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Abstract 
 

This dissertation predicts the air ticket price to provide advice on the immediate or postponed 

purchase of a trip. The proposed methodology is based on the statistical learning of a price evolution 

model from the joint information of the trip attributes. The main originality consists in representing 

the price evolution with the inhomogeneous punctual process of the price variation. This 

representation was used to group flights from the Qunar.com database into similar behaviors and to 

build a common model for each of the identified behaviors. We then implemented a learning method 

to model the price evolution. This model provides a predictor for the occurrence of a price drop over 

a given period and therefore offers advice on the immediate or postponed purchase of a trip to the 

customer. 

 

The research is organized in three main phases. First, we introduced a new method of representing 

time series of prices. This representation compared the series with each other and applied data 

mining algorithms. The approach is based on a preliminary statistical modeling for the dynamics of 

time price series and the theory of point processes. We first transformed the time series by point 

processes. Then we modeled these series of returns by an estimate of the intensity in gray level. In 

a second step, we proposed a segmentation of learning data in order to extract standard behaviors 

using unsupervised learning techniques. Based on our new representation of time series, we applied 

segmentation algorithms and extracted average behaviors called centroids. With each centroid, we 

simulated price curves for a behavioral prediction. In a third phase, we applied supervised learning 

algorithms on the attributes of the flights in each group to allocate new flights to a centroid with 

their attributes. The first chapter describes the data structure and explains the relevance of the 

decision support module. The next three chapters analyze the process of developing the 

representation, the data segmentation, and the learning phase with different settings for each of the 

steps. The experimental results are present with a comparative study of the different configurations 

for the algorithms and the approaches. 

  



 

Introduction 
 

The thesis presents the development of a study for predicting the evolution of finite time series and 

the supervised learning of typical behaviors generated by a clustering step. Airlines, followed by all 

tourism professionals, have generalized yield management policies in order to optimize the price of 

a service based on their inventory level and the reservation date. This results in opacity during the 

price formation process. The same ticket on the same dates can vary greatly from one supplier to 

another, and from one moment to another. The consumer is kept in ignorance and uncertainty. They 

are encouraged to book in advance or at the last minute to benefit from offers presented as discount. 

Prediction of time series is a widespread subject with various applications: the prediction of changes 

in stock prices in finance, the short-term prediction of temperature in meteorology, the prediction of 

the number of flight reservations and the evolution of CO2 emission in aviation. The approach is 

based on the statistical analysis of previous developments with infinite series. Qunar.com is a search 

engine capable of searching for an airline ticket from over 250 travel agencies and airline websites. 

Suggestions to the purchase decision based on an estimate of the trend in the price evolution are 

provided.  

 

Our time series represent the price evolution of a perishable product. They all have an expiry date 

beyond which they are no longer available. Our database consists of a set of finite series to extract 

average behaviors. We attributed the most likely behavior to the new flights to extract a prediction. 

We conducted firstly an unsupervised learning stage of the time series leading to standard behaviors 

groups, followed by a learning step of these behaviors based on the attribute vectors of the flights 

in each group. We observed a collection of time series of the same length, regularly sampled, on a 

representative panel of routes. The collection is characterized by a set of static attributes (route, 

timetables, airline, etc.) and the point of the curve (price at time t, past trends, etc.). We grouped 

these series according to their trajectory to similar behaviors. Each of these groups is associated 

with an identifier called label, a standard behavior and a topology of attributes corresponding to the 

population of the group. The objective is to predict the most likely label for each result of a search 

due to the flight attributes. We then extracted from the standard behavior with the label and the 

information necessary to predict the evolution of flight prices. 

 

The prediction methods are essentially based on data-mining approaches, rather than exploiting the 

temporality of the price series or the data summary such as gross time averages. We proposed to 

implement machine-learning methods considering the nature and complexity of the input data. 

Conventional learning methods for prediction have generally been developed, as the input data is 

independent and identically distributed. However, the form of historical time series has an essential 

dependence structure with strong correlation. The envisaged approach is based on a preliminary 

statistical modeling of the dynamic time price series and the theory of point processes. As the 

observed prices evolve “by jumps”, the notion of punctual process is widely used for the queuing 

modeling in operational research.  

 

We proposed a supervised learning behavior of the time series for price, basing on a new 

representation of data. The whole process can be divided in two stages: the first step consists in 



 

transforming the price series into series of relative jumps. The second step groups the jumps in time 

and intensity window to form a gray level. A medium is to be found in the size of the windows to 

best represent the evolution of prices. It is therefore on these new representations that we intend to 

apply our algorithms to extract standard behaviors. Our new representation conducts two methods 

based on the modeling of time series. A first approach consists in applying the K-Means algorithm 

to the gray levels by measuring the distance between the series by Euclidean difference: the 

algorithm partitions the space of the gray level boxes to create groups of similar behavior 

minimizing the distance to the centroid. The other method is based on mixtures of models 

maximizing the likelihood of flights to the centroid of their group by an expectation-maximization 

algorithm.  

 

We used several supervised learning algorithms, namely trees of classification (CART and C4.5), 

Adaboost and the Random Forest. We improved the EM algorithm so that it performed the 

segmentation step together with the classification step. The classification rules created to directly 

interpret and identify important attributes were observed by decision trees. Likewise, random forests 

rank each attribute in order of importance in the classification by observing their influence in the 

multitude of trees created. It is then possible to select the best attributes to build a more efficient 

predictor. The new representation of time series improves the aggregation stage and the probability 

model development. We succeeded (i) in modelling general behaviors to predict possible evolutions 

and (ii) in directly predicting the evolution of the price. The implementation of this research requires 

constant monitoring of predictions and regular updating of models.  

 

Chapter 1 describes the data from our database to extract information about the user behaviors and 

the price changes. Started by describing the construction of database and the choice of our structure, 

different types of purchases are analyzed to choose the proper modeling parameters. Then we 

studied the behavior of price curves by visualizing the different types of yield management. Finally, 

the relevance of our project will be discussed to suggest purchasing decision. Chapter 2 analyzes 

our new representation of the data obtained by transforming the time series of prices into intensity 

estimation. The idea is to abstract price differences from flights in various distance, which are likely 

to follow the same types of variations at different price levels. The time series were first transformed 

into series of returns where only price changes are represented as a percentage change. We then 

modeled this sequence of points by an inhomogeneous process, the intensity of which can be 

estimated in the form of a pixelated image. Chapter 3 focuses on the segmentation of learning data. 

This segmentation extracts a finite set of typical behaviors from our flight database. The K-Means 

algorithm was adopted with the case-by-case gray levels as a measure of distance. We then tried to 

stabilize the results of the K-Means by applying the principle of bagging, which consists in 

multiplying the segmentation step by random subsets of the learning base. This method, called 

Bagged K-Means, improves convergence to the global optimal and attenuates the influence of 

initialization. Finally, we applied the Expectation-Maximization algorithm where the optimization 

criterion will not be the distance to the centroid but the overall likelihood of the model. In Chapter 

4, the steps leading up to the final prediction are outlined. The first step is the supervised learning 

of the group identifier Ei, according to the flight’s attributes of each group. Different algorithms 

such as classification trees, adaboost and the forest decision tree algorithm were conducted. To 

classify a new flight in its most probable group, the learning process associates an average behavior 



 

with a certain number of curves simulated. By averaging the behavior of these simulations, we 

obtain a prediction of the future evolution of flights in corresponding groups. The allocation of a 

flight to a group is then improved by the addition of information on the first price changes. Finally, 

the experimental results are presented in the last chapter. To evaluate our results, various metrics 

were used, such as the percentage of satisfactory predictions, the average percentage of gain and 

loss per ticket and the ROC curve. It is important to know which criterion to optimize between the 

percentage of satisfactory predictions and the average gain saved per ticket.  

 

 

  



 

Chapter 1 
 

Introduction 

Tourism has become an essential contributor to China's domestic economy. The total revenue of 

tourism industry in China amounted to around 7 trillion yuan in 2019, indicating a firm growth over 

the past decade. The emergence of an affluent middle class and an easing of restrictions were both 

supporting this travel boom. The sector was expected to contribute 3.3 percent to China's gross 

domestic product (GDP) directly by 2028. The number of domestic trips reached six billion in 2019, 

indicating an exponential increase compared to the number of trips made in China ten years ago. 

Chinese airlines have grown rapidly. From 2009 to 2019, demand grew at 14 percent yearly. China 

is the world’s second-largest domestic market. 

 

Recent advances in Artificial Intelligence and Machine Learning infer rules and model variations 

on airfare price. They often found relationships among the features automatically. This chapter 

presents the structure of our data and the choice of parameters. It is essential for the learning phase 

construction and the validation of our approach. It involves the price optimization techniques 

applied by different commercial sites. Price changes in the airline industry follow rules governed 

by yield management or revenue management algorithms. The purpose of this practice is to increase 

the company's revenue per available seat. The parameters in optimizing prices are therefore the rate 

of aircraft occupancy and the evolution of demand.  

 

Qunar.com is a travel search engine allowing users to compare more than 250 travel agencies and 

airline websites. With each user search, all the information on the results page is kept in a database 

representing a large source of information to be processed. Our learning base represents the majority 

of existing behaviors while maintains a reasonable size. The structure reconstructs the time series 

of prices and compares the same flights offered by different sites. The concept of single flight 

describes a route defined by departure and return dates, airports, flight codes and stopovers. Each 

unique flight therefore has a time series of prices per merchant site. 

 

This chapter starts with the literature review, followed by the origin and the structure of our data. 

Then the choice of our parameters for constructing the learning base are d by the statistical analysis 

of the user behavior in the ticket purchase process. Finally, the selection of routes and the length of 

stay were discussed. 

 

1.1 Notations 

 

n: Number of time series in the database. 

i: Flight number of the learning base i∈1, ..., n 

Vi: Attribute vector of flight i. 

pi (t): Flight price curve i. 

 



 

1.2 Literature review  

              

Machine learning is an important field of artificial intelligence technology. This review summarizes 

the machine learning methods and existing applications in the aviation industry to predict the ticket 

prices, forecast the future demand and maximize the revenue. Prices vary widely depending on 

multiple factors such as airline policies, holidays, the number of seats available and so on. Given 

this situation, it is a difficult task to predict airline ticket prices due to the non-linear behaviors 

influenced by the competitive factors and revenue maximization policies. Therefore, traditional 

theories have become decreasingly capable to predict airline ticket prices due to the limited 

capability of describing non-linear relations. In contrast, machine learning approaches, which are 

operated like a black box, become promising in the multi-factor based prediction of airline ticket 

prices, with the access to extensive data records. Machine learning algorithms are classified as 

artificial intelligence including many models such as decision tree, random forest, K-means, neural 

network and so on. All those models can be used for the prediction of airline ticket problems with 

different predictability. The ticket price of the same flight will change dynamically. It can change 

up to 7 times for the same flight on the same day (Narangajavana et al., 2014). Etzioni (2003) 

recorded more than 12,000 airfare observations over a 41-day period and conducted Hamlet, a multi-

strategy data mining algorithm in machine learning, to generate a prediction model to suggest the 

best time to buy tickets. 

 

1.2.1 Machine learning algorithm in airline industry 

 

Domínguez-Menchero et al. (2014) found the machine learning algorithm was more effective than 

standard parametric techniques after analyzing the price of tickets from Madrid to London, 

Frankfurt, New York and Paris in two months and the sale of pre-ordered tickets for up to 30 days. 

They noticed that consumers had an 18-day gap before departure, and there was no significant 

financial penalty for buying a ticket during that time. This raises the possibility of determining the 

best time to buy tickets and balancing the money saved with the time constraints (Li et al., 2014). 

Based on empirical data, Lantseva et al. (2015) analyzed the Russian air transport market and 

compared the price behavior of both local and global flights.  Groves and Gini (2015) proposed to 

use time-delay features to capture time dependencies in data and optimize the ticket purchase time. 

When a flight route and travel dates are determined, machine learning methods can be used to 

predict the lowest expected future prices for all available flights. Most of the research on the 

customer side has focused on the use of statistical methods to predict the optimal purchase time.  

As pointed out by Chen et al (2015), it is more difficult to predict the actual ticket price than the 

optimal purchase time due to various reasons: lack of sufficient data sets, external factors that affect 

ticket price, dynamic behavior of ticket pricing, competition among airlines, exclusion of airline 

ticket pricing policies, etc.  

 

Etzioni et al (2003) proposed a machine learning model that suggests the user whether to buy a 

ticket or to wait at a particular point of time. The model generates buy or wait signals based on 

historical price information. The model uses various analytical techniques such as rule learning 

(RIPPER), reinforcement learning (Q-learning), time series methods, and combinations of these 



 

methods to achieve different levels of accuracy. Functions used include flight number, number of 

hours away from departure, current price, airline and route (origin and destination city). Inspired by 

Etzioni et al (2003) and G et al (2013), the optimal purchase time to predict all available flights of 

different airlines on a given departure date and route is determined by both deterministic 

characteristics and aggregative characteristics. PLS regression was adopted to generate the optimal 

model, which saves 75.3% more compared with the previous version. Chawla et al (2017) pointed 

out that the ticket prices vary depending on some variables including oil prices, departure days, the 

number of parking slots, etc. They also described and compared two machine learning algorithms 

to predict price trends. Xu & Cao (2017) proposed a new type of optimal decision support service 

for ticket purchase (OTPS), which can continuously recommend the best purchase time before flight 

departure. OTPS is a dynamic ratio of potential days strategy based on low prices and the fluctuating 

trend of airfare over time. In order to improve the reliability of OTPS, a large number of experiments 

are carried out on the multi-route ticket price dataset. Tziridis (2017) generated a new dataset of 

1,814 flights from Aegean Airlines to identify characteristics of a typical flight. These features were 

applied to eight of the most advanced machine learning (ML) models including multi-layer 

perceptron (MLP), generalized regression neural network, extreme learning machine (ELM), 

random forest regression tree, regression tree, Bagging regression tree, regression support vector 

machine (polynomial and linear) and linear regression (LR). The performance of each model was 

compared. The experimental results show that the accuracy level is close to 88% for a certain type 

of flight characteristics. Vu et al. (2018) proposed a random forest model without the requirements 

for official airline information to forecast trends.  

 

1.2.2 Air-ticket pricing models 

 

There are two main types of literature on airline pricing models. The first group proposed demand 

forecasting models (An, et al, 2016; Yuan, et al, 2014; Mumbower, et al, 2014) and the second group 

focused on price discrimination (Puller, et al, 2012; Mantin, et al, 2010; Alderighi, et al, 2011; Wen 

and Chen, 2017). An et al (2016) proposed MAP (maximizing airline profit) to help airlines forecast 

market share and route demand. Meanwhile, the study introduces a new integrated forecasting 

method called MAP-EF with two new features: derivative features and equilibrium-based pricing 

features. It shows that MAP-EF achieves much better Pearson Correlation Coefficients (over 0.95 

vs. 0.82 for market share, 0.98 vs. 0.77 for demand), while generating much lower variance. 

However, compared with previous models, the proposed model has a higher time overhead due to 

the increased time spent on clustering and the use of more advanced regression methods. Puller, et 

al (2012) used unique transaction data and identified one source of airline price discrimination. It is 

not difficult to find that the weekend buying effect is significantly greater on routes with a mix of 

business and leisure travelers than on routes that disproportionately serve leisure travelers. The 

article shows that such pricing practices can have a significant impact on airline profits. These 

results have implications for other industries that could adjust prices daily based on the type of 

customer who purchases on a specific date. 

 

In some cases, tickets bought in advance may cost more than tickets bought later. For example, 

researchers create a dynamic pricing framework, and analyze the long-term and short-term impacts 

using regression methods. Dynamic pricing can make better prediction based on active factors such 



 

as demand change and price discrimination, rather than internal factors, external factors, 

competition among airlines and strategic customers (Malighetti et al., 2009). The hyperbolic price 

function is used to estimate the optimal price curve for each route and analyze the pricing policy 

adopted by Ryanair. It is found that the dynamic pricing is negatively correlated with route length 

and flight frequency. On the contrary, discounts on advance tickets will increase as the competition 

intensifies. The deep learning is a major trend in the future development of demand forecasting. 

Convolutional neural networks (CNNs) have attracted extensive attention in recent years 

(Krizhevsky and Hinton, 2012). How to reduce the pre-training words combined with CNN to 

predict the demand should be further explored. The data extracted by CNN from social media are 

classified into popular destinations, future events, etc., which can also be predicted for the demand 

forecast and price analysis. 

 

Several methods have been proposed in the literature to identify behaviors from a set of time series.  

The first approach consists in not modifying the nature of the series but in using appropriate distance 

measurements. A major constraint is the need to have standardized and sampled series. Then the 

methods based on the extraction of attributes are linked to the series from the simplest extraction of 

important points to the spectral transformation. These methods do not correspond to the 

phenomenon of appearance of jumps and to the structure of our time series constant by pieces. 

However, each gray level box can be assimilated to an attribute of the flight that is given to the input 

of the K-Means algorithm. The distance between the flights will then be the sum of the differences. 

The centroid of each group will be the average box-to-box of all the flights in the group. The last 

approach considers that each time series is generated by a model or a mixture of underlying 

probability distributions. Xiong and Yeung assumed that their ARIMA (Auto Regressive Integrated 

Moving Average) time series are generated by k different ARMA models. They then used an 

Expectation-Maximization (EM) algorithm to learn the parameters and coefficients of these models 

maximizing the log-likelihood. We followed the same approach by applying the principle of the EM 

to estimate the parameters of a mixture of densities by automatic classification. We then assumed 

that the gray levels are realizations of a one-time Poisson process of intensity given by the centroids 

representing the average behaviors of the groups. 

 

Within the same cabin, the airline divides its aircraft into reservation classes, or tariff classes, or 

even yield classes. It is a purely computerized division, invisible to the passenger, and without 

consequence on the positioning of travelers at the front or rear of the aircraft. This division should 

not be confused with the division into transport classes, which are the first class, the business class 

and the economic class. The booking classes are subdivisions of the aircraft within these cabins. 

Each flight is broken down into 10 to 20 booking classes. They are designated by letters of the 

alphabet. A lower class cannot encroach on a higher class, while a higher fare class can be provided 

for a lower class. Low-cost companies mostly apply the same principles, but in a highly simplified 

manner. Thus, the price of their tickets generally varies only according to two factors: the purchase 

in advance, and the state of filling of the plane. At any given time, there is only one price for the 

plane ticket, valid for everyone. This system has the advantage of being well understood by 

passengers, because it can be summed up by the simple formula “the earlier you buy, the less it is 

expensive". This principle is overridden daily by revenue management algorithms, which guarantee 

lower prices in various situations: ticket cancellation, increase in aircraft size, return of seats 



 

allocated to travel agencies, etc.  The main purpose of the algorithms used is to determine which 

booking classes will be open on a flight, with which quota of seats has been allocated to each. It is 

a control of the supply by adjusting the available capacities. For example, it will be necessary to 

open a lot of seats in the low booking classes and keep only a few for high-contribution passengers 

on a flight during off-peak hours, which otherwise will not be filled, whereas on a flight during peak 

hours it will be the opposite to obtain the maximum income. 

 

Bid-Price is one of the methods used in the airline industry to maximize revenues. The bid-price 

vectors are indications of price changes per cabin sent to the GDS so that they adjust the announced 

prices as they are filled. Each cabin is divided into classes associated with a price. All classes with 

a price lower than the bid-price will then be closed for sale. The creation of this vector is conducted 

in several stages and requires a certain number of input parameters such as past changes in requests 

by cabin, the capacity per cabin (first class, business, economical), the history of seats allocated to 

travel agencies so on. With all these parameters from historical databases, new information such as 

the overbooking rate and the demand prediction will be calculated. Given all the output data, an 

optimal bid price vector can be constructed with optimization algorithms which will then be 

transmitted to the GDS. In most cases this optimization process is conducted daily for flights with 

a departure date. The price fluctuation will therefore behave differently over time. We evaluated the 

consequences of yield management on the behavior of price series in the next section.  

 

Alexander Yates developed an algorithm called HAMLET combining several data mining 

algorithms. The learning base consists of flights sampled every 3 hours for 21 days. They predicted 

the evolution of the next point (t + 3 h) and decided to use a simple algorithm based on rules RIPPER: 

each point has 5 attributes which are the number of the flight, the number of hours before departure, 

the current price, the airline, and the route. In the learning base, they assigned a “buy” or “wait” 

class to each point, depending on the evolution of the next price. If the price increases the class will 

be “buy” and if the price is stable or decreases, the class will be “wait”. The algorithm therefore 

created a definite number of classification rules, easily interpretable, based on the attributes 

described above. Secondly, a classical reinforcement learning algorithm (Q-learning) was used by 

modifying the reward rule. A third algorithm based on the sliding average of the time series then 

intervened. Using information from the previous 7 days, following formula can be generated: 

∑ 𝛼(𝑖)𝑃𝑡−𝑘+1
𝑘
𝑖=1

𝛴𝑖=1
𝑘 𝑎(𝑖)

 

where α(i) is an increasing function of i, providing a price prediction in step pt+1. The prediction rule 

is then the same as before: if pt ≥ pt+1 then advice to wait, otherwise advice to buy. The binary 

predictions (“buy” or “wait”) of these 3 algorithms are finally added to the RIPPER algorithm as 

additional attributes to create the final predictor named HAMLET. Despite promising results, the 

increase in the number of routes and flights posed a problem of computing time and memory storage. 

Furthermore, their approach is inflexible because it depends on the nature of the prediction to be 

made. If the desired prediction suddenly changes from t+3h to t+8h or as in our case to t + 7d, the 

whole learning process should be performed again, but the same performance is not guaranteed. 

 

Previous works have two main weaknesses: (a) they do not consider dynamic pricing at a travel 

request level, and (b) only booking data from few airlines are taken into account 



 

 

Regarding the first issue, the fact is that the pricing change dynamically during the booking period 

because of the revenue management systems, seat availabilities, and sales strategies. It should be 

underlined that only few actors in the industry could have access to process exhaustive pricing 

information at travel request level. This could be the main reason that it has not been included in 

previous works. Second, most previous works had access to partial information. The bookings of a 

single airline may not capture some changes on the market conditions. Not observing other airlines 

could impact the model through airline preferences and price sensibility. The significance and 

magnitude of other attributes can be biased. If only the bookings of a full-service carrier are studied, 

the models may underestimate the price elasticity. 

 

Therefore, our research questions are:  

Is that possible to develop a price predictor for potential customers using machine learning 

algorithm?   

How long does the prediction stay efficient? 

How customers choose between itinerary alternatives when searching for flights? 

How customers behave differently for various travel purposes? 

 

1.3 Data              

 

This section describes the data properties, and how it has influenced the database  structure. Three 

main parts are composed to facilitate the preparatory work: the identification of a single flight, the 

extraction of the associated time series pi(t) and finally the creation of the corresponding attribute 

vectors Vi. 

 

1.3.1 Data description 

  

The learning and testing base were built upon a historical Qunar.com user search database. In this 

database, a single journey is defined by 6 attributes: the routes, the dates of departure and the time 

of return including the hours and the minutes and the carrier code. Prices are collected from both 

commercial sites such as regular airlines (Air China, China Eastern Airways, etc.) and travel 

agencies (Ctrip, Skyscanner, etc.). Specifically, “provider" refers to the merchant site from which 

the price is extracted. “Supplier” represents the airline company. Each user search results in 316 

choices with parameters such as the merchant sites (provider), airlines (supplier), schedules and 

rates. Flights provided by different merchant sites are grouped together to compare similar offers 

and reduce display. Additionally, users can define alerts. The alert is a programmable tool which 

performs a requested search every 6 hours. After having filled in the destination and the expected 

dates, the traveler receives a summary of the best results by email or application alerts each day, 

sorted by price. These alerts long series of prices regularly sampled but no same flight is guaranteed. 

The data source provides consistent series to detect the price variations. To follow the nature of the 

database, two subsets were chosen: A set of 28 days series sampled every 6 hours and a set consisting 

of 90-day series sampled daily.  

 



 

 

FIGURE 1.1 - Example of a price series for a Shenzhen-Chengdu from 20/11/2017 to 23/11/2018 

offered by China Eastern Airways. 

The three main tables in our database will be described in the following paragraphs. 

 

1.3.2 Database structure           

 

As explained above, we divided our database into three main tables to extract the information 

necessary for different stages of our prediction process. A first table stores the parameters of the 

unique paths and associate them with a unique identifier. The second table collects the prices for 

each single flight/provider couple. The last table contains all the parameters associated with a series 

of prices, such as the type of company, the city, the departure and arrival airport, etc. 

 

Unique flights 

A flight operated by an airline is defined by a departure airport (departureStation) and an arrival 

airport (arrivalStation) named “route”, a departure schedule (day, month, year, hour, minute), and a 

return schedule, a departure carrier code (transportCode) and a return carrier code 

(transportCodeRet). For database maintenance and volume problems, stopover information was not 

stored. 

 

                       

FIGURE 1.2 - Time series of the same carrier codes from Shanghai to Beijing on Air China sold by 

Qunar.com at different times of the year. 



 

 

 

We then defined a single flight by the following: {departure airport, arrival airport, departure date, 

return date, carrier code, return carrier code} excluding the notion of merchant site. This unique 

flight represents the journey independently of the seller. Then a unique identifier called 

id_unique_flight were associated to each tuple. The creation of a unique identifier independent of 

the merchant site will observe competition phenomena or detect additional price changes applied 

by travel agencies. In certain cases, the route and the dates are identical, but the carrier codes are 

different with code sharing. These commercial agreements increase the visibility of the two 

companies and ensure better profitability. 

 

Price series 

Each flight is sold by one or more merchant sites that we called “provider”. The couple 

{id_unique_flight, provider} (unique flight, merchant site) also has a unique identifier called 

id_flight. Each row of the table corresponds to the price series pi(t) proposed by a merchant at an 

instant t. When a user search was performed, an entry was added for each result in this table. 

Different identifiers were created for the associated flight tickets. For example, the same Shanghai-

Beijing flight operated by Air China is sold by different travel agencies. To identify these series, it 

suffices to associate all the id_flight with the corresponding id_unique_flight. Given that travel 

agencies adopt their own yield management policy to further improve the flexibility, they optimize 

the price strategies up to several times a day. Different time series identified by id_flight were 

observed for the same id_unique_flight. In Figure 1.3, the price series of the same Shanghai-

Hongkong ticket sold by the regular company (Air China) and the travel agency (Qunar) were 

demonstrated. 

 

 
 

Figure 1.3- Shanghai-Hongkong flight operated by Air China, sold by Qunar and Air China 

 

Attributes 

Each id_flight is associated with an attribute vector Vi(1), . . ., Vi(p) which groups all the possible 

information together. These attributes are crucial for extracting statistics from the learning base. 

Characteristics to define a single flight were divided into four categories (Table 1.1). 

 



 

TABLE 1.1 - Characteristics of the single flight. 

Name Type Description 

day [1 – 31] Day of departure month 

month [1 – 12] Departure month 

year N Departure year 

departureHour [0 – 23] Departure time 

departureMinute [0 – 59] Departure minute 

transportCode Code Carrier code 

departureStation Code Departure airport code 

arrivalStation Code Arrival airport code 

 

The temporal attributes (season, departure on weekends, day of the year, etc.), geographic attributes 

(city) and the attributes linked to the journey (number of stops, etc.) are listed below. 

 

TABLE 1.2 - Attributes derived from single flight characteristics. 

Name Type Description 

season [1, 2, 3, 4] Season (1 = spring, ...) 

length_of_stay N Length of stay 

day_of_year [1 – 365] Day of the year 

day_of_week [1 – 7] Day of the week (1 = Monday) 

dep_on_weekend Bin Departure at the weekend 

dep_periode [1, 2, 3, 4] Period of the day (1 = early morning, 2 = 

morning, 3 = afternoon, 4 = evening) 

stops N Number of stopovers 

departureCity Code Departure city code 

arrivalCity Code Arrival city code 

 

Table 1.3 demonstrates attributes referring to the commercial site. The contextual attributes which 

evolving with the time series are listed in Table 1.4. At each time t, the number of jumps observed 

previously and the sum of search requests are calculated. This information was stored in a separate 

table with the id_flight at the time t. 

 

TABLE 1.3 Attributes linked to the merchant site 

 

Name Type Description 

provider Code Merchant site code 

type [0, 1, 2] 1 = Travel agency, 2 = Regular company, 3 = Low cost, 

directSeller Bin Direct seller 

train Bin Train journey 

 

TABLE 1.4 - Contextual attributes evolving with the time series 

Name Type Description 

volatility N Number of jumps 



 

volatility_increase N Number of increased jumps 

volatility_decrease N Number of decreased jumps 

demand N Number of user searches 

 

 

We built our time series, accessed the attributes of a flight, and displayed the unique flight series 

sold by different sites simultaneously. The only difficulty was to highlight the co-branded flights, as 

it requires an additional unique identifier. The complexity in the database structure would decrease 

performance for limited utility. These behaviors influenced the parameters of the time series 

modeling. 

 

1.4 Choice of parameters 

The database extracts essential information including price series, attributes, and all possible derived 

statistics to construct the prediction model. The selection reflects the customer expectations on both 

prediction reliability and information accessibility. Furthermore, the differences in customer 

behavior between leisure and business purpose depending on the length of stay will be discussed. 

Therefore, the parameters of the flights (route, length of stay, merchant site) will be described first, 

followed by the choice of the time series length. 

 

1.4.1 The routes      

        

Initially, a set of representative routes was focused. Different travel purposes for leisure (7 and 14 

days) and business (3 days) at different length of stays were chosen. Both medium-haul and short-

haul flights were selected. The travel agencies offer a wide range of airline tickets and adjust the 

price more frequently. While the airline companies' official websites guarantee a more stable prices 

on the same flight.  

 

TABLE 1.5 - Routes of the learning base 

Low-cost carrier 

From To Provider Length of stay 

Shanghai  Chengdu Juneyao Air  3,7 

Shanghai  Hangzhou Juneyao Air 3,7 

Shanghai  Qingdao Spring Airlines 3,7 

Shanghai Hangzhou West Air 3,7 

Travel agencies 

From To Provider Length of stay 

Shanghai Chengdu Qunar  3,7 

Shanghai  Beijing Qunar  3,7 

Shanghai  Hangzhou Qunar 3,7 

Shanghai  Hongkong Hong Thai  

Travel Services  

7,14 

Shenzhen Beijing Hong Thai  

Travel Services  

3,7 



 

Shanghai  Singapore Hong Thai  

Travel Services  

7 

Regular Companies 

From To Provider Length of stay 

Shanghai Hongkong Cathay Gragon  7,14 

Shenzhen Beijing Air China 3,7 

 

 

The most frequently searched routes and requested lengths of stay are selected to build consistent 

series (Figures 1.4 and 1.5).  

 

 

FIGURE 1.4 - Number of searches by length of stay for a Shanghai-Chengdu flight 

 

FIGURE 1.5 - Number of searches by length of stay for a Shenzhen-Beijing flight 

 

The most popular flights were selected to guarantee price series. We initially examined the last days 

of our series to ensure a consistent basis. The customer behaviors were studied to find the optimal 

duration of the time series to choose. 

 

1.4.2 The length of time series             

 



 

In our example, time series were covered with 65% of users for medium-haul and 81% for short-

haul within the last 28 days. We decided to focus on the last 28 days of the price series. In addition, 

the month preceding the departure date corresponds to a sharp increase in jumps as shown in Figure 

1.6 and results in price volatility.  

 

 

Figure 1.6 - Histogram of the number of jumps before the departure date in 3-day increments. 

 

1.5 Relevance 

For each user search, several offers provided by different companies at different schedules were 

presented. In these choices, the user will identify the targeted flight and the advice to buy 

immediately or postpone the purchase will be presented. 

 

1.5.1 Best time to purchase             

 

The most common behavior of a traveler is to buy air tickets in advance to ensure a reasonable price 

and avoid successive price increases. Studies have shown that prices are not strictly increasing and 

that a period of around 8 weeks before departure is optimal. There is indeed a period when prices 

are generally lowest, and which corresponds to approximately 50 days before the departure.  

 

 



 

FIGURE 1.7 - Evolution of the average price depending on the time of purchase 

 

In Figure 1.7, the optimum price at time t and 7 days later was observed. Thus, the most favorable 

period for the purchasing advice is between 20 to 35 days before the departure date. In this period 

the right purchasing advice should be provided. As far as the last days are concerned, advice is also 

essential. Finally, we noticed the small price differences between 60 and 40 days before departure.  

 

1.5.2 Proportion of discounts             

 

The research is emphasized through the proportion of frequent discounts. Regular airlines, such as 

Eastern Airline and Air China, are practicing scheduled discounts. While low-cost airlines are 

adopting more aggressive price optimizations and generally not selling refundable or exchangeable 

tickets with few price reductions. Certain attributes such as the name of airline are therefore more 

discriminating than others in price prediction process. Thus, the ticket sold by low-cost carriers may 

have more probability to increase within 7 days before the departure date than a regular flight. 

 

1.5.3 Optimal gain             

 

A gain or loss was defined as the absolute value of the difference between the initial price and the 

7-day price. The optimal is the predictor who knows in any case the decision to make. The deviation 

was calculated as a function of the prediction date for immediate purchase, 7-day purchase, and 

randomly choices respectively. The red zone in Figure 1.8 represents the gain bringing to the 

customers through the precise advice. 

 

                          FIGURE 1.8 Distance relative to the optimal                                                                                 

1.6 Conclusion  

 

This chapter describes the database structure containing user searches and application alerts. The 

price series were extracted to compare the same tickets sold by different merchant sites and to chose 

the corresponding attributes. A representative learning base with different travel purposes were 

implemented. Focusing on the last 28 days before departure guarantees a sufficient number of points 

to detect the majority of price jumps. Finally, we showed that it was necessary to provide 

information on price trends to the customers. The next chapter demonstrates the modeling of time 

series by point processes to group the same behaviors. 



 

Chapter 2 
 

Introduction 

The step of transforming trajectories into a representation for comparing behaviors was discussed 

in this chapter. Similar price movements were grouped together to extract typical behaviors. Several 

problems regarding the similarity calculation between two price curves then raised.  

Understanding the nature of the price series facilitates the learning process. Statistics justified our 

choices in the previous chapter. The first step at this stage was to transform price curves by point 

processes. This step was completely bijective with price variations. The transforming process 

ignores irrelevant price variations and improves the computation time.  

 

We assumed that the number of occurrences of price changes follows a Poisson distribution whose 

parameter Iy(s, t) changes over time. An inhomogeneous Poisson process with intensity Iy(s, t) was 

applied. The number of customers that have a travel request each day can be modelled using a 

Poisson distribution. This scenario meets each of the assumptions. Firstly, the number of events can 

be counted. The number of customers that visit the website and have a travel request each day can 

be counted. Secondly, the occurrence of events are independent. The arrival of one customer does 

not affect the arrival of another customer. Additionally, the average rate at which events occur can 

be calculated. Data can be easily collected on the average number of customers that have a travel 

request each day. The fourth assumption refers to the situation that two events cannot occur at the 

same instant in time. Two customers cannot technically have a travel request at exactly the same 

moment in time. We therefore approximated the appearance of the jumps and their performance by 

gray levels where the intensity of the cells represented the number of jumps in the interval. Then an 

imprint of the overall behavior of a flight is compared with each other. Finally, a price curve derived 

from the gray level was simulated. 

 

2.1 Notations 

i: Number of the flight in the learning base i 1, ..., n 

Vi: Vector of p attributes of flight i among the set of attributes 

pi(t): Flight price curve i 

(Pi(1, k), Pi(2, k)): Raw data composed of Pi (1, k) the date of the k-th sample collected for flight i 

and Pi(2, k) the corresponding price observed 

𝑇𝑖𝑛𝑖𝑡
(𝑙)

: Date of first flight collection point i 

𝑇0
(𝑙)

: Flight departure date i 

si(t): Series of flight returns i 

(𝑇𝑘
(𝑖)

, 𝑠𝑘
(𝑖)

): k-th time-efficiency point of the representation in point process of the flight path i 

R: All the boxes of the time-return plan 

br: Vertical dimension (yield) 



 

bt: Horizontal dimension (time) 

Xi(s, t): Grayscale of the time-performance plan for flight i in box (s, t) 

2.2 Time series              

A single flight (id_unique_flight), representing a journey independently of the commercial site, is 

defined by a departure airport (departureStation), an arrival airport (arrivalStation), a departure date 

(day-month-year, hour: minute), a return date, a departure and a return transport code. Each flight 

has a time series per merchant site. The price series from the airline's website and travel agencies 

offer the same flight. The provider attribute defines the commercial site (the airline or the travel 

agency) and associates with the id_unique_flight.  

 

2.2.1 Sampling problems             

 

The average waiting time between two price jumps depends on the number of days before the 

departure date. We observed an average time of 2 and a half days between two jumps on all the dates 

and a strong increase in the frequency of price changes in the last 20 days. Flights with a search 

history of 28 days and 90 days were chosen. The number of user searches significantly increased in 

the last month before the departure date. The selection criterion offers a satisfactory number of 

pricing curves. The regular airlines have an average occupancy rate of around 75% and the 

percentage for the low-cost airlines are around 80%. According to the Deloitte group, the average 

occupancy rate of flights departing from Shanghai was 79.7% in 2018. We therefore believed that a 

large majority of flights still have seats until the last minute. 

 

2.2.2 Behaviors of trajectories             

 

As an illustration, consider the time series in Figure 2.1. It describes the price change of a Shanghai-

Beijing flight departing on February 25, 2017 operated by Air China (the supplier) and purchased 

through the Qunar (the provider), for a 3-day trip. The price varies from one plateau to another, 

triggered by the yield management system as described in the previous chapter.  

 

 

Figure 2.1 Flight Shanghai-Beijing, departure on 25/02/2017 for 7 days operated by Air China and 

sold by Qunar.  

 

The commercial sites (provider) were divided into three categories: travel agencies, regular airlines, 

and low-cost carriers. We studied the distributions based on flights sampled every 6 hours during 

the last 28 days (Figure 2.3) and based on flights at 90 days (Figure 2.2). Based on 4 points per day, 



 

the low-cost carriers have on average 18 trays in 28 days indicating a significant frequency of price 

changes, much more than the regular companies which have about 8 trays. The platforms often 

correspond to the number of classes per cabin, these are much more important for low-cost. There 

is a similar increase for travel agencies, but this is explained by the additional tax that some agencies 

apply depending on the time of ticket purchase. These multiple changes during the day then 

definitively increase the number of trays.  

 

FIGURE 2.2 90-day flight base 

 

 

FIGURE 2.3 28-day flight base 

 

2.2.3 Interpolation method of trajectory planning             

 

It is practical to consider the price series until the date of departure of element i as a constant function 

by pieces pi(t) of continuous time t∈[T0
(i) - Tinit, T0

(i)], where i∈I denotes the identifier id_flight of 

the series, T0
(i) is the start time (in days) of element i and Tinit is the number of days between the 

start date and the first point collected. We then introduced the jump instants Tk
(i) numbered in 

ascending order so that T0
(i) is the starting date. For each i, Pi represents the purchase price of the 

trip at time t. More precisely, these data will be represented in the form of a matrix Pi, ni×2, such 

that Pi(1, k) represents the time separating the date of departure from the date of purchase of the kth 

price observed and Pi(2, k) the corresponding price. We assume by convention that the price is 

continuous on the right, hence the interpolated price curve defined for all t <T0
(i) by: 

𝑝𝑖(𝑡)=∑ 𝑝𝑖 (𝑇𝑘−1
(𝑖)

)𝑘≤0 1
[𝑇𝑘−1

(𝑖)
,𝑇𝑘

(𝑖)
]
(t). 

with for all k ≤ 0, Tk-1
(i) = Tk

(i) − δ−k+1. We denote by pi(t−) the limit of pi (s) when s ↑ t. 

 



 

In the example of Figure 2.4 (Shanghai-Hongkong, departure on 11/01/2019 for 14 days with Air 

China), there are two areas where no data has been found. Given the nature of our curves, we 

therefore decide to consider that the price has been constant during this period. This interpolation 

of the trajectories is applicable only for a small number of missing points and spaced to minimize 

the errors of approximation. Therefore, the proper sampling of our flights is a crucial point in the 

identification of trajectory behaviors.  

 

FIGURE 2.4 - Time Series: Shanghai-Hongkong departure on 11/01/2019 for 14 days by Air China 

2.3 Representation by ad hoc processes              

Once the time series had been constructed, we compared them to extract typical behaviors. Since 

the price scale is not the same for all routes, we transformed the price series into series of relative 

variations. We then define the following returns: 

𝑠𝑘
(𝑖)

= {𝑃𝑖 (𝑇𝑘
(𝑖)

) − 𝑃𝑖 (𝑇𝑘
(𝑖)

−)} /𝑃𝑖 − (𝑇𝑘
(𝑖)

−)
,
𝑘 ≤ 1 

where pi (t-) denotes the price just before time t. It is obvious that the price curve can be entirely 

reconstructed from the initial price and from the series of points (𝑇𝑘
(𝑖)

, 𝑠𝑘
(𝑖)

). The calculation at t1 of 

a price for t2 is formulated as follows: 

𝑃𝑖(2, 𝑡2)=𝑃𝑖(2, 𝑡1) ∏ (1 + 𝑠𝑘
(𝑖)

)k∈[𝑡1,𝑡2]  

This sequence initially excludes absolute price values: through relative price jumps, we can 

therefore compare journeys with completely different price orders to aggregating series of similar 

behavior. During this stage, it will be possible to “correct” abnormal price fluctuations: those of 

small and frequent amplitudes and those of high intensity. The micro-variations vary several times 

a day due to additional commissions. The travel agencies apply yield management to encourage 

Internet users to book at “off-peak” hours and optimize their margins. It is worth mention that the 

agencies can negotiate tariffs with the airlines and offer cheaper tickets. These tickets undergo 

numerous daily variations at less than 1% value which unnecessarily disturb the price curves. The 

second fluctuations which alter the trajectories are large, punctual price jumps, followed by a return 

to the previous price in the following interval.  

2.4 Modeling by ad hoc processes  

After abstracting from price orders, we approximated the moment of price jumps to bring flights 

with similar behavior together which shifted in time. The most classic example is the travel agency 

which sells a ticket from an airline company and follows the variations with a certain time lag. We 



 

therefore decided to approximate the times of the jumps and their performance of the time series. 

 

2.4.1 Intensity estimation 

 

We therefore model the previous representation by a point process marked inhomogeneous (fish 

process whose events are weighted), whose intensity Xi (s, t) can be estimated in the form of a 

pixelated image which takes the values: 

𝑋̂𝑖(𝑠, 𝑡)=
1

𝑏𝑡𝑏𝑟
∑ 1𝑅 (𝑇𝑘

(𝑖)
, 𝑠𝑘)𝑘≤−1 ,(𝑠, 𝑡) ∈ 𝑅, 

for a rectangular pixel R of size bt,br. The time/yield plane is partitioned by a regular grid of such 

pixels, the intensities of which are equal to the number of hops per unit area in the time/yield plane. 

In Figure 2.5, we observe the transformation of the example yield series into a gray level. The greater 

the number of jumps in the area of the box, the darker it is.    

 

An estimator of the intensity of the jumps and the density of the returns is written, for a bandwidth 

b = (bt, br) ∈ (0, ∞) and a kernel K: [0,1] → R+ such that ∫ K = 1, 

𝑋𝑖(𝑠, 𝑡)=
1

𝑏𝑡𝑏𝑟
∑ 𝐾({𝑠 − 𝑠𝑖(−𝑘)}/𝑏𝑟)𝐾 ({𝑇𝑘

(𝑖)
− 𝑡} 𝑏𝑡)𝑘≤1 ,s∈ [0,1], 𝑡 ≤ 𝑇0

(𝑖)
. 

Note that the pixel limit is found in the lower left corner so that a yield exactly equal to a multiple 

of br will be considered to belong to the upper cell. Similarly, a yield appearing at an instant t 

multiple of bt will be included in the rightmost cell. We avoid the edge effects at t ∼ T (i) and s ∼ 0. 

 

 

FIGURE 2.5 Grayscale: Shanghai-Hongkong departure on 01/11/2019 for 7 days by Air China 

 

The smoothing of the small variations during the stage of transforming the time series into series of 

returns limits the intensity of the boxes around 0 thus avoiding confusion between a small jump and 

a negligible noise. As explained above, it is important to distinguish a significant price drop in price 

from a small variation to offer relevant decision support. Likewise, the price of a flight can suddenly 

double, causing a colored "pixel" to appear on a high line. This situation can arise when an economy 

class ticket is no longer available, and the same business ticket is offered. The gray level being a 

grid of the time-yield space, this generates the appearance of many empty boxes and propagates the 

resizing to all pixelated images. In fact, gray levels require matrices of equal dimensions implying 

filling with empty boxes of low-yield flights. The matrices used for clustering then become much 

too large and unnecessarily sparse. These events being rare, we can easily keep the jumps of low 

returns in the same order of magnitude and reduce the jumps with high returns by applying the 

natural logarithm. We then redefine the sequence of yields as follows: 

𝑠𝑘
(𝑖)

= 𝑙𝑛 𝑃𝑖 (𝑇𝑘
(𝑖)

) − 𝑙𝑛 𝑃𝑖 (𝑇𝑘
(𝑖)

−)
,
𝑘 ≤ 1 



 

transforming the calculation at t1 of a price for t2 into: 

𝑃𝑖(2, 𝑡2)=𝑃𝑖(2, 𝑡1) ∏ 𝑒𝑠𝑘
(𝑖)

k∈[𝑡1,𝑡2]  

2.4.2 Choice of bandwidth             

 

br and bt are primordial criteria which generalize the behaviors of the series without standardizing 

them. 

br represents the intensity interval in which jumps of similar intensity will be grouped. 

br = 0.1 means that all relative jumps are grouped in 10% intervals. 

bt represents the temporal division of the gray levels. Choosing bt=72 hours will create 3-day time 

windows in which all the jumps will be grouped. 

 

Figure 2.6 provides an example of fine subdivisions of br and therefore price ranges. Graph 2.2 (a) 

is a binary division of the yield axis where only the direction of variation is considered (br=1). This 

division, when it comes to predicting only an increase or a decrease will be important because by 

simplifying the gray levels, we simplify the grouping into similar behaviors. On the other hand, this 

binary representation is very sensitive to the noises of small variations, therefore here again the step 

of filtering is important. Then 2.15 (b) (br=0.1) and 2.15 (c) (br=0.05), the intervals are gradually 

reducing the approximations of the gray levels.  

 

 
FIGURE 2.6 Evolution of gray levels with the enlargement of vertical subdivisions 

2.5 Simulation 

A trajectory can be reconstructed from an initial value of the price pt at a given time t (before T0) 

and knowledge of the points (Tk, sk) such that t ≤Tk <0. 

We therefore simulated the point Poisson process (PPP) N = ∑k δ (Tk, Sk) on a given domain D, 

assuming that 



 

∫ 𝑋(𝑠, 𝑡)𝑑𝑠 𝑑𝑡
𝐷

< ∞ 

The general method consists in simulating M ∼ Poi (∫ 𝑋(𝑠, 𝑡)𝑑𝑠 𝑑𝑡
𝐷

) then (Yk) k≤−1 i.i.d. of density 

X (s, t)/ ∫ 𝑋(𝑠, 𝑡)𝑑𝑠 𝑑𝑡
𝐷

 on (s, t)∈D, and independent from M. Therefore, the process  

𝑁 = ∑ 𝛿𝑌𝑘

𝑘

 

is a PPP of intensity X over D. The difficulty therefore rests in the simulation of a sequence of a 

given density. For a general X, the rejection method facilitates the simulation process. In the simple 

case where X is constant by pieces on pixels of D, the following method will give a simulation at 

lower cost. 

𝐷 = ⋃ 𝐷𝑖

𝑖

 

with disjoint Di and X (s, t) constant for (s, t)∈Di. We denote by Xk the value associated with the 

pixel Di. It then suffices to simulate the restriction N(i) from N to Di for each i. Each N(i) is a 

homogeneous PPP on the domain Di. We can therefore simulate it independently for each i as 

follows:  

𝑁(𝑖) = ∑ 𝛿
(𝑇𝑘

(𝑖)
,𝑠𝑘

(𝑖)
)

𝑀(1)

𝑘=1

 

with N(i) ∼ Poi (Xi) and (𝑇𝑘
(𝑖)

, 𝑠𝑘
(𝑖)

)i.i.d. on Di and independent of N0
(i). 

 

In Figure 2.7, we observe an example of transformation of a time series into a series of yields and 

then into a pixelated image. From this last image, a yield curve is simulated and applied the 

reconstruction formula of a time series to display in red. We were therefore able to create curves 

with statistical behavior from a gray level.  

 

 

 

 

FIGURE 2.7 Transformations of the initial series and simulation by the gray level. Shanghai- 

Hongkong departure on 01/16/2019 for 7 days 

 

 

2.6 Conclusion             



 

This chapter describes the nature of the time series. The average waiting time between two jumps 

at different number of days before the departure date were studied. It can be concluded that: (1) in 

the interval [-28, 0], the construction of a time series requires the collection every 6 hours and (2) 

in the interval [-90, -28], a daily collection guarantees the price variation detection. An innovative 

method to represent the time series of prices was introduced. The price series were transformed into 

return series to extract price orders. These series of returns by point processes were visualized 

through gray level pixels representing the intensity of the price jumps. The yield axis was 

logarithmically transformed to avoid high yields. The configuration of pixelated images was 

essential to generalize behaviors. Although the representation is not bijective, a similar price series 

can be reconstructed by performing simulations from the gray level. The different behaviors in the 

learning base were first identified, followed by unsupervised learning algorithms to segment the 

gray level into homogeneous groups. Finally, test flights were associated to establish an evolution 

prediction at instant t. 

  

 

  

  



 

Chapter 3 
 

Introduction 

 

This chapter describes different algorithms  extracting groups of similar behavior through 

pixelated images of intensities. The K-Means data partitioning algorithm were adopted first to create 

pixelated images, followed by the Expectation-Maximization (EM) algorithm. The K-Means 

minimizes the distance of a group to the center, while the EM maximizes the likelihood of group 

members using the same settings. The two main parameters of the two approaches are the number 

of groups and the number of initializations. The number of groups is an important variable in the 

segmentation step. Metrics such as GAP statistics were applied to choose the optimal number of 

groups. To avoid local minimum, the random departures were multiplied and the best segmentation 

was chosen after the optimization. An algorithm aggregates random subsets of the learning basis 

was conducted to reach the global optimum. This “bagging” technique applied to K-Means is called 

“Bagged K-Means”. 

 

With our new representation of the trajectories Xi (s, t), the behavior of all types of flights were 

compared. The similarity of two time series were evaluated by calculating the Euclidean distance 

of the gray levels. Then unsupervised learning algorithms were applied to group time series with 

similar behaviors. The learning data was segmented to create sets of similar behaviors and associate 

representative behaviors. The average gray level, named centroid and was denoted by Iy, y∈1, ..., 

C. py(t) curves belonging to the group y were simulated. It predicts the evolution of a test flight after 

assigning it its most likely average behavior. 

 

3.1 Notations 

i: Flight number of the learning base i∈1 , ..., n  

p: Number of attributes                                                                      

Vi: Vector of p attributes of flight i among the set of attributes                            

NTrain: Learning base for attribute vectors of size n×p  

n: Number of flights                                                                     

R: All the boxes             

br: Vertical dimension of the boxes (yield)                            

bt: Horizontal dimension of the boxes (time)                            

Xi(s, t) : Grayscale of the time-performance plan for the flight i in the box ( s, t )  

MTrain: Learning base for grayscale of size n×(s×t)                                                                                     

I1, ..., IC: Centroids of the clusters in the form of pixelated images: Iy(s, t) , (s, t)∈R                            

C: Number of clusters                            

αy=P(Yi =y) , y =1,2, . . . ,C.                                          

ψ (y|Vi) =P(Yi =y|Vi) , y = 1 , 2 , . . . , C .                                          

3.2 The algorithms              



 

Three algorithms are described to partition the data in this section. Two of these algorithms, the K-

Means and the Expectation-Maximization algorithm, are part of the iterative optimal segmentation 

following two stages: creation of models and reassignment of data. The algorithm stops after a 

predefined number of iterations, or when the reassignment changes no longer. Then the Bagged K-

Means was applied to random subsets of the learning base. 

 

The K-Means algorithm represents each class with a centroid calculated by averaging all the group's 

gray levels. These centroids are denoted Iy for y∈[1 , ..., C] with C the number of groups fixed in 

advance. The reassignment step then chooses the nearest centroid due to a predetermined distance 

measurement. The Expectation-Maximization algorithm models each class by a probability 

distribution created during the class creation step. The reassignment maximizes the likelihood of 

flights to the centroid. A gray level corpus Xi(s, t), i∈[1,n] was denoted by Mtrain.  

 

3.2.1 K-Means 

 

Groups with similar behaviors was created by applying the K-Means segmentation algorithm based 

on pixelated images of intensity 𝑋̂𝑖 for i traversing the learning base. K-Means require initialization 

to start the iterative optimization phase. This is an important step in the algorithm which can be 

commonly performed in two different ways: the Forgy method and random partition method. The 

first method randomly chooses C points from the learning base as the centroids and then assigns the 

other flights to the nearest centroid. The random partition approach assigns a random cluster to each 

flight. As for the Expectation-Maximization algorithms and standard K-Means, the Forgy approach 

was recommended. 

 

The centroids were then built by averaging the flights of each group. The algorithm followed the 

iterative optimization process by reassigning its nearest group to all flights and calculating the 

centroids again. We thus obtained C index I1, . . ., IC to group each learning base by similar behaviors. 

This number C was chosen according to certain performance criteria such as the group density or 

the prediction rate. To obtain the optimal number of classes, criteria such as the GAP statistic or the 

Calinski-Harabasz index were described.  

 

Input data 

All our grayscale Xi is the only entry point to the algorithm. To minimize their size, the pixelated 

images resulting from the transformation by the natural logarithm of the yield series were adopted. 

These gray levels were compared with equal dimensions. The parameters of the algorithm were the 

number of groups C, the number of random initializations nstart and the maximum number of 

iterations iter.max.  

 

Algorithm description  

As described above, the first step is to create a random starting point for the iterative optimization 

process. Forgy's approach was applied to choose C centroids randomly from the input data. The 

calculations were repeated several times (nstart) to retain the optimal solution for the chosen 

criterion. The most likely centroid was calculated by minimizing the Euclidean distance. The K-

Means aims to minimize the variance within each group:  



 

𝐸𝑖
(𝑡)

=𝑎𝑟𝑔𝑌min∑ ∑ ‖𝑋𝑖 − 𝐼𝑦‖
2

𝑋𝑖∈𝑌𝑖
(𝑡)

𝑛
𝑖=1  

with Y = {Y1, ..., YC}. The distance obtained between the trajectories was based on the distance L2, 

the corresponding densities for given bt and br: 

d(𝑖1,𝑖2)=(∫ ∫ [𝑋𝑖1 (𝑠, 𝑇0
(𝑖1)

+ 𝑡) − 𝑋𝑖2 (𝑠, 𝑇0
(𝑖2)

+ 𝑡)]
20

𝑡=𝑇𝑚𝑖𝑛

1

𝑠=0
𝑑𝑠𝑑𝑡)

1 2⁄

 

where Tmin is the date of the first available price at T0. The centroids from the flights assigning to 

different classes were redefined: 

𝐼𝑦
(𝑡+1)

=
1

|𝑌𝑖
(𝑡)

|
∑ 𝑋𝑖𝑋𝑖∈𝑌𝑖

(𝑡)  

Flights were then reassigned according to their distance to the new centers until convergence was 

reached, or until the maximum number of iterations iter.max was reached. 

 

Output data 

A segmentation of the gray level was obtained after the K-Means process. Each flight of the training 

base was assigned to the group number with the closest Ei∈1, ..., C called “label”. A representation 

of “typical” behavior was created by averaging the gray levels of all the group's flights for each 

group.  The segmentation quality of our data was tested using several metrics, given that the quality 

was defined by a high out-sample similarity and a low in-sample similarity. 

 

The flight distribution validates the homogeneity of the groups. An unbalanced distribution indicates 

a unsatisfactory cluster numbers or representative behaviors in the learning base.    

n=∑ 𝑛𝑖
𝐶
𝑖=1  

The sum of the distances to the centroids for each group, wy, quantifies the overall distance between 

the flights in the group and the associated centroid. The centroid identifies the group's flights sharing 

the same nature. The reduction in the number of clusters creates less dense and fewer representative 

groups. The quantity is written: 

𝑤𝑦=∑ ‖𝑋𝑖 − 𝐼𝑦‖
2

𝑋𝑖∈𝑦  

W=∑ ∑ ‖𝑋𝑖 − 𝐼𝑦‖
2

𝑋𝑖∈𝑦
𝐶
𝑖=𝑦  

This metric selects the best performing initialization.  

 

The distance between the different centers of the groups is defined by:   

𝑏𝑦= 𝑛𝑦‖𝐼𝑦 − 𝐼‖ 2 

B= ∑ 𝑛𝑦‖𝐼𝑦 − 𝐼‖ 𝐶
𝑦=1

2
 

where I refers to the average behavior of the database. 

 

3.2.2 Bagged K-Means             

 

The “Bagged K-Means” performed the bagging principle to the K-Means algorithm. Bagging 

applies the same algorithm multiple times to different subsets of the learning base and aggregates 

the results. An ascending hierarchical segmentation algorithm was conducted to aggregate the 



 

segmentation and improve the K-Means results. This algorithm applies to a distance matrix between 

the centroids from the bootstrapping step. 

The Bagged K-Means algorithm was proposed by Yordan: 

1. Construct B subset of the Mtrain learning base, M1
train, ..., MB

train by random draw with (bootstrap)  

2. Apply a segmentation algorithm K-Means on each subset to obtain B×C groups c11, c12, ..., c1C, 

c21, ..., cBC where C is the desired number of clusters and cij the j -th group of the subset Mi
train  

3. Create a new YB (C) base made up of all the centers YB = YB (C) = c11, ..., cBC 

 

Algorithm 1 Partitioning through the K-Means algorithm 

For a desired number of initializations nstart then do 

Initialization of Forgy: Random selection of C centroids among the n gray levels 

If the allocation of flights changes OR the maximum iteration not reached iter.max then do  

Assignment step: A group is assigned to each flight according to its proximity to the group's 

centroid at iteration t. 

𝑌𝑖
(𝑡)

={𝐸𝑖
(𝑡)

: ‖𝑋𝑖 − 𝐼𝑦
(𝑡)

‖ ≤ ‖𝑋𝑖 − 𝐼𝑦
(𝑡)

‖ ∀1 ≤ 𝑦 ≤ 𝐶}, 

The flight Xi is assigned the label Ei
(t) corresponding to the most probable group Y(t) based 

on the Euclidean distance. 

Update step: Calculate new centroids 

Iy
(t+1)

= 
1

|Yi
(t)

|
∑ XiXi∈yi

(t)              

End If 

End For 

return Ei Label associated with each flight, ie. identifier of the nearest centroid 

return ny Number of flights per group 

return wy Sum of distances to the centroid by group 

return Iy Centroids of groups 

 

4. Prune YB by applying the partitioning algorithm M gear with the centers YB and removing the 

empty centers:    

𝑦𝑝𝑟𝑢𝑛𝑒
𝐵 (𝐶, 𝜃) = {𝑐 ∈ 𝑦𝐵(𝐶)|#{𝑥: 𝑐 = 𝑐(𝑥)} ≥ 𝜃} 

5. Apply the algorithm for clustering hierarchical described more down on YB               

6. Let c (x)∈YB be the center closest to x . A segmentation of the original base can be obtained by 

“cutting” the dendrogram at a certain level. We thus created a partition YB
1, ..., YB

m, 1 ≤ m ≤ B C of 

YB where each point x∈Mtrain is associated with its cluster the closest c(x). 

 

Hierarchical segmentation 

The ascending hierarchical classification starts from all the individuals representing a class, then 

gathering in increasingly large classes. The qualifier produces a hierarchy H with the following 

properties: 

1. Ω ∈ H: at the top of the hierarchy, all individuals are grouped within the same class. 

2. ∀ω ∈ Ω, {ω} ∈ H: at the bottom of the hierarchy. ∀ (h, h ′) ∈ H2, h ∩ h ′ = ∅ or h ⊂ h ′ or 

h ′ ⊂ h.  

 



 

The different centroids segmentation  created during the bootstrapping step were described in 

Algorithm 2 

 

Algorithm 2 Hierarchical segmentation algorithm 

Pre-conditions: MTrain list of individuals Xi, i ϵ1, . . . , n               

Pre-conditions: C number of classes to obtain 

Pre-conditions: Cury with y ϵ [1 , ..., nbC ], nbC the number of current classes.               

For i ϵ [1 , ..., n ] then do               

Curi = Xi becomes a new class 

nbC++ 

End For 

If nbC> C then do 

Calculation of dissimilarities between classes in an upper triangular matrix 

For i ϵ [1 , ..., nbC ] then do               

For j ϵ [ i + 1 , ..., nbC ] then do               

matDissim [i] [j] = dissim (Curi , Curj); 

End For  

End For 

Finding the minimum dissimilarities 

Let (i, j) such that matDissim[i] [j] = min(matDissim [k] [l]) with 1 ≤ k ≤ nbC and k + 1 ≤ l ≤ 

nbC              

Merger of Curi and Curj 

For any element in classes [j] then do 

Curi.ajouter(element);  

End To delete (Curj); 

End If 

return classes: initially empty list of classes, a class is seen as a list of individuals 

 

The main idea is to stabilize the segmentation of K-Means by repeating the partition and combining 

the results. The K-Means are unstable because each algorithm provide different local optimal for 

the same data and parameters. The initialization stage has a great influence on the convergence of 

the algorithm. A slight modification of the training data may make the K-Means converge to a 

completely different optimum. Different solutions were obtained through the repeated learning on 

subsets. The process was independent of the initial learning base and the number of initializations. 

 

3.2.3 Expectation Maximization 

 

The Expectation Maximization (EM) algorithm aims to maximize the probabilistic models 

comprising unobserved variables. The principle of EM was applied to estimate the parameters with 

mixed densities by automatic classification. The flights i ∈ {1, ..., n} were characterized by their 

gray level Xi (s, t) from C different groups. Supposing that a flight i belongs to the group y ∈ 

{1, ..., C}, Yi = g, the Xi (s, t), (s, t)∈R are realizations of a Poisson point process of intensity given 

by the centroids Iy (s, t), (s, t)∈R. Furthermore, the proportions of the groups are given by a vector 

(α1,..., αC) where αy = P (Yi = y) ∀y∈{1, ..., C}. We noted α = (α1, ..., αC) the element of the simplex 



 

SC = {(α1, ..., αC)∈[0, 1]C, ΣC
y=1αy = 1}. The parameters of the model were grouped under the 

notation θ = ((αy) y∈ {1, ..., C}, (Iy (s, t)) (s, t) ∈R)∈[0, 1]C×(R+) R 

The αk represents the grouping probability (αy = P (X∈Cy)) and Iy represents the law of observations, 

given a group label y. 

  

Input data 

The input data are the same as for the K-Means, i.e. all of our gray levels Xi (s, t), i∈{1 , ..., n }, (s, 

t)∈R. 

 

Initialization  

This process assigns an initial value to the Ik (s, t) and the αk. Two approaches were conducted. The 

first approach assigns values randomly to each of the parameters. The second method initializes the 

values by applying the K-Means algorithm. The creation Ik (s, t) randomly assigns a group number 

to each Xi, then averages all the flights for each group. Regarding the αk, the initialization methods 

were proceed as follows: 

𝛼𝑦=
𝑐𝑎𝑟𝑑(𝑋𝑖∈𝑦)

𝑛
 

 

Likelihood function 

The law of the table is Xi = (Xi (s, t)) (s, t)∈R , given that the label of its associated group Yi = y is: 

            𝑃𝐼𝑦
(𝑋𝑖(𝑠, 𝑡) = 𝑥(𝑠, 𝑡), (𝑠, 𝑡) ∈ 𝑅|𝑌𝑖 = 𝑦)=∏

(𝐼𝑦(𝑠,𝑡))
𝑥(𝑠,𝑡) 

𝑒−𝐼𝑦(𝑠,𝑡)

𝑥(𝑠,𝑡)!(𝑠,𝑡)∈𝑅 , 

where x (s, t)∈N, y∈{1, ..., C} and Iy (s, t)∈((R) R) C. 

C represents the number of groups. As for a label y∈{1, ..., C} and a given cell (s, t) ∈R, Iy (s, t) 

represents the centroid of the group y in cell (s, t). Iy is a pixelated intensity of the Poisson process 

for the flights of the group y. Consequently, the Xi(s, t) are the independent Poisson variables of 

intensity Iy (s, t). The probability of (Xi, Yi) were calculated, given the parameters θ = (α, I)∈

SC×(RR
+)C. We obtained: 

 

𝑃𝜃(𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦)=𝑃𝐼𝑦
(𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦)𝑃𝛼(𝑌𝑖 = 𝑦)=𝛼𝑦 ∏

𝐼𝑦
𝑥(𝑠,𝑡)

(𝑠,𝑡)𝑒−𝐼𝑦(𝑠,𝑡)

𝑥(𝑠,𝑡)(𝑠,𝑡)∈𝑅 =:𝑝𝜃(𝑥, 𝑦), 

where x ∈NR and y∈1 , ..., p. 

 

Expectation Step 

This step calculates the expectation of the density attached to the parameter θ′ for the conditional 

law of the latent variables Yi, the observed variables Xi, and the parameter θ: 

𝑄(𝜃′, (𝑥𝑖)𝑖∈{1,…,𝑛}|𝜃)=∑ ∑ [𝑙𝑜𝑔 𝑝𝜃′(𝑥𝑖 , 𝑦𝑖)]𝑝𝜃(𝑦𝑖|𝑥𝑖)𝐶
𝑦𝑖=1

𝑛
𝑖=1  

We then have for θ′= (α′ , Iy′): 

𝑙𝑜𝑔 𝑝𝜃′ (𝑥, 𝑦)=∑ 𝑙𝑜𝑔(𝛼𝑦𝑖

′ )𝑛
𝑖=1 +∑ ∑ [𝑥(𝑠, 𝑡) 𝑙𝑜𝑔 (𝐼𝑦

′ (𝑠, 𝑡)) − 𝐼𝑦
′ (𝑠, 𝑡)](𝑠,𝑡)∈𝑅

𝑛
𝑖=1  

The conditional probability was written: 

𝑝𝜃(𝑦|𝑥)=𝑃𝜃(𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥)=
𝑃𝜃(𝑋𝑖=𝑥,𝑌𝑖=𝑦)

∑ 𝑃𝜃
𝐶
𝑘=1 (𝑋𝑖=𝑥,𝑌𝑖=𝑘)

=
𝑝𝜃(𝑥,𝑦)

∑ 𝑝𝜃(𝑥,𝑘)𝐶
𝑘=1

 

Therefore, we had by noting X=(Xi)i=1 , ..., n : 



 

 

𝑄𝑛(𝜃′|𝜃):= 𝑄(𝜃′, 𝑋|𝜃)=∑ ∑ 𝑙𝑜𝑔(𝛼𝑦
′ )𝑝𝜃(𝑦|𝑋𝑙)𝑝

𝑦=1
𝑛
𝑙=1  

 

+∑ ∑ [𝑋𝑙(𝑠, 𝑡) ∑ 𝑙𝑜𝑔 𝐼𝑦
′ (𝑠, 𝑡)𝑝𝜃(𝑦|𝑋𝑙) − ∑ 𝐼𝑦

′ (𝑠, 𝑡)𝑝𝜃(𝑦|𝑋𝑝)𝐶
𝑦=1

𝐶
𝑦=1 ](𝑠,𝑡)∈𝑅

𝑛
𝑙=1  

 

For simplification put ∀ y∈1 ... p: 

𝐴𝑛(𝜃, 𝑦)=
1

𝑛
∑ 𝑝𝜃(𝑦|𝑋𝑙)𝑛

𝑖=1  

𝐵𝑛(𝜃, 𝑦, 𝑠, 𝑡)=
1

𝑛
∑ 𝑋𝑙(𝑠, 𝑡)𝑝𝜃(𝑦|𝑋𝑙)

𝑛
𝑖=1  

Note that Bn depends on s and t with an independent value for each box while An was only indexed 

by y∈{1, ...,C}. We then obtained:       

𝑄𝑛(𝜃′|𝜃)=∑ 𝑙𝑜𝑔(𝛼𝑦
′ )𝐶

𝑦=1 𝐴𝑛(𝜃, 𝑦)+∑ ∑ 𝑙𝑜𝑔 (𝐼𝑦
′ (𝑠, 𝑡)) 𝐵𝑛

𝐶
𝑦=1(𝑠,𝑡)∈𝐶 (𝜃, 𝑦) 

-∑ ∑ 𝐼𝑦
′ (𝑠, 𝑡)𝐶

𝑦=1(𝑠,𝑡)∈𝑅 𝐴𝑛(𝜃, 𝑦) 

 

Maximization Step  

Step "M" is to maximize Qn (θ′|θ) in θ ′ for a given θ. Optimization of αk and Ik were applied 

separately. 

For a fixed θ, An, Bn, we obtained: 

𝛼𝑦
′ =

𝐴𝑛(𝜃,𝑦)

∑ 𝐴𝑛(𝜃,𝑘)𝐶
𝑘=1

,∀𝑦∈ 1. . . 𝐶 

𝐼𝑦
′ (𝑠, 𝑡) =

𝐵𝑛(𝜃,𝑦,𝑠,𝑡)

𝐴𝑛(𝜃,𝑦)
, ∀𝑦∈ 1. . . 𝐶,∀ (𝑠, 𝑡) ∈ 𝑅 

Output data 

EM numerically calculated the parameters (α, I) = θ which locally maximize the likelihood at least., 

An estimator θˆ=(αˆ, Iˆ) was obtained when the algorithm stopped. A calculation of the joint density 

pθ (x, y) was provided from the following two circumstances: 

1. the log-likelihood Ln (θ)=log ΣC
y=1pθ(X, y)                  

2. the log-likelihood to the cluster Ln(θ, y) = log (pθ (X|y)) = log (pθ (X, y)) + C 

 

Unlike the K-Means, the EM does not require an estimated label Yi for each learning flight. This 

group were computed for the likelihood function pθ(x,y) and the previously optimized parameters. 

It was applied to Xi(s, t) (αy and Iy(s,t)) to determine the label Yi for each flight i. The same metrics 

were applied to evaluate data segmentation and choose the right parameters.  

 

3.3 Choice of parameters              

This section explains different parameters influencing the results of the segmentation and the 

prediction of the test flights. The corresponding modifications of these parameters were discussed 

in the next chapter. 

 

3.3.1 Initialization 

 



 

The algorithms described are sensitive to initialization and converge differently at each iteration. 

The initialization type contributes to the segmentation quality. Several clustering algorithms were 

compared on a large data set. Different initialization types were then tested on the algorithm. In our 

case, the EM were initialized by the K-Means segmentation and compared with the random zation 

in the next chapter. 

 

3.3.2 Number of groups             

 

Various techniques exist to estimate the number of groups. Milligan and Cooper (2009) studied 30 

methods to estimate the optimal number of groups on simulated data. The Calinski and Harabasz 

index is most effective according to their research. Yan (2005) then studied these different methods 

and proposed the comparison with the GAP index introduced by Tibshirani et al. The results show 

that the GAP index can better estimate the optimal number of groups. Different methods adopted in 

our study are described below. 

 

Evolution of the RAND index 

Rand's index is a metric commonly used in grouping data. It measures the similarity between set 

partitions. The principle verifies each pair of objects and tests whether they are classified in the 

same group. Consider two partitions of the gray level space P1 and P2, we have: 

a - the number of pairs present in the same group in P1 and in P2     

b - the number of pairs in different groups in P1 and in P2     

c - the number of pairs present in the same group in P1 and in different groups in P2     

d - the number of pairs in different groups in P1 and in the same group in P2 

Rand's index is then written: 

𝑅 =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
 

By changing the number of clusters or the number of initializations, the evolution of the Rand index 

were observed.  

 

The Calinski-Harabasz index  

The optimal number of clusters will be determined when the index is maximized. The calculation is 

as follows:    

𝐶𝐻(𝑦) =
𝑏𝑦 ∕ (𝐶 − 1)

𝑤𝑦 ∕ (𝑛 − 𝐶)
 

where by and wy are the metrics described in section 3.3.1. As with the RAND index, the "bend" 

will be detected in the index curve according to the number of groups. 

 

GAP statistics 

Tibshirani et al. proposed to determine the optimal number of clusters based on the GAP statistics. 

This method can be applied to any segmentation algorithm using any distance measure. The idea is 

to compare the evolution of W(k) as the number of clusters k increases.  

 

Visualization 

The data partitioning can be visualized by performing a projection on the axis of two variables from 



 

the principal component analysis (PCA): the two new variables are a linear combination of the Iy (s, 

t). The basic idea of the PCA is as follows: considering the cloud of n points in P dimensions, a two-

dimensional plane of the cloud points is the least distorted possible. Therefore, the line δ1 minimizes 

the sum of the squared distances between each point. Then, a second line δ2 perpendicular to δ1 has 

the same property. The process continues until P straight lines were obtained form an orthogonal 

coordinate system. 

 

3.4 Conclusion            

The step of partitioning all flights into groups of similar behaviors were described based on our new 

representation of time series. Two well-known clustering approaches, K-Means and the 

Expectation-Maximization algorithm, were conducted. The K-Means algorithm represents each 

class by a centroid averaging all the flights. At initialization, these centroids were chosen randomly 

from gray levels in the learning base. The reallocation of flights was then constructed by minimizing 

the Euclidean distance to the centroids. These two steps were then iterated until the groups no longer 

move, or the limit of iterations was reached. The distance between the pixelated images is the sum 

of the Euclidean difference. One method applied the K-Means to a large number of boosted learning 

base and then aggregated the results using a hierarchical segmentation algorithm. The Bagged K-

Means approach erases the influence of initialization and stabilizes the results against the changes 

in parameters. The Expectation-Maximization algorithm modeled each class by a probability 

distribution and groups the gray levels to maximize the likelihood t the centroids. The initialization 

of the parameters was performed randomly for global optimal. 

 

For K-Means and EM, initialization is an important step that should be repeated many times. 

Similarly, the choice of the number of clusters, which is defined prior to the launch of the algorithms 

is essential. The process required observing criteria such as the Gap statistic or the Rand index to 

choose the optimal number. As the database grows, the data segmentation updating was performed 

to identify additional behaviors. The stability of the behaviors grouping and the reproducibility of 

predictions were guaranteed. Given the gray levels of our learning base, the most likely family was 

assigned to its first price changes. Therefore, a supervised learning algorithm was applied to the 

segmented data. 

 

 

 

  



 

Chapter 4  

Introduction 

The learning base was segmented into groups of similar behaviors by a set of parameters (αk, Ik). 

The search results were assigned to the most likely behavior based on the attributes distribution. 

Each user search has a list of results corresponding to the input parameters: date of departure, date 

of return, city of departure and city of arrival. Each result has a list of attributes specific to its flight 

and the site offering the flight: departure and return times, airline, departure and arrival airport, 

merchant site, etc.  

 

A supervised learning algorithm was applied on the segmented data. Each flight has a series of 

attributes Vi and a label Ei corresponding to the typical groups. Classification rules were created 

through the set of attributes Vi (1), . . ., Vi(p) to assign the test flights their most likely group k∈

{1, . . ., C}. Several algorithms such as CART, C4.5, Adaboost, and Random Forest were used. With 

CART and C4.5, the attribute segmentation and the behavior prediction rules were observed. 

Adaboost iteratively executes CART based on the weighted learning basis with different iterations. 

More weights were provided to misclassified flights to improve the prediction. Random forests 

multiply CART decision trees and aggregate their results by vote. The results provide a ranking of 

the most influential attributes in the classification. This classification rules were adopted to keep the 

most relevant attributes.  

 

Therefore, each user search was assigned the most probable cluster identifier to a centroid 

representing its overall behavior. In Chapter 2, the price curve was simulated from a pixelated image 

to reconstruct a series of prices. It is therefore possible to simulate set of series potentially belonging 

to a group by using the cluster centroid. Averaging a predefined number of simulated curves, the 

price evolution assigning to the similar group was estimated. A series of returns were extracted from 

the simulations with the following information: the increase or decrease of the price in n days, and 

the variation. Secondly, the “direct” prediction was explained based on the direct learning of the 

price evolution at time t. This prediction can be binary (increase or decrease in price), by dial (strong 

increase, weak decrease etc.) or continuous (percentage change). The label Ei refers to the prediction 

at time t involving the model by number of days before the departure date. The typical behaviors 

and the simulation of curves were dispensed. Finally, the advantages and the disadvantages of this 

approach were discussed. 

 

4.1 Notations 

i: Number of the flight of the learning base i 1, ..., n  

ntest: Number of test flights 

p: Number of attributes                            

Vi: Vector of p attributes of flight i among the set of attributes V 

Ntrain: Base for learning attribute vectors of size n × p  

Ntest : Base for testing attribute vectors of size n test × p                                                                                                                                                          

 



 

Setting the date of departure at the origin, T0
(i) = 0, the variable ϕt

(i)∈{0 , 1} is defined to be the 

advice “buy” and “wait” correspondingly at time t for the flight i. ϕt1
(i) = 1 if and only if the price pi 

(-t2) at 7 days is less than or equal to pi (-t1). Once the class j is obtained by applying the classifier 

to the attributes of the path i, the model of class j will be used to calculate the probability P (ϕt1
(i)= 

1).  

 

4.2 Learning process 

Before the price prediction of a flight at time t, P(ϕt
(i)=1), the belonging group should be determined. 

The list of attributes Vi = Vi(1), . . ., Vi(p), and the first price changes were the only input information. 

We initially applied the flight attributes only to predict behaviors. Classification algorithms that 

segment the learning base according to the label Ei were adopted to create classification rules: 

 

CART (Breiman, 1984) is a classification algorithm based on decision trees maximizing the 

information gain at each step. It chooses the most discriminating attribute at each node and separates 

the set of flights into two subsets. Adaboost (Freund, 1995) is a boosting method to select weak 

classifiers and minimize the error in classification. Random forests (Breiman, 2001) are a variant of 

bagging to build multiple uncorrelated trees. In most cases, Random Forests have similar 

performance to Adaboost with easier training and configuring. Genuer (2010), provides a complete 

description of the theory and practice of random forests for selecting the most relevant variables to 

improve the classification. 

 

4.2.1 Decision trees: CART & C4.5 

 

The CART algorithm can be divided into 4 steps. The first step is to build a tree recursively by 

separating all the flights into two subsets. Each node is associated with a predicted class according 

to the distribution of the flights and the cost matrix. The tree over-learns the training data after 

construction. Therefore, the third step of pruning the tree is to make it generalizable. Finally, a test 

sample was performed to minimize the rate of estimated error. The construction of the tree begins 

with testing all the flights grouped together. The algorithm finds the best attribute to split the flights 

into two subsets. All the possible values of each attribute will be checked to optimize a predefined 

criterion. The number of levels to be tested should be specified for the qualitative attributes to avoid 

long computation time. 

 

With a node m representing a sub-partition Nm, Ntrain learning base and nm flights, to maximize the 

average purity of the two sub nodes at each iteration, let us set: 

𝑝̂𝑚𝑘= 
1

𝑛𝑚
∑ 𝕝𝑦𝑖=𝑘𝑖∈𝑁𝑚

, 

the proportion of class k flights at node m. 

At each node m, the set of flights is classified as 𝑘(𝑚) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑝̂𝑚𝑘. Different metrics of a 

node will be defined: 

Error in classification: 
1

𝑛𝑚
∑ 𝕝𝑖∈𝑁𝑚

(𝑦𝑖 ≠ 𝑘(𝑚)) = 1 − 𝑝̂𝑚𝑘(𝑚). 

Gini index: ∑ 𝑝̂𝑚𝑘𝑝̂𝑚𝑘′𝑘≠𝑘′ = ∑ 𝑝̂𝑚𝑘
𝐶
𝑘=1 (1 − 𝑝̂𝑚𝑘). 



 

 

Cross deviance: -∑ 𝑝̂𝑚𝑘 log(𝑝̂𝑚𝑘)𝐶
𝑘=1 . 

 

In the case of a two-class classification, these three measures are written respectively 1-(max(p, 1-

p),2p(1-p) and -p log p-(1-p) log(1-p). 

 

The Gini index, introduced by Breiman, measures impurity in the random forest algorithm. The 

impurity of a population for a multiclass classification is measured by the following formula: 

𝐼(𝑇) = 1 − ∑(
𝑛𝑗.

𝑛..
)2

𝑐

𝑗=1

 

where nji represents the membership of class j at node i. It measures the expected classification error 

if the predicted class were chosen randomly following the distribution of class probabilities and the 

numbers of the current node T. Construction is stopped when: (a) There is only one more observation 

in the leaf nodes (b) The distribution of attributes is identical (c) The defined depth limit has been 

reached. Pruning removes unnecessary tree branches to avoid over-learning the training data. The 

process includes building a series of sub-trees by successive pruning and choosing the optimal one 

among these series. The solution obtained by a step-by-step algorithm is not necessarily globally 

optimal with efficiency and reliability. For a given tree A denoted by K the number of terminal nodes 

of A, the measure is expressed by a criterion: 

𝐷(𝐴) = ∑ 𝐷𝑘(𝐴)

𝐾

𝑘=1

 

where Dk (A) is the number of misclassified flights. 

The construction of the sequence is based on a penalty of the tree: 

𝐶(𝐴) = 𝐷(𝐴) + 𝛾𝐾 

The process is iterated for the construction of the sequence: 

𝐴𝑚𝑎𝑥 = 𝐴𝐾 ⊃ 𝐴𝐾−1 ⊃ ⋯ 𝐴1 

where A1, the root node, is the entire sample. The optimal tree therefore corresponds to k that 

minimizes D(Ak). 

 

The decision trees support both quantitative and qualitative data. Its computation time on a large 

volume of data remains low without degrading performance. C4.5 creates several branches at each 

separation according to the number of levels for a qualitative variable. Regarding quantitative 

variable, a branch is created for each interval of the discretized version of the variable. The 

limitations of the algorithms of CART and C4.5 are statistical, representation and computational 

problems, which are described by Thomas G. (2000) and summarized by Beringer and Eyke (2006). 

The combination of several classifiers would make decisions more reliable, expand the possible 

solutions, and avoid local optima. The aim of multi-classifier systems (MCS) is to create diversity 

within a set of successful classifiers and to establish the best possible solution.  

 

4.2.2 Adaboost 

 

Adaboost is a boosting technique based on the iterative selection of weak classifiers (Yoav and 



 

Robert, 1995). Introduced by Freund and Schapire, boosting is one of the most successful machine 

learning algorithms. A predictor ℎ̂(Vn) can be constructed given a training sample Vn and a weak 

prediction method (CART for example). A first sample V1
n is drawn randomly (bootstrap). The basic 

classifier can be applied to this sample to obtain a first predictor h(V1
n). Then, the error of ℎ̂(V1

n) 

on the sample Vn is calculated. A second bootstrap V2
n sample is then drawn based on the predictions 

of ℎ̂(V1
n). A set of classifiers can be obtained after repeating the process and taking a weighted 

average. Boosting is therefore a sequential method with each sample being drawn according to the 

performance of the basic rule on the previous sample. Each model is an adaptive version of the 

previous one by giving more weight during the next estimation. It does not require long data pre-

processing of parameters during the training procedure. In our case, each learning flight is weighted 

at each iteration to minimize the classification error.  

 

Algorithm 3 Adaboost 

  

Input: S = (Vi, Ei)i = 1, ..., n, with Ei the class obtained by applying the classifier 

For i = 1 ... n do 

p1 (Vi) ← 1/n 

End For 

For j = 1 ... nb Classifier do 

Draw a learning sample Sj in according to the probabilities pj 

Train a classifier Cj on this subsample.  

Let qj be the apparent error of Cj on S 

Calculate αj = 1/2ln(1−ϵt)/ϵt 

For i = 1 ... n do 

if hj (Vi) = yi (well classified by ht) then 

pj + 1 (Vi) ← pj (Vi)/Zt e − αt 

if not 

pj + 1 (Vi) ← pj (Vi)/Zt e + αt 

  End if 

With Zt normalized such that Σ1
m pj (Vi) = 1  

End For  

End For 

return The set of trees {Tb}1
B 

 

Boosting methods are frequently cited for comparison with random forests. Boosting is based on a 

deterministic principle for the creation of diversity in sets, whereas random forests adopted 

principles of randomization. 

 

4.2.3 Random Forest 

 

Random forest methods are based on the combination of elementary classifiers of decision tree types. 

A small change in the learning base causes a significant change in the structure of the tree and results 

in its generalization performance. The specificity of trees used in random forests is disturbed by a 

random factor to generate diversity. In 1996, Breiman proposed a method to construct multiple 



 

independent classifiers on random subsets of the learning base. Each classifier is a CART decision 

tree previously described but which has not been pruned. The predictions of each tree are grouped 

together and the final prediction is chosen by a voting system. This method is based on a principle 

called bagging. In the case of bagging, the tree construction algorithm divides the nodes by choosing 

the best variable among all possible variables. The selection of the best variable is performed on a 

random subset of the variables. Breiman demonstrates the importance of random forests 

convergence. His research shows that the error rate in generalization of a random forest converges 

towards a limit value, when the number of trees increase. The main strength of bagging is therefore 

to reduce instability and improve performance in generalization. Random selection does not require 

cross validation, or even an independent test basis to estimate test error. This error is calculated as 

follows: For each tree built on the subset Z∗, a prediction is made on all the flights of the set. By 

aggregating the predictions made by all the trees, one flight will be predicted once in three on 

average in our case. Algorithm 4 describes the different stages of the construction. 

 

Algorithm 4 Decision trees for classification 

Input: S = (Vi, Ei) i = 1, ..., n, with Ei the class obtained by applying the classifier 

Entry: ntree the number of trees in the forest 

Entry: mtry the number of characteristics to be randomly selected at each node 

For j = 1 ... ntree do 

Sj ← boostrap set, the data of which are randomly drawn (with replacement) from S  

tree ← an empty tree composed of its root only  

tree.root ← RndTree (tree.root, Sj, mtry)  

forest ← forest∪tree 

End For  

return forest  

 

 

Algorithm 5 RndTree 

  

Entry: n the current node 

Entry: S all the data associated with node n 

Entry: mtry the number of characteristics to be randomly selected at each node 

if it is not a leaf then 

C ← mtry characteristics chosen randomly 

for any A∈C do 

CART procedure for the creation and evaluation (Gini criterion) of the partitioning produced 

by A, according to 

End For 

partition ← partition which optimizes the Gini criterion 

n.addChild (partition) 

for any child ∈ n.node 

RndTree (child, child.data, mtry) 

End For  

End if  



 

return 

  

Two methods were calculated to rank the variables in order of importance in learning. To measure 

the importance of the j-th attribute after training, the values of the j-th attribute are swapped in the 

training database and the OOB error is computed again on this "disturbed" data set. The importance 

of the j-th attribute is then calculated by averaging the difference between the OOB error before and 

after the disturbance on all trees. The score is normalized by the standard deviation of these 

differences. The more the precision of the forest classification decreases by adding an additional 

variable, the more important it becomes. The second method measures the influence of a variable 

in the homogeneity of nodes. As soon as a variable ed to divide a node, the Gini coefficient is 

calculated and compared to the initial node. The difference of the coefficients is summed for each 

variable and normalized at the end of the process: the greater the drop, the greater the influence of 

the variable on the purity of the nodes. 

Strobl et al. propose to use another implementation of random forests where the weak classifiers are 

unbiased classification trees based on a conditional approach (Torsten, 2006). In addition, Strobl et 

al. recommend the use of a bootstrap without replacement to obtain an unbiased measure of the 

importance of the variables. One of the disadvantages of random forests is the multiplication of 

levels disturbing the classification both qualitatively and computationally. Another solution is to 

group the poorly represented levels together and keep the most frequent ones. We therefore decided 

to adopt the levels appearing more than 2% of the time within a limit of 30 levels for the qualitative 

variables. A new level "-1" was then created to group together all the other values. 

4.3 Predicting behavior 

This section describes the transition of predicting a group from a vector attributes to forecast price 

changes. A group number Ei can be associated with a flight from the vector of attributes Vi following 

classification rules. Once this group is assigned to the flight, the associated centroid simulations was 

applied to predict the future behavior of the price series at time t of the demand prediction. 

 

Learning a behavior  

Each test flight has a vector of attributes Vi in the learning base. Each qualitative attribute was 

created an additional level called "-1". In the process of constructing the Vi of Ntest, the levels of 

qualitative attributes were checked in the learning base and in the opposite case the value "-1" was 

assigned. The selection of the most present values was applied to group the rarest in the same level 

"-1". The classification models generated previously for each test flight were represented by its 

attribute vector Vi and an output vector corresponding to the probability of belonging clusters: P (Vi

∈Ik), ∀ k = 1, ..., C. The label Ei corresponding to the number of the most probable cluster was then 

associated with the test flights.  

 

Predicting an Evolution  

A model assigning a cluster number to a new flight through its attributes was generated. This cluster 

number associates a centroid with the test flight and an overall flight behavior represented by the 

group's centroid. In the case of centroids, reconstructing flights from any gray level means that 

synthetic time series can be created from this cluster. Before simulating the price curves, the nature 

of the prediction should be defined. This prediction was performed at an instant t. The price series 



 

ϕt is binary with the research questions: will the price increase in 7 days? will the price drop at least 

24 hours in the next 10 days? N curves from the cluster assigned to the test flight were simulated 

and calculated for each of them ϕt ∈[0, 1]. The final prediction of the flight P (ϕt = 1) was obtained 

by averaging the predictions. However, the evolution of prices according to dials such as “Strong 

Rise”, “Weak Rise”, “Stable”, “Low Decline” and “Strong Decline” should be predicted. 

Accordingly, the procedure remains unchanged except that ϕt takes 5 values. For the simulations, 

each dial was incremented when the price change matched its criterion. The results of all the dials 

were then normalized.  

 

4.4 Direct prediction 

Another method of predicting ϕt is to apply the learning phase to the function of ϕt. In this way, the 

segmentation step is no longer necessary, as it suffices to calculate ϕt for all the flights of the learning 

base. The label is therefore no longer the group number but directly ϕt. With this method, there is 

no information loss due to grayscale transformation or centroid simulations. Moreover, if the 

learning is performed on a binary value of ϕt, the error chance naturally decreases as the problem 

complexity decreases. The main drawback of this approach is the obligation to have a model per 

number of days before the departure date. Unlike the classic approach where only the simulation 

updates are required, the direct prediction has to recalculate the models at each new definition of ϕ.  

 

4.5 Sequential approach  

The yield management techniques were discussed using the demand evolution as the main parameter 

in the price modification. The information of first price change is subject to  research. Popular 

destinations can benefit from this additional information, as the search volume is large enough for 

the combinations of dates, routes and length of stay. The first price changes can be added in various 

ways. In direct prediction, the learning part ϕt by random forests can be conducted using the 

contextual attributes described in Chapter 1. These attributes depend on the number of days before 

the departure date. They represent the volatility observed in prices and the number of increases or 

decreases. Using the first points as the sole prediction parameter creates a new type of classifier. 

The most probable cluster was assigned to each of the test flights from Expectation-Maximization 

algorithm. Finally, the information on the first points was applied in the behavior learning phase by 

adding a parameter to the Expectation-Maximization algorithm. The learning is then coupled with 

the segmentation step and makes it possible to calculate the likelihood of belonging to a cluster 

thanks to the Vi and the partial gray levels of the test flights. 

 

4.5.1 Classification only by the first price change 

 

Supposing that the curve of flight i is observed up to a date T, we reconstructed the partial gray level 

of the flight Xi(s, t) for (s, t)∈𝑅̃ where 𝑅̃ is the set in the time-yield plane corresponding to the 

prices observed. We then denoted by 𝑋̃i the set of Xi (s, t) for (s, t)∈𝑅̃. Given the 𝑋̃i, the Iy centroids 

and the αy, the likelihood of belonging cluster for the test flights was calculated as follows: 



 

𝕡𝛼,𝐼(𝑌𝑖 = 𝑦|𝑋̃𝑖) =
𝑝𝛼𝐼𝑦(𝑋̃𝑖 , 𝑌𝑖 = 𝑦)

∑ 𝑝𝛼𝐼𝑗(𝑋̃𝑖 , 𝑌𝑖 = 𝑗)𝐶
𝑗=1

∝ 𝛼𝑦 ∏
(𝐼𝑦(𝑠, 𝑡))

𝑋𝑖(𝑠,𝑡)

𝑒−𝐼𝑦(𝑠,𝑡)

𝑋𝑖(𝑠, 𝑡)!
(𝑠,𝑡)∈𝑅̃

, 

for y∈1,. . . ,C. 

 

The classification chooses the y to maximize the likelihood. The calculation of 𝑋̃i (s, t) is higher 

than the sampling frequency. 

 

4.5.2 logit EM  

The logit EM is a classification method accompanied by a segmentation step similar to the EM with 

inseparable classification and segmentation. The input data is the set of gray levels Xi and the 

information of the attributes Vi. The main assumption is the gray levels Xi of flight i depend on 

attributes through a particular cluster only. In probabilistic terms, the conditional distribution of Xi 

does not depend on attributes. On the other hand, the law of Yi depends on the attributes through a 

function ψ (.,.): P(Yi =y) = ψ (y|Vi). 

Since Yi is not observed, the law of Xi depends on the attributes in the form:  

𝕡(𝑋𝑖 = 𝑥) = ∑ 𝕡((𝑋𝑖 = 𝑥|𝑌𝑖 = 𝑦)𝜓(𝑦|𝑉𝑖).
𝐶

𝑦=1
 

As in section 3.3.3, the probability P(Xi = x|Yi = y) depending on the parameter Iy∈(R∗
+)R is given 

by Poisson's law. Therefore, a Poisson model was adopted to calculate the probabilities of belonging 

clusters using the parameters (αy) which were replaced by the functions (ψ (y|v)) in logit 

parameterization. 

 

Algorithm description 

The algorithm is similar to the Expectation-Maximization algorithm in Section 3.3.3, except that it 

introduces the information of the Vi attributes into the segmentation step. 

 

Input data  

The input data are those of the EM described in section 3.3.3 and the attributes Vi of all the flights 

i∈1, …, n. 

 

Initialization  

The initialization is almost identical to the EM of section 3.3.3, however a third optimized parameter 

is added, given by the function ψ defined above. A first segmentation was therefore applied by the 

K-Means, initializing the centroids Iy and the pairs (Xi, 𝑌̂i). The pairs (Vi, 𝑌̂i) was used to optimize 

the function ψ. 

 

Likelihood function  

The log density of the observed variables Xi, i = 1, . . ., n, given the observed attributes Vi, i = 1, . . ., 

n, is written: 

log 𝑝𝜃(𝑥1, … , 𝑥𝑛|𝑣1, … , 𝑣𝑛) = ∑ log 𝑝𝜃(𝑥𝑖|𝑉𝑖

𝑛

𝑖=1

) 



 

                                                   = ∑ log ∑ 𝑝𝜃(

𝐶

𝑦𝑖=1

𝑛

𝑖=1

𝑥𝑖|𝑉𝑖 , 𝑦𝑖)𝑝𝜃(𝑦𝑖|𝑉𝑖) 

                                                   = ∑ log ∑ 𝑝𝜃(

𝐶

𝑦𝑖=1

𝑛

𝑖=1

𝑥𝑖|𝑦𝑖)𝑝𝜃(𝑦𝑖|𝑉𝑖), 

where, for θ = (I, ψ), 

 

𝑝𝜃(𝑦𝑖|𝑉𝑖) =  𝜓(𝑦|𝑉𝑖) 

(4.1)               

 

and 

𝑝𝜃(𝑥𝑖|𝑦𝑖) = ∏
𝑒𝑥𝑖(𝑟)(log 𝐼(𝑟|𝑦𝑖))−𝐼(𝑟|𝑦𝑖))

𝑥𝑖(𝑟)!𝑟∈𝑅 .              

By factoring all the terms in the log-likelihood function, we obtain: 

log 𝑝𝜃(𝑥1, … , 𝑥𝑛|𝑣1, … , 𝑣𝑛) = (… ) + ∑ log ∑ exp (ℓ(𝑦𝑖|𝑉𝑖

𝐶

𝑦𝑖=1

𝑛

𝑖=1

, 𝐼)) 𝜓(𝑦|𝑉𝑖), 

(4.2)               

where the constant (...) does not depend on θ. 

 

ℓ(𝑥|𝑦, 𝐼) = ∑ 𝑥𝑖(𝑟)(log(𝐼(𝑟|𝑦𝑖)) − 𝐼(𝑟|𝑦𝑖)).

𝑟∈𝑅

 

(4.3)               

 

Expectation Step  

Knowing the attributes v1, . . ., vn and the two parameters θ=(I,ψ) and θ′ = (I′,ψ′), the conditional 

expectation of the log-density joined to the parameter θ′ was calculated. 

𝑄(𝜃′, 𝑥𝑖 , … , 𝑥𝑛|𝜃, 𝑣1, … , 𝑣𝑛) = ∑ ∑ [log 𝑝𝜃′(𝑥𝑖 , 𝑦𝑖|𝑉𝑖)]

𝐶

𝑦𝑖=1

𝑛

𝑖=1

𝑝𝜃(𝑦𝑖|𝑥𝑖 , 𝑉𝑖). 

For convenience, we omitted x1, . . ., xn and v1, . . ., vn in the notation of Q and simply wrote Qn 

(θ′|θ) We then obtain: 

𝑄𝑛(𝜃′|𝜃) = (… ) + ∑(∑ 𝐵𝑛(𝑦, 𝑟|𝜃) log 𝐼′(𝑟|𝑦) − 𝐴𝑛(𝑦|𝜃) ∑ 𝐼′(𝑟|𝑦))

𝑟𝜖𝑅𝑟𝜖𝑅

𝐶

𝑦=1

 

                                + ∑ ∑(log 𝜓′

𝑛

𝑖=1

𝐶

𝑦=1

(𝑦|𝑉𝑖))𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖), 

where (...) is a constant independent of θ', and we have: 

𝑝𝜃(𝑦|𝑥, 𝑣) =
𝑝𝜃(𝑥, 𝑦|𝑣)

∑ 𝑝𝜃(𝑥, 𝑦′|𝑣)𝑦′
 , 𝑎𝑛𝑑  𝑝𝜃(𝑥, 𝑦|𝑣) = 𝜓(𝑦|𝑣) exp ℓ(𝑥|𝑦, 𝐼) 

with ℓ defined in (4.3) and 



 

𝐴𝑛(𝑦|𝜃) = ∑ 𝑝𝜃

𝑛

𝑖=1

(𝑦|𝑥𝑖 , 𝑉𝑖) 𝑎𝑛𝑑   𝐵𝑛(𝑦, 𝑟|𝜃) = ∑ 𝑥𝑖(𝑟)𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖)

𝑛

𝑖=1

. 

(4.4)                                           

 

Maximization Step  

This step maximizes Q (θ′|θ) in θ′ for a given θ.               

 

As for the EM, the optimization at I’ with the weight ψ can be treated separately. We obtain: 

𝐼′(𝑟|𝑦) =
𝐵𝑛(𝑦, 𝑟|𝜃)

𝐴𝑛(𝑦|𝜃)
,    𝑟𝜖𝑅, 𝑦 = 1, … , 𝐶. 

(4.5)                                           

 

The optimization in ψ depends on the function used in the set of functions. We obtain: 

𝜓′ = 𝑎𝑟𝑔 max
𝜙≠Ψ

∑ ∑(log 𝜙(𝑦|𝑉𝑖)) 𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖).

𝐶

𝑦=1

𝑛

𝑖=1

 

(4.6)                             

 

The class ψ represents a set of probable functions for ψ. In the particular case where ψ is constant 

in V, we obtain 

𝜓′(𝑦) =
𝐴𝑛(𝑦|𝜃)

∑ 1𝐴𝑛(𝑦′|𝜃)𝐶
𝑦′

 . 

 

To involve the attributes, the function below in logit type is chosen: 

𝜓(𝑦, 𝑣) = log 𝑖𝑡𝜑(𝑦|𝑉) =
𝑒𝜑𝑦

𝑇𝑉

∑ 𝑒𝜑𝑦
𝑇𝑉𝐶

𝑦=1

 

(4.7)              

The function ψ is fully described by the parameter ϕ∈Rp. The ψ′ is calculated therefore to generate 

the new parameter ϕ′.               

We then obtain: 

𝜑′ = 𝑎𝑟𝑔 max
𝜑

(∑ ∑(𝜑𝑦
𝑇𝑉𝑖)𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖) − ∑ ∑ log(∑ 𝑒𝜑𝑦

𝑇𝑉)𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖))

𝐶

𝑗=1

𝐶

𝑦=1

𝑛

𝑖=1

𝐶

𝑦=1

𝑛

𝑖=1

 

                   = 𝑎𝑟𝑔 max
𝜑

(∑ ∑(𝜑𝑦
𝑇𝑉𝑖)𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖) − ∑ log ∑ 𝑒𝜑𝑦

𝑇𝑉𝑖

𝐶

𝑦=1

𝑛

𝑖=1

𝐶

𝑦=1

𝑛

𝑖=1

) 

By setting ϕC = 0, 

𝜑′ = 𝑎𝑟𝑔 max
𝜑

(∑ ∑ 𝜑𝑦
𝑇𝑉𝑖𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖) − ∑ log(1 + ∑ 𝑒𝜑𝑦

𝑇𝑉𝑖

𝐶−1

𝑦=1

𝑛

𝑖=1

𝐶−1

𝑦=1

𝑛

𝑖=1

) 

After differentiating, ϕ’ is the solution of the equation: 



 

0 = ∑ 𝑉𝑖𝑝𝜃(𝑦|𝑥𝑖 , 𝑉𝑖) − ∑
𝑉𝑖𝑒𝜑𝑦

𝑇𝑉𝑖

(1 + ∑ 𝑒𝜑𝑦
𝑇𝑉𝑖)𝐶−1

𝑗=1

     , 𝜑1, … , 𝜑𝐶−1

𝑛

𝑖=1

𝑛

𝑖=1

∈ ℝ 

 

Output data 

When the algorithm is stopped, an estimator 𝜃= (𝐼, 𝜓̂) or 𝜃= (𝐼, 𝜑̂) in the logit parameterization 

will be generated. The logit EM calculates the most probable group for each flight i using the 

likelihood function pθ(x, y|v). It applies to Xi(s,t) to determine the label 𝑌̂𝑖 for each flight i. 

𝑌̂𝑖 = 𝑎𝑟𝑔 max
𝑦

𝕡𝜃(𝑌𝑖 = 𝑦|𝑉𝑖) = 𝑎𝑟𝑔 max
𝑦

𝜓(𝑦|𝑉𝑖) 

We then define Xi = (𝑋̃i, 𝑋̂i) with 𝑋̃i the observed points, and 𝑋̂i the future evolutions. We would 

therefore have: 

𝕡𝜃(𝜑̂|𝑉𝑖 , 𝑋̃𝑖) = ∑ 𝕡𝜃(𝜑̂|𝑉𝑖 , 𝑋̃𝑖 , 𝑌𝑖 = 𝑦)𝕡𝜃(𝑌𝑖 = 𝑦|𝑉𝑖 , 𝑋̃𝑖)

𝐶

𝑦=1

 

                     = ∑ 𝕡𝜃(𝜑̂|𝑌𝑖 = 𝑦)𝕡𝜃(𝑌𝑖 = 𝑦|𝑉𝑖 , 𝑋̃𝑖)

𝐶

𝑦=1

 

 

for any event 𝜑̂ dependent on 𝑋̂i , with 

                

𝕡𝜃(𝑌𝑖 = 𝑦|𝑉𝑖 , 𝑋̃𝑖) =
𝑝𝜃(𝑋̃𝑖|𝑦)𝜓(𝑦|𝑉𝑖)

∑ 𝕡𝜃(𝐶
𝑗=1 𝑋̃𝑖|𝑗)𝜓(𝑗|𝑉𝑖)

∝ 𝑝𝜃(𝑋̃|𝑦)𝜓(𝑦|𝑉𝑖). 

                        

In this case, EM segmentation evaluation metrics can be used along with prediction performance. 

To limit computation time and resource, the number of attributes should be reduced. Therefore, 

variable selection techniques described above were adopted and 10 most discriminating variables 

were chosen.  

 

4.6 Conclusion 

Different steps were discussed to provide price prediction for all the results of a user search. The 

first step associates each result with its most probable class. After segmenting the flight behaviors 

from the gray level basis, the supervised learning algorithm was applied through the attributes.  

The flight characteristics Vi and the associated label Ei were assigned to the corresponding class 

assigned during the segmentation step. The supervised learning algorithm provides classification 

rules to classify the test flights into their most likely group based solely on their attributes. Therefore, 

algorithms such as CART and C4.5, decision trees were used to extract rules. Adaboost, Random 

Forests and Bagging were also conducted on training multiple decision trees with subsets of data 

drawn randomly. An extension of the EM algorithm was introduced to perform the segmentation 

and classification step simultaneously. 

 

Therefore, a label Ei the centroid of the cluster associated was obtained for each test flight, followed 

by the calculation of the probabilities P (ϕ (i) = 1), ∀t ∈ [Tinit, T0 - 7] for a 7-day prediction. The 



 

direct prediction were introduced to directly model the series without the segmentation step. This 

method involves a model per days and imposes the renewal of learning at each change of ϕt. Finally, 

the different possible approaches were defined in the refinement of the prediction. The context 

attributes described in Chapter 1 were used as attributes in direct prediction. The supervised learning 

required information on demand at time t, the volatility of the first price changes, and the present 

value of the price. To create a partial gray level and calculate the partial likelihood, all these methods 

required one model per day before the departure date.  

  



 

 

Chapter 5  

Introduction 

This chapter studies the empirical analysis of the different approaches’ performance. First, different 

algorithms with their influence on the prediction were compared. The results in terms of behavioral 

predictions were presented first as the prediction of an increase or a decrease binary (ϕt[0, 1]) at 7 

days. The notions of True Positives, True Negatives, False Positives and False Negatives were used. 

These four criteria were compared using the confusion matrices. The number of false positives was 

minimized to avoid financial loss. The rate of true positives was visualized as a function of the rate 

of false positives when the decision threshold of ϕt varies. Then the ROC curve was used to compare 

the performances of the different approaches at time t. The ROC curve also determined the optimal 

threshold at each instant t. Finally, at a fixed threshold, the satisfactory prediction rate was visualized 

according to the number of days before the departure date. The optimal threshold was determined 

by performing a prediction on the learning basis.  

 

At the same time, the financial gains for the user and the percentage of satisfactory predictions were 

visualized. The methods to calculate the gains and losses was discussed. At each step (modeling, 

segmentation, classification), different parameters were compared to choose the optimal 

configuration. At the clustering stage, the number of clusters, the number of initializations for all 

the previously mentioned approaches such as K-Means, Bagged K-Means and EM were compared. 

At the learning stage, the different algorithms (CART, Adaboost, Decision Tree and EM logit) were 

compared. The influence of the attributes used for classification was discussed. We then checked 

the feature selection step to optimize the results by eliminating correlated or unnecessary attributes. 

 

It is important to know if it is necessary to use the entire database or 10 percent is enough to predict 

correctly. The evolution of the satisfactory prediction rate was discussed to identify the renewal 

frequency of the models. The effects of adding the first jumps information in the prediction were 

compared to the direct prediction. Finally, the results of our approach were described on the 

extended basis of 90-day flights. 

 

5.1 Measures of Performance              

5.1.1 Confusion matrix             

 

The confusion matrix is a metric that measures the quality of a classification system. Usually used 

in binary prediction, it can be extended to any number of classes. In the case of a binary prediction, 

4 values are defined: True Positive (TP), False Positive (FP), True Negative (TN) and False Negative 

(FN). In our case, ϕ = 1 corresponds to the advice “wait” and ϕ = 0 refers to the suggestion “buy 

immediately”. The number of true positives is then the number of times the predictor detected a 

price drop correctly. The false positive will be a false predictive value when in reality the price 

increased. One of the advantages of the confusion matrix is that it shows quickly whether the system 

classify correctly. In our case, it is important to minimize the number of false negatives as it implies 



 

greater frustration. 

 

5.1.2 Evolution over time             

 

With confusion matrices, the overall percentage of satisfactory predictions evolving over time was 

visualized. We then defined the overall rate of satisfactory predictions: 

𝑓 𝑔𝑙𝑜𝑏𝑎𝑙(𝑡) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The specificity, or the probability of detecting an increase correctly: 

𝑓 𝑠𝑝𝑒𝑐(𝑡) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The sensitivity, the proportion of price drops detected: 

𝑓 𝑠𝑒𝑛𝑠(𝑡) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The evolution of these criteria according to the number of days before the departure date was 

visualized. The challenge is to maintain a satisfactory rate of global predictions and balance the 

detection of increases and decreases correctly. Therefore, the notion of decision threshold was 

applied. These curves depend on the thresholds [0, 1] where P (ϕ = 1) is considered as a drop. After 

a cluster prediction, a flight was associated with a probability of evolution at an instant t. If s = 0.5 

with P(ϕ = 1)≥0.5, a decrease will be predicted, and vice versa. For all values of s <0.5, we favored 

the negative predictive values. Conversely, for all s> 0.5, the predictions will be positive. Each curve 

therefore corresponds to the evolution of satisfactory predictions as a function of the date before 

departure. 

 

5.1.3 ROC curve             

 

The ROC (Receiver Operating Characteristic) curve measures the performance evolution of a binary 

classifier as a function of a discrimination threshold. A high threshold corresponds to conservative 

behavior. Conversely, when the threshold is low, the negative prediction is favored. The ROC curve 

can be formulated as follows: 

  

Different selection criteria can be applied depending on the problem. For example, area under the 

curve (AUC) is the best compromise between sensitivity and specificity. In our case, the number of 

FPs was minimized.  

 

The Youden Index  

The Youden Index assesses the ability of the classifier to avoid prediction error. The index gives 

equal weight to false positive and false negative values, therefore all tests with the same value of 

the index provide the same proportion of total misclassified results. It should be noted that in our 

case, we performed the N simulations only once per cluster to minimize the computation time. As a 

result, two test flights assigned to the same cluster will have the same P (ϕt = 1). A confusion matrix 

of gains and losses was created. For each of the four classic confusion matrix, we defined a gain or 

loss as follows: d = firstPrice-lastPrice, with firstPrice indicating the price of the ticket at the time 



 

of prediction and lastPrice referring to the actual price at the end of the prediction. A new confusion 

matrix was defined: 

TABLE 5.1 Confusion matrix of gains and losses 

  Reality  

 0 1 

Predict 0 GTN=-d PFN=d 

 1 GFN=-d GTP=d 

 

 

We then found 3 curves: the average gain or loss per flight gglobal= (ΣnGTP - GTN + PFP – PFN)/n, the 

average gain per flight ggain = (ΣGTP - GTN)/n and the average loss per flight gloss = (Σ-PFP + PFN)/n. 

Two comparative curves were introduced which are the gain made by purchasing on the day of the 

prediction systematically, i.e. ∀ t, P(φ= 1) = 0, g0=(Σn- GTP - GTN - PFP - PFN)/n. An optimum curve 

describes the gain for someone who knows the future, and makes the right choice systematically, 

gopt =(ΣnGTP - GTN + PFP - PFN)/n. The aim of the research is to find a balance between optimizing 

the rate of satisfactory predictions and increasing the average gain per ticket. 

 

5.2 Results 

This section studies the influence of parameters and algorithms on the prediction quality. At each 

step, the specific metrics and the performance measurement were described. Started by studying the 

parameters of the data segmentation such as number of groups and initializations, the classification 

step was analyzed. Then, the influence of the input parameters (base size, pixel size, ...) was 

identified. We focused on the base of flights sampled every 6 hours over a period of 28 days 

representing 444,503 flights from June 2017 to January 2019. The test base includes 19,848 flights 

between January 1, 2019 and February 28, 2019. Finally, the base extended to 90 days was studied. 

The algorithms were applied on a completely independent basis. 

 

5.2.1 Segmentation 

 

K-Means 

In previous chapter, the different parameters of the K-Means algorithm were described. It is 

important to differentiate the parameters on the segmentation quality and the final prediction. 

Therefore, two performance criteria for each result are displayed with gains and losses depending 

on the number of days before the departure date. In fact, not only the rate of satisfactory predictions 

but also the overall gain was concerned. The criterion of the optimized K-Means is as follows: 

wy=∑ ‖Xi − Iy‖
2

Xi∈y  

W=∑ ∑ ‖Xi − Iy‖
2

Xi∈y
C
i=y  

It can be applied to choose the K-Means parameters. 

 

Evolution of performance as a function of the number of starts 

The number of random starts is essential for the smooth running of the algorithm. The variance of 



 

W over several iterations as a function of the number of initial starts was observed. The intra-

centroid variance is represented by the horizontal lines. The probability of converging towards the 

global optimal therefore increases with the number of random starts. However, the computation time 

and the resources used by the K-Means are an obstacle to the choice of multiple departures. We 

noted that the computation time is almost linearly correlated to the number of departures, implying 

a compromise in the choice of the value of nstart. 

 

Regarding the final prediction, Figure 5.1 demonstrates the influence of the nstart parameter on the 

evolution of the percentage of satisfactory predictions. It is a function of the date before departure 

and the ROC curves associated with t=-21. A minimal difference can be found between 10 starts 

and 100 starts. No difference is observed between 100 and 1000. The number of starts was decided 

to be 100 for the K-Means.   

 

 

FIGURE 5.1 - Evolution of the percentage of satisfactory predictions as a function of the date before 

departure and ROC curve at -21 days for different nstart 

 

Evolution of performance as a function of the number of groups  

The sum of the intra-centroid distances and the Calinski-Harabasz index were observed. These two 

segmentation quality indicators are strictly decreasing. Regarding predictions, the K-Means 

maintain a stable rate of satisfactory predictions from 10 groups with similar ROC curves at -21 

days. The differences observed on the evolution of the satisfactory predictions rate and on the gains 

and losses are caused by the choice of the threshold.  

 

The GAP algorithm is time consuming, therefore the last 5 percent of the learning base was selected 

for groups ranging from 1 to 50. Different metrics were applied to choose the best number of clusters: 

1. The maximum value of GAPk at 50 groups 

2. The first occurrence of a local maximum at 27 groups  

3. The smallest k for which f (k) ≥ f (k + 1) - sk + 1 at 27 groups  

 

The K-Means applied to the last 10 percent of the learning base. The cluster of 27 groups provided 

satisfactory results for the ROC curve. This choice was applied to the “EM” and “Bagged K-Means” 

algorithms in Figure 5.2. The first three dials respectively represent the overall prediction rate, true 



 

negative predictions and true positive values according to the number of days before the departure 

date. The gain for the customer were compared for each algorithm. The K-Means algorithm and the 

Bagged K-Means have similar performances with an almost equal overall prediction rate (59% and 

58% respectively). The EM performance reached 60% of the overall satisfactory predictions despite 

a much smaller area under the ROC curve at -21 days. Additionally, GAP method provided the 

magnitude order of the group numbers minimizing W. 

 

 

FIGURE 5.2 K-Means, EM and Bagged K-Means with 27 groups over the last 10 percent of the 

base. 

 

The Bagged K-Means 

The Bagged K-Means algorithm attempts to reduce the influence of the initialization of the K-Means 

and to promote convergence towards a global optimum by applying the K-Means algorithm to 

subsets drawn at random and by aggregating the results of each of these segmentations. It is possible 

to modify the number of initializations of the K-Means. By assuming that the Bagged K-Means 

suppress the influence of the parameter, the number of initializations does not have an influence on 

performance. The algorithm provides satisfactory results and tends to better predict declines. We 

therefore did not retain this algorithm and chose the K-Means for performance and calculation speed. 

 



 

 

FIGURE 5.3 Function of the groups number for K-Means 

 

 



 

FIGURE 5.4 - ROC curve for a K-Means with 2, 3, 4 and 5 clusters compared to K-Means with 27 

groups 

 

 

 

FIGURE 5.5 - Comparison of Bagged K-Means with a K-Means 

 

Expectation-Maximization 

As for the Expectation-Maximization algorithm, the issues are the same as for the K-Means: local 

convergence, number of starts, number of clusters, etc. Therefore, the same metrics are used to 

evaluate the configuration. However, the criterion to be optimized is not the same for the two 

algorithms (W for the K-Means and the global likelihood for the EM), we mainly compared their 

prediction quality. As for the K-Means, the evolution of the criterion to be optimized improves with 

the increase in the number of groups, and the evolution of W is strictly decreasing. Additionally, 

unlike the K-Means, the Expectation-Maximization algorithm is sensitive to variations in its 

parameters. When the right number of groups is chosen, the EM performances in satisfactory 

predictions are better against the K-Means. However, the results are radically reduced if different 

clusters are tested. It is therefore necessary to test different choices and select the number of groups 

which gives the best results. In our case, 5 and 30 groups seem to stand out. 

 



 

 

FIGURE 5.6 Changes in the performance of the EM algorithm as a function of the number of 

clusters 

 

Different ways to initialize the Expectation-Maximization algorithm are described in previous 

chapter. Figure 5.7 shows that there are no major differences between the two methods including 

random initialization of the parameters and segmentation by the K-Means. We adopted the second 

method due to the slight advantage of initialization by K-Means. 

 

 



 

FIGURE 5.7 Comparison of the performance of the EM algorithm according to its type of 

initialization 

 

Comparison 

Among the three segmentation algorithms, the EM has the best rate of satisfactory predictions. Table 

5.3 provides a summary of the final performances of the segmentation configurations. We chose the 

most stable one so as not to bias the results. Systematic purchasing at the time of prediction t1 saves 

on average 390RMB per ticket while buying at the best time saves on average 560RMB per ticket. 

The maximum savings compared to immediate purchases are therefore 700RMB. We have 

represented in the fourth column of table 5.2 the difference in gain on immediate purchase. 

 

TABLE 5.2 Comparison 

Method Groups BP Rate Economy/t1 

K-Means 5 62% -100  

EM 5 66% 400 

K-Means 10 64% 100  

EM 10 62% -300  

K-Means 30 62% -700  

EM 30 64% 200  

K-Means 40 66% -180  

EM 40 64% 100  

 

The first observation is the similar rates of satisfactory predictions, but the gains for the user vary 

from a slight increase to a large decrease. We therefore retained two configurations which are the 

EM with 5 clusters and with 30 clusters. Supervised learning algorithms were applied in next section 

to the two best segmentation configurations. 

 

5.2.2 Classification              

 

CART 

In Figure 5.8, we found that the deeper the tree, the better the results. In fact, when the tree is pruned, 

most of the groups are no longer represented, thus limiting the distribution of test flights over two 

or three clusters only. In our case, it is better to represent as much behavior as possible, therefore 

the whole tree created by the CART algorithm was kept at the end of the construction step. The 

performances are rather weak, as the rate of satisfactory predictions rarely exceeds 60%. We then 

used another decision tree algorithm: C5.0. 



 

 

FIGURE 5.8 Evolution of the percentage of satisfactory predictions as a function of the date before 

departure and ROC curve at -21 days 

 

C 5.0 

The C5.0 algorithm has a parameter regulating the pruning of the tree created. In Figure 5.9, 

different values of the confidence factor between 0 and 1 are studied. We then observed that the 

default value of 0.25 provides the best results. 

 

 

FIGURE 5.9 Evolution of the percentage of satisfactory predictions as a function of the date before 

departure and ROC curve at -21 days 

 

However, the results are not satisfactory, as the ROC curves are close to the diagonal. Therefore, 

more complex algorithms such as Adaboost and random forests were studied. 

 

Random Forests 

As explained in the previous chapter, random forests are an aggregation of multiple CART decision 

trees applied to random subsets of the learning base. The two main parameters are the number of 

attributes chosen randomly at each node and the number of trees constructed. We therefore studied 

the influence of these two parameters on the quality of the classification and the prediction. 



 

 

Number of attributes selected randomly at each node: mtry 

The parameter K determined the number of features selected randomly at each node during the 

procedure of inducing a tree. Its value is therefore chosen in the interval [1 . . . M], where M 

represents the dimension of the description space. The number controls the amount of randomness 

introduced into the feature selection process. The smaller the value of K, the more randomness will 

be introduced. In the case where K = 1 for example, the characteristic of each tree is chosen entirely 

randomly from the available characteristics. Conversely, when K = M, the randomness does not 

intervene in the selection of the partitioning rule. Concerning the value of K, the performances were 

not sensitive since the average deviations of the error rates obtained are not exceed 1%. We showed 

with experiments that the influence of this parameter on forest performance is not negligible. 

Learning several forests for K values ranging from 1 to 20, the error evolution with the number K 

is calculated in Figure 5.18. The value of mtry is decided to be 12 in our case. 

 

Number of trees: ntree  

Breiman states that the generalization error rate of a random forest necessarily converges towards a 

limit value, when the number of trees that compose it increases. One interpretation of this result is 

that when building a random forest, it is not necessary to add decision trees to get better performance. 

Beyond a certain number of random trees, no significant performance gain will be achieved by 

adding more. To stable the classification, the assignment of a group to learning flights is required to 

be the same. The random share of random forests therefore forces us to increase the number of trees 

and we observe that the percentage of difference between two classification by identical random 

forests evolves in the same way as the OOB error. It is therefore necessary to know what is the limit 

number of trees beyond which it is no longer useful to add more. A limit comes naturally during 

experiments due to a problem of memory and computing time. The memory space taken up by the 

creation of the model, although linearly increasing. 

 

In Figure 5.10, the evolutionary performance of random forests is visualized as a function of the 

number of trees built. It can be noticed that the variations become minimal starting from 120 trees. 

Therefore, a set of 100 trees was chosen to maintain a satisfactory prediction rate. 

 

FIGURE 5.10 The percentage of satisfactory predictions as a function of the date before departure 



 

and ROC curve at -21 days for different ntree 

 

Adaboost 

The algorithm of random forests is often compared to Adaboost. Boosting is based on a deterministic 

principle for the creation of diversity while random forests is performed by the principle of 

randomization., These two algorithms show similar results in some articles, but in our case, the 

Adaboost seems to be less efficient. In Figure 5.11, we competed random forests against Adaboost 

for the same segmentation by EM with 5 clusters. As the number of attributes for classification was 

reduced by selecting the best ten variables, the results of the two algorithms were improved. 

 

FIGURE 5.11 - Adaboost and RandomForest comparison 

 

Based on the CART algorithm, the optimal configuration in the pruning step is chosen. The 

implementation of the algorithm requires an enormous amount of execution time. Therefore, 

random forests rather than Adaboost was selected for its prediction efficiency. 

 

Logit EM 

 

Logit EM is the simultaneous application of segmentation and classification. We first chose the most 

relevant variables according to a classification by random forests. Then the most frequent values 

were selected to transfer the qualitative attributes with many levels into binary attributes. The others 

were finally grouped into a single attribute. The attributes retained are the city of arrival 

(arrivalStation), the commercial site (provider), the type of flight, ticket sold by the airline company 

(directSeller), the season, the month of the departure (month) and the month of the return 

(monthRet). 



 

 

FIGURE 5.12 Logit EM performance according to the number of groups 

 

In Figure 5.12, the performance of the logit EM is compared according to different number of 

clusters. The ROC curve reflects prediction performance at -21 days. As for the rate of satisfactory 

predictions, the performance of the segmentation into 10 groups is punctual, however, the results of 

the segmentation into 5 and 20 groups are promising. These two groups were used for future 

comparisons. 

 

Comparison 

Table 5.3 summarizes the results previously discussed. All the experiments were carried out with 

the same EM segmentation step except the EMlogit. We observed a similarity in the rates of 

satisfactory predictions but not in the final gain compared to the systematic immediate purchase. As 

stated in the table, the performance rate of EMlogit, the Random Forest and the C5.0 algorithm 

arrive at 66%. However, only the random forests method balances the rate of satisfactory predictions 

and the economic gain by saving 240RMB per ticket on average. Then different algorithms in 

selection were conducted to improve the performance rate. 

 

TABLE 5.3 - Comparison 

Method Clustering NO. Rate Economic gain /t1 

Logit EM 5 63% 400  



 

Logit EM 20 66% -400  

RF 5 66% 240  

RF 30 64% 100  

Adaboost  63% 0  

CART 5 62% 0  

CART 30 62% -300  

C5.0 5 66% -200  

C5.0 30 61% -700  

 

After selection of variables 

After an initial classification by random forests, the attributes should be classified by their order of 

importance. Applying the first 10 attributes only, the performance of the classification algorithms 

were improved with reduced computation time and resources. We found six attributes including the 

price at -28 days (initialPrice), the day of the year (day_of_year), the arrival city (arrivalCity), the 

airline companies (directSeller), the merchant site (provider), and the return month (monthRet) in 

the two classifications. The results were almost the same with a slight advantage in the rForest 

version, suggesting that the 6 variables previously mentioned were the most relevant. 

 

FIGURE 5.13 Difference of performance between the variable selection by rForest and cForest 

 

Therefore, the rForest method was adopted to the classification algorithms previously selected. We 



 

obtain: 

TABLE 5.4 - Comparison 

Method Groups NO. Rate Economic gain /t1 

RF 5 66 → 66% 240 → 400 

RF 30 64 → 64% 100 → 100 

Adaboost 5 63 → 65% 0 → 100 

CART 5 62 → 63% 0 → 100 

CART 30 62 → 64% -300 → -200 

C5.0 5 66 → 71% -200 → 0 

C5.0 30 61 → 67% -700 → 500 

 

The improvement is incredible on almost all algorithms. The performances of each algorithm are 

visualized in Figure 5.14. The algorithm C5.0 provided positive results after selecting the variables. 

To avoid over-learn from the decision trees, the same algorithms were applied on an independent 

basis of flights departing in January 2019. The curves tend to approach the point (1, 1). We observed 

that the logit EM succeeded in generalizing the predictions using an identical ROC curve. All the 

approaches seem to have difficulties in predicting correctly at 18 days before the departure date. 

Whatever the threshold applied, the performances are either equal or lower than the immediate 

purchase. It can be explained by the demand-dependent daily adjustment during the days 

approaching to the departure date.  

 



 

FIGURE 5.14 Comparisons of the cross validation of the 4 selected algorithms 

 

 

 

 

FIGURE 5.15 Comparisons of the 4 algorithms selected on an independent basis 

 

5.2.3 Influence of external parameters              

 

In the segmentation phase, the behavioral topology of our learning base has a great influence on the 

final predictions. All possible trajectories were reflected to refine the attribution of behavior to a test 

flight. As the sample of the two-year’s flights is sufficient to produce a quality segmentation, 

additional historical flights may even be counterproductive. Therefore, in Figure 5.16, 

dissatisfactory performance is observed with the first 10 percent of the database. The performance 

was improving when 30 to 50 percent of the learning base was tested. The rate of satisfactory 

predictions was decreased when another 20 percent was added. Therefore, half of the database was 

chosen.  

 



 

 

FIGURE 5.16 - Evolution of the rate of satisfactory predictions with the increase in the learning 

base, for a couple EM / 5 clusters and Random Forest. 

 

5.3 Extensions 

5.3.1 Direct prediction             

The direct prediction adopts the learning algorithm to directly predict the variation at time t. Figure 

5.17 demonstrates the performance of EM logit and random forests in direct prediction. The results 

are equivalent or even worse than a model prediction.  

 

FIGURE 5.17 Evolution of performance in direct prediction by EM and EM logit 

 



 

5.3.2 Evolution of performance over time 

The previous experiments were carried out on a test basis between January 2019 and February 2019, 

two months after the last price collected from the learning base. The model limits in terms of 

longevity were discussed. How long does the prediction stay efficient? This information provides 

schedule to the systematic renewal of our model. Figure 5.18 shows that the performances of the 

first two months are above 63%, while the rates of satisfactory predictions and the ROC curves from 

the 3rd month were reduced. A daily performance monitoring system was required to renew our 

model. 

 

FIGURE 5.18 - Evolution of EMlogit performance for 20 clusters over the first 5 months 

 

5.3.3 Base extended to 90 days 

 

Finally, the sample base extended to a 90-day flight was tested. All user searches with at least 60 

separate collection days over a set of 90 days were performed. Algorithms were applied  to observe 

the adaptability to new data. In Figure 5.19, the results after a segmentation by EM with 5 clusters 

and a classification by random forests were visualized. Other combinations of algorithms provides 

similar results. Our approach was not adapted to a large base of flights of different nature as the 

results shown. Possible modifications including reconstructing the gray levels by increasing the size 

of the pixels. However, the period was too long for matching the similar flights. It was suggested to 

divide into three thirty-day periods. The whole process was performed on each of these parts to 

reduce differences between the behaviors. The prediction performance on the furthest two parts 

from the departure date provides better results, as the rates of satisfactory predictions tend to 

decrease towards 20 days before departure. It indicates that behaviors are more predictable and 

stable until one month before departure. 

 



 

 

FIGURE 5.19 - Performance changes based on 90-day flights. EM 5 clusters 

 

5.4 Conclusion  

 

The qualities of the different algorithms were highlighted. Four configurations were tested on an 

independent basis. The values of ϕ in the learning base was balanced. The calculation of 3-day or 

15-day prediction was modified. The problem was complex with multiple optimization criteria such 

as user gains, prediction rate, and minimization of false negatives. The optimal choice of the 

classifier for each prediction provides satisfactory results. Two complementary approaches were 

studied: first price change in prediction and direct prediction. The prediction performance was 

expected to improve with a simplified problem and reduced errors. The inflection points in the ROC 

curves spread, but the performances remain identical. This finding validates our approach to 

predicting behaviors. 

 

5.4.1 Contributions and limitations 

 

The analysis was driven by the industrial implication of this model. Different players belonging to 

the air industry have diverse needs. All will be benefiting if they could predict itinerary price and 

demand accurately. Among these players, airlines could improve the product customization such as 

prices and schedules to maximize expected revenues. Travel agencies could maximize conversion 



 

through sorting or filtering travel alternatives after a search request. Finally, potential customers will 

benefit from the customized schedule recommendation with a lower price, through flash sale and 

pop-up advertisement offered by mobile applications. 

 

The main contributions of this paper can be summarized as follows:  

(a) a dynamic pricing predictor was proposed to maximize expected contribution for potential 

customers at a travel request level. (b) a machine learning approach was developed to improve the 

overall prediction accuracy.  (c) the dataset is more comprehensive. Round-trip alternatives instead 

of just one-way were studied. Multiple markets, different travelers profiles, and different sales 

channels were analyzed in a single data set of travel request sessions.  

 

The quality of the database is limited by the following factors. The search logs were extracted from 

a limited source, which is mainly a leisure-travel website. The model may overestimate price 

sensitivity. The bookings generated from Qunar data only represents GDS bookings. Other sources 

of bookings, such as airline websites, were not included. This limitation could also cause 

unpredictable bias as it depends on the markets. Furthermore, different performance metrics should 

be applied. 

  

5.4.2 Further research directions 

 

The future research directions can be classified in the following three aspects: studying alternative 

prediction models, adopting multiple data, and exploring the relationship between pricing strategies 

and revenue management strategies. This field has been dominated by traditional models. Recent 

progress on machine learning methods brings new opportunities to predict prices. These new 

algorithms have been proven to show their efficiency when the data are unstructured. Multiple data 

is also worthy to explore. The main limitation of this study is related to the fact that the data are 

generating from Qunar, a single sales channel. The passengers booking directly in airline websites 

are not represented in our dataset. However, obtaining such an exhaustive dataset composed of all 

bookings on all channels for all competitors is very challenging. Airlines may have difficulties to 

observe the real-time prices and booking information of competitors in the market. Both aspects are 

key to predict accurate prices. Furthermore, insights about the learned groups should be analyzed. 

What’s the typical feature of each group? Finally, one of directions is to explore the relationship 

between pricing prediction and revenue management strategies. The key issues of pricing prediction 

are the access to real-time data. Thus, pricing strategies should be a great complementary module 

to revenue management strategies. Modern revenue management system also employs customer 

expectation that are overridden by the pricing optimizer. How could both revenue management and 

pricing strategies be adapted to maximize long-term airline revenues? 
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