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Abstract 

This thesis aims at advancing deep learning models on medical image 

segmentation tasks by investigating three key problems: alleviating the 

burden on training data collection, reducing GPU memory consumption, and 

leveraging shape priors to boost the performance. The main results are five 

generic and effective approaches to these three problems, called selective 

learning, adversarial redrawing, surface projection, shape constructing, and 

shape mask generator, respectively. 

Selective learning is a simple training framework that alleviates the burden 

on training data collection by using external data. The key idea is to learn a 

weight for each external data such that informative external data can have 

large weights and thus contribute more to the training loss, thereby implicitly 

encouraging the network to mine more valuable knowledge from them while 

suppressing to memorize irrelevant patterns from ‘useless’ or even ‘harmful’ 

data. 

Adversarial redrawing is an unsupervised segmentation method for 

alleviating the burden of collecting training annotation. It is developed under 

the assumption that the imaging process can be modeled by a latent variable 

with two steps: objects’ binary mask generating (equivalent to segmentation) 

and objects’ intensity value drawing. It then uses the adversarial learning 

paradigm to train two deep networks to model the mask generating and 
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intensity drawing steps, by altering their parameters’ value until they can 

generate images that cannot be distinguished by the discriminator. 

Surface projection is a GPU memory-efficient learning technique that 

enables 2D networks to learn 3D features. We observe that boundary pixels 

of a 3D object form a surface that can be described by a 2D variable, and so 

2 networks should be able to recognize these boundary pixels. We hence learn 

3D features by using a 2D network to learn the projection distance mapping 

between the object’s surface and a set of sampled spherical surfaces. 

Shape constructing is a productive approach to modeling shape priors. The 

key idea is to leverage contour fragments rather than pixels to model shape 

priors, as fragments provide far more informative geometric information and 

shape cues. It is developed as an iterative algorithm of three key processes: 

fragments grouping, shape templates estimation, and fragments connecting, 

for progressively refining the modeled shape priors.   

Shape mask generator is an effective method that models shape priors by 

learning how to refine the modeled ones. It first models shape priors from 

shape templates and then produces objects’ shape masks according to the 

modeled shape priors. It next refines the modeled shape priors by minimizing 

a quantity, the generating residual, whose value is smaller when the produced 

shape masks are more accurate. 

All five methods are assessed on publicly available datasets, with positive 

results obtained on extensive experiments, showing performance gains of 
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them against existing methods. These methods hence have great potential to 

advance deep learning models on a wide range of medical image 

segmentation tasks. 

Keywords: Medical Image Segmentation · Deep Learning Models · Training 

Data Alleviation · GPU Memory Reduction · Shape Priors Exploitation.  
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Chapter 1 

Introduction 

This thesis investigates medical image segmentation by developing deep 

learning models, which is a fundamental task making it possible to measure 

the quantitative information of objects. We begin with a brief account of 

medical image segmentation and its importance, following with the identified 

research problems and our contributions to solving these problems. We close 

this chapter by presenting the significance of our contributions and the 

structure of this thesis. 

1.1   Research Task 

Medical image segmentation is a task that aims to find the binary mask of 

objects of interest in the given medical images. In the deep learning context, 

this task is formulated as a learning problem, for learning a label assignment 

function that assigns categorical labels to pixels [1-2]. The space of 

assignment functions is specified by the network’s architecture. Learning is 

to search an assignment function from the specified space that performs well 

enough in the training dataset, by altering the value of network’s parameters 

through the lens of minimizing the loss function, a measure that is designed 

to have a small value when the network performing well. 
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                                 (a)                                                       (b)                

Fig. 1.1  Illustration of two types of segmentation tasks we addressed in this 

thesis: (a) point-to-point mapping, the most common case, and (b) point-to-

multi-points mapping, caused by objects’ overlapping, arising often in 

microscope images.  

In this thesis, we study two types of segmentation tasks: (1) point-to-point 

mapping and (2) point-to-multi-points mapping, as shown in Fig. 1.1. In the 

first type, a pixel can be segmented into just one object. This is the most 

common case. In the second type, some pixels may belong to several objects. 

This is encountered often in the microscope images, caused by objects’ 

overlapping. It is worth to note here that these two types cover almost all 

medical image segmentation scenarios. 

1.2   Task Importance 

Medical image segmentation is a fundamental task in the medical image 

analysis field, having been studied for ages and still being a hot topic in both 

industry and academia [1-6]. It is the function for this task to simplify the 

image representation that makes this task so important. The simplified binary 

representation allows us to measure object-level information, which 

underpins a huge range of medical research and clinical applications [1-6]. 
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We below present three examples to detail the importance. The first one is 

disease diagnosis in which objects’ shape or size information is often required. 

For example, for screening cervical cancer, the size ratio of the nucleus 

against cytoplasm is significant to decide whether that cell has been becoming 

abnormal [7-8]. The second example is injury prediction, like the kidney, in 

which we have to analyze the kidney’s shape and position changes varying 

the time [133-134]. The third one is the postoperative follow-up in which we 

have to track objects’ shape-changing rate [135-136]. Besides them, there are 

many other applications depending on medical image segmentation [137-

150].  

1.3   Research Problems 

Medical image segmentation has been studied for ages, as mentioned above, 

and so there are many algorithms [1-6]. In this thesis, we investigate deep 

learning models. Deep learning models, though have achieved remarkable 

success, still face many problems to be addressed for applying them to 

practical applications. To this end, we here study three key problems for 

further advancing deep learning models in medical image segmentation.   

Problem 1: Expensive Burden on Training Data Collection. The success 

of deep networks heavily relies on a large amount of training data, which is 

not always available. It is time-consuming or even prohibitively expensive 

for medical image segmentation tasks to collect an appropriate amount of 
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training data for deep learning models. Besides the image itself, collecting 

pixel-wise annotations requires tedious efforts from domain experts, with 

multiple rounds to correct annotation errors for reaching a consensus among 

experts. This problem makes deep networks in fact are very expensive to 

employ, substantially restricting their usability. 

Problem 2: Unaffordable GPU Memory for Learning 3D Features. In a 

wide range of medical image segmentation tasks, 3D features in nature are 

desired, for example for segmenting CT (computed tomography) and MRI 

(magnetic resonance imaging) images. It is computationally expensive for 3D 

deep networks to learn 3D features, however. 3D networks consume GPU 

memory cubically with the increasing of pixel’s resolution, making them 

memory-prohibitive to learn from high-resolution 3D medical images. 

Learning from low-resolution data, however, results in information loss, and 

some pixels are then becoming indistinguishable, greatly degrading the 

learning performance, considerably restricting their scalability and usability. 

Problem 3: Unguaranteed Modeling of Shape Priors. Shape priors in 

medical image segmentation can be understood as a form of anatomical 

constraints to some extent. These clinical constraints should be satisfied for 

practical applications. However, deep learning networks learn shape priors in 

an implicit manner, enforcing their outputs as similar to the annotations as 

possible, with no guarantee on eliminating violations; it is not rare in practice 
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to see visually implausible segmentation results of deep networks. This 

problem can seriously harm the clinical significance of deep learning models.   

These three problems are significant to advance deep learning models in 

medical image segmentation tasks. Without proper treatment on them, using 

deep models needs an expensive budget on collecting training data and 

unaffordable GPU memory consumption for training, but what is even worse 

is probably yielding paradoxical results, all substantially hindering the 

progress of deep models in the real-world medical image segmentation tasks. 

1.4   Contributions 

The main contributions are five effective and generic methods to address 

these three problems. They show positive results on extensive experiments, 

outperforming existing methods, and thus have great potential to advance 

deep learning models in medical image segmentation. Two methods, called 

selective learning and adversarial redrawing, are designed for alleviating the 

burden on training data collection by resorting to external data and training 

deep networks without annotations, respectively. Surface projection is to 

reduce GPU memory consumption by enabling 2D networks to learn 3D 

features. Another two methods, called shape constructing and shape mask 

generator, are to explicitly model shape priors for boosting the segmentation 

performance, being able to substantially reduce visually implausible 

segmentation results.  
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Selective Learning. It is a simple, effective, and generic training framework 

to alleviate the burden on training data collection by using external data. The 

key idea is to learn a weight for each external data such that informative 

external data can have large weights and thus contribute more to the training 

loss, for implicitly encouraging the network to mine more valuable 

knowledge from informative external data while suppressing to memorize 

irrelevant patterns from ‘useless’ data. It is formulated as a constrained non-

linear programming problem, solved by an iterative solution that alternatively 

implements weights estimating and network updating. It is not limited to 

particular learning models and loss functions, does not require to compute 

second-order gradients, and extensive experiments on multi-organ CT 

segmentation datasets show its efficacy and performance gains against 

existing methods, capable of substantially alleviating the burden on training 

data collection. 

 Adversarial Redrawing. It is a generic unsupervised segmentation method, 

for alleviating the burden on training annotations collection which requires 

tedious efforts from domain experts and becomes infeasible or prohibitively 

expensive with the increasing of data’s scale. The underlying assumption of 

this method is that the imaging process can be modeled by a latent variable 

with two steps: objects’ binary mask generating and objects’ intensity value 

drawing. It hence uses two convolutional neural networks (CNN) to model 

the mask generating and intensity drawing steps, and trains these two CNNs 
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by using adversarial learning paradigm, i.e. sampling random vectors from a 

presumed latent space, passing the sampled vectors through these two CNNs 

to generate images, and finally using a discriminator to distinguish the 

generated images from the real images. Once the adversarial training has been 

done, to produce segmentation results for given images, it first trains an 

encoder that maps the given images into the presumed latent space and then 

passes the mapped vectors through the trained mask generating CNN. The 

mapping encoder is trained in an unsupervised manner by minimizing the 

discrepancy between the input images and the reconstructed images generated 

by passing the encoder’s output through the trained mask generating and 

intensity drawing CNNs. We conducted extensive experiments on a publicly 

available CT dataset, with positive results showing the effectiveness of this 

method, performing favorably against existing methods for different objects.  

Surface Projection. It is a GPU memory-efficient learning technique that 

enables 2D networks to learn 3D features. We observed that boundary pixels 

of a 3D object can be represented by a surface parameterized by a 2D variable. 

It hence learns 3D features by using a 2D network to learn the projection 

distance between the object’s surface and a set of spherical surfaces, for 

recognizing these boundary pixels. Unlike existing methods, this method is 

without any information loss, by sampling sufficiently dense spherical 

surfaces, being able to consider all information in the volumetric data. We 

used a publicly available dataset to assess this method, and the extensive 
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experimental results show its effectiveness, considerably outperforming 

existing methods.   

Shape Constructing. It is an efficient method to model shape priors. It 

leverages shape priors from contour fragments rather than pixels, as 

fragments provide far more informative geometric information. It shows 

excellent performance on the overlapping objects segmentation task, being 

able to segment occluded boundary parts even for those nearly visually 

indistinguishable. This method starts by cutting the clump’s contour, 

generated by deep models, into fragments. It then groups fragments for 

locating each object’s fragments. For each object, it next estimates object’s 

shape template and then connects grouped fragments to segment the object 

based on the grouped fragments and the collected shape templates. It is 

developed as an iterative scheme that alternatively implements fragments 

grouping, shape template estimation, and fragments connecting, for 

continually enhancing the representation ability of the modeled shape priors. 

It is assessed on two datasets, with positive results demonstrating its 

effectiveness.   

Shape Mask Generator. It is a genric and effective method of modeling 

shape priors. We progressively refine the shape priors by learning them until 

they can describe most objects’ shapes. Unlike existing methods, it is able to 

model shape priors with strong representation ability, and therefore can 

substantially reduce visually implausible segmentation results. This method 
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first uses shape templates to model shape priors and then uses the modeled 

shape priors to generate shape masks of objects for the segmentation. It next 

refines the modeled shape priors in the training dataset by minimizing the 

generating residual, which is smaller when the segmentation results are more 

accurate. We assess this method on two cervical smear datasets for 

segmenting overlapping cytoplasms. The empirical evidence from extensive 

experiments shows that this method works better against existing methods. 

1.5   Research Significance 

Deep learning networks have been known to be able to model complex 

patterns, given a sufficient amount of training data and abundant computing 

capability. However, in medical image segmentation scenarios, collecting 

training data can be prohibitively expensive, modeling volumetric images 

may consume unaffordable GPU memory, and clinical knowledge should not 

be violated, all of which pose different challenges in the usage of deep 

networks in medical image segmentation tasks, compared to that in other 

learning tasks. The proposed methods, as shown later, have great potential to 

alleviate the burden on training data collection, reduce GPU memory 

consumption, and consider clinical knowledge by leveraging shape priors. 

They, therefore, are significant to advance deep networks in a wide range of 

medical image segmentation tasks. 
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By alleviating the burden on training data collection, it becomes possible 

to apply deep learning networks to any segmentation tasks of interest, largely 

reducing the cost of data collection and giving a quick chance to implement 

the segmentation task at hand. By reducing GPU memory consumption, it 

becomes possible to process high-resolution volumetric medical data without 

any information loss, solving the dilemma between computational efficiency 

and segmentation performance. Finally, by leveraging shape priors, visually 

implausible segmentation results are considerably reduced, increasing the 

clinical significance. 

1.6   Thesis Structure 

This thesis is organized as follows. We first present selective learning in 

Chapter 2, a training framework that alleviates the burden of collecting 

training data by learning selectively from external data. In Chapter 3 we 

describe adversarial redrawing, an unsupervised segmentation method that 

alleviates the burden of collecting training annotations by developing 

adversarial learning to medical image segmentation. In Chapter 4 we 

introduce surface projection, while in Chapters 5 and 6 we present shape 

constructing and shape mask generator, for reducing GPU memory 

consumption of learning 3D features and leveraging shape priors to reduce 

visually implausible segmentation results, respectively. We finally conclude 

this thesis and discuss future works in Chapter 7. An illustration of the relation 
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Fig. 1.2  Illustration of the relations among the identified problems and the 

methods. 

among the identified problems and the methods is shown in Fig. 1.2. 
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Chapter 2 

Selective Learning from External Data for Medical 

Image Segmentation 

This chapter presents selective learning, an effective training framework that 

alleviates the burden on training data collection by resorting to external data. 

It is especially helpful for applying deep networks to medical image 

segmentation tasks where collecting a large amount of pixel-wise annotations 

is expensive or even impractical. The key idea is to learn a weight for each 

external data, such that good ones can have large weights and then contribute 

more to the training loss, for implicitly encouraging the network to mine more 

valuable knowledge from informative external data while suppressing to 

memorize irrelevant patterns from ‘useless’ data. It is not limited to particular 

learning models and loss functions, does not require to compute second-order 

gradients, and extensive experiments on multi-organ CT segmentation 

datasets show the efficacy and performance gains against existing methods. 

2.1   Problem Background 

Deep learning networks have achieved remarkable success on a wide range 

of medical image segmentation tasks [1-6]. Their success, however, heavily 
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relies on a very large training dataset, which is not always available. In many 

tasks, it is time-consuming, costly, and even prohibitively expensive to collect 

training data, especially in the volumetric medical image (e.g., CT or MRI) 

segmentation tasks in which besides the image itself, collecting pixel-wise 

annotations requires tedious efforts from domain experts, with multiple 

rounds to correct the annotation errors for reaching a consensus [151-160]. 

To circumvent this difficulty, a promising way is to use external data to 

train deep networks [9-11]. External data, however, may have a different 

distribution from the internal data; they may vary hugely in quality, reliability, 

and relevance, perhaps not being a reliable reflection of the task to be learned 

[12]. Therefore, it is worthy to study the training mechanism of deep models 

on external data, for promoting the practical development of deep networks 

to real-world medical image segmentation tasks, especially to those where 

external data are much cheaper to acquire 

Existing methods include mainly data selection [13-20] and data weighting 

[21-30]. The key idea of data selection is to select informative data and use 

them only to train the network. A common way is to select small-loss-data to 

update the network during training. Methods in this type hence are in favor 

of learning easy patterns and ignoring numerous informative data with hard 

patterns that have been known to make deep networks more accurate and 

robust [31, 32]. Also, how to judge the loss value to be small enough for 

selecting data remains elusive and is often done heuristically. 
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Instead of completely ignoring some ‘bad’ data, data weighting-based 

methods attempt to assign a small weight for them, just making their 

contributions less to the network updating. Earlier works include mainly 

importance sampling [21, 22], boosting [23, 24], and hard example mining 

[25]. These works, however, cannot distinguish informative data with hard 

patterns from outliers. Recently, Ren et al. [29] learn data’ weights by using 

gradient descent direction on the mini-batch data’ weights. This method, 

however, requires to compute second-order gradients of deep networks, being 

computationally expensive.  

The proposed selective learning belongs to data weighting-based methods 

and is formulated as a constrained non-linear optimization problem to allow 

deep networks to learn selectively from external data. It aims at jointly 

learning external data’ weights and the network for maximally leveraging 

their complementary benefits. It also puts a hard constraint, requiring the 

network to learn better than without using external data. The formulated 

problem is solved by an iterative solution that alternatively implements 

weights estimating and network updating. It estimates data weights based on 

the similarity of loss values, a large weight to be assigned for data with high 

similarity. It updates the deep network with constraints by using the Lagrange 

multipliers technique, the Lagrangian variable to be increased when the 

constraint is violated. It obtains positive results, demonstrating its efficacy, 

being able to learn selectively from external data. 
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Fig. 2.1  The illustrative pipeline of how we selectively learning from external 

data: for each external data, we learn a weight to adjust its importance in the 

training loss, while for internal data, we put a hard constraint to enforce the 

network learning better than without using external data. 

2.2   Methodology 

Fig. 2.1 shows an illustrative pipeline of how our selective learning works. 

For learning selectively, it learns a weight for each external data for adjusting 

its importance in the training loss while putting a hard constraint on internal 

data for enforcing the network learning better than without using external data. 

Details are presented below. 

2.2.1   Problem Setup 

Let 𝒳  and 𝒴  be the input space and output space, respectively. Given a 

segmentation network with the function space of ℱ, training this network is 
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to find a function 𝑓 ∈ ℱ that best approximates the unknown target mapping, 

and is done by solving the following problem 

argmin
𝑓∈ℱ

𝔼𝑝(𝑥,𝑦)[ℓ(𝑓(𝑥), 𝑦)],    (𝑥, 𝑦) ∈ 𝒳 × 𝒴,                   (2.1) 

where 𝔼𝑝(𝑥,𝑦) denotes the expectation over the underlying joint density 

𝑝(𝑥, 𝑦) and ℓ:𝒴 × 𝒴 → ℝ+ denotes the loss function; we here fold in any 

regularization terms into ℓ for simplicity. 

Since the expectation 𝔼𝑝(𝑥,𝑦)[ℓ(𝑓(𝑥), 𝑦)] is computationally intractable, it 

is approximated by its empirical counterpart, 
1

𝐾
∑ ℓ(𝑓(𝑥𝑘), 𝑦𝑘)𝑘∈[𝐾] , where 

[𝐾] ≔ {1,⋯ ,𝐾} stands for the index set, with the strong assumption that the 

training data {𝑥𝑘, 𝑦𝑘}𝑘=1
𝐾  are independent and identically distributed from 

𝑝(𝑥, 𝑦). Under this assumption, this empirical approximation is unbiased, and 

so the learned function through the empirical approximation is also unbiased 

as 𝐾 → ∞. This strong assumption, however, is very likely to be violated 

when learning from external data, as external data may have a different 

distribution from the internal data. In this case, the empirical approximation 

becomes biased and so does the learned function. 

We hence aim at learning a weight 𝑤𝑘  for each external training data 

(𝑥𝑘, 𝑦𝑘), for correcting the distribution discrepancy that is able to help the 

network to mine more knowledge from informative external data while 

suppressing to memorize irrelevant patterns from ‘useless’ or even ‘harmful’ 

data. 
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2.2.2   Problem Formulation 

We formulate weights learning as a constrained non-linear programming 

problem. More specifically, let {𝑥𝑛, 𝑦𝑛}𝑛=1
𝑁  and {𝑥𝑚, 𝑦𝑚}𝑚=1

𝑀 be the external 

and internal data, respectively. We learn weights, along with training the 

network, by solving the problem below 

argmin
𝑓∈ℱ,

𝐰∈[0,1]𝑁

(
1

𝑁
∑ 𝑤𝑛ℓ𝑛(𝑓) +𝑁

𝑛=1
1

𝑀
∑ ℓ𝑚(𝑓)𝑀

𝑚=1 ),                  (2.2 a) 

s.t.  ∑ ℓ𝑚(𝑓)𝑀
𝑚=1 ≤ ∑ ℓ𝑚(𝑓𝑀

∗)𝑀
𝑚=1 ,                       (2.2 b) 

𝟏𝑇𝐰 > 0,                                          (2.2 c) 

where 𝐰 ≔ (𝑤1,⋯ ,𝑤𝑁)𝑇 , ℓ𝑖(𝑓) ≔ ℓ(𝑓(𝑥𝑖), 𝑦𝑖) , and 𝑓𝑀
∗  is the optima 

without using external data; 𝑓𝑀
∗ ∈ argmin

𝑓∈ℱ

1

𝑀
∑ ℓ𝑚(𝑓)𝑚∈[𝑀] . The constraint 

(2b) is to first prevent overfitting the external data and second guarantee the 

training performance on internal data; it is intuitively reasonable that learning 

should be better when using external data. The constraint (2c) is to prevent 

degenerate solutions of 𝐰, e.g., all 𝑤𝑛 = 0 in which case not all external data 

are correctly used. 

Feasibility Analysis. Our problem, certainly, has a feasible solution. To see 

this, assuming that we have known the optima of weights, 𝐰∗, our problem 

in that case degenerates into a standard learning problem with the weighted 

loss for external data; the constraints (2.2 b) and (2.2 c) here are satisfied 

almost surely. The main concern is whether our problem is well formulated 

such that its optimum corresponds to the best function that we can learn. We 
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check this by using reductio ad absurdum. Assume that {𝑓∗, 𝐰̂∗}  is the 

optimum and 𝑓∗ is the best learnable function. If 𝑓∗ behaves worse than 𝑓∗, 

then by altering 𝐰̂∗ our objective function (2.2 a)  can have a  smaller value 

by replacing 𝑓∗  with 𝑓∗ , which means {𝑓∗, 𝐰̂∗}  is not the optima, 

contradicted. This result shows that our problem has been well formulated; 

solving it results in getting the best learnable function. 

2.2.3   Optimization 

Fig. 2.1 shows an illustrative pipeline of how we solve our problem. We use 

block coordinate descent, splitting the problem into two subproblems: (1) 

weights estimating and (2) constrained network updating. We alternatively 

implement weights estimating where the network is fixed and network 

updating where the weights are fixed. 

Weights Estimating. It is done by solving the problem below 

              𝐰(𝑡+1) ∈ argmin
𝐰∈[0,1]𝑁

(
1

𝑁
∑ 𝑤𝑛𝑑(𝒟𝑛, 𝒟|𝑓(𝑡))  + 𝜆𝐰𝑇𝐰𝑁

𝑛=1 ),      

                              s.t.  ∑ 𝑤𝑛
𝑁
𝑛=1 = 𝑁,                                      (2.3) 

where 𝑡  and 𝑑(𝒟𝑛, 𝒟|𝑓(𝑡))  denote the updating step and the discrepancy 

between the distribution 𝒟𝑛 and 𝒟 measured with the network at step 𝑡. Here 

𝒟𝑛 and 𝒟 stand for the distribution of the external data (𝑥𝑛, 𝑦𝑛) and internal 

data {𝑥𝑚, 𝑦𝑚}𝑚=1
𝑀 . In addition, 𝜆 > 0 is a hyperparameter to balance two 

terms. 
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The first term in (2.3) is small when external data with a small discrepancy 

value having a large weight. This is expected because external data whose 

distribution is similar to the internal data intuitively should contribute more 

to the network updating. The second term has a small value when all external 

data having similar weights. It hence encourages to learn from as many 

external data as possible. Furthermore, when the constraint is satisfied, the 

constraint (2.2 c) is also satisfied. These observations suggest that this 

subproblem is well formulated. 

Finally, we define 𝑑(𝒟𝑛, 𝒟|𝑓(𝑡))  as |ℓ𝑛(𝑓) − ℓ̅[𝑀](𝑓)| , where ℓ̅[𝑀](𝑓) 

denotes the average of ℓ𝑚(𝑓) on the internal data {𝑥𝑚, 𝑦𝑚}𝑚=1
𝑀 . As expected, 

we can see that it has a large value when the network performing differently 

on external data (𝑥𝑛, 𝑦𝑛) and internal data {𝑥𝑚, 𝑦𝑚}𝑚=1
𝑀 , while a small value 

when performing similarly. 

Network Updating. Given the weights 𝐰(𝑡+1), we update the network by 

      𝑓(𝑡+1) = 𝑓(𝑡) − 𝛾(𝑡)∇(∑ 𝑤𝑖
(𝑡+1)

ℓ𝑖(𝑓
(𝑡)) + 𝜉(𝑡)𝒞(𝑓(𝑡))𝑏

𝑖=1 ),          (2.4) 

where 𝛾(𝑡) and 𝑏 stand for the learning rate and batch size, respectively. The 

only difference from the canonical network updating with the weighted loss 

is that we convert the constraint (2.2 b) to the term 𝒞(𝑓(𝑡)) with the penalty 

coefficient𝜉(𝑡) . We define𝒞(𝑓(𝑡)) = ∑ max (ℓ𝑖(𝑓
(𝑡)) − ℓ𝑖(𝑓𝑀

∗), 0)𝑖∈[𝑀] . We 

can see that if (2.2 b) is satisfied, 𝒞(𝑓(𝑡)) = 0, then it has no effect on the 
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network updating. Otherwise, i.e. violated, 𝒞(𝑓(𝑡)) > 0, then by using a large 

𝜉(𝑡) the updating step will be enforced to primarily eliminate the violation. 

We set 𝜉 to a very small value at the early stage of training, because at that 

stage it is normal that the network behaves worse than 𝑓𝑀
∗ . Its value is 

increased when meeting violations. We update it as 𝜉(𝑡+1) = 𝜉(𝑡) +

𝛾𝜉
(𝑡)𝒞(𝑓(𝑡)), where 𝛾𝜉

(𝑡)
 stands for the increasing rate. We get this updating 

rule by using sub-gradients [33], as 𝒞(𝑓(𝑡)) is non-differentiable. 

2.3   Experimental Evaluation 

2.3.1   Experimental Setup 

Dataset. The proposed method was assessed on the abdominal multi-organ 

segmentation task from two CT datasets [34-36]. We term them as BTCV and 

TCIA for simplicity. BTCV has 47 CT volumes with resolutions of 0.6∼0.9 

mm (in-plane) and 0.5∼5.0 mm (inter-slice), while TCIA has 43 CT volumes 

with resolutions of 0.6∼0.9 mm (in-plane) and 1.5∼2.5 mm (inter-slice). Each 

CT volume has 122.85 slices on average in the BTCV dataset while 238.02 

in the TCIA dataset. They provide pixel-wise annotations for 8 abdominal 

organs: (1) Duodenum, (2) Esophagus,(3)  Gallbladder,  (4)  Liver,  (5)  Left  

Kidney,  (6)  Pancreas,  (7)  Spleen,  and  (8)Stomach. 

Network Architecture. We used the same architecture as the original 2D U-

Net [37], except for five modifications: (1) we replaced batch normalization 

with instance normalization [38], (2) we replaced ReLU with leaky ReLU [39] 
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with the slope of 0.01, (3) we implemented down-sampling and up-sampling 

by the strided and transposed convolutions, (4) we add dropout [40] with the 

probability of 0.1after each convolutional layer, and (5) we used softmax 

function to normalize network’s output. 

Implementation. We clipped the intensity value to [−200, 250], and then 

normalized it to [0, 255]. We resized the image size of 512×512 to 256×256. 

We used Dice loss to train the network, employed Adam [41] with the 

learning rate of 0.0003, and set the batch size to 16. We set 𝜆 to 5, initialized 

𝜉 as 0.05, and fixed 𝛾𝜉 of 0.0001. We ran 40 epochs; in the first 10 epochs, 

we adopted the standard training for the warm-up purpose, and enforced the 

hard constraint after 20 epochs. We produced segmentation results by 

assigning the categorical label with the highest prediction value to pixels. 

Competitors. We compared the proposed method with three methods, 

denoted by DS [17], RW [29], and DD [30]. DS belongs to data selection-

based methods, while RW and DD belong to data weighting-based methods. 

DS selects 𝑘 data with the smallest loss value from the batch at each iteration 

to update the network; here we set 𝑘  to 10. RW assigns data weights by 

minimizing the weighted loss on the validation set; we used 20% of the given 

internal training data for the validation. DD assigns data weights based on the 

distribution discrepancy between external data and internal data; we here 

assumed that all external data are sampled from the same distribution. For fair 
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comparisons, we used the same experimental setting as ours while their 

hyperparameters are those recommended by the authors. 

2.3.2   Experimental Results 

Performance Improvement. We first compared performance improvement 

by using external data. The performance metric throughout this work is Dice 

Similarity Coefficient (DSC). The result, the mean of organs on the test data, 

is presented in Fig. 2.2, (a) for BTCV where the external dataset is the TCIA 

dataset and (b) for TCIA where the external data is the BTCV dataset. We 

randomly selected 50% for training and the remaining 50% for testing, and 

experimented with 5 different amounts of external data: 10%, 25%, 50%, 75%, 

and 100% of the external dataset. 

We first look at results on the BTCV dataset, shown in Fig. 2.2 (a). We 

can see that our method consistently works better than all other methods in 

all 5 amounts, which demonstrates the efficacy of our method. In addition, 

using external data without careful treatment cannot ensure performance 

boosting. We can see that when using 10% of the TCIA dataset only our 

method boosts, and all methods boost when the external data amount is over 

50%; TO and ST in the figure stand for target only, without using external 

data, and standard training, no treatments on external data, respectively. This 

evidence suggests that our method can learn selectively, leveraging 

informative data while suppressing non-informative or ‘harmful’ data. 
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                            (a)                                                            (b)                

Fig. 2.2.  The test accuracy, the mean DSC, with 5 varying amounts (%) of 

external data used, (a) for BTCV and (b) for TCIA. 

Furthermore, using more external data does not necessarily improve the 

performance for all methods (see ST and DD), which means when learning 

from external data some data do not help and thus the learning is encouraged 

to be done selectively. 

Similar trends are also found in the TCIA dataset, shown in Fig. 2.2 (b), 

though the extent is slightly different. The new main finding is that DS, RW, 

and DD behave differently compared to ST while our method is consistent; 

they generally work better than ST in BTCV dataset while not here. This may 

indicate that these methods are dataset-sensitive, using data properties not 

effective as ours. 

Training Data Reduction. We also assessed the ability of these methods to 

alleviate the amount of training data by using external data. To simulate the 

performance varying with the increasing of training data, we randomly 

selected 10% for testing and 5 amounts: 10%, 30%, 50%, 70%, and 90%, for 
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                            (a)                                                            (b)                

Fig. 2.3.  The test mean DSC with 5 varying amounts (%) of training data 

when using all external data, (a) for BTCV and (b) for TCIA. 

training. The external data here were all used for training. The test mean DSC 

is presented in Fig. 2.3, (a) for BTCV and (b) for TCIA. 

We can see that our method yields the highest accuracy in both datasets in 

all 5 cases, which means that our method alleviates the training data most, 

demonstrating the efficacy of our method again. We also can see that all 

methods outperform TO, except for ST in the TCIA dataset when using 90% 

data for training, and have a narrowing performance gap when more training 

data are given, while our method outperforms most and has the biggest gap. 

This finding implies that our method is more effective to leverage informative 

external data and suppress non-informative data. In addition, among all 

methods, only RW and Our consistently work better than ST (in fact RW 

slightly works worse than ST in the TCIA dataset when using 30% data for 

training), while other methods are with mixing results. This evidence suggests 

that RW and our method are more robust while our method is more accurate. 
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                            (a)                                                            (b)                

Fig. 2.4.  Effect of different values of the hyperparameter (a) and different 

components of our method (b) on the test accuracy (mean DSC of organs). 

2.3.3   Component Analysis 

Hyperparameter Selection. The proposed method receives the hyper-

parameter: 𝜆, in Eq. (2.3), a larger value of it resulting in external data to be 

assigned weights that are more similar. To decide the best value of it, we 

experimented with 5 values: 1.0, 2.5, 5.0, 7.5, and 10.0, on the BTCV dataset 

with 50% for training and the remaining 50% for testing (randomly selected). 

Fig. 2.4 (a) shows the test accuracy when using 5 amounts of external data 

(10%, 25%, 50%, 75%, and 100% of the TCIA dataset). We can see that when 

𝜆 = 5 the accuracy is the highest in all amounts, and we hence set 𝜆 to 5 in 

all other experiments. We also can see that a large value (7.5 or 10.0) 

generally works better than a small value (1.0 or 2.5). 

Ablation study. For investigating the effect of three main components of our 

method: (1) data weighting, (2) weight regularization, and (3) constrained 

network updating, we compared our method to four methods, denoted by BL, 
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NR, CO, NC, standing for baseline, no weight regularization, constraint only, 

and no constraint, respectively. BL uses the canonical training, all external 

data having a weight of 1 and no constraint enforced. NR deletes the 

regularization term, 𝐰𝑇𝐰, in Eq. (2.3), conducted by setting 𝜆 to 0. CO uses 

the constrained network updating only, done by setting all data weights to 1 

in the network updating. NC does not use the constraint in the network 

updating, implemented by setting 𝜉𝑡 in Eq. (2.4) to 0. 

Experiments were conducted on the BTCV dataset (50% for training and 

50% for testing) with five amounts of the TCIA dataset as the external data 

(10%, 25%, 50%, 75%, and 100%). The test accuracy is presented in Fig. 2.4 

(b). We can see that our method works better than all other methods, which 

suggests all three components are necessary and mutually reinforcing. In 

addition, CO works better than BL while worse than NC, implying that 

constrained network updating indeed helps while the key is data weighting. 

2.4   Closing Remarks 

There is tremendous motivation for training deep networks with as few data 

as possible. Here we have investigated a simple, generic, and effective 

method that allows deep networks to selectively learn from external data. It 

is simple, with the key idea of assigning a weight to external data for learning 

selectively. It is generic, not limited to particular learning networks and loss 

functions. It is also effective, yielding positive results on various experimental 
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scenarios with consistent performance gains over existing methods. This 

method hence has great potential to alleviate the burden on training data 

collection.   
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Chapter 3 

Adversarial Redrawing for Unsupervised Medical 

Image Segmentation 

This chapter presents adversarial redrawing, a generic unsupervised 

segmentation method, for alleviating the burden on training annotations 

collection which requires tedious efforts from domain experts. The 

underlying assumption of this method is that the imaging process can be 

modeled by a latent variable with two steps: (1) objects’ binary mask 

generating and (2) objects’ intensity value drawing. Under this assumption, 

two CNNs of modeling the mask generating and intensity drawing steps can 

be trained without using any annotations by using the adversarial learning 

paradigm. We use a publicly available CT dataset to assess this method, and 

obtains positive results on extensive experiments, showing the effectiveness. 

3.1   Problem Background 

Medical image segmentation, though is rather challenging, researchers 

recently have achieved remarkable progress on it by developing deep 

convolutional neural networks (CNNs) [37, 42-44]. CNNs extract 

hierarchical and multi-resolution features on their own for most accurately 
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and effectively evaluating their input, having shown powerful capabilities on 

modeling complex patterns of medical images [161-170]. 

CNN’s achievement, however, relies on the vast amount of pixel-wise 

human annotations about the desired segmentation. But collecting such 

annotations for medical images is not trivial. Instead, it is laborious, time-

consuming, and costly, requiring tedious efforts from domain experts. It even 

becomes infeasible or prohibitively expensive with the increasing of data’s 

scale. CNNs’ scalability and usability, therefore, are dramatically restricted 

for many practical medical image segmentation tasks where available 

annotations are insufficient [45]. A natural question then arises here: is it 

possible to train segmentation CNNs using less or even no human annotations? 

In the literature, the most frequently used technique is transfer learning [46, 

47] that trains CNNs by using other available datasets, but it requires the used 

datasets having a similar data distribution to the target dataset that is not 

always satisfied. Domain adaption [48-51] then relaxes this requirement, 

allowing to train segmentation CNNs by using other domain images, by 

exploiting features’ similarity in different domains. The relaxed requirement, 

however, is still not ready to be satisfied; a serious mismatch of datasets’ 

distribution often incurs a substantial segmentation performance drop. 

Another parallel line of techniques includes mainly weakly supervised [52, 

53] and semi-supervised learning [54, 55]. Weakly supervised learning 

attempts at training CNNs by using object-level annotations (e.g. object’s 
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center), while in the semi-supervised learning setting, only a small fraction of 

training data has pixel-wise human annotations. Whilst the workload on 

collecting human annotations is alleviated, they still require domain experts’ 

effort, which motivates the development of unsupervised learning techniques 

[56-58]. The key idea of most existing unsupervised learning techniques is to 

design the loss function such that it can express the desired properties of 

objects to be segmented. These techniques, therefore, face great challenges in 

modeling objects’ properties. 

Instead of handcrafted modeling of objects’ properties, the proposed 

adversarial redrawing gradually grasps objects’ properties on their own 

during training. The key idea is to assume that the imaging process can be 

modeled by a latent variable with two steps: (1) objects’ binary mask 

generating and (2) objects’ intensity value drawing, as shown in Fig. 3.1 (a). 

By doing so, the CNN that models the objects’ mask generating can be trained 

in an unsupervised manner by exploiting the adversarial learning paradigm 

[59]; see Fig. 3.1 (b). Segmentation then can be implemented by first finding 

the corresponding latent vector of the given image and then passing the found 

vector through the trained binary mask generating CNN; see Fig. 3.1 (c).  

We concrete our idea by first employing two CNNs to model the mask 

generating and intensity drawing steps, and train them by first sampling 

random vectors from a presumed latent space, then passing the sampled 

vectors through the two CNNs to generate images, and finally using a 
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             (a)                                          (b)                                         (c) 

Fig. 3.1  Schema of the idea behind this work. (a) The assumption of the 

imaging process; images (denoted by v) can be generated by a latent variable 

(z) with two steps: objects’ binary mask generating and objects’ intensity 

value drawing. (b) The unsupervised training mechanism of CNNs to model 

the mask generating and intensity drawing steps (𝑓m and 𝑓v, respectively). (c) 

The segmentation result producing process; the given image is first mapped 

into the latent space by a CNN (𝑓z) which is also trained in an unsupervised 

manner. 

discriminator to distinguish the generated images from the real images. We 

then employ another CNN to model the mapping function of images into the 

presumed latent space, and train it by minimizing the discrepancy between 

the input images and the reconstructed images generated by passing its output 

through the trained mask generating and intensity drawing CNNs.  

3.2   Literature Review 

Unsupervised deep learning receives more and more researchers’ attention on 

medical image segmentation tasks and also other learning tasks, especially 

classification tasks [60, 61]. It indeed deserves, because its supervised 

counterparts have already shown a powerful capacity to handle these tasks.  
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Recent advances of unsupervised deep learning techniques include mainly 

clustering [45, 58, 61], sample specificity analysis [60, 62], and self-

supervised learning [63–65]. The key of clustering is to identify clusters such 

that each of them can represent an underlying concept. The main focus 

currently is on jointly optimizing clustering and representation learning for 

maximally leveraging their complementary benefits. However, it is rather 

challenging to identify representative clusters due to the enormous 

combinatorial space. Sample specificity analysis therefore avoids identifying 

clusters by simply treating each sampled data as an independent cluster. It 

assumes that the underlying visual correlations among classes can be 

automatically revealed by deep networks via an end-to-end optimization. It is, 

however, likely to produce more ambiguous class structures than clustering. 

Self-supervised learning, its key is to add an extra auxiliary network to 

provide supervision. Existing methods are varying hugely in the sense of how 

to design the auxiliary network. An important principle in such a design is to 

consider intrinsical information that is also available in the unlabelled data, 

e.g., spatial context and spatio-temporal continuity. The auxiliary network 

design currently is handcrafted and remains an open problem, however. 

These advanced techniques, however, are not suitable for medical image 

segmentation tasks, because most of them are tailored for classification tasks. 

Although classification techniques technically can be directly applied to 

segmentation tasks by classifying every pixel one by one, they cannot 
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consider correlations among pixels which are essential for medical image 

segmentation tasks. In other words, classification techniques classify each 

pixel independently, but in the medical image segmentation scenario pixels 

are required to be jointly classified. 

We hence do not pay our effort to extend these advanced techniques. 

Instead, we develop adversarial redrawing. Our idea is in spirit similar to 

layered scene decomposition [66, 67] which assumes that an image can be 

represented by a segmented depth-map with piecewise planar or b-spline 

surfaces. However, layered scene decomposition aims at inferring occluded 

geometry of the scene while our adversarial redrawing is for unsupervised 

medical image segmentation. Two works that are most closely related to ours 

are [68, 69], both exploiting adversarial learning paradigm to provide 

supervision for unsupervised natural image segmentation. However, [68] 

faces model collapse issue, especially at the early stage, while [69] does not 

consider anatomical constraint; to alleviate model collapse, it shifts 

segmentation masks, which is not allowed in medical image segmentation 

tasks (for example, kidney cannot be shifted above on liver). 

3.3   Methodology 

Given an image with the size of 𝑤 × 𝑙 × ℎ, we denote K as the number of 

objects to be segmented. The segmentation is, in principle, to find a function 

𝑓:ℝ𝑤×𝑙×ℎ → {0,1,2,⋯ , 𝐾}, where the categorical label 0 is for assigning 
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pixels to the background, such that pixels assigned to the same label represent 

the corresponding object. In the CNN context, we approximate such a 

function by first specifying a function space via designing the CNN’s 

architecture and then selecting a function from the space as the approximation 

by optimizing the value of the CNN’s parameters. The optimization criterion 

is to make the selected function produce segmentation results that match 

human annotations best in the training set. 

The best segmentation function 𝑓 can be theoretically found by CNNs if 

(1) the architecture is designed appropriately such that 𝑓 is in the specified 

function space, (2) the employed optimization algorithm is able to find the 

global optimum 𝑓, and (3) available human annotations are sufficient such 

that the ‘matching extent’ measured on them is able to reflect the real 

matching extent. However, in the unsupervised medical image segmentation 

scenarios, we have not any human annotations. The matching extent then 

cannot be evaluated by using the canonical CNN training workflow. We 

hence have no guidance to find 𝑓  even though a good architecture and 

optimization algorithm have been already available. 

The key in developing unsupervised medical image segmentation 

algorithms, therefore, is to accurately evaluate the matching extent, i.e., the 

segmentation quality, with no human annotations involved. To fill this 

knowledge gap, we develop the adversarial redrawing that bridges image 

segmentation and adversarial learning so that we can use the adversarial loss 
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to evaluate the segmentation quality. The key idea is to model the image 

generation process as two steps: (1) objects’ binary mask generating and (2) 

objects’ intensity value drawing. By doing so, in order to generate images that 

cannot be distinguished by the discriminator from the real images, the 

adversarial training has to drive both the mask generating network and the 

intensity value drawing network towards more accurate segmentation. 

3.3.1   Problem Formulation 

Fig. 3.2 shows an illustrative pipeline of the training process of our 

adversarial redrawing that employs three CNNs. Two CNNs, denoted by 

‘Mask Generating’ and ‘Intensity Drawing’, are used to model the image 

generation process, and trained in the first phase by using the adversarial 

training workflow. It then trains the ‘Image Mapping’ CNN that aims at 

mapping images into the latent space, from which random vectors are 

sampled for generating images in the phase 1, in an unsupervised manner like 

auto-encoder, while the decoder, the trained ‘Mask Generating’ and ‘Intensity 

Drawing’ CNNs, is frozen to update during the training. Once the training is 

done, segmentation is implemented by first passing the given image through 

the trained ‘Image Mapping’ CNN and then passing the mapped vector 

through the trained ‘Mask Generating’ CNN. For simplicity, in the text below, 

we shall use 𝑓m , 𝑓v , and 𝑓z  to denote the ‘Mask Generating’, ‘Intensity 

Drawing’, and ‘Image Mapping’ CNNs, respectively. 
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Fig. 3.2  The illustrative pipeline of how our adversarial redrawing to train a 

segmentation CNN in an unsupervised manner. The training includes two 

phases; the phase 1 is to train the ‘Mask Generating’ and ‘Intensity Drawing’ 

CNNs by using the adversarial training paradigm while the phase 2 is to train 

the ‘Image Mapping’ CNN that maps images into the latent space by 

minimizing the reconstruction loss. Note that once the training is done 

segmentation results are produced by first passing the given image through 

the trained ‘Image Mapping’ CNN and then passing the mapped latent vector 

through the trained ‘Mask Generating’ CNN. 

Unsupervised Training of 𝑓m  and 𝑓v . ‘Mask Generating’ CNN (𝑓m) and 

‘Intensity Drawing’ CNN (𝑓v) have the same architecture. They both take the 

random vector 𝐳~𝑝(𝐳) as the input, and output 𝐾 + 1 maps, each of which 

has the same size as the real images; recall that 𝐾 is the number of objects to 

be segmented. To generate images, we first implement an element-wise 

multiplication on these two CNNs’ outputs, and then aggregate all maps’ 

multiplication results by implementing an element-wise summation, i.e., ṽ =
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∑ 𝑓m
𝑘 ⊗𝐾

𝑘=0 𝑓v
𝑘 , where 𝑓m

𝑘  and 𝑓𝐯
𝑘  denote the k-th map of the ‘Mask 

Generating’ and ‘Intensity Drawing’ CNNs’ output, respectively. 

For training 𝑓m  and 𝑓v  in an unsupervised manner, we employ a 

discriminator for distinguishing the generated images from the real training 

images, and finally implement the training by 

min
{𝑓m,𝑓v}

max
𝐃

(𝔼v[log𝐃(v)] + 𝔼z[log(1 −𝐃(ṽ))]),                   (3.1) 

where 𝐃  stands for the discriminator, and the symbol 𝔼x  represents the 

expectation on the variable x. Note that in Eq. 3.1 we directly use the symbol 

ṽ to denote the generated images from z to avoid the equation being too 

cumbersome; formally ṽ = ∑ 𝑓m
𝑘(z) ⊗𝐾

𝑘=0 𝑓v
𝑘(z). 

The essence of the training, i.e., solving Eq. 3.1, can be simply understood 

as a process that attempts to find a better parameters’ value of 𝑓m and 𝑓v such 

that the generated images cannot be distinguished by the discriminator D from 

the real images while at the same time to find a better parameters’ value of D 

in order to distinguish all generated images. The training stops when the two 

sides get a balance, i.e., when Nash Equilibrium is reached. 

Unsupervised Training of 𝑓z. Since the ‘Mask Generating’ CNN takes the 

latent vector as the input, for producing segmentation results, we have to map 

the given image into the latent space for getting the corresponding latent 

vector. As mentioned above, we employ a CNN, 𝑓z, to model this mapping 

function. The question now is how to train 𝑓z in an unsupervised manner. 



38      0      

 

Intuitively, if the trained ‘Mask Generating’ CNN can produce the true 

objects’ binary mask via the mapped latent vectors, then by these vectors the 

trained ‘Mask Generating’ and ‘Intensity Drawing’ CNNs should be able to 

generate the same images as the given images. It implies that 𝑓z can be trained 

by reducing the discrepancy between the input images and the images 

generated by passing 𝑓z’s output through the trained ‘Mask Generating’ and 

‘Intensity Drawing’ CNNs. This purpose then can be fulfilled by solving the 

following learning problem 

min
𝑓z

𝔼v [𝐿(v, ṽ|𝑓m
∗ , 𝑓v

∗)],                                     (3.2) 

where L is a metric function to measure the discrepancy between the input 

images (v) and the generated images (ṽ) by the trained ‘Mask Generating’ 

and ‘Intensity Drawing’ CNNs (𝑓m
∗  and 𝑓v

∗, respectively); here we employ the 

Euclidean norm as the metric function L. 

Image Segmentation. Once the training is done, we produce segmentation 

results for the given images as follows. We first pass the given image through 

the trained ‘Image Mapping’ CNN (𝑓z
∗ ) to get the latent vector, i.e., z𝑖 =

𝑓z
∗(v𝑖). We then pass the mapped latent vector (z𝑖) through the trained ‘Mask 

Generating’ CNN to produce objects’ binary mask; m𝑖 = 𝑓m
∗(z𝑖). 

Remarks. For unsupervised segmentation methods, unlike supervised 

methods, we do not know which maps correspond to which objects. They 

essentially just split the given images into K + 1 regions. In such a case, one 

may wonder why the ‘Mask Generating’ CNN can produce a meaningful 
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segmentation? In fact, the segmentation performance cannot be strictly 

guaranteed, as analyzed later. By Eq. 3.1, in theory, we can just ensure the 

generated images to be indistinguishable by the discriminator from the real 

images. However, in practice, since objects segmented accurately are much 

easier to draw than those with inaccurate segmentations, Eq. 3.1 can help to 

enforce the ‘Mask Generating’ CNN to segment objects as accurately as 

possible, for easing difficulties in the training of the ‘Intensity Drawing’ CNN; 

this is mainly because the intensity patterns of accurately segmented objects 

are much easier to model. 

3.3.2   Regularized Adversarial Redrawing 

The plain adversarial redrawing, as mentioned above, cannot strictly 

guarantee the segmentation performance. There exist three cases of the 

segmentation results: (1) a meaningful and reasonable segmentation, (2) an 

arbitrary segmentation, i.e. randomly splitting the given image into K + 1 

segments, and (3) an empty segmentation, i.e. splitting the given images into 

no more than K segments. We hence further improve our plain adversarial 

redrawing by considering two segmentation constraints: non-arbitrary and 

non-empty, in a form of regularization terms, for excluding the two types of 

segmentation errors. The improved regularized adversarial redrawing 

therefore will drive the model towards more meaningful and reasonable 

segmentation results. 
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Non-arbitrary Constraint. We revise the ‘Intensity Drawing’ CNN such 

that each object (including the background) has an independent intensity 

drawing CNN and just one of them is updated in each iteration during training. 

It is done by first revising the output layer of the original ‘Intensity Drawing’ 

CNN (it now just outputs one map, no longer K + 1 maps), and then using K 

+ 1 such revised ‘Intensity Drawing’ CNNs to draw K + 1 objects. By doing 

so, in order to continually optimize the adversarial loss, there are just two 

possible cases: (1) improving the corresponding ‘Intensity Drawing’ CNN 

and (2) improving the ‘Mask Generating’ CNN. Therefore, during training, 

when updating the corresponding ‘Intensity Drawing’ CNN no longer helps, 

the only way is to improve the ‘Mask Generating’ CNN until optimal 

segmentation results are produced. 

Non-empty Constraint. We design a regularization term ‖𝐑(ṽ) − z𝑘‖2
2 into 

the adversarial loss. The regressor 𝐑 aims at regressing the randomly sampled 

latent vector z𝑘 from the generated images ṽ. By doing so, if the object drawn 

at the current iteration is segmented to be empty, then the generated image ṽ 

cannot reflect any information about the current latent vector z𝑘, and so does 

𝐑(ṽ) , hence with a very high probability to yield a large value of 

‖𝐑(ṽ) − z𝑘‖2
2 . Therefore, minimizing such a regularization term during 

training will be helpful to hinder the ‘Mask Generating’ CNN from producing 

empty segmentation results. 
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The Regularized Adversarial Loss Function. Our adversarial learning 

problem now can be defined as: 

         min
{𝑓m,𝑓v,𝐑}

𝔼𝑘,z𝑘
[log𝐃(ṽ|𝑘, z𝑘) − 𝛼 ‖𝐑(ṽ|𝑘, z𝑘) − z𝑘‖2

2],  

      max
𝐃

(𝔼v[log𝐃(v)] + 𝔼𝑘,z𝑘
[log 1 − 𝐃(ṽ|𝑘, z𝑘)]),                  (3.3) 

where all K + 1 ‘Intensity Drawing’ CNNs are collectively denoted by 𝑓v, and 

k is the index of them (randomly sampled in each iteration). In addition, 𝛼 

here is a hyperparameter to balance the importance of the two regularization 

terms. 

3.4   Experimental Evaluation 

3.4.1   Experimental Setup 

Dataset. We conduct experiments on a famous publicly available CT dataset1 

[34-36]. This dataset has 90 CT volumes; in particular, 43 volumes are 

collected from the TCIA Pancreas-CT dataset while 47 are collected from the 

BTCV Abdomen dataset. This dataset provides pixel-wise human annotations 

for 8 organs: (1) duodenum, (2) esophagus, (3) gallbladder, (4) liver, (5) left 

kidney, (6) pancreas, (7) spleen, and (8) stomach. 

Evaluation Metric. We employ the most widely used segmentation 

performance metric: Dice similarity coefficient (DSC). DSC evaluates 

segmentation performance by measuring the matching extent between human 

                                                           
1 Available on https://zenodo.org/record/1169361\#.XSFOm-gzYuU 



42      0      

 

annotations and segmentation results, using the ratio of pixels’ number in 

their intersection against the average in them. Its value hence ranges in [0, 1], 

with a larger value representing a better segmentation. We here compute DSC 

to four decimal places and report its percentage counterpart. 

Network Architecture. Our ‘Intensity Drawing’ CNN and discriminator 

follow DCGAN’s generator and discriminator [70]. Our ‘Mask Generating’ 

CNN has the same architecture as our ‘Intensity Drawing’ CNN, plus a 

‘softmax’ layer. Our ‘Image Mapping’ CNN and the regressor have the same 

architecture as our discriminator, except for the last layer (Sigmod activation 

is replaced by Tanh activation, and the output dimension is set to the latent 

vector’s size). 

Network Initialization and Optimization. The network is initialized with 

values sampled from a normal distribution 𝒩(0, 0.02) and we chose Adam 

[41] as the optimizer to train the network. The learning rate for the ‘Intensity 

Drawing’ CNN, the discriminator, and the ‘Image Mapping’ CNN is set to 

0.0003 while for the ‘Mask Generating’ CNN and the regressor to 0.0001, all 

with the beats value (0.5, 0.999). We update the discriminator once at an 

iteration while three times for the ‘Intensity Drawing’ CNN, the ‘Mask 

Generating’ CNN, and the regressor. Optimization stops after 25000 

iterations for adversarial training (phase 1) while 10000 iterations for image 

mapping training (phase 2), with the batch size as 64. 
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Parameters Setting. The latent space is set to Gaussian space with the mean 

as 0 and standard deviation as 1, and the vector’s size is set to 128. The output 

of the ‘Image Mapping’ CNN and the regressor is hence multiplied by a factor 

of 5, as it originally ranges in (-1, 1) and does not match with our latent 

vector’s value. The balance parameter 𝛼 in Eq. 3.3 is set to 3/128. In the 

inference stage, to produce the binary mask, we set the threshold value of the 

‘Mask Generating’ CNN’s output as 0.6. 

3.4.2   Comparison with Existing Unsupervised Methods 

Competitors. Four competitive unsupervised methods are compared, 

denoted by: (1) W-Net [56], (2) BP [57], (3) IIC [58], and (4) AR [71]. W-

Net employs two CNNs, one for segmentation and the other for reconstruction 

from segmentation masks, and the two CNNs are jointly trained by making 

reconstructed images similar to input images. BP first computes superpixels, 

and then trains the CNN by making pixels in the same superpixel have the 

same prediction. IIC is, in principle, a clustering technique, and hence it 

implements segmentation in a patch-based manner; in order to segment the 

pixel at the center of the patch, IIC passes the patch and its randomly 

perturbed version through a CNN, which is trained by maximizing the mutual 

information between two patches’ outputs. AR is the method presented in our 

conference version. 
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Implementation. For a fair comparison, in all four methods, the CNN has the 

architecture as our ‘Image Mapping’ CNN plus ‘Mask Generating’ CNN; one 

for encoder and another for decoder. The inputs are obtained as follows. We 

first find the smallest box containing the object to be segmented according to 

the given annotation information. Then, for W-Net, BP, AR, and our method, 

we sample the boxed region and resize it into 64×64, while for IIC we first 

randomly sample the centered pixel in the boxed region and then cut the patch 

with the size of 64×64, as the input. All methods are with the same 

initialization and optimization setting and use the same threshold (0.6) in the 

inference stage. 

Results. Table 3.1 compares the segmentation results on the BTCV dataset 

while Table 3.2 on the TCIA dataset. It is observed that our method works 

best for all objects, except for the standard deviation results of duodenum on 

the BTCV dataset and pancreas on both datasets. The performance 

improvement is often by a large margin over all competitors. These 

experimental results indicate that our adversarial redrawing works better than 

all competitors and works for different objects. 

3.4.3   Statistical Bias Analysis 

The above experiments take the boxed region as the input, so there exists 

statistical bias because the object occupies a large region in the input. We here 

define the bias as the area ratio of the object against the input, and investigate 
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Table 3.1  Comparison results of our adversarial redrawing with 

unsupervised methods on the BTCV dataset. 

 W-Net BP IIC AR Ours 

Duodenum 70.64±10.78 72.51±9.43 74.91±10.90 76.79±9.71 79.59±10.01 

Esophagus 73.82±9.86 77.91±8.92 81.07±9.07 84.42±8.74 86.45±8.51 

Gallbladder 73.47±9.71 76.29±9.11 78.69±9.57 78.91±9.26 84.67±8.51 

Liver 70.83±9.62 72.15±9.84 75.17±9.21 78.75±8.47 81.07±7.82 

L-Kidney 74.27±7.43 77.94±8.01 76.43±7.14 79.31±7.63 87.59±6.11 

Pancreas 64.39±10.88 67.23±11.74 68.94±11.69 71.80±10.82 75.60±11.87 

Spleen 69.82±8.26 72.11±7.44 75.07±8.01 77.70±7.89 81.96±6.22 

Stomach 69.34±7.44 73.92±7.69 75.83±6.92 78.23±7.13 83.45±6.64 

 

Table 3.2  Comparison results of our adversarial redrawing with 

unsupervised methods on the TCIA dataset. 

  W-Net BP IIC AR Ours 

Duodenum 69.29±10.62 72.83±9.98 75.03±11.14 76.17±10.07 80.62±9.46 

Esophagus 71.34±10.12 74.91±9.28 80.12±9.42 84.30±9.17 85.94±8.32 

Gallbladder 71.49±9.67 75.84±8.92 79.71±9.31 79.71±9.07 83.95±8.63 

Liver 68.34±9.23 71.27±10.17 77.60±9.77 77.60±9.12 78.95±8.93 

L-Kidney 71.25±6.03 74.62±6.96 79.72±5.73 79.72±6.84 84.63±4.90 

Pancreas 66.09±11.79 67.43±12.13 72.18±11.28 72.18±10.76 76.60±11.70 

Spleen 68.99±9.76 71.47±8.24 76.38±8.51 76.38±8.39 79.83±7.83 

Stomach 69.89±8.26 71.26±8.46 78.25±7.93 78.25±8.01 81.20±7.43 

its effect on our method’s performance by conducting three sets of 

experiments with different box sizes, denoted by Boxed0, Boxed5, and 

Boxed10, respectively. Boxed0 is the same as above, while Boxed5 and 

Boxed10 set the box size as (𝑙 + 2
5𝑏

100
) × (𝑤 + 2

5𝑏

100
) and (𝑙 + 2

10𝑏

100
) × 
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Table 3.3  Segmentation results of our method under different box sizes on 

the BTCV dataset. 

 Boxed0  Boxed5  Boxed10 

 Bias   Ours   Bias   Ours   Bias    Ours 

Duodenum 61.29 79.59 54.95 75.09 47.20 74.23 

Esophagus 70.48 86.45 66.97 84.34 55.54 77.45 

Gallbladder 66.83 84.67 60.76 80.74 51.45 76.67 

Liver 58.72 81.07 51.67 75.59 44.36 73.35 

L-Kidney 70.04 87.59 61.01 78.53 51.65 84.18 

Pancreas 55.13 75.60 49.76 71.06 42.48 66.24 

Spleen 58.34 81.96 51.41 79.81 44.03 73.43 

Stomach 68.10 83.45 59.60 78.76 80.94 73.10 

 

Table 3.4  Segmentation results of our method under different box sizes on 

the TCIA dataset. 

 Boxed0  Boxed5  Boxed10 

 Bias   Ours    Bias Ours Bias    Ours 

Duodenum 61.36 80.62 55.03 76.99 47.32 71.16 

Esophagus 68.38 85.94 65.08 83.86 54.13 76.33 

Gallbladder 66.46 83.95 60.15 76.60 50.73 71.89 

Liver 59.68 78.95 52.56 74.55 45.11 73.97 

L-Kidney 70.39 84.63 61.22 78.28 51.66 72.07 

Pancreas 54.34 76.60 49.03 74.02 41.95 64.21 

Spleen 57.30 79.83 50.46 74.50 43.33 74.83 

Stomach 67.04 81.20 58.56 77.88 49.98 72.19 

(𝑤 + 2
10𝑏

100
), where 𝑙 and 𝑤 stand for the length and the width of the smallest 

box and 𝑏 = min(𝑙, 𝑤). 
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Fig. 3.3  Visual examples of our method on different box sizes; the input and 

GT come from the Boxed10. 

Quantitative Results. Table 3.3 presents the results for the BTCV dataset 

while Table 3.4 for the TCIA dataset, respectively. We can see that with the 

increasing of the box size, the bias decreases and also our performance drops. 

However, the bias decreases far sharply than the performance, and the gap 

between the bias and our performance remains similar in general, which 

implies that our method is independent of the box size. 

Qualitative Results. Fig. 3.3 shows visual examples of our method on 

different box sizes. We can see from it that our method does not produce the 

same results when the box size is different, and does not favor which box size. 

This experimental observation suggests that box size can affect the 
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segmentation result but will not affect the segmentation performance 

significantly. 

3.4.4   Model Bias Analysis 

Since we implement segmentation in the adversarial learning paradigm, most 

advanced segmentation architectures are not ready to be used due to the 

optimization difficulty in the adversarial training, which brings model bias, 

i.e., some segmentation errors are caused by the model’s capacity rather than 

the method itself. We here investigate this bias by studying our model’s 

performance in four different learning settings. 

Fully and Weakly Supervised Settings. Our segmentation model is 

comprised of the ‘Image Mapping’ and ‘Mask Generating’ CNNs; other parts 

essentially are just to provide supervision. In the weakly supervised setting, 

we train it using object’s center [52]. In both settings, we employ Dice loss 

and use the same initialization and optimization setup as default. Results are 

presented in Fig. 3.4 from which we can see that the performance in the 

weakly supervised setting is slightly better than that in the unsupervised 

setting and the performance gap between fully supervised and unsupervised 

settings is no more than 10%. This observation suggests that once advanced 

segmentation architectures can be used our method is very likely to yield a 

segmentation performance close to that of its weakly supervised counterpart 

and about 90% of its fully supervised counterpart. 
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Fig. 3.4  Segmentation performance comparison of our segmentation model 

on fully supervised, weakly supervised, and unsupervised settings. 

Semi-supervised and Transfer Learning Settings. We selected (randomly) 

some amount of data with annotations from the dataset (representing 10%, 

30%, 50%, 70%, and 90%). In the semi-supervised setting, we first train a 

teacher model using the selected data in a fully supervised manner, and next 

train the student model in the dataset with the supervision as teacher model’s 

prediction [55]. In the transfer learning setting, the model is first trained in 

another dataset, and then fine-tune it using the selected data. We compare 

them with two variations of our method, denoted by ‘Our+Fully’ and 

‘Our+Transfer’. ‘Our+Fully’ first uses the selected data to train the 

segmentation model in a fully supervised manner, and then uses the trained 

‘Mask Generating’ CNN to initialize our ‘Mask Generating’ CNN. Likewise, 

‘Our+Transfer’ uses the ‘Mask Generating’ CNN trained by transfer learning 

to initialize our ‘Mask Generating’ CNN. Results are presented in Fig. 3.5 

from which we can see that under the same amount of supervision our method 

works better than its transfer learning counterpart when the supervision’s 
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Fig. 3.5  Segmentation performance comparison of our segmentation model 

on semi-supervised and transfer learning settings. 

proportion is less than 70% and its semi-supervised counterpart when the 

supervision’s proportion is less than 30%. This finding indicates that our 

method has great potential to outperform its semi-supervised and transfer 

learning counterparts in practical medical image segmentation tasks where 

available annotations just account for a very small proportion, far less than 

30%. 

3.4.5   Component Analysis 

We improve the plain adversarial redrawing by developing two constraints to 

avoid unreasonable results. We here evaluate each constraint’s effectiveness 

in performance improvement. Results are presented in Table 3.5 and Table 

3.6, where ‘Plain’, ‘Non-arbitrary’, ‘Non-empty’ denote the plain adversarial 
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Table 3.5  Component analysis results on the BTCV dataset. 

 Plain Non-arbitrary Non-empty Ours 

Duodenum 74.58 75.22 75.27 79.59 

Esophagus 80.64 82.43 81.72 86.45 

Gallbladder 78.15 80.43 79.36 84.67 

Liver 74.25 76.75 76.08 81.07 

L-Kidney 80.68 82.72 81.94 87.59 

Pancreas 68.27 71.75 70.90 75.60 

Spleen 74.37 76.22 76.37 81.96 

Stomach 75.24 77.89 78.28 83.45 

 

Table 3.6  Component analysis results on the TCIA dataset. 

 Plain Non-arbitrary Non-empty Ours 

Duodenum 74.90 76.92 75.60 80.62 

Esophagus 77.64 80.30 79.21 85.94 

Gallbladder 78.16 79.43 79.17 83.95 

Liver 73.08 74.64 74.28 78.95 

L-Kidney 77.79 81.22 80.18 84.63 

Pancreas 69.56 72.64 71.02 76.60 

Spleen 73.67 76.51 75.21 79.83 

Stomach 74.36 77.83 76.22 81.20 

 

redrawing model, the model after adding the non-arbitrary constraint, and the 

model after adding the non-empty constraint, respectively. We can see that 

the ‘Non-arbitrary’ and ‘Non-empty’ consistently work better than the ‘Plain’, 

which indicates that both constraints are able to improve the performance. It 

is also observed that ‘Ours’ works best for all objects, suggesting that the two 

constraints are necessary and mutually reinforcing. 
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3.5   Closing Remarks 

In this chapter, we presented a generic unsupervised image segmentation 

method. This method is developed by associating image segmentation with 

adversarial learning such that we can use the adversarial loss as the 

supervision for training the segmentation CNN. We assessed its performance 

on a publicly available CT dataset, and the rich experimental results show that 

this method produced more accurate results compared to existing 

unsupervised image segmentation methods for different objects. The 

proposed method is hence possible to handle other segmentation tasks where 

human annotations are expensive to collect, and has impacts on advancing 

unsupervised image segmentation tasks and revealing new knowledge about 

designing unsupervised training frameworks.  
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Chapter 4 

Surface Projection: Learning 3D Features with 2D 

CNNs for Segmenting Volumetric Medical Images 

This chapter is about surface projection, a GPU-memory efficient learning 

method that enables 2D networks to learn 3D features, and it hence can 

substantially reduce the GPU memory consumption in volumetric medical 

image segmentation tasks where 3D features usually are desired. Unlike 

existing methods, this method can consider all information in data, without 

any information loss. We observed that boundary pixels of a 3D object make 

up a surface which is possible to be expressed by a 2D variable. It, therefore, 

learns 3D features by organizing the object’s surface into a 2D plane and then 

using a 2D network to predict the distance from the object’s surface to the 

sampled spherical surfaces. Its performance is evaluated in a publicly 

available CT dataset, with extensive experiments showing its effectiveness.  

4.1   Problem Background 

Volumetric images, say computed tomography (CT) and magnetic resonance 

imaging (MRI), are one of the main data forms [171-180]. For segmenting 

such types of images, 3D features are desired to ensure the performance. 
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                                (a)                                                             (b)                

Fig. 4.1  Illustration of expensive GPU consumption of 3D CNNs: (a) 

memory and (b) footprint; figures are about U-Net with the batch size of 16. 

However, it consumes expensive GPU memory for 3D deep networks to learn 

3D features [72, 73]. For example, 3D networks consume GPU memory 

cubically with the increasing of pixel’s resolution, as shown in Fig. 4.1 (a). 

This leads 3D networks to be memory-prohibitive for learning from high-

resolution volumetric data. However, learning from low-resolution data 

results in information loss, thus unable to distinguish some pixels, which can 

substantially degrade the segmentation performance. Moreover, 3D networks 

consume large memory footprints; see Fig. 4.1 (b). This leads to ineffective 

learning, as memory operations are more costly than arithmetic operations 

that are for forming representative features. 

In order to meet the GPU memory limitation, advanced techniques attempt 

at learning 3D features by using 2D networks and at the same time try to 

consider more information. They include mainly three categories: 2D slice 

distillation [74-77], 2.5D [78-81], and 2D multiple views [82-84]. 2D slice 

distillation-based methods combine 2D networks and often a conditional 
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random field algorithm (CRF) [85, 86] or recurrent neural network (RNN) 

[87] to learn 3D features. Methods in the second category feed several 

neighboring 2D slices into a 2D network to learn 3D features. 2D multiple 

views-based methods use several 2D networks that learn from different views, 

i.e. axial, coronal, and sagittal, to learn 3D features. These existing methods, 

yet work better than plain 2D networks as they consider more information, 

remain unable to learn from the whole data, resulting in performance 

degradation. 

We hence designed a generic method for learning 3D features that uses 2D 

networks to segment volumetric medical images. We observed that boundary 

pixels of a 3D object make up exactly a 2D surface, and hence they are 

possible to be perfectly recognized by a 2D CNN in theory. We hence employ 

a 2D network to learn the distance from the object’s surface to some sampled 

spherical surfaces. We then fuse all predicted surface distance results to 

recognize boundary pixels for the segmentation. Compared to existing 

methods, the proposed method is able to consider the whole volumetric data, 

without information loss, by sampling spherical surfaces sufficiently dense. 

4.2   Methodology 

Fig. 4.2 shows an illustrative pipeline. We first sample spherical surfaces; 

objects are coarsely segmented for doing so. We then organize the surface 

into 2D a plane. Next, we use a 2D U-Net [37] to learn the projection distance. 
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Fig. 4.2  The illustrative pipeline of the proposed surface projection. Given a 

volumetric data, it samples spherical surface (the red mesh) which is then 

organized into a 2D plane for using a 2D CNN to learn the projection distance 

mapping, and it finally fuses prediction results to decide the object’s boundary 

pixels. 

The last step is to fuse all recognization results to finally decide object’s 

boundary pixels. 

4.2.1   Spherical Surfaces Sampling 

We start by presenting how to sample spherical surfaces. We denote the 

surface by 𝐒𝑛. For the sampling of it, it is required to determine the origin of 

coordinates (𝐩𝑛) and the radius 𝑟𝑛. To determine them, we use a 2D U-Net to 

coarsely segment objects, and then place 𝐩𝑛  at the centerline, with the 

distance interval of 𝑑, of the coarse segmentation results. As shown later, this 

method is not sensitive to the accuracy of the coarse segmentation result, so 

2D CNNs are suitable. 

We now just focus on the sampling of 𝐒𝑛 and the organization of it into a 

2D plane when the 𝐩𝑛 and 𝑟𝑛 are both given; details of how to get them are 

presented later. For this purpose, we use the angular coordinate system to 
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present data. In particular, we use two symbols: 𝜃  and 𝜑 , to denote the 

angular indexes of 𝐒𝑛; here note that 𝜃 ∈ [0, 360) and 𝜑 ∈ [0, 180). We then 

organize 𝐒𝑛 as 

𝐒𝑛(𝜃, 𝜑) = 𝐕( 𝐩𝑛 + 𝑟𝑛𝐝(𝜃, 𝜑)),                                     (4.1) 

where 𝐕(𝑥, 𝑦, 𝑧) stands for the value of the intensity information at the pixel, 

indexed b (𝑥, 𝑦, 𝑧); here we use the symbol 𝐝 to indicate the 3D unit vector 

in the Cartesian coordinate system. Here note that the relationship is 

𝐝(𝜃, 𝜑) = (cos 𝜃 cos𝜑, cos 𝜃 sin 𝜑, sin 𝜃).   

4.2.2   Surface’s Projection Distance Predicting 

We below present details of how er learn 3D features by using a 2D network. 

To do so, we employ a 2D network to predict the projection distance mapping 

from the object’s surface to sampled spherical surfaces. We define the 

projection distance as the distance of pixels in 𝐒𝑛  to the object’s surface, 

measured along the line from the pixel to the object’s center, and thus a pixel 

has a projection distance. We set its value to negative if the pixel is inside the 

surface of the object and otherwise a positive value. 

This 2D CNN is trained to predict the mapping of the projection distance, 

argmin
𝜔

1

𝑀
∑ ‖𝑓(𝐒𝑛; 𝜔) − 𝐆𝑛‖2

2𝑀
𝑛=1 ,                               (4.2) 

where 𝜔 stands for network’s parameters, 𝑓 denotes the network, 𝑀 is the 

number of training samples, and 𝐆𝑛 is the ground truth of 𝐒𝑛, representing 

the projection distance information. The symbol ‖𝐴 − 𝐵‖2
2 is an operation to 
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count the average square distance of pixels between 𝐴 and 𝐵; here we use the 

Euclidean distance of pixel’s value as the distance measure. It is worth to note 

here that more advanced or tailored functions can be used as the loss function; 

we here do not consider this problem. 

We now move on to boundary pixels identification from the predicted 

projection distance result of 𝐒𝑛. To do so, a pixel indexed by (𝜃, 𝜑) in 𝐒𝑛, if 

its predicted projection distance is ℓ, then we set the pixel at the position 𝐩𝑛 +

(𝑟𝑛 − ℓ)𝐝(𝜃, 𝜑) in the input volumetric image as the boundary pixel. 

Such a learning way is able to learn 3D features. We below present an 

intuitive explanation. 3D features, in principle,  are captured by the 

geometrical and intensity information. So, if one just uses a plain 2D network, 

we miss the geometrical information that is among the 2D slices of the 3D 

medical data. However, by using our method, both types of intensity and 

geometrical information are considered; the ground truth provides 

geometrical information and the sampled surfaces provide intensity 

information. Moreover, existing 2D networks are able to model the mapping 

from the intensity to geometrical information [88-90], and hence the 

geometrical information is guaranteed to be well exploited. 

4.2.3   Surfaces’ Projection Distance Fusing 

For each object, we sampled several surfaces to leverage comprehensive 

intensity and geometric information. For producing the segmentation result, 
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their results have to be fused. Below are details of how we fuse these 

complementary pieces of information of surfaces. In particular, suppose that 

there are 𝑁 surfaces sampled for the object, and there are in total 𝐾 pixels in 

the data. We use 𝐃 ∈ 𝔹𝐾×𝑁 to denote the joint segmentation result matrix of 

surfaces. For this matrix, if the pixel 𝑘 is recognized as a foreground pixel 

based on 𝐒𝑛, we then set 𝐃(𝑘, 𝑛) = 1. Our goal is to estimate the unknown 

truth segmentation  𝐆 ∈ 𝔹𝐾 . To do so, we first estimate the segmentation 

accuracy 𝐀𝑛 = (𝛿𝑛, 𝜉𝑛)  of 𝐒𝑛 . Here 𝛿𝑛  and 𝜉𝑛  are the true positive and 

negative rates. We next estimate 𝐆 according to 𝓐 = [𝐀1, 𝐀2, ⋯ , 𝐀𝑛] and 𝐃 

by solving the following problem 

𝓐∗ = argmax
𝓐

𝑝(𝐃, 𝐆|𝓐) and 𝐆∗ = argmax
𝐆

𝑝(𝐆|𝐃,𝓐∗),         (4.3) 

here the symbol 𝑝(𝐃,𝐆|𝓐) denotes the mass probability function of the joint 

data (𝐃,𝐆).  

We then develop an iterative solution to solve Eq. 4.3. It initializes 𝓐 using 

the values {𝛿𝑛, 𝜉𝑛}𝑛=1
𝑁  of the training set, and updates 𝐆 (at the step 𝑘) by 

𝐆𝑡(𝑘) = 𝑝(𝐆(𝑘) = 1|𝓐𝑡 , ∑ 𝐃(𝑘, 𝑛)𝑁
𝑛=1 ) =

𝐅𝑡(𝑘)

𝐅𝑡(𝑘)+𝐁𝑡(𝑘)
,             (4.4) 

where  

                 𝐅𝑡(𝑘) = 𝑝(𝐆(𝑘) = 1)∏ 𝛿𝑛
𝑡𝐃(𝑘,𝑛)=1

𝑛 ∏ (1 − 𝛿𝑛
𝑡)𝐃(𝑘,𝑛)=0

𝑛 ,  

  𝐁𝑡(𝑘) = 𝑝(𝐆(𝑘) = 0)∏ 𝜉𝑛
𝑡𝐃(𝑘,𝑛)=0

𝑛 ∏ (1 − 𝜉𝑛
𝑡)𝐃(𝑘,𝑛)=1

𝑛 .           (4.5) 

𝑝(𝐆(𝑘) = 1) denotes the prior probability. We then update 𝓐 by 
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           𝛿𝑛
𝑡+1 = ∑ 𝐆𝑡(𝑘)/∑ 𝐆𝑡(𝑘)𝑘

𝐃(𝑘,𝑛)=1
𝑘 ,  

𝜉𝑛
𝑡+1 = ∑ (1 − 𝐆𝑡(𝑘))/∑ (1 − 𝐆𝑡(𝑘))𝑘

𝐃(𝑘,𝑛)=0
𝑘 .                    (4.6) 

We terminate the updating when 𝐆 and 𝓐 are stable. 

4.3   Experimental Evaluation 

4.3.1   Experimental Setup 

Dataset. This method is evaluated on a CT dataset2 that is publicly available. 

It provides 90 CT volumes, and provides pixel-wise annotations for 8 organs. 

Their resolution is 0.6~0.9 mm (in-plane) and 0.5~5.0 mm (inter-slice). 

Evaluation Metric. We used two commonly used performance metrics: Dice 

similarity coefficient and average surface distance, denoted by DSC and ASD, 

respectively. These two metrics are most commonly used in the application 

of 3D medical objects segmentation. In particular, DSC is to evaluate the 

matching extent of the result and ground truth, by computing pixels’ number 

in their intersection region over the average of pixels’ number in them. ASD 

is to evaluate the average distance of boundary pixels in the segmentation 

result and the ground truth. They take values in [0, 1] and [0, ∞]. A better 

segmentation method yields a larger DSC and a smaller ASD. 

Implementation Details. We interpolate volumes to make them their 

resolution are same at three directions, by using linear interpolation. We use 

                                                           
2 Available on https://zenodo.org/record/1169361\#.XSFOm-gzYuU 
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nn-UNet to search network’s architecture[6]. The U-Net for sampling 

surfaces is trained by using Dice loss. We used Adam [41] to train two U-

Nets. We set the initial learning rate to 0.0003. We terminated the training 

when the loss value is not decreasing. As for surfaces sampling, the parameter 

𝑑, is set to 3. In addition, we set the parameter 𝑟𝑛 to 5~1.5𝑟 (the interval is set 

to 5); 𝑟 here stands for the minimum ball’s radius that covers the object in the 

coarse segmentation results. Note that these values are determined by cross-

validation. 

4.3.2   Experimental Results 

Performance Improvement. We first evaluated the ability of our method to 

improve the segmentation performance. To do so, we compared the proposed 

method to the state-of-the-art methods: 2D-CRF, 2D-RNN, 2.5D, and 2D-

MV, respectively. Among them, 2D-CRF [75] and 2D-RNN [76] are based 

on 2D slice distillation, learning 3D features by adding CRF and RNN on the 

learned 2D features. 2.5D [80] feeds neighboring 2D slices into a 2D network; 

we here set to 6 that works best in the validation dataset. 2D-MV [81] belongs 

to 2D multiple views-based methods, learning 3D features by fusing 2D 

features learned by different 2D networks at different views of the medical 

image; we here sampled three views (the common views: axial, coronal, and 

sagittal). 
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Table 4.1  Segmentation accuracy results: DSC (%) and ASD (mm). 

 Raw  Coarse 

 DSC ASD DSC ASD 

2D-CRF 84.2±6.5 1.69±1.37 85.1±6.3 1.65±1.35 

2D-RNN 84.8±6.3 1.65±1.33 85.4±6.2 1.61±1.32 

2.5D 84.7±6.4 1.68±1.32 85.2±6.1 1.62±1.34 

2D-MV 84.5±6.3 1.64±1.41 85.0±6.2 1.60±1.37 

Ours — — 87.5±5.6 1.57±1.24 

 

For a fair comparison, the network in all methods has the same architecture. 

We also train them using the same setup; all use Dice loss, Adam, and the 

same learning rate. Furthermore, we tested their performance by using the 

coarse segmentation results for coarsely locating objects. We obtained results 

by using a 5-fold cross-validation, and reported these results in Table 4.1 in 

which ‘Raw’ and ‘Coarse’ are results of them by taking the raw images and 

the coarse result as the input. It is observed from Table 4.1 that our method 

produces the highest segmentation performance, which shows the 

effectiveness of our method. 

Comparison to 3D CNNs. We also compared our method to 3D networks. 

We compared them under the same amount of GPU memory used; we used 

40%, 60%, 80%, and 100% to search the architecture of 3D networks and that 

of our network. We trained 3D networks in patch-based manner and low 

resolution-based manner; taking 3D patches of the raw image and low-

resolution ones. 
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Table 4.2  Performance comparison results (DSC) of our method to 3D 

networks; they are compared by using the same GPU memory of 40%, 60%, 

80%, and 100%; data in the brackets are the paired t-test results. 

 40%      60% 80% 100% 

3D-P-R 78.4±7.4 (0.001) 82.6±6.9 (0.004) 84.3±6.5 (0.003) 85.1±6.3 (0.003) 

3D-P-C 79.7±7.1 (0.002) 83.1±6.7 (0.001) 85.7±6.1 (0.002) 86.2±6.0 (0.002) 

3D-R-R 76.9±7.6 (0.007) 81.9±7.1 (0.005) 85.2±6.8 (0.004) 84.4±6.5 (0.004) 

3D-R-R 78.1±7.4 (0.003) 82.7±6.8 (0.003) 83.2±6.6 (0.002) 85.3±6.1 (0.002) 

Ours 86.4±5.9 87.1±5.7 84.4±5.6 87.5±5.6 

 

Table 4.3  Performance comparison results (ASD) of our method to 3D 

networks; they are compared by using the same GPU memory of 40%, 60%, 

80%, and 100%; data in the brackets are the paired t-test results. 

 40%      60% 80% 100% 

3D-P-R 1.81±1.52 (0.002) 1.74±1.43 (0.003) 1.67±1.39 (0.002) 1.65±1.35 (0.004) 

3D-P-C 1.77±1.47 (0.004) 1.72±1.40 (0.001) 1.64±1.32 (0.001) 1.62±1.31 (0.003) 

3D-R-R 1.84±1.54 (0.001) 1.76±1.47 (0.004) 1.72±1.41 (0.002) 1.68±1.39 (0.004) 

3D-R-R 1.79±1.50 (0.002) 1.73±1.42 (0.002) 1.68±1.37 (0.002) 1.63±1.34 (0.006) 

Ours 1.62±𝟏.29 1.59±1.27 1.57±1.26 1.57±1.24 

 

Also the learning setup is the same, both Dice loss and Adam have the 

same setup, for the training. We obtained results by using a 5-fold cross-

validation. Results are reported in Tables 4.2 and 4.3. In the table, the symbols: 

‘-P-R’, ‘-P-C’, ‘R-R’, and ‘R-C’, denote 3D patch from raw images, 3D patch 

from coarse segmentation, low resolution from raw images, and low 

resolution from coarse segmentation, respectively. These two tables show 

that our method works better than 3D networks when they consume the same 

amount of GPU memory. This means that our method is able to learn 3D 

features effectively. 
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Table 4.4  Performance varying by using 4 different networks for the coarse 

segmentation. 

 40%      60% 80% 100% 

DSC 87.2±5.7 87.4±5.6 87.5±5.5 87.5±5.6 

ASD  1.60±1.26  1.58±1.25  1.58±1.24  1.57±1.24 

 

Sensitivity to Coarse Segmentation Results. Our method samples spherical 

surfaces according to coarse segmentation results. It hence is necessary to 

evaluate the sensitivity of our method to coarse segmentation results. To this 

end, we tested our method on coarse segmentation results produced by four 

different networks whose architectures are searched by allocating 40%, 60%, 

80%, and 100% of GPU memory. They were also trained in the same learning 

setup. We obtained the results using a 5-fold cross-validation. The results are 

reported in Table 4.4. We can see that the proposed method varies slightly, 

which suggests that our method produces segmentation results that are not 

affected by the coarse network’s architecture. 

Ablation Study. We also evaluated the key components of the proposed 

method. We compared the difference between our fusing procedure and 

majority voting (denoted by ‘Voting’ in Table 4.5). We can see that our 

procedure works better. We next evaluate the role of learning the projection 

distance. We compared it to the way that predicts pixels’ category, denoted 

by ‘Pro-S’. This way has the same idea as [91]. However, Table 4.5 shows 

that this way works worse than ours. We finally evaluate the role of sampling 
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Table 4.5  Ablation study results. 

 Voting Pro-S Sur-B Sur-S Ours 

DSC 86.2±6.0 84.1±6.8 86.3±6.0 86.9±5.8 87.5±5.6 

ASD 1.60±1.30 1.69±1.37 1.63±1.31 1.58±1.29 1.57±1.24 

 

               

                          (a)                                                             (b)                

Fig. 4.3.  Segmentation performance varying by setting different values to the 

parameters; results for DSC (a) and ASD (b). 

surfaces that are spherical. To do so, we tested two types of surfaces: box and 

mean shape (Sur-B, Sur-S). It is observed from Table 4.5 that these two types 

of surfaces work worse than ours; Note that there are several works on 

organizing 3D object into 2D surfaces [181, 182], but spherical surface is the 

easiest way to implement. 

Hyperparameters Sensitivity. Our method receives two hyperparameters: 𝑑 

and 𝐼𝑟. The first one is the distance interval for placing 𝐩𝑛 while the second 

one is the radius interval for sampling surfaces. We decided their values by 

grid search from 1 to 10. Fig. 4.3 shows the results with different values of 

these two hyperparameters. We can see that there are different performances 
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with different values of them and when 𝑑 and 𝐼𝑟 equal to 3 and 5 our method 

produces the best results. 

4.4   Closing Remarks 

In this chapter, we proposed surface projection, a GPU-memory efficient 

method to learn 3D features. This method has great importance in real-world 

medical image segmentation tasks, because it allows 2D networks to learn 3D 

features, substantially reducing GPU memory requirement. We extensively 

evaluated this method on a large CT dataset that is publicly available, and 

obtained positive results that show the effectiveness of this method.  
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Chapter 5 

Shape Constructing: Adaptive Shape Priors Modeling 

from Fragments for Segmenting Overlapping Objects 

This chapter is about shape constructing, an effective method of modeling 

shape priors. We apply this algorithm to overlapping objects segmentation 

tasks in which some occluded boundary parts are visually indistinguishable, 

and so shape priors are strongly desired for guaranteeing the performance. 

This method models shape priors adaptively from contour fragments. To do 

so, it first uses a CNN to segment the clump and then cuts the contour into 

fragments. Next, it groups each object’s fragments, estimates the object’s 

shape template, and finally connects grouped fragments to produce the 

object’s segmentation result. It iteratively conducts fragments grouping, 

shape template estimation, and fragments connecting, to continually refine 

shape priors for improving segmentation performance. It is assessed on two 

datasets, with clear experimental evidence showing its effectiveness. 

5.1   Problem Background 

Shape priors are strongly desired in overlapping objects segmentation tasks 

in which visual information often is deficient to segment occluded boundary 
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                              (a)                                                        (b)                       

Fig. 5.1  Illustration of the difficulties in overlapping cervical cytoplasms 

segmentation. (a) Some occluded boundary parts are visually 

indistinguishable; see the cytoplasm, highlighted by the red arrow the ground 

truth is depicted by the red dashed line). (b) It is difficult to locate intersection 

points; see two that points, highlighted by the green and red arrows (the point 

highlighted by the green dashed arrow is not such a point). 

parts, as shown in Fig. 5.1 (a) for example. This example is about overlapping 

cervical cytoplasms segmentation for screening cervical cancer that is 2-nd 

cancer of women globally [7, 8]. 

Existing approaches include mainly two categories: (1) intensity-based 

and (2) shape priors-based. The former approaches [92-97] attempt to 

leverage intensity information for segmenting occluded boundaries. These 

methods hence cannot handle overlapping cases in which the occluded 

boundaries are visually indistinguishable. The second type of methods [98-

102], differently, aim at leveraging shape priors of cytoplasm for the 

segmentation. These methods model shape priors by either using 

mathematical analysis or matching a shape template. They hence are limited 

to handle cytoplasm with the simple shape and heavily rely on the 

representation ability of the collected shape templates. 
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The proposed shape constructing models shape priors by leveraging shape 

information from both contour fragments and shape templates of objects. In 

particular, given an overlapping clump of cytoplasms, it first uses a CNN to 

segment the clump, and then cuts the clump’s boundary into fragments. It 

next groups fragments of each cytoplasm, estimates the shape template, and 

connects the grouped fragments to produce the segmentation results. It 

iteratively conducts fragments grouping, shape template estimation, and 

fragments connecting, to continually refine shape priors and boosting the 

performance. 

Unlike existing methods, this method holds three advantages. it first can 

handle overlapping cases that are complex and with irregular shapes. This is 

because our shape space of modeling shape priors is rather large than those 

by using stringent mathematical formulations or shape templates. Second, it 

is not restricted to the collected set of shape templates, as we use shape 

templates as just guidance to model shape priors. It third substantially reduces 

visual implausible results, because we put shape constraints on the fragments 

grouping. It is assessed on two cervical datasets, with positive results showing 

its effectiveness.  

5.2   Literature Review 

Intensity-based Methods. This type of methods uses intensity information 

for the segmentation by assigning pixels to its cytoplasm. The simplest 
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method perhaps is adaptive threshold [92, 103]. It often uses a circular region 

surrounding the nucleus to estimate the threshold for segmenting that 

cytoplasm; pixels with intensity information greater than the estimated 

threshold are segmented into that cytoplasm. It also can be done by using the 

curve that connects local peaks (or valleys) of intensity information 

surrounding the nucleus as cytoplasm’s boundary [96]. Another way is to use 

region growing techniques that take the nucleus as the seed [94, 97] or as the 

marker of watershed techniques [93, 95]. The seed or marker is growing by 

merging neighboring pixels with similar intensity values. This type of 

methods is computationally effective, however suffers from the imaging 

quality. They usually produce unsatisfactory results when the intensity 

information is unclear, a common case that can be often encountered in 

practice. 

Shape Priors-based Methods. This type of methods segments overlapping 

objects by leveraging shape priors. These methods often have two ways of 

modeling shape priors: shape assumption and shape template matching. The 

former way [98, 99, 104] attempts at designing a mathematical formulation 

to describe cytoplasm’s shape. The most commonly used technique in this 

line is to assume cytoplasms to be elliptical. Therefore, they fail to capture 

shape details, especially for cytoplasms that have irregular or complex shapes. 

This is mainly because of the difficulty of formulating such highly 

summarized but also computationally feasible formulations. The later way 
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[100, 104, 105]) is to match a shape template from the collected template set 

that best describes the cytoplasm’s shape and then use the matched shape 

template as shape priors for the segmentation. For capturing sufficient shape 

details, it is required for them to collect shape templates carefully. Such a 

process is often time-consuming and requires expensive domain expertise. 

Compared to existing methods, the proposed method can capture sufficient 

shape details, as it models shape priors from contour fragments and shape 

statistics of cytoplasms. 

5.3   Methodology 

Fig. 5.2 shows how our method to model shape priors for segmenting 

overlapping cervical cytoplasms. We first employ a CNN to segment the 

clump, and then cut the clump boundary into fragments. We next group 

fragments into its cytoplasm. Then we estimate shape templates for 

cytoplasms based on the grouping results. Next, we connect each cytoplasm’s 

fragments to form its boundary based on the estimated shape template that is 

used as a shape constraint. We developed fragments grouping, shape template 

estimation, and fragments connecting as an iterative solution, to continually 

refine the modeled shape priors for boosting the performance. This iterative 

process is terminated when either reaching the maximal iteration number or 

a stable result of fragments grouping. 
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                               (a)                                                              (b)                       

             

                                (c)                                                              (d)                       

Fig. 5.2  Illustration of the proposed method: (a) the input image; (b) 

generating fragments; (c) the iterative process of three key steps; (d) the 

segmentation result. 

5.3.1   Fragments Generating 

We first use a CNN [106] to segment the cytoplasms clump by classifying 

each pixel into either nuclei, cytoplasm, or background. The used CNN has 

three scales in the sense of patch sizes. Such a network architecture has been 

proven to be able to learn contextual information at different information 

scales of the training image. The extracted features then are fused for 

classifying pixels. We finally use a graph partitioning technique to refine 

CNN’s result; more technical details can be found in [106]. 
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We next estimate each boundary point’s curvature information, and cut the 

clump’s boundary into contour fragments at the points that have local 

extremum of curvature for generating fragments. Here note that for 

cytoplasms with convex shape, boundary points that are of the local curvature 

extremum are intersection points, but for other complex shapes, not all these 

points are intersection points; Fig. 5.1 (b) shows such an example. For 

cervical cytoplasms, most of them have a non-convex shape, and so only the 

above procedure cannot accurately locate intersection points. 

To handle complex shapes, our idea is to limit fragments’ length such that 

the endpoints of fragments can be as near to intersection points as possible. 

In particular, when fragments are longer than the prescribed value, we cut 

them at their midpoints to make them shorter. We iteratively do this process 

until there are no fragments longer than the prescribed value. An illustration 

of why this idea works is shown in Fig. 5.3. We can see from it that by doing 

so we can find more intersection points.  

5.3.2   Fragments Grouping 

We next group fragments of each cytoplasm by developing a Markov random 

fields (MRF) model. The purpose of this step is to cluster each cytoplasm’s 

fragments such that we can use them to estimate the shape template for 

cytoplasms. Its performance is significant in shape template estimation. 

Without a proper grouping, shape templates are estimated from incorrect 
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                         (a)                              (b)                                (c) 

Fig. 5.3  Illustration of why length limit helps to find intersection points: (a) 

the input image has two intersection points, the blue points, (b) fragments 

generating without using length limit, and (c) fragments generating with using 

length limit.  

shape cues. Details are presented below. 

Let ℱ = {1,⋯ ,𝑀}  be the 𝑀  fragments of the clump that has 𝑁  nuclei 

denoted by 𝒩 = {1,⋯ ,𝑁}. For the grouping, we design the energy function 

of the MRF model as below 

𝐸(ℓ) = ∑ (𝜔1𝐷𝑖(ℓ𝑖) + 𝜔2 ∑ 𝑉𝑖𝑖′(ℓ𝑖, ℓ𝑖′)𝑖∈𝜀𝑖
)𝑖∈ℱ ,                    (5.1) 

where ℓ represents a grouping function in the admissible space. We use ℓ𝑖 to 

denote the fragment 𝑖 that is grouped into the nucleus ℓ𝑖; here for simplicity 

we interchangeably use ℓ𝑖 and 𝑛 to denote the nuclei. In addition, 𝐷𝑖(ℓ𝑖) is 

the cost of such a grouping. We set its value to the probability of 𝑖 belonging 

to the boundary parts of the cell with the nucleus of ℓ𝑖 (after the negative 

logarithm operation). Similarly, 𝑉𝑖𝑖′(ℓ𝑖, ℓ𝑖′)  is the cost of grouping two 

neighboring fragments 𝑖 and 𝑖′ to ℓ𝑖 and ℓ𝑖′ at the same time, with the value 

of the probability of 𝑖 and 𝑖′ belonging to ℓ𝑖 and ℓ𝑖′. We here use the symbol 

𝜀𝑖 to denote the neighboring fragments of 𝑖. Finally, we use two parameters: 
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𝜔1  and 𝜔2 , to balance the importance of these two terms in the energy 

function. 

 The key of the grouping quality is to enable the energy function to 

consider shape priors. To this end, we here model two types of shape priors. 

The first one is the spatial relationships between nuclei and fragments, and 

another one is the shape relationships between fragments. Below are the 

details of how we define 𝐷𝑖(ℓ𝑖) and 𝑉𝑖𝑖′(ℓ𝑖, ℓ𝑖′) in a manner that can model 

the above-mentioned shape priors. 

For introducing 𝐷𝑖(ℓ𝑖), we below present our definition of the spatial 

relationship. We use 𝑒𝑖 = {𝑝1,⋯ , 𝑝𝑚}  to denote boundary pixels of the 

fragment 𝑖  that has 𝑚  boundary points. We define the spatial distance 

between 𝑖 to the nucleus 𝑛 as 

𝑔(𝑖, 𝑛) =
1

𝑚
∑ 𝑔𝑘(𝑝𝑘, 𝑛)𝑝𝑘∈𝑒𝑖

,                               (5.2) 

where 𝑔𝑘(𝑝𝑘, 𝑛) is a distance of the nucleus’ centroid to the boundary point 

𝑝𝑘 by Euclidean measure, if pixels in the line segment from the centroid to 

𝑝𝑘  are all in the clump and no other nucleus’ pixels in that line segment, 

otherwise, we set it to ∞. 

Next, we define the shape distance between fragments. To do so, we match 

a shape template from the collected set, and then use it to measure the distance. 

More specifically, it is defined as: 

ℎ(𝑖, 𝑛) = argmin
𝜙∈Φ

1

𝑚
∑ ‖𝑔𝑘(𝑝𝑘, 𝑛) − 𝑔𝑘(𝑝𝑘′ , 𝑛|𝜙)|‖𝑝𝑘∈𝑒𝑖

,             (5.3) 



76      0      

 

where 𝜙 is the matched shape template from the collected shape templates set 

Φ, and 𝑝𝑘′ stands for the location of 𝑝𝑘 in 𝜙 after shape alignment by using 

[107]. 

 The shape templates set plays a significant role in measuring the distance. 

It should have the capability of representing most cytoplasms’ shape, 

otherwise, there will be a considerable biased error. We hence collect shape 

templates as below. We first cluster the manually collected templates into 𝐾 

clusters by using the k-means algorithm, and then select all the center 

templates that have the minimal inner class distance as the shape templates 

into the set. 

Based on these two types of distance, we formulate 𝐷𝑖(ℓ𝑖) as below 

𝐷𝑖(ℓ𝑖) = 𝜔3𝑔(𝑖, ℓ𝑖) − (1 − 𝜔3)ℎ(𝑖, ℓ𝑖),                       (5.4) 

where 𝜔3 is a parameter to control two terms’ importance. Here note that 

these two types of distance 𝑔 and ℎ have been normalized into [0, 1] (a larger 

value of them is normalized into a smaller value). 

We next formulate 𝑉𝑖𝑖′(ℓ𝑖, ℓ𝑖′) as: 

𝑉𝑖𝑖′(ℓ𝑖, ℓ𝑖′) = min
 

(𝐷𝑖𝑖′(ℓ𝑖), 𝐷𝑖𝑖′(ℓ𝑖′)),                        (5.5) 

if ℓ𝑖 ≠ ℓ𝑖′ , otherwise 0. 𝐷𝑖𝑖′(ℓ𝑖)  here stands for the cost of a combined 

fragment consisting of two neighboring fragments 𝑖 and 𝑖′ being assigned to 

the same label ℓ𝑖 , measured by Eq. 5.4. Here note that more shape cues 

become available by considering these combined fragments along with the 

original fragments. 
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We finally solve Eq. 5.1 by employing the optimization method [108]. This 

method first evaluates the value of the objective function for a possible 

grouping ℓ. It then attempts to reduce the energy function by finding a new 

grouping function. It terminates when getting the grouping function ℓ∗ that 

yields the minimal value of the objective function. 

5.3.3   Shape Template Estimation 

Once fragments of cytoplasms have been grouped, we start to estimate the 

cytoplasm’s shape template based on the grouping result. For the estimation, 

we describe a shape by 

𝒞 = 𝜇𝑠 + 𝜆𝑏,                                              (5.6) 

where 𝒞 stands for the estimated shape, 𝜇𝑠 and 𝜆 are shape statistics extracted 

from the collected shape templates set; 𝜇𝑠: mean shape, 𝜆: eigenvectors of 

shape templates set’ covariance matrix, and 𝑏: the vector that controls the 

shape.  

Our goal here is to estimate a good value of 𝑏. Below are the details. Let 

𝒪𝑛 be the grouped fragments of the cytoplasm 𝑛. Since there may not exist a 

deterministic mapping from 𝒪𝑛  to 𝒞𝑛 , we instead try to maximize   

𝑝(𝒞𝑛|𝒪𝑛; 𝜇𝑠, 𝜆), the probability of 𝒞𝑛 controlled by 𝑏𝑛 is the optimal shape 

template of the cytoplasm 𝑛 given 𝒪𝑛, 𝜇𝑠 and 𝜆. In other words, we estimate 

the shape template by solving the problem 

   𝒞𝑛
∗ = argmax

𝒞𝑛∈Ω𝒞

𝑝(𝒞𝑛|𝒪𝑛; 𝜇𝑠, 𝜆),                                (5.7) 
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where Ω𝒞 stands for the shape space. 

We solve the above problem by using the Bayes rule, according to which 

we get that it is equivalent to solve 

argmax
𝒞𝑛∈Ω𝒞

(𝑝(𝒞𝑛; 𝜇𝑠, 𝜆) 𝑝(𝒪𝑛|𝒞𝑛; 𝜇𝑠, 𝜆)).                       (5.8) 

We next bridge the gap between the probability 𝑝(𝒞𝑛|𝒪𝑛; 𝜇𝑠, 𝜆) and 𝑏𝑛 by 

using [109, 110]. According to them, we can solve Eq. 5.8 by solving the 

below problem 

𝑏𝑛
∗ = argmin

𝑏𝑛∈Ω𝑏

(𝑏𝑛
𝑇 ∑ 𝑏𝑛

−1
𝑠 + 𝜔4‖𝒪𝑛

∗ − 𝒪𝑛‖),                     (5.9) 

where 𝑏𝑛
𝑇 and ∑  −1

𝑠 denote the transpose of 𝑏𝑛 and the inverse of the matrix 

∑   
𝑠 and 𝒪𝑛

∗  stands for the corresponding location of the grouped 𝒪𝑛  on the 

shape template (𝜇𝑠 + 𝜆𝑏𝑛). In addition, the operation ‖x‖ is the 𝐿2 norm of 

the vector x. It finally uses the hyperparameter parameter 𝜔4 to control two 

terms’ contribution.  

For the implementation, we represent 𝒪𝑛  by a vector in the polar 

coordinate. In particular, we place the nucleus’ centroid as the coordinate’s 

origin, and organize boundary pixels of the cytoplasm as the vector to 

represent that cytoplasm’s shape. This way is effective in the sense of 

computation and implementation. 

Why Eq. 5.9 bridges the gap is below. 𝑏𝑛
𝑇 ∑ 𝑏𝑛

−1
𝑠  is the appropriate value 

of the negative logarithm of 𝑝(𝒞𝑛; 𝜇𝑠, 𝜆) that models global shape priors. 
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Similarly, ‖𝒪𝑛
∗ − 𝒪𝑛‖ is the negative logarithm of 𝑝(𝒪𝑛|𝒞𝑛; 𝜇𝑠, 𝜆) that model 

local shape priors. 

We finally optimize Eq. 5.9 by using  [111], and produce the shape 

template of the cytoplasm 𝑛 by 𝒞𝑛
∗ = 𝜇𝑠 + 𝜆𝑏𝑛

∗ .  

5.3.4   Fragments Connecting 

Given the estimated shape template, our goal is to connect the grouped 

fragments to produce the segmentation result. Wo connect two fragments by 

finding a curve 𝛾∗ by solving the below problem 

𝛾∗ = argmin
𝛾∈𝑝𝑠→𝑝𝑒

∫ 𝑓(𝛾(𝑠))
 

𝛾
𝑑𝑠,                             (5.10) 

where 𝑝𝑠 and 𝑝𝑒 denote the starting point and ending point of the curve. 𝑠 is 

the variable that controls 𝛾. 𝑓(𝛾(𝑠)) is the energy function that evaluates the 

quality of the curve 𝛾(𝑠).  

We here design 𝑓(𝛾(𝑠)) by considering shape priors, intensity information, 

and curvature information, because these types of information are necessary 

to segment occluded boundary parts. This function hence takes the following 

form 

𝑓(𝛾(𝑠)) = −𝜔5‖∇𝐼(𝑠)‖ + 𝜔6‖𝒞𝑑(𝑠)‖ + ‖𝛾‖𝑘2(𝑠),            (5.11) 

where ‖∇𝐼(𝑠)‖, ‖𝒞𝑑(𝑠)‖, and 𝑘(𝑠) stand for the intensity gradient magnitude, 

shape distance to the estimated shape template, and the curvature, at 𝑠; ‖𝛾‖ 

is the length of the curve. 
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For computational efficiency, we consider curvature information in the 

form of ‖𝛾‖𝑘2(𝑠) rather than 𝑘(𝑠), because it can be directly approximated 

with sufficient accuracy [112], that is, 

∫ ‖𝛾‖
 

𝛾
𝑘2(𝑠) 𝑑𝑠 ≈

4

𝑑
(4(𝜃𝑠 − 𝜃𝑒)

2 + 𝜃𝑠𝜃𝑒 + 𝜃𝑝
2),                 (5.12) 

where 𝑑 is the Euclidean distance between 𝑝𝑠 and 𝑝𝑒, and 𝜃𝑠, 𝜃𝑒, and 𝜃𝑝 are 

the orientation at 𝑝𝑠 and 𝑝𝑒, and of the vector 𝑝𝑠𝑝𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , respectively. 

We finally use two parameters 𝜔5 and 𝜔6 to balance the importance of 

three types of information. Below is the solution of Eq. 5.10. We first evaluate 

the minimal action map by a forward propagation that gives the cost of pixels 

being the curve from 𝑝𝑠  to 𝑝𝑒 . We next find the optimal 𝛾∗ by connecting 

pixels from 𝑝𝑒 to 𝑝𝑠 with minimal cost.     

The minimal action map is evaluated as follows. From 𝑝𝑠, we assign its 

neighboring pixels with the action value ∫ 𝑓(
 

𝛾
𝛾(𝑠)) 𝑑𝑠. We then select the 

neighboring pixel that has the minimal action value, and start to evaluate the 

action value of its neighboring points. The above process is repeated until the 

action value of 𝑝𝑒 has been evaluated. 

5.3.5   Iterative Refinement 

By fragments connecting, we have got the segmentation result. However, it 

can be refined by iteratively conducting fragments grouping, shape template 

estimation, and fragments connecting. The reason why it works is below. The 

segmentation results can be used to help the fragments grouping. They can 
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replace shape templates and provide more accurate shape information, and 

thus improve the segmentation results. They also can be used to exploit 

clump-level shape information, not only the cytoplasm-level shape 

information. Intuitively, more information available will help to refine the 

result.  

We now present the iterative procedure. Our idea is to promote the 

similarity between the clump and the combined clump of segmented 

cytoplasms. We hence refine the segmentation results by improving the 

similarity. 

Before presenting the similarity measure, we present two symbols: ℝ and 

ℂ , denoting by the combined clump and input clump, respectively. The 

similarity then is measured by the operation Card(ℝ\ℂ + ℂ\ℝ) ; the 

operation Card  is to count the elements’ number of a set. Based on this 

measure, the more similar between ℝ and ℂ yields a larger similarity value.  

We finally refine the segmentation results by minimizing the following 

equation 

𝔼(ℓ) = 𝐸(ℓ) + Card(ℝ\ℂ + ℂ\ℝ).                      (5.13) 

It starts to update the shape distance and then produces a better grouping of 

fragments that reduces the value of 𝔼(ℓ). It next estimates the shape templates 

based on the updated fragments grouping results, then updates the fragments 

connecting results, and finally repeats this iterative process. This process  
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        (a)                                              (b)                                               (c) 

Fig. 5.4  Illustration of why our iterative procedure works: (a) the input image 

of an example, (b) the intermediate results, especially, of 1st-3rd iteration, 

and (c) the final result produced by the proposed method. 

is terminated either reaching the given iteration number or getting the stable 

fragments grouping results. 

The iteration number, in this application, we set to 10 that produces the 

best results; it can be determined by cross-validation in other applications. In 

our application, it is also observed that most cervical clumps just need 3~4 

iterations. Fig. 5.4 shows an example of how the segmentation result is 

continually improved by the processed iterative process, showing the 

effectiveness.  

5.4   Experimental Evaluation 

5.4.1   Experimental Setup 

Datasets. This method is assessed on two cervical smear datasets. The first 

dataset is collected from the ISBI 2015 Overlapping Cervical Cytology Image 

Segmentation Challenge. We called it as Pap stain dataset, because it is 

prepared by Papanicolaou (Pap) stain. It consists of 8 public images, each of 
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them having 20~60 cells. There are 11 clumps on average on them, and 3.3 

cells in a clump. 

Another one is called H&E stain dataset, because it is prepared by 

Hematoxylin and Eosin (H&E) stain. It is collected from Shenzhen Sixth 

People’s Hospital in China. It consists of 21 cervical images, each of them 

having 30~80 cells. There are 7 clumps on average on them, and 6.1 cells in 

a clump. 

Performance Metrics. We first employ the Dice similarity coefficient, 

defined as 𝐷𝑆𝐶 = 2|𝑅𝑠 ∩ 𝑅𝑔|/(|𝑅𝑠| + |𝑅𝑔|), to measure the performance, 

where 𝑅𝑠 and 𝑅𝑔 stand for the segmentation result and the ground truth. We 

also introduce two other metrics that are based on shape smoothness 𝒮(𝑅) =

∮ | 𝑑𝜃(𝑝) |
 

𝑝∈𝜕𝑅
 and shape roundness ℛ(𝑅) = ∫ 𝑑𝑝

 

𝑝∈𝑅
/(∮ 𝑑𝑝)

 

𝑝∈𝜕𝑅

2
, where 

𝜕𝑅  indicates the boundary of region 𝑅 , 𝜃(𝑝) indicates the change of the 

tangent angle at the boundary point 𝑝, and |. | indicates the absolute value. 

We define the smoothness similarity coefficient as 𝑆𝑆𝐶 = 1 − |𝒮(𝑅𝑠) −

𝒮(𝑅𝑔)|/𝒮(𝑅𝑔)  and the roundness similarity coefficient as 𝑅𝑆𝐶 = 1 −

|ℛ(𝑅𝑠) − ℛ(𝑅𝑔)|/ℛ(𝑅𝑔). Note that all DSC, SSC, and RSC have a value in 

[0, 1], and a better segmentation algorithm produces a higher value for these 

three metrics. 

Implementation. Training images and shape templates are randomly selected. 

We used 5-fold cross-validation to report the result. In each fold, there are 

usually about 250 cells. We cluster them into 40 clusters by using k-means. 
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We therefore have 40 shape templates that are used to compute shape 

distances in fragments grouping at the first iteration. In the shape templates 

estimation step, however, all cytoplasms are used as shape templates, for 

providing more shape information.  

Parameters Selection. Our shape constructing has 7 parameters: length 

threshold of fragments, and 𝜔1 to 𝜔6. Their values are determined by cross-

validation. Fragments’ length threshold has some relationship to cytoplasm’s 

perimeter. Our experimental evidence shows that a good value of it should 

range in 5~10% of the average perimeter of cytoplasms. We here empirically 

set it to 30 pixels. 

As for 𝜔1 and 𝜔2, a small value of them will ignore the importance of 

shape priors, but a large value of them can bring optimization difficulties, 

reducing the convergence speed. They are set to 10 and 4 by cross-validation 

results. 

The parameter 𝜔3 is to balance two types of shape distance. There is no 

formal analysis of which of them should be set larger, mainly because of the 

huge range of cervical cytoplasms’ size. We hence empirically set its value to 

0.5.  

The parameter 𝜔4 is decided by the overlapping degree. In principle, when 

cytoplasms are with a higher overlapping degree, a larger value should be set 

to 𝜔4 . We finally set 𝜔4  to 7 and 10 in the Pap and H&E stain datasets, 

respectively. 
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Finally, the parameters 𝜔5 and 𝜔6, their value is related to the imaging 

quality. It is observed that a large value of them is more likely to produce 

more accurate results if the given images have clear intensity information. We 

empirically set 𝜔5 to 1 and 𝜔6 to 0.2 in the Pap dataset, and 0.7 and 0.4 in 

another dataset. 

Competitors. We compared the proposed method to four existing methods, 

denoted by LSF [98], MCL [100], DSM [101], and GSD [102]. They are all 

developed by using shape priors; LSF using shape assumption while MCL, 

DSM, and GSD using shape matching. We get the segmentation results of 

LSF and MCL by re-running the codes provided by the authors, and of DSM 

and GSD by reproducing them with the recommend implementations by the 

authors. 

5.4.2   Experimental Results 

Quantitative Results. Tables 5.1 to 5.3 reported the results of the proposed 

method on the Pap stain dataset while 5.4 to 5.6 report the results on the H&E 

dataset, under different overlapping degrees. We define it as the length ratio 

of the occluded boundary to the whole cytoplasm’s boundary. The results are 

organized into three groups according to the overlapping degree:(0, 0.3], 

(0.3, 0.6], and (0.6, 1), with the number of cytoplasms of 621, 407, and 203, 

respectively. 

We can see that all methods’ performance measured by all metrics is 

decreasing with the increasing of overlapping degree. It is also observed that 
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Table 5.1  Performance comparison results on the Pap stain dataset under 

the overlapping degree of (0, 0.3]. 

 DSC   SSC RSC 

LSF [98] 0.79±0.06 0.75±0.08 0.88±0.10 

MCL [100] 0.79±0.04 0.80±0.07 0.92±0.11 

DSM [101] 0.81±0.08 0.81±0.10 0.84±0.08 

GSD [102] 0.80±0.10 0.78±0.09 0.85±0.10 

Ours 0.84±0.06 0.86±0.05 0.90±0.06 

 

Table 5.2  Performance comparison results on the Pap stain dataset under 

the overlapping degree of (0.3, 0.6]. 

 DSC   SSC RSC 

LSF [98] 0.76±0.11 0.80±0.10 0.85±0.09 

MCL [100] 0.77±0.08 0.83±0.09 0.88±0.10 

DSM [101] 0.78±0.07 0.82±0.08 0.85±0.08 

GSD [102] 0.77±0.08 0.82±0.06 0.86±0.09 

Ours 0.81±0.05 0.85±0.08 0.87±0.06 

 

Table 5.3  Performance comparison results on the Pap stain dataset under 

the overlapping degree of (0.6, 1). 

 DSC   SSC RSC 

LSF [98] 0.73±0.07 0.75±0.08 0.81±0.09 

MCL [100] 0.75±0.06 0.76±0.10 0.82±0.07 

DSM [101] 0.74±0.05 0.76±0.07 0.82±0.08 

GSD [102] 0.75±0.07 0.77±0.06 0.82±0.10 

Ours 0.79±0.06 0.77±0.08 0.85±0.07 

 

the proposed method works better than all compared methods by almost all 

three metrics. Specifically, when the overlapping degree is no greater than 
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Table 5.4  Performance comparison results on the H&E stain dataset under 

the overlapping degree of (0, 0.3]. 

 DSC   SSC RSC 

LSF [98] 0.79±0.06 0.77±0.10 0.89±0.07 

MCL [100] 0.80±0.07 0.82±0.11 0.90±0.06 

DSM [101] 0.80±0.04 0.79±0.07 0.87±0.07 

GSD [102] 0.81±0.08 0.80±0.08 0.86±0.08 

Ours 0.83±0.06 0.85±0.08 0.89±0.08 

 

Table 5.5  Performance comparison results on the H&E stain dataset under 

the overlapping degree of (0.3, 0.6]. 

 DSC   SSC RSC 

LSF [98] 0.74±0.10 0.77±0.07 0.82±0.09 

MCL [100] 0.74±0.11 0.82±0.08 0.84±0.10 

DSM [101] 0.75±0.09 0.83±0.09 0.83±0.07 

GSD [102] 0.76±0.08 0.82±0.09 0.84±0.08 

Ours 0.80±0.09 0.83±0.07 0.86±0.08 

 

Table 5.6  Performance comparison results on the H&E stain dataset under 

the overlapping degree of (0.6, 1). 

 DSC   SSC RSC 

LSF [98] 0.69±0.06 0.71±0.08 0.79±0.09 

MCL [100] 0.69±0.06 0.71±0.08 0.82±0.11 

DSM [101] 0.72±0.06 0.74±0.09 0.80±0.07 

GSD [102] 0.74±0.09 0.75±0.06 0.81±0.08 

Ours 0.78±0.07 0.75±0.07 0.83±0.09 

 

0.3, the proposed method, on average, has a 3% performance improvement. 

With the increasing of the overlapping degree, the improvement is becoming 
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                                 (a)                                                       (b)                                                

Fig. 5.5  Visual comparison results: (a) examples (Pap stain dataset) and (b) 

examples (H&E stain dataset); samples’ size is scaled for better viewing. 

more noticeable; the performance gain is about 7% when the overlapping 

degree is no less than 0.6. These empirical results suggest that, compared to 

other methods, our shape constructing is a more effective method to segment 

complicated and highly overlapping cervical cytoplasms. 

Qualitative Results. In Fig. 5.5, we provide several visual examples of the 

segmentation results of these methods, for the qualitative comparison about 

them. Note that we arrange the sampled examples in Fig. 5, according to the 

overlapping degree with the increasing order. We can see from them that our 

method works better than all compared methods in these cases, and visually 

implausible results are significantly reduced. 
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Table 5.7  Ablation study results on the Pap stain dataset under the 

overlapping degree of (0, 0.3]. 

 DSC   SSC RSC 

CS-A 0.80±0.10 0.73±0.06 0.83±0.08 

CS-S 0.79±0.07 0.76±0.05 0.87±0.09 

CS-K 0.81±0.06 0.82±0.07 0.89±0.10 

CS-1 0.80±0.05 0.83±0.09 0.83±0.07 

Ours 0.84±0.06 0.86±0.05 0.90±0.06 

 

Ablation Study. We also implemented four variations of our method, 

denoted respectively by CS-A, CS-S, CS-K, and CS-1. CSA, CS-S, CS-K are 

variations considering only ‖∇𝐼(𝑠)‖, ‖𝒞𝑑(𝑠)‖, and ‖𝛾‖𝑘2(𝑠) in Eq. 5.11, 

respectively, for evaluating the effects of the intensity cue, shape priors, and 

curvature cue on the segmentation accuracy, while CS-1 removes the iterative 

scheme. Experimental results are presented in Table 5.7 from which it is 

observed that our method works better than all its variations, suggesting that 

all the components of the proposed method are necessary and mutually 

reinforcing. 

5.5   Closing Remarks 

Shape constructing is an effective method of modeling shape priors, and 

extensive experimental results show that it works well in overlapping cervical 

cytoplasms segmentation. Compared to existing methods, most of which 

exploit intensity information or shape formulations, we model shape priors 
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from clump’s contour fragments to integrate more shape details for the 

segmentation. We evaluate this method by comparing the segmentation 

accuracy to several existing methods, and our experimental results obtained 

on two datasets indicate that our shape constructing has great potential to 

segment overlapping cervical cytoplasms, outperforming existing methods.  
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Chapter 6 

Shape Mask Generator: Learning to Refine Shape 

Priors for Segmenting Overlapping Objects 

This chapter presents shape mask generator that models shape priors by 

learning how to refine them. We use learning method to refine shape priors 

until they can describe cytoplasms’ most shape. In particular, we first model 

shape priors from a collected shape template set and then use the modeled 

shape priors to estimate each cytoplasm’s shape mask. We next refine the 

modeled shape priors by reducing the generating residual which is designed 

to be smaller when the resulting shape masks are more accurate. We assess 

the proposed method on two cervical smear datasets, with the extensive 

results showing the effectiveness of this method in overlapping cervical 

cytoplasms segmentation. 

6.1   Problem Background 

Overlapping cervical cytoplasms segmentation makes it possible to measure 

cell-level information that is required to screen cervical cancer [113-115], 

both 4-th of the morbidity and mortality in women in global [117]. Currently, 

an effective way of combating this cancer is to screen cervical cancer [8, 116].  
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              (a)                          (b)                         (c)                          (d)                

Fig. 6.1  Illustration of the difficulty in this task: (a) deficient image 

information, (b) intensity-based methods to be sensitive to imaging quality, 

(c) shape priors-based methods producing visually implausible results, and (d) 

the ground truth.  

It is, however, rather challenging, as often the intensity information is 

deficient, as shown in Fig. 6.1 (a).  

Existing approaches of this task include mainly two types: (1) intensity- 

[92, 93, 96, 97, 118-122] and (2) shape priors-based [98-105, 123-126]. The 

key idea of the first type of methods is based on the usage of intensity 

information, often by developing classic segmentation algorithms, e.g. 

thresholding [92, 97, 118], watershed [93, 119, 120], graph-cut [121], and 

morphological filtering [96, 122]. This type of methods hence relies on the 

imaging quality, and often does not work when the intensity information is 

deficient, as shown in Fig. 6.1 (b). 

The second type of methods assume that intensity deficiency can be 

compensated by using shape priors if they are modeled appropriately. They 

often integrate the modeled shape priors into shape-based algorithms, e.g. 

level set model [127-129], to produce the segmentation results. Existing 
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methods model shape priors by either limiting cytoplasms’ shape (star shape 

[19] or elliptical shape [98, 123, 124] for example) or matching a shape 

template [100-102, 105, 125, 126]. The modeled shape priors by these 

methods therefore are often lack of representation capability, and so these 

methods may produce visually implausible results, as shown in Fig. 6.1 (c) 

for example. 

The proposed shape mask generator is a simple method to model shape 

priors for segmenting overlapping cervical cytoplasms. We refine shape 

priors by learning to refine them. This method directly produces the shape 

mask of cytoplasms for segmentation, according to the modeled shape priors. 

In detail, we refine shape priors by reducing the discrepancy between 

segmentation results and the ground truth. This method was assessed on two 

cervical datasets, and we obtained positive results that show the effectiveness 

of this method. 

6.2   Methodology 

Fig. 6.2 shows an illustrative pipeline of our shape mask generator. We first 

collect shape templates, and use them to model,  𝝁 and 𝐌, the mean shape of 

the templates and eigenvectors of the templates’ covariance matrix. They are 

what we called shape priors and want to refine for improving the 

segmentation accuracy. For refining them, a key is to design the objective 

function that can measure the quality of the modeled shape priors. Here, we 
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Fig. 6.2  The illustrative pipeline of our method to refine shape priors. 

refine them by 

{𝝁∗, 𝐌∗} = argmin
𝝁,𝐌

𝔼𝒟[R(𝐈, G(𝐈; 𝝁,𝐌))],                      (6.1) 

where 𝔼𝒟  denotes the expectation of generating residual R in the training 

dataset 𝒟; 𝐈 and G(𝐈; 𝝁,𝐌) stand for the input image and generated shape 

masks of cytoplasms, respectively. 

6.2.1   Shape Mask Estimation 

We now move on to shape mask estimation. In particular, we estimate a shape 

mask 𝐬𝑖 of cytoplasm 𝑖 by 𝐬𝑖 = 𝝁 + 𝐌𝐱𝑖. To do so, we first represent a shape 

by using it’s boundary information. We organize each shape as a vector with 

size 𝐾, the 𝑘-th entry of it storing the distance 𝑑𝑘 between the boundary point 

𝑘  to the nucleus’ centroid; 𝐾  boundary points are sampled with the same 

angle interval. The estimation is to find an appropriate 𝐱𝑖, and when we got 

it, we recover 𝐬𝑖 to the image by first locating the corresponding 𝐾 boundary 

points and next filling the region. 
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Below are details of how to find 𝐱𝑖. At first, we set all 𝐱𝒊 as 0, and then 

align the corresponding shape mask to the image by rotating and scaling, that 

is, solving the below problem 

argmax
 

𝐵𝑖 ∩ 𝐵𝑐,  s.t. 𝐵𝑖 ∈ 𝐵𝑐,                                  (6.2) 

where 𝐵𝑖 is the aligned shape mask, and 𝐵𝑐 is the clump area segmented by a 

CNN [106]. Note that we illustrate how get shape mask from shape vector in 

Fig. 6.2 (the Shape Recovery plot). 

Once we have got the aligned shape masks, we compute that discrepancy 

that is defined as 

𝔼(𝐵𝑐, 𝐱) = ∑ (𝐵𝑢(𝑥, 𝑦) − 𝐵𝑐(𝑥, 𝑦))2
(𝑥,𝑦)∈Ω𝐵

,                       (6.3) 

where 𝐱 is the symbol of all 𝐱𝒊 for the cytoplasms in the clump, and 𝐵𝑢 =

⋃𝐵𝑖 is the generated clump area by aligned shape masks. As expected, it has 

a value of 0 when the generated clump 𝐵𝑢 is the same as 𝐵𝑐. Also, it has a 

convex function with good property, a monotone increasing function. 

Our solution is to iteratively find a 𝐱𝒊 that is better than the current one. 

This is can be done by reducing the value of 𝔼(𝐵𝑐, 𝐱). We will cycle the above 

process until that we cannot find a better 𝐱𝒊. In other words, reducing 𝔼(𝐵𝑐, 𝐱) 

is no longer tenable. The terminated 𝐱𝒊 then is aligned to the image by the 

above-mentioned shape recovery procedure, and set the generating residual 

R(𝐈, G(𝐈; 𝝁,𝐌))  to 𝔼(𝐵𝑐, 𝐱
∗)  that, as mentioned above, will guide how to 

refine the modeled shape priors. 
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The key of our solution is to decrease 𝔼(𝐵𝑐, 𝐱). We do it by finding a 𝐩 

such that 𝔼(𝐵𝑐 , 𝐱 + 𝐩) < 𝔼(𝐵𝑐, 𝐱) . To find such a 𝐩 , we approximate 

𝔼(𝐵𝑐, 𝐱 + 𝐩) as 

𝔼(𝐵𝑐, 𝐱 + 𝐩) ≈ 𝔼(𝐵𝑐, 𝐱) + ∇𝔼(𝐵𝑐, 𝐱)
𝑇𝐩 +

𝟏

𝟐
𝐩𝑻∇2𝔼(𝐵𝑐, 𝐱)𝐩,        (6.4) 

where ∇ and ∇2 stand for the gradient and the Hessian. It is worth to note here 

that this way is accurate for the approximation, especially when ‖𝐩‖2 is small, 

with the approximation error of 𝑂(‖𝐩‖2
3). We then search the optimal 𝐩∗ by 

𝐩∗ = argmin
𝐩∈Ω𝐩

𝔼(𝐵𝑐, 𝐱 + 𝐩),    s.t.  ‖𝐩‖2 ≤ ∆,                     (6.5) 

where ∆> 0 is the radius of the searching region of 𝐩∗. We finally use the 

trust-region algorithm [130] to solve Eq. 6.5, because it can automatically 

determine ∆. 

6.2.2   Refining Shape Priors 

We below present the details of solving Eq. 6.1 for refining the shape priors: 

𝝁 and 𝐌. In particular, let 𝒟 = {𝐈𝑗 , 𝐵𝑐
𝑗
, {𝐬𝑖

𝑗
}
𝑖=1

𝑁𝑗 }𝑗=1
𝑁  be the training dataset, 

where 𝐵𝑐
𝑗
 stands for the clump area of the example 𝐈𝑗 , while 𝐬𝑖

𝑗
 is the ground 

truth of the cytoplasm 𝑖 in 𝐈𝑗; we use the symbol 𝑁𝑗 to denote cytoplasms’ 

number in this clump. For training, we first use all {𝐬𝑖
𝑗
} in the training dataset 

to computer the mean shape and the covariance matrix, that is, 

                                   𝝁 =
1

𝑊
∑ ∑ 𝑤𝑖

𝑗
𝐬𝑖
𝑗𝑁𝑗

𝑖=1
𝑁
𝑗=1 , 
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𝐌𝑐 =
1

𝑁𝑐
∑ ∑ (𝐬𝑖

𝑗
−

𝑁𝑗

𝑖=1
𝑁
𝑗=1 𝝁)(𝐬𝑖

𝑗
− 𝝁)𝑇,                           (6.6) 

where 𝑊  is the sum of each template’s importance {𝑤𝑖
𝑗
} that are set to 1 

initially. 𝑁𝑐 is cytoplasms’ number of in 𝒟. 𝐌 is a matrix comprised of the 

first 𝑡 eigenvectors of 𝐌𝑐. 

We next use a learning method to refine 𝝁  and 𝐌  that automatically 

adjusts the value of {𝑤𝑖
𝑗
} by reducing the average generating residual, as 

shown in Eq. 1. This method starts by randomly taking a training example 

(𝐈𝑗 ,  𝐵𝑐
𝑗
,  {𝐬𝑖

𝑗
}
𝑖=1

𝑁𝑗
), and then update {𝑤𝑖

𝑗
}
𝑖=1

𝑁𝑗
; we increase 𝑤𝑖

𝑗
 by ℓ as long as 

the resulting R(𝐈𝑗 , G(𝐈𝑗; 𝝁,𝐌)) is decreased by the update. We update the 

importance one by one at each step, and once all {𝑤𝑖
𝑗
}
𝑖=1

𝑁𝑗
 have been updated, 

we take another example for the updating. The learning procedure is 

terminated when all data’s weights have been properly assigned. 

This learning algorithm has good theoretical properties: the guaranteed 

performance of learning and not sensitive to the updating order. To see this, 

we can simply understand the updating rule as a random walk [131], that is, 

the learned 𝐰 moves towards the right importance 𝐰∗ at some steps and is 

away from 𝐰∗ at other steps. 

It is clear that 𝐰𝑇(𝑡)𝐰∗ is growing linearly with the increasing of 𝑡 while 

‖𝐰(𝑡)‖, the learned importance at step 𝑡, is growing at most √𝑡, meaning that 

this random walk is biased. Therefore, if 𝑡  can be infinitely large, then 

𝐰𝑇(𝑡)𝐰∗

‖𝐰(𝑡)‖‖𝐰∗‖
∝

𝑡

√𝑡
= √𝑡 = +∞. But 

𝐰𝑇(𝑡)𝐰∗

‖𝐰(𝑡)‖‖𝐰∗‖
 is no more than 1, contradicted, 
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suggesting that 𝑡 has to be finite. In other words, we will get an accurate 

approximation of 𝐰∗ after finite 𝑡 steps. 

6.3   Experimental Evaluation 

6.3.1   Experimental Setup 

Datasets. This method is assessed on two cervical smear datasets, called Pap 

stain and H&E stain, according to their staining manner (Papanicolaou and 

Hematoxylin and Eosin). The Pap stain dataset [132] has 60 clumps with 316 

cytoplasms, while the H&E stain dataset [100] has 160 clumps with 962 

cytoplasms. 

Evaluation Metrics. We use Dice Similarity Coefficient (DSC) and Shape 

Similarity Coefficient (SSC) to measure the segmentation performance. DSC 

is a measure of the matching extent between the ground truth and the 

segmentation result, the ratio of pixels’ number in their intersection against 

the averaged pixels’ number in them. SSC is a measure of visually implausible 

extent between the ground truth and the segmentation result [125, 126]. These 

two metrics have values in [0, 1], and have a larger value for a better 

segmentation result. 

Parameters Selection. This method receives two parameters: (1) 𝐾 , 

boundary points’ number for representing shape, and (2) eigenvectors’ 

number for computing M. K is used as 360 here; we found that there is no 

considerable difference in the performance when it is set to 180 or 720. As 
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how to decide eigenvectors’ number, it is found that more detailed shape 

information is modeled by using a large value of it that will enhance the 

representation ability [109]. This way, on the other hand, needs more 

resources, so we assign this parameter as 20. 

6.3.2   Experimental Results 

Representation Ability Improvement. We here assess the ability of our 

method to increase shape priors’ representative ability. We hence compared 

our method to its variant that removes the refinement procedure. In addition, 

we assess the effect of shape templates’ number on the segmentation accuracy. 

In principle, more shape templates provide more shape information, and 

hence the modeled shape priors are likely to have a better representative 

ability. To do so, we look at the varying of the segmentation performance 

under the setting of using shape templates from 10~100% (the interval is 

10%). 

 Note that shape templates are randomly sampled from the dataset, and for 

reducing the sampling bias, we produced the segmentation results of all 

images in the dataset rather than the remaining images. We sampled 5 times. 

We here reported the mean result with the standard deviation in Fig. 6.3 in a 

percentage manner. It is observed that the refinement procedure works better 

than the variant in all cases, though the improvement gap is narrowing with 

the increasing of shape templates’ number. This evidence suggests that the 
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                         (a)                                                             (b)            

Fig. 6.3  The test segmentation performance comparison between our method 

against its variant that removes the shape priors refinement procedure: (a) 

DSC, (b) SSC, with the increasing of shape templates’ number. 

refinement procedure is effective to boost the segmentation performance, and 

it is especially effective when the shape templates are limited, demonstrating 

that shape priors’ representative ability is improved by the refining. It is also 

observed that using more shape templates can boost the segmentation 

performance. However, the performance gains are decreasing with the 

increasing of the shape templates’ number. This is not unusual, because the 

using more shape templates will narrow the accuracy boosting bound in a 

specified dataset. For example, it is more difficult to enhance shape priors’ 

representative ability when we have used 100% shape templates than in other 

cases. 

Segmentation Accuracy Improvement. We here assess the segmentation 

accuracy improvement of our shape mask generator. To do so, we compared 

our shape mask generator to LSF [98], MCL [100], MPW [120], and CF 

[126], four very competitive methods in overlapping cervical cytoplasms 
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Table 6.1  Performance comparison results, DSC (%), on the Pap stain 

dataset. 

 (0,  
1

4
) [

1

4
,  

2

4
) [

2

4
,  

3

4
) [

3

4
,  1) 

LSF [98] 81.1±7.4 77.4±6.1 74.3±7.1 71.9±10.7 

MCL [100] 80.1±5.2 79.7±6.4 77.3±7.4 72.7±8.7 

MPW [120] 82.2±6.4 80.4±7.6 77.6±7.0 73.2±9.4 

CF [126] 84.1±8.2 82.1±5.1 79.6±6.7 77.2±7.6 

Ours 85.4±4.9 83.9±4.7 82.3±6.4 81.0±6.3 

 

Table 6.2  Performance comparison results, DSC (%), on the H&E stain 

dataset. 

 (0,  
1

4
) [

1

4
,  

2

4
) [

2

4
,  

3

4
) [

3

4
,  1) 

LSF [98] 80.7±8.0 75.2±7.6 72.8±8.4 69.4±11.2 

MCL [100] 81.3±6.4 76.7±8.2 72.2±8.2 70.7±9.3 

MPW [120] 81.3±7.2 79.1±9.2 74.1±8.3 71.6±10.4 

CF [126] 83.2±7.1 81.3±8.3 79.7±8.4 75.2±9.4 

Ours 84.6±5.4 83.4±5.2 82.1±6.4 80.7±7.2 

 

MPW belongs to intensity-based methods; it is developed by the watershed 

algorithm. And LSF, MCL, and CF are all belong to shape priors-based. 

Particularly, LSF assumes cytoplasms’ shape to be elliptical for modeling 

shape priors, but MCL and CF match shape templates for modeling shape 

priors. Their results are produced by either re-running their codes obtained 

from the authors or reproducing their recommend implementations. 

Table 6.1 and 6.2 present the DSC results of Pap stain and H&E stain 

datasets, and Table 6.3 and 6.4 present the SSC results, both in a percentage 
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Table 6.3  Performance comparison results, SSC (%), on the Pap stain 

dataset. 

 (0,  
1

4
) [

1

4
,  

2

4
) [

2

4
,  

3

4
) [

3

4
,  1) 

LSF [98] 77.8±8.2 77.1±8.4 75.6±8.1 73.2±8.4 

MCL [100] 81.1±7.5 79.6±7.9 75.2±8.9 74.1±10.3 

MPW [120] 82.4±7.1 80.1±7.3 77.2±8.5 74.7±9.2 

CF [126] 86.3±5.9 84.1±6.7 79.7±7.4 75.2±8.7 

Ours 87.8±5.4 86.1±5.7 83.8±6.3 81.7±6.8 

 

Table 6.4  Performance comparison results, SSC (%), on the H&E stain 

dataset. 

 (0,  
1

4
) [

1

4
,  

2

4
) [

2

4
,  

3

4
) [

3

4
,  1) 

LSF [98] 78.1±8.2 80.0±8.7 75.6±9.8 71.4±10.1 

MCL [100] 83.4±8.7 81.2±9.0 76.1±10.7 72.1±11.2 

MPW [120] 84.3±9.7 82.1±10.4 77.4±10.7 74.8±10.4 

CF [126] 86.7±7.1 84.2±7.7 80.1±8.4 76.7±8.2 

Ours 88.4±7.2 86.4±7.4 83.2±7.6 81.3±7.4 

 

Manner (5-fold cross-validation). We reported them according to the 

overlapping degree (4 degrees), to evaluate methods’ effectiveness in 

different overlapping cases. We define overlapping degree by using the length 

ratio of the occluded boundary against the whole boundary. It is observed 

from these tables that the proposed method produced more accurate results 

than all compared methods.  

Qualitative Results. Fig. 6.4 shows four visual results for the qualitative 

comparison. These examples all face the intensity deficiency issue. It is 
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       (a)             (b)             (c)             (d)             (e)             (f)             (g)            

Fig. 6.4  Visual results for the qualitative comparison: (a) input images, (b) 

LSF [98], (c) MCL [100], (d) MPW [120], (e) CF [126], (f) ours, and (g) the 

ground truth, sampled from the Pap stain dataset (the top two) and the H&E 

stain dataset (the bottom two), respectively; images’ size is scaled for better 

viewing. 

observed from Fig. 6.4 that the proposed shape mask generator yields better 

results than other methods; visually implausible results are substantially 

reduced. Our method in some cases can even produce results that are 

comparable with human annotations. 

6.4   Closing Remarks 

The idea of shape mask generator is to improve the shape pirors’ 

representation ability by refining them, for segmenting overlapping 

cytoplasms of cervical cells. We hence first model shape priors by using 
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shape templates, and then use the modeled shape priors to estimate 

cytoplasms’ shape mask. Next, we refine the modeled shape priors by 

reducing the discrepancy between the segmentation results and the ground 

truth. The proposed refinement procedure has good theoretical properties, 

being able to guarantee the representation ability of shape priors. We assessed 

the proposed shape mask generator on two datasets, with positive results 

showing the effectiveness, outperforming existing methods and substantially 

reducing visually implausible segmentation results.  
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Chapter 7 

Conclusion and Future Works 

This chapter aims at ending this thesis by presenting the conclusion and 

discussing future works. The main conclusion is that the proposed five 

methods are effective to address the identified three key problems according 

to the extensive empirical evidence, consistently outperforming existing 

methods, and thus have great potential to advance deep networks in medical 

image segmentation. Future works will focus mainly on further improving 

these methods and investigating other relevant issues of solving these three 

key problems. 

7.1   Conclusion 

Medical image segmentation, making it possible to measure object-level 

information, underpins a huge range of medical applications, playing a 

significant role in smart health. This task, however, is not trivial. Recent 

advances are achieved by deep networks that have shown remarkable success, 

but there are still several key problems to apply them to practical medical 

image segmentation tasks. 

We hence identify three key problems to advance deep networks in 

medical image segmentation tasks. The first problem is to alleviate the burden 
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on training data collection which is time-consuming, or even prohibitively 

expensive, and thus hinders the practical usage of deep networks, posing 

challenges to the training. The second problem is to reduce the unaffordable 

GPU memory consumption of learning 3D features, which limits the 

applicability of deep networks. The last problem is to leverage shape priors 

for further improving the results of deep networks. 

To alleviate the burden on collecting training data, we proposed two simple 

and effective techniques: selection learning and adversarial redrawing, by 

selectively learning from external data and developing unsupervised training 

procedures, respectively. These two techniques make it very cheap and more 

ready to use deep networks, increasing their usability to real-world medical 

applications. 

To reduce the GPU memory consumption of learning 3D features, we 

proposed surface projection that allows 2D networks to learn 3D features. 

This method lowers the GPU requirement of using deep networks, and many 

practical applications thus can be solved by deep networks, prompting their 

real usage. 

To leverage shape priors, we proposed shape constructing and shape mask 

generator, by modeling shape priors from contour fragments and learning to 

refine them, respectively. We applied them to overlapping cervical 

cytoplasms segmentation tasks motivated by screening cervical cancer, and 

showed that they can compensate intensity deficiency, being able to segment 
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visually indistinguishable occluded boundary parts and substantially reducing 

visually implausible results. 

We assessed these five methods on publicly available datasets with 

extensive and comprehensive experiments. The obtained experimental results 

show that these methods are effective, consistently outperforming existing 

methods. We also evaluated the key components of these methods by 

conducting ablation studies, identifying what makes these methods work and 

demonstrating our interpretation of these methods is cautious. It hence may 

be safe to conclude that these methods have great potential to advance deep 

networks in medical image segmentation.     

7.2   Future Works 

There are still several works to be studied in the future, including three main 

issues: (1) applying them to other tasks, (2) integrating them into a unified 

framework, and (3) further improvement of them. These three key issues play 

an important role to push the proposed methods forward, being able to have 

clinical significance. We also hope that by solving them we can fill some 

knowledge gap in this field. 

In future work, we first will focus on applying them to other medical 

segmentation tasks. As shown in the text, the segmentation tasks we studied 

in this thesis are general, and the proposed methods work better than existing 

methods. These methods hence might be able to be applied to other medical 



108      0      

 

image segmentation applications with similar problems, with perhaps 

appropriate revision or adjustment if necessary.   

Then we hope to integrate these methods into a unified framework. These 

methods in this thesis are proposed for addressing only one of these three 

problems, but these problems in practice are arising altogether and also maybe 

with other problems. Therefore, for real usage, we have to combine these 

methods into a new technique that can address all these three problems, for 

maximally boosting the performance.  

We finally will devote ourselves to further improvement on these five 

methods. For selective learning, we look forward to seeing further theoretical 

analysis for selectively learning from external data, and further 

experimentation comparing methods with heterogeneous extent analysis to 

those with smarter learning mechanisms. In order to improve adversarial 

redrawing, we will study to assess network’s output without human 

annotations, and our idea for this is to exploit domain knowledge as 

segmentation constraints into the training process. 

For surface projection, we hope to integrate the surface fusing procedure 

into the learning mechanism such that more decision processes can be directly 

learned. Finally, to improve shape constructing and shape mask generator for 

better modeling shape priors, we plan to study the relationship between 

objects, the relationship between cytoplasms and nuclei for example for 

segmenting overlapping cervical cytoplasms. It is possible to generate line 
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segments by using the gradients of intensity information and then use them 

as internal fragments. This would be more effective to leverage shape priors.  
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