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Multi-modal transportation systems provide multiple travel modes to create more 

sustainable and better-connected cities. The overall landscape of travel demand, transport 

infrastructure, and transport modes is rapidly changing, which highlights the need for an 

efficient and practical framework to model travel demand. A path flow estimator (PFE) is a 

single-level optimization model that serves as a flexible network analysis tool and can use 

various data sources to perform a range of transportation network analyses. Although PFEs 

have been widely explored in private car networks, a holistic PFE modeling framework for 

multi-modal transportation networks, particularly public transit networks, remains lacking. 

Hence, this thesis aims to bridge this gap by proposing an integrated PFE modeling framework 

for multi-modal transportation networks. Three specific research questions are considered: (i) 

how to model travel behavior in transit networks; (ii) how to estimate travel demand in transit 

networks; and (iii) how to estimate travel demand in multi-modal transportation networks. 

Transit equilibrium assignment is an important aspect of travel demand planning and 

management by predicting the passenger flow patterns in a network. Although transit 

equilibrium has been extensively addressed in the literature, limited attention has been paid to 

the aggregate line capacity constraints and individual path constraints on the number-of-

transfers. Line capacity and number-of-transfers constraints are two critical factors in transit 

network equilibrium because (1) transit vehicles cannot carry passengers beyond their capacity 

and (2) transit passengers typically avoid paths with numerous transfers. This thesis first 

proposes a strategy-based transit stochastic user equilibrium model with both line 

capacity constraints and path constraints on number-of-transfers. A transit path-set 

generation procedure is developed to generate transit paths with a limited number of transfers 

using a route-section-based network representation. The diagonalization method is used to 

solve the proposed model due to the asymmetric cost function. The diagonalized problem is 

solved using a path-based partial linearization algorithm embedded with an iterative balancing 

scheme, which is used to handle the line capacity constraints. A small network is explored to 

show that a standard strategy or hyperpath might contain an excessive transfer, and two 
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additional networks are used to demonstrate the features of the proposed model and 

performance of the developed algorithm. 

Origin-destination (OD) travel demand is a critical input for transit equilibrium 

assignment models, which is rarely measured directly in practice. The rich observation data 

from automatic passenger counting (APC), automatic fare collection (AFC), and automatic 

vehicle location (AVL) can be used to estimate the transit travel demand. However, the 

possibility of a single-level model for OD demand estimation in urban congested transit 

networks remains unresolved. A frequency-based PFE is therefore proposed for transit 

demand estimation. Two kinds of core inequality constraints are considered: (1) onboard 

passenger counts of transit line segments from APC and AVL data, and (2) partial OD trip 

matrices obtained from AFC and AVL data inferred from the passenger alighting stations. 

Three case studies are presented: the first two illustrate the features and evaluate the 

performance of the proposed model, and the third one uses the Winnipeg (Canada) transit 

network to demonstrate the model’s applicability to a real-world network. 

The prevalence of public transport demonstrates the importance of multi-modal 

transportation network analyses, for which travel demand is the core input. Current practices 

for estimating multi-modal OD matrices use a four-step model in a sequential manner. The 

third part of this thesis therefore focuses on simultaneously considering the mode choice, route 

choice, vehicle interaction, and various side constraints for the OD demand estimation. A 

multi-modal path flow estimator is proposed to estimate travel demand in an urban 

transportation network. The model incorporates the limited available observational data as 

side constraints (e.g., road link traffic counts, onboard passenger counts from bus and metro 

line segments, mode-specific target OD demand, zonal production and attraction). The 

interaction of private cars and bus vehicles, route choice behavior of private cars and transit 

modes, and mode similarity are modeled in a congested network. The mode similarity is 

captured by adopting a nested logit choice model. Computational tests are performed on the 

proposed model and developed solution algorithm using data for a hypothetical multi-modal 

transportation network in Sioux Falls (USA). 

This thesis proposes an alternative travel demand forecasting methodology, an integrated 

PFE that consistently addresses the weaknesses of traditional transport planning models, while 

acknowledging the difficulties of developing an activity-based travel demand model in rapidly 

growing urban cities. 

Keywords: Multi-Modal Transportation Network; Path Flow Estimator; Transit; Route Section; 

Number-of-Transfers Constraint; Demand Estimation; Nested Logit
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Network equilibrium approaches are vital tools for modeling urban multi-modal 

transportation systems (e.g., policy evaluation, impact analysis, project planning development, 

and operation strategy optimization), for which travel demand is a critical input. Hence, this 

thesis aims to provide a holistic modeling framework for estimating travel demand in urban 

multi-modal transportation systems. 

Many urban cities are experiencing rapid growth due to accelerating urbanization. Multi-

modal transport networks provide multiple travel modes (e.g., cars, metros, buses, and 

ridesharing) to build better connected cities. Governments also promote public transit modes 

over private car usage to achieve green and sustainable cities. Most modern urban cities have 

a multi-modal transport system that emphasizes public transport over private transport. For 

example, over 90% of daily trips in Hong Kong are made using multiple public transport modes 

(e.g., Mass Rapid Transit, franchised buses, public light buses, and ferries) (Transport 

Department, 2014). The overall landscape of travel demand, transport infrastructure, and 

transport modes is rapidly changing, which requires an efficient and practical framework for 

modeling travel demand. 

Current transport planning practices involve one of two travel demand forecasting 

procedures: (1) the traditional four-step procedure developed in North America and the United 

Kingdom, which consists of trip generation, trip distribution, modal splitting, and traffic 

assignment in a top-down sequential process to evaluate alternative road and transit plan; (2) 

the state-of-the-art activity-based procedure is highly data-intensive and time consuming and 

CHAPTER 1   

INTRODUCTION 

1.1 Background 
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thus largely inappropriate for planning applications in growing urban cities. Moreover, neither 

of these approaches can use the information contained within the observational data (e.g., 

traffic counts of road links and transit line segments). 

An integrated path flow estimator (PFE) is an alternative travel demand forecasting 

methodology that can address the weaknesses of traditional transport planning models in a 

consistent manner, while acknowledging the difficulties of developing an activity-based travel 

demand model in rapidly-growing urban cities as shown in Figure 1.1. Transportation network 

models are generally twofold: traffic assignment and its reverse process (i.e. origin-destination 

[OD] estimation). Travel demand is the critical input for multi-modal transportation system 

modeling, and its quality affects the demand estimation accuracy. However, travel demand data 

are rarely available or only roughly known. This motivates us to explore an integrated PFE 

framework to estimate travel demand in a multi-modal transportation system. Compared 

with the traditional four-step model and the activity-based model mentioned above, the 

integrated PFE framework in this thesis has some advantages: (i) consistent structure, (ii) 

various side constraints related to multiple data sources, and (iii) analytical expression for path 

flow (mode-specific OD demand). 

 

 

Figure 1.1 Proposed path flow estimator versus the four-step and activity-based models 

1.1.1 Related literature about PFE 

1.1.1.1 What is a PFE? 
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A PFE is a flexible network analysis tool that can use various data sources to perform a 

variety of transportation network analyses (Bell and Iida, 1997). A PFE generates stochastic 

user equilibrium (SUE) traffic flow patterns by adopting a discrete choice model (e.g., 

multinomial logit). The flow patterns contain information from various data sources related to 

the historical demand. The theoretical advantage of a PFE is its single-level mathematical 

formulation, which allows the flexibility of incorporating different data sources as side 

constraints. The optimization formulation can also obtain unique optimal solutions (i.e., path 

flows) because the objective function is strictly convex with respect to the decision variables, 

and the feasible set is also convex (i.e., all of the equality and inequality constraints are linear). 

Various kinds of flows can be derived at different spatial levels using the obtained path flows, 

including network flows, district flows, zonal flows, origin-destination (OD) flows, link flows, 

intersection turning movement flows, and so on. 

The PFE method can be used as a flexible network analysis tool for different purposes due 

to its flexibility for specifying different side constraints using a variety of data sources and the 

ability to aggregate path flows at different spatial levels (Figure 1.2). A PFE can be a traffic 

assignment problem without or with side constraints if the OD matrix and transportation 

network are denoted graphically (Bell, 1995; Chen et al., 2011; Ryu et al., 2014a). A PFE can 

also serve as an OD demand estimator if network measurements are available (Bell et al., 1997; 

Chen et al., 2005, 2009, 2010; Chootinan et al., 2005; Nie et al., 2005). 

 

 

Figure 1.2 Different purposes of a path flow estimator 

1.1.1.2 Flexibility of a PFE 
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A PFE as a traffic assignment with side constraints 

As shown in Figure 1.3, a PFE can be used a traffic assignment with side constraints using 

the given OD matrix and a transportation network denoted as a graph. The main procedure 

contains three parts: input, model, and output. The input is divided into two groups: compulsory 

and optional. Three main flexibilities of a PFE are emphasized: (1) improved realism of the 

traffic assignment with side constraints (e.g., link capacity, observed flows on major links, and 

environmental restrictions), which avoids the feedback step of the traditional four-step model; 

(2) different discrete choice models are embedded to model travel behavior (i.e., logit, extended 

logit [C-logit, path-size logit, cross-nested logit, and pair combinatorial logit], and weibit); and 

(3) the model is extended to include other choice dimensions (e.g., route and mode choices, 

route and destination choices, and route, mode, destination, and travel choices). 

 

 

Figure 1.3 A path flow estimator as a traffic assignment with side constraints 

 

A PFE for OD demand estimation 

A PFE can serve as an OD demand estimator when network measurements are available 

(e.g., link traffic counts), as shown in Figure 1.4. This procedure also consists of three parts: 

input, model, and output. Unlike the input in the traffic assignment, the link traffic count data 

belong to the input part and the OD demand must be calculated. There are two main flexibilities: 

(1) the incorporation of different data sources, including field data (e.g., traffic counts and 

intersection turning movements) and planning data (e.g., land use); (2) different discrete choice 

models are embedded, such as logit, extended logit, and weibit, which is similar to that when 

using a PFE for traffic assignment). 

 

Compulsory

• Network

• O-D demand

PFE ModelOptional

• Link capacity

• Observed link flows

• Environmental restrictions

• ...

Input Model Output

• Path flows

• Link flows

• ...
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Figure 1.4 A path flow estimator for origin-destination (OD) demand estimation 

 

Table 1.1 Path flow estimator (PFE) applications 

Research Focus Study Network 

Multi-class PFE with different levels of 

network information 
Bell et al. (1996) 

Private car 

network 

Intersection turning movement estimation Chen et al. (2012) 

Statewide truck origin-destination demand 

estimation 
Jansuwan et al. (2017) 

Network reliability assessment 

Bell et al. (1999), Lam and 

Xu (1999), Cheng et al. 

(2002) 

Simplified planning tool for small 

communities 

Jansuwan et al. (2012), 

Ryu et al. (2014b) 

PFE in bi-modal networks without handling 

the common lines issue for public transit 

mode 

Bell and Cassir (1998) Bi-modal network 

Bicycle network analysis tool Ryu et al. (2018) Bicycle network 

Air travel demand estimation Li et al. (2013); Li (2016) Air network 

Maritime container assignment Bell et al. (2011) Maritime network 

 

Most of the existing PFE methods focus on private transport (Table 1.1). However, the 

travel mode structure in Hong Kong differs substantially from that in other cities worldwide. 

There are many public transportation modes in Hong Kong (e.g., metro, light rail, franchised 

bus, non-franchised bus, minibus, taxi, ferry, and tram) and their modes are combined for 

travelers to choose between each OD pair. Public transportation is vital to people’s quality of 

Compulsory

• Network

• Link counts

PFE Model

Optional

• Link capacity

• Target O-D trip table

• Intersection turning 

movement counts

• Zone production flows

• Zone attraction flows

• ...

Input Model Output

• O-D demand

• Path flows

• Link flows

• ...

1.1.1.3 Applications of a PFE 
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life and social-economic development. The existing PFE methods therefore cannot be directly 

applied for the public transport mode because of the fundamental differences between private 

and public transport networks. This motivates us to develop PFE methods for not only public 

transport modes but also multiple transport modes. 

This thesis focuses on the problem of multi-modal travel demand estimation in an 

urban transportation system. Three main research questions are considered to model a multi-

modal urban transportation system (Figure 1.5): travel behavior modeling in a transit network, 

travel demand estimation in a transit network, and travel demand estimation in a multi-modal 

transportation network. The challenges and methodologies for solving these questions are 

presented in chapters 2-4. 

 

 

Figure 1.5 Scope of the research problems 

Transit network modeling usually consists of transit assignment and transit demand 

estimation. Transit choice behavior differs from that in private car networks. In reality, 

passengers will not choose a path with an excessive number of transfers. In contrast to the rich 

literature on transit equilibrium models, very little attention has been paid to the transfer issue. 

1.2 Research Problems 

1.2.1 Travel behavior modeling in transit networks 
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In particular, transit vehicles cannot carry passengers over their capacity, thus a strict capacity 

constraint should be considered. Chapter 2 proposes a strategy-based transit stochastic user 

equilibrium model that considers capacity and number-of-transfers constraints. 

The OD demand is a critical input for transit equilibrium models. Previous studies on 

network-based transit demand estimation have been bi-level and required heuristic algorithms, 

which do not guarantee that a global optimal solution can be obtained. Furthermore, data-based 

approaches using automatic fare collection (AFC), automatic vehicle location (AVL) and 

automatic passenger count (APC) usually generate an incomplete OD demand matrix. In 

Chapter 3, a single-level frequency-based PFE is proposed to estimate transit OD demand using 

AFC and APC data. 

Multi-modal transportation planning and management require high-quality travel demand 

data. There are three drawbacks to separately estimating the mode-specific OD demand: (1) 

poor mode choice consistency (e.g., multinomial logit [MNL] and nested logit [NL]); (2) the 

interaction between different vehicles in the road network cannot be modeled; and (3) the travel 

behavior of the different modes is not integrated. Very few studies have explored the multi-

modal travel demand estimation problem except for a bi-level model by García-Ródenas and 

Marín (2009).  Hence, Chapter 4 proposes a single-level multi-modal PFE with an NL mode 

choice model to estimate multi-modal travel demand in an urban transportation network. 

The objective of this thesis is to develop an integrated PFE methodology to estimate 

travel demand in an urban multi-modal transportation network. We first explore the transit 

stochastic user equilibrium with capacity and number-of-transfers constraints. The focus then 

shifts to transit OD demand estimation. An NL model is adopted to explore the multi-modal 

travel demand estimation problem. The details of these research components are summarized 

in Figure 1.6. 

 

1.2.2 Travel demand estimation in transit networks 

1.2.3 Travel demand estimation in multi-modal networks 

1.3 Objective and Contributions of the Study 
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Figure 1.6 Thesis at a glance 

In this work, a strategy-based transit SUE model is proposed that considers capacity and 

number-of-transfers constraints for transit planning. The equilibrium model is formulated as a 

variational inequality (VI) problem. A transit path set generation procedure with number-of-

transfers constraint is also proposed for a route-section-based transit network. A diagonalized 

method is adopted to solve the asymmetric model, and the diagonalized model is solved using 

a developed path-based partial linearization algorithm embedded with an iterative balancing 

scheme and self-regulated averaging scheme. After using a hypothetical transit network to 

illustrate the model features, a real-case transit network in Winnipeg, Canada, is used to 

demonstrate the applicability of the model and algorithm. 

We propose a frequency-based PFE for OD demand estimation in a congested urban 

transit network. The key features of the proposed model are as follows: (1) a route-section-

based approach is adopted to model the transit passenger choice behavior; (2) the congestion 

effect is taken into account; and (3) different transit data sources serve as different side 

constraints (e.g., onboard passenger count constraints from APC data and partial OD matrix 

constraints from AFC and AVL data). Overall, the proposed model is designed to address the 

1.3.1 Strategy-based transit SUE equilibrium 

1.3.2 Frequency-based PFE for transit OD demand estimation 
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issue of OD matrix under-specification and overcome their partial characteristics. A path-based 

diagonalization algorithm embedded with an iterative balancing scheme is developed to solve 

the proposed model. The diagonalization framework is used to handle the issue of asymmetric 

cost functions, and the diagonalized convex optimization model is solved using a partial 

linearization algorithm. The embedded iterative balancing scheme enables the model to handle 

multiple inequality side constraints. A small network is used to illustrate the correctness of the 

proposed model and developed algorithm. A medium-sized network based on the Sioux Falls 

(USA) road network is chosen to demonstrate the features of the model and a large network in 

Winnipeg is used to show the applicability of the model and algorithm in a real-world transit 

network. 

A multi-modal PFE model with an NL choice model, which captures the mode similarity 

and interaction, is proposed to estimate the OD demand in an urban multi-modal transportation 

network. Several kinds of available observational data are incorporated as equality or inequality 

side constraints, such as road link traffic counts, onboard passenger counts of bus and metro 

line segments, mode-specific target OD demand, and zonal production and attraction. A three-

level iterative balancing scheme is developed for direction finding when solving the proposed 

optimization model. The proposed model and developed algorithm are tested in the 

hypothetical multi-modal transportation network of Sioux Falls. 

The remainder of the thesis is organized as follows. 

 In Chapter 2, a strategy-based transit SUE model with capacity and number-of-transfers 

constraints is proposed and a transit path set generation procedure is developed to identify 

a transit path with a limited number of transfers in a route-section-based transit network. 

 In Chapter 3, a frequency-based path flow estimator is proposed for estimating OD 

demand in a congested transit network using AFC and APC data. 

 In Chapter 4, a multi-modal path flow estimator with an NL choice model, which captures 

the mode similarity and interaction, is proposed to estimate the multi-modal travel 

demand using available traffic information (traffic counts, target OD demand and zonal 

data). 

 Chapter 5 summarizes the conclusions of the thesis.

1.3.3 Multi-modal PFE for OD demand estimation 

1.4 Structure of the Thesis 
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Line capacity and number-of-transfers constraints are critical in transit network 

equilibrium because (1) transit vehicles cannot carry passengers over their capacity and (2) 

transit passengers typically avoid paths with numerous transfers. In this chapter, we propose a 

strategy-based transit stochastic user equilibrium (SUE) model that considers line capacity and 

number-of-transfers constraints for an urban congested transit network. A route-section-based 

method is used for the transit network representation and the transit passengers’ route choice 

behavior is assumed to obey the multinomial logit model. The transit line capacity and 

maximum number-of-transfers constraints are considered in the model. We then formulate the 

strategy-based transit SUE problem as a variational inequality (VI) problem. A transit path-set 

generation procedure is proposed to identify a transit path with a limited number of transfers 

using the route-section-based network representation. The diagonalization method is chosen to 

solve the VI problem due to the asymmetric cost function, and the diagonalized problem can 

be solved using a path-based partial linearization algorithm embedded with an iterative 

balancing scheme, which is used here to handle the numerous capacity constraints. Numerical 

examples are conducted to demonstrate the features of the proposed model and performance of 

the developed algorithm. The results show that the line capacity and number of transfers would 

strongly impact the passenger flow patterns. 

CHAPTER 2   

STRATEGY-BASED TRANSIT STOCHASTIC 

USER EQUILIBRIUM MODEL WITH CAPACITY 

AND NUMBER-OF-TRANSFERS CONSTRAINTS 
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Network equilibrium is a widely used method for transportation demand planning and 

management of both private cars and public transit. Traffic equilibrium (i.e., private cars) 

generally involves the assignment of vehicles to a road network, whereas transit equilibrium 

involves the assignment of passengers to a transit network. The core of network equilibrium is 

the path, which includes the path unit definition and path choice model. Differing from private 

car networks, the number of transfers is an important aspect of urban transit systems. The 

number of transfers, rather than the travel cost, will sometimes dictate a passenger’s chosen 

path. This implies that passengers may choose a path with fewer or fewest transfers, not the 

lowest travel cost, which has been reported in numerous surveys. According to Stern (1996), 

approximately 58% of the transit agencies responding the survey in the United States believed 

that transit riders would avoid a transit path with more than one transfer for a single trip. An 

onboard survey of the Valley Metro (Arizona, U.S.A.) in 2015 showed that up to 96% of bus 

passengers chose routes with no more than one transfer (Maricopa Association of Governments 

and Valley Metro Transit System, 2015). Another onboard survey of Alameda-Contra Costa 

Transit (California, U.S.A.) also showed that more than 96% of passengers chose paths with at 

most one transfer for trip (Alameda-Contra Costa Transit District and Metropolitan 

Transportation Commission, 2018). 

The number of transfers has been treated as a critical criterion in transit network design 

research because higher numbers of transfers discourage transit use (Farahani et al., 2013). 

Previous studies have classified the number-of-transfers issue into two categories: objectives 

and constraints relative to the number of transfers. The objectives category implies that the 

number of transfers is incorporated in the minimized objective function (Zhao and Ubaka, 2004; 

Zhao, 2006; Fan and Mumford, 2010; Szeto and Wu, 2011). The constraints category involves 

setting a maximum number of transfers for each origin-destination (OD) pair (trip) (Carrese 

and Gori, 2002; Guan et al., 2004; Mahdavi Moghaddam et al., 2019). Guihaire and Hao (2008) 

suggested that a passenger will switch to an alternative transport mode if the transit mode 

requires more than two transfers. Another perspective regarding transfers in the field of transit 

is a railway network equilibrium model that considers transfer reliability, which has been 

proposed to depict the route choice behavior of railway passengers (Shi et al., 2012). 

Static transit equilibrium assignment problem can be addressed by frequency-based and 

schedule-based models. Frequency-based models are applied for high-frequency cases (e.g., 

2.1 Introduction 



12 
 

urban areas), whereas schedule-based models are for low-frequency cases (e.g., suburban 

areas). Frequency-based models are also used for long-term planning and management, and 

schedule-based models are used for on-time operations. In this chapter, we focus on the 

frequency-based transit equilibrium assignment problem. Figure 2.1 provides an overview of 

the key studies in static frequency-based transit equilibrium. 

 

 

Figure 2.1 Overview of key static frequency-based transit equilibrium studies 

 

Frequency-based transit network equilibrium, including deterministic user equilibrium 

and stochastic user equilibrium, has been well studied in the literature. To address the common 

lines problem proposed by Chriqui and Robillard (1975) in transit network, Spiess (1984) and 

Spiess and Florian (1989) proposed a strategy and mathematical optimization formulation to 

determine the optimal strategy. Two types of network representation were later proposed to 

better represent the strategy concept: hyperpath (Nguyen and Pallottino, 1988) and route 

section (de Cea et al., 1988). Early transit equilibrium studies focused on deterministic user 

equilibrium, which obeys Wardrop’s equilibrium principle. In the branch of hyperpath-based 

network representation, Wu et al. (1994) proposed a hyperpath-based model for the congested 

transit equilibrium assignment problem. In their model, the cost functions of the waiting arcs 
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and in-vehicle arcs are asymmetric and dependent on the flows using an unbounded increasing 

function. Bouzaïene-Ayari et al. (1995) later extended the model of Wu et al. (1994) to the 

hyperpath flow space and reformulated it as a variational inequality (VI) fixed-point problem. 

The route-section method was first proposed by de Cea and Fernández (1993) to handle 

the common-lines issue based on the concept of strategy and involved a new formulation for 

the transit assignment problem over a congested transit network. In their study, congestion 

effects were assumed to exist only at transit stops and the corresponding cost function was also 

asymmetric. Szeto and Jiang (2014) proposed an approach-based VI formulation that included 

the concept of route-section concept for the congested transit assignment problem and adopted 

the same cost function used in de Cea and Fernández (1993). The studies of Wu et al. (1994) 

and de Cea and Fernández (1993) are generally considered as milestones of the congested 

transit equilibrium assignment problem. 

However, the congested model still generates flow results with overloaded line segments 

(i.e., transit vehicles). A transit vehicle cannot feasibly carry a passenger flow higher than its 

capacity. This issue has motivated some researchers to explore the capacitated transit 

equilibrium assignment problem. Cominetti and Correa (2001) proposed a frequency-based 

transit equilibrium model based on a congestion function obtained from bulk queuing theory. 

The capacity constraint issue is handled by considering effective frequency functions that 

vanish when the flow exceeds the line capacity. Cepeda et al. (2006) followed the work of 

Cominetti and Correa (2001) and proposed a computable gap function for a frequency-based 

assignment model with strict capacity constraints. They then developed the method of 

successive averages to solve the proposed model for a large-scale network. Codina et al. (2013) 

reformulated the model (which they called C3F) by Cepeda et al. (2006) as an equivalent 

variational inequality, and claimed that this reformulation could adapt the algorithm methods 

for VI problems to solve the C3F model. Codina and Rosell (2017) later incorporated the strict 

line capacities constraints into the VI reformulation of congested transit assignment problem 

in Codina et al. (2013) and proposed a heuristic algorithm to solve it. Specifically, they added 

inequality side constraints for the passenger flows of transit line segments to handle the 

capacity constraint. Kurauchi et al. (2003) presented a different approach for the capacity-

constrained transit assignment problem using a Markov chain model. In their model, the cost 

function considers the passenger failure-to-board probability. The above studies of capacitated 

networks belong to the branch of hyperpath-based models. 

The transit stochastic user equilibrium (SUE) problem has received increasing attention 

since the 1990s. Lam et al. (1999) proposed an SUE assignment model for congested transit 
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networks, where the travel cost function is independent of passenger flow and a capacity 

constraint is embedded to reflect the congestion. Lam et al. (2002) later extended this work by 

considering the elastic frequency of the capacity-constrained transit assignment problem and 

formulated it as a fixed-point problem. They assumed that the fleet size was fixed and the dwell 

time would affect the frequency. Both of these studies incorporated a hard capacity constraint 

for transit lines and applied an iterative balancing scheme for the solution algorithm, which 

could handle the problem with numerous inequality side constraints. To avoid the path 

enumeration and easily trace the path, link-based and approach-based methods (Sun and Szeto, 

2018) later adopted the concept of the Dial’s algorithm (Dial, 1971), which does not limit the 

number of path links. Transit SUE studies have thus mainly concentrated on route-section-

based network representations. 

To the best of our knowledge, the transit network equilibrium studies to date have not 

included the number of transfers as a consideration for path finding. Although this is reasonable 

for traffic equilibrium problems, transit users will avoid a path with an excessive number of 

transfers. For link-based or approach-based methods, it is difficult to identify the transfer 

configuration when calculating the split probability (or assigning the passenger flow) for each 

outgoing route section for a node (stop). Furthermore, the capacity issue is evidently more 

important in transit networks due to the number-of-transfers constraint. In fact, if the number-

of-transfers constraint have been considered in previous studies, some paths that were deemed 

available would have become unavailable. This implies that some transit lines would have 

become congested or even overloaded, thus causing changes to the assigned flow pattern. 

Based on the above discussion, the important task remains of exploring the transit 

stochastic equilibrium assignment problem with constraints on the number of transfers and 

capacity, especially for real-case transit networks. Thus, the objective of this chapter is to 

establish a strategy-based transit SUE model with a logit choice model that considers capacity 

and number-of-transfers constraints. The route-section-based representation is used for the 

transit network, and the path is set as a sequence of route sections. The paths consisting of route 

sections proposed here are in effect strategies (or simplified hyperpaths). Compared with 

existing path-based transit SUE models with capacity constraints (Lam et al. 1999; Lam et al., 

2002), the path cost function in our model accounts for congestion effects at transfer transit 

stops via a Bureau of Public Roads (BPR)-like function, which is the same as in de Cea et al. 

(1993). We thus formulate the capacity-constrained transit SUE problem as a VI formulation 

with strict line capacity constraints enforced using asymmetric cost functions. We also consider 

the number-of-transfers constraint in the path finding, which is more realistic for choice 
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behavior in transit networks. An additional limitation of the two previous studies (Lam et al., 

1999; Lam et al., 2002) is that they only conducted small numerical examples, which is 

insufficient for modern applications in large urban transit networks. 

A path-set generation procedure with a number-of-transfers constraint is developed based 

on the k-shortest path algorithm by Yen (1971) to ensure suitable path finding for the choice 

behaviour in a transit network. Three rules are set in this chapter to generate a transit path. One 

is that the number of transfers for a transit path should have a threshold; other two are based 

on the route-section-based transit network representation to avoid unnecessary transfers and 

loop constructions. 

The diagonalization method of de Cea et al. (1993) is used to solve the proposed 

asymmetric transit SUE model with capacity and number-of-transfers constraints. In each 

diagonalized iteration, the VI problem is reformulated as a convex mathematical programming 

formulation. The path-based linearization algorithm embedded with an iterative balancing 

scheme (Bell, 1995; Chen et al., 2005, 2009, 2010) and self-regulated averaging scheme (Liu 

et al., 2009) is then developed to solve the diagonalized problem. The iterative balancing 

scheme handles the issue of numerous inequality side constraints by iteratively updating the 

dual variables and calculating the corresponding primal variables. 

This subchapter provides a list of the notation used in this chapter unless otherwise 

specified. 

Sets 

𝑁 set of transit stops 

𝐿 set of transit lines 

𝐸 set of transit line segments 

𝑆 set of route sections 

𝐴𝑠 set of attractive section line segments associated with route section 𝑠 
𝑂𝐷 set of OD pairs 

𝐾𝑜𝑑 path set between OD pair 𝑜𝑑 

Variables 

𝑡𝑠 in-vehicle travel time of route section 𝑠 
𝑤𝑠 waiting time of route section 𝑠 
𝑐𝑠 total expected travel time of route section 𝑠 

𝑥𝑠
𝑙  

proportion of passengers choosing section line segment 𝑙 associated with route section 

𝑠 
𝑡𝑠
𝑙  in-vehicle travel time of section line segment 𝑙 associated with route section 𝑠 
𝑓𝑙 frequency of line 𝑙 (vehicles/min) 

2.2 Strategy-based Transit SUE Model with Capacity Constraints 

2.2.1 Notation 
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𝑓𝑠 frequency of route section 𝑠 (vehicles/min) 

𝜅𝑙 capacity of line 𝑙 (passengers/vehicle) 

𝑣𝑠 passenger flow on route section 𝑠 
𝑣𝑠
𝑙 passenger flow on section line segment 𝑙 associated with route section 𝑠 
𝑣𝑒 passenger flow on transit line segment 𝑒 

ℎ𝑘
𝑜𝑑 passenger flow on path 𝑘 between OD pair 𝑜𝑑 

𝑝𝑘
𝑜𝑑 choosing probability of path 𝑘 between OD pair 𝑜𝑑 

𝑞𝑜𝑑 passenger flow between OD pair 𝑜𝑑 

Inputs 

𝜃 dispersion parameter measuring passengers’ perception of travel cost 

𝐶𝑒 capacity on transit line segment 𝑒 

𝑞𝑜𝑑 passenger flow (demand) of OD pair 𝑜𝑑 

 

Given an initial transit network 𝐺(𝑁, 𝐿) , 𝑁  represents the set of transit stops and 𝐿 

represents the set of transit lines. A line segment is any portion of a transit line between two 

not necessarily consecutive stops within its itinerary. Any pair of stops in the transit network 

might be serviced by different transit lines (i.e., common-lines problem; Chriqui and Robillard, 

1975). The route-section-based transit network representation proposed by de Cea et al. (1988) 

and de Cea and Fernández (1993) to address the common-lines problem and a route consisting 

of one or more route-sections is considered a simplified version of a strategy or hyperpath. A 

major assumption of this method is that the passengers at a transit stop will be divided into 

different groups according to their following alighting stop. We denote this route-section-based 

network as 𝐺(𝑁, 𝑆) with a set of transit stops 𝑁 and set of route sections 𝑆. A route section is 

the combination of some portions of all transit lines between two not necessarily consecutive 

nodes. Here, the portion of one transit line is named as a section line segment, which consists 

of one or more consecutive line segments in the transit line. With this route-section-based 

method, the number of links connecting any pair of stops in the transit network can only be 

one, which makes it easier to obtain solutions for the transit equilibrium problem. A transit 

path is defined as a sequence of route sections for passengers to travel between any two nodes 

in the transit network. It is assumed that the congestion on transit networks is concentrated at 

transit stops.  

Here we use a small network from de Cea and Fernández (1993) to illustrate the route-

section concept (Figure 2.2). The example network 𝐺(𝑁, 𝐿) consists of six transit lines: line 1 

contains two transit line segments (𝐿1
1  and 𝐿1

2) and the other five lines contains only one transit 

line segment. When using a route-section representation, the network 𝐺(𝑁, 𝑆) consists of five 

2.2.2 Route-section-based transit network revisit 
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route-sections. The transit line components of each route-section are shown in Figure 2.2b. We 

use route sections 𝑆1 and 𝑆2 for detailed illustration. Route section 𝑆1 contains only one section 

line segment, {𝐿1
1 − 𝐿1

2}, which includes two transit line segments, i.e. 𝐿1
1  and 𝐿1

2 . Route section 

𝑆2 is a combination of some portions of transit lines L1 and L2. Route section 𝑆2 actually 

consists of 𝐿1
1  and 𝐿2

1 . Thus, there are three transit paths for the OD pair (N1, N3): transit path 

R1 consists of only one route section, 𝑆1; transit path R2 contains two route sections 𝑆2 and 𝑆5 

including one intermediate transfer node N2; and transit path R3 is composed of three route 

sections 𝑆3, 𝑆4, and 𝑆5. 

 

 

 

(a) Transit network 𝐺(𝑁, 𝐿) using transit lines (b) Transit network 𝐺(𝑁, 𝑆) using route sections 

Figure 2.2 Network representation of a transit network (de Cea and Fernández, 1993) 

 

In an initial transit network 𝐺(𝑁, 𝐿), the information (e.g., frequency, in-vehicle travel 

time, capacity) is usually provided. Due to the route-section-based representation for transit 

network 𝐺(𝑁, 𝑆), the path is the route section sequence rather than the traditional line segment 

sequence. We must first specify the route section characteristics. The route section cost in this 

study consists of in-vehicle travel time, waiting time, and perceived congestion time. 

Because the route section is a combination of attractive lines between two transfer stops, 

the in-vehicle travel time of the route section is the weighted summation of that of the 

corresponding lines. We first introduce the interim variable 𝑥𝑠
𝑙 , which represents the split 

probability of the section line segments in direct proportion to their frequencies on a route 

section as: 

𝑥𝑠
𝑙 = 𝑓 ∑ 𝑓𝑙

 𝑙∈𝐴𝑠

⁄ ,∀𝑙 ∈ 𝐴𝑠, 𝑠 ∈ 𝑆 (2.1) 
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The in-vehicle travel time of route section 𝑠  can then be expressed as the weighted 

summation of the in-vehicle travel time of all of the attractive lines (section line segments) 

associated with route section 𝑠 as: 

𝑡𝑠 = ∑ 𝑡𝑠
𝑙𝑥𝑠
𝑙

 𝑙∈𝐴𝑠

, ∀𝑠 ∈ 𝑆 (2.2) 

The waiting time of route section 𝑠 is a function of its combined frequency 𝑓𝑠 (i.e. product 

of parameter 𝛼 and 𝑓𝑠). The combined frequency of a route section is the summation of the 

frequencies of all the section line segments. The waiting time expression is thus: 

𝑤𝑠 =
𝛼

𝑓𝑠
=

𝛼

∑ 𝑓𝑙 𝑙∈𝐴𝑠

, ∀𝑠 ∈ 𝑆 (2.3) 

where 𝛼 represents the vehicle headway distribution (Spiess and Florian, 1989). Specifically, 

𝛼 = 1 indicates an exponential distribution and 𝛼 = 0.5 is a uniform distribution. 

The perceived congestion time of the route section involves the additional waiting time 

due to vehicle congestion, which is a function of its own flow and that of its competing route 

sections. The flow on route section 𝑠 is: 

𝑣𝑠 = ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑠 ∈ 𝑆 (2.4) 

The concept of competition is that one route section shares the same transit line segment 

with other route sections. Specifically, there are three main passenger groups competing with 

section 𝑠: (1) passengers boarding at 𝑡𝑎𝑖𝑙(𝑠), and all other route sections that use transit lines 

are contained in route section 𝑠; (2) passengers boarding at all of the transit lines belonging to 

route section 𝑠 at a stop prior to 𝑡𝑎𝑖𝑙(𝑠) and alighting at ℎ𝑒𝑎𝑑(𝑠); and (3) passengers boarding 

all of the transit lines belonging to route section 𝑠 at a node prior to 𝑡𝑎𝑖𝑙(𝑠) and alighting after 

ℎ𝑒𝑎𝑑(𝑠). Here, 𝑡𝑎𝑖𝑙(𝑠) and ℎ𝑒𝑎𝑑(𝑠) represent the tail and head stops (nodes) of the route 

section, respectively. This also implies that a route section in 𝐺(𝑁, 𝑆) contains at most three 

groups of competing route sections, as illustrated in Figure 2.3. There are three kinds of 

competing route sections for route section 𝑆4: the first kind is route section 𝑆5, which shares 

the same tail node as 𝑆4; the second is route section 𝑆2, which belongs to the second group; and 

the last is route section 𝑆3, which belongs to the third group. 
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(a) Transit network using a line and itinerary description 

 

(b) Transit network using a route section description 

Figure 2.3 Illustration of competing sections of a route section 

 

The competing flow of route section 𝑠 is then defined as the summation of the flow of 

section line segments on the route sections competing with route section 𝑠: 

�̃�𝑠 = ∑ 𝛿𝑠
𝑛 ∑ 𝑣𝑛𝑙
𝑙∈𝐴𝑠∩𝐴𝑛𝑛≠𝑠∈𝑆

, ∀𝑠 ∈ 𝑆 (2.5) 

where the section line segment flow 𝑣𝑠𝑙 is determined based on the split probability on route 

section 𝑠 as: 

𝑣𝑠𝑙 = 𝑣𝑠𝑥𝑠
𝑙 , ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐴𝑠 (2.6) 

Thus, the perceived congestion time of route section 𝑠 can be expressed in a BPR-like 

function as: 

𝜙𝑠(𝐯) = 𝜑𝑠 (
𝜆𝑣𝑠 + 𝜍�̃�𝑠
∑ 𝑓𝑙 𝑙∈𝐴𝑠 𝜅𝑙

)

𝜁

, ∀𝑠 ∈ 𝑆 (2.7) 

where calibration parameters 𝜑𝑠, 𝜆, 𝜍, and 𝜁 are used to model the different effects of various 

flows on the perceived congestion time. 

For route section 𝑠, the expected total travel time is given by: 

𝑐𝑠(𝐯) = 𝑡𝑠 + 𝑤𝑠 + 𝜙𝑠(𝐯) (2.8) 

As discussed above, the path is a sequence of route sections. The expected travel time of 

path 𝑘 for OD pair 𝑜𝑑 is therefore: 

𝑐𝑘
𝑜𝑑(𝐯) =∑𝑎𝑠𝑘𝑐𝑠(𝐯)

𝑠∈𝑆

, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 (2.9) 

 

N1 N2 N3 N4

L1
1 L1

2 L1
3

N1 N2 N3 N4

S1 S4 S6

S2

S3

S5
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The relationship between the OD flows and passenger path flows is expressed as: 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑

= 𝑞𝑜𝑑, ∀𝑜𝑑 ∈ 𝑂𝐷 (2.10) 

Let Γ = (𝛾𝑒𝑠) denote the line segment-route section incidence matrix, which equals 1 if 

line segment 𝑒 of line 𝑙 lies on route section 𝑠, otherwise 0. The line segment flow expression 

is: 

𝑣𝑒 =∑𝛾𝑒𝑠𝑦𝑙
𝑒𝑥𝑠
𝑙𝑣𝑠

𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (2.11) 

where 𝑦𝑙
𝑒 = 1 indicates that transit line segment 𝑒 is on transit line 𝑙. 

For simple expression, let �̅�𝑒𝑠 = 𝛾𝑒𝑠𝑦𝑙
𝑒𝑥𝑠
𝑙  denote the proportion of passengers choosing 

line segment 𝑒 of line 𝑙 associated with route section 𝑠. The line segment flow 𝑣𝑒 can thus be 

further expressed as: 

𝑣𝑒 =∑�̅�𝑒𝑠𝑣𝑠
𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (2.12) 

The relationship between line segment flows and path flows can be obtained as: 

𝑣𝑒 = ∑ ∑ ∑�̅�𝑒𝑠
𝑠∈𝑆

𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑒 ∈ 𝐸 (2.13) 

Referring to Lam et al. (1999) and Codina and Rosell (2017), the strict capacity constraint 

for the transit line segments can be described using the following inequality equation: 

𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸 (2.14) 

 

Based on Lam et al. (1999), the passenger overload delay is added to the link cost and 

path cost to reflect the strict transit line segment capacity constraint (explicit bounds on the 

flows on the transit line segments). The overload delays have been verified to be equivalent to 

the Lagrangian multipliers related to the line segment capacity constraints. In this chapter, we 

also consider the same transit line segment capacity constraints, and the corresponding 

overload delay for path 𝑘 of OD pair 𝑜𝑑 is expressed using 𝑑𝑘
𝑜𝑑. 

2.2.3 Variational inequality formulation with capacity constraints 

2.2.3.1 Flow conservation in a transit network 

2.2.3.2 Logit-based stochastic user equilibrium condition 
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Thus, according to the definition of the logit route choice model (Sheffi, 1985), the logit-

based transit SUE condition for a congested transit network is given as: 

𝑝𝑘
𝑜𝑑 =

exp (−𝜃(𝑐𝑘
𝑜𝑑 + 𝑑𝑘

𝑜𝑑))

∑ exp (−𝜃(𝑐𝑘′
𝑜𝑑 + 𝑑𝑘′

𝑜𝑑))𝑘′∈𝐾𝑜𝑑

, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.15) 

ℎ𝑘
𝑜𝑑 = 𝑝𝑘

𝑜𝑑𝑞𝑜𝑑, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.16) 

 

Due to the asymmetric cost function of a route section, we could not obtain a mathematical 

programming formulation for the transit SUE model with capacity and number-of-transfers 

constraints. Here, we instead propose a path-based variational inequality formulation: 

[SUE-T-SC] 

∑ ∑ (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (2.17) 

where ℎ𝑘
𝑜𝑑∗ is the optimal solution of the problem, and the feasible region Ω is defined as: 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑

= 𝑞𝑜𝑑, ∀𝑜𝑑 ∈ 𝑂𝐷 (2.18) 

𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸 (2.19) 

ℎ𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.20) 

𝑣𝑒 =∑�̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (2.21) 

Let 𝐅(𝐡) = 𝑐𝑘
𝑜𝑑(𝐡) +

1

𝜃
ln ℎ𝑘

𝑜𝑑, and the VI model can be simplified to a standard form: 

𝐅(𝐡∗)𝑇(𝐡 − 𝐡∗) ≥ 0, ∀𝐡 ∈ Ω (2.22) 

It is assumed that the demand and capacity constraints allow the model to obtain the 

solutions. Some properties of the VI problem are provided hereinbelow. Proposition 2.1 states 

that the solution of a VI problem can be found, proposition 2.2 shows that the path flow 

estimation of the proposed model is distributed according to a multinomial logit model, and 

proposition 2.3 further verifies that the solution uniqueness. 

 

Proposition 2.1. Assume that 𝑐𝑠(𝐯) is continuous and Ω is a compact and convex set; then 

there is at least one solution 𝐡∗ of [SUE-T-SC]. 

2.2.3.3 Variational inequality formulation 
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Proof. The expression of the path cost is 𝑐𝑘
𝑜𝑑(𝐡) = ∑ 𝑎𝑠𝑘𝑐𝑠(𝐡)𝑠∈𝑆 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 , ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈

𝑂𝐷, which is a positive continuous function of 𝐡. According to Smith (1983), it can be proved. 

 

 

Proposition 2.2. The solution 𝐡 of [SUE-T-SC] fulfils the MNL-based route choice model. 

Proof. When 𝜇𝑜𝑑 and 𝑑𝑒 are Lagrangian multipliers associated with constraints Eqs. (18) and 

(19), the first-order conditions (Karush-Kuhn-Tucker conditions) with respect to ℎ𝑘
𝑜𝑑 for [SUE-

T-SC] are (Proposition 1.3.4, Facchinei and Pang, 2003): 

ℎ𝑘
𝑜𝑑 (𝑐𝑘

𝑜𝑑 +
1

𝜃
ln ℎ𝑘

𝑜𝑑 −∑𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸

− 𝜇𝑜𝑑) = 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.23) 

𝑐𝑘
𝑜𝑑 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 −∑𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸

− 𝜇𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 (2.24) 

ℎ𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.25) 

The decision variables follow ℎ𝑘
𝑜𝑑 > 0, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷, and thus we have: 

𝑐𝑘
𝑜𝑑 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 −∑𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸

− 𝜇𝑜𝑑 = 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.26) 

The path flow expression for path 𝑘 between OD pair 𝑜𝑑 is then given as: 

ℎ𝑘
𝑜𝑑 = exp(𝜃 (−𝑐𝑘

𝑜𝑑 +∑𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸

+ 𝜇𝑜𝑑)) , ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 (2.27) 

The choosing probability of path 𝑘 for OD pair 𝑜𝑑 is thus: 

𝑝𝑘
𝑜𝑑 =

ℎ𝑘
𝑜𝑑

∑ ℎ𝑘′
𝑜𝑑

𝑘′∈𝐾𝑜𝑑
=

exp (−𝜃(𝑐𝑘
𝑜𝑑 − ∑ 𝑑𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸 ))

∑ exp (−𝜃(𝑐𝑘′
𝑜𝑑 − ∑ 𝑑𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘′𝑠∈𝑆𝑒∈𝐸 ))𝑘′∈𝐾𝑜𝑑

,  

∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 

(2.28) 

The overload delay 𝑑𝑘
𝑜𝑑 for path 𝑘 of OD pair 𝑜𝑑 equals −∑ 𝑑𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸   due to 

the negative Lagrangian multiplier 𝑑𝑒 here. This completes the proof.  

 

Note that [SUE-T-SC] model might exist multiple solutions due to the asymmetric and 

non-separable route section cost function in Eq. (2.8). This means that the uniqueness of the 

solution for [SUE-T-SC] model cannot be guaranteed. 

2.3 Transit Path Set Generation Procedure 



23 
 

The k-shortest path algorithm has been extensively used for path-set generation in private 

car network equilibrium studies. One of the best-known k-shortest path algorithms was 

proposed by Yen (1971) to find the k-shortest loopless paths including two parts: (1) identifying 

the first k-shortest path, and (2) finding all other ones. As shown in Figure 2.4, the two parts in 

Yen’s algorithm use the Dijkstra’s shortest path algorithm. 

 

 

Figure 2.4 Framework of Yen’s algorithm (Yen, 1971) 

 

In this chapter, Yen’s algorithm (Yen, 1971) is adopted to generate the k-shortest path for 

the transit path set. However, in the classical Dijkstra algorithm for path finding (Dijkstra, 

1959), the selection of the subsequent node depends only on the current node itself. 

Realistically, in a transit network, passengers tend to avoid a path with a high number of 

transfers. Besides, two additional constraints exist for path finding using a route-section-based 

transit network representation: (1) two adjacent route-sections might share the same transit line, 

and (2) a potential selected subsequent stop might exist in the path which could be traced back 

using the current stop, its parent stop, and the origin stop. Therefore, to accommodate the transit 

traveler behavior and route-section-based transit network representation, three rules are 

embedded in the classical Dijkstra algorithm to find the suitable shortest transit path: 

 Number-of-transfers constraint, which means the path has a maximum number of route 

sections or stops. 

 Two adjacent route sections cannot contain the same transit line, which is to avoid 

unnecessary transfers. 

 Any stop in this path can be included in any route section of this path, which is to avoid 

turn-back. This is necessary because a route section represents the linkage between two 

transfer stops, which means that the linkage might include other non-alighting stops. 

Yen ś Algorithm

# initialization
Obtain the shortest path

#loop to get the k-shortest paths
for k from 1 to K:
   ...
   Obtain the shortest path
   ...

Dijkstra ś 
Algorithm
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However, these possible non-alighting stops would be the head nodes of other route 

sections. 

As shown in Figure 2.5, the current stop is 𝑖 and the two potential subsequent stops are 𝑗 

and 𝑘. For stop 𝑗, we first check the three rules above. If the number of transfers of the path 

constructed by {𝑠, … , ℎ, 𝑖, 𝑗} meets the constraints and 𝑗 is not the destination, stop 𝑗 will not be 

selected. If route sections (ℎ, 𝑖) and (𝑖, 𝑗) contain the same transit line, stop 𝑗 will be rejected. 

If stop 𝑗 is included in any route section (as a non-alighting stop) of the path traced back from 

the current node 𝑖, stop 𝑗 will be ignored. For stop 𝑘, all three of the rules above are satisfied 

and stop 𝑘 will be selected as the subsequent stop of stop 𝑖. 

 

 

Figure 2.5 Selection of the subsequent transfer transit stop 

 

Remarks: 

(1) The predetermined number-of-transfers constraint might not suitable for all OD pairs 

in a real-case network, thus the number of transfers will increase until Yen’s algorithm can 

generate the first shortest path for the OD pairs that requires more transfers. 
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k

Current stop: i

Subsequent stop: k
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h

s i
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h
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h

Share same transit line

Transfer stop j exists in route 
section traced back from the 

current stop i

Number of stops exceeds the 
number-of-transfers constraint
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 (2) In the step of removing the links and nodes about the root path in Yen’s algorithm, 

the nodes in the route section (link) and outgoing and incoming route sections related to these 

additional nodes are also removed. This is necessary because the section line segment in the 

route section might include more than one line segment, and the purpose is to avoid turn back. 

 (3) The root path must be considered in the step of calculating the spur path in Yen’s 

algorithm using Dijkstra’s algorithm. This is necessary because the route-section here 

represents the linkage between two transit transfer stops, which implies that the root and spur 

paths might contain the same transit line. Considering the root path when finding the spur path 

avoids an unnecessary transfer. 

Logit-based SUE has been well studied in traffic equilibrium studies and extensive efforts 

have been made to develop efficient algorithms to solve these models (Huang and Li, 2007; 

Yu et al., 2014; Zhou et al., 2014). However, the above algorithms cannot be adopted for SUE 

due to the asymmetric cost function. One of the most commonly used approaches to solve 

asymmetric network assignment problems is the diagonalization method because of its easy 

implementation (Florian, 1977; de Cea and Fernández, 1993). 

Problem [SUE-T-SC] in Eq. (2.17) can be further expressed as: 

∑ ∑ (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (2.29) 

We separate the (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) term into two parts, and multiply each part by 

(ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗) to obtain: 

∑ ∑ 𝑐𝑘
𝑜𝑑(𝐡∗)(ℎ𝑘

𝑜𝑑 − ℎ𝑘
𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑

∈ Ω 

(2.30) 

For Eq. (2.30), we substitute the route section cost function for the path cost function 

𝑐𝑘
𝑜𝑑(𝐡∗). Eq. (2.30) is then be expressed as: 

∑ ∑ (∑𝑎𝑠𝑘𝑐𝑠(𝐡
∗)

𝑠∈𝑆

) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω 

(2.31) 

2.4 Solution Algorithm 

2.4.1 Diagonalization of cost functions 
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We can further calculate the route section flow based on the summation symbols for all 

paths for one OD pair and for all OD pairs: 

∑( ∑ ∑ 𝑎𝑠𝑘(ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

) 𝑐𝑠(𝐡
∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω 

(2.32) 

Eq. (2.29) can then be simplified from Eq. (2.32) using the route section and path space 

as: 

∑(𝑣𝑠 − 𝑣𝑠
∗)𝑐𝑠(𝐡

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (2.33) 

The route section cost in Eq. (2.33) can be expressed as a function of route-section flow, 

which can be obtained from the path flow. Eq. (2.29) is thus expressed as: 

∑(𝑣𝑠 − 𝑣𝑠
∗)𝑐𝑠(𝐯

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
lnℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (2.34) 

In each iteration, the 𝑐𝑠(𝐯) in Eq. (34) is diagonalized in the current solution, yielding a 

symmetric assignment problem: 

∑(𝑣𝑠 − 𝑣𝑠
∗)�̂�𝑠(𝐯

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
lnℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (2.35) 

where �̂�𝑠(𝐯) is the diagonalized 𝑐𝑠(𝐯). 

The symmetric assignment problem in Eq. (2.35) has an equivalent convex optimization 

formulation: 

[SUE-T-SC-D] 

min∑∫ �̂�𝑠(𝜔)
𝑣𝑠

0

𝑑𝜔

𝑠∈𝑆

+
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

 (2.36) 

subject to 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑

= 𝑞𝑜𝑑, ∀𝑜𝑑 ∈ 𝑂𝐷 (2.37) 

𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸 (2.38) 

ℎ𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (2.39) 

𝑣𝑒 =∑�̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (2.40) 

 



27 
 

The overall solution algorithm with a diagonalization concept for SUE-T-SC is 

summarized in Figure 2.6 based on the above discussion. 

Step 1. Initialization. 

Step 2. Diagonalization of the cost function. Diagonalize the cost function to obtain a 

symmetric assignment problem and proceed with the convex optimization model. 

Step 3. Solve the subproblem. Develop the path-based partial linearization algorithm embedded 

with an iterative balancing scheme to obtain the solution. 

Step 4. Stop test. If ‖𝐡𝑖 − 𝐡𝑖−1‖ ≤ 𝜀  (𝜀  is a pre-set tolerance) or the maximum iteration 

number 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  is achieved, stop and declare (𝐡∗, 𝐯∗) ≈  (𝐡𝑖, 𝐯𝑖). Otherwise, set 𝑖 = 𝑖 + 1 

and return to step 2. 

 

Algorithm Solution algorithm for SUE-T-SC 

1: Initialization. Identify an initial feasible solution (𝐡1, 𝐯1) and set 𝑖 = 1 

2: while 𝑖 ≤ 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 and ‖𝐡𝒊 − 𝐡𝑖−1‖ > 𝜀, do 

3: Diagonalize 𝑐(𝐯) as �̂� at ( 𝐡𝑖−1, 𝐯𝑖−1) 
4: Solve subproblem [SUE-T-SC-D] 

min∑ ∫ �̂�𝑠(𝜔)
𝑣𝑠
0

𝑑𝜔𝑠∈𝑆 +
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷   

subject to 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑 = 𝑞𝑜𝑑 , ∀𝑜𝑑 ∈ 𝑂𝐷, 𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸, ℎ𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷, 

𝑣𝑒 = ∑ �̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆 , ∀𝑒 ∈ 𝐸. 

5: 𝑖 ← 𝑖 + 1, (𝐡𝒊, 𝐯𝒊) ← (�̂�∗, �̂�∗) 
6: end while 

7: return (𝐡∗, 𝐯∗) ≈  (𝐡𝒊, 𝐯𝒊) 

where 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum iteration number and 𝜀 ∈ 𝑅+ is the tolerance. 

Figure 2.6 Solution algorithm for SUE-T-SC 

 

To solve the subproblem [SUE-T-SC-D], we develop the path-based partial linearization 

algorithm combined with a self-regulated averaging step-size scheme (Liu et al., 2009) 

embedded with an iterative balancing scheme. The iterative balancing scheme is used for 

direction finding with a given path set and fixed cost, and its core is to adjust the dual variables 

related to the side constraints and update the corresponding primal variables at each iteration, 

as shown in Eqs. (2.41)-(2.43): 

 Adjust dual variables: 

For each transit line segment, 

2.4.2 Overall solution algorithm framework 
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(𝑑𝑒)
𝑗+1 = min {0, (𝑑𝑒)

𝑗 +
1

𝜃
ln

𝐶𝑒
(𝑣𝑒)𝑗

} (2.41) 

For each OD pair, 

(𝜇𝑜𝑑)𝑗+1 = (𝜇𝑜𝑑)𝑗 +
1

𝜃
ln

𝑞𝑜𝑑

∑ (ℎ𝑘
𝑜𝑑)

𝑗

𝑘∈𝐾𝑜𝑑

 (2.42) 

 Update primal variables: 

(ℎ𝑘
𝑜𝑑)

𝑗+1
= exp(𝜃 (−𝑐𝑘

𝑜𝑑 +∑(𝑑𝑒)
𝑗+1∑�̅�𝑒𝑠𝑎𝑠𝑘

𝑠∈𝑆𝑒∈𝐸

+ (𝜇𝑜𝑑)𝑗+1)) (2.43) 

where 𝑑𝑒 is the dual variable related to the capacity constraint, 𝜇𝑜𝑑 is the dual variable related 

to the OD demand flow conservation constraint, and 𝑗 is the iteration number. The derivation 

of the adjustment factors for dual variables and a detailed scheme are given in Chen et al. 

(2009). 

This section presents three numerical examples. Example 1 is a modified transit network 

based on Spiess and Florian (1989) to demonstrate the issue of the number of transfers in a 

strategy or hyperpath applied in existing transit equilibrium studies. Example 2 is the Sioux 

Falls network, which is used to examine the features of the proposed model in details. Example 

3 is the Winnipeg transit network in Canada (Ryu et al., 2017; INRO Consultants, 2020), which 

is used as a real case to demonstrate the applicability of the proposed model and solution 

algorithm in the real network. The parameter values in this section are set as follows: 𝛼 = 1, 

𝜃 = 0.1, 𝜑 = 10, and 𝜗 = 𝜍 = 𝜛 = 1. 

The example by Spiess and Florian (1989) has been widely used to illustrate the strategy-

based concept to model transit passenger choice behavior. The optimal strategy in their 

example consists of two types of elementary paths: non-transfer and one-transfer paths. 

However, in a random transit network, we cannot rule out that an optimal strategy (shortest 

path) will contain an elementary path exceeding a maximum number of transfers. Due to the 

complex hyperpath structure, we use a network for illustration. In the field of route-section 

network representation, a transit path is a sequence of route sections. It is possible that the 

2.5 Numerical Experiments 

2.5.1 Small network 
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number of transfers in transit a path exceeds a predefined value, which is similar to the path in 

road network with a high number of crossings and therefore not illustrated here. 

The illustrative network used in this study is modified from that in Spiess and Florian 

(1989) with modifications to change the stop sequences of lines 2, 3 and 4. Line 2 consists of 

stops X, Y, and B; line 3 contains stops A, X, Y; and line 4 is from A to X. This network 

contains only one OD pair from A to B with a travel demand as 1. Other transit line 

characteristics are the same as those in Spiess and Florian (1989) and shown in Figure 2.7a. 

The extended and simplified transit networks are also shown in Figure 2.7. 

The optimal strategy from A to B is shown in Figure 2.8a when the in-vehicle travel time 

for line 4 is 10 (𝑡𝐴𝑋 = 10). The dark black solid lines and letters represent the optimal strategy 

and the light-colored lines and letters are for unused parts of the transit network. The passenger 

flows on each transit line (segment) are also displayed. The maximum number of transfers is 

one here, which is the same as in Spiess and Florian (1989). When we change 𝑡𝐴𝑋 to 5, the 

optimal strategy (Figure 2.8b) differs substantially from that in Figure 2.8a. This optimal 

strategy actually contains three elementary paths: (1) only using line 1; (2) using lines 3 and 2 

transferring at stop Y; and (3) using lines 4, 3, and 2 transferring at stops X and Y. The 

elementary path with two transfers is highlighted in red. Specifically, 0.17/0.59 of the demand 

alights at stop X and transfers to Line 3, whereas 0.42/0.59 takes line 2 directly to destination 

B. However, the former part (0.17/0.59) will transfer to line 2 after alighting from line 3 at stop 

Y. 
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(a) Initial transit network 

 

(b) Extended transit network 

 

(c) Simplified transit network 

Figure 2.7 Illustration of a small transit network 

 

When conducting transit network equilibrium analysis without considering the number-

of-transfers constraint, the hyperpath sets might contain one or more hyperpaths with several 

transfers, which would not become the choice for transit passengers in reality. For example, 

for the small transit network in Figure 2.7, passengers will usually not choose a path with more 

than one transfer. However, a hyperpath with two or more transfers might be taken into account 

for equilibrium analysis. This is the common limitation of existing transit equilibrium studies. 
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(a) Optimal strategy when 𝑡𝐴𝑋 = 10 

 

(b) Optimal strategy when 𝑡𝐴𝑋 = 5 

Figure 2.8 Result of optimal strategy (shortest hyperpath) with different numbers of transfers 

The highway network of Sioux Falls (http://www.bgu.ac.il/~bargera/tntp/) is shown in 

Figure 2.9 and contains 76 directed links and 24 nodes on which the itineraries of 10 transit 

lines (i.e., 20 itineraries) are defined modified from Sun and Szeto (2018). All of the in-vehicle 

movements on a given highway link are assumed to have identical travel times. Table 2.1 

illustrates the frequencies, capacities and stop sequences of the lines. The in-vehicle times of 

transit vehicles on the highway network are assumed to be identical to those of private cars. 

There are 32 OD pairs (with positive demands) and the known (true) OD matrix is listed in 

Table 2.2. For the Sioux Falls network, the predefined path set is obtained with a large k value 

of 30 in the path set generation procedure as presented in Section 2.3. 
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2.5.2.1 Network setting 
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(a) Road network (b) Transit network 

Figure 2.9 Sioux-Falls network 

 

Table 2.1 Transit line data for Sioux Falls network 

Line Line ID 
Frequency 

(vehicle/hour) 

Capacity 

(pax/vehicle) 
Stop sequence 

1 
1 

10 50 
4 11 14 23 24 

2 24 23 14 11 4 

2 
3 

10 50 
1 3 12 13 24 

4 24 13 12 3 1 

3 
5 

10 50 
11 14 23 24 13 

6 13 24 23 14 11 

4 
7 

12 50 
8 16 17 19 20 21 22 23 

8 23 22 21 20 19 17 16 8 

5 
9 

10 50 
7 8 16 18 20 

10 20 18 16 8 7 

6 
11 

10 50 
14 15 19 20 22 23 

12 23 22 20 19 15 14 

7 
13 

20 50 
2 6 8 9 10 11 12 

14 12 11 10 9 8 6 2 

8 
15 

20 50 
4 5 9 10 17 19 20 

16 20 19 17 10 9 5 4 

9 
17 

20 50 
10 16 17 19 20 21 24 

18 24 21 20 19 17 16 10 

10 
19 

20 50 
1 3 4 5 9 10 15 19 20 

20 20 19 15 10 9 5 4 3 1 
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Table 2.2 True demand matrix for Sioux Falls 

OD 

pair 

Demand 

(pax/hour) 

OD 

pair 

Demand 

(pax/hour) 

OD 

pair 

Demand 

(pax/hour) 

OD 

pair 

Demand 

(pax/hour) 

(1 - 13) 160 (3- 13) 160 (13 - 1) 160 (21 - 1) 160 

(1 - 20) 160 (3 - 20) 160 (13 - 2) 160 (21 - 2) 160 

(1 - 21) 160 (3 - 21) 160 (13 - 3) 160 (21 - 3) 160 

(1 - 24) 160 (3 - 24) 160 (13 - 4) 160 (21 - 4) 160 

(2 - 13) 160 (4 - 13) 160 (20 - 1) 160 (24 - 1) 160 

(2 - 20) 160 (4 - 20) 160 (20 - 2) 160 (24 - 2) 160 

(2 - 21) 160 (4 - 21) 160 (20 - 3) 160 (24 - 3) 160 

(2 - 24) 160 (4 - 24) 160 (20 - 4) 160 (24 - 4) 160 

 

This section explores the effect of the number-of-transfers constraint on the flow patterns 

without capacity constraints. Here we set the maximum number of transfers to infinite (no 

constraint), 1, 2, and 3 for a transit path, represented by cases I, II, III, and IV. In general, we 

can see that the flow patterns of the transit line segments with different number-of-transfers 

constraints show large differences in their volume to capacity (V/C) ratios. To more clearly 

describe the difference, we set the case with the no-transfers constraint (case I) as the 

benchmark as shown in Figure 2.10a. Compared with case I, case II contains more transit line 

segments with less congestion (33.33% vs. 28.70%) and fewer line segments with a V/C ratio 

over 0.8 (7.4% vs. 11.30%). However, these two cases are similar when the V/C ratio is 

between 0.2 and 0.8. Compared with case II, case III differs from case I more markedly: fewer 

less-congested transit line segments (23.15% vs. 28.70%) and more line segments with V/C 

ratios between 0.2 and 0.8 (69.44% vs. 60.18%). Case IV differs slightly from case I with a 

V/C ratio of 0-0.8. One important observation is that cases II, III and IV contain fewer line 

segments with V/C ratios over 0.8 than in case I. One apparent reason is that the number-of-

transfers constraint changes the components of the transit path set for these four cases. This 

can be further explained by the fact that without a number-of-transfers constraint, some transit 

line segments are repeatedly used by many paths even though some paths require more 

transfers. After adding the number-of transfers-constraint, these paths with over-repeated line 

segments and more transfers are not taken into account. 

 

2.5.2.2 Effect of number of transfers constraint 
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(a) No number-of-transfers constraint (case I) (b) Number of transfers: 1 (case II) 

  

(c) Number of transfers: 2 (case III) (d) Number of transfers: 3 (case IV) 

Figure 2.10 Distribution of volume to capacity (V/C) ratio of transit line segments with 

different number-of-transfers constraints 

This section investigates the effect of capacity constraints on flow patterns. Without a loss 

of generality, the maximum number of transfers is set as 2. We assume that the travel demand 

is suitable for obtaining a feasible solution given the available capacity constraints on all transit 

line segments. 

 

 

Figure 2.11 Volume to capacity (V/C) ratio of transit line segments with (SC) and without 

(No-SC) capacity constraints 
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2.5.2.3 Effect of capacity constraint 
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(a) Downward direction: stop 1 to 24 

 

(b) Upward direction: stop 24 to 1 

Figure 2.12 Flow on transit line 2 with (SC) and without (No-SC) capacity constraints 

 

Figure 2.11 compares the V/C ratio of transit line segments with and without capacity 

constraints (referred to as SC and No-SC, respectively). Both scenarios generate similar results 

in terms of V/C ratio sections of [0,0.2], (0.2,0.4], and (0.4,0.6]. However, different results are 

obtained for line segments with high V/C ratios. The SC-case contains only 12.96% of line 

segments with a ratio of (0.6,0.8], whereas the No-SC-case contains 21.30%. In contrast,  there 

are 15.74% of line segments with a ratio of (0.8,1.0] for the SC-case compared with only 3.70% 

for the No-SC-case. However, the No-SC-case generates overflow line segments (3.7%), 

whereas the SC-case at most contains line segments reaching the capacity. 

Figure 2.12 illustrates the flows on different line segments of transit line 2 with and 

without capacity constraints. For both directions of transit line 2, the segments between stops 

3 and 12 and stops 12 and 13 carry higher passenger flows than those without line capacity 

constraints. After embedding the capacity constraints, the equilibrium flow of all line segments 
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of transit line 2 does not exceed their capacity. Interestingly, the flow of line segment 3-12 

decreases to below its capacity with the implementation of a capacity constraint, whereas the 

other overloaded line segments continue to reach their own capacities. The flow patterns 

between stops 1 and 3 and stops 13 and 24 are nearly the same with and without capacity 

constraints. This might be explained by the fact that lower passenger flow is assigned to the 

transit paths with overloaded line segments due to the capacity constraints. These transit paths 

do not use other uncongested line segments of transit line 2. 

 

 

(a) Downward direction: stop 1 to 24 

 

(b) Upward direction: stop 24 to 1 

Figure 2.13 Effect of increasing transit line frequency on the flow of saturated line 2 without 

capacity constraints 

 

This section examines the effect of increasing transit line frequency on flow patterns based 

on the overflow observation. Without loss of generality, the maximum number of transfers is 
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set to 2. Increasing transit line frequency essentially increases the transit line capacity and 

relieves the transit line congestion. Two strategies are conducted in this section: (1) increase 

the frequency of the saturated transit line, i.e. line 2, and (2) increase the frequency of the 

unsaturated transit line, i.e. line 1. The purpose of strategy (1) is to make the saturated transit 

line carry more flow, and that of strategy (2) is to improve the service of the other transit lines 

and help share the flow. 

 

 

(a) Downward direction: stop 1 to 24 

 

(b) Upward direction: stop 24 to 1 

Figure 2.14 Effect of increasing transit line frequency on the flow of saturated line 2 with 

capacity constraints 

 

Figure 2.13 shows that even though both strategies improve the level of service of transit 

line 2 without capacity constraints, the overflow line segments still maintain overflow. 

However, Figure 2.14 shows that neither strategy has an effect on the service level, which 

means that the results of both strategies are essentially the same as that of initial frequency. 

This is meaningful for practical transit planning. If capacity constraints are not incorporated in 

strategy evaluation, the results might appear good but in fact be unreasonable because a transit 
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vehicle cannot carry a passenger flow above its capacity. Overall, the flow results without 

capacity constraints might be overestimated compared with those with capacity constraints. 

 

  

(a) demand: 0.5 × 𝑞 (b) demand: 0.6 × 𝑞 

  

(c) demand: 0.7 × 𝑞 (d) demand: 0.8 × 𝑞 

  

(e) demand: 0.9 × 𝑞 (f) demand: 1.0 × 𝑞 

Figure 2.15 Distribution of volume to capacity (V/C) ratio of transit line segments with 

different demand levels 

 

This section mainly explores how the demand levels affect the flow patterns with capacity 

constraints. To illustrate the effect, a demand adjustment factor, from 0.5 to 1.0 with the interval 

of 0.1, is used. The reference demand 𝑞  is the same at that in Table 2.2. Without loss of 
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generality, the maximum number of transfers is set to 2. The result of flow patterns is shown 

in Figure 2.15. 

As expected, no matter how demand levels change, the V/C ratio of all transit line 

segments is less than or equal to one due to the strict capacity constraints. Besides, with the 

demand increases (i.e. larger demand adjustment factor), the number of transit line segments 

with V/C ratio larger than 0.4 increases. This is because with more demand, more flow will be 

assigned to the transit network, and the network will become more congested. Moreover, the 

number of transit line segments with larger V/C ratio (i.e. 0.8-1.0) also increases as the demand 

increases. This can be explained from two perspectives: (i) more demand means more 

congested, and (ii) the strict capacity constraints make the saturated line segments not carry 

more flow, which will make other unsaturated line segments become more congested. 

The Winnipeg transit network in Figure 2.16 is used to illustrate the features of the 

proposed model and performance of the developed solution algorithm. The network is extracted 

from Emme V4.3.2 and consists of 130 transit lines, 4187 transit line segments, and 924 transit 

stops. The number of origins is 106 and that of OD pairs is 5303. To connect the origins and 

transit stops, the network also contains 803 walking segments. After conducting the route-

section network construction, the network consists of 44,408 route sections, in which each 

walking segment is interpreted as a special case of a transit route section with a cost of 0. The 

solution algorithm is implemented in Microsoft Visual Studio 2015 and run on a 2.7-GHz 

processor with 20.00 GB of RAM. Without loss of generality, the maximum number of 

transfers here is set to 3, and the k value in the transit path-set generation procedure is 20. 

 

2.5.3 Winnipeg network 
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Figure 2.16 Winnipeg transit network: different colors denote different lines 

 

The root mean square error of the transit path flows between two adjacent iterations is 

adopted to represent the convergence, which is: 

𝑅𝑀𝑆𝐸 = √
∑ ∑ (ℎ𝑘

𝑜𝑑,𝑖 − ℎ𝑘
𝑜𝑑,𝑖−1)

2

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

|𝐾|
 (2.54) 

Figure 2.17 shows the convergence of the proposed solution algorithm, including each 

outer iteration and each inner iteration of outer iterations 1 and 12. Both the outer and inner 

iterations efficiently reach a value below 10-8, which means the proposed solution algorithm is 

capable of solving real-case transit network scenarios. The convergence of the dual variables 

of the two selected transit line segments is also shown in Figure 2.17. 

 

Streets

Transit lines

Centroids

Transit stops

2.5.3.1 Convergence characteristics 
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Figure 2.17 Convergence characteristics of the proposed solution algorithm

Iterative balancing loop: convergence of dual variables

Convergence of outer iteration 1 Convergence of outer iteration 12
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(a) Line 40 

 

(b) Line 52 

Figure 2.18 Flow on two transit lines between with (SC) and without (No-SC) capacity 

constraints 

 

Figure 2.18 shows that the flow of some line segments of lines 40 and 52 exceeds the 

maximum capacity when incorporating capacity constraints. After adding the capacity 

constraints, the flow of the transit line segments only reaches the capacity. A comparison of 

Figure 2.18a and 2.18b show that not all of the overflow line segments reach capacity when 
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capacity constraints are incorporated. Some overflow line segments in Figure 2.18a contain 

less flow than capacity after incorporating capacity constraints. This illustrates that without 

capacity constraints in transit assignment problem, not only are unreasonable results obtained 

for some line segments with overflow but the flow for some line segments that do not reach 

capacity is overestimated. This is consistent with the dual variables shown in Figure 2.17, i.e. 

the dual variable with respect to the capacity constraint of segment 17 on transit line 40 

becomes zero, and that of segment 7 on transit line 52 is -20.7678, which means that the 

passenger flow has reached the capacity. 

In this chapter, a strategy-based transit stochastic user equilibrium model with capacity 

and number-of-transfers constraints is proposed. Specifically, the logit-based stochastic path 

choice behavior and in-vehicle congestion cost are taken into account, a strict capacity 

constraint of transit line segments is added to handle the overload problem, and a number-of-

transfers constraint is considered for transit path finding. This transit equilibrium problem is 

formulated as a logit-based VI problem. A transit path-set generation procedure based on the 

k-shortest path algorithm is introduced, which also considers the features of a route-section-

based transit network and number-of-transfers constraint. The diagonalization method is 

adopted to solve the proposed model, and the diagonalized subproblem can be solved using the 

path-based partial linearization solution algorithm embedded with an iterative balancing 

scheme to handle the capacity constraints. 

Numerical examples are provided to demonstrate the features of the proposed model and 

evaluate the performance of the developed solution algorithm. The results indicate that the 

number of transfers constraint changes the components of the transit path set, which strongly 

impacts the passenger flow patterns. The results also show that the capacity constraint affects 

flow patterns, which revises the evaluation of some transit management strategies. The results 

of a real-case transit network further verify the applicability of the developed solution 

algorithm. Overall, the numerical examples depict the importance of capacity and number-of-

transfers constraints in transit equilibrium problems. 

 

2.6 Chapter Summary 
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A frequency-based path flow estimator is proposed to estimate the transit passenger 

origin-destination (OD) matrix in an urban congested transit network. The proposed model not 

only considers the effect of congestion under an equilibrium framework, but also benefits from 

being formulated as a single-level model with the route-section-based network representation. 

Multiple transit data sources are incorporated, including automatic passenger count, automatic 

fare collection and automatic vehicle location data. A path-based diagonalization approach 

embedded with an iterative balancing scheme is developed to solve the model. Case studies are 

conducted to demonstrate the features and applicability of the proposed model and algorithm. 

In transportation (including both traffic and transit) planning and management studies, a 

fundamental input is the origin-destination (OD) trip matrix, which expresses the traffic 

demand between each OD pair (Li et al., 2012; Huang et al., 2016; Chen et al., 2018; Canca et 

al., 2019; An et al., 2020; Xu et al., 2020). However, it is rarely possible to obtain the “true” 

OD matrices directly in practice. A dedicated survey to collect this information would be highly 

labor- and resource-intensive. Many researchers instead focus their efforts on estimating the 

OD matrices based on the limited observations of traffic conditions on the network. 

CHAPTER 3   

FREQUENCY-BASED PATH FLOW ESTIMATOR 

FOR OD DEMAND ESTIMATION IN AN URBAN 

TRANSIT NETWORK 

3.1 Introduction 



45 
 

The OD demand estimation problem is well defined in the case of road (or traffic) 

networks, in which researchers make use of limited observations of traffic network conditions, 

i.e. link traffic counts and historical (or targeted) OD matrices (Carey et al., 1981; Cascetta and 

Nguyen, 1988; Yang, 1995; Yang et al., 2001; Maher et al., 2001). In transit networks, the 

traditional methods of estimating OD matrices are labor-intensive and difficult to implement, 

such as onboard survey and passenger counting at bus stops. With the development of 

electronic technology, observed data on passenger flows in transit networks can increasingly 

be obtained directly from the transit systems. These data principally consist of the onboard 

passenger counts of transit line segments and the smartcard payment data (transactions). Data 

of the first kind are obtained from automatic passenger count (APC) systems, which provide 

information including the boarding and alighting counts at each stop on the route, the time label, 

stop location and so on. Data of the second kind come from both automatic fare collection 

(AFC) and automatic vehicle location (AVL) systems, which provide detailed information on 

individual passengers, e.g. which stop they board at, which line they board and at what time. 

A lot of studies have explored the transit OD demand estimation with the usage of APC, 

AFC and AVL data, including data-based approaches (Barry et al., 2002; Zhao et al., 2007; 

Trépanier et al., 2007; Munizaga and Palma, 2012), uncongested network approaches (Nguyen 

et al., 1988; Wong and Tong, 1998; Nuzzolo and Crisalli, 2001), and bi-level approaches with 

congested choice behavior (Lam et al., 2003; Wu and Lam, 2006). However, it is still unsolved 

that whether there exists a single-level optimization model incorporating APC, AFC, and AVL 

data for OD demand estimation problem in congested transit network. Therefore, this paper 

aims to answer this unsolved question. 

The implementation of these automatic transit-data collection systems in numerous urban 

networks has sparked a surge of interest in estimating transit OD matrices using observed data. 

At first, most studies of transit passenger OD flow estimation were conducted at the route level, 

and the observed data were principally the boarding and alighting counts at each stop acquired 

from APC systems. The most widely used method of OD matrix estimation, iterative 

proportional fitting (IPF), was proposed by Ben-Akiva et al. (1985). The inputs for this method 

are the boarding and alighting counts at every stop along a bus route and a seed OD flow matrix. 

Li and Cassidy (2007) presented an algorithm to estimate not only an OD matrix but also the 

passenger alighting probabilities at every stop on the route. The method’s main advantages are 

3.1.1 Related literature 
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that it does not need a seed matrix and is more computationally efficient than the balancing 

method (i.e., IPF). Ji et al. (2015) proposed a computationally tractable method using both APC 

data and labor-intensive onboard survey data to estimate transit route passenger OD flow 

matrices. Later, Cui (2006) reported that route-level OD matrices could also serve as inputs to 

network-level OD demand estimation methods. Most of the above methods depend on a seed 

OD matrix to obtain high-quality estimates, but a good seed matrix is highly challenging to 

construct. 

Elsewhere, researchers have explored the possibility of obtaining a network-level OD 

matrix directly using the data from AFC and AVL systems (Barry et al., 2002; Zhao et al., 

2007; Trépanier et al., 2007). Munizaga and Palma (2012) presented a method of how to use 

the smartcard and GPS data to estimate a multimodal public transport OD matrix for Santiago, 

Chile. Their method centers on reconstructing passengers’ trip chains from smartcard data by 

estimating the destination points from the information available. To apply methods of this kind, 

some assumptions are needed: (1) after a trip, passengers will return to the same stop from 

which they began that trip; (2) at the end of the day, passengers will return to the stop from 

which they began their first trip of that day; and (3) a criterion of maximum walking distance 

to the next boarding bus stop is used to define the alighting bus stop. AFC and AVL data can 

accurately illustrate individual passengers’ boarding information. However, these methods face 

two drawbacks: (1) not all passengers use a smart card to pay the fare: for example, the 

smartcard penetration rate is approximately 90% in Chicago (Zhao et al., 2007); and (2) not all 

transaction records can be used to infer the alighting stations due to various practical reasons, 

e.g. only a single transaction is recorded, there is a data error or the trip is wrongly estimated 

to begin and end at the same location. The success rates of alighting-stop inference in previous 

studies include 66% by Trépanier et al. (2007), 71% by Zhao et al. (2007), and over 80% by 

Munizaga and Palma (2012). Therefore, the OD trip matrices obtained using AFC and AVL 

data are usually partial (incomplete). 

In contrast to the above methods, which can be classified as data-based, other researchers 

have followed a different approach, using network-based models for transit OD trip matrix 

estimation. Due to the difficulties in modeling passenger route choice behavior in congested 

transit networks, the initial studies of transit OD matrix estimation focused on uncongested 

cases. Nguyen et al. (1988) developed a maximum entropy model for passenger OD matrix 

estimation in frequency-based transit systems, taking into account time information contained 

in the passenger counts. Wong and Tong (1998) also presented a maximum entropy model, but 

theirs was used to estimate the time-dependent passenger matrix in a schedule-based transit 
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network. Nuzzolo and Crisalli (2001) proposed a least-squares model using a schedule-based 

approach. 

Later, with the advent of transit route choice behavior studies, researchers started to 

explore passenger OD matrix estimation in congested transit networks using a bi-level 

programming approach (Lam et al., 2003; Wu and Lam, 2006; Babazadeh et al., 2010). In such 

an approach, the upper level is the conventional OD matrix estimation problem while the lower 

level is the frequency-based transit equilibrium assignment problem. Lam et al. (2003) and Wu 

and Lam (2006) explored the transit OD demand estimation problem using a new frequency-

based transit assignment model with elastic line frequencies (Lam et al., 2002). In their 

approach, it is assumed that the updated passenger counts and historical OD matrices are 

available. Babazadeh et al. (2010) proposed a bi-level model for transit OD matrix estimation 

with a path-based formulation of a strategy-based transit equilibrium assignment problem 

(Babazadeh and Aashtiani, 2005). The critical input to these bi-level methods is a seed (targeted) 

OD matrix, which usually cannot be directly obtained in practice. Moreover, the partial OD 

matrix from a data-based model could not be used in the upper level for these bi-level methods 

because the upper level is usually a generalized least squares problem, which will generate a 

result (i.e., an output matrix) that is as close as possible to the input partial OD matrix. 

 

Table 3.1 Differences between existing transit OD demand estimation models and our model 

Models Input Output Math. model 

Type 
Transit choice 

behavior 
References 

APC 

data 

AFC and 

AVL 

data 

Historical 

OD 

matrices 

Route 

level 

Network 

level 

Single 

level 

Bi-

level 

Data-

based 
- 

Ben-Akiva et 

al., 1985; Li and 
Cassidy, 2007; 

Ji et al., 2015 

 - -  - - - 

Barry et al., 
2002; Zhao et 

al., 2007; 

Trépanier et al., 
2007; Munizaga 

and Palma, 

2012 

-  - -  - - 

Network

-based 

Uncongested 

Nguyen et al., 
1988; Wong 

and Tong, 1998 

 -  -   - 

Nuzzolo and 
Crisalli, 2001 

  - -   - 

Congested 

Lam et al., 

2003; Wu and 

Lam, 2006; 
Babazadeh et 

al., 2010 

 -  -  -  

This  

study 
      - 
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Based on the above literature review, Table 1 summarizes the existing transit OD demand 

estimation models and their differences compared from the model proposed in this study. As 

can be seen, our model makes good use of APC, AFC and AVL data to solve the transit OD 

matrix estimation problem. A flexible network analysis tool, the path flow estimator (PFE), 

was developed by Bell et al. (1997) to conduct OD matrix estimation in road networks with the 

assumption of logit-based stochastic equilibrium assignment. A major advantage of PFE is that 

it allows different data sources to be incorporated into the model. Moreover, the PFE not only 

considers the effect of congestion but also the benefits from being formulated as a single-level 

mathematical problem (Bell and Iida, 1997; Chen et al., 2005, 2009, 2010). 

This chapter proposes a frequency-based PFE for passenger OD matrix in congested urban 

transit networks via incorporating transit passenger route choice behavior and multiple transit 

data sources, i.e. APC, AFC and AVL data. However, we cannot apply the PFE approach to 

transit network directly due to the inconsistency in route choice units. Specifically, in a road 

network, the route choice unit is the elementary path, whereas in our problem, the route choice 

unit is the combination of a set of elementary paths. As described by Spiess and Florian (1989), 

passengers are assumed to follow their individual optimal strategies when making travel 

choices. Based on this assumption, there are two approaches for modeling the strategy: the 

hyperpath-based approach (Nguyen and Pallottino, 1988) and the route-section-based approach 

(de Cea and Fernández, 1993). In this chapter, we apply the route-section-based approach to 

model the passenger choice behavior. The route section is used to address the common lines 

issue, and a route is a sequence of route sections (i.e., a simplified strategy or hyperpath). The 

core of this approach is to apply the concept of transit logit-based stochastic equilibrium 

assignment to account for the effect of congestion at stops along the route section when 

modeling route choice behavior. The observed transit data serve as side constraints in our 

proposed approach. Two types of constraints are included: the onboard passenger counts, 

which can be obtained from APC data, and the partial OD matrix, which can be calculated from 

AFC and AVL data using data-based models (Barry et al., 2002; Zhao et al., 2007; Trépanier 

et al., 2007; Munizaga and Palma, 2012). Subsequently, the diagonalization method is adopted 

to solve the proposed frequency-based PFE for congested transit networks. In each 

diagonalized iteration, the proposed model is reformulated as a convex mathematical 

programming problem, and a path-based partial linearization algorithm embedded with an 

3.1.2 Contribution of this work 
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iterative balancing scheme and a self-regulated averaging (SRA) scheme is developed to solve 

this convex optimization model. 

This subchapter provides a list of the notation used in this chapter unless specified 

otherwise. 

Sets 

𝑁 set of transit stops 

𝐿 set of transit lines 

𝐸 set of transit line segments 

𝐸𝑈 set of transit line segments without observed data 

𝐸𝑀 set of transit line segments with observed data 

𝑆 set of route sections 

𝐴𝑠 set of attractive section line segments associated with route section 𝑠 
𝑂𝐷 set of OD pairs 

𝐾𝑜𝑑 path set between OD pair 𝑜𝑑 

Intermediate variables 

𝑡𝑠 in-vehicle travel time of route section 𝑠 
𝑤𝑠 waiting time of route section 𝑠 
𝑐𝑠 total expected travel time of route section 𝑠 
𝑥𝑠
𝑙  proportion of passengers choosing section line segment 𝑙 associated with route section 𝑠 
𝑡𝑠
𝑙  in-vehicle travel time of section line segment 𝑙 associated with route section 𝑠 
𝑓𝑙 frequency of line 𝑙 (vehicles/min) 

𝜅𝑙 capacity of line 𝑙 (passengers/vehicle) 

𝑣𝑠 passenger flow on route section 𝑠 
𝑣𝑠
𝑙 passenger flow on section line segment 𝑙 associated with route section 𝑠 
𝑣𝑒 passenger flow on transit line segment 𝑒 

𝑞𝑜𝑑 passenger flow between OD pair 𝑜𝑑 

Decision variable 

ℎ𝑘
𝑜𝑑 passenger flow on path 𝑘 between OD pair 𝑜𝑑 

Inputs 

𝜃 dispersion parameter measuring passengers’ perception of transit path cost 

𝐶𝑒 capacity on transit line segment 𝑒 

�̅�𝑒 observed passenger count on transit line segment 𝑒 

𝜖𝑒 percentage of measurement error allowed for the passenger count on transit line segment 𝑒 

�̅�𝑜𝑑 observed partial trip demand of OD pair 𝑜𝑑 

 

With the route-section-based transit network representation in Chapter 2.2.2, the transit 

cost is modeled here. To formulate the path cost, we need an expression for the route section 

cost, which consists of the in-vehicle travel time, the waiting time and the perceived congestion 

3.2 Transit Network Modeling 

3.2.1 Notation 

3.2.2 Route-section-based transit network modeling revisited 
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time. As shown below, we first need to introduce an interim variable, 𝑥𝑠
𝑙 . Based on the network 

representation above, the route section flows are assigned to section line segments in direct 

proportion to their frequencies on route sections, i.e. 

𝑥𝑠
𝑙 =

𝑓𝑙
∑ 𝑓𝑗𝑗∈𝐴𝑠

, ∀𝑙 ∈ 𝐴𝑠 , 𝑠 ∈ 𝑆 (3.1) 

The in-vehicle travel time of route section 𝑠  can then be expressed as the weighted 

summation of the in-vehicle travel time of all of the attractive lines (section line segments) 

associated with route section 𝑠 as: 

𝑡𝑠 =∑ 𝑥𝑠
𝑙𝑡𝑙

𝑙∈𝐴𝑠

, ∀𝑠 ∈ 𝑆 (3.2) 

The waiting time for passengers boarding route section 𝑠 can be expressed as: 

𝑤𝑠 =
𝛼

𝑓𝑠
=

𝛼

∑ 𝑓𝑙𝑙∈𝐴𝑠

, ∀𝑠 ∈ 𝑆 (3.3) 

where the parameter 𝛼 may be chosen to approximate the distribution assumed for the vehicle 

headway (Spiess and Florian, 1989). The value 𝛼 = 1  corresponds to an exponential 

distribution assumed for the vehicle headway and 𝛼 = 0.5 represents a uniform distribution. 

The perceived congestion time of the route section involves the additional waiting time 

due to vehicle congestion, which is a function of its own flow and that of its competing route 

sections. The flow on section 𝑠 is: 

𝑣𝑠 = ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑠 ∈ 𝑆 (3.4) 

 

where the path-section incidence 𝑎𝑠𝑘 equals 1 if section 𝑠 lies on path 𝑘, otherwise 0. 

There are three main groups of passengers competing with section 𝑠: (1) passengers 

boarding at 𝑡𝑎𝑖𝑙(𝑠)  of all other route sections (sharing the same tail node) that use lines 

contained in route section 𝑠, (2) passengers boarding any of the lines belonging to route section 

𝑠 at a node before 𝑡𝑎𝑖𝑙(𝑠) and alighting at ℎ𝑒𝑎𝑑(𝑠) and (3) passengers boarding any of the 

lines belonging to route section 𝑠 at a node before 𝑡𝑎𝑖𝑙(𝑠) and alighting after ℎ𝑒𝑎𝑑(𝑠). Figure 

3.1 shows an example of each type of competing section. Specifically, for route section S4, 

route section S5 is of the first competing type, as it shares the same tail node with S4; route 

section S2 belongs to the second type; and route section S3 belongs to the third type. 

 

 
N1 N2 N3 N4

L1
1 L1

2 L1
3
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(a) Transit network using the line and itinerary description 

 

(b) Transit network using the route-section description 

Figure 3.1 Illustration of competing sections of a route section 

 

Then, the competing section flow of section 𝑠 is: 

�̃�𝑠 = ∑ 𝛿𝑠
�̂� ∑ 𝑣�̂�𝑙
𝑙∈𝐴𝑠∩𝐴�̂��̂�≠𝑠∈𝑆

, ∀𝑠 ∈ 𝑆 (3.5) 

where 𝛿𝑠
�̂�  is the competing section indicator, such that 𝛿𝑠

�̂� = 1  means that section �̂�  is a 

competing section of section 𝑠, and otherwise 𝛿𝑠
�̂� = 0. 

The section line segment flow 𝑣𝑠
𝑙 is determined by: 

𝑣𝑠
𝑙 = 𝑣𝑠𝑥𝑠

𝑙 , ∀𝑙 ∈ 𝐴𝑠, 𝑠 ∈ 𝑆 (3.6) 

Then the perceived congestion time function for route section 𝑠 is expressed as: 

𝜙𝑠(𝐯) = 𝜑𝑠 (
𝜗𝑣𝑠 + 𝜍�̃�𝑠
∑ 𝑓𝑙 𝑙∈𝐴𝑠 𝜅𝑙

)

𝜛

, ∀𝑠 ∈ 𝑆 (3.7) 

where calibration parameters 𝜗, 𝜍, 𝜑𝑠  and 𝜛 are used to model different effects of various 

flows on the perceived congestion time. 

For route section 𝑠, the expected total travel time is given by: 

𝑐𝑠(𝐯) = 𝑡𝑠 + 𝑤𝑠 + 𝜙𝑠(𝐯), ∀𝑠 ∈ 𝑆 (3.8) 

With the expected route section time function, the expected travel time associated with 

path 𝑘 between OD pair 𝑜𝑑 can be expressed as: 

𝑐𝑘
𝑜𝑑(𝐯) =∑𝑎𝑠𝑘𝑐𝑠(𝐯)

𝑠∈𝑆

, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 (3.9) 

 

N1 N2 N3 N4

S1 S4 S6

S2

S3

S5

first competing type of S4

second competing type of S4

third competing type of S4

3.3 Frequency-based Transit Path Flow Estimator 

3.3.1 Framework of transit PFE with APC, AFC, and AVL data 
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This section mainly presents modeling process of the frequency-based path flow estimator. 

After introducing the framework of transit PFE with APC, AFC, and AVL data, the flow 

conservations are introduced. Then, the uncongested and congested transit PFE models are 

proposed, which help to illustrate the modeling process. 

The onboard passenger counts and the observed partial OD trip matrix can serve as two 

kinds of supplementary data for transit OD demand estimation. A schematic of frequency-

based transit PFE with APC, AFC, and AVL data is shown in Figure 3.2. The properties of 

these three kinds of data from automatic data collection systems could be summarized as 

 APC data: line no., bus no., time, boarding count, and alight count; 

 AFC data: smart card ID, tap-in time, line no., bus no., line name; 

 AVL data: line no., bus no., bus stop, arrival/departure time (AD-Time), arrival/departure 

flag (AD-Flag). 

 

 

Figure 3.2 Schematic of frequency-based transit PFE with APC, AFC, and AVL data 

 

Note that neither APC nor AFC data provides the stop information (i.e., location), which 

requires the AVL data to help locate the stop. First, the onboard passenger counts of transit line 

segments are obtained from APC and AVL data, and the observed partial OD trip matrix will 

also be generated from AFC and AVL data based on inference of the passengers’ alighting 
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APC data AVL data AFC data
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3.3.1.1 Overall schematic 
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stops. Based on the route-section-based transit network representation, a frequency-based 

transit PFE for OD estimation is proposed, together with three kinds of side constraints: an 

onboard passenger count constraint for measured line segments, a capacity constraint for 

unmeasured line segments and a partial OD flow matrix constraint. The proposed frequency-

based transit PFE approach yields the following outputs: estimated OD flow matrix, estimated 

transit path flow and estimated transit line segment flow. By combining with the onboard 

passenger counts and the observed partial OD trip matrix, the estimated result improves the 

underspecified and partial issues of the estimated matrix as discussed in Section 3.1. 

Onboard passenger counts of each transit line segment can be obtained from the boarding 

and alighting counts at each stop on the line. Figure 3.3a shows a representative method for the 

detection of boarding and alighting counts at a bus stop using infrared light. Infrared sensors 

are installed at both the entry and exit doors of buses and register whenever a passenger passes 

through either door by detecting the temporary blockage of the light beam. From these boarding 

and alighting counts, the number of passengers on each line segment (or onboard passenger 

count) can be calculated. As illustrated in Figure 3.3b for sequential stops on a bus line, the 

flow on the bus line segment before stop X is �̅�. The boarding and alighting flow at stop X is 

𝐵𝑋 and 𝐴𝑋, while that at stop Y is 𝐵𝑌 and 𝐴𝑌. Thus, the observed onboard passenger count of 

line segment 𝑌𝑍 calculated via the boarding and alighting counts is: 

�̅�𝑌𝑍 = �̅� + 𝐵𝑋 − 𝐴𝑋 + 𝐵𝑌 − 𝐴𝑌 (3.10) 

 

 

 

(a) Automatic passenger count (APC) 

system using infrared sensors 

(b) Number of boarding, alighting and onboard 

passengers 

Figure 3.3 Illustration of a method of deriving onboard passenger counts using APC data 

 

Specifically, when stop X is the starting stop of the transit line (i.e. �̅� = 0), the observed 

onboard passenger count of line segment XY equals the boarding flow at stop X. 

�̅� �̅�𝑌𝑍 
X Y Z

𝐵𝑋 𝐴𝑋 𝐵𝑌 𝐴𝑌

3.3.1.2 Onboard passenger counts 
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Many AFC systems, notably those for bus transit, are access-based (i.e. swipe-on or tap-

on) only and thus only record the stops where passengers board, not record where they alight. 

A well-analyzed form of the transit passenger OD matrix estimation problem is based on 

estimating a passenger’s alighting stop following a sequence of smartcard transactions and 

assuming that the next transaction occurs after alighting (Barry et al., 2002; Zhao et al., 2007; 

Trépanier et al., 2007; Munizaga and Palma, 2012). The inputs for these existing methods, 

which are used to infer passengers’ alighting stops, are obtained from three main types of 

databases: transactions (boarding) from an AFC system, vehicle positions from an AVL system 

and a geocoded representation of a public transport network. Unfortunately, the estimated OD 

matrix is usually partial compared for two reasons: 

(1) Alighting stops cannot be estimated with 100% accuracy due to several potential issues, 

e.g. only a single transaction is recorded, there is a data error or a trip is wrongly estimated to 

begin and end at the same location. The success rates of previous rates include 66% by 

Trépanier et al. (2007), 71% by Zhao et al. (2007) and over 80% by Munizaga and Palma 

(2012). In such cases, not all of the transaction data can be utilized due to missing information 

on the chain linkages. We use the variable 𝜚 to represent the success rate with which the 

transaction data are used to infer the OD matrix, and �̅�𝑜𝑑  for the OD matrix estimated via 

inference of the alighting stops. 

(2) Although smartcard data can be used to estimate the passenger OD matrix, the matrix 

will still be partial even if the success rate 𝜚 reaches 100% because not all passengers use the 

a smartcard for payment. For example, the penetration rate of smartcards in Chicago is close 

to 90% (Zhao et al., 2007), while that in Santiago, Chile is approximately 97% (Beltrán et al., 

2011). We can calculate that the estimated partial matrices in Zhao et al. (2007) and Beltrán et 

al. (2011) capture approximately only 63.9% and 77.6% of the complete matrices, respectively. 

Figure 3.4 shows the relationships between the complete OD demand matrix and the 

various transit data sources: 

(1) Onboard passenger counts from APC data (e.g. infrared sensors) usually reflect the 

characteristics of the complete OD matrix. However, this does not guarantee that we can obtain 

a high-quality OD matrix using only onboard passenger counts to formulate the OD estimation 

3.3.1.3 Observed partial OD trip matrix 

3.3.1.4 Relationship between transit observations and complete OD matrix 
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problem. Such a problem would be underspecified and would have multiple solutions because 

the number of observations (i.e., transit line segments) is generally less than the number of 

variables (i.e., OD pairs).  

(2) Not all passengers use smartcard payment systems, while some smartcard transaction 

records are unusable for various practical reasons. The estimated OD matrix from data-based 

models using AFC and AVL data is usually only a part of the complete matrix. Even if all of 

the smartcard records could be used for estimation, this estimated (observed) OD matrix would 

still be partial due to the incomplete penetration rate of smartcards in urban networks. 

 

 

Figure 3.4 Relationship between the complete OD demand matrix and transit data 

 

The relationship between the OD flows and passenger path flows is expressed as follows: 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑

= 𝑞𝑜𝑑, ∀𝑜𝑑 ∈ 𝑂𝐷 (3.11) 

Let Γ = (𝛾𝑒𝑠) denote the line segment-route section incidence matrix, which equals 1 if 

line segment 𝑒 of line 𝑙 lies on route section 𝑠, otherwise 0. The line segment flow expression 

is: 

AFC data (Passengers using 

smartcard)

Passengers not using 

smartcard
Observed partial 

OD trip matrix

Missing part of OD 

trip matrix (due to 

some transaction records 

not enabling inference 

of alight stop)

Onboard passenger counts

APC data

Fare Collection Data

Complete OD Trip Matrix
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Incomplete OD 
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AFC data

3.3.2 Flow conservation in transit network 
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𝑣𝑒 =∑𝛾𝑒𝑠𝑦𝑙
𝑒𝑥𝑠
𝑙𝑣𝑠

𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (3.12) 

where 𝑦𝑙
𝑒 = 1 means that transit line segment 𝑒 is on transit line 𝑙. 

For simplicity of expression, let �̅�𝑒𝑠 = 𝛾𝑒𝑠𝑥𝑠
𝑙  denote the proportion of passengers choosing 

line segment 𝑒 of line 𝑙 associated with route section 𝑠. The line segment flow 𝑣𝑒 can thus be 

further expressed as: 

𝑣𝑒 =∑�̅�𝑒𝑠𝑣𝑠
𝑠∈𝑆

, ∀𝑒 ∈ 𝐸 (3.13) 

The relationship between line segment flows and path flows can be obtained: 

𝑣𝑒 = ∑ ∑ ∑�̅�𝑒𝑠
𝑠∈𝑆

𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑒 ∈ 𝐸 (3.14) 

The line capacity constraint for the line segments without observed data can be described 

by: 

𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸𝑈 (3.15) 

The constraint for the observed passenger count on a line segment 𝑒 is: 

(1 − 𝜖𝑒)�̅�𝑒 ≤ 𝑣𝑒 ≤ (1 + 𝜖𝑒)�̅�𝑒 , ∀𝑒 ∈ 𝐸𝑀 (3.16) 

The observed partial OD demand matrix �̅�𝑜𝑑 in Section 2.3.2 can serve as supplementary 

(observed) data to estimate the OD trip matrix. In other words, the true OD demand matrix 

should be larger than or equal to this observed partial matrix. Using the success rate 𝜚 and 

penetration rate Υ , the upper bound of the estimated trip matrix is �̅�𝑜𝑑 (𝜚Υ)⁄ . Thus, the 

constraint of the OD trip matrix is: 

�̅�𝑜𝑑 ≤ 𝑞𝑜𝑑 ≤ �̅�𝑜𝑑 (𝜚Υ)⁄ , ∀𝑜𝑑 ∈ 𝑂𝐷 (3.17) 

 

The initial PFE formulation given by Bell and Iida (1997) was for an uncongested private 

car network. Before proposing the frequency-based PFE formulation for a congested transit 

network, we present the uncongested case first. 

When ignoring congestion, the term quantifying the perceived congestion time, 𝜙𝑠(𝐯), 

becomes 0. Then, the travel cost of route section 𝑠 is expressed as the summation of only two 

terms: 

𝑐𝑠 = 𝑡𝑠 + 𝑤𝑠, ∀𝑠 ∈ 𝑆 (3.18) 

Further, the path cost of path 𝑘 between OD pair 𝑜𝑑 can be expressed as: 

3.3.3 Uncongested transit PFE formulation 
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𝑐𝑘
𝑜𝑑 =∑𝑎𝑠𝑘𝑐𝑠

𝑠∈𝑆

, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 (3.19) 

Thus, the frequency-based PFE formulation for an uncongested transit network is as 

follows: 

[T-PFE] 

min
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

+ ∑ ∑ 𝑐𝑘
𝑜𝑑ℎ𝑘

𝑜𝑑

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

 (3.20) 

s.t. 

𝑣𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸𝑈 (3.21) 

(1 − 𝜖𝑒)�̅�𝑒 ≤ 𝑣𝑒 ≤ (1 + 𝜖𝑒)�̅�𝑒 , ∀𝑒 ∈ 𝐸𝑀 (3.22) 

�̅�𝑜𝑑 ≤ 𝑞𝑜𝑑 ≤ �̅�𝑜𝑑 (𝜚Υ)⁄ , ∀𝑜𝑑 ∈ 𝑂𝐷 (3.23) 

ℎ𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (3.24) 

where 

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑

= 𝑞𝑜𝑑, ∀𝑜𝑑 ∈ 𝑂𝐷 (3.25) 

𝑣𝑠 = ∑ ∑ 𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑠 ∈ 𝑆 (3.26) 

𝑣𝑒 = ∑ ∑ ∑�̅�𝑒𝑠
𝑠∈𝑆

𝑎𝑠𝑘ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑒 ∈ 𝐸 (3.27) 

Similar to that in Bell and Iida (1997), the objective function (3.20) also has two terms: 

the maximizes the path flow entropy to spread the travel demand, and the second assigns the 

travel demand on the least-cost paths. A detailed description of the side constraints (3.21)-(3.24) 

and definitional constraints (3.25)-(3.27) can be found in Section 3.3.2. 

 

Proposition 3.1. The distribution of the estimated path flow for [T-PFE] in the optimal solution 

obeys the multinomial logit model. 

Proof. The Lagrange formulation of [T-PFE] with respect to the constraints can be formulated 

as: 
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ℒ =
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

+ ∑ ∑ 𝑐𝑘
𝑜𝑑ℎ𝑘

𝑜𝑑

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

+ ∑ 𝑑𝑒(𝐶𝑒 − 𝑣𝑒)

𝑒∈𝐸𝑈

+ ∑ 𝑙𝑒((1 − 𝜖𝑒)�̅�𝑒 − 𝑣𝑒)

𝑒∈𝐸𝑀

+ ∑ 𝑢𝑒((1 + 𝜖𝑒)�̅�𝑒 − 𝑣𝑒)

𝑒∈𝐸𝑀

+ ∑ 𝑙𝑜𝑑(�̅�𝑜𝑑 − 𝑞𝑜𝑑)

𝑜𝑑∈𝑂𝐷

+ ∑ 𝑢𝑜𝑑(�̅�𝑜𝑑 (𝜚Υ)⁄ − 𝑞𝑜𝑑)

𝑜𝑑∈𝑂𝐷

 

(3.28) 

where 𝑑𝑒, 𝑙𝑒, 𝑢𝑒, 𝑙𝑜𝑑 and 𝑢𝑜𝑑 are the dual variables of constraints (3.21)-(3.23). 

After taking the first-order derivative of ℒ with respect to primal variables ℎ𝑘
𝑜𝑑, we obtain: 

𝜕ℒ

𝜕ℎ𝑘
𝑜𝑑 = 𝑐𝑘

𝑜𝑑 +
1

𝜃
ln ℎ𝑘

𝑜𝑑 − ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

− ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− 𝑙𝑜𝑑 − 𝑢𝑜𝑑 = 0 

(3.29) 

We then have the following path flow expression: 

ℎ𝑘
𝑜𝑑 = exp(𝜃 (−𝑐𝑘

𝑜𝑑 + ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

+ ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

+ ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

+ 𝑙𝑜𝑑 + 𝑢𝑜𝑑)) 

(3.30) 

Thus, the probability of choosing path 𝑘 for OD pair 𝑜𝑑 is: 

𝑝𝑘
𝑜𝑑 =

ℎ𝑘
𝑜𝑑

𝑞𝑜𝑑
=

ℎ𝑘
𝑜𝑑

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑
=

exp (𝜃(−𝑐𝑘
𝑜𝑑 + 𝐽𝑘

𝑜𝑑))

∑ exp (𝜃(−𝑐𝑘′
𝑜𝑑 + 𝐽𝑘′

𝑜𝑑))𝑘′∈𝐾𝑜𝑑

, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (3.31) 

where 𝐽𝑘
𝑜𝑑 = ∑ 𝑑𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑈 + ∑ 𝑙𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 + ∑ 𝑢𝑒 ∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 , ∀𝑘 ∈

𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷. Eq. (3.31) implies that the path flow distribution obeys the multinomial logit 

model. 

This completes the proof.  

When considering congestion, the route-section cost function in general has an 

asymmetric Jacobian. Therefore, the congested transit PFE does not have an equivalent 

mathematical programming formulation. Here we propose a variational inequality formulation 

for the congested transit PFE instead. 

[VI-T-PFE] 

3.3.4 Congested transit PFE formulation 



59 
 

To find an optimal solution ℎ𝑘
𝑜𝑑∗ such that 

∑ ∑ (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (3.32) 

where Ω represents the feasible region, i.e. the region where Eqs. (3.21)-(3.27) hold. 

Letting 𝐅(𝐡) = 𝑐𝑘
𝑜𝑑(𝐡) +

1

𝜃
ln ℎ𝑘

𝑜𝑑  and 𝐡 = [ℎ𝑘
𝑜𝑑], the VI model can be simplified to a 

standard form: 

𝐅(𝐡∗)𝑇(𝐡 − 𝐡∗) ≥ 0, ∀𝐡 ∈ Ω (3.33) 

 

Proposition 3.2. The distribution of the estimated path flow for [VI-T-PFE] in the optimal 

solution follows the multinomial logit model. 

Proof. The first-order conditions (Karush-Kuhn-Tucker (KKT) conditions) for the [VI-T-PFE] 

model are: 

(𝑐𝑘
𝑜𝑑 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 − ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

− ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− 𝑙𝑜𝑑 − 𝑢𝑜𝑑)ℎ𝑘
𝑜𝑑 = 0, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 

(3.34) 

𝑐𝑘
𝑜𝑑 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 − ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

− ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− 𝑙𝑜𝑑 − 𝑢𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷 

(3.35) 

Because ℎ𝑘
𝑜𝑑 > 0, the equation below is satisfied: 

𝑐𝑘
𝑜𝑑 +

1

𝜃
ln ℎ𝑘

𝑜𝑑 − ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

− ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

− 𝑙𝑜𝑑 − 𝑢𝑜𝑑 = 0 

(3.36) 

Then, the analytical expression of the path flow for each OD pair is 

ℎ𝑘
𝑜𝑑 = exp(𝜃 (−𝑐𝑘

𝑜𝑑 + ∑ 𝑑𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑈

+ ∑ 𝑙𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

+ ∑ 𝑢𝑒∑�̅�𝑒𝑠𝑎𝑠𝑘
𝑠∈𝑆𝑒∈𝐸𝑀

+ 𝑙𝑜𝑑 + 𝑢𝑜𝑑)) 

(3.37) 

Thus, the probability of choosing path 𝑘 for OD pair 𝑜𝑑 is given as: 
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𝑝𝑘
𝑜𝑑 =

ℎ𝑘
𝑜𝑑

𝑞𝑜𝑑
=

ℎ𝑘
𝑜𝑑

∑ ℎ𝑘
𝑜𝑑

𝑘∈𝐾𝑜𝑑
=

exp (𝜃(−𝑐𝑘
𝑜𝑑 + 𝐽𝑘

𝑜𝑑))

∑ exp (𝜃(−𝑐𝑘′
𝑜𝑑 + 𝐽𝑘′

𝑜𝑑))𝑘′∈𝐾𝑜𝑑

, ∀𝑘 ∈ 𝐾𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (3.38) 

which indicates that the estimated path flow in the optimal solution follows the multinomial 

logit model. 

This completes the proof.  

This paper proposes both uncongested and congested transit PFE models, where the 

uncongested one is a special case of congested one (see Section 3.4.1 and 3.4.2). Hence, this 

section mainly presents how to solve the congested transit PFE model. Due to the asymmetric 

features of the route-section and path cost functions, we adopt the well-known diagonalization 

method to solve the proposed congested transit PFE formulation [VI-T-PFE] (Florian, 1977). 

The core procedure of this algorithm is to diagonalize the cost function to get a mathematical 

programming (MP) formulation in each diagonalized iteration. The diagonalized PFE 

formulation can then be solved by the partial linearization algorithm embedded with an iterative 

balancing scheme (Chen et al, 2009). 

In this section, we show how the diagonalized [VI-T-PFE] model can be reformulated as 

a convex mathematical programming model for which effective path-based solution algorithms 

are available. To do this, we introduce the following proposition. 

 

Proposition 3.3. When the cost function of the [VI-T-PFE] model is diagonalized, [VI-T-PFE] 

can be reformulated as a convex optimization problem such that 

[MP-T-PFE] 

min∑∫ �̂�𝑠(𝜔)
𝑣𝑠

0

𝑑𝜔

𝑠∈𝑆

+
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

 (3.39) 

subject to Eqs. (3.21)-(3.27). 

Proof. [VI-T-PFE] in Eq. (3.32) can be further expressed as 

∑ ∑ (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (3.40) 

3.4 Solution Algorithm 

3.4.1 Diagonalization of cost functions 
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We separate the term (𝑐𝑘
𝑜𝑑(𝐡∗) +

1

𝜃
ln ℎ𝑘

𝑜𝑑∗) in Eq. (3.40) into two parts, and multiply 

each part by (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗) to get 

∑ ∑ 𝑐𝑘
𝑜𝑑(𝐡∗)(ℎ𝑘

𝑜𝑑 − ℎ𝑘
𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑

∈ Ω 

(3.41) 

For Eq. (3.41), we substitute a route section cost function for the path cost function 

𝑐𝑘
𝑜𝑑(𝐡∗). Then, Eq. (3.31) can be expressed as 

∑ ∑ (∑𝑎𝑠𝑘𝑐𝑠(𝐡
∗)

𝑠∈𝑆

) (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω 

(3.42) 

Further, we can calculate the route section flow based on the summation symbols for all 

paths for one OD pair and for all OD pairs. 

∑( ∑ ∑ 𝑎𝑠𝑘(ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

) 𝑐𝑠(𝐡
∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω 

(3.43) 

Then from Eq. (3.43), Eq. (3.32) can be simplified using the route section and path space 

as follows: 

∑(𝑣𝑠 − 𝑣𝑠
∗)𝑐𝑠(𝐡

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
ln ℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (3.44) 

The route section cost in Eq. (3.44) can be expressed as a function of the route section 

flow, which can be calculated from the path flow. Thus, Eq. (3.32) is finally expressed as below: 

∑(𝑣𝑠 − 𝑣𝑠
∗)𝑐𝑠(𝐯

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
lnℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (3.45) 

At each iteration the 𝑐𝑠(𝐯) is diagonalized at the current solution, yielding a symmetric 

assignment problem. 

∑(𝑣𝑠 − 𝑣𝑠
∗)�̂�𝑠(𝐯

∗)

𝑠∈𝑆

+ ∑ ∑
1

𝜃
lnℎ𝑘

𝑜𝑑∗ (ℎ𝑘
𝑜𝑑 − ℎ𝑘

𝑜𝑑∗)

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀ℎ𝑘
𝑜𝑑 ∈ Ω (3.46) 

where �̂�𝑠(𝐯) is the diagonalized expression of 𝑐𝑠(𝐯). 

Thus, the above symmetric assignment problem has an equivalent convex optimization 

formulation (T-PFE] in Eq. (3.20) is equivalent to the direction finding of the [MP-T-PFE] in 

Eq. (3.39)) 



62 
 

min∑∫ �̂�𝑠(𝜔)
𝑣𝑠

0

𝑑𝜔

𝑠∈𝑆

+
1

𝜃
∑ ∑ ℎ𝑘

𝑜𝑑(ln ℎ𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑜𝑑 𝑜𝑑∈𝑂𝐷

 (3.47) 

subject to Eqs. (3.21)-(3.27). 

This completes the proof.  

The whole framework of the solution algorithm for VI formulation is presented in Figure 

3.5. The solution procedure can be summarized into the following steps: 

Step 0. Initialization. Find an initial feasible solution (�̅�, �̅�). 

Step 1. Diagonalize 𝑐(𝐯) at (�̅�, �̅�). 

Step 2. Solve problem [MP-T-PFE] to get (�̂�, �̂�). 

Step 3. Stop test. If (�̅�, �̅�) and (�̂�, �̂�) are sufficiently close, stop; otherwise: 

Step 4. Make: (�̅�, �̅�) ← (�̂�, �̂�), and return to Step 1. 

 

 

Figure 3.5 Framework of the solution algorithm for [VI-T-PFE] 

 

To solve the subproblem in Step 2 (“Convex optimization problem” in Figure 3.5), we 

develop the path-based partial linearization algorithm combined with an SRA step-size scheme 

(Liu et al., 2009), embedded with an iterative balancing scheme and column generation 

procedure. The line search step determines how far the current solution should move in the 

Sub problemMain problem

Initialize

Diagonalize

Convex 

optimization 

problem

Set new solution 

with last solution

Converge?

No

OutputYes

Initial solution 

with cost from 

main problem

Update cost

Auxiliary solution

Move to get new 

solution

Converge? NoYes

Iterative balancing scheme

Initialize

Update adjustment 

factors for dual 

variables

Update dual 

variables

Compute primal 

dual variables

Converge? NoYes

3.4.2 Overall solution procedure 
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search direction. The new solution is found as a convex combination of the solution of the 

above subproblem and the current solution. Note that in Step 2, the SRA method determines 

the step size based on the distance between auxiliary point �̃�𝑖 and current solution 𝐡𝑖, due to 

the fact that �̃�𝑖 → 𝐡∗. The rules for calculating the step size are as follows: 

𝜎𝑖 = 1 𝛽𝑖⁄  (3.48) 

𝛽𝑖 = {
𝛽𝑖−1 + 𝜆1,  𝑖𝑓 | 𝐡𝑖 − �̃�𝑖| ≥ | 𝐡𝑖−1 − �̃�𝑖−1|

𝛽𝑖−1 + 𝜆2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.49) 

where 𝜆1 > 1 and 0 < 𝜆2 < 1. 

This direction finding problem in Step 2 (see the algorithm in Figure 3.6) must be solved 

by the iterative balancing scheme used in the original PFE model (Bell and Iida, 1997; Bell et 

al., 1997) due to the large number of inequality side constraints. The iterative balancing scheme 

is used with a given path set and fixed cost, and its core procedure is to adjust dual variables 

related to the side constraints and update the corresponding primal variables at each iteration. 

 

Algorithm. Iterative balancing scheme 

1: Initialization.  

 

(a) Set 𝑗 = 0 ; (𝑑𝑒)
𝑗 = 0 , (𝑙𝑒)

𝑗 = 0 , (𝑢𝑒)
𝑗 = 0  for all transit line segments; (𝑙𝑜𝑑)

𝑗
= 0 , 

(𝑢𝑜𝑑)
𝑗
= 0 for all OD pairs. 

(b) compute primal variables: 

(ℎ𝑘
𝑜𝑑)

𝑗
= exp (𝜃(−𝑐𝑘

𝑜𝑑)) , ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷  

(𝑣𝑒)
𝑗 = ∑ �̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘(ℎ𝑘

𝑜𝑑)
𝑗

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆 , ∀𝑒 ∈ 𝐸  

2: while 𝑗 ≤ 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 and 𝜀 ≥ 𝜂 and 𝜀 < 𝜂 do 

3:     for each transit line segment 𝑒 do 

 

        # update dual variables 

  (𝑑𝑒)
𝑗+1 = min {0, (𝑑𝑒)

𝑗 +
1

𝜃
ln

𝐶𝑒
(𝑣𝑒)

𝑗} 

        (𝑙𝑒)
𝑗+1 = max {0, (𝑙𝑒)

𝑗 +
1

𝜃
ln
(1−𝜖𝑒)�̅�𝑒
(𝑣𝑒)

𝑗 } 

        (𝑢𝑒)
𝑗+1 = min {0, (𝑢𝑒)

𝑗 +
1

𝜃
ln
(1+𝜖𝑒)�̅�𝑒
(𝑣𝑒)

𝑗 } 

        # update primal variables 

(ℎ𝑘
𝑜𝑑)

𝑗+1
= exp (𝜃 (−𝑐𝑘

𝑜𝑑 + ∑ (𝑑𝑒)
𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑈 +∑ (𝑙𝑒)

𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 +

         ∑ (𝑢𝑒)
𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 + (𝑙𝑜𝑑)

𝑗
+ (𝑢𝑜𝑑)

𝑗
)) , ∀𝑘 ∈ 𝐾𝑜𝑑 , 𝑜𝑑 ∈ 𝑂𝐷  

(𝑣𝑒)
𝑗+1 = ∑ �̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘(ℎ𝑘

𝑜𝑑)
𝑗+1

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆 , ∀𝑒 ∈ 𝐸  

4:     for each OD pair 𝑜𝑑 do 
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        (𝑞𝑜𝑑)
𝑗
= ∑ (ℎ𝑘

𝑜𝑑)
𝑗+1

𝑘∈𝐾𝑜𝑑  

# update dual variables 

        (𝑙𝑜𝑑)
𝑗+1

= max {0, (𝑙𝑜𝑑)
𝑗
+
1

𝜃
ln

�̅�𝑜𝑑

(𝑞𝑜𝑑)
𝑗} 

        (𝑢𝑜𝑑)
𝑗+1

= min {0, (𝑢𝑜𝑑)
𝑗
+
1

𝜃
ln
�̅�𝑜𝑑 (𝜚Υ)⁄

(𝑞𝑜𝑑)
𝑗 } 

         # update primal variables 

        (ℎ𝑘
𝑜𝑑)

𝑗+1
= exp (𝜃 (−𝑐𝑘

𝑜𝑑 + ∑ (𝑑𝑒)
𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑈 +∑ (𝑙𝑒)

𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 +

         ∑ (𝑢𝑒)
𝑗+1∑ �̅�𝑒𝑠𝑎𝑠𝑘𝑠∈𝑆𝑒∈𝐸𝑀 + (𝑙𝑜𝑑)

𝑗+1
+ (𝑢𝑜𝑑)

𝑗+1
)) , ∀𝑘 ∈ 𝐾𝑜𝑑 

        (𝑞𝑜𝑑)
𝑗+1

= ∑ (ℎ𝑘
𝑜𝑑)

𝑗+1

𝑘∈𝐾𝑜𝑑  

    (𝑣𝑒)
𝑗+1 = ∑ �̅�𝑒𝑠 ∑ ∑ 𝑎𝑠𝑘(ℎ𝑘

𝑜𝑑)
𝑗+1

𝑘∈𝐾𝑜𝑑𝑜𝑑∈𝑂𝐷𝑠∈𝑆 , ∀𝑒 ∈ 𝐸 

    𝜀 = max{
max
𝑒∈𝐸

{|(𝑑𝑒)
𝑗+1 − (𝑑𝑒)

𝑗|, |(𝑙𝑒)
𝑗+1 − (𝑙𝑒)

𝑗|, |(𝑢𝑒)
𝑗+1 − (𝑢𝑒)

𝑗|} ,

max
𝑜𝑑∈𝑂𝐷

{|(𝑙𝑜𝑑)
𝑗+1

− (𝑙𝑜𝑑)
𝑗
| , |(𝑢𝑜𝑑)

𝑗+1
− (𝑢𝑜𝑑)

𝑗
|}

} 

    𝑗 ← 𝑗 + 1 

5: end while 

6: where 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum iteration number and 𝜂, 𝜂 ∈ 𝑅+ are predetermined tolerance. 

Figure 3.6 Algorithm of the iterative balancing scheme 

Three networks are used to demonstrate the features of the proposed model and the 

effectiveness of the solution algorithm. The first is a small example transit network, which is 

used to illustrate the correctness of the developed solution algorithm. The second one is a 

hypothetical transit network based on the Sioux Falls network, which is used to evaluate the 

performance of the proposed model with different configurations of onboard passenger counts 

and observed partial OD trip matrices from transit APC and AFC data. And the third is the 

transit network in Winnipeg, Canada, the purpose of which is to show the applicability of the 

proposed model and solution algorithm. In these three examples, the onboard passenger counts 

are assumed to be the values generated by the logit-based transit assignment model (See 

Chapter 2), and the observed partial OD trip matrices are assumed to capture a specific 

percentage of the true demand. The specific configuration can be found in each case. The 

measurement error 𝜖𝑒 allowed for the passenger count on transit line segment 𝑒 is set as 5% 

for all measured transit line segments in these three examples. Finally, the parameter values 

are set as follows: 𝛼 = 1, 𝜃 = 0.1, 𝜑 = 10, and 𝜗 = 𝜍 = 𝜛 = 1. 

3.5 Numerical Experiments 
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(a) Network representation using line and itinerary description 

 

(b) Network representation using route sections 

Figure 3.7 Example of a small transit network 

 

Table 3.2 Path information for each OD pair 

OD Path 

1-4 

1 S1 

2 S2, S5 

3 S3, S6 

2-4 1 S5 

3-4 1 S6 

 

The network created by De Cea and Fernández (1993) is adopted to illustrate the 

performance of the proposed model for OD demand estimation in a congested transit network 

(Figure 3.7a). It consists of four transit lines (𝐿1, 𝐿2, 𝐿3 and 𝐿4) and three OD pairs (1-4, 2-4 

and 3-4). Figure 3.7b is an alternative representation of the same small example network in 
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3.5.1 Small network 

3.5.1.1 Network settings 
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terms of route sections, in which case the OD pairs are 1-4, 2-4  and 3-4. The basic data of the 

transit lines in the small example network and the basic characteristics of the route-section-

based network are also given in Figure 7. The path information of each OD pair is shown in 

Table 3.2. This example is designed to demonstrate the performance of the proposed method. 

The tests are based on the following inputs. The true passenger OD demands are 200 

(passengers/hour) for 1-4, 20 for 2-4 and 100 for 3-4. The “observed” transit line segment flows 

are generated through assigning the true passenger OD demands on the example transit network 

using the logit-based transit assignment. All of the transit line segments are assumed to have 

measured passenger counts in this example. 

To assess the combined effect of the onboard passenger counts and the observed partial 

OD flows on the estimation results, we design four scenarios: 

 Scenario I: no observed partial OD flows and all onboard passenger counts 

 Scenario II: 92% of true demand as observed partial OD flows and all onboard passenger 

counts 

 Scenario III: 94% of true demand as observed partial OD flows and all onboard passenger 

counts 

 Scenario IV: 96% of true demand as observed partial OD flows and all onboard passenger 

counts 

 

Table 3.3 Estimated transit OD flows 

 
OD demands (pass/hr) 

RMSE 
𝑞1−4 𝑞2−4 𝑞3−4 

 True 200 20 100  

Scenario I 
Partial OD - - -  

Estimated 190 20.377 93.623 6.85 

Scenario II 
Partial OD 192 19.2 96  

Estimated 192 19.2 96 5.18 

Scenario III 
Partial OD 188 18.8 94  

Estimated 190 20 94 6.73 

Scenario IV 
Partial OD 184 18.4 92  

Estimated 190 20.377 93.623 6.85 

 

Table 3.4 Estimated transit line segment flows 

 
Transit line segment flows (pass/hr) 

𝑣𝐿11  𝑣𝐿21  𝑣𝐿22  𝑣𝐿31  𝑣𝐿32  𝑣𝐿41  

 Measured 111.513 88.487 61.911 46.576 73.561 134.926 

Scenario I 
Estimated 105.937 84.063 60.192 44.247 69.883 128.18 

ARE 5.00% 5.00% 2.78% 5.00% 5.00% 5.00% 

3.5.1.2 Results of small network experiment 
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Scenario 
II 

Estimated 106.443 85.557 59.739 45.017 70.974 129.783 

ARE 4.55% 3.31% 3.51% 3.35% 3.52% 3.81% 

Scenario 
III 

Estimated 105.937 84.063 59.815 44.247 69.883 128.18 

ARE 5.00% 5.00% 3.39% 5.00% 5.00% 5.00% 

Scenario 
IV 

Estimated 105.937 84.063 60.192 44.247 69.883 128.18 

ARE 5.00% 5.00% 2.78% 5.00% 5.00% 5.00% 

 

Table 3.3 presents the estimated OD matrices for the four scenarios, together with the 

observed partial OD flows. The root mean square error (RMSE) between the estimated OD 

flows and true OD demands is used to evaluate the estimated results. The scenarios can be 

ranked from lowest to highest RMSE as follows: Scenario II, Scenario III and Scenarios I and 

IV. Scenarios I and IV obtain the same estimated OD flows because the observed partial OD 

trip matrices in Scenario IV are too poor-quality to improve the estimated results, while only 

the onboard passenger counts have an effect on the estimated results same as that in Scenario 

I. Scenario II obtains the best result because the estimated OD trip matrices are equal to the 

observed partial OD flows due to the high quality of the observed partial OD flows and no 

effect of onboard passenger counts. The performance of Scenario III lies between those of 

Scenario II and Scenarios I/IV because both the onboard passenger counts and observed partial 

OD flows affect the estimated results. To demonstrate the accuracy of the estimated results, 

Table 4 presents the estimated results of transit line segment flows for all scenarios. The values 

of absolute relative error (ARE) are all in the interval of [0, 5%], which is consistent with the 

predetermined measure error 𝜖𝑒. 

The highway network of Sioux Falls (http://www.bgu.ac.il/~bargera/tntp/), shown in 

Figure 3.8, has 76 directed links and 24 nodes on which the itineraries of 10 lines (i.e., 20 

itineraries) are defined (Sun and Szeto, 2018). It is assumed that all of the in-vehicle 

movements on the same highway link have identical travel times. The information of the 

frequencies, capacities and stop sequences of the lines is given in Table 3.5. The travel time of 

transit vehicles on the road network is assumed to equal that of private cars. Table 3.6 gives 

the details of 32 OD pairs with known and positive demands. Again, the counted flows are 

generated via assigning the true demands on the corresponding transit network using the logit-

based transit assignment model. The observed partial OD matrix is obtained by multiplying the 

true demand by a scaling factor (e.g. 0.85). The product of the success rate and penetration rate 

3.5.2 Medium-size network 

3.5.2.1 Network settings 

http://www.bgu.ac.il/~bargera/tntp/
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of using smartcards is set as 0.7. The transit path set is generated by adopting the generation 

algorithm in Chapter 2.3. The maximum number of transfers is 2, and the maximum number 

of paths between each OD pair is 30. 

 

  

(a) Road network (b) Transit network 

Figure 3.8 Sioux-Falls road and transit networks 

 

Table 3.5 Transit line data for Sioux Falls network 

Line Line ID 
Frequency 

(vehicle/hr) 

Capacity 

(pass/vehicle) 
Stop sequence 

1 
1 

10 50 
4 11 14 23 24 

2 24 23 14 11 4 

2 
3 

10 50 
1 3 12 13 24 

4 24 13 12 3 1 

3 
5 

10 50 
11 14 23 24 13 

6 13 24 23 14 11 

4 
7 

12 50 
8 16 17 19 20 21 22 23 

8 23 22 21 20 19 17 16 8 

5 
9 

10 50 
7 8 16 18 20 

10 20 18 16 8 7 

6 
11 

10 50 
14 15 19 20 22 23 

12 23 22 20 19 15 14 

7 
13 

20 50 
2 6 8 9 10 11 12 

14 12 11 10 9 8 6 2 

8 15 20 50 4 5 9 10 17 19 20 

1

3 4 5 6

2

9 8 7

12 11 10 16 18

17

14 15 19

23 22

13 24 21 20

1

3 4 5 6

2

9 8 7

12 11 10 16 18

17

14 15 19

23 22

13 24 21 20

Line 2

Line 1

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10
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16 20 19 17 10 9 5 4 

9 
17 

20 50 
10 16 17 19 20 21 24 

18 24 21 20 19 17 16 10 

10 
19 

20 50 
1 3 4 5 9 10 15 19 20 

20 20 19 15 10 9 5 4 3 1 

 

Table 3.6 True demand matrix for Sioux Falls 

OD pair 
Demand 

(pass/hr) 
OD pair 

Demand 

(pass/hr) 
OD pair 

Demand 

(pass/hr) 
OD pair 

Demand 

(pass/hr) 

(1 - 13) 200 (3- 13) 200 (13 - 1) 200 (21 - 1) 200 

(1 - 20) 200 (3 - 20) 200 (13 - 2) 200 (21 - 2) 200 

(1 - 21) 200 (3 - 21) 200 (13 - 3) 200 (21 - 3) 200 

(1 - 24) 200 (3 - 24) 200 (13 - 4) 200 (21 - 4) 200 

(2 - 13) 200 (4 - 13) 200 (20 - 1) 200 (24 - 1) 200 

(2 - 20) 200 (4 - 20) 200 (20 - 2) 200 (24 - 2) 200 

(2 - 21) 200 (4 - 21) 200 (20 - 3) 200 (24 - 3) 200 

(2 - 24) 200 (4 - 24) 200 (20 - 4) 200 (24 - 4) 200 

 

Four scenarios are designed to illustrate the performance of the proposed model and its 

dependence on the availability of count information for the transit line segments and observed 

partial OD trip matrices: 

 Scenario I: using the count information of all of the transit line segments as the available 

counts 

 Scenario II: using the count information of the 50% of the transit line segments with the 

most counted flows 

 Scenario III: Scenario I with observed partial OD trip matrices 

 Scenario IV: Scenario II with observed partial OD trip matrices 

Scenarios I and II are designed to compare the effect of the degree of count information 

availability, and Scenarios III and IV illustrate the effect of including observed partial OD trip 

matrices. Figure 3.9 shows the estimation results of these four scenarios. In general, the 

scenarios with observed partial OD trip matrices (Scenarios III and IV) yield better results than 

those without (Scenarios I and II). Specifically, the RMSEs between each scenario I and the 

true demand are 59.487, 87.345, 28.813 and 29.089 for Scenarios I, II, III and IV, respectively. 

We also observe that the scenarios with the count information of all transit line segments 

(Scenarios I and III) yield better results than those with only half of this information (Scenarios 

II and IV). Figure 3.10 and 3.11 display the estimated transit line segment flows of line 4 for 

these four scenarios. For the scenarios with the count information of all of the transit line 

3.5.2.2 Effect of data availability on the estimated results 
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segments (Scenarios I and III), the estimated transit line segment flows remains within the [-

5%, +5%] area of the observed counts. However, for Scenarios II and IV, some of the estimated 

segment flows fall outside the [-5%, +5%] area of the observed counts. These transit line 

segments are among those for which the count information is not included in the side 

constraints, so the observed data are not available to minimize the error. 

 

 

(a) Comparison of estimation accuracy between Scenarios I and III 

 

(b) Comparison of estimation accuracy between Scenarios II and IV 

Figure 3.9 Estimation of four scenarios on the Sioux Falls network 
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(a) Scenario I (b) Scenario II 

Figure 3.10 Estimated vs. observed line segment flow of transit line 4 (both directions, 

Scenario I and II) 

 

  

(a) Scenario III (b) Scenario IV 

Figure 3.11 Estimated vs. observed line segment flow of transit line 4 (both directions, 

Scenario III and IV) 

 

This section mainly examines the effect of different values of the observed OD trip matrix 

on the estimation. We vary the value of the partial OD trip matrix obtained from AFC data 

from 130 to 180 in intervals of 10 (pass/hr). Figure 3.12 displays the RMSE values of the 

estimated OD flows with different values of the observed partial OD trip matrix. The estimation 

results improve with increasing values of the partial OD trip matrix. This is expected because, 

in our proposed model, the observed partial OD trip matrix is used as a side constraint to obtain 
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3.5.2.3 Effect of different levels of the observed partial OD trip matrix 
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the optimal solutions. When the matrix is poor-quality, the error bound within which the 

estimated results fall is large, which increases the probability of inaccurate results. 

 

 

Figure 3.12 Effect of different values of the observed partial OD trip matrix 

 

As the number of transfers is accounted for in the transit path set generation, we examine 

three path set strategies with different numbers of transfers. The maximum number of paths for 

all three strategies is 20. 

 Strategy I: maximum of one transfer 

 Strategy II: maximum of two transfers 

 Strategy III: no maximum number of transfers 

 

3.5.2.4 Effect of number of transfers 
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Figure 3.13 Effect of the number of transfers on the estimation results 

 

Figure 3.13 compares the estimated OD flows obtained from three different path sets with 

the above three strategies. As expected, Strategy II performs the best because the observations 

of partial OD trip matrices and onboard passenger counts are generated by logit-based transit 

assignment model using strategy II. Interestingly, Strategy III performs only slightly worse 

than Strategy II, while Strategy I performs much worse than Strategies II and III. Because 

Strategy I allows a maximum of one transfer for the transit path, the transit path set narrowed 

considerably, which has a major effect on the resulting flow patterns. 

This subchapter applies the proposed model to a real-world transit network in the city of 

Winnipeg, Canada. Shown in Figure 3.14, the transit network is extracted from Emme V4.3.2. 

It consists of 130 transit lines, 4187 transit line segments and 924 transit stops. The number of 

origins is 106, and that of OD pairs is 5303. To connect the origins and the transit stops, the 

network also contains 803 walking segments. After conducting the route-section network 

construction, the network consists of 44408 route sections, in which each walking segment is 

seen as a special case of a transit route section with the cost set as 0. The solution algorithm is 

implemented in Microsoft Visual Studio 2015 and run on a 2.7 GHz processor with 20.00 GB 

of RAM. 

3.5.3 Large network 
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The transit line segments with volume/capacity (V/C) ratio larger than 0.1 are included as 

the observation constraints. The observed demand inferred from smart card data is assumed to 

be 85% of the true demand. The product of the transaction record use rate 𝜚 and smartcard 

penetration rate Υ is again assumed to be 0.7. Thus, the upper bound of the estimated demand 

is 1.214 times the true demand. 

 

 

Figure 3.14 Winnipeg transit network: different colors denote different lines 

 

To assess the agreement between the estimated and observed values, we provide a scatter 

plot in Figure 3.15 to compare the transit line segment flows. As can be seen, most of the 

estimated transit line segment flows fall within the area of [-5%, +5%] of the observed counts 

(i.e. the light blue dashed line at 45° represents that estimations equal observations), and the 

estimated OD flow is also within the error bound of the true demand (determined by the 

observed partial OD flow and the success rate-dependent and penetration rate-dependent upper 

bound). 

Figure 3.16 displays the values of ARE for the estimated OD trip matrices. Compared 

with the true demand, 31.59% of the OD pairs reach the lower bound of the estimated demand 

constraints (ARE = 0.15), and 55.48% reach the upper bound (ARE = 0.2143). This illustrates 

Streets
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other colors)

Centroids

Transit stops (same 

for other colors)
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again that the estimated OD flows are mostly confined within the area of lower and upper 

bounds. However, the estimated results for 12.94% of the OD pairs are below the upper bound 

or above the lower bound, which implies that the estimated results would improve with the 

inclusion of the observed onboard passenger counts of the transit line segments. Of course, the 

performance would then depend on the quality of the observed OD flows and onboard 

passenger counts of line segments, but this does not affect the applicability of the proposed 

model. Moreover, the RMSE of the estimated results is 1.1602, which is relatively acceptable. 

 

  

Figure 3.15 Comparison of the observed and estimated line segment flows for the Winnipeg 

network 

 

 

Figure 3.16 Distribution of the absolute relative error of demand estimation 
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In this chapter, we propose a frequency-based PFE framework for OD trip matrix 

estimation in transit networks. A frequency-based transit PFE formulation in variational 

inequality form is proposed, incorporating observed partial OD demand matrices and onboard 

passenger flow observations as side constraints. The observed partial OD demand matrix is 

inferred from the smartcard (AFC) data together with AVL data based on inference of the 

alighting stops, while the observed onboard passenger flow is calculated from APC data and 

AVL data. To solve the proposed model, the diagonalization method is adopted, and the 

diagonalized subproblem is solved by a path-based partial linearization solution algorithm 

embedded with an iterative balancing scheme to handle the various side constraints.  

Numerical examples are provided to illustrate the performance of the proposed model and 

its applicability in a real-world transit network. The results show that the configurations of 

onboard passenger counts and observed partial OD flows affect the estimated results. Overall, 

the results of a large-network indicate that the estimation of OD flows can be improved by 

using onboard passenger counts and observed partial OD flows together. 

To the best knowledge of the authors, this is the first attempt to build a framework 

integrating congested transit choice behavior, APC data and AFC data to estimate transit OD 

flow. The model presented in this chapter is mainly designed for transit network-level OD flow 

estimation. Of course, route-level estimation could be seen as a special case of our proposed 

model. Although the numerical examples in this chapter do not use real APC and AFC data, 

this does not affect the applicability of the proposed model, because real APC and AFC data 

can be transformed to the onboard passenger counts and observed partial OD trip matrices in 

real-world applications. 

 

3.6 Chapter Summary 
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This paper proposes an approach to estimate multi-modal origin-destination (OD) trip 

matrices in urban transportation networks. The model, called multi-modal path flow estimator 

(MM-PFE), is formulated as a variational inequality (VI) problem based on a single-level 

structure; moreover, it incorporates limited available observations (i.e., road link traffic counts, 

onboard passenger counts of bus and metro line segments, the mode-specific target OD demand, 

and zonal production and attraction) as side constraints. The interactions of private cars and 

bus vehicles, car and transit mode choice behaviours, and mode similarity are modeled in the 

congested network. A nested logit model is adopted for the mode choice, and a multinomial 

logit model is used for the route choice. To solve the MM-PFE problem, a diagonalization 

approach is adopted; in each diagonalized iteration, the VI-based MM-PFE problem is 

reformulated as a convex optimization problem, which is solved using a developed path-based 

partial linearization algorithm. To handle various inequality/equality side constraints, a three-

layer iterative balancing scheme is developed to obtain the adjustment factors for updating dual 

variables based on the duality theory. Finally, a computational test on the proposed model and 

the developed solution algorithm is conducted using data from the hypothetical multi-modal 

transportation network of Sioux Falls. 

CHAPTER 4   

MULTI-MODAL PATH FLOW ESTIMATOR FOR 

ESTIMATING OD DEMAND IN URBAN 

TRANSPORTATION NETWORKS 
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Multi-modal transportation provides people with multiple substitutable modes of travel 

(e.g., car, metro, bus) for between their origins and their destinations, and it has become 

increasingly popular in most cities around the world. As a sustainable alternative model to 

private transport, public transport plays an important role in travel demand sharing in many 

large cities. For example, in Hong Kong, approximately 90% of daily trips are made using 

multiple public transport modes. The prevalence of public transport demonstrates the 

importance of conducting multi-modal transportation network analyses, such as transport 

policies evaluation, for urban transportation planning and management. However, these 

analyses are primarily focused on multi-modal travel demand forecasting (Oppenheim, 1995; 

Kitthamkesorn et al., 2016; Wang et al., 2018). For this forecasting, the origin-destination (OD) 

trip table is a critical input that can rarely be directly obtained from the real world. The quality 

of the OD demand has an important impact on travel demand model accuracy. 

In the literature, almost all of the existing OD demand estimation models focus on 

estimating the OD matrix of a single mode for urban transportation systems. Several studies 

have been conducted on traffic and transit OD demand estimations, as seen below: 

 For traffic OD demand estimation in road networks, bi-level models (Fisk, 1988; Yang, 

1995; Yang et al., 2001; Lundgren and Peterson, 2008) and path flow estimators (PFEs) 

(Bell and Iida, 1997; Chen et al., 2005, 2009, 2010) are the two most used types of 

methods. Regarding bi-level models, in the upper-level, the travel demand matrix is 

estimated using a least-squares formulation, generalized least-squares function, or 

maximum likelihood/entropy function, while in the lower-level, the traffic assignment 

problem is modeled with the user equilibrium principle. The critical drawback of these 

models is that the heuristic solution algorithms cannot necessarily converge to the global 

optimal solution. Regarding the path flow estimator (PFE), the multinomial logit-based 

stochastic user equilibrium principle is adopted, and its solution algorithm can converge 

to a unique global optimal solution, fundamentally owing to the single-level structure. 

 For transit OD demand estimation, the methods can be classified into data-based models 

(Barry et al., 2002; Zhao et al., 2007; Trépanier et al., 2007; Munizaga and Palma, 2012) 

and network-based models (Lam et al., 2003; Wu and Lam, 2006; Babazadeh et al., 2010). 

The data-based models use automatic passenger count data, automatic fare collection data, 

and automatic vehicle location data to estimate a demand matrix via trip chain 

4.1 Introduction 
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reconstruction. However, these models can only obtain an incomplete demand matrix 

owing to the penetration rate of smartcards and the success rate of alighting stops 

identifications. Regarding the network-based model, bi-level formulations with the same 

structure as traffic OD demand estimation models are widely used. 

Even though the mode-specific OD demand can be independently estimated, the mode 

choice behavior can rarely be guaranteed, e.g. multinomial logit (MNL) model (Oppenheim, 

1995; Wu and Lam, 2003; Wang et al., 2018), nested logit (NL) model (Ben-Akiva and Lerman, 

1985; Kitthamkesorn et al., 2016), cross-nested logit model (Vovsha, 1997) and nested weibit 

model (Kitthamkesorn and Chen, 2017). Mode choice is one of the most critical components 

of the travel demand modeling process, whereby the OD demand is split into trips using car, 

transit, or other emerging travel modes (e.g., ridesharing platforms). Forecasting the mode-

specific travel demand independently will ignore the interaction of vehicles from different 

modes (e.g., private cars and bus vehicles) on the road network. This kind of interaction will 

affect the travel cost (disutility) and consequently influence people’s degree of satisfaction with 

the mode choice. This implies that we cannot simply conduct a mode-specific network 

equilibrium analysis independently in a multi-modal transportation system. Thus, systematic 

demand modeling methods are needed to estimate the urban multi-modal travel demand. 

However, a few studies have focused on the estimation of multi-modal OD matrices. The 

current practices in estimating multi-modal OD matrices use a four-step model based on trip 

rates; a sequential framework consisting of trip generation, trip distribution, modal split and 

traffic assignment is adopted. This practical sequential procedure has several drawbacks: (1) it 

requires iterative feedback mechanisms to obtain consistent solutions of various flow patterns 

(e.g. OD demand, mode-specific OD demand, mode-specific path flow, link flow) at different 

spatial levels; (2) it cannot utilize the information contained in the observations; and (3) its 

operation usually requires a lengthy calibration process and specialized technical staffs. 

Furthermore, with the concept of combined network equilibrium, García-Ródenas and Marín 

(2009) proposed a calibration and demand adjustment model based on bi-level programming 

for the simultaneous estimation of an OD matrix and its parameters. Owing to the poor 

mathematical properties of the bi-level model, the authors developed a heuristic column 

generation algorithm by reformulating the bi-level model into a single-level one. Unfortunately, 

the heuristic nature of the solution algorithm still cannot be ignored, and the algorithm does 

not obtain a global optimal solution. 

Therefore, this paper aims to explore the multi-modal OD matrix estimation problem via 

a single-level model. Specifically, we propose an NL-based multi-modal path flow estimator 
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(MM-PFE) to estimate the OD matrix in an urban congested transportation network. The 

interaction of bus vehicles and private cars on the road network is considered for travel cost 

modeling, and strategy-based transit behavior is incorporated for the transit component. 

Moreover, various kinds of data sources are incorporated to estimate the OD trip matrix, 

namely zonal production and attraction flows, a target OD mode-specific trip table, and mode-

specific link flow observations. These data sources will serve as side constraints, which will 

help to reproduce the flow patterns according to the observations. 

An NL model is used for the mode choice to handle the mode similarity issue, and an 

MNL model is used for the route choice. Owing to the asymmetric cost function, the MM-PFE 

is formulated as a variational inequality (VI) problem. Then, a diagonalized approach is 

adopted to solve the VI formulation of the MM-PFE, and the diagonalized convex optimization 

problem is solved using a path-based partial linearization algorithm embedded with a self-

regulated averaging scheme and iterative balancing scheme. 

The contributions of this paper can be summarized as follows: (a) an NL-based PFE for 

urban multi-modal OD demand estimation problem is proposed; (b) a diagonalization 

algorithm with a three-level iterative balancing scheme is developed to solve the MM-PFE; (c) 

the proposed model and developed algorithm are tested in the hypothetical multi-modal 

transportation network of Sioux Falls. 

This subchapter provides a list of notation used in this chapter unless otherwise specified. 

Sets 

𝑂 set of origins, 𝑂 ⊆ 𝑁 

𝐷 set of destinations, 𝐷 ⊆ 𝑁 

𝑂𝐷 set of origin-destination (OD) pairs, 𝑜𝑑 ⊆ 𝑂𝐷 

𝑈𝑜𝑑 set of nests connecting OD pair 𝑜𝑑 

�̌�𝑢
𝑜𝑑 set of modes among nest 𝑢 connecting OD pair 𝑜𝑑, �̌� = {𝑐, 𝑏,𝑚} 

𝐾𝑢�̌�
𝑜𝑑 set of routes of mode �̌� among nest 𝑢 connecting OD pair 𝑜𝑑 

𝐸𝑏 set of line segments of bus mode 𝑏 

𝐸𝑚 set of line segments of metro mode 𝑚 

𝑆 
set of arcs in the route-section-based multi-modal transportation network, i.e.,  

𝑆 = 𝑆𝑐 ∪ 𝑆𝑏 ∪ 𝑆𝑚 

𝑆𝑐 set of road links of car mode 𝑐 
𝑆𝑏 set of route sections of bus mode 𝑏 

𝑆𝑚 set of route sections of metro mode 𝑚 

𝑆�̅� , 𝑆�̿� set of measured and unmeasured road links of car mode 𝑐, i.e., 𝑆𝑐 = 𝑆�̅� ∪ 𝑆�̿� 

�̅�𝑏 , �̿�𝑏 set of measured and unmeasured line segments of bus mode 𝑏, i.e., 𝐸𝑏 = �̅�𝑏 ∪ �̿�𝑏 

4.2 Multi-Modal Transportation Network Modelling 

4.2.1 Notations 
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�̅�𝑚, �̿�𝑚 set of measured and unmeasured line segments of metro mode 𝑚, i.e., 𝐸𝑚 = �̅�𝑚 ∪ �̿�𝑚 

Parameters and inputs 

𝜃𝑢�̌�
𝑜𝑑 dispersion parameter for route choice of mode �̌� among nest 𝑢 connecting OD pair 𝑜𝑑 

𝜌𝑢
𝑜𝑑 

degree of independence in unobserved utility among the alternatives in nest 𝑢 

connecting OD pair 𝑜𝑑 

𝐶𝑐,𝑠 capacity on road link 𝑠 ∈ 𝑆𝑐 
𝐶𝑏,𝑒 capacity on bus line segment 𝑒 ∈ 𝐸𝑏 

𝐶𝑚,𝑒 capacity on metro line segment 𝑒 ∈ 𝐸𝑚 

𝑓𝑙 frequency of transit line 𝑙 
𝜅𝑏,𝑙  (𝜅𝑚,𝑙) capacity of line 𝑙 for transit mode 𝑏 (𝑚) 

�̅�𝑐,𝑠 traffic count on measured road link 𝑠 ∈ 𝑆�̅� 
�̅�𝑏,𝑒 onboard passenger count on measured bus line segment 𝑒 ∈ �̅�𝑏 

�̅�𝑚,𝑒 onboard passenger count on measured metro line segment 𝑒 ∈ �̅�𝑚 

𝑧𝑢�̌�
𝑜𝑑 observed OD flow of mode �̌� among nest 𝑢 connecting target OD pair 𝑜𝑑 

𝑧𝑜 observed trip production of origin 𝑜 

𝑧𝑑 observed trip attraction of destination 𝑑 

Intermediate variables 

𝑐𝑠 travel time on arc 𝑠 ∈ 𝑆 

𝑐𝑢�̌�,𝑘
𝑜𝑑  travel cost of route 𝑘 of mode �̌� among nest 𝑢 connecting OD pair 𝑜𝑑 

𝑣𝑐,𝑠 flow on road link 𝑠 ∈ 𝑆𝑐 
𝑣𝑏,𝑠 flow on route section 𝑠 ∈ 𝑆𝑏 

𝑣𝑚,𝑠 flow on route section 𝑠 ∈ 𝑆𝑚 

𝑣𝑏,𝑒 flow on bus line segment 𝑒 ∈ 𝐸𝑏 

𝑣𝑚,𝑒 flow on bus line segment 𝑒 ∈ 𝐸𝑚 

𝑞𝑜𝑑 OD flow between origin 𝑜 and destination 𝑑 

𝑃𝑜 trip production of origin 𝑜 

𝐴𝑑 trip attraction of destination 𝑑 

Decision variables 

ℎ𝑢�̌�,𝑘
𝑜𝑑  flow on route 𝑘 of mode �̌� among nest 𝑢 connecting OD pair 𝑜𝑑 

𝑞𝑢�̌�
𝑜𝑑 OD flow of mode �̌� among nest 𝑢 connecting OD pair 𝑜𝑑 

𝑞𝑢
𝑜𝑑 OD flow of nest 𝑢 connecting OD pair 𝑜𝑑 

 

In the multi-modal transportation network, vehicles of road-based transit systems (i.e., bus 

network in this study) interact with private cars on the road network (Figure 4.1). This means 

that their travel time on the road links is affected by not only their own flow but also the flow 

of the other modes (e.g., bus vehicles). Moreover, the road link connecting two adjacent bus 

stops on a specific bus line usually contains more than one element. This means that the in-

vehicle travel time of the bus line segment is the summation of the bus travel times on these 

road links. For example, in Figure 4.1, line segment (n1-n2) of bus line 1 contains two road 

links, 2 and 4. The relationships among route section, section line segment, and line segment 

are also demonstrated, which is consistent with the definition in Chapter 2.2.2. 

 

4.2.2 Illustration of interaction between road and bus networks 
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Figure 4.1 Relationship between road and bus networks 

The travel time of cars on the road network is affected by bus vehicles running on the 

same road link; therefore, we need to first obtain the flow of private cars and bus vehicles on 

that road link. The flow of private cars on the road link can be obtained by simply summing up 

the flows of the paths of all OD pairs going through the road link: 

𝑣𝑐,𝑠 = ∑ ∑ ℎ𝑐,𝑘
𝑜𝑑𝜂𝑠𝑘

𝑜𝑑

𝑘∈𝐾𝑐
𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑠 ∈ 𝑆𝑐 (4.1) 

Assuming that the frequency of each transit line is fixed, the passenger car equivalent flow 

of bus vehicles is the summation of the bus vehicles of bus lines passing through the road link 

multiplied by the value of the passenger car equivalent: 

𝐹𝑐,𝑠 = ∑ 𝑓𝑙′ ∙ 𝑃𝐶𝐸

𝑙′∈Ψ𝑠

 (4.2) 

where Ψ𝑠  is the set of bus lines going through road link 𝑠, and PCE is the passenger car 

equivalent for a bus vehicle. 

Thus, the link travel time of the car in the road network is: 

𝑐𝑐,𝑠 = 𝑡𝑐,𝑠
0 [1 + 𝛾((𝐹𝑐,𝑠 + 𝑣𝑐,𝑠) 𝐶𝑐,𝑠⁄ )

𝛽
] , ∀𝑠 ∈ 𝑆𝑐 (4.3) 

where 𝑡𝑐,𝑠
0  is the free-flow travel time of car on road link 𝑠, 𝐶𝑐,𝑠 is the capacity of road link 𝑠, 

and 𝛾 and 𝛽 are parameters for the travel time function. 
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4.2.3 Path travel time for cars 
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With the travel time of the car on road link, the travel time of path 𝑘 between OD pair 𝑜𝑑 

for mode 𝑐 can be expressed as: 

𝑐𝑐,𝑘
𝑜𝑑(𝐯) = ∑ 𝑎𝑠𝑘𝑐𝑐,𝑠(𝐯)

𝑠∈𝑆𝑐

, ∀𝑘 ∈ 𝐾𝑐
𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.4) 

 

Using the route-section-based transit network representation in Chapter 2.2.2, we 

formulate the path travel time for bus and metro. The route section cost consists of in-vehicle 

travel time, waiting time, and perceived congestion time. Here we use a unified symbol �̅� ∈

�̅� = {𝑏,𝑚} to represent the mode. For route section 𝑠 of transit mode �̅�, the expected total 

travel time is given by: 

𝑐𝑢,𝑠(𝐯) = 𝑡𝑢,𝑠(𝐯) + 𝑤𝑢,𝑠 + 𝜙𝑢,𝑠(𝐯), ∀�̅� ∈ �̅� (4.5) 

The three components of the route section cost in Eq. (4.5) are specified below: 

• In-vehicle travel time 

The allocation ratio between section line segments and route section is directly 

proportional to their frequencies: 

𝑥𝑢,𝑠
𝑙 =

𝑓𝑙
∑ 𝑓𝑗𝑗∈𝐴�̅�

𝑠
, ∀𝑙 ∈ 𝐴𝑢

𝑠 , 𝑠 ∈ 𝑆𝑢, �̅� ∈ �̅� (4.6) 

(1) Bus: Based on the discussion in Chapter 4.2.2, the in-vehicle travel time of a bus is 

associated with the car and bus vehicle flows on the road network: 

𝑡�̅�,𝑠 = 𝑡𝑏,𝑠
0 [1 + 𝛾((𝐹𝑐,𝑠 + 𝑣𝑐,𝑠) 𝐶𝑐,𝑠⁄ )

𝛽
] , ∀𝑠 ∈ 𝑆𝑐 (4.7) 

where 𝑡𝑏,𝑠
0  is the free-flow travel time of the bus vehicle on road link 𝑠. 

Note that each bus line segment (between two adjacent stops) will usually pass across 

several road links; accordingly, the in-vehicle travel time of the bus line segment is the 

summation of the travel times on the different road links: 

�̃�𝑏,𝑙
𝑠 = ∑ 𝑡�̅�,𝑠′

𝑠′∈℧(𝑠,𝑙)

, ∀𝑙 ∈ 𝐴𝑏
𝑠 , 𝑠 ∈ 𝑆𝑏 (4.8) 

where ℧(𝑠, 𝑙) denotes a set of directed road links for bus line 𝑙, which is included in the set of 

attractive bus lines associated with route section 𝑠; that is, 𝑙 ∈ 𝐴𝑏
𝑠 . 

As each route section consists of one or several section line segments, the in-vehicle travel 

time of route section 𝑠 is the weighted summation of those of the section line segments: 

4.2.4 Path travel time for bus and metro 
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𝑡𝑏,𝑠 = ∑ �̃�𝑏,𝑙
𝑠 𝑥𝑏,𝑠

𝑙

 𝑙∈𝐴𝑏
𝑠

, ∀𝑠 ∈ 𝑆𝑏 (4.9) 

(2) Metro: The in-vehicle travel time of route section 𝑠 in a metro network is defined as: 

𝑡𝑚,𝑠 = ∑ 𝑡𝑚,𝑙
0 𝑥𝑚,𝑠

𝑙

 𝑙∈𝐴𝑚
𝑠

, ∀𝑠 ∈ 𝑆𝑚 (4.10) 

where 𝑡𝑚,𝑙
0  is the in-vehicle travel time on section line segment 𝑙 of the metro network, and 𝐴𝑚

𝑠  

is the set of attractive metro lines. 

• Waiting time 

The waiting time of route section s is defined as the product of α and the inverse of its 

combined frequency: 

𝑤 𝑢,𝑠 =
𝛼

∑ 𝑓𝑙 𝑙∈𝐴𝑠
, ∀𝑠 ∈ 𝑆 �̅�, �̅� ∈ �̅� (4.11) 

where 𝛼 = 1 means that the transit vehicle headway follows an exponential distribution, and 

𝛼 = 0.5 means that it follows a uniform distribution. 

• Perceived congestion time 

The perceived congestion time of the route section involves the additional waiting time 

due to vehicle congestion, which is a function of its own flow and that of its competing route 

sections. First the flow on route section 𝑠 of transit mode �̅� is given as: 

𝑣𝑢,𝑠 = ∑ ∑ 𝑎𝑢,𝑠𝑘ℎ𝑢,𝑘
𝑜𝑑

𝑘∈𝐾�̅�
𝑜𝑑𝑜𝑑∈𝑂𝐷

, ∀𝑠 ∈ 𝑆𝑢, �̅� ∈ �̅� 
(4.12) 

where the path-section incidence 𝑎𝑢,𝑠𝑘 equals 1 if section 𝑠 lies on path 𝑘; otherwise, it equals 

0. 

There are three main groups of passengers competing with route section 𝑠 (de Cea and 

Fernández, 1993) and the competing section flow is given as: 

�̃�𝑢,𝑠 = ∑ 𝛿𝑠
�̌� ∑ 𝑣𝑢,�̌�𝑙
𝑙∈𝐴�̅�

𝑠 ∩𝐴�̅�
�̌��̌�≠𝑠∈𝑆�̅�

, ∀𝑠 ∈ 𝑆�̅�, �̅� ∈ �̅� 
(4.13) 

where 𝛿𝑠
�̌�  is the competing section indicator, such that 𝛿𝑠

�̌� = 1  means that section �̌�  is a 

competing section of section 𝑠, and otherwise 𝛿𝑠
�̌� = 0. 

The section line segment flow 𝑣𝑢,𝑠𝑙 in Eq. (4.13) is determined by: 

𝑣𝑢,𝑠𝑙 = 𝑣𝑢,𝑠𝑥𝑢,𝑠
𝑙 , ∀𝑙 ∈ 𝐴𝑢

𝑠 , 𝑠 ∈ 𝑆𝑢, �̅� ∈ �̅� (4.14) 

Then the perceived congestion time function for route section 𝑠  of transit mode �̅�  is 

expressed as: 
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𝜙𝑢,𝑠(𝐯) = 𝜑𝑢,𝑠 (
𝜆𝑣𝑢,𝑠 + 𝜍�̃�𝑢,𝑠
∑ 𝑓𝑙 𝑙∈𝐴�̅�

𝑠 𝜅𝑢,𝑙
)

𝜁

, ∀𝑠 ∈ 𝑆𝑢, �̅� ∈ �̅� (4.15) 

where parameters 𝜗, 𝜍, 𝜑𝑢,𝑠, and 𝜛 are used to represent different effects of various flows on 

the perceived congestion time, and 𝜅𝑢,𝑙 is the capacity of the transit vehicle. 

With the expected route section time function, the expected travel time associated with 

path 𝑘 of transit mode �̅� between OD pair 𝑜𝑑 can be expressed as: 

𝑐𝑢,𝑘
𝑜𝑑 (𝐯) = ∑ 𝑎𝑢,𝑠𝑘𝑐𝑢,𝑠(𝐯)

𝑠∈𝑆�̅�

, ∀𝑘 ∈ 𝐾𝑢
𝑜𝑑, �̅� ∈ �̅�𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.16) 

 

To consider the similarities between the bus and metro modes, we use an NL choice model 

to model the mode choice (Train, 2003). Three important definitions are presented first: 

 Nest. We define the nest as a set consisting of one mode or several similar (correlated) 

modes. 

 Mode. The specific travel mode in reality, e.g., car, metro, and bus. 

 Route. For the car mode, route is a sequence of road links for each OD pair, whereas for 

the metro and bus modes, route is a sequence of route sections. 

 

Figure 4.2 Illustration of mode and route choice 
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4.3 Multi-Modal Path Flow Estimator Formulation 

4.3.1 Mode and route choice modelling 
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In the NL model, the upper nest consists of auto and transit. Here, auto contains only the 

private car mode, while transit contains the bus and metro modes, which are similar. This means 

that the combination of the bus and metro modes will compete with the car mode. In other 

words, car, bus and metro are not seen as three independent alternatives for travelers. Regarding 

the path (route) choice, we adopt the MNL model to address the issue of stochastic perception 

variance of travelers regarding path travel time. A detailed framework of the mode and route 

choices in a multi-modal transportation network is displayed in Figure 4.2. 

To describe this three-layer structure of mode and route choices for each OD pair 𝑜𝑑, we 

introduce the following four probabilities: 

 The marginal probability of choosing a nest (𝑝𝑢
𝑜𝑑) 

 The conditional probability of choosing a mode with a given nest (𝑝𝑢|𝑢
𝑜𝑑 ) 

 The probability of choosing a mode (𝑝𝑢𝑢
𝑜𝑑 = 𝑝𝑢|𝑢

𝑜𝑑 ∙ 𝑝𝑢
𝑜𝑑) 

 The probability of choosing a path for each mode (𝑝𝑢𝑢,𝑘
𝑜𝑑 ) 

The first three probabilities are for mode choice, and they are related as follows: 𝑝𝑢𝑢
𝑜𝑑 =

𝑝𝑢|𝑢
𝑜𝑑 ∙ 𝑝𝑢

𝑜𝑑. The fourth probability is for route choice. Moreover, we model the interactions of 

private cars and buses sharing the same roadway space on a road network. Thus, their travel 

times on road link will be affected by each other and not only by their own flows. 

Based on Figure 4.2, the relationship between the OD demand 𝑞𝑜𝑑 and the upper-nest-

specific OD demand 𝑞𝑢
𝑜𝑑 (𝑢 ∈ 𝑈𝑜𝑑, 𝑈𝑜𝑑 = {𝑎𝑢𝑡𝑜, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡}) is expressed as follows: 

∑ 𝑞𝑢
𝑜𝑑

𝑢∈𝑈𝑜𝑑

= 𝑞𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.17) 

Moreover, the relationship between the upper-nest-specific OD demand 𝑞𝑢
𝑜𝑑  and the 

lower-nest-specific (i.e., mode-specific) OD demand 𝑞𝑢𝑢
𝑜𝑑 (�̌� ∈ �̌�𝑢

𝑜𝑑 is the mode alternative in 

nest 𝑢) is as follows: 

∑ 𝑞𝑢𝑢
𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑

= 𝑞𝑢
𝑜𝑑 , ∀𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 

(4.18) 

For each mode in the multi-modal transportation network, we continue to illustrate the 

relationship between the mode-specific OD demand and the model-specific path flow: 

4.3.2 Flow conservation in a multi-modal transportation network at 

different spatial levels 
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∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

= 𝑞𝑢𝑢
𝑜𝑑 , ∀�̌� ∈ �̌�𝑢

𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 
(4.19) 

Regarding the line segment flow in the bus and metro network, let Γ = (𝛾𝑒𝑠) denote the 

line segment-route section incidence matrix, which is equal to 1 when line segment 𝑒 of line 𝑙 

lies on route section 𝑠; otherwise, it is equal to 0. Then, the line segment flow expression is 

given as: 

𝑣𝑏,𝑒 = ∑ 𝛾𝑏,𝑒𝑠𝑦𝑏,𝑙
𝑒 𝑥𝑏,𝑠

𝑙 𝑣𝑏,𝑠
𝑠∈𝑆𝑏

, ∀𝑒 ∈ 𝐸𝑏 (4.20) 

𝑣𝑚,𝑒 = ∑ 𝛾𝑚,𝑒𝑠𝑦𝑚,𝑙
𝑒 𝑥𝑚,𝑠

𝑙 𝑣𝑚,𝑠
𝑠∈𝑆𝑚

, ∀𝑒 ∈ 𝐸𝑚 (4.21) 

where 𝑦𝑏,𝑙
𝑒 = 1 (𝑦𝑚,𝑙

𝑒 = 1) indicates that the transit line segment 𝑒 is on transit line 𝑙. 

Furthermore, we set the planning survey data as side constraints. These constraints include 

the zonal production and attraction flows, which are expressed as follows: 

𝑃𝑜 = 𝑧𝑜 , ∀𝑜 ∈ 𝑂 (4.22) 

𝐴𝑑 = 𝑧𝑑 , ∀𝑑 ∈ 𝐷 (4.23) 

where the zonal model-specific production and attraction flows are defined as: 

𝑃𝑜 = ∑ ∑ 𝑞𝑢
𝑜𝑑

𝑢∈𝑈𝑜𝑑𝑑∈𝐷

, ∀𝑜 ∈ 𝑂 (4.24) 

𝐴𝑑 =∑ ∑ 𝑞𝑢
𝑜𝑑

𝑢∈𝑈𝑜𝑑𝑜∈𝑂

, ∀𝑑 ∈ 𝐷 (4.25) 

The results obtained from the planning survey data usually do not fit the field data, e.g., 

the target OD demand, traffic counts of road links (Ryu et al., 2014b) and onboard passenger 

counts of transit line segment. It does not require the estimated flows to be the same as the 

traffic observations exactly. Therefore, for the target OD mode-specific trip table, we refine 

the estimated mode-specific OD demand with lower and upper bounds about the observation: 

(1 − 𝜀𝑢𝑢
𝑜𝑑)𝑧𝑢𝑢

𝑜𝑑 ≤ 𝑞𝑢𝑢
𝑜𝑑 ≤ (1 + 𝜀𝑢𝑢

𝑜𝑑)𝑧𝑢𝑢
𝑜𝑑 , ∀�̌� ∈ �̌�𝑢

𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷̅̅ ̅̅  (4.26) 

We use the same method to refine the estimated results for the road links and transit line 

segments with observations: 

(1 − 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 ≤ 𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 ≤ (1 + 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠, ∀𝑠 ∈ 𝑆�̅� (4.27) 

(1 − 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒 ≤ 𝑣𝑏,𝑒 ≤ (1 + 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒 , ∀𝑒 ∈ �̅�𝑏 (4.28) 

(1 − 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒 ≤ 𝑣𝑚,𝑒 ≤ (1 + 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒 , ∀𝑒 ∈ �̅�𝑚 (4.29) 

In addition, for the road links and transit line segments without observations, we set a 

constraint that their estimated flow cannot exceed their own capacity: 
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𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 ≤ 𝐶𝑐,𝑠, ∀𝑠 ∈ 𝑆�̿� (4.30) 

𝑣𝑏,𝑒 ≤ 𝐶𝑏,𝑒 , ∀𝑒 ∈ �̿�𝑏 (4.31) 

𝑣𝑚,𝑒 ≤ 𝐶𝑚,𝑒 , ∀𝑒 ∈ �̿�𝑚 (4.32) 

where the line segment capacities of the bus and metro modes are defined as 𝐶𝑏,𝑒 = 𝑓𝑙𝑦𝑏,𝑙
𝑒 𝜅𝑏,𝑙 

and 𝐶𝑚,𝑒 = 𝑓𝑙𝑦𝑚,𝑙
𝑒 𝜅𝑚,𝑙, respectively. 

Based on the mode and route choice models above and the asymmetric travel time 

function of path, we adopt a VI formulation for the MM-PFE. 

[MM-PFE] 

Find (𝐪𝑢
∗ , 𝐪𝑢𝑢

∗ , 𝐡𝑢𝑢,𝑘
∗ ) ∈ Ω such that 

∑ ∑ ∑ ∑ (𝑐𝑢𝑢,𝑘
𝑜𝑑∗ +

1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ ) (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑∗ (𝑞𝑢𝑢
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑(𝑞𝑢𝑢

𝑜𝑑 − 𝑞𝑢𝑢
𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑∗ (𝑞𝑢
𝑜𝑑 − 𝑞𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0 

∀(𝐪u, 𝐪𝑢𝑢, 𝐡𝑢𝑢,𝑘) ∈ Ω 

(4.33) 

where 𝜃𝑢𝑢
𝑜𝑑  is the dispersion parameter for mode �̌�  in nest 𝑢  of OD pair 𝑜𝑑 ; 𝜌𝑢

𝑜𝑑  is the 

parameter for nest 𝑢 of each OD pair 𝑜𝑑; MSC𝑢𝑢
𝑜𝑑  is the mode-specific constant for mode �̌� in 

nest 𝑢  of OD pair 𝑜𝑑  and it represents the exogenous modal attractiveness, which is an 

important component in the modal-split problem; and Ω is the set of feasible solutions that 

satisfy Eqs. (4.18)-(4.19), (4.22)-(4.23), and (4.26)-(4.32) and non-negative constraints 

ℎ𝑢𝑢,𝑘
𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑢𝑢

𝑜𝑑, �̌� ∈ �̌�𝑢
𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.34) 

𝑞𝑢𝑢
𝑜𝑑 ≥ 0, ∀�̌� ∈ �̌�𝑢

𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.35) 

𝑞𝑢
𝑜𝑑 ≥ 0, ∀𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.36) 

[MM-PFE] can be simplified to the vector form: 

𝐹(𝐳∗)𝑇 ∙ (𝐳 − 𝐳∗) ≥ 0, ∀𝐳 ∈ Ω (4.37) 

where 

4.3.3 Formulated as a variational inequality problem 
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𝐳 = (𝐪u, 𝐪𝑢𝑢, 𝐡𝑢𝑢,𝑘)
𝑇
 (4.38) 

𝐹(𝐳) = ((1 − 𝛒𝑢) ln 𝐪u , (𝛒𝑢𝑢 −
1

𝜃𝑢𝑢
𝑜𝑑) ln𝐪𝑢𝑢 −MSC𝑢𝑢

𝑜𝑑 , 𝐜𝑢𝑢,𝑘(𝐡)

+
1

𝜃𝑢𝑢
𝑜𝑑 ln 𝐡𝑢𝑢,𝑘)

𝑇

 

(4.39) 

For the [MM-PFE] model, the mode-specific demand is distributed according to an NL 

model, and the path flow of each model follows the MNL model. To show this, we provide the 

following proposition: 

Proposition 4.1. The optimal solution of the [MM-PFE] fulfills the NL-based mode choice and 

the MNL-based route choice. 

Proof. The first-order conditions (Karush-Kuhn-Tucker conditions) for the [MM-PFE] model 

are as follows: 

(𝑐𝑢𝑢,𝑘
𝑜𝑑 +

1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑 − 𝜒𝑢𝑢
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 )ℎ𝑢𝑢,𝑘
𝑜𝑑 = 0, ∀𝑘 ∈ 𝐾𝑢𝑢

𝑜𝑑, �̌� ∈ �̌�𝑢
𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑

∈ 𝑂𝐷 

(4.40) 

𝑐𝑢𝑢,𝑘
𝑜𝑑 +

1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑 − 𝜒𝑢𝑢
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ≥ 0, ∀𝑘 ∈ 𝐾𝑢𝑢
𝑜𝑑 , �̌� ∈ �̌�𝑢

𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.41) 

((𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑 −MSC𝑢𝑢
𝑜𝑑 + 𝜒𝑢𝑢

𝑜𝑑 −𝜛𝑢
𝑜𝑑 − 𝜖𝑢𝑢

𝑜𝑑− + 𝜖𝑢𝑢
𝑜𝑑+)𝑞𝑢𝑢

𝑜𝑑 = 0, ∀�̌�

∈ �̌�𝑢
𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 

(4.42) 

(𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑 −MSC𝑢𝑢
𝑜𝑑 + 𝜒𝑢𝑢

𝑜𝑑 −𝜛𝑢
𝑜𝑑 − 𝜖𝑢𝑢

𝑜𝑑− + 𝜖𝑢𝑢
𝑜𝑑+ ≥ 0, ∀�̌� ∈ �̌�𝑢

𝑜𝑑, 𝑢

∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 

(4.43) 

((1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑 +𝜛𝑢
𝑜𝑑 + 𝜏𝑜 + 𝜚𝑑)𝑞𝑢

𝑜𝑑 = 0, ∀𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.44) 

(1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑 +𝜛𝑢
𝑜𝑑 + 𝜏𝑜 + 𝜚𝑑 ≥ 0, ∀𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷 (4.45) 

where 𝐽𝑢𝑢,𝑘
𝑜𝑑  (∀𝑘 ∈ 𝐾𝑢𝑢

𝑜𝑑 , �̌� ∈ �̌�𝑢
𝑜𝑑, 𝑢 ∈ 𝑈𝑜𝑑, 𝑜𝑑 ∈ 𝑂𝐷) has the following expression 

𝐽𝑐,𝑘
𝑜𝑑 = ∑𝜔𝑐,𝑠𝜂𝑐,𝑠𝑘

𝑜𝑑

𝑠∈�̿�𝑐

−∑ 𝜇𝑐,𝑠
− 𝜂𝑐,𝑠𝑘

𝑜𝑑

𝑠∈�̅�𝑐

+∑ 𝜇𝑐,𝑠
+ 𝜂𝑐,𝑠𝑘

𝑜𝑑

𝑠∈�̅�𝑐

 (4.46) 

𝐽𝑏,𝑘
𝑜𝑑 = ∑ 𝜔𝑏,𝑒 ∑ �̅�𝑏,𝑒𝑠𝑎𝑏,𝑠𝑘

𝑠∈𝑆𝑏𝑒∈�̿�𝑏

− ∑ 𝜓𝑏,𝑒
− ∑ �̅�𝑏,𝑒𝑠𝑎𝑏,𝑠𝑘

𝑠∈𝑆𝑏𝑒∈�̅�𝑏

+ ∑ 𝜓𝑏,𝑒
+ ∑ �̅�𝑏,𝑒𝑠𝑎𝑏,𝑠𝑘

𝑠∈𝑆𝑏𝑒∈�̅�𝑏

 (4.47) 
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𝐽𝑚,𝑘
𝑜𝑑 = ∑ 𝜔𝑚,𝑒 ∑ �̅�𝑚,𝑒𝑠𝑎𝑚,𝑠𝑘

𝑠∈𝑆𝑚𝑒∈�̿�𝑚

− ∑ 𝜓𝑚,𝑒
− ∑ �̅�𝑚,𝑒𝑠𝑎𝑚,𝑠𝑘

𝑠∈𝑆𝑏𝑒∈�̅�𝑚

+ ∑ 𝜓𝑚,𝑒
+ ∑ �̅�𝑚,𝑒𝑠𝑎𝑚,𝑠𝑘

𝑠∈𝑆𝑚𝑒∈�̅�𝑚

 

(4.48) 

The distribution of the mode-specific path flow for each OD pair is derived as follows. 

As ℎ𝑢𝑢,𝑘
𝑜𝑑 > 0, Eq. (4.49) is satisfied, 

𝑐𝑢𝑢,𝑘
𝑜𝑑 +

1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑 − 𝜒𝑢𝑢
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 = 0 (4.49) 

Then, the analytical expression for the mode-specific path flow of each OD pair is: 

ℎ𝑢𝑢,𝑘
𝑜𝑑 = exp (𝜃𝑢𝑢

𝑜𝑑(−𝑐𝑢𝑢,𝑘
𝑜𝑑 + 𝜒𝑢𝑢

𝑜𝑑 − 𝐽𝑢𝑢,𝑘
𝑜𝑑 )) (4.50) 

Thus, the probability of choosing path 𝑘 for mode �̌� in nest 𝑢 between OD pair 𝑜𝑑 is 

given as: 

𝑝𝑢𝑢,𝑘
𝑜𝑑 =

ℎ𝑢𝑢,𝑘
𝑜𝑑

∑ ℎ𝑢𝑢,𝑝
𝑜𝑑

𝑝∈𝐾𝑢�̌�
𝑜𝑑

=
exp (𝜃𝑢𝑢

𝑜𝑑(−𝑐𝑢𝑢,𝑘
𝑜𝑑 − 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

∑ exp (𝜃𝑢𝑢
𝑜𝑑(−𝑐𝑢𝑢,𝑝

𝑜𝑑 − 𝐽𝑢𝑢,𝑝
𝑜𝑑 ))𝑝∈𝐾𝑢�̌�

𝑜𝑑

 (4.51) 

The distribution of the mode-specific demand for each OD pair is derived as follows. 

Combining Eqs. (4.19) and (4.50), we obtain the expression of dual variable 𝜒𝑢𝑢
𝑜𝑑: 

∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

= ∑ exp (𝜃𝑢𝑢
𝑜𝑑(−𝑐𝑢𝑢,𝑘

𝑜𝑑 + 𝜒𝑢𝑢
𝑜𝑑 − 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

 

⟹ 𝜒𝑢𝑢
𝑜𝑑 =

1

𝜃𝑢𝑢
𝑜𝑑 ln 𝑞𝑢𝑢

𝑜𝑑 −
1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

 

(4.52) 

Because 𝑞𝑢𝑢
𝑜𝑑 > 0, from Eqs. (4.42)-(4.43), we have 

(𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑 −MSC𝑢𝑢
𝑜𝑑 + 𝜒𝑢𝑢

𝑜𝑑 −𝜛𝑢
𝑜𝑑 − 𝜖𝑢𝑢

𝑜𝑑− + 𝜖𝑢𝑢
𝑜𝑑+ = 0 (4.53) 

By substituting Eq. (4.52) into Eq. (4.53), we obtain: 

(𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑 −MSC𝑢𝑢
𝑜𝑑 +

1

𝜃𝑢𝑢
𝑜𝑑 ln 𝑞𝑢𝑢

𝑜𝑑

−
1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

−𝜛𝑢
𝑜𝑑 − 𝜖𝑢𝑢

𝑜𝑑− + 𝜖𝑢𝑢
𝑜𝑑+

= 0 

(4.54) 

The analytical expression for mode-specific OD flow is presented as: 
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𝑞𝑢𝑢
𝑜𝑑 = exp

(

 
1

𝜌𝑢
𝑜𝑑
(
1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

+MSC𝑢𝑢
𝑜𝑑 +𝜛𝑢

𝑜𝑑

+ 𝜖𝑢𝑢
𝑜𝑑− − 𝜖𝑢𝑢

𝑜𝑑+)

)

  

(4.55) 

We obtain the expression of 𝑞𝑢
𝑜𝑑 from Eqs. (4.44) and (4.45) as follows: 

(1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑 +𝜛𝑢
𝑜𝑑 + 𝜏𝑜 + 𝜚𝑑 = 0 

⇒ 𝑞𝑢
𝑜𝑑 = exp(−

𝜛𝑢
𝑜𝑑 + 𝜏𝑜 + 𝜚𝑑

1 − 𝜌𝑢
𝑜𝑑 ) 

(4.56) 

Here, we set 

Λ𝑢𝑢
𝑜𝑑 =

1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃(𝑐𝑢𝑢,𝑘

𝑜𝑑 + 𝐽𝑢𝑢,𝑘
𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

+MSC𝑢𝑢
𝑜𝑑  (4.57) 

As ∑ 𝑞𝑢𝑢
𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑 = 𝑞𝑢

𝑜𝑑, 𝜛𝑢
𝑜𝑑 is expressed as: 

𝜛𝑢
𝑜𝑑 = −(1 − 𝜌𝑢

𝑜𝑑)𝜌𝑢
𝑜𝑑 ln ∑ exp(

1

𝜌𝑢
𝑜𝑑 (Λ𝑢𝑢

𝑜𝑑 + 𝜖𝑢𝑢
𝑜𝑑− − 𝜖𝑢𝑢

𝑜𝑑+))

𝑢∈𝑈𝑢
𝑜𝑑

− 𝜌𝑢
𝑜𝑑(𝜏𝑜 + 𝜚𝑑) 

(4.58) 

Let 

𝐼𝑢
𝑜𝑑 = ln ∑ exp(

1

𝜌𝑢
𝑜𝑑 (Λ𝑢𝑢

𝑜𝑑 + 𝜖𝑢𝑢
𝑜𝑑− − 𝜖𝑢𝑢

𝑜𝑑+))

𝑢∈𝑈𝑢
𝑜𝑑

 (4.59) 

Equation (4.58) is simplified as 

𝜛𝑢
𝑜𝑑 = −(1 − 𝜌𝑢

𝑜𝑑)𝜌𝑢
𝑜𝑑𝐼𝑢

𝑜𝑑 − 𝜌𝑢
𝑜𝑑(𝜏𝑜 + 𝜚𝑑) (4.60) 

The analytical expression of the nest-specific OD flow is presented as: 

𝑞𝑢
𝑜𝑑 = exp (−

𝜛𝑢
𝑜𝑑 + 𝜏𝑜 + 𝜚𝑑

1 − 𝜌𝑢
𝑜𝑑 ) = exp(𝜌𝑢

𝑜𝑑𝐼𝑢
𝑜𝑑) ∙ exp(−𝜏𝑜) ∙ exp(− 𝜚𝑑) (4.61) 

Thus, the marginal probability 𝑝𝑢
𝑜𝑑 and conditional probability 𝑝𝑢|𝑢

𝑜𝑑  for mode choice are 

as follows: 

𝑝𝑢
𝑜𝑑 =

𝑞𝑢
𝑜𝑑

∑ 𝑞𝑣
𝑜𝑑

𝑣∈𝑈𝑜𝑑
=

exp(𝜌𝑢
𝑜𝑑𝐼𝑢

𝑜𝑑)

∑ exp(𝜌𝑣
𝑜𝑑𝐼𝑣

𝑜𝑑)𝑣∈𝑈𝑜𝑑
 (4.62) 

𝑝𝑢|𝑢
𝑜𝑑 =

𝑞𝑢𝑢
𝑜𝑑

∑ 𝑞𝑢𝑙
𝑜𝑑

𝑙∈𝑈𝑢
𝑜𝑑

=
exp(Λ𝑢𝑢

𝑜𝑑 𝜌𝑢
𝑜𝑑⁄ )

∑ exp(Λ𝑢𝑙
𝑜𝑑 𝜌𝑢

𝑜𝑑⁄ )𝑙∈𝑈𝑢
𝑜𝑑

 (4.63) 

Furthermore, we can rewrite 𝑞𝑢𝑢
𝑜𝑑 as: 
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𝑞𝑢𝑢
𝑜𝑑 = exp((Λ𝑢𝑢

𝑜𝑑 + 𝜖𝑢𝑢
𝑜𝑑− − 𝜖𝑢𝑢

𝑜𝑑+) 𝜌𝑢
𝑜𝑑⁄ ) ∙ exp(𝜏𝑜 + 𝜚𝑑)

∙ ( ∑ exp(
Λ𝑢𝑢
𝑜𝑑 + 𝜖𝑢𝑢

𝑜𝑑− − 𝜖𝑢𝑢
𝑜𝑑+

𝜌𝑢
𝑜𝑑 )

𝑢∈𝑈𝑢
𝑜𝑑

)

𝜌𝑢
𝑜𝑑−1

 

(4.64) 

Thus, the NL probability expression for mode choice can be obtained as follows: 

𝑝𝑢𝑢
𝑜𝑑 =

𝑞𝑢𝑢
𝑜𝑑

∑ ∑ 𝑞𝑣𝑙
𝑜𝑑

𝑙∈𝑈𝑣
𝑜𝑑𝑣∈𝑈𝑜𝑑

=

exp(
Λ𝑢𝑢
𝑜𝑑 + 𝜖𝑢𝑢

𝑜𝑑− − 𝜖𝑢𝑢
𝑜𝑑+

𝜌𝑢
𝑜𝑑 ) ∙ (∑ exp (

Λ𝑢𝑙
𝑜𝑑 + 𝜖𝑢𝑙

𝑜𝑑− − 𝜖𝑢𝑙
𝑜𝑑+

𝜌𝑢
𝑜𝑑 )𝑙∈𝑈𝑢

𝑜𝑑 )

𝜌𝑢
𝑜𝑑−1

∑ (∑ exp(
Λ𝑣𝑙
𝑜𝑑 + 𝜖𝑣𝑙

𝑜𝑑− − 𝜖𝑣𝑙
𝑜𝑑+

𝜌𝑣
𝑜𝑑 )𝑙∈𝑈𝑣

𝑜𝑑 )

𝜌𝑣
𝑜𝑑

𝑣∈𝑈𝑜𝑑

= 𝑝𝑢|𝑢
𝑜𝑑 ∙ 𝑝𝑢

𝑜𝑑 

(4.65) 

This completes the proof.  

 

Remarks 

(1) There are three kinds of dual variables in this study: free variables 

(𝜒𝑢𝑢
𝑜𝑑 , 𝜛𝑢

𝑜𝑑 , 𝜏𝑜 and 𝜚𝑑) associated with equality constraints representing the positive or negative 

intrinsic attractiveness; positive variables ( 𝜖𝑢𝑢
𝑜𝑑−, 𝜖𝑢𝑢

𝑜𝑑+, 𝜇𝑐,𝑠
− , 𝜇𝑐,𝑠

+ , 𝜓𝑏,𝑒
− , 𝜓𝑏,𝑒

+ , 𝜉𝑚,𝑒
− , 𝜉𝑚,𝑒

+ ) 

associated with the lower and upper bound constraints keeping the estimated flow being higher 

than the lower bound and lower than the upper bound; and positive variables (𝜔𝑐,𝑠, 𝜔𝑏,𝑒 , 𝜔𝑚,𝑒) 

associated with the capacity constraint representing queuing when the total link flow reaches 

its link capacity. 

(2) With the expression of 𝑞𝑢
𝑜𝑑, we obtain the total demand for each OD pair as 

𝑞𝑜𝑑 = ∑ 𝑞𝑢
𝑜𝑑

𝑢∈𝑈𝑜𝑑

= ∑ exp(𝜌𝑢
𝑜𝑑𝐼𝑢

𝑜𝑑) ∙ exp(−𝜏𝑜) ∙ exp(− 𝜚𝑑)

𝑢∈𝑈𝑜𝑑

 (4.66) 

Let 𝐵𝑜𝑃𝑜 = exp(−𝜏𝑜) , 𝐵𝑑𝐴𝑑 = exp(− 𝜚𝑑) , and 𝜋𝑜𝑑 = − ln∑ exp(𝜌𝑢
𝑜𝑑𝐼𝑢

𝑜𝑑)𝑢∈𝑈𝑜𝑑 , 

where 𝐵𝑜 and 𝐵𝑑 are the balancing factors; 𝑃𝑜 and 𝐴𝑑 are the production and attraction flows, 

respectively; and 𝜋𝑜𝑑 is the multi-modal OD cost between origin 𝑜 and destination 𝑑. Thus, 

the total demand for each OD pair can be rewritten as follows: 

𝑞𝑜𝑑 = 𝐵𝑜𝑃𝑜𝐵𝑑𝐴𝑑 exp(−𝜋𝑜𝑑) (4.67) 

This is similar to the convex programming formulation provided by Ryu et al. (2014) for 

the small community PFE that finds the most probable demand pattern based on Smith’s 

efficiency principle. The main difference between the formulations is that the multi-modal PFE 
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framework presented in this paper considers the interactions of multiple modes sharing the 

roadway; MM-PFE cannot be formulated as a convex program and requires a solution 

algorithm that can handle asymmetric and non-separable link travel time functions. 

Owing to the asymmetric travel time functions of road link, route section and path, a 

diagonalization method is adopted to solve the proposed model in this section (Florian, 1977; 

Florian and Spiess, 1982; de Cea and Fernández, 1993; de Cea et al., 2005). In each outer 

iteration, the travel time function of the route section is diagonalized, and the VI formulation 

is reformulated as a convex optimization model. Then, the reformulated convex optimization 

problem can be solved using a path-based partial linearization solution algorithm (Chen et al., 

2009) embedded with an iterative balancing scheme for direction finding. An iterative 

balancing scheme is used to handle various inequality side constraints in the optimization 

programming model. 

In this subchapter, we demonstrate that the diagonalized [MM-PFE] problem can be 

reformulated as a convex programming problem. In literature, PFE in mathematical 

programming formulations have been well solved by path-based solution algorithms (Chen et 

al., 2009, 2012; Ryu et al., 2014b). To do this, we have the following proposition. 

Proposition 4.2. When the cost function of the [MM-PFE] model is diagonalized, [MM-PFE] 

can be reformulated as a convex optimization problem such that 

[MM-PFE-D] 

min𝑍 =∑∫ �̂�𝑠(𝜔)
𝑣𝑠

0

𝑑𝜔

𝑠∈𝑆

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ℎ𝑢𝑢,𝑘

𝑜𝑑 (ln ℎ𝑢𝑢,𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑)𝑞𝑢𝑢

𝑜𝑑(ln 𝑞𝑢𝑢
𝑜𝑑 − 1)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑𝑞𝑢𝑢

𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑)𝑞𝑢

𝑜𝑑(ln 𝑞𝑢
𝑜𝑑 − 1)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

(4.68) 

s.t. Eqs. (4.18)-(4.19), (4.22)-(4.23), (4.26)-(4.32), and (4.34)-(4.36). 

4.4 Solution Algorithm 

4.4.1 Diagonalization of cost function 
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Proof. Problem [MM-PFE] can be further expressed by separating (𝑐𝑢𝑢,𝑘
𝑜𝑑∗ +

1

𝜃𝑢�̌�
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ ) into 

two terms: 

∑ ∑ ∑ ∑ 𝑐𝑢𝑢,𝑘
𝑜𝑑∗ (ℎ𝑢𝑢,𝑘

𝑜𝑑 − ℎ𝑢𝑢,𝑘
𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑∗ (𝑞𝑢𝑢
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑(𝑞𝑢𝑢

𝑜𝑑 − 𝑞𝑢𝑢
𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑∗ (𝑞𝑢
𝑜𝑑 − 𝑞𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0 

(4.69) 

Then, we substitute the arc cost function for the path cost function as follows: 

∑ ∑ ∑ ∑ (∑𝑎𝑠𝑘𝑐𝑠
𝑠∈𝑆

) (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑∗ (𝑞𝑢𝑢
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑(𝑞𝑢𝑢

𝑜𝑑 − 𝑞𝑢𝑢
𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑∗ (𝑞𝑢
𝑜𝑑 − 𝑞𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0 

 

(4.70) 

Furthermore, we can calculate arc flows based on the mode-specific path flows of all OD 

pairs and simplify [MM-PFE] using the arc and path space. 

∑( ∑ ∑ ∑ ∑ 𝑎𝑠𝑘(ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

)𝑐𝑠
𝑠∈𝑆

 

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

(4.71) 
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+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑∗ (𝑞𝑢𝑢
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑(𝑞𝑢𝑢

𝑜𝑑 − 𝑞𝑢𝑢
𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑∗ (𝑞𝑢
𝑜𝑑 − 𝑞𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0 

 At each iteration of the diagonalization loop, the travel time function 𝑐𝑠  results in a 

diagonalized cost function �̂�𝑠 (i.e., separable function) that can be used to formulate a convex 

program for the combined modal split and assignment problem with an NL mode choice model 

and an MNL route choice model. 

∑(𝑣𝑠 − 𝑣𝑠
∗)�̂�𝑠

𝑠∈𝑆

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ln ℎ𝑢𝑢,𝑘

𝑜𝑑∗ (ℎ𝑢𝑢,𝑘
𝑜𝑑 − ℎ𝑢𝑢,𝑘

𝑜𝑑∗ )

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑) ln 𝑞𝑢𝑢

𝑜𝑑∗ (𝑞𝑢𝑢
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑(𝑞𝑢𝑢

𝑜𝑑 − 𝑞𝑢𝑢
𝑜𝑑∗)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑) ln 𝑞𝑢

𝑜𝑑∗ (𝑞𝑢
𝑜𝑑 − 𝑞𝑢

𝑜𝑑∗)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

≥ 0, ∀(𝐪u, 𝐪𝑢𝑢, 𝐡𝑢𝑢,𝑘) ∈ Ω 

(4.72) 

Thus, it has an equivalent mathematical programming formulation as follows 

[MM-PFE-D] 

min𝑍 =∑∫ �̂�𝑠(𝜔)
𝑣𝑠

0

𝑑𝜔

𝑠∈𝑆

+ ∑ ∑ ∑ ∑
1

𝜃𝑢𝑢
𝑜𝑑 ℎ𝑢𝑢,𝑘

𝑜𝑑 (ln ℎ𝑢𝑢,𝑘
𝑜𝑑 − 1)

𝑘∈𝐾𝑢�̌�
𝑜𝑑𝑢∈𝑈𝑢

𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ (𝜌𝑢
𝑜𝑑 −

1

𝜃𝑢𝑢
𝑜𝑑)𝑞𝑢𝑢

𝑜𝑑(ln 𝑞𝑢𝑢
𝑜𝑑 − 1)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

− ∑ ∑ ∑ MSC𝑢𝑢
𝑜𝑑𝑞𝑢𝑢

𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ (1 − 𝜌𝑢
𝑜𝑑)𝑞𝑢

𝑜𝑑(ln 𝑞𝑢
𝑜𝑑 − 1)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

(4.73) 

s.t. Eqs. (18)-(19), (22)-(23), (26)-(32), and (34)-(36). 

This completes the proof.  

4.4.2 Overall solution algorithm framework 
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The whole framework of the solution algorithm for [MM-PFE] is summarized into the 

following steps, as shown in Figure 4.3: 

Step 0. (initialization). Find an initial feasible solution (�̅�, �̅�, �̅�). 

Step 1. Diagonalize 𝑐(𝐯) at (�̅�, �̅�, �̅�). 

Step 2. Solve problem [MM-PFE-D] to get (�̂�, �̂�, �̂�). 

Step 3. Stop test. If (�̅�, �̅�, �̅�) and (�̂�, �̂�, �̂�) are sufficiently close, stop; otherwise: 

Step 4. Make: (�̅�, �̅�, �̅�) ← (�̂�, �̂�, �̂�), and return to Step 1. 

 

 

Figure 4.3 Solution algorithm for MM-PFE 

 

To solve the [MM-PFE] problem in Step 2, we adopt a path-based partial linearization 

algorithm (Chen et al., 2009) combined with an iterative balancing search direction scheme 

(Bell and Iida, 1997) and a self-regulated averaging step-size scheme (Liu et al., 2009). The 

partial linearization subproblem is a convex program with linear equity and inequality 

constraints, and it can be efficiently solved using the three-layer iterative balancing scheme, as 

presented in subchapter 4.4.3. 

As the [MM-PFE-D] model has a three-layer structure (two layers for the mode choice 

and one layer for the route choice), the traditional iterative balancing scheme (Bell, 1995) 

cannot be used directly used here. This section mainly illustrates how to develop the Lagrange 

dual formulation to obtain the adjustment factors and update the dual variables. This approach 

is based on the work by Li (2016), and differs from Bell’s approach (Bell, 1995; Bell et al., 

1997; Chen et al., 2005, 2009, 2010; Ryu et al., 2014b). 

4.4.3 Direction finding: iterative balancing scheme 



97 
 

𝑌 = (…ℎ𝑢𝑢,𝑘
𝑜𝑑 …𝑞𝑢𝑢

𝑜𝑑 …𝑞𝑢
𝑜𝑑 …)

𝑇
 is a vector of primal decision variables in the [MM-PFE-

D] model, and 𝑊 = (
…𝜒𝑢𝑢

𝑜𝑑 …𝜛𝑢
𝑜𝑑 …𝜏𝑜…𝜚𝑑 …𝜖𝑢𝑢

𝑜𝑑−…𝜖𝑢𝑢
𝑜𝑑+…𝜔𝑐,𝑠…𝜔𝑏,𝑒…

𝜔𝑚,𝑒…𝜇𝑐,𝑠
− …𝜇𝑐,𝑠

+ …𝜓𝑏,𝑒
− …𝜓𝑏,𝑒

+ …𝜉𝑚,𝑒
− …𝜉𝑚,𝑒

+ …
)

𝑇

 is a vector of 

the dual variables (Lagrange multipliers). For given 𝑊, we define 𝐻(𝑊, 𝑌) as a function of 𝑌 

(i.e., ℎ𝑢𝑢,𝑘
𝑜𝑑 s, 𝑞𝑢𝑢

𝑜𝑑s and 𝑞𝑢
𝑜𝑑s), which is essentially the Lagrange formulation of [MM-PFE-D]: 

𝐻(𝑊, 𝑌) = 𝑍(𝑌) + ∑ ∑ ∑ 𝜒𝑢𝑢
𝑜𝑑 (𝑞𝑢𝑢

𝑜𝑑 − ∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ 𝜛𝑢
𝑜𝑑 (𝑞𝑢

𝑜𝑑 − ∑ 𝑞𝑢𝑢
𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑

)

𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

+∑𝜏𝑜(𝑃𝑜 − 𝑧𝑜)

𝑜∈𝑂

+∑𝜚𝑑(𝐴𝑑 − 𝑧𝑑)

𝑑∈𝐷

 

+ ∑ ∑ ∑ 𝜖𝑢𝑢
𝑜𝑑− ((1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+ ∑ ∑ ∑ 𝜖𝑢𝑢
𝑜𝑑+(𝑞𝑢𝑢

𝑜𝑑 − (1 + 𝜀𝑢�̌�
𝑜𝑑) ∙ 𝑧𝑢�̌�

𝑜𝑑)

𝑢∈𝑈𝑢
𝑜𝑑𝑢∈𝑈𝑜𝑑𝑜𝑑∈𝑂𝐷

 

+∑𝜔𝑐,𝑠(𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 − 𝐶𝑐,𝑠)

𝑠∈�̿�𝑐

+ ∑ 𝜔𝑏,𝑒(𝑣𝑏,𝑒 − 𝐶𝑏,𝑒)

𝑒∈�̿�𝑏

+ ∑ 𝜔𝑚,𝑒(𝑣𝑚,𝑒 − 𝐶𝑚,𝑒)

𝑒∈�̿�𝑚

 

+∑ 𝜇𝑐,𝑠
− ((1 − 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 − 𝑣𝑐,𝑠 − 𝐹𝑐,𝑠)

𝑠∈�̅�𝑐

+∑ 𝜇𝑐,𝑠
+ (𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 − (1 + 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠)

𝑠∈�̅�𝑐

 

+ ∑ 𝜓𝑏,𝑒
− ((1 − 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒 − 𝑣𝑏,𝑒)

𝑒∈�̅�𝑏

+ ∑ 𝜓𝑏,𝑒
+ (𝑣𝑏,𝑒 − (1 + 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒)

𝑒∈�̅�𝑏

 

+ ∑ 𝜉𝑚,𝑒
− ((1 − 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒 − 𝑣𝑚,𝑒)

𝑒∈�̅�𝑚

+ ∑ 𝜉𝑚,𝑒
+ (𝑣𝑚,𝑒 − (1 + 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒)

𝑒∈�̅�𝑚

 

The dual problem of [MM-PFE-D] is defined as 

(DP) max  Θ(𝑊) 

     s.t. 𝑊 ∈ 𝐷𝑊 

where  

𝐷𝑊 = {𝑊: 𝜖𝑢𝑢
𝑜𝑑−, 𝜖𝑢𝑢

𝑜𝑑+, 𝜔𝑐,𝑠, 𝜔𝑏,𝑒 , 𝜔𝑚,𝑒 , 𝜇𝑐,𝑠
− , 𝜇𝑐,𝑠

+ , 𝜓𝑏,𝑒
− , 𝜓𝑏,𝑒

+ , 𝜉𝑚,𝑒
− , 𝜉𝑚,𝑒

+ ≥

0, free 𝜒𝑢𝑢
𝑜𝑑, 𝜛𝑢

𝑜𝑑, 𝜏𝑜 and 𝜚𝑑}  is the feasible region, and Θ(𝑊) = inf{𝐻(𝑊, 𝑌), 𝑌 ∈ (𝑅+
ℎ ∪

𝑅+
𝑞)}. 

4.4.3.1 Dual formulation of [MM-PFE-D] 
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Proposition 4.3. The concave function Θ(𝑊) is differentiable with respect to 𝑊. For the dual 

problem (DP), to gain the optimal solution, ∇Θ(𝑊) should satisfy the following conditions: 

𝜕Θ(𝑊)

𝜕𝜒𝑢𝑢
𝑜𝑑 = 𝑞𝑢𝑢

𝑜𝑑 − ∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

= 0 (4.74) 

𝜕Θ(𝑊)

𝜕𝜛𝑢
𝑜𝑑 = 𝑞𝑢

𝑜𝑑 − ∑ 𝑞𝑢𝑢
𝑜𝑑

𝑢∈𝑈𝑢
𝑜𝑑

= 0 (4.75) 

𝜕Θ(𝑊)

𝜕𝜏𝑜
= 𝑃𝑜 − 𝑧𝑜 = 0 (4.76) 

𝜕Θ(𝑊)

𝜕𝜚𝑑
= 𝐴𝑑 − 𝑧𝑑 = 0 (4.77) 

𝜕Θ(𝑊)

𝜕𝜖𝑢𝑢
𝑜𝑑− = (1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑 = {
≤ 0, 𝑖𝑓 𝜖𝑢𝑢

𝑜𝑑− = 0

= 0, 𝑖𝑓 𝜖𝑢𝑢
𝑜𝑑− > 0

 (4.78) 

𝜕Θ(𝑊)

𝜕𝜖𝑢𝑢
𝑜𝑑+ = 𝑞𝑢𝑢

𝑜𝑑 − (1 + 𝜀𝑢�̌�
𝑜𝑑) ∙ 𝑧𝑢�̌�

𝑜𝑑 = {
≤ 0, 𝑖𝑓 𝜖𝑢𝑢

𝑜𝑑+ = 0

= 0, 𝑖𝑓 𝜖𝑢𝑢
𝑜𝑑+ > 0

 (4.79) 

𝜕Θ(𝑊)

𝜕𝜔𝑐,𝑠
= 𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 − 𝐶𝑐,𝑠 = {

≤ 0, 𝑖𝑓 𝜔𝑐,𝑠 = 0

= 0, 𝑖𝑓 𝜔𝑐,𝑠 > 0
 (4.80) 

𝜕Θ(𝑊)

𝜕𝜔𝑏,𝑒
= 𝑣𝑏,𝑒 − 𝐶𝑏,𝑒 = {

≤ 0, 𝑖𝑓 𝜔𝑏,𝑒 = 0

= 0, 𝑖𝑓 𝜔𝑏,𝑒 > 0
 (4.81) 

𝜕Θ(𝑊)

𝜕𝜔𝑚,𝑒
= 𝑣𝑚,𝑒 − 𝐶𝑚,𝑒 = {

≤ 0, 𝑖𝑓 𝜔𝑚,𝑒 = 0

= 0, 𝑖𝑓 𝜔𝑚,𝑒 > 0
 (4.82) 

𝜕Θ(𝑊)

𝜕𝜇𝑐,𝑠−
= (1 − 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 − 𝑣𝑐,𝑠 − 𝐹𝑐,𝑠 = {

≤ 0, 𝑖𝑓 𝜇𝑐,𝑠
− = 0

= 0, 𝑖𝑓 𝜇𝑐,𝑠
− > 0

 (4.83) 

𝜕Θ(𝑊)

𝜕𝜇𝑐,𝑠
+ = 𝑣𝑐,𝑠 + 𝐹𝑐,𝑠 − (1 + 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 = {

≤ 0, 𝑖𝑓 𝜇𝑐,𝑠
+ = 0

= 0, 𝑖𝑓 𝜇𝑐,𝑠
+ > 0

 (4.84) 

𝜕Θ(𝑊)

𝜕𝜓𝑏,𝑒
− = (1 − 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒 − 𝑣𝑏,𝑒 = {

≤ 0, 𝑖𝑓 𝜓𝑏,𝑒
− = 0

= 0, 𝑖𝑓 𝜓𝑏,𝑒
− > 0

 (4.85) 

𝜕Θ(𝑊)

𝜕𝜓𝑏,𝑒
+ = 𝑣𝑏,𝑒 − (1 + 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒 = {

≤ 0, 𝑖𝑓 𝜓𝑏,𝑒
+ = 0

= 0, 𝑖𝑓 𝜓𝑏,𝑒
+ > 0

 (4.86) 

𝜕Θ(𝑊)

𝜕𝜉𝑚,𝑒−
= (1 − 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒 − 𝑣𝑚,𝑒 = {

≤ 0, 𝑖𝑓 𝜉𝑚,𝑒
− = 0

= 0, 𝑖𝑓 𝜉𝑚,𝑒
− > 0

 (4.87) 

𝜕Θ(𝑊)

𝜕𝜉𝑚,𝑒
+ = 𝑣𝑚,𝑒 − (1 + 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒 = {

≤ 0, 𝑖𝑓 𝜉𝑚,𝑒
+ = 0

= 0, 𝑖𝑓 𝜉𝑚,𝑒
+ > 0

 (4.88) 

4.4.3.2 Dual variables adjustment factor 
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Based on Proposition 4.3, we can classify the dual variables into two types: (1) Eqs. (74)-

(77), and (2) Eqs. (78)-(88). Hence, we present the following propositions to derive the 

adjustment factors for the dual variables 𝜒𝑢𝑢
𝑜𝑑 in Eq. (74) and 𝜖𝑢𝑢

𝑜𝑑− in Eq. (78). The expressions 

of the adjustment factors for the remaining dual variables are given in Table 4.1. 

 

Proposition 4.4. If the optimality condition given by Eq. (74) is not 0, assume that 𝜒𝑢𝑢
𝑜𝑑 is the 

lth component of 𝑊; then, an adjustment �̃�𝑢𝑢
𝑜𝑑 can be made to 𝜒𝑢𝑢

𝑜𝑑 such that 

�̃�𝑢𝑢
𝑜𝑑 =

1

𝜃𝑢�̌�
𝑜𝑑 ln (

𝑞𝑢�̌�
𝑜𝑑

∑ ℎ𝑢�̌�,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

) , �̃�𝑢𝑢
𝑜𝑑 ×

𝜕Θ(𝑊)

𝜕𝜒𝑢�̌�
𝑜𝑑 > 0 , �̃�𝑢𝑢

𝑜𝑑 ×
𝜕Θ(𝑊−�̃�𝑢�̌�

𝑜𝑑 ∙𝑒𝑙)

𝜕𝜒𝑢�̌�
𝑜𝑑 = 0 , Θ(𝑊 − �̃�𝑢𝑢

𝑜𝑑 ∙ 𝑒𝑙) ≥

Θ(𝑊 − 𝜒𝑢𝑢
𝑜𝑑′ ∙ 𝑒𝑙), �̃�𝑢𝑢

𝑜𝑑′ ∈ 𝑅, 

where 𝑒𝑙 is the unit vector with the lth component equal to 1. 

Proof. After adding an adjustment factor �̃�𝑢𝑢
𝑜𝑑 to 𝜒𝑢𝑢

𝑜𝑑, we obtain: 

𝜕Θ(𝑊 − �̃�𝑢𝑢
𝑜𝑑 ∙ 𝑒𝑙)

𝜕𝜒𝑢𝑢
𝑜𝑑 = 0 (4.89) 

From Eqs. (4.74) and (4.89), we have: 

𝑞𝑢𝑢
𝑜𝑑 = ∑ exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 − 𝜒𝑢𝑢

𝑜𝑑 − 𝜒𝑢𝑢
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘∈𝐾𝑢�̌�
𝑜𝑑

= exp(𝜃𝑢𝑢
𝑜𝑑�̃�𝑢𝑢

𝑜𝑑) ∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

 
(4.90) 

Let 𝑞 = ∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑  in Eq. (4.90), then we have: 

�̃�𝑢𝑢
𝑜𝑑 {

> 0, 𝑖𝑓 𝑞𝑢𝑢
𝑜𝑑 > 𝑞, that is, 𝜕Θ 𝜕𝜒𝑢𝑢

𝑜𝑑⁄ > 0

< 0, 𝑖𝑓 𝑞𝑢𝑢
𝑜𝑑 < 𝑞, , that is, 𝜕Θ 𝜕𝜒𝑢𝑢

𝑜𝑑⁄ < 0
 

This implies that �̃�𝑢𝑢
𝑜𝑑 × 𝜕Θ(𝑊) 𝜕𝜒𝑢𝑢

𝑜𝑑⁄ > 0. Note that �̃�𝑢𝑢
𝑜𝑑 is the solution of Eq. (4.90); 

therefore, we have �̃�𝑢𝑢
𝑜𝑑 × 𝜕Θ(𝑊 − �̃�𝑢𝑢

𝑜𝑑 ∙ 𝑒𝑙) 𝜕𝜒𝑢𝑢
𝑜𝑑⁄ = 0.  

As Θ(𝑊) is concave, we have Θ(𝑊 − �̃�𝑢𝑢
𝑜𝑑 ∙ 𝑒𝑙) ≥ Θ(𝑊 − �̃�𝑢𝑢

𝑜𝑑′ ∙ 𝑒𝑙), �̃�𝑢𝑢
𝑜𝑑′ ∈ 𝑅. Therefore, 

from Eq. (4.90), we have: 

�̃�𝑢𝑢
𝑜𝑑 =

1

𝜃𝑢𝑢
𝑜𝑑 ln (

𝑞𝑢𝑢
𝑜𝑑

∑ ℎ𝑢𝑢,𝑘
𝑜𝑑

𝑘∈𝐾𝑢�̌�
𝑜𝑑

) 

This completes the proof.  

Proposition 4.5. If the optimality condition given by Eq. (78) is not satisfied, assume that 𝜖𝑢𝑢
𝑜𝑑− 

is the lth component of 𝑊; then, an adjustment 𝜖�̃�𝑢
𝑜𝑑− can be made to 𝜖𝑢𝑢

𝑜𝑑− such that 

𝜖�̃�𝑢
𝑜𝑑− = max {−𝜖𝑢𝑢

𝑜𝑑−, 𝜌𝑢
𝑜𝑑 ln (

(1−𝜀𝑢�̌�
𝑜𝑑)∙𝑧𝑢�̌�

𝑜𝑑

𝑞𝑢�̌�
𝑜𝑑 )} , 𝜖�̃�𝑢

𝑜𝑑− ×
𝜕Θ(𝑊)

𝜕𝜖𝑢�̌�
𝑜𝑑− > 0 , 𝜖�̃�𝑢

𝑜𝑑− ×
𝜕Θ(𝑊+�̃�𝑢�̌�

𝑜𝑑−∙𝑒𝑙)

𝜕𝜖𝑢�̌�
𝑜𝑑− ≥ 0 , 

(𝑊 + 𝜖�̃�𝑢
𝑜𝑑− ∙ 𝑒𝑙) ≥ (𝑊 + 𝜖�̃�𝑢

𝑜𝑑−′ ∙ 𝑒𝑙), 𝜖�̃�𝑢
𝑜𝑑−′ ∈ 𝐷𝑙, where 𝐷𝑙 = {𝜖𝑢𝑢

𝑜𝑑− + 𝜖�̃�𝑢
𝑜𝑑−′ ≥ 0}. 
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Proof. Eq. (4.78) can be rewritten as: 

𝜕Θ(𝑊)

𝜕𝜖𝑢𝑢
𝑜𝑑− = (1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 − 𝑞𝑢𝑢

𝑜𝑑

= (1 − 𝜀𝑢�̌�
𝑜𝑑) ∙ 𝑧𝑢�̌�

𝑜𝑑

− exp

(

 
1

𝜌𝑢
𝑜𝑑
(
1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 + 𝐽𝑢𝑢,𝑘

𝑜𝑑 ))

𝑘′∈𝐾𝑢�̌�
𝑜𝑑

+MSC𝑢𝑢
𝑜𝑑

+𝜛𝑢
𝑜𝑑 + 𝜖𝑢𝑢

𝑜𝑑− − 𝜖𝑢𝑢
𝑜𝑑+)

)

  

(4.91) 

We need to determine the value of 𝜖�̃�𝑢
𝑜𝑑− based on 𝜖𝑢𝑢

𝑜𝑑−: 

(1) When 𝜖𝑢𝑢
𝑜𝑑− = 0 , we have 𝜕Θ(𝑊) 𝜕𝜖𝑢𝑢

𝑜𝑑−⁄ > 0  because Eq. (4.91) is violated. 

Following the proof in Proposition 4.4, we have 

𝜖�̃�𝑢
𝑜𝑑− = 𝜌𝑢

𝑜𝑑 ln (
(1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑

𝑞𝑢𝑢
𝑜𝑑 ) 

Note that, in this case, 𝜖�̃�𝑢
𝑜𝑑−  is always positive since (1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 𝑞𝑢𝑢

𝑜𝑑⁄ > 1  (i.e., 

𝜕Θ(𝑊) 𝜕𝜖𝑢𝑢
𝑜𝑑−⁄ > 0). 

(2) When 𝜖𝑢𝑢
𝑜𝑑− > 0 , Eq. (4.91) has to be 0. Similar to (1), we can have 𝜖�̃�𝑢

𝑜𝑑− =

𝜌𝑢
𝑜𝑑 ln((1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 𝑞𝑢𝑢

𝑜𝑑⁄ ) . 𝜖�̃�𝑢
𝑜𝑑−  will be negative if Eq. (4.91) is negative (i.e., 

𝜕Θ(𝑊) 𝜕𝜖𝑢𝑢
𝑜𝑑−⁄ < 0) which implies that using equation 𝜖𝑢𝑢

𝑜𝑑− = 𝜖𝑢𝑢
𝑜𝑑− + 𝜖�̃�𝑢

𝑜𝑑− to update 𝜖𝑢𝑢
𝑜𝑑− 

may violate the constraint 𝜖𝑢𝑢
𝑜𝑑− ≥ 0. To avoid this violation, we set 

𝜖�̃�𝑢
𝑜𝑑− = {

𝜌𝑢
𝑜𝑑 ln((1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 𝑞𝑢𝑢

𝑜𝑑⁄ ) , if (1 − 𝜀𝑢�̌�
𝑜𝑑) ∙ 𝑧𝑢�̌�

𝑜𝑑 > 𝑞𝑢𝑢
𝑜𝑑, that is 𝜕Θ(𝑊) 𝜕𝜖𝑢𝑢

𝑜𝑑−⁄ > 0

max{−𝜖𝑢𝑢
𝑜𝑑−, 𝜌𝑢

𝑜𝑑 ln((1 − 𝜀𝑢�̌�
𝑜𝑑) ∙ 𝑧𝑢�̌�

𝑜𝑑 𝑞𝑢𝑢
𝑜𝑑⁄ )}, if (1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 < 𝑞𝑢𝑢

𝑜𝑑, that is 𝜕Θ(𝑊) 𝜕𝜖𝑢𝑢
𝑜𝑑−⁄ < 0 

 

Therefore, based on (1) and (2), 𝜖�̃�𝑢
𝑜𝑑− = max{−𝜖𝑢𝑢

𝑜𝑑−, 𝜌𝑢
𝑜𝑑 ln((1 − 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑 𝑞𝑢𝑢

𝑜𝑑⁄ )}, and 

(𝑊 + 𝜖�̃�𝑢
𝑜𝑑− ∙ 𝑒𝑙) ≥ (𝑊 + 𝜖�̃�𝑢

𝑜𝑑−′ ∙ 𝑒𝑙), 𝜖�̃�𝑢
𝑜𝑑−′ ∈ 𝐷𝑙, where 𝐷𝑙 = {𝜖𝑢𝑢

𝑜𝑑− + 𝜖�̃�𝑢
𝑜𝑑−′ ≥ 0}.  

This completes the proof.  

 

Table 4.1 Adjustment factors of dual variables 

Dual variable Equation number Adjustment factor 

𝜛𝑢
𝑜𝑑 (75) �̃�𝑢

𝑜𝑑 = 𝜌𝑢
𝑜𝑑 ln (

𝑞𝑢
𝑜𝑑

∑ 𝑞𝑢�̌�
𝑜𝑑

�̌�∈�̌�𝑢
𝑜𝑑

) 

𝜏𝑜 (76) �̃�𝑜 = − ln (
𝑧𝑜

𝑃𝑜
) 
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𝜚𝑑 (77) �̃�𝑑 = − ln(
𝑧𝑑

𝐴𝑑
) 

𝜖𝑢�̌�
𝑜𝑑+ (79) 𝜖�̃��̌�

𝑜𝑑+ = max {−𝜖𝑢�̌�
𝑜𝑑+, −𝜌𝑢

𝑜𝑑 ln (
(1 + 𝜀𝑢�̌�

𝑜𝑑) ∙ 𝑧𝑢�̌�
𝑜𝑑

𝑞𝑢�̌�
𝑜𝑑 )} 

𝜔𝑐,𝑠 (80) �̃�𝑐,𝑠 = max{−𝜔𝑐,𝑠, −
1

𝜃𝑐
𝑜𝑑
ln (

𝐶𝑐,𝑠 − 𝐹𝑐,𝑠
𝑣𝑐,𝑠

)} 

𝜔𝑏,𝑒 (81) �̃�𝑏,𝑒 = max {−𝜔𝑏,𝑒 , −
1

𝜃𝑏
𝑜𝑑 ln (

𝐶𝑏,𝑒
𝑣𝑏,𝑒

)} 

𝜔𝑚,𝑒 (82) �̃�𝑚,𝑒 = max {− 𝜔𝑚,𝑒 , −
1

𝜃𝑚
𝑜𝑑
ln (

𝐶𝑚,𝑒
𝑣𝑚,𝑒

)} 

𝜇𝑐,𝑠
−  (83) �̃�𝑐,𝑠

− = max{−𝜇𝑐,𝑠
− ,

1

𝜃𝑐
𝑜𝑑
ln (

(1 − 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 − 𝐹𝑐,𝑠
𝑣𝑐,𝑠

)} 

𝜇𝑐,𝑠
+  (84) �̃�𝑐,𝑠

+ = max{−𝜇𝑐,𝑠
+ , −

1

𝜃𝑐
𝑜𝑑
ln (

(1 + 𝜀𝑐,𝑠) ∙ �̅�𝑐,𝑠 − 𝐹𝑐,𝑠
𝑣𝑐,𝑠

)} 

𝜓𝑏,𝑒
−  (85) �̃�𝑏,𝑒

− = max {−𝜓𝑏,𝑒
− ,

1

𝜃𝑏
𝑜𝑑 ln (

(1 − 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒
𝑣𝑏,𝑒

)} 

𝜓𝑏,𝑒
+  (86) �̃�𝑏,𝑒

+ = max {−𝜓𝑏,𝑒
+ , −

1

𝜃𝑏
𝑜𝑑 ln (

(1 + 𝜀𝑏,𝑒) ∙ �̅�𝑏,𝑒
𝑣𝑏,𝑒

)} 

𝜉𝑚,𝑒
−  (87) 𝜉𝑚,𝑒

− = max {−𝜉𝑚,𝑒
− ,

1

𝜃𝑚
𝑜𝑑
ln (

(1 − 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒
𝑣𝑚,𝑒

)} 

𝜉𝑚,𝑒
+  (88) 𝜉𝑚,𝑒

+ = max{−𝜉𝑚,𝑒
+ , −

1

𝜃𝑚
𝑜𝑑
ln (

(1 + 𝜀𝑚,𝑒) ∙ �̅�𝑚,𝑒
𝑣𝑚,𝑒

)} 

 

Iterative balancing is centered on the use of dual variables to analytically determine primal 

variables. By initializing the dual variables, we can obtain the initialized primal variables 

according to their analytical expressions. After the adjustment factors for the dual variables are 

obtained via the dual formulation, the updated dual variables can be used to analytically 

determine the primal variables. When the convergent (or stopping) criterion is reached, the 

solution (primal and dual variables) will be obtained. Although solution frameworks of iterative 

balancing have been well presented (Chen et al., 2005, 2009, 2010), they focus on a one-layer 

structure (i.e., only for the route choice). Thus, it is necessary to present the detailed steps of 

three-layer iterative balancing (Figure 4.4). The convergence of the iterative balancing scheme 

with NL model has been proved by Li (2016) (see Proposition 3.11). The algorithm has been 

coded using C# in Microsoft Visual Studio 2015 and run on a computer with a 2.7 GHz 

processor and 20.00 GB RAM. 

To supplement the steps in the flow chart (Figure 4.4), the analytical expressions of ℎ𝑢𝑢,𝑘
𝑜𝑑 , 

𝑞𝑢𝑢
𝑜𝑑 and 𝑞𝑢

𝑜𝑑 are used to represent the combined mode and route choices in the MM-PFE: 

4.4.3.3 Detailed steps 
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ℎ𝑢𝑢,𝑘
𝑜𝑑 = exp (−𝜃𝑢𝑢

𝑜𝑑(𝑐𝑢𝑢,𝑘
𝑜𝑑 − 𝜒𝑢𝑢

𝑜𝑑 + 𝐽𝑢𝑢,𝑘
𝑜𝑑 )) = Ξℎ(𝜒𝑢𝑢

𝑜𝑑, 𝐽𝑢𝑢,𝑘
𝑜𝑑 ) (4.92) 

𝑞𝑢𝑢
𝑜𝑑 = exp

(

 
1

𝜌𝑢
𝑜𝑑
(
1

𝜃𝑢𝑢
𝑜𝑑 ln ∑ exp (−𝜃(𝑐𝑢𝑢,𝑘

𝑜𝑑 + 𝐽𝑢𝑢,𝑘
𝑜𝑑 ))

𝑘′∈𝐾𝑢�̌�
𝑜𝑑

+MSC𝑢𝑢
𝑜𝑑 +𝜛𝑢

𝑜𝑑 + 𝜖𝑢𝑢
𝑜𝑑−

− 𝜖𝑢𝑢
𝑜𝑑+)

)

 = Ξ𝑞𝑢�̌�(𝜛𝑢
𝑜𝑑 , 𝜖𝑢𝑢

𝑜𝑑−, 𝜖𝑢𝑢
𝑜𝑑+, 𝐽𝑢𝑢,𝑘

𝑜𝑑 ) 

(4.93) 

𝑞𝑢
𝑜𝑑 = exp(𝜌𝑢

𝑜𝑑𝐼𝑢
𝑜𝑑) ∙ exp(−𝜏𝑜) ∙ exp(− 𝜚𝑑) = Ξ𝑞𝑢(𝜏

𝑜 , 𝜚𝑑, 𝜖𝑢𝑢
𝑜𝑑−, 𝜖𝑢𝑢

𝑜𝑑+, 𝐽𝑢𝑢,𝑘
𝑜𝑑 ) (4.94) 
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Figure 4.4 Algorithm of the three-layer iterative balancing scheme 

In this subchapter, the hypothetical multi-modal transportation network of Sioux Falls is 

used to illustrate the features of the proposed model and the solution algorithm performance. 

4.5 Numerical Experiment 
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According to Vovsha (1997), the mode-specific constants can be calibrated using the household 

survey data, and they are assumed as: MSC𝑐
𝑜𝑑 = 0, MSC𝑏

𝑜𝑑 = 8, and MSC𝑚
𝑜𝑑 = 12 in this paper. 

The parameters are set as: 𝜌𝑢
𝑜𝑑 = 0.5, 𝜃𝑢𝑢

𝑜𝑑 = 1.5, and 𝑃𝐶𝐸 = 3. 

The travel time functions for the road link and route section for the multi-modal 

transportation network are as follows: 

 Road network: 𝑐𝑐,𝑠 = 𝑡𝑐,𝑠
0 (1 + 0.15 ∙ (

𝐹𝑐,𝑠+𝑣𝑐,𝑠

𝐶𝑐,𝑠
)
4

) , ∀𝑠 ∈ 𝑆𝑐 

 Bus network: 𝜙𝑏,𝑠(𝐯) = 10 ∙ (
𝑣𝑏,𝑠+�̃�𝑏,𝑠

∑ 𝑓𝑙 𝑙∈𝐴𝑏
𝑠 𝜅𝑏,𝑙

) , ∀𝑠 ∈ 𝑆𝑏 

 Metro network: 𝜙𝑚,𝑠(𝐯) = 10 ∙ (
𝑣𝑚,𝑠+�̃�𝑚,𝑠

∑ 𝑓𝑙 𝑙∈𝐴𝑚
𝑠 𝜅𝑚,𝑙

) , ∀𝑠 ∈ 𝑆𝑚 

The multi-modal transportation network of Sioux Falls is displayed in Figure 4.5. It 

comprises a highway network with 76 directed links and 24 nodes (downloaded from 

http://www.bgu.ac.il/~bargera/tntp/), a metro network with 5 metro lines (10 itineraries), and 

a bus network with 9 bus lines (18 itineraries). In Table 2, there are 32 OD pairs given with 8 

original zones. The path set of the private car mode was generated using seSue, an open-source 

software program obtained from Ahipasaoglu et al. (2016). A combination of the link penalty 

and link elimination methods is used here, and the default setting is adopted. The maximum 

number of transfers in metro and bus networks is 2, and the maximum number of paths between 

each OD pair is 20 (metro and bus) and 30 (car). 

We have generated the inputs of the model in the multi-modal transportation network with 

some supposed parameters and zonal production and attraction. Specifically, the input used 

comprises the link counts (i.e., road link traffic counts, onboard passenger counts of bus and 

metro line segments), mode-specific target OD demand, and zonal production and attraction 

observations. Without loss of generality, the link counts and mode-specific target OD demand 

are randomly multiplied by a number between 0.85 and 1.15. The error bounds for these two 

kinds of observed data are set as [−15%,+15%] and [−10%,+10%], respectively. 

 

4.5.1 Experiment setting 

http://www.bgu.ac.il/~bargera/tntp/
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Figure 4.5 Hypothetical multi-modal transportation network of Sioux Falls 

 

Table 4.2 OD pair setting in Sioux Falls 

OD pair OD pair OD pair OD pair 

(1, 13) (3, 13) (13, 1) (21, 1) 

(1, 20) (3, 20) (13, 2) (21, 2) 

(1, 21) (3, 21) (13, 3) (21, 3) 

(1, 24) (3, 24) (13, 4) (21, 4) 

(2, 13) (4, 13) (20, 1) (24, 1) 

(2, 20) (4, 20) (20, 2) (24, 2) 

(2, 21) (4, 21) (20, 3) (24, 3) 

(2, 24) (4, 24) (20, 4) (24, 4) 

 

This subchapter presents the result to demonstrate the applicability of the proposed model 

and evaluate the capability of the algorithm for finding good solutions. 
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4.5.2 Result analysis 

4.5.2.1 Convergence characteristics 
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To evaluate the performance of the solution algorithm, we not only plot the convergence 

curve of the root mean square error (RMSE) of the mode-specific path flow for the proposed 

model, but also randomly select four constraints to illustrate the convergence characteristics of 

the corresponding dual variables. The convergence curves are presented in Figure 4.6. 

All three curves of RMSE versus the number of iterations decrease below 1E-6 in a few 

iterations. The values of the selected dual variables at each iteration are also shown in Figure 

4.6. All of the dual variables converge. The values of all selected dual variables are larger than 

or equal to 0: 

• The dual variable corresponding to origin 2 (zonal production) is positive, with a value of 

21.08; this indicates that origin 2 has an intrinsic attractiveness to travelers. 

• The dual variable corresponding to target OD pair (1, 21) (OD demand) of the metro mode 

equals 0, which means that the estimated OD demand of the metro mode is within the 

specific bound (i.e., an internal solution). 

• The dual variable (upper bound) corresponding to road link 74 (flow) is 7.36, larger than 

0, which indicates that the estimated flow of road link 74 reaches the upper bound. 

• The dual variable (upper bound) corresponding to line segment 1 of bus line 3 (flow) is 

0.44, which indicates that the estimated flow of this bus line segment reaches the upper 

bound. 
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Figure 4.6 Convergence characteristics of the solution algorithm

Convergence of outer iteration 1 Convergence of outer iteration 13

Iterative balancing loop: convergence of dual variables

Iterative balancing loop: convergence of dual variables
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The model accuracy is verified from four perspectives: zonal production and attraction, 

target mode-specific OD demand, estimated mode-specific OD demand, and observed link 

(line segment) flow. 

• Figure 4.7 compares the observed zonal productions and attractions with those calculated 

using the estimated mode-specific OD demand. The observed zonal productions and 

attractions are equal to the estimated values. This indicates that both the estimated zonal 

production and attraction meet their constraints, i.e., Eqs. (4.22)-(4.23). 

• Figure 4.8 compares the observed target mode-specific OD demand with the estimated 

values. The scatters lie in the region of [-10%, +10%] of the observed count, which meets 

the requirement of the constraint in Eq. (4.26). 

• Figure 4.9 compares the estimated mode-specific OD demand with those calculated using 

the estimated mode-specific path flow. The scatter points lie on the 45° line (i.e., 𝑌 = 𝑋). 

This is consistent with the flow conservation constraint in Eq. (4.19). 

• Figure 4.10 compares the observed and estimated link (line segment) flows. The scatters 

lie in the region of [-15%, +15%] of the observed count. This also accords with Eqs. 

(4.27)-( 4.29). 

 

  

(a) Original zone (b) Destination zone 

Figure 4.7 Comparison between the observed zonal productions and attractions and those 

calculated using the estimated mode-specific OD demand 
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4.5.2.2 Model accuracy 
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(a) Mode car of OD pair (b) Mode metro of OD pair 

 

(c) Mode bus of OD pair 

Figure 4.8 Comparison between the observed and estimated target mode-specific OD 

demands 
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(c) Mode bus of OD pair 

Figure 4.9 Comparison between the estimated mode-specific OD demands and those 

calculated using the estimated mode-specific path flow 
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(c) Bus line segment 

Figure 4.10 Comparison between the observed and estimated link (line segment) flows 
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This chapter addresses the multi-modal OD demand estimation problem in urban 

transportation networks. A NL-based PFE is formulated as a VI problem based on a single-

level structure. In the proposed model, the interaction of private cars and bus vehicles, private 

car and transit route choice behaviours, and mode similarity are modeled. Moreover, the 

estimated demand distribution in the optimal solution is proved: an NL model is used for the 

mode demand, and an MNL model is used for the mode-specific path flow of each OD pair. 

The model input for demand estimation includes information about the link counts (i.e., road 

link traffic counts, metro and bus line segment flow observations), the mode-specific target OD 

demand, and zonal production and attraction observations. 

A diagonalization approach is developed for the proposed MM-PFE model. Using the 

diagonalized approach, the variation inequality formulation is reformulated as a convex 

optimization problem in each diagonalized iteration. Then, the reformulated problem is solved 

using a path-based partial linearization algorithm embedded with a three-layer iterative 

balancing scheme, which can handle various inequality/equality side constraints. 

The MM-PFE is applied to a hypothetical multi-modal transportation network based on 

the Sioux Falls network. The numerical results demonstrate that the proposed MM-PFE can 

obtain a suitable multi-modal OD trip matrix with limited available observations and that the 

developed solution algorithm can solve the proposed model. 

 

4.6 Chapter Summary 
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This chapter summarizes the work and conclusions achieved in this thesis and presents 

several future research directions. 

The research presented in this thesis focuses on multi-modal travel demand estimation 

methodology to address the weaknesses of the traditional transport planning in a sequential 

manner and activity-based models. Compared with the traditional four-step model, the 

integrated PFE framework is consistent and can incorporate various side constraints related to 

multiple data sources. Compared with the activity-based model, the integrated PFE framework 

not only take less time for computation, but also can use the information contained within the 

observational data and express the path flow (mode-specific OD demand) analytically. Three 

research problems are comprehensively modeled: (a) transit travel behavior; (b) transit origin-

destination (OD) demand estimation; and (c) multi-modal demand estimation. Three research 

components are undertaken to answer the abovementioned problems as follows. 

(1) Development of a strategy-based stochastic transit equilibrium model with 

capacity and number-of-transfers constraints 

Chapter 2 presents a strategy-based transit stochastic user equilibrium model with capacity 

and number-of-transfers constraints. The logit-based stochastic path choice behavior and in-

vehicle congestion cost are taken into account, a strict capacity constraint of transit line 

segments is added to handle the overload problem, and a number-of-transfers constraint is 

CHAPTER 5  

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE RESEARCH  

5.1 Conclusion 
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considered for transit path finding. This transit equilibrium problem is formulated as a logit-

based variational inequality problem. A transit path-set generation procedure based on the k-

shortest path algorithm is introduced, which also considers the features of a route-section-based 

transit network and number-of-transfers constraint. The diagonalization method is adopted to 

solve the proposed model, and the diagonalized subproblem is solved using a path-based partial 

linearization solution algorithm embedded with an iterative balancing scheme to handle the 

capacity constraints. 

Numerical examples are provided to demonstrate the features of the proposed model and 

evaluate the performance of the developed solution algorithm. The results indicate that the 

number of transfers constraint changes the components of the transit path set, which strongly 

impacts the passenger flow patterns. The results show that the line capacity constraint also 

affects flow patterns, which revises the evaluation of some transit management strategies. The 

results from the real-case transit network further verify the applicability of the developed 

solution algorithm. Overall, the numerical examples highlight the importance of using capacity 

and number-of-transfers constraints in transit equilibrium problems. 

(2) Frequency-based path flow estimator for transit OD demand estimation 

Chapter 3 presents a frequency-based path flow estimator (PFE) framework to estimate 

the OD trip matrix in a transit network. A frequency-based transit PFE formulation in 

variational inequality form is proposed that incorporate the observed partial OD demand 

matrices and onboard passenger flow observations as side constraints. The observed partial OD 

demand matrix is inferred from the automatic fare collection (i.e., smartcard) data together with 

automatic vehicle location (AVL) data based on the inference of the alighting stops, while the 

observed onboard passenger flow is calculated from the automatic passenger counting and 

AVL data. The diagonalization method is adopted to solve the proposed model, and the 

diagonalized subproblem is solved using a path-based partial linearization solution algorithm 

embedded with an iterative balancing scheme to handle the various side constraints.  

Numerical examples are provided to illustrate the performance of the proposed model and 

its applicability in a real-world transit network. The results show that the configurations of the 

onboard passenger counts and observed partial OD flows affect the estimated results. Overall, 

the large-network results indicate that the OD flow estimations can be improved using a 

combination of the onboard passenger counts and observed partial OD flows. 

(3) Multi-modal PFE for OD demand estimation 

In Chapter 4, a multi-modal PFE with a nested logit (NL) choice model is formulated as 

a variational inequality problem based on a single-level structure. The proposed model 
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addresses the interaction of private cars and bus vehicles, route choice behavior of private cars 

and transit modes, and mode similarity. The estimated demand distribution in the optimal 

solution is verified. An NL model is used to estimate the mode demand, and a multinomial 

logit model is used to estimate the mode-specific path flow of each OD pair. The model input 

for the demand estimation includes information regarding the link counts (e.g., road link traffic 

counts and metro and bus line segment flow observations), mode-specific target OD demand, 

and zonal production and attraction observations. 

A diagonalization approach is developed for the proposed multi-modal PFE model that 

reformulates the variational inequality formulation as a convex optimization problem in each 

diagonalized iteration. The reformulated problem is then further solved using a path-based 

partial linearization algorithm embedded with a three-layer iterative balancing scheme, which 

can handle various inequality/equality side constraints. 

The multi-modal PFE is applied to a hypothetical multi-modal transportation network 

based on the Sioux Falls (USA) network. The numerical results demonstrate that the proposed 

MM-PFE can obtain a suitable multi-modal OD trip matrix with limited available observations, 

and the developed solution algorithm is capable of solving the proposed model. 

In this subchapter, we discuss two main potential further: extended integrated PFE and 

integrated PFE applications. 

(1) Trip-chain-based PFE: Trip chaining behavior has been incorporated into network 

equilibrium models (Maruyama and Harata, 2005, 2006; Maruyama and Sumalee, 2007; He et 

al., 2015; Lu et al., 2015; Shimamoto et al., 2016; Wang et al., 2016; Xie et al., 2017; Gao et 

al., 2019). However, the issue of demand inconsistency might arise in the travel demand 

estimation problem due to the ignored linkage between adjacent trips. Hence, one further 

direction is to explore a PFE that considers trip chaining behavior. According to Primerano et 

al. (2008), trip chains contain more general patterns with more secondary activities for which 

the scheduling order is flexible. This requires a comprehensive integrated trip-chain-based PFE 

framework to capture these features. 

(2) Advanced discrete choice model: The models proposed in this thesis adopt the logit 

model for passenger route choice behavior, which assumes that random error terms are 

5.2 Further Research Directions 

5.2.1 Extended integrated PFE 
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independent and identically distributed. This raises two issues of route overlapping and route-

specific perception variance. Thus, one possible direction is to relax the assumption of identical 

distribution and adopt a weibit-based model (Castillo et al., 2008; Kitthamkesorn and Chen, 

2013, 2014; Kitthamkesorn et al., 2015). 

(3) Real network validation: The proposed models were tested with hypothetical 

transportation networks, which demonstrates the necessity to integrate data from a real-case 

network to calibrate the model parameters. The proposed models adopt the predetermined 

measurement errors for the known information, which is not quite suitable for the real data 

case, and norm approximation techniques (Chen et al., 2009) can be developed to handle the 

various data inconsistencies. A direct comparison between the estimated and observed values 

is not possible because the true OD demands (benchmarks) are unknown. The confidence 

interval estimation approach (Chootinan and Chen, 2011) can be adopted in a multi-modal 

transportation network to assess the reliability of the demand estimation results. 

(4) More travel choices: More mode choices exist in a multi-modal urban transportation 

system (e.g., more transit modes, park and ride, and ride-sharing/ride-hailing). For example, 

the pick-up/drop-off behavior in ride-sharing mode should be considered, especially for the 

case of multiple pick-ups/drop-offs for an individual ride-sharing driver, and a more in-depth 

integrated PFE should be proposed. 

This thesis focuses on an integrated PFE framework for multi-modal travel demand 

estimation, which also serves as a network equilibrium analysis tool with corresponding side 

constraints. Network equilibrium models are important for other urban disciplines including 

transportation management and land use. 

(1) Network and service operation design: For existing bi-level transportation network 

(e.g., new roads and bus network) and service operation design (e.g., pricing for connected and 

autonomous vehicles, transit line frequency, and subsidies for transit passengers) problems, the 

lower-level model usually adopts a network equilibrium model which does not contain the 

traffic count information related to the historical demand. A corresponding PFE model can thus 

fill this gap. Moreover, the above nonlinear bi-level models are consistently solved 

heuristically. An exact algorithmic framework can be developed for these cases using a nested 

branch-and-bound tree and the piecewise linear approximation method (Dan et al., 2021). 

5.2.2 Applications of an integrated PFE 
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(2) Combined PFE and land use: Transportation and land use are two closely connected 

components in urban cities. Mobility or accessibility will affect land use, and land use changes 

the travel demand distribution, which can affect the mobility or accessibility. Hence, it is 

important to explore the possibility of an integrated framework of a PFE and land use model 

to make good use of the advantages of the PFE approach, especially in regions with accelerating 

urbanization. 
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