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Abstract          

Remanufacturing has gained growing attention as a product recovery strategy over the past few years 

due to stricter product take-back legislation, customers’ awareness of environmental and health 

concerns of used product disposals, and economic reasons. Several multinational companies currently 

offer remanufactured products, often branded as ‘refurbished,’ alongside brand-new products. 

Nevertheless, previous studies have identified the design of products and the timing, quantity, and 

quality uncertainty of used product returns as major challenges of the remanufacturing industry. This 

research proposes an integrated methodology framework to address product design concerns and the 

uncertainty of used product returns from a remanufacturing perspective.  

Under this research framework, four core methodologies are proposed in this research for: i) the 

simultaneous consideration of assembly and disassembly concerns for the selection of fastening 

methods; ii) the development of a hierarchical optimisation model for the joint optimisation of 

configuration for new and remanufactured products with the consideration of upgrading decisions for 

used product returns; iii) the forecasting of used product returns for remanufacturing; and iv) the 

modelling of customers’ preferences of product attributes and the estimation of market demands for 

brand-new and remanufacturing products under uncertainty 

For the i) aspect, fastening methods affect both the assembly of new/remanufactured products and 

the disassembly of products during remanufacturing. Therefore, assembly and disassembly concerns 

must be addressed simultaneously for fastening methods selections, which has been little studied 

previously from a remanufacturing perspective holistically. In this research, a methodology for 

fastening methods selection from a remanufacturing perspective known as FMSRem is proposed. The 

proposed FMSRem considers design factors that facilitate the assembly of new products during initial 

manufacturing and the disassembly/re-assembly processes during the remanufacturing of used 

products.  A mathematical optimisation model is presented with an objective function to minimise the 

product assembly and disassembly cost. The genetic algorithm (GA) heuristic is proposed to solve the 
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model. A laptop design case study is presented to demonstrate the effectiveness of the proposed 

methodology. Different scenarios regarding the degree of disassembly required and the volume of used 

product returns was run to validate the proposed methodology. The result has shown that the proposed 

methodology offers significant product assembly and disassembly cost savings.  

For the ii) aspect, a bilevel programming model is proposed for the joint optimisation of design 

configurations of new and remanufactured products considering specification upgrading for 

remanufactured products. The joint optimisation model involves two-level decision makings. The 

upper-level handles the configuration of new product variants to maximise the shared surplus of new 

product offerings. The lower-level deals with configuration and specification upgrading of 

remanufactured product variants to maximise the shared surplus of remanufactured product offerings. 

A non-linear integer bilevel programming (NLIBP) is proposed to model the hierarchical optimisation 

problem. A nested bilevel genetic algorithm (NBGA) is proposed to solve the NLIBP. Furthermore, a 

case study involving configuration design for new and remanufactured mobile phone variants is 

conducted to validate the proposed model. Four scenarios are investigated to examine the effects of 

model parameters on the optimal solutions with the simulation result given at last. 

For the iii) aspect, as remanufactured products are made from parts/modules recovered from used 

products, knowledge of the available quantity, timing, and quality of used product returns is crucial 

for successfully implementing remanufacturing. However, the uncertainty associated with the 

quantity, timing and quality of used product returns makes forecasting in remanufacturing a complex 

task. In this research, a distributed lag model (DLM) is proposed to forecast used products under 

uncertainty accurately. DLM’s forecasting accuracy is primarily influenced by the lag function 

parameters' estimates, which has not been addressed in previous studies. To address this issue, a novel 

approach based on Markov Chain Monte Carlo (MCMC) and Bayesian inference is proposed, which 

can handle parameter estimations irrespective of the type and complexity of the lag function. A 

numerical case study is undertaken to demonstrate the proposed forecasting model and the parameter 
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estimation methodology. Validation tests are conducted by comparing forecasting errors of the 

proposed parameter estimation approach with the maximum likelihood estimate (MLE) method. The 

result reveals that the proposed DLM based forecasting method can lead to an improved forecasting 

accuracy when the proposed MCMC based Bayesian approach is used for parameter estimation.   

For the iv) aspect, fuzzy regression (FR) and rating-based conjoint analysis are proposed for 

modelling customers’ preferences for new and remanufactured product profiles. A multinomial logit 

model (MNL) is proposed, which uses FR and conjoint analysis results as inputs to estimate the 

demand for product profiles under uncertainties. A case study involving the design of new and 

refurbished laptop computers is further conducted to demonstrate the proposed approaches. Fuzzy 

utilities are determined for both the new and remanufactured product profiles, which are then used to 

estimate the market demands under three scenarios, including ‘worst,’ ‘normal’, and ‘best’ cases.  

It is envisioned that the design methodologies, approaches, and insights provided in this thesis can 

serve as a decision support tool during the early-stage product design processes. Furthermore, the 

forecasting methodology proposed can enable firms to manage the uncertainties associated with used 

product returns in a remanufacturing context.  
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Chapter 1 Introduction 

Due to the rapid technological advancements, the frequently changing customer preferences, and the 

shortening lifespan of products, consumer products become obsolete more quickly than ever. This 

phenomenon has resulted in an increase in waste disposal from electronic and electrical products (WEE) 

and end-of-life vehicles (ELVs), which have become a growing concern globally. A study conducted by  

Li et al. (2015) shows that more than 5.5 million tonnes of WEEE, mainly from discarded air conditioners, 

refrigerators, washing machines, televisions, and computers, were generated in China alone in 2013. The 

amount was projected to increase to 11.7 million tonnes and 20 million tonnes in 2020 and 2040, 

respectively. The severe environmental and health risks associated with the disposal of WEE and ELV 

have led many countries to enact legislation that mandate companies to bear responsibility for the 

collection, disposal, and reprocessing of end-of-life (EoL) and end-of-use (EoU) products. For instances, 

the European Union’s “Directive 2000/53/ EC” and “Directive 2002/95/EC” imposes targets on the 

amount of ELV and WEEE waste, respectively, that must be recovered by companies (European 

Commission, 2000; European Parliament & Council of the European Union, 2000). The Chinese 

government passed similar regulations for the take-back, recycling, and disposal of WEE for pollution 

control (Hatcher et al., 2013).  

More and more companies have been adopting product recovery strategies in recent years to respond 

to legislative pressures, increasing consumer awareness of environmental and health concerns and 

economic justifications. Product recovery involves the harvesting of components from EoL and EoU 

products for subsequent reprocessing to extend the useful lives of products. Components reuse, 

remanufacturing, reconditioning, repairing, and recycling are some of the product recovery strategies 
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currently being implemented by a range of manufacturers worldwide. Figure 1.1 depicts the material flow 

and commonly implemented product recovery options.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Product recovery options differ from each other depending on the nature of operations done on a used 

part and the resultant condition of products. Component reuse entails reusing parts/modules without 

modification. Product recondition involves repairing major parts/modules (regardless of their condition) 

to bring a product to a satisfactory working condition. Refurbishing differs from repair in that repairing 

focuses on fixing faulty/broken parts/modules, while refurbishing focuses on aesthetic improvement with 

a little improvement to its functionality (Benoy et al., 2014). According to Ijomah et al. (2004), 

remanufacturing is defined as a process whereby a used product is returned to a “like-new” condition and 

offered a warranty identical to that of a brand new version. In remanufacturing, components harvested 
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Figure 1.1 Material flow and product recovery strategy options 
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from used products are inspected for subsequent reuse, refurbishment or replacement (Ismail et al., 2014; 

Östlin et al., 2009). 

1.1 Background of the study  

Over the past few decades, remanufacturing has received increasing attention from manufacturers and 

researchers as a profitable and environmentally sound product recovery strategy (Umeda et al., 2017). 

Remanufacturing conserves virgin material, which would have otherwise extracted for the manufacturing 

of new products, leading to significant savings in manufacturing costs and a reduction in environmental 

impacts. Recent studies estimated the energy, labour, and material cost savings of a remanufacturing at 

50%, 33% and 80%, respectively, when compared with new product manufacturing (Li et al., 2019; Van 

Nguyen et al., 2020). Furthermore,  Cao et al. (2020) estimated the retail price of a remanufactured product 

to be about 50-70% of a brand new product. Heavy duty and off-road equipment manufacturers (e.g., 

Caterpillar) and electronic manufacturers (e.g., Xerox, Apple, HP, and Sony) are some of the multinational 

companies offering remanufactured products (also marketed as “refurbished”). Products widely 

remanufactured include consumer electronics, car engines, automotive components, tires (retreading), 

aircraft components, furniture, and printing equipment. Although remanufacturing is recognized for its 

environmental friendliness and profitability, its adoption in developing countries is limited. Previous 

research has shown that the major challenges for the low adoption of remanufacturing are related to the 

remanufacturability of product designs and the uncertainty regarding the quantity, the quality, and the 

timing of used product returns (Matsumoto et al., 2016; A. Raihanian Mashhadi et al., 2015). This research 

focuses on product design issues and production planning uncertainties in a hybrid manufacturing and 

remanufacturing industry to address the research gap. 
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The product design and development (PDD) process can be represented using four domains: customer 

domain, functional domain, physical domain, and process domain (Jiao et al., 2007; Kuo & Wang, 2019). 

Figure 1.2 shows the interrelationship among the domains. Customer domain is where customer needs 

(CNs) in specific market segments are defined and synthesized. Each CN is translated into the product’s 

functional requirements (FRs) in the functional domain. In the physical domain, FRs are converted to 

corresponding design parameters (DPs). DPs are critical parameters that are specified by designers for the 

fulfillment of FRs. Finally, the DPs are converted into process variables (PVs) to produce the resultant 

product design (Wang & Lu, 2018).  

 

 

 

  

Unlike the traditional PDD process, in remanufacturing, early-stage design decisions need to consider 

factors that affect the remanufacturability of products. In this research, early-stage design refers to a stage 

when the design problems are defined, concepts are generated and design specifications are determined 

(Ahmad et al., 2018). One of the early-stage design decisions that can affect the remanufacturability of a 

product design is related to the selection of fastening methods. The choice of appropriate fastening 

methods can help facilitate the assemblability of new products during initial manufacturing as well as the 

disassemblability of used products during subsequent remanufacturing. Therefore, a methodology for the 

optimum selection of fastening methods is required during early-stage design.   

Customer 
domain  

Functional 
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Physical 
domain  

Process 
domain  

Figure 1.2 Four domains of PDD process  
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During the past few decades, firms have transitioned from traditional mass production to a more 

diversified portfolio planning to satisfy the changing demands and maintain their competitiveness. Product 

design configuration (PDC) is a design paradigm that allows firms to introduce product variants to 

different market segments to satisfy their diverse needs (Hvam et al., 2013). PDC involves determining 

optimal levels for a set of attributes that characterises a product. The products' performances vary 

depending on the configuration of attribute levels of parts/modules, such that different levels of an attribute 

have similar functionalities but different performances (Kwong et al., 2011). The main goal of a PDC is 

to determine optimal attribute levels for parts/modules to satisfy specific objectives such as total profit, 

market share, and customer satisfaction, subject to constraints such as performance requirements (Wang 

et al., 2009; Wu et al., 2016).  

In addition to determining attribute levels, PDC decisions involve specification upgrading for parts 

recovered from used product returns for firms that offer lines of both the new and remanufactured product 

variants. When new products previously sold return at the end of their useful period, the original 

specification of parts/modules incorporated in new products can become technologically obsolete (Kwak 

& Kim, 2013). In such a scenario, parts/modules recovered from used product returns often require 

upgrading with a better or cutting-edge specification to improve its functionality. However, replacements 

with higher specifications often lead to higher costs of remanufacturing. The upgrade level required for a 

used part/module largely depends on the original specification of a part/module and the timing of used 

product returns. Hence, the PDC during the early-stage design should consider specification upgrading of 

used products.  

The uncertainty of used product returns is another major challenge that affects the profitability of 

remanufacturing. Two categories of uncertainty are involved. The first is related to the quantity and timing 

uncertainty of used product returns. This uncertainty emanates from the lack of information regarding the 
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proportion of previously sold new products which will become available for returns and the timing of 

returns. The underestimation and overestimation of used product returns can significantly affect 

remanufacturing profitability. For instance, when the demand for a remanufactured product exceeds the 

number of used product returns, companies often expedite orders of used products from the secondary 

market at a higher cost to offset the deficit. However, this leads to an increase in the remanufacturing cost.  

On the other hand, the quality of used product returns can vary significantly from minor repair issues to 

total damage. The inaccurate prediction of the quality of used returns can also lead to variations in 

remanufacturing costs. Hence, for the effective planning of remanufacturing activities, the uncertainties 

regarding the quantity, timing, and quality of product returns must be addressed holistically.  

1.2 Problem statement  

Four sets of problems that affect the profitability of companies that offer both the new and remanufactured 

products are considered in this research, including i) the selection of fastening methods to facilitate the 

manufacturability of new products and the remanufacturability of used products; ii) product design 

configuration and the consideration of specification upgrading decision for used product returns; iii) the 

uncertainties associated with the available quantity and timing of used product returns; and iii) the 

modelling of customer preferences and the estimation of demands for the new and remanufactured product 

profiles under uncertainty.   

The first problem concerns selecting appropriate fastening methods during the early design stage to 

facilitate the manufacturing of new products and the remanufacturing of used product returns.  Early-stage 

design decisions regarding the selection of fastening methods affect both the assembly of new products 

and the disassembly of used products. Fastening methods selected to facilitate new products' assembly 

can become unsuitable for the disassembly of EoL products and vice versa. For instance, fasteners such 

as snap-fits and adhesives often require little effort to fasten during the assembly of new products. 
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However, they are often challenging to disassemble during the remanufacturing of used products. 

Therefore, decisions regarding fastening methods must consider assemblability and disassemblability 

concerns simultaneously during early-stage design from a remanufacturing perspective, which was not 

addressed in previous studies.  

The second problem concerns determining optimal design configurations (PDC) and upgrading plans 

for remanufactured products during the early design stage. Traditionally, PDC involves determining 

optimal design configurations for new product profiles, which entails choosing optimal specifications for 

new parts. However, for firms that offer remanufactured products,  early-stage product design must also 

plan upgrade decisions for parts recovered from used product returns. Thus, PDC decision-making entails 

a hierarchical framework that can be dealt with using a leader-follower optimisation paradigm. However, 

previous studies on PDC have not addressed the hierarchical optimisation considering upgrade decision-

making for used parts.  

The third research problem concerns the forecasting of the quantity and timing of EoL product returns. 

The widely used conventional time series-based forecasting methods cannot capture the relationship 

between the number of new products sold in previous periods and the available number of used product 

returns. Few previous studies have proposed the distributed lag model (DLM) given in Equation (1.1) to 

capture the relationship between the sales of new products and the available quantity of used product 

returns (Aydin et al., 2018a; Clottey et al., 2012; Krapp et al., 2013a). 

𝑚𝑡
𝑟𝑒𝑡 =∑𝛽𝑘𝑛𝑡−𝑘 + 𝜀𝑡 ;  𝑡 = 1,23, . . 𝑇

𝑡−1

𝑘=1

  
 

(1.1) 

Where βk in Equation (1.1) denotes the delay function, i.e., the proportion of new products sold during 

(t –  k) 𝑡ℎ period, i.e., 𝑛𝑡−𝑘that is available for return in period t (i.e., 𝑚𝑡
𝑟𝑒𝑡). Previous studies have used 

statistical distributions such as negative binomial, exponential, geometric, and gamma distributions to 
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model the delay function (Clottey et al., 2012; Clottey & Benton, 2014; Toktay et al., 2000). However, 

DLM has some limitations. First, due to the assumption of a specific distribution for the lag function, an 

inappropriate distribution assumption can lead to inaccurate forecasting. Second, previously proposed 

methods that used geometric, exponential, and gamma distributions work only for a case of product returns 

with short lags and therefore do not accurately forecast used product returns with longer lags (Clottey & 

Benton, 2014).  

Negative binomial distribution, which is given in Equation (1.2), was proposed in the past to model 

the delay function with longer lags (Toktay et al., 2000). 

𝛽𝑘=p(
𝑘 + 𝑟 − 1

𝑟
) 𝑞𝑟(1 − 𝑞)𝑘 (1.2) 

However, the negative binomial delay function often results in over-estimating the return quantities 

(Clottey & Benton, 2014). Besides, the difficulty of estimating the parameter r, which represents the lag 

with the largest βk, poses another challenge. Toktay et al. (2000) conducted hypothesis tests to choose 

appropriate values for the r parameter, which involves quite a tedious procedure.   

The fourth problem concerns customers' preference modelling and the estimation of market shares 

for new and remanufactured product profiles under uncertainty. The conventional conjoint analysis, which 

is widely used in market research for modelling customers’ preferences, cannot handle the imprecision of 

survey data that results from the subjective rating of survey responses.  Such an imprecision leads to 

inaccurate estimates of the products’ utilities and hence their market share estimates. Therefore, survey 

data's imprecision should be addressed to accurately determine the utilities and market shares of new and 

remanufactured products under uncertainty.  
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1.3 Research hypotheses and objectives  

This research has the following hypotheses, which were formulated based on an extensive review of 

related literature. 

• Hypothesis 1: A methodology that will help design engineers to select fastening methods during 

the early design stage to facilitate the assembly of new products and the disassembly of used 

products can be developed. The fastening methods selection methodology can improve assembly 

and disassembly times and the overall assembly and disassembly cost of a product.  

• Hypothesis 2: A joint optimization of product design configurations for both new and 

remanufactured products can be obtained during the early design stage, considering specification 

upgrading decisions for used parts/modules.  

• Hypothesis 3: It is possible to estimate the parameters of the distributed lag model (DLM) regardless 

of the types of lag function assumed for subsequent use in a DLM to forecast used product returns 

for remanufacturing based on sales in previous periods.   

  In order to test and validate  the proposed hypotheses, this research has defined the following objectives:  

• To develop a methodology for the selection of fastening methods through the simultaneous 

consideration of product assembly and disassembly concerns to facilitate the manufacturing of 

new products and the remanufacturing of used products. 

• To develop a hierarchical optimisation model for optimal product design configuration for new 

and remanufactured products considering specification upgrading of used parts/modules.   

• To develop a methodology for forecasting the quantity and timing of used product returns from a 

remanufacturing perspective.  

• To model customers’ satisfaction and estimate market demands for new and remanufactured 

products under uncertainty.   
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1.4 Scope and assumptions   

This research addresses two main issues in a hybrid manufacturing/remanufacturing system: product 

design and development and the uncertainty of used product return. On product design and development, 

this thesis concentrates on three aspects. The first aspect deals with selecting optimal fastening methods 

during the early design stage of product development to facilitate the assembly and disassembly of 

products. More specifically, the main focus is to determine optimal fastening methods that will minimise 

the overall assembly and disassembly cost. The second aspect deals with optimising product design 

configuration for both new and remanufactured products, considering specification upgrading for used 

parts. The third aspect concerns the estimation of customers’ satisfaction and market shares for new and 

remanufactured products under uncertainty. Moreover, to address the uncertainty issues regarding used 

product returns, this research focuses on forecasting the available quantity of used products in future 

periods and the timing of their returns based on information regarding the sales of new products in 

previous periods. A major assumption this research makes is that original equipment manufacturers 

(OEMs) design new products using a configurable modular design approach, and subsequently 

remanufacture used product returns. Furthermore, new product sales pattern and the condition of used 

product returns were assumed to follow a determinist distribution.  
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1.5 Organization of the thesis 

Figure 1.2 outlines the thesis's roadmap, which depicts each chapter's relationship with the research 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research’s background, problem statement, hypotheses, objectives, and scope were discussed in 

chapter 1. The rest of the thesis is organised as follows. Chapter 2 presents a comprehensive review of 

previous studies related to the scope of this research. Chapter 3 discusses the overall research framework, 

which includes 1) the methodology for fastening methods selection during the early design stage with 

consideration of product assembly and disassembly; 2) the methodology for joint optimisation of product 

design configurations for new and remanufactured products considering specification upgrading for 
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remanufactured products; 3) the methodology for forecasting the quantity and timing of used product 

returns; 3) methodology for modelling customer preferences and determining the market demand for both 

new and remanufactured product.  

Chapters 4 and 5 deal with design concerns that affect remanufacturing profitability.  Chapter 4 

presents the proposed methodology for fastening methods selection to facilitate the manufacturability of 

new products and the remanufacturability of used products. A mathematical optimisation model and the 

GA solving approach are also presented. Chapter 5 presents the proposed model to determine optimal 

design configurations for new and remanufactured products considering specification upgrading of used 

products. Chapters 6 and 7 deal with the uncertainty issues that affect the production planning and control 

of remanufacturing operations. Chapter 6 presents the proposed DLM based forecasting model for the 

forecasting of used product returns for remanufacturing. The proposed MCMC based Bayesian approach 

for the estimation of parameters of the DLM is also described. Chapter 7 presents the methodology for 

modelling customers' preferences and estimating the demands for new and remanufactured products under 

uncertainty. Application of the rating-based conjoint analysis and the fuzzy regression model to estimate 

market demands for the new and remanufactured products are presented.  Chapter 8 discusses the 

conclusion, findings, and contributions from the study. Future work is also suggested.  
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Chapter 2 Literature Review 

A comprehensive review of previous studies related to the proposed research framework was conducted 

to identify potential research gaps and refine the study's focus. Two streams of literature have been 

identified as relevant to the proposed research framework. The first stream concerns the design 

methodologies, guidelines & tools developed by previous studies to facilitate the remanufacturability of a 

product design. Under the first stream, the following topics were reviewed. 1) Design methodologies 

proposed in previous studies to facilitate the selection of fastening methods during the early-stage design; 

2) previous studies on product design configuration that considered both new and remanufactured 

products. Besides, studies on used product upgrading decision-making are also reviewed from a PDC 

perspective. 3) review of previous studies on the application of bilevel optimisation for product design 

configurations 4) managing uncertainty in product design and development. Potential research gaps have 

been identified. 

 The second stream of literature reviewed in this research concerns previous studies on the forecasting 

of used products from a remanufacturing perspective and the estimation of demands for remanufactured 

products under uncertainty. To this end, previous studies on the management of quantity and timing 

uncertainty of used product returns and the forecasting methodologies proposed in previous studies was 

reviewed.  

2.1 Product design for remanufacturing  

Early-stage design decisions can affect not only the functional performances of new products but also the 

remanufacturability of EoL products. Some previous studies have investigated design factors that affect 

the remanufacturability of products. Sundin (2004) studied several remanufactured products to identify 

product properties that facilitate the remanufacturability of product designs. The study led to the 
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development of the “RemPro matrix,” a design methodology that guides designers to inculcate design 

attributes such as “ease of access,” “ease of handling,” and “wear resistance” to facilitate the 

remanufacturability of products. Zwolinski & Brissaud (2008)  investigated several remanufactured 

products to identify 11 product profiles that enhance products' remanufacturability. Their investigation 

led to the development of “Repro2,” a tool used to evaluate products' remanufacturability based on the 

identified ‘remanufacturable’ profiles. Du et al. (2012) also proposed integrated remanufacturability 

assessment metrics based on three aspects: i) technological feasibility, which evaluates the feasibility of 

remanufacturing steps such as disassembly, cleaning, and reconditioning; ii) economic feasibility, and iii) 

environmental feasibility. Fang et al. (2016) proposed an integrated tool for evaluating the 

remanufacturability of a product design based on four metrics: i) disassembly complexity, ii) fastener 

accessibility, iii) disassemblability, and iv) recoverability. The metrics are aggregated to compute the 

overall remanufacturability metrics of a product design. Similarly, Yang et al. (2016) presented a Fuzzy 

TOPSIS approach for evaluating the remanufacturability of product designs based on four factors: i) 

material selection, ii) material joining methods, iii) structure design and iv) surface coating methods. 

 

2.1.1 Product design for disassembly methods  

In remanufacturing, the complete disassembly of used products is rarely undertaken due to the high costs 

associated. Partial disassembly is often required depending on the quality of product returns. Some 

previous studies have proposed design for disassembly (DFD) tools to evaluate disassemblability during 

the early design stage. Some of the notable contributions include tools for evaluating a product's 

disassembly difficulty based on work measurement analysis proposed by (Kroll, 1996; Kroll & Carver, 

1999; Kroll & Hanft, 1998). Das et al. (2000) proposed an index for measuring the disassembly effort 

during the early design stage considering five factors:  i) time, ii) force, iii) tool requirement, iv) 
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accessibility and v) hazard. Simiarly, Desai & Mital (2005) presented a method for calculating the 

disassemblability score considering five factors: i) accessibility, ii) force requirement, iii) tool and 

positioning, and iv) material handling. Sabaghi et al. (2016) presented a similar method for evaluating the 

disassemblability of products based on five factors: i) accessibility, ii) the relative position of components, 

iii) tool requirement, iv) fasteners type, and v) the number of fasteners. On the other hand, methods for 

evaluating the disassembly index were also proposed in previous studies. Soh et al. (2016) investigated 

the disassembly complexity and the accessibility of parts to compute the disassembly index of alternative 

disassembly routes. Several disassemblability and accessibility constraints, including “part handling 

difficulty,” “fastener removal difficulty,” and “directional constraints” were considered. The Hitachi 

company also developed the Disassemblability Evaluation Method (DEM), a quantitative method for 

evaluating the disassemblability of product designs (Go et al., 2011). Bras & Hammond (1996) proposed 

metrics for evaluating the overall product’s remanufacturability based on the disassemblability, cleaning 

difficulty, damage correction, and quality assurance factors. They implemented the inverse weighted 

addition method to combine individual metrics into global remanufacturability metrics.  

  Some previous studies have also proposed disassembly evaluation methodologies based on 

disassembly time. Unlike other subjective metrics, disassembly time provides an objective measure of the 

disassemblability of a product and helps designers conduct feasibility studies of disassembly operations. 

Some previous studies have proposed methods to estimate the disassembly time based on the MOST work-

measurement system (Kroll & Carver, 1999) and the work factor method  (Yi et al., 2003). According to 

their method, total disassembly time is calculated by adding individual time estimates for preparation, 

movement, disassembly, and post-processing operations. Similarly, Desai & Mital, (2005) presented a 

methodology for estimating the disassembly time based on difficulty scores of factors such as i) force, ii) 

material handling and tools requirement, iii) accessibility, and iv) tool positioning. Germani et al. (2014) 



16 
 

proposed quantitative metrics to evaluate the disassemblability of product designs based on information 

on joining methods. The disassemblability of a target component is evaluated based on the estimate of 

disassembly time and cost, wherein components with the most extended disassembly times are considered 

for a redesign.   

The impact of a product’s design on remanufacturing profitability was also addressed in previous 

studies. Zhao & Thurston (2010) developed a mathematical model to maximise the overall profit from the 

sales of new products and product recovery operations. Kwong et al. (2011) proposed a profit 

maximisation model for product line design considering both new and remanufactured products. Kwak & 

Kim (2015) proposed a decision support tool based on a nonlinear mixed-integer programming model to 

determine whether a part should be reused or upgraded to maximise the overall profit and environmental 

impact saving. Similarly, Kwak & Kim (2017) presented a mixed-integer model for joint optimisation of 

the profit and environmental impact saving considering new and remanufactured products.  

 

2.1.2 Fastening methods selection for product assembly and disassembly   

The assembly of new products and the disassembly of used products during remanufacturing are affected 

by the types of fasteners used in products. Some fastening methods are suitable for product assembly but 

are challenging to disassemble during the remanufacturing of used products and vice-versa. Therefore, the 

selection of fastening methods should consider the assemblability and disassemblability issues 

simultaneously. Quite a few studies have considered fastening methods selection during the early design 

stage. Shu & Flowers (1999) proposed a method to select fasteners based on the probabilities of fasteners' 

failure during the disassembly process and reassembly process. Sodhi et al. (2004) proposed the 

unfastening effort (U-effort) model, a methodology for estimating the unfastening time. The U-effort score 

is determined by measuring causal attributes like the size, the shape, and the operational characteristics of 
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commonly used fastening methods. However, the U-effort model can only be used to estimate the 

unfastening efforts for a limited number of fastener types. Besides, they did not consider the unfastening 

time required for identifying joints, tool changing requirement, and positioning requirements. Güngör 

(2006) also proposed a methodology to select fastener types based on the analytic network process (ANP) 

approach to facilitate the disassembly of products. Factors related to the assembly, usage, disassembly 

were considered. However, the ANP involves running several scenarios that take time to setup. Ghazilla 

et al. (2014) proposed the PROMETHEE, a multi-criteria decision model for selecting fasteners 

considering the qualitative and quantitative disassembly parameters. Kobayashi et al. (2015) presented an 

optimisation model to select fastening methods with an objective function of maximizing the volume of 

high-value components to be recovered from used products constrained with minimising the fastener 

removal time. The fastener removal time is computed by aggregating unfastening time and tool 

preparation time. de Aguiar et al. (2017) proposed a diagnostic tool for early design stage disassembly 

analysis and presented indices for the quantity of fasteners, types of fasteners, and accessibility of 

fasteners. Sabbaghi & Behdad (2017) presented a non-linear integer optimisation to minimise the mean-

time-to-repair of products based on the type of fasteners used, the repair requirement, and the disassembly 

sequences involved.  

2.2 Determining optimal configurations for new and remanufactured products 

Product design configuration (PDC) is one of the critical decisions of product development during the 

early-stage design, which deals with determining optimal configurations for products to satisfy customers' 

diverse needs (C. Zhou et al., 2008).  Parts/modules in different product profiles often have similar 

functionality/structure but different attribute levels (performances). A part/module's attributes can be 

measured using either a continuous scale or discrete levels (Kwong et al., 2011). For instance, a power 

tool can come with a design option of either a 100-120V or 220-240V power source module representing 
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a discrete attribute level. In contrast, the attribute for the length of the power tool’s handle can be measured 

on a continuous scale.  A large volume of previous studies on PDC focused on determining optimal 

configurations for products' attributes to meet specific objectives. A PDC's objective often involves 

determining optimal configurations for product profiles to maximise the total profit, market share, 

customer satisfaction etc., subject to certain constraints such as performance requirements, reliability, etc. 

Many of the previous studies on PDC proposed multi-objective optimisation with two or more objectives 

(Aydin et al., 2015; Goswami et al., 2017; Kwong et al., 2011; Wang et al., 2009; Wu et al., 2016). Various 

solving techniques were proposed for solving PDC problems, many of which involve the aggregation of 

multiple objectives into a single optimisation problem (Q. Wang et al., 2018; G. Du et al., 2014; Wu et 

al., 2016).    

 While some previous studies focused on marketing and engineering concerns separately, integrating 

both concerns was a commonly considered approach in recent studies (Goswami et al., 2017). The market-

driven approach mainly focuses on product positioning, price competition, customer satisfaction models, 

etc. It also involves conjoint analysis and single-stage optimisation models to determine optimal design 

configurations for product variants. McBride and Zufryden (1988) proposed integer programming and 

conjoint analysis to select product variants from a predefined candidate set. Li and Azarm (2002) 

investigated uncertainties regarding customers' preferences, market competitions, and multiple business 

goals for the optimal PDC. Kumar et al. (2009) developed a market-driven methodology to determine the 

appropriate positioning for product variants (i.e., determining market niches for each of the product 

variants) and explored the corresponding cost savings. Recently, Bechler et al. (2021) proposed a mixed-

integer linear programming model for PDC, incorporating “compromise” variables into a multinomial 

logit model. In their study, “compromise” variables are defined as attribute levels that can take an 

intermediate value that are unknown a priori; for example, “medium price”. 
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On the other hand, the engineering-driven PDC approach focuses on striking a balance between 

product commonality and performance targets and often neglects marketing aspects of product variants. 

During the past few decades, extensive studies were conducted on methods and tools for optimal product 

family design, platform-based product family designs. Two approaches were reported in the literature: 

module-based (Gauss et al., 2021)  and scale-based (Simpson et al., 2001) product family designs. A 

comprehensive literature review can be found in (Jiao et al., 2007; Pirmoradi et al., 2014).  

An integrated marketing-engineering approach provides a more profitable product line solution than 

when the two approaches are implemented separately (Lan, 2011). Jiao and Zhang (2005) developed a 

model for maximising shared surplus, which involves marketing-engineering interactions for the optimal 

PDC. Michalek et al. (2006) presented a methodology for quantitative evaluation of the complex trade-

offs among functionality, market performance, and PDC costs for profit maximisation. Michalek et al. 

(2011) proposed a methodology that integrates market positioning with product line design to maximise 

profit and market shares. In their study, continuous realisations for attribute levels are considered. Kwong 

et al. (2016) proposed a multi-objective optimisation model that integrates affective design, engineering, 

and marketing issues to optimise new product lines. More and more studies have focused on applying 

machine learning /data analytics, such as opinion mining/sentiment analysis for PDC in recent years. Zhou 

et al. (2017) presented sentiment analysis based on affective lexicons and rough-set techniques to predict 

customer sentiments towards individual product features. Ireland and Liu (2018) presented a framework 

for integrating various machine learning algorithms and design theories to evaluate customers’ sentiments 

towards product features. Chan et al. (2020) discussed the prospect of integrating social media data with 

traditional conjoint survey data for affective product design. Although several previous studies have dealt 

with engineering-marketing interactions for a single-stage PDC during the early design stage, 

consideration of used parts upgrading from a remanufacturing perspective was not addressed.  
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The importance of upgrading used products for extending their useful life has been recognised in 

previous studies (Shafiee & Chukova, 2013). Shafiee et al. (2011) and Shafiee and Chukova (2013) 

presented a mathematical optimisation model based on failure rate function to determine the optimal 

upgrade strategy for second-hand products for profit maximisation. Chung et al. (2017) proposed a 

dynamic programming model which integrates forecasts of technological advancements into upgrade 

decision making for modules of a high-cost and complex system.  Quite a few previous studies have dealt 

with determining optimal upgrade levels for used products from a remanufacturing perspective. Kwak and 

Kim (2015a) proposed a mixed-integer non-linear model for the simultaneous optimisation of new product 

designs and design upgrades for an EOL product. However, these studies considered single-stage 

optimisations for used product upgrading decisions and ignored the conflicting trade-offs between the 

PDC of new and remanufactured products in a hierarchical framework. 

2.2.1 Application of bilevel optimisation for product line design  

The application of a bi-level (BL) optimisation for the product configuration design problem has received 

considerable attention in recent years. BL programming is used to solve hierarchical optimisation 

problems, which involves two sequential and non-cooperative decision-makers, the upper level & the 

lower level (Bard, 1998). BL optimisation follows a leader-follower type Stackelberg game where the 

leader (upper-level decision-maker) makes his/her decision first and passes it to the follower (lower-level 

decision-maker) who uses it to solve its optimisation problem. The follower responds to the leader’s 

optimal solution to optimise his/her objective function (Colson et al., 2007; Kalashnikov et al., 2015; 

Sinha et al., 2018). Thus, the lower-level optimisation serves as constraint to the upper-level optimisation. 

The general mathematical representation of a BL optimisation takes the form shown in Equation (2.1) 

(Sinha et al., 2018). 
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min
𝑥𝑢 ∈𝑋𝑈, 𝑥𝑙 ∈𝑋𝐿

   𝐹(𝑥𝑢, 𝑥𝑙) 

                                subject to 

𝐺𝑗(𝑥𝑢, 𝑥𝑙) ≤ 0,    j = 1,⋯, J 

  𝑥𝑙 ∈  argmin
               𝑥𝑙 ∈𝑋𝐿

   𝑓(𝑥𝑢, 𝑥𝑙) 

        subject to 

                 𝑔𝑘(𝑥𝑢, 𝑥𝑙) ≤ 0, k = 1,⋯ ,𝐾 

 

 

 

(2.1) 

Where 𝐹(𝑥𝑢, 𝑥𝑙) and 𝑓(𝑥𝑢, 𝑥𝑙), respectively,  denote the upper-level and lower-level objective functions; 

𝐺𝑗  and 𝑔𝑘 , respectively, denote the upper and lower-level constraints. Variables, 𝑥𝑢 and 𝑥𝑙  denote 

decision variables while 𝑥𝑢 and 𝑥𝑙 denote the decision space.  

The bilevel problems are often characterized as non-convex and non-differentiable (i.e., NP-hard), 

making them difficult to solve using conventional analytical algorithms. Classical techniques proposed in 

previous studies for solving bi-level problems follow simplified assumptions such as linearity, convexity, 

and differentiability (Sinha et al., 2018). Li and Wang (2008) proposed a method to convert a bi-level 

optimisation into a single level using KTT condition, which replaces lower-level problems by systems of 

equations and inequalities. However, the KTT condition assumes a convex & regular form for the lower 

level problem (Colson et al., 2005). Fliege and Vicente (2006) proposed a multi-criteria method to solve 

bi-level programming, which assumes convexity and continuous differentiability for the lower-level 

problem. Although several exact techniques are available to solve bi-level problems, they often make 

assumptions regarding the underlining objective functions/constraints.  

In recent years, metaheuristic approaches have been demonstrated to be advantageous for solving NP-

hard and large combinatorial optimisations such as product family configuration problems (Oliveto et al., 

2007). Two types of metaheuristic approaches were reported in previous studies for solving bi-level 

optimisation problems: the nested and single-level transformation approaches (Talbi, 2013). The single-
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level transformation converts the bi-level optimisation into a single-level optimisation and uses classical 

heuristic approaches to solve it. It also assumes convex form and differentiability for the lower-level 

problems and constraints. On the other hand, in a nested approach, the lower-level problems are solved in 

a nested and sequential manner until an optimal overall solution is obtained (X. Liu et al., 2018; Singh et 

al., 2019).  

2.3 Managing design uncertainty during early-stage product development 

Design complexity and functional coupling were reported in the literature as the two main sources of 

uncertainties in engineering design that can affect the cost and lead time of product design and 

development (Alkan et al., 2017; C. Y. Wang & Lu, 2018). Suh (1998) defined design complexity as 

uncertainty that is caused by couplings between functional requirements (FRs) and design parameters 

(DPs). FRs are technical characteristics of a product, i.e., the functions a product performs. Functional 

coupling occurs when an FR is satisfied by one or more DPs. The axiomatic design principle which was 

first introduced by Suh (1998) was widely used for the objective evaluation of design complexity and 

functional coupling of several types of designs including hardware, software, and a combination of 

hardware and software. Axiomatic design principle states that good designs are designs that satisfy two 

design axioms, the independence axiom, and the information axiom. 

 The purpose of the independence axiom is to ensure the independence of functional elements. In 

other words, it aims to minimise the effect of changes in design parameters on functional requirements, 

ideally maintaining a one-to-one relationship between FRs and corresponding DPs (Villecco & Pellegrino, 

2017). Failure to satisfy independence axiom leads to functional coupling, which can cause poor control 

and adjustability issues (Marchesi & Matt, 2017). On the other hand, addressing design complexity issues 

allows designers to select less coupled (modular) product designs during early-stage design (Ameri et al., 

2008). The vector representation given in Equation (2.2) defines the relationship between FRs and DPs.  
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                   {
𝐹𝑅1
⋮

𝐹𝑅𝑛

} = [𝑋] {
𝐷𝑃1
⋮
𝐷𝑃𝑛

}  
 

(2.2) 

             

Where X is a design matrix that captures the relationship between FRs and DPs. The elements of the 

design matrix are determined by solving the partial derivatives of FRs with respect to DPs as given in 

Equation (2.3). 

                   𝑋𝑖𝑗 =
𝜕𝐹𝑅𝑖
𝜕𝐷𝑃𝑗

 
 

 

      (2.3) 

Accordingly, an uncoupled design is expressed as a diagonal matrix whose non-diagonal entries are zero. 

For instance, an uncoupled design solution with three FRs and three DPs can be represented using a 

diagonal design matrix as given in Equation (2.4). 

                   [X]= [
𝑋11 0 0
0 𝑋22 0
0 0 𝑋33

] 
 

 

      (2.4) 

Similarly, a decoupled design solution is expressed using a triangular matrix given in Equation (2.5). An 

independence axiom is thus satisfied when the relationship matrix results in either a coupled or decoupled 

design matrix. Any other matrix representation results in a coupled design.  

[X]= [
𝑋11 0 0
𝑋21 𝑋22 0
𝑋31 𝑋32 𝑋33

] 
 

 

      (2.5) 

The second design axiom, the information axiom, is used to ensure design simplicity through 

minimisation information content. Information content is inversely related to the probability of the design 

solution satisfying intended FRs. For a design consisting n functional requirements, the information 

content of a design system (𝐼𝑠𝑦𝑠) is computed according to Equation (2.6).  

𝐼𝑠𝑦𝑠 = −∑ln(𝑝𝑖)

𝑛

𝑖=1

 
 

 

      (2.5) 
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Where n denotes the total number of functional requirements, and 𝑝𝑖 denotes the probability of a design 

solution satisfying the 𝑖𝑡ℎ functional requirement. Thus, the information axiom provides quantity metrics 

for the evaluation of design alternatives. According to information axiom, design solutions with the 

greatest probability of success (𝑖. 𝑒. , 𝐼𝑠𝑦𝑠) are selected.  

Measuring design complexity is essential to simplifying an engineering design, thereby reducing 

design uncertainty. Several previous studies have investigated methods to measure design complexities in 

engineering design  (Ameri et al., 2008;  Alkan et al., 2017; Pimapunsri & Srimuang, 2019; Shamsuzzoha 

et al., 2020; Villecco & Pellegrino, 2017; Wang & Lu, 2018). Much of the previous studies focused on 

methods for measuring the complexity of a design based on the level of entropy (information content) 

embedded in a product design (Ameri et al., 2008;  Kim et al., 2016; Martínez-Olvera, 2020; Modrak & 

Bednar, 2015). Previous studies that addressed couping complexity focused on investigating the 

interconnectedness between various components and subassemblies in a product (Ameri et al., 2008; 

Wang & Lu , 2018 ). 

2.4 Product recovery decision making  

Product recovery options such as reuse, recycling, and remanufacturing are considered environmentally 

friendly and economically viable options compared to direct disposal. Product recovery strategies refer to 

options for recovering value from used product returns. Quite a few previous studies have proposed 

methods for product recovery decision-making during the early-stage design. Ziout et al. (2014)  proposed 

a framework based on AHP to identify factors that affect product recovery decision-making. King et al. 

(2006) compared four product recovery strategies: repairing, reconditioning, remanufacturing, and 

recycling, and concluded that remanufacturing outperforms the others in terms of economics and 

environmental benefits (i.e., waste reduction and conservation of embodied energy). Rose (2000) 
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developed a software known as “end-of-life design advisor” (ELDA), which determines appropriate 

recovery strategies based on products’ technical characteristics. The software uses the classification and 

regression tree (CART) technique to predict products' EoL strategy. Mangun & Thurston (2002) proposed 

a methodology to evaluate the cost effectiveness and the environmental impact of various product recovery 

strategies, including reuse, recycling, and disposal. Similarly, Zhao & Thurston (2010) developed product 

recovery decision-making considering consumer preference, the cost of processing, and environmental 

impact saving. Kwak & Kim (2010) developed an optimisation model for evaluating alternative product 

designs based on expected recovery profit. They demonstrated the model through a case study on three 

cell phone handset designs.  Mazhar et al. (2007)  presented a model which allows designers to conduct a 

technical evaluation of a component’s remaining life for reusing. Remery et al. (2012) presented a method 

to determine recovery scenarios for components during the design stage based on fuzzy order preference 

by similarity to ideal solution (TOPSIS) technique. They considered six recovery options in their study: 

reuse, recycling with and without disassembly, remanufacturing, incineration for energy recovery, and 

disposal. Cheung et al. (2015)presented guidelines for selecting a recovery strategy from recycling, 

refurbishment, and remanufacturing options considering their financial impact. Ma & Okudan Kremer 

(2015) proposed a quantitative method for determining an appropriate product recovery option. In their 

method, the economic, social, and environmental impact of product recovery strategies were considered.  

Lee et al. (2001) proposed a multi-objective methodology to determine feasible recovery options for a 

product by considering the environmental impact and economic value of used components. Desai & Mital 

(2005) considered factors that affect a recovery strategy, such as assembly cost, disassembly costs, 

cleaning cost etc., for selecting an appropriate recovery option. Behdad et al. (2010) used an integer linear 

programming model to determine an optimal recovery strategy considering the value that remains in each 

component. The model was implemented to determine appropriate recovery options for the modules of 
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two cell phone designs. H. M. Lee et al. (2014) proposed several indices to evaluate designs for improved 

EoL performances. The indices for disposal, disassembly, and recovery are aggregated into a single overall 

index to help designers select design alternatives for optimal End-of-Life option.  

Product design upgradability assessment is another issue addressed in previous studies. The rapid 

pace of technology poses challenges in remanufacturing due to the obsolescence of parts harvested from 

used products. To overcome this challenge, obsolete parts are either upgraded or replaced with new parts. 

Upgrading obsolete parts or replacing them with new ones increase the perceived value of remanufactured 

products while extending their useful life (K. Xing et al., 2013). Design features such as modularity, 

standardization, compatibility, and interoperability can facilitate product upgradability (Chierici & 

Copani, 2016). However, the decision as to whether a specific part that is recovered from a used product 

requires an upgrade is critical. Some previous studies have proposed decision support tools for parts 

upgradability assessment during the early design stage. Kwak & Kim (2013) proposed a decision-making 

model for upgrading a product design considering customers’ preferences and recovery economics. The 

model allows designers to determine the parts that require an upgrade during the end-of-life stage. Ke 

Xing et al. (2007) proposed a mathematical model to determine a product design's upgradeability potential 

from remanufacturing perspective. They considered three key indicators for a product design’s 

upgradability potential: i) compatibility to generational variety, ii) fitness for extended utilization, and iii) 

life cycle-oriented modularity. Pialot et al. (2012) presented a design framework for determining  

appropriate product architecture and upgrade scenarios for parts during the design stage considering four 

parameters: cost, environmental impact, reliability, and obsolescence. Each upgrade scenario was 

evaluated in terms of the attractiveness for customers and technological uncertainties.   
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2.5  The impact of remanufactured products on new product sales  

Remanufactured products are often offered at low prices targeted at customers who cannot afford brand 

new versions. However, many manufacturers believe remanufactured products can cannibalise new 

product sales and thus, opt to sell remanufactured products using separate sales channels (Atasu et al., 

2008). Several studies have been conducted to investigate the impact remanufactured products offering 

has on new product sales. Agrawal et al. (2015) conducted behavioural experiments to investigate 

remanufactured products' impact on new products' perceived value and concluded that remanufactured 

products offered in the same market with new products could lower the perceived value of new products 

by up to 8%. Furthermore, the study revealed that when third-party-remanufacturers offer remanufactured 

products, the perceived value of new products can rise by up to 7%. Atasu et al. (2008) found that 

remanufacturing profitability can be influenced by the balance between cost savings, market segment size, 

and market growth rates. Ovchinnikov (2011) studied the cannibalisation effect of remanufactured 

products offering and the overall impact on a company's profitability. They concluded that a 

remanufactured product offered at a lower price could attract low-end consumers, reducing the 

cannibalisation effect. Guide & Li (2010) also investigated cannibalisation effect of remanufactured 

products based on consumers’ willingness to pay and concluded that the effect is higher for commercial 

products than consumer products. Strategies to overcome the cannibalisation effect are also suggested. 

Atasu et al. (2008) proposed a pricing strategy based on the size of customers who are indifferent to both 

new and remanufactured products. They suggested that a remanufacturer set a higher price when the size 

is large and a lower price otherwise. Guide & Li (2010) also reported that cannibalisation is significant in 

the price-sensitive consumer segment and suggested proper pricing and segmentation for consumers.  
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2.6 Managing EoL product returns for remanufacturing  

Firms often get used products from ‘waste-stream or ‘market-driven collection methods in 

remanufacturing. The ‘waste-stream collection method refers to a mechanism whereby a remanufacturer 

passively collects used product returns without prior inspection. On the other hand, in the market-driven 

approach, incentives are paid to the product owner to return used products via retailers or third-party 

agents (Guide & Van Wassenhove, 2001). It is often challenging to predict used product returns in 

remanufacturing due to the quality, quantity, and timing uncertainty of returns (Behdad et al., 2012). Such 

an inherent uncertainty associated with used product returns affects the remanufacturing profitability.  

2.6.1 The impact of used product return uncertainty on remanufacturing profitability  

Several previous studies have attempted to investigate the impact of the uncertainty of used product returns 

on remanufacturing profitability. Galbreth & Blackburn (2010) presented an optimisation model to 

determine the optimal quantity of used products required based on remanufacturing cost and product 

returns’ quality. They compared the optimal acquisition quantity for cases of a linear and a non-linear 

remanufacturing function curve and found that a quadratic remanufacturing cost curve results in a higher 

optimal acquisition quantity than a linear cost curve. Raihanian Mashhadi et al. (2015) proposed a 

stochastic optimisation model to determine the optimal upgrade levels required for used product returns 

and investigated the effect returns uncertainties on remanufacturing profitability. Kim & Xirouchakis 

(2010) proposed a stochastic inventory model to determine the optimal quantity and timing of used product 

returns to satisfy stochastic demand for parts. Shi et al. (2011) presented a nonlinear optimisation model 

to determine the optimal quantity of new and remanufactured products and the purchasing price of used 

products, considering the demand and return uncertainty. They used a Lagrange relaxation approach to 

solve the optimisation model. Denizel et al. (2010) conducted numerical experiments to study the impact 
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of remanufacturing costs and the salvage values of components on remanufacturing profitability 

considering multiple quality levels of used product returns. 

 

2.6.2 Consideration of quality uncertainty of used product returns 

Sorting of product returns based on their quality affects the remanufacturing cost and, hence, its 

profitability (Aras et al., 2004).  Loomba & Nakashima (2012) reported that the sorting of returns into 

discrete quality classes improves remanufacturing production planning by allowing the disassembly and 

remanufacturing of good quality returns during the peak demand period. In previous studies, two types of 

approaches for modelling product returns' quality were reported. 

 The first approach assumes two quality categories for used product returns: remanufacturable and 

non-remanufacturable units. Determining the proportion (p) of the total quantity (Q) of remanufacturable 

units is difficult due to the quality uncertainty of returns. Previous studies have assumed a deterministic 

value for p, while others proposed a stochastic value with a known distribution function. Aras et al. (2004) 

studied the impact of quality-based categorization of product returns on remanufacturing profitability. 

According to their study, product returns are categorized as high quality and low quality based on the 

remanufacturing effort required. The proportion of high and low quality returns were assumed to follow 

a Poisson distribution. Zikopoulos & Tagaras (2007) classified used product returns as 

“remanufacturables” and “non- remanufacturables”. Pishvaee et al. (2009) categorized used product 

returns as recoverable and scrapped units, whereby the proportion of recoverable units are assumed to 

follow a stochastic distribution.  Han et al. (2013) classified returns into “good” and “bad” types based on 

the time required to recover components from used product returns, including the time required to 

disassemble a product. Zikopoulos & Tagaras (2007) classified product returns into “refurbishable” and 

“non-refurbishable” units,  whereby the proportion of “refurbishable units” is assumed to follow a 
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continuous known statistical distribution. Panagiotidou et al. (2013) classified product returns into 

remanufacturable and non-remanufacturable units. In their study, the number of remanufacturable units is 

assumed to follow a binomial distribution with the probability of remanufacturability of each product 

return following a generally distributed random variable.  

The second approach assumes that the quality of used products is heterogeneous that can be 

categorized into multiple quality levels. Under this assumption, some previous studies have considered 

discrete levels of the quality of used product returns and used discrete distributions such as binomial and 

multinomial. In contrast, others considered continuous distributions to model product returns' quality. 

Guide & Van Wassenhove (2001) investigated the impact of the quality uncertainty of used product 

returns on the remanufacturing profitability by conducting a case study on a mobile telephone 

remanufacturer. Six nominal categories for the quality levels were considered based on physical and 

functional performances. However, this approach requires each mobile phone unit to undergo inspection 

and testing, which is quite cumbersome due to the heterogeneous quality of returns. Behret & Korugan 

(2009) proposed three quality grades, “good”, “average” and “bad,” based on associated remanufacturing 

processing times. The remanufacturing processing time was assumed to follow exponential distribution. 

Ferguson et al. (2009) categorized returns into three classes as “scraps for material recovery”; “scraps for 

parts harvesting” and “remanufacturables” based on the ultimate destination of parts recovered from used 

product returns. Remanufacturable units are further classified into discrete quality grades as “worst,” 

“bad,” “average,” “good,” and “best” based on the cost of remanufacturing. Similarly, Teunter & Flapper 

(2011) implemented a multinomial distribution to rank product returns from “high quality” to “low 

quality” grades  based on the cost of remanufacturing. Zeballos et al. (2012) classified returns into three 

quality grades as “good,” “medium” and “bad,” and five grading outcomes were used, each representing 

different combinations of the three quality grades. They assumed a deterministic probability for the 
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distribution of each quality grade and the grading outcome. Aydin et al. (2018b) proposed three scenarios 

for the quality of used product returns: “good,” “average” and “bad,” whereby each scenario consists of 

four quality levels. The proportion of each quality level was modelled using a multinomial distribution. 

Raihanian Mashhadi et al. (2015) classified used products into discrete quality levels and investigated the 

best upgrade level for used product returns. 

 Some previous studies assumed a standard uniform distribution to model the quality of used products, 

whereby the lower and upper bounds represent the worst, and best possible quality, respectively (M. 

Ferguson et al., 2009; Galbreth & Blackburn, 2010). Denizel et al. (2010) proposed finite grades based on 

the remanufacturing cost to classify used product returns. They assumed a deterministic probability for 

the proportion of product returns under each quality grade.  Mashhadi & Behdad (2017) proposed a 

clustering algorithm to classify returns into distinct grades based on their reusability indices. Panagiotidou 

et al. (2017) presented an approach for classifying product returns into multiple quality levels based on 

their usage information. Accordingly,  the lower the value of the usage variable, the higher the returned 

product's quality and, hence the higher the probability that a product can be remanufactured. C. H. Yang 

et al. (2015) classified product returns based on estimated remanufacturing times. They assumed the 

estimated times for remanufacturing each returned unit is continuously distributed.  The remanufacturing 

yield, which represents the percentage of parts that can be remanufactured, was also used in previous 

studies to model product returns’ quality (X. Li et al., 2015; Mukhopadhyay & Ma, 2009). Previous studies 

have assumed remanufacturing yield as either stochastic (Ferrer, 2003; X. Li et al., 2013, 2015; 

Mukhopadhyay & Ma, 2009; Zikopoulos & Tagaras, 2007) or deterministic (Bakal & Akcali, 2006; M. 

E. Ferguson et al., 2011; Langella, 2007; Schulz & Ferretti, 2011). The stochastic approach assumes the 

percentage of remanufacturable returned units as a random variable. On the other hand, the deterministic 

approach assumes the remanufacturer knows the yield in advance. Bakal & Akcali (2006) and 
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Mukhopadhyay & Ma (2009) studied the effects of a partial and perfect yield rate information on 

remanufacturing profitability. In their study, the remanufacturing yield rate was considered deterministic 

first and then extended to the stochastic case whereby the yield is assumed to depend on the acquisition 

price of product returns. 

2.6.3 Forecasting the returns of used products  

The forecasting of used product returns is essential to maintaining sufficient feedstock for 

remanufacturing. However, unlike conventional manufacturing, forecasting in remanufacturing is a 

complex and difficult task due to the quantity and timing uncertainty of used product returns. Forecasting 

in a remanufacturing requires information on the proportion of new products' sales that can be returned in 

future periods. Quite a few previous studies have attempted to address product returns forecasting 

grounded on statistical techniques. Kelle & Silver (1989) proposed four methods for forecasting reusable 

containers' returns based on the number of containers sold and returned in past periods. de Brito & van 

der Laan (2009) investigated the impact of imperfect information on the product return process on 

inventory management efficiency. They found out that imperfect information leads to a compromised 

performances even for the most informed forecasting methods. Toktay et al. (2000) also presented a DLM 

with geometric lag for forecasting the returns of disposable cameras based on a discrete-time lag model 

with dynamic information updating. Bayesian statistics were used in their study to estimate the parameters 

of lag functions. On the other hand, Marx-Gómez et al. (2002) proposed a simulation and fuzzy reasoning 

approaches for forecasting the returns of scrapped products, considering the usage, failure, sales, and 

return quota information. They conducted a simulation to generate the data for each factor, and a neuro-

fuzzy technique was used to address the vagueness in the data. Similarly, Hanafi et al. (2007) proposed a 

fuzzy coloured Petri net forecasting model to predict product returns at different geographical locations, 

considering product type, historical sales data, and demographic information.  
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However, the technique to estimate the parameters of the distribution was not included in their 

methodology. Clottey et al. (2012) compared the forecasting accuracy of both discrete and continuous 

DLM and found that DLM with a negative exponential delay function offered a better accuracy. However, 

Toktay et al. (2000) and Clottey et al. (2012) assumed the monthly return lag periods, which limited their 

methods to cases of more extended return periods. Clottey & Benton (2014) proposed a forecasting method 

that deals with a more extended return lags considering the gamma delay function to overcome this 

limitation. They conducted a simulation experiment to compare gamma delay functions against geometric, 

negative binomial, and exponential delay functions proposed in earlier studies. They concluded that the 

proposed forecasting method can result in a significant cost savings.  Krapp et al. (2013b) also criticized 

the methods proposed by (Toktay et al., 2000) stating that the predetermined probability distributions for 

used product returns and sometimes the assumption of a normal distribution for the error terms of the 

DLM cannot reflect the general case. They presented a generic model for product returns forecasting 

considering a case where the return distribution and the error term followed a general distribution. 

However, the model relies on assumptions regarding the return time distribution. They also implemented 

Bayesian statistics to estimate parameters of return distribution as in previous approaches.  

2.7 Discussion  

In this chapter, a literature review of topics related to the research has been conducted. The research gaps 

identified from the literature review are discussed as follows.   

Firstly, it can be observed that most previous studies that have dealt with “design for 

remanufacturing” focused on identifying design features to facilitate the remanufacturability of product 

designs. The main issues addressed in previous studies include metrics for assessing the 

remanufacturability and disassemblability of product designs, and design guidelines for selecting 

appropriate product recovery strategies. However, the issue of fastening methods selection during the 
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early design stage has not been properly addressed. Besides, the simultaneous consideration of assembly 

and disassembly concerns for fastening methods selection during the early design stage from a 

remanufacturing perspective was not addressed. 

Secondly, several previous studies on a PDC focused on the aggregation of multiple objective 

functions into a single objective function. However, aggregation ignores the hierarchical nature of 

decision-making at distinct stages, which often involves complex trade-offs. One of such decision-making 

includes the upgrading of parts recovered from used product returns due to technological obsolesce.  A 

few previous studies have proposed a hierarchical optimisation that considers two-level decision-making. 

Nevertheless, the consideration of specification upgrading for used parts/modules in a PDC was little 

studied in previous research. Specifically, the simultaneous consideration of new and remanufactured 

PDC and specification upgrading of recovered used parts/modules was not addressed in previous studies. 

The summary of previous studies on PDC is presented in Table 2.1.   

Table 2.1 Summary of studies on PDC 

Study Objective function 

Formulation of optimisation 

model and Solving approach 
Consideration 

of reman. 

products 

Consideration 

of upgrading 

option 
Optimisation 

model 
Solving approach 

Wu et al.(2016) 
Min. Total cost     

Max. market share 
Hierarchical NSGA-II Yes No 

Badurdeen et al. 

(2018) 

Max. Life cycle 

cost 

Min.GHG 

emission 

Min. Water usage 

Single level NSGA-II No No 

Wang et al.(2018) 
Max. Profit 

Min GHG emission 
Single level 

Weighted sum 

solved using GA 
No No 

Wang et al. 

(2019) 

Max. Profit 

Min GHG 

emission 

Single level 
Weighted sum 

solved using GA 
Yes No 
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Kwak (2018) 
Max. Profit 

Max. Market share 
Hierarchical 

Epsilon 

constraint 

method 

Yes Yes 

Ma (2016) 
Max. Shared 

surplus 
Hierarchical NBGA No No 

Kwak & Kim 

(2015) 

Max. Total life-

cycle profit 
Single level GRG Yes Yes 

 

Aydin et al. 

(2015) 

Max. Profit 

Max. Market share 
Single level NSGA-II Yes Yes 

Du et al. (2014) 
Max. Shared 

surplus 
Hierarchical 

Stackelberg 

game 
No No 

This research 

Max. Profit 

Max. Shared 

surplus  

Hierarchical NBGA Yes Yes 

  

Lastly, quite a few previous studies have addressed the uncertainty regarding used product returns 

in remanufacturing. Statistical approaches, such as the distributed lag model (DLM) were used in previous 

studies to forecast the quantity and timing of used product returns based on the sales of new products. 

Various statistical distributions such as negative binomial, gamma, geometric, and exponential 

distributions were used to model the lag function of the DLM. However, the estimation of parameters of 

a DLM forecasting model, which can affect the forecasting accuracy, has not been sufficiently addressed 

in previous studies. Few studies have proposed Bayesian statistical techniques for the parameter 

estimation. However, in a Bayesian inference approach, depending on the choice of conjugate priors for 

the distribution of the lag function of a DLM, the resulting posterior probability can become challenging 

to solve. Therefore, an alternative and efficient approach for solving the posterior probability is required.  
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Chapter 3 Overall Research Framework  

In this research, a framework for integrated product design considering remanufactured products and used 

product returns uncertainty is proposed. Under the framework, which is shown in Figure 3.1,  four 

methodologies are proposed, respectively, for: i) fastening methods selection considering both product 

assembly and disassembly from a remanufacturing perspective; ii) determining optimal configurations for 

both new and remanufactured products considering used products upgrading iii) forecasting of used 

product returns for remanufacturing and iv) modelling of customers’ preferences and estimation of market 

demands for the new and remanufactured products 

The methodology for the optimal selection of fastening methods addresses product assembly and 

disassembly concerns simultaneously during the early design stage. The proposed methodology involves 

an optimisation model to select fastening methods that minimise the overall product assembly and 

disassembly costs subject to assembly and disassembly constraints. A hierarchical optimisation model is 

proposed to determine optimal specifications for the new and remanufactured products, considering 

upgrading decisions for remanufactured products. This research proposes a methodology for forecasting 

used product returns based on distributed lag model (DLM) to address used product returns uncertainty. 

A methodology for the estimation of parameters for a DLM is also proposed. Finally, this research presents 

a fuzzy regression (FR) approach that involves conjoint analysis to model customers’ preferences. A 

multinomial logit model (MNL) is used to determine market demands for new and remanufactured 

products under uncertainty Detailed discussions of the proposed methodologies are described in the 

following sub-sections. 
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Figure 3.1 Proposed research framework 
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3.1 Selection of fastening methods during the early design stage 

This study proposes a methodology for fastening methods selection known as FMSRem, which 

simultaneously considers assembly and disassembly factors. A mathematical optimisation model is 

formulated for the FMSRem to minimise total product assembly and disassembly cost subject to assembly 

and disassembly concerns. The objective function is formulated based on the assembly and disassembly 

time estimates. Disassembly time for a part is estimated based on Maynard Operation Sequence Technique 

(MOST), considering factors that affect the unfastening and part removal operations. The factors which 

affect the unfastening and part removal operations can be obtained from previous studies (Desai & Mital, 

2003, 2005; Sabaghi et al., 2016; Sodhi et al., 2004; Yi et al., 2003). Figure 3.2 outlines the factors which 

affect the unfastening and part removal operations.  

 

  

 

 

 

 

 

 

 

 

The design for assembly (DFA) method proposed by Boothroyd (1994) is used to classify assembly 

related parameters in terms of fastening methods complexity and component handling complexity. Figure 

3.3 outlines the factors which affect assembly operations.  

Disassembly factors  

Unfastening difficulty  Part removal 

Type and quantity 

of fasteners 
 

Tool requirement  

Fastener accessibility  

Part accessibility   Part handling 

 

Figure 3.2 Factors affecting disassembly time 
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Figure 3.3 Factors affecting assembly time 

Assembly times are computed based on estimated fastening time and assembly difficulty factors, while 

disassembly times are computed based on the estimated unfastening times and disassembly difficulty 

factors. The selection of fastening methods for individual parts based on assembly and disassembly 

concerns is formulated as combinatorial optimisation model. The Genetic algorithm (GA) heuristics is 

adopted in the study to solve the model. Derivations for the optimisation model and its solution are 

presented in Chapter 4.  

3.2 Determining optimum configuration for new and remanufactured products considering 

upgrade decisions for used parts 

This research proposes a hierarchical optimisation model to determine the optimal configurations of both 

new and remanufactured products considering specification upgrading for used parts. Figure 3.4 shows 

the framework of the proposed hierarchical optimisation.  
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The proposed methodology assumes a firm that offers new products to satisfy the demand in a primary 

market in the first period; remanufactures used product returns in the subsequent periods to satisfy the 

demand in both the primary and secondary market segments. New products are configured from sets of 

new parts, while remanufactured products are configured from parts recovered from used product returns. 

Parts in a set have similar functionality (attribute) but different performances (attribute levels) such that 

each product profile is a combination of various attributes, each of which has one or more attribute levels 

(Wu et al., 2016).  
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Figure 3.4 Framework of the proposed hierarchical optimisation. 
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The proposed hierarchical optimisation model is implemented in a nested and sequential approach. 

The upper-level optimisation handles the determination of optimal product configurations for the new 

products. Similarly, the lower-level optimisation handles the determination of optimal configurations for 

the remanufactured product profiles. The upper-level optimisation involves computing utility functions 

that are subsequently integrated into an MNL to determine the market share and demand function for new 

products. Assuming both the new and remanufactured profiles are launched in the same market, the 

demand function for a new product is also dependent on the perceived utilities of remanufactured product 

profiles according to an MNL (Uncles et al., 1987).   

The decision made by the upper-level optimisation regarding the configuration of attribute levels (i.e., 

utilities of new product profiles) is passed on to the lower-level optimisation. The shortening life cycles 

of consumer goods due to rapid technological advancements entails some parts recovered from used 

product returns can already become technologically obsolete. Therefore, the selection of attribute levels 

for remanufactured products depends on the condition of parts recovered from used product returns. 

Obsolete parts require either replacement with a cutting-edge new part or an upgraded version. 

Replacement with cutting-edge new parts improves the performance of products but leads to an increase 

in remanufacturing cost. On the other hand, using technologically obsolete parts results in an inferior 

product which reduces remanufactured products’ market share. Hence, the determination of optimal 

configurations for remanufactured product profiles involves decision-making at a lower-level optimisation 

regarding an upgrade plan for used parts.  

The NP-hard nature of a hierarchical optimisation problem renders it challenging to solve using 

conventional analytical techniques. Metaheuristics are suited to solve NP-hard problems involving 

discrete decision variables (Talbi, 2013). This research proposes a nested bilevel GA (NBGA) for solving 

the bilevel optimisation model to determine optimal configurations for new and remanufactured products 
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and upgrade levels required for used parts/modules. The detailed formulation of the proposed optimisation 

model and the solving approach are discussed in Chapter 5. A case study to demonstrate its 

implementation is also presented.  

 

3.3 Forecasting of the quantity and timing of used product returns 

The distributed lag model (DLM) shown in Equation (3.1) is proposed to model the quantity of used 

product returns based on the sales of new products (Clottey et al., 2012; Krapp et al., 2013b).  

𝑚𝑡
𝑟𝑒𝑡 =∑𝛽𝑘𝑛𝑡−𝑘 + 𝜀𝑡 ;  𝑡 = 1,23, . . 𝑇

𝑡−1

𝑘=1

                  (3.1) 

𝛽𝑘=p(
𝑘 + 𝑟 − 1

𝑟
) 𝑞𝑟(1 − 𝑞)𝑘 (3.2) 

where 𝑚𝑡
𝑟𝑒𝑡 and 𝑛𝑡−𝑘 represent the quantity of used product returns, and the quantity of new products sold 

respectively at time t. The coefficient, 𝛽𝑘 (also known as the kth reaction coefficient) represents the 

contribution of sales in period t-k (i.e., 𝑛𝑡−𝑘) for the returns in period t (i.e., 𝑚𝑡
𝑟𝑒𝑡). A negative binomial 

distribution, Equation (3.2), is used to model 𝛽𝑘. p denotes the return probability of a new product sold in 

the previous periods; q is the conditional probability of the return of a new product in the next period given 

p; parameter r represents the lag of the largest βk coefficient. The Markov-chain Monte-carlo (MCMC) 

based Bayesian inference approach is proposed in this research to estimate the parameter r. The Bayesian 

inference approach for estimating the posterior probability of parameter r is given in Equation (3.3). 

𝑃 (𝑟 𝐷𝑎𝑡𝑎,𝑀⁄ ) =
𝑃(𝐷𝑎𝑡𝑎 𝑟⁄ )𝑃(𝑟/𝑀)

∫ 𝑃 (𝐷𝑎𝑡𝑎 𝑟,𝑀⁄ )𝑃(𝑟/𝑀)𝑑𝑟
𝑁

𝑟=1

 (3.3) 

where P(r/M) denotes the prior (initial belief regarding the probability of parameter r); P(Data/r) is the 

likelihood function. The denominator represents the marginal likelihood, i.e., the probability of the 



43 
 

observed data given the model (M). The nominator term can be solved analytically. However, the 

denominator (the marginal likelihood) is often difficult to solve for slightly non-trivial functions. Such 

difficulty is the Bayesian interference approach's limitation for estimating model parameters.  

In this study, the MCMC approach is proposed for estimating the marginal likelihood of different 

models by directly generating samples from the posterior distribution. The workflow of the proposed is 

shown in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Markov chain Monte Carlo simulation for parameter estimation 
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The procedure involves three steps , which are: 1) generation of random samples from the posterior 

distribution using Monte-carlo simulation; 2)generation of a sequence of data which depends on 

previously generated data using  Markov chain procedure; and 3) implementation of the Metropolis 

Hasting’s (MH)) algorithm for calculating the posterior probability using the newly and previously 

generated value of the parameter(s) from the proposal distribution to decide whether the parameters' values 

should be accepted.  

 

3.4 Modelling of customers’ preferences and estimation of market shares  

Modelling of customers’ preferences for new and remanufactured product profiles involves conducting a 

conjoint analysis, which has three stages. First, the product attributes and levels are determined. Second, 

a questionnaire is designed. Third, the survey data is analysed to determine the utility of each attribute 

(also known as part-worth utilities). The conjoint survey can be designed using three types of conjoint 

survey techniques: rating, ranking, and choice-based types (Asioli et al., 2016; Baier et al., 2015; Green 

et al., 2001). The rating-based conjoint survey technique is used in this study because it can be easily 

interpreted using the same units as the rating scores (Asioli et al., 2016). This approach has also been 

widely used in previous studies (Karniouchina et al., 2009). 

To design a manageable combination of potential profiles to be rated by the respondents, orthogonal 

designs or orthogonal arrays are commonly used (Green et al., 2001). The fuzzy regression analysis 

proposed by Aydin et al. (2014) and  Kwong et al. (2016) is adopted in this study to address fuzziness due 

to subjective judgments. The product's utility is determined using the fuzzy utility function given in 

Equation (3.4).  
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�̃� = (𝑎0
𝑐
, 𝑎0
𝑠) + ∑∑((𝑎𝑘𝑙

𝑐
, 𝑎𝑘1
𝑠 )𝑥𝑘𝑙)

𝑁𝑘

𝑙=1

𝑀

𝑘=1

 (3.4) 

where �̃� denotes an independent variable that represents the ratings of respondents on the product profile; 

(𝑎0
𝑐 , 𝑎0

𝑠) and (𝑎𝑘𝑙
𝑐 , 𝑎𝑘1

𝑠 ) are fuzzy coefficients in which   𝑎𝑘𝑙
𝑐  and 𝑎𝑘1

𝑠  represent the central and spread 

of fuzzy numbers, respectively; 𝑥𝑘𝑙 is a decision variable that represents whether the lth level of the kth 

attribute is selected for the product profile or not; M represents the total number of attributes, and Nk  

represents the number of attribute levels in the kth attribute. Based on the estimated utility of 

remanufactured products and information regarding competitive products, estimates for market share and 

demand for new and remanufactured products are determined using the multinomial logit (MNL) model. 

 

 

 

 

 

 

 

 

 

 



46 
 

Chapter 4 Fastening Methods Selection During Early-Stage Design considering Remanufactured 

Products  

This chapter presents the proposed methodology for selecting fastening methods during early-stage design 

from a remanufacturing perspective. The general framework of the proposed methodology is presented in 

section 4.1. The mathematical formulation of the proposed optimisation model and its solution approach 

is discussed in section 4.2 and section 4.3. The methodology for estimating the assembly and disassembly 

times of fastening methods is presented in section 4.4. A case study is presented in section 4.5 to 

demonstrate the implementation of the proposed approach.  

4.1 Framework of the proposed methodology  

Figure 4.1 shows the framework of the proposed methodology for fastening method selection.  

 

 

 

 

 

 

 

 

 

 

 

 

Product architecture, assembly, 

and disassembly sequence information 

Optimisation model for 

fastening method selection.  
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Figure 4.1 Flow chart of the FMSRem methodology  
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The proposed methodology, known as FMSRem, involves methods for estimating assembly and 

disassembly times. Several assembly and disassembly factors are considered to estimate the assembly and 

disassembly times. Next, a repository of fastening methods is also established, containing information 

regarding the fastening and unfastening times for each fastener type. A combinatorial optimisation is 

proposed for the selection of fastening methods with the objective of minimising the total cost of product 

assembly and disassembly. The optimisation model is solved using a genetic algorithm (GA) approach 

that is widely used to solve combinatorial optimisations. The detailed derivation of the optimisation and 

GA solving approaches is presented in sections 4.2-4.4.  

4.2 An optimisation model for fastening methods selection 

To derive the optimisation model for the proposed fastening methods selection, factors that influence the 

difficulty and/or the cost of assembly and disassembly tasks are considered. The factors considered 

include i) assembly difficulty, ii) disassembly difficulty, iii) assembly costs, and iv) disassembly costs. 

In the formulation, the condition of used product returns is assumed uniform, i.e., all returned units will 

require an identical degree of difficulty during product disassembly. On the other hand, the assembly and 

disassembly sequences of products are pre-determined while applying the proposed methodology. The 

definitions for notations used to derive the optimisation model are presented below.    

Indices:  

𝑖 = {1,2,3, …𝑁𝑖}        indices of parts, i𝐼 

   j= {1,2,3, …𝑁𝑗  }             indices of fastening methods, j𝐽  

Parameters:  

𝑡𝑖𝑗
𝑎  an estimate of assembly time of the ith

 part for the jth fastener type 

𝑡𝑖𝑗
𝑑   an estimate of disassembly time of the ith part for the jth fastener type 
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𝑡𝑖𝑗
𝑝𝑟𝑒

 the tool preparation time of the jth fastener type selected for ith part   

𝑡𝑖𝑗
𝑎𝑐𝑐 an estimated time for accessing the jth fastener type selected for ith part 

𝑡𝑖𝑗
𝑝𝑜𝑠

       an estimated time for positioning tool against the jth fastener when used in ith part   

𝑡𝑖𝑗
𝑓

 an estimated time for fastening the jth fastener as used in the ith part   

𝑡𝑖𝑗
𝑢𝑓

 an estimated time for unfastening the jth fastener as used in the ith part   

 𝑡𝑖
ℎ  handling time for the ith part  

𝑄𝑛 the demand for new products (i.e., quantity required to be assembled) 

𝑄𝑟 the number of EoL products returned and disassembled  

𝐿 assembly/disassembly employee’s wage in $/hr  

𝑊𝑎 the number of assembly employees  

𝑊𝑑 the number of disassembly employees 

𝐶𝑇 the total assembly and disassembly cost  

𝐶𝑎         the estimated assembly cost  

𝐶𝑑         the estimated disassembly cost  

𝑞𝑖𝑗
𝑓

         the quantity of jth fasteners needed for fastening the ith part 

𝑉𝑚𝑎𝑥
𝑓
     the maximum number of fastening method types per single part  

𝐹𝑖𝑗
𝐷       the direction of fastening/unfastening given as 𝐹𝑖𝑗

𝐷 {-x, +x, -y, +y, -z, +z} 

 𝛼𝑖       the penalty for changing fastening/unfastening direction between successive parts 

 𝛽𝑖        the penalty for changing fastening/unfastening methods between successive parts 
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Decision variables: 

𝑠𝑖
𝑗
   binary variable which represents the choice of jth fastener for ith part 

 = {
1 , if 𝑗𝑡ℎfastening method is selected for  𝑖𝑡ℎpart             

0,  & otherwise                                                                   
 

𝑞𝑖𝑗
𝑓

 the maximum quantity of the jth fastener selected for ith part  

The optimisation model for the fastening methods selection problem is given by Equations (4.1) to 

(4.3) as follows:  

𝑀𝑖𝑛: 𝐶𝑇 = 𝐶𝑎 + 𝐶𝑑 

(4.1) 

 

𝐶𝑎 = QnWa𝐿(∑ ∑ (tij
asi
j
qij
f

ji  ) +∑ (𝛼𝑖 + 𝛽𝑖𝑖 )) (4.2) 

Cd = 𝑄𝑟𝑊𝑑L∑ ∑ (tij
dsi
j
qij
f )ji  + ∑ (𝛼𝑖 + 𝛽𝑖𝑖 )) (4.3) 

𝑡𝑖𝑗
𝑎 = 𝑞𝑖𝑗

𝑓
𝑡𝑖𝑗
𝑓

 + 𝑡𝑖
ℎ 

(

3) 

 
 

(4.4) 

 𝑡𝑖𝑗
𝑑 = 𝑞𝑖𝑗

𝑓
∗ (𝑡𝑖𝑗

𝑎𝑐𝑐 + 𝑡𝑖𝑗
𝑝𝑜𝑠 + 𝑡𝑖𝑗

𝑢𝑓
) + 𝑡𝑖𝑗

𝑝𝑟𝑒 + 𝑡𝑖
ℎ 

(

3) 

 
 

(4.5) 

 

The objective function is subjected to the following constraints: 

1 ≤∑ 𝑠𝑖
𝑗

𝑗
≤ 𝑉𝑚𝑎𝑥 

𝑓
, 𝑖𝐼 

 

(4.6) 

∑ 𝑠𝑖
𝑗

𝑗
≤ 𝑞𝑖𝑗 

𝑓
, 𝑖𝐼 (4.7) 
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αi=

{
 
 
 

 
 
 0,  if no direction change is required between i

th 
part

  and a predecessor part  

1 sec,        if the direction change needed is 90
0 

       

e.g from +x to +y        

2 sec,  if the direction change needed is 180
0 

 ,         

 e.g from -x to +x        

 

 (4.8) 

βi = {
2.54 𝑠𝑒𝑐,   if fastening method selected for i𝑡ℎ part  is

 different from its  predecessor
0,                otherwise                                                         

 (4.9) 

𝑠𝑖
𝑗
{0,1},   𝑖, 𝑗 (4.10) 

𝑞𝑖𝑗
𝑓
, ≥ 0           𝑖, 𝑗 (4.11) 

The constraints in Equations (4.6) and (4.7) define the type and quantity of fasteners selected for a part. 

Equation (4.6) ensures the variety of fasteners selected for a part does not exceed the maximum number 

of different types of fasteners permissible for a single part. Equation (4.7) ensures the number of fasteners 

selected for a given part should not exceed the maximum number of fasteners permissible for a part. 

Equations (4.8) and (4.9) denote the penalty due to change of disassembly direction and fastening methods, 

respectively. Equation (4.10) defines a binary variable for the fastening method selection. Equation (4.11) 

ensures non-negativity for the decision variables.      

4.3 Assembly and disassembly time estimation  

This section discusses the procedures for estimating the assembly and disassembly times of parts 

considering feasible alternative fastening methods. Five types of fastener categories are considered in this 

study, namely:  i) discrete fasteners such as screw and rivets; ii) integral fasteners (e.g., snap fits and 

locks); iii) adhesive bonding in which adhesive materials such as glue are used; iv) energy bonding (e.g., 

welding and soldering); iv) other fasteners. 
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Once fastening methods are determined, the database of assembly and disassembly time for each 

fastening method is established.  Assembly time estimation methodology proposed by Boothroyd et al. 

(2010, pp. 83-84) is used in this study to compute estimates of assembly times. According to the 

methodology, assembly times are obtained from the summation of the times required for the handling and 

insertion tasks as given in the predefined synthetic data (Boothroyd et al., 2010). On the other hand, the 

disassembly time is computed based on time estimates for disassembly related tasks such as i) preparation, 

ii) unfastening task, iii) part removal, iv) disassembly direction change, and v) change in disassembly 

method. The time estimates for each factor were computed using Maynard Operation Sequence Technique 

(MOST) developed by (Kroll & Carver, 1999). MOST technique uses motions related to the disassembly 

tasks to define disassembly moves as “general,” “controlled,” and “tool use” (Zandin, 2002). Accordingly, 

the unfastening time is modelled using motion sequence |Lx| while the removal of a fastener is modelled 

using motion sequence |AxBxGxAxPx|. The sequence indices are computed based on MOST’s synthetic 

data as provided in (Boothroyd et al., 2010). The MOST technique for estimating the time required to 

dismantle a part assembled using four units of Phillips PM2.0×3.0 fastening screws is illustrated as 

follows. The time estimates for various disassembly tasks are given in Table 4.1.  

Table 4.1 Demonstration of MOST technique for disassembly time calculation 

 

 Hence, following the MOST technique, the disassembly task's unfastening time can be modelled 

as |L10|+ |A1B0G1A1P1| equivalent to 140 time-measurement-units (i.e., 100+10+0+10+10+10=140 

Time estimates for different influencing factors (sec) 

Fastener 

index j 

Quantity of 

jth fastener 

𝑞𝑗
𝑓
 

Time required 

to access 

fasteners 

𝑡𝑖𝑗
𝑎𝑐𝑐 

Tool 

Positioning 

time 

𝑡𝑖𝑗
𝑝𝑜𝑠

 

Tool 

preparation 

time 

𝑡𝑖𝑗
𝑝𝑟𝑒

 

Unfastening 

time 

𝑡𝑖𝑗
𝑢𝑓

 

Part removal 

time 

𝑡𝑖
ℎ 

1 4 1.08 1.4 2.52 5.04 2.88 
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TMUs) or 140*0.036 sec=5.04 seconds. Thus, based on Equation (4.5), a part’s disassembly time can be 

estimated as 𝑡𝑖𝑗
𝑑= 4(1.08+1.4+5.04) +2.52+2.88 = 35.5sec.  

4.4 Solving the optimisation model  

The optimisation model considers several factors that affect the disassemblability of products for the 

selection of appropriate fastening methods. Hence, the search space can become significantly large. In 

such cases, deterministic solving techniques are not desirable. Previous studies have implemented 

metaheuristic algorithms like GA, ant-colony and simulated annealing for solving combinatorial 

optimisations (Hoseini & Shayesteh, 2010). GA is implemented in this study to solve the proposed 

optimisation model. The chromosome for the decision variables is defined as shown in Figure 4.2. The 

arrangement of the genes in the chromosome corresponds to i) index for a part ii) the chosen fastening 

method, iii) the fastening/unfastening direction, iv) part’s assembly time and v) part’s disassembly time, 

respectively in a sequence.  

 

Figure 4.2 Chromosome encoding for the decision variables 

Part’s index is obtained from the product assembly/disassembly sequence information. The assembly 

and disassembly time of a given fastening method is obtained from the fastener’s repository. For example, 

in Figure 4.3, the sequence of genes denotes respectively; the 1st part in the sequence assembled using the 

2nd fastening method in the +z direction; the corresponding assembly time is 4.5sec, and the disassembly 

time is 5.5sec. The size of a chromosome depends on the number of parts in a product. 
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Figure 4.3 Example of chromosome encoding 

 

The chromosomes are evaluated using the fitness function, i.e., the total assembly and disassembly 

cost function. The roulette wheel technique is employed for the selection of chromosomes. The crossover 

and the mutation operations are then applied to the selected batch of chromosomes to create a new 

population. For a crossover, the one-point crossover technique is implemented by interchanging the 

sequence of genes between the two parents, which leads to creating a new child chromosome. The 

mutation operation involves randomly swapping genes between parents with very low probability, which 

maintains genetic diversity within the population.  

4.5 Implementation  

In this section, a case study is presented to illustrate the proposed fastening methods selection 

methodology. A company that manufactures and offers new products to a primary market and 

remanufactures used laptops for a secondary market is considered for the case study. Due to stringent 

environmental regulations, the company remanufactures laptop computers from used product returns (i.e., 

from products sold in previous periods). The applicability and effectiveness of the proposed methodology 

are evaluated. The assembly schematic diagram of the product and the fourteen major components selected 

for the case study are shown in Figure 4.4. It is also assumed that the product's fastening methods were 

chosen without proper consideration of the disassembly for remanufacturing. The laptop computer was 
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designed so that all fastening and unfastening operations are performed in +z direction, and thus no 

additional time is required for direction change.  

 

Figure 4.4  Product assembly architecture and parts information 

Table 4.2 shows the fastening methods selected in the original design and related assembly and 

disassembly times. The assembly and disassembly time estimates were computed using the methods 

described in section 4.3. For this case study, six types of assembly methods, namely: i) Philips PM2.5×3.0 

ii) screws, iii) captive screws, iv) cantilever snap-fit, iv) cylindrical snap fits, v) retaining tabs, and vi) 

adhesives are considered. Besides, it is assumed that four workers carry out the product 

assembly/disassembly tasks with a pay rate of $15/hour. The goal is to determine appropriate fastening 

methods which can facilitate the assembly process during the manufacturing process of new laptops and 

the disassembly process during the remanufacturing of used laptops. 
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Table 4.2 Fastening methods selected for the new product design 

Part 

Index 
Part name Fastening method 𝑭𝒊𝒋

𝑫 𝒒
𝒊𝒋

𝒇
 

𝒕𝒊𝒋
𝒂  

(sec) 

𝒕𝒊𝒋
𝒅  

(sec) 
𝒕𝒊𝒋
𝒂 + 𝒕𝒊𝒋

𝒅  (sec) 

1 Display assembly Phillips PM2.5×4.5 -x 6 32.5 45.7 78.2 

2 Switch cover PM2.5×3.0 screws +z 7 37.5 52.9 90.4 

3 Keyboard module Phillips PM2.5×4.5 +z 2 12.5 16.9 29.4 

4 Palm rest Phillips PM2.0×3.0 +z 3 17.5 24.1 41.6 

5 Speaker Phillips PM2.0×3.1 +z 4 22.5 31.3 53.8 

6 Top cover Torx T8M2.5×6.0 +z 22 112.5 160.9 273.4 

7 Modem module Phillips PM2.5×3.0 +z 2 12.5 16.9 29.4 

8 Fan assembly Phillips PM2.5×8.0 +z 7 37.5 72.5 110 

9 Memory module Retaining tab -y 2 4 5.04 9.04 

10 WLAN module Phillips PM2.5×3.0 +z 2 12.5 16.9 29.4 

11 Hard drive Phillips PM2.0×4.0 +z 3 17.5 26.9 44.4 

12 USB connector Phillips PM2.5×3.0 +z 2 12.5 19.7 32.2 

13 Optical drive Phillips PM2.5×4.5 -y 1 7.5 9.7 17.2 

14 Battery Retaining tabs -z 2 4 5.04 9.04 

    Total 343 504.5 847.5 

 

The chromosome representing the optimisation problem's decision variables is encoded, as shown in 

Figure 4.5. The sequence of genes represents the part index, the type of fastening method chosen, and the 

assembly/disassembly direction, respectively. The assembly and disassembly time estimates related to 

each fastening method are predetermined 
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Figure 4.5 Chromosome encoding of the decision variables 

 

The initial population of size 120 is generated at random. The GA parameters were determined 

through an experiment by altering the crossover, mutation rates, and population sizes. First, population 

sizes ranging from 40 to 180 were considered while fixing the crossover rate at 0.5 and the mutation rate 

at 0.01. As shown in Figure 4.6, the result indicates that a population size of 160 led to an improved 

convergence. Similarly, the cross-over rate ranging from 0.5 to 1.0 in the span of 0.1 was used while fixing 

the mutation rate and the population size at 0.01 and at 160, respectively. The experiment was repeated to 

obtain a mutation rate of 0.07. Hence, the crossover rate, mutation rate and population size were fixed at 

0.7, 0.07, and 160, respectively. Afterward, the GA was run in a MATLAB environment.  

 

Figure 4.6 Experimental results of GA parameters 
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The optimal solution, shown in Figure 4.7 for 100 generations, converges after 48 generations. The 

GA's optimal solution corresponds to fastening methods that minimise the total assembly and disassembly 

costs. 

 

Figure 4.7 Min (Ass. and Diss. time) Vs GA iteration 

 

Table 4.3 shows the selected fastening methods for each part, along with their assembly/disassembly 

times. Hence, from the results, the proposed methodology resulted in the overall reduction of assembly 

and disassembly times from 847.5sec. to 596.3sec i.e., a 29.6 % reduction.  
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Table 4.3 Fastening methods selected by GA 

Part 

Index 
Part name Fastening method Quantity of 

Fasteners 

𝑡𝑖𝑗
𝑎  

(sec) 

𝑡𝑖𝑗
𝑑  

(sec) 

tij
a+tij

d 

(sec) 

1 Display Assembly Phillips PM2.5×4.5 8 32.5 45.7 78.2 

2 Switch cover Snap fit 1 2 20 38.5 58.5 

3 Keyboard Module Phillips PM2.5×4.5 4 12.5 16.9 29.4 

4 Palm rest Phillips PM2.5×4.5 4 20 20.5 40.5 

5 Speaker Module Phillips PM2.5×4.5 4 22.5 31.3 53.8 

6 Top cover Captive screw 8 40 74.5 114.5 

7 Modem module Phillips PM2.5×4.5 2 12.5 16.9 29.4 

8 Fan Assembly Snap fit 1 4 20 38.5 58.5 

9 WLAN Module Phillips PM2.5×4.5 2 12.5 16.9 29.4 

10 USB Connector Phillips PM2.5×4.5 2 12.5 16.9 29.4 

11 Memory Module Cantilever Snap fit 2 4 4 8 

12 Optical Phillips PM2.5×4.5 1 7.5 9.7 17.2 

13 Battery Retaining tabs 2 4 5.04 9.04 

14 Hard drive Phillips PM2.5×4.5 4 20 20.5 40.5 

  Total 240.5 355.84 596.34 

 

4.5.1 Investigation of the cost savings of the proposed approach  

This section investigates the proposed methodology's cost savings from a remanufacturing perspective. 

The optimisation model was altered such that consideration of the product assembly was omitted. After 



59 
 

solving the altered optimisation model, new sets of fastening methods were obtained respectively for the 

original design, the design based on DFA, and the design based on the proposed methodology. Fastening 

methods selected based on the DFA design and their assembly and disassembly times are shown in Table 

4.4.   

Table 4.4 Fastening methods selected based on the DFA 

Part 

index 
Part name 

Fastening methods 

(based on DFA) 

𝐭𝒊𝒋
𝒂  

(secs) 

𝒕𝒊𝒋
𝒅  

(secs) 

1 Display assembly Phillips PM2.5×4.5 32.5 45.7 

2 Switch cover Snap fit 1 20 38.5 

3 Keyboard module Phillips PM2.5×4.5 12.5 16.9 

4 Palm rest Phillips PM2.5×4.5 14.5 100 

5 Speaker module Snap fit 1 14.5 100 

6 Top cover Adhesive 29 300 

7 Modem module Phillips PM2.5×4.5 12.5 16.9 

8 Fan assembly Snap fit 1 20 38.5 

9 WLAN module Phillips PM2.5×4.5 12.5 16.9 

10 USB connector Phillips PM2.5×4.5 12.5 16.9 

11 Memory module Snap fit 1 4 4 

12 Optical drive Captive screw 7.5 12.5 

13 Battery Retaining tab 4 5.04 

14 Hard drive Phillips PM2.5×4.5 17.5 24.1 

Total 213.5 735.94 
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Three scenarios were compared, considering the demand for new products and remanufactured 

products.  The total assembly and disassembly cost of a product, CT, based on the three sets of fastening 

methods were computed for each scenario. The cost savings (i.e., CT computed based on the proposed 

methodology – CT computed based on DFA; and CT computed based on the proposed methodology - CT 

computed for the original design) were determined. The results are shown in Table 4.5.  

Table 4.5 Cost savings for different scenario 

 Scenario 1 Scenario 2 Scenario 3 

Demand 
New products, Qn  40,000 40,000 40,000 

Remanufactured products, Qr 8,000 12,000 15,000 

Total cost 

𝐶𝑇 

Original design  295,930.7 329,562.7 354,786.7 

DFA 240,458.7 289,521.3 326,318.3 

Proposed methodology 219,459 244,521 263,318 

Cost Saving 

Proposed methodology vs 

Original design  

76,472 85,041 91,468 

Proposed methodology vs 

DFA 

21,000 45,000 63,000 

  

The result shows that the total product assembly and disassembly costs obtained based on the 

proposed methodology is the least in all the scenarios. With the increasing demand for remanufactured 

products, higher cost savings based on the proposed methodology can be obtained. 

4.5.2 The impact of the degree of product disassembly 

In this section, the impact of the degrees of disassembly requirement of used products on cost saving is 

investigated. Due to the variability of the condition of used product returns, different products often 

require different degree of disassembly. The degrees of product disassembly in the range ‘0.1’ - ‘1.0’ were 

investigated such that a ‘0.1’ degree requires a slight disassembly and a ‘1.0’ degree requires complete 
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disassembly. Figure 4.8 (a) shows the cost saving (i.e., subtracting the CT of the original design from the 

CT obtained based on the proposed methodology).  

 Under all three scenarios, the result shows that the proposed methodology led to higher cost savings 

for an increase in the degree of product disassembly. The cost savings obtained after subtracting the CT 

of the DFA methodology from the CT of the proposed methodology is shown in Figure 4.8 (b). Therefore, 

the fastening methods obtained using the proposed methodology result in a higher cost saving as the degree 

of product disassembly increases under all three scenarios.  

 

 

Figure 4.8 Disassembly degree Vs assembly and disassembly cost saving 

4.6 Chapter Summary  

This chapter proposed a methodology for fastening methods selection during the early design stage from 

a remanufacturing perspective. The proposed fastening methods selection methodology considers product 

assembly and disassembly concerns simultaneously. A mathematical optimisation model is derived for 
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the selection of fastening methods to minimise the total product assembly and disassembly costs. The 

genetic algorithm is used to solve the optimisation model.   

A case study on the selection of appropriate fastening methods for the new and the remanufactured 

laptop version laptop was conducted to illustrate the applicability of the proposed methodology.  Different 

scenarios of return quantities and degrees of product disassembly were also investigated to validate the 

proposed approach. The result showed that the proposed methodology offers better cost savings under all 

the scenarios.  
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Chapter 5 A Bilevel Optimisation Model for the Design Configuration of New and Remanufactured 

Products Considering Specification Upgrading of Used Products 

This chapter presents the proposed hierarchical model for joint optimisation of product design 

configurations (PDC) of new and remanufactured products considering specification upgrading of used 

product returns. The chapter is organized as follows: Section 5.1 describes the problem statement. Section 

5.2 presents the formulation of the bilevel optimisation model. Section 5.3 discusses the methodology for 

solving the proposed model. An industrial case study is presented in section 5.4 to demonstrate the 

proposed methodology's applicability and performance. The case study results, and the sensitivity analysis 

are presented in sections 5.5 and 5.6, respectively. Section 5.7 presents conclusions and future research 

directions.  

5.1 Problem description  

This study concerns firms that offer lines of new product variants in period 1 and remanufacture used 

product returns to launch lines of remanufactured product variants in period 2 to satisfy customers' 

diversified needs in distinct market segments. Remanufactured products are assumed to be offered in 

period 2, but they are planned during the new product design stage.  New products are assembled from 

new parts, while remanufactured products are assembled from parts recovered from used product returns. 

Due to technological obsolescence, recovered used parts often require specification upgrading. Hence, 

remanufactured product development involves critical decisions regarding specification upgrading for 

used parts (Kwak & Kim, 2013). We adopt the concept of generational difference introduced by Kwak 

and Kim (2013, 2015), which defines the relative technological obsolescence of used parts relative to the 

cutting-edge specification. Their generation often characterises parts/modules in consumer electronics 

such as computers and mobile phones. For instance, Intel’s Core™ i7 processors are characterised in terms 
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of their generations as “1st”, “2nd” etc. generations with the cutting-edge specification (i.e., latest 

generation) having a zero generational difference.  If the current cutting-edge generation is the 10th 

generation, a processor module with Intel® Core™ i7 6th generation would have a generational difference 

of four.  

 This study assumes that customers prefer products with the latest generation attributes (i.e., attributes 

with low generational differences) than similar product variants whose attribute levels are older 

generations. The joint optimisation of PDC aims to determine optimal attribute levels and their 

generational differences for new product variants and optimal attribute levels and upgrade decisions for 

remanufactured product variants. The joint PDC for new and remanufactured product is modelled using 

upper-level and lower-level optimisations, respectively. The framework depicted in Figure 5.1 and Figure 

5.2 illustrate attributes and choice of attribute levels for new and remanufactured product variants. The 

framework outlines product variant architecture for a firm that plans to introduce new and remanufactured 

products.  
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Figure 5.1 Attributes and attribute levels of new product variants 
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It is assumed that the firm launches J new product variants in period 1; remanufactures used product 

returns to launch M remanufactured product variants along with J new product variants in period 2 to 

satisfy customer needs in I market segments. The 𝑥𝑗𝑘𝑙
𝑛𝑒𝑤 and 𝑦𝑚𝑘𝑙

𝑟𝑒𝑚 denote binary decision variables for the 

selection of the 𝑙th  level of the  𝑘th attribute for 𝑗th  new and 𝑚th  remanufactured product variants, 

respectively.  

5.2 Formulation of Bilevel optimisation model for PDC  

The notations and indices used in the formulation of the bilevel optimisation model are defined as follows:   

Indices:  

𝑖 = 1,2,⋯I   

𝑘 = 1,2,⋯𝐾       

set of market segments where I denotes the total number of markets  

set of attributes where K denote the total number of attributes of a product 

 𝑙 = 1,2,⋯𝐿𝑘   denote the set of attribute levels where 𝐿𝑘 denote the total number levels for the kth 

attribute 
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Figure 5.2 Attributes and attribute levels of new remanufactured product variants 
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𝑗 = 1,2,⋯ 𝐽   index for a new product variant, where J denotes the total number of new product 

variants  

𝑚 = 1,2,⋯𝑀   index for a remanufactured product variant, where J denotes the total number of 

remanufactured product variants  

Decision variable  

  𝑥𝑖𝑗
𝑛𝑒𝑤 = {1       if  the 𝑚

th  remanufactured product variant  is  offered  in the 𝑖th market segment
0             otherwise                                                                                                                                 

 

𝑥𝑗𝑘𝑙
𝑛𝑒𝑤  = { 1       if 𝑡ℎ𝑒 𝑙

th  level is selected for  𝑘th attribute  for jth new product      
 0     otherwise                                                                                                              

   

𝑦𝑚𝑘𝑙
𝑟𝑒𝑚  = { 1      if 𝑡ℎ𝑒 𝑙

th  level is selected for  𝑘th attribute  for 𝑚th remanufactured  product      
 0             otherwise                                                                                                                                

 

  𝑧𝑚𝑘𝑙
𝑟𝑒𝑚  { 1   if the 𝑙

th level of  𝑘th attribute selected for 𝑚th reman. product  requires an upgrade   
 0              otherwise                                                                                                                                      

 

𝜆𝑗𝑘𝑙 
𝑛𝑒𝑤     the generational difference of the 𝑙th level of  𝑘th attribute selected for the 𝑗th new product  

𝜆𝑚𝑘𝑙 
𝑟𝑒𝑚    𝑡ℎ𝑒 generational difference of the 𝑙th level of 𝑘th attribute selected for 

𝑚th remanufactured product  

𝜃𝑚𝑘𝑙
𝑟𝑒𝑚= an upgrade level chosen for the  𝑙th level of the 𝑘th attribute of 𝑚th remanufactured product 

Parameters  

𝑢𝑖𝑘𝑙          the part-worth utility of 𝑙th level of the 𝑘th attribute in the 𝑖thmarket segment  

𝛾𝑘 
𝑟𝑒𝑚        the average annual rate of change of generational difference for the 𝑘th attribute 

𝜆𝑖𝑗𝑘𝑚𝑎𝑥 
𝑛𝑒𝑤    the maximum acceptable generational difference of the 𝑘th attribute of the 𝑗thnew product in 

the 𝑖th  market segment  

𝜆𝑖𝑚𝑘𝑚𝑎𝑥 
𝑟𝑒𝑚  the maximum acceptable generational difference of the 𝑘th attribute of the 

𝑚thremanufactured product in the 𝑖th market segment  
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𝑐𝑘𝑙
𝜆(0) 

      the unit cost of cutting edge 𝑙th level of the 𝑘th attribute  

𝜏𝑘𝑙       the annual percentage depreciation rate of the price of 𝑙th level of the 𝑘th attribute  

5.2.1 Upper-level and Lower-level optimisations 

The proposed joint optimisation of PDC involves conjoint analysis, a widely utilised technique to model 

customers’ preferences based on part-worth utilities of attribute levels of product variants as evaluated by 

customers in distinct market segments (Kuzmanovic & Martic, 2012). Three types of conjoint survey 

techniques were reported in previous researches: rating, ranking, and choice-based types (Green et al., 

2001; Baier et al., 2015; Asioli et al., 2016). The rating-based conjoint survey technique is used in this 

study because the results can be easily interpreted using the same units as the rating scores (Asioli et al., 

2016). Conjoint survey questionnaires are designed for the new and remanufactured product profiles based 

on orthogonal arrays for respondents to rate. From the survey responses, part-wroth utilities of individual 

attribute levels are determined. Furthermore, customers can be clustered into distinct segments based on 

their purchase preferences using appropriate clustering techniques.  

In the proposed methodology, the utility functions for the new and remanufactured product 

variants are determined by aggregating part-worth utilities and utilities from generational differences of 

individual attribute levels. The utility of the jth new and 𝑚th remanufactured product variant in the ith 

market segment denoted as 𝑈𝑖𝑗and 𝑈𝑖𝑗 are modelled as a function of the weighted sum of the part-worth 

utilities and generational differences of individual attribute levels given in Equations (5.1) and (5.2). The 

part-worth utilities, 𝑢𝑖𝑘𝑙 , represent customers perceived preferences of the 𝑙th level of the 𝑘th attribute in 

the 𝑖th market segment. 

 

𝑈𝑖𝑗 = ∑∑𝑤𝑗𝑘(𝑢𝑖𝑘𝑙 +𝜗𝑖𝑗𝑘𝑙
𝑛𝑒𝑤)𝑥𝑗𝑘𝑙

𝑛𝑒𝑤

𝐿𝑘

𝑙=1

𝐾

𝑘

+ 𝜀𝑖𝑗 (5.1) 
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𝑈𝑖𝑚 =  ∑∑𝑤𝑗𝑘( 𝑢𝑖𝑘𝑙

𝐿𝑘

𝑙=1

𝐾

𝑘

+𝜗𝑖𝑚𝑘𝑙
𝑟𝑒𝑚) 𝑦𝑚𝑘𝑙

𝑟𝑒𝑚 + 𝜀𝑖𝑚 (5.2) 

The 𝜗𝑖𝑗𝑘𝑙
𝑛𝑒𝑤

and 𝜗𝑖𝑗𝑘𝑙
𝑟𝑒𝑚

 represent customers perceived utility of the generational difference of the 𝑙th 

level of the 𝑘th attribute of the new and remanufactured products, respectively in the 𝑖th market segment. 

The perceived utilities due to the generational differences are computed as a standardised score of the 

attribute levels’ generational differences with respect to the maximum acceptable generational differences 

as given in Equation (5.3) and (5.4). The  𝑤𝑗𝑘  denotes the weight given to the 𝑙th level of the 𝑘th attribute 

whereas the 𝜀𝑖𝑗 denotes the stochastic error term of the linear regression. 

𝜗𝑖𝑗𝑘𝑙
𝑛𝑒𝑤 = 1 − 

𝜆𝑖𝑗𝑘𝑙
𝑛𝑒𝑤 

𝜆𝑖𝑗𝑘𝑚𝑎𝑥 
𝑛𝑒𝑤⁄  (5.3) 

𝜗𝑖𝑚𝑘𝑙
𝑟𝑒𝑚 = 1 − 

𝜆𝑖𝑚𝑘𝑙 
𝑟𝑒𝑚  

𝜆𝑖𝑚𝑘𝑚𝑎𝑥 
𝑟𝑒𝑚⁄  (5.4) 

 Once the utility functions are determined, the new and remanufactured products' market shares are 

determined using the multinomial logit (MNL) model (Uncles et al., 1987). The MNL is a widely used 

technique for estimating market shares of products based on their perceived utilities. According to the 

MNL choice rule, the choice probabilities of the 𝑗th product variant in the 𝑖th market segment during the 

period -1 and period 2 are given by Equations (5.5) and (5.6).  

𝑃𝑖𝑗
𝑛𝑒𝑤(1)

=
exp[𝜌𝑈𝑖𝑗]

∑ exp[𝜌𝑈𝑖𝑗] +
𝐽
𝑗=1

∑ exp[𝜌𝑈𝑖𝑛]
𝑁
𝑛=1

 (5.5) 

𝑃𝑖𝑗
𝑛𝑒𝑤(2)

=
𝑒𝑥𝑝[𝜌𝑈𝑖𝑗]

∑ 𝑒𝑥𝑝[𝜌𝑈𝑖𝑗] +
𝐽
𝑗=1

∑ 𝑒𝑥𝑝[𝜌𝑈𝑖𝑛]
𝑁
𝑛=1 + ∑ 𝑒𝑥𝑝[𝜌𝑈𝑖𝑚]

𝑀
𝑚=1

 (5.6) 

Where 𝑈𝑖𝑛  denote the utility of 𝑛th  competing product in the 𝑖th  market. N is the total number of 

competing product variants. Parameter 𝜌 denotes a positive scaling factor of the MNL model (Steiner & 

Hruschka, 2005). The demand functions for new product variants in period 1 and period 2 are then 
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estimated using Equations (5.7) and (5.8) where 𝑄𝑖
(1)

and 𝑄𝑖
(2)

 respectively denote estimated sizes of the 

𝑖th market segment in period 1 and period 2.  

𝐷𝑖𝑗
𝑛𝑒𝑤(1)

= 𝑄𝑖
(1)
(𝑃𝑖𝑗

𝑛𝑒𝑤(1)
) (5.7) 

                     𝐷𝑖𝑗
𝑛𝑒𝑤(2)

= 𝑄𝑖
(2)
(𝑃𝑖𝑗

𝑛𝑒𝑤(2)
) (5.8) 

Similarly, the market share and demand function for the remanufactured product variants are in period 2 

are determined using Equations (5.9) and (5.10), respectively.  

𝑃𝑖𝑚
𝑟𝑒𝑚(2)

=
exp[𝜌𝑈𝑖𝑚]

∑ exp[𝜌𝑈𝑖𝑗] +
𝐽
𝑗=1

∑ exp[𝜌𝑈𝑖𝑛]
𝑁
𝑛=1 + ∑ exp[𝜌𝑈𝑖𝑚]

𝑀
𝑚=1

 
(5.9) 

𝐷𝑖𝑚
𝑟𝑒𝑚(2)

= 𝑄𝑖
(2)
(𝑃𝑖𝑚

𝑟𝑒𝑚(2)
) (5.10) 

Objective functions such as maximising the market share and profit; minimising the production cost 

and environmental impacts are often used in PDC studies. In this study, the maximisation of shared surplus 

introduced by (Jiao and Zhang, 2005) is adopted as an objective function for both the upper-level and 

lower-level optimisations. The shared surplus is computed as a ratio of the product of aggregate utilities 

and demands of product variants to variable costs.  Hence, the shared surplus of the upper-level 

optimisation is given by Equation (5.11). The variables involved are decision on product variants, choice 

of levels, and generational differences for individual attributes. Constraints of the upper-level optimisation 

model are formulated in Equations (5.12) - (5.25).  

             Subject to:  

𝐶𝑖𝑗 = ∑ ∑ 𝑐𝑘𝑙
𝜆(0) 

exp (−𝜏𝑘𝑙 
𝐿𝑘
𝑙=1 ∗𝐾

𝑘=1  𝜆𝑖𝑗𝑘𝑙 
𝑛𝑒𝑤   ) 𝑥𝑖𝑗𝑘𝑙

𝑛𝑒𝑤   
(5.12) 

max𝐹( 𝑥𝑖𝑗
𝑛𝑒𝑤 , 𝑥𝑗𝑘𝑙

𝑛𝑒𝑤 , 𝜆𝑖𝑗𝑘𝑙 
𝑛𝑒𝑤) =∑∑

𝑈𝑖𝑗

𝐶𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

(𝐷𝑖𝑗
𝑛𝑒𝑤(1) + 𝐷𝑖𝑗

𝑛𝑒𝑤(2))𝑥𝑖𝑗
𝑛𝑒𝑤  (5.11) 



70 
 

 

                    Subject to: 

  𝐶𝑖𝑚 = ∑ ∑ 𝑐𝑘𝑙
𝜆(0) 

exp (−𝜏𝑘𝑙 
𝐿𝑘
𝑙=1 ∗𝐾

𝑘=1  𝜆𝑖𝑚𝑘𝑙 
𝑟𝑒𝑚   ) 𝑦𝑖𝑚𝑘𝑙

𝑟𝑒𝑚  (5.19) 

∑ 𝑦𝑚𝑘𝑙 
𝑟𝑒𝑚𝐿𝑘

𝑙=1  = 1 (5.20) 

∑∑|𝑦𝑚𝑘𝑙 
𝑟𝑒𝑚 − 𝑦𝑚′𝑘𝑙 

𝑟𝑒𝑚 | > 0,   ∀𝑚 ≠

𝐿𝑘

𝑙=1

𝑚′

𝐾

𝑘

 (5.21) 

∑𝐷𝑖𝑗
𝑛𝑒𝑤(2)

𝐽

𝑗

+∑𝐷𝑖𝑚
𝑟𝑒𝑚(2)

≤ 𝑄𝑖
(2)

𝐽

𝑗

 (5.22) 

𝜆𝑖𝑚𝑘𝑙 
𝑟𝑒𝑚  <= 𝜆𝑖𝑚𝑘𝑙𝑚𝑎𝑥 

𝑟𝑒𝑚  (5.23) 

𝜆𝑚𝑘𝑙 
𝑟𝑒𝑚    = (𝜆𝑗𝑘𝑙 

𝑛𝑒𝑤+ 𝑡 ∗ 𝛾𝑘 
𝑟𝑒𝑚 )(1 − 𝑧𝑚𝑘𝑙

𝑟𝑒𝑚) +   𝜃𝑗𝑘𝑙
𝑟𝑒𝑚 (5.24) 

∑ 𝑥𝑗𝑘𝑙
𝑛𝑒𝑤  

𝐿𝑘
𝑙=1  =1 (5.13) 

∑∑|𝑥𝑗𝑘𝑙
𝑛𝑒𝑤   − 𝑥𝑗′𝑘𝑙

𝑛𝑒𝑤  | > 0,   ∀𝑗 ≠

𝐿𝑘

𝑙=1

𝑗′
𝐾

𝑘

 (5.14) 

∑𝐷𝑖𝑗
𝑛𝑒𝑤(2)

𝐽

𝑗

+∑𝐷𝑖𝑚
𝑟𝑒𝑚(2)

≤ 𝑄𝑖
(2)

𝐽

𝑗

 (5.15) 

𝜆𝑖𝑗𝑘𝑙
𝑛𝑒𝑤 <= 𝜆𝑖𝑗𝑘𝑙𝑚𝑎𝑥 

𝑛𝑒𝑤    (5.16) 

(𝑥𝑖𝑗
𝑛𝑒𝑤 , 𝑥𝑗𝑘𝑙

𝑛𝑒𝑤) 𝜖 {0,1} 
       

(5.17) 

max𝑓( 𝑦𝑚
𝑟𝑒𝑚 , 𝑦𝑚𝑘𝑙 

𝑟𝑒𝑚, 𝑧𝑚𝑘
𝑟𝑒𝑚, 𝜃𝑚𝑘

𝑟𝑒𝑚) =∑∑
𝑈𝑖𝑚
𝐶𝑖𝑚

𝑀

𝑚=1

𝐼

𝑖=1

(𝐷𝑖𝑗
𝑟𝑒𝑚)𝑦𝑖𝑚

𝑟𝑒𝑚  (5.18) 
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(𝑦𝑖𝑚
𝑟𝑒𝑚 , 𝑦𝑚𝑘𝑙

𝑟𝑒𝑚, 𝑧𝑚𝑘𝑙
𝑟𝑒𝑚  ) 𝜖 {0,1}   (5.25) 

Constraints in Equations (5.12) and (5.19) computes the variable costs of attribute levels for the new 

and remanufactured product variants where 𝑐𝑘𝑙
𝜆(0) 

denotes the unit cost of the cutting-edge generation of 

the 𝑙th level of the 𝑘th attribute. It is assumed that a part/module's cost with an attribute level l depreciates 

exponentially w.r.t its generational differences (Kwak and Kim, 2011). The parameter 𝜏𝑘𝑙 denotes the 

annual cost depreciation rate of the 𝑙th level of the 𝑘th attribute. Constraints in Equations (5.13) and (5.20) 

ensure only one attribute level is selected for each of the new and remanufactured product variants, 

respectively. Constraints (5.14) and (5.21) respectively ensure that each of the new and remanufactured 

product variants offered is unique in at least one attribute level. Constraints (5.15) and (5.22) denote the 

capacity constraint such that the quantity of new and remanfuctured products to be offered by the company 

in the 𝑖th market segment in period 2 is limited by the size of the market segment. Constraints (5.16) and 

(5.23) respectively ensure the generational differences of each of the attribute levels chosen for the new 

and remanufactured product variants do not exceed the maximum generational difference acceptable in 

each market segment. Constraints (5.17) and (5.25) restricts the decision variables to be binary. Constraint 

(5.24) computes generational differences for the attribute levels selected for remanufactured product 

variants based on upgrade decisions. The parameter 𝛾𝑘 
𝑟𝑒𝑚denote annual rate of the change in generational 

difference for 𝑘th  attribute. t represents the time in years between the sales of a new product whose 

generational difference was 𝜆𝑗𝑘𝑙 
𝑛𝑒𝑤and its end-of-life when it was decided to be remanufactured.  
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5.3 Solving approach  

5.3.1 Nested bilevel GA 

The proposed bilevel optimisation model involves a 0-1 binary integer variable and a non-linear 

function that falls under NP-hard type problems (Sinha et al., 2018).  The presence of binary decision 

variables in an NP-hard problem makes it difficult to solve using classical analytic approaches. 

Metaheuristic approaches are widely used in recent years for solving NP-hard and combinatorial 

optimisations (Oliveto et al., 2007). In this study, a nested bilevel GA (NBGA) outlined in Figure 5.3 is 

adopted to solve the bilevel optimisation problem. The NBGA involves a two-stage recursive GA 

approach whereby the solution of a lower-level optimisation problem serves as an input to the upper-

level optimisation problem. The step-by-step procedure of the NBGA algorithm is outlined as follows:  

 Step 1– Initialisation: Generate a random population for the upper-level decision variables 

(𝑥𝑖𝑗
𝑛𝑒𝑤, 𝑥𝑗𝑘𝑙

𝑛𝑒𝑤, 𝜆𝑖𝑗𝑘𝑙 
𝑛𝑒𝑤).   

Step 2– Check the population's feasibility based on upper-level constraints and pass them onto the 

lower-level optimisation. 

Step 3 – Generate a random population for the lower-level decision variables (𝑦
𝑚
𝑟𝑒𝑚, 𝑦

𝑚𝑘𝑙 
𝑟𝑒𝑚 , 𝑧𝑚𝑘

𝑟𝑒𝑚, 𝜃𝑚𝑘
𝑟𝑒𝑚). 

Check feasibility of the population based on lower-level constraints. Combine upper-level 

and lower-level decision variables and solve the lower-level optimisation.  

Step 4– Check the termination condition of the lower-level optimisation. Execute multipoint crossover 

and uniform mutation operation if the termination check is false and repeat step 2 to update 

the population. If the termination check at step 2 is true, pass the lower-level decision 

variables as the optimum solution to the upper-level optimisation.  

Step 5 -Evaluate the fitness function of the upper-level optimisation. Check termination condition of 

the upper-level optimisation. If false, execute multipoint crossover and uniform mutation 
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operation to update the population of the upper-level optimisation.  Repeat steps 2-4. If the 

termination condition is true, go to step 6.  

Step 6– End the algorithm and save the upper-level and lower-level decision variables' values as the 

optimal solutions. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Flow chart of the NBGA solving approach 
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5.3.2 Chromosome encoding  

The upper-level optimisation's chromosome structure consists of two segments; the first segment encodes 

the decision variable for selecting attribute levels. The second segment encodes the decision variable for 

selecting generational differences for the selected attribute levels. Hence, the upper-level optimisation has 

2×J× ∑ 𝐿𝑘
𝐾
𝑘=1  genes. For instance, the partial presentation of chromosome for j=1 in Figure 5.4 shows 

the selection of 2nd level and one generation old (generational difference=1) for the 1st attribute with; 1st 

level and the latest generation (generational difference=0) for the 2nd attribute; and the 1st level and two-

generation old for the Kth attribute.  

 

 

 

 

 

 

 

 

 

 

 

The chromosome structure of the lower-level optimisation has three segments. The first segment 

encodes decision variables for the selection of attribute levels for the product configuration (i.e., 𝑦𝑚𝑘𝑙
𝑟𝑒𝑚). 

The second segment encodes decision variables for attributes upgrading (i.e., 𝑧𝑚𝑘𝑙 
𝑟𝑒𝑚). The third segment 

encodes generational differences for attribute levels that require specification upgrading. Hence, the 

𝑘 = 𝐾  

( 𝜆1𝐾1 
𝑛𝑒𝑤 , 𝜆1𝐾2 

𝑛𝑒𝑤 ,⋯ , 𝜆1𝑘𝐿𝑘 
𝑛𝑒𝑤 ) 

𝑘 = 𝐾  

(𝑥1𝐾1
𝑛𝑒𝑤, 𝑥1𝐾2

𝑛𝑒𝑤,⋯ , 𝑥1𝐾𝐿𝑘
𝑛𝑒𝑤 ) 

 

𝑘 = 1  

(𝑥111
𝑛𝑒𝑤, 𝑥112

𝑛𝑒𝑤,⋯ , 𝑥11𝐿𝑘
𝑛𝑒𝑤 ) 

0 ⋯ 0 ⋯ 0 ⋯ 0 ⋯ 

𝑘 = 2  

(𝑥121
𝑛𝑒𝑤, 𝑥122

𝑛𝑒𝑤,⋯ , 𝑥12𝐿𝑘
𝑛𝑒𝑤 ) 

 

0 ⋯ 0 ⋯ 0 ⋯ ⋯ 

𝑘 = 2  

( 𝜆121 
𝑛𝑒𝑤, 𝜆122 

𝑛𝑒𝑤,⋯ , 𝜆12𝐿𝑘 
𝑛𝑒𝑤 ) 

 

𝑘 = 1  

( 𝜆111 
𝑛𝑒𝑤, 𝜆112 

𝑛𝑒𝑤,⋯ , 𝜆11𝐿𝑘 
𝑛𝑒𝑤 ) 

J=1 

Figure 5.4 Chromosome structure of upper-level decision variables 
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chromosome structure for the lower-level optimisation has a total of 3×J× ∑ 𝐿𝑘
𝐾
𝑘=1  genes. For instance, 

the partial presentation of chromosome for remanufactured product variant 1(m=1) in Figure 5.5 shows 

the selection of 1st level for the 1st attribute, which is decided to maintain its specification (𝑧111 
𝑟𝑒𝑚=0). 

Similarly, the chromosome structure shows the selection of 2nd level for the Kth attribute, which is decided 

to be upgraded to a two generations old specification (i.e., 𝜃1𝐾2 
𝑟𝑒𝑚 = 2). 

 

 

 

 

 

 

 

 

 

 

 

 

For a crossover operation, the multipoint crossover is suited since chromosomes representing decision 

variables corresponding to attribute levels, and generational differences are batched together. The 

crossover operation creates an updated upper-level and lower-level population by randomly swapping 

segments of chromosomes corresponding to each decision variables. The mutation operation randomly 

alters genes corresponding to attribute levels' decisions, their generational differences for the upper-level 

optimisation. In the lower-level optimisation, the mutation operation randomly alters with small 

probability genes corresponding to the decisions on attribute levels, their upgrade decision, corresponding 

Figure 5.5 Chromosome structure of lower-level decision variables 
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⋯ ⋯ 0 ⋯ 0 ⋯ 0 ⋯ 0 ⋯ ⋯ 
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upgrade levels for attribute levels decided for an upgrade. Mutation operation helps preserve genetic 

diversity within a population in GA (Potts et al., 1994).  

5.4  Case study 

5.4.1 Description of the case study  

A case study of PDC for the new and remanufactured mobile phone variants is presented to demonstrate 

the proposed bilevel optimisation model and the solving approach. The mobile phone design is assumed 

to have been designed using a modular structure. Each module representing an attribute is characterised 

by two or three attribute levels, representing a distinct performance level. Five functional attributes 

(‘display size,’ ‘camera pixels,’ ‘memory,’ ‘security feature’, and ‘battery capacity’) and a price are 

considered for the case study, which makes up a total of six attributes. The attribute levels considered are 

3,3,3,2,3 and 3, respectively, for the display size’, ‘camera pixels,’ ‘memory,’ ‘security feature,’ ‘battery 

capacity,’ and ‘price’. Therefore, a full factorial design would have a total of 3×3×3× 2× 3×3 =486 

possible product variants, which is significantly large for a market survey. In such a scenario, it is 

customary to use Taguchi’s orthogonal arrays to generate a manageable number of product profiles for a 

market survey. In this case study, an L18 Taguchi orthogonal array is implemented to generate 18 product 

profiles for the conjoint analysis. The generated product profiles are divided into new and remanufactured 

products, as shown in Table 5.1.  

For simplicity, it was assumed that a company first launches new product variants during period 1 

and remanufactured product variants in period 2. Both the new and remanufactured products are assumed 

to be introduced to the same market (I=1) with identical purchase preferences during period 2. The sizes 

of the market in period 1 and period -2 are estimated as 50,000 and 80,000, respectively. 
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Table 5.1 L18 Orthogonal product profiles for the new and remanufactured products 

 

 

A rating-based conjoint survey involving 35 respondents was conducted whereby each respondent 

was asked to rate each of the new and remanufactured product profiles on a 1-5 rating scale. A rating of 5 

points indicates the most preferred profile, while a 1-point rating indicates the least preferred profile. 

Based on conjoint analysis, the part-worth utilities of individual attribute levels were determined, as shown 

in Table 5.2.  Parameter settings for the estimated unit costs of the latest generation (𝑐𝑘𝑙
𝜆(0) 

); estimated 

annual rate of generational difference (𝛾𝑘𝑙 
𝑟𝑒𝑚); estimated annual cost depreciation (𝜏𝑘𝑙);  the maximum 

acceptable generational differences for new parts (𝜆𝑖𝑗𝑘𝑚𝑎𝑥 
𝑛𝑒𝑤 ) and remanufactured parts (𝜆𝑖𝑚𝑘𝑚𝑎𝑥 

𝑟𝑒𝑚 ) are also 

provided in Table 5.2. The figure for the rate of the generational difference indicates the frequency of the 

innovation cycle.  For instance, a generational difference rate of 𝛾𝑘𝑙 
𝑟𝑒𝑚 = 0.5 for the ‘memory’ attribute 

indicates that a new technology (generation) emerges every two years for its attribute levels.  

 

Product 

profile 
Condition 

Display 

(inches) 
Camera Memory 

Fingerprint 

security 

Battery 

Capacity 

(mAh) 

Price 

(hkd) 

1 New 5.5 
13 MP (dual) + 8 

MP (selfie) 

64GB + 3GB 

RAM, 
Yes 4,000-4,500 1,400 

2 New 4.7 
13MP (single) + 

8MP (selfie) 

64GB + 3GB 

RAM, 
Yes 2000-2500 1,400 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

10 Reman. 6.8 inch 
16 MP (triple) + 

10MP (selfie) 

256GB + 

6GB RAM 
Yes 

4,000-

4,500 
2,600 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

18 Reman. 4.7 
16 MP (triple) + 

10MP (selfie) 

128GB + 

4GB RAM 
No 4,000-4,500 1,400 
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Table 5.2 Part-worth utilities, unit costs and parameter settings of attribute levels 

Attribute Attribute levels Utility 

Unit Cost 

in hkd 

(𝑐𝑘𝑙
𝜆(0) 

) 

𝛾𝑘𝑙 
𝑟𝑒𝑚 𝜏𝑘𝑙 𝜆𝑖𝑗𝑘𝑚𝑎𝑥 

𝑛𝑒𝑤  𝜆𝑖𝑚𝑘𝑚𝑎𝑥 
𝑟𝑒𝑚  

Display 

(inch) 

4.7inch 0.06 120 

0.75 0.25 2 3 5.5 inch 0.06 150 

6.8 inch -0.11 210 

Camera 

13MP (single) + 

8MP (selfie) 
-0.61 120 

1.25 0.75 3 4 
13 MP (dual) + 8 

MP (selfie) 
-0.11 220 

16 MP (triple) + 

10MP (selfie) 
0.72 340 

Memory 

64GB + 3GB 

RAM 
-0.28 140 

0.5 0.8 1 2 
128GB + 4GB 

RAM 
0.22 220 

256GB + 6GB 

RAM 
0.06 320 

Fingerprint 

security 

Yes 0.08 50 
0.75 0.6 1 2 

No -0.08 0 

Battery 

2000-2500 mAh -0.28 155 

0.75 0.8 2 3 3,000-3,500 mAh 0.06 280 

4,000-4,500 mAh 0.22 360 

Price 

1400hkd 0.22 

- - - - 
 

- 2600hkd -0.11 

3200hkd -0.11 

In this case study, each attribute levels within an attribute are assumed to have an identical rate of 

generational differences. The cost of each attribute level is assumed to depreciate exponentially at the rate 

of 𝜏𝑘𝑙 according to Equations (5.12) and (5.19) for the new and remanufactured products, respectively.  

Furthermore, two new product variants and two remanufactured product variants are assumed to have 

already been introduced by competitors in the same market.  The specification and generational difference 

of attributes, and corresponding perceived utilities of competing products are given in Table 5.3.  
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Table 5.3 Attribute levels, generational differences, and utilities of competing products 

Competing 

product 

Display 

(inch) 
Camera Memory 

Fingerprint 

security 

Battery 

(mAh) 

Price 

(hkd) 
Utility 

A (New) 5.5 [1] 13 MP + 8MP [1] 64GB + 3GB [0] Yes [1] 
3,000 -

3,500 [1] 
1,400 2.2 

B (New) 6.8 [0] 
16 MP (triple) 

+ 10MP [1] 
128GB + 4GB [0] Yes [0] 

4,000 -

4,500 [0] 
2,600 5.7 

C (Reman) 4.7 [3] 
13 MP (dual) 

+ 8 MP [3] 
128GB + 4GB [1] Yes [1] 

3,000 -

3,500 [0] 
1,400 1.0 

D (Reman) 6.8 [2] 
16 MP (triple) 

+ 10MP [1] 
256GB + 6GB [1] Yes [0] 

4,000 -

4,500 [1] 
2,600 3.0 

  [a]

5.5 Results and discussions  

The hierarchical bilevel programming model is formulated for the joint optimisation of PDC for the upper 

level and lower-level optimisation problems. It was assumed that the company planned to launch a 

maximum of three new product variants in periods 1 & 2 (i.e., J=3) and three remanufactured product 

variants (M=3) in period 2.  The NBGA discussed in section 4 was implemented to solve the bilevel 

optimisation model. Crossover rates of 0.8 and 0.7 are used respectively for the upper-level and lower 

optimisations. The mutation rate was maintained at 0.01 for both levels. Due to the large solution spaces, 

population sizes of 300 and 500 were used for the upper-level and lower-level optimisations, respectively. 

The NBGA algorithm was programmed in MATLAB R2016a and run 100 generations. The convergence 

of the NBGA as shown in Figure 5.6, shows that the upper-level optimisation improves after around 20 

generations, whereas the lower-level starts significant improvements after 65 generations. It also reveals 

trade-offs between the upper and lower-level optimisations until both reach an equilibrium solution after 

around 80 generations.  
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Figure 5.6 Convergence of the NBGA algorithm 

The resulting PDC solutions for new product variants from the upper-level optimisation is presented 

in Table 5.4. The solution shows the indices of selected attribute levels and corresponding generational 

differences, which maximises the shared surplus of new product variants. Detailed configurations of 

attributes of new product profiles are presented in Table 5.5. It can be observed that a cutting-edge 

specification (zero generational difference) is selected for “display,” “memory,” and “fingerprint” 

attributes across new product profiles. Besides, a two-generation old technology is chosen for the 

“camera” attribute for product variants 1& 3. Furthermore, a one-generation technology is chosen for the 

“battery” attribute for new product variants 1 & 2, while a two-generation old technology is chosen for 

product variant 3.  
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Table 5.4 Optimal solutions for the upper-level optimisation 

Table 5.5 Optimal profiles of new product variants (upper-level optimisation) 

[a]

 

PDC solution for the lower-level optimisation is presented in Table 5.6, which shows indices of 

selected attribute levels and corresponding decisions for specification upgrading and generational 

differences chosen for attribute levels decided for upgrading. It shows attributes for each product variant 

that require an upgrade as follows: i) “display,” “memory,” and “fingerprint” attributes for product variant 

  New products (J=3) 

                   Objective function= 476.7 
Chromosomes (attribute levels and generational difference) 

A
tt

ri
b
u
te

 

le
v
el

s 

variant 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 

variant 2 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 

variant 3 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 

G
en

er
at

io
n
a

l 
d
if

fe
re

n
ce

 variant 1 0 2 0 0 1  

variant 2 0 0 0 0 1  

variant 3 0 2 0 0 2  

New 

product  

Display size 

(inches) 
Camera Memory 

Fingerprint 

security 

Battery 

(mAh) 

Price 

(hkd) 

Variant 1 5.5 [0] 
16 MP (triple) + 

10MP (selfie) [2] 

 

 

128GB + 4GB 

RAM [0] 

 

Yes [0] 4000-4500 [1] 1,400 

Variant 2 4.7 [0] 
13MP (single) + 

8MP (selfie) [0] 

 

256GB + 6GB 

RAM [0] 

 

No 4000-4500 [1] 2,600 

Variant 3 5.5 [0] 

16 MP (triple) + 

10MP (selfie) [2] 

 

 

64GB + 3GB 

RAM [0] 

 

Yes [0] 4000-4500 [2] 1,400 
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1; ii) “camera” and “memory” attributes for product variant 2, and iii) “camera” and “fingerprint” 

attributes for product variant 3. Accordingly, optimal upgrade solutions for the mentioned attributes are i) 

an upgrade to a one-generation old technology for “display” and “memory” attributes and a cutting-edge 

specification for “fingerprint” attribute for product variant 1; ii) an upgrade to a one-generation old and a 

two-generation old technology, respectively for “camera” and “memory” attributes for product variant 2; 

iii)  an upgrade to a three-generation old, a cutting-edge and a two-generation old technology, respectively 

for “camera,” “fingerprint” and “battery” attributes for product variant 3. Detail configurations for 

attributes of remanufactured product profiles are presented in Table 5.7. 

Table 5.6 Optimal solutions for the lower-level optimisation 

 

 

 

Remanufactured  

products (M=3) 
Objective function=87.1 

Chromosomes (attribute levels and generational difference) 

A
tt

ri
b
u
te

 

L
ev

el
s 

                  variant 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 

variant 2 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 

variant 3 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 

U
p
g
ra

d
e 

d
ec

is
io

n
 

variant 1 1 0 1 1 0  

variant 2 0 1 1 0 0  

variant 3 0 1 0 1 0  

G
en

er
at

io
n
al

 

d
if

fe
re

n
ce

 

variant 1 1* 4 1* 0* 3  

variant 2 3 1* 2* 2 3  

variant 3 3 3* 2 0*   2*  
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Table 5.7 Optimal profiles of remanufactured product profiles (lower-level optimisation)  

5.6 Sensitivity Analysis  

The effects of changes in estimated parameters on the expected shared surpluses of the upper and lower-

level optimisations are analysed and discussed in this section. Four scenarios presented in Table 5.8 have 

been investigated, each representing an increase/decrease of two parameters: i) price depreciation rate 

(𝜏𝑘𝑙) and ii) generational difference rate (𝛾𝑘 
𝑟𝑒𝑚) of attributes.  

Table 5.8 Parameter settings for each of the scenarios 

Scenario 1 2 3 4 

Parameter 

settings 

(𝜏𝑘𝑙 ,  𝛾𝑘 
𝑟𝑒𝑚) 

(0.5𝜏𝑘𝑙,0.5 𝛾𝑘 
𝑟𝑒𝑚) (0.5 𝜏𝑘𝑙,1.5 𝛾𝑘 

𝑟𝑒𝑚) (1.5 𝜏𝑘𝑙,0.5𝛾𝑘 
𝑟𝑒𝑚 (1.5 𝜏𝑘𝑙,1.5𝛾𝑘 

𝑟𝑒𝑚) 

 

Product attribute/ 

Levels  

Display size 

(inches) 
Camera Memory 

Fingerprint 

security 

Battery  

(mAh) 

N
ew

 p
ro

d
u

ct
 

v
ar

ia
n

t 
(J

=
3

) 

Variant 1 5.5 [0] 
16 MP (triple) + 

10MP (selfie) [2] 

 

 

128GB + 4GB 

RAM [0] 

 

Yes [0] 4000-4500 [1] 

Variant 2 4.7 [0] 
13MP (single) + 

8MP (selfie) [0] 

 

256GB + 6GB 

RAM [0] 

 

No 4000-4500 [1] 

Variant 3 5.5 [0] 
16 MP (triple) + 

10MP (selfie) [2] 

 

 

64GB + 3GB 

RAM [0] 

 

Yes [0] 4000-4500 [2] 

R
em

an
u
fa

ct
u
re

d
 

p
ro

d
u
ct

 v
ar

ia
n
t 

(M
=

3
) 

Variant 1 6.8 1* 
13 MP (dual) + 8 

MP (selfie) [4] 

 

128GB + 4GB 

RAM 1* 

 

No  4000-4500 [3] 

Variant 2 5.5 [3] 
16 MP (triple) + 

10MP (selfie) 1* 

256GB + 6GB 

RAM 2* 
 Yes [2] 2000-2500 [3] 

Variant 3 6.8[3] 
13MP (single) + 

8MP (selfie) 3* 

256GB + 6GB 

RAM [2] 
No 2000-2500 2* 
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The corresponding NBGA convergence is shown in Figure 5.7. The summary of comparisons among 

the scenarios is depicted in Figure 5.8. The result shows that scenario 1 leads to 52% and 19% decreases 

in shared surpluses for the lower-level and upper-level optimisations, respectively.  

 

The result reveals that improvements in customers’ perceived utilities for remanufactured products 

due to a reduced rate of generational differences are less significant than an increase in remanufacturing 

cost due to a reduced cost depreciation rate. Scenario 2 reveals the loss of customers’ perceived utility for 

remanufactured products due to the increase in the rate of generational differences. Besides, it shows an 

 

b) Scenario 2 

 

a) Scenario 1 

 

d) Scenario 4 
c) Scenario 3 

Figure 5.7 Convergence of the NBGA algorithm for each of the scenarios 
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increase in remanufacturing cost due to a reduction in cost depreciation rates.  The cumulative effect is 

insignificant on a shared surplus (ratio of utility to cost) for the lower-level optimisation. However, the 

impact has been significant for upper-level optimisation with 16% reductions of shared surplus for new 

product variants, which can be due to an increase in the cost of new product manufacturing. Similar 

insights can be obtained from results of scenarios 3 & 4, which show increments in the shared surpluses 

for lower-level optimisations (remanufactured product variants) due to an increase in the rates of 

generational differences and cost depreciation.    

 

Figure 5.8 Comparison of shared surpluses of each of the scenarios 

 

5.7 Chapter Summary  

The joint optimisation of PDC for the new and remanufactured product variants involves upgrading 

specifications for remanufactured products due to technological obsolescence of parts/modules. The 

upgrading decision is affected by the original specification of new products sold in the previous 

Original Scenario 1 Scenario 2 Scenario 3 Scenario 4

Upper level 476.67 385.08 400.75 482.10 482.30

Lower level 87.05 41.76 83.42 260.14 165.466
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periods and the timing of used product returns. Hence, the upgrading of used parts should be 

considered during the early-stage of product development when configurations for the new and 

remanufactured products are determined. The decisions entail a hierarchical two-stage framework 

whereby specification configuration decisions for the new products (first stage) serve as an input for 

the specification and upgrading decisions for the remanufactured products (second stage). In this 

study, a non-linear integer bilevel programming (NLIBP) is formulated to model the hierarchical PDC 

optimisation problem. Maximisation of shared surplus, which emphasises a trade-off between 

customer preferences, market share, and product costs, is considered an objective function for both the 

upper-level and lower-level optimisations. Nested bilevel GA (NBGA) is presented for solving the 

bilevel optimisation model.  

To demonstrate the proposed bilevel optimisation model and the NBGA solving approach, a case 

study of PDC for the new and remanufactured mobile phones is conducted. The results reveal that the 

proposed approach can leverage the conflicting trade-offs between PDC decisions for the new and 

remanufactured products to generate equilibrium solutions. The sensitivity analysis results show an 

overestimation or underestimation of parameters significantly impacts the lower-level optimisation. 

The proposed methodology for the joint PDC can serve as a useful decision-making tool for design 

teams during the early design stage. 

In this research, crisp estimates were used to calculate the part-worth utilities of individual 

attribute levels, which are used to compute the market shares of new and remanufactured product 

variants. Future work can consider the part-worth utilities' fuzziness that emanate from respondents' 

subjective judgments during the conjoin analysis. Furthermore, customers’ preferences were assumed 

to be static in this research, and hence future studies can consider the dynamic nature of customers' 

preferences/market demands for the PDC.  
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Chapter 6 Methodology for Forecasting Used Product Returns for Remanufacturing  

This chapter presents a methodology for forecasting used product returns based on new product sales from 

a remanufacturing perspective. Section 6.1 describes the proposed DLM based forecasting model. A 

methodology for estimating the parameters of the DLM is discussed in section 6.2. A case study is 

presented in section 6.3 to demonstrate the proposed forecasting model's applicability and the parameter 

estimation methodology.  Section 6.4 presents the validation of the proposed methodology and parameter 

estimation approach. Section 6.5 summarises the findings and outlines the future research direction.  

6.1 The proposed DLM based forecasting model  

This section discussed the proposed methodology for forecasting used product returns. The proposed 

DLM for the forecasting of used products based on new product sales data is presented in Equation (6.1).   

𝑚𝑡
𝑟𝑒𝑡 =∑𝛽𝑘𝑛𝑡−𝑘 + 𝜀𝑡 ;   𝑡 = 2,3, . . 𝑇  

𝑡−1

𝑘=1

 (6.1) 

Where 𝑚𝑡
𝑟𝑒𝑡 is the forecasted quantity of used product returns in period t; βk known as the delay function, 

which denotes the proportion of new products sold during (𝑡 –  𝑘) 𝑡ℎ period (i.e., 𝑛𝑡−𝑘) that is available 

for return in period t (𝑚𝑡
𝑟𝑒𝑡). The term 𝜀𝑡 denotes a normally distributed random error, i.e., 𝜀𝑡 ~N(0, 𝜎

2).   

The choice of the lag function of the DLM, βk , and its parameters' estimates influence the forecasting 

accuracy. Traditionally, Bayesian inference was widely employed for estimating of the parameters of βk 

(Clottey et al., 2012; Clottey & Benton, 2014; Toktay et al., 2003), which involves solving the posterior 

distribution given in Equation (6.2). 

𝑝(𝜃 𝑑𝑎𝑡𝑎⁄ ) =
p(data θ⁄ )p(θ)

∫p(data θ⁄ )p(θ)dθ
 ,    θ =(θ1, θ2,⋯ , θD) 

T (6.2) 
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Where p (𝜃) denotes the prior probability of the parameter 𝜃; and p (data/ 𝜃) denotes the likelihood of the 

data (i.e., the return data) given the estimate of parameter 𝜃. The expression in the denominator, i.e., the 

product of the likelihood and the prior function, is known as the marginal likelihood function. The 

minimum of the mean-squared error (MSE) of a parameter estimate, given as  𝜃𝑖𝑀𝑀𝑆𝐸 = ∫𝜃𝑖  

p(𝜃𝑖/𝑑𝑎𝑡𝑎)d𝜃𝑖 requires solving the integral ∫ p(𝜃/𝑑𝑎𝑡𝑎)d𝜃𝑖  d𝜃𝑖+1⋯d𝜃𝐷. However, solving the integral 

for a non-trivial marginal likelihood function using conventional analytical approach is difficult.  

In this research, the Markov Chain Monte Carlo (MCMC) simulation and Bayesian inference are 

proposed for the estimation of the parameters of a DLM. The proposed approach can efficiently sample 

values for parameters regardless of the type and complexity of posterior distributions. The MCMC 

sampling procedure works in such a way that each drawn sample depends only on a previously sampled 

value (Jiang et al., 2008). The sampling procedure and parameter estimation approach are discussed in 

detail in section 6.2.  

6.2  Estimation of parameters of a DLM forecasting model  

Traditionally, the least-squares regression and the MLE approach are widely used for parameter 

estimations. However, the least-squares method's multicollinearity issue and the difficulty associated with 

the MLE method for a slightly complex function make both candidates unsuitable for estimating 

parameters of DLM’s lag function (Beerli, 2006; Choi et al., 2011). Thus, in this research, the MCMC and 

Bayesian inference approach is proposed for the parameter estimation. The proposed approach enables 

efficient sampling of distributions irrespective of the type and complexity of the underlying lag function. 

According to the MCM procedure, each new sample drawn depends on the previously drawn sample state 

(Jiang et al., 2008), which makes it easier to apply. The framework of the proposed forecasting model is 

depicted in Figure 6.1.  
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The lag function is expressed in terms of a probability distribution function which can take various 

forms depending on the return pattern. For example, a high initial return rate that diminishes over 

subsequent periods such as the returns of defective products can be modelled using a geometric 

distribution. In remanufacturing, however, used product returns have characteristics of a lower initial rate 

of returns from previously sold products. Nevertheless, customers often do not have extra incentives to 

keep their used products for a longer period, which entails a subsequent higher initial return rate followed 

by a diminishing rate. Such a return pattern can be modelled using a negative binomial distribution. Thus, 

a negative binomial function given in Equation (6.3) is chosen for the lag function of the proposed DLM 

based forecasting methodology.  

𝛽𝑘=p(
𝑘 + 𝑟 − 1

𝑟
) 𝑞𝑟(1 − 𝑞)𝑘 , where p ∈ [0,1], ∀𝑘 = 1,2,3, and 𝑟 > 0 (6.3) 

 

t

-k 

 𝑘 ∈  (1,2,3,⋯  𝑇 − 1)                        𝑡 ∈  (2,3,⋯  𝑇)    

 

𝑚𝑡
𝑟𝑒𝑡 =∑𝛽𝑘𝑛𝑡−𝑘 + 𝜀𝑡  

𝑡−1

𝑘=1

 

 
𝑚𝑡
𝑟𝑒𝑡denotes quantity of products returned after k 

lag periods according to a lag function given by 𝛽𝑘 

𝜀𝑡  ~ 𝑁(0, 𝜎
2) 

 

t  

𝑛𝑡−𝑘 denotes the quantity of new 

products sold during (t − k)𝑡ℎ 

period, which contributes towards 

returns in period t, i.e., 𝑚𝑡
𝑟𝑒𝑡     

 

k= number of periods after which products 

sold in period t returns to a company 

Figure 6.1 Framework of proposed forecasting model 
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Where p denotes the return probability of a new product sold in the previous period; q is the conditional 

probability of the return of a new product in the next period given p; parameter r denotes the lag 

corresponding to the largest βk coefficient. For instance, r takes a value of 2 for a return pattern in which 

most of the product returns come from new products sold before two months (for a monthly return period).  

Once the distribution of a lag function is determined, the DLM forecasting model is formulated by 

substituting Equation (6.3) into Equation (6.1) which gives Equation (6.4). 

𝑚𝑡
𝑟𝑒𝑡 = p𝑞𝑟∑(

𝑘 + 𝑟 − 1
𝑟

) (1 − 𝑞)𝑘𝑛𝑡−𝑘 + 𝜀𝑡                

𝑡−1

𝑘=1

 (6.4) 

The DLM given by Equation (6.3) can also be written as 𝑚𝑡
𝑟𝑒𝑡= p𝑞𝑟𝑁𝛾 +𝜀𝑡  . The expressions for 𝛾  and 

N are given below. The 𝛾 is a column vector of   (
𝑘 + 𝑟 − 1

𝑟
) (1 − 𝑞)𝑘 terms for each value of k, whereas 

N is a (𝑇 − 1) × (𝑇 − 1)  matrix of independent variables, i.e 𝑛𝑡−𝑘.  

𝛾= 

[
 
 
 
 
 
 
 

(1 − 𝑞)

(
𝑟 + 1
𝑟

) (1 − 𝑞)2

(
𝑟 + 2
𝑟

) (1 − 𝑞)3

⋮

(
𝑡 + 𝑟 − 2

𝑟
) (1 − 𝑞)t−1]

 
 
 
 
 
 
 

  N=

[
 
 
 
 
𝑛1 0 0 0 ⋯
𝑛2 𝑛1 0 0 ⋯
𝑛3 𝑛2 𝑛1 0 ⋯
⋮ ⋯

𝑛𝑇−1 𝑛𝑇−2 ⋯𝑛2 𝑛1]
 
 
 
 

 

The negative binomial distribution takes different forms based on the estimate of parameter r. Hence, 

Equation (6.4) can take a different form depending on the value of parameter r. For example, if r=2, the 

DLM forecasting model takes a form given in Equation (6.5). 

 𝑚𝑡
𝑟𝑒𝑡 = 𝑝𝑞2 (

2
2
) (1 − 𝑞)𝑛𝑡−1 + 𝑝𝑞

2 (
3
2
) (1 − 𝑞)2𝑛𝑡−2 +⋯+ 𝜀𝑡   

(6.5) 

Koyck transformation (Franses & Oest, 2004) is applied, which involves subtracting (1 − q) 𝑚𝑡−1
𝑟𝑒𝑡  from 

 𝑚𝑡
𝑟𝑒𝑡 to update the expression for  𝑚𝑡

𝑟𝑒𝑡 as illustrated in Equations (6.6) and (6.7).  

(1 − 𝑞)  𝑚𝑡−1
𝑟𝑒𝑡 = 𝑝𝑞2(1 − 𝑞)2𝑛𝑡−2 + 2𝑝𝑞

2(1 − 𝑞)3𝑛𝑡−3 +⋯+ 𝜀𝑡 −1 (6.6) 
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 𝑚𝑡
𝑟𝑒𝑡 = (1 − 𝑞)𝑚𝑡−1

𝑟𝑒𝑡 + 𝑝𝑞2(1 − 𝑞)𝑛𝑡−1 + 2𝑝𝑞
2(1 − 𝑞)2𝑛𝑡−2 +⋯+ 𝜀𝑡 − (1 − 𝑞)𝜀𝑡−1   (6.7) 

Rearranging the terms and subtracting Equation (6.9) from Equation (6.7),  𝑚𝑡
𝑟𝑒𝑡 can be expressed as given 

in Equation (6.10).   

 𝑚𝑡−1
𝑟𝑒𝑡 = (1 − 𝑞)𝑚𝑡−2

𝑟𝑒𝑡 + 𝑝𝑞2(1 − 𝑞)𝑛𝑡−2 + 2𝑝𝑞
2(1 − 𝑞)2𝑛𝑡−3 +⋯+ 𝜀𝑡 −1−(1 − 𝑞)𝜀𝑡−2   (6.8) 

(1 − 𝑞)  𝑚𝑡−1
𝑟𝑒𝑡 = (1 − 𝑞)2𝑚𝑡−2

𝑟𝑒𝑡 + 𝑝𝑞2(1 − 𝑞)2𝑛𝑡−2 + 2𝑝𝑞
2(1 − 𝑞)3𝑛𝑡−3 +⋯+ 𝜀𝑡 −1−(1

− 𝑞)𝜀𝑡−2   

(6.9) 

 𝑚𝑡
𝑟𝑒𝑡 = 2(1 − 𝑞)𝑚𝑡−1

𝑟𝑒𝑡 − (1 − 𝑞)2𝑚𝑡−2
𝑟𝑒𝑡 + 𝑝𝑞2𝑛𝑡−2 + 𝑢𝑡 (6.10) 

Where the error term, 𝑢𝑡, is given as 𝑢𝑡 = 𝜀𝑡 − 2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2𝜀𝑡−2. Unlike linear regression, 

which assumes independence and Gaussian distribution for the errors (white noises), the error terms in 

Equation (6.10) are correlated. This is due to the interdependence between the return data (dependent 

variables), i.e., 𝑚1
𝑟𝑒𝑡,𝑚2

𝑟𝑒𝑡,𝑚3
𝑟𝑒𝑡…𝑚𝑇

𝑟𝑒𝑡, and the time-lagged sales data (independent variables), i.e., 𝑛𝑡−𝑘. 

Thus, a covariance matrix of the error vector (𝑢3, 𝑢4, 𝑢5, . . . 𝑢𝑇)′  with a variance of 𝜎2 is expressed as   

∑ = 𝜎2𝑉𝑢 , where V is a (𝑇 − 2) × (𝑇 − 2) matrix whose elements are the coefficients of the error vector, 

as given below. The detailed derivation is presented in appendix A.  

V =  

[
 
 
 
 
 
 
1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) (1-q)2 0 ⋯ 0

-2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) (1-q)2 ⋯ 0

(1-q)2 -2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) ⋯ 0

0 (1-q)2 -2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1+4(1-q)2+(1-q)4]

 
 
 
 
 
 

 

Once the covariance matrix is determined, the estimates for the DLM parameters are obtained by 

solving the joint likelihood function given in Equation (6.11).  

L(p, q, r, σ2/mt
ret) ∝   

|V| 
−(T−1)

2

σ(T−1)
 exp {−

1

2σ2
(mt

ret −pqrNγ )′ x V−1(mt
ret − pqrNγ  )} (6.11) 

An MCMC method is proposed to solve the joint likelihood function and an MCMC based Bayesian 

inference approach to determine the parameters' estimates. The procedure is outlined in Figure 6.2, which 
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involves four steps: (1) running a Monte-Carlo simulation to generate estimates for each parameter (i.e., 

initialization) ; (2) implementing the Markov chain approach to sample new values for each parameter 

based on previously generated initial estimates; (3) implement component-wise Metropolis Hasting’s 

(MH) algorithm to sample from the posterior distribution (Carlo, 2004) and calculate the related posterior 

probabilities and (4) accept or reject the newly generated sample parameters from the posterior distribution 

to determine parameter estimates.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.2 Component-wise MH algorithm for parameter estimation 
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The parameter estimation algorithm requires the joint distribution of the prior, p(θ), of a parameter 

vector 𝜃 = (θ1, θ2, θ3, θ4)′ . In this study, uniform distribution with zero mean and a unit standard 

deviation, i.e., N (0, 1), is used for the joint prior distribution for p and q. An inverse-gamma prior, i.e., 

inverse-gamma(a, b), is used for 𝜎2 where a>0 & b>0 respectively are the shape and scale parameters of 

the distribution (Gelman, 2006). On the other hand, an integer value between one and six is assumed for 

the parameter r of the lag function. Thus, once the joint prior distributions of the parameters are specified, 

the posterior probability distribution is computed as the product of the joint prior distribution and the 

likelihood function, i.e., p(θ/𝑚𝑡
𝑟𝑒𝑡) ∝  𝐿(𝜃/𝑚𝑡

𝑟𝑒𝑡)X  p(θ). The component-wise MH algorithm shown in 

Figure 6.2 is then implemented to draw samples from the joint posterior distribution of the parameter 

vector. Finally, estimates of the parameters are determined and substituted in the DLM given in Equation 

(6.4).  

6.3  Implementation   

A case study is presented in this section to demonstrate the proposed DLM for forecasting used product 

returns based on new products sold during previous periods. The proposed MCMC and Bayesian inference 

approach are implemented for the estimation of parameters of the DLM. The sales data for a period of 24 

months is simulated using the Bass diffusion model (Bass, 1969) given in Equation (6.12).  

𝑛𝑡 = 𝜏1�̅� + (𝜏2 − 𝜏1)𝑁(𝑡) −
𝜏2
𝑁
[𝑁(𝑡)]2 (6.12) 

Where 𝑛𝑡  denotes the sales of new products in period t; �̅�  denotes the market potential; N(t) is the 

aggregate sales of new products until period t; 𝜏1 denotes the coefficients of innovation and 𝜏2 denotes the 

coefficient of imitation. For the case study, �̅� =50,000 units are assumed. Besides, 𝜏1 = 0.03 and 𝜏2 = 

0.38 are assumed for coefficients of innovation and imitation (Chandrasekaran & Tellis, 2007). The 
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negative binomial distribution was assumed to model the lag function. Based on the study conducted by 

Toktay et al. (2003), the lag function parameters were initially set as p= 0.5, q=0.58, and r=2. The sales 

data was generated using Equation (6.12) and the corresponding returns of used products computed using 

a DLM are shown in Figure 6.3. The simulated data are assumed to represent the actual sales patterns, 

whereas the computed return units are assumed to represent the actual returns pattern, which are known 

apriori.   

 

Figure 6.3 Simulated pattern of new product sales and quantity of used product returns 

 

The proposed MCMC method and Bayesian inference approach were implemented in MATLAB to 

estimate the lag function parameters (i.e., parameters of the negative binomial distribution). For a 

parameter vector  𝜃= (p, q, r), the component-wise MH algorithm illustrated in Figure 6.2 was run for 



95 
 

1000 iterations to draw samples from posterior distributions. The subsequent Markov Chain sampling is 

affected by the first few initial samples, also known as ‘bun-in’ or ‘warm-up’ samples, which are usually 

removed to reduce the effect. In this case study, the first 200 iterations were removed as ‘burn-in’ samples, 

as shown in Figure 6.4 and Figure 6.5.  

 

Figure 6.4 Markov Chain path and posterior distribution of p 

Furthermore, the speed and efficiency of the MH algorithm are affected by the sample size, the joint prior 

distribution, the software, and the speed of the computer used. In this case study, the component-wise MH 
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algorithm was written in MATLAB and implemented using a core-i5 computer to generate 1000 samples 

for the joint posterior distributions in about 35 seconds. 

 

Figure 6.5 Markov Chain path and posterior distribution of q 

The vector of the posterior means, 𝜃𝑖  =𝐸(𝜃𝑖|𝜃𝑖
1, 𝜃𝑖

1, 𝜃𝑖
1, … . . 𝜃𝑖

𝑁), was computed as  �̅�𝑖=
∑ 𝜃𝑖 
𝑁
𝑖=1

𝑁
  to 

determine estimates of each parameter 𝜃𝑖. N denotes the size of the sample. In the experiment, a posterior 

mean equivalent to 0.55 and 0.62, respectively, were obtained for parameters p and q. The determined 
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posterior means were then employed in the lag function of the DLM to forecast used product returns, 

presented in Table 6.1.  

Table 6.1 Forecasting errors when parameters are estimated using the proposed approach 

Period 
           𝑚𝑡

𝑟𝑒𝑡           

(actual returns) 

𝑚𝑡
𝑟𝑒𝑡 

(forecasted) 

Relative 

Forecasting error 

(%)  

2 106 115 8.5 

3 275 293 6.2 

4 477 500 4.7 

5 701 727 3.7 

6 943 971 3.0 

7 1196 1225 2.4 

8 1440 1467 1.9 

9 1641 1662 1.3 

10 1763 1775 0.7 

11 1778 1777 0.1 

12 1681 1664 1.0 

13 1490 1460 2.0 

14 1245 1206 3.1 

15 985 942 4.3 

16 743 703 5.5 

17 539 502 6.8 

18 377 347 7.9 

19 256 232 9.3 

20 170 153 10.3 

21 110 98 11.6 

22 70 62 12.2 

23 44  38 13.5 

24                  28     23 15.2 

   MAPE = 5.9 % 

VoE = 0.002 

The “actual returns” column refers to the forecasts obtained using the initial parameters’ settings, whereas 

the ‘forecasted’ column indicates the forecasted quantity obtained based on the estimated parameters.   
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6.4 Validation of the forecasting methodology  

The deviations between actual and forecasted returns were computed using the mean absolute percent 

error (MAPE) and the variance of errors (VoE) to validate the proposed forecasting methodology. The 

MAPE and VoE measures are given in Equation (6.13) and Equation (6.14).   

MAPE =  
1

T
∑

|mt
ret(θ) −mt

ret(θ̅)|

mt
ret(θ)

T

t=1

∙ 100 (6.13) 

VoE =  
1

T − 1
∑(

|mt
ret(θ) − mt

ret(θ̅)|

mt
ret(θ)

− MAPE/100)

2T

t=1

 (6.14) 

Where 𝑚𝑡
𝑟𝑒𝑡(𝜃) and 𝑚𝑡

𝑟𝑒𝑡(�̅�) denote the actual and the forecasted quantity of used product returns during 

the period t and  �̅�  (�̅�1, �̅�2, �̅�3, �̅�4)
′ denotes the vector the parameter means. The parameter estimation 

approach is compared with the maximum likelihood estimate (MLE) approach. The MLE approach 

involves the maximisation of the log-likelihood function shown in Equation (6.15), which requires 

partially differentiating the function as illustrated in Equations (6.16-6.18). 

ln L( p, q, r, σ2/mt
ret)

=  
−(T − 1)

2
ln(|V|) − (T − 1) ln(σ) −

1

2σ2
(mt

ret − pqrNγ) ′ V−1(mt
ret − pqrNγ  ) 

(6.15) 

∂

∂p
ln L( p, q, r, σ2/mt

ret) =  
V−1

2σ2
(2q2mt

retNγ − 2pq2Nγ)=0     (6.16) 

∂

∂q
ln L( p, q, r, σ2/mt

ret) =  
V−1

2σ2
(2p2mt

retNγ − 2p2qNγ)=0 (6.17) 

∂

∂σ
ln L( p, q, r, σ2/mt

ret) =  
−(T−1)

σ
−

1

σ3
((mt

ret − pqrNγ)′V−1(mt
ret − pqrNγ  ) = 0 (6.18) 
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The algorithm was written in MATLAB to obtain estimates for the parameters p and q, respectively 

as 0.45 and 0.53. The results were then substituted in the lag function of the DLM forecasting model given 

in Equation (6.4) for forecasting the timing and quantity of used product returns. The values of MAPE 

and VoE forecasting error measures obtained using the proposed parameter estimation approach are shown 

in Table 6.1 and the MLE approach in Table 6.2. The MAPE and VoE results show that the proposed 

parameter estimation approach gives better forecasting accuracy than the MLE approach. The patterns of 

used product returns when parameters are estimated using the proposed parameter estimation approach 

and MLE approach are shown in Figure 6.6.  

 

Figure 6.6 Forecast patterns vis-à-vis parameter estimation approaches                    
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Table 6.2 Forecasting errors when parameters are estimated using the MLE approach 

 

 

The periodic relative forecasting errors corresponding to the proposed parameter estimation approach 

and the MLE approach are shown in Figure 6.7. The graph shows that the MLE parameter estimation 

approach resulted in a bad forecast compared with forecasts based on parameters estimated using the 

Period      𝑚𝑡
𝑟𝑒𝑡(actual) 

𝑚𝑡
𝑟𝑒𝑡 

(MLE Approach) 

Relative 

Forecasting error  

(%) 
2 106 89 16.0 

3 275 245 11.0 

4 477 443 7.2 

5 701 671 4.2 

6 943 924 2.0 

7 1196 1193 0.3 

8 1440 1459 1.3 

9 1641 1690 3.0 

10 1763 1851 5.0 

11 1778 1909 7.3 

12 1681 1851 10.2 

13 1490 1692 13.5 

14 1245 1462 17.4 

15 985 1200 21.8 

16 743 942 26.6 

17 539 710 31.8 

18 377 518 37.3 

19 256 366 43.0 

20 170 253 48.9 

21 110 171 54.9 

22 70 113 60.9 

23 44 74 67.2 

24                  28 48 72.6 

   MAPE = 24.5 % 

VoE = 0.051 
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proposed approach. This is evident, particularly for returns with longer lags (i.e., past the 12th period), 

where the MLE approach resulted in an error of  >20%. On the contrary, the proposed parameter 

estimation method has led to a good forecasting accuracy on all the forecasts until the 20th period with 

forecasting errors of  <10%. 

 

Figure 6.7 Relative forecasting errors (MCMC Bayesian vs. the MLE approach) 

 

6.4.1 The cost saved by the proposed forecasting methodology 

The cost saved by the proposed forecasting methodology was also investigated using a hypothetical case 

study involving a company that offers both the new and remanufactured products to the market. Bass 

diffusion model with parameter settings of  𝜏1 = 0.03 and 𝜏2=0.38 for the innovation and imitation 

coefficients respectively was used to generate the demand for a market size of 𝑄𝑡= 20,000 units. The 
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simulated demand data for the remanufactured products and the pattern of used returns based on new 

product sales are shown in Figure 6.8.  

 

Figure 6.8 Demand for remanufactured products Vs. the pattern of used product returns 

 

The graph shows that the supply of used parts is less than the demand for remanufactured products for 

the first 11 planning periods and subsequently becomes excess.  

An experiment was conducted to investigate the impact of forecast overestimation and 

underestimation on the cost of remanufacturing. It was assumed that parts are purchased in a bundle 

from a third party at the cost of 30$/bundle. When the quantity of used products (i.e., used parts) is 

inadequate to satisfy the demand for remanufactured products, new parts are purchased as a substitute 

at a higher price of 45$ per bundle. Due to the forecast overestimation during the first 11 periods, as 

discussed earlier, the company incurs an extra 15$ /bundle/period to purchase new parts to substitute 
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the deficit of used products.  On the contrary, because of the forecast underestimation (i.e., more used 

parts available that exceed the demand for remanufactured products), it was assumed that the company 

incurs an inventory cost of 0.5$/bundle/period.  

This study introduces the penalty cost of forecasting accuracy. The penalty function is computed 

aggregating the discounted penalty cost of forecast overestimation (DPFO) and the discounted penalty 

cost of forecast underestimation (DPFU), as given in Equations (19) - (20).  

 

DPFO= ∑ [(𝐷𝑡 − 𝑚𝑡
𝑟𝑒𝑡(proposed)) ∗𝑇

𝑡=2 15$ ∗ (1 + δ)−𝑡]              (6.19) 

DPFU = ∑ [ (𝑚𝑡
𝑟𝑒𝑡(proposed) − 𝐷𝑡) ∗

𝑇
𝑡=2 0.5$(1 + δ)−𝑡]               (6.20) 

        Aggregated penalty cost of forecasting accuracy  = DPFO + DPFU        (6.21) 

Where δ denotes the discount rate, assumed to be 3% per a given period for this experiment. The penalty 

costs of forecast overestimation (DPFO) and underestimation (DPFU) for the forecasts obtained using the 

proposed methodology and the MLE approach are presented in Table 6.3.  

Table 6.3 Penalty costs (DPFO and DPFU) of forecasts 

 DPFO DPFU 

Aggregated penalty 

cost of forecasting 

accuracy 

Proposed forecasting 

methodology  
$25,430.4 $2,047.5 $27,477.9 

Forecasting based on MLE 

approach 

$94,363.6 $3,328.3         $97,691.92  

The cost saved by the proposed 

forecasting method  

        $70,214 

 

The result has shown that the proposed forecasting methodology offers better cost savings than forecasts 

obtained using the MLE approach.  
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6.5 Chapter summary   

Product take-back legislation is increasingly being adopted by governments worldwide, which mandate 

manufacturers to track and collect used products that consumers no longer wish to keep. Companies 

engaged in remanufacturing depend on a streamlined supply of used product returns. The accurate 

forecasting of used product returns in remanufacturing requires knowledge of the quantity and timing of 

new products sold in previous periods. Besides, the quantity and timing uncertainty of used product returns 

makes forecasting in remanufacturing a complex task. This is because traditional forecasting techniques 

such as time-series forecasting methods cannot capture the relationship between new products' sales in 

previous periods and the available quantity and timing of used product returns.  

 In this research, a forecasting methodology based on a DLM is proposed for forecasting the available 

quantity and timing of used product returns. The forecasting accuracy of a DLM is affected by the lag 

function type and its parameters. Bayesian inference, which previous studies have used for parameter 

estimation, involves solving the marginal likelihood function, which is often difficult to compute 

analytically. To overcome the difficulty, this study proposes an MCMC and Bayesian inference approach 

for faster parameter estimation. The proposed MCMC method involves sampling from the joint posterior 

distribution of the parameters irrespective of the distribution's complexity. A simulation experiment was 

conducted to demonstrate the proposed forecasting model and the parameter estimation approach. The 

MAPE and VoE forecasting error measures were computed to validate the proposed forecasting 

methodology. The results showed smaller MAPE and VoE values for forecasts obtained based on the 

proposed parameter estimation approach. Two scenarios for forecast overestimation and forecast 

underestimation were considered to investigate the cost savings resulting from the forecasting accuracy. 

The result showed significant cost savings for the proposed parameter estimation approach compared with 

the MLE approach.  
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Chapter 7 Estimation of Market Share for New and Remanufactured Product 

In chapter 6, a forecasting methodology was presented, which addresses the quantity and timing 

uncertainty of used product returns. Another set of uncertainty in remanufacturing industry concerns the 

estimation of market share for remanufactured products under uncertainty. To this end, this chapter 

presents a methodology for modelling customers’ preferences and for estimating the market share of new 

and remanufactured products under uncertainty. Figure 7.1 shows the methodology framework. 

 

 

 

 

 

 

 

 

 

  

 

The methodology involves conjoint analysis to determine utility functions of the new and remanufactured 

product profiles. A rating-based conjoint method is employed in this study in which respondents are asked 

to rate product profiles using a pre-defined rating scale. Based on the survey responses, the utility function 

for new and remanufactured products are then determined. One of the uncertainties that arise when using 

conjoint analysis to model customers’ preferences emanates from survey data's imprecision due to 

respondents' subjective ratings. The fuzzy regression approach proposed by Aydin et al. (2014) and 

Design and conduct 

conjoint survey 

Generate utility functions for 

new and reman. product using 

fuzzy regression approach  

 

Compute demand of new 

and reman.  product     

Estimate market share of 

new and reman. products 

Input information on 

competitive product     

Input fuzzy estimate of 

market potential for new 

and reman. product 

Figure 7.1 Framework of the methodology for estimating market share and demand 
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Kwong et al. (2016) is employed in this study to address the fuzziness of customers’ ratings which arise 

from their subjective judgments. Besides, the technique also addresses the fuzziness of market potential 

estimates provided by marketing executives.  

7.1 Determining fuzzy utility function  

In this study, product profiles' utility functions are determined using the fuzzy utility function given in 

Equation (7.1).  

�̃�𝑗 = (𝛼0, 𝑐0) + ∑∑((𝛼𝑗𝑘𝑙, 𝑐𝑗𝑘𝑙)𝑥𝑗𝑘𝑙)

𝑁𝑘

𝑙=1

𝑀

𝑘=1

 (7.1) 

Where �̃�𝑗  denotes the independent variable, which represents respondents’ rating of the jth product profile; 

(𝛼𝑘𝑙 , 𝑐𝑘𝑙) are fuzzy coefficients which represent the central and spreads, respectively; 𝑥𝑘𝑙  denotes the 

dummy variable, which takes a value of 1 or 0 depending on whether the lth level of the kth attribute is 

selected for a product profile; and M represents the available number of attributes, and Nk represents the 

number of levels of the kth attribute. The membership function of the fuzzy coefficient, �̃�𝑗 =(𝛼𝑗 , 𝑐𝑗), is 

defined as shown in Equation (7.2).  

𝜇�̃�(𝑎𝑗) = {
1 −

|𝑎𝑗 − 𝛼𝑗|

𝑐𝑗
 ,      αj − cj  ≤ aj ≤ αj + cj 

0,                              otherwise                     

 (7.2) 

Using extension principle (Zimmermann, 2010), the membership function for the fuzzy number, �̃�𝑗 , can 

be obtained using Equation (7.3).  

𝜇�̃�𝑗(𝑢𝑗)

{
 
 

 
 1 −

|𝑢𝑗 − 𝛼
𝑇𝑥𝑗|

𝑐𝑇𝑥𝑗
,                𝑥𝑗 ≠ 0        

1,                                    𝑥𝑗 = 0, 𝑢𝑗 = 0

0,                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 (7.3) 
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where, 𝑐𝑇𝑥𝑗=(𝑐0, 𝑐1,𝑐1,…𝑐𝑘)  and 𝛼𝑇𝑥𝑗=(𝛼0, 𝛼1,𝛼1,… 𝛼𝑘)  represent a set of k+1 central and spread 

values, respectively. Hence, the lower bound, the central value, and the upper bound values of the 

dependent variable, �̃�𝑗=(�̃�𝑗
𝐿
, �̃�𝑗

ℎ=1
, �̃�𝑗

𝑢
) can be estimated as �̃�𝑗

𝐿
= (𝛼 − 𝑐)𝑇𝑥𝑗; �̃�𝑗

ℎ=1
= 𝛼𝑇𝑥𝑗; and  �̃�𝑗

𝑢
= 

(𝛼 + 𝑐)𝑇𝑥𝑗, respectively (F. Liu, 2008). The h-factor measures the degree of fitness of the fuzzy linear 

model and takes a value between 0 and 1. The h-factor is used to support the membership function. An 

increase in the h-factor (see the non-symmetric triangular fuzzy number in Figure 7.2 can increase the 

spreads' magnitude. 

 

Figure 7.2 Effect of different h-factor values on the spreads 

The method proposed by Tanaka et al. (1989) is adopted to determine the coefficients corresponding 

to the centre and spreads. The method involves solving the linear programming (LP) model presented in 

Equations (7.4) - (7.8). The LP model's objective given in Equation (7.4) minimises the fuzzy outputs' 

total spread.  

Min ∑ (𝑐𝑗 ∑ |𝑥𝑖𝑗|
𝑀
𝑗

𝑛
𝑗=0 ) (7.4) 
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                Subject to the following constraints: 

∑𝛼𝑗

𝑛

𝑗=1

𝑥𝑖𝑗 + (1 − ℎ)∑𝑐𝑗|𝑥𝑖𝑗| ≥ �̅�𝑖 + (1 − ℎ)𝑒𝑖     

𝑛

𝑗=0

 
(7.5) 

∑𝛼𝑗

𝑛

𝑗=1

𝑥𝑖𝑗 − (1 − ℎ)∑𝑐𝑗|𝑥𝑖𝑗| ≤ �̅�𝑖 − (1 − ℎ)𝑒𝑖,     

𝑛

𝑗=0

 (7.6) 

𝑥𝑖0 = 1, ∀𝑖 = 1,2,3…𝑀, 𝑗 = 0,1,2, … 𝑛 (7.7) 

𝑐𝑗 ≥ 0, 𝛼𝑗 ∈   ℝ ,  0 ≤ ℎ ≤ 1, (7.8) 

The constraint in Equation (7.5) defines the upper bound of the estimated data, while Equation (7.6) 

defines the lower bound of the estimated data. The �̅�𝑖 and 𝑒𝑖  represent the centre and spreads of the ith 

dependent fuzzy variable, respectively, whereas M and n respectively denote the number of product 

profiles and independent variables. The dependent variable's initial condition is defined by Equation (7.7). 

Equation (7.8) ensures the non-negativity and the limit for the value of h-factor.   

 

7.2 Estimation of market share and market demand  
 

After products' utility functions are determined, the market share and demand values can be computed 

using the multinomial logit (MNL) model given in Equations (7.9) - (7.12) (Aydin et al., 2014; Kwong et 

al., 2016). The computational procedure requires as input estimates of utilities of competitive products 

and the company’s own products.   

  MS̃n =
eŨn

∑ eŨc+∑ eŨk+eŨnK
k=1

C
c=1 +eŨr

  (7.9) 

𝑀�̃�𝑟 =
𝑒�̃�𝑟

∑ 𝑒�̃�𝑐 + ∑ 𝑒�̃�𝑘 + 𝑒�̃�𝑛𝐾
𝑘=1

𝐶
𝑐=1 + 𝑒�̃�𝑟

 (7.10) 
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�̃�𝑟 = 𝑀�̃�𝑟 ∗ 𝑀�̃�𝑟 = 𝑀�̃�𝑟 ∗
𝑒�̃�𝑟

∑ 𝑒�̃�𝑡 + ∑ 𝑒�̃�𝑘 + 𝑒�̃�𝑛𝐾
𝑘=1 + 𝑒�̃�𝑟𝑇

𝑡=1

 (7.11) 

�̃�𝑛 = 𝑀�̃�𝑛 ∗ 𝑀�̃�𝑛 = 𝑀�̃�𝑛 ∗
𝑒�̃�𝑛

∑ 𝑒�̃�𝑡 + ∑ 𝑒�̃�𝑘 + 𝑒�̃�𝑟 + 𝑒�̃�𝑛𝐾
𝑘=1

𝑇
𝑡=1

      (7.12) 

Where, 𝑀�̃�𝑛 and 𝑀�̃�𝑟 represent the market shares of new and remanufactured products, respectively.  �̃�𝑛 

, �̃�𝑟 , �̃�𝑐  and �̃�𝑘 indicate the utility values of the new, remanufactured, competitive, and company’s 

existing products, respectively. 𝑀�̃�𝑛  and 𝑀�̃�𝑟  denote fuzzy estimates of the new and remanufactured 

products' market potentials expressed using triangular fuzzy numbers (TFNs) as (𝑙𝑛, 𝑎𝑛, 𝑟𝑛) and (𝑙𝑟, 𝑎𝑟 , 𝑟𝑟) 

, respectively. The first, second, and third values in the set represent the left, the centre, and the right 

spreads of the market potentials, respectively. The central values are determined by computing the 

arithmetic mean of the fuzzy estimates of market potentials. The spreads are obtained using Equations 

(7.13) - (7.16). 

 ln = an− min
k=1,2,3…K

ank (7.13) 

lr = ar− min
k=1,2,3…K

ark (7.14) 

rn = max
k=1,2,3…K

ank − an (7.15) 

rr = max
k=1,2,3…K

ark − ar (7.16) 

where, 𝑎𝑛𝑘 and 𝑎𝑟𝑘 denote the market potentials as estimated by kth marketing personnel for the new and 

remanufactured products, respectively.  
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7.3 Defuzzification of TFNs 

For a given TFN (shown in Figure 7.3), the corresponding crisp values can be determined using the 

centroid defuzzification formula given in Equation (7.17) (Ross,2010).  

 

Figure 7.3 Symmetric triangular fuzzy numbers (Shapiro, 2005) 

 

𝑥∗ =
∫𝑥𝜇�̃�(𝑥)𝑑𝑥

∫𝜇�̃�(𝑥)𝑑𝑥
 (7.17) 

Where, 𝑥∗ and 𝜇�̃� denote the crisp value and the fuzzy membership function, respectively for the fuzzy 

coefficient �̃�.   

7.4 Implementation  

This section presents a case study to demonstrate the applicability of the methodology for modelling 

customer satisfaction and estimating the market demand for both the new and remanufactured products.  

The case study concerns a company that offers both new and remanufactured laptops (referred to as 
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‘refurbished’ in this section) to the market. The attributes and corresponding levels shown in Table 7.1, 

are defined for the new and refurbished laptops based on preliminary survey of specifications of laptop 

brands in the market.  

Table 7.1 Attributes and levels used in conjoint analysis 

index (k) Attribute Level 

1 Screen size 13.3 /14.1/15.6 inch 

2 RAM capacity 4/6/8GB 

3 Processor speed Core i3/ i5 / i7 

4 

Storage capacity 

(SSD+HDD) 

(32GB + 1TB)/ (128GB + 

500GB)/ 256GB 

5 Battery Life 4-6/ 7-9/10-11 hrs 

6 

Degree of upgrading and 

replacement by a customer 

Low 

Medium 

High 

7 Price 5,500/8,000/10,500 HKD 

 

An L18 orthogonal array was designed to generate 18 new and refurbished laptop profiles which are 

used in the conjoint survey questionnaire. Table 7.2 shows the conjoint survey questionnaire, which was 

distributed among 60 undergraduate students at The Hong Kong Polytechnic University, to rate them 

using linguistic scales (1= “very bad,” & 5= “very good”).  
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Table 7.2 Survey questionnaire for conjoint analysis 

 

Product 

Profile 

Product 

Condition 

Screen 

Size 

(inch) 

RAM 
Processor 

(Intel) 

Storage 

capacity Battery 

Life 

 

Degree of 

upgrading 

and 

replacement  

Price 

(HKD) 

Rating 

(1-5)  

SSD 

 

HDD 

1 New 13.3 4 GB Core i3 32

GB 

1

TB 

4-6 

hrs 

Low 5,500  

2 New 13.3 6 GB Core i5 12

8GB 

5

00GB 

7-9 

hrs 

Medium 8,000  

3 New 13.3 8 GB Core i7  25

6GB 

N

il 

9-

11 hrs 

High 10,500  

4 New 14.1 4 GB Core i3 12

8GB 

5

00GB 

7-9 

hrs 

High 10,500  

5 New 14.1 6 GB Core i5 25

6GB 

N

il 

9-

11 hrs 

Low 5,500  

6 New 14.1 8 GB Core i7  32

GB 

1

TB 

4-6 

hrs 

Medium 8,000  

7 New 15.6 4 GB Core i5 32

GB 

5

00GB 

9-

11 hrs 

Medium 10,500  

8 New 15.6 6 GB Core i7  12

8GB 

5

00GB 

4-6 

hrs 

High 5,500  

9 New 15.6 8 GB Core i3 25

6GB 

N

il 

7-9 

hrs 

Low 8,000  

10 Refurbished 13.3 4 GB Core i7 25

6GB 

N

il 

7-9 

hrs 

Medium 5,500  

11 Refurbished 13.3 6 GB Core i3 32

GB 

1

TB 

9-

11 hrs 

High 8,000  

12 Refurbished 13.3 8 GB Core i5 12

8GB 

5

00GB 

4-6 

hrs 

Low 10,500  

13 Refurbished 14.1 4 GB Core i5 25

6GB 

N

il 

4-6 

hrs 

High 8,000  

14 Refurbished 14.1 6 GB Core i7  32

GB 

1

TB 

7-9 

hrs 

Low 10,500  

15 Refurbished 14.1 8 GB Core i3 12

8GB 

5

00GB 

9-

11 hrs 

Medium 5,500  

16 Refurbished 15.6 4 GB Core i7 12

8GB 

5

00GB 

9-

11 hrs 

Low 8,000  

17 Refurbished 15.6 6 GB Core i3 25

6GB 

N

il 

4-6 

hrs 

Medium 10,500  

18 Refurbished 15.6 8 GB Core i5 32

GB 

1

TB 

7-9 

hrs 

High 5,500  
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In the questionnaire, ‘refurbished’ refers to the laptops composed of higher proportion of 

remanufactured components; however, they have the same warranty services as the brand-new laptops. 

The “degree of upgrading and replacement” attribute has the following levels:  i) “low degree” implies 

only the RAM and SSD can be added and/or replaced by the user; ii) ‘medium degree’ implies only the 

RAM, SSD, HDD, and power supply can be added and/or replaced by the user; and iii) ‘high degree’ 

implies the RAM, SSD, HDD, power supply, keyboard and display panel can be added and/or replaced 

by the user. 

For the conjoint analysis, all attributes are coded using dummy variables such that an attribute with k 

levels will have 𝑘 − 1 dummy variables. A dummy variable takes either a one or zero value depending on 

the presence of an attribute.  An example of dummy variable definition for attribute “screen size” is 

illustrated in Table 7.3. Table 7.4 shows product profiles with coded dummy variable sets.  Dummy 

variable sets, (X1), (X21, X22), (X31, X32), (X41, X42), (X51, X52), (X61, X62), (X71, X72), and (X81, X82) 

represent attributes for “product condition,” “screen size,” “RAM,” “processor,” “storage device,” 

“battery life,” “degree of upgrading and replacement,” and “price”, respectively.  

Table 7.3 Example of dummy variable coded for “screen size” attribute 

 X21 X22 

13.3 inch 1 0 

14.1 inch 0 1 

15.6 inch 0 0 
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Table 7.4 Coded product profiles with dummy variables 

 

7.4.1 Determining fuzzy utilities for the new and refurbished laptops  

Based on respondents' rating for each product profile, FR model was used to determine the new and 

refurbished laptops' fuzzy utility function. The FR algorithm was implemented in MATLAB and the 

results are presented in Table 7.5, which shows  coefficients of the fuzzy utility function.   

 

 

Product 

Profile 

Product 

Condition 

 

X1 

Screen Size 

(inch) 
RAM  

capacity 

Processor 

(Intel) 

Storage  

(SSD +HDD) 

Battery 

Life 

Upgrade + 

Replacement 

Price 

 (HKD) 

X21 X22 X41 X42 X51 X52 X61 X62 X71 X72 X81 X82 X31 X32 

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

2 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 

5 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 

6 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 

7 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 

8 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 

9 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 

10 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 

11 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 

12 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 

13 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 

14 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 

15 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 

16 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 

17 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 

18 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 
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Table 7.5 Results of fuzzy coefficients 

The corresponding fuzzy utility function for the new and refurbished laptops can be determined using 

centre estimates only, as follows: 

U(new) =  3.41 + 0.3𝑋1 − 0.05𝑋21 + 0.10𝑋22 − 0.17𝑋31 − 0.03𝑋32 − 1.19𝑋41 − 0.49𝑋42 + 0.01𝑋52

− 0.05𝑋61 − 0.19𝑋62 − 0.23𝑋71 − 0.08𝑋72 + 0.43𝑋81 + 0.14𝑋82 

U(refurb. ) =  3.41 − 0.05𝑋21 + 0.10𝑋22 − 0.17𝑋31 − 0.03𝑋32 − 1.19𝑋41 − 0.49𝑋42 + 0.01𝑋52

− 0.05𝑋61 − 0.19𝑋62 − 0.23𝑋71 − 0.08𝑋72 + 0.43𝑋81 + 0.14𝑋82 

For the case study, it is assumed that the company plans to offer the following new and refurbished laptops, 

whose specifications are shown in Table 7.6.  

Table 7.6  Specifications of new and reman. laptops planned to be offered 

Attributes New Reman 

Screen size 15.6 inch 15.6 inch 

RAM capacity 8 GB 8 GB 

Processor type Core i5 Core i5 

Storage capacity 
128 GB (SSD) +       

500 GB (HDD) 

128 GB (SSD) +         

500 GB (HDD) 

Battery hours 7-9 hrs 7-9 hrs 

Degree of upgrade and 

replacement 
Medium Low 

Price 8,000 HKD 5,500 

 

 Const. X1 X21 X22 X31 X32 X41 X42 X51 X52 X61 X62 X71 X72 X81 X82 

Centre 3.41 0.30 -0.05 0.10 -0.17 -0.03 -1.19 -0.49 0.00 0.01 -0.05 -0.19 -0.23 -0.08 0.43 0.14 

Spread 0.67 0.00 0.14 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 



116 
 

It is assumed that new products that are launched to the primary market are targeted at quality-

conscious customers, and the refurbished laptops are targeted at price-sensitive customers in the secondary 

market. It is further assumed that customers in the primary market often substitute brand new laptops with 

refurbished ones while customers in the secondary market buy refurbished laptops only. Six competitive 

products,  three new and three refurbished laptops, are considered substitutes for the new laptops offered 

in the primary market. Similarly, four competitive refurbished laptop brands are considered as direct 

competitors for the refurbished laptops. Table 7.7 shows details of the specifications of competitive 

products.   

Table 7.7 Specification of competitive products 

 
Competitive 

Product 

Screen 

size 

Ram 

capacity 

Processor 

type 

Storage 

capacity 

Battery 

life 

Degree 

of 

upgrade 

Price 

(HKD) 

NEW 

A 14.1 6 GB Core i3 
32GB +          

1 TB 
4-6 hrs Low 5,500  

B 14.1 
   6GB    Core i5 128 GB+ 

500GB 
7-9 hrs Medium 8,000  

C 15.6   8GB   Core i7 256 GB 10-11 hrs High 10,500  

 
D 14.1 8 GB Core i5 

128 GB+ 

500GB 
4-6 hrs Low 5,500  

Refurb. 
E 14.1 

   8GB   Core i7 128 GB+ 

500GB 
7-9 hrs Medium 8,000  

 

F    15.6     8GB     Core i7 256 GB 10-11 hrs High 10,500  

 

Fuzzy utilities for the new and refurbished laptops and the competitive products were computed using 

the fuzzy utility function obtained earlier. Table 7.8 shows the computed fuzzy utilities for the new and 

refurbished laptops and laptop brands offered by competitors for the primary and secondary markets.  
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Table 7.8 The centre, left, and right spreads of utility values for products 

New laptop A B C 

Centre Spread Centre Spread Centre Spread Centre Spread 

3.1 0.82 2.74 0.91 3.17 0.91 3.71 0.67 

Refurb. laptop D         E          F  

Centre Spread Centre Spread Centre Spread Centre Spread 

2.94 0.82 3.18 0.88 3.39 0.85 3.41 0.9 

 

7.4.2 Estimation of market potentials and market shares  

 

Estimated market potentials for the primary and secondary markets were provided by five marketing 

executives, as shown in Table 7.9 below.  

Table 7.9 Estimated market potentials for the primary and secondary market 

Marketing 

executive 

Estimation of market 

potential for primary 

market 

Estimation of market 

potential for secondary 

market 

1 40,000 8,000 

2 45,000 12,000 

3 50,000 10,000 

4 48,000 14,000 

5 46,000 9,000 

Average  𝑎𝑛 = 45,800 𝑎𝑟 = 10,600 
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The centre and spread magnitudes were then computed using Equations (7.13) – (7.16) as follows:  

𝑀�̃�𝑛=(𝑙𝑛, 𝑎𝑛, 𝑟𝑛) = (5.8, 45.8, 4.2) *1000 

𝑀�̃�𝑟=(𝑙𝑛, 𝑎𝑛, 𝑟𝑛) = (2.6, 10.6, 3.4) *1000 

Next, based on the estimates of fuzzy utilities (Table 7.8) and using the MNL model given in Equations 

(7.9) and (7.10), the estimates of market shares of were computed. Besides, using the upper bound, centre, 

and lower bound estimates of the product utilities, market shares of products in the primary and secondary 

markets for: i) the worst, ii) the normal, and iii) the best case scenarios were computed. The results are 

shown in Table 7.10 and Table 7.11. 

Table 7.10 Estimated market shares in the primary market 

 New Refurb. A B C D E F 

Worst scenario 
0.023 0.019 0.014 0.023 0.051 0.023 0.030 0.030 

Normal scenario 
0.11 0.09 0.08 0.12 0.20 0.12 0.14 0.15 

Best scenario 
0.11 0.09 0.08 0.12 0.20 0.12 0.14 0.15 

 

Table 7.11 Estimated market shares in the secondary market 

 
Refurb. D E F 

Worst scenario 
0.04 0.05 0.07 0.07 

Normal scenario 
0.18 0.23 0.29 0.29 

Best scenario 
0.55 0.64 0.69 0.71 
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7.4.3 Estimation of market demands  

 

 Based on the estimated market shares and fuzzy market potentials, the market demands for the new and 

refurbished laptops are computed using Equations (7.11) and (7.12) as shown in Table 7.12 and Table 

7.13.  

Table 7.12 Estimated fuzzy market demands in the primary market (in 1000s) 

 Worst scenario Normal scenario Best scenario 

New (0.13, 1.04, 0.1) (0.63, 4.95, 0.45) (2.24, 17.70, 1.62) 

Refurb. (0.11, 0.87, 0.08) (0.53, 4.22, 0.39) (1.51, 11.92, 1.09) 

A (0.08, 0.65, 0.06) (0.44, 3.46, 0.32) (1.83, 14.44, 1.32) 

B (0.13, 1.04, 0.10) (0.67, 5.31, 0.49) (2.46, 19.44, 1.78) 

C (0.29, 2.31, 0.21) (1.15, 9.12, 0.84) (3.11, 24.59, 2.25) 

D (0.14, 1.08, 0.10) (0.68, 5.37, 0.49) (2.44, 19.27, 1.77) 

E (0.18, 1.40, 0.13) (0.84, 6.62, 0.61) (2.75, 21.70, 1.99) 

F (0.17, 1.37, 0.13) (0.86, 6.75, 0.62) (2.84, 22.44, 2.06) 

Table 7.13 Estimated fuzzy market demands in the secondary market (in 1000s) 

 Worst scenario   Normal scenario  Best scenario 

Refurb. (0.10, 0.42, 0.13) (0.48, 1.95, 0.63) (1.43, 5.84, 1.87) 

D (0.13, 0.54, 0.17) (0.61 2.48 0.79) (1.65, 6.73, 2.16) 

E (0.18, 0.71, 0.23) (0.75, 3.06, 0.98) (1.80, 7.36, 2.36) 

F (0.18, 0.71, 0.23) (0.76, 3.12, 1.00) (1.84, 7.48, 2.40) 

 



120 
 

The fuzzy market demand estimates for the primary and secondary markets are aggregated to determine 

the total fuzzy market demand for the new and refurbished laptops, as shown in Table 7.14.   

Table 7.14 Total fuzzy market demand for the new and refurbished laptops 

 Worst scenario Normal scenario Best scenario 

New (0.13, 1.04, 0.1) (0.63, 4.95, 0.45) (2.24, 17.70, 1.62) 

Refurb. (0.21, 1.29, 0.21) (1.01, 6.17, 1.01) (2.94, 17.76, 2.97) 

 

The crisp values for the market demand for the new and refurbished laptops under the three scenarios 

are estimated using the centroid defuzzification method given in Equation (7.17) as follows.  

𝑀𝐷𝑛
𝑊∗ =

(∫ (𝑥 − 0.91)𝑥 𝑑𝑥 )
1.04

0.91
+ (∫ (1.14 − 𝑥)𝑥 𝑑𝑥)

1.14

1.04

(∫ (𝑥 − 0.91) 𝑑𝑥 )
1.04

0.91
+ (∫ (1.14 − 𝑥) 𝑑𝑥)

1.14

1.04

=  1,025 

𝑀𝐷𝑛
𝑁∗ =

(∫ (𝑥 − 4.32)𝑥 𝑑𝑥 )
4.95

4.32
+ (∫ (5.4 − 𝑥)𝑥 𝑑𝑥)

5.4

4.95

(∫ (𝑥 − 4.32) 𝑑𝑥 )
4.95

4.32
+ (∫ (5.4 − 𝑥) 𝑑𝑥)

5.4

4.95

 = 4,862 

𝑀𝐷𝑛
𝐵∗ =

(∫ (𝑥 − 15.46)𝑥 𝑑𝑥 )
17.70

15.46
+ (∫ (19.32 − 𝑥)𝑥 𝑑𝑥)

19.32

17.70

(∫ (𝑥 − 15.46) 𝑑𝑥 )
17.7

15.46
+ (∫ (19.32 − 𝑥) 𝑑𝑥)

19.32

17.70

=  17,395 

𝑀𝐷𝑟
𝑊∗ =

(∫ (𝑥 − 1.08)𝑥 𝑑𝑥 )
1.29

1.08
+ (∫ (1.5 − 𝑥)𝑥 𝑑𝑥)

1.5

1.29

(∫ (𝑥 − 1.08) 𝑑𝑥 )
1.29

1.08
+ (∫ (1.5 − 𝑥) 𝑑𝑥)

1.5

1.29

=   1,290 

𝑀𝐷𝑟
𝑁∗ =

(∫ (𝑥 − 5.16)𝑥 𝑑𝑥 )
6.17

5.16
+ (∫ (7.18 − 𝑥)𝑥 𝑑𝑥)

7.18

6.17

(∫ (𝑥 − 5.16) 𝑑𝑥 )
6.17

5.16
+ (∫ (7.18 − 𝑥) 𝑑𝑥)

7.18

6.17

= 6,170 

𝑀𝐷𝑟
𝐵∗ =

(∫ (𝑥 − 14.82)𝑥 𝑑𝑥 )
17.76

14.82
+ (∫ (20.73 − 𝑥)𝑥 𝑑𝑥)

20.73

17.76

(∫ (𝑥 − 14.82) 𝑑𝑥 )
17.76

14.82
+ (∫ (20.73 − 𝑥) 𝑑𝑥)

20.73

17.76

= 17,775 
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Where 𝑀𝐷𝑛
𝑊∗, 𝑀𝐷𝑛

𝑁∗, 𝑀𝐷𝑛
𝐵∗are crisp values of market demands for the new laptops under the ‘worst,’ 

‘normal,’ and ‘best’ case scenarios, respectively. Whereas 𝑀𝐷𝑟
𝑊∗, 𝑀𝐷𝑟

𝑁∗ 𝑀𝐷𝑟
𝐵∗ denote estimated market 

demands for the refurbished laptops under the ‘worst,’ ‘normal’ and ‘best’ case scenarios, respectively. 

7.5  Validation of fuzzy regression model  

The mean absolute percentage error (MAPE), the variance of error (VoE), and the index of confidence 

(IC) were computed using Equations (7.18) – (7.22) to validate the fuzzy regression model. The IC 

measures the degree of variation of individual utility values (𝑈𝑗) corresponding to the upper bound (𝑈𝑈) 

and lower bound (𝑈𝐿) values (H. F. Wang and Tsaur, 2000).  

𝑀𝐴𝑃𝐸 =
1

𝐽
∑

|�̃�𝑗 − 𝑈𝑗||

𝑈𝑗

𝐽

𝑗=1

   (7.18) 

𝑉𝑜𝐸 =  
1

𝐽 − 1
∑(

|�̃�𝑗 − 𝑈𝑗||

𝑈𝑗
−𝑀𝐴𝑃𝐸)

2𝐽

𝑗=1

    (7.19) 

𝐼𝐶 =  1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
    (7.20) 

𝑆𝑆𝐸 =  2 ∗∑(𝑈𝑗 −∑(𝑐𝑗𝑘𝑙𝑥𝑗𝑘𝑙)

𝐽

𝑗=1

)

2
𝑁

𝑗=1

     (7.21) 

𝑆𝑆𝑇 =  ∑(𝑈𝑗 −∑(𝑐𝑗𝑘𝑙 − (1 − ℎ)𝑎𝑗𝑘𝑙)𝑥𝑗𝑘𝑙)

𝐽

𝑗=1

)

2

    

𝑁

𝑗=1

+∑(∑(𝑐𝑗𝑘𝑙 + (1 − ℎ)𝑎𝑗𝑘𝑙)𝑥𝑗𝑘𝑙)

𝐽

𝑗=1

− 𝑈𝑗)

2
𝑁

𝑗=1

 

    (7.22) 

Where J denotes the total number of product profiles, 𝑈𝑗 and �̃�𝑗 respectively denote estimated values of 

observed and fuzzy utility for the jth product profile. SSE and SST are the sum of square error and the sum 

of the squared total, respectively. The error estimates were computed in MATLAB as 1.45%, 0.98, and 
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0.00024 for MAPE, IC, and VoE, respectively. According to Kwong et al. (2016), a model whose MAPE 

value is less than 10% is considered a good model. The model also exhibited a higher IC value and close 

to zero VoE, which indicates that the model has good fitness. Therefore, the obtained fuzzy regression 

model can predict the utility of product profiles with good accuracy and thus can be used to compute fuzzy 

demand estimates for the new and refurbished product profiles.  

7.6 Chapter Summary  
 

This chapter presented a fuzzy regression methodology for modelling customer satisfaction and estimating 

market demands for new and remanufactured products. A rating-based conjoint analysis and fuzzy 

regression were employed to determine the new and remanufactured products' fuzzy utility functions.   

The resulting fuzzy utility values were integrated into the multinomial logit (MNL) model to determine 

the market shares' estimates for the new and remanufactured products. Using the left, centre, and right 

spreads of the utilities, the market share estimates under three scenarios: ‘worst,’ ‘normal’ and ‘best’ cases 

were determined. 

The estimated fuzzy market shares and fuzzy market potentials are then combined to determine the 

market demand for the new and remanufactured products under the ‘worst,’ ‘normal’ and ‘best’ case 

scenarios. A case study on a company that offers both new and refurbished laptops was conducted to 

determine market share estimates. The fuzzy regression approach was applied to generate fuzzy utility 

functions for the new and refurbished laptop brands. The MAPE, VoE, and IC error measures were 

computed to validate the fuzzy regression models. The results showed that generated models predict the 

utilities of both new and refurbished brands with good accuracy. 
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Chapter 8 Conclusions, Limitations and Future Research Directions  

This chapter summarizes the findings and significant contributions of the research. Finally, the limitations 

of the research and future research directions are outlined.  

8.1 Conclusions 

Nowadays, companies worldwide are subjected to more stringent extended producer responsibility (EPR) 

legislation which mandates them for the take-back and recovery of EoL and EoU products. 

Remanufacturing has received increasing attention from academia and industry as a sustainable product 

recovery due to environmental, social, and economic performances. Literature review of previous research 

on remanufacturing shows the design of a product and the uncertainty regarding used product returns are 

the major issues that affect the successful remanufacturing of used products. To address the research gap, 

a framework for integrated product design considering used product returns uncertainty is proposed. Four 

methodologies are proposed, which form the key objectives of this research, as mentioned in chapter 1. 

These are: i) a methodology for fastening methods selection which considers product assembly and 

disassembly concerns simultaneously during early-stage product design; ii) a hierarchical optimisation 

model to determine optimal configurations for new and remanufactured products considering specification 

upgrading for used products; iii) a methodology for forecasting EoL product returns based on a distributed 

lag model (DLM) and; iv) a methodology for estimating market demand and customer satisfaction for 

new and remanufactured products.  

Companies that offer the new and remanufactured products to the market need to consider design 

concerns that affect the manufacturability of new products and the remanufacturability of used products. 

Product design factors that facilitate the assembly process during the manufacturing of new products can 

become challenging to dismantle during the disassembly of used products for remanufacturing and vice-

versa. Hence, early-stage design decisions such as fastening methods selection should consider product 
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assembly and disassembly concerns simultaneously. In this research, a novel methodology for fastening 

methods selection called FMSRem is proposed. The FMSRem helps designers determine optimal 

fastening methods during the early design stage to facilitate product assembly and disassembly processes 

while minimising the overall assembly and disassembly costs. A case study is implemented to demonstrate 

the applicability of the proposed methodology. The results indicate that the fastening methods selected 

based on the proposed methodology provide a significant saving in the overall cost of product assembly 

and disassembly. Different rates of used product returns and the required degree of product disassembly 

were investigated to compare the proposed methodology with a traditional DFA approach. The results 

have also shown that the proposed methodology outperforms the DFA approach in overall cost savings.   

Furthermore, early-stage product design decisions regarding configurations of new and 

remanufactured products should consider specification upgrading due to technological obsolescence of 

used parts/modules. However, specification upgrading decisions for used product returns are affected by 

the original specification of new products sold in the previous periods and the timing of used product 

returns.  A non-linear integer bilevel programming (NLIBP) is proposed in this research to model the 

hierarchical PDC decision-making and to address the conflicting trade-offs involved. The bilevel 

optimisation is formulated as a Stackelberg leader-follower model whereby the new product design team 

acts as a leader and the remanufactured design team acts as a follower. Maximisation of shared surplus, 

which emphasises a trade-off between customer preferences, market share, and product costs, is 

considered an objective function for both the upper-level and lower-level optimisations. The bilevel 

optimisation model is solved using Nested bilevel GA (NBGA).  

The accurate forecasting of EoL product returns is a critical factor for the successful implementation 

of remanufacturing. However, unlike conventional time-series forecasting techniques, the uncertainty 

regarding the quantity and timing of EoL product returns makes forecasting in remanufacturing a complex 
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task. A DLM based forecasting methodology is proposed to address the uncertainty of used product returns 

in remanufacturing.  The proposed forecasting methodology considers new product sales in previous 

periods to forecast the quantity and timing of EoL product returns in future periods. An MCMC based 

Bayesian inference approach is proposed to estimate the parameters of a DLM. A case study is also 

conducted to demonstrate the applicability of the proposed forecasting methodology. The forecasts' 

MAPE and VoE were computed to validate the proposed forecasting methodology and the parameter 

estimation approach. The results were compared with forecasting errors when estimates of DML are 

obtained using the MLE approach. The results show that the proposed parameter estimation approach 

provides better forecasting accuracy than the MLE approach in terms of MAPE and VoE. Besides, the 

cost savings under the overestimation and underestimation cases were also investigated. The result has 

shown that the proposed approach provides significant cost savings and better forecasting accuracy than 

the MLE approach.  

A combination of rating-based conjoint analysis and fuzzy regression is utilized to model customer 

preferences and estimate market demands for the design attributes of new and remanufactured products. 

The resulting fuzzy regression model was then integrated into MNL to estimate fuzzy market demands 

for the new and remanufactured products. The centroid defuzzification method is employed to obtain the 

crisp estimates of market demands for new and remanufactured products under the three scenarios: 

‘worst,’ ‘normal,’ and ‘best’ cases. A case study is conducted on a company that offers new and 

refurbished laptop brands to illustrate the methodology. An L18 based orthogonal array was used for the 

conjoint survey, and the fuzzy regression model was then solved in MATLAB to obtain fuzzy coefficients 

of the utility function.  The MAPE and IC of the utility values were computed to validate the model’s 

fitness. The fuzzy and crisp estimates of market demand for the new and remanufactured products under 

three scenarios: ‘the worst,’ ‘the normal,’ and ‘the best’ cases were also investigated.  
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The major contributions of the research are summarized as follows: 

• A novel methodology is proposed to determine appropriate fastening methods during the early 

design stage, simultaneously considering assembly and disassembly concerns. The proposed 

methodology can serve as a decision support tool during the early-stage design to determine 

optimal fastening methods that minimise the overall assembly and disassembly costs. The effects 

of the demand for new and remanufactured products and the quality uncertainty of used product 

returns were also investigated.  

• Accurate forecasting of EoL product returns is required for successful remanufacturing. However, 

unlike the traditional time-series forecasting techniques, forecasting in remanufacturing is a 

complex task due to the quantity and timing uncertainty of used product returns. The forecasting 

of used product returns from a remanufacturing perspective has not been sufficiently addressed 

in previous studies. A DLM based forecasting method is proposed in this research to address the 

quantity and timing uncertainty of used product returns. Furthermore, the estimation of DLM 

parameters is a challenging task that has not been sufficiently addressed in previous research. An 

MCMC based Bayesian approach is proposed in this research to estimate parameters of the lag 

function of a DLM.  

• Product design configuration considering specification upgrading of used products for 

remanufacturing has not been addressed in previous studies. A hierarchical optimisation model 

based on bilevel programming is proposed to determine optimal design configurations for new 

and remanufactured products considering specification upgrading for used parts/modules.    
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8.2  Research limitations  

This research has five major limitations which are outlined as follows. These limitations provide avenues 

for future research which is discussed in the next section.  

• The first limitation is related to the factors considered in the proposed fastening methods selection 

methodology. Even though several factors could affect fastening methods selection during early-

stage design, this research mainly considered the assembly and disassembly factors.   

• The second limitation of this research is that it assumes complete disassembly of used products 

during remanufacturing. However, in certain instances, partial disassembly can be sufficient to 

recover vital components from used product returns. A sensitivity analysis was conducted to 

determine the effects of partial disassembly requirements on the choices of fastening methods.    

• The third limitation of this research is that customers’ preferences for new and remanufactured 

products were assumed to be static across all planning periods.    

• The fourth limitation is related to the assumption taken regarding the quantity and timing 

uncertainty of used product returns. The return pattern for used products was assumed to follow a 

known distribution function during the entire return period. However, used product returns often 

exhibit different patterns across different return periods depending on the type of product/industry.  

• The fifth limitation is related to the uniform quality assumption considered for used product 

returns. However, used product returns often have varying quality levels which result in an 

uncertain quality distribution.   

8.3 Future research directions 

 In order to bridge the limitation in this research, the following topics were identified as avenues for future 

studies.  
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• The proposed fastening methods selection can be extended in future studies to consider 

comprehensive factors that affect the remanufacturability of a product design. More specifically, 

in future studies, fastening methods selection should integrate design for cleaning, design for 

inspection and design for testing concerns during the early design stage. The cases of partial 

disassembly requirement for used products can also be investigated.  

• To determine the market demand for new and remanufactured products, use of sentiment analysis 

techniques and the dynamic nature of customers' preferences can be investigated in future studies. 

• Furthermore, the use of a non-homogeneous Markov chain can be investigated for the forecasting 

of non-homogenous used product return patterns more accurately. Future studies should also 

consider integrating the quality distribution of used product returns in the forecasting model.   
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APPENDIX A: Survey Questionnaire Used for Conjoint Analysis  

The purpose of this survey is to investigate customers’ preferences of product attributes to develop a 

design methodology for both new and refurbished products. To this end, the following short questionnaire 

is prepared to collect consumer preferences of various profiles of new and refurbished notebook 

computers. You are kindly requested to contribute few minutes from your valuable time to fill out this 

questionnaire. Rest assured that all the information collected will be used solely for the research project 

and kept confidential. Thank you very much for your kind assistance in advance. 

 

1. Gender:   Male    Female 

 

2. Status:    Full-time study    Full-time employed     
 

 Others (please specify) _________________ 

 

3. How would you rate the importance of each following attribute while purchasing a notebook computer 

for yourself? Use the scale 1 to 5 with their meanings as shown below: 

 

5– Very important   4– Important   3 – Moderate important   2 – Slightly important   1 – Not important 

Brand _______   

Performance ________ 

Weight and size (Slim design) _______   

Battery Life _______   

Easy to upgrade and replace components by customers ______  

Environmental friendliness _______________ 

(e.g., consumes less energy; parts can be recycled)  

Quality ______ 

Price ______    
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4. Please rate the following notebook computer profiles using the scales 1 to 5 with their meanings 

given below. 

 

 5 – Very good 4 - Good 3 - Moderate 2 - Bad 1 – Very bad 

 

Notes 

1. Refurbished products have a high percentage of reused components; however, they have 

the same warranty of product service as new ones.   

2. ‘Low,’ ‘Medium’ and ‘High’ degrees are defined as follows:  

• Low degree: Only RAM and SSD can be added and/or replaced by a customer. 

• Medium degree: Only RAM, SSD, HDD, and power supply can be added and/or 

replaced by a customer. 

• High degree: RAM, SSD, HDD, power supply, keyboard, and display panel can be 

added and/or replaced by a customer.  

 

Specs 

 

 

 

Product 

Product 

Condition 

(See Note 1) 

Screen 

Size 

(inch) 

RAM 
Processor 

(Intel) 

 

SSD 

 

HDD 

Battery 

Life 

 

Degree of 

upgrading and 

replacement by 

customer        

(See Note 2) 

Price 

(HKD) 
Rating 

1 New 13.3 4 GB Core i3 32GB 1TB 4-6 hrs Low 5,500  

2 New 13.3 6 GB Core i5 128GB 500GB 7-9 hrs Medium 8,000  

3 New 13.3 8 GB Core i7  256GB Nil 9-11 hrs High 10,500  

4 New 14.1 4 GB Core i3 128GB 500GB 7-9 hrs High 10,500  

5 New 14.1 6 GB Core i5 256GB Nil 9-11 hrs Low 5,500  

6 New 14.1 8 GB Core i7  32GB 1TB 4-6 hrs Medium 8,000  

7 New 15.6 4 GB Core i5 32GB 500GB 9-11 hrs Medium 10,500  

8 New 15.6 6 GB Core i7  128GB 500GB 4-6 hrs High 5,500  

9 New 15.6 8 GB Core i3 256GB Nil 7-9 hrs Low 8,000  

10 Refurbished 13.3 4 GB Core i7 256GB Nil 7-9 hrs Medium 5,500  

11 Refurbished 13.3 6 GB Core i3 32GB 1TB 9-11 hrs High 8,000  

12 Refurbished 13.3 8 GB Core i5 128GB 500GB 4-6 hrs Low 10,500  

13 Refurbished 14.1 4 GB Core i5 256GB Nil 4-6 hrs High 8,000  

14 Refurbished 14.1 6 GB Core i7  32GB 1TB 7-9 hrs Low 10,500  

15 Refurbished 14.1 8 GB Core i3 128GB 500GB 9-11 hrs Medium 5,500  

16 Refurbished 15.6 4 GB Core i7 128GB 500GB 9-11 hrs Low 8,000  

17 Refurbished 15.6 6 GB Core i3 256GB Nil 4-6 hrs Medium 10,500  

18 Refurbished 15.6 8 GB Core i5 32GB 1TB 7-9 hrs High 5,500  
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APPENDIX B: Computation of the Covariance Matrix for the Error Vector of a DLM  

The detailed derivation for the covariance matrix of the error vector of a DLM is presented as 

follows. For the error vector u  ( 𝑢3, 𝑢4, 𝑢5, . . . 𝑢𝑇 ) ′  in a DLM where 𝑢𝑡 = 𝜀𝑡 −

2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2𝜀𝑡−2 for t=3,4,5 … T, the error terms 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−1 are assumed to be 

normally distributed according to ~N(0, 𝜎2). The corresponding covariance matrix denoted as 

Σ𝑢 is represented by a (𝑇 − 2) × (𝑇 − 2) matrix as presented below.  

∑ =
𝑢
 

[
 
 
 
 
 
Cov(𝑢𝑡, 𝑢𝑡) Cov(𝑢𝑡, 𝑢𝑡+1) Cov(𝑢𝑡 , 𝑢𝑡+2) ⋯ ⋯ Cov(𝑢𝑡, 𝑢𝑇)
Cov(𝑢𝑡+1, 𝑢𝑡) Cov(𝑢𝑡+1, 𝑢𝑡+1) Cov(𝑢𝑡+2, 𝑢𝑡+3) ⋯ ⋯ Cov(𝑢𝑡+1, 𝑢𝑇)
Cov(𝑢𝑡+2, 𝑢𝑡) Cov(𝑢𝑡+3, 𝑢𝑡+2) Cov(𝑢𝑡+2, 𝑢𝑡+2) ⋯ ⋯ Cov(𝑢𝑡+2, 𝑢𝑇)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Cov(𝑢𝑇 , 𝑢𝑡) Cov(𝑢𝑇 , 𝑢𝑡+1) Cov(𝑢𝑇 , 𝑢𝑡+2) ⋯ ⋯ Cov(𝑢𝑇 , 𝑢𝑇) ]
 
 
 
 
 

 

The detailed derivation for the elements of the covariance matrix is illustrated as follows: 

Cov (𝑢𝑡, 𝑢𝑡)= E [(𝑢𝑡 −E (𝑢𝑡))(𝑢𝑡 − E (𝑢𝑡))] = E [𝑢𝑡
2] 

= E ((𝜀𝑡 − 2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2 𝜀𝑡−2) 

2)  ; for t=3,4,5 … T 

= E (𝜀𝑡
2 − 4(1 − 𝑞)𝜀𝑡𝜀𝑡−1 + 2(1 − 𝑞)

2𝜀𝑡𝜀𝑡−2 + 4(1 − 𝑞)
2(𝜀𝑡−1)

2  − 4(1 − 𝑞)3𝜀𝑡−1𝜀𝑡−2 +

 (1 − 𝑞)4𝜀𝑡−2
2 ) 

= E (𝜀𝑡
2) − 4(1 − 𝑞)𝐸(𝜀𝑡𝜀𝑡−1) + 2(1 − 𝑞)

2𝐸(𝜀𝑡𝜀𝑡−2) + 4(1 − 𝑞)
2𝐸((𝜀𝑡−1)

2) −

 4(1 − 𝑞)3E(𝜀𝑡−1𝜀𝑡−2) + (1 − 𝑞)
4E(𝜀𝑡−2

2 ) 

= 𝜎2+ 4(1 − 𝑞)2𝜎2 +(1 − 𝑞)4 𝜎2   = 𝜎2 (1 + 4(1 − 𝑞)2 + (1 − 𝑞)4 ) 

 

Cov (𝑢𝑡, 𝑢𝑡+1)= E [(𝑢𝑡 −E (𝑢𝑡))(𝑢𝑡+1 − E (𝑢𝑡+1))] = E [𝑢𝑡𝑢𝑡+1] 

= E [𝜀𝑡 − 2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2 𝜀𝑡−2 )(𝜀𝑡+1 − 2(1 − 𝑞)𝜀𝑡 + (1 − 𝑞)

2 𝜀𝑡−1] 

= E [𝜀𝑡𝜀𝑡+1 − 2(1 − 𝑞)𝜀𝑡
2 + (1 − 𝑞)2𝜀𝑡𝜀𝑡−1 − 2(1 − 𝑞)(𝜀𝑡−1𝜀𝑡+1) + 4(1 − 𝑞)

2𝜀𝑡𝜀𝑡−1 −

2(1 − 𝑞)3𝜀𝑡−1
2 + (1 − 𝑞)2𝜀𝑡+1𝜀𝑡−2 −  2(1 − 𝑞)

3(  𝜀𝑡𝜀𝑡−2) + (1 − 𝑞)
4𝜀𝑡−1𝜀𝑡−2] 
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= E (𝜀𝑡𝜀𝑡+1) − 2(1 − 𝑞)𝐸(𝜀𝑡
2) + (1 − 𝑞)2𝐸(𝜀𝑡𝜀𝑡−1) − 2(1 − 𝑞)𝐸(𝜀𝑡−1𝜀𝑡+1) +

4(1 − 𝑞)2𝐸(𝜀𝑡𝜀𝑡−1) − 2(1 − 𝑞)
3𝐸(𝜀𝑡−1

2 ) + (1 − 𝑞)2𝐸(𝜀𝑡+1𝜀𝑡−2) −  2(1 −

𝑞)3𝐸(  𝜀𝑡𝜀𝑡−2) + (1 − 𝑞)
4𝐸(𝜀𝑡−1𝜀𝑡−2) 

= −2(1 − 𝑞)𝜎2 −2(1 − 𝑞)3𝜎2 = −2𝜎2((1 − 𝑞)+ (1 − 𝑞)3) = −2𝜎2(1 − 𝑞)(1+(1 − 𝑞)2) 

  

Cov (𝑢𝑡, 𝑢𝑡+2) = E(𝜀𝑡 − 2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2 𝜀𝑡−2 )(𝜀𝑡+2 − 2(1 − 𝑞)𝜀𝑡+1 +

(1 − 𝑞)2 𝜀𝑡 ) 

= E (𝜀𝑡𝜀𝑡+2 − 2(1 − 𝑞) 𝜀𝑡𝜀𝑡+1+(1 − 𝑞)2𝜀𝑡
2 − 2(1 − 𝑞)𝜀𝑡−1𝜀𝑡+2 + 4(1 − 𝑞)

2𝜀𝑡−1𝜀𝑡+1+ 

2(1 − 𝑞)3 𝜀𝑡𝜀𝑡−1 + (1 − 𝑞)
2 𝜀𝑡−2𝜀𝑡+2 −2(1 − 𝑞)3𝜀𝑡−2𝜀𝑡+1 + (1 − 𝑞)

4𝜀𝑡𝜀𝑡−2 ) 

= E (𝜀𝑡𝜀𝑡+2) − 2(1 − 𝑞)E(𝜀𝑡𝜀𝑡+1)+(1 − 𝑞)
2𝐸(𝜀𝑡

2) − 2(1 − 𝑞)𝐸(𝜀𝑡−1𝜀𝑡+2) +

4(1 − 𝑞)2𝐸(𝜀𝑡−1𝜀𝑡+1) +2(1 − 𝑞)
3E(𝜀𝑡𝜀𝑡−1) + (1 − 𝑞)

2E(𝜀𝑡−2𝜀𝑡+2) −2(1 −

𝑞)3𝐸 (𝜀𝑡−2𝜀𝑡+1) + (1 − 𝑞)
4𝐸(𝜀𝑡𝜀𝑡−2)  

= (1 − 𝑞)2𝜎2 

Cov (𝑢𝑡, 𝑢𝑡+3) = E(𝜀𝑡 − 2(1 − 𝑞)𝜀𝑡−1 + (1 − 𝑞)
2 𝜀𝑡−2 )(𝜀𝑡+3 − 2(1 − 𝑞)𝜀𝑡+2 +

(1 − 𝑞)2 𝜀𝑡+1 ) 

 = E(𝜀𝑡𝜀𝑡+3 − 2(1 − 𝑞) 𝜀𝑡𝜀𝑡+2+(1 − 𝑞)2𝜀𝑡𝜀𝑡+1 − 2(1 − 𝑞)𝜀𝑡−1𝜀𝑡+3 + 4(1 −

𝑞)2 𝜀𝑡−1𝜀𝑡+2 − 2(1 − 𝑞)
3𝜀𝑡−1𝜀𝑡+1+(1 − 𝑞)2 𝜀𝑡−2𝜀𝑡+3 − 2(1 − 𝑞)

3𝜀𝑡−2𝜀𝑡+2 + 

(1 − 𝑞)4 𝜀𝑡−2𝜀𝑡+1) 

= E (𝜀𝑡𝜀𝑡+3) − 2(1 − 𝑞)𝐸(𝜀𝑡𝜀𝑡+2)+(1 − 𝑞)
2𝐸(𝜀𝑡𝜀𝑡+1) − 2(1 − 𝑞)𝐸(𝜀𝑡−1𝜀𝑡+3) +

4(1 − 𝑞)2E(𝜀𝑡−1𝜀𝑡+2) − 2(1 − 𝑞)
3𝐸(𝜀𝑡−1𝜀𝑡+1)+(1 − 𝑞)

2E(𝜀𝑡−2𝜀𝑡+3) − 2(1 −

𝑞)3𝐸(𝜀𝑡−2𝜀𝑡+2) + (1 − 𝑞)4 E(𝜀𝑡−2𝜀𝑡+1) 

 = 0 

It follows that the non-diagonal terms, i.e., Cov (𝑢𝑡, 𝑢𝑡+3), for t=3,4,5, …, T will be all zeros. 

Compiling all the terms, the covariance matrix, i.e., Σ𝑢 can be presented as follows. 
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∑ =
𝑢
 

[
 
 
 
 
 
 
1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) (1-q)2 0 ⋯ 0

-2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) (1-q)2 ⋯ 0

(1-q)2 -2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 -2(1-q)(1+(1-q)2) ⋯ 0

0 (1-q)2 -2(1-q)(1+(1-q)2) 1+4(1-q)2+(1-q)4 ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1+4(1-q)2+(1-q)4]
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