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ABSTRACT

Multi-modal transportation systems provide multiple travel modes to create more
sustainable and better-connected cities. The overall landscape of travel demand, transport
infrastructure, and transport modes is rapidly changing, which highlights the need for an
efficient and practical framework to model travel demand. A path flow estimator (PFE) is a
single-level optimization model that serves as a flexible network analysis tool and can use
various data sources to perform a range of transportation network analyses. Although PFEs
have been widely explored in private car networks, a holistic PFE modeling framework for
multi-modal transportation networks, particularly public transit networks, remains lacking.
Hence, this thesis aims to bridge this gap by proposing an integrated PFE modeling framework
for multi-modal transportation networks. Three specific research questions are considered: (i)
how to model travel behavior in transit networks; (ii) how to estimate travel demand in transit
networks; and (iii) how to estimate travel demand in multi-modal transportation networks.

Transit equilibrium assignment is an important aspect of travel demand planning and
management by predicting the passenger flow patterns in a network. Although transit
equilibrium has been extensively addressed in the literature, limited attention has been paid to
the aggregate line capacity constraints and individual path constraints on the number-of-
transfers. Line capacity and number-of-transfers constraints are two critical factors in transit
network equilibrium because (1) transit vehicles cannot carry passengers beyond their capacity
and (2) transit passengers typically avoid paths with numerous transfers. This thesis first
proposes a strategy-based transit stochastic user equilibrium model with both line
capacity constraints and path constraints on number-of-transfers. A transit path-set
generation procedure is developed to generate transit paths with a limited number of transfers
using a route-section-based network representation. The diagonalization method is used to
solve the proposed model due to the asymmetric cost function. The diagonalized problem is
solved using a path-based partial linearization algorithm embedded with an iterative balancing
scheme, which is used to handle the line capacity constraints. A small network is explored to

show that a standard strategy or hyperpath might contain an excessive transfer, and two



additional networks are used to demonstrate the features of the proposed model and
performance of the developed algorithm.

Origin-destination (OD) travel demand is a critical input for transit equilibrium
assignment models, which is rarely measured directly in practice. The rich observation data
from automatic passenger counting (APC), automatic fare collection (AFC), and automatic
vehicle location (AVL) can be used to estimate the transit travel demand. However, the
possibility of a single-level model for OD demand estimation in urban congested transit
networks remains unresolved. A frequency-based PFE is therefore proposed for transit
demand estimation. Two kinds of core inequality constraints are considered: (1) onboard
passenger counts of transit line segments from APC and AVL data, and (2) partial OD trip
matrices obtained from AFC and AVL data inferred from the passenger alighting stations.
Three case studies are presented: the first two illustrate the features and evaluate the
performance of the proposed model, and the third one uses the Winnipeg (Canada) transit
network to demonstrate the model’s applicability to a real-world network.

The prevalence of public transport demonstrates the importance of multi-modal
transportation network analyses, for which travel demand is the core input. Current practices
for estimating multi-modal OD matrices use a four-step model in a sequential manner. The
third part of this thesis therefore focuses on simultaneously considering the mode choice, route
choice, vehicle interaction, and various side constraints for the OD demand estimation. A
multi-modal path flow estimator is proposed to estimate travel demand in an urban
transportation network. The model incorporates the limited available observational data as
side constraints (e.g., road link traffic counts, onboard passenger counts from bus and metro
line segments, mode-specific target OD demand, zonal production and attraction). The
interaction of private cars and bus vehicles, route choice behavior of private cars and transit
modes, and mode similarity are modeled in a congested network. The mode similarity is
captured by adopting a nested logit choice model. Computational tests are performed on the
proposed model and developed solution algorithm using data for a hypothetical multi-modal
transportation network in Sioux Falls (USA).

This thesis proposes an alternative travel demand forecasting methodology, an integrated
PFE that consistently addresses the weaknesses of traditional transport planning models, while
acknowledging the difficulties of developing an activity-based travel demand model in rapidly
growing urban cities.

Keywords: Multi-Modal Transportation Network; Path Flow Estimator; Transit; Route Section;
Number-of-Transfers Constraint; Demand Estimation; Nested Logit
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CHAPTER 1

INTRODUCTION

Network equilibrium approaches are vital tools for modeling urban multi-modal
transportation systems (e.g., policy evaluation, impact analysis, project planning development,
and operation strategy optimization), for which travel demand is a critical input. Hence, this
thesis aims to provide a holistic modeling framework for estimating travel demand in urban

multi-modal transportation systems.
1.1 Background

Many urban cities are experiencing rapid growth due to accelerating urbanization. Multi-
modal transport networks provide multiple travel modes (e.g., cars, metros, buses, and
ridesharing) to build better connected cities. Governments also promote public transit modes
over private car usage to achieve green and sustainable cities. Most modern urban cities have
a multi-modal transport system that emphasizes public transport over private transport. For
example, over 90% of daily trips in Hong Kong are made using multiple public transport modes
(e.g., Mass Rapid Transit, franchised buses, public light buses, and ferries) (Transport
Department, 2014). The overall landscape of travel demand, transport infrastructure, and
transport modes is rapidly changing, which requires an efficient and practical framework for
modeling travel demand.

Current transport planning practices involve one of two travel demand forecasting
procedures: (1) the traditional four-step procedure developed in North America and the United
Kingdom, which consists of trip generation, trip distribution, modal splitting, and traffic
assignment in a top-down sequential process to evaluate alternative road and transit plan; (2)

the state-of-the-art activity-based procedure is highly data-intensive and time consuming and



thus largely inappropriate for planning applications in growing urban cities. Moreover, neither
of these approaches can use the information contained within the observational data (e.g.,
traffic counts of road links and transit line segments).

An integrated path flow estimator (PFE) is an alternative travel demand forecasting
methodology that can address the weaknesses of traditional transport planning models in a
consistent manner, while acknowledging the difficulties of developing an activity-based travel
demand model in rapidly-growing urban cities as shown in Figure 1.1. Transportation network
models are generally twofold: traffic assignment and its reverse process (i.e. origin-destination
[OD] estimation). Travel demand is the critical input for multi-modal transportation system
modeling, and its quality affects the demand estimation accuracy. However, travel demand data
are rarely available or only roughly known. This motivates us to explore an integrated PFE
framework to estimate travel demand in a multi-modal transportation system. Compared
with the traditional four-step model and the activity-based model mentioned above, the
integrated PFE framework in this thesis has some advantages: (i) consistent structure, (ii)
various side constraints related to multiple data sources, and (iii) analytical expression for path

flow (mode-specific OD demand).

Traditional State-of-the-art

Four-step model Integrated path flow estimator Activity-based model
v sequential, not consistent consistent v data-intensive
v" does not contain the various side constraints ¥ time consuming
observational information analytical expression for path v" does not contain the
flow, mode-specific OD demand observational information

Figure 1.1 Proposed path flow estimator versus the four-step and activity-based models
1.1.1 Related literature about PFE

1.1.1.1 What is a PFE?



A PFE is a flexible network analysis tool that can use various data sources to perform a
variety of transportation network analyses (Bell and lida, 1997). A PFE generates stochastic
user equilibrium (SUE) traffic flow patterns by adopting a discrete choice model (e.g.,
multinomial logit). The flow patterns contain information from various data sources related to
the historical demand. The theoretical advantage of a PFE is its single-level mathematical
formulation, which allows the flexibility of incorporating different data sources as side
constraints. The optimization formulation can also obtain unique optimal solutions (i.e., path
flows) because the objective function is strictly convex with respect to the decision variables,
and the feasible set is also convex (i.e., all of the equality and inequality constraints are linear).
Various kinds of flows can be derived at different spatial levels using the obtained path flows,
including network flows, district flows, zonal flows, origin-destination (OD) flows, link flows,

intersection turning movement flows, and so on.
1.1.1.2 Flexibility of a PFE

The PFE method can be used as a flexible network analysis tool for different purposes due
to its flexibility for specifying different side constraints using a variety of data sources and the
ability to aggregate path flows at different spatial levels (Figure 1.2). A PFE can be a traffic
assignment problem without or with side constraints if the OD matrix and transportation
network are denoted graphically (Bell, 1995; Chen et al., 2011; Ryu et al., 2014a). A PFE can
also serve as an OD demand estimator if network measurements are available (Bell et al., 1997;
Chen et al., 2005, 2009, 2010; Chootinan et al., 2005; Nie et al., 2005).

Traffic Assignment Problem

(Forward)
r-———=——=—=—=—-=—-=—-=—-- Process- — — — — |
| I
1 |
1 I

Travel Demand . Link Flows
T > Transportion System . >

4 X e L

N N
| I
1 |
| - Network Characteristics |
: - Behavioral Components :

OD Estimation Problem
(Inverse)

Figure 1.2 Different purposes of a path flow estimator
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A PFE as a traffic assignment with side constraints

As shown in Figure 1.3, a PFE can be used a traffic assignment with side constraints using
the given OD matrix and a transportation network denoted as a graph. The main procedure
contains three parts: input, model, and output. The input is divided into two groups: compulsory
and optional. Three main flexibilities of a PFE are emphasized: (1) improved realism of the
traffic assignment with side constraints (e.g., link capacity, observed flows on major links, and
environmental restrictions), which avoids the feedback step of the traditional four-step model,
(2) different discrete choice models are embedded to model travel behavior (i.e., logit, extended
logit [C-logit, path-size logit, cross-nested logit, and pair combinatorial logit], and weibit); and
(3) the model is extended to include other choice dimensions (e.g., route and mode choices,
route and destination choices, and route, mode, destination, and travel choices).

4
v Input Model | /II Output
Compulsor Optional
: i . o ( PFE Model \  — e Path flows
e Network e Link capacity Viesal PPE® e Link flows
e O-Ddemand e Observed link flows <% o ..
e Environmental restrictions

Figure 1.3 A path flow estimator as a traffic assignment with side constraints

A PFE for OD demand estimation

A PFE can serve as an OD demand estimator when network measurements are available
(e.g., link traffic counts), as shown in Figure 1.4. This procedure also consists of three parts:
input, model, and output. Unlike the input in the traffic assignment, the link traffic count data
belong to the input part and the OD demand must be calculated. There are two main flexibilities:
(1) the incorporation of different data sources, including field data (e.g., traffic counts and
intersection turning movements) and planning data (e.g., land use); (2) different discrete choice
models are embedded, such as logit, extended logit, and weibit, which is similar to that when

using a PFE for traffic assignment).
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Figure 1.4 A path flow estimator for origin-destination (OD) demand estimation

1.1.1.3 Applications of a PFE

Table 1.1 Path flow estimator (PFE) applications

Research Focus Study Network
Multi-class PFE with different levels of
network information Bell etal. (1996)
Intersection turning movement estimation Chen et al. (2012)
Statewide truck origin-destination demand
estimation Jansuwan et al. (2017) Private car
network
Bell et al. (1999), Lam and
Network reliability assessment Xu (1999), Cheng et al.
(2002)
Simplified planning tool for small Jansuwan et al. (2012),
communities Ryu et al. (2014b)
PFE in bi-modal networks without handling
the common lines issue for public transit Bell and Cassir (1998) Bi-modal network
mode
Bicycle network analysis tool Ryu et al. (2018) Bicycle network
Air travel demand estimation Li et al. (2013); Li (2016) Air network
Maritime container assignment Bell et al. (2011) Maritime network

Most of the existing PFE methods focus on private transport (Table 1.1). However, the
travel mode structure in Hong Kong differs substantially from that in other cities worldwide.
There are many public transportation modes in Hong Kong (e.g., metro, light rail, franchised
bus, non-franchised bus, minibus, taxi, ferry, and tram) and their modes are combined for

travelers to choose between each OD pair. Public transportation is vital to people’s quality of



life and social-economic development. The existing PFE methods therefore cannot be directly
applied for the public transport mode because of the fundamental differences between private
and public transport networks. This motivates us to develop PFE methods for not only public

transport modes but also multiple transport modes.
1.2 Research Problems

This thesis focuses on the problem of multi-modal travel demand estimation in an
urban transportation system. Three main research questions are considered to model a multi-
modal urban transportation system (Figure 1.5): travel behavior modeling in a transit network,
travel demand estimation in a transit network, and travel demand estimation in a multi-modal
transportation network. The challenges and methodologies for solving these questions are

presented in chapters 2-4.
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Figure 1.5 Scope of the research problems
1.2.1 Travel behavior modeling in transit networks

Transit network modeling usually consists of transit assignment and transit demand
estimation. Transit choice behavior differs from that in private car networks. In reality,
passengers will not choose a path with an excessive number of transfers. In contrast to the rich

literature on transit equilibrium models, very little attention has been paid to the transfer issue.



In particular, transit vehicles cannot carry passengers over their capacity, thus a strict capacity
constraint should be considered. Chapter 2 proposes a strategy-based transit stochastic user

equilibrium model that considers capacity and number-of-transfers constraints.
1.2.2 Travel demand estimation in transit networks

The OD demand is a critical input for transit equilibrium models. Previous studies on
network-based transit demand estimation have been bi-level and required heuristic algorithms,
which do not guarantee that a global optimal solution can be obtained. Furthermore, data-based
approaches using automatic fare collection (AFC), automatic vehicle location (AVL) and
automatic passenger count (APC) usually generate an incomplete OD demand matrix. In
Chapter 3, a single-level frequency-based PFE is proposed to estimate transit OD demand using
AFC and APC data.

1.2.3 Travel demand estimation in multi-modal networks

Multi-modal transportation planning and management require high-quality travel demand
data. There are three drawbacks to separately estimating the mode-specific OD demand: (1)
poor mode choice consistency (e.g., multinomial logit [MNL] and nested logit [NL]); (2) the
interaction between different vehicles in the road network cannot be modeled; and (3) the travel
behavior of the different modes is not integrated. Very few studies have explored the multi-
modal travel demand estimation problem except for a bi-level model by Garc B-R&ienas and
Mar m (2009). Hence, Chapter 4 proposes a single-level multi-modal PFE with an NL mode

choice model to estimate multi-modal travel demand in an urban transportation network.
1.3 Objective and Contributions of the Study

The objective of this thesis is to develop an integrated PFE methodology to estimate
travel demand in an urban multi-modal transportation network. We first explore the transit
stochastic user equilibrium with capacity and number-of-transfers constraints. The focus then
shifts to transit OD demand estimation. An NL model is adopted to explore the multi-modal
travel demand estimation problem. The details of these research components are summarized

in Figure 1.6.
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Figure 1.6 Thesis at a glance
1.3.1 Strategy-based transit SUE equilibrium

In this work, a strategy-based transit SUE model is proposed that considers capacity and
number-of-transfers constraints for transit planning. The equilibrium model is formulated as a
variational inequality (V1) problem. A transit path set generation procedure with number-of-
transfers constraint is also proposed for a route-section-based transit network. A diagonalized
method is adopted to solve the asymmetric model, and the diagonalized model is solved using
a developed path-based partial linearization algorithm embedded with an iterative balancing
scheme and self-regulated averaging scheme. After using a hypothetical transit network to
illustrate the model features, a real-case transit network in Winnipeg, Canada, is used to

demonstrate the applicability of the model and algorithm.
1.3.2 Frequency-based PFE for transit OD demand estimation

We propose a frequency-based PFE for OD demand estimation in a congested urban
transit network. The key features of the proposed model are as follows: (1) a route-section-
based approach is adopted to model the transit passenger choice behavior; (2) the congestion
effect is taken into account; and (3) different transit data sources serve as different side
constraints (e.g., onboard passenger count constraints from APC data and partial OD matrix

constraints from AFC and AVL data). Overall, the proposed model is designed to address the



issue of OD matrix under-specification and overcome their partial characteristics. A path-based
diagonalization algorithm embedded with an iterative balancing scheme is developed to solve
the proposed model. The diagonalization framework is used to handle the issue of asymmetric
cost functions, and the diagonalized convex optimization model is solved using a partial
linearization algorithm. The embedded iterative balancing scheme enables the model to handle
multiple inequality side constraints. A small network is used to illustrate the correctness of the
proposed model and developed algorithm. A medium-sized network based on the Sioux Falls
(USA) road network is chosen to demonstrate the features of the model and a large network in
Winnipeg is used to show the applicability of the model and algorithm in a real-world transit

network.

1.3.3 Multi-modal PFE for OD demand estimation

A multi-modal PFE model with an NL choice model, which captures the mode similarity
and interaction, is proposed to estimate the OD demand in an urban multi-modal transportation
network. Several kinds of available observational data are incorporated as equality or inequality
side constraints, such as road link traffic counts, onboard passenger counts of bus and metro
line segments, mode-specific target OD demand, and zonal production and attraction. A three-
level iterative balancing scheme is developed for direction finding when solving the proposed
optimization model. The proposed model and developed algorithm are tested in the

hypothetical multi-modal transportation network of Sioux Falls.

1.4 Structure of the Thesis

The remainder of the thesis is organized as follows.

* In Chapter 2, a strategy-based transit SUE model with capacity and number-of-transfers
constraints is proposed and a transit path set generation procedure is developed to identify
a transit path with a limited number of transfers in a route-section-based transit network.

* In Chapter 3, a frequency-based path flow estimator is proposed for estimating OD
demand in a congested transit network using AFC and APC data.

* In Chapter 4, a multi-modal path flow estimator with an NL choice model, which captures
the mode similarity and interaction, is proposed to estimate the multi-modal travel
demand using available traffic information (traffic counts, target OD demand and zonal
data).

* Chapter 5 summarizes the conclusions of the thesis.



CHAPTER 2

STRATEGY-BASED TRANSIT STOCHASTIC

USER EQUILIBRIUM MODEL WITH CAPACITY

AND NUMBER-OF-TRANSFERS CONSTRAINTS

Line capacity and number-of-transfers constraints are critical in transit network
equilibrium because (1) transit vehicles cannot carry passengers over their capacity and (2)
transit passengers typically avoid paths with numerous transfers. In this chapter, we propose a
strategy-based transit stochastic user equilibrium (SUE) model that considers line capacity and
number-of-transfers constraints for an urban congested transit network. A route-section-based
method is used for the transit network representation and the transit passengers’ route choice
behavior is assumed to obey the multinomial logit model. The transit line capacity and
maximum number-of-transfers constraints are considered in the model. We then formulate the
strategy-based transit SUE problem as a variational inequality (V1) problem. A transit path-set
generation procedure is proposed to identify a transit path with a limited number of transfers
using the route-section-based network representation. The diagonalization method is chosen to
solve the VI problem due to the asymmetric cost function, and the diagonalized problem can
be solved using a path-based partial linearization algorithm embedded with an iterative
balancing scheme, which is used here to handle the numerous capacity constraints. Numerical
examples are conducted to demonstrate the features of the proposed model and performance of
the developed algorithm. The results show that the line capacity and number of transfers would

strongly impact the passenger flow patterns.
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2.1 Introduction

Network equilibrium is a widely used method for transportation demand planning and
management of both private cars and public transit. Traffic equilibrium (i.e., private cars)
generally involves the assignment of vehicles to a road network, whereas transit equilibrium
involves the assignment of passengers to a transit network. The core of network equilibrium is
the path, which includes the path unit definition and path choice model. Differing from private
car networks, the number of transfers is an important aspect of urban transit systems. The
number of transfers, rather than the travel cost, will sometimes dictate a passenger’s chosen
path. This implies that passengers may choose a path with fewer or fewest transfers, not the
lowest travel cost, which has been reported in numerous surveys. According to Stern (1996),
approximately 58% of the transit agencies responding the survey in the United States believed
that transit riders would avoid a transit path with more than one transfer for a single trip. An
onboard survey of the Valley Metro (Arizona, U.S.A.) in 2015 showed that up to 96% of bus
passengers chose routes with no more than one transfer (Maricopa Association of Governments
and Valley Metro Transit System, 2015). Another onboard survey of Alameda-Contra Costa
Transit (California, U.S.A.) also showed that more than 96% of passengers chose paths with at
most one transfer for trip (Alameda-Contra Costa Transit District and Metropolitan
Transportation Commission, 2018).

The number of transfers has been treated as a critical criterion in transit network design
research because higher numbers of transfers discourage transit use (Farahani et al., 2013).
Previous studies have classified the number-of-transfers issue into two categories: objectives
and constraints relative to the number of transfers. The objectives category implies that the
number of transfers is incorporated in the minimized objective function (Zhao and Ubaka, 2004;
Zhao, 2006; Fan and Mumford, 2010; Szeto and Wu, 2011). The constraints category involves
setting a maximum number of transfers for each origin-destination (OD) pair (trip) (Carrese
and Gori, 2002; Guan et al., 2004; Mahdavi Moghaddam et al., 2019). Guihaire and Hao (2008)
suggested that a passenger will switch to an alternative transport mode if the transit mode
requires more than two transfers. Another perspective regarding transfers in the field of transit
is a railway network equilibrium model that considers transfer reliability, which has been
proposed to depict the route choice behavior of railway passengers (Shi et al., 2012).

Static transit equilibrium assignment problem can be addressed by frequency-based and
schedule-based models. Frequency-based models are applied for high-frequency cases (e.g.,

11



urban areas), whereas schedule-based models are for low-frequency cases (e.g., suburban
areas). Frequency-based models are also used for long-term planning and management, and
schedule-based models are used for on-time operations. In this chapter, we focus on the
frequency-based transit equilibrium assignment problem. Figure 2.1 provides an overview of

the key studies in static frequency-based transit equilibrium.
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Figure 2.1 Overview of key static frequency-based transit equilibrium studies

Frequency-based transit network equilibrium, including deterministic user equilibrium
and stochastic user equilibrium, has been well studied in the literature. To address the common
lines problem proposed by Chriqui and Robillard (1975) in transit network, Spiess (1984) and
Spiess and Florian (1989) proposed a strategy and mathematical optimization formulation to
determine the optimal strategy. Two types of network representation were later proposed to
better represent the strategy concept: hyperpath (Nguyen and Pallottino, 1988) and route
section (de Cea et al., 1988). Early transit equilibrium studies focused on deterministic user
equilibrium, which obeys Wardrop’s equilibrium principle. In the branch of hyperpath-based
network representation, Wu et al. (1994) proposed a hyperpath-based model for the congested

transit equilibrium assignment problem. In their model, the cost functions of the waiting arcs
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and in-vehicle arcs are asymmetric and dependent on the flows using an unbounded increasing
function. Bouza'éne-Ayari et al. (1995) later extended the model of Wu et al. (1994) to the
hyperpath flow space and reformulated it as a variational inequality (V1) fixed-point problem.

The route-section method was first proposed by de Cea and Fern&ndez (1993) to handle
the common-lines issue based on the concept of strategy and involved a new formulation for
the transit assignment problem over a congested transit network. In their study, congestion
effects were assumed to exist only at transit stops and the corresponding cost function was also
asymmetric. Szeto and Jiang (2014) proposed an approach-based VI formulation that included
the concept of route-section concept for the congested transit assignment problem and adopted
the same cost function used in de Cea and Fern&ndez (1993). The studies of Wu et al. (1994)
and de Cea and Fern&ndez (1993) are generally considered as milestones of the congested
transit equilibrium assignment problem.

However, the congested model still generates flow results with overloaded line segments
(i.e., transit vehicles). A transit vehicle cannot feasibly carry a passenger flow higher than its
capacity. This issue has motivated some researchers to explore the capacitated transit
equilibrium assignment problem. Cominetti and Correa (2001) proposed a frequency-based
transit equilibrium model based on a congestion function obtained from bulk queuing theory.
The capacity constraint issue is handled by considering effective frequency functions that
vanish when the flow exceeds the line capacity. Cepeda et al. (2006) followed the work of
Cominetti and Correa (2001) and proposed a computable gap function for a frequency-based
assignment model with strict capacity constraints. They then developed the method of
successive averages to solve the proposed model for a large-scale network. Codina et al. (2013)
reformulated the model (which they called C3F) by Cepeda et al. (2006) as an equivalent
variational inequality, and claimed that this reformulation could adapt the algorithm methods
for VI problems to solve the C3F model. Codina and Rosell (2017) later incorporated the strict
line capacities constraints into the VI reformulation of congested transit assignment problem
in Codina et al. (2013) and proposed a heuristic algorithm to solve it. Specifically, they added
inequality side constraints for the passenger flows of transit line segments to handle the
capacity constraint. Kurauchi et al. (2003) presented a different approach for the capacity-
constrained transit assignment problem using a Markov chain model. In their model, the cost
function considers the passenger failure-to-board probability. The above studies of capacitated
networks belong to the branch of hyperpath-based models.

The transit stochastic user equilibrium (SUE) problem has received increasing attention
since the 1990s. Lam et al. (1999) proposed an SUE assignment model for congested transit

13



networks, where the travel cost function is independent of passenger flow and a capacity
constraint is embedded to reflect the congestion. Lam et al. (2002) later extended this work by
considering the elastic frequency of the capacity-constrained transit assignment problem and
formulated it as a fixed-point problem. They assumed that the fleet size was fixed and the dwell
time would affect the frequency. Both of these studies incorporated a hard capacity constraint
for transit lines and applied an iterative balancing scheme for the solution algorithm, which
could handle the problem with numerous inequality side constraints. To avoid the path
enumeration and easily trace the path, link-based and approach-based methods (Sun and Szeto,
2018) later adopted the concept of the Dial’s algorithm (Dial, 1971), which does not limit the
number of path links. Transit SUE studies have thus mainly concentrated on route-section-
based network representations.

To the best of our knowledge, the transit network equilibrium studies to date have not
included the number of transfers as a consideration for path finding. Although this is reasonable
for traffic equilibrium problems, transit users will avoid a path with an excessive number of
transfers. For link-based or approach-based methods, it is difficult to identify the transfer
configuration when calculating the split probability (or assigning the passenger flow) for each
outgoing route section for a node (stop). Furthermore, the capacity issue is evidently more
important in transit networks due to the number-of-transfers constraint. In fact, if the number-
of-transfers constraint have been considered in previous studies, some paths that were deemed
available would have become unavailable. This implies that some transit lines would have
become congested or even overloaded, thus causing changes to the assigned flow pattern.

Based on the above discussion, the important task remains of exploring the transit
stochastic equilibrium assignment problem with constraints on the number of transfers and
capacity, especially for real-case transit networks. Thus, the objective of this chapter is to
establish a strategy-based transit SUE model with a logit choice model that considers capacity
and number-of-transfers constraints. The route-section-based representation is used for the
transit network, and the path is set as a sequence of route sections. The paths consisting of route
sections proposed here are in effect strategies (or simplified hyperpaths). Compared with
existing path-based transit SUE models with capacity constraints (Lam et al. 1999; Lam et al.,
2002), the path cost function in our model accounts for congestion effects at transfer transit
stops via a Bureau of Public Roads (BPR)-like function, which is the same as in de Cea et al.
(1993). We thus formulate the capacity-constrained transit SUE problem as a VI formulation
with strict line capacity constraints enforced using asymmetric cost functions. We also consider
the number-of-transfers constraint in the path finding, which is more realistic for choice
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behavior in transit networks. An additional limitation of the two previous studies (Lam et al.,
1999; Lam et al., 2002) is that they only conducted small numerical examples, which is
insufficient for modern applications in large urban transit networks.

A path-set generation procedure with a number-of-transfers constraint is developed based
on the k-shortest path algorithm by Yen (1971) to ensure suitable path finding for the choice
behaviour in a transit network. Three rules are set in this chapter to generate a transit path. One
is that the number of transfers for a transit path should have a threshold; other two are based
on the route-section-based transit network representation to avoid unnecessary transfers and
loop constructions.

The diagonalization method of de Cea et al. (1993) is used to solve the proposed
asymmetric transit SUE model with capacity and number-of-transfers constraints. In each
diagonalized iteration, the VI problem is reformulated as a convex mathematical programming
formulation. The path-based linearization algorithm embedded with an iterative balancing
scheme (Bell, 1995; Chen et al., 2005, 2009, 2010) and self-regulated averaging scheme (Liu
et al., 2009) is then developed to solve the diagonalized problem. The iterative balancing
scheme handles the issue of numerous inequality side constraints by iteratively updating the

dual variables and calculating the corresponding primal variables.

2.2 Strategy-based Transit SUE Model with Capacity Constraints

2.2.1 Notation

This subchapter provides a list of the notation used in this chapter unless otherwise

specified.
Sets
N set of transit stops
L set of transit lines
E set of transit line segments
S set of route sections

A set of attractive section line segments associated with route section s
0D set of OD pairs
K°¢ path set between OD pair od

Variables
tg in-vehicle travel time of route section s
Wy waiting time of route section s
Cs total expected travel time of route section s
o proportion of passengers choosing section line segment [ associated with route section
s s
tt in-vehicle travel time of section line segment [ associated with route section s
fi frequency of line [ (vehicles/min)
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fs frequency of route section s (vehicles/min)

K; capacity of line [ (passengers/vehicle)
Vg passenger flow on route section s

vl passenger flow on section line segment [ associated with route section s
U, passenger flow on transit line segment e

ho4 passenger flow on path k between OD pair od

pod choosing probability of path k between OD pair od

q°¢ passenger flow between OD pair od

Inputs

6 dispersion parameter measuring passengers’ perception of travel cost
C. capacity on transit line segment e

q°¢ passenger flow (demand) of OD pair od

2.2.2 Route-section-based transit network revisit

Given an initial transit network G(N,L), N represents the set of transit stops and L
represents the set of transit lines. A line segment is any portion of a transit line between two
not necessarily consecutive stops within its itinerary. Any pair of stops in the transit network
might be serviced by different transit lines (i.e., common-lines problem; Chriqui and Robillard,
1975). The route-section-based transit network representation proposed by de Cea et al. (1988)
and de Cea and Fern&ndez (1993) to address the common-lines problem and a route consisting
of one or more route-sections is considered a simplified version of a strategy or hyperpath. A
major assumption of this method is that the passengers at a transit stop will be divided into
different groups according to their following alighting stop. We denote this route-section-based
network as G (N, S) with a set of transit stops N and set of route sections S. A route section is
the combination of some portions of all transit lines between two not necessarily consecutive
nodes. Here, the portion of one transit line is named as a section line segment, which consists
of one or more consecutive line segments in the transit line. With this route-section-based
method, the number of links connecting any pair of stops in the transit network can only be
one, which makes it easier to obtain solutions for the transit equilibrium problem. A transit
path is defined as a sequence of route sections for passengers to travel between any two nodes
in the transit network. It is assumed that the congestion on transit networks is concentrated at
transit stops.

Here we use a small network from de Cea and Fernandez (1993) to illustrate the route-
section concept (Figure 2.2). The example network G (N, L) consists of six transit lines: line 1
contains two transit line segments (L} and L2) and the other five lines contains only one transit

line segment. When using a route-section representation, the network G (N, S) consists of five
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route-sections. The transit line components of each route-section are shown in Figure 2.2b. We
use route sections S; and S, for detailed illustration. Route section S; contains only one section
line segment, {L1 — L2}, which includes two transit line segments, i.e. L} and L%. Route section
S, is a combination of some portions of transit lines L1 and L2. Route section S, actually
consists of L} and L. Thus, there are three transit paths for the OD pair (N1, N3): transit path
R1 consists of only one route section, S;; transit path R2 contains two route sections S, and Ss
including one intermediate transfer node N2; and transit path R3 is composed of three route

sections S5, S,, and Ss.
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(a) Transit network G(N, L) using transit lines  (b) Transit network G (N, S) using route sections

Figure 2.2 Network representation of a transit network (de Cea and Fern&ndez, 1993)

In an initial transit network G(N, L), the information (e.g., frequency, in-vehicle travel
time, capacity) is usually provided. Due to the route-section-based representation for transit
network G (N, S), the path is the route section sequence rather than the traditional line segment
sequence. We must first specify the route section characteristics. The route section cost in this
study consists of in-vehicle travel time, waiting time, and perceived congestion time.

Because the route section is a combination of attractive lines between two transfer stops,
the in-vehicle travel time of the route section is the weighted summation of that of the
corresponding lines. We first introduce the interim variable x!, which represents the split
probability of the section line segments in direct proportion to their frequencies on a route
section as:

x§=f/Zfl,VlEAS,SES 2.1)

I€A
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The in-vehicle travel time of route section s can then be expressed as the weighted
summation of the in-vehicle travel time of all of the attractive lines (section line segments)
associated with route section s as:

ty = z tlxt,vs €S 2.2)
=

The waiting time of route section s is a function of its combined frequency f; (i.e. product
of parameter a and f;). The combined frequency of a route section is the summation of the

frequencies of all the section line segments. The waiting time expression is thus:
a

a
We =— = —
* fe Zweah

where a represents the vehicle headway distribution (Spiess and Florian, 1989). Specifically,

Vs€S (2.3)

a = 1 indicates an exponential distribution and @ = 0.5 is a uniform distribution.

The perceived congestion time of the route section involves the additional waiting time
due to vehicle congestion, which is a function of its own flow and that of its competing route
sections. The flow on route section s is:

Vg = z Z askhgd,VS €S (2.4)
0od€O0D kekod

The concept of competition is that one route section shares the same transit line segment
with other route sections. Specifically, there are three main passenger groups competing with
section s: (1) passengers boarding at tail(s), and all other route sections that use transit lines
are contained in route section s; (2) passengers boarding at all of the transit lines belonging to
route section s at a stop prior to tail(s) and alighting at head (s); and (3) passengers boarding
all of the transit lines belonging to route section s at a node prior to tail(s) and alighting after
head(s). Here, tail(s) and head(s) represent the tail and head stops (nodes) of the route
section, respectively. This also implies that a route section in G(N, S) contains at most three
groups of competing route sections, as illustrated in Figure 2.3. There are three kinds of
competing route sections for route section S,: the first kind is route section Sg, which shares
the same tail node as S,; the second is route section S,, which belongs to the second group; and

the last is route section S5, which belongs to the third group.
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L. Ly? L;®

(a) Transit network using a line and itinerary description

Ss

(b) Transit network using a route section description

Figure 2.3 lllustration of competing sections of a route section

The competing flow of route section s is then defined as the summation of the flow of
section line segments on the route sections competing with route section s:
5, = z 5n z Yy, VS €S 2.5)
n#SES  lEANAp
where the section line segment flow vy, is determined based on the split probability on route
section s as:
vy = vexk, Vs € S,1 € A (2.6)
Thus, the perceived congestion time of route section s can be expressed in a BPR-like
function as:
NS
¢s(V) = o5 (;ﬁ) ,VSES (2.7)
where calibration parameters ¢, 4, ¢, and ¢ are used to model the different effects of various
flows on the perceived congestion time.
For route section s, the expected total travel time is given by:
cs(V) = ts + ws + ¢s(v) (2.8)
As discussed above, the path is a sequence of route sections. The expected travel time of
path k for OD pair od is therefore:
c22V) = ) ages(v), vk € K%, 0d € OD 2.9)

SES

19



2.2.3 Variational inequality formulation with capacity constraints

2.2.3.1 Flow conservation in a transit network

The relationship between the OD flows and passenger path flows is expressed as:

z h,‘;d = qu,VOd € 0D (2.10)
kekod

Let T = (y,s) denote the line segment-route section incidence matrix, which equals 1 if
line segment e of line [ lies on route section s, otherwise 0. The line segment flow expression
is:

Ve = Zyesyfxévs,\fe €E (2.11)

SES

where y/ = 1 indicates that transit line segment e is on transit line L.

For simple expression, let 7,s = y.,yfxt denote the proportion of passengers choosing
line segment e of line [ associated with route section s. The line segment flow v, can thus be
further expressed as:

Ve = z YesVs, Ve € E (2.12)

SES

The relationship between line segment flows and path flows can be obtained as:

v, = Z Z 2)765 askh,‘éd,‘v’e EE (2.13)

0d€0D kek©d seS
Referring to Lam et al. (1999) and Codina and Rosell (2017), the strict capacity constraint
for the transit line segments can be described using the following inequality equation:
Vv, < C,,Ve EE (2.14)

2.2.3.2 Logit-based stochastic user equilibrium condition

Based on Lam et al. (1999), the passenger overload delay is added to the link cost and
path cost to reflect the strict transit line segment capacity constraint (explicit bounds on the
flows on the transit line segments). The overload delays have been verified to be equivalent to
the Lagrangian multipliers related to the line segment capacity constraints. In this chapter, we
also consider the same transit line segment capacity constraints, and the corresponding

overload delay for path k of OD pair od is expressed using d2¢.
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Thus, according to the definition of the logit route choice model (Sheffi, 1985), the logit-

based transit SUE condition for a congested transit network is given as:
exp (—Q(C,gd + d,‘éd))
Y k’ekod EXP (—Q(C;z,d +d2f )

hod = p24q°d vk € K°%, 0od € OD (2.16)

,Vk € K°%, 0d € OD (2.15)

od _
Py =

2.2.3.3 Variational inequality formulation

Due to the asymmetric cost function of a route section, we could not obtain a mathematical
programming formulation for the transit SUE model with capacity and number-of-transfers
constraints. Here, we instead propose a path-based variational inequality formulation:
[SUE-T-SC]

1
z Z (c,fgd(h*) +5n hgd*) (hg? — hg?*) > 0,vhd € O (2.47)

0d€OD kekod

where h2%* is the optimal solution of the problem, and the feasible region Q is defined as:

z h,‘;d = q°%,Vod € OD (2.18)
kekod

Ve < Cp,Ve EE (2.19)

ho% > 0,vk € K°?,0d € OD (2.20)

Ve = ZVes z Z askhlgd've €EE (2.21)

SES 0d€O0D kekod
Let F(h) = c2%(h) + %ln h9?, and the VI model can be simplified to a standard form:
F(h)"(h—h*) > 0,vh € Q (2.22)
It is assumed that the demand and capacity constraints allow the model to obtain the
solutions. Some properties of the VI problem are provided hereinbelow. Proposition 2.1 states
that the solution of a VI problem can be found, proposition 2.2 shows that the path flow
estimation of the proposed model is distributed according to a multinomial logit model, and

proposition 2.3 further verifies that the solution uniqueness.

Proposition 2.1. Assume that c;(v) is continuous and £ is a compact and convex set; then
there is at least one solution h* of [SUE-T-SC].
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Proof. The expression of the path cost is c2%(h) = Ycs ag.cs(h) + %ln ho?® vk € K°, od €

0D, which is a positive continuous function of h. According to Smith (1983), it can be proved.
O

Proposition 2.2. The solution h of [SUE-T-SC] fulfils the MNL-based route choice model.
Proof. When u°% and d,, are Lagrangian multipliers associated with constraints Egs. (18) and
(19), the first-order conditions (Karush-Kuhn-Tucker conditions) with respect to h2¢ for [SUE-
T-SC] are (Proposition 1.3.4, Facchinei and Pang, 2003):

1
hod <c;gd +onhgd - 2 d, 2 Fosllap — ,ﬂi) —0,vk €K% od€0OD  (223)

eEE SES
1
cod + gln ho% — Z d, Z]?esask —u°4 >0,vk € K°%,0d € OD (2.24)
e€eE SES
hot > 0,vk € K°?, 0d € OD (2.25)
The decision variables follow h2? > 0,Vk € K°%,0od € 0D, and thus we have:
1
cod + gln ho% — Z d, Z]?esask —u°t =0,vk € K°%,0d € OD (2.26)
eeE SES

The path flow expression for path k between OD pair od is then given as:

hod = exp| 6 (—c;gd + z d, z Vool + ,u"d) vk € K°4, 0d € OD 2.27)
eEE SES
The choosing probability of path k for OD pair od is thus:
od h,ocd exp (_H(CI?d - ZeEE de ZSES Vesask))
pk = a = - )
Zk’EKOd hz' Zk’eKOd exp (_H(C‘gfd - ZeEE de ZSES Vesask’)) (2-28)

vk € K°%,0d € OD
The overload delay d2¢ for path k of OD pair od equals — ¥ pcp do Yses Vos@sk  due to

the negative Lagrangian multiplier d, here. This completes the proof. [

Note that [SUE-T-SC] model might exist multiple solutions due to the asymmetric and
non-separable route section cost function in Eq. (2.8). This means that the uniqueness of the
solution for [SUE-T-SC] model cannot be guaranteed.

2.3 Transit Path Set Generation Procedure
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The k-shortest path algorithm has been extensively used for path-set generation in private
car network equilibrium studies. One of the best-known k-shortest path algorithms was
proposed by Yen (1971) to find the k-shortest loopless paths including two parts: (1) identifying
the first k-shortest path, and (2) finding all other ones. As shown in Figure 2.4, the two parts in

Yen’s algorithm use the Dijkstra’s shortest path algorithm.

Yen’s Algorithm

# initialization

Obtain the shortest path >

#loop to get the k-shortest paths Dijkstra’s

for k from 1 to K: Algorithm
Obtain the shortestpath —— 1 |

Figure 2.4 Framework of Yen’s algorithm (Yen, 1971)

In this chapter, Yen’s algorithm (Yen, 1971) is adopted to generate the k-shortest path for
the transit path set. However, in the classical Dijkstra algorithm for path finding (Dijkstra,
1959), the selection of the subsequent node depends only on the current node itself.
Realistically, in a transit network, passengers tend to avoid a path with a high number of
transfers. Besides, two additional constraints exist for path finding using a route-section-based
transit network representation: (1) two adjacent route-sections might share the same transit line,
and (2) a potential selected subsequent stop might exist in the path which could be traced back
using the current stop, its parent stop, and the origin stop. Therefore, to accommodate the transit
traveler behavior and route-section-based transit network representation, three rules are
embedded in the classical Dijkstra algorithm to find the suitable shortest transit path:

* Number-of-transfers constraint, which means the path has a maximum number of route
sections or stops.

* Two adjacent route sections cannot contain the same transit line, which is to avoid
unnecessary transfers.

* Any stop in this path can be included in any route section of this path, which is to avoid
turn-back. This is necessary because a route section represents the linkage between two

transfer stops, which means that the linkage might include other non-alighting stops.
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However, these possible non-alighting stops would be the head nodes of other route

sections.

As shown in Figure 2.5, the current stop is i and the two potential subsequent stops are j
and k. For stop j, we first check the three rules above. If the number of transfers of the path
constructed by {s, ..., h, i, j} meets the constraints and j is not the destination, stop j will not be
selected. If route sections (h, i) and (i, j) contain the same transit line, stop j will be rejected.
If stop j is included in any route section (as a non-alighting stop) of the path traced back from
the current node i, stop j will be ignored. For stop k, all three of the rules above are satisfied

and stop k will be selected as the subsequent stop of stop i.

Number of stops exceeds the
number-of-transfers constraint

Current stop: i

.
|

Subsequent stop: k

Transfer stop j exists in route
section traced back from the N
current stop i \ A

Figure 2.5 Selection of the subsequent transfer transit stop

Remarks:
(1) The predetermined number-of-transfers constraint might not suitable for all OD pairs
in a real-case network, thus the number of transfers will increase until Yen’s algorithm can

generate the first shortest path for the OD pairs that requires more transfers.
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(2) In the step of removing the links and nodes about the root path in Yen’s algorithm,
the nodes in the route section (link) and outgoing and incoming route sections related to these
additional nodes are also removed. This is necessary because the section line segment in the
route section might include more than one line segment, and the purpose is to avoid turn back.

(3) The root path must be considered in the step of calculating the spur path in Yen’s
algorithm using Dijkstra’s algorithm. This is necessary because the route-section here
represents the linkage between two transit transfer stops, which implies that the root and spur
paths might contain the same transit line. Considering the root path when finding the spur path

avoids an unnecessary transfer.
2.4 Solution Algorithm

Logit-based SUE has been well studied in traffic equilibrium studies and extensive efforts
have been made to develop efficient algorithms to solve these models (Huang and Li, 2007;
Yuetal.,, 2014; Zhou et al., 2014). However, the above algorithms cannot be adopted for SUE
due to the asymmetric cost function. One of the most commonly used approaches to solve
asymmetric network assignment problems is the diagonalization method because of its easy

implementation (Florian, 1977; de Cea and Fern&ndez, 1993).
2.4.1 Diagonalization of cost functions

Problem [SUE-T-SC] in Eq. (2.17) can be further expressed as:

z Z( od (") 4 = 1nh°d*)(h;;d hg4*) > 0,vhed € O (2.29)

0d€OD kekod

We separate the ( 9d(h*) + = ln h"d*) term into two parts, and multiply each part by

(hg? — hg**) to obtain:

>t -ng)+ Yy Elnh"d* — hg?") > 0, vhg

0d€0D kekod 0d€0D kekod (2-30)
€ ()

For Eq. (2.30), we substitute the route section cost function for the path cost function
c24(h*). Eq. (2.30) is then be expressed as:

> Y (Faaet0)ogt-n) e YOS S ()

0d€O0D kek©°d \seS 0d€OD kekod

> 0,Vhit e Q
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We can further calculate the route section flow based on the summation symbols for all

paths for one OD pair and for all OD pairs:

Z( z Z ask(h;‘éd—hl‘éd*)> c.(h") + Z z Elnhod* — R o)

SES \od€eOoD kekod 0d€0oD kekod
> 0,Vh% € Q
Eq. (2.29) can then be simplified from Eq. (2.32) using the route section and path space
as:

Z(US —vg)cs(h*) + Z Z Eln h% (h9? — hg™) > 0,Vhy4 € Q (2.33)

SES 0d€OD kekod

The route section cost in Eq. (2.33) can be expressed as a function of route-section flow,
which can be obtained from the path flow. Eq. (2.29) is thus expressed as:

1
Z(US —vs)cs(V¥) + Z Z Eln h (h9% — hg™*) > 0,VhY% € Q (2.34)

SES 0d€OD kekod

In each iteration, the c,(v) in Eq. (34) is diagonalized in the current solution, yielding a
symmetric assignment problem:

1
Z(vs — e, (v + z z SIn kgt (hd = ") = 0,vhed € 0 (2.35)

SES 0d€0D kekod
where &,(v) is the diagonalized c (V).

The symmetric assignment problem in Eq. (2.35) has an equivalent convex optimization

formulation:
[SUE-T-SC-D]
mmZJ és(w)dw + = Z Z he¢(Inhpt — 1) (2.36)
SES odEOD kekod
subject to
Z h,‘;d = qu,VOd € 0D (2.37)
kekod
v, < C,, Ve EE (2.38)
ho% > 0,vk € K°?,0d € OD (2.39)

= Zyes Z Z as hpt, Ve € E (2.40)

SES 0d€O0D kekod
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2.4.2 Overall solution algorithm framework

The overall solution algorithm with a diagonalization concept for SUE-T-SC is
summarized in Figure 2.6 based on the above discussion.
Step 1. Initialization.
Step 2. Diagonalization of the cost function. Diagonalize the cost function to obtain a
symmetric assignment problem and proceed with the convex optimization model.
Step 3. Solve the subproblem. Develop the path-based partial linearization algorithm embedded
with an iterative balancing scheme to obtain the solution.
Step 4. Stop test. If ||hi — hi‘1|| < ¢ (e is a pre-set tolerance) or the maximum iteration
number Iter,,, IS achieved, stop and declare (h*,v*) = (hi,vi). Otherwise, seti =i+ 1

and return to step 2.

Algorithm Solution algorithm for SUE-T-SC

Initialization. Identify an initial feasible solution (h*,v!) and seti = 1

2: while i < Iterygy and ||hf —hi~1|| > &, do

3: Diagonalize c(v) as ¢ at ( h'~%,vi™1)

4: Solve subproblem [SUE-T-SC-D]
min Yes f* () dw + 5 ¥ oacop Txexoa hg? (In A — 1)
subject to
Ykexoa K2t = q°%,Yod € OD, v, < C,,Ve € E, 3% > 0,vk € K°%,0d € 0D,
Ve = Mses Ves LodeoD Lkekod askh,‘;d ,Ve € E.

o i —i+1, (hiv) < (h,9)

6: end while

70 return (h*,v*) = (h%v')

where Iter;,,, IS the maximum iteration number and € € R, is the tolerance.

Figure 2.6 Solution algorithm for SUE-T-SC

To solve the subproblem [SUE-T-SC-D], we develop the path-based partial linearization
algorithm combined with a self-regulated averaging step-size scheme (Liu et al., 2009)
embedded with an iterative balancing scheme. The iterative balancing scheme is used for
direction finding with a given path set and fixed cost, and its core is to adjust the dual variables
related to the side constraints and update the corresponding primal variables at each iteration,
as shown in Egs. (2.41)-(2.43):

* Adjust dual variables:

For each transit line segment,
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(dp)’*! = min {0, (d,)! + %ln (UCe)j} (2.41)

For each OD pair,

) ) 1 qod
U = oty + oI (2.42)
ZkeK"d(hk )
* Update primal variables:
(hg)™ = exp| 0 (—ciéd D @Y st + (u"d)f“) (2.43)
e€eE SES

where d, is the dual variable related to the capacity constraint, u°¢ is the dual variable related
to the OD demand flow conservation constraint, and j is the iteration number. The derivation
of the adjustment factors for dual variables and a detailed scheme are given in Chen et al.
(2009).

2.5 Numerical Experiments

This section presents three numerical examples. Example 1 is a modified transit network
based on Spiess and Florian (1989) to demonstrate the issue of the number of transfers in a
strategy or hyperpath applied in existing transit equilibrium studies. Example 2 is the Sioux
Falls network, which is used to examine the features of the proposed model in details. Example
3 is the Winnipeg transit network in Canada (Ryu et al., 2017; INRO Consultants, 2020), which
is used as a real case to demonstrate the applicability of the proposed model and solution
algorithm in the real network. The parameter values in this section are set as follows: a = 1,
0=01¢=10,and9 =¢ =@ = 1.

2.5.1 Small network

The example by Spiess and Florian (1989) has been widely used to illustrate the strategy-
based concept to model transit passenger choice behavior. The optimal strategy in their
example consists of two types of elementary paths: non-transfer and one-transfer paths.
However, in a random transit network, we cannot rule out that an optimal strategy (shortest
path) will contain an elementary path exceeding a maximum number of transfers. Due to the
complex hyperpath structure, we use a network for illustration. In the field of route-section

network representation, a transit path is a sequence of route sections. It is possible that the
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number of transfers in transit a path exceeds a predefined value, which is similar to the path in
road network with a high number of crossings and therefore not illustrated here.

The illustrative network used in this study is modified from that in Spiess and Florian
(1989) with modifications to change the stop sequences of lines 2, 3 and 4. Line 2 consists of
stops X, Y, and B; line 3 contains stops A, X, Y; and line 4 is from A to X. This network
contains only one OD pair from A to B with a travel demand as 1. Other transit line
characteristics are the same as those in Spiess and Florian (1989) and shown in Figure 2.7a.
The extended and simplified transit networks are also shown in Figure 2.7.

The optimal strategy from A to B is shown in Figure 2.8a when the in-vehicle travel time
for line 4 is 10 (t,x = 10). The dark black solid lines and letters represent the optimal strategy
and the light-colored lines and letters are for unused parts of the transit network. The passenger
flows on each transit line (segment) are also displayed. The maximum number of transfers is
one here, which is the same as in Spiess and Florian (1989). When we change t,x to 5, the
optimal strategy (Figure 2.8b) differs substantially from that in Figure 2.8a. This optimal
strategy actually contains three elementary paths: (1) only using line 1; (2) using lines 3 and 2
transferring at stop Y; and (3) using lines 4, 3, and 2 transferring at stops X and Y. The
elementary path with two transfers is highlighted in red. Specifically, 0.17/0.59 of the demand
alights at stop X and transfers to Line 3, whereas 0.42/0.59 takes line 2 directly to destination
B. However, the former part (0.17/0.59) will transfer to line 2 after alighting from line 3 at stop
Y.
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Physical stop A X Y B

(@) Initial transit network

(25,A)

(V'0)

(7.4

("9'0)

(Vo)

(Vo)

(b) Extended transit network

(25,1/6)

(7,1/6)

(c) Simplified transit network
Figure 2.7 Illustration of a small transit network

When conducting transit network equilibrium analysis without considering the number-
of-transfers constraint, the hyperpath sets might contain one or more hyperpaths with several
transfers, which would not become the choice for transit passengers in reality. For example,
for the small transit network in Figure 2.7, passengers will usually not choose a path with more
than one transfer. However, a hyperpath with two or more transfers might be taken into account

for equilibrium analysis. This is the common limitation of existing transit equilibrium studies.
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(b) Optimal strategy when t,x =5
Figure 2.8 Result of optimal strategy (shortest hyperpath) with different numbers of transfers

2.5.2 Sioux Falls network

2.5.2.1 Network setting

The highway network of Sioux Falls (http://www.bgu.ac.il/~bargera/tntp/) is shown in

Figure 2.9 and contains 76 directed links and 24 nodes on which the itineraries of 10 transit
lines (i.e., 20 itineraries) are defined modified from Sun and Szeto (2018). All of the in-vehicle
movements on a given highway link are assumed to have identical travel times. Table 2.1
illustrates the frequencies, capacities and stop sequences of the lines. The in-vehicle times of
transit vehicles on the highway network are assumed to be identical to those of private cars.
There are 32 OD pairs (with positive demands) and the known (true) OD matrix is listed in
Table 2.2. For the Sioux Falls network, the predefined path set is obtained with a large k value

of 30 in the path set generation procedure as presented in Section 2.3.
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Figure 2.9 Sioux-Falls network
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Table 2.1 Transit line data for Sioux Falls network

Line LinelD (viﬁ?gﬂfﬁggr) (p;:){?/?/zﬂitgqe) Stop sequence
D . iz

2 i 10 50 ;43 1132 112332?[
i 10 50 2231411
i 12 50 73229120117 168
> m 10 >0 30151667

°© — 1 10 50 7322201915 1
8 12 20 50 305 199 1107 1170 199 522
i : Diinnan
0 —5 20 50 P15 151005431
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Table 2.2 True demand matrix for Sioux Falls

oD Demand oD Demand oD Demand oD Demand

pair (pax/hour) pair (pax/hour) pair (pax/hour) pair (pax/hour)
(1-13) 160 (3-13) 160 (13-1) 160 (21-1) 160
(1-20) 160 (3-20) 160 (13-2) 160 (21-2) 160
(1-21) 160 (3-21) 160 (13-3) 160 (21-3) 160
(1-24) 160 (3-24) 160 (13-4) 160 (21-4) 160
(2-13) 160 (4-13) 160 (20-1) 160 (24-1) 160
(2-20) 160 (4 - 20) 160 (20-2) 160 (24-2) 160
(2-21) 160 (4-21) 160 (20-3) 160 (24 -3) 160
(2-24) 160 (4-24) 160 (20-4) 160 (24-4) 160

2.5.2.2 Effect of number of transfers constraint

This section explores the effect of the number-of-transfers constraint on the flow patterns
without capacity constraints. Here we set the maximum number of transfers to infinite (no
constraint), 1, 2, and 3 for a transit path, represented by cases I, II, I1l, and IV. In general, we
can see that the flow patterns of the transit line segments with different number-of-transfers
constraints show large differences in their volume to capacity (V/C) ratios. To more clearly
describe the difference, we set the case with the no-transfers constraint (case I) as the
benchmark as shown in Figure 2.10a. Compared with case I, case Il contains more transit line
segments with less congestion (33.33% vs. 28.70%) and fewer line segments with a V/C ratio
over 0.8 (7.4% vs. 11.30%). However, these two cases are similar when the V/C ratio is
between 0.2 and 0.8. Compared with case |1, case 111 differs from case | more markedly: fewer
less-congested transit line segments (23.15% vs. 28.70%) and more line segments with V/C
ratios between 0.2 and 0.8 (69.44% vs. 60.18%). Case IV differs slightly from case | with a
VI/C ratio of 0-0.8. One important observation is that cases Il, 11l and IV contain fewer line
segments with V/C ratios over 0.8 than in case I. One apparent reason is that the number-of-
transfers constraint changes the components of the transit path set for these four cases. This
can be further explained by the fact that without a number-of-transfers constraint, some transit
line segments are repeatedly used by many paths even though some paths require more
transfers. After adding the number-of transfers-constraint, these paths with over-repeated line

segments and more transfers are not taken into account.

33



35.00% 35.00% 3333%

., 30.00% 2B7O% ,, 30.00%
- 10, - 19,
$ 25.00% 24.07% £ 25.00% 24.07%
€ 20.37% £ 20.37%
 20.00% 2 20.00%
a 15.74% @ 14.81%
2 15.00% 2 15.00%
‘5 10.00% 6.48% ‘5 10.00%
B 3.70% xR 3.70%
5.00% H 0.93% h 5.00% 185%  1.85%
0.00% - M 0.00% m = M
0-02 0.2-04 0406 0608 0810 1012 1221 0-02 0204 0406 0608 0810 1012 1221
V/C ratio V/C ratio
(a) No number-of-transfers constraint (case 1) (b) Number of transfers: 1 (case 1)
30.00% 26.85% 30.00% 2715%
w 25.00% 2315% [ 22.29%  25.00% 2.15%
E 20.37% E 20.37% 20.37%
g 20.00% & 20.00%
] ]
“ 15.00% “ 15.00%
Q ('D
£ £
= 10.00% = 10.00%
o o
R 5.00% 3.70% 3.70% R 5.00% 3.70% 3.70%
0.93%
0.00%
0.00% |_| |_| 0.00% |_| A |_|
0-0.2 0.2-04 0406 0608 0810 1012 1221 0-02 0.2-04 0406 0608 0810 1012 1221
V/C ratio V/C ratio
(c) Number of transfers: 2 (case 1) (d) Number of transfers: 3 (case 1V)

Figure 2.10 Distribution of volume to capacity (V/C) ratio of transit line segments with

different number-of-transfers constraints
2.5.2.3 Effect of capacity constraint

This section investigates the effect of capacity constraints on flow patterns. Without a loss
of generality, the maximum number of transfers is set as 2. We assume that the travel demand
is suitable for obtaining a feasible solution given the available capacity constraints on all transit

line segments.
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Figure 2.11 Volume to capacity (V/C) ratio of transit line segments with (SC) and without
(No-SC) capacity constraints

34



800

200 O SC WNo-5C
— 600
c maximum capacity
§ 500
& 400
_g 300
% 200

100

0
1-3 3-12 12-13 13-24
Line segment
(a) Downward direction: stop 1 to 24

800

200 @SC M No-SC
— 600
c maximum capacit
§ 500 pacty
8 400
g 300
T

20
10

o O

l ]

24-13 13-12 12-3 3-1
Line segment

o

(b) Upward direction: stop 24 to 1
Figure 2.12 Flow on transit line 2 with (SC) and without (No-SC) capacity constraints

Figure 2.11 compares the V/C ratio of transit line segments with and without capacity
constraints (referred to as SC and No-SC, respectively). Both scenarios generate similar results
in terms of V/C ratio sections of [0,0.2], (0.2,0.4], and (0.4,0.6]. However, different results are
obtained for line segments with high V/C ratios. The SC-case contains only 12.96% of line
segments with a ratio of (0.6,0.8], whereas the No-SC-case contains 21.30%. In contrast, there
are 15.74% of line segments with a ratio of (0.8,1.0] for the SC-case compared with only 3.70%
for the No-SC-case. However, the No-SC-case generates overflow line segments (3.7%),
whereas the SC-case at most contains line segments reaching the capacity.

Figure 2.12 illustrates the flows on different line segments of transit line 2 with and
without capacity constraints. For both directions of transit line 2, the segments between stops
3 and 12 and stops 12 and 13 carry higher passenger flows than those without line capacity

constraints. After embedding the capacity constraints, the equilibrium flow of all line segments
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of transit line 2 does not exceed their capacity. Interestingly, the flow of line segment 3-12
decreases to below its capacity with the implementation of a capacity constraint, whereas the
other overloaded line segments continue to reach their own capacities. The flow patterns
between stops 1 and 3 and stops 13 and 24 are nearly the same with and without capacity
constraints. This might be explained by the fact that lower passenger flow is assigned to the
transit paths with overloaded line segments due to the capacity constraints. These transit paths

do not use other uncongested line segments of transit line 2.

2.5.2.4 Effect of increasing transit line frequency
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Figure 2.13 Effect of increasing transit line frequency on the flow of saturated line 2 without

capacity constraints

This section examines the effect of increasing transit line frequency on flow patterns based

on the overflow observation. Without loss of generality, the maximum number of transfers is
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set to 2. Increasing transit line frequency essentially increases the transit line capacity and
relieves the transit line congestion. Two strategies are conducted in this section: (1) increase
the frequency of the saturated transit line, i.e. line 2, and (2) increase the frequency of the
unsaturated transit line, i.e. line 1. The purpose of strategy (1) is to make the saturated transit
line carry more flow, and that of strategy (2) is to improve the service of the other transit lines

and help share the flow.
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Figure 2.14 Effect of increasing transit line frequency on the flow of saturated line 2 with

capacity constraints

Figure 2.13 shows that even though both strategies improve the level of service of transit
line 2 without capacity constraints, the overflow line segments still maintain overflow.
However, Figure 2.14 shows that neither strategy has an effect on the service level, which
means that the results of both strategies are essentially the same as that of initial frequency.
This is meaningful for practical transit planning. If capacity constraints are not incorporated in

strategy evaluation, the results might appear good but in fact be unreasonable because a transit
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vehicle cannot carry a passenger flow above its capacity. Overall, the flow results without

capacity constraints might be overestimated compared with those with capacity constraints.

2.5.2.5 Effect of demand level
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Figure 2.15 Distribution of volume to capacity (\V/C) ratio of transit line segments with
different demand levels

This section mainly explores how the demand levels affect the flow patterns with capacity
constraints. To illustrate the effect, a demand adjustment factor, from 0.5 to 1.0 with the interval

of 0.1, is used. The reference demand q is the same at that in Table 2.2. Without loss of
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generality, the maximum number of transfers is set to 2. The result of flow patterns is shown
in Figure 2.15.

As expected, no matter how demand levels change, the V/C ratio of all transit line
segments is less than or equal to one due to the strict capacity constraints. Besides, with the
demand increases (i.e. larger demand adjustment factor), the number of transit line segments
with V/C ratio larger than 0.4 increases. This is because with more demand, more flow will be
assigned to the transit network, and the network will become more congested. Moreover, the
number of transit line segments with larger V/C ratio (i.e. 0.8-1.0) also increases as the demand
increases. This can be explained from two perspectives: (i) more demand means more
congested, and (ii) the strict capacity constraints make the saturated line segments not carry

more flow, which will make other unsaturated line segments become more congested.
2.5.3 Winnipeg network

The Winnipeg transit network in Figure 2.16 is used to illustrate the features of the
proposed model and performance of the developed solution algorithm. The network is extracted
from Emme V4.3.2 and consists of 130 transit lines, 4187 transit line segments, and 924 transit
stops. The number of origins is 106 and that of OD pairs is 5303. To connect the origins and
transit stops, the network also contains 803 walking segments. After conducting the route-
section network construction, the network consists of 44,408 route sections, in which each
walking segment is interpreted as a special case of a transit route section with a cost of 0. The
solution algorithm is implemented in Microsoft Visual Studio 2015 and run on a 2.7-GHz
processor with 20.00 GB of RAM. Without loss of generality, the maximum number of

transfers here is set to 3, and the k value in the transit path-set generation procedure is 20.
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2.5.3.1 Convergence characteristics

The root mean square error of the transit path flows between two adjacent iterations is
adopted to represent the convergence, which is:

, .2
RMSE = \/ZodEOD ZkeK"d(th’l - hid’l 1) (2.54)

K|
Figure 2.17 shows the convergence of the proposed solution algorithm, including each
outer iteration and each inner iteration of outer iterations 1 and 12. Both the outer and inner
iterations efficiently reach a value below 108, which means the proposed solution algorithm is
capable of solving real-case transit network scenarios. The convergence of the dual variables
of the two selected transit line segments is also shown in Figure 2.17.
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Figure 2.17 Convergence characteristics of the proposed solution algorithm
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2.5.3.2 Flow patterns
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Figure 2.18 Flow on two transit lines between with (SC) and without (No-SC) capacity

constraints

Figure 2.18 shows that the flow of some line segments of lines 40 and 52 exceeds the
maximum capacity when incorporating capacity constraints. After adding the capacity
constraints, the flow of the transit line segments only reaches the capacity. A comparison of

Figure 2.18a and 2.18b show that not all of the overflow line segments reach capacity when
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capacity constraints are incorporated. Some overflow line segments in Figure 2.18a contain
less flow than capacity after incorporating capacity constraints. This illustrates that without
capacity constraints in transit assignment problem, not only are unreasonable results obtained
for some line segments with overflow but the flow for some line segments that do not reach
capacity is overestimated. This is consistent with the dual variables shown in Figure 2.17, i.e.
the dual variable with respect to the capacity constraint of segment 17 on transit line 40
becomes zero, and that of segment 7 on transit line 52 is -20.7678, which means that the
passenger flow has reached the capacity.

2.6 Chapter Summary

In this chapter, a strategy-based transit stochastic user equilibrium model with capacity
and number-of-transfers constraints is proposed. Specifically, the logit-based stochastic path
choice behavior and in-vehicle congestion cost are taken into account, a strict capacity
constraint of transit line segments is added to handle the overload problem, and a number-of-
transfers constraint is considered for transit path finding. This transit equilibrium problem is
formulated as a logit-based VI problem. A transit path-set generation procedure based on the
k-shortest path algorithm is introduced, which also considers the features of a route-section-
based transit network and number-of-transfers constraint. The diagonalization method is
adopted to solve the proposed model, and the diagonalized subproblem can be solved using the
path-based partial linearization solution algorithm embedded with an iterative balancing
scheme to handle the capacity constraints.

Numerical examples are provided to demonstrate the features of the proposed model and
evaluate the performance of the developed solution algorithm. The results indicate that the
number of transfers constraint changes the components of the transit path set, which strongly
impacts the passenger flow patterns. The results also show that the capacity constraint affects
flow patterns, which revises the evaluation of some transit management strategies. The results
of a real-case transit network further verify the applicability of the developed solution
algorithm. Overall, the numerical examples depict the importance of capacity and number-of-

transfers constraints in transit equilibrium problems.
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CHAPTER 3

FREQUENCY-BASED PATH FLOW ESTIMATOR

FOR OD DEMAND ESTIMATION IN AN URBAN

TRANSIT NETWORK

A frequency-based path flow estimator is proposed to estimate the transit passenger
origin-destination (OD) matrix in an urban congested transit network. The proposed model not
only considers the effect of congestion under an equilibrium framework, but also benefits from
being formulated as a single-level model with the route-section-based network representation.
Multiple transit data sources are incorporated, including automatic passenger count, automatic
fare collection and automatic vehicle location data. A path-based diagonalization approach
embedded with an iterative balancing scheme is developed to solve the model. Case studies are

conducted to demonstrate the features and applicability of the proposed model and algorithm.
3.1 Introduction

In transportation (including both traffic and transit) planning and management studies, a
fundamental input is the origin-destination (OD) trip matrix, which expresses the traffic
demand between each OD pair (Li et al., 2012; Huang et al., 2016; Chen et al., 2018; Canca et
al., 2019; An et al., 2020; Xu et al., 2020). However, it is rarely possible to obtain the “true”
OD matrices directly in practice. A dedicated survey to collect this information would be highly
labor- and resource-intensive. Many researchers instead focus their efforts on estimating the

OD matrices based on the limited observations of traffic conditions on the network.
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The OD demand estimation problem is well defined in the case of road (or traffic)
networks, in which researchers make use of limited observations of traffic network conditions,
i.e. link traffic counts and historical (or targeted) OD matrices (Carey et al., 1981; Cascetta and
Nguyen, 1988; Yang, 1995; Yang et al., 2001; Mabher et al., 2001). In transit networks, the
traditional methods of estimating OD matrices are labor-intensive and difficult to implement,
such as onboard survey and passenger counting at bus stops. With the development of
electronic technology, observed data on passenger flows in transit networks can increasingly
be obtained directly from the transit systems. These data principally consist of the onboard
passenger counts of transit line segments and the smartcard payment data (transactions). Data
of the first kind are obtained from automatic passenger count (APC) systems, which provide
information including the boarding and alighting counts at each stop on the route, the time label,
stop location and so on. Data of the second kind come from both automatic fare collection
(AFC) and automatic vehicle location (AVL) systems, which provide detailed information on
individual passengers, e.g. which stop they board at, which line they board and at what time.

A lot of studies have explored the transit OD demand estimation with the usage of APC,
AFC and AVL data, including data-based approaches (Barry et al., 2002; Zhao et al., 2007;
Tréanier et al., 2007; Munizaga and Palma, 2012), uncongested network approaches (Nguyen
et al., 1988; Wong and Tong, 1998; Nuzzolo and Crisalli, 2001), and bi-level approaches with
congested choice behavior (Lam et al., 2003; Wu and Lam, 2006). However, it is still unsolved
that whether there exists a single-level optimization model incorporating APC, AFC, and AVL
data for OD demand estimation problem in congested transit network. Therefore, this paper

aims to answer this unsolved question.

3.1.1 Related literature

The implementation of these automatic transit-data collection systems in numerous urban
networks has sparked a surge of interest in estimating transit OD matrices using observed data.
At first, most studies of transit passenger OD flow estimation were conducted at the route level,
and the observed data were principally the boarding and alighting counts at each stop acquired
from APC systems. The most widely used method of OD matrix estimation, iterative
proportional fitting (IPF), was proposed by Ben-Akiva et al. (1985). The inputs for this method
are the boarding and alighting counts at every stop along a bus route and a seed OD flow matrix.
Li and Cassidy (2007) presented an algorithm to estimate not only an OD matrix but also the

passenger alighting probabilities at every stop on the route. The method’s main advantages are
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that it does not need a seed matrix and is more computationally efficient than the balancing
method (i.e., IPF). Ji et al. (2015) proposed a computationally tractable method using both APC
data and labor-intensive onboard survey data to estimate transit route passenger OD flow
matrices. Later, Cui (2006) reported that route-level OD matrices could also serve as inputs to
network-level OD demand estimation methods. Most of the above methods depend on a seed
OD matrix to obtain high-quality estimates, but a good seed matrix is highly challenging to
construct.

Elsewhere, researchers have explored the possibility of obtaining a network-level OD
matrix directly using the data from AFC and AVL systems (Barry et al., 2002; Zhao et al.,
2007; Trépanier et al., 2007). Munizaga and Palma (2012) presented a method of how to use
the smartcard and GPS data to estimate a multimodal public transport OD matrix for Santiago,
Chile. Their method centers on reconstructing passengers’ trip chains from smartcard data by
estimating the destination points from the information available. To apply methods of this kind,
some assumptions are needed: (1) after a trip, passengers will return to the same stop from
which they began that trip; (2) at the end of the day, passengers will return to the stop from
which they began their first trip of that day; and (3) a criterion of maximum walking distance
to the next boarding bus stop is used to define the alighting bus stop. AFC and AVL data can
accurately illustrate individual passengers’ boarding information. However, these methods face
two drawbacks: (1) not all passengers use a smart card to pay the fare: for example, the
smartcard penetration rate is approximately 90% in Chicago (Zhao et al., 2007); and (2) not all
transaction records can be used to infer the alighting stations due to various practical reasons,
e.g. only a single transaction is recorded, there is a data error or the trip is wrongly estimated
to begin and end at the same location. The success rates of alighting-stop inference in previous
studies include 66% by Trépanier et al. (2007), 71% by Zhao et al. (2007), and over 80% by
Munizaga and Palma (2012). Therefore, the OD trip matrices obtained using AFC and AVL
data are usually partial (incomplete).

In contrast to the above methods, which can be classified as data-based, other researchers
have followed a different approach, using network-based models for transit OD trip matrix
estimation. Due to the difficulties in modeling passenger route choice behavior in congested
transit networks, the initial studies of transit OD matrix estimation focused on uncongested
cases. Nguyen et al. (1988) developed a maximum entropy model for passenger OD matrix
estimation in frequency-based transit systems, taking into account time information contained
in the passenger counts. Wong and Tong (1998) also presented a maximum entropy model, but
theirs was used to estimate the time-dependent passenger matrix in a schedule-based transit
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network. Nuzzolo and Crisalli (2001) proposed a least-squares model using a schedule-based
approach.

Later, with the advent of transit route choice behavior studies, researchers started to
explore passenger OD matrix estimation in congested transit networks using a bi-level
programming approach (Lam et al., 2003; Wu and Lam, 2006; Babazadeh et al., 2010). In such
an approach, the upper level is the conventional OD matrix estimation problem while the lower
level is the frequency-based transit equilibrium assignment problem. Lam et al. (2003) and Wu
and Lam (2006) explored the transit OD demand estimation problem using a new frequency-
based transit assignment model with elastic line frequencies (Lam et al., 2002). In their
approach, it is assumed that the updated passenger counts and historical OD matrices are
available. Babazadeh et al. (2010) proposed a bi-level model for transit OD matrix estimation
with a path-based formulation of a strategy-based transit equilibrium assignment problem
(Babazadeh and Aashtiani, 2005). The critical input to these bi-level methods is a seed (targeted)
OD matrix, which usually cannot be directly obtained in practice. Moreover, the partial OD
matrix from a data-based model could not be used in the upper level for these bi-level methods
because the upper level is usually a generalized least squares problem, which will generate a

result (i.e., an output matrix) that is as close as possible to the input partial OD matrix.

Table 3.1 Differences between existing transit OD demand estimation models and our model

Models Input Qutput Math. model
Transit choice APC AFCand | Historical Route | Network | Single Bi-

Type behavior References data AVL oD level level level level

data matrices

Ben-Akiva et
al., 19_85; Liand v ) ) v
Cassidy, 2007;
Jietal., 2015
Barry etal.,
2002; Zhao et
al., 2007,
Trépanier etal., - v - - v
2007; Munizaga
and Palma,
2012
Nguyen et al.,
1988; Wong v - v - v v _
Uncongested and Tong, 1998
NL_Jzzo_Io and v v ) ) v v
Crisalli, 2001
Network Lametal.,
-based 2003; Wu and
Lam, 2006; v - v - v - v
Congested Babazadeh et
al., 2010

This v v v v v v
study

Data-
based
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Based on the above literature review, Table 1 summarizes the existing transit OD demand
estimation models and their differences compared from the model proposed in this study. As
can be seen, our model makes good use of APC, AFC and AVL data to solve the transit OD
matrix estimation problem. A flexible network analysis tool, the path flow estimator (PFE),
was developed by Bell et al. (1997) to conduct OD matrix estimation in road networks with the
assumption of logit-based stochastic equilibrium assignment. A major advantage of PFE is that
it allows different data sources to be incorporated into the model. Moreover, the PFE not only
considers the effect of congestion but also the benefits from being formulated as a single-level
mathematical problem (Bell and lida, 1997; Chen et al., 2005, 2009, 2010).

3.1.2 Contribution of this work

This chapter proposes a frequency-based PFE for passenger OD matrix in congested urban
transit networks via incorporating transit passenger route choice behavior and multiple transit
data sources, i.e. APC, AFC and AVL data. However, we cannot apply the PFE approach to
transit network directly due to the inconsistency in route choice units. Specifically, in a road
network, the route choice unit is the elementary path, whereas in our problem, the route choice
unit is the combination of a set of elementary paths. As described by Spiess and Florian (1989),
passengers are assumed to follow their individual optimal strategies when making travel
choices. Based on this assumption, there are two approaches for modeling the strategy: the
hyperpath-based approach (Nguyen and Pallottino, 1988) and the route-section-based approach
(de Cea and Fernandez, 1993). In this chapter, we apply the route-section-based approach to
model the passenger choice behavior. The route section is used to address the common lines
issue, and a route is a sequence of route sections (i.e., a simplified strategy or hyperpath). The
core of this approach is to apply the concept of transit logit-based stochastic equilibrium
assignment to account for the effect of congestion at stops along the route section when
modeling route choice behavior. The observed transit data serve as side constraints in our
proposed approach. Two types of constraints are included: the onboard passenger counts,
which can be obtained from APC data, and the partial OD matrix, which can be calculated from
AFC and AVL data using data-based models (Barry et al., 2002; Zhao et al., 2007; Trépanier
et al., 2007; Munizaga and Palma, 2012). Subsequently, the diagonalization method is adopted
to solve the proposed frequency-based PFE for congested transit networks. In each
diagonalized iteration, the proposed model is reformulated as a convex mathematical
programming problem, and a path-based partial linearization algorithm embedded with an
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iterative balancing scheme and a self-regulated averaging (SRA) scheme is developed to solve

this convex optimization model.

3.2 Transit Network Modeling

3.2.1 Notation

This subchapter provides a list of the notation used in this chapter unless specified

otherwise.
Sets
N set of transit stops
L set of transit lines
E set of transit line segments
Ey set of transit line segments without observed data
Ey set of transit line segments with observed data
S set of route sections
Ag set of attractive section line segments associated with route section s
OD  setof OD pairs
K°%  path set between OD pair od

Intermediate variables

tg in-vehicle travel time of route section s

Wy waiting time of route section s

Cs total expected travel time of route section s

xt proportion of passengers choosing section line segment [ associated with route section s
tk in-vehicle travel time of section line segment [ associated with route section s
fi frequency of line [ (vehicles/min)

Ky capacity of line [ (passengers/vehicle)

A passenger flow on route section s

vl passenger flow on section line segment [ associated with route section s

Ve passenger flow on transit line segment e
q°®  passenger flow between OD pair od

Decision variable

h9®  passenger flow on path k between OD pair od
Inputs
0 dispersion parameter measuring passengers’ perception of transit path cost
C. capacity on transit line segment e
U, observed passenger count on transit line segment e
€, percentage of measurement error allowed for the passenger count on transit line segment e
g°*  observed partial trip demand of OD pair od

3.2.2 Route-section-based transit network modeling revisited

With the route-section-based transit network representation in Chapter 2.2.2, the transit

cost is modeled here. To formulate the path cost, we need an expression for the route section

cost, which consists of the in-vehicle travel time, the waiting time and the perceived congestion
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time. As shown below, we first need to introduce an interim variable, x:. Based on the network
representation above, the route section flows are assigned to section line segments in direct

proportion to their frequencies on route sections, i.e.

l f

x =
* ZjeaS

The in-vehicle travel time of route section s can then be expressed as the weighted

VIEA,SES (3.1)

summation of the in-vehicle travel time of all of the attractive lines (section line segments)

associated with route section s as:

ts = Z xétl ,VSES (3.2)
leAs

The waiting time for passengers boarding route section s can be expressed as:
a

_a a
fs Zieafi

where the parameter « may be chosen to approximate the distribution assumed for the vehicle

W ,VsES (3.3)

headway (Spiess and Florian, 1989). The value a =1 corresponds to an exponential
distribution assumed for the vehicle headway and a = 0.5 represents a uniform distribution.

The perceived congestion time of the route section involves the additional waiting time
due to vehicle congestion, which is a function of its own flow and that of its competing route
sections. The flow on section s is:

Vg = Z z askhgd,VS €S (3.4)

0d€O0D keKod

where the path-section incidence a; equals 1 if section s lies on path k, otherwise 0.

There are three main groups of passengers competing with section s: (1) passengers
boarding at tail(s) of all other route sections (sharing the same tail node) that use lines
contained in route section s, (2) passengers boarding any of the lines belonging to route section
s at a node before tail(s) and alighting at head(s) and (3) passengers boarding any of the
lines belonging to route section s at a node before tail(s) and alighting after head(s). Figure
3.1 shows an example of each type of competing section. Specifically, for route section Sa,
route section Ss is of the first competing type, as it shares the same tail node with S4; route

section Sz belongs to the second type; and route section Sz belongs to the third type.

L, L,? LS
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(a) Transit network using the line and itinerary description

first competing type of S4
Ss

second competing type of S4
Sy

third competing type of S4
S

(b) Transit network using the route-section description

Figure 3.1 Illustration of competing sections of a route section

Then, the competing section flow of section s is:
U = Z 65§ Z vs,VSES (3.5)
$#s€S  l€EAsNA;
where 6 is the competing section indicator, such that 5 = 1 means that section § is a
competing section of section s, and otherwise 65 = 0.

The section line segment flow v! is determined by:

vi=vxl,VIE A, s€ES (3.6)
Then the perceived congestion time function for route section s is expressed as:
Yvg + ¢ @
ds(v) = (—) ,VSsES (3.7)
s \X teas fiia

where calibration parameters 9, ¢, ¢, and @ are used to model different effects of various
flows on the perceived congestion time.
For route section s, the expected total travel time is given by:
(V) =t +wy + ¢ps(v),Vs €S (3.8)
With the expected route section time function, the expected travel time associated with
path k between OD pair od can be expressed as:

c2d(v) = Z ag.cs(v),Vk € K°% 0d € OD (3.9)

SES

3.3 Frequency-based Transit Path Flow Estimator

3.3.1 Framework of transit PFE with APC, AFC, and AVL data
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This section mainly presents modeling process of the frequency-based path flow estimator.
After introducing the framework of transit PFE with APC, AFC, and AVL data, the flow
conservations are introduced. Then, the uncongested and congested transit PFE models are
proposed, which help to illustrate the modeling process.

3.3.1.1 Overall schematic

The onboard passenger counts and the observed partial OD trip matrix can serve as two
kinds of supplementary data for transit OD demand estimation. A schematic of frequency-
based transit PFE with APC, AFC, and AVL data is shown in Figure 3.2. The properties of
these three kinds of data from automatic data collection systems could be summarized as

* APC data: line no., bus no., time, boarding count, and alight count;

* AFC data: smart card 1D, tap-in time, line no., bus no., line name;

* AVL data: line no., bus no., bus stop, arrival/departure time (AD-Time), arrival/departure
flag (AD-Flag).

Data Part

e Line-No
e Bus-No
e Time

e In-Count
e Out-Count o AD-Flag

/ APC data / / AVL data /

No stop ‘nfo rmation

Boarding and alighting
counts at stop

Model Part

e Card-ID
e Tap-In-Time

e Line-No
e Bus-No

o Line-Name

{ AFC data /

No stop |nformation

matching

matching

e Line-No
* Bus-Stop
e AD-Time

Route-section-based network
representation (asymmetric
and non-separable cost)

Transit line capacity
constraint

h 4 A 4

A\ 4

Frequency-based transit PFE

@,
Q.
[v)
8
=] 7‘ Estimated OD trip matrix
\_TK | §
Calculation method AT 180 Z
inference . .
l l » Estimated transit path flow
Onboard passenger Observed partial OD
counts trip matrix 7 Estimated transit line segment flow

Figure 3.2 Schematic of frequency-based transit PFE with APC, AFC, and AVL data

Note that neither APC nor AFC data provides the stop information (i.e., location), which
requires the AVL data to help locate the stop. First, the onboard passenger counts of transit line
segments are obtained from APC and AVL data, and the observed partial OD trip matrix will

also be generated from AFC and AVL data based on inference of the passengers’ alighting
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stops. Based on the route-section-based transit network representation, a frequency-based
transit PFE for OD estimation is proposed, together with three kinds of side constraints: an
onboard passenger count constraint for measured line segments, a capacity constraint for
unmeasured line segments and a partial OD flow matrix constraint. The proposed frequency-
based transit PFE approach yields the following outputs: estimated OD flow matrix, estimated
transit path flow and estimated transit line segment flow. By combining with the onboard
passenger counts and the observed partial OD trip matrix, the estimated result improves the
underspecified and partial issues of the estimated matrix as discussed in Section 3.1.

3.3.1.2 Onboard passenger counts

Onboard passenger counts of each transit line segment can be obtained from the boarding
and alighting counts at each stop on the line. Figure 3.3a shows a representative method for the
detection of boarding and alighting counts at a bus stop using infrared light. Infrared sensors
are installed at both the entry and exit doors of buses and register whenever a passenger passes
through either door by detecting the temporary blockage of the light beam. From these boarding
and alighting counts, the number of passengers on each line segment (or onboard passenger
count) can be calculated. As illustrated in Figure 3.3b for sequential stops on a bus line, the
flow on the bus line segment before stop X is ¥. The boarding and alighting flow at stop X is
By and Ay, while that at stop Y is By and Ay. Thus, the observed onboard passenger count of
line segment YZ calculated via the boarding and alighting counts is:

Uyz = U+ By — Ay + By — Ay (3.10)

v Dyz?
———————— X (v) ©)
Bx| | Ax By | | Ay
(a) Automatic passenger count (APC) (b) Number of boarding, alighting and onboard
system using infrared sensors passengers

Figure 3.3 lllustration of a method of deriving onboard passenger counts using APC data

Specifically, when stop X is the starting stop of the transit line (i.e. ¥ = 0), the observed

onboard passenger count of line segment XY equals the boarding flow at stop X.
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3.3.1.3 Observed partial OD trip matrix

Many AFC systems, notably those for bus transit, are access-based (i.e. swipe-on or tap-
on) only and thus only record the stops where passengers board, not record where they alight.
A well-analyzed form of the transit passenger OD matrix estimation problem is based on
estimating a passenger’s alighting stop following a sequence of smartcard transactions and
assuming that the next transaction occurs after alighting (Barry et al., 2002; Zhao et al., 2007,
Tréanier et al., 2007; Munizaga and Palma, 2012). The inputs for these existing methods,
which are used to infer passengers’ alighting stops, are obtained from three main types of
databases: transactions (boarding) from an AFC system, vehicle positions from an AVL system
and a geocoded representation of a public transport network. Unfortunately, the estimated OD
matrix is usually partial compared for two reasons:

(1) Alighting stops cannot be estimated with 100% accuracy due to several potential issues,
e.g. only a single transaction is recorded, there is a data error or a trip is wrongly estimated to
begin and end at the same location. The success rates of previous rates include 66% by
Tréanier et al. (2007), 71% by Zhao et al. (2007) and over 80% by Munizaga and Palma
(2012). In such cases, not all of the transaction data can be utilized due to missing information
on the chain linkages. We use the variable o to represent the success rate with which the
transaction data are used to infer the OD matrix, and g°¢ for the OD matrix estimated via
inference of the alighting stops.

(2) Although smartcard data can be used to estimate the passenger OD matrix, the matrix
will still be partial even if the success rate o reaches 100% because not all passengers use the
a smartcard for payment. For example, the penetration rate of smartcards in Chicago is close
to 90% (Zhao et al., 2007), while that in Santiago, Chile is approximately 97% (Beltran et al.,
2011). We can calculate that the estimated partial matrices in Zhao et al. (2007) and Beltran et

al. (2011) capture approximately only 63.9% and 77.6% of the complete matrices, respectively.
3.3.1.4 Relationship between transit observations and complete OD matrix

Figure 3.4 shows the relationships between the complete OD demand matrix and the
various transit data sources:

(1) Onboard passenger counts from APC data (e.g. infrared sensors) usually reflect the
characteristics of the complete OD matrix. However, this does not guarantee that we can obtain
a high-quality OD matrix using only onboard passenger counts to formulate the OD estimation
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problem. Such a problem would be underspecified and would have multiple solutions because
the number of observations (i.e., transit line segments) is generally less than the number of
variables (i.e., OD pairs).

(2) Not all passengers use smartcard payment systems, while some smartcard transaction
records are unusable for various practical reasons. The estimated OD matrix from data-based
models using AFC and AVL data is usually only a part of the complete matrix. Even if all of
the smartcard records could be used for estimation, this estimated (observed) OD matrix would

still be partial due to the incomplete penetration rate of smartcards in urban networks.

Fare Collection Data

AFC data (Passengers using
smartcard)

Missing part of OD
trip matrix (due to
some transaction records
not enabling inference
of alight stop)

APC data

Passengers not usin

smartcard

Onboard passenger counts

Observed partial
OD trip matrix

Complete OD Trip Matrix

Incomplete OD
trip matrix from
AFC data

Incomplete OD
trip matrix from
APC data

Figure 3.4 Relationship between the complete OD demand matrix and transit data

3.3.2 Flow conservation in transit network

The relationship between the OD flows and passenger path flows is expressed as follows:

ho? = q°¢,Yod € OD (3.11)

kekod
Let I' = (y,s) denote the line segment-route section incidence matrix, which equals 1 if

line segment e of line [ lies on route section s, otherwise 0. The line segment flow expression
is:
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Ve = Z Vesylex.évs ,Ve € E (3.12)

SES

where y; = 1 means that transit line segment e is on transit line L.

For simplicity of expression, let 7, = y,sx! denote the proportion of passengers choosing
line segment e of line [ associated with route section s. The line segment flow v, can thus be
further expressed as:

Ve = Z YesVs, Ve € E (3.13)

SES

The relationship between line segment flows and path flows can be obtained:

Ve = z Z 2)765 askhlocd,‘v’e EE (3.14)

0d€0D kekod seS

The line capacity constraint for the line segments without observed data can be described

v, < Cp,Ve € Ey (3.15)
The constraint for the observed passenger count on a line segment e is:
1-€)v,<v, <(1+¢€,)v,,Ve€Ey (3.16)
The observed partial OD demand matrix g°¢ in Section 2.3.2 can serve as supplementary
(observed) data to estimate the OD trip matrix. In other words, the true OD demand matrix
should be larger than or equal to this observed partial matrix. Using the success rate o and
penetration rate Y, the upper bound of the estimated trip matrix is g°¢/(oY). Thus, the
constraint of the OD trip matrix is:
g°% < q°* < q°¢/(oY),VYod € OD (3.17)

3.3.3 Uncongested transit PFE formulation

The initial PFE formulation given by Bell and lida (1997) was for an uncongested private
car network. Before proposing the frequency-based PFE formulation for a congested transit
network, we present the uncongested case first.

When ignoring congestion, the term quantifying the perceived congestion time, ¢4 (v),
becomes 0. Then, the travel cost of route section s is expressed as the summation of only two
terms:

s =ts +w, VSES (3.18)

Further, the path cost of path k between OD pair od can be expressed as:
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cod — z agecs, Yk € K°4, 0d € OD (3.19)

SES

Thus, the frequency-based PFE formulation for an uncongested transit network is as

follows:
[T-PFE]
min% Z Z he(Inhgt — 1) + Z Z cP?hp? (3.20)
0d€0D kekod 0d€0D kekod
S.t.
v, < C,,Ve € Ey (3.21)
A1-€)v, <v, <(A+¢€,)0,,VeEEY (3.22)
g°¢ < q°* < q°¢/(oY),VYod € OD (3.23)
hot > 0,vk € K°?, 0d € OD (3.24)
where
Z ho? = q°¢,Yod € OD (3.25)
kekod

v = Z z agch?® Vs €S (3.26)
0d€O0D kekod

Vp = Z Z Zfes as hd?,ve € E (3.27)

0d€0D kekod seS

Similar to that in Bell and lida (1997), the objective function (3.20) also has two terms:
the maximizes the path flow entropy to spread the travel demand, and the second assigns the
travel demand on the least-cost paths. A detailed description of the side constraints (3.21)-(3.24)
and definitional constraints (3.25)-(3.27) can be found in Section 3.3.2.

Proposition 3.1. The distribution of the estimated path flow for [T-PFE] in the optimal solution
obeys the multinomial logit model.
Proof. The Lagrange formulation of [T-PFE] with respect to the constraints can be formulated

as:
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1
L= Z Z hg*(Inhg? — 1) + z Z R z d,(C, — v,)

0d€e0oD kekod 0d€0oD kekod eEEy
+ Z le((l - Ee)ﬁe - ve) + z ue((l + Ee)ﬁe - ve) (3.28)
eeEy eEEy
+ )@ =D+ ) wed@/ (@) - g
od€OoD od€O0D

where d,, 1, u,, 1°¢ and u°® are the dual variables of constraints (3.21)-(3.23).

After taking the first-order derivative of £ with respect to primal variables h2%, we obtain:

L 1
ahOd = C’gd + Eln hlgd — Z de ZVesask - z le ZVesask
k

e€EEy SES eEEy SES

(3.29)
- Z uezyesask — 1o —y°t =0
eEEy SES
We then have the following path flow expression:
hl?td = exp 0 _Clgd + z de zyesask + z leEVesask
eEEy SES e€EEy  SES
(3.30)

+ Z U, Z)?esask + (04 4 yod

e€EE SES

Thus, the probability of choosing path k for OD pair od is:

hod hod exp (0(—c,‘c’d +],‘(’d))

d od
prt = = = ,Vk € K°%,0od € 0D (3.31)
0°? Texot R 3, 1chod exp (9(—6,2,‘1 +],2,d))
where Igd = ZeEEU de ZSES Vesask + ZeeEM le ZSES fesask + ZeeEM Ue Zses yesask ’ vk €

K°% 0d € OD. Eq. (3.31) implies that the path flow distribution obeys the multinomial logit
model.

This completes the proof. L]
3.3.4 Congested transit PFE formulation

When considering congestion, the route-section cost function in general has an
asymmetric Jacobian. Therefore, the congested transit PFE does not have an equivalent
mathematical programming formulation. Here we propose a variational inequality formulation
for the congested transit PFE instead.

[VI-T-PFE]
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To find an optimal solution A2%* such that

1
Z z (c;gd(h*) +5n h,‘;d*) (hg? — hg?) > 0,vhd € O (3.32)

0d€O0D kekod

where Q represents the feasible region, i.e. the region where Egs. (3.21)-(3.27) hold.
Letting F(h) = c2%(h) + %ln ho¢ and h = [h2?], the VI model can be simplified to a
standard form:
F(h")"(h—h*) > 0,vh € Q (3.33)

Proposition 3.2. The distribution of the estimated path flow for [VI-T-PFE] in the optimal
solution follows the multinomial logit model.
Proof. The first-order conditions (Karush-Kuhn-Tucker (KKT) conditions) for the [VI-T-PFE]

model are:

1
Cfgd +51n hzd - z dezyesask - Z leZVesaSk - Z ueZVesask

e€EEy SES eeEy  SES eEEy SES

(3.34)

— 1°¢ — %4 | h%% = 0,vk € K°%, 0d € OD

1 _ _ —
C]gd +51n hzd - z dezyesask - z lezyesask - z uezyesask

e€Ey SES eEEy  SES e€Ey SES (3-35)
—1°¢4 —y°? > 0,vk € K°%, 0d € OD
Because h2% > 0, the equation below is satisfied:

1 _ _ —
C]gd +51n hzd - z dezyesask - z lezyesask - z uezyesask

e€Ey SES eEEy  SES e€Ey SES (3-36)

—lOd—u0d=O

Then, the analytical expression of the path flow for each OD pair is

hlgd = €exp 6 _Cl(c)d + Z dezyesask + Z lezyesask

eeEy SES eeEy  SES

+ Z U, Z)?esask + (04 4 yod

eEEym SES

(3.37)

Thus, the probability of choosing path k for OD pair od is given as:
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o g exp (0(=ci +J¢%))

Pk = = = ,Vk € KOd, od € 0D (338)
2°? Tiekoa I ¥, crod exp (9(—0,2,‘1 +],‘§,d))

which indicates that the estimated path flow in the optimal solution follows the multinomial
logit model.

This completes the proof. [
3.4 Solution Algorithm

This paper proposes both uncongested and congested transit PFE models, where the
uncongested one is a special case of congested one (see Section 3.4.1 and 3.4.2). Hence, this
section mainly presents how to solve the congested transit PFE model. Due to the asymmetric
features of the route-section and path cost functions, we adopt the well-known diagonalization
method to solve the proposed congested transit PFE formulation [VI-T-PFE] (Florian, 1977).
The core procedure of this algorithm is to diagonalize the cost function to get a mathematical
programming (MP) formulation in each diagonalized iteration. The diagonalized PFE
formulation can then be solved by the partial linearization algorithm embedded with an iterative

balancing scheme (Chen et al, 2009).
3.4.1 Diagonalization of cost functions

In this section, we show how the diagonalized [VI-T-PFE] model can be reformulated as
a convex mathematical programming model for which effective path-based solution algorithms
are available. To do this, we introduce the following proposition.

Proposition 3.3. When the cost function of the [VI-T-PFE] model is diagonalized, [VI-T-PFE]

can be reformulated as a convex optimization problem such that

[MP-T-PFE]
Vg 1
minz j E(w)do + 5 Z Z h24(In gt — 1) (3.39)
0

SES 0d€O0D kekod

subject to Egs. (3.21)-(3.27).
Proof. [VI-T-PFE] in Eq. (3.32) can be further expressed as

1
Z Z (c,‘(’d(h*) + Eln h,‘;d*) (hg? — hg™) = 0,vhp? € Q (3.40)

0d€0D kekod

60



We separate the term ( 0d(h*) + — ln h"d*) in Eq. (3.40) into two parts, and multiply

each part by (h? — h?*) to get

SN ety + Y Y kgt (hgt - hgt) 2 0, vh e

0d€0D kekod 0d€0D kekod

€ Q
For Eq. (3.41), we substitute a route section cost function for the path cost function
c2%(h*). Then, Eq. (3.31) can be expressed as

z z (Z ag.co(h") )(h hge*) z z _lnhod* (hgd — hgd*) 6

0d€0D keKkod \seS odeoD kexod
> 0,Vh? € O
Further, we can calculate the route section flow based on the summation symbols for all

paths for one OD pair and for all OD pairs.

z z ask(hlocd— od*)) cs(h*) + z Z 5lnh°d* (hOd od*)

SES <odeOD kekod 0d€oD kekod (3.43)
> 0, VhQ?
Then from Eq. (3.43), Eq. (3.32) can be simplified using the route section and path space

as follows:
1
Z(vs —v)ey(h?) + z z SIn kgt (gt = ") 2 0,vhed € 0 (3.44)
SES 0d€O0D kekod

The route section cost in Eq. (3.44) can be expressed as a function of the route section
flow, which can be calculated from the path flow. Thus, Eq. (3.32) is finally expressed as below:

Z(Vs —vs)es(vh) + z z —Inh9% (h9? — hg**) = 0, VA" (3.45)

SES odeoD kEK"d

At each iteration the c,(v) is diagonalized at the current solution, yielding a symmetric
assignment problem.

N wa e+ Y Y Sk () 20vAEQ  (3ap)

SES 0d€OD keKod
where é,(v) is the diagonalized expression of cg(v).
Thus, the above symmetric assignment problem has an equivalent convex optimization
formulation (T-PFE] in Eqg. (3.20) is equivalent to the direction finding of the [MP-T-PFE] in
Eqg. (3.39))
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minz fovsés(a)) dw +% Z Z he¢(Inhpt — 1) (3.47)

SES od€OoD kekod
subject to Egs. (3.21)-(3.27).
This completes the proof. [

3.4.2 Overall solution procedure

The whole framework of the solution algorithm for VI formulation is presented in Figure
3.5. The solution procedure can be summarized into the following steps:
Step 0. Initialization. Find an initial feasible solution (¥, h).
Step 1. Diagonalize c(v) at (v, h).
Step 2. Solve problem [MP-T-PFE] to get (¥, h).
Step 3. Stop test. If (v,h) and (¥, h) are sufficiently close, stop; otherwise:
Step 4. Make: (v, h) « (¥,h), and return to Step 1.

Main problem Sub problem Iterative balancing scheme
Initial solution
Initialize » with cost from |« Initialize
main problem
v _
Y Update adjustment
»  Diagonalize Update cost factors for dual [«
l variables
Convex Auxiliary solution [«— Update dual
optimization variables
problem < J i
Move to get new
solution Compute primal
Converge? —>Yes{ Output dual variables
N
L Lye No-
Set new solution “Ye No-
with last solution

Figure 3.5 Framework of the solution algorithm for [VI-T-PFE]

To solve the subproblem in Step 2 (“Convex optimization problem” in Figure 3.5), we
develop the path-based partial linearization algorithm combined with an SRA step-size scheme
(Liu et al., 2009), embedded with an iterative balancing scheme and column generation

procedure. The line search step determines how far the current solution should move in the
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search direction. The new solution is found as a convex combination of the solution of the
above subproblem and the current solution. Note that in Step 2, the SRA method determines
the step size based on the distance between auxiliary point h’ and current solution h¢, due to
the fact that h! — h*. The rules for calculating the step size are as follows:
ot =1/p! (3.48)
, i-1 : i _ fil> | hi-1 — fi-1
=l T e @49
where 1; >1and 0 < 4, < 1.

This direction finding problem in Step 2 (see the algorithm in Figure 3.6) must be solved
by the iterative balancing scheme used in the original PFE model (Bell and lida, 1997; Bell et
al., 1997) due to the large number of inequality side constraints. The iterative balancing scheme
is used with a given path set and fixed cost, and its core procedure is to adjust dual variables

related to the side constraints and update the corresponding primal variables at each iteration.

Algorithm. Iterative balancing scheme
1 Initialization.

(@) Setj=0; (d,)) =0, (I,)) =0, (u,)) =0 for all transit line segments; (l"d)j =0,
(u°?)’ = 0 for all OD pairs.
(b) compute primal variables:
(hzd)] = exp (9(_C]gd)),Vk € KOd’ od € OD
(Ue)j = ZSES Yes ZodEOD Zkekmi Ak (hzd)] ,Ve€E
2:  whilej < Iteryq, and e =2 nand e <7 do

3: for each transit line segment e do
# update dual variables

; . S, Ce
(d.)’*! = min {0, (de)’ +51n }

(Ve)j

j+1 — J g Ly zeedve
(L) max {0, (L)’ +3In (Ve)].)}
R —— oy Ly (teeve
(ue)*t = min{0, ()’ + £In oy }

# update primal variables
j+1 ; _ ; _
(hlgd)] = exp (9 (_Cl(c)d + ZeEEU(de)]+1 ZSES YesQsk T ZeEEM(le)]+1 ZSES YesQsk t

ZeEEM(ue)j+1 Yses VesAsk + (lOd)j + (uOd)j)) ,Vk € K°%, 0d € OD

: _ j+1
(173)}+1 = ZSES Ves ZodEOD ZkeKOd sk (hlgd) Ve €EE
4: for each OD pair od do
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(@°9) = Segoa(hg?)™
# update dual variables

j+1 j GO
(l"d)] = max {0, (l"d)] + %ln (:od)j}
()" = minfo,(wt)' + s ZLen)

# update primal variables
j+1 . _ . _
(hzd) = exp (9 (_Cl(c)d + ZeEEU(de)]+1 ZSES YesQsk + ZeEEM(le)]+1 ZSES VesQsk +
ZeEEM(ue)j+1 ZSES Vesask + (lOd)j+1 + (UOd)j+1)),Vk € KOd
j+1 j+1
(¢°4)"" = Ekexoa(hi®)

; _ j+1
(ve)]+1 = ZSES Yes quEOD ZkEK'Od ask(}.llgd)J ’ Ye €EE . .
rggEXﬂ(de)“l — ()], | = )], [(ue) ™ = (ue) |}

g {10 = Y | | ee™ = ey

&€ = max

jej+1
5.  endwhile
6:  Where [tery,, is the maximum iteration number and n,7 € R, are predetermined tolerance.

Figure 3.6 Algorithm of the iterative balancing scheme

3.5 Numerical Experiments

Three networks are used to demonstrate the features of the proposed model and the
effectiveness of the solution algorithm. The first is a small example transit network, which is
used to illustrate the correctness of the developed solution algorithm. The second one is a
hypothetical transit network based on the Sioux Falls network, which is used to evaluate the
performance of the proposed model with different configurations of onboard passenger counts
and observed partial OD trip matrices from transit APC and AFC data. And the third is the
transit network in Winnipeg, Canada, the purpose of which is to show the applicability of the
proposed model and solution algorithm. In these three examples, the onboard passenger counts
are assumed to be the values generated by the logit-based transit assignment model (See
Chapter 2), and the observed partial OD trip matrices are assumed to capture a specific
percentage of the true demand. The specific configuration can be found in each case. The
measurement error €, allowed for the passenger count on transit line segment e is set as 5%
for all measured transit line segments in these three examples. Finally, the parameter values

aresetas follows:a =1,0 =0.1,¢p =10, and 9 = ¢ =w = 1.

64



3.5.1 Small network
3.5.1.1 Network settings

L' (25, 10, 10)*

L' (4,10, 4) Ls2(4, 10, 4)

#(travel time in minutes,
capacity in passengers per vehicle,
nominal line frequency in vehicles per hour) Ly Lt

Lines and itineraries:

Ss (L,'-LYY)
(13, 100, 10)

A ()
(7,100, 10)

Ss (L LsY)
(5.4, 140, 14.0)

Se (L% L")
(9, 240, 24)

Ss (Ls'-Ls%)

#(travel time in minutes, (8, 40, 4)
combined capacity in passengers per hour,
combined frequency in vehicles per hour)

(b) Network representation using route sections

Figure 3.7 Example of a small transit network

Table 3.2 Path information for each OD pair

oD Path
1 S
1-4 2 Sz, Ss
3 Ss, S
2-4 1 Ss
3-4 1 S

The network created by De Cea and Fernadez (1993) is adopted to illustrate the
performance of the proposed model for OD demand estimation in a congested transit network
(Figure 3.7a). It consists of four transit lines (L4, L,, L3 and L,) and three OD pairs (1-4, 2-4

and 3-4). Figure 3.7b is an alternative representation of the same small example network in
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terms of route sections, in which case the OD pairs are 1-4, 2-4 and 3-4. The basic data of the
transit lines in the small example network and the basic characteristics of the route-section-
based network are also given in Figure 7. The path information of each OD pair is shown in
Table 3.2. This example is designed to demonstrate the performance of the proposed method.
The tests are based on the following inputs. The true passenger OD demands are 200
(passengers/hour) for 1-4, 20 for 2-4 and 100 for 3-4. The “observed” transit line segment flows
are generated through assigning the true passenger OD demands on the example transit network
using the logit-based transit assignment. All of the transit line segments are assumed to have

measured passenger counts in this example.
3.5.1.2 Results of small network experiment

To assess the combined effect of the onboard passenger counts and the observed partial
OD flows on the estimation results, we design four scenarios:
* Scenario I: no observed partial OD flows and all onboard passenger counts
 Scenario Il: 92% of true demand as observed partial OD flows and all onboard passenger
counts
e Scenario I11: 94% of true demand as observed partial OD flows and all onboard passenger
counts

* Scenario 1V: 96% of true demand as observed partial OD flows and all onboard passenger

counts
Table 3.3 Estimated transit OD flows
OD demands (pass/hr) RMSE
q1-4 d2-4 q3-4
True 200 20 100
. Partial OD - - -
Scenario | Estimated 190 20.377 93.623 6.85
. Partial OD 192 19.2 96
Scenario 1 Estimated 192 19.2 96 5.18
. Partial OD 188 18.8 94
Scenario Il Estimated 190 20 94 6.73
. Partial OD 184 18.4 92
Scenario IV Estimated 190 20.377 93.623 6.85
Table 3.4 Estimated transit line segment flows
Transit line segment flows (pass/hr)
Y1} Vi Vi3 Ui} Vi3 Vi
Measured 111.513 88.487 61.911 46.576 73.561 134.926 |
Scenario | Estimated  105.937 84.063 60.192 44.247 69.883 128.18
ARE 5.00% 5.00% 2.78% 5.00% 5.00% 5.00%

66



Scenario  Estimated 106.443 85.557 59.739 45.017 70.974 129.783

I ARE 4.55% 3.31% 3.51% 3.35% 3.52% 3.81%
Scenario  Estimated 105.937 84.063 59.815 44.247 69.883 128.18
11l ARE 5.00% 5.00% 3.39% 5.00% 5.00% 5.00%
Scenario  Estimated 105.937 84.063 60.192 44.247 69.883 128.18
v ARE 5.00% 5.00% 2.78% 5.00% 5.00% 5.00%

Table 3.3 presents the estimated OD matrices for the four scenarios, together with the
observed partial OD flows. The root mean square error (RMSE) between the estimated OD
flows and true OD demands is used to evaluate the estimated results. The scenarios can be
ranked from lowest to highest RMSE as follows: Scenario II, Scenario 11l and Scenarios | and
IV. Scenarios | and 1V obtain the same estimated OD flows because the observed partial OD
trip matrices in Scenario 1V are too poor-quality to improve the estimated results, while only
the onboard passenger counts have an effect on the estimated results same as that in Scenario
I. Scenario Il obtains the best result because the estimated OD trip matrices are equal to the
observed partial OD flows due to the high quality of the observed partial OD flows and no
effect of onboard passenger counts. The performance of Scenario Il lies between those of
Scenario Il and Scenarios I/1V because both the onboard passenger counts and observed partial
OD flows affect the estimated results. To demonstrate the accuracy of the estimated results,
Table 4 presents the estimated results of transit line segment flows for all scenarios. The values
of absolute relative error (ARE) are all in the interval of [0, 5%], which is consistent with the

predetermined measure error €,.
3.5.2 Medium-size network
3.5.2.1 Network settings

The highway network of Sioux Falls (http://www.bgu.ac.il/~bargera/tntp/), shown in

Figure 3.8, has 76 directed links and 24 nodes on which the itineraries of 10 lines (i.e., 20
itineraries) are defined (Sun and Szeto, 2018). It is assumed that all of the in-vehicle
movements on the same highway link have identical travel times. The information of the
frequencies, capacities and stop sequences of the lines is given in Table 3.5. The travel time of
transit vehicles on the road network is assumed to equal that of private cars. Table 3.6 gives
the details of 32 OD pairs with known and positive demands. Again, the counted flows are
generated via assigning the true demands on the corresponding transit network using the logit-
based transit assignment model. The observed partial OD matrix is obtained by multiplying the

true demand by a scaling factor (e.g. 0.85). The product of the success rate and penetration rate
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of using smartcards is set as 0.7. The transit path set is generated by adopting the generation

algorithm in Chapter 2.3. The maximum number of transfers is 2, and the maximum number

of paths between each OD pair is 30.

(a) Road network

21

~—

Linel
Line 2
Line3
Line 4
e Line5 =
Line 6
Line7
Line 8
Line9

Line 10

(b) Transit network

Figure 3.8 Sioux-Falls road and transit networks

Table 3.5 Transit line data for Sioux Falls network

Line LinelID (I\:/gi?éjlilnﬁ?) (pgszﬁ/aectigle) Stop sequence
L w = L
i 10 S0 321231411
P @ % Lz
> 15 10 >0 70131667

° 1 10 50 3222019 15 14
! ﬁ 20 S0 52618191(1?)09181615

8 15 20 50 45910171920
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16 20191710954

17 1016 17 10 20 21 24
S 18 20 50 2421201917 16 10
19 1345910151920
10 20 20 50 201915109543 1

Table 3.6 True demand matrix for Sioux Falls

. Demand . Demand . Demand . Demand
OD pair (pass/hr) OD pair (pass/hr) OD pair (pass/hr) OD pair (pass/hr)
(1-13) 200 (3-13) 200 (13-1) 200 (21-1) 200
(1-20) 200 (3-20) 200 (13-2) 200 (21-2) 200
(1-21) 200 (3-21) 200 (13-3) 200 (21-3) 200
(1-24) 200 (3-24) 200 (13-4 200 (21-4) 200
(2-13) 200 (4-13) 200 (20-1) 200 (24-1) 200
(2 -20) 200 (4 - 20) 200 (20-2) 200 (24-2) 200
(2-21) 200 (4-21) 200 (20 - 3) 200 (24 -3) 200
(2-24) 200 (4-24) 200 (20 - 4) 200 (24 - 4) 200

3.5.2.2 Effect of data availability on the estimated results

Four scenarios are designed to illustrate the performance of the proposed model and its
dependence on the availability of count information for the transit line segments and observed
partial OD trip matrices:

e Scenario I: using the count information of all of the transit line segments as the available
counts

» Scenario Il: using the count information of the 50% of the transit line segments with the
most counted flows

* Scenario I11: Scenario | with observed partial OD trip matrices

* Scenario IV: Scenario Il with observed partial OD trip matrices

Scenarios | and Il are designed to compare the effect of the degree of count information
availability, and Scenarios 111 and 1V illustrate the effect of including observed partial OD trip
matrices. Figure 3.9 shows the estimation results of these four scenarios. In general, the
scenarios with observed partial OD trip matrices (Scenarios 111 and 1V) yield better results than
those without (Scenarios | and I1). Specifically, the RMSEs between each scenario | and the
true demand are 59.487, 87.345, 28.813 and 29.089 for Scenarios I, 1, Il and 1V, respectively.
We also observe that the scenarios with the count information of all transit line segments
(Scenarios I and 111) yield better results than those with only half of this information (Scenarios
Il and IV). Figure 3.10 and 3.11 display the estimated transit line segment flows of line 4 for
these four scenarios. For the scenarios with the count information of all of the transit line
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segments (Scenarios | and I11), the estimated transit line segment flows remains within the [-
5%, +5%] area of the observed counts. However, for Scenarios Il and IV, some of the estimated
segment flows fall outside the [-5%, +5%] area of the observed counts. These transit line
segments are among those for which the count information is not included in the side

constraints, so the observed data are not available to minimize the error.
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Figure 3.9 Estimation of four scenarios on the Sioux Falls network
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Figure 3.10 Estimated vs. observed line segment flow of transit line 4 (both directions,

Scenario | and 1)
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Figure 3.11 Estimated vs. observed line segment flow of transit line 4 (both directions,

Scenario Il and V)

3.5.2.3 Effect of different levels of the observed partial OD trip matrix

This section mainly examines the effect of different values of the observed OD trip matrix

on the estimation. We vary the value of the partial OD trip matrix obtained from AFC data
from 130 to 180 in intervals of 10 (pass/hr). Figure 3.12 displays the RMSE values of the

estimated OD flows with different values of the observed partial OD trip matrix. The estimation

results improve with increasing values of the partial OD trip matrix. This is expected because,

in our proposed model, the observed partial OD trip matrix is used as a side constraint to obtain
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the optimal solutions. When the matrix is poor-quality, the error bound within which the

estimated results fall is large, which increases the probability of inaccurate results.

50

— True demand: 200
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RMSE of estimated OD demand
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o
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Value of observed partial OD trip matrix (pass/hr)

Figure 3.12 Effect of different values of the observed partial OD trip matrix

3.5.2.4 Effect of number of transfers

As the number of transfers is accounted for in the transit path set generation, we examine
three path set strategies with different numbers of transfers. The maximum number of paths for
all three strategies is 20.

 Strategy I: maximum of one transfer
 Strategy II: maximum of two transfers

 Strategy I1l: no maximum number of transfers
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Figure 3.13 Effect of the number of transfers on the estimation results

Figure 3.13 compares the estimated OD flows obtained from three different path sets with
the above three strategies. As expected, Strategy Il performs the best because the observations
of partial OD trip matrices and onboard passenger counts are generated by logit-based transit
assignment model using strategy Il. Interestingly, Strategy Il performs only slightly worse
than Strategy Il, while Strategy | performs much worse than Strategies Il and 11l. Because
Strategy | allows a maximum of one transfer for the transit path, the transit path set narrowed

considerably, which has a major effect on the resulting flow patterns.

3.5.3 Large network

This subchapter applies the proposed model to a real-world transit network in the city of
Winnipeg, Canada. Shown in Figure 3.14, the transit network is extracted from Emme V4.3.2.
It consists of 130 transit lines, 4187 transit line segments and 924 transit stops. The number of
origins is 106, and that of OD pairs is 5303. To connect the origins and the transit stops, the
network also contains 803 walking segments. After conducting the route-section network
construction, the network consists of 44408 route sections, in which each walking segment is
seen as a special case of a transit route section with the cost set as 0. The solution algorithm is
implemented in Microsoft Visual Studio 2015 and run on a 2.7 GHz processor with 20.00 GB
of RAM.
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The transit line segments with volume/capacity (V/C) ratio larger than 0.1 are included as
the observation constraints. The observed demand inferred from smart card data is assumed to
be 85% of the true demand. The product of the transaction record use rate o and smartcard
penetration rate Y is again assumed to be 0.7. Thus, the upper bound of the estimated demand

is 1.214 times the true demand.
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Figure 3.14 Winnipeg transit network: different colors denote different lines

To assess the agreement between the estimated and observed values, we provide a scatter
plot in Figure 3.15 to compare the transit line segment flows. As can be seen, most of the
estimated transit line segment flows fall within the area of [-5%, +5%] of the observed counts
(i.e. the light blue dashed line at 45" represents that estimations equal observations), and the
estimated OD flow is also within the error bound of the true demand (determined by the
observed partial OD flow and the success rate-dependent and penetration rate-dependent upper
bound).

Figure 3.16 displays the values of ARE for the estimated OD trip matrices. Compared
with the true demand, 31.59% of the OD pairs reach the lower bound of the estimated demand
constraints (ARE = 0.15), and 55.48% reach the upper bound (ARE = 0.2143). This illustrates
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again that the estimated OD flows are mostly confined within the area of lower and upper
bounds. However, the estimated results for 12.94% of the OD pairs are below the upper bound
or above the lower bound, which implies that the estimated results would improve with the
inclusion of the observed onboard passenger counts of the transit line segments. Of course, the
performance would then depend on the quality of the observed OD flows and onboard
passenger counts of line segments, but this does not affect the applicability of the proposed

model. Moreover, the RMSE of the estimated results is 1.1602, which is relatively acceptable.
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Figure 3.15 Comparison of the observed and estimated line segment flows for the Winnipeg
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3.6 Chapter Summary

In this chapter, we propose a frequency-based PFE framework for OD trip matrix
estimation in transit networks. A frequency-based transit PFE formulation in variational
inequality form is proposed, incorporating observed partial OD demand matrices and onboard
passenger flow observations as side constraints. The observed partial OD demand matrix is
inferred from the smartcard (AFC) data together with AVL data based on inference of the
alighting stops, while the observed onboard passenger flow is calculated from APC data and
AVL data. To solve the proposed model, the diagonalization method is adopted, and the
diagonalized subproblem is solved by a path-based partial linearization solution algorithm
embedded with an iterative balancing scheme to handle the various side constraints.

Numerical examples are provided to illustrate the performance of the proposed model and
its applicability in a real-world transit network. The results show that the configurations of
onboard passenger counts and observed partial OD flows affect the estimated results. Overall,
the results of a large-network indicate that the estimation of OD flows can be improved by
using onboard passenger counts and observed partial OD flows together.

To the best knowledge of the authors, this is the first attempt to build a framework
integrating congested transit choice behavior, APC data and AFC data to estimate transit OD
flow. The model presented in this chapter is mainly designed for transit network-level OD flow
estimation. Of course, route-level estimation could be seen as a special case of our proposed
model. Although the numerical examples in this chapter do not use real APC and AFC data,
this does not affect the applicability of the proposed model, because real APC and AFC data
can be transformed to the onboard passenger counts and observed partial OD trip matrices in

real-world applications.
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CHAPTER 4

MULTI-MODAL PATH FLOW ESTIMATOR FOR

ESTIMATING OD DEMAND IN URBAN

TRANSPORTATION NETWORKS

This paper proposes an approach to estimate multi-modal origin-destination (OD) trip
matrices in urban transportation networks. The model, called multi-modal path flow estimator
(MM-PFE), is formulated as a variational inequality (V1) problem based on a single-level
structure; moreover, it incorporates limited available observations (i.e., road link traffic counts,
onboard passenger counts of bus and metro line segments, the mode-specific target OD demand,
and zonal production and attraction) as side constraints. The interactions of private cars and
bus vehicles, car and transit mode choice behaviours, and mode similarity are modeled in the
congested network. A nested logit model is adopted for the mode choice, and a multinomial
logit model is used for the route choice. To solve the MM-PFE problem, a diagonalization
approach is adopted; in each diagonalized iteration, the VI-based MM-PFE problem is
reformulated as a convex optimization problem, which is solved using a developed path-based
partial linearization algorithm. To handle various inequality/equality side constraints, a three-
layer iterative balancing scheme is developed to obtain the adjustment factors for updating dual
variables based on the duality theory. Finally, a computational test on the proposed model and
the developed solution algorithm is conducted using data from the hypothetical multi-modal

transportation network of Sioux Falls.
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4.1 Introduction

Multi-modal transportation provides people with multiple substitutable modes of travel
(e.g., car, metro, bus) for between their origins and their destinations, and it has become
increasingly popular in most cities around the world. As a sustainable alternative model to
private transport, public transport plays an important role in travel demand sharing in many
large cities. For example, in Hong Kong, approximately 90% of daily trips are made using
multiple public transport modes. The prevalence of public transport demonstrates the
importance of conducting multi-modal transportation network analyses, such as transport
policies evaluation, for urban transportation planning and management. However, these
analyses are primarily focused on multi-modal travel demand forecasting (Oppenheim, 1995;
Kitthamkesorn et al., 2016; Wang et al., 2018). For this forecasting, the origin-destination (OD)
trip table is a critical input that can rarely be directly obtained from the real world. The quality
of the OD demand has an important impact on travel demand model accuracy.

In the literature, almost all of the existing OD demand estimation models focus on
estimating the OD matrix of a single mode for urban transportation systems. Several studies
have been conducted on traffic and transit OD demand estimations, as seen below:

* For traffic OD demand estimation in road networks, bi-level models (Fisk, 1988; Yang,
1995; Yang et al., 2001; Lundgren and Peterson, 2008) and path flow estimators (PFES)
(Bell and lida, 1997; Chen et al., 2005, 2009, 2010) are the two most used types of
methods. Regarding bi-level models, in the upper-level, the travel demand matrix is
estimated using a least-squares formulation, generalized least-squares function, or
maximum likelihood/entropy function, while in the lower-level, the traffic assignment
problem is modeled with the user equilibrium principle. The critical drawback of these
models is that the heuristic solution algorithms cannot necessarily converge to the global
optimal solution. Regarding the path flow estimator (PFE), the multinomial logit-based
stochastic user equilibrium principle is adopted, and its solution algorithm can converge
to a unique global optimal solution, fundamentally owing to the single-level structure.

* For transit OD demand estimation, the methods can be classified into data-based models
(Barry et al., 2002; Zhao et al., 2007; Trépanier et al., 2007; Munizaga and Palma, 2012)

and network-based models (Lam et al., 2003; Wu and Lam, 2006; Babazadeh et al., 2010).
The data-based models use automatic passenger count data, automatic fare collection data,

and automatic vehicle location data to estimate a demand matrix via trip chain
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reconstruction. However, these models can only obtain an incomplete demand matrix

owing to the penetration rate of smartcards and the success rate of alighting stops

identifications. Regarding the network-based model, bi-level formulations with the same
structure as traffic OD demand estimation models are widely used.

Even though the mode-specific OD demand can be independently estimated, the mode
choice behavior can rarely be guaranteed, e.g. multinomial logit (MNL) model (Oppenheim,
1995; Wu and Lam, 2003; Wang et al., 2018), nested logit (NL) model (Ben-Akiva and Lerman,
1985; Kitthamkesorn et al., 2016), cross-nested logit model (Vovsha, 1997) and nested weibit
model (Kitthamkesorn and Chen, 2017). Mode choice is one of the most critical components
of the travel demand modeling process, whereby the OD demand is split into trips using car,
transit, or other emerging travel modes (e.g., ridesharing platforms). Forecasting the mode-
specific travel demand independently will ignore the interaction of vehicles from different
modes (e.g., private cars and bus vehicles) on the road network. This kind of interaction will
affect the travel cost (disutility) and consequently influence people’s degree of satisfaction with
the mode choice. This implies that we cannot simply conduct a mode-specific network
equilibrium analysis independently in a multi-modal transportation system. Thus, systematic
demand modeling methods are needed to estimate the urban multi-modal travel demand.

However, a few studies have focused on the estimation of multi-modal OD matrices. The
current practices in estimating multi-modal OD matrices use a four-step model based on trip
rates; a sequential framework consisting of trip generation, trip distribution, modal split and
traffic assignment is adopted. This practical sequential procedure has several drawbacks: (1) it
requires iterative feedback mechanisms to obtain consistent solutions of various flow patterns
(e.g. OD demand, mode-specific OD demand, mode-specific path flow, link flow) at different
spatial levels; (2) it cannot utilize the information contained in the observations; and (3) its
operation usually requires a lengthy calibration process and specialized technical staffs.
Furthermore, with the concept of combined network equilibrium, Garc R-R&Glenas and Mar n
(2009) proposed a calibration and demand adjustment model based on bi-level programming
for the simultaneous estimation of an OD matrix and its parameters. Owing to the poor
mathematical properties of the bi-level model, the authors developed a heuristic column
generation algorithm by reformulating the bi-level model into a single-level one. Unfortunately,
the heuristic nature of the solution algorithm still cannot be ignored, and the algorithm does
not obtain a global optimal solution.

Therefore, this paper aims to explore the multi-modal OD matrix estimation problem via
a single-level model. Specifically, we propose an NL-based multi-modal path flow estimator
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(MM-PFE) to estimate the OD matrix in an urban congested transportation network. The
interaction of bus vehicles and private cars on the road network is considered for travel cost
modeling, and strategy-based transit behavior is incorporated for the transit component.
Moreover, various kinds of data sources are incorporated to estimate the OD trip matrix,
namely zonal production and attraction flows, a target OD mode-specific trip table, and mode-
specific link flow observations. These data sources will serve as side constraints, which will
help to reproduce the flow patterns according to the observations.

An NL model is used for the mode choice to handle the mode similarity issue, and an
MNL model is used for the route choice. Owing to the asymmetric cost function, the MM-PFE
is formulated as a variational inequality (V1) problem. Then, a diagonalized approach is
adopted to solve the VI formulation of the MM-PFE, and the diagonalized convex optimization
problem is solved using a path-based partial linearization algorithm embedded with a self-
regulated averaging scheme and iterative balancing scheme.

The contributions of this paper can be summarized as follows: (a) an NL-based PFE for
urban multi-modal OD demand estimation problem is proposed; (b) a diagonalization
algorithm with a three-level iterative balancing scheme is developed to solve the MM-PFE; (c)
the proposed model and developed algorithm are tested in the hypothetical multi-modal

transportation network of Sioux Falls.

4.2 Multi-Modal Transportation Network Modelling

4.2.1 Notations

This subchapter provides a list of notation used in this chapter unless otherwise specified.

Sets
0 set of origins, 0 € N
D set of destinations, D € N
0D set of origin-destination (OD) pairs, od S OD
uod set of nests connecting OD pair od
U{}d set of modes among nest u connecting OD pair od, U = {c,b,m}
Kgg set of routes of mode % among nest u connecting OD pair od
Ey set of line segments of bus mode b
En set of line segments of metro mode m
s set of arcs in the route-section-based multi-modal transportation network, i.e.,
S=S.US,US,
S set of road links of car mode ¢
Sy set of route sections of bus mode b
Sm set of route sections of metro mode m
S., S, set of measured and unmeasured road links of car mode c, i.e., S, = S. U S,
E,, E, set of measured and unmeasured line segments of bus mode b, i.e., E;, = E, U E,,
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Ep Ep

set of measured and unmeasured line segments of metro mode m, i.e., E,, = E,, U E,,

Parameters and inputs

od
Huﬁ

od
Pu

Cc,s
Cb,e
Cm,e

fi

Kp,i (Km,1)

17c,s
17b,e
17m,e

od

Zy

dispersion parameter for route choice of mode % among nest u connecting OD pair od
degree of independence in unobserved utility among the alternatives in nest u
connecting OD pair od

capacity onroad link s € S,

capacity on bus line segment e € E,

capacity on metro line segment e € E,,

frequency of transit line [

capacity of line [ for transit mode b (m)

traffic count on measured road link s € S,

onboard passenger count on measured bus line segment e € E,,

onboard passenger count on measured metro line segment e € E,,

observed OD flow of mode % among nest u connecting target OD pair od

observed trip production of origin o

observed trip attraction of destination d

Intermediate variables

travel timeonarcs € S

travel cost of route k of mode % among nest u connecting OD pair od
flow on road link s € S,

flow on route section s € S,

flow on route section s € S,

flow on bus line segment e € E},

flow on bus line segment e € E,,

OD flow between origin o and destination d

trip production of origin o

trip attraction of destination d

Decision variables

hﬂ%‘k flow on route k of mode % among nest u connecting OD pair od
qgg OD flow of mode % among nest u connecting OD pair od
q%¢ OD flow of nest u connecting OD pair od

4.2.2 lllustration of interaction between road and bus networks

In the multi-modal transportation network, vehicles of road-based transit systems (i.e., bus

network in this study) interact with private cars on the road network (Figure 4.1). This means

that their travel time on the road links is affected by not only their own flow but also the flow

of the other modes (e.g., bus vehicles). Moreover, the road link connecting two adjacent bus

stops on a specific bus line usually contains more than one element. This means that the in-

vehicle travel time of the bus line segment is the summation of the bus travel times on these

road links. For example, in Figure 4.1, line segment (n1-n2) of bus line 1 contains two road

links, 2 and 4. The relationships among route section, section line segment, and line segment

are also demonstrated, which is consistent with the definition in Chapter 2.2.2.
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Relationship among network elements

(O Road node
‘ S Ry Route section
—  Road link 5 one to many
22
— Buslinel
>  Busline 2 Section line segment
{SLS1(n1-n2-n3); SLS2(n1-n2-n3)} one to many
Line segment
Route-section-based {LS11(n1-n2); LS12(n2-n3)} one to many
representation
Road link
S1 “ S3 .
{2.4}

S;
Figure 4.1 Relationship between road and bus networks
4.2.3 Path travel time for cars

The travel time of cars on the road network is affected by bus vehicles running on the
same road link; therefore, we need to first obtain the flow of private cars and bus vehicles on
that road link. The flow of private cars on the road link can be obtained by simply summing up
the flows of the paths of all OD pairs going through the road link:

Ves = Z Z hinge Vs € S, (4.1)
0d€OoD kngd

Assuming that the frequency of each transit line is fixed, the passenger car equivalent flow
of bus vehicles is the summation of the bus vehicles of bus lines passing through the road link
multiplied by the value of the passenger car equivalent:

Fs = Z fv - PCE (4.2)
l'eW,
where W is the set of bus lines going through road link s, and PCE is the passenger car
equivalent for a bus vehicle.

Thus, the link travel time of the car in the road network is:
B
Cos = 05 |1+ V((Fos +ves)/Ces)” | Vs €55, (4.3)

where t2; is the free-flow travel time of car on road link s, C_ is the capacity of road link s,

and y and 8 are parameters for the travel time function.
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With the travel time of the car on road link, the travel time of path k between OD pair od
for mode ¢ can be expressed as:

c2t(v) = z agiCes(V),Vk € K24 0d € OD (4.4)

SES.

4.2.4 Path travel time for bus and metro

Using the route-section-based transit network representation in Chapter 2.2.2, we
formulate the path travel time for bus and metro. The route section cost consists of in-vehicle
travel time, waiting time, and perceived congestion time. Here we use a unified symbol u €
U = {b,m} to represent the mode. For route section s of transit mode %, the expected total
travel time is given by:

cas(V) =tz (V) + wgs + ¢pgs(V), Vi €U (4.5)

The three components of the route section cost in Eq. (4.5) are specified below:

e In-vehicle travel time
The allocation ratio between section line segments and route section is directly

proportional to their frequencies:

! fi

x_ =
Wy jeas f]

(1) Bus: Based on the discussion in Chapter 4.2.2, the in-vehicle travel time of a bus is

WVIeEAS,seSgp,uel (4.6)

associated with the car and bus vehicle flows on the road network:

By = 195 [14 V((Fos + 70s)/Ces) | Vs €55, (.7)
where tp ¢ is the free-flow travel time of the bus vehicle on road link s.

Note that each bus line segment (between two adjacent stops) will usually pass across
several road links; accordingly, the in-vehicle travel time of the bus line segment is the
summation of the travel times on the different road links:

th = Z tps VI € A}, s €S, (4.8)
s'ev(s,l)
where U(s, 1) denotes a set of directed road links for bus line [, which is included in the set of
attractive bus lines associated with route section s; that is, [ € 43,.
As each route section consists of one or several section line segments, the in-vehicle travel

time of route section s is the weighted summation of those of the section line segments:
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tps = Z fIg,lxll),s'vs € Sp (4.9

leA}
(2) Metro: The in-vehicle travel time of route section s in a metro network is defined as:
tm,s = z tm,iXm,s VS € Sy (4.10)
lEAS,
where ¢, is the in-vehicle travel time on section line segment [ of the metro network, and 43,
is the set of attractive metro lines.
e Waiting time
The waiting time of route section s is defined as the product of o and the inverse of its

combined frequency:

Wgs = VsESpu€eU (4.11)

(44
where @ = 1 means that the transit vehicle headway follows an exponential distribution, and
a = 0.5 means that it follows a uniform distribution.

e Perceived congestion time
The perceived congestion time of the route section involves the additional waiting time
due to vehicle congestion, which is a function of its own flow and that of its competing route
sections. First the flow on route section s of transit mode u is given as:

od€eOD keK;—jd

where the path-section incidence ag g, equals 1 if section s lies on path k; otherwise, it equals
0.
There are three main groups of passengers competing with route section s (de Cea and

Ferndndez, 1993) and the competing section flow is given as:
Vs = Z 53 Z Vg, VS €Sz ueU (4.13)
S#SESY lEAS ﬂAS
where 85 is the competing section indicator, such that §5 = 1 means that section § is a
competing section of section s, and otherwise &5 = 0.
The section line segment flow vy g; in Eq. (4.13) is determined by:
Vst = VpsXho VIE A, s €S, u €U (4.14)
Then the perceived congestion time function for route section s of transit mode u is

expressed as:
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/11717,5 + cﬁﬂ,s

¢
,Vs €Sy u€eU (4.15)
% leA%fl Kﬁ,l) -

¢ﬁ,s(v) = (pﬂ,s<

where parameters 9, ¢, ¢y 5, and @ are used to represent different effects of various flows on
the perceived congestion time, and k; is the capacity of the transit vehicle.

With the expected route section time function, the expected travel time associated with
path k of transit mode u between OD pair od can be expressed as:

Cg,cll((v) = Z aﬁ,SkCﬁ,s(v)IVk € Kgd’ﬁ € UOd’Od €0D (416)

SESH

4.3 Multi-Modal Path Flow Estimator Formulation

4.3.1 Mode and route choice modelling

To consider the similarities between the bus and metro modes, we use an NL choice model
to model the mode choice (Train, 2003). Three important definitions are presented first:
* Nest. We define the nest as a set consisting of one mode or several similar (correlated)
modes.
* Mode. The specific travel mode in reality, e.g., car, metro, and bus.
* Route. For the car mode, route is a sequence of road links for each OD pair, whereas for

the metro and bus modes, route is a sequence of route sections.

oD
Demand

Transit

Car  Car Car Bus  Bus Bus Metro Metro Metro
Path 1 Path 2 Pathk  Path1 PathZ Pathk  Path1 Path2 Path k

Figure 4.2 Illustration of mode and route choice
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In the NL model, the upper nest consists of auto and transit. Here, auto contains only the
private car mode, while transit contains the bus and metro modes, which are similar. This means
that the combination of the bus and metro modes will compete with the car mode. In other
words, car, bus and metro are not seen as three independent alternatives for travelers. Regarding
the path (route) choice, we adopt the MNL model to address the issue of stochastic perception
variance of travelers regarding path travel time. A detailed framework of the mode and route
choices in a multi-modal transportation network is displayed in Figure 4.2.

To describe this three-layer structure of mode and route choices for each OD pair od, we
introduce the following four probabilities:

 The marginal probability of choosing a nest (p2?)

* The conditional probability of choosing a mode with a given nest (pgﬁl
* The probability of choosing a mode (pgg = pgf, - p2?)

od
uil,k

* The probability of choosing a path for each mode (p
The first three probabilities are for mode choice, and they are related as follows: p2% =
pg@ - p24. The fourth probability is for route choice. Moreover, we model the interactions of

private cars and buses sharing the same roadway space on a road network. Thus, their travel

times on road link will be affected by each other and not only by their own flows.

4.3.2 Flow conservation in a multi-modal transportation network at

different spatial levels

Based on Figure 4.2, the relationship between the OD demand g°¢ and the upper-nest-
specific OD demand g2% (u € U°4, U°? = {auto, transit}) is expressed as follows:

a2 = q°% 0d € 0D (4.17)

ueyod

Moreover, the relationship between the upper-nest-specific OD demand g2 and the
lower-nest-specific (i.e., mode-specific) OD demand q;;g (i1 € U2% is the mode alternative in
nest u) is as follows:

qg% = qu,Vu € UOd, od € OD (418)
el

For each mode in the multi-modal transportation network, we continue to illustrate the

relationship between the mode-specific OD demand and the model-specific path flow:
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uil,k

od _ _o0d v~ r7od od
Z hod = q%% vii € U294, u € U°4, od € OD (4.19)

kex2d
Regarding the line segment flow in the bus and metro network, let I' = (y,s) denote the
line segment-route section incidence matrix, which is equal to 1 when line segment e of line [

lies on route section s; otherwise, it is equal to 0. Then, the line segment flow expression is

given as:
— l
Vpe = Z Yb,esYb,1Xb,sVb,s» Ve € Ej (4.20)
SES)
— l
Ume = Z Vm,esyren,lxm,svm,srve € En (4.21)
SESM

where y;; = 1 (yy,; = 1) indicates that the transit line segment e is on transit line [.
Furthermore, we set the planning survey data as side constraints. These constraints include
the zonal production and attraction flows, which are expressed as follows:
P° =2z°Vo €O (4.22)
At =z%vdeD (4.23)
where the zonal model-specific production and attraction flows are defined as:

P° = z z qu,VO €0 (4.24)

deD yeyod

Al = z z qﬁd,Vd €D (4.25)

0€0 yeyod
The results obtained from the planning survey data usually do not fit the field data, e.g.,
the target OD demand, traffic counts of road links (Ryu et al., 2014b) and onboard passenger
counts of transit line segment. It does not require the estimated flows to be the same as the
traffic observations exactly. Therefore, for the target OD mode-specific trip table, we refine
the estimated mode-specific OD demand with lower and upper bounds about the observation:
(1—e59)z08 < q2% < (1 + &29)z58, vii € U4, u € U°%, 0d € OD (4.26)
We use the same method to refine the estimated results for the road links and transit line

segments with observations:

(1—ecs) Uos <Ves+Fos < (14 6c5) Ues, Vs €S, 4.27)
(1 — Sb,e) ' ﬁb,e < Ub,e < (1 + Sb'e) ' ﬁble,‘v’e € Eb (428)
(1= eme) " Ve < Vme < (14 &me) * Ume, Ve € Eny (4.29)

In addition, for the road links and transit line segments without observations, we set a

constraint that their estimated flow cannot exceed their own capacity:

87



Ves+ Fog < Ces, Vs €S, (4.30)

Vpe < Cpe, Ve E E, (4.31)

Ume < Cme Ve € Ep, (4.32)
where the line segment capacities of the bus and metro modes are defined as Cy, . = fiy5 1k,

and Cy e = fiymiKm,1, respectively.
4.3.3 Formulated as a variational inequality problem

Based on the mode and route choice models above and the asymmetric travel time
function of path, we adopt a VI formulation for the MM-PFE.
[MM-PFE]

Find (q;, 9} hiz ) € Q such that

DDA

od€OD uEUOd Uod kEKOd

+ Z Z Z( >lnq°d*(q - q0%)

od€eOD yeyod eUOd

ST e o)

od€eOD yeyod ﬁefjgd

+ ) D (=piInggt (g2t - q2t) = 0

0d€OoD yeyod

odx*
uu,k) (huu k huﬁ,k

(4.33)

V(Qu Guiz Duik) € Q
where 052 is the dispersion parameter for mode i in nest u of OD pair od; p3® is the
parameter for nest u of each OD pair od; MSC2< is the mode-specific constant for mode i in
nest u of OD pair od and it represents the exogenous modal attractiveness, which is an
important component in the modal-split problem; and Q is the set of feasible solutions that
satisfy Eqs. (4.18)-(4.19), (4.22)-(4.23), and (4.26)-(4.32) and non-negative constraints

ho% . = 0,Vk € K2¢, 1 € U3% u € U°%, 0d € OD (4.34)
q%% > 0,vii € U2%u € U°%, 0d € OD (4.35)
q%¢ > 0,vu € U°4,0d € OD (4.36)
[MM-PFE] can be simplified to the vector form:
F(z)T-(z—2z")>0,vzEQ (4.37)

where
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T
Z= (qu; Quin huﬁ,k) (438)
1 od
F(z)={(1—-p)Inqy,| Puz — god In qui — MSCyg, Cug i (h)
utt
(4.39)

T
1
+ ~od In huﬁ’ k
Huﬁ '

For the [MM-PFE] model, the mode-specific demand is distributed according to an NL
model, and the path flow of each model follows the MNL model. To show this, we provide the
following proposition:

Proposition 4.1. The optimal solution of the [MM-PFE] fulfills the NL-based mode choice and
the MNL-based route choice.
Proof. The first-order conditions (Karush-Kuhn-Tucker conditions) for the [MM-PFE] model

are as follows:

1 -
(q;g,k + God Inhd%, — x2% +]3§,k> ho%, = 0,Vk € K2¢, 1 € US% u € U°%, 0d
uil

(4.40)
€ 0D

1 ~
com .+ Wln ho — xos +Jo%, =0, vk e K%, € U4 u € U°% od €0OD  (4.41)

ut

1
(o - gt - it it - i - it et it = o
uu

(4.42)
€ U%%,u € U°, od € OD
1 o

(pgd — 0d> In q2% — MSC2% + x2¢ — w24 — €237 + €24* > 0, v € U4, u

Ot (4.43)
€ U°%, 0d € OD

((1 — pdM)1n g% + wl® + 1° + Qd)qﬁd = 0,vYu € U°?,0d € OD (4.44)
(1—p291Ingl% + wl%+1° + 04 > 0,Yu € U°%,0d € OD (4.45)

where J22 , (Vk € K28, 1 € U%, u € U°?, 0d € OD) has the following expression
Jok = z We s — Z Mok + Z UMk (4.46)

sES, SES, SES,
]l()),(lic = Z Wp e Z VbesQb,sk — Z lpl;,e Z Vb,esQp,sk + Z l/);,e Z Vb,esAb sk (4.47)
eeEb SES) e€Ep SESH e€EE), SESH
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mk - Z wme z Vmesamsk Z l/)me Z ymesamsk

eEEn, SESM e€Ey, SESp
(4.48)
+ —_
+ § lpm,e E Vm,es am,sk
e€EE, SESm

The distribution of the mode-specific path flow for each OD pair is derived as follows.
As h% . > 0, Eq. (4.49) is satisfied,

1
Cutik T goa I Mgk = X + Juiije = 0 (4.49)

utl

Then, the analytical expression for the mode-specific path flow of each OD pair is:

hﬁﬁk = exp (90(1( Cuuk + qu gg,k ) (4-50)

Thus, the probability of choosing path k for mode % in nest u between OD pair od is

given as:

a od _ od
uitk — -
od od
ZpeK"dhuup ZpEKggeXp(e —Cuiip ]uup)

The distribution of the mode-specific demand for each OD pair is derived as follows.

(4.51)

Combining Egs. (4.19) and (4.50), we obtain the expression of dual variable y22

d _ d d
Z hﬁuk Z exp(@fm - uuk+qu_ guk )

kekod kek9d
1 1 (4.52)
=>X10”€*=9Wlnq 6)Odl Z exp( 023 (ot + 132 )
ui ut kEK"@
Because q°% > 0, from Egs. (4.42)-(4.43), we have
1
(p{jd 9°d> In g2% — MSC2% + x%2 — 0% — €29~ + €28+ = 0 (4.53)
By substituting Eq. (4.52) into Eq. (4.53), we obtain:
1
<P3d - od) In gy — MSCp + Od —sInqng
0.5 0,5
1 -
 pod In Z eXp( HOd(Cuuk ) w0l — e0d- 4 god+ (4.54)
W kekod
=0

The analytical expression for mode-specific OD flow is presented as:
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4% = exp \pod —gin Y exp (=608 (cut + i) + MSCl +
u

kek2d
(4.55)
+eni — €
We obtain the expression of g2¢ from Eqs. (4.44) and (4.45) as follows:
(1—-p21ngo% + @l +1°+ 0% =0
d 4 70 d 4.56)
q._ ot +1°+ 0 (
Here, we set
od _ 1 od od od
A% =oagin ) exp (—6(cd, +722,)) + Mscod (4.57)
it kex2d
As Tiepod q%% = q3%, @2® is expressed as:
1 _
@t = —(1 - pgHpiIn Z exp <W (Ava + e — e )
ﬁEUﬁd Pu (458)
—pt(° + o)
Let
od 1 od od— od+
L}* =In Z €xp ,DOd (Auﬁ t € — €un (4.59)
el b
Equation (4.58) is simplified as
@yt = —(1— pgDpat I — pit(r° + 0% (4.60)
The analytical expression of the nest-specific OD flow is presented as:
@2 +1° + 04
qnt = exp <— — o ) = exp(pi?13%) - exp(—7°) - exp(— %) (4.61)
u

Thus, the marginal probability p2¢ and conditional probability pg@ for mode choice are

as follows:
pod - 81 exp(ptlY) @)
2 .
Yoevod @)% Tyeyoaexp(pg?Iy?)
ay  exp(AYE/pd?)

od __
pmu -

_ (4.63)
Tiegea dut  Liegge exp(A1/p0%)

Furthermore, we can rewrite q2< as:
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wa = exp((A%g + 655 —eng)/pit) - exp(x® + o)
pit-1
Nos + gt — gt (.69
exp pOd
u

fe2?
Thus, the NL probability expression for mode choice can be obtained as follows:

od
Quii

od
veyod 21617,‘,"1 v
od
od od— _ _od+ od , ,od— _ _od+\\Pv 1
ex Mg + € — €y A2 oa €X ANy tey —€y
p pod 1epod €XP pod
u u
d d d 3¢
0 od— od+
Avl te Ty ))
od
Py

pog =
uu 2

(4.65)

Lyeyod (Zleﬁ,?d exp <

— ,0d __od
_pﬁ|u Pu

This completes the proof. [

Remarks

(1) There are three kinds of dual variables in this study: free variables

od 594 1° and p?) associated with equality constraints representing the positive or negative

uir
intrinsic  attractiveness; positive variables ( €537, €9%", pos i Wh er Wher Emer Eme )
associated with the lower and upper bound constraints keeping the estimated flow being higher
than the lower bound and lower than the upper bound; and positive variables (w. s, Wp ¢, Wy )
associated with the capacity constraint representing queuing when the total link flow reaches
its link capacity.
(2) With the expression of g3¢, we obtain the total demand for each OD pair as
= ) qit= ) exp(pflig?) - exp(~1) - exp(— %) (4.66)

ueyod ueyod

Let B°P° = exp(—1°), B%A% = exp(— ¢%), and 7°% = —InY ,c oa exp(p2?I3?) ,
where B° and B¢ are the balancing factors; P° and A% are the production and attraction flows,
respectively; and w°¢ is the multi-modal OD cost between origin o and destination d. Thus,
the total demand for each OD pair can be rewritten as follows:

q°% = B°P°BA% exp(—m°%) (4.67)

This is similar to the convex programming formulation provided by Ryu et al. (2014) for

the small community PFE that finds the most probable demand pattern based on Smith’s

efficiency principle. The main difference between the formulations is that the multi-modal PFE
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framework presented in this paper considers the interactions of multiple modes sharing the
roadway; MM-PFE cannot be formulated as a convex program and requires a solution

algorithm that can handle asymmetric and non-separable link travel time functions.
4.4 Solution Algorithm

Owing to the asymmetric travel time functions of road link, route section and path, a
diagonalization method is adopted to solve the proposed model in this section (Florian, 1977;
Florian and Spiess, 1982; de Cea and Fernandez, 1993; de Cea et al., 2005). In each outer
iteration, the travel time function of the route section is diagonalized, and the VI formulation
is reformulated as a convex optimization model. Then, the reformulated convex optimization
problem can be solved using a path-based partial linearization solution algorithm (Chen et al.,
2009) embedded with an iterative balancing scheme for direction finding. An iterative
balancing scheme is used to handle various inequality side constraints in the optimization

programming model.
4.4.1 Diagonalization of cost function

In this subchapter, we demonstrate that the diagonalized [MM-PFE] problem can be
reformulated as a convex programming problem. In literature, PFE in mathematical
programming formulations have been well solved by path-based solution algorithms (Chen et
al., 2009, 2012; Ryu et al., 2014b). To do this, we have the following proposition.
Proposition 4.2. When the cost function of the [MM-PFE] model is diagonalized, [MM-PFE]

can be reformulated as a convex optimization problem such that

[MM-PFE-D]
minZ = Zf és(w) dw + Z Z Z Z eodhzﬁk(l nhid, —1)
SES 0d€0D yeyod eUod kEKod uu
od 1 od od
+ z z z Pu — BTQ Quﬁ(ln Quu — 1)
0d€0D uev ot uev “ (4.68)

= > > mscaz

od€oD yeyod eUOd

+ ) ) (1= piegi(nggt — 1

0od€OD yeyod

s.t. Egs. (4.18)-(4.19), (4.22)-(4.23), (4.26)-(4.32), and (4.34)-(4.36).

93



uit,k god utl,k

Proof. Problem [MM-PFE] can be further expressed by separating (c"@* + —In ho%* ) into

two terms:

od* od*
Z z z z Cuuk uuk huﬁ,k

od€e0D yeyod EUod kEKOd

+ z Z Z Z 90(1 ﬁ*k (huuk 101%,*1(

0d€eoD yeyod EUOdkEKOd uu

* Z Z Z (P >lnq°d*(q0 —455) (4.69)

0d€0D ueU°d 7efod

=D, ). Q. Mscii(al - o)

0d€oD yeuod jje ﬁgd

+ ) ) A= piHngg® (g8t - g2t 2 0

0d€OD yeyod

Then, we substitute the arc cost function for the path cost function as follows:

> 2 D2 (Zaskcs)(huuk e

0d€0D ueU°4 ieUy? kek2d \s€S

DN I A

0d€eoD yeyod EUOdkEKOd uu

« 3OS (g et ot -t @
lv]od

0d€0D yeuod jje

=D D D mscot(az - i)

od€oD yeyod EUOd

+ ) ) - peHIng (gt - 7™ 2 0

odeOD yeyod

Furthermore, we can calculate arc flows based on the mode-specific path flows of all OD

pairs and simplify [MM-PFE] using the arc and path space.

z Z z z Z Ak (hgﬁk hg%:kk Cs

€S \0d€0D ueu°d yeg? kek?2d

D3

od€eoD yeyod EUOdkEKOd uu

(4.71)

uitk (huu k™ hz%:kk)
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+ Z Z Z ( Hv)lnq"d*(q - q05")

0d€0D ueU°4 y7e 94 uu

=D, ). Q. Mscii(al - o)

0d€0D uey o4 yie jo¢
+ ) ) (=p)Inggt (g2~ q2t) = 0
0od€eoD yeyod
At each iteration of the diagonalization loop, the travel time function c results in a
diagonalized cost function ¢ (i.e., separable function) that can be used to formulate a convex
program for the combined modal split and assignment problem with an NL mode choice model
and an MNL route choice model.

Z(US vs)cs + Z Z Z Z od —1n hﬁﬁ*k (huuk O%ikk

SES 0d€0D yeyod eyodkeKod u”

+ZZZWWW%¢W
Uod

0d€O0D yey°4 jje

(4.72)
= >0 D ) MsCa(a%d - agt)
od€eOoD yeyod eUOd
+ ) ) (= peHIn gl (@8 - a2%) = 0,¥(du Gu husie) € 0
0od€oD yeyod
Thus, it has an equivalent mathematical programming formulation as follows
[MM-PFE-D]
1
minZ = Z.f Cs(w)dw + z z z z god uuk(lnh%k 1)
od€eoD yeyod EUOdkeKOd uu
1
£ Y (bt g atlnazt - )
0d€0D uey°d yeo% ut (4.73)

= > > ) Mscatan

0d€0D yey°4 jje (\jgd

+ ) ) (1= piegi(nggt — 1

odeOD yeyod
s.t. Egs. (18)-(19), (22)-(23), (26)-(32), and (34)-(36).
This completes the proof. [

4.4.2 Overall solution algorithm framework
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The whole framework of the solution algorithm for [MM-PFE] is summarized into the

following steps, as shown in Figure 4.3:

Step 0. (initialization). Find an initial feasible solution (q, h, V).

Step 1. Diagonalize c(v) at (q, h, V).

Step 2. Solve problem [MM-PFE-D] to get (g, h, v).

Step 3. Stop test. If (g, h, ¥) and (4§, h, ¥) are sufficiently close, stop; otherwise:
Step 4. Make: (g, h, v) < (@, h, ¢), and return to Step 1.

Algorithm Diagonalization algorithm for the MM-PFE
1: Initialization. Find an initial feasible solution (q, h, 17‘)
2:  while err > ¢

Diagonalize ¢(v) at (g, h,¥)

Solve problem [MM-PFE-D] to get(q;, h, %)

err = max{|g— q|,|h —h|, |¥ — v/}

(@hv) < (ah9)

7. end while

8: return (q",h*,v*) ~ (q,h, V)

where € € R, is the tolerance

3
4:
5:
6

Figure 4.3 Solution algorithm for MM-PFE

To solve the [MM-PFE] problem in Step 2, we adopt a path-based partial linearization
algorithm (Chen et al., 2009) combined with an iterative balancing search direction scheme
(Bell and lida, 1997) and a self-regulated averaging step-size scheme (Liu et al., 2009). The
partial linearization subproblem is a convex program with linear equity and inequality
constraints, and it can be efficiently solved using the three-layer iterative balancing scheme, as
presented in subchapter 4.4.3.

4.4.3 Direction finding: iterative balancing scheme

As the [MM-PFE-D] model has a three-layer structure (two layers for the mode choice
and one layer for the route choice), the traditional iterative balancing scheme (Bell, 1995)
cannot be used directly used here. This section mainly illustrates how to develop the Lagrange
dual formulation to obtain the adjustment factors and update the dual variables. This approach
is based on the work by Li (2016), and differs from Bell’s approach (Bell, 1995; Bell et al.,
1997; Chen et al., 2005, 2009, 2010; Ryu et al., 2014b).
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4.4.3.1 Dual formulation of [MM-PFE-D]

Y =(h% g% ..qd® ... )T is a vector of primal decision variables in the [MM-PFE-

od o] d od— od+
qu' T 07 €y €y e Wes o Wp g e

Wme v Hos o Uas - Whe - Whe wEme e
the dual variables (Lagrange multipliers). For given W, we define H(W,Y) as a function of Y

T
D] model, and W = < > is a vector of

(i.e., huu S @2%s and g3%s), which is essentially the Lagrange formulation of [MM-PFE-D]:

HW, ) =200+ Y Y > xtlad- ) neg,

od 5-770d od
0d€0D ueU°% ye? keK, 5
od od od o(po o diad d
NN WA N ) E N GEPOEWLCLED
0d€0D yeyod fey2? 0€0 deD

> D e (e 25— a2

0d€0D uey 4 e s

Y et (qat - (14 egd) 28

od€OoD yeyod ﬁe[j"d

+ Z wcs(vcs + ch Cc s) + z Wp e (vb,e - Cb,e) + z W e (vm,e - Cm,e)

SES¢ e€Ep e€Em

+ Z Ue,s ((1 - gc,s) ' 17c,s —Ves — ch) + Z /’l;s(vc,s + Fc,s - (1 + Sc,s) ' 17c,s)
SES, SES,

+ Z lpl;,e ((1 - gb,e) ) ﬁb,e - vb,e) + z lp;—,e (vb,e - (1 + gb,e) ) ﬁb,e)
eEEb eEEb

+ Z f?;l,e ((1 - em,e) ' ﬁm,e - vm,e) + Z Er*r-l,e (vm,e - (1 + em,e) ' 17m,e)
e€Ey, eEEy,

The dual problem of [MM-PFE-D] is defined as
(DP) max (W)
s.t. W € Dy,
where
Dy = {W: €0 €0 W5 Wher Omer Hes K5 Voo Wi oo §mer Eime 2

0, free 2%, w2®,1° and ¢} is the feasible region, and ®@(W) = inf{H(W,Y),Y € (R} U

R}
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4.4.3.2 Dual variables adjustment factor

Proposition 4.3. The concave function ©(W) is differentiable with respect to . For the dual

problem (DP), to gain the optimal solution, VO(W) should satisfy the following conditions:

W) .
9y°d = qgﬁ - houk =0 (4.74)
X kek°%
20(W) )
Sood = i~ Z Quz = 0 (4.75)
u uel?
IV 4
ag-o d_po_z0=0 (4.76)
IV 4
% =A1—z%=0 4.77)
ao(W) <0,if 22" =0
aeod— = (1 - g ) Z Quu = {= 0,if Ezg_ >0 (4.78)
GG(W) < 0 lf 60d+ =0
deld* =qu— (1 +en) 2 = { 0,if €22 > 0 (4.79)
ae(W) <0,if wes=0
EP = Vst Fs = Cos = {: 0,if wzz >0 (4.80)
C,S ] .
ao(w) <0,if wpe =0
awb,e =UVUpe — Cb,e - {: 0’ lf Wp e >0 (481)
ao(w) <0,if wpe =0
dwme Ume = Cme = {= 0,if Wpe>0 (4.82)
ae(W) _ <0,if ugs =0
oz = (1 - gc,s) Vs = Ves — Fes = {: 0,if ’uZ—z >0 (4.83)
c,S ) .
00(W) _ <0,if MZS =0
—a”zs =Vcs + Fc,s - (1 + gc,s) Ves = {: 0, lf ‘ug.,s >0 (484)
aeo(w) _ <0,if Ype =0
alp_ = (1 - Sb,e) ) Ub,e - vb,e = {: 0 lf ¢ge >0 (485)
b,e ’ ,e
00(W) SO,ifl/J;e =0
= Vpe — (1 Upe = ’ 4.
al/J;:e Ub,e ( + €p e) Ub,e {: 0, if ’l’;,e >0 ( 86)
a0 (W) _ <0,if &me =0
P = (1 - Sm,e) "Ume ~ Vme = {: 0,if Eg: >0 (4.87)
m,e ) ,
00(W) <0,if &he =0
=Upe—(1+e¢ *Ume = _ ’ 4.88
ag‘r—;"e m,e ( m,e) m,e {: 0, I,f f;l‘e > 0 ( )
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Based on Proposition 4.3, we can classify the dual variables into two types: (1) Egs. (74)-

(77), and (2) Egs. (78)-(88). Hence, we present the following propositions to derive the

adjustment factors for the dual variables x22 in Eq. (74) and €22~ in Eq. (78). The expressions

of the adjustment factors for the remaining dual variables are given in Table 4.1.

Proposition 4.4. If the optimality condition given by Eq. (74) is not 0, assume that y°2 is the

Ith component of W; then, an adjustment 72 can be made to y°% such that

~od _ 1 q°% ~od ., 00(W) ~od a@(W_)NCZgL'el) _ ~od
X——1<z—> R G > 0 B x =g — = 0, 0(W ~ R -er) 2
oW — 7ud -e). Tuil €R,

where ¢, is the unit vector with the Ith component equal to 1.

od
uil’

Proof. After adding an adjustment factor 7°% we obtain:

uu
00(W — 728 - e) _

0w

From Egs. (4.74) and (4.89), we have:
2= > exp(—0s(cad, — xad - 7ot +28,)) = exp(628708) D K 40

od od
kEKuﬁ kEKuﬁ

toy

0 (4.89)

Let g = X, cxoa ho% ;. in Eq. (4.90), then we have:

od [> 0, if q%% > q,thatis, d0/9x%% >0
“Hl<0, if q%% < q,,thatis,30/9x%% < 0

This implies that 2% x 0(W)/d 2 > 0. Note that 7°¢ is the solution of Eq. (4.90);

uu uu

therefore, we have 7% x 00(W — 72% - ¢,) /ax% = 0.

As O(W) is concave, we have @(W — 732 - ¢,) = 0(W — 722 - ¢,), 724’ € R. Therefore,
from Eq. (4.90), we have:

d
Xo\d/ — 1d ln( qgﬁ — >
uu
9311 Zkexgg hzﬁ,k

This completes the proof. [

Proposition 4.5. If the optimality condition given by Eq. (78) is not satisfied, assume that e;;g-

is the Ith component of W; then, an adjustment €22~ can be made to €22~ such that
od). od ~od—

xod— _ od— oay. [(1-28) 2 ~od— , 90(W) cod- ., 00(W+end e

€y = Mmaxy—eyy ,pp In{——cg— |, &y X >0, &y X—Foe— 20,
Quu €uit €uni

(W +&3 -e)=(W+€&3"-e)éS" €D, where D, = {53~ + €24~ = 0}.

€uit

99



Proof. Eq. (4.78) can be rewritten as:

00(W)
aeT—( — & ) Zog quu

—(1—8 ) zo0

1 1
—exp| —g| oz In z exp( 023 (co%  +Jo% . )+MSCZ§ (4.91)
u uu

1 od
k EKuﬁ

)
J

+ @l + €29 — €24

We need to determine the value of €52~ based on €2
(1) When €24~ =0, we have d0(W)/0e2%™ > 0 because Eq. (4.91) is violated.
Following the proof in Proposition 4.4, we have

1-—
€3§_=p3dln<( 8) )

quﬁ
od

Note that, in this case, €52~ is always positive since (1—e2?)-z%2/q5¢ >1 (e,

00(W)/de2d™ > 0).
(2) When €22~ >0, Eq. (4.91) has to be 0. Similar to (1), we can have €2~ =
potIn((1—e2d)-z22/q%%) . €2¢~ will be negative if Eg. (4.91) is negative (i.e.,
0(W) /€24~ < 0) which implies that using equation €24~ = €22~ + &%~ to update €22
may violate the constraint €22~ > 0. To avoid this violation, we set

_{ dln((l — &%) 785 if(1-¢e28)- Zuu > quu that is d0(W)/d€%¢™ >0
ut max{—e pa¢In((1 — e ) 78 /qﬂﬁ)} if (1—e24)- 252 < q2%, thatis O(W)/9eSE™ < 0

Therefore, based on (1) and (2), €53~ = max{—€3%~, p3% In((1 — €32) - 252 /q5%)}, and
W+ -e)=(W+E2%"¢),e%" €D, where D, = {€2¢ + €54~ = 0}.

This completes the proof. [

Table 4.1 Adjustment factors of dual variables

Dual variable Equation number Adjustment factor
aa’
w2 (75) =p%In| =——
“ ¢ Zﬁeﬁgd Aot
ZO
7° (76) 7%= —In <_P°>
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d ~d Zd
0 (77) 6% =—1In o
od+ ~od+ od+ od (1 +£ ) Z
Cui (79) €y T Maxy—€uy , _pu In{———
'Ll,'Ll,
~ 1 Cc,s - Fc,s
s (80) o = max{_was, g <v_
81 ) — 1 1 Cb,e
Wpe (81) @pe = Max —wb,e,—@ n Tne
~ 1 C
e
- . 1—¢e.5) Vs —F,
I’lC,S (83) IJC,S = max{_ﬂcs’eo‘i <( CS‘)U C,S CS)}
c,s
1+¢e.5) V.5 —F
b (84) Rty = max |~ g <( cs) Pes o)
6¢ Ve,s
b, i (1 —&p e) Ub,e
lpb'e (85) lpb - max{ l/)b e 90d ~oaln (T
5 nt = (1 + &p, e) Ube
Yie (86) i, = max {—lp;e, - B?m (T)}
- 5 1—¢ U
Smoe (87) &me = max{ Emer oz <( m,e) m,e>}
O Ume
ks 4 — (1 +é&m e) Ume
fm,e (88) fr-'ﬁ,e = max {—f,:,"l’e, — Wln < e >}

4.4.3.3 Detailed steps

Iterative balancing is centered on the use of dual variables to analytically determine primal
variables. By initializing the dual variables, we can obtain the initialized primal variables
according to their analytical expressions. After the adjustment factors for the dual variables are
obtained via the dual formulation, the updated dual variables can be used to analytically
determine the primal variables. When the convergent (or stopping) criterion is reached, the
solution (primal and dual variables) will be obtained. Although solution frameworks of iterative
balancing have been well presented (Chen et al., 2005, 2009, 2010), they focus on a one-layer
structure (i.e., only for the route choice). Thus, it is necessary to present the detailed steps of
three-layer iterative balancing (Figure 4.4). The convergence of the iterative balancing scheme
with NL model has been proved by Li (2016) (see Proposition 3.11). The algorithm has been
coded using C# in Microsoft Visual Studio 2015 and run on a computer with a 2.7 GHz
processor and 20.00 GB RAM.

To supplement the steps in the flow chart (Figure 4.4), the analytical expressions of h%%

uiLk’

°d and q2¢ are used to represent the combined mode and route choices in the MM-PFE:
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hOdk - exp( BOd(Cuuk qu ]uuk ) E (qu']uuk (4'92)

/ 11
qo% = exp | — 7od In Z exp( 0(cod, +J )+ MSC2 + w2 + €53~
\ v U pregod
(4.93)
Efu%+ E quii (ZD'u , uu € 33+']uuk

od+

q3® = exp(pg?19%) - exp(—1°) - exp(— 0%) = &, (1%, 0% €53, €08T, Jo% \ (4.94)
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Algorithm. Three-laver iterative balancing scheme

1:

Initialization.

(a) Set the value of all dual variablesas D and n = 1.
(b) Compute primal variables:
hed, = uh{xw, wk) vk €K, w, it € U2%,u € U°%, 0d € OD
od =z, (@4, €08, e08%, 702, ). Vit € U3%,u € U%?, 0d € OD
od = 3 {T ot 6,35_, €24, mk) Vu € U%%, od € OD

Qui Cuti +Cuii - uuk
while 1 < J’tm;mm and A; = 7 and A, < i do

# update dual variables related to nest and calculate nest flows

ford in D
update p?
foru in o4

A 8 2% = Eq, (% 0% €28, e08 )28
end for

end for

for oin O
update 7°
foru in U4
ﬁd = "q (T '9
end for
end for

Layer 1

# update dual variables related to mode and calculate mode flows

forod in 0D
foru in U4
foriiin i € U2?
t od—_ od+
updaee . €0 Layel’ 2

(.wod eod— od+ Jggk)

uii + €

forod in 0D
for u in U°d
d
update @y _
forii in i € UZ?
d—x d— _od+
Su S (w‘u : Su : Su ’Juu k) Q'uu - "'quﬁ
end for end for
end for end for
end for end for

# update dual variables related to mode and calculate path flows

forod in 0D
for u in /2%
forii inii € [2¢
update y24
fork in K22

od _—
huuk - “h(xuu’)fuuk

end for
end for
end for
end for

Layer 3

# update dual variables related to arcs and calculate path flows

forsinS, fore in £}, forein E,,

update w_ o, i, M
forod in 0D
fork in K22
heg =2, (x¢
end for
end for
end for

update @ .. Y5 . Vi e
forod in0OD
for k in KP4

dJ?,i) h§s, = -—'h(?(b JB%

end for
end for
end for

update Wi, e: ‘fﬂ_'a,m f?;,e
forod in 0D
fork in K22
TS = By
end for
end for
end for

# calculate mode and nest flow with the updated dual variables related to arcs
for oin O
foru in U 22
Dd = (T '35_’ 55+’juu k)
for fiind € U2 m

od _ = od— cld+ od
Quii = Qm,_( E‘uu 1Cuii - uitk

end for
end for
end for
Determine the maximum adjustment A, of all dual variables and maximum dual variable A
n—n+1
end while
10: |where Iter,, ., isthe maximum iteration number and 7, € R, are predetermined tolerance.

hod e el

Figure 4.4 Algorithm of the three-layer iterative balancing scheme
4.5 Numerical Experiment

In this subchapter, the hypothetical multi-modal transportation network of Sioux Falls is

used to illustrate the features of the proposed model and the solution algorithm performance.
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According to Vovsha (1997), the mode-specific constants can be calibrated using the household
survey data, and they are assumed as: MSC2¢ = 0, MSC2¢ = 8, and MSC2¢ = 12 in this paper.
The parameters are set as: p3¢ = 0.5, 82¢ = 1.5, and PCE = 3.

The travel time functions for the road link and route section for the multi-modal

transportation network are as follows:

4
FC,S+ C,S
* Road network: c. ¢ =t (1 + 0.15- (C—v> ),VS €S,

cSs

VpstUps

* Bus network: ¢, ;(v) =10 - ( ),VS €S,

2 leas JRLY

*  Metro network: ¢, s(v) = 10 - (M>,VS €S,

ZlEAfnfle'l
4.5.1 Experiment setting

The multi-modal transportation network of Sioux Falls is displayed in Figure 4.5. It
comprises a highway network with 76 directed links and 24 nodes (downloaded from

http://www.bgu.ac.il/~bargera/tntp/), a metro network with 5 metro lines (10 itineraries), and

a bus network with 9 bus lines (18 itineraries). In Table 2, there are 32 OD pairs given with 8
original zones. The path set of the private car mode was generated using seSue, an open-source
software program obtained from Ahipasaoglu et al. (2016). A combination of the link penalty
and link elimination methods is used here, and the default setting is adopted. The maximum
number of transfers in metro and bus networks is 2, and the maximum number of paths between
each OD pair is 20 (metro and bus) and 30 (car).

We have generated the inputs of the model in the multi-modal transportation network with
some supposed parameters and zonal production and attraction. Specifically, the input used
comprises the link counts (i.e., road link traffic counts, onboard passenger counts of bus and
metro line segments), mode-specific target OD demand, and zonal production and attraction
observations. Without loss of generality, the link counts and mode-specific target OD demand
are randomly multiplied by a number between 0.85 and 1.15. The error bounds for these two
kinds of observed data are set as [-15%, +15%] and [—10%, +10%], respectively.

104


http://www.bgu.ac.il/~bargera/tntp/

Road Network Metro Network Bus Network

Q ®
OpeO==ONNG
D00
D@ by
\

o

ORFOSEC

|
@@
1
lingl —e—— line 2
line 3 line 4
line 5 line 6
line7 =—— — line8 o m= =

line 9

Figure 4.5 Hypothetical multi-modal transportation network of Sioux Falls

Table 4.2 OD pair setting in Sioux Falls

OD pair | OD pair | OD pair | OD pair
(1,13 (3,13) (13,1) (21, 1)
(1, 20) (3, 20) (13, 2) (21, 2)
(1,21 (3,21) (13,3) (21,3
(1, 24) (3, 24) (13, 4) (21,4
(2,13) (4,13) (20, 1) (24,1)
(2,20 (4, 20) (20, 2) (24, 2)
(2,21) (4,21) (20, 3) (24,3
(2,24 (4, 24) (20, 4) (24,4

4.5.2 Result analysis

This subchapter presents the result to demonstrate the applicability of the proposed model

and evaluate the capability of the algorithm for finding good solutions.

4.5.2.1 Convergence characteristics
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To evaluate the performance of the solution algorithm, we not only plot the convergence
curve of the root mean square error (RMSE) of the mode-specific path flow for the proposed
model, but also randomly select four constraints to illustrate the convergence characteristics of
the corresponding dual variables. The convergence curves are presented in Figure 4.6.

All three curves of RMSE versus the number of iterations decrease below 1E-6 in a few
iterations. The values of the selected dual variables at each iteration are also shown in Figure
4.6. All of the dual variables converge. The values of all selected dual variables are larger than
or equal to O:

e The dual variable corresponding to origin 2 (zonal production) is positive, with a value of
21.08; this indicates that origin 2 has an intrinsic attractiveness to travelers.

e The dual variable corresponding to target OD pair (1, 21) (OD demand) of the metro mode
equals 0, which means that the estimated OD demand of the metro mode is within the
specific bound (i.e., an internal solution).

e The dual variable (upper bound) corresponding to road link 74 (flow) is 7.36, larger than
0, which indicates that the estimated flow of road link 74 reaches the upper bound.

e The dual variable (upper bound) corresponding to line segment 1 of bus line 3 (flow) is
0.44, which indicates that the estimated flow of this bus line segment reaches the upper

bound.
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Figure 4.6 Convergence characteristics of the solution algorithm
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4.5.2.2 Model accuracy

The model accuracy is verified from four perspectives: zonal production and attraction,

target mode-specific OD demand, estimated mode-specific OD demand, and observed link

(line segment) flow.

e Figure 4.7 compares the observed zonal productions and attractions with those calculated
using the estimated mode-specific OD demand. The observed zonal productions and
attractions are equal to the estimated values. This indicates that both the estimated zonal

production and attraction meet their constraints, i.e., Egs. (4.22)-(4.23).

e Figure 4.8 compares the observed target mode-specific OD demand with the estimated

values. The scatters lie in the region of [-10%, +10%] of the observed count, which meets

the requirement of the constraint in Eq. (4.26).

e Figure 4.9 compares the estimated mode-specific OD demand with those calculated using

the estimated mode-specific path flow. The scatter points lie on the 45<line (i.e., Y = X).

This is consistent with the flow conservation constraint in Eq. (4.19).

e Figure 4.10 compares the observed and estimated link (line segment) flows. The scatters
lie in the region of [-15%, +15%] of the observed count. This also accords with Egs.

(4.27)-( 4.29).
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Figure 4.7 Comparison between the observed zonal productions and attractions and those

calculated using the estimated mode-specific OD demand
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Figure 4.9 Comparison between the estimated mode-specific OD demands and those
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4.6 Chapter Summary

This chapter addresses the multi-modal OD demand estimation problem in urban
transportation networks. A NL-based PFE is formulated as a VI problem based on a single-
level structure. In the proposed model, the interaction of private cars and bus vehicles, private
car and transit route choice behaviours, and mode similarity are modeled. Moreover, the
estimated demand distribution in the optimal solution is proved: an NL model is used for the
mode demand, and an MNL model is used for the mode-specific path flow of each OD pair.
The model input for demand estimation includes information about the link counts (i.e., road
link traffic counts, metro and bus line segment flow observations), the mode-specific target OD
demand, and zonal production and attraction observations.

A diagonalization approach is developed for the proposed MM-PFE model. Using the
diagonalized approach, the variation inequality formulation is reformulated as a convex
optimization problem in each diagonalized iteration. Then, the reformulated problem is solved
using a path-based partial linearization algorithm embedded with a three-layer iterative
balancing scheme, which can handle various inequality/equality side constraints.

The MM-PFE is applied to a hypothetical multi-modal transportation network based on
the Sioux Falls network. The numerical results demonstrate that the proposed MM-PFE can
obtain a suitable multi-modal OD trip matrix with limited available observations and that the

developed solution algorithm can solve the proposed model.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE RESEARCH

This chapter summarizes the work and conclusions achieved in this thesis and presents

several future research directions.
5.1 Conclusion

The research presented in this thesis focuses on multi-modal travel demand estimation
methodology to address the weaknesses of the traditional transport planning in a sequential
manner and activity-based models. Compared with the traditional four-step model, the
integrated PFE framework is consistent and can incorporate various side constraints related to
multiple data sources. Compared with the activity-based model, the integrated PFE framework
not only take less time for computation, but also can use the information contained within the
observational data and express the path flow (mode-specific OD demand) analytically. Three
research problems are comprehensively modeled: (a) transit travel behavior; (b) transit origin-
destination (OD) demand estimation; and (c) multi-modal demand estimation. Three research
components are undertaken to answer the abovementioned problems as follows.

(1) Development of a strategy-based stochastic transit equilibrium model with
capacity and number-of-transfers constraints

Chapter 2 presents a strategy-based transit stochastic user equilibrium model with capacity
and number-of-transfers constraints. The logit-based stochastic path choice behavior and in-
vehicle congestion cost are taken into account, a strict capacity constraint of transit line

segments is added to handle the overload problem, and a number-of-transfers constraint is
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considered for transit path finding. This transit equilibrium problem is formulated as a logit-
based variational inequality problem. A transit path-set generation procedure based on the k-
shortest path algorithm is introduced, which also considers the features of a route-section-based
transit network and number-of-transfers constraint. The diagonalization method is adopted to
solve the proposed model, and the diagonalized subproblem is solved using a path-based partial
linearization solution algorithm embedded with an iterative balancing scheme to handle the
capacity constraints.

Numerical examples are provided to demonstrate the features of the proposed model and
evaluate the performance of the developed solution algorithm. The results indicate that the
number of transfers constraint changes the components of the transit path set, which strongly
impacts the passenger flow patterns. The results show that the line capacity constraint also
affects flow patterns, which revises the evaluation of some transit management strategies. The
results from the real-case transit network further verify the applicability of the developed
solution algorithm. Overall, the numerical examples highlight the importance of using capacity
and number-of-transfers constraints in transit equilibrium problems.

(2) Frequency-based path flow estimator for transit OD demand estimation

Chapter 3 presents a frequency-based path flow estimator (PFE) framework to estimate
the OD trip matrix in a transit network. A frequency-based transit PFE formulation in
variational inequality form is proposed that incorporate the observed partial OD demand
matrices and onboard passenger flow observations as side constraints. The observed partial OD
demand matrix is inferred from the automatic fare collection (i.e., smartcard) data together with
automatic vehicle location (AVL) data based on the inference of the alighting stops, while the
observed onboard passenger flow is calculated from the automatic passenger counting and
AVL data. The diagonalization method is adopted to solve the proposed model, and the
diagonalized subproblem is solved using a path-based partial linearization solution algorithm
embedded with an iterative balancing scheme to handle the various side constraints.

Numerical examples are provided to illustrate the performance of the proposed model and
its applicability in a real-world transit network. The results show that the configurations of the
onboard passenger counts and observed partial OD flows affect the estimated results. Overall,
the large-network results indicate that the OD flow estimations can be improved using a
combination of the onboard passenger counts and observed partial OD flows.

(3) Multi-modal PFE for OD demand estimation

In Chapter 4, a multi-modal PFE with a nested logit (NL) choice model is formulated as
a variational inequality problem based on a single-level structure. The proposed model

113



addresses the interaction of private cars and bus vehicles, route choice behavior of private cars
and transit modes, and mode similarity. The estimated demand distribution in the optimal
solution is verified. An NL model is used to estimate the mode demand, and a multinomial
logit model is used to estimate the mode-specific path flow of each OD pair. The model input
for the demand estimation includes information regarding the link counts (e.g., road link traffic
counts and metro and bus line segment flow observations), mode-specific target OD demand,
and zonal production and attraction observations.

A diagonalization approach is developed for the proposed multi-modal PFE model that
reformulates the variational inequality formulation as a convex optimization problem in each
diagonalized iteration. The reformulated problem is then further solved using a path-based
partial linearization algorithm embedded with a three-layer iterative balancing scheme, which
can handle various inequality/equality side constraints.

The multi-modal PFE is applied to a hypothetical multi-modal transportation network
based on the Sioux Falls (USA) network. The numerical results demonstrate that the proposed
MM-PFE can obtain a suitable multi-modal OD trip matrix with limited available observations,
and the developed solution algorithm is capable of solving the proposed model.

5.2 Further Research Directions

In this subchapter, we discuss two main potential further: extended integrated PFE and

integrated PFE applications.
5.2.1 Extended integrated PFE

(1) Trip-chain-based PFE: Trip chaining behavior has been incorporated into network
equilibrium models (Maruyama and Harata, 2005, 2006; Maruyama and Sumalee, 2007; He et
al., 2015; Lu et al., 2015; Shimamoto et al., 2016; Wang et al., 2016; Xie et al., 2017; Gao et
al., 2019). However, the issue of demand inconsistency might arise in the travel demand
estimation problem due to the ignored linkage between adjacent trips. Hence, one further
direction is to explore a PFE that considers trip chaining behavior. According to Primerano et
al. (2008), trip chains contain more general patterns with more secondary activities for which
the scheduling order is flexible. This requires a comprehensive integrated trip-chain-based PFE
framework to capture these features.

(2) Advanced discrete choice model: The models proposed in this thesis adopt the logit

model for passenger route choice behavior, which assumes that random error terms are
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independent and identically distributed. This raises two issues of route overlapping and route-
specific perception variance. Thus, one possible direction is to relax the assumption of identical
distribution and adopt a weibit-based model (Castillo et al., 2008; Kitthamkesorn and Chen,
2013, 2014; Kitthamkesorn et al., 2015).

(3) Real network validation: The proposed models were tested with hypothetical
transportation networks, which demonstrates the necessity to integrate data from a real-case
network to calibrate the model parameters. The proposed models adopt the predetermined
measurement errors for the known information, which is not quite suitable for the real data
case, and norm approximation techniques (Chen et al., 2009) can be developed to handle the
various data inconsistencies. A direct comparison between the estimated and observed values
is not possible because the true OD demands (benchmarks) are unknown. The confidence
interval estimation approach (Chootinan and Chen, 2011) can be adopted in a multi-modal
transportation network to assess the reliability of the demand estimation results.

(4) More travel choices: More mode choices exist in a multi-modal urban transportation
system (e.g., more transit modes, park and ride, and ride-sharing/ride-hailing). For example,
the pick-up/drop-off behavior in ride-sharing mode should be considered, especially for the
case of multiple pick-ups/drop-offs for an individual ride-sharing driver, and a more in-depth

integrated PFE should be proposed.
5.2.2 Applications of an integrated PFE

This thesis focuses on an integrated PFE framework for multi-modal travel demand
estimation, which also serves as a network equilibrium analysis tool with corresponding side
constraints. Network equilibrium models are important for other urban disciplines including
transportation management and land use.

(1) Network and service operation design: For existing bi-level transportation network
(e.g., new roads and bus network) and service operation design (e.g., pricing for connected and
autonomous vehicles, transit line frequency, and subsidies for transit passengers) problems, the
lower-level model usually adopts a network equilibrium model which does not contain the
traffic count information related to the historical demand. A corresponding PFE model can thus
fill this gap. Moreover, the above nonlinear bi-level models are consistently solved
heuristically. An exact algorithmic framework can be developed for these cases using a nested

branch-and-bound tree and the piecewise linear approximation method (Dan et al., 2021).
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(2) Combined PFE and land use: Transportation and land use are two closely connected
components in urban cities. Mobility or accessibility will affect land use, and land use changes
the travel demand distribution, which can affect the mobility or accessibility. Hence, it is
important to explore the possibility of an integrated framework of a PFE and land use model
to make good use of the advantages of the PFE approach, especially in regions with accelerating

urbanization.
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