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Abstract

The two-stage stochastic variational inequality (SVI) is a powerful modeling paradig-

m for many real applications in the fields of finance, engineering and economics, which

characterizes the first-order optimality condition of the two-stage stochastic program

and models some equilibrium problems under uncertain environments. The research

for two-stage SVI has received much attention during past decades. Numerically, we

solve the sample discretization problem of the two-stage SVI, which is a large-scale

problem due to the large sample size. Many existing deterministic VI solvers fail

to handle such large-scale problems. The well-known progressive hedging algorithm

(PHA) proposed by Rockafellar and Sun is a competitive algorithm for the large-scale

monotone two-stage SVI. However, only a linear convergence rate is established for

the monotone affine SVI. So far, to the best of our knowledge, there are no superlin-

early convergent algorithms being developed for the two-stage SVI. This thesis aims

to develop globally and superlinearly convergent algorithms for the two-stage SVI.

Firstly, a projection semismooth Newton algorithm (PSNA) is proposed, which

is a hybrid algorithm that combines the projection algorithm and the classic semis-

mooth Newton algorithm. At each step of PSNA, the second stage problem is split

into a number of small problems and solved in parallel for a fixed first stage decision

iterate. The projection algorithm and the semismooth Newton algorithm are used

to find a new first stage decision iterate. The global convergence and the superlinear

convergence rate are established under suitable assumptions. Numerical results for
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monotone problems show that PSNA outperforms PHA. Moreover, PSNA is efficient

to solve some nonmonotone problems which PHA fails to solve.

Secondly, a regularized PSNA (rPSNA) is developed to solve a two-stage stochas-

tic linear complementarity problem (SLCP) that describes the global crude oil market

share under the impact of the COVID-19 pandemic. The existence, uniqueness and

robustness of the solution to the model are analyzed. As the regularized parameter

goes to zero, the sequence generated by rPSNA converges to the unique solution

of the single-stage SVI reformulation of the original problem. Numerical results for

randomly generated examples illustrate that rPSNA performs better than PHA in

terms of the number of iterations as well as CPU time. In addition, the two-stage

SLCP model is applied to recover and predict the crude oil market share under the

influence of COVID-19 with related parameters determined by oil data from reliable

sources. This problem is solved by rPSNA efficiently, and the solution obtained is

suitable to explain and rationalize the behavior of main oil-producing countries.

Lastly, rPSNA is further applied to solve two classes of nonmonotone traffic as-

signment problems. One is the stochastic user equilibrium problem in the form

of the two-stage SVI. The second is the stochastic dynamic user equilibrium prob-

lem, which is formulated as a differential linear stochastic complementarity system

(DLSCS) with the discretization problem being a special two-stage SVI. Numerically,

rPSNA is more efficient for solving these problems compared with PHA.
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Chapter 1

Introduction

1.1 Background

Let (Ξ,A, P ) be a probability space induced by a random vector ξ, in which Ξ ⊆ Rd

is the support set of ξ, A is the Borel sigma algebra of Ξ and P is a probability

measure. Let Y be the space consisting of A-measurable functions from Ξ to Rm.

Consider the following two-stage stochastic variational inequalities (SVI) [6]:

− E[G(x, y(ξ), ξ)] ∈ ND(x), (1.1)

− F (x, y(ξ), ξ) ∈ NC(ξ)(y(ξ)), for almost every (a.e.) ξ ∈ Ξ, (1.2)

where

• G : Rn ×Rm ×Rd → Rn is a vector-valued map, Lipschitz continuous with re-

spect to (x, y) with Lipschtiz constant LG(ξ) for a.e. ξ ∈ Ξ, and A-measureable

and integrable with respect to ξ;

• F : Rn × Rm × Rd → Rm is a vector-valued map, continuously differentiable

with respect to (x, y) for a.e. ξ ∈ Ξ, and A-measureable with respect to ξ;

• E[·] is the expected operator over Ξ, D ⊆ Rn is a nonempty closed convex set

and C(ξ) ⊆ Rm is a polyhedral set for a.e. ξ ∈ Ξ, and ND(x) and NC(ξ)(y(ξ))

are normal cones to the set D at x ∈ Rn and the set C(ξ) at y(ξ) ∈ Rm,

respectively.
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According to the definition of the normal cone, (1.1)-(1.2) is equivalent to finding

(x, y(·)) ∈ Rn × Y such that the following inequalities are satisfied:

(x′ − x)TE[G(x, y(ξ), ξ)] ≥ 0, ∀ x′ ∈ D,

(y′(ξ)− y(ξ))TF (x, y(ξ), ξ) ≥ 0, ∀ y′(ξ) ∈ C(ξ), for a.e. ξ ∈ Ξ.

The two-stage SVI (1.1)-(1.2) is the generalization of the single-stage SVI [5,

12]. The random vector ξ is introduced to describe the stochastic factors from the

unknown future or uncertain environments. A distinct feature for the two-stage SVI

is that its decision variables are comprised of two types, the here-and-now decision

variable x that does not depend on the realization of the random vector ξ and the

wait-and-see decision variable y(ξ) that depends on ξ. A solution (x, y(·)) to the

two-stage SVI is such that the collection of inclusions in (1.1)-(1.2) is satisfied, where

the second stage inclusions (1.2) should hold for a.e. ξ ∈ Ξ. In practice, a here-and-

now decision has to be determined before the observation of the realization of ξ.

The two-stage SVI is a powerful mathematical model that allows decision-makers to

make a decision here and now by taking into account every possible realization of

ξ. This illustrates the reliability and robustness of the solution to the two-stage SVI

compared with the single-stage SVI.

Numerically, we solve the discretization problem of (1.1)-(1.2). More specifically,

given a set of samples {ξ1, . . . , ξν} of the random vector ξ, the discrete approximation

problem of (1.1)-(1.2) reads

−
ν∑

`=1

p(ξ`)G(x, y(ξ`), ξ`) ∈ ND(x), (1.3)

− F (x, y(ξ`), ξ`) ∈ NC(ξ`)(y(ξ`)), ` = 1, . . . , ν, (1.4)

where p(ξ`) > 0 for ` = 1, . . . , ν and
∑ν

`=1 p(ξ`) = 1. If the sample set is indepen-

dent and identically distributed (i.i.d.), then (1.3)-(1.4) is called the sample average
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approximation (SAA) discretization problem. One can refer to [6, 8, 10] for the con-

vergence analysis of the solution of the SAA discretization problem to that of the

two-stage SVI (1.1)-(1.2). (1.3)-(1.4) is a large-scale deterministic problem due to

the large sample size ν. Thus, many deterministic VI solvers encounter difficulties in

handling it, since they are designed to solve small- to medium-scale problems. So, it

is meaningful and necessary to develop specialized algorithms that are globally and

superlinearly convergent for solving the two-stage SVI. However, no such algorithms

are available at present. This thesis is devoted to develop globally and superlinearly

convergent algorithms for this problem.

1.2 Literature review

The two-stage SVI (1.1)-(1.2) is first proposed by Chen, Pong and Wets in [6], which

is the generalization of the single-stage SVI. The two-stage SVI characterizes the

first-order optimality conditions of the two-stage stochastic optimization problems

[6, 44] and models some stochastic equilibrium problems in stochastic environments

[9, 25, 45, 48]. The two-stage SVI was studied extensively; see [8, 10, 33, 42, 43, 44]

for references. One can refer to [42] for the extension of the two-stage SVI to the

multi-stage SVI.

In the case that G(·, ·, ξ) and F (·, ·, ξ) are both linear with respect to (x, y) for

a.e. ξ ∈ Ξ, D = Rn
+, and C(ξ) = Rm

+ for a.e. ξ ∈ Ξ, (1.1)-(1.2) reduces to a two-stage

SLCP as follows:

0 ≤ x⊥Ãx+ E[B(ξ)y(ξ)] + c ≥ 0, (1.5)

0 ≤ y(ξ)⊥N(ξ)x+M(ξ)y(ξ) + q(ξ) ≥ 0, for a.e. ξ ∈ Ξ, (1.6)

where Ã ∈ Rn×n, c ∈ Rn, B : Rd → Rn×m, N : Rd → Rm×n, M : Rd → Rm×m and

q : Rd → Rm. (1.5)-(1.6) is the first-order optimality condition for the two-stage

stochastic linear program [6]. In [10], the existence and uniqueness of the solution
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of the two-stage SLCP are studied under the strong monotonicity assumption. In

addition, a new discretization scheme is proposed and a distributionally robust two-

stage SLCP is studied. In [8], the existence and uniqueness of the solution are

established for a two-stage SVI-NCP, in which the first stage problem is an SVI

and the second stage is a stochastic nonlinear complementarity problem (NCP). The

properties of the Lipschitz continuity and monotonicity of the second stage solution

function for any fixed x and ξ are also discussed. In addition, the expression for the

generalized Jacobian of the second stage solution function is given. The convergence

of the solution of the SAA discretization problem to that of the original problem is

studied, in which the convergence rate is shown to be exponential with respect to

the sample size.

The well-known progressive hedging algorithm (PHA) was first proposed by Rock-

afellar and Wets [41] to solve convex multi-stage stochastic optimization problems.

Recently, it was extended to solve the monotone multi-stage SVI by Rockafellar and

Sun with a finite support set [40]. PHA is a competitive algorithm since it decomposes

the original large-scale problem into a sequence of independent small sample-based

subproblems solved in parallel. Theoretically, PHA is globally convergent for the

monotone SVI. However, only the linear convergence rate is established for the affine

monotone SVI and it is not applicable to nonmonotone problems. Recently, an elicit-

ed PHA was proposed by Zhang, Sun and Xu [48] to solve the elicited monotone (not

necessarily monotone) SVI. However, it is difficult to verify the elicited monotonicity

of the problem, and the convergence rate is still linear. So far, little attention has

been paid to develop a superlinearly convergent algorithm for solving the two-stage

SVI.

In order to design a superlinearly convergent algorithm, the most natural choice

is the Newton-type algorithms. One desirable property is that the local convergence

rate can be superlinear if the problem is semismooth [35]. One issue is that only
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the local convergence can be obtained. To guarantee the global convergence, one

can exploit the line search technique when the starting point is far from the solution,

which is called the damped Newton algorithm. Newton-type algorithms have received

much attention for solving nonsmooth equations, complementarity problems and

variational inequalities; see [7, 15, 24, 31, 35] for details. One may simply apply the

classical damped semismooth Newton algorithms [35, 36] for solving the two-stage

SVI. However, the storage and calculation cost of large-scale Jacobian matrices are

prohibitively high, and the line search is inefficient for large-scale problems. So far,

no specialized Newton-type algorithms are developed for the two-stage SVI.

Next, we review some important applications from the deterministic VI to the

two-stage SVI. The deterministic VI plays an important role in modeling many equi-

librium problems in finance, economic and engineering [17, 19, 20]. As a generaliza-

tion of the deterministic VI, the single-stage SVI is capable of describing equilibrium

problems under uncertain environments; see [5, 18, 21, 23, 26, 38]. The two-stage

SVI as a further generalization of the single-stage SVI, is able to model equilibrium

problems under stochastic environments and involves a dynamic decision process;

see [6, 42]. In [6], a Warlas equilibrium problem under uncertain environments is

formulated as a two-stage SVI, which has a variety of applications in finance, inter-

national commodity trading and species interaction in ecological models. In [25], the

two-stage SVI is used to characterize the first-order optimality condition of a convex

two-stage noncooperative multi-agent quadratic game. In addition, the two-stage

quadratic game model is applied to describe the two-stage stochastic production and

supply planing problem in the oligopolistic crude oil market. Numerical simulations

with historical data from the crude oil market show the efficiency of the model to

recover and predict market shares of the main oil-producing countries over the world.

Recently, the COVID-19 pandemic has brought a significant impact on the global

crude oil market. During the period, the crude oil price and demand are violently
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volatile. However, market shares of main oil-producing countries remained relative

stable despite the influence of COVID-19. This arouses the question if the stable

oil market share can be explained by the results of some kinds of stochastic Nash

equilibrium problems. Most importantly, calculating a solution of some stochastic

game problems leads to solving a large-scale two-stage SVI, which can be difficult to

solve if no superlinear convergence algorithms are developed.

The stochastic Wardrop flow equilibrium in the stochastic traffic assignment is an

important class of applications of the two-stage SVI. One can refer to [6, 12, 19, 37] for

references. The applications of the single-stage SVI for the stochastic Wardrop flow

equilibrium have been studied by Zhang, Chen and Sumalee in [46, 47]. In [12], Chen,

Wets and Zhang proposed an expected residual minimization (ERM) formulation for

a new residual function, which is a two-stage stochastic program that involves the

here-and-now decision variable and the wait-and-see decision variable. This new

model is then applied to describe the stochastic Wardrop flow equilibrium. In [6],

the stochastic traffic assignment problem on the link flow is formulated as a two-stage

SVI, which is further rewritten as a two-stage stochastic program with recourse and

solved by the Douglas-Rachford splitting method [19]. In general, the two-stage SVI

model can produce a more desirable solution than that of the single-stage model.

However, to solve two-stage transportation problems poses a challenge for the well-

known solver PHA since these problems may be nonmonotone and nonlinear.

On the other hand, the differential variational inequality (DVI) [34], which is

comprised of ordinary differential equations (ODEs) and dynamic complementarity

systems, formulates the dynamic Wardrop flow equilibrium that predicts the traffic

states over a short-term time horizon. One can refer to [2, 3, 4, 32, 37] for references.

To deal with stochastic factors, one may introduce a random vector in DVI, which

can model the stochastic dynamic Wardrop flow equilibrium. This thesis also gives

the differential linear stochastic complementarity systems (DLSCS) [29] to model
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the stochastic dynamic Wardrop flow equilibrium. Its discretization problem can

be viewed as a special two-stage SVI in which the first stage problem is a mixed

LCP (mLCP) and the second stage problem is an LCP. Nevertheless, since the dis-

cretization problem is large-scale and nonmonotone, this brings difficulties to many

existing algorithms. Therefore, developing new efficient and superlinear convergence

algorithms is needed.

1.3 Summary of contributions of the thesis

The contributions of the thesis are summarized as follows.

• A globally and superlinearly convergent projection semismooth Newton algo-

rithm (PSNA) is developed to solve the two-stage SVI (1.1)-(1.2) based on

its single-stage SVI reformulation. PSNA has the decomposition feature like

PHA and detours the difficulties of calculating and storing large-scale Jaco-

bian matrices, which enable it to solve large-scale problems. The global con-

vergence and superlinear convergence rate of PSNA are well-established under

suitable assumptions. Numerically, PSNA outperforms PHA for solving mono-

tone problems and it is competitive for some nonmonotone problems.

• A regularized PSNA (rPSNA) is proposed to solve a new two-stage SLCP

model which describes the global crude oil market share problem under the

COVID-19 pandemic. For any fixed first stage variable and realization of a

random variable, the existence and uniqueness of the solution to the second

stage problem are studied. We give an expression for the unique least-norm

solution of the second stage problem, and the robustness of the least-norm

solution is explored. The global convergence of rPSNA is established as the

regularized parameter goes to zero. Numerically, rPSNA is efficient to calculate

a solution of the two-stage SLCP model, and the solution is used to explain
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and forecast the stability of the crude oil market share under the COVID-19

pandemic.

• We further apply rPSNA to solve a nonmonotone stochastic user equilibrium

problem and a nonmonotone stochastic dynamic user equilibrium problem. The

application of rPSNA to the latter problem extends the usage of the algorithm.

Numerically, rPSNA outperforms PHA in solving these problems.

1.4 Organization of the thesis

The thesis is organized as follows.

• In Chapter 1, we introduce the background of the thesis and give a literature

review for the related topics.

• In Chapter 2, we develop PSNA for the two-stage SVI (1.1)-(1.2). The original

two-stage problem is first reformulated as a single-stage SVI by substituting the

second stage Lipschitz solution function into the first stage problem. We then

investigate the solvability, Lipschitz continuity, semismoothness, linear Newton

approximation scheme and monotonicity of the single-stage problem. Based

on the single-stage problem, PSNA is developed. The global convergence and

superlinear convergence rate are established under suitable assumptions. Next,

PSNA is applied to the two-stage semi-linear SVI, which is a special case of

(1.1)-(1.2). In this case, assumptions for guaranteeing the global convergence

and superlinear convergence rate can be verified under suitable conditions.

Numerical experiments are conducted to show the competitiveness of PSNA

compared with PHA.

• In Chapter 3, we propose rPSNA to solve a two-stage SLCP which models

the global crude oil market share problem under the impact of the COVID-19
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pandemic. The existence, uniqueness and robustness of the least-norm solution

of the second stage problem are studied. The global convergence for rPSNA

is established. Numerical results for randomly generated problems show that

rPSNA is more efficient than PHA in terms of the number of iterations and

CPU time. The proposed rPSNA is also applied to calculate a solution of

the model with parameters being determined by real data from the crude oil

market. The solution obtained by the model is used to explain and forecast

the global crude oil market share under the COVID-19 pandemic.

• In Chapter 4, rPSNA is applied to solve a nonmonotone stochastic user equilib-

rium problem and a nonmonotone stochastic dynamic user equilibrium prob-

lem. Numerically, rPSNA is promising in solving these nonmonotone problems

compared with PHA.

• In Chapter 5, we summarize the main conclusions of the thesis and discuss

some future work.
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Chapter 2

A globally and superlinerly

convergent projection semismooth

Newton algorithm for two-stage

stochastic variational inequalities

In this chapter, we propose PSNA to solve the two-stage SVI (1.1)-(1.2), which

has the global convergence property and superlinear convergence rate under suitable

assumptions.

We assume that (1.1)-(1.2) has the relatively complete recourse [8]; that is, for

any x ∈ D and a.e. ξ ∈ Ξ, the second stage problem (1.2) has at least one solution.

Among these solutions, we further assume that there exists a Lipshitz continuous

solution function with respect to x for a.e. ξ. By substituting the Lipschitz solution

function into the first stage problem (1.1), we obtain a single-stage SVI, in which x

is the only decision variable. Then we propose PSNA based on the single-stage SVI

for solving (1.1)-(1.2), which is a hybrid algorithm that combines the semismooth

Newton algorithm with the projection algorithm [19]. The advantages for using the

single-stage formulation are that PSNA detours the difficulties of handling the large-

scale original problem directly, and the computations of the second stage solution

can be executed in parallel. The solvability, Lipschitz continuity, semimsoothness,
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linear Newton approximation scheme and monotonicity of the single-stage SVI are

analyzed under proper assumptions, which provide the foundation for the develop-

ment of PSNA. The Lipschitz continuity and the monotonicity guarantee that the

projection algorithm is well executed, and the semismoothness and the linear Newton

approximation scheme properties are essential for the semismooth Newton algorith-

m. It is worth noting that if the two-stage SVI (1.1)-(1.2) is monotone, then its

single-stage SVI formulation is monotone, but conversely it is not true. Hence the

conditions for the global convergence of PSNA are weaker than the conditions for

the global convergence of PHA [40].

2.1 A projection semismooth Newton algorithm

(PSNA)

In this section, we first reformulate the two-stage SVI (1.1)-(1.2) into a single-stage

SVI under suitable assumptions. Based on the single-stage formulation, we discuss

its properties and develop PSNA.

Let K : Rk → Rs be a locally Lipschitz continuous function. According to

Rademacher’s Theorem, K is differentiable almost everywhere. Let ΩK be the set of

differentiable points of K. The generalized Jacobian of K at x in the sense of Clarke

[16] is defined as follows:

∂K(x) := conv{V ∈ Rs×k : V = lim
xt∈ΩK ,xt→x

∇xK(xt)},

where “conv” denotes the convex hull. K is said to be semismooth at x if K is locally

Lipschitz continuous around x and the limit [36]

lim
V ∈∂K(x+th′),
h′↓h, t↓0

{V h}

exists for any h ∈ Rk.
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For any given (x, ξ) ∈ D × Ξ, let S(x, ξ) be the solution set of the second stage

problem (1.2). Thus, we can define a set-valued map S(x, ·) : Ξ ⇒ Y . Then, the

two-stage SVI (1.1)-(1.2) can be reformulated as a single-stage problem finding an

x ∈ D and an integrable selection ȳ(x, ·) ∈ S(x, ·) which solve

−E[G(x, ȳ(x, ξ), ξ)] ∈ ND(x).

If the second stage problem (1.2) admits a unique solution ȳ(x, ξ) for any x ∈ D and

a.e. ξ ∈ Ξ, then S(x, ξ) = {ȳ(x, ξ)} is a singleton.

Assumption 2.1. (i) The two-stage SVI (1.1)-(1.2) is solvable.

(ii) The Lipschitz constant of G(·, ·, ξ) satisfies E[L2
G(ξ)] <∞.

(iii) (1.1)-(1.2) has the relatively complete recourse. In addition, there exists an

integrable selection ŷ(x, ·) ∈ S(x, ·) for any x ∈ D, and ŷ(·, ξ) is Lipschitz continuous

for a.e. ξ ∈ Ξ which satisfies

‖ŷ(x, ξ)− ŷ(x′, ξ)‖ ≤ Lŷ(ξ)‖x− x′‖, ∀ x, x′ ∈ D,

with E[L2
ŷ(ξ)] <∞.

Among all the solutions in S(x, ξ), the Lipschitz continuous solution function

ŷ(x, ξ) is important both in studying the solvability of the single-stage problem and

in developing the numerical algorithm under proper conditions. Substituting ŷ(x, ξ)

into (1.1), we can get the single-stage problem

−H(x) ∈ ND(x), (2.1)

where

H(x) := E[Ĝ(x, ξ)] with Ĝ(x, ξ) := G(x, ŷ(x, ξ), ξ).

(2.1) can be viewed as a deterministic problem. Denote its solution set by S∗. It is

not hard to see that if x∗ ∈ S∗, then

(x∗, ŷ(x∗, ·)) solves (1.1)− (1.2).

Based on (2.1), we propose PSNA in Subsection 2.1.2.
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2.1.1 Properties analysis

In this subsection, we study the solvability of (2.1), and the Lipschtiz continuity,

semismoothness, linear Newton approximation scheme and monotonicity of H.

The following proposition studies the Lipschitz continuity of H and the solvability

of (2.1).

Proposition 2.1. Under Assumption 2.1, the following assertions hold.

(i) The function H is Lipschitz continuous on D with Lipschitz constant LH .

(ii) If D is bounded, then (2.1) is solvable.

(iii) If S(x, ξ) is a singleton for any x ∈ D and a.e. ξ ∈ Ξ, then (2.1) is solvable.

Proof. (i) By the Lipschitz continuity of G(·, ·, ξ) and ŷ(·, ξ) for a.e. ξ ∈ Ξ, we have

for any x, x′ ∈ D

‖H(x)−H(x′)‖ = ‖E[Ĝ(x, ξ)− Ĝ(x′, ξ)]‖

≤E[‖G(x, ŷ(x, ξ), ξ)−G(x′, ŷ(x′, ξ), ξ)‖]

≤E[LG(ξ)Lŷ(ξ) + LG(ξ)]‖x− x′‖

=:E[LĜ(ξ)]‖x− x′‖.

By Hölder’s inequality, from the last inequality we have

LH := E[LĜ(ξ)] ≤ E[L2
G(ξ)]

1
2E[L2

ŷ(ξ)]
1
2 + E[LG(ξ)] <∞.

(ii) Since D is bounded and that H is Lipschitz continuous, from [19, Corollary

2.2.5], we immediately know that (2.1) is solvable.

(iii) S(x, ξ) being a singleton implies that the second stage problem has a unique

solution for any x ∈ D and a.e. ξ ∈ Ξ. The solvability of (1.1)-(1.2) is equivalent to

that of (2.1) in the sense that

x∗ solves (2.1) ⇔ (x∗, ŷ(x∗, ·)) is a solution of (1.1)-(1.2).
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Proposition 2.1 states that (2.1) is an equivalent reformulation of (1.1)-(1.2) if

S(x, ξ) is a singleton for any fixed x and ξ. In the case that S(x, ξ) has multiple

elements, if D is bounded, solution to (2.1) is also a solution of the original problem.

Next, we will discuss the semismoothness and the linear Newton approximation

scheme of H (see Definition 2.1).

Let D ⊇ D be an open set. Define the set-valued mapping H : D ⇒ Rn×n as

H(x) := E[∂Ĝ(x, ξ)],

with the expectation taken in the sense of Aumann [1] as

E[∂Ĝ(x, ξ)] := {E[V (x, ξ)] : V (x, ξ) is an integrable selection from ∂Ĝ(x, ξ)},

where V (x, ξ) ∈ ∂Ĝ(x, ξ) for a.e. ξ ∈ Ξ and it is integrable with respect to ξ.

To analyze the properties of H, we make the following technical assumptions.

Assumption 2.2. (i) ∂Ĝ(x, ξ) is A-measurable with respect to ξ at any x ∈ D.

(ii) For any x ∈ D, there exists an open neighborhood such that for any x′ in this

neighborhood, ∂Ĝ(x′, ξ) is bounded by an integrable function κ̂x : Ξ → R+; that is,

for any x′ in this neighborhood

‖V (ξ)‖F ≤ κ̂x(ξ), ∀ (ξ, V (ξ)) ∈ Ξ× Rn×n with V (ξ) ∈ ∂G(x′, ξ).

The following proposition studies the properties of H.

Proposition 2.2. Under Assumption 2.2, H(x) is nonempty, convex and compact

for any x ∈ D. Moreover, H is outer semicontinuous and closed at any x ∈ D; that

is, if xk → x, W k ∈ H(xk) and W k → W , then W ∈ H(x).

Proof. Since ∂Ĝ(x, ξ) is closed-valued at any x ∈ D for a.e. ξ ∈ Ξ, by Assumption

2.2, it follows directly from Theorems 1, 2 and 4 in [1] that H(x) is nonempty, convex

and compact at any x ∈ D. The last assertion follows from [1, Corollary 5.2].
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The following definition of linear Newton approximation scheme is important for

the development of Newton-type algorithms.

Definition 2.1 ([19]). Let K : Rs → Rs be a locally Lipschitz continuous function.

We say that K admits a linear Newton approximation at x̄, if there is a set-valued

mapping Ψ : Rs ⇒ Rs×s such that Ψ has nonempty compact images, outer semicon-

tinuous at x̄, and for any h→ 0, W ∈ Ψ(x̄+ h),

K(x̄+ h)−K(x̄)−Wh = o(‖h‖). (2.2)

We also say that Ψ is a linear Newton approximation scheme of K at x̄.

By Definition 2.1, ∂H is a linear Newton approximation scheme of H if H is

semismooth. However, the calculation of ∂H is difficult since the explicit form of H

is not available. In some cases, the calculation of H(x) is practical. So, we turn to

discuss its linear Newton approximation scheme.

To establish that H is a linear Newton approximation scheme of H, the semis-

moothness of Ĝ(·, ξ) is needed. If Ĝ(·, ξ) is semismooth at x, by the properties

of semismoothness [36], there exists a function ∆ξ : (0,∞) → [0,∞), depending

on ξ, with limt→0 ∆ξ(t) = 0, such that for all h 6= 0 sufficiently small, and all

V (ξ) ∈ ∂Ĝ(x+ h, ξ),

‖Ĝ(x+ h, ξ)− V (ξ)h− Ĝ(x, ξ)‖
‖h‖ ≤ ∆ξ(‖h‖). (2.3)

The following technical assumption is needed.

Assumption 2.3. There exists an integrable function γ : Ξ→ R+ such that ∆ξ(‖h‖) ≤

γ(ξ) for all sufficiently small ‖h‖.

Note that Ĝ(·, ξ) = G(·, ŷ(·, ξ), ξ). The semismoothness of Ĝ(·, ξ) is related to the

semismoothness of the second stage solution function ŷ(·, ξ). To this end, we intro-

duce the Strong Regularity Condition (SRC) proposed by Robinson [39]. Facchinei
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and Pang also thoroughly discussed this property in the monograph [19]. In the case

of the VI with a polyhedral set, the SRC condition is equivalently defined as in [27],

which we will use in the following Assumption 2.4.

Without loss of generality, let

C(ξ) = {y ∈ Rm : A1(ξ)y ≤ b1(ξ), A2(ξ)y = b2(ξ)},

with A1 : Rd → Rl1×m, A2 : Rd → Rl2×m, b1 : Rd → Rl1 and b2 : Rd → Rl2 . For

any given x ∈ D and ξ ∈ Ξ, define the critical cone of the pair (C(ξ), F (x, ·, ξ)) at

ŷ(x, ξ) ∈ C(ξ) as follows

Cx(ŷ;C(ξ), F ) = {v ∈ Rm : F (x, ŷ(x, ξ), ξ)Tv = 0, Ā1(ξ)v ≤ 0, A2(ξ)v = 0},

where Ā1(ξ) is a sub-matrix of A1(ξ) consisting of rows of A1(ξ) satisfying Ā1(ξ)y =

b̄1(ξ) with b̄1(ξ) being an appropriate sub-vector.

We make the following SRC assumption for the second stage problem.

Assumption 2.4. For a.e. ξ ∈ Ξ, the SRC holds at ŷ(x, ξ) for VI(C(ξ), F (x, ·, ξ))

for any x ∈ D; that is, for a.e. ξ ∈ Ξ and any x ∈ D, the following affine VI admits

a unique solution for each q ∈ Rm

0 ∈ q +∇yF (x, ŷ(x, ξ), ξ)v +NCx(ŷ;C(ξ),F )(v).

It is clear that Assumption 2.4 holds if F (x, ·, ξ) is strongly monotone on C(ξ)

for any x ∈ D and a.e. ξ ∈ Ξ. In the case that C(ξ) = Rm
+ for a.e. ξ ∈ Ξ, a sufficient

condition for guaranteeing Assumption 2.4 is that F (x, ·, ξ) is a uniformly P function

for any x ∈ D and a.e. ξ ∈ Ξ; see [19, Corollary 5.3.20]. If further let F (·, ·, ξ) be a

linear function as in (1.5), then M(ξ) being a P-matrix for a.e. ξ ∈ Ξ is sufficient;

see [14].

The following proposition establishes the semismoothness of H at x and shows

that H is a linear Newton approximation scheme of H at x.
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Proposition 2.3. Suppose that Assumptions 2.1-2.4 hold, and that G(·, ·, ξ) is semis-

mooth at (x, ŷ(x, ξ)) for a.e. ξ ∈ Ξ. Then we have the following assertions.

(i) Ĝ(·, ξ) is semismooth at x for a.e. ξ ∈ Ξ and H is semismooth at x.

(ii) H is a linear Newton approximation scheme of H at x.

Proof. (i) With Assumption 2.4, by [19, Theorem 5.4.6], we know that for a.e. ξ ∈ Ξ,

ŷ(·, ξ) is a piecewise smooth function on D, and hence it is semismooth on D. By

[19, Proposition 7.4.4], the composition of semismooth functions is also semismooth.

Then, we deduce that Ĝ(·, ξ) is semismooth at x for a.e. ξ ∈ Ξ.

With Assumption 2.1, H is Lipschitz continuous on D by Proposition 2.1. The

semismoothness of Ĝ(·, ξ) at x implies that Ĝ(·, ξ) is directionally differentiable at

x for a.e. ξ ∈ Ξ. In addition, Ĝ(·, ξ) is Lipschitz continuous on D with Lipschitz

constant satisfying E[LĜ(ξ)] < ∞. Then H is also directionally differentiable at x

by [43, Proposition 2].

Under Assumption 2.2, H has nonempty compact images and is outer semicon-

tinuous on D. For any h → 0, W ∈ H(x + h), let V (ξ) be an integrable selection

from ∂Ĝ(x+ h, ξ) such that W = E[V (ξ)]. It follows that

lim
h→0,

W∈∂H(x+h)

‖H(x+ h)−Wh−H(x)‖
‖h‖

= lim
h→0,

V (ξ)∈∂Ĝ(x+h,ξ)

‖E[Ĝ(x+ h, ξ)− V (ξ)h− Ĝ(x, ξ)]‖
‖h‖ by Assumption 2.2

≤ lim
h→0,

V (ξ)∈∂Ĝ(x+h,ξ)

E[‖Ĝ(x+ h, ξ)− V (ξ)h− Ĝ(x, ξ)‖]
‖h‖

≤ lim
h→0

E[∆ξ(‖h‖)] by (2.3)

=E[lim
h→0

∆ξ(‖h‖)]

=0, by lim
h→0

∆ξ(‖h‖) = 0 for a.e. ξ ∈ Ξ
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where the second equality is due to Assumption 2.3 and Lebesgue’s dominated con-

vergence theorem. Due to ∂H(x) ⊆ H(x), the last inequality implies the semis-

moothness of H at x by [19, Theorem 7.4.3].

(ii) In the proof of (i), we show that

lim
h→0,W∈∂H(x+h)

‖H(x+ h)−Wh−H(x)‖ = o(‖h‖),

which implies that H is a linear approximation scheme of H at x.

Next, we discuss the monotonicity of H. We first discuss the monotonicity of

(1.1)-(1.2). Define a mapping T : Rn × Y → Rn × Y as

T (x, y(·)) =

(
E[G(x, y(ξ), ξ)]
F (x, y(·), ·)

)
.

We say that T is monotone on D × C(·) if for any (x, y(·)), (x′, y′(·)) ∈ D × C(·)1,

it holds that
〈
T (x, y(·))− T (x′, y′(·)),

(
x− x′

y(·)− y′(·)

)〉
≥ 0, (2.4)

where the scalar product 〈·, ·〉 is defined as

〈(x, y(·)), (x′, y′(·))〉 := xTx′ + E[y(ξ)Ty′(ξ)].

(1.1)-(1.2) is said to be monotone if (2.4) is satisfied, while the monotonicity of H is

defined under the Euclidean scalar product.

Let Θ : Rn × Rm × Rd → Rn × Rm be

Θ(x, y(ξ), ξ) =

(
G(x, y(ξ), ξ)
F (x, y(ξ), ξ)

)
.

We make the following assumptions.

1 (x, y(·)) ∈ D × C(·) if (x, y(ξ)) ∈ D × C(ξ) for a.e. ξ ∈ Ξ.
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Assumption 2.5. (i) For a.e. ξ ∈ Ξ, Θ(·, ·, ξ) is monotone on D × C(ξ).

(ii) For any x ∈ D and a.e. ξ ∈ Ξ, ∇yF (x, ŷ(x, ξ), ξ)v ∈ span(∇xF (x, ŷ(x, ξ), ξ))

for any v ∈ Cx(ŷ;C(ξ), F ), where span(∇xF (x, ŷ(x, ξ), ξ)) denotes the subspace s-

panned by the columns of ∇xF (x, ŷ(x, ξ), ξ).

Following [10, Proposition 2.1], we can easily show that Assumption 2.5(i) implies

the monotinicity of (1.1)-(1.2). To investigate the convergence of sample average

approximation (SAA) for the two-stage SVI, the authors in [8] assumed the strong

monotonicity of Θ(·, ·, ξ) for a.e. ξ ∈ Ξ. The strong monotonicity assumption of

Θ(·, ·, ξ) implies Assumptions 2.4 and 2.5(i). If

F (x, y(ξ), ξ) = F̃ (y(ξ), ξ) +N(ξ)x,

where rank(N(ξ)) = m, then Assumption 2.5(ii) holds. The following proposition

is an extension of [8, Theorem 3.9] which assumes that Θ is strongly monotone and

C(ξ) = Rn
+ for a.e. ξ ∈ Ξ.

Proposition 2.4. Suppose that Assumptions 2.4 and 2.5 hold. Then H is monotone

on D.

Proof. It suffices to show that every element of ∂Ĝx(x, ξ) is positive semidefinite for

any x ∈ D and a.e. ξ ∈ Ξ. Under Assumption 2.5(i), for any (x, y(ξ)) ∈ D × C(ξ)

and a.e. ξ ∈ Ξ, it holds

(
Vx(x, y(ξ), ξ) Vy(x, y(ξ), ξ)
∇xF (x, y(ξ), ξ) ∇yF (x, y(ξ), ξ)

)
� 0, (2.5)

where Vx(x, y(ξ), ξ) ∈ ∂xG(x, y(ξ), ξ) and Vy(x, y(ξ), ξ) ∈ ∂yG(x, y(ξ), ξ).

If ∇yF (x, y(ξ), ξ) = 0, by (2.5), we have Vy(x, y(ξ), ξ) = 0, ∇xF (x, y(ξ), ξ) = 0

and Vx(x, y(ξ), ξ) � 0. Hence every element of ∂Ĝx(x, ξ) is positive semidefinite. In

the rest of the proof, we consider the case rank(∇yF (x, y(ξ), ξ)) = r > 0.
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Define a set

Z(x, y(ξ), ξ) = {Z ∈ Rm×l : [ZT∇yF (x, y(ξ), ξ)Z] is nonsingular with l = 1, . . . , r}.
(2.6)

Let

UZ(x, y(ξ), ξ) = −Z[ZT∇yF (x, y(ξ), ξ)Z]−1ZT∇xF (x, y(ξ), ξ)

for a Z ∈ Z(x, y(ξ), ξ).

For any u ∈ Rn, let v = UZ(x, y(ξ), ξ)u ∈ Rm. Then from (2.5), we have

uT (Vx(x, y(ξ), ξ) + Vy(x, y(ξ), ξ)UZ(x, y(ξ), ξ))u ≥ 0. Hence

Vx(x, y(ξ), ξ) + Vy(x, y(ξ), ξ)UZ(x, y(ξ), ξ) � 0. (2.7)

Denote the linearity space of Cx(ŷ;C(ξ), F ) by Lx(ŷ;C(ξ), F ), which is defined as

Lx(ŷ;C(ξ), F ) = Cx(ŷ;C(ξ), F ) ∩ −Cx(ŷ;C(ξ), F ).

Let x̄ ∈ Ωŷ(·,ξ) be arbitrary with Ωŷ(·,ξ) being the set of differentiable points of ŷ(·, ξ).

It is obvious that Lx̄(ŷ;C(ξ), F ) ⊆ Cx̄(ŷ;C(ξ), F ). Under Assumption 2.5(ii), it

follows that for any v ∈ Cx̄(ŷ;C(ξ), F ), there exists a d ∈ Rn such that

∇xF (x̄, ŷ(x̄, ξ), ξ)d+∇yF (x̄, ŷ(x̄, ξ), ξ)v = 0,

which implies v = ŷ′(x̄, ξ; d) ∈ Lx̄(ŷ;C(ξ), F ) by [27, Theorem 2.2 (3)]. Thus,

Cx̄(ŷ;C(ξ), F ) = Lx̄(ŷ;C(ξ), F ) (2.8)

Then, for a.e. ξ ∈ Ξ, (2.8) holds for any x ∈ Ωŷ(·,ξ). Therefore, by [27, Theorem 2.2]

again, the Jacobian ∇xŷ(x, ξ) at any x ∈ Ωŷ(·,ξ) can be represented as

∇xŷ(x, ξ) = UZ(x, ŷ(x, ξ), ξ), Z ∈ Ẑ(x, ŷ(x, ξ), ξ), (2.9)

where Ẑ(x, ŷ(x, ξ), ξ) is a set consisting of matrices in Rm×l with l being the dimen-

sion of Lx(ŷ;C(ξ), F ), and each element Z ∈ Ẑ(x, ŷ(x, ξ), ξ) satisfies that ZTZ and
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ZT∇yF (x, ŷ(x, ξ), ξ)Z are nonsingular and z ∈ Lx(ŷ;C(ξ), F ) if and only if z = Zv

for some v ∈ Rl. It is clear that Ẑ(x, ŷ(x, ξ), ξ) ⊆ Z(x, ŷ(x, ξ), ξ).

Let B(x) be an open neighborhood of x ∈ D. Since Ĝ(·, ξ) and ŷ(·, ξ) are Lip-

schitz continuous, thus they are differentiable almost everywhere over B(x). Let

Ω̂ŷ(x, ξ) and Ω̂Ĝ(x, ξ) be the sets of differentiable points of ŷ(·, ξ) and Ĝ(·, ξ) over

the neighbourhood B(x), respectively. By the Lipschitz continuity of G(·, ·, ξ), we

know that ∇G(x, ŷ(x, ξ), ξ) exists almost everywhere over B(x), and we denote this

set by Ω̂G(x, ξ). Let Ω̂(x, ξ) = Ω̂ŷ(x, ξ) ∩ Ω̂Ĝ(x, ξ) ∩ Ω̂G(x, ξ). It is clear that

Ω̂(x, ξ) ⊆ Ω̂ŷ(x, ξ), Ω̂(x, ξ) ⊆ Ω̂Ĝ(x, ξ), Ω̂(x, ξ) ⊆ Ω̂G(x, ξ),

and the measures of Ω̂ŷ(x, ξ) \ Ω̂(x, ξ), Ω̂Ĝ(x, ξ) \ Ω̂(x, ξ) and Ω̂G(x, ξ) \ Ω̂(x, ξ) over

the neighbourhood B(x) are all zero. Then, it follows that

∂xĜ(x, ξ)

=conv{lim
x̄→x
∇xĜ(x̄, ξ) : x̄ ∈ Ω̂Ĝ(x, ξ)}

=conv{lim
x̄→x
∇xG(x̄, ŷ(x̄, ξ), ξ) +∇yG(x̄, ŷ(x̄, ξ), ξ)∇xŷ(x̄, ξ) : x̄ ∈ Ω̂(x, ξ)}

=conv{lim
x̄→x
∇xG(x̄, ŷ(x̄, ξ), ξ) +∇yG(x̄, ŷ(x̄, ξ), ξ)UZ̄(x̄, ŷ(x̄, ξ), ξ) :

x̄ ∈ Ω̂(x, ξ), Z̄ ∈ Ẑ(x̄, ŷ(x̄, ξ), ξ)}

⊆conv{Vx(x, ŷ(x, ξ), ξ) + Vy(x, ŷ(x, ξ), ξ)UZ(x, ŷ(x, ξ), ξ) : Z ∈ Z(x, ŷ(x, ξ), ξ)},

where the third equality is due to (2.9) and the last inclusion is due to Ẑ(x, ŷ(x, ξ), ξ) ⊆

Z(x, ŷ(x, ξ), ξ). By (2.7), we know that for a.e. ξ ∈ Ξ, all elements in ∂xĜ(x, ξ) are

positive semidefinite for any x ∈ D, which implies the monotonicity of Ĝ(·, ξ) on D

for a.e. ξ ∈ Ξ. Therefore, we conclude that H is monotone on D.

2.1.2 The algorithm and convergence analysis

In this subsection, we propose the projection semismooth Newton algorithm (PSNA)

for the discretization problem (1.3)-(1.4), which combines the semismooth Newton
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algorithm with the projection algorithm. The global convergence and superlinear

convergence rate are established under suitable assumptions.

Note that the discretization problem (1.3)-(1.4) can be viewed as a two-stage

SVI with the finite support set Ξν = {ξ1, . . . , ξν}. Thus, all the results established

in Subsection 2.1 hold without Assumptions 2.2 and 2.3. In this case, we have

H(x) = E[Ĝ(x, ξ)] =
ν∑

`=1

p(ξ`)Ĝ(x, ξ`), H(x) = E[∂Ĝ(x, ξ)] =
ν∑

`=1

p(ξ`)∂Ĝ(x, ξ`).

Define the residual function of (2.1) as

Q̂(x) = x− ΠD(x−H(x)). (2.10)

Proposition 1.5.8 in [19] claims that x∗ solves (2.1) if and only if Q̂(x∗) = 0. The

function Q̂ is also Lipschitz continuous since H is Lipschitz continuous and the

nonexpansiveness of the projection operator. Let LQ̂ denote the Lipschitz constant

of Q̂.

The classic semismooth Newton algorithm (SNA) applying to (2.10) takes the

form [36]

xk+1 = xk − V −1
k Q̂(xk), (2.11)

where Vk ∈ ∂Q̂(xk). Instead of using (2.11), we use a different semismooth Newton

iteration to solve (2.1). We define a linear approximation of H and let the solution

of the corresponding linear VI subproblem

−H(xk)− (W k + εkI)(x− xk) ∈ ND(x), W k ∈ H(xk), (2.12)

be xk+1, where εk > 0 with εk → 0 as k →∞ is a regularized parameter forcing the

linear VI (2.12) to be strongly monotone provided that W k is positive semidefinite.

(2.12) requires to solve a linear VI at each iteration while (2.11) solves a linear

equation. But (2.12) is more desirable than (2.11) for solving (2.10). The reason is
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that ∂Q̂ is difficult to calculate, since it is a composite function of two nonsmooth

functions, the projection function ΠD and the implicit nonsmooth functionH. On the

other hand, by Proposition 2.3, we use W k ∈ H(xk) in (2.12) to avoid the difficulty

of computing ∂Q̂(xk). It seems that H(xk) may still be difficult to calculate. We

consider a special case of (1.1)-(1.2) in the next section in which one particular

element of H(xk) is easy to calculate.

Another main issue for Newton-type algorithms is that they are locally convergent

in general. Since H is a nonsmooth and implicit function, the line search technique

frequently used in Newton-type algorithms cannot be directly applied to our problem.

Therefore, we turn to the projection algorithm to globalize the semismooth Newton

iteration (2.12).

Define a projection operator

Π̃D,α(x) := ΠD[x− αH(π(x))], with π(x) = ΠD[x− αH(x)], (2.13)

where α > 0 is the step size.

Under Assumptions 2.1 and 2.5, choosing 0 < α < 1
LH

, by [19, Lemma 12.1.10]

the projection operator Π̃D,α is nonexpansive. Then, a natural fixed-point iteration

is as follows

xk+1 = Π̃D,α(xk).

It is shown in [19, Theorem 12.1.11] that {xk} generated by the above iteration

globally converges to a fixed point x∗ of x = Π̃D,α(x) from any starting point x0 ∈ Rn,

where x∗ is also a solution of (2.1). However, the convergence rate is linear. To

achieve a superlinear convergence rate, a hybrid algorithm with the semismooth

Newton algorithm (2.12) is proposed in Algorithm 2.1.

Algorithm 2.1. Projection Semismooth Newton Algorithm (PSNA)

Step 0: Choose an initial point x0 ∈ Rn, η ∈ (0, 1), step size 0 < α < 1
LH

and

initial regularized parameter ε0 > 0. Set k = 0.
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Step 1: For ` = 1, . . . , ν, compute a Lipschitz continuous solution ŷ(xk, ξ`) that

solves the second stage problem (1.4).

Step 2: If ‖Q̂(xk)‖ = 0, stop. Otherwise, calculate a W k ∈ H(xk) and compute

x̂k+1 that solves

−H(xk)− (W k + εkI)(x− xk) ∈ ND(x). (2.14)

If ‖Q̂(x̂k+1)‖ ≤ η‖Q̂(xk)‖, let xk+1 = x̂k+1 and go to Step 4. Otherwise, go to Step

3.

Step 3: Let xk,0 = xk. Compute

xk,j+1 = Π̃D,α(xk,j), j = 0, 1, . . . , (2.15)

until ‖Q̂(xk,j+1)‖ ≤ η‖Q̂(xk)‖ is satisfied. Set xk+1 = xk,j+1.

Step 4: Let εk+1 = min{1, ‖Q̂(xk+1)‖}. Set k := k + 1; go back to Step 1.

Under Assumptions 2.4 and 2.5, any element of H(x) is positive semidefinite for

any x ∈ D. Thus, the subproblem (2.14) is strongly monotone for any εk > 0, which

has a unique solution and is easy to solve. In Step 3, the projection iteration (2.15)

is well-defined and is equivalent to solving a strongly convex program.

Lemma 2.1. Under Assumptions 2.1, 2.4 and 2.5, for any xk with ‖Q̂(xk)‖ > 0,

there is a finite integer J(xk) > 0 such that Step 3 of PSNA is terminated in finite

times, i.e.,

‖Q̂(xk,j)‖ ≤ η‖Q̂(xk)‖, ∀j ≥ J(xk).

Proof. By [19, Theorem 12.1.11], we know that {xk,j}∞j=1 generated by (2.15) con-

verges to a solution of (2.1), without loss of generality denoted by x∗. By the

Lipschitz continuity of Q̂, we have

‖Q̂(xk,j)‖ = ‖Q̂(xk,j)− Q̂(x∗)‖ ≤ LQ̂‖xk,j − x∗‖.

Then, there exists a finite positive integer J(xk) such that the assertion of the lemma

holds.
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The following standard assumption has been widely used in establishing the global

convergence of Newton-type algorithms.

Assumption 2.6. There exists a constant δ > 0 such that the level set

L0 = {x ∈ D : ‖Q̂(x)‖ ≤ δ}

is bounded.

It is clear that if D is bounded, then L0 is bounded. By [19, Corollary 3.6.5(c)],

Assumption 2.6 is satisfied if H is monotone and the solution set of (2.1) is nonempty

and compact. Moreover, if D is a box, then H being a P0 function with a bounded

solution set can ensure Assumption 2.6.

Theorem 2.5. Suppose that Assumptions 2.1, 2.4-2.6 hold. Let {xk} be an infinite

sequence generated by PSNA. Then every accumulation point of {xk} is a solution

of (2.1). In particular, if the Newton iteration is performed finite times, then {xk}

converges to a solution of (2.1).

Proof. Let

K := {k : ‖Q̂(x̂k+1)‖ ≤ η‖Q̂(xk)‖, k ≥ 0}.

If K is finite, there exists an integer k̄ > 0 such that for all k ≥ k̄ the projection

iteration (2.15) is always executed. By [19, Theorem 12.1.11], it follows that {xk}

converges to a solution of (2.1).

If K is infinite, let K consist of 0 ≤ k0 < k1 · · · . For any kj+1, kj ∈ K, it follows

that

‖Q̂(xkj+1)‖ ≤ η‖Q̂(xkj+1−1)‖ ≤ . . . ≤ ηkj+1−kj‖Q̂(xkj)‖,

which implies that limj→∞,kj∈K ‖Q̂(xkj)‖ = 0. By the construction of the algorithm,

it is easy to see that {xk} ∈ L0 for sufficiently large k and limk→∞ ‖Q̂(xk)‖ = 0.

Then, by the boundedness of {xk} and the continuity of Q̂, for arbitrary convergent

subsequence of {xk}, we deduce that the limit point is a solution of (2.1).
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Next, we study the superlinear convergence rate of PSNA.

Theorem 2.6. Suppose that assumptions in Theorem 2.5 hold and x∗ is an accu-

mulation point of {xk} generated by PSNA. If G(·, ·, ξ) is semismooth at x∗ for any

ξ ∈ Ξν, D is a polyhedral set, and all W ∗ ∈ H(x∗) are positive definite, then {xk}

converges to x∗ superlinearly.

Proof. By Proposition 2.3, we know that H is semismooth at x∗ and H is a linear

Newton approximation scheme of H at x∗. Let K0 be the subsequence such that

limk→∞,k∈K0 x
k = x∗. By Theorem 2.5, x∗ is a solution of (2.1), or equivalently a

zero of Q̂.

The positive definiteness of all W ∗ ∈ H(x∗) implies that there exists a constant

λ > 0 and a neighborhood B(x∗) of x∗ such that for all x ∈ B(x∗), all W ∈ H(x)

are positive definite with vTWv ≥ 1
2
λ‖v‖2, ∀v ∈ Rn. This implies that H is strongly

monotone around x∗, and x∗ is an isolated zero of Q̂. Let W k
εk

= W k + εkI. For

all sufficiently large k ∈ K0, xk ∈ B(x∗). Thus, the subproblem (2.14) has a unique

solution, denoted by x̂k+1. For all k ∈ K0 sufficiently large, we have xk ∈ B(x∗).

Thus, the subproblem (2.14) has a unique solution, denoted by x̂k+1. Since

−H(xk)−W k
εk

(x̂k+1 − xk) ∈ ND(x̂k+1), −H(x∗) ∈ ND(x∗),

by the definition of normal cone and x̂k+1, x∗ ∈ D, we have

(H(xk) +W k
εk

(x̂k+1 − xk))T (x∗ − x̂k+1) ≥ 0, H(x∗)T (x̂k+1 − x∗) ≥ 0,
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which implies that

0 ≤ [H(xk) +W k
εk

(x̂k+1 − xk)−H(x∗)]T (x∗ − x̂k+1)

⇔ 0 ≤ [H(xk)−H(x∗) +W k
εk

(x̂k+1 − x∗ + x∗ − xk)]T (x∗ − x̂k+1)

⇔ (x̂k+1 − x∗)TW k
εk

(x̂k+1 − x∗) ≤ [H(xk)−H(x∗) +W k
εk

(x∗ − xk)]T (x∗ − x̂k+1)

⇒ 1

2
λ‖x̂k+1 − x∗‖2 ≤ (‖H(xk)−H(x∗)−W k(xk − x∗)‖

+ εk‖xk − x∗‖)‖x̂k+1 − x∗‖

⇒ ‖x̂k+1 − x∗‖ ≤ o(‖xk − x∗‖), (2.16)

where the last inequality is due to (2.2) and εk → 0. Next, we will prove that for all

k sufficiently large,

‖Q̂(x̂k+1)‖ = o(‖Q̂(xk)‖). (2.17)

By (2.16), we have

‖x̂k+1 − xk‖ = ‖xk − x∗‖+ o(‖xk − x∗‖).

Since H is strongly monotone around x∗ and is Lipschitz continuous, by [19, Theorem

2.3.3], there exists a positive constant c′ > 0 such that

‖xk − x∗‖ ≤ c′‖Q̂(xk)‖.

The last two inequalities imply that

‖x̂k+1 − xk‖ ≤ c′‖Q̂(xk)‖, (2.18)

(2.16) also implies that

‖x̂k+1 − x∗‖ ≤ ε‖xk − x∗‖, (2.19)

where ε > 0 is arbitrarily small as k → ∞. Since H is semismooth at x∗ and D is

polyhedral, then Q̂ is semismooth at x∗ and directionally differentiable at x∗ by [19,
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Theorem 4.1.1]. Since Q̂ is directionally differentiable at x∗ and Lipschitz continuous,

by [36], we have

‖Q̂(x̂k+1)− Q̂(x∗)− Q̂′(x∗; x̂k+1 − x∗)‖ ≤ ε‖x̂k+1 − x∗‖,

which means

‖Q̂′(x∗; x̂k+1 − x∗)‖ ≤ (LQ̂ + ε)‖x̂k+1 − x∗‖.

By the last three inequalities, we have

‖Q̂(x̂k+1)‖ ≤‖Q̂′(x∗; x̂k+1 − x∗)‖+ ε‖x̂k+1 − x∗‖

≤(LQ̂ + 2ε)‖x̂k+1 − x∗‖

≤(LQ̂ + 2ε)ε‖xk − x∗‖. (2.20)

From (2.18) and (2.19), it follows

‖xk − x∗‖ ≤‖x̂k+1 − xk‖+ ‖x̂k+1 − x∗‖

≤c′‖Q̂(xk)‖+ ε‖xk − x∗‖,

which implies that

‖xk − x∗‖ ≤ c′

1− ε‖Q̂(xk)‖. (2.21)

Combining (2.20) with (2.21), it holds that

‖Q̂(x̂k+1)‖ ≤
(LQ̂ + 2ε)εc′

1− ε ‖Q̂(xk)‖.

Since ε can be arbitrarily small when k is sufficiently large, the last inequality implies

(2.17). This means that x̂k+1 computed from the Newton iteration (2.14) is always

accepted when xk is sufficiently close to x∗. Then, xk+1 = x̂k+1. Therefore, (2.16)

becomes

‖xk+1 − x∗‖ ≤ o(‖xk − x∗‖),

which means that xk converges to x∗ superlinearly.
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Remark 2.1. The assumption that D is a polyhedron in Theorem 2.6 can be extended

to D = {x ∈ Rn : g(x) ≤ 0} where g is twice continuously differentiable and convex

with the constant rank constraint qualification at x∗. From [19, Theorem 4.5.2], Q̂

is piecewise smooth around x∗ in such case.

2.2 A two-stage semi-linear SVI

In this section, we apply PSNA to solve a two-stage semi-linear SVI, which is a

special case of (1.1)-(1.2) as follows:

− A(x)− E[B(ξ)y(ξ)] ∈ ND(x), (2.22)

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q(ξ) ≥ 0, for all ξ ∈ Ξν , (2.23)

where the function A : D ⊃ D → Rn is is semismooth and Lipschitz continuous

on an open set D with Lipschitz constant LA, B : Rd → Rn×m, M : Rd → Rm×m,

N : Rd → Rm×n and q : Rd → Rm.

Under proper assumptions, we show that the Lipschitz continuity, semismooth-

ness, linear Newton approximation scheme and monotonicity properties for the single-

stage problem (2.1) hold, which are important to establish the global convergence

and superlinear convergence rate of PSNA.

Problem (2.22)-(2.23) can be written in a compact form as follows:

− A(x)−
ν∑

`=1

p`B`y` ∈ ND(x), (2.24)

0 ≤




y1
...
yν


⊥




N1 M1 · · · 0
... 0

. . . 0
Nν 0 0 Mν







x
y1
...
yν


+




q1
...
qν


 ≥ 0, (2.25)

where y` = y(ξ`), q` = q(ξ`), M` = M(ξ`), B` = B(ξ`) and N` = N(ξ`), ` =

1, 2, . . . , ν.
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Assumption 2.7. (i) M` is a P-matrix for all `; or,

(ii) M` is a Z-matrix for all `, and (2.25) is feasible for any x ∈ D and ξ` ∈ Ξν.

Lemma 2.2. For any fixed x ∈ D and ξ` ∈ Ξν, the second stage problem (2.25) has

a unique solution (or a unique least-element solution2) ŷ(x, ξ`) if Assumption 2.7 (i)

(or Assumption 2.7 (ii)) holds, which reads

ŷ(x, ξ`) = −U(x, ξ`)(N`x+ q`), (2.26)

with

U(x, ξ`) := (I − Λ(x, ξ`) + Λ(x, ξ`)M`)
−1Λ(x, ξ`), (2.27)

where Λ(x, ξ`) is a diagonal matrix with

Λ(x, ξ`)ii =

{
1, if (M`ŷ(x, ξ`) +N`x+ q`)i < (ŷ(x, ξ`))i,

0, otherwise.

Moreover, ŷ(·, ξ`) is piecewise affine, strongly semismooth3 and globally Lipschitz

continuous on D with Lipschitz constant written as

L` := ‖N`‖max{‖(M`)
−1
JJ‖ : (M`)JJ is nonsingular for J ⊆ [m]},

and

−U(x, ξ`)N` ∈ ∂ŷ(x, ξ`). (2.28)

Proof. When M` is a P-matrix, for any given (x, ξ`) the existence and uniqueness of

ŷ(x, ξ`) are due to [17, Theorem 3.3.7]. When M` is a Z-matrix and the LCP(N`x+

q`,M`) is feasible for all x ∈ D, the existence of the unique least-element solution

follows from [17, Theorem 3.11.6]. The expression (2.26) follows from Lemma 2.1

2 A solution y∗ of the LCP(q,M) is called the least-element solution if y∗ ≤ y (componentwise) for
any y ∈ SOL(q,M), and the least-element solution can be computed by solving a linear program
[17].

3 A function K is called strongly semismooth at x if lim sup x+h∈ΩK,
h→0

‖K ′(x + h;h) −
K ′(x;h)‖/‖h‖2 <∞; see [35].
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and Theorem 2.2 in [14]. It is clear that ŷ(·, ξ) is piecewise affine from the expression

(2.26). According to [19, Proposition 7.4.7], every piecewise affine function is strongly

semismooth.

When M` is a P-matrix or a Z-matrix, the Lipschitz continuity property of ŷ(·, ξ`)

follows from [14, Corollary 2.1] and [14, Theorem 2.3], respectively.

The generalized Jacobian (2.28) is due to [14, Theorem 3.1].

As in the last section, substituting the Lipschitz continuous function ŷ(x, ξ`) into

(2.24), we get the single-stage SVI formulation (2.1), in which

H(x) = A(x) + Bνŷν(x), (2.29)

where

Bν = (p1B1, . . . , pνBν) ∈ Rn×νm, ŷν(x) = (ŷT (x, ξ1), . . . , ŷT (x, ξν))
T ∈ Rνm

with ŷ(x, ξ`) ∈ SOL(N`x+ q`,M`), ` = 1, . . . , ν. Moreover, H is Lipschitz continuous

on D with Lipschitz constant

LH := LA + σ̄, where σ̄ :=
ν∑

`=1

p`‖B`‖L`. (2.30)

In addition, the corresponding residual function Q̂ is Lipschitz continuous on D.

Under Assumption 2.7(i), as discussed in Proposition 2.1, (2.29) is an equivalent

formulation to (2.24)-(2.25). Under Assumption 2.7(ii), if D is bounded, then (2.29)

is solvable. Thus, if x∗ solves (2.29), then (x∗, ŷ(x∗, ξ1), . . . , ŷ(x∗, ξν)) is a solution to

(2.24)-(2.25).

Denote

Θ(x, y`, ξ`) =

(
A(x) +B`y`

N`x+M`y` + q`

)
.

To establish the monotonicity of H, we further make the following assumption.
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Assumption 2.8. Θ(·, ·, ξ`) is monotone on D × Rm for ` = 1, . . . , ν.

The above assumption implies that all generalized Jacobian matrices in ∂Θ(x, y`, ξ`)

are positive semidefinite for any (x, y`) ∈ D × Rn; that is,
(
VA B`

N` M`

)
is positive semidefinite for any VA ∈ ∂A(x). (2.31)

Notice that Assumption 2.8 is a sufficient condition for (2.22)-(2.23) being monotone

in the sense of (2.4). Assumptions 2.7-2.8 together mean that each M` should be a

positive semidefinite P-matrix or a positive semidefinite Z-matrix.

Proposition 2.7. Under Assumptions 2.7-2.8, H is monotone on D.

Proof. It follows from Proposition 2.4. We omit the details.

Remark 2.2. The monotonicity of H does not imply that the original problem (2.24)-

(2.25) is monotone in the sense of (2.4). For example, without Assumption 2.8, the

monotonicity of H can be guaranteed if A is strongly monotone on D such that

(x− x′)T (A(x)− A(x′)) ≥ σ̄‖x− x′‖2, ∀ x, x′ ∈ D, (2.32)

where σ̄ is defined in (2.30). Note that this assumption does not mean that (2.24)-

(2.25) is monotone.

Let

H(x) := ∂A(x) +
ν∑

`=1

p`∂B`ŷ(x, ξ`).

We can show that, by Proposition 2.3, H is a linear Newton approximation scheme

of H. By Lemma 2.2, one particular element of H(x) can be calculated by

VA −BνUν(x) ∈ H(x), VA ∈ ∂A(x), (2.33)

where Uν(x) = ((U(x, ξ1)N1)T , . . . , (U(x, ξν)Nν)
T )T with U(x, ξ`) defined in (2.27).

Now, we discuss the implementation of PSNA for solving (2.1).
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• Step 1 calculates ŷ(xk, ξ`) for each subproblem LCP(N`x
k+q`,M`) in parallel.

• In Step 2, by (2.33), an element of W k ∈ H(xk) can be computed by

W k = V k
A −

ν∑

`=1

p`B`U(xk, ξ`)N`, V k
A ∈ ∂A(xk).

Subproblem (2.14) is strongly monotone and has a unique solution since W k +

εkI is positive definite.

• In Step 3, the projection iteration (2.15) is implementable. Note that the

execution of (2.15) requires the knowledge of H, in which its function value

at xk can be calculated by solving all the second stage LCP(N`x + q`,M`),

` = 1, . . . , ν and letting H(xk) = A(xk) + Bνŷν(x
k). The projection onto D is

equivalent to solving a strongly convex optimization problem.

By the same argument as in Theorems 2.5 and 2.6, we can prove the global

convergence and superlinear convergence rate of PSNA for solving (2.24)-(2.25).

We study the superlinear convergence rate of PSNA for D = [l, u], where l ∈

{R ∪ −∞}n and u ∈ {R ∪∞}n with l < u. In this case, Q̂(x) is reduced to

Q̂(x) = mid(x− l, x− u,H(x)),

where mid is a function such that

mid(l, u, x)i = Π[li,ui](xi) =





li if li > xi

xi if li ≤ xi ≤ ui

ui if xi > ui.

The following lemma is useful.

Lemma 2.3. Suppose that all W ∈ H(x) are P-matrices. Then, there exists a

neighborhood of x such that for any x̄ in this neighborhood, all W̄ ∈ H(x̄) are P-

matrices. Moreover, there exists a positive constant β such that ‖(I−Λ+ΛW̄ )−1‖ ≤ β

for any diagonal matrix Λ with diagonal entries on [0, 1].
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Proof. Since all W ∈ H(x) are P-matrices and thus nonsingular, by the same argu-

ment in [36, Proposition 3.1], there exists a neighborhood B(x) of x such that for any

x̄ ∈ B(x), all W̄ ∈ H(x̄) are nonsingular and ‖W̄−1‖ ≤ β. On the other hand, [22,

Theorem 4.3] claims that W̄ is a P-matrix if and only if I − Λ + ΛW̄ is nonsingular

for any diagonal matrix Λ with Λii ∈ [0, 1].

Assume that the conclusion is not true. Then, by the above discussion, there

exists a sequence xk → x, W k ∈ H(xk) such that either all W k are nonsingular but

not P-matrices or ‖(I −Λk + ΛkW
k)−1‖ → ∞ for some Λk. Since H is bounded in a

neighbourhood of x, taking a subsequence if necessary, we assume that limk→∞W k →

W̃ , where W̃ is not a P-matrix. By the closedness ofH at x, it follows that W̃ ∈ H(x),

which is a contradiction.

The following theorem establishes the superlinear convergence rate of PSNA un-

der weaker assumptions; that is, the positive definiteness for the elements of H(x∗)

is relaxed to the P-matrix.

Theorem 2.8. Suppose that Assumptions 2.7(i) and 2.8 hold, the level set L0 is

bounded, and D = [l, u]; or Assumptions 2.7(ii) and 2.8 hold, and D = [l, u] is

a bounded box. Assume that x∗ is an accumulation point of sequence {xk} gener-

ated by PSNA, and all W ∗ ∈ H(x∗) are P-matrices. Then, {xk} converges to x∗

superlinearly.

Proof. By Theorem 2.5, there exists a subsequence K0 ⊆ K such that

lim
k→∞,k∈K0

xk = x∗ with x∗ being a solution.

Since all W ∗ ∈ H(x∗) are P-matrices, by Lemma 2.3, there exists a neighborhood

of x∗, denoted by B(x∗), such that for any x ∈ B(x∗), any W ∈ H(x) is a P-matrix.

When k ∈ K0 is sufficiently large, we have xk ∈ B(x∗). Then, all W k ∈ H(xk) are

P-matrices. Hence, (2.14) has a unique solution x̂k+1 for any εk > 0; that is

−H(xk)−W k
εk

(x̂k+1 − xk) ∈ N[l,u](x̂
k+1), with W k

εk
= W k + εkI,
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which can be rewritten as

Q̃(x̂k+1) := mid
(
x̂k+1 − l, x̂k+1 − u,H(xk) +W k

εk
(x̂k+1 − xk)

)
= 0.

Similarly, since x∗ is a solution, we have

Q̂(x∗) = mid (x∗ − l, x∗ − u,H(x∗)) = 0.

From [11, Lemma 2.1], there exists a diagonal matrix Λk with diagonal entries on

[0, 1] such that

0 = Q̃(x̂k+1)− Q̂(x∗)

= (I − Λk)(x̂
k+1 − x∗) + Λk[H(xk) +W k

εk
(x̂k+1 − xk)−H(x∗)]

= (I − Λk)(x̂
k+1 − x∗) + Λk[H(xk) +W k

εk
(x̂k+1 − x∗ + x∗ − xk)−H(x∗)]. (2.34)

The matrix I−Λk+ΛkW
k
εk

is nonsingular since W k
εk

is a P-matrix. When the function

A is semismooth at x∗, arranging (2.34), we get

‖x̂k+1 − x∗‖ = ‖(I − Λk + ΛkW
k
εk

)−1Λk[H(xk)−H(x∗)−W k
εk

(xk − x∗)]‖

≤ ‖(I − Λk + ΛkW
k
εk

)−1Λk‖‖H(xk)−H(x∗)−W k
εk

(xk − x∗)‖

≤ ‖(I − Λk + ΛkW
k
εk

)−1Λk‖(‖H(xk)−H(x∗)−W k(xk − x∗)‖

+ εk‖(xk − x∗)‖)

= o(‖xk − x∗‖), (2.35)

where the the last equality is due to (2.2), Lemma 2.3 and εk → 0.

There exists a diagonal matrix Λ̃k with diagonal entries on [0, 1] such that

Q̂(xk) = Q̂(xk)− Q̃(x̂k+1)

= (I − Λ̃k)(x
k − x̂k+1) + Λ̃kW

k
εk

(xk − x̂k+1)

= (I − Λ̃k + Λ̃kW
k
εk

)(xk − x̂k+1),

which implies that

‖x̂k+1 − xk‖ ≤ ‖(I − Λ̃k + Λ̃kW
k
εk

)−1‖‖Q̂(xk)‖ ≤ β‖Q̂(xk)‖.
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[19, Proposition 7.4.6] shows that a piecewise semismooth function is also semis-

mooth. Since H is semismooth at x∗, Q̂(x) = mid(x− l, x− u,H(x)) is also semis-

mooth at x∗. By the same argument of Theorem 2.6, we can prove (2.17). This

implies that x̂k+1 computed from Newton iteration (2.14) is always accepted when

xk is sufficiently close to x∗; that is xk+1 = x̂k+1. Therefore, (2.35) means that xk

converges to x∗ superlinearly.

Corollary 2.1. Let D be a polyhedron. The sequence {xk} generated by PSNA

globally and superlinearly converges to the unique solution of (2.1) if one of the

following conditions holds; that is,

(i) Θ(·, ·, ξ) is strongly monotone on D × Rm for any ξ ∈ Ξν;

(ii) (2.32) holds with strict inequality and M` is a P-matrix for any ξ` ∈ Ξν;

(iii) (2.32) holds with strict inequality, M` is a Z-matrix for any ξ` ∈ Ξν, (2.22)-

(2.23) has the relatively complete recourse and D is bounded.

2.3 Numerical results

In this section, we conduct numerical experiments to test the efficiency of PSNA for

the two-stage SVI (2.24)-(2.25), and compare with PHA.

PSNA is terminated if

Res := ‖Q̂(xk)‖ ≤ 10−6

or

‖xk − xk−1‖ ≤ 10−6.

The starting point x0 ∈ Rn
+ is randomly chosen, α = 0.015 and η = 0.9. The

regularized parameter εk is set to min{1, ‖Q̂(xk)‖}. All codes were implemented in

MATLAB R2016b on a desktop with Intel Core i7-4790 (3.5 GHz) and 32 GB RAM.
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Example 2.1. Monotone two-stage SLCP in [40].4

In this example, the first stage problem is an LCP with A(x) = Ãx + c. Let

s = d3(n+m)/4e, and randomly generate positive numbers αi and vectors (aTi , b
T
i )T ∈

Rn+m for i = 1, . . . , s. For ` = 1, . . . , ν, randomly create ν antisymmetric matrices

O` ∈ R(n+m)×(n+m). Set

(
Ã B`

N` M`

)
=

s∑

i=1

αi

(
ai
bi

)(
aTi bTi

)
+

(
0 (O12)`

(O21)` (O22)`

)
.

Randomly generate c, and q` for ` = 1, . . . , ν.

Example 2.2. Nonmonotone two-stage SVI with P-matrix LCP in the second stage.

In this example, the first stage problem is a box affine VI, while the second stage

problem is a P-matrix LCP for any fixed x ∈ Rn and ξ. Set A(x) = Ãx+c. Generate

Ā ∈ Rn×n, Ū ∈ Rn×n, c ∈ Rn, and B` ∈ Rn×m, N̄` ∈ Rm×n, U` ∈ Rm×m, q` ∈ Rm for

ν = 1, . . . , ν, with entries uniformly distributed on [−5, 5], where U` is strictly upper

triangular. Create the diagonal matrix Λ̄ ∈ Rn×n with entries uniformly distributed

on [0, 0.3], and ν diagonal matrices Λ` ∈ Rm×m with entries from [5, 10]. Following

Harker and Pang [24], we set

Ã = ĀT Ā+ Λ̄ + (Ū − ŪT ).

The second stage problem is as follows

0 ≤ y`⊥M`y` + N̄`f(x) + q` ≥ 0, ` = 1, . . . , ν,

with M` = Λ` + U`, fi(x) = sinxi.

Example 2.3. Nonmonotone two-stage mixed SLCP with Z-matrix LCP in the sec-

ond stage.

4 For this example, PSNA is applied to solve the regularized problem in which M` is replaced by
M` + µkI for each ` with µk = 10−9.
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All parameters are generated in a same way as Example 2.2 except for the settings

of D, M`, N` and q`. The set D = [0, nen] is an n-dimensional bounded box. Let

m = 2k be even with k being a positive integer. All entries of k-th row and (k+1)-th

row of N̄ ∈ Rm×n are set to 1 and -1, respectively, while all other entries are zero.

M̄ ∈ Rm×m is a tridiagonal matrix with -1, 2, -1 on its superdiagonal, main diagonal

and subdiagonal, respectively, except for M̄mm = M̄11 = 1. qk = q̃ and qk+1 = −q̃ with

q̃ uniformly drawn from [−5, 5], and other components of q are zero. Generate an

i.i.d. sample {ξ1, . . . , ξν} of random variable ξ ∈ R following uniformly distribution

on [1, 5]. Set

M` = ξ`M̄, N` = (ξ` + 1)N̄ , q` = (ξ` + 2)q, ` = 1, . . . , ν.

It is not hard to verify that the LCP(N`x + q`,M`) is feasible for any x ∈ D

and ξ`, and hence it admits a unique least-element solution. For example, y =

(y1, . . . , yk, yk+1, . . . , y2k)
T with y1 = . . . = yk = 0 and yk+1 = · · · = y2k = [(ξ` +

1)
∑n

i=1 xi + (ξ` + 2)q̃]/ξ` is a feasible point of the LCP(N`x+ q`,M`).

Example 2.4. Nonmonotone and nonsmooth two-stage semi-linear SVI with P -

matrix LCP in the second stage.

In this case, D = [0, nen]. All other parameters are the same as that of Example

2.2 except for A(x), which is of the following form:

A1(x) = x2
1 +

n−1∑

i=2

(xixi+1)−
n∑

i=2

xi + |x1 − 1|+ 3x1,

A2(x) = x1(1− x3) + x2
2 + |x2 − 2|+ 3x2,

Ai(x) = x1(1− xi−1 − xi+1) + x2
i + |xi − i|+ 3xi, i = 3, . . . , n− 1,

An(x) = x1(1− xn−1) + x2
n + |xn − n|+ 3xn,

A(x) = (A1(x), . . . , An(x))T + c.
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The function A is nonsmooth but semismooth at x with xi = i and any element

of ∂A(x) is positive definite for any x ∈ Rn
+. We generate c ∈ Rn in a way such

that there is a solution x∗ of 20%, 40%, 60% and 80% components being nonsmooth,

respectively; that is, the corresponding component x∗i equals i. The remaining com-

ponents are set to 0 or n on a fifty-fifty basis, respectively.

We compared our algorithm with PHA for solving Example 2.1, which is a mono-

tone problem and also tested in [40]. Parameters of PHA are set as given in [40].

Examples 2.2-2.4 cannot be solved by PHA.

The numerical results for Example 2.1 are reported in Table 2.1 and Figure 2.1, in

which the average performance profiles of algorithms are listed based on the results of

ten randomly generated problems, such as the average number of iterations, average

CPU time, the average solution residual. In Table 2.1, the dimensions of problems

are ranging from 110 to 100050. For PSNA, the Newton iteration (2.14) performed

are also given, denoted as “Iter/N”. One can see that the Newton iteration is always

used for most of the problems. Moreover, for PSNA, the number of iterations barely

changes for different n,m and ν, while the CPU time increases linearly when n,m

and ν become large. Overall, PSNA computes a more accurate solution with less

number of iterations and CPU time than PHA. Table 2.1 shows that PSNA is faster

than PHA in terms of CPU time. The left figure of Figure 2.1 gives an intuitive

comparison of the two algorithms for different n,m when ν increases from 10 to

2000. The right-hand side figure shows the residual history with respect to the

iteration number for different n and m. It is clear that PSNA is more efficient than

PHA in terms of CPU time as well as the number of iterations.

In Table 2.2, numerical results of PSNA for Example 2.2 are presented. We

increase n,m from 10 to 30, ν from 100 to 2000 to study the performance of PSNA.

All the problems are successfully solved by PSNA. One can see that the number

of iterations barely changes when ν increases and the superlinear convergence rate
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Table 2.1: Comparison of PSNA and PHA for Example 2.1
PSNA PHA

n,m ν Iter Iter/N CPU Res Iter CPU Res
10 7.30 4.10 0.05 2.82e-16 76.20 0.18 9.24e-06
100 4.60 4.60 0.17 5.87e-16 140.40 2.89 9.74e-06

10 200 4.60 4.60 0.31 1.99e-08 171.90 6.72 9.65e-06
500 4.60 4.60 0.76 1.15e-07 242.10 22.15 9.71e-06
2000 5.00 5.00 3.22 1.18e-09 225.90 83.38 9.84e-06
10 4.00 4.00 0.03 3.60e-16 66.00 0.15 9.04e-06
100 5.00 5.00 0.29 4.13e-16 99.00 2.26 9.93e-06

20 200 4.00 4.00 0.48 8.84e-07 102.00 4.35 9.85e-06
500 4.00 4.00 1.18 3.39e-15 106.00 11.14 9.85e-06
2000 5.00 5.00 5.56 5.27e-15 114.00 46.47 9.63e-06
10 4.00 4.00 0.04 4.44e-16 38.70 0.18 8.60e-06
100 4.50 4.50 0.57 6.49e-08 49.30 2.25 9.08e-06

50 200 4.20 4.20 0.97 1.42e-07 47.70 4.33 8.95e-06
500 4.40 4.40 2.36 1.15e-07 70.90 13.96 8.87e-06
2000 4.20 4.20 9.14 1.27e-07 58.60 47.36 9.38e-06

is observed. Similar results for Example 2.3 are presented in Table 2.3. Table 2.4

and Figure 2.2 show the results of Example 2.4, in which the influence of nonsmooth

components (NSC) of the solution is explored, where NSC is equals to the percentage

of nonsmooth components Ai of function A at x∗. It can be seen that the NSC of

the solution does not affect the superlinear convergence rate of PSNA, although it

requires extra projection iterations when NSC is large. These results suggest that

PSNA is promising even for solving some nonmonotone problems.
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Figure 2.2: Numerical results of PSNA for Example 2.4 with ν = 1000.
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Table 2.2: Total iterations, Newton iterations, CPU time/sec for Example 2.2.
Case 1: l = 0, u =∞

n,m
ν

500 1000 2000

Max 3.00 3.00 0.16 3.00 3.00 0.25 3.00 3.00 0.50
20 10 Ave 3.00 3.00 0.13 3.00 3.00 0.24 3.00 3.00 0.50

Min 3.00 3.00 0.16 3.00 3.00 0.25 3.00 3.00 0.50
Max 3.00 3.00 0.35 4.00 4.00 0.87 4.00 4.00 1.86

30 20 Ave 3.00 3.00 0.35 3.10 3.10 0.72 3.10 3.10 1.51
Min 3.00 3.00 0.35 3.00 3.00 0.71 3.00 3.00 1.45
Max 5.00 5.00 3.16 4.00 4.00 5.14 4.00 4.00 11.65

60 50 Ave 4.10 4.10 2.67 4.00 4.00 5.22 4.00 4.00 11.02
Min 4.00 4.00 2.54 4.00 4.00 5.14 4.00 4.00 11.65

Case 2: l = −nen, u = nen

n,m
ν

500 1000 2000

Max 4.00 4.00 0.15 4.00 4.00 0.30 3.00 3.00 0.48
20 10 Ave 3.70 3.70 0.14 3.50 3.50 0.28 3.00 3.00 0.50

Min 3.00 3.00 0.13 3.00 3.00 0.24 3.00 3.00 0.48
Max 5.00 5.00 0.52 4.00 4.00 0.96 4.00 4.00 1.91

30 20 Ave 4.10 4.10 0.45 4.00 4.00 0.91 3.90 3.90 1.92
Min 4.00 4.00 0.44 4.00 4.00 0.96 3.00 3.00 1.59
Max 6.00 6.00 3.85 6.00 6.00 8.21 5.00 5.00 22.43

60 50 Ave 5.60 5.60 3.71 5.60 5.60 7.48 5.00 5.00 18.15
Min 5.00 5.00 3.36 5.00 5.00 6.74 5.00 5.00 22.43

Case 3: li = −n, ui = n if i is even and li = 0, ui =∞ if i is odd

n,m
ν

500 1000 2000

Max 4.00 4.00 0.24 4.00 4.00 0.37 4.00 4.00 0.81
20 10 Ave 3.20 3.20 0.19 3.20 3.20 0.40 3.10 3.10 0.70

Min 3.00 3.00 0.16 3.00 3.00 0.37 3.00 3.00 0.61
Max 4.00 4.00 0.49 4.00 4.00 1.03 4.00 4.00 2.41

30 20 Ave 4.00 4.00 0.60 3.80 3.80 1.09 3.40 3.40 2.06
Min 4.00 4.00 0.49 3.00 3.00 1.07 3.00 3.00 1.87
Max 5.00 5.00 3.77 5.00 5.00 9.81 5.00 5.00 13.16

60 50 Ave 5.00 5.00 3.95 4.50 4.50 7.38 4.10 4.10 13.51
Min 5.00 5.00 3.77 4.00 4.00 6.48 4.00 4.00 11.04
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Table 2.3: Numerical results of PSNA for Example 2.3.
PSNA

n,m ν Iter Iter/N CPU/sec Res
100 1.40 1.40 0.32 1.66e-09

20 500 1.30 1.30 1.46 3.38e-09
1000 1.50 1.50 3.24 3.34e-09
2000 1.70 1.70 6.96 4.61e-09
100 1.60 1.60 0.78 3.46e-08

30 500 1.70 1.70 3.79 4.12e-08
1000 1.30 1.30 6.31 1.66e-08
2000 1.50 1.50 12.17 9.25e-09

Table 2.4: Numerical results of PSNA for Example 2.4 with ν = 1000.
PSNA

n m NSC Iter Iter/N CPU/sec Res
0.20 7.60 7.60 1.73 8.75e-08

30 20 0.40 10.40 10.40 2.48 2.18e-07
0.60 20.00 7.80 6.61 1.35e-07
0.80 26.70 10.90 8.87 4.46e-07
0.20 8.10 8.10 4.36 1.05e-09

40 30 0.40 11.50 8.80 7.18 4.93e-08
0.60 18.70 9.70 13.17 3.18e-07
0.80 25.30 10.90 20.00 2.97e-07
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Chapter 3

A regularized PSNA for the global

crude oil market share problem

under the COVID-19 pandemic

In this chapter, a regularized PSNA (rPSNA) is developed to find a solution of a

two-stage stochastic equilibrium problem which models the global crude oil market

share under the COVID-19 pandemic.

We describe the uncertainties in the demand and supply by random variables and

provide two types of production decisions. A prior production decision in the first

stage is independent of the outcome of random events and the supply decision in the

second stage is allowed to depend on the random events in the future. The two-stage

stochastic model is proposed to reflect the real market of time delay between crude

oil production and supply in the COVID-19 pandemic. By utilizing oil market data

in our model, we are able to simulate the actual outputs of oil producers during

the pandemic, indicating their rational ways of maximizing own benefits. Thus, the

relatively stable market share can be explained and anticipated by the result of an

equilibrium reached by all agents competing noncooperatively.
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3.1 Two-stage stochastic quadratic games

We consider an oligopolistic market where J agents compete to supply a homogeneous

product non-cooperatively to the market in the future. Each agent needs to make

a decision on the quantity of production based on the anticipated future market

supply demand relation and other agents’ decisions under an uncertain environment.

The uncertainties are represented by a random variable ξ : Ξ → Rd defined in the

probability space (Ξ,A, P ) with a support set Ξ and the space V of measurable

functions from Ξ to RJ .

We define the variables and functions for each agent i, i = 1, . . . , J :

xi ∈ R, the production quantity;

θi : R→ R, the cost function of the production;

vi(ξ) ∈ R, the supply quantity;

ϕi : R× Ξ→ R, the cost function for supplying a quantity.

The uncertain market supply is characterized by a stochastic total supply η̃(ξ) =
∑J

i=1 vi(ξ) to the market and an inverse demand function p(η̃(ξ), ξ) : R × Ξ → R.

For every realization ξ ∈ Ξ, p(η̃(ξ), ξ) can be regarded as either the spot price in the

future or future price at the current time.

Each agent aims to maximize its profit and make its decisions in both stages.

The first stage is to make optimal decision on production quantity based on the

anticipation of future demand, and the second stage is to make optimal decision on

supply quantity based on the observation in the future.

For each realization of a random variable ξ and a nonnegative vector x ∈ RJ ,

agent i wants to find an optimal decision vi(ξ) by solving the following problem

Fi(x, ξ) := max
vi(ξ)

p(vi(ξ) + v−i(ξ), ξ)vi(ξ)− ϕi(vi(ξ), ξ)
s.t. 0 ≤ vi(ξ) ≤ xi, a.e. ξ ∈ Ξ.

(3.1)

Moreover, agent i has to make an optimal decision before knowing the future events
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by solving

max
xi

E[Fi(x, ξ)]− θi(xi, xi−1)

s.t. 0 ≤ xi.
(3.2)

Here x−i and v−i are decision variables of the agents other than the agent i. Prob-

lem (3.2) is the first stage, and problem (3.1) is the second stage of the two-stage

stochastic games. We call (x∗, v∗) ∈ RJ × V an optimal solution of the two-stage s-

tochastic games, if for i = 1, . . . , J , (x∗i , v
∗
i (ξ)) is the optimal solution of the two-stage

optimization problem:

max
xi

E[Fi(xi, x
∗
−i, ξ)]− θi(xi, x∗i−1)

s.t. 0 ≤ xi
(3.3)

and

Fi(xi, x
∗
−i, ξ) := max

vi(ξ)
p(vi(ξ) + v∗−i(ξ), ξ)vi(ξ)− ϕi(vi(ξ), ξ)

s.t. 0 ≤ vi(ξ) ≤ xi, a.e. ξ ∈ Ξ.
(3.4)

In this chapter, we consider the case where the objective functions in (3.1)-(3.2)

are quadratic concave in the following forms:

θi(xi, x−i) =
1

2
cix

2
i + aixi + rixi

J∑

j=1

xj, (3.5)

p(vi(ξ) + v−i(ξ), ξ) = α(ξ)− γ(ξ)
J∑

j=1

vj(ξ), (3.6)

ϕi(vi(ξ), ξ) =
1

2
hi(ξ)v

2
i (ξ) + βi(ξ)vi(ξ), (3.7)

where ci > 0, γ(ξ) > 0, hi(ξ) > 0, ai, ri, α(ξ) and βi(ξ) are given real numbers.

Expression (3.5) represents the production cost of the oil, which is different from

that in [25]. The quadratic term is used to capture the nonlinear cost of the oil pro-

duction, like those of exploration, oil field construction, etc. It can also be regarded
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as the extra cost when the production quantity undergoes rapid changes, e.g., sud-

den production cut, extra cost due to excessive amount of the production. The first

term in expression (3.7) is also used to represent similar type of super-linear costs

in supply, e.g., oil tube capacity, oil tanker availability, etc. In the supply stage, the

produced oil needs to be refined and transported to the destinations. Since the oil

is produced prior to the trading time, the storage cost can also make an impact of

adjusted price of each agent. In fact, one major reason that caused the WTI price to

fall below US$ zero per barrel was the lack of storage facilities, not only at Cushing

where the oil is physically transferred but also all over the globe where hundreds of

fully loaded oil tankers being stationary at sea with no destinations to go and even

oil pipes are taken as temporal storage. The third term in expression (3.5) is to

represent the fact that each agent may have chosen different approaches in response

to the strategies of the others. The sign of ri is to show whether agent i decides to

go along with the market or go against it. The ideas and rationale will be explained

in detail in Subsection 3.3.2 when we apply the model to real market data.

In such setting, the function

Fi(x, ξ) = max
vi(ξ)

(α(ξ)− γ(ξ)
J∑

j=1

vj(ξ))vi(ξ)−
1

2
hi(ξ)v

2
i (ξ)− βi(ξ)vi(ξ)

s.t. 0 ≤ vi(ξ) ≤ xi, a.e. ξ ∈ Ξ

is continuously differentiable with respect to xi for xi > 0 and

∇xiFi(x, ξ) = si(ξ),

where si(ξ) ≥ 0 are Lagrange multipliers for the constraints vi(ξ) ≤ xi. If xi = 0,

then the optimal solution of the optimization problem (3.4) is vi(ξ) ≡ 0 for any

ξ ∈ Ξ, and the subdifferential ∂xiFi(x, ξ) of Fi(x, ξ) is

{si(ξ) | si(ξ) ≥ max(0, α(ξ)− βi(ξ)− γ(ξ)eTv(ξ)), E[si(ξ)] ≤ rie
Tx+ ai}.
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The Karush-Kuhn-Tucker (KKT) conditions of problems (3.1)-(3.2) with the

functions defined in (3.5)-(3.7) derive the following two-stage SLCP

0 ≤




x
v(ξ)
s(ξ)


 ⊥




Ax− E[s(ξ)] + a
(Λ2(ξ) + γ(ξ)eeT )v(ξ) + s(ξ) + ρ(ξ)

x− v(ξ)


 ≥ 0, (3.8)

for a.e. ξ ∈ Ξ, where

x = (x1, . . . , xJ)T , a = (a1, . . . , aJ)T , r = (r1, . . . , rJ)T ,

v(ξ) = (v1(ξ), . . . , vJ(ξ))T , s(ξ) = (s1(ξ), . . . , sJ(ξ))T ,

ρ(ξ) = (−α(ξ) + β1(ξ), . . . ,−α(ξ) + βJ(ξ))T ,

A = Λ1 + reT , Λ1 = diag(c1 + r1, . . . , cJ + rJ),

Λ2(ξ) = diag(h1(ξ) + γ(ξ), . . . , hJ(ξ) + γ(ξ)),

and e ∈ RJ is the vector with all components being 1.

We assume that the matrix A is positive definite. Then problems (3.1)-(3.2) with

the functions defined in (3.5)-(3.7) are equivalent to problem (3.8) in the sense that

if (x∗, v∗(·)) is a solution of problems (3.1)-(3.2), then there is an s∗(·) such that

(x∗, v∗(·), s∗(·)) is a solution of (3.8); conversely, if (x∗, v∗(·), s∗(·)) is a solution of

(3.8), then (x∗, v∗(·)) is a solution of problems (3.1)-(3.2). A sufficient condition for

the matrix A = Λ1 + reT being positive definite is

ci + 2ri >
1

2

J∑

j 6=i
|rj + ri|, i = 1, . . . , J. (3.9)

Condition (3.9) implies that Λ1 + 1
2
(reT + erT ) is a symmetric diagonally dominate

matrix with positive diagonal elements and thus a positive definite matrix.

49



Let

M(ξ) =

(
Λ2(ξ) + γ(ξ)eeT I

−I 0

)
∈ R2J×2J ,

y(ξ) =

(
v(ξ)
s(ξ)

)
∈ R2J , q(x, ξ) =

(
ρ(ξ)
x

)
∈ R2J . (3.10)

Since M(ξ) is a positive semi-definite matrix, SOL(q(x, ξ),M(ξ)) is a convex set [17].

A vector ŷ(x, ξ) is called a least-norm solution of the LCP(q(x, ξ),M(ξ)) if it is the

solution of the optimization problem

min ‖y‖2 s.t. y ∈ SOL(q(x, ξ),M(ξ)).

The following lemma gives the form of the least-norm solution of the LCP(q(x, ξ),

M(ξ)) and shows that it is the unique solution of the LCP(q(x, ξ),M(ξ)) when x > 0.

Lemma 3.1. For any x ≥ 0 and ξ ∈ Ξ, the LCP(q(x, ξ),M(ξ)) has the least-norm

solution ŷ(x, ξ) = (v̂(x, ξ), ŝ(x, ξ))T with

v̂(x, ξ) = Π[0,x](v̂(x, ξ)− ρ(ξ)− (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ)), (3.11)

ŝ(x, ξ) = max(0,−ρ(ξ)− (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ)), (3.12)

where Π[0,x](z) is the projection from z to the set [0, x]. Moreover, the least-norm

solution is the unique solution of the LCP(q(x, ξ),M(ξ)) if x > 0.

Proof. It is easy to see that y(ξ) = (x, |ρ(ξ)|)T ≥ 0 and M(ξ)y(ξ) + q(x, ξ) ≥ 0;

that is, (x, |ρ(ξ)|)T is a feasible solution of the LCP(q(x, ξ),M(ξ)). Hence from the

feasibility and the positive semi-definiteness of M(ξ), the LCP(q(x, ξ),M(ξ)) has at

least one solution [17, Theorem 3.1.2].

The LCP(q(x, ξ),M(ξ)) is the first-order optimality condition of the strongly

convex quadratic program

min F̄x(v(ξ), ξ) :=
1

2
v(ξ)T (Λ2(ξ) + γ(ξ)eeT )v(ξ) + ρ(ξ)Tv(ξ)

s.t. 0 ≤ v(ξ) ≤ x.

(3.13)
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Because of the strong convexity, the first-order optimality condition is necessary and

sufficient for the unique optimal solution v̂(x, ξ) of the above problem, which is a

fixed point of the fixed point problem

v̂(x, ξ) = Π[0,x](v̂(x, ξ)− ρ(ξ)− (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ)).

Hence, v̂(x, ξ) has the form of (3.11).

By the definition of the projection, we can easily obtain

(ρ(ξ) + (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i





= 0 if (v̂(x, ξ)− ρ(ξ)− (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i ∈ (0, xi),
≤ 0 if (v̂(x, ξ)− ρ(ξ)− (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i ≥ xi,
≥ 0 otherwise.

Hence, the multiplier ŝ(x, ξ) in (3.12) with v̂(x, ξ) in (3.11) is a solution of the

LCP(q(x, ξ), M(ξ)), where for the case v̂i(x, ξ) < xi it is from ŝi(x, ξ) = (ρ(ξ) +

(Λ2(ξ)+γ(ξ)eeT )v̂(x, ξ))i = 0 and ŝi(x, ξ)(xi−v̂i(x, ξ)) = 0, and for the case v̂i(x, ξ) =

xi, it is from v̂i(x, ξ)(ŝi(x, ξ) + (ρ(ξ) + (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i) = 0.

If v̂i(x, ξ) = xi > 0, ŝi(x, ξ) in (3.12) is uniquely defined. If v̂i(x, ξ) = xi = 0,

then ŝi(x, ξ) = max(0,−(ρ(ξ) + (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i) = 0. Hence ŷ(x, ξ) =

(v̂(x, ξ), ŝ(x, ξ))T defined in (3.11)-(3.12) is the least-norm solution of the LCP(q(x, ξ),

M(ξ)) and the unique solution of LCP(q(x, ξ),M(ξ)) if x > 0. We complete the

proof.

Lemma 3.1 shows that for a fixed vector x ≥ 0, the least-norm solution of the

LCP(q(x, ξ),M(ξ)) is uniquely defined by Λ2(ξ), ρ(ξ) and γ(ξ). These random data

may have noise in real applications. Now we consider the perturbation bound of the

solution regarding noise in Λ2(ξ), ρ(ξ) and γ(ξ).

Let us consider the following LCP(q̄, M̄) with

M̄ =

(
Λ̄2 + γ̄eeT I
−I 0

)
, q̄ =

(
ρ̄
x

)
.
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From Lemma 3.1, the LCP(q̄, M̄) with x ≥ 0 has the least-norm solution ȳ =

(ū, t̄)T in the following form

ū = Π[0,x](ū− ρ̄− (Λ̄2 + γ̄eeT )ū) and t̄ = max(0,−ρ̄− (Λ̄2 + γ̄eeT )ū).

Now we consider the distance ‖v̂(x, ξ)− ū‖ and ‖ŝ(x, ξ)− t̄‖.

Theorem 3.1. Suppose that x ≥ 0 and let Γ > 0 such that Γγ(ξ) ≥ 1. Then the

least-norm solution of the LCP(q(x, ξ),M(ξ)) is continuous with respect to Λ2(ξ),

ρ(ξ) and γ(ξ). Moreover, we have the following perturbation error bound

‖v̂(x, ξ)− ū‖ ≤ Γ(‖ρ(ξ)− ρ̄‖+ ‖x‖‖Λ2(ξ)− Λ̄2‖+ J‖x‖‖γ(ξ)− γ̄‖). (3.14)

Proof. We first prove (3.14). Let

w(ξ) = (Λ(ξ) + γ(ξ)eeT )v̂(x, ξ) + ρ(ξ) and w̄ = (Λ̄2 + γ̄eeT )ū+ ρ̄.

Then we have

v̂(x, ξ) = Π[0,x](v̂(x, ξ)− w(ξ)) and ū = Π[0,x](ū− w̄),

which implies

mid(v̂(x, ξ), v̂(x, ξ)− x,w(ξ)) = 0 and mid(ū, ū− x, w̄) = 0,

where “mid” is the componentwise median operator. Following the proof of [11,

Lemma 2.1], there is a diagonal matrix D̄ =diag(d1, . . . , dJ) with 0 ≤ di ≤ 1 such

that

0 = (I − D̄)(v̂(x, ξ)− ū) + D̄(w(ξ)− w̄).

Hence we obtain

(I−D̄+D̄(Λ2(ξ)+γ(ξ)eeT ))(v̂(x, ξ)−ū) = −D̄(ρ(ξ)−ρ̄+(Λ2(ξ)−Λ̄2+(γ(ξ)−γ̄)eeT )ū).

(3.15)
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Since Λ2(ξ) + γ(ξ)eeT is symmetric positive definite, by [13, Theorem 2.7], we have

max
d∈[0,1]J

‖(I − D̄ + D̄(Λ2(ξ) + γ(ξ)eeT ))−1D̄‖ = ‖(Λ2(ξ) + γ(ξ)eeT ))−1‖

≤ γ(ξ)−1‖(I + eeT )−1‖.

Therefore, using ‖(I+eeT )−1‖ = 1, ‖eeT‖ = J , γ(ξ)−1 ≤ Γ and 0 ≤ ū ≤ x, we obtain

(3.14) from (3.15).

Next we show the continuity of the last J-components of the least norm solu-

tion of the LCP(q(x, ξ),M(ξ)). Without loss of generality, assume that σ = {i ∈

{1, . . . , J} | v̂i(x, ξ) < xi} 6= ∅. From (3.14), for any 0 < ε < mini∈σ xi− v̂i(x, ξ), there

is δ > 0 such that if ‖ρ(ξ)− ρ̄‖+‖Λ2(ξ)−Λ̄2‖+‖γ(ξ)− γ̄‖ < δ, then ‖v̂(x, ξ)−ū‖ < ε.

This implies for i ∈ σ, xi − ūi ≥ xi − v̂i(x, ξ) − |v̂i(x, ξ) − ūi| > 0. Hence, we have

t̄i = ŝi(x, ξ) = 0.

For i 6∈ σ, that is, v̂i(x, ξ) = xi, we have

ŝi(x, ξ) = −(ρ(ξ) + (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i ≥ 0.

If t̄i = 0, then −(ρ̄ + (Λ̄2 + γ̄eeT )ū)i ≤ 0, otherwise t̄i = −(ρ̄ + (Λ̄2 + γ̄eeT )ū)i ≥ 0.

Hence, using (3.14), we have

|ŝi(x, ξ)− t̄i|

≤ |(ρ(ξ) + (Λ2(ξ) + γ(ξ)eeT )v̂(x, ξ))i − (ρ̄+ (Λ̄2 + γ̄eeT )ū)i|

≤ ‖ρ(ξ)− ρ̄‖+ (‖Λ2(ξ)‖+ γ(ξ)J)‖v̂(x, ξ)− ū‖+ ‖x‖(J‖γ(ξ)− γ̄‖+ ‖Λ2(ξ)− Λ̄2‖)

≤ (L+ (‖Λ2(ξ)‖+ γ(ξ)J)Γ)(‖ρ(ξ)− ρ̄‖+ ‖Λ2(ξ)− Λ̄2‖+ ‖γ(ξ)− γ̄‖)),

where L ≥ max{1, J‖x‖}. Hence, the solution of the LCP(q(x, ξ),M(ξ)) is continu-

ous with respect to Λ2(ξ), ρ(ξ) and γ(ξ). We complete the proof.
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3.2 A regularized projection semismooth Newton

algorithm (rPSNA)

In this section, we propose rPSNA to solve the SAA discretization problem of (3.8).

Given an i.i.d. sample set Ξν = {ξ1, . . . , ξν} of ξ with ν > 0, the probability for each

realization is 1/ν. For simplicity, we set B = (0, I) ∈ RJ×2J , %(ξ) = (ρ(ξ), 0)T ∈ R2J ,

n = J + 2Jν and

M =




A − 1
ν
B . . . − 1

ν
B

BT M1
...

. . .

BT Mν


 ∈ Rn×n, q =




a
%1
...
%ν


 ∈ Rn,

where M` = M(ξ`) and %` = %(ξ`), ` = 1, . . . , ν. Thus, the SAA discretization

problem of (3.8) reads

0 ≤ z⊥Mz + q ≥ 0, (3.16)

where z = (x, y1, . . . , yν)
T with y` = (v`, s`)

T . In such setting, the problem (3.16) is

a deterministic LCP(q,M). We first study its solvability.

Theorem 3.2. The problem (3.16) has at least one solution z∗ = (x∗, y∗1, . . . , y
∗
ν)
T ,

and has at most one solution with x∗ > 0.

Proof. Let Λ =diag(ν, 1, . . . , 1) ∈ Rn×n with the first J diagonal elements of Λ being

ν. It is easy to verify that z∗ is a solution of the LCP(Λq,ΛM) if and only if z∗ is a

solution of the LCP(q,M).

Since zT (ΛM + (ΛM)T )z ≥ 0 for any z ∈ Rn, the matrix ΛM is positive semi-

definite. Moreover, z = (x, x, |ρ1|, . . . , x, |ρν)|)T ∈ Rn with xi > max{0, ( 1
ν

∑ν
`=1 |ρ`|−

a)i/ci}, i = 1, . . . , J is a feasible solution of the LCP(Λq,ΛM). Hence the feasibil-

ity implies that the LCP(Λq,ΛM) has at least one solution z∗ [17]. If z∗ has the

component x∗ > 0, then by Lemma 3.1, the component (y∗` , . . . , y
∗
ν) of z∗ is uniquely
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dependent on x∗ > 0. Moreover, we have

Ax∗ +
1

ν

ν∑

i=`

D̄`(ρ` + ((Λ2)` + γ`ee
T )x∗) + a = 0,

where D̄` is a diagonal matrix with diagonal elements being 0 or 1. Since A and

(Λ2)`+γ`ee
T are positive definite, x∗ is the unique solution of this system of equations.

Hence, the LCP(Λq,ΛM) has at most one solution with x∗ > 0.

By Lemma 3.1, we know that the LCP(q,M) has the relatively complete recourse.

Since M` is only positive semidefinite, the second stage problem may have multiple

solutions for some fixed x and ξ. In such case, we always choose the unique least-norm

solution ŷ(x, ξ). By substituting ŷ(x, ξ) into the first stage problem, we get

0 ≤ x⊥H(x) ≥ 0, (3.17)

where H(x) := Ax − 1
ν

∑ν
`=1Bŷ(x, ξ`) + a. Its corresponding residual function is

written as

Q̂(x) = min(x,Ax− 1

ν

ν∑

`=1

Bŷ(x, ξ`) + a). (3.18)

Note that ŷ(x, ξ`) is not guaranteed to be a Lipschitz continuous function as

pointed out in [14], and thus H and Q̂ are not necessarily Lipschitz continuous. To

overcome such difficulties, we propose rPSNA to solve (3.17). Since for each fixed x

and ξ the second stage problem is only a monotone problem, we add a regularized

term µkI (with µk → 0) to the second stage LCP in (3.8) to force the whole problem

to be strongly monotone. By LCP(q,Mµk), we denote the regularized problem with

µk, where

Mµk =




A − 1
ν
B . . . − 1

ν
B

BT Mµk
1

...
. . .

BT Mµk
ν



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with

Mµk
` =

(
Λ2(ξ`) + γ(ξ`)ee

T + µkI I
−I µkI

)
, ` = 1, . . . , ν.

With the regularized parameter µk, for each fixed x and ξ, the second stage prob-

lem becomes a strongly monotone LCP, and there exists a unique solution ŷµk(x, ξ)

that is Lipschitz continuous with respect to x for any ξ. Substituting ŷµk into the

corresponding first stage problem, we can get the single-stage reformulation of the

LCP(q,Mµk) as follows:

0 ≤ x⊥Hµk(x) ≥ 0, (3.19)

where

Hµk(x) := Ax− 1

ν

ν∑

`=1

Bŷµk(x, ξ`) + a.

By Propositions 2.4 and Lemma 2.2, we can show that Hµk is strongly monotone and

Lipschitz continuous on RJ for each fixed µk > 0. In addition, the residual function

for (3.19) is also Lipschitz continuous, which reads

Q̂µk(x) = min(x,Ax− 1

ν

ν∑

`=1

Bŷµk(x, ξ`) + a).

Therefore, PSNA can be applied to solve (3.19) for each µk > 0.

By [17, Theorem 5.6.2 (b)], we know that

lim
k→∞

ŷµk(x, ξ) = ŷ(x, ξ), for any x ≥ 0, ξ ∈ Ξν .

Then, we have for any x ≥ 0,

lim
k→∞

Hµk(x) = H(x), (3.20)

lim
k→∞

Q̂µk(x) = Q̂(x). (3.21)

We formally present rPSNA as follows.

56



Algorithm 3.1. Regularized Projection Semismooth Newton Algorithm

(rPSNA)

Step 0: Choose an initial point x0 ∈ Rn
+, τ ∈ (0, 1) and initial regularized

parameter µ0 > 0. Set k = 0, xk,0 = x0.

Step 1: Calculate xk which solves the regularized single-stage problem (3.19) with

regularized parameter µk by PSNA with starting point xk,0. If ‖Q̂(xk)‖ = 0, stop.

Otherwise, go to Step 2.

Step 2: Let µk+1 = min(‖Q̂(xk)‖, τ)µk, xk+1,0 = xk. Set k := k + 1; go back to

Step 1.

Remark: In Step 1, we use a warm-start strategy when solving the regularized

single-stage problem (3.19). This not only improves the numerical efficiency of the

algorithm but also avoids some computational difficulties that will discuss latter.

The following proposition establishes the strong monotonicity and the solvability

of the single-stage problem (3.17).

Proposition 3.3. The single-stage problem (3.17) is strongly monotone on RJ
+ and

admits a unique solution x∗. Then (x∗, ŷ(x∗, ξ1), . . . , ŷ(x∗, ξν)) is a solution of the

LCP(q,M).

Proof. For any fixed µk > 0 and ξ`, it holds

(
uT vT

)( A −B
BT Mµk

`

)(
u
v

)
≥ λmin‖u‖2 + µk‖v‖2, ∀ (u, v) ∈ RJ × R2J ,

where λmin denotes the minimum eigenvalue of (A + AT )/2. Then, by a similar

argument as in [10, Lemma 2.1], we can show that for any fixed µk > 0,

uT [A+B(I − ΛJ + ΛJM
µk
` )−1ΛJB

T ]u ≥ λmin‖u‖2, ∀ u ∈ RJ ,

where J ⊆ [J ] with [J ] := {1, . . . , J}, and ΛJ ∈ RJ×J is a diagonal matrix with

(ΛJ )jj = 1 if j ∈ J and (ΛJ )jj = 0 otherwise. By [8, Theorem 3.9], we know that
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Hµk is strongly monotone on RJ
+ such that

(x− x′)T (Hµk(x)−Hµk(x
′)) ≥ λmin‖x− x′‖2, ∀ x, x′ ∈ RJ

+.

By (3.20), taking the limit for the above inequality, we get that

(x− x′)T (H(x)−H(x′)) ≥ λmin‖x− x′‖2,

which implies that H is strongly monotone on RJ
+. Therefore, (3.17) admits a unique

solution x∗ and (x∗, ŷ(x∗, ξ1), . . . , ŷ(x∗, ξ1)) is a solution of the LCP(q,M).

The following proposition follows from Lemma 2.2.

Proposition 3.4. For any fixed µ > 0, the unique solution of the regularized second

stage problem LCP(%`,M
µ
` ) for ξ` reads

ŷµ(x, ξ`) = −Uµ(x, ξ`)(B
Tx+ %`),

where Uµ(x, ξ`) = (I − Λ(x, ξ`) + Λ(x, ξ`)M
µ
` )−1Λ(x, ξ`) with Λ(x, ξ`) being a diago-

nal matrix satisfying Λii(x, ξ`) = 1 if (Mµ
` ŷµ(x, ξ`) + BTx + %`)i < (ŷµ(x, ξ`))i and

Λii(x, ξ`) = 0 otherwise. ŷµ(·, ξ`) is strongly semismooth on RJ and globally Lipschitz

continuous with Lipschitz constant Lŷµ = ‖B‖maxJ⊆[J ]‖(Mµ
` )−1
JJ ‖. In addition, we

have

−Uµ(x, ξ`)B
T ∈ ∂ŷµ(x, ξ`).

From the above proposition, it is not hard to see that the Lipschitz constant of

Hµ is

LHµ = ‖A‖+
1

ν
‖B‖2

ν∑

`=1

maxJ⊆[J ]‖(Mµ
` )−1
JJ ‖.

Hµ and Q̂µ are strongly semimsooth on RJ by the strong semismoothness of ŷµ(·, ξ`)

for every ξ`. The linear Newton approximation scheme Hµ : RJ
+ ⇒ RJ×J reads

Hµ(x) = A− 1

ν
B

ν∑

`=1

∂xŷµ(x, ξ`).
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One element of Hµ at x can be calculated as

A+
1

ν
B

ν∑

`=1

Uµ(x, ξ`)B
T .

Actually, by the proof in Proposition 3.3, it is not hard to see that for any x ∈ RJ
+,

every element in Hµ(x) is positive definite. Moreover, since Hµ is strongly monotone

on RJ
+, by Lemma 9.1.3 and Corollary 9.1.28 in [19], we can deduce that the level

set

Lµ0 = {x ∈ RJ
+ : ‖Q̂µ(x)‖ ≤ ‖Q̂µ(x0)‖} is bounded for any fixed µ > 0.

Then, we have the following convergence theorem about PSNA applying to the reg-

ularized problem (3.19).

Theorem 3.5. For any fixed µ > 0, PSNA applying to solve the regularized problem

(3.19) is globally convergent and the convergence rate is superlinear.

Proof. It follows from Theorem 2.6. We omit the details.

The above theorem shows that the Step 1 of rPSNA is always implementable for

any fixed µ > 0. Next, we study the global convergence of rPSNA.

Theorem 3.6. The sequence {xk} generated by rPSNA for solving (3.17) globally

converges to the unique solution x∗.

Proof. We first show that the sequences {ŷµk(xk, ξ`)} and {ŷ(xk, ξ`)} are bounded

for each ξ`. By the proof in Lemma 3.1, for any xk ≥ 0, the following optimization

problem

min
v(ξ`)

F̄xk(v(ξ`), ξ`), s.t. 0 ≤ v(ξ`) ≤ xk,

admits a unique solution which is bounded by the strong convexity of the objective

function. By (3.12), it is known that ŝ(xk, ξ`) is bounded. Thus, {ŷ(xk, ξ`)} is
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bounded. Since xk is the unique solution of (3.19), we have

min(xk, Axk −
ν∑

`=1

Bŷµk(x
k, ξ`) + a) = 0, (3.22)

in which ŷµk(x
k, ξ`) is the unique solution of the LCP(q(xk, ξ`),M

µk
` ), i.e.,

0 ≤ ŷµk(x
k, ξ`)⊥Mµk

` ŷµk(x
k, ξ`) + q(xk, ξ`) ≥ 0. (3.23)

In addition, ŷ(xk, ξ`) is the unique least-norm solution of LCP(q(xk, ξ`),M`); that is,

0 ≤ ŷ(xk, ξ`)⊥M`ŷ(xk, ξ`) + q(xk, ξ`) ≥ 0.

By the last two relations and the positive semi-definiteness of M`, we have

0 ≥ (ŷµk(x
k, ξ`)− ŷ(xk, ξ`))

T (M`(ŷµk(x
k, ξ`)− ŷ(xk, ξ`)) + µkŷµk(x

k, ξ`))

≥ µk(ŷµk(x
k, ξ`)− ŷ(xk, ξ`))

T ŷµk(x
k, ξ`),

which implies that

‖ŷµk(xk, ξ`)‖ ≤ ‖ŷ(xk, ξ`)‖. (3.24)

Thus, {ŷµk(xk, ξ`)} is also bounded.

Next, we show that the sequence {xk} is bounded. Since x∗ is the unique solution

of (3.17), we have

min(x∗, Ax∗ −
ν∑

`=1

Bŷ(x∗, ξ`) + a) = 0. (3.25)

By [13], it follows from (3.22) and (3.25) that there exists a diagonal matrix Λk with

diagonal entries on [0, 1] such that

0 = (I − Λk)(x
k − x∗) + Λk

(
A(xk − x∗)−

ν∑

`=1

(Bŷµk(x
k, ξ`)−Bŷ(x∗, ξ`))

)
,

which implies that

‖xk − x∗‖ ≤ ‖(I − Λk + ΛkA)−1Λk‖‖
ν∑

`=1

(Bŷµk(x
k, ξ`)−Bŷ(x∗, ξ`))‖.
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The above relation implies that {xk} is bounded since the righthand side is bounded.

Then, for any accumulation point x̄ of {xk}, let K be the subsequence such that

limk∈K,k→∞ xk = x̄. (3.23) is equivalently written as

min(ŷµk(x
k, ξ`),M

µk
` ŷµk(x

k, ξ`) + q(xk, ξ`)) = 0.

Taking the limit for the above equation in the subsequence K, we have

min(ȳ(x̄, ξ`),M`ȳ(x̄, ξ`) + q(x̄, ξ`)) = 0,

where without loss of generality let limk∈K,k→∞ ŷµk(x
k, ξ`) = ȳ(x̄, ξ`) (taking a sub-

sequence of K if necessary). The last relation and (3.24) imply that

lim
k∈K,k→∞

ŷµk(x
k, ξ`) = ȳ(x̄, ξ`) = ŷ(x̄, ξ`).

Thus, by the above relation and taking the limit for (3.22) in K, it yields that

min(x̄, Ax̄−
ν∑

`=1

Bŷ(x̄, ξ`) + a) = 0,

which implies that x̄ solves (3.17). Then every accumulation point of {xk} is a

solution of (3.17). Since the single-stage problem (3.17) has a unique solution x∗, we

deduce that limk→∞ xk → x∗.

We have to point out that Theorem 3.6 is implementable in theory, but one

may encounter some difficulties in practical numerical computations. Indeed, by

Proposition 3.4, the Lipschitz constant LHµk of Hµk can be arbitrarily large as µk

decreases to zero, which means that the step size of projection iteration (2.15) in

PSNA will approach zero. In practical numerical implementations, the projection

iteration (2.15) in PSNA will stagnate, which is undesirable. Another difficulty is

that the computation of Hµk is not well-defined since I −Λ(x, ξ`) + Λ(x, ξ`)M
µ
` may

tend to singular as µk → 0.
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To overcome the difficulties discussed above, we need to assume that ŷ(·, ξ`) is

Lipschitz continuous around the unique solution x∗ of (3.17) for all `, which also

implies the Lipschitz continuity of H around x∗. Although ŷ(·, ξ`) is not necessarily

Lipschitz continuous on RJ
+, it is reasonable to expect that it is Lipschitz continuous

around some points. A sufficient condition to guarantee the local Lipschitz continuity

of ŷ(·, ξ`) around the solution is x∗ > 0. Then, by Lemma 3.1, we know that the

second stage problem has a unique solution ŷ(x, ξ`) around x∗. By [30, Theorem 3.2],

it is known that ŷ(·, ξ`) is also Lipschitz continuous around x∗. Denote by B(x∗, δ)

the open neighborhood on which each ŷ(·, ξ`) is Lipschitz continuous. Denote the

Lipschitz constant of H around x∗ by L̄H . Since xk → x∗ by Theorem 3.6 and limk→∞

Hµk(x) = H(x) for any x ∈ RJ
+, there exists a finite positive integer K̄ such that for

all k ≥ K̄, xk,0, xk ∈ clB(x∗, 1
8
δ) and Hµk is Lipschitz continuous on clB(x∗, 1

2
δ) with

Lipschitz constant L̄Hµk satisfying

|L̄Hµk − L̄H | ≤
1

2
L̄H ,

which implies that Hµk is Lipschitz continuous on clB(x∗, 1
2
δ) with bounded Lipschitz

constant for all k ≥ K̄. Then, the projection iteration (2.15) of PSNA will not

stagnate and the computation of Hµk does not encounter difficulties over clB(x∗, 1
2
δ)

as µk → 0. Indeed, for any k ≥ K̄, if we choose αk = 1
2
L̄−1
Hµk

, the sequence {xk,j}∞j=0

generated by the projection iteration (2.15) in PSNA is contained in clB(x∗, 1
8
δ).

More specifically, let xk,j ∈ clB(x∗, 1
8
δ). Since

‖π(xk,j)− xk‖ = ‖π(xk,j)− π(xk)‖ ≤ ‖xk,j − xk‖+ αkL̄Hµk‖x
k,j − xk‖

with π(x) = ΠRJ+(x − αkHµk(x)), it implies that π(xk,j) ∈ clB(x∗, 1
2
δ). By [19,

Lemma 12.1.10], it is not hard to see that xk,j+1 ∈ clB(x∗, 1
8
δ). Note that xk is also

the unique solution of VI(clB(x∗, 1
8
δ), Hµk). By the above discussion, the projection
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iteration (2.15) with starting point xk,0 ∈ clB(x∗, 1
8
δ) to solve (3.19) is equivalent to

solving VI(clB(x∗, 1
8
δ), Hµk), which is globally convergent such that

lim
j→∞

xk,j = xk.

As xk,j is sufficiently close to xk, the Newton iteration (2.14) is applicable and the

superlinear convergence rate occurs.

3.3 Numerical experiments

In this section, we conduct numerical experiments to test the efficiency of rPSNA.

First, we compare rPSNA with PHA for solving (3.16) with randomly generated

data. Next, we apply rPSNA to solve the crude oil market share problem under the

impact of the COVID-19 pandemic, in which the related parameters of (3.16) are

determined using the real data from reliable sources.

3.3.1 Randomly generated problems

PHA can solve the LCP(q,M), since it is monotone in the sense of (2.4). The details

of PHA for the two-stage SLCP are given as follows.

Algorithm 3.2. Progressive Hedging Algorithm (PHA) [40]

Step 0. Given a point x0 ∈ RJ , let x0
` = x0 ∈ RJ , y0

` ∈ R2J and w0
` ∈ RJ ,

for ` = 1, . . . , ν, such that 1
ν
Σν
`=1w

0
` = 0. Set the initial point z0 = (x0, y0

1, . . . , y
0
ν)
T .

Choose a step size t > 0. Set k = 0.

Step 1. For ` = 1, . . . , ν, find (x̂k` , ŷ
k
` ) that solves the LCP

0 ≤ x`⊥Ax` −By` + a+ wk` + t(x` − xk` ) ≥ 0,
0 ≤ y`⊥BTx` +M`y` + %` + t(y` − yk` ) ≥ 0.

(3.26)

Let x̄k+1 = 1
ν

∑ν
`=1 x̂

k
` , and for ` = 1, . . . , ν, update

xk+1
` = x̄k+1, yk+1

` = ŷk` , w
k+1
` = wk` + t(x̂k` − xk+1

` ),
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to get point zk+1 = (x̄k+1, yk+1
1 , . . . , yk+1

ν )T .

Step 2. Set k := k + 1; go back to Step 1.

We first use randomly generated problems to compare the performance of rPSNA

and PHA. The related parameters of problem (3.16) are generated as follows.

• c, a are uniformly drawn from [eJ , 5eJ ] and [eJ , 10eJ ], respectively. r = 0.5eJ .

• γ`, h` and %` are uniformly distributed on [0, 1], [eJ , 5eJ ] and [−e2J ,−10e2J ],

respectively.

For rPSNA, the regularized parameter is set to µk ≡ 5 × 10−9, the step size for

the projection iteration (2.15) is αk ≡ 0.05, εk ≡ 0 and η = 0.9. The step size t of

PHA is set to t =
√

3J according to the suggestion in [40]. We terminate the two

algorithms when one of the following three criteria is met; that is, the number of

iterations reaches 1000, or ‖zk − zk−1‖ ≤ 10−5, or

Res := ‖min(Mzk + q, zk)‖ ≤ 10−5.

We choose J = 5, 10, 20, and increase the sample size ν from 10 to 2000. The

dimension of the corresponding LCP(q,M) ranges from 105 to 80020. For each J

and ν, we randomly generated 10 problems following the descriptions above. PHA

and rPSNA were used to solve these 10 problems. The results reported in Table

3.1 are the average number of iterations, CPU time (seconds), and residuals. Table

3.1 and Figure 3.1 show that rPSNA sucessfully solved the LCP(q,M) for all J and

ν efficiently. In addition, for rPSNA, it is observed that the number of iterations

remained almost unchanged when J and ν increased, and the CPU time was linearly

increasing as ν increased. Although PHA can solve the problems with small J and

ν, it failed to solve the problems with large J and ν within 1000 iterations. Figure

3.1(b) shows that the convergence rate of PHA was slow when iterates were close to
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Table 3.1: Comparison of rPSNA and PHA
rPSNA PHA

J ν, J(2ν + 1) Iter Iter/N CPU/sec Res Iter CPU/sec Res
10 105 4.80 2.50 0.03 1.83e-08 230.90 0.28 9.83e-06

100 1005 4.50 3.00 0.13 6.14e-08 273.30 3.18 9.84e-06
5 500 5005 6.20 3.50 0.96 5.36e-07 295.40 16.74 9.91e-06

1000 10005 5.90 3.40 1.79 1.08e-06 311.10 36.56 9.87e-06
2000 20005 5.00 3.30 2.75 1.44e-06 298.80 71.87 9.85e-06

10 210 5.00 2.50 0.05 2.66e-08 377.40 0.54 9.92e-06
100 2010 7.40 3.20 0.48 8.44e-08 472.30 6.25 9.95e-06

10 500 10010 7.50 3.40 2.30 8.95e-07 504.10 33.19 9.92e-06
1000 20010 7.50 3.60 4.53 8.76e-07 547.00 69.33 9.93e-06
2000 40010 7.20 3.30 8.89 1.78e-06 534.40 142.99 9.93e-06

10 420 10.90 3.00 0.29 3.56e-08 630.00 1.14 9.93e-06
100 4020 10.00 3.00 2.25 1.12e-07 696.00 12.41 9.99e-06

20 500 20020 9.90 4.00 10.56 2.71e-07 1000.00 82.78 1.17e-05
1000 40020 11.00 3.10 28.25 1.33e-06 995.00 168.98 9.97e-06
2000 80020 10.20 3.50 45.59 1.20e-06 1000.00 347.06 1.41e-05

the solution. Overall, it is clear that rPSNA is more efficient than PHA in terms of

the number of iterations as well as the CPU time.

3.3.2 Impacts of COVID-19 on oil market share

In this subsection, we use the market data of oil price, demand and market shares

of 14 major oil producers to demonstrate the predicability of the two-stage SLCP

model with adaptive parameters in the cost functions. Moreover, the model and the

simulation results rationalize decisions made by major producers during the COVID-

19 pandemic. The proposed rPSNA is used to calculate a solution of the model.

Modelling the oil market share problem as a two-stage stochastic game

We treat the oligopoly market of oil as a two-stage stochastic game where oil pro-

ducers compete for profit by deciding the optimal production at the first stage of the

game. In particular, we consider 15 clusters of oil producers in the following list as

15 non-cooperative agents in the game.
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Figure 3.1: Comparison of rPSNA and PHA.

1 Saudi Arabia, 2 Russia, 3 USA, 4 Iraq, 5 China, 6 Canada, 7 United Arab

Emirates (UAE), 8 Iran, 9 Kuwait, 10 Nigeria, 11 Mexico, 12 UK, 13 Venezuela,

14 Indonesia, 15 other.

Note that we treat OPEC+ members as individual agent rather than a cluster of

cooperative producers. This is due to the fact that during oil shocks, clusters have

less restrictive power over its members in deciding production quantities. As been

represented in our model, leading producers with a cluster e.g., OPEC may choose

different strategies over other cluster members.

Producer i makes a decision on its oil production quantity xi, based on its pre-

dicted future characteristics of the oil market at a later time. We suppose that the

trading occurs at the second stage where producer i supplies part if not all of its

produced quantity in the first stage to generate revenue. We assume the spot price

of the trading is uncertain at the time of production decision, and mainly depends

on the demand supply relation at the second stage. To be more precise, supply quan-

tity vi(ξ) of producer i is uncertain as being future event at the time of production
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decision.

In an oligopolistic market, the major suppliers are often considered the price

setters, mainly through their control over market supply quantity. To simulate the

effect of supply on price, we adapt a simple supply demand relation and express the

inverse demand function as:

p(η̃(ξ), ξ) = α(ξ)− γ(ξ)
J∑

j=1

vj(ξ),

where α(ξ) is the benchmark price and γ(ξ) > 0 represents the negative effect on

price if there is excessive supply of oil with respect to the observed demand at the

second stage.

The benchmark price α(ξ) can be regarded as the intrinsic value of oil if the

supply and demand matches. In the case when there exists excessive supply in the

market, the price tends to decrease up to a scaling factor γ(ξ), which can be learned

from the market data. Alternatively, one can simply treat α(ξ) as the highest price

in data set and the discount in price is due to excessive supply and is proportional to

total supply in the market. Under deterministic setting, the inverse demand function

may be over simplified but it is not the case in our data driven approach. Because

the parameters in our inverse demand function are adaptive to data set, the model is

more than capable of learning the complicated mixture responses of the market. The

important feature is to ensure that the price drops when the oil supply surpasses the

actual demand in the market.

In conventional oil production, producers need to explore oil fields before con-

structing the extraction site. After the oil is extracted, refinement and shipment

require both time and labour not to mention the investment that involves. Yet,

the nature of the oil production has been evolving with the technological advance

which enables, e.g., extraction from oil sands. There exist fundamental differences in

67



energy infrastructures between traditional producers and oil sands producers, e.g.,

US, Canada [28], and it is expected to be reflected at the first stage in choosing

production strategies.

Here, we assume that the costs in both stages are quadratic as expressed in (3.5)

and (3.6), where the parameters ci, ai, hi(ξ) and γ(ξ) are to be learned from market

data. We also include an extra term (ri
∑J

j=1 xj)xi in the first stage to represent the

strategic concern of producer i in response to global production quantity
∑J

j=1 xj.

Note that we have no restriction on the sign of ri and if it is positive it represents the

fact that producer i is willing to decrease its production when the global production

is high. Typical of such agents are often price setters, since the action would give a

boost to the oil price and may be more profitable despite the production cuts. In

reality, Russia’s refusal to production cuts agreement triggered huge volatility of the

market during the COVID-19 pandemic. To express it with our model, it means

that Russia adapted its value of ri to be negative given the market prediction back

in March 2020. That is to say, Russia made a “squeeze” strategy and decided that

if the price drop caused by over supplying is under control, the maintained market

share is potentially more important for long term profitability.

We will use our numerical results to show that most decisions of producers were

reasonable at the time from the prospective of the producers, since they had different

tolerance levels on low oil prices, and they all attempted the best actions for their

own benefits.

Parameter settings and numerical simulations

The market data used in our study are obtained from the following reliable sources.

(i) Monthly Oil Market Report published by OPEC1.

1 https://www.opec.org/opec web/en/publications/338.htm

68



This data set provides average daily production quantities of major oil-producing

countries, and the percentages of their production quantities to the total pro-

duction quantities are regarded as their market shares respectively.

(ii) Oil Price Dynamics Report2, weekly by Federal Reserve Bank of New York.

This data set reports the crude oil price fluctuations due to the supply con-

tribution, demand contribution and residual contribution (contribution other

than the supply and demand contributions).

(iii) U.S. Energy Information Administration3, weekly and daily spot price of Brent.

For the model (3.1)-(3.2) with (3.5)-(3.7), parameters in the first stage are taken

as follows:

• ci: This parameter represents the quadratic production cost of producer i.

For the traditional producers, this contributes to the cost of exploration, site

building and equipment setting up, etc. For oil sand producers, the financial

cost can also be regarded as non-linear with respect to production quantity.

However, all major producers should have similar scale of values to maintain

profitable. In our simulation of in-sample and out-of-sample, we took

c1 = 0.11/R1, c2 = 0.115/R2, c3 = 0.095/R3, ci = 0.1/Ri, i = 4, . . . , 15,

c1 = 0.11/R′1, c2 = 0.115/R′2, c3 = 0.095/R′3, ci = 0.1/R′i, i = 4, . . . , 15,

respectively, where Ri and R′i are market shares of producer i in the current

month and previous month for the simulation of 2019, and market shares of

January 2020 and December 2019 for the simulation of 2020. The data of

market shares is given in Tables 3.3-3.4.

2 https://www.newyorkfed.org/research/policy/oil price dynamics report

3 https://www.eia.gov

69



Table 3.2: Values of r for January to July in 2020
2020 Jan Feb Mar Apr May Jun Jul

Saudi Arabia 0 0.01 0 -0.022 0 0.02 0.01
Russia -0.01 0 0 -0.008 0.01 0.01 0.015
USA -0.01 0 -0.02 -0.04 0 0 0
Iraq 0 0 0 -0.01 0 0 0.005

China 0 0 0.01 -0.01 0 0 0
Canada 0 0 -0.02 -0.03 0 0 0

UAE 0 0 -0.02 -0.05 0 0 0.005
Iran 0 0 -0.02 -0.045 0 0 0

Kuwait 0 0 -0.01 -0.045 0 0 0
Nigeria 0 0 -0.01 -0.08 -0.06 0 0
Mexico 0 0 0 -0.065 -0.045 0 0

UK 0 0 -0.1 -0.16 -0.08 -0.08 -0.05
Venezuela 0 0 -0.1 -0.23 -0.13 -0.03 0
Indonesia 0 0 -0.1 -0.23 -0.13 -0.06 -0.06

other -0.01 0 0.005 0.005 -0.005 0 0

• ai: This parameter represents the linear production cost of producer i. It is

widely agreed that traditional producers have very low unit cost of oil pro-

duction. As for the oil sand producers, the unit cost is much higher. In our

simulation, we set

ai = ci, i = 1, 2, 4, 5, 7, . . . , 15, a3 = 6c3, a6 = 2c6.

• ri: This parameter represents producer i’s response to the total of production

by all producers. Before the pandemic, it was widely agreed that supply should

be kept in accordance to the demand but little preference was taken till Russia’s

refusal to further production cuts. In our simulations, ri = 0 for all producers

in 2019, and ri were given in Table 3.2 for different producers in 2020.

These are basic production cost parameters restricted by technological advance

and complicated operations, and we do not expect them to change over short periods

of time for all producers. For the purpose of forecasting current year production,
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these parameters are revised monthly taken based on the market share of the month

before.

The stochastic parameters are the risk-adjusted spot price ρi(ξ) = α(ξ) − βi(ξ)

and Λ2(ξ) = diag(hi(ξ) + γ(ξ)), where α(ξ) is the benchmark price, γ(ξ) is the

stochastic supply discount, and hi(ξ) and βi(ξ) are the supply cost coefficients.

For our experiments, we randomly choose ζ ∈ [0.05, 0.1], and let hi(ξ) = βi(ξ) =

ζ×ai represent 5% to 10% of the unit production cost. The data (ii) gives the crude

oil price fluctuations due to different factors of contributions, namely contributions

of the demand ∆Demand, supply ∆Supply and residual ∆Residual. Then, the price

fluctuation ∆price is expressed as follows:

∆price = ∆Demand + ∆Supply + ∆Residual.

These contributions ∆Demand, ∆Supply and ∆Residual over certain period of time

are uncertain. We assume that it can be described by random variable ξ with un-

known distribution, written as d(ξ), s̃(ξ) and r̃(ξ). For the purpose of numerical

tests, we generate their empirical distributions from historical data and use them as

an approximation to the unknown distributions of contributions. Recall that in our

model the price is given by

p(η̃(ξ), ξ) = α(ξ)− γ(ξ)η̃(ξ).

Then, for any realization of αk(ξ`) of the k-th4 day, it corresponds to

αk(ξ`) = pk0(1 + dk(ξ`) + r̃k(ξ`)),

where pk0 is the known price of the prior day given in the data set (iii), and dk(ξ`)

and r̃k(ξ`) are realizations taken from empirical distributions of d(ξ) and r̃(ξ), re-

spectively. Then,

pk(η̃k(ξ`), ξ`) = αk(ξ`)− γk(ξ`)η̃k(ξ`),
4 The superscript k is used to denote the order in time
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where pk(η̃k(ξ`), ξ`) is the known price of the k-th day given in the data set (iii) and

η̃k(ξ`) is the total supply of the k-th day taken from a uniformly distributed interval

between 99% and 101% of the real daily supply given in the data set (i). It follows

that, we can generate a set of data of stochastic supply discount γk(ξ`)

γk(ξ`) =
|pk(η̃k(ξ`), ξ`)− αk(ξ`)|

η̃k(ξ`)
,

where the absolute value | · | ensures that increasement in quantity has a negative

influence on price. We choose the sample size ν = 800 of random variable ξ for both

in-sample and out-of-sample numerical simulations.

For long-term prediction (yearly market shares prediction), we refer interested

readers to [25] for more details. Here, we focus on short-term prediction, namely the

monthly in-sample and out-of-sample market shares. Table 3.3 and 3.4 give average

of daily market shares of each month for producers from January 2019 to July 2020.

Figures 3.2-3.4 display results for the recovered monthly market shares from January

2019 to July 2020. For each month, the first column is the real market share, while

the second and third columns are the in-sample and out-sample recovered results,

respectively. They show that our two-stage SLCP model recovers and predicts the

short-term real market shares from January 2019 to July 2020 very well. Although

global oil demand has been hit hard by COVID-19 and oil price has fell to historically

low, our results show that a Nash equilibrium for the global oil market share during

the COVID-19 pandemic can be expected.

Of particular interests are what had happened in March and April among Russia,

Saudi Arabia and U.S.A. In particular, the Brent spot price fell from around $70

per barrel to about $50 since the identification of the pandemic and was believed

to decrease further. If no actions of change were taken by the major producers,

what could have happened is that the high-cost producers would be forced to cut
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Venezuela 1.04% 0.00911 0.008919 0.86% 0.007064 0.009275
Indonesia 0.77% 0.005615 0.005369 0.76% 0.005777 0.005905
other 38.65% 0.369993 0.369259 39.15% 0.375763 0.36717

REAL Jan 2019 Feb-19 Mar 2019 Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019
Saudi Arabia 10.31% 10.22% 9.82% 9.77% 10.00% 10.10% 10.12% 10.34%
Russia 11.54% 11.52% 11.46% 11.45% 11.31% 11.42% 11.38% 11.47%
USA 11.95% 11.75% 11.96% 12.27% 12.33% 12.25% 11.98% 12.49%
Iraq 4.72% 4.61% 4.37% 4.68% 4.75% 4.72% 4.70% 4.73%
China 3.86% 3.91% 3.88% 3.93% 3.95% 4.04% 4.05% 3.90%
Canada 4.20% 4.19% 4.29% 4.21% 4.18% 4.33% 4.31% 4.30%
United Arab Emirates3.09% 3.08% 3.06% 3.09% 3.11% 3.09% 3.11% 3.09%
Iran 2.71% 2.77% 2.80% 2.68% 2.34% 2.29% 2.28% 2.22%
Kuwait 2.73% 2.73% 2.73% 2.72% 2.75% 2.68% 2.68% 2.63%
Nigeria 1.70% 1.62% 1.66% 1.80% 1.60% 1.65% 1.71% 1.81%
Mexico 1.63% 1.72% 1.70% 1.70% 1.69% 1.70% 1.69% 1.70%
United Kingdom1.08% 1.13% 1.12% 1.13% 1.13% 0.97% 0.91% 0.83%
Venezuela 1.04% 0.86% 0.60% 0.66% 0.82% 0.79% 0.76% 0.74%
Indonesia 0.77% 0.76% 0.76% 0.71% 0.77% 0.73% 0.75% 0.74%
other 38.65% 39.15% 39.79% 39.19% 39.27% 39.24% 39.56% 39.03%
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Figure 3.2: Real, in sample and out sample monthly market shares of Jan to Jun in
2019
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Figure 3.3: Real, in sample and out sample monthly market shares of Jul to Dec in
2019
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Table 3.3: Average of daily market shares in each month of 2019
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Saudi Arabia 10.31 10.22 9.82 9.77 10.00 10.10 10.12 10.34 9.39 10.36 9.91 9.64
Russia 11.54 11.52 11.46 11.45 11.31 11.42 11.38 11.47 11.67 11.29 11.26 11.23
USA 11.95 11.75 11.96 12.27 12.33 12.25 11.98 12.49 12.83 12.74 12.93 12.76
Iraq 4.72 4.61 4.37 4.68 4.75 4.72 4.70 4.73 4.84 4.59 4.58 4.50

China 3.86 3.91 3.88 3.93 3.95 4.04 4.05 3.90 3.94 3.90 3.89 3.85
Canada 4.20 4.19 4.29 4.21 4.18 4.33 4.31 4.30 4.26 4.27 4.39 4.49
UAE 3.09 3.08 3.06 3.09 3.11 3.09 3.11 3.09 3.16 3.09 3.07 3.04
Iran 2.71 2.77 2.80 2.68 2.34 2.29 2.28 2.22 2.24 2.17 2.11 2.11

Kuwait 2.73 2.73 2.73 2.72 2.75 2.68 2.68 2.63 2.73 2.65 2.71 2.71
Nigeria 1.70 1.62 1.66 1.80 1.60 1.65 1.71 1.81 1.86 1.70 1.68 1.64
Mexico 1.63 1.72 1.70 1.70 1.69 1.70 1.69 1.70 1.75 1.66 1.71 1.70
UK 1.08 1.13 1.12 1.13 1.13 0.97 0.91 0.83 0.97 0.93 1.03 1.04

Venezuela 1.04 0.86 0.60 0.66 0.82 0.79 0.76 0.74 0.73 0.70 0.70 0.71
Indonesia 0.77 0.76 0.76 0.71 0.77 0.73 0.75 0.74 0.75 0.74 0.73 0.73

other 38.65 39.15 39.79 39.19 39.27 39.24 39.56 39.03 38.89 39.21 39.29 39.87

Table 3.4: Average of daily market shares in each month from January to July in
2020

Jan Feb Mar Apr May Jun Jul
Saudi Arabia 9.72 9.75 10.23 11.57 9.44 8.75 9.47

Russia 11.26 11.30 11.33 11.42 10.44 10.34 10.10
USA 12.72 12.85 12.76 12.28 11.23 12.63 12.37
Iraq 4.25 4.53 4.54 4.49 4.59 4.30 4.23

China 3.88 3.87 3.92 3.90 4.32 4.58 4.37
Canada 4.36 4.41 4.42 3.74 3.66 4.23 4.34
UAE 2.98 2.99 3.54 3.88 2.72 2.72 2.74
Iran 2.10 2.05 2.01 1.96 2.17 2.26 2.18

Kuwait 2.66 2.66 2.90 3.13 2.42 2.44 2.43
Nigeria 1.61 1.67 1.88 1.75 1.65 1.74 1.68
Mexico 1.72 1.75 1.77 1.75 1.83 1.94 1.87
UK 0.97 0.95 1.02 1.00 1.05 1.20 1.05

Venezuela 0.73 0.75 0.73 0.71 0.76 0.46 0.44
Indonesia 0.73 0.72 0.72 0.72 0.79 0.82 0.79

other 40.32 39.75 38.24 37.68 42.93 41.59 41.95

production because they are more vulnerable in low price environment. On one

hand, if the production cut is significant, the price will boost and the non-limited

producers can be more profitable. On the other hand, if the oil price continues to fall,

the optimal production decision has little to change for the traditional producers with

low unit cost, e.g., Russian and Saudi Arabia. Indeed, with our model of two-stage

stochastic game, the estimated market share given no strategic changes can be seen

in accordance with the description above. It is, given the estimated market share, the

most rational decision for Russia is to refuse the production cut agreement. Saudi

Arabia, who is believed to have the lowest unit production cost, followed the strategy

of Russia immediately by offering price discount and increased its production. For

both countries, the low price environment has little effects in the sense of maintaining

their market shares respectively. The same cannot be said for U.S.A., who has high
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Figure 3.4: Real, in sample and out sample monthly market shares of Jan to July in
2020

cost in unit oil production, and is estimated to loss its market share if not to change

its production strategy, presented by choosing non-zero r in our model. It is most

apparent from Table 3.2, that all the major producers responded in choosing their

strategies to increase production quantities. The reality was counter intuitive at first

glance, but those were in fact all rational decisions and can be forecasted by our

model.
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Chapter 4

Applications of rPSNA to

nonmonotone traffic assignment

problems

In this chapter, we apply rPSNA developed in Chapter 3 to solve two types of non-

monotone traffic assignment problems. The first is the stochastic traffic assignment

which is formulated as a two-stage SVI. The second is the stochastic dynamic traffic

assignment which is formulated as a DLSCS. The discretization problem of the latter

problem can be viewed as a special two-stage SVI in which the first stage problem

is an mLCP and the second stage problem is an LCP.

4.1 Stochastic traffic assignment problems

In this section, we apply the two-stage SVI to formulate the stochastic user equilib-

rium problem with uncertain demands and capacities, which is an important class

of problems in the stochastic traffic assignments The uncertainty for demands and

link capacities can be caused by some unpredictable factors, such as adverse weather,

road accidents and some other road conditions. The random variable ξ with a finite

support set Ξν is used to describe the uncertainty in demands and capacities.

First, we give definitions of notation in the stochastic traffic assignment.
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• Ñ ,P , Ã,W : the node set, the path set, the link set and the origin destination

(OD) pair set, respectively.

• Pw: the set of paths joining the OD pair w with P =
⋃
w∈W Pw.

• Υ ∈ R|Ã|×|P|: the link-path incidence matrix where Υap = 1 if link a is on path

p; otherwise, Υap = 0.

• Γ ∈ R|W|×|P|: the OD-path incidence matrix where Γwp = 1 if path p connects

OD pair w; otherwise, Γwp = 0.

• hp(ξ): the path travel flow on path p.

• va(ξ): the link travel flow on link a, which satisfies v(ξ) = Υh(ξ).

• uw(ξ): the minimum travel cost for OD pair w.

• ca(ξ): the link capacity of link a, which is a positive scalar.

• dw(ξ): the nonnegative demand function for OD pair w.

• Rp(h(ξ), ξ): the travel cost function through path p.

• ra(v(ξ), ξ): the travel cost function through link a.

See Figure 4.1 for a simple illustration of the above notation. It is easy to see that

N̂ = {1, . . . , 5}, Ã = {1, . . . , 7}, P = {p1, . . . , p6} with p1 = 3→ 7→ 6, p2 = 3→ 1,

p3 = 4 → 6, p4 = 3 → 7 → 2, p5 = 3 → 5 and p6 = 4 → 2, W = {1 → 4, 1 → 5}.

The link-path and OD-path incidence matrices read

Υ =




0 1 0 0 0 0
0 0 0 1 0 1
1 1 0 1 1 0
0 0 1 0 0 1
0 0 0 0 1 0
1 0 1 0 0 0
1 0 0 1 0 0




, Γ =

(
1 1 1 0 0 0
0 0 0 1 1 1

)
.
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matrix read as1

∆ =




0 1 0 0 0 0
0 0 0 1 0 1
1 1 0 1 1 0
0 0 1 0 0 1
0 0 0 0 1 0
1 1 0 0 0 0
1 0 0 1 0 0




, Γ =

(
1 1 1 0 0 0
0 0 0 1 1 1

)
.

We propose a two-stage stochastic programming to formulate the stochastic Wardrop’s2

user equilibrium problem, whose first order optimality condition is a two-stage SVI. The3

two-stage model is of great advantage to formulate the essence of this problem. The decision4

process is divided into two stages. At the second stage, a ”wait-and-see” solution h(ξ) is5

computed for any possible realization of future uncertainty. However, we cannot wait for6

future to make the decision. We has to make the ”here-and-now” decision before we know7

the future. Fortunately, the two-stage model allows us to make a here-and-now decision that8

taking into account recourse decision of future uncertainty, which guarantees the robustness9

of the decision.10

The travel demand should be satisfied for a.e. realization of future uncertainty ξ, that11

is (flow-conservation)12 ∑

p∈Pw

hp(ξ)− dw(ξ) = 0, ∀w ∈ W. (58)

The stochastic path travel cost function is13

C(h(ξ), ξ) = ∆TT (∆h(ξ), ξ),

28

Figure 4.1: A network with 5 nodes, 7 links, 6 paths and 2 OD pairs

The travel demands should be satisfied for any realization of ξ, which is called

the flow conservation [37]

∑

p∈Pw
hp(ξ)− dw(ξ) = 0, ∀ w ∈ W . (4.1)

The path travel time function R : R|P| × Rd → R|P| is

R(h(ξ), ξ) = ΥT r(Υh(ξ), ξ),

where r : R|Ã| × Rd → R|Ã| is the generalized bureau of public road (GBPR) link

travel time function as follows:

ra(Υh(ξ), ξ) = t0a

(
1.0 + 0.15

(
va(ξ)

ca(ξ)

)na)
, a ∈ Ã,

with t0a and na being given positive numbers. Flows choose paths according to the

famous Wardrop’s principle [37]

0 ≤ hp(ξ)⊥Rp(h(ξ), ξ)− uw(ξ) ≥ 0, ∀ w ∈ W and p ∈ Pw. (4.2)

The above complementarity condition implies that travel flows always choose the

optimal path for their trips. Combining (4.1)-(4.2), it should hold that for any

ξ ∈ Ξν

0 ≤ h(ξ)⊥R(h(ξ), ξ)− ΓTu(ξ) ≥ 0, (4.3)

0 ≤ u(ξ)⊥Γh(ξ)− d(ξ) ≥ 0. (4.4)
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Let

D̂ξ = {h ∈ R|P| | Γh− d(ξ) = 0, h ≥ 0}.

Thus, D̂ξ is a bounded polyhedral set for any ξ ∈ Ξν . By [19, Proposition 1.4.8], if

d(ξ) > 0 for any ξ ∈ Ξν , (4.3)-(4.4) can be equivalently formulated as an SVI finding

h(ξ) ∈ D̂ξ such that

(h′ − h(ξ))TR(h(ξ), ξ) ≥ 0, ∀ h′ ∈ D̂ξ, for any ξ ∈ Ξν . (4.5)

Let

D = {x ∈ R|P| | Γx− E[d(ξ)] = 0, x ≥ 0},

and R̄ : R|P| → R|P|

R̄(x) = E[R(x, ξ)] = ΥTE[r(Υx, ξ)].

To solve (4.5) with a fixed ξ, one can minimize the following optimization problem

min
x∈D̂ξ

max{(x− h(ξ))TR(x, ξ) | h(ξ) ∈ D̂ξ}, (4.6)

which can be written as a two-stage optimization problem

min xTR(x, ξ) +Q(x, ξ)

s.t. x ∈ D̂ξ,

Q(x, ξ) = max{−h(ξ)TR(x, ξ) | h(ξ) ∈ D̂ξ}.

(4.7)

By duality of linear programming, the function Q can be expressed by

Q(x, ξ) = min{s(ξ)Td(ξ) | ΓT s(ξ) +R(x, ξ) ≥ 0}.

To calculate a here-and-now solution that does not depend on the realization of ξ,

we solve the following two-stage stochastic program

min xT R̄(x) + E[Q(x, ξ)]

s.t. x ∈ D,

Q(x, ξ) = min{s(ξ)Td(ξ) | ΓT s(ξ) +R(x, ξ) ≥ 0}, for any ξ ∈ Ξν .

(4.8)
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Following [6, Example 2.3], we can obtain the first-order optimality condition of (4.8)

as follows

−
(
∇R̄(x)Tx+ R̄(x)− E[∇R(x, ξ)Tλ(ξ)]

)
∈ ND(x), (4.9)

−
[(

0 −Γ
ΓT 0

)
y(ξ) +

(
d(ξ)
R(x, ξ)

)]
∈ NC(y(ξ)), any ξ ∈ Ξν , (4.10)

where the second stage problem is a mixed LCP with C = R|W| × R|P|+ , and y(ξ) =

(s(ξ), λ(ξ))T with λ(ξ) being the multiplier of ΓT s(ξ) +R(x, ξ) ≥ 0.

Remark 4.1. Problem (4.9)-(4.10) has the relatively complete recourse.

It is known that R(x, ξ) > 0 for any x ∈ D and ξ ∈ Ξν. Let λ̄(ξ) ≥ 0 with

Γλ̄ ≥ d(ξ) and z̄(ξ) = 0. Thus, (z̄(ξ), λ̄(ξ)) is a feasible solution of the following

LCP

0 ≤
(
z(ξ)
λ(ξ)

)
⊥
(

0 Γ
−ΓT 0

)(
z(ξ)
λ(ξ)

)
+

(
−d(ξ)
R(x, ξ)

)
≥ 0. (4.11)

Then, it is solvable by [17, Theorem 3.1.2].

Let (z∗(x, ξ), λ∗(x, ξ))T be an arbitrary solution of (4.11) for any fixed x ∈ D

and ξ ∈ Ξν. If there is w′ ∈ W such that (Γλ∗(x, ξ) − d(ξ))w′ > 0, by the first

complementarity condition in (4.11), we have zw′(ξ) = 0. Thus, (R(x, ξ)−ΓT z(ξ))p =

Rp(x, ξ) > 0 for any p ∈ Pw′. Then, we have λp = 0 for any p ∈ Pw′ by the second

complementarity condition in (4.11), which implies that (Γλ(ξ)−d(ξ))w′ = −d(ξ)w′ ≤

0. This is a contradiction. Then (−z∗(x, ξ), λ∗(x, ξ))T is a solution of (4.10) for any

fixed x ∈ D and ξ ∈ Ξν.

For any fixed x and ξ, the problem (4.10) admits a unique least-norm solution

function. By substituting the least-norm solution function of (4.10) into the first

stage problem (4.9), we can get the single-stage SVI formulation of (4.9)-(4.10). We

can find a solution of the original two-stage problem by solving this single-stage

problem, since D is a bounded polyhedral set. By the positive semi-definiteness of
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Figure 6: Nguyen and Dupuis network with 13 nodes, 19 links, 25 path and 2 OD pairs.
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Figure 4.2: Nguyen and Dupuis network with 13 nodes, 19 links, 25 paths and 4 OD
pairs.

the coefficient matrix of y(ξ) in (4.10), we can use rPSNA developed in Chapter 3

to solve this problem efficiently.

Nguyen and Dupuis network [12] is used in our test, which has 13 nodes, 19 links,

25 paths and 4 OD pairs. All parameters for Network 4.2 are set as follows. The

expected demands for OD pairs are E[d(ξ)] = [40, 80, 60, 45]T in which d(ξ) follows

a beta distribution as d(ξ) ∼ d
¯

+ d̂ × beta(5, 1), where d
¯

= [30, 70, 50, 35]T and d̂ =

[12, 12, 12, 12]T . The free-flow travel time for links is t0 = 0.1×[7, 9, 9, 12, 3, 9, 5, 13, 5,

9, 9, 10, 9, 6, 9, 8, 7, 14, 11]T . The capacity c(ξ) has the following three possible real-

izations with probability p1 = 0.5, p2 = p3 = 0.25 and

c(ξ1) = 10× [8, 3.2, 3.2, 8, 4, 3.2, 8, 2, 2, 2, 4, 4, 8, 6, 4, 4, 1.6, 2.3.8]T ,

c(ξ2) = 10× [10, 4.4, 1.4, 10, 3, 4.4, 10, 2, 2, 4, 7, 7, 7, 7, 4, 3.5, 2.2, 4.4, 7]T ,

c(ξ3) = 10× [4, 4, 2, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 8, 8, 1, 2, 4, 2]T .

We choose na from 1 to 5, and sample size ν = 500 and 2000 to test the efficiency

of rPSNA. Note that PHA fails to solve problem (4.9)-(4.10). The settings for rPSNA

are µk ≡ 10−12, εk ≡ 0, η = 0.9 and the step size for the projection iteration (2.15)
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Table 4.1: Results of rPSNA for (4.9)-(4.10) with Nguyen and Dupuis network.

rPSNA
ν nα Iter Iter/N CPU Res

1 1.00 1.00 0.20 8.07e-10
2 5.00 5.00 0.68 1.11e-07

500 3 7.00 6.00 1.13 2.48e-07
4 12.00 6.00 2.18 6.19e-07
5 10.00 6.00 1.83 9.99e-07
1 1.00 1.00 0.78 8.03e-10
2 5.00 5.00 2.75 1.03e-07

2000 3 7.00 6.00 5.18 1.28e-07
4 12.00 6.00 9.39 6.20e-07
5 10.00 6.00 8.21 1.49e-06

is set to α = 0.1, 0.1, 0.05, 0.05, 0.05 for na = 1, 2, . . . , 5, respectively. We terminate

the algorithm if the number of iterations reaches 1000, or ‖xk+1−xk‖ ≤ 10−6, or the

residual is less than 10−5. We reported numerical results of rPSNA for solving (4.9)-

(4.10) in Table 4.1. One can see that rPSNA solved all problems with na = 1, . . . , 5

and ν = 500, 2000 efficiently.

4.2 Stochastic dynamic traffic assignment prob-

lems

In this section, we apply rPSNA to solve the stochastic instantaneous dynamic user

equilibrium (S-IDUE), a special problem in the stochastic dynamic traffic assign-

ment, which involves some stochastic factors inevitably [37]. An S-IDUE model that

considers the randomness of travelers’ behavior, a generalization of the deterministic

IDUE, can be found in [37]. Here, we focus on the stochasticity of OD demands and

link capacities. We first give some notation as follows.

• Ñ ,P , Ã,W : the node set, the path set, the link set and the OD pair set,

respectively.
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• Pw: the set of paths joining OD pair w with P =
⋃
w∈W Pw.

• dw(t, ξ): the nonnegative time-dependent travel demand profile for OD pair w.

• cij(ξ): the capacity of link (i, j), which is a positive scalar.

• qij(t): the expected queue length on link (i, j) at time t.

• vpij(t): the expected exit-flow rate on link (i, j) of path p at time t.

• v
¯
p
ij(t, ξ): the exit-flow rate on link (i, j) of path p at time t.

• gpij(t, ξ): the inflow rate on link (i, j) of path p at time t.

• T p(q, t, ξ): the instantaneous travel time traversing path p at time t.

• ηw(t, ξ): the minimum travel time for OD pair w at time t.

An S-IDUE model is consisted of ODEs and complementarity system. The ODEs

describe the dynamic change of the traffic flow on the network, while the complemen-

tarity condition is used to illustrate the choice of the optimal path and the constraint

of the flow conservation. Here, we use the modified point-queue model for the flow

dynamics with zero free-flow travel time [3]. The zero free-flow travel time means

that traffic flows reach the end of the link and join the queue if any as soon as they

depart from the origin (see [3, 32] for details about the point-queue model). On the

other hand, we use the instantaneous travel time as the path choice criterion, which

is also used in [4]. Our stochastic model can be viewed as a stochastic generalization

of the deterministic model developed in [4]. Another difference is that we build our

model based on the path formulation, while the authors in [4] used the link formula-

tion. Both of the path and link formulations have their own advantages. We choose

the path formulation since the coefficient matrix in the complementarity condition
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is positive semidefinite, which guarantees the existence of the weak solution of the

model in the sense of Carathéodory [29] and the application of rPSNA.

For any p ∈ P , we assume that it passes through nodes i0 → i1 → · · · → inp with

np being the number of links for this path, i.e., p = {(i0, i1), (i1, i2), . . . , (inp−1, inp)}

with (ik, ik+1) being a link connecting nodes k and k + 1. We consider a special

setting that different paths have no overlapped links, i.e.,

p1 ∩ p2 = ∅, ∀ p1, p2 ∈ P .

The point-queue model to describe the queue dynamics at time t reads

q̇ikik+1
(t) = E[gpikik+1

(t, ξ)− cikik+1
(ξ)], k = 0, 1, . . . , np − 1,

where q̇ikik+1
(t) denotes the derivative of qikik+1

with respect to t for the link (ik, ik+1).

The meaning of the above formula is that the difference between the inflow rate and

the exit-flow rate equals the rate of the queue length change. To guarantee the

positiveness of the queue length, we modify it according to [3] as follows

q̇ikik+1
(t) = uikik+1

(t) + E[gpikik+1
(t, ξ)− cikik+1

(ξ)],

0 ≤ uikik+1
(t)⊥qikik+1

(t) ≥ 0, (4.12)

where uikik+1
(t) is a slack variable. The expected exit-flow rate on link (ik, ik+1) of

p ∈ P is

vpikik+1
(t) = E[v

¯
p
ikik+1

(t, ξ)] = E[gpikik+1
(t, ξ)− q̇ikik+1

(t)] = E[cikik+1
(ξ)− uikik+1

(t)].

(4.13)

From (4.12)-(4.13), it is known that vpikik+1
(t) = E[cikik+1

(ξ)] if qikik+1
> 0. The

instantaneous path travel time function T p(q, t, ξ) is the sum of each link’s instanta-

neous travel time over the path, i.e.,

T p(q, t, ξ) =

np−1∑

k=0

(
qikik+1

(t)

cikik+1
(ξ)

)
. (4.14)
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For S-IDUE, flows should follow a path choice strategy gpi0i1(t, ξ) enabling them to

choose a path p with the minimum travel time T p(q, t, ξ), i.e.,

0 ≤ gpi0i1(t, ξ)⊥T p(q, t, ξ)− ηw(t, ξ) ≥ 0, for any t and a.e. ξ ∈ Ξ.

Moreover, the flow conservation condition should hold,

0 ≤ ηw(t, ξ)⊥
∑

p∈Pw
gpi0i1(t, ξ)− dw(t, ξ) ≥ 0, for any t and a.e. ξ ∈ Ξ.

Note that that gpi0i1(t, ξ) is also the path inflow rate of path p since there are no

overlapped links between different paths.

Therefore, we have the following S-IDUE model:





q̇ikik+1
(t) = uikik+1

(t) + E[gpikik+1
(t, ξ)− cikik+1

(ξ)], (ik, ik+1) ∈ p, p ∈ P , (4.15a)

0 ≤ uikik+1
(t)⊥qikik+1

(t) ≥ 0, (ik, ik+1) ∈ p, p ∈ P , (4.15b)

0 ≤ gpi0i1(t, ξ)⊥T p(q, t, ξ)− ηw(t, ξ) ≥ 0, p ∈ Pw, w ∈ W , a.e. ξ ∈ Ξ, (4.15c)

0 ≤ ηw(t, ξ)⊥
∑

p∈Pw
gpi0i1(t, ξ)− dw(t, ξ) ≥ 0, p ∈ Pw, w ∈ W , a.e. ξ ∈ Ξ, (4.15d)

qikik+1
(0) = q0

ikik+1
> 0, for (ik, ik+1) ∈ p, p ∈ P , t ∈ [0, T ], (4.15e)

where T > 0 is the duration, gpi0i1(t, ξ) is the inflow rate for the first link of path p

(also the path inflow rate for the path p), and the inflow rates for the successor links

are defined as

gpikik+1(t, ξ) = v
¯
p
ik−1ik

(t, ξ) = gpik−1ik
(t, ξ)− q̇ik−1ik(t), 1 ≤ k ≤ np − 1.

By the above definition, the expected inflow rate for link (ik, ik+1), 1 ≤ k ≤ np− 1 is

E[gpikik+1
(t, ξ)] = E[v

¯
p
ik−1ik

(t, ξ)] =: vpik−1ik
(t)

= E[cik−1ik(ξ)]− uik−1ik(t).
(4.16)
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To illustrate the model (4.15a)-(4.15e) clearly, we give the following descriptions





(4.15a) : the queue dynamic,

(4.15b) : the nonnegative constraint for queue,

(4.15c) : Wardrop’s route choice principle,

(4.15d) : the flow conservation constraint,

(4.15e) : the initial condition.

Let the link set Ã = {l1, . . . , l|Ã|}, the path set P = {p1, . . . .p|P|}, the OD pair

set W = {w1, . . . , w|W|}. (4.15a)-(4.15e) can be equivalently written in a compact

form as follows:





q̇(t) = u(t) + E[B(g(t, ξ), η(t, ξ))T − c(ξ)], (4.17a)

0 ≤ u(t)⊥q(t) ≥ 0, (4.17b)

0 ≤
(
g0(t, ξ)
η(t, ξ)

)
⊥
(

0 −ΓT

Γ 0

)(
g0(t, ξ)
η(t, ξ)

)

+

(
Υ(ξ)T

0

)
q(t) +

(
0

−d(t, ξ)

)
≥ 0, for a.e. ξ ∈ Ξ, (4.17c)

q(0) = q0 > 0, t ∈ [0, T ], (4.17d)

where

B = [I|Ã|×|Ã|, 0|Ã|×|W|],

q(t) = (ql1 , ql2 , . . . , ql|Ã|)
T , u(t) = (ul1 , ul2 . . . , ul|Ã|)

T ,

g0(t, ξ) = (gp1i0i1(t, ξ), g
p2
i0i1

(t, ξ), . . . , g
p|P|
i0i1

(t, ξ))T ,

η(t, ξ) = (ηw1(t, ξ), ηw2(t, ξ), . . . , ηw|W|(t, ξ))T ,

d(t, ξ) = (dw1(t, ξ), dw2(t, ξ), . . . , dw|W|(t, ξ))T ,

Γ ∈ R|W|×|P| is the OD-path incidence matrix and Υ(ξ) ∈ R|Ã|×|P| is a matrix defined

as

Υ(ξ)ij =

{
c−1
ij (ξ) if the link li ∈ pj

0 otherwise.
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Proposition 4.1. The LCP (4.17b)-(4.17c) is solvable for any fixed t, ξ and q(t) > 0.

Moreover, any solution (ĝ0(t, ξ), η̂(t, ξ), û(t))T satisfies
∑

p∈Pw ĝ
p
0(t, ξ) = dw(t, ξ) for

all w ∈ W; that is, the flow conservation condition is satisfied.

Proof. Since the coefficient matrix of (4.17b)-(4.17c) is positive semidefinite, we on-

ly need to show that the feasible region of the LCP is nonempty by [17, Theo-

rem 3.1.2]. Since q(t) > 0, we get by complementarity condition ū(t) = 0. For

any w ∈ W , by taking
∑

p∈Pw ḡ
p
0(t, ξ) ≥ dw(t, ξ) with ḡp0(t, ξ) ≥ 0 and η̄w(t, ξ) =

minp∈Pw T p(q(t), t, ξ), it is easy to verify that (ḡ0(t, ξ), η̄(t, ξ), ū(t))T is a feasible so-

lution of the LCP (4.17b)-(4.17c) for any fixed t, ξ and q(t) > 0, which also implies

its solvability.

To show the last assertion, let (ĝ0(t, ξ), η̂(t, ξ), û(t))T be a solution. Suppose that
∑

p∈Pw ĝ
p
0(t, ξ) > dw

′
(t, ξ) ≥ 0 for some w′ ∈ W . Then, there exists a p′ ∈ Pw′ such

that ĝp
′

0 (t, ξ) > 0 and by the complementarity condition we have η̂w
′
(t, ξ) = 0. Using

the complementarity condition again we get

T p
′
(q(t), t, ξ) =

np′−1∑

k=0

qikik+1
(t)/cikik+1

(ξ) = η̂w
′
(t, ξ) > 0,

which is a contradiction.

The model (4.17a)-(4.17d) is exactly a DLSCS studied in [29]. If we assume that

the demand profile d(t, ξ) is Lipschitz continuous with respect to t for a.e. ξ, and it is

nonegative and uniformly bounded for a.e. ξ ∈ Ξ and any t ∈ [0, T ], and c(ξ) ≥ ι > 0

for a.e. ξ ∈ Ξ. The boundedness assumption for d(t, ξ) is natural, since demands are

always finite in practice. From the above proposition, the solution set of the LCP

(4.17b)-(4.17c) is nonempty and bounded with q0 > 0 at t = 0 for a.e. ξ. Then, by

[29, Theorem 2], there exists T0 > 0 such that the model (4.17a)-(4.17d) admits a

weak solution on [0, T0] in the sense of Carathéodory.
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Numerically, we solve the discretization problem of (4.17a)-(4.17b). Give an i.i.d.

sample {ξ1, . . . , ξν} of ξ, and divide the time interval [0, T ] into K equal subintervals

such that ti+1 − ti = h for all i = 0, . . . ,K − 1, i.e.,

0 = t0 < t1 . . . < tK = T.

Then, the discretization problem of (4.17a)-(4.17d) reads





−
(
h−1I −I
I 0

)(
q(ti)
u(ti)

)
+

1

ν

ν∑

`=1

B

(
g(ti, ξ`)
η(ti, ξ`)

)

+

(
h−1q(ti−1)− ν−1

∑ν
`=1 c(ξ`)

0

)
∈ N

R|Ã|×R|Ã|+

((q(ti)
T , u(ti)

T )T ), (4.18a)

0 ≤
(
g0(ti, ξ`)
η(ti, ξ`)

)
⊥
(

0 −ΓT

Γ 0

)(
g0(ti, ξ`)
η(ti, ξ`)

)

+

(
Υ(ξ`)

T

0

)
q(ti) +

(
0

−d(ti, ξ`)

)
≥ 0, for ` = 1, . . . , ν,(4.18b)

q(0) = q0 > 0, i = 1, . . . ,K. (4.18c)

For each ti, (4.18a)-(4.18c) can be viewed as a special two-stage SVI, where the

first stage problem is an mLCP and the second stage is a monotone LCP for any

fixed q(ti) and ξ. Then, rPSNA can be applied to solve this problem sequentially

from i = 1 to i = K.

Next, we give an example to illustrate our model; see the traffic network in Figure

4.3. The original node is the node 1 and the destination is the node 4. The three

paths (p1 : 1→ 2→ 4), (p2 : 1→ 4) and (p3 : 1→ 3→ 4) do not intersect with each
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paths (p1 : 1→ 2→ 4), (p2 : 1→ 4) and (p3 : 1→ 3→ 4) do not intersect with each

other. Then, the formulation for this example is as follows:

q̇(t) = E[B(g(t, ξ), η(t, ξ), u(t))T + f(t, ξ)],

0 ≤




gi0i1(t, ξ)
η(t, ξ)
u(t)


⊥a.s.




0 −eT3 0
e3 0 0
0 0 0






gi0i1(t, ξ)
η(t, ξ)
u(t)


+




ΥT (ξ)
0
I


 q(t)−




0
d(t, ξ)

0


 ≥ 0,

q(0) = q0, ∀t ∈ [0, T ],

where g(t, ξ) = (gp112(t, ξ), gp124(t, ξ), gp214(t, ξ), gp313(t, ξ), gp334(t, ξ))T ,

gi0i1(t, ξ) = (gp112(t, ξ), gp214(t, ξ), gp313(t, ξ))T , u(t) = (u12(t), u24(t), u14(t), u13(t), u34(t))T ,

q = (q12(t), q24(t), q14(t), q13(t), q34(t))T , e3 =
(

1 1 1
)
,

f(t, ξ) = −(E12(ξ), E24(ξ), E14(ξ), E13(ξ), E34(ξ))T ,

∆(ξ) =




E−1
12 (ξ) 0 0

E−1
24 (ξ) 0 0
0 E−1

14 (ξ) 0
0 0 E−1

13 (ξ)
0 0 E−1

34 (ξ)



, B =




1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1



.

Assumption : The demand profile d(t, ξ) is Lipschitz continuous with respect

to t for a.e. ξ, and it is nonegative and uniformly bounded for a.e. ξ ∈ Ξ and any

t ∈ [0, T ]

The boundedness assumption for d(t, ξ) is natural, since in real traffic problems

the demand is always finite.

For the stochastic model (4.15a)-(4.15e), we need to explore the flow propagation

property, the first-in-first-out (FIFO) property and the flow conservation [2]. For flow
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Figure 4.3: A network with 4 nodes, 5 links, 1 OD pair and 3 paths

other. Then, the formulation for this example is as follows:

q̇(t) = u(t) + E[B(g(t, ξ), η(t, ξ))T − c(ξ)],

0 ≤ u(t)⊥q(t) ≥ 0,

0 ≤
(
g0(t, ξ)
η(t, ξ)

)
⊥
(

0 −eT3
e3 0

)(
g0(t, ξ)
η(t, ξ)

)

+

(
ΥT (ξ)

0

)
q(t)−

(
0

d(t, ξ)

)
≥ 0, for a.e. ξ ∈ Ξ,

q(0) = q0, ∀t ∈ [0, T ],

where

g(t, ξ) = (gp112(t, ξ), gp124(t, ξ), gp214(t, ξ), gp313(t, ξ), gp334(t, ξ))T ,

g0(t, ξ) = (gp112(t, ξ), gp214(t, ξ), gp313(t, ξ))T ,

u(t) = (u12(t), u24(t), u14(t), u13(t), u34(t))T ,

q = (q12(t), q24(t), q14(t), q13(t), q34(t))T , e3 =
(

1 1 1
)
,

c(ξ) = (c12(ξ), c24(ξ), c14(ξ), c13(ξ), c34(ξ))T ,

Υ(ξ) =




c−1
12 (ξ) 0 0
c−1

24 (ξ) 0 0
0 c−1

14 (ξ) 0
0 0 c−1

13 (ξ)
0 0 c−1

34 (ξ)



, B =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



.
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4.2.1 Simulation results

We compare rPSNA developed in Chapter 3 with PHA to solve the discretization

problem (4.18a)-(4.18c) with parameters chosen according to the Network 4.3. The

settings for rPSNA are that µk ≡ 10−9, εk ≡ 0, η = 0.9 and the step size for

the projection iteration (2.15) is set to αk ≡ 0.005. The step size for PHA is set

to t = 1. We terminate the algorithms if the number of iterations reaches 1000,

or ‖xk+1 − xk‖ ≤ 10−5, or the residual of the problem (4.18a)-(4.18c) is less than

10−5. The demand profiles, capacities and initial queue lengths for links are given as

follows:

d14(t, ξ) = ξ(1) max(0, 25− 90

T 2
(t− T/2)2),

c(ξ) = Λ(ξ)(5, 10, 15, 8, 4)T ,

q0 = (8, 14, 10, 10, 6)T ,

where T = 35 is the duration, ξ = (ξ(1), . . . , ξ(5)) is a random vector with each

component ξ(i) uniformly distributed on [1, 5] and Λ(ξ) = diag(
√
ξ(1), . . . ,

√
ξ(5)).

We chose the division of the time interval K = 500, 1000 and the sample size ν =

10, 100, 1000. For each fixedK and ν, we generated 20 problems with randomly chosen

time instant ti in [0, 35], and q(ti−1) is uniformly chosen from [1, 10]. The numerical

results were reported in Table 4.2, in which the average number of iterations, CPU

time and residuals for the two algorithms are provided. In addition, the success

rates for the two algorithms for solving these problems are also given. Since (4.18a)-

(4.18c) is not monotone in the sense of (2.4) for each ti, both rPSNA and PHA are

not guaranteed to solve it successfully. From Table 4.2, it is clear that rPSNA is

promising for solving these problems compared with PHA.
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Table 4.2: Comparison between rPSNA and PHA for Network 4.3.
rPSNA

K ν Iter Iter/N CPU/sec Res success rate
10 2.50 2.25 0.04 1.83e-08 0.80

500 100 4.85 4.08 0.57 4.88e-08 0.65
1000 7.13 4.75 10.73 2.21e-07 0.80
50 1.58 1.58 0.02 1.79e-08 0.60

1000 410 4.53 3.93 0.54 5.68e-08 0.75
4010 6.25 5.92 6.02 1.88e-07 0.60

PHA
K ν Iter CPU/sec Res success rate

10 776.50 3.67 5.19e-06 0.10
500 100 - - - 0.00

1000 - - - 0.00
10 - - - 0.00

1000 100 - - - 0.00
1000 - - - 0.00
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Chapter 5

Conclusions and future work

In this chapter, we summarize the conclusions of the thesis and discuss some possible

future work.

5.1 Conclusions

• In Chapter 2, we have proposed a projection semismooth Newton algorithm

(PSNA) for solving the two-stage SVI, which is based on solving its single-stage

SVI formulation. The Lipschitz continuity, semismoothness, linear Newton

approximation scheme and monotonicity properties of the single-stage SVI are

discussed, which are essential for the development of PSNA. PSNA is a hybrid

algorithm that combines the projection algorithm with the semismooth Newton

algorithm. PSNA has the decomposition property just like PHA, which enables

it to solve large-scale problems efficiently. The global convergence and the

superlinear convergence rate have been established under suitable assumptions.

Preliminary numerical results have illustrated that PSNA outperforms PHA

for solving monotone problems. Moreover, PSNA is efficient for solving some

nonmonotone problems.

• In Chapter 3, we have developed a regularized PSNA (rPSNA) for finding a

solution of a new two-stage stochastic equilibrium model, in which the second
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stage problem is a monotone LCP for any fixed x and ξ. A regularized term

is added to the second stage problem forcing it to be a strongly monotone

LCP for any fixed x and ξ. PSNA is applied to solve the regularized model

with the regularized parameter decreasing to zero, which we call rPSNA. We

have proved that the sequence generated by rPSNA converges to the unique

solution of the single-stage problem as the regularized parameter tends to zero.

Numerically, rPSNA outperforms PHA for solving this two-stage stochastic

equilibrium model with randomly generated data. In addition, by determining

the related parameters of the model using the real data from the global crude

oil market, the two-stage stochastic model can be used to describe the global

crude oil market share under the impact of the COVID-19 pandemic. The

proposed rPSNA is efficient in solving this real application problem and the

solution obtained is used to explain and predict the global crude oil market

share even under the influence of the COVID-19 pandemic.

• In Chapter 4, the proposed rPSNA is further applied to solve nonmonotone

problems in the stochastic traffic assignment and stochastic dynamic traffic

assignment. Preliminary numerical results have shown that rPSNA performs

better than PHA for solving these traffic assignment problems.

5.2 Future work

Several possible future research directions for PSNA are as follows.

• For the general two-stage SVI, we assume the strong regularity condition for the

second stage problem, which implies that the second stage problem has a unique

solution for any fixed x and ξ. Note that, in the case that the second stage

problem is a Z-matrix LCP for fixed x and ξ, the second stage problem may

have multiple solutions. We show that the unique least-element solution can
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be substituted into the first stage problem to calculate a single-stage problem

with desirable properties. Then, it is interesting to consider how to choose a

specific solution function when the second stage problem is a general VI and

has multiple solutions for any fixed x and ξ.

• To guarantee the global convergence of PSNA, we use the projection algorith-

m to globalize the semismooth Newton algorithm. The monotonicity of the

single-stage problem plays an important role in the global convergence of the

projection algorithm. It is interesting to consider if the projection algorithm

can be replaced by the line search technique to achieve the global convergence.

The main difficulty lies in the fact that the single-stage problem is an implicit

and nonsmooth function. However, the advantage for using the line search

technique is that the monotonicity assumption for the single-stage problem

is unnecessary, which extends the corresponding algorithm to solve a broader

class of problems.
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Programming: Modeling and Theory, SIAM, Philadelphia, 2009.

[45] H. Sun, C.-L. Su, and X. Chen, SAA-regularized methods for multiproduct
price optimization under the pure characteristics demand model, Mathematical
Programming, 165 (2017), pp. 361–389.

[46] C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and
applications to traffic equilibrium under uncertainty, Journal of Optimization
Theory and Applications, 137 (2008), pp. 277–295.

[47] C. Zhang, X. Chen, and A. Sumalee, Robust Wardrops user equilibrium
assignment under stochastic demand and supply: expected residual minimization
approach, Transportation Research Part B: Methodological, 45 (2011), pp. 534–
552.

[48] M. Zhang, J. Sun, and H. Xu, Two-stage quadratic games under uncer-
tainty and their solution by progressive hedging algorithms, SIAM Journal on
Optimization, 29 (2019), pp. 1799–1818.

101


	CERTIFICATE OF ORIGINALITY
	Abstract
	Publications Arising from the Thesis
	Acknowledgements
	List of Figures
	List of Tables
	List of Notation
	1 Introduction
	1.1 Background
	1.2 Literature review
	1.3 Summary of contributions of the thesis
	1.4 Organization of the thesis

	2 A globally and superlinerly convergent projection semismooth Newton algorithm for two-stage stochastic variational inequalities 
	2.1 A projection semismooth Newton algorithm (PSNA)
	2.1.1  Properties analysis
	2.1.2 The algorithm and convergence analysis

	2.2 A two-stage semi-linear SVI
	2.3 Numerical results

	3 A regularized PSNA for the global crude oil market share problem under the COVID-19 pandemic 
	3.1 Two-stage stochastic quadratic games
	3.2 A regularized projection semismooth Newton algorithm (rPSNA)
	3.3 Numerical experiments
	3.3.1 Randomly generated problems
	3.3.2 Impacts of COVID-19 on oil market share


	4 Applications of rPSNA to nonmonotone traffic assignment problems
	4.1 Stochastic traffic assignment problems
	4.2 Stochastic dynamic traffic assignment problems 
	4.2.1 Simulation results


	5 Conclusions and future work
	5.1 Conclusions
	5.2 Future work

	Bibliography



