing. Finally, PART V, which includes Chapter 8, summarises the 

conclusions and recommendation drawn from the research. The future works that could 

overcome the limitations of this study are provided in this chapter. 
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CHAPTER 2  

 

LITERATURE REVIEW2 

 

2.1 Introduction 

This chapter review existing studies on the conceptualisation of age-friendly cities and 

communities and the current built environment assessment approaches. The sensors and bodily 

responses that have been used to represent human-environment interactions are presented in 

the chapter. Finally, research and methodological gaps are revealed.  

 

 
2 This chapter is based on studies that are published or currently under consideration for 

publication. 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). The influence of urban visuospatial 

configuration on older adults’ stress: A wearable physiological-perceived stress sensing and 

data mining based-approach, Building and Environment, 108298. 

https://doi.org/10.1016/j.buildenv.2021.108298 

 

Torku, A., Chan, A.P.C., and Yung, E.H.K. (2021). Implementation of age-friendly initiatives 

in smart cities: Probing the barriers through a systematic review, Built Environment Project 

and Asset Management, 11(3), 412-426.  https://doi.org/10.1108/BEPAM-01-2020-0008  

 

Torku, A., Chan, A.P.C., and Yung, E.H.K. (2021). Age-friendly cities and communities: A 

critical review and future directions, Ageing & Society, 41(1), 2242-2279. 

https://doi.org/10.1017/S0144686X20000239  

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Wearable sensing and mining of the 

informativeness of older adults’ bodily responses to detect demanding environmental 

conditions, Environment and Behavior. (Under Review). E&B-20-0532.R2 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Learning to detect older adults’ 

environmental stress hotspots to improve neighbourhood mobility: A multimodal physiological 

sensing, machine learning and risk hotspot analysis-based approach, Cities (Under Review). 

JCIT-D-21-01443 

https://doi.org/10.1016/j.buildenv.2021.108298
https://doi.org/10.1108/BEPAM-01-2020-0008
https://doi.org/10.1017/S0144686X20000239
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2.2 Age-friendly Cities and Communities 

One of the fundamental questions posed by the change in demographics is how cities and 

communities will remain age-friendly. The WHO defined an age-friendly city and community 

(AFCC) as a city or community with  

“policies, services, settings and structures support and enable people to age actively 

by: recognizing the wide range of capacities and resources among older people; 

anticipating and responding flexibly to ageing-related needs and preferences; 

respecting their decisions and lifestyle choices; protecting those who are most 

vulnerable; and promoting their inclusion in and contribution to all areas of community 

life” (WHO, 2007, p.5). 

The term elder-friendly community was also used by Feldman and Oberlink (2003), Hanson 

and Emlet (2006) and Alley et al. (2007). An elder-friendly community is “a place where older 

people are actively involved, valued, and supported with infrastructure and services that 

effectively accommodate their needs” (Alley et al., 2007, p. 4). It is important to draw the 

attention of researchers and practitioners to the fact that different studies have adopted different 

terminologies to describe the concept WHO (2007) referred to as age-friendly cities. Other 

terminologies identified in the literature include elder-friendly community, age-friendly 

communities, liveable community and lifetime neighbourhood (Lui et al., 2009; Feldman and 

Oberlink, 2003; Kihl et al., 2005; Hanson and Emlet, 2006; Alley et al., 2007). The term age-

friendly community was mainly used in Canada, liveable community was mainly used in the 

United States of America (USA), and lifetime neighbourhood was mainly used in the United 

Kingdom (UK) (Lui et al., 2009). Despite the differences in the terminologies, they all share a 

common theme with the WHO (2007) definition of age-friendly cities. 
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The sense of urgency to create AFCC was heightened by the statistical data of most of the 

developed countries. Responding to the demands of the ageing population led to the 

development of AFCC models highlighting the features, domains, or elements of AFCC. The 

Visiting Nurse Service of New York’s AdvantAge Initiative identified four main domains of 

an elder-friendly community. The domains are presented in Table 2.1 (Feldman and Oberlink, 

2003). AARP introduced eight elements of a liveable community that is friendly to older adults 

(Kihl et al., 2005). These elements shown in Table 2.1 were identified through focus groups 

with older residents and caregivers in 13 cities in five areas of the USA (Kihl et al., 2005). 

Furthermore, Alley et al. (2007) identified 15 characteristics of an elder-friendly community 

based on the perception of practitioners. These characteristics are presented in Table 2.1.  

 

Also, the WHO (2007) identified eight features of an age-friendly city and community (Table 

2.1). The WHO (2007) further added a checklist of features of age-friendly cities and 

communities based on the Vancouver Protocol to serve as a guide for self-assessment and 

comparison of findings. The features were derived by working with older adults in 33 cities 

and communities worldwide (WHO, 2007). Building on the WHO (2007) framework, Menec 

et al. (2011) applied ecological theory to the concept of age-friendly cities proposed by WHO 

(2007). Menec et al. (2011) framework was based on the premise that the conditions of the 

environment are interrelated, and a fit between the person and the environment is crucial to 

promoting social connectivity. As a result, Menec et al. (2011) proposed seven AFCC domains; 

these are presented in Table 2.1.  
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Table 2.1: AFCC concepts 

Author (s) Concept Characteristics 
Elder-friendly 

community  
(University of 

Calgary, 

Canada) 

 
Austin et al. 

(2001) 

• A place to call home 

• Building community 

• Making ends meet 

• Being valued and respected 

• Staying active 

• Getting what you need 

• Getting around 

• Feeling safe 

This concept focused on the assessment of 

the assets, capacities and needs of older 

adults. However, this concept is not 

statistically generalisable to other locations. 

Elder-friendly 

community  
(AdvantAge 

Initiative) 

 
Feldman and 

Oberlink (2003, 

p. 269) 

• Maximises independence for 

frail and disabled 

• Addresses basic needs 

• Promotes social and civic 

engagement 

• Optimises physical and 

mental health and well-being 

 

This concept solely focused on older adults 

and included both physical and social 

elements that sustain active participation, 

independence and engagement. This concept 

is unique in that it includes items such as the 

“percentage of people age 65+ who would 

like to be working for pay” and “percentage 

of people age 65+ who had problems paying 

for medical care”. This concept provides 

quantified results of lacking needs, and it is 

easier to identify and prioritise ageing issues 

that need immediate attention. 
Liveable 

community 
(American 

Association of 

Retired Persons) 
 

 
Kihl et al. 

(2005) 

• Transportation 

• Walking 

• Housing 

• Shopping 

• Safety and security 

• Recreation and culture 

• Health services 

• Caring and mutual support 

This concept emphasised more on the 

availability, suitability and affordability of 

the physical environment and the supportive 

community services for facilitating 

independence and social engagement for 

dependent (frail) and independent older 

adults and the general population. It includes 

items such as “Are the sidewalks adequately 

lighted at night?” and “Does your community 

have an information hotline or a directory of 

services for older persons?”. Unlike Feldman 

and Oberlink (2003, p. 269)’s concept, this 

concept only identifies the presence or 

absence of physical and social environmental 

needs. 
Elder-friendly 

community  
 
Alley et al. 

(2007, p. 7) 

• Accessible and affordable 

transportation 

• Housing 

• Safety 

• Health care 

• Community involvement 

opportunities 

This concept stressed on important 

characteristics of becoming age-prepared. 

This concept is in alignment with Feldman 

and Oberlink (2003, p. 269) and Kihl et al. 

(2005) concepts. Although this concept 

captured a wide variety of physical and social 

environmental factors, it may be limited in 

that it only included the most important 

characteristics which may limit its adoption 

in different settings. The other concepts 

presented various physical and social 

environmental age-friendly features for 

communities to identify issues that its 

members consider as important. 
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Author (s) Concept Characteristics 
Age-friendly 

city and 

community 
 
WHO (2007) 

• Outdoor spaces and 

buildings 

• Transportation 

• Housing 

• Social participation 

• Respect and inclusion 

• Civic participation and 

employment 

• Communication and 

information 

• Community supports and 

health services 

This concept includes physical settings and 

structures, social policies, and services for 

active ageing. This concept consists of eight 

domains (physical and social environment) 

with several items within each domain. 

Unlike Feldman and Oberlink (2003, p. 269), 

Kihl et al. (2005) and Alley et al. (2007, p. 

7)’s concepts, this concept is very flexible, 

can be used to generate qualitative and 

quantitative results of lacking needs 

depending on the users’ preference. As a 

result, it captures essential information that 

can be rigorously analysed for developing 

age-friendly interventions and policies. 
Lifetime 

neighbourhood 
(Department for 

Communities & 

Local 

Government, 

UK) 
 
Harding (2007) 

• Built environment 

• Housing 

• Social inclusion 

• Social cohesion and sense of 

place 

• Innovation and cross-

sectoral planning 

• Services and amenities 

The concept is underpinned by the principle 

of inclusive design, sustainability and 

participation. Similar to the lifetime home 

concept and the WHO (2007)’s concept, this 

concept focus on the neighbourhood with a 

number of key features to plan a sustainable 

community. 

Positive ageing 

framework 

 
New Zealand 

Ministry of 

Social 

Development 

(2007) 

• Housing 

• Transport 

• Access to facilities and 

services 

• Income 

• Employment 

• Opportunities 

• Health 

• Living in the community 

• Cultural identity 

• Attitudes 

This concept is underpinned by the principle 

that the years of old age are viewed and 

experienced positively. The concept 

embraces ten domains with unique desired 

outcomes. However, the indicators are 

generally limited to aspects of older adult’s 

lives at a particular time. 

Menec et al. 

(2011, p. 484) 
• Physical environment 

• Housing 

• Transportation options 

• Communication and 

information 

• Social environment 

• Opportunities for 

participation 

• Informal and formal 

community supports and 

health services 

Menec et al. (2011, p. 484)’s concept is 

consistent with the WHO (2007)’s concept. 

However, this concept focused on the 

interaction between older adults and the 

environmental conditions (social 

connectivity) to advance age-friendly policy 

decisions. This concept argued that some of 

these domains proposed in previous concepts 

such as respect and inclusion (WHO, 2011) 

and safety (Alley et al. 2007, p. 7; Kihl et al., 

2005) do not fit as an aspect of the 

environment but rather the outcome of 

implementing age-friendly interventions. 
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All the models share a central theme which is to develop cities and communities that support 

active ageing, reduce isolation, sustain independence, improve accessibility and affordability 

for the older adults and general population. The AFCC features broadly span from the physical  

environment to social environment. However, this study focuses on the outdoor environment, 

which is one of the elements of the physical environment in AFCC. 

 

2.3 Why the Outdoor Environment  

The AFCC concept was proposed in pursuit of developing communities and cites that support 

active ageing (WHO, 2002). Physical activity and independent mobility are critical 

determinants of active ageing, healthy longevity, and maintenance of the quality of life in older 

adults (Holliday et al., 2017; WHO, 2009; US Department of Health and Human Services, 

2008). Findings of the WHO (2009) affirmed that a lack of physical activity is the fourth 

globally ranked risk factor for mortality and burden of disease attributable. For this reason, 

advocates of physical activity promotion, including public health researchers and practitioners, 

recommend environmental interventions that support and encourage people to engage in 

physical activity (Sallis et al., 1998; Brownson et al., 2008; Kelly et al., 2013). The outdoor 

environment is one of the key features of the city and community’s physical environment that 

strongly influence personal mobility, safety from injury, security from crime, health behaviour 

and social participation (WHO, 2007). Therefore, the outdoor environment has the potential to 

facilitate physical activity and independent mobility, thus promoting active ageing among older 

adults (Van Cauwenberg et al., 2011; Timmermans et al., 2016; Inclusive Design for Getting 

Outdoors, 2013). 

 

The outdoor environment generally works well for healthy and able-bodied people. An 

individual’s functional capacity increases in childhood, peaks in early adulthood and eventually 
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decline (WHO, 2007; Kalache and Kickbusch, 1997). People with declined functional capacity, 

such as older adults, must contend with many physical environmental barriers that may hinder 

older adults’ participation in outdoor activities. Evidence indicates that the frequency and time 

older adults spend outdoors depends on the age-friendliness of the outdoor environment 

features (Inclusive Design for Getting Outdoors, 2013). Research has shown that older adults 

residing in areas with environmental barriers, such as poor sidewalk conditions, are at greater 

risk of reporting mobility limitations (Twardzik et al., 2019). An age-friendly environment has 

a crucial influence on older adults’ activity levels, general health and overall satisfaction with 

life (Inclusive Design for Getting Outdoors, 2010; WHO, 2007). An age-friendly living 

environment can influence and may reverse the speed of decline in the functional capacity of 

older adults (WHO, 2007; Kalache and Kickbusch, 1997).  

 

In this research, the outdoor environment, built environment, and physical environment are 

used interchangeably. The outdoor environment, built environment, or physical environment 

is the physical form of cities and communities (Brownson et al., 2009).  

 

2.4 Built Environment Determinant of Walking 

The main evidence-based framework of physical environmental factors that may influence 

walking in the local neighbourhood was developed by Pikora et al. (2003). Based on published 

evidence and policy literature, interviews with experts and a Delphi study, Pikora et al. (2003) 

identified four built environmental domains: functionality, safety, aesthetics, and destination. 

Functionality relates to the physical attributes of the street and path that reflects the condition 

of the structural elements of the built environment (Pikora et al., 2003; Cunningham et al., 

2005; Michael et al., 2009).  
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Table 2.2: Built environment factors that may influence walking 

Domain Element 

Functionality • Path condition (wet and slippery streets) 

• Path slope 

• Path obstruction 

• Major barriers (roadwork, steep staircases) 

• Minor barriers (cracks, holes, bumps, parking meters) 

• Street crowd 

• Motor vehicles parked on footpath 

• Hawkers and shops on streets 

• Path width 

• Path material 

• Curb cut features 

• Permeability 

Safety • Pedestrian crossing  

• Traffic load 

• Traffic calming devices 

• Streetlight 

• Directional sign 

• Presence of people 

• Signs of crime/disorder 

• Stray dogs /other animals 

Aesthetics • Views 

• Building attractiveness 

• Attractive natural sights 

• Streetscape 

• Litter 

• Graffiti 

• Pollution 

• Greenery 

Destination • Transport-related 

• Public open space 

• Recreational 

• Government/public services 

• Public facilities 

• Commercial destinations 

Source: Pikora et al., (2003); Cunningham et al. (2005); Michael et al. (2009); Cerin et al. 

(2011). 

 

Safety reflects elements of the environment that strengthen the feeling of safeness and increase 

the degree of comfort of the older pedestrians (Pikora et al., 2003; Rebecchi et al., 2019; 

Michael et al., 2009). Aesthetics reflects elements of the environment relating to the human 

scale, are visually interesting, appealing, and increase the attractiveness of the environment 
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(Pikora et al., 2003; Rebecchi et al., 2019; Michael et al., 2009). The destination domain relates 

to the availability of community and commercial facilities in the neighbourhood (Pikora et al., 

2003). The built environmental domains and factors that contribute to each of these domains 

are presented in Table 2.2. 

 

2.5 Assessing the Built Environment to Promote Mobility 

Since the 1980s, urban planners and travel behaviour researchers have studied how the built 

environment affects people’s outdoor physical activities, recreational behaviours, and quality 

of life (Sallis, 2009; Handy et al., 2002; Papas et al., 2007; Brownson et al., 2009). In 

recognition of the importance of physical activity, planners have developed conceptualisations 

of community design such as walkability, that is, the extent to which the built environment 

supports and encourages mobility by walking (Forsyth, 2015). Mobility is defined as the ability 

to achieve access to the desired place (Rantanen, 2013). Conceptual models on the built 

environment and mobility postulate that mobility is affected by different built environment 

attributes (Pikora et al., 2003; Ramirez et al., 2006). To understand the effect of the built 

environment on mobility, it is of paramount importance to develop a high-quality assessment 

approach (Brownson et al., 2009). Of central concern among the active living researcher is 

developing accurate and efficient built environment assessment approaches (Sallis, 2009; 

Brownson et al., 2009). Four categories of built environment assessment approaches are being 

used: perceived environment assessment approach, systematic observational assessment 

approach, Geographical information systems (GIS)-based assessment approach, and bodily 

response-based assessment approach. 

 

The perceived (also known as self-report) environment assessment approach often requires 

untrained raters to judge the extent to which the built environment promotes or hinder their 
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mobility (Sallis, 2009). The perceived environment assessment approach is mainly collected 

using interview or self-administered questionnaires (Brownson et al., 2009; Hoehner et al., 

2005). The systematic observational assessment approach, also known as environmental audit, 

often requires trained observers to quantify the attributes of the built environment. Trained 

observers use pre-defined protocols or tools to assess the built environment attributes as it is 

directly observed (in-person observation) (Sallis and Saelens, 2000; Brownson et al., 2009; 

Cerin et al., 2011). These audit tools have enabled a systematic and objective assessment of 

the built environment. The GIS-based assessment often relies on archived (existing) data that 

have spatial reference to assess the built environment (Li et al., 2021). Data such as 

infrastructure-based data (e.g., air quality and sound level), user-generated data (e.g., GPS) and 

street view imagery (e.g., Google Street View, Google Earth, and Bing Map) are often used to 

audit built environment (Gullón et al., 2015; Yin, 2017; Knöll et al., 2018; Zhou et al., 2019; 

Kelly et al., 2013). GIS-based assessment enables an objective assessment of built environment 

dispersed across a large area (Brownson et al., 2009). The fourth category of assessment 

approach involves data collected from users’ direct bodily responses to assess the built 

environment objectively and continuously (Kim et al., 2016; Birenboim et al., 2021; Birenboim 

et al., 2019). The bodily responses (i.e., physiological, behavioural, or cognitive responses) 

collected using sensing technologies are spatially matched with GPS data to assess the built 

environment. 

 

Each of the built environment assessment approaches has its own advantage and disadvantage, 

which could affect its effectiveness. Because the perceived environment assessment involves 

interview or self-administered questionnaires, its main drawback is declining response rates 

(Brownson et al., 2009). Also, interviewing or administering questionnaires to older adults 

might obstruct their daily lives; especially in large scale neighbourhood assessment that takes 
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a longer period to complete. The subjectivity of individual reported perception can influence 

built environment assessment (Aghaabbasi et al., 2018). Although the observational 

assessment approach is objective, it involves in-person observation, which is time-consuming 

and costly (Brownson et al., 2009). Observational assessment demands investment in staff, 

training of observers, transportation to the assessment site, among others. Because this 

approach is time-consuming, labour intensive and costly, it may limit the scope and frequency 

of conducting neighbourhood assessment. Although the GIS-based assessment can provide an 

objective, less obstructive, less labour intensive, less time consuming, and large-scale 

assessment of the built environment (Chiang et al., 2017), it is inefficient in detecting older 

adults’ environmental barriers. By definition, an environmental barrier is a relative concept; 

dependent on the interaction between an individual’s capability and environmental demand 

(Mair et al., 2011; Yang and Matthews, 2010; Lawton, 1982; Webber et al., 2010). Therefore, 

an environment may be a barrier for one person and not a barrier for another person. Sensing 

people’s direct bodily responses to the environment can detect such environmental barriers that 

could not be detected using the GIS-based or observational assessment approach (Kim et al., 

2016; Birenboim et al., 2019; Twardzik et al., 2019; Kim et al., 2019; Neale et al., 2017). The 

bodily response-based assessment provides a continuous assessment of the built environment 

and less obstructive depending on the sensing technology adopted. The bodily response-based 

approach is the main focus of this study because of its potential to detect older adults’ 

environmental barriers more efficiently.  

 

2.6 Sensing of Bodily Responses to the Environment 

Researchers have been using various sensors for monitoring bodily responses to represent 

human-environment interaction. Signals identified from the literature are illustrated in Figure 

2.1. Many of the signals fall into one of two categories. The first category of sensors is  
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Figure 2.1: Bodily response sensors. 

 

laboratory sensors, and the second category is wearable sensors (Ragot et al., 2017). Laboratory 

sensors are stationary and deployed in a controlled environment with restrictions on human 
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movements (e.g., subjects are connected to multiple electrodes and wires, usually in the 

laboratory). In contrast, wearable sensors are mobile, wireless and can be deployed in a 

naturalistic environment (Milstein and Gordon, 2020). Utilising wearable sensors to monitor 

bodily responses rather than laboratory sensors are more desirable for elderly-centric sensing 

because they provide more realistic insights into natural human reactions to the environment 

(van Beers et al., 2020). These wearable sensing devices have enabled elderly-centric sensing 

to be less interruptive because individuals can go about their daily routines while their bodily 

responses are monitored and collected. As a result, researchers have been deploying wearable 

sensors to collect a continuous stream of bodily responses linked to spatiotemporal 

information, such as GPS data, to detect demanding environmental conditions. 

 

2.7 Bodily Response for Assessing Environmental Features 

The specific bodily responses and features that have been studied in relation to the 

environmental features are presented in Table 2.3. However, only a few of these signals have 

been proven to have a statistically significant correlation or association with the built 

environment features. This section reviews signals that have shown a statistically significant 

relationship with the built environment features, that can be continuously acquired using 

commercially available non-intrusive wearable sensors in ambulatory settings and the results 

can be analysed in real-time or semi-real time. 

 

2.7.1 Electrodermal Activity (EDA) 

EDA is also known as Galvanic skin response (GSR) or Skin Conductance. EDA measures the 

activation of the sympathetic nervous system non-invasively and is one of the most frequently 

employed signals for detecting physiological arousal (Kleckner et al., 2018; Boucsein, 2012). 

The sympathetic nervous system can be stimulated physically and emotionally, which intends 
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trigger variation in the eccrine sweat gland activity which is controlled by the sympathetic 

nervous system (Melander, et al., 2018; Chittaro and Sioni, 2014; Boucsein, 2012). An increase 

in the eccrine sweat gland activity is observed (emotional sweating) when the sympathetic 

nervous system is stimulated with a high-level arousal stimulus, thus changing the conductivity 

of the skin (Zhang et al., 2018; Kleckner et al., 2018). An increase in sweating results in a sharp 

increase in the conductivity of the skin (Chittaro and Sioni, 2014). High levels of EDA correlate 

with stress, and lower levels of EDA correlate with the relaxed state (Birenboim et al., 2019). 

Statistically significant positive associations were found between participant EDA in 

favourable features—such as greenery and attractive natural sights—of the environment 

(Chrisinger and King, 2018; Ojha et al., 2019; Saitis and Kalimeri, 2018). Statistically 

significant negative associations were found between participant EDA in stressful features—

such as stressful crossing—of the environment (Chrisinger and King, 2018; Birenboim et al., 

2019; Saitis and Kalimeri, 2018). 

 

EDA is statistically analysed using mean and standard deviation of the amplitude, minimum 

and maximum values (Chrisinger and King, 2018; Osborne and Jones, 2017). The raw EDA 

signal decomposes into two components: the tonic component or skin conductance level (SCL) 

and the phasic component or the skin conductance response (SCR) (Ojha et al., 2019; 

Birenboim et al., 2019; Chen et al., 2018). The tonic component reflects the baseline level of 

skin conductivity and changes slowly over time –it correlates to the basic physiological state. 

The tonic component is not related to emotional responses or emotion-inducing stimuli (Chen 

et al., 2018; Birenboim et al., 2019). The phasic component increases in the amplitude of skin 

conductive, which reflects human reactions to discrete environmental stimuli (Birenboim et al., 

2019; Chen et al., 2018). The common parameters used to analyse the phasic component are 

Number of significant phasic SCRs (nSCRs), Sum of SCR-amplitudes of significant SCRs 
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(AmpSum), Maximum value of phasic activity (PhasicMax), Mean skin conductivity value 

(GlobalMean) and Maximum level of skin conductivity (MaxDeflection). nSCRs, AmpSum 

and PhasicMax are more useful indicators of momentary changes in the outdoor environment 

because it considers the magnitude of local deflection (Birenboim et al., 2019; Ojha et al., 

2019). However, GlobalMean and MaxDeflection consider the absolute values of EDA levels. 

Both GlobalMean and MaxDeflection may be useful in a controlled environment such as the 

laboratory. But, less useful in an uncontrolled environment such as an outdoor environment 

because absolute EDA can change rapidly to basic physiological state such as sweating due to 

increased heat regardless of a person’s cognitive state (Birenboim et al., 2019). 

 

2.7.2 Electrocardiogram (ECG or EKG) and Blood Volume Pulse (BVP) 

Electrocardiogram (ECG) measures present digital wave patterns of the morphological and 

temporal parameters of the rhythm and electrical activity generated by the heart (Zhang et al., 

2018; Walford et al., 2017). The raw ECG signal has not been used in built environment 

research. However, information about Heart Rate (HR) and Heart Rate Variability (HRV) has 

been extracted from the ECG data.  

 

Photoplethysmography (PPG) is also used to measure the blood volume pulse, and it indicates 

the quantity of blood flowing into the peripheral vessel. The blood volume pulse is determined 

from the difference in light absorption that illuminates the skin from a pulse oximeter. The 

amount of light that returns to the PPG sensor is proportional to the volume of blood in the 

tissue (Peper et al., 2017). An increase in BVP amplitude indicates decreased sympathetic 

arousal and greater blood flow to peripheral vessels (Chang et al., 2008). The amplitude of the 

raw BVP has been used to study the restorative value of natural environments (Chang et al., 
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2008). Also, HR and HRV parameters have been extracted from the raw BVP to assess 

environmental features (Kim et al. 2019). 

 

HR measures the number of heart beats per minute and is commonly used to distinguish 

between positive and negative emotions (Zhang et al., 2018). Several researchers have studied 

the relationship between HR and different environmental features. However, the findings from 

these studies are inconsistent. For example, South et al. (2015) identified a significant 

relationship between the HR level and different walking segments (greening site and no 

greening site). Also, studies showed that HR was significantly lower when participants walked 

in a green environment than when they walked in the urban environment (Song et al., 2015a; 

Song et al., 2015c; Song et al., 2014; Song et al., 2013). A more recent study proved that no 

significant difference was detected in the HR level between different walking environment, 

including stressful and less stressful walking segments (Birenboim et al., 2019). The most 

effective HR parameters are the average heart rate and heart rate reserve (Walford et al., 2017; 

Kim et al., 2016). 

 

HRV is the variation between the heart’s inter-beat intervals (Birenboim et al., 2019; Li and 

Sullivan, 2016). A stimulated sympathetic system is associated with a decrease in HRV. In a 

relaxed state, the parasympathetic activity increases which are associated with an increase in 

HRV (Birenboim et al., 2019; Gladwell et al., 2016). The time-domain parameters, frequency 

domain parameters and non-linear HRV analysis methods were used to calculate various HRV 

indices associated with the environment. A statistically significant correlation has been 

established between HRV—specifically the frequency domain parameters—in detecting the 

difference between stressful environmental conditions and neutral conditions (Birenboim et al., 

2019; Song et al., 2015a; Song et al., 2015c). 
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2.7.3 Gait 

Gait is an individual movement pattern that can reflect the individual’s emotional state, 

cognition, intent, personality, attitude, and health (Sun et al., 2017; Agmon and Armon, 2016). 

The gait pattern of individuals has been continuously monitored to detect the disturbance 

caused by environmental features, and studies have proved that the mobility of an individual 

is directly a function of the environment under the individual’s feet (Twardzik et al., 2019; 

Duchowny et al., 2019). Human gait activities to environmental features have been monitored 

using camera-based systems and wearable motion sensors in real-time (Twardzik et al., 2019; 

Pedersen and Johansson, 2018). The gait features extracted from camera-based systems in 

relation to environmental features include walking speed, spacing behaviour, path change 

behaviour, step frequency, step length, platoon, rolling behaviour. The motion sensors measure 

the linear and angular motion of the body. The gait features extracted from the sensors in 

relation to the environmental features include gait speed, cadence, stride length, gait stability, 

gait acceleration. The gait features are most effective in predicting the presence of a built 

environment feature or the physical condition of a walking path. Gait speed, cadence, stride 

length, gait stability and gait acceleration are significantly associated with the conditions of a 

walking path such as slope, width, presence of holes, grooves, bumps, and curb cut (Twardzik 

et al., 2019; Kim et al., 2016). 

 

2.7.4 Eye Movement 

Eye movements are the visual perception that can be tracked to measure the allocation of visual 

attention over a visual stimulus (Cottet et al., 2018). Eye movements are normally recorded 

during cognitive processing tasks such as scene perception, reading, visual search tasks and 

recognition tasks (Berto et al., 2008). The widely used eye-related measures to acquire visual 

information about the environment include fixation, fixation count, fixation duration, saccade 
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amplitude, blink count, blink duration and scanpath length (Stevenson et al., 2019; Hollander 

et al., 2019; Crosby and Hermens, 2018). A fixation happens when the eyes are relatively 

stationary for visual perception of information, and saccades is the eye movements between 

fixations (Dupont et al., 2017; Miyasike-daSilva et al., 2011). The scanpath is the length of 

oculomotor event when perceiving a stimulus within a timespan (Dupont et al., 2017). The 

sequences of fixations and saccades are indicators of a person’s internal state, such as cognitive 

load (Hollander et al., 2019; Elsadek et al., 2019) and emotional state (Matsuda et al., 2018; 

Crosby and Hermens, 2018), and external state such as the salience and organisation of a 

stimulus (Dupont et al., 2017; Valtchanov and Ellard, 2015). The effect of the natural and built 

environment was most predicted by the number of fixations per minute (Stevenson et al., 2019). 

Eye movement indicators is an effective substitute for visual aesthetic quality and tranquillity 

rating evaluation (Liu et al., 2019). 

 

2.7.5 Electroencephalogram (EEG) 

EEG refers to the measurement of voltage changes in the brain’s electrical field produced by 

the flow of ions in the neurons of the brain (Seo et al., 2019; Subramanian et al., 2018). Recent 

studies have proven that different environmental features are associated with distinctive 

patterns of brain activity or brain wave production, which means humans interact differently 

with varying environments (Kim et al., 2019b; Bailey et al., 2018; Tilley et al., 2017; Chen et 

al., 2016). EEG spectral analysis is the common method to quantify brain activity when 

exposed to environmental features. The spectral analysis involves decomposing the raw EEG 

signal into oscillations of the different frequency band (Grassini et al., 2019).  

 

The widely used frequency bands for assessing environmental features are the Delta (0.5–3 

Hz), Theta (4–7 Hz), Alpha (8–15 Hz), Beta (16–31 Hz) and Gamma (32–100 Hz)  
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Table 2.3: Bodily response for assessing environmental features 

Environmental features Reference (s) Bodily response Feature Parameter (s) 

Outdoor walking route 

(urban busy, urban 

green, pedestrian 

traffic, length, 

gradient, noise, planted 

trees, gardens) 

Physiological 

Birenboim et al. (2019), Kim et al. 

(2019), Gidlow et al. (2016b), South et 

al. (2015), Song et al. (2015a); Song et 

al. (2015c); Song et al. (2014); Song et 

al. (2013) 

HR  Mean, Standard deviation, 

Minimum and maximum values 

of HR, Heart rate reserve 

Birenboim et al. (2019), Gladwell et al. 

(2016), Song et al. (2015a), Song et al. 

(2015c); Song et al. (2014); Song et al. 

(2013) 

HRV  RR or NN interval, SDNN, 

RMSSD, pNN50, LF, HF, 

LF/HF, CCV-LF, CCV-HF, 

CCV-LF/HF, SD1 

Walford et al. (2017), Chen et al. 

(2018) 

ECG HR Average HR 

 HRV RR or NN interval, SDNN, 

RMSSD, QT variability index 

(QTVI) 

Birenboim et al. (2019), Chrisinger and 

King (2018), Chen et al. (2018), 

Osborne and Jones (2017) 

EDA/GSR  nSCR; AmpSum; PhasicMax; 

Global Mean; Max Deflection 

Chen et al. (2018), Osborne and Jones 

(2017) 

ST  Mean, Minimum and maximum 

values, Standard deviation 

Osborne and Jones (2017) BVP  Amplitude, IBI, HR, HRV 

Gidlow et al. (2016b) Salivary cortisol  Salivary cortisol concentrations 

Song et al. (2015b) BP  SBP and DBP 

Chen et al. (2018) EMG Facial muscles EMG amplitude 

Behaviour 

Twardzik et al. (2019); Kim et al. 

(2019), Dixon et al. (2018), Matsuda et 

al. (2018); Kim et al. (2016), Ottosson 

et al. (2015) 

Gait Gait speed Mean gait speed 

Cadence Mean left foot cadence 

Stride length Left foot stride length 

Gait stability Maximum Lyapunov exponent 

(Max LE) 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

Acceleration Signal vector 

magnitude (SVM) 

Turning gait  

Stevenson et al. (2019), Matsuda et al. 

(2018) 

Eye movement  Fixations per minute, Fixation 

duration, Intensity of eye 

movement 

Matsuda et al. (2018) Facial expressions AUs FACS 

Matsuda et al. (2018) Head movement Head tilt 

(Looking 

up/down, 

right/left) 

Head tilt per second, average 

and standard deviation of the 

time interval looking at each 

direction 

Cognitive 

Bailey et al. (2018), Tilley et al. (2017), 

Neale et al. (2017), Hollander and 

Foster (2016), Chen et al. (2016), Chen 

et al. (2018) 

 

EEG  Delta (0.5–3 Hz), Theta (4–7 

Hz), Alpha (8–15 Hz), Beta (16–

31 Hz), Gamma (32–100 Hz) 

 

Levels of excitement, 

engagement, and frustration (as 

interpreted by Emotiv Affectiv 

Suite proprietary EEG software) 

 

Levels of meditation/relaxation 

(as interpreted by NeuroSky 

proprietary EEG software) 

 Physiological 

Landscape – Natural 

(Water bodies, Green 

vegetation, mountain, 

forest) and Urban 

(Built environment) 

Chang et al. (2008), Ulrich et al. (1991) EMG Facial muscles EMG amplitude 

 Chang et al. (2008) BVP  BVP amplitude 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

 Lacuesta et al. (2017), Sahlin et al. 

(2016), Greenwood and Gatersleben 

(2016), Valtchanov et al. (2010), 

Laumann et al. (2003), Triguero-Mas et 

al. (2017), Yu et al. (2018), 

HR  Mean, Standard deviation, 

Minimum and maximum values 

of HR 

 Elsadek et al. (2019), Yu et al. (2018), 

Song et al. (2018), Triguero-Mas et al. 

(2017), Lacuesta et al. (2017), Li and 

Sullivan (2016), Kobayashi et al. 

(2015), Lee et al. (2015) 

HRV  LF, HF, LF/HF, CCV-LF, CCV-

HF, CCV-LF/HF 

 Valtchanov et al. (2010), Li and 

Sullivan (2016), Ulrich et al. (1991) 

Skin-conductance 

level 

  

 Hunter (2019), Triguero-Mas et al. 

(2017), Kobayashi et al. (2017), Lee et 

al. (2015), Tyrväinen et al. (2014), 

Markevych et al. (2014), Jiang et al. 

(2014), Roe et al. (2013), Beil and 

Hanes (2013), Thompson et al. (2012), 

Lee et al. (2009) 

Salivary cortisol  Salivary cortisol level 

 Gidlow et al. (2016a) Hair cortisol  Hair cortisol concentration 

 Hunter (2019), Yu et al. (2018), Beil 

and Hanes (2013) 

Alpha-amylase  Salivary amylase levels 

 Yang et al. (2019), Yu et al. (2018), 

Triguero-Mas et al. (2017), Stigsdotter 

et al. (2017), Sahlin et al. (2016), 

Greenwood and Gatersleben (2016), 

Lee et al. (2015), Tsunetsugu et al. 

(2013), Beil and Hanes (2013), Lee et 

al. (2009) 

BP  SBP and DBP 

 Song et al. (2018) oxyhemoglobin 

(oxy-Hb) 

 oxy-Hb concentration in the 

right and left prefrontal cortex 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

 Song et al. (2017), Qin et al. (2013), 

Gladwell et al. (2012), Ulrich et al. 

(1991), Ulrich (1981) 

ECG HR Mean, Standard deviation, 

Minimum and maximum values 

of HR 

  HRV RR or NN interval, SDNN, 

RMSSD, LF, HF, LF/HF 

 Laumann et al. (2003) IBI   

 

 

 

van den Berg et al. (2015) ECG RSA Peak-valley RSA 

  ICG PEP  

 Li and Sullivan (2016) BT   

 Lee et al. (2015), Lee et al. (2009) Pulse rate   

 Behaviour 

 Hollander et al. (2019), Elsadek et al. 

(2019), Crosby and Hermens (2018), 

Franěk et al. (2018a), Cottet et al. 

(2018), Dupont et al. (2017), 

Valtchanov and Ellard (2015), Berto et 

al. (2008) 

Eye movement  Fixations, Fixation Durations, 

Saccade amplitude, Blink 

counts, and Scanpath lengths 

 Korpela et al. (2002) Vocal expressions 

of joy, anger, and 

emotional 

neutrality 

 Reaction times to vocal 

expressions 

 Franěk and Režný (2017) Gait  Walking speed 

 Hietanen et al. (2007), Svoray et al. 

(2018) 

Facial expressions   

 Willis et al. (2004) Video-based 

observational/ 

Video camera 

recorded captured 

behaviour 

Microscopic 

movement 

patterns 

Walking behaviour (walking 

speed and spacing behaviour) 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

 Cognitive 

 Kim et al. (2019b), Grassini et al. 

(2019), Qin et al. (2013), Yang et al. 

(2011), Chang et al. (2008), Ulrich 

(1981) 

EEG  Delta (0.5–4 Hz), Theta (4–8 

Hz), low Alpha (8–11 Hz), high 

Alpha (11–13 Hz), Beta (13–30 

Hz), and low Gamma (30–45 

Hz) 

 

Levels of excitement, 

engagement, and frustration (as 

interpreted by Emotiv Affectiv 

Suite proprietary EEG software) 

 Tang et al. (2017), Kim et al. (2014), 

Martínez-Soto et al. (2013), Kim et al. 

(2010a), Kim et al. (2010b) 

fMRI  Brain activation (frontal lobe, 

temporal lobe, parietal lobe and 

occipital lobe) 

Soundscape - Nature 

sound (bird song) 

Noise (traffic noise) 

 

Physiological 

Dai and Lian (2018), Irwin et al. (2011) ECG HR  

Hedblom et al. (2019), Alvarsson et al. 

(2010) 

Skin conductance  Skin conductance levels 

Lu et al. (2018) BP  SBP and DBP 

Behaviour 

Franěk et al. (2018b) Gait   Walking speed 

Cognitive 

Dai and Lian (2018), Irwin et al. (2011) fMRI  Cerebellum posterior activity; 

Parahippocampal gyrus activity; 

Cingulate gyrus activity; 

Precuneus activity 

Landmark and 

Navigation 

 

Behaviour 

Wenczel et al. (2017), Aspinall et al. 

(2014) 

Eye movement  Visual acuity, fixation count, 

fixation duration and pupil 

diameter 

Gaire et al. (2017) Gait  Walking speed pattern 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

Cognitive 

Slone et al. (2016) fMRI  Brain (precuneus, retrosplenial 

cortex, and hippocampus) 

activity 

Graffiti and Sculptures Behaviour 

James and O’Boyle (2019), Mitschke et 

al. (2017) 

Eye movement  Fixation duration 

Cognitive 

James and O’Boyle (2019) fMRI  Parahippocampal gyrus (PH) 

activation level, Fusiform gyrus 

(FF) activation level  

Outdoor/ Pedestrian 

lighting 

Physiological 

Castro-Toledo et al. (2017) HR  Mean, Standard deviation 

Behaviour 

Rahm and Johansson (2018); Pedersen 

and Johansson (2018) 

Gait  Walking speed 

 Ability to perform 

visual tasks 

 Obstacle detection, Facial 

recognition, Signpost reading 

Stair walking  Behaviour 

Miyasike-daSilva et al. (2011); Zietz 

and Hollands (2009) 

Eye movement  number of fixations, fixation 

time, fixation duration 

Fujiyama and Tyler (2010) Gait  Walking speed 

Crosswalk Behaviour 

Tageldin and Sayed (2019), Kadali and 

Vedagiri (2016), Havard and Willis 

(2012) 

Pedestrian 

behaviour 

recorded on 

camera   

 Step frequency, step length, 

platoon, rolling behaviour, speed 

and path change condition of 

pedestrian 

Plant Cognitive 

Oh et al. (2019) EEG  Frequency band: Alpha wave 

(8–13 Hz); Theta wave (4–8 Hz) 

Floral scent Physiological 
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Environmental features Reference (s) Bodily response Feature Parameter (s) 

Jo et al. (2013) HRV   

Jo et al. (2013) Pulse rate   

Jo et al. (2013) BP   

Cognitive 

Jo et al. (2013) NIRS  Cerebral activity 

Plant colour Cognitive 

Sadek et al. (2013) NIRS  Brain activity in the frontal, 

temporal, parietal and occipital 

lobes. 

Air pollution Physiological 

Shields et al. (2013) HRV  SDNN, LF, HF, LF/HF 

Cognitive 

Pujol et al. (2016) fMRI  Brain activation 

Note. HR = heart rate; HRV = heart rate variability; ECG or EKG = electrocardiogram; EDA = electrodermal activity; GSR = galvanic skin 

response; ST = skin temperature; BVP = blood volume pulse; BP = blood pressure; EMG = electromyography; SDNN = standard deviation of the 

NN interval; RMSSD = square root of the mean of the sum of difference of successive NN intervals; SDSD = standard deviation of difference 

between adjacent NN intervals; pNN50 = percentage of NN pairs that differ by 50 milliseconds in the entire recording, TINN = HRV triangular 

index (TI) and triangular interpolation of RR interval histogram; TP = total spectral power (0–0.4 Hz); VLF = spectral power in very low range 

frequencies (0.003–0.04 Hz); LF = spectral power in low range frequencies (0.04–0.15 Hz); HF = spectral power in high range frequencies (0.15 

Hz); LF/HF = ratio between LF and HF power; CCV-LF = coefficient component variance of LF; CCV-HF = coefficient component variance of 

HF; CCV-LF/HF = coefficient component variance of LF/HF; AU = action units; FACS = facial action coding system; SBP = systolic blood 

pressure; DBP = diastolic blood pressure; ICG = impedance cardiogram; PEP = cardiac pre-ejection period; RSA = respiratory sinus arrhythmia; 

fMRI = functional magnetic resonance imaging; NIRS = near-infrared spectroscopy. 
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frequency bands. The lower frequency bands (Delta and Theta) correlate with less intense brain 

functions such as sleep, meditation, and daydreaming (Bailey et al., 2018). Precisely, the Delta 

band features slow and loud brainwaves and is generated in deepest meditation, and dreamless 

sleep and the Theta band occurs most often in light sleep or extreme relaxation (Kim et al., 

2019b). Alpha frequency band correlates with a relaxed brain and is generated during quietly 

flowing thoughts and in some meditative states (Kim et al., 2019b; Bailey et al., 2018). The 

higher frequency bands: Beta band dominates our normal waking state of consciousness when 

attention, is directed towards cognitive tasks and is generated when anxious or stressed (Kim 

et al., 2019b) and Gamma band correlates with heavier mental loads such as concentration and 

stress (Bailey et al., 2018). 

 

2.8 Summary and Research Gaps 

This finding indicates that momentary stressful situations and abnormalities within the 

environment can evoke physiological (HR and HRV), behaviour (gait, eye movement) and 

cognitive (EEG) responses that could potentially be detected through wearable sensors. 

However, given the inconsistency in the previous findings, several necessary research and 

methodological gaps need to be addressed before adopting bodily response-based assessment 

for older adults. 

 

2.8.1 Research Gap One: Informativeness of Bodily Response 

Deploying wearable sensors in an ambulatory, real-world environment poses several 

challenges that can diminish the signals’ informativeness. For instance, a recent study reported 

that their EDA data collected with a wearable sensor in an ambulatory, urban environment did 

not show any variation due to the low sampling rate (Birenboim et al., 2019). Another study 

using a wearable EEG sensor also reported stability issues (Saitis and Kalimeri, 2018). Even 
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stable wearable sensors with sufficient sampling rates usually have fluctuations in their raw 

signals caused by physiological factors, human variability, sensor variability, environmental 

condition, and physical effort resulting from walking (Kyriakou et al., 2019). Although the raw 

signal can be filtered to remove external interferences, it is still ambiguous what bodily 

responses contain relevant information about human-environment interaction in an 

ambulatory, real-world environment. 

 

Prior studies adopting human-centric sensing used a modality (e.g., EEG, HRV, EDA, or gait) 

or a feature extracted from a modality (e.g., mean EDA, arousal, HR, or signal vector 

magnitude) to represent people’s interaction and experience in the environment (Kim et al., 

2020; Birenboim et al., 2019; Chrisinger and King, 2018; Triguero-Mas et al., 2017; Kim et 

al., 2016). Generally, all these modalities and features contain relevant information. However, 

the relevance of the information is determined by the task to be performed, the environmental 

stimuli, and the prevailing conditions (Hall, 1999; Muzammal et al., 2020; Mursalin et al., 

2017). For example, Birenboim et al. (2019) used EDA, HR, and HRV to represent people’s 

interaction with the environment. Their findings revealed that only EDA and HRV were 

consistent in detecting stressful environmental situations. This implies that although each 

feature or modality contains information about people’s interactions, some of the features or 

modalities could be more informative than others. As a result, human-centric sensing can 

become ineffective and unreliable when people’s interaction and experience with the 

environment is represented with an uninformative modality or feature. Therefore, the first 

objective of this research is to present an approach to assess the relevance and informativeness 

of people’s bodily responses. 
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2.8.2 Research Gap Two: Relationships in Older Adult’s Bodily Responses Resulting 

from their Interaction with the Environment 

Older adults usually achieve mobility in outdoor neighbourhood environments either by 

walking on foot or with mobility aids. The common mobility aids include walking stick, 

walking frame and wheelchair (Grimmer et al., 2019). Most of the existing studies that use 

wearable sensing technologies focus only on humans or the interaction between humans. A 

few of these studies that focus on human-environment interaction often attach the sensors to 

the mobility aid to assess the environmental condition (Mascetti et al., 2020; Barbosa et al., 

2018; Mourcou et al., 2013). An example is a recent study that attached inertial sensors to the 

users’ wheelchair to detect urban features like curb ramps, steps, or other obstacles along a 

path (Mascetti et al., 2020). Although these works prove the feasibility of using sensor data 

collected during human movement (mobility) to assess an environmental condition, they might 

not be a good representation of human-environment interaction. Human responses to 

environmental conditions are more complicated than mobility aid usage; thus, sensors attached 

to humans are inherently subject to greater variability (than sensors attached to mobility aids), 

which could affect built environment assessment. Therefore, it is essential to understand the 

variability in older adults’ responses to different environmental conditions before adopting 

elderly-centric sensing. Therefore, the second objective of this study is to examine the 

relationships in older adult’s bodily responses resulting from their interaction with the 

environment.  

 

2.8.3 Research Gap Three: Optimised Environmental Stress Detection 

Although the older adults’ perceived stress assessment and observers’ audit provide a good 

assessment of an environmental condition, they will be less efficient, costly, and time-

consuming when deployed on a large scale because they are manually planned. Given the rate 
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of population ageing and the likelihood of older adults encountering excessive environmental 

demands during their daily trips, such optimisation is important to efficiently and timely 

understand their relationship with the environment to inform urban planning and design. 

Therefore, the third objective of this study is to detect older adults’ stressful environmental 

interactions in near-real time. 

 

2.8.4 Research Gap Four: Influence of Visuospatial Configuration of Urban Space on 

Older Adults’ Stress Response 

There has been a rapid decline in mobility indices, including trip frequency, trip distance, and 

unmet travel demands among older adults (Shumway‐Cook et al., 2003; Portegijs et al., 2017). 

In a sense, this may indicate that the affordance (i.e., what a perceived element or scene has to 

offer the perceiver [Gibson, 1977]) for older adults’ involvement in the environment might be 

different from that of the average person. However, there is little to no research into 

understanding how the perceived elements (specifically, the visuospatial configuration) of the 

environment influence older adults’ involvement—most studies focused on younger adults. A 

few studies have been conducted to understand the relationship between the visuospatial 

configuration of urban space and human physiological response (Li et al., 2016; Hijazi et al., 

2016; Knöll et al., 2018; Ojha et al., 2019; Xiang et al., 2020). All of these studies focused on 

younger adults with an average age of about 25 years. Drawing on these findings to guide urban 

planning and design may discriminate against older adults even though they are more 

susceptible to stressful urban environment encounters. This could further hinder current efforts 

in creating universal designs and age-friendly cities and communities. Therefore, the fourth 

objective of this research is to examine the influence of visuospatial configuration of urban 

space on older adults’ stress response. 
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PART II: TOWARDS ELDERLY-CENTRIC AND WEARABLE 

SENSING
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CHAPTER 3  

 

RESEARCH METHODOLOGY3 

 

3.1 Introduction 

The research methodology to achieve the goal of this study is presented in this chapter. Older 

adults aged 65 and above were recruited to participate in an outdoor environmental walk on a 

predefined path while equipped with non-intrusive wearable sensors. The conditions of the 

path were assessed using older adults’ perceived rating and observers’ audit. Details of the 

experiment design, field data collection, summary of the collected data, wearable sensors, data 

pre-processing and methods are presented in this chapter. 

 

 
3 This chapter is based on studies that are published or currently under consideration for 

publication. 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). The influence of urban visuospatial 

configuration on older adults’ stress: A wearable physiological-perceived stress sensing and 

data mining based-approach, Building and Environment, 108298. 

https://doi.org/10.1016/j.buildenv.2021.108298 
 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Wearable sensing and mining of the 

informativeness of older adults’ bodily responses to detect demanding environmental 

conditions, Environment and Behavior. (Under Review). E&B-20-0532.R2 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Learning to detect older adults’ 

environmental stress hotspots to improve neighbourhood mobility: A multimodal physiological 

sensing, machine learning and risk hotspot analysis-based approach, Cities (Under Review). 

JCIT-D-21-01443 
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3.1.1 Methodological Underpinning: Ecological Validity 

Understanding human behaviour and cognition in the ‘real-world’ setting has been a long-

sought-after goal in psychological science. However, most of the existing studies in this field 

were conducted in the laboratory—they often employed stationary sensors (see literature 

review in Chapter 2). The experiment design used in laboratory or controlled settings to assess 

human reaction to the environment lack sufficient realism to produce adequately meaningful 

findings of a person’s interaction with the environment in real life. This study aims to 

approximate the real world as much as possible and ensure ecological validity, hence the reason 

for designing the experiment in a natural setting and using wearable sensors.   

 

Ecological validity refers to the extent to which a situation or task within a study can be 

generalised beyond the present situation (Schmuckler, 2001; Adolph, 2020). A prominent 

definition of ecological validity within the environment context was provided by 

Bronfenbrenner (1977). According to Bronfenbrenner (1977), “ecological validity refers to the 

extent to which the environment experienced by the subjects in a scientific investigation has 

the properties it is supposed or assumed to have by the experimenter” (Bronfenbrenner, 1977, 

p. 516). The nature of the stimuli is another component of ensuring ecological validity 

(Schmuckler, 2001). For instance, Neisser (1976) stated that ecologically valid stimuli consist 

of spatially, temporally and multimodal information.  

 

Using an environment that is natural or normal to the participant has higher ecological validity. 

It is more likely to obtain a result representing everyday life; in that way, results are more 

generalisable to the target population and other environment settings (Holleman et al., 2020; 

Adolph, 2020; Schmuckler, 2001). However, if a study is set up in laboratory settings or where 

there is high control, it is not in the participants’ natural settings. It, therefore, does not reflect 
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everyday life, so the ecological validity is low (Holleman et al., 2020; Adolph, 2020; 

Schmuckler, 2001). Also, conducting this type of research in laboratory settings or controlled 

setting is arguably reductionist since the situation is very controlled and only looks at one 

factor; it simplifies complex human behaviour by isolating the independent variable and does 

not look at the combination of factors (Adolph, 2020). It is also usually more complicated for 

the researcher to generalise and apply the results with low ecological validity; this is because 

there are likely to be demand characteristics or social desirability bias where the participants 

change their behaviour to what they think the researcher wants to see (Schmuckler, 2001). 

 

In many ways, this work is firmly ecologically valid, examining naturalistic behaviour in 

natural settings and employing spatially and temporally rich stimuli that extend multimodally 

as well. 

 

3.2 Experiment Design 

The experiment design and procedures are in three main phases: (1) enrolment phase; (2) 

practice phase; and (3) experimental phase. The flowchart depicting the three phases is 

presented in Figure 3.1. A detailed explanation of each phase is presented in the following 

sections. 

 

3.2.1 Enrolment 

The enrolment phase and experimental phase were conducted between September and 

November 2019. Participant recruitment and data collection took place in Hong Kong (Hung 

Hom and Ho Man Tin). Recruitment posters and emails were distributed to potential 

participants in the networks of the Institute of Active Ageing, The Hong Kong Polytechnic 
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University. The Institute of Active Ageing is an interdisciplinary research and academic centre 

for the advancement of knowledge and practice to facilitate active ageing.   

 

 

Figure 3.1: Flowchart of experiment procedure. 
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3.2.2 Screening: Eligibility Criteria 

The eligibility criteria were set to ensure that all participants share a common characteristic. 

The following eligibility criteria were used to screen the participants: age, walking ability, and 

cognitive state. All participants must meet these criteria to be eligible to participate in this 

study. A detailed explanation of these criteria is provided in the following. 

 

Age 

In Hong Kong and many other countries, older adults are characterised as people aged 65 years 

or over (Elderly Commission, 2020; United Nations, 2020). Therefore, only people aged 65 

years or over were eligible to participate in the study. 

 

Walking Ability 

This experiment involves walking on a predefine path for about 15 min walking distance. 

Hence, the physical ability to walk the path was assessed based on the participant’s ability to 

walk unassisted by another person for at least 15 min. Furthermore, the Tinetti Assessment 

Tool (Tinetti, 1986) was used to assess the older adults’ functional gait and balance. The Tinetti 

Assessment Tool is a valid, reliable, simple, easily administered task-performance test that 

measures older adults’ gait and balance and requires 10 to 15 min to complete (Tinetti, 1986; 

Lewis, 1993; Wong, 2019). The Tinetti Assessment Tool is shown in Appendix A.  

 

Cognitive Status 

This experiment involves older adults self-reporting their experience (i.e., perceived 

assessment of the path). The prevalence of subjective cognitive decline among older adults 

could affect their assessment (Elderly Health Service, 2016; CDC, 2019). Therefore, the 

participants had to meet the recommended cut-off score for The Mini-Mental State 
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Examination (MMSE) to be eligible to participate in this study. The Mini-Mental State 

Examination (MMSE) (Folstein et al., 1975) was used to assess the cognitive mental status of 

older adults. The MMSE is quick, easy to use, acceptable, valid, reliable and widely used 

screening instruments for assessing cognitive functions both in clinical and research settings 

(Folstein et al., 1975; Bilgel et al., 2019; Pagliai, et al., 2019). The MMSE comprises eleven 

questions and requires only 5 to 10 min to administer. The MMSE consists of two main parts. 

Part one examines the participants’ oral responses focusing on orientation, memory, and 

attention of the participants. Part two examines the participants’ ability to name objects, follow 

verbal and written commands, write a sentence, and copy a complex polygon similar to a 

Bender-Gestalt Figure. The maximum score for part one is 21, the maximum score for part two 

is nine, and the maximum total score is 30. A cut-off score of 23/24 distinguishes between 

cognitive impairment and normal participants. The original version (Folstein et al., 1975) is 

shown in Appendix B. 

 

The Cantonese version of the MMSE (CMMSE) (Chiu et al., 1994) was used to screen the 

older adults in Hong Kong. The CMMSE is readily comprehensible to the older adults in Hong 

Kong. The scale has been proven to have good reliability and validity to detect cognitive 

impairment among Hong Kong elderly (Chiu et al., 1994; Lao et al., 2019). A cut-off score of 

19/20 is recommended as an indication of cognitive impairment among Hong Kong older 

adults. According to Chiu et al. (1994) the educational level of the participants has a significant 

effect on the MMSE scores. In order to factor in this difference, three different cut-off scores 

were recommended: cut-off score ≥ 18 points for the illiterate elders, cut-off score ≥ 20 points 

with 1–2 years of education; and cut-off score ≥ 22 points with more than 2 years of education 

(Chiu et al., 1998; Lao et al., 2019). The CMMSE is shown in Appendix B.  
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3.2.3 Eligible Participants 

A total of 136 people responded to the invitation to participate in the experiment. Only 61 

participants met the age requirement for this experiment (i.e., 65 years or over). These 

participants were scheduled for further screening, the practice phase and the experiment phase 

based on their availability. Two participants were scheduled for each working day (Monday to 

Friday) in November and October 2019. During the first week in November, a total of ten 

people aged 65 years or over were screened for their walking ability and cognitive status. They 

all met the eligibility criteria; hence they proceeded to the practice and experimental phase of 

the study. Details of their screening are provided in the following.  

 

Unfortunately, there was political unrest in Hong Kong, and the University had to suspend all 

Teaching and Research activities (the University closure started from the second week in 

November). The university closure lasted for several months-this significantly affected this 

experiment. The COVID-19 restrictions in Hong Kong also affected the resumption of the 

experiment – especially because the participants in this study were among the COVID-19 

vulnerable population. 

 

Due to all these unforeseen and uncontrollable events and the completion time for this study, 

this study proceeded to analyse the data collected from only ten participants. All ten 

participants were able to walk unassisted by another person for at least 15 min. Nine 

participants achieved a total score between 25-28 points on the Tinetti Assessment Tool, 

indicating low fall risk. Only one participant (participant seven) achieved 19-24 points on the 

Tinetti Assessment Tool, indicating medium fall risk. Participant seven used a walking stick 

for mobility during the environment walk. All ten participants achieved a score ≥ 22 points on 

the CMMSE. A cut-off score of 19/20 is recommended to indicate cognitive impairment among 
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Hong Kong older adults (Chiu et al., 1998; Lao et al., 2019). The demographic information of 

the participants is presented in Table 3.1. Despite the small number, each participant provided 

rich multimodal data; the multimodal data was harnessed to enhance the generalisation of the 

study. More details about using multimodal data to improve generalisation are provided in 

Chapter 6. 

 

Table 3.1: Demographic information of participants 

Participant Gender Age (years) Height (cm) Weight (kg) Body mass index (kg/m2) 

1 Female 65 162.0 57.0 21.7 

2 Female 65 158.0 62.0 24.8 

3 Male 66 160.0 71.0 27.7 

4 Female 75 161.1 67.5 26.0 

5 Male 68 173.0 83.0 27.7 

6 Female 72 157.5 54.4 21.9 

7 Female 71 152.4 60.5 26.0 

8 Female 66 157.5 59.0 23.8 

9 Female 66 154.9 60.0 25.0 

10 Male 66 175.0 77.7 25.4 

 

3.2.4 Practice Session 

The practice session served as an opportunity to demonstrate the wearable sensors and 

familiarise the participants with the experiment procedures. The participants completed and 

signed an informed consent form after obtaining written and spoken information about the 

experiment procedures. The demographic information of the participants (Table 3.1) was 

collected during the practice session.  

 

3.2.5 Path for Environmental Walk 

An approximate 570 m path was carefully selected in the neighbourhood of Hung Hom, 

Kowloon, Hong Kong, to capture a range of environmental conditions. The path consists of  
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Figure 3.2: Field experiment overview. (a) Predefined path for environmental walk. (b) Older 

adult equipped with wearable sensors.  

Note. Basemap data copyrighted Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Air bus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

Photographs by author. 

 

spacious and narrow streets, green and high-density building areas, playgrounds, a gas station, 

a car wash, a car fitting shop, crosswalks (with and without traffic or pedestrian signal), 

sidewalks with even and uneven slopes, different street materials, among other features as 

shown in Figure 3.2, Figure 3.3, and Figure 3.4. Previous research efforts on human-

environment interaction have proven that these environmental conditions stimulate unique 

human experiences (Birenboim et al., 2019; Duchowny et al., 2019; Triguero-Mas et al., 2017; 

Kim et al., 2016). 
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Figure 3.3: Photo description of path segment A to D. 

Note. Photographs by author. 
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Figure 3.4: Photo description of path segment E to H. 

Note. Photographs by author. 

 

3.3 Field Data Collection: Observers’ Audit of Path Condition 

The environmental condition on the path was documented by two trained observers using the 

Environment in Asia Scan Tool—Hong Kong version (EAST-HK) (Cerin et al., 2011). The 

EAST-HK is a 91-item validated audit tool for assessing the walkability of neighbourhoods in 

Hong Kong. It was developed and validated in Hong Kong by researchers from The University 

of Hong Kong (Cerin et al., 2011). Other researchers have used the EAST-HK tool to assess 
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neighbourhood environments in Hong Kong (Barnett et al., 2015; Zhang et al., 2019). The 

EAST-HK tool was supplemented with the Older adults Senior Walking Environmental 

Assessment Tool—Revised (SWEAT-R) (Michael et al., 2009). The SWEAT-R is a 162-item 

validated tool for auditing the presence and quality of built environment features that are 

significant for older adult mobility (Michael et al., 2009; Cunningham et al., 2005). The 

SWEAT-R was validated in Portland, Oregon, by researchers from Oregon Health and Science 

University, The Center for Health Research, Kaiser Permanente, Portland, Oregon, Simon 

Fraser University- Harbour Centre, University of California – Irvine, and Oregon State 

University. Recent researchers that adopted the SWEAT-R tool for neighbourhood assessment 

include Moniruzzaman and Páez (2016) and Duchowny et al. (2019). Both tools are organised 

into four built-environment multidimensional domains: functionality; safety; aesthetics; and 

destination as shown in Appendix C (Cerin et al., 2011; Michael et al., 2009).  

 

The EAST-HK was chosen because it contains walking-related environmental attributes 

common to East Asian ultra-dense cities, particularly relevant to Hong Kong. Additionally, 

SWEAT-R contains walking-related environmental attributes common to most urban 

environment, designed to be specific to older adults needs, but lacks most of the attributes in 

East Asian ultra-dense cities. Therefore, integrating the EAST-HK with SWEAT-R (Appendix 

C) is necessary for assessing the conditions of the path for older adults in Hong Kong. The 

integrated audit tool and the location of the path was presented to the observers before the path 

audit. Both observers have an MSc in urban planning. One of the observers works in The Hong 

Kong Polytechnic School of Design and the other in the Department of Building and Real 

Estate, The Hong Kong Polytechnic University. The observers assessed the path at the same 

time but worked independently. The average assessment time was 1 hr 13 min. The observers 
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compared their assessment and any differences in their assessment were discussed to reach a 

consensus. 

 

The path was divided into 24 sections grouped in eight distinct environment scenarios—

segment A to segment H—as shown in Figure 3.2. The length of each section is about 23.75 

m. The segments were defined to cluster sections with a similar environmental condition 

expected to stimulate similar human experiences. For instance, the participants had to walk 

through an alley (segment A), walk along a busy street with bus stops (segment C), use a 

crosswalk with high traffic (segment D), pass through a green space (segment G), and walk 

through a subway with graffiti (segment H). Following previous research (Duchowny et al., 

2019; Michael et al., 2009), each 23.75 m section was classified according to the level of built 

environmental demand (high or low) for older adults’ mobility based on the integrated EAST-

HK and SWEAT-R tool. Sections of the path that were assessed as high demand totalled 372.57 

m (65%). The high-demand sections consist of existing built environment features such as path 

obstructions (32%), unattractive buildings and sights (49%), cracked, uneven and inconsistent 

path surfaces (4%), parked and moving vehicles (5%), crosswalk (4%), graffiti (4%). The 

overall conditions of the path in high-demand sections were rated as poor/moderate, while low-

demand sections were rated as moderate/good. The path audit is presented in Table 3.2.
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Table 3.2: Observers’ path audit 

Environmental feature Segment A Segment B Segment C Segment D 

Functionality 

Buildings     

Building type 6-12 floors apartment 

blocks 

6-12 floors apartment 

blocks 

6-20 floors apartment 

blocks 

6-20 floors apartment blocks 

     

Walking surface     

Type of path Footpath Footpath Footpath Crosswalk 

Path condition Poor condition, wet 

and slippery 

Well-maintained Well-maintained Well-maintained 

Path slope Flat Flat Flat Flat 

Path obstructions Bin, household items, 

bamboo scaffold, 

cracked path surface 

Inconsistent path 

surface quality, cracked 

surface, and pothole, 

motor vehicles parked 

on footpath, shops on 

street 

Bus stops, traffic cones, 

bollard barricade, shops on 

street 

None 

Path material Concrete Concrete Brick Concrete 

Curb cut features - Yes, no colour and 

material contrast with 

ground surface 

Yes, colour and material 

contrast with ground surface 

Yes, colour and material 

contrast with ground surface 

     

Permeability     

Street connectivity Two connecting 

streets 

Five connecting streets Three connecting streets Three connecting streets 

Rating for functionality Poor Moderate Moderate Good 

Safety 

Personal     

Street lighting Inadequate Good Good Good 
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Environmental feature Segment A Segment B Segment C Segment D 

Stray dogs /other 

animals 

Stray dogs None None None 

Presence of people Yes Yes Yes, crowded Yes, crowded 

Signs of 

crime/disorder 

None None None None 

     

Traffic     

Traffic load - - - Crossing aids 

Pedestrian safety - Parked vehicles make it 

difficult to see 

incoming traffic 

Vehicles moving to and fro 

gas station and car wash  

Traffic calming devices 

Rating for safety Poor Moderate Moderate Good 

Aesthetics 

Views     

Attractive buildings None Few Few Few 

Abandoned/vacant 

buildings 

None None None None 

Attractive natural 

sights 

None None None None 

     

Streetscape     

Litter Yes, dominant feature Yes, but not dominant 

feature 

None None 

Broken bottles and 

cans 

Yes, dominant feature None None None 

Dog/animal fouling Yes, but not dominant 

feature 

None None None 

Graffiti None None None None 

Noise pollution None Low Moderate Moderate 

Air pollution None None Low Low 

Presence of trees  None None None None 
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Environmental feature Segment A Segment B Segment C Segment D 

Rating for aesthetics Poor Moderate Moderate Moderate 

Destinations 

Transport-related - Bus stop Bus stop Bus stop 

Public open space - - - - 

Recreational - - Gym/fitness facility Gym/fitness facility 

Government/public 

services 

- - Community/elderly centre, 

Health services 

Community/elderly centre, 

Health services, Religious 

places 

Public facilities - Benches/places for 

sitting 

- - 

Commercial 

destinations 

Convenience store, 

Chained fast food, 

Chinese coffee/tea, 

Chinese non-fast food, 

office buildings  

Convenience store, 

Clothing, Pharmacy, 

Chained fast food, 

Chinese coffee/tea, 

Chinese non-fast food, 

Office buildings, 

Laundry 

Convenience store, 

Supermarket, Fresh food, 

Clothing, Pharmacy, 

Chained fast food, Chinese 

coffee/tea, Chinese non-fast 

food, Bakery, Banks, Hotel, 

Office buildings, 

Salon/barber 

Convenience store, 

Supermarket, Fresh food, 

Clothing, Pharmacy, Chained 

fast food, Chinese coffee/tea, 

Chinese non-fast food, 

Bakery, Banks, Laundry, 

Salon/barber 

Overall rating for 

segment 

Poor Moderate Moderate Good 
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Table 3.2: Observers’ path audit (continued) 

Environmental feature Segment E Segment F Segment G Segment H 

Functionality 

Buildings     

Building type 6-20 floors apartment 

blocks 

7-12 floors apartment 

blocks 

None None 

     

Walking surface     

Type of path Footpath Footpath Footpath 

and crosswalk 

Subway 

Path condition On-going construction Poor condition, wet and 

slippery 

Well-maintained Well-maintained 

Path slope Flat Flat Moderate Moderate 

Path obstructions Inconsistent path 

surface material and 

quality, cracked 

surface and pothole 

Stair, inconsistent path 

surface quality, cracked 

surface, and pothole 

None None 

Path material Brick and Steel Concrete Concrete Concrete 

Curb cut features Yes, colour and 

material contrast with 

ground surface 

None Yes, no colour and material 

contrast with ground surface 

None 

     

Permeability     

Street connectivity Two connecting 

streets 

Two connecting streets Two connecting streets One connecting street 

Rating for functionality Poor Poor Good Good 

Safety 

Personal     

Street lighting Good Inadequate Good Good 

Stray dogs /other 

animals 

None None None None 
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Environmental feature Segment E Segment F Segment G Segment H 

Presence of people Yes, crowded Yes Yes Yes 

Signs of 

crime/disorder 

None None None None 

     

Traffic     

Traffic load - - No crossing aids - 

Pedestrian safety Vehicles moving to 

and fro construction 

site 

- Incoming traffic is abrupt - 

Rating for safety Poor Poor Moderate Good 

Aesthetics 

Views     

Attractive buildings Few None Some None 

Abandoned/vacant 

buildings 

None None None None 

Attractive natural 

sights 

None None Some None 

     

Streetscape     

Litter Yes, dominant feature Yes, dominant feature None None 

Broken bottles and 

cans 

None None None None 

Dog/animal fouling None None None None 

Graffiti None None None Yes, dominant feature 

Noise pollution Moderate Low Moderate Moderate 

Air pollution Moderate None None Low 

Presence of trees None None Yes None 

Rating for aesthetics Poor Poor Good Poor 

Destinations 

Transport-related Bus stop - Bus stop Bus stop 

Public open space - Parks, Playground Parks, Playground Parks, Playground 
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Environmental feature Segment E Segment F Segment G Segment H 

Recreational - Outdoor sport fields Outdoor sport fields - 

Government/public 

services 

Community/elderly 

centre, Religious 

places 

- - - 

Public facilities - - Benches/places for sitting Benches/places for sitting 

Commercial 

destinations 

Convenience store, 

Supermarket, Fresh 

food, Clothing, 

Pharmacy, Chained 

fast food, Chinese 

coffee/tea, Chinese 

non-fast food, Banks, 

Hotel, Office 

buildings 

- - - 

Overall rating for 

segment 

Poor Poor Good Moderate 

 

  



 

 62 

3.4 Field Data Collection: Bodily Response and Perceived Response Collection 

A field experiment was designed for older adults to participate in an environmental walk. Older 

adults’ bodily responses and perceived stress assessment were collected during the 

environmental walk to achieve the aim of this study. The environment walk was conducted 

between 10 a.m. and 4 p.m. on dry days free from high winds or rain. The baseline 

measurements of the participants’ bodily responses were recorded during a 10 min rest period. 

After the baseline measurement, the participants walked the predefined path at a self-directed 

pace (comfortable pace) to optimise their experience on the path. The self-pacing enabled 

ecological validity and ensured that the walking activity was of mostly light intensity. The 

participants were instructed to behave how they usually would on a walking path. Two 

researchers accompanied the participants. One of the researchers was responsible for providing 

direction if needed, troubleshoot any technical malfunction with the wearable sensors and also 

present for safety and health purposes. The other researcher recorded a video of the 

environmental walk and took notice of any abnormal activity or event (ground truth provided 

by researcher). The accompanied researchers remained half a stride behind the participants to 

allow the participants to determine the pace. The researchers did not talk or walk along with 

the participant unless the participant called for assistant. 

 

After completing the first walk, the participants were asked to walk the same route again 

without wearing the sensors. Instead, the participants were asked to identify locations where 

they experienced stressful interactions with the environment (ground truth provided by 

participants). The participants also stated the intensity of their perceived stress (low or high 

intensity). A researcher accompanied and assisted the participants to document their responses. 

This approach was adopted to ensure that older adults accurately recall their experience. A 

shopping voucher of HK$100 was offered as compensation for participation. 
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3.4.1 Collected Bodily Responses and Environmental Data 

Only non-intrusive wearable sensing technologies were adopted in this study in order not to 

inhibit the older adults’ daily activity. For example, older adults may find it more comfortable 

walking with a smart band on their wrist and an insole sensor in their shoes than an inertial 

measurement unit (IMU) sensor attached to their ankle, or an electromyography (EMG) sensor 

attached to their arm. These smart non-intrusive wearable devices were used to collect 

physiological, behavioural, and cognitive data without any significant obstruction and 

discomfort to the older adults. The total sample of the collected data is shown Table 3.3. The 

walking activity affected the stability and functioning of the electroencephalography (EEG) 

sensor for five participants. Participant seven did not have valid data for further analysis. 

 

Table 3.3: Sample of collected bodily response and location data during environmental walk 

  Physiological  

data 

Cognitive 

data 

Behavioural  

data 

GPS 

Partici

pant 

Time to 

walk path 

(MM: SS) 

HR 

(𝑏 𝑚𝑖𝑛⁄ ) 

EDA 

(𝜇𝑆) 

EEG  

(𝜇𝑉) 

Pressure 

(𝑁 𝑐𝑚2⁄ ) 

Acceleration 

(𝑔) 

(𝜙, 𝜆) 

  1 Hz 4 Hz 128 Hz 50 Hz 50 Hz 1 Hz 

1 11: 31 700 2801 76741 35019 35019 700 

2 8: 47 527 2108 - 26300 26300 527 

3 9: 59 599 2397 - 29899 29899 599 

4 8: 55 535 2140 60745 26750 26750 535 

5 13: 47 827 3309 93023 41498 41498 827 

6 9: 56 596 2384 73592 29750 29750 596 

7 15: 01 - - - - - - 

8 10: 57 657 2628 58423 32850 32850 657 

9 8: 57 537 2148 - 26850 26850 537 

10 9: 00 540 2160 - 27001 27001 540 

Note. Ten min baseline measurements were recorded for each participant. HR = instantaneous 

heart rate computed from the inter-beat interval obtained from a PPG signal; 𝑏 𝑚𝑖𝑛⁄  = beats 

per minute; 𝜇𝑆 = Microsiemens; 𝜇𝑉 = Microvolts; 𝑁 𝑐𝑚2⁄  = Newton per square metre; 𝑔 = 

Acceleration of gravity; equivalent to 9.806 𝑚 𝑠2⁄ ; (𝜙, 𝜆) = (Latitude, Longitude) in degree; 

𝑛 𝐻𝑧 = n data points per second. 

 



 

 64 

3.4.2 Older Adults’ Perceived Stress During Environmental Walk 

All participants reported their perceived stress. The path was labelled using the commonly 

perceived stress reported by the participants (Figure 3.5).  

 

 

Figure 3.5: The commonly perceived stress among the participants. The path label is the 

perception of at least four participants out of ten. 

Note. Basemap data copyrighted Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Air bus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

 

Table 3.4: Perceived stress distribution on path 

Segment Total distance (m) Non-stress (m) Stress (m) Low stress (m) High stress (m) 

A 85.65 0 85.65 43.01 42.64 

B 72.60 72.60 0 0 0 

C 100.77 0 100.77 49.76 51.01 

D 15.45 0 15.45 15.45 0 

E 68.47 0 68.47 0 68.47 

F 78.48 0 78.48 57.98 20.50 

G 127.87 111 16.87 0 16.87 

H 19.88 0 19.88 0 19.88 

Total 569.17 32.26%* 67.74%* 29.20%* 38.54%* 

Note. * = Percentage of the total path; m = metre. 
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The path label is the perception of at least four participants (out of ten). This indicate that there 

is somewhat commonality in older adults’ perception of the path, and that each segment 

influenced their reaction. The proportion of the perceived stress along the path is presented in 

Table 3.4. The participants perceived 32.26% of the path as non-stress, 67.74% of the path as 

stress, 29.20% of the path as low stress, and 38.54% of the path as high stress. 

 

3.5 Wearable Sensors for Collecting Bodily Response and Environmental Data 

3.5.1 Physiological Response Sensors 

Heart rate (HR) measures, heart rate variability (HRV) measures and electrodermal activity 

(EDA) were recorded using a wristband-type sensor (Empatica E4). The Empatica E4 

wristband is a wearable research device that offers real-time physiological data acquisition 

(Empatica, 2019a). The technical specifications of the Empatica E4 wristband are provided in 

Figure 3.6. The Empatica E4 has four sensors: (1) Photoplethysmography sensor, (2) 

Electrodermal activity sensor, (3) 3-axis accelerometer and (4) Optical thermometer. These 

sensors produce the following data: (1) Blood volume pulse, at 64 Hz, (2) Inter beat interval: 

time, IBI (time) pair, (3) Electrodermal activity at 4 Hz, (4) XYZ raw acceleration at 32 Hz 

and (5) Skin temperature at 4 Hz (Empatica, 2019b). 

 

This device was chosen for the study because it is comfortable, lightweight, reliable, has many 

sensors, easy to install and use for older adults in outdoor conditions without interfering with 

their daily living activities. To the best of my knowledge, the E4 wristband is the only certified 

device to offer such characteristics at present time. The E4 wristband has been recently used to 

measure heart-related parameters (Birenboim et al., 2019; Kim et al., 2019) and EDA (Ojha et 

al., 2019; Birenboim et al., 2019) in urban and rural environment settings. The Empatica E4 

wristband was worn on the participant’s non-dominant hand (i.e., a right-handed participant 
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would wear it on their left wrist) to minimise motion artifacts and allowed to adjust for 10 min 

(Empatica, 2019c; Picard et al., 2016). 

 

 

Figure 3.6: The physiological sensor used in the experiment. 

Note. Image source: Empatica (2019b). 

 

3.5.2 Cognitive Response Sensors 

The brain electrical activity was recorded non-invasively from the scalp using a wearable 

EMOTIV EPOC+ 14 channel mobile EEG headset (Emotiv, 2019). The 14 channels 
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correspond to the international 10-20 position system (AF3, AF4, F3, F4, F7, F8, FC5, FC6, 

T7, T8, P7, P8, O1 and O2); P3 and P4 are the reference electrodes as shown in Figure 3.7. 

The EMOTIV EPOC+ headset records EEG at 128 Hz. 

 

 

Figure 3.7: The cognitive sensor used in the experiment. (a) 14 channel mobile EEG headset. 

(b) The position of the 14 channels corresponds to the international 10-20 position system. 

Note. Image source: Emotiv (2019). 

 

3.5.3 Behavioural (Gait and Motion) Response Sensors 

Gait and motion data were captured in real-time during the walking course using a commercial 

wearable Moticon SCIENCE insole sensor (Moticon, 2019) as shown in Figure 3.8. Each left 

and right insole contains 16 pressure sensors and 6-axis IMU. The position of the IMU sensor 

is the origin of the coordinate system; three dimensions in space for acceleration and angular 

rate. The insole sensor records data at 50 Hz.  

 

The Moticon SCIENCE insole sensor was chosen because it weighs no more than 80 grams, 

looks, and feels like a regular insole, reliable, easy to install and use for older adults in outdoor 

condition without interfering their gait. The validity and reliability of the Moticon SCIENCE 

insole sensor is verified in previous studies (Oerbekke et al., 2017; Stöggl and Martiner, 2017; 

Braun et al., 2015). The participants wore an approximately sized standardised neutral shoe 
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with the Moticon SCIENCE insole sensor sandwiched between the foot and the inside of the 

shoe. The original insole of the shoe was replaced with the Moticon SCIENCE insole sensor. 

The insole sensor was placed in both left and right shoes.  

 

 

Figure 3.8: The behavioural (gait and motion) sensor used in the experiment. (a) Positions of 

pressure sensors and inertial measurement unit (IMU) in the insole sensor. (b) Top view and 

bottom view of insole sensor. (c) Thickness of insole sensor. 

Note. Image source: Moticon (2019). 

 

3.5.4 Environmental Data Sensors 

Generally, the infrastructure of the urban environment and season where the path is located is 

uniform. However, the experiment was conducted on different days and different time-of-day, 

which may affect the participants’ bodily responses. Therefore, the environment temperature 

(°C) and humidity (%) for each experiment day and time-of-day were recorded from the Hong 

Kong Observatory. The environment temperature ranges from 24°C-29°C and the humidity 

ranges from 41%-55%. A belt-clip-type GPS sensor (Qstarz, 2019) as shown in Figure 3.9 was 

used to record GPS coordinates in latitude and longitude. 
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Figure 3.9: The GPS sensor used in the experiment. 

Note. Image source: Qstarz (2019). 

 

3.6 Ethics Statement 

Ethical approval was obtained from the Human Subjects Ethics Sub-committee (HSESC) of 

The Hong Kong Polytechnic University (Reference Number: HSEARS20190826002). All the 

participants signed a written informed consent. Prior to signing the consent form, the project 

information was presented to the participants. 

 

3.7 Data Analysis 

3.7.1 Pre-Processing of Bodily Response Data 

HRV Detection and Signal Pre-processing 

Artefacts including missing, extra, or misaligned beats and ectopic beats such as premature 

ventricular contractions or other arrhythmias were corrected, and HRV analysis was conducted, 
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respectively, from the instantaneous heart rate using a proprietary algorithm (Tarvainen et al., 

2014; Tarvainen et al., 2002). 

 

EDA Signal Pre-processing 

The raw EDA data was low pass filtered using a Butterworth filter with a cut-off frequency of 

0.28 Hz and smoothed with a moving average filter to remove non-EDA related sensor 

readings. A low cut-off frequency of 0.28 Hz is recommended when data is recorded during a 

low-intensity activity such as walking (Posada-Quintero et al., 2018). Each participant’s EDA 

data were first normalised against the baseline period to reduce inter-individual variance. 

 

EEG Signal Pre-processing 

A bandpass filter with a lower cut-off frequency of 0.5 Hz and a higher cut-off frequency of 

60 Hz was used to remove external interference from the EEG signal. A discrete wavelet 

transformation—Daubechies wavelet with eight vanishing moments—with decomposition 

level 8 was adopted to remove ocular artefacts and extract relevant frequency bands. The 

following relevant frequency bands were extracted from each of the 14 EEG channels: delta 

(δ) (0.5–4 Hz), theta (θ) (4–7 Hz), alpha (α) (7–13 Hz), beta (β) (13–30 Hz) and gamma (γ) 

(30–60 Hz) frequency bands.  

 

Plantar Pressure and Acceleration Signal Pre-processing 

Human gait signals energy are low-frequency components; thus, the pressure and acceleration 

signals are easily corrupted by instrumentation noise, random noise, electric and magnetic 

noise (Wang et al., 2011). The presence of noise in the pressure and acceleration signals may 

result in an inaccurate estimation of gait. The raw data from the pressure and IMU sensors were 

denoised using a discrete wavelet transformation—Symlet wavelet with two vanishing 
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moments—with decomposition level four. A sure shrink with a soft thresholding technique 

was adopted to decompose and reconstruct the signals. 

 

3.7.2 Baseline Normalisation  

To reduce individual variability, the bodily responses were baseline normalised by subtracting 

the minimum value and dividing by the range from their baseline measurement values, in 

accordance with previous research (Healey and Picard, 2005).  

 

3.7.3 Methods 

The methods adopted or adapted in this study includes information entropy symmetric 

uncertainty, correlation analysis, and Random Forest algorithm (for Research Objective 1); 

statistically analysis (Wilcoxon signed-rank test), spatial clustering analysis (Getis-Ord 

General G statistic and Getis-Ord Gi* statistics) and space-time pattern mining (for Research 

Objective 2); supervised machine learning, deep machine learning, kernel density estimation, 

simulation-based statistical power estimation of spatial relative risk (for Research Objective 

3); and isovist analysis, self-organising maps, supervised machine learning and evolutionary 

fuzzy rule-based system (for Research Objective 4). A detailed explanation of these methods, 

model developments, and validations are presented in their respective chapters. 

 

3.8 Chapter Summary 

This chapter provided a comprehensive overview of the experiment design, data collection and 

data analysis. Ten eligible older adults aged 65 and above participated in an environmental 

walk while equipped with non-intrusive wearable sensors. The participants’ perceived stress 

was also recorded. Two trained observers provided an assessment of the conditions of the path. 

Heart rate and EDA were recorded using E4 wristband from Empatica. The brain electrical 
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activity was recorded non-invasively from the scalp using a wearable EMOTIV EPOC+ 14 

channel mobile EEG headset. The gait and motion data were captured in real-time during the 

walking course using a commercial wearable Moticon SCIENCE insole sensor. GPS 

coordinates were logged using a belt-clip-type GPS sensor. The raw data were pre-processed 

to remove artefacts and baseline normalised to compensate for inter-individual variance. The 

data analysis methods were also presented. 
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PART III: DETECTING STRESSFUL OLDER ADULTS-

ENVIRONMENT INTERACTIONS 
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CHAPTER 4  

 

ASSESSMENT OF THE INFORMATIVENESS OF OLDER 

ADULTS’ BODILY RESPONSE4 

 

4.1 Introduction 

This chapter aims to achieve research objective one: to assess the informative of people’s 

bodily responses (i.e., physiological, behavioural, and cognitive responses) to different 

environmental conditions. The most informative bodily responses can be used to detect subtle 

and hidden changes in physiological, behavioural, and cognitive states between different 

environment settings and situations. Such knowledge about people’s physiological, 

behavioural, or cognitive responses can be linked to different outdoor environmental 

conditions. The links will enable municipal officers, policymakers, and engineers to 

continuously assess and understand environmental conditions that trigger people’s state of 

being and will be essential in determining what and when environmental interventions are 

needed to promote walkability. 

 

 

 

 
4 This chapter is based a study that is currently under consideration for publication. 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Wearable sensing and mining of the 

informativeness of older adults’ bodily responses to detect demanding environmental 

conditions, Environment and Behavior. (Under Review). E&B-20-0532.R2 
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4.2 Methodological Framework: Assessing Informativeness of Bodily Response 

This section presents a methodological framework for assessing the relevance and 

informativeness of people’s bodily responses. The framework, as shown in Figure 4.1, includes 

data collection, data pre-processing, AI-based information mining, and validation. The bodily 

response collection and pre-processing to remove noise is discussed in Chapter 3. 

 

 

Figure 4.1: Methodological framework for assessing informativeness of bodily responses. 

 

4.2.1 Feature Extraction 

Feature extraction builds valuable information from the raw data by reformatting, combining, 

and transforming the raw data—the primary feature—into new features. The sensors deployed 

in human-centric sensing represent people’s interaction and experience in the environment as 

a series of data points ordered in time. The temporal changes and fluctuations in the signal data 

are reflected in the time-domain, frequency-domain, and nonlinear domain features (Antwi-

Afari et al., 2018). Based on a literature review, several time-domain, frequency-domain, and 

nonlinear domain features commonly used in human-centric sensing were extracted from the 

physiological (Birenboim et al., 2019; Walford et al., 2017; Triguero-Mas et al., 2017), 
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behavioural (Twardzik et al., 2019; Duchowny et al., 2019; Kim et al., 2016), and cognitive 

signals (Bailey et al., 2018; Tilley et al., 2017; Neale et al., 2017). Because the data points for 

the recorded signals are large (i.e., 4 data points per second for EDA signal; 128 data points 

per second for EEG signal; and 50 data points per second for the plantar pressure sensor and 

accelerometer signal), extracting the features from one single signal reading is not informative 

(Jebelli et al., 2018). To address this problem, features were extracted from blocks of 

continuous readings referred to as windows. Selecting an appropriate window size impacts the 

informativeness of the features (Antwi-Afari et al., 2018). 

 

The possible features that reflect the conditions of the environment would be a physiological, 

behaviour, or cognitive feature that continuously fluctuated, proportional to the older adult’s 

experience throughout the environmental walk. To extract features with such attribute, 

continuous calculations were conducted using the optimal window size of the respective bodily 

response and advanced by 1 s for each second of the entire duration of each participant’s walk 

on the path. 

 

Features Extracted from HRV Signal 

A continuous time series of HRV features were extracted from a window size of 60 s using 

Welch’s periodograms (Tarvainen et al., 2014). Based on previous studies, a short-term 

window of 60 s can produce informative HRV features (Shaffer and Ginsberg, 2017). The 

frequently used features for human-centric sensing in the time-domain, frequency-domain, and 

nonlinear domain were computed, as presented in Table 4.1. A total of 31 HRV features were 

extracted for each participant. 
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Table 4.1: Features extracted from HRV signal 

Feature Description (Unit) 

Time domain  

HR Instantaneous heart rate values (1/min) 

Mean RR The mean of RR intervals (ms) 

STD RR (SDNN) Standard deviation of RR interval (ms) 

Mean HR The mean heart rate (1/min) 

STD HR Standard deviation of instantaneous heart rate values (1/min) 

Min HR  Minimum heart rate (1/min) 

Max HR Maximum heart rate (1/min) 

RMSSD Square root of the mean squared differences between successive RR 

intervals (ms) 

NN50 Number of successive RR interval pairs that differ more than 50 ms 

(beats) 

pNN50 NN50 divided by the total number of RR intervals (%) 

HRV triangular index The integral of the RR interval histogram divided by the height of the 

histogram 

TINN Baseline width of the RR interval histogram (ms) 

Frequency domain  

Absolute power Absolute powers of very low frequency (VLF), low frequency (LF), and 

high frequency (HF) bands (ms2) 

Absolute power Natural logarithm transformed values of absolute powers of VLF, LF, 

and HF bands (log) 

Total power Total spectral power (ms2) 

LF/HF Ratio between LF and HF band powers 

Nonlinear  

SD1 In Poincaré plot, the standard deviation perpendicular to the line-of-

identity (ms) 

SD2 In Poincaré plot, the standard deviation along the line-of-identity (ms) 

SD2/SD1 Ratio between SD2 and SD1 

 

Features Extracted from EDA Signal 

Continuous decomposition analysis was conducted to decompose the processed EDA signal 

into two components: skin conductance level (SCL) (tonic component) and the skin 

conductance response (SCR) (phasic component) (Benedek and Kaernbach, 2010). The SCL 

reflects the baseline level of skin conductivity (tonic stimulus) and changes slowly over time, 

while the SCR increases in the amplitude of skin conductivity due to sympathetic stimulation. 

SCL and SCR features (Table 4.2) were extracted from a window size of 10 sec, with a 

minimum amplitude threshold of 0.05 𝜇𝑆 to eliminate external interferences due to the 

experimental conditions and movement artefacts (Posada-Quintero and Chon, 2020; Benedek 



 

 78 

and Kaernbach, 2010). Because a 10 s latency is sufficient for EDA reaction to extinguish after 

a stimulus (Posada-Quintero and Chon, 2020), it is expected that the informative EDA features 

will be produced within a window size of 10 s. A total of nine features were extracted from the 

EDA signal for each participant (Table 4.2). 

 

Table 4.2: Features extracted from EDA signal 

Feature Description (unit) 

nSCR Number of significant (= above-threshold) SCRs within response window 

Latency Response latency of first significant SCR within response window (s) 

AmpSum Sum of SCR-amplitudes of significant SCRs within response window 

(reconvolved from corresponding phasic driver-peaks) (muS) 

SCR Average phasic driver within response window. Equals ISCR divided by size 

of response window; units are muS. This score represents phasic activity 

within response window most accurately but does not fall back on classic SCR 

amplitudes (muS) 

ISCR Area (i.e., time integral) of phasic driver within response window. It equals 

SCR multiplied by size of response window (muS*s) 

PhasicMax Maximum value of phasic activity within response window (muS) 

Tonic Mean tonic activity within response window of decomposed tonic component 

Global mean Mean skin conductance (SC) value within response window 

Global max 

deflection 

Maximum positive deflection within response window 

 

Features Extracted from EEG Signal 

Based on previous studies, a suitable window size for EEG feature extraction might be within 

a window size less than 12 s (Candra et al., 2015). To find the optimal window size, features 

were extracted from different window sizes ranging from 1 to 12 sec. The window size of 2 s 

produced the most informative feature; hence 2 s was selected as the optimum window size for 

this EEG dataset. Time-domain features were computed from each of the 14 EEG channels. 

Frequency domain features were computed from each of the 14 EEG channels in the delta (δ) 

(0.5–4 Hz), theta (θ) (4–7 Hz), alpha (α) (7–13 Hz), beta (β) (13–30 Hz) and gamma (γ) (30–

60 Hz) frequency bands. A total of 339 features were extracted from the EEG signal for each 

participant. The extracted features are listed in Table 4.3. 
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Table 4.3: Features extracted from EEG signal 

Feature Equation Description 

Time domain   

Mean value 
𝑀𝑒𝑎𝑛𝑗 =

∑ 𝐸𝐸𝐺𝑖𝑗
𝑁
𝑖=1

𝑁
 

Average value of EEG signal within 

window for EEG channel j.  

Variance 
𝑉𝐴𝑅𝑗 =

1

𝑁 − 1
∑ 𝐸𝐸𝐺𝑖𝑗

2
𝑁

𝑖=1
 

Variance of the EEG signal within window 

for EEG channel j.   

Minimum 

window elements 
𝑀𝑖𝑛𝑗 = min 𝐸𝐸𝐺𝑖𝑗  Minimum EEG signal within window for 

EEG channel j.   

Maximum 

window elements 
𝑀𝑎𝑥𝑗 = max 𝐸𝐸𝐺𝑖𝑗 Maximum EEG signal within window for 

EEG channel j.   

Range 𝑅𝑎𝑛𝑔𝑒𝑗 = 𝑚𝑎𝑥𝐸𝐸𝐺𝑖𝑗

− 𝑚𝑖𝑛𝐸𝐸𝐺𝑖𝑗 

Difference between maximum and 

minimum of EEG signals within window 

for EEG channel j.   

Standard 

deviation (STD) 𝑆𝑇𝐷𝑗 = √
1

𝑁 − 1
 ∑ 𝐸𝐸𝐺𝑖𝑗

2
𝑁

𝑖=1
 

Deviation of EEG signals within window 

for EEG channel j.   

Root-mean-

square level 

(RMS) 
𝑅𝑀𝑆𝑗 = √

∑ 𝐸𝐸𝐺𝑖𝑗
2𝑁

𝑖=1

𝑁
 

Norm 2 of the EEG signals divided by the 

square root of the number of samples within 

window for EEG channel j.   

Root-sum-of-

squares level 

(RSSQ) 
𝑅𝑆𝑆𝑄𝑗 = √∑ |𝐸𝐸𝐺𝑖𝑗|2

𝑁

𝑖=1
 

Norm of the EEG signals within window for 

EEG channel j.   

Kurtosis (K) 

𝐾𝑗 =

1
𝑁

∑ (𝐸𝐸𝐺𝑖𝑗 − 𝑀𝐴𝑉𝑗)𝑖
4

(
1
𝑁

∑ (𝐸𝐸𝐺𝑖𝑗 − 𝑀𝐴𝑉𝑗)𝑖
2

)2
 

Shows the sharpness of EEG signals peak 

within window for EEG channel j.   

Frequency domain   

Normalised 

power 𝑃𝑗(𝑖) 
𝑃𝑗(𝑤𝑖) =

1

𝑁
|𝑋(𝑤𝑖)|2 

The mean normalised power [𝑃𝑗(𝑖)] of the 

power spectrum density [𝑃𝑗(𝑤𝑖)] of signal 

spectrum [𝑋(𝑤𝑖)] within a window for 

channel j. 

Spectral entropy 

(SE) 
𝑆𝐸𝑗 = − ∑ 𝑃𝑗(𝑖) log2𝑃𝑗(𝑖)

𝑁

𝑖=1
 

Entropy of the normalised power spectrum 

within window across frequency bands of 

EEG channel j. 

Energy 
𝐸𝑛𝑒𝑟𝑔𝑦𝑗 =

∑ 𝐹𝐹𝑇𝑗𝑖
2𝑁

𝑖=1

𝑁
− 𝑀𝑒𝑎𝑛𝑗 

Energy of the power spectrum within 

window across frequency bands EEG 

channel j. 

Valence 
𝑉 =

𝛼(𝐹4)

𝛽(𝐹4)
−

𝛼(𝐹3)

𝛽(𝐹3)
 

Level of happiness. 

Arousal 𝐴

=
𝛼(𝐴𝐹3 + 𝐴𝐹4 + 𝐹3 + 𝐹4)

𝛽(𝐴𝐹3 + 𝐴𝐹4 + 𝐹3 + 𝐹4) 
 

Level of excitement.  

 

Dominance 
𝐷 =

𝛽(𝐹𝐶6)

𝛼(𝐹𝐶6)
+

𝛽(𝐹8)

𝛼(𝐹8)

+
𝛽(𝑃8)

𝛼(𝑃8)
 

Level of control over emotion. 
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Features Extracted from Plantar Pressure and Acceleration Signal 

The window size of 5.12 s for pressure data and 10.24 s for acceleration data were the optimum 

window size for these datasets upon testing different window sizes. Time-domain and 

frequency-domain features for the foot plantar pressure sensor (Table 4.4) and acceleration 

signals (Table 4.5) were extracted from the segmented data. A total of 326 features from 32 

pressure sensors and 70 features from 3-axes acceleration sensor were extracted. 

 

4.2.2 AI-based Information Mining 

A feature contains informative and measurable property of a detected signal (Jebelli et al., 

2018). In this study, the relevance of a feature was determined by measuring the symmetrical 

uncertainty of information gain from people’s interaction with the outdoor environment. First, 

the impurities in the features are measured using entropy. Entropy is a measure of uncertainty 

or lack of information of a random variable in a system (Hall, 1999; Wehrl, 1978). The entropy 

is computed as follows (Hall, 1999) 

𝐻(𝑌) = − ∑ 𝑝(𝑦) log2 𝑝(𝑦)

𝑦𝜖𝑌

.                                                                                                        (4.1) 

The entropy of Y after observing values of another variable 𝑋 is computed using 

𝐻(𝑌 | 𝑋) = − ∑ 𝑝(𝑥)

𝑥𝜖𝑋

∑ 𝑝(𝑦 | 𝑥) log2 𝑝(𝑦 | 𝑥)

𝑦𝜖𝑌

,                                                                     (4.2) 

where 𝑋 and 𝑌 are discrete random variables. 𝑝(𝑦) is the prior probabilities for all values of 𝑌 

and 𝑝(𝑦 | 𝑥) is the posterior probabilities of 𝑌 when the values of 𝑋 are given. Information 

gain is the amount by which the entropy of 𝑌 decreases reflect the additional information about 

𝑌 provided by 𝑋 (Doshi and Chaturvedi, 2014). Information gain is computed using (Hall, 

1999; Muzammal et al., 2020; Mursalin et al., 2017) 

𝐺𝑎𝑖𝑛 = 𝐻(𝑌) − 𝐻(𝑌 | 𝑋) = 𝐻(𝑋) − 𝐻(𝑋 | 𝑌)                                                                           (4.3) 

𝐺𝑎𝑖𝑛 = 𝐻(𝑌) + 𝐻(𝑋) − 𝐻(𝑋, 𝑌).                                                                                                  (4.4) 
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Table 4.4: Features extracted from plantar pressure signal 

Feature Equation Description 

Time domain   

Mean 
𝑀𝑒𝑎𝑛𝑗 =

∑ 𝑃𝑖𝑗
𝑁
𝑖=1

𝑁
 

Average foot plantar pressure 

within window for pressure sensor 

j.  

Variance 
𝑉𝐴𝑅𝑗 =

𝑖

𝑁 − 1
∑ 𝑃𝑖𝑗

𝑁

𝑖=1
 

Variance of the foot plantar 

pressure within window for 

pressure sensor j. 

Maximum 𝑀𝑎𝑥𝑖𝑗 = max (𝑃𝑖𝑗) Maximum foot plantar pressure 

within window for pressure sensor 

j. 

Minimum 𝑀𝑖𝑛𝑖𝑗 = min (𝑃𝑖𝑗) Minimum foot plantar pressure 

within window for pressure sensor 

j. 

Range 𝑅𝑎𝑛𝑔𝑒𝑗 = max
𝑖

𝑃𝑖𝑗 − min
𝑖

𝑃𝑖𝑗 Difference between maximum and 

minimum of the foot plantar 

pressure within window for 

pressure sensor j. 

Standard deviation 

(STD) 
𝑆𝑇𝐷𝑗

= √
1

𝑁 − 1
∑ (𝑃𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)

2𝑁

𝑖=1
 

Deviation of foot plantar pressure 

within window for pressure sensor 

j. 

 

Kurtosis (K) 

𝐾𝑗 =

1
𝑁

∑ (𝑃𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)4
𝑖

(
1
𝑁

∑ (𝑃𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)2
𝑖 )

2 

Shows the sharpness of the 

pressure signal peaks within 

window for pressure sensor j. 

 

Pressure time 

integral (PTI) 𝑃𝑇𝐼𝑗 = ∑ 𝑃𝑖𝑗(𝑡) ×△ 𝑡

𝑁

𝑡=1

 

PTI indicates the cumulative foot 

loading over time. 𝑁 is the total 

number of pressure data samples in 

a window, 𝑃𝑖𝑗 is pressure value of 

sensor j at time t, and △ 𝑡 is the 

duration of the window. 

Centre of pressure 

(CoP) mean 𝑀𝑒𝑎𝑛𝑗 =
∑ 𝐶𝑜𝑃𝑖𝑗

𝑁
𝑖=1

𝑁
 

Average centre of foot plantar 

pressure within window for axis j. 

X and Y axes 

Total force (TF) 

mean 𝑀𝑒𝑎𝑛𝑗 =
∑ 𝑇𝐹𝑖𝑗

𝑁
𝑖=1

𝑁
 

Average total force within window 

for foot plantar j. Left and right 

foot plantar 

Frequency domain   

Energy 
𝐸𝑛𝑒𝑟𝑔𝑦𝑗 =

∑ 𝐹𝐹𝑇𝑗𝑖
2𝑁

𝑖=1

𝑁
− 𝑀𝑒𝑎𝑛𝑗 

N is the total number of pressure 

data within window, 𝐹𝐹𝑇𝑗𝑖 is the 

transformed 𝑖𝑡ℎ foot pressure from 

time to frequency domain of the 

pressure sensor j. 

Spectral entropy 

(SE) 
𝑆𝐸𝑗 = − ∑ 𝑃(𝑖) log2𝑃(𝑖)

𝑁

𝑖=1
 

N is the total amount of foot 

pressure data within window, 𝑃(𝑖) 
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Feature Equation Description 

is the normalised power spectrum 

of signal i of the pressure sensor j. 

 

However, information gain is biased toward features with more values. Thus, symmetrical 

uncertainty (SU) is used to compensate for information gain’s bias, and the resulting value is 

normalised to the range of [0, 1] using (Hall, 1999) 

𝑆𝑈 = 2.0 × [
𝐺𝑎𝑖𝑛

𝐻(𝑌) + 𝐻(𝑋)
].                                                                                                           (4.5) 

The Ranker algorithm in Java (Witten et al., 2017) was used to sort the features into rank order 

of the evaluation based on the SU. The Ranker algorithm returns an array of sorted (highest 

evaluation to lowest evaluation) features. The top ten ranked features are reported in this study. 

To determine the optimum number of features that gained the most information without over-

fitting, the merit of a subset of features were computed using (Hall, 1999; Muzammal et al., 

2020; Mursalin et al., 2017) 

𝑀𝑒𝑟𝑖𝑡𝑆 =
𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
.                                                                                                          (4.6) 

where 𝑀𝑒𝑟𝑖𝑡𝑆 is the heuristic merit of a feature subset 𝑆 containing 𝑘 features, 𝑟𝑐𝑓̅̅ ̅̅  is the average 

correlation value between feature and class labels, and 𝑟𝑓𝑓̅̅ ̅̅  represents the average correlation 

value between two features (feature-feature intercorrelation). The feature-feature 

intercorrelation was computed using symmetrical uncertainty. The heuristic merit discards 

irrelevant and redundant features because these features could decrease the information gained 

from human-environment interaction. A genetic algorithm was employed to search for each 

subset of features based on the 𝑀𝑒𝑟𝑖𝑡𝑆 in order to determine the optimum number of features. 
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Table 4.5: Features extracted from acceleration signal 

Feature Equation Description 

Time domain   

Mean 
𝑀𝑒𝑎𝑛𝑗 =

∑ 𝐼𝑀𝑈𝑖𝑗
𝑁
𝑖=1

𝑁
 

Average IMU data within window 

for acceleration axis j. 

 

𝑁 is the total amount of IMU data 

within window. 𝐼𝑀𝑈𝑖 is the 𝑖th 

acceleration for axis j. 

Variance 
𝑉𝐴𝑅𝑗 =

𝑖

𝑁 − 1
∑ 𝐼𝑀𝑈𝑖𝑗

𝑁

𝑖=1
 

Variance of the IMU data within 

window for each axis. 

Maximum 𝑀𝑎𝑥𝑖𝑗 = max (𝐼𝑀𝑈𝑖𝑗) Maximum IMU data within window 

for acceleration axis j. 

Minimum 𝑀𝑖𝑛𝑖𝑗 = min (𝐼𝑀𝑈𝑖𝑗) Minimum IMU data within window 

for acceleration axis j. 

Range 𝑅𝑎𝑛𝑔𝑒𝑗 = max
𝑖

𝐼𝑀𝑈𝑖𝑗 − min
𝑖

𝐼𝑀𝑈𝑖𝑗 Difference between maximum and 

minimum of the IMU data within 

window for acceleration axis j. 

Standard 

deviation (STD) 
𝑆𝑇𝐷𝑗

= √
1

𝑁 − 1
∑ (𝐼𝑀𝑈𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)

2𝑁

𝑖=1
 

Deviation of IMU data within 

window for acceleration axis j. 

 

 

Root-mean-

square (RMS) 𝑅𝑀𝑆𝑗 = √
∑ 𝐼𝑀𝑈𝑖𝑗

2𝑁
𝑖=1

𝑁
 

Norm 2 of the IMU data within 

window divided by the square root 

of the number of samples for 

acceleration axis j. 

 

Root-sum-of-

squares level 

(RSSQ) 
𝑅𝑆𝑆𝑄𝑗 = √

∑ |𝐼𝑀𝑈𝑖𝑗|2𝑁
𝑖=1

𝑁
 

Norm of the IMU data within 

window for acceleration axis j. 

Kurtosis (K) 

𝐾𝑗 =

1
𝑁

∑ (𝐼𝑀𝑈𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)4
𝑖

(
1
𝑁

∑ (𝐼𝑀𝑈𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑗)2
𝑖 )

2 

Shows the sharpness of the IMU 

signal peaks within window for 

acceleration axis j. 

Signal vector 

magnitude 

(SVM) 

𝑆𝑉𝑀 =
∑ √𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2𝑁
𝑖=1

𝑁
 

SVM of the IMU signal within 

window. N is the total amount of 

IMU data, 𝑥𝑖 is the 𝑖𝑡ℎ acceleration 

of the x-axis, 𝑦𝑖 is the 𝑖th 

acceleration of the y-axis, and 𝑧𝑖 is 

the 𝑖𝑡ℎ acceleration of the z-axis. 

Signal 

magnitude area 

(SMA) 

𝑆𝑀𝐴 =
∑ (|𝑥𝑖| + |𝑦𝑖| + |𝑧𝑖|)

𝑁
𝑖=1

𝑁
 

SMA of the IMU signal within 

window. N is the total amount of 

IMU data, 𝑥𝑖 is the 𝑖𝑡ℎ acceleration 

of the x-axis, 𝑦𝑖 is the 𝑖th 

acceleration of the y-axis, and 𝑧𝑖 is 

the 𝑖th acceleration of the z-axis. 

Frequency 

domain 
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Feature Equation Description 

Energy 
𝐸𝑛𝑒𝑟𝑔𝑦𝑗 =

∑ 𝐹𝐹𝑇𝑗𝑖
2𝑁

𝑖=1

𝑁
− 𝑀𝑒𝑎𝑛𝑗 

N is the total amount of IMU data 

within window, 𝐹𝐹𝑇𝑗𝑖 is the 

transformed 𝑖𝑡ℎ acceleration from 

time to frequency domain of the 

acceleration axis j. 

Spectral entropy 

(SE) 
𝑆𝐸𝑗 = − ∑ 𝑃(𝑖) log2𝑃(𝑖)

𝑁

𝑖=1
 

N is the total amount of IMU data 

within window, 𝑃(𝑖) is the 

normalised power spectrum of 

signal i of the acceleration axis j. 

 

 

4.2.3 Validation 

The walking path was divided into 24 sections grouped in eight distinct environment 

scenarios—segment A to segment H—as shown in Figure 3.2, Chapter 3. The length of each 

section is about 23.75 m. The segments were defined to cluster sections with a similar 

environmental condition expected to stimulate similar human experiences. The human 

experience in the environment is the human state of being affected by the surrounding 

conditions (Kaplan, 1988). It is expected that each segment of the path (the path was divided 

into 24 sections grouped in eight distinct environment scenarios—segment A to segment H—

as shown in Figure 3.2) presents a unique experience to the older adults, and this unique 

experience can be captured through their bodily responses while interacting with the path 

segment. This means that the most informative bodily responses should capture a distinctive 

representation of the older adults’ experience in each path segment. A more informative bodily 

response should achieve a higher prediction performance of people’s interaction in each 

segment. Therefore, a supervised classification was performed using the path segments A to H 

as class labels. Each time point of the corresponding bodily response was signalled using a 

binary schema per second, where “1” signalled the presence of the participant in a segment at 

a specific time and “0” otherwise. A Random Forest (RF) classifier was used; RF is an 

ensemble of different trees. Each decision tree in the forest gives a classification, and the forest 
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chooses the final classification with the most votes (Lou et al., 2014). The RF classifier is 

chosen because it can accommodate models with imbalanced class labels, and it can provide 

an assessment of the variable importance (Saitis and Kalimeri, 2018). 10-fold cross-validation 

was conducted to validate the performance of the classification model over the selected 

features.  

 

Accuracy represents the percentage of path segments that are correctly classified based on the 

selected features. Sensitivity is the true positive (TP) rate based on the selected features. That 

is the proportion of path segments that are actually positive and were predicted positive. 

Specificity is the true negative (TN) rate based on the selected features. That is the proportion 

of path segments that are actually negative and were predicted negative. Accuracy, sensitivity, 

and specificity are benefit criteria meaning the highest value is the most preferred. The 

performance measures are computed using the following equations 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ,                                                                                             (4.7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ,                                                                                                                (4.8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 ,                                                                                                                (4.9) 

where FN is the false negative, and FP is the false positive. 

 

4.3 Results and Discussion 

4.3.1 Physiological Response 

The physiological signals are involuntary actions or response that are almost impossible to 

notice by external observation because it relates to how a living organism or bodily part 

functions (Alberdi et al., 2016). In this experiment, two main physiological responses were 
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collected and analysed—HRV and EDA. The HRV and EDA features that gained the most 

information are presented in Table 4.6 and Table 4.7, respectively.  

 

For HRV features, minimum HR (with an accuracy of 75.96%, sensitivity of 76% and 

specificity of 95.7%) and maximum HR (with an accuracy of 71.77%, sensitivity of 71.8% and 

specificity of 95.4%) gained the most information about older adults’ experience in the 

environment. It is important to mention the inconsistency reported in previous studies 

considering the use of HR and HRV to represent people’s interaction with the environment. 

For example, some studies reported that HR and HRV contain relevant information, and other 

studies reported otherwise (Triguero-Mas et al., 2017; Birenboim et al., 2019). In this study, 

HR was ranked third but did not gain sufficient information about older adults’ experience in 

the environment (accuracy of 23.59%, sensitivity of 23.6%, and specificity of 87.4%). 

Similarly, all HRV features (Table 4.6) gained very little information about older adults’ 

experience in the environment. For example, the highest-ranked HRV feature is HF(Hz) 

achieved an accuracy of 29.43%, sensitivity of 29.4%, and specificity of 84.3%. A plausible 

explanation for this is that the physiological cardiovascular bodily responses are more 

susceptible to physical activity, and the influence of the walking activity in the experiment 

might dominate subtle environmental effects.  

 

The findings from this study clarify the inconsistency in the reliability of HR and HRV features 

in measuring physiological responses by taking into account the information gained by several 

features. The AI-based information mining model further provided a subset of five HR and 

HRV features that can collectively gain more information than any single feature. This feature 

subset (Table 4.6) attained an accuracy of 92.31%, sensitivity of 98.7%, and specificity of 

98.7%. The performance of this feature subset can be attributed to the fact that each feature  
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Table 4.6: Most informative HRV features 

Top ten PPG feature Rank Single feature 

performance 

Cumulative 

performance 

1 Min HR 0.36225 Acc. 75.96 Acc. 71.94 

   Sen. 76.00 Sen. 71.90 

   Spec. 95.70 Spec. 95.40 

2 Max HR 0.35472 Acc. 71.77 Acc. 86.22 

   Sen. 71.80 Sen. 86.20 

   Spec. 95.40 Spec. 97.80 

3 HR 0.15806 Acc. 23.59 Acc. 90.09 

   Sen. 23.60 Sen. 90.10 

   Spec. 87.40 Spec. 98.40 

4 HF (Hz) 0.09242 Acc. 29.43 Acc. 92.28 

   Sen. 29.40 Sen. 92.30 

   Spec. 84.30 Spec. 98.70 

5 SD1 0.08184 Acc. 52.14 Acc. 93.34 

   Sen. 52.10 Sen. 93.30 

   Spec. 92.00 Spec. 98.90 

6 RMSSD 0.07823 Acc. 50.94 Acc. 93.53 

   Sen. 50.90 Sen. 93.50 

   Spec. 91.70 Spec. 98.90 

7 pNN50 0.07481 Acc. 32.01 Acc. 94.05 

   Sen. 32.00 Sen. 94.10 

   Spec. 86.60 Spec. 99.00 

8 STD HR 0.07281 Acc. 49.36 Acc. 94.54 

   Sen. 49.40 Sen. 94.50 

   Spec. 91.50 Spec. 99.10 

9 NN50 0.0721 Acc. 27.91 Acc. 94.75 

   Sen. 27.90 Sen. 94.70 

   Spec. 83.60 Spec. 99.20 

10 LF (Hz) 0.06962 Acc. 27.20 Acc. 94.97 

   Sen. 27.20 Sen. 95.00 

   Spec. 84.80 Spec. 99.20 

Optimum subset of PPG features (5 selected features) 

Acc. 92.31 

Sen. 92.30 

Spec. 98.70 

HR Max HR Min HR VLF (ms^2) SD2/SD1 

Note. Min HR = minimum heart rate; Max HR = maximum heart rate; HR = instantaneous 

heart rate; HF = absolute power of high frequency band; LF = absolute power of low frequency 

band; VLF = absolute power of very low frequency band; SD1 = standard deviation 

perpendicular to the line-of-identity in Poincaré plot; SD2 = standard deviation along the line-

of-identity in Poincaré plot; STD HR = standard deviation of instantaneous heart rate values; 

RMSSD = square root of the mean squared differences between successive RR intervals; NN50 

= Number of successive RR interval pairs that differ more than 50 ms; Acc. = accuracy; Sen. 

= sensitivity; Spec. = specificity. 
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gained specific information about older adults’ experience in the environment. For example, 

minimum HR and maximum HR captures environmental conditions that stimulate a state of 

serenity and stress, respectively (Kreibig, 2010). HR, VLF, and SD2/SD1 reflect the 

parasympathetic-sympathetic balance (Triguero-Mas et al., 2017). The implication drawn from 

the results is that future studies should consider a subset of features instead of a specific feature 

in interpreting physiological cardiovascular bodily responses in the outdoor environment. 

 

Considering the EDA features (Table 4.7), PhasicMax gained the most information about older 

adults’ experience in the outdoor environment with an accuracy of 99.07%, sensitivity of 

99.1%, and specificity of 99.9%. Although several features gained sufficient information 

(except nSCR and Latency), only PhasicMax was subsequently selected as the optimum 

feature. This signifies that the AI-based information mining model was able to avoid over-

fitting by discarding redundant EDA features in order to reduce computational cost and time 

while achieving high performance. Furthermore, the result from the study is in support of the 

growing consensus that the phasic component of the EDA signal represents an individual’s 

response to discrete environmental stimuli (Birenboim et al., 2019; Chen et al., 2018). In 

comparison to the cognitive and behavioural responses, the physiological signal performed 

better in gaining information about older adults’ interaction. The result proves that 

physiological signals can be monitored from wristband type sensors in an ambulatory, real-

world setting and can be extended to capture older adult’s response to subtle environmental 

stimuli. 
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Table 4.7: Most informative EDA features 

Top ten EDA feature Rank Single feature 

performance 

Cumulative 

performance 

1 PhasicMax 0.425 Acc. 99.07 Acc. 99.07 

   Sen. 99.10 Sen. 99.10 

   Spec. 99.90 Spec. 99.90 

2 AmpSum 0.33725 Acc. 82.00 Acc. 99.58 

   Sen. 82.00 Sen. 99.60 

   Spec. 97.40 Spec. 99.90 

3 Tonic 0.3062 Acc. 99.78 Acc. 99.91 

   Sen. 99.80 Sen. 99.90 

   Spec. 100.00 Spec. 100.00 

4 Global mean 0.28601 Acc. 99.77 Acc. 99.91 

   Sen. 99.80 Sen. 99.90 

   Spec. 100.00 Spec. 100.00 

5 Global max deflection 0.25437 Acc. 92.56 Acc. 99.91 

   Sen. 92.60 Sen. 99.90 

   Spec. 98.90 Spec. 100.00 

6 ISCR 0.11883 Acc. 95.98 Acc. 99.91 

   Sen. 96.00 Sen. 99.90 

   Spec. 98.90 Spec. 100.00 

7 SCR 0.11883 Acc. 95.98 Acc. 99.91 

   Sen. 96.00 Sen. 99.90 

   Spec. 98.90 Spec.100.00 

8 nSCR 0.02122 Acc. 24.34 Acc. 99.91 

   Sen. 24.30 Sen. 99.90 

   Spec. 81.00 Spec. 100.00 

9 Latency 0.00135 Acc. 22.56 Acc. 99.91 

   Sen. 22.60 Sen. 99.90 

   Spec. 77.40 Spec. 100.00 

Optimum EDA feature (1 selected feature) 

Acc. 99.15 

Sen. 99.10 

Spec. 99.90 

 PhasicMax    

     

Note. PhasicMax = maximum value of phasic activity; SCR = average phasic driver; nSCR = 

number of significant (= above-threshold) SCRs; AmpSum = Sum of SCR-amplitudes of 

significant SCRs; ISCR = Area (i.e., time integral) of phasic driver; Acc. = accuracy; Sen. = 

sensitivity; Spec. = specificity. 

 

4.3.2 Cognitive Response 

The cognitive signals relate to the activities of the brain or mental state. All the EEG features 

gained insufficient information about older adults’ experience in the environment. The highest-

ranked EEG feature is variance in the F3 channel, achieving an accuracy of 22.46%, sensitivity 
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Table 4.8: Most informative EEG features 

Top ten EEG feature Rank Single feature 

performance 

Cumulative 

performance 

1 Variance (F3) 0.10626 Acc. 22.46 Acc. 21.64 

   Sen. 22.50 Sen. 21.60 

   Spec. 86.60 Spec. 86.60 

2 RMS (F3) 0.10469 Acc. 21.57 Acc. 21.64 

   Sen. 21.60 Sen. 21.60 

   Spec. 86.50 Spec. 86.50 

3 RSSQ (F3) 0.10469 Acc. 21.57 Acc. 22.28 

   Sen. 21.60 Sen. 22.30 

   Spec. 86.50 Spec. 86.50 

4 RMS (AF3) 0.09472 Acc. 18.53 Acc. 32.94 

   Sen. 18.50 Sen. 32.90 

   Spec. 86.10 Spec. 88.10 

5 RSSQ (AF3) 0.09472 Acc. 18.53 Acc. 34.94 

   Sen. 18.50 Sen. 34.90 

   Spec. 86.10 Spec. 88.20 

6 Variance (AF3) 0.09208 Acc. 20.74 Acc. 36.66 

   Sen. 20.70 Sen. 36.70 

   Spec. 86.50 Spec. 88.50 

7 STD (AF3) 0.09208 Acc. 20.78 Acc. 36.23 

   Sen. 20.80 Sen. 36.20 

   Spec. 86.50 Spec. 88.40 

8 Range (AF3) 0.09066 Acc. 37.94 Acc. 38.63 

   Sen. 37.90 Sen. 38.60 

   Spec. 89.40 Spec. 88.70 

9 STD (FC6) 0.08716 Acc. 19.92 Acc. 47.50 

   Sen. 19.90 Sen. 47.50 

   Spec. 86.30 Spec. 90.30 

10 Variance (FC6) 0.08716 Acc. 20.03 Acc. 49.14 

   Sen. 0.20 Sen. 49.10 

   Spec. 86.40 Spec. 90.70 

Optimum EEG features (96 selected features) 

Acc. 80.69 

Sen. 80.70 

Spec. 96.20 

Mean (AF3) Minimum (F7) STD (T7) RSSQ (FC5) Entropy_beta (T8) 

Mean (F7) Minimum (T7) STD (O1) RSSQ (T7) Energy_alpha (T8) 

Mean (F3) Minimum (O1) STD (O2) RSSQ (P7) Energy_alpha (FC6) 

Mean (P7) Minimum (O2) STD (T8) RSSQ (T8) Energy_beta (FC6) 

Mean (O2) Minimum (P8) STD (FC6) Kurtosis (P7) Entropy_theta (F4) 

Mean (FC6) Minimum (T8) RMS (AF3) Energy_delta (AF3) Energy_theta (F4) 

Mean (AF4) Minimum (F8) RMS (F7) Energy_gamma 

(AF3) 

Energy_gamma (F4) 

Variance (T7) Minimum (AF4) RMS (F3) Entropy_gamma (F7) Energy_beta (F8) 

Variance (O1) Range (AF3) RMS (FC5) Entropy_theta (F3) Energy_alpha (AF4) 

Variance (FC6) Range (F7) RMS (P7) Energy_delta (F3) Energy_beta (AF4) 

Variance (AF4) Range (FC5) RMS (O1) Energy_alpha (FC5) Power_gamma (F7) 

Maximum (AF3) Range (P7) RMS (O2) Entropy_theta (P7) Power_delta (FC5) 
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Maximum (F7) Range (O2) RMS (P8) Energy_delta (P7) Power_gamma (T7) 

Maximum (FC5) Range (T8) RMS (FC6) Energy_theta (P7) Power_beta (P7) 

Maximum (P7) Range (F4) RMS (F4) Energy_gamma (P7) Power_gamma (O1) 

Maximum (O1) Range (F8) RMS (F8) Entropy_gamma (O1) Power_beta (O2) 

Maximum (T8) STD (AF3) RMS (AF4) Energy_delta (O1) Power_gamma (O2) 

Maximum (F4) STD (F7) RSSQ (AF3) Energy_alpha (O1) Power_beta (FC6) 

Minimum (AF3) STD (FC5) RSSQ (F3) Entropy_theta (T8) Power_theta (FC6) 

    Power_theta (AF4) 

Note. RMS = root-mean-square level; RSSQ = root-sum-of-squares level; STD = standard 

deviation; Acc. = accuracy; Sen. = sensitivity; Spec. = specificity. 

 

 

Figure 4.2: Distribution of the EEG channels across the scalp. 

 

of 22.5%, and specificity of 86.6% (Table 4.8). All the top 10 ranked EEG features only capture 

the activity of the cortical neurons in the frontal lobe (Figure 4.2). The low performance of the 

EEG features proves that the urban environment is becoming more complex and cognitively 

demanding to older adults. Therefore, the brain will require more cognitive resources to gain 

sufficient information. As a result, the proposed AI-based information mining model identified 

a subset of 96 features (Table 4.8) that gained more information than any single EEG feature. 
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The feature subset achieved an accuracy of 80.69%, sensitivity of 80.7%, and specificity of 

96.2%. The optimum subset of EEG features is dominated by features extracted from the 

frontal lobe, followed by the occipital lobe, temporal lobe, and parietal lobe.  

 

Considering the frequency bands, the optimum EEG feature subset is dominated by the gamma 

band, followed by theta band, beta band, alpha, and delta band. The higher frequency band 

(gamma and beta) correlates with heavy mental loads such as concentration, anxiousness, and 

stress; the alpha band correlates with a relaxed state of mind; the lower frequency bands (delta 

and theta) correlate with less intense brain function (Bailey et al., 2018). The results confirmed 

that walking in different environmental conditions activates millions of cortical neurons and 

produces an electrical field that can be measured from the human scalp using wearable EEG. 

The information gained by the cortical neurons is encoded in EEG signal amplitudes, specific 

frequency bands, and different brain regions; this explains why today’s urban environment is 

more cognitively demanding. Furthermore, different environmental conditions are associated 

with distinctive brain activity patterns, which means that humans interact differently with 

varying environmental conditions.  

 

Although the EEG signal is somewhat informative, monitoring people’s brain activity using 

current EEG sensors in an ambulatory, real-world setting is still a major challenge. It can lead 

to the loss of informative data. Current wearable and mobile EEG sensors are not stable in the 

wild. For instance, the walking activity during the environmental walk affected the stability 

and functioning of the EEG sensor for five participants. Therefore, developers should focus on 

improving the stability of wearable and mobile EEG sensors. 
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4.3.3 Behavioural Response 

Behavioural signals are somewhat voluntary actions that can be externally observed (Alberdi 

et al., 2016). The foot plantar pressure distribution and acceleration of both left and right feet 

were observed while older adults interact with the environment. The foot plantar pressure and 

acceleration features that gain the most information are presented in Table 4.9 and Table 4.10, 

respectively. 

 

For the foot plantar pressure features (Table 4.9), pressure-time integral (PTI) gained the most 

information about older adults’ experience in the environment with an accuracy of 41.1%, 

sensitivity of 41.1%, and specificity of 88.7%. All the top 10 ranked features are the PTI in 

different sensor locations and mostly from the right foot. Although the PTI features were not 

very informative, the AI-based information mining model identified a feature subset 

(comprised of 91 plantar pressure features) that was able to gain more information about older  

adults’ experience in the environment. The feature subset achieved an accuracy of 82.05%, 

sensitivity of 82.1%, and specificity of 96.6%. 

 

For the acceleration features (Table 4.10), signal magnitude area (SMA) (17.16%, sensitivity 

of 17.2%, and specificity of 85.6%) and signal vector magnitude (SVM) (17.16%, sensitivity 

of 17.2%, and specificity of 85.6%) were the most informative features. The AI-based 

information mining model identified a subset of 15 acceleration features that gained more 

information than any single acceleration feature with an accuracy of 35.84%, sensitivity of 

35.8%, and specificity of 86.5%. Generally, the acceleration signal and the foot plantar pressure 

features performed poorly in gaining information about older adults’ experience in the 

environment. 
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Table 4.9: Most informative plantar pressure features 

Top ten Pressure sensor 

feature 

Rank Single feature 

performance 

Cumulative 

performance 

1 PTI_Sensor4 (R) 0.2603 Acc. 41.10 Acc. 41.10 

   Sen. 41.10 Sen. 41.10 

   Spec. 88.70 Spec. 88.70 

2 PTI_Sensor11 (R) 0.2375 Acc. 43.61 Acc. 53.31 

   Sen. 43.60 Sen. 53.30 

   Spec. 87.00 Spec. 91.00 

3 PTI_Sensor10 (L) 0.2233 Acc. 40.58 Acc. 58.14 

   Sen. 40.60 Sen. 58.10 

   Spec. 86.50 Spec. 91.80 

4 PTI_Sensor11 (L) 0.1996 Acc. 37.83 Acc. 59.71 

   Sen. 37.80 Sen. 59.70 

   Spec. 86.30 Spec. 92.40 

5 PTI_Sensor9 (R) 0.1950 Acc. 36.60 Acc. 62.17 

   Sen. 36.60 Sen. 62.20 

   Spec. 85.80 Spec. 93.20 

6 PTI_Sensor10 (R) 0.1940 Acc. 35.22 Acc. 64.96 

   Sen. 35.20 Sen. 65.00 

   Spec. 84.70 Spec. 93.70 

7 PTI_Sensor15 (R) 0.1844 Acc. 36.74 Acc. 67.57 

   Sen. 36.70 Sen. 67.60 

   Spec. 84.60 Spec. 94.20 

8 PTI_Sensor3 (R) 0.1830 Acc. 35.51 Acc. 68.80 

   Sen. 35.50 Sen. 68.80 

   Spec. 85.80 Spec. 94.40 

9 PTI_Sensor4 (L) 0.1721 Acc. 34.09 Acc. 69.46 

   Sen. 34.10 Sen. 69.50 

   Spec. 84.90 Spec. 94.60 

10 PTI_Sensor1 (R) 0.1632 Acc. 33.62 Acc. 73.48 

   Sen. 33.60 Sen. 73.50 

   Spec. 87.70 Spec. 95.20 

Optimum pressure sensor features (91 selected features) 

Acc. 82.05 

Sen. 82.10 

Spec. 96.60 

Mean_Sensor5 (L) Variance_Sensor14 

(L) 

Minimum_Sensor7 

(L) 

STD_Sensor11 

(R) 

PTI_Sensor7 (R)  

Mean_Sensor6 (L) Variance_Sensor15 

(L) 

Minimum_Sensor10 

(L) 

Kurtosis_Sensor1 

(L) 

PTI_Sensor9 (R) 

Mean_Sensor9 (L) Variance_Sensor1 

(R) 

Minimum_Sensor11 

(L) 

Kurtosis_Sensor2 

(L) 

PTI_Sensor11 (R) 

Mean_Sensor11 

(L) 

Variance_Sensor6 

(R) 

Minimum_Sensor12 

(L) 

Kurtosis_Sensor5 

(L) 

PTI_Sensor14 (R) 

Mean_Sensor12 

(L) 

Variance_Sensor7 

(R) 

Minimum_Sensor13 

(L) 

Kurtosis_Sensor2 

(R) 

PTI_Sensor15 (R) 

Mean_Sensor16 

(L) 

Variance_Sensor10 

(R) 

Minimum_Sensor16 

(L) 

Kurtosis_Sensor10 

(R) 

PTI_Sensor16 (R) 
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Mean_Sensor1 (R) Variance_Sensor11 

(R) 

Minimum_Sensor3 

(R) 

PTI_Sensor1 (L) Energy_Sensor7 

(L) 

Mean_Sensor19 

(R) 

Variance_Sensor13 

(R) 

Minimum_Sensor11 

(R) 

PTI_Sensor3 (L) Energy_Sensor9 

(L) 

Mean_Sensor3 (R) Variance_Sensor15 

(R) 

Range_Sensor3 (L) PTI_Sensor4 (L) Energy_Sensor1 

(R) 

Mean_Sensor6 (R) Maximum_Sensor1 

(L) 

Range_Sensor5 (L) PTI_Sensor7 (L) Energy_Sensor2 

(R) 

Mean_Sensor8 (R) Maximum_Sensor8 

(L) 

Range_Sensor8 (L) PTI_Sensor9 (L) Energy_Sensor9 

(R) 

Mean_Sensor9 (R) Maximum_Sensor10 

(L) 

Range_Sensor11 

(L) 

PTI_Sensor10 (L) Entropy_Sensor1 

(L) 

Mean_Sensor14 

(R) 

Maximum_Sensor11 

(L) 

Range_Sensor10 

(R) 

PTI_Sensor11 (L) Entropy_Sensor6 

(L) 

Mean_Sensor15 

(R) 

Maximum_Sensor13 

(L) 

STD_Sensor7 (L) PTI_Sensor13 (L) Entropy_Sensor9 

(L) 

Variance_Sensor1 

(L) 

Maximum_Sensor15 

(L) 

STD_Sensor9 (L) PTI_Sensor16 (L) Entropy_Sensor10 

(L) 

Variance_Sensor3 

(L) 

Maximum_Sensor14 

(R) 

STD_Sensor12 (L) PTI_Sensor1 (R) Entropy_Sensor11 

(L) 

Variance_Sensor7 

(L) 

Minimum_Sensor1 

(L) 

STD_Sensor14 (L) PTI_Sensor3 (R) Entropy_Sensor16 

(R)  

Variance_Sensor13 

(L) 

Minimum_Sensor6 

(L) 

STD_Sensor7 (R) PTI_Sensor6 (R) CoP_X axis (L) 

    CoP_X axis (R) 

Note. PTI = pressure time integral; CoP = centre of pressure; STD = standard deviation; (R) = 

right foot; (L) = left foot; X-axis = anterior-posterior; Acc. = accuracy; Sen. = sensitivity; Spec. 

= specificity. 

 

The poor performance can be attributed to the characteristics of the population being studied 

older adults aged 65 or above. Gait usually changes with ageing (Salzman, 2010); as a result, 

older adults tend to have a diverse abnormal gait, which affected the informativeness of the 

foot plantar and acceleration features. The gait abnormality among older adults affected the 

acceleration signal more than the foot plantar pressure signal. This is because the IMU used to 

extract acceleration features track movement in 3-axes. The X-axis (anterior-posterior) and Y-

axis (medial-lateral), as shown in Figure 4.3, are directed towards space and are more 

susceptible to gait abnormality among older adults. In contrast, all the foot plantar pressure 

sensors are directed toward the ground surface and were able to gain distinct information from 

the ground surface. For example, the plantar pressure distributions between a person’s foot and  
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Table 4.10: Most informative acceleration features 

Top ten Acceleration signal 

feature 

Rank Single feature 

performance 

Cumulative 

performance 

1 SMA (L) 0.0722 Acc. 17.16 Acc. 15.54 

   Sen. 17.20 Sen. 15.50 

   Spec. 85.60 Spec. 85.60 

2 SVM (L) 0.0674 Acc. 19.54 Acc. 19.16 

   Sen. 19.50 Sen. 19.20 

   Spec. 86.00 Spec. 85.40 

3 SVM (R) 0.0633 Acc.18.97 Acc. 20.78 

   Sen. 19.00 Sen. 20.80 

   Spec. 86.50 Spec. 85.60 

4 Mean_Z axis (R) 0.0629 Acc. 16.30 Acc. 21.35 

   Sen. 16.30 Sen. 21.40 

   Spec. 85.60 Spec. 85.80 

5 RSSQ_X axis (L) 0.0604 Acc. 17.73 Acc. 22.59 

   Sen. 17.70 Sen. 22.60 

   Spec. 86.00 Spec. 85.50 

6 RMS_X axis (L) 0.0604 Acc. 17.73 Acc. 22.31 

   Sen. 17.70 Sen. 22.30 

   Spec. 86.00 Spec. 85.60 

7 RMS_Z axis (R) 0.0597 Acc. 18.50 Acc. 22.88 

   Sen. 18.50 Sen. 22.90 

   Spec. 86.1 Spec. 85.60 

8 RSSQ_Z axis (R) 0.0597 Acc. 18.50 Acc. 25.55 

   Sen. 18.50 Sen. 25.50 

   Spec. 86.10 Spec. 85.80 

9 SMA (R) 0.0565 Acc. 16.78 Acc. 26.12 

   Sen. 16.80 Sen. 26.10 

   Spec. 85.70 Spec. 85.80 

10 Entropy_Z axis (R) 0.0548 Acc. 15.54 Acc. 25.93 

   Sen. 15.50 Sen. 25.90 

   Spec. 85.60 Spec. 85.70 

Optimum acceleration signal features (15 selected features) 

Acc. 35.84 

Sen. 35.80 

Spec. 86.50 

Mean_ Z axis (R) Minimum_ Z axis 

(R) 

RMS_ X axis 

(L) 

RSSQ_Y axis 

(L) 

SMA (L) 

Variance_ Z axis 

(R) 

Range_ Z axis (R) RMS_ Z axis 

(R) 

SVM (L) Energy_ Z axis 

(L) 

Minimum_ Z axis 

(L) 

STD_ X axis (L) RSSQ_ X axis 

(L) 

SVM (R) Entropy_ Z axis 

(R) 

Note. SMA = signal magnitude area; SVM = signal vector magnitude; RSSQ = root-sum-of-

squares level; RMS = root-mean-square; (R) = right foot; (L) = left foot; X-axis = anterior-

posterior; Y-axis = medial-lateral; Z-axis = vertical axis; Acc. = accuracy; Sen. = sensitivity; 

Spec. = specificity. 

 

 



 

 97 

 

Figure 4.3: Plantar pressure sensors and IMU sensor positions. 

 

footpaths with tarmac, paving slab, or gravel surfacing material are different. This distinctive 

information from the ground surfacing reflected in the Z-axis (vertical axis) of the acceleration 

signal which is directed towards the ground surface. As a result, the top 10 most informative 

acceleration features and the optimum subset of informative acceleration features were 

dominated by features extracted from the Z-axis. Nevertheless, researchers should be cautious 

when using older adults’ gait to represent their interaction with the environment because older 

adults’ gait abnormality can overwhelm the result. 

 

4.4 Chapter Summary 

This chapter aimed to achieve research objective one: to assess the informativeness of the 

bodily response collected in the ambulatory, real-world environment. This objective was 

achieved using information entropy, symmetric uncertainty, correlation analysis, RF algorithm.  

In summary, older adults’ physiological response is more informative than the cognitive and 
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behavioural responses. The informativeness of the EEG sensor was affected by the walking 

activity, and the gait abnormality among older adults affected their behavioural response. 

Researchers should be cautious when using older adults’ gait to represent their interaction with 

the environment because older adults’ gait abnormality can overwhelm the result. With more 

advances in wearable technologies, it is hoped that future EEG sensors will be more stable in 

the wild. The result proves that physiological signals can be monitored from wristband type 

sensors in an ambulatory, real-world setting and can be extended to capture older adults’ 

response to subtle environmental stimuli. The analysis in the subsequent chapters will be based 

on only the older adults’ physiological response. A computational approach for representing 

people’s interaction with the environment using the optimum feature set will be introduced. 

However, before this can be achieved, it is crucial to examine the statistical, spatial, and 

temporal associations in older adults’ physiological response. The next chapter will focus on 

understanding the statistical, spatial, and temporal associations in older adults’ physiological 

response. 
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CHAPTER 5  

 

Interaction of Older Adults’ Physiological Response with the 

Built Environment: Statistical, Spatial and Temporal 

Relationships5 

 
5.1 Introduction 

This chapter aims to achieve research objective two: to examine the relationships in older 

adult’s bodily responses resulting from their interaction with the environment. Because older 

adults’ behavioural and cognitive responses are not very informative, this chapter only focuses 

on the physiological response. Figure 5.1 is an overview of the study presented in this chapter. 

The methods adopted in this chapter are illustrated in Figure 5.2. 

 

 

Figure 5.1: Overview of the study. 

 
5 Parts of this chapter has been published in a journal. 

 
Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). The influence of urban visuospatial configuration on 

older adults’ stress: A wearable physiological-perceived stress sensing and data mining based-approach, 

Building and Environment, 108298. https://doi.org/10.1016/j.buildenv.2021.108298 

 

https://doi.org/10.1016/j.buildenv.2021.108298
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Figure 5.2: Methodological flow chart. 

Note.  EDA = electrodermal activity; HRV = heart rate variability; ANS = autonomic nervous 

system; 𝐿𝐹 𝐻𝐹⁄  = The ratio of absolute spectral power of the low frequency (LF) band (0.04-

0.15) and high frequency (HF) band (0.15-0.4); SCR = skin conductance response; PhasicMax 

= The maximum value of phasic activity within 10 s response window; GPS = Global 

Positioning System. 

 

5.2 Methods 

5.2.1 Physiological Reflectors of Human-Environment Stressful Interactions 

The path for the environmental walk was classified into two categories using the older adults’ 

perceived stress as presented in Chapter 3. The first category represents environmental 

conditions that older adults perceive as non-stress, and the second category represents 

environmental conditions perceived as stress. Older adults’ physiological responses to these 

environment conditions were analysed by assessing the dynamics of their autonomic nervous 

system (ANS). The ANS is one of the major neural pathways activated by stress (Won et al., 

2016; Boucsein, 2012). Heart rate variability (HRV) and electrodermal activity (EDA) are 

reliable indicators of the sympathetic and parasympathetic nervous system (Acharya et al., 

2006; Boucsein, 2012). The parasympathetic nervous system modulates heart rate at all 

frequencies between 0.15 and 0.4 Hz. The sympathetic nervous system modulates heart rate 

(with significant gain) at frequencies between 0.04 to 0.15 Hz (Healey and Picard, 2005; 
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Acharya et al., 2006). To precisely model the effect of environmental stressors, the ratio of the 

low-frequency heart rate absolute spectral power to high-frequency heart rate absolute spectral 

power was computed to represent the ratio of the sympathetic to parasympathetic 

(sympathovagal balance) influence on the heart. The absolute spectral power of the low 

frequency (LF) band (0.04-0.15) and high frequency (HF) band (0.15-0.4) were calculated, and 

the ratio 𝐿𝐹 𝐻𝐹⁄  was derived.  

 

An increase in the eccrine sweat gland activity is observed when the sympathetic nervous 

system is stimulated, thus changing the conductivity of the skin (Zhang et al., 2018; Kleckner 

et al., 2018). EDA measures the conductivity of the skin and is one of the most frequently 

employed signals for detecting physiological arousal levels and stress (Kleckner et al., 2018; 

Boucsein, 2012; Posada-Quintero and Chon, 2020). To precisely model the effect of 

environmental stressors, the EDA is first decomposed into two components—phasic 

component and tonic component—using a continuous decomposition analysis method as 

shown in Figure 5.3 (Benedek and Kaernbach, 2010). The phasic component results from an 

underlying sympathetic reaction to a stimulus while the tonic component are responses to tonic 

stimulus and changes slowly over time (Posada-Quintero and Chon, 2020; Benedek and 

Kaernbach, 2010). Because the tonic EDA component cannot be linked to a specific stimulus, 

this study used only the phasic EDA component to represent older adults’ physiological 

response. The maximum value of phasic activity within 10 s response window (PhasicMax) 

extracted from the phasic component (skin conductance response [SCR]) of the EDA signal 

was used as an indicator of older adults’ physiological response. The collection of these data 

and pre-processing methods are presented in Chapter 3, and the informativeness of the features 

was assessed in Chapter 4. 
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Figure 5.3: A continuous decomposition of EDA into tonic component and phasic component. 

 

5.2.2 Statistical Analysis 

A Wilcoxon signed-rank test was conducted to understand whether the physiological responses 

to environmental conditions perceived as non-stress was statistically and significantly different 

from environmental conditions perceived as stress. A Wilcoxon signed-rank test is a 

nonparametric statistical hypothesis test that compares two related samples or repeated 
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measurements on a single sample to assess whether their population mean ranks differ 

(Woolson, 2007). 

 

5.2.3 Spatial Analysis 

A participant experiencing a high or low physiological response at a location could result from 

random factors or spatial factors. However, if multiple participants tend to experience a 

common physiological response at a location, this could indicate that the physiological 

response was due to spatial factors. Spatial clustering analysis was conducted using Getis-Ord 

General G to confirm whether there is any spatial association in participants’ physiological 

response. Getis-Ord General G statistic is an inferential statistic that assesses the degree of 

spatial association in an entire sample or relation to a single observation for a given study area 

(Getis and Ord, 2010). The Getis-Ord General G statistic is computed as follows (Getis and 

Ord, 2010) 

𝐺 =
∑ ∑ 𝑤𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 , ∀𝑗≠ 𝑖,                                                                                                      (5.1) 

where 𝑥𝑖 and 𝑥𝑗 are attribute values for physiological responses 𝑖 and 𝑗, and 𝑤𝑖,𝑗 is the spatial 

weight between physiological response 𝑖 and 𝑗. 𝑛 is the number of physiological response in 

the study area.  

 

To determine locations on the path that stimulated a common physiological response among 

multiple participants, a hot spot analysis was conducted using Getis-Ord Gi* statistics. The 

Getis-Ord Gi* statistics returns a z-score and a p-value for each physiological response 

experienced on the path by each participant. The resultant z-scores and p-values show the 

statistically significant spatial clusters of all participants’ high or low physiological responses. 

A location is determined as a hot spot if the physiological response at that location is high and 
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the physiological responses at the neighbouring locations are also high. The Getis-Ord Gi* 

statistics (Ord and Getis, 1995) is given as  

𝐺𝑖
∗ =  

∑ 𝑤𝑖,𝑗𝑥𝑗 − �̅� ∑ 𝑤𝑖,𝑗
𝑛
𝑗=𝑖

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖,𝑗
2 − (∑ 𝑤𝑖,𝑗

𝑛
𝑗=1 )

2𝑛
𝑗=1 ]

𝑛 − 1

,                                                                                         (5.2) 

where 𝑥𝑗 is the attribute value for physiological response 𝑗, 𝑤𝑖,𝑗is the spatial weight between 

physiological response 𝑖 and 𝑗, 𝑛 is equal to the total number of physiological responses and 

�̅� =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
,                                                                                                                                        (5.3) 

𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (�̅�)2.                                                                                                                       (5.4) 

 

5.2.4 Spatiotemporal Analysis 

Despite researchers’ considerable efforts to advance human-centric sensing, their studies were 

unable to account for how environmental conditions change over time. Time-dependent 

environment conditions such as illuminance, temperature, and humidity impact human-

environment interaction, thus their physiological response (Huang et al., 2016; Huisman et al., 

2012). For instance, a path without street lighting can only be perceived as an environmental 

barrier during the night. A path may be considered as an environmental barrier during the rainy 

season when it is flooded or during the winter when it is covered with snow, but this same path 

may not be a barrier during the summer. This study introduces a space-time pattern mining 

approach to spatiotemporally aggregate older adults’ physiological responses. Discovering 

such spatiotemporal pattern can be useful to municipal decision-makers and urban planners to 

monitor, detect, prioritise, and allocate resources to improve neighbourhood walkability and 

designing of age-friendly cities and communities. 
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Space-time pattern mining is based on a series of statistical computations for analysing data 

distributions and identifying patterns within the spatial and temporal context of the data (Zhu 

and Newsam, 2016). All participants’ physiological responses were scaled and aggregated into 

a space-time cube (STC), as depicted in Figure 5.3. A STC can be pictured as a three-

dimensional cube consisting of space-time bins with 𝑥 and 𝑦 dimensions (representing the 

locations of the physiological responses in space) and the 𝑡 dimension (representing the 

respective time the physiological response was collected). Each bin in the STC contains a 

participant’s physiological responses at a specific location (𝑥, 𝑦) and time (𝑡). A hexagon grid 

(here, set as 3 m along the path) was used to construct the bins because the circularity of the 

hexagon makes it more representative of the curves in the path. More importantly, the 

significance of physiological response at every location will be analysed based on a fixed 

neighbourhood distance, and the hexagon grid allows more neighbouring physiological 

responses to be included in the analysis (Birch et al., 2007). The participants’ physiological 

responses were temporally bin at a daily interval for a total of ten days (only ten days of data 

was collected). Because each bin could span across more than one GPS points and contain 

multiple physiological responses, the median physiological response was computed to measure 

the central tendency of the multiple physiological responses in each bin. The median was used 

because it is less influenced by skewed values; hence a bin with a few extremely high 

physiological responses will not dominate the aggregated value of that bin. 

 

The emerging hot spot analysis tool in ArcGIS (Esri, 2020a) was used to identify and 

understand the trends in the STC. First, the spatial clusters (locations with statistically 

significant high and low physiological responses) are computed using the Getis-Ord Gi* 

statistic as already described in equation 5.2. Secondly, the trends in the STC are analysed 

based on Mann-Kendall trend test. The Mann-Kendall trend test is a nonparametric test used 
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to analyse data collected over time for consistently increasing or decreasing trends (Hamed, 

2009; McLeod, 2005). The Mann-Kendall trend test is conducted on every location as an 

independent bin time-series test. The test returns a z-score and p-value for each bin time series. 

The trend analysis examines whether participants’ physiological responses are increasing 

(positive z-score) or decreasing (negative z-score) over time and confirms whether the changes 

are statistically significant. Finally, the emerging hot spot analysis uses the Mann-Kendall trend 

test’s z-score and p-value for each location and the Getis-Ord Gi*’s z-score and p-value for 

each bin to classify each location on the path into several categories of hot spot (Esri, 2020a). 

 

 

Figure 5.4: Aggregating participants’ physiological responses into space-time bins with GPS 

coordinates (adapted from Esri, 2020a). 

 

5.3 Results 

5.3.1 Physiological Reflectors of Human-Environment Stressful Interactions 

The data from this study indicate that older adult interaction with the environment results in 

changes in their physiological responses. Figure 5.4 and Figure 5.5 shows noticeable changes 

in two participants’ HRV measure (i.e., 𝐿𝐹 𝐻𝐹⁄ ) and SCR (i.e., PhasicMax) during the 

environmental walk on the entire path. Although each participant walked through the same 

segment along the path, it can be observed that their interaction with path is somewhat different. 
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For example, participant 3 in Figure 5.4 spent more time in most of the segments than 

participants 2. Similarly, participant 8 in Figure 5.5 spent less time in each segment compared 

to participant 5. This is an indication that, the differences in pace, walking behaviour and level 

of observation influenced how the participants’ interacted with the path hence their 

physiological responses. 

 

 

Figure 5.5: The 𝐿𝐹 𝐻𝐹⁄  measure of two participants during the environmental walk on the 

path.  

Note. The coloured stacked bar represents each participant's time to complete each path 

segment—starting from segment A (yellow bar) to segment H (red bar). 

 

 

 

Figure 5.6: The PhasicMax measure of two participants during the environmental walk on the 

path.  

Note. The coloured stacked bar represents each participant's time to complete each path 

segment—starting from segment A (yellow bar) to segment H (red bar). 
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5.3.2 Statistical Analysis 

The results of the Wilcoxon signed-rank test (Table 5.1 and Table 5.2) indicate a statistically 

significant difference in some of the older adults’ physiological responses to environmental 

conditions perceived as non-stress and environmental conditions perceived as stress. However, 

there are variations among some of the participants’ physiological responses. For instance, 

participant 3 experienced a statistically significantly higher 𝐿𝐹 𝐻𝐹⁄  response to environmental 

conditions perceived as stress than environmental conditions perceived as non-stress, whereas 

participant 6 experienced a statistically significantly lower 𝐿𝐹 𝐻𝐹⁄  response to environmental 

conditions perceived as stress than environmental conditions perceived as non-stress. 

Participant 2 experienced a statistically significantly higher PhasicMax response to 

environmental conditions perceived as stress than environment conditions perceived as non-

stress, while Participant 1 experienced a statistically significantly lower PhasicMax response 

to environmental conditions perceived as stress than environmental conditions perceived as 

non-stress. 

 

The differences in individual participant’s physiological responses to the environmental 

conditions indicate that there is no specific physiological response that represents an 

environment’s condition; a high or low (𝐿𝐹 𝐻𝐹⁄  and PhasicMax) response can indicate either 

stress and/or non-stress environmental condition. Further analyses show that the differences in 

individual participant’s physiological responses can be due to their physical characteristics and 

gender. Physical characteristics were measured usin2g participant’s body mass index 

[𝑤𝑒𝑖𝑔ℎ𝑡 (ℎ𝑒𝑖𝑔ℎ𝑡2)⁄ ]. Body mass index (BMI) is a surrogate measure of body fatness and an 

approximate indicator of health, physical fitness, and activity level (Ding and Jiang, 2020; 

Prentice and Jebb, 2001; Luppino, 2010; Han et al., 1998). Studies have indicated an inverse 

relationship between physical activity and body mass index (Hemmingsson and Ekelund, 2007;  
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Table 5.1: A comparison of 𝐿𝐹 𝐻𝐹⁄  measure in environmental conditions perceived as non-

stress and environmental conditions perceived as stress 

Participant 
Environmental 

condition 
Descriptive statistics Wilcoxon signed ranks test 

Mean (SD) Median Z p 

1 
Non-stress 1.924 (1.301) 1.564 

-1.399 .162 
Stress 2.787 (3.164) 1.432 

2 
Non-stress 1.938 (0.799) 1.979 

-1.248 .212 
Stress 1.537 (1.331) 1.117 

3 
Non-stress 2.708 (2.209) 3.870 

-2.341 .019* 
Stress 1.964 (1.683) 1.429 

4 
Non-stress 2.211 (2.616) 1.132 

-2.498 .013* 
Stress 2.479 (1.765) 1.987 

5 
Non-stress 1.753 (1.951) 1.027 

-2.016 .044* 
Stress 1.990 (2.838) 1.015 

6 
Non-stress 2.335 (2.505) 1.254 

-2.957 .003* 
Stress 1.984 (2.548) 1.172 

8 
Non-stress 6.764 (13.119) 2.027 

-0.155 .877 
Stress 4.366 (6.606) 2.212 

9 
Non-stress 2.473 (1.600) 2.079 

-0.508 .611 
Stress 3.671 (3.920) 2.413 

10 
Non-stress 4.768 (6.313) 1.929 

-2.326 .020* 
Stress 2.462 (2.562) 1.487 

Collective 

response 
Non-stress 2.997 (5.475) 1.621 

-3.862 .000** 
Stress 2.541 (3.370) 1.428 

BMI above 24.9 
Non-stress 

2.719 (3.475) 1.538 
-2.940 .003* 

BMI below 24.9 3.386 (7.400) 1.683 
BMI above 24.9 

Stress 
2.436 (2.730) 1.497 

-0.201 .841 
BMI below 24.9 2.669 (4.012) 1.340 
Female 

Non-stress 
3.041 (6.194) 1.673 

-3.218 .001* 
Male 2.925 (4.006) 1.389 
Female 

Stress 
2.784 (3.760) 1.544 

-1.381 .167 
Male 2.108 (2.476) 1.251 

Note. *p < .05. **p < .001. SD = standard deviation. 

 

Bassett et al., 2004). According to the Centres for Disease Control and Prevention, an adult 

with BMI below 18.5 is underweight, BMI between 18.5 and 24.9 is a healthy weight, BMI 

between 25.0 and 29.9 is overweight, and a BMI of 30.0 and above is obese (CDC, 2021). In 

a non-stress environmental condition, only the data source from the heart rate (LF⁄HF) was 

statistically significant. Participants with a normal or healthy weight (BMI below 24.9) 

experienced higher LF⁄HF than overweight participants (BMI above 24.9). In a stress 

environmental condition, only the data source from the SCR (PhasicMax) was statistically 

significant. Overweight participants (BMI above 24.9) experienced higher PhasicMax than  
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Table 5.2: A comparison of PhasicMax measure in environmental conditions perceived as non-

stress and environmental conditions perceived as stress 

Participant 
Environmental 

condition 
Descriptive statistics Wilcoxon signed ranks test 

Mean (SD) Median Z p 

1 
Non-stress 0.990 (0.692) 1.082 

-12.035 .000** 
Stress 0.360 (0.420) 0.136 

2 
Non-stress 0.277 (0.150) 0.256 

-2.694 .007* 
Stress 0.315 (0.204) 0.284 

3 
Non-stress 0.547 (0.403) 0.490 

-9.712 .000** 
Stress 0.365 (0.258) 0.324 

4 
Non-stress 0.130 (0.789) 0.126 

-1.376 .169 
Stress 0.117 (0.085) 0.100 

5 
Non-stress 0.108 (0.492) 0.997 

-2.242 .025* 
Stress 0.091 (0.044) 0.083 

6 
Non-stress 0.281 (0.298) 0.166 

-1.882 .060 
Stress 0.237 (0.187) 0.177 

8 
Non-stress 0.053 (0.036) 0.039 

-0.751 .453 
Stress 0.059 (0.052) 0.040 

9 
Non-stress 13.316 (7.435) 15.532 

-11.035 .000** 
Stress 8.476 (5.741) 6.724 

10 
Non-stress 0.335 (0.169) 0.300 

-3.588 .000** 
Stress 0.388 (0.175) 0.355 

Collective 

response 
Non-stress 1.730 (4.714) 0.201 

-5.665 .000** 
Stress 0.996 (2.966) 0.157 

BMI above 24.9 
Non-stress 

2.723 (6.031) 0.226 
-1.608 .108 

BMI below 24.9 0.406 (0.538) 0.158 
BMI above 24.9 

Stress 
1.635 (0.184) 

0.131 -4.958 .000** 
BMI below 24.9 0.244 (0.288) 
Female 

Non-stress 
2.549 (5.759) 0.208 

-7.217 .000** 
Male 0.312 (0.307) 0.180 
Female 

Stress 
1.399 (3.617) 0.160 

-0.479 .632 
Male 0.252 (0.221) 0.153 

Note. * p < .05. **p < .001. SD = standard deviation.  

 

participants with a normal or healthy weight (BMI below 24.9). This result could be an 

indication that a stress environmental condition poses high demand to overweight older adults. 

The female participants experienced a statistically significantly higher physiological response 

(both 𝐿𝐹 𝐻𝐹⁄  and PhasicMax) to non-stress environmental conditions than the male 

participants. 

 

The source of the physiological response (i.e., the related organ) influenced some of the 

participants’ physiological responses. For example, when the data source is from the heart rate 
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(𝐿𝐹 𝐻𝐹⁄ ) participant 5 experienced a statistically significantly higher physiological response 

to environmental conditions perceived as stress than environmental conditions perceived as 

non-stress. Whereas, when the data source is from the SCR (PhasicMax), the same participant 

(participant 5) experienced a statistically significantly lower physiological response to 

environmental conditions perceived as stress than environment conditions perceived as non-

stress. 

 

Aggregating all participants’ physiological responses (collective response) produced a 

consistent result across the HR and SCR data sources. The result from the collective 

physiological responses shows that, on average, participants experienced a statistically 

significant higher physiological response at environmental conditions perceived as non-stress 

than environmental conditions perceived as stress. A recent study on relatively younger adults 

reported similar physiological responses from EDA data (skin conductive) (Chrisinger and 

King, 2018). Chrisinger and King (2018) reported that EDA was higher in environmental 

conditions with favourable features and lower in environmental conditions with less favourable 

features. 

 

5.3.3 Spatial Analysis 

All participants physiological responses were georeferenced to the corresponding GPS 

positions (Latitude and Longitude) for the entire path. The null hypothesis of the Getis-Ord 

General G statistic stipulates that there is no spatial clustering of participants’ physiological 

response. An incremental spatial autocorrelation was conducted to determine the optimum 

scale of the analysis (Mitchel, 2005). The threshold distance of 11 m was obtained for the 

𝐿𝐹 𝐻𝐹⁄  measure. However, no optimal distance could be found for participants’ PhasicMax 

measure; therefore, the scale of analysis was determined based on the average distance to the 
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K nearest neighbours. K was approximated based on the average nearest neighbours determine 

for the (𝐿𝐹 𝐻𝐹⁄ ) measure. Using 220 (K) nearest neighbours, a threshold distance of 12.37 m 

was obtained for the PhasicMax measure. The resulting z-scores of the Getis-Ord General G 

statistic for the 𝐿𝐹 𝐻𝐹⁄  and PhasicMax measures were 2.595 and 7.890, respectively. There 

was a less than 1% likelihood that the spatial clustering of participants’ physiological responses 

(both 𝐿𝐹 𝐻𝐹⁄  and PhasicMax measures) could be the result of random chance. The spatial 

clustering analysis confirms that multiple participants’ physiological responses are spatially 

associated and possess some common characteristics. The result implies that aggregating 

participants’ physiological responses could act as a reliable indicator of an environmental 

condition. 

 

A hot spot analysis was conducted on the 𝐿𝐹 𝐻𝐹⁄  and PhasicMax measures using a threshold 

distance of 11 m and 12.37 m to determine the environmental conditions that triggered a 

common physiological response among multiple participants. The hot spot analysis result for 

𝐿𝐹 𝐻𝐹⁄  and PhasicMax measures are presented in Figure 5.6 and Figure 5.7, respectively. The 

hot spots are locations on the path with statistically significant high physiological response 

value clusters. The cold spots are locations on the path with statistically significant low 

physiological response value clusters. Note that the result from the Wilcoxon signed-rank test 

indicated that participant experienced high physiological responses (corresponding to hot 

spots) in environmental conditions perceived as non-stress and low physiological responses 

(corresponding to cold spots) in environmental conditions perceived as stress. A total of 1105 

and 2178 samples from the 𝐿𝐹 𝐻𝐹⁄  measure were determined as a hot spot and cold spot, 

respectively, at a 95% confidence level. A total of 1529 and 2184 samples from the PhasicMax 

measure were determined as a hot spot and cold spot, respectively, at a 95% confidence level. 
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In other words, these hot and cold spots were the results of older adults’ physiological 

responses to the environmental conditions (spatial factors) at a 95% confidence level. 

 

 

Figure 5.7: Spatial clusters of collective physiological responses based on 𝐿𝐹 𝐻𝐹⁄  measure. 

Note. The hot spots are locations on the path where multiple participants experienced 

statistically significant high values of 𝐿𝐹 𝐻𝐹⁄ . The cold spots are locations on the path where 

multiple participants experienced statistically significant low values of 𝐿𝐹 𝐻𝐹⁄ . Note that high 

values of 𝐿𝐹 𝐻𝐹⁄  correspond to environmental conditions perceived as non-stress and low 

values of 𝐿𝐹 𝐻𝐹⁄  correspond to environmental conditions perceived as stress. Basemap data 

copyrighted Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 

AeroGRID, IGN, and the GIS User Community. 
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Figure 5.8: Spatial clusters of collective physiological responses based on PhasicMax 

measure.  

Note. The hot spots are locations on the path where multiple participants experienced 

statistically significant high values of PhasicMax. The cold spots are locations on the path 

where multiple participants experienced statistically significant low values of PhasicMax. Note 

that high values of PhasicMax correspond to environmental conditions perceived as non-stress 

and low values of PhasicMax correspond to environmental conditions perceived as stress. 

Basemap data copyrighted Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, 

USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

 

5.3.4 Spatiotemporal Analysis 

Because the field data collection was conducted for only ten days and some of the participant’s 

physiological responses were corrupted or abnormal, this study only demonstrated the 

effectiveness of the space-time pattern mining using the 𝐿𝐹 𝐻𝐹⁄  measure. The result of the 

space-time pattern mining based on 𝐿𝐹 𝐻𝐹⁄  measure with a threshold distance of 11 m and a 

time interval of one day is presented in Figure 5.8. Several clusters of high physiological 

responses (hot spot) and low physiological responses (cold spot) were detected on the path. 

These hot and cold spot locations on the path are furthered categorised based on their  
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Figure 5.9: Spatiotemporal clusters of collective physiological responses based on 𝐿𝐹 𝐻𝐹⁄  

measure.  

Note. The hot and cold spot locations on the path are furthered categorised based on their 

occurrence over time. Note that high values of 𝐿𝐹 𝐻𝐹⁄ correspond to environmental conditions 

perceived as non-stress and low values of 𝐿𝐹 𝐻𝐹⁄ correspond to environmental conditions 

perceived as stress. Basemap data copyrighted Esri, Maxar, GeoEye, Earthstar Geographics, 

CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

 

occurrence over time. A consecutive hot (or cold) spot is a location with a single uninterrupted 

run of statistically significant hot (or cold) spot bins in the final time-step intervals. A sporadic 

hot (or cold) spot is a location that is an on-again then off-again hot (or cold) spot. An 

oscillating hot (or cold) spot is a statistically significant hot (or cold) spot for the final time-

step interval that has a history of also being a statistically significant cold (or hot) spot during 

a prior time step. A consecutive hot (or cold) spot is a location with a single uninterrupted run 

of statistically significant hot (or cold) spot bins in the final time-step intervals. There were 

seven consecutive hot spots, four sporadic hot spots, 59 oscillating hot spots, two consecutive 
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cold spots, 51 sporadic cold spots, 75 oscillating cold spot, and 217 spots with no pattern 

detected on the path. 

 

5.4 Discussion 

5.4.1 A Comparison of Older Adults’ Physiological-Environmental Interactions, Older 

Adults’ Perceived Stress Assessments, and Observers’ Path Audit 

The older adults’ physiological-environmental interactions were compared with the older 

adults’ perceived stress assessments and the observers’ audits of the path condition to confirm 

how well the elderly-centric sensing can represent the older adults’ interaction with the built 

environment. A comparison of perceived stress, observers’ path audit, and detected hot and 

cold spots on the path is presented in Figure 5.9. 

 

Segment A (an alley with several path obstructions) was perceived as stress by the participants. 

Segment A’s environmental condition was rated as poor by the observers, and segment A was 

detected as a statistically significant cold spot, corresponding to physiological stress. The 

results across the three different assessment approaches confirm one another. The PhasicMax 

measure provided a more accurate representation of this segment with a higher confidence level 

than the 𝐿𝐹 𝐻𝐹⁄  measure. The participants perceived segment B (a wide street) as non-stress. 

The observers rated it as moderate, and half of segment B was detected as a statistically 

significant cold spot, corresponding to physiological stress. Participants had to cross a street 

road in segment B; this street road has vehicles parked along its shoulders. The anticipation of 

an approaching vehicle while crossing the road and having their field of view limited by the 

parked vehicles could have resulted in physiological stress. Because this occurrence is time-

dependent, it could easily be missed during the path audit or while the participant reported their 

perceived stress. A review of the spatiotemporal analysis indicates a sporadic cold spot for 
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parts of segment B immediately after the crossing, implying that the older adults experienced 

physiological stress on some days and were not stress on other days. 

 

Segment C was perceived as stress, the environmental condition at segment C was rated as 

moderate, and parts of segment C was detected as a statistically significant cold spot 

(physiological stress) and hot spot (non-physiological stress) based on the 𝐿𝐹 𝐻𝐹⁄  measure and 

cold spot (physiological stress) based on PhasicMax measure. Segment D was perceived as 

stress by the participants, rated as good by the observers and was only detected as a significant 

cold spot (physiological stress) based on the 𝐿𝐹 𝐻𝐹⁄  measure. Segment D is a crosswalk with 

traffic signals. Although the crosswalk was rated as good, it was perceived as stress and 

experienced as physiological stress. A plausible explanation for such responses could be the 

waiting time at the traffic light, which was about 68 seconds. The spatiotemporal analysis 

further indicates a sporadic cold spot on the crosswalk, suggesting that the participants were 

stressed on the days with longer waiting time for the traffic signal to turn green and non-

stressed on the days the waiting time is shorter. This is another time-dependent occurrence that 

was not captured in the observers’ path audit. 

 

The participants perceived segment E (an on-going construction site) and segment F (an alley 

with path obstructions) as stress, and the observers’ rated it as poor. Segment E and F were 

detected as a statistically significant (95% confidence level) physiological stress spot by the 

PhasicMax measure. It was observed that all the segments that were perceived as stress and 

rated as poor only resulted in physiological stress when the data source is from the SCR 

(PhasicMax) with a 95% confidence level. Physiological data sourced from the heart rate 

(𝐿𝐹 𝐻𝐹⁄ ) mostly misclassify such segments or detected them with a 90% confidence level. 
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This indicates that segments rated as poor conditions have more pronounced effects on older 

adults’ SCR than heart rate measures.  

 

Physiological data sourced from the heart rate (𝐿𝐹 𝐻𝐹⁄ ) is more indicative of the path 

conditions perceived as high stress or low stress than the data source is from the SCR 

(PhasicMax). For instance, segment G (a green space) was perceived as non-stress by the 

participants, the environmental condition of segment A was rated as good by the observers. 

Segment H (subway with graffiti) was perceived as high-stress and rated as moderate. Both 

heart rate and SCR data sources detected segment G as non-stress, consistent with the perceived 

and path audit assessments. However, only the heart rate (𝐿𝐹 𝐻𝐹⁄ ) measure was able to detect 

segment H as stress at a 90% confidence level. 

 

Overall, the older adults’ perceived assessment of the path, the observers’ path audit and the 

assessment based on physiological responses confirm one another more than they contradict. 

These contractions are expected because all of these assessment methods have inherent 

limitations. For instance, the older adults’ perceived assessment is subjective; they could rate 

the mere presence of a gas station as stressful with a high-intensity rating, although the gas 

station may not distress the older adult. Although the observers’ path audit is objective, they 

cannot adequately distinguish between an environmental condition that is stressful for a person 

and not stress for another person. Therefore,  it is expected that the perceived, objective, and 

physiological response based assessments should have some contradictions. Despite the 

contradictions, these methods can complement one another and improve the assessment of the 

built environment for older adults. 
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Figure 5.10: Comparison of perceived stress, observers’ path audit, and detected hot and cold spots on the path.  

Note. (a) Perceived stress and non-stress locations reported by participants. (b) Path audit by observers. The environmental condition was rated as 

poor, moderate or good. F = Rating for functionality; S = Rating for safety; A = Rating for aesthetics; O = Overall rating of path segment. (c) 

Spatial clusters of physiological responses based on LF/HF measure. (d) Spatial clusters of physiological responses based on PhasicMax measure. 

(e) Spatiotemporal clusters of physiological responses based on LF/HF measure. Basemap data copyrighted Esri, Maxar, GeoEye, Earthstar 

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. Photographs by author.
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5.4.2 Collective Sensing can Address Individual Variability 

This study shows that the relationships between older adults’ physiological response and the 

environmental condition are less apparent at the individual level. An individual’s pace, walking 

behaviour, level of observation, physical characteristics and gender influenced their 

physiological responses to stress and non-stress environmental conditions. The physiological 

response data source (i.e., the related organ) and time-dependent environmental factors also 

contributed to the variability in older adults physiological responses. The variability in older 

adults’ physiological response is what motivated this study. Assuming there was no individual 

variability (which will be the case when sensors are attached to mobility aids), an 

environment’s condition can be determined by using the intensity of older adults’ physiological 

response. Using the intensity of older adults’ physiological responses to represent older adult’s 

environment interaction would be misleading in this study. This study shows that using 

collective sensing (aggregating multiple participants’ physiological responses) can 

accommodate the individual variability and capture any normality in the data, which is 

indicative of an environment’s condition. 

 

5.5 Chapter Summary 

This chapter aimed to achieve research objective two: to examine the relationships in older 

adult’s bodily responses resulting from their interaction with the environment. This objective 

was achieved using statistical analysis (Wilcoxon signed-rank test), spatial clustering analysis 

(Getis-Ord General G statistic and Getis-Ord Gi* statistics), and space-time pattern mining. 

The results show that the relationships between older adults’ physiological response and the 

environmental condition are less apparent at the individual level. An individual’s pace, walking 

behaviour, level of observation, physical characteristics, gender, data source (i.e., the related 

organ) and time-dependent environmental factors influenced their physiological responses to 
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stress and non-stress environmental conditions. However, using collective sensing 

(aggregating multiple participants’ physiological responses) can accommodate the individual 

variability and capture any normality in the data, which is indicative of an environment’s 

condition. The collective physiological responses are consistent with the older adults’ 

perceived assessment and the observers’ audit of the environment’s condition. Current 

advances in machine learning intelligence will be harness in the next chapter to develop and 

test a more efficient approach to detecting older adults’ stressful interaction with the built 

environment. 
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CHAPTER 6  

 

AN OPTIMISED ENVIRONMENTAL STRESS DETECTION 

FRAMEWORK BASED ON MACHINE LEARNING 

INTELLIGENCE6 

 

6.1 Introduction 

It is clear from Chapter 5 that older adults’ collective physiological responses to the 

environment are spatially and temporally associated and possess some common characteristics 

indicative of stress and non-stress environmental conditions. Now this chapter turns to the task 

of optimising the current stress detection approach. This will lead to achieving research 

objective three: to detect older adults’ stressful environmental interactions in near-real time.  

 

The Geographic Information System (GIS)-based hot and cold spot analysis presented in 

Chapter 5 has shown the potential to distinguish between stress and non-stress environmental 

conditions. Despite such potential, the GIS-based approach cannot maximise the full potential 

of representing peoples’ interaction with the environment using their physiological responses. 

For instance, the GIS-based approach presented in Chapter 5 could only represent human-

 
6 This chapter is based on a study that is currently under consideration for publication. 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Learning to detect older adults’ 

environmental stress hotspots to improve neighbourhood mobility: A multimodal physiological 

sensing, machine learning and risk hotspot analysis-based approach, Cities (Under Review). 

JCIT-D-21-01443 
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environment interaction with one physiological feature. As established in Chapter 4, relying 

on only one physiological feature or modality might not be informative enough when it comes 

to understanding stressful human-environment interactions in ambulatory, real-world setting. 

Therefore, there is a need to develop a computational approach for representing human-

environment interaction using an optimum set of informative physiological features. 

 

In this chapter, several machine learning algorithms were trained on an optimum set of 

informative physiological features, environmental data, and user-perceived stress response. 

The algorithms were trained and tested to detect (1) stress and non-stress human-environment 

interactions and (2) low-stress and high-stress human-environment interactions. The detected 

stressful interactions were visualised using kernel density estimation. A simulation-based 

statistical power estimation was used to examine areas within the study area that are sufficiently 

powered to detect stress hot spot that pose more higher risk to the older adults. An overview of 

the optimised environmental stress detection framework is depicted in Figure 6.1. 

 

 

Figure 6.1: Optimised environmental stress detection framework. 
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6.2 Optimised Stress Detection Framework 

6.2.1 The Optimum Set of Informative Features 

The data collection, pre-processing, and feature extraction are explained in Chapter 3 and 

Chapter 4. The following features were extracted in addition to the physiological features that 

were extracted in Chapter 4: (1) the time a participant was present at a location on the path, (2) 

the environment temperature, and (3) the environment humidity for consideration in the 

selection of the optimum set of informative features. These environmental and location features 

were added because previous studies have confirmed that environment weather affects mood 

(Taylor et al., 2017; Li et al., 2014). The optimum set of informative features were identified 

using the information mining model developed in Chapter 4. However, because the focus here 

is on a specific type of human-environment interaction (i.e., human interaction with stress and 

non-stress environmental conditions), older adults’ perceived stress assessment of the 

environmental conditions was used as class labels. The optimum feature set was constrained to 

include at least one feature from each data source (i.e., HRV data, EDA data, location, and 

environmental data). This approach was adopted to improve the diversity and generalisation of 

the stress detection framework. The next section provides more details about how data from 

different sources was harnessed to improve diversity and generalisation. 

 

6.2.2 Multimodal Sensing and Fusion 

Information about stressful human-environment interaction can be acquired among others from 

different types of sensors, at different conditions, in multiple participants or experiments. Each 

acquisition framework is termed a modality and is associated with one data set. A complete 

setup of the framework making use of multiple modalities for each data set to interact and 

inform each other is termed multimodal (Lahat et al., 2015; Alberdi et al., 2016). Multimodal 

fusion is a well-established technique. Its effectiveness is demonstrated by minimising the 
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effects of incorrect data acquisition and providing complementary data (collective knowledge) 

that enhance the diversity of the system. Diversity helps improve the reliability, accuracy, 

robustness, uniqueness and generalisation of the system (Lahat et al., 2015). 

 

Multimodal information can be fused at three main hierarchical levels: signal level (raw) data 

fusion, feature level fusion and decision level fusion (King et al., 2017; Hall and Llinas, 1997). 

Signal level fusion is applied to data measuring the same signal property (commensurate data) 

directly. Feature level fusion is applied to combine data measuring separate signal properties 

(non-commensurate data). Decision level fusion is implemented at the highest level of 

abstraction from sensor data, and it is more appropriate when modalities have differences in 

time scale (King et al., 2017; Nweke et al., 2019). In this study, three different modalities (i.e., 

HRV data, EDA data, location, and environmental data) are measured to represent stressful 

human-environment interaction. Feature level fusion strategy is the most appropriate for this 

study because the HRV data, EDA data, location, and environmental data measure different 

signal properties. In this case, features extracted from sensor data are used to form a feature 

vector and combined using parametric or non-parametric machine learning algorithms to 

discriminate and represent the data into higher abstractions (King et al., 2017; Nweke et al., 

2019). 

 

6.2.3 Machine Learning Algorithms 

Different supervised learning algorithms, including Decision Tree, Gaussian Support Vector 

Machine (SVM), k-Nearest Neighbour (kNN), and Ensemble bagged tree were employed in 

this study. Other supervised learning algorithms with different similarity functions were 

explored in this study, but their performance was poor and was not pursued further. 

Additionally, a deep learning algorithm using a deep belief network was trained and tested.  
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Supervised Learning 

Decision Tree is a non-parametric supervised learning method used for classification and 

regression. It is a tree-like classification process that classifies a data set into a subdivision 

based on the decision framework defined by the tree (Friedl and Brodley, 1997). 

SVM is a machine learning technique that performs classification by constructing a hyperplane 

that best split the data into two classes (Guenther and Schonlau, 2016). Aside from linear 

classification, SVM efficiently performs non-linear classification using kernel functions to map 

inputs into high-dimensional feature spaces. 

 

kNN is a non-parametric learning algorithm that classifies an unseen pattern based on its 

nearest neighbours in a database. It involves assigning an unclassified dataset or unknown 

pattern to the class represented by most of its k nearest neighbours (Denoeux, 1995). 

 

Ensemble methods combine multiple decision trees (but not exclusively) to improve 

generalisation and predictive performance (Myles et al., 2004). Bagging or bootstrap 

aggregating is a popular ensemble technique; it is generally appropriate for unstable classifiers 

such as decision trees (Dietterich, 2000). In bagging, a series of decision trees are trained, each 

based on a different bootstrap sampling of the training sample. Each bootstrap sample is chosen 

randomly with replacement from the training sample. The individual prediction of the decision 

tree models is combined by voting; the class with the most vote is selected (Myles et al., 2004; 

Dietterich, 2000). 
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Deep Learning: Deep Belief Network 

Recently, automatic discovery of representative features through deep learning methods has 

been successfully used to analyse physiological signals in multiple modalities for several 

detection and prediction tasks (Hassan et al., 2019). A deep belief network (DBN) was trained 

to detect stress and high-stress samples in this study. Deep belief networks are probabilistic 

generative neural network models with multiple layers of hidden explanatory factor with a 

greedy layer-wise unsupervised learning algorithm. DBN only needs small, labelled data which 

is important for real-world applications (Le Roux and Bengio, 2008; Längkvist et al., 2014). 

 

6.2.4 Validation 

In this study, both supervised and unsupervised machine learning classification algorithms 

were trained and tested to detect: (1) stress and non-stress samples from the collected data; and 

(2) low-stress and high-stress samples from the stress samples. Three performance indicators 

were computed for each classification algorithms: accuracy, precision, and recall. The 

definitions of the indicators are given below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                                                                                               (6.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                      (6.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                            (6.3) 

where 𝑇𝑃 represent true positive, 𝐹𝑃 represent false positive, 𝐹𝑁 represent false negative and 

𝑇𝑁 represent true negative. The trained algorithm with the highest accuracy, precision and 

recall was used for stress detection. 
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6.2.5 Visualisation of Detected Stress Samples 

The detected stress samples for each participant were associated with the corresponding GPS 

positions (Latitude and Longitude) for the entire path. A weighted kernel density estimation 

(KDE) was computed to visualise locations with clusters of stress samples. KDE is a non-

parametric means of computing the probability density function of a random variable in feature 

space (Scott, 2015; Gisbert, 2003). KDE is appropriate for the study because the detected stress 

samples do not follow any formal or theoretically known probability distribution. The KDE 

was computed based on the Esri proposed formula (Esri, 2020b). The kernel density for a (𝑥, 𝑦) 

location was predicted using 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
1

(𝑟𝑎𝑑𝑖𝑢𝑠)2
∑ [

3

𝜋
∙ 𝑝𝑜𝑝𝑖 (1 − (

𝑑𝑖𝑠𝑡𝑖

𝑟𝑎𝑑𝑖𝑢𝑠
)

2

)

2

]

𝑛

𝑖=1

                                                        (6.4) 

For 𝑑𝑖𝑠𝑡𝑖 < 𝑟𝑎𝑎𝑑𝑖𝑢𝑠 

where 𝑖 = 1, . . . , 𝑛 are the inputs points within the radius distance of the (𝑥, 𝑦) location, 𝑝𝑜𝑝𝑖 

is the population field value of point 𝑖, 𝑑𝑖𝑠𝑡𝑖 is the distance between point 𝑖 and the (𝑥, 𝑦) 

location. The calculated density is then multiplied by the sum of the population field. The 

search radius was determined as (Esri, 2020b) 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 = 0.9 × min (𝑆𝐷𝑤, √
1

ln(2)
× 𝐷𝑚) × 𝑛−0.2                                                 (6.5) 

where 𝐷𝑚 is the weighted median distance from the weighted mean centre, 𝑛 is the sum of the 

population field values, 𝑆𝐷𝑤 is the weighted standard distance. 

 

6.2.6 Identifying Spatial Clusters of Risk Stress Hot spot 

A neighbourhood with significant built environment infrastructure approaching their design 

life is more likely to have several environmental stress hot spots for older adults. Given the 

limited resources available to most cities and communities, it will be more beneficial to identify 
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the stress hot spot that pose higher risk to the older adults. Such stress hot spot can be prioritised 

and alleviated to improve neighbourhood mobility for older adults. 

 

Spatial relative risk (SRR) is a well-understood concept and has been applied in spatial 

epidemiology to determine where spatial clustering is likely occurring (Buller et al., 2021; 

Waller and Gotway, 2004; Lawson, 2013). The essential attribute of the SRR is its ability to 

estimate ratios of risks from two sample groups (e.g., case and control groups) without having 

access to their population denominators (Bithell, 1991). The estimator of SRR is a ratio of two 

kernel-estimated density functions of two distinct samples of point locations defined on a 

common spatial window (Bithell, 1991; Davies et al., 2018). Based on the definition of SRR, 

this study defined SRR stress hot spot as the ratio of kernel density estimates of stress samples 

and non-stress samples of point locations in a common study area (e.g., a neighbourhood). The 

statistical power (Buller et al., 2021) of the SRR stress hot spot was computed to assess the 

probability of a stress hot spot occurring within a study area. This study applied Buller et al.’s 

(2021) procedure to estimate the statistical power of the SRR stress hot spot as follows. 

 

The focus here is the locations where clusters of SRR high-stress hot spot is likely occurring. 

The detected high-stress samples (i.e., the case) and control samples (i.e., non-stress and low-

stress samples) for each participant were associated with the corresponding GPS positions 

(Latitude and Longitude) for the entire path. Based on the case and control samples of point 

locations within the study window, simulated point locations were randomly generated 

(assuming complete spatial randomness) to reflect the expected study design at a resolution of 

(128 × 128 grid). The simulation-based approach was adopted to ensure realistic study power 

analyses (Buller et al., 2021; Ensor et al., 2018). The bandwidth calculation was based on the 

maximal smoothing principle (Terrell, 1990). The SRR function (Davies et al., 2018)—
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originally developed to study the spatial variation of larynx and lung cancer in the UK (Kelsall 

and Diggle, 1995; Bithell, 1990)—has been successfully employed to detect local clustering in 

many spatial analyses (Buller et al., 2021; Wheeler, 2007; Fernando and Hazelton, 2014). The 

SRR function was used to estimate the SRR high-stress hot spot for each grid cell within the 

simulated data area. The statistical significance of the spatial clustering of each grid cell was 

tested—the alpha level was set to 0.05. These steps were repeated for 10,000 iterations 

(recommended for power calculation [Buller et al., 2021]). The statistical power (power 

threshold of 0.8) of the SRR high-stress hot spot at each grid cell was calculated as the 

proportion of rejected null hypotheses from the simulated 10,000 iterations. 

 

6.3 Results 

6.3.1 The Optimum Set of Informative Features 

The optimum set of informative feature contains 12 features, which are listed in Table 6.1. The 

optimum set of the informative feature includes eight features sourced from the heart rate, three 

features sourced from EDA and one feature sourced from the location and environment data. 

 

6.3.2 Performance of the Machine Learning Algorithms 

The distribution of the collected data across the class samples were unequal [(3691 samples 

were labelled as stress while 1827 samples were labelled as non-stress), (1938 samples were 

labelled as low-stress while 1753 samples were labelled as high-stress)]. To avoid an imbalance 

classification, the majority class was randomly under-sampled to make the classes have equal 

distribution. The under-sampling was repeated 20 times, resulting in 20 random train/test splits 

of the equally distributed data. 10-fold cross-validation was conducted to evaluate the 

performance of the machine learning algorithms. The average performance indicators of each 

machine learning algorithm over the 20 random train/test split data were computed.  
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Table 6.1: Optimum set of informative features for stress detection 

Modality Feature Description [unit] 

HRV data HR Instantaneous heart rate values [1/min] 

 Mean RR The mean of RR intervals [ms] 

 Min HR  Minimum heart rate computed using five beat moving 

average [1/min] 

 Max HR Maximum heart rate computed using five beat moving 

average [1/min] 

 Peak frequency HF High frequency (HF) (0.15 – 0.4 Hz) band peak 

frequency [Hz] 

 Absolute power 

LF (log) 

Natural logarithm transformed value of absolute power 

of low frequency (LF) (0.04 – 0.15 Hz) band [log] 

 Normalised power 

HF (n.u.) 

Power of high frequency (HF) (0.15 – 0.4 Hz) band in 

normalised unit [n.u.] 

 Total power Total spectral power [ms2] 

EDA data PhasicMax Maximum value of phasic activity within response 

window [muS] 

 Tonic Mean tonic activity within response window of 

decomposed tonic component 

 Global Mean Mean skin conductance (SC) value within response 

window 

Location and 

environmental 

data 

Time Time of day [Unix time] 

 

 

Table 6.2: Performance of the machine learning algorithms 

  20 trains average score 

Task Algorithm Accuracy (%) Precision (%) Recall (%) 

Detecting non-stress 

and stress samples 

Decision tree 92.16 93.36 90.77 

Gaussian SVM 95.47 94.31 96.79 

kNN 95.96 96.00 95.90 

Ensemble bagged 

tree 

98.13 98.59 97.65 

DBN 83.38 82.58 84.61 

Detecting low and 

high-stress samples 

Decision tree 89.45 90.61 88.56 

Gaussian SVM 95.94 96.83 95.14 

kNN 96.54 97.26 95.87 

Ensemble bagged 

tree 

98.25 98.30 98.20 

DBN 73.76 75.01 74.08 

 

The stress detection performance of the algorithms deployed in this study is summarised in 

Table 6.2. The result indicates that the Ensemble bagged tree algorithm outperformed the other 

algorithms, achieving a classification accuracy of 98.13% (for detecting stress and non-stress 
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samples) and 98.25% (for detecting low and high-stress samples). The confusion matrix of the 

best performance Ensemble bagged tree algorithm among the 20 random train/test splits data 

is depicted in Figure 6.2. 

 

 

Figure 6.2: Confusion matrix of the best performance Ensemble bagged tree algorithm for (a) 

detecting non-stress and stress samples; (b) detecting low and high-stress samples. 

 

6.3.3 Visualisation of Detected Stress Samples 

Given the impressive performance of the Ensemble bagged tree algorithm, the best 

performance Ensemble bagged tree algorithm (the confusion matrix is depicted in Figure 6.2) 

was deployed to classify each of the participant’s collected data into (1) non-stress and stress; 

and (2) low-stress and high-stress. The deployed algorithm detected 66.35% of stress samples 

and 26.73% of high-stress samples from all participants data. The detection result for each 

participant is shown in Table 6.3. The detected stress samples and high-stress samples for all 

participants were geographically referenced with their corresponding GPS coordinates. The 

resulting density distribution of the stress hot spot and high-stress hot spot locations along the 

path is shown in Figure 6.3 alongside the perceived stress assessment provided by older adults’ 
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and observers’ path audit. Overall, the detected stress and high-stress samples matched older 

adults perceived stress assessment of the path. 

 

Table 6.3: Classification of participant’s interaction with the environment into (1) non-stress 

and stress; and (2) low-stress and high-stress samples based on Ensemble bagged tree algorithm 

  Detected stress and non-stress 

samples 

Detected low and high-stress 

samples 

Participant Total 

sample 

Non-stress 

samples 

Stress  

samples 

Low-stress 

samples 

High-stress 

samples 

1 700 210 490 270 220 

2 527 142 385 241 144 

3 599 208 391 187 204 

4 535 198 337 170 167 

5 827 264 563 563 0 

6 596 220 376 199 177 

8 657 211 446 220 226 

9 537 206 331 164 167 

10 540 198 342 172 170 

 

 

6.3.4 Spatial Relative Risk Stress Hot spot 

The detected high-stress samples (i.e., the case) and control samples (i.e., non-stress and low-

stress samples) for all participants were geographically referenced with their corresponding 

GPS coordinates. The first iteration of the simulated randomly generated point-level 

physiological data is shown in Figure 6.4. The proportion of simulation significant SRR high-

stress hot spot clusters for the 10,000 iterations is presented in Figure 6.5(a). The areas within 

the study area that are sufficiently powered to detect spatial clustering of a high-stress hot spot 

are shown in Figure 6.5(b). These results demonstrate that the path for the environmental walk 

has some real spatial clusters of high-stress hot spots.  
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Figure 6.3: (a) Detected stress hot spot locations. (b) Detected high-stress hot spot locations. (c) Perceived stress and non-stress assessment by 

participants. (d) Path audit by observers. The environmental condition was rated as poor, moderate or good. F = Rating for functionality; S = 

Rating for safety; A = Rating for aesthetics; O = Overall rating of path segment. 

Note. Basemap data copyrighted Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Air bus DS, USDA, USGS, AeroGRID, IGN, and the 

GIS User Community. Photographs by author.
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Figure 6.4: First iteration of simulated randomly generated point-level physiological data 

assuming complete spatial randomness. 

Note. Simulated case (i.e., high-stress samples) locations are red-coloured circles and simulated 

control (i.e., non-stress and low-stress samples) locations are blue-coloured circles. 
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Figure 6.5: Clusters of SRR high-stress hot spot within study area (i.e., path segment A to H). (a) Proportion of simulation significant SRR high-

stress hot spot clusters for the simulated 10,000 iterations. (b) Areas within the study area that are sufficiently powered to detect spatial clustering 

of a high-stress hot spot. 

Note. Simulated case (i.e., high-stress samples) locations are red-coloured circles and simulated control (i.e., non-stress and low-stress samples) 

locations are blue-coloured circles. 
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6.3.5 Examination of Spatial Clusters of Risk Stress Hot spot 

Upon examining the risk stress hot spot locations, the authors identified some environmental 

barriers relating to the functionality, safety, and aesthetics of the path conditions (Figure 6.6 

and Figure 6.7). Environmental barriers A1, S1, and F1, were identified in risk stress hot spot 

1. The authors found that the risk stress hot spot 1 was mainly caused by a restaurant. Old gas 

cylinders, broken furniture, and several old or broken restaurant equipment were found outside 

the restaurant and on the path (barrier A1 and F1). The path surface was wet (barrier F1). Some 

of the participants were observed taking precautionary measures by slowing their pace. About 

three dogs were spotted in this location during the environmental walk (S1). All the participants 

reported that they felt stressed while walking through this spot. For instance, one of the 

participants commented that she would not have been able to walk this segment of the path 

alone. “Why would someone eat here?” one of the participants asked rhetorically. 

 

Risk stress hot spot 2 consists of environmental barriers A2-A5, S2-S4, and F2-F6, extending 

from segment C to F as shown in Figure 6.6 and Figure 6.7. This spot has a gas station and a 

bus stop beside path segment C. The authors noticed that some of the participants interacted 

with vehicles entering or exiting the gas station; this interaction could be stressful, especially 

if not perceived in advance (barrier S2). Another group of participants mentioned that they 

realised it was a gas station from a distance, and they were hoping they would not encounter 

any car entering or exiting the gas station. This anticipation about what will happen in the near 

distance could have resulted in stress (barrier S2). Path obstructions such as traffic cones and 

bollard barricades were identified on the sidewalk beside the gas station (barrier F2). The 

participants that engaged in the environmental walk in the midmorning remarked that the bus 

stop was too crowded and was stressful to navigate (barrier F3). The view from this spot is a 

bamboo scaffolding with screen nets on a high-rise building, which at first glance, seems a 
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little frightening (barrier A2). Although the pedestrian crosswalk (segment D) has traffic 

calming devices (traffic signal and traffic island), it was still detected in the risk stress hot spot 

2. Some of the participants mentioned that the waiting time (which was about 68 seconds) at 

the traffic signal was stressful (barrier S3). Segment E—an ongoing construction—was 

surrounded by unattractive views (barrier A3 and barrier A4) with heavy trucks entering or 

exiting the construction site (S4). Most of the participants reported feeling stressed at this spot. 

There were inconsistent path surface materials (F4), a dumpster and barricades (barrier F5) that 

obstructed the participants during the walk. There was a flower shop in segment F. The authors 

identified that several flower wreaths and wooden stands were obstructing the path (barrier F6 

and barrier A5). The path surface was also wet (barrier F6). One participant described her 

interaction with this spot as: “I felt uncomfortable when I saw the funeral flower wreath on the 

street—It made me picture death and burial”. 

 

Risk stress hot spot 3 is located at the end of segment F. This hot spot was caused by a stair 

with about 11 steps (barrier F7). While some participants reported this stair to be good for their 

fitness, others reported feeling stressed. An increase in participants’ physiological responses 

was observed at this spot. Lastly, risk stress hot spot 4 is located in a subway (segment H). The 

subway has dominant graffiti features (barrier A6), resulting in stress among the participants. 
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Figure 6.6: Environmental barriers at locations of risk stress hot spot. Base map and data 

copyrighted 2020 Esri, OpenStreetMap contributors and the GIS user community. 
 

 

 



 

 140 

 

Figure 6.7: Pictures of environmental barriers at locations of risk stress hot spot.  

Note. Photographs by author. 
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6.4 Discussion 

Several machine learning algorithms were trained using supervised and unsupervised learning 

methods. The results showed that the Ensemble bagged tree algorithm achieved the highest 

performance among the tested algorithms. Accuracy on the held-out test data (i.e., the 

proportion of collected samples in which the algorithm prediction matches the true label) 

provides an estimation of the stress detection result to be expected on new data. Therefore, the 

Ensemble bagged tree algorithm would be able to detect older adults’ stressful interactions with 

an accuracy of 98.13% (for detecting stress and non-stress samples) and 98.25% (for detecting 

low and high-stress samples). The high performance of the Ensemble bagged tree algorithm is 

possible because it combines several decision trees (bootstrap aggregation) to produce better 

predictive performance; this approach helps to reduce the variance of a model (Rokach, 2010).  

 

The high performance of the ensemble method means that it can be used for data collected in 

an ambulatory, real-world setting. Ambulatory, real-world sensing of human physiology pose 

several methodological challenges such as missing and noisy data. For instance, if a modality 

is missing data for a given pedestrian or on a sample day, the ensemble method is able to abstain 

that classifier in order to achieve better performance. Although the Ensemble bagged tree 

algorithm performed better than the deep learning algorithm, the Ensemble bagged tree 

algorithm required sufficient labelled data for training while the deep learning required little or 

no labelled data. Collecting sufficient labelled data from pedestrians in cities and communities 

is somewhat impractical and may hinder a large-scale deployment of the stress detection 

algorithm in smart age-friendly cities. Furthermore, supervised learning required careful 

engineering and considerable domain expertise to extract and select handcrafted features that 

are important for discrimination. This implies that failure to extract and select the informative 

features may affect the performance of the supervised learning algorithm. However, the deep 
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learning algorithm automatically learns good features and produces representations that are 

selective to the relevant aspect of signal pattern important for discrimination.  

 

Going forward, using an unsupervised deep learning approach is imperative for the efficient 

deployment of the stress detection algorithm in cities and communities. This is study 

hypothesises that developing a deep learning algorithm that accounts for interindividual 

variability can improve the detection of stressful interactions for pedestrians. An environmental 

condition that results in stressful interaction for one person may not result in stressful 

interaction for another person. For example, participant 5 (Table 6.3) did not experience any 

high-stress interaction with the environment, although other participants experienced high-

stress interaction. A plausible explanation for this is because of individual difference. Future 

studies should deploy a multi-task learning technique to train a personalised machine learning 

model tailored specifically for each pedestrian but still learns from all available data. 

 

Given that the built environment infrastructure in many cities and communities is approaching 

their design life, sampling peoples’ physiological interactions for the entire built environment 

is currently impossible. The simulation-based approach adopted in this study shows promising 

result in generating reproducible physiological point-level data to reflect an entire study area. 

Detecting locations with high statistical power will be useful for researchers and urban planners 

during the design stage of a study to detect real urban stress hot spot and understand the 

association between built environment and stress. 

 

6.5 Chapter Summary 

This chapter aimed to achieve research objective three: to detect older adults’ stressful 

environmental interactions in near-real time. An optimised environmental stress detection 
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framework was developed to achieve the objective. Several machine learning algorithms were 

trained on an optimum set of informative physiological features, environmental data, and user-

perceived stress response. Machine learning algorithms including Gaussian SVM, Ensemble 

bagged tree and DBN were trained to detect older adult’s stressful interactions from their 

physiological signals. Based on three statistical performance evaluation indicators, the results 

produced by the machine learning intelligence models were evaluated. The obtained results 

show that the machine learning models can achieve a satisfactory performance of detecting 

older adult’s stressful interaction (over 70% accuracy), with Ensemble bagged tree achieving 

the best performance (98.25% accuracy). The detected stressful interactions were visualised 

using kernel density estimation. Overall, the detected stress and high-stress samples matched 

older adults perceived stress assessment of the path. A simulation-based approach was used to 

examine areas within the study area that are sufficiently powered to detect stress hot spots that 

pose high risk to older adults. The results demonstrate that urban planners and municipal 

decision-makers can use this approach to detect and alleviate stressful environmental 

conditions more efficiently; as a result, improving older adult’s mobility in the built 

environment. In the next chapter, the optimised environmental stress detection framework will 

be integrated with evolutionary computing to understand the influence of urban visuospatial 

configuration on older adults’ physiological stress. 
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PART IV: THE INFLUENCE OF URBAN ENVIRONMENT 

CONFIGURATIONS ON OLDER ADULTS’ STRESS 

RESPONSE 
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CHAPTER 7  

 

INFLUENCE OF VISUOSPATIAL CONFIGURATION OF 

THE URBAN ENVIRONMENT ON OLDER ADULTS’ 

PHYSIOLOGICAL STRESS7 

 

7.1 Introduction 

This chapter aims to further our understanding of the relationship between the visuospatial 

configuration of urban space and older adults’ physiological stress response using current 

advances in machine learning and evolutionary computing. Older adults’ perceived visual 

elements of the urban environment were extracted using isovist analysis. A machine learning-

based approach was developed to identify isovist indicator levels that are responsible for stress 

and non-stress physiological responses and their hierarchy of influence. An evolutionary rule-

based system that generates visuospatial configurations that produce a specific physiological 

effect was also developed. This chapter concludes with a comparison between older adults’ 

visuospatial preference and younger adults’ visuospatial preference. An overview of this 

chapter and the methods adopted is presented in Figure 7.1. 

 

 
7 Parts of this chapter has been published in a journal. 
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Figure 7.1: Research overview and methodological framework. 

Note. (a) Data collection during an environmental walk. (b) Data processing, heart rate 

variability (HRV) analysis, hot spot analysis, and computing isovist indicators from different 

fields of view. (c) Self-organising Maps depicting the influence of visual perception on 

physiological response. (d) Adopting machine learning algorithms to identify the most 

influential isovist indicators of physiological response. The performance of the algorithms was 

examined using the Area under the Receiver Operating Characteristic (AUROC) based on 10-

fold cross-validation. (e) Adopting an evolutionary rule-based system to generate visuospatial 

configurations that produce a specific physiological effect. 

 

7.2 Visuospatial Perception 

For sighted individuals, spatial information acquisition occurs in large part through their sense 

of vision (Kiefer et al., 2017). The spatial properties of the environment as perceived through 

the eyes are referred to as the visuospatial properties of the environment. The visuospatial 

properties of the environment are influenced by two main elements: the surface characteristic 

and appearance (e.g., material, texture, and colour) and the configuration (e.g., arrangement 

and size) of the spatial forms (Schneider and Koenig, 2012). This study considers only the 

visuospatial configurations of the environment.  

 

In the broader environmental psychology literature, several theories have emphasised that 

human behaviour and experience are determined by the properties of the spatial form of the 

environment. For example, the prospect-refuge theory discovered by Appleton (1975) 

postulates that humans prefer a spatial configuration that affords both the ability to see 

(prospect) without being seen (refuge). “Where these conditions are present their perception is 
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attended with pleasure; anxiety is set aside, and relaxation is possible. Where they are absent 

anxiety continues and there is no relaxation” (Appleton, 1975, p. 71). Akin to the prospect-

refuge theory is the defensible space theory that suggests that the environment can be 

configurated to influence its residents’ territoriality, image, milieu, and surveillance behaviours 

(Reynald and Elffers, 2009). The mystery theory propounded that humans behavioural and 

emotional responses are influenced by spatial configurations promising new information when 

proceeding further into the environment (Kaplan, 1988). The complexity concept suggests that 

human involvement (the concern to figure out, to learn, to be stimulated) in an environment is 

affected by the diversity or richness (how much there is to look at) in the environment (Kaplan, 

1988; Scott, 1993). These theories have been evaluated on several architecture spaces 

(including Frank Lloyd Wright’s architecture) and urban space (Dawes and Ostwald, 2014; 

Wu et al., 2020; Franz and Wiener, 2005; Xiang et al., 2020). The theories collectively suggest 

that the human visuospatial perception of a space generated by or associated with a spatial 

configuration affects human behaviour and experience; this effect on humans is an important 

factor for creating and maintaining a liveable environment (Gehl, 2011). 

 

The human visuospatial perception of a horizontal slice through space can be measured using 

isovist analysis. An isovist is a space in an environment visible to a person from an observation 

point from which various geometrical and mathematical measures are computed to define the 

person’s visuospatial perception (Benedikt, 1979; Batty, 2001). Isovist can be studied in both 

two and three dimensions. This study is limited to the two-dimensional isovist analysis. Isovist 

analysis is capable of describing a space “‘from inside’, from the point of view of individuals, 

as they perceive it, interact with it, and move through it” (Turner et al., 2001, p.103). Isovist 

analysis has been widely used in the fields of architecture and urban planning in the study of 

wayfinding (Meilinger et al., 2012), visibility (Wu et al., 2020), Prospect-Refuge Theory 
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(Dawes and Ostwald, 2014; Ostwald and Dawes, 2013) and urban stress (Li et al., 2016; Knöll 

et al., 2018; Xiang et al., 2020). Pertinent isovist research has shown that several geometrical 

and mathematical measures (referred to as isovist indicators): area, perimeter, compactness, 

occlusivity, jaggedness, maximum visibility, and minimum visibility (Benedikt, 1979; Batty, 

2001; Schneider and Koenig, 2012) are to some extent associated with spatial perceptions 

including those relating to elements of prospect, refuge (in the prospect-refuge theory), mystery 

(in the mystery theory), and complexity (in the complexity theory). These isovist indicators 

and the experiential properties associated with them are presented in Table 7.1. 

 

Table 7.1: Isovist indicators and corresponding experiential properties 

Isovist indicator Spatial 

experience 

Spatial 

property 

References 

Isovist area Prospect Spaciousness Chun et al. (2019), Ostwald 

and Dawes (2013), Dawes 

and Ostwald (2013), Franz 

and Wiener (2005), Xiang et 

al. (2020), Reynald and 

Elffers (2009), Dawes and 

Ostwald (2014), Wu et al. 

(2020) 

Isovist perimeter Prospect Spaciousness 

Maximum visibility length Prospect Spaciousness 

Minimum visibility length Refuge Spaciousness 

Occlusivity Refuge Openness 

Occlusivity Mystery The promise 

of more 

information 

Dawes and Ostwald (2013), 

Benedikt (1979), Kaplan 

(1988), Xiang et al. (2020), 

Dawes and Ostwald (2014) 

Jaggedness Complexity Diversity or 

richness 

Dawes and Ostwald (2013), 

Kaplan (1988), Scott (1993), 

Franz and Wiener (2005), 

Wiener and Franz (2004), 

Xiang et al. (2020), Ma et 

al., (2020) 

Compactness Complexity Diversity or 

richness 

 

Isovist area represents the area of all spaces visible from a person’s observation point. Isovist 

perimeter measures the length of the edge of all space visible from an observation point. 

Compactness expresses the relationship between area and perimeter relative to a circle; it 

indicates the complexity or compactness of the field of view (Schneider and Koenig, 2012). 
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Occlusivity describes the length of open edges (i.e., edges without physical boundaries such as 

a wall) of the field of view (Dawes and Ostwald, 2014). Occlusivity is small in locations with 

few or no views into other parts of the spatial configuration of the environment. For instance, 

an observation point within a completely closed, convex space has an occlusivity of 0. 

Jaggedness describes the convexity (i.e., the number of vertices and vertex density) of the field 

of view (Wiener and Franz, 2004). The maximum visibility and minimum visibility refer to the 

length of the longest and shortest single view, respectfully, available at an observation point. 

 

7.3 Methods 

7.3.1 Detecting Stress and Non-stress Responses 

The data collection and pre-processing to remove noise is discussed in Chapter 3. To 

understand the influence of spatial factors on stress, it is important to distinguish stressful 

person-environment interactions due to spatial factors from stressful person-environment 

interactions due to other environmental or personal factors. This study harnesses the 

advantages of the perceived stress rating and the physiological responses stress detection 

(physiological-perceived stress). The aim is to (1) estimate stress and non-stress environmental 

conditions using perceived response (2) integrate physiological response with GPS data, 

conduct hot spot analysis to identify hot spots and cold spots (3) spatially match hot spots and 

cold spots to perceived response to detect stressful person-environment interactions due to 

spatial factors in order to enhance our understanding of the relationship between the 

visuospatial configuration of urban space and older adults stress response. 

 

A participant experiencing a high or low physiological response at a location could result from 

spatial factors (e.g., spatial configuration), temporal factors (e.g., noise level and weather) or 

individual factors (e.g., health condition and previous experience). Because the participants’ 
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responses to the environment were collected on different days and different time-of-day, there 

was no direct mutual interference between them; therefore, it is assumed that their responses 

were comparatively independent. As a result, spatial clustering analysis—specifically hot 

spot—was conducted to amplify the physiological responses induced by spatial factors while 

reducing the impact of temporal and random factors.  

 

The 𝐿𝐹 𝐻𝐹⁄  ratio was used to model older adults’ physiological stress responses to urban 

environmental conditions. Hot spot analysis was performed using Getis-Ord Gi* statistics to 

detect locations in the study area that elicited a common physiological response among 

multiple participants. Please refer to Chapter 5 for a more detailed explanation and analysis of 

the hot spot analysis using the 𝐿𝐹 𝐻𝐹⁄  ratio. The detected hot spots and cold spots were 

spatially matched with the commonly perceived stress and non-stress path segments. The hot 

spots and cold spots within perceived stress path segments were detected as spatial significant 

stress locations, and hot spots and cold spots within the perceived non-stress path segments 

were detected as spatial significant non-stress locations. 

 

Before the hot spot analysis, the recorded video of each participant’s environmental walk was 

inspected by the authors and unintended person-environment interaction (e.g., older adults’ 

interaction with vehicles, people, and losing stability due to encounters with path obstructions 

such as potholes, stairs, or curbs) that could affect stress were excluded to ensure that the 

physiological response was mainly influenced by spatial factors. 

 

7.3.2 Measuring Visuospatial Perception: Isovist Analysis 

The spatial layout of the experiment neighbourhood (Hung Hom, Kowloon, Hong Kong) was 

generated using OpenStreetMap (OpenStreetMap and Contributors, 2019), as shown in Figure 
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7.2(a). The isovist was generated using DepthmapX (SpaceGroupUCL, 2019). DepthmapX has 

the following field of view options: 90°, 120°, 180°, and 360°. The combined visual field for 

both human eyes is 130-135° vertically and 200-220° horizontally (Szinte and Cavanagh, 2012; 

Dagnelie, 2011). During the environmental walk, the participants walked the path in one 

direction (i.e., from start to end, as shown in Figure 7.3); therefore, the maximum horizontal 

visible urban space to the participants is about 220°. Due to the limited field of view options 

available in DepthmapX, only the 90°, 120°, and 180° fields of view were used for the isovist 

analysis. Hence, the far peripheral vision of the human eye beyond 180° was ignored in this 

study. An example of the generated 90°, 120°, and 180° fields of view from an observation 

point on the path is presented in Figure 7.2(b), Figure 7.2(c), and Figure 7.2(d), respectively. 

In order to capture a more realistic isovist, a view distance of 200 m was set, considering the 

visual acuity for an average 65-year-old. For instance, it would be unrealistic to assume that 

people have near infinite isovists in an open space. Figure 7.2(b) depicts a more realistic isovist 

with a visibility boundary from an observation point. The isovist within the visibility boundary 

represents a closed polygon from which isovist indicators: area, perimeter, compactness, 

occlusivity, jaggedness, maximum visibility, and minimum visibility were calculated. The 

isovist was generated for the entire path using the fields of view, the view distance, and the 

GPS locations as observation points. Isovist area is calculated as the total space bounded by 

the edges of the polygon, isovist perimeter is calculated as the total length of the edges of the 

polygon, isovist maximum and minimum visibility is calculated as the length of the longest 

and shortest line to the solid edge of the polygon from an observation point. The formulas for 

compactness, occlusivity, and jaggedness are 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = 1 −
2√𝜋𝑆

𝑃
,                                                                                                           (7.1) 

𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑣𝑖𝑡𝑦 = 𝑃 − 𝑃𝑓 ,                                                                                                                      (7.2) 
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𝐽𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 =
𝑃2

𝑆
,                                                                                                                            (7.3) 

where 𝑆 is the isovist area, 𝑃 is the isovist perimeter, and 𝑃𝑓 is the total length of the solid 

edges within the isovist area (𝑆). 
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Figure 7.2: Generated spatial layout with isovist from an observation point. 

Note. (a) Spatial layout of the experiment neighbourhood with predefined path. (b) Isovist with 90° field of view from an observation point 𝑅 with 

a defined boundary, 𝑀 = visibility limit of 200 m (equivalent to the maximum visibility length), 𝑚 = minimum visibility length. (c) Isovist with 

120° field of view from an observation point 𝑅. (d) Isovist with 180° field of view from an observation point 𝑅. Basemap data copyrighted 

OpenStreetMap (and) contributors.
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Figure 7.3: Path with perceiver’s view in the forward direction, starting from A to L.  

Note. Basemap data copyrighted Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Air bus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

Photographs by author. 
 

7.3.3 Influence of Visuospatial Perception on Physiological Response: Self-Organising 

Map 

A self-organising map (SOM) is a type of artificial neural network trained using unsupervised 

learning to visualise and explore different patterns and relationships in the data (Kohonen, 
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2013). SOM has a unique property of effectively projecting input space (high-dimensional 

space) into a low-dimensional (usually two-dimensional) regular grid such that the proximity 

relations are preserved (Vesanto and Alhoniemi, 2000). Maps that are generated using 

unsupervised SOM mainly capture the significant factors that influence the similarities in the 

data (e.g., clustering in the data). This study is interested in variations in factors resulting in a 

specific effect (i.e., the isovist indicators that influence physiological response). Supervised 

SOMs offer the opportunity to study the isovist indicators influencing physiological response 

by increasing their importance on the organisation of the maps (Platon et al., 2017; Wongravee 

et al., 2010; Kuzmanovski et al., 2007).  

 

SOM Architecture 

Note that three different fields of view were considered in this study. Therefore, a prototype 

SOM of two-dimensional grid size 𝑀 × 𝑁 = 𝑈 nodes was generated for each field of view 

dataset. The input data 𝐗, to be projected on the SOM of dimension 𝐼 × 𝐽 (which is 3283 × 7 

for each field of view) and its label 𝐘 has dimensions 𝐼 × 𝐾 (where 𝐾 = 2, representing the 

two classes of the physiological response [stress and non-stress]).  

 

The Learning Process 

Given a set of samples (𝒙𝑖, 𝒚𝑖) from the dataset (𝐗, 𝐘), 𝑖 = 1, ⋯ , 𝑛, where 𝒙𝑖 is the input vector 

of the 𝑖th sample and 𝒚𝑖 is a vector corresponding to its label (recall that the dimension of 𝒚𝑖 

is equal to the number of classes in the label, which is 2 in this study). If the class of 𝒙 is 𝑙, the 

𝑙th component of 𝒚𝑖 is equal to 1 and the other component is equal to 0. The supervised SOM 

is able to learn a function 𝑓: 𝐗 → 𝐘 by training on an augmented vector 𝒙 = [𝑥𝑣 , 𝑥𝑙], which is 

a combination of label vector 𝒙𝑙 with the input vectors 𝒙𝑣. Each node 𝑟, in the supervised SOM 

has a weight vector 𝒘𝑟 = [𝑤𝑟
𝑣, 𝑤𝑟

𝑙]. During the competitive learning process, the distance 
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between 𝒙𝑖 and 𝒘𝑟 of each node is computed. The best matching unit (BMU) is determined by 

finding the node 𝑟, having the closest weight vector 𝒘𝑟, to the input vector 𝒙𝑖: 

𝑏 = arg min
𝑟

𝑑(𝒙𝑖, 𝒘𝑟),                                                                                                                     (7.4) 

where 𝑏 denotes the index of the BMU and 𝑑(𝒙𝑖, 𝒘𝑟) is the Tanimoto distance between 𝒙𝑖 and 

𝒘𝑟 (note that the 𝐘 is categorical, hence the reason for using Tanimoto distance measure). The 

BMU and its topological neighbours are updated as  

𝒘𝒓(𝑡 + 1) = 𝒘𝒓(𝑡) + 𝛼(𝑡)ℎ𝑏𝑟[𝒙𝒊 − 𝒘𝒓(𝑡)],                                                                               (7.5) 

where 𝛼(𝑡) is the learning rate at time 𝑡 [𝛼(𝑡) is a monotically decreasing function], and ℎ𝑏𝑟 

is the neighbourhood function between BMU and the 𝑟th node at time 𝑡. The two traditional 

neighbourhood functions are the bubble function and Gaussian function. Both neighbourhood 

functions were tested. The learning process adopted in this study is based on the classical 

sequential SOM algorithm (Kohonen, 2013). The learning process is repeated until there is 

convergence in 𝐗 and 𝐘. Several SOM were trained in parallel using different hyperparameters 

settings. The optimal SOM was selected using the Area under the Receiver Operating 

Characteristic (AUROC) based on 10-fold cross-validation. The AUROC and the validation of 

the SOM are explained in the validation section. 

 

7.3.4 Identifying the Most Influential Isovist Indicators of Physiological Response 

The SOM is able to provide the isovist indicator levels that are responsible for stress and non-

stress physiological responses. However, it is also important to ascertain which of the isovist 

indicator (s) have the greatest influence on older adults’ physiological responses. Hence, 

subsets of isovist indicator (s) based on their correlation and intercorrelation were generated. 

Subsets of isovist indicator (s) that are highly correlated with the physiological responses, while 

having low intercorrelation, have greater influence (Hall, 1999). A greedy forward search was 

performed through the space of the generated subsets to create a hierarchy of influential isovist 
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indicator (s) subsets. A greedy forward search is an efficient method to select a choice from 

multiple choices that achieve the largest possible improvement or fitness in the value of some 

measure (Resende and Ribeiro, 2010).  

 

The hierarchy of influential subsets of isovist indicator (s) was subsequently confirmed by 

considering its ability to discriminate between stress and non-stress physiological responses 

when used to train several machine learning algorithms. Decision tree (J48), k-nearest 

neighbour (kNN), logistic regression, Naïve Bayes, and support vector machine were used 

because they have been successful used in previous studies to detect stress (Panicker and 

Gayathri, 2019). The performance of the algorithms was examined using the Area Under the 

Receiver Operating Characteristic (AUROC) based on 10-fold cross-validation. 

 

7.3.5 Design by Evolutionary Algorithmic Rule: Generative Design 

Urban planners, municipal officials, and developers often use predefined rules and guidelines 

such as pattern books and urban form-based codes to create spatial configurations that meet 

certain specific visual qualities (Talen, 2009; Borchers, 2008). An example is the Hong Kong 

Urban Design Guidelines (Hong Kong Planning Department, 2015), which contain several 

design considerations for streets, streetscapes, and building height. Although this approach 

effectively ensures that cities and communities are planned to meet a specific standard, it is 

somewhat limited and inflexible to adequately accommodate changing context and complexity 

(Batty and Marshall, 2012; Schneider and Koenig, 2012). Every planning and design problem 

is unique, and it is rather impossible for urban codes to offer solutions to all of these problems. 

For instance, the Hong Kong Urban Design Guidelines has no specific requirement on the 

influence of visual perception on physiological stress. The complexity and interactions of urban 

forms further limit the abilities of predefined standards to adequately respond to these problems 
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(Marshall, 2012). Pattern books usually contain a few of these spatial configurations and can 

only be of limited use in designing and planning a unique visuospatial effect.  

 

Instead of having only a few spatial configurations that create a specific visuospatial effect, it 

would be more beneficial to have an approach that generates multiple spatial configurations 

that produce a specific visuospatial effect. Such an approach will be well-adaptable to many 

unique urban design problems, thereby enabling planners to explore design space. This study 

presents a method for implementing such an approach using a multi-objective evolutionary 

fuzzy rule system algorithm to generate visuospatial configurations (from different isovist 

indicator levels) that produce a specific physiological effect. 

 

7.3.6 Multi-Objective Evolutionary Fuzzy Systems 

People’s bounded rationality has consequences, including decision making (Wheeler, 2018). 

In the psychology literature, how well a given claim is supported by evidence affects people’s 

rationality (Stanovich et al., 2016). Specifically, urban planners, municipal officials and 

developers are more likely to agree to the visuospatial configurations generated by a system 

when it is supported by evidence. Thus, it is crucial to develop decision support systems that 

are capable of interpreting themselves. Interpretability is the ability of a system to explain its 

behaviour such that it is easily understandable by the users of that system (Jiménez et al., 2018). 

Rule-based systems have been recognised for their ability to achieve a high level of 

interpretability because they are based on a human-like logic. The rules are represented in an 

easily understandable schema: 

𝐼𝐹 (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1) 𝑎𝑛𝑑 (𝐶𝑜𝑛𝑑𝑖𝑡𝑜𝑛 2) 𝑎𝑛𝑑 ⋯ (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁) 𝑇𝐻𝐸𝑁 (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡). 

A fuzzy system is a rule-based system in which fuzzy logic (a way of describing and measuring 

nonstatistical uncertainty and approximate reasoning) is used to represent different forms of 
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knowledge about a problem and to model the interactions and relationships between its 

variables (Jimenez et al., 2014; Shi et al., 1999). This ability of fuzzy rule-based systems is 

important in this study because the if-then fuzzy rules can represent the conditions for a 

visuospatial configuration (isovist indicator levels) to be associated with a physiological 

response (stress or non-stress) in a computationally efficient manner that approximate human 

reasoning. In this way, the fuzzy rule-based system is implemented as a classification learning 

system. 

 

Evolutionary algorithm is a commonly used approach to generate fuzzy rules automatically; it 

has been successfully used to search poorly understood, irregular space (Ishibuchi and 

Yamamoto, 2004; Kim et al., 2019). Evolutionary algorithm is an optimisation algorithm that 

reflects the process of natural evolution such as crossover, mutation, and natural selection to 

find an optimal solution to a problem within specific constraints (Deb et al., 2002; Shi et al., 

1999). Evolutionary fuzzy systems combine the approximate reasoning ability of fuzzy systems 

with the adaptation abilities of evolutionary algorithm.  

 

To ensure system transparency, the fuzzy rule-based system was defined with two objectives: 

interpretation and accuracy. Hence, a multi-objective evolutionary fuzzy rule-based system 

was implemented in this study using ENORA, a multi-objective evolutionary algorithm. 

ENORA is a state-of-the-art evolutionary algorithm; it is recognised for its ability to achieve 

high performance (Jiménez et al., 2018; Onan et al., 2017). A multi-objective evolutionary 

fuzzy rule-based system is capable of generating Pareto-optimal fuzzy rules (visuospatial 

configurations) that maximise accuracy in classifying physiological responses and minimise 

the number of rules for easy interpretation of the system.  
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The ENORA algorithm was run with 10-fold cross-validation using the parameters shown in 

Table 7.2. A population size of 𝑁 = 100 is often used in evolutionary computing. A similarity 

constraint 𝑔𝑠 = 0.1 is imposed to reach transparency by ensuring that no two fuzzy sets (sets 

of visuospatial configurations) overlapped more than 10%. A 10% maximum similarity is 

sufficient to achieve an interpretable system (Setnes et al., 1998). A set of linguistic labels: 

Very Low, Low, Moderately Low, Moderate, Moderate High, High, Very High (maximum set 

of linguistic labels) are assigned to each fuzzy set. The number of the linguistic label is equal 

to the maximum number of fuzzy sets. Maximum number of fuzzy sets 𝐿𝑚𝑎𝑥 = 7 and 

maximum number of linguistic labels 𝐿𝑖 = 7, are used to ensure interpretability. Minimum 

variance parameter 𝛾1 = 30 was established to ensure 𝑔𝑠 = 0.1 and 𝐿𝑚𝑎𝑥 = 7. Maximum 

variance parameter 𝛾1 = 2 ensures ≥ 47.72% of any Gaussian fuzzy set is retained in the 

variable domain. The minimum number of rules 𝑀𝑚𝑖𝑛 and maximum number of rules 𝑀𝑚𝑎𝑥 

will be decided by the designer based on the design problem. 𝑀𝑚𝑖𝑛 = 2 and 𝑀𝑚𝑎𝑥 = 20 were 

used in this study as an example to generate sets of visuospatial configurations from the 180° 

field of view dataset. 

 

Table 7.2: Parameters used to run multi-objective evolutionary fuzzy rule-based system 

Size of population 𝑁 = 100 

Minimum number of rules (visuospatial configurations) 𝑀𝑚𝑖𝑛 = 2 

Maximum number of rules (visuospatial configurations) 𝑀𝑚𝑎𝑥 = 20 

Minimum variance parameter 𝛾1 = 30 

Maximum variance parameter 𝛾1 = 2 

Maximum number of fuzzy sets 𝐿𝑚𝑎𝑥 = 7 

Maximum number of linguistic labels 𝐿𝑖 = 7, 𝐿𝑖 ← {𝑉𝐿, 𝐿, 𝑀𝐿, 𝑀, 𝑀𝐻, 𝐻, 𝑉𝐻} 

Maximum similarity threshold for fuzzy sets 𝑔𝑠 = 0.1 

 

7.3.7 Validation 

k-fold cross-validation (k = 10) was used to evaluate the performance of the SOM and the 

machine learning algorithms. Cross-validation is a resampling procedure that has been widely 
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used in machine learning to estimate the skill of a model on unseen data (Bengio and 

Grandvalet, 2004). k-fold cross-validation involves randomly splitting the original sample data 

into k groups of approximately equal size. One group out of the k groups is held out to validate 

the model, and the remaining k-1 groups are used to train the model. The training and validation 

are repeated k times to calculate the performance of the model on the validation data set. The 

value of k = 10 was used for the cross-validation; this value has been proven to produce 

validation results that suffer neither from excessively high bias nor from very high variance 

(James et al., 2013).  

 

The performance of the models was evaluated using the Area Under the Receiver Operating 

Characteristic (AUROC). The Receiver Operating Characteristic (ROC) curve is constructed 

by plotting the model’s true positive rate (sensitivity) against the false positive rate (1-

specificity) at various threshold settings. AUROC is a performance metric for discrimination; 

it indicates a model’s ability to discriminate between positive and negative cases (Brown and 

Davis, 2006). An AUROC of 1.0 corresponds to a perfect performance; the lower the AUROC, 

the worse the performance. In general, AUROC above 0.5 indicates good performance, 

whereas AUROC below 0.5 indicates poor performance. The model with the highest AUROC 

value was selected as the optimal model. 

 

7.4 Results 

7.4.1 Detected Stress and Non-stress Responses 

The path was labelled using the commonly perceived stress and non-stress reported by the 

participants, as shown in Figure 7.4(a). The hot spot analysis result is presented in Figure 

7.4(b). The hot spots and cold spots were determined at a 95% confidence level. In other words, 

these hot and cold spots were the results of older adults’ physiological responses to spatial  
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Figure 7.4: Detected spatial significant stress and non-stress locations. 

Note. (a) The commonly perceived stress and non-stress response by the participants. (b) 

Spatial significant clusters of high (hot spot) and low (cold spot) physiological responses of 

the participants. (c) The distribution of spatial significant stress locations on the path. S1 to S7 

correspond to spatial significant stress locations based on physiological-perceived responses. 

(d) The distribution of spatial significant non-stress locations on the path. N1 to N6 correspond 

to non-stress locations based on physiological-perceived responses. 

 

factors at a 95% confidence level. The spatial significant sample points corresponding to the 

perceived responses were used to determine the stress and non-stress locations on the path in 

order to further analyse the spatial attributes—here, the visuospatial configurations—

stimulating such stress and non-stress responses. The hot spots and cold spots within the 

perceived stress path segments (i.e., 2161 points of spatial significant stress samples) were 

distributed approximately across seven locations on the path (i.e., S1 to S7) as shown in Figure 

7.4(c). The hot spots and cold spots within the perceived non-stress path segments (i.e., 1122 
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points of spatial significant stress samples) were distributed approximately across six locations 

on the path (i.e., N1 to N6) as shown in Figure 7.4(d). 

 

7.4.2 Influence of Visuospatial Perception on Stress and Non-stress Response 

Older adults’ visuospatial perceptions (i.e., the values for all isovist indicators) were spatially 

matched with the spatial significant stress samples and non-stress samples. A Wilcoxon signed-

rank test was conducted to determine whether there is a significant difference in their 

visuospatial perceptions during stress and non-stress physiological states. The results indicate 

that all isovist indicators were statistically and significantly different under the two different 

physiological states with a 95% significance level. This is an indication that the isovist 

indicators somewhat influenced the participants’ stress and non-stress physiological states. 

 

Principal component analysis (PCA) was conducted on the spatially significant matched 

samples of isovist indicators and physiological responses for each field of view to determine 

whether the variation retained in the first two principal components contains relevant 

information about the samples. Before PCA was conducted, the data for each isovist indicator 

was mean centred and then divided by the standard deviation of the isovist indicator (data 

normalisation). This way, each isovist indicator has zero mean and unit standard deviation to 

ensure that the PCA is based on how much variation the isovist indicators explain to improve 

numerical stability. 

 

The biplots of the two largest principal components for 90° field of view, 120° field of view, 

and 180° field of view are shown in Figure 7.5(a), Figure 7.5(b), and Figure 7.5(c), 

respectively. From the biplots, it can be observed that the two largest principal components 

(i.e., PC1 on the x-axis and PC2 on the y-axis) for all the fields of view explain more than 80%  
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Figure 7.5: PCA biplot of spatially significant matched samples of isovist indicators and 

physiological responses.  

Note. (a) 90° field of view. (b) 120° field of view. (c) 180° field of view. (d) PCA biplot label 

for stress and non-stress physiological responses. PC1 = principal component 1; PC2 = 

principal component 2. 

 

(i.e., the sum of PC1 and PC2) of the variability in the data. The biplot reveals that non-stress 

responses are characterised by increasing values of area, perimeter, occlusivity, minimum and 

maximum visibility, while stress is somewhat characterised by increasing values of jaggedness 

and compactness. However, note that the PCA is only providing information on the global 
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structure of the data; therefore, further data exploration was conducted using SOM and machine 

learning to understand the local structure of the data. 

 

7.4.3 The Learning Process 

The optimal hyperparameter settings for the SOM are reported in Table 7.3. Note that the 

isovist indicators were normalised. The learning process for 90° field of view, 120° field of 

view, and 180° field of view dataset are shown in Figure 7.6(a), Figure 7.6(d), and Figure 

7.6(g), respectively. Figure 7.6(a), Figure 7.6(d), and Figure 7.6(g) show the mean distance to 

the closest unit decreased during the learning process, stabilised at a very small value and 

reached a minimum plateau. A small value of mean distance is an indication that the weight 

vector of a node is similar to the input data 𝒙𝑖 (isovist indicator) and corresponding label 𝒚𝑖 

(physiological response) represented by that node. The marginal improvement in the mean 

distance after the first 60 iterations prove the convergence of the SOM. Figure 7.6(b), Figure 

7.6(e), and Figure 7.6(h) present the count plot for 90°, 120°, and 180° fields of view, 

respectively. The count plot shows the number of input data points in each node. The 

neighbourhood distance plots in Figure 7.6(c), Figure 7.6(f), and Figure 7.6(i) for 90°, 120°,  

 

Table 7.3: Optimal hyperparameters settings for SOM and SOM validation result 

 Field of view 

Hyperparameters 90° 120° 180° 
Grid size 3×4 3×4 3×4 
Topography Hexagonal Hexagonal Hexagonal 
User weights 0.8 0.2 0.8 
Distance weights 2.444 2.444 2.444 
Neighbourhood function Bubble Bubble Bubble 
Distance function Tanimoto Tanimoto Tanimoto 
Training length 100 100 100 
Learning rate (initial, final) 0.05, 0.01 0.05, 0.01 0.05, 0.01 
10-fold cross-validation    
   AUROC 0.960 0.931 0.937 
   Sensitivity 0.843 0.767 0.790 
   Specificity 0.929 0.939 0.934 

Note. AUROC = area under the receiver operating characteristic. 
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Figure 7.6: SOM architecture. 

 

and 180° fields of view, respectively, shows further clustering in the data. Areas of low 

neighbour distance (dark regions) indicate the group of nodes with similar properties, and the 

further apart nodes (light regions) indicate natural borders in the map. 
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7.4.4 Visualisation of the SOM 

Hierarchical clustering analysis was conducted to show the clustering information in the SOM. 

The clustering shows a clear boundary of isovist indicators resulting in non-stress and stress 

physiological responses. The SOM with cluster boundaries for 90° field of view, 120° field of 

view, and 180° field of view analyses are presented in Figure 7.7. The SOM shows the level of 

isovist indicators (Figure 7.7[a], Figure 7.7[d], and Figure 7.7[g]) that influence older adults’ 

physiological response (Figure 7.7[b], Figure 7.7[e], and Figure 7.7[h]). The cluster of 

participants influence by a specific isovist indicator (s) is shown in Figure 7.7(c), Figure 7.7(f), 

and Figure 7.7(i) for 90°, 120°, and 180° fields of view, respectively. The SOM reveals the 

local structure of the data. For instance, participant 1’s experience is best captured by node 5, 

node 6, and node 9 for 90°, 120°, and 180° fields of view, respectively. Participant 1 

experienced stress when there is a high level of maximum visibility, a medium level of 

compactness and low levels of area, minimum visibility, perimeter, occlusivity, and jaggedness 

for 90° and 180° fields of view. However, a small increase in minimum visibility and area 

resulted in a non-stress physiological response when the field of view is 120°. None of 

participant 8’s data was captured in nodes 9 and 6 (90° fields of view), implying that the levels 

of isovist indicators in these nodes have no influence on participant 8. The male participants 

(participants 3, 5 and 10) samples dominated the count in node 1 (90° fields of view), indicating 

that minimum visibility, maximum visibility, area, perimeter and occlusivity (in order of 

importance) influence their physiological response. A summary of the dominant patterns in the 

SOM is explained in Table 7.4. 
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Figure 7.7: Influence of isovist indicators on participants’ physiological stress.  

Note. (a), (d), and (g) is a “fan diagram”, each node of the “fan diagram” consist of individual 

fans, which represents the magnitude of each input variable (i.e., the isovist indicator) in the 

weight vector. (b), (e), and (h) is read in conjunction with (a). It shows the isovist indicator 

levels eliciting a specific physiological response. (c), (f), and (i) show the participants sample 

data that were clustered into a specific self-organising map (SOM) node. The SOM consist of 

12 nodes. 
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7.4.5 Most Influential Isovist Indicators of Physiological Response  

The hierarchy of influential isovist indicator (s) subsets is provided in Figure 7.8. Minimum 

visibility was the most influential under 90°, 120° and 180° fields of view. Most of the machine 

learning models achieved higher performance when only the most influential isovist indicator 

is used to discriminate between stress and non-stress physiological responses. Minimum 

visibility, occlusivity, perimeter, and isovist area (for 90° field of view); minimum visibility, 

occlusivity, isovist area, and compactness (for 120° field of view); and minimum visibility, 

isovist area, and occlusivity (for 180° field of view) appeared in most of the influential isovist 

indicator (s) subsets. The level of influence is presented alongside the dominant pattern 

observed in the PCA and SOM in Table 7.4. 

 

 

Figure 7.8: Hierarchy of influential isovist indicator (s) subsets with corresponding 

performance when tested on machine learning algorithms with 10-fold cross-validation. 
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Table 7.4: Dominant pattern in the SOM 

 90° field of view 120° field of view 180° field of view 

Isovist indicator Non-stress Stress Non-stress Stress Non-stress Stress 
Area ↑4 ↓4 ↑3 ↓3 ↑2 ↓2 

Perimeter ↑3 ↓3 ↑6 ↓6 ↑4 ↓4 

Occlusivity ↑2 ↓2 ↑2 ↓2 ↑3 ↓3 

Compactness ↓6 ↑6 ↓4 ↑4 ↓4 ↑4 

Jaggedness ↓7 ↑7 ↓7 ↑7 ↓7 ↑7 

Maximum visibility ↑5 ↓5 ↑5 ↓5 ↑4 ↓4 

Minimum visibility ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 

Note. ↑ = increase in isovist indicator; ↓ = decrease in isovist indicator; 1 = most influential; 7 

= least influential. 

 

7.4.6 Multi-objective Evolutionary Fuzzy Systems: Generated Visuospatial 

Configurations with Physiological Effect 

The multi-objective evolutionary fuzzy rule-based system was tested on the 180° field of view. 

The system generated 17 sets of visuospatial configurations with specific physiological effect 

with an accuracy of 86.8%, precision of 86.4%, recall of 86.9%, and AUROC of 0.826 over 

10-fold cross-validation. The generated visuospatial configurations with physiological effect 

are presented in Table 7.5.  

 

7.5 Discussion 

The result from the PCA, SOM, and machine learning algorithms show that minimum 

visibility, occlusivity, and isovist area have the most significant influence on physiological 

responses among older adults at individual and group levels. In the prospect-refuge theory, 

minimum visibility is the visual indicator for “refuge”. This implies that older adults’ 

physiological responses are strongly influenced in an environment with refuge value. 

Occlusivity is another indicator of refuge; occlusivity is the second most influential predictor 

of physiological response. However, when this refuge element is present, older adults displayed 

a preference for a high minimum visibility length and high occlusivity, which results in a non-

stress physiological response, while a low minimum visibility length and low occlusivity result  
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Table 7.5: Visuospatial configurations with physiological effect 

  Visuospatial configuration  Linguistic label Dimension (SD) 

Rule 1:      

IF  Isovist area IS Low 4156.807 m2 (495.337) 

 AND Isovist perimeter IS Medium 410.722 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS High 0.596 (0.020) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 2:      

IF  Isovist area IS Low 4156.807 m2 (495.337) 

 AND Isovist perimeter IS Medium 410.722 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS Very Low 0.198 (0.019) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Low 34.622 m (4.158) 

 AND Minimum visibility IS Moderately Low 29.207 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 3:      

IF  Isovist area IS Very Low 1616.546 m2 (699.152) 

 AND Isovist perimeter IS Very High 696.734 m (22.145) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS High 0.596 (0.020) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Medium 61.944 m (3.698) 

 AND Minimum visibility IS Low 15.821 m (4.074) 

THEN the physiological effect IS Stress 

      

Rule 4:      

IF  Isovist area IS Medium 8044.802 m2 (495.337) 

 AND Isovist perimeter IS Very Low 104.413 m (29.372) 

 AND Occlusivity IS Medium 281.987 m (17.945) 

 AND Compactness IS Moderately High 0.5147 (0.027) 

 AND Jaggedness IS Moderately High 121.743 (7.264) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Very Low 1.942 m (3.392) 

THEN the physiological effect IS Stress 

      

Rule 5:      

IF  Isovist area IS Very Low 1616.546 m2 (699.152) 

 AND Isovist perimeter IS Medium 410.722 m (21.284) 

 AND Occlusivity IS High 458.410 m (19.365) 

 AND Compactness IS Very High 0.704 (0.032) 

 AND Jaggedness IS Moderately Low 87.129 (5.447) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 
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  Visuospatial configuration  Linguistic label Dimension (SD) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 6:      

IF  Isovist area IS Medium 8044.802 m2 (495.337) 

 AND Isovist perimeter IS Low 198.233 m (26.860) 

 AND Occlusivity IS High 458.410 m (19.365) 

 AND Compactness IS High 0.596 (0.020) 

 AND Jaggedness IS Low 60.693 (5.447) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Moderately Low 29.207 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 7:      

IF  Isovist area IS Low 4156.807 m2 (495.337) 

 AND Isovist perimeter IS High 605.518 m (23.312) 

 AND Occlusivity IS Moderately Low 181.401 m (17.945) 

 AND Compactness IS Low 0.3038 (0.019) 

 AND Jaggedness IS Low 60.693 (5.447) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 8:      

IF  Isovist area IS Very Low 1616.546 m2 (699.152) 

 AND Isovist perimeter IS Medium 410.722 m (21.284) 

 AND Occlusivity IS Very Low 79.555 m (18.095) 

 AND Compactness IS Moderately Low 0.413 (0.019) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Moderately High 73.800 m (2.766) 

 AND Minimum visibility IS Moderately Low 29.207 m (2.969) 

THEN the physiological effect IS Stress 

      

Rule 9:      

IF  Isovist area IS Moderately High 10321.695 m2 (650.645) 

 AND Isovist perimeter IS Moderately High 502.173 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS Moderately Low 0.413 (0.019) 

 AND Jaggedness IS Moderately High 121.743 (7.264) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Non-Stress 

      

Rule 10:      

IF  Isovist area IS Medium 8044.802 m2 (495.337) 

 AND Isovist perimeter IS Very Low 104.413 m (29.372) 

 AND Occlusivity IS Very High 535.316 m (23.791) 

 AND Compactness IS Moderately Low 0.413 (0.019) 

 AND Jaggedness IS Low 60.693 (5.447) 



 

 173 

  Visuospatial configuration  Linguistic label Dimension (SD) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS High 64.747 m (2.969) 

THEN the physiological effect IS Non-Stress 

      

Rule 11:      

IF  Isovist area IS Low 4156.807 m2 (495.337) 

 AND Isovist perimeter IS Moderately Low 289.448 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS Low 0.304 (0.019) 

 AND Jaggedness IS Moderately Low 87.129 (5.447) 

 AND Maximum visibility IS Moderately High 73.800 m (2.766) 

 AND Minimum visibility IS Very High 83.398 m (3.559) 

THEN the physiological effect IS Non-Stress 

      

Rule 12:      

IF  Isovist area IS Very High 13700.860 m2 (801.068) 

 AND Isovist perimeter IS Moderately Low 289.448 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS Moderately Low 0.413 (0.019) 

 AND Jaggedness IS Very Low 31.832 (5.447) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Non-Stress 

      

Rule 13:      

IF  Isovist area IS Moderately High 10321.695 m2 (650.645) 

 AND Isovist perimeter IS High 605.518 m (23.312) 

 AND Occlusivity IS Medium 281.987 m (17.945) 

 AND Compactness IS Very High 0.704 (0.032) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Low 15.821 m (4.074) 

THEN the physiological effect IS Non-Stress 

      

Rule 14:      

IF  Isovist area IS Very Low 1616.546 m2 (699.152) 

 AND Isovist perimeter IS Moderately Low 289.448 m (21.284) 

 AND Occlusivity IS Moderately Low 181.401 m (17.945) 

 AND Compactness IS Very High 0.704 (0.032) 

 AND Jaggedness IS Very High 179.208 (7.276) 

 AND Maximum visibility IS Moderately Low 46.745 m (2.766) 

 AND Minimum visibility IS Medium 41.930 m (2.969) 

THEN the physiological effect IS Non-Stress 

      

Rule 15:      

IF  Isovist area IS Moderately High 10321.695 m2 (650.645) 

 AND Isovist perimeter IS Low 198.233 m (26.860) 

 AND Occlusivity IS Moderately High 374.510 m (24.059) 

 AND Compactness IS Low 0.304 (0.019) 
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  Visuospatial configuration  Linguistic label Dimension (SD) 

 AND Jaggedness IS Low 60.693 (5.447) 

 AND Maximum visibility IS Low 34.622 m (4.159) 

 AND Minimum visibility IS Very High 83.398 m (3.559) 

THEN the physiological effect IS Non-Stress 

      

Rule 16:      

IF  Isovist area IS Very High 13700.860 m2 (801.068) 

 AND Isovist perimeter IS Moderately High 502.173 m (21.284) 

 AND Occlusivity IS Moderately High 374.510 m (24.058) 

 AND Compactness IS Low 0.304 (0.019) 

 AND Jaggedness IS High 145.087 (5.447) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Low 15.821 m (4.074) 

THEN the physiological effect IS Non-Stress 

      

Rule 17:      

IF  Isovist area IS Moderately High 10321.695 m2 (650.645) 

 AND Isovist perimeter IS Moderately Low 289.448 m (21.284) 

 AND Occlusivity IS High 458.410 m (19.365) 

 AND Compactness IS Very High 0.704 (0.032) 

 AND Jaggedness IS Moderately High 121.743 (7.264) 

 AND Maximum visibility IS Very High 94.574 m (7.913) 

 AND Minimum visibility IS Very Low 1.942 m (3.392) 

THEN the physiological effect IS Non-Stress 

Note. SD = standard deviation; Compactness and Jaggedness are unitless. Compactness is 

within the range [0,1]. 

 

in a stress physiological response. Hong Kong has a high refuge value because its spatial 

configuration is enclosed by high-density and high-rise buildings. This explains why ‘refuge’ 

emerged as the most significant element in a visuospatial configuration. For older adults to 

experience a non-stress physiological response in a high refuge value environment such as 

Hong Kong, the spatial configuration should have more open edges (increased occlusivity) and 

a longer minimum nearest distance to physical boundaries (increased minimum visibility). This 

finding is quite interesting because it does not conform to the theory of refuge (enclosure 

evokes a sense of safety) because having more open edges and visibility increases the chances 

of being seen by other people. It is plausible that these isovist indicators (i.e., minimum 

visibility and occlusivity) captured the claustrophobic element in older adults’ reaction, where 
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a visuospatial configuration that is too enclosed triggers claustrophobic tendencies, causing an 

increase in physiological stress. 

 

While the claustrophobic tendency explains the reason for such physiological response, there 

might actually be more to it than that. A spatial configuration with more open edges (high 

occlusivity) tends to promise more information (mystery). Older adults are even more likely to 

experience non-stress physiological response due to an increase in mystery when the field of 

view is between 90° and 180°. Therefore, creating a visuospatial configuration with high 

mystery might as well reduce the tendency of feeling claustrophobic among older adults. 

 

Isovist area is another influential determinant of physiological response; its influence increases 

with an increasing field of view. The behavioural and experience relevance of the isovist area 

corresponds to “prospect” in the prospect-refuge theory. The perimeter and maximum visibility 

length also quantify the prospect theory. Older adults experienced a non-stress physiological 

response when the environment offers a configuration conducive to attaining a larger view, 

while a stress physiological response is experienced when the view is small. According to the 

prospect theory, being able to “fetch” information from all spaces at an observation point in a 

large space induces a sense of security. This explains why older adults experienced non-stress 

physiological response when prospect elements (isovist area, perimeter, and maximum 

visibility length) increase. 

 

Isovist area, compactness and maximum visibility became increasingly influential when the 

field of view increases. This could be because the distribution of visuospatial information 

increases with an increasing field of view. The complexity and mystery in the environment 

become more relevant when the field of view increases which can either cause humans to 
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display preference or aversion depending on the varying proportions of the elements in the 

spatial configuration. Specifically, older adults experienced physiological stress when spatial 

complexity increases (i.e., increased compactness); this physiological stress due to complexity 

is even more likely when the field of view increases.  

 

This study demonstrates that the multi-objective evolutionary rule-based system has the 

potential to generate visuospatial configurations that produce a specific visuospatial effect. A 

more critical look into the generated rules shows that weakness in any specific quality (e.g., 

lack of prospect elements due to layout restrictions) can be compensated for with the strength 

in others (e.g., increasing the value of mystery). 

 

7.5.1 Comparison with Similar Studies 

Previous researchers (as shown in Table 7.6) that have studied this topic mainly focused on 

younger adults with an average age of about 25 years. These studies were conducted in 

Switzerland, Germany, and Hong Kong. Interestingly, there are some differences and 

commonalities between the impact of visuospatial configurations on younger adults and older 

adults.  

 

Study 1 and Study 5 finds that younger adults prefer urban spaces that are enclosed in order for 

them to feel safe. These findings on younger adults are contrary to the current finding on older 

adults; older adults feel claustrophobic (leading to physiological stress) when the urban spaces 

are too enclosed or when they are too close to a physical boundary (e.g., a wall). Older adults 

show a preference for spaces that are not too enclosed with more open edges in order for them 

to be seen by other pedestrians. Study 3 and Study 4 reports that younger adults perceived 

spaces with high visibility and perimeter to be stressful because they can be seen from a larger  
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 Table 7.6: Summary of previous studies 

Study Background Visuospatial element Influence 

Study 1: 

Li et al. 

(2016) 

Participants’ mean age: 

25 (2.5 standard 

deviation) 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Compactness Higher compactness causes 

positive emotion 

Maximum visibility Higher visibility causes positive 

emotion 

Refuge value 

(minimum visibility 

or occlusivity) 

Enclosed urban spaces are very 

important in fostering a sense of 

security in pedestrians 

Study 2: 

Hijazi et 

al. (2016) 

Participants: Students 

and lecturers 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Occlusivity (60°) Significant for predicting 

negative emotional arousal 

Perimeter (360°) Significant for predicting 

negative emotional arousal 

Compactness (360°) Significant for predicting 

positive emotional arousal 

Perimeter (60°) Significant for predicting 

positive emotional arousal 

Occlusivity (60°) Significant for predicting 

positive emotional arousal 

Study 3: 

Knöll et 

al. (2018) 

Participants’ median 

age: 25 years (range 22 

to 35, 2.2 standard 

deviation) 

Experiment location: 

Darmstadt, Germany 

Data: Questionnaire to 

collect perceived urban 

stress 

Visibility Visibility is positively related to 

perceived urban stress 

Perimeter Perimeter is positively related to 

perceived urban stress 

Isovist vertices 

numbers (indicates 

the complexity) 

 

Isovist vertices numbers relate 

negatively to perceived urban 

stress 

Visibility and 

perimeter 

Vertices number 

Outdoor spaces visibility and 

perimeter, which describe the 

shape of a space and vertices 

number, which indicates the 

complexity of a shape, are more 

important isovist characteristics 

to explain perceived urban 

stress. 

Study 4: 

Ojha et al. 

(2019) 

Participants’ mean age: 

Not provided 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Isovist area High value of isovist area 

resulted in an aroused 

physiological state 

Perimeter Data was collected but result not 

reported 

Compactness Data was collected but result not 

reported 

Occlusivity Data was collected but result not 

reported 

Study 5: 

Xiang et 

al. (2020) 

Participants’ mean age: 

24.77 years (0.718 

standard deviation) 

Experiment location: 

Hong Kong 

Isovist area (90°) Negatively related to negative 

emotion 

Compactness Insignificant 

Isovist drift angle 

(90°) 

Negatively related to negative 

emotion 
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Study Background Visuospatial element Influence 

Data: Skin conductivity Isovist drift 

magnitude (90°, 

120°, 180°) 

Negatively related to negative 

emotion 

Max-radial (90°, 

120°) 

Negatively related to negative 

emotion 

Occlusivity Insignificant 

Perimeter (90°, 

120°) 

Negatively related to negative 

emotion 

Jaggedness (90°, 

120°, 180°) 

Positively related to negative 

emotion 

Enclosure (refuge 

value) 

To avoid negative emotions, a 

space must be enclosed to 

guarantee a 

sense of security 

 

area. In contrast, older adults experienced a non-stress physiological response when urban 

spaces have a larger view and perimeter because they are able to see all their surroundings 

which heighten the feeling of security. In summary, older adults prefer urban spaces where 

they can be seen, while younger adults prefer spaces where they cannot be seen. 

 

While Study 1 and Study 2 conclude that higher compactness causes positive emotions for 

younger adults, this current study indicates that higher compactness causes physiological stress 

for older adults. The results from Study 3 shows that younger adults are more likely to perceive 

an urban space with low complexity (measured using isovist vertices numbers) as stressful. 

However, Study 5 presented that high complexity (measured using jaggedness) is related to 

younger adults’ negative emotions. In this current study, older adults felt stressed when 

complexity (measured using jaggedness) increases. 

 

While these differences are worth sharing, theoretically, it should be noted that the spatial 

layout, living arrangement, and cultural background in these countries are different, which can 

influence an individual’s response. Methodologically, all these studies, including the presented 

study, were limited to two dimensional isovist which omits other relevant spatial factors. Study 
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1, 2, 4 and 5 used only physiological responses for their analysis and Study 3 used only 

perceived responses for their analysis. This study combined both perceived and physiological 

responses. 

 

7.6 Chapter Summary 

This chapter aimed to understand the influence of visuospatial configurations of urban space 

on older adults’ physiological stress. The study further presented an integrated methodology 

based on machine learning and an evolutionary rule-based system to achieve this aim. The 

following conclusions were made. (1) Isovist minimum visibility, occlusivity, and isovist area 

are the most influential determinants of older adults’ physiological response. (2) Older adults 

experienced non-stress physiological response when prospect elements (isovist area, perimeter, 

and maximum visibility length) increase. (3) Older adults feel stressed when the environment 

is too enclosed. (4) Isovist indicators can complement one another to achieve a specific 

physiological effect. (5) In comparing older adults and younger adults, older adults prefer urban 

configurations where they can be seen, while the younger adults prefer spaces where they 

cannot be seen. Overall, the findings from this study can be used to inform urban design and 

planning. 
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PART V:  RESEARCH CONCLUSION
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CHAPTER 8  

 

CONCLUSIONS AND RECOMMENDATIONS8 

 
8.1 Summary of Research 

With the current rate of population ageing and the ageing of built environment infrastructure—

double ageing—urban planners and municipal decision-makers need a more efficient approach 

to continuously assess and detect excessively demanding environmental conditions to promote 

active ageing. The overall goal of this research is (1) to enable practitioners to detect stressful 

older adults-environment interactions in near real-time and (2) to bring to the limelight the 

influence of urban environment configurations on older adults’ stress response. Four specific 

 
8 This chapter is based on studies that are published or currently under consideration for 

publication. 

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). The influence of urban visuospatial 

configuration on older adults’ stress: A wearable physiological-perceived stress sensing and 

data mining based-approach, Building and Environment, 108298. 

https://doi.org/10.1016/j.buildenv.2021.108298 

 

Torku, A., Chan, A.P.C., and Yung, E.H.K. (2021). Implementation of age-friendly initiatives 

in smart cities: Probing the barriers through a systematic review, Built Environment Project 

and Asset Management, 11(3), 412-426. https://doi.org/10.1108/BEPAM-01-2020-0008  
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https://doi.org/10.1017/S0144686X20000239  

 

Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Wearable sensing and mining of the 

informativeness of older adults’ bodily responses to detect demanding environmental 
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Torku, A., Chan, A.P.C., Yung, E.H.K., Seo, J. (2021). Learning to detect older adults’ 

environmental stress hotspots to improve neighbourhood mobility: A multimodal physiological 

sensing, machine learning and risk hotspot analysis-based approach, Cities (Under Review). 

JCIT-D-21-01443  
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objectives were identified to achieve this goal. The specific objectives are (1) to assess the 

informative of people’s bodily responses (i.e., physiological, behavioural, and cognitive 

responses) to different environmental conditions, (2) to examine the relationships in older 

adult’s bodily responses resulting from their interaction with the environment, (3) to detect 

older adults’ stressful environmental interactions in near-real time, and (4) to examine the 

influence of visuospatial configuration of urban space on older adults’ stress response. To 

achieve these objectives, this research harnessed the current advances in wearable sensing 

technologies to collect older adults’ bodily responses to their interaction with the environment 

as a means of assessing and detecting environmental barriers. A summary of how the four 

specific objectives were achieved is presented in the following. 

 

8.1.1 Objective 1: To Assess the Informative of People’s Bodily Responses 

This objective was achieved by extracting several features from sensed physiological (heart 

rate, heart rate variability, and electrodermal activity), cognitive (electroencephalography), and 

behavioural (foot plantar pressure distribution and contact forces, and 3-axis acceleration data) 

responses to different environmental conditions. A framework based on information entropy, 

symmetric uncertainty, correlation analysis, and Random Forest algorithm was developed to 

assess the informativeness of people’s bodily response. The framework provides individual 

informative features and an optimum set of informative features with their respective 

performance. 

 

The extracted features from the sensed physiological (heart rate, heart rate variability, and 

electrodermal activity), cognitive (electroencephalography), and behavioural (foot plantar 

pressure distribution and contact forces, and 3-axis acceleration data) responses were analysed 

using the developed framework to understand how much information a feature gained about 
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older adults’ interaction and experience in the outdoor environment. The results show that older 

adults’ physiological response is more informative than the cognitive and behavioural 

responses. The informativeness of the cognitive response was affected by the walking activity, 

and the gait abnormality among older adults affected their behavioural responses. The rest of 

the objectives only considered older adults’ physiological responses. 

 

8.1.2 Objective 2: To Examine the Relationships in Older Adult’s Bodily Responses 

Resulting from their Interaction with the Environment 

A Wilcoxon signed-rank test was conducted to understand whether the physiological responses 

to environmental conditions perceived as non-stress was statistically and significantly different 

from environmental conditions perceived as stress. Spatial clustering analysis was performed 

using Getis-Ord General G to confirm whether there is any spatial association in participants’ 

physiological responses. A hot spot analysis using Getis-Ord Gi* statistics was conducted to 

determine locations on the path that stimulated a common physiological response among 

multiple participants. The study introduced a space-time pattern mining approach to 

spatiotemporally aggregate older adults’ physiological responses. 

 

The result indicated that, on average, participants experienced a statistically significant higher 

physiological response at environment conditions perceived as non-stress than environment 

conditions perceived as stress. The spatial clustering analysis and the space-time pattern mining 

confirmed that multiple participants’ physiological responses are spatially associated and 

possess some common characteristics. The results further demonstrate that the relationships 

between older adults’ physiological response and the environmental condition are less apparent 

at the individual level. An individual’s pace, walking behaviour, level of observation, physical 

characteristics, gender, data source (i.e., the related organ) and time-dependent environmental 
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factors influenced their physiological responses to stress and non-stress environmental 

conditions. However, using collective sensing (aggregating multiple participants’ 

physiological responses) can accommodate the individual variability and capture any normality 

in the data, which is indicative of an environment’s condition. The collective physiological 

responses are consistent with the older adults’ perceived assessment and the observers’ audit 

of the environment’s condition. 

 

8.1.3 Objective 3: To Detect Older Adults’ Stressful Environmental Interactions in 

Near-Real Time 

Several machine learning algorithms, including Gaussian Support Vector Machine, Ensemble 

bagged tree, and deep belief network were trained and tested to detect (1) stress and non-stress 

human-environment interactions and (2) low-stress and high-stress human-environment 

interactions using an optimum set of informative features. The optimum set of informative 

features included older adults’ physiological responses, environmental and location data; it was 

determined using the framework developed in Objective 1. Older adults’ perceived stress 

assessment was used as labels. The Ensemble bagged tree algorithm achieved the best 

performance among the tested algorithms. The Ensemble bagged tree algorithm detected older 

adults’ stressful interactions with an accuracy of 98.13% (for detecting stress and non-stress 

samples) and 98.25% (for detecting low and high-stress samples). The detected stressful 

interactions were visualised using kernel density estimation. Overall, the detected stress and 

high-stress samples matched older adults perceived stress assessment of the path. A simulation-

based approach was used to detect areas within the study area that are sufficiently powered to 

detect stress hot spot that pose higher risk to older adults. 
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8.1.4 Objective 4: To Examine the Influence of Visuospatial Configuration of Urban 

Space on Older Adults’ Stress Response 

An integrated methodology based on machine learning and an evolutionary rule-based system 

was developed to further our understanding of the influence of visuospatial configurations of 

urban space on older adults’ physiological stress. Isovist analysis was conducted to represent 

older adults’ perceived visual elements in the urban environment from 90°, 120°, and 180° 

fields of view. Older adults’ stress responses due to spatial factors were detected using their 

physiological-perceived stress and spatial clustering analysis. 

 

The result revealed that isovist minimum visibility, occlusivity, and isovist area are the most 

influential determinants of older adults’ physiological response. Older adults experienced a 

non-stress physiological response when prospect elements (isovist area, perimeter, and 

maximum visibility length) increase and older adults feel stressed when the environment is too 

enclosed. Isovist indicators can complement each other to achieve a specific physiological 

effect. In comparing older adults and younger adults, older adults prefer urban configurations 

where they can be seen, while younger adults prefer spaces where they cannot be seen. 

 

8.2 Contribution to Knowledge, Practice and Impact 

8.2.1 Contributions to Academia 

The following models and frameworks were developed and tested in this study: 

• An information mining-based methodological framework was developed to assess the 

relevance and informativeness of people’s bodily responses 

• A space-time pattern mining approach is introduced to spatiotemporally aggregate 

older adults’ physiological responses 

• An optimised environmental risk stress hot spot detection framework 
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• A machine learning and evolutionary rule-based system to examine the influence and 

generate visuospatial configurations that produce a specific physiological effect 

 

The models and frameworks provide a computational foundation for future studies to develop 

applications and new computational approaches to improve neighbourhood walkability in 

smart and age-friendly cities. With increasing urban ageing, cities need to evolve and adapt; 

new computational approaches to urban system design and management have the opportunity 

to make cities the best environment to accommodate older adults. 

 

8.2.2 Incorporating the Elderly-centric Wearable Sensing-based Approach into Urban 

Planning 

This study shows that assessing the walkability or quality of the built environment features 

using either a site audit (i.e., EAST-HK, SWEAT-R, or other audit tools) or the elderly-centric 

wearable sensing-based approach alone does not provide a holistic perspective of the built 

environment for older adults. It is of paramount importance to measure both the exposure 

environment and the outcomes of the exposure to the environment in order to understand the 

potential effect of the built environment on people (Cerin et al., 2011). These findings indicate 

that the site audit is more accurate at assessing the exposure environment, but it is limited in 

assessing the outcome of the exposure. However, the elderly-centric wearable sensing-based 

approach is more accurate at assessing the outcome of the exposure but limited in assessing the 

exposure environment. For instance, the site auditors can identify demanding environmental 

conditions (i.e., environmental barriers), but they cannot differentiate between an 

environmental feature that is demanding for one person and non-demanding for another person. 

The elderly-centric wearable sensing-based approach can determine a person’s reaction to 
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different environmental conditions or how different people react to the same environmental 

condition but cannot provide a detailed assessment of the underlying environmental conditions. 

 

It is recommended that the elderly-centric wearable sensing-based approach should be used as 

an early warning system. If a location is detected as a high-risk stress hot spot, a system could 

notify urban planners or municipal decision-makers. Then, trained observers can use 

predefined protocols or tools (e.g., EAST-HK and SWEAT-R) to identify environmental 

barriers within these high-risk stress hot spots. While identifying these high-risk stress hot spots 

is essential, it is only the first step to creating an AFCC. How the identified environmental 

barriers are addressed is critical to improving the well-being and participation of older adults 

in outdoor activities. Table 8.1 presents a few recommendations based on the WHO AFCC 

guide (WHO, 2007) to address the identified environmental barriers in this study. Although 

these recommendations can be adapted and adopted in other cities and communities, it not a 

gold standard. 

 

It is important to mention that the stress hot spots were identified through older adults-centred 

approach; this is motivated by the fact that involving older adults is very important in 

evaluating the age-friendliness of the environment (WHO, 2007; Torku et al., 2021). Therefore, 

urban planners should adopt a bottom-up approach—with a supportive top-down back-up—

throughout the process of addressing these stress hot spots; in this way, older adults become 

place-makers. 
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Table 8.1: Age-friendly recommendations to address environmental barriers 

Domain Environmental barrier WHO (2007) Age-friendly guide 

Functionality ▪ Path condition (wet and slippery streets) 

▪ Path slope 

▪ Path obstruction 

▪ Major barriers (roadwork, steep staircases) 

▪ Minor barriers (cracks, holes, bumps, 

parking meters) 

▪ Street crowd 

▪ Motor vehicles parked on footpath 

▪ Hawkers and shops on streets 

▪ Path width 

▪ Path material 

▪ Curb cut features 

▪ Permeability 

▪ Well-maintained paths with smooth, level, and non-slip surface 

▪ The path width should be sufficient to accommodate wheelchairs 

▪ The path should have dropped curbs that taper off to be level with the road 

▪ The path should be free from obstructions such as street vendors, parked 

cars, trees, dog droppings, snow 

▪ Pedestrians have priority of use 

Safety ▪ Pedestrian crossing  

▪ Traffic load 

▪ Traffic calming devices 

▪ Streetlight 

▪ Directional sign 

▪ Presence of people 

▪ Signs of crime/disorder 

▪ Stray dogs /other animals 

▪ Roads should have a non-slip, regularly spaced pedestrian crossing 

▪ Roads should have well-designed and appropriately placed physical 

structures, such as traffic islands, overpasses, or underpasses, to assist 

pedestrians in crossing busy roads 

▪ Pedestrian crossing lights should allow sufficient time for older adults to 

cross the road 

▪ Pedestrian crossing lights should have visual and audio signals 

▪ Strict enforcement of traffic rules and regulations 

▪ Drivers should give way to pedestrians 

▪ Good street lighting and visible directional sign 

▪ Police patrols to ensure safety 

▪ Enforcement of by-laws, support for community and personal safety 

initiatives 

Aesthetics ▪ Views 

▪ Building attractiveness 

▪ Attractive natural sights 

▪ Regular cleaning of city and community 

▪ Enforce regulations to limit noise levels and unpleasant odours 
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▪ Streetscape 

▪ Litter 

▪ Graffiti 

▪ Pollution (noise and air) 

▪ Greenery 

▪ Well-maintained and safe green spaces with easily accessed seating, shelter, 

and toilet 

▪ Graffiti removal 

Destination ▪ Transport-related 

▪ Public open space 

▪ Recreational 

▪ Government/public services 

▪ Public facilities 

▪ Commercial destinations 

▪ Available and well-maintained outdoor seating spaced at regular intervals 

and patrolled to ensure safe access by all 

▪ Services are easily accessed and located near older adults 

▪ Special customer service arrangement for older adults 
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8.2.3 Research Impact 

In addition to the academic and practical significance, this study will have a sustained impact 

on (1) Older adults, (2) Society and community, (3) Urban planners and policymakers, (4) the 

economy. 

 

Older Adults  

The elderly-centric wearable sensing-based approach is centred on the older adults—it 

considers older adults as place-makers—therefore, they are engaged and directly involved in 

creating age-friendly interventions. Relying on these wearable sensors (especially the smart 

wristband) will cause less interference with their daily routines. Over the long term, this study 

will contribute to creating environments that are inclusive and accessible to promote active 

ageing. 

 

Society and Community  

As with many inclusive features, identifying older adults’ stress hot spots and adopting age-

friendly initiatives to address these stress hot spots could be advantageous for all generations. 

If a street is ‘friendly’ to older adults, it is likely to be ‘friendly’ to everyone. For example, a 

street that older adults find easy to use might be more walkable for someone carrying luggage 

or a parent with a toddler in a stroller. 

 

Urban Planners and Policymakers 

Currently, built environment assessments are conducted by trained observers (for 

neighbourhood inspection) from governmental departments. The intervals between 

assessments are generally long due to limited staff, budget and other resources. The combined 

use of the observational assessment approach and the elderly-centric wearable sensing-based 
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approach has the potential to improve neighbourhood assessment in cities and communities. 

The elderly-centric wearable sensing-based approach will enable urban planners and 

policymakers to identify stress risk hot spots; they can prioritise, plan, monitor, and allocate 

resources to these high-risk hot spots. 

 

The Economy 

In the long term, this study will provide a cost-effective approach to tackling double ageing. 

Ageing built environment infrastructure with high risk will be detected, and appropriate 

interventions can be taken to rectify their design or renovation. At the same time, more older 

adults—the fastest growing population—will age actively. An active ageing population will 

reduce the massive pressure on the already gridlocked medical, social welfare and elderly 

support services system in Hong Kong and worldwide. 

 

8.3 Limitations and Future Research 

Although the experiment findings are very promising, several limitations need to be mentioned. 

The number of participants is relatively small, and future studies should include larger and 

more diverse participants. The unequal number of male and female participants in the study 

may affect the results because gender can significantly impact human perception and 

physiological, behavioural, and cognitive responses to environmental conditions. The field 

experiment was conducted on a predefined path, and the environmental walk lasted for only a 

few days. In the urban environment, people decide whether to use a path or not; therefore, 

restricting older adults to a particular path may affect how they interact with the environment. 

For the purpose of this study, it was necessary to have older adults interact with the same path 

to facilitate a more direct comparison of their bodily response, their perceived assessments and 
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the observers’ audit of the path.  Future studies should consider collecting data in a free-form 

environment where participants are not be restricted to any particular path. 

 

Although the wearable sensors deployed in this study were demonstrated to the participants to 

increase their familiarity and acceptance of the sensors, there is a possibility that wearing some 

of the sensors, particularly the EEG headset in public, may have negatively influenced the data 

collection. Unlike the wristband and insole sensor, the EEG headset is not a subtle device. The 

public’s reactions towards the participants wearing this sensor may have caused discomfort 

and stress to the participants. This shows that the wider public’s perception and acceptance of 

wearable sensors are critical for effective elderly-centric sensing in outdoor environments. The 

EEG headset used in this had wet electrodes, which means that a conductive gel must be applied 

between the electrode and the scalp for a reliable measurement. Because this study was 

conducted in a naturalistic environment, the conductive gel might have dehydrated, which 

might have affected the stability of the EEG sensor of some participants. Future studies should 

explore the possibility of using other types of electrodes. 

 

Further research should be conducted to understand the influence of surface characteristic and 

appearance (e.g., material, texture, and colour) on older adults’ physiological stress. The 

generative potential of the multi-objective evolutionary algorithm should be exploited to 

generate geometrical designs with specific physiological effects that can fit into new or existing 

space in the urban environment. Conducting this research in a real-world setting makes it 

impossible to ensure that all participants experienced the same environmental conditions. 

However, conducting this research in a real-world setting was necessary to achieve ecological 

validity. Future researchers should explore a hybrid environmental condition, i.e., a 

combination of real-world and virtual environment settings. 
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APPENDIX A 

 

TINETTI ASSESSMENT TOOL 
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Tinetti Assessment Tool:  Balance 

 
PARTICIPANT NAME:             

Initial Instructions: Subject is seated on a hard, armless chair.  The following maneuvers are tested. 

TASK DESCRIPTION OF BALANCE Possible Score Date 

1.  SITTING BALANCE Leans or slides in chair 0   

Steady, safe 1   

2.  RISES FROM CHAIR Unable without help 0   

Able, uses arms to help up 1   

Able without using arms 2   

3.  ATTEMPTS TO RISE  

FROM CHAIR 

Unable without help 0   

Able, requires > 1 attempt 1   

Able to rise in 1 attempt 2   

4.  IMMEDIATE  

STANDING BALANCE 

(first 5 seconds) 

Unsteady (swaggers, moves feet, trunk 

 sways) 

0   

Steady but uses walker or other support 1   

Steady without walker or other support 2   

5.  STANDING  

BALANCE 

Unsteady 0   

Steady but wide stance (heels 4 inches  

apart) and uses cane or other support 

1   

Narrows stance without support 2   

6.  NUDGED (subject 

at max position with 

feet as close together 

as possible, examiner 

pushes lightly on  

subject’s sternum with 

palm of hand 3 times) 

 

Begins to fall 

0   

 

Staggers, grabs, catches self 

1   

 

Steady 

2   

7.  EYES CLOSED (at 

max position – see #6 

above) 

Unsteady 0   

Steady 1   

8.  TURNING 360  

DEGREES 

Discontinuous steps 0   

Continuous steps 1   

Unsteady (grabs, swaggers) 0   

Steady 1   

9.  SITTING DOWN Unsafe (misjudged distance, falls into  

Chair) 

0   

Uses arms or not a smooth motion 1   

Safe, smooth motion 2   

BALANCE SCORES:   

 

 

  

DATE OF ASSESSMENT ASSESSOR SIGNATURE AND TITLE LOCATION DURING ASSESSMENT 
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Tinetti Assessment Tool: Gait 

 
PARTICIPANT NAME:             
Initial Instructions: Subject stands with examiner, walks down the hallway or across the room, first at “usual” pace, then back at “rapid but safe” 

pace.  Use usual walking aid. 

 

TASK DESCRIPTION OF BALANCE Possible Score Date 

10.  INITIATION OF  

GAIT 

(immediately after told 

to “go) 

Any hesitancy or multiple attempts to  

start 

0   

No hesitancy 1   

11.  STEP LENGTH 

AND HEIGHT 

RIGHT swing food does not pass 

             left stance foot with step 

0   

RIGHT foot passes left stance foot 1   

RIGHT foot does not clear floor  

             completely with step 

0   

RIGHT foot completely clears floor 1   

LEFT swing foot does not pass right  

         Stance foot with step 

0   

LEFT foot passes right stance foot 1   

LEFT foot does not clear floor  

         Completely with step 

0   

LEFT foot completely clears floor 1   

12.  STEP 

SYMMETRY 

RIGHT AND LEFT step length not  

equal (estimate) 

0   

RIGHT AND LEFT step appear equal 1   

13.   STEP  

CONTINUITY 

Stopping or discontinuity between 

steps 

0   

Steps appear to continue 1   

14.  PATH (estimated 

in relation to floor tiles,  

12-inch diameter.  

Observe excursion of 1 

foot over about 10 feet 

of the course) 

Marked deviation 0   

Mild/moderate deviation or uses  

walking aid 

1   

Straight without walking aid  

2 

  

15.  TRUNK Marked sway or uses walking aid 0   

No sway – but flexion of knees or back, 

or spreads arms out while walking 

 

1 

  

No sway, no flexion, no use of arms,  

and no use of walking aid 

 

2 

  

16.  WALKING STANCE Heels apart 0   

Heels almost touching while walking 1   

 Score – GAIT:   

Score – BALANCE:   

Total Score: BALANCE & GAIT:   

     

 

 

DATE OF ASSESSMENT ASSESSOR SIGNATURE AND TITLE LOCATION DURING ASSESSMENT 
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APPENDIX B 

 

THE MINI-MENTAL STATE EXAMINATION 

 

The Original Version of the Mini-Mental State Examination 

  “MINI-MENTAL STATE” 

Maximum 

Score 

Achieved 

Score 

 

  ORIENTATION 

5  What is the (year) (season) (date) (day) (month)? 

5  Where are we: (state) (county) (town) (hospital) (floor). 

   

  REGISTRATION 

3  Name 3 objects: 1 second to say each. Then ask the patient all 3 after you have said 

them. Give 1 point for each correct answer. Then repeat them until he learns all 3. 

Count trials and record. 

   

  ATTENTION AND CALCULATION 

5  Serial 7’s. 1 point for each correct. Stop after 5 answers. Alternatively spell 

“world” backwards. 

   

  RECALL 

3  Ask for the 3 objects repeated above. Give 1 point for each correct. 

   

  LANGUAGE 

9  Name a pencil, and watch (2 points) 

 

Repeat the following “No ifs, ands or buts.” (1 point) 

 

Follow a 3-stage command: “Take a paper in your right hand, fold it in half, and 

put it on the floor” (3 points) 

 

Read and obey the following: 

CLOSE YOUR EYES (1 point) 

Write a sentence (1 point) 

Copy design (1 point) 

   

30  Total score 
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The Cantonese Version of the Mini-Mental State Examination 
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APPENDIX C 

 

INTEGRATED VERSION OF THE EAST-HK WITH SWEAT-R ASSESSMENT TOOL 

 

Observer ID    

Date (mm/dd/yy)    

Segment ID    

Start time    

Temperature (°C)    

Humidity (%)    

Is it raining?    

Weather (eg. Grey & misty; Sunny & 

warm; Sunny & cold; Very sunny & 

warm; Cloudy & cold) 

   

    

FUNCTIONALITY    

    

Buildings  Response 
(Mark as appropriate) 

Notes 

Building type    

Single-family home    

Multi-family home    

4–6 floors apartment blocks    

7–12 floors apartment blocks    
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13–20 floors apartment blocks    

Over 20 floors apartment blocks    

    

Walking surface    

Type of path    

Bike lanes    

Footpaths    

Covered footpaths    

Indoor air-conditioned places for 

walking 

   

Bridge/overpass or tunnel    

    

Path condition    

Footpaths well-maintained    

Wet and slippery streets    

    

Path slope    

Hilly streets Flat/Gently   

 Moderate   

 Steep   

    

Path obstructions    

Major barriers (roadwork, steep 

staircases) 

   

Minor barriers (cracks, holes, bumps, 

parking meters) 

   

Street crowded (Give an estimate of 

number of 

people/moving objects 

per minutes if 

possible) 

  

Motor vehicles parked on footpath    

Hawkers and shops on streets    
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Path width (in meters)    

    

Path material    

Concrete/Asphalt    

Brick/Tile    

Dirt/Gravel/Grass/Lawn    

Other    

    

Curb cut features    

Presence of a curb cut    

Groove or bumps    

Colour contrast with ground surface    

Material contrast with ground surface    

Measured maximum curb height at this 

segment (in inches) 

   

    

Permeability    

Street connectivity    

Cul-de-sacs    

More than 3 intersections in segment    

    

Other points of access    

Need to cross bridge/overpass to access 

services 

   

    

Overall Rating for Functionality Poor    

 Moderate   

 Good   

    

SAFETY    

    

Personal    

Street lighting (count street light if 

present) 
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Stray dogs /other animals    

    

Presence of people (Give an estimate of 

number of people if 

possible) 

  

Adults or teenagers    

Older people    

Children    

People talking and greeting each other    

    

Signs of crime/disorder    

People fighting    

Prostitutes    

Homeless people    

Needles/syringes    

    

Traffic    

Road type    

Freeway (Passing vehicles per 

minute) 

  

    

Traffic load    

Dirt/grass strip    

Crossing aids    

Parked vehicles make it difficult to see 

incoming traffic 

   

Aggressive drivers    

    

Pedestrian safety    

Traffic calming devices (stop light; 

traffic island; crosswalk) 

   

Fence or dirt/grass strip    

Crossing aids    
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Parked vehicles make it difficult to see 

incoming traffic 

   

Aggressive drivers    

    

Overall Rating for Safety Poor    

 Moderate   

 Good   

    

AESTHETICS    

    

Views    

Building attractiveness    

Attractive buildings None   

 Few   

 Some   

 All/Almost   

    

Abandoned/vacant buildings None   

 Few   

 Some   

 All/Almost   

    

Attractive natural sights None   

 Few   

 Some   

 All/Almost   

    

Streetscape    

Litter    

Litter Yes, dominant feature   

 Yes, but not dominant 

feature 

  

 None or almost none   
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Broken bottles and cans Yes, dominant feature   

 Yes, but not dominant 

feature 

  

 None or almost none   

    

Dog/animal fouling Yes, dominant feature   

 Yes, but not dominant 

feature 

  

 None or almost none   

    

Graffiti Yes, dominant feature   

 Yes, but not dominant 

feature 

  

 None or almost none   

    

Pollution    

Noise pollution None   

 Low   

 Moderate   

 High   

    

Air pollution None   

 Low   

 Moderate   

 High   

    

Presence of trees (Count mature trees if 

present) 

  

    

Overall Rating for Aesthetics Poor    

 Moderate   

 Good   

    

DESTINATIONS    
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Transport-related    

Parking lot    

Public transit/bus stop    

    

Public open space    

Parks    

Beach    

Playground    

    

Recreational    

Outdoor sport fields    

Swimming pool    

Gym/fitness facility    

    

Government/public services    

Museum    

Community/elderly centre    

Police department    

Health services    

Primary school    

Other schools    

Religious places    

Library    

Post-office    

    

Public facilities    

Benches/places for sitting    

Public toilets    

    

Commercial destinations    

Convenience store    

Supermarket    

Fresh food    
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Hardware store    

Clothing    

Pharmacy    

Book/stationary    

Chained fast food    

Chinese coffee/tea    

Chinese non-fast food    

Western/international non-fast food    

Western/international coffee shop    

Bakery    

Hotel    

Warehouse    

Betting branches    

Movies/theatre    

Office buildings    

Banks    

DVD/video hire    

Laundry    

Salon/barber    

    

Overall Rating for Segment Poor    

 Moderate   

 Good   
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