

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Towards Laying the Foundation of
Firmware Analysis

Muhui JIANG

PhD

The Hong Kong Polytechnic University

2022

The Hong Kong Polytechnic University

Department of Computing

Towards Laying the Foundation of Firmware
Analysis

Muhui JIANG

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

July 2021

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Muhui JIANG (Name of student)

iii

A dedication to my family.

iv

Abstract

Embedded devices are becoming ubiquitous. Meanwhile, there is a pressing need to

perform security assessments for the software (i.e., firmware) of these devices. Static

analysis and dynamic analysis are widely used to conduct firmware analysis. This

thesis aims to lay the foundation of firmware analysis. Specifically, this thesis explores

the limitations and implementation errors of the both static and dynamic firmware

analysis tools, makes enhancements to the stability and reliability of these tools, and

proposes the new technique and analysis framework to increase the capability and

scalability of firmware analysis tools.

Due to different types of peripherals, emulating the firmware of the embedded

devices in scale, which supports the dynamic analysis, is challenging. Therefore,

static analysis is still widely used. To conduct static analysis, existing works usually

leverage off-the-shelf tools to disassemble stripped binaries and (implicitly) assume

that reliably disassembling binaries is a solved problem. However, whether this as-

sumption really holds is unknown. We conduct the first comprehensive study on

ARM disassembly tools as ARM is becoming the dominant architecture among the

embedded devices. Specifically, we build 1,896 ARM binaries (including 248 ob-

fuscated ones) with different compilers, compiling options, and obfuscation methods.

We then evaluate them using eight state-of-the-art ARM disassembly tools (including

both commercial and noncommercial ones) in different versions on their capabilities

to locate instruction boundary, function boundary, and function signature. Instruc-

tion and function boundary are two fundamental primitives upon which the other

primitives build while function signature is significant for control flow integrity (CFI)

techniques. Our work reveals some observations that have not been systematically

v

summarized and/or confirmed. For instance, we find that the existence of both ARM

and Thumb instruction sets, and the reuse of the BL instruction for both function

calls and branches bring serious challenges to disassembly tools. Our evaluation

sheds light on the limitations of state-of-the-art disassembly tools and points out

potential directions for improvement.

Apart from the widely used static analysis, different dynamic analysis frame-

works, which are based on the full-system emulator (i.e., QEMU) are proposed for

firmware analysis. Emulator is widely used to build dynamic analysis frameworks

due to its fine-grained tracing capability, full system monitoring functionality, and

scalability of running on different operating systems and architectures. However,

whether the emulator is consistent with real devices is unknown. To understand
this problem, we aim to automatically locate inconsistent instructions, which be-

have differently between emulators and real devices. We target ARM architecture,

which provides machine readable specification. Based on the specification, we pro-

pose a test case generator by designing and implementing the first symbolic execution

engine for ARM architecture specification language (ASL). We generate 2,774,649

representative instruction streams and conduct differential testing with these instruc-

tion streams between four ARM real devices in different architecture versions (i.e.,

ARMv5, ARMv6, ARMv7, and ARMv8) and three state-of-the-art emulators (i.e.,

QEMU, Unicorn, and Angr). We locate a huge number of inconsistent instruction

streams (171,857 for QEMU, 223,264 for Unicorn, and 120,169 for Angr). We find

undefined implementation in ARM manual and implementation bugs of QEMU are

the major causes of inconsistencies. Furthermore, we discover 12 bugs, which influ-

ence commonly used instructions (e.g., BLX). With the inconsistent instructions, we

build three security applications and demonstrate the capability of these instructions

on detecting emulators, anti-emulation, and anti-fuzzing.

Though many dynamic firmware analysis frameworks are proposed, booting the

Linux kernel (we call this process rehosting the Linux kernel in this thesis.) of embed-

ded device in QEMU is still an unsolved problem. That’s because embedded devices

usually use different system-on-chips (SoCs) from multiple vendors and only a lim-

vi

ited number of SoCs are currently supported in QEMU. To increase the scalability

of the dynamic firmware analysis frameworks, we propose a technique called periph-

eral transplantation. The main idea is to transplant the device drivers of designated

peripherals into the Linux kernel. By doing so, it can replace the peripherals in the

kernel that are currently unsupported in QEMU with supported ones, thus making

the Linux kernel rehostable. After that, various applications can be built upon. We

implemented this technique inside a prototype system called ECMO and applied it

to 815 firmware images, which consist of 20 kernel versions, 37 device models, and

24 vendors. The result shows that ECMO can successfully transplant peripherals for

all the 815 Linux kernels. Among them, 710 kernels can be successfully rehosted,

i.e., launching a user-space shell (87.1% success rate). The failed cases are mainly

because the root file system format (ramfs) is not supported by the kernel. We fur-

ther build three applications, i.e., kernel crash analysis, rootkit forensic analysis, and

kernel fuzzing, based on the rehosted kernels to demonstrate the usage scenarios of

ECMO.

vii

viii

Publications

1. Examiner: Automatically Locating Inconsistent Instructions Between Real De-

vices and CPU Emulators for ARM, in Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS 2022)

Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu

Luo, Kui Ren

2. ECMO: Peripheral Transplantation to Rehost Embedded Linux Kernels, in

Proceedings of the 28th ACM Conference on Computer and Communications

Security (CCS 2021)

Muhui Jiang, Lin Ma, Yajin Zhou, Qiang Liu, Cen Zhang, Zhi Wang, Xiapu

Luo, Lei Wu, Kui Ren

3. A Comprehensive Study on ARM Disassembly Tools, submitted to IEEE Trans-

actions on Software Engineering (Major Revision)

Muhui Jiang, Wenlong Zhang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang

Liu, Kui Ren

4. An Empirical Study on ARM Disassembly Tools, in Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2020)

Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, Kui Ren

5. A Measurement Study on the (In)security of End-of-Life (EoL) Embedded De-

vices, submitted to the 31st International World Wide Web Conference (Under

Review)

ix

Dingding Wang, Muhui Jiang, Rui Chang, Yajin Zhou, Baolei Hou, Xiapu

Luo, Lei Wu, Kui Ren

6. FirmGuide: Boosting the Capability of Rehosting Embedded Linux Kernels

through Model-Guided Kernel Execution, in Proceedings of the 36th IEEE/ACM

International Conference on Automated Software Engineering 2021 (ASE 2021)

Qiang Liu, Cen Zhang, Lin Ma, Muhui Jiang, Yajin Zhou, Lei Wu, Wenbo

Shen, Xiapu Luo, Yang Liu, Kui Ren

7. FirmDep: Towards Rehosting Embedded Web Services, submitted to IEEE

Transactions on Dependable and Secure Computing (Under Review)

Huamao Wu, Muhui Jiang, Yajin Zhou, Lei Wu, Jinku Li, Xiapu Luo, Kui

Ren

8. Parema: An Unpacking Framework for Demystifying VM-based Android Pack-

ers, in Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA 2021)

Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, Yajin

Zhou

9. PERDICE: Towards Discovering Software Inefficiencies Leading to Cache Misses

and Branch Mispredictions, in Proceedings of the 42nd Annual Computer Soft-

ware and Applications Conference (COMPSAC 2018)

Ting Chen, Wanyu Huang, Muhui Jiang, Xiapu Luo, Lei Xue, Ying Wang,

Xiaosong Zhang

10. AutoFlowLeaker: Circumventing Web Censorship through Automation Ser-

vices, in Proceedings of the 36th IEEE International Symposium on Reliable

Distributed Systems (SRDS 2017)

Shengtuo Hu, Xiaobo Ma, Muhui Jiang, Xiapu Luo, and Man Ho Au

x

11. Characterizing the impacts of application layer DDoS attacks, in Proceedings

of the 24th IEEE International Conference on Web Services (ICWS 2017)

Muhui Jiang, Chenxu Wang, Xiapu Luo, MiuTung Miu, Ting Chen

12. Are HTTP/2 Servers Ready Yet? , in Proceedings of the 37th IEEE Interna-

tional Conference on Distributed Computing Systems (ICDCS 2017)

Muhui Jiang, Xiapu Luo, TungNgai Miu, Shengtuo Hu, and Weixiong Rao

xi

xii

Acknowledgements

The journey of pursuing Ph.D. degree is not easy. Thanks to the encouragement,

support, and invaluable suggestions from the surroundings, without which I cannot

complete this thesis.

First, I would like to express my deepest appreciation to my advisor, Dr. Xiapu

Luo, for his numerous help during every stage of my Ph.D. study. I really appreciate

his considerable expertise, insightful suggestions, and great research taste, which

inspire me a lot. It is my great pleasure to be the student of Dr. Luo, and I would

like to thank him for supporting me over the years and for giving me the freedom

to explore many new areas. I would also like to extend my deepest gratitude to Dr.

Yajin Zhou, for his valuable advice, relentless support, and profound belief in my

work. It was my great fortune to have the opportunity of working with Dr. Yajin

Zhou. I’m deeply indebted to his unwavering guidance, patience, and understanding

during my Ph.D. study. Without the help and support from Dr. Luo and Dr. Zhou,

this body of work would not have been possible.

Second, I am also grateful to many persons for their support and encouragement.

I would like to thank Prof. Yang Liu from the Nanyang Technological University and

Dr. Ruoyu Wang from the Arizona State University for the stimulating discussions

and insightful comments. I would also like to thank Dr. Zhi Wang from the Florida

State University for his constructive suggestions and patient guidance. Thanks also

to Dr. Lei Wu for his great suggestions and generous help. I would like to acknowl-

edge the assistance of Nancy Chong. I cannot forget the counselling services you

provided when I was depressed. Special thanks to my teammates, Lei Xue, Le Yu,

Yutian Tang, Hao Zhou, Xian Zhan, Pengfei Li, Xia Zhou, Dabao Wang, Qiang Liu,

Dingding Wang, Wenlong Zhang, Tianyi Xu, Tao Wu, Lin Ma, Yufeng Hu, Siwei Wu,

Huamao Wu. I must also thank my friends, Feiteng Mu, Zhaoyan Shen, Mohammed

xiii

Aquil Maud Mirza, Xiaoyi Fu, Cen Zhang. Thank you for encouraging me in the

days of struggle. Life becomes more colorful because of you guys.

Third, I am grateful to the Hong Kong Polytechnic University, which gives me the

financial support and the great research environment. I would like to also thank the

Department of Computing for offering me travel grants and the excellent facilities.

Last but certainly not least, I am extremely grateful to my family. I need to

thank my parents, who give me the life, the opportunity of education, their selfless

love, and all the best they have. In particular, I need to thank my wife, Yitong

Chen. Thank you so much for accompanying me and standing by my side in the

tough days. I cannot imagine how I can survive the sleepless nights without your
encouragement.

xiv

Table of Contents

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Firmware Analysis . 1

1.2 Motivation . 2

1.2.1 Implicit Assumption of Static Analysis Tools 2

1.2.2 Implicit Assumption of Dynamic Analysis Tools 3

1.2.3 Scalability Issue of Dynamic Analysis Tools 4

1.3 Our Work . 5

1.4 Outline . 7

2 Literature Review 9

2.1 Disassembly Primitives . 9

2.2 Emulator Testing and Applications 10

2.3 Differential Testing . 11

2.4 Firmware Analysis . 12

2.4.1 Static Firmware Analysis . 12

2.4.2 Dynamic Firmware Analysis 13

3 An Empirical Study on ARM Disassembly Tools 15

3.1 Overview . 15

xv

3.2 Background . 18

3.2.1 Different CPU Architectures and Instruction Sets 18

3.2.2 Disassembly Strategies . 20

3.2.3 Function Boundary . 21

3.2.4 Function Signature . 22

3.3 Methodology . 22

3.3.1 Prepare Binaries. 23

3.3.2 Determine Disassembly Primitives 26

3.3.3 Generate Ground Truth . 27

3.3.4 Extract the Result . 28

3.4 Evaluation . 31

3.4.1 Evaluation Metrics . 31

3.4.2 Accuracy of the Disassembly Tools (RQ1) 32

3.4.3 Factors that Affect Accuracy (RQ2) 38

3.4.4 Types and Options of Tools (RQ3) 47

3.4.5 Efficiency of the Disassembly Tools (RQ4) 49

3.4.6 Improvement (RQ5) . 50

3.5 Implications . 53

3.6 Discussion . 56

3.7 Summary . 57

4 Examiner: Automatically Locating Inconsistent Instructions be-

tween Real Devices and CPU Emulators for ARM 59

4.1 Overview . 59

4.2 Background . 63

4.2.1 Terms . 63

4.2.2 ARM Instruction and Instruction Encoding 63

xvi

4.2.3 Instruction Decoding in QEMU 64

4.3 Design and Implementation . 65

4.3.1 A Motivating Example . 65

4.3.2 Test Case Generator . 68

4.3.3 Differential Testing Engine . 75

4.3.4 Implementation Details . 76

4.4 Evaluation . 77

4.4.1 Sufficiency of Test Case Generator (RQ1) 77

4.4.2 Differential Testing Results and Root Causes (RQ2) 80

4.4.3 Generalization of Examiner (RQ3) 83

4.4.4 Applications of Inconsistent Instructions (RQ4) 85

4.5 Discussion . 91

4.6 Summary . 92

5 ECMO: Peripheral Transplantation to Rehost Embedded Linux Ker-

nels 93

5.1 Overview . 93

5.2 Background . 97

5.2.1 Linux Kernel . 97

5.2.2 ARM Machines . 98

5.2.3 QEMU . 99

5.3 Challenges and Our Solution . 99

5.3.1 Challenges . 99

5.3.2 Our Solution: Peripheral Transplantation 100

5.3.3 An Illustration Example of Peripheral Transplantation 102

5.4 System Design and Implementation 103

5.4.1 Decompress Linux Kernel . 103

xvii

5.4.2 Identity ECMO Pointers . 105

5.4.3 Generate ECMO Drivers . 111

5.4.4 Implementation Details . 114

5.5 Evaluation . 115

5.5.1 Dataset . 115

5.5.2 Identify ECMO Pointers (RQ1) 116

5.5.3 Rehost Linux Kernels (RQ2) 119

5.5.4 Reliability and Stability (RQ3) 122

5.5.5 Applications and Other Peripherals (RQ4) 123

5.6 Discussion . 127

5.7 Summary . 128

6 Conclusion and Future Work 131

6.1 Conclusion . 131

6.2 Future Work . 133

References 135

xviii

List of Figures

3.1 The source code and its corresponding ARM, Thumb and Thumb-2
instructions. 19

3.2 Two disassembly strategies. The function has three basic blocks (BBs),
and inline data between BB2 and BB3. There is a direct jump from
BB1 to BB2 and an indirect jump from BB2 to BB3 20

3.3 Roadmap of our study . 23

3.4 BAP (version 1.6.0 and version 2.1.0) mis-identify the function boundary 37

3.5 Hopper (version 4.5.13 and version 4.5.29) disassemble data as code. . 37

3.6 Radare2 (version 3.6.0 and version 5.0.0) identifies Thumb instruction
set as ARM instruction set. 38

3.7 Ghidra (version 9.0.4 and version 9.1.2) performs differently when in-
struction set is different . 39

3.8 The result of different instruction sets 40

3.9 The result of different optimization levels 41

3.10 The result of different compilers . 43

3.11 The result of different CPU architectures 44

3.12 The result of system types . 45

3.13 The result of different obfuscation methods 46

3.14 The Result of tools’ options. W/ and W/O IJ means the indirect jump
resolving is enabled and disabled for angr. Return means the recovery
ratio on evaluating whether a function return a value or not. Args
means the recovery ratio on evaluating the number of the parameters
of a function. All means both Return and Args are accurate. 48

xix

3.15 The evaluation result of performance. The legend in the latter two
figures are same with the first one. 49

4.1 The work flow of our system . 64

4.2 A motivating example. 65

4.3 Original code of QEMU and the patch for function op_store_ri, which aims

to translate STR instruction . 68

4.4 Test case generator example. 71

4.5 Two different implementations are defined in the annotation of function

ExclusiveMonitorsPass, which is called by many instructions’ executing code 82

4.6 Pseudo code of the native code for detecting the emulator. 86

4.7 Inconsistent instruction can prevent the malicious behavior being detected

by emulators . 87

4.8 Instrumented instruction streams for anti-fuzzing. 88

4.9 The result of Anti-Fuzzing experiment on three libraries. The blue
lines show the coverage over 24 hours of fuzzing. The orange line
shows the coverage for instrumented binaries, which decreases due to
failed executions of QEMU. 90

5.1 The overview of our system (ECMO) 95

5.2 The machine description for ARM-Versatile AB. 98

5.3 The callback functions for UART emulation in QEMU 98

5.4 The overview of peripheral transplantation. 101

5.5 A concrete example of peripheral transplantation. 101

5.6 The work flow of our system. 102

5.7 The assembly code that invokes function decompress_kernel, which is
in arch/arm/boot/compressed/head.S. 103

5.8 Strategy-I: Lexical information . 108

5.9 Strategy-II: Function relationship . 109

5.10 Strategy-III: Function structure . 111

xx

5.11 ECMO Driver indirectly invokes functions in Linux kernel. In offset
0x10000, the memory address pointed by [pc, #72] is 0x10000 + 8 +
72 = 0x10050. In this case, functions with arbitrary address can be
invoked. 112

5.12 The overall design of opaque memory. 113

5.13 Vendor Distribution of Linux Kernels. 120

5.14 Root cause analysis of CVE-2016-9793. 121

5.15 The workflow of rootkit Suterusu and how ECMO analyzes the behavior126

5.16 UnicornFuzz can be run on the rehosted Linux kernel 126

xxi

xxii

List of Tables

1.1 A summary of representative research prototypes and their supported
primitives and used disassembly tools. 2

3.1 The compiling options for Type-I, Type-II and Type-III binaries. The
third column shows the number of total object files (.o files), and the
last two columns show the number of object files with the Thumb
instruction set and optimization levels. 25

3.2 A summary of the evaluated disassembly tools and the APIs or com-
mands that are used to retrieve the results. NA: not applicable. . . . 30

3.3 The result of whole data set. Prec. means precision. Rec. means
Recall. Inva. means the number of binaries that tool cannot identify
any instructions or functions. Tim. means the number of binaries that
tool cannot finish the analysis in two hours (CPU time). Exce. means
the number of binaries that tool raises exceptions during the analysis.
Seg. means the number of binaries that tool triggers a segment fault
during the analysis. Return means the recovery ratio for evaluating
whether the function return a value or not (void function). Args means
the recovery ratio for evaluating the parameter number of the function.
All means that both Return and Args are correct. 33

3.4 F1 scores for different optimization flags with at least 95% probability
value. NA:not applicable. 42

3.5 The performance statistics for the improvement. 52

4.1 The rules of initializing the mutation set. 70

4.2 The generated mutation set for each symbol of instruction VLD4 in Figure 4.4 74

xxiii

4.3 The statistics of the generated instruction streams. "Examiner " denotes

the number of generated test cases by our test case generator. "Random"

denotes the number of randomly generated test cases. "Ratio" denotes

the percentage of dividing "Random" by "Examiner ". Note that one

instruction may have different instruction encodings for different instruction

sets. The total number of instructions for A32, T32, and T16 is 489. . . . 78

4.4 The results of differential testing for QEMU. "CPU Time" denotes the sum

of the CPU time for all test cases, which is in seconds. We do not count

the sum of CPU time for real devices as they have different CPUs. "Inst"

denotes Instruction. "Inst_S" denotes Instruction Stream. "Inst_E" de-

notes Instruction Encoding. UNPRE. denotes UNPREDICTABLE. X | Y

: X denotes the number of the attribute indicated by the row name while

Y denotes the percentage of dividing X by Z. For data in "Testing Re-

sult", Z stands for the row "Tested Inst_S", "Tested Inst_E", or "Tested

Inst". For data in and "Root Cause", Z stands for "Inconsistent Inst_S",

"Inconsistent Inst_E", or "Inconsistent Inst". 81

4.5 The statistics on detecting emulators . 83

4.6 The results of differential testing for Unicorn and Angr. The attributes

denotes the same meaning explained in the caption of Table 4.4. 84

4.7 Overhead information of anti-fuzzing. 90

5.1 The ECMO Pointers, identification strategy, and the Linux kernel
versions that the ECMO pointers used by. 116

5.2 The decompressed Linux kernel size and the disassembled function
numbers for our dataset. 117

5.3 The overall result of ECMO on rehosting the Linux kernel of Open-
WRT. "Downloaded Images" represents the number of downloaded
images. "Format Supported" represents the number of images whose
formats are supported by firmware extraction tool (i.e., Binwalk).
"Kernel Extracted" represents the number of images extracted from
the downloaded image, which are rehosted by ECMO. "Peripherals
Transplanted" represents the number of the images that peripheral
can be transplanted successfully (e.g., IC can handler the interrupt
well). "Ramfs are not Mounted" represents the number of images
that cannot mount the given ramfs. "Shell" represents the images
that we can rehost and spawn a shell. Success Rate of Transplantation
= (Peripherals Transplanted)/(Images); Success Rate of Rehosting =
(Shell)/(Images). 118

xxiv

5.4 The overall result of ECMO on rehosting the Linux kernel of Netgear
Devices. 120

5.5 The category of the failed syscall test cases. 122

5.6 CVEs that can be triggered on the rehosted Linux kernel by ECMO. 124

xxv

xxvi

Chapter 1

Introduction

1.1 Firmware Analysis

Embedded devices, which contain computing systems for special proposes, are ev-

erywhere and have already been a part of our daily life. For example, the routers for

providing network connections, the digital cameras for taking photos, the cell phones

we use everyday are all embedded devices.

Embedded device consists of both hardware and software. The hardware varies

a lot due to the different functionalities. Meanwhile, the software is developed and

customized for controlling the specific device’s hardware. We usually call the software

of embedded devices as firmware. Specifically, the firmware contains the operating

systems, user applications, and the required data.

Once the firmware of embedded devices is compromised, attackers can control

the devices to conduct large scale attacks, resulting in serious consequences [44, 31,

17]. For instance, a botnet with hijacked IoT devices could bring down popular

websites [53] and disrupt power grids [139]. In this case, the security issue of these

devices attract raising attentions [53, 67, 70, 88, 137, 139]. Thus, there is a pressing

need to perform security assessments for the software (i.e., firmware) of these devices.

To study the security issues of these devices (i.e., firmware analysis), researchers

are actively proposing different mechanisms and frameworks. Existing solutions uti-

1

Table 1.1: A summary of representative research prototypes and their supported
primitives and used disassembly tools.

System Instruction
Boundary

Function
Boundary

Control Flow
Graph

Call
Graph

Disassembly
Tools

Firmalice[137] X X X X angr
Firmup[71] X X X IDA Pro
Genius[80] X X X IDA Pro

Gemini [149] X X X IDA Pro
RevARM [141] X X X IDA Pro
Bug Search[120] X X IDA Pro

discovRE[78] X X X X IDA Pro
C-FLAT[51] X X Capstone
Karonte[126] X X X X angr

lize two common techniques and they are static analysis and dynamic analysis. How-

ever, they have many limitations.

1.2 Motivation

1.2.1 Implicit Assumption of Static Analysis Tools

Static analysis is widely used by the community [67, 71, 80, 137, 149] as it has no

false negatives and the scalability of supporting various devices. For instance, it has

been used to locate bugs [80] and find authentication bypass vulnerabilities [137] in

firmware images.

As shown in Table 1.1, previous systems usually leverage off-the-shelf disassembly

tools to extract the required primitives (e.g., instruction boundary) from the target

binaries, which are usually stripped without debugging symbols. Researchers assume

that reliably disassembling stripped binaries is a solved problem. However, whether

this assumption really holds is unknown. In fact, due to the specific properties of

ARM binaries, state-of-the-art ARM disassemblers have many limitations and may

have difficulty recovering the accurate instruction boundaries, function boundaries,

or function signatures. These limitations bring obstacles to the functionality of the

2

static analysis frameworks.

1.2.2 Implicit Assumption of Dynamic Analysis Tools

Dynamic analysis has no false positives and can provide the capability to introspect

the runtime state. Based on this capability, different applications, e.g., kernel crash

analysis, rootkit forensic analysis, and kernel fuzzing, can be built upon.

Researchers proposed different dynamic analysis frameworks to support the firmware

analysis, complementing the static analysis technique. Though hardware-based trac-

ing technique exists, they have limitations compared with software emulation. For

example, ARM ETM has limited Embedded Trace Buffer (ETB). The size of ETB

of the Juno Development Board is 64KB 1 [1]. On the contrary, software emulation

is capable of tracing the whole program, provides user-friendly APIs for runtime

instrumentation, and can run on multiple operating systems (e.g., Windows and

Linux) and host machines in different architectures. Nevertheless, software emula-

tion complements the hardware-based tracing and provides rich functionalities that

dynamic analysis systems can build upon. Indeed, many dynamic analysis frame-

works [68, 155, 118, 79, 65, 115, 61, 101, 95] are built based on the state-of-the-art

CPU emulator, i.e., QEMU, to conduct firmware analysis.

The wide adoption of software emulation usually has an implicit assumption that

the execution result of an instruction on the CPU emulator and the real device is

identical, thus running a program on the CPU emulator can reflect the result on the

real hardware. However, whether this assumption really holds in reality is unknown.

In fact, the execution result could be different (as shown in our work), either because

the CPU emulator has bugs or because it uses a different implementation from the

real device. These differences impede the reliability of emulator-based dynamic anal-

1 The ETB size of different SoCs may be different. However, it’s usually limited due to the chip
cost and size.

3

ysis. For instance, the malware can abuse the differences to protect the malicious

behaviors from being analyzed in the emulator [125, 91, 89, 107].

1.2.3 Scalability Issue of Dynamic Analysis Tools

Apart from this, the scalability of the dynamic analysis frameworks is an issue. Hun-

dreds of vulnerabilities are discovered every year for the Linux kernel [49]. Once the

devices are compromised, attackers can control them to launch further attacks. As

such, the security of embedded devices, especially the kernel, deserves a thorough

analysis. Running the Linux kernel in QEMU for the desktop system is a solved

problem. However, embedded systems usually have different system-on-chips (SoCs)

with customized hardware peripherals from multiple vendors. Due to the diverse pe-

ripherals in the wild, it is not practical for QEMU to support all kinds of peripherals

in any SoC, which is tedious and error-prone. In this case, embedded Linux kernels,

which depend on the unsupported peripherals, may stuck, halt, or crash during the

rehosting process. Thus, how to rehost the embedded Linux kernels in QEMU is still

an open research question.

Previous research [61, 101] provides the capability of rehosting user-space pro-

grams by running a customized Linux kernel for a single type of SoC that is already

supported in QEMU. This works well because user-space programs mainly depend

on standard system calls that are provided by the underlying Linux kernel. Different

from user-space programs, the OS kernel (e.g., Linux kernel) interact with hardware

peripherals that are usually different in different SoCs.

Some researchers have proposed to use real devices to perform the dynamic

analysis [156, 118, 86, 142]. Such solutions do not scale since there exist a large

number of embedded devices. Other researchers work towards the bare-metal sys-

tems [79, 115, 65], i.e., embedded systems without an OS kernel or having a thin

layer of abstraction. However, the methodology cannot be directly used to rehost

4

the Linux kernel as the Linux kernel is far more complicated than the bare-metal

ones.

1.3 Our Work

Our work aims to lay the foundation of firmware analysis to facilitate both the static

analysis and dynamic analysis technique. Specifically, we conduct an empirical study

on the state-of-the-art ARM disassembly tools to find the limitation of current static

analysis tools. In this work, we study eight popular disassemblers including three

commercial ones (i.e., IDA Pro [22], Hopper [21], and Binary Ninja [11]) and five

noncommercial ones (i.e., Ghidra [20], arm-linux-gnueabi-objdump [33], angr [138],

Radare2 [40], and BAP [59]). In particular, we evaluate these tools’ capabilities on

identifying three primitives, i.e., instruction boundary, function boundary, and func-

tion signature. Instruction boundary and function boundary are important as they

are the fundamental primitives for other primitives to build upon (e.g., control flow

graph and call graph). Meanwhile, function signature can help to build fine-grained

control flow integrity (CFI) systems [159, 157, 121, 143], which can make the firmware

more secure. We cross-compile 1,040 real-world programs and 19 benchmark pro-

grams to generate 1,896 different binaries. We feed the stripped binaries (binaries

without debugging symbols) to the eight disassemblers and compare the disassem-

bly results with the ground truth, which is generated with the help of debugging

symbols. After comparing the differences between the ground truth and the disas-

sembly results, we calculate the precision, recall, and F1-score. We conclude many

interesting findings (Section 3.1) and point out the future directions for researchers.

For dynamic analysis tools, We build a general framework (i.e., Examiner) that

can find the implementation bugs and deviations of ARM emulators. We apply

Examiner on three different CPU emulators (i.e., QEMU [57], Unicorn [48], and

5

Angr [3]) and many inconsistent instructions, which behave differently between em-

ulators and real devices, are located. Specifically, we design and implement the first

symbolic execution engine for ASL [5]. With the ASL symbolic execution engine,

we are able to generate sufficient instruction test cases that can cover different se-

mantics of the ARM instructions. We utilize the different techniques and compare

the result between the tested emulators and real devices in different architectures

(i.e., ARMv5, ARMv6, ARMv7, and ARMv8). In this case, we build a deterministic

differential testing engine that uses the generated test cases as inputs. We model the

CPU state and provide the same context when executing an instruction stream on a

real CPU and an emulator by inserting the prologue instructions. We then insert the

epilogue instructions that can dump the execution result automatically for compari-

son. Finally, we generate 2,774,649 instruction streams that cover all the 1,998 ARM

instruction encodings in four instruction sets (i.e., A64, A32, T32, and T16). Our

system locate a huge number of inconsistent instruction streams (171,857 for QEMU,

223,264 for Unicorn, and 120,169 for Angr). Furthermore, we discovered 12 bugs (4

in QEMU, 3 in Unicorn, 5 in Angr) and all of them have been confirmed by devel-

opers. Furthermore, we build three different applications (i.e., emulator detection,

anti-emulation, and anti-fuzzing) with the inconsistent instructions to demonstrate

their usages.

In addition, to boost the capability and scalability of dynamic firmware analy-

sis frameworks, we propose a new technique named peripheral transplantation and

implement the prototype system (i.e., ECMO) to rehost the Linux kernels of embed-

ded devices. Specifically, peripheral transplantation technique is device-independent

and works towards the Linux kernel without the need of the source code. With pe-

ripheral transplantation, we do not need to manually add the emulation support for

different kinds of peripherals. Instead, we transplant the device drivers of designated

peripherals (if they are not initialized originally) into the target Linux kernel binary

6

and the emulated models of peripheral into QEMU. We apply ECMO on 815 Linux

kernels from firmware images, including 20 different kernel versions and 37 device

models. ECMO focuses on transplanting the early-boot peripherals (i.e., interrupt

controller, timer, and UART), which are needed to rehost the Linux kernel. Our ex-

periments shows that ECMO can successfully transplant the peripherals for all the

815 Linux kernels and 710 of them are able to launch a shell. The failed cases are due

to the unsupported root file system format (ramfs). To demonstrate the capability

of ECMO on supporting the other peripherals, we successfully install an Ethernet

device driver (i.e., smc91x) on all the rehosted Linux kernels. Furthermore, we build

and port three applications (i.e., kernel crash analysis, rootkit forensic analysis, and

kernel fuzzing) to demonstrate the usage and functionality of ECMO.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 reviews the related liter-

ature. Chapter 3 introduces the empirical study on ARM disassembly tools. This

empirical study finds several bugs and explores the limitation of state-of-the-art dis-

assembly tools and points out the potential directions for improvement. Chapter 4

proposes a new framework named Examiner. Examiner utilizes the differential

testing techniques and can automatically locate the inconsistent instructions between

the state-of-the-art emulators (i.e., QEMU) and hardware devices. Chapter 5 pro-

poses a new framework named ECMO. ECMO utilizes a new novel technique named

peripheral transplantation. With ECMO, we are able to rehost hundreds of Linux

kernels from 815 different firmware images. Chapter 6 concludes our work and points

out the future work.

7

8

Chapter 2

Literature Review

2.1 Disassembly Primitives

Instruction Boundary. Zhang et al. [159] combined the linear sweep and recursive

traversal. However, their work is for x86 binaries and there is no experiment describ-

ing the accuracy of this algorithm. Ben et al. [58] proposed the idea of speculative

disassembly on Thumb binaries with the assumption that binaries are not obfuscated.

However, their work is not scalable to real world binaries as ARM instruction set are

widely used. Though Kruegel et al. [102] proposed an algorithm on obfuscated bina-

ries, their work does not target the ARM architecture. Bauman et al. [56] proposed

the idea of superset disassembly, while Miller et al. [116] proposed the probabilistic

disassembly mechanism. However, they only focus on x86/x64 binaries.

Function Boundary. Detecting the function boundary is also a challenging re-

search topic. Rosenblum et al. [130] use the machine learning technique to identify

functions. Other works [55, 59, 90, 100, 136] extended this idea with different ma-

chine learning algorithms. However, it is rather hard to build a general model. Other

tools [36, 102, 138] use heuristics or hard-coded signatures to identify the function

boundary. The fundamental problem is that there exist functions that do not have the

signatures or do not follow the heuristics. Qiao et al. [123] applied static analysis to

detect the function boundary. However, their work only targets the x86 architecture.

9

Dennis et al. [72] designed a new methodology on detecting function boundaries by

analyzing control flow graphs. However, it assumes there is a distinguished function

call instruction (e.g., the call instruction in x86/x64) in the binary. This mechanism

cannot be applied to ARM due to no distinguished function call instruction in ARM

binaries.

Function Signature. Function signature recovering is important to control flow

integrity [143, 121, 157, 108] and data-dependency analysis [119, 132]. Previous

work [143] utilize forward and backward static analysis. However, their work tar-

gets x86/x64 binaries. Apart from the binary analysis technique, deep learning

techniques [63] is used to infer the function signature automatically. However, the

accuracy highly depends on the training data and is hard to be integrated into the

state-of-the-art disassembly tools.

2.2 Emulator Testing and Applications

Testing. Several works are proposed to test the CPU emulators. Lorenzo et al. pro-

posed EmuFuzzer to test the CPU emulators [113, 112]. However, the seed used for

testing mainly relies on randomization and a CPU-assisted mechanism, which may

not cover all the CPU behaviors. Apart from testing user-level instructions, KEmu-

Fuzzer is proposed to test the whole system emulators [111]. However, KEmuFuzzer

relies on the manually written template to generate test cases. For better test case

coverage, PokeEMU [110] is proposed. PokeEMU utilizes binary symbolic execution

to generate more test cases from a high-fidelity emulator and apply these test cases

on low-fidelity emulators. However, whether the high-fidelity emulator strictly follow

the rule of specification is unknown. Furthermore, all the above mentioned works

target on x86/x64 architectures. With the development of embedded systems and

mobiles, the faithfully emulating ability for ARM architecture is a urgent need. Our

10

work targets on ARM architecture and generates test cases from the specification

itself (i.e., ARM ASL). The evaluation results show that we can find the real bugs

and many inconsistent implementations between real devices and emulators, which

can be abused by attackers. iDEV [124] focuses on the ARM instruction semantic de-

viation issue. However, Examiner is different from iDEV as Examiner utilizes the

symbolic execution technique to generate test cases and can model the whole CPU

state. In this case, we can find more inconsistent instructions compared with iDEV

in theory. Furthermore, we evaluate Examiner on 4 different ARM versions and

three CPU emulators, which shows the scalability and we also demonstrate how these

inconsistent instructions can be used in practice with three different applications.

Applications. There are many applications based on QEMU. For example, re-

searchers have developed new fuzzing systems [109, 160, 47] based on QEMU. KVM

leverages the device emulation provided by QEMU or the virtio [131] framework for

device virtualization. Virtual machine introspection tools [82, 146, 73, 74, 81, 54],

which are helpful for debugging or forensic analysis, utilize QEMU to introspect

the system states. Furthermore, dynamic analysis frameworks use QEMU to ana-

lyze malware behavior [77, 117, 152, 129, 154, 153]. ECMO provides the capability

to rehost Linux kernels, which lays the foundation for apply these applications on

embedded Linux kernels.

2.3 Differential Testing

Differential testing is introduced by McKeeman et al. [114] to detect the implemen-

tation bugs by comparing the inconsistent behaviors between different software. For

example, Yang et al. proposed Csmith, a powerful tool that can generate multiple C

programs. With Csmith, hundreds of bugs are detected in the C compiler. Regard-

ing the same goal, Le et al. introduced equivalence modulo inputs (EMI) [105] and

11

many other differential testing tools are built based on EMI to validate the compiler

implementations [106, 140].

Apart from testing compilers, researchers also utilize differential testing to val-

idate the Database Management Systems (DBMS). Slutz et al. proposed the tool

RAGS to explore bugs by executing different SQL queries on multiple DBMS. Though

it is effective, it can only support a small set of SQL statements. Gu et al. evaluate

the accuracy of DBMS optimizer by using options and hints to force the generation

of different query plans. Jung et al. developed APOLLO [96] to test the performance

regression bugs in DBMSs .

Furthermore, differential testing is powerful and applied to different domains such

as testing SMT solvers [148, 147], JVM implementations [99] , symbolic execution

engines [99], and PDF readers [103]. .

2.4 Firmware Analysis

2.4.1 Static Firmware Analysis

Researchers apply the static analysis technique to analyze the embedded firmware.

For instance, Costin et al. [67] conduct a large-scale analysis towards the embedded

firmware. By analyzing 32 thousand firmware images, many new vulnerabilities are

discovered, influencing 123 products.

Code similarity is widely used to study the security issue of embedded devices.

Feng et al. propose Genius [80], a new bug search system to address the scalability

issues by translating binary control flow graph to high-level numeric feature vec-

tors. The experiments show that Genius can identify many vulnerabilities in a short

time. Considering the inaccuracy of approximate graph-matching algorithm, Xu et

al. utilize neural network-based approach to abstract the control flow graph of bi-

nary function and build a prototype named Gemini [150]. The result shows Gemini

12

can identify more vulnerable firmware images compared with Genius. Yaniv et al.

introduce a precise and scalable tool named Firmup [71] by considering the relation-

ship between procedures. The result show Firmup has a relatively low false positive

and effective on discovering vulnerabilities. In the case that firmware images are not

available, Wang et al. [145] applies cross analysis of mobile apps to detect the vul-

nerable devices. Finally, 324 devices from 73 different vendors are discovered. Our

system is used to analyze the firmware images of embedded systems with dynamic

analysis. Application building upon ECMO can complement the static analysis ones.

2.4.2 Dynamic Firmware Analysis

Besides static analysis, researchers propose several methods to support the dynamic

firmware analysis. Avatar [156] is proposed to support complex dynamic analysis

of embedded devices by orchestrating the execution of an emulator and real hard-

ware. Charm [142] applies a similar strategy. It introduces the technique named

remote device driver execution by forwarding the MMIO operation to a real mobile.

Avatar2 [118] extends Avatar to support replay without real devices. However, they

both suffer from the problem of scalability. Inception [66] applies symbolic execution

based on KLEE [60] and a custom JTAG to improve testing embedded software.

However, it assumes that the source code is available. IoTFuzzer [62] aims to fuzz

the firmware from the mobile side. However, the code coverage of firmware and the

coverage of attack surface are limited. Pretender [86] is able to conduct automatically

rehosting tasks. However, it replies on the debug interface of specific devices. Jet-

set [95] utilizes the symbolic execution to infer the return values of device registers.

However, the functionality of the peripherals cannot be guaranteed. Furthermore,

the shell may not be obtained for further development of different applications.

Besides, many researchers utilize the fuzzing technique to detect the security

issues of embedded firmware. P2IM [79] is proposed to learn the model of periph-

13

erals automatically. DICE [115] focused on the DMA controller and can extend the

P2IM’s analysis coverage. Halucinator [65] proposed a new methodology to rehost

the firmware by abstracting the HAL functions. ECMO are different from them in

the aspects to transplant peripherals into the target kernel, instead of inferring the

peripherals models. Besides, all these systems focus on bare-metal system, which is

less complicated than the Linux kernel. Firmadyne [61] and FirmAE [101] target on

Linux-based firmware. However, they focus on the user-space program, instead of

the Linux kernel.

14

Chapter 3

An Empirical Study on ARM

Disassembly Tools

3.1 Overview

ARM specific properties. ARM binaries have some unique properties, which

bring challenges to disassemblers. First, inline data is common in ARM binaries

while “constructs like inline data and overlapping code are very rare” in x86/x64 bi-

naries [52]. Second, ARM provides two instruction sets: the ARM instruction set and

the Thumb instruction set (which includes both 16-bit Thumb-1 and 32-bit Thumb-2

instructions). An ARM binary can contain both ARM and Thumb instructions and

switch between them, which brings challenges on identifying the correct instruction

set. Third, there is no distinguished function call instruction in ARM binaries, unlike

the call instruction on x86/x64. Both branch and link instruction (BL) and branch

instruction (B) can be used for function calls or direct branches in the ARM instruc-

tion set or Thumb instruction set. This makes identifying functions more challenging

as a branch jump may be mis-identified as a function call, resulting in false positives.

Due to these unique properties, there is a need to perform an extensive and thorough

evaluation of ARM disassembly tools.

We perform an empirical study on ARM disassembly tools. In particular, we eval-

15

uate these tools’ capabilities on identifying three primitives, i.e., instruction bound-

ary, function boundary, and function signature. Instruction boundary and function

boundary are fundamental primitives that other primitives (e.g., control flow graph

and call graph) are built upon while function signature is important to control flow

integrity (CFI) techniques [159, 157, 121, 143]. To make the study comprehensive,

it should meet the following requirements:

1. Our evaluation should use diverse programs, including both popular bench-

marks and, more importantly, different types of representative programs in the

wild.

2. Our evaluation should cover programs compiled in different compilers with var-

ious compiling options, e.g., different instruction sets and optimization levels.

3. Our evaluation should consider tools in different options and versions. The

option of a tool can affect the disassembly accuracy while the version of a tool

can reveal the improvements over time.

4. Our evaluation should include obfuscated binaries [158], since they do exist in

the wild and could affect the results of disassembly tools.

To this end, we cross-compile 1, 040 real-world programs and 19 benchmark pro-

grams. In total, we get 1, 896 binaries, where 608 are compiled from the SPEC

CPU2006 with different compiling options. Among the remaining ones, 1, 040 are

compiled from Android daemons, libraries, and user-space programs of embedded

systems (i.e., OpenWRT [34]). We also build 248 obfuscated binaries using O-

LLVM [98], which is one of the most popular obfuscators, with multiple obfuscation

methods. Then we obtain the ground truth with the help of debugging symbols and

feed the stripped binaries (binaries without debugging symbols) to eight state-of-

the-art ARM disassembly tools including three commercial ones (i.e., IDA Pro [22],

16

Hopper [21], and Binary Ninja [11]) and five noncommercial ones (i.e., Ghidra [20],

arm-linux-gnueabi-objdump [33], angr [138], Radare2 [40], and BAP [59]). For each

tool, we select two different versions to study the improvement of these tools over

time. The time gaps between two different versions range from 272 days to 735 days.

Finally, we measure the precision, recall, and F1-score by comparing the differences

between the ground truth and the disassembling result.

Based on the result, we conclude some findings that were not systematically

summarized and/or confirmed.

1. The unique properties of ARM binaries do bring challenges to the disassembly

tools, especially the two different instruction sets (i.e., the ARM instruction

set and the Thumb instruction set) and the mixed use of the BL label and B

label instructions for both function call and branch jump. Disassembly tools

do not have a good support to binaries in Thumb instruction set. The precision

and recall for disassembling Thumb instructions are usually lower than that of

ARM instructions (more than 90% in maximum).

2. Disassembly tools do not support well on recovering function signatures. Among

all the tools, Radare2 performs best with only 0.417 recovery ratio, which indi-

cates that function signature recovering is still challenging for both commercial

and noncommercial tools.

3. Many factors, including compilers, compiling options, target CPU architec-

tures, can affect the result. However, the root cause is still due to the unique

properties of ARM binaries. Furthermore, the robustness and scalability of dis-

assembly tools should be improved. We observed several exceptions, segment

faults and timeout during the analysis.

4. Noncommercial tools gain larger improvement in terms of accuracy. This is

17

because they perform worse in the old version and the communities can provide

feedback and suggestions to help improve the tools. As for performance, we

noticed that most of the tools’ performance improved a lot and the performance

can decrease due to the added features and algorithms.

We have reported our findings along with failed test cases to developers of the

evaluated tools [24, 23, 25, 26]. Developers of Binary Ninja, Hopper, and angr verified

our findings and provided updates based on the failed cases. Radare2 assigned bug

tag to them. Ghidra verified our findings and provided the potential solutions, while

BAP declared that they would solve the problem in the future.

3.2 Background

3.2.1 Different CPU Architectures and Instruction Sets

ARM has multiple CPU architectures, each with different instruction extensions and

features. When building programs, developers can specify the target CPU architec-

ture, e.g., ARMv5 or ARMv7, through compiling options (-march). For instance,

ARMv5 is the default CPU architecture of the GCC compiler.

Moreover, there are two instruction sets, i.e., the ARM instruction set and the

Thumb instruction set. The former is 32-bit long, while the latter is 16-bit long

and designed for size-sensitive applications, which is available for ARMv4T CPU

architecture and later versions. Since ARMv6T2, Thumb-2 is introduced. It offers

“best of both worlds” compromise between the ARM instruction set and the Thumb

instruction set. It has access to both 16-bit and 32-bit instructions. In this thesis,

we use the Thumb instruction set to denote both Thumb and Thumb-2 instruction

encoding.

A single binary can contain multiple instruction sets and switch between them,

e.g., switching between ARM instructions and Thumb (Thumb-2) instructions. The

18

C

uint8 foo(uint8 x, uint8 a,
uint16 b, uint16 c)

{
if (a==2) x += (b >> 8);
else x += (c >> 8);
return x;

}

ARM

0x00: e3510002 CMP r1,#2
0x04: 10800423 ADDNE r0,r0,r3,LSR #8
0x08: 00800422 ADDEQ r0,r0,r2,LSR #8
0x0c: e20000ff AND r0,r0,#0xff
0x10: e12fff1e BX lr

Thumb

0x00: 2902 CMP r1,#2
0x02: d101 BNE {pc}+0x6 ; 0x8
0x04: 0a11 LSRS r1,r2,#8
0x06: e000 B {pc}+0x4 ; 0xa
0x08: 0a19 LSRS r1,r3,#8
0x0a: 1808 ADDS r0,r1,r0
0x0c: 0600 LSLS r0,r0,#24
0x0e: 0e00 LSRS r0,r0,#24
0x10: 4770 BX lr

Thumb-2

0x00: 2902 CMP r1,#2
0x02: bf14 ITE NE
0x04: eb002013 ADDNE r0,r0,r3,LSR #8
0x08: eb002012 ADDEQ r0,r0,r2,LSR #8
0x0c: b2c0 UXTB r0,r0
0x0e: 4770 BX lr

Figure 3.1: The source code and its corresponding ARM, Thumb and Thumb-2
instructions.

switching can occur explicitly by executing branch instructions or implicitly speci-

fied by branch targets. For instance, the BLX label instruction always changes the

instruction set from ARM to Thumb or vice versa. However, the BX Rm derives the

target instruction set from bit[0] of the register Rm. If it is 0, then the target in-

struction set is ARM. Otherwise, it is Thumb. The target instruction set of other

branch instructions, e.g., POP {PC, Rm ...}, also depends on the last bit of the target

address. This brings serious challenges for disassembly tools to statically determine

the target instruction set, especially for the ones that leverage linear sweep strategy

(Section 3.2.2).

Figure 3.1 illustrates the source code of a function and the binary compiled using

ARM, Thumb and Thumb-2 instructions. Note that, for the two popular compilers

(e.g., GCC and Clang), the default instruction set is ARM, and the option -mthumb

is used to change it to Thumb. The instruction set greatly affects the accuracy of

disassembly tool, which we will discuss in Section 3.4.

19

Ground Truth

BB 1

BB 2

Inline Data

BB 3

BB 1

BB 2

Inline Data

BB 3

BB 1

BB 2

Inline Data

BB 3

Linear Sweep Recursive Traversal

?
Figure 3.2: Two disassembly strategies. The function has three basic blocks (BBs),
and inline data between BB2 and BB3. There is a direct jump from BB1 to BB2
and an indirect jump from BB2 to BB3

3.2.2 Disassembly Strategies

To understand the capability of disassembly tools, we use three primitives, i.e., in-

struction boundary, function boundary, and function signature in our study. To pre-

cisely detect the instruction boundary, a disassembly tool should be able to locate

the inline data inside the binary and the correct instruction set (ARM or Thumb).

There are two different disassembly strategies [122, 135]. One is linear sweep,

which linearly decodes the code sections. It is used by disassemblers such as the

GNU utility Objdump. However, the inline data (data inside the code section), which

is normal in ARM binaries, and instruction set switching cannot be detected by this

strategy since it does not consider the control flow transfers. Figure 3.2 shows a

function with three basic blocks and inline data between the basic block 2 and the

basic block 3. The Objdump tool fails to determine the boundary between code and

data, and disassembles the inline data as code.

Another strategy is recursive traversal. Its basic idea is disassembling code from

the entry point of a binary, and then recording the branch targets as new entry points

(usually appends these branch targets into a list). It repeats this process until no new

targets could be found, and all the targets in the list have been traversed. The ad-

20

vantage of this strategy is that it is unlikely to disassemble inline data as code, since

there should be a control flow transfer instruction before the inline data (otherwise,

the data will be executed as code at runtime). Moreover, it can handle instruction

set switch if the branch target can be determined statically (direct branches). How-

ever, the disadvantage is that some code regions may be missed, if they cannot be

reached through direct branches. As in Figure 3.2, the code in the basic block 3 may

be missed since this block can only be reached through an indirect branch, whose

target is determined at runtime. Note that, even though methods [64] have been

proposed to detect the targets of a jump table (one type of indirect branches), how

to reliably detect other types of indirect branches (e.g., function pointers) is still an

open research question. We do find that resolving indirect jump targets can improve

the result of disassembly tools (Section 3.4.4).

3.2.3 Function Boundary

Function boundary is an important primitive, which can be used to construct other

primitives, e.g., function call graph. Previous work usually leverages function pro-

logue and epilogue patterns to detect functions. The method proposed in [59, 55]

scans a binary for known function prologues and epilogues. However, this method

is limited by the fact that the prologue and epilogue pattern of a function could

be missing or rare, which is common in optimized code. It is rather challenge to

maintain a sound and complete pattern database.

Due to these limitations, a compiler-agnostic function identification method was

proposed in Nucleus [72]. The basic idea is to analyze the inter-procedural control

flow graph (ICFG) and conduct connected component analysis based on the gen-

erated ICFG. However, Nucleus assumes that the binary should have distinguished

function call instructions, e.g., the call instruction for x86. Unfortunately, this

assumption does not hold in ARM binaries. For example, binaries in Thumb in-

21

struction set use BL label instruction for both a direct function call and a direct

branch since the range of the branch target is larger than the B label instruction.

As a result, it causes many false positives to the function detection. We observed

a significant decrease of the precision value for the function boundary of binaries in

Thumb instruction set (Figure 3.8b).

3.2.4 Function Signature

Function signature, which is also known as type signature, defines the input (num-

ber of the parameters) and output (return a value or not) of a function. Function

signature is important as it helps to identify the indirect calls in binaries [143, 108],

which can protect the control flow hijacking attacks in binary level.

However, it is rather challenging to identify the function signatures from stripped

binaries as the language-level information is lost after compilation. Some works

propose to use neural networks [63] to identify the function signatures. However, the

accuracy highly depends on the training data. What’s more, it is not practical to be

integrated into the state-of-the-art disassembly tools as the training process is quiet

slow and a pre-defined model cannot cover all kinds of cases and is limited by the

training data, too.

3.3 Methodology

Figure 3.3 shows the roadmap of this study. First, we build various programs includ-

ing popular benchmarks and real-world applications (¨), using different compilers

(GCC and Clang) with diverse compiling options (≠) to generate the target bina-

ries. This aims to cover popular compilers and different scenarios that programs

are built with different options. After that, we first generate the ground truth by

leveraging the debugging symbols (Æ), and then remove the symbols (Ø) and feed

the stripped binaries to disassembly tools (∞). We retrieve the result of identified

22

Figure 3.3: Roadmap of our study

instructions, functions, and function signatures for each tool, and compare the result

with the ground truth (±) to generate the final report, which contains the recall and

precision value. We present the main steps of our study in the following sections.

3.3.1 Prepare Binaries.

One may think it is straightforward to compile binaries for evaluation. However,

to make our study comprehensive, we need to consider the diversity of compilers,

compiling options, types of programs, and obfuscation methods, which will affect

the result.

Diverse Compilers. We use two compilers, i.e., GCC and Clang, each with three

different versions. Specifically, we use GCC versions 6.5, 7.5 and 8.3 and Clang

versions 7.0, 8.0 and 9.0, which cover the major compilers used in the wild.

Representative Compiling Options. As mentioned in Section 3.2, different com-

piling options (e.g., with or without -mthumb) would result in completely different

binaries. Considering the diversity of compiling option, we aim to understand which

compiling options are mostly used in the real world. Thus, we divide ARM binaries

into three types, according to systems they are used.

1. Type-I: Embedded OSes. They are used in resource-constrained ARM devices,

23

mainly the ARM Cortex-M processor families with low computational power. We

select FreeRTOS v10.1.1 [46], the most popular real time operating system, and

Mbed OS (version 5) [7], the open-source embedded operating system designed

for IoT. There are several projects in FreeRTOS, each supports a different de-

velopment board (or device). We cross-compile all the projects that support the

ARM architecture. For the Mbed OS, we compile all the targets that support the

ARM architecture.

2. Type-II: Linux Kernel. Linux kernel has been used on ARM devices widely. Such

devices include mobile devices and ARM servers. For mobile devices, we use the

most popular operating system Android, and build the kernel (version 4.4.169) for

Android 9.0 (code name: Pie). We also build the kernel for Debian (version 9.6.0),

one of the most popular Linux distributions for desktop computers and servers.

We download and cross-compile the kernel (version 4.9.144) from Debian’s official

repository.

3. Type-III: User-level Programs. We also use user-level programs, including dae-

mons, libraries used on mobile devices, desktop computers and servers. Specif-

ically, we build user-level programs from Buildroot [12], Android Open Source

Project (AOSP, version 9.0.8) [2], and the popular Debian packages. They are

representative programs for low-end embedded systems, mobile devices, and ARM

desktop/servers. In particular, Buildroot is commonly used in low-end embed-

ded systems, including routers, IP cameras and etc. We compile all binaries

targeting ARM development boards. For Debian packages, we use the top five

mostly installed packages, i.e., libpam-modules, libattr1, libpam0g, zlib1g, and

debianutils, ranked by the Debian popularity contest [18].

Table 3.1 shows the result of compiling options for Type-I, Type-II and Type-III

binaries. We find that the Thumb instruction set is mostly used in Type-I binaries,

24

Table 3.1: The compiling options for Type-I, Type-II and Type-III binaries. The
third column shows the number of total object files (.o files), and the last two columns
show the number of object files with the Thumb instruction set and optimization
levels.

Name # of Objects Boards/Targets Thumb Optimization Levels

Type-I Mbed 39, 183 61 39, 183 {’Os’: 39, 183}
FreeRTOS 87 9 22 {’Os’: 24, ’O2’: 32}

Type-II Linux Kernel (Android) 1, 361 1 0 {’Os’: 1, ’O2’: 1, 291, ’O0’: 1}
Linux Kernel (Debian) 1, 860 1 0 {’O3’: 1, ’O2’: 1, 788, ’O0’: 1, ’Os’: 1}

Type-III
AOSP 3, 384 1 2, 875 {’Os’: 2, 787, ’O2’: 299, ’O0’: 27,’O3’: 69}

Buildroot 188, 387 103 1, 677 {’Os’: 188, 387}
Debian Packages 339 5 0 {’O2’: 305, ’O3’: 34}

and O2 and Os are commonly used optimization levels. Due to this observation,

we compile the benchmark programs for the evaluation to both ARM and Thumb

instruction sets with O2 and Os optimization levels to reflect real situations of ARM

binaries in the wild.

Different Types of Programs. We use three types of programs in our study.

They include the widely used benchmark, i.e., SPEC CPU2006, binaries in AOSP

and OpenWRT. The latter two represent the binaries for mobile systems and IoT

devices.

Specifically, we compile the SPEC CPU2006 using both Clang and GCC compilers

with two optimization levels (Os and O2), two instruction sets (ARM and Thumb)

and two CPU target architectures (-march with ARMv5 and ARMv7). In total, we

get 608 binaries, i.e., 19 benchmark programs ⇥ 2 instruction set ⇥ 2 optimization

levels ⇥ 2 compilers ⇥ (3 compiler versions + 1 specific CPU architecture with latest

version of compilers) = 608 binaries. Considering the popularity of IoT and mobile

systems, we build the latest Android Open Source Project (AOSP version 9) and

extract daemon binaries (127 in total) and libraries (667 in total). Also, we build

the latest stable version of OpenWRT (version 18.06). There are 12 different target

boards that support the ARM architecture. In total, we get 246 binaries.

25

Obfuscation. To evaluate the impact of obfuscation, we use the O-LLVM [98], an

open-source obfuscator, to compile the SPEC CPU2006. O-LLVM supports three

different obfuscation methods. Specifically, instructions substitution (sub) is used to

replace standard operators with more complicated instruction sequences. The bogus

control flow (bcf) changes a function’s control flow graph by adding basic blocks. The

control flow flattening (fla) uses the control flow flatten algorithm [104] to create

a large number of fake control flows. We apply each obfuscation method to each

program, and then combine three methods together. Since the bogus control flow

graph (bcf) consumes too much time (more than 2 hours) when applying it to C++

programs, we do not apply this method to C++ programs.

Summary: In total, we get 1, 896 binaries including 248 obfuscated ones. We believe

this dataset is representative to demonstrate the diversity of compilers, compiling

options, target architectures and types of devices.

3.3.2 Determine Disassembly Primitives

In this work, we consider the instruction boundary, function boundary, and function

signature as fundamental primitives (Table 1.1). Other ones (e.g., direct control flow

graph and call graph) could be built upon them.

Instruction Boundary. Instruction boundary refers to the start offset of an in-

struction, as well as the correct instruction set (ARM or Thumb). The purpose is

two-fold. First, it is used to distinguish between code and inline data. Inline data

is commonly used in ARM binaries, e.g., for the PC-relative addressing. This is

different from x86 binaries, which do not contain inline data [52] except for the

jump tables of binaries compiled by Visual Studio. Second, it is used to distinguish

between ARM and Thumb instruction sets. This is challenging since the instruction

set is partially determined by the target address of an (indirect) branch instruction,

which is hard to be obtained by static analysis.

26

Function Boundary and Signature. Function boundary refers to the start offset

of a function. Function boundary recognition is a necessary primitive to construct

the call graph, which is critical to the whole program analysis.

Function signature refers to the number of the parameters for a function and

whether the function returns a value or not (void function). Function signature is

a necessary primitive as it helps a lot in identifying the indirect function calls and

protect the software from the control flow hijacking [143].

3.3.3 Generate Ground Truth

After determining the primitives, we need to get the ground truth. However, even

with debugging symbols, it is not straightforward to directly get the result. we

describe our approaches as follows.

Instruction Boundary. We use mapping symbols [6] in the binaries to get the

information of the instruction boundaries. Mapping symbols are generated by com-

pilers to identify inline transitions between code and data, as well as ARM and

Thumb instruction sets. There are three types of mapping symbols, including:

• $a: Start of a region of code containing ARM instructions.

• $t: Start of a region of code containing Thumb instructions.

• $d: Start of a region of data.

For instance, the mapping symbol “0001043c $t” denotes that the offset 0x0001043c

in the binary is code (not inline data), with the Thumb instruction set.

However, mapping symbols only include the start address of the code and data

regions without indicating the offset and the instruction set of each instruction in

the region. To deal with this issue, we use Capstone [13] to retrieve the offset of

27

each instruction. It works well since we have the instruction set (ARM/Thumb)

information of each code region to help Capstone disassemble the code region.

Note that, the mapping symbol is an architecture-specific extension of the ARM

ELF file. It may not exist in other architectures. By leveraging it, our system can

detect the instruction boundary with a sound and complete result. Previous work

can only detect 98% of the ground truth and requires a manual verification [52].

Function Boundary and Signature. We leverage DWARF [76], a debugging

file format to retrieve the function boundary and signature. DWARF uses the data

structure named Debugging Information Entry (DIE) to describe each variable, type,

and function, etc. Each DIE has a tag (i.e., DW_TAG_subprogram) for function and each

function has a key (i.e., DW_AT_low_pc) to represent the function start address. For

function signature, DIE utilize the key DW_TAG_formal_parameter and DW_AT_type to

represent the number of parameters of a function and whether the function returns

a value or not (void function), respectively.

We extract the DW_TAG_subprogram, DW_AT_low_pc, DW_TAG_formal_parameter, and

DW_AT_type from the DWARF information of each binary to get the ground truth.

3.3.4 Extract the Result

We evaluate eight state-of-the-art ARM disassembly tools, including five noncom-

mercial ones, i.e., angr [138], BAP [59], Objdump [33], Ghidra [20], Radare2 [40],

and three commercial ones, i.e., Binary Ninja [11], Hopper [21] and IDA Pro [22].

Furthermore, to study whether these tools’ accuracy and efficiency are improved in

a rather long period. We collect two different versions for all the eight tools. The

release date of the two versions ranges from 272 days to 735 days (Table 3.3). For

each tool, the version released earlier is named old version while the latter one is

named new version. Each tool has different ways to extract the instruction bound-

ary, function boundary, and function signature. We carefully read the manual of each

28

tool and write a script to extract the result. Table 3.2 lists the summary of each

tool, including the tool type (e.g., noncommercial or commercial) and APIs used to

retrieve the result.

29

Ta
bl

e
3.

2:
A

su
m

m
ar

y
of

th
e

ev
al

ua
te

d
di

sa
ss

em
bl

y
to

ol
s

an
d

th
e

A
P

Is
or

co
m

m
an

ds
th

at
ar

e
us

ed
to

re
tr

ie
ve

th
e

re
su

lts
.

N
A

:n
ot

ap
pl

ic
ab

le
.

To
ol

T
yp

e
To

ol
In

st
ru

ct
io

n
B

ou
nd

ar
y

Fu
nc

ti
on

B
ou

nd
ar

y
Fu

nc
ti

on
Si

gn
at

ur
e

C
od

e/
D

at
a

A
R

M
/T

hu
m

b
H

as
R

et
ur

n
#

of
Pa

ra
m

et
er

N
on

co
m

m
er

ci
al

an
gr

gr
ap

h.
no

de
.in

st
ru

ct
io

n
ad

dr
es

s%
=

=
1

cf
g.

kb
.fu

nc
ti
on

s(
)

V
ar

ia
bl

eR
ec

ov
er

yF
as

t(
)

C
al

lin
gC

on
ve

nt
io

n(
)

fu
nc

.h
as

_
re

tu
rn

V
ar

ia
bl

eR
ec

ov
er

yF
as

t(
)

C
al

lin
gC

on
ve

nt
io

n(
).

cc
.a

rg
s

BA
P

-d
as

m
N

A
-d

as
m

N
A

N
A

Ob
jd

um
p

-d
N

A
N

A
N

A
N

A

Gh
id

ra
ge

tF
ir

st
In

st
ru

ct
io

n(
)

ge
tI

ns
tr

uc
ti

on
A

ft
er

()
ge

tR
eg

is
te

r(
`T

M
od

e’
)

ge
tF

ir
st

Fu
nc

ti
on

()
ge

tF
un

ct
io

nA
ft

er
()

ge
tS

ig
na

tu
re

()
ge

tR
et

ur
nT

yp
e(

)
ge

tN
am

e(
)

ge
tP

ar
am

et
er

C
ou

nt
()

Ra
da

re
2

pD
N

A
afl

af
cf

afi

C
om

m
er

ci
al

Bi
na

ry
Ni

nj
a

bi
na

ry
vi

ew
.in

st
ru

ct
io

ns
()

fu
nc

ti
on

s.
ar

ch
bi

na
ry

vi
ew

.fu
nc

ti
on

s(
)

fu
nc

.r
et

ur
n_

ty
pe

fu
nc

.p
ar

am
et

er
_

va
rs

Ho
pp

er
ge

tT
yp

eA
tA

dd
re

ss
()

ge
tA

rc
hi

te
ct

ur
e(

)
ge

tE
nt

ry
Po

in
t(

)
si

gn
at

ur
eS

tr
in

g(
)

si
gn

at
ur

eS
tr

in
g(

)

ID
A

Pr
o

is
C

od
e(

)
G

et
R

eg
(i

ns
t,

`T
’)

ge
t_

fu
nc

()
gu

es
s_

ti
nf

o(
)

ti
f.g

et
_

fu
nc

_
de

ta
ils

()
ti

f.g
et

_
re

tt
yp

e(
)

gu
es

s_
ti

nf
o(

)
ti

f.g
et

_
fu

nc
_

de
ta

ils
()

30

3.4 Evaluation

As discussed in Section 3.3, we build 1, 896 binaries (including 248 obfuscated ones)

to evaluate eight disassembly tools in different versions. We address the following

research questions in Section 3.4.2, Section 3.4.3, Section 3.4.4, ,Section 3.4.5 and

Section 3.4.6 respectively.

• RQ1: What is the accuracy of disassembly tools towards the whole data set?

• RQ2: What are the factors that affect the accuracy of disassembly tools, and

what are the reasons?

• RQ3: Do different types and options of tools have different results?

• RQ4: How efficient are these disassembly tools?

• RQ5: How well are these disassembly tools improved (in around one year)?

3.4.1 Evaluation Metrics

We use precision and recall to measure the accuracy (or effectiveness) of a tool on

identifying instruction and function boundary. The definition of these two metrics is

in equation 3.1.

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(3.1)

In the equation, we use tp, fp, fn to denote true positives, false positives and

false negatives. Recall measures the ratio of true positives to the ground truth. A

disassembler with high false negatives may have low recall. Precision measures the

ratio of true positives to the result of a tool. A disassembler with high false positives

may have low precision.

31

Considering the importance of both recall and precision, we also compute the F1

score according to equation 3.2. F1 score can reflect the overall accuracy of a tool.

F1 Score =
2⇥ recall ⇥ precision

recall + precision
(3.2)

Measuring the accuracy of function signature recovery is different from the other

two primitives as the corresponding function boundary should be identified correctly.

Thus, we only consider the correctly identified functions (true positives). We use

N_F to denote the number of correctly identified functions. Among the identified

functions, we use N_F_S to denote the number of functions whose signatures (i.e.,

return value and number of parameters) are recovered correctly. We calculate the

recovery ratio of function signature with equation 3.3.

Recovery Ratio =
N_F

N_F_S
(3.3)

3.4.2 Accuracy of the Disassembly Tools (RQ1)

32

Ta
bl

e
3.

3:
T

he
re

su
lt

of
w

ho
le

da
ta

se
t.

P
re

c.
m

ea
ns

pr
ec

isi
on

.
R
ec

.
m

ea
ns

R
ec

al
l.

In
va

.
m

ea
ns

th
e

nu
m

be
r

of
bi

na
rie

s
th

at
to

ol
ca

nn
ot

id
en

tif
y

an
y

in
st

ru
ct

io
ns

or
fu

nc
tio

ns
.

T
im

.
m

ea
ns

th
e

nu
m

be
r

of
bi

na
rie

s
th

at
to

ol
ca

nn
ot

fin
ish

th
e

an
al

ys
is

in
tw

o
ho

ur
s

(C
P

U
tim

e)
.

E
xc

e.
m

ea
ns

th
e

nu
m

be
r

of
bi

na
rie

s
th

at
to

ol
ra

ise
s

ex
ce

pt
io

ns
du

rin
g

th
e

an
al

ys
is.

Se
g.

m
ea

ns
th

e
nu

m
be

r
of

bi
na

rie
s

th
at

to
ol

tr
ig

ge
rs

a
se

gm
en

t
fa

ul
t

du
rin

g
th

e
an

al
ys

is.
R
et

ur
n

m
ea

ns
th

e
re

co
ve

ry
ra

tio
fo

r
ev

al
ua

tin
g

w
he

th
er

th
e

fu
nc

tio
n

re
tu

rn
a

va
lu

e
or

no
t

(v
oi

d
fu

nc
tio

n)
.

A
rg

s
m

ea
ns

th
e

re
co

ve
ry

ra
tio

fo
r

ev
al

ua
tin

g
th

e
pa

ra
m

et
er

nu
m

be
r

of
th

e
fu

nc
tio

n.
A

ll
m

ea
ns

th
at

bo
th

R
et

ur
n

an
d

A
rg

s
ar

e
co

rr
ec

t.

To
ol

R
el

ea
se

In
fo

rm
at

io
n

In
st

ru
ct

io
n

B
ou

nd
ar

y
Fu

nc
ti

on
B

ou
nd

ar
y

Fu
nc

ti
on

Si
gn

at
ur

e
T

im
.

E
xc

e.
Se

g.
V

er
si

on
&

D
at

e
Pe

ri
od

P
re

c.
R
ec

.
F1

In
va

.
P
re

c.
R
ec

.
F1

In
va

.
R
et

ur
n

A
rg

s
A

ll

B
A

P
1.

6.
0,

A
pr

-1
9

42
1

0.
88

7
0.

27
7

0.
30

9
1
1

0.
53

3
0.

35
8

0.
38

7
1
1

-
-

-
2
1
4

24
4

0
2.

1.
0,

M
ay

-2
0

0.
72

7
0.

26
0.

31
4

0
0.

90
2

0.
29

8
0.

38
4

0
-

-
-

11
24

4
0

O
bj

du
m

p
2.

30
,J

an
-1

8
73

5
0.

70
2

0.
75

0.
72

2
0

-
-

-
-

-
-

-
0

0
0

2.
34

,F
eb

-2
0

0.
70

1
0.

74
8

0.
72

1
1

-
-

-
-

-
-

-
0

0
0

G
hi

dr
a

9.
0.

4,
M

ay
-1

9
27

2
0.

95
4

0.
82

8
0.

87
3

0
0.

85
5

0.
71

4
0.

76
6

0
0.

01
5

0.
34

5
0.

00
7

13
0

0
9.

1.
2,

Fe
b-

20
0.

95
4

0.
82

6
0.

87
4

1
0.

85
3

0.
68

2
0.

74
6

0
0.

01
5

0.
34

5
0.

00
7

13
0

0

R
ad

ar
e2

3.
6.

0,
Ju

n-
19

54
6

0.
74

9
0.

83
7

0.
78

8
0

0.
90

6
0.

43
2

0.
52

1
0

0
.7

6
5

0.
56

7
0
.4

1
7

26
9

0
5.

0.
0,

D
ec

-2
0

0.
75

9
0.

84
7

0.
79

8
1

0.
85

1
0.

50
8

0.
59

1
0

0.
74

6
0.

58
6

0.
41

7
0

0
0

an
gr

8.
19

.4
.5

,A
pr

-1
9

57
1

0.
88

6
0.

79
7

0.
83

1
0.

40
4

0.
66

7
0.

49
0

1
0.

72
3

0.
36

6
0.

24
6

16
3
6
4

2
6
2

9.
0.

46
63

,O
ct

-2
0

0.
92

8
0.

98
4

0.
95

5
1

0.
38

2
0.

71
1

0.
48

6
1

0.
70

5
0.

57
7

0.
36

8
13

29
2

0

B
in

ar
y

N
in

ja
1.

1.
14

70
,J

an
-1

9
64

3
0.

98
4

0.
85

7
0.

90
0

0
0.

80
6

0.
80

0
0.

78
1

0
0.

30
1

0.
54

8
0.

19
6

37
0

0
2.

2.
24

87
,O

ct
-2

0
0.

98
6

0.
86

9
0.

90
8

1
0.

83
4

0.
82

8
0.

80
8

0
0.

41
2

0.
57

2
0.

25
4

2
0

0

H
op

pe
r

4.
5.

13
,J

ul
-1

9
34

7
0.

97
1

0
.9

8
6

0
.9

7
8

1
0.

82
5

0
.8

1
6

0.
80

7
0

0.
38

7
0
.6

0
4

0.
27

1
2

0
0

4.
5.

29
,J

un
-2

0
0.

97
1

0.
98

6
0.

97
8

0
0.

82
5

0.
81

6
0.

80
7

0
0.

38
7

0.
60

4
0.

27
1

2
0

0

ID
A

P
ro

7.
3,

Ju
n-

19
41

0
0
.9

9
4

0.
97

0
0
.9

7
8

5
0
.9

4
4

0.
78

1
0
.8

3
8

5
0.

29
3

0.
28

5
0.

04
1

0
0

7.
5,

Ju
l-2

0
0.

99
4

0.
97

1
0.

97
9

1
0.

91
1

0.
78

8
0.

82
5

0
0.

29
8

0.
33

0
0.

05
5

1
5

0

33

Table 3.3 shows the overall result. The recall, precision, F1 score, and recovery

ratio are computed in the granularity of macro-averaging. A tool may not be able

to detect any instruction or function for a given binary. We mark such cases with

the flag Invalid (Inva. in table 3.3). We also set a threshold (two CPU hours in our

study) for each tool to analyze a binary. This is because if a tool cannot finish the

analysis in two hours, then it is not scaled to analyze a large number of binaries. We

count the number of binaries that cannot be analyzed in two CPU hours with the

flag Timeout (Tim. in table 3.3). We also count the number of binaries that trigger

an exception or a segment fault for each tool. We mark them with the flag Exception

(Exce. in table 3.3) and Segfault (Seg. table 3.3), respectively.

Note that, a tool may have different options and versions when performing the

analysis. For instance, angr provides an option to disable or enable the resolution of

indirect jumps. We use the default option for each tool to calculate the overall result

and leave the evaluation of the impact of different options in Section 3.4.4. As for

the different versions, we select two different versions (Section 3.3.4) for each tool to

study the improvement of these tools (in around one year). The answers to research

questions 1 to 4 mainly based on the old version. We will discuss the results of the

new version in detail in Section 3.4.6.

Instruction Boundary. IDA Pro has the highest precision value, while Hopper owns

the highest recall value. Both of them have the highest F1 scores and are commercial

tools. Moreover, these two are robust, since they do not raise any exceptions or

generate any segment faults during the analysis. Among all the tools, BAP does not

perform very well on both the instruction boundary and the function boundary. This

is due to the insufficient support of the Thumb instruction set. Besides, BAP does

not disassemble instructions that are out of the range of recognized functions. That

means if a function cannot be detected, then all instructions inside that function will

34

be ignored. This is the reason why the recall of the instruction boundary is rather

low. For other tools, the reason for the lower precision and recall mainly comes

from two different reasons. One is the challenges raised by mixed ARM and Thumb

instruction sets, and the other is the inline data.

Function Boundary. IDA Pro still has the highest precision while Hopper has the

highest recall. In terms of F1 score, IDA Pro has the highest value. It means that the

function boundary is correlated with the instruction boundary. BAP mainly uses func-

tion prologue patterns learnt from a set of binaries to detect the function boundary.

Due to the imprecise function prologue patterns, functions with no representative

prologue patterns cannot be detected by BAP. As for Radare2, the recall is relatively

low compared with other tools. That is because Radare2 has a very strict policy on

detecting functions. Users can use the command aaaa to explore more functions by

searching for the function patterns.

Function Signature. Recovering function signature is not easy. Among all the

eight disassembly tools, six of them support recovering function signature. The

overall recovery ratio (both the return value and parameter counts are right) for

Ghidra is less than 0.01, indicating that Ghidra has little support on stripped ARM

binaries. We further analyze the reasons. 98% functions’ return types are undefined

in Ghidra. Undefined is the default value and means Ghidra does not know the return

type.

We noticed that Radare2 has the highest recovery ratio on identifying the return

value (0.765) while the recovery ratio on identifying the number of parameters is

0.567. The overall recovery ratio drops to 0.417, which is rather low (though the

highest among all the tools) and has a large improvement space. Commercial tools

do not perform better on recovering the function signatures. All of the three tools’

recovery ratios are less than 0.3. In specific, IDA Pro has the lowest accuracy on

35

recovering function signature while the function boundary identification accuracy is

the highest. Discussed with the developer of IDA Pro, they also admit that “For

stripped binaries, there is very little info remaining and recovering parameters just

from the disassembly is quite difficult.”

Robustness and Scalability. We find some noncommercial tools are not robust.

For instance, more than 600 binaries triggered either an exception or a segment fault

of angr. For the 262 binaries that triggered a segment fault, 160 of them are binaries

compiled from the SPEC CPU2006, and 87.5% (140/160) of them are compiled using

the Thumb instruction set. Based on this observation, there is a great space for angr

to improve the support of the Thumb instruction set. This observation also applies

to other tools, e.g., Radare2.

BAP does not scale well because 214 binaries cannot be analyzed in two hours,

which is far more than other tools. We also observed timeouts when evaluating

other tools except Objdump. For example, 37 binaries cannot be analyzed by Binary

Ninja in two hours.

Failed Cases. Disassembly tools failed to identify the right instruction boundary,

function boundary, or function signature due to different kinds of reasons. We man-

ually study the failed cases and find that tools utilizing function prologue patterns

to identify the function boundary can make mistakes due to insufficient function

prologue patterns. Apart from this, disassembly tools cannot identify the accurate

instruction boundary due to the inline data and mixed instruction set. We illustrate

three different types of failed cases in the following.

Figure 3.4 shows an example of BAP. There is a function starting from the offset

0x1e958, but BAP thinks the function starts from the offset 0x1e960. That is because

the function prologue pattern used by BAP is not precise enough. Since ARM binaries

vary due to different compilers and compiling options, it is challenging to timely

36

Ground truth function start
0001e958 mov r2, #0x0
0001e95c mov r3, #0x0
BAP function start
0001e960 push {r4, r5, r6, r7, r8, sb, sl, fp, lr}
0001e964 mov sl, #0x0
0001e968 sub sp, sp, #0x34
0001e96c str r2, [sp, #0x58 + var_48]
0001e970 str r3, [sp, #0x58 + var_44]
0001e974 ldr r2, =loop_length

Figure 3.4: BAP (version 1.6.0 and version 2.1.0) mis-identify the function boundary

00096a7c. ldr r4, [pc, #528]
[pc, #528] refers to: 0x96a7c+528+4 = 0x96c90
. . .
00096c8a bl func_11880
func_11880: does not return
00096c8e mov r8, r8
00096c90 stc2l p15, c15, [ip, #0x3fc]
00096c94 vhadd.s8 d0, d0, d12
00096c98 mrc2 p15, #0x7, apsr_nzcv, c11, c15, #0x7
func_96c9c : indirect invoked
00096c9c push {r4, lr}
00096c9e ldr r1, =0xbcd60
00096ca0 bl func_11730
00096ca4 pop {r4, pc}

Figure 3.5: Hopper (version 4.5.13 and version 4.5.29) disassemble data as code.

update function prologue patterns. This can result in a false positive (0x1e960) and

false negative (0x1e958).

Figure 3.5 shows an example that is caused by inline data. For instance, Hopper

disassemble the inline data (starting from the offset 0x96c8e). This is because func-

tion 0x11880 is a non-return function and function 0x96c9c is indirect invoked. Thus,

Hopper treat the inline data as code and cannot identify the function 0x96c9c.

Figure 3.6 shows a failed case where Radare2 uses a wrong instruction set to dis-

assemble the binary. The instruction set from the offset 0x94050 is Thumb. However,

Radare2 disassembles it using the ARM instruction set, although it is an invalid in-

37

0009404c .dword 0x000ce700
func_94050:indirect invoked
00094050 invalid
00094054 ldrbmi r4, [r6], r6, asr 12
00094058 stcmi p5, c11, [0x00094360]
0009405c stmdavs fp!, {r3, r4, r7, sb, sl, lr}
00094060 movwls fp, 0x908a
00094064 stmdavs ip, {r8, sb, sp} ^
00094068 movwls sb, 0x2301

Figure 3.6: Radare2 (version 3.6.0 and version 5.0.0) identifies Thumb instruction set
as ARM instruction set.

struction. We further locate the potential root cause of this error. Specifically, the

basic block (0x94050) is indirectly reached from other basic blocks, thus it is hard

for the tool to determine the right instruction set. Remember that, the instruction

set is determined by the last bit of the target address.

3.4.3 Factors that Affect Accuracy (RQ2)

Our data set consists of binaries that are built using different compilers, compiling

options, and target architectures. Some of them are even obfuscated. They repre-

sent the diversity of existing binaries in the wild. In the following, we further explore

multiple factors that affect the accuracy of disassembly tools. Note that nearly all

the tools have difficulty recovering the function signature, which indicates that accu-

rately recovering function signature is challenging. Thus, we focus on the instruction

boundary and function boundary while answering research question 2.

Instruction Sets

ARM and Thumb instruction sets are widely used in real-world binaries. To evaluate

the impact of instruction sets, we divide binaries into two categories. The first one

contains binaries compiled with the flag -mthumb, which use the Thumb instruction

set. We call them Thumb set binaries. The other one is compiled without the flag

38

ARM:

00070078 bl sub_9eaa0

(Ghidra thinks function 0x9eaa0 will return)
0007007c ldr r3, [sp, #0x78 + var_44]

00070080 tst r3, #0x1
00070084 beq loc_70184

Thumb:
000505bc bl sub_70668

(Ghidra thinks function 0x70668 is a non-return function)
(Ghidra thinks the offset from 0x505c0 is inline data)

000505c0 movs r3, #0x1

000505c2 ldr r2, [sp, #0x80 + var_44]
000505c4 tst r3, r2

Figure 3.7: Ghidra (version 9.0.4 and version 9.1.2) performs differently when in-
struction set is different

-mthumb. By default, compilers use ARM instruction set. We call them ARM set

binaries.

Figure 3.8 shows the evaluation result. The solid line and dotted line in the figure

are used to denote the precision and recall, respectively. The x-axis shows the name

of tools and the y-axis represents the average value of recall and precision for all the

binaries. Note that, this format also applies to Figures 3.9, 3.10, 3.11, 3.12, 3.13 and

3.14.

First, disassembly tools perform worse for Thumb set binaries, i.e., they have

lower precision and recall for the instruction boundary and the function boundary.

Specifically, BAP has very low recall (0.40) and precision (0.01) for Thumb set binaries.

We verified and reported our findings to developers of BAP. They acknowledged that

BAP cannot handle Thumb binaries. Tools like Objdump cannot handle Thumb binaries

either. This is because Objdump uses the ARM instruction set to linearly disassemble

a binary without switching the instruction set. There are significant differences

between the two instruction sets for tools like angr and Ghidra. This is because these

tools have much better support of the ARM instruction set than the Thumb one.

39

(a) Instruction boundary (b) Function boundary

Figure 3.8: The result of different instruction sets

Second, even for the binaries compiled from the same source code, the Thumb

instruction set makes an inconsistency between the result. That is because the in-

struction set may have side effects on the recognized property of identified functions.

Figure 3.7 shows such an example. The instructions at the offset 0x00070078 and

0x000505bc are same (BL), which represent a function call. Both function calls refer

to the same callee according to the source code. However, since the instruction set

is different, Ghidra misinterprets that the callee function in the Thumb instruction

set is a non-return function, thus it completely ignores the code after that offset

(0x000505bc). Several similar cases are observed for the tool. This is the reason why

the recall is relatively low for Thumb set binaries of Ghidra.

Third, the result of the function boundary correlates with the instruction bound-

ary. That’s because these two primitives have a strong connection with each other.

If the instruction boundary cannot be recognized precisely, it will greatly affect the

recognition of the function boundary, and vice versa.

Fourth, the result of the function boundary is worse for the Thumb instruction

set. We suspect that is due to the reuse of the BL label instruction as both a func-

tion call and a direct branch for Thumb set binaries. Specifically, the BL label (BLX

label) instructions are used to directly invoke a function. For the ARM instruc-

40

(a) Instruction boundary (b) Function boundary

Figure 3.9: The result of different optimization levels

tion set, compilers use instructions, e.g., B label for a direct branch. However, for

the Thumb instruction set, the range of the B label is limited (±2KB for 16-bit

Thumb) [10]. Compilers tend to reuse the BL label for a direct branch (range is

±4MB for 16-bit Thumb), which is same with a function call. This confuses the

disassembly tools, which misinterpret direct branches as function calls. This raises

high false positives to identify the function boundary and results in a low precision.

Due to this, the proposed method to identify function boundary without relying on

function signatures in Nucleus [72] is also ineffective, since it assumes the function

call instruction could be identified. The initial result of applying this tool to binaries

with the Thumb instruction set show that both the precision and recall are below

0.12.

Summary: The Thumb instruction set does bring serious challenges to disassembly

tools.

Optimization Levels

As shown in the Section 3.3.1, optimization levels O2 and Os are mostly used ones.

They represent the optimization for performance and size, respectively. To evaluate

the impact of optimization levels, we divide binaries into two categories. One contains

41

Table 3.4: F1 scores for different optimization flags with at least 95% probability
value. NA:not applicable.

Tool angr BAP Objdump Ghidra Radare2 Hopper IDA Pro Binary Ninja
Instruction 0 0 0 0.005 0.065 0.014 0.001 0.018
Function 0.033 0.046 NA 0.020 0.037 0.053 0.033 0.037

binaries compiled with the O2 flag, while the other one contains binaries compiled

with the the Os flag.

Figure 3.9 shows the result. Surprisingly, there is no significant differences be-

tween these two flags in terms of both recall and precision. To verify the conclusion

that optimization level does not bring significant difference, we conducted an extra

hypothesis test. We compute the F1 scores of the binaries in the two categories and

compute the differences between every pair of binaries (i.e. one compiled with the

flag O2 while the other one compiled with the flag Os). We then randomly picked

40 samples and conducted t-test on the samples. Table 3.4 shows the result. We

noticed that different optimization levels do not bring significant differences on all

the eight tools. The maximum differences in terms of F1 score is only 0.065.

We further explore the potential reason. It turns out that the Os flag enables all

the optimization methods introduced in the O2 flag. Besides, it includes the ones to

reduce binary size [14, 19], e.g., reducing the padding size and alignment. These ones

have little impacts for the disassembly tool to identify the instruction and function

boundary.

Summary: Optimization levels (O2 and Os) do not bring significant differences.

Compilers

GCC and Clang are two popular compilers. To evaluate the impact of compilers, we

build binaries (the SPEC CPU2006) with both GCC and Clang. Figure 3.10 shows

the evaluation result.

42

(a) Instruction boundary (b) Function boundary

Figure 3.10: The result of different compilers

For the instruction boundary, most tools do not have obvious differences between

binaries built with different compilers except BAP, which will be explained later.

However, for the function boundary, Radare2 and BAP are sensitive to binaries built

with different compilers. For Radare2, the precision of the function boundary for

binaries built with GCC is higher than the binaries built with Clang. BAP has a

higher precision of the function boundary for binaries compiled with GCC. That is

because BAP has a better collection of function signatures for binaries compiled with

GCC than the ones compiled with Clang. Remember that, BAP does not disassemble

the instructions that are not in the detected functions. Thus, the precision of the

instruction boundary will also be higher for binaries compiled with GCC.

Summary: Compilers do not affect most of the tools, except Radare2 and BAP,

mainly due to the function identification method used by them.

CPU Architectures

ARM has multiple architectures, e.g., ARMv7 and ARMv5. Each architecture has

different hardware features. For instance, the 16-bit Thumb instruction (Thumb-1)

is available from ARMv4, while the 32-bit Thumb-2 instructions are available from

ARMv6. Thus, if the binary is built for different architectures, instructions generated

43

(a) Instruction boundary (b) Function boundary

Figure 3.11: The result of different CPU architectures

by the compilers will be different.

To evaluate the impact of binaries built with different CPU architectures, we use

the binaries compiled for ARMv7 (march=armv7-a) and AVRMv5 (march=armv5t).

Figure 3.11 shows the result. We find that disassembly tools perform better for

binaries with the ARMv7 architecture, in terms of the precision of function boundary.

This is because the Thumb-2 instructions are supported in the ARMv7 architecture,

where the B label instruction has a much larger jump range (±16MB) than the

original one (±2KB in the Thumb-1 instruction set) [10]. Compilers tend to use the

B label instruction for the direct branch, instead of reusing the BL label instruction

that is usually for the direct function call (Section 3.4.3). Thus, disassembly tools

can distinguish the function call instruction with the direct branch instruction, and

identify the function boundary more precisely.

Summary: For the ARMv7 CPU architecture, compilers use B label instruction

for a direct branch, instead of reusing the BL label instruction. This helps the

disassembly tools distinguish the direct branch instruction with the function call

instruction, leading to a better precision value of identifying the function boundary.

44

(a) Instruction boundary (b) Function boundary

Figure 3.12: The result of system types

System Types

ARM binaries exist in different types of systems. In our work, we also evaluate the

impact of different types of binaries. In particular, we use the binaries built from

the OpenWRT [34] (Linux based embedded systems used for routers, IP cameras

and etc.) and the Android open source project (AOSP version 9), respectively. The

result is shown in Figure 3.12.

In general, the result for binaries of OpenWRT is better than the AOSP binaries.

We further compared the binaries and found that most of the binaries (80%) in

Android are compiled using the Thumb instruction set, while there are no binaries

in OpenWRT compiled using the Thumb instruction set. As explained in previous

sections, disassembly tools perform worse for Thumb binaries.

Summary: System types affect the result. This is due to the instruction set used

in the binaries.

Obfuscation

To evaluate the impact of obfuscation to disassembly tools, we use O-LLVM [98],

an open-source obfuscator, to compile the SPEC CPU2006. O-LLVM supports the

following obfuscation methods. Specifically, instruction substitution (sub) is used to

45

(a) Instruction boundary (b) Function boundary

Figure 3.13: The result of different obfuscation methods

replace standard operators with more complicated sequences of instructions. The

bogus control flow (bcf) changes a function call graph by adding basic blocks. The

control flow flattening (fla) uses the control flow flatten algorithm [104] to create a

large number of fake control flows.

We apply each obfuscation method to each program for building the binary, and

then combine three methods together. We divide the obfuscated binaries into four

groups. In the first three groups, each group contains the binaries that are obfuscated

using one individual method. The last group contains the binaries that are obfuscated

using all the three methods. The result is shown in Figure 3.13.

We observe that obfuscation does not affect the instruction boundary too much.

However, the function boundary is greatly affected by the control flow flattening.

This is because the control flow flattening generates a huge number of fake control

flows. These fake control flows are using the BL label instructions in the Thumb

binaries for direct branches. These instructions confuse the disassembly tools and

introduce false positives to the function boundary (Section 3.4.3).

Summary: Obfuscation introduces challenges to the disassembly tools to locate

the function boundary, especially the control flow flattening. The root cause is due

to the reuse of BL label instruction for direct branches, which are inserted by the

46

obfuscation tool.

3.4.4 Types and Options of Tools (RQ3)

Commercial vs Noncommercial Tools

In our work, we use eight state-of-the-art tools. Among them, there are three com-

mercial tools, i.e., IDA Pro, Binary Ninja and Hopper, and five noncommercial ones.

We find that commercial tools have higher precision and recall. As shown in Ta-

ble 3.3, for the instruction boundary, the three commercial ones are ranked as top

three in terms of both precision and recall. For the function boundary, these com-

mercial tools are performing better than other ones, except that Radare2 has the

better precision. For function signature, though Radare2 has better recovery ratio

compared with commercial tools, all the tools’ recovery ratios are low. Moreover,

the commercial tools are more stable and robust. They do not trigger any segment

faults or exceptions during the analysis.

Summary: Compared with noncommercial ones, commercial tools are more accu-

rate, robust, and stable.

Disassembly Tools’ Options

Disassembly tools have different options, which can affect the result. We use angr

and Radare2 as examples since they provide explicit options that could be changed

during the analysis. Figure 3.14 shows the result. Specifically, angr provides an

option to enable or disable the indirect jump resolving. We observe that enabling

the indirect jump resolving will increase the precision and recall for instruction and

function boundary, since it can resolve more code sections that could only be reached

through indirect branches. However, recovering function signatures mainly rely on

the analysis of calling covention. Thus, the different options of angr has little impact

on the function signature.

47

(a) Instruction boundary (b) Function boundary (c) Function Signature

Figure 3.14: The Result of tools’ options. W/ and W/O IJ means the indirect
jump resolving is enabled and disabled for angr. Return means the recovery ratio on
evaluating whether a function return a value or not. Args means the recovery ratio
on evaluating the number of the parameters of a function. All means both Return
and Args are accurate.

As for Radare2, it provides three different options. They are aa,aaa (the default

value) and aaaa. Option aa only analyzes the function symbols, while option aaa

adopts more analysis methods, including function calls, type matching analysis, value

pointers. Option aaaa uses the function prologues to locate more functions and

performs constraint type analysis, besides the analysis included in the option aaa.

We find that, complex analysis does not increase the accuracy of the instruction

boundary, but has impacts on the function boundary and function signature. That

is because the option aa only detects functions based on symbols, thus it misses

most functions in the stripped binaries that do not have symbols but has a higher

recovering ratio of function signature. Options aaa and aaaa adopt more analysis

methods, e.g., function prologue analysis, that greatly improve the identification of

function boundary.

Summary: Disassembly tools’ options affect the result. For angr, enabling indirect

jump resolving can improve the result, while Radare2 has a better result for function

boundary when using the option aaaa.

48

(a) CDF plot of CPU per-

centage

(b) CDF plot of CPU times (c) CDF plot of memory con-

sumption

Figure 3.15: The evaluation result of performance. The legend in the latter two
figures are same with the first one.

3.4.5 Efficiency of the Disassembly Tools (RQ4)

Efficiency is an important feature of disassembly tools. Efficient tools can handle

large binaries within a reasonable time. We report the efficiency of the tools. In

particular, we calculate the CPU usage, CPU times and memory consumption during

the analysis. Our experiments are done in Ubuntu 18.04 with 128GB memory size

and 30 core intel(R) Xeon(R) Silver 4110 CPUs. Specifically, we use the Python

library psutil [39] to extract the related information about resource consumption,

and then use the function cpu_times to obtain the CPU times. We also use the

function cpu_percent (interval = 1) to extract the CPU percentage. Note that

this value can be bigger than 100% in case of a process running multiple threads.

We use the function memory_info to obtain the memory consumption. The memory

size is the Resident Set Size (rss), which is the non-swapped physical memory a

process has used. The result is shown in Figure 3.15.

CPU Percentage. Binary Ninja consumes lots of CPU resource and can reach to

nearly 800% for some binaries. Ghidra ranks the second. Half of the binaries would

consume 200% of the CPU usage. BAP consumes the least CPU percentage. However,

according to our observation, BAP spends a lot of time to analyze the binaries due to

the inefficient usage of CPU.

49

CPU Times. Among all the tools, Ghidra consumes most CPU times compared

with the other tools in nearly 80% binaries. There are no significant performance

differences for angr with and without indirect jump resolving. Since the indirect

jump resolving improves the result, we recommend users to enable this option during

analysis. For Radare2, the option aaa needs much more CPU times compared with

the option aa. However, the precision and recall of the instruction boundary do not

have a significance improvement.

Memory Consumption. Among all the tools, Binary Ninja consumes most of the

memory (nearly 10 GB in maximum), while Objdump consumes the least. IDA Pro

is quite stable for the memory usage. It consumes only around 100MB memory for

nearly 70% of the binaries.

3.4.6 Improvement (RQ5)

To understand the improvement of these tools overtime, we collect two different

versions for each tool. One is the newest version at the time of writing (new version).

The other one (old version) is the version evaluated in [92]. As shown in Table 3.3,

the period between the release dates of the two version ranges from 272 days to 735

days, which is long enough for developers to improve the tools.

Improvement on Accuracy

Commercial Tools. By comparing the results, we noticed that the commercial

tools do not have significant improvement. For example, IDA Pro and Hopper re-

mains nearly the same for the F1 score of instruction boundary, function boundary,

and function signature identification. For Binary Ninja, the F1 score of instruction

boundary increases little (i.e., 0.008) while the F1 score of function boundary in-

crease by 0.027. Meanwhile, the function signature increase by 0.058. This may

also because the period for the two versions of Binary Ninja is quiet long (i.e., 643

50

days) and the accuracy on particular binaries is increased. For instance, program

447.dealII compiled by Clang (version 8) with the optimization level Os and ARM

instruction set has only 0.324 F1 score for instruction boundary in Binary Ninja

(version 1.1.1470). Due to the imprecise instruction boundary identification, the

F1 score for function boundary is rather low (i.e., 0.056). This value increased to

0.901 and 0.778 for instruction and function boundary, respectively in Binary Ninja

(version 2.2.2487).

Noncommercial Tools. Noncommercial tools gain larger improvement compared

with commercial tools. We suspect this is due to two reasons. One is that the non-

commercial tools perform worse in the old version, which leaves a larger improvement

space. For instance, more than 600 binaries triggered either an exception or a seg-

ment fault of angr (version 8.19.4.5). We submit the failed test cases to the developer

of angr, only 305 binaries cannot be analyzed in angr (version 9.0.4663) and the F1

score of instruction boundary increased by 0.125. We also noticed that the angr’s

recovery ratio of function signatures increase most (i.e., 0.368-0.246=0.122) among

all the tools. The other reason is that noncommercial tools receives more tests,

feedback, and suggestions from the communities. Since they are open-source, com-

munities can submit issue, pull request, and suggestion to the developers directly

to speed up the developing process, fix the issues, and increase the accuracy. For

instance, angr receives more than 1000 github issues and pull requests while Radare2

receives more than 7000 github issues and 10000 pull requests till January 2021.

Though noncommercial tools gain larger improvement compared with commer-

cial tools. They are still having problems on accurately identifying the instruction

boundary, function boundary, and function signature. The failed cases mentioned in

Fig. 3.4 and Fig. 3.6 also applies to new versions of the tools. This indicates that

accurately disassembling the binaries is still challenging.

51

Table 3.5: The performance statistics for the improvement.

Tool Options CPU
Times

CPU
Percentage

Memory
Consumption

BAP Default 178.10 -42.92 -30.78
Objdump Default -0.14 -0.07 -0.64
Ghidra Default 68.00 49.82 257.70

Radare2
aa 0.66 4.76 -6.08
aaa 25.52 2.94 4.87
aaaa 25.54 2.99 6.00

angr enable indirect jump -31.34 0.80 -3.71
disable indirect jump -43.26 -0.90 -8.31

Binary Ninja Default 41.35 6.59 138.62
Hopper Default -7.97 -6.25 -7.12
IDA Pro Default 9.88 14.40 10.29

Summary: Noncommercial tools gain larger improvement compared with commer-

cial tools due to two reasons. One is that noncommercial tools have lower recall and

precision value in the old version. The other is that noncommercial tools can receive

more test, feedback, and suggestions from communities.

Improvement on Efficiency

Apart from the accuracy, we also evaluate the improvement on efficiency. Table 3.5

shows the overall result. We monitor the efficiency statistics (i.e., CPU percentage,

CPU times, and memory consumption) for the tools in old versions and new versions

and calculate the average value. We calculate the improvement for each metrics by

using the statistics in old versions to minus statistics in new versions. Thus, if the

improvement is positive, it means the value of the metrics is reduced and vice versa.

Commercial Tools. For commercial tools, we noticed that IDA Pro and Binary

Ninja’s performance improves a lot. Specifically, the CPU Times of Binary Ninja

reduces 41.35 seconds and 138.62 MB memory is saved in average. Hopper’s perfor-

mance decrease a little. We suspect this is because of the added new features.

Noncommercial Tools. For noncommercial tools, the CPU times, which indicates

how much time are needed for a tool, are reduced for all the tools except angr and

52

Objdump. Objdump’s CPU times just decrease by 0.14, which can be ignored. For

angr, we think this is due to the added algorithms (e.g., identification of tail call

optimizations) and features to increase the accuracy and robustness of disassembly

tasks. As for CPU percentage, BAP’s CPU percentage increased a lot. This is because

that BAP in old version get stuck while analyzing most Thumb binaries, resulting in

a low CPU usage. In the new version of BAP, the stuck cases are reduced, resulting

in a higher CPU usage. We also noticed that several tools’ memory consumption are

increased(30.78 MB in maximum), which is acceptable.

Summary: Most of the tools improve a lot for performance while Hopper and angr’s

performance decrease due to the added features and algorithms.

3.5 Implications

In this section, we discuss implications based on the evaluation result and point out

possible improvements.

ARM-specific disassembly strategies. First, inline data is popular in ARM bi-

naries. Previous research shows that there is few inline data in x86/x64 binaries

and the jump tables are located in the .rodata section. However, inline data is very

common in ARM binaries, which increases the difficulty to locate instruction bound-

aries. Second, there are two instruction sets, i.e., ARM and Thumb instruction sets.

Detecting the right instruction set is challenging for disassembly tools. Furthermore,

we noticed that most tools do not have good support on the Thumb instruction set,

either with a wrongly detected instruction set or a thrown exception. For instance,

angr throws exceptions and gets segment faults for several binaries with the Thumb

instruction set. Objdump can merely identify the Thumb instruction set. Given the

fact that the Thumb instruction set is popular, especially in the binaries for mobile

systems, there is an urgent need to propose effective solutions. Third, since most

53

existing works are focusing on x86 and x64 [52, 55, 56, 72, 143, 144], some ARM

specific mechanisms should be proposed to deal with the instruction set switching.

For instance, the hybrid disassembly technique [159] could be leveraged to locate the

inline data and distinguish between different instruction sets, with customizations

to adapt to the ARM architecture. Besides this, disassembly tools could perform a

further check on its disassembly result. In other words, they could conduct a conflict

analysis to improve the result. For example, Radare2 explicitly knows when there is

an invalid instruction. In this case, it can either switch the mode, or further check

whether the invalid code is actually inline data through a data reference analysis.

Mechanisms to identify the function boundary. Our result shows that there

is still a large space to improve the effectiveness of detecting the function boundary.

Tools usually use function signatures to identify functions. These signatures could

be generated through a machine learning based method. However, the machine-

learning based methods could be limited due to the incompleteness of the training

data sets [72]. For instance, the machine-learning based method in BAP performs

worse than most of the other tools in detecting function boundaries. Furthermore,

the mechanisms that work well on x86/x64 [72] cannot be applied to ARM, because

ARM does not have a distinguished function call instruction, which is required by the

method. According to our evaluation, besides function call, BL label is widely used

in the Thumb instruction set for direct branch. Disassembly tools cannot distinguish

the usage of BL label as direct branch with direct function call, resulting in a low

precision in terms of the function boundary.

We think a more effective algorithm to detect the function boundary is needed.

For example, developers could use the machine-learning based mechanism to detect

the function first, and then conduct a static analysis by considering the internal logic

between different basic blocks to reduce the false positives and false negatives. More-

54

over, disassembly tools can further analyze the BL label instruction to understand

whether it’s a function call. We think a further analysis of the usage of the BL label

instruction can greatly improve the result of the function boundary.

Usability. Tools have different user interfaces and plugin infrastructures. For in-

stance, IDA Pro, Hopper and Binary Ninja have user-friendly GUI interfaces, and

provide easy-to-use Python APIs. angr itself does not provide GUI, and is invoked

purely through a Python script. BAP has a good flexible architecture for extension.

However, the supported language Ocaml has a steep learning curve, compared to the

Python programming language. As for Radare2, it is completely different from the

other tools. It just loads the binary and provides an interactive shell. Users have to

leverage the shell to perform the analysis. There are many different kinds of built-in

analysis phases.

We also observe that non-commercial tools suffer from the scalability and stability.

For instance, BAP cannot finish the analysis on several binaries while angr will raise

exceptions or get segment faults on several binaries. Furthermore, tools may have

different options, which impact the usage of system resources. Users should pick

the right options according to the purpose. For example, if users use the Radare2 to

disassembly the instruction (and do not care about the function boundary), they can

use the option aa, which satisfies the need and is much faster than other options.

Improvements. State-of-the-art disassembly tools are maintained well and updated

periodically. We compare the eight disassembly tools in two different versions in

terms of both accuracy and performance. The release dates for the two different

versions range from 272 days to 735 days, which is long enough to evaluate the

improvements.

We find that noncommercial tools gain larger improvements in terms of accuracy

compared with the commercial tools. This is because that noncommercial tools

55

perform worse in old version and noncommercial tools receives more test and feedback

from the communities. As for performance, we find most of the tools improve a lot

while some tools’ performance may decrease due to the added feature and algorithm.

3.6 Discussion

First, with the introduction of the ARMv8 architecture, there exist 64-bit ARM bi-

naries, which are missed in this work. However, 32-bit binaries are still the most

popular ones. Due to the compatibility concern, new ARM architectures maintain

backward compatibility with old ones. Our findings can still be applied to ARMv8

(ARMv8 supports both AArch64 for 64-bit binaries and AArch32 for 32-bit bina-

ries) and future versions of ARM as long as ARM does not deprecate 32-bit ARM

instruction set. Besides, AArch64 simplifies the task of disassembly tools. This is

because 32-bit ARM has both 16-bit and 32-bit instructions and much more diverse

branch instructions. As shown in our evaluation, the switching between instruction

sets brings serious challenges to disassembly tools.

Second, we only evaluate eight state-of-the-art disassembly tools. However, there

exist some disassemblers that are either research prototypes or not actively main-

tained. They are excluded from our work. Moreover, we only evaluate two funda-

mental disassembly primitives. We think other primitives such as direct control flow

graph or direct call graph are easy to be generated if the instruction boundary and

function boundary are located correctly1.

Third, the generation of the ground truth is an essential step. Fortunately, the

ARM ELF format introduces mapping symbols that can help to distinguish between

different instruction sets, and between code and inline data. By leveraging this infor-

mation, we can generate a complete and sound result for the instruction boundary.

1 We understand that the indirect control flow transfer is still a challenging task.

56

At the same time, we could use the DWARF debugging information to extract the

ground truth of the function boundary. For other primitives like control flow graph

and call graph, they consist of direct jumps and indirect jumps. Direct jumps can be

built based on the precise instruction boundary and function boundary, which is the

reason why we do not include them in the evaluation. For the evaluation of indirect

jumps, we cannot get a sound and complete ground truth even if we have the source

code. This is because some jump targets can only be determined at running time.

We leave the evaluation of these primitives as one of the further works.

3.7 Summary

We conduct the first comprehensive study on the capability of eight ARM disas-

sembly tools in different versions to locate instruction boundary, function boundary,

and function signatures, using diverse ARM binaries built with different compiling

options and compilers. We report our new findings, which shed light on the limita-

tions of the state-of-the-art disassembly tools, and point out potential directions for

improvements.

57

58

Chapter 4

Examiner: Automatically Locating

Inconsistent Instructions between

Real Devices and CPU Emulators for

ARM

4.1 Overview

In this chapter, we aim to automatically locate inconsistent instructions between

real devices and the CPU emulator for the ARM architecture. If an instruction

behaves differently between them, then it is an inconsistent instruction. Although

previous research [110, 111, 113, 112] provides valuable insights, they are limited to

the x86/x64 architecture and cannot be directly applied to the ARM architecture.

Our work leverages the differential testing [114] for the purpose. Specifically, we

provide the same instruction stream 1 to both the real device and a CPU emulator,

and compare the execution result to check whether it is an inconsistent one.

Though the basic idea is straightforward, it faces the following two challenges.

First, the ARM architecture has multiple versions (e.g., ARM v5, v6, v7 and v8),

different register widths (16 bits or 32 bits) and instruction sets. Besides, it has

1 In this chapter, instruction and instruction stream represent different meanings. For example
, we call STR (immediate) an instruction. We call the concrete bytecode (i.e., 0xf84f0ddd) an
instruction stream. See Section 4.2.1

59

mixed instruction modes (ARM, Thumb-1 and Thumb-2). Thus, how to generate

effective test cases, i.e. instruction streams that cover previously mentioned archi-

tecture variants, while at the same time generating only necessary test cases to save

the time cost, is the first challenge. Notice that if we naively enumerate 32-bit in-

struction streams, the number of test cases would be 232, which is inefficient, if not

possible, to be evaluated. Meanwhile, randomly generated instruction streams are

not representative and many instructions are not covered (Section 4.4.1). Second, for

each test case, we should provide a deterministic environment to execute the single

instruction stream and automatically compare the result after the execution. This

requires us to set up the same context (with CPU registers and memory regions)

before the execution and compare the context afterwards.

Our system solves the challenges with the following two key techniques.

Syntax and semantics aware test case generation. To generate representative

instruction streams, we propose a syntax and semantics aware test case generation

methodology. Each ARM instruction consists of several encoding schemas, which is

called instruction encodings, that define the instruction’s structure (syntax). Each

encoding schema maps to one decoding and execution logic that defines the in-

struction semantics. The encoding schema shows which parts of an instruction are

constants and which parts can be mutated (Figure 4.2(a)). The non-constant parts

of an instruction are called encoding symbols. The decoding and execution logic is

expressed in the ARM’s Architecture Specific Language (ASL) [127] . We call it the

ASL code in this thesis (Figure 4.2(b) and (c)). The ASL code executes based on the

concrete values of the encoding symbols. For instance, if the concrete value of the

encoding symbol W (the eighth bit of STR (immediate) instruction) is 1, then the new

address will be written back into the destination register Rn (line 4 of Figure 4.2(c)).

Specifically, during the test case generation, we first take the syntax-aware strat-

egy. For each encoding symbol, we mutate it based on pre-defined rules. For instance,

60

for the immediate value symbol, the values in the mutation set cover the maximum

value, the minimum value and a fixed number of random values. This strategy

generates syntactically correct instructions.

We further take a semantics-aware strategy to generate more instruction streams.

That’s because the previous strategy may only cover limited instruction semantics

as different encoding symbol values can result in different decoding and executing

behaviors (Section 4.3.1). To this end, we extract the constraints in ASL code of

decoding and executing. We solve the constraints and their negations by designing

and implementing the first symbolic execution engine for ASL to find the satisfied

values of the encoding symbols. By doing so, the generated test cases can cover

different semantics of an instruction.

Deterministic differential testing engine. Our differential testing engine uses

the generated test cases as inputs. To get a deterministic testing result, we provide

the same context when executing an instruction stream on a real CPU and an emu-

lator. Besides, an instruction stream cannot be directly loaded and executed by the

emulator, we carefully design a template binary that converts one instruction stream

to a testing binary by inserting the prologue and epilogue instructions. The prologue

instructions aim to set the execution environment while the epilogue instructions will

dump the execution result for comparison to check whether the testing instruction

stream is an inconsistent one.

We have implemented a prototype system called Examiner. Our test case gen-

erator generated 2, 774, 649 instruction streams that cover all the 1, 998 ARM in-

struction encodings from 1, 070 instructions in four instruction sets (i.e., A64, A32,

T32, and T16). On the contrary, the same number of randomly generated instruction

streams can only cover 51.4% Instructions. This result shows the sufficiency of our

test case generator. We then feed these test cases into our differential testing engine.

By comparing the result between the state-of-the-art emulator (i.e., QEMU) and real

61

devices with four architecture versions (ARMv5, ARMv6, ARMv7-a, and ARMv8-a),

our system detected 155, 642 inconsistent instruction streams. Furthermore, these

inconsistent instruction streams cover 47.8% of the instructions. We then explore

the root causes of them. It turns out that implementation bugs of QEMU and the

undefined implementation in the ARM manual (i.e., the instruction does not have

a well-defined behavior) are the major causes. We discovered four implementation

bugs of QEMU and all of them have been confirmed by developers. These bugs

influence 13 instruction encodings, including commonly used instructions, e.g., BLX,

STR.

To show the usage of our findings, we further build three applications, i.e., emu-

lator detection, anti-emulation and anti-fuzzing. By (ab)using inconsistent instruc-

tions, a program can successfully detect the existence of the CPU emulator and

prevent the malicious behavior from being monitored by the dynamic analysis frame-

work based on QEMU. Besides, the coverage of the program being fuzzed inside an

emulator can be highly decreased. Note that, we only use these applications to

demonstrate the usage scenarios of our findings. There may exist other applications,

and we do not claim the contribution of them in this thesis.

Our work makes the following main contributions.

New test case generator. We propose a test case generator by introducing the

first symbolic execution engine for ARM ASL code. It can generate representative

instruction streams that sufficiently cover different instructions (encodings) and se-

mantics.

New prototype system. We implement a prototype system named Examiner

that consists of a test case generator and a differential testing engine. Our experi-

ments showed Examiner can automatically locate inconsistent instructions.

New findings. We explore and report the root cause of the inconsistent instruc-

tions. Implementation bugs of QEMU and undefined implementation in ARM man-

62

ual are the major causes. Furthermore, four bugs have been discovered and confirmed

by QEMU developers. Some of them influence commonly used instructions (e.g., STR,

BLX).

We will release generated test cases and the source code of our system to engage

the community.

4.2 Background

4.2.1 Terms

For better illustration and avoid the potential confusion. We give detailed definition

towards the following terms used in this chapter.

Instruction. Instruction denotes the category of ARM instructions in terms of

functionality, which is usually represented by its name in ARM manual. For example,

STR (immediate) is an instruction, which aims to store a word from a register to

memory.

Instruction Encoding. Instruction encoding refers to the encoding schemas for

each instruction. We also call it encoding diagram. One instruction can have several

encoding schemas.

Instruction Stream. Instruction stream refers to the bytecode of an instruction.

For example, 0xf84f0ddd, which meets one of the encoding schema of instruction STR

(immediate). We call 0xf84f0ddd an instruction stream.

4.2.2 ARM Instruction and Instruction Encoding

Processor specification is important as it can verify the implementation of hard-

ware, compilers, emulators, etc. To formalize the specification, ARM introduced

the Architecture specification language (ASL) [127], which is machine-readable and

executable.

63

Test Case
GeneratorASL Instruction

Streams
Differential

Testing Engine
Inconsistent
Instructions

Figure 4.1: The work flow of our system

ARM instructions usually have a fixed length (16 bits or 32 bits). According to

ARM manual, one instruction may consist of several different instruction encodings,

which describe the instruction structure (syntax). Our system generates the instruc-

tion streams that cover all the instruction encodings (which cover all instructions.)

Specifically, the instruction encoding describes which parts of the instruction are con-

stant and which parts are not. Each instruction encoding is further described with

specific decoding and executing logic. The decoding and executing logic (expressed

in ASL) defines the semantics of the instruction.

4.2.3 Instruction Decoding in QEMU

QEMU is the state-of-the-art CPU emulator that supports multiple CPU architec-

tures. When executing an instruction stream, it needs to decode the instruction

stream. QEMU adopts a two-stage decoding schema. In the first stage, it matches

an instruction stream with pre-defined patterns, each of them represent multiple in-

structions. Then it distinguishes each instruction encoding based on the concrete

value of the instruction. For instance, QEMU groups VLD4, VLD3, VLD2, and VLD1 in-

struction into one group (with one common pattern) and then identifies them inside

the instruction decoding routine. If no instruction pattern can be found or further

decoding routine cannot recognize an instruction stream, the SIGILL signal will be

raised for the user mode emulation of QEMU.

64

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt Imm8
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 P U W

(a) The encoding schema of the STR (immediate) instruction in Thumb-2 mode.

1 if Rn == ’1111’ || (P == ’0’ && W == ’0’) then UNDEFINED;
2 t = UInt(Rt);
3 n = UInt(Rn);
4 imm32 = ZeroExtend(imm8 , 32);
5 index = (P == ’1’);
6 add = (U == ’1’);
7 wback = (W == ’1’);
8 if t == 15 || (wback && n == t) then UNPREDICTABLE;

(b) The ASL code for decoding the instruction.

1 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
2 address = if index then offset_addr else R[n];
3 MemU[address ,4] = R[t];
4 if wback then R[n] = offset_addr;

(c) The ASL code for executing the instruction.

Figure 4.2: A motivating example.

4.3 Design and Implementation

Figure 4.1 shows the workflow of Examiner, which consists of a test case generator

and a differential testing engine. First, the test case generator retrieves the ASL code

to generate the test cases (Section 4.3.2). Then, the differential testing engine receives

the generated test cases and conducts differential testing between the emulators and

real devices (Section 4.3.3). The instructions leading to different execution results are

located as inconsistent instructions. We further analyze the identified inconsistent

instructions to understand the root cause of them and how they can be (ab)used.

In the following, we first use an inconsistent instruction detected by our system

as a motivation example (Section 4.3.1), and then elaborate the test case generator

and the differential testing engine in Section 4.3.2 and Section 4.3.3, respectively.

4.3.1 A Motivating Example

65

The encoding schema and semantics of the STR (immediate) instruction

Figure 4.2 shows one of the encoding schema of instruction STR (immediate) and the

corresponding ASL code for decoding and execution logic. According to the encoding

schema in Figure 4.2a, the value is constant (i.e., 111110000100) for offset [31:20].

The encoding symbol Rn and Rt represent the addressing register and the source

register, respectively. The last eight bits ([7:0]) represents a symbol value named

imm8 that will be used as the offset.

Figure 4.2b shows the ASL code of the decoding logic for the encoding schema.

Note that the ASL code is simplified for presentation. The complete code can be

found in ARM official site [5].

• The ASL code at Line 1 checks the value of Rn, P, and W. If the conditions are

satisfied (or constraints are met), the instruction stream will be treated as an

UNDEFINED one. Consequently, a SIGILL signal will be raised in QEMU user mode

emulation when an UNDEFINED instruction stream is executed.

• In line 2 and 3, the symbol Rt and Rn will be converted to unsigned integer t and

n, respectively. Similarly, the symbol imm8 will be extended into a 32-bit integer

imm32. In line 5, 6, and 7, symbol index, add, and wback will be assigned according

to the value of P, U, and W, respectively.

• In line 8, the symbol t, wback, and n will be checked. If the constraint of each

condition is met, the instruction stream should be treated as an UNPREDICTABLE

one. According to ARM’s manual, the behavior of an UNPREDICTABLE instruction

stream is not defined. The CPU processor vendors and the emulator developers

can choose an implementation that they think it’s proper.

Similarly, Figure 4.2c shows the ASL code for the execution logic of the instruc-

tion. The ASL code in Figure 4.2b and Figure 4.2c defines the semantics of the

66

instruction.

Test case generation

By analyzing the encoding schema, Examiner generates the test cases by mutat-

ing the non-constant fields, including Rn, Rt, P, U, W and Imm8. This can generate

syntactically correct instructions. However, this step is not enough, since it may

not generate the values that satisfy the symbolic expression in the ASL code. For

instance, one symbolic expression in line 8 of Figure 4.2b is t == 15. The random

values generated in the first step may not satisfy this expression (all of them are

not equal to 15). To this end, we leverage a constraint solver to find the concrete

value of the encoding symbol Rt that satisfies the constraint, i.e., 15. Note that, we

only use this to illustrate the basic idea. The concrete value 15 of Rt likely has been

generated in the first step. We take similar actions to solve the constraints for other

symbols in line 1 (add), 2 (index) and 4 (wback) of Figure 4.2c. During this process,

we generated 576 instruction streams as test cases in total.

Differential testing

We feed each instruction stream into our differential testing engine. The engine

generates a corresponding ELF binary for each test case by adding prologue and

epilogue instructions. The prologue instructions first set the initial execution context,

then the instruction stream will be executed. Finally, the epilogue instructions will

dump the result for comparison. We execute the binary on both QEMU and real

devices (e.g., RasberryPi 2B). By comparing the execution result, we confirm that

0xf84f0ddd is an inconsistent instruction stream. Specifically, It will generate a

SIGILL signal in a real device while a SIGSEGV signal in QEMU.

We further analyzed the root cause and successfully disclosed a bug in QEMU.

According to Figure 4.2a, the concrete value of the encoding symbol Rn of the instruc-

67

1 static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, MemOp mop , int mem_idx)
2 {
3 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite;
4 TCGv_i32 addr , tmp;
5
6 // Rn=1111 is UNDEFINED for Thumb;
7
8 + if (s->thumb && a->rn == 15) {
9 + return false;

10 + }
11
12 addr = op_addr_ri_pre(s, a);
13
14 tmp = load_reg(s, a->rt);
15 gen_aa32_st_i32(s, args);
16 disas_set_da_iss(s, mop , issinfo);
17 tcg_temp_free_i32(tmp);
18 op_addr_ri_post(s, a, addr , 0);
19 return true;
20 }

Figure 4.3: Original code of QEMU and the patch for function op_store_ri, which aims

to translate STR instruction

tion stream 0xf84f0ddd is 1111. As shown in the ASL code (line 1) in Figure 4.2b.

it is an UNDEFINED instruction stream. However, QEMU does not properly check this

condition. Figure 4.3 shows the (patched) function (i.e., op_store_ri) in QEMU for

decoding the instruction STR (immediate). It continues the decoding process directly

from line 12 without any check. We then submit this bug to QEMU developers and

the patch is issued (as shown in line 8-10).

4.3.2 Test Case Generator

In theory, for a 32-bit instruction, there exist 232 = 4, 294, 967, 296 possible instruc-

tion streams, which are not practical for evaluation. In our work, we need to generate

a small number of representative test cases that cover most behaviors of an instruc-

tion.

Specifically, we first parse the encoding schema to retrieve the encoding symbols

and then infer the type for symbols, e.g., a register index or an immediate value.

After that, we generate an initialized mutation set by pre-defined rules for each type

of the symbol (Table 4.1 shows the detailed rules). For instance, we generate the

maximum, minimum and random values for an immediate value. Then, we develop a

symbolic execution engine to solve the constraints in the ASL code for the decoding

68

and execution logic. This step can add more values to the mutation set to satisfy the

constraints of the symbols in the ASL program. At last, we remove duplicate values

and then generate instruction streams as test cases.

Algorithm 1 shows how we generate the test cases. For each instruction, ARM

provides a XML file to describe the instruction. We extract the encoding schemas

and the corresponding ASL code for decoding and execution by parsing the XML file.

We first retrieve the encoding symbols (Symbols) and constant values (Constants) in

the encoding schema, as well as Constraints for the symbolic expression in decoding

and execution ASL code (line 2). We then iterate over the Symbols and generate

the MutationSet for each symbol (line 3-4), which will be introduced in detail in

Section 19. Note this is the initial mutation set for each symbol. For the Constants,

the MutationSet contains only the fixed value (line 5-6). After that, we solve the

constraints to generate new mutation set (i.e., V alueSet) for each symbol (line 7-8),

which will be introduced in detail in Section 19. Then we check whether the solved

value for each symbol is in the symbol’s MutationSet (line 9). If not, we append it

to the symbols’s MutationSet (line 10-11). After that, we combine them to get the

MutationSets (line 12).

Finally, considering all the possible combinations of the candidates in the MutationSet

for each symbol, we conduct the Cartesian Product on the MutationSets to get the

test cases for this specific instruction encoding (line 13).

Initialize Mutation Set

In the phase of initializing mutation set for each symbol, we consider the types of

different symbols and aim to cover different values for different types of symbols. In

particular, we infer the type based on the symbol name. For instance, a symbol that

represents a register index usually has the name Rd, Rm, Rn, etc. As for the immediate

value, the symbol name used to be immn where n represents the length of the value.

69

Algorithm 1: The algorithm to generate test cases.
Input: The encoding diagram: I_Encode;
The decoding ASL code: I_Decode;
The execution ASL code: I_Execute
Output: The generated test cases: T ;

1 Function Generate(I_Encode,I_Decode,I_Execute):
2 Symbols, Constants, Constraints = ParseASL(I_Encode, I_Decode, I_Execute)
3 for S in Symbols do

4 S.MutationSet = InitSet(S)
5 end

6 for C in Constants do

7 C.MutationSet = [ConstantValue]
8 end

9 for C in Constraints do

10 ValueSet = SolveConstraint(C, Symbols, I_Decode, I_Execute)
11 for V, S in V alueSet do

12 if V not in S.MutationSet then

13 S.MutationSet add V
14 end

15 end

16 end

17 MutationSets = [S.MutationSet +C.MutationSet]
18 TestCase = CartesianProduct(MutationSets)
19 return T

Table 4.1: The rules of initializing the mutation set.

Type of Symbol Name Mutation Set
Register Index 0 (R0); 1 (R1); 15 (PC); Random index values

Immediate Value in N bits Maximum value: 2^N -1; Minimum value: 0;
(N-2) Random Value from the enumerated values

Condition "1110" (Always execute)
Others in 1 bit "0"; "1"

Others in N bit (N >1) N random value from the enumerated values

For example, the symbol imm8 represents a 8-bit immediate value.

Table 4.1 shows the rules to initialize the mutation set. For a register index, we

include the PC register (index 15), R0, R1 and random values in the set. The register

R0 and R1 are used to represent the return value for function calls. As for PC, it

can explicitly change the execution flow of the program. Thus, the register index in

many instruction encodings cannot be 15. We include it in the mutation set to cover

such cases. For the immediate value, the maximum and minimum value are the two

70

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd Rm
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 x AlignSize

Type

(a) Encoding diagram of instruction VLD4 in A32 instruction set

1 case type of
2 when ’0000’
3 inc = 1;
4 when ’0001’
5 inc = 2;
6 if size == ’11’ then UNDEFINED;
7 alignment = if align == ’00’ then 1 else 4 << UInt(align);
8 ebytes = 1 << UInt(size);
9 elements = 8 DIV ebytes;

10 d = UInt(D:Vd);
11 d2 = d + inc;
12 d3 = d2 + inc;
13 d4 = d3 + inc;
14 n = UInt(Rn);
15 m = UInt(Rm);
16 wback = (m != 15);
17 register_index = (m != 15 && m != 13);
18 if n == 15 || d4 > 31 then UNPREDICTABLE;

(b) Decoding code of instruction VLD4 in A32 instruction set

Figure 4.4: Test case generator example.

boundary values that need to be covered. Apart from this, we randomly select (N-2)

values, where N represents the bit length of the symbol. Note that enumerating

all the values for one symbol is not realistic because immediate values have 24 bits,

resulting in 224 = 16777216 candidates.

Solve Constraints

Symbolic expressions in ASL code represent the different execution paths of the

instruction. For instance, d4 in Figure 4.4 is a symbolic expression (d4 = UInt(D :

V d) + inc + inc + inc) that determines whether the instruction is an UNPREDICTABLE

one. To make our test case representative, the generated test cases should cover as

many execution paths as possible. To this end, we design and implement a symbolic

execution engine for the ASL code. Specifically, we assign symbolic values for encod-

ing symbols. Then we generate the symbolic expression for each variable in the ASL

code. After that, we retrieve the constraint of the symbolic expression and find the

71

concrete values of the encoding symbols that satisfy the constraint and its negation,

e.g., solve the constraints (d4 > 31) == true and (d4 > 31) == false.

Figure 4.4 shows a concrete example. In line 18, there is a symbolic expression

d4 and a constraint d4 > 31. All the related statements (line 3, 5, 10, 11, 12, and

13) are retrieved via backward slicing and highlighted in the green color. To solve

this constraint, we conduct backward symbolic execution. Specifically, the symbol

d4 is calculated by the expression d4 = d3 + inc in line 13. Thus, the constraint is

converted to d3 + inc > 31. Given the relationship between d3 and d2 in line 11, and

between d2 and d1 in line 11, we further convert it to UInt(D : V d) + 3 ⇥ inc > 31.

The expression UInt(D:Vd) is converted to V d+24 ⇥D as the symbol Vd has 4 bits.

Thus, we have the constraint V d + 16 ⇥D + 3 ⇥ inc > 31. Symbol inc is assigned at

line 3 and line 5. Thus, the constraint is inc == 1 or inc == 2. Apart from this, we

need to consider the length of each symbol. Since D is one bit and V d has four bits.

Their constraints are D � 0 and D < 2, V d � 0 and V d < 16.

We feed all these constraints to the SMT solver. It returns a solution which is a

combination of symbol values that satisfy the constraints. One possible solution is

that V d is 13, D is 1, and inc is 2. We then negate the constraint d4 > 31 and repeat

the above mentioned process. In this case, the solution is V d is 0, D is 0 and inc is

1. Thus, the generated V alueSet contains three symbols and each symbol has two

candidate values. Note inc’s value depends on Type’s value. As we will also solve

the constraint Type == ‘0000’ and Type == ‘0001’, the final mutation set of Type

must contain the value that can make inc to be either 1 or 2. Due to the Cartesian

Product between each symbol’s mutation set, we can always generate the instruction

streams that can satisfy the constraint d4 > 31 and its negation.

Note that the path explosion in symbolic execution is not an issue for our purpose

since the decoding and execution ASL code has limited constraints, resulting in

limited paths. Meanwhile, we model the utility function calls (e.g., UInt) so that the

72

symbol will not be propagated into these functions. Our experiment in Section 4.4.1

shows that we can generate the test cases within 4 minutes.

A Demonstration Example

Table 4.2 describes how we generate all the test cases for instruction VLD4 in Fig-

ure 4.4. In total, we split the encoding diagram into nine parts including seven

symbols and two constant values (None in the column "Symbol Name"). For con-

stant values, the initialized mutation set has one fixed value. For other symbols, we

initialize the mutation set, which is described in column "Init Mutation Set", accord-

ing to algorithm 1. Then we extract the constraints, and find the satisfied values.

Column "Related Constraints" lists the constraints for each symbol. After solving

the constraints and their negations, new mutation sets for each symbol will be gener-

ated. Finally, we have the mutation set for each symbol, which is denoted by column

"Final Mutation Set". We conduct the Cartesian Product between the mutation set

of each symbol. In total, we generate 1⇥ 2⇥ 1⇥ 4⇥ 6⇥ 2⇥ 4⇥ 3⇥ 5 = 5, 760 test

cases for this instruction encoding.

73

Ta
bl

e
4.

2:
T

h
e

g
e
n
e
r
a
t
e
d

m
u
t
a
t
io

n
s
e
t

fo
r

e
a
c
h

s
y
m

b
o
l
o
f
in

s
t
r
u
c
t
io

n
V

L
D

4
in

F
ig

u
r
e

4
.4

Sy
m

bo
l

N
am

e
B

it
Le

ng
th

St
ar

t
O

ffs
et

E
nd

O
ffs

et
T

yp
e

In
it

M
ut

at
io

n
Se

t
R

el
at

ed
C

on
st

ra
in

t
Se

t
A

dd
ed

by
So

lv
in

g
C

on
st

ra
in

ts
an

d
T

he
ir

N
eg

at
io

ns
Fi

na
lM

ut
at

io
n

Se
t

Se
t

Si
ze

N
on

e
9

23
31

Fi
xe

d
V

al
ue

"1
11

10
10

00
"

N
A

N
A

"1
11

10
10

00
"

1
D

1
22

22
O

th
er

s
in

1
bi

t
"0

",
"1

"
d4

>
31

"0
",

"1
"

"0
",

"1
"

2
N

on
e

2
20

21
Fi

xe
d

V
al

ue
"1

0"
N

A
N

A
"1

0"
1

R
n

4
16

19
R

eg
is

te
r

In
de

x
"0

00
0"

,"
00

01
",

"0
11

0"
,"

11
11

"
n

=
=

15
"0

00
0"

,"
11

11
"

"0
00

0"
,"

00
01

",
"0

11
0"

,"
11

11
"

4

V
d

4
12

15
O

th
er

s
in

4
bi

t
"0

10
1"

,"
01

10
",

"1
00

1"
,"

11
00

"
d4

>
31

"0
00

0"
,"

11
01

"
"0

00
0"

,"
01

01
",

"0
11

0"
,

"1
00

1"
,"

11
00

",
"1

10
1"

6

T
yp

e
4

8
11

O
th

er
s

in
4

bi
t

"0
00

0"
,"

00
01

"
T

yp
e

=
=

’0
00

0’
T

yp
e

=
=

’0
00

1’
"0

00
0"

,"
00

01
"

"0
00

0"
,"

00
01

"
2

Si
ze

2
6

7
O

th
er

s
in

2
bi

t
"0

1"
,"

10
"

Si
ze

=
=

’1
1’

"0
0"

,"
11

"
"0

0"
,"

01
",

"1
0"

,"
11

"
4

A
lig

n
2

4
5

O
th

er
s

in
2

bi
t

"0
0"

,"
11

"
A

lig
n

=
=

’0
0’

"0
0"

,"
01

"
"0

0"
,"

01
",

"1
1"

3

R
m

4
0

3
R

eg
is

te
r

In
de

x
"0

00
0"

,"
00

01
",

"0
11

1"
,"

11
11

"
m

!=
15

m
!=

13
"0

00
0"

,"
11

01
",

"1
11

1"
"0

00
0"

,"
00

01
",

"0
11

1"
,"

11
01

",
"1

11
1"

5

74

4.3.3 Differential Testing Engine

Model the CPU

The differential testing engine receives the generated instruction streams, and detects

inconsistent ones. Formally, given one instruction stream I, we denote the state

before the execution of I as the initial state CPUI and the state after the execution

of I as the final state CPUF . We denote the CPU T ’s initial state CPUI(T) with

the tuple < PCT , RegT ,MemT , StaT >. PC denotes the program counter, which

points to the next instruction that will be executed. Reg denotes the registers used

by processors while Mem denotes the memory space that the tested instruction I

may write into. Note we do not consider the whole memory space as comparing

the whole memory space is time- and resource-consuming. Sta denotes the status

register, which is APSR in ARM architecture. We denote the CPU T ’s final state

CPUF (T) with the tuple [PCT , RegT ,MemT , StaT , SigT]. Inside CPUF (T), all the

other attributes have the same meanings as they are inside CPUI(T) except Sig.

Sig denotes the signal or exception that the instruction stream I may trigger. If no

signal or exception is triggered, the value of Sig is 0.

Given the CPU emulator E, the real device R, our differential testing engine

guarantees that E’s initial state CPUI(E) is equal to R’s initial state CPUI(R).

CPUI(E) = CPUI(R) iff:

8� 2< PC,Reg,Mem, Sta >: �E = �R

After the execution of I, I is treated as an inconsistent instruction stream if the

final state CPUF (E) is not equal to the R’s final state CPUF (R). More formally,

CPUF (E) 6= CPUF (R) iff:

9� 2 [PC,Reg,Mem, Sta, Sig] : �E 6= �R

75

Our Strategy

To conduct the differential testing, we insert prologue and epilogue instructions. We

first register the signal handlers to capture different signals. To make the initial

state consistent, we set the value of general purpose registers to zero except PC.

After setting up the initial state, an instruction stream will be executed. Then we

dump the CPU state either after the execution or in the signal handler so that we can

compare the execution result. For registers including status register (i.e., APSR), we

push them on the stack and then write them into a file. For the memory, we check

the instruction stream with Capstone [13] to see whether it will write a value into a

memory location. If so, we load the memory address, and push it on the stack for

later inspection. Note that the memory write instructions are limited. We manually

check the functionality of Capstone on analyzing these instructions and it works well.

Finally, we compare the result collected from the emulator and a real device. If the

instruction stream results in a different CPU final state, (CPUF (E) 6= CPUF (R)),

it will be treated as an inconsistent instruction stream.

4.3.4 Implementation Details

We implement Examiner in Python, C and ARM assembly. In particular, we

implement the test case generator in Python. We parse the ASL code, extract the

lexical and syntactic information with regular expressions. We use Z3 [50] as the

SMT solver to solve the constraints. The differential testing engine is implemented

in C and assembly code with some glue scripts in Python. Specifically, the initial

state setup and the execution result dumping is implemented with inline assembly

code. In total, Examiner contains 5, 074 lines of Python code, 220 lines of C code,

and 200 lines of assembly code.

76

4.4 Evaluation

In this section, we evaluate Examiner by answering the following three research

questions.

• RQ1: Is Examiner able to generate sufficient test cases?

• RQ2: Is Examiner able to detect inconsistent instructions? What are the root

causes of these inconsistent instructions?

• RQ3: Is Examiner general to be applied to the other emulators?

• RQ4: What are the possible usage scenarios of inconsistent instructions?

4.4.1 Sufficiency of Test Case Generator (RQ1)

We generate the test cases according to ARMv8-A manual, which introduces ASL.

Specifically, the manual includes four different instruction sets. In AArch 64 mode,

A64 instruction set is supported. For the AArch 32 mode, it consists of three different

instruction sets. They are ARM32 with 32-bit instruction length (A32), Thumb-2

with instruction length of mixed 16-bits and 32-bits (T32), and Thumb-1 with 16-bit

instruction length (T16). They are also supported by previous ARM architectures

(e.g., ARMv5, ARMv6, ARMv7). To locate the inconsistent instructions in different

ARM architectures, we generate the test cases for all the instruction sets.

The generated test case is sufficient. Table 4.3 shows the statistics of the gener-

ated instruction streams. The column "Examiner " denotes the number of different

attributes for our test case generator. In total, 2, 774, 649 instruction streams are

generated within 4 minutes, which cover 1, 998 instruction encodings in 1, 070 in-

structions. Note that the total number of instruction encodings and instructions

in ARM manual is 1, 998 and 1, 070, respectively, which means all the instruction

encodings and instructions are covered.

77

Ta
bl

e
4.

3:
T

h
e

s
t
a
t
is

t
ic

s
o
f

t
h
e

g
e
n
e
r
a
t
e
d

in
s
t
r
u
c
t
io

n
s
t
r
e
a
m

s
.

"
E
xa

m
in

er
"

d
e
n
o
t
e
s

t
h
e

n
u
m

b
e
r

o
f

g
e
n
e
r
a
t
e
d

t
e
s
t

c
a
s
e
s

b
y

o
u
r

t
e
s
t

c
a
s
e

g
e
n
e
r
a
t
o
r
.

"
R

a
n
d
o
m

"
d
e
n
o
t
e
s

t
h
e

n
u
m

b
e
r

o
f

r
a
n
d
o
m

ly
g
e
n
e
r
a
t
e
d

t
e
s
t

c
a
s
e
s
.

"
R

a
t
io

"
d
e
n
o
t
e
s

t
h
e

p
e
r
c
e
n
t
a
g
e

o
f
d
iv

id
in

g

"
R

a
n
d
o
m

"
b
y

"
E
xa

m
in

er
"
.

N
o
t
e

t
h
a
t

o
n
e

in
s
t
r
u
c
t
io

n
m

a
y

h
a
v
e

d
iff

e
r
e
n
t

in
s
t
r
u
c
t
io

n
e
n
c
o
d
in

g
s

fo
r

d
iff

e
r
e
n
t

in
s
t
r
u
c
t
io

n
s
e
t
s
.

T
h
e

t
o
t
a
l
n
u
m

b
e
r

o
f
in

s
t
r
u
c
t
io

n
s

fo
r

A
3
2
,
T

3
2
,
a
n
d

T
1
6

is
4
8
9
.

In
st

ru
ct

io
n

Se
t

T
im

e
(s

)
of

E
xa

m
in

er

In
st

ru
ct

io
n

St
re

am
In

st
ru

ct
io

n
E

nc
od

in
g

In
st

ru
ct

io
n

C
ov

er
ed

C
on

st
ra

in
ts

E
xa

m
in

er
R

an
do

m
R

at
io

E
xa

m
in

er
R

an
do

m
ra

ti
o

E
xa

m
in

er
R

an
do

m
ra

ti
o

E
xa

m
in

er
R

an
do

m
R

at
io

A
64

70
.5

1
1,

09
4,

70
0

42
1,

64
5

38
.5

%
83

9
26

5
31

.6
%

58
1

17
8

30
.6

%
3,

43
6

93
4

27
.2

%

A
32

75
.0

5
87

0,
22

1
57

8,
84

5
66

.5
%

55
0

41
5

75
.5

%
48

1
36

1
75

.1
%

4,
71

8
3,

72
5

79
%

T
32

74
.5

8
80

8,
77

0
34

,5
98

4.
2%

53
1

35
1

66
.1

%
45

1
28

3
62

.7
%

4,
42

5
3,

20
3

72
.3

%

T
16

2.
32

95
8

79
6

83
.0

%
78

57
73

.1
%

68
49

72
.1

%
12

2
84

68
.9

%

O
ve

ra
ll

22
2.

46
2,

77
4,

64
9

1,
03

5,
88

4
37

.3
%

1,
99

8
1,

08
8

54
.5

%
1,

07
0

55
0

51
.4

%
12

,7
01

7,
94

6
62

.6
%

78

Note that the generated instruction streams are rather small for T16 due to the

small number of instruction encoding schemes and limited instruction length. Over-

all, all the generated instruction streams are syntactically corrected, which means

they all map to one of the encoding schemas. Furthermore, more than 12 thousand

constraints and their negations, which are related to encoding symbols, are solved,

indicating the multiple behaviors of the instructions are explored.

To further demonstrate the effectiveness of the test case generator, we randomly

generate the same number of test cases for each instruction set. We repeat the ran-

domly generated process 10 times. Then we check whether the generated instructions

are syntactically correct ones or not. If they are, we calculate how many instruction

encodings, how many instructions, and how many constraints are covered by these

instruction streams. According to the Column "Random" and "Ratio" in Table 4.3,

only 37.3% generated instruction streams are syntactically correct, which means all

the others are illegal instructions and they are not effective to test the potential dif-

ferent behaviors between real devices and CPU emulators. Among the syntactically

correct instruction streams, it can only cover 54.5% instruction encodings and 51.4%

instructions. Nearly a half of instructions can not be covered with the randomly

generated instruction streams. Specifically, many of the T32 instructions cannot be

covered with randomly generated instructions, which means many of these instruc-

tions have fixed values. As for the coverage of constraints, 37.4% constraints can not

be explored, resulting in a relatively limited behaviors being explored.

Answer to RQ1: Examiner can generate sufficient test cases, which are
all syntactical correct instruction streams and can cover all instruction encod-
ings and instructions. On the contrary, Only 37.3% of the same number of
randomly generated instruction streams are syntactical correct. Furthermore,
45.5% instruction encodings, 48.6% instructions, and 37.4% constraints cannot
be explored by these randomly generated instructions.

79

4.4.2 Differential Testing Results and Root Causes (RQ2)

We feed the generated test cases into our differential testing engine to locate the

inconsistent instructions. Table 4.4 shows the result.

Experiment Setup. We conduct the differential testing between QEMU (version

5.1.0) and four real devices (OLinuXino iMX233 in ARMv5, RaspberryPi Zero in

ARMv6, RaspberryPi 2B in ARMv7, and Hikey 970 in ARMv8). For ARMv5, only

ARM32 is supported. Meanwhile, QEMU does not support Thumb-2 for ARM1176

of ARMv6. Thus, we only test the A32 instruction set on ARMv5 and ARMv6.

In total, it takes around 2700 seconds of CPU time for QEMU, which is run on

the Intel i7-9700 CPU. For the real devices, the CPU time cost ranges from 5276

seconds to 46238 seconds (13 hours), depending on the specific devices. Thanks

to the representative test cases, the differential testing for all the test cases can be

finished within acceptable time.

Testing Result. According to table 4.4, 171, 857 inconsistent instruction streams

are found, owning to 6.2% of the whole test cases. Note one instruction stream may

be tested in different architectures (e.g.,A32 instruction set in ARMv5, ARMv6,

and ARMv7), the number in column "Overall" is the union of the other columns.

Furthermore, these inconsistent instruction streams cover 531 different instruction

encodings and 316 instructions, owning 26.6% and 29.5% of the tested instruction

encodings and instructions, respectively.

80

Ta
bl

e
4.

4:
T

h
e

r
e
s
u
lt

s
o
f

d
iff

e
r
e
n
t
ia

l
t
e
s
t
in

g
fo

r
Q

E
M

U
.
"
C

P
U

T
im

e
"

d
e
n
o
t
e
s

t
h
e

s
u
m

o
f

t
h
e

C
P

U
t
im

e
fo

r
a
ll

t
e
s
t

c
a
s
e
s
,
w

h
ic

h

is
in

s
e
c
o
n
d
s
.

W
e

d
o

n
o
t

c
o
u
n
t

t
h
e

s
u
m

o
f

C
P

U
t
im

e
fo

r
r
e
a
l

d
e
v
ic

e
s

a
s

t
h
e
y

h
a
v
e

d
iff

e
r
e
n
t

C
P

U
s
.

"
I
n
s
t
"

d
e
n
o
t
e
s

I
n
s
t
r
u
c
t
io

n
.

"
I
n
s
t
_

S
"

d
e
n
o
t
e
s

I
n
s
t
r
u
c
t
io

n
S
t
r
e
a
m

.
"
I
n
s
t
_

E
"

d
e
n
o
t
e
s

I
n
s
t
r
u
c
t
io

n
E

n
c
o
d
in

g
.

U
N

P
R

E
.
d
e
n
o
t
e
s

U
N

P
R

E
D

I
C

T
A

B
L
E

.
X

|
Y

:
X

d
e
n
o
t
e
s

t
h
e

n
u
m

b
e
r

o
f

t
h
e

a
t
t
r
ib

u
t
e

in
d
ic

a
t
e
d

b
y

t
h
e

r
o
w

n
a
m

e
w

h
il
e

Y
d
e
n
o
t
e
s

t
h
e

p
e
r
c
e
n
t
a
g
e

o
f

d
iv

id
in

g
X

b
y

Z
.

F
o
r

d
a
t
a

in

"
T
e
s
t
in

g
R

e
s
u
lt

"
,

Z
s
t
a
n
d
s

fo
r

t
h
e

r
o
w

"
T
e
s
t
e
d

I
n
s
t
_

S
"
,

"
T
e
s
t
e
d

I
n
s
t
_

E
"
,

o
r

"
T
e
s
t
e
d

I
n
s
t
"
.

F
o
r

d
a
t
a

in
a
n
d

"
R

o
o
t

C
a
u
s
e
"
,

Z

s
t
a
n
d
s

fo
r

"
I
n
c
o
n
s
is

t
e
n
t

I
n
s
t
_

S
"
,
"
I
n
c
o
n
s
is

t
e
n
t

I
n
s
t
_

E
"
,
o
r

"
I
n
c
o
n
s
is

t
e
n
t

I
n
s
t
"
.

A
rc

hi
te

ct
ur

e
A

R
M

v5
A

R
M

v6
A

R
M

v7
A

R
M

v8
O

ve
ra

ll
E

xp
er

im
en

t
Se

tu
p

In
st

ru
ct

io
n

Se
t

A
32

A
32

A
32

T
32

&
T

16
A

64
-

Q
E

M
U

B
in

ar
y

qe
m

u-
ar

m
qe

m
u-

ar
m

qe
m

u-
ar

m
qe

m
u-

aa
rc

h6
4

-
Q

E
M

U
M

od
el

A
R

M
92

6
A

R
M

11
76

C
or

te
x-

A
7

C
or

te
x-

A
72

-
D

ev
ic

e
N

am
e

O
Li

nu
X

in
o

IM
X

23
3

R
as

pb
er

ry
P

iZ
er

o
R

as
pb

er
ry

P
i2

B
H

ik
ey

97
0

-
C

P
U

T
im

e
(D

ev
ic

e)
46

23
8.

0s
69

01
.7

s
61

94
.2

s
52

76
.0

s
91

45
.0

s
-

C
P

U
T

im
e

(Q
E

M
U

)
53

0.
5s

54
0.

6s
53

8.
0s

46
2.

1s
62

5.
9s

27
02

.1
s

Te
st

ed
In

st
_

S
87

0,
22

1
87

0,
22

1
87

0,
22

1
80

9,
72

8
1,

09
4,

70
0

2,
77

4,
64

9
Te

st
ed

In
st

_
E

55
0

55
0

55
0

60
9

83
9

1,
99

8
Te

st
ed

In
st

48
1

48
1

48
1

46
2

58
1

1,
07

0
Te

st
in

g
R

es
ul

t
T

he
pe

rc
en

ta
ge

is
ba

se
d

on
th

e
nu

m
be

r
of

te
st

ed
in

st
ru

ct
io

ns
(s

tr
ea

m
s/

en
co

di
ng

s)
In

co
ns

is
te

nt
In

st
_

S
40

,8
96

|4
.7

%
18

,0
43

|2
.1

%
66

,8
60

|7
.7

%
51

,8
21

|6
.4

%
21

,3
74

|2
.0

%
17

1,
85

7
|6

.2
%

In
co

ns
is

te
nt

In
st

_
E

18
4

|3
3.

5%
17

5
|3

1.
8%

27
3

|4
9.

6%
27

1
|4

4.
5%

17
|2

.0
%

53
1

|2
6.

6%
In

co
ns

is
te

nt
In

st
17

3
|4

0.
0%

16
7

|3
4.

7%
23

2
|4

8.
2%

22
8

|4
9.

4%
15

|2
.6

%
31

6
|2

9.
5%

R
oo

t
C

au
se

T
he

pe
rc

en
ta

ge
is

ba
se

d
on

th
e

nu
m

be
r

of
in

co
ns

is
te

nt
in

st
ru

ct
io

ns
(s

tr
ea

m
s/

en
co

di
ng

s)
B

ug
s

(I
ns

t_
S)

1
|0

.0
%

1
|0

.0
%

1
|0

.0
%

58
0

|1
.1

%
2

|0
.0

%
58

3
|0

.3
%

B
ug

s
(I

ns
t_

E
)

1
|0

.5
%

1
|0

.6
%

1
|0

.4
%

7
|2

.6
%

2
|1

1.
8%

10
|1

.9
%

B
ug

s
(I

ns
t)

1
|0

.6
%

1
|0

.6
%

1
|0

.4
%

5
|2

.2
%

2
|1

3.
3%

8
|2

.5
%

U
N

P
R

E
.(

In
st

_
S)

40
,8

91
|1

00
.0

%
18

,0
42

|1
00

.0
%

66
,8

59
|1

00
.0

%
51

,2
41

|9
8.

9%
21

,3
72

|1
00

.0
%

17
1,

27
4

|9
9.

7%
U

N
P

R
E

.(
In

st
_

E
)

18
3

|9
9.

5%
17

4
|9

9.
4%

27
2

|9
9.

6%
27

0
|9

7.
4%

15
|8

8.
4%

52
7

|9
8.

1%
U

N
P

R
E

.(
In

st
)

17
2

|9
9.

4%
16

6
|9

9.
4%

23
1

|9
9.

6%
22

7
|9

7.
8%

13
|8

6.
7%

31
2

|9
7.

5%

81

1 boolean AArch32.ExclusiveMonitorsPass(bits (32) address , integer size)
2 // It is IMPLEMENTATION DEFINED whether the
3 // detection of memory aborts happens before or
4 // after the check on the local Exclusive Monitor.
5 // As a result , a failure of the local monitor can
6 // occur on some implementations even if the
7 // memory access would give an memory abort.
8 ...
9 return

Figure 4.5: Two different implementations are defined in the annotation of function Ex-

clusiveMonitorsPass, which is called by many instructions’ executing code

Root Cause. Based on the inconsistent streams, we explore the root cause. First,

there are implementation bugs. We discovered 4 bugs of QEMU in total, which

influence 10 instruction encodings. Some of the bugs are related to very common

instructions. For example, BLX instruction may be undefined instructions in specific

cases, which should raise SIGILL signal. However, QEMU does not follow the speci-

fication. We also noticed one instruction (i.e., WFI) that can make QEMU crash. WFI

denotes waiting for interrupt and is usually used in system-mode emulation. How-

ever, ARM manual specifies that it can also be used in user-space. QEMU does not

handle this instruction well and an abort will be generated. All of the 4 bugs are

confirmed and patched by QEMU developers. This also demonstrates the capability

of Examiner in discovering the bugs of the emulator implementation.

Apart from the bugs, most of the inconsistent instructions are due to the un-

defined implementation in the ARM manual. There are three different kinds of

undefined implementations. The first one is UNPREDICTABLE (Section 4.3.1).

UNPREDICTABLE leaves open implementation decision for emulators and proces-

sors. The second is Constraint UNPREDICTABLE. Constraint UNPREDICTABLE

provides candidate implementation strategies and the developer or vendor can choose

from one of them. The last one is defined in the annotation part of the ASL code.

Figure 4.5 shows an example. In the function ExclusiveMonitorsPass, which is called

by the executing code of instruction STREXH, there is an annotation for the imple-

mentation. Note the check on the local Exclusive Monitor would update the value

82

Table 4.5: The statistics on detecting emulators

Mobile Type CPU A64 A32 T32 & T16
Samsung S8 SnapDragon 835 X X X

Huawei Mate20 Kirin 980 X X X
IQOO Neo5 SnapDragon 870 X X X
Huawei P40 Kirin 990 X X X

Huawei Mate40 Pro Kirin 9000 X X X
Honor 9 Kirin 960 X X X
Honor 20 Kirin 710 X X X

Blackberry Key2 SnapDragon 660 X X X
Google Pixel SnapDragon 821 X X X
Samsung Zflip SnapDragon 855 X X X
Google Pixel3 SnapDragon 845 X X X

of a register. Thus, if the detection of memory aborts happens before the check, the

value of the register would not be updated while the detection happens after the

check can update the value, resulting in different register value.

Answer to RQ2: Examiner can detect inconsistent instructions. In to-
tal, 171,274 inconsistent instruction streams are found, which covers 26.6%
(i.e.,531/1998) instruction encodings and 29.5% instructions (i.e., 316/1070).
The implementation bugs of QEMU and the undefined implementation in ARM
manual are the major root causes. 4 bugs are discovered and confirmed by QEMU
developers, which influence 10 instruction encodings including commonly used
instructions (e.g., BLX).

4.4.3 Generalization of Examiner (RQ3)

83

Ta
bl

e
4.

6:
T

h
e

r
e
s
u
lt

s
o
f

d
iff

e
r
e
n
t
ia

l
t
e
s
t
in

g
fo

r
U

n
ic

o
r
n

a
n
d

A
n
g
r
.

T
h
e

a
t
t
r
ib

u
t
e
s

d
e
n
o
t
e
s

t
h
e

s
a
m

e
m

e
a
n
in

g
e
x
p
la

in
e
d

in
t
h
e

c
a
p
t
io

n
o
f
T
a
b
le

4
.4

.

To
ol

U
ni

co
rn

A
ng

r
A

rc
hi

te
ct

ur
e

A
R

M
v7

A
R

M
v8

O
ve

ra
ll

A
R

M
v7

A
R

M
v8

O
ve

ra
ll

In
st

ru
ct

io
n

Se
t

A
32

T
32

&
T

16
A

64
-

A
32

T
32

&
T

16
A

64
-

C
P

U
T

im
e

31
.8

s
32

.9
s

32
.4

s
97

.1
s

76
54

.2
s

78
73

.1
s

10
00

4.
1s

25
53

1.
4s

Te
st

ed
In

st
_

S
32

8,
78

0
33

6,
98

7
37

1,
77

0
1,

03
7,

53
7

32
8,

78
0

33
6,

98
7

37
1,

77
0

1,
03

7,
53

7
Te

st
ed

In
st

_
E

35
2

39
8

20
5

95
5

35
2

39
8

20
5

95
5

Te
st

ed
In

st
31

3
28

5
77

41
8

31
3

28
5

77
41

8
Te

st
in

g
R

es
ul

t
T

he
pe

rc
en

ta
ge

is
ba

se
d

on
th

e
nu

m
be

r
of

te
st

ed
in

st
ru

ct
io

ns
(s

tr
ea

m
s/

en
co

di
ng

s)
In

co
ns

is
te

nt
In

st
_

S
10

3,
52

0
|3

1.
5%

11
9,

39
4

|3
5.

4%
35

0
|0

.1
%

22
3,

26
4

|2
1.

5%
70

,4
93

|2
1.

4%
37

,3
64

|1
1.

1%
12

,3
12

|3
.3

%
12

0,
16

9
|1

1.
6%

In
co

ns
is

te
nt

In
st

_
E

26
7

|7
5.

9%
30

0
|7

5.
4%

3
|1

.5
%

57
0

|5
9.

7%
15

4
|4

3.
8%

16
1

|4
0.

4%
23

|1
1.

2%
33

8
|3

5.
4%

In
co

ns
is

te
nt

In
st

23
1

|7
3.

8%
25

4
|8

9.
1%

2
|2

.6
%

29
8

|7
1.

3%
12

6
|4

0.
3%

13
0

|4
5.

6%
10

|1
3.

0%
19

7
|4

7.
1%

R
oo

t
C

au
se

T
he

pe
rc

en
ta

ge
is

ba
se

d
on

th
e

nu
m

be
r

of
in

co
ns

is
te

nt
in

st
ru

ct
io

ns
(s

tr
ea

m
s/

en
co

di
ng

s)
B

ug
s

(I
ns

t_
S)

0
|0

.0
%

52
9

|0
.4

%
0

|0
.0

%
52

9
|0

.2
%

0
|0

.0
%

0
|0

.0
%

0
|0

.0
%

0
|0

.0
%

B
ug

s
(I

ns
t_

E
)

0
|0

.0
%

7
|2

.3
%

0
|0

.0
%

7
|1

.2
%

0
|0

.0
%

0
|0

.0
%

0
|0

.0
%

0
|0

.0
%

B
ug

s
(

In
st

)
0

|0
.0

%
5

|2
.0

%
0

|0
.0

%
5

|1
.7

%
0

|0
.0

%
0

|0
.0

%
0

|0
.0

%
0

|0
.0

%
U

N
P

R
E

.(
In

st
_

S)
10

3,
52

0
|1

00
%

11
8,

86
5

|9
9.

6%
35

0
|1

00
%

22
2,

73
5

70
,4

93
|1

00
%

37
,3

64
|1

00
%

12
,3

12
|1

00
%

12
0,

16
9

|1
00

%
U

N
P

R
E

.(
In

st
_

E
)

26
7

|1
00

%
29

6
|9

9.
7%

3
|1

00
%

56
6

|9
8.

8%
15

4
|1

00
%

16
1

|1
00

%
23

|1
00

%
33

8
|1

00
%

U
N

P
R

E
.(

In
st

)
23

1
|1

00
%

25
3

|9
8.

0%
2

|1
00

%
29

7
|9

8.
3%

12
6

|1
00

%
13

0
|1

00
%

10
|1

00
%

19
7

|1
00

%

84

To demonstrate the generalization of Examiner, we further apply Examiner on

evaluating the other two lightweight but also popular CPU emulators (i.e., Unicorn in

version 1.0.2rc4 and Angr in version 9.0.7833). Different from QEMU, Unicorn and

Angr do not provide options to specify the ARMv5 or ARMv6 architecture. In this

case, we evaluate ARMv7 and ARMv8. Meanwhile, Unicorn and Angr do not have

good support on advanced instructions [8]. For instance, many SIMD instructions

will make Angr crash, resulting in 5 new bugs. Instructions (e.g., WFE [9]) that rely on

kernel or multiprocessor are also not supported. Thus, we filter out these instructions

in the experiment.

Table 4.6 shows the result. 223, 264 and 120, 169 inconsistent instructions streams

are identified for Unicorn and Angr, respectively. They also cover hundreds of instruc-

tion encodings. We also explored the root cause of these inconsistent instructions.

Similar to QEMU, undefined implementation and bugs are the major causes. 3 bugs

are located in Unicorn.

Answer to RQ3: Examiner is general to be applied to the other CPU em-
ulators (i.e., Unicorn and Angr). With Examiner, we disclosed 8 more bugs (5
in Angr and 3 in Unicorn) and located a huge number of inconsistent instruction
streams in the two CPU emulators).

4.4.4 Applications of Inconsistent Instructions (RQ4)

The inconsistent instructions can be used to detect the existence of emulators. Fur-

thermore, detecting emulators can prevent the binary from being analyzed or fuzzed,

which is known as anti-emulation and anti-fuzzing technique.

Emulator Detection

The inconsistent instructions can be used to detect emulators. We use the incon-

sistent instructions for emulator detection. Considering the popularity of Android

systems, we target Android applications. Specifically, we build a native library by

85

1 void sig_handler(int signum) {
2 record_execution_result(i++);
3 siglongjmp(sig_env , i);
4 }
5
6 Bool JNI_Function_Is_In_Emulator () {
7 register_signals(sig_handler);
8 i = sigsetjmp(sig_env ,0);
9 switch (i){

10 case 1:
11 execute(inconsistent_instruction_n);
12 record_execution_result(i++);
13 longjmp(sig_env ,i++);
14 case 2:
15 ...
16 case n:
17 }
18 return compare_result ();
19 }

Figure 4.6: Pseudo code of the native code for detecting the emulator.

using the inconsistent instructions.

Figure 4.6 shows the pseudo code of the library. Function JNI_Function_Is_In_-

Emulator (line 6) returns True if the emulator is detected. Inside the function, we

register signal handlers for different signals (line 7). After the execution of each

instruction stream, we will record the execution result either in the signal handler

(line 2) or after the execution (line 12), which depends on the execution result. Then

we use the function longjmp (line 13) or siglongjmp (line 3) to jump back to the

place where calling sigsetjmp (line 8). Note the return value of sigsetjmp depends

on the parameter of the longjmp or siglongjmp. Thus, the switch would check the

value of i, which is the return value of sigsetjmp, repeatedly. As i would increase one

after the execution of one instruction stream, we can execute hundreds of instruction

streams in one function by adding corresponding case conditions. Each instruction

stream can make an equal contribution to the final decision on whether the current

execution environment is in real devices or emulators. Finally, if more instruction

streams decide the application are running inside an emulator, the compare_result()

will return True and vice versa.

We automatically generate the test library with template code and build three

Android apps for different instruction set (one for A64, one for A32, and one for T32 &

86

 0xe6100000
 n = UInt(Rn) = 0
 t = UInt(Rt) = 0
 if n == t then UNPREDICTABLE

void sigill_handler(){
 /*malicious behavior*/
}

void sigsegv_handler(){
 exit();
}

Real Device

QEMU

Figure 4.7: Inconsistent instruction can prevent the malicious behavior being detected by

emulators

T16). We run the applications on 12 different mobiles from 6 different vendors. These

mobiles also use different CPUs, which decides how an instruction stream should be

executed. Meanwhile, we run the applications in the Android emulator provided by

Android studio (Version 4.1.2). We compare the result running in each real mobiles

with the one in emulators. If the function JNI_Function_Is_In_Emulator returns

True in emulator and returns False in real mobiles. We consider it will successfully

detect the emulator. Table 4.5 shows the evaluation result, by testing the three

Android apps (one for A64, one for A32, and one for T32 & T16) in 12 mobiles, all

the mobile apps can detect the existence of emulator and real mobiles successfully.

Anti-Emulation

Anti-emulation technique is important. On the attacker’s side, it can be proposed

to increase the bar for analyzing the malware so that the defense mechanism can be

developed slower. On the defender’s side, commercial software needs to protect the

core functionality and algorithms from being analyzed. Thus, it is widely used in

the wild [151].

The inconsistent instructions can be used to conduct anti-emulation and can

prevent the malware’s malicious behavior being analyzed. We demonstrate how the

87

1 0x10000: e51b3008 LDR r3 ,[fp ,#-8]
2 0x10004: e1a03000 MOV r3,r0
3 0x10008: e7cf0e9f BFC r0, #0xf, #1
4 // BFC instruction is to clear specific bits
5 // e7cf0e9f is an UNPREDICTABLE encoding
6 // e7cf0e9f is executed normally in real device
7 // e7cf0e9f triggers SIGILL signal on QEMU
8 0x1000c: e1a00003 MOV r0,r3
9 0x10010: e50b3008 STR r3 ,[fp ,#-8]

Figure 4.8: Instrumented instruction streams for anti-fuzzing.

inconsistent instruction can be used to hide the malicious behavior.

We use one of the state-of-the-art dynamic analysis platforms (i.e., PANDA [35])

to demonstrate the usage. PANDA is built upon QEMU and supports taint analysis,

record and replay, operating system introspection, and so on. We port one of the

open source rootkits (i.e., Suterusu [45]) to Debian 7.3. We register two different

signal handlers for SIGILL and SIGSEGV, respectively. Then we instrument one

instruction stream (i.e., 0xe6100000). This is a LDR instruction encoding in ARM

instruction set. According to the encoding schema, n equals to t and both these two

symbols’ values are zero. The ASL code of decoding would check whether n equals

to t. If so, it should be the UNPREDICTABLE behavior. Real devices think this

is an illegal instruction stream and will raise the SIGILL signal while QEMU tries

to execute the instruction stream. Then SIGSEGV will be raised as the address

pointed by R0 cannot be accessed. In this case, the malicious behavior will only

be triggered in real devices. Meanwhile, when we use the PANDA to analyze the

malware, no malicious behavior will be monitored and the program will exit inside

the sigsegv_handler.

Anti-Fuzz

Fuzzing is widely used to explore the zero-day vulnerabilities. To help the re-

leased binaries from being fuzzed by attackers, researchers utilize anti-fuzzing tech-

niques [97, 85]. Considering that many new binary fuzzing frameworks are based

on QEMU, the inconsistent instructions can be used by developers as a mitigation

88

approach towards fuzzing technique.

We demonstrate how the inconsistent instructions can be used to conduct anti-

fuzzing tasks with a relatively low overhead and high decreased coverage ratio. Fig-

ure 4.8 shows a snippet of assembly code instrumented into the release binary. In

address 0x10008, the instruction BFC is used to clear bits for register R0. Note we

move the value of R0 to R3 before the instruction BFC and return it back after the

execution of BFC. This can guarantee the instrumented instructions will not affect the

execution of the binary on the real device. The instruction stream 0xe7cf0e9f results

in an UNPREDICTABLE condition. It can be executed normally in real devices

while triggering a signal on QEMU.

We developed a GCC plugin to instrument the above mentioned inconsistent

instruction streams at each function entry and apply this plugin on three popular

used libraries (i.e., libtiff, libpng, and libjpeg) during the compilation process to

generate released binaries.

Table 4.7 shows the space and runtime overhead of the instrumented binary

compared with the normal (non-instrumented) one. The space overhead is measured

by comparing the binary size. For runtime overhead, we measure it by running

test suites on both binaries and comparing the cost of time. We noticed that the

instrumented binary imposes negligible space and runtime overhead to the binary.

The average space overhead for the protected binary is around 4%, and the runtime

overhead is less than 1%.

We then measure the functionality of anti-fuzzing. We fuzz the instrumented

binaries and the normal ones with AFL-QEMU (version 2.56b) for 24 hours. The

seed corpus is the test suite used for each library in Table 4.7. We collect the coverage

information for the instrumented and the normal ones. Figure 4.9 shows the results.

It is easy to see that the coverage for instrumented binaries cannot increase (because

QEMU fails to execute binaries correctly), while the normal ones will increase with

89

Table 4.7: Overhead information of anti-fuzzing.

Library 1 Test Suite2 Space Overhead Runtime Overhead
libpng (readpng) built-in (254) 4.0% (+7KB) 0.52%
libjpeg (djpeg) GIT 3 (97) 4.3% (+8KB) 0.61%
libtiff (tiffinfo) built-in (61) 2.2% (+8KB) 0.59%

Overall 3.5% 0.57%
1 All libraries are compiled using default compile parameters.
2 The test inputs for libjpeg is taken from Google Image Test Suite.
3 The number of test inputs in test suite is shown in the bracket.

the fuzzing time.

Note this is to demonstrate the ability of inconsistent instructions on anti-fuzzing

tasks. How to stealthily use these instructions is out of our scope. It is not easy

for attackers to precisely recognize all the inconsistent instructions, which will be

discussed in detail (Section 4.5).

(a) libjpeg (b) libpng (c) libtiff

Figure 4.9: The result of Anti-Fuzzing experiment on three libraries. The blue lines
show the coverage over 24 hours of fuzzing. The orange line shows the coverage for
instrumented binaries, which decreases due to failed executions of QEMU.

Answer to RQ3: The inconsistent instructions are useful. We demonstrate
that the inconsistent instructions can be used to detect the existence of the CPU
emulator and prevent the malicious behavior from being monitored by dynamic
analysis frameworks. Furthermore, the path coverage of programs fuzzed in em-
ulators can be highly decreased with the help of inconsistent instructions.

90

4.5 Discussion

Detecting (Ab)Used Inconsistent Instructions Section 4.4.4 shows that at-

tackers or vendors can (ab)use these inconsistent instructions. It is not easy to

recognize these inconsistent instructions due to the huge number of inconsistent in-

structions. Some of them are even commonly used (i.e., BLX). Apart from this, attack-

ers can encrypt these instruction streams as data. Then these encrypted instruction

streams can be decrypted and executed during runtime, which can increase the bar

for detection. Furthermore, how to hide these inconsistent instruction streams from

being detected is a Cat and Mouse problem. Stealthily using these instructions is

out of our scope.

Testing Instructions in Privileged Environments Currently, the generated

instruction streams are tested under unprivileged mode in both CPU emulators and

real devices. Some instruction streams may have different execution results under

privileged mode. For instance, instruction WFI, which results in a bug of QEMU user-

mode, may not be an inconsistent instruction while executing in privileged mode.

We plan to port Examiner to kernel-space in the future.

Testing Instruction Stream Sequences Examiner now tests only one instruc-

tion stream each time during the differential testing. We can also test multiple

instruction streams (instruction stream sequences) in the differential testing. The

instruction stream sequences may trigger multiple system states and we can test the

decoding/executing logic towards different state flags. How to design representative

instruction stream sequences, and how to locate the inconsistent one will be the

challenge, which is left as future work. Nevertheless, We have already discovered

a huge number of inconsistent instruction streams with Examiner, covering 29.5%

of instructions. Every instruction stream sequence that contain the inconsistent in-

struction stream can result in inconsistent behaviors.

91

Other Architectures The whole framework of Examiner is architecture-independent.

However, we rely on ARM ASL to generate the test cases, which can explore multiple

behaviors. If other architectures propose such kinds of specification language, we are

able to generate the test cases. Otherwise, new test case generation algorithm should

be developed.

4.6 Summary

We design and implement Examiner, a framework that can automatically locate

the inconsistent ARM instructions. With Examiner, we generate 2,774,649 repre-

sentative instruction streams and detect 171, 857 inconsistent ones for QEMU. To

demonstrate Examiner’s generalization, we further apply Examiner on two other

emulators (i,e„ Unicorn and Angr) and a huge number of inconsistent instructions are

located. We noticed that bugs and undefined implementation in ARM manual are

the root causes. Furthermore, we disclosed 12 bugs (4 in QEMU, 3 in Unicorn, 5 in

Angr). Some of them influence commonly used instructions (e.g., BLX) and can even

crash the emulators (e.g., QEMU and Angr). We also demonstrate the capability of

inconsistent instructions on detecting emulators, anti-emulation, and anti-fuzzing.

92

Chapter 5

ECMO: Peripheral Transplantation

to Rehost Embedded Linux Kernels

5.1 Overview

Dynamic analysis has been widely used for various purposes [83, 69, 87, 109, 160, 93].

It can monitor the runtime behavior of the target system, complementing the static

analysis [126, 137, 67, 88]. Rehosting, also known as emulation, is used to run a target

system inside an emulated environment, e.g., QEMU, and provides the capability to

introspect the runtime state. Based on this capability, different applications, e.g.,

kernel crash analysis, rootkit forensic analysis, and kernel fuzzing, can be built.

Running the Linux kernel in QEMU for the desktop system is a solved problem.

However, rehosting embedded system is challenging. First, rehosting Linux kernel

is dependent on the emulation of peripherals. Without the right emulation of these

peripherals, Linux kernel may halt or crash during the rehosting process. Second,

peripherals vary widely. Due to the diverse peripherals in the wild, it is not practical

for QEMU to support all kinds of peripherals in any SoC. Third, vendors may not

strictly follow the GPL license [84, 75], resulting in the lack of public information

(e.g., specifications, datasheets, and source code). These obstruct the diagnosis of

failures when adding emulation support of new SoCs in QEMU. Thus, how to rehost

93

the embedded Linux kernels in QEMU is still an open research question.

Previous research [61, 101] provides the capability of rehosting user-space pro-

grams by running a customized Linux kernel for one SoC that is supported in QEMU.

This works well because user-space programs mainly depend on standard system

calls that are provided by the underlying Linux kernel. Different from user-space

programs, the OS kernel interact with peripherals that are usually different in dif-

ferent SoCs. Some researchers have proposed to use real devices to perform the

dynamic analysis [156, 118, 86, 142]. Such solutions do not scale since there exist

a large number of embedded devices. Other mechanism that are for the bare-metal

systems [79, 115, 65], i.e., embedded systems without an OS kernel or having a thin

layer of abstraction, cannot be directly used to rehost the Linux kernel as the Linux

kernel is far more complicated than the bare-metal ones.

Key Insights. To address the above mentioned three challenges, we have three

key insights. First, only early-boot peripherals (i.e., interrupt controller, timer, and

UART) need to be supported during the rehosting process. After successfully rehost-

ing the Linux kernel, we are able to install the different peripheral drivers in ramfs

to support the other peripherals with kernel modules. Second, Linux kernel provides

interfaces to implement drivers of these peripherals, which brings the chance to re-

place these diverse peripherals with designated ones. Third, embedded Linux kernels

are usually modified based on the mainstream Linux kernel, which is open-sourced.

The modification mainly aims to add support for specific peripherals while most of

the other code is unchanged.

With the insights, we propose a solution called peripheral transplantation. It is

device-independent, and works towards the Linux kernel binary without the need of

the source code of the target system. The main idea is, instead of manually adding

emulation support of various peripherals in QEMU, we can transplant the device

94

Firmware Image ECMO Peripherals
to be Transplanted

Rehosted Linux Kernel Applications

Figure 5.1: The overview of our system (ECMO)

drivers of designated peripherals into the target Linux kernel binary. It replaces

the peripherals in the target Linux kernel that are currently unsupported in QEMU

with supported ones, thus making the Linux kernel rehostable. In particular, given a

Linux kernel retrieved from the firmware image of an embedded device, our system

turns it into a rehostable one that can be successfully booted in QEMU. After that,

various applications can be built to analyze the rehosted kernel.

Specifically, our system transplants two components, i.e., the emulated models

of peripheral into QEMU and their device drivers into the Linux kernel (if they are

not initialized originally). Transplanting the peripheral model requires us to build

the hardware emulation code for a specified (or simplified) peripheral and integrate

it into QEMU. We utilize APIs provided by QEMU for transplanting emulated peripheral

models.

However, transplanting a driver into the Linux kernel is non-trivial. First, we

need to substitute the original (unsupported) device driver with the transplanted one.

Since the peripheral driver is initialized with indirect calls, we need to locate function

pointers and rewrite them in a stripped binary on the fly, which is challenging.

Second, the transplanted driver should not affect the memory view of the original

kernel. Otherwise, the memory holding the transplanted driver can be overwritten

since the Linux kernel is not aware of the existence of that memory region. Third,

the transplanted driver needs to invoke APIs in the Linux kernel. Otherwise, the

95

transplanted driver cannot function as desired.

To overcome the difficulties of transplanting drivers, we design and implement a

new algorithm to identify the required function pointers (Section 5.4.2) and introduce

opaque memory (Section 5.4.3) to guarantee that the transplanted driver does not

affect the memory view of the original kernel. Finally, we implement and integrate

the peripheral transplantation technique into QEMU to create a prototype called

ECMO. Figure 5.1 shows the overview of ECMO. It receives the firmware image and

the peripherals to be transplanted. Then it transplants the peripherals to the Linux

kernel binary to make it rehostable in QEMU and launch a shell. Note that ECMO

focuses on transplanting the early-boot peripherals (i.e., interrupt controller, timer,

and UART), which are needed to rehost the Linux kernel. Once the Linux kernel

is rehosted, users can install different peripheral drivers to support more peripherals

with kernel modules and build various applications to analyze the rehosted kernel.

We apply ECMO on 815 Linux kernels extracted from firmware images, including

20 different kernel versions and 37 device models. ECMO now only supports ARM

architecture, which is widely used in embedded systems [41]. However, it does not

rely on any architecture specific feature and can be easily extended to the other

architectures (Section 5.6). Our experiment shows that ECMO can successfully

transplant peripherals for all 815 Linux kernels. Among them, 710 are able to launch

a shell. The failed cases are due to the unsupported root file system format (ramfs) in

the rehosted kernel. Furthermore, we successfully install one Ethernet device driver

(i.e., smc91x) on all the rehosted Linux kernel, which demonstrates the capability

to support more peripherals based on rehosted Linux kernel. To demonstrate the

functionality and usefulness of our system, we build and port three applications,

including kernel crash analysis, rootkit forensic analysis, and kernel fuzzing. Note

that, the applications themselves are not the contribution of our work. They are

used to demonstrate the usage scenarios of our system. Other applications that can

96

be built on QEMU can also be ported.

In summary, this work makes the following main contributions.

• Novel technique. We propose a device-independent technique called peripheral

transplantation that can rehost Linux kernels of embedded devices without the

availability of the source code.

• New system. We implement and integrate the peripheral transplantation tech-

nique into QEMU, to create a prototype system called ECMO.

• Comprehensive evaluation. We apply ECMO to 815 Linux kernels from differ-

ent images. It can transplant peripherals for all the Linux kernels and successfully

launch the shell for 710 ones.

To engage with the community, we release the source code of our system in

https://github.com/valour01/ecmo.

5.2 Background

5.2.1 Linux Kernel

Linux kernel source code can be categorized into three types according to their func-

tionalities. The first type is the architecture independent code, which contains the

core functionality used by all CPU architectures. The second type is architecture

dependent code. For instance, the sub-directories under the arch/ directory contain

the code for multiple CPU architectures. The third type is board-specific code, which

is used by specific board (machine). For instance, the directory arch/arm/versatile/

contains the code used by the machine named versatile. The kernel compiled for one

machine usually cannot be directly booted on other machines (or QEMU instances

that emulate different machines.)

97

1 MACHINE_START(VERSATILE_AB , "ARM -Versatile AB")
2 .atag_offset = 0x100 ,
3 .map_io = versatile_map_io ,
4 .init_early = versatile_init_early ,
5 .init_irq = versatile_init_irq ,
6 .init_time = versatile_timer_init ,
7 .init_machine = versatile_init ,
8 .restart = versatile_restart ,
9 MACHINE_END

Figure 5.2: The machine description for ARM-Versatile AB.

1 //UART read call back
2 static uint64_t serial_mm_read(void *opaque ,
3 hwaddr addr , unsigned size) {
4 SerialMM *s = SERIAL_MM(opaque);
5 return serial_ioport_read (&s->serial ,
6 addr >> s->regshift , 1);
7 }
8 // register read/write call back functions
9 static const MemoryRegionOps serial_mm_ops = {

10 .read = serial_mm_read ,
11 .write = serial_mm_write ,
12 ...
13 };

Figure 5.3: The callback functions for UART emulation in QEMU

5.2.2 ARM Machines

Embedded systems usually use SoCs from multiple vendors with different designs.

For instance, they contain different peripherals. Each SoC is expressed as a machine

in the Linux kernel. Manufacturers develop the board support package (BSP) (e.g.,

drivers of peripherals) so that Linux kernel can use these peripherals.

Linux kernel introduces the structure machine_desc for ARM to describe differ-

ent machines. The structure machine_desc provides interfaces to implement BSPs.

For example, Figure 5.2 shows an example of one machine ARM-Versatile AB in the

Linux kernel (Version 3.18.20). It initializes function pointers and data pointers with

its implementation. Specifically, in line 5, the function pointer init_irq is assigned

the value as versatile_init_irq. During the booting process, the Linux kernel will in-

voke the function machine_desc!init_irq to initialize the IC (interrupt controller).

The same logic applies to the function pointer init_time. Linux kernel invokes the

function machine_desc!init_time to initialize the timer.

98

5.2.3 QEMU

QEMU [57] is one of the most popular full-system emulators. It emulates different

machines by providing different machine models. A machine model consists of CPU,

memory, and different kinds of peripheral models. To emulate a peripheral, QEMU

registers the read/write callback functions for the MMIO (memory-mapped I/O) ad-

dress space of the peripheral. Once the Linux kernel running inside QEMU reads

from or writes into the address inside the MMIO range, the registered callback func-

tions inside QEMU will be invoked to emulate the peripheral. Basically, it maintains

an internal state machine to implement the peripheral’s functionality. Figure 5.3

shows an example of the registered callback functions for UART emulation. Specif-

ically, when the Linux kernel reads from the MMIO space of the emulated UART

device (e.g., 0x01C42000), the serial_mm_read function will be invoked by QEMU to

emulate the read access.

5.3 Challenges and Our Solution

The main goal of our work is to rehost Linux kernel binaries that are originally

running on embedded systems in QEMU. This lays the foundation of applications

that rely on the capability to introspect runtime states of the Linux kernel, e.g.,

kernel crash and vulnerability analysis [83, 69], rootkit forensic analysis [146, 128],

and kernel fuzzing [109, 133].

5.3.1 Challenges

Rehosting the Linux kernel on QEMU faces the following challenges:

Peripheral dependency. Rehosting the Linux kernel requires QEMU to emulate

the peripherals, e.g., the interrupt controller, that the Linux kernel depends on.

During the booting process, Linux kernel will read from or write into the peripheral

99

registers and execute the code according to the state specified by the value of pe-

ripheral registers. Without the emulation of these peripherals, the rehosted kernel

will halt or crash during the booting process.

Peripheral diversity. SoCs vary widely [43] and different vendors, e.g., Broadcom,

Marvell may design and develop different SoCs. These new SoCs introduce many

new peripherals that are not currently supported in QEMU and the open-sourced

mainstream of the Linux kernel. Due to the diversity of peripherals, there are still

a large number of devices that are not supported. Meanwhile, manually developing

peripheral emulation routine is tedious and error-prone, especially due to the diversity

of peripherals. Thus, the diversity of peripherals brings significant challenge to build

a general emulator, which can re-host various Linux kernels of embedded devices.

Lack of public information. The information (e.g., specifications, datasheets,

and source code) of SoCs and firmware images are usually not public. This is be-

cause vendors may not release the detailed hardware specification. Furthermore,

vendors may not release the source code immediately after releasing the image and

not all vendors strictly follow the GPL license [84, 75]. Meanwhile, the binary of

the Linux kernel is stripped and has no particular headers (i.e., ELF section head-

ers) or debugging information. These obstruct the diagnosis of failures when adding

emulation support of new SoCs in QEMU.

5.3.2 Our Solution: Peripheral Transplantation

In this work, we propose a technique called peripheral transplantation. The main idea

is, instead of manually adding emulation support of various peripherals in QEMU,

we can replace the peripherals that are used in target Linux kernels with existing

peripherals in QEMU. By doing so, we can rehost the Linux kernel and the kernel

functionality is intact (Section 5.5.4).

Figure 5.4 shows the overview of peripheral transplantation. This involves the

100

Peripheral
Initialization

Peripheral
Interaction

APIs

Device
Driver ECMO

Driver

Transplanted
Peripheral

Models
CPU RAM

ECMO Forward
Pointers

ECMO Backward
Pointers

Linux Kernel

QEMU

Opaque
Memory

Redirect

Invoke

1

2

Other
Peripherals

Figure 5.4: The overview of peripheral transplantation.

start_kernel(void) {
. . .
/*Initialize the architecture specific
Properties */
setup_arch();
. . .
/*Initialize the Timer*/
time_init();
. . .

}

configure_time_APIs(args) {
. . .

}

setup_arch () {
. . .
/*setup_machine_fdt return the
value of machine_desc */
machine_desc = setup_machine_fdt();
install_ECMO_forward_pointer();

}

time_init(void) {
if (!machine_desc->init_time)

general_time_init();
else

/*ECMO_init_time()*/
machine_desc->init_time();

}

install_ECMO_forward_pointer(void
) {
…
machine_desc->init_time =

&ECMO_init_time;
}

ECMO_init_time(void) {
args = ECMO_Timer；
f = &configure_time_APIs;
(*f)(args);

}

1 3

2

5

4

Figure 5.5: A concrete example of peripheral transplantation.

injection of peripheral models into QEMU and the ECMO Driver into the Linux

kernel. To distinguish them from original ones of the (emulated) machine, we call

the transplanted peripheral models ECMO Peripheral. To let the kernel use the

transplanted ECMO Driver, our system identities the functions that are used to ini-

tialize device drivers (ECMO Forward Pointers) and redirects them to the functions

inside the ECMO Driver (Fig. 5.4 1). Moreover, our system identifies the APIs

that are responsible for interacting with peripheral models. These APIs are used by

101

Decompress
Linux
Kernel

Identify
ECMO
Pointers

Generate
ECMO
Drivers

Rehostable
Linux
Kernel

Firmware

Figure 5.6: The work flow of our system.

the ECMO Driver to communicate with the transplanted peripheral models (Fig. 5.4

2). The addresses of these functions are called ECMO Backward Pointers in this

paper. We will elaborate how to identify the ECMO Pointers in Section 5.4.2.

Note that, to ensure the ECMO Driver does not affect the memory view of the

rehosted Linux kernel, we propose the concept of the opaque memory. This memory

region is available on the emulated machine but cannot be seen by the Linux kernel.

As such, we can prevent the kernel from allocating memory pages that are reserved

for the ECMO Driver. We will elaborate this in Section 5.4.3.

5.3.3 An Illustration Example of Peripheral Transplantation

Fig. 5.5 shows a concrete example of transplanting one peripheral (i.e., timer) into the

Linux kernel. In particular, the function start_kernel is responsible for initializing

the Linux kernel. It will invoke several different functions, including setup_arch and

and time_init.

The function setup_arch will setup architecture-related configurations and ini-

tialize the machine_desc structure (Fig. 5.5 1). This structure contains multiple

function pointers (ECMO Forward Pointers) that will be used to initialize corre-

sponding drivers. Our system first locates the function setup_arch and then injects

a function (install_ECMO_forward_pointers) to change the pointers to our own ones

(Fig. 5.5 3).

When the function init_time is invoked to initialize the timer (Fig. 5.5 2), the

ECMO_init_time, which is pointed by machine_desc-> init_time, will be invoked to

102

1 Assembly code:
2 mov r0, #0
3 str r0, [r2], #4
4 str r0, [r2], #4
5 str r0, [r2], #4
6 str r0, [r2], #4
7 cmp r2, r3
8 blo 1b
9 tst r4, #1

10 bic r4, r4, #1
11 blne cache_on
12 mov r0, r4 //r0 stores the value of output_start
13 mov r1, sp
14 add r2, sp, #0 x10000
15 mov r3, r7
16 bl decompress_kernel
17 // we can dump the decompressed Linux kernel after
18 // function decompress_kernel returns
19
20 Simplified C code:
21 void decompress_kernel(uint32 output_start , args)

Figure 5.7: The assembly code that invokes function decompress_kernel, which is in
arch/arm/boot/compressed/head.S.

initialize the injected timer driver (ECMO Driver) in QEMU (Fig. 5.5 4) (through

ECMO Forward Pointers), instead of the original one. Accordingly, this function will

invoke APIs (through ECMO Backward Pointers) in the Linux kernel to interact with

the ECMO Peripheral (Fig. 5.5 5).

Note that, the code snippets in Fig. 5.5 are for the illustration purpose. Our

system does not rely on the availability of the source code. It directly works towards

the Linux kernel binary that is retrieved from a firmware image.

5.4 System Design and Implementation

In order to rehost Linux kernels, our system first extracts and decompresses the

Linux kernel from the given firmware image (Section 5.4.1). We then apply multiple

strategies to identify both ECMO Forward and Backward Pointers (Section 5.4.2).

These pointers are essential for ECMO Drivers. At last, we semi-automatically

generate ECMO Drivers and load them at runtime to boot the kernels (Section 5.4.3).

Fig. 5.6 shows the overall workflow.

5.4.1 Decompress Linux Kernel

103

Firmware image usually consists of the OS, which is the Linux kernel, and user appli-

cations. However, the Linux kernel inside the firmware images is usually compressed.

To identify ECMO Pointers, we need to first extract the Linux kernel and decompress

it. With the decompressed Linux kernel, we can utilize different strategies to locate

the ECMO Pointers.

Specifically, we feed the firmware image to firmware extraction tool (i.e., Binwalk)

to extract the kernel image. Then we directly feed the extracted kernel image (with

added u-boot information) to QEMU. Since the code for decompressing the Linux

kernel does not operate on the peripherals (except the UART to show the message

of decompressing Linux kernel), it can be successfully executed in vanilla QEMU.

As shown in Fig. 5.7, function decompress_kernel in line 16 is invoked to decom-

press the kernel. Its first parameter (i.e., output_start) indicates the start address

of the decompressed kernel. Thus, if we can identify when decompress_kernel is in-

voked, we can get the first parameter by checking the machine register (R0 in ARM)

and dump the decompressed Linux kernel.

We notice that the function decompress_kernel is invoked by the assembly code

in arch/arm/boot/compressed/head.S. We observe that this snippet of assembly code

remains unchanged in different kernel versions. With this observation, we identify

the address of instruction BL decompress_kernel by strictly comparing the execution

trace of QEMU and the hard coded assembly code. After finding the instruction,

we can obtain the address of the function decompress_kernel and the value of out-

put_start according to the execution trace. With this information, we can dump the

decompressed Linux kernel after the function decompress_kernel returns.

By doing so, we can automatically retrieve decompressed Linux kernels from

firmware images.

104

5.4.2 Identity ECMO Pointers

Our system needs to obtain the addresses of two essential types of functions in

the Linux kernel. Specifically, the ECMO Forward Pointers contain the functions

that are used by the Linux kernel to initialize device drivers. We dynamically hook

and redirect them to ECMO Drivers at runtime in QEMU. The ECMO Backward

Pointers contain the APIs that are used by the ECMO Driver to invoke functions

provided by the Linux kernel to interact with emulated peripherals in QEMU.

Precisely identifying ECMO Pointers is not easy. The main challenge is the

decompressed Linux kernel is stripped and only contains the binary data. It has nei-

ther meaningful headers nor debugging symbols and contains thousands of functions.

Furthermore, the Linux kernel is compiled with different compilers and compiling op-

tions, which can result in different binaries. Thus, we cannot have any assumption on

the compiling options or compilers. We also cannot rely on run-time symbol tables

like /proc/kallsym because they are only available after booting. However, we have

the insight that embedded Linux kernels are usually modified based on the main-

stream Linux kernel and the modification mainly aims to add support for specific

peripherals with board-specific code. Meanwhile, ECMO Pointers are functions in

architecture independent code or architecture dependent code (Section 5.2.1), which

is unchanged and open-source.

In this case, we can automatically identify ECMO Pointers by leveraging the

source code of the mainline Linux kernel. For instance, if we find that a function

uses a specific string by reading the source code, then we can easily identify this

function inside the binary by locating the function that has references to the same

string. Of course, this simple strategy may not always work, since some functions

do not have such obvious patterns or multiple functions can refer to the same string.

Thus, we take three different strategies to identify ECMO Pointers (Section 5.4.2).

105

We illustrate each step in the following.

Disassemble the Linux Kernel

The first step is to disassemble the Linux kernel for further analysis, including con-

structing the control flow graph and identifying function boundaries. Accurately

disassembling the ARM binaries is still challenging, especially when the binary is

stripped [92]. This is because inline data is very common in ARM binaries and there

are two different instruction sets (i.e., ARM and Thumb). Furthermore, ARM does

not have a distinguished function call instruction, which can influence the accuracy

of identifying function boundaries. In this case, we choose to ensure that this step

does not introduce false negatives, i.e., all the code sections should be dissembled.

Otherwise, we cannot identify the functions if they are not correctly disassembled.

However, we can tolerate the false positives, i.e., the inline data may be wrongly

disassembled as code. The strategies described in Section 5.4.2 can help us to filter

out these false positives.

After disassembling the Linux kernel and constructing the control flow graphs,

we further locate function boundaries by combining the algorithm introduced in

Nucleus [72] and angr [3]. Nucleus can identify the functions indirectly called while

angr locates the function according to the prologue. These two tools can help to

reduce the false negatives and guarantee that the required function addresses (ECMO

Pointers) will be located during the disassembly process. Finally, we build a mapping

for each function and various types of information, e.g., number of basic blocks, string

references, number of called functions and etc. This mapping describes the signature

(or portrait) of each function. Note that, our system does not require that the

constructed control flow graphs are sound or complete, as long as they can provide

enough information for further analysis (Section 5.4.2).

106

Identify Pointer Addresses

Algorithm 2: The algorithm to identify the addresses of ECMO pointers
from the Linux kernel binary.

Input: The decompressed Linux kernel LKB;
The source code of ECMO Pointers SC (architecture independent code or architecture
dependent code);
Output: The addresses of ECMO Pointers FA;

1 Function Identify(LKB,SC):
2 CFG = Disassembly(LKB)
3 Generated_Functions = GenerateFunctions(CFG)
4 for S_F in SC do

5 for G_F in Generated_Functions do

6 for Filtering_Strategy in Filtering_strategies do

7 if Filtering_Strategy(S_F ,G_F) then

8 Append G_F to S_F.Candidates
9 end

10 end

11 end

12 end

13 for S_F in SC do

14 if Length(S_F.Candidates) == 1 then

15 FA[S_F] = S_F.Candidates
16 end

17 end

18 return FA
19

Algorithm 2 describes the process to locate pointer addresses of ECMO Pointers

in the decompressed Linux kernel binary, i.e., LKB. Note that, we first need to get

the source code of the functions, i.e., SC, inside the mainline Linux kernel. The

outputs of this algorithm are the addresses of ECMO Pointers, i.e., FA (line 12).

First, we disassemble the decompressed Linux kernel, construct the control flow

graph (line 2) and generate function boundaries (line 3). Then for the source code

function of each ECMO Pointer (line 4), we loop through the generated functions

(line 5) and apply different filtering strategies (line 6). If one filtering strategy can

identify one address as a candidate address of the ECMO Pointer (line 7), this address

will be appended to the candidate list (line 8). Finally, we check the candidates of

each ECMO Pointer (line 9). If there is only one candidate (line 10), it means the

107

Assembly: foo
foo_offset+0x0: ldr r0, [pc, #248]

foo_offset+0x100 : foo_offset+0x200

foo_offset+0x200: This is specific string

Code: foo (args)
{
 . . .

 print_func (“This is specific string ");

 . . .
}

(a) Specific constant string: the constant string is referenced by

a data pointer (i.e., foo_offset+0x200).

Assembly: foo
foo_offset+0x0: ldr r0, [pc, #248]
foo_offset+0x4: mov r1, #386
foo_offset+0x8: bl warn_func

foo_offset+0x100: 0x00000200

foo_offset+0x200: /path/to/source.c

File: /path/to/source.c
Code: foo (args)
{
 . . .

 WARN_ON (condition); /*Line 386*/

 . . .
}

(b) Warning information: line number (i.e., 386) is the operand

of assembly code; file name (i.e., /path/to/source.c) is a con-

stant string.

Figure 5.8: Strategy-I: Lexical information

address of this ECMO Pointer is successfully identified in the kernel binary (line 11).

Note that even if there is more than one candidate for each ECMO Pointer, ECMO

can automatically try all the candidates and the one that can rehost the Linux kernel

should be the right one. We do not find such cases in our experiments.

Strategy-I: Lexical information. The first strategy uses the lexical information

inside a function as its signature, e.g., a specific constant string and the warning

information. If the function we want to identify has such strings, we can then lookup

the disassembly code to find the functions that have data references to the same

string. The line number and file name in the warning information can further help

to locate the function.

Fig. 5.8a shows a pair of the disassembled code and the source code in the mainline

Linux kernel. In the source code, the function foo contains a specific constant string

“This is a specific string". In the assembly code, the instruction at foo_offset+0x0

108

Code: Required_foo(args)
{
 . . .
 Identified_foo();
 . . .
}

Assembly: Required_foo

foo_offset+0x0: Assembly Code
. . .
foo_offset+0x100: bl Identified_foo

(a) Caller relationship: Required_foo is the caller of Identi-

fied_foo.

Code: Identified_foo(args)
{
 . . .
 Required_foo();
 . . .
}

Assembly: Identified_foo

foo_offset+0x0: Assembly Code
. . .
foo_offset+0x100: bl Required_foo

(b) Callee relationship: Required_foo is the callee of Identi-

fied_foo.

Code: foo(args)
{
 . . .
 Identified_foo();
 . . .
 Required_foo();
 . . .
}

Assembly: foo

foo_offset+0x0: Assembly Code
. . .
foo_offset+0x100: bl Identified_foo
. . .
foo_offset+0x200: bl Required_foo

(c) Sibling relationship: Required_foo and Identified_foo are

both called by foo.

Figure 5.9: Strategy-II: Function relationship

will load the data pointers (i.e., foo_offset+0x100) using the LDR instruction. The

data pointer refers to another pointer (i.e., foo_offset+0x200), which contains the

same constant string. Based on this, we can locate function foo in the disassem-

bled kernel. Fig. 5.8b shows a similar example with the warning information. The

WARN_ON will call function warn_func. The first parameter is the filename, which

is a specific constant string. The second parameter is the line number of WARN_ON.

Usually, the line number is hard coded as an operand of instruction after compilation.

Thus, functions containing specific constant strings or warning information can be

easily identified.

Strategy-II: Function relationship. The second strategy uses the relationship

109

between functions. That’s because functions that do not contain specific strings can-

not be identified by the strategy-I. However, we can use the relationship between

the functions we want to identify and the ones that have been identified using the

previous strategy. For instance, if we have identified the function (Identified_foo)

and this function is only invoked by the function Required_foo, then we can easily

locate the Required_foo by finding the caller of the Identified_foo function (Fig-

ure 5.9a). Similar strategies can be applied to the callee and sibling relationship,

as shown in Figure 5.9b and Figure 5.9c, respectively. Note that we do not need to

have a precise call graph, which is hard to generate due to the indirect call and inline

function. This is because strategy I can identify several functions due to the many

specific constant strings in the Linux kernel. Only if one of the functions identified

by Strategy I (Identified_foo) has certain function relationships with the target

function (Required_foo), strategy II can work. We do not encounter this issue in our

experiments. With the help of function relationship, we can identify the functions

indirectly.

Strategy-III: : Function structure. If one function has more than one caller,

callee or sibling, it cannot be located solely using the function relationship. The third

strategy takes the function structure, including logic or arithmetic operations, return

value, the number of basic blocks, and the number of callee functions. Fig. 5.10a

shows the example that the function performs the logic operation on some specific

values (i.e., a = a|0x300) and return a specific value (i.e., -22) , the compiler will

generate the instructions that contain the specific values (e.g., orr r0,r0, #0x300,

mvn r0,#0x15). Besides, the callee number and basic block number will also be

considered to filter out the candidate. Fig. 5.10b shows that function foo has two

callees (i.e., callee_foo_one and callee_foo_two), which map to two instructions at

foo_offset+0x18 and foo_offset+0x1c. Basic block number works with the same

110

Assembly: foo
foo_offset+0x0: Assembly Code
. . .
foo_offset+0x204: orr r0,r0, #0x300
. . .
foo_offset+0x240: mvn r0,#0x15
foo_offset+0x244: ldmfd sp,{pc}

Code: foo(args)
{
 Int a;
 a = a | 0x300;
 . . .
 return -22;
}

(a) Logic operation: The constants (i.e., 0x300, -22) of logic

operation or return value in source code map to the operands in

assembly code.

Assembly: foo
foo_offset+0x0: mov r0, 0
. . .
foo_offset+0x18: bl callee_foo_one
foo_offset+0x1c: bl callee_foo_two
foo_offset+0x20: cmp r0, 0
foo_offset+0x24: beq foo_offset+0x50

foo_offset+0x28: add r0,r0,1
foo_offset+0x2c: ldm sp,{r0,pc}

foo_offset+0x50: add r0,r0,2
foo_offset+0x54: ldm sp,{r0,pc}

Code: foo(args)
{
 int a = 0;
 callee_foo_one(args);
 callee_foo_two(args);
 . . .

if (condition)
 {
 a = a+1;
 }
 else
 {
 a = a+2;
 }
}

(b) Callee Number: The two callee functions (i.e.,

callee_foo_one, callee_foo_two) map to the two bl in-

struction at offset foo_offset+0x18 and foo_offset+0x1c. Basic

Block Number: The three basic blocks in source code maps to

three basic blocks in assembly code.

Figure 5.10: Strategy-III: Function structure

rule.

Summary: With the above three strategies, we can automatically and successfully

identify ECMO Pointers for all the Linux kernels (815 ones in 20 kernel versions)

used in the evaluation (Section 5.5.2).

5.4.3 Generate ECMO Drivers

The process to generate ECMO Drivers is similar with developing a kernel module.

However, we need to make the driver self-contained as much as possible and invoke

the APIs in the Linux kernel through ECMO Backward Pointers. In particular,

we compile the source code into an object file (i.e., ECMO_Driver.o). To make this

111

1 0x10000: ldr r3, [pc, #72]
2 0x10004: blx r3
3 0x10050: "Pointer value of called function"

Figure 5.11: ECMO Driver indirectly invokes functions in Linux kernel. In offset
0x10000, the memory address pointed by [pc, #72] is 0x10000 + 8 + 72 = 0x10050.
In this case, functions with arbitrary address can be invoked.

driver work, we need to setup the base address and fix up the function calls to ECMO

Backward Pointers. Moreover, we need to ensure that this driver does not occupy the

physical memory region that the kernel can perceive, which is achieved by allocating

the opaque memory.

Fixup the driver. Note that the compiled object file’s base address is 0x0. Given

a new load address at runtime, our system calculates new values of the data pointers

and function pointers and automatically rewrites the corresponding values in the

driver.

Furthermore, due to the limitation of the jump range for the BL Label instruction,

the driver may not be able to invoke the functions (ECMO Backward Pointers) in

the original Linux kernel with direct calls, if the offset between them is far from the

range of the BL instruction. To make it work, we rewrite the direct calls with indirect

calls. For example, Fig. 5.11 shows a code snippet of the assembly code. At the offset

0x10000, it loads the value stored at the offset 0x10050 into the register R3, which is

the jump target. We can rewrite the value in the offset 0x10050 to invoke arbitrary

function (ECMO Backward Pointers) in the Linux kernel, without being limited by

the direct call.

Allocate the opaque memory. The ECMO Driver is loaded into the memory

for execution. However, if we directly inject the driver into the free physical memory

pages, the pages could be allocated for other purposes. This is because the kernel does

not explicitly know the existence of the ECMO Driver and it is hard to change the

allocated physical memory pages due to the complex memory management strategy of

112

Linux
Kernel

Check the
Virtual
Address

Kernel
Page

Tables

Physical
Address

Software

ECMO
Driver

Hijacked
Page

Tables

HardwarePage Table Walk Module in QEMU

Opaque
Memory

Yes

No

Figure 5.12: The overall design of opaque memory.

Linux kernel. In this case, the ECMO driver may be overwritten and the functionality

cannot be guaranteed. Thus, we need to ensure that the driver should reside inside

a memory region that cannot be affected by the Linux kernel.

To solve this problem, we propose the concept of opaque memory, a memory

region that is not perceived by the Linux kernel but can be used at runtime. We

implement the opaque memory by hooking the emulated MMU in QEMU. Fig. 5.12

shows how opaque memory works. Specifically, the emulated MMU walks through

the page table to translate virtual addresses to physical addresses. ECMO changes

the MMU module in QEMU to check whether the virtual address being translated is

in the region of the opaque memory. If so, it will walk through our hijacked page table

for the opaque memory to get the physical address. Otherwise, the original kernel

page tables will be used. We ensure that the virtual address in the opaque memory

always has a valid entry in the page table. By doing so, the ECMO Driver can

be loaded and executed in the opaque memory, without affecting the memory view

of the rehosted Linux kernel. By default, we set the opaque memory starting from

0xd0008000 and the length is 0x10000. Meanwhile, we check whether the address

conflicts with the one allocated by Linux kernel. If so, we will change the start

address.

113

5.4.4 Implementation Details

We implement ECMO based on LuaQEMU [30]. LuaQEMU is a dynamic anal-

ysis framework based on QEMU and it exposes several QEMU-internal APIs to

LuaJIT [29] core, which is injected into QEMU. We port LuaQEMU based on old

QEMU (version 2.9.50) to support the QEMU in new version (4.0.0) and expose

more designated APIs for initializing the peripheral models. With LuaQEMU, we

are able to hijack the execution process of rehosted Linux kernel at runtime and ma-

nipulate the machine states, e.g., accessing registers and memory regions, through

Lua scripts, at specified breakpoints. For example, we can specify a breakpoint at

any particular address. Inside the breakpoint, we can execute our own Lua script for

different purposes. This eases the implementation of the opaque memory, dumping

the decompressed Linux kernel, and installing the ECMO Pointers.

The module to identify ECMO Pointers (Section 5.4.2) is implemented in Python.

We utilize Capstone [13] to disassemble the decompressed Linux kernel. For the

function identification, we re-implement the algorithm described in Nucleus [72] and

angr [3] in Python. We further extract the required function information, which is

the function signature based on the generated functions and their control flow graphs.

Finally, we integrate all these code with our strategies for identifying ECMO Pointers,

which takes 2290 lines of Python code. All the above mentioned procedures can be

done automatically except that the ECMO Driver, which consists of the drivers of

transplanted peripherals. It is developed using the C language manually, which takes

less than 600 lines of code, and cross-compiled by GCC. Note that it is a one-time

effort to develop the ECMO Driver (Section 5.6). One ECMO Driver can be used by

different Linux kernel versions if the related functions and structures are not changed.

114

5.5 Evaluation

In this section, we present the evaluation result of our system. Note that, the main

purpose of our work is to rehost Linux kernels in QEMU so that we can build dif-

ferent dynamic analysis applications and install drivers for more peripherals. In the

following, we first introduce the dataset of firmware images used in the evaluation

and then answer the following research questions.

• RQ1: Is ECMO able to identify ECMO Pointers?

• RQ2: Is ECMO able to rehost the Linux kernels of embedded devices with different

kernel versions and device models?

• RQ3: Are the rehosted Linux kernels stable and reliable?

• RQ4: Can ECMO support more peripherals and be used to develop dynamic

analysis applications?

5.5.1 Dataset

As our system targets embedded Linux kernels, we have collected the firmware im-

ages from both third-party projects (i.e., OpenWRT [34]) and device vendors (i.e.,

Netgear [32]). Our evaluation targets Linux kernels in ARM devices, since they

are the popular CPU architectures in embedded devices [41]. However, the overall

methodology can also be applied to other architectures (e.g., MIPS).

During the experiment, we focuses on transplanting three early-boot peripher-

als, i.e., interrupt controller (IC), timer, and UART, which are required to boot a

Linux kernel. Once the Linux kernel is rehosted, we can install different peripheral

drivers to support other peripherals with kernel modules. Specifically, we use the

PrimeCell Vectored Interrupt Controller (PL190) [37] and ARM Dual-Timer Module

(SP804) [4]. We use the ns16550 UART device in our system. In total, we evalu-

115

Table 5.1: The ECMO Pointers, identification strategy, and the Linux kernel versions
that the ECMO pointers used by.

Forward Pointers Strategy Kernel Version
mach_desc->init_irq I ALL
mach_desc->init_time I ALL
Backward Pointers Strategy Kernel Version
irq_set_chip_and_handler_name III 3.18.x/4.4.x/4.14.x
irq_set_chip_data III ALL
handle_level_irq II ALL
__handle_domain_irq III 3.18.x/4.4.x/4.14.x
setup_machine_fdt I 3.18.x/4.4.x/4.14.x
set_handle_irq III 3.18.x/4.4.x/4.14.x
irq_domain_add_simple III 3.18.x/4.4.x/4.14.x
irq_create_mapping I 3.18.x/4.4.x/4.14.x
of_find_node_by_path II 3.18.x/4.4.x/4.14.x
setup_irq I ALL
clockevents_config_and_register III 3.18.x/4.4.x/4.14.x
irq_domain_xlate_onetwocell I 3.18.x/4.4.x/4.14.x
clockevent_delta2ns I 2.6.x
clockevents_register_device II 2.6.x
set_irq_flags I 2.6.x/3.18.x
set_irq_chip I 2.6.x
irq_to_desc II 2.6.x
__do_div64 II 2.6.x
platform_device_register I ALL
lookup_machine_type I 2.6.x
_set_irq_handler I 2.6.x
irq_modify_status III 4.4.x/4.14.x

ate 815 (720 in OpenWRT and 95 in Netgear) firmware images that contain Linux

kernels.

5.5.2 Identify ECMO Pointers (RQ1)

ECMO Pointers are important to peripheral transplantation. In this section, we

evaluate the success rate of identifying ECMO Pointers. Among all the 815 Linux

kernels, there are 20 different kernel versions.

Table 5.1 lists the required ECMO Pointers, the strategies we used, and the Linux

kernel versions that these ECMO Pointers are used. In total, we need to identify 24

different ECMO Pointers for all the 20 Linux kernel versions. Among them, two (i.e.,

116

Table 5.2: The decompressed Linux kernel size and the disassembled function num-
bers for our dataset.

Maximum Minimum Mean Median
Size (Bytes) 8,526,240 4,134,392 7,297,977 8,478,848

Functions (#) 48,412 18,455 29,910 23,872

mach_desc->init_time, and mach_desc->init_irq) are data pointers. Identifying

the data pointers is rather more difficult than the function pointers as we need to

identify symbols in each function and infer the right ones. Fortunately, these two

data pointers are the return values of setup_machine_fdt and lookup_machine_type,

respectively. According to the ARM calling convention, the return value is saved

in register R0. In this case, we can identify these two data pointers by identifying

function pointers setup_machine_fdt and lookup_machine_type.

Identifying ECMO Pointers requires us to disassemble the decompressed Linux

kernel. Table 5.2 lists the information of these kernels. The decompressed Linux

kernel is about 730k bytes on average, with thousands of functions. Among these

functions, we successfully identify the required ECMO Pointers for all Linux kernels.

117

Ta
bl

e
5.

3:
T

he
ov

er
al

l
re

su
lt

of
E

C
M

O
on

re
ho

st
in

g
th

e
Li

nu
x

ke
rn

el
of

O
pe

nW
RT

.
"D

ow
nl

oa
de

d
Im

ag
es

"
re

pr
es

en
ts

th
e

nu
m

be
r

of
do

w
nl

oa
de

d
im

ag
es

.
"F

or
m

at
Su

pp
or

te
d"

re
pr

es
en

ts
th

e
nu

m
be

r
of

im
ag

es
w

ho
se

fo
rm

at
s

ar
e

su
pp

or
te

d
by

fir
m

w
ar

e
ex

tr
ac

tio
n

to
ol

(i.
e.

,
B

in
w

al
k)

.
"K

er
ne

l
E

xt
ra

ct
ed

"
re

pr
es

en
ts

th
e

nu
m

be
r

of
im

ag
es

ex
tr

ac
te

d
fr

om
th

e
do

w
nl

oa
de

d
im

ag
e,

w
hi

ch
ar

e
re

ho
st

ed
by

E
C

M
O

."
Pe

rip
he

ra
ls

Tr
an

sp
la

nt
ed

"
re

pr
es

en
ts

th
e

nu
m

be
r

of
th

e
im

ag
es

th
at

pe
rip

he
ra

l
ca

n
be

tr
an

sp
la

nt
ed

su
cc

es
sf

ul
ly

(e
.g

.,
IC

ca
n

ha
nd

le
r

th
e

in
te

rr
up

t
w

el
l).

"R
am

fs
ar

e
no

t
M

ou
nt

ed
"

re
pr

e-
se

nt
s

th
e

nu
m

be
r

of
im

ag
es

th
at

ca
nn

ot
m

ou
nt

th
e

gi
ve

n
ra

m
fs

.
"S

he
ll"

re
pr

es
en

ts
th

e
im

ag
es

th
at

w
e

ca
n

re
ho

st
an

d
sp

aw
n

a
sh

el
l.

Su
cc

es
s

R
at

e
of

Tr
an

sp
la

nt
at

io
n

=
(P

er
ip

he
ra

ls
Tr

an
sp

la
nt

ed
)/

(I
m

ag
es

);
Su

cc
es

s
R

at
e

of
R

eh
os

tin
g

=
(S

he
ll)

/(
Im

ag
es

).

K
er

ne
lV

er
si

on
D

ow
nl

oa
de

d
Im

ag
es

Fo
rm

at
Su

pp
or

te
d

K
er

ne
lE

xt
ra

ct
ed

Pe
ri

ph
er

al
s

Tr
an

sp
la

nt
ed

Su
cc

es
s

R
at

e
of

Tr
an

sp
la

nt
at

io
n

R
am

fs
ar

e

no
t

M
ou

nt
ed

Sh
el

l
Su

cc
es

s
R

at
e

of

R
eh

os
ti

ng

3.
18

.2
0

23
23

21
21

10
0%

8
13

61
.9

%

3.
18

.2
3

29
29

29
29

10
0%

8
21

72
.4

%

4.
4.

42
37

37
37

37
10

0%
8

29
78

.4
%

4.
4.

47
37

37
37

37
10

0%
8

29
78

.4
%

4.
4.

50
45

45
45

45
10

0%
16

29
64

.4
%

4.
4.

61
39

39
37

37
10

0%
8

29
78

.4
%

4.
4.

71
40

40
38

38
10

0%
8

30
78

.9
%

4.
4.

89
40

40
38

38
10

0%
8

30
78

.9
%

4.
4.

92
41

41
38

38
10

0%
8

30
78

.9
%

4.
4.

14
0

41
41

38
38

10
0%

8
30

78
.9

%

4.
4.

15
3

40
38

38
38

10
0%

8
30

78
.9

%

4.
4.

18
2

40
38

38
38

10
0%

8
30

78
.9

%

4.
14

.5
4

54
54

42
42

10
0%

0
42

10
0%

4.
14

.6
3

66
66

42
42

10
0%

0
42

10
0%

4.
14

.9
5

66
66

42
42

10
0%

0
42

10
0%

4.
14

.1
28

66
66

42
42

10
0%

0
42

10
0%

4.
14

.1
31

66
66

42
42

10
0%

0
42

10
0%

4.
14

.1
51

66
66

42
42

10
0%

0
42

10
0%

4.
14

.1
62

66
66

42
42

10
0%

0
42

10
0%

O
ve

ra
ll

90
2

89
8

72
0

72
0

10
0%

96
62

4
86

.7
%

118

Answer to RQ1: ECMO can identify all the required ECMO Pointers from
thousands of functions inside decompressed Linux kernel.

5.5.3 Rehost Linux Kernels (RQ2)

In this section, we evaluate the capabilities of ECMO on rehosting the Linux kernels.

During this process, we use our system to boot the kernel and provide a root file

system (rootfs) in the format of ramfs. We use our own rootfs because we can

include different benchmark applications into the rootfs to conduct security analysis.

For example, we include PoCs of kernel exploits to conduct the root cause analysis

(Section 5.5.5). Furthermore, we can include different peripheral drivers to support

more peripherals. The rootfs extracted from the firmware image can also be used.

Firmware Images from Third Party Projects

Table 5.3 shows the overall result and the success rate of peripheral transplantation

and kernel rehosting for OpenWRT. We define the success of peripheral transplan-

tation as that the transplanted IC, timer and UART devices function well in the

kernel. If the rehosted kernel enters into the user-space and spawns a shell, we treat

it as a successful kernel rehosting. In total, we download 902 firmware images from

OpenWRT. However, four images’ formats are not supported by Binwalk and the

Linux kernel cannot be extracted (if there is). For the left 898 firmware images, 720

of them contain Linux kernels while the left ones contain only user-level applications.

The 720 ones will be evaluated by ECMO.

Linux Kernel Versions. The kernels in the 720 OpenWRT firmware images con-

sist of 19 different kernel versions. Our evaluation shows that we can transplant the

peripherals for all the 720 Linux kernels. However, some Linux kernels cannot be

booted. This is because they cannot recognize our pre-built root file system (in the

ramfs file format) as the support of ramfs is not enabled when being built. Without

119

93 76 72 76
48

355

93 76
24

76
48

303

0
50
100
150
200
250
300
350
400

Netgear Asus Pogoplug Buffalo Linksys Others

Transplanted Rehost

Figure 5.13: Vendor Distribution of Linux Kernels.

Table 5.4: The overall result of ECMO on rehosting the Linux kernel of Netgear
Devices.

Device Name Kernel Version Images # of Peripherals Transplanted Shell
R6250 2.6.36 21 21 15

R6300v2 2.6.36 22 22 19
R6400 2.6.36 20 20 20
R6700 2.6.36 16 16 16
R6900 2.6.36 16 16 16
Overall - 95 95 86

the root file system, we cannot launch the shell. However, all of them enter into

the function (i.e., init_post) to execute the init program. In summary, among 720

kernels, our system can rehost 624 of them, which is shown in Table 5.3.

Vendors and Device Models. As the OpenWRT project supports devices from

multiple vendors, we calculate the supported vendors and there are 24 different

vendors. Figure 5.13 shows the result of the top five vendors, i.e., Netgear, Asus,

Pogoplug, Buffalo, and Linksys, in the OpenWRT dataset. Among them, Pogoplug

has a relatively low success rate of rehosting. That’s because most kernels from that

vendor cannot recognize our pre-built root file system. We also count the number of

device models for the successfully rehosted Linux kernels. In total, 32 device models

are identified.

120

 sock_setsockopt
 0xc0229f68 STR r6, [r4, #0xd0]
 r4+0xd0: 0xc7929110
 /*write 0xffffff00 into 0xc7929110*/

Callstack

ECMO

int sock_setsockopt(args []){
 . . .

sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
sk->sk_sndbuf = max_t(u32, val * 2,

SOCK_MIN_SNDBUF);
}

[<c022cfd0>] (__alloc_skb) from [<c022d170>]
[<c022d110>] (alloc_skb_with_frags) from [<c0227cb0>]
[<c0227b04>] (sock_alloc_send_pskb) from [<c02bb540>]
[<c02bb3cc>] (unix_stream_sendmsg) from [<c02242ec>]

 unix_stream_sendmsg
 0xc02bb4cc LDR sb, [r2, #0xd0]
 r2+0xd0: 0xc7929110
 0xc7929110: 0xffffff00
 /*load 0xffffff00 from address 0xc7929110*/
 . . .
 0xc02bb53c BL 0xc0227b04
 r1:0xffffff40 /*calculated from 0xffffff00*/

CrashLinux Kernel

 sock_alloc_send_pskb
 0xc0227cac BL 0xc022d110
 r0: 0xffffff40

 alloc_skb_with_frags
 0xc022d16c BL 0xc022cfd0(__alloc_skb)
 /*crash in function __alloc_skb*/
 r0: 0xffffff40

 Trace

GDB
Watchpoint

Source Code

Figure 5.14: Root cause analysis of CVE-2016-9793.

Firmware Images from Official Vendors

Besides third-party firmware images, we also apply ECMO on the official images re-

leased by Netgear. We collect the firmware images for five popular devices, including

R6250, R6300v2, R6400, R6700, R6900, from the vendor’s website [32]. In total, we

manage to collect 95 firmware images, and the latest one is released on 2020-09-30.

Table 5.4 shows the result. We noticed that all the Linux kernels of these devices

are in the version 2.6.36. We can successfully transplant the peripherals to all the 95

different firmware images. Among them, we can launch the shell for 86 images while

the left 9 cannot be rehosted due to the same root file system problem.

Answer to RQ2: ECMO can rehost the Linux kernel of embedded devices
from 20 kernel versions and 37 (32 in OpenWRT and 5 in Netgear) device models.
Peripherals can be transplanted to all the Linux kernels while 87.1% (710/815)
Linux kernels can be successfully rehosted (i.e., launch the shell).

121

Table 5.5: The category of the failed syscall test cases.

Category of Failed cases Number
Testing the bug or vulnerability of Linux kernel 16

Network is not enabled 15
The function is not implemented 25

Others 10
Total 66

5.5.4 Reliability and Stability (RQ3)

We use the LTP (Linux Test Project [27]) testsuite to evaluate the reliability and

stability of the rehosted kernel. In total, there are 1, 257 test cases for system calls.

Among them, 148 are skipped as the testing environment (e.g., the CPU architecture

and the build configuration) does not meet the requirement. For the left 1, 109 test

cases, 1, 043 passed while the left 66 ones failed.

We further analyze the reason for the failed test cases. Table 5.5 lists the category

of the reason. Among them, 15 cases are due to the lack of network devices. This

is expected since our system does not add the support of network device initially.

However, all the 15 test cases are passed after installing the Ethernet device driver

with kernel modules on the rehosted Linux kernel (Section 5.5.5). Also, 16 cases aim

to test whether the Linux kernel fixes a bug or vulnerability. For instance, the test

case (timer_create03 [28]) is to check whether CVE-2017-18344 [16] is fixed. If the

vulnerability is not fixed, the test case will fail. They are also expected since the

testing kernel does not fix these vulnerabilities. The other 25 cases return back the

ENOSYS error number, which means the functionalities are not implemented. For the

remaining 10 cases, the reason is adhoc, such as the kernel version is old and timeout.

In summary, 94% of the system call test cases passed. This evaluation shows the

rehosted kernel is reliable and stable. We further demonstrate the usage scenarios of

the rehosted Linux kernel in Section 5.5.5.

122

Answer to RQ3: The rehosted Linux kernel can pass 94% system call test
cases in LTP, which demonstrates its reliability and stability.

5.5.5 Applications and Other Peripherals (RQ4)

Our system can rehost Linux kernels, which provides the capability to install different

peripheral drivers with kernel modules to support more peripherals. Furthermore,

the rehosted Linux kernel lays the foundation of applications relying on the capability

to introspect the runtime states of the target system. In this section, we successfully

install the Ethernet device driver (i.e., smc91x) for all the rehosted Linux kernels. We

also leverage our system to build three applications, including kernel crash analysis,

rootkit forensic analysis, and kernel fuzzing, to demonstrate the usage scenarios of

ECMO. Other applications that rely on QEMU can be ported. Note that, we only

use these applications to demonstrate the usage of our system. The applications are

not the main contribution of

Other Peripherals

Linux kernel module is an object file that can be loaded during the runtime to extend

the functionality of the Linux kernel. In this case, peripheral drivers can be built

as kernel modules and loaded into the kernel dynamically. To demonstrate that

our rehosted Linux kernel is able to support more peripherals. we select one rather

complex peripheral (i.e., smc91x [42]) and build the driver code into kernel module

(i.e., smc91x.ko). We then inject this kernel module into the ramfs that is fed to

rehosted Linux kernel. After the embedded Linux kernel is rehosted by ECMO,

we use the command insmod smc91x.ko to install the peripheral driver for smc91x.

Meanwhile, QEMU has already provided the peripheral model for smc91x and we

can integrate this model into the machine model directly. Finally, we successfully

install the peripheral driver of smc91x for all the 710 rehosted Linux kernels, which

123

Table 5.6: CVEs that can be triggered on the rehosted Linux kernel by ECMO.

CVE ID CVE Score CVE Type Fix Version
CVE-2018-5333 5.5 Null Pointer Dereference 4.14.13
CVE-2016-4557 7.8 Double Free 4.5.5
CVE-2017-10661 7.0 Race Condition 4.10.15
CVE-2016-0728 7.8 Interger Overflow 4.4.1
CVE-2016-9793 7.8 Type Confusion 4.8.14
CVE-2017-12193 5.5 Null Pointer Dereference 4.13.11

demonstrate the capability of ECMO to support the other peripherals.

Crash Analysis

In the following, we show the process to utilize ECMO to understand the root cause

of the crash on rehosted kernels.

To this end, we collect the PoCs that can trigger the crash for six reported bugs

and vulnerabilities (as shown in Table 5.6). We then boot the Linux kernel and run

the PoCs to crash the kernel. During this process, we use the QEMU to collect the

runtime trace. We also leverage the remote GDB in QEMU to debug the rehosted

kernel. We detail the procedures on how to conduct the crash analysis for one case

(CVE-2016-9793 [15]) with the collected runtime trace. Figure 5.14 shows the whole

procedure.

Specifically, when the rehosted Linux kernel crashes, the detailed call stack will

be printed out. The call stack includes the function name and the addresses of these

functions. With the runtime trace provided by QEMU, we can get the information

including the register values and the execution path. By analyzing the trace, we

noticed that a negative value (i.e., 0xffffff40) is the first parameter of the function

__alloc_skb. This negative value results in the crash.

We then analyze the propagation of this negative value within the trace. This

value is propagated by the first parameter of the function sock_alloc_send_pskb.

Finally, we notice that the negative value 0xffffff40 is calculated from 0xffffff00,

124

which is loaded by the function unix_stream_sendmsg from the address 0xc7929110.

We then use the GDB to set a watchpoint at this memory address and capture that the

instruction at the address 0xc0229f68 was writing the negative value (i.e., 0xffffff00

) into this memory location.

We further analyze the function that contains the instruction at the address

0xc0229f68. It turns out that the root cause of the crash is because of the type

confusion. In the function sock_setsockopt, the variable sk!sk_sndbuf will be set

by the return value of max_t (maximum value between two values in the same type).

However, due to the wrong type u32, the return value can be a negative value, which

triggers the crash.

This analysis shows the usage of ECMO by providing the capability introspect

the runtime states of the rehosted kernel.

Rootkit Forensic Analysis

Rootkit forensic analysis requires the ability to monitor the runtime states of the ker-

nel [82, 94]. We demonstrate this ability by conducting the rootkit forensic analysis

with one (i.e., Suterusu [45]) popular rootkit in the wild.

Specifically, Suterusu is able to hide specific processes by hijacking the kernel

function proc_readdir, which is used to get the process information. As shown in

Figure 5.15a, it hijacks the function proc_readdir by rewriting the function’s first

instruction to LDR PC,[PC,#0]. As a result it redirects the execution to the function

new_proc_readdir inside the rootkit. With ECMO, we can monitor the changes to

the kernel code sections (a suspicious behavior) by setting up memory watchpoints

to the Linux code section (Figure 5.15b).

125

Linux Kernel Rootkit
hijack_proc

proc_readdir new_proc_readdir

Hijack

LDR PC, [PC,#0]
Rewriting

(a) Workflow of rootkit Suterusu

gef > c
Continuing.

Hardware watchpoint 1: *0xc00fc078

Old value = 0xe92d4038
New value = 0xe59ff000
0xbf00116c in ?? () LDR PC,[PC, #0]

(b) ECMO observes how the rootkit

Suterusu works.

Figure 5.15: The workflow of rootkit Suterusu and how ECMO analyzes the behavior

Figure 5.16: UnicornFuzz can be run on the rehosted Linux kernel

Fuzzing

Fuzzing has been widely used to detect software vulnerabilities. We ported one of

the most popular kernel fuzzers (i.e.,UnicornFuzz [109]) into ECMO and fuzzed the

example kernel modules provided by UnicornFuzz. As shown in Fig. 5.16, UnicornFuzz

can work under ECMO and the fuzzing speed can reach to 396 instances per second.

This demonstrates the usage of ECMO for kernel fuzzing.

Answer to RQ4: Applications, e.g., crash analysis, forensic analysis, kernel
fuzzing, can be built upon the rehosted Linux kernel by our system.

126

5.6 Discussion

Manual efforts. ECMO provides mostly automated approach and only developing

the ECMO Driver requires manual efforts. However, this is a one-time effort. Fur-

thermore, one ECMO Driver can be transplanted to different kernel versions if the

related functions and structures are not changed. Even if the functions are changed,

we just need to change a few APIs and compile it again to create a new ECMO

Driver. For example, the 815 Linux kernels consist of 20 different kernel versions.

For the kernel in version 2.6.36, it takes 385 lines of C code. This driver can be

used for all the kernel images of Netgear (Table 4). For the kernel in version 3.18.20

and 3.18.23, it takes 534 lines of C code while 180 lines of new code are added. For

kernels in all the left 17 versions, they share the same driver code. 60 lines of new

code are added compared with the one used in 3.18.20. Note that the driver code

for the transplanted peripherals does not need to be developed. Instead, we reuse

the existing code. For example, the driver code for VIC (PL190) is open source [38].

Thus, we just reuse the existing driver code, merge the driver code into one file,

and finally compile it to generate the ECMO driver. In total, it takes less than one

person-hour to build a new customized driver.

Functionality of peripherals. We successfully boot the Linux kernel by trans-

planting designated peripherals (e.g., IC, Timer, and UART). We admit that the

original peripherals may not work property as they are not emulated (or trans-

planted) in QEMU. However, the functionalities of the transplanted peripherals are

guaranteed. With the transplanted peripherals, ECMO can provide the capability to

introspect the runtime states of the Linux kernel that dynamic analysis applications

can be built upon. Without our system, it’s impossible to build such applications

since the target Linux kernel cannot be booted in QEMU. The three applications

used in the evaluation have demonstrated the usage scenarios of our system. We

127

may build or port more complicated applications, e.g., dynamic taint analysis [134],

to further evaluate our system.

Other Peripherals. Currently, ECMO is evaluated based on transplanting three

early-boot peripherals (i.e., IC, timer, and UART) as they are required to boot a

Linux kernel. In general, peripheral transplantation works on all kinds of periph-

erals. The transplanting process depends on the identification of ECMO pointers.

Fortunately, to support the other peripherals, users can install the kernel modules

directly on the rehosted Linux kernel, which does not need to identify pointers. In

this case, all kinds of peripherals can be supported. Our experiments show that the

driver of Ethernet device, which is rather complex, can be successfully installed and

the network functionality can be guaranteed.

Other architectures Currently, ECMO only supports ARM architecture, which

is the most popular one in embedded systems [41]. However, the technique peripheral

transplantation can be easily extended to the other architecture as it does not rely

on any particular architecture feature. Specifically, developers need to implement

the module for identifying ECMO Pointers for the new architecture. This requires

additional engineering efforts and algorithm 2 is provided.

5.7 Summary

In this work, we propose a novel technique named peripheral transplantation to

rehost the Linux kernel of embedded devices in QEMU. This lays the foundation

for applications that rely on the capability of runtime state introspection. We have

implemented this technique inside a prototype system called ECMO and applied it

to 815 firmware images, which consist of 20 kernel versions and 37 device models.

ECMO can successfully transplant peripherals for Linux kernels in all images. Among

them, 710 kernels can be successfully rehosted, i.e., launching the user-space shell

128

(87.1% success rate). Furthermore, we successfully install one Ethernet device driver

(i.e., smc91x) on all the rehosted Linux kernels to demonstrate the capability of

ECMO to support more peripherals. We further build three applications to show the

usage scenarios of ECMO.

129

130

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we conduct the empirical study on ARM disassembly tools, and pro-

pose two powerful tool named Examiner and ECMO, to lay the foundation of the

firmware analysis.

Our empirical study reveals the observations that have not been systematically

summarized and/or confirmed before and explore the implementation bugs of the

state-of-the-art ARM disassembly tools. Furthermore, our study sheds light on the

limitations of state-of-the-art disassembly tools and points out the potential direc-

tions for improvement. With this study, the static firmware analysis framework can

be more accurate and robust.

To enhance the dynamic firmware analysis frameworks, which usually based on

state-of-the-art emulators (i.e., QEMU). We propose Examiner, which can automat-

ically locate the inconsistent instructions between emulators and hardware devices.

With Examiner, we are able to locate 12 different bugs of three emulators (i.e.,

QEMU, Unicorn, and Angr), which cover commonly used instructions (e.g., BLX).

All of these bugs are confirmed by the developers. Furthermore, we locate a huge

number of inconsistent instructions and demonstrate the capability of these instruc-

tions on detecting emulators, anti-emulation, and anti-fuzzing. With our findings,

131

the dynamic firmware analysis frameworks can be more stable and reliable.

To further increase the scalability and capability of the state-of-the-art dynamic

firmware analysis platforms, we propose a technique named peripheral transplanta-

tion and implement it inside a prototype system called ECMO. ECMO aims to trans-

plant the device drivers of designated peripherals into the Linux kernel and replace

the peripherals of Linux kernel that are not supported by QEMU with supported

ones. Our evaluation demonstrate that ECMO can successfully rehost 710 different

firmware images out of 815 ones, covering 20 kernel versions, 37 device models, and

24 vendors. With ECMO, the Linux kernel of embedded devices can be rehosted and

different applications (e.g., kernel crash analysis, rootkit forensic analysis, and kernel

fuzzing) can be conducted, boosting the capability of the state-of-the-art dynamic

firmware analysis platforms.

Overall, our works are helpful to nearly all the dynamic and static analysis tools.

Almost all the static analysis tools rely on the disassembly technique and may reuse

the state-of-the-art disassemblers, which are our study targets. With our study, the

accuracy and reliability of these static analysis tools can be enhanced. The same

impact also applies to the dynamic analysis tools. Most of the dynamic analysis

tools are based on the state-of-the-art emulators. Our work successfully find the bugs

of the emulators and reveal the fact that there are many inconsistent instructions

between emulators and real devices. This can make the dynamic analysis tools more

accurate and robust. Furthermore, our peripheral transplantation technique and the

proposed system ECMO can enhance the scalability of the current dynamic analysis

tools and boost the capability of analyzing embedded Linux kernels. Thus, the works

proposed in this thesis can impact the field of general program analysis.

132

6.2 Future Work

In the future, we aim to explore the following directions. First, we would like to

design new algorithms for disassembling ARM binaries more accurately. Based on

the implication from our empirical study, ARM disassembly tools do not have very

good support on detecting the right instruction set and identifying function bound-

aries. Combining the static analysis and machine-learning based mechanism may

help improve the accuracy. Furthermore, conflict analysis can be utilized to identify

the usage of BL label instruction, which can greatly improve the result of identifying

function boundary.

Second, we aim to improve the capability of Examiner on testing instructions

in privileged environments. This can help us to test the reliability of virtual ma-

chines. Apart from this, testing instruction stream sequences will also be our future

work. This is because emulators may have optimization strategy towards the specific

instruction stream sequences, whether these optimizations may influence the emula-

tion accuracy is unknown and deserve our testing. Furthermore, we aim to extend

Examiner to support more emulators and architectures.

Third, we aim to improve ECMO so that it can support more peripherals. Re-

hosted Linux kernel not only lays the foundation for building different applications,

but also provides us with the capability on installing kernel modules. Currently, we

inject the other peripheral drivers (i.e., NIC) on the rehosted Linux kernel with the

loadable kernel modules (.ko files). We aim to extend the supported peripherals and

apply ECMO on analyzing the security issues of kernel drivers.

All of the above mentioned future works can complement our existing works and

boost the capability and reliability of the state-of-the-art firmware analysis tech-

niques.

133

134

References

[1] 64 bit juno r2 arm® development platform. https://developer.arm.com/-/
media/Arm%20Developer%20Community/PDF/Juno%20r2%20datasheet.pdf.

[2] Android Open Source Project. https://source.android.com/.

[3] angr. https://angr.io/.

[4] Arm dual-timer module (sp804). https://developer.arm.com/
documentation/ddi0271/d/.

[5] ARM Exploration tools. https://developer.arm.com/architectures/
cpu-architecture/a-profile/exploration-tools.

[6] ARM Mapping Symbols. http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.dui0474f/CHDGFCDI.html.

[7] Arm Mbed OS. https://www.mbed.com/en/.

[8] ARM SIMD Instructions. https://developer.arm.com/documentation/
dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions.

[9] ARM WFE Instruction. https://developer.arm.com/documentation/
ddi0360/e/programmer-s-model/additional-instructions/
wait-for-event-wfe.

[10] B, BL, BX, BLX, and BXJ. http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.dui0489c/Cihfddaf.html.

[11] Binary Ninja: A New Kind Of Reversing Platform. https://binary.ninja/.

[12] Buildroot: Making Embedded Linux Easy. https://buildroot.org.

[13] Capstone: The Ultimate Disassembly. http://www.capstone-engine.org/.

135

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Juno%20r2%20datasheet.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Juno%20r2%20datasheet.pdf
https://source.android.com/
https://angr.io/
https://developer.arm.com/documentation/ddi0271/d/
https://developer.arm.com/documentation/ddi0271/d/
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474f/CHDGFCDI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474f/CHDGFCDI.html
https://www.mbed.com/en/
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-SIMD-/ARM-SIMD-instructions
https://developer.arm.com/documentation/ddi0360/e/programmer-s-model/additional-instructions/wait-for-event-wfe
https://developer.arm.com/documentation/ddi0360/e/programmer-s-model/additional-instructions/wait-for-event-wfe
https://developer.arm.com/documentation/ddi0360/e/programmer-s-model/additional-instructions/wait-for-event-wfe
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/Cihfddaf.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/Cihfddaf.html
https://binary.ninja/
https://buildroot.org
http://www.capstone-engine.org/

[14] Clang: Documentation. https://clang.llvm.org/docs/CommandGuide/
clang.html.

[15] CVE-2016-9793. https://nvd.nist.gov/vuln/detail/CVE-2016-9793.

[16] CVE-2017-18344. https://nvd.nist.gov/vuln/detail/CVE-2017-18344.

[17] DDoS attack that disrupted internet was largest of its kind in history,
experts say’. https://www.theguardian.com/technology/2016/oct/26/
ddos-attack-dyn-mirai-botnet.

[18] Debian Popularity Contest. https://popcon.debian.org/by_inst.

[19] GCC: Options That Control Optimization. https://gcc.gnu.org/
onlinedocs/gcc/Optimize-Options.html.

[20] Ghidra: A Software Reverse Engineering(SRE) Suite of Tools Developed by
NSA. https://ghidra-sre.org/.

[21] Hopper Disassembler. https://www.hopperapp.com/.

[22] IDA Pro. https://www.hex-rays.com/products/ida/.

[23] Issues submitted to BAP. https://github.com/BinaryAnalysisPlatform/
bap/issues/951.

[24] Issues submitted to Binary Ninja. https://github.com/Vector35/
binaryninja-api/issues/1359.

[25] Issues submitted to Ghidra. https://github.com/
NationalSecurityAgency/ghidra/issues/657.

[26] Issues submitted to Radare2. https://github.com/radareorg/radare2/
issues/14223.

[27] Linux Test Project. http://linux-test-project.github.io/.

[28] Linux test project test case timer_create03. https://github.com/
linux-test-project/ltp/blob/master/testcases/kernel/syscalls/
timer_create/timer_create03.c.

[29] Luajit. http://luajit.org/luajit.html.

136

https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://nvd.nist.gov/vuln/detail/CVE-2016-9793
https://nvd.nist.gov/vuln/detail/CVE-2017-18344
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://popcon.debian.org/by_inst
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ghidra-sre.org/
https://www.hopperapp.com/
https://www.hex-rays.com/products/ida/
https://github.com/BinaryAnalysisPlatform/bap/issues/951
https://github.com/BinaryAnalysisPlatform/bap/issues/951
https://github.com/Vector35/binaryninja-api/issues/1359
https://github.com/Vector35/binaryninja-api/issues/1359
https://github.com/NationalSecurityAgency/ghidra/issues/657
https://github.com/NationalSecurityAgency/ghidra/issues/657
https://github.com/radareorg/radare2/issues/14223
https://github.com/radareorg/radare2/issues/14223
http://linux-test-project.github.io/
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/timer_create/timer_create03.c
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/timer_create/timer_create03.c
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/timer_create/timer_create03.c
http://luajit.org/luajit.html

[30] Luaqemu. https://github.com/Comsecuris/luaqemu.

[31] Mirai IoT botnet blamed for ’smashing Liberia off the internet’. https://www.
theregister.com/2016/11/04/liberia_ddos/.

[32] Netgear. https://www.netgear.com/.

[33] Objdump - Display Information from Object Files. https://linux.die.net/
man/1/objdump.

[34] OpenWRT. https://openwrt.org/.

[35] Panda.re. https://panda.re/.

[36] Paradyn Project. Dyninst: Putting the Performance in High Performance Com-
puting. https://www.dyninst.org/.

[37] Primecell vectored interrupt controller (pl190). https://developer.arm.com/
documentation/ddi0181/e/introduction/about-the-vic.

[38] Primecell vectored interrupt controller (pl190) source code. https://elixir.
bootlin.com/linux/v3.18.20/source/drivers/irqchip/irq-vic.c#L445.

[39] Psutil. https://psutil.readthedocs.io.

[40] Radare2. https://rada.re/r/.

[41] The roadshow of arm. https://group.softbank/system/files/pdf/ir/
presentations/2019/arm-roadshow-slides_q4fy2019_01_en.pdf.

[42] Smc91x source code. https://elixir.bootlin.com/linux/v3.18.20/
source/drivers/irqchip/irq-vic.c#L445.

[43] Soc (system on a chip). https://openwrt.org/docs/techref/hardware/soc.

[44] Source code for iot botnet ‘mirai’ released. https://krebsonsecurity.com/
2016/10/source-code-for-iot-botnet-mirai-released/.

[45] Suterusu. https://github.com/mncoppola/suterusu.

[46] The FreeRTOS Kernel. https://www.freertos.org/.

[47] Triforceafl. https://github.com/nccgroup/TriforceAFL.

137

https://github.com/Comsecuris/luaqemu
https://www.theregister.com/2016/11/04/liberia_ddos/
https://www.theregister.com/2016/11/04/liberia_ddos/
https://www.netgear.com/
https://linux.die.net/man/1/objdump
https://linux.die.net/man/1/objdump
https://openwrt.org/
https://panda.re/
https://www.dyninst.org/
https://developer.arm.com/documentation/ddi0181/e/introduction/about-the-vic
https://developer.arm.com/documentation/ddi0181/e/introduction/about-the-vic
https://elixir.bootlin.com/linux/v3.18.20/source/drivers/irqchip/irq-vic.c#L445
https://elixir.bootlin.com/linux/v3.18.20/source/drivers/irqchip/irq-vic.c#L445
https://psutil.readthedocs.io
https://rada.re/r/
https://group.softbank/system/files/pdf/ir/presentations/2019/arm-roadshow-slides_q4fy2019_01_en.pdf
https://group.softbank/system/files/pdf/ir/presentations/2019/arm-roadshow-slides_q4fy2019_01_en.pdf
https://elixir.bootlin.com/linux/v3.18.20/source/drivers/irqchip/irq-vic.c#L445
https://elixir.bootlin.com/linux/v3.18.20/source/drivers/irqchip/irq-vic.c#L445
https://openwrt.org/docs/techref/hardware/soc
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://github.com/mncoppola/suterusu
https://www.freertos.org/
https://github.com/nccgroup/TriforceAFL

[48] Unicorn. https://www.unicorn-engine.org/.

[49] Vulnerability statistics of linux kernel. https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html.

[50] Z3Prover. https://github.com/Z3Prover/z3.

[51] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, An-
drew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat: control-flow
attestation for embedded systems software. In Proceedings of the 23th ACM
Conference on Computer and Communications Security, 2016.

[52] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert
Bos. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
Proceedings of the 25th USENIX Security Symposium, 2016.

[53] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understand-
ing the mirai botnet. In Proceedings of the 26th USENIX Security Symposium,
2017.

[54] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srini-
vasan, Junghwan Rhee, and Dongyan Xu. Dksm: Subverting virtual machine
introspection for fun and profit. In Proceedings of the 29th IEEE symposium
on reliable distributed systems, 2010.

[55] Tiffany Bao, Johnathon Burket, Maverick Woo, Rafael Turner, and David
Brumley. Byteweight: Learning to recognize functions in binary code. In
Proceedings of the 23th USENIX Conference on Security Symposium, 2014.

[56] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, Ahmad M Mustafa, Gbadebo
Ayoade, Khaled Al-Naami, Latifur Khan, Kevin W Hamlen, Bhavani M Thu-
raisingham, Frederico Araujo, et al. Superset disassembly: Statically rewriting
x86 binaries without heuristics. In Proceedings of the 25th Network and Dis-
tributed Systems Security Symposium, 2018.

[57] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings
of the 2005 USENIX Conference on Usenix Annual Technical Conference, 2005.

[58] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. Speculative
disassembly of binary code. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, 2016.

138

https://www.unicorn-engine.org/
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://github.com/Z3Prover/z3

[59] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
Bap: A binary analysis platform. In Proceedings of the 23rd International
Conference on Computer Aided Verification, 2011.

[60] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation, 2008.

[61] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards
automated dynamic analysis for linux-based embedded firmware. In Proceed-
ings of the 23rd Annual Network and Distributed System Security Symposium,
2016.

[62] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. IoTFuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In Proceedings of the 25th Annual Network and Distributed System
Security Symposium, 2018.

[63] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural
nets can learn function type signatures from binaries. In Proceedings of the
26th USENIX Security Symposium, 2017.

[64] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table case state-
ments from binary code. Science of Computer Programming, 40(2-3):171–188,
2001.

[65] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen,
David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Math-
ias Payer. Halucinator: Firmware re-hosting through abstraction layer emula-
tion. In Proceedings of the 29th USENIX Security Symposium, 2020.

[66] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. Inception:
System-wide security testing of real-world embedded systems software. In Pro-
ceedings of the 27th USENIX Security Symposium, 2018.

[67] Andrei Costin, Jonas Zaddach, Aurelien Francillon, and Davide Balzarotti. A
large-scale analysis of the security of embedded firmwares. In Proceedings of
the 23rd USENIX Security Symposium, 2014.

[68] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated Dynamic
Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces. In

139

Proceedings of the 11th ACM Asia Conference on Computer and Communica-
tions Security, 2016.

[69] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. {REPT}: Reverse debugging of failures in deployed soft-
ware. In Proceedings of the 13th {USENIX} Symposium on Operating Systems
Design and Implementation, 2018.

[70] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. Towards
automated dynamic analysis for linux-based embedded firmware. In Proceed-
ings of the 23rd Symposium on Network and Distributed System Security, 2016.

[71] Yaniv David, Nimrod Partush, and Eran Yahav. FirmUp: Precise static de-
tection of common vulnerabilities in firmware. In Proceedings of the 23rd In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, 2018.

[72] Andriesse Dennis, Asia Slowinska, and Bos Herbert. Compiler-agnostic func-
tion detection in binaries. In Proceedings of the 2nd IEEE European Symposium
on Security and Privacy, 2017.

[73] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and
Wenke Lee. Virtuoso: Narrowing the semantic gap in virtual machine intro-
spection. In Proceedings of the 32nd IEEE symposium on security and privacy,
2011.

[74] Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov.
Qemu-based framework for non-intrusive virtual machine instrumentation and
introspection. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering, 2017.

[75] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. Identi-
fying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and commu-
nications security, 2017.

[76] Michael J. Eager. Introduction to the DWARF Debugging Format. http:
//www.dwarfstd.org/doc/DebuggingusingDWARF-2012.pdf.

[77] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.
Dynamic spyware analysis. In Proceedings of the 2007 USENIX Annual Tech-
nical Conference, 2007.

140

http://www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
http://www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf

[78] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre:
Efficient cross-architecture identification of bugs in binary code. In Proceedings
of the 23rd Network and Distributed System Security Symposium, 2016.

[79] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling.
In Proceedings of the 29th USENIX Security Symposium, 2020.

[80] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. Scalable graph-based bug search for firmware images. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
2016.

[81] Yangchun Fu and Zhiqiang Lin. Bridging the semantic gap in virtual ma-
chine introspection via online kernel data redirection. ACM Transactions on
Information and System Security, 2013.

[82] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based
architecture for intrusion detection. In Proceedings of the 2003 Annual Network
and Distributed System Security Symposium, 2003.

[83] Xinyang Ge, Ben Niu, and Weidong Cui. Reverse debugging of kernel failures
in deployed systems. In Proceedings of the 2020 USENIX Annual Technical
Conference, 2020.

[84] Daniel M German and Jesús M González-Barahona. An empirical study of
the reuse of software licensed under the gnu general public license. In IFIP
International Conference on Open Source Systems. Springer, 2009.

[85] Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz. Antifuzz:
Impeding fuzzing audits of binary executables. In Proceedings of the 28th
{USENIX} Security Symposium, 2019.

[86] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,
Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, and Giovanni Vigna. Toward the analysis of embedded
firmware through automated re-hosting. In Proceedings of the 22nd Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses, 2019.

[87] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, and
Michael Grace. PARTEMU: Enabling dynamic analysis of real-world trust-
zone software using emulation. In Proceedings of the 29th USENIX Security
Symposium, 2020.

141

[88] Grant Hernandez, Farhaan Fowze, Tuba Yavuz, Kevin RB Butler, et al. Fir-
musb: Vetting usb device firmware using domain informed symbolic execution.
In Proceedings of the 24th ACM Conference on Computer and Communications
Security, 2017.

[89] Anoirel Issa. Anti-virtual machines and emulations. Journal in Computer
Virology, 2012.

[90] Emily R Jacobson, Nathan Rosenblum, and Barton P Miller. Labeling library
functions in stripped binaries. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools, 2011.

[91] Daehee Jang, Yunjong Jeong, Sungman Lee, Minjoon Park, Kuenhwan Kwak,
Donguk Kim, and Brent Byunghoon Kang. Rethinking anti-emulation tech-
niques for large-scale software deployment. Computers & Security, 2019.

[92] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren.
An empirical study on arm disassembly tools. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2020.

[93] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection
through vmm-based" out-of-the-box" semantic view reconstruction. In Proceed-
ings of the 14th ACM conference on Computer and communications security,
2007.

[94] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection
and monitoring through vmm-based “out-of-the-box” semantic view reconstruc-
tion. ACM Transactions on Information and System Security, 2010.

[95] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Mason, Stephen Checkoway,
Stefan Savage, and Kirill Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In Proceedings of the 30th {USENIX} Security Symposium,
2021.

[96] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. Apollo:
Automatic detection and diagnosis of performance regressions in database sys-
tems. Proceedings of the VLDB Endowment, 2019.

[97] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung Lee, and
Taesoo Kim. Fuzzification: Anti-fuzzing techniques. In Proceedings of the 28th
{USENIX} Security Symposium, 2019.

142

[98] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-
LLVM – software protection for the masses. In Proceedings of the 1st Interna-
tional Workshop on Software Protection, 2015.

[99] Timotej Kapus and Cristian Cadar. Automatic testing of symbolic execution
engines via program generation and differential testing. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineer-
ing, 2017.

[100] Nikos Karampatziakis. Static analysis of binary executables using structural
svms. In Proceedings of the 23rd Advances in Neural Information Processing
Systems, 2010.

[101] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang,
and Yongdae Kim. Firmae: Towards large-scale emulation of IoT firmware
for dynamic analysis. In Proceedings of the 2020 Annual Computer Security
Applications Conference, 2020.

[102] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna.
Static disassembly of obfuscated binaries. In Proceedings of the 12th USENIX
Security Symposium, 2004.

[103] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian
Cadar. On the correctness of electronic documents: studying, finding, and
localizing inconsistency bugs in PDF readers and files. Empirical Software
Engineering, 2018.

[104] Tımea László and Ákos Kiss. Obfuscating c++ programs via control flow flat-
tening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica, 30(1):3–19, 2009.

[105] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equiva-
lence modulo inputs. ACM SIGPLAN Notices, 2014.

[106] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
Many-core compiler fuzzing. ACM SIGPLAN Notices, 2015.

[107] Cătălin Valeriu Liță, Doina Cosovan, and Dragoş Gavriluț. Anti-emulation
trends in modern packers: a survey on the evolution of anti-emulation tech-
niques in upa packers. Journal of Computer Virology and Hacking Techniques,
2018.

143

[108] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[109] Dominik Maier, Benedikt Radtke, and Bastian Harren. Unicorefuzz: On
the viability of emulation for kernelspace fuzzing. In Proceedings of the 13rd
{USENIX} Workshop on Offensive Technologies ({WOOT} 19), 2019.

[110] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song,
and Petros Maniatis. Path-exploration lifting: Hi-fi tests for lo-fi emulators.
In Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

[111] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Br-
uschi. Testing system virtual machines. In Proceedings of the 19th international
symposium on software testing and analysis, 2010.

[112] Lorenzo Martignoni, Roberto Paleari, Alessandro Reina, Giampaolo Fresi
Roglia, and Danilo Bruschi. A methodology for testing CPU emulators. ACM
Transactions on Software Engineering and Methodology, 2013.

[113] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Br-
uschi. Testing CPU emulators. In Proceedings of the eighteenth international
symposium on Software testing and analysis, 2009.

[114] William M McKeeman. Differential testing for software. Digital Technical
Journal, 1998.

[115] Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and William Robertson.
DICE: Automatic emulation of dma input channels for dynamic firmware anal-
ysis. In Proceedings of the 42nd IEEE Symposium on Security and Privacy,
2021.

[116] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. Probabilistic disassembly. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, 2019.

[117] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple
execution paths for malware analysis. In Proceedings of the 28th IEEE Sym-
posium on Security and Privacy, 2007.

[118] Marius Muench, Dario Nisi, Aurelien Francillon, and Davide Balzarotti.
Avatar2: A Multi-target Orchestration Platform. In Workshop on Binary Anal-
ysis Research, 2018.

144

[119] James Newsome and Dawn Song. Dynamic taint analysis: Automatic de-
tection, analysis, and signature generation of exploit attacks on commodity
software. In Proceedings of the 12th Network and Distributed Systems Security
Symposium, 2005.

[120] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and
Thorsten Holz. Cross-architecture bug search in binary executables. In Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE, 2015.

[121] Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict protection for
virtual function calls in cots c++ binaries. In Proceedings of the 22nd Annual
Network and Distributed System Security Symposium, 2015.

[122] Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against stack
based buffer overflow attacks. In Proceedings of the USENIX Annual Technical
Conference, 2003.

[123] Rui Qiao and R Sekar. Function interface analysis: A principled approach for
function recognition in cots binaries. In Proceedings of the 47th International
Conference on Dependable Systems and Networks, 2017.

[124] Shisong Qin, Chao Zhang, Kaixiang Chen, and Zheming Li. idev: exploring and
exploiting semantic deviations in arm instruction processing. In Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021.

[125] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting system
emulators. In Proceedings of the 2007 International Conference on Information
Security. Springer, 2007.

[126] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: De-
tecting insecure multi-binary interactions in embedded firmware. In Proceedings
of the 41st IEEE Symposium on Security and Privacy, 2020.

[127] Alastair Reid. Trustworthy specifications of arm® v8-a and v8-m system level
architecture. In Proceedings of the 16th Formal Methods in Computer-Aided
Design, 2016.

[128] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of
kernel rootkits with vmm-based memory shadowing. In Proceedings of the 11st
International Workshop on Recent Advances in Intrusion Detection, 2008.

145

[129] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Multi-aspect profiling of ker-
nel rootkit behavior. In Proceedings of the 4th ACM European conference on
Computer systems, pages 47–60, 2009.

[130] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. Learning
to analyze binary computer code. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, 2008.

[131] Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices. ACM
SIGOPS Operating Systems Review, 2008.

[132] Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and optimiza-
tion, 2008.

[133] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing for os kernels. In
Proceedings of the 26th USENIX Security Symposium, 2017.

[134] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Proceedings of the 31st IEEE symposium
on Security and privacy, 2010.

[135] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of
executable code revisited. In Proceedings of the 9th Working Conference on
Reverse Engineering, 2002.

[136] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing func-
tions in binaries with neural networks. In Proceedings of the 24th USENIX
Conference on Security Symposium, 2015.

[137] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Firmalice: Automatic detection of authentication bypass
vulnerabilities in binary firmware. In Proceedings of the 22th Annual Sympo-
sium on Network and Distributed System Security, 2015.

[138] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Kruegel, et al. Sok:(state of) the art of war: Offensive techniques in
binary analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy, 2016.

146

[139] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. BlackIoT: IoT botnet of
high wattage devices can disrupt the power grid. In Proceedings of the 27th
USENIX Security Symposium, 2018.

[140] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code
mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, 2016.

[141] Kim Taegyu, Chung Hwan Kim, Choi Hongjun, Yonghwi Kwon, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu less. Revarm: A platform-
agnostic arm binary rewriter for security applications. In Proceedings of the
37th Annual Computer Security Applications Conference, 2017.

[142] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng
Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Facilitating dynamic
analysis of device drivers of mobile systems. In Proceedings of the 27th USENIX
Security Symposium, 2018.

[143] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cris-
tiano Giuffrida. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In Proceedings of the 37th IEEE Symposium on Security and
Privacy, 2016.

[144] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Mak-
ing reassembly great again. In Proceedings of the 24th Annual Symposium on
Network and Distributed System Security, 2017.

[145] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. Looking
from the mirror: evaluating iot device security through mobile companion apps.
In Proceedings of the 28th USENIX Security Symposium, 2019.

[146] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. Countering per-
sistent kernel rootkits through systematic hook discovery. In Proceedings of the
11st International Workshop on Recent Advances in Intrusion Detection, 2008.

[147] Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effec-
tiveness of type-aware operator mutations for testing smt solvers. Proceedings
of the ACM on Programming Languages, (OOPSLA), 2020.

[148] Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating smt solvers
via semantic fusion. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020.

147

[149] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
Neural network-based graph embedding for cross-platform binary code simi-
larity detection. In Proceedings of the 24th ACM Conference on Computer and
Communications Security, 2017.

[150] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neu-
ral network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[151] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an
understanding of anti-virtualization and anti-debugging behavior in modern
malware. In Proceedings of the 38th IEEE International Conference on De-
pendable Systems and Networks, 2008.

[152] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. V2e:
combining hardware virtualization and software emulation for transparent
and extensible malware analysis. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Environments, 2012.

[153] Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In Proceed-
ings of the 21st {USENIX} Security Symposium, 2012.

[154] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and
analysis. In Proceedings of the 14th ACM conference on Computer and com-
munications security, 2007.

[155] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti.
AVATAR: A framework to support dynamic security analysis of embedded
systems’ firmwares. In Proceedings of the 21st Symposium on Network and
Distributed System Security, 2014.

[156] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti.
Avatar: A framework to support dynamic security analysis of embedded sys-
tems’ firmwares. In Proceedings of the 21st Annual Network and Distributed
System Security Symposium, 2014.

[157] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. Practical control flow integrity and
randomization for binary executables. In Proceedings of the 34th IEEE Sym-
posium on Security and Privacy, pages 559–573, 2013.

148

[158] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu.
Viewdroid: Towards obfuscation-resilient mobile application repackaging de-
tection. In Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks, pages 25–36. ACM, 2014.

[159] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In Pro-
ceedings of the 22nd USENIX Security Symposium, 2013.

[160] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. FIRMAFL: high-throughput greybox fuzzing of IoT firmware via
augmented process emulation. In Proceedings of the 28th USENIX Security
Symposium, 2019.

149

	Declaration
	Abstract
	Publication
	Acknowledgement
	List of Figures
	List of Tables
	1 Introduction
	1.1 Firmware Analysis
	1.2 Motivation
	1.2.1 Implicit Assumption of Static Analysis Tools
	1.2.2 Implicit Assumption of Dynamic Analysis Tools
	1.2.3 Scalability Issue of Dynamic Analysis Tools

	1.3 Our Work
	1.4 Outline

	2 Literature Review
	2.1 Disassembly Primitives
	2.2 Emulator Testing and Applications
	2.3 Differential Testing
	2.4 Firmware Analysis
	2.4.1 Static Firmware Analysis
	2.4.2 Dynamic Firmware Analysis

	3 An Empirical Study on ARM Disassembly Tools
	3.1 Overview
	3.2 Background
	3.2.1 Different CPU Architectures and Instruction Sets
	3.2.2 Disassembly Strategies
	3.2.3 Function Boundary
	3.2.4 Function Signature

	3.3 Methodology
	3.3.1 Prepare Binaries.
	3.3.2 Determine Disassembly Primitives
	3.3.3 Generate Ground Truth
	3.3.4 Extract the Result

	3.4 Evaluation
	3.4.1 Evaluation Metrics
	3.4.2 Accuracy of the Disassembly Tools (RQ1)
	3.4.3 Factors that Affect Accuracy (RQ2)
	3.4.4 Types and Options of Tools (RQ3)
	3.4.5 Efficiency of the Disassembly Tools (RQ4)
	3.4.6 Improvement (RQ5)

	3.5 Implications
	3.6 Discussion
	3.7 Summary

	4 Examiner: Automatically Locating Inconsistent Instructions between Real Devices and CPU Emulators for ARM
	4.1 Overview
	4.2 Background
	4.2.1 Terms
	4.2.2 ARM Instruction and Instruction Encoding
	4.2.3 Instruction Decoding in QEMU

	4.3 Design and Implementation
	4.3.1 A Motivating Example
	4.3.2 Test Case Generator
	4.3.3 Differential Testing Engine
	4.3.4 Implementation Details

	4.4 Evaluation
	4.4.1 Sufficiency of Test Case Generator (RQ1)
	4.4.2 Differential Testing Results and Root Causes (RQ2)
	4.4.3 Generalization of Examiner (RQ3)
	4.4.4 Applications of Inconsistent Instructions (RQ4)

	4.5 Discussion
	4.6 Summary

	5 ECMO: Peripheral Transplantation to Rehost Embedded Linux Kernels
	5.1 Overview
	5.2 Background
	5.2.1 Linux Kernel
	5.2.2 ARM Machines
	5.2.3 QEMU

	5.3 Challenges and Our Solution
	5.3.1 Challenges
	5.3.2 Our Solution: Peripheral Transplantation
	5.3.3 An Illustration Example of Peripheral Transplantation

	5.4 System Design and Implementation
	5.4.1 Decompress Linux Kernel
	5.4.2 Identity ECMO Pointers
	5.4.3 Generate ECMO Drivers
	5.4.4 Implementation Details

	5.5 Evaluation
	5.5.1 Dataset
	5.5.2 Identify ECMO Pointers (RQ1)
	5.5.3 Rehost Linux Kernels (RQ2)
	5.5.4 Reliability and Stability (RQ3)
	5.5.5 Applications and Other Peripherals (RQ4)

	5.6 Discussion
	5.7 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

