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ABSTRACT 

In recent decades, the devastating effects that hazards have on societies worldwide have 

intermittently raised the attention of governments and the public to hazard risk 

assessment and management. For civil infrastructure, various hazards (e.g., earthquakes, 

hurricanes, and progressive deterioration) can lead to damage and failure of the system. 

They may impair structural functionality and result in severe social disruption and 

economic losses. Additionally, due to various sources of uncertainty, multiple hazards 

may interact and cause amplification of the adverse effects on the system. In a life-cycle 

context, the hazard-induced losses can be accumulated, thus resulting in a considerable 

reduction in the resilience of civil infrastructure. Therefore, it is of paramount 

importance to assess the risk and enhance the resilience of civil infrastructure subjected 

to multi-hazard scenarios in a life-cycle context. This thesis aims to develop a risk- and 

resilience-based life-cycle analysis framework for engineering structures under 

multiple hazards. The proposed framework consists of different segments: scenario-

based multi-hazard analysis, structural vulnerability assessment, quantification of long-

term loss and resilience, and life-cycle management of civil infrastructure subjected to 

multiple hazards. The uncertainties springing from each segment are considered and 

evaluated. 

The probabilistic hazard analysis and structural vulnerability assessment play 

fundamental roles in the life-cycle analysis. Most previous studies paid attention to the 

impact of the single hazard and neglected the compound effects of multi-hazard effects. 

For instance, neglecting the compounding effect of hurricane events may lead to 
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underestimation of the structural vulnerability and provide inappropriate inputs for the 

life-cycle analysis. In this thesis, a copula-based multivariate approach is proposed to 

model the correlation between hazard parameters based on historical records. By 

identifying the correlation between hazard parameters, the structural vulnerability 

subjected to the multi-hazard scenarios can be assessed. 

Given the hazard analysis and structural vulnerability, risk and resilience can be 

employed to assess the performance of the engineering structures under hazards. 

Different from previous studies focusing on a single hazard, this thesis proposes two 

indicators (i.e., long-term resilience and loss) to assess the long-term performance of 

systems under stationary and nonstationary hazards. A general approach is developed 

to quantify long-term loss (i.e., damage cost) and resilience considering uncertainties 

associated with hazard frequency and intensity. Specifically, the renewal theory is used 

to assess the performance under stationary hazards, and the moment generating function 

approach is developed to address uncertainty resulting from the nonstationary 

occurrence.  

In addition to uncertainties of hazards, uncertainties in terms of long-term loss 

cannot be ignored. Though the minimum expectation of long-term loss has been applied 

as a standard criterion, uncertainties associated with the other statistical moments, 

especially the higher-order moments (i.e., skewness and kurtosis) have been neglected 

in previous research. Therefore, in addition to the lower-order moments (i.e., mean and 

standard deviation), this thesis provides a higher-order analysis for the long-term loss 

assessment. The higher-order moments can be significant parameters in the decision-

making process during life-cycle management.  
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Subsequently, a probabilistic life-cycle management framework can be 

proposed to incorporate various performance indicators and uncertainties. As the 

performance of civil infrastructure degrades with time due to exposure to multiple 

hazards, a reliability-based approach is proposed to describe structural performance. 

Gradual deterioration caused by environmental exposure and extreme events are taken 

into account. The combined effects and the interaction between different deterioration 

processes are also explored in the proposed life-cycle framework. Based on the time-

dependent reliability assessment, the maintenance policy can be developed. Herein, the 

impact of correlated maintenance interval and cost on the life-cycle cost is highlighted. 

Such correlation has been commonly neglected in previous studies. A copula-based 

renewal model is proposed to quantify statistical moments of the life-cycle maintenance 

cost analytically and numerically. The proposed model delivers an effective approach 

for data-based decision-making and life-cycle management of ageing engineering 

structures. Illustrative examples are presented to demonstrate the proposed framework. 

Results reveal the significance of considering interactions among deterioration 

processes, correlated maintenance interval and cost, and higher-order moments during 

the life-cycle analysis. 

Overall, this thesis provides methodologies to address risk- and resilience-based 

life-cycle assessment and management of engineering structures. A life-cycle analysis 

framework of ageing civil infrastructure under multiple hazards is proposed. Multi-

hazard effects are considered in the proposed framework including continuous 

deterioration and external extreme hazards (e.g., earthquakes and hurricanes). The 

proposed framework is applied and illustrated by several engineering applications 

focusing on highway bridges. The proposed framework can be applied to assist 
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decision-makers in planning risk mitigation strategies and enhancing infrastructural 

resilience in a life-cycle context.  
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CHAPTER 1 INTRODUCTION 

1.1 Overview and background 

During the service life, civil infrastructure is exposed to various hazards (e.g., corrosion, 

earthquakes, hurricanes, floods). Hazards have either independent or interacting effects 

with respect to their source, frequency, intensity, and region of impact. According to 

their interaction relationship, multiple hazards can be divided into three categories: 

independent, successive, and concurrent. In addition, a single hazard may have a multi-

hazard feature. For instance, a hurricane event consists of multiple hazards such as high 

waves, heavy rain, and strong wind (Gidaris et al. 2017; Padgett et al. 2008). Neglecting 

interactions among hazard parameters and the compound effect of multiple hazards may 

mis-specify hazard characteristics and result in underestimation of severe consequences. 

Hazards may devastate the functionality of the system, threaten public safety, 

and interrupt services, thus leading to devastating consequences. According to the 2021 

report card for America’s infrastructure (ASCE 2021), there is a total investment need 

of 5.9 trillion USD for American infrastructure systems to improve the conditions. A 

similar situation exists in China. By the end of 2019, there are approximately 70,000 

number of ageing bridges (accounting for one-twelfth of the total amount) graded as 

“dangerous” in China (Zhou and Zhang 2019). These ageing bridges require substantial 

investment in repair and maintenance. In addition to ageing issues, extreme events such 

as Hurricane Harvey 2017 and Hurricane Irma 2017 bring substantial economic and 

social losses (Raymond et al. 2020). The severe consequence caused by multiple 
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hazards worldwide intermittently raised the attention of governments and the public to 

risk assessment and mitigation. 

The hazard-induced consequences are commonly measured in terms of financial 

losses (e.g., repair cost), social losses (e.g., downtime, deaths), and environmental 

losses (e.g., carbon dioxide emissions). From a long-term perspective, the potential 

losses can be accumulated and aggravated due to uncertainties throughout the entire 

life-cycle of civil infrastructure systems (Frangopol and Soliman 2016). The associated 

uncertainties mainly result from stochastic frequency and magnitude of hazards, 

structural performance, and consequences (Koduru and Haukaas 2010). Therefore, 

apart from investigating the performance of a system with respect to a hazard event 

(e.g., loss and resilience under an earthquake event), it can be more essential to explore 

the performance in a life-cycle context. Long-term performance indicators 

incorporating uncertainties are required to assess the structural performance subjected 

to various hazardous events. These indicators can be significant parameters for 

decision-makers to propose the optimal design and management strategies.  

In addition, various uncertainties associated with the performance indicators, 

e.g., long-term economic loss, should be captured to provide sufficient information for 

life-cycle management. In this context, the term ‘long-term loss’ is used to describe the 

total losses due to the economic cost caused by repair and reconstruction of the 

damaged structure within the investigated time interval (e.g., service life). In previous 

studies, analytical assessment of long-term economic loss is typically based on 

stationary hazards (Wen and Kang 2001). In recent studies, uncertainties and the long-

term effects associated with non-stationary characteristics of hazard arrivals have 
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received increasing attention (Pandey and Van Der Weide 2017; Takahashi et al. 2004). 

For instance, hurricane-induced losses can be significantly influenced by environmental 

impact and climate change issues (Li et al. 2016). In terms of long-term loss, most 

previous studies focused on the low-order moments (i.e., expectation and variance). 

Though the minimum expected cost has been widely used as a standard decision 

criterion, Goda and Hong (2006) indicated the structural design based on the expected 

life-cycle cost may not be optimal. Therefore, in addition to the mean, it is significant 

to explore uncertainties associated with extreme losses. The other statistical moments 

(i.e., standard deviation, skewness, and kurtosis) of the long-term loss should be 

investigated. 

In a life-cycle context, due to the impact of external shocks and environmental 

exposure, the performance of civil infrastructure degrades with time. Based on the 

stochastic modeling of hazard occurrence, the associated impact on the system can be 

described by multiple deterioration processes. Engineering systems typically 

experience both gradual deterioration (e.g., caused by corrosion, fatigue, and crack 

growth) and shock deterioration (e.g., caused by occurrence of earthquakes and 

hurricanes) (Kumar and Gardoni 2014a, 2014b). Assessing the time-dependent 

structural performance subjected to these deterioration processes plays a fundamental 

role during the life-cycle analysis. To maintain the performance and functionality of 

civil infrastructure, maintenance actions are performed, and these intervention actions 

increase the life-cycle cost accordingly. There is a need to explore the effect of these 

maintenance actions on the life-cycle performance of the system (Jia and Gardoni 2019; 

Yang and Frangopol 2019a). A probabilistic life-cycle analysis framework is required 

to incorporate multiple elements, such as time-dependent reliability, maintenance 
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policy, maintenance interval, and maintenance cost. Various uncertainties associated 

with elements should be thoroughly explored to identify their impact on the life-cycle 

performance of the system.  

Given the discussion above, it can be identified that an integrated life-cycle 

analysis framework should be developed for engineering structures under multiple 

hazards. A wide range of uncertainties associated with multi-hazard analysis, stochastic 

hazard arrivals, risk- and resilience-based long-term performance, and life-cycle 

analysis of engineering structures should be evaluated. The development of these 

aspects will be described in detail in this thesis. 

 

1.2 Objectives and scope 

This thesis aims to develop a risk- and resilience-based life-cycle analysis framework 

for engineering structures under multiple hazards. The specific objectives are listed as 

follows: 

1. Develop a multivariate analysis approach to assess the structural performance 

of civil infrastructure under extreme events considering the multi-hazard feature. 

2. Propose an analytical approach to assess the long-term performance of civil 

infrastructure subjected to stationary hazards. Assess the expectation of long-

term resilience and loss considering uncertainties associated with hazard 

frequency and intensity. 
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3. Perform a higher-order analysis for civil infrastructure to assess the long-term 

loss under non-stationary hazards. Formulate the associated statistical moments 

subjected to various stochastic models of hazards. 

4. Develop an approach to assess the time-dependent reliability of ageing civil 

infrastructure considering the effect of multiple hazards. Propose an approach 

to consider the interaction among different deterioration processes. 

5. Propose a life-cycle analysis framework for ageing civil infrastructure to assess 

the performance subjected to multiple deterioration processes. Develop an 

approach to assess the dependence between maintenance interval and 

maintenance cost and investigate the associated impact on the life-cycle 

maintenance cost. 

 

1.3 Thesis organizations 

This thesis consists of nine chapters and the framework is described in Figure 1-1. The 

following chapters are organized as follows:  

Chapter 2 presents the literature review of hazard analysis, vulnerability 

assessment, risk and resilience assessment, deterioration modeling, and maintenance 

policies in terms of the life-cycle analysis. 

Chapter 3 reviewed and summarized the existed vulnerability approaches, 

which are demonstrated and validated with illustrative examples of highway bridges. It 

aims to provide standard formation and methods of vulnerability assessment of bridges 

subjected to a single hazard, especially earthquake and hurricane. 
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Chapter 4 develops a multivariate analysis approach to assess the structural 

vulnerability considering multi-hazard features of hurricanes. The compound effects of 

dependent hazard parameters on the vulnerability are investigated. 

Chapter 5 assesses the long-term resilience and loss of civil infrastructure under 

stationary hazards using renewal theory. 

Chapter 6 performs a higher-order analysis to assess statistical moments of 

long-term economic loss of civil infrastructure subjected to non-stationary hazards 

using a moment generating function-based approach. 

Chapter 7 assesses the structural performance of civil infrastructure under 

dependent multiple deterioration processes, considering gradual deterioration, external 

shock, and fatal shock. 

Chapter 8 proposes a life-cycle analysis framework for civil infrastructure. The 

framework integrates various uncertainties associated with stochastic deterioration, 

structural reliability, maintenance policy, and life-cycle cost analysis.  

Chapter 9 draws conclusions and provides possible future research. 
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Figure 1-1 Organization of the thesis and the proposed life-cycle analysis framework. 

 

1.4 Contributions 

There are four major contributions of this thesis: 

1. A multivariate hazard analysis approach is proposed for civil infrastructure to 

investigate the compound effects of dependent storm parameters on the 
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structural vulnerability subjected to hurricanes. The copula approach provides 

superior efficiency in modeling dependency between different hazard 

parameters (e.g., wave height and peak water level), by separately considering 

marginal distributions and the joint effects. 

2. An analytical approach is developed to assess the long-term resilience and loss 

of civil infrastructure under hazards based on a renewal process. A stochastic 

renewal process model is used to compute the expected long-term resilience and 

loss by considering both time-independent and time-varying occurrence 

characteristics of hazards.  

3. A novel moment generating function method is proposed for the higher-order 

analysis of long-term loss under both stationary and nonstationary hazards. This 

method can effectively assess the first four statistical moments of long-term loss 

under different stochastic models (e.g., homogeneous Poisson process, non-

homogeneous Poisson process, mixed Poisson process, and renewal process). 

Based on the law of total expectation, the developed approach expands the 

application scope of the moment generating function to nonstationary models 

and higher-order moments (i.e., skewness and kurtosis). Furthermore, by 

employing the convolution technique, the proposed approach effectively 

addresses the difficulty of assessing higher-order moments in a renewal process. 

4. A probabilistic life-cycle analysis framework is developed for engineering 

structures based on a set of performance indicators, e.g., reliability and 

maintenance cost. The structural reliability under environmental exposure and 

extreme events is assessed by modeling the stochastic deterioration. Various 

uncertainties resulting from multiple dependent deterioration processes (e.g., 
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gradual deterioration, external shock, and fatal shock), system reliability, 

intervention actions, and maintenance cost are considered in the proposed 

framework. In particular, the correlation between the maintenance interval and 

cost can be modeled by the proposed copula-based multivariate renewal model. 

This model provides an approach to assess the life-cycle maintenance cost 

analytically and numerically by incorporating data. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Civil infrastructure systems play a significant role in maintaining the safety and 

functionality of society. The immediate damage of engineering systems caused by 

natural hazards can disrupt transportation systems, impede rescue and recovery 

activities. The disruption may result in tremendous financial and societal losses. In 

addition to losses, resilience is a paramount performance indicator to evaluate and 

recover the functionality of structural systems under extreme events. Structural 

resilience is expected to be enhanced towards the desired level by considering structural 

functionality before, during, and after an extreme event. Therefore, assessing the 

vulnerability, recovery capability, potential losses of civil infrastructure under natural 

hazards becomes a primary concern to decision-makers to facilitate the emergency 

response and recovery efforts. This chapter aims to present a review associated with the 

life-cycle performance framework. Essential contributions of previous studies in terms 

of multi-hazard analysis, risk and resilience assessment under extreme events, and life-

cycle management under multiple deterioration processes are reviewed and 

summarized. Research gaps associated with these aspects are also highlighted. 

 

2.2 Multiple hazards and multivariate analysis 

Hazards have either independent or interacting effects with respect to their source, 

frequency, intensity, and region of impact. Multiple hazards can be divided into three 
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categories: independent, successive, and concurrent. For instance, independent hazards 

are discrete and there is no natural interaction. Successive hazards refer to the scenario 

that a hazard is triggered, broadened, or intensified by another, while concurrent 

hazards are defined as hazards that overlap or occur simultaneously over time (Akiyama 

et al. 2019; Zaghi et al. 2016). A hurricane reflects a multi-hazard feature, due to the 

joint occurrence of strong wind, high waves, and significant storm surge (Bjarnadottir 

et al. 2014; Gidaris et al. 2017).  

 

2.2.1 Evaluation of natural hazards for highway bridges 

For civil infrastructure, the multi-hazard consideration has been gaining momentum 

since early 2010 due to increasing exposure to multiple hazards, especially the highway 

bridges. Studies of Decò and Frangopol (2011), Kameshwar and Padgett (2014), Wang 

et al. (2014), Liao et al. (2018), Akiyama et al. (2019) incorporated the effects of 

multiple natural hazards on highway bridges. When considering the interactive impacts 

of these extreme events, one key aspect of the multi-hazard analysis is to involve both 

independent (e.g., an earthquake and environmental-induced corrosion) and interacting 

(e.g., an earthquake triggering the subsequent tsunami) hazard scenarios into the 

assessment (Akiyama et al. (2019); Gautam and Dong (2018)). In order to assess the 

structural performance under hazards, an integrated consideration is necessary 

consisting of the probability of hazard occurrence, the structural vulnerability under 

hazards, and consequences of structural failure, as indicated in Figure 2-1. A detailed 

illustration regarding damage of highway bridges associated with earthquakes, 

hurricanes, and flood hazards is provided in this section. 
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Figure 2-1 Computational framework integrating resilience and loss assessment. 

 

2.2.1.1 Earthquakes 

Earthquake is a typical hazard for structural systems. The structural performance under 

earthquakes can be evaluated by the probabilistic seismic hazard analysis (Baker 2013). 

The probabilistic seismic hazard analysis framework quantifies various uncertainties 

from location, size, and intensity of an earthquake, among others to present an explicit 

distribution of future ground motions. Firstly, the occurrence of earthquakes associated 

with magnitude can be written as (Gutenberg and Richter 1944)  

 
10log m a bm    (2-1) 

where λm is the rate of earthquakes with magnitudes greater than m; and a and b are 

coefficients. Given this relationship, the cumulative distribution function (CDF) of 

earthquakes considering the range of magnitudes can be derived. Given the 
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characteristics of earthquakes, the ground motion prediction models (GMPM) can 

predict the expected levels of ground motion intensity. With the mean and standard 

deviation from the GMPM model, the exceedance probability of a peak ground 

acceleration (PGA) level can be computed under the given magnitude and site 

conditions 

 

ln

ln ln
( | , ) 1 ( )
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x IM
P IM x m r




    (2-2) 

where Ф(.) is the standard normal CDF;  ln𝐼𝑀 ̅̅ ̅̅ ̅̅ ̅̅ is the mean of lnIM; and σlnIM is the 

standard deviation of lnIM. The normal distribution parameters are output from the 

GMPM. Consequently, the annual rate of exceeding a given intensity measure (IM) can 

be derived using the total probability theorem 
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where (Mi > mmin) is the rate of occurrence of earthquakes greater than mmin from 

source i; (IM > x) is the annual rate of intensity measure greater than x; nsource is the 

number of sources considered; fMi(m) is the probability density function (PDF) for 

magnitude from source i; and fRi(r) is the PDF of distance for source i. The inverse of 

the annual probability of exceedance is known as the return period. The seismic 

intensity measure values for different return periods can be determined accordingly.  

The seismic vulnerability of structural systems could be computed based on 

structural analysis. The vulnerability of a structural system could be addressed through 

fragility curves that indicate the probability of reaching or exceeding a particular 
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damage state under the designated intensity measure level. The fragility curves can be 

calculated as (Cornell et al. 2002) 
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where LSi represents the ith LS and ξEDP|IM is the standard deviation of the logarithmic 

distribution. The seismic demand assesses the EDP as a function of a chosen ground 

motion intensity and can be quantified using appropriate seismic structural responses, 

such as deformation or ductility of vulnerable components. For highway bridges, 

reinforced concrete columns are key components susceptible to seismic damage. 

Sectional curvature ductility, displacement ductility, and residual displacement are 

commonly used as the seismic damage indicators for RC columns. 

 

2.2.1.2 Floods 

Coastal highway bridges can be susceptible to floods. Several historical events have 

highlighted that floods can be disastrous to bridge structures (Gautam and Dong 2018). 

For instance, the 2017 central Nepal flash flood washed away a bridge (see Figure 2-2a) 

due to torrential precipitation of four hours. Although the bridge was built recently 

(completed in June 2015), the debris with the flash flood in the mountainous terrain 

was particularly destructive and the bridge disappeared without any signs on the site. 

According to the records of flooding events, it is found that bridges are extensively 

damaged due to flash floods. Forensically, it could be inferred that the damage due to 
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flash floods would surpass the damage due to earthquakes having moderate ground 

shaking. Flood impact to bridges can be attributed to scour, deterioration of bridge 

components, water pressure, hydrodynamic forces exposed to the bridge/component, 

and debris impact and accumulation, among others. Bridge scour, deterioration, and 

increment of water pressure due to debris accumulation are considered as the major 

detrimental factors. Increased hydrodynamic forces together with debris and sediments 

usually cause bridge scouring (see Figure 2-2b), particularly in piers.  

   

(a)       (b) 

Figure 2-2 (a) Collapsed and washed away bridge due to 2017 flood in Nepal and (b) 

scouring observed in a bridge in Nepal after the 2017 central Nepal flash flood (photos 

adapted from (Li et al. 2020a)). 

Deterioration due to various factors is another notable problem that causes 

functionality loss or collapse of bridges. In general, environmental conditions, lack of 

drainage, load fluctuation above the capacity, and lack of periodic maintenance can 

cause deterioration of bridge components. Occasionally, significant deterioration may 

lead to serious compromise in the functionality as well. Bridges built in developing 

countries are more likely to suffer from deterioration aggravation compared to those in 

developed areas due to a lack of preventive maintenance as well as emergency 
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maintenance strategies. Additionally, deteriorated bridges are more vulnerable than the 

non-deteriorated counterparts. For instance, the 1988 and 2015 earthquakes in Nepal 

highlighted that similar types of bridges close to the epicenter performed better during 

the 1988 earthquake than the bridges far from the epicenter during the 2015 Gorkha, 

Nepal earthquake. Compared to the deficient behavior during the 2015 earthquakes, the 

performance of bridges was satisfactory during the 1988 earthquake. This is most likely 

attributed to the age of bridges. Ageing can lead to a decrease in structural capacity and 

an increase in bridge vulnerability (Gautam 2017). 

Corrosion of reinforcement usually occurs due to environmental conditions. 

Thoft-Christensen et al. (2011) suggested the reduction in reinforcement area 

considering a time-dependent model as 
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where A(t) indicates the effective area of the reinforcement; D is the diameter of 

reinforcement; T is the time when corrosion starts; r1 is the rate of corrosion; and D(t) 

is the effective reinforcement diameter after t years. Accordingly, D(t) can be calculated 

as follows 

    1D t D r t T     (2-6) 
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Due to the high velocity of water together with the debris and sediments, the 

increased water pressure also becomes prevalent. AASHTO (2000) suggested 

estimation of water pressure based on the empirical formula 

 4 25.14 10w Dp C v     (2-7) 

where pw is the water pressure and CD is the drag coefficient.  

The scour depth for a single pier can be estimated using the empirical formula 

suggested by (Yanmaz 2001) 

 0.413

0.4051.564
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g d
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 (2-8) 

where S is the scour depth; χ refers to the relative approach flow depth; v is the flow 

velocity; g is acceleration due to gravity; and d indicates the depth of approach flow. 

Previous studies (e.g., Kim et al. (2017)) have highlighted the variation of scour depth 

per the geometric shape of the pile, location, and arrangement. As suggested by Briaud 

et al. (2007) the deterministic approach of scour depth prediction can be converted into 

a probabilistic one considering the future flood risk. Zhu and Frangopol (2016) and 

Liao et al. (2018) presented probabilistic approaches to risk assessment of bridges under 

scouring. Also, a risk-based cost-benefit analysis for the retrofit of bridges exposed to 

extreme hydrologic events considering multiple failure modes was presented in 

Mondoro and Frangopol (2018). 

Chow (1965) has suggested the procedure to estimate the discharges of 100-

year (Q100) and 500-year (Q500) flood events using linear regression with the help of 
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historical data. The scour depth due to flood risk can be estimated using the framework 

suggested by Briaud et al. (2007), Guo and Chen (2015), and Guo et al. (2016). Given 

known Q100 and Q500, the Gaussian parameters (lognormal mean α and standard 

deviation β) can be estimated by solving Eqs. (2-9) and (2-10) 
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Subsequently, the expected future stream flow (Qf) can be computed as (Briaud 

et al. 2011)  

  expfQ x    (2-11) 

in which x is the standard normal variable. Thereafter, a relationship between discharge 

and water velocity as well as the relationship between discharge and water depth is 

obtained using Qf.  

 

2.2.1.3 Hurricanes 

During hurricanes, coastal infrastructure systems are vulnerable to damage resulting 

from hurricane-induced storm surge and wave loading. For instance, a total number of 

forty-four highway bridges along the American Gulf Coast region were damaged during 

Hurricane Katrina (TCLEE, 2006). Most of these bridges were simply supported and 
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destroyed due to wave and surge forces, thus resulting in unseating of bridge 

superstructures (Padgett et al. 2008). Such unseating failure occurs when the uplift 

wave force on the deck exceeds vertical capacity (Ataei and Padgett 2013; Mondoro et 

al. 2017; Zhu and Dong 2020). Subsequently, the impact of hurricanes on coastal 

infrastructure and bridges is widely investigated, in terms of the vulnerability 

assessment (Ataei and Padgett 2013; Saeidpour et al. 2019). By considering 

uncertainties in structural and hazard parameters, probabilistic modeling of capacity 

and demand of bridges can be performed. Based on the modeling, fragility models of 

bridge considering different intensity measures can be developed and the probability of 

failure can be assessed (Porter 2003; Qian and Dong 2020). These results are significant 

information for the subsequent risk assessment with respect to loss estimation and 

decision-making on the repair and retrofitting (Frangopol et al. 2017). 

The vulnerability analysis assesses the probability of failure of bridges under 

the given hurricane scenarios. Failure occurs when the demand surpasses capacity. 

During hurricane activities, storm surge and the induced inundation can destroy the 

infrastructures significantly, especially for coastal bridges. The subsequent repairs and 

replacement of bridges account for a large proportion of the hurricane hazard financial 

losses. The impacts of hurricanes on bridges mainly result from the strong surge and 

wave-induced loading. Deck unseating is recognized as the predominant failure mode 

for simply-supported bridges during hurricanes (Kulicki 2010).  

The vertical loading on the bridge superstructure contributes to deck unseating 

failure. According to AASHTO (2008), the maximum quasi-static vertical force is 

defined as 
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where 𝛾𝑤 is the unit weight of water, 𝐻𝑚𝑎𝑥  refers to the maximum wave height, 𝑑𝑠 is 

the water depth at or near the bridge, and 𝑇𝑝 is the wave period. 𝑊̅ is the defined wetted 

deck width, 𝛽 is a coefficient associated with the wave crest and bridge deck, 𝑥 and 𝑦 

are defined as the ratio of maximum wave height over wave length and the ratio of 

wetted deck width over wave length respectively, 𝑏0 to 𝑏6 are coefficients relevant with 

bridge deck spans and TAF is the trapped air factor considering the effect of trapped air. 

The vertical slamming force is 

 2 max
max ( )B

s w

H
F A H


  (2-13) 

in which A and B are variables relevant with maximum wave height and the distance 

between storm water to the girder. λ is the wave length and typically not provided in 

the hurricane records, and it is suggested as  
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where g is the gravitational acceleration. The maximum uplift force on the bridge deck 

is the summation of the above two force elements 
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The significant wave height is defined as 
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in which the maximum wave height Hmax is typically defined as Hmax = 1.80Hs. The 

wave period is given as 
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in which F is the fetch length, d is the average water depth and U* is the wind stress 

factor. The maximum quasi-static horizontal force 
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where db equals the girder height plus slab thickness for girder bridges while it equals 

slab thickness plus deck thickness for slab bridges. λ is the wave length. Ηmax is the 

distance from the storm water level to the design wave crest. r is the rail height. ω is 

dependent on bridge width (refer to (AASHTO 2008)). γw is the unit weight water taken 

as 0.064 kip/ft3. Zc is the vertical distance from the bottom of the cross-section to the 

storm water level, positive if the storm water level is below the bottom of the cross-

section. Unit illustrated are in ft in this analytical method.  
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Computational approaches are widely used in recent investigations. For instance, 

the computational fluid dynamics (CFD) modelling establishes numerical simulations, 

which can be applied to analyze the wave structure interactions such as computing the 

wave-induced forces on the bridge deck. Jin and Meng (2011) conducted a study using 

CFD software Flow-3D to investigate wave forces on the superstructure of coastal 

bridges but stated that this CFD method was relatively time-consuming. A two-

dimensional potential flow modelling was proposed alternatively in their research. 

Seiffert et al. (2014) later suggested a CFD program OpenFOAM calculating solitary 

wave forces on bridge decks based on the theory of Euler equations. The outcomes of 

the hazard analysis and vulnerability are the inputs of the proposed stochastic loss 

model.  

 

2.2.2 Multivariate analysis and copula model 

For the multivariate analysis under extreme events, it is commonly necessary to 

evaluate the interaction of hydrodynamic variables, as the sea state condition primarily 

relies on these parameters simultaneously (DNV, 2014). For instance, during hurricanes, 

elevated sea level and extreme waves can be caused by atmospheric pressure change 

and extreme wind (Mousavi et al. 2011). Masina et al. (2015) demonstrated that there 

is a non-negligible positive correlation among variables such as significant wave height 

and peak water level under storm events. Chebana and Ouarda (2011) showed that the 

univariate variables cannot provide a comprehensive representation of the multivariate 

nature of hydrological events. Due to the interaction between parameters, the 

compounding impact of non-severe environmental activities may result in significant 
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consequences. For instance, Serafin et al. (2019) investigated the impact of multiple 

loads on along-river water levels, and indicated that there was a portion of peak storm 

surge observed during low-wave events along the coastal river. In their study, a 

surrogate model was applied to simulate the joint relationship between river discharge 

and wave height based on hydraulic modeling. Hence, analyses based on exclusively 

univariate distributions may mis-specify the coastal conditions, thus resulting in 

inaccurate estimation of the associated damage or consequences, e.g., Corbella and 

Stretch (2012). Therefore, the joint impact of storm variables should be accounted for 

in the vulnerability assessment and risk management of coastal infrastructure. 

In previous studies, the multivariate impact was commonly taken into account 

by assuming the joint probability distribution based on empirical models. For instance, 

Ataei and Padgett (2013) conducted a fragility analysis of coastal bridges subjected to 

hurricanes considering intensity measures with respect to relative surge elevation and 

wave height. A joint probabilistic density function was used to describe the dependence 

between wave height and wave period. Lucas and Soares (2015) proposed the bivariate 

distributions of the mean wave period and significant wave height based on a 

conditional modeling method. Nevertheless, the dependency structure between 

variables using the joint probability distributions is limited to simple relationships with 

constant correlation coefficients. Consequently, advanced mathematical techniques 

such as copulas should be employed to address such limitations. 

The copula approach can be employed to model the dependence of storm 

variables for the probabilistic vulnerability assessment of infrastructure subjected to 

hurricanes. A copula function couples the multivariate distribution function to their 
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marginal distribution functions (Nelsen 2006). Compared with the conventional joint 

model, the copula approach provides significant flexibility, as it specifies the 

dependence structure and the univariate distributions separately. Due to its merits, the 

copula tool has been widely applied to coastal hazard analysis to model dependency 

among hazard parameters. For instance, De Michele and Salvadori (2003) proposed a 

2-Copula to describe the dependence between the average rainfall intensity and storm 

duration during storm rainfall, in which both variables have heavy tail distributions. 

Bushra et al. (2019) employed the Gumbel copula to model the dependence of storm 

surge on the cyclone wind speed along the coastline of the Bay of Bengal. Another 

study performed by Trepanier et al. (2017) assessed the risk of more than twenty coastal 

cities in the United States Gulf of Mexico under the combined effects of extreme 

cyclone winds and storm surge. The dependence structure between the two storm 

parameters was modeled by the extreme value Archimedean copula. Moftakhari et al. 

(2017) assessed the increase in flooding probability caused by sea level rise in a 

warming climate. The proposed bivariate copula model provides an effective approach 

for computing the combined effects of fluvial flooding and sea level rise. 

Copula models are also increasingly applied to investigate the dependence 

between wave height and water levels. As stated by Gouldby et al. (2014), extreme sea 

condition parameters (e.g., significant wave height and sea level) are essential 

parameters for coastal structural design and flood risk analysis. In their study, a 

multivariate extreme value method was applied to estimate the joint probability 

distribution of sea condition variables, e.g., significant wave height, sea level, and mean 

wave period. McCullough et al. (2011) indicated that copulas show considerable 

potential to evaluate extreme event statistics (e.g., associated with hurricane 
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parameters), as copulas allow simulation with limited information of variables. Another 

study conducted by Wahl et al. (2016) evaluated the flooding and erosion risk in the 

northern Gulf of Mexico based on a large number of observations of wave and water 

level from 1980 to 2013. Dependency analysis between six hydrodynamic parameters 

affecting the total water level was performed based on the goodness-of-fit test of the 

data. The Student’s t-copula was suggested to model the dependence structure between 

variables. Additionally, a copula-based approach was applied to evaluate the 

probability of flooding at a coastal site under storm events (Masina et al. 2015). In their 

study, the positive correlation of significant wave height and peak water level was 

modeled by a copula function, and the tail behavior of storm variables was quantified 

in the copula modeling using the tail dependence coefficients. 

 

2.3 Risk and resilience assessment under hazards 

2.3.1 Risk assessment  

Catastrophic damage caused by recent natural hazards such as Hurricane Katrina and 

Hurricane Michael and other natural disasters worldwide raised awareness of the public 

to the importance of risk mitigation and assessment on engineering systems (Kilanitis 

and Sextos 2019; Yang and Frangopol 2019b; Zhang et al. 2018a; Zhang et al. 2017). 

Risk is one of the most commonly used performance indicators in the life-cycle analysis. 

Evaluation of risk plays a significant role for engineering structures, as it accounts for 

consequences of potential damage and failure under hazards. There are various 

uncertainties associated with risk assessment. Therefore, in recent studies, 
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quantification of uncertainties within the risk assessment is of great importance in order 

to achieve a higher confidence level.  

For the given hazard, risk refers to the product of the possibility and the 

consequences. The instantaneous total risk of a structural system is defined as 

(Vrouwenvelder et al. 2001) 

 
1 21 2 , ,..., 1 2 1 2( , ,..., ) ( , ,..., ) ...

nn X X X n nRisk x x x f x x x dx dx dx    (2-20) 

in which δ refers to consequences, and 
1 2, ,..., 1 2( ) ( , ,..., )

nX X X X nf x f x x x  is the joint PDF 

of a set of random variables {X1, X2, …, Xn}. 

In literature, the risk can be described in three metrics: financial losses (e.g., 

repair cost), social losses (e.g., downtime, deaths), and environmental losses (e.g., 

carbon dioxide emissions) (Frangopol et al. 2017). Ellingwood (2001) simplified Eq. 

(2-20) using the assumption that hazards are mutually exclusive and collectively 

exhaustive, and defined the risk as  
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in which P[Hi] is the likelihood of hazard occurrence Hi, P[F|Hi] is the conditional 

failure probability of the system under hazard, Cc is the cost due to repairs or 

replacement associated with the failure, and n is the total number of hazards. The failure 

probabilities are typically associated with structural vulnerability analysis. The cost in 

terms of consequences due to damage and failure of engineering structures can be 

extremely high. In addition to the rebuilding cost, the loss of functionality may also 
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result in significant environmental and financial losses as the surrounding areas can be 

significantly affected, thus yielding a much higher cost.  

During the life-cycle analysis, the total loss can be computed by summing up 

the loss of all hazard events. However, the present and future values about the monetary 

losses can be different, and such differences must be taken into account when assessing 

the risk. For instance, future losses should be discounted into the present value (Deco 

2013; Yeo and Cornell 2009) 

 ( ) ( )PL FL t D t  (2-22) 

where PL is the present monetary loss, FL(t) is the future monetary loss at time t, and 

D(t) is the discount factor. The discount factors in continuous and discrete time domains 

can be described as Eqs. (2-23) and (2-24), respectively (Hepburn 2007) 

 ( ) exp( )D t rt   (2-23) 

 1
( )

(1 )t
D t

r



 (2-24) 

in which r is a constant monetary discount rate.  

For engineering structures, the analytical formulation of long-term loss is 

essential. Although numerical modeling is accessible, simulations are usually 

computationally expensive and time-consuming. Quantification of uncertainties 

associated with hazard occurrence and intensity can be one of the most significant parts 

of the analytical risk assessment. Stochastic models, such as Poisson processes, are 

widely employed to quantify these uncertainties. As the long-term loss is a random 
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variable, its mean and variance (i.e., low-order moments) are commonly computed as 

the two major statistical parameters in previous studies (Dong and Frangopol 2016; Yeo 

and Cornell 2009). Based on the homogeneous Poisson process, an analytical 

formulation of the expected life-cycle cost of buildings under single and multiple 

hazards was presented by Wen and Kang (2001). Recently, several studies assessed the 

long-term loss (e.g., mean and variance) of civil infrastructure under nonstationary 

stochastic processes. For instance, Yeo and Cornell (2005) proposed analytical 

expressions for the expected loss caused by earthquakes using homogeneous and non-

homogeneous Poisson models. Wang et al. (2017a) computed the mean and variance 

of hurricane-induced damage loss using the non-homogeneous Poisson process. Lin 

and Shullman (2017) assessed the risk of New York City being damaged by hurricanes 

and surge flooding in a nonstationary environment. To simplify the computational 

process, the nonstationary Poisson model was converted into a stationary one in these 

studies. Within these studies, the long-term loss is generally limited to Poisson models 

and the first two moments. 

In addition to Poisson model, recent studies proposed new approaches for the 

loss assessment. For instance, Pandey and Van Der Weide (2017) used a stochastic 

renewal process to formulate the expectation and variance of the discounted damage 

cost of a structure under earthquakes. The derivations were based on the renewal 

decomposition properties of renewal processes. The renewal model was also used to 

evaluate the lifetime resilience and cost of structural systems considering progressive 

deterioration (Yang and Frangopol 2019a). Although the renewal approach provides an 

alternative option to assess the loss under nonstationary hazards, it cannot be applied to 

other stochastic models, such as the non-homogeneous Poisson process. Meanwhile, 
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uncertainties associated with higher-order moments (i.e., skewness and kurtosis) are 

not taken into account in previous studies. 

 

2.3.2 Resilience assessment  

To mitigate the impacts of extreme hazards, structural resilience is expected to be 

enhanced towards the desired level by considering structural functionality before, 

during, and after an extreme event. Resilience, related to the functionality of structural 

systems under extreme events and recovery patterns, is becoming a paramount 

performance indicator within the hazard management process (Bruneau et al. 2003; 

Bocchini and Frangopol 2011; Frangopol 2011; Frangopol and Soliman 2016; 

Frangopol et al. 2017; Zheng and Dong 2019). It highlights the evaluation of the 

capability of civil infrastructure systems to maintain prescribed safety, flexibility, and 

to recover from extreme events. Highway bridges are essential infrastructure 

components to ensure the safety and functionality of society. Though the reliability 

assessment with respect to external disasters has been emphasized in previous studies 

(Akiyama et al. 2011; Thanapol et al. 2016), the ability of recovering functionality to 

acceptable levels under multiple extreme events has not been explored extensively and 

more studies are required on resilience quantification. Therefore, it is necessary to 

provide a comprehensive resilience and probabilistic loss assessment of highway 

bridges under natural hazards to aid the preparation of emergency response and 

recovery decisions.  

Resilience, as an important structural performance indicator, is defined as the 

ability of a civil infrastructure system to maintain its functionality and return to 
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normality after an extreme event. A resilience assessment establishes a connection 

between structural performance, post-hazard functionality, and recovery. Typically, 

this assessment comprises identification of multi-hazard risks, resilience analysis, and 

evaluation of resilience as shown in Figure 2-3 (ISO 2009). Risk assessment plays an 

important role as risk is related to both the consequences caused by structural failure or 

loss of functionality associated and the probability of structural failure. The outputs of 

communication are used to assess the risk and resilience effectively by establishing the 

context. Subsequently, cumulative risk and resilience of the given infrastructure system 

could be obtained under multiple natural hazards. Once resilience assessment is 

conducted, evaluation in terms of resilience parameters and their acceptability and 

viability should be performed. It is worth noting that performance parameters and 

countermeasures may vary in time and space at a local scale due to the interaction 

between resilience and risk. The proposed framework allows decision-makers and 

practitioners to assess and enhance the resilience of structures and to propose rational 

actions associated with planning, maintenance, and rehabilitation against natural 

hazards. These actions generally consist of social measures (e.g., awareness), physical 

measures (e.g., infrastructural preparedness), and corrective measures (e.g., life-cycle 

assessment of retrofitting decisions). In addition to analysis, continuous monitoring and 

periodic review are essential. An adaptable process of resilience assessment is required 

to encapsulate changes in contexts and record continuous evolution of resilience, as 

indicated in Figure 2-3.  
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Figure 2-3 Resilience assessment framework (adapted from ISO (2009)). 

Resilience, related to the functionality of structural systems under extreme 

events and recovery patterns, is becoming a paramount performance indicator within 

the hazard management process (Bruneau et al. 2003; Bocchini and Frangopol 2011; 

Frangopol 2011; Frangopol and Soliman 2016; Frangopol et al. 2017; Zheng and Dong 

2019). It highlights the evaluation of the capability to maintain prescribed safety, 

flexibility, and to recover from extreme events. Several definitions of resilience were 

proposed in the literature. One of the most widely used definitions was provided by 

Bruneau et al. (2003): “Resilience is defined as the ability of social units (e.g., 

organizations, communities) to mitigate hazards, contain the effects of disasters when 

they occur, and carry out recovery activities in ways that minimize social disruption 

and mitigate the effects of future earthquakes”. Resilience has four properties: 

robustness, rapidity, redundancy, and resourcefulness. Robustness is the strength or the 

ability of units to withstand a certain level of stress without suffering degradation or 

loss of function; Redundancy is the ability to satisfy functional requirements when 
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disruption, degradation, or loss of functionality occurs; Resourcefulness is the ability 

to apply material and human resources to achieve established priorities, resources 

mobilization and other goals; Rapidity is the capacity to achieve priorities and other 

goals in a timely manner to reduce the losses and avoid future disruption (Bruneau et 

al. 2003). Resilience has been increasingly implemented to performance-based seismic 

design of bridges as a vital performance indicator (Frangopol et al. 2017; Zheng and 

Dong 2018; Broccardo et al. 2015). Embedding resilience within the performance-

based design could incorporate more decision variables (e.g., repair cost, time) within 

the structural design process. 

A probabilistic model that can be used in the performance-based bridge design 

under multiple hazards is (Moehle and Deierlein 2004) 

 | |

|

( | )

( | ). | ( | )
|

. | ( | ) | . | ( )

DV DM DM EDP

dm edp im
EDP IM IM

D dv IM im

G dv dm dG dm edp

dG edp im dG im

  

   
 (2-25) 

where Р indicates the aggregate probability of a structure reaching or exceeding the 

limit state; DM indicates the damage measure; EDP indicates the engineering demand 

parameter; IM indicates the intensity measure; and DV indicates the decision variables. 

Eq. (2-25) is a significant part of the PEER framework (PEER 2013) from the Pacific 

Earthquake Engineering Research Center (PEER). Broccardo et al. (2015) validated the 

effectiveness of using the PEER framework to assess the probabilistic resilience of civil 

systems. Incorporating resilience as a decision variable, the PEER framework satisfied 

the optimal target under the investigated hazard through accomplishing resilience 

management strategies. Additionally, different decision variables can be implemented 

based on this framework.  
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A recent case study of reinforced concrete buildings presented a systematic 

analysis integrating resilience, sustainability, and loss into the PEER framework 

(Hashemi et al. 2019). Apart from seismic hazard, the integrated framework has been 

applied to other different hazard types, such as coastal bridges against extreme wave-

induced loads. Qeshta et al. (2019) provided a review of resilience assessment on 

coastal bridges against extreme wave-induced loading, in which studies were 

comprehensively concluded in terms of wave forces, bridge response, vulnerability 

analysis, and resilience assessment incorporating with the PEER framework. Different 

from earthquakes, the hurricane-induced impact upon bridges is a typical example of a 

concurrent multi-hazard event, as bridges are affected by wind, storm surge, and waves 

simultaneously. Therefore, instead of focusing on the single intensity measure, (e.g., 

peak ground acceleration of seismic hazard), the integrated assessment framework 

under hurricanes requires multiple independent or correlated intensity measures, such 

as wave height, wave period, clearance, and inundation depth.  

Zhang and Alam (2019) indicated that damage to bridges can be additionally 

considered at transportation levels besides the commonly defined structural levels. The 

structural level damage comprises the losses arising from bridge repair. Similarly, 

transportation level damage accounts for the serviceability of bridges leading to indirect 

loss such as traffic delays and detours (Yang and Frangopol 2018). Meanwhile, due to 

continuous exposure to the traffic, it is likely that the indirect loss caused by 

transportation damage would fairly surpass the direct loss resulted from structural 

damage. These examples have provided effective approaches for multi-hazard 

considerations. Overall, various metrics can be selected for the performance-based 

studies of structures and civil infrastructure systems in the multi-hazard analysis.  
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The resilience model provided by Bruneau et al. (2003) gives 
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


   (2-26) 

where Q(t) is the functionality of a bridge defined by the recovery function at time t 

(e.g., days); t0 is the initial investigated time; and Δtr is the investigated time interval. 

The functionality is significant during the resilience quantification as restoration of 

structure highly depends on how the repair and recovery work. Functionality levels can 

be defined to classify the emergency response and recovery post-earthquake period. For 

example, for the planning of emergency response, the functionality can be considered 

as the capability of a bridge located on a link transferring resources to the affected areas. 

With respect to the recovery at the post-earthquake phase, the functionality can be 

considered in different stages as open, limited use, and closed. The expected 

functionality is evaluated from that associated with the investigated damage states. 

There are several models available for functionality quantification. Decò et al. (2013) 

proposed an effective probabilistic model to compute the time-dependent functionality 

of bridges after a seismic event based on six probabilistic parameters including 

uncertainties. However, implementation of this comprehensive approach can be 

challenging when there is limited information available. Cimellaro et al. (2010) 

indicated that the functionality computational process could be classified based on the 

community preparation levels, while quantification of these levels might be difficult 

during the multiple-hazard analysis. These community preparation levels were 

classified as a prepared community, not well-prepared community, and well-prepared 

community, respectively. Another efficient recovery model was proposed by ATC 



 

35 

(1999) to assess the functionality restoration process of bridges based on lognormal 

cumulative distribution function. This method allows quantification of functionality 

under the given recovery pattern and requests the least inputs compared to the other 

approaches.  

The recovery models for earthquakes are widely investigated, whereas there is 

limited research on the recovery models of coastal bridges under hurricanes. The 

majority of recovery models applied to hurricane-induced damage are based on seismic 

restoration methodologies and tsunami-based approaches (Gidaris et al. 2017). For 

instance, Bocchini and Frangopol (2012) proposed the functionality recovery model 

considering various restoration scenarios using a sinusoidal process. Though different 

performance stages are evaluated, it is difficult to calibrate the parameters used in this 

recovery model, as there is large uncertainty in the damage collection. When 

considering the hurricane-induced waves and surge, a HAZUS tsunami approach 

(FEMA 2013) can be utilized, which presents a framework based on expert opinion 

survey to evaluate the loss being in different damage states. However, the HAZUS 

approach is a simplified model as the bridge is assumed to be restored to full 

performance rather than different levels. Qeshta et al. (2019) indicated that some 

seismic restoration models can be applied to other types of natural hazards (e.g., 

damaged bridges by hurricanes). 

Another resilience model introduced by Minaie and Moon (2017) focused on 

the practical implementation of resilience assessment and proposed a simplified 

resilience quantification framework of bridges under extreme events. The bridge 

resilience is illustrated as the capability of a bridge to maintain a robustness level and 
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to recover to a target performance level within the shortest time. Robustness refers to 

the residual performance after a natural hazard, which can be computed by integrating 

hazard, vulnerability, and uncertainties (Minaie and Moon (2017)) 

 100% max(9.259 )RP H V UF I       (2-27) 

in which I represents the importance factor of the investigated bridge; H is related to 

the hazard severity; V refers to the vulnerability, the product H × V depends on each 

extreme event and vulnerability category; and UF is the uncertainty factor. Through 

this equation, the robustness could represent the worst potential scenario affecting 

bridge functionality. A simplified model of recovery is provided considering the 

recovery time as a function of adjustment factors and restoration, in which the recovery 

time is adjusted based on the management practices from the agency, historical records 

of extreme events in the past year, and bridge types. Accordingly, for a control time 

within one year (i.e., 365 days), the bridge resilience can be evaluated as the ratio of 

the area of the post-event performance to the area under the desired performance level 

(e.g., 100% for full recovery) 
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where P(t) refers to the structural performance and P(100%) is the optimized 

performance. This engineering-based resilience quantification method efficiently 

assesses the resilience capturing key parts of bridge operation, knowledge of experts, 

and lessons learnt from past disruptive events. In addition to the two methods presented 
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in Eqs. (2-26) and (2-28), there are several other effective models available for the 

resilience assessment in the literature (e.g., Franchin et al. (2015)). 

The previous studies on resilience were mainly focused on the assessment of 

bridges associated with single-hazard analysis. Decò et al. (2013) and Dong and 

Frangopol (2015) assessed the resilience of highway bridges under seismic hazards. 

The resilience of bridges under flood effects with different return periods was 

investigated by Dong and Frangopol (2016). There were a limited number of resilience 

studies of bridges dealing with multiple hazard effects (Decò and Frangopol (2011); 

Pescaroli et al. (2018); Akiyama et al. (2019)). Multiple hazards could bring 

considerably more disastrous consequences to the society than a single hazard (Padgett 

et al. (2009); Jalayer et al. (2011); Dong and Frangopol (2017); Zheng et al. (2018). 

Gidaris et al. (2017) underlined that structural vulnerability, loss evaluation, recovery, 

and restoration models were key elements for accurate quantification of the resilience 

of highway bridges in the multi-hazard analysis. Bruneau et al. (2017) reviewed the 

state of the art of structural performance under multiple hazards by considering the 

resilience and hazard interaction effects were highlighted for different structural 

systems. This work indicated that further efforts should be implemented to explore the 

multi-hazard performance in a life-cycle context for a variety of hazards and structural 

portfolios.  

In the long-term performance evaluation of highway bridges, uncertainties 

associated with vulnerability, loss, and resilience can be accumulated due to different 

occurrence probabilities of different hazardous events. Under the multi-hazard 

consideration, different indicators may show various performance characteristics of a 
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range of hazardous events. Thus, it is essential to incorporate consideration of multiple 

hazards into performance studies of structures and civil infrastructure systems to 

identify the most dominant and costliest hazard scenario to help decision-makers 

propose the optimal design and management strategies. 

 

2.4. Deterioration modeling and maintenance policy 

2.4.1 Interaction among deterioration processes 

Civil infrastructure systems are generally designed with a certain service life according 

to the design codes and standards. In recent decades, major engineering systems are 

expected to serve longer than their design life due to sustainability requirements, and 

researchers have made various efforts to this aspect (Bocchini et al. 2014; Dong et al. 

2013; Gardoni et al. 2016). On the other hand, the service life of systems can be 

adversely affected by multiple deterioration processes. Therefore, life-cycle analysis of 

engineering systems has drawn increasing attention to achieve sustainable planning and 

management (Biondini and Frangopol 2016; Dong et al. 2014; Gardoni 2017; van 

Noortwijk and Frangopol 2004).  

During the lifetime, the system performance degrades due to different 

deterioration processes, in which system performance can be measured as reliability, 

capacity, or functionality. Engineering systems typically experience both gradual and 

shock deterioration (Kumar and Gardoni 2014a, 2014b). The gradual or progressive 

deterioration is commonly caused by corrosion (Frangopol et al. 1997), fatigue 

(Bastidas-Arteaga et al. 2009), crack growth (Zhong et al. 2010), and Alkali-Silica 
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reaction (Huang et al. 2014); and the shock or sudden deterioration results from external 

extreme events such as hurricanes (Li et al. 2020c), earthquakes (Dong et al. 2015), 

blasts (Akiyama et al. 2011). When the system performance degrades below a certain 

threshold, intervention actions such as replacement or repairs are required to restore the 

system. Therefore, in a complete life-cycle analysis, stochastic deterioration, recovery 

processes, and various uncertainties are essential components (Cheng et al. 2012; Jia 

and Gardoni 2019).  

In previous research, studies mainly focus on one deterioration process, either 

gradual (Ghosh and Padgett 2010) or shock deterioration (Li et al. 2020b). Few recent 

studies investigate both two deterioration processes. For instance, Kumar et al. (2015) 

developed a stochastic framework to model deterioration processes combining both 

shock and gradual deterioration. Guo et al. (2020) proposed a two-step translation 

method to assess structural reliability under continuous deterioration and sudden events. 

In these studies, interactions among different processes are neglected and the potential 

adverse impact is not considered. However, deterioration processes are commonly 

dependent and interact with each other (Bastidas-Arteaga et al. 2009; Wang and Pham 

2011). For example, the deterioration caused by corrosion (e.g., environmental 

exposure) and the deterioration caused by fatigue (e.g., subjected to cyclic loading) 

have interactive effects. The localized corrosion with pitting can be a potential area for 

fatigue initiation and accelerate the fatigue process (Bastidas-Arteaga et al. 2009).  

Additionally, the interaction between deterioration processes cannot be 

neglected. For example, the corrosion caused by gradual deterioration interacts with the 

shock deterioration due to seismic damage. The initiation of corrosion and the corrosion 
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rate of rebars in reinforced concrete can be accelerated by the cracks due to previous 

earthquakes (Jia et al. 2017). Otieno et al. (2010) showed that even small cracks can 

affect the corrosion process significantly. Therefore, ignoring the interactive impact 

among deterioration processes may result in underestimation of the deterioration and 

mis-specify the performance state in a life-cycle analysis. There is a need to incorporate 

dependence into deterioration processes.  

 

2.4.2 Condition-based maintenance 

There are various critical maintenance measures to avoid unexpected failure due to 

deterioration processes. Condition-based maintenance is a commonly used 

maintenance policy to manage the reliability of deteriorating systems (Cheng et al. 

2012). This policy suggests maintenance actions based on information of the system 

gathered during condition monitoring processes (Ahmad and Kamaruddin 2012). In 

life-cycle analysis, decision-makers aim to find an optimal maintenance plan for the 

system to manage major repair schedules and/or performance threshold for replacement 

(Yang and Frangopol 2019a). The condition-based maintenance policy mainly relies on 

the renewal theorem in previous studies (Caballé et al. 2015). The optimization is 

conditioned on the cost rate and the renewal theorem provides an effective analytical 

approach for the computation. The cost rate is defined as the ratio of expected 

maintenance cost and the expected maintenance interval within one renewal cycle. For 

instance, Yang et al. (2017) proposed a condition-based maintenance policy 

considering failure caused by degradation and shock. The total cost associated with the 

given policy is quantified by using the renewal theorem. Cheng et al. (2012) assessed 
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the maintenance cost of the system subjected to degradation based on a gamma process. 

The renewal theorem is used to provide closed-form expressions of the total 

maintenance cost. 

 

2.5 Research Gaps 

This chapter has provided a review with respect to hazard analysis, vulnerability 

assessment, risk and resilience assessment, deterioration modeling, and maintenance 

policies in life-cycle analysis. The review has revealed a series of research gaps and 

challenges in terms of the probabilistic life-cycle analysis framework for civil 

infrastructure: 

1. The multivariate analysis associated with correlated hazard parameters and the 

effect of compound extreme events on structural vulnerability have not been 

discussed. 

2. The long-term effects of hazards on civil infrastructure systems in terms of 

resilience and loss have not been explored. Additionally, the existing models to 

assess the long-term effects are mainly based on the stationary Poisson process, 

while the impact of nonstationary characteristics has not been investigated. 

3. Though the expected damage cost has been applied as a standard decision 

criterion in life-cycle cost analysis, uncertainties springing from standard 

deviation and higher-order moments have been neglected. There is a need to 

explore the information indicated by statistical moments of the cost. 
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4. Furthermore, a comprehensive life-cycle analysis framework has not been 

developed for engineering systems to consider multiple hazards (e.g., extreme 

events and gradual deterioration), intervention actions, life-cycle cost analysis, 

and various uncertainties.  

The following chapters will discuss these issues and provide solutions 

to fill these gaps.  
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CHAPTER 3 PROBABILISTIC HAZARD ANALYSIS 

AND STRUCTURAL PERFORMANCE UNDER SINGLE 

HAZARD 

3.1 Introduction 

Performance-based engineering concepts have been widely applied as a general 

approach for the life-cycle management and design of civil infrastructure systems in 

recent decades. For instance, the performance-based earthquake engineering 

framework has been developed and implemented to various structures by the Pacific 

Earthquake Engineering Research Center (Ellingwood 2001; Porter 2003). Based on 

the risk assessment of seismic hazards, the performance-based framework has shown 

sufficient efficiency in facilitating construction, maintenance, retrofit, and design of 

structural systems. Owing to the effectiveness in dealing with seismic hazards, the 

framework has been extended to other fields, such as performance-based tsunami 

engineering and hurricane engineering. Hazard analysis and vulnerability assessment 

are two essential components in the performance-based framework.  

This chapter aims to present standard methodologies for the probabilistic hazard 

analysis and vulnerability assessment of highway bridges under single hazard. Methods 

are reviewed and applied to assess the failure probability of highway bridges subjected 

to earthquakes and hurricanes. Validations of the methods are also provided by 

conducting experimental studies. The computational results are inputs for the loss and 

resilience assessment in the following sections. Compared with the seismic hazard, 
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hurricanes reflect multi-hazard features, due to the multiple hazard sources such as high 

waves, heavy rain, and strong wind. In particular, the vulnerability of highway bridges 

subjected to deck unseating failure under hurricanes is discussed.  

 

3.2 Structural performance under earthquakes  

Probabilistic seismic hazard analysis and structural vulnerability assessment are the two 

essential steps of the performance-based earthquake engineering framework. This 

section presents detailed procedures to obtain seismic hazard curves and fragility curves 

for the investigated highway bridge. 

 

3.2.1 Probabilistic seismic hazard analysis 

The recurrence relationship between earthquake frequency and magnitude provides the 

annual rate of earthquakes larger than magnitude m as follows (Gutenberg and Richter 

1944) 

 10log m a bm    (3-1) 

in which λm is the annual rate of earthquakes greater than magnitude m in the given 

region and a and b are coefficients based on analysis of historical records. Though this 

recurrence relationship defines the magnitude without an upper bound, the regional 

magnitude generally has an upper limit because of finite faults. Therefore, the CDF of 

earthquake magnitude considering the minimum and maximum magnitudes can be 

described as (Baker 2013) 
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where FM (m) is the CDF at m; mmax represents the maximum earthquake of the given 

source; and mmin demonstrates the minimum magnitude. The probability of occurrence 

of discrete magnitudes can be determined from this CDF and gives 

 1( ) ( ) ( )j M j M jP M m F m F m    (3-3) 

where mj defines a set of discrete magnitudes with mj < mj+1. Discrete magnitudes can 

replace continuous magnitudes during the analysis when closed space is set between 

the two discrete magnitudes mj and mj+1.  

Depending on the characteristics of earthquakes, the ground motion prediction 

models can predict the expected levels of ground motion intensity. The mean and 

standard deviation of the natural logarithm of the IM are the main outputs of a GMPM. 

The IM is specified as PGA. The ground motion prediction equation is given as (Boore 

et al. 2014) 

 
30 1 30

ln ( , ) ( , , )

( , , , ) ( , , )

E P JB

S S JB n JB S

Y F M mech F H M region

F V H M z M H V 

 

 
 (3-4) 

where lnY is the natural logarithm of IM representing ln PGA in this circumstance; FE, 

FP, and FS are functions for event source, path, and site parameters, respectively; M is 

magnitude; mech is the mechanism of the seismic event; HJB is the distance representing 

the shortest distance to the surface projection of the fault surface from a site; region 

represents the investigated region; VS30 is the shear wave velocity averaged over top 30 

m; z1 is the basin depth; εn is the fractional number of standard deviations of a single 
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predicted value of lnY away from the mean; and σ is the total standard deviation of the 

model. The total standard deviation is obtained from the combination of between-event 

and within-event variability, given by 

 2 2
30 30( , , ) ( , , ) ( )JB S JB SM H V M H V M     (3-5) 

where τ is the between-event standard deviation dependent on M; and ϕ is the within-

event standard deviation dependent on M, HJB, and VS30. 

With the mean and standard deviation from this GMPM model, the exceedance 

probability of a PGA level can be computed under the given magnitude and site 

conditions 

 
ln

ln ln
( | , ) 1 ( )

PGA

x PGA
P PGA x m h




    (3-6) 

where Θ(∙) is the standard normal CDF; h refers to the distance; ln PGA  is the mean of 

the natural logarithm of PGA; and σlnPGA is the standard deviation of the natural 

logarithm of PGA. This equation follows the same assumption of (Baker 2013), which 

suggests the natural logarithm of PGA following a normal distribution.  

Combining uncertainties of the seismic source, distance, and intensity, a 

probability distribution of the IM can be calculated based on the total probability 

theorem. Given the investigated earthquake, the probability of exceeding a PGA level 

x is computed  
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max max

min 0

( ) ( | , ) ( ) ( )

m h

M H

m

P PGA x P PGA x m h f m f h dhdm     (3-7) 

in which ( | , )P PGA x m h  is from the ground motion details of Eq. (3-6) and fM(m) 

and fH(h) represent the PDFs for the seismic magnitude and distance, respectively. This 

relationship is alternatively known as the hazard curve. Herein, a minimum magnitude 

is considered as 5.5 excluding non-damaging earthquakes with small magnitudes. The 

maximum magnitude is assumed as 8.5 for the investigated region. The corresponding 

coefficients a and b from the recursive relationship Eq. (3-1) are assigned as 3.94 and 

0.89, respectively (USGS 2003).  

Accordingly, the annual rate of earthquakes with magnitudes greater than 5.5 is 

computed as 0.1109. The fault type in the investigated region is determined as a strike-

slip fault. It is assumed that the earthquakes have an identical probability of occurrence 

along the fault. The distance is assumed to be 5 km. The shear wave velocity averaged 

over top 30 m is assumed to be 480 m/s at the site. Given these inputs, the exceedance 

probability of different PGA levels is obtained by calculating the median and standard 

deviation from GMPM. The hazard curve can be provided based on these analyses, as 

indicated in Figure 3-1. 
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Figure 3-1 Seismic hazard curve under the investigated seismic scenario. 

 

3.2.2 Structural vulnerability assessment of highway bridge 

A finite element model of a typical two-span continuous reinforced concrete bridge is 

established using the software OpenSees (McKenna et al. 2009) to assess the structural 

performance, as shown in Figure 3-2. This 58-m bridge has a box girder with a height 

of 1.2 m and a width of 10 m and two circular 10-m high columns with a diameter of 

1.6 m. The compressive strength of the concrete is 26 MPa and the yield strength of the 

reinforcement is 470 MPa. The longitudinal reinforcement ratio for the concrete 

columns is 1.01%. 

The fragility curves provide the probability of the demand (D) exceeding 

capacity (C) at a specified damage state under a given IM. For instance, Kim and 

Shinozuka (2004) provided the fragility curves of bridges under different damage states 

by considering peak ductility demand of the columns. Herein, the displacement 

ductility is also used for the fragility curve, which is the ratio of the maximum 
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displacement at the top of the column to the displacement of the identical position when 

yielding occurs.  

 

Figure 3-2 The three-dimensional bridge model with dimensions (unit: meter). 

Five damage states of the bridge are specified as no damage, slight, moderate, 

major, and complete, according to HAZUS (1999). The seismic demand is the curvature 

ductility of the bridge column obtained from the finite element model. For each damage 

state, the limit of curvature ductility  has been classified as  < 1.29, 1.29 ≤  < 2.10, 

2.10 ≤  < 3.52, 3.52 ≤  < 5.24, and  ≥ 5.24, respectively (Nielson 2005). The 

required curvature ductility can be attained through a nonlinear time history analysis. 

A total of 80 ground motion records are used for the regression analysis to assess the 

response of the bridge (Baker et al. 2011; Qian and Dong 2020). Based on these records, 

the probability seismic demand model can be firstly established, and the associated 

parameters can be determined by the regression analysis. The fragility curve provides 
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the probability of the seismic demand D exceeding capacity C. The fragility function 

can be expressed as 

  
 

2 2 2 2

ln ln( ) [ln( ) ln( )]
|

D C C

D C D C

S S PGA S A B
P D C PGA

B   

    
       
       

 (3-8) 

where SD and SC represent the median of seismic demand and capacity, respectively. βD 

and βC refer to the standard deviation of the demand and capacity, respectively. Herein, 

it should be noted that the column damage has been taken as the proxy for the system 

damage. The impact of multi-component response is not considered in this example. 

The regression relationship gives the value of A as 2.8869 and B as 1.0702. Accordingly, 

the seismic fragility curves of four different damage states considering displacement 

ductility are obtained, shown in Figure 3-3. The standard deviation for demand is 

calculated as 0.7422 and the standard deviation for capacity is assumed as 0.25.  

 

Figure 3-3 Fragility curves associated with four damage states. 
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3.3 Structural performance under hurricanes 

The impact of hurricanes upon highway bridges shows a typical example of interacting 

multi-hazard effects. For instance, the bridge is threatened by concurrent hazards during 

a hurricane event including strong wind, high waves, and storm surge. The effects of 

hurricanes on highway bridges mainly stem from storm surge and wave-induced 

loading. The resulting uplift forces in vertical and horizontal directions produce large 

displacements at supports. When the displacements surpass the limitation at supports, 

the deck unseating may occur (Mondoro et al. 2017). It is commonly recognized that 

deck unseating failure is the most primary damage for simply supported bridges 

(Kulicki 2010). Some bridge spans even with fixed connections using dowelling 

undergo complete connectivity failure during the Hurricanes Katrina (Padgett et al. 

2008). Wang et al. (2017a) recommended a method to assess hurricane-induced 

structural damage loss from the perspective of insurers and performed a hurricane 

vulnerability analysis considering model uncertainty.  

In this section, vulnerability assessment of highway bridges subjected to 

hurricanes is performed by considering deck unseating failure mode. A two-

dimensional computational fluid dynamic model of bridge superstructure is constructed 

to obtain the uplift forces caused by waves during hurricanes. A pilot experiment is 

performed to validate the maximum uplift force obtained from numerical modeling. 

The wave height and surge elevation are adopted as the intensity measures for the 

vulnerability analysis. Structural vulnerability is assessed by computing the demand 

and capacity under hurricanes. A flowchart is presented in Figure 3-4 to show the key 

steps to assess the structural performance of highway bridges under hurricane hazard. 
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Figure 3-4 A process diagram to assess the structural performance of highway bridges 

subjected to hurricanes. 

 

3.3.1 Hazard parameters 

During hurricanes, the wave- and surge-induced loads on the bridge are conditioned on 

multiple parameters, such as wind speed, storm surge, bathymetry, local geography, 

and geometry of bridge superstructure. In previous studies, hurricane hazard is 

commonly characterized by a single parameter, e.g., wind speed. For instance, Li and 

Ellingwood (2006) and Wang et al. (2017a) suggested using Weibull distribution to 

describe hurricane wind speed during hurricane risk assessment. The CDF and PDF of 

the hurricane wind speed can be described by (Wang et al. 2017) 
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 (3-10) 

in which ( )u t  and ( )t are time-variant parameters associated with the Weibull 

distribution. In recent research, studies indicate that multiple parameters are needed to 

describe complicated interaction effects among hurricane parameters. For instance, 

Phan et al. (2007) indicated the joint distribution of wind speeds and annual surge 

heights can be applied to distribute hurricane risk. Ataei and Padgett (2013) adopted 

maximum wave height and relative surge elevation as intensity measures to assess the 

fragility of highway bridges subjected to hurricanes.  

 

3.3.2 Structural vulnerability assessment under hurricanes 

For the vulnerability assessment under hurricanes, the probability of failure of the 

bridge under the unseating failure mode can be determined by assessing the structural 

capacity and demand incorporating uncertainties. The failure probability of bridge Pf is 

the likelihood that the demand D exceeds structural capacity C (Li and Ellingwood 

2006) 

 [( ) 0]fP P C D    (3-11) 

The demand of the bridge is the total uplift force acting upon the bridge caused 

by surge and waves, determined by numerical modeling. For illustrative purposes, a 

simply supported two-span reinforced concrete bridge is investigated herein. The 

selected girder bridge has a total length of 40 m. The superstructure has a width of 10.45 
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m, consisting of a deck and six girders. The girder is 1.05 m high and the deck is 0.3 m 

thick. The cross-section of the superstructure of this bridge is described in Figure 3-5(a). 

All the six girders are simplified as rectangles, each of which has a width of 0.3 m and 

is evenly distributed along the deck. The still water depth is 8m and vertical clearance 

is set as 4.5 m. A 2D computational fluid dynamics model of bridge superstructure 

under the impact of a hurricane-induced solitary wave can be established by CFD 

software ANSYS Fluent 17.2 Package (ANSYS 2016). Figure 3-5(b) shows the 

numerical diagram of the computation domain.  

(a) 

 

(b) 

 

Figure 3-5 (a) Geometry of bridge superstructure and (b) numerical diagram of 

computation domain of the FEM model. 

From the CFD model, the hurricane-induced uplift force can be evaluated. Figure 

3-6 illustrates the interactive effects among air, wave, and deck at four different 

moments: wave arrives the deck, the water surface rises (e.g., Figure 3-6(a)) and leaves 

(e.g., Figure 3-6(d)). During the dynamic fluid interaction, the movement of fluid in the 
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physical domain depends on various properties. Changes in these characteristics are 

commonly examined by the Navier-Stokes equations based on laws of conservation. In 

the 2D domain, the Navier-Stokes equations can be defined as (Temam 2001) 

 2 2

2 2

x x x x x
x y x

u u u u up
u u g

t x y x x y
  

      
        

        
 (3-12) 

 2 2

2 2

y y y y y

x y y

u u u u up
u u g

t x y y x y
  

       
                  

 (3-13) 

where ρ represents the mass density of water; ux and uy are velocity components in x 

and y direction; p is pressure; and μ refers to dynamic viscosity. These two equations 

can be combined as one in vector form (Temam 2001) 

 2D
p

Dt
     

V
g V  (3-14) 

in which V is flow velocity and  represents divergence. In order to process these 

complex computations, the CFD model is required for numerical analysis. In terms of 

the structural simulation, the total force along a designated force vector equals the sum 

of the dot product of the viscous forces and pressure horizontally and vertically. This 

relationship is demonstrated by (Kohnke 1994) 

 
a p vF a F a F     (3-15) 

where a  is the designated force vector; 
pF is the pressure force vector, and vF  is the 

viscous force vector. 
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(a) Time = 12 s (b) Time = 12.5 s 

  

(c) Time = 13 s (d) Time = 13.5 s 

Figure 3-6 An illustrated 2D CFD model showing wave behavior acting upon a bridge 

superstructure changing with time (unit: second). 

To verify the numerical results from the ANSYS software, an experimental 

study at scale 1:30 was conducted at the Hydraulics Laboratory of Hong Kong 

Polytechnic University, aiming at measuring hurricane loading acting upon the bridge 

superstructure. This experiment was conducted in an open channel of 27 m in length, 

1.5 m in width, and 1.5 m in depth. Waves were generated by a piston-type wavemaker 

located at one end of the channel. The water elevation was captured by using capacitive 

wave height gauges. The bridge model was suspended at a certain level according to 

the surge elevation. The wave forces on the bridge model were measured by a multi-

axis load cell. To compare the results to the numerical model, experimental 

measurements were computed based on the Froude scale model. At a certain surge 
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elevation, the uplift force increases along with the growing wave height. Generally, the 

numerical results were validated by the experiments with acceptable differences. A 

series of the maximum total uplift forces on bridge superstructure changing over 

different wave heights were selected to compare them with the numerical results at the 

surge elevation of 2.2 m. The comparison between the numerical results and the 

experimental results is shown in Figure 3-7. 

 

Figure 3-7 Comparison between numerical and experimental results of the maximum 

total uplift force acting on the bridge superstructure. 

The capacity of the bridge under hurricane-induced wave force refers to the 

vertical resistance, consisting of the self-weight of the bridge deck and connection 

strength between deck and substructure (Ataei and Padgett 2013; Mondoro et al. 2017). 

The weight of superstructure Ws can be computed as 
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in which db and W0 are thickness and width of the deck, respectively; Ag is the cross-

sectional area of girders; ng is the number of girders; γ is the unit weight of the material; 

and l is the length of span. For simply supported bridges, the vertical connectivity 

provided by the anchor bolts can be estimated by the concrete breakout strength. The 

total breakout strength Fc can be computed as the product of the total number of bolts 

and the connection strength of a single bolt, as shown in Eq. (3-17) (ACI, 2005) 

 

0

2 3
N

C cb b

N

A
F n N

A
    (3-17) 

in which ncb is the number of bolts; AN is the projected area of the failure for the anchor; 

AN0 is the projected area of the failure surface of a single anchor remote from edges; Nb 

is the basic concrete breakout strength of a single anchor; and ψ2 and ψ3 are 

modification factors. A normal distribution is adopted for concrete strength with a COV 

of 0.11 (Ellingwood and Hwang 1985). 

The above functions illustrate the computation process of deterministic demand 

and capacity. Subsequently, the vulnerability of the bridge can be assessed by the 

probabilistic demand and capacity considering various uncertainties in hazard and 

structural parameters based on Monte Carlo simulation (Tu et al. 2017). Uncertainties 

associated with loading and capacity parameters, modeling, and biased errors are 

considered. The probability distributions of the associated parameters are mainly 

consistent with the error modeling provided in Ataei and Padgett (2013) unless 

specified. Such uncertainties could have a large impact on the vulnerability assessment. 

For instance, Ataei and Padgett (2015) identified the effect of various errors on fragility 

models for coastal bridges subjected to hurricane hazards. Therefore, uncertainty 
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should be carefully examined during the analysis. Uncertainties associated with the 

structural capacity mainly result from construction materials, construction error, and 

workmanship error, etc. The densities of concrete and steel are assumed to be normally 

distributed (JCSS, 2001). The expected density of reinforced concrete is 2,400 kg/m3, 

with a coefficient of variation (COV) of 0.04. The mean density for steel is 7,850 kg/m3 

and the COV is 0.01. The deck thickness follows a uniform distribution with the mean 

ranging from 95% to 105% considering construction and workmanship errors. 

Additionally, a model error is used to account for the uncertainty in concrete strength, 

with a mean of one and the COV of 0.23 (Eligehausen et al. 2006). 

According to the above structural analyses, the total uplift force and vertical 

resistance are obtained. Subsequently, the probability of deck unseating can be 

computed by assessing the probability of demand exceeding capacity through Monte 

Carlo simulation. For a hurricane scenario with a return period of 100 years, the 

expected storm surge can be obtained as 1.74 m using the surge models of ADCIRC 

and SLOSH simulations and the wave height can be 4.06 m (Lin et al. 2010). The 

expected storm tide is usually estimated as 0.3 m to 0.5 m higher than the surge level 

(Lin et al. 2012). Herein, the total surge elevation can be evaluated as 2.05 m. Given 

these inputs, the probability of deck unseating failure of the hurricane with a return 

period of 100 years can be calculated as 0.1982. 
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3.4 Summary 

This chapter reviews and presents the application of the standard methodologies to 

assess the structural performance of civil infrastructure under single hazards. The 

procedures of probabilistic hazard analysis and structural vulnerability assessment 

under seismic and hurricane hazards are provided. Different from earthquakes, 

hurricanes show multi-hazard features and require multiple hazard parameters during 

the analysis. Various uncertainties associated with stochastic characteristics in hazard 

parameters (e.g., hazard frequency and intensity), demand, and capacity are considered 

during the analysis. The failure probability of the bridge can be calculated given 

specific hazard scenarios (such as defining return periods). The failure probability 

results can be significant inputs for risk and resilience assessment of the civil 

infrastructure in the following chapters. 
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CHAPTER 4 MULTIVARIATE ANALYSIS AND 

VULNERABILITY ASSESSMENT UNDER COMPOUND 

EXTREME EVENTS 

4.1 Introduction 

Recently, substantial financial and social losses caused by hurricane events, such as 

Hurricane Harvey 2017 and Hurricane Irma 2017, raised awareness of the government 

and the public to risk assessment and management. For instance, as stated by the U.S. 

Federal Emergency Agency (FEMA), commodities and essential resources including 

water and meals were exhausted during the emergency responses to Hurricanes Harvey 

and Irma (Raymond et al. 2020). Though efforts were made to minimize damage and 

losses, hurricanes remain one of the most hazardous and costly natural hazards (NCEI, 

2020). In hurricane-prone areas, coastal civil infrastructure systems, such as highway 

bridges, are exposed to hurricane hazards throughout their lifetime. The repair and 

replacement of these systems may cause significant social disruption and economic 

consequences to the community. In order to manage such risks and enhance the 

resilience of coastal communities, it is crucial to assess the vulnerability of civil 

infrastructure under hurricane hazards. A hurricane indicates the multi-hazard feature, 

as it consists of concurrent hazards such as large waves, high storm surge, and strong 

wind. The compounding effects of hurricanes on civil infrastructure have not been fully 

investigated. The correlated relationship among hurricane parameters and the 

associated impact on the structural vulnerability should be studied. 
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This chapter aims to propose a copula-based probabilistic framework for coastal 

infrastructure to assess vulnerability subjected to hurricanes. The copula function is 

applied to model the dependence between storm parameters when modeling the 

probabilistic demand of highway bridges. An illustrative example is provided to 

calculate the probability with respect to deck unseating failure of a typical simply 

supported highway bridge. A three-dimensional model of the bridge is established to 

compute the surge and wave loads acting on the bridge deck. Dependence between peak 

water level and maximum wave height is modeled based on data records. The peak 

water level refers to the fluctuation peaks of sea level, consisting of the impact of storm 

surge and tide in this context. The dependence between peak water level and maximum 

wave height is considered only for hurricane events. Due to the flexibility of the copula 

approach, the proposed framework is not limited to illustrate the interrelationship of 

hurricane parameters, which can be implemented to dependence analyses under various 

hazards. The vulnerability assessment utilizes the approach introduced in CHAPTER 3 

by considering various uncertainties springing from parameters associated with demand 

and capacity. Consequently, a copula-based framework for vulnerability analysis is 

developed to aid risk assessment and management of civil infrastructure by considering 

dependent hazard parameters. 

 

4.2 Multivariate dependence model 

In this context, dependence (or correlation) refers to the statistical association between 

random variables (Joe 2014). The tail dependence implies the correlation between 

variables at the tail of the distribution. For instance, the lower tail dependence indicates 
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correlation in the lower-left quadrant and the upper tail dependence is associated with 

the upper-right quadrant (Joe 2014; Nelsen 2006). Such tail phenomena are commonly 

observed in data associated with extreme events (Salvadori et al. 2007), particularly 

among storm (Wahl et al. 2015) and marine variables (Zhang et al. 2018b). Different 

copula functions are capable to represent different degrees of tail dependence. 

A copula couples the marginal distributions to the multivariate distribution 

function, in which the marginal distribution for each variable is uniform over the unit 

interval (Nelsen 2006). Let a series of random variables X1, X2, …, Xd have marginal 

distribution functions Fi(xi), i = 1, …, d. The joint distribution function of these random 

variables is defined as J. According to Sklar’s theorem (Sklar 1959), there exists a 

copula C: [0, 1]d → [0, 1] such that 

 
1 1 1( , , ) ( ( ), , ( ))d d dJ x x C F x F x  (4-1) 

As shown in Eq. (4-1), the joint effect described by the copula function and the 

marginal distributions of random variables are separately considered. Such a 

dependence structure provides sufficient flexibility during the simulation and analysis. 

Based on this advantage, complicated dependence structures can be effectively 

modeled by changing the copula model without affecting the marginals. If the marginals 

Fi(xi) are all continuous, the d-dimensional copula C is unique 

 1 1
1 1 1( , , ) ( ( ), , ( ))d d dC u u J F u F u   (4-2) 

The probabilistic density function of copula C can be denoted as c(u) 
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Accordingly, the joint density fX(x1, x2, …, xd) of random variables can be 

expressed as 
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As shown in Eq. (4-4), the copula function establishes the dependency structure 

separately from the marginals. In other words, the dependence between random 

variables is governed by a copula regardless of the selection of univariate distributions. 

Compared to directly dealing with the complex joint probability J, the theorem of 

copula offers significant flexibility during applications (Jane et al. 2018; Zhang et al. 

2018b). 

Herein, the bivariate relationships are considered. The three most commonly 

used copula families are introduced: elliptical copulas, Archimedean copulas, and 

Extreme Value copulas. The elliptical family is based on elliptical distribution functions 

and consists of the Gaussian copula and the Student’s t-copula. The Gaussian copula is 

the most popular one in practice. It is given by 

 1 1
1 2 1 2( , ) ( ( ), ( ))C x x x x

     (4-5) 

in which Φ(.) is the CDF of a multivariate normal distribution; ζ is the correlation 

matrix; and Φ-1(.) is the inverse CDF of the standard normal distribution. The Gaussian 

copula does not have tail dependence, i.e., lower and upper tail dependence are zero.  
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The Student’s t-copula is a generalization of the Gaussian copula. Compared 

with the Gaussian copula having one dependence parameter, the student’s t-copula is 

associated with two parameters, resulting in more probability density at the tails. The 

function of the student’s t-copula can be written as  

 1 1
1 2 , 1 2( , ) ( ( ), ( ))v v vC x x t t x t x

   (4-6) 

where tv(.) is the CDF of a multivariate standardized student’s t distribution; v is the 

parameter indicating the degree of freedom; ζ is the correlation matrix; and tv
-1(.) is the 

inverse of the CDF of the standard student’s t variable. The Student’s t-copula has 

identical lower and upper tail dependence, which can be computed as 

 ( 1)(1 )

1 1
2 ( )

v

l u vt



 

 

 
    (4-7) 

Instead of relying on probabilistic distribution functions, the Archimedean 

copulas are constructed incorporating monotonic characteristics. Commonly used 

Archimedean copulas include Clayton, Gumbel, and Frank copulas, in which the 

Gumbel copula is also an Extreme Value copula (Genest and Rivest 1989). The three 

copulas have only one dependence parameter and exhibit different tail dependence 

conditions. For instance, the Clayton copula has lower tail dependence but has no upper 

tail dependence. In contrast, the Gumbel copula interprets upper tail dependence with 

no lower tail dependence. The Frank copula has no tail dependence. Table 4-1 gives the 

copula functions and tail dependence characteristics of the Clayton, Gumbel, and Frank 

copulas using the dependence parameter θ. 
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Table 4-1 Examples of Archimedean copulas and their tail dependence characteristics. 

Name Copula function 1 2( , )C x x  

Tail dependence 

(lower, upper) 

Clayton 1/
1 2( 1) , 0x x         1/(2 , 0)

 

Gumbel 
1/

1 2exp (( ln ) ( ln ) ) , 1x x           1/(0, 2 2 )  

Frank 1 2(exp( ) 1)(exp( ) 1)1
ln 1 ,

exp( ) 1

x x 


 

    
   

  
 (0, 0)  

 

In addition to elliptical and Archimedean copulas, the Extreme Value family 

plays an important role in the dependence analysis. As the Extreme Value copulas arise 

naturally from the extreme value theory, they can model the tail dependence associated 

with extreme events (Gudendorf and Segers 2010). The Extreme Value copulas are 

generated from the Extreme Value theory to describe the limit characteristics of values 

associated with extreme events, such as natural hazards (Gudendorf and Segers 2010; 

Joe 1997). The Hüsler-Reiss copula, as a special case of Extreme Value copulas, is 

introduced herein. It is given by (Hüsler and Reiss 1989) 

 
1 2

1 2 1 2

2 1

1 1 1 1
( , ) exp ln( ) ln( )

2 2

x x
C x x x x

x x
 

 

     
          

     
 (4-8) 
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in which the dependence parameter 𝜃 is larger than or equal to zero; 1 1lnx x  ; and 

2 2lnx x  . For the Extreme Value copulas, the parametric submodel can be 

determined by using the Pickands dependence function (Gudendorf and Segers 2010). 

For instance, Pickands dependence function of Hüsler-Reiss copula can be written as 

 1 1 1 1
( ) ln( ) (1 ) ln( )

2 1 2 1

y y
A y y y

y y
 

 

   
         

    
 (4-9) 

By using Eq. (4-9), the upper tail dependence λu as shown in Eq. (4-10) 

associated with the Hüsler-Reiss copula can be computed using 

 2(1 (1/ 2))u A    (4-10) 

The lower tail dependence of Extreme Value copulas is zero, except for the case 

with perfect dependence A(1/2) = 1/2. In other words, lower tails of Extreme Value 

copulas are asymptotically independent. 

Copula models can be applied to describe various dependence relationships. 

Statistical inference of the dependence structure relies on the measure of association. 

Previously, the degree of dependence among variables is widely assessed by Pearson’s 

correlation coefficient due to its simplicity and convenience. Pearson’s coefficient 

measures the linear correlation between variables (Joe 2014). For instance, Vishnu et 

al. (2021) modeled the correlation impact associated with resilience and sustainability 

metrics by using the Pearson’s rank correlation. Due to its limited application range, 

other measures such as Kendall’s tau and Spearman’s rho are developed to evaluate the 

association. Herein, Kendall’s tau is employed. This correlation coefficient computes 
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the variation between probabilities of discordance and concordance (Joe 2014). For two 

independently and identically distributed random vectors (X1, Y1) and (X2, Y2) with the 

identical joint probability distribution, Kendall’s tau is given by 

 
1 2 1 2 1 2 1 2[( )( ) 0] [( )( ) 0]X X Y Y X X Y Y           (4-11) 

Let C(u, v) refers to the copula function of X and Y, Kendall’s tau can be written 

as 

 

2[0,1]

4 ( , ) ( , ) 1C u v dC u v    
(4-12) 

For the random vector (X, Y) with a sample size of n, Kendall’s tau can be 

presented as 

 ( )c d
n

c d

N N

N N






 (4-13) 

where Nc and Nd are the number of concordant pairs and the number of discordant pairs, 

respectively. 

 

4.3 Multivariate hazard analysis under hurricanes 

The vulnerability analysis evaluates the performance and the probability of failure of 

civil infrastructure subjected to hazards. The hurricane-induced wave and surge forces 

may lead to deck unseating damage of coastal simply supported bridges. The 

vulnerability assessment considering probabilistic modeling of demand and capacity 

incorporating dependent storm parameters is presented in this section. 
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A conventional approach to assess vulnerability subjected to hurricane hazards 

is based on a single parameter, e.g., the wave height. The main limitation of such 

univariate assessment is that the prediction of failure probability of infrastructure is 

highly dependent on the selected parameter. In consequence, the impact of model 

parameter variation on infrastructure performance has to be assessed by costly re-

analysis of different sets of parameter combinations (Ghosh et al. 2013). To address 

such limitations, multivariate fragility analysis has been increasingly applied in hazard 

risk assessment. For instance, Jane et al. (2018) presented a fragility representation for 

shingle beaches based on multiple variables, including wave height, period, and water 

level. The dependence between geometric parameters was modeled by a Gaussian 

copula. By incorporating the inundation hazard assessment model, Vorogushyn et al. 

(2010) conducted a comprehensive flood hazard assessment to compute the probability 

of failure of dike breaches. Multiple intensity indicators were involved in their work, 

such as flow velocity, inundation depth, and inundation duration. Charvet et al. (2015) 

proposed the representation of multivariate fragility functions for the city of 

Kesennuma subjected to tsunami damage, by considering different tsunami intensity 

measures (e.g., the surveyed flow depth, simulated flow velocity, and the debris 

impact). Segura et al. (2020) presented a multivariate fragility assessment framework 

to generate seismic fragility surfaces of concrete gravity dams incorporating machine 

learning techniques. Balomenos et al. (2020) proposed parameterized fragility models 

for regional-level risk assessment of bridges by considering different bridge classes, 

where the joint impact of surge and wave loads is investigated by using the joint 

probability method. 



 

70 

As described in CHAPTER 3, evaluating the failure probability under 

hurricanes is conditioned on the intensity measure. Due to the complex interaction 

between storm parameters, it is inappropriate to concentrate on a single wave or surge 

parameter to quantify the demand or failure probability. Thus, there should be at least 

two intensity measure parameters employed to maintain the efficiency and accuracy of 

the probabilistic vulnerability analysis. There are several parameters associated with 

the hurricane hazard, such as wave height, wave period, and relative surge elevation. 

Ataei and Padgett (2013) selected the maximum wave height and relative surge height 

as the intensity measures to conduct fragility analysis for coastal highway bridges, as 

these two parameters are essential inputs for the equations of wave and surge loads 

(AASHTO, 2008). 

Herein, owing to the dependency analysis in Wahl et al. (2016) and Masina et 

al. (2015) and the inputs for the proposed probabilistic demand model, the dependence 

between the peak water level and maximum wave height is considered. Such 

dependence is considered only for hurricane events. These two parameters are utilized 

to compute the probabilistic demand. The peak water level refers to the relative 

elevation of storm surge and tide, above mean sea level. The mean value of storm surge 

can be computed from the maximum wind speed. For instance, Liang and Julius (2017) 

proposed a linear relationship between the storm surge and maximum wind speed, 

based on 58 wind-surge events that occurred near Chesapeake Bay, Virginia, from 1995 

to 2015. The surge height is assumed to be uniformly distributed ranging from 80% to 

120% of the mean (Saeidpour et al. 2019). The initial water depth is assumed to be 

deterministic. The average tide level is set as zero. The probabilistic distribution of 

annual tidal is determined by using the density histogram of the hydrodynamic model 
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presented in (McInnes et al. 2013). Subsequently, the marginal distribution of the peak 

water level can be fitted based on the surge and tide. Wahl et al. (2016) indicated that 

the water level can be fitted by the generalized extreme value (GEV) distribution using 

historical observations. The PDF of the GEV distributed peak water level W is 

 1

1/

1
( ) ( ) exp( ( )), and 

(1 ( )) , 0

( )

exp( ), 0

Wf w Q w Q w

w

Q w
w








 












 


 

 
  



 (4-14) 

where ξ is the shape parameter; ε is the location parameter; and σ is the scale parameter. 

It should be noted that the wind speed informs the parameters of the surge distribution, 

thus the wind speed also affects the marginal parameters of the GEV distributed peak 

water level. When different return period scenarios of hurricanes are considered, the 

marginal parameters of the peak water level should be assessed by using the hurricane-

induced wind speed for each return period. The maximum wave height H can be 

computed by a classical Rayleigh model (Longuet -Higgins 1980) 

 2

2 2

4 2
( ) expH

S S

h h
f h

H H

 
  

 
 (4-15) 

where fH(h) is the PDF of the maximum wave height and Hs is the significant wave 

height, defined as the mean height of the highest third of waves. 

Given the marginal density functions associated with storm parameters, the 

CDFs of both the peak water level W and maximum wave height H can be determined, 



 

72 

and they are denoted as FW(w) and FH(h), respectively. Subsequently, the copula 

function of the random vector (W, H) is given by 

 ( , ) ( ( ), ( ))W HJ w h C F w F h  (4-16) 

As the relevant parameters (e.g., water level) are sensitive to regional/local 

factors, e.g., bathymetry and the shape of the coast, different copulas could be selected 

for different investigated regions. When there are data available, the copula model can 

be determined by using goodness-of-fit tests (Jane et al. 2018; Zhang et al. 2018b). The 

process of finding the optimal copula model typically requires two stages. The first 

stage is to determine appropriate distributions for the univariate variables. Candidate 

distributions can be chosen from empirical models for the investigated storm variable 

(Trepanier et al. 2017). Graphical approaches such as the L-moments method (Hosking 

and Wallis 1997) can be applied. L-moments refer to linear combinations of order 

statistics (similar to the statistical moments), which can be used to describe information 

about the shape, location, and dispersion of a probability distribution (Hosking and 

Wallis 1997). By plotting the L-moment ratio diagram, the candidate distribution that 

has the closest L-skewness and L-kurtosis values to data should be adopted for the 

following copula analysis (Um et al. 2017). Subsequently, the probability plot 

correlation coefficient (PPCC) test (Heo et al. 2008; Vogel and Kroll 1989) can be used 

to perform the goodness-of-fit test for the univariate distribution. The second stage is 

to find the optimal copula model. Candidate copulas can be selected from different 

copula families, as introduced in the previous section. Dependence parameters with 

respect to each copula function can be determined by the maximum likelihood method. 

For instance, by incorporating the corrected Akaike and/or Bayesian information 
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criterion (Burnham and Anderson 2004), the candidate copula with the smallest 

information criterion is recommended (Masina et al. 2015). For validation, the 

goodness-of-fit assessment for this stage can be checked by using the approach 

delivered by Genest et al. (2006), by checking the Cramér-von Mises statistics Sn. A 

smaller value of Sn indicates a better copula model among the candidates. The bootstrap 

method presented by Genest et al. (2009) can be applied to compute the p-value 

associated with the statistics Sn, and a larger p-value implies a better fit. 

 

4.4 Illustrative example 

The proposed copula-based vulnerability assessment framework is applied to compute 

the vulnerability of a highway bridge under hurricanes. The investigated bridge is an I-

10 bridge over Escambia Bay, Florida, and it was severely damaged by Hurricane Ivan 

in 2004 (Douglass et al. 2004). The bridge is simply supported, which is susceptible to 

deck unseating during hurricanes, as described in CHAPTER 3. The study area graphic 

and tracks of historical tropical cyclones (the track of Hurricane Ivan is highlighted) are 

shown in Figure 4-1. The bridge has a span of 15.85 m and a width of 9.14 m. 

Dimensions of the bridge superstructure are illustrated in Figure 4-2(a). The distance 

from the initial water level to the bottom of the girder is assumed to be 6.3 m. Four 

scenarios of hurricane hazard are considered, with return periods of 50 years, 75 years, 

100 years, and 500 years, respectively. Dependent storm parameters are modeled using 

copula functions. The Clayton, Gaussian, and Hüsler-Reiss copulas are employed to 

explore the effect of different copula families and tail dependence characteristics on 

structural vulnerability. 
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Figure 4-1 The bridge in Escambia Bay, Florida, and tracks of historical tropical 

cyclones, including Hurricane Ivan (adapted from NOAA 2020). 
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Figure 4-2 (a) Geometry of the bridge deck; (b) The three-dimensional model of the 

bridge deck; and (c) Diagram of the computational domain of the numerical model. 

The demand, i.e., the maximum vertical wave loads acting upon the deck, can 

be assessed by modeling based on the CFD analysis. Two-dimensional CFD models 

are commonly adopted in fragility analysis (Li et al. 2020a; Zhu and Dong 2020), as 

described in Section 3.3.2. Although the two-dimensional numerical model reduces the 

computation cost, the analysis of the fluid-structure interaction is limited to the 

longitudinal axis, thus providing less accurate results. The simulation results attained 

by the two-dimensional model can be relatively different from the analytical outcomes 

(Jin and Meng 2011). Xu et al. (2016) indicated that the wave-bridge interaction based 

on the two-dimensional model may not completely capture the wave components. 

Moreover, inappropriate simplification by the two-dimensional model may result in 

errors in the wave results (Bozorgnia and Lee 2012). Therefore, a three-dimensional 

CFD model is established to study the fluid-structure interaction and evaluate the 

external wave loads on the bridge model. The correlated maximum wave height and 

peak water level are inputs for the analysis. The wave loads acting upon the bridge deck 

can be assessed accordingly.  

A three-dimensional numerical model of the bridge superstructure is established 

by using the software ANSYS Fluent (V.17.2). The I-shaped girders are modeled with 

rectangular sections to reduce the computational expense. The numerical model of the 

bridge is shown in Figure 4-2(b) and the diagram of the computation domain of the 

model is demonstrated in Figure 4-2(c). The plane CD is the water level, which 

indicates the interface between air and water. Planes AE and BF refer to the velocity 
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inlet and pressure outlet, respectively. The top plane AB is set as the constant 

atmospheric pressure and the bottom EF is defined as the no-slip stationary wall 

condition. The total force component is computed as the sum of the dot product of the 

pressure and viscous forces on each face with the specified force vector (ANSYS 2009). 

Based on the CFD model, the wave-air-structure interaction can be evaluated. The 

three-dimensional model shows insights into the interactive effects. For instance, the 

wave-air-deck interaction with a relative clearance (Zc) at 1.5 m and a maximum wave 

height (H) of 3 m is shown in Figure 4-3. The wave-air-deck interaction effects are 

shown on the left column (i.e., Figure 4-3(a), (c), and (e)), and the associated wave 

profiles are shown on the right column (i.e., Figure 4-3(b), (d), and (f)). The solitary 

wave starts from the origin and flows along the x-axis. The water volume fraction is 

represented by different colors according to the volume of fluid method. For instance, 

the water volume fraction of the water phase is one, while the value of the air phase is 

zero. In Figure 4-3, three chronological stages of the wave acting upon the deck are 

presented. Initially, there is a constant water level. When there is a wave generated, the 

water surface starts to rise. Subsequently, the wave arrives, and overtopping occurs, 

thus resulting in loading acting on the bridge deck. 
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Figure 4-3 An illustrative diagram of the wave-air-structure interaction effects in the 

three-dimensional CFD model. 

Given the return period, the relevant hurricane-induced wind speed can be 

computed using the model developed by Vickery et al. (2000). Li and Ellingwood 

(2006) and Mondoro et al. (2017) indicated that the Weibull distribution can be adopted 

to describe the wind speed V. For instance, the log transform of the CDF of the Weibull 

distributed wind speed FV(v) can be written as 

 ln[ ln(1 ( ))] ln( ) ln( )V v v vF v v       (4-17) 

in which μv and αv are scale and shape parameters. The CDF of wind speed FV(v) can 

be expressed by the return period T (Vickery et al. 2000) 

 1
( ) [ ] 1VF v P V v

T
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Accordingly, scale and shape parameters for Eq. (4-17) can be determined from 

the design wind speed maps (i.e., maps of hurricane-induced wind speeds) associated 

with different storm return levels (Vickery et al. 2000). Subsequently, the wind speed 

of the four investigated hurricane scenarios with return periods of 50, 75, 100, and 500 

years can be computed as 47 m/s, 57 m/s, 63 m/s, and 72 m/s, respectively. Other models 

of the estimated return levels can also be applied, e.g., Malmstadt et al. (2010). Herein, 

the analytical approach developed by Vickery et al. (2000) is adopted. Based on the 

Saffir–Simpson Hurricane wind scale (Schott et al. 2019), the hurricane scenario with 

a 50-year return period can be considered as a non-major hurricane, while the other 

three scenarios can be classified as major hurricanes. The wind speed informs the mean 

value of storm surge following the model of Liang and Julius (2017) as introduced in 

the previous section. Probabilistic surge and tide are computed based on the 

aforementioned empirical models. Subsequently, the marginal distribution of the peak 

water level is fitted to a GEV distribution. Herein, the estimation of tide and surge is 

based on empirical models, and the interaction between them is not considered. Tide 

and surge are independently modeled using their univariate probabilistic distribution. 

Based on Wahl et al. (2016), there can be some dependence between these two 

parameters, which could affect the peak water level. Further studies are needed to assess 

the interaction and pairing of tides and surges. The significant wave height Hs can be 

assessed from the wind speed based on the Shore Protection Manual (CERC, 1984) 

 4 0.55.112 10S AH U F   (4-19) 

in which UA = 0.71V1.23 is the adjusted wind velocity based on the wind velocity V; and 

F is the fetch length and assumed to be 1000 m. The maximum wave height H is taken 
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as 1.8 times of the significant wave height Hs (e.g., H = 1.8 Hs) (AASHTO, 2008). 

Consequently, different parameters of the marginal distributions associated with the 

peak water level and maximum wave height are related to the wind speeds at different 

return periods. Based on these marginal parameters, the two storm parameters (i.e., W 

and H) can be simulated from the copula function and transformed back to the original 

scale. 

The copula function associated with the maximum wave height and peak water 

level can be determined using goodness-of-fit tests based on observed data. Wahl et al. 

(2016) assessed the flooding and erosion risk in the northern Gulf of Mexico by 

modeling six hydrodynamic variables (i.e., astronomical tide, storm surge, significant 

wave height, peak wave period, wave direction, and sea-storm event duration) affecting 

the total water level. In their study, 67 groups of annual average significant wave height 

and the averaged peak water level for sea-storm events were extracted from observation 

records at a tide gauge on Dauphin Island from 1980 to 2013. According to Wahl et al. 

(2016), sea-storm events are identified when the hourly total water level exceeding a 

critical threshold, i.e., 1.2 m above the North American Vertical Datum of 1988. 

Additionally, average significant wave heights associated with the events are selected 

when the heights exceed 1.6 m and 1.4 m for winter and summer, respectively. The 

detailed processing procedure of the data can be found in Wahl et al. (2016). 

Based on their 67 groups of data, the copula function of the correlated maximum 

wave height and peak water level is assessed by using goodness-of-fit tests. Herein, the 

impact of seasonal cycles on the dependence structure between variables is neglected, 

but it can be considered in future studies. For the marginal distribution, it is identified 
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that there are many distribution options to fit the marginal distribution, due to the 

limited data record. Herein, marginal distributions of the significant wave height and 

peak water level are fitted using the Rayleigh and GEV distributions, respectively. For 

dependence modeling, Kendall’s tau correlation coefficient is 0.41. Different copula 

candidates are employed for the goodness-of-fit tests, including Gaussian, Student’s t, 

Clayton, Gumbel, Frank, and Hüsler-Reiss copulas. Subsequently, based on the Akaike 

information criterion (AIC), the Clayton copula is adopted among the copula 

candidates, with the smallest Sn (= 0.0191) and largest p-value (= 0.6176). In 

comparison, the elliptical and Extreme Value families show deficient performance in 

fitting the dataset. For instance, the Sn and p-value for the Gaussian copula are 0.0350 

and 0.0490, respectively, while values for the Hüsler-Reiss copula are 0.0652 and 

0.0098, respectively. Figure 4-4 shows the scatter plot of observed and simulated values 

at the site in the Gulf of Mexico, in which there are 500 samples simulated from the 

Clayton copula. 
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Figure 4-4 Scatter plot of observed and simulated maximum wave height and peak 

water level based on the selected Clayton copula. 

In this illustrative example, as the data record extracted from Wahl et al. (2016) 

are close to the investigated region, the fitted Clayton copula can be an appropriate 

option to model the positive correlation between the maximum wave height and peak 

water level. In the field of risk assessment, when there is a lack of data, dependence 

models may be constructed based on the correlation coefficient (Hong et al. 2014; 

Wang et al. 2020). In order to investigate the effect of copula family and tail 

dependence behavior between hazard parameters on the structural vulnerability, the 

Gaussian and Hüsler-Reiss copulas are also employed herein. The Clayton copula 

allows for lower tail dependence, while the Hüsler-Reiss interprets upper tail 

dependence. The Gaussian copula indicates no tail dependence. Different values of 

Kendall’s tau (equal to 0.1, 0.5, and 0.9) are considered to identify the impact of the 

degree of dependence between storm parameters on the bridge vulnerability. An 

illustrated diagram of correlated maximum wave height H and peak water level W in 

the copula domain with 1000 samples is shown in Figure 4-5. It can be identified that 
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the correlation between variables increases with Kendall’s tau. The tail dependence 

behavior can also be observed. For instance, the correlation resulting from the Hüsler-

Reiss copula is more pronounced in the upper tail area, while the correlation caused by 

Clayton copula is more prominent in the lower tail region.  

 

Figure 4-5 Samples of correlated H and W in the copula domain using Hüsler-Reiss, 

Gaussian, and Clayton copula functions considering Kendall’s tau equal to 0.1, 0.5, 

and 0.9. 

The vulnerability of the bridge associated with the four hazard scenarios (50-, 

75-, 100-, and 500-year return periods) is calculated by performing Monte Carlo 

simulations, as shown in Table 4-2. For a given return period and Kendall’s tau value, 
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a range of storm and structural parameters are generated with a sample size of 500,000. 

When the maximum wave height and peak water level are independent, the structural 

vulnerability can be computed by setting Kendall’s tau as zero. At the 50-year return 

period, the probability of the bridge failing under the case with dependent storm 

parameters increases significantly compared with the independent case. For example, 

the failure probability associated with the Clayton copula model is nearly tripled 

compared to the independent result. For the scenario with a 75-year return period, 

copulas have a moderate impact on the probability of failure (i.e., a modest increase in 

the failure probability), compared with the 50-year return period scenario. Under the 

same degree of correlation (e.g., with the same Kendall’s tau), the vulnerability of the 

bridge differs with respect to each copula model, due to different tail dependence 

characteristics in copula models. For instance, for the 50-year scenario, when there is a 

medium correlation (Kendall’s tau equal to 0.5), the probability of failure is 0.0445 

with the Clayton copula and is 0.0605 with the Hüsler-Reiss copula. 

Table 4-2 Probability of failure of the bridge associated with different copula models 

under 50-, 75-, 100-, and 500-year hurricane scenarios. 

Return period 
50 years 

Kendall’s tau 0 0.1 0.5 0.9 

Clayton copula 0.0251 0.0282 0.0445 0.0699 

Gaussian copula 0.0251 0.0318 0.0563 0.0686 

Hüsler-Reiss copula 0.0251 0.0348 0.0605 0.0689 
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Return period 75 years 

Kendall’s tau 0 0.1 0.5 0.9 

Clayton copula 0.1687 0.1778 0.2090 0.2163 

Gaussian copula 0.1687 0.1779 0.2012 0.2117 

Hüsler-Reiss copula 0.1687 0.1748 0.1984 0.2101 

 

Return period 100 years 

Kendall’s tau 0 0.1 0.5 0.9 

Clayton copula 0.2980 0.3064 0.3278 0.3166 

Gaussian copula 0.2980 0.3032 0.3111 0.3131 

Hüsler-Reiss copula 0.2980 0.2989 0.3032 0.3107 

 

Return period 500 years 

Kendall’s tau 0 0.1 0.5 0.9 

Clayton copula 0.7897 0.7826 0.7648 0.7776 

Gaussian copula 0.7897 0.7865 0.7869 0.7821 

Hüsler-Reiss copula 0.7897 0.7926 0.7956 0.7824 

 

For hurricane scenarios with return periods of 100 and 500 years, the 

vulnerability of the bridge is not significantly affected by the dependent hazard 

parameters. The failure probability computed using different copula functions may 

experience a slight increase (e.g., at the 100-year return period) or fluctuate around the 

result of the independent case (e.g., at the 500-year return period). Probably, under such 
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intense hurricanes, uncertainties caused by probabilistic modeling of demand and 

capacity have a greater influence on the vulnerability of bridges, compared to 

uncertainties resulting from the copula modeling. For instance, there may exist a larger 

dispersion (i.e., standard deviation) in terms of the storm surge for the 500-year return 

period scenario than the 50-year return period scenario. In this example, the storm surge 

is uniformly distributed ranging from 80% to 120% of the mean. When there are strong 

hurricanes, both the mean and the standard deviation of surge are escalated with the 

hurricane intensity. Subsequently, uncertainties associated with probabilistic demand 

may be amplified. Additionally, under the investigated scenarios, for a given Kendall’s 

tau, the Hüsler-Reiss copula gives consistently greater failure probability estimates than 

the other copulas at the 500-year return period. Further studies should be conducted to 

investigate the effect of the upper tail dependence on the extremes of storm variables 

by considering different Extreme Value copulas and different intensity measures. 

There are several limitations of the proposed approach. Due to the limited data 

record, the Clayton copula is fitted based on the annual average significant wave height 

and water level. The dependence structure between storm parameters is not based on 

hurricane events. Under the circumstance, the goodness-of-fit result associated with the 

Clayton copula may not be optimal for the investigated area. The fitting of marginal 

distribution functions can also be enhanced given more data. As sea condition 

parameters can be influenced by seasonal cycles, further studies may investigate the 

impact of seasonal change on the dependence structure between storm parameters. The 

interaction between tide and surge needs to be considered in future studies, as their 

pairing may have an impact on the peak water levels. 
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4.5 Summary 

This chapter develops a copula-based vulnerability assessment framework for civil 

infrastructure subjected to hurricane hazards. A mathematical tool using the copula 

function is introduced to model the dependent hazard parameters for the vulnerability 

assessment. The proposed framework is applied to a typical coastal bridge. The 

Clayton, Gaussian, and Hüsler-Reiss copulas are used to model the dependence 

structure between the maximum wave height and peak water level. These copula 

models are employed to identify the impact of different tail dependence characteristics 

on the vulnerability of the bridge. Given the deck unseating failure, probabilistic 

modeling of demand, referring to hurricane-induced surge and wave loading acting on 

the bridge deck, is calculated by establishing a three-dimensional model. The 

mathematical copula tool delivers desired performance in modeling dependent hazard 

parameters, as the marginal distribution and the correlated effects are considered 

separately. 

The probability of failure with respect to the investigated bridge can be affected 

by incorporating dependent storm parameters. In the illustrative example, such effects 

may be more pronounced for non-major hurricanes, compared with the results for major 

hurricanes. Different degrees of correlation between the maximum wave height and 

peak water level are considered. For the investigated scenarios with return periods of 

50 and 75 years, the probability of the bridge failing increases with the correlation 

coefficient. For scenarios with return periods of 100 and 500 years, the vulnerability 

incorporating the fitted Clayton copula is close to the result of the independent case, 

which is insensitive to the change in the correlation coefficient. Three copula models, 
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including Clayton, Gaussian, and Hüsler-Reiss copulas, are employed to identify the 

impact of tail dependence between storm parameters on the structural vulnerability. 

Under the identical degree of correlation, the vulnerability of the bridge differs with the 

tail dependence behavior. Therefore, the tail dependence between hazard parameters 

should be carefully considered and evaluated during the assessment. The proposed 

framework can be implied to the risk management of civil infrastructure. 
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CHAPTER 5 LONG-TERM RESILIENCE AND LOSS 

UNDER STATIONARY HAZARDS USING RENEWAL 

APPROACH 

5.1 Introduction 

During their service life, civil infrastructure systems are exposed to various hazards 

such as earthquakes, floods, and hurricanes. The resulting structural damage can cause 

significant disruption to transportation systems and substantial economic loss to society. 

From a long-term perspective, the potential risk and loss can be accumulated and 

aggravated due to uncertainties throughout the entire life-cycle of civil infrastructure 

systems. Therefore, risk mitigation of engineering structures has received increasing 

awareness from researchers, policy-makers, and insurers in terms of assessing the 

performance, recovery capability, and long-term loss of engineering systems under 

natural hazards. Risk and resilience, as paramount performance indicators, play a 

significant role during life-cycle analysis. 

In previous studies, the effect of stochastic occurrence and intensity of hazards 

on resilience and risk has not been investigated in most previous research. Despite the 

concept of long-term resilience was introduced by Yang and Frangopol (2019a), 

specific physical-informed damage models were not taken into account and the closed-

form of expected long-term resilience has not developed. A general approach to 

formulate analytical expressions of long-term resilience and loss is required.  
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This chapter aims to present a renewal approach to quantify the long-term 

resilience and loss of civil infrastructure under a single hazard. Stationary hazard 

models, i.e., the homogeneous Poisson process, are focused. Monte Carlo simulation is 

conducted to validate results from the proposed renewal-based approach. An illustrative 

example is provided to assess the long-term resilience and loss of a typical highway 

bridge under representative hazard scenarios of earthquakes and hurricanes. The 

damage loss and resilience of a single hazard event require inputs from vulnerability 

assessment, which can be obtained by using the approach described in CHAPTER 2 

and CHAPTER 3. The significance of considering long-term resilience is highlighted.  

 

5.2 Stationary hazard model: homogeneous Poisson process 

As one of the most classical stationary models, the homogeneous Poisson process is 

adopted for stationary hazard arrivals and illustrated by using two different models: the 

homogenous Poisson process and the renewal process. 

A homogeneous Poisson process is an arrival process with stationary increments. 

It has a constant occurrence rate λ. The occurrence rate is defined as the number of 

hazard events within the time unit (e.g., per year), which is also known as the intensity 

function. A homogeneous Poisson process can be denoted by the number of occurrence 

{N(tint), tint > 0} with the time interval (0, tint]. The expected number of hazard arrivals 

can be expressed as E[N(tint)] = λtint with N(0) = 0. The probability of having n number 

of arrivals within the time interval tint is 
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The homogeneous Poisson process can be alternatively described as a renewal 

process. A renewal process is a counting process, in which the inter-arrival times are 

independently identically distributed. For instance, over the period (0, tint], arriving 

times of hazards are a series of non-negative random variables {T1, T2, …, Tk}. Inter-

arrival times can be denoted as {W1, W2, …, Wk}. By the definition, the arriving time is 

the summation of inter-arrival times, Tk = W1 + W2 + … + Wk. When the inter-arrival 

time follows an exponential distribution, a renewal process becomes a homogeneous 

Poisson process, also known as a Poisson renewal process. The probability density 

function of the inter-arrival time W gives 

 ( ) exp( )Wf x x    (5-2) 

 

5.3 Long-term assessment under stationary hazards 

This section aims to provide a long-term assessment framework of engineering 

structures with respect to resilience and structural damage loss under natural hazards. 

During the life-cycle analysis, the large uncertainty related to the frequency and 

intensity of natural hazards in the life-cycle analysis can be quantified by the stochastic 

occurrence model. The stochastic renewal process has been widely applied to model 

the occurrence of hazards. 

Given the investigated time period (0, tint], each hazard event (e.g., earthquake) 

occurring within this period is described using index k. Tk denotes the arrival time of 
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hazard, Lk is the economic loss due to repair, and Rk refers to the resilience under the 

investigated hazard. Interarrival time is defined by Wk, where arrival time equals the 

sum of interarrival times Tk = W1 + W2 + … + Wk. An illustrative diagram illustrating 

the long-term resilience and loss framework is shown in Figure 5-1. The hazard 

occurrence is modeled by the renewal process, where the interarrival time Wk is 

independently identically distributed (IID). The time period tint can be taken as the 

lifespan of infrastructure and the total number of hazard occurrence is N(tint), with Tk ≤ 

tint. Based on the established stochastic model, the long-term resilience LTR(tint) within 

investigated period tint can be written as 

 int(

in

)

t

1

( )
N

k

k

t

LTR Rt


   (5-3) 

in which Rk is the resilience associated with a single hazard and N(tint) is the total 

number of hazard occurrences within investigated service life. Long-term resilience is 

the sum of the resilience of all the hazard events. In addition to the resilience, the long-

term loss can also be evaluated based on the renewal process. The cumulative long-

term loss LTL(tint) can be formulated as  

where Lk is the loss severity, which is the damage cost associated with each hazard 

event; Tk is the arrival time of the kth hazard; and the monetary discount rate r is used 

to transform future loss into the present within the investigated time horizon. Long-

term loss is discounted to the present value using a constant discount rate r. 

 int( )
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N t
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k

LTL t L e
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

   (5-4) 
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Figure 5-1 The long-term resilience and loss framework based on the stochastic 

renewal process. 

 

5.4 Renewal approach for long-term loss and resilience 

5.4.1 Renewal function 

The long-term resilience and loss can be quantified by using analytical computation 

and numerical Monte Carlo (MC) simulations, but the simulation approach can be 

expensive. Analytically, the expected long-term resilience and loss can be quantified 

analytically using the properties of renewal theory (Ross 2014). The key to solve Eqs. 

(5-3) and (5-4) is to identify the number of hazard events, which can be expressed as  

in which FW
(k)(tint) is a k-fold convolution of interarrival time Wk and ϒ(.) is known as 

the renewal function in the renewal process. 

The renewal function satisfies an integral equation conditioning on the first 

arrival time y. The CDF of interarrival time FW(t) is assumed to be continuous. Hence, 

T3T2T1 Tk
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0
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the expected number of events denoted by a density function yielding at the first 

renewal dFW(y) can be written as  

When the first arrival time is larger than tint, there is no event within the 

investigated period, with E[N(tint)] = 0. When y ≤ tint, the renewal process enables the 

renewals to have the same distribution. Hence,  

Substituting Eq. (5-7) into Eq. (5-6), the expected number of arrivals can be 

written as 

Using the renewal function, the expected long-term resilience can be 

determined by the properties of the compound stochastic process (Ross 2014), which 

equals the sum of the number of arrivals times the expected resilience 

 
int int int[ ( )] [ ] [ ( )] [ ] ( )k kE LTR t E R E N t E R t   (5-9) 

For the discounted long-term loss, the expectation can be written into two parts 

by conditioning on the first renewal time y  
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in which the CDF of interarrival time FW in a finite time domain is a defective 

distribution for interarrival time, denoted as ψ(tint) (Léveillé and Garrido 2001; Rolski 

et al. 2009).  
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In an infinite time horizon, the defective distribution is the Laplace transform 

of FW, denoted as ψr (∞). For the investigated finite time domain, the expected long-

term loss is expressed as  
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To connect Eq. (5-12) with the expected number of arrivals of hazards in the 

renewal process, the convolution power of ψ(tint) is computed 
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 (5-13) 

where IA (∙) represents the indicator function of a set A. It equals to one only if A is true 

but equals to zero otherwise: e.g., I{0, tint}(s) equals to one if 0 ≤ s ≤ tint. Since the renewal 

function is the k-fold convolution of the PDF of interarrival time, Eq. (5-13) is 

rearranged as follows 
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Substituting Eq. (5-14) into Eq. (5-12), the expected long-term loss is 
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In summary, the expected long-term resilience and loss can be formulated as 

follows 
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in which E[N(tint)] is the expectation of the number of hazard events within the service 

life. It is assumed that the damaged structure is repaired to the pre-damage state before 

the next hazard event. 

Given E[N(tint)] = λtint based on the Poisson-based renewal process, the expected 

long-term resilience and loss associated with the Poisson process can be formulated as 
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in which the expected resilience of each hazard event and economic repair loss are 

defined as E[R] = R and E[L] = L, respectively.  
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5.4.2 Other applications of renewal approach 

Apart from the expected long-term loss, the proposed renewal approach can be applied 

to derive the variance. The variance can be an essential indicator to show the variability 

of the expected damage cost. Following similar procedures of expectation, the second 

moment of long-term loss can be derived as follows conditioning on the first renewal 

time 
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in which  
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where ψ2r
(k)(tint) refers to the Esscher transform of k-fold convolution of FW at 2r for a 

finite time interval tint. Therefore, the second moment can be calculated as  
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Therefore, the variance can be obtained from the first and the second moment 
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In addition to the homogeneous Poisson process, the proposed renewal 

approach can be applied to renewal processes with different inter-arrival time models. 

For instance, in earthquake engineering, there are several other nonstationary renewal 

processes adopted with time-varying interarrival time models except exponential 

models. For instance, the renewal process with a Brownian model is usually adopted in 

the long-term seismic analysis and forecasting for severe earthquakes (Matthews et al. 

2002). The interarrival time follows Brownian passage-time (BPT) distribution with a 

PDF 

where μ is the mean and α is the coefficient of variation. The long-term resilience and 

loss based on the renewal BPT model can be computed using Eqs. (10) to (12), where 

the expected number of hazards is computed by the integration. The CDF of BPT 

distribution is provided in Matthews et al. (2002). Based on the proposed renewal 
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approach, a variety of time-varying interarrival time models can be applied to assess 

long-term resilience and loss, such as Gamma (Hainzl et al. 2006) and lognormal 

(Michael 2005) distributions.  

 

5.4.3 Validation by using Monte Carlo simulation 

The analytical renewal approach is validated by using the Monte Carlo simulation 

method. The simulation method can simulate the stochastic process and yield long-term 

resilience and loss by generating a large number of random samples. The Monte Carlo 

method is particularly powerful to address statistical distribution problems and risk 

metrics. The key to attaining the long-term loss is to generate the stochastic process. A 

homogeneous Poisson process has an arrival rate λ. It specifies the renewal process with 

exponentially distributed inter-arrival times. Each arrival epoch of an earthquake Tk is 

added by the inter-arrival times Wk. Given the defined time interval, a stochastic 

renewal process is generated by the simulation. For the loss severity, the mean and 

second moment can be either generated from samples or simulated by probabilistic 

distribution fitting. Resilience is a deterministic constant. The algorithm to assess the 

expected long-term loss and resilience based on a homogeneous Poisson process is 

provided: 

Simulation algorithm: 

(1) Initialize i = 0, Xi ~ Uni(0, 1) and  t = –ln(X0)/λ; 

(2) While t < tint, i = i+1, Ti = t, and t = t – (1/λ)ln(Xi), end; 
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However, the simulation of the homogeneous Poisson process is not applicable 

to general renewal processes. The simulation of nonstationary renewal processes can 

be more complicated. The thinning method and inversion method are required 

(Gerhardt and Nelson 2009). The key concept is to transform the nonstationary renewal 

process into a stationary one. Once the arrival times are attained, the long-term 

resilience and loss can be calculated. During the validation, it shows that the Monte 

Carlo simulation is inefficient and time-consuming, as it may take up to two hours to 

gain convergence for a defined lifetime. In comparison, the analytical renewal method 

provides accurate solutions immediately in seconds.  

 

5.5 Illustrative example 

This section aims to provide an example to evaluate the life-cycle performance of civil 

infrastructure by considering performance indicators in terms of long-term resilience 

and loss. Herein, the simply supported highway bridge introduced in Section 3.3.2 is 

selected as an illustrative application. The bridge has a total length of 40 m and the 

geometry of the bridge deck has been described in Figure 3-5(a). For illustration 

purposes, it is assumed that the bridge is located at a location exposed to earthquakes 

(3) Deliver {T1, T2, …  Ti} in (0, tint); 

(4) Compute LTL and LTR using {T1, T2, …  Ti}; 

(5) Repeat Step(1) to (5) for NMC times using Monte Carlo simulation; 

(6) Deliver expectations E[LTL] and E[LTR]. 
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and hurricanes. The bridge is subjected to multiple independent seismic and hurricane 

hazards during its service life. Four hazard scenarios are considered: two hurricane 

scenarios with return periods of 100 years (Hurricane scenario one denoted as H1) and 

200 years (Hurricane scenario two denoted as H2) and two earthquake scenarios with 

return periods of 75 years (Earthquake scenario one denoted as E1) and 120 years 

(Earthquake scenario two denoted as E2). The occurrence model of hurricanes is a 

homogeneous Poisson process (Ellingwood and Lee 2016) and the earthquake arrivals 

is a renewal process with a BPT distribution (Takahashi et al. 2004).  

Following the methods of probabilistic hazard analysis and vulnerability 

assessment introduced in CHAPTER 3, the probability of failure associated with the 

four hazard scenarios can be determined. Parameters remain unchanged unless 

specified in this example. For the two hurricane scenarios (with return periods of 100 

years H1 and 200 years H2), the associated storm surge can be 1.74 m and 2.18 m, 

respectively, according to the surge models of ADCIRC and SLOSH simulations (Lin 

et al. 2010). The possible storm tide is considered, which is approximately 0.3 to 0.5 m 

higher than the storm surge level (Lin et al. 2012). Hence, the total surge elevation is 

evaluated as 2.05 m for H1 and 2.45 m for H2, respectively. The wave height for H1 is 

4.60 m and that for H2 equals 5.35 m using the model demonstrated by Lin et al. (2010). 

Given these inputs, the probability of deck unseating failure under the investigated two 

hurricane scenarios H1 and H2 are 0.1982 and 0.9013, respectively. 

Two seismic scenarios with the return period of 75-year (Earthquake scenario 

one denoted as E1) and 120-year (Earthquake scenario two denoted as E2) are 

considered for the investigated bridge. The associated return period of the hazard 
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scenario is the mean of the BPT distribution in the long-term seismic analysis, as shown 

in Eq. (5-24). The COV of the BPT distribution is set to 1 (Matthews et al. 2002). Given 

the return periods of earthquakes, the PGA values for E1 and E2 are determined as 

0.1605g and 0.2152g, respectively. The fragility curves can be generated by identifying 

the seismic demand and capacity selected for the bridge. In this example, a fragility 

curve for the multi-span simply supported concrete bridges conducted by Nielson and 

DesRoches (2007) is adopted to assess the system-level vulnerability of the bridge. The 

system fragility is obtained through evaluating the correlated joint probability 

distribution based on the individual components, consisting of the concrete columns, 

elastomeric bearing, and abutments in both transverse and longitudinal directions. 

Using the damage states provided by Nielson and DesRoches (2007), the fragility 

curves for slight, moderate, major, and complete damage states of the bridge are shown 

in Figure 5-2. Thus, the probability of failure of the bridge for scenario E1 under slight, 

moderate, major, and complete damage states is 0.3675, 0.0256, 0.0057, and 0.0011, 

respectively. For scenario E2, the probability of failure under slight, moderate, major, 

and complete damage states is 0.5449, 0.0670, 0.0189, and 0.0046, respectively. 
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Figure 5-2 System-level fragility curves for the bridge at different damage stages 

(adapted from Nielson and DesRoches (2007)). 

Given the defined hazard scenarios and fragility inputs, the long-term resilience 

and loss of the bridge under earthquakes and hurricanes are assessed in this section. The 

arrivals of earthquakes are modeled by the renewal process with BPT distribution, while 

a classical Poisson process is used to model the hurricane arrivals. The occurrence rate 

is taken as the inverse of the return period (e.g., the occurrence rate of a 100-year 

hurricane is 0.01). Two significant inputs for Eqs. (5-16) and (5-17) are the resilience 

and economic repair loss (i.e., loss severity).  

In this example, the resilience is assessed by Eq. (2-26) and the recovery model 

is based on the model developed by ATC (1999), as described in CHAPTER 2, while 

any other approaches could also be incorporated during the computational process. By 

providing recovery actions, the bridge functionality is recovered to a satisfactory level. 

A similar repair scheme is utilized for the bridge under hurricane-induced damage but 

only the collapse damage is included. The same recovery time from earthquake analysis 

is utilized for hurricane analysis. Herein, the quantification of resilience is based on the 
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ATC function for illustrative purposes. Future studies are needed to incorporate more 

detailed investigations associated the restoration modeling, resource availability, 

constraints, how damage can be mapped to functionality, and restoration actions. The 

functionality related to the four hazard scenarios is shown in Figure 5-3. Under the same 

type of hazard, the bridge under a higher level of hazard intensity has a smaller residual 

functionality, which means the structure requires additional efforts for recovery. Given 

the investigated time interval Δtr = 400 days, the resilience can be calculated. The 

bridge resilience under two earthquake hazards E1 and E2 are 0.9958 and 0.9918, 

respectively. With the same investigated time interval, the bridge resilience under the 

hurricane scenarios H1 and H2 is computed as 0.9204 and 0.6467, respectively. These 

four resilience values are considered as the mean resilience inputs for the long-term 

assessment. Consequently, the expected long-term resilience for earthquakes and 

hurricanes are computed, associated with the stochastic BPT renewal process and 

Poisson process, respectively. In a 100-year service life, the expected long-term 

resilience for the hazard scenarios E1, E2, H1, and H2 is 1.2835, 0.7536, 0.9204, and 

0.3233, respectively. Figure 5-4 shows the expected long-term resilience under the four 

scenarios changing over the investigated service life. It is found that the long-term 

resilience of bridge of scenarios E2 is the lowest in the first 30 years, while the lowest 

scenario turns to H2 in the remaining service life. As a result, decision-makers are 

required to make appropriate management strategies for the bridge according to the 

changes of total resilience at different ages. 
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(a) Earthquake scenario E1 

 

(b) Earthquake scenario E2 

 

(c) Hurricane scenario H1 

 

(d) Hurricane scenario H2 

 

Figure 5-3 Time-dependent functionality of four investigated hazard scenarios (E1, E2, 

H1, and H2). 
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Figure 5-4 Long-term resilience for the investigated bridge under earthquake and 

hurricane hazards using renewal method. 

The economic repair loss caused by natural hazards can be computed as the 

product of rebuilding cost and the probability of failure under the investigated scenario. 

In this example, the rebuilding cost of the bridge is computed as USD 963,908, based 

on the consequence evaluation parameters provided by Zheng et al. (2018). For bridges 

damaged by deck unseating during hurricanes, the rebuilding cost is mainly due to the 

repair of the superstructure, taken as 40% of the rebuilding cost (Mondoro et al. 2017). 

The expectation of long-term loss of the bridge under earthquake and hurricane is 

computed, including inputs of the occurrence rate of investigated hazard, service life, 

hazard intensity, and financial discount rate. The economic repair loss for the hazard 

scenarios E1, E2, H1, and H2 is USD 0.1909 × 105, 0.4019 × 105, 7.6419 × 105, and 

3.4751 × 105, respectively. The service life remains 100 years and a financial discount 

rate of 3% is used. Based on the renewal model, the expected long-term loss under the 

hazard scenarios E1, E2, H1, and H2 is USD 0.629 × 104, 0.679 × 104, 2.420 × 104, and 

5.503 × 104, respectively. Figure 5-5 shows the expected long-term loss changing over 

the investigated period under the four scenarios. 
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(a)      (b) 

Figure 5-5 Long-term loss estimation for the investigated bridge under earthquake and 

hurricane hazards using renewal method (a) for four hazard scenarios (b) for seismic 

scenarios E1 and E2. 

It is identified from the long-term loss that the bridge is exposed to dominated 

hurricane hazard scenario H2, which leads to the highest expected long-term loss 

throughout the investigated period. This outcome is reasonable since the bridge has the 

largest probability of failure and a relatively high repair cost under the hazard scenario 

H2. On the contrary, the hazard scenario E1 and E2 can cause the lowest long-term loss 

of the bridge. Due to the stochastic time-independent HPP model, the expected long-

term loss of hurricane scenario H2 is consistently higher than that of scenario H1, as 

shown in Figure 5-5(a). However, the changing pattern of long-term loss under two 

earthquake scenarios is different, as shown in Figure 5-5(b), due to the time-varying 

occurrence rate in the BPT renewal process. When the service life is smaller than 55 

years, the total loss of scenario E1 is larger than E2 but the situation is opposite in the 

remaining 45 years. Therefore, the decision-makers should consider both the long-term 

resilience and loss, as only focusing on the long-term loss may lead to inappropriate 
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decisions. For instance, though the long-term loss of scenario H2 is the highest 

throughout the investigated period, the long-term resilience of E2 is the lowest when 

the bridge service life is smaller than 30 years. 

The above results obtained through the analytical renewal-based approach are 

validated by the MC simulations. The stochastic renewal process is constructed by 

modeling the interarrival times according to the given probability distribution. The 

interarrival times having BPT distribution are modeled using inverse transform 

sampling. Consequently, the expected long-term loss and resilience are computed using 

the Eqs. (5-3) and (5-4). Through the MC approach, the expected long-term resilience 

for the hazard scenarios E1, E2, H1, and H2 is 1.2819, 0.7531, 0.9208, and 0.3233, 

respectively, for the 100-year service life. The associated expected long-term loss under 

the hazard scenarios E1, E2, H1, and H2 is USD 0.637 × 104, 0.699 × 104, 2.461 × 104, 

and 5.595 × 104, respectively. Overall, these numerical results have an acceptable 

agreement on the analytical outcomes.  

For the dominant scenario H2, the expected long-term loss is sensitive to the 

change of financial discount rate and the economic repair loss as shown in Figure 5-6(a) 

and Figure 5-6(b), respectively. The long-term loss with a discount rate of 1% is nearly 

three times larger than that with a discount rate of 4%. Therefore, identifying the 

appropriate value for the discount rate is essential for the long-term loss evaluation. In 

addition, the long-term loss can be significantly enlarged by the increase of economic 

repair loss. By defining the original economic repair loss for scenario H2 as L0, the 

expectation of long-term loss affected by triple, double, a half, and a third of L0 is shown 

in Figure 5-6(b). Since the economic repair loss highly depends on the vulnerability 
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analysis in terms of the probability of failure, it indicates the large uncertainty related 

to fragility curves during the long-term loss estimation. Based on the outcomes, 

decision-makers can further decide the risk mitigation strategies associated with this 

dominated scenario. 

 

(a)      (b) 

Figure 5-6 Expected long-term loss affected by (a) financial discount ratio and (b) 

economic repair loss. 

 

5.6 Summary 
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function, the expected long-term resilience and loss can be effectively derived 

analytically. In addition to the stationary homogeneous Poisson process, the proposed 

renewal approach can be applied to renewal processes with time-varying occurrence 
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estimated based on the renewal function. The proposed approach is illustrated on a 

typical highway bridge to highlight the importance of considering long-term resilience 

during life-cycle analysis. The highway bridge is subjected to multiple independent 

hazards, considering four hazard scenarios: seismic hazards with return periods of 75 

years and 120 years and hurricane hazards with return periods of 100 years and 200 

years. Uncertainties arising from hazards, structural vulnerability, functionality, and 

consequences are considered during the assessment. The time-dependent functionalities 

under recovery patterns for four different hazard scenarios are calculated. The bridge 

resilience under each hazard scenario is evaluated. 

In the illustrative example, the results reveal that the hurricane with a 200-year 

return period is the costliest hazard for the bridge. Though the long-term loss caused by 

the 200-year hurricane is the highest throughout the investigated 100-year service life, 

the long-term resilience of the earthquake with a 120-year return period is the lowest in 

the first 30 years. Thus, decision-makers are expected to consider both long-term 

resilience and loss. The long-term loss significantly depends on the occurrence and 

intensity of hazards, remaining service life, and financial discount rate. Careful 

evaluations of the financial discount rate and the structural fragility analysis are 

important. Based on the results presented, decision-makers can decide the risk 

mitigation strategies associated with various hazard scenarios. The approach presented 

can benefit insurers and policy-makers to manage bridges against the impacts of 

multiple hazards in a life-cycle context. Further studies are expected to consider the 

interdependencies and interactions of hazardous events. The life-cycle management can 

be further incorporated into the proposed framework by considering the intervention 
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actions (e.g., inspection, maintenance, and repair) to deliver the optimal solution for 

decision-makers. 
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CHAPTER 6 HIGHER-ORDER ANALYSIS UNDER 

NONSTATIONARY HAZARDS IN A LIFE-CYCLE 

CONTEXT 

6.1 Introduction 

During the life-cycle of civil infrastructure, various hazards (e.g., earthquakes, 

hurricanes, and progressive deterioration) may impair structural functionality, thus 

resulting in severe consequences. The hazard-induced consequences are commonly 

measured in terms of financial losses (e.g., repair cost), social losses (e.g., downtime, 

deaths), and environmental losses (e.g., carbon dioxide emissions). Uncertainty 

quantification plays a vital role in life-cycle analysis. In terms of long-term economic 

loss, most previous studies focused on the low-order moments (i.e., expectation and 

variance). Though the minimum expected cost has been widely used as a standard 

decision criterion, it is only suitable for risk-neutral decision-makers. This criterion 

cannot cope with different attitudes (Levy 2015). Goda and Hong (2006) indicated the 

structural design based on the expected life-cycle cost may not be optimal, and stated 

the need for statistical moments (e.g., variance, skewness, and kurtosis) of the cost. 

Some studies discussed the probability distribution associated with seismic loss 

modeling. For instance, Pandey and van der Weide (2018) modeled the probability 

distribution of seismic loss considering the life-cycle of engineering structures. De Risi 

et al. (2020) provided a component-level methodology to assess the seismic damage 

cost due to repair, in which the uncertainty associated with the standard deviation of 

the cost is considered. However, few studies have investigated the higher-order 
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moments of hurricane-induced losses. Furthermore, the mean-variance criterion is 

sufficient only when the utility function within the decision-making process is quadratic 

or the investment return (e.g., the loss represents a negative return) follows a normal 

distribution (Markowitz and Todd 2000). Therefore, there is a need to investigate the 

higher-order moments of the cost in a life-cycle context. 

Higher-order moments, i.e., skewness and kurtosis, measure asymmetry and tail 

conditions of the distribution with respect to the long-term loss. In risk management, 

large skewness and kurtosis of loss imply heavy tail risks. Such undesired risks are 

associated with low-probability events with disastrous consequences, e.g., credit risk 

crisis (Kelly and Jiang 2014) and COVID-19 pandemic (Beck 2020). Higher-order 

moments are required when risk preferences of decision-makers are considered, e.g., in 

the stochastic dominance criteria (Aksaraylı and Pala 2018; Levy 2015). For instance, 

a decision-maker with the absolute risk-averse attitude prefers positive skewness and 

small kurtosis of the investment return, as highly skewed data with large kurtosis 

indicate an increased likelihood of extreme losses (Maringer and Parpas 2009). 

Different decision results may be obtained due to the exclusion of these moments. 

Therefore, the assessment of higher-order moments of long-term loss is necessary. 

These moments can be used to aid the decision-making and optimal structural design 

of civil infrastructure by considering different attitudes. 

This chapter proposes a novel framework for the higher-order analysis of long-

term loss under both stationary and nonstationary hazards. An analytical approach 

based on the moment generating function is developed to assess the first four statistical 

moments of long-term loss under different stochastic models (e.g., homogeneous 
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Poisson process, non-homogeneous Poisson process, renewal process). Based on the 

law of total expectation, the developed approach expands the application scope of the 

moment generating function to nonstationary models and higher-order moments (i.e., 

skewness and kurtosis). Compared with the method using the renewal function 

described in CHAPTER 5, the proposed approach effectively addresses the difficulty 

of assessing higher-order moments in a renewal process. Besides the loss analysis, the 

mixed Poisson process, a relatively new stochastic model, is introduced to consider 

uncertainty springing from the stochastic occurrence rate. An illustrative example is 

presented to demonstrate practical implementations of the developed approach. The 

example shows the impact of different nonstationary characteristics on the long-term 

loss assessment. The advantages and limitations of using the renewal model described 

in CHAPTER 5 and the proposed moment generating function approach in this chapter 

are also discussed. The proposed framework can aid decision-makers to select the 

optimal option by incorporating higher-order moments of long-term loss within the 

decision-making process. 

 

6.2 Nonstationary arrival models 

In previous studies, stationary models (e.g., homogeneous Poisson process) have been 

widely used for loss estimation. However, the approach based on the stationary model 

is not applicable for nonstationary hazard arrivals. Studies show that various hazards 

show nonstationary behavior in terms of stochastic occurrence (Lee and Ellingwood 

2017). For instance, the long-term earthquake forecast is simulated by a renewal 

process, in order to incorporate the time-varying energy accumulation of the fault 
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(Ellsworth et al. 1999; Field et al. 2015). The time-dependent trends are also identified 

in other hazards, such as more frequent hurricane landfalls under climate change 

(Bender et al. 2010), increased wind speeds (Jagger and Elsner 2006), extreme 

precipitation (Tramblay et al. 2013), and sea-level rise (Obeysekera and Park 2013). In 

addition to natural hazards, the progressive deterioration of structural systems is also 

stochastic and time-variant (Yang and Frangopol 2019a). Given the time-dependent 

characteristics of hazards, a general framework is needed to evaluate the long-term loss 

of civil infrastructure under both stationary and nonstationary hazards. Therefore, the 

stationary occurrence rate is an idealized assumption and a realistic rate can be time-

dependent and stochastic. Herein, three typical examples of nonstationary processes are 

provided: the non-Poisson renewal process, non-homogeneous Poisson process, and 

mixed Poisson process. In this context, a process is considered as ‘nonstationary’ when 

the occurrence rate is not constant. 

 

6.2.1 Non-Poisson renewal process  

The occurrence of hazards could be time-dependent. For instance, after an earthquake, 

there can be a long period before the next earthquake, in which the accumulated elastic 

strain energy is released by the fault. By considering such time-dependent 

characteristics, a non-Poisson process can be used to model the occurrence of 

earthquakes over a long period of time (Cornell and Steven 1988; Matthews et al. 2002). 

In the nonstationary renewal processes, different probabilistic models of inter-arrival 

times are used to quantify the time-dependent characteristics. For instance, several 

distributions of the inter-arrival time are provided in earthquake engineering, including 
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lognormal (Michael 2005), gamma (Hainzl et al. 2006), and Brownian Passage Time 

(BPT) distribution (Matthews et al. 2002).  

 

6.2.2 Non-homogeneous Poisson process 

Another nonstationary model used for the long-term loss assessment is the non-

homogeneous Poisson process, with a time-dependent occurrence rate. A renewal 

process is not necessarily limited to the exponentially distributed inter-arrival times, 

while the Poisson process is not subjected to the time-independent occurrence rate. For 

instance, the non-homogeneous Poisson process can be used to model hurricane 

landfalls in a changing climate (Ellingwood and Lee 2016; Lin and Shullman 2017). 

The frequency of hurricanes may increase due to the impact of the warming climate. 

For this process, the occurrence rate is time-varying, e.g., λ(t). The expected number of 

hazard arrivals over the time interval (0, tint] can be computed as 
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The probability of having n number of arrivals within the time interval (0, tint] 

is computed as 
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6.2.3 Mixed Poisson process 

In the homogeneous and non-homogenous Poisson processes, the occurrence rate is 

restricted to a deterministic intensity function (i.e., either a constant λ or the time-

dependent λ(t)). However, the deterministic function may not be sufficient to capture 

the uncertainty in a long-term trend. The mixed Poisson process, which covers 

uncertainty within the intensity function, is receiving increased attention in the hazard 

model and should also be evaluated. For instance, Xiao et al. (2015) suggested using a 

stochastic intensity function to model hurricane occurrence when considering seasonal 

variability, based on the recorded hurricane activities along the U.S. Gulf and Atlantic 

coasts between 1900 and 2010. 

The mixed Poisson process is known as a special case of the cox process. A cox 

process is a Poisson process, in which the occurrence rate is a stochastic process 

(denoted as {G(tint), tint > 0}). A cox process becomes a mixed Poisson process when 

the rate is a random variable, e.g., {G(tint)} = Λ. Given the rate Λ, increments in the 

mixed Poisson process stay stationary (Ross 2014). However, these increments are no 

longer independent, as the number of arrivals relies on the distribution of Λ. Herein, 

the stochastic rate Λ is assigned to follow a gamma distribution with shape parameter 

α and rate parameter β. The rate Λ is continuous with a probability density function 

g(x). Hence, the probability density function of the gamma distributed rate Λ ~ Γ(α, β) 

can be assessed as 
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Consequently, the probability of having n number of arrivals within the time 

interval (0, tint] is 

 int

1

int
int

0

( )
( ( ) )

! ( )

n
xt xxt x

N t n e e dx
n
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
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6.3 Long-term loss under nonstationary hazards 

Based on the stochastic models, the long-term loss of civil infrastructure subjected to 

hazards can be formulated. The time interval (0, tint] is defined as the service life of civil 

infrastructure. During the time interval, hazard arrivals are modeled as a stochastic 

process and the total number of hazard events is N(tint) = n with N(0) = 0. The arriving 

time and inter-arrival time of the kth event can be defined as Tk and Wk, respectively. 

The arriving time Tk equals the sum of inter-arrival times, i.e., Tk = W1 + W2 + … + Wk, 

as described previously. L is the loss severity. Lk refers to the financial loss due to 

structural damage/failure under the kth hazard event. The loss severity Lk and the inter-

arrival time Wk are assumed to be independent. The long-term loss, denoted as LTL(tint), 

is the hazard-induced financial loss of civil infrastructure subjected to hazards within 

the investigated period tint. The loss is discounted to the present value using a monetary 

discount rate r, as indicated in Figure 6-1. The long-term loss LTL(tint) gives 
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The long-term loss LTL(tint) is related to the stochastic models of the hazard. 

For instance, if a homogeneous Poisson process is implemented for loss assessment, 
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the inter-arriving time Wk follows an exponential distribution, and the number of 

arrivals N(tint) has a Poisson distribution. These parameters are different under different 

models. 

 

Figure 6-1 Long-term loss model by considering discounting and hazard arrival 

process. 

 

6.4 Higher-order analysis using moment generating function 

This section introduces the theoretical fundamentals of the proposed moment 

generating function-based approach. Analytical derivations of moment generating 

functions and statistical moments of long-term loss under the homogeneous Poisson 

process, non-homogeneous Poisson process, mixed Poisson process, and renewal 

process are presented. The merit, capability, and limitations of the developed approach 

are also discussed. 
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6.4.1 Moment generating function approach 

The moment generating function uniquely dictates the probability distribution of a 

random variable. This property can be adopted to formulate probability distributions of 

random variables. For instance, random variables will have the same probability 

distributions if they have identical moment generating functions. Another property of 

the moment generating function is that raw moments (e.g., mean, second moment) can 

be obtained by taking derivatives (Ross 2014; Shreve 2004). This property is utilized 

to formulate statistical moments of long-term loss. 

For a random variable X, its moment generating function about η (η  ℝ) is 

defined as ΦX(η) 

 ( ) [ ]X

X E e   (6-6) 

The first two raw moments of X can be obtained by taking the first and second 

derivatives of the moment generating function at zero 
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Similarly, the mth-order moment can be assessed by taking the mth derivative 

at zero 
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Based on this concept, the key to derive higher-order moments of long-term loss 

LTL(tint) is to compute its moment generating function 
int( )LTL t . 

 

6.4.2 Moment generating function for homogeneous Poisson case 

With respect to the homogeneous Poisson case, the moment generating function of 

long-term loss can be derived in terms of a compound Poisson process. By conditioning 

on the number of arrivals (i.e., N(tint) = n) with the Poisson distribution, the moment 

generating function of long-term loss 
int( )LTL t  can be evaluated using the law of total 

expectation. 

The moment generating function of the long-term loss is  
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According to the properties of moment generating functions (Mikosch 2009), 

the Eq. (6-10) can be expressed as 
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Eq. (6-11) requires the joint probability density function of the arriving times 

T1, T2, …, Tk. The loss severity is independent of the number of arrivals N(tint). Hence, 

for the homogeneous Poisson process, the conditional joint probability density function 

of the arriving times T1, T2, …, Tk given N(tint) = n can be represented by  
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in which 0 < s1 < s2 < … < sn < tint. The result shown in Eq. (6-12) can be alternatively 

explained by the order statistics (Mikosch 2009; Ross 2014). Given N(tint) = n, the 

arriving time can be expressed by a sequence of independently identically uniformly 

distributed random variables {U1, U2, …, Un} 
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where 
d

  refers to that the same probability distribution is maintained on both sides. 

Random variables U1, U2, …, Un have a uniform distribution over (0, 1). Consequently, 

substituting Eq. (6-12) into Eq. (6-11), the moment generating function of long-term 

loss can be rearranged as  
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(6-14) 

Within the period of (0, tint], the right-hand side of Eq. (6-14) is noted as Ω. 

Taking derivatives on both sides with respect to tint, Eq. (6-14) can be rearranged as Eq. 

(6-15) 
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By solving this linear differential equation Eq. (6-15), the moment generating 

function can be obtained as 
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in which ΦL refers to the moment generating function of loss severity L. The derivation 

of ΦL requires the information with respect to the probabilistic distribution of loss 

severity. In general, the process of deriving moment generating function is 
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Previous studies indicated that the probabilistic loss severity can be modeled by 

the exponential distribution (Read and Vogel 2016; Smith 2003). Herein, the loss 

severity L is assumed to follow an exponential distribution L ~ EXP(θ), with the mean 
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E[L] = 1/θ. By substituting ΦL into Eq. (6-17), the moment generating function of long-

term loss 
int( )LTL t  under the homogeneous Poisson process gives 
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By taking the first and second derivatives at zero, the expectation and variance 

of long-term loss can be obtained  
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Likewise, the mth order moment can be assessed using Eq. (6-16). The 

expressions of skewness and kurtosis are associated with the third and fourth-order raw 

moments. For instance, the skewness u3 and kurtosis u4 are 
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in which μ refers to the expected long-term loss E[LTL(tint)] and σ is the standard 

deviation of LTL(tint). Consequently, skewness and kurtosis of long-term loss can be 

obtained 
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Eqs. (6-23) and (6-24) show the skewness and kurtosis of long-term loss are not 

affected by θ. Hence, the skewness and kurtosis under the homogeneous Poisson 

process are independent of the exponentially distributed loss severity. When other 

distributions are used for the loss severity, the higher-order moments may be affected. 

 

6.4.3 Moment generating function for non-homogeneous Poisson case 

The same technique can be used for the non-homogeneous model by applying the law 

of total expectation. For the non-homogeneous Poisson process, the expected number 

of arrivals Q(tint) becomes 
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Given the number of arrivals, the moment generating function of long-term loss 

can be derived as 
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(6-26) 

For the non-homogeneous Poisson process, the conditional probability density 

function of arriving times is  
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where Q(tint) is the expected number of hazard events (Léveillé and Hamel 2018), as 

indicated in Eq. (6-25). Following a similar computation procedure, as shown in Eq. 

(6-11), the moment generating function can be expressed as  
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Taking derivatives at two sides of Eq. (6-28), the moment generating function 

of long-term loss associated with the non-homogeneous Poisson process can be 

expressed as  
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If a linear function is used for the increasing occurrence rate, e.g., λ(tint) = λ0(1 

+ ctint), the moment generating function becomes 
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in which λ0 is the initial stationary occurrence rate and c refers to an annual increase 

rate of hazard occurrence. For the given linear rate function, the moment generating 

function may not be differentiable at zero. Under this circumstance, the moments can 

be computed by taking derivatives and finding limits by approaching zero. Accordingly, 

the raw moments can be computed as 
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6.4.4 Moment generating function for mixed Poisson case 

As mentioned earlier, the mixed Poisson process has a stochastic occurrence rate Λ. 

Though the random variable Λ affects the probability of the number of arrivals, the 

inter-arrival times are not influenced by time. Hence, the derivation of the moment 

generating function for the mixed Poisson case is similar to that for the homogeneous 

case, as shown in Eq. (6-11). The deterministic rate in the homogeneous model is 
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switched to the stochastic random variable, e.g., λ = E[Λ] and λ2 = E[Λ2]. Therefore, 

the moment generating function of long-term loss under the mixed Poisson model gives 
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For the illustrative purpose, the random variable Λ follows a gamma distribution 

Λ ~ Γ(α, β), as shown in Eq. (6-3). The loss severity L remains the exponential 

distribution L ~ EXP(θ). The moment generating function of the gamma distributed rate 

is 
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Substituting Eq. (6-33) into Eq. (6-32), the moment generating function of long-

term loss gives 
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According to Eq. (6-34), the moments of long-term loss under a mixed Poisson 

process can be assessed. 

 

6.5 Higher-order moments for renewal case 

6.5.1 Higher-order moments using moment generating function 

For some stochastic models, properties of the models can be used to formulate the 

moment generating functions. In this section, statistical moments of long-term loss 
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under a renewal process are assessed by incorporating the renewal function and 

convolution technique. Under this scenario, the provided derivations are based on a 

general renewal process and the probability distribution of the inter-arrival time W is 

not specified. The formulation of moment generating function of long-term loss 

remains the same as presented before  
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According to the renewal theorem (Ross 2014), Eq. (6-35) can be written as 
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where FW indicates the cumulative distribution function of the inter-arrival time. 

Consequently, the moments of long-term loss under the renewal process can be 

obtained by taking derivatives of Eq. (6-36) at zero. The mth-order derivative of the 

moment generating function gives 
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When η equals zero, the mth-order moments of long-term loss is 



 

129 

 

int

int

int

int

1
( )

int ( )

0 0

( )

( )

0

( ) [ ] (0) ( )

(0) ( )

tm
m m k mrs k

LTL t s W

k

t

mrs m

LTL t s W

m
E LTL t E L e dF s

k

e dF s


 









 
     

 

 

 



 (6-38) 

The convolution technique and the renewal function are used to solve Eq. (6-38). 

The renewal function refers to the expected number of events in a renewal process. 

Based on the cumulative distribution function of the inter-arrival time FW, a defective 

distribution function can be defined as (Li et al. 2020a) 
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The convolution power of Eq. (6-39) can be rewritten using the renewal function 

Θ. The summed i-fold convolution power gives 
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where * is a convolution operator. Substituting Eqs. (6-39) and (6-40) into Eq. (6-38), 

the mth-order moment can be formulated as follows 
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The first four moments of long-term loss can be effectively obtained by using 

this recursive equation, i.e., Eq. (6-41). This recursive equation is validated by 

comparing the first two moments with the results provided by (Pandey and Van Der 

Weide 2017), in which the analytical expressions of the mean and variance using the 

regenerative property were provided. The moments of long-term loss assessed by Eq. 

(6-41) are based on a general renewal process. The loss under renewal processes with 

different probabilistic models of the inter-arrival times can be computed by employing 

different renewal functions. The implementation of the renewal function circumvents 

complicated derivations starting from a stochastic process. 

The homogeneous Poisson process, as a typical renewal process, has a renewal 

function defined as dΘ(s)/ds = λ. Consequently, the mth-order moment of long-term 

loss under the homogeneous Poisson model is 
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The expectation and variance of the long-term loss are assessed 
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The third and fourth-order moments obtained from the renewal function are also 

validated by comparing with the values computed using the moment generating 

function, as shown in Eqs. (6-19) and (6-20). 
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6.5.2 Comparison between renewal approach and moment generating function 

approach 

As introduced in CHAPTER 5, the renewal approach is efficient in solving the 

homogeneous Poisson process and renewal processes using the renewal function. 

Identifying the distribution type of loss severity is not necessary under the renewal 

condition. Compared with the renewal approach, the moment generating function 

approach model is more computationally demanding but also has a wider application 

range. The moment generating function efficiently solves higher-order moments of 

long-term loss under different stochastic models (the renewal process, homogeneous 

Poisson process, non-homogeneous Poisson process, and mixed Poisson process). 

Based on the law of total expectation, the proposed approach expands the application 

scope of the moment approach, which was formerly used for the homogeneous Poisson 

model only. Using the convolution technique, the higher-order moments of loss under 

a renewal process are successfully derived from the developed approach. During the 

computational process, if the limit function of the moment generating function is 

difficult to solve, the raw moments can be assessed using Eq. (6-31). 

The developed approach is validated by Monte Carlo simulation and more 

details are shown in illustrative examples. Some of the derivations may not be 

applicable to stochastic processes without Poisson properties, e.g., when inter-arrival 

times are not independent identically distributed. Additionally, by considering the 

mathematical definition, the moment generating function may not exist due to divergent 

integrals. These issues should be carefully considered during the application process. 

Apart from the loss assessment, higher-order moments can be used to compute long-
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term reliability (Zhao and Ono 2001). For instance, skewness was involved in the third-

order moment method to assess the long-term reliability of reinforced concrete 

structures under chloride-induced corrosion (Zhang et al. 2015). Reliability analysis 

involving skewness and kurtosis was also conducted in Lu et al. (Lu et al. 2019). 

Another application of the moment generating function is that statistical moments can 

be used if there is insufficient information. For instance, Zhao and Lu (2007) used 

statistical moments to describe probabilistic characteristics of random variables. 

 

6.6 Illustrative example 

The occurrence of hurricanes can be modeled as a stochastic process using observation 

data (Elsner et al. 2001; Katz 2002). For instance, a homogeneous Poisson process can 

be used to model hurricane arrivals in a stationary environment (Elsner et al. 2001). 

However, stochastic models using historical observations only may not be sufficient to 

project future scenarios, as the variability in characteristics of hazards is not considered 

(Hallegatte et al. 2011). In recent decades, hurricane arrivals in a changing environment 

considering the effects of climate change and variability have been modeled by the non-

homogeneous and mixed Poisson models (Elsner and Bossak 2001; Lin and Shullman 

2017). This example aims to assess the impact of climate change and variability on 

hurricane-induced losses, from a long-term perspective. 

The homogeneous Poisson process is widely used to model hurricane arrivals 

in a stationary environment, which assumes a constant occurrence rate λ based on 

historical observations (Elsner et al. 2001; Katz 2002). This rate is typically determined 

by dividing the total number of hurricane landfalls by the observation period (Elsner et 
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al. 2001). Recent studies observe the increasing trend in hurricane frequency in the 

warming climate (Emanuel 2005). For such scenarios, the non-homogeneous Poisson 

process with an increasing occurrence rate, i.e., λ(tint), could be used to predict the 

increase in the number of hurricane arrivals (Ellingwood and Lee 2016; Lin and 

Shullman 2017). 

In a changing environment, in addition to the potential increasing trend, the 

occurrence of hurricanes can be significantly influenced by climate variability. Climate 

variability refers to variations in the mean state and characteristics of climate (Kossin 

et al. 2007). Previous studies stated the importance of considering the occurrence rate 

as a random variable in the Poisson process (i.e., the mixed Poisson process) for future 

hurricane predictions. For instance, Elsner and Bossak (2001) projected the occurrence 

rate of the U.S. hurricane landfalls using the mixed Poisson model. Villarini et al. (2010) 

assessed changes in hurricane frequency using the mixed Poisson process, by modeling 

the dependence of hurricane occurrence on different climate indices. In this example, a 

gamma distributed stochastic rate is utilized (Elsner and Bossak 2001). 

The long-term loss analysis is performed on a multi-span simply supported 

girder bridge (Li and Dong 2019). The bridge has six spans equally distributed with a 

length of 146 m. This type of bridge is most susceptible to deck unseating damage (Zhu 

and Dong 2020). The given annual occurrence rate of hurricane λ0 is 0.245 for the 

investigated area in the stationary environment (i.e., with a homogeneous Poisson 

process). The rate is determined by counting the total number of 27 hurricane landfalls 

in the investigated region from 1900 to 2100, i.e., λ0 = 27/110 per year (Wang et al. 

2017a). The expected loss severity E[L] is 1.283 million USD (Li and Dong 2019). The 
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detailed computation of λ0 and loss severity under hurricane hazards can be performed 

according to the process as described in CHAPTER 3 and CHAPTER 5. The monetary 

discount rate r is 2% for the long-term evaluation (Lee and Ellingwood 2015). The loss 

severity follows an exponential distribution. 

In a stationary environment, the occurrence of hurricanes is modeled as a 

homogeneous Poisson process, with a rate of λ = λ0 throughout the lifetime. In a 

changing climate, the non-homogeneous Poisson process is adopted and the occurrence 

rate is assumed to follow an increasing linear relationship λ(tint) = λ0(1 + ctint), in which 

c refers to an annual increase rate of hurricane landfalls (Ellingwood and Lee 2016). 

The annual increase rate of 0.2% indicates that the number of hurricanes is increased 

by 20% in the next century (Bender et al. 2010; Ellingwood and Lee 2016). The mixed 

Poisson process is also adopted to compute the long-term loss of the bridge under 

hurricanes considering climate variability. Herein, the parameters within the stochastic 

occurrence rate Λ ~ Γ(α, β) are based on the information presented in Elsner and Bossak 

(2001). The rate has a mean of E[Λ] = λ0 (the same value as the rate in the homogeneous 

model) and the gamma parameters are assumed as Λ ~ Γ(0.49, 2). Given more 

information (e.g., climate information), the parameters used in the non-homogenous 

and mixed Poisson processes can be upgraded and the relevant results would be 

computed. 

The expectation, standard deviation, coefficient of variation, skewness, and 

kurtosis of the long-term loss under the homogeneous, non-homogeneous, and mixed 

Poisson processes are obtained for the investigated bridge by using the proposed 

approach, as shown in Table 6-1. When the service life reaches 150 years, the expected 
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long-term loss of bridge under the non-homogeneous Poisson model is approximately 

increased by 5.0% in the changing climate. As a relatively small increase in the 

occurrence rate is assumed in this example, the loss results with respect to the non-

homogeneous model do not show large differences from those of the homogeneous 

model. 

According to Table 6-1, all skewness values are positive (right-skewed), which 

indicates a longer tail on the right side of the distribution of long-term loss. 

Homogeneous and non-homogeneous models are moderately skewed (skewness 

between 0.5 and 1), while the mixed model is highly skewed (skewness greater than 1). 

Meanwhile, all kurtosis values are greater than 3, indicating that all the tails are heavier 

and longer than a normal distribution. For the case using the mixed Poisson process, 

the expected loss is the same as that using the homogeneous Poisson process, but the 

standard deviation, skewness, and kurtosis are much larger, which indicated potential 

heavy tail risks. Special attention should be paid to this aspect within the decision-

making process. 

Table 6-1 Statistical moments, i.e., mean, standard deviation (SD), skewness (ske), and 

kurtosis (kur), of Long-term loss of the bridge under homogeneous, non-homogeneous 

(NHPP), and mixed Poisson processes. 

Model Lifetime 

(years) 

Mean 

(106 USD) 

SD 

(106 USD) 

COV Ske Kur 

Homogeneous 

75 

12.2099 4.3773 0.36 0.61 3.54 

NHPP 12.9048 4.4686 0.35 0.59 3.51 
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Mixed 12.2099 17.9835 1.47 2.86 15.27 

Homogeneous 

150 

14.9343 4.4849 0.30 0.57 3.49 

NHPP 16.1929 4.5941 0.28 0.55 3.46 

Mixed 14.9343 21.8010 1.46 2.86 15.26 

 

The proposed analytical method is validated by the Monte Carlo simulation. In 

the simulation approach, the homogeneous model is generated using the exponentially 

distributed inter-arrival times, while a non-homogeneous process is simulated using the 

thinning method (Gerhardt and Nelson 2009). The mixed Poisson process is simulated 

based on the stochastic occurrence rate (Burnecki and Weron 2005). The results of the 

mean and standard deviation of the long-term loss under the homogenous and non-

homogeneous models are indicated in Figure 6-2. Figure 6-3 shows the standard 

deviation of long-term loss of the investigated bridge under different hurricane 

occurrence models. The loss under the mixed Poisson process has the largest dispersion, 

as the mixed model involves large uncertainties of climate variability, compared with 

the other two Poisson models. In the figures, the comparison between the analytical and 

simulation results is also provided. A good agreement among the results indicates the 

accuracy and effectiveness of the proposed analytical method. Compared with the 

analytical approach, the simulation of a single run with respect to an assigned lifetime 

takes about one to two hours. The simulation was conducted on a computer with Intel 

Core i7-6700 CPU (4 core, 3.40 GHz, 16 GB RAM) and Intel HD Graphics 530 GPU. 

In this example, the simulation approach is time-consuming and computationally 

expensive. 
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(a)                                                                      (b) 

Figure 6-2 (a) Expectation and (b) standard deviation of hurricane-induced long-term 

loss under homogeneous (HPP) and non-homogeneous model (NHPP) by moment 

generating function (MGF) method and Monte Carlo (MC) simulation. 

 

 

Figure 6-3 Standard deviation of hurricane-induced long-term loss under homogeneous 

(HPP), non-homogeneous (NHPP), and mixed Poisson model by moment generating 

function (MGF) method and Monte Carlo (MC) simulation. 
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monetary discount rates from 1% to 5% is considered for the homogeneous Poisson 

model. Figure 6-4(a) illustrates that the expected long-term loss decreases rapidly with 

the increase of the monetary discount rate. The same trend is also observed for the 

standard deviation of long-term loss. However, the tendency is opposite with respect to 

skewness and kurtosis. Figure 6-4(b) shows that skewness increases with the discount 

rates. Hence, appropriate predictions of the monetary discount rate are significant for 

long-term loss estimation. 

 

(a)                                                                      (b) 

Figure 6-4 (a) Expectation and (b) skewness of the long-term loss considering different 

monetary discount rates. 

 

E
x

p
e
c
ta

ti
o

n
o

f 
L

T
L

 (
U

S
D

)

Time interval tint (year)
0 50 100 150

0

0.5

1

1.5

2

2.5
10

7

r = 1%

r = 2%
r = 4%

r = 3%

r = 5%

0 50 100 150

0.5

1

1.5

2

r = 1%
r = 2%

r = 4%

r = 3%

r = 5%

S
k
e
w

n
e
ss

o
f 

L
T

L

Time interval tint (year)



 

139 

 

(a)                                                                      (b) 

Figure 6-5 (a) Impact of the variability of loss severity on the long-term loss 

considering identical expectation E[L] with different standard deviations of loss 

severity SD[L]and (b) the effect of variability of loss severity on the skewness of long-

term loss. 

The loss severity is another key input for the loss assessment, as its mean E[L] 

and standard deviation SD[L] are associated with large uncertainty in hazard 

characteristics and climate environments. The impact of the variability of loss severity 

on the long-term loss is assessed. The long-term loss with the initial standard deviation 

SD[L] is taken as the reference value. The long-term loss under the other four cases 

with triple, double, one-half, and one-third SD[L] is assessed. The associated standard 

deviations are presented in Figure 6-5(a). It shows that the dispersion of long-term loss 

is significantly enlarged with the increase of loss severity. However, the skewness of 

long-term loss is not influenced, as shown in Figure 6-5(b). From Eqs. (6-23) and (6-24), 

the skewness and kurtosis are independent of the exponentially distributed loss severity. 
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In the illustrative examples, structures are assumed to be fully restored to the 

pre-hazard stage. This assumption is commonly used in the loss assessment (Padgett et 

al. 2010; Wen and Kang 2001; Yeo and Cornell 2009). The level of restoration usually 

depends on many factors, e.g., the acceptable level of structural performance, 

investment, and tradeoffs between appropriate performance levels and investment. 

Further studies are needed to incorporate different restoration models. 

 

6.7 Summary 

This chapter develops a novel moment generating function-based analytical approach 

to perform higher-order analysis in a life-cycle context. The moment generating 

function-based approach is proposed for the higher-order analysis of long-term loss. By 

using the law of total expectation, the developed approach successfully expands the 

application scope of the moment generating function. Explicit expressions of moment 

generating functions are presented for the homogeneous, non-homogeneous, and mixed 

Poisson processes. When the derivations of moment generating functions are complex, 

e.g., in a renewal process, properties of the stochastic process can be utilized. The 

renewal function and the convolution technique are used to derive moments under the 

renewal model. A new stochastic model of the mixed Poisson process is introduced, 

which is associated with a random variable for the rate function. Statistical moments of 

long-term loss under this new model are also effectively assessed using the moment 

generating function. In addition to the lower-order moments (i.e., mean and standard 

deviation), higher-order moments (i.e., skewness and kurtosis) of the long-term loss can 

be successfully derived using the proposed moment generating function. The proposed 



 

141 

approach is flexible to solve various stochastic processes. For instance, apart from the 

stationary model (e.g., homogeneous Poisson process), statistical moments associated 

with non-homogeneous Poisson, mixed Poisson, and renewal processes can be 

effectively attained. The analytical approach is validated by the Monte Carlo 

simulations. With a satisfactory agreement of the results, the effectiveness and accuracy 

of the proposed approach are validated.  

The proposed approach is applied to an illustrative example to assess the long-

term loss of highway bridges subjected to hurricanes. The long-term loss of the 

investigated civil infrastructure under different stochastic occurrence models of hazard 

is computed. In particular, the homogeneous Poisson, non-homogeneous Poisson, and 

mixed Poisson processes are investigated. The impact of climate change and variability 

on hurricane-induced loss is assessed. Due to the stochastic occurrence rate within the 

mixed Poisson process, the relevant standard deviation, skewness, and kurtosis of long-

term loss are much larger than those associated with other models. In addition, the long-

term loss is sensitive to the change of loss severity and monetary discount rate. 

Appropriate evaluations of these parameters are required for the loss assessment. 
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CHAPTER 7 LIFE-CYCLE ANALYSIS SUBJECTED TO 

MULTIPLE DEPENDENT DETERIORATION 

PROCESSES 

7.1 Introduction 

Civil infrastructure systems are subjected to multiple deterioration processes during the 

lifetime, such as gradual deterioration caused by environmental influence (e.g., 

corrosion and crack growth) and shock deterioration due to extreme events (e.g., 

hurricanes and earthquakes). These deterioration processes may affect the performance 

of systems and interrupt service. The combination effects of deterioration processes 

may lead to damage and failure, thus threatening public safety and resulting in 

considerable financial and social losses. During the life-cycle analysis, due to various 

uncertainties associated with deterioration, rational stochastic models and reliability 

analysis can be essential. Although numerous studies have accounted for both gradual 

and shock deterioration processes (Giouvanidis and Dong 2020; Gong and Frangopol 

2019; Li et al. 2015), while interaction and correlation between them are commonly 

neglected (i.e., assume they are independent), e.g., Ghosh and Padgett (2010) and Peng 

and Stewart (2014).  

This chapter evaluates the structural performance of civil infrastructure under 

multiple deterioration processes. In addition to a gradual deterioration process and an 

external deterioration process, a fatal shock process is considered to incorporate 

uncertainties associated with extreme events. The fatal shock results from extreme 
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events such as earthquakes and hurricanes, and their occurrence can be modeled by 

stochastic processes presented in CHAPTER 5 and CHAPTER 6. The fatal shock leads 

to immediate failure of the system. Interactions among different deterioration processes 

are explored and the associated impact on the system is assessed by time-dependent 

reliability. The effect of interaction among deterioration processes and the effect of fatal 

shocks are investigated. 

 

7.2 Structural deterioration over life-cycle 

Stochastic models associated with system deterioration are described in this section. 

The gradual deterioration is modeled by a stochastic gamma process. Two types of 

shock processes, i.e., external shocks and fatal shocks, are considered in this chapter. 

Reliability-based maintenance policies are proposed considering the interaction 

between deterioration processes. 

 

7.2.1 Gradual deterioration 

The stochastic gamma process has been widely used to model gradual deterioration 

(Iervolino et al. 2013; Sanchez-Silva et al. 2011). Compared with the conventional 

deterministic time-dependent model, e.g., using a deterioration function (Guo et al. 

2020), a gamma process describes the auto correlation and monotonous (non-increasing) 

characteristics in terms of the system deterioration, thus providing considerable 

effectiveness and convenience during mathematical calculations (Cheng et al. 2012). 

Furthermore, the stochastic process associated with the gradual deterioration allows the 
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mathematical computation of dependent multiple deterioration processes, thus 

providing sufficient efficiency during the modeling. The gradual deterioration of an 

infrastructure system can be modeled by a stochastic gamma process {Q(s), s ≥ 0}. 

Over an interval (0, s], the cumulative degradation Q(s) follows the gamma distribution, 

and its PDF ga(q; αs, β) and CDF Ga(q; αs, β) are given by 
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where αs and β are shape and scale parameters, respectively; 1

0
( , ) s xs x e dx

        

is the lower incomplete gamma function; and 1

0
( ) s xs x e dx

      is the complete 

gamma function.  

 

7.2.2 Shock deterioration: external shock and fatal shock 

Different from gradual deterioration, shock deterioration indicates the abrupt decrease 

in the performance of a system caused by a shock event (Caballé and Castro 2017; Guo 

et al. 2020). There are two shock processes considered herein. One is the external shock 

process, which leads to the accumulation of shock deterioration and results in failure 

when the failure threshold is reached. The other one refers to a fatal shock process, 

which leads to immediate failure of the system. It is necessary to account for random 

fatal shocks, as the system can be subjected to extreme events with low-frequency and 
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high-consequence during the lifetime. Two shock processes are modeled by the Poisson 

processes, in which the occurrence rate of a fatal shock process λFaS is much smaller 

than that of an external shock process λExS. For a single shock process, the number of 

shocks follows a Poisson distribution, which gives 

 
   exp

[ ( ) ]
!

x
t t

N t x
x

 
    (7-3) 

where q is the number of shocks with x = 0, 1, 2, … and λ is the occurrence rate of a 

shock process. 

 

7.3 System reliability analysis 

As the system degrades due to gradual deterioration and shocks, reliability assessment 

is essential to evaluate the structural performance during life-cycle analysis. Recent 

studies have paid more attention to investigate multiple deterioration processes and 

their interaction on structural reliability. For instance, Kumar et al. (2015) proposed a 

stochastic framework for engineering systems to estimate the time to failure considering 

exposure to gradual degradation and sudden events. Wang et al. (2017b) developed a 

dependence framework to assess the time-dependent reliability of deteriorating 

structures considering the correlation between gradual and shock deterioration 

processes. Jia et al. (2021) investigated the stochastic deterioration of reinforced 

concrete structures considering compound effects of corrosion, earthquakes, and ASR. 

In addition to interactive effects, the system can be exposed to various extreme events 
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associated with low probability and high consequence. Therefore, the impact of extreme 

events on structural performance should be evaluated. 

 

7.3.1 Stochastic demand and capacity 

The deterioration of a system has a direct influence on structural reliability. The time-

dependent reliability analysis relies on the assessment of demand and capacity 

subjected to stochastic deterioration. During the service life of a system (0, s], the 

random occurrence of external loads {
it

U } with i = 1, 2, …, n impose demand {
nt

D } 

upon the system. The arriving times of external loads are t1, t2, …, tn. Subsequently, the 

period (0, s] is divided into n + 1 intervals by n number of load events, i.e., (0, t1], (t1, 

t2], …, (tn - 1, tn], (tn, tn + 1 = s]. Meanwhile, the system suffers from gradual and external 

shock deterioration, thus reducing the capacity. The system resistance at time tn can be 

denoted as 
nt

R  
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where R0 represents the initial capacity of the system; nt


 and nt


 are the time 

immediately before and after tn; 
i

ExS
tR  is the external shock deterioration at time ti; and 
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i

Gra
tR  is gradual deterioration within time interval (ti - 1, ti]. Figure 7-1 describes the 

impact of gradual and shock deterioration on the system capacity at tn ( nt
  and nt

 ). 

 

Figure 7-1 Schematic diagram of deterioration of system capacity. 

For normalization, the capacity can be defined as the product of the deterioration 

function G(t) and the initial capacity R0, i.e., R(t) = R0·G(t). Accordingly, the time-

dependent deterioration function can be defined as 

 

1

0 0

1 1

1 / /
i in

n n
Gra ExS
t tt

i i

G R R R R



 

       (7-6) 

 0 0

1 1

1 / /
i in

n n
Gra ExS
t tt

i i

G R R R R

 

       (7-7) 

For the system with a lifetime of (0, s], the deterioration function at time s 

becomes 
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where N− is the maximum integer j with tj < s and N+ is the maximum integer j with tj 

≤ s. N+ = N− + 1 only when s = ti (i = 1, 2, …, n) otherwise N+ = N−. Based on Eqs. (7-8) 

and (7-9), within the lifetime (0, s], the deterioration function at time s can be given as  
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7.3.2 Failure mechanisms and limit state function 

Two possible failure modes of the system are considered: one is that failure occurs 

when the demand exceeds its capacity, and the other one defines that the system fails 

when the cumulative deterioration or damage exceeds the threshold. For the first 

scenario, the system fails at the nth shock event with 
nt

R  <
nt

D  and the limit state 

function can be computed as 
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Given Eq. (7-11), the failure occurs when LSn is smaller than zero, i.e., LSn < 0. 

An illustrative diagram is shown in Figure 7-2 to describe the demand and time-

dependent resistance subjected to gradual deterioration and external shocks. 
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Figure 7-2 Capacity and demand of a system subjected to gradual deterioration and 

external shock process. 

The other type of failure occurs at an arbitrary time when the total deterioration 

exceeds the maximum deterioration level (Kumar et al. 2015; Wang et al. 2017b). As 

the fatal shock process is taken into account, a fatal event results in immediate failure 

of the system. Additionally, the failure occurs when the total amount of deterioration 

caused by gradual deterioration and external shock exceeds the threshold, as shown in 

Eq. (7-12) 
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effects. For instance, cracks caused by external activities may accelerate the initiation 

and corrosion rate of reinforcement steel in terms of reinforced concrete structures 

(Otieno et al. 2010). Therefore, for the reliability analysis, the interactive effects should 

be considered. As the deterioration of one process is typically aggravated by the other, 

the interaction among deterioration processes should be evaluated by positive 

correlation (Jia and Gardoni 2019; Wang et al. 2017b). Herein, the effects are quantified 

by dependent demands and deterioration. For instance, a series of demands {
nt

D } are 

associated with external shock deterioration. Meanwhile, the shock-induced 

deterioration interacts with the gradual deterioration.  

The interaction among different deterioration processes can be modeled by a 

multivariate probability distribution function. Herein, the interaction in terms of shock 

deterioration focuses on the external shock deterioration, as the fatal shock deterioration 

always results in immediate failure of the system. Let 0/
i i

Gra
t tA R R  , 

0/
i i

ExS
t tB R R  , and 0/

i it tD R  represent the normalized gradual deterioration, 

external shock deterioration, and demand at time ti, respectively. The joint CDF of the 

three correlated random variables ( , , )
i i it t tA B   can be denoted as , , ( , , )A BF a b d . 

The CDF of the random vector ( , , )
i i it t tA B   can either be derived by empirical models 

or the advanced copula approach. This chapter adopts a copula to model their 

dependency as the copula tool allows a separate assessment of the dependence structure 

and marginal distributions. For instance, the joint CDF of the random vector can be 

expressed as  
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 , , ( , , ) ( ( ), ( ), ( ))A B A BF a b d C F a F b F d   (7-13) 

where Cθ is the copula model with dependence parameter θ; ( )AF a , ( )BF b , and 

( )F d are the CDFs of the normalized gradual deterioration, external shock 

deterioration, and demand. The detailed modeling of , , ( , , )A BF a b d  is provided in the 

illustrative example. 

 

7.4 Illustrative example 

The proposed framework is applied to an illustrative example. The example aims to 

assess the time-dependent reliability of a bridge subjected to dependent deterioration 

processes. The gradual deterioration, external shock deterioration, and fatal shock 

deterioration are considered. In this example, a gamma process is employed to model 

the gradual deterioration of the investigated bridge. The expectation of the cumulative 

gradual deterioration changes linearly with time (Wang et al. 2015). The initial 

resistance of the investigated system is R0. At the end of a time period of 40 years, the 

expected cumulative gradual deterioration is 0.2R0 with a coefficient of variation of 0.4. 

The maximum deterioration level gmax is 0.4. Random external shocks are caused by 

hazards and modeled by a Poisson process, with an annual occurrence rate of λExS = 0.3. 

Meanwhile, hazards impose demands acting on the bridge. It is assumed that demands 

follow a Gumbel distribution with a mean of 0.3L and a coefficient of variation of 0.3. 

The resulting deterioration in terms of the external shock process is lognormally 

distributed. It has a mean of 0.03L and a coefficient of variation of 0.4. Herein, it 
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assumes L = R0/3. The occurrence of fatal shocks is also modeled by a Poisson process 

with an annual occurrence rate λFaS = 1 × 10−5. A low-frequency fatal event leads to the 

immediate failure of a system and results in essential maintenance.  

The dependence structure for the normalized gradual deterioration, external 

shock deterioration, and demand ( , , )
i i it t tA B  , as shown in Eq. (7-14) is modeled by 

a Gaussian copula. The joint CDF of the correlated random vector ( , , )
i i it t tA B   can 

be written as 

 
1 1 1

, , ( , , ) ( ( ( )), ( ( )), ( ( )))A B A BF a b d F a F b F d
  

      (7-14) 

in which Θ(.) is the CDF of a multivariate normal distribution; ζ is the correlation matrix; 

and Θ-1(.) is the inverse CDF of the standard normal distribution. The correlation 

between random vectors is positive (Dieulle et al. 2003), as a stronger external load 

results in a larger decrease in resistance due to damage (e.g., crack). Meanwhile, 

changes in resistance further accelerate the gradual deterioration process (e.g., 

corrosion in terms of reinforcement). Herein, the associations between every two 

random variables are described by Pearson’s correlation coefficient with γd = 0.3. The 

assigned values are presented here for illustrative purposes and can be upgraded with 

specific problems. 

Given these inputs, the probability of failure of the system within 100 years can 

be computed by using Monte Carlo simulation with 106 replications, as shown in Figure 

7-3. The system is subjected to multiple deterioration processes, including gradual 

deterioration, external shock, fatal shock, and their interactions. After a short rapid 

increase period, the logarithm failure probability nearly increases linearly with time at 
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the first forty years. If the failure threshold is given as 0.01, the system reaches the 

threshold at about 37 years, which is the expected service life. 

 

Figure 7-3 Probability of failure considering gradual deterioration, external shock, fatal 

shock processes, and their interactions.  

There are various uncertainties associated with different deterioration processes. 

Therefore, the effect of uncertainties from different deterioration processes on 

structural performance is investigated. Firstly, the effect of interaction among processes 

is explored. The investigated scenario with γd = 0.3 is compared with the case with no 

dependence, as shown in Figure 7-4. The failure probability of the dependent case is 

consistently higher than the independent case. It is reasonable as deterioration among 

different processes is positively correlated and leads to more severe damage. For the 

investigated case, if the failure threshold is 0.01, the lifetime of the dependent case is 

38 years while the independent case is 42 years, as described in Figure 7-4. 
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Figure 7-4 Effect of dependence among different deterioration processes by 

considering with dependence (γd = 0.3) and without dependence (γd = 0). 

In addition to interaction among processes, stochastic characteristics may have 

an impact on the system failure probability. Figure 7-5 shows the effect of gradual 

deterioration. By considering different rates of gradual deterioration (i.e., the expected 

cumulative gradual deterioration is 0.1R0, 0.3R0, and 0.5R0 within a 40-year time 

interval, respectively), the failure probability varies significantly. When the threshold 

of 0.01 is reached, the case with a mean gradual deterioration amount of 0.5R0 has a 

service life of 13 years, while the case with 0.1R0 fails at 57 years. In addition to the 

mean, the effect of the coefficient of variation (i.e., the ratio of standard deviation to 

the mean) with respect to gradual deterioration is investigated. Compared with the 

initial scenario as described in Figure 7-3 with a coefficient of variation of 0.4, changing 

the coefficient of variation also leads to a considerable difference in the failure 

probability, as described in Figure 7-6.  
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Figure 7-5 Effect of gradual deterioration on the failure probability by considering 

different expectations of the cumulative gradual deterioration (0.1R0, 0.3R0, and 0.5R0). 

 

 

Figure 7-6 Effect of gradual deterioration on the failure probability by considering 

different COV associated with gradual deterioration. 

The effect of the external shock is also explored. Figure 7-7 shows the failure 

probability with respect to three different mean values associated with the external 

shock deterioration. It shows that a larger mean value, e.g., with the expected mean of 

0.1Ln, results in a higher failure probability. Figure 7-8 illustrates the impact of different 

COV associated with the external shock deterioration. It shows that changing the 

coefficient of variation of the external shock process does not have an apparent effect 
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on system reliability. Besides, the effect of the stochastic occurrence is investigated by 

considering different occurrence rates. Figure 7-9 shows the probability of failure with 

respect to different occurrence rates of external shock processes. The occurrence rate 

also refers to the occurrence rate λExS associated with the Poisson process. It shows that 

the system subjected to a more frequent external shock process has a higher failure 

probability during the lifetime.  

 

Figure 7-7 Effect of the external shock deterioration process on the failure probability 

by considering different mean values of the deterioration amount. 

 

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

mean = 0.05Ln

mean = 0.03Ln

mean = 0.1Ln



 

157 

 

Figure 7-8 Effect of the external shock deterioration process on the failure probability 

by considering different COV of the deterioration amount. 

 

 

Figure 7-9 Effect of external shock process on the failure probability by considering 

different occurrence rates.  

In the proposed approach, the occurrence of extreme events is modeled by the 

fatal shock process and results in immediate failure of the system. For the investigated 

example, the impact of the fatal shock is reflected at the early stage (i.e., within the 50-

year service life), as described in Figure 7-10. Compared with the scenario without fatal 

shock deterioration, the other two cases with fatal shock processes lead to a larger 
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failure probability. The failure probability of the system is increased with the 

occurrence rate of fatal shock deterioration. Thus, the impact of extreme events should 

be carefully considered during reliability analysis and life-cycle management. 

 

Figure 7-10 Effect of fatal shock process on the failure probability by considering 

different occurrence rates. 

 

7.5 Summary 

This chapter provides a life-cycle analysis approach to assess the performance of civil 

infrastructure systems subjected to dependent multiple deterioration processes. The 

gradual deterioration process, external shock process, and fatal shock process are 

considered. The uncertainties associated with extreme events are considered within the 

life-cycle analysis framework. The system experiences an immediate failure after a fatal 

shock. A gamma process has been utilized to model the gradual deterioration of the 

system. The Poisson process is employed to model shock deterioration associated with 

the external shock process and the fatal shock process. The stochastic processes show 

considerable effectiveness in terms of deterioration modeling and dependence 

modeling. Interactions among processes are incorporated by modeling dependence 

0 10 20 30 40 50 60 70 80 90 100
10 -6

10 -4

10 -2

10 0

λFaS = 1 ×10−5

λFaS = 0

λFaS = 1 ×10−4



 

159 

among gradual deterioration, external shock deterioration, and external load process. 

An illustrative example is provided to explore the effect of different deterioration 

processes on time-dependent reliability. Results show that the system reliability can be 

sensitive to the change in frequency and magnitude associated with different 

deterioration processes. It also indicates that interaction among processes can be 

significant, as neglecting the associated correlation may mis-specify the structural 

performance. For the investigated case, compared with the no correlation scenario, the 

positive correlation among deterioration processes results in a larger failure probability. 

The failure probability of the system can also be increased due to fatal shock. Therefore, 

the impact of fatal shock deterioration caused by extreme events should be carefully 

evaluated during reliability analysis and life-cycle analysis. In practice, the correlation 

among different deterioration processes replies on multiple factors. Further studies are 

needed to incorporate the quantification of the dependence relationship and to 

investigate the associated variability. 
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CHAPTER 8 A COPULA-BASED LIFE-CYCLE 

MANAGEMENT FRAMEWORK OF DETERIORATING 

SYSTEMS  

8.1 Introduction 

Civil infrastructure is vulnerable to hazards such as hurricanes, earthquakes, and 

continuous deterioration during the lifetime. Hazards may result in the sudden and 

gradual reduction of structural capacity, and various maintenance actions are required 

to maintain the safety and functionality of the infrastructure. The resulting maintenance 

cost increases the life-cycle cost and directly affects the decision-making process. 

Therefore, the assessment of the life-cycle maintenance cost is essential. There is a need 

to explore the effect of these actions on the life-cycle performance of the system. 

Despite considerable efforts on deterioration modeling and cost assessment, 

these studies commonly assume that the maintenance interval and cost are independent. 

The independence assumption has been widely used to simplify the analytical 

formulation associated with the renewal theory (Cheng et al. 2012; Liu et al. 2020; 

Yang and Frangopol 2019a). However, the assumption is less likely to be realistic, as 

increasing the maintenance cost (by conducting more frequent maintenance actions) 

commonly extends the maintenance interval. Furthermore, neglecting the dependence 

and the associated uncertainties may result in an inappropriate estimation of the 

accumulative cost, thus misleading decision-makers during the life-cycle management. 

Pandey and Van Der Weide (2017) also indicated that dependence between 
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maintenance cost and renewal cycle cannot be ignored, especially when preventive 

maintenance is considered. To the best of the authors’ knowledge, the dependent 

maintenance interval and cost have not been considered in the life-cycle cost analysis. 

This chapter presents a copula-based life-cycle analysis framework for 

deteriorating civil infrastructure systems. Multiple deterioration processes and their 

interaction are considered. The developed copula-based approach allows various 

complex dependence structures between the maintenance interval and the cost in a 

renewal process. A copula-based multivariate renewal model is proposed to assess the 

life-cycle maintenance cost analytically and numerically. In addition to the expected 

cost, statistical moments (standard deviation, skewness, and kurtosis) are calculated to 

quantify uncertainties from higher-order moments. Results show that the dependence 

structure and uncertainties can have a large impact on the life-cycle cost. Decisions can 

be altered by considering statistical moments of the cost. An analytical model, the 

Farlie-Gumbel-Morgenstern (FGM) copula, is provided to derive statistical moments 

of the life-cycle maintenance cost. Two illustrative examples are provided to highlight 

the importance of statistical moments and copula within the life-cycle analysis and 

decision-making processes. 

 

8.2 A copula-based life-cycle analysis framework 

This section proposes a copula-based life-cycle analysis framework based on renewal 

processes. By characterizing deterioration of the system and performing maintenance 

actions, the life-cycle maintenance cost can be assessed using the proposed approach. 
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Dependence between maintenance interval and cost is incorporated by using the 

multivariate copula model. Based on the deterioration model and reliability analysis 

described in Sections 7.2 and 7.3, the maintenance policy and life-cycle maintenance 

cost are proposed and assessed. 

 

8.2.1 Maintenance policy 

The maintenance policy relies on appropriate modeling of structural deterioration and 

performance evaluation. In terms of the life-cycle cost analysis, most of the existing 

studies focus on one type of deterioration (either under gradual deterioration or shocks) 

and ignore their combined effects. For instance, Cheng et al. (2012) presented an 

analytical framework to derive the probability distribution of maintenance cost of 

ageing engineering systems subjected to gradual degradation by using the gamma 

process. Yang and Frangopol (2019a) assessed the life-cycle maintenance cost 

subjected to independent shock and deterioration processes using renewal models. A 

few recent studies take correlated deterioration effects into account. For instance, Jia 

and Gardoni (2019) introduced state-dependent models to the life-cycle cost analysis 

subjected to earthquake and corrosion damage. Liu et al. (2020) investigated dependent 

degradation processes using copulas and the resulting impact on the life-cycle cost. In 

this chapter, three deterioration processes are considered, including gradual 

deterioration, external shock, and fatal shock. The detailed modeling of multiple 

deterioration processes and structural reliability have been modeled in CHAPTER 7. 

Interactions between deterioration processes are considered, following the model 

presented in Section 7.3.3.  
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As multiple deterioration processes reduce the performance (e.g., reliability) of 

a system, maintenance actions are required to minimize potential risks and damage. 

Herein, a reliability-based maintenance policy is proposed, consisting of preventive and 

essential maintenance interventions. The probability of failure is taken as a performance 

indicator to determine the maintenance policy. Herein, preventive maintenance gives 

minimal repairs, while essential maintenance provides major repairs or replacement to 

enhance the system reliability to the initial level. Preventive maintenance is conducted 

when the probability of the system failing exceeds PPM. After a preventive maintenance 

event, the rate of gradual deterioration is reduced. Essential maintenance is performed 

when the probability of failure exceeds a threshold PEM or a fatal-induced failure occurs. 

Following the essential maintenance, the structural resistance is enhanced and restored 

to the initial level C0. In other words, the system is resumed and a renewal process is 

formed (Cheng et al. 2012; Liu et al. 2020). The time-dependent limit state function 

becomes  

 
1

0

1 1
i i n

n n
Gra ExS

n t t t

i i

LS C C C D


 

         (8-1) 

in which ω (ω < 1) is the changing rate in terms of the gradual deterioration after a 

preventive maintenance action. Figure 8-1 provides an illustrative diagram to describe 

the impact of preventive and essential maintenance actions on the probability of failure 

of the system. 
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Figure 8-1 An illustrative diagram of reliability-based preventive maintenance (PM) 

and essential maintenance (EM) actions. 

 

8.2.2 Life-cycle maintenance cost 

The assessment of life-cycle maintenance cost can be based on a stochastic renewal 

process (Li et al. 2020b; Yang and Frangopol 2019a). Sánchez-Silva et al. (2016) 

reviewed the renewal-based models for shock-based degradation, periodic-replacement 

maintenance strategy, and the quantification of maintenance cost based on renewal 

theory. Sánchez-Silva and Klutke (2016) also discussed the application of renewal 

process for the reliability and life-cycle analysis of deteriorating engineering systems. 

As a system is resumed to its initial level (i.e., R0) after each essential maintenance, a 

stochastic renewal process is formed. The maintenance interval is a renewal cycle W, 

which can be defined as the time interval from the system operation to the essential 

maintenance. The maintenance cost Z within a renewal cycle is the total cost incurred 

by preventive and essential maintenance. The maintenance cost and renewal cycle can 

be correlated (Pandey and Van Der Weide 2017). For instance, increasing the 
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maintenance cost by conducting more frequent preventive maintenance actions 

commonly extends the maintenance interval (i.e., a longer renewal cycle). 

To incorporate the correlation between the maintenance interval and cost, 

statistical modeling of the joint probability distribution is essential. A conventional 

approach of multivariate modeling relies on an empirical multivariate joint distribution 

or a joint normal distribution (Ataei and Padgett 2013; Lucas and Soares 2015), but the 

approach is limited to a certain correlation relationship. Herein, a copula-based method 

is proposed. As an advanced mathematical tool, the copula model offers sufficient 

efficiency and flexibility in multivariate dependence modeling by separately 

considering the joint distribution and marginal distributions. Due to this advantage, 

copulas have been increasingly applied in deterioration processes and reliability 

analysis. For instance, Goda (2010) employed copulas to model dependence between 

peak and permanent displacement seismic demand. Li et al. (2020c) assessed the 

vulnerability of coastal bridges subjected to hurricane hazards by modeling dependent 

peak water level and wave height based on historical records.  

In addition to uncertainties resulting from the dependence model, uncertainties 

associated with statistical moments (mean, standard deviation, skewness, and kurtosis) 

of the life-cycle cost have not been thoroughly explored. Although the minimum 

expected cost has been utilized as a standard decision criterion, the impact of the other 

statistical moments on the life-cycle cost and decision-making process has been rarely 

discussed. Pandey and Van Der Weide (2017) indicated that the variance of the life-

cycle damage cost can be significant to indicate the variability. Li et al. (2020b) stated 

the importance of higher-order moments (skewness and kurtosis) of the repair cost 
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during system lifetime, as skewness and kurtosis imply potential tail risks. Hence, it is 

necessary to assess the statistical moments of the life-cycle maintenance cost. This 

section presents a life-cycle analysis framework incorporating correlated maintenance 

interval and cost using copula models. 

During the service life (0, tint] of a system, there can be a series of renewal cycles 

{W1, W2, …, Wk} associated with k number of maintenance events. The chronological 

time in terms of the kth renewal can be written as Tk, with Tk = W1 + W2 +…+ Wk. The 

incurred maintenance costs can be denoted as {Z1, Z2, …, Zk}. Wk and Zk (k = 1, 2, …) 

are non-negative random variables. The life-cycle maintenance cost incurred from 

maintenance actions can be defined as LCC(tint), which is a compound renewal process 

consisting of a set of random vectors (Z1, W1), (Z2, W2), …, (Zk, Wk). The key component 

in this model is that the renewal cycle Wk and maintenance cost Zk are dependent, while 

the joint probability distributions of (Zi, Wi) are independent of (Zk, Wk,) for any i ≠ k. 

Given these parameters, the life-cycle maintenance cost LCC(tint) is the accumulative 

cost of all the renewal cycles and gives 

 
int( )
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k
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



   (8-2) 

in which N(tint) is the total number of maintenance events and a discount rate r is used 

to discount the future expense to the present. 

The dependence structure between the renewal cycle Wk and maintenance cost 

Zk can be described by a joint CDF FZ,W(z, t). Although the joint CDF FZ,W(z, t) can be 

conditioned on an empirical model from historical maintenance records, the 

dependence is only limited to a certain correlation relationship. In the life-cycle cost 
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analysis, a flexible multivariate analysis tool is needed. In this section, a copula-based 

approach is proposed to establish the dependency structure between Wk and Zk. The 

advantage of using copula is that the simulation of multivariate probability distributions 

is separate from the univariate random variables, thus providing sufficient effectiveness 

during statistical modeling (Joe 2014; Zhang et al. 2018b). 

To model the dependence between the renewal cycle and maintenance cost, the 

bivariate copula is focused. Based on the copula theory, the joint CDF of the bivariate 

random vector (Zk, Wk) can be written as  

 , ( , ) ( ( ), ( ))Z W Z WF z t C F z F t  (8-3) 

in which FZ(z) and FW(t) are CDFs of maintenance cost and renewal cycle, respectively. 

Cθ is the CDF of a copula function with a dependence parameter θ. The PDF of the 

random vector fZ,W (z, t) is given as  

 , ( , ) ( ( ), ( )) ( ) ( )Z W Z W Z Wf z t c F z F t f z f t  (8-4) 

where cθ describes the PDF of a copula; fZ and fW are the univariate PDFs of 

maintenance cost and renewal cycle, respectively.  

As described in CHAPTER 4, there is a wide range of copula functions 

indicating different dependence structures between variables. Herein, the dependence 

structure between the renewal cycle and maintenance cost can be measured by the 

correlation coefficient: Pearson’s correlation coefficient, Kendall’s tau, and 

Spearman’s rho. Although Pearson’s correlation coefficient may be the most popular 
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one in previous studies, it is limited to a linear relationship (Joe 2014). Pearson’s 

correlation coefficient for correlated random vector (Zk, Wk) can be derived as 
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 (8-5) 

Due to the linear limitation, Kendall’s tau τ and Spearman’s rho ρ can be 

described using copulas (Nelsen 2006) 

 2[0,1]
( ) 4 ( , ) ( , ) 1C u v dC u v      (8-6) 

 2[0,1]
( ) 12 ( , ) 3uvdC u v     (8-7) 

Both these two coefficients are developed from the concept of concordance and 

give a similar interpretation of association in most cases (Nelsen 2006). Given the 

correlation coefficient, the dependence parameter θ associated with a copula can be 

estimated. For instance, the maximum pseudo-likelihood method can be applied to 

compute the dependence parameter by maximizing the pseudo log-likelihood function 

(Genest et al. 1995) 
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where 
iZR  and 

iWR  are ranks of the maintenance cost and renewal cycle, respectively. 

To determine the copula function, there are generally two methods in terms of 

the cases with and without data, as shown in Figure 8-2. When there are detailed 
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historical records of maintenance interval and cost, the selection of the copula model 

can be data-based (Jane et al. 2018; Li et al. 2020c). The data-based method requires 

two main parts: quantification of marginal distributions (i.e., FZ(z) and FW(t)) and 

selection of the most fitted copula by using the goodness-of-fit test. While there are 

limited data available, the dependence structure between variables is commonly 

determined according to correlation coefficients (Hong et al. 2014; Wang et al. 2020). 

Detailed descriptions of the two methods are shown in the section of illustrative 

examples. As practical data can be incorporated, the proposed copula approach can be 

significant for data-based decision-making during the life-cycle management of civil 

infrastructure. 



 

170 

 

Figure 8-2 Assessment of life-cycle maintenance cost using the proposed copula-based 

multivariate renewal model. 

 

After the selection of the copula model and estimation of dependence parameter, 

the life-cycle maintenance cost incorporating dependent maintenance cost and renewal 

cycle can be assessed. Due to complicated expressions of copulas, statistical modeling 
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8.3 Analytical case: life-cycle analysis with FGM copula 

In addition to numerical modeling, an analytical case is developed. In this section, the 

closed-form expressions of statistical moments of the life-cycle maintenance cost 

considering an FGM copula are derived. Derivations are based on the renewal theory 

and Laplace Transform. Due to its analytical characteristics, the FGM copula was 

employed by Eryilmaz (2016) to model dependent degradation rates for reliability 

(1) 

Inputs: tint, r, marginal PDFs and CDFs of Z and W (e.g., FZ(z), fZ(z), FW(t), 

fW(t)); 

(2) 

Establish dependence structure of the copula function cθ and generate 

dependent random vectors (Zk, Wk); 

(3) 

Simulate a stochastic renewal process {N(tint)} by using {W1, W2, …, Wk} 

generated from Step (2); 

(4) Compute {T1, T2, …, Tk} of the process based on Step (3); 

(5) Compute LCC(tint) based on Eq. (8-2) by using {T1, T2, …, Tk} of Step (4), 

the associated {Z1, Z2, …, Zk} generated from Step (2), and the number of 

events N(tint) from Step (3); 

(6) Repeat Step (2) to (5) for NMC  times based on Monte Carlo simulation; and 

(7) Outputs: the mean int( )LCC t , standard deviation, skewness, and kurtosis of 

LCC(tint) based on NMC samples. 
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analysis of systems. The FGM copula is the first-order Taylor approximation of the 

Frank copula and belongs to neither the elliptical family nor the Archimedean family 

(Eryilmaz 2016). 

The FGM copula demonstrates a weak correlation, including both positive and 

negative. The PDF of the FGM copula cθ
FGM is given as 

 ( , ) 1 (1 2 )(1 2 )FGMc u v u v      (8-9) 

where the dependence parameter θ is between [-1, 1] and (u, v)  [0, 1] × [0, 1].  

The joint probability of (Z, W) can be expressed as follows using the copula 

 
, ( , ) ( ( ), ( )) ( ) ( )

[1 (1 2 ( ))(1 2 ( ))] ( ) ( )
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Z W Z W Z W

Z W Z W

f z t c F z F t f z f t

F z F t f z f t







   
 (8-10) 

8.3.1 Expectation and variance of life-cycle maintenance cost 

The expected life-cycle maintenance cost under a renewal process can be formulated 

by conditioning on the first arrival time y  
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in which the first arrival time is equal to the first inter-arrival time T1 = W1. The 

conditional expectation of maintenance cost E[Z|W = y] can be expressed by the 

conditional probability 

 |

0

( )Z W yE Z W y z f z dz



      (8-12) 

where the conditional density function of maintenance cost fZ|W=y is associated with the 

bivariate joint probability fZ,W (z, t). Substituting the FGM copula according to Eq. (8-9), 

the conditional density function gives 

 
,

|
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( ) [1 (1 2 ( ))(1 2 ( ))] ( )
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Z W

Z W y Z W Z
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f z t
f z F z F t f z

f t
       (8-13) 

Substituting Eq. (8-13) into Eq. (8-12), the conditional expectation of 

maintenance cost gives  

 0
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  (8-14) 

in which E[Λ] is defined to combine the identical items  
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0 0

[ ] (2 2 ( )) ( ) (1 ( ))Z Z ZE z F z f z dz F z dz

 

       (8-15) 

A Poisson process is the most common renewal process. It has exponentially 

distributed inter-arrival times. It gives that the inter-arrival time follows W ~ EXP(λ) 

with an occurrence rate λ. Hence, the PDF of the inter-arrival time fW(t) gives 
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 ( ) exp( )Wf t t    (8-16) 

Herein, let ω(t; λ) represent the PDF fW(t) of W (Barges et al. 2011; Ross 2014). 

Consequently, the expected life-cycle maintenance cost can be rearranged as 
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(8-17) 

Taking the Laplace transform of Eq. (8-17) on both sides, the Laplace transform 

of the expected life-cycle maintenance cost ( )LCC   can be written as  
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 (8-18) 

where the Laplace transform of the PDF of inter-arrival time ( ; )LCC    can be 

computed as 

 ( ; )


  
 




 (8-19) 
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Substituting Eq. (8-19) into Eq. (8-18), the Laplace transform of expected life-

cycle maintenance cost can be rearranged as 

 
 [ ] [ ][ ]

( )
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LCC

E E ZE Z

r r


 

    

 
 

  
 (8-20) 

By taking inverse Laplace transform of Eq. (8-20) on both sides, the expected 

life-cycle maintenance cost under dependency is obtained 
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Following the similar procedure of the first moment, the second moment of life-

cycle maintenance cost can be assessed by conditioning on the first arrival time y 
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(8-22) 

Following similar procedures in terms of the Laplace transform approach, the 

second moment of the life-cycle maintenance cost can be derived accordingly. For 

instance, the conditional second moment of maintenance cost can be computed and 

rearranged as 
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where 
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The PDF of the renewal cycle can be denoted as ω(t, λ). Consequently, the 

second moment of life-cycle maintenance cost can be computed as 
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(8-25) 

By taking Laplace transform of Eq. (8-25) on both sides and performing the 

associated inversion, the second moment of life-cycle cost under dependency can be 

derived as 
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(8-26) 

Consequently, the variance can be evaluated from the first two moments as 

shown in Eqs. (8-25) and (8-26) 
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When the dependence parameter is zero, the maintenance cost and renewal 

cycle become independent. The associated expectation and variance of life-cycle cost 

give identical outcomes as described in previous studies (Li et al. 2020; Pandey and 

Van Der Weide 2017), as shown in Eqs. (8-28) and (8-29) 
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8.3.2 Higher-order moments of life-cycle maintenance cost 

By summarizing the computation process of the first two moments, the mth order 

moment can be evaluated using the Laplace transform approach accordingly. The mth 

order moment of life-cycle maintenance cost can be derived using the univariate 

distribution of inter-arrival time 
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where m ≥ 1 and 1 ≤ i < m.  

Similar to the first two moments, the mth order conditional expectation of 

maintenance cost can be expressed as 

 |

0 0

( ) ( ( ), ( )) ( )m m m FGM
Z W y Z W ZE Z W y z f z dz z c F z F t f z dz

 


   
     (8-31) 

Substituting Eq. (8-31) into Eq. (8-30), the mth order moment of life-cycle 

maintenance cost gives 
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Considering the exponential distribution associated with the inter-arrival time 

fW(t), the mth order moment becomes 
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 (8-33) 

Consequently, the moments can be derived by using the Laplace transform 

approach. The analytical case can be more effective than the complicated numerical 

simulation. Based on the recursive moments (i.e., Eq. (8-33)) using the FGM copula, 

decision-makers can estimate the life-cycle cost under dependency effectively. 

 

8.4 Illustrative examples 

There are two illustrative examples provided to apply the proposed copula-based life-

cycle analysis framework. The first example incorporates maintenance data records to 

assess the dependence between maintenance cost and interval. The second one 

investigates the impact of different dependence structures on the life-cycle maintenance 

cost by using different copula models. 

 

8.4.1 Data-based decision making and higher-order moments 

In previous studies, the minimum expected life-cycle cost has been broadly utilized as 

a standard criterion in the decision-making process. However, decisions exclusively 
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based on the expected cost may not be optimal, as uncertainties associated with the 

other three statistical moments have been ignored (Goda 2010). This illustrative 

example considers statistical moments of the life-cycle maintenance cost in the 

decision-making process. Based on the proposed copula approach and historical records, 

a data-based decision-making process is provided to determine an appropriate 

maintenance policy for a reinforced concrete bridge.  

There are two maintenance policies considered for the bridge, as shown in 

Figure 8-3. Maintenance Policy 1 is provided based on the historical records of 50 

similar reinforced concrete bridges from the US National Bridge Inventory (NBI) 

database (2020). The maintenance interval of Policy 1 has a mean of 16.14 years and a 

mean maintenance cost per unit deck area of 4298.02 USD/m2. As the sizes of bridges 

vary significantly, the maintenance cost is conditioned on the unit deck area. In contrast, 

Maintenance Policy 2 is proposed, in which the maintenance interval is extended by 

increasing the maintenance cost. Policy 2 has a mean maintenance interval of 24.10 

years and a mean maintenance cost per unit deck area of 6390.55 USD/m2. Data 

associated with Maintenance Policy 2 are provided for illustrative purposes. Between 

the two alternatives, decisions should be made to select an appropriate policy for the 

bridge by considering statistical moments of the life-cycle maintenance cost. 
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Figure 8-3 Two maintenance policies with different maintenance interval W and 

maintenance cost Z. 

For maintenance policy 1, the dependence structure between the maintenance 

interval W and maintenance cost Z can be examined by using the presented Method 1 

as described in Figure 8-2. Firstly, marginal distributions of W and Z should be fitted. 

It is identified that there are many distribution alternatives due to limited data records. 

Herein, their marginal distributions are fitted into exponential distributions. 

Subsequently, the copula function for the correlated W and Z is assessed using the 

goodness-of-fit test (Genest et al. 2006; Genest et al. 2009). Based on the Akaike 

information criterion and Bayesian information criterion, the Clayton copula is selected 

among candidates (i.e., Gaussian, Student’s t, Clayton, Gumbel, and Frank copulas) for 

the two policies. Detailed fitting procedures and the goodness-of-fit test follow the 

process of copula selection described in Li et al. (2020c). The PDF of the Clayton 

copula can be described as 

 
2 1

( 1)( , ) ( 1)( ) ( 1)Clayc u v uv u v
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 
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where θ is the dependence parameter.  
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The recorded and simulated maintenance interval and maintenance cost based 

on the fitted Clayton copula associated with two policies are shown in Figure 8-4. For 

Policy 1 (e.g., Figure 8-4(a)), the dependence parameter for the Clayton copula is 1.24 

and the correlation between W and Z is measured by Kendall’s tau as 0.38. For Policy 

2 in Figure 8-4(b), the associated dependence parameter is 0.89 and Kendall’s tau is 

computed to be 0.31. Given the fitted copula models, the life-cycle maintenance costs 

with respect to two policies can be assessed. The service life of the bridge is defined as 

100 years. The associated expectation, standard deviation, skewness, and kurtosis are 

computed using the Monte Carlo simulation, as shown in Table 8-1. 

  

(a) (b) 

Figure 8-4 Scatter plots of the recorded and simulated data of the maintenance interval 

W and maintenance cost Z of (a) Maintenance Policy 1 and (b) Maintenance Policy 2. 
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Table 8-1 Mean, standard deviation (SD), skewness, and kurtosis of the life-cycle 

maintenance cost associated with two maintenance policies. 

 Mean 

(USD/m2) 

SD 

(USD/m2) 

Skewness Kurtosis 

Maintenance Policy 1 10231.86 5555.48 1.04 1.89 

Maintenance Policy 2 10068.05 7010.80 1.32 2.83 

 

To determine an appropriate maintenance policy, four statistical moments are 

defined as four different decision criteria. For the investment in maintaining civil 

infrastructure, decision-makers may tend to be risk-averse (Cha and Ellingwood 2012), 

as they tend to avoid large variability and extreme cost. For instance, risk averters tend 

to seek a smaller standard deviation and a positive skewness of the investment return 

(Brockett and Kahane 1992; Li et al. 2020b).  

In this example, the decision process is based on the multi-attribute utility theory. 

The multi-attribute utility theory generally consists of four steps: quantification of 

attributes, identification of utility functions, assessment of relative weights, and 

decision on the maximum utility (Jansen 2011). Four statistical moments are considered 

as four attributes. As smaller expected life-cycle maintenance cost is preferred, the 

normalized attribute function of the mean can be defined as (Anwar et al. 2020; Gumus 

et al. 2020) 
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min[ ]

[ ]

E LTL

E LTL
   (8-35) 

in which E[LTL]min is the minimum mean value between the considered maintenance 

policies. Based on the risk-averse attitude, a smaller standard deviation should be 

chosen. Meanwhile, risk averters avoid extreme events associated with low-probability 

and high-consequence. The extreme situation can be implied by the potential tail risk 

in terms of skewness and kurtosis (Goda 2010; Li et al. 2020b). Therefore, attributes 

for skewness and kurtosis should be defined based on the aversion of a heavy tail 

associated with the huge cost. For the investigated case, as the life-cycle maintenance 

cost indicates negative investment return, smaller skewness and kurtosis are favored 

(Brockett and Kahane 1992; Maringer and Parpas 2009). Accordingly, similar to the 

mean attribute described in Eq. (8-35), the minimum values of the other three attributes 

(i.e., standard deviation, skewness, and kurtosis) are also preferred. Hence, all four 

attributes can be defined as the ratio of minimum value over the attribute value.  

After defining attributes, the utility function of each attribute can be formulated. 

In this example, the same utility functions are utilized for the four attributes, as they are 

all statistical characteristics of the life-cycle maintenance cost. The utility function is 

commonly fitted by a few points in the utility curve, which is typically concave for risk 

averters (Anwar et al. 2020; Wang and Hsu 2009). Herein, a risk-averse utility function 

is directly given for illustrative purpose (Garmabaki et al. 2016), as shown in Eq. (8-36) 

 ( ) 5.5exp( 2 / )u     (8-36) 
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Subsequently, the additive multi-attribute utility function can be formulated. 

The utility of each attribute is multiplied by the associated weighting factor and then 

summed over. The multi-attribute utility function can be described as Eq. (8-37) 

 ( , , , )LTL mean mean sd sd skew skew kurt kurtu mean sd skew kurt w u w u w u w u     (8-37) 

where umean, usd, uskew, and ukurt are the utility values of the four attributes (i.e., mean, 

standard deviation, skewness, and kurtosis); wmean, wsd, wskew, and wkurt are weighting 

factors with respect to the attributes. Typically, weighting factors are allocated 

considering information provided by decision-makers (Jiménez et al. 2003). Herein, the 

four weighting factors, wmean, wsd, wskew, and wkurt, are allocated as 0.40, 0.25, 0.20, and 

0.15, respectively. These values can be adjusted based on the preferences of decision-

makers. 

Given these inputs of attributes, the utility of Maintenance Policy 1 and Policy 

2 can be computed as 0.735 and 0.535, respectively. As Policy 1 gives the maximum 

utility value between alternatives, Policy 1 should be chosen as the appropriate 

maintenance policy for the bridge. However, if the decision is purely based on the mean 

value (i.e., the expected life-cycle maintenance cost) as shown in Table 8-1, Policy 2 

should be selected due to a relatively lower expected cost. A different decision outcome 

is attained due to the consideration of statistical moments. Therefore, statistical 

moments should be considered during the life-cycle analysis and decision-making 

process. The proposed copula tool also provides an effective data-based model for 

decision-making. 
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8.4.2 Effect of copulas on life-cycle maintenance cost 

The impact of different dependence structures between maintenance interval and cost 

on the life-cycle maintenance cost is investigated by using different copula models. The 

maintenance actions are based on structural reliability. In this example, the reliability 

analysis and deterioration modeling of the system use the results in Section 7.4. 

Parameters remain unchanged unless specified. Maintenance actions are performed 

when the probability of the system failing hits the associated thresholds, i.e., PPM = 

1×10-5 for preventive maintenance and PEM = 1×10-3 for essential maintenance, 

respectively. The maximum deterioration level gmax is 0.5. The changing rate ω on 

gradual deterioration after the preventive maintenance is 0.5, as described in Eq. (8-1). 

The monetary discount rate is 2% for the life-cycle cost analysis. 

The assessment of the life-cycle maintenance cost relies on the quantification 

of maintenance interval and cost. The two items can be computed from the reliability 

analysis subjected to deterioration and shocks. In this example, the costs of preventive 

and essential maintenance actions are given as 50,000 USD and 487,100 USD, 

respectively (Mondoro et al. 2017; Okasha and Frangopol 2010). The bridge has a 

service life of 100 years. Given these parameters, the maintenance interval and the 

associated cost are determined by computing the probability of failure of the bridge 

using Monte Carlo simulation. Deterministic maintenance interval and cost can be 

assessed with 106 replications. Figure 8-5 shows the probability of failure subjected to 

multiple dependent deterioration processes. The bridge experiences nearly four cycles 

of essential maintenance and resulting in a renewal cycle (i.e., maintenance interval) of 

E[W] = 25.6 years. The associated maintenance cost within a renewal cycle is computed 
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as E[Z] = 537,100 USD, which consists of preventive intervention and essential 

maintenance. The two random variables are assumed to follow exponential 

distributions herein. 

 

Figure 8-5 The probability of bridge failing subjected to multiple dependent 

deterioration processes considering preventive and essential maintenance actions. 

In this example, two main statistical parameters of the life-cycle maintenance 

cost are focused, e.g., the mean E[LCC] and standard deviation Std[LCC]. The impact 

of dependent maintenance interval and cost on the E[LCC] and Std[LCC] are explored 

using the proposed FGM copula. As the FGM copula itself indicates the weak 

correlation, the maximum positive correlation refers to Kendall’s tau at 2/9. The 

associated expectation and standard deviation of life-cycle maintenance cost are 

computed as 800,152USD and 588,943 USD, respectively. If considering an 

independent case (i.e., tau of zero), the expectation and standard deviation of the life-

cycle cost can be computed as 907,054 USD and 743,714 USD, respectively. The 

analytical results have been validated by using numerical modeling based on Monte 

Carlo simulation. Figure 8-6 demonstrates the difference in the life-cycle maintenance 
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cost by considering dependent maintenance interval and cost associated with an FGM 

copula. A negative correlation may exist when there is a different maintenance policy. 

  

(a) (b) 

Figure 8-6 (a) Expectation and (b) standard deviation of life-cycle maintenance cost 

with the FGM copula subjected to Kendall’s tau at -2/9, 0, and 2/9. 

Apart from the weak correlation associated with the FGM copula, different 

correlation relationships and different copulas may influence the life-cycle maintenance 

cost. Herein, the dependence structures described by Gaussian and Clayton copulas are 

also investigated by using numerical modeling. Figure 8-7 shows the three-dimensional 

schematic PDFs of FGM, Gaussian, and Clayton copulas with Kendall’s tau of 0.2. The 

PDF of the Gaussian copula can be written as 

1 1 2 1 2 1 2
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(a) FGM copula (b) Gaussian copula (c) Clayton copula 

Figure 8-7 Three-dimensional PDFs of different copulas with Kendall’s tau = 0.2. 

The expectation and standard deviation of life-cycle maintenance cost with 

respect to the three copulas are shown in Figure 8-8. Both weak (i.e., Kendall’s tau of 

0.2) and strong (i.e., Kendall’s tau of 0.9) positive correlations are considered. The 

FGM copula only illustrates the weak correlation. Compared with the independent case, 

the positive correlation results in decreases in the expected life-cycle maintenance cost 

and standard deviation. A stronger correlation can lead to a more significant reduction. 

The interpretation of such a trend is that increasing the maintenance cost (e.g., with 

more frequent preventive cost) leads to a longer maintenance interval, as more 

preventive actions delay the occurrence of essential maintenance. Consequently, the 

life-cycle maintenance cost is reduced. Such findings can assist researchers and 

decision-makers to explore the optimization of maintenance policy by comparing the 

life-cycle cost. In Figure 8-8, with the same correlation coefficients (i.e., Kendall’s tau), 

the expectation and standard deviations of the life-cycle maintenance cost are not 

significantly affected by different copula models. Under the weak correlation, the 

results associated with the FGM copula show similar estimates compared with the 

Gaussian and Clayton copulas. Therefore, the proposed analytical approach using an 
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FGM copula provides an effective tool for decision-makers to estimate the life-cycle 

cost considering weak correlation. The analytical estimation significantly accelerates 

the computation process, as numerical modeling of copula functions can be complicated 

and time-consuming.  

 

Figure 8-8 Expected life-cycle cost and standard deviation of different dependence 

scenarios. 

In addition to the dependence structure, the interaction between deterioration 

processes affects the maintenance interval, maintenance cost, and life-cycle cost. For 

instance, the length of the renewal cycle (i.e., maintenance interval) is particularly 

affected by deterioration processes. Figure 8-9 presents the probability of bridge failing 

subjected to deterioration under three scenarios: dependent deterioration processes 

(correlation coefficient γd = 0.3) with fatal shocks, dependent deterioration processes 

(γd = 0.3) without fatal shocks, and independent deterioration process (γd = 0) without 

fatal shocks. The expected maintenance intervals E[W] with respect to the three 

scenarios are 25.6, 26.8, and 29.2 years, respectively. The associated maintenance cost 

remains unchanged at 537,100 USD. Considering a FGM copula (Kendall’s tau = 2/9), 

the expected life-cycle maintenance costs associated with the three scenarios are 
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800,153 USD, 760,552 USD, and 691,311 USD, respectively. It shows that dependent 

deterioration processes and fatal shocks shorten the maintenance interval and increases 

the life-cycle maintenance cost. Therefore, interaction among deterioration processes 

should be examined during the life-cycle analysis. In particular, modeling of random 

fatal shocks can be essential, as neglecting the impact of extreme events may lead to a 

significant underestimation of the potential risk. 

 

Figure 8-9 The impact of fatal shocks and dependent deterioration processes on the 

probability of failure and renewal cycle (scenarios are without fatal shocks unless 

specified). 

The maintenance cost is more likely affected by the maintenance policy, e.g., 

maintenance threshold. For instance, if maintenance thresholds for preventive and 

essential action change to 1×10-5 and 0.1, respectively, the maintenance interval and 

cost can be significantly altered. The interval is extended to 56 years, while the 

maintenance cost remains unchanged. The maintenance cost changes with different 

preventive and essential maintenance actions. The associated expected life-cycle cost 

considering the FGM copula (Kendall’s tau = 2/9) becomes 328,906 USD with a 

standard deviation of 369,844 USD. Therefore, the maintenance interval can be 
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sensitive to the maintenance thresholds. The associated parameters should be carefully 

examined during the life-cycle analysis. 

 

8.5 Summary 

This chapter proposes a copula-based life-cycle analysis framework for deteriorating 

civil infrastructure systems considering uncertainties and correlation effects (e.g., 

dependent maintenance interval and maintenance cost). Statistical moments associated 

with the life-cycle maintenance cost can be effectively estimated analytically and 

numerically using the copula approach. Multiple dependent deterioration processes are 

considered in the proposed framework, including gradual deterioration, external shock, 

and fatal shocks. Reliability-based preventive and essential maintenance actions are 

performed based on system reliability. Several major conclusions are drawn as follows: 

The joint probability distribution of the maintenance interval and the 

maintenance cost can be effectively modeled by the proposed copula approach. An 

analytical case, i.e., the FGM copula, is employed to derive statistical moments of the 

life-cycle cost under the weak correlation, due to its unique mathematically trackable 

form. Results show that even only with a weak correlation, the dependent consideration 

significantly affects the life-cycle maintenance cost. The proposed copula-based 

approach is flexible to incorporate practical data to determine the correlation between 

the maintenance interval and the cost, thus delivering data-based models for the life-

cycle analysis. In addition to the expectation, the other statistical moments (i.e., 

standard deviation, skewness, and kurtosis) of the life-cycle maintenance cost should 
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be considered during the life-cycle cost assessment, as different decision results can be 

attained due to exclusion of the other three statistical moments. 

In addition to the FGM copula, the Gaussian and Clayton copulas are also 

applied to explore the effect of different dependence structures on the life-cycle cost. 

Results show that the expectation and standard deviation of the life-cycle cost will 

decrease when the correlation increases. Under the same degree of dependence (i.e., 

with identical Kendall’s tau), the life-cycle maintenance cost is not significantly 

affected by different copula models. Dependent deterioration processes and 

maintenance policy affect the maintenance interval and maintenance cost, thus 

influencing the life-cycle maintenance cost. For instance, in the illustrative example, 

considering dependent deterioration processes and fatal shocks results in a significant 

decrease in the maintenance interval and an increase of the life-cycle maintenance cost. 

Changing maintenance thresholds also cause considerable differences in the 

maintenance interval and the life-cycle maintenance cost. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

This thesis proposes a risk- and resilience-based life-cycle analysis of engineering 

structures under multiple hazards. Various uncertainties associated with the occurrence 

and intensity of hazards, structural vulnerability, deterioration processes caused by 

multiple hazards, long-term resilience and loss assessment, and life-cycle analysis have 

been taken into account in the proposed framework. The major conclusions of this 

thesis are summarized. 

1. A multivariate approach is developed for civil infrastructure considering the 

multi-hazard features of hurricanes. The copula model is proposed to model 

dependent hazard parameters for the vulnerability assessment. The 

mathematical copula model delivers desired performance in modeling 

dependent hazard parameters, as the marginal distribution and the correlated 

effects are considered separately. An illustrative example of a coastal bridge 

subjected to deck unseating failure is provided to apply the proposed approach. 

Results show that the structural vulnerability may be underestimated if 

neglecting the dependence among hazard parameters.  

2. An analytical approach using renewal theory is proposed to assess the expected 

long-term resilience and loss of civil infrastructure under hazards. Uncertainties 

associated with stochastic occurrence and intensity of hazards are evaluated 

based on a stochastic renewal process. An illustrative example is provided 

focusing on highway bridges under multiple independent hazards. Results show 
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the most harmful scenario determined by the long-term resilience may not be 

the costliest scenario implied by the long-term loss, thus suggesting different 

decisions under multiple hazards. Therefore, decision-makers should consider 

both long-term resilience and loss during the life-cycle analysis. 

3. A moment generating function-based approach is proposed for the higher-order 

analysis of long-term loss. Derivations of statistical moments of the loss are 

developed for the homogeneous Poisson, non-homogeneous Poisson, mixed 

Poisson, and renewal processes. An example of a highway bridge is provided to 

evaluate the long-term impact of climate change and variability on hurricane-

induced loss. Results show that the tail risk associated with the higher-order 

moments may imply extreme losses. Special attention should be paid to the 

higher-order moments. 

4. Finally, a probabilistic life-cycle analysis is developed for ageing infrastructure. 

The impact of multiple hazards on the system is modeled by multiple dependent 

deterioration processes (e.g., gradual deterioration, external shock, and fatal 

shock). Various uncertainties associated with deterioration, system reliability, 

intervention actions, and maintenance cost are integrated into the proposed 

framework. In particular, the impact of correlated maintenance interval and cost 

is investigated by the proposed copula-based multivariate renewal model. 

Results show their correlation may significantly affect the life-cycle 

maintenance cost. In terms of the higher-order analysis, examples show that 

decisions can be altered by considering statistical moments of the life-cycle 

maintenance cost. Interaction among deterioration processes and the 

maintenance policy should be carefully considered during life-cycle analysis. 
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9.2 Suggestions for future research 

Based on the research work developed in this thesis, several suggestions for future 

research are provided: 

1. The proposed multivariate analysis approach identifies the impact of tail 

dependence among hazard parameters by considering different copula models. 

The tail dependence is typically associated with extreme value theory and is 

commonly captured in extreme events. Future studies may perform extreme 

value analysis associated with hurricane parameters and incorporate more data 

records. In addition, the time-dependent reliability assessment during the life-

cycle analysis framework shows that the scenario with fatal shock and with 

interaction among deterioration processes is the most severe. This also implies 

the need for further analysis in terms of extreme value theory. In addition to the 

deck unseating failure mode, different failure modes of bridges under hurricanes 

can be investigated in future studies. The impact of other correlated intensity 

measures and other multi-hazard effects can be considered in the vulnerability 

assessment. 

2. The long-term performance assessment has employed the commonly used 

stochastic renewal process. An important assumption associated with the 

renewal process is that the capacity of a system is fully restored to the initial 

state after the major repair or replacement (i.e., essential maintenance). This 

assumption may not be applicable for some civil infrastructure as the entire 

system is hard to replace. More efforts should be performed to identify the 

impact of different levels of restoration and incorporate more restoration models.  
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3. It is recommended to explore the statistical moments of long-term loss with 

limited information, e.g., with a few observations. In terms of the long-term 

resilience, future studies can incorporate more detailed investigations associated 

the restoration modeling, resource availability, constraints, how damage can be 

mapped to functionality, and restoration actions. Additionally, as the proposed 

copula approach provides a data-based approach during the decision-making 

process, more efforts should be made to incorporate more observation data to 

improve the accuracy of practical applications during the life-cycle analysis. 

4. Future work is needed to explore the effect of statistical moments on the life-

cycle maintenance cost. More efforts can be made by investigating different risk 

attitudes and weighting factors during the proposed multi-attribute utility theory 

model. Moreover, as the higher-order moments are associated with the tail risk, 

more approaches are needed to investigate the effect of tail risk on the decision-

making process. Studies associated with the reduction of the life-cycle cost can 

also be performed based on the maintenance cost and maintenance policy. 

5. The proposed life-cycle analysis framework mainly evaluates the performance 

based on the economic loss metric. The framework could also be extended to 

address broader performance metrics, such as social metrics (e.g., downtime, 

fatalities), and sustainability metrics (e.g., embodied energy, emissions, waste, 

health impacts). Meanwhile, the impact of potential climate change and 

nonstationarity associated with climate-related extreme events can also be 

evaluated. 
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